From 743c6d27d156825050c18ff1c31d5c38e1932cb1 Mon Sep 17 00:00:00 2001 From: "wenfeng.zhang" Date: Fri, 23 Feb 2024 14:39:52 +0800 Subject: [PATCH] add paconv model --- cv/3d_detection/PAConv/pytorch/.gitignore | 136 + cv/3d_detection/PAConv/pytorch/LICENSE | 203 ++ cv/3d_detection/PAConv/pytorch/README.md | 55 + .../configs/3dssd/3dssd_4x4_kitti-3d-car.py | 121 + .../PAConv/pytorch/configs/3dssd/README.md | 45 + .../PAConv/pytorch/configs/3dssd/metafile.yml | 29 + .../configs/_base_/datasets/coco_instance.py | 48 + .../_base_/datasets/kitti-3d-3class.py | 140 + .../configs/_base_/datasets/kitti-3d-car.py | 138 + .../configs/_base_/datasets/kitti-mono3d.py | 92 + .../configs/_base_/datasets/lyft-3d.py | 136 + .../configs/_base_/datasets/nuim_instance.py | 59 + .../pytorch/configs/_base_/datasets/nus-3d.py | 142 + .../configs/_base_/datasets/nus-mono3d.py | 100 + .../_base_/datasets/range100_lyft-3d.py | 136 + .../_base_/datasets/s3dis-3d-5class.py | 114 + .../_base_/datasets/s3dis_seg-3d-13class.py | 161 + .../_base_/datasets/scannet-3d-18class.py | 128 + .../_base_/datasets/scannet_seg-3d-20class.py | 132 + .../_base_/datasets/sunrgbd-3d-10class.py | 107 + .../_base_/datasets/waymoD5-3d-3class.py | 145 + .../configs/_base_/datasets/waymoD5-3d-car.py | 143 + .../pytorch/configs/_base_/default_runtime.py | 23 + .../pytorch/configs/_base_/models/3dssd.py | 77 + .../models/cascade_mask_rcnn_r50_fpn.py | 198 ++ .../centerpoint_01voxel_second_secfpn_nus.py | 83 + .../centerpoint_02pillar_second_secfpn_nus.py | 83 + .../pytorch/configs/_base_/models/dgcnn.py | 28 + .../pytorch/configs/_base_/models/fcos3d.py | 78 + .../configs/_base_/models/groupfree3d.py | 71 + .../pytorch/configs/_base_/models/h3dnet.py | 341 ++ .../_base_/models/hv_pointpillars_fpn_lyft.py | 22 + .../_base_/models/hv_pointpillars_fpn_nus.py | 95 + .../hv_pointpillars_fpn_range100_lyft.py | 22 + .../models/hv_pointpillars_secfpn_kitti.py | 94 + .../models/hv_pointpillars_secfpn_waymo.py | 107 + .../_base_/models/hv_second_secfpn_kitti.py | 89 + .../_base_/models/hv_second_secfpn_waymo.py | 99 + .../configs/_base_/models/imvotenet_image.py | 108 + .../_base_/models/mask_rcnn_r50_fpn.py | 124 + .../configs/_base_/models/paconv_cuda_ssg.py | 7 + .../configs/_base_/models/paconv_ssg.py | 49 + .../pytorch/configs/_base_/models/parta2.py | 201 ++ .../pytorch/configs/_base_/models/pgd.py | 55 + .../configs/_base_/models/point_rcnn.py | 131 + .../configs/_base_/models/pointnet2_msg.py | 28 + .../configs/_base_/models/pointnet2_ssg.py | 35 + .../pytorch/configs/_base_/models/smoke.py | 53 + .../pytorch/configs/_base_/models/votenet.py | 73 + .../configs/_base_/schedules/cosine.py | 20 + .../configs/_base_/schedules/cyclic_20e.py | 24 + .../configs/_base_/schedules/cyclic_40e.py | 31 + .../_base_/schedules/mmdet_schedule_1x.py | 11 + .../configs/_base_/schedules/schedule_2x.py | 14 + .../configs/_base_/schedules/schedule_3x.py | 9 + .../_base_/schedules/seg_cosine_100e.py | 8 + .../_base_/schedules/seg_cosine_150e.py | 9 + .../_base_/schedules/seg_cosine_200e.py | 9 + .../_base_/schedules/seg_cosine_50e.py | 9 + ...pn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py | 332 ++ ...lars_secfpn_3x8_100e_det3d_kitti-3d-car.py | 201 ++ ...rs_secfpn_4x8_80e_pcdet_kitti-3d-3class.py | 244 ++ ...nd_secfpn_4x8_80e_pcdet_kitti-3d-3class.py | 251 ++ .../pytorch/configs/centerpoint/README.md | 138 + ...5voxel_second_secfpn_4x8_cyclic_20e_nus.py | 140 + ...ond_secfpn_circlenms_4x8_cyclic_20e_nus.py | 3 + ...el_second_secfpn_dcn_4x8_cyclic_20e_nus.py | 15 + ..._secfpn_dcn_4x8_cyclic_flip-tta_20e_nus.py | 50 + ...econd_secfpn_dcn_4x8_cyclic_tta_20e_nus.py | 52 + ...secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py | 16 + ...n_circlenms_4x8_cyclic_flip-tta_20e_nus.py | 51 + ...1voxel_second_secfpn_4x8_cyclic_20e_nus.py | 171 + ...ond_secfpn_circlenms_4x8_cyclic_20e_nus.py | 3 + ...el_second_secfpn_dcn_4x8_cyclic_20e_nus.py | 15 + ...secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py | 16 + ...pillar_second_secfpn_4x8_cyclic_20e_nus.py | 170 + ...ond_secfpn_circlenms_4x8_cyclic_20e_nus.py | 3 + ...ar_second_secfpn_dcn_4x8_cyclic_20e_nus.py | 15 + ...secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py | 16 + .../pytorch/configs/centerpoint/metafile.yml | 95 + .../PAConv/pytorch/configs/dgcnn/README.md | 55 + ...n_32x4_cosine_100e_s3dis_seg-3d-13class.py | 24 + .../PAConv/pytorch/configs/dgcnn/metafile.yml | 24 + .../configs/dynamic_voxelization/README.md | 40 + ...intpillars_secfpn_6x8_160e_kitti-3d-car.py | 19 + ...d_secfpn_2x8_cosine_80e_kitti-3d-3class.py | 22 + .../dv_second_secfpn_6x8_80e_kitti-3d-car.py | 18 + .../configs/dynamic_voxelization/metafile.yml | 53 + .../PAConv/pytorch/configs/fcos3d/README.md | 75 + ...caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py | 75 + ..._gn-head_dcn_2x8_1x_nus-mono3d_finetune.py | 8 + .../pytorch/configs/fcos3d/metafile.yml | 43 + .../pytorch/configs/free_anchor/README.md | 105 + ...s_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py | 47 + ...f_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py | 18 + ...ll_free-anchor_strong-aug_4x8_3x_nus-3d.py | 70 + ...f_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py | 18 + ...ll_free-anchor_strong-aug_4x8_3x_nus-3d.py | 70 + ...f_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py | 18 + .../pytorch/configs/free_anchor/metafile.yml | 96 + .../pytorch/configs/groupfree3d/README.md | 44 + ...pfree3d_8x4_scannet-3d-18class-L12-O256.py | 199 ++ ...upfree3d_8x4_scannet-3d-18class-L6-O256.py | 198 ++ ...e3d_8x4_scannet-3d-18class-w2x-L12-O256.py | 214 ++ ...e3d_8x4_scannet-3d-18class-w2x-L12-O512.py | 215 ++ .../pytorch/configs/groupfree3d/metafile.yml | 72 + .../PAConv/pytorch/configs/h3dnet/README.md | 44 + .../h3dnet/h3dnet_3x8_scannet-3d-18class.py | 64 + .../pytorch/configs/h3dnet/metafile.yml | 29 + .../pytorch/configs/imvotenet/README.md | 43 + ...ter_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py | 58 + ...mvotenet_stage2_16x8_sunrgbd-3d-10class.py | 260 ++ .../pytorch/configs/imvotenet/metafile.yml | 43 + .../pytorch/configs/imvoxelnet/README.md | 38 + .../imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py | 162 + .../pytorch/configs/imvoxelnet/metafile.yml | 29 + .../PAConv/pytorch/configs/monoflex/README.md | 48 + .../pytorch/configs/monoflex/metafile.yml | 30 + .../PAConv/pytorch/configs/mvxnet/README.md | 38 + ...nd_secfpn_adamw_2x8_80e_kitti-3d-3class.py | 251 ++ .../pytorch/configs/mvxnet/metafile.yml | 30 + .../PAConv/pytorch/configs/nuimages/README.md | 59 + .../cascade_mask_rcnn_r101_fpn_1x_nuim.py | 2 + .../cascade_mask_rcnn_r50_fpn_1x_nuim.py | 60 + ...cade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py | 3 + ...ade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py | 7 + ...ascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py | 13 + .../configs/nuimages/htc_r50_fpn_1x_nuim.py | 44 + .../nuimages/htc_r50_fpn_coco-20e_1x_nuim.py | 3 + .../nuimages/htc_r50_fpn_coco-20e_20e_nuim.py | 4 + .../htc_without_semantic_r50_fpn_1x_nuim.py | 221 ++ ..._fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py | 23 + .../nuimages/mask_rcnn_r101_fpn_1x_nuim.py | 2 + .../mask_rcnn_r50_caffe_fpn_1x_nuim.py | 46 + ...mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py | 48 + ...ask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py | 52 + .../nuimages/mask_rcnn_r50_fpn_1x_nuim.py | 8 + .../mask_rcnn_r50_fpn_coco-2x_1x_nuim.py | 9 + .../mask_rcnn_r50_fpn_coco-2x_1x_nus-2d.py | 39 + .../mask_rcnn_x101_32x4d_fpn_1x_nuim.py | 13 + .../pytorch/configs/nuimages/metafile.yml | 255 ++ .../PAConv/pytorch/configs/paconv/README.md | 51 + .../pytorch/configs/paconv/metafile.yml | 29 + ...sg_8x8_cosine_200e_s3dis_seg-3d-13class.py | 69 + ...sg_8x8_cosine_150e_s3dis_seg-3d-13class.py | 66 + .../PAConv/pytorch/configs/parta2/README.md | 38 + ...2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py | 122 + ...rtA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py | 137 + .../pytorch/configs/parta2/metafile.yml | 41 + .../PAConv/pytorch/configs/pgd/README.md | 69 + .../PAConv/pytorch/configs/pgd/metafile.yml | 81 + ...01_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py | 107 + ...fpn_gn-head_2x16_1x_nus-mono3d_finetune.py | 9 + ...01_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py | 5 + ...fpn_gn-head_2x16_2x_nus-mono3d_finetune.py | 9 + ...1_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py | 127 + .../pytorch/configs/point_rcnn/README.md | 47 + .../pytorch/configs/point_rcnn/metafile.yml | 29 + .../point_rcnn_2x8_kitti-3d-3classes.py | 94 + .../pytorch/configs/pointnet2/README.md | 72 + .../pytorch/configs/pointnet2/metafile.yml | 94 + ...16x2_cosine_250e_scannet_seg-3d-20class.py | 36 + ...sg_16x2_cosine_80e_s3dis_seg-3d-13class.py | 27 + ...16x2_cosine_250e_scannet_seg-3d-20class.py | 166 + ...16x2_cosine_200e_scannet_seg-3d-20class.py | 34 + ...sg_16x2_cosine_50e_s3dis_seg-3d-13class.py | 25 + ...16x2_cosine_200e_scannet_seg-3d-20class.py | 164 + .../pytorch/configs/pointpillars/README.md | 78 + ...pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py | 5 + ..._pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py | 5 + ...tpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py | 4 + ...ars_fpn_sbn-all_range100_2x8_2x_lyft-3d.py | 5 + ...pillars_secfpn_6x8_160e_kitti-3d-3class.py | 81 + ...intpillars_secfpn_6x8_160e_kitti-3d-car.py | 87 + ...ntpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py | 43 + ...intpillars_secfpn_sbn-all_4x8_2x_nus-3d.py | 42 + ...llars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py | 4 + ..._secfpn_sbn-all_range100_2x8_2x_lyft-3d.py | 42 + ...lars_secfpn_sbn_2x16_2x_waymo-3d-3class.py | 9 + ...pillars_secfpn_sbn_2x16_2x_waymo-3d-car.py | 37 + ...rs_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py | 6 + ...llars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py | 34 + .../pytorch/configs/pointpillars/metafile.yml | 213 ++ .../PAConv/pytorch/configs/regnet/README.md | 82 + ..._regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py | 24 + ...regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py | 24 + ..._regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py | 24 + ...et-400mf_fpn_sbn-all_fp16_2x8_2x_nus-3d.py | 4 + ...0mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py | 24 + ...net-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py | 39 + ...gnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py | 38 + ..._secfpn_sbn-all_range100_2x8_2x_lyft-3d.py | 40 + .../pytorch/configs/regnet/metafile.yml | 85 + .../PAConv/pytorch/configs/sassd/README.md | 28 + .../sassd/sassd_6x8_80e_kitti-3d-3class.py | 94 + .../PAConv/pytorch/configs/second/README.md | 54 + ...v_second_secfpn_6x8_80e_kitti-3d-3class.py | 5 + .../hv_second_secfpn_6x8_80e_kitti-3d-car.py | 30 + ...ond_secfpn_fp16_6x8_80e_kitti-3d-3class.py | 3 + ...second_secfpn_fp16_6x8_80e_kitti-3d-car.py | 3 + ...nd_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py | 112 + .../pytorch/configs/second/metafile.yml | 97 + .../PAConv/pytorch/configs/smoke/README.md | 47 + .../PAConv/pytorch/configs/smoke/metafile.yml | 30 + ...orch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py | 64 + .../PAConv/pytorch/configs/ssn/README.md | 53 + ...et-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py | 21 + ...net-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py | 19 + .../hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py | 224 ++ .../hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py | 238 ++ .../PAConv/pytorch/configs/ssn/metafile.yml | 72 + .../PAConv/pytorch/configs/votenet/README.md | 68 + .../pytorch/configs/votenet/metafile.yml | 59 + .../votenet_16x8_sunrgbd-3d-10class.py | 21 + .../votenet/votenet_8x8_scannet-3d-18class.py | 36 + .../votenet_iouloss_8x8_scannet-3d-18class.py | 8 + .../PAConv/pytorch/data/s3dis/README.md | 59 + .../data/s3dis/collect_indoor3d_data.py | 48 + .../pytorch/data/s3dis/indoor3d_util.py | 53 + .../data/s3dis/meta_data/anno_paths.txt | 272 ++ .../data/s3dis/meta_data/class_names.txt | 13 + cv/3d_detection/PAConv/pytorch/dist_train.sh | 34 + .../PAConv/pytorch/mmdet/__init__.py | 29 + .../PAConv/pytorch/mmdet/apis/__init__.py | 12 + .../PAConv/pytorch/mmdet/apis/inference.py | 251 ++ .../PAConv/pytorch/mmdet/apis/test.py | 209 ++ .../PAConv/pytorch/mmdet/apis/train.py | 244 ++ .../PAConv/pytorch/mmdet/core/__init__.py | 9 + .../pytorch/mmdet/core/anchor/__init__.py | 14 + .../mmdet/core/anchor/anchor_generator.py | 866 +++++ .../pytorch/mmdet/core/anchor/builder.py | 19 + .../mmdet/core/anchor/point_generator.py | 263 ++ .../PAConv/pytorch/mmdet/core/anchor/utils.py | 72 + .../pytorch/mmdet/core/bbox/__init__.py | 28 + .../mmdet/core/bbox/assigners/__init__.py | 22 + .../bbox/assigners/approx_max_iou_assigner.py | 146 + .../core/bbox/assigners/assign_result.py | 206 ++ .../core/bbox/assigners/atss_assigner.py | 179 + .../core/bbox/assigners/base_assigner.py | 10 + .../bbox/assigners/center_region_assigner.py | 336 ++ .../core/bbox/assigners/grid_assigner.py | 156 + .../core/bbox/assigners/hungarian_assigner.py | 146 + .../bbox/assigners/mask_hungarian_assigner.py | 132 + .../core/bbox/assigners/max_iou_assigner.py | 218 ++ .../core/bbox/assigners/point_assigner.py | 134 + .../core/bbox/assigners/region_assigner.py | 222 ++ .../core/bbox/assigners/sim_ota_assigner.py | 257 ++ .../bbox/assigners/task_aligned_assigner.py | 151 + .../core/bbox/assigners/uniform_assigner.py | 135 + .../PAConv/pytorch/mmdet/core/bbox/builder.py | 21 + .../pytorch/mmdet/core/bbox/coder/__init__.py | 15 + .../mmdet/core/bbox/coder/base_bbox_coder.py | 18 + .../core/bbox/coder/bucketing_bbox_coder.py | 351 ++ .../core/bbox/coder/delta_xywh_bbox_coder.py | 392 +++ .../bbox/coder/distance_point_bbox_coder.py | 63 + .../coder/legacy_delta_xywh_bbox_coder.py | 216 ++ .../core/bbox/coder/pseudo_bbox_coder.py | 19 + .../mmdet/core/bbox/coder/tblr_bbox_coder.py | 206 ++ .../mmdet/core/bbox/coder/yolo_bbox_coder.py | 83 + .../pytorch/mmdet/core/bbox/demodata.py | 42 + .../core/bbox/iou_calculators/__init__.py | 5 + .../core/bbox/iou_calculators/builder.py | 9 + .../bbox/iou_calculators/iou2d_calculator.py | 261 ++ .../mmdet/core/bbox/match_costs/__init__.py | 9 + .../mmdet/core/bbox/match_costs/builder.py | 9 + .../mmdet/core/bbox/match_costs/match_cost.py | 359 ++ .../mmdet/core/bbox/samplers/__init__.py | 19 + .../mmdet/core/bbox/samplers/base_sampler.py | 102 + .../core/bbox/samplers/combined_sampler.py | 21 + .../samplers/instance_balanced_pos_sampler.py | 56 + .../bbox/samplers/iou_balanced_neg_sampler.py | 158 + .../core/bbox/samplers/mask_pseudo_sampler.py | 44 + .../bbox/samplers/mask_sampling_result.py | 60 + .../mmdet/core/bbox/samplers/ohem_sampler.py | 111 + .../core/bbox/samplers/pseudo_sampler.py | 42 + .../core/bbox/samplers/random_sampler.py | 82 + .../core/bbox/samplers/sampling_result.py | 153 + .../core/bbox/samplers/score_hlr_sampler.py | 265 ++ .../pytorch/mmdet/core/bbox/transforms.py | 270 ++ .../mmdet/core/data_structures/__init__.py | 5 + .../core/data_structures/general_data.py | 326 ++ .../core/data_structures/instance_data.py | 188 ++ .../pytorch/mmdet/core/evaluation/__init__.py | 19 + .../mmdet/core/evaluation/bbox_overlaps.py | 65 + .../mmdet/core/evaluation/class_names.py | 332 ++ .../mmdet/core/evaluation/eval_hooks.py | 130 + .../pytorch/mmdet/core/evaluation/mean_ap.py | 753 +++++ .../mmdet/core/evaluation/panoptic_utils.py | 6 + .../pytorch/mmdet/core/evaluation/recall.py | 197 ++ .../pytorch/mmdet/core/export/__init__.py | 12 + .../mmdet/core/export/model_wrappers.py | 183 ++ .../pytorch/mmdet/core/export/onnx_helper.py | 223 ++ .../pytorch/mmdet/core/export/pytorch2onnx.py | 159 + .../pytorch/mmdet/core/hook/__init__.py | 15 + .../pytorch/mmdet/core/hook/checkloss_hook.py | 24 + .../PAConv/pytorch/mmdet/core/hook/ema.py | 130 + .../mmdet/core/hook/memory_profiler_hook.py | 55 + .../mmdet/core/hook/set_epoch_info_hook.py | 15 + .../pytorch/mmdet/core/hook/sync_norm_hook.py | 52 + .../mmdet/core/hook/sync_random_size_hook.py | 72 + .../mmdet/core/hook/yolox_lrupdater_hook.py | 67 + .../mmdet/core/hook/yolox_mode_switch_hook.py | 52 + .../pytorch/mmdet/core/mask/__init__.py | 9 + .../pytorch/mmdet/core/mask/mask_target.py | 127 + .../pytorch/mmdet/core/mask/structures.py | 1102 +++++++ .../PAConv/pytorch/mmdet/core/mask/utils.py | 89 + .../mmdet/core/post_processing/__init__.py | 10 + .../mmdet/core/post_processing/bbox_nms.py | 171 + .../mmdet/core/post_processing/matrix_nms.py | 121 + .../mmdet/core/post_processing/merge_augs.py | 154 + .../pytorch/mmdet/core/utils/__init__.py | 13 + .../pytorch/mmdet/core/utils/dist_utils.py | 193 ++ .../PAConv/pytorch/mmdet/core/utils/misc.py | 208 ++ .../mmdet/core/visualization/__init__.py | 9 + .../pytorch/mmdet/core/visualization/image.py | 524 +++ .../mmdet/core/visualization/palette.py | 63 + .../PAConv/pytorch/mmdet/datasets/__init__.py | 28 + .../mmdet/datasets/api_wrappers/__init__.py | 7 + .../mmdet/datasets/api_wrappers/coco_api.py | 47 + .../api_wrappers/panoptic_evaluation.py | 224 ++ .../PAConv/pytorch/mmdet/datasets/builder.py | 215 ++ .../pytorch/mmdet/datasets/cityscapes.py | 338 ++ .../PAConv/pytorch/mmdet/datasets/coco.py | 649 ++++ .../pytorch/mmdet/datasets/coco_panoptic.py | 692 ++++ .../PAConv/pytorch/mmdet/datasets/custom.py | 410 +++ .../mmdet/datasets/dataset_wrappers.py | 456 +++ .../pytorch/mmdet/datasets/deepfashion.py | 16 + .../PAConv/pytorch/mmdet/datasets/lvis.py | 742 +++++ .../pytorch/mmdet/datasets/openimages.py | 891 +++++ .../mmdet/datasets/pipelines/__init__.py | 30 + .../mmdet/datasets/pipelines/auto_augment.py | 894 +++++ .../mmdet/datasets/pipelines/compose.py | 55 + .../mmdet/datasets/pipelines/formating.py | 9 + .../mmdet/datasets/pipelines/formatting.py | 392 +++ .../mmdet/datasets/pipelines/instaboost.py | 118 + .../mmdet/datasets/pipelines/loading.py | 609 ++++ .../mmdet/datasets/pipelines/test_time_aug.py | 121 + .../mmdet/datasets/pipelines/transforms.py | 2919 +++++++++++++++++ .../mmdet/datasets/samplers/__init__.py | 10 + .../datasets/samplers/class_aware_sampler.py | 176 + .../datasets/samplers/distributed_sampler.py | 54 + .../mmdet/datasets/samplers/group_sampler.py | 148 + .../datasets/samplers/infinite_sampler.py | 186 ++ .../PAConv/pytorch/mmdet/datasets/utils.py | 166 + .../PAConv/pytorch/mmdet/datasets/voc.py | 112 + .../pytorch/mmdet/datasets/wider_face.py | 54 + .../pytorch/mmdet/datasets/xml_style.py | 178 + .../PAConv/pytorch/mmdet/models/__init__.py | 19 + .../mmdet/models/backbones/__init__.py | 26 + .../mmdet/models/backbones/csp_darknet.py | 284 ++ .../pytorch/mmdet/models/backbones/darknet.py | 213 ++ .../models/backbones/detectors_resnet.py | 353 ++ .../models/backbones/detectors_resnext.py | 123 + .../mmdet/models/backbones/efficientnet.py | 417 +++ .../mmdet/models/backbones/hourglass.py | 222 ++ .../pytorch/mmdet/models/backbones/hrnet.py | 589 ++++ .../mmdet/models/backbones/mobilenet_v2.py | 197 ++ .../pytorch/mmdet/models/backbones/pvt.py | 591 ++++ .../pytorch/mmdet/models/backbones/regnet.py | 356 ++ .../pytorch/mmdet/models/backbones/res2net.py | 327 ++ .../pytorch/mmdet/models/backbones/resnest.py | 322 ++ .../pytorch/mmdet/models/backbones/resnet.py | 672 ++++ .../pytorch/mmdet/models/backbones/resnext.py | 154 + .../pytorch/mmdet/models/backbones/ssd_vgg.py | 128 + .../pytorch/mmdet/models/backbones/swin.py | 763 +++++ .../mmdet/models/backbones/trident_resnet.py | 298 ++ .../PAConv/pytorch/mmdet/models/builder.py | 59 + .../mmdet/models/dense_heads/__init__.py | 56 + .../models/dense_heads/anchor_free_head.py | 350 ++ .../mmdet/models/dense_heads/anchor_head.py | 542 +++ .../mmdet/models/dense_heads/atss_head.py | 501 +++ .../models/dense_heads/autoassign_head.py | 527 +++ .../models/dense_heads/base_dense_head.py | 526 +++ .../models/dense_heads/base_mask_head.py | 116 + .../models/dense_heads/cascade_rpn_head.py | 801 +++++ .../models/dense_heads/centernet_head.py | 412 +++ .../models/dense_heads/centripetal_head.py | 430 +++ .../mmdet/models/dense_heads/corner_head.py | 1086 ++++++ .../dense_heads/deformable_detr_head.py | 318 ++ .../models/dense_heads/dense_test_mixins.py | 206 ++ .../mmdet/models/dense_heads/detr_head.py | 844 +++++ .../models/dense_heads/embedding_rpn_head.py | 116 + .../mmdet/models/dense_heads/fcos_head.py | 455 +++ .../mmdet/models/dense_heads/fovea_head.py | 385 +++ .../dense_heads/free_anchor_retina_head.py | 272 ++ .../mmdet/models/dense_heads/fsaf_head.py | 433 +++ .../models/dense_heads/ga_retina_head.py | 113 + .../mmdet/models/dense_heads/ga_rpn_head.py | 177 + .../mmdet/models/dense_heads/gfl_head.py | 648 ++++ .../models/dense_heads/guided_anchor_head.py | 868 +++++ .../mmdet/models/dense_heads/lad_head.py | 232 ++ .../mmdet/models/dense_heads/ld_head.py | 261 ++ .../models/dense_heads/mask2former_head.py | 430 +++ .../models/dense_heads/maskformer_head.py | 553 ++++ .../mmdet/models/dense_heads/nasfcos_head.py | 80 + .../mmdet/models/dense_heads/paa_head.py | 756 +++++ .../models/dense_heads/pisa_retinanet_head.py | 155 + .../mmdet/models/dense_heads/pisa_ssd_head.py | 140 + .../models/dense_heads/reppoints_head.py | 764 +++++ .../mmdet/models/dense_heads/retina_head.py | 115 + .../models/dense_heads/retina_sepbn_head.py | 118 + .../mmdet/models/dense_heads/rpn_head.py | 265 ++ .../models/dense_heads/sabl_retina_head.py | 630 ++++ .../mmdet/models/dense_heads/solo_head.py | 1177 +++++++ .../mmdet/models/dense_heads/ssd_head.py | 357 ++ .../mmdet/models/dense_heads/tood_head.py | 778 +++++ .../mmdet/models/dense_heads/vfnet_head.py | 740 +++++ .../mmdet/models/dense_heads/yolact_head.py | 1018 ++++++ .../mmdet/models/dense_heads/yolo_head.py | 619 ++++ .../mmdet/models/dense_heads/yolof_head.py | 416 +++ .../mmdet/models/dense_heads/yolox_head.py | 491 +++ .../mmdet/models/detectors/__init__.py | 56 + .../pytorch/mmdet/models/detectors/atss.py | 19 + .../mmdet/models/detectors/autoassign.py | 19 + .../pytorch/mmdet/models/detectors/base.py | 360 ++ .../mmdet/models/detectors/cascade_rcnn.py | 49 + .../mmdet/models/detectors/centernet.py | 111 + .../mmdet/models/detectors/cornernet.py | 97 + .../mmdet/models/detectors/deformable_detr.py | 10 + .../pytorch/mmdet/models/detectors/detr.py | 70 + .../mmdet/models/detectors/fast_rcnn.py | 55 + .../mmdet/models/detectors/faster_rcnn.py | 27 + .../pytorch/mmdet/models/detectors/fcos.py | 19 + .../pytorch/mmdet/models/detectors/fovea.py | 19 + .../pytorch/mmdet/models/detectors/fsaf.py | 19 + .../pytorch/mmdet/models/detectors/gfl.py | 18 + .../mmdet/models/detectors/grid_rcnn.py | 32 + .../pytorch/mmdet/models/detectors/htc.py | 16 + .../mmdet/models/detectors/kd_one_stage.py | 103 + .../pytorch/mmdet/models/detectors/lad.py | 92 + .../mmdet/models/detectors/mask2former.py | 27 + .../mmdet/models/detectors/mask_rcnn.py | 27 + .../models/detectors/mask_scoring_rcnn.py | 30 + .../mmdet/models/detectors/maskformer.py | 233 ++ .../pytorch/mmdet/models/detectors/nasfcos.py | 22 + .../pytorch/mmdet/models/detectors/paa.py | 19 + .../mmdet/models/detectors/panoptic_fpn.py | 34 + .../detectors/panoptic_two_stage_segmentor.py | 279 ++ .../mmdet/models/detectors/point_rend.py | 32 + .../mmdet/models/detectors/queryinst.py | 28 + .../models/detectors/reppoints_detector.py | 24 + .../mmdet/models/detectors/retinanet.py | 19 + .../pytorch/mmdet/models/detectors/rpn.py | 159 + .../pytorch/mmdet/models/detectors/scnet.py | 11 + .../mmdet/models/detectors/single_stage.py | 171 + .../detectors/single_stage_instance_seg.py | 363 ++ .../pytorch/mmdet/models/detectors/solo.py | 30 + .../mmdet/models/detectors/sparse_rcnn.py | 111 + .../pytorch/mmdet/models/detectors/tood.py | 23 + .../models/detectors/trident_faster_rcnn.py | 70 + .../mmdet/models/detectors/two_stage.py | 211 ++ .../pytorch/mmdet/models/detectors/vfnet.py | 20 + .../pytorch/mmdet/models/detectors/yolact.py | 120 + .../pytorch/mmdet/models/detectors/yolo.py | 42 + .../pytorch/mmdet/models/detectors/yolof.py | 19 + .../pytorch/mmdet/models/detectors/yolox.py | 136 + .../pytorch/mmdet/models/losses/__init__.py | 32 + .../pytorch/mmdet/models/losses/accuracy.py | 79 + .../pytorch/mmdet/models/losses/ae_loss.py | 103 + .../mmdet/models/losses/balanced_l1_loss.py | 124 + .../mmdet/models/losses/cross_entropy_loss.py | 301 ++ .../pytorch/mmdet/models/losses/dice_loss.py | 146 + .../pytorch/mmdet/models/losses/focal_loss.py | 244 ++ .../models/losses/gaussian_focal_loss.py | 92 + .../mmdet/models/losses/gfocal_loss.py | 245 ++ .../pytorch/mmdet/models/losses/ghm_loss.py | 213 ++ .../pytorch/mmdet/models/losses/iou_loss.py | 474 +++ .../pytorch/mmdet/models/losses/kd_loss.py | 88 + .../pytorch/mmdet/models/losses/mse_loss.py | 57 + .../pytorch/mmdet/models/losses/pisa_loss.py | 184 ++ .../mmdet/models/losses/seesaw_loss.py | 262 ++ .../mmdet/models/losses/smooth_l1_loss.py | 146 + .../pytorch/mmdet/models/losses/utils.py | 105 + .../mmdet/models/losses/varifocal_loss.py | 134 + .../pytorch/mmdet/models/necks/__init__.py | 23 + .../PAConv/pytorch/mmdet/models/necks/bfp.py | 102 + .../mmdet/models/necks/channel_mapper.py | 100 + .../mmdet/models/necks/ct_resnet_neck.py | 94 + .../mmdet/models/necks/dilated_encoder.py | 108 + .../pytorch/mmdet/models/necks/dyhead.py | 174 + .../PAConv/pytorch/mmdet/models/necks/fpg.py | 406 +++ .../PAConv/pytorch/mmdet/models/necks/fpn.py | 204 ++ .../pytorch/mmdet/models/necks/fpn_carafe.py | 275 ++ .../pytorch/mmdet/models/necks/hrfpn.py | 100 + .../pytorch/mmdet/models/necks/nas_fpn.py | 158 + .../pytorch/mmdet/models/necks/nasfcos_fpn.py | 170 + .../pytorch/mmdet/models/necks/pafpn.py | 158 + .../PAConv/pytorch/mmdet/models/necks/rfp.py | 135 + .../pytorch/mmdet/models/necks/ssd_neck.py | 129 + .../pytorch/mmdet/models/necks/yolo_neck.py | 140 + .../pytorch/mmdet/models/necks/yolox_pafpn.py | 156 + .../pytorch/mmdet/models/plugins/__init__.py | 9 + .../pytorch/mmdet/models/plugins/dropblock.py | 85 + .../plugins/msdeformattn_pixel_decoder.py | 269 ++ .../mmdet/models/plugins/pixel_decoder.py | 243 ++ .../mmdet/models/roi_heads/__init__.py | 37 + .../mmdet/models/roi_heads/base_roi_head.py | 103 + .../models/roi_heads/bbox_heads/__init__.py | 14 + .../models/roi_heads/bbox_heads/bbox_head.py | 594 ++++ .../roi_heads/bbox_heads/convfc_bbox_head.py | 229 ++ .../models/roi_heads/bbox_heads/dii_head.py | 426 +++ .../roi_heads/bbox_heads/double_bbox_head.py | 178 + .../models/roi_heads/bbox_heads/sabl_head.py | 596 ++++ .../roi_heads/bbox_heads/scnet_bbox_head.py | 77 + .../models/roi_heads/cascade_roi_head.py | 631 ++++ .../mmdet/models/roi_heads/double_roi_head.py | 34 + .../models/roi_heads/dynamic_roi_head.py | 155 + .../mmdet/models/roi_heads/grid_roi_head.py | 170 + .../mmdet/models/roi_heads/htc_roi_head.py | 628 ++++ .../models/roi_heads/mask_heads/__init__.py | 20 + .../roi_heads/mask_heads/coarse_mask_head.py | 100 + .../roi_heads/mask_heads/dynamic_mask_head.py | 147 + .../roi_heads/mask_heads/fcn_mask_head.py | 412 +++ .../mask_heads/feature_relay_head.py | 53 + .../mask_heads/fused_semantic_head.py | 117 + .../mask_heads/global_context_head.py | 101 + .../models/roi_heads/mask_heads/grid_head.py | 363 ++ .../roi_heads/mask_heads/htc_mask_head.py | 39 + .../roi_heads/mask_heads/mask_point_head.py | 253 ++ .../roi_heads/mask_heads/maskiou_head.py | 183 ++ .../roi_heads/mask_heads/scnet_mask_head.py | 28 + .../mask_heads/scnet_semantic_head.py | 28 + .../models/roi_heads/mask_scoring_roi_head.py | 113 + .../mmdet/models/roi_heads/pisa_roi_head.py | 160 + .../models/roi_heads/point_rend_roi_head.py | 393 +++ .../roi_heads/roi_extractors/__init__.py | 6 + .../roi_extractors/base_roi_extractor.py | 88 + .../roi_extractors/generic_roi_extractor.py | 84 + .../single_level_roi_extractor.py | 115 + .../mmdet/models/roi_heads/scnet_roi_head.py | 605 ++++ .../models/roi_heads/shared_heads/__init__.py | 4 + .../roi_heads/shared_heads/res_layer.py | 80 + .../mmdet/models/roi_heads/sparse_roi_head.py | 424 +++ .../models/roi_heads/standard_roi_head.py | 397 +++ .../mmdet/models/roi_heads/test_mixins.py | 311 ++ .../models/roi_heads/trident_roi_head.py | 120 + .../mmdet/models/seg_heads/__init__.py | 3 + .../models/seg_heads/base_semantic_head.py | 86 + .../models/seg_heads/panoptic_fpn_head.py | 155 + .../panoptic_fusion_heads/__init__.py | 5 + .../base_panoptic_fusion_head.py | 48 + .../heuristic_fusion_head.py | 126 + .../maskformer_fusion_head.py | 241 ++ .../pytorch/mmdet/models/utils/__init__.py | 34 + .../mmdet/models/utils/brick_wrappers.py | 51 + .../pytorch/mmdet/models/utils/builder.py | 47 + .../mmdet/models/utils/ckpt_convert.py | 137 + .../mmdet/models/utils/conv_upsample.py | 67 + .../pytorch/mmdet/models/utils/csp_layer.py | 150 + .../mmdet/models/utils/gaussian_target.py | 268 ++ .../mmdet/models/utils/inverted_residual.py | 130 + .../mmdet/models/utils/make_divisible.py | 28 + .../PAConv/pytorch/mmdet/models/utils/misc.py | 72 + .../mmdet/models/utils/normed_predictor.py | 88 + .../models/utils/panoptic_gt_processing.py | 62 + .../mmdet/models/utils/point_sample.py | 87 + .../mmdet/models/utils/positional_encoding.py | 163 + .../pytorch/mmdet/models/utils/res_layer.py | 190 ++ .../pytorch/mmdet/models/utils/se_layer.py | 127 + .../pytorch/mmdet/models/utils/transformer.py | 1167 +++++++ .../PAConv/pytorch/mmdet/utils/__init__.py | 15 + .../PAConv/pytorch/mmdet/utils/collect_env.py | 17 + .../pytorch/mmdet/utils/compat_config.py | 139 + .../pytorch/mmdet/utils/contextmanagers.py | 122 + .../PAConv/pytorch/mmdet/utils/logger.py | 65 + .../PAConv/pytorch/mmdet/utils/misc.py | 76 + .../PAConv/pytorch/mmdet/utils/profiling.py | 40 + .../PAConv/pytorch/mmdet/utils/setup_env.py | 53 + .../PAConv/pytorch/mmdet/utils/split_batch.py | 45 + .../pytorch/mmdet/utils/util_distribution.py | 74 + .../PAConv/pytorch/mmdet/utils/util_mixins.py | 105 + .../PAConv/pytorch/mmdet/utils/util_random.py | 34 + .../PAConv/pytorch/mmdet/version.py | 19 + .../PAConv/pytorch/mmdet3d/__init__.py | 49 + .../PAConv/pytorch/mmdet3d/apis/__init__.py | 14 + .../PAConv/pytorch/mmdet3d/apis/inference.py | 526 +++ .../PAConv/pytorch/mmdet3d/apis/test.py | 90 + .../PAConv/pytorch/mmdet3d/apis/train.py | 351 ++ .../PAConv/pytorch/mmdet3d/core/__init__.py | 9 + .../pytorch/mmdet3d/core/anchor/__init__.py | 10 + .../core/anchor/anchor_3d_generator.py | 419 +++ .../pytorch/mmdet3d/core/bbox/__init__.py | 30 + .../mmdet3d/core/bbox/assigners/__init__.py | 4 + .../pytorch/mmdet3d/core/bbox/box_np_ops.py | 827 +++++ .../mmdet3d/core/bbox/coders/__init__.py | 19 + .../bbox/coders/anchor_free_bbox_coder.py | 130 + .../bbox/coders/centerpoint_bbox_coders.py | 229 ++ .../bbox/coders/delta_xyzwhlr_bbox_coder.py | 91 + .../core/bbox/coders/fcos3d_bbox_coder.py | 127 + .../bbox/coders/groupfree3d_bbox_coder.py | 191 ++ .../core/bbox/coders/monoflex_bbox_coder.py | 515 +++ .../coders/partial_bin_based_bbox_coder.py | 241 ++ .../core/bbox/coders/pgd_bbox_coder.py | 128 + .../bbox/coders/point_xyzwhlr_bbox_coder.py | 117 + .../core/bbox/coders/smoke_bbox_coder.py | 216 ++ .../core/bbox/iou_calculators/__init__.py | 11 + .../bbox/iou_calculators/iou3d_calculator.py | 329 ++ .../mmdet3d/core/bbox/samplers/__init__.py | 13 + .../samplers/iou_neg_piecewise_sampler.py | 183 ++ .../mmdet3d/core/bbox/structures/__init__.py | 18 + .../core/bbox/structures/base_box3d.py | 578 ++++ .../core/bbox/structures/box_3d_mode.py | 197 ++ .../mmdet3d/core/bbox/structures/cam_box3d.py | 354 ++ .../core/bbox/structures/coord_3d_mode.py | 234 ++ .../core/bbox/structures/depth_box3d.py | 270 ++ .../core/bbox/structures/lidar_box3d.py | 210 ++ .../mmdet3d/core/bbox/structures/utils.py | 342 ++ .../pytorch/mmdet3d/core/bbox/transforms.py | 76 + .../mmdet3d/core/evaluation/__init__.py | 11 + .../mmdet3d/core/evaluation/indoor_eval.py | 309 ++ .../core/evaluation/instance_seg_eval.py | 128 + .../core/evaluation/kitti_utils/__init__.py | 4 + .../core/evaluation/kitti_utils/eval.py | 950 ++++++ .../core/evaluation/kitti_utils/rotate_iou.py | 379 +++ .../mmdet3d/core/evaluation/lyft_eval.py | 285 ++ .../core/evaluation/scannet_utils/__init__.py | 4 + .../evaluate_semantic_instance.py | 347 ++ .../core/evaluation/scannet_utils/util_3d.py | 84 + .../mmdet3d/core/evaluation/seg_eval.py | 131 + .../core/evaluation/waymo_utils/__init__.py | 4 + .../waymo_utils/prediction_kitti_to_waymo.py | 263 ++ .../pytorch/mmdet3d/core/points/__init__.py | 30 + .../mmdet3d/core/points/base_points.py | 440 +++ .../pytorch/mmdet3d/core/points/cam_points.py | 63 + .../mmdet3d/core/points/depth_points.py | 58 + .../mmdet3d/core/points/lidar_points.py | 58 + .../mmdet3d/core/post_processing/__init__.py | 14 + .../mmdet3d/core/post_processing/box3d_nms.py | 288 ++ .../core/post_processing/merge_augs.py | 92 + .../pytorch/mmdet3d/core/utils/__init__.py | 10 + .../mmdet3d/core/utils/array_converter.py | 324 ++ .../pytorch/mmdet3d/core/utils/gaussian.py | 158 + .../mmdet3d/core/visualizer/__init__.py | 5 + .../mmdet3d/core/visualizer/image_vis.py | 206 ++ .../mmdet3d/core/visualizer/open3d_vis.py | 460 +++ .../mmdet3d/core/visualizer/show_result.py | 291 ++ .../pytorch/mmdet3d/core/voxel/__init__.py | 5 + .../pytorch/mmdet3d/core/voxel/builder.py | 16 + .../mmdet3d/core/voxel/voxel_generator.py | 280 ++ .../pytorch/mmdet3d/datasets/__init__.py | 49 + .../pytorch/mmdet3d/datasets/builder.py | 47 + .../pytorch/mmdet3d/datasets/custom_3d.py | 448 +++ .../pytorch/mmdet3d/datasets/custom_3d_seg.py | 465 +++ .../mmdet3d/datasets/dataset_wrappers.py | 76 + .../mmdet3d/datasets/kitti2d_dataset.py | 241 ++ .../pytorch/mmdet3d/datasets/kitti_dataset.py | 773 +++++ .../mmdet3d/datasets/kitti_mono_dataset.py | 569 ++++ .../pytorch/mmdet3d/datasets/lyft_dataset.py | 567 ++++ .../mmdet3d/datasets/nuscenes_dataset.py | 654 ++++ .../mmdet3d/datasets/nuscenes_mono_dataset.py | 840 +++++ .../mmdet3d/datasets/pipelines/__init__.py | 36 + .../mmdet3d/datasets/pipelines/compose.py | 60 + .../datasets/pipelines/data_augment_utils.py | 411 +++ .../mmdet3d/datasets/pipelines/dbsampler.py | 340 ++ .../mmdet3d/datasets/pipelines/formating.py | 266 ++ .../mmdet3d/datasets/pipelines/loading.py | 685 ++++ .../datasets/pipelines/test_time_aug.py | 229 ++ .../datasets/pipelines/transforms_3d.py | 1855 +++++++++++ .../pytorch/mmdet3d/datasets/s3dis_dataset.py | 445 +++ .../mmdet3d/datasets/scannet_dataset.py | 614 ++++ .../mmdet3d/datasets/semantickitti_dataset.py | 110 + .../mmdet3d/datasets/sunrgbd_dataset.py | 280 ++ .../PAConv/pytorch/mmdet3d/datasets/utils.py | 140 + .../pytorch/mmdet3d/datasets/waymo_dataset.py | 549 ++++ .../PAConv/pytorch/mmdet3d/models/__init__.py | 29 + .../mmdet3d/models/backbones/__init__.py | 16 + .../mmdet3d/models/backbones/base_pointnet.py | 39 + .../pytorch/mmdet3d/models/backbones/dgcnn.py | 98 + .../pytorch/mmdet3d/models/backbones/dla.py | 446 +++ .../mmdet3d/models/backbones/mink_resnet.py | 116 + .../models/backbones/multi_backbone.py | 127 + .../mmdet3d/models/backbones/nostem_regnet.py | 84 + .../models/backbones/pointnet2_sa_msg.py | 175 + .../models/backbones/pointnet2_sa_ssg.py | 143 + .../mmdet3d/models/backbones/second.py | 91 + .../PAConv/pytorch/mmdet3d/models/builder.py | 137 + .../mmdet3d/models/decode_heads/__init__.py | 6 + .../models/decode_heads/decode_head.py | 123 + .../mmdet3d/models/decode_heads/dgcnn_head.py | 67 + .../models/decode_heads/paconv_head.py | 63 + .../models/decode_heads/pointnet2_head.py | 85 + .../mmdet3d/models/dense_heads/__init__.py | 25 + .../models/dense_heads/anchor3d_head.py | 516 +++ .../dense_heads/anchor_free_mono3d_head.py | 534 +++ .../models/dense_heads/base_conv_bbox_head.py | 131 + .../dense_heads/base_mono3d_dense_head.py | 78 + .../models/dense_heads/centerpoint_head.py | 830 +++++ .../models/dense_heads/fcos_mono3d_head.py | 956 ++++++ .../models/dense_heads/free_anchor3d_head.py | 285 ++ .../models/dense_heads/groupfree3d_head.py | 994 ++++++ .../models/dense_heads/monoflex_head.py | 771 +++++ .../models/dense_heads/parta2_rpn_head.py | 310 ++ .../mmdet3d/models/dense_heads/pgd_head.py | 1229 +++++++ .../models/dense_heads/point_rpn_head.py | 381 +++ .../models/dense_heads/shape_aware_head.py | 515 +++ .../models/dense_heads/smoke_mono3d_head.py | 516 +++ .../mmdet3d/models/dense_heads/ssd_3d_head.py | 557 ++++ .../models/dense_heads/train_mixins.py | 349 ++ .../mmdet3d/models/dense_heads/vote_head.py | 663 ++++ .../mmdet3d/models/detectors/__init__.py | 27 + .../pytorch/mmdet3d/models/detectors/base.py | 127 + .../mmdet3d/models/detectors/centerpoint.py | 196 ++ .../models/detectors/dynamic_voxelnet.py | 71 + .../mmdet3d/models/detectors/fcos_mono3d.py | 22 + .../models/detectors/groupfree3dnet.py | 105 + .../mmdet3d/models/detectors/h3dnet.py | 176 + .../mmdet3d/models/detectors/imvotenet.py | 819 +++++ .../mmdet3d/models/detectors/imvoxelnet.py | 138 + .../models/detectors/mvx_faster_rcnn.py | 61 + .../mmdet3d/models/detectors/mvx_two_stage.py | 503 +++ .../mmdet3d/models/detectors/parta2.py | 151 + .../mmdet3d/models/detectors/point_rcnn.py | 148 + .../pytorch/mmdet3d/models/detectors/sassd.py | 136 + .../mmdet3d/models/detectors/single_stage.py | 71 + .../models/detectors/single_stage_mono3d.py | 250 ++ .../mmdet3d/models/detectors/smoke_mono3d.py | 21 + .../mmdet3d/models/detectors/ssd3dnet.py | 26 + .../mmdet3d/models/detectors/two_stage.py | 51 + .../mmdet3d/models/detectors/votenet.py | 107 + .../mmdet3d/models/detectors/voxelnet.py | 130 + .../mmdet3d/models/fusion_layers/__init__.py | 10 + .../models/fusion_layers/coord_transform.py | 222 ++ .../models/fusion_layers/point_fusion.py | 306 ++ .../models/fusion_layers/vote_fusion.py | 200 ++ .../pytorch/mmdet3d/models/losses/__init__.py | 14 + .../models/losses/axis_aligned_iou_loss.py | 79 + .../mmdet3d/models/losses/chamfer_distance.py | 147 + .../mmdet3d/models/losses/multibin_loss.py | 93 + .../losses/paconv_regularization_loss.py | 108 + .../models/losses/uncertain_smooth_l1_loss.py | 176 + .../models/middle_encoders/__init__.py | 14 + .../models/middle_encoders/pillar_scatter.py | 102 + .../models/middle_encoders/sparse_encoder.py | 491 +++ .../models/middle_encoders/sparse_unet.py | 300 ++ .../mmdet3d/models/model_utils/__init__.py | 6 + .../models/model_utils/edge_fusion_module.py | 78 + .../mmdet3d/models/model_utils/transformer.py | 139 + .../mmdet3d/models/model_utils/vote_module.py | 184 ++ .../pytorch/mmdet3d/models/necks/__init__.py | 10 + .../pytorch/mmdet3d/models/necks/dla_neck.py | 233 ++ .../mmdet3d/models/necks/imvoxel_neck.py | 110 + .../mmdet3d/models/necks/pointnet2_fp_neck.py | 89 + .../mmdet3d/models/necks/second_fpn.py | 91 + .../mmdet3d/models/roi_heads/__init__.py | 22 + .../models/roi_heads/base_3droi_head.py | 98 + .../models/roi_heads/bbox_heads/__init__.py | 14 + .../roi_heads/bbox_heads/h3d_bbox_head.py | 925 ++++++ .../roi_heads/bbox_heads/parta2_bbox_head.py | 629 ++++ .../bbox_heads/point_rcnn_bbox_head.py | 575 ++++ .../mmdet3d/models/roi_heads/h3d_roi_head.py | 159 + .../models/roi_heads/mask_heads/__init__.py | 5 + .../mask_heads/pointwise_semantic_head.py | 202 ++ .../roi_heads/mask_heads/primitive_head.py | 966 ++++++ .../roi_heads/part_aggregation_roi_head.py | 325 ++ .../models/roi_heads/point_rcnn_roi_head.py | 286 ++ .../roi_heads/roi_extractors/__init__.py | 9 + .../single_roiaware_extractor.py | 54 + .../single_roipoint_extractor.py | 64 + .../mmdet3d/models/segmentors/__init__.py | 5 + .../pytorch/mmdet3d/models/segmentors/base.py | 136 + .../models/segmentors/encoder_decoder.py | 454 +++ .../pytorch/mmdet3d/models/utils/__init__.py | 11 + .../mmdet3d/models/utils/clip_sigmoid.py | 17 + .../mmdet3d/models/utils/edge_indices.py | 88 + .../mmdet3d/models/utils/gen_keypoints.py | 80 + .../mmdet3d/models/utils/handle_objs.py | 135 + .../pytorch/mmdet3d/models/utils/mlp.py | 51 + .../mmdet3d/models/voxel_encoders/__init__.py | 8 + .../models/voxel_encoders/pillar_encoder.py | 323 ++ .../mmdet3d/models/voxel_encoders/utils.py | 182 + .../models/voxel_encoders/voxel_encoder.py | 489 +++ .../PAConv/pytorch/mmdet3d/ops/__init__.py | 50 + .../mmdet3d/ops/dgcnn_modules/__init__.py | 6 + .../ops/dgcnn_modules/dgcnn_fa_module.py | 68 + .../ops/dgcnn_modules/dgcnn_fp_module.py | 59 + .../ops/dgcnn_modules/dgcnn_gf_module.py | 221 ++ .../PAConv/pytorch/mmdet3d/ops/norm.py | 163 + .../pytorch/mmdet3d/ops/paconv/__init__.py | 4 + .../pytorch/mmdet3d/ops/paconv/paconv.py | 392 +++ .../pytorch/mmdet3d/ops/paconv/utils.py | 87 + .../mmdet3d/ops/pointnet_modules/__init__.py | 12 + .../mmdet3d/ops/pointnet_modules/builder.py | 39 + .../ops/pointnet_modules/paconv_sa_module.py | 342 ++ .../ops/pointnet_modules/point_fp_module.py | 79 + .../ops/pointnet_modules/point_sa_module.py | 352 ++ .../pytorch/mmdet3d/ops/sparse_block.py | 199 ++ .../pytorch/mmdet3d/ops/spconv/__init__.py | 14 + .../ops/spconv/overwrite_spconv/__init__.py | 4 + .../spconv/overwrite_spconv/write_spconv2.py | 118 + .../PAConv/pytorch/mmdet3d/utils/__init__.py | 14 + .../pytorch/mmdet3d/utils/collect_env.py | 25 + .../pytorch/mmdet3d/utils/compat_cfg.py | 139 + .../PAConv/pytorch/mmdet3d/utils/logger.py | 31 + .../PAConv/pytorch/mmdet3d/utils/misc.py | 39 + .../PAConv/pytorch/mmdet3d/utils/setup_env.py | 53 + .../PAConv/pytorch/mmdet3d/version.py | 19 + .../PAConv/pytorch/mmseg/__init__.py | 62 + .../PAConv/pytorch/mmseg/apis/__init__.py | 11 + .../PAConv/pytorch/mmseg/apis/inference.py | 136 + .../PAConv/pytorch/mmseg/apis/test.py | 233 ++ .../PAConv/pytorch/mmseg/apis/train.py | 167 + .../PAConv/pytorch/mmseg/core/__init__.py | 4 + .../pytorch/mmseg/core/evaluation/__init__.py | 11 + .../mmseg/core/evaluation/class_names.py | 153 + .../mmseg/core/evaluation/eval_hooks.py | 128 + .../pytorch/mmseg/core/evaluation/metrics.py | 395 +++ .../PAConv/pytorch/mmseg/core/seg/__init__.py | 5 + .../PAConv/pytorch/mmseg/core/seg/builder.py | 9 + .../mmseg/core/seg/sampler/__init__.py | 5 + .../core/seg/sampler/base_pixel_sampler.py | 13 + .../core/seg/sampler/ohem_pixel_sampler.py | 85 + .../pytorch/mmseg/core/utils/__init__.py | 4 + .../PAConv/pytorch/mmseg/core/utils/misc.py | 18 + .../PAConv/pytorch/mmseg/datasets/__init__.py | 25 + .../PAConv/pytorch/mmseg/datasets/ade.py | 167 + .../PAConv/pytorch/mmseg/datasets/builder.py | 182 + .../pytorch/mmseg/datasets/chase_db1.py | 28 + .../pytorch/mmseg/datasets/cityscapes.py | 214 ++ .../pytorch/mmseg/datasets/coco_stuff.py | 93 + .../PAConv/pytorch/mmseg/datasets/custom.py | 457 +++ .../pytorch/mmseg/datasets/dark_zurich.py | 13 + .../mmseg/datasets/dataset_wrappers.py | 190 ++ .../PAConv/pytorch/mmseg/datasets/drive.py | 28 + .../PAConv/pytorch/mmseg/datasets/hrf.py | 28 + .../PAConv/pytorch/mmseg/datasets/loveda.py | 92 + .../pytorch/mmseg/datasets/night_driving.py | 13 + .../pytorch/mmseg/datasets/pascal_context.py | 104 + .../mmseg/datasets/pipelines/__init__.py | 18 + .../mmseg/datasets/pipelines/compose.py | 52 + .../mmseg/datasets/pipelines/formating.py | 9 + .../mmseg/datasets/pipelines/formatting.py | 289 ++ .../mmseg/datasets/pipelines/loading.py | 154 + .../mmseg/datasets/pipelines/test_time_aug.py | 134 + .../mmseg/datasets/pipelines/transforms.py | 1042 ++++++ .../PAConv/pytorch/mmseg/datasets/stare.py | 28 + .../PAConv/pytorch/mmseg/datasets/voc.py | 30 + .../PAConv/pytorch/mmseg/models/__init__.py | 13 + .../mmseg/models/backbones/__init__.py | 28 + .../mmseg/models/backbones/bisenetv1.py | 332 ++ .../mmseg/models/backbones/bisenetv2.py | 622 ++++ .../pytorch/mmseg/models/backbones/cgnet.py | 372 +++ .../pytorch/mmseg/models/backbones/erfnet.py | 329 ++ .../mmseg/models/backbones/fast_scnn.py | 409 +++ .../pytorch/mmseg/models/backbones/hrnet.py | 642 ++++ .../pytorch/mmseg/models/backbones/icnet.py | 165 + .../pytorch/mmseg/models/backbones/mit.py | 431 +++ .../mmseg/models/backbones/mobilenet_v2.py | 197 ++ .../mmseg/models/backbones/mobilenet_v3.py | 267 ++ .../pytorch/mmseg/models/backbones/resnest.py | 318 ++ .../pytorch/mmseg/models/backbones/resnet.py | 714 ++++ .../pytorch/mmseg/models/backbones/resnext.py | 150 + .../pytorch/mmseg/models/backbones/stdc.py | 422 +++ .../pytorch/mmseg/models/backbones/swin.py | 755 +++++ .../mmseg/models/backbones/timm_backbone.py | 63 + .../pytorch/mmseg/models/backbones/twins.py | 587 ++++ .../pytorch/mmseg/models/backbones/unet.py | 438 +++ .../pytorch/mmseg/models/backbones/vit.py | 412 +++ .../PAConv/pytorch/mmseg/models/builder.py | 49 + .../mmseg/models/decode_heads/__init__.py | 37 + .../mmseg/models/decode_heads/ann_head.py | 246 ++ .../mmseg/models/decode_heads/apc_head.py | 159 + .../mmseg/models/decode_heads/aspp_head.py | 108 + .../decode_heads/cascade_decode_head.py | 58 + .../mmseg/models/decode_heads/cc_head.py | 43 + .../mmseg/models/decode_heads/da_head.py | 179 + .../mmseg/models/decode_heads/decode_head.py | 265 ++ .../mmseg/models/decode_heads/dm_head.py | 141 + .../mmseg/models/decode_heads/dnl_head.py | 132 + .../mmseg/models/decode_heads/dpt_head.py | 293 ++ .../mmseg/models/decode_heads/ema_head.py | 169 + .../mmseg/models/decode_heads/enc_head.py | 188 ++ .../mmseg/models/decode_heads/fcn_head.py | 82 + .../mmseg/models/decode_heads/fpn_head.py | 69 + .../mmseg/models/decode_heads/gc_head.py | 48 + .../mmseg/models/decode_heads/isa_head.py | 142 + .../mmseg/models/decode_heads/lraspp_head.py | 91 + .../mmseg/models/decode_heads/nl_head.py | 50 + .../mmseg/models/decode_heads/ocr_head.py | 128 + .../mmseg/models/decode_heads/point_head.py | 356 ++ .../mmseg/models/decode_heads/psa_head.py | 197 ++ .../mmseg/models/decode_heads/psp_head.py | 103 + .../models/decode_heads/segformer_head.py | 66 + .../models/decode_heads/sep_aspp_head.py | 102 + .../mmseg/models/decode_heads/sep_fcn_head.py | 60 + .../models/decode_heads/setr_mla_head.py | 63 + .../mmseg/models/decode_heads/setr_up_head.py | 81 + .../mmseg/models/decode_heads/stdc_head.py | 90 + .../mmseg/models/decode_heads/uper_head.py | 127 + .../pytorch/mmseg/models/losses/__init__.py | 15 + .../pytorch/mmseg/models/losses/accuracy.py | 79 + .../mmseg/models/losses/cross_entropy_loss.py | 218 ++ .../pytorch/mmseg/models/losses/dice_loss.py | 137 + .../pytorch/mmseg/models/losses/focal_loss.py | 327 ++ .../mmseg/models/losses/lovasz_loss.py | 323 ++ .../pytorch/mmseg/models/losses/utils.py | 122 + .../pytorch/mmseg/models/necks/__init__.py | 8 + .../PAConv/pytorch/mmseg/models/necks/fpn.py | 213 ++ .../pytorch/mmseg/models/necks/ic_neck.py | 147 + .../PAConv/pytorch/mmseg/models/necks/jpu.py | 131 + .../pytorch/mmseg/models/necks/mla_neck.py | 118 + .../mmseg/models/necks/multilevel_neck.py | 78 + .../mmseg/models/segmentors/__init__.py | 6 + .../pytorch/mmseg/models/segmentors/base.py | 277 ++ .../segmentors/cascade_encoder_decoder.py | 84 + .../models/segmentors/encoder_decoder.py | 284 ++ .../pytorch/mmseg/models/utils/__init__.py | 14 + .../pytorch/mmseg/models/utils/embed.py | 330 ++ .../mmseg/models/utils/inverted_residual.py | 213 ++ .../mmseg/models/utils/make_divisible.py | 28 + .../pytorch/mmseg/models/utils/res_layer.py | 96 + .../pytorch/mmseg/models/utils/se_layer.py | 58 + .../models/utils/self_attention_block.py | 160 + .../mmseg/models/utils/shape_convert.py | 29 + .../mmseg/models/utils/up_conv_block.py | 102 + .../PAConv/pytorch/mmseg/ops/__init__.py | 5 + .../PAConv/pytorch/mmseg/ops/encoding.py | 75 + .../PAConv/pytorch/mmseg/ops/wrappers.py | 51 + .../PAConv/pytorch/mmseg/utils/__init__.py | 5 + .../PAConv/pytorch/mmseg/utils/collect_env.py | 18 + .../PAConv/pytorch/mmseg/utils/logger.py | 28 + .../PAConv/pytorch/mmseg/version.py | 18 + .../PAConv/pytorch/requirements.txt | 4 + .../PAConv/pytorch/requirements/build.txt | 0 .../PAConv/pytorch/requirements/docs.txt | 8 + .../PAConv/pytorch/requirements/mminstall.txt | 3 + .../PAConv/pytorch/requirements/optional.txt | 3 + .../pytorch/requirements/readthedocs.txt | 5 + .../PAConv/pytorch/requirements/runtime.txt | 15 + .../PAConv/pytorch/requirements/tests.txt | 13 + cv/3d_detection/PAConv/pytorch/setup.cfg | 16 + cv/3d_detection/PAConv/pytorch/setup.py | 429 +++ .../tools/analysis_tools/analyze_logs.py | 202 ++ .../pytorch/tools/analysis_tools/benchmark.py | 96 + .../pytorch/tools/analysis_tools/get_flops.py | 92 + .../PAConv/pytorch/tools/create_data.py | 303 ++ .../PAConv/pytorch/tools/create_data.sh | 24 + .../pytorch/tools/data_converter/__init__.py | 1 + .../data_converter/create_gt_database.py | 624 ++++ .../tools/data_converter/indoor_converter.py | 110 + .../tools/data_converter/kitti_converter.py | 624 ++++ .../tools/data_converter/kitti_data_utils.py | 619 ++++ .../tools/data_converter/lyft_converter.py | 271 ++ .../tools/data_converter/lyft_data_fixer.py | 39 + .../tools/data_converter/nuimage_converter.py | 226 ++ .../data_converter/nuscenes_converter.py | 628 ++++ .../tools/data_converter/s3dis_data_utils.py | 245 ++ .../data_converter/scannet_data_utils.py | 297 ++ .../data_converter/sunrgbd_data_utils.py | 226 ++ .../tools/data_converter/waymo_converter.py | 556 ++++ .../tools/deployment/mmdet3d2torchserve.py | 111 + .../tools/deployment/mmdet3d_handler.py | 120 + .../tools/deployment/test_torchserver.py | 56 + .../PAConv/pytorch/tools/dist_test.sh | 22 + .../pytorch/tools/misc/browse_dataset.py | 232 ++ .../PAConv/pytorch/tools/misc/fuse_conv_bn.py | 68 + .../PAConv/pytorch/tools/misc/print_config.py | 27 + .../pytorch/tools/misc/visualize_results.py | 50 + .../convert_h3dnet_checkpoints.py | 177 + .../convert_votenet_checkpoints.py | 153 + .../tools/model_converters/publish_model.py | 36 + .../tools/model_converters/regnet2mmdet.py | 90 + .../PAConv/pytorch/tools/slurm_test.sh | 24 + .../PAConv/pytorch/tools/slurm_train.sh | 24 + cv/3d_detection/PAConv/pytorch/tools/test.py | 260 ++ .../pytorch/tools/update_data_coords.py | 168 + .../pytorch/tools/update_data_coords.sh | 22 + cv/3d_detection/PAConv/pytorch/train.py | 263 ++ .../patch/mmcv/v1.7.1/.circleci/config.yml | 173 + .../v1.7.1/.dev_scripts/check_installation.py | 44 + .../mmcv/v1.7.1/.dev_scripts/visualize_lr.py | 230 ++ .../patch/mmcv/v1.7.1/.dockerignore | 6 + .../MMDetection/patch/mmcv/v1.7.1/.gitignore | 122 + .../MMDetection/patch/mmcv/v1.7.1/.owners.yml | 14 + .../mmcv/v1.7.1/.pre-commit-config-zh-cn.yaml | 72 + .../patch/mmcv/v1.7.1/.pre-commit-config.yaml | 72 + .../patch/mmcv/v1.7.1/.readthedocs.yml | 9 + .../patch/mmcv/v1.7.1/CITATION.cff | 8 + .../patch/mmcv/v1.7.1/CONTRIBUTING.md | 258 ++ .../patch/mmcv/v1.7.1/CONTRIBUTING_zh-CN.md | 274 ++ .../MMDetection/patch/mmcv/v1.7.1/Jenkinsfile | 56 + toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSE | 203 ++ .../MMDetection/patch/mmcv/v1.7.1/LICENSES.md | 8 + .../MMDetection/patch/mmcv/v1.7.1/MANIFEST.in | 7 + .../MMDetection/patch/mmcv/v1.7.1/README.md | 177 + .../patch/mmcv/v1.7.1/README_zh-CN.md | 181 + .../patch/mmcv/v1.7.1/TERMINOLOGY.md | 30 + .../patch/mmcv/v1.7.1/build_mmcv.sh | 22 + .../patch/mmcv/v1.7.1/clean_mmcv.sh | 10 + .../patch/mmcv/v1.7.1/docker/README.md | 70 + .../patch/mmcv/v1.7.1/docker/dev/Dockerfile | 32 + .../mmcv/v1.7.1/docker/release/Dockerfile | 23 + .../patch/mmcv/v1.7.1/docs/en/Makefile | 19 + .../v1.7.1/docs/en/_static/community/1.png | Bin 0 -> 84328 bytes .../v1.7.1/docs/en/_static/community/2.png | Bin 0 -> 66595 bytes .../v1.7.1/docs/en/_static/community/3.png | Bin 0 -> 182941 bytes .../docs/en/_static/css/readthedocs.css | 6 + .../docs/en/_static/flow_img2toimg1.png | Bin 0 -> 94702 bytes .../docs/en/_static/flow_raw_images.png | Bin 0 -> 1515531 bytes .../docs/en/_static/flow_visualization.png | Bin 0 -> 23832 bytes .../mmcv/v1.7.1/docs/en/_static/flow_warp.png | Bin 0 -> 760348 bytes .../v1.7.1/docs/en/_static/flow_warp_diff.png | Bin 0 -> 1379939 bytes .../docs/en/_static/image/mmcv-logo.png | Bin 0 -> 27173 bytes .../docs/en/_static/parallel_progress.gif | Bin 0 -> 27666 bytes .../docs/en/_static/parallel_progress.png | Bin 0 -> 9729 bytes .../mmcv/v1.7.1/docs/en/_static/progress.gif | Bin 0 -> 100747 bytes .../mmcv/v1.7.1/docs/en/_static/progress.png | Bin 0 -> 20918 bytes .../mmcv/v1.7.1/docs/en/_static/version.json | 2101 ++++++++++++ .../patch/mmcv/v1.7.1/docs/en/api.rst | 49 + .../v1.7.1/docs/en/community/contributing.md | 267 ++ .../patch/mmcv/v1.7.1/docs/en/community/pr.md | 3 + .../mmcv/v1.7.1/docs/en/compatibility.md | 226 ++ .../patch/mmcv/v1.7.1/docs/en/conf.py | 205 ++ .../docs/en/deployment/mmcv_ops_definition.md | 686 ++++ .../mmcv/v1.7.1/docs/en/deployment/onnx.md | 28 + .../en/deployment/onnxruntime_custom_ops.md | 378 +++ .../docs/en/deployment/onnxruntime_op.md | 136 + .../docs/en/deployment/tensorrt_custom_ops.md | 395 +++ .../docs/en/deployment/tensorrt_plugin.md | 193 ++ .../patch/mmcv/v1.7.1/docs/en/faq.md | 93 + .../mmcv/v1.7.1/docs/en/get_started/build.md | 377 +++ .../docs/en/get_started/installation.md | 379 +++ .../docs/en/get_started/introduction.md | 43 + .../docs/en/get_started/previous_versions.md | 47 + .../patch/mmcv/v1.7.1/docs/en/index.rst | 73 + .../patch/mmcv/v1.7.1/docs/en/make.bat | 35 + .../patch/mmcv/v1.7.1/docs/en/mmcv-logo.png | Bin 0 -> 27173 bytes .../mmcv/v1.7.1/docs/en/switch_language.md | 3 + .../v1.7.1/docs/en/understand_mmcv/cnn.md | 583 ++++ .../v1.7.1/docs/en/understand_mmcv/config.md | 200 ++ .../docs/en/understand_mmcv/data_process.md | 286 ++ .../mmcv/v1.7.1/docs/en/understand_mmcv/io.md | 247 ++ .../v1.7.1/docs/en/understand_mmcv/ops.md | 62 + .../docs/en/understand_mmcv/registry.md | 179 + .../v1.7.1/docs/en/understand_mmcv/runner.md | 163 + .../v1.7.1/docs/en/understand_mmcv/utils.md | 74 + .../docs/en/understand_mmcv/visualization.md | 24 + .../patch/mmcv/v1.7.1/docs/zh_cn/Makefile | 19 + .../docs/zh_cn/_static/css/readthedocs.css | 6 + .../docs/zh_cn/_static/image/mmcv-logo.png | Bin 0 -> 27173 bytes .../v1.7.1/docs/zh_cn/_static/version.json | 2101 ++++++++++++ .../patch/mmcv/v1.7.1/docs/zh_cn/api.rst | 49 + .../v1.7.1/docs/zh_cn/community/code_style.md | 609 ++++ .../docs/zh_cn/community/contributing.md | 278 ++ .../mmcv/v1.7.1/docs/zh_cn/community/pr.md | 3 + .../mmcv/v1.7.1/docs/zh_cn/compatibility.md | 226 ++ .../patch/mmcv/v1.7.1/docs/zh_cn/conf.py | 207 ++ .../mmcv/v1.7.1/docs/zh_cn/deployment/onnx.md | 19 + .../deployment/onnxruntime_custom_ops.md | 333 ++ .../docs/zh_cn/deployment/onnxruntime_op.md | 129 + .../zh_cn/deployment/tensorrt_custom_ops.md | 391 +++ .../docs/zh_cn/deployment/tensorrt_plugin.md | 184 ++ .../patch/mmcv/v1.7.1/docs/zh_cn/faq.md | 91 + .../v1.7.1/docs/zh_cn/get_started/article.md | 63 + .../v1.7.1/docs/zh_cn/get_started/build.md | 391 +++ .../docs/zh_cn/get_started/installation.md | 374 +++ .../docs/zh_cn/get_started/introduction.md | 44 + .../zh_cn/get_started/previous_versions.md | 47 + .../patch/mmcv/v1.7.1/docs/zh_cn/index.rst | 75 + .../patch/mmcv/v1.7.1/docs/zh_cn/make.bat | 35 + .../mmcv/v1.7.1/docs/zh_cn/mmcv-logo.png | 1 + .../mmcv/v1.7.1/docs/zh_cn/switch_language.md | 3 + .../v1.7.1/docs/zh_cn/understand_mmcv/cnn.md | 570 ++++ .../docs/zh_cn/understand_mmcv/config.md | 179 + .../zh_cn/understand_mmcv/data_process.md | 275 ++ .../v1.7.1/docs/zh_cn/understand_mmcv/io.md | 241 ++ .../v1.7.1/docs/zh_cn/understand_mmcv/ops.md | 62 + .../docs/zh_cn/understand_mmcv/registry.md | 176 + .../docs/zh_cn/understand_mmcv/runner.md | 159 + .../docs/zh_cn/understand_mmcv/utils.md | 68 + .../zh_cn/understand_mmcv/visualization.md | 24 + .../patch/mmcv/v1.7.1/examples/train.py | 84 + .../patch/mmcv/v1.7.1/install_mmcv.sh | 33 + .../patch/mmcv/v1.7.1/mmcv/__init__.py | 26 + .../mmcv/v1.7.1/mmcv/arraymisc/__init__.py | 4 + .../v1.7.1/mmcv/arraymisc/quantization.py | 65 + .../patch/mmcv/v1.7.1/mmcv/cnn/__init__.py | 43 + .../patch/mmcv/v1.7.1/mmcv/cnn/alexnet.py | 63 + .../mmcv/v1.7.1/mmcv/cnn/bricks/__init__.py | 35 + .../mmcv/v1.7.1/mmcv/cnn/bricks/activation.py | 114 + .../v1.7.1/mmcv/cnn/bricks/context_block.py | 127 + .../patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv.py | 46 + .../cnn/bricks/conv2d_adaptive_padding.py | 64 + .../v1.7.1/mmcv/cnn/bricks/conv_module.py | 212 ++ .../mmcv/v1.7.1/mmcv/cnn/bricks/conv_ws.py | 154 + .../bricks/depthwise_separable_conv_module.py | 99 + .../patch/mmcv/v1.7.1/mmcv/cnn/bricks/drop.py | 69 + .../mmcv/cnn/bricks/generalized_attention.py | 412 +++ .../mmcv/v1.7.1/mmcv/cnn/bricks/hsigmoid.py | 51 + .../mmcv/v1.7.1/mmcv/cnn/bricks/hswish.py | 39 + .../mmcv/v1.7.1/mmcv/cnn/bricks/non_local.py | 308 ++ .../patch/mmcv/v1.7.1/mmcv/cnn/bricks/norm.py | 148 + .../mmcv/v1.7.1/mmcv/cnn/bricks/padding.py | 38 + .../mmcv/v1.7.1/mmcv/cnn/bricks/plugin.py | 94 + .../mmcv/v1.7.1/mmcv/cnn/bricks/registry.py | 16 + .../mmcv/v1.7.1/mmcv/cnn/bricks/scale.py | 21 + .../mmcv/v1.7.1/mmcv/cnn/bricks/swish.py | 25 + .../v1.7.1/mmcv/cnn/bricks/transformer.py | 944 ++++++ .../mmcv/v1.7.1/mmcv/cnn/bricks/upsample.py | 87 + .../mmcv/v1.7.1/mmcv/cnn/bricks/wrappers.py | 180 + .../patch/mmcv/v1.7.1/mmcv/cnn/builder.py | 30 + .../patch/mmcv/v1.7.1/mmcv/cnn/resnet.py | 322 ++ .../mmcv/v1.7.1/mmcv/cnn/rfsearch/__init__.py | 5 + .../mmcv/v1.7.1/mmcv/cnn/rfsearch/operator.py | 170 + .../mmcv/v1.7.1/mmcv/cnn/rfsearch/search.py | 238 ++ .../mmcv/v1.7.1/mmcv/cnn/rfsearch/utils.py | 69 + .../mmcv/v1.7.1/mmcv/cnn/utils/__init__.py | 19 + .../v1.7.1/mmcv/cnn/utils/flops_counter.py | 602 ++++ .../v1.7.1/mmcv/cnn/utils/fuse_conv_bn.py | 59 + .../mmcv/v1.7.1/mmcv/cnn/utils/sync_bn.py | 61 + .../mmcv/v1.7.1/mmcv/cnn/utils/weight_init.py | 708 ++++ .../patch/mmcv/v1.7.1/mmcv/cnn/vgg.py | 177 + .../patch/mmcv/v1.7.1/mmcv/device/__init__.py | 8 + .../mmcv/v1.7.1/mmcv/device/_functions.py | 30 + .../mmcv/v1.7.1/mmcv/device/ipu/__init__.py | 14 + .../mmcv/v1.7.1/mmcv/device/ipu/dataloader.py | 157 + .../device/ipu/hierarchical_data_manager.py | 243 ++ .../v1.7.1/mmcv/device/ipu/hook_wrapper.py | 105 + .../v1.7.1/mmcv/device/ipu/model_wrapper.py | 721 ++++ .../mmcv/v1.7.1/mmcv/device/ipu/runner.py | 142 + .../mmcv/v1.7.1/mmcv/device/ipu/utils.py | 244 ++ .../mmcv/v1.7.1/mmcv/device/mlu/__init__.py | 5 + .../mmcv/v1.7.1/mmcv/device/mlu/_functions.py | 24 + .../v1.7.1/mmcv/device/mlu/data_parallel.py | 41 + .../v1.7.1/mmcv/device/mlu/distributed.py | 20 + .../v1.7.1/mmcv/device/mlu/scatter_gather.py | 59 + .../mmcv/v1.7.1/mmcv/device/mps/__init__.py | 4 + .../v1.7.1/mmcv/device/mps/data_parallel.py | 34 + .../mmcv/v1.7.1/mmcv/device/npu/__init__.py | 6 + .../v1.7.1/mmcv/device/npu/data_parallel.py | 59 + .../v1.7.1/mmcv/device/npu/distributed.py | 33 + .../mmcv/v1.7.1/mmcv/device/scatter_gather.py | 64 + .../patch/mmcv/v1.7.1/mmcv/device/utils.py | 26 + .../patch/mmcv/v1.7.1/mmcv/engine/__init__.py | 8 + .../patch/mmcv/v1.7.1/mmcv/engine/test.py | 213 ++ .../patch/mmcv/v1.7.1/mmcv/fileio/__init__.py | 11 + .../mmcv/v1.7.1/mmcv/fileio/file_client.py | 1176 +++++++ .../v1.7.1/mmcv/fileio/handlers/__init__.py | 7 + .../mmcv/v1.7.1/mmcv/fileio/handlers/base.py | 30 + .../mmcv/fileio/handlers/json_handler.py | 36 + .../mmcv/fileio/handlers/pickle_handler.py | 26 + .../mmcv/fileio/handlers/yaml_handler.py | 25 + .../patch/mmcv/v1.7.1/mmcv/fileio/io.py | 163 + .../patch/mmcv/v1.7.1/mmcv/fileio/parse.py | 99 + .../patch/mmcv/v1.7.1/mmcv/image/__init__.py | 29 + .../mmcv/v1.7.1/mmcv/image/colorspace.py | 308 ++ .../patch/mmcv/v1.7.1/mmcv/image/geometric.py | 785 +++++ .../patch/mmcv/v1.7.1/mmcv/image/io.py | 321 ++ .../patch/mmcv/v1.7.1/mmcv/image/misc.py | 58 + .../mmcv/v1.7.1/mmcv/image/photometric.py | 561 ++++ .../v1.7.1/mmcv/model_zoo/deprecated.json | 6 + .../mmcv/v1.7.1/mmcv/model_zoo/mmcls.json | 59 + .../v1.7.1/mmcv/model_zoo/open_mmlab.json | 50 + .../mmcv/model_zoo/torchvision_0.12.json | 57 + .../patch/mmcv/v1.7.1/mmcv/onnx/__init__.py | 5 + .../patch/mmcv/v1.7.1/mmcv/onnx/info.py | 34 + .../v1.7.1/mmcv/onnx/onnx_utils/__init__.py | 1 + .../mmcv/onnx/onnx_utils/symbolic_helper.py | 331 ++ .../patch/mmcv/v1.7.1/mmcv/onnx/symbolic.py | 519 +++ .../patch/mmcv/v1.7.1/mmcv/ops/__init__.py | 104 + .../v1.7.1/mmcv/ops/active_rotated_filter.py | 64 + .../v1.7.1/mmcv/ops/assign_score_withk.py | 131 + .../patch/mmcv/v1.7.1/mmcv/ops/ball_query.py | 87 + .../patch/mmcv/v1.7.1/mmcv/ops/bbox.py | 130 + .../mmcv/v1.7.1/mmcv/ops/border_align.py | 114 + .../mmcv/v1.7.1/mmcv/ops/box_iou_quadri.py | 49 + .../mmcv/v1.7.1/mmcv/ops/box_iou_rotated.py | 148 + .../patch/mmcv/v1.7.1/mmcv/ops/carafe.py | 299 ++ .../mmcv/v1.7.1/mmcv/ops/cc_attention.py | 84 + .../mmcv/v1.7.1/mmcv/ops/chamfer_distance.py | 93 + .../mmcv/v1.7.1/mmcv/ops/contour_expand.py | 52 + .../patch/mmcv/v1.7.1/mmcv/ops/convex_iou.py | 52 + .../patch/mmcv/v1.7.1/mmcv/ops/corner_pool.py | 156 + .../patch/mmcv/v1.7.1/mmcv/ops/correlation.py | 200 ++ .../patch/mmcv/v1.7.1/mmcv/ops/csrc/README.md | 189 ++ .../ops/csrc/common/box_iou_rotated_utils.hpp | 431 +++ .../active_rotated_filter_cuda_kernel.cuh | 59 + .../cuda/assign_score_withk_cuda_kernel.cuh | 116 + .../common/cuda/ball_query_cuda_kernel.cuh | 58 + .../common/cuda/bbox_overlaps_cuda_kernel.cuh | 147 + .../common/cuda/border_align_cuda_kernel.cuh | 200 ++ .../csrc/common/cuda/box_iou_quadri_cuda.cuh | 91 + .../csrc/common/cuda/box_iou_rotated_cuda.cuh | 81 + .../csrc/common/cuda/carafe_cuda_kernel.cuh | 332 ++ .../common/cuda/carafe_naive_cuda_kernel.cuh | 111 + .../cuda/chamfer_distance_cuda_kernel.cuh | 101 + .../csrc/common/cuda/common_cuda_helper.hpp | 120 + .../common/cuda/convex_iou_cuda_kernel.cuh | 831 +++++ .../ops/csrc/common/cuda/correlation_cuda.cuh | 231 ++ .../common/cuda/deform_conv_cuda_kernel.cuh | 367 +++ .../cuda/deform_roi_pool_cuda_kernel.cuh | 186 ++ .../cuda/diff_iou_rotated_cuda_kernel.cuh | 137 + .../furthest_point_sample_cuda_kernel.cuh | 152 + .../common/cuda/gather_points_cuda_kernel.cuh | 58 + .../common/cuda/group_points_cuda_kernel.cuh | 65 + .../csrc/common/cuda/iou3d_cuda_kernel.cuh | 367 +++ .../ops/csrc/common/cuda/knn_cuda_kernel.cuh | 92 + .../common/cuda/masked_conv2d_cuda_kernel.cuh | 62 + .../common/cuda/min_area_polygons_cuda.cuh | 300 ++ .../modulated_deform_conv_cuda_kernel.cuh | 399 +++ .../cuda/ms_deform_attn_cuda_kernel.cuh | 801 +++++ .../ops/csrc/common/cuda/nms_cuda_kernel.cuh | 117 + .../ops/csrc/common/cuda/nms_quadri_cuda.cuh | 141 + .../ops/csrc/common/cuda/nms_rotated_cuda.cuh | 133 + .../common/cuda/parrots_cudawarpfunction.cuh | 109 + .../cuda/points_in_boxes_cuda_kernel.cuh | 95 + .../cuda/points_in_polygons_cuda_kernel.cuh | 79 + .../common/cuda/prroi_pool_cuda_kernel.cuh | 381 +++ .../csrc/common/cuda/psamask_cuda_kernel.cuh | 141 + .../cuda/riroi_align_rotated_cuda_kernel.cuh | 242 ++ .../common/cuda/roi_align_cuda_kernel.cuh | 212 ++ .../cuda/roi_align_rotated_cuda_kernel.cuh | 202 ++ .../csrc/common/cuda/roi_pool_cuda_kernel.cuh | 93 + .../cuda/roiaware_pool3d_cuda_kernel.cuh | 260 ++ .../cuda/roipoint_pool3d_cuda_kernel.cuh | 134 + .../rotated_feature_align_cuda_kernel.cuh | 129 + .../cuda/scatter_points_cuda_kernel.cuh | 189 ++ .../cuda/sigmoid_focal_loss_cuda_kernel.cuh | 71 + .../cuda/softmax_focal_loss_cuda_kernel.cuh | 72 + .../cuda/stack_ball_query_cuda_kernel.cuh | 68 + .../cuda/stack_group_points_cuda_kernel.cuh | 97 + .../csrc/common/cuda/sync_bn_cuda_kernel.cuh | 331 ++ .../cuda/three_interpolate_cuda_kernel.cuh | 61 + .../csrc/common/cuda/three_nn_cuda_kernel.cuh | 72 + .../common/cuda/tin_shift_cuda_kernel.cuh | 61 + .../common/cuda/voxelization_cuda_kernel.cuh | 216 ++ .../common/mlu/bbox_overlaps_mlu_kernel.mlu | 322 ++ .../ops/csrc/common/mlu/carafe_mlu_kernel.mlu | 552 ++++ .../mmcv/ops/csrc/common/mlu/carafe_utils.hpp | 95 + .../ops/csrc/common/mlu/common_mlu_helper.hpp | 398 +++ .../common/mlu/deform_roi_pool_mlu_kernel.mlu | 712 ++++ .../mlu/focal_loss_sigmoid_mlu_kernel.mlu | 888 +++++ .../ops/csrc/common/mlu/iou3d_mlu_kernel.mlu | 431 +++ .../mmcv/ops/csrc/common/mlu/iou3d_utils.hpp | 695 ++++ .../common/mlu/masked_conv2d_mlu_kernel.mlu | 181 + .../common/mlu/ms_deform_attn_mlu_kernel.mlu | 853 +++++ .../ops/csrc/common/mlu/nms_mlu_kernel.mlu | 483 +++ .../mmcv/ops/csrc/common/mlu/nms_utils.hpp | 553 ++++ .../csrc/common/mlu/psamask_mlu_kernel.mlu | 615 ++++ .../ops/csrc/common/mlu/psamask_utils.hpp | 55 + .../csrc/common/mlu/roi_align_mlu_kernel.mlu | 493 +++ .../mlu/roi_align_rotated_mlu_kernel.mlu | 490 +++ .../common/mlu/roi_align_rotated_utils.hpp | 24 + .../csrc/common/mlu/roi_pool_mlu_kernel.mlu | 747 +++++ .../common/mlu/roiaware_pool3d_mlu_kernel.mlu | 747 +++++ ...oint_pool3d_large_boxes_num_mlu_kernel.mlu | 536 +++ .../common/mlu/roipoint_pool3d_mlu_kernel.mlu | 544 +++ .../csrc/common/mlu/three_nn_mlu_kernel.mlu | 466 +++ .../csrc/common/mlu/tin_shift_mlu_kernel.mlu | 307 ++ .../mmcv/ops/csrc/common/mps/MPSDevice.h | 64 + .../mmcv/ops/csrc/common/mps/MPSLibrary.h | 61 + .../mmcv/ops/csrc/common/mps/MPSLibrary.mm | 107 + .../mmcv/ops/csrc/common/mps/MPSStream.h | 132 + .../mmcv/ops/csrc/common/mps/MPSUtils.h | 51 + .../ops/csrc/common/parrots_cpp_helper.hpp | 40 + .../ops/csrc/common/parrots_cuda_helper.hpp | 111 + .../ops/csrc/common/pytorch_cpp_helper.hpp | 27 + .../ops/csrc/common/pytorch_cuda_helper.hpp | 20 + .../csrc/common/pytorch_device_registry.hpp | 141 + .../ops/csrc/common/pytorch_mlu_helper.hpp | 61 + .../ops/csrc/common/pytorch_npu_helper.hpp | 35 + .../mmcv/ops/csrc/onnxruntime/corner_pool.h | 46 + .../ops/csrc/onnxruntime/cpu/corner_pool.cpp | 123 + .../ops/csrc/onnxruntime/cpu/deform_conv.cpp | 263 ++ .../ops/csrc/onnxruntime/cpu/gridSample.cpp | 314 ++ .../onnxruntime/cpu/modulated_deform_conv.cpp | 292 ++ .../mmcv/ops/csrc/onnxruntime/cpu/nms.cpp | 108 + .../onnxruntime/cpu/onnxruntime_register.cpp | 88 + .../ops/csrc/onnxruntime/cpu/reduce_ops.cpp | 188 ++ .../ops/csrc/onnxruntime/cpu/roi_align.cpp | 265 ++ .../onnxruntime/cpu/roi_align_rotated.cpp | 247 ++ .../onnxruntime/cpu/rotated_feature_align.cpp | 132 + .../ops/csrc/onnxruntime/cpu/soft_nms.cpp | 156 + .../mmcv/ops/csrc/onnxruntime/deform_conv.h | 57 + .../mmcv/ops/csrc/onnxruntime/grid_sample.h | 44 + .../csrc/onnxruntime/modulated_deform_conv.h | 61 + .../v1.7.1/mmcv/ops/csrc/onnxruntime/nms.h | 45 + .../csrc/onnxruntime/onnxruntime_register.h | 16 + .../onnxruntime_session_options_config_keys.h | 44 + .../ops/csrc/onnxruntime/ort_mmcv_utils.h | 15 + .../mmcv/ops/csrc/onnxruntime/reduce_ops.h | 95 + .../mmcv/ops/csrc/onnxruntime/roi_align.h | 62 + .../ops/csrc/onnxruntime/roi_align_rotated.h | 62 + .../csrc/onnxruntime/rotated_feature_align.h | 50 + .../mmcv/ops/csrc/onnxruntime/soft_nms.h | 49 + .../csrc/parrots/active_rotated_filter.cpp | 28 + .../parrots/active_rotated_filter_parrots.cpp | 63 + .../parrots/active_rotated_filter_pytorch.h | 13 + .../ops/csrc/parrots/assign_score_withk.cpp | 42 + .../parrots/assign_score_withk_parrots.cpp | 89 + .../csrc/parrots/assign_score_withk_pytorch.h | 19 + .../ops/csrc/parrots/ball_query._parrots.cpp | 43 + .../mmcv/ops/csrc/parrots/ball_query.cpp | 20 + .../ops/csrc/parrots/ball_query_pytorch.h | 11 + .../mmcv/ops/csrc/parrots/bbox_overlaps.cpp | 14 + .../csrc/parrots/bbox_overlaps_parrots.cpp | 40 + .../ops/csrc/parrots/bbox_overlaps_pytorch.h | 10 + .../mmcv/ops/csrc/parrots/border_align.cpp | 30 + .../ops/csrc/parrots/border_align_parrots.cpp | 51 + .../ops/csrc/parrots/border_align_pytorch.h | 17 + .../mmcv/ops/csrc/parrots/box_iou_rotated.cpp | 19 + .../csrc/parrots/box_iou_rotated_parrots.cpp | 61 + .../csrc/parrots/box_iou_rotated_pytorch.h | 15 + .../v1.7.1/mmcv/ops/csrc/parrots/carafe.cpp | 38 + .../mmcv/ops/csrc/parrots/carafe_naive.cpp | 32 + .../ops/csrc/parrots/carafe_naive_parrots.cpp | 74 + .../ops/csrc/parrots/carafe_naive_pytorch.h | 15 + .../mmcv/ops/csrc/parrots/carafe_parrots.cpp | 88 + .../mmcv/ops/csrc/parrots/carafe_pytorch.h | 16 + .../ops/csrc/parrots/chamfer_distance.cpp | 35 + .../csrc/parrots/chamfer_distance_parrots.cpp | 51 + .../csrc/parrots/chamfer_distance_pytorch.h | 16 + .../mmcv/ops/csrc/parrots/contour_expand.cpp | 111 + .../csrc/parrots/contour_expand_parrots.cpp | 43 + .../ops/csrc/parrots/contour_expand_pytorch.h | 12 + .../mmcv/ops/csrc/parrots/convex_iou.cpp | 23 + .../ops/csrc/parrots/convex_iou_parrots.cpp | 40 + .../ops/csrc/parrots/convex_iou_pytorch.h | 11 + .../mmcv/ops/csrc/parrots/correlation.cpp | 47 + .../ops/csrc/parrots/correlation_parrots.cpp | 176 + .../ops/csrc/parrots/correlation_pytorch.h | 18 + .../v1.7.1/mmcv/ops/csrc/parrots/cudabind.cpp | 1626 +++++++++ .../mmcv/ops/csrc/parrots/deform_conv.cpp | 517 +++ .../ops/csrc/parrots/deform_conv_parrots.cpp | 273 ++ .../ops/csrc/parrots/deform_conv_pytorch.h | 28 + .../mmcv/ops/csrc/parrots/deform_roi_pool.cpp | 42 + .../csrc/parrots/deform_roi_pool_parrots.cpp | 102 + .../csrc/parrots/deform_roi_pool_pytorch.h | 18 + .../ops/csrc/parrots/diff_iou_rotated.cpp | 14 + .../csrc/parrots/diff_iou_rotated_parrots.cpp | 28 + .../csrc/parrots/diff_iou_rotated_pytorch.h | 10 + .../mmcv/ops/csrc/parrots/focal_loss.cpp | 53 + .../ops/csrc/parrots/focal_loss_parrots.cpp | 113 + .../ops/csrc/parrots/focal_loss_pytorch.h | 21 + .../csrc/parrots/furthest_point_sample.cpp | 34 + .../parrots/furthest_point_sample_parrots.cpp | 57 + .../parrots/furthest_point_sample_pytorch.h | 14 + .../ops/csrc/parrots/fused_bias_leakyrelu.cpp | 119 + .../ops/csrc/parrots/fused_bias_parrots.cpp | 41 + .../mmcv/ops/csrc/parrots/gather_points.cpp | 30 + .../csrc/parrots/gather_points_parrots.cpp | 71 + .../ops/csrc/parrots/gather_points_pytorch.h | 13 + .../mmcv/ops/csrc/parrots/group_points.cpp | 34 + .../ops/csrc/parrots/group_points_parrots.cpp | 72 + .../ops/csrc/parrots/group_points_pytorch.h | 15 + .../v1.7.1/mmcv/ops/csrc/parrots/info.cpp | 65 + .../v1.7.1/mmcv/ops/csrc/parrots/iou3d.cpp | 66 + .../mmcv/ops/csrc/parrots/iou3d_parrots.cpp | 70 + .../mmcv/ops/csrc/parrots/iou3d_pytorch.h | 16 + .../mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn.cpp | 17 + .../mmcv/ops/csrc/parrots/knn_parrots.cpp | 41 + .../mmcv/ops/csrc/parrots/knn_pytorch.h | 9 + .../mmcv/ops/csrc/parrots/masked_conv2d.cpp | 33 + .../csrc/parrots/masked_conv2d_parrots.cpp | 72 + .../ops/csrc/parrots/masked_conv2d_pytorch.h | 15 + .../ops/csrc/parrots/min_area_polygons.cpp | 11 + .../parrots/min_area_polygons_parrots.cpp | 26 + .../csrc/parrots/min_area_polygons_pytorch.h | 9 + .../csrc/parrots/modulated_deform_conv.cpp | 237 ++ .../parrots/modulated_deform_conv_parrots.cpp | 199 ++ .../parrots/modulated_deform_conv_pytorch.h | 21 + .../mmcv/ops/csrc/parrots/ms_deform_attn.cpp | 60 + .../csrc/parrots/ms_deform_attn_parrots.cpp | 69 + .../mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms.cpp | 33 + .../mmcv/ops/csrc/parrots/nms_parrots.cpp | 140 + .../mmcv/ops/csrc/parrots/nms_pytorch.h | 18 + .../mmcv/ops/csrc/parrots/nms_rotated.cpp | 32 + .../mmcv/ops/csrc/parrots/pixel_group.cpp | 26 + .../ops/csrc/parrots/pixel_group_parrots.cpp | 54 + .../ops/csrc/parrots/pixel_group_pytorch.h | 11 + .../mmcv/ops/csrc/parrots/points_in_boxes.cpp | 44 + .../csrc/parrots/points_in_boxes_parrots.cpp | 64 + .../csrc/parrots/points_in_boxes_pytorch.h | 16 + .../ops/csrc/parrots/points_in_polygons.cpp | 15 + .../parrots/points_in_polygons_parrots.cpp | 28 + .../csrc/parrots/points_in_polygons_pytorch.h | 9 + .../mmcv/ops/csrc/parrots/prroi_pool.cpp | 47 + .../ops/csrc/parrots/prroi_pool_parrots.cpp | 97 + .../ops/csrc/parrots/prroi_pool_pytorch.h | 19 + .../v1.7.1/mmcv/ops/csrc/parrots/psamask.cpp | 41 + .../mmcv/ops/csrc/parrots/psamask_parrots.cpp | 129 + .../mmcv/ops/csrc/parrots/psamask_pytorch.h | 31 + .../ops/csrc/parrots/riroi_align_rotated.cpp | 42 + .../parrots/riroi_align_rotated_parrots.cpp | 86 + .../parrots/riroi_align_rotated_pytorch.h | 18 + .../mmcv/ops/csrc/parrots/roi_align.cpp | 41 + .../ops/csrc/parrots/roi_align_parrots.cpp | 151 + .../mmcv/ops/csrc/parrots/roi_align_pytorch.h | 32 + .../ops/csrc/parrots/roi_align_rotated.cpp | 41 + .../parrots/roi_align_rotated_parrots.cpp | 147 + .../csrc/parrots/roi_align_rotated_pytorch.h | 31 + .../v1.7.1/mmcv/ops/csrc/parrots/roi_pool.cpp | 31 + .../ops/csrc/parrots/roi_pool_parrots.cpp | 67 + .../mmcv/ops/csrc/parrots/roi_pool_pytorch.h | 16 + .../mmcv/ops/csrc/parrots/roiaware_pool3d.cpp | 72 + .../csrc/parrots/roiaware_pool3d_parrots.cpp | 58 + .../csrc/parrots/roiaware_pool3d_pytorch.h | 14 + .../mmcv/ops/csrc/parrots/roipoint_pool3d.cpp | 39 + .../csrc/parrots/roipoint_pool3d_parrots.cpp | 31 + .../csrc/parrots/roipoint_pool3d_pytorch.h | 10 + .../csrc/parrots/rotated_feature_align.cpp | 39 + .../parrots/rotated_feature_align_parrots.cpp | 99 + .../parrots/rotated_feature_align_pytorch.h | 17 + .../v1.7.1/mmcv/ops/csrc/parrots/sync_bn.cpp | 69 + .../mmcv/ops/csrc/parrots/sync_bn_parrots.cpp | 111 + .../mmcv/ops/csrc/parrots/sync_bn_pytorch.h | 26 + .../ops/csrc/parrots/three_interpolate.cpp | 33 + .../parrots/three_interpolate_parrots.cpp | 74 + .../csrc/parrots/three_interpolate_pytorch.h | 14 + .../v1.7.1/mmcv/ops/csrc/parrots/three_nn.cpp | 18 + .../ops/csrc/parrots/three_nn_parrots.cpp | 35 + .../mmcv/ops/csrc/parrots/three_nn_pytorch.h | 10 + .../mmcv/ops/csrc/parrots/tin_shift.cpp | 20 + .../ops/csrc/parrots/tin_shift_parrots.cpp | 39 + .../mmcv/ops/csrc/parrots/tin_shift_pytorch.h | 11 + .../mmcv/ops/csrc/parrots/upfirdn2d.cpp | 118 + .../ops/csrc/parrots/upfirdn2d_parrots.cpp | 47 + .../mmcv/ops/csrc/parrots/voxelization.cpp | 74 + .../ops/csrc/parrots/voxelization_parrots.cpp | 113 + .../ops/csrc/parrots/voxelization_pytorch.h | 20 + .../csrc/pytorch/active_rotated_filter.cpp | 28 + .../ops/csrc/pytorch/assign_score_withk.cpp | 42 + .../mmcv/ops/csrc/pytorch/ball_query.cpp | 38 + .../mmcv/ops/csrc/pytorch/bbox_overlaps.cpp | 14 + .../mmcv/ops/csrc/pytorch/border_align.cpp | 30 + .../mmcv/ops/csrc/pytorch/box_iou_quadri.cpp | 17 + .../mmcv/ops/csrc/pytorch/box_iou_rotated.cpp | 19 + .../v1.7.1/mmcv/ops/csrc/pytorch/carafe.cpp | 38 + .../mmcv/ops/csrc/pytorch/carafe_naive.cpp | 32 + .../ops/csrc/pytorch/chamfer_distance.cpp | 35 + .../mmcv/ops/csrc/pytorch/contour_expand.cpp | 111 + .../mmcv/ops/csrc/pytorch/convex_iou.cpp | 23 + .../mmcv/ops/csrc/pytorch/correlation.cpp | 47 + .../pytorch/cpu/active_rotated_filter.cpp | 120 + .../ops/csrc/pytorch/cpu/box_iou_quadri.cpp | 36 + .../ops/csrc/pytorch/cpu/box_iou_rotated.cpp | 38 + .../mmcv/ops/csrc/pytorch/cpu/deform_conv.cpp | 408 +++ .../pytorch/cpu/modulated_deform_conv.cpp | 436 +++ .../v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms.cpp | 230 ++ .../mmcv/ops/csrc/pytorch/cpu/nms_quadri.cpp | 64 + .../mmcv/ops/csrc/pytorch/cpu/nms_rotated.cpp | 66 + .../mmcv/ops/csrc/pytorch/cpu/pixel_group.cpp | 126 + .../ops/csrc/pytorch/cpu/points_in_boxes.cpp | 53 + .../mmcv/ops/csrc/pytorch/cpu/psamask.cpp | 199 ++ .../mmcv/ops/csrc/pytorch/cpu/roi_align.cpp | 466 +++ .../csrc/pytorch/cpu/roi_align_rotated.cpp | 455 +++ .../pytorch/cpu/rotated_feature_align.cpp | 262 ++ .../ops/csrc/pytorch/cpu/voxelization.cpp | 186 ++ .../cuda/active_rotated_filter_cuda.cu | 58 + .../pytorch/cuda/assign_score_withk_cuda.cu | 66 + .../ops/csrc/pytorch/cuda/ball_query_cuda.cu | 38 + .../csrc/pytorch/cuda/bbox_overlaps_cuda.cu | 40 + .../csrc/pytorch/cuda/border_align_cuda.cu | 68 + .../csrc/pytorch/cuda/box_iou_quadri_cuda.cu | 23 + .../csrc/pytorch/cuda/box_iou_rotated_cuda.cu | 25 + .../mmcv/ops/csrc/pytorch/cuda/carafe_cuda.cu | 180 + .../csrc/pytorch/cuda/carafe_naive_cuda.cu | 52 + .../pytorch/cuda/chamfer_distance_cuda.cu | 63 + .../mmcv/ops/csrc/pytorch/cuda/convex_iou.cu | 41 + .../ops/csrc/pytorch/cuda/correlation_cuda.cu | 94 + .../mmcv/ops/csrc/pytorch/cuda/cudabind.cpp | 1869 +++++++++++ .../ops/csrc/pytorch/cuda/deform_conv_cuda.cu | 105 + .../csrc/pytorch/cuda/deform_roi_pool_cuda.cu | 55 + .../pytorch/cuda/diff_iou_rotated_cuda.cu | 35 + .../ops/csrc/pytorch/cuda/focal_loss_cuda.cu | 111 + .../cuda/furthest_point_sample_cuda.cu | 146 + .../pytorch/cuda/fused_bias_leakyrelu_cuda.cu | 109 + .../csrc/pytorch/cuda/gather_points_cuda.cu | 58 + .../csrc/pytorch/cuda/group_points_cuda.cu | 61 + .../mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu | 104 + .../mmcv/ops/csrc/pytorch/cuda/knn_cuda.cu | 34 + .../csrc/pytorch/cuda/masked_conv2d_cuda.cu | 54 + .../csrc/pytorch/cuda/min_area_polygons.cu | 21 + .../cuda/modulated_deform_conv_cuda.cu | 96 + .../csrc/pytorch/cuda/ms_deform_attn_cuda.cu | 351 ++ .../mmcv/ops/csrc/pytorch/cuda/nms_cuda.cu | 36 + .../ops/csrc/pytorch/cuda/nms_quadri_cuda.cu | 60 + .../ops/csrc/pytorch/cuda/nms_rotated_cuda.cu | 62 + .../csrc/pytorch/cuda/points_in_boxes_cuda.cu | 62 + .../pytorch/cuda/points_in_polygons_cuda.cu | 28 + .../ops/csrc/pytorch/cuda/prroi_pool_cuda.cu | 65 + .../ops/csrc/pytorch/cuda/psamask_cuda.cu | 60 + .../pytorch/cuda/riroi_align_rotated_cuda.cu | 53 + .../ops/csrc/pytorch/cuda/roi_align_cuda.cu | 58 + .../pytorch/cuda/roi_align_rotated_cuda.cu | 45 + .../ops/csrc/pytorch/cuda/roi_pool_cuda.cu | 50 + .../csrc/pytorch/cuda/roiaware_pool3d_cuda.cu | 118 + .../csrc/pytorch/cuda/roipoint_pool3d_cuda.cu | 60 + .../cuda/rotated_feature_align_cuda.cu | 53 + .../csrc/pytorch/cuda/scatter_points_cuda.cu | 132 + .../pytorch/cuda/stack_ball_query_cuda.cu | 45 + .../pytorch/cuda/stack_group_points_cuda.cu | 62 + .../ops/csrc/pytorch/cuda/sync_bn_cuda.cu | 110 + .../pytorch/cuda/three_interpolate_cuda.cu | 66 + .../ops/csrc/pytorch/cuda/three_nn_cuda.cu | 35 + .../ops/csrc/pytorch/cuda/tin_shift_cuda.cu | 55 + .../ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu | 370 +++ .../csrc/pytorch/cuda/voxelization_cuda.cu | 286 ++ .../mmcv/ops/csrc/pytorch/deform_conv.cpp | 517 +++ .../mmcv/ops/csrc/pytorch/deform_roi_pool.cpp | 42 + .../ops/csrc/pytorch/diff_iou_rotated.cpp | 14 + .../mmcv/ops/csrc/pytorch/focal_loss.cpp | 53 + .../csrc/pytorch/furthest_point_sample.cpp | 34 + .../ops/csrc/pytorch/fused_bias_leakyrelu.cpp | 119 + .../ops/csrc/pytorch/fused_spconv_ops.cpp | 34 + .../mmcv/ops/csrc/pytorch/gather_points.cpp | 30 + .../mmcv/ops/csrc/pytorch/group_points.cpp | 76 + .../v1.7.1/mmcv/ops/csrc/pytorch/info.cpp | 65 + .../v1.7.1/mmcv/ops/csrc/pytorch/iou3d.cpp | 66 + .../mmcv/v1.7.1/mmcv/ops/csrc/pytorch/knn.cpp | 17 + .../mmcv/ops/csrc/pytorch/masked_conv2d.cpp | 33 + .../ops/csrc/pytorch/min_area_polygons.cpp | 11 + .../csrc/pytorch/mlu/bbox_overlaps_mlu.cpp | 100 + .../mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp | 429 +++ .../csrc/pytorch/mlu/deform_roi_pool_mlu.cpp | 343 ++ .../pytorch/mlu/focal_loss_sigmoid_mlu.cpp | 332 ++ .../mmcv/ops/csrc/pytorch/mlu/iou3d_mlu.cpp | 144 + .../csrc/pytorch/mlu/masked_conv2d_mlu.cpp | 226 ++ .../csrc/pytorch/mlu/ms_deform_attn_mlu.cpp | 420 +++ .../mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp | 156 + .../mmcv/ops/csrc/pytorch/mlu/psamask_mlu.cpp | 308 ++ .../ops/csrc/pytorch/mlu/roi_align_mlu.cpp | 206 ++ .../pytorch/mlu/roi_align_rotated_mlu.cpp | 232 ++ .../ops/csrc/pytorch/mlu/roi_pool_mlu.cpp | 275 ++ .../csrc/pytorch/mlu/roiaware_pool3d_mlu.cpp | 399 +++ .../csrc/pytorch/mlu/roipoint_pool3d_mlu.cpp | 166 + .../ops/csrc/pytorch/mlu/three_nn_mlu.cpp | 100 + .../ops/csrc/pytorch/mlu/tin_shift_mlu.cpp | 203 ++ .../csrc/pytorch/modulated_deform_conv.cpp | 237 ++ .../ops/csrc/pytorch/mps/bbox_overlaps_mps.mm | 99 + .../mmcv/ops/csrc/pytorch/ms_deform_attn.cpp | 60 + .../mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms.cpp | 33 + .../mmcv/ops/csrc/pytorch/nms_quadri.cpp | 30 + .../mmcv/ops/csrc/pytorch/nms_rotated.cpp | 32 + .../ops/csrc/pytorch/npu/deform_roi_pool.cpp | 63 + .../ops/csrc/pytorch/npu/focal_loss_npu.cpp | 162 + .../pytorch/npu/fused_bias_leakyrelu_npu.cpp | 54 + .../mmcv/ops/csrc/pytorch/npu/nms_npu.cpp | 45 + .../mmcv/ops/csrc/pytorch/pixel_group.cpp | 26 + .../mmcv/ops/csrc/pytorch/points_in_boxes.cpp | 44 + .../ops/csrc/pytorch/points_in_polygons.cpp | 15 + .../mmcv/ops/csrc/pytorch/prroi_pool.cpp | 47 + .../v1.7.1/mmcv/ops/csrc/pytorch/psamask.cpp | 41 + .../v1.7.1/mmcv/ops/csrc/pytorch/pybind.cpp | 902 +++++ .../ops/csrc/pytorch/riroi_align_rotated.cpp | 42 + .../mmcv/ops/csrc/pytorch/roi_align.cpp | 41 + .../ops/csrc/pytorch/roi_align_rotated.cpp | 41 + .../v1.7.1/mmcv/ops/csrc/pytorch/roi_pool.cpp | 31 + .../mmcv/ops/csrc/pytorch/roiaware_pool3d.cpp | 72 + .../mmcv/ops/csrc/pytorch/roipoint_pool3d.cpp | 39 + .../csrc/pytorch/rotated_feature_align.cpp | 39 + .../mmcv/ops/csrc/pytorch/scatter_points.cpp | 53 + .../v1.7.1/mmcv/ops/csrc/pytorch/sync_bn.cpp | 69 + .../ops/csrc/pytorch/three_interpolate.cpp | 33 + .../v1.7.1/mmcv/ops/csrc/pytorch/three_nn.cpp | 18 + .../mmcv/ops/csrc/pytorch/tin_shift.cpp | 20 + .../mmcv/ops/csrc/pytorch/upfirdn2d.cpp | 118 + .../mmcv/ops/csrc/pytorch/voxelization.cpp | 74 + .../csrc/tensorrt/plugins/trt_corner_pool.cpp | 217 ++ .../plugins/trt_corner_pool_kernel.cu | 110 + .../csrc/tensorrt/plugins/trt_cuda_helper.cu | 91 + .../csrc/tensorrt/plugins/trt_cummaxmin.cpp | 242 ++ .../tensorrt/plugins/trt_cummaxmin_kernel.cu | 90 + .../csrc/tensorrt/plugins/trt_deform_conv.cpp | 318 ++ .../plugins/trt_deform_conv_kernel.cu | 129 + .../tensorrt/plugins/trt_grid_sampler.cpp | 256 ++ .../plugins/trt_grid_sampler_kernel.cu | 441 +++ .../tensorrt/plugins/trt_instance_norm.cpp | 246 ++ .../plugins/trt_modulated_deform_conv.cpp | 308 ++ .../trt_modulated_deform_conv_kernel.cu | 134 + .../ops/csrc/tensorrt/plugins/trt_nms.cpp | 279 ++ .../csrc/tensorrt/plugins/trt_nms_kernel.cu | 274 ++ .../ops/csrc/tensorrt/plugins/trt_plugin.cpp | 27 + .../csrc/tensorrt/plugins/trt_roi_align.cpp | 294 ++ .../tensorrt/plugins/trt_roi_align_kernel.cu | 28 + .../csrc/tensorrt/plugins/trt_scatternd.cpp | 207 ++ .../tensorrt/plugins/trt_scatternd_kernel.cu | 93 + .../ops/csrc/tensorrt/trt_corner_pool.hpp | 111 + .../ops/csrc/tensorrt/trt_cuda_helper.cuh | 39 + .../mmcv/ops/csrc/tensorrt/trt_cummaxmin.hpp | 122 + .../ops/csrc/tensorrt/trt_deform_conv.hpp | 118 + .../ops/csrc/tensorrt/trt_grid_sampler.hpp | 108 + .../ops/csrc/tensorrt/trt_instance_norm.hpp | 120 + .../tensorrt/trt_modulated_deform_conv.hpp | 120 + .../v1.7.1/mmcv/ops/csrc/tensorrt/trt_nms.hpp | 107 + .../mmcv/ops/csrc/tensorrt/trt_plugin.hpp | 7 + .../ops/csrc/tensorrt/trt_plugin_helper.hpp | 41 + .../mmcv/ops/csrc/tensorrt/trt_roi_align.hpp | 108 + .../mmcv/ops/csrc/tensorrt/trt_scatternd.hpp | 98 + .../mmcv/ops/csrc/tensorrt/trt_serialize.hpp | 105 + .../patch/mmcv/v1.7.1/mmcv/ops/deform_conv.py | 408 +++ .../mmcv/v1.7.1/mmcv/ops/deform_roi_pool.py | 209 ++ .../v1.7.1/mmcv/ops/deprecated_wrappers.py | 46 + .../mmcv/v1.7.1/mmcv/ops/diff_iou_rotated.py | 301 ++ .../patch/mmcv/v1.7.1/mmcv/ops/focal_loss.py | 234 ++ .../v1.7.1/mmcv/ops/furthest_point_sample.py | 84 + .../v1.7.1/mmcv/ops/fused_bias_leakyrelu.py | 282 ++ .../mmcv/v1.7.1/mmcv/ops/gather_points.py | 59 + .../mmcv/v1.7.1/mmcv/ops/group_points.py | 299 ++ .../patch/mmcv/v1.7.1/mmcv/ops/info.py | 36 + .../patch/mmcv/v1.7.1/mmcv/ops/iou3d.py | 224 ++ .../patch/mmcv/v1.7.1/mmcv/ops/knn.py | 80 + .../patch/mmcv/v1.7.1/mmcv/ops/masked_conv.py | 138 + .../patch/mmcv/v1.7.1/mmcv/ops/merge_cells.py | 166 + .../mmcv/v1.7.1/mmcv/ops/min_area_polygons.py | 20 + .../v1.7.1/mmcv/ops/modulated_deform_conv.py | 439 +++ .../mmcv/ops/multi_scale_deform_attn.py | 366 +++ .../patch/mmcv/v1.7.1/mmcv/ops/nms.py | 519 +++ .../patch/mmcv/v1.7.1/mmcv/ops/pixel_group.py | 86 + .../mmcv/v1.7.1/mmcv/ops/point_sample.py | 360 ++ .../mmcv/v1.7.1/mmcv/ops/points_in_boxes.py | 137 + .../v1.7.1/mmcv/ops/points_in_polygons.py | 38 + .../mmcv/v1.7.1/mmcv/ops/points_sampler.py | 175 + .../patch/mmcv/v1.7.1/mmcv/ops/prroi_pool.py | 151 + .../patch/mmcv/v1.7.1/mmcv/ops/psa_mask.py | 98 + .../v1.7.1/mmcv/ops/riroi_align_rotated.py | 139 + .../patch/mmcv/v1.7.1/mmcv/ops/roi_align.py | 226 ++ .../mmcv/v1.7.1/mmcv/ops/roi_align_rotated.py | 186 ++ .../patch/mmcv/v1.7.1/mmcv/ops/roi_pool.py | 96 + .../mmcv/v1.7.1/mmcv/ops/roiaware_pool3d.py | 132 + .../mmcv/v1.7.1/mmcv/ops/roipoint_pool3d.py | 87 + .../v1.7.1/mmcv/ops/rotated_feature_align.py | 95 + .../patch/mmcv/v1.7.1/mmcv/ops/saconv.py | 146 + .../mmcv/v1.7.1/mmcv/ops/scatter_points.py | 148 + .../patch/mmcv/v1.7.1/mmcv/ops/sync_bn.py | 283 ++ .../mmcv/v1.7.1/mmcv/ops/three_interpolate.py | 69 + .../patch/mmcv/v1.7.1/mmcv/ops/three_nn.py | 51 + .../patch/mmcv/v1.7.1/mmcv/ops/tin_shift.py | 75 + .../patch/mmcv/v1.7.1/mmcv/ops/upfirdn2d.py | 341 ++ .../patch/mmcv/v1.7.1/mmcv/ops/voxelize.py | 183 ++ .../mmcv/v1.7.1/mmcv/parallel/__init__.py | 13 + .../mmcv/v1.7.1/mmcv/parallel/_functions.py | 82 + .../mmcv/v1.7.1/mmcv/parallel/collate.py | 84 + .../v1.7.1/mmcv/parallel/data_container.py | 91 + .../v1.7.1/mmcv/parallel/data_parallel.py | 99 + .../mmcv/v1.7.1/mmcv/parallel/distributed.py | 167 + .../mmcv/parallel/distributed_deprecated.py | 74 + .../mmcv/v1.7.1/mmcv/parallel/registry.py | 8 + .../v1.7.1/mmcv/parallel/scatter_gather.py | 70 + .../patch/mmcv/v1.7.1/mmcv/parallel/utils.py | 32 + .../patch/mmcv/v1.7.1/mmcv/runner/__init__.py | 73 + .../mmcv/v1.7.1/mmcv/runner/base_module.py | 213 ++ .../mmcv/v1.7.1/mmcv/runner/base_runner.py | 566 ++++ .../patch/mmcv/v1.7.1/mmcv/runner/builder.py | 25 + .../mmcv/v1.7.1/mmcv/runner/checkpoint.py | 821 +++++ .../v1.7.1/mmcv/runner/default_constructor.py | 47 + .../mmcv/v1.7.1/mmcv/runner/dist_utils.py | 220 ++ .../v1.7.1/mmcv/runner/epoch_based_runner.py | 197 ++ .../mmcv/v1.7.1/mmcv/runner/fp16_utils.py | 438 +++ .../mmcv/v1.7.1/mmcv/runner/hooks/__init__.py | 48 + .../v1.7.1/mmcv/runner/hooks/checkpoint.py | 168 + .../mmcv/v1.7.1/mmcv/runner/hooks/closure.py | 13 + .../mmcv/v1.7.1/mmcv/runner/hooks/ema.py | 91 + .../v1.7.1/mmcv/runner/hooks/evaluation.py | 515 +++ .../mmcv/v1.7.1/mmcv/runner/hooks/hook.py | 92 + .../v1.7.1/mmcv/runner/hooks/iter_timer.py | 18 + .../mmcv/runner/hooks/logger/__init__.py | 18 + .../v1.7.1/mmcv/runner/hooks/logger/base.py | 172 + .../mmcv/runner/hooks/logger/clearml.py | 63 + .../mmcv/runner/hooks/logger/dvclive.py | 73 + .../v1.7.1/mmcv/runner/hooks/logger/mlflow.py | 87 + .../mmcv/runner/hooks/logger/neptune.py | 89 + .../v1.7.1/mmcv/runner/hooks/logger/pavi.py | 277 ++ .../mmcv/runner/hooks/logger/segmind.py | 48 + .../mmcv/runner/hooks/logger/tensorboard.py | 69 + .../v1.7.1/mmcv/runner/hooks/logger/text.py | 256 ++ .../v1.7.1/mmcv/runner/hooks/logger/wandb.py | 130 + .../v1.7.1/mmcv/runner/hooks/lr_updater.py | 754 +++++ .../mmcv/v1.7.1/mmcv/runner/hooks/memory.py | 28 + .../mmcv/runner/hooks/momentum_updater.py | 594 ++++ .../v1.7.1/mmcv/runner/hooks/optimizer.py | 560 ++++ .../mmcv/v1.7.1/mmcv/runner/hooks/profiler.py | 190 ++ .../v1.7.1/mmcv/runner/hooks/sampler_seed.py | 20 + .../v1.7.1/mmcv/runner/hooks/sync_buffer.py | 22 + .../v1.7.1/mmcv/runner/iter_based_runner.py | 285 ++ .../mmcv/v1.7.1/mmcv/runner/log_buffer.py | 41 + .../v1.7.1/mmcv/runner/optimizer/__init__.py | 9 + .../v1.7.1/mmcv/runner/optimizer/builder.py | 45 + .../runner/optimizer/default_constructor.py | 258 ++ .../patch/mmcv/v1.7.1/mmcv/runner/priority.py | 61 + .../patch/mmcv/v1.7.1/mmcv/runner/utils.py | 99 + .../mmcv/v1.7.1/mmcv/tensorrt/__init__.py | 30 + .../mmcv/v1.7.1/mmcv/tensorrt/init_plugins.py | 76 + .../mmcv/v1.7.1/mmcv/tensorrt/preprocess.py | 136 + .../v1.7.1/mmcv/tensorrt/tensorrt_utils.py | 291 ++ .../patch/mmcv/v1.7.1/mmcv/utils/__init__.py | 81 + .../patch/mmcv/v1.7.1/mmcv/utils/config.py | 741 +++++ .../mmcv/v1.7.1/mmcv/utils/device_type.py | 53 + .../patch/mmcv/v1.7.1/mmcv/utils/env.py | 132 + .../mmcv/v1.7.1/mmcv/utils/ext_loader.py | 72 + .../patch/mmcv/v1.7.1/mmcv/utils/hub.py | 131 + .../patch/mmcv/v1.7.1/mmcv/utils/logging.py | 111 + .../patch/mmcv/v1.7.1/mmcv/utils/misc.py | 377 +++ .../mmcv/v1.7.1/mmcv/utils/parrots_jit.py | 41 + .../mmcv/v1.7.1/mmcv/utils/parrots_wrapper.py | 114 + .../patch/mmcv/v1.7.1/mmcv/utils/path.py | 101 + .../mmcv/v1.7.1/mmcv/utils/progressbar.py | 208 ++ .../patch/mmcv/v1.7.1/mmcv/utils/registry.py | 340 ++ .../patch/mmcv/v1.7.1/mmcv/utils/seed.py | 23 + .../patch/mmcv/v1.7.1/mmcv/utils/testing.py | 141 + .../patch/mmcv/v1.7.1/mmcv/utils/timer.py | 118 + .../patch/mmcv/v1.7.1/mmcv/utils/torch_ops.py | 29 + .../patch/mmcv/v1.7.1/mmcv/utils/trace.py | 24 + .../mmcv/v1.7.1/mmcv/utils/version_utils.py | 90 + .../patch/mmcv/v1.7.1/mmcv/version.py | 35 + .../patch/mmcv/v1.7.1/mmcv/video/__init__.py | 11 + .../patch/mmcv/v1.7.1/mmcv/video/io.py | 317 ++ .../patch/mmcv/v1.7.1/mmcv/video/optflow.py | 272 ++ .../mmcv/v1.7.1/mmcv/video/processing.py | 161 + .../v1.7.1/mmcv/visualization/__init__.py | 9 + .../mmcv/v1.7.1/mmcv/visualization/color.py | 52 + .../mmcv/v1.7.1/mmcv/visualization/image.py | 161 + .../mmcv/v1.7.1/mmcv/visualization/optflow.py | 116 + .../patch/mmcv/v1.7.1/requirements.txt | 4 + .../patch/mmcv/v1.7.1/requirements/build.txt | 1 + .../patch/mmcv/v1.7.1/requirements/docs.txt | 9 + .../mmcv/v1.7.1/requirements/optional.txt | 2 + .../mmcv/v1.7.1/requirements/runtime.txt | 7 + .../patch/mmcv/v1.7.1/requirements/test.txt | 10 + .../MMDetection/patch/mmcv/v1.7.1/setup.cfg | 26 + .../MMDetection/patch/mmcv/v1.7.1/setup.py | 481 +++ .../patch/mmcv/v1.7.1/tests/test_arraymisc.py | 70 + .../tests/test_cnn/test_build_layers.py | 407 +++ .../tests/test_cnn/test_context_block.py | 59 + .../test_cnn/test_conv2d_adaptive_padding.py | 28 + .../v1.7.1/tests/test_cnn/test_conv_module.py | 250 ++ .../test_depthwise_seperable_conv_module.py | 91 + .../tests/test_cnn/test_flops_counter.py | 152 + .../tests/test_cnn/test_fuse_conv_bn.py | 16 + .../test_cnn/test_generalized_attention.py | 75 + .../v1.7.1/tests/test_cnn/test_hsigmoid.py | 37 + .../mmcv/v1.7.1/tests/test_cnn/test_hswish.py | 21 + .../tests/test_cnn/test_model_registry.py | 64 + .../v1.7.1/tests/test_cnn/test_non_local.py | 220 ++ .../tests/test_cnn/test_revert_syncbn.py | 61 + .../test_cnn/test_rfsearch/test_operator.py | 325 ++ .../test_cnn/test_rfsearch/test_search.py | 177 + .../mmcv/v1.7.1/tests/test_cnn/test_scale.py | 22 + .../mmcv/v1.7.1/tests/test_cnn/test_silu.py | 28 + .../mmcv/v1.7.1/tests/test_cnn/test_swish.py | 16 + .../v1.7.1/tests/test_cnn/test_transformer.py | 679 ++++ .../v1.7.1/tests/test_cnn/test_weight_init.py | 562 ++++ .../v1.7.1/tests/test_cnn/test_wrappers.py | 375 +++ .../tests/test_device/test_device_utils.py | 18 + .../tests/test_device/test_functions.py | 101 + .../test_ipu/test_hierarchicaldatamanager.py | 106 + .../test_ipu/test_ipu_dataloder.py | 69 + .../test_device/test_ipu/test_ipu_hooks.py | 129 + .../test_device/test_ipu/test_ipu_model.py | 300 ++ .../test_device/test_ipu/test_ipu_runner.py | 126 + .../test_device/test_ipu/test_ipu_utils.py | 193 ++ .../test_device/test_mlu/test_mlu_parallel.py | 37 + .../test_device/test_mps/test_mps_parallel.py | 34 + .../test_device/test_npu/test_npu_parallel.py | 37 + .../mmcv/v1.7.1/tests/test_fileclient.py | 866 +++++ .../patch/mmcv/v1.7.1/tests/test_fileio.py | 211 ++ .../tests/test_image/test_colorspace.py | 355 ++ .../v1.7.1/tests/test_image/test_geometric.py | 617 ++++ .../tests/test_image/test_image_misc.py | 72 + .../mmcv/v1.7.1/tests/test_image/test_io.py | 389 +++ .../tests/test_image/test_photometric.py | 426 +++ .../mmcv/v1.7.1/tests/test_load_model_zoo.py | 156 + .../mmcv/v1.7.1/tests/test_ops/output.pkl | Bin 0 -> 2168 bytes .../test_ops/test_active_rotated_filter.py | 258 ++ .../tests/test_ops/test_assign_score_withk.py | 188 ++ .../v1.7.1/tests/test_ops/test_ball_query.py | 102 + .../mmcv/v1.7.1/tests/test_ops/test_bbox.py | 66 + .../test_ops/test_bilinear_grid_sample.py | 41 + .../tests/test_ops/test_border_align.py | 91 + .../tests/test_ops/test_box_iou_quadri.py | 77 + .../tests/test_ops/test_box_iou_rotated.py | 163 + .../mmcv/v1.7.1/tests/test_ops/test_carafe.py | 85 + .../tests/test_ops/test_cc_attention.py | 56 + .../tests/test_ops/test_chamfer_distance.py | 57 + .../tests/test_ops/test_contour_expand.py | 49 + .../v1.7.1/tests/test_ops/test_convex_iou.py | 56 + .../v1.7.1/tests/test_ops/test_corner_pool.py | 59 + .../v1.7.1/tests/test_ops/test_correlation.py | 45 + .../v1.7.1/tests/test_ops/test_deform_conv.py | 200 ++ .../tests/test_ops/test_deform_roi_pool.py | 152 + .../tests/test_ops/test_diff_iou_rotated.py | 49 + .../v1.7.1/tests/test_ops/test_focal_loss.py | 170 + .../test_ops/test_furthest_point_sample.py | 52 + .../test_ops/test_fused_bias_leakyrelu.py | 74 + .../tests/test_ops/test_gather_points.py | 51 + .../tests/test_ops/test_group_points.py | 164 + .../mmcv/v1.7.1/tests/test_ops/test_info.py | 14 + .../mmcv/v1.7.1/tests/test_ops/test_iou3d.py | 145 + .../mmcv/v1.7.1/tests/test_ops/test_knn.py | 55 + .../tests/test_ops/test_masked_conv2d.py | 45 + .../v1.7.1/tests/test_ops/test_merge_cells.py | 95 + .../tests/test_ops/test_min_area_polygons.py | 30 + .../test_ops/test_modulated_deform_conv.py | 130 + .../tests/test_ops/test_ms_deformable_attn.py | 224 ++ .../mmcv/v1.7.1/tests/test_ops/test_nms.py | 205 ++ .../v1.7.1/tests/test_ops/test_nms_quadri.py | 119 + .../v1.7.1/tests/test_ops/test_nms_rotated.py | 116 + .../mmcv/v1.7.1/tests/test_ops/test_onnx.py | 925 ++++++ .../v1.7.1/tests/test_ops/test_pixel_group.py | 78 + .../tests/test_ops/test_points_in_polygons.py | 23 + .../v1.7.1/tests/test_ops/test_prroi_pool.py | 98 + .../v1.7.1/tests/test_ops/test_psa_mask.py | 118 + .../test_ops/test_riroi_align_rotated.py | 84 + .../v1.7.1/tests/test_ops/test_roi_align.py | 120 + .../tests/test_ops/test_roi_align_rotated.py | 151 + .../v1.7.1/tests/test_ops/test_roi_pool.py | 101 + .../tests/test_ops/test_roiaware_pool3d.py | 158 + .../tests/test_ops/test_roipoint_pool3d.py | 50 + .../test_ops/test_rotated_feature_align.py | 131 + .../mmcv/v1.7.1/tests/test_ops/test_saconv.py | 46 + .../tests/test_ops/test_scatter_points.py | 132 + .../mmcv/v1.7.1/tests/test_ops/test_spconv.py | 133 + .../mmcv/v1.7.1/tests/test_ops/test_syncbn.py | 295 ++ .../v1.7.1/tests/test_ops/test_tensorrt.py | 807 +++++ .../test_ops/test_tensorrt_preprocess.py | 80 + .../tests/test_ops/test_three_interpolate.py | 78 + .../v1.7.1/tests/test_ops/test_three_nn.py | 65 + .../v1.7.1/tests/test_ops/test_tin_shift.py | 226 ++ .../v1.7.1/tests/test_ops/test_upfirdn2d.py | 58 + .../tests/test_ops/test_voxelization.py | 139 + .../patch/mmcv/v1.7.1/tests/test_parallel.py | 188 ++ .../tests/test_runner/test_basemodule.py | 610 ++++ .../tests/test_runner/test_checkpoint.py | 451 +++ .../tests/test_runner/test_dist_utils.py | 53 + .../tests/test_runner/test_eval_hook.py | 481 +++ .../v1.7.1/tests/test_runner/test_fp16.py | 315 ++ .../v1.7.1/tests/test_runner/test_hooks.py | 2075 ++++++++++++ .../tests/test_runner/test_optimizer.py | 640 ++++ .../v1.7.1/tests/test_runner/test_runner.py | 288 ++ .../v1.7.1/tests/test_runner/test_utils.py | 39 + .../v1.7.1/tests/test_utils/test_config.py | 610 ++++ .../mmcv/v1.7.1/tests/test_utils/test_env.py | 34 + .../mmcv/v1.7.1/tests/test_utils/test_hub.py | 36 + .../v1.7.1/tests/test_utils/test_logging.py | 118 + .../mmcv/v1.7.1/tests/test_utils/test_misc.py | 224 ++ .../tests/test_utils/test_parrots_jit.py | 278 ++ .../mmcv/v1.7.1/tests/test_utils/test_path.py | 81 + .../tests/test_utils/test_progressbar.py | 163 + .../v1.7.1/tests/test_utils/test_registry.py | 294 ++ .../v1.7.1/tests/test_utils/test_testing.py | 195 ++ .../v1.7.1/tests/test_utils/test_timer.py | 40 + .../v1.7.1/tests/test_utils/test_torch_ops.py | 15 + .../v1.7.1/tests/test_utils/test_trace.py | 25 + .../tests/test_utils/test_version_utils.py | 63 + .../v1.7.1/tests/test_video/test_optflow.py | 290 ++ .../tests/test_video/test_processing.py | 58 + .../v1.7.1/tests/test_video/test_reader.py | 210 ++ .../mmcv/v1.7.1/tests/test_visualization.py | 19 + 1847 files changed, 299371 insertions(+) create mode 100644 cv/3d_detection/PAConv/pytorch/.gitignore create mode 100644 cv/3d_detection/PAConv/pytorch/LICENSE create mode 100644 cv/3d_detection/PAConv/pytorch/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/3dssd/3dssd_4x4_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/3dssd/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/3dssd/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/coco_instance.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nuim_instance.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/range100_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis-3d-5class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet-3d-18class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet_seg-3d-20class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/sunrgbd-3d-10class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/default_runtime.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/3dssd.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_01voxel_second_secfpn_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/dgcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/fcos3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/groupfree3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/h3dnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_lyft.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_range100_lyft.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_kitti.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_waymo.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_kitti.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_waymo.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/imvotenet_image.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/mask_rcnn_r50_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_cuda_ssg.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_ssg.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/parta2.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/pgd.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/point_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_msg.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_ssg.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/smoke.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/models/votenet.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cosine.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_20e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_40e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/mmdet_schedule_1x.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_2x.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_3x.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_100e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_150e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_200e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_50e.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_flip-tta_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_tta_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_flip-tta_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/centerpoint/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dgcnn/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dgcnn/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/fcos3d/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/fcos3d/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/free_anchor/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/groupfree3d/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/h3dnet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/h3dnet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvotenet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvotenet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/monoflex/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/monoflex/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/mvxnet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/mvxnet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_without_semantic_r50_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nus-2d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/nuimages/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/paconv/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/paconv/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/parta2/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/parta2/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/point_rcnn/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/point_rcnn/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_range100_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/pointpillars/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_fp16_2x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/regnet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/sassd/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/sassd/sassd_6x8_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/second/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/smoke/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/smoke/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/ssn/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/votenet/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/configs/votenet/metafile.yml create mode 100644 cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_16x8_sunrgbd-3d-10class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_8x8_scannet-3d-18class.py create mode 100644 cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py create mode 100644 cv/3d_detection/PAConv/pytorch/data/s3dis/README.md create mode 100644 cv/3d_detection/PAConv/pytorch/data/s3dis/collect_indoor3d_data.py create mode 100644 cv/3d_detection/PAConv/pytorch/data/s3dis/indoor3d_util.py create mode 100644 cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/anno_paths.txt create mode 100644 cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/class_names.txt create mode 100644 cv/3d_detection/PAConv/pytorch/dist_train.sh create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/apis/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/apis/inference.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/apis/test.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/apis/train.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/anchor_generator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/point_generator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/approx_max_iou_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/assign_result.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/atss_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/base_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/center_region_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/grid_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/hungarian_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/mask_hungarian_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/max_iou_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/point_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/region_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/sim_ota_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/task_aligned_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/uniform_assigner.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/base_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/bucketing_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/distance_point_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/pseudo_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/tblr_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/yolo_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/demodata.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/iou2d_calculator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/match_cost.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/base_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/combined_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_pseudo_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_sampling_result.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/ohem_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/pseudo_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/random_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/sampling_result.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/score_hlr_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/transforms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/general_data.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/instance_data.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/bbox_overlaps.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/class_names.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/eval_hooks.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/mean_ap.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/panoptic_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/recall.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/export/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/export/model_wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/export/onnx_helper.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/export/pytorch2onnx.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/checkloss_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/ema.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/memory_profiler_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/set_epoch_info_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_norm_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_random_size_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_lrupdater_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_mode_switch_hook.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/mask/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/mask/mask_target.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/mask/structures.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/mask/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/bbox_nms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/matrix_nms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/merge_augs.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/utils/dist_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/utils/misc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/image.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/palette.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/coco_api.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/panoptic_evaluation.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/cityscapes.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco_panoptic.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/custom.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/dataset_wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/deepfashion.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/lvis.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/openimages.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/auto_augment.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/compose.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formating.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formatting.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/instaboost.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/loading.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/test_time_aug.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/transforms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/class_aware_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/distributed_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/group_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/infinite_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/voc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/wider_face.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/datasets/xml_style.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/csp_darknet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/darknet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnext.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/efficientnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hourglass.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hrnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/mobilenet_v2.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/pvt.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/regnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/res2net.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnest.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnext.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/ssd_vgg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/swin.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/trident_resnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_free_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/atss_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/autoassign_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_dense_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/cascade_rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centernet_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centripetal_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/corner_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/deformable_detr_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/dense_test_mixins.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/detr_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/embedding_rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fcos_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fovea_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/free_anchor_retina_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fsaf_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_retina_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/gfl_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/guided_anchor_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/lad_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ld_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/mask2former_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/maskformer_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/nasfcos_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/paa_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_retinanet_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_ssd_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/reppoints_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_sepbn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/sabl_retina_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/solo_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ssd_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/tood_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/vfnet_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolact_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolo_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolof_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/atss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/autoassign.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/base.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cascade_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/centernet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cornernet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/deformable_detr.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/detr.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fast_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/faster_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fcos.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fovea.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fsaf.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/gfl.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/grid_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/htc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/kd_one_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/lad.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask2former.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_scoring_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/maskformer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/nasfcos.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/paa.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_two_stage_segmentor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/point_rend.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/queryinst.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/reppoints_detector.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/retinanet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/rpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/scnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage_instance_seg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/solo.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/sparse_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/tood.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/trident_faster_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/two_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/vfnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolact.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolo.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolof.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolox.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/accuracy.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ae_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/balanced_l1_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/cross_entropy_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/dice_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/focal_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gaussian_focal_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gfocal_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ghm_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/iou_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/kd_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/mse_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/pisa_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/seesaw_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/smooth_l1_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/losses/varifocal_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/bfp.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/channel_mapper.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ct_resnet_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dilated_encoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dyhead.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn_carafe.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/hrfpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nas_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nasfcos_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/pafpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/rfp.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ssd_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolo_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolox_pafpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/dropblock.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/msdeformattn_pixel_decoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/pixel_decoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/base_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/dii_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/sabl_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/scnet_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/cascade_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/double_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/dynamic_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/grid_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/htc_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/coarse_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/dynamic_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/feature_relay_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/global_context_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/grid_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/htc_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/mask_point_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/maskiou_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_mask_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_semantic_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_scoring_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/pisa_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/point_rend_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/base_roi_extractor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/scnet_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/res_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/sparse_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/standard_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/test_mixins.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/trident_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/base_semantic_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/base_panoptic_fusion_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/heuristic_fusion_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/maskformer_fusion_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/brick_wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/ckpt_convert.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/conv_upsample.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/csp_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/gaussian_target.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/inverted_residual.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/make_divisible.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/misc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/normed_predictor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/panoptic_gt_processing.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/point_sample.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/positional_encoding.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/res_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/se_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/models/utils/transformer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/collect_env.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/compat_config.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/contextmanagers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/logger.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/misc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/profiling.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/setup_env.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/split_batch.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/util_distribution.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/util_mixins.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/utils/util_random.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet/version.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/apis/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/apis/inference.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/apis/test.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/apis/train.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/anchor_3d_generator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/assigners/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/box_np_ops.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/anchor_free_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/centerpoint_bbox_coders.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/delta_xyzwhlr_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/fcos3d_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/groupfree3d_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/monoflex_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/partial_bin_based_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/pgd_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/point_xyzwhlr_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/smoke_bbox_coder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/iou_neg_piecewise_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/base_box3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/box_3d_mode.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/cam_box3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/coord_3d_mode.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/depth_box3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/lidar_box3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/transforms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/indoor_eval.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/instance_seg_eval.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/eval.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/rotate_iou.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/lyft_eval.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/evaluate_semantic_instance.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/util_3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/seg_eval.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/prediction_kitti_to_waymo.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/base_points.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/cam_points.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/depth_points.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/lidar_points.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/box3d_nms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/merge_augs.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/array_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/gaussian.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/image_vis.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/open3d_vis.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/show_result.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/voxel_generator.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d_seg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/dataset_wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti2d_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_mono_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/lyft_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_mono_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/compose.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/data_augment_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/dbsampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/formating.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/loading.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/test_time_aug.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/transforms_3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/s3dis_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/scannet_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/semantickitti_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/sunrgbd_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/waymo_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/base_pointnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dgcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dla.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/mink_resnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/multi_backbone.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/nostem_regnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_msg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_ssg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/second.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/decode_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/dgcnn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/paconv_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/pointnet2_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor_free_mono3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_conv_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_mono3d_dense_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/centerpoint_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/fcos_mono3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/free_anchor3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/groupfree3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/monoflex_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/parta2_rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/pgd_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/point_rpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/shape_aware_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/smoke_mono3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/ssd_3d_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/train_mixins.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/vote_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/base.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/centerpoint.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/dynamic_voxelnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/fcos_mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/groupfree3dnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/h3dnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvotenet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvoxelnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_faster_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_two_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/parta2.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/point_rcnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/sassd.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage_mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/smoke_mono3d.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/ssd3dnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/two_stage.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/votenet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/voxelnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/coord_transform.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/point_fusion.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/vote_fusion.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/axis_aligned_iou_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/chamfer_distance.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/multibin_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/paconv_regularization_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/uncertain_smooth_l1_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/pillar_scatter.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_encoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_unet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/edge_fusion_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/transformer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/vote_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/dla_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/imvoxel_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/pointnet2_fp_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/second_fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/base_3droi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/point_rcnn_bbox_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/h3d_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/pointwise_semantic_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/primitive_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/part_aggregation_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/point_rcnn_roi_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roiaware_extractor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roipoint_extractor.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/base.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/encoder_decoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/clip_sigmoid.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/edge_indices.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/gen_keypoints.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/handle_objs.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/mlp.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/pillar_encoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/voxel_encoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fa_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fp_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_gf_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/norm.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/paconv.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/paconv_sa_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_fp_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_sa_module.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/sparse_block.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/write_spconv2.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/collect_env.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/compat_cfg.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/logger.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/misc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/utils/setup_env.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmdet3d/version.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/apis/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/apis/inference.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/apis/test.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/apis/train.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/class_names.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/eval_hooks.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/metrics.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/seg/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/seg/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/base_pixel_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/ohem_pixel_sampler.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/core/utils/misc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/ade.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/chase_db1.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/cityscapes.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/coco_stuff.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/custom.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/dark_zurich.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/dataset_wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/drive.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/hrf.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/loveda.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/night_driving.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pascal_context.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/compose.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formating.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formatting.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/loading.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/test_time_aug.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/transforms.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/stare.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/datasets/voc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv1.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv2.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/cgnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/erfnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/fast_scnn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/hrnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/icnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mit.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v2.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v3.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnest.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnext.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/stdc.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/swin.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/timm_backbone.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/twins.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/unet.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/vit.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/builder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ann_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/apc_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/aspp_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cascade_decode_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cc_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/da_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/decode_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dm_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dnl_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dpt_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ema_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/enc_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fcn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fpn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/gc_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/isa_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/lraspp_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/nl_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ocr_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/point_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psa_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psp_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/segformer_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_aspp_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_fcn_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_mla_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_up_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/stdc_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/uper_head.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/accuracy.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/cross_entropy_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/dice_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/focal_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/lovasz_loss.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/losses/utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/fpn.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/ic_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/jpu.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/mla_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/necks/multilevel_neck.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/base.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/cascade_encoder_decoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/encoder_decoder.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/embed.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/inverted_residual.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/make_divisible.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/res_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/se_layer.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/self_attention_block.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/shape_convert.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/models/utils/up_conv_block.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/ops/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/ops/encoding.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/ops/wrappers.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/utils/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/utils/collect_env.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/utils/logger.py create mode 100644 cv/3d_detection/PAConv/pytorch/mmseg/version.py create mode 100644 cv/3d_detection/PAConv/pytorch/requirements.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/build.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/docs.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/mminstall.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/optional.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/readthedocs.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/runtime.txt create mode 100644 cv/3d_detection/PAConv/pytorch/requirements/tests.txt create mode 100644 cv/3d_detection/PAConv/pytorch/setup.cfg create mode 100755 cv/3d_detection/PAConv/pytorch/setup.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/analysis_tools/analyze_logs.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/analysis_tools/benchmark.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/analysis_tools/get_flops.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/create_data.py create mode 100755 cv/3d_detection/PAConv/pytorch/tools/create_data.sh create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/__init__.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/create_gt_database.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/indoor_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_data_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_data_fixer.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/nuimage_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/nuscenes_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/s3dis_data_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/scannet_data_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/sunrgbd_data_utils.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/data_converter/waymo_converter.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d2torchserve.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d_handler.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/deployment/test_torchserver.py create mode 100755 cv/3d_detection/PAConv/pytorch/tools/dist_test.sh create mode 100644 cv/3d_detection/PAConv/pytorch/tools/misc/browse_dataset.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/misc/fuse_conv_bn.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/misc/print_config.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/misc/visualize_results.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_h3dnet_checkpoints.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_votenet_checkpoints.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/model_converters/publish_model.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/model_converters/regnet2mmdet.py create mode 100755 cv/3d_detection/PAConv/pytorch/tools/slurm_test.sh create mode 100755 cv/3d_detection/PAConv/pytorch/tools/slurm_train.sh create mode 100644 cv/3d_detection/PAConv/pytorch/tools/test.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/update_data_coords.py create mode 100644 cv/3d_detection/PAConv/pytorch/tools/update_data_coords.sh create mode 100644 cv/3d_detection/PAConv/pytorch/train.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.circleci/config.yml create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/check_installation.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/visualize_lr.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.dockerignore create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.gitignore create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.owners.yml create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config-zh-cn.yaml create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config.yaml create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/.readthedocs.yml create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/CITATION.cff create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING_zh-CN.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/Jenkinsfile create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSE create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSES.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/MANIFEST.in create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/README.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/README_zh-CN.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/TERMINOLOGY.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/build_mmcv.sh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/clean_mmcv.sh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docker/README.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docker/dev/Dockerfile create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docker/release/Dockerfile create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/Makefile create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/1.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/2.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/3.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/css/readthedocs.css create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_img2toimg1.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_raw_images.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_visualization.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_warp.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_warp_diff.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/image/mmcv-logo.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/parallel_progress.gif create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/parallel_progress.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.gif create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/version.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/api.rst create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/contributing.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/pr.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/compatibility.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/conf.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/mmcv_ops_definition.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnx.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_custom_ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_op.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_custom_ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_plugin.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/faq.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/build.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/installation.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/introduction.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/previous_versions.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/index.rst create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/make.bat create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/mmcv-logo.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/switch_language.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/cnn.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/config.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/data_process.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/io.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/registry.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/runner.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/utils.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/visualization.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/Makefile create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/css/readthedocs.css create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/image/mmcv-logo.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/version.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/api.rst create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/code_style.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/contributing.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/pr.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/compatibility.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/conf.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnx.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_custom_ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_op.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_custom_ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_plugin.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/faq.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/article.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/build.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/installation.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/introduction.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/previous_versions.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/index.rst create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/make.bat create mode 120000 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/mmcv-logo.png create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/switch_language.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/cnn.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/config.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/data_process.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/io.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/ops.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/registry.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/runner.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/utils.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/visualization.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/examples/train.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/install_mmcv.sh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/quantization.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/alexnet.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/activation.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/context_block.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv2d_adaptive_padding.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_module.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_ws.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/depthwise_separable_conv_module.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/drop.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/generalized_attention.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hsigmoid.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hswish.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/non_local.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/norm.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/padding.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/plugin.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/registry.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/scale.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/swish.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/transformer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/upsample.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/wrappers.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/builder.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/resnet.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/operator.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/search.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/flops_counter.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/fuse_conv_bn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/sync_bn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/weight_init.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/vgg.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/_functions.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/__init__.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/dataloader.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hierarchical_data_manager.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hook_wrapper.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/model_wrapper.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/runner.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/_functions.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/data_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/distributed.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/scatter_gather.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/data_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/data_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/distributed.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/scatter_gather.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/test.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/file_client.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/base.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/json_handler.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/pickle_handler.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/yaml_handler.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/io.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/parse.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/colorspace.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/geometric.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/io.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/misc.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/photometric.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/deprecated.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/mmcls.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/open_mmlab.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/torchvision_0.12.json create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/info.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/symbolic_helper.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/symbolic.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/active_rotated_filter.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/assign_score_withk.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/ball_query.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/bbox.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/border_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_quadri.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/carafe.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/cc_attention.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/chamfer_distance.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/contour_expand.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/convex_iou.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/corner_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/correlation.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/README.md create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/active_rotated_filter_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/assign_score_withk_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ball_query_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/bbox_overlaps_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/border_align_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_quadri_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_rotated_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_naive_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/chamfer_distance_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/common_cuda_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/convex_iou_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/correlation_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_conv_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_roi_pool_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/diff_iou_rotated_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/furthest_point_sample_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/gather_points_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/group_points_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/iou3d_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/knn_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/masked_conv2d_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/min_area_polygons_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/modulated_deform_conv_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ms_deform_attn_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_quadri_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_rotated_cuda.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/parrots_cudawarpfunction.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_boxes_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_polygons_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/prroi_pool_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/psamask_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/riroi_align_rotated_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_pool_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roiaware_pool3d_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roipoint_pool3d_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/rotated_feature_align_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/scatter_points_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sigmoid_focal_loss_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/softmax_focal_loss_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_ball_query_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_group_points_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sync_bn_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_interpolate_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_nn_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/tin_shift_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/voxelization_cuda_kernel.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/bbox_overlaps_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_utils.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/deform_roi_pool_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/focal_loss_sigmoid_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_utils.hpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/masked_conv2d_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/ms_deform_attn_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_utils.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_utils.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_utils.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_pool_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roiaware_pool3d_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_large_boxes_num_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/three_nn_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/tin_shift_mlu_kernel.mlu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSDevice.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.mm create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSStream.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSUtils.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cpp_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cuda_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cpp_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cuda_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_device_registry.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_mlu_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_npu_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/corner_pool.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/corner_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/gridSample.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/modulated_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/reduce_ops.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/rotated_feature_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/soft_nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/deform_conv.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/grid_sample.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/modulated_deform_conv.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/nms.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_register.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_session_options_config_keys.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/ort_mmcv_utils.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/reduce_ops.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align_rotated.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/rotated_feature_align.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/soft_nms.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query._parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/cudabind.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_leakyrelu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/info.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_parrots.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_pytorch.h create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/active_rotated_filter.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/assign_score_withk.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ball_query.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/border_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_quadri.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe_naive.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/chamfer_distance.cpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/contour_expand.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/convex_iou.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/correlation.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/active_rotated_filter.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_quadri.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/modulated_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_quadri.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_rotated.cpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/pixel_group.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/points_in_boxes.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/psamask.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/rotated_feature_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/voxelization.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/active_rotated_filter_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/assign_score_withk_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ball_query_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/bbox_overlaps_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/border_align_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_quadri_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_rotated_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_naive_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/chamfer_distance_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/convex_iou.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/correlation_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/cudabind.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_conv_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_roi_pool_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/diff_iou_rotated_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/focal_loss_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/furthest_point_sample_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/gather_points_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/group_points_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/knn_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/masked_conv2d_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/min_area_polygons.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/modulated_deform_conv_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ms_deform_attn_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_quadri_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_rotated_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_boxes_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_polygons_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/prroi_pool_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/psamask_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/riroi_align_rotated_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_rotated_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_pool_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roiaware_pool3d_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roipoint_pool3d_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/rotated_feature_align_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/scatter_points_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_ball_query_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_group_points_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/sync_bn_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_interpolate_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_nn_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/tin_shift_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/voxelization_cuda.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_roi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/diff_iou_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/focal_loss.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/furthest_point_sample.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_bias_leakyrelu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_spconv_ops.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/gather_points.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/group_points.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/info.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/iou3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/knn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/masked_conv2d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/min_area_polygons.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/bbox_overlaps_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/deform_roi_pool_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/focal_loss_sigmoid_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/iou3d_mlu.cpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/masked_conv2d_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/ms_deform_attn_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/psamask_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_mlu.cpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_rotated_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_pool_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roiaware_pool3d_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roipoint_pool3d_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/three_nn_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/tin_shift_mlu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/modulated_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mps/bbox_overlaps_mps.mm create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ms_deform_attn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_quadri.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/deform_roi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/focal_loss_npu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/fused_bias_leakyrelu_npu.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/nms_npu.cpp create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pixel_group.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_boxes.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_polygons.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/prroi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/psamask.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pybind.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/riroi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align_rotated.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roiaware_pool3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roipoint_pool3d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/rotated_feature_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/scatter_points.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/sync_bn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_interpolate.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_nn.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/tin_shift.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/upfirdn2d.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/voxelization.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_instance_norm.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd.cpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd_kernel.cu create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_corner_pool.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cummaxmin.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_grid_sampler.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_instance_norm.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_nms.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin_helper.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_roi_align.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_scatternd.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_serialize.hpp create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_roi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deprecated_wrappers.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/diff_iou_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/focal_loss.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/furthest_point_sample.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/fused_bias_leakyrelu.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/gather_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/group_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/info.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/iou3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/knn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/masked_conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/merge_cells.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/min_area_polygons.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/modulated_deform_conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/multi_scale_deform_attn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/nms.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/pixel_group.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/point_sample.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_boxes.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_polygons.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_sampler.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/prroi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/psa_mask.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/riroi_align_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roiaware_pool3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roipoint_pool3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/rotated_feature_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/saconv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/scatter_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/sync_bn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_interpolate.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_nn.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/tin_shift.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/upfirdn2d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/voxelize.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/_functions.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/collate.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_container.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed_deprecated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/registry.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/scatter_gather.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_module.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_runner.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/builder.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/checkpoint.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/default_constructor.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/dist_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/epoch_based_runner.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/fp16_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/checkpoint.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/closure.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/ema.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/evaluation.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/hook.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/iter_timer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/base.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/clearml.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/dvclive.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/mlflow.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/neptune.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/pavi.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/segmind.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/tensorboard.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/text.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/wandb.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/lr_updater.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/memory.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/momentum_updater.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/optimizer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/profiler.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sampler_seed.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sync_buffer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/iter_based_runner.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/log_buffer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/builder.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/default_constructor.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/priority.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/init_plugins.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/preprocess.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/tensorrt_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/config.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/device_type.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/env.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/ext_loader.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/hub.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/logging.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/misc.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_jit.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_wrapper.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/path.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/progressbar.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/registry.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/seed.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/testing.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/timer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/torch_ops.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/trace.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/version_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/version.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/io.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/optflow.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/processing.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/__init__.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/color.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/image.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/optflow.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/build.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/docs.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/optional.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/runtime.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/test.txt create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/setup.cfg create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/setup.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_arraymisc.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_build_layers.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_context_block.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv2d_adaptive_padding.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv_module.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_depthwise_seperable_conv_module.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_flops_counter.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_fuse_conv_bn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_generalized_attention.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hsigmoid.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hswish.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_model_registry.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_non_local.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_revert_syncbn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_operator.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_search.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_scale.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_silu.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_swish.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_transformer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_weight_init.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_wrappers.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_device_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_functions.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_hierarchicaldatamanager.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_dataloder.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_hooks.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_model.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_runner.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mlu/test_mlu_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mps/test_mps_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_npu/test_npu_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileclient.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileio.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_colorspace.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_geometric.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_image_misc.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_io.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_photometric.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_load_model_zoo.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/output.pkl create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_active_rotated_filter.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_assign_score_withk.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ball_query.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bbox.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bilinear_grid_sample.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_border_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_quadri.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_carafe.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_cc_attention.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_chamfer_distance.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_contour_expand.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_convex_iou.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_corner_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_correlation.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_roi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_diff_iou_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_focal_loss.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_furthest_point_sample.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_fused_bias_leakyrelu.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_gather_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_group_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_info.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_iou3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_knn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_masked_conv2d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_merge_cells.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_min_area_polygons.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_modulated_deform_conv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ms_deformable_attn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_quadri.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_onnx.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_pixel_group.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_points_in_polygons.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_prroi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_psa_mask.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_riroi_align_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align_rotated.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_pool.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roiaware_pool3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roipoint_pool3d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_rotated_feature_align.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_saconv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_scatter_points.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_spconv.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_syncbn.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt_preprocess.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_interpolate.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_nn.py create mode 100755 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tin_shift.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_upfirdn2d.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_voxelization.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_parallel.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_basemodule.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_checkpoint.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_dist_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_eval_hook.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_fp16.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_hooks.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_optimizer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_runner.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_config.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_env.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_hub.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_logging.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_misc.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_parrots_jit.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_path.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_progressbar.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_registry.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_testing.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_timer.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_torch_ops.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_trace.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_version_utils.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_optflow.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_processing.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_reader.py create mode 100644 toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_visualization.py diff --git a/cv/3d_detection/PAConv/pytorch/.gitignore b/cv/3d_detection/PAConv/pytorch/.gitignore new file mode 100644 index 000000000..7de6b8026 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/.gitignore @@ -0,0 +1,136 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class +*.ipynb +mmcv/__pycache__/ + +# C extensions +*.so +*pyc + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/en/_build/ +docs/zh_cn/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + +# cython generated cpp +.vscode +.idea + +# custom +*.pkl +*.pkl.json +*.log.json +work_dirs/ +exps/ +*~ +mmdet3d/.mim + +# Pytorch +*.pth + +# demo +*.jpg +*.png +data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/ +data/scannet/scans/ +data/sunrgbd/OFFICIAL_SUNRGBD/ +*.obj +*.ply + +# Waymo evaluation +mmdet3d/core/evaluation/waymo_utils/compute_detection_metrics_main diff --git a/cv/3d_detection/PAConv/pytorch/LICENSE b/cv/3d_detection/PAConv/pytorch/LICENSE new file mode 100644 index 000000000..04adf5cbc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/LICENSE @@ -0,0 +1,203 @@ +Copyright 2018-2019 Open-MMLab. All rights reserved. + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2018-2019 Open-MMLab. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/cv/3d_detection/PAConv/pytorch/README.md b/cv/3d_detection/PAConv/pytorch/README.md new file mode 100644 index 000000000..e1ff728a3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/README.md @@ -0,0 +1,55 @@ +# PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds + +> [PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds](https://arxiv.org/abs/2103.14635) + + + +## Model description +We introduce Position Adaptive Convolution (PAConv), a generic convolution operation for 3D point cloud processing. The key of PAConv is to construct the convolution kernel by dynamically assembling basic weight matrices stored in Weight Bank, where the coefficients of these weight matrices are self-adaptively learned from point positions through ScoreNet. In this way, the kernel is built in a data-driven manner, endowing PAConv with more flexibility than 2D convolutions to better handle the irregular and unordered point cloud data. Besides, the complexity of the learning process is reduced by combining weight matrices instead of brutally predicting kernels from point positions. Furthermore, different from the existing point convolution operators whose network architectures are often heavily engineered, we integrate our PAConv into classical MLP-based point cloud pipelines without changing network configurations. Even built on simple networks, our method still approaches or even surpasses the state-of-the-art models, and significantly improves baseline performance on both classification and segmentation tasks, yet with decent efficiency. Thorough ablation studies and visualizations are provided to understand PAConv. + +## Installing packages +``` +## install libGL +yum install mesa-libGL + +## install zlib +wget http://www.zlib.net/fossils/zlib-1.2.9.tar.gz +tar xvf zlib-1.2.9.tar.gz +cd zlib-1.2.9/ +./configure && make install +cd .. +rm -rf zlib-1.2.9.tar.gz zlib-1.2.9/ +``` +``` +pip3 install -r requirements/runtime.txt +``` +``` +#install mmcv v1.7.1 +cd deepsparkhub/toolbox/MMDetection/patch/mmcv/v1.7.1 +bash build_mmcv.sh +bash install_mmcv.sh +``` + +## Prepare S3DIS Data +``` +cd data/s3dis/ +``` +Enter the data/s3dis/ folder, then prepare the dataset according to readme instructions in data/s3dis/ folder. + +## Training +Single GPU training +``` +python3 train.py configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py +``` +Multiple GPU training +``` +bash dist_train.sh configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py 8 +``` + +## Training Results +| Classes | ceiling | floor | wall | beam | column | window | door | table | chair | sofa | bookcase | board | clutter | miou | acc | acc_cls | +| --------| ------- | ----- | ------ |------ |------ |------ |------ |------ |------ |------ |------ |------ |------ |------ |------ |------ | +| Results | | | | | | | | | | | | | | | | | + +## Reference +https://github.com/open-mmlab/mmdetection3d \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/configs/3dssd/3dssd_4x4_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/3dssd/3dssd_4x4_kitti-3d-car.py new file mode 100644 index 000000000..bcc8c8229 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/3dssd/3dssd_4x4_kitti-3d-car.py @@ -0,0 +1,121 @@ +_base_ = [ + '../_base_/models/3dssd.py', '../_base_/datasets/kitti-3d-car.py', + '../_base_/default_runtime.py' +] + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +point_cloud_range = [0, -40, -5, 70, 40, 3] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + classes=class_names, + sample_groups=dict(Car=15)) + +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://kitti_data/')) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectSample', db_sampler=db_sampler), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0], + global_rot_range=[0.0, 0.0], + rot_range=[-1.0471975511965976, 1.0471975511965976]), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.9, 1.1]), + # 3DSSD can get a higher performance without this transform + # dict(type='BackgroundPointsFilter', bbox_enlarge_range=(0.5, 2.0, 0.5)), + dict(type='PointSample', num_points=16384), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] + +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointSample', num_points=16384), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict(dataset=dict(pipeline=train_pipeline)), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) + +evaluation = dict(interval=2) + +# model settings +model = dict( + bbox_head=dict( + num_classes=1, + bbox_coder=dict( + type='AnchorFreeBBoxCoder', num_dir_bins=12, with_rot=True))) + +# optimizer +lr = 0.002 # max learning rate +optimizer = dict(type='AdamW', lr=lr, weight_decay=0) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[45, 60]) +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) + +# yapf:disable +log_config = dict( + interval=30, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable diff --git a/cv/3d_detection/PAConv/pytorch/configs/3dssd/README.md b/cv/3d_detection/PAConv/pytorch/configs/3dssd/README.md new file mode 100644 index 000000000..4feb6d767 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/3dssd/README.md @@ -0,0 +1,45 @@ +# 3DSSD: Point-based 3D Single Stage Object Detector + +> [3DSSD: Point-based 3D Single Stage Object Detector](https://arxiv.org/abs/2002.10187) + + + +## Abstract + +Currently, there have been many kinds of voxel-based 3D single stage detectors, while point-based single stage methods are still underexplored. In this paper, we first present a lightweight and effective point-based 3D single stage object detector, named 3DSSD, achieving a good balance between accuracy and efficiency. In this paradigm, all upsampling layers and refinement stage, which are indispensable in all existing point-based methods, are abandoned to reduce the large computation cost. We novelly propose a fusion sampling strategy in downsampling process to make detection on less representative points feasible. A delicate box prediction network including a candidate generation layer, an anchor-free regression head with a 3D center-ness assignment strategy is designed to meet with our demand of accuracy and speed. Our paradigm is an elegant single stage anchor-free framework, showing great superiority to other existing methods. We evaluate 3DSSD on widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art voxel-based single stage methods by a large margin, and has comparable performance to two stage point-based methods as well, with inference speed more than 25 FPS, 2x faster than former state-of-the-art point-based methods. + +
+ +
+ +## Introduction + +We implement 3DSSD and provide the results and checkpoints on KITTI datasets. + +Some settings in our implementation are different from the [official implementation](https://github.com/Jia-Research-Lab/3DSSD), which bring marginal differences to the performance on KITTI datasets in our experiments. To simplify and unify the models of our implementation, we skip them in our models. These differences are listed as below: + +1. We keep the scenes without any object while the official code skips these scenes in training. In the official implementation, only 3229 and 3394 samples are used as training and validation sets, respectively. In our implementation, we keep using 3712 and 3769 samples as training and validation sets, respectively, as those used for all the other models in our implementation on KITTI datasets. +2. We do not modify the decay of `batch normalization` during training. +3. While using [`DataBaseSampler`](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/dbsampler.py#L80) for data augmentation, the official code uses road planes as reference to place the sampled objects while we do not. +4. We perform detection using LIDAR coordinates while the official code uses camera coordinates. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :-------------------------------------------: | :---: | :-----: | :------: | :------------: | :----------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet2SAMSG](./3dssd_4x4_kitti-3d-car.py) | Car | 72e | 4.7 | | 78.58(81.27)1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/3dssd/3dssd_4x4_kitti-3d-car/3dssd_4x4_kitti-3d-car_20210818_203828-b89c8fc4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/3dssd/3dssd_4x4_kitti-3d-car/3dssd_4x4_kitti-3d-car_20210818_203828.log.json) | + +\[1\]: We report two different 3D object detection performance here. 78.58mAP is evaluated by our evaluation code and 81.27mAP is evaluated by the official development kit (so as that used in the paper and official code of 3DSSD ). We found that the commonly used Python implementation of [`rotate_iou`](https://github.com/traveller59/second.pytorch/blob/e42e4a0e17262ab7d180ee96a0a36427f2c20a44/second/core/non_max_suppression/nms_gpu.py#L605) which is used in our KITTI dataset evaluation, is different from the official implementation in [KITTI benchmark](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d). + +## Citation + +```latex +@inproceedings{yang20203dssd, + author = {Zetong Yang and Yanan Sun and Shu Liu and Jiaya Jia}, + title = {3DSSD: Point-based 3D Single Stage Object Detector}, + booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + year = {2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/3dssd/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/3dssd/metafile.yml new file mode 100644 index 000000000..f6dbb3c4e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/3dssd/metafile.yml @@ -0,0 +1,29 @@ +Collections: + - Name: 3DSSD + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 4x TITAN X + Architecture: + - PointNet++ + Paper: + URL: https://arxiv.org/abs/2002.10187 + Title: '3DSSD: Point-based 3D Single Stage Object Detector' + README: configs/3dssd/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/ssd3dnet.py#L7 + Version: v0.6.0 + +Models: + - Name: 3dssd_4x4_kitti-3d-car + In Collection: 3DSSD + Config: configs/3dssd/3dssd_4x4_kitti-3d-car.py + Metadata: + Training Memory (GB): 4.7 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 78.58 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/3dssd/3dssd_4x4_kitti-3d-car/3dssd_4x4_kitti-3d-car_20210818_203828-b89c8fc4.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/coco_instance.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/coco_instance.py new file mode 100644 index 000000000..f6ea4f456 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/coco_instance.py @@ -0,0 +1,48 @@ +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), + dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +evaluation = dict(metric=['bbox', 'segm']) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-3class.py new file mode 100644 index 000000000..1822af420 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-3class.py @@ -0,0 +1,140 @@ +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), + classes=class_names, + sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)) + +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://kitti_data/')) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0.5], + global_rot_range=[0.0, 0.0], + rot_range=[-0.78539816, 0.78539816]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=6, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) + +evaluation = dict(interval=1, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-car.py new file mode 100644 index 000000000..1e81226e2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-3d-car.py @@ -0,0 +1,138 @@ +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + classes=class_names, + sample_groups=dict(Car=15)) + +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://kitti_data/')) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0.5], + global_rot_range=[0.0, 0.0], + rot_range=[-0.78539816, 0.78539816]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=6, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) + +evaluation = dict(interval=1, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-mono3d.py new file mode 100644 index 000000000..5817dc706 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/kitti-mono3d.py @@ -0,0 +1,92 @@ +dataset_type = 'KittiMonoDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +input_modality = dict(use_lidar=False, use_camera=True) +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=False, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='Resize', img_scale=(1242, 375), keep_ratio=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_3d', 'gt_labels_3d', + 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + img_scale=(1242, 375), + flip=False, + transforms=[ + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train_mono3d.coco.json', + info_file=data_root + 'kitti_infos_train.pkl', + img_prefix=data_root, + classes=class_names, + pipeline=train_pipeline, + modality=input_modality, + test_mode=False, + box_type_3d='Camera'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val_mono3d.coco.json', + info_file=data_root + 'kitti_infos_val.pkl', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline, + modality=input_modality, + test_mode=True, + box_type_3d='Camera'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val_mono3d.coco.json', + info_file=data_root + 'kitti_infos_val.pkl', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline, + modality=input_modality, + test_mode=True, + box_type_3d='Camera')) +evaluation = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/lyft-3d.py new file mode 100644 index 000000000..71baff04c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/lyft-3d.py @@ -0,0 +1,136 @@ +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-80, -80, -5, 80, 80, 3] +# For Lyft we usually do 9-class detection +class_names = [ + 'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', 'motorcycle', + 'bicycle', 'pedestrian', 'animal' +] +dataset_type = 'LyftDataset' +data_root = 'data/lyft/' +# Input modality for Lyft dataset, this is consistent with the submission +# format which requires the information in input_modality. +input_modality = dict( + use_lidar=True, + use_camera=False, + use_radar=False, + use_map=False, + use_external=False) +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/lyft/': 's3://lyft/lyft/', +# 'data/lyft/': 's3://lyft/lyft/' +# })) +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + modality=input_modality, + test_mode=False), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_test.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True)) +# For Lyft dataset, we usually evaluate the model at the end of training. +# Since the models are trained by 24 epochs by default, we set evaluation +# interval to be 24. Please change the interval accordingly if you do not +# use a default schedule. +evaluation = dict(interval=24, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nuim_instance.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nuim_instance.py new file mode 100644 index 000000000..82fce56bf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nuim_instance.py @@ -0,0 +1,59 @@ +dataset_type = 'CocoDataset' +data_root = 'data/nuimages/' +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), + dict( + type='Resize', + img_scale=[(1280, 720), (1920, 1080)], + multiscale_mode='range', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1600, 900), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/nuimages_v1.0-train.json', + img_prefix=data_root, + classes=class_names, + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/nuimages_v1.0-val.json', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/nuimages_v1.0-val.json', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline)) +evaluation = dict(metric=['bbox', 'segm']) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-3d.py new file mode 100644 index 000000000..154817175 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-3d.py @@ -0,0 +1,142 @@ +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-50, -50, -5, 50, 50, 3] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +dataset_type = 'NuScenesDataset' +data_root = 'data/nuscenes/' +# Input modality for nuScenes dataset, this is consistent with the submission +# format which requires the information in input_modality. +input_modality = dict( + use_lidar=True, + use_camera=False, + use_radar=False, + use_map=False, + use_external=False) +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/nuscenes/': 's3://nuscenes/nuscenes/', +# 'data/nuscenes/': 's3://nuscenes/nuscenes/' +# })) +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + modality=input_modality, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True, + box_type_3d='LiDAR')) +# For nuScenes dataset, we usually evaluate the model at the end of training. +# Since the models are trained by 24 epochs by default, we set evaluation +# interval to be 24. Please change the interval accordingly if you do not +# use a default schedule. +evaluation = dict(interval=24, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-mono3d.py new file mode 100644 index 000000000..5decdacd6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/nus-mono3d.py @@ -0,0 +1,100 @@ +dataset_type = 'NuScenesMonoDataset' +data_root = 'data/nuscenes/' +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +# Input modality for nuScenes dataset, this is consistent with the submission +# format which requires the information in input_modality. +input_modality = dict( + use_lidar=False, + use_camera=True, + use_radar=False, + use_map=False, + use_external=False) +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=True, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d', + 'gt_labels_3d', 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + scale_factor=1.0, + flip=False, + transforms=[ + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_train_mono3d.coco.json', + img_prefix=data_root, + classes=class_names, + pipeline=train_pipeline, + modality=input_modality, + test_mode=False, + box_type_3d='Camera'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline, + modality=input_modality, + test_mode=True, + box_type_3d='Camera'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json', + img_prefix=data_root, + classes=class_names, + pipeline=test_pipeline, + modality=input_modality, + test_mode=True, + box_type_3d='Camera')) +evaluation = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/range100_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/range100_lyft-3d.py new file mode 100644 index 000000000..efa63ea3f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/range100_lyft-3d.py @@ -0,0 +1,136 @@ +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-100, -100, -5, 100, 100, 3] +# For Lyft we usually do 9-class detection +class_names = [ + 'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', 'motorcycle', + 'bicycle', 'pedestrian', 'animal' +] +dataset_type = 'LyftDataset' +data_root = 'data/lyft/' +# Input modality for Lyft dataset, this is consistent with the submission +# format which requires the information in input_modality. +input_modality = dict( + use_lidar=True, + use_camera=False, + use_radar=False, + use_map=False, + use_external=False) +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/lyft/': 's3://lyft/lyft/', +# 'data/lyft/': 's3://lyft/lyft/' +# })) +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + modality=input_modality, + test_mode=False), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'lyft_infos_test.pkl', + pipeline=test_pipeline, + classes=class_names, + modality=input_modality, + test_mode=True)) +# For Lyft dataset, we usually evaluate the model at the end of training. +# Since the models are trained by 24 epochs by default, we set evaluation +# interval to be 24. Please change the interval accordingly if you do not +# use a default schedule. +evaluation = dict(interval=24, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis-3d-5class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis-3d-5class.py new file mode 100644 index 000000000..2422766fa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis-3d-5class.py @@ -0,0 +1,114 @@ +# dataset settings +dataset_type = 'S3DISDataset' +data_root = './data/s3dis/' +class_names = ('table', 'chair', 'sofa', 'bookcase', 'board') +train_area = [1, 2, 3, 4, 6] +test_area = 5 + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='PointSample', num_points=40000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + # following ScanNet dataset the rotation range is 5 degrees + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0], + shift_height=True), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=40000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type='ConcatDataset', + datasets=[ + dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + f's3dis_infos_Area_{i}.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + box_type_3d='Depth') for i in train_area + ], + separate_eval=False)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + f's3dis_infos_Area_{test_area}.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + f's3dis_infos_Area_{test_area}.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +evaluation = dict(pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis_seg-3d-13class.py new file mode 100644 index 000000000..cad81c61c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/s3dis_seg-3d-13class.py @@ -0,0 +1,161 @@ +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# dataset settings +dataset_type = 'S3DISSegDataset' +data_root = 'data/s3dis/' +class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', + 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/s3dis/': +# 's3://openmmlab/datasets/detection3d/s3dis_processed/', +# 'data/s3dis/': +# 's3://openmmlab/datasets/detection3d/s3dis_processed/' +# })) +num_points = 4096 +train_area = [1, 2, 3, 4, 6] +test_area = 5 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + file_client_args=file_client_args, + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + file_client_args=file_client_args, + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=tuple(range(len(class_names))), + max_cat_id=13), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.0, + ignore_index=len(class_names), + use_normalized_coord=True, + enlarge_size=0.2, + min_unique_num=None), + dict(type='NormalizePointsColor', color_mean=None), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + file_client_args=file_client_args, + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict(type='NormalizePointsColor', color_mean=None), + dict( + # a wrapper in order to successfully call test function + # actually we don't perform test-time-aug + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.0, + flip_ratio_bev_vertical=0.0), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +# we need to load gt seg_mask! +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + file_client_args=file_client_args, + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + file_client_args=file_client_args, + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=tuple(range(len(class_names))), + max_cat_id=13), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + # train on area 1, 2, 3, 4, 6 + # test on area 5 + train=dict( + type=dataset_type, + data_root=data_root, + ann_files=[ + data_root + f's3dis_infos_Area_{i}.pkl' for i in train_area + ], + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + ignore_index=len(class_names), + scene_idxs=[ + data_root + f'seg_info/Area_{i}_resampled_scene_idxs.npy' + for i in train_area + ], + file_client_args=file_client_args), + val=dict( + type=dataset_type, + data_root=data_root, + ann_files=data_root + f's3dis_infos_Area_{test_area}.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names), + scene_idxs=data_root + + f'seg_info/Area_{test_area}_resampled_scene_idxs.npy', + file_client_args=file_client_args), + test=dict( + type=dataset_type, + data_root=data_root, + ann_files=data_root + f's3dis_infos_Area_{test_area}.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names), + file_client_args=file_client_args)) + +evaluation = dict(pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet-3d-18class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet-3d-18class.py new file mode 100644 index 000000000..93da1e587 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet-3d-18class.py @@ -0,0 +1,128 @@ +# dataset settings +dataset_type = 'ScanNetDataset' +data_root = './data/scannet/' +class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + with_mask_3d=True, + with_seg_3d=True), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='PointSegClassMapping', + valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39), + max_cat_id=40), + dict(type='PointSample', num_points=40000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0], + shift_height=True), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', + 'pts_instance_mask' + ]) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=40000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +evaluation = dict(pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet_seg-3d-20class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet_seg-3d-20class.py new file mode 100644 index 000000000..cf73b09c8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/scannet_seg-3d-20class.py @@ -0,0 +1,132 @@ +# dataset settings +dataset_type = 'ScanNetSegDataset' +data_root = './data/scannet/' +class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', + 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', + 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', + 'bathtub', 'otherfurniture') +num_points = 8192 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.5, + ignore_index=len(class_names), + use_normalized_coord=False, + enlarge_size=0.2, + min_unique_num=None), + dict(type='NormalizePointsColor', color_mean=None), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict(type='NormalizePointsColor', color_mean=None), + dict( + # a wrapper in order to successfully call test function + # actually we don't perform test-time-aug + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.0, + flip_ratio_bev_vertical=0.0), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +# we need to load gt seg_mask! +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + ignore_index=len(class_names), + scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names)), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names))) + +evaluation = dict(pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/sunrgbd-3d-10class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/sunrgbd-3d-10class.py new file mode 100644 index 000000000..7121b75bb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/sunrgbd-3d-10class.py @@ -0,0 +1,107 @@ +dataset_type = 'SUNRGBDDataset' +data_root = 'data/sunrgbd/' +class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', + 'night_stand', 'bookshelf', 'bathtub') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='LoadAnnotations3D'), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + ), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.523599, 0.523599], + scale_ratio_range=[0.85, 1.15], + shift_height=True), + dict(type='PointSample', num_points=20000), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + ), + dict(type='PointSample', num_points=20000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=16, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'sunrgbd_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + filter_empty_gt=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'sunrgbd_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'sunrgbd_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +evaluation = dict(pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-3class.py new file mode 100644 index 000000000..e3937fb06 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-3class.py @@ -0,0 +1,145 @@ +# dataset settings +# D5 in the config name means the whole dataset is divided into 5 folds +# We only use one fold for efficient experiments +dataset_type = 'WaymoDataset' +data_root = 'data/waymo/kitti_format/' +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) + +class_names = ['Car', 'Pedestrian', 'Cyclist'] +point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'waymo_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), + classes=class_names, + sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args)) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_train.pkl', + split='training', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR', + # load one frame every five frames + load_interval=5)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) + +evaluation = dict(interval=24, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-car.py new file mode 100644 index 000000000..e119e5a63 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/datasets/waymoD5-3d-car.py @@ -0,0 +1,143 @@ +# dataset settings +# D5 in the config name means the whole dataset is divided into 5 folds +# We only use one fold for efficient experiments +dataset_type = 'WaymoDataset' +data_root = 'data/waymo/kitti_format/' +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) + +class_names = ['Car'] +point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'waymo_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + classes=class_names, + sample_groups=dict(Car=15), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args)) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=5, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_train.pkl', + split='training', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR', + # load one frame every five frames + load_interval=5)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) + +evaluation = dict(interval=24, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/default_runtime.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/default_runtime.py new file mode 100644 index 000000000..5fc198bb1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/default_runtime.py @@ -0,0 +1,23 @@ +checkpoint_config = dict(interval=1) +# yapf:disable push +# By default we use textlogger hook and tensorboard +# For more loggers see +# https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = None +load_from = None +resume_from = None +workflow = [('train', 1)] + +# disable opencv multithreading to avoid system being overloaded +opencv_num_threads = 0 +# set multi-process start method as `fork` to speed up the training +mp_start_method = 'fork' diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/3dssd.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/3dssd.py new file mode 100644 index 000000000..55344c7dd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/3dssd.py @@ -0,0 +1,77 @@ +model = dict( + type='SSD3DNet', + backbone=dict( + type='PointNet2SAMSG', + in_channels=4, + num_points=(4096, 512, (256, 256)), + radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)), + num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)), + sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)), + ((64, 64, 128), (64, 64, 128), (64, 96, 128)), + ((128, 128, 256), (128, 192, 256), (128, 256, 256))), + aggregation_channels=(64, 128, 256), + fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')), + fps_sample_range_lists=((-1), (-1), (512, -1)), + norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1), + sa_cfg=dict( + type='PointSAModuleMSG', + pool_mod='max', + use_xyz=True, + normalize_xyz=False)), + bbox_head=dict( + type='SSD3DHead', + in_channels=256, + vote_module_cfg=dict( + in_channels=256, + num_points=256, + gt_per_seed=1, + conv_channels=(128, ), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1), + with_res_feat=False, + vote_xyz_range=(3.0, 3.0, 2.0)), + vote_aggregation_cfg=dict( + type='PointSAModuleMSG', + num_point=256, + radii=(4.8, 6.4), + sample_nums=(16, 32), + mlp_channels=((256, 256, 256, 512), (256, 256, 512, 1024)), + norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1), + use_xyz=True, + normalize_xyz=False, + bias=True), + pred_layer_cfg=dict( + in_channels=1536, + shared_conv_channels=(512, 128), + cls_conv_channels=(128, ), + reg_conv_channels=(128, ), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1), + bias=True), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1), + objectness_loss=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=1.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=1.0), + corner_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=1.0), + vote_loss=dict(type='SmoothL1Loss', reduction='sum', loss_weight=1.0)), + # model training and testing settings + train_cfg=dict( + sample_mod='spec', pos_distance_thr=10.0, expand_dims_length=0.05), + test_cfg=dict( + nms_cfg=dict(type='nms', iou_thr=0.1), + sample_mod='spec', + score_thr=0.0, + per_class_proposal=True, + max_output_num=100)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py new file mode 100644 index 000000000..cafb530c4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py @@ -0,0 +1,198 @@ +# model settings +model = dict( + type='CascadeRCNN', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + num_outs=5), + rpn_head=dict( + type='RPNHead', + in_channels=256, + feat_channels=256, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8], + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0]), + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), + roi_head=dict( + type='CascadeRoIHead', + num_stages=3, + stage_loss_weights=[1, 0.5, 0.25], + bbox_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + bbox_head=[ + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=80, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=80, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.05, 0.05, 0.1, 0.1]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=80, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.033, 0.033, 0.067, 0.067]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) + ], + mask_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + mask_head=dict( + type='FCNMaskHead', + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=80, + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), + # model training and testing settings + train_cfg=dict( + rpn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.3, + min_pos_iou=0.3, + match_low_quality=True, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=256, + pos_fraction=0.5, + neg_pos_ub=-1, + add_gt_as_proposals=False), + allowed_border=0, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_pre=2000, + nms_post=2000, + max_per_img=2000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=[ + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.5, + neg_iou_thr=0.5, + min_pos_iou=0.5, + match_low_quality=False, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False), + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.6, + neg_iou_thr=0.6, + min_pos_iou=0.6, + match_low_quality=False, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False), + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.7, + min_pos_iou=0.7, + match_low_quality=False, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False) + ]), + test_cfg=dict( + rpn=dict( + nms_pre=1000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=dict( + score_thr=0.05, + nms=dict(type='nms', iou_threshold=0.5), + max_per_img=100, + mask_thr_binary=0.5))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_01voxel_second_secfpn_nus.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_01voxel_second_secfpn_nus.py new file mode 100644 index 000000000..efdce59c6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_01voxel_second_secfpn_nus.py @@ -0,0 +1,83 @@ +voxel_size = [0.1, 0.1, 0.2] +model = dict( + type='CenterPoint', + pts_voxel_layer=dict( + max_num_points=10, voxel_size=voxel_size, max_voxels=(90000, 120000)), + pts_voxel_encoder=dict(type='HardSimpleVFE', num_features=5), + pts_middle_encoder=dict( + type='SparseEncoder', + in_channels=5, + sparse_shape=[41, 1024, 1024], + output_channels=128, + order=('conv', 'norm', 'act'), + encoder_channels=((16, 16, 32), (32, 32, 64), (64, 64, 128), (128, + 128)), + encoder_paddings=((0, 0, 1), (0, 0, 1), (0, 0, [0, 1, 1]), (0, 0)), + block_type='basicblock'), + pts_backbone=dict( + type='SECOND', + in_channels=256, + out_channels=[128, 256], + layer_nums=[5, 5], + layer_strides=[1, 2], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + conv_cfg=dict(type='Conv2d', bias=False)), + pts_neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + out_channels=[256, 256], + upsample_strides=[1, 2], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + upsample_cfg=dict(type='deconv', bias=False), + use_conv_for_no_stride=True), + pts_bbox_head=dict( + type='CenterHead', + in_channels=sum([256, 256]), + tasks=[ + dict(num_class=1, class_names=['car']), + dict(num_class=2, class_names=['truck', 'construction_vehicle']), + dict(num_class=2, class_names=['bus', 'trailer']), + dict(num_class=1, class_names=['barrier']), + dict(num_class=2, class_names=['motorcycle', 'bicycle']), + dict(num_class=2, class_names=['pedestrian', 'traffic_cone']), + ], + common_heads=dict( + reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)), + share_conv_channel=64, + bbox_coder=dict( + type='CenterPointBBoxCoder', + post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], + max_num=500, + score_threshold=0.1, + out_size_factor=8, + voxel_size=voxel_size[:2], + code_size=9), + separate_head=dict( + type='SeparateHead', init_bias=-2.19, final_kernel=3), + loss_cls=dict(type='GaussianFocalLoss', reduction='mean'), + loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25), + norm_bbox=True), + # model training and testing settings + train_cfg=dict( + pts=dict( + grid_size=[1024, 1024, 40], + voxel_size=voxel_size, + out_size_factor=8, + dense_reg=1, + gaussian_overlap=0.1, + max_objs=500, + min_radius=2, + code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])), + test_cfg=dict( + pts=dict( + post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], + max_per_img=500, + max_pool_nms=False, + min_radius=[4, 12, 10, 1, 0.85, 0.175], + score_threshold=0.1, + out_size_factor=8, + voxel_size=voxel_size[:2], + nms_type='rotate', + pre_max_size=1000, + post_max_size=83, + nms_thr=0.2))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py new file mode 100644 index 000000000..311d76373 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py @@ -0,0 +1,83 @@ +voxel_size = [0.2, 0.2, 8] +model = dict( + type='CenterPoint', + pts_voxel_layer=dict( + max_num_points=20, voxel_size=voxel_size, max_voxels=(30000, 40000)), + pts_voxel_encoder=dict( + type='PillarFeatureNet', + in_channels=5, + feat_channels=[64], + with_distance=False, + voxel_size=(0.2, 0.2, 8), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + legacy=False), + pts_middle_encoder=dict( + type='PointPillarsScatter', in_channels=64, output_shape=(512, 512)), + pts_backbone=dict( + type='SECOND', + in_channels=64, + out_channels=[64, 128, 256], + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + conv_cfg=dict(type='Conv2d', bias=False)), + pts_neck=dict( + type='SECONDFPN', + in_channels=[64, 128, 256], + out_channels=[128, 128, 128], + upsample_strides=[0.5, 1, 2], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + upsample_cfg=dict(type='deconv', bias=False), + use_conv_for_no_stride=True), + pts_bbox_head=dict( + type='CenterHead', + in_channels=sum([128, 128, 128]), + tasks=[ + dict(num_class=1, class_names=['car']), + dict(num_class=2, class_names=['truck', 'construction_vehicle']), + dict(num_class=2, class_names=['bus', 'trailer']), + dict(num_class=1, class_names=['barrier']), + dict(num_class=2, class_names=['motorcycle', 'bicycle']), + dict(num_class=2, class_names=['pedestrian', 'traffic_cone']), + ], + common_heads=dict( + reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)), + share_conv_channel=64, + bbox_coder=dict( + type='CenterPointBBoxCoder', + post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], + max_num=500, + score_threshold=0.1, + out_size_factor=4, + voxel_size=voxel_size[:2], + code_size=9), + separate_head=dict( + type='SeparateHead', init_bias=-2.19, final_kernel=3), + loss_cls=dict(type='GaussianFocalLoss', reduction='mean'), + loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25), + norm_bbox=True), + # model training and testing settings + train_cfg=dict( + pts=dict( + grid_size=[512, 512, 1], + voxel_size=voxel_size, + out_size_factor=4, + dense_reg=1, + gaussian_overlap=0.1, + max_objs=500, + min_radius=2, + code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])), + test_cfg=dict( + pts=dict( + post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], + max_per_img=500, + max_pool_nms=False, + min_radius=[4, 12, 10, 1, 0.85, 0.175], + score_threshold=0.1, + pc_range=[-51.2, -51.2], + out_size_factor=4, + voxel_size=voxel_size[:2], + nms_type='rotate', + pre_max_size=1000, + post_max_size=83, + nms_thr=0.2))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/dgcnn.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/dgcnn.py new file mode 100644 index 000000000..61e727269 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/dgcnn.py @@ -0,0 +1,28 @@ +# model settings +model = dict( + type='EncoderDecoder3D', + backbone=dict( + type='DGCNNBackbone', + in_channels=9, # [xyz, rgb, normal_xyz], modified with dataset + num_samples=(20, 20, 20), + knn_modes=('D-KNN', 'F-KNN', 'F-KNN'), + radius=(None, None, None), + gf_channels=((64, 64), (64, 64), (64, )), + fa_channels=(1024, ), + act_cfg=dict(type='LeakyReLU', negative_slope=0.2)), + decode_head=dict( + type='DGCNNHead', + fp_channels=(1216, 512), + channels=256, + dropout_ratio=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='LeakyReLU', negative_slope=0.2), + loss_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + class_weight=None, # modified with dataset + loss_weight=1.0)), + # model training and testing settings + train_cfg=dict(), + test_cfg=dict(mode='slide')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/fcos3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/fcos3d.py new file mode 100644 index 000000000..be83001d8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/fcos3d.py @@ -0,0 +1,78 @@ +model = dict( + type='FCOSMono3D', + backbone=dict( + type='ResNet', + depth=101, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=False), + norm_eval=True, + style='caffe', + init_cfg=dict( + type='Pretrained', + checkpoint='open-mmlab://detectron2/resnet101_caffe')), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + add_extra_convs='on_output', + num_outs=5, + relu_before_extra_convs=True), + bbox_head=dict( + type='FCOSMono3DHead', + num_classes=10, + in_channels=256, + stacked_convs=2, + feat_channels=256, + use_direction_classifier=True, + diff_rad_by_sin=True, + pred_attrs=True, + pred_velo=True, + dir_offset=0.7854, # pi/4 + dir_limit_offset=0, + strides=[8, 16, 32, 64, 128], + group_reg_dims=(2, 1, 3, 1, 2), # offset, depth, size, rot, velo + cls_branch=(256, ), + reg_branch=( + (256, ), # offset + (256, ), # depth + (256, ), # size + (256, ), # rot + () # velo + ), + dir_branch=(256, ), + attr_branch=(256, ), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_attr=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + bbox_coder=dict(type='FCOS3DBBoxCoder', code_size=9), + norm_on_bbox=True, + centerness_on_reg=True, + center_sampling=True, + conv_bias=True, + dcn_on_last_conv=True), + train_cfg=dict( + allowed_border=0, + code_weight=[1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05], + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_pre=1000, + nms_thr=0.8, + score_thr=0.05, + min_bbox_size=0, + max_per_img=200)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/groupfree3d.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/groupfree3d.py new file mode 100644 index 000000000..077d04966 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/groupfree3d.py @@ -0,0 +1,71 @@ +model = dict( + type='GroupFree3DNet', + backbone=dict( + type='PointNet2SASSG', + in_channels=3, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), + (128, 128, 256)), + fp_channels=((256, 256), (256, 288)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True)), + bbox_head=dict( + type='GroupFree3DHead', + in_channels=288, + num_decoder_layers=6, + num_proposal=256, + transformerlayers=dict( + type='BaseTransformerLayer', + attn_cfgs=dict( + type='GroupFree3DMHA', + embed_dims=288, + num_heads=8, + attn_drop=0.1, + dropout_layer=dict(type='Dropout', drop_prob=0.1)), + ffn_cfgs=dict( + embed_dims=288, + feedforward_channels=2048, + ffn_drop=0.1, + act_cfg=dict(type='ReLU', inplace=True)), + operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', + 'norm')), + pred_layer_cfg=dict( + in_channels=288, shared_conv_channels=(288, 288), bias=True), + sampling_objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=8.0), + objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', beta=1.0, reduction='sum', loss_weight=10.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + # model training and testing settings + train_cfg=dict(sample_mod='kps'), + test_cfg=dict( + sample_mod='kps', + nms_thr=0.25, + score_thr=0.0, + per_class_proposal=True, + prediction_stages='last')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/h3dnet.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/h3dnet.py new file mode 100644 index 000000000..760566744 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/h3dnet.py @@ -0,0 +1,341 @@ +primitive_z_cfg = dict( + type='PrimitiveHead', + num_dims=2, + num_classes=18, + primitive_mode='z', + upper_thresh=100.0, + surface_thresh=0.5, + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=1, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=1024, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True), + feat_channels=(128, 128), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.4, 0.6], + reduction='mean', + loss_weight=30.0), + center_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=0.5, + loss_dst_weight=0.5), + semantic_reg_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=0.5, + loss_dst_weight=0.5), + semantic_cls_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + train_cfg=dict( + dist_thresh=0.2, + var_thresh=1e-2, + lower_thresh=1e-6, + num_point=100, + num_point_line=10, + line_thresh=0.2)) + +primitive_xy_cfg = dict( + type='PrimitiveHead', + num_dims=1, + num_classes=18, + primitive_mode='xy', + upper_thresh=100.0, + surface_thresh=0.5, + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=1, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=1024, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True), + feat_channels=(128, 128), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.4, 0.6], + reduction='mean', + loss_weight=30.0), + center_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=0.5, + loss_dst_weight=0.5), + semantic_reg_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=0.5, + loss_dst_weight=0.5), + semantic_cls_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + train_cfg=dict( + dist_thresh=0.2, + var_thresh=1e-2, + lower_thresh=1e-6, + num_point=100, + num_point_line=10, + line_thresh=0.2)) + +primitive_line_cfg = dict( + type='PrimitiveHead', + num_dims=0, + num_classes=18, + primitive_mode='line', + upper_thresh=100.0, + surface_thresh=0.5, + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=1, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=1024, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True), + feat_channels=(128, 128), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.4, 0.6], + reduction='mean', + loss_weight=30.0), + center_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=1.0, + loss_dst_weight=1.0), + semantic_reg_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='sum', + loss_src_weight=1.0, + loss_dst_weight=1.0), + semantic_cls_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=2.0), + train_cfg=dict( + dist_thresh=0.2, + var_thresh=1e-2, + lower_thresh=1e-6, + num_point=100, + num_point_line=10, + line_thresh=0.2)) + +model = dict( + type='H3DNet', + backbone=dict( + type='MultiBackbone', + num_streams=4, + suffixes=['net0', 'net1', 'net2', 'net3'], + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-5, momentum=0.01), + act_cfg=dict(type='ReLU'), + backbones=dict( + type='PointNet2SASSG', + in_channels=4, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), + (128, 128, 256)), + fp_channels=((256, 256), (256, 256)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True))), + rpn_head=dict( + type='VoteHead', + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=3, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=256, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True), + pred_layer_cfg=dict( + in_channels=128, shared_conv_channels=(128, 128), bias=True), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.2, 0.8], + reduction='sum', + loss_weight=5.0), + center_loss=dict( + type='ChamferDistance', + mode='l2', + reduction='sum', + loss_src_weight=10.0, + loss_dst_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + roi_head=dict( + type='H3DRoIHead', + primitive_list=[primitive_z_cfg, primitive_xy_cfg, primitive_line_cfg], + bbox_head=dict( + type='H3DBboxHead', + gt_per_seed=3, + num_proposal=256, + suface_matching_cfg=dict( + type='PointSAModule', + num_point=256 * 6, + radius=0.5, + num_sample=32, + mlp_channels=[128 + 6, 128, 64, 32], + use_xyz=True, + normalize_xyz=True), + line_matching_cfg=dict( + type='PointSAModule', + num_point=256 * 12, + radius=0.5, + num_sample=32, + mlp_channels=[128 + 12, 128, 64, 32], + use_xyz=True, + normalize_xyz=True), + feat_channels=(128, 128), + primitive_refine_channels=[128, 128, 128], + upper_thresh=100.0, + surface_thresh=0.5, + line_thresh=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.2, 0.8], + reduction='sum', + loss_weight=5.0), + center_loss=dict( + type='ChamferDistance', + mode='l2', + reduction='sum', + loss_src_weight=10.0, + loss_dst_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=0.1), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=0.1), + size_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=0.1), + cues_objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.3, 0.7], + reduction='mean', + loss_weight=5.0), + cues_semantic_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.3, 0.7], + reduction='mean', + loss_weight=5.0), + proposal_objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.2, 0.8], + reduction='none', + loss_weight=5.0), + primitive_center_loss=dict( + type='MSELoss', reduction='none', loss_weight=1.0))), + # model training and testing settings + train_cfg=dict( + rpn=dict( + pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'), + rpn_proposal=dict(use_nms=False), + rcnn=dict( + pos_distance_thr=0.3, + neg_distance_thr=0.6, + sample_mod='vote', + far_threshold=0.6, + near_threshold=0.3, + mask_surface_threshold=0.3, + label_surface_threshold=0.3, + mask_line_threshold=0.3, + label_line_threshold=0.3)), + test_cfg=dict( + rpn=dict( + sample_mod='seed', + nms_thr=0.25, + score_thr=0.05, + per_class_proposal=True, + use_nms=False), + rcnn=dict( + sample_mod='seed', + nms_thr=0.25, + score_thr=0.05, + per_class_proposal=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_lyft.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_lyft.py new file mode 100644 index 000000000..87c7fe0c6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_lyft.py @@ -0,0 +1,22 @@ +_base_ = './hv_pointpillars_fpn_nus.py' + +# model settings (based on nuScenes model settings) +# Voxel size for voxel encoder +# Usually voxel size is changed consistently with the point cloud range +# If point cloud range is modified, do remember to change all related +# keys in the config. +model = dict( + pts_voxel_layer=dict( + max_num_points=20, + point_cloud_range=[-80, -80, -5, 80, 80, 3], + max_voxels=(60000, 60000)), + pts_voxel_encoder=dict( + feat_channels=[64], point_cloud_range=[-80, -80, -5, 80, 80, 3]), + pts_middle_encoder=dict(output_shape=[640, 640]), + pts_bbox_head=dict( + num_classes=9, + anchor_generator=dict( + ranges=[[-80, -80, -1.8, 80, 80, -1.8]], custom_values=[]), + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)), + # model training settings (based on nuScenes model settings) + train_cfg=dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_nus.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_nus.py new file mode 100644 index 000000000..be29269de --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_nus.py @@ -0,0 +1,95 @@ +# model settings +# Voxel size for voxel encoder +# Usually voxel size is changed consistently with the point cloud range +# If point cloud range is modified, do remember to change all related +# keys in the config. +voxel_size = [0.25, 0.25, 8] +model = dict( + type='MVXFasterRCNN', + pts_voxel_layer=dict( + max_num_points=64, + point_cloud_range=[-50, -50, -5, 50, 50, 3], + voxel_size=voxel_size, + max_voxels=(30000, 40000)), + pts_voxel_encoder=dict( + type='HardVFE', + in_channels=4, + feat_channels=[64, 64], + with_distance=False, + voxel_size=voxel_size, + with_cluster_center=True, + with_voxel_center=True, + point_cloud_range=[-50, -50, -5, 50, 50, 3], + norm_cfg=dict(type='naiveSyncBN1d', eps=1e-3, momentum=0.01)), + pts_middle_encoder=dict( + type='PointPillarsScatter', in_channels=64, output_shape=[400, 400]), + pts_backbone=dict( + type='SECOND', + in_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + out_channels=[64, 128, 256]), + pts_neck=dict( + type='FPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + act_cfg=dict(type='ReLU'), + in_channels=[64, 128, 256], + out_channels=256, + start_level=0, + num_outs=3), + pts_bbox_head=dict( + type='Anchor3DHead', + num_classes=10, + in_channels=256, + feat_channels=256, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-50, -50, -1.8, 50, 50, -1.8]], + scales=[1, 2, 4], + sizes=[ + [2.5981, 0.8660, 1.], # 1.5 / sqrt(3) + [1.7321, 0.5774, 1.], # 1 / sqrt(3) + [1., 1., 1.], + [0.4, 0.4, 1], + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=True), + assigner_per_size=False, + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi / 4 + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + pts=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2], + pos_weight=-1, + debug=False)), + test_cfg=dict( + pts=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_pre=1000, + nms_thr=0.2, + score_thr=0.05, + min_bbox_size=0, + max_num=500))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_range100_lyft.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_range100_lyft.py new file mode 100644 index 000000000..9cd200f3e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_fpn_range100_lyft.py @@ -0,0 +1,22 @@ +_base_ = './hv_pointpillars_fpn_nus.py' + +# model settings (based on nuScenes model settings) +# Voxel size for voxel encoder +# Usually voxel size is changed consistently with the point cloud range +# If point cloud range is modified, do remember to change all related +# keys in the config. +model = dict( + pts_voxel_layer=dict( + max_num_points=20, + point_cloud_range=[-100, -100, -5, 100, 100, 3], + max_voxels=(60000, 60000)), + pts_voxel_encoder=dict( + feat_channels=[64], point_cloud_range=[-100, -100, -5, 100, 100, 3]), + pts_middle_encoder=dict(output_shape=[800, 800]), + pts_bbox_head=dict( + num_classes=9, + anchor_generator=dict( + ranges=[[-100, -100, -1.8, 100, 100, -1.8]], custom_values=[]), + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)), + # model training settings (based on nuScenes model settings) + train_cfg=dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_kitti.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_kitti.py new file mode 100644 index 000000000..ac46475d6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_kitti.py @@ -0,0 +1,94 @@ +voxel_size = [0.16, 0.16, 4] + +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=32, # max_points_per_voxel + point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1], + voxel_size=voxel_size, + max_voxels=(16000, 40000) # (training, testing) max_voxels + ), + voxel_encoder=dict( + type='PillarFeatureNet', + in_channels=4, + feat_channels=[64], + with_distance=False, + voxel_size=voxel_size, + point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1]), + middle_encoder=dict( + type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]), + backbone=dict( + type='SECOND', + in_channels=64, + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + out_channels=[64, 128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + assign_per_class=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[ + [0, -39.68, -0.6, 69.12, 39.68, -0.6], + [0, -39.68, -0.6, 69.12, 39.68, -0.6], + [0, -39.68, -1.78, 69.12, 39.68, -1.78], + ], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_waymo.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_waymo.py new file mode 100644 index 000000000..30e23e956 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_pointpillars_secfpn_waymo.py @@ -0,0 +1,107 @@ +# model settings +# Voxel size for voxel encoder +# Usually voxel size is changed consistently with the point cloud range +# If point cloud range is modified, do remember to change all related +# keys in the config. +voxel_size = [0.32, 0.32, 6] +model = dict( + type='MVXFasterRCNN', + pts_voxel_layer=dict( + max_num_points=20, + point_cloud_range=[-74.88, -74.88, -2, 74.88, 74.88, 4], + voxel_size=voxel_size, + max_voxels=(32000, 32000)), + pts_voxel_encoder=dict( + type='HardVFE', + in_channels=5, + feat_channels=[64], + with_distance=False, + voxel_size=voxel_size, + with_cluster_center=True, + with_voxel_center=True, + point_cloud_range=[-74.88, -74.88, -2, 74.88, 74.88, 4], + norm_cfg=dict(type='naiveSyncBN1d', eps=1e-3, momentum=0.01)), + pts_middle_encoder=dict( + type='PointPillarsScatter', in_channels=64, output_shape=[468, 468]), + pts_backbone=dict( + type='SECOND', + in_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + layer_nums=[3, 5, 5], + layer_strides=[1, 2, 2], + out_channels=[64, 128, 256]), + pts_neck=dict( + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-74.88, -74.88, -0.0345, 74.88, 74.88, -0.0345], + [-74.88, -74.88, -0.1188, 74.88, 74.88, -0.1188], + [-74.88, -74.88, 0, 74.88, 74.88, 0]], + sizes=[ + [4.73, 2.08, 1.77], # car + [1.81, 0.84, 1.77], # cyclist + [0.91, 0.84, 1.74] # pedestrian + ], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi / 4 + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + pts=dict( + assigner=[ + dict( # car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + dict( # pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + ], + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + pos_weight=-1, + debug=False)), + test_cfg=dict( + pts=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_pre=4096, + nms_thr=0.25, + score_thr=0.1, + min_bbox_size=0, + max_num=500))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_kitti.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_kitti.py new file mode 100644 index 000000000..e7d569a52 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_kitti.py @@ -0,0 +1,89 @@ +voxel_size = [0.05, 0.05, 0.1] + +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=5, + point_cloud_range=[0, -40, -3, 70.4, 40, 1], + voxel_size=voxel_size, + max_voxels=(16000, 40000)), + voxel_encoder=dict(type='HardSimpleVFE'), + middle_encoder=dict( + type='SparseEncoder', + in_channels=4, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[ + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78], + ], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_waymo.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_waymo.py new file mode 100644 index 000000000..0fa39e150 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/hv_second_secfpn_waymo.py @@ -0,0 +1,99 @@ +# model settings +# Voxel size for voxel encoder +# Usually voxel size is changed consistently with the point cloud range +# If point cloud range is modified, do remember to change all related +# keys in the config. +voxel_size = [0.08, 0.08, 0.1] +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=10, + point_cloud_range=[-76.8, -51.2, -2, 76.8, 51.2, 4], + voxel_size=voxel_size, + max_voxels=(80000, 90000)), + voxel_encoder=dict(type='HardSimpleVFE', num_features=5), + middle_encoder=dict( + type='SparseEncoder', + in_channels=5, + sparse_shape=[61, 1280, 1920], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=384, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-76.8, -51.2, -0.0345, 76.8, 51.2, -0.0345], + [-76.8, -51.2, 0, 76.8, 51.2, 0], + [-76.8, -51.2, -0.1188, 76.8, 51.2, -0.1188]], + sizes=[ + [4.73, 2.08, 1.77], # car + [0.91, 0.84, 1.74], # pedestrian + [1.81, 0.84, 1.77] # cyclist + ], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi / 4 + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + dict( # cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1) + ], + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_pre=4096, + nms_thr=0.25, + score_thr=0.1, + min_bbox_size=0, + max_num=500)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/imvotenet_image.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/imvotenet_image.py new file mode 100644 index 000000000..981f8bc9b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/imvotenet_image.py @@ -0,0 +1,108 @@ +model = dict( + type='ImVoteNet', + img_backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=False), + norm_eval=True, + style='caffe'), + img_neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + num_outs=5), + img_rpn_head=dict( + type='RPNHead', + in_channels=256, + feat_channels=256, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8], + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0]), + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=1.0)), + img_roi_head=dict( + type='StandardRoIHead', + bbox_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + bbox_head=dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=False, + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=1.0))), + + # model training and testing settings + train_cfg=dict( + img_rpn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.3, + min_pos_iou=0.3, + match_low_quality=True, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=256, + pos_fraction=0.5, + neg_pos_ub=-1, + add_gt_as_proposals=False), + allowed_border=-1, + pos_weight=-1, + debug=False), + img_rpn_proposal=dict( + nms_across_levels=False, + nms_pre=2000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + img_rcnn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.5, + neg_iou_thr=0.5, + min_pos_iou=0.5, + match_low_quality=False, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + pos_weight=-1, + debug=False)), + test_cfg=dict( + img_rpn=dict( + nms_across_levels=False, + nms_pre=1000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + img_rcnn=dict( + score_thr=0.05, + nms=dict(type='nms', iou_threshold=0.5), + max_per_img=100))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/mask_rcnn_r50_fpn.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/mask_rcnn_r50_fpn.py new file mode 100644 index 000000000..4e670e9db --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/mask_rcnn_r50_fpn.py @@ -0,0 +1,124 @@ +# model settings +model = dict( + type='MaskRCNN', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + num_outs=5), + rpn_head=dict( + type='RPNHead', + in_channels=256, + feat_channels=256, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8], + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0]), + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=1.0)), + roi_head=dict( + type='StandardRoIHead', + bbox_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + bbox_head=dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=80, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=False, + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=1.0)), + mask_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + mask_head=dict( + type='FCNMaskHead', + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=80, + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), + # model training and testing settings + train_cfg=dict( + rpn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.3, + min_pos_iou=0.3, + match_low_quality=True, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=256, + pos_fraction=0.5, + neg_pos_ub=-1, + add_gt_as_proposals=False), + allowed_border=-1, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_across_levels=False, + nms_pre=2000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.5, + neg_iou_thr=0.5, + min_pos_iou=0.5, + match_low_quality=True, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False)), + test_cfg=dict( + rpn=dict( + nms_across_levels=False, + nms_pre=1000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=dict( + score_thr=0.05, + nms=dict(type='nms', iou_threshold=0.5), + max_per_img=100, + mask_thr_binary=0.5))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_cuda_ssg.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_cuda_ssg.py new file mode 100644 index 000000000..f513bd4a2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_cuda_ssg.py @@ -0,0 +1,7 @@ +_base_ = './paconv_ssg.py' + +model = dict( + backbone=dict( + sa_cfg=dict( + type='PAConvCUDASAModule', + scorenet_cfg=dict(mlp_channels=[8, 16, 16])))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_ssg.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_ssg.py new file mode 100644 index 000000000..1d4f1ed39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/paconv_ssg.py @@ -0,0 +1,49 @@ +# model settings +model = dict( + type='EncoderDecoder3D', + backbone=dict( + type='PointNet2SASSG', + in_channels=9, # [xyz, rgb, normalized_xyz] + num_points=(1024, 256, 64, 16), + radius=(None, None, None, None), # use kNN instead of ball query + num_samples=(32, 32, 32, 32), + sa_channels=((32, 32, 64), (64, 64, 128), (128, 128, 256), (256, 256, + 512)), + fp_channels=(), + norm_cfg=dict(type='BN2d', momentum=0.1), + sa_cfg=dict( + type='PAConvSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=False, + paconv_num_kernels=[16, 16, 16], + paconv_kernel_input='w_neighbor', + scorenet_input='w_neighbor_dist', + scorenet_cfg=dict( + mlp_channels=[16, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False))), + decode_head=dict( + type='PAConvHead', + # PAConv model's decoder takes skip connections from beckbone + # different from PointNet++, it also concats input features in the last + # level of decoder, leading to `128 + 6` as the channel number + fp_channels=((768, 256, 256), (384, 256, 256), (320, 256, 128), + (128 + 6, 128, 128, 128)), + channels=128, + dropout_ratio=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + loss_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + class_weight=None, # should be modified with dataset + loss_weight=1.0)), + # correlation loss to regularize PAConv's kernel weights + loss_regularization=dict( + type='PAConvRegularizationLoss', reduction='sum', loss_weight=10.0), + # model training and testing settings + train_cfg=dict(), + test_cfg=dict(mode='slide')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/parta2.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/parta2.py new file mode 100644 index 000000000..aa1556789 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/parta2.py @@ -0,0 +1,201 @@ +# model settings +voxel_size = [0.05, 0.05, 0.1] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] + +model = dict( + type='PartA2', + voxel_layer=dict( + max_num_points=5, # max_points_per_voxel + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(16000, 40000) # (training, testing) max_voxels + ), + voxel_encoder=dict(type='HardSimpleVFE'), + middle_encoder=dict( + type='SparseUNet', + in_channels=4, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + rpn_head=dict( + type='PartA2RPNHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78]], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + assigner_per_size=True, + assign_per_class=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + roi_head=dict( + type='PartAggregationROIHead', + num_classes=3, + semantic_head=dict( + type='PointwiseSemanticHead', + in_channels=16, + extra_width=0.2, + seg_score_thr=0.3, + num_classes=3, + loss_seg=dict( + type='FocalLoss', + use_sigmoid=True, + reduction='sum', + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_part=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), + seg_roi_extractor=dict( + type='Single3DRoIAwareExtractor', + roi_layer=dict( + type='RoIAwarePool3d', + out_size=14, + max_pts_per_voxel=128, + mode='max')), + part_roi_extractor=dict( + type='Single3DRoIAwareExtractor', + roi_layer=dict( + type='RoIAwarePool3d', + out_size=14, + max_pts_per_voxel=128, + mode='avg')), + bbox_head=dict( + type='PartA2BboxHead', + num_classes=3, + seg_in_channels=16, + part_in_channels=4, + seg_conv_channels=[64, 64], + part_conv_channels=[64, 64], + merge_conv_channels=[128, 128], + down_conv_channels=[128, 256], + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + shared_fc_channels=[256, 512, 512, 512], + cls_channels=[256, 256], + reg_channels=[256, 256], + dropout_ratio=0.1, + roi_feat_size=14, + with_corner_loss=True, + loss_bbox=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=1.0), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0))), + # model training and testing settings + train_cfg=dict( + rpn=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1) + ], + allowed_border=0, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_pre=9000, + nms_post=512, + max_num=512, + nms_thr=0.8, + score_thr=0, + use_rotate_nms=False), + rcnn=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1) + ], + sampler=dict( + type='IoUNegPiecewiseSampler', + num=128, + pos_fraction=0.55, + neg_piece_fractions=[0.8, 0.2], + neg_iou_piece_thrs=[0.55, 0.1], + neg_pos_ub=-1, + add_gt_as_proposals=False, + return_iou=True), + cls_pos_thr=0.75, + cls_neg_thr=0.25)), + test_cfg=dict( + rpn=dict( + nms_pre=1024, + nms_post=100, + max_num=100, + nms_thr=0.7, + score_thr=0, + use_rotate_nms=True), + rcnn=dict( + use_rotate_nms=True, + use_raw_score=True, + nms_thr=0.01, + score_thr=0.1))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pgd.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pgd.py new file mode 100644 index 000000000..e63fc1fce --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pgd.py @@ -0,0 +1,55 @@ +_base_ = './fcos3d.py' +# model settings +model = dict( + bbox_head=dict( + _delete_=True, + type='PGDHead', + num_classes=10, + in_channels=256, + stacked_convs=2, + feat_channels=256, + use_direction_classifier=True, + diff_rad_by_sin=True, + pred_attrs=True, + pred_velo=True, + pred_bbox2d=True, + pred_keypoints=False, + dir_offset=0.7854, # pi/4 + strides=[8, 16, 32, 64, 128], + group_reg_dims=(2, 1, 3, 1, 2), # offset, depth, size, rot, velo + cls_branch=(256, ), + reg_branch=( + (256, ), # offset + (256, ), # depth + (256, ), # size + (256, ), # rot + () # velo + ), + dir_branch=(256, ), + attr_branch=(256, ), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_attr=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + norm_on_bbox=True, + centerness_on_reg=True, + center_sampling=True, + conv_bias=True, + dcn_on_last_conv=True, + use_depth_classifier=True, + depth_branch=(256, ), + depth_range=(0, 50), + depth_unit=10, + division='uniform', + depth_bins=6, + bbox_coder=dict(type='PGDBBoxCoder', code_size=9)), + test_cfg=dict(nms_pre=1000, nms_thr=0.8, score_thr=0.01, max_per_img=200)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/point_rcnn.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/point_rcnn.py new file mode 100644 index 000000000..02a1414f7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/point_rcnn.py @@ -0,0 +1,131 @@ +model = dict( + type='PointRCNN', + backbone=dict( + type='PointNet2SAMSG', + in_channels=4, + num_points=(4096, 1024, 256, 64), + radii=((0.1, 0.5), (0.5, 1.0), (1.0, 2.0), (2.0, 4.0)), + num_samples=((16, 32), (16, 32), (16, 32), (16, 32)), + sa_channels=(((16, 16, 32), (32, 32, 64)), ((64, 64, 128), (64, 96, + 128)), + ((128, 196, 256), (128, 196, 256)), ((256, 256, 512), + (256, 384, 512))), + fps_mods=(('D-FPS'), ('D-FPS'), ('D-FPS'), ('D-FPS')), + fps_sample_range_lists=((-1), (-1), (-1), (-1)), + aggregation_channels=(None, None, None, None), + dilated_group=(False, False, False, False), + out_indices=(0, 1, 2, 3), + norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1), + sa_cfg=dict( + type='PointSAModuleMSG', + pool_mod='max', + use_xyz=True, + normalize_xyz=False)), + neck=dict( + type='PointNetFPNeck', + fp_channels=((1536, 512, 512), (768, 512, 512), (608, 256, 256), + (257, 128, 128))), + rpn_head=dict( + type='PointRPNHead', + num_classes=3, + enlarge_width=0.1, + pred_layer_cfg=dict( + in_channels=128, + cls_linear_channels=(256, 256), + reg_linear_channels=(256, 256)), + cls_loss=dict( + type='FocalLoss', + use_sigmoid=True, + reduction='sum', + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + bbox_loss=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=1.0), + bbox_coder=dict( + type='PointXYZWHLRBBoxCoder', + code_size=8, + # code_size: (center residual (3), size regression (3), + # torch.cos(yaw) (1), torch.sin(yaw) (1) + use_mean_size=True, + mean_size=[[3.9, 1.6, 1.56], [0.8, 0.6, 1.73], [1.76, 0.6, + 1.73]])), + roi_head=dict( + type='PointRCNNRoIHead', + point_roi_extractor=dict( + type='Single3DRoIPointExtractor', + roi_layer=dict(type='RoIPointPool3d', num_sampled_points=512)), + bbox_head=dict( + type='PointRCNNBboxHead', + num_classes=1, + pred_layer_cfg=dict( + in_channels=512, + cls_conv_channels=(256, 256), + reg_conv_channels=(256, 256), + bias=True), + in_channels=5, + # 5 = 3 (xyz) + scores + depth + mlp_channels=[128, 128], + num_points=(128, 32, -1), + radius=(0.2, 0.4, 100), + num_samples=(16, 16, 16), + sa_channels=((128, 128, 128), (128, 128, 256), (256, 256, 512)), + with_corner_loss=True), + depth_normalizer=70.0), + # model training and testing settings + train_cfg=dict( + pos_distance_thr=10.0, + rpn=dict( + nms_cfg=dict( + use_rotate_nms=True, iou_thr=0.8, nms_pre=9000, nms_post=512), + score_thr=None), + rcnn=dict( + assigner=[ + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1, + match_low_quality=False), + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1, + match_low_quality=False), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1, + match_low_quality=False) + ], + sampler=dict( + type='IoUNegPiecewiseSampler', + num=128, + pos_fraction=0.5, + neg_piece_fractions=[0.8, 0.2], + neg_iou_piece_thrs=[0.55, 0.1], + neg_pos_ub=-1, + add_gt_as_proposals=False, + return_iou=True), + cls_pos_thr=0.7, + cls_neg_thr=0.25)), + test_cfg=dict( + rpn=dict( + nms_cfg=dict( + use_rotate_nms=True, iou_thr=0.85, nms_pre=9000, nms_post=512), + score_thr=None), + rcnn=dict(use_rotate_nms=True, nms_thr=0.1, score_thr=0.1))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_msg.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_msg.py new file mode 100644 index 000000000..222ab8855 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_msg.py @@ -0,0 +1,28 @@ +_base_ = './pointnet2_ssg.py' + +# model settings +model = dict( + backbone=dict( + _delete_=True, + type='PointNet2SAMSG', + in_channels=6, # [xyz, rgb], should be modified with dataset + num_points=(1024, 256, 64, 16), + radii=((0.05, 0.1), (0.1, 0.2), (0.2, 0.4), (0.4, 0.8)), + num_samples=((16, 32), (16, 32), (16, 32), (16, 32)), + sa_channels=(((16, 16, 32), (32, 32, 64)), ((64, 64, 128), (64, 96, + 128)), + ((128, 196, 256), (128, 196, 256)), ((256, 256, 512), + (256, 384, 512))), + aggregation_channels=(None, None, None, None), + fps_mods=(('D-FPS'), ('D-FPS'), ('D-FPS'), ('D-FPS')), + fps_sample_range_lists=((-1), (-1), (-1), (-1)), + dilated_group=(False, False, False, False), + out_indices=(0, 1, 2, 3), + sa_cfg=dict( + type='PointSAModuleMSG', + pool_mod='max', + use_xyz=True, + normalize_xyz=False)), + decode_head=dict( + fp_channels=((1536, 256, 256), (512, 256, 256), (352, 256, 128), + (128, 128, 128, 128)))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_ssg.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_ssg.py new file mode 100644 index 000000000..58b4c243d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/pointnet2_ssg.py @@ -0,0 +1,35 @@ +# model settings +model = dict( + type='EncoderDecoder3D', + backbone=dict( + type='PointNet2SASSG', + in_channels=6, # [xyz, rgb], should be modified with dataset + num_points=(1024, 256, 64, 16), + radius=(0.1, 0.2, 0.4, 0.8), + num_samples=(32, 32, 32, 32), + sa_channels=((32, 32, 64), (64, 64, 128), (128, 128, 256), (256, 256, + 512)), + fp_channels=(), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=False)), + decode_head=dict( + type='PointNet2Head', + fp_channels=((768, 256, 256), (384, 256, 256), (320, 256, 128), + (128, 128, 128, 128)), + channels=128, + dropout_ratio=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + loss_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + class_weight=None, # should be modified with dataset + loss_weight=1.0)), + # model training and testing settings + train_cfg=dict(), + test_cfg=dict(mode='slide')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/smoke.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/smoke.py new file mode 100644 index 000000000..0a7452b43 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/smoke.py @@ -0,0 +1,53 @@ +model = dict( + type='SMOKEMono3D', + backbone=dict( + type='DLANet', + depth=34, + in_channels=3, + norm_cfg=dict(type='GN', num_groups=32), + init_cfg=dict( + type='Pretrained', + checkpoint='http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth' + )), + neck=dict( + type='DLANeck', + in_channels=[16, 32, 64, 128, 256, 512], + start_level=2, + end_level=5, + norm_cfg=dict(type='GN', num_groups=32)), + bbox_head=dict( + type='SMOKEMono3DHead', + num_classes=3, + in_channels=64, + dim_channel=[3, 4, 5], + ori_channel=[6, 7], + stacked_convs=0, + feat_channels=64, + use_direction_classifier=False, + diff_rad_by_sin=False, + pred_attrs=False, + pred_velo=False, + dir_offset=0, + strides=None, + group_reg_dims=(8, ), + cls_branch=(256, ), + reg_branch=((256, ), ), + num_attrs=0, + bbox_code_size=7, + dir_branch=(), + attr_branch=(), + bbox_coder=dict( + type='SMOKECoder', + base_depth=(28.01, 16.32), + base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63, + 1.53)), + code_size=7), + loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0), + loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=1 / 300), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_attr=None, + conv_bias=True, + dcn_on_last_conv=False), + train_cfg=None, + test_cfg=dict(topK=100, local_maximum_kernel=3, max_per_img=100)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/models/votenet.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/votenet.py new file mode 100644 index 000000000..129339dc9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/models/votenet.py @@ -0,0 +1,73 @@ +model = dict( + type='VoteNet', + backbone=dict( + type='PointNet2SASSG', + in_channels=4, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), + (128, 128, 256)), + fp_channels=((256, 256), (256, 256)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True)), + bbox_head=dict( + type='VoteHead', + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=3, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=256, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True), + pred_layer_cfg=dict( + in_channels=128, shared_conv_channels=(128, 128), bias=True), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.2, 0.8], + reduction='sum', + loss_weight=5.0), + center_loss=dict( + type='ChamferDistance', + mode='l2', + reduction='sum', + loss_src_weight=10.0, + loss_dst_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0 / 3.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + # model training and testing settings + train_cfg=dict( + pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'), + test_cfg=dict( + sample_mod='seed', + nms_thr=0.25, + score_thr=0.05, + per_class_proposal=True)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cosine.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cosine.py new file mode 100644 index 000000000..69cb7df87 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cosine.py @@ -0,0 +1,20 @@ +# This schedule is mainly used by models with dynamic voxelization +# optimizer +lr = 0.003 # max learning rate +optimizer = dict( + type='AdamW', + lr=lr, + betas=(0.95, 0.99), # the momentum is change during training + weight_decay=0.001) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) + +lr_config = dict( + policy='CosineAnnealing', + warmup='linear', + warmup_iters=1000, + warmup_ratio=1.0 / 10, + min_lr_ratio=1e-5) + +momentum_config = None + +runner = dict(type='EpochBasedRunner', max_epochs=40) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_20e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_20e.py new file mode 100644 index 000000000..704740ee5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_20e.py @@ -0,0 +1,24 @@ +# For nuScenes dataset, we usually evaluate the model at the end of training. +# Since the models are trained by 24 epochs by default, we set evaluation +# interval to be 20. Please change the interval accordingly if you do not +# use a default schedule. +# optimizer +# This schedule is mainly used by models on nuScenes dataset +optimizer = dict(type='AdamW', lr=1e-4, weight_decay=0.01) +# max_norm=10 is better for SECOND +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4, +) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4, +) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=20) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_40e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_40e.py new file mode 100644 index 000000000..664986331 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/cyclic_40e.py @@ -0,0 +1,31 @@ +# The schedule is usually used by models trained on KITTI dataset + +# The learning rate set in the cyclic schedule is the initial learning rate +# rather than the max learning rate. Since the target_ratio is (10, 1e-4), +# the learning rate will change from 0.0018 to 0.018, than go to 0.0018*1e-4 +lr = 0.0018 +# The optimizer follows the setting in SECOND.Pytorch, but here we use +# the official AdamW optimizer implemented by PyTorch. +optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) +# We use cyclic learning rate and momentum schedule following SECOND.Pytorch +# https://github.com/traveller59/second.pytorch/blob/3aba19c9688274f75ebb5e576f65cfe54773c021/torchplus/train/learning_schedules_fastai.py#L69 # noqa +# We implement them in mmcv, for more details, please refer to +# https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327 # noqa +# https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130 # noqa +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4, +) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4, +) +# Although the max_epochs is 40, this schedule is usually used we +# RepeatDataset with repeat ratio N, thus the actual max epoch +# number could be Nx40 +runner = dict(type='EpochBasedRunner', max_epochs=40) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/mmdet_schedule_1x.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/mmdet_schedule_1x.py new file mode 100644 index 000000000..13b3783cb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/mmdet_schedule_1x.py @@ -0,0 +1,11 @@ +# optimizer +optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=None) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=0.001, + step=[8, 11]) +runner = dict(type='EpochBasedRunner', max_epochs=12) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_2x.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_2x.py new file mode 100644 index 000000000..afde799d9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_2x.py @@ -0,0 +1,14 @@ +# optimizer +# This schedule is mainly used by models on nuScenes dataset +optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01) +# max_norm=10 is better for SECOND +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=1000, + warmup_ratio=1.0 / 1000, + step=[20, 23]) +momentum_config = None +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=24) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_3x.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_3x.py new file mode 100644 index 000000000..115cd26b7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/schedule_3x.py @@ -0,0 +1,9 @@ +# optimizer +# This schedule is mainly used by models on indoor dataset, +# e.g., VoteNet on SUNRGBD and ScanNet +lr = 0.008 # max learning rate +optimizer = dict(type='AdamW', lr=lr, weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[24, 32]) +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=36) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_100e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_100e.py new file mode 100644 index 000000000..3b75932b3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_100e.py @@ -0,0 +1,8 @@ +# optimizer +# This schedule is mainly used on S3DIS dataset in segmentation task +optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=None) +lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=100) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_150e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_150e.py new file mode 100644 index 000000000..04b44e51d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_150e.py @@ -0,0 +1,9 @@ +# optimizer +# This schedule is mainly used on S3DIS dataset in segmentation task +optimizer = dict(type='SGD', lr=0.2, weight_decay=0.0001, momentum=0.9) +optimizer_config = dict(grad_clip=None) +lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=0.002) +momentum_config = None + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=150) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_200e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_200e.py new file mode 100644 index 000000000..6a49484c8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_200e.py @@ -0,0 +1,9 @@ +# optimizer +# This schedule is mainly used on ScanNet dataset in segmentation task +optimizer = dict(type='Adam', lr=0.001, weight_decay=0.01) +optimizer_config = dict(grad_clip=None) +lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5) +momentum_config = None + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=200) diff --git a/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_50e.py b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_50e.py new file mode 100644 index 000000000..975a8f9ff --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/_base_/schedules/seg_cosine_50e.py @@ -0,0 +1,9 @@ +# optimizer +# This schedule is mainly used on S3DIS dataset in segmentation task +optimizer = dict(type='Adam', lr=0.001, weight_decay=0.001) +optimizer_config = dict(grad_clip=None) +lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5) +momentum_config = None + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=50) diff --git a/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py new file mode 100644 index 000000000..398a19cd2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py @@ -0,0 +1,332 @@ +# model settings +voxel_size = [0.05, 0.05, 0.1] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z + +model = dict( + type='PartA2', + voxel_layer=dict( + max_num_points=5, # max_points_per_voxel + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(16000, 40000) # (training, testing) max_coxels + ), + voxel_encoder=dict(type='HardSimpleVFE'), + middle_encoder=dict( + type='SparseUNet', + in_channels=4, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + rpn_head=dict( + type='PartA2RPNHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78]], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + assigner_per_size=True, + assign_per_class=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + roi_head=dict( + type='PartAggregationROIHead', + num_classes=3, + semantic_head=dict( + type='PointwiseSemanticHead', + in_channels=16, + extra_width=0.2, + seg_score_thr=0.3, + num_classes=3, + loss_seg=dict( + type='FocalLoss', + use_sigmoid=True, + reduction='sum', + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_part=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), + seg_roi_extractor=dict( + type='Single3DRoIAwareExtractor', + roi_layer=dict( + type='RoIAwarePool3d', + out_size=14, + max_pts_per_voxel=128, + mode='max')), + part_roi_extractor=dict( + type='Single3DRoIAwareExtractor', + roi_layer=dict( + type='RoIAwarePool3d', + out_size=14, + max_pts_per_voxel=128, + mode='avg')), + bbox_head=dict( + type='PartA2BboxHead', + num_classes=3, + seg_in_channels=16, + part_in_channels=4, + seg_conv_channels=[64, 64], + part_conv_channels=[64, 64], + merge_conv_channels=[128, 128], + down_conv_channels=[128, 256], + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + shared_fc_channels=[256, 512, 512, 512], + cls_channels=[256, 256], + reg_channels=[256, 256], + dropout_ratio=0.1, + roi_feat_size=14, + with_corner_loss=True, + loss_bbox=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=1.0), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0))), + # model training and testing settings + train_cfg=dict( + rpn=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1) + ], + allowed_border=0, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_pre=9000, + nms_post=512, + max_num=512, + nms_thr=0.8, + score_thr=0, + use_rotate_nms=False), + rcnn=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict( + type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1) + ], + sampler=dict( + type='IoUNegPiecewiseSampler', + num=128, + pos_fraction=0.55, + neg_piece_fractions=[0.8, 0.2], + neg_iou_piece_thrs=[0.55, 0.1], + neg_pos_ub=-1, + add_gt_as_proposals=False, + return_iou=True), + cls_pos_thr=0.75, + cls_neg_thr=0.25)), + test_cfg=dict( + rpn=dict( + nms_pre=1024, + nms_post=100, + max_num=100, + nms_thr=0.7, + score_thr=0, + use_rotate_nms=True), + rcnn=dict( + use_rotate_nms=True, + use_raw_score=True, + nms_thr=0.01, + score_thr=0.3))) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), + classes=class_names, + sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15)) +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True)) +# optimizer +lr = 0.001 # max learning rate +optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4) +checkpoint_config = dict(interval=1) +evaluation = dict(interval=1, pipeline=eval_pipeline) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +dist_params = dict(backend='nccl', port=29506) +log_level = 'INFO' +find_unused_parameters = True +work_dir = './work_dirs/parta2_secfpn_80e' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py new file mode 100644 index 000000000..72c737245 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py @@ -0,0 +1,201 @@ +# model settings +voxel_size = [0.16, 0.16, 4] +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=64, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(12000, 20000)), + voxel_encoder=dict( + type='PillarFeatureNet', + in_channels=4, + feat_channels=[64], + with_distance=False, + voxel_size=voxel_size, + point_cloud_range=point_cloud_range), + middle_encoder=dict( + type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]), + backbone=dict( + type='SECOND', + in_channels=64, + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + out_channels=[64, 128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=True), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + sample_groups=dict(Car=15), + classes=class_names) + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[0.25, 0.25, 0.25], + global_rot_range=[0.0, 0.0], + rot_range=[-0.15707963267, 0.15707963267]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=3, + workers_per_gpu=3, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True)) +# optimizer +lr = 0.001 # max learning rate +optimizer = dict( + type='AdamW', + lr=lr, + betas=(0.95, 0.99), # the momentum is change during training + weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4) +checkpoint_config = dict(interval=1) +evaluation = dict(interval=1, pipeline=eval_pipeline) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=50) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/pp_secfpn_100e' +load_from = None +resume_from = None +workflow = [('train', 50)] diff --git a/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py new file mode 100644 index 000000000..02eed9fb1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py @@ -0,0 +1,244 @@ +# model settings +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] +voxel_size = [0.16, 0.16, 4] +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=32, # max_points_per_voxel + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(16000, 40000) # (training, testing) max_coxels + ), + voxel_encoder=dict( + type='PillarFeatureNet', + in_channels=4, + feat_channels=[64], + with_distance=False, + voxel_size=voxel_size, + point_cloud_range=point_cloud_range, + ), + middle_encoder=dict( + type='PointPillarsScatter', + in_channels=64, + output_shape=[496, 432], + ), + backbone=dict( + type='SECOND', + in_channels=64, + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + out_channels=[64, 128, 256], + ), + neck=dict( + type='SECONDFPN', + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128], + ), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[ + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78], + ], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2), + ), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict( + Car=5, + Pedestrian=5, + Cyclist=5, + )), + classes=class_names, + sample_groups=dict( + Car=15, + Pedestrian=15, + Cyclist=15, + )) + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']), +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True)) +# optimizer +lr = 0.0003 # max learning rate +optimizer = dict( + type='AdamW', + lr=lr, + betas=(0.95, 0.99), # the momentum is change during training + weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) +# learning policy +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4) +checkpoint_config = dict(interval=1) +evaluation = dict(interval=2, pipeline=eval_pipeline) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/pp_secfpn_80e' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py new file mode 100644 index 000000000..d61a050fb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py @@ -0,0 +1,251 @@ +# model settings +voxel_size = [0.05, 0.05, 0.1] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] + +model = dict( + type='VoxelNet', + voxel_layer=dict( + max_num_points=5, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(16000, 40000)), + voxel_encoder=dict(type='HardSimpleVFE'), + middle_encoder=dict( + type='SparseEncoder', + in_channels=4, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[ + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78], + ], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +input_modality = dict(use_lidar=False, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict( + Car=5, + Pedestrian=5, + Cyclist=5, + )), + classes=class_names, + sample_groups=dict( + Car=20, + Pedestrian=15, + Cyclist=15, + )) +file_client_args = dict(backend='disk') +# file_client_args = dict( +# backend='petrel', path_mapping=dict(data='s3://kitti_data/')) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args), + dict(type='ObjectSample', db_sampler=db_sampler), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True)) +# optimizer +lr = 0.0003 # max learning rate +optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01) +optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) +lr_config = dict( + policy='cyclic', + target_ratio=(10, 1e-4), + cyclic_times=1, + step_ratio_up=0.4) +momentum_config = dict( + policy='cyclic', + target_ratio=(0.85 / 0.95, 1), + cyclic_times=1, + step_ratio_up=0.4) +checkpoint_config = dict(interval=1) +evaluation = dict(interval=2, pipeline=eval_pipeline) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/sec_secfpn_80e' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/README.md b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/README.md new file mode 100644 index 000000000..d9173c930 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/README.md @@ -0,0 +1,138 @@ +# Center-based 3D Object Detection and Tracking + +> [Center-based 3D Object Detection and Tracking](https://arxiv.org/abs/2006.11275) + + + +## Abstract + +Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions. + +
+ +
+ +## Introduction + +We implement CenterPoint and provide the result and checkpoints on nuScenes dataset. + +We follow the below style to name config files. Contributors are advised to follow the same style. +`{xxx}` is required field and `[yyy]` is optional. + +`{model}`: model type like `centerpoint`. + +`{model setting}`: voxel size and voxel type like `01voxel`, `02pillar`. + +`{backbone}`: backbone type like `second`. + +`{neck}`: neck type like `secfpn`. + +`[dcn]`: Whether to use deformable convolution. + +`[circle]`: Whether to use circular nms. + +`[batch_per_gpu x gpu]`: GPUs and samples per GPU, 4x8 is used by default. + +`{schedule}`: training schedule, options are 1x, 2x, 20e, etc. 1x and 2x means 12 epochs and 24 epochs respectively. 20e is adopted in cascade models, which denotes 20 epochs. For 1x/2x, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs. For 20e, initial learning rate decays by a factor of 10 at the 16th and 19th epochs. + +`{dataset}`: dataset like nus-3d, kitti-3d, lyft-3d, scannet-3d, sunrgbd-3d. We also indicate the number of classes we are using if there exist multiple settings, e.g., kitti-3d-3class and kitti-3d-car means training on KITTI dataset with 3 classes and single class, respectively. + +## Usage + +### Test time augmentation + +We have supported double-flip and scale augmentation during test time. To use test time augmentation, users need to modify the +`test_pipeline` and `test_cfg` in the config. +For example, we change `centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py` to the following. + +```python +_base_ = './centerpoint_0075voxel_second_secfpn_circlenms' \ + '_4x8_cyclic_20e_nus.py' + +model = dict( + test_cfg=dict( + pts=dict( + use_rotate_nms=True, + max_num=83))) + +point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] +file_client_args = dict(backend='disk') +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +test_pipeline = [ + dict( + type='LoadPointsFromFile', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=[0.95, 1.0, 1.05], + flip=True, + pcd_horizontal_flip=True, + pcd_vertical_flip=True, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', sync_2d=False), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) + +``` + +## Results and models + +### CenterPoint + +| Backbone | Voxel type (voxel size) | Dcn | Circular nms | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :---------------------------------------------------------------------------------: | :---------------------: | :-: | :----------: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.1) | ✗ | ✓ | 4.9 | | 56.19 | 64.43 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210815_085857-9ba7f3a5.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210815_085857.log.json) | +| above w/o circle nms | voxel (0.1) | ✗ | ✗ | | | 56.56 | 64.46 | | +| [SECFPN](./centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.1) | ✓ | ✓ | 5.2 | | 56.34 | 64.81 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210814_060754-c9d535d2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210814_060754.log.json) | +| above w/o circle nms | voxel (0.1) | ✓ | ✗ | | | 56.60 | 64.90 | | +| [SECFPN](./centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.075) | ✗ | ✓ | 7.8 | | 57.34 | 65.23 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210814_113418-76ae0cf0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210814_113418.log.json) | +| above w/o circle nms | voxel (0.075) | ✗ | ✗ | | | 57.63 | 65.39 | | +| [SECFPN](./centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.075) | ✓ | ✓ | 8.5 | | 57.27 | 65.58 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210827_161135-1782af3e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210827_161135.log.json) | +| above w/o circle nms | voxel (0.075) | ✓ | ✗ | | | 57.43 | 65.63 | | +| above w/ double flip | voxel (0.075) | ✓ | ✗ | | | 59.73 | 67.39 | | +| above w/ scale tta | voxel (0.075) | ✓ | ✗ | | | 60.43 | 67.65 | | +| above w/ circle nms w/o scale tta | voxel (0.075) | ✓ | ✗ | | | 59.52 | 67.24 | | +| [SECFPN](./centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | pillar (0.2) | ✗ | ✓ | 4.4 | | 49.07 | 59.66 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210816_064624-0f3299c0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210816_064624.log.json) | +| above w/o circle nms | pillar (0.2) | ✗ | ✗ | | | 49.12 | 59.66 | | +| [SECFPN](./centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py) | pillar (0.2) | ✓ | ✗ | 4.6 | | 48.8 | 59.67 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20210815_202702-f03ab9e4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20210815_202702.log.json) | +| above w/ circle nms | pillar (0.2) | ✓ | ✓ | | | 48.79 | 59.65 | | + +## Citation + +```latex +@article{yin2021center, + title={Center-based 3D Object Detection and Tracking}, + author={Yin, Tianwei and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp}, + journal={CVPR}, + year={2021}, +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..f17d98eff --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py @@ -0,0 +1,140 @@ +_base_ = ['./centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +voxel_size = [0.075, 0.075, 0.2] +point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +model = dict( + pts_voxel_layer=dict( + voxel_size=voxel_size, point_cloud_range=point_cloud_range), + pts_middle_encoder=dict(sparse_shape=[41, 1440, 1440]), + pts_bbox_head=dict( + bbox_coder=dict( + voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])), + train_cfg=dict( + pts=dict( + grid_size=[1440, 1440, 40], + voxel_size=voxel_size, + point_cloud_range=point_cloud_range)), + test_cfg=dict( + pts=dict(voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2]))) + +dataset_type = 'NuScenesDataset' +data_root = 'data/nuscenes/' +file_client_args = dict(backend='disk') + +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'nuscenes_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict( + car=5, + truck=5, + bus=5, + trailer=5, + construction_vehicle=5, + traffic_cone=5, + barrier=5, + motorcycle=5, + bicycle=5, + pedestrian=5)), + classes=class_names, + sample_groups=dict( + car=2, + truck=3, + construction_vehicle=7, + bus=4, + trailer=6, + barrier=2, + motorcycle=6, + bicycle=6, + pedestrian=2, + traffic_cone=2), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args)) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + train=dict(dataset=dict(pipeline=train_pipeline)), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..1541a1024 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,3 @@ +_base_ = ['./centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict(test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..e479650af --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py @@ -0,0 +1,15 @@ +_base_ = ['./centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_flip-tta_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_flip-tta_20e_nus.py new file mode 100644 index 000000000..0090b3cb3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_flip-tta_20e_nus.py @@ -0,0 +1,50 @@ +_base_ = './centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py' + +point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] +file_client_args = dict(backend='disk') +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + # Add double-flip augmentation + flip=True, + pcd_horizontal_flip=True, + pcd_vertical_flip=True, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', sync_2d=False), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_tta_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_tta_20e_nus.py new file mode 100644 index 000000000..cdbdf0600 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_tta_20e_nus.py @@ -0,0 +1,52 @@ +_base_ = './centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py' + +model = dict(test_cfg=dict(pts=dict(use_rotate_nms=True, max_num=500))) + +point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] +file_client_args = dict(backend='disk') +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=[0.95, 1.0, 1.05], + # Add double-flip augmentation + flip=True, + pcd_horizontal_flip=True, + pcd_vertical_flip=True, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', sync_2d=False), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..1e7d14e26 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,16 @@ +_base_ = ['./centerpoint_0075voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3)), + test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_flip-tta_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_flip-tta_20e_nus.py new file mode 100644 index 000000000..d3956fc12 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_flip-tta_20e_nus.py @@ -0,0 +1,51 @@ +_base_ = './centerpoint_0075voxel_second_secfpn_dcn_' \ + 'circlenms_4x8_cyclic_20e_nus.py' + +point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0] +file_client_args = dict(backend='disk') +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + # Add double-flip augmentation + flip=True, + pcd_horizontal_flip=True, + pcd_vertical_flip=True, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D', sync_2d=False), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..eae92849b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py @@ -0,0 +1,171 @@ +_base_ = [ + '../_base_/datasets/nus-3d.py', + '../_base_/models/centerpoint_01voxel_second_secfpn_nus.py', + '../_base_/schedules/cyclic_20e.py', '../_base_/default_runtime.py' +] + +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +model = dict( + pts_voxel_layer=dict(point_cloud_range=point_cloud_range), + pts_bbox_head=dict(bbox_coder=dict(pc_range=point_cloud_range[:2])), + # model training and testing settings + train_cfg=dict(pts=dict(point_cloud_range=point_cloud_range)), + test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2]))) + +dataset_type = 'NuScenesDataset' +data_root = 'data/nuscenes/' +file_client_args = dict(backend='disk') + +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'nuscenes_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict( + car=5, + truck=5, + bus=5, + trailer=5, + construction_vehicle=5, + traffic_cone=5, + barrier=5, + motorcycle=5, + bicycle=5, + pedestrian=5)), + classes=class_names, + sample_groups=dict( + car=2, + truck=3, + construction_vehicle=7, + bus=4, + trailer=6, + barrier=2, + motorcycle=6, + bicycle=6, + pedestrian=2, + traffic_cone=2), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args)) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + train=dict( + type='CBGSDataset', + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + use_valid_flag=True, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR')), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +evaluation = dict(interval=20, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..ae560321c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,3 @@ +_base_ = ['./centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict(test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..5f31c4417 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py @@ -0,0 +1,15 @@ +_base_ = ['./centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..cc5488e0d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,16 @@ +_base_ = ['./centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3)), + test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..cd9034922 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py @@ -0,0 +1,170 @@ +_base_ = [ + '../_base_/datasets/nus-3d.py', + '../_base_/models/centerpoint_02pillar_second_secfpn_nus.py', + '../_base_/schedules/cyclic_20e.py', '../_base_/default_runtime.py' +] + +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', + 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' +] + +model = dict( + pts_voxel_layer=dict(point_cloud_range=point_cloud_range), + pts_voxel_encoder=dict(point_cloud_range=point_cloud_range), + pts_bbox_head=dict(bbox_coder=dict(pc_range=point_cloud_range[:2])), + # model training and testing settings + train_cfg=dict(pts=dict(point_cloud_range=point_cloud_range)), + test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2]))) + +dataset_type = 'NuScenesDataset' +data_root = 'data/nuscenes/' +file_client_args = dict(backend='disk') + +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'nuscenes_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict( + car=5, + truck=5, + bus=5, + trailer=5, + construction_vehicle=5, + traffic_cone=5, + barrier=5, + motorcycle=5, + bicycle=5, + pedestrian=5)), + classes=class_names, + sample_groups=dict( + car=2, + truck=3, + construction_vehicle=7, + bus=4, + trailer=6, + barrier=2, + motorcycle=6, + bicycle=6, + pedestrian=2, + traffic_cone=2), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args)) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=9, + use_dim=[0, 1, 2, 3, 4], + file_client_args=file_client_args, + pad_empty_sweeps=True, + remove_close=True), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + train=dict( + type='CBGSDataset', + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'nuscenes_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + use_valid_flag=True, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR')), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +evaluation = dict(interval=20, pipeline=eval_pipeline) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..67a1cf6e7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,3 @@ +_base_ = ['./centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict(test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..e69489215 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py @@ -0,0 +1,15 @@ +_base_ = ['./centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py new file mode 100644 index 000000000..c62488dfe --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py @@ -0,0 +1,16 @@ +_base_ = ['./centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py'] + +model = dict( + pts_bbox_head=dict( + separate_head=dict( + type='DCNSeparateHead', + dcn_config=dict( + type='DCN', + in_channels=64, + out_channels=64, + kernel_size=3, + padding=1, + groups=4), + init_bias=-2.19, + final_kernel=3)), + test_cfg=dict(pts=dict(nms_type='circle'))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/centerpoint/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/metafile.yml new file mode 100644 index 000000000..1651689e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/centerpoint/metafile.yml @@ -0,0 +1,95 @@ +Collections: + - Name: CenterPoint + Metadata: + Training Data: nuScenes + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - Hard Voxelization + Paper: + URL: https://arxiv.org/abs/2006.11275 + Title: 'Center-based 3D Object Detection and Tracking' + README: configs/centerpoint/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/centerpoint.py#L10 + Version: v0.6.0 + +Models: + - Name: centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 4.9 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 56.19 + NDS: 64.43 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201001_135205-5db91e00.pth + + - Name: centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 5.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 56.34 + NDS: 64.81 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20201004_075317-26d8176c.pth + + - Name: centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 7.8 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 57.34 + NDS: 65.23 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20200925_230905-358fbe3b.pth + + - Name: centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 8.5 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 57.27 + NDS: 65.58 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20200930_201619-67c8496f.pth + + - Name: centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 4.4 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 49.07 + NDS: 59.66 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201004_170716-a134a233.pth + + - Name: centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus + In Collection: CenterPoint + Config: configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py + Metadata: + Training Memory (GB): 4.6 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 48.8 + NDS: 59.67 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20200930_103722-3bb135f2.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/dgcnn/README.md b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/README.md new file mode 100644 index 000000000..525543503 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/README.md @@ -0,0 +1,55 @@ +# Dynamic Graph CNN for Learning on Point Clouds + +> [Dynamic Graph CNN for Learning on Point Clouds](https://arxiv.org/abs/1801.07829) + + + +## Abstract + +Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS. + +
+ +
+ +## Introduction + +We implement DGCNN and provide the results and checkpoints on S3DIS dataset. + +**Notice**: We follow the implementations in the original DGCNN paper and a PyTorch implementation of DGCNN [code](https://github.com/AnTao97/dgcnn.pytorch). + +## Results and models + +### S3DIS + +| Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download | +| :-------------------------------------------------------: | :----: | :---------: | :------: | :------------: | :------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_1 | cosine 100e | 13.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area1/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210731_000734-39658f14.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area1/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210731_000734.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_2 | cosine 100e | 13.1 | | 40.68 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area2/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210731_144648-aea9ecb6.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area2/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210731_144648.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_3 | cosine 100e | 13.1 | | 69.38 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area3/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210801_154629-2ff50ee0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area3/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210801_154629.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_4 | cosine 100e | 13.1 | | 50.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area4/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210802_073551-dffab9cd.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area4/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210802_073551.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_5 | cosine 100e | 13.1 | | 50.59 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area5/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210730_235824-f277e0c5.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area5/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210730_235824.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | Area_6 | cosine 100e | 13.1 | | 77.94 | [model](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area6/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210802_154317-e3511b32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area6/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210802_154317.log.json) | +| [DGCNN](./dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py) | 6-fold | | | | 59.43 | | + +**Notes:** + +- We use XYZ+Color+Normalized_XYZ as input in all the experiments on S3DIS datasets. +- `Area_5` Split means training the model on Area_1, 2, 3, 4, 6 and testing on Area_5. +- `6-fold` Split means the overall result of 6 different splits (Area_1, Area_2, Area_3, Area_4, Area_5 and Area_6 Splits). +- Users need to modify `train_area` and `test_area` in the S3DIS dataset's [config](./configs/_base_/datasets/s3dis_seg-3d-13class.py) to set the training and testing areas, respectively. + +## Indeterminism + +Since DGCNN testing adopts sliding patch inference which involves random point sampling, and the test script uses fixed random seeds while the random seeds of validation in training are not fixed, the test results may be slightly different from the results reported above. + +## Citation + +```latex +@article{dgcnn, + title={Dynamic Graph CNN for Learning on Point Clouds}, + author={Wang, Yue and Sun, Yongbin and Liu, Ziwei and Sarma, Sanjay E. and Bronstein, Michael M. and Solomon, Justin M.}, + journal={ACM Transactions on Graphics (TOG)}, + year={2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py new file mode 100644 index 000000000..6f1b5822a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py @@ -0,0 +1,24 @@ +_base_ = [ + '../_base_/datasets/s3dis_seg-3d-13class.py', '../_base_/models/dgcnn.py', + '../_base_/schedules/seg_cosine_100e.py', '../_base_/default_runtime.py' +] + +# data settings +data = dict(samples_per_gpu=32) +evaluation = dict(interval=2) + +# model settings +model = dict( + backbone=dict(in_channels=9), # [xyz, rgb, normalized_xyz] + decode_head=dict( + num_classes=13, ignore_index=13, + loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight + test_cfg=dict( + num_points=4096, + block_size=1.0, + sample_rate=0.5, + use_normalized_coord=True, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/dgcnn/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/metafile.yml new file mode 100644 index 000000000..87ff9156b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dgcnn/metafile.yml @@ -0,0 +1,24 @@ +Collections: + - Name: DGCNN + Metadata: + Training Techniques: + - SGD + Training Resources: 4x Titan XP GPUs + Architecture: + - DGCNN + Paper: https://arxiv.org/abs/1801.07829 + README: configs/dgcnn/README.md + +Models: + - Name: dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py + In Collection: DGCNN + Config: configs/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py + Metadata: + Training Data: S3DIS + Training Memory (GB): 13.3 + Results: + - Task: 3D Semantic Segmentation + Dataset: S3DIS + Metrics: + mIoU: 50.59 + Weights: https://download.openmmlab.com/mmdetection3d/v0.17.0_models/dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class/area5/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class_20210730_235824-f277e0c5.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/README.md b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/README.md new file mode 100644 index 000000000..ab2bbc698 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/README.md @@ -0,0 +1,40 @@ +# Dynamic Voxelization + +> [End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds](https://arxiv.org/abs/1910.06528) + + + +## Abstract + +Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point clouds are sparse and have highly variable point density, which may cause detectors difficulties in detecting distant or small objects (pedestrians, traffic signs, etc.). On the other hand, perspective view provides dense observations, which could allow more favorable feature encoding for such cases. In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multi-view fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both. Specifically, we introduce dynamic voxelization, which has four merits compared to existing voxelization methods, i) removing the need of pre-allocating a tensor with fixed size; ii) overcoming the information loss due to stochastic point/voxel dropout; iii) yielding deterministic voxel embeddings and more stable detection outcomes; iv) establishing the bi-directional relationship between points and voxels, which potentially lays a natural foundation for cross-view feature fusion. By employing dynamic voxelization, the proposed feature fusion architecture enables each point to learn to fuse context information from different views. MVF operates on points and can be naturally extended to other approaches using LiDAR point clouds. We evaluate our MVF model extensively on the newly released Waymo Open Dataset and on the KITTI dataset and demonstrate that it significantly improves detection accuracy over the comparable single-view PointPillars baseline. + +
+ +
+ +## Introduction + +We implement Dynamic Voxelization proposed in and provide its results and models on KITTI dataset. + +## Results and models + +### KITTI + +| Model | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :---------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECOND](./dv_second_secfpn_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 5.5 | | 78.83 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car/dv_second_secfpn_6x8_80e_kitti-3d-car_20200620_235228-ac2c1c0c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car/dv_second_secfpn_6x8_80e_kitti-3d-car_20200620_235228.log.json) | +| [SECOND](./dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py) | 3 Class | cosine 80e | 5.5 | | 65.27 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class_20210831_054106-e742d163.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class_20210831_054106.log.json) | +| [PointPillars](./dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py) | Car | cyclic 80e | 4.7 | | 77.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230844-ee7b75c9.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230844.log.json) | + +## Citation + +```latex +@article{zhou2019endtoend, + title={End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds}, + author={Yin Zhou and Pei Sun and Yu Zhang and Dragomir Anguelov and Jiyang Gao and Tom Ouyang and James Guo and Jiquan Ngiam and Vijay Vasudevan}, + year={2019}, + eprint={1910.06528}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py new file mode 100644 index 000000000..68baae917 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py @@ -0,0 +1,19 @@ +_base_ = '../pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py' + +voxel_size = [0.16, 0.16, 4] +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] + +model = dict( + type='DynamicVoxelNet', + voxel_layer=dict( + max_num_points=-1, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(-1, -1)), + voxel_encoder=dict( + type='DynamicPillarFeatureNet', + in_channels=4, + feat_channels=[64], + with_distance=False, + voxel_size=voxel_size, + point_cloud_range=point_cloud_range)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py new file mode 100644 index 000000000..87fefaddb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py @@ -0,0 +1,22 @@ +_base_ = [ + '../_base_/models/hv_second_secfpn_kitti.py', + '../_base_/datasets/kitti-3d-3class.py', '../_base_/schedules/cosine.py', + '../_base_/default_runtime.py' +] + +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +voxel_size = [0.05, 0.05, 0.1] + +model = dict( + type='DynamicVoxelNet', + voxel_layer=dict( + _delete_=True, + max_num_points=-1, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(-1, -1)), + voxel_encoder=dict( + _delete_=True, + type='DynamicSimpleVFE', + voxel_size=voxel_size, + point_cloud_range=point_cloud_range)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py new file mode 100644 index 000000000..9da4ffe57 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py @@ -0,0 +1,18 @@ +_base_ = '../second/hv_second_secfpn_6x8_80e_kitti-3d-car.py' + +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +voxel_size = [0.05, 0.05, 0.1] + +model = dict( + type='DynamicVoxelNet', + voxel_layer=dict( + _delete_=True, + max_num_points=-1, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(-1, -1)), + voxel_encoder=dict( + _delete_=True, + type='DynamicSimpleVFE', + voxel_size=voxel_size, + point_cloud_range=point_cloud_range)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/metafile.yml new file mode 100644 index 000000000..190c51de0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/dynamic_voxelization/metafile.yml @@ -0,0 +1,53 @@ +Collections: + - Name: Dynamic Voxelization + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - Dynamic Voxelization + Paper: + URL: https://arxiv.org/abs/1910.06528 + Title: 'End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds' + README: configs/dynamic_voxelization/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/dynamic_voxelnet.py#L11 + Version: v0.5.0 + +Models: + - Name: dv_second_secfpn_6x8_80e_kitti-3d-car + In Collection: Dynamic Voxelization + Config: configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py + Metadata: + Training Memory (GB): 5.5 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 78.83 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car/dv_second_secfpn_6x8_80e_kitti-3d-car_20200620_235228-ac2c1c0c.pth + + - Name: dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class + In Collection: Dynamic Voxelization + Config: configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py + Metadata: + Training Memory (GB): 5.5 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 65.27 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class_20210831_054106-e742d163.pth + + - Name: dv_pointpillars_secfpn_6x8_160e_kitti-3d-car + In Collection: Dynamic Voxelization + Config: configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py + Metadata: + Training Memory (GB): 4.7 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 77.76 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230844-ee7b75c9.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/fcos3d/README.md b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/README.md new file mode 100644 index 000000000..e47a489bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/README.md @@ -0,0 +1,75 @@ +# FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection + +> [FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection](https://arxiv.org/abs/2104.10956) + + + +## Abstract + +Monocular 3D object detection is an important task for autonomous driving considering its advantage of low cost. It is much more challenging than conventional 2D cases due to its inherent ill-posed property, which is mainly reflected in the lack of depth information. Recent progress on 2D detection offers opportunities to better solving this problem. However, it is non-trivial to make a general adapted 2D detector work in this 3D task. In this paper, we study this problem with a practice built on a fully convolutional single-stage detector and propose a general framework FCOS3D. Specifically, we first transform the commonly defined 7-DoF 3D targets to the image domain and decouple them as 2D and 3D attributes. Then the objects are distributed to different feature levels with consideration of their 2D scales and assigned only according to the projected 3D-center for the training procedure. Furthermore, the center-ness is redefined with a 2D Gaussian distribution based on the 3D-center to fit the 3D target formulation. All of these make this framework simple yet effective, getting rid of any 2D detection or 2D-3D correspondence priors. Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020. + +
+ +
+ +## Introduction + +FCOS3D is a general anchor-free, one-stage monocular 3D object detector adapted from the original 2D version FCOS. +It serves as a baseline built on top of mmdetection and mmdetection3d for 3D detection based on monocular vision. + +Currently we first support the benchmark on the large-scale nuScenes dataset, which achieved 1st place out of all the vision-only methods in the [nuScenes 3D detecton challenge](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera) of NeurIPS 2020. + +![demo image](../../resources/browse_dataset_mono.png) + +## Usage + +### Data Preparation + +After supporting FCOS3D and monocular 3D object detection in v0.13.0, the coco-style 2D json info files will include related annotations by default +(see [here](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/nuscenes_converter.py#L333) if you would like to change the parameter). +So you can just follow the data preparation steps given in the documentation, then all the needed infos are ready together. + +### Training and Inference + +The way to training and inference a monocular 3D object detector is the same as others in mmdetection and mmdetection3d. You can basically follow the [documentation](https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html#train-predefined-models-on-standard-datasets) and change the `config`, `work_dirs`, etc. accordingly. + +### Test time augmentation + +We implement test time augmentation for the dense outputs of detection heads, which is more effective than merging predicted boxes at last. +You can turn on it by setting `flip=True` in the `test_pipeline`. + +### Training with finetune + +Due to the scale and measurements of depth is different from those of other regression targets, we first train the model with depth weight equal to 0.2 for a more stable training procedure. For a stronger detector with better performance, please finetune the model with depth weight changed to 1.0 as shown in the [config](./fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py). Note that the path of `load_from` needs to be changed to yours accordingly. + +### Visualizing prediction results + +We also provide visualization functions to show the monocular 3D detection results. Simply follow the [documentation](https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html#test-existing-models-on-standard-datasets) and use the `single-gpu testing` command. You only need to add the `--show` flag and specify `--show-dir` to store the visualization results. + +## Results and models + +### NuScenes + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :--: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [ResNet101 w/ DCN](./fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py) | 1x | 8.69 | | 29.8 | 37.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813.log.json) | +| [above w/ finetune](./fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py) | 1x | 8.69 | | 32.1 | 39.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645.log.json) | +| above w/ tta | 1x | 8.69 | | 33.1 | 40.3 | | + +## Citation + +```latex +@inproceedings{wang2021fcos3d, + title={{FCOS3D: Fully} Convolutional One-Stage Monocular 3D Object Detection}, + author={Wang, Tai and Zhu, Xinge and Pang, Jiangmiao and Lin, Dahua}, + booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops}, + year={2021} +} +# For the original 2D version +@inproceedings{tian2019fcos, + title = {{FCOS: Fully} Convolutional One-Stage Object Detection}, + author = {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong}, + booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, + year = {2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py new file mode 100644 index 000000000..3b7eb99fc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py @@ -0,0 +1,75 @@ +_base_ = [ + '../_base_/datasets/nus-mono3d.py', '../_base_/models/fcos3d.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + backbone=dict( + dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), + stage_with_dcn=(False, False, True, True))) + +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=True, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d', + 'gt_labels_3d', 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + scale_factor=1.0, + flip=False, + transforms=[ + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) +# optimizer +optimizer = dict( + lr=0.002, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) +optimizer_config = dict( + _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[8, 11]) +total_epochs = 12 +evaluation = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py new file mode 100644 index 000000000..ade5b4ec9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py @@ -0,0 +1,8 @@ +_base_ = './fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py' +# model settings +model = dict( + train_cfg=dict( + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05])) +# optimizer +optimizer = dict(lr=0.001) +load_from = 'work_dirs/fcos3d_nus/latest.pth' diff --git a/cv/3d_detection/PAConv/pytorch/configs/fcos3d/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/metafile.yml new file mode 100644 index 000000000..11de49118 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/fcos3d/metafile.yml @@ -0,0 +1,43 @@ +Collections: + - Name: FCOS3D + Metadata: + Training Data: NuScenes + Training Techniques: + - SGD + Training Resources: 8x GeForce RTX 2080 Ti + Architecture: + - FCOSMono3DHead + Paper: + URL: https://arxiv.org/abs/2104.10956 + Title: 'FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection' + README: configs/fcos3d/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/fcos_mono3d.py#L7 + Version: v0.13.0 + +Models: + - Name: fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d + In Collection: FCOS3D + Config: configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py + Metadata: + Training Memory (GB): 8.7 + Results: + - Task: 3D Object Detection + Dataset: NuScenes + Metrics: + mAP: 29.9 + NDS: 37.3 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210425_181341-8d5a21fe.pth + + - Name: fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune + In Collection: FCOS3D + Config: configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py + Metadata: + Training Memory (GB): 8.7 + Results: + - Task: 3D Object Detection + Dataset: NuScenes + Metrics: + mAP: 32.1 + NDS: 39.3 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210427_091419-35aaaad0.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/README.md b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/README.md new file mode 100644 index 000000000..727a70063 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/README.md @@ -0,0 +1,105 @@ +# FreeAnchor for 3D Object Detection + +> [FreeAnchor: Learning to Match Anchors for Visual Object Detection](https://arxiv.org/abs/1909.02466) + + + +## Abstract + +Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor Intersection-over-Unit (IoU). In this study, we propose a learning-to-match approach to break IoU restriction, allowing objects to match anchors in a flexible manner. Our approach, referred to as FreeAnchor, updates hand-crafted anchor assignment to “free" anchor matching by formulating detector training as a maximum likelihood estimation (MLE) procedure. FreeAnchor targets at learning features which best explain a class of objects in terms of both classification and localization. FreeAnchor is implemented by optimizing detection customized likelihood and can be fused with CNN-based detectors in a plug-and-play manner. Experiments on COCO demonstrate that FreeAnchor consistently outperforms the counterparts with significant margins. + +
+ +
+ +## Introduction + +We implement FreeAnchor in 3D detection systems and provide their first results with PointPillars on nuScenes dataset. +With the implemented `FreeAnchor3DHead`, a PointPillar detector with a big backbone (e.g., RegNet-3.2GF) achieves top performance +on the nuScenes benchmark. + +## Usage + +### Modify config + +As in the [baseline config](hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py), we only need to replace the head of an existing one-stage detector to use FreeAnchor head. +Since the config is inherit from a common detector head, `_delete_=True` is necessary to avoid conflicts. +The hyperparameters are specifically tuned according to the original paper. + +```python +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_lyft.py', + '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py' +] + +model = dict( + pts_bbox_head=dict( + _delete_=True, + type='FreeAnchor3DHead', + num_classes=10, + in_channels=256, + feat_channels=256, + use_direction_classifier=True, + pre_anchor_topk=25, + bbox_thr=0.5, + gamma=2.0, + alpha=0.5, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-50, -50, -1.8, 50, 50, -1.8]], + scales=[1, 2, 4], + sizes=[ + [2.5981, 0.8660, 1.], # 1.5 / sqrt(3) + [1.7321, 0.5774, 1.], # 1 / sqrt(3) + [1., 1., 1.], + [0.4, 0.4, 1], + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=True), + assigner_per_size=False, + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi / 4 + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.8), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg = dict( + pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.25, 0.25]))) +``` + +## Results and models + +### PointPillars + +| Backbone | FreeAnchor | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :-------------------------------------------------------------------------------------------------------: | :--------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py) | ✗ | 2x | 17.1 | | 40.0 | 53.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json) | +| [FPN](./hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py) | ✓ | 2x | 16.3 | | 43.82 | 54.86 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441.log.json) | +| [RegNetX-400MF-FPN](../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py) | ✗ | 2x | 17.3 | | 44.8 | 56.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json) | +| [RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py) | ✓ | 2x | 17.6 | | 48.3 | 58.65 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_213939-a2dd3fff.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_213939.log.json) | +| [RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py) | ✓ | 2x | 24.3 | | 52.04 | 61.49 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210828_025608-bfbd506e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210828_025608.log.json) | +| [RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py)\* | ✓ | 3x | 24.4 | | 52.69 | 62.45 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210827_184909-14d2dbd1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210827_184909.log.json) | +| [RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py) | ✓ | 2x | 29.4 | | 52.4 | 61.94 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_181237-e385c35a.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_181237.log.json) | +| [RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py)\* | ✓ | 3x | 29.2 | | 54.23 | 63.41 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210828_030816-06708918.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210828_030816.log.json) | + +**Note**: Models noted by `*` means it is trained using stronger augmentation with vertical flip under bird-eye-view, global translation, and larger range of global rotation. + +## Citation + +```latex +@inproceedings{zhang2019freeanchor, + title = {{FreeAnchor}: Learning to Match Anchors for Visual Object Detection}, + author = {Zhang, Xiaosong and Wan, Fang and Liu, Chang and Ji, Rongrong and Ye, Qixiang}, + booktitle = {Neural Information Processing Systems}, + year = {2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py new file mode 100644 index 000000000..7412b9308 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py @@ -0,0 +1,47 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py' +] + +model = dict( + pts_bbox_head=dict( + _delete_=True, + type='FreeAnchor3DHead', + num_classes=10, + in_channels=256, + feat_channels=256, + use_direction_classifier=True, + pre_anchor_topk=25, + bbox_thr=0.5, + gamma=2.0, + alpha=0.5, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-50, -50, -1.8, 50, 50, -1.8]], + scales=[1, 2, 4], + sizes=[ + [2.5981, 0.8660, 1.], # 1.5 / sqrt(3) + [1.7321, 0.5774, 1.], # 1 / sqrt(3) + [1., 1., 1.], + [0.4, 0.4, 1], + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=True), + assigner_per_size=False, + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi / 4 + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.8), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.25, 0.25]))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py new file mode 100644 index 000000000..ef740a8ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py @@ -0,0 +1,18 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py' + +model = dict( + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_1.6gf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[168, 408, 912])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py new file mode 100644 index 000000000..d4e48d367 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py @@ -0,0 +1,70 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py' + +model = dict( + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_1.6gf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[168, 408, 912])) + +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-50, -50, -5, 50, 50, 3] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/nuscenes/': 's3://nuscenes/nuscenes/', +# 'data/nuscenes/': 's3://nuscenes/nuscenes/' +# })) +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.7854, 0.7854], + scale_ratio_range=[0.95, 1.05], + translation_std=[0.2, 0.2, 0.2]), + dict( + type='RandomFlip3D', + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +data = dict(train=dict(pipeline=train_pipeline)) + +lr_config = dict(step=[28, 34]) +runner = dict(max_epochs=36) +evaluation = dict(interval=36) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py new file mode 100644 index 000000000..13bc0d681 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py @@ -0,0 +1,18 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py' + +model = dict( + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_3.2gf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[192, 432, 1008])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py new file mode 100644 index 000000000..6fbce89bd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py @@ -0,0 +1,70 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py' + +model = dict( + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_3.2gf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[192, 432, 1008])) + +# If point cloud range is changed, the models should also change their point +# cloud range accordingly +point_cloud_range = [-50, -50, -5, 50, 50, 3] +# For nuScenes we usually do 10-class detection +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +file_client_args = dict(backend='disk') +# Uncomment the following if use ceph or other file clients. +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient +# for more details. +# file_client_args = dict( +# backend='petrel', +# path_mapping=dict({ +# './data/nuscenes/': 's3://nuscenes/nuscenes/', +# 'data/nuscenes/': 's3://nuscenes/nuscenes/' +# })) +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=file_client_args), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=file_client_args), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.7854, 0.7854], + scale_ratio_range=[0.9, 1.1], + translation_std=[0.2, 0.2, 0.2]), + dict( + type='RandomFlip3D', + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] + +data = dict(train=dict(pipeline=train_pipeline)) +lr_config = dict(step=[28, 34]) +runner = dict(max_epochs=36) +evaluation = dict(interval=36) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py new file mode 100644 index 000000000..2b5f254b1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py @@ -0,0 +1,18 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py' + +model = dict( + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_400mf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/free_anchor/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/metafile.yml new file mode 100644 index 000000000..73b55f5f8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/free_anchor/metafile.yml @@ -0,0 +1,96 @@ +Collections: + - Name: FreeAnchor + Metadata: + Training Data: nuScenes + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - Hard Voxelization + - Free Anchor + Paper: + URL: https://arxiv.org/abs/1909.02466 + Title: 'FreeAnchor: Learning to Match Anchors for Visual Object Detection' + README: configs/free_anchor/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/dense_heads/free_anchor3d_head.py#L13 + Version: v0.5.0 + +Models: + - Name: hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d + In Collection: FreeAnchor + Config: free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py + Metadata: + Training Memory (GB): 16.3 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 43.82 + NDS: 54.86 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth + + - Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d + In Collection: FreeAnchor + Config: configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py + Metadata: + Training Memory (GB): 17.6 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 48.3 + NDS: 58.65 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_213939-a2dd3fff.pth + + - Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d + In Collection: FreeAnchor + Config: configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py + Metadata: + Training Memory (GB): 24.3 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 52.04 + NDS: 61.49 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210828_025608-bfbd506e.pth + + - Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d + In Collection: FreeAnchor + Config: configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py + Metadata: + Training Memory (GB): 24.4 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 52.69 + NDS: 62.45 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210827_184909-14d2dbd1.pth + + - Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d + In Collection: FreeAnchor + Config: configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py + Metadata: + Training Memory (GB): 29.4 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 52.4 + NDS: 61.94 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_181237-e385c35a.pth + + - Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d + In Collection: FreeAnchor + Config: configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py + Metadata: + Training Memory (GB): 29.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 54.23 + NDS: 63.41 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210828_030816-06708918.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/README.md b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/README.md new file mode 100644 index 000000000..5b055e7e2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/README.md @@ -0,0 +1,44 @@ +# Group-Free 3D Object Detection via Transformers + +> [Group-Free 3D Object Detection via Transformers](https://arxiv.org/abs/2104.00678) + + + +## Abstract + +Recently, directly detecting 3D objects from 3D point clouds has received increasing attention. To extract object representation from an irregular point cloud, existing methods usually take a point grouping step to assign the points to an object candidate so that a PointNet-like network could be used to derive object features from the grouped points. However, the inaccurate point assignments caused by the hand-crafted grouping scheme decrease the performance of 3D object detection. In this paper, we present a simple yet effective method for directly detecting 3D objects from the 3D point cloud. Instead of grouping local points to each object candidate, our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers, where the contribution of each point is automatically learned in the network training. With an improved attention stacking scheme, our method fuses object features in different stages and generates more accurate object detection results. With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D. + +
+ +
+ +## Introduction + +We implement Group-Free-3D and provide the result and checkpoints on ScanNet datasets. + +## Results and models + +### ScanNet + +| Method | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :---------------------------------------------------------------: | :-----------: | :-----: | :------: | :------------: | :-------------: | :-------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [L6, O256](./groupfree3d_8x4_scannet-3d-18class-L6-O256.py) | PointNet++ | 3x | 6.7 | | 66.32 (65.67\*) | 47.82 (47.74\*) | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347-3499eb55.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347.log.json) | +| [L12, O256](./groupfree3d_8x4_scannet-3d-18class-L12-O256.py) | PointNet++ | 3x | 9.4 | | 66.57 (66.22\*) | 48.21 (48.95\*) | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907-1c5551ad.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907.log.json) | +| [L12, O256](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py) | PointNet++w2x | 3x | 13.3 | | 68.20 (67.30\*) | 51.02 (50.44\*) | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301-944f0ac0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301.log.json) | +| [L12, O512](./groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py) | PointNet++w2x | 3x | 18.8 | | 68.22 (68.20\*) | 52.61 (51.31\*) | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204-187b71c7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204.log.json) | + +**Notes:** + +- We report the best results (AP@0.50) on validation set during each training. * means the evaluation method in the paper: we train each setting 5 times and test each training trial 5 times, then the average performance of these 25 trials is reported to account for algorithm randomness. +- We use 4 GPUs for training by default as the original code. + +## Citation + +```latex +@article{liu2021, + title={Group-Free 3D Object Detection via Transformers}, + author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin}, + journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, + year={2021} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256.py b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256.py new file mode 100644 index 000000000..987bcec67 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256.py @@ -0,0 +1,199 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', + '../_base_/models/groupfree3d.py', '../_base_/schedules/schedule_3x.py', + '../_base_/default_runtime.py' +] + +# model settings +model = dict( + bbox_head=dict( + num_classes=18, + num_decoder_layers=12, + size_cls_agnostic=False, + bbox_coder=dict( + type='GroupFree3DBBoxCoder', + num_sizes=18, + num_dir_bins=1, + with_rot=False, + size_cls_agnostic=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]]), + sampling_objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=8.0), + objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', beta=0.04, reduction='sum', loss_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=10.0 / 9.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + test_cfg=dict( + sample_mod='kps', + nms_thr=0.25, + score_thr=0.0, + per_class_proposal=True, + prediction_stages='last_three')) + +# dataset settings +dataset_type = 'ScanNetDataset' +data_root = './data/scannet/' +class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + with_mask_3d=True, + with_seg_3d=True), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='PointSegClassMapping', + valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39)), + dict(type='PointSample', num_points=50000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0]), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', + 'pts_instance_mask' + ]) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=50000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +# optimizer +lr = 0.006 +optimizer = dict( + lr=lr, + weight_decay=0.0005, + paramwise_cfg=dict( + custom_keys={ + 'bbox_head.decoder_layers': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_self_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_cross_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_query_proj': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_key_proj': dict(lr_mult=0.1, decay_mult=1.0) + })) + +optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[56, 68]) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +checkpoint_config = dict(interval=1, max_keep_ckpts=10) diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py new file mode 100644 index 000000000..62821293f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py @@ -0,0 +1,198 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', + '../_base_/models/groupfree3d.py', '../_base_/schedules/schedule_3x.py', + '../_base_/default_runtime.py' +] + +# model settings +model = dict( + bbox_head=dict( + num_classes=18, + size_cls_agnostic=False, + bbox_coder=dict( + type='GroupFree3DBBoxCoder', + num_sizes=18, + num_dir_bins=1, + with_rot=False, + size_cls_agnostic=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]]), + sampling_objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=8.0), + objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', beta=0.04, reduction='sum', loss_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=10.0 / 9.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + test_cfg=dict( + sample_mod='kps', + nms_thr=0.25, + score_thr=0.0, + per_class_proposal=True, + prediction_stages='last_three')) + +# dataset settings +dataset_type = 'ScanNetDataset' +data_root = './data/scannet/' +class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + with_mask_3d=True, + with_seg_3d=True), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='PointSegClassMapping', + valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39)), + dict(type='PointSample', num_points=50000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0]), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', + 'pts_instance_mask' + ]) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=50000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +# optimizer +lr = 0.006 +optimizer = dict( + lr=lr, + weight_decay=0.0005, + paramwise_cfg=dict( + custom_keys={ + 'bbox_head.decoder_layers': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_self_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_cross_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_query_proj': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_key_proj': dict(lr_mult=0.1, decay_mult=1.0) + })) + +optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[56, 68]) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +checkpoint_config = dict(interval=1, max_keep_ckpts=10) diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py new file mode 100644 index 000000000..8551b7401 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py @@ -0,0 +1,214 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', + '../_base_/models/groupfree3d.py', '../_base_/schedules/schedule_3x.py', + '../_base_/default_runtime.py' +] + +# model settings +model = dict( + backbone=dict( + type='PointNet2SASSG', + in_channels=3, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((128, 128, 256), (256, 256, 512), (256, 256, 512), + (256, 256, 512)), + fp_channels=((512, 512), (512, 288)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True)), + bbox_head=dict( + num_classes=18, + num_decoder_layers=12, + size_cls_agnostic=False, + bbox_coder=dict( + type='GroupFree3DBBoxCoder', + num_sizes=18, + num_dir_bins=1, + with_rot=False, + size_cls_agnostic=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]]), + sampling_objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=8.0), + objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', beta=0.04, reduction='sum', loss_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=10.0 / 9.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + test_cfg=dict( + sample_mod='kps', + nms_thr=0.25, + score_thr=0.0, + per_class_proposal=True, + prediction_stages='last_three')) + +# dataset settings +dataset_type = 'ScanNetDataset' +data_root = './data/scannet/' +class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + with_mask_3d=True, + with_seg_3d=True), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='PointSegClassMapping', + valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39)), + dict(type='PointSample', num_points=50000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0]), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', + 'pts_instance_mask' + ]) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=50000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +# optimizer +lr = 0.006 +optimizer = dict( + lr=lr, + weight_decay=0.0005, + paramwise_cfg=dict( + custom_keys={ + 'bbox_head.decoder_layers': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_self_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_cross_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_query_proj': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_key_proj': dict(lr_mult=0.1, decay_mult=1.0) + })) + +optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[56, 68]) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +checkpoint_config = dict(interval=1, max_keep_ckpts=10) diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py new file mode 100644 index 000000000..199e08bf1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py @@ -0,0 +1,215 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', + '../_base_/models/groupfree3d.py', '../_base_/schedules/schedule_3x.py', + '../_base_/default_runtime.py' +] + +# model settings +model = dict( + backbone=dict( + type='PointNet2SASSG', + in_channels=3, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((128, 128, 256), (256, 256, 512), (256, 256, 512), + (256, 256, 512)), + fp_channels=((512, 512), (512, 288)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True)), + bbox_head=dict( + num_classes=18, + num_decoder_layers=12, + num_proposal=512, + size_cls_agnostic=False, + bbox_coder=dict( + type='GroupFree3DBBoxCoder', + num_sizes=18, + num_dir_bins=1, + with_rot=False, + size_cls_agnostic=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]]), + sampling_objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=8.0), + objectness_loss=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + center_loss=dict( + type='SmoothL1Loss', beta=0.04, reduction='sum', loss_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=10.0 / 9.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + test_cfg=dict( + sample_mod='kps', + nms_thr=0.25, + score_thr=0.0, + per_class_proposal=True, + prediction_stages='last_three')) + +# dataset settings +dataset_type = 'ScanNetDataset' +data_root = './data/scannet/' +class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + with_mask_3d=True, + with_seg_3d=True), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='PointSegClassMapping', + valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39)), + dict(type='PointSample', num_points=50000), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.087266, 0.087266], + scale_ratio_range=[1.0, 1.0]), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', + 'pts_instance_mask' + ]) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointSample', num_points=50000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=5, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + filter_empty_gt=False, + classes=class_names, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='Depth')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + box_type_3d='Depth')) + +# optimizer +lr = 0.006 +optimizer = dict( + lr=lr, + weight_decay=0.0005, + paramwise_cfg=dict( + custom_keys={ + 'bbox_head.decoder_layers': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_self_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_cross_posembeds': dict( + lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_query_proj': dict(lr_mult=0.1, decay_mult=1.0), + 'bbox_head.decoder_key_proj': dict(lr_mult=0.1, decay_mult=1.0) + })) + +optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) +lr_config = dict(policy='step', warmup=None, step=[56, 68]) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +checkpoint_config = dict(interval=1, max_keep_ckpts=10) diff --git a/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/metafile.yml new file mode 100644 index 000000000..ff0b63ccb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/groupfree3d/metafile.yml @@ -0,0 +1,72 @@ +Collections: + - Name: Group-Free-3D + Metadata: + Training Techniques: + - AdamW + Training Resources: 4x V100 GPUs + Architecture: + - PointNet++ + Paper: + URL: https://arxiv.org/abs/2104.00678 + Title: 'Group-Free 3D Object Detection via Transformers' + README: configs/groupfree3d/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/groupfree3dnet.py#L10 + Version: v0.15.0 + +Models: + - Name: groupfree3d_8x4_scannet-3d-18class-L6-O256.py + In Collection: Group-Free-3D + Config: configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 6.7 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 66.32 + AP@0.5: 47.82 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256/groupfree3d_8x4_scannet-3d-18class-L6-O256_20210702_145347-3499eb55.pth + + - Name: groupfree3d_8x4_scannet-3d-18class-L12-O256.py + In Collection: Group-Free-3D + Config: configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 9.4 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 66.57 + AP@0.5: 48.21 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-L12-O256/groupfree3d_8x4_scannet-3d-18class-L12-O256_20210702_150907-1c5551ad.pth + + - Name: groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py + In Collection: Group-Free-3D + Config: configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 13.3 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 68.20 + AP@0.5: 51.02 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O256_20210702_200301-944f0ac0.pth + + - Name: groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py + In Collection: Group-Free-3D + Config: configs/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 18.8 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 68.22 + AP@0.5: 52.61 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/groupfree3d/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512/groupfree3d_8x4_scannet-3d-18class-w2x-L12-O512_20210702_220204-187b71c7.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/h3dnet/README.md b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/README.md new file mode 100644 index 000000000..60cc30f3a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/README.md @@ -0,0 +1,44 @@ +# H3DNet: 3D Object Detection Using Hybrid Geometric Primitives + +> [H3DNet: 3D Object Detection Using Hybrid Geometric Primitives](https://arxiv.org/abs/2006.05682) + + + +## Abstract + +We introduce H3DNet, which takes a colorless 3D point cloud as input and outputs a collection of oriented object bounding boxes (or BB) and their semantic labels. The critical idea of H3DNet is to predict a hybrid set of geometric primitives, i.e., BB centers, BB face centers, and BB edge centers. We show how to convert the predicted geometric primitives into object proposals by defining a distance function between an object and the geometric primitives. This distance function enables continuous optimization of object proposals, and its local minimums provide high-fidelity object proposals. H3DNet then utilizes a matching and refinement module to classify object proposals into detected objects and fine-tune the geometric parameters of the detected objects. The hybrid set of geometric primitives not only provides more accurate signals for object detection than using a single type of geometric primitives, but it also provides an overcomplete set of constraints on the resulting 3D layout. Therefore, H3DNet can tolerate outliers in predicted geometric primitives. Our model achieves state-of-the-art 3D detection results on two large datasets with real 3D scans, ScanNet and SUN RGB-D. + +
+ +
+ +## Introduction + +We implement H3DNet and provide the result and checkpoints on ScanNet datasets. + +## Results and models + +### ScanNet + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :-------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [MultiBackbone](./h3dnet_3x8_scannet-3d-18class.py) | 3x | 7.9 | | 66.07 | 47.68 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_3x8_scannet-3d-18class_20210824_003149-414bd304.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_3x8_scannet-3d-18class_20210824_003149.log.json) | + +**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_h3dnet_checkpoints.py](../../tools/model_converters/convert_h3dnet_checkpoints.py): + +``` +python ./tools/model_converters/convert_h3dnet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH} +``` + +Then you can use the converted checkpoints following [getting_started.md](../../docs/en/getting_started.md). + +## Citation + +```latex +@inproceedings{zhang2020h3dnet, + author = {Zhang, Zaiwei and Sun, Bo and Yang, Haitao and Huang, Qixing}, + title = {H3DNet: 3D Object Detection Using Hybrid Geometric Primitives}, + booktitle = {Proceedings of the European Conference on Computer Vision}, + year = {2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py new file mode 100644 index 000000000..e6534a4be --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py @@ -0,0 +1,64 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', '../_base_/models/h3dnet.py', + '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' +] + +# model settings +model = dict( + rpn_head=dict( + num_classes=18, + bbox_coder=dict( + type='PartialBinBasedBBoxCoder', + num_sizes=18, + num_dir_bins=24, + with_rot=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]])), + roi_head=dict( + bbox_head=dict( + num_classes=18, + bbox_coder=dict( + type='PartialBinBasedBBoxCoder', + num_sizes=18, + num_dir_bins=24, + with_rot=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]])))) + +data = dict(samples_per_gpu=3, workers_per_gpu=2) + +# yapf:disable +log_config = dict(interval=30) +# yapf:enable diff --git a/cv/3d_detection/PAConv/pytorch/configs/h3dnet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/metafile.yml new file mode 100644 index 000000000..6d731d6d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/h3dnet/metafile.yml @@ -0,0 +1,29 @@ +Collections: + - Name: H3DNet + Metadata: + Training Data: ScanNet + Training Techniques: + - AdamW + Training Resources: 8x GeForce GTX 1080 Ti + Architecture: + Paper: + URL: https://arxiv.org/abs/2006.05682 + Title: 'H3DNet: 3D Object Detection Using Hybrid Geometric Primitives' + README: configs/h3dnet/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/h3dnet.py#L10 + Version: v0.6.0 + +Models: + - Name: h3dnet_3x8_scannet-3d-18class + In Collection: H3DNet + Config: configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py + Metadata: + Training Memory (GB): 7.9 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 66.07 + AP@0.5: 47.68 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_3x8_scannet-3d-18class_20210824_003149-414bd304.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvotenet/README.md b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/README.md new file mode 100644 index 000000000..a491b9d82 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/README.md @@ -0,0 +1,43 @@ +# ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes + +> [ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes](https://arxiv.org/abs/2001.10692) + + + +## Abstract + +3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VOTENET). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VOTENET and propose a 3D detection architecture called IMVOTENET specialized for RGB-D scenes. IMVOTENET is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice. + +
+ +
+ +## Introduction + +We implement ImVoteNet and provide the result and checkpoints on SUNRGBD. + +## Results and models + +### SUNRGBD-2D (Stage 1, image branch pre-train) + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :---------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++](./imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py) | | 2.1 | | | 62.70 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210819_225618-62eba6ce.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210819_225618.json) | + +### SUNRGBD-3D (Stage 2) + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :---------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++](./imvotenet_stage2_16x8_sunrgbd-3d-10class.py) | 3x | 9.4 | | 64.55 | | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210819_192851-1bcd1b97.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210819_192851.log.json) | + +## Citation + +```latex +@inproceedings{qi2020imvotenet, + title={Imvotenet: Boosting 3D object detection in point clouds with image votes}, + author={Qi, Charles R and Chen, Xinlei and Litany, Or and Guibas, Leonidas J}, + booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, + pages={4404--4413}, + year={2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py new file mode 100644 index 000000000..e999c6502 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py @@ -0,0 +1,58 @@ +_base_ = [ + '../_base_/datasets/sunrgbd-3d-10class.py', '../_base_/default_runtime.py', + '../_base_/models/imvotenet_image.py' +] + +# use caffe img_norm +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict( + type='Resize', + img_scale=[(1333, 480), (1333, 504), (1333, 528), (1333, 552), + (1333, 576), (1333, 600)], + multiscale_mode='value', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 600), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict(times=1, dataset=dict(pipeline=train_pipeline)), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) + +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=None) +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=0.001, + step=[6]) +runner = dict(type='EpochBasedRunner', max_epochs=8) + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py new file mode 100644 index 000000000..ef1e5539e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py @@ -0,0 +1,260 @@ +_base_ = [ + '../_base_/datasets/sunrgbd-3d-10class.py', + '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py', + '../_base_/models/imvotenet_image.py' +] + +class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', + 'night_stand', 'bookshelf', 'bathtub') + +# use caffe img_norm +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) + +model = dict( + pts_backbone=dict( + type='PointNet2SASSG', + in_channels=4, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), + (128, 128, 256)), + fp_channels=((256, 256), (256, 256)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True)), + pts_bbox_heads=dict( + common=dict( + type='VoteHead', + num_classes=10, + bbox_coder=dict( + type='PartialBinBasedBBoxCoder', + num_sizes=10, + num_dir_bins=12, + with_rot=True, + mean_sizes=[[2.114256, 1.620300, 0.927272], + [0.791118, 1.279516, 0.718182], + [0.923508, 1.867419, 0.845495], + [0.591958, 0.552978, 0.827272], + [0.699104, 0.454178, 0.75625], + [0.69519, 1.346299, 0.736364], + [0.528526, 1.002642, 1.172878], + [0.500618, 0.632163, 0.683424], + [0.404671, 1.071108, 1.688889], + [0.76584, 1.398258, 0.472728]]), + pred_layer_cfg=dict( + in_channels=128, shared_conv_channels=(128, 128), bias=True), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=dict( + type='CrossEntropyLoss', + class_weight=[0.2, 0.8], + reduction='sum', + loss_weight=5.0), + center_loss=dict( + type='ChamferDistance', + mode='l2', + reduction='sum', + loss_src_weight=10.0, + loss_dst_weight=10.0), + dir_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + dir_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0), + size_class_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0), + size_res_loss=dict( + type='SmoothL1Loss', reduction='sum', loss_weight=10.0 / 3.0), + semantic_loss=dict( + type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)), + joint=dict( + vote_module_cfg=dict( + in_channels=512, + vote_per_seed=1, + gt_per_seed=3, + conv_channels=(512, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=256, + radius=0.3, + num_sample=16, + mlp_channels=[512, 128, 128, 128], + use_xyz=True, + normalize_xyz=True)), + pts=dict( + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=3, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=256, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True)), + img=dict( + vote_module_cfg=dict( + in_channels=256, + vote_per_seed=1, + gt_per_seed=3, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + norm_feats=True, + vote_loss=dict( + type='ChamferDistance', + mode='l1', + reduction='none', + loss_dst_weight=10.0)), + vote_aggregation_cfg=dict( + type='PointSAModule', + num_point=256, + radius=0.3, + num_sample=16, + mlp_channels=[256, 128, 128, 128], + use_xyz=True, + normalize_xyz=True)), + loss_weights=[0.4, 0.3, 0.3]), + img_mlp=dict( + in_channel=18, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU')), + fusion_layer=dict( + type='VoteFusion', + num_classes=len(class_names), + max_imvote_per_pixel=3), + num_sampled_seed=1024, + freeze_img_branch=True, + + # model training and testing settings + train_cfg=dict( + pts=dict( + pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote')), + test_cfg=dict( + img_rcnn=dict(score_thr=0.1), + pts=dict( + sample_mod='seed', + nms_thr=0.25, + score_thr=0.05, + per_class_proposal=True))) + +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations3D'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='Resize', img_scale=(1333, 600), keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.0), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + ), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.523599, 0.523599], + scale_ratio_range=[0.85, 1.15], + shift_height=True), + dict(type='PointSample', num_points=20000), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'points', 'gt_bboxes_3d', + 'gt_labels_3d' + ]) +] + +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=True, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 600), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.0), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + ), + dict(type='PointSample', num_points=20000), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img', 'points']) + ]), +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img', 'points']) +] + +data = dict( + train=dict(dataset=dict(pipeline=train_pipeline)), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) +evaluation = dict(pipeline=eval_pipeline) + +# may also use your own pre-trained image branch +load_from = 'https://download.openmmlab.com/mmdetection3d/v0.1.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210323_173222-cad62aeb.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvotenet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/metafile.yml new file mode 100644 index 000000000..28051c430 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvotenet/metafile.yml @@ -0,0 +1,43 @@ +Collections: + - Name: ImVoteNet + Metadata: + Training Data: SUNRGBD + Training Techniques: + - AdamW + Training Resources: 8x TITAN Xp + Architecture: + - Faster R-CNN + - VoteNet + - Feature Pyramid Network + Paper: + URL: https://arxiv.org/abs/2001.10692 + Title: 'ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes' + README: configs/imvotenet/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/imvotenet.py#L56 + Version: v0.12.0 + +Models: + - Name: imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class + In Collection: ImVoteNet + Config: configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py + Metadata: + Training Memory (GB): 2.1 + Results: + - Task: Object Detection + Dataset: SUNRGBD-2D + Metrics: + AP@0.5: 62.70 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210819_225618-62eba6ce.pth + + - Name: imvotenet_stage2_16x8_sunrgbd-3d-10class + In Collection: ImVoteNet + Config: configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py + Metadata: + Training Memory (GB): 9.4 + Results: + - Task: 3D Object Detection + Dataset: SUNRGBD-3D + Metrics: + AP@0.25: 64.55 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210819_192851-1bcd1b97.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/README.md b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/README.md new file mode 100644 index 000000000..faaddf294 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/README.md @@ -0,0 +1,38 @@ +# ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection + +> [ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection](https://arxiv.org/abs/2106.01178) + + + +## Abstract + +In this paper, we introduce the task of multi-view RGB-based 3D object detection as an end-to-end optimization problem. To address this problem, we propose ImVoxelNet, a novel fully convolutional method of 3D object detection based on posed monocular or multi-view RGB images. The number of monocular images in each multiview input can variate during training and inference; actually, this number might be unique for each multi-view input. ImVoxelNet successfully handles both indoor and outdoor scenes, which makes it general-purpose. Specifically, it achieves state-of-the-art results in car detection on KITTI (monocular) and nuScenes (multi-view) benchmarks among all methods that accept RGB images. Moreover, it surpasses existing RGB-based 3D object detection methods on the SUN RGB-D dataset. On ScanNet, ImVoxelNet sets a new benchmark for multi-view 3D object detection. + +
+ +
+ +## Introduction + +We implement a monocular 3D detector ImVoxelNet and provide its results and checkpoints on KITTI dataset. +Results for SUN RGB-D, ScanNet and nuScenes are currently available in ImVoxelNet authors +[repo](https://github.com/saic-vul/imvoxelnet) (based on mmdetection3d). + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :---------------------------------------: | :---: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [ResNet-50](./imvoxelnet_kitti-3d-car.py) | Car | 3x | | | 17.26 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014-3d0ffdf4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014.log.json) | + +## Citation + +```latex +@article{rukhovich2021imvoxelnet, + title={ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection}, + author={Danila Rukhovich, Anna Vorontsova, Anton Konushin}, + journal={arXiv preprint arXiv:2106.01178}, + year={2021} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py new file mode 100644 index 000000000..89bf24266 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py @@ -0,0 +1,162 @@ +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +model = dict( + type='ImVoxelNet', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=False), + norm_eval=True, + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=64, + num_outs=4), + neck_3d=dict(type='OutdoorImVoxelNeck', in_channels=64, out_channels=256), + bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + in_channels=256, + feat_channels=256, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-0.16, -39.68, -1.78, 68.96, 39.68, -1.78]], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=True), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + n_voxels=[216, 248, 12], + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-0.16, -39.68, -3.08, 68.96, 39.68, 0.76]], + rotations=[.0]), + train_cfg=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) + +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +input_modality = dict(use_lidar=False, use_camera=True) +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) + +train_pipeline = [ + dict(type='LoadAnnotations3D'), + dict(type='LoadImageFromFile'), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='Resize', + img_scale=[(1173, 352), (1387, 416)], + keep_ratio=True, + multiscale_mode='range'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='Resize', img_scale=(1280, 384), keep_ratio=True), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=3, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True)) + +optimizer = dict( + type='AdamW', + lr=0.0001, + weight_decay=0.0001, + paramwise_cfg=dict( + custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) +optimizer_config = dict(grad_clip=dict(max_norm=35., norm_type=2)) +lr_config = dict(policy='step', step=[8, 11]) +total_epochs = 12 + +checkpoint_config = dict(interval=1, max_keep_ckpts=1) +log_config = dict( + interval=1, + hooks=[dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook')]) +evaluation = dict(interval=1) +dist_params = dict(backend='nccl') +find_unused_parameters = True # only 1 of 4 FPN outputs is used +log_level = 'INFO' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/metafile.yml new file mode 100644 index 000000000..0dea48669 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/imvoxelnet/metafile.yml @@ -0,0 +1,29 @@ +Collections: + - Name: ImVoxelNet + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 8x Tesla P40 + Architecture: + - Anchor3DHead + Paper: + URL: https://arxiv.org/abs/2106.01178 + Title: 'ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection' + README: configs/imvoxelnet/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/imvoxelnet.py#L11 + Version: v0.15.0 + +Models: + - Name: imvoxelnet_kitti-3d-car + In Collection: ImVoxelNet + Config: configs/imvoxelnet/imvoxelnet_kitti-3d-car.py + Metadata: + Training Memory (GB): 15.0 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 17.26 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014-3d0ffdf4.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/monoflex/README.md b/cv/3d_detection/PAConv/pytorch/configs/monoflex/README.md new file mode 100644 index 000000000..0f402be24 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/monoflex/README.md @@ -0,0 +1,48 @@ +# Objects are Different: Flexible Monocular 3D Object Detection + +> [Objects are Different: Flexible Monocular 3D Object Detection](https://arxiv.org/abs/2104.02323) + + + +## Abstract + +The precise localization of 3D objects from a single image without depth information is a highly challenging problem. Most existing methods adopt the same approach for all objects regardless of their diverse distributions, leading to limited performance for truncated objects. In this paper, we propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation. Specifically, we decouple the edge of the feature map for predicting long-tail truncated objects so that the optimization of normal objects is not influenced. Furthermore, we formulate the object depth estimation as an uncertainty-guided ensemble of directly regressed object depth and solved depths from different groups of keypoints. Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark while maintaining real-time efficiency. + +
+ +
+ +## Introduction + +We implement MonoFlex and provide the results and checkpoints on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :---------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [DLA34](./monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 21.86 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553.log.json) | + +Note: mAP represents Car moderate 3D strict AP11 results. +Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric: + +| | Easy | Moderate | Hard | +| ---------- | :-----------: | :-----------: | :-----------: | +| Car (AP11) | 28.02 / 36.11 | 21.86 / 29.46 | 19.01 / 24.83 | +| Car (AP40) | 23.22 / 32.74 | 17.18 / 24.02 | 15.13 / 20.67 | + +Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, the AP11 result may fluctuate in a larger range (~1 AP), so AP40 is a more recommended metric for reference due to its much better stability. + +## Citation + +```latex +@InProceedings{MonoFlex, + author = {Zhang, Yunpeng and Lu, Jiwen and Zhou, Jie}, + title = {Objects Are Different: Flexible Monocular 3D Object Detection}, + booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, + month = {June}, + year = {2021}, + pages = {3289-3298} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/monoflex/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/monoflex/metafile.yml new file mode 100644 index 000000000..c64dd6ffb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/monoflex/metafile.yml @@ -0,0 +1,30 @@ +Collections: + - Name: MonoFlex + Metadata: + Training Data: KITTI + Training Techniques: + - Adam + Training Resources: 2x V100 GPUS + Architecture: + - MonoFlexHead + - DLA + Paper: + URL: https://arxiv.org/abs/2104.02323 + Title: 'Objects are Different: Flexible Monocular 3D Object Detection' + README: configs/monoflex/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/models/detectors/monoflex.py#L7 + Version: v1.0.0 + +Models: + - Name: monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d + In Collection: MonoFlex + Config: configs/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d.py + Metadata: + Training Memory (GB): 9.64 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 21.98 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/mvxnet/README.md b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/README.md new file mode 100644 index 000000000..d786efa77 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/README.md @@ -0,0 +1,38 @@ +# MVX-Net: Multimodal VoxelNet for 3D Object Detection + +> [MVX-Net: Multimodal VoxelNet for 3D Object Detection](https://arxiv.org/abs/1904.01649) + + + +## Abstract + +Many recent works on 3D object detection have focused on designing neural network architectures that can consume point cloud data. While these approaches demonstrate encouraging performance, they are typically based on a single modality and are unable to leverage information from other modalities, such as a camera. Although a few approaches fuse data from different modalities, these methods either use a complicated pipeline to process the modalities sequentially, or perform late-fusion and are unable to learn interaction between different modalities at early stages. In this work, we present PointFusion and VoxelFusion: two simple yet effective early-fusion approaches to combine the RGB and point cloud modalities, by leveraging the recently introduced VoxelNet architecture. Evaluation on the KITTI dataset demonstrates significant improvements in performance over approaches which only use point cloud data. Furthermore, the proposed method provides results competitive with the state-of-the-art multimodal algorithms, achieving top-2 ranking in five of the six bird's eye view and 3D detection categories on the KITTI benchmark, by using a simple single stage network. + +
+ +
+ +## Introduction + +We implement MVX-Net and provide its results and models on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :-------------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py) | 3 Class | cosine 80e | 6.7 | | 63.22 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805.log.json) | + +## Citation + +```latex +@inproceedings{sindagi2019mvx, + title={MVX-Net: Multimodal voxelnet for 3D object detection}, + author={Sindagi, Vishwanath A and Zhou, Yin and Tuzel, Oncel}, + booktitle={2019 International Conference on Robotics and Automation (ICRA)}, + pages={7276--7282}, + year={2019}, + organization={IEEE} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py new file mode 100644 index 000000000..e9f592f5f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py @@ -0,0 +1,251 @@ +_base_ = ['../_base_/schedules/cosine.py', '../_base_/default_runtime.py'] + +# model settings +voxel_size = [0.05, 0.05, 0.1] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] + +model = dict( + type='DynamicMVXFasterRCNN', + img_backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=False), + norm_eval=True, + style='caffe'), + img_neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + num_outs=5), + pts_voxel_layer=dict( + max_num_points=-1, + point_cloud_range=point_cloud_range, + voxel_size=voxel_size, + max_voxels=(-1, -1), + ), + pts_voxel_encoder=dict( + type='DynamicVFE', + in_channels=4, + feat_channels=[64, 64], + with_distance=False, + voxel_size=voxel_size, + with_cluster_center=True, + with_voxel_center=True, + point_cloud_range=point_cloud_range, + fusion_layer=dict( + type='PointFusion', + img_channels=256, + pts_channels=64, + mid_channels=128, + out_channels=128, + img_levels=[0, 1, 2, 3, 4], + align_corners=False, + activate_out=True, + fuse_out=False)), + pts_middle_encoder=dict( + type='SparseEncoder', + in_channels=128, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + pts_backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + pts_neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + pts_bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[ + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78], + ], + sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + assigner_per_size=True, + diff_rad_by_sin=True, + assign_per_class=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + pts=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False)), + test_cfg=dict( + pts=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50))) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +input_modality = dict(use_lidar=True, use_camera=True) +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='Resize', + img_scale=[(640, 192), (2560, 768)], + multiscale_mode='range', + keep_ratio=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05], + translation_std=[0.2, 0.2, 0.2]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']), +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1280, 384), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict(type='Resize', multiscale_mode='value', keep_ratio=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points', 'img']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadImageFromFile'), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points', 'img']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + box_type_3d='LiDAR')), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) + +# Training settings +optimizer = dict(weight_decay=0.01) +# max_norm=10 is better for SECOND +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) + +evaluation = dict(interval=1, pipeline=eval_pipeline) + +# You may need to download the model first is the network is unstable +load_from = 'https://download.openmmlab.com/mmdetection3d/pretrain_models/mvx_faster_rcnn_detectron2-caffe_20e_coco-pretrain_gt-sample_kitti-3-class_moderate-79.3_20200207-a4a6a3c7.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/mvxnet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/metafile.yml new file mode 100644 index 000000000..4ce10b710 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/mvxnet/metafile.yml @@ -0,0 +1,30 @@ +Collections: + - Name: MVX-Net + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - Feature Pyramid Network + - Dynamic Voxelization + Paper: + URL: https://arxiv.org/abs/1904.01649 + Title: 'MVX-Net: Multimodal VoxelNet for 3D Object Detection' + README: configs/mvxnet/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/mvx_two_stage.py#L20 + Version: v0.5.0 + +Models: + - Name: dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class + In Collection: MVX-Net + Config: configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py + Metadata: + Training Memory (GB): 6.7 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 63.22 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/README.md b/cv/3d_detection/PAConv/pytorch/configs/nuimages/README.md new file mode 100644 index 000000000..910622969 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/README.md @@ -0,0 +1,59 @@ +# NuImages Results + + + +## Introduction + +We support and provide some baseline results on [nuImages dataset](https://www.nuscenes.org/nuimages). +We follow the class mapping in nuScenes dataset, which maps the original categories into 10 foreground categories. +The convert script can be found [here](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/nuimage_converter.py). +The baseline results include instance segmentation models, e.g., Mask R-CNN, Cascade Mask R-CNN, and HTC. +We will support panoptic segmentation models in the future. + +![demo image](../../resources/nuimages_demo.gif) + +The dataset converted by the script of v0.6.0 only supports instance segmentation. Since v0.7.0, we also support to produce semantic segmentation mask of each image; thus, we can train HTC or semantic segmentation models using the dataset. To convert the nuImages dataset into COCO format, please use the command below: + +```shell +python -u tools/data_converter/nuimage_converter.py --data-root ${DATA_ROOT} --version ${VERSIONS} \ + --out-dir ${OUT_DIR} --nproc ${NUM_WORKERS} --extra-tag ${TAG} +``` + +- `--data-root`: the root of the dataset, defaults to `./data/nuimages`. +- `--version`: the version of the dataset, defaults to `v1.0-mini`. To get the full dataset, please use `--version v1.0-train v1.0-val v1.0-mini` +- `--out-dir`: the output directory of annotations and semantic masks, defaults to `./data/nuimages/annotations/`. +- `--nproc`: number of workers for data preparation, defaults to `4`. Larger number could reduce the preparation time as images are processed in parallel. +- `--extra-tag`: extra tag of the annotations, defaults to `nuimages`. This can be used to separate different annotations processed in different time for study. + +## Results and models + +### Instance Segmentation + +We report Mask R-CNN and Cascade Mask R-CNN results on nuimages. + +| Method | Backbone | Pretraining | Lr schd | Mem (GB) | Box AP | Mask AP | Download | +| :----------------: | :-----------------------------------------------------------------------------------: | :---------: | :-----: | :------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| Mask R-CNN | [R-50](./mask_rcnn_r50_fpn_1x_nuim.py) | IN | 1x | 7.4 | 47.8 | 38.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238-e99f5182.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238.log.json) | +| Mask R-CNN | [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) | IN+COCO-2x | 1x | 7.4 | 49.7 | 40.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238.log.json) | +| Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) | IN | 1x | 7.0 | 47.7 | 38.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) | +| Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) | IN+COCO-3x | 1x | 7.0 | 49.9 | 40.8 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305.log.json) | +| Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py) | IN+COCO-3x | 20e | 7.0 | 50.6 | 41.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002.log.json) | +| Mask R-CNN | [R-101](./mask_rcnn_r101_fpn_1x_nuim.py) | IN | 1x | 10.9 | 48.9 | 39.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803.log.json) | +| Mask R-CNN | [X-101_32x4d](./mask_rcnn_x101_32x4d_fpn_1x_nuim.py) | IN | 1x | 13.3 | 50.4 | 40.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741.log.json) | +| Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_1x_nuim.py) | IN | 1x | 8.9 | 50.8 | 40.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342.log.json) | +| Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py) | IN+COCO-20e | 1x | 8.9 | 52.8 | 42.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158-ad0540e3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158.log.json) | +| Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py) | IN+COCO-20e | 20e | 8.9 | 52.8 | 42.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951.log.json) | +| Cascade Mask R-CNN | [R-101](./cascade_mask_rcnn_r101_fpn_1x_nuim.py) | IN | 1x | 12.5 | 51.5 | 40.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804.log.json) | +| Cascade Mask R-CNN | [X-101_32x4d](./cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py) | IN | 1x | 14.9 | 52.8 | 41.6 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753-e0e49778.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753.log.json) | +| HTC w/o semantic | [R-50](./htc_without_semantic_r50_fpn_1x_nuim.py) | IN | 1x | | [model](<>) \| [log](<>) | | | +| HTC | [R-50](./htc_r50_fpn_1x_nuim.py) | IN | 1x | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/) | | | +| HTC | [R-50](./htc_r50_fpn_coco-20e_1x_nuim.py) | IN+COCO-20e | 1x | 11.6 | 53.8 | 43.8 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203-0b53a65e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203.log.json) | +| HTC | [R-50](./htc_r50_fpn_coco-20e_20e_nuim.py) | IN+COCO-20e | 20e | 11.6 | 54.8 | 44.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415-d6c60a2c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415.log.json) | +| HTC | [X-101_64x4d + DCN_c3-c5](./htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py) | IN+COCO-20e | 20e | 13.3 | 57.3 | 46.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222-0b16ac4b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222.log.json) | + +**Note**: + +1. `IN` means only using ImageNet pre-trained backbone. `IN+COCO-Nx` and `IN+COCO-Ne` means the backbone is first pre-trained on ImageNet, and then the detector is pre-trained on COCO train2017 dataset by `Nx` and `N` epochs schedules, respectively. +2. All the training hyper-parameters follow the standard schedules on COCO dataset except that the images are resized from + 1280 x 720 to 1920 x 1080 (relative ratio 0.8 to 1.2) since the images are in size 1600 x 900. +3. The class order in the detectors released in v0.6.0 is different from the order in the configs because the bug in the conversion script. This bug has been fixed since v0.7.0 and the models trained by the correct class order are also released. If you used nuImages since v0.6.0, please re-convert the data through the conversion script using the above-mentioned command. diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py new file mode 100644 index 000000000..28a54f715 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py @@ -0,0 +1,2 @@ +_base_ = './cascade_mask_rcnn_r50_fpn_1x_nuim.py' +model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py new file mode 100644 index 000000000..c6ce25e3f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py @@ -0,0 +1,60 @@ +_base_ = [ + '../_base_/models/cascade_mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + roi_head=dict( + bbox_head=[ + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.05, 0.05, 0.1, 0.1]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.033, 0.033, 0.067, 0.067]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) + ], + mask_head=dict(num_classes=10))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py new file mode 100644 index 000000000..bf3ffed06 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py @@ -0,0 +1,3 @@ +_base_ = './cascade_mask_rcnn_r50_fpn_1x_nuim.py' + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py new file mode 100644 index 000000000..5d69466f5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py @@ -0,0 +1,7 @@ +_base_ = './cascade_mask_rcnn_r50_fpn_1x_nuim.py' + +# learning policy +lr_config = dict(step=[16, 19]) +runner = dict(max_epochs=20) + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py new file mode 100644 index 000000000..19f35aefe --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py @@ -0,0 +1,13 @@ +_base_ = './cascade_mask_rcnn_r50_fpn_1x_nuim.py' +model = dict( + pretrained='open-mmlab://resnext101_32x4d', + backbone=dict( + type='ResNeXt', + depth=101, + groups=32, + base_width=4, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + style='pytorch')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_1x_nuim.py new file mode 100644 index 000000000..46806836f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_1x_nuim.py @@ -0,0 +1,44 @@ +_base_ = './htc_without_semantic_r50_fpn_1x_nuim.py' +model = dict( + roi_head=dict( + semantic_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), + out_channels=256, + featmap_strides=[8]), + semantic_head=dict( + type='FusedSemanticHead', + num_ins=5, + fusion_level=1, + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=32, + ignore_label=0, + loss_weight=0.2))) + +data_root = 'data/nuimages/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), + dict( + type='Resize', + img_scale=[(1280, 720), (1920, 1080)], + multiscale_mode='range', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='SegRescale', scale_factor=1 / 8), + dict(type='DefaultFormatBundle'), + dict( + type='Collect', + keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']) +] +data = dict( + train=dict( + seg_prefix=data_root + 'annotations/semantic_masks/', + pipeline=train_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py new file mode 100644 index 000000000..e5f60523d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py @@ -0,0 +1,3 @@ +_base_ = './htc_r50_fpn_1x_nuim.py' + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py new file mode 100644 index 000000000..2274900f4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py @@ -0,0 +1,4 @@ +_base_ = './htc_r50_fpn_coco-20e_1x_nuim.py' +# learning policy +lr_config = dict(step=[16, 19]) +runner = dict(max_epochs=20) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_without_semantic_r50_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_without_semantic_r50_fpn_1x_nuim.py new file mode 100644 index 000000000..09fde6716 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_without_semantic_r50_fpn_1x_nuim.py @@ -0,0 +1,221 @@ +_base_ = [ + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + type='HybridTaskCascade', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + num_outs=5), + rpn_head=dict( + type='RPNHead', + in_channels=256, + feat_channels=256, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8], + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0]), + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), + roi_head=dict( + type='HybridTaskCascadeRoIHead', + interleaved=True, + mask_info_flow=True, + num_stages=3, + stage_loss_weights=[1, 0.5, 0.25], + bbox_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + bbox_head=[ + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.05, 0.05, 0.1, 0.1]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0)), + dict( + type='Shared2FCBBoxHead', + in_channels=256, + fc_out_channels=1024, + roi_feat_size=7, + num_classes=10, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[0., 0., 0., 0.], + target_stds=[0.033, 0.033, 0.067, 0.067]), + reg_class_agnostic=True, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) + ], + mask_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + mask_head=[ + dict( + type='HTCMaskHead', + with_conv_res=False, + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=10, + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), + dict( + type='HTCMaskHead', + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=10, + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), + dict( + type='HTCMaskHead', + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=10, + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) + ]), + # model training and testing settings + train_cfg=dict( + rpn=dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=256, + pos_fraction=0.5, + neg_pos_ub=-1, + add_gt_as_proposals=False), + allowed_border=0, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_across_levels=False, + nms_pre=2000, + nms_post=2000, + max_per_img=2000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=[ + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.5, + neg_iou_thr=0.5, + min_pos_iou=0.5, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False), + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.6, + neg_iou_thr=0.6, + min_pos_iou=0.6, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False), + dict( + assigner=dict( + type='MaxIoUAssigner', + pos_iou_thr=0.7, + neg_iou_thr=0.7, + min_pos_iou=0.7, + ignore_iof_thr=-1), + sampler=dict( + type='RandomSampler', + num=512, + pos_fraction=0.25, + neg_pos_ub=-1, + add_gt_as_proposals=True), + mask_size=28, + pos_weight=-1, + debug=False) + ]), + test_cfg=dict( + rpn=dict( + nms_across_levels=False, + nms_pre=1000, + nms_post=1000, + max_per_img=1000, + nms=dict(type='nms', iou_threshold=0.7), + min_bbox_size=0), + rcnn=dict( + score_thr=0.001, + nms=dict(type='nms', iou_threshold=0.5), + max_per_img=100, + mask_thr_binary=0.5))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py new file mode 100644 index 000000000..4ab095a88 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py @@ -0,0 +1,23 @@ +_base_ = './htc_r50_fpn_1x_nuim.py' +model = dict( + pretrained='open-mmlab://resnext101_64x4d', + backbone=dict( + type='ResNeXt', + depth=101, + groups=64, + base_width=4, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + style='pytorch', + dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), + stage_with_dcn=(False, True, True, True))) + +data = dict(samples_per_gpu=1, workers_per_gpu=1) +# learning policy +lr_config = dict(step=[16, 19]) +runner = dict(max_epochs=20) + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py new file mode 100644 index 000000000..6245194c7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py @@ -0,0 +1,2 @@ +_base_ = './mask_rcnn_r50_fpn_1x_nuim.py' +model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py new file mode 100644 index 000000000..4af79e59f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py @@ -0,0 +1,46 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + pretrained='open-mmlab://detectron2/resnet50_caffe', + backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) +# use caffe img_norm +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), + dict( + type='Resize', + img_scale=[(1280, 720), (1920, 1080)], + multiscale_mode='range', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1600, 900), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py new file mode 100644 index 000000000..32c3f44cb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py @@ -0,0 +1,48 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + pretrained='open-mmlab://detectron2/resnet50_caffe', + backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) +# use caffe img_norm +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), + dict( + type='Resize', + img_scale=[(1280, 720), (1920, 1080)], + multiscale_mode='range', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1600, 900), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) + +load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py new file mode 100644 index 000000000..609735392 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py @@ -0,0 +1,52 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + pretrained='open-mmlab://detectron2/resnet50_caffe', + backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) +# use caffe img_norm +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), + dict( + type='Resize', + img_scale=[(1280, 720), (1920, 1080)], + multiscale_mode='range', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1600, 900), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) + +# learning policy +lr_config = dict(step=[16, 19]) +runner = dict(max_epochs=20) + +load_from = 'http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py new file mode 100644 index 000000000..ec999ecd2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py @@ -0,0 +1,8 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py new file mode 100644 index 000000000..fd603538d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py @@ -0,0 +1,9 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) +load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth' # noqa diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nus-2d.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nus-2d.py new file mode 100644 index 000000000..06d274500 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nus-2d.py @@ -0,0 +1,39 @@ +_base_ = [ + '../_base_/models/mask_rcnn_r50_fpn.py', + '../_base_/datasets/nuim_instance.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +model = dict( + roi_head=dict( + bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) + +file_client_args = dict( + backend='petrel', + path_mapping=dict({ + './data/nuscenes/': 's3://nuscenes/nuscenes/', + 'data/nuscenes/': 's3://nuscenes/nuscenes/' + })) +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) + +test_pipeline = [ + dict(type='LoadImageFromFile', file_client_args=file_client_args), + dict( + type='MultiScaleFlipAug', + img_scale=(1600, 900), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data_root = 'data/nuimages/' +# data = dict( +# val=dict( +# ann_file=data_root + 'annotations/nuimages_v1.0-mini.json'), +# test=dict( +# ann_file=data_root + 'annotations/nuimages_v1.0-mini.json')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py new file mode 100644 index 000000000..eb3e81b6f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py @@ -0,0 +1,13 @@ +_base_ = './mask_rcnn_r50_fpn_1x_nuim.py' +model = dict( + pretrained='open-mmlab://resnext101_32x4d', + backbone=dict( + type='ResNeXt', + depth=101, + groups=32, + base_width=4, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + norm_cfg=dict(type='BN', requires_grad=True), + style='pytorch')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/nuimages/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/nuimages/metafile.yml new file mode 100644 index 000000000..7b94ce7d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/nuimages/metafile.yml @@ -0,0 +1,255 @@ +Models: + - Name: mask_rcnn_r50_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 7.4 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 47.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 38.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238-e99f5182.pth + + - Name: mask_rcnn_r50_fpn_coco-2x_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py + Metadata: + Training Memory (GB): 7.4 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 49.7 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 40.5 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth + + - Name: mask_rcnn_r50_caffe_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 7.0 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 47.7 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 38.2 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/ + + - Name: mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py + Metadata: + Training Memory (GB): 7.0 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 49.9 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 40.8 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth + + - Name: mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py + Metadata: + Training Memory (GB): 7.0 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 50.6 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 41.3 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth + + - Name: mask_rcnn_r101_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 10.9 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 48.9 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 39.1 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth + + - Name: mask_rcnn_x101_32x4d_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 13.3 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 50.4 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 40.5 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth + + - Name: cascade_mask_rcnn_r50_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 8.9 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 50.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 40.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth + + - Name: cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py + Metadata: + Training Memory (GB): 8.9 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 52.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 42.2 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158-ad0540e3.pth + + - Name: cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py + Metadata: + Training Memory (GB): 8.9 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 52.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 42.2 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth + + - Name: cascade_mask_rcnn_r101_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 12.5 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 51.5 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 40.7 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth + + - Name: cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py + Metadata: + Training Memory (GB): 14.9 + Training Resources: 8x TITAN Xp + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 52.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 41.6 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753-e0e49778.pth + + - Name: htc_r50_fpn_coco-20e_1x_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py + Metadata: + Training Memory (GB): 11.6 + Training Resources: 8x V100 GPUs + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 53.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 43.8 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203-0b53a65e.pth + + - Name: htc_r50_fpn_coco-20e_20e_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py + Metadata: + Training Memory (GB): 11.6 + Training Resources: 8x V100 GPUs + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 54.8 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 44.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415-d6c60a2c.pth + + - Name: htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim + In Collection: Mask R-CNN + Config: configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py + Metadata: + Training Memory (GB): 13.3 + Training Resources: 8x V100 GPUs + Results: + - Task: Object Detection + Dataset: nuImages + Metrics: + Box AP: 57.3 + - Task: Instance Segmentation + Dataset: nuImages + Metrics: + Mask AP: 46.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222-0b16ac4b.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/paconv/README.md b/cv/3d_detection/PAConv/pytorch/configs/paconv/README.md new file mode 100644 index 000000000..83ab5b089 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/paconv/README.md @@ -0,0 +1,51 @@ +# PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds + +> [PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds](https://arxiv.org/abs/2103.14635) + + + +## Abstract + +We introduce Position Adaptive Convolution (PAConv), a generic convolution operation for 3D point cloud processing. The key of PAConv is to construct the convolution kernel by dynamically assembling basic weight matrices stored in Weight Bank, where the coefficients of these weight matrices are self-adaptively learned from point positions through ScoreNet. In this way, the kernel is built in a data-driven manner, endowing PAConv with more flexibility than 2D convolutions to better handle the irregular and unordered point cloud data. Besides, the complexity of the learning process is reduced by combining weight matrices instead of brutally predicting kernels from point positions. +Furthermore, different from the existing point convolution operators whose network architectures are often heavily engineered, we integrate our PAConv into classical MLP-based point cloud pipelines without changing network configurations. Even built on simple networks, our method still approaches or even surpasses the state-of-the-art models, and significantly improves baseline performance on both classification and segmentation tasks, yet with decent efficiency. Thorough ablation studies and visualizations are provided to understand PAConv. + +
+ +
+ +## Introduction + +We implement PAConv and provide the result and checkpoints on S3DIS dataset. + +**Notice**: The original PAConv paper used step learning rate schedule. We discovered that cosine schedule achieves slightly better results and adopt it in our implementations. + +## Results and models + +### S3DIS + +| Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download | +| :-------------------------------------------------------------------------: | :----: | :---------: | :------: | :------------: | :------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PAConv (SSG)](./paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py) | Area_5 | cosine 150e | 5.8 | | 66.65 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615.log.json) | +| [PAConv\* (SSG)](./paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py) | Area_5 | cosine 200e | 3.8 | | 65.33 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802-e5ea9bb9.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802.log.json) | + +**Notes:** + +- We use XYZ+Color+Normalized_XYZ as input in all the experiments on S3DIS datasets. +- `Area_5` Split means training the model on Area_1, 2, 3, 4, 6 and testing on Area_5. +- PAConv\* stands for the CUDA implementation of PAConv operations. See the [paper](https://arxiv.org/pdf/2103.14635.pdf) appendix section D for more details. In our experiments, the training of PAConv\* is found to be very unstable. We achieved slightly lower mIoU than the result in the paper, but is consistent with the result obtained by running their [official code](https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg). Besides, although the GPU memory consumption of PAConv\* is significantly lower than PAConv, its training and inference speed are actually slower (by ~10%). + +## Indeterminism + +Since PAConv testing adopts sliding patch inference which involves random point sampling, and the test script uses fixed random seeds while the random seeds of validation in training are not fixed, the test results may be slightly different from the results reported above. + +## Citation + +```latex +@inproceedings{xu2021paconv, + title={PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds}, + author={Xu, Mutian and Ding, Runyu and Zhao, Hengshuang and Qi, Xiaojuan}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={3173--3182}, + year={2021} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/paconv/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/paconv/metafile.yml new file mode 100644 index 000000000..589f80794 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/paconv/metafile.yml @@ -0,0 +1,29 @@ +Collections: + - Name: PAConv + Metadata: + Training Techniques: + - SGD + Training Resources: 8x Titan XP GPUs + Architecture: + - PAConv + Paper: + URL: https://arxiv.org/abs/2103.14635 + Title: 'PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds' + README: configs/paconv/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/paconv/paconv.py#L106 + Version: v0.16.0 + +Models: + - Name: paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py + In Collection: PAConv + Config: configs/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py + Metadata: + Training Data: S3DIS + Training Memory (GB): 5.8 + Results: + - Task: 3D Semantic Segmentation + Dataset: S3DIS + Metrics: + mIoU: 66.65 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py new file mode 100644 index 000000000..b2a1440e8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py @@ -0,0 +1,69 @@ +_base_ = [ + '../_base_/datasets/s3dis_seg-3d-13class.py', + '../_base_/models/paconv_cuda_ssg.py', + '../_base_/schedules/seg_cosine_150e.py', '../_base_/default_runtime.py' +] + +# data settings +class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', + 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') +num_points = 4096 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=tuple(range(len(class_names))), + max_cat_id=13), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.0, + use_normalized_coord=True, + num_try=10000, + enlarge_size=None, + min_unique_num=num_points // 4, + eps=0.0), + dict(type='NormalizePointsColor', color_mean=None), + dict( + type='GlobalRotScaleTrans', + rot_range=[0.0, 6.283185307179586], # [0, 2 * pi] + scale_ratio_range=[0.8, 1.2], + translation_std=[0, 0, 0]), + dict( + type='RandomJitterPoints', + jitter_std=[0.01, 0.01, 0.01], + clip_range=[-0.05, 0.05]), + dict(type='RandomDropPointsColor', drop_ratio=0.2), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict(samples_per_gpu=8, train=dict(pipeline=train_pipeline)) +evaluation = dict(interval=1) + +# model settings +model = dict( + decode_head=dict( + num_classes=13, ignore_index=13, + loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight + test_cfg=dict( + num_points=4096, + block_size=1.0, + sample_rate=0.5, + use_normalized_coord=True, + batch_size=12)) + +# runtime settings +runner = dict(max_epochs=200) diff --git a/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py new file mode 100644 index 000000000..6b22a67fb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py @@ -0,0 +1,66 @@ +_base_ = [ + '../_base_/datasets/s3dis_seg-3d-13class.py', + '../_base_/models/paconv_ssg.py', '../_base_/schedules/seg_cosine_150e.py', + '../_base_/default_runtime.py' +] + +# data settings +class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', + 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') +num_points = 4096 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=tuple(range(len(class_names))), + max_cat_id=13), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.0, + use_normalized_coord=True, + num_try=10000, + enlarge_size=None, + min_unique_num=num_points // 4, + eps=0.0), + dict(type='NormalizePointsColor', color_mean=None), + dict( + type='GlobalRotScaleTrans', + rot_range=[0.0, 6.283185307179586], # [0, 2 * pi] + scale_ratio_range=[0.8, 1.2], + translation_std=[0, 0, 0]), + dict( + type='RandomJitterPoints', + jitter_std=[0.01, 0.01, 0.01], + clip_range=[-0.05, 0.05]), + dict(type='RandomDropPointsColor', drop_ratio=0.2), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict(samples_per_gpu=8, train=dict(pipeline=train_pipeline)) +evaluation = dict(interval=1) + +# model settings +model = dict( + decode_head=dict( + num_classes=13, ignore_index=13, + loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight + test_cfg=dict( + num_points=4096, + block_size=1.0, + sample_rate=0.5, + use_normalized_coord=True, + batch_size=12)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/parta2/README.md b/cv/3d_detection/PAConv/pytorch/configs/parta2/README.md new file mode 100644 index 000000000..b94b8492a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/parta2/README.md @@ -0,0 +1,38 @@ +# From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network + +> [From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network](https://arxiv.org/abs/1907.03670) + + + +## Abstract + +3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. + +
+ +
+ +## Introduction + +We implement Part-A^2 and provide its results and checkpoints on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) | +| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) | + +## Citation + +```latex +@article{shi2020points, + title={From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network}, + author={Shi, Shaoshuai and Wang, Zhe and Shi, Jianping and Wang, Xiaogang and Li, Hongsheng}, + journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, + year={2020}, + publisher={IEEE} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py new file mode 100644 index 000000000..116623189 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py @@ -0,0 +1,122 @@ +_base_ = [ + '../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py', + '../_base_/models/parta2.py' +] + +point_cloud_range = [0, -40, -3, 70.4, 40, 1] + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), + classes=class_names, + sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)) +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0.5], + global_rot_range=[0.0, 0.0], + rot_range=[-0.78539816, 0.78539816]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +eval_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_train.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + box_type_3d='LiDAR', + test_mode=False)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + box_type_3d='LiDAR', + test_mode=True), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'kitti_infos_val.pkl', + split='training', + pts_prefix='velodyne_reduced', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + box_type_3d='LiDAR', + test_mode=True)) + +# Part-A2 uses a different learning rate from what SECOND uses. +lr = 0.001 +optimizer = dict(lr=lr) +evaluation = dict(pipeline=eval_pipeline) +find_unused_parameters = True diff --git a/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py new file mode 100644 index 000000000..89be085d8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py @@ -0,0 +1,137 @@ +_base_ = './hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py' + +point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z + +model = dict( + rpn_head=dict( + type='PartA2RPNHead', + num_classes=1, + anchor_generator=dict( + _delete_=True, + type='Anchor3DRangeGenerator', + ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=False)), + roi_head=dict( + num_classes=1, + semantic_head=dict(num_classes=1), + bbox_head=dict(num_classes=1)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + rpn=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + allowed_border=0, + pos_weight=-1, + debug=False), + rpn_proposal=dict( + nms_pre=9000, + nms_post=512, + max_num=512, + nms_thr=0.8, + score_thr=0, + use_rotate_nms=False), + rcnn=dict( + assigner=dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'), + pos_iou_thr=0.55, + neg_iou_thr=0.55, + min_pos_iou=0.55, + ignore_iof_thr=-1), + sampler=dict( + type='IoUNegPiecewiseSampler', + num=128, + pos_fraction=0.55, + neg_piece_fractions=[0.8, 0.2], + neg_iou_piece_thrs=[0.55, 0.1], + neg_pos_ub=-1, + add_gt_as_proposals=False, + return_iou=True), + cls_pos_thr=0.75, + cls_neg_thr=0.25)), + test_cfg=dict( + rpn=dict( + nms_pre=1024, + nms_post=100, + max_num=100, + nms_thr=0.7, + score_thr=0, + use_rotate_nms=True), + rcnn=dict( + use_rotate_nms=True, + use_raw_score=True, + nms_thr=0.01, + score_thr=0.1))) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +input_modality = dict(use_lidar=True, use_camera=False) +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + classes=class_names, + sample_groups=dict(Car=15)) +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0.5], + global_rot_range=[0.0, 0.0], + rot_range=[-0.78539816, 0.78539816]), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectNameFilter', classes=class_names), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + train=dict(dataset=dict(pipeline=train_pipeline, classes=class_names)), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +find_unused_parameters = True diff --git a/cv/3d_detection/PAConv/pytorch/configs/parta2/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/parta2/metafile.yml new file mode 100644 index 000000000..d626fcb04 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/parta2/metafile.yml @@ -0,0 +1,41 @@ +Collections: + - Name: Part-A^2 + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - Sparse U-Net + Paper: + URL: https://arxiv.org/abs/1907.03670 + Title: 'From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network' + README: configs/parta2/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/parta2.py#L12 + Version: v0.5.0 + +Models: + - Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class + In Collection: Part-A^2 + Config: configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py + Metadata: + Training Memory (GB): 4.1 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 68.33 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth + + - Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car + In Collection: Part-A^2 + Config: configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py + Metadata: + Training Memory (GB): 4.0 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 79.08 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/README.md b/cv/3d_detection/PAConv/pytorch/configs/pgd/README.md new file mode 100644 index 000000000..f805f53d2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/README.md @@ -0,0 +1,69 @@ +# Probabilistic and Geometric Depth: Detecting Objects in Perspective + +> [Probabilistic and Geometric Depth: Detecting Objects in Perspective](https://arxiv.org/abs/2107.14160) + + + +## Abstract + +3D object detection is an important capability needed in various practical applications such as driver assistance systems. Monocular 3D detection, as a representative general setting among image-based approaches, provides a more economical solution than conventional settings relying on LiDARs but still yields unsatisfactory results. This paper first presents a systematic study on this problem. We observe that the current monocular 3D detection can be simplified as an instance depth estimation problem: The inaccurate instance depth blocks all the other 3D attribute predictions from improving the overall detection performance. Moreover, recent methods directly estimate the depth based on isolated instances or pixels while ignoring the geometric relations across different objects. To this end, we construct geometric relation graphs across predicted objects and use the graph to facilitate depth estimation. As the preliminary depth estimation of each instance is usually inaccurate in this ill-posed setting, we incorporate a probabilistic representation to capture the uncertainty. It provides an important indicator to identify confident predictions and further guide the depth propagation. Despite the simplicity of the basic idea, our method, PGD, obtains significant improvements on KITTI and nuScenes benchmarks, achieving 1st place out of all monocular vision-only methods while still maintaining real-time efficiency. Code and models will be released at [this https URL](https://github.com/open-mmlab/mmdetection3d). + +
+ +
+ +## Introduction + +PGD, also can be regarded as FCOS3D++, is a simple yet effective monocular 3D detector. It enhances the FCOS3D baseline by involving local geometric constraints and improving instance depth estimation. + +We release the code and model for both KITTI and nuScenes benchmark, which is a good supplement for the original FCOS3D baseline (only supported on nuScenes). + +For clean implementation, our preliminary release supports base models with proposed local geometric constraints and the probabilistic depth representation. We will involve the geometric graph part in the future. + +A more extensive study based on FCOS3D and PGD is on-going. Please stay tuned. + +## Results and models + +### KITTI + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP_11 / mAP_40 | Download | +| :--------------------------------------------------------------: | :-----: | :------: | :------------: | :-------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [ResNet101](./pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py) | 4x | 9.07 | | 18.33 / 13.23 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608.log.json) | + +Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric: + +| | Easy | Moderate | Hard | +| ---------- | :-----------: | :-----------: | :-----------: | +| Car (AP11) | 24.09 / 30.11 | 18.33 / 23.46 | 16.90 / 19.33 | +| Car (AP40) | 19.27 / 26.60 | 13.23 / 18.23 | 10.65 / 15.00 | + +Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, AP40 is a more recommended metric for reference due to its much better stability. + +### NuScenes + +| Backbone | Lr schd | Mem (GB) | mAP | NDS | Download | +| :------------------------------------------------------------------------------: | :-----: | :------: | :--: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py) | 1x | 9.20 | 31.7 | 39.3 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350.log.json) | +| [above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py) | 1x | 9.20 | 34.6 | 41.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245.log.json) | +| above w/ tta | 1x | 9.20 | 35.5 | 41.8 | | +| [ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py) | 2x | 9.20 | 33.6 | 40.9 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314.log.json) | +| [above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py) | 2x | 9.20 | 35.8 | 42.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135-5ec7c1cd.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135.log.json) | +| above w/ tta | 2x | 9.20 | 36.8 | 43.1 | | + +## Citation + +```latex +@inproceedings{wang2021pgd, + title={{Probabilistic and Geometric Depth: Detecting} Objects in Perspective}, + author={Wang, Tai and Zhu, Xinge and Pang, Jiangmiao and Lin, Dahua}, + booktitle={Conference on Robot Learning (CoRL) 2021}, + year={2021} +} +# For the baseline version +@inproceedings{wang2021fcos3d, + title={{FCOS3D: Fully} Convolutional One-Stage Monocular 3D Object Detection}, + author={Wang, Tai and Zhu, Xinge and Pang, Jiangmiao and Lin, Dahua}, + booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops}, + year={2021} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/pgd/metafile.yml new file mode 100644 index 000000000..d7d66265e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/metafile.yml @@ -0,0 +1,81 @@ +Collections: + - Name: PGD + Metadata: + Training Data: KITTI + Training Techniques: + - SGD + Training Resources: 4x TITAN XP + Architecture: + - PGDHead + Paper: + URL: https://arxiv.org/abs/2107.14160 + Title: 'Probabilistic and Geometric Depth: Detecting Objects in Perspective' + README: configs/pgd/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/models/dense_heads/pgd_head.py#17 + Version: v1.0.0 + +Models: + - Name: pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d + In Collection: PGD + Config: configs/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py + Metadata: + Training Memory (GB): 9.1 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 18.33 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth + + - Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d + In Collection: PGD + Config: configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py + Metadata: + Training Memory (GB): 9.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 31.7 + NDS: 39.3 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth + + - Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune + In Collection: PGD + Config: configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py + Metadata: + Training Memory (GB): 9.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 34.6 + NDS: 41.1 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth + + - Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d + In Collection: PGD + Config: configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py + Metadata: + Training Memory (GB): 9.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 33.6 + NDS: 40.9 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth + + - Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune + In Collection: PGD + Config: configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py + Metadata: + Training Memory (GB): 9.2 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 35.8 + NDS: 42.5 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135-5ec7c1cd.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py new file mode 100644 index 000000000..37b504931 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py @@ -0,0 +1,107 @@ +_base_ = [ + '../_base_/datasets/nus-mono3d.py', '../_base_/models/pgd.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + backbone=dict( + dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), + stage_with_dcn=(False, False, True, True)), + bbox_head=dict( + pred_bbox2d=True, + group_reg_dims=(2, 1, 3, 1, 2, + 4), # offset, depth, size, rot, velo, bbox2d + reg_branch=( + (256, ), # offset + (256, ), # depth + (256, ), # size + (256, ), # rot + (), # velo + (256, ) # bbox2d + ), + loss_depth=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + bbox_coder=dict( + type='PGDBBoxCoder', + base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97), + (40.91, 26.34), (34.16, 20.11), (22.35, 13.70), + (24.28, 16.05), (27.26, 15.50), (20.61, 13.68), + (22.74, 15.01)), + base_dims=((4.62, 1.73, 1.96), (6.93, 2.83, 2.51), + (12.56, 3.89, 2.94), (11.22, 3.50, 2.95), + (6.68, 3.21, 2.85), (6.68, 3.21, 2.85), + (2.11, 1.46, 0.78), (0.73, 1.77, 0.67), + (0.41, 1.08, 0.41), (0.50, 0.99, 2.52)), + code_size=9)), + # set weight 1.0 for base 7 dims (offset, depth, size, rot) + # 0.05 for 2-dim velocity and 0.2 for 4-dim 2D distance targets + train_cfg=dict(code_weight=[ + 1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2 + ]), + test_cfg=dict(nms_pre=1000, nms_thr=0.8, score_thr=0.01, max_per_img=200)) + +class_names = [ + 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', + 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' +] +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=True, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d', + 'gt_labels_3d', 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + scale_factor=1.0, + flip=False, + transforms=[ + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) +# optimizer +optimizer = dict( + lr=0.004, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) +optimizer_config = dict( + _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[8, 11]) +total_epochs = 12 +evaluation = dict(interval=4) +runner = dict(max_epochs=total_epochs) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py new file mode 100644 index 000000000..f5d64232d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py @@ -0,0 +1,9 @@ +_base_ = './pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py' +# model settings +model = dict( + train_cfg=dict(code_weight=[ + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2 + ])) +# optimizer +optimizer = dict(lr=0.002) +load_from = 'work_dirs/pgd_nus_benchmark_1x/latest.pth' diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py new file mode 100644 index 000000000..2dd595753 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py @@ -0,0 +1,5 @@ +_base_ = './pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py' +# learning policy +lr_config = dict(step=[16, 22]) +total_epochs = 24 +runner = dict(max_epochs=total_epochs) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py new file mode 100644 index 000000000..19a3d630b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py @@ -0,0 +1,9 @@ +_base_ = './pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py' +# model settings +model = dict( + train_cfg=dict(code_weight=[ + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2 + ])) +# optimizer +optimizer = dict(lr=0.002) +load_from = 'work_dirs/pgd_nus_benchmark_2x/latest.pth' diff --git a/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py new file mode 100644 index 000000000..832b34e64 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py @@ -0,0 +1,127 @@ +_base_ = [ + '../_base_/datasets/kitti-mono3d.py', '../_base_/models/pgd.py', + '../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + backbone=dict(frozen_stages=0), + neck=dict(start_level=0, num_outs=4), + bbox_head=dict( + num_classes=3, + bbox_code_size=7, + pred_attrs=False, + pred_velo=False, + pred_bbox2d=True, + use_onlyreg_proj=True, + strides=(4, 8, 16, 32), + regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 1e8)), + group_reg_dims=(2, 1, 3, 1, 16, + 4), # offset, depth, size, rot, kpts, bbox2d + reg_branch=( + (256, ), # offset + (256, ), # depth + (256, ), # size + (256, ), # rot + (256, ), # kpts + (256, ) # bbox2d + ), + centerness_branch=(256, ), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + use_depth_classifier=True, + depth_branch=(256, ), + depth_range=(0, 70), + depth_unit=10, + division='uniform', + depth_bins=8, + pred_keypoints=True, + weight_dim=1, + loss_depth=dict( + type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0, + loss_weight=1.0), + bbox_coder=dict( + type='PGDBBoxCoder', + base_depths=((28.01, 16.32), ), + base_dims=((0.8, 1.73, 0.6), (1.76, 1.73, 0.6), (3.9, 1.56, 1.6)), + code_size=7)), + # set weight 1.0 for base 7 dims (offset, depth, size, rot) + # 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets + train_cfg=dict(code_weight=[ + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, + 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0 + ]), + test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20)) + +class_names = ['Pedestrian', 'Cyclist', 'Car'] +img_norm_cfg = dict( + mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=False, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='Resize', img_scale=(1242, 375), keep_ratio=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_3d', 'gt_labels_3d', + 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + scale_factor=1.0, + flip=False, + transforms=[ + dict(type='RandomFlip3D'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=3, + workers_per_gpu=3, + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) +# optimizer +optimizer = dict( + lr=0.001, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) +optimizer_config = dict( + _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[32, 44]) +total_epochs = 48 +runner = dict(type='EpochBasedRunner', max_epochs=48) +evaluation = dict(interval=2) +checkpoint_config = dict(interval=8) diff --git a/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/README.md b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/README.md new file mode 100644 index 000000000..eddbdc726 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/README.md @@ -0,0 +1,47 @@ +# PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud + +> [PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud](https://arxiv.org/abs/1812.04244) + + + +## Abstract + +In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. + +
+ +
+ +## Introduction + +We implement PointRCNN and provide the result with checkpoints on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :-------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++](./point_rcnn_2x8_kitti-3d-3classes.py) | 3 Class | cyclic 40e | 4.6 | | 70.83 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.log.json) | + +Note: mAP represents AP11 results on 3 Class under the moderate setting. + +Detailed performance on KITTI 3D detection (3D) is as follows, evaluated by AP11 metric: + +| | Easy | Moderate | Hard | +| ---------- | :---: | :------: | :---: | +| Car | 89.13 | 78.72 | 78.24 | +| Pedestrian | 65.81 | 59.57 | 52.75 | +| Cyclist | 93.51 | 74.19 | 70.73 | + +## Citation + +```latex +@inproceedings{Shi_2019_CVPR, + title = {PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud}, + author = {Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng}, + booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + month = {June}, + year = {2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/metafile.yml new file mode 100644 index 000000000..a7627cee6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/metafile.yml @@ -0,0 +1,29 @@ +Collections: + - Name: PointRCNN + Metadata: + Training Data: KITTI + Training Techniques: + - AdamW + Training Resources: 8x Titan XP GPUs + Architecture: + - PointNet++ + Paper: + URL: https://arxiv.org/abs/1812.04244 + Title: 'PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud' + README: configs/point_rcnn/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/models/detectors/point_rcnn.py#L8 + Version: v1.0.0 + +Models: + - Name: point_rcnn_2x8_kitti-3d-3classes.py + In Collection: PointRCNN + Config: configs/point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py + Metadata: + Training Memory (GB): 4.6 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 70.83 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py new file mode 100644 index 000000000..1344aca5c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py @@ -0,0 +1,94 @@ +_base_ = [ + '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py', + '../_base_/default_runtime.py', '../_base_/schedules/cyclic_40e.py' +] + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car', 'Pedestrian', 'Cyclist'] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +input_modality = dict(use_lidar=True, use_camera=False) + +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), + sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15), + classes=class_names) + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectSample', db_sampler=db_sampler), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='ObjectNoise', + num_try=100, + translation_std=[1.0, 1.0, 0.5], + global_rot_range=[0.0, 0.0], + rot_range=[-0.78539816, 0.78539816]), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointSample', num_points=16384, sample_range=40.0), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointSample', num_points=16384, sample_range=40.0), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=2, + workers_per_gpu=2, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict(pipeline=train_pipeline, classes=class_names)), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +# optimizer +lr = 0.001 # max learning rate +optimizer = dict(lr=lr, betas=(0.95, 0.85)) +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=80) +evaluation = dict(interval=2) +# yapf:disable +log_config = dict( + interval=30, + hooks=[ + dict(type='TextLoggerHook'), + dict(type='TensorboardLoggerHook') + ]) +# yapf:enable diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/README.md b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/README.md new file mode 100644 index 000000000..c9204eb1b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/README.md @@ -0,0 +1,72 @@ +# PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space + +> [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) + + + +## Abstract + +Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds. + +
+ +
+ +## Introduction + +We implement PointNet++ and provide the result and checkpoints on ScanNet and S3DIS datasets. + +**Notice**: The original PointNet++ paper used step learning rate schedule. We discovered that cosine schedule achieves much better results and adopt it in our implementations. We also use a larger `weight_decay` factor because we find it consistently improves the performance. + +## Results and models + +### ScanNet + +| Method | Input | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | mIoU (Test set) | Download | +| :-------------------------------------------------------------------------------------: | :-------: | :---------: | :------: | :------------: | :------------: | :-------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| [PointNet++ (SSG)](./pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ | cosine 200e | 1.9 | | 53.91 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628.log.json) | +| [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 200e | 1.9 | | 54.44 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644.log.json) | +| [PointNet++ (MSG)](./pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ | cosine 250e | 2.4 | | 54.26 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838.log.json) | +| [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 250e | 2.4 | | 55.05 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009.log.json) | + +**Notes:** + +- The original PointNet++ paper conducted experiments on the ScanNet V1 dataset, while later point cloud segmentor papers often used ScanNet V2. Following common practice, we report results on the ScanNet V2 dataset. + +- Since ScanNet dataset doesn't provide ground-truth labels for the test set, users can only evaluate test set performance by submitting to its online benchmark [website](http://kaldir.vc.in.tum.de/scannet_benchmark/). However, users are only allowed to submit once every two weeks. Therefore, we currently report val set mIoU. Test set performance may be added in the future. + +- To generate submission file for ScanNet online benchmark, you need to modify the ScanNet dataset's [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/scannet_seg-3d-20class.py#L126). Change `ann_file=data_root + 'scannet_infos_val.pkl'` to `ann_file=data_root + 'scannet_infos_test.pkl'`, and then simply run: + + ```shell + python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --format-only --options 'txt_prefix=exps/pointnet2_scannet_results' + ``` + + This will save the prediction results as `txt` files in `exps/pointnet2_scannet_results/`. Then, go to this folder and zip all files into `pn2_scannet.zip`. Now you can submit it to the online benchmark and wait for the test set result. More instructions can be found at their official [website](http://kaldir.vc.in.tum.de/scannet_benchmark/documentation#submission-policy). + +### S3DIS + +| Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download | +| :-------------------------------------------------------------------------: | :----: | :--------: | :------: | :------------: | :------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py) | Area_5 | cosine 50e | 3.6 | | 56.93 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205.log.json) | +| [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py) | Area_5 | cosine 80e | 3.6 | | 58.04 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307-b2059817.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307.log.json) | + +**Notes:** + +- We use XYZ+Color+Normalized_XYZ as input in all the experiments on S3DIS datasets. +- `Area_5` Split means training the model on Area_1, 2, 3, 4, 6 and testing on Area_5. + +## Indeterminism + +Since PointNet++ testing adopts sliding patch inference which involves random point sampling, and the test script uses fixed random seeds while the random seeds of validation in training are not fixed, the test results may be slightly different from the results reported above. + +## Citation + +```latex +@inproceedings{qi2017pointnet++, + title={PointNet++ deep hierarchical feature learning on point sets in a metric space}, + author={Qi, Charles R and Yi, Li and Su, Hao and Guibas, Leonidas J}, + booktitle={Proceedings of the 31st International Conference on Neural Information Processing Systems}, + pages={5105--5114}, + year={2017} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/metafile.yml new file mode 100644 index 000000000..e7e51759b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/metafile.yml @@ -0,0 +1,94 @@ +Collections: + - Name: PointNet++ + Metadata: + Training Techniques: + - Adam + Training Resources: 2x Titan XP GPUs + Architecture: + - PointNet++ + Paper: + URL: https://arxiv.org/abs/1706.02413 + Title: 'PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space' + README: configs/pointnet2/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/backbones/pointnet2_sa_ssg.py#L12 + Version: v0.14.0 + +Models: + - Name: pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 1.9 + Results: + - Task: 3D Semantic Segmentation + Dataset: ScanNet + Metrics: + mIoU: 53.91 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth + + - Name: pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 1.9 + Results: + - Task: 3D Semantic Segmentation + Dataset: ScanNet + Metrics: + mIoU: 54.44 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth + + - Name: pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 2.4 + Results: + - Task: 3D Semantic Segmentation + Dataset: ScanNet + Metrics: + mIoU: 54.26 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth + + - Name: pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 2.4 + Results: + - Task: 3D Semantic Segmentation + Dataset: ScanNet + Metrics: + mIoU: 55.05 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth + + - Name: pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py + Metadata: + Training Data: S3DIS + Training Memory (GB): 3.6 + Results: + - Task: 3D Semantic Segmentation + Dataset: S3DIS + Metrics: + mIoU: 56.93 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth + + - Name: pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py + In Collection: PointNet++ + Config: configs/pointnet/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py + Metadata: + Training Data: S3DIS + Training Memory (GB): 3.6 + Results: + - Task: 3D Semantic Segmentation + Dataset: S3DIS + Metrics: + mIoU: 58.04 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307-b2059817.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py new file mode 100644 index 000000000..fbad158d9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py @@ -0,0 +1,36 @@ +_base_ = [ + '../_base_/datasets/scannet_seg-3d-20class.py', + '../_base_/models/pointnet2_msg.py', + '../_base_/schedules/seg_cosine_200e.py', '../_base_/default_runtime.py' +] + +# data settings +data = dict(samples_per_gpu=16) +evaluation = dict(interval=5) + +# model settings +model = dict( + decode_head=dict( + num_classes=20, + ignore_index=20, + # `class_weight` is generated in data pre-processing, saved in + # `data/scannet/seg_info/train_label_weight.npy` + # you can copy paste the values here, or input the file path as + # `class_weight=data/scannet/seg_info/train_label_weight.npy` + loss_decode=dict(class_weight=[ + 2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941, + 4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, + 5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, + 5.3954206, 4.6971426 + ])), + test_cfg=dict( + num_points=8192, + block_size=1.5, + sample_rate=0.5, + use_normalized_coord=False, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=5) +# PointNet2-MSG needs longer training time than PointNet2-SSG +runner = dict(type='EpochBasedRunner', max_epochs=250) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py new file mode 100644 index 000000000..ed1e3c432 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py @@ -0,0 +1,27 @@ +_base_ = [ + '../_base_/datasets/s3dis_seg-3d-13class.py', + '../_base_/models/pointnet2_msg.py', + '../_base_/schedules/seg_cosine_50e.py', '../_base_/default_runtime.py' +] + +# data settings +data = dict(samples_per_gpu=16) +evaluation = dict(interval=2) + +# model settings +model = dict( + backbone=dict(in_channels=9), # [xyz, rgb, normalized_xyz] + decode_head=dict( + num_classes=13, ignore_index=13, + loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight + test_cfg=dict( + num_points=4096, + block_size=1.0, + sample_rate=0.5, + use_normalized_coord=True, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=2) +# PointNet2-MSG needs longer training time than PointNet2-SSG +runner = dict(type='EpochBasedRunner', max_epochs=80) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py new file mode 100644 index 000000000..2cb7ee185 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py @@ -0,0 +1,166 @@ +_base_ = [ + '../_base_/datasets/scannet_seg-3d-20class.py', + '../_base_/models/pointnet2_msg.py', + '../_base_/schedules/seg_cosine_200e.py', '../_base_/default_runtime.py' +] + +# dataset settings +# in this setting, we only use xyz as network input +# so we need to re-write all the data pipeline +dataset_type = 'ScanNetSegDataset' +data_root = './data/scannet/' +class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', + 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', + 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', + 'bathtub', 'otherfurniture') +num_points = 8192 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), # only load xyz coordinates + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.5, + ignore_index=len(class_names), + use_normalized_coord=False, + enlarge_size=0.2, + min_unique_num=None), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + # a wrapper in order to successfully call test function + # actually we don't perform test-time-aug + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.0, + flip_ratio_bev_vertical=0.0), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +# we need to load gt seg_mask! +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict( + samples_per_gpu=16, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + ignore_index=len(class_names), + scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names)), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names))) + +evaluation = dict(pipeline=eval_pipeline, interval=5) + +# model settings +model = dict( + backbone=dict(in_channels=3), # only [xyz] + decode_head=dict( + num_classes=20, + ignore_index=20, + # `class_weight` is generated in data pre-processing, saved in + # `data/scannet/seg_info/train_label_weight.npy` + # you can copy paste the values here, or input the file path as + # `class_weight=data/scannet/seg_info/train_label_weight.npy` + loss_decode=dict(class_weight=[ + 2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941, + 4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, + 5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, + 5.3954206, 4.6971426 + ])), + test_cfg=dict( + num_points=8192, + block_size=1.5, + sample_rate=0.5, + use_normalized_coord=False, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=5) +# PointNet2-MSG needs longer training time than PointNet2-SSG +runner = dict(type='EpochBasedRunner', max_epochs=250) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py new file mode 100644 index 000000000..b5261077f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py @@ -0,0 +1,34 @@ +_base_ = [ + '../_base_/datasets/scannet_seg-3d-20class.py', + '../_base_/models/pointnet2_ssg.py', + '../_base_/schedules/seg_cosine_200e.py', '../_base_/default_runtime.py' +] + +# data settings +data = dict(samples_per_gpu=16) +evaluation = dict(interval=5) + +# model settings +model = dict( + decode_head=dict( + num_classes=20, + ignore_index=20, + # `class_weight` is generated in data pre-processing, saved in + # `data/scannet/seg_info/train_label_weight.npy` + # you can copy paste the values here, or input the file path as + # `class_weight=data/scannet/seg_info/train_label_weight.npy` + loss_decode=dict(class_weight=[ + 2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941, + 4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, + 5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, + 5.3954206, 4.6971426 + ])), + test_cfg=dict( + num_points=8192, + block_size=1.5, + sample_rate=0.5, + use_normalized_coord=False, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=5) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py new file mode 100644 index 000000000..b14100d18 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py @@ -0,0 +1,25 @@ +_base_ = [ + '../_base_/datasets/s3dis_seg-3d-13class.py', + '../_base_/models/pointnet2_ssg.py', + '../_base_/schedules/seg_cosine_50e.py', '../_base_/default_runtime.py' +] + +# data settings +data = dict(samples_per_gpu=16) +evaluation = dict(interval=2) + +# model settings +model = dict( + backbone=dict(in_channels=9), # [xyz, rgb, normalized_xyz] + decode_head=dict( + num_classes=13, ignore_index=13, + loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight + test_cfg=dict( + num_points=4096, + block_size=1.0, + sample_rate=0.5, + use_normalized_coord=True, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py new file mode 100644 index 000000000..9dff449c5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py @@ -0,0 +1,164 @@ +_base_ = [ + '../_base_/datasets/scannet_seg-3d-20class.py', + '../_base_/models/pointnet2_ssg.py', + '../_base_/schedules/seg_cosine_200e.py', '../_base_/default_runtime.py' +] + +# dataset settings +# in this setting, we only use xyz as network input +# so we need to re-write all the data pipeline +dataset_type = 'ScanNetSegDataset' +data_root = './data/scannet/' +class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', + 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', + 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', + 'bathtub', 'otherfurniture') +num_points = 8192 +train_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), # only load xyz coordinates + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='IndoorPatchPointSample', + num_points=num_points, + block_size=1.5, + ignore_index=len(class_names), + use_normalized_coord=False, + enlarge_size=0.2, + min_unique_num=None), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] +test_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + # a wrapper in order to successfully call test function + # actually we don't perform test-time-aug + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.0, + flip_ratio_bev_vertical=0.0), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +# construct a pipeline for data and gt loading in show function +# please keep its loading function consistent with test_pipeline (e.g. client) +# we need to load gt seg_mask! +eval_pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39), + max_cat_id=40), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=class_names), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) +] + +data = dict( + samples_per_gpu=16, + workers_per_gpu=4, + train=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_train.pkl', + pipeline=train_pipeline, + classes=class_names, + test_mode=False, + ignore_index=len(class_names), + scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy'), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names)), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'scannet_infos_val.pkl', + pipeline=test_pipeline, + classes=class_names, + test_mode=True, + ignore_index=len(class_names))) + +evaluation = dict(pipeline=eval_pipeline, interval=5) + +# model settings +model = dict( + backbone=dict(in_channels=3), # only [xyz] + decode_head=dict( + num_classes=20, + ignore_index=20, + # `class_weight` is generated in data pre-processing, saved in + # `data/scannet/seg_info/train_label_weight.npy` + # you can copy paste the values here, or input the file path as + # `class_weight=data/scannet/seg_info/train_label_weight.npy` + loss_decode=dict(class_weight=[ + 2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941, + 4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, + 5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, + 5.3954206, 4.6971426 + ])), + test_cfg=dict( + num_points=8192, + block_size=1.5, + sample_rate=0.5, + use_normalized_coord=False, + batch_size=24)) + +# runtime settings +checkpoint_config = dict(interval=5) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/README.md b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/README.md new file mode 100644 index 000000000..62090972f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/README.md @@ -0,0 +1,78 @@ +# PointPillars: Fast Encoders for Object Detection from Point Clouds + +> [PointPillars: Fast Encoders for Object Detection from Point Clouds](https://arxiv.org/abs/1812.05784) + + + +## Abstract + +Object detection in point clouds is an important aspect of many robotics applications such as autonomous driving. In this paper we consider the problem of encoding a point cloud into a format appropriate for a downstream detection pipeline. Recent literature suggests two types of encoders; fixed encoders tend to be fast but sacrifice accuracy, while encoders that are learned from data are more accurate, but slower. In this work we propose PointPillars, a novel encoder which utilizes PointNets to learn a representation of point clouds organized in vertical columns (pillars). While the encoded features can be used with any standard 2D convolutional detection architecture, we further propose a lean downstream network. Extensive experimentation shows that PointPillars outperforms previous encoders with respect to both speed and accuracy by a large margin. Despite only using lidar, our full detection pipeline significantly outperforms the state of the art, even among fusion methods, with respect to both the 3D and bird's eye view KITTI benchmarks. This detection performance is achieved while running at 62 Hz: a 2 - 4 fold runtime improvement. A faster version of our method matches the state of the art at 105 Hz. These benchmarks suggest that PointPillars is an appropriate encoding for object detection in point clouds. + +
+ +
+ +## Introduction + +We implement PointPillars and provide the results and checkpoints on KITTI, nuScenes, Lyft and Waymo datasets. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | AP | Download | +| :------------------------------------------------------------: | :-----: | :---------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py) | Car | cyclic 160e | 5.4 | | 77.6 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606.log.json) | +| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py) | 3 Class | cyclic 160e | 5.5 | | 64.07 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306.log.json) | + +### nuScenes + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :---------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 34.33 | 49.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857-f19d00a3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857.log.json) | +| [SECFPN (FP16)](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py) | 2x | 8.37 | | 35.19 | 50.27 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json) | +| [FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.3 | | 39.7 | 53.2 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936-fca299c1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936.log.json) | +| [FPN (FP16)](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py) | 2x | 8.40 | | 39.26 | 53.26 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json) | + +### Lyft + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | +| :----------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.8 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455-82b81c39.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455.log.json) | +| [FPN](./hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 9.2 | | 14.8 | 15.0 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429-0b3d6196.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429.log.json) | + +### Waymo + +| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download | +| :-----------------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py) | 5 | Car | 2x | 7.76 | | 70.2 | 69.6 | 62.6 | 62.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315-302fc3e7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315.log.json) | +| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 64.7 | 57.6 | 58.4 | 52.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144-d1a706b1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144.log.json) | +| above @ Car | | | 2x | 8.12 | | 68.5 | 67.9 | 60.1 | 59.6 | | +| above @ Pedestrian | | | 2x | 8.12 | | 67.8 | 50.6 | 59.6 | 44.3 | | +| above @ Cyclist | | | 2x | 8.12 | | 57.7 | 54.4 | 55.5 | 52.4 | | +| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py) | 1 | Car | 2x | 7.76 | | 72.1 | 71.5 | 63.6 | 63.1 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.log.json) | +| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py) | 1 | 3 Class | 2x | 8.12 | | 68.8 | 63.3 | 62.6 | 57.6 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.log.json) | +| above @ Car | | | 2x | 8.12 | | 71.6 | 71.0 | 63.1 | 62.5 | | +| above @ Pedestrian | | | 2x | 8.12 | | 70.6 | 56.7 | 62.9 | 50.2 | | +| above @ Cyclist | | | 2x | 8.12 | | 64.4 | 62.3 | 61.9 | 59.9 | | + +#### Note: + +- **Metric**: For model trained with 3 classes, the average APH@L2 (mAPH@L2) of all the categories is reported and used to rank the model. For model trained with only 1 class, the APH@L2 is reported and used to rank the model. +- **Data Split**: Here we provide several baselines for waymo dataset, among which D5 means that we divide the dataset into 5 folds and only use one fold for efficient experiments. Using the complete dataset can boost the performance a lot, especially for the detection of cyclist and pedestrian, where more than 5 mAP or mAPH improvement can be expected. +- **Implementation Details**: We basically follow the implementation in the [paper](https://arxiv.org/pdf/1912.04838.pdf) in terms of the network architecture (having a + stride of 1 for the first convolutional block). Different settings of voxelization, data augmentation and hyper parameters make these baselines outperform those in the paper by about 7 mAP for car and 4 mAP for pedestrian with only a subset of the whole dataset. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation. +- **License Aggrement**: To comply the [license agreement of Waymo dataset](https://waymo.com/open/terms/), the pre-trained models on Waymo dataset are not released. We still release the training log as a reference to ease the future research. +- `FP16` means Mixed Precision (FP16) is adopted in training. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2. This will cause OOM error without mixed precision training. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes. + +## Citation + +```latex +@inproceedings{lang2019pointpillars, + title={Pointpillars: Fast encoders for object detection from point clouds}, + author={Lang, Alex H and Vora, Sourabh and Caesar, Holger and Zhou, Lubing and Yang, Jiong and Beijbom, Oscar}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + pages={12697--12705}, + year={2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..6cc3e2d19 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py @@ -0,0 +1,5 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_lyft.py', + '../_base_/datasets/lyft-3d.py', '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py' +] diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py new file mode 100644 index 000000000..2c6ba49bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py @@ -0,0 +1,5 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py' +] diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py new file mode 100644 index 000000000..9764aa330 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py @@ -0,0 +1,4 @@ +_base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py' +data = dict(samples_per_gpu=2, workers_per_gpu=2) +# fp16 settings, the loss scale is specifically tuned to avoid Nan +fp16 = dict(loss_scale=32.) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_range100_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_range100_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..57c90db74 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_fpn_sbn-all_range100_2x8_2x_lyft-3d.py @@ -0,0 +1,5 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_range100_lyft.py', + '../_base_/datasets/range100_lyft-3d.py', + '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' +] diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py new file mode 100644 index 000000000..d8aad2fb8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py @@ -0,0 +1,81 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_secfpn_kitti.py', + '../_base_/datasets/kitti-3d-3class.py', + '../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' +] + +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] +# dataset settings +data_root = 'data/kitti/' +class_names = ['Pedestrian', 'Cyclist', 'Car'] +# PointPillars adopted a different sampling strategies among classes +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), + classes=class_names, + sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15)) + +# PointPillars uses different augmentation hyper parameters +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + train=dict(dataset=dict(pipeline=train_pipeline, classes=class_names)), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +# In practice PointPillars also uses a different schedule +# optimizer +lr = 0.001 +optimizer = dict(lr=lr) +# max_norm=35 is slightly better than 10 for PointPillars in the earlier +# development of the codebase thus we keep the setting. But we does not +# specifically tune this parameter. +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# PointPillars usually need longer schedule than second, we simply double +# the training schedule. Do remind that since we use RepeatDataset and +# repeat factor is 2, so we actually train 160 epochs. +runner = dict(max_epochs=80) + +# Use evaluation interval=2 reduce the number of evaluation timese +evaluation = dict(interval=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py new file mode 100644 index 000000000..3537ce3e8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py @@ -0,0 +1,87 @@ +# model settings +_base_ = './hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py' + +point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] +model = dict( + bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=True)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + allowed_border=0, + pos_weight=-1, + debug=False)) + +# dataset settings +dataset_type = 'KittiDataset' +data_root = 'data/kitti/' +class_names = ['Car'] +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'kitti_dbinfos_train.pkl', + rate=1.0, + prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), + sample_groups=dict(Car=15), + classes=class_names) + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + train=dict( + type='RepeatDataset', + times=2, + dataset=dict(pipeline=train_pipeline, classes=class_names)), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..1a0400eb3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py @@ -0,0 +1,43 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_lyft.py', + '../_base_/datasets/lyft-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + pts_neck=dict( + _delete_=True, + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[[-80, -80, -1.0715024, 80, 80, -1.0715024], + [-80, -80, -0.3033737, 80, 80, -0.3033737], + [-80, -80, -0.3519405, 80, 80, -0.3519405], + [-80, -80, -0.8871424, 80, 80, -0.8871424], + [-80, -80, -0.6276341, 80, 80, -0.6276341], + [-80, -80, -1.3220503, 80, 80, -1.3220503], + [-80, -80, -1.0709302, 80, 80, -1.0709302], + [-80, -80, -0.9122268, 80, 80, -0.9122268], + [-80, -80, -1.8012227, 80, 80, -1.8012227]], + sizes=[ + [4.75, 1.92, 1.71], # car + [10.24, 2.84, 3.44], # truck + [12.70, 2.92, 3.42], # bus + [6.52, 2.42, 2.34], # emergency vehicle + [8.17, 2.75, 3.20], # other vehicle + [2.35, 0.96, 1.59], # motorcycle + [1.76, 0.63, 1.44], # bicycle + [0.80, 0.76, 1.76], # pedestrian + [0.73, 0.35, 0.50] # animal + ], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py new file mode 100644 index 000000000..afff99c63 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py @@ -0,0 +1,42 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + pts_neck=dict( + _delete_=True, + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[ + [-49.6, -49.6, -1.80032795, 49.6, 49.6, -1.80032795], + [-49.6, -49.6, -1.74440365, 49.6, 49.6, -1.74440365], + [-49.6, -49.6, -1.68526504, 49.6, 49.6, -1.68526504], + [-49.6, -49.6, -1.67339111, 49.6, 49.6, -1.67339111], + [-49.6, -49.6, -1.61785072, 49.6, 49.6, -1.61785072], + [-49.6, -49.6, -1.80984986, 49.6, 49.6, -1.80984986], + [-49.6, -49.6, -1.763965, 49.6, 49.6, -1.763965], + ], + sizes=[ + [4.60718145, 1.95017717, 1.72270761], # car + [6.73778078, 2.4560939, 2.73004906], # truck + [12.01320693, 2.87427237, 3.81509561], # trailer + [1.68452161, 0.60058911, 1.27192197], # bicycle + [0.7256437, 0.66344886, 1.75748069], # pedestrian + [0.40359262, 0.39694519, 1.06232151], # traffic_cone + [0.48578221, 2.49008838, 0.98297065], # barrier + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py new file mode 100644 index 000000000..ff0f67a04 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py @@ -0,0 +1,4 @@ +_base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py' +data = dict(samples_per_gpu=2, workers_per_gpu=2) +# fp16 settings, the loss scale is specifically tuned to avoid Nan +fp16 = dict(loss_scale=32.) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..7964b7998 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py @@ -0,0 +1,42 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_range100_lyft.py', + '../_base_/datasets/range100_lyft-3d.py', + '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + pts_neck=dict( + _delete_=True, + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[[-100, -100, -1.0715024, 100, 100, -1.0715024], + [-100, -100, -0.3033737, 100, 100, -0.3033737], + [-100, -100, -0.3519405, 100, 100, -0.3519405], + [-100, -100, -0.8871424, 100, 100, -0.8871424], + [-100, -100, -0.6276341, 100, 100, -0.6276341], + [-100, -100, -1.3220503, 100, 100, -1.3220503], + [-100, -100, -1.0709302, 100, 100, -1.0709302], + [-100, -100, -0.9122268, 100, 100, -0.9122268], + [-100, -100, -1.8012227, 100, 100, -1.8012227]], + sizes=[ + [4.75, 1.92, 1.71], # car + [10.24, 2.84, 3.44], # truck + [12.70, 2.92, 3.42], # bus + [6.52, 2.42, 2.34], # emergency vehicle + [8.17, 2.75, 3.20], # other vehicle + [2.35, 0.96, 1.59], # motorcycle + [1.76, 0.63, 1.44], # bicycle + [0.80, 0.76, 1.76], # pedestrian + [0.73, 0.35, 0.50] # animal + ], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py new file mode 100644 index 000000000..8655691b7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py @@ -0,0 +1,9 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_secfpn_waymo.py', + '../_base_/datasets/waymoD5-3d-3class.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] + +# data settings +data = dict(train=dict(dataset=dict(load_interval=1))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py new file mode 100644 index 000000000..90f2a42c5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py @@ -0,0 +1,37 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_secfpn_waymo.py', + '../_base_/datasets/waymoD5-3d-car.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] + +# data settings +data = dict(train=dict(dataset=dict(load_interval=1))) + +# model settings +model = dict( + type='MVXFasterRCNN', + pts_bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-74.88, -74.88, -0.0345, 74.88, 74.88, -0.0345]], + sizes=[[4.73, 2.08, 1.77]], + rotations=[0, 1.57], + reshape_out=True)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + pts=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + pos_weight=-1, + debug=False))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py new file mode 100644 index 000000000..e4f1ce5cd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py @@ -0,0 +1,6 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_secfpn_waymo.py', + '../_base_/datasets/waymoD5-3d-3class.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py new file mode 100644 index 000000000..3a3e32669 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py @@ -0,0 +1,34 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_secfpn_waymo.py', + '../_base_/datasets/waymoD5-3d-car.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] + +# model settings +model = dict( + type='MVXFasterRCNN', + pts_bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + anchor_generator=dict( + type='AlignedAnchor3DRangeGenerator', + ranges=[[-74.88, -74.88, -0.0345, 74.88, 74.88, -0.0345]], + sizes=[[4.73, 2.08, 1.77]], + rotations=[0, 1.57], + reshape_out=True)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + pts=dict( + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + pos_weight=-1, + debug=False))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/pointpillars/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/metafile.yml new file mode 100644 index 000000000..9a898c4b3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/pointpillars/metafile.yml @@ -0,0 +1,213 @@ +Collections: + - Name: PointPillars + Metadata: + Training Techniques: + - AdamW + Architecture: + - Feature Pyramid Network + Paper: + URL: https://arxiv.org/abs/1812.05784 + Title: 'PointPillars: Fast Encoders for Object Detection from Point Clouds' + README: configs/pointpillars/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/voxel_encoders/pillar_encoder.py#L13 + Version: v0.6.0 + +Models: + - Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-car + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py + Metadata: + Training Data: KITTI + Training Memory (GB): 5.4 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + AP: 77.6 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth + + - Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py + Metadata: + Training Data: KITTI + Training Memory (GB): 5.5 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + AP: 64.07 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth + + - Name: hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 16.4 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 34.33 + NDS: 49.1 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857-f19d00a3.pth + + - Name: hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 16.3 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 39.71 + NDS: 53.15 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936-fca299c1.pth + + - Name: hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 12.2 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 13.8 + Public Score: 14.1 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455-82b81c39.pth + + - Name: hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 9.2 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 14.0 + Public Score: 15.0 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429-0b3d6196.pth + + - Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py + Metadata: + Training Data: Waymo + Training Memory (GB): 7.76 + Training Resources: 8x GeForce GTX 1080 Ti + Results: + - Task: 3D Object Detection + Dataset: Waymo + Metrics: + mAP@L1: 70.2 + mAPH@L1: 69.6 + mAP@L2: 62.6 + mAPH@L2: 62.1 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315-302fc3e7.pth + + - Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py + Metadata: + Training Data: Waymo + Training Memory (GB): 8.12 + Training Resources: 8x GeForce GTX 1080 Ti + Results: + - Task: 3D Object Detection + Dataset: Waymo + Metrics: + mAP@L1: 64.7 + mAPH@L1: 57.6 + mAP@L2: 58.4 + mAPH@L2: 52.1 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144-d1a706b1.pth + + - Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py + Metadata: + Training Data: Waymo + Training Memory (GB): 7.76 + Training Resources: 8x GeForce GTX 1080 Ti + Results: + - Task: 3D Object Detection + Dataset: Waymo + Metrics: + mAP@L1: 72.1 + mAPH@L1: 71.5 + mAP@L2: 63.6 + mAPH@L2: 63.1 + + - Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py + Metadata: + Training Data: Waymo + Training Memory (GB): 8.12 + Training Resources: 8x GeForce GTX 1080 Ti + Results: + - Task: 3D Object Detection + Dataset: Waymo + Metrics: + mAP@L1: 68.8 + mAPH@L1: 63.3 + mAP@L2: 62.6 + mAPH@L2: 57.6 + + - Name: hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py + Metadata: + Training Techniques: + - AdamW + - Mixed Precision Training + Training Resources: 8x TITAN Xp + Architecture: + - Hard Voxelization + Training Data: nuScenes + Training Memory (GB): 8.37 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 35.19 + NDS: 50.27 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth + Code: + Version: v0.7.0 + + - Name: hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d + In Collection: PointPillars + Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py + Metadata: + Training Techniques: + - AdamW + - Mixed Precision Training + Training Resources: 8x TITAN Xp + Architecture: + - Hard Voxelization + Training Data: nuScenes + Training Memory (GB): 8.40 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 39.26 + NDS: 53.26 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth + Code: + Version: v0.7.0 diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/README.md b/cv/3d_detection/PAConv/pytorch/configs/regnet/README.md new file mode 100644 index 000000000..f15b94fe2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/README.md @@ -0,0 +1,82 @@ +# Designing Network Design Spaces + +> [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) + + + +## Abstract + +In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs. + +
+ +
+ +## Introduction + +We implement RegNetX models in 3D detection systems and provide their first results with PointPillars on nuScenes and Lyft dataset. + +The pre-trained modles are converted from [model zoo of pycls](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md) and maintained in [mmcv](https://github.com/open-mmlab/mmcv). + +## Usage + +To use a regnet model, there are two steps to do: + +1. Convert the model to ResNet-style supported by MMDetection +2. Modify backbone and neck in config accordingly + +### Convert model + +We already prepare models of FLOPs from 800M to 12G in our model zoo. + +For more general usage, we also provide script `regnet2mmdet.py` in the tools directory to convert the key of models pretrained by [pycls](https://github.com/facebookresearch/pycls/) to +ResNet-style checkpoints used in MMDetection. + +```bash +python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH} +``` + +This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`. + +### Modify config + +The users can modify the config's `depth` of backbone and corresponding keys in `arch` according to the configs in the [pycls model zoo](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md). +The parameter `in_channels` in FPN can be found in the Figure 15 & 16 of the paper (`wi` in the legend). +This directory already provides some configs with their performance, using RegNetX from 800MF to 12GF level. +For other pre-trained models or self-implemented regnet models, the users are responsible to check these parameters by themselves. + +**Note**: Although Fig. 15 & 16 also provide `w0`, `wa`, `wm`, `group_w`, and `bot_mul` for `arch`, they are quantized thus inaccurate, using them sometimes produces different backbone that does not match the key in the pre-trained model. + +## Results and models + +### nuScenes + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) | +| [RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.2 | 55.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) | +| [FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 17.1 | | 40.0 | 53.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json) | +| [RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 17.3 | | 44.8 | 56.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json) | +| [RegNetX-1.6gF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 24.0 | | 48.2 | 59.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311.log.json) | + +### Lyft + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | +| :-------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) | +| [RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_lyft-3d.py) | 2x | 15.9 | | 14.9 | 15.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151.log.json) | +| [FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 9.2 | | 14.9 | 15.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818-fc6904c3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818.log.json) | +| [RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_lyft-3d.py) | 2x | 13.0 | | 16.0 | 16.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618-823dcf18.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618.log.json) | + +## Citation + +```latex +@article{radosavovic2020designing, + title={Designing Network Design Spaces}, + author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, + year={2020}, + eprint={2003.13678}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py new file mode 100644 index 000000000..0574be576 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py @@ -0,0 +1,24 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch='regnetx_1.6gf', + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[168, 408, 912])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..1f391a328 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py @@ -0,0 +1,24 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_lyft.py', + '../_base_/datasets/lyft-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py new file mode 100644 index 000000000..884729cc9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py @@ -0,0 +1,24 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_fp16_2x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_fp16_2x8_2x_nus-3d.py new file mode 100644 index 000000000..e58636526 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_fp16_2x8_2x_nus-3d.py @@ -0,0 +1,4 @@ +_base_ = './hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py' +data = dict(samples_per_gpu=2, workers_per_gpu=2) +# fp16 settings, the loss scale is specifically tuned to avoid Nan +fp16 = dict(loss_scale=32.) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..fef308dfc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py @@ -0,0 +1,24 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_range100_lyft.py', + '../_base_/datasets/range100_lyft-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..fb330d785 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py @@ -0,0 +1,39 @@ +_base_ = './hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py' +# model settings +model = dict( + pts_neck=dict( + type='SECONDFPN', + _delete_=True, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 160, 384], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + type='Anchor3DHead', + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[[-80, -80, -1.0715024, 80, 80, -1.0715024], + [-80, -80, -0.3033737, 80, 80, -0.3033737], + [-80, -80, -0.3519405, 80, 80, -0.3519405], + [-80, -80, -0.8871424, 80, 80, -0.8871424], + [-80, -80, -0.6276341, 80, 80, -0.6276341], + [-80, -80, -1.3220503, 80, 80, -1.3220503], + [-80, -80, -1.0709302, 80, 80, -1.0709302], + [-80, -80, -0.9122268, 80, 80, -0.9122268], + [-80, -80, -1.8012227, 80, 80, -1.8012227]], + sizes=[ + [4.75, 1.92, 1.71], # car + [10.24, 2.84, 3.44], # truck + [12.70, 2.92, 3.42], # bus + [6.52, 2.42, 2.34], # emergency vehicle + [8.17, 2.75, 3.20], # other vehicle + [2.35, 0.96, 1.59], # motorcycle + [1.76, 0.63, 1.44], # bicycle + [0.80, 0.76, 1.76], # pedestrian + [0.73, 0.35, 0.50] # animal + ], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py new file mode 100644 index 000000000..ef8996a18 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py @@ -0,0 +1,38 @@ +_base_ = './hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py' +# model settings +model = dict( + pts_neck=dict( + type='SECONDFPN', + _delete_=True, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 160, 384], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + type='Anchor3DHead', + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[ + [-49.6, -49.6, -1.80032795, 49.6, 49.6, -1.80032795], + [-49.6, -49.6, -1.74440365, 49.6, 49.6, -1.74440365], + [-49.6, -49.6, -1.68526504, 49.6, 49.6, -1.68526504], + [-49.6, -49.6, -1.67339111, 49.6, 49.6, -1.67339111], + [-49.6, -49.6, -1.61785072, 49.6, 49.6, -1.61785072], + [-49.6, -49.6, -1.80984986, 49.6, 49.6, -1.80984986], + [-49.6, -49.6, -1.763965, 49.6, 49.6, -1.763965], + ], + sizes=[ + [4.60718145, 1.95017717, 1.72270761], # car + [6.73778078, 2.4560939, 2.73004906], # truck + [12.01320693, 2.87427237, 3.81509561], # trailer + [1.68452161, 0.60058911, 1.27192197], # bicycle + [0.7256437, 0.66344886, 1.75748069], # pedestrian + [0.40359262, 0.39694519, 1.06232151], # traffic_cone + [0.48578221, 2.49008838, 0.98297065], # barrier + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py new file mode 100644 index 000000000..2af3719c9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_range100_2x8_2x_lyft-3d.py @@ -0,0 +1,40 @@ +_base_ = \ + './hv_pointpillars_regnet-400mf_fpn_sbn-all_range100_2x8_2x_lyft-3d.py' +# model settings +model = dict( + pts_neck=dict( + type='SECONDFPN', + _delete_=True, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 160, 384], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + type='Anchor3DHead', + in_channels=384, + feat_channels=384, + anchor_generator=dict( + _delete_=True, + type='AlignedAnchor3DRangeGenerator', + ranges=[[-100, -100, -1.0715024, 100, 100, -1.0715024], + [-100, -100, -0.3033737, 100, 100, -0.3033737], + [-100, -100, -0.3519405, 100, 100, -0.3519405], + [-100, -100, -0.8871424, 100, 100, -0.8871424], + [-100, -100, -0.6276341, 100, 100, -0.6276341], + [-100, -100, -1.3220503, 100, 100, -1.3220503], + [-100, -100, -1.0709302, 100, 100, -1.0709302], + [-100, -100, -0.9122268, 100, 100, -0.9122268], + [-100, -100, -1.8012227, 100, 100, -1.8012227]], + sizes=[ + [4.75, 1.92, 1.71], # car + [10.24, 2.84, 3.44], # truck + [12.70, 2.92, 3.42], # bus + [6.52, 2.42, 2.34], # emergency vehicle + [8.17, 2.75, 3.20], # other vehicle + [2.35, 0.96, 1.59], # motorcycle + [1.76, 0.63, 1.44], # bicycle + [0.80, 0.76, 1.76], # pedestrian + [0.73, 0.35, 0.50] # animal + ], + rotations=[0, 1.57], + reshape_out=True))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/regnet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/regnet/metafile.yml new file mode 100644 index 000000000..18f13b1d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/regnet/metafile.yml @@ -0,0 +1,85 @@ +Models: + - Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d + In Collection: PointPillars + Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 16.4 + Architecture: + - RegNetX + - Hard Voxelization + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 41.2 + NDS: 55.2 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth + + - Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d + In Collection: PointPillars + Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 17.3 + Architecture: + - RegNetX + - Hard Voxelization + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 44.8 + NDS: 56.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth + + - Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d + In Collection: PointPillars + Config: configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 24.0 + Architecture: + - RegNetX + - Hard Voxelization + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 48.2 + NDS: 59.3 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth + + - Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d + In Collection: PointPillars + Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 15.9 + Architecture: + - RegNetX + - Hard Voxelization + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 14.9 + Public Score: 15.1 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth + + - Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d + In Collection: PointPillars + Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 13.0 + Architecture: + - RegNetX + - Hard Voxelization + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 16.0 + Public Score: 16.1 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618-823dcf18.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/sassd/README.md b/cv/3d_detection/PAConv/pytorch/configs/sassd/README.md new file mode 100644 index 000000000..3a4444a0e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/sassd/README.md @@ -0,0 +1,28 @@ +# Structure Aware Single-stage 3D Object Detection from Point Cloud + +> [Structure Aware Single-stage 3D Object Detection from Point Cloud]([https://arxiv.org/abs/2104.02323](https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.pdf)) + + + +## Abstract + +3D object detection from point cloud data plays an essential role in autonomous driving. Current single-stage detectors are efficient by progressively downscaling the 3D point clouds in a fully convolutional manner. However, the downscaled features inevitably lose spatial information and cannot make full use of the structure information of 3D point cloud, degrading their localization precision. In this work, we propose to improve the localization precision of single-stage detectors by explicitly leveraging the structure information of 3D point cloud. Specifically, we design an auxiliary network which converts the convolutional features in the backbone network back to point-level representations. The auxiliary network is jointly optimized, by two point-level supervisions, to guide the convolutional features in the backbone network to be aware of the object structure. The auxiliary network can be detached after training and therefore introduces no extra computation in the inference stage. Besides, considering that single-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient part-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed detector ranks at the top of KITTI 3D/BEV detection leaderboards and runs at 25 FPS for inference. + +
+ +
+ +## Introduction + +We implement SA-SSD and provide the results and checkpoints on KITTI dataset. + +## Citation + +```latex +@InProceedings{he2020sassd, + title={Structure Aware Single-stage 3D Object Detection from Point Cloud}, + author={He, Chenhang and Zeng, Hui and Huang, Jianqiang and Hua, Xian-Sheng and Zhang, Lei}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + year={2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/sassd/sassd_6x8_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/sassd/sassd_6x8_80e_kitti-3d-3class.py new file mode 100644 index 000000000..efc67c7da --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/sassd/sassd_6x8_80e_kitti-3d-3class.py @@ -0,0 +1,94 @@ +_base_ = [ + '../_base_/datasets/kitti-3d-3class.py', + '../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' +] + +voxel_size = [0.05, 0.05, 0.1] + +model = dict( + type='SASSD', + voxel_layer=dict( + max_num_points=5, + point_cloud_range=[0, -40, -3, 70.4, 40, 1], + voxel_size=voxel_size, + max_voxels=(16000, 40000)), + voxel_encoder=dict(type='HardSimpleVFE'), + middle_encoder=dict( + type='SparseEncoderSASSD', + in_channels=4, + sparse_shape=[41, 1600, 1408], + order=('conv', 'norm', 'act')), + backbone=dict( + type='SECOND', + in_channels=256, + layer_nums=[5, 5], + layer_strides=[1, 2], + out_channels=[128, 256]), + neck=dict( + type='SECONDFPN', + in_channels=[128, 256], + upsample_strides=[1, 2], + out_channels=[256, 256]), + bbox_head=dict( + type='Anchor3DHead', + num_classes=3, + in_channels=512, + feat_channels=512, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + ranges=[ + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -0.6, 70.4, 40.0, -0.6], + [0, -40.0, -1.78, 70.4, 40.0, -1.78], + ], + sizes=[[0.6, 0.8, 1.73], [0.6, 1.76, 1.73], [1.6, 3.9, 1.56]], + rotations=[0, 1.57], + reshape_out=False), + diff_rad_by_sin=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + assigner=[ + dict( # for Pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Cyclist + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.35, + neg_iou_thr=0.2, + min_pos_iou=0.2, + ignore_iof_thr=-1), + dict( # for Car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + ], + allowed_border=0, + pos_weight=-1, + debug=False), + test_cfg=dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_thr=0.01, + score_thr=0.1, + min_bbox_size=0, + nms_pre=100, + max_num=50)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/README.md b/cv/3d_detection/PAConv/pytorch/configs/second/README.md new file mode 100644 index 000000000..1aa965012 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/README.md @@ -0,0 +1,54 @@ +# Second: Sparsely embedded convolutional detection + +> [SECOND: Sparsely Embedded Convolutional Detection](https://www.mdpi.com/1424-8220/18/10/3337) + + + +## Abstract + +LiDAR-based or RGB-D-based object detection is used in numerous applications, ranging from autonomous driving to robot vision. Voxel-based 3D convolutional networks have been used for some time to enhance the retention of information when processing point cloud LiDAR data. However, problems remain, including a slow inference speed and low orientation estimation performance. We therefore investigate an improved sparse convolution method for such networks, which significantly increases the speed of both training and inference. We also introduce a new form of angle loss regression to improve the orientation estimation performance and a new data augmentation approach that can enhance the convergence speed and performance. The proposed network produces state-of-the-art results on the KITTI 3D object detection benchmarks while maintaining a fast inference speed. + +
+ +
+ +## Introduction + +We implement SECOND and provide the results and checkpoints on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) | +| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 2.9 | | 78.72 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json) | +| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) | +| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 2.9 | | 67.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) | + +### Waymo + +| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download | +| :-----------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) | +| above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | | +| above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | | +| above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | | + +Note: + +- See more details about metrics and data split on Waymo [HERE](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars). For implementation details, we basically follow the original settings. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation. +- `FP16` means Mixed Precision (FP16) is adopted in training. + +## Citation + +```latex +@article{yan2018second, + title={Second: Sparsely embedded convolutional detection}, + author={Yan, Yan and Mao, Yuxing and Li, Bo}, + journal={Sensors}, + year={2018}, + publisher={Multidisciplinary Digital Publishing Institute} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py new file mode 100644 index 000000000..0f28921f3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py @@ -0,0 +1,5 @@ +_base_ = [ + '../_base_/models/hv_second_secfpn_kitti.py', + '../_base_/datasets/kitti-3d-3class.py', + '../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' +] diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py new file mode 100644 index 000000000..9ab7350ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py @@ -0,0 +1,30 @@ +_base_ = [ + '../_base_/models/hv_second_secfpn_kitti.py', + '../_base_/datasets/kitti-3d-car.py', '../_base_/schedules/cyclic_40e.py', + '../_base_/default_runtime.py' +] +point_cloud_range = [0, -40, -3, 70.4, 40, 1] +model = dict( + bbox_head=dict( + type='Anchor3DHead', + num_classes=1, + anchor_generator=dict( + _delete_=True, + type='Anchor3DRangeGenerator', + ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + reshape_out=True)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + assigner=dict( + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + allowed_border=0, + pos_weight=-1, + debug=False)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py new file mode 100644 index 000000000..bf0336a45 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py @@ -0,0 +1,3 @@ +_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-3class.py' +# fp16 settings +fp16 = dict(loss_scale=512.) diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py new file mode 100644 index 000000000..efba55330 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py @@ -0,0 +1,3 @@ +_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-car.py' +# fp16 settings +fp16 = dict(loss_scale=512.) diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py new file mode 100644 index 000000000..758827f8c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py @@ -0,0 +1,112 @@ +_base_ = [ + '../_base_/models/hv_second_secfpn_waymo.py', + '../_base_/datasets/waymoD5-3d-3class.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] + +dataset_type = 'WaymoDataset' +data_root = 'data/waymo/kitti_format/' +class_names = ['Car', 'Pedestrian', 'Cyclist'] +point_cloud_range = [-76.8, -51.2, -2, 76.8, 51.2, 4] +input_modality = dict(use_lidar=True, use_camera=False) + +db_sampler = dict( + data_root=data_root, + info_path=data_root + 'waymo_dbinfos_train.pkl', + rate=1.0, + prepare=dict( + filter_by_difficulty=[-1], + filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), + classes=class_names, + sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=[0, 1, 2, 3, 4])) + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict(type='ObjectSample', db_sampler=db_sampler), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05]), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] + +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] + +data = dict( + samples_per_gpu=4, + workers_per_gpu=4, + train=dict( + type='RepeatDataset', + times=2, + dataset=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_train.pkl', + split='training', + pipeline=train_pipeline, + modality=input_modality, + classes=class_names, + test_mode=False, + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset + # and box_type_3d='Depth' in sunrgbd and scannet dataset. + box_type_3d='LiDAR', + # load one frame every five frames + load_interval=5)), + val=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR'), + test=dict( + type=dataset_type, + data_root=data_root, + ann_file=data_root + 'waymo_infos_val.pkl', + split='training', + pipeline=test_pipeline, + modality=input_modality, + classes=class_names, + test_mode=True, + box_type_3d='LiDAR')) diff --git a/cv/3d_detection/PAConv/pytorch/configs/second/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/second/metafile.yml new file mode 100644 index 000000000..5b68fe9c4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/second/metafile.yml @@ -0,0 +1,97 @@ +Collections: + - Name: SECOND + Metadata: + Training Techniques: + - AdamW + Architecture: + - Hard Voxelization + Paper: + URL: https://www.mdpi.com/1424-8220/18/10/3337 + Title: 'SECOND: Sparsely Embedded Convolutional Detection' + README: configs/second/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/backbones/second.py#L11 + Version: v0.5.0 + +Models: + - Name: hv_second_secfpn_6x8_80e_kitti-3d-car + In Collection: SECOND + Config: configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py + Metadata: + Training Data: KITTI + Training Memory (GB): 5.4 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 79.07 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth + + - Name: hv_second_secfpn_6x8_80e_kitti-3d-3class + In Collection: SECOND + Config: configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py + Metadata: + Training Data: KITTI + Training Memory (GB): 5.4 + Training Resources: 8x V100 GPUs + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 65.74 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth + + - Name: hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class + In Collection: SECOND + Config: configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py + Metadata: + Training Data: Waymo + Training Memory (GB): 8.12 + Training Resources: 8x GeForce GTX 1080 Ti + Results: + - Task: 3D Object Detection + Dataset: Waymo + Metrics: + mAP@L1: 65.3 + mAPH@L1: 61.7 + mAP@L2: 58.9 + mAPH@L2: 55.7 + + - Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-car + In Collection: SECOND + Config: configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py + Metadata: + Training Techniques: + - AdamW + - Mixed Precision Training + Training Resources: 8x TITAN Xp + Training Data: KITTI + Training Memory (GB): 2.9 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 78.72 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth + Code: + Version: v0.7.0 + + - Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class + In Collection: SECOND + Config: configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py + Metadata: + Training Techniques: + - AdamW + - Mixed Precision Training + Training Resources: 8x TITAN Xp + Training Data: KITTI + Training Memory (GB): 2.9 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 67.4 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth + Code: + Version: v0.7.0 diff --git a/cv/3d_detection/PAConv/pytorch/configs/smoke/README.md b/cv/3d_detection/PAConv/pytorch/configs/smoke/README.md new file mode 100644 index 000000000..8d91314d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/smoke/README.md @@ -0,0 +1,47 @@ +# SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation + +> [SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation](https://arxiv.org/abs/2002.10111) + + + +## Abstract + +Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving. In case of monocular vision, successful methods have been mainly based on two ingredients: (i) a network generating 2D region proposals, (ii) a R-CNN structure predicting 3D object pose by utilizing the acquired regions of interest. We argue that the 2D detection network is redundant and introduces non-negligible noise for 3D detection. Hence, we propose a novel 3D object detection method, named SMOKE, in this paper that predicts a 3D bounding box for each detected object by combining a single keypoint estimate with regressed 3D variables. As a second contribution, we propose a multi-step disentangling approach for constructing the 3D bounding box, which significantly improves both training convergence and detection accuracy. In contrast to previous 3D detection techniques, our method does not require complicated pre/post-processing, extra data, and a refinement stage. Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset, giving the best state-of-the-art result on both 3D object detection and Bird's eye view evaluation. + +
+ +
+ +## Introduction + +We implement SMOKE and provide the results and checkpoints on KITTI dataset. + +## Results and models + +### KITTI + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | +| :------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) | + +Note: mAP represents Car moderate 3D strict AP11 results. + +Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 metric: + +| | Easy | Moderate | Hard | +| ---------- | :-----------: | :-----------: | :-----------: | +| Car | 16.92 / 22.97 | 13.85 / 18.32 | 11.90 / 15.88 | +| Pedestrian | 11.13 / 12.61 | 11.10 / 11.32 | 10.67 / 11.14 | +| Cyclist | 0.99 / 1.47 | 0.54 / 0.65 | 0.55 / 0.67 | + +## Citation + +```latex +@inproceedings{liu2020smoke, + title={Smoke: Single-stage monocular 3d object detection via keypoint estimation}, + author={Liu, Zechen and Wu, Zizhang and T{\'o}th, Roland}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, + pages={996--997}, + year={2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/smoke/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/smoke/metafile.yml new file mode 100644 index 000000000..df956e496 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/smoke/metafile.yml @@ -0,0 +1,30 @@ +Collections: + - Name: SMOKE + Metadata: + Training Data: KITTI + Training Techniques: + - Adam + Training Resources: 4x V100 GPUS + Architecture: + - SMOKEMono3DHead + - DLA + Paper: + URL: https://arxiv.org/abs/2002.10111 + Title: 'SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation' + README: configs/smoke/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/models/detectors/smoke_mono3d.py#L7 + Version: v1.0.0 + +Models: + - Name: smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d + In Collection: SMOKE + Config: configs/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py + Metadata: + Training Memory (GB): 9.6 + Results: + - Task: 3D Object Detection + Dataset: KITTI + Metrics: + mAP: 13.8 + Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py b/cv/3d_detection/PAConv/pytorch/configs/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py new file mode 100644 index 000000000..c802ce308 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py @@ -0,0 +1,64 @@ +_base_ = [ + '../_base_/datasets/kitti-mono3d.py', '../_base_/models/smoke.py', + '../_base_/default_runtime.py' +] + +# optimizer +optimizer = dict(type='Adam', lr=2.5e-4) +optimizer_config = dict(grad_clip=None) +lr_config = dict(policy='step', warmup=None, step=[50]) + +# runtime settings +runner = dict(type='EpochBasedRunner', max_epochs=72) +log_config = dict(interval=10) + +find_unused_parameters = True +class_names = ['Pedestrian', 'Cyclist', 'Car'] +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='LoadAnnotations3D', + with_bbox=True, + with_label=True, + with_attr_label=False, + with_bbox_3d=True, + with_label_3d=True, + with_bbox_depth=True), + dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + dict(type='RandomShiftScale', shift_scale=(0.2, 0.4), aug_prob=0.3), + dict(type='AffineResize', img_scale=(1280, 384), down_ratio=4), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict( + type='Collect3D', + keys=[ + 'img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_3d', 'gt_labels_3d', + 'centers2d', 'depths' + ]), +] +test_pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='MultiScaleFlipAug', + img_scale=(1280, 384), + flip=False, + transforms=[ + dict(type='AffineResize', img_scale=(1280, 384), down_ratio=4), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/README.md b/cv/3d_detection/PAConv/pytorch/configs/ssn/README.md new file mode 100644 index 000000000..dad03f865 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/README.md @@ -0,0 +1,53 @@ +# SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds + +> [SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds](https://arxiv.org/abs/2004.02774) + + + +## Abstract + +Multi-class 3D object detection aims to localize and classify objects of multiple categories from point clouds. Due to the nature of point clouds, i.e. unstructured, sparse and noisy, some features benefit-ting multi-class discrimination are underexploited, such as shape information. In this paper, we propose a novel 3D shape signature to explore the shape information from point clouds. By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise, which serves as a soft constraint to improve the feature capability of multi-class discrimination. Based on the proposed shape signature, we develop the shape signature networks (SSN) for 3D object detection, which consist of pyramid feature encoding part, shape-aware grouping heads and explicit shape encoding objective. Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets. Furthermore, our shape signature can act as a plug-and-play component and ablation study shows its effectiveness and good scalability. + +
+ +
+ +## Introduction + +We implement PointPillars with Shape-aware grouping heads used in the SSN and provide the results and checkpoints on the nuScenes and Lyft dataset. + +## Results and models + +### NuScenes + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | +| :--------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) | +| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) | +| [RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) | +| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) | + +### Lyft + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | +| :--------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) | +| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) | +| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) | + +Note: + +The main difference of the shape-aware grouping heads with the original SECOND FPN heads is that the former groups objects with similar sizes and shapes together, and design shape-specific heads for each group. Heavier heads (with more convolutions and large strides) are designed for large objects while smaller heads for small objects. Note that there may appear different feature map sizes in the outputs, so an anchor generator tailored to these feature maps is also needed in the implementation. + +Users could try other settings in terms of the head design. Here we basically refer to the implementation [HERE](https://github.com/xinge008/SSN). + +## Citation + +```latex +@inproceedings{zhu2020ssn, + title={SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds}, + author={Zhu, Xinge and Ma, Yuexin and Wang, Tai and Xu, Yan and Shi, Jianping and Lin, Dahua}, + booktitle={Proceedings of the European Conference on Computer Vision}, + year={2020} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py new file mode 100644 index 000000000..1103bcf12 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py @@ -0,0 +1,21 @@ +_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py' +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) +# dataset settings +data = dict(samples_per_gpu=1, workers_per_gpu=2) diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py new file mode 100644 index 000000000..fb9ef3160 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py @@ -0,0 +1,19 @@ +_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py' +# model settings +model = dict( + type='MVXFasterRCNN', + pts_backbone=dict( + _delete_=True, + type='NoStemRegNet', + arch=dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + init_cfg=dict( + type='Pretrained', checkpoint='open-mmlab://regnetx_400mf'), + out_indices=(1, 2, 3), + frozen_stages=-1, + strides=(1, 2, 2, 2), + base_channels=64, + stem_channels=64, + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + norm_eval=False, + style='pytorch'), + pts_neck=dict(in_channels=[64, 160, 384])) diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py new file mode 100644 index 000000000..50b33c801 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py @@ -0,0 +1,224 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_lyft.py', + '../_base_/datasets/lyft-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +point_cloud_range = [-100, -100, -5, 100, 100, 3] +# Note that the order of class names should be consistent with +# the following anchors' order +class_names = [ + 'bicycle', 'motorcycle', 'pedestrian', 'animal', 'car', + 'emergency_vehicle', 'bus', 'other_vehicle', 'truck' +] + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), + dict(type='LoadPointsFromMultiSweeps', sweeps_num=10), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), + dict(type='LoadPointsFromMultiSweeps', sweeps_num=10), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=4, + train=dict(pipeline=train_pipeline, classes=class_names), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +# model settings +model = dict( + pts_voxel_layer=dict(point_cloud_range=[-100, -100, -5, 100, 100, 3]), + pts_voxel_encoder=dict( + feat_channels=[32, 64], + point_cloud_range=[-100, -100, -5, 100, 100, 3]), + pts_middle_encoder=dict(output_shape=[800, 800]), + pts_neck=dict( + _delete_=True, + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + _delete_=True, + type='ShapeAwareHead', + num_classes=9, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGeneratorPerCls', + ranges=[[-100, -100, -1.0709302, 100, 100, -1.0709302], + [-100, -100, -1.3220503, 100, 100, -1.3220503], + [-100, -100, -0.9122268, 100, 100, -0.9122268], + [-100, -100, -1.8012227, 100, 100, -1.8012227], + [-100, -100, -1.0715024, 100, 100, -1.0715024], + [-100, -100, -0.8871424, 100, 100, -0.8871424], + [-100, -100, -0.3519405, 100, 100, -0.3519405], + [-100, -100, -0.6276341, 100, 100, -0.6276341], + [-100, -100, -0.3033737, 100, 100, -0.3033737]], + sizes=[ + [1.76, 0.63, 1.44], # bicycle + [2.35, 0.96, 1.59], # motorcycle + [0.80, 0.76, 1.76], # pedestrian + [0.73, 0.35, 0.50], # animal + [4.75, 1.92, 1.71], # car + [6.52, 2.42, 2.34], # emergency vehicle + [12.70, 2.92, 3.42], # bus + [8.17, 2.75, 3.20], # other vehicle + [10.24, 2.84, 3.44] # truck + ], + custom_values=[], + rotations=[0, 1.57], + reshape_out=False), + tasks=[ + dict( + num_class=2, + class_names=['bicycle', 'motorcycle'], + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=2, + class_names=['pedestrian', 'animal'], + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=2, + class_names=['car', 'emergency_vehicle'], + shared_conv_channels=(64, 64, 64), + shared_conv_strides=(2, 1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=3, + class_names=['bus', 'other_vehicle', 'truck'], + shared_conv_channels=(64, 64, 64), + shared_conv_strides=(2, 1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)) + ], + assign_per_class=True, + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi/4 + dir_limit_offset=0, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + pts=dict( + assigner=[ + dict( # bicycle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # motorcycle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # animal + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + dict( # emergency vehicle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # bus + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + dict( # other vehicle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # truck + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1) + ], + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + pos_weight=-1, + debug=False))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py new file mode 100644 index 000000000..855020141 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py @@ -0,0 +1,238 @@ +_base_ = [ + '../_base_/models/hv_pointpillars_fpn_nus.py', + '../_base_/datasets/nus-3d.py', + '../_base_/schedules/schedule_2x.py', + '../_base_/default_runtime.py', +] +# Note that the order of class names should be consistent with +# the following anchors' order +point_cloud_range = [-50, -50, -5, 50, 50, 3] +class_names = [ + 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier', 'car', + 'truck', 'trailer', 'bus', 'construction_vehicle' +] + +train_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), + dict(type='LoadPointsFromMultiSweeps', sweeps_num=10), + dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), + dict( + type='GlobalRotScaleTrans', + rot_range=[-0.3925, 0.3925], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0]), + dict( + type='RandomFlip3D', + sync_2d=False, + flip_ratio_bev_horizontal=0.5, + flip_ratio_bev_vertical=0.5), + dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), + dict(type='PointShuffle'), + dict(type='DefaultFormatBundle3D', class_names=class_names), + dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) +] +test_pipeline = [ + dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), + dict(type='LoadPointsFromMultiSweeps', sweeps_num=10), + dict( + type='MultiScaleFlipAug3D', + img_scale=(1333, 800), + pts_scale_ratio=1, + flip=False, + transforms=[ + dict( + type='GlobalRotScaleTrans', + rot_range=[0, 0], + scale_ratio_range=[1., 1.], + translation_std=[0, 0, 0]), + dict(type='RandomFlip3D'), + dict( + type='PointsRangeFilter', point_cloud_range=point_cloud_range), + dict( + type='DefaultFormatBundle3D', + class_names=class_names, + with_label=False), + dict(type='Collect3D', keys=['points']) + ]) +] +data = dict( + samples_per_gpu=2, + workers_per_gpu=4, + train=dict(pipeline=train_pipeline, classes=class_names), + val=dict(pipeline=test_pipeline, classes=class_names), + test=dict(pipeline=test_pipeline, classes=class_names)) + +# model settings +model = dict( + pts_voxel_layer=dict(max_num_points=20), + pts_voxel_encoder=dict(feat_channels=[64, 64]), + pts_neck=dict( + _delete_=True, + type='SECONDFPN', + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), + in_channels=[64, 128, 256], + upsample_strides=[1, 2, 4], + out_channels=[128, 128, 128]), + pts_bbox_head=dict( + _delete_=True, + type='ShapeAwareHead', + num_classes=10, + in_channels=384, + feat_channels=384, + use_direction_classifier=True, + anchor_generator=dict( + type='AlignedAnchor3DRangeGeneratorPerCls', + ranges=[[-50, -50, -1.67339111, 50, 50, -1.67339111], + [-50, -50, -1.71396371, 50, 50, -1.71396371], + [-50, -50, -1.61785072, 50, 50, -1.61785072], + [-50, -50, -1.80984986, 50, 50, -1.80984986], + [-50, -50, -1.76396500, 50, 50, -1.76396500], + [-50, -50, -1.80032795, 50, 50, -1.80032795], + [-50, -50, -1.74440365, 50, 50, -1.74440365], + [-50, -50, -1.68526504, 50, 50, -1.68526504], + [-50, -50, -1.80673031, 50, 50, -1.80673031], + [-50, -50, -1.64824291, 50, 50, -1.64824291]], + sizes=[ + [1.68452161, 0.60058911, 1.27192197], # bicycle + [2.09973778, 0.76279481, 1.44403034], # motorcycle + [0.72564370, 0.66344886, 1.75748069], # pedestrian + [0.40359262, 0.39694519, 1.06232151], # traffic cone + [0.48578221, 2.49008838, 0.98297065], # barrier + [4.60718145, 1.95017717, 1.72270761], # car + [6.73778078, 2.45609390, 2.73004906], # truck + [12.01320693, 2.87427237, 3.81509561], # trailer + [11.1885991, 2.94046906, 3.47030982], # bus + [6.38352896, 2.73050468, 3.13312415] # construction vehicle + ], + custom_values=[0, 0], + rotations=[0, 1.57], + reshape_out=False), + tasks=[ + dict( + num_class=2, + class_names=['bicycle', 'motorcycle'], + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=1, + class_names=['pedestrian'], + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=2, + class_names=['traffic_cone', 'barrier'], + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=1, + class_names=['car'], + shared_conv_channels=(64, 64, 64), + shared_conv_strides=(2, 1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), + dict( + num_class=4, + class_names=[ + 'truck', 'trailer', 'bus', 'construction_vehicle' + ], + shared_conv_channels=(64, 64, 64), + shared_conv_strides=(2, 1, 1), + norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)) + ], + assign_per_class=True, + diff_rad_by_sin=True, + dir_offset=-0.7854, # -pi/4 + dir_limit_offset=0, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), + # model training and testing settings + train_cfg=dict( + _delete_=True, + pts=dict( + assigner=[ + dict( # bicycle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # motorcycle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.3, + min_pos_iou=0.3, + ignore_iof_thr=-1), + dict( # pedestrian + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # traffic cone + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # barrier + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # car + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.6, + neg_iou_thr=0.45, + min_pos_iou=0.45, + ignore_iof_thr=-1), + dict( # truck + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # trailer + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1), + dict( # bus + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.55, + neg_iou_thr=0.4, + min_pos_iou=0.4, + ignore_iof_thr=-1), + dict( # construction vehicle + type='MaxIoUAssigner', + iou_calculator=dict(type='BboxOverlapsNearest3D'), + pos_iou_thr=0.5, + neg_iou_thr=0.35, + min_pos_iou=0.35, + ignore_iof_thr=-1) + ], + allowed_border=0, + code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2], + pos_weight=-1, + debug=False))) diff --git a/cv/3d_detection/PAConv/pytorch/configs/ssn/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/ssn/metafile.yml new file mode 100644 index 000000000..df6dd9ed0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/ssn/metafile.yml @@ -0,0 +1,72 @@ +Collections: + - Name: SSN + Metadata: + Training Techniques: + - AdamW + Training Resources: 8x GeForce GTX 1080 Ti + Architecture: + - Hard Voxelization + Paper: + URL: https://arxiv.org/abs/2004.02774 + Title: 'SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds' + README: configs/ssn/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/dense_heads/shape_aware_head.py#L166 + Version: v0.7.0 + +Models: + - Name: hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d + In Collection: SSN + Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 3.6 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 40.91 + NDS: 54.44 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth + + - Name: hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d + In Collection: SSN + Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py + Metadata: + Training Data: nuScenes + Training Memory (GB): 5.1 + Results: + - Task: 3D Object Detection + Dataset: nuScenes + Metrics: + mAP: 46.65 + NDS: 58.24 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth + + - Name: hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d + In Collection: SSN + Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 8.5 + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 17.5 + Public Score: 17.5 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth + + - Name: hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d + In Collection: SSN + Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py + Metadata: + Training Data: Lyft + Training Memory (GB): 7.4 + Results: + - Task: 3D Object Detection + Dataset: Lyft + Metrics: + Private Score: 17.9 + Public Score: 18.0 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth diff --git a/cv/3d_detection/PAConv/pytorch/configs/votenet/README.md b/cv/3d_detection/PAConv/pytorch/configs/votenet/README.md new file mode 100644 index 000000000..d74486f03 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/votenet/README.md @@ -0,0 +1,68 @@ +# Deep Hough Voting for 3D Object Detection in Point Clouds + +> [Deep Hough Voting for 3D Object Detection in Point Clouds](https://arxiv.org/abs/1904.09664) + + + +## Abstract + +Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images. + +
+ +
+ +## Introduction + +We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRGBD datasets. + +## Results and models + +### ScanNet + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :-----------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) | + +### SUNRGBD + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) | + +**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py): + +``` +python ./tools/model_converters/convert_votenet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH} +``` + +Then you can use the converted checkpoints following [getting_started.md](../../docs/en/getting_started.md). + +## Indeterminism + +Since test data preparation randomly downsamples the points, and the test script uses fixed random seeds while the random seeds of validation in training are not fixed, the test results may be slightly different from the results reported above. + +## IoU loss + +Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss, add this loss term to the config file: + +```python +iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0) +``` + +| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | +| :-------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: | +| [PointNet++](./votenet_iouloss_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 63.81 | 44.21 | / | + +For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now. + +## Citation + +```latex +@inproceedings{qi2019deep, + author = {Qi, Charles R and Litany, Or and He, Kaiming and Guibas, Leonidas J}, + title = {Deep Hough Voting for 3D Object Detection in Point Clouds}, + booktitle = {Proceedings of the IEEE International Conference on Computer Vision}, + year = {2019} +} +``` diff --git a/cv/3d_detection/PAConv/pytorch/configs/votenet/metafile.yml b/cv/3d_detection/PAConv/pytorch/configs/votenet/metafile.yml new file mode 100644 index 000000000..cd18680fd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/votenet/metafile.yml @@ -0,0 +1,59 @@ +Collections: + - Name: VoteNet + Metadata: + Training Techniques: + - AdamW + Training Resources: 8x V100 GPUs + Architecture: + - PointNet++ + Paper: + URL: https://arxiv.org/abs/1904.09664 + Title: 'Deep Hough Voting for 3D Object Detection in Point Clouds' + README: configs/votenet/README.md + Code: + URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/votenet.py#L10 + Version: v0.5.0 + +Models: + - Name: votenet_16x8_sunrgbd-3d-10class.py + In Collection: VoteNet + Config: configs/votenet/votenet_16x8_sunrgbd-3d-10class.py + Metadata: + Training Data: SUNRGBD + Training Memory (GB): 8.1 + Results: + - Task: 3D Object Detection + Dataset: SUNRGBD + Metrics: + AP@0.25: 59.78 + AP@0.5: 35.77 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth + + - Name: votenet_8x8_scannet-3d-18class.py + In Collection: VoteNet + Config: configs/votenet/votenet_8x8_scannet-3d-18class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 4.1 + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 62.34 + AP@0.5: 40.82 + Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth + + - Name: votenet_iouloss_8x8_scannet-3d-18class + In Collection: VoteNet + Config: configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py + Metadata: + Training Data: ScanNet + Training Memory (GB): 4.1 + Architecture: + - IoU Loss + Results: + - Task: 3D Object Detection + Dataset: ScanNet + Metrics: + AP@0.25: 63.81 + AP@0.5: 44.21 diff --git a/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_16x8_sunrgbd-3d-10class.py b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_16x8_sunrgbd-3d-10class.py new file mode 100644 index 000000000..5ddfa7ad0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_16x8_sunrgbd-3d-10class.py @@ -0,0 +1,21 @@ +_base_ = [ + '../_base_/datasets/sunrgbd-3d-10class.py', '../_base_/models/votenet.py', + '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' +] +# model settings +model = dict( + bbox_head=dict( + num_classes=10, + bbox_coder=dict( + type='PartialBinBasedBBoxCoder', + num_sizes=10, + num_dir_bins=12, + with_rot=True, + mean_sizes=[ + [2.114256, 1.620300, 0.927272], [0.791118, 1.279516, 0.718182], + [0.923508, 1.867419, 0.845495], [0.591958, 0.552978, 0.827272], + [0.699104, 0.454178, 0.75625], [0.69519, 1.346299, 0.736364], + [0.528526, 1.002642, 1.172878], [0.500618, 0.632163, 0.683424], + [0.404671, 1.071108, 1.688889], [0.76584, 1.398258, 0.472728] + ]), + )) diff --git a/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_8x8_scannet-3d-18class.py b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_8x8_scannet-3d-18class.py new file mode 100644 index 000000000..62e563031 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_8x8_scannet-3d-18class.py @@ -0,0 +1,36 @@ +_base_ = [ + '../_base_/datasets/scannet-3d-18class.py', '../_base_/models/votenet.py', + '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' +] + +# model settings +model = dict( + bbox_head=dict( + num_classes=18, + bbox_coder=dict( + type='PartialBinBasedBBoxCoder', + num_sizes=18, + num_dir_bins=1, + with_rot=False, + mean_sizes=[[0.76966727, 0.8116021, 0.92573744], + [1.876858, 1.8425595, 1.1931566], + [0.61328, 0.6148609, 0.7182701], + [1.3955007, 1.5121545, 0.83443564], + [0.97949594, 1.0675149, 0.6329687], + [0.531663, 0.5955577, 1.7500148], + [0.9624706, 0.72462326, 1.1481868], + [0.83221924, 1.0490936, 1.6875663], + [0.21132214, 0.4206159, 0.5372846], + [1.4440073, 1.8970833, 0.26985747], + [1.0294262, 1.4040797, 0.87554324], + [1.3766412, 0.65521795, 1.6813129], + [0.6650819, 0.71111923, 1.298853], + [0.41999173, 0.37906948, 1.7513971], + [0.59359556, 0.5912492, 0.73919016], + [0.50867593, 0.50656086, 0.30136237], + [1.1511526, 1.0546296, 0.49706793], + [0.47535285, 0.49249494, 0.5802117]]))) + +# yapf:disable +log_config = dict(interval=30) +# yapf:enable diff --git a/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py new file mode 100644 index 000000000..ac2a6c00e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py @@ -0,0 +1,8 @@ +_base_ = ['./votenet_8x8_scannet-3d-18class.py'] + +# model settings, add iou loss +model = dict( + bbox_head=dict( + iou_loss=dict( + type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / + 3.0))) diff --git a/cv/3d_detection/PAConv/pytorch/data/s3dis/README.md b/cv/3d_detection/PAConv/pytorch/data/s3dis/README.md new file mode 100644 index 000000000..20170c650 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/data/s3dis/README.md @@ -0,0 +1,59 @@ +### Prepare S3DIS Data + +We follow the procedure in [pointnet](https://github.com/charlesq34/pointnet). + +1. Download S3DIS data by filling this [Google form](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1). Download the ```Stanford3dDataset_v1.2_Aligned_Version.zip``` file and unzip it. Link or move the folder to this level of directory. + +2. In this directory, extract point clouds and annotations by running `python3 collect_indoor3d_data.py`. + +3. Enter the project root directory, generate training data by running + +```bash +python3 tools/create_data.py s3dis --root-path ./data/s3dis --out-dir ./data/s3dis --extra-tag s3dis +``` + +The overall process could be achieved through the following script + +```bash +python3 collect_indoor3d_data.py +cd ../.. +python3 tools/create_data.py s3dis --root-path ./data/s3dis --out-dir ./data/s3dis --extra-tag s3dis +``` + +The directory structure after pre-processing should be as below + +``` +s3dis +├── meta_data +├── indoor3d_util.py +├── collect_indoor3d_data.py +├── README.md +├── Stanford3dDataset_v1.2_Aligned_Version +├── s3dis_data +├── points +│ ├── xxxxx.bin +├── instance_mask +│ ├── xxxxx.bin +├── semantic_mask +│ ├── xxxxx.bin +├── seg_info +│ ├── Area_1_label_weight.npy +│ ├── Area_1_resampled_scene_idxs.npy +│ ├── Area_2_label_weight.npy +│ ├── Area_2_resampled_scene_idxs.npy +│ ├── Area_3_label_weight.npy +│ ├── Area_3_resampled_scene_idxs.npy +│ ├── Area_4_label_weight.npy +│ ├── Area_4_resampled_scene_idxs.npy +│ ├── Area_5_label_weight.npy +│ ├── Area_5_resampled_scene_idxs.npy +│ ├── Area_6_label_weight.npy +│ ├── Area_6_resampled_scene_idxs.npy +├── s3dis_infos_Area_1.pkl +├── s3dis_infos_Area_2.pkl +├── s3dis_infos_Area_3.pkl +├── s3dis_infos_Area_4.pkl +├── s3dis_infos_Area_5.pkl +├── s3dis_infos_Area_6.pkl + +``` \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/data/s3dis/collect_indoor3d_data.py b/cv/3d_detection/PAConv/pytorch/data/s3dis/collect_indoor3d_data.py new file mode 100644 index 000000000..59a7cda5b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/data/s3dis/collect_indoor3d_data.py @@ -0,0 +1,48 @@ +import argparse +import mmcv +from indoor3d_util import export +from os import path as osp + +parser = argparse.ArgumentParser() +parser.add_argument( + '--output-folder', + default='./s3dis_data', + help='output folder of the result.') +parser.add_argument( + '--data-dir', + default='Stanford3dDataset_v1.2_Aligned_Version', + help='s3dis data directory.') +parser.add_argument( + '--ann-file', + default='meta_data/anno_paths.txt', + help='The path of the file that stores the annotation names.') +args = parser.parse_args() + +anno_paths = [line.rstrip() for line in open(args.ann_file)] +anno_paths = [osp.join(args.data_dir, p) for p in anno_paths] + +output_folder = args.output_folder +mmcv.mkdir_or_exist(output_folder) + +# Note: there is an extra character in the v1.2 data in Area_5/hallway_6. +# It's fixed manually here. +# Refer to https://github.com/AnTao97/dgcnn.pytorch/blob/843abe82dd731eb51a4b3f70632c2ed3c60560e9/prepare_data/collect_indoor3d_data.py#L18 # noqa +revise_file = osp.join(args.data_dir, + 'Area_5/hallway_6/Annotations/ceiling_1.txt') +with open(revise_file, 'r') as f: + data = f.read() + # replace that extra character with blank space to separate data + data = data[:5545347] + ' ' + data[5545348:] +with open(revise_file, 'w') as f: + f.write(data) + +for anno_path in anno_paths: + print(f'Exporting data from annotation file: {anno_path}') + elements = anno_path.split('/') + out_filename = \ + elements[-3] + '_' + elements[-2] # Area_1_hallway_1 + out_filename = osp.join(output_folder, out_filename) + if osp.isfile(f'{out_filename}_point.npy'): + print('File already exists. skipping.') + continue + export(anno_path, out_filename) \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/data/s3dis/indoor3d_util.py b/cv/3d_detection/PAConv/pytorch/data/s3dis/indoor3d_util.py new file mode 100644 index 000000000..2474b0f24 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/data/s3dis/indoor3d_util.py @@ -0,0 +1,53 @@ +import glob +import numpy as np +from os import path as osp + +# ----------------------------------------------------------------------------- +# CONSTANTS +# ----------------------------------------------------------------------------- + +BASE_DIR = osp.dirname(osp.abspath(__file__)) + +class_names = [ + x.rstrip() for x in open(osp.join(BASE_DIR, 'meta_data/class_names.txt')) +] +class2label = {one_class: i for i, one_class in enumerate(class_names)} + +# ----------------------------------------------------------------------------- +# CONVERT ORIGINAL DATA TO POINTS, SEM_LABEL AND INS_LABEL FILES +# ----------------------------------------------------------------------------- + + +def export(anno_path, out_filename): + """Convert original dataset files to points, instance mask and semantic + mask files. We aggregated all the points from each instance in the room. + + Args: + anno_path (str): path to annotations. e.g. Area_1/office_2/Annotations/ + out_filename (str): path to save collected points and labels + file_format (str): txt or numpy, determines what file format to save. + + Note: + the points are shifted before save, the most negative point is now + at origin. + """ + points_list = [] + ins_idx = 1 # instance ids should be indexed from 1, so 0 is unannotated + + for f in glob.glob(osp.join(anno_path, '*.txt')): + one_class = osp.basename(f).split('_')[0] + if one_class not in class_names: # some rooms have 'staris' class + one_class = 'clutter' + points = np.loadtxt(f) + labels = np.ones((points.shape[0], 1)) * class2label[one_class] + ins_labels = np.ones((points.shape[0], 1)) * ins_idx + ins_idx += 1 + points_list.append(np.concatenate([points, labels, ins_labels], 1)) + + data_label = np.concatenate(points_list, 0) # [N, 8], (pts, rgb, sem, ins) + xyz_min = np.amin(data_label, axis=0)[0:3] + data_label[:, 0:3] -= xyz_min + + np.save(f'{out_filename}_point.npy', data_label[:, :6].astype(np.float32)) + np.save(f'{out_filename}_sem_label.npy', data_label[:, 6].astype(np.int)) + np.save(f'{out_filename}_ins_label.npy', data_label[:, 7].astype(np.int)) \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/anno_paths.txt b/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/anno_paths.txt new file mode 100644 index 000000000..e5a4d7b9c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/anno_paths.txt @@ -0,0 +1,272 @@ +Area_1/conferenceRoom_1/Annotations +Area_1/conferenceRoom_2/Annotations +Area_1/copyRoom_1/Annotations +Area_1/hallway_1/Annotations +Area_1/hallway_2/Annotations +Area_1/hallway_3/Annotations +Area_1/hallway_4/Annotations +Area_1/hallway_5/Annotations +Area_1/hallway_6/Annotations +Area_1/hallway_7/Annotations +Area_1/hallway_8/Annotations +Area_1/office_10/Annotations +Area_1/office_11/Annotations +Area_1/office_12/Annotations +Area_1/office_13/Annotations +Area_1/office_14/Annotations +Area_1/office_15/Annotations +Area_1/office_16/Annotations +Area_1/office_17/Annotations +Area_1/office_18/Annotations +Area_1/office_19/Annotations +Area_1/office_1/Annotations +Area_1/office_20/Annotations +Area_1/office_21/Annotations +Area_1/office_22/Annotations +Area_1/office_23/Annotations +Area_1/office_24/Annotations +Area_1/office_25/Annotations +Area_1/office_26/Annotations +Area_1/office_27/Annotations +Area_1/office_28/Annotations +Area_1/office_29/Annotations +Area_1/office_2/Annotations +Area_1/office_30/Annotations +Area_1/office_31/Annotations +Area_1/office_3/Annotations +Area_1/office_4/Annotations +Area_1/office_5/Annotations +Area_1/office_6/Annotations +Area_1/office_7/Annotations +Area_1/office_8/Annotations +Area_1/office_9/Annotations +Area_1/pantry_1/Annotations +Area_1/WC_1/Annotations +Area_2/auditorium_1/Annotations +Area_2/auditorium_2/Annotations +Area_2/conferenceRoom_1/Annotations +Area_2/hallway_10/Annotations +Area_2/hallway_11/Annotations +Area_2/hallway_12/Annotations +Area_2/hallway_1/Annotations +Area_2/hallway_2/Annotations +Area_2/hallway_3/Annotations +Area_2/hallway_4/Annotations +Area_2/hallway_5/Annotations +Area_2/hallway_6/Annotations +Area_2/hallway_7/Annotations +Area_2/hallway_8/Annotations +Area_2/hallway_9/Annotations +Area_2/office_10/Annotations +Area_2/office_11/Annotations +Area_2/office_12/Annotations +Area_2/office_13/Annotations +Area_2/office_14/Annotations +Area_2/office_1/Annotations +Area_2/office_2/Annotations +Area_2/office_3/Annotations +Area_2/office_4/Annotations +Area_2/office_5/Annotations +Area_2/office_6/Annotations +Area_2/office_7/Annotations +Area_2/office_8/Annotations +Area_2/office_9/Annotations +Area_2/storage_1/Annotations +Area_2/storage_2/Annotations +Area_2/storage_3/Annotations +Area_2/storage_4/Annotations +Area_2/storage_5/Annotations +Area_2/storage_6/Annotations +Area_2/storage_7/Annotations +Area_2/storage_8/Annotations +Area_2/storage_9/Annotations +Area_2/WC_1/Annotations +Area_2/WC_2/Annotations +Area_3/conferenceRoom_1/Annotations +Area_3/hallway_1/Annotations +Area_3/hallway_2/Annotations +Area_3/hallway_3/Annotations +Area_3/hallway_4/Annotations +Area_3/hallway_5/Annotations +Area_3/hallway_6/Annotations +Area_3/lounge_1/Annotations +Area_3/lounge_2/Annotations +Area_3/office_10/Annotations +Area_3/office_1/Annotations +Area_3/office_2/Annotations +Area_3/office_3/Annotations +Area_3/office_4/Annotations +Area_3/office_5/Annotations +Area_3/office_6/Annotations +Area_3/office_7/Annotations +Area_3/office_8/Annotations +Area_3/office_9/Annotations +Area_3/storage_1/Annotations +Area_3/storage_2/Annotations +Area_3/WC_1/Annotations +Area_3/WC_2/Annotations +Area_4/conferenceRoom_1/Annotations +Area_4/conferenceRoom_2/Annotations +Area_4/conferenceRoom_3/Annotations +Area_4/hallway_10/Annotations +Area_4/hallway_11/Annotations +Area_4/hallway_12/Annotations +Area_4/hallway_13/Annotations +Area_4/hallway_14/Annotations +Area_4/hallway_1/Annotations +Area_4/hallway_2/Annotations +Area_4/hallway_3/Annotations +Area_4/hallway_4/Annotations +Area_4/hallway_5/Annotations +Area_4/hallway_6/Annotations +Area_4/hallway_7/Annotations +Area_4/hallway_8/Annotations +Area_4/hallway_9/Annotations +Area_4/lobby_1/Annotations +Area_4/lobby_2/Annotations +Area_4/office_10/Annotations +Area_4/office_11/Annotations +Area_4/office_12/Annotations +Area_4/office_13/Annotations +Area_4/office_14/Annotations +Area_4/office_15/Annotations +Area_4/office_16/Annotations +Area_4/office_17/Annotations +Area_4/office_18/Annotations +Area_4/office_19/Annotations +Area_4/office_1/Annotations +Area_4/office_20/Annotations +Area_4/office_21/Annotations +Area_4/office_22/Annotations +Area_4/office_2/Annotations +Area_4/office_3/Annotations +Area_4/office_4/Annotations +Area_4/office_5/Annotations +Area_4/office_6/Annotations +Area_4/office_7/Annotations +Area_4/office_8/Annotations +Area_4/office_9/Annotations +Area_4/storage_1/Annotations +Area_4/storage_2/Annotations +Area_4/storage_3/Annotations +Area_4/storage_4/Annotations +Area_4/WC_1/Annotations +Area_4/WC_2/Annotations +Area_4/WC_3/Annotations +Area_4/WC_4/Annotations +Area_5/conferenceRoom_1/Annotations +Area_5/conferenceRoom_2/Annotations +Area_5/conferenceRoom_3/Annotations +Area_5/hallway_10/Annotations +Area_5/hallway_11/Annotations +Area_5/hallway_12/Annotations +Area_5/hallway_13/Annotations +Area_5/hallway_14/Annotations +Area_5/hallway_15/Annotations +Area_5/hallway_1/Annotations +Area_5/hallway_2/Annotations +Area_5/hallway_3/Annotations +Area_5/hallway_4/Annotations +Area_5/hallway_5/Annotations +Area_5/hallway_6/Annotations +Area_5/hallway_7/Annotations +Area_5/hallway_8/Annotations +Area_5/hallway_9/Annotations +Area_5/lobby_1/Annotations +Area_5/office_10/Annotations +Area_5/office_11/Annotations +Area_5/office_12/Annotations +Area_5/office_13/Annotations +Area_5/office_14/Annotations +Area_5/office_15/Annotations +Area_5/office_16/Annotations +Area_5/office_17/Annotations +Area_5/office_18/Annotations +Area_5/office_19/Annotations +Area_5/office_1/Annotations +Area_5/office_20/Annotations +Area_5/office_21/Annotations +Area_5/office_22/Annotations +Area_5/office_23/Annotations +Area_5/office_24/Annotations +Area_5/office_25/Annotations +Area_5/office_26/Annotations +Area_5/office_27/Annotations +Area_5/office_28/Annotations +Area_5/office_29/Annotations +Area_5/office_2/Annotations +Area_5/office_30/Annotations +Area_5/office_31/Annotations +Area_5/office_32/Annotations +Area_5/office_33/Annotations +Area_5/office_34/Annotations +Area_5/office_35/Annotations +Area_5/office_36/Annotations +Area_5/office_37/Annotations +Area_5/office_38/Annotations +Area_5/office_39/Annotations +Area_5/office_3/Annotations +Area_5/office_40/Annotations +Area_5/office_41/Annotations +Area_5/office_42/Annotations +Area_5/office_4/Annotations +Area_5/office_5/Annotations +Area_5/office_6/Annotations +Area_5/office_7/Annotations +Area_5/office_8/Annotations +Area_5/office_9/Annotations +Area_5/pantry_1/Annotations +Area_5/storage_1/Annotations +Area_5/storage_2/Annotations +Area_5/storage_3/Annotations +Area_5/storage_4/Annotations +Area_5/WC_1/Annotations +Area_5/WC_2/Annotations +Area_6/conferenceRoom_1/Annotations +Area_6/copyRoom_1/Annotations +Area_6/hallway_1/Annotations +Area_6/hallway_2/Annotations +Area_6/hallway_3/Annotations +Area_6/hallway_4/Annotations +Area_6/hallway_5/Annotations +Area_6/hallway_6/Annotations +Area_6/lounge_1/Annotations +Area_6/office_10/Annotations +Area_6/office_11/Annotations +Area_6/office_12/Annotations +Area_6/office_13/Annotations +Area_6/office_14/Annotations +Area_6/office_15/Annotations +Area_6/office_16/Annotations +Area_6/office_17/Annotations +Area_6/office_18/Annotations +Area_6/office_19/Annotations +Area_6/office_1/Annotations +Area_6/office_20/Annotations +Area_6/office_21/Annotations +Area_6/office_22/Annotations +Area_6/office_23/Annotations +Area_6/office_24/Annotations +Area_6/office_25/Annotations +Area_6/office_26/Annotations +Area_6/office_27/Annotations +Area_6/office_28/Annotations +Area_6/office_29/Annotations +Area_6/office_2/Annotations +Area_6/office_30/Annotations +Area_6/office_31/Annotations +Area_6/office_32/Annotations +Area_6/office_33/Annotations +Area_6/office_34/Annotations +Area_6/office_35/Annotations +Area_6/office_36/Annotations +Area_6/office_37/Annotations +Area_6/office_3/Annotations +Area_6/office_4/Annotations +Area_6/office_5/Annotations +Area_6/office_6/Annotations +Area_6/office_7/Annotations +Area_6/office_8/Annotations +Area_6/office_9/Annotations +Area_6/openspace_1/Annotations +Area_6/pantry_1/Annotations \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/class_names.txt b/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/class_names.txt new file mode 100644 index 000000000..b4b91540c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/data/s3dis/meta_data/class_names.txt @@ -0,0 +1,13 @@ +ceiling +floor +wall +beam +column +window +door +table +chair +sofa +bookcase +board +clutter \ No newline at end of file diff --git a/cv/3d_detection/PAConv/pytorch/dist_train.sh b/cv/3d_detection/PAConv/pytorch/dist_train.sh new file mode 100644 index 000000000..ecb19be21 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/dist_train.sh @@ -0,0 +1,34 @@ +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may +# not use this file except in compliance with the License. You may obtain +# a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations +# under the License. +#!/usr/bin/env bash + +CONFIG=$1 +GPUS=$2 +NNODES=${NNODES:-1} +NODE_RANK=${NODE_RANK:-0} +PORT=${PORT:-29500} +MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"} + +PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ +python3 -m torch.distributed.launch \ + --nnodes=$NNODES \ + --node_rank=$NODE_RANK \ + --master_addr=$MASTER_ADDR \ + --nproc_per_node=$GPUS \ + --master_port=$PORT \ + $(dirname "$0")/train.py \ + $CONFIG \ + --seed 0 \ + --launcher pytorch ${@:3} diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/__init__.py new file mode 100644 index 000000000..96f91ac64 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/__init__.py @@ -0,0 +1,29 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + +from .version import __version__, short_version + + +def digit_version(version_str): + digit_version = [] + for x in version_str.split('.'): + if x.isdigit(): + digit_version.append(int(x)) + elif x.find('rc') != -1: + patch_version = x.split('rc') + digit_version.append(int(patch_version[0]) - 1) + digit_version.append(int(patch_version[1])) + return digit_version + + +mmcv_minimum_version = '1.3.17' +mmcv_maximum_version = '1.6.0' +mmcv_version = digit_version(mmcv.__version__) + + +# assert (mmcv_version >= digit_version(mmcv_minimum_version) +# and mmcv_version <= digit_version(mmcv_maximum_version)), \ +# f'MMCV=={mmcv.__version__} is used but incompatible. ' \ +# f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' + +__all__ = ['__version__', 'short_version'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/apis/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/apis/__init__.py new file mode 100644 index 000000000..a865e942a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/apis/__init__.py @@ -0,0 +1,12 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .inference import (async_inference_detector, inference_detector, + init_detector, show_result_pyplot) +from .test import multi_gpu_test, single_gpu_test +from .train import (get_root_logger, init_random_seed, set_random_seed, + train_detector) + +__all__ = [ + 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector', + 'async_inference_detector', 'inference_detector', 'show_result_pyplot', + 'multi_gpu_test', 'single_gpu_test', 'init_random_seed' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/apis/inference.py b/cv/3d_detection/PAConv/pytorch/mmdet/apis/inference.py new file mode 100644 index 000000000..795fce518 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/apis/inference.py @@ -0,0 +1,251 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from pathlib import Path + +import mmcv +import numpy as np +import torch +from mmcv.ops import RoIPool +from mmcv.parallel import collate, scatter +from mmcv.runner import load_checkpoint + +from mmdet.core import get_classes +from mmdet.datasets import replace_ImageToTensor +from mmdet.datasets.pipelines import Compose +from mmdet.models import build_detector + + +def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): + """Initialize a detector from config file. + + Args: + config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, + :obj:`Path`, or the config object. + checkpoint (str, optional): Checkpoint path. If left as None, the model + will not load any weights. + cfg_options (dict): Options to override some settings in the used + config. + + Returns: + nn.Module: The constructed detector. + """ + if isinstance(config, (str, Path)): + config = mmcv.Config.fromfile(config) + elif not isinstance(config, mmcv.Config): + raise TypeError('config must be a filename or Config object, ' + f'but got {type(config)}') + if cfg_options is not None: + config.merge_from_dict(cfg_options) + if 'pretrained' in config.model: + config.model.pretrained = None + elif 'init_cfg' in config.model.backbone: + config.model.backbone.init_cfg = None + config.model.train_cfg = None + model = build_detector(config.model, test_cfg=config.get('test_cfg')) + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') + if 'CLASSES' in checkpoint.get('meta', {}): + model.CLASSES = checkpoint['meta']['CLASSES'] + else: + warnings.simplefilter('once') + warnings.warn('Class names are not saved in the checkpoint\'s ' + 'meta data, use COCO classes by default.') + model.CLASSES = get_classes('coco') + model.cfg = config # save the config in the model for convenience + model.to(device) + model.eval() + return model + + +class LoadImage: + """Deprecated. + + A simple pipeline to load image. + """ + + def __call__(self, results): + """Call function to load images into results. + + Args: + results (dict): A result dict contains the file name + of the image to be read. + Returns: + dict: ``results`` will be returned containing loaded image. + """ + warnings.simplefilter('once') + warnings.warn('`LoadImage` is deprecated and will be removed in ' + 'future releases. You may use `LoadImageFromWebcam` ' + 'from `mmdet.datasets.pipelines.` instead.') + if isinstance(results['img'], str): + results['filename'] = results['img'] + results['ori_filename'] = results['img'] + else: + results['filename'] = None + results['ori_filename'] = None + img = mmcv.imread(results['img']) + results['img'] = img + results['img_fields'] = ['img'] + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + return results + + +def inference_detector(model, imgs): + """Inference image(s) with the detector. + + Args: + model (nn.Module): The loaded detector. + imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): + Either image files or loaded images. + + Returns: + If imgs is a list or tuple, the same length list type results + will be returned, otherwise return the detection results directly. + """ + + if isinstance(imgs, (list, tuple)): + is_batch = True + else: + imgs = [imgs] + is_batch = False + + cfg = model.cfg + device = next(model.parameters()).device # model device + + if isinstance(imgs[0], np.ndarray): + cfg = cfg.copy() + # set loading pipeline type + cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' + + cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) + test_pipeline = Compose(cfg.data.test.pipeline) + + datas = [] + for img in imgs: + # prepare data + if isinstance(img, np.ndarray): + # directly add img + data = dict(img=img) + else: + # add information into dict + data = dict(img_info=dict(filename=img), img_prefix=None) + # build the data pipeline + data = test_pipeline(data) + datas.append(data) + + data = collate(datas, samples_per_gpu=len(imgs)) + # just get the actual data from DataContainer + data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] + data['img'] = [img.data[0] for img in data['img']] + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device])[0] + else: + for m in model.modules(): + assert not isinstance( + m, RoIPool + ), 'CPU inference with RoIPool is not supported currently.' + + # forward the model + with torch.no_grad(): + results = model(return_loss=False, rescale=True, **data) + + if not is_batch: + return results[0] + else: + return results + + +async def async_inference_detector(model, imgs): + """Async inference image(s) with the detector. + + Args: + model (nn.Module): The loaded detector. + img (str | ndarray): Either image files or loaded images. + + Returns: + Awaitable detection results. + """ + if not isinstance(imgs, (list, tuple)): + imgs = [imgs] + + cfg = model.cfg + device = next(model.parameters()).device # model device + + if isinstance(imgs[0], np.ndarray): + cfg = cfg.copy() + # set loading pipeline type + cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' + + cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) + test_pipeline = Compose(cfg.data.test.pipeline) + + datas = [] + for img in imgs: + # prepare data + if isinstance(img, np.ndarray): + # directly add img + data = dict(img=img) + else: + # add information into dict + data = dict(img_info=dict(filename=img), img_prefix=None) + # build the data pipeline + data = test_pipeline(data) + datas.append(data) + + data = collate(datas, samples_per_gpu=len(imgs)) + # just get the actual data from DataContainer + data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] + data['img'] = [img.data[0] for img in data['img']] + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device])[0] + else: + for m in model.modules(): + assert not isinstance( + m, RoIPool + ), 'CPU inference with RoIPool is not supported currently.' + + # We don't restore `torch.is_grad_enabled()` value during concurrent + # inference since execution can overlap + torch.set_grad_enabled(False) + results = await model.aforward_test(rescale=True, **data) + return results + + +def show_result_pyplot(model, + img, + result, + score_thr=0.3, + title='result', + wait_time=0, + palette=None, + out_file=None): + """Visualize the detection results on the image. + + Args: + model (nn.Module): The loaded detector. + img (str or np.ndarray): Image filename or loaded image. + result (tuple[list] or list): The detection result, can be either + (bbox, segm) or just bbox. + score_thr (float): The threshold to visualize the bboxes and masks. + title (str): Title of the pyplot figure. + wait_time (float): Value of waitKey param. Default: 0. + palette (str or tuple(int) or :obj:`Color`): Color. + The tuple of color should be in BGR order. + out_file (str or None): The path to write the image. + Default: None. + """ + if hasattr(model, 'module'): + model = model.module + model.show_result( + img, + result, + score_thr=score_thr, + show=True, + wait_time=wait_time, + win_name=title, + bbox_color=palette, + text_color=(200, 200, 200), + mask_color=palette, + out_file=out_file) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/apis/test.py b/cv/3d_detection/PAConv/pytorch/mmdet/apis/test.py new file mode 100644 index 000000000..973d3623d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/apis/test.py @@ -0,0 +1,209 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import pickle +import shutil +import tempfile +import time + +import mmcv +import torch +import torch.distributed as dist +from mmcv.image import tensor2imgs +from mmcv.runner import get_dist_info + +from mmdet.core import encode_mask_results + + +def single_gpu_test(model, + data_loader, + show=False, + out_dir=None, + show_score_thr=0.3): + model.eval() + results = [] + dataset = data_loader.dataset + PALETTE = getattr(dataset, 'PALETTE', None) + prog_bar = mmcv.ProgressBar(len(dataset)) + for i, data in enumerate(data_loader): + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + + batch_size = len(result) + if show or out_dir: + if batch_size == 1 and isinstance(data['img'][0], torch.Tensor): + img_tensor = data['img'][0] + else: + img_tensor = data['img'][0].data[0] + img_metas = data['img_metas'][0].data[0] + imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) + assert len(imgs) == len(img_metas) + + for i, (img, img_meta) in enumerate(zip(imgs, img_metas)): + h, w, _ = img_meta['img_shape'] + img_show = img[:h, :w, :] + + ori_h, ori_w = img_meta['ori_shape'][:-1] + img_show = mmcv.imresize(img_show, (ori_w, ori_h)) + + if out_dir: + out_file = osp.join(out_dir, img_meta['ori_filename']) + else: + out_file = None + + model.module.show_result( + img_show, + result[i], + bbox_color=PALETTE, + text_color=PALETTE, + mask_color=PALETTE, + show=show, + out_file=out_file, + score_thr=show_score_thr) + + # encode mask results + if isinstance(result[0], tuple): + result = [(bbox_results, encode_mask_results(mask_results)) + for bbox_results, mask_results in result] + # This logic is only used in panoptic segmentation test. + elif isinstance(result[0], dict) and 'ins_results' in result[0]: + for j in range(len(result)): + bbox_results, mask_results = result[j]['ins_results'] + result[j]['ins_results'] = (bbox_results, + encode_mask_results(mask_results)) + + results.extend(result) + + for _ in range(batch_size): + prog_bar.update() + return results + + +def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): + """Test model with multiple gpus. + + This method tests model with multiple gpus and collects the results + under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' + it encodes results to gpu tensors and use gpu communication for results + collection. On cpu mode it saves the results on different gpus to 'tmpdir' + and collects them by the rank 0 worker. + + Args: + model (nn.Module): Model to be tested. + data_loader (nn.Dataloader): Pytorch data loader. + tmpdir (str): Path of directory to save the temporary results from + different gpus under cpu mode. + gpu_collect (bool): Option to use either gpu or cpu to collect results. + + Returns: + list: The prediction results. + """ + model.eval() + results = [] + dataset = data_loader.dataset + rank, world_size = get_dist_info() + if rank == 0: + prog_bar = mmcv.ProgressBar(len(dataset)) + time.sleep(2) # This line can prevent deadlock problem in some cases. + for i, data in enumerate(data_loader): + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + # encode mask results + if isinstance(result[0], tuple): + result = [(bbox_results, encode_mask_results(mask_results)) + for bbox_results, mask_results in result] + # This logic is only used in panoptic segmentation test. + elif isinstance(result[0], dict) and 'ins_results' in result[0]: + for j in range(len(result)): + bbox_results, mask_results = result[j]['ins_results'] + result[j]['ins_results'] = ( + bbox_results, encode_mask_results(mask_results)) + + results.extend(result) + + if rank == 0: + batch_size = len(result) + for _ in range(batch_size * world_size): + prog_bar.update() + + # collect results from all ranks + if gpu_collect: + results = collect_results_gpu(results, len(dataset)) + else: + results = collect_results_cpu(results, len(dataset), tmpdir) + return results + + +def collect_results_cpu(result_part, size, tmpdir=None): + rank, world_size = get_dist_info() + # create a tmp dir if it is not specified + if tmpdir is None: + MAX_LEN = 512 + # 32 is whitespace + dir_tensor = torch.full((MAX_LEN, ), + 32, + dtype=torch.uint8, + device='cuda') + if rank == 0: + mmcv.mkdir_or_exist('.dist_test') + tmpdir = tempfile.mkdtemp(dir='.dist_test') + tmpdir = torch.tensor( + bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') + dir_tensor[:len(tmpdir)] = tmpdir + dist.broadcast(dir_tensor, 0) + tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() + else: + mmcv.mkdir_or_exist(tmpdir) + # dump the part result to the dir + mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) + dist.barrier() + # collect all parts + if rank != 0: + return None + else: + # load results of all parts from tmp dir + part_list = [] + for i in range(world_size): + part_file = osp.join(tmpdir, f'part_{i}.pkl') + part_list.append(mmcv.load(part_file)) + # sort the results + ordered_results = [] + for res in zip(*part_list): + ordered_results.extend(list(res)) + # the dataloader may pad some samples + ordered_results = ordered_results[:size] + # remove tmp dir + shutil.rmtree(tmpdir) + return ordered_results + + +def collect_results_gpu(result_part, size): + rank, world_size = get_dist_info() + # dump result part to tensor with pickle + part_tensor = torch.tensor( + bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') + # gather all result part tensor shape + shape_tensor = torch.tensor(part_tensor.shape, device='cuda') + shape_list = [shape_tensor.clone() for _ in range(world_size)] + dist.all_gather(shape_list, shape_tensor) + # padding result part tensor to max length + shape_max = torch.tensor(shape_list).max() + part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') + part_send[:shape_tensor[0]] = part_tensor + part_recv_list = [ + part_tensor.new_zeros(shape_max) for _ in range(world_size) + ] + # gather all result part + dist.all_gather(part_recv_list, part_send) + + if rank == 0: + part_list = [] + for recv, shape in zip(part_recv_list, shape_list): + part_list.append( + pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) + # sort the results + ordered_results = [] + for res in zip(*part_list): + ordered_results.extend(list(res)) + # the dataloader may pad some samples + ordered_results = ordered_results[:size] + return ordered_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/apis/train.py b/cv/3d_detection/PAConv/pytorch/mmdet/apis/train.py new file mode 100644 index 000000000..3bba66000 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/apis/train.py @@ -0,0 +1,244 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import random + +import numpy as np +import torch +import torch.distributed as dist +from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, + Fp16OptimizerHook, OptimizerHook, build_optimizer, + build_runner, get_dist_info) + +from mmdet.core import DistEvalHook, EvalHook +from mmdet.datasets import (build_dataloader, build_dataset, + replace_ImageToTensor) +from mmdet.utils import (build_ddp, build_dp, compat_cfg, + find_latest_checkpoint, get_root_logger) + + +def init_random_seed(seed=None, device='cuda'): + """Initialize random seed. + + If the seed is not set, the seed will be automatically randomized, + and then broadcast to all processes to prevent some potential bugs. + + Args: + seed (int, Optional): The seed. Default to None. + device (str): The device where the seed will be put on. + Default to 'cuda'. + + Returns: + int: Seed to be used. + """ + if seed is not None: + return seed + + # Make sure all ranks share the same random seed to prevent + # some potential bugs. Please refer to + # https://github.com/open-mmlab/mmdetection/issues/6339 + rank, world_size = get_dist_info() + seed = np.random.randint(2**31) + if world_size == 1: + return seed + + if rank == 0: + random_num = torch.tensor(seed, dtype=torch.int32, device=device) + else: + random_num = torch.tensor(0, dtype=torch.int32, device=device) + dist.broadcast(random_num, src=0) + return random_num.item() + + +def set_random_seed(seed, deterministic=False): + """Set random seed. + + Args: + seed (int): Seed to be used. + deterministic (bool): Whether to set the deterministic option for + CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` + to True and `torch.backends.cudnn.benchmark` to False. + Default: False. + """ + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + if deterministic: + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +def auto_scale_lr(cfg, distributed, logger): + """Automatically scaling LR according to GPU number and sample per GPU. + + Args: + cfg (config): Training config. + distributed (bool): Using distributed or not. + logger (logging.Logger): Logger. + """ + # Get flag from config + if ('auto_scale_lr' not in cfg) or \ + (not cfg.auto_scale_lr.get('enable', False)): + logger.info('Automatic scaling of learning rate (LR)' + ' has been disabled.') + return + + # Get base batch size from config + base_batch_size = cfg.auto_scale_lr.get('base_batch_size', None) + if base_batch_size is None: + return + + # Get gpu number + if distributed: + _, world_size = get_dist_info() + num_gpus = len(range(world_size)) + else: + num_gpus = len(cfg.gpu_ids) + + # calculate the batch size + batch_size = num_gpus * cfg.data.samples_per_gpu + logger.info(f'You are using {num_gpus} GPU(s) ' + f'and {cfg.data.samples_per_gpu} samples per GPU. ' + f'Total batch size is {batch_size}.') + + if batch_size != base_batch_size: + # scale LR with + # [linear scaling rule](https://arxiv.org/abs/1706.02677) + scaled_lr = (batch_size / base_batch_size) * cfg.optimizer.lr + logger.info('LR has been automatically scaled ' + f'from {cfg.optimizer.lr} to {scaled_lr}') + cfg.optimizer.lr = scaled_lr + else: + logger.info('The batch size match the ' + f'base batch size: {base_batch_size}, ' + f'will not scaling the LR ({cfg.optimizer.lr}).') + + +def train_detector(model, + dataset, + cfg, + distributed=False, + validate=False, + timestamp=None, + meta=None): + + cfg = compat_cfg(cfg) + logger = get_root_logger(log_level=cfg.log_level) + + # prepare data loaders + dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] + + runner_type = 'EpochBasedRunner' if 'runner' not in cfg else cfg.runner[ + 'type'] + + train_dataloader_default_args = dict( + samples_per_gpu=2, + workers_per_gpu=2, + # `num_gpus` will be ignored if distributed + num_gpus=len(cfg.gpu_ids), + dist=distributed, + seed=cfg.seed, + runner_type=runner_type, + persistent_workers=False) + + train_loader_cfg = { + **train_dataloader_default_args, + **cfg.data.get('train_dataloader', {}) + } + + data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset] + + # put model on gpus + if distributed: + find_unused_parameters = cfg.get('find_unused_parameters', False) + # Sets the `find_unused_parameters` parameter in + # torch.nn.parallel.DistributedDataParallel + model = build_ddp( + model, + cfg.device, + device_ids=[int(os.environ['LOCAL_RANK'])], + broadcast_buffers=False, + find_unused_parameters=find_unused_parameters) + else: + model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids) + + # build optimizer + auto_scale_lr(cfg, distributed, logger) + optimizer = build_optimizer(model, cfg.optimizer) + + runner = build_runner( + cfg.runner, + default_args=dict( + model=model, + optimizer=optimizer, + work_dir=cfg.work_dir, + logger=logger, + meta=meta)) + + # an ugly workaround to make .log and .log.json filenames the same + runner.timestamp = timestamp + + # fp16 setting + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + optimizer_config = Fp16OptimizerHook( + **cfg.optimizer_config, **fp16_cfg, distributed=distributed) + elif distributed and 'type' not in cfg.optimizer_config: + optimizer_config = OptimizerHook(**cfg.optimizer_config) + else: + optimizer_config = cfg.optimizer_config + + # register hooks + runner.register_training_hooks( + cfg.lr_config, + optimizer_config, + cfg.checkpoint_config, + cfg.log_config, + cfg.get('momentum_config', None), + custom_hooks_config=cfg.get('custom_hooks', None)) + + if distributed: + if isinstance(runner, EpochBasedRunner): + runner.register_hook(DistSamplerSeedHook()) + + # register eval hooks + if validate: + val_dataloader_default_args = dict( + samples_per_gpu=1, + workers_per_gpu=2, + dist=distributed, + shuffle=False, + persistent_workers=False) + + val_dataloader_args = { + **val_dataloader_default_args, + **cfg.data.get('val_dataloader', {}) + } + # Support batch_size > 1 in validation + + if val_dataloader_args['samples_per_gpu'] > 1: + # Replace 'ImageToTensor' to 'DefaultFormatBundle' + cfg.data.val.pipeline = replace_ImageToTensor( + cfg.data.val.pipeline) + val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) + + val_dataloader = build_dataloader(val_dataset, **val_dataloader_args) + eval_cfg = cfg.get('evaluation', {}) + eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' + eval_hook = DistEvalHook if distributed else EvalHook + # In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the + # priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'. + runner.register_hook( + eval_hook(val_dataloader, **eval_cfg), priority='LOW') + + resume_from = None + if cfg.resume_from is None and cfg.get('auto_resume'): + resume_from = find_latest_checkpoint(cfg.work_dir) + if resume_from is not None: + cfg.resume_from = resume_from + + if cfg.resume_from: + runner.resume(cfg.resume_from) + elif cfg.load_from: + runner.load_checkpoint(cfg.load_from) + runner.run(data_loaders, cfg.workflow) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/__init__.py new file mode 100644 index 000000000..7eca58cf4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .anchor import * # noqa: F401, F403 +from .bbox import * # noqa: F401, F403 +from .data_structures import * # noqa: F401, F403 +from .evaluation import * # noqa: F401, F403 +from .hook import * # noqa: F401, F403 +from .mask import * # noqa: F401, F403 +from .post_processing import * # noqa: F401, F403 +from .utils import * # noqa: F401, F403 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/__init__.py new file mode 100644 index 000000000..fcc7e4af3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .anchor_generator import (AnchorGenerator, LegacyAnchorGenerator, + YOLOAnchorGenerator) +from .builder import (ANCHOR_GENERATORS, PRIOR_GENERATORS, + build_anchor_generator, build_prior_generator) +from .point_generator import MlvlPointGenerator, PointGenerator +from .utils import anchor_inside_flags, calc_region, images_to_levels + +__all__ = [ + 'AnchorGenerator', 'LegacyAnchorGenerator', 'anchor_inside_flags', + 'PointGenerator', 'images_to_levels', 'calc_region', + 'build_anchor_generator', 'ANCHOR_GENERATORS', 'YOLOAnchorGenerator', + 'build_prior_generator', 'PRIOR_GENERATORS', 'MlvlPointGenerator' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/anchor_generator.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/anchor_generator.py new file mode 100644 index 000000000..20886fbda --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/anchor_generator.py @@ -0,0 +1,866 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv +import numpy as np +import torch +from torch.nn.modules.utils import _pair + +from .builder import PRIOR_GENERATORS + + +@PRIOR_GENERATORS.register_module() +class AnchorGenerator: + """Standard anchor generator for 2D anchor-based detectors. + + Args: + strides (list[int] | list[tuple[int, int]]): Strides of anchors + in multiple feature levels in order (w, h). + ratios (list[float]): The list of ratios between the height and width + of anchors in a single level. + scales (list[int] | None): Anchor scales for anchors in a single level. + It cannot be set at the same time if `octave_base_scale` and + `scales_per_octave` are set. + base_sizes (list[int] | None): The basic sizes + of anchors in multiple levels. + If None is given, strides will be used as base_sizes. + (If strides are non square, the shortest stride is taken.) + scale_major (bool): Whether to multiply scales first when generating + base anchors. If true, the anchors in the same row will have the + same scales. By default it is True in V2.0 + octave_base_scale (int): The base scale of octave. + scales_per_octave (int): Number of scales for each octave. + `octave_base_scale` and `scales_per_octave` are usually used in + retinanet and the `scales` should be None when they are set. + centers (list[tuple[float, float]] | None): The centers of the anchor + relative to the feature grid center in multiple feature levels. + By default it is set to be None and not used. If a list of tuple of + float is given, they will be used to shift the centers of anchors. + center_offset (float): The offset of center in proportion to anchors' + width and height. By default it is 0 in V2.0. + + Examples: + >>> from mmdet.core import AnchorGenerator + >>> self = AnchorGenerator([16], [1.], [1.], [9]) + >>> all_anchors = self.grid_priors([(2, 2)], device='cpu') + >>> print(all_anchors) + [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], + [11.5000, -4.5000, 20.5000, 4.5000], + [-4.5000, 11.5000, 4.5000, 20.5000], + [11.5000, 11.5000, 20.5000, 20.5000]])] + >>> self = AnchorGenerator([16, 32], [1.], [1.], [9, 18]) + >>> all_anchors = self.grid_priors([(2, 2), (1, 1)], device='cpu') + >>> print(all_anchors) + [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], + [11.5000, -4.5000, 20.5000, 4.5000], + [-4.5000, 11.5000, 4.5000, 20.5000], + [11.5000, 11.5000, 20.5000, 20.5000]]), \ + tensor([[-9., -9., 9., 9.]])] + """ + + def __init__(self, + strides, + ratios, + scales=None, + base_sizes=None, + scale_major=True, + octave_base_scale=None, + scales_per_octave=None, + centers=None, + center_offset=0.): + # check center and center_offset + if center_offset != 0: + assert centers is None, 'center cannot be set when center_offset' \ + f'!=0, {centers} is given.' + if not (0 <= center_offset <= 1): + raise ValueError('center_offset should be in range [0, 1], ' + f'{center_offset} is given.') + if centers is not None: + assert len(centers) == len(strides), \ + 'The number of strides should be the same as centers, got ' \ + f'{strides} and {centers}' + + # calculate base sizes of anchors + self.strides = [_pair(stride) for stride in strides] + self.base_sizes = [min(stride) for stride in self.strides + ] if base_sizes is None else base_sizes + assert len(self.base_sizes) == len(self.strides), \ + 'The number of strides should be the same as base sizes, got ' \ + f'{self.strides} and {self.base_sizes}' + + # calculate scales of anchors + assert ((octave_base_scale is not None + and scales_per_octave is not None) ^ (scales is not None)), \ + 'scales and octave_base_scale with scales_per_octave cannot' \ + ' be set at the same time' + if scales is not None: + self.scales = torch.Tensor(scales) + elif octave_base_scale is not None and scales_per_octave is not None: + octave_scales = np.array( + [2**(i / scales_per_octave) for i in range(scales_per_octave)]) + scales = octave_scales * octave_base_scale + self.scales = torch.Tensor(scales) + else: + raise ValueError('Either scales or octave_base_scale with ' + 'scales_per_octave should be set') + + self.octave_base_scale = octave_base_scale + self.scales_per_octave = scales_per_octave + self.ratios = torch.Tensor(ratios) + self.scale_major = scale_major + self.centers = centers + self.center_offset = center_offset + self.base_anchors = self.gen_base_anchors() + + @property + def num_base_anchors(self): + """list[int]: total number of base anchors in a feature grid""" + return self.num_base_priors + + @property + def num_base_priors(self): + """list[int]: The number of priors (anchors) at a point + on the feature grid""" + return [base_anchors.size(0) for base_anchors in self.base_anchors] + + @property + def num_levels(self): + """int: number of feature levels that the generator will be applied""" + return len(self.strides) + + def gen_base_anchors(self): + """Generate base anchors. + + Returns: + list(torch.Tensor): Base anchors of a feature grid in multiple \ + feature levels. + """ + multi_level_base_anchors = [] + for i, base_size in enumerate(self.base_sizes): + center = None + if self.centers is not None: + center = self.centers[i] + multi_level_base_anchors.append( + self.gen_single_level_base_anchors( + base_size, + scales=self.scales, + ratios=self.ratios, + center=center)) + return multi_level_base_anchors + + def gen_single_level_base_anchors(self, + base_size, + scales, + ratios, + center=None): + """Generate base anchors of a single level. + + Args: + base_size (int | float): Basic size of an anchor. + scales (torch.Tensor): Scales of the anchor. + ratios (torch.Tensor): The ratio between between the height + and width of anchors in a single level. + center (tuple[float], optional): The center of the base anchor + related to a single feature grid. Defaults to None. + + Returns: + torch.Tensor: Anchors in a single-level feature maps. + """ + w = base_size + h = base_size + if center is None: + x_center = self.center_offset * w + y_center = self.center_offset * h + else: + x_center, y_center = center + + h_ratios = torch.sqrt(ratios) + w_ratios = 1 / h_ratios + if self.scale_major: + ws = (w * w_ratios[:, None] * scales[None, :]).view(-1) + hs = (h * h_ratios[:, None] * scales[None, :]).view(-1) + else: + ws = (w * scales[:, None] * w_ratios[None, :]).view(-1) + hs = (h * scales[:, None] * h_ratios[None, :]).view(-1) + + # use float anchor and the anchor's center is aligned with the + # pixel center + base_anchors = [ + x_center - 0.5 * ws, y_center - 0.5 * hs, x_center + 0.5 * ws, + y_center + 0.5 * hs + ] + base_anchors = torch.stack(base_anchors, dim=-1) + + return base_anchors + + def _meshgrid(self, x, y, row_major=True): + """Generate mesh grid of x and y. + + Args: + x (torch.Tensor): Grids of x dimension. + y (torch.Tensor): Grids of y dimension. + row_major (bool, optional): Whether to return y grids first. + Defaults to True. + + Returns: + tuple[torch.Tensor]: The mesh grids of x and y. + """ + # use shape instead of len to keep tracing while exporting to onnx + xx = x.repeat(y.shape[0]) + yy = y.view(-1, 1).repeat(1, x.shape[0]).view(-1) + if row_major: + return xx, yy + else: + return yy, xx + + def grid_priors(self, featmap_sizes, dtype=torch.float32, device='cuda'): + """Generate grid anchors in multiple feature levels. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes in + multiple feature levels. + dtype (:obj:`torch.dtype`): Dtype of priors. + Default: torch.float32. + device (str): The device where the anchors will be put on. + + Return: + list[torch.Tensor]: Anchors in multiple feature levels. \ + The sizes of each tensor should be [N, 4], where \ + N = width * height * num_base_anchors, width and height \ + are the sizes of the corresponding feature level, \ + num_base_anchors is the number of anchors for that level. + """ + assert self.num_levels == len(featmap_sizes) + multi_level_anchors = [] + for i in range(self.num_levels): + anchors = self.single_level_grid_priors( + featmap_sizes[i], level_idx=i, dtype=dtype, device=device) + multi_level_anchors.append(anchors) + return multi_level_anchors + + def single_level_grid_priors(self, + featmap_size, + level_idx, + dtype=torch.float32, + device='cuda'): + """Generate grid anchors of a single level. + + Note: + This function is usually called by method ``self.grid_priors``. + + Args: + featmap_size (tuple[int]): Size of the feature maps. + level_idx (int): The index of corresponding feature map level. + dtype (obj:`torch.dtype`): Date type of points.Defaults to + ``torch.float32``. + device (str, optional): The device the tensor will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors in the overall feature maps. + """ + + base_anchors = self.base_anchors[level_idx].to(device).to(dtype) + feat_h, feat_w = featmap_size + stride_w, stride_h = self.strides[level_idx] + # First create Range with the default dtype, than convert to + # target `dtype` for onnx exporting. + shift_x = torch.arange(0, feat_w, device=device).to(dtype) * stride_w + shift_y = torch.arange(0, feat_h, device=device).to(dtype) * stride_h + + shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) + shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1) + # first feat_w elements correspond to the first row of shifts + # add A anchors (1, A, 4) to K shifts (K, 1, 4) to get + # shifted anchors (K, A, 4), reshape to (K*A, 4) + + all_anchors = base_anchors[None, :, :] + shifts[:, None, :] + all_anchors = all_anchors.view(-1, 4) + # first A rows correspond to A anchors of (0, 0) in feature map, + # then (0, 1), (0, 2), ... + return all_anchors + + def sparse_priors(self, + prior_idxs, + featmap_size, + level_idx, + dtype=torch.float32, + device='cuda'): + """Generate sparse anchors according to the ``prior_idxs``. + + Args: + prior_idxs (Tensor): The index of corresponding anchors + in the feature map. + featmap_size (tuple[int]): feature map size arrange as (h, w). + level_idx (int): The level index of corresponding feature + map. + dtype (obj:`torch.dtype`): Date type of points.Defaults to + ``torch.float32``. + device (obj:`torch.device`): The device where the points is + located. + Returns: + Tensor: Anchor with shape (N, 4), N should be equal to + the length of ``prior_idxs``. + """ + + height, width = featmap_size + num_base_anchors = self.num_base_anchors[level_idx] + base_anchor_id = prior_idxs % num_base_anchors + x = (prior_idxs // + num_base_anchors) % width * self.strides[level_idx][0] + y = (prior_idxs // width // + num_base_anchors) % height * self.strides[level_idx][1] + priors = torch.stack([x, y, x, y], 1).to(dtype).to(device) + \ + self.base_anchors[level_idx][base_anchor_id, :].to(device) + + return priors + + def grid_anchors(self, featmap_sizes, device='cuda'): + """Generate grid anchors in multiple feature levels. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes in + multiple feature levels. + device (str): Device where the anchors will be put on. + + Return: + list[torch.Tensor]: Anchors in multiple feature levels. \ + The sizes of each tensor should be [N, 4], where \ + N = width * height * num_base_anchors, width and height \ + are the sizes of the corresponding feature level, \ + num_base_anchors is the number of anchors for that level. + """ + warnings.warn('``grid_anchors`` would be deprecated soon. ' + 'Please use ``grid_priors`` ') + + assert self.num_levels == len(featmap_sizes) + multi_level_anchors = [] + for i in range(self.num_levels): + anchors = self.single_level_grid_anchors( + self.base_anchors[i].to(device), + featmap_sizes[i], + self.strides[i], + device=device) + multi_level_anchors.append(anchors) + return multi_level_anchors + + def single_level_grid_anchors(self, + base_anchors, + featmap_size, + stride=(16, 16), + device='cuda'): + """Generate grid anchors of a single level. + + Note: + This function is usually called by method ``self.grid_anchors``. + + Args: + base_anchors (torch.Tensor): The base anchors of a feature grid. + featmap_size (tuple[int]): Size of the feature maps. + stride (tuple[int], optional): Stride of the feature map in order + (w, h). Defaults to (16, 16). + device (str, optional): Device the tensor will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors in the overall feature maps. + """ + + warnings.warn( + '``single_level_grid_anchors`` would be deprecated soon. ' + 'Please use ``single_level_grid_priors`` ') + + # keep featmap_size as Tensor instead of int, so that we + # can convert to ONNX correctly + feat_h, feat_w = featmap_size + shift_x = torch.arange(0, feat_w, device=device) * stride[0] + shift_y = torch.arange(0, feat_h, device=device) * stride[1] + + shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) + shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1) + shifts = shifts.type_as(base_anchors) + # first feat_w elements correspond to the first row of shifts + # add A anchors (1, A, 4) to K shifts (K, 1, 4) to get + # shifted anchors (K, A, 4), reshape to (K*A, 4) + + all_anchors = base_anchors[None, :, :] + shifts[:, None, :] + all_anchors = all_anchors.view(-1, 4) + # first A rows correspond to A anchors of (0, 0) in feature map, + # then (0, 1), (0, 2), ... + return all_anchors + + def valid_flags(self, featmap_sizes, pad_shape, device='cuda'): + """Generate valid flags of anchors in multiple feature levels. + + Args: + featmap_sizes (list(tuple)): List of feature map sizes in + multiple feature levels. + pad_shape (tuple): The padded shape of the image. + device (str): Device where the anchors will be put on. + + Return: + list(torch.Tensor): Valid flags of anchors in multiple levels. + """ + assert self.num_levels == len(featmap_sizes) + multi_level_flags = [] + for i in range(self.num_levels): + anchor_stride = self.strides[i] + feat_h, feat_w = featmap_sizes[i] + h, w = pad_shape[:2] + valid_feat_h = min(int(np.ceil(h / anchor_stride[1])), feat_h) + valid_feat_w = min(int(np.ceil(w / anchor_stride[0])), feat_w) + flags = self.single_level_valid_flags((feat_h, feat_w), + (valid_feat_h, valid_feat_w), + self.num_base_anchors[i], + device=device) + multi_level_flags.append(flags) + return multi_level_flags + + def single_level_valid_flags(self, + featmap_size, + valid_size, + num_base_anchors, + device='cuda'): + """Generate the valid flags of anchor in a single feature map. + + Args: + featmap_size (tuple[int]): The size of feature maps, arrange + as (h, w). + valid_size (tuple[int]): The valid size of the feature maps. + num_base_anchors (int): The number of base anchors. + device (str, optional): Device where the flags will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: The valid flags of each anchor in a single level \ + feature map. + """ + feat_h, feat_w = featmap_size + valid_h, valid_w = valid_size + assert valid_h <= feat_h and valid_w <= feat_w + valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) + valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) + valid_x[:valid_w] = 1 + valid_y[:valid_h] = 1 + valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) + valid = valid_xx & valid_yy + valid = valid[:, None].expand(valid.size(0), + num_base_anchors).contiguous().view(-1) + return valid + + def __repr__(self): + """str: a string that describes the module""" + indent_str = ' ' + repr_str = self.__class__.__name__ + '(\n' + repr_str += f'{indent_str}strides={self.strides},\n' + repr_str += f'{indent_str}ratios={self.ratios},\n' + repr_str += f'{indent_str}scales={self.scales},\n' + repr_str += f'{indent_str}base_sizes={self.base_sizes},\n' + repr_str += f'{indent_str}scale_major={self.scale_major},\n' + repr_str += f'{indent_str}octave_base_scale=' + repr_str += f'{self.octave_base_scale},\n' + repr_str += f'{indent_str}scales_per_octave=' + repr_str += f'{self.scales_per_octave},\n' + repr_str += f'{indent_str}num_levels={self.num_levels}\n' + repr_str += f'{indent_str}centers={self.centers},\n' + repr_str += f'{indent_str}center_offset={self.center_offset})' + return repr_str + + +@PRIOR_GENERATORS.register_module() +class SSDAnchorGenerator(AnchorGenerator): + """Anchor generator for SSD. + + Args: + strides (list[int] | list[tuple[int, int]]): Strides of anchors + in multiple feature levels. + ratios (list[float]): The list of ratios between the height and width + of anchors in a single level. + min_sizes (list[float]): The list of minimum anchor sizes on each + level. + max_sizes (list[float]): The list of maximum anchor sizes on each + level. + basesize_ratio_range (tuple(float)): Ratio range of anchors. Being + used when not setting min_sizes and max_sizes. + input_size (int): Size of feature map, 300 for SSD300, 512 for + SSD512. Being used when not setting min_sizes and max_sizes. + scale_major (bool): Whether to multiply scales first when generating + base anchors. If true, the anchors in the same row will have the + same scales. It is always set to be False in SSD. + """ + + def __init__(self, + strides, + ratios, + min_sizes=None, + max_sizes=None, + basesize_ratio_range=(0.15, 0.9), + input_size=300, + scale_major=True): + assert len(strides) == len(ratios) + assert not (min_sizes is None) ^ (max_sizes is None) + self.strides = [_pair(stride) for stride in strides] + self.centers = [(stride[0] / 2., stride[1] / 2.) + for stride in self.strides] + + if min_sizes is None and max_sizes is None: + # use hard code to generate SSD anchors + self.input_size = input_size + assert mmcv.is_tuple_of(basesize_ratio_range, float) + self.basesize_ratio_range = basesize_ratio_range + # calculate anchor ratios and sizes + min_ratio, max_ratio = basesize_ratio_range + min_ratio = int(min_ratio * 100) + max_ratio = int(max_ratio * 100) + step = int(np.floor(max_ratio - min_ratio) / (self.num_levels - 2)) + min_sizes = [] + max_sizes = [] + for ratio in range(int(min_ratio), int(max_ratio) + 1, step): + min_sizes.append(int(self.input_size * ratio / 100)) + max_sizes.append(int(self.input_size * (ratio + step) / 100)) + if self.input_size == 300: + if basesize_ratio_range[0] == 0.15: # SSD300 COCO + min_sizes.insert(0, int(self.input_size * 7 / 100)) + max_sizes.insert(0, int(self.input_size * 15 / 100)) + elif basesize_ratio_range[0] == 0.2: # SSD300 VOC + min_sizes.insert(0, int(self.input_size * 10 / 100)) + max_sizes.insert(0, int(self.input_size * 20 / 100)) + else: + raise ValueError( + 'basesize_ratio_range[0] should be either 0.15' + 'or 0.2 when input_size is 300, got ' + f'{basesize_ratio_range[0]}.') + elif self.input_size == 512: + if basesize_ratio_range[0] == 0.1: # SSD512 COCO + min_sizes.insert(0, int(self.input_size * 4 / 100)) + max_sizes.insert(0, int(self.input_size * 10 / 100)) + elif basesize_ratio_range[0] == 0.15: # SSD512 VOC + min_sizes.insert(0, int(self.input_size * 7 / 100)) + max_sizes.insert(0, int(self.input_size * 15 / 100)) + else: + raise ValueError( + 'When not setting min_sizes and max_sizes,' + 'basesize_ratio_range[0] should be either 0.1' + 'or 0.15 when input_size is 512, got' + f' {basesize_ratio_range[0]}.') + else: + raise ValueError( + 'Only support 300 or 512 in SSDAnchorGenerator when ' + 'not setting min_sizes and max_sizes, ' + f'got {self.input_size}.') + + assert len(min_sizes) == len(max_sizes) == len(strides) + + anchor_ratios = [] + anchor_scales = [] + for k in range(len(self.strides)): + scales = [1., np.sqrt(max_sizes[k] / min_sizes[k])] + anchor_ratio = [1.] + for r in ratios[k]: + anchor_ratio += [1 / r, r] # 4 or 6 ratio + anchor_ratios.append(torch.Tensor(anchor_ratio)) + anchor_scales.append(torch.Tensor(scales)) + + self.base_sizes = min_sizes + self.scales = anchor_scales + self.ratios = anchor_ratios + self.scale_major = scale_major + self.center_offset = 0 + self.base_anchors = self.gen_base_anchors() + + def gen_base_anchors(self): + """Generate base anchors. + + Returns: + list(torch.Tensor): Base anchors of a feature grid in multiple \ + feature levels. + """ + multi_level_base_anchors = [] + for i, base_size in enumerate(self.base_sizes): + base_anchors = self.gen_single_level_base_anchors( + base_size, + scales=self.scales[i], + ratios=self.ratios[i], + center=self.centers[i]) + indices = list(range(len(self.ratios[i]))) + indices.insert(1, len(indices)) + base_anchors = torch.index_select(base_anchors, 0, + torch.LongTensor(indices)) + multi_level_base_anchors.append(base_anchors) + return multi_level_base_anchors + + def __repr__(self): + """str: a string that describes the module""" + indent_str = ' ' + repr_str = self.__class__.__name__ + '(\n' + repr_str += f'{indent_str}strides={self.strides},\n' + repr_str += f'{indent_str}scales={self.scales},\n' + repr_str += f'{indent_str}scale_major={self.scale_major},\n' + repr_str += f'{indent_str}input_size={self.input_size},\n' + repr_str += f'{indent_str}scales={self.scales},\n' + repr_str += f'{indent_str}ratios={self.ratios},\n' + repr_str += f'{indent_str}num_levels={self.num_levels},\n' + repr_str += f'{indent_str}base_sizes={self.base_sizes},\n' + repr_str += f'{indent_str}basesize_ratio_range=' + repr_str += f'{self.basesize_ratio_range})' + return repr_str + + +@PRIOR_GENERATORS.register_module() +class LegacyAnchorGenerator(AnchorGenerator): + """Legacy anchor generator used in MMDetection V1.x. + + Note: + Difference to the V2.0 anchor generator: + + 1. The center offset of V1.x anchors are set to be 0.5 rather than 0. + 2. The width/height are minused by 1 when calculating the anchors' \ + centers and corners to meet the V1.x coordinate system. + 3. The anchors' corners are quantized. + + Args: + strides (list[int] | list[tuple[int]]): Strides of anchors + in multiple feature levels. + ratios (list[float]): The list of ratios between the height and width + of anchors in a single level. + scales (list[int] | None): Anchor scales for anchors in a single level. + It cannot be set at the same time if `octave_base_scale` and + `scales_per_octave` are set. + base_sizes (list[int]): The basic sizes of anchors in multiple levels. + If None is given, strides will be used to generate base_sizes. + scale_major (bool): Whether to multiply scales first when generating + base anchors. If true, the anchors in the same row will have the + same scales. By default it is True in V2.0 + octave_base_scale (int): The base scale of octave. + scales_per_octave (int): Number of scales for each octave. + `octave_base_scale` and `scales_per_octave` are usually used in + retinanet and the `scales` should be None when they are set. + centers (list[tuple[float, float]] | None): The centers of the anchor + relative to the feature grid center in multiple feature levels. + By default it is set to be None and not used. It a list of float + is given, this list will be used to shift the centers of anchors. + center_offset (float): The offset of center in proportion to anchors' + width and height. By default it is 0.5 in V2.0 but it should be 0.5 + in v1.x models. + + Examples: + >>> from mmdet.core import LegacyAnchorGenerator + >>> self = LegacyAnchorGenerator( + >>> [16], [1.], [1.], [9], center_offset=0.5) + >>> all_anchors = self.grid_anchors(((2, 2),), device='cpu') + >>> print(all_anchors) + [tensor([[ 0., 0., 8., 8.], + [16., 0., 24., 8.], + [ 0., 16., 8., 24.], + [16., 16., 24., 24.]])] + """ + + def gen_single_level_base_anchors(self, + base_size, + scales, + ratios, + center=None): + """Generate base anchors of a single level. + + Note: + The width/height of anchors are minused by 1 when calculating \ + the centers and corners to meet the V1.x coordinate system. + + Args: + base_size (int | float): Basic size of an anchor. + scales (torch.Tensor): Scales of the anchor. + ratios (torch.Tensor): The ratio between between the height. + and width of anchors in a single level. + center (tuple[float], optional): The center of the base anchor + related to a single feature grid. Defaults to None. + + Returns: + torch.Tensor: Anchors in a single-level feature map. + """ + w = base_size + h = base_size + if center is None: + x_center = self.center_offset * (w - 1) + y_center = self.center_offset * (h - 1) + else: + x_center, y_center = center + + h_ratios = torch.sqrt(ratios) + w_ratios = 1 / h_ratios + if self.scale_major: + ws = (w * w_ratios[:, None] * scales[None, :]).view(-1) + hs = (h * h_ratios[:, None] * scales[None, :]).view(-1) + else: + ws = (w * scales[:, None] * w_ratios[None, :]).view(-1) + hs = (h * scales[:, None] * h_ratios[None, :]).view(-1) + + # use float anchor and the anchor's center is aligned with the + # pixel center + base_anchors = [ + x_center - 0.5 * (ws - 1), y_center - 0.5 * (hs - 1), + x_center + 0.5 * (ws - 1), y_center + 0.5 * (hs - 1) + ] + base_anchors = torch.stack(base_anchors, dim=-1).round() + + return base_anchors + + +@PRIOR_GENERATORS.register_module() +class LegacySSDAnchorGenerator(SSDAnchorGenerator, LegacyAnchorGenerator): + """Legacy anchor generator used in MMDetection V1.x. + + The difference between `LegacySSDAnchorGenerator` and `SSDAnchorGenerator` + can be found in `LegacyAnchorGenerator`. + """ + + def __init__(self, + strides, + ratios, + basesize_ratio_range, + input_size=300, + scale_major=True): + super(LegacySSDAnchorGenerator, self).__init__( + strides=strides, + ratios=ratios, + basesize_ratio_range=basesize_ratio_range, + input_size=input_size, + scale_major=scale_major) + self.centers = [((stride - 1) / 2., (stride - 1) / 2.) + for stride in strides] + self.base_anchors = self.gen_base_anchors() + + +@PRIOR_GENERATORS.register_module() +class YOLOAnchorGenerator(AnchorGenerator): + """Anchor generator for YOLO. + + Args: + strides (list[int] | list[tuple[int, int]]): Strides of anchors + in multiple feature levels. + base_sizes (list[list[tuple[int, int]]]): The basic sizes + of anchors in multiple levels. + """ + + def __init__(self, strides, base_sizes): + self.strides = [_pair(stride) for stride in strides] + self.centers = [(stride[0] / 2., stride[1] / 2.) + for stride in self.strides] + self.base_sizes = [] + num_anchor_per_level = len(base_sizes[0]) + for base_sizes_per_level in base_sizes: + assert num_anchor_per_level == len(base_sizes_per_level) + self.base_sizes.append( + [_pair(base_size) for base_size in base_sizes_per_level]) + self.base_anchors = self.gen_base_anchors() + + @property + def num_levels(self): + """int: number of feature levels that the generator will be applied""" + return len(self.base_sizes) + + def gen_base_anchors(self): + """Generate base anchors. + + Returns: + list(torch.Tensor): Base anchors of a feature grid in multiple \ + feature levels. + """ + multi_level_base_anchors = [] + for i, base_sizes_per_level in enumerate(self.base_sizes): + center = None + if self.centers is not None: + center = self.centers[i] + multi_level_base_anchors.append( + self.gen_single_level_base_anchors(base_sizes_per_level, + center)) + return multi_level_base_anchors + + def gen_single_level_base_anchors(self, base_sizes_per_level, center=None): + """Generate base anchors of a single level. + + Args: + base_sizes_per_level (list[tuple[int, int]]): Basic sizes of + anchors. + center (tuple[float], optional): The center of the base anchor + related to a single feature grid. Defaults to None. + + Returns: + torch.Tensor: Anchors in a single-level feature maps. + """ + x_center, y_center = center + base_anchors = [] + for base_size in base_sizes_per_level: + w, h = base_size + + # use float anchor and the anchor's center is aligned with the + # pixel center + base_anchor = torch.Tensor([ + x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w, + y_center + 0.5 * h + ]) + base_anchors.append(base_anchor) + base_anchors = torch.stack(base_anchors, dim=0) + + return base_anchors + + def responsible_flags(self, featmap_sizes, gt_bboxes, device='cuda'): + """Generate responsible anchor flags of grid cells in multiple scales. + + Args: + featmap_sizes (list(tuple)): List of feature map sizes in multiple + feature levels. + gt_bboxes (Tensor): Ground truth boxes, shape (n, 4). + device (str): Device where the anchors will be put on. + + Return: + list(torch.Tensor): responsible flags of anchors in multiple level + """ + assert self.num_levels == len(featmap_sizes) + multi_level_responsible_flags = [] + for i in range(self.num_levels): + anchor_stride = self.strides[i] + flags = self.single_level_responsible_flags( + featmap_sizes[i], + gt_bboxes, + anchor_stride, + self.num_base_anchors[i], + device=device) + multi_level_responsible_flags.append(flags) + return multi_level_responsible_flags + + def single_level_responsible_flags(self, + featmap_size, + gt_bboxes, + stride, + num_base_anchors, + device='cuda'): + """Generate the responsible flags of anchor in a single feature map. + + Args: + featmap_size (tuple[int]): The size of feature maps. + gt_bboxes (Tensor): Ground truth boxes, shape (n, 4). + stride (tuple(int)): stride of current level + num_base_anchors (int): The number of base anchors. + device (str, optional): Device where the flags will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: The valid flags of each anchor in a single level \ + feature map. + """ + feat_h, feat_w = featmap_size + gt_bboxes_cx = ((gt_bboxes[:, 0] + gt_bboxes[:, 2]) * 0.5).to(device) + gt_bboxes_cy = ((gt_bboxes[:, 1] + gt_bboxes[:, 3]) * 0.5).to(device) + gt_bboxes_grid_x = torch.floor(gt_bboxes_cx / stride[0]).long() + gt_bboxes_grid_y = torch.floor(gt_bboxes_cy / stride[1]).long() + + # row major indexing + gt_bboxes_grid_idx = gt_bboxes_grid_y * feat_w + gt_bboxes_grid_x + + responsible_grid = torch.zeros( + feat_h * feat_w, dtype=torch.uint8, device=device) + responsible_grid[gt_bboxes_grid_idx] = 1 + + responsible_grid = responsible_grid[:, None].expand( + responsible_grid.size(0), num_base_anchors).contiguous().view(-1) + return responsible_grid diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/builder.py new file mode 100644 index 000000000..ddb25ad37 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/builder.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv.utils import Registry, build_from_cfg + +PRIOR_GENERATORS = Registry('Generator for anchors and points') + +ANCHOR_GENERATORS = PRIOR_GENERATORS + + +def build_prior_generator(cfg, default_args=None): + return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) + + +def build_anchor_generator(cfg, default_args=None): + warnings.warn( + '``build_anchor_generator`` would be deprecated soon, please use ' + '``build_prior_generator`` ') + return build_prior_generator(cfg, default_args=default_args) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/point_generator.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/point_generator.py new file mode 100644 index 000000000..cc9c3887d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/point_generator.py @@ -0,0 +1,263 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from torch.nn.modules.utils import _pair + +from .builder import PRIOR_GENERATORS + + +@PRIOR_GENERATORS.register_module() +class PointGenerator: + + def _meshgrid(self, x, y, row_major=True): + xx = x.repeat(len(y)) + yy = y.view(-1, 1).repeat(1, len(x)).view(-1) + if row_major: + return xx, yy + else: + return yy, xx + + def grid_points(self, featmap_size, stride=16, device='cuda'): + feat_h, feat_w = featmap_size + shift_x = torch.arange(0., feat_w, device=device) * stride + shift_y = torch.arange(0., feat_h, device=device) * stride + shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) + stride = shift_x.new_full((shift_xx.shape[0], ), stride) + shifts = torch.stack([shift_xx, shift_yy, stride], dim=-1) + all_points = shifts.to(device) + return all_points + + def valid_flags(self, featmap_size, valid_size, device='cuda'): + feat_h, feat_w = featmap_size + valid_h, valid_w = valid_size + assert valid_h <= feat_h and valid_w <= feat_w + valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) + valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) + valid_x[:valid_w] = 1 + valid_y[:valid_h] = 1 + valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) + valid = valid_xx & valid_yy + return valid + + +@PRIOR_GENERATORS.register_module() +class MlvlPointGenerator: + """Standard points generator for multi-level (Mlvl) feature maps in 2D + points-based detectors. + + Args: + strides (list[int] | list[tuple[int, int]]): Strides of anchors + in multiple feature levels in order (w, h). + offset (float): The offset of points, the value is normalized with + corresponding stride. Defaults to 0.5. + """ + + def __init__(self, strides, offset=0.5): + self.strides = [_pair(stride) for stride in strides] + self.offset = offset + + @property + def num_levels(self): + """int: number of feature levels that the generator will be applied""" + return len(self.strides) + + @property + def num_base_priors(self): + """list[int]: The number of priors (points) at a point + on the feature grid""" + return [1 for _ in range(len(self.strides))] + + def _meshgrid(self, x, y, row_major=True): + yy, xx = torch.meshgrid(y, x) + if row_major: + # warning .flatten() would cause error in ONNX exporting + # have to use reshape here + return xx.reshape(-1), yy.reshape(-1) + + else: + return yy.reshape(-1), xx.reshape(-1) + + def grid_priors(self, + featmap_sizes, + dtype=torch.float32, + device='cuda', + with_stride=False): + """Generate grid points of multiple feature levels. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes in + multiple feature levels, each size arrange as + as (h, w). + dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. + device (str): The device where the anchors will be put on. + with_stride (bool): Whether to concatenate the stride to + the last dimension of points. + + Return: + list[torch.Tensor]: Points of multiple feature levels. + The sizes of each tensor should be (N, 2) when with stride is + ``False``, where N = width * height, width and height + are the sizes of the corresponding feature level, + and the last dimension 2 represent (coord_x, coord_y), + otherwise the shape should be (N, 4), + and the last dimension 4 represent + (coord_x, coord_y, stride_w, stride_h). + """ + + assert self.num_levels == len(featmap_sizes) + multi_level_priors = [] + for i in range(self.num_levels): + priors = self.single_level_grid_priors( + featmap_sizes[i], + level_idx=i, + dtype=dtype, + device=device, + with_stride=with_stride) + multi_level_priors.append(priors) + return multi_level_priors + + def single_level_grid_priors(self, + featmap_size, + level_idx, + dtype=torch.float32, + device='cuda', + with_stride=False): + """Generate grid Points of a single level. + + Note: + This function is usually called by method ``self.grid_priors``. + + Args: + featmap_size (tuple[int]): Size of the feature maps, arrange as + (h, w). + level_idx (int): The index of corresponding feature map level. + dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. + device (str, optional): The device the tensor will be put on. + Defaults to 'cuda'. + with_stride (bool): Concatenate the stride to the last dimension + of points. + + Return: + Tensor: Points of single feature levels. + The shape of tensor should be (N, 2) when with stride is + ``False``, where N = width * height, width and height + are the sizes of the corresponding feature level, + and the last dimension 2 represent (coord_x, coord_y), + otherwise the shape should be (N, 4), + and the last dimension 4 represent + (coord_x, coord_y, stride_w, stride_h). + """ + feat_h, feat_w = featmap_size + stride_w, stride_h = self.strides[level_idx] + shift_x = (torch.arange(0, feat_w, device=device) + + self.offset) * stride_w + # keep featmap_size as Tensor instead of int, so that we + # can convert to ONNX correctly + shift_x = shift_x.to(dtype) + + shift_y = (torch.arange(0, feat_h, device=device) + + self.offset) * stride_h + # keep featmap_size as Tensor instead of int, so that we + # can convert to ONNX correctly + shift_y = shift_y.to(dtype) + shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) + if not with_stride: + shifts = torch.stack([shift_xx, shift_yy], dim=-1) + else: + # use `shape[0]` instead of `len(shift_xx)` for ONNX export + stride_w = shift_xx.new_full((shift_xx.shape[0], ), + stride_w).to(dtype) + stride_h = shift_xx.new_full((shift_yy.shape[0], ), + stride_h).to(dtype) + shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h], + dim=-1) + all_points = shifts.to(device) + return all_points + + def valid_flags(self, featmap_sizes, pad_shape, device='cuda'): + """Generate valid flags of points of multiple feature levels. + + Args: + featmap_sizes (list(tuple)): List of feature map sizes in + multiple feature levels, each size arrange as + as (h, w). + pad_shape (tuple(int)): The padded shape of the image, + arrange as (h, w). + device (str): The device where the anchors will be put on. + + Return: + list(torch.Tensor): Valid flags of points of multiple levels. + """ + assert self.num_levels == len(featmap_sizes) + multi_level_flags = [] + for i in range(self.num_levels): + point_stride = self.strides[i] + feat_h, feat_w = featmap_sizes[i] + h, w = pad_shape[:2] + valid_feat_h = min(int(np.ceil(h / point_stride[1])), feat_h) + valid_feat_w = min(int(np.ceil(w / point_stride[0])), feat_w) + flags = self.single_level_valid_flags((feat_h, feat_w), + (valid_feat_h, valid_feat_w), + device=device) + multi_level_flags.append(flags) + return multi_level_flags + + def single_level_valid_flags(self, + featmap_size, + valid_size, + device='cuda'): + """Generate the valid flags of points of a single feature map. + + Args: + featmap_size (tuple[int]): The size of feature maps, arrange as + as (h, w). + valid_size (tuple[int]): The valid size of the feature maps. + The size arrange as as (h, w). + device (str, optional): The device where the flags will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: The valid flags of each points in a single level \ + feature map. + """ + feat_h, feat_w = featmap_size + valid_h, valid_w = valid_size + assert valid_h <= feat_h and valid_w <= feat_w + valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) + valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) + valid_x[:valid_w] = 1 + valid_y[:valid_h] = 1 + valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) + valid = valid_xx & valid_yy + return valid + + def sparse_priors(self, + prior_idxs, + featmap_size, + level_idx, + dtype=torch.float32, + device='cuda'): + """Generate sparse points according to the ``prior_idxs``. + + Args: + prior_idxs (Tensor): The index of corresponding anchors + in the feature map. + featmap_size (tuple[int]): feature map size arrange as (w, h). + level_idx (int): The level index of corresponding feature + map. + dtype (obj:`torch.dtype`): Date type of points. Defaults to + ``torch.float32``. + device (obj:`torch.device`): The device where the points is + located. + Returns: + Tensor: Anchor with shape (N, 2), N should be equal to + the length of ``prior_idxs``. And last dimension + 2 represent (coord_x, coord_y). + """ + height, width = featmap_size + x = (prior_idxs % width + self.offset) * self.strides[level_idx][0] + y = ((prior_idxs // width) % height + + self.offset) * self.strides[level_idx][1] + prioris = torch.stack([x, y], 1).to(dtype) + prioris = prioris.to(device) + return prioris diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/utils.py new file mode 100644 index 000000000..c2f202476 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/anchor/utils.py @@ -0,0 +1,72 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def images_to_levels(target, num_levels): + """Convert targets by image to targets by feature level. + + [target_img0, target_img1] -> [target_level0, target_level1, ...] + """ + target = torch.stack(target, 0) + level_targets = [] + start = 0 + for n in num_levels: + end = start + n + # level_targets.append(target[:, start:end].squeeze(0)) + level_targets.append(target[:, start:end]) + start = end + return level_targets + + +def anchor_inside_flags(flat_anchors, + valid_flags, + img_shape, + allowed_border=0): + """Check whether the anchors are inside the border. + + Args: + flat_anchors (torch.Tensor): Flatten anchors, shape (n, 4). + valid_flags (torch.Tensor): An existing valid flags of anchors. + img_shape (tuple(int)): Shape of current image. + allowed_border (int, optional): The border to allow the valid anchor. + Defaults to 0. + + Returns: + torch.Tensor: Flags indicating whether the anchors are inside a \ + valid range. + """ + img_h, img_w = img_shape[:2] + if allowed_border >= 0: + inside_flags = valid_flags & \ + (flat_anchors[:, 0] >= -allowed_border) & \ + (flat_anchors[:, 1] >= -allowed_border) & \ + (flat_anchors[:, 2] < img_w + allowed_border) & \ + (flat_anchors[:, 3] < img_h + allowed_border) + else: + inside_flags = valid_flags + return inside_flags + + +def calc_region(bbox, ratio, featmap_size=None): + """Calculate a proportional bbox region. + + The bbox center are fixed and the new h' and w' is h * ratio and w * ratio. + + Args: + bbox (Tensor): Bboxes to calculate regions, shape (n, 4). + ratio (float): Ratio of the output region. + featmap_size (tuple): Feature map size used for clipping the boundary. + + Returns: + tuple: x1, y1, x2, y2 + """ + x1 = torch.round((1 - ratio) * bbox[0] + ratio * bbox[2]).long() + y1 = torch.round((1 - ratio) * bbox[1] + ratio * bbox[3]).long() + x2 = torch.round(ratio * bbox[0] + (1 - ratio) * bbox[2]).long() + y2 = torch.round(ratio * bbox[1] + (1 - ratio) * bbox[3]).long() + if featmap_size is not None: + x1 = x1.clamp(min=0, max=featmap_size[1]) + y1 = y1.clamp(min=0, max=featmap_size[0]) + x2 = x2.clamp(min=0, max=featmap_size[1]) + y2 = y2.clamp(min=0, max=featmap_size[0]) + return (x1, y1, x2, y2) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/__init__.py new file mode 100644 index 000000000..371eba198 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/__init__.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, + MaxIoUAssigner, RegionAssigner) +from .builder import build_assigner, build_bbox_coder, build_sampler +from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, + PseudoBBoxCoder, TBLRBBoxCoder) +from .iou_calculators import BboxOverlaps2D, bbox_overlaps +from .samplers import (BaseSampler, CombinedSampler, + InstanceBalancedPosSampler, IoUBalancedNegSampler, + OHEMSampler, PseudoSampler, RandomSampler, + SamplingResult, ScoreHLRSampler) +from .transforms import (bbox2distance, bbox2result, bbox2roi, + bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, + bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh, + distance2bbox, find_inside_bboxes, roi2bbox) + +__all__ = [ + 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', + 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', + 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', + 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', + 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', + 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', + 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', + 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', + 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', + 'bbox_xyxy_to_cxcywh', 'RegionAssigner', 'find_inside_bboxes' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/__init__.py new file mode 100644 index 000000000..5eaf7fa3a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/__init__.py @@ -0,0 +1,22 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .approx_max_iou_assigner import ApproxMaxIoUAssigner +from .assign_result import AssignResult +from .atss_assigner import ATSSAssigner +from .base_assigner import BaseAssigner +from .center_region_assigner import CenterRegionAssigner +from .grid_assigner import GridAssigner +from .hungarian_assigner import HungarianAssigner +from .mask_hungarian_assigner import MaskHungarianAssigner +from .max_iou_assigner import MaxIoUAssigner +from .point_assigner import PointAssigner +from .region_assigner import RegionAssigner +from .sim_ota_assigner import SimOTAAssigner +from .task_aligned_assigner import TaskAlignedAssigner +from .uniform_assigner import UniformAssigner + +__all__ = [ + 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', + 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', + 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', + 'TaskAlignedAssigner', 'MaskHungarianAssigner' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/approx_max_iou_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/approx_max_iou_assigner.py new file mode 100644 index 000000000..304d09c3f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/approx_max_iou_assigner.py @@ -0,0 +1,146 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .max_iou_assigner import MaxIoUAssigner + + +@BBOX_ASSIGNERS.register_module() +class ApproxMaxIoUAssigner(MaxIoUAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with an integer indicating the ground truth + index. (semi-positive index: gt label (0-based), -1: background) + + - -1: negative sample, no assigned gt + - semi-positive integer: positive sample, index (0-based) of assigned gt + + Args: + pos_iou_thr (float): IoU threshold for positive bboxes. + neg_iou_thr (float or tuple): IoU threshold for negative bboxes. + min_pos_iou (float): Minimum iou for a bbox to be considered as a + positive bbox. Positive samples can have smaller IoU than + pos_iou_thr due to the 4th step (assign max IoU sample to each gt). + gt_max_assign_all (bool): Whether to assign all bboxes with the same + highest overlap with some gt to that gt. + ignore_iof_thr (float): IoF threshold for ignoring bboxes (if + `gt_bboxes_ignore` is specified). Negative values mean not + ignoring any bboxes. + ignore_wrt_candidates (bool): Whether to compute the iof between + `bboxes` and `gt_bboxes_ignore`, or the contrary. + match_low_quality (bool): Whether to allow quality matches. This is + usually allowed for RPN and single stage detectors, but not allowed + in the second stage. + gpu_assign_thr (int): The upper bound of the number of GT for GPU + assign. When the number of gt is above this threshold, will assign + on CPU device. Negative values mean not assign on CPU. + """ + + def __init__(self, + pos_iou_thr, + neg_iou_thr, + min_pos_iou=.0, + gt_max_assign_all=True, + ignore_iof_thr=-1, + ignore_wrt_candidates=True, + match_low_quality=True, + gpu_assign_thr=-1, + iou_calculator=dict(type='BboxOverlaps2D')): + self.pos_iou_thr = pos_iou_thr + self.neg_iou_thr = neg_iou_thr + self.min_pos_iou = min_pos_iou + self.gt_max_assign_all = gt_max_assign_all + self.ignore_iof_thr = ignore_iof_thr + self.ignore_wrt_candidates = ignore_wrt_candidates + self.gpu_assign_thr = gpu_assign_thr + self.match_low_quality = match_low_quality + self.iou_calculator = build_iou_calculator(iou_calculator) + + def assign(self, + approxs, + squares, + approxs_per_octave, + gt_bboxes, + gt_bboxes_ignore=None, + gt_labels=None): + """Assign gt to approxs. + + This method assign a gt bbox to each group of approxs (bboxes), + each group of approxs is represent by a base approx (bbox) and + will be assigned with -1, or a semi-positive number. + background_label (-1) means negative sample, + semi-positive number is the index (0-based) of assigned gt. + The assignment is done in following steps, the order matters. + + 1. assign every bbox to background_label (-1) + 2. use the max IoU of each group of approxs to assign + 2. assign proposals whose iou with all gts < neg_iou_thr to background + 3. for each bbox, if the iou with its nearest gt >= pos_iou_thr, + assign it to that bbox + 4. for each gt bbox, assign its nearest proposals (may be more than + one) to itself + + Args: + approxs (Tensor): Bounding boxes to be assigned, + shape(approxs_per_octave*n, 4). + squares (Tensor): Base Bounding boxes to be assigned, + shape(n, 4). + approxs_per_octave (int): number of approxs per octave + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + """ + num_squares = squares.size(0) + num_gts = gt_bboxes.size(0) + + if num_squares == 0 or num_gts == 0: + # No predictions and/or truth, return empty assignment + overlaps = approxs.new(num_gts, num_squares) + assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) + return assign_result + + # re-organize anchors by approxs_per_octave x num_squares + approxs = torch.transpose( + approxs.view(num_squares, approxs_per_octave, 4), 0, + 1).contiguous().view(-1, 4) + assign_on_cpu = True if (self.gpu_assign_thr > 0) and ( + num_gts > self.gpu_assign_thr) else False + # compute overlap and assign gt on CPU when number of GT is large + if assign_on_cpu: + device = approxs.device + approxs = approxs.cpu() + gt_bboxes = gt_bboxes.cpu() + if gt_bboxes_ignore is not None: + gt_bboxes_ignore = gt_bboxes_ignore.cpu() + if gt_labels is not None: + gt_labels = gt_labels.cpu() + all_overlaps = self.iou_calculator(approxs, gt_bboxes) + + overlaps, _ = all_overlaps.view(approxs_per_octave, num_squares, + num_gts).max(dim=0) + overlaps = torch.transpose(overlaps, 0, 1) + + if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None + and gt_bboxes_ignore.numel() > 0 and squares.numel() > 0): + if self.ignore_wrt_candidates: + ignore_overlaps = self.iou_calculator( + squares, gt_bboxes_ignore, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) + else: + ignore_overlaps = self.iou_calculator( + gt_bboxes_ignore, squares, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=0) + overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1 + + assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) + if assign_on_cpu: + assign_result.gt_inds = assign_result.gt_inds.to(device) + assign_result.max_overlaps = assign_result.max_overlaps.to(device) + if assign_result.labels is not None: + assign_result.labels = assign_result.labels.to(device) + return assign_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/assign_result.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/assign_result.py new file mode 100644 index 000000000..488010b5d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/assign_result.py @@ -0,0 +1,206 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.utils import util_mixins + + +class AssignResult(util_mixins.NiceRepr): + """Stores assignments between predicted and truth boxes. + + Attributes: + num_gts (int): the number of truth boxes considered when computing this + assignment + + gt_inds (LongTensor): for each predicted box indicates the 1-based + index of the assigned truth box. 0 means unassigned and -1 means + ignore. + + max_overlaps (FloatTensor): the iou between the predicted box and its + assigned truth box. + + labels (None | LongTensor): If specified, for each predicted box + indicates the category label of the assigned truth box. + + Example: + >>> # An assign result between 4 predicted boxes and 9 true boxes + >>> # where only two boxes were assigned. + >>> num_gts = 9 + >>> max_overlaps = torch.LongTensor([0, .5, .9, 0]) + >>> gt_inds = torch.LongTensor([-1, 1, 2, 0]) + >>> labels = torch.LongTensor([0, 3, 4, 0]) + >>> self = AssignResult(num_gts, gt_inds, max_overlaps, labels) + >>> print(str(self)) # xdoctest: +IGNORE_WANT + + >>> # Force addition of gt labels (when adding gt as proposals) + >>> new_labels = torch.LongTensor([3, 4, 5]) + >>> self.add_gt_(new_labels) + >>> print(str(self)) # xdoctest: +IGNORE_WANT + + """ + + def __init__(self, num_gts, gt_inds, max_overlaps, labels=None): + self.num_gts = num_gts + self.gt_inds = gt_inds + self.max_overlaps = max_overlaps + self.labels = labels + # Interface for possible user-defined properties + self._extra_properties = {} + + @property + def num_preds(self): + """int: the number of predictions in this assignment""" + return len(self.gt_inds) + + def set_extra_property(self, key, value): + """Set user-defined new property.""" + assert key not in self.info + self._extra_properties[key] = value + + def get_extra_property(self, key): + """Get user-defined property.""" + return self._extra_properties.get(key, None) + + @property + def info(self): + """dict: a dictionary of info about the object""" + basic_info = { + 'num_gts': self.num_gts, + 'num_preds': self.num_preds, + 'gt_inds': self.gt_inds, + 'max_overlaps': self.max_overlaps, + 'labels': self.labels, + } + basic_info.update(self._extra_properties) + return basic_info + + def __nice__(self): + """str: a "nice" summary string describing this assign result""" + parts = [] + parts.append(f'num_gts={self.num_gts!r}') + if self.gt_inds is None: + parts.append(f'gt_inds={self.gt_inds!r}') + else: + parts.append(f'gt_inds.shape={tuple(self.gt_inds.shape)!r}') + if self.max_overlaps is None: + parts.append(f'max_overlaps={self.max_overlaps!r}') + else: + parts.append('max_overlaps.shape=' + f'{tuple(self.max_overlaps.shape)!r}') + if self.labels is None: + parts.append(f'labels={self.labels!r}') + else: + parts.append(f'labels.shape={tuple(self.labels.shape)!r}') + return ', '.join(parts) + + @classmethod + def random(cls, **kwargs): + """Create random AssignResult for tests or debugging. + + Args: + num_preds: number of predicted boxes + num_gts: number of true boxes + p_ignore (float): probability of a predicted box assigned to an + ignored truth + p_assigned (float): probability of a predicted box not being + assigned + p_use_label (float | bool): with labels or not + rng (None | int | numpy.random.RandomState): seed or state + + Returns: + :obj:`AssignResult`: Randomly generated assign results. + + Example: + >>> from mmdet.core.bbox.assigners.assign_result import * # NOQA + >>> self = AssignResult.random() + >>> print(self.info) + """ + from mmdet.core.bbox import demodata + rng = demodata.ensure_rng(kwargs.get('rng', None)) + + num_gts = kwargs.get('num_gts', None) + num_preds = kwargs.get('num_preds', None) + p_ignore = kwargs.get('p_ignore', 0.3) + p_assigned = kwargs.get('p_assigned', 0.7) + p_use_label = kwargs.get('p_use_label', 0.5) + num_classes = kwargs.get('p_use_label', 3) + + if num_gts is None: + num_gts = rng.randint(0, 8) + if num_preds is None: + num_preds = rng.randint(0, 16) + + if num_gts == 0: + max_overlaps = torch.zeros(num_preds, dtype=torch.float32) + gt_inds = torch.zeros(num_preds, dtype=torch.int64) + if p_use_label is True or p_use_label < rng.rand(): + labels = torch.zeros(num_preds, dtype=torch.int64) + else: + labels = None + else: + import numpy as np + + # Create an overlap for each predicted box + max_overlaps = torch.from_numpy(rng.rand(num_preds)) + + # Construct gt_inds for each predicted box + is_assigned = torch.from_numpy(rng.rand(num_preds) < p_assigned) + # maximum number of assignments constraints + n_assigned = min(num_preds, min(num_gts, is_assigned.sum())) + + assigned_idxs = np.where(is_assigned)[0] + rng.shuffle(assigned_idxs) + assigned_idxs = assigned_idxs[0:n_assigned] + assigned_idxs.sort() + + is_assigned[:] = 0 + is_assigned[assigned_idxs] = True + + is_ignore = torch.from_numpy( + rng.rand(num_preds) < p_ignore) & is_assigned + + gt_inds = torch.zeros(num_preds, dtype=torch.int64) + + true_idxs = np.arange(num_gts) + rng.shuffle(true_idxs) + true_idxs = torch.from_numpy(true_idxs) + gt_inds[is_assigned] = true_idxs[:n_assigned].long() + + gt_inds = torch.from_numpy( + rng.randint(1, num_gts + 1, size=num_preds)) + gt_inds[is_ignore] = -1 + gt_inds[~is_assigned] = 0 + max_overlaps[~is_assigned] = 0 + + if p_use_label is True or p_use_label < rng.rand(): + if num_classes == 0: + labels = torch.zeros(num_preds, dtype=torch.int64) + else: + labels = torch.from_numpy( + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + rng.randint(0, num_classes, size=num_preds)) + labels[~is_assigned] = 0 + else: + labels = None + + self = cls(num_gts, gt_inds, max_overlaps, labels) + return self + + def add_gt_(self, gt_labels): + """Add ground truth as assigned results. + + Args: + gt_labels (torch.Tensor): Labels of gt boxes + """ + self_inds = torch.arange( + 1, len(gt_labels) + 1, dtype=torch.long, device=gt_labels.device) + self.gt_inds = torch.cat([self_inds, self.gt_inds]) + + self.max_overlaps = torch.cat( + [self.max_overlaps.new_ones(len(gt_labels)), self.max_overlaps]) + + if self.labels is not None: + self.labels = torch.cat([gt_labels, self.labels]) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/atss_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/atss_assigner.py new file mode 100644 index 000000000..7b195303e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/atss_assigner.py @@ -0,0 +1,179 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class ATSSAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `0` or a positive integer + indicating the ground truth index. + + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + topk (float): number of bbox selected in each level + """ + + def __init__(self, + topk, + iou_calculator=dict(type='BboxOverlaps2D'), + ignore_iof_thr=-1): + self.topk = topk + self.iou_calculator = build_iou_calculator(iou_calculator) + self.ignore_iof_thr = ignore_iof_thr + + # https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py + + def assign(self, + bboxes, + num_level_bboxes, + gt_bboxes, + gt_bboxes_ignore=None, + gt_labels=None): + """Assign gt to bboxes. + + The assignment is done in following steps + + 1. compute iou between all bbox (bbox of all pyramid levels) and gt + 2. compute center distance between all bbox and gt + 3. on each pyramid level, for each gt, select k bbox whose center + are closest to the gt center, so we total select k*l bbox as + candidates for each gt + 4. get corresponding iou for the these candidates, and compute the + mean and std, set mean + std as the iou threshold + 5. select these candidates whose iou are greater than or equal to + the threshold as positive + 6. limit the positive sample's center in gt + + + Args: + bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). + num_level_bboxes (List): num of bboxes in each level + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + """ + INF = 100000000 + bboxes = bboxes[:, :4] + num_gt, num_bboxes = gt_bboxes.size(0), bboxes.size(0) + + # compute iou between all bbox and gt + overlaps = self.iou_calculator(bboxes, gt_bboxes) + + # assign 0 by default + assigned_gt_inds = overlaps.new_full((num_bboxes, ), + 0, + dtype=torch.long) + + if num_gt == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes, )) + if num_gt == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes, ), + -1, + dtype=torch.long) + return AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + # compute center distance between all bbox and gt + gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 + gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 + gt_points = torch.stack((gt_cx, gt_cy), dim=1) + + bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0 + bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0 + bboxes_points = torch.stack((bboxes_cx, bboxes_cy), dim=1) + + distances = (bboxes_points[:, None, :] - + gt_points[None, :, :]).pow(2).sum(-1).sqrt() + + if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None + and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0): + ignore_overlaps = self.iou_calculator( + bboxes, gt_bboxes_ignore, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) + ignore_idxs = ignore_max_overlaps > self.ignore_iof_thr + distances[ignore_idxs, :] = INF + assigned_gt_inds[ignore_idxs] = -1 + + # Selecting candidates based on the center distance + candidate_idxs = [] + start_idx = 0 + for level, bboxes_per_level in enumerate(num_level_bboxes): + # on each pyramid level, for each gt, + # select k bbox whose center are closest to the gt center + end_idx = start_idx + bboxes_per_level + distances_per_level = distances[start_idx:end_idx, :] + selectable_k = min(self.topk, bboxes_per_level) + _, topk_idxs_per_level = distances_per_level.topk( + selectable_k, dim=0, largest=False) + candidate_idxs.append(topk_idxs_per_level + start_idx) + start_idx = end_idx + candidate_idxs = torch.cat(candidate_idxs, dim=0) + + # get corresponding iou for the these candidates, and compute the + # mean and std, set mean + std as the iou threshold + candidate_overlaps = overlaps[candidate_idxs, torch.arange(num_gt)] + overlaps_mean_per_gt = candidate_overlaps.mean(0) + overlaps_std_per_gt = candidate_overlaps.std(0) + overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt + + is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :] + + # limit the positive sample's center in gt + for gt_idx in range(num_gt): + candidate_idxs[:, gt_idx] += gt_idx * num_bboxes + ep_bboxes_cx = bboxes_cx.view(1, -1).expand( + num_gt, num_bboxes).contiguous().view(-1) + ep_bboxes_cy = bboxes_cy.view(1, -1).expand( + num_gt, num_bboxes).contiguous().view(-1) + candidate_idxs = candidate_idxs.view(-1) + + # calculate the left, top, right, bottom distance between positive + # bbox center and gt side + l_ = ep_bboxes_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0] + t_ = ep_bboxes_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1] + r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].view(-1, num_gt) + b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].view(-1, num_gt) + is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01 + is_pos = is_pos & is_in_gts + + # if an anchor box is assigned to multiple gts, + # the one with the highest IoU will be selected. + overlaps_inf = torch.full_like(overlaps, + -INF).t().contiguous().view(-1) + index = candidate_idxs.view(-1)[is_pos.view(-1)] + overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index] + overlaps_inf = overlaps_inf.view(num_gt, -1).t() + + max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1) + assigned_gt_inds[ + max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1 + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + return AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/base_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/base_assigner.py new file mode 100644 index 000000000..3c2d597a5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/base_assigner.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + + +class BaseAssigner(metaclass=ABCMeta): + """Base assigner that assigns boxes to ground truth boxes.""" + + @abstractmethod + def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign boxes to either a ground truth boxes or a negative boxes.""" diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/center_region_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/center_region_assigner.py new file mode 100644 index 000000000..86e78597d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/center_region_assigner.py @@ -0,0 +1,336 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +def scale_boxes(bboxes, scale): + """Expand an array of boxes by a given scale. + + Args: + bboxes (Tensor): Shape (m, 4) + scale (float): The scale factor of bboxes + + Returns: + (Tensor): Shape (m, 4). Scaled bboxes + """ + assert bboxes.size(1) == 4 + w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5 + h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5 + x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5 + y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5 + + w_half *= scale + h_half *= scale + + boxes_scaled = torch.zeros_like(bboxes) + boxes_scaled[:, 0] = x_c - w_half + boxes_scaled[:, 2] = x_c + w_half + boxes_scaled[:, 1] = y_c - h_half + boxes_scaled[:, 3] = y_c + h_half + return boxes_scaled + + +def is_located_in(points, bboxes): + """Are points located in bboxes. + + Args: + points (Tensor): Points, shape: (m, 2). + bboxes (Tensor): Bounding boxes, shape: (n, 4). + + Return: + Tensor: Flags indicating if points are located in bboxes, shape: (m, n). + """ + assert points.size(1) == 2 + assert bboxes.size(1) == 4 + return (points[:, 0].unsqueeze(1) > bboxes[:, 0].unsqueeze(0)) & \ + (points[:, 0].unsqueeze(1) < bboxes[:, 2].unsqueeze(0)) & \ + (points[:, 1].unsqueeze(1) > bboxes[:, 1].unsqueeze(0)) & \ + (points[:, 1].unsqueeze(1) < bboxes[:, 3].unsqueeze(0)) + + +def bboxes_area(bboxes): + """Compute the area of an array of bboxes. + + Args: + bboxes (Tensor): The coordinates ox bboxes. Shape: (m, 4) + + Returns: + Tensor: Area of the bboxes. Shape: (m, ) + """ + assert bboxes.size(1) == 4 + w = (bboxes[:, 2] - bboxes[:, 0]) + h = (bboxes[:, 3] - bboxes[:, 1]) + areas = w * h + return areas + + +@BBOX_ASSIGNERS.register_module() +class CenterRegionAssigner(BaseAssigner): + """Assign pixels at the center region of a bbox as positive. + + Each proposals will be assigned with `-1`, `0`, or a positive integer + indicating the ground truth index. + - -1: negative samples + - semi-positive numbers: positive sample, index (0-based) of assigned gt + + Args: + pos_scale (float): Threshold within which pixels are + labelled as positive. + neg_scale (float): Threshold above which pixels are + labelled as positive. + min_pos_iof (float): Minimum iof of a pixel with a gt to be + labelled as positive. Default: 1e-2 + ignore_gt_scale (float): Threshold within which the pixels + are ignored when the gt is labelled as shadowed. Default: 0.5 + foreground_dominate (bool): If True, the bbox will be assigned as + positive when a gt's kernel region overlaps with another's shadowed + (ignored) region, otherwise it is set as ignored. Default to False. + """ + + def __init__(self, + pos_scale, + neg_scale, + min_pos_iof=1e-2, + ignore_gt_scale=0.5, + foreground_dominate=False, + iou_calculator=dict(type='BboxOverlaps2D')): + self.pos_scale = pos_scale + self.neg_scale = neg_scale + self.min_pos_iof = min_pos_iof + self.ignore_gt_scale = ignore_gt_scale + self.foreground_dominate = foreground_dominate + self.iou_calculator = build_iou_calculator(iou_calculator) + + def get_gt_priorities(self, gt_bboxes): + """Get gt priorities according to their areas. + + Smaller gt has higher priority. + + Args: + gt_bboxes (Tensor): Ground truth boxes, shape (k, 4). + + Returns: + Tensor: The priority of gts so that gts with larger priority is \ + more likely to be assigned. Shape (k, ) + """ + gt_areas = bboxes_area(gt_bboxes) + # Rank all gt bbox areas. Smaller objects has larger priority + _, sort_idx = gt_areas.sort(descending=True) + sort_idx = sort_idx.argsort() + return sort_idx + + def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign gt to bboxes. + + This method assigns gts to every bbox (proposal/anchor), each bbox \ + will be assigned with -1, or a semi-positive number. -1 means \ + negative sample, semi-positive number is the index (0-based) of \ + assigned gt. + + Args: + bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (tensor, optional): Label of gt_bboxes, shape (num_gts,). + + Returns: + :obj:`AssignResult`: The assigned result. Note that \ + shadowed_labels of shape (N, 2) is also added as an \ + `assign_result` attribute. `shadowed_labels` is a tensor \ + composed of N pairs of anchor_ind, class_label], where N \ + is the number of anchors that lie in the outer region of a \ + gt, anchor_ind is the shadowed anchor index and class_label \ + is the shadowed class label. + + Example: + >>> self = CenterRegionAssigner(0.2, 0.2) + >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]]) + >>> gt_bboxes = torch.Tensor([[0, 0, 10, 10]]) + >>> assign_result = self.assign(bboxes, gt_bboxes) + >>> expected_gt_inds = torch.LongTensor([1, 0]) + >>> assert torch.all(assign_result.gt_inds == expected_gt_inds) + """ + # There are in total 5 steps in the pixel assignment + # 1. Find core (the center region, say inner 0.2) + # and shadow (the relatively ourter part, say inner 0.2-0.5) + # regions of every gt. + # 2. Find all prior bboxes that lie in gt_core and gt_shadow regions + # 3. Assign prior bboxes in gt_core with a one-hot id of the gt in + # the image. + # 3.1. For overlapping objects, the prior bboxes in gt_core is + # assigned with the object with smallest area + # 4. Assign prior bboxes with class label according to its gt id. + # 4.1. Assign -1 to prior bboxes lying in shadowed gts + # 4.2. Assign positive prior boxes with the corresponding label + # 5. Find pixels lying in the shadow of an object and assign them with + # background label, but set the loss weight of its corresponding + # gt to zero. + assert bboxes.size(1) == 4, 'bboxes must have size of 4' + # 1. Find core positive and shadow region of every gt + gt_core = scale_boxes(gt_bboxes, self.pos_scale) + gt_shadow = scale_boxes(gt_bboxes, self.neg_scale) + + # 2. Find prior bboxes that lie in gt_core and gt_shadow regions + bbox_centers = (bboxes[:, 2:4] + bboxes[:, 0:2]) / 2 + # The center points lie within the gt boxes + is_bbox_in_gt = is_located_in(bbox_centers, gt_bboxes) + # Only calculate bbox and gt_core IoF. This enables small prior bboxes + # to match large gts + bbox_and_gt_core_overlaps = self.iou_calculator( + bboxes, gt_core, mode='iof') + # The center point of effective priors should be within the gt box + is_bbox_in_gt_core = is_bbox_in_gt & ( + bbox_and_gt_core_overlaps > self.min_pos_iof) # shape (n, k) + + is_bbox_in_gt_shadow = ( + self.iou_calculator(bboxes, gt_shadow, mode='iof') > + self.min_pos_iof) + # Rule out center effective positive pixels + is_bbox_in_gt_shadow &= (~is_bbox_in_gt_core) + + num_gts, num_bboxes = gt_bboxes.size(0), bboxes.size(0) + if num_gts == 0 or num_bboxes == 0: + # If no gts exist, assign all pixels to negative + assigned_gt_ids = \ + is_bbox_in_gt_core.new_zeros((num_bboxes,), + dtype=torch.long) + pixels_in_gt_shadow = assigned_gt_ids.new_empty((0, 2)) + else: + # Step 3: assign a one-hot gt id to each pixel, and smaller objects + # have high priority to assign the pixel. + sort_idx = self.get_gt_priorities(gt_bboxes) + assigned_gt_ids, pixels_in_gt_shadow = \ + self.assign_one_hot_gt_indices(is_bbox_in_gt_core, + is_bbox_in_gt_shadow, + gt_priority=sort_idx) + + if gt_bboxes_ignore is not None and gt_bboxes_ignore.numel() > 0: + # No ground truth or boxes, return empty assignment + gt_bboxes_ignore = scale_boxes( + gt_bboxes_ignore, scale=self.ignore_gt_scale) + is_bbox_in_ignored_gts = is_located_in(bbox_centers, + gt_bboxes_ignore) + is_bbox_in_ignored_gts = is_bbox_in_ignored_gts.any(dim=1) + assigned_gt_ids[is_bbox_in_ignored_gts] = -1 + + # 4. Assign prior bboxes with class label according to its gt id. + assigned_labels = None + shadowed_pixel_labels = None + if gt_labels is not None: + # Default assigned label is the background (-1) + assigned_labels = assigned_gt_ids.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_ids > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[assigned_gt_ids[pos_inds] + - 1] + # 5. Find pixels lying in the shadow of an object + shadowed_pixel_labels = pixels_in_gt_shadow.clone() + if pixels_in_gt_shadow.numel() > 0: + pixel_idx, gt_idx =\ + pixels_in_gt_shadow[:, 0], pixels_in_gt_shadow[:, 1] + assert (assigned_gt_ids[pixel_idx] != gt_idx).all(), \ + 'Some pixels are dually assigned to ignore and gt!' + shadowed_pixel_labels[:, 1] = gt_labels[gt_idx - 1] + override = ( + assigned_labels[pixel_idx] == shadowed_pixel_labels[:, 1]) + if self.foreground_dominate: + # When a pixel is both positive and shadowed, set it as pos + shadowed_pixel_labels = shadowed_pixel_labels[~override] + else: + # When a pixel is both pos and shadowed, set it as shadowed + assigned_labels[pixel_idx[override]] = -1 + assigned_gt_ids[pixel_idx[override]] = 0 + + assign_result = AssignResult( + num_gts, assigned_gt_ids, None, labels=assigned_labels) + # Add shadowed_labels as assign_result property. Shape: (num_shadow, 2) + assign_result.set_extra_property('shadowed_labels', + shadowed_pixel_labels) + return assign_result + + def assign_one_hot_gt_indices(self, + is_bbox_in_gt_core, + is_bbox_in_gt_shadow, + gt_priority=None): + """Assign only one gt index to each prior box. + + Gts with large gt_priority are more likely to be assigned. + + Args: + is_bbox_in_gt_core (Tensor): Bool tensor indicating the bbox center + is in the core area of a gt (e.g. 0-0.2). + Shape: (num_prior, num_gt). + is_bbox_in_gt_shadow (Tensor): Bool tensor indicating the bbox + center is in the shadowed area of a gt (e.g. 0.2-0.5). + Shape: (num_prior, num_gt). + gt_priority (Tensor): Priorities of gts. The gt with a higher + priority is more likely to be assigned to the bbox when the bbox + match with multiple gts. Shape: (num_gt, ). + + Returns: + tuple: Returns (assigned_gt_inds, shadowed_gt_inds). + + - assigned_gt_inds: The assigned gt index of each prior bbox \ + (i.e. index from 1 to num_gts). Shape: (num_prior, ). + - shadowed_gt_inds: shadowed gt indices. It is a tensor of \ + shape (num_ignore, 2) with first column being the \ + shadowed prior bbox indices and the second column the \ + shadowed gt indices (1-based). + """ + num_bboxes, num_gts = is_bbox_in_gt_core.shape + + if gt_priority is None: + gt_priority = torch.arange( + num_gts, device=is_bbox_in_gt_core.device) + assert gt_priority.size(0) == num_gts + # The bigger gt_priority, the more preferable to be assigned + # The assigned inds are by default 0 (background) + assigned_gt_inds = is_bbox_in_gt_core.new_zeros((num_bboxes, ), + dtype=torch.long) + # Shadowed bboxes are assigned to be background. But the corresponding + # label is ignored during loss calculation, which is done through + # shadowed_gt_inds + shadowed_gt_inds = torch.nonzero(is_bbox_in_gt_shadow, as_tuple=False) + if is_bbox_in_gt_core.sum() == 0: # No gt match + shadowed_gt_inds[:, 1] += 1 # 1-based. For consistency issue + return assigned_gt_inds, shadowed_gt_inds + + # The priority of each prior box and gt pair. If one prior box is + # matched bo multiple gts. Only the pair with the highest priority + # is saved + pair_priority = is_bbox_in_gt_core.new_full((num_bboxes, num_gts), + -1, + dtype=torch.long) + + # Each bbox could match with multiple gts. + # The following codes deal with this situation + # Matched bboxes (to any gt). Shape: (num_pos_anchor, ) + inds_of_match = torch.any(is_bbox_in_gt_core, dim=1) + # The matched gt index of each positive bbox. Length >= num_pos_anchor + # , since one bbox could match multiple gts + matched_bbox_gt_inds = torch.nonzero( + is_bbox_in_gt_core, as_tuple=False)[:, 1] + # Assign priority to each bbox-gt pair. + pair_priority[is_bbox_in_gt_core] = gt_priority[matched_bbox_gt_inds] + _, argmax_priority = pair_priority[inds_of_match].max(dim=1) + assigned_gt_inds[inds_of_match] = argmax_priority + 1 # 1-based + # Zero-out the assigned anchor box to filter the shadowed gt indices + is_bbox_in_gt_core[inds_of_match, argmax_priority] = 0 + # Concat the shadowed indices due to overlapping with that out side of + # effective scale. shape: (total_num_ignore, 2) + shadowed_gt_inds = torch.cat( + (shadowed_gt_inds, torch.nonzero( + is_bbox_in_gt_core, as_tuple=False)), + dim=0) + # `is_bbox_in_gt_core` should be changed back to keep arguments intact. + is_bbox_in_gt_core[inds_of_match, argmax_priority] = 1 + # 1-based shadowed gt indices, to be consistent with `assigned_gt_inds` + if shadowed_gt_inds.numel() > 0: + shadowed_gt_inds[:, 1] += 1 + return assigned_gt_inds, shadowed_gt_inds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/grid_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/grid_assigner.py new file mode 100644 index 000000000..a0c814e78 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/grid_assigner.py @@ -0,0 +1,156 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class GridAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `-1`, `0`, or a positive integer + indicating the ground truth index. + + - -1: don't care + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + pos_iou_thr (float): IoU threshold for positive bboxes. + neg_iou_thr (float or tuple): IoU threshold for negative bboxes. + min_pos_iou (float): Minimum iou for a bbox to be considered as a + positive bbox. Positive samples can have smaller IoU than + pos_iou_thr due to the 4th step (assign max IoU sample to each gt). + gt_max_assign_all (bool): Whether to assign all bboxes with the same + highest overlap with some gt to that gt. + """ + + def __init__(self, + pos_iou_thr, + neg_iou_thr, + min_pos_iou=.0, + gt_max_assign_all=True, + iou_calculator=dict(type='BboxOverlaps2D')): + self.pos_iou_thr = pos_iou_thr + self.neg_iou_thr = neg_iou_thr + self.min_pos_iou = min_pos_iou + self.gt_max_assign_all = gt_max_assign_all + self.iou_calculator = build_iou_calculator(iou_calculator) + + def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None): + """Assign gt to bboxes. The process is very much like the max iou + assigner, except that positive samples are constrained within the cell + that the gt boxes fell in. + + This method assign a gt bbox to every bbox (proposal/anchor), each bbox + will be assigned with -1, 0, or a positive number. -1 means don't care, + 0 means negative sample, positive number is the index (1-based) of + assigned gt. + The assignment is done in following steps, the order matters. + + 1. assign every bbox to -1 + 2. assign proposals whose iou with all gts <= neg_iou_thr to 0 + 3. for each bbox within a cell, if the iou with its nearest gt > + pos_iou_thr and the center of that gt falls inside the cell, + assign it to that bbox + 4. for each gt bbox, assign its nearest proposals within the cell the + gt bbox falls in to itself. + + Args: + bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). + box_responsible_flags (Tensor): flag to indicate whether box is + responsible for prediction, shape(n, ) + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + """ + num_gts, num_bboxes = gt_bboxes.size(0), bboxes.size(0) + + # compute iou between all gt and bboxes + overlaps = self.iou_calculator(gt_bboxes, bboxes) + + # 1. assign -1 by default + assigned_gt_inds = overlaps.new_full((num_bboxes, ), + -1, + dtype=torch.long) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes, )) + if num_gts == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes, ), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + # 2. assign negative: below + # for each anchor, which gt best overlaps with it + # for each anchor, the max iou of all gts + # shape of max_overlaps == argmax_overlaps == num_bboxes + max_overlaps, argmax_overlaps = overlaps.max(dim=0) + + if isinstance(self.neg_iou_thr, float): + assigned_gt_inds[(max_overlaps >= 0) + & (max_overlaps <= self.neg_iou_thr)] = 0 + elif isinstance(self.neg_iou_thr, (tuple, list)): + assert len(self.neg_iou_thr) == 2 + assigned_gt_inds[(max_overlaps > self.neg_iou_thr[0]) + & (max_overlaps <= self.neg_iou_thr[1])] = 0 + + # 3. assign positive: falls into responsible cell and above + # positive IOU threshold, the order matters. + # the prior condition of comparison is to filter out all + # unrelated anchors, i.e. not box_responsible_flags + overlaps[:, ~box_responsible_flags.type(torch.bool)] = -1. + + # calculate max_overlaps again, but this time we only consider IOUs + # for anchors responsible for prediction + max_overlaps, argmax_overlaps = overlaps.max(dim=0) + + # for each gt, which anchor best overlaps with it + # for each gt, the max iou of all proposals + # shape of gt_max_overlaps == gt_argmax_overlaps == num_gts + gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) + + pos_inds = (max_overlaps > + self.pos_iou_thr) & box_responsible_flags.type(torch.bool) + assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 + + # 4. assign positive to max overlapped anchors within responsible cell + for i in range(num_gts): + if gt_max_overlaps[i] > self.min_pos_iou: + if self.gt_max_assign_all: + max_iou_inds = (overlaps[i, :] == gt_max_overlaps[i]) & \ + box_responsible_flags.type(torch.bool) + assigned_gt_inds[max_iou_inds] = i + 1 + elif box_responsible_flags[gt_argmax_overlaps[i]]: + assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1 + + # assign labels of positive anchors + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + + else: + assigned_labels = None + + return AssignResult( + num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/hungarian_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/hungarian_assigner.py new file mode 100644 index 000000000..4105fb5c4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/hungarian_assigner.py @@ -0,0 +1,146 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..match_costs import build_match_cost +from ..transforms import bbox_cxcywh_to_xyxy +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + +try: + from scipy.optimize import linear_sum_assignment +except ImportError: + linear_sum_assignment = None + + +@BBOX_ASSIGNERS.register_module() +class HungarianAssigner(BaseAssigner): + """Computes one-to-one matching between predictions and ground truth. + + This class computes an assignment between the targets and the predictions + based on the costs. The costs are weighted sum of three components: + classification cost, regression L1 cost and regression iou cost. The + targets don't include the no_object, so generally there are more + predictions than targets. After the one-to-one matching, the un-matched + are treated as backgrounds. Thus each query prediction will be assigned + with `0` or a positive integer indicating the ground truth index: + + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + cls_weight (int | float, optional): The scale factor for classification + cost. Default 1.0. + bbox_weight (int | float, optional): The scale factor for regression + L1 cost. Default 1.0. + iou_weight (int | float, optional): The scale factor for regression + iou cost. Default 1.0. + iou_calculator (dict | optional): The config for the iou calculation. + Default type `BboxOverlaps2D`. + iou_mode (str | optional): "iou" (intersection over union), "iof" + (intersection over foreground), or "giou" (generalized + intersection over union). Default "giou". + """ + + def __init__(self, + cls_cost=dict(type='ClassificationCost', weight=1.), + reg_cost=dict(type='BBoxL1Cost', weight=1.0), + iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0)): + self.cls_cost = build_match_cost(cls_cost) + self.reg_cost = build_match_cost(reg_cost) + self.iou_cost = build_match_cost(iou_cost) + + def assign(self, + bbox_pred, + cls_pred, + gt_bboxes, + gt_labels, + img_meta, + gt_bboxes_ignore=None, + eps=1e-7): + """Computes one-to-one matching based on the weighted costs. + + This method assign each query prediction to a ground truth or + background. The `assigned_gt_inds` with -1 means don't care, + 0 means negative sample, and positive number is the index (1-based) + of assigned gt. + The assignment is done in the following steps, the order matters. + + 1. assign every prediction to -1 + 2. compute the weighted costs + 3. do Hungarian matching on CPU based on the costs + 4. assign all to 0 (background) first, then for each matched pair + between predictions and gts, treat this prediction as foreground + and assign the corresponding gt index (plus 1) to it. + + Args: + bbox_pred (Tensor): Predicted boxes with normalized coordinates + (cx, cy, w, h), which are all in range [0, 1]. Shape + [num_query, 4]. + cls_pred (Tensor): Predicted classification logits, shape + [num_query, num_class]. + gt_bboxes (Tensor): Ground truth boxes with unnormalized + coordinates (x1, y1, x2, y2). Shape [num_gt, 4]. + gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). + img_meta (dict): Meta information for current image. + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`. Default None. + eps (int | float, optional): A value added to the denominator for + numerical stability. Default 1e-7. + + Returns: + :obj:`AssignResult`: The assigned result. + """ + assert gt_bboxes_ignore is None, \ + 'Only case when gt_bboxes_ignore is None is supported.' + num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0) + + # 1. assign -1 by default + assigned_gt_inds = bbox_pred.new_full((num_bboxes, ), + -1, + dtype=torch.long) + assigned_labels = bbox_pred.new_full((num_bboxes, ), + -1, + dtype=torch.long) + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + if num_gts == 0: + # No ground truth, assign all to background + assigned_gt_inds[:] = 0 + return AssignResult( + num_gts, assigned_gt_inds, None, labels=assigned_labels) + img_h, img_w, _ = img_meta['img_shape'] + factor = gt_bboxes.new_tensor([img_w, img_h, img_w, + img_h]).unsqueeze(0) + + # 2. compute the weighted costs + # classification and bboxcost. + cls_cost = self.cls_cost(cls_pred, gt_labels) + # regression L1 cost + normalize_gt_bboxes = gt_bboxes / factor + reg_cost = self.reg_cost(bbox_pred, normalize_gt_bboxes) + # regression iou cost, defaultly giou is used in official DETR. + bboxes = bbox_cxcywh_to_xyxy(bbox_pred) * factor + iou_cost = self.iou_cost(bboxes, gt_bboxes) + # weighted sum of above three costs + cost = cls_cost + reg_cost + iou_cost + + # 3. do Hungarian matching on CPU using linear_sum_assignment + cost = cost.detach().cpu() + if linear_sum_assignment is None: + raise ImportError('Please run "pip install scipy" ' + 'to install scipy first.') + matched_row_inds, matched_col_inds = linear_sum_assignment(cost) + matched_row_inds = torch.from_numpy(matched_row_inds).to( + bbox_pred.device) + matched_col_inds = torch.from_numpy(matched_col_inds).to( + bbox_pred.device) + + # 4. assign backgrounds and foregrounds + # assign all indices to backgrounds first + assigned_gt_inds[:] = 0 + # assign foregrounds based on matching results + assigned_gt_inds[matched_row_inds] = matched_col_inds + 1 + assigned_labels[matched_row_inds] = gt_labels[matched_col_inds] + return AssignResult( + num_gts, assigned_gt_inds, None, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/mask_hungarian_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/mask_hungarian_assigner.py new file mode 100644 index 000000000..f5f27f3f5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/mask_hungarian_assigner.py @@ -0,0 +1,132 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.bbox.builder import BBOX_ASSIGNERS +from mmdet.core.bbox.match_costs.builder import build_match_cost +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + +try: + from scipy.optimize import linear_sum_assignment +except ImportError: + linear_sum_assignment = None + + +@BBOX_ASSIGNERS.register_module() +class MaskHungarianAssigner(BaseAssigner): + """Computes one-to-one matching between predictions and ground truth for + mask. + + This class computes an assignment between the targets and the predictions + based on the costs. The costs are weighted sum of three components: + classification cost, mask focal cost and mask dice cost. The + targets don't include the no_object, so generally there are more + predictions than targets. After the one-to-one matching, the un-matched + are treated as backgrounds. Thus each query prediction will be assigned + with `0` or a positive integer indicating the ground truth index: + + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + cls_cost (:obj:`mmcv.ConfigDict` | dict): Classification cost config. + mask_cost (:obj:`mmcv.ConfigDict` | dict): Mask cost config. + dice_cost (:obj:`mmcv.ConfigDict` | dict): Dice cost config. + """ + + def __init__(self, + cls_cost=dict(type='ClassificationCost', weight=1.0), + mask_cost=dict( + type='FocalLossCost', weight=1.0, binary_input=True), + dice_cost=dict(type='DiceCost', weight=1.0)): + self.cls_cost = build_match_cost(cls_cost) + self.mask_cost = build_match_cost(mask_cost) + self.dice_cost = build_match_cost(dice_cost) + + def assign(self, + cls_pred, + mask_pred, + gt_labels, + gt_mask, + img_meta, + gt_bboxes_ignore=None, + eps=1e-7): + """Computes one-to-one matching based on the weighted costs. + + Args: + cls_pred (Tensor | None): Class prediction in shape + (num_query, cls_out_channels). + mask_pred (Tensor): Mask prediction in shape (num_query, H, W). + gt_labels (Tensor): Label of 'gt_mask'in shape = (num_gt, ). + gt_mask (Tensor): Ground truth mask in shape = (num_gt, H, W). + img_meta (dict): Meta information for current image. + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`. Default None. + eps (int | float, optional): A value added to the denominator for + numerical stability. Default 1e-7. + + Returns: + :obj:`AssignResult`: The assigned result. + """ + assert gt_bboxes_ignore is None, \ + 'Only case when gt_bboxes_ignore is None is supported.' + # K-Net sometimes passes cls_pred=None to this assigner. + # So we should use the shape of mask_pred + num_gt, num_query = gt_labels.shape[0], mask_pred.shape[0] + + # 1. assign -1 by default + assigned_gt_inds = mask_pred.new_full((num_query, ), + -1, + dtype=torch.long) + assigned_labels = mask_pred.new_full((num_query, ), + -1, + dtype=torch.long) + if num_gt == 0 or num_query == 0: + # No ground truth or boxes, return empty assignment + if num_gt == 0: + # No ground truth, assign all to background + assigned_gt_inds[:] = 0 + return AssignResult( + num_gt, assigned_gt_inds, None, labels=assigned_labels) + + # 2. compute the weighted costs + # classification and maskcost. + if self.cls_cost.weight != 0 and cls_pred is not None: + cls_cost = self.cls_cost(cls_pred, gt_labels) + else: + cls_cost = 0 + + if self.mask_cost.weight != 0: + # mask_pred shape = [num_query, h, w] + # gt_mask shape = [num_gt, h, w] + # mask_cost shape = [num_query, num_gt] + mask_cost = self.mask_cost(mask_pred, gt_mask) + else: + mask_cost = 0 + + if self.dice_cost.weight != 0: + dice_cost = self.dice_cost(mask_pred, gt_mask) + else: + dice_cost = 0 + cost = cls_cost + mask_cost + dice_cost + + # 3. do Hungarian matching on CPU using linear_sum_assignment + cost = cost.detach().cpu() + if linear_sum_assignment is None: + raise ImportError('Please run "pip install scipy" ' + 'to install scipy first.') + + matched_row_inds, matched_col_inds = linear_sum_assignment(cost) + matched_row_inds = torch.from_numpy(matched_row_inds).to( + mask_pred.device) + matched_col_inds = torch.from_numpy(matched_col_inds).to( + mask_pred.device) + + # 4. assign backgrounds and foregrounds + # assign all indices to backgrounds first + assigned_gt_inds[:] = 0 + # assign foregrounds based on matching results + assigned_gt_inds[matched_row_inds] = matched_col_inds + 1 + assigned_labels[matched_row_inds] = gt_labels[matched_col_inds] + return AssignResult( + num_gt, assigned_gt_inds, None, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/max_iou_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/max_iou_assigner.py new file mode 100644 index 000000000..676421f76 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/max_iou_assigner.py @@ -0,0 +1,218 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class MaxIoUAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `-1`, or a semi-positive integer + indicating the ground truth index. + + - -1: negative sample, no assigned gt + - semi-positive integer: positive sample, index (0-based) of assigned gt + + Args: + pos_iou_thr (float): IoU threshold for positive bboxes. + neg_iou_thr (float or tuple): IoU threshold for negative bboxes. + min_pos_iou (float): Minimum iou for a bbox to be considered as a + positive bbox. Positive samples can have smaller IoU than + pos_iou_thr due to the 4th step (assign max IoU sample to each gt). + `min_pos_iou` is set to avoid assigning bboxes that have extremely + small iou with GT as positive samples. It brings about 0.3 mAP + improvements in 1x schedule but does not affect the performance of + 3x schedule. More comparisons can be found in + `PR #7464 `_. + gt_max_assign_all (bool): Whether to assign all bboxes with the same + highest overlap with some gt to that gt. + ignore_iof_thr (float): IoF threshold for ignoring bboxes (if + `gt_bboxes_ignore` is specified). Negative values mean not + ignoring any bboxes. + ignore_wrt_candidates (bool): Whether to compute the iof between + `bboxes` and `gt_bboxes_ignore`, or the contrary. + match_low_quality (bool): Whether to allow low quality matches. This is + usually allowed for RPN and single stage detectors, but not allowed + in the second stage. Details are demonstrated in Step 4. + gpu_assign_thr (int): The upper bound of the number of GT for GPU + assign. When the number of gt is above this threshold, will assign + on CPU device. Negative values mean not assign on CPU. + """ + + def __init__(self, + pos_iou_thr, + neg_iou_thr, + min_pos_iou=.0, + gt_max_assign_all=True, + ignore_iof_thr=-1, + ignore_wrt_candidates=True, + match_low_quality=True, + gpu_assign_thr=-1, + iou_calculator=dict(type='BboxOverlaps2D')): + self.pos_iou_thr = pos_iou_thr + self.neg_iou_thr = neg_iou_thr + self.min_pos_iou = min_pos_iou + self.gt_max_assign_all = gt_max_assign_all + self.ignore_iof_thr = ignore_iof_thr + self.ignore_wrt_candidates = ignore_wrt_candidates + self.gpu_assign_thr = gpu_assign_thr + self.match_low_quality = match_low_quality + self.iou_calculator = build_iou_calculator(iou_calculator) + + def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign gt to bboxes. + + This method assign a gt bbox to every bbox (proposal/anchor), each bbox + will be assigned with -1, or a semi-positive number. -1 means negative + sample, semi-positive number is the index (0-based) of assigned gt. + The assignment is done in following steps, the order matters. + + 1. assign every bbox to the background + 2. assign proposals whose iou with all gts < neg_iou_thr to 0 + 3. for each bbox, if the iou with its nearest gt >= pos_iou_thr, + assign it to that bbox + 4. for each gt bbox, assign its nearest proposals (may be more than + one) to itself + + Args: + bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + + Example: + >>> self = MaxIoUAssigner(0.5, 0.5) + >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]]) + >>> gt_bboxes = torch.Tensor([[0, 0, 10, 9]]) + >>> assign_result = self.assign(bboxes, gt_bboxes) + >>> expected_gt_inds = torch.LongTensor([1, 0]) + >>> assert torch.all(assign_result.gt_inds == expected_gt_inds) + """ + assign_on_cpu = True if (self.gpu_assign_thr > 0) and ( + gt_bboxes.shape[0] > self.gpu_assign_thr) else False + # compute overlap and assign gt on CPU when number of GT is large + if assign_on_cpu: + device = bboxes.device + bboxes = bboxes.cpu() + gt_bboxes = gt_bboxes.cpu() + if gt_bboxes_ignore is not None: + gt_bboxes_ignore = gt_bboxes_ignore.cpu() + if gt_labels is not None: + gt_labels = gt_labels.cpu() + + overlaps = self.iou_calculator(gt_bboxes, bboxes) + + if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None + and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0): + if self.ignore_wrt_candidates: + ignore_overlaps = self.iou_calculator( + bboxes, gt_bboxes_ignore, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) + else: + ignore_overlaps = self.iou_calculator( + gt_bboxes_ignore, bboxes, mode='iof') + ignore_max_overlaps, _ = ignore_overlaps.max(dim=0) + overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1 + + assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) + if assign_on_cpu: + assign_result.gt_inds = assign_result.gt_inds.to(device) + assign_result.max_overlaps = assign_result.max_overlaps.to(device) + if assign_result.labels is not None: + assign_result.labels = assign_result.labels.to(device) + return assign_result + + def assign_wrt_overlaps(self, overlaps, gt_labels=None): + """Assign w.r.t. the overlaps of bboxes with gts. + + Args: + overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes, + shape(k, n). + gt_labels (Tensor, optional): Labels of k gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + """ + num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) + + # 1. assign -1 by default + assigned_gt_inds = overlaps.new_full((num_bboxes, ), + -1, + dtype=torch.long) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = overlaps.new_zeros((num_bboxes, )) + if num_gts == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = overlaps.new_full((num_bboxes, ), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + # for each anchor, which gt best overlaps with it + # for each anchor, the max iou of all gts + max_overlaps, argmax_overlaps = overlaps.max(dim=0) + # for each gt, which anchor best overlaps with it + # for each gt, the max iou of all proposals + gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) + + # 2. assign negative: below + # the negative inds are set to be 0 + if isinstance(self.neg_iou_thr, float): + assigned_gt_inds[(max_overlaps >= 0) + & (max_overlaps < self.neg_iou_thr)] = 0 + elif isinstance(self.neg_iou_thr, tuple): + assert len(self.neg_iou_thr) == 2 + assigned_gt_inds[(max_overlaps >= self.neg_iou_thr[0]) + & (max_overlaps < self.neg_iou_thr[1])] = 0 + + # 3. assign positive: above positive IoU threshold + pos_inds = max_overlaps >= self.pos_iou_thr + assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 + + if self.match_low_quality: + # Low-quality matching will overwrite the assigned_gt_inds assigned + # in Step 3. Thus, the assigned gt might not be the best one for + # prediction. + # For example, if bbox A has 0.9 and 0.8 iou with GT bbox 1 & 2, + # bbox 1 will be assigned as the best target for bbox A in step 3. + # However, if GT bbox 2's gt_argmax_overlaps = A, bbox A's + # assigned_gt_inds will be overwritten to be bbox 2. + # This might be the reason that it is not used in ROI Heads. + for i in range(num_gts): + if gt_max_overlaps[i] >= self.min_pos_iou: + if self.gt_max_assign_all: + max_iou_inds = overlaps[i, :] == gt_max_overlaps[i] + assigned_gt_inds[max_iou_inds] = i + 1 + else: + assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1 + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + return AssignResult( + num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/point_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/point_assigner.py new file mode 100644 index 000000000..b0dc22463 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/point_assigner.py @@ -0,0 +1,134 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class PointAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each point. + + Each proposals will be assigned with `0`, or a positive integer + indicating the ground truth index. + + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + """ + + def __init__(self, scale=4, pos_num=3): + self.scale = scale + self.pos_num = pos_num + + def assign(self, points, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): + """Assign gt to points. + + This method assign a gt bbox to every points set, each points set + will be assigned with the background_label (-1), or a label number. + -1 is background, and semi-positive number is the index (0-based) of + assigned gt. + The assignment is done in following steps, the order matters. + + 1. assign every points to the background_label (-1) + 2. A point is assigned to some gt bbox if + (i) the point is within the k closest points to the gt bbox + (ii) the distance between this point and the gt is smaller than + other gt bboxes + + Args: + points (Tensor): points to be assigned, shape(n, 3) while last + dimension stands for (x, y, stride). + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + NOTE: currently unused. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`AssignResult`: The assign result. + """ + num_points = points.shape[0] + num_gts = gt_bboxes.shape[0] + + if num_gts == 0 or num_points == 0: + # If no truth assign everything to the background + assigned_gt_inds = points.new_full((num_points, ), + 0, + dtype=torch.long) + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = points.new_full((num_points, ), + -1, + dtype=torch.long) + return AssignResult( + num_gts, assigned_gt_inds, None, labels=assigned_labels) + + points_xy = points[:, :2] + points_stride = points[:, 2] + points_lvl = torch.log2( + points_stride).int() # [3...,4...,5...,6...,7...] + lvl_min, lvl_max = points_lvl.min(), points_lvl.max() + + # assign gt box + gt_bboxes_xy = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2 + gt_bboxes_wh = (gt_bboxes[:, 2:] - gt_bboxes[:, :2]).clamp(min=1e-6) + scale = self.scale + gt_bboxes_lvl = ((torch.log2(gt_bboxes_wh[:, 0] / scale) + + torch.log2(gt_bboxes_wh[:, 1] / scale)) / 2).int() + gt_bboxes_lvl = torch.clamp(gt_bboxes_lvl, min=lvl_min, max=lvl_max) + + # stores the assigned gt index of each point + assigned_gt_inds = points.new_zeros((num_points, ), dtype=torch.long) + # stores the assigned gt dist (to this point) of each point + assigned_gt_dist = points.new_full((num_points, ), float('inf')) + points_range = torch.arange(points.shape[0]) + + for idx in range(num_gts): + gt_lvl = gt_bboxes_lvl[idx] + # get the index of points in this level + lvl_idx = gt_lvl == points_lvl + points_index = points_range[lvl_idx] + # get the points in this level + lvl_points = points_xy[lvl_idx, :] + # get the center point of gt + gt_point = gt_bboxes_xy[[idx], :] + # get width and height of gt + gt_wh = gt_bboxes_wh[[idx], :] + # compute the distance between gt center and + # all points in this level + points_gt_dist = ((lvl_points - gt_point) / gt_wh).norm(dim=1) + # find the nearest k points to gt center in this level + min_dist, min_dist_index = torch.topk( + points_gt_dist, self.pos_num, largest=False) + # the index of nearest k points to gt center in this level + min_dist_points_index = points_index[min_dist_index] + # The less_than_recorded_index stores the index + # of min_dist that is less then the assigned_gt_dist. Where + # assigned_gt_dist stores the dist from previous assigned gt + # (if exist) to each point. + less_than_recorded_index = min_dist < assigned_gt_dist[ + min_dist_points_index] + # The min_dist_points_index stores the index of points satisfy: + # (1) it is k nearest to current gt center in this level. + # (2) it is closer to current gt center than other gt center. + min_dist_points_index = min_dist_points_index[ + less_than_recorded_index] + # assign the result + assigned_gt_inds[min_dist_points_index] = idx + 1 + assigned_gt_dist[min_dist_points_index] = min_dist[ + less_than_recorded_index] + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_points, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + return AssignResult( + num_gts, assigned_gt_inds, None, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/region_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/region_assigner.py new file mode 100644 index 000000000..1833b8941 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/region_assigner.py @@ -0,0 +1,222 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import anchor_inside_flags +from ..builder import BBOX_ASSIGNERS +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +def calc_region(bbox, ratio, stride, featmap_size=None): + """Calculate region of the box defined by the ratio, the ratio is from the + center of the box to every edge.""" + # project bbox on the feature + f_bbox = bbox / stride + x1 = torch.round((1 - ratio) * f_bbox[0] + ratio * f_bbox[2]) + y1 = torch.round((1 - ratio) * f_bbox[1] + ratio * f_bbox[3]) + x2 = torch.round(ratio * f_bbox[0] + (1 - ratio) * f_bbox[2]) + y2 = torch.round(ratio * f_bbox[1] + (1 - ratio) * f_bbox[3]) + if featmap_size is not None: + x1 = x1.clamp(min=0, max=featmap_size[1]) + y1 = y1.clamp(min=0, max=featmap_size[0]) + x2 = x2.clamp(min=0, max=featmap_size[1]) + y2 = y2.clamp(min=0, max=featmap_size[0]) + return (x1, y1, x2, y2) + + +def anchor_ctr_inside_region_flags(anchors, stride, region): + """Get the flag indicate whether anchor centers are inside regions.""" + x1, y1, x2, y2 = region + f_anchors = anchors / stride + x = (f_anchors[:, 0] + f_anchors[:, 2]) * 0.5 + y = (f_anchors[:, 1] + f_anchors[:, 3]) * 0.5 + flags = (x >= x1) & (x <= x2) & (y >= y1) & (y <= y2) + return flags + + +@BBOX_ASSIGNERS.register_module() +class RegionAssigner(BaseAssigner): + """Assign a corresponding gt bbox or background to each bbox. + + Each proposals will be assigned with `-1`, `0`, or a positive integer + indicating the ground truth index. + + - -1: don't care + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + center_ratio: ratio of the region in the center of the bbox to + define positive sample. + ignore_ratio: ratio of the region to define ignore samples. + """ + + def __init__(self, center_ratio=0.2, ignore_ratio=0.5): + self.center_ratio = center_ratio + self.ignore_ratio = ignore_ratio + + def assign(self, + mlvl_anchors, + mlvl_valid_flags, + gt_bboxes, + img_meta, + featmap_sizes, + anchor_scale, + anchor_strides, + gt_bboxes_ignore=None, + gt_labels=None, + allowed_border=0): + """Assign gt to anchors. + + This method assign a gt bbox to every bbox (proposal/anchor), each bbox + will be assigned with -1, 0, or a positive number. -1 means don't care, + 0 means negative sample, positive number is the index (1-based) of + assigned gt. + + The assignment is done in following steps, and the order matters. + + 1. Assign every anchor to 0 (negative) + 2. (For each gt_bboxes) Compute ignore flags based on ignore_region + then assign -1 to anchors w.r.t. ignore flags + 3. (For each gt_bboxes) Compute pos flags based on center_region then + assign gt_bboxes to anchors w.r.t. pos flags + 4. (For each gt_bboxes) Compute ignore flags based on adjacent anchor + level then assign -1 to anchors w.r.t. ignore flags + 5. Assign anchor outside of image to -1 + + Args: + mlvl_anchors (list[Tensor]): Multi level anchors. + mlvl_valid_flags (list[Tensor]): Multi level valid flags. + gt_bboxes (Tensor): Ground truth bboxes of image + img_meta (dict): Meta info of image. + featmap_sizes (list[Tensor]): Feature mapsize each level + anchor_scale (int): Scale of the anchor. + anchor_strides (list[int]): Stride of the anchor. + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + allowed_border (int, optional): The border to allow the valid + anchor. Defaults to 0. + + Returns: + :obj:`AssignResult`: The assign result. + """ + if gt_bboxes_ignore is not None: + raise NotImplementedError + + num_gts = gt_bboxes.shape[0] + num_bboxes = sum(x.shape[0] for x in mlvl_anchors) + + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = gt_bboxes.new_zeros((num_bboxes, )) + assigned_gt_inds = gt_bboxes.new_zeros((num_bboxes, ), + dtype=torch.long) + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = gt_bboxes.new_full((num_bboxes, ), + -1, + dtype=torch.long) + return AssignResult( + num_gts, + assigned_gt_inds, + max_overlaps, + labels=assigned_labels) + + num_lvls = len(mlvl_anchors) + r1 = (1 - self.center_ratio) / 2 + r2 = (1 - self.ignore_ratio) / 2 + + scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * + (gt_bboxes[:, 3] - gt_bboxes[:, 1])) + min_anchor_size = scale.new_full( + (1, ), float(anchor_scale * anchor_strides[0])) + target_lvls = torch.floor( + torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) + target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() + + # 1. assign 0 (negative) by default + mlvl_assigned_gt_inds = [] + mlvl_ignore_flags = [] + for lvl in range(num_lvls): + h, w = featmap_sizes[lvl] + assert h * w == mlvl_anchors[lvl].shape[0] + assigned_gt_inds = gt_bboxes.new_full((h * w, ), + 0, + dtype=torch.long) + ignore_flags = torch.zeros_like(assigned_gt_inds) + mlvl_assigned_gt_inds.append(assigned_gt_inds) + mlvl_ignore_flags.append(ignore_flags) + + for gt_id in range(num_gts): + lvl = target_lvls[gt_id].item() + featmap_size = featmap_sizes[lvl] + stride = anchor_strides[lvl] + anchors = mlvl_anchors[lvl] + gt_bbox = gt_bboxes[gt_id, :4] + + # Compute regions + ignore_region = calc_region(gt_bbox, r2, stride, featmap_size) + ctr_region = calc_region(gt_bbox, r1, stride, featmap_size) + + # 2. Assign -1 to ignore flags + ignore_flags = anchor_ctr_inside_region_flags( + anchors, stride, ignore_region) + mlvl_assigned_gt_inds[lvl][ignore_flags] = -1 + + # 3. Assign gt_bboxes to pos flags + pos_flags = anchor_ctr_inside_region_flags(anchors, stride, + ctr_region) + mlvl_assigned_gt_inds[lvl][pos_flags] = gt_id + 1 + + # 4. Assign -1 to ignore adjacent lvl + if lvl > 0: + d_lvl = lvl - 1 + d_anchors = mlvl_anchors[d_lvl] + d_featmap_size = featmap_sizes[d_lvl] + d_stride = anchor_strides[d_lvl] + d_ignore_region = calc_region(gt_bbox, r2, d_stride, + d_featmap_size) + ignore_flags = anchor_ctr_inside_region_flags( + d_anchors, d_stride, d_ignore_region) + mlvl_ignore_flags[d_lvl][ignore_flags] = 1 + if lvl < num_lvls - 1: + u_lvl = lvl + 1 + u_anchors = mlvl_anchors[u_lvl] + u_featmap_size = featmap_sizes[u_lvl] + u_stride = anchor_strides[u_lvl] + u_ignore_region = calc_region(gt_bbox, r2, u_stride, + u_featmap_size) + ignore_flags = anchor_ctr_inside_region_flags( + u_anchors, u_stride, u_ignore_region) + mlvl_ignore_flags[u_lvl][ignore_flags] = 1 + + # 4. (cont.) Assign -1 to ignore adjacent lvl + for lvl in range(num_lvls): + ignore_flags = mlvl_ignore_flags[lvl] + mlvl_assigned_gt_inds[lvl][ignore_flags] = -1 + + # 5. Assign -1 to anchor outside of image + flat_assigned_gt_inds = torch.cat(mlvl_assigned_gt_inds) + flat_anchors = torch.cat(mlvl_anchors) + flat_valid_flags = torch.cat(mlvl_valid_flags) + assert (flat_assigned_gt_inds.shape[0] == flat_anchors.shape[0] == + flat_valid_flags.shape[0]) + inside_flags = anchor_inside_flags(flat_anchors, flat_valid_flags, + img_meta['img_shape'], + allowed_border) + outside_flags = ~inside_flags + flat_assigned_gt_inds[outside_flags] = -1 + + if gt_labels is not None: + assigned_labels = torch.zeros_like(flat_assigned_gt_inds) + pos_flags = assigned_gt_inds > 0 + assigned_labels[pos_flags] = gt_labels[ + flat_assigned_gt_inds[pos_flags] - 1] + else: + assigned_labels = None + + return AssignResult( + num_gts, flat_assigned_gt_inds, None, labels=assigned_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/sim_ota_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/sim_ota_assigner.py new file mode 100644 index 000000000..58bfef433 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/sim_ota_assigner.py @@ -0,0 +1,257 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn.functional as F + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import bbox_overlaps +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class SimOTAAssigner(BaseAssigner): + """Computes matching between predictions and ground truth. + + Args: + center_radius (int | float, optional): Ground truth center size + to judge whether a prior is in center. Default 2.5. + candidate_topk (int, optional): The candidate top-k which used to + get top-k ious to calculate dynamic-k. Default 10. + iou_weight (int | float, optional): The scale factor for regression + iou cost. Default 3.0. + cls_weight (int | float, optional): The scale factor for classification + cost. Default 1.0. + """ + + def __init__(self, + center_radius=2.5, + candidate_topk=10, + iou_weight=3.0, + cls_weight=1.0): + self.center_radius = center_radius + self.candidate_topk = candidate_topk + self.iou_weight = iou_weight + self.cls_weight = cls_weight + + def assign(self, + pred_scores, + priors, + decoded_bboxes, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + eps=1e-7): + """Assign gt to priors using SimOTA. It will switch to CPU mode when + GPU is out of memory. + Args: + pred_scores (Tensor): Classification scores of one image, + a 2D-Tensor with shape [num_priors, num_classes] + priors (Tensor): All priors of one image, a 2D-Tensor with shape + [num_priors, 4] in [cx, xy, stride_w, stride_y] format. + decoded_bboxes (Tensor): Predicted bboxes, a 2D-Tensor with shape + [num_priors, 4] in [tl_x, tl_y, br_x, br_y] format. + gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor + with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format. + gt_labels (Tensor): Ground truth labels of one image, a Tensor + with shape [num_gts]. + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + eps (float): A value added to the denominator for numerical + stability. Default 1e-7. + Returns: + assign_result (obj:`AssignResult`): The assigned result. + """ + try: + assign_result = self._assign(pred_scores, priors, decoded_bboxes, + gt_bboxes, gt_labels, + gt_bboxes_ignore, eps) + return assign_result + except RuntimeError: + origin_device = pred_scores.device + warnings.warn('OOM RuntimeError is raised due to the huge memory ' + 'cost during label assignment. CPU mode is applied ' + 'in this batch. If you want to avoid this issue, ' + 'try to reduce the batch size or image size.') + torch.cuda.empty_cache() + + pred_scores = pred_scores.cpu() + priors = priors.cpu() + decoded_bboxes = decoded_bboxes.cpu() + gt_bboxes = gt_bboxes.cpu().float() + gt_labels = gt_labels.cpu() + + assign_result = self._assign(pred_scores, priors, decoded_bboxes, + gt_bboxes, gt_labels, + gt_bboxes_ignore, eps) + assign_result.gt_inds = assign_result.gt_inds.to(origin_device) + assign_result.max_overlaps = assign_result.max_overlaps.to( + origin_device) + assign_result.labels = assign_result.labels.to(origin_device) + + return assign_result + + def _assign(self, + pred_scores, + priors, + decoded_bboxes, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + eps=1e-7): + """Assign gt to priors using SimOTA. + Args: + pred_scores (Tensor): Classification scores of one image, + a 2D-Tensor with shape [num_priors, num_classes] + priors (Tensor): All priors of one image, a 2D-Tensor with shape + [num_priors, 4] in [cx, xy, stride_w, stride_y] format. + decoded_bboxes (Tensor): Predicted bboxes, a 2D-Tensor with shape + [num_priors, 4] in [tl_x, tl_y, br_x, br_y] format. + gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor + with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format. + gt_labels (Tensor): Ground truth labels of one image, a Tensor + with shape [num_gts]. + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + eps (float): A value added to the denominator for numerical + stability. Default 1e-7. + Returns: + :obj:`AssignResult`: The assigned result. + """ + INF = 100000.0 + num_gt = gt_bboxes.size(0) + num_bboxes = decoded_bboxes.size(0) + + # assign 0 by default + assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ), + 0, + dtype=torch.long) + valid_mask, is_in_boxes_and_center = self.get_in_gt_and_in_center_info( + priors, gt_bboxes) + valid_decoded_bbox = decoded_bboxes[valid_mask] + valid_pred_scores = pred_scores[valid_mask] + num_valid = valid_decoded_bbox.size(0) + + if num_gt == 0 or num_bboxes == 0 or num_valid == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) + if num_gt == 0: + # No truth, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = decoded_bboxes.new_full((num_bboxes, ), + -1, + dtype=torch.long) + return AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + pairwise_ious = bbox_overlaps(valid_decoded_bbox, gt_bboxes) + iou_cost = -torch.log(pairwise_ious + eps) + + gt_onehot_label = ( + F.one_hot(gt_labels.to(torch.int64), + pred_scores.shape[-1]).float().unsqueeze(0).repeat( + num_valid, 1, 1)) + + valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1) + cls_cost = ( + F.binary_cross_entropy( + valid_pred_scores.to(dtype=torch.float32).sqrt_(), + gt_onehot_label, + reduction='none', + ).sum(-1).to(dtype=valid_pred_scores.dtype)) + + cost_matrix = ( + cls_cost * self.cls_weight + iou_cost * self.iou_weight + + (~is_in_boxes_and_center) * INF) + + matched_pred_ious, matched_gt_inds = \ + self.dynamic_k_matching( + cost_matrix, pairwise_ious, num_gt, valid_mask) + + # convert to AssignResult format + assigned_gt_inds[valid_mask] = matched_gt_inds + 1 + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long() + max_overlaps = assigned_gt_inds.new_full((num_bboxes, ), + -INF, + dtype=torch.float32) + max_overlaps[valid_mask] = matched_pred_ious + return AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) + + def get_in_gt_and_in_center_info(self, priors, gt_bboxes): + num_gt = gt_bboxes.size(0) + + repeated_x = priors[:, 0].unsqueeze(1).repeat(1, num_gt) + repeated_y = priors[:, 1].unsqueeze(1).repeat(1, num_gt) + repeated_stride_x = priors[:, 2].unsqueeze(1).repeat(1, num_gt) + repeated_stride_y = priors[:, 3].unsqueeze(1).repeat(1, num_gt) + + # is prior centers in gt bboxes, shape: [n_prior, n_gt] + l_ = repeated_x - gt_bboxes[:, 0] + t_ = repeated_y - gt_bboxes[:, 1] + r_ = gt_bboxes[:, 2] - repeated_x + b_ = gt_bboxes[:, 3] - repeated_y + + deltas = torch.stack([l_, t_, r_, b_], dim=1) + is_in_gts = deltas.min(dim=1).values > 0 + is_in_gts_all = is_in_gts.sum(dim=1) > 0 + + # is prior centers in gt centers + gt_cxs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 + gt_cys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 + ct_box_l = gt_cxs - self.center_radius * repeated_stride_x + ct_box_t = gt_cys - self.center_radius * repeated_stride_y + ct_box_r = gt_cxs + self.center_radius * repeated_stride_x + ct_box_b = gt_cys + self.center_radius * repeated_stride_y + + cl_ = repeated_x - ct_box_l + ct_ = repeated_y - ct_box_t + cr_ = ct_box_r - repeated_x + cb_ = ct_box_b - repeated_y + + ct_deltas = torch.stack([cl_, ct_, cr_, cb_], dim=1) + is_in_cts = ct_deltas.min(dim=1).values > 0 + is_in_cts_all = is_in_cts.sum(dim=1) > 0 + + # in boxes or in centers, shape: [num_priors] + is_in_gts_or_centers = is_in_gts_all | is_in_cts_all + + # both in boxes and centers, shape: [num_fg, num_gt] + is_in_boxes_and_centers = ( + is_in_gts[is_in_gts_or_centers, :] + & is_in_cts[is_in_gts_or_centers, :]) + return is_in_gts_or_centers, is_in_boxes_and_centers + + def dynamic_k_matching(self, cost, pairwise_ious, num_gt, valid_mask): + matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) + # select candidate topk ious for dynamic-k calculation + candidate_topk = min(self.candidate_topk, pairwise_ious.size(0)) + topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0) + # calculate dynamic k for each gt + dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1) + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False) + matching_matrix[:, gt_idx][pos_idx] = 1 + + del topk_ious, dynamic_ks, pos_idx + + prior_match_gt_mask = matching_matrix.sum(1) > 1 + if prior_match_gt_mask.sum() > 0: + cost_min, cost_argmin = torch.min( + cost[prior_match_gt_mask, :], dim=1) + matching_matrix[prior_match_gt_mask, :] *= 0 + matching_matrix[prior_match_gt_mask, cost_argmin] = 1 + # get foreground mask inside box and center prior + fg_mask_inboxes = matching_matrix.sum(1) > 0 + valid_mask[valid_mask.clone()] = fg_mask_inboxes + + matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1) + matched_pred_ious = (matching_matrix * + pairwise_ious).sum(1)[fg_mask_inboxes] + return matched_pred_ious, matched_gt_inds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/task_aligned_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/task_aligned_assigner.py new file mode 100644 index 000000000..1872de4a7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/task_aligned_assigner.py @@ -0,0 +1,151 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + +INF = 100000000 + + +@BBOX_ASSIGNERS.register_module() +class TaskAlignedAssigner(BaseAssigner): + """Task aligned assigner used in the paper: + `TOOD: Task-aligned One-stage Object Detection. + `_. + + Assign a corresponding gt bbox or background to each predicted bbox. + Each bbox will be assigned with `0` or a positive integer + indicating the ground truth index. + + - 0: negative sample, no assigned gt + - positive integer: positive sample, index (1-based) of assigned gt + + Args: + topk (int): number of bbox selected in each level + iou_calculator (dict): Config dict for iou calculator. + Default: dict(type='BboxOverlaps2D') + """ + + def __init__(self, topk, iou_calculator=dict(type='BboxOverlaps2D')): + assert topk >= 1 + self.topk = topk + self.iou_calculator = build_iou_calculator(iou_calculator) + + def assign(self, + pred_scores, + decode_bboxes, + anchors, + gt_bboxes, + gt_bboxes_ignore=None, + gt_labels=None, + alpha=1, + beta=6): + """Assign gt to bboxes. + + The assignment is done in following steps + + 1. compute alignment metric between all bbox (bbox of all pyramid + levels) and gt + 2. select top-k bbox as candidates for each gt + 3. limit the positive sample's center in gt (because the anchor-free + detector only can predict positive distance) + + + Args: + pred_scores (Tensor): predicted class probability, + shape(n, num_classes) + decode_bboxes (Tensor): predicted bounding boxes, shape(n, 4) + anchors (Tensor): pre-defined anchors, shape(n, 4). + gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). + gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are + labelled as `ignored`, e.g., crowd boxes in COCO. + gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). + + Returns: + :obj:`TaskAlignedAssignResult`: The assign result. + """ + anchors = anchors[:, :4] + num_gt, num_bboxes = gt_bboxes.size(0), anchors.size(0) + # compute alignment metric between all bbox and gt + overlaps = self.iou_calculator(decode_bboxes, gt_bboxes).detach() + bbox_scores = pred_scores[:, gt_labels].detach() + # assign 0 by default + assigned_gt_inds = anchors.new_full((num_bboxes, ), + 0, + dtype=torch.long) + assign_metrics = anchors.new_zeros((num_bboxes, )) + + if num_gt == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + max_overlaps = anchors.new_zeros((num_bboxes, )) + if num_gt == 0: + # No gt boxes, assign everything to background + assigned_gt_inds[:] = 0 + if gt_labels is None: + assigned_labels = None + else: + assigned_labels = anchors.new_full((num_bboxes, ), + -1, + dtype=torch.long) + assign_result = AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) + assign_result.assign_metrics = assign_metrics + return assign_result + + # select top-k bboxes as candidates for each gt + alignment_metrics = bbox_scores**alpha * overlaps**beta + topk = min(self.topk, alignment_metrics.size(0)) + _, candidate_idxs = alignment_metrics.topk(topk, dim=0, largest=True) + candidate_metrics = alignment_metrics[candidate_idxs, + torch.arange(num_gt)] + is_pos = candidate_metrics > 0 + + # limit the positive sample's center in gt + anchors_cx = (anchors[:, 0] + anchors[:, 2]) / 2.0 + anchors_cy = (anchors[:, 1] + anchors[:, 3]) / 2.0 + for gt_idx in range(num_gt): + candidate_idxs[:, gt_idx] += gt_idx * num_bboxes + ep_anchors_cx = anchors_cx.view(1, -1).expand( + num_gt, num_bboxes).contiguous().view(-1) + ep_anchors_cy = anchors_cy.view(1, -1).expand( + num_gt, num_bboxes).contiguous().view(-1) + candidate_idxs = candidate_idxs.view(-1) + + # calculate the left, top, right, bottom distance between positive + # bbox center and gt side + l_ = ep_anchors_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0] + t_ = ep_anchors_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1] + r_ = gt_bboxes[:, 2] - ep_anchors_cx[candidate_idxs].view(-1, num_gt) + b_ = gt_bboxes[:, 3] - ep_anchors_cy[candidate_idxs].view(-1, num_gt) + is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01 + is_pos = is_pos & is_in_gts + + # if an anchor box is assigned to multiple gts, + # the one with the highest iou will be selected. + overlaps_inf = torch.full_like(overlaps, + -INF).t().contiguous().view(-1) + index = candidate_idxs.view(-1)[is_pos.view(-1)] + overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index] + overlaps_inf = overlaps_inf.view(num_gt, -1).t() + + max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1) + assigned_gt_inds[ + max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1 + assign_metrics[max_overlaps != -INF] = alignment_metrics[ + max_overlaps != -INF, argmax_overlaps[max_overlaps != -INF]] + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + assign_result = AssignResult( + num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) + assign_result.assign_metrics = assign_metrics + return assign_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/uniform_assigner.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/uniform_assigner.py new file mode 100644 index 000000000..70294fc45 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/assigners/uniform_assigner.py @@ -0,0 +1,135 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_ASSIGNERS +from ..iou_calculators import build_iou_calculator +from ..transforms import bbox_xyxy_to_cxcywh +from .assign_result import AssignResult +from .base_assigner import BaseAssigner + + +@BBOX_ASSIGNERS.register_module() +class UniformAssigner(BaseAssigner): + """Uniform Matching between the anchors and gt boxes, which can achieve + balance in positive anchors, and gt_bboxes_ignore was not considered for + now. + + Args: + pos_ignore_thr (float): the threshold to ignore positive anchors + neg_ignore_thr (float): the threshold to ignore negative anchors + match_times(int): Number of positive anchors for each gt box. + Default 4. + iou_calculator (dict): iou_calculator config + """ + + def __init__(self, + pos_ignore_thr, + neg_ignore_thr, + match_times=4, + iou_calculator=dict(type='BboxOverlaps2D')): + self.match_times = match_times + self.pos_ignore_thr = pos_ignore_thr + self.neg_ignore_thr = neg_ignore_thr + self.iou_calculator = build_iou_calculator(iou_calculator) + + def assign(self, + bbox_pred, + anchor, + gt_bboxes, + gt_bboxes_ignore=None, + gt_labels=None): + num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0) + + # 1. assign -1 by default + assigned_gt_inds = bbox_pred.new_full((num_bboxes, ), + 0, + dtype=torch.long) + assigned_labels = bbox_pred.new_full((num_bboxes, ), + -1, + dtype=torch.long) + if num_gts == 0 or num_bboxes == 0: + # No ground truth or boxes, return empty assignment + if num_gts == 0: + # No ground truth, assign all to background + assigned_gt_inds[:] = 0 + assign_result = AssignResult( + num_gts, assigned_gt_inds, None, labels=assigned_labels) + assign_result.set_extra_property( + 'pos_idx', bbox_pred.new_empty(0, dtype=torch.bool)) + assign_result.set_extra_property('pos_predicted_boxes', + bbox_pred.new_empty((0, 4))) + assign_result.set_extra_property('target_boxes', + bbox_pred.new_empty((0, 4))) + return assign_result + + # 2. Compute the L1 cost between boxes + # Note that we use anchors and predict boxes both + cost_bbox = torch.cdist( + bbox_xyxy_to_cxcywh(bbox_pred), + bbox_xyxy_to_cxcywh(gt_bboxes), + p=1) + cost_bbox_anchors = torch.cdist( + bbox_xyxy_to_cxcywh(anchor), bbox_xyxy_to_cxcywh(gt_bboxes), p=1) + + # We found that topk function has different results in cpu and + # cuda mode. In order to ensure consistency with the source code, + # we also use cpu mode. + # TODO: Check whether the performance of cpu and cuda are the same. + C = cost_bbox.cpu() + C1 = cost_bbox_anchors.cpu() + + # self.match_times x n + index = torch.topk( + C, # c=b,n,x c[i]=n,x + k=self.match_times, + dim=0, + largest=False)[1] + + # self.match_times x n + index1 = torch.topk(C1, k=self.match_times, dim=0, largest=False)[1] + # (self.match_times*2) x n + indexes = torch.cat((index, index1), + dim=1).reshape(-1).to(bbox_pred.device) + + pred_overlaps = self.iou_calculator(bbox_pred, gt_bboxes) + anchor_overlaps = self.iou_calculator(anchor, gt_bboxes) + pred_max_overlaps, _ = pred_overlaps.max(dim=1) + anchor_max_overlaps, _ = anchor_overlaps.max(dim=0) + + # 3. Compute the ignore indexes use gt_bboxes and predict boxes + ignore_idx = pred_max_overlaps > self.neg_ignore_thr + assigned_gt_inds[ignore_idx] = -1 + + # 4. Compute the ignore indexes of positive sample use anchors + # and predict boxes + pos_gt_index = torch.arange( + 0, C1.size(1), + device=bbox_pred.device).repeat(self.match_times * 2) + pos_ious = anchor_overlaps[indexes, pos_gt_index] + pos_ignore_idx = pos_ious < self.pos_ignore_thr + + pos_gt_index_with_ignore = pos_gt_index + 1 + pos_gt_index_with_ignore[pos_ignore_idx] = -1 + assigned_gt_inds[indexes] = pos_gt_index_with_ignore + + if gt_labels is not None: + assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) + pos_inds = torch.nonzero( + assigned_gt_inds > 0, as_tuple=False).squeeze() + if pos_inds.numel() > 0: + assigned_labels[pos_inds] = gt_labels[ + assigned_gt_inds[pos_inds] - 1] + else: + assigned_labels = None + + assign_result = AssignResult( + num_gts, + assigned_gt_inds, + anchor_max_overlaps, + labels=assigned_labels) + assign_result.set_extra_property('pos_idx', ~pos_ignore_idx) + assign_result.set_extra_property('pos_predicted_boxes', + bbox_pred[indexes]) + assign_result.set_extra_property('target_boxes', + gt_bboxes[pos_gt_index]) + return assign_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/builder.py new file mode 100644 index 000000000..9cfa055b5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/builder.py @@ -0,0 +1,21 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry, build_from_cfg + +BBOX_ASSIGNERS = Registry('bbox_assigner') +BBOX_SAMPLERS = Registry('bbox_sampler') +BBOX_CODERS = Registry('bbox_coder') + + +def build_assigner(cfg, **default_args): + """Builder of box assigner.""" + return build_from_cfg(cfg, BBOX_ASSIGNERS, default_args) + + +def build_sampler(cfg, **default_args): + """Builder of box sampler.""" + return build_from_cfg(cfg, BBOX_SAMPLERS, default_args) + + +def build_bbox_coder(cfg, **default_args): + """Builder of box coder.""" + return build_from_cfg(cfg, BBOX_CODERS, default_args) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/__init__.py new file mode 100644 index 000000000..e12fd64e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_bbox_coder import BaseBBoxCoder +from .bucketing_bbox_coder import BucketingBBoxCoder +from .delta_xywh_bbox_coder import DeltaXYWHBBoxCoder +from .distance_point_bbox_coder import DistancePointBBoxCoder +from .legacy_delta_xywh_bbox_coder import LegacyDeltaXYWHBBoxCoder +from .pseudo_bbox_coder import PseudoBBoxCoder +from .tblr_bbox_coder import TBLRBBoxCoder +from .yolo_bbox_coder import YOLOBBoxCoder + +__all__ = [ + 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', + 'LegacyDeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'YOLOBBoxCoder', + 'BucketingBBoxCoder', 'DistancePointBBoxCoder' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/base_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/base_bbox_coder.py new file mode 100644 index 000000000..a7ed041a4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/base_bbox_coder.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + + +class BaseBBoxCoder(metaclass=ABCMeta): + """Base bounding box coder.""" + + def __init__(self, **kwargs): + pass + + @abstractmethod + def encode(self, bboxes, gt_bboxes): + """Encode deltas between bboxes and ground truth boxes.""" + + @abstractmethod + def decode(self, bboxes, bboxes_pred): + """Decode the predicted bboxes according to prediction and base + boxes.""" diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/bucketing_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/bucketing_bbox_coder.py new file mode 100644 index 000000000..4be0ada04 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/bucketing_bbox_coder.py @@ -0,0 +1,351 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import torch +import torch.nn.functional as F + +from ..builder import BBOX_CODERS +from ..transforms import bbox_rescale +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class BucketingBBoxCoder(BaseBBoxCoder): + """Bucketing BBox Coder for Side-Aware Boundary Localization (SABL). + + Boundary Localization with Bucketing and Bucketing Guided Rescoring + are implemented here. + + Please refer to https://arxiv.org/abs/1912.04260 for more details. + + Args: + num_buckets (int): Number of buckets. + scale_factor (int): Scale factor of proposals to generate buckets. + offset_topk (int): Topk buckets are used to generate + bucket fine regression targets. Defaults to 2. + offset_upperbound (float): Offset upperbound to generate + bucket fine regression targets. + To avoid too large offset displacements. Defaults to 1.0. + cls_ignore_neighbor (bool): Ignore second nearest bucket or Not. + Defaults to True. + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + """ + + def __init__(self, + num_buckets, + scale_factor, + offset_topk=2, + offset_upperbound=1.0, + cls_ignore_neighbor=True, + clip_border=True): + super(BucketingBBoxCoder, self).__init__() + self.num_buckets = num_buckets + self.scale_factor = scale_factor + self.offset_topk = offset_topk + self.offset_upperbound = offset_upperbound + self.cls_ignore_neighbor = cls_ignore_neighbor + self.clip_border = clip_border + + def encode(self, bboxes, gt_bboxes): + """Get bucketing estimation and fine regression targets during + training. + + Args: + bboxes (torch.Tensor): source boxes, e.g., object proposals. + gt_bboxes (torch.Tensor): target of the transformation, e.g., + ground truth boxes. + + Returns: + encoded_bboxes(tuple[Tensor]): bucketing estimation + and fine regression targets and weights + """ + + assert bboxes.size(0) == gt_bboxes.size(0) + assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 + encoded_bboxes = bbox2bucket(bboxes, gt_bboxes, self.num_buckets, + self.scale_factor, self.offset_topk, + self.offset_upperbound, + self.cls_ignore_neighbor) + return encoded_bboxes + + def decode(self, bboxes, pred_bboxes, max_shape=None): + """Apply transformation `pred_bboxes` to `boxes`. + Args: + boxes (torch.Tensor): Basic boxes. + pred_bboxes (torch.Tensor): Predictions for bucketing estimation + and fine regression + max_shape (tuple[int], optional): Maximum shape of boxes. + Defaults to None. + + Returns: + torch.Tensor: Decoded boxes. + """ + assert len(pred_bboxes) == 2 + cls_preds, offset_preds = pred_bboxes + assert cls_preds.size(0) == bboxes.size(0) and offset_preds.size( + 0) == bboxes.size(0) + decoded_bboxes = bucket2bbox(bboxes, cls_preds, offset_preds, + self.num_buckets, self.scale_factor, + max_shape, self.clip_border) + + return decoded_bboxes + + +@mmcv.jit(coderize=True) +def generat_buckets(proposals, num_buckets, scale_factor=1.0): + """Generate buckets w.r.t bucket number and scale factor of proposals. + + Args: + proposals (Tensor): Shape (n, 4) + num_buckets (int): Number of buckets. + scale_factor (float): Scale factor to rescale proposals. + + Returns: + tuple[Tensor]: (bucket_w, bucket_h, l_buckets, r_buckets, + t_buckets, d_buckets) + + - bucket_w: Width of buckets on x-axis. Shape (n, ). + - bucket_h: Height of buckets on y-axis. Shape (n, ). + - l_buckets: Left buckets. Shape (n, ceil(side_num/2)). + - r_buckets: Right buckets. Shape (n, ceil(side_num/2)). + - t_buckets: Top buckets. Shape (n, ceil(side_num/2)). + - d_buckets: Down buckets. Shape (n, ceil(side_num/2)). + """ + proposals = bbox_rescale(proposals, scale_factor) + + # number of buckets in each side + side_num = int(np.ceil(num_buckets / 2.0)) + pw = proposals[..., 2] - proposals[..., 0] + ph = proposals[..., 3] - proposals[..., 1] + px1 = proposals[..., 0] + py1 = proposals[..., 1] + px2 = proposals[..., 2] + py2 = proposals[..., 3] + + bucket_w = pw / num_buckets + bucket_h = ph / num_buckets + + # left buckets + l_buckets = px1[:, None] + (0.5 + torch.arange( + 0, side_num).to(proposals).float())[None, :] * bucket_w[:, None] + # right buckets + r_buckets = px2[:, None] - (0.5 + torch.arange( + 0, side_num).to(proposals).float())[None, :] * bucket_w[:, None] + # top buckets + t_buckets = py1[:, None] + (0.5 + torch.arange( + 0, side_num).to(proposals).float())[None, :] * bucket_h[:, None] + # down buckets + d_buckets = py2[:, None] - (0.5 + torch.arange( + 0, side_num).to(proposals).float())[None, :] * bucket_h[:, None] + return bucket_w, bucket_h, l_buckets, r_buckets, t_buckets, d_buckets + + +@mmcv.jit(coderize=True) +def bbox2bucket(proposals, + gt, + num_buckets, + scale_factor, + offset_topk=2, + offset_upperbound=1.0, + cls_ignore_neighbor=True): + """Generate buckets estimation and fine regression targets. + + Args: + proposals (Tensor): Shape (n, 4) + gt (Tensor): Shape (n, 4) + num_buckets (int): Number of buckets. + scale_factor (float): Scale factor to rescale proposals. + offset_topk (int): Topk buckets are used to generate + bucket fine regression targets. Defaults to 2. + offset_upperbound (float): Offset allowance to generate + bucket fine regression targets. + To avoid too large offset displacements. Defaults to 1.0. + cls_ignore_neighbor (bool): Ignore second nearest bucket or Not. + Defaults to True. + + Returns: + tuple[Tensor]: (offsets, offsets_weights, bucket_labels, cls_weights). + + - offsets: Fine regression targets. \ + Shape (n, num_buckets*2). + - offsets_weights: Fine regression weights. \ + Shape (n, num_buckets*2). + - bucket_labels: Bucketing estimation labels. \ + Shape (n, num_buckets*2). + - cls_weights: Bucketing estimation weights. \ + Shape (n, num_buckets*2). + """ + assert proposals.size() == gt.size() + + # generate buckets + proposals = proposals.float() + gt = gt.float() + (bucket_w, bucket_h, l_buckets, r_buckets, t_buckets, + d_buckets) = generat_buckets(proposals, num_buckets, scale_factor) + + gx1 = gt[..., 0] + gy1 = gt[..., 1] + gx2 = gt[..., 2] + gy2 = gt[..., 3] + + # generate offset targets and weights + # offsets from buckets to gts + l_offsets = (l_buckets - gx1[:, None]) / bucket_w[:, None] + r_offsets = (r_buckets - gx2[:, None]) / bucket_w[:, None] + t_offsets = (t_buckets - gy1[:, None]) / bucket_h[:, None] + d_offsets = (d_buckets - gy2[:, None]) / bucket_h[:, None] + + # select top-k nearest buckets + l_topk, l_label = l_offsets.abs().topk( + offset_topk, dim=1, largest=False, sorted=True) + r_topk, r_label = r_offsets.abs().topk( + offset_topk, dim=1, largest=False, sorted=True) + t_topk, t_label = t_offsets.abs().topk( + offset_topk, dim=1, largest=False, sorted=True) + d_topk, d_label = d_offsets.abs().topk( + offset_topk, dim=1, largest=False, sorted=True) + + offset_l_weights = l_offsets.new_zeros(l_offsets.size()) + offset_r_weights = r_offsets.new_zeros(r_offsets.size()) + offset_t_weights = t_offsets.new_zeros(t_offsets.size()) + offset_d_weights = d_offsets.new_zeros(d_offsets.size()) + inds = torch.arange(0, proposals.size(0)).to(proposals).long() + + # generate offset weights of top-k nearest buckets + for k in range(offset_topk): + if k >= 1: + offset_l_weights[inds, l_label[:, + k]] = (l_topk[:, k] < + offset_upperbound).float() + offset_r_weights[inds, r_label[:, + k]] = (r_topk[:, k] < + offset_upperbound).float() + offset_t_weights[inds, t_label[:, + k]] = (t_topk[:, k] < + offset_upperbound).float() + offset_d_weights[inds, d_label[:, + k]] = (d_topk[:, k] < + offset_upperbound).float() + else: + offset_l_weights[inds, l_label[:, k]] = 1.0 + offset_r_weights[inds, r_label[:, k]] = 1.0 + offset_t_weights[inds, t_label[:, k]] = 1.0 + offset_d_weights[inds, d_label[:, k]] = 1.0 + + offsets = torch.cat([l_offsets, r_offsets, t_offsets, d_offsets], dim=-1) + offsets_weights = torch.cat([ + offset_l_weights, offset_r_weights, offset_t_weights, offset_d_weights + ], + dim=-1) + + # generate bucket labels and weight + side_num = int(np.ceil(num_buckets / 2.0)) + labels = torch.stack( + [l_label[:, 0], r_label[:, 0], t_label[:, 0], d_label[:, 0]], dim=-1) + + batch_size = labels.size(0) + bucket_labels = F.one_hot(labels.view(-1), side_num).view(batch_size, + -1).float() + bucket_cls_l_weights = (l_offsets.abs() < 1).float() + bucket_cls_r_weights = (r_offsets.abs() < 1).float() + bucket_cls_t_weights = (t_offsets.abs() < 1).float() + bucket_cls_d_weights = (d_offsets.abs() < 1).float() + bucket_cls_weights = torch.cat([ + bucket_cls_l_weights, bucket_cls_r_weights, bucket_cls_t_weights, + bucket_cls_d_weights + ], + dim=-1) + # ignore second nearest buckets for cls if necessary + if cls_ignore_neighbor: + bucket_cls_weights = (~((bucket_cls_weights == 1) & + (bucket_labels == 0))).float() + else: + bucket_cls_weights[:] = 1.0 + return offsets, offsets_weights, bucket_labels, bucket_cls_weights + + +@mmcv.jit(coderize=True) +def bucket2bbox(proposals, + cls_preds, + offset_preds, + num_buckets, + scale_factor=1.0, + max_shape=None, + clip_border=True): + """Apply bucketing estimation (cls preds) and fine regression (offset + preds) to generate det bboxes. + + Args: + proposals (Tensor): Boxes to be transformed. Shape (n, 4) + cls_preds (Tensor): bucketing estimation. Shape (n, num_buckets*2). + offset_preds (Tensor): fine regression. Shape (n, num_buckets*2). + num_buckets (int): Number of buckets. + scale_factor (float): Scale factor to rescale proposals. + max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W) + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + + Returns: + tuple[Tensor]: (bboxes, loc_confidence). + + - bboxes: predicted bboxes. Shape (n, 4) + - loc_confidence: localization confidence of predicted bboxes. + Shape (n,). + """ + + side_num = int(np.ceil(num_buckets / 2.0)) + cls_preds = cls_preds.view(-1, side_num) + offset_preds = offset_preds.view(-1, side_num) + + scores = F.softmax(cls_preds, dim=1) + score_topk, score_label = scores.topk(2, dim=1, largest=True, sorted=True) + + rescaled_proposals = bbox_rescale(proposals, scale_factor) + + pw = rescaled_proposals[..., 2] - rescaled_proposals[..., 0] + ph = rescaled_proposals[..., 3] - rescaled_proposals[..., 1] + px1 = rescaled_proposals[..., 0] + py1 = rescaled_proposals[..., 1] + px2 = rescaled_proposals[..., 2] + py2 = rescaled_proposals[..., 3] + + bucket_w = pw / num_buckets + bucket_h = ph / num_buckets + + score_inds_l = score_label[0::4, 0] + score_inds_r = score_label[1::4, 0] + score_inds_t = score_label[2::4, 0] + score_inds_d = score_label[3::4, 0] + l_buckets = px1 + (0.5 + score_inds_l.float()) * bucket_w + r_buckets = px2 - (0.5 + score_inds_r.float()) * bucket_w + t_buckets = py1 + (0.5 + score_inds_t.float()) * bucket_h + d_buckets = py2 - (0.5 + score_inds_d.float()) * bucket_h + + offsets = offset_preds.view(-1, 4, side_num) + inds = torch.arange(proposals.size(0)).to(proposals).long() + l_offsets = offsets[:, 0, :][inds, score_inds_l] + r_offsets = offsets[:, 1, :][inds, score_inds_r] + t_offsets = offsets[:, 2, :][inds, score_inds_t] + d_offsets = offsets[:, 3, :][inds, score_inds_d] + + x1 = l_buckets - l_offsets * bucket_w + x2 = r_buckets - r_offsets * bucket_w + y1 = t_buckets - t_offsets * bucket_h + y2 = d_buckets - d_offsets * bucket_h + + if clip_border and max_shape is not None: + x1 = x1.clamp(min=0, max=max_shape[1] - 1) + y1 = y1.clamp(min=0, max=max_shape[0] - 1) + x2 = x2.clamp(min=0, max=max_shape[1] - 1) + y2 = y2.clamp(min=0, max=max_shape[0] - 1) + bboxes = torch.cat([x1[:, None], y1[:, None], x2[:, None], y2[:, None]], + dim=-1) + + # bucketing guided rescoring + loc_confidence = score_topk[:, 0] + top2_neighbor_inds = (score_label[:, 0] - score_label[:, 1]).abs() == 1 + loc_confidence += score_topk[:, 1] * top2_neighbor_inds.float() + loc_confidence = loc_confidence.view(-1, 4).mean(dim=1) + + return bboxes, loc_confidence diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py new file mode 100644 index 000000000..a7f1c62fa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py @@ -0,0 +1,392 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv +import numpy as np +import torch + +from ..builder import BBOX_CODERS +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class DeltaXYWHBBoxCoder(BaseBBoxCoder): + """Delta XYWH BBox coder. + + Following the practice in `R-CNN `_, + this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and + decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2). + + Args: + target_means (Sequence[float]): Denormalizing means of target for + delta coordinates + target_stds (Sequence[float]): Denormalizing standard deviation of + target for delta coordinates + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + add_ctr_clamp (bool): Whether to add center clamp, when added, the + predicted box is clamped is its center is too far away from + the original anchor's center. Only used by YOLOF. Default False. + ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. + Default 32. + """ + + def __init__(self, + target_means=(0., 0., 0., 0.), + target_stds=(1., 1., 1., 1.), + clip_border=True, + add_ctr_clamp=False, + ctr_clamp=32): + super(BaseBBoxCoder, self).__init__() + self.means = target_means + self.stds = target_stds + self.clip_border = clip_border + self.add_ctr_clamp = add_ctr_clamp + self.ctr_clamp = ctr_clamp + + def encode(self, bboxes, gt_bboxes): + """Get box regression transformation deltas that can be used to + transform the ``bboxes`` into the ``gt_bboxes``. + + Args: + bboxes (torch.Tensor): Source boxes, e.g., object proposals. + gt_bboxes (torch.Tensor): Target of the transformation, e.g., + ground-truth boxes. + + Returns: + torch.Tensor: Box transformation deltas + """ + + assert bboxes.size(0) == gt_bboxes.size(0) + assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 + encoded_bboxes = bbox2delta(bboxes, gt_bboxes, self.means, self.stds) + return encoded_bboxes + + def decode(self, + bboxes, + pred_bboxes, + max_shape=None, + wh_ratio_clip=16 / 1000): + """Apply transformation `pred_bboxes` to `boxes`. + + Args: + bboxes (torch.Tensor): Basic boxes. Shape (B, N, 4) or (N, 4) + pred_bboxes (Tensor): Encoded offsets with respect to each roi. + Has shape (B, N, num_classes * 4) or (B, N, 4) or + (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H + when rois is a grid of anchors.Offset encoding follows [1]_. + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]] + and the length of max_shape should also be B. + wh_ratio_clip (float, optional): The allowed ratio between + width and height. + + Returns: + torch.Tensor: Decoded boxes. + """ + + assert pred_bboxes.size(0) == bboxes.size(0) + if pred_bboxes.ndim == 3: + assert pred_bboxes.size(1) == bboxes.size(1) + + if pred_bboxes.ndim == 2 and not torch.onnx.is_in_onnx_export(): + # single image decode + decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means, + self.stds, max_shape, wh_ratio_clip, + self.clip_border, self.add_ctr_clamp, + self.ctr_clamp) + else: + if pred_bboxes.ndim == 3 and not torch.onnx.is_in_onnx_export(): + warnings.warn( + 'DeprecationWarning: onnx_delta2bbox is deprecated ' + 'in the case of batch decoding and non-ONNX, ' + 'please use “delta2bbox” instead. In order to improve ' + 'the decoding speed, the batch function will no ' + 'longer be supported. ') + decoded_bboxes = onnx_delta2bbox(bboxes, pred_bboxes, self.means, + self.stds, max_shape, + wh_ratio_clip, self.clip_border, + self.add_ctr_clamp, + self.ctr_clamp) + + return decoded_bboxes + + +@mmcv.jit(coderize=True) +def bbox2delta(proposals, gt, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.)): + """Compute deltas of proposals w.r.t. gt. + + We usually compute the deltas of x, y, w, h of proposals w.r.t ground + truth bboxes to get regression target. + This is the inverse function of :func:`delta2bbox`. + + Args: + proposals (Tensor): Boxes to be transformed, shape (N, ..., 4) + gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4) + means (Sequence[float]): Denormalizing means for delta coordinates + stds (Sequence[float]): Denormalizing standard deviation for delta + coordinates + + Returns: + Tensor: deltas with shape (N, 4), where columns represent dx, dy, + dw, dh. + """ + assert proposals.size() == gt.size() + + proposals = proposals.float() + gt = gt.float() + px = (proposals[..., 0] + proposals[..., 2]) * 0.5 + py = (proposals[..., 1] + proposals[..., 3]) * 0.5 + pw = proposals[..., 2] - proposals[..., 0] + ph = proposals[..., 3] - proposals[..., 1] + + gx = (gt[..., 0] + gt[..., 2]) * 0.5 + gy = (gt[..., 1] + gt[..., 3]) * 0.5 + gw = gt[..., 2] - gt[..., 0] + gh = gt[..., 3] - gt[..., 1] + + dx = (gx - px) / pw + dy = (gy - py) / ph + dw = torch.log(gw / pw) + dh = torch.log(gh / ph) + deltas = torch.stack([dx, dy, dw, dh], dim=-1) + + means = deltas.new_tensor(means).unsqueeze(0) + stds = deltas.new_tensor(stds).unsqueeze(0) + deltas = deltas.sub_(means).div_(stds) + + return deltas + + +@mmcv.jit(coderize=True) +def delta2bbox(rois, + deltas, + means=(0., 0., 0., 0.), + stds=(1., 1., 1., 1.), + max_shape=None, + wh_ratio_clip=16 / 1000, + clip_border=True, + add_ctr_clamp=False, + ctr_clamp=32): + """Apply deltas to shift/scale base boxes. + + Typically the rois are anchor or proposed bounding boxes and the deltas are + network outputs used to shift/scale those boxes. + This is the inverse function of :func:`bbox2delta`. + + Args: + rois (Tensor): Boxes to be transformed. Has shape (N, 4). + deltas (Tensor): Encoded offsets relative to each roi. + Has shape (N, num_classes * 4) or (N, 4). Note + N = num_base_anchors * W * H, when rois is a grid of + anchors. Offset encoding follows [1]_. + means (Sequence[float]): Denormalizing means for delta coordinates. + Default (0., 0., 0., 0.). + stds (Sequence[float]): Denormalizing standard deviation for delta + coordinates. Default (1., 1., 1., 1.). + max_shape (tuple[int, int]): Maximum bounds for boxes, specifies + (H, W). Default None. + wh_ratio_clip (float): Maximum aspect ratio for boxes. Default + 16 / 1000. + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Default True. + add_ctr_clamp (bool): Whether to add center clamp. When set to True, + the center of the prediction bounding box will be clamped to + avoid being too far away from the center of the anchor. + Only used by YOLOF. Default False. + ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. + Default 32. + + Returns: + Tensor: Boxes with shape (N, num_classes * 4) or (N, 4), where 4 + represent tl_x, tl_y, br_x, br_y. + + References: + .. [1] https://arxiv.org/abs/1311.2524 + + Example: + >>> rois = torch.Tensor([[ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 5., 5., 5., 5.]]) + >>> deltas = torch.Tensor([[ 0., 0., 0., 0.], + >>> [ 1., 1., 1., 1.], + >>> [ 0., 0., 2., -1.], + >>> [ 0.7, -1.9, -0.5, 0.3]]) + >>> delta2bbox(rois, deltas, max_shape=(32, 32, 3)) + tensor([[0.0000, 0.0000, 1.0000, 1.0000], + [0.1409, 0.1409, 2.8591, 2.8591], + [0.0000, 0.3161, 4.1945, 0.6839], + [5.0000, 5.0000, 5.0000, 5.0000]]) + """ + num_bboxes, num_classes = deltas.size(0), deltas.size(1) // 4 + if num_bboxes == 0: + return deltas + + deltas = deltas.reshape(-1, 4) + + means = deltas.new_tensor(means).view(1, -1) + stds = deltas.new_tensor(stds).view(1, -1) + denorm_deltas = deltas * stds + means + + dxy = denorm_deltas[:, :2] + dwh = denorm_deltas[:, 2:] + + # Compute width/height of each roi + rois_ = rois.repeat(1, num_classes).reshape(-1, 4) + pxy = ((rois_[:, :2] + rois_[:, 2:]) * 0.5) + pwh = (rois_[:, 2:] - rois_[:, :2]) + + dxy_wh = pwh * dxy + + max_ratio = np.abs(np.log(wh_ratio_clip)) + if add_ctr_clamp: + dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp) + dwh = torch.clamp(dwh, max=max_ratio) + else: + dwh = dwh.clamp(min=-max_ratio, max=max_ratio) + + gxy = pxy + dxy_wh + gwh = pwh * dwh.exp() + x1y1 = gxy - (gwh * 0.5) + x2y2 = gxy + (gwh * 0.5) + bboxes = torch.cat([x1y1, x2y2], dim=-1) + if clip_border and max_shape is not None: + bboxes[..., 0::2].clamp_(min=0, max=max_shape[1]) + bboxes[..., 1::2].clamp_(min=0, max=max_shape[0]) + bboxes = bboxes.reshape(num_bboxes, -1) + return bboxes + + +def onnx_delta2bbox(rois, + deltas, + means=(0., 0., 0., 0.), + stds=(1., 1., 1., 1.), + max_shape=None, + wh_ratio_clip=16 / 1000, + clip_border=True, + add_ctr_clamp=False, + ctr_clamp=32): + """Apply deltas to shift/scale base boxes. + + Typically the rois are anchor or proposed bounding boxes and the deltas are + network outputs used to shift/scale those boxes. + This is the inverse function of :func:`bbox2delta`. + + Args: + rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4) + deltas (Tensor): Encoded offsets with respect to each roi. + Has shape (B, N, num_classes * 4) or (B, N, 4) or + (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H + when rois is a grid of anchors.Offset encoding follows [1]_. + means (Sequence[float]): Denormalizing means for delta coordinates. + Default (0., 0., 0., 0.). + stds (Sequence[float]): Denormalizing standard deviation for delta + coordinates. Default (1., 1., 1., 1.). + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If rois shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]] + and the length of max_shape should also be B. Default None. + wh_ratio_clip (float): Maximum aspect ratio for boxes. + Default 16 / 1000. + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Default True. + add_ctr_clamp (bool): Whether to add center clamp, when added, the + predicted box is clamped is its center is too far away from + the original anchor's center. Only used by YOLOF. Default False. + ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. + Default 32. + + Returns: + Tensor: Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or + (N, num_classes * 4) or (N, 4), where 4 represent + tl_x, tl_y, br_x, br_y. + + References: + .. [1] https://arxiv.org/abs/1311.2524 + + Example: + >>> rois = torch.Tensor([[ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 5., 5., 5., 5.]]) + >>> deltas = torch.Tensor([[ 0., 0., 0., 0.], + >>> [ 1., 1., 1., 1.], + >>> [ 0., 0., 2., -1.], + >>> [ 0.7, -1.9, -0.5, 0.3]]) + >>> delta2bbox(rois, deltas, max_shape=(32, 32, 3)) + tensor([[0.0000, 0.0000, 1.0000, 1.0000], + [0.1409, 0.1409, 2.8591, 2.8591], + [0.0000, 0.3161, 4.1945, 0.6839], + [5.0000, 5.0000, 5.0000, 5.0000]]) + """ + means = deltas.new_tensor(means).view(1, + -1).repeat(1, + deltas.size(-1) // 4) + stds = deltas.new_tensor(stds).view(1, -1).repeat(1, deltas.size(-1) // 4) + denorm_deltas = deltas * stds + means + dx = denorm_deltas[..., 0::4] + dy = denorm_deltas[..., 1::4] + dw = denorm_deltas[..., 2::4] + dh = denorm_deltas[..., 3::4] + + x1, y1 = rois[..., 0], rois[..., 1] + x2, y2 = rois[..., 2], rois[..., 3] + # Compute center of each roi + px = ((x1 + x2) * 0.5).unsqueeze(-1).expand_as(dx) + py = ((y1 + y2) * 0.5).unsqueeze(-1).expand_as(dy) + # Compute width/height of each roi + pw = (x2 - x1).unsqueeze(-1).expand_as(dw) + ph = (y2 - y1).unsqueeze(-1).expand_as(dh) + + dx_width = pw * dx + dy_height = ph * dy + + max_ratio = np.abs(np.log(wh_ratio_clip)) + if add_ctr_clamp: + dx_width = torch.clamp(dx_width, max=ctr_clamp, min=-ctr_clamp) + dy_height = torch.clamp(dy_height, max=ctr_clamp, min=-ctr_clamp) + dw = torch.clamp(dw, max=max_ratio) + dh = torch.clamp(dh, max=max_ratio) + else: + dw = dw.clamp(min=-max_ratio, max=max_ratio) + dh = dh.clamp(min=-max_ratio, max=max_ratio) + # Use exp(network energy) to enlarge/shrink each roi + gw = pw * dw.exp() + gh = ph * dh.exp() + # Use network energy to shift the center of each roi + gx = px + dx_width + gy = py + dy_height + # Convert center-xy/width/height to top-left, bottom-right + x1 = gx - gw * 0.5 + y1 = gy - gh * 0.5 + x2 = gx + gw * 0.5 + y2 = gy + gh * 0.5 + + bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) + + if clip_border and max_shape is not None: + # clip bboxes with dynamic `min` and `max` for onnx + if torch.onnx.is_in_onnx_export(): + from mmdet.core.export import dynamic_clip_for_onnx + x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape) + bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) + return bboxes + if not isinstance(max_shape, torch.Tensor): + max_shape = x1.new_tensor(max_shape) + max_shape = max_shape[..., :2].type_as(x1) + if max_shape.ndim == 2: + assert bboxes.ndim == 3 + assert max_shape.size(0) == bboxes.size(0) + + min_xy = x1.new_tensor(0) + max_xy = torch.cat( + [max_shape] * (deltas.size(-1) // 2), + dim=-1).flip(-1).unsqueeze(-2) + bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) + bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) + + return bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/distance_point_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/distance_point_bbox_coder.py new file mode 100644 index 000000000..9f308a841 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/distance_point_bbox_coder.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import BBOX_CODERS +from ..transforms import bbox2distance, distance2bbox +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class DistancePointBBoxCoder(BaseBBoxCoder): + """Distance Point BBox coder. + + This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, + right) and decode it back to the original. + + Args: + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + """ + + def __init__(self, clip_border=True): + super(BaseBBoxCoder, self).__init__() + self.clip_border = clip_border + + def encode(self, points, gt_bboxes, max_dis=None, eps=0.1): + """Encode bounding box to distances. + + Args: + points (Tensor): Shape (N, 2), The format is [x, y]. + gt_bboxes (Tensor): Shape (N, 4), The format is "xyxy" + max_dis (float): Upper bound of the distance. Default None. + eps (float): a small value to ensure target < max_dis, instead <=. + Default 0.1. + + Returns: + Tensor: Box transformation deltas. The shape is (N, 4). + """ + assert points.size(0) == gt_bboxes.size(0) + assert points.size(-1) == 2 + assert gt_bboxes.size(-1) == 4 + return bbox2distance(points, gt_bboxes, max_dis, eps) + + def decode(self, points, pred_bboxes, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (B, N, 2) or (N, 2). + pred_bboxes (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). Shape (B, N, 4) + or (N, 4) + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If priors shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]], + and the length of max_shape should also be B. + Default None. + Returns: + Tensor: Boxes with shape (N, 4) or (B, N, 4) + """ + assert points.size(0) == pred_bboxes.size(0) + assert points.size(-1) == 2 + assert pred_bboxes.size(-1) == 4 + if self.clip_border is False: + max_shape = None + return distance2bbox(points, pred_bboxes, max_shape) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py new file mode 100644 index 000000000..7fa348b2d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py @@ -0,0 +1,216 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import torch + +from ..builder import BBOX_CODERS +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class LegacyDeltaXYWHBBoxCoder(BaseBBoxCoder): + """Legacy Delta XYWH BBox coder used in MMDet V1.x. + + Following the practice in R-CNN [1]_, this coder encodes bbox (x1, y1, x2, + y2) into delta (dx, dy, dw, dh) and decodes delta (dx, dy, dw, dh) + back to original bbox (x1, y1, x2, y2). + + Note: + The main difference between :class`LegacyDeltaXYWHBBoxCoder` and + :class:`DeltaXYWHBBoxCoder` is whether ``+ 1`` is used during width and + height calculation. We suggest to only use this coder when testing with + MMDet V1.x models. + + References: + .. [1] https://arxiv.org/abs/1311.2524 + + Args: + target_means (Sequence[float]): denormalizing means of target for + delta coordinates + target_stds (Sequence[float]): denormalizing standard deviation of + target for delta coordinates + """ + + def __init__(self, + target_means=(0., 0., 0., 0.), + target_stds=(1., 1., 1., 1.)): + super(BaseBBoxCoder, self).__init__() + self.means = target_means + self.stds = target_stds + + def encode(self, bboxes, gt_bboxes): + """Get box regression transformation deltas that can be used to + transform the ``bboxes`` into the ``gt_bboxes``. + + Args: + bboxes (torch.Tensor): source boxes, e.g., object proposals. + gt_bboxes (torch.Tensor): target of the transformation, e.g., + ground-truth boxes. + + Returns: + torch.Tensor: Box transformation deltas + """ + assert bboxes.size(0) == gt_bboxes.size(0) + assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 + encoded_bboxes = legacy_bbox2delta(bboxes, gt_bboxes, self.means, + self.stds) + return encoded_bboxes + + def decode(self, + bboxes, + pred_bboxes, + max_shape=None, + wh_ratio_clip=16 / 1000): + """Apply transformation `pred_bboxes` to `boxes`. + + Args: + boxes (torch.Tensor): Basic boxes. + pred_bboxes (torch.Tensor): Encoded boxes with shape + max_shape (tuple[int], optional): Maximum shape of boxes. + Defaults to None. + wh_ratio_clip (float, optional): The allowed ratio between + width and height. + + Returns: + torch.Tensor: Decoded boxes. + """ + assert pred_bboxes.size(0) == bboxes.size(0) + decoded_bboxes = legacy_delta2bbox(bboxes, pred_bboxes, self.means, + self.stds, max_shape, wh_ratio_clip) + + return decoded_bboxes + + +@mmcv.jit(coderize=True) +def legacy_bbox2delta(proposals, + gt, + means=(0., 0., 0., 0.), + stds=(1., 1., 1., 1.)): + """Compute deltas of proposals w.r.t. gt in the MMDet V1.x manner. + + We usually compute the deltas of x, y, w, h of proposals w.r.t ground + truth bboxes to get regression target. + This is the inverse function of `delta2bbox()` + + Args: + proposals (Tensor): Boxes to be transformed, shape (N, ..., 4) + gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4) + means (Sequence[float]): Denormalizing means for delta coordinates + stds (Sequence[float]): Denormalizing standard deviation for delta + coordinates + + Returns: + Tensor: deltas with shape (N, 4), where columns represent dx, dy, + dw, dh. + """ + assert proposals.size() == gt.size() + + proposals = proposals.float() + gt = gt.float() + px = (proposals[..., 0] + proposals[..., 2]) * 0.5 + py = (proposals[..., 1] + proposals[..., 3]) * 0.5 + pw = proposals[..., 2] - proposals[..., 0] + 1.0 + ph = proposals[..., 3] - proposals[..., 1] + 1.0 + + gx = (gt[..., 0] + gt[..., 2]) * 0.5 + gy = (gt[..., 1] + gt[..., 3]) * 0.5 + gw = gt[..., 2] - gt[..., 0] + 1.0 + gh = gt[..., 3] - gt[..., 1] + 1.0 + + dx = (gx - px) / pw + dy = (gy - py) / ph + dw = torch.log(gw / pw) + dh = torch.log(gh / ph) + deltas = torch.stack([dx, dy, dw, dh], dim=-1) + + means = deltas.new_tensor(means).unsqueeze(0) + stds = deltas.new_tensor(stds).unsqueeze(0) + deltas = deltas.sub_(means).div_(stds) + + return deltas + + +@mmcv.jit(coderize=True) +def legacy_delta2bbox(rois, + deltas, + means=(0., 0., 0., 0.), + stds=(1., 1., 1., 1.), + max_shape=None, + wh_ratio_clip=16 / 1000): + """Apply deltas to shift/scale base boxes in the MMDet V1.x manner. + + Typically the rois are anchor or proposed bounding boxes and the deltas are + network outputs used to shift/scale those boxes. + This is the inverse function of `bbox2delta()` + + Args: + rois (Tensor): Boxes to be transformed. Has shape (N, 4) + deltas (Tensor): Encoded offsets with respect to each roi. + Has shape (N, 4 * num_classes). Note N = num_anchors * W * H when + rois is a grid of anchors. Offset encoding follows [1]_. + means (Sequence[float]): Denormalizing means for delta coordinates + stds (Sequence[float]): Denormalizing standard deviation for delta + coordinates + max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W) + wh_ratio_clip (float): Maximum aspect ratio for boxes. + + Returns: + Tensor: Boxes with shape (N, 4), where columns represent + tl_x, tl_y, br_x, br_y. + + References: + .. [1] https://arxiv.org/abs/1311.2524 + + Example: + >>> rois = torch.Tensor([[ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 0., 0., 1., 1.], + >>> [ 5., 5., 5., 5.]]) + >>> deltas = torch.Tensor([[ 0., 0., 0., 0.], + >>> [ 1., 1., 1., 1.], + >>> [ 0., 0., 2., -1.], + >>> [ 0.7, -1.9, -0.5, 0.3]]) + >>> legacy_delta2bbox(rois, deltas, max_shape=(32, 32)) + tensor([[0.0000, 0.0000, 1.5000, 1.5000], + [0.0000, 0.0000, 5.2183, 5.2183], + [0.0000, 0.1321, 7.8891, 0.8679], + [5.3967, 2.4251, 6.0033, 3.7749]]) + """ + means = deltas.new_tensor(means).repeat(1, deltas.size(1) // 4) + stds = deltas.new_tensor(stds).repeat(1, deltas.size(1) // 4) + denorm_deltas = deltas * stds + means + dx = denorm_deltas[:, 0::4] + dy = denorm_deltas[:, 1::4] + dw = denorm_deltas[:, 2::4] + dh = denorm_deltas[:, 3::4] + max_ratio = np.abs(np.log(wh_ratio_clip)) + dw = dw.clamp(min=-max_ratio, max=max_ratio) + dh = dh.clamp(min=-max_ratio, max=max_ratio) + # Compute center of each roi + px = ((rois[:, 0] + rois[:, 2]) * 0.5).unsqueeze(1).expand_as(dx) + py = ((rois[:, 1] + rois[:, 3]) * 0.5).unsqueeze(1).expand_as(dy) + # Compute width/height of each roi + pw = (rois[:, 2] - rois[:, 0] + 1.0).unsqueeze(1).expand_as(dw) + ph = (rois[:, 3] - rois[:, 1] + 1.0).unsqueeze(1).expand_as(dh) + # Use exp(network energy) to enlarge/shrink each roi + gw = pw * dw.exp() + gh = ph * dh.exp() + # Use network energy to shift the center of each roi + gx = px + pw * dx + gy = py + ph * dy + # Convert center-xy/width/height to top-left, bottom-right + + # The true legacy box coder should +- 0.5 here. + # However, current implementation improves the performance when testing + # the models trained in MMDetection 1.X (~0.5 bbox AP, 0.2 mask AP) + x1 = gx - gw * 0.5 + y1 = gy - gh * 0.5 + x2 = gx + gw * 0.5 + y2 = gy + gh * 0.5 + if max_shape is not None: + x1 = x1.clamp(min=0, max=max_shape[1] - 1) + y1 = y1.clamp(min=0, max=max_shape[0] - 1) + x2 = x2.clamp(min=0, max=max_shape[1] - 1) + y2 = y2.clamp(min=0, max=max_shape[0] - 1) + bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view_as(deltas) + return bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/pseudo_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/pseudo_bbox_coder.py new file mode 100644 index 000000000..fe71f369c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/pseudo_bbox_coder.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import BBOX_CODERS +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class PseudoBBoxCoder(BaseBBoxCoder): + """Pseudo bounding box coder.""" + + def __init__(self, **kwargs): + super(BaseBBoxCoder, self).__init__(**kwargs) + + def encode(self, bboxes, gt_bboxes): + """torch.Tensor: return the given ``bboxes``""" + return gt_bboxes + + def decode(self, bboxes, pred_bboxes): + """torch.Tensor: return the given ``pred_bboxes``""" + return pred_bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/tblr_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/tblr_bbox_coder.py new file mode 100644 index 000000000..cb4206636 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/tblr_bbox_coder.py @@ -0,0 +1,206 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch + +from ..builder import BBOX_CODERS +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class TBLRBBoxCoder(BaseBBoxCoder): + """TBLR BBox coder. + + Following the practice in `FSAF `_, + this coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, + right) and decode it back to the original. + + Args: + normalizer (list | float): Normalization factor to be + divided with when coding the coordinates. If it is a list, it should + have length of 4 indicating normalization factor in tblr dims. + Otherwise it is a unified float factor for all dims. Default: 4.0 + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + """ + + def __init__(self, normalizer=4.0, clip_border=True): + super(BaseBBoxCoder, self).__init__() + self.normalizer = normalizer + self.clip_border = clip_border + + def encode(self, bboxes, gt_bboxes): + """Get box regression transformation deltas that can be used to + transform the ``bboxes`` into the ``gt_bboxes`` in the (top, left, + bottom, right) order. + + Args: + bboxes (torch.Tensor): source boxes, e.g., object proposals. + gt_bboxes (torch.Tensor): target of the transformation, e.g., + ground truth boxes. + + Returns: + torch.Tensor: Box transformation deltas + """ + assert bboxes.size(0) == gt_bboxes.size(0) + assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 + encoded_bboxes = bboxes2tblr( + bboxes, gt_bboxes, normalizer=self.normalizer) + return encoded_bboxes + + def decode(self, bboxes, pred_bboxes, max_shape=None): + """Apply transformation `pred_bboxes` to `boxes`. + + Args: + bboxes (torch.Tensor): Basic boxes.Shape (B, N, 4) or (N, 4) + pred_bboxes (torch.Tensor): Encoded boxes with shape + (B, N, 4) or (N, 4) + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]] + and the length of max_shape should also be B. + + Returns: + torch.Tensor: Decoded boxes. + """ + decoded_bboxes = tblr2bboxes( + bboxes, + pred_bboxes, + normalizer=self.normalizer, + max_shape=max_shape, + clip_border=self.clip_border) + + return decoded_bboxes + + +@mmcv.jit(coderize=True) +def bboxes2tblr(priors, gts, normalizer=4.0, normalize_by_wh=True): + """Encode ground truth boxes to tblr coordinate. + + It first convert the gt coordinate to tblr format, + (top, bottom, left, right), relative to prior box centers. + The tblr coordinate may be normalized by the side length of prior bboxes + if `normalize_by_wh` is specified as True, and it is then normalized by + the `normalizer` factor. + + Args: + priors (Tensor): Prior boxes in point form + Shape: (num_proposals,4). + gts (Tensor): Coords of ground truth for each prior in point-form + Shape: (num_proposals, 4). + normalizer (Sequence[float] | float): normalization parameter of + encoded boxes. If it is a list, it has to have length = 4. + Default: 4.0 + normalize_by_wh (bool): Whether to normalize tblr coordinate by the + side length (wh) of prior bboxes. + + Return: + encoded boxes (Tensor), Shape: (num_proposals, 4) + """ + + # dist b/t match center and prior's center + if not isinstance(normalizer, float): + normalizer = torch.tensor(normalizer, device=priors.device) + assert len(normalizer) == 4, 'Normalizer must have length = 4' + assert priors.size(0) == gts.size(0) + prior_centers = (priors[:, 0:2] + priors[:, 2:4]) / 2 + xmin, ymin, xmax, ymax = gts.split(1, dim=1) + top = prior_centers[:, 1].unsqueeze(1) - ymin + bottom = ymax - prior_centers[:, 1].unsqueeze(1) + left = prior_centers[:, 0].unsqueeze(1) - xmin + right = xmax - prior_centers[:, 0].unsqueeze(1) + loc = torch.cat((top, bottom, left, right), dim=1) + if normalize_by_wh: + # Normalize tblr by anchor width and height + wh = priors[:, 2:4] - priors[:, 0:2] + w, h = torch.split(wh, 1, dim=1) + loc[:, :2] /= h # tb is normalized by h + loc[:, 2:] /= w # lr is normalized by w + # Normalize tblr by the given normalization factor + return loc / normalizer + + +@mmcv.jit(coderize=True) +def tblr2bboxes(priors, + tblr, + normalizer=4.0, + normalize_by_wh=True, + max_shape=None, + clip_border=True): + """Decode tblr outputs to prediction boxes. + + The process includes 3 steps: 1) De-normalize tblr coordinates by + multiplying it with `normalizer`; 2) De-normalize tblr coordinates by the + prior bbox width and height if `normalize_by_wh` is `True`; 3) Convert + tblr (top, bottom, left, right) pair relative to the center of priors back + to (xmin, ymin, xmax, ymax) coordinate. + + Args: + priors (Tensor): Prior boxes in point form (x0, y0, x1, y1) + Shape: (N,4) or (B, N, 4). + tblr (Tensor): Coords of network output in tblr form + Shape: (N, 4) or (B, N, 4). + normalizer (Sequence[float] | float): Normalization parameter of + encoded boxes. By list, it represents the normalization factors at + tblr dims. By float, it is the unified normalization factor at all + dims. Default: 4.0 + normalize_by_wh (bool): Whether the tblr coordinates have been + normalized by the side length (wh) of prior bboxes. + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If priors shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]] + and the length of max_shape should also be B. + clip_border (bool, optional): Whether clip the objects outside the + border of the image. Defaults to True. + + Return: + encoded boxes (Tensor): Boxes with shape (N, 4) or (B, N, 4) + """ + if not isinstance(normalizer, float): + normalizer = torch.tensor(normalizer, device=priors.device) + assert len(normalizer) == 4, 'Normalizer must have length = 4' + assert priors.size(0) == tblr.size(0) + if priors.ndim == 3: + assert priors.size(1) == tblr.size(1) + + loc_decode = tblr * normalizer + prior_centers = (priors[..., 0:2] + priors[..., 2:4]) / 2 + if normalize_by_wh: + wh = priors[..., 2:4] - priors[..., 0:2] + w, h = torch.split(wh, 1, dim=-1) + # Inplace operation with slice would failed for exporting to ONNX + th = h * loc_decode[..., :2] # tb + tw = w * loc_decode[..., 2:] # lr + loc_decode = torch.cat([th, tw], dim=-1) + # Cannot be exported using onnx when loc_decode.split(1, dim=-1) + top, bottom, left, right = loc_decode.split((1, 1, 1, 1), dim=-1) + xmin = prior_centers[..., 0].unsqueeze(-1) - left + xmax = prior_centers[..., 0].unsqueeze(-1) + right + ymin = prior_centers[..., 1].unsqueeze(-1) - top + ymax = prior_centers[..., 1].unsqueeze(-1) + bottom + + bboxes = torch.cat((xmin, ymin, xmax, ymax), dim=-1) + + if clip_border and max_shape is not None: + # clip bboxes with dynamic `min` and `max` for onnx + if torch.onnx.is_in_onnx_export(): + from mmdet.core.export import dynamic_clip_for_onnx + xmin, ymin, xmax, ymax = dynamic_clip_for_onnx( + xmin, ymin, xmax, ymax, max_shape) + bboxes = torch.cat([xmin, ymin, xmax, ymax], dim=-1) + return bboxes + if not isinstance(max_shape, torch.Tensor): + max_shape = priors.new_tensor(max_shape) + max_shape = max_shape[..., :2].type_as(priors) + if max_shape.ndim == 2: + assert bboxes.ndim == 3 + assert max_shape.size(0) == bboxes.size(0) + + min_xy = priors.new_tensor(0) + max_xy = torch.cat([max_shape, max_shape], + dim=-1).flip(-1).unsqueeze(-2) + bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) + bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) + + return bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/yolo_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/yolo_bbox_coder.py new file mode 100644 index 000000000..2852eca75 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/coder/yolo_bbox_coder.py @@ -0,0 +1,83 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch + +from ..builder import BBOX_CODERS +from .base_bbox_coder import BaseBBoxCoder + + +@BBOX_CODERS.register_module() +class YOLOBBoxCoder(BaseBBoxCoder): + """YOLO BBox coder. + + Following `YOLO `_, this coder divide + image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). + cx, cy in [0., 1.], denotes relative center position w.r.t the center of + bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. + + Args: + eps (float): Min value of cx, cy when encoding. + """ + + def __init__(self, eps=1e-6): + super(BaseBBoxCoder, self).__init__() + self.eps = eps + + @mmcv.jit(coderize=True) + def encode(self, bboxes, gt_bboxes, stride): + """Get box regression transformation deltas that can be used to + transform the ``bboxes`` into the ``gt_bboxes``. + + Args: + bboxes (torch.Tensor): Source boxes, e.g., anchors. + gt_bboxes (torch.Tensor): Target of the transformation, e.g., + ground-truth boxes. + stride (torch.Tensor | int): Stride of bboxes. + + Returns: + torch.Tensor: Box transformation deltas + """ + + assert bboxes.size(0) == gt_bboxes.size(0) + assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 + x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 + y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 + w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] + h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] + x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 + y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 + w = bboxes[..., 2] - bboxes[..., 0] + h = bboxes[..., 3] - bboxes[..., 1] + w_target = torch.log((w_gt / w).clamp(min=self.eps)) + h_target = torch.log((h_gt / h).clamp(min=self.eps)) + x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( + self.eps, 1 - self.eps) + y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( + self.eps, 1 - self.eps) + encoded_bboxes = torch.stack( + [x_center_target, y_center_target, w_target, h_target], dim=-1) + return encoded_bboxes + + @mmcv.jit(coderize=True) + def decode(self, bboxes, pred_bboxes, stride): + """Apply transformation `pred_bboxes` to `boxes`. + + Args: + boxes (torch.Tensor): Basic boxes, e.g. anchors. + pred_bboxes (torch.Tensor): Encoded boxes with shape + stride (torch.Tensor | int): Strides of bboxes. + + Returns: + torch.Tensor: Decoded boxes. + """ + assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 + xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( + pred_bboxes[..., :2] - 0.5) * stride + whs = (bboxes[..., 2:] - + bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() + decoded_bboxes = torch.stack( + (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - + whs[..., 1], xy_centers[..., 0] + whs[..., 0], + xy_centers[..., 1] + whs[..., 1]), + dim=-1) + return decoded_bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/demodata.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/demodata.py new file mode 100644 index 000000000..eb24b34b6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/demodata.py @@ -0,0 +1,42 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.utils.util_random import ensure_rng + + +def random_boxes(num=1, scale=1, rng=None): + """Simple version of ``kwimage.Boxes.random`` + + Returns: + Tensor: shape (n, 4) in x1, y1, x2, y2 format. + + References: + https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 + + Example: + >>> num = 3 + >>> scale = 512 + >>> rng = 0 + >>> boxes = random_boxes(num, scale, rng) + >>> print(boxes) + tensor([[280.9925, 278.9802, 308.6148, 366.1769], + [216.9113, 330.6978, 224.0446, 456.5878], + [405.3632, 196.3221, 493.3953, 270.7942]]) + """ + rng = ensure_rng(rng) + + tlbr = rng.rand(num, 4).astype(np.float32) + + tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) + tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) + br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) + br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) + + tlbr[:, 0] = tl_x * scale + tlbr[:, 1] = tl_y * scale + tlbr[:, 2] = br_x * scale + tlbr[:, 3] = br_y * scale + + boxes = torch.from_numpy(tlbr) + return boxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/__init__.py new file mode 100644 index 000000000..04ba925b4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import build_iou_calculator +from .iou2d_calculator import BboxOverlaps2D, bbox_overlaps + +__all__ = ['build_iou_calculator', 'BboxOverlaps2D', 'bbox_overlaps'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/builder.py new file mode 100644 index 000000000..378ee269f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/builder.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry, build_from_cfg + +IOU_CALCULATORS = Registry('IoU calculator') + + +def build_iou_calculator(cfg, default_args=None): + """Builder of IoU calculator.""" + return build_from_cfg(cfg, IOU_CALCULATORS, default_args) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/iou2d_calculator.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/iou2d_calculator.py new file mode 100644 index 000000000..4656d6198 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/iou_calculators/iou2d_calculator.py @@ -0,0 +1,261 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from .builder import IOU_CALCULATORS + + +def cast_tensor_type(x, scale=1., dtype=None): + if dtype == 'fp16': + # scale is for preventing overflows + x = (x / scale).half() + return x + + +def fp16_clamp(x, min=None, max=None): + if not x.is_cuda and x.dtype == torch.float16: + # clamp for cpu float16, tensor fp16 has no clamp implementation + return x.float().clamp(min, max).half() + + return x.clamp(min, max) + + +@IOU_CALCULATORS.register_module() +class BboxOverlaps2D: + """2D Overlaps (e.g. IoUs, GIoUs) Calculator.""" + + def __init__(self, scale=1., dtype=None): + self.scale = scale + self.dtype = dtype + + def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): + """Calculate IoU between 2D bboxes. + + Args: + bboxes1 (Tensor): bboxes have shape (m, 4) in + format, or shape (m, 5) in format. + bboxes2 (Tensor): bboxes have shape (m, 4) in + format, shape (m, 5) in format, or be + empty. If ``is_aligned `` is ``True``, then m and n must be + equal. + mode (str): "iou" (intersection over union), "iof" (intersection + over foreground), or "giou" (generalized intersection over + union). + is_aligned (bool, optional): If True, then m and n must be equal. + Default False. + + Returns: + Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) + """ + assert bboxes1.size(-1) in [0, 4, 5] + assert bboxes2.size(-1) in [0, 4, 5] + if bboxes2.size(-1) == 5: + bboxes2 = bboxes2[..., :4] + if bboxes1.size(-1) == 5: + bboxes1 = bboxes1[..., :4] + + if self.dtype == 'fp16': + # change tensor type to save cpu and cuda memory and keep speed + bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype) + bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype) + overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) + if not overlaps.is_cuda and overlaps.dtype == torch.float16: + # resume cpu float32 + overlaps = overlaps.float() + return overlaps + + return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) + + def __repr__(self): + """str: a string describing the module""" + repr_str = self.__class__.__name__ + f'(' \ + f'scale={self.scale}, dtype={self.dtype})' + return repr_str + + +def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6): + """Calculate overlap between two set of bboxes. + + FP16 Contributed by https://github.com/open-mmlab/mmdetection/pull/4889 + Note: + Assume bboxes1 is M x 4, bboxes2 is N x 4, when mode is 'iou', + there are some new generated variable when calculating IOU + using bbox_overlaps function: + + 1) is_aligned is False + area1: M x 1 + area2: N x 1 + lt: M x N x 2 + rb: M x N x 2 + wh: M x N x 2 + overlap: M x N x 1 + union: M x N x 1 + ious: M x N x 1 + + Total memory: + S = (9 x N x M + N + M) * 4 Byte, + + When using FP16, we can reduce: + R = (9 x N x M + N + M) * 4 / 2 Byte + R large than (N + M) * 4 * 2 is always true when N and M >= 1. + Obviously, N + M <= N * M < 3 * N * M, when N >=2 and M >=2, + N + 1 < 3 * N, when N or M is 1. + + Given M = 40 (ground truth), N = 400000 (three anchor boxes + in per grid, FPN, R-CNNs), + R = 275 MB (one times) + + A special case (dense detection), M = 512 (ground truth), + R = 3516 MB = 3.43 GB + + When the batch size is B, reduce: + B x R + + Therefore, CUDA memory runs out frequently. + + Experiments on GeForce RTX 2080Ti (11019 MiB): + + | dtype | M | N | Use | Real | Ideal | + |:----:|:----:|:----:|:----:|:----:|:----:| + | FP32 | 512 | 400000 | 8020 MiB | -- | -- | + | FP16 | 512 | 400000 | 4504 MiB | 3516 MiB | 3516 MiB | + | FP32 | 40 | 400000 | 1540 MiB | -- | -- | + | FP16 | 40 | 400000 | 1264 MiB | 276MiB | 275 MiB | + + 2) is_aligned is True + area1: N x 1 + area2: N x 1 + lt: N x 2 + rb: N x 2 + wh: N x 2 + overlap: N x 1 + union: N x 1 + ious: N x 1 + + Total memory: + S = 11 x N * 4 Byte + + When using FP16, we can reduce: + R = 11 x N * 4 / 2 Byte + + So do the 'giou' (large than 'iou'). + + Time-wise, FP16 is generally faster than FP32. + + When gpu_assign_thr is not -1, it takes more time on cpu + but not reduce memory. + There, we can reduce half the memory and keep the speed. + + If ``is_aligned`` is ``False``, then calculate the overlaps between each + bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned + pair of bboxes1 and bboxes2. + + Args: + bboxes1 (Tensor): shape (B, m, 4) in format or empty. + bboxes2 (Tensor): shape (B, n, 4) in format or empty. + B indicates the batch dim, in shape (B1, B2, ..., Bn). + If ``is_aligned`` is ``True``, then m and n must be equal. + mode (str): "iou" (intersection over union), "iof" (intersection over + foreground) or "giou" (generalized intersection over union). + Default "iou". + is_aligned (bool, optional): If True, then m and n must be equal. + Default False. + eps (float, optional): A value added to the denominator for numerical + stability. Default 1e-6. + + Returns: + Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) + + Example: + >>> bboxes1 = torch.FloatTensor([ + >>> [0, 0, 10, 10], + >>> [10, 10, 20, 20], + >>> [32, 32, 38, 42], + >>> ]) + >>> bboxes2 = torch.FloatTensor([ + >>> [0, 0, 10, 20], + >>> [0, 10, 10, 19], + >>> [10, 10, 20, 20], + >>> ]) + >>> overlaps = bbox_overlaps(bboxes1, bboxes2) + >>> assert overlaps.shape == (3, 3) + >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) + >>> assert overlaps.shape == (3, ) + + Example: + >>> empty = torch.empty(0, 4) + >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]]) + >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) + >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) + >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0) + """ + + assert mode in ['iou', 'iof', 'giou'], f'Unsupported mode {mode}' + # Either the boxes are empty or the length of boxes' last dimension is 4 + assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0) + assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0) + + # Batch dim must be the same + # Batch dim: (B1, B2, ... Bn) + assert bboxes1.shape[:-2] == bboxes2.shape[:-2] + batch_shape = bboxes1.shape[:-2] + + rows = bboxes1.size(-2) + cols = bboxes2.size(-2) + if is_aligned: + assert rows == cols + + if rows * cols == 0: + if is_aligned: + return bboxes1.new(batch_shape + (rows, )) + else: + return bboxes1.new(batch_shape + (rows, cols)) + + area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * ( + bboxes1[..., 3] - bboxes1[..., 1]) + area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * ( + bboxes2[..., 3] - bboxes2[..., 1]) + + if is_aligned: + lt = torch.max(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2] + rb = torch.min(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2] + + wh = fp16_clamp(rb - lt, min=0) + overlap = wh[..., 0] * wh[..., 1] + + if mode in ['iou', 'giou']: + union = area1 + area2 - overlap + else: + union = area1 + if mode == 'giou': + enclosed_lt = torch.min(bboxes1[..., :2], bboxes2[..., :2]) + enclosed_rb = torch.max(bboxes1[..., 2:], bboxes2[..., 2:]) + else: + lt = torch.max(bboxes1[..., :, None, :2], + bboxes2[..., None, :, :2]) # [B, rows, cols, 2] + rb = torch.min(bboxes1[..., :, None, 2:], + bboxes2[..., None, :, 2:]) # [B, rows, cols, 2] + + wh = fp16_clamp(rb - lt, min=0) + overlap = wh[..., 0] * wh[..., 1] + + if mode in ['iou', 'giou']: + union = area1[..., None] + area2[..., None, :] - overlap + else: + union = area1[..., None] + if mode == 'giou': + enclosed_lt = torch.min(bboxes1[..., :, None, :2], + bboxes2[..., None, :, :2]) + enclosed_rb = torch.max(bboxes1[..., :, None, 2:], + bboxes2[..., None, :, 2:]) + + eps = union.new_tensor([eps]) + union = torch.max(union, eps) + ious = overlap / union + if mode in ['iou', 'iof']: + return ious + # calculate gious + enclose_wh = fp16_clamp(enclosed_rb - enclosed_lt, min=0) + enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] + enclose_area = torch.max(enclose_area, eps) + gious = ious - (enclose_area - union) / enclose_area + return gious diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/__init__.py new file mode 100644 index 000000000..1b6367950 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import build_match_cost +from .match_cost import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost, + DiceCost, FocalLossCost, IoUCost) + +__all__ = [ + 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost', + 'FocalLossCost', 'DiceCost', 'CrossEntropyLossCost' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/builder.py new file mode 100644 index 000000000..ea086adff --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/builder.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry, build_from_cfg + +MATCH_COST = Registry('Match Cost') + + +def build_match_cost(cfg, default_args=None): + """Builder of IoU calculator.""" + return build_from_cfg(cfg, MATCH_COST, default_args) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/match_cost.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/match_cost.py new file mode 100644 index 000000000..4342b0245 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/match_costs/match_cost.py @@ -0,0 +1,359 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn.functional as F + +from mmdet.core.bbox.iou_calculators import bbox_overlaps +from mmdet.core.bbox.transforms import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh +from .builder import MATCH_COST + + +@MATCH_COST.register_module() +class BBoxL1Cost: + """BBoxL1Cost. + + Args: + weight (int | float, optional): loss_weight + box_format (str, optional): 'xyxy' for DETR, 'xywh' for Sparse_RCNN + + Examples: + >>> from mmdet.core.bbox.match_costs.match_cost import BBoxL1Cost + >>> import torch + >>> self = BBoxL1Cost() + >>> bbox_pred = torch.rand(1, 4) + >>> gt_bboxes= torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]]) + >>> factor = torch.tensor([10, 8, 10, 8]) + >>> self(bbox_pred, gt_bboxes, factor) + tensor([[1.6172, 1.6422]]) + """ + + def __init__(self, weight=1., box_format='xyxy'): + self.weight = weight + assert box_format in ['xyxy', 'xywh'] + self.box_format = box_format + + def __call__(self, bbox_pred, gt_bboxes): + """ + Args: + bbox_pred (Tensor): Predicted boxes with normalized coordinates + (cx, cy, w, h), which are all in range [0, 1]. Shape + (num_query, 4). + gt_bboxes (Tensor): Ground truth boxes with normalized + coordinates (x1, y1, x2, y2). Shape (num_gt, 4). + + Returns: + torch.Tensor: bbox_cost value with weight + """ + if self.box_format == 'xywh': + gt_bboxes = bbox_xyxy_to_cxcywh(gt_bboxes) + elif self.box_format == 'xyxy': + bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred) + bbox_cost = torch.cdist(bbox_pred, gt_bboxes, p=1) + return bbox_cost * self.weight + + +@MATCH_COST.register_module() +class FocalLossCost: + """FocalLossCost. + + Args: + weight (int | float, optional): loss_weight + alpha (int | float, optional): focal_loss alpha + gamma (int | float, optional): focal_loss gamma + eps (float, optional): default 1e-12 + binary_input (bool, optional): Whether the input is binary, + default False. + + Examples: + >>> from mmdet.core.bbox.match_costs.match_cost import FocalLossCost + >>> import torch + >>> self = FocalLossCost() + >>> cls_pred = torch.rand(4, 3) + >>> gt_labels = torch.tensor([0, 1, 2]) + >>> factor = torch.tensor([10, 8, 10, 8]) + >>> self(cls_pred, gt_labels) + tensor([[-0.3236, -0.3364, -0.2699], + [-0.3439, -0.3209, -0.4807], + [-0.4099, -0.3795, -0.2929], + [-0.1950, -0.1207, -0.2626]]) + """ + + def __init__(self, + weight=1., + alpha=0.25, + gamma=2, + eps=1e-12, + binary_input=False): + self.weight = weight + self.alpha = alpha + self.gamma = gamma + self.eps = eps + self.binary_input = binary_input + + def _focal_loss_cost(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): Predicted classification logits, shape + (num_query, num_class). + gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). + + Returns: + torch.Tensor: cls_cost value with weight + """ + cls_pred = cls_pred.sigmoid() + neg_cost = -(1 - cls_pred + self.eps).log() * ( + 1 - self.alpha) * cls_pred.pow(self.gamma) + pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( + 1 - cls_pred).pow(self.gamma) + + cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels] + return cls_cost * self.weight + + def _mask_focal_loss_cost(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): Predicted classfication logits + in shape (num_query, d1, ..., dn), dtype=torch.float32. + gt_labels (Tensor): Ground truth in shape (num_gt, d1, ..., dn), + dtype=torch.long. Labels should be binary. + + Returns: + Tensor: Focal cost matrix with weight in shape\ + (num_query, num_gt). + """ + cls_pred = cls_pred.flatten(1) + gt_labels = gt_labels.flatten(1).float() + n = cls_pred.shape[1] + cls_pred = cls_pred.sigmoid() + neg_cost = -(1 - cls_pred + self.eps).log() * ( + 1 - self.alpha) * cls_pred.pow(self.gamma) + pos_cost = -(cls_pred + self.eps).log() * self.alpha * ( + 1 - cls_pred).pow(self.gamma) + + cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \ + torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels)) + return cls_cost / n * self.weight + + def __call__(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): Predicted classfication logits. + gt_labels (Tensor)): Labels. + + Returns: + Tensor: Focal cost matrix with weight in shape\ + (num_query, num_gt). + """ + if self.binary_input: + return self._mask_focal_loss_cost(cls_pred, gt_labels) + else: + return self._focal_loss_cost(cls_pred, gt_labels) + + +@MATCH_COST.register_module() +class ClassificationCost: + """ClsSoftmaxCost. + + Args: + weight (int | float, optional): loss_weight + + Examples: + >>> from mmdet.core.bbox.match_costs.match_cost import \ + ... ClassificationCost + >>> import torch + >>> self = ClassificationCost() + >>> cls_pred = torch.rand(4, 3) + >>> gt_labels = torch.tensor([0, 1, 2]) + >>> factor = torch.tensor([10, 8, 10, 8]) + >>> self(cls_pred, gt_labels) + tensor([[-0.3430, -0.3525, -0.3045], + [-0.3077, -0.2931, -0.3992], + [-0.3664, -0.3455, -0.2881], + [-0.3343, -0.2701, -0.3956]]) + """ + + def __init__(self, weight=1.): + self.weight = weight + + def __call__(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): Predicted classification logits, shape + (num_query, num_class). + gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). + + Returns: + torch.Tensor: cls_cost value with weight + """ + # Following the official DETR repo, contrary to the loss that + # NLL is used, we approximate it in 1 - cls_score[gt_label]. + # The 1 is a constant that doesn't change the matching, + # so it can be omitted. + cls_score = cls_pred.softmax(-1) + cls_cost = -cls_score[:, gt_labels] + return cls_cost * self.weight + + +@MATCH_COST.register_module() +class IoUCost: + """IoUCost. + + Args: + iou_mode (str, optional): iou mode such as 'iou' | 'giou' + weight (int | float, optional): loss weight + + Examples: + >>> from mmdet.core.bbox.match_costs.match_cost import IoUCost + >>> import torch + >>> self = IoUCost() + >>> bboxes = torch.FloatTensor([[1,1, 2, 2], [2, 2, 3, 4]]) + >>> gt_bboxes = torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]]) + >>> self(bboxes, gt_bboxes) + tensor([[-0.1250, 0.1667], + [ 0.1667, -0.5000]]) + """ + + def __init__(self, iou_mode='giou', weight=1.): + self.weight = weight + self.iou_mode = iou_mode + + def __call__(self, bboxes, gt_bboxes): + """ + Args: + bboxes (Tensor): Predicted boxes with unnormalized coordinates + (x1, y1, x2, y2). Shape (num_query, 4). + gt_bboxes (Tensor): Ground truth boxes with unnormalized + coordinates (x1, y1, x2, y2). Shape (num_gt, 4). + + Returns: + torch.Tensor: iou_cost value with weight + """ + # overlaps: [num_bboxes, num_gt] + overlaps = bbox_overlaps( + bboxes, gt_bboxes, mode=self.iou_mode, is_aligned=False) + # The 1 is a constant that doesn't change the matching, so omitted. + iou_cost = -overlaps + return iou_cost * self.weight + + +@MATCH_COST.register_module() +class DiceCost: + """Cost of mask assignments based on dice losses. + + Args: + weight (int | float, optional): loss_weight. Defaults to 1. + pred_act (bool, optional): Whether to apply sigmoid to mask_pred. + Defaults to False. + eps (float, optional): default 1e-12. + naive_dice (bool, optional): If True, use the naive dice loss + in which the power of the number in the denominator is + the first power. If Flase, use the second power that + is adopted by K-Net and SOLO. + Defaults to True. + """ + + def __init__(self, weight=1., pred_act=False, eps=1e-3, naive_dice=True): + self.weight = weight + self.pred_act = pred_act + self.eps = eps + self.naive_dice = naive_dice + + def binary_mask_dice_loss(self, mask_preds, gt_masks): + """ + Args: + mask_preds (Tensor): Mask prediction in shape (num_query, *). + gt_masks (Tensor): Ground truth in shape (num_gt, *) + store 0 or 1, 0 for negative class and 1 for + positive class. + + Returns: + Tensor: Dice cost matrix in shape (num_query, num_gt). + """ + mask_preds = mask_preds.flatten(1) + gt_masks = gt_masks.flatten(1).float() + numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks) + if self.naive_dice: + denominator = mask_preds.sum(-1)[:, None] + \ + gt_masks.sum(-1)[None, :] + else: + denominator = mask_preds.pow(2).sum(1)[:, None] + \ + gt_masks.pow(2).sum(1)[None, :] + loss = 1 - (numerator + self.eps) / (denominator + self.eps) + return loss + + def __call__(self, mask_preds, gt_masks): + """ + Args: + mask_preds (Tensor): Mask prediction logits in shape (num_query, *) + gt_masks (Tensor): Ground truth in shape (num_gt, *) + + Returns: + Tensor: Dice cost matrix with weight in shape (num_query, num_gt). + """ + if self.pred_act: + mask_preds = mask_preds.sigmoid() + dice_cost = self.binary_mask_dice_loss(mask_preds, gt_masks) + return dice_cost * self.weight + + +@MATCH_COST.register_module() +class CrossEntropyLossCost: + """CrossEntropyLossCost. + + Args: + weight (int | float, optional): loss weight. Defaults to 1. + use_sigmoid (bool, optional): Whether the prediction uses sigmoid + of softmax. Defaults to True. + Examples: + >>> from mmdet.core.bbox.match_costs import CrossEntropyLossCost + >>> import torch + >>> bce = CrossEntropyLossCost(use_sigmoid=True) + >>> cls_pred = torch.tensor([[7.6, 1.2], [-1.3, 10]]) + >>> gt_labels = torch.tensor([[1, 1], [1, 0]]) + >>> print(bce(cls_pred, gt_labels)) + """ + + def __init__(self, weight=1., use_sigmoid=True): + assert use_sigmoid, 'use_sigmoid = False is not supported yet.' + self.weight = weight + self.use_sigmoid = use_sigmoid + + def _binary_cross_entropy(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): The prediction with shape (num_query, 1, *) or + (num_query, *). + gt_labels (Tensor): The learning label of prediction with + shape (num_gt, *). + + Returns: + Tensor: Cross entropy cost matrix in shape (num_query, num_gt). + """ + cls_pred = cls_pred.flatten(1).float() + gt_labels = gt_labels.flatten(1).float() + n = cls_pred.shape[1] + pos = F.binary_cross_entropy_with_logits( + cls_pred, torch.ones_like(cls_pred), reduction='none') + neg = F.binary_cross_entropy_with_logits( + cls_pred, torch.zeros_like(cls_pred), reduction='none') + cls_cost = torch.einsum('nc,mc->nm', pos, gt_labels) + \ + torch.einsum('nc,mc->nm', neg, 1 - gt_labels) + cls_cost = cls_cost / n + + return cls_cost + + def __call__(self, cls_pred, gt_labels): + """ + Args: + cls_pred (Tensor): Predicted classification logits. + gt_labels (Tensor): Labels. + + Returns: + Tensor: Cross entropy cost matrix with weight in + shape (num_query, num_gt). + """ + if self.use_sigmoid: + cls_cost = self._binary_cross_entropy(cls_pred, gt_labels) + else: + raise NotImplementedError + + return cls_cost * self.weight diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/__init__.py new file mode 100644 index 000000000..f58505b59 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/__init__.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_sampler import BaseSampler +from .combined_sampler import CombinedSampler +from .instance_balanced_pos_sampler import InstanceBalancedPosSampler +from .iou_balanced_neg_sampler import IoUBalancedNegSampler +from .mask_pseudo_sampler import MaskPseudoSampler +from .mask_sampling_result import MaskSamplingResult +from .ohem_sampler import OHEMSampler +from .pseudo_sampler import PseudoSampler +from .random_sampler import RandomSampler +from .sampling_result import SamplingResult +from .score_hlr_sampler import ScoreHLRSampler + +__all__ = [ + 'BaseSampler', 'PseudoSampler', 'RandomSampler', + 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', + 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'MaskPseudoSampler', + 'MaskSamplingResult' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/base_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/base_sampler.py new file mode 100644 index 000000000..bd15c7c64 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/base_sampler.py @@ -0,0 +1,102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import torch + +from .sampling_result import SamplingResult + + +class BaseSampler(metaclass=ABCMeta): + """Base class of samplers.""" + + def __init__(self, + num, + pos_fraction, + neg_pos_ub=-1, + add_gt_as_proposals=True, + **kwargs): + self.num = num + self.pos_fraction = pos_fraction + self.neg_pos_ub = neg_pos_ub + self.add_gt_as_proposals = add_gt_as_proposals + self.pos_sampler = self + self.neg_sampler = self + + @abstractmethod + def _sample_pos(self, assign_result, num_expected, **kwargs): + """Sample positive samples.""" + pass + + @abstractmethod + def _sample_neg(self, assign_result, num_expected, **kwargs): + """Sample negative samples.""" + pass + + def sample(self, + assign_result, + bboxes, + gt_bboxes, + gt_labels=None, + **kwargs): + """Sample positive and negative bboxes. + + This is a simple implementation of bbox sampling given candidates, + assigning results and ground truth bboxes. + + Args: + assign_result (:obj:`AssignResult`): Bbox assigning results. + bboxes (Tensor): Boxes to be sampled from. + gt_bboxes (Tensor): Ground truth bboxes. + gt_labels (Tensor, optional): Class labels of ground truth bboxes. + + Returns: + :obj:`SamplingResult`: Sampling result. + + Example: + >>> from mmdet.core.bbox import RandomSampler + >>> from mmdet.core.bbox import AssignResult + >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes + >>> rng = ensure_rng(None) + >>> assign_result = AssignResult.random(rng=rng) + >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) + >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) + >>> gt_labels = None + >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, + >>> add_gt_as_proposals=False) + >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels) + """ + if len(bboxes.shape) < 2: + bboxes = bboxes[None, :] + + bboxes = bboxes[:, :4] + + gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) + if self.add_gt_as_proposals and len(gt_bboxes) > 0: + if gt_labels is None: + raise ValueError( + 'gt_labels must be given when add_gt_as_proposals is True') + bboxes = torch.cat([gt_bboxes, bboxes], dim=0) + assign_result.add_gt_(gt_labels) + gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) + gt_flags = torch.cat([gt_ones, gt_flags]) + + num_expected_pos = int(self.num * self.pos_fraction) + pos_inds = self.pos_sampler._sample_pos( + assign_result, num_expected_pos, bboxes=bboxes, **kwargs) + # We found that sampled indices have duplicated items occasionally. + # (may be a bug of PyTorch) + pos_inds = pos_inds.unique() + num_sampled_pos = pos_inds.numel() + num_expected_neg = self.num - num_sampled_pos + if self.neg_pos_ub >= 0: + _pos = max(1, num_sampled_pos) + neg_upper_bound = int(self.neg_pos_ub * _pos) + if num_expected_neg > neg_upper_bound: + num_expected_neg = neg_upper_bound + neg_inds = self.neg_sampler._sample_neg( + assign_result, num_expected_neg, bboxes=bboxes, **kwargs) + neg_inds = neg_inds.unique() + + sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, + assign_result, gt_flags) + return sampling_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/combined_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/combined_sampler.py new file mode 100644 index 000000000..4f6d86ff2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/combined_sampler.py @@ -0,0 +1,21 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import BBOX_SAMPLERS, build_sampler +from .base_sampler import BaseSampler + + +@BBOX_SAMPLERS.register_module() +class CombinedSampler(BaseSampler): + """A sampler that combines positive sampler and negative sampler.""" + + def __init__(self, pos_sampler, neg_sampler, **kwargs): + super(CombinedSampler, self).__init__(**kwargs) + self.pos_sampler = build_sampler(pos_sampler, **kwargs) + self.neg_sampler = build_sampler(neg_sampler, **kwargs) + + def _sample_pos(self, **kwargs): + """Sample positive samples.""" + raise NotImplementedError + + def _sample_neg(self, **kwargs): + """Sample negative samples.""" + raise NotImplementedError diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py new file mode 100644 index 000000000..5e0d9cc0e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py @@ -0,0 +1,56 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from ..builder import BBOX_SAMPLERS +from .random_sampler import RandomSampler + + +@BBOX_SAMPLERS.register_module() +class InstanceBalancedPosSampler(RandomSampler): + """Instance balanced sampler that samples equal number of positive samples + for each instance.""" + + def _sample_pos(self, assign_result, num_expected, **kwargs): + """Sample positive boxes. + + Args: + assign_result (:obj:`AssignResult`): The assigned results of boxes. + num_expected (int): The number of expected positive samples + + Returns: + Tensor or ndarray: sampled indices. + """ + pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) + if pos_inds.numel() != 0: + pos_inds = pos_inds.squeeze(1) + if pos_inds.numel() <= num_expected: + return pos_inds + else: + unique_gt_inds = assign_result.gt_inds[pos_inds].unique() + num_gts = len(unique_gt_inds) + num_per_gt = int(round(num_expected / float(num_gts)) + 1) + sampled_inds = [] + for i in unique_gt_inds: + inds = torch.nonzero( + assign_result.gt_inds == i.item(), as_tuple=False) + if inds.numel() != 0: + inds = inds.squeeze(1) + else: + continue + if len(inds) > num_per_gt: + inds = self.random_choice(inds, num_per_gt) + sampled_inds.append(inds) + sampled_inds = torch.cat(sampled_inds) + if len(sampled_inds) < num_expected: + num_extra = num_expected - len(sampled_inds) + extra_inds = np.array( + list(set(pos_inds.cpu()) - set(sampled_inds.cpu()))) + if len(extra_inds) > num_extra: + extra_inds = self.random_choice(extra_inds, num_extra) + extra_inds = torch.from_numpy(extra_inds).to( + assign_result.gt_inds.device).long() + sampled_inds = torch.cat([sampled_inds, extra_inds]) + elif len(sampled_inds) > num_expected: + sampled_inds = self.random_choice(sampled_inds, num_expected) + return sampled_inds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py new file mode 100644 index 000000000..56e2874a4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py @@ -0,0 +1,158 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from ..builder import BBOX_SAMPLERS +from .random_sampler import RandomSampler + + +@BBOX_SAMPLERS.register_module() +class IoUBalancedNegSampler(RandomSampler): + """IoU Balanced Sampling. + + arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) + + Sampling proposals according to their IoU. `floor_fraction` of needed RoIs + are sampled from proposals whose IoU are lower than `floor_thr` randomly. + The others are sampled from proposals whose IoU are higher than + `floor_thr`. These proposals are sampled from some bins evenly, which are + split by `num_bins` via IoU evenly. + + Args: + num (int): number of proposals. + pos_fraction (float): fraction of positive proposals. + floor_thr (float): threshold (minimum) IoU for IoU balanced sampling, + set to -1 if all using IoU balanced sampling. + floor_fraction (float): sampling fraction of proposals under floor_thr. + num_bins (int): number of bins in IoU balanced sampling. + """ + + def __init__(self, + num, + pos_fraction, + floor_thr=-1, + floor_fraction=0, + num_bins=3, + **kwargs): + super(IoUBalancedNegSampler, self).__init__(num, pos_fraction, + **kwargs) + assert floor_thr >= 0 or floor_thr == -1 + assert 0 <= floor_fraction <= 1 + assert num_bins >= 1 + + self.floor_thr = floor_thr + self.floor_fraction = floor_fraction + self.num_bins = num_bins + + def sample_via_interval(self, max_overlaps, full_set, num_expected): + """Sample according to the iou interval. + + Args: + max_overlaps (torch.Tensor): IoU between bounding boxes and ground + truth boxes. + full_set (set(int)): A full set of indices of boxes。 + num_expected (int): Number of expected samples。 + + Returns: + np.ndarray: Indices of samples + """ + max_iou = max_overlaps.max() + iou_interval = (max_iou - self.floor_thr) / self.num_bins + per_num_expected = int(num_expected / self.num_bins) + + sampled_inds = [] + for i in range(self.num_bins): + start_iou = self.floor_thr + i * iou_interval + end_iou = self.floor_thr + (i + 1) * iou_interval + tmp_set = set( + np.where( + np.logical_and(max_overlaps >= start_iou, + max_overlaps < end_iou))[0]) + tmp_inds = list(tmp_set & full_set) + if len(tmp_inds) > per_num_expected: + tmp_sampled_set = self.random_choice(tmp_inds, + per_num_expected) + else: + tmp_sampled_set = np.array(tmp_inds, dtype=np.int) + sampled_inds.append(tmp_sampled_set) + + sampled_inds = np.concatenate(sampled_inds) + if len(sampled_inds) < num_expected: + num_extra = num_expected - len(sampled_inds) + extra_inds = np.array(list(full_set - set(sampled_inds))) + if len(extra_inds) > num_extra: + extra_inds = self.random_choice(extra_inds, num_extra) + sampled_inds = np.concatenate([sampled_inds, extra_inds]) + + return sampled_inds + + def _sample_neg(self, assign_result, num_expected, **kwargs): + """Sample negative boxes. + + Args: + assign_result (:obj:`AssignResult`): The assigned results of boxes. + num_expected (int): The number of expected negative samples + + Returns: + Tensor or ndarray: sampled indices. + """ + neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) + if neg_inds.numel() != 0: + neg_inds = neg_inds.squeeze(1) + if len(neg_inds) <= num_expected: + return neg_inds + else: + max_overlaps = assign_result.max_overlaps.cpu().numpy() + # balance sampling for negative samples + neg_set = set(neg_inds.cpu().numpy()) + + if self.floor_thr > 0: + floor_set = set( + np.where( + np.logical_and(max_overlaps >= 0, + max_overlaps < self.floor_thr))[0]) + iou_sampling_set = set( + np.where(max_overlaps >= self.floor_thr)[0]) + elif self.floor_thr == 0: + floor_set = set(np.where(max_overlaps == 0)[0]) + iou_sampling_set = set( + np.where(max_overlaps > self.floor_thr)[0]) + else: + floor_set = set() + iou_sampling_set = set( + np.where(max_overlaps > self.floor_thr)[0]) + # for sampling interval calculation + self.floor_thr = 0 + + floor_neg_inds = list(floor_set & neg_set) + iou_sampling_neg_inds = list(iou_sampling_set & neg_set) + num_expected_iou_sampling = int(num_expected * + (1 - self.floor_fraction)) + if len(iou_sampling_neg_inds) > num_expected_iou_sampling: + if self.num_bins >= 2: + iou_sampled_inds = self.sample_via_interval( + max_overlaps, set(iou_sampling_neg_inds), + num_expected_iou_sampling) + else: + iou_sampled_inds = self.random_choice( + iou_sampling_neg_inds, num_expected_iou_sampling) + else: + iou_sampled_inds = np.array( + iou_sampling_neg_inds, dtype=np.int) + num_expected_floor = num_expected - len(iou_sampled_inds) + if len(floor_neg_inds) > num_expected_floor: + sampled_floor_inds = self.random_choice( + floor_neg_inds, num_expected_floor) + else: + sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int) + sampled_inds = np.concatenate( + (sampled_floor_inds, iou_sampled_inds)) + if len(sampled_inds) < num_expected: + num_extra = num_expected - len(sampled_inds) + extra_inds = np.array(list(neg_set - set(sampled_inds))) + if len(extra_inds) > num_extra: + extra_inds = self.random_choice(extra_inds, num_extra) + sampled_inds = np.concatenate((sampled_inds, extra_inds)) + sampled_inds = torch.from_numpy(sampled_inds).long().to( + assign_result.gt_inds.device) + return sampled_inds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_pseudo_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_pseudo_sampler.py new file mode 100644 index 000000000..b5f69658d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_pseudo_sampler.py @@ -0,0 +1,44 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""copy from +https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" + +import torch + +from mmdet.core.bbox.builder import BBOX_SAMPLERS +from .base_sampler import BaseSampler +from .mask_sampling_result import MaskSamplingResult + + +@BBOX_SAMPLERS.register_module() +class MaskPseudoSampler(BaseSampler): + """A pseudo sampler that does not do sampling actually.""" + + def __init__(self, **kwargs): + pass + + def _sample_pos(self, **kwargs): + """Sample positive samples.""" + raise NotImplementedError + + def _sample_neg(self, **kwargs): + """Sample negative samples.""" + raise NotImplementedError + + def sample(self, assign_result, masks, gt_masks, **kwargs): + """Directly returns the positive and negative indices of samples. + + Args: + assign_result (:obj:`AssignResult`): Assigned results + masks (torch.Tensor): Bounding boxes + gt_masks (torch.Tensor): Ground truth boxes + Returns: + :obj:`SamplingResult`: sampler results + """ + pos_inds = torch.nonzero( + assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() + neg_inds = torch.nonzero( + assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() + gt_flags = masks.new_zeros(masks.shape[0], dtype=torch.uint8) + sampling_result = MaskSamplingResult(pos_inds, neg_inds, masks, + gt_masks, assign_result, gt_flags) + return sampling_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_sampling_result.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_sampling_result.py new file mode 100644 index 000000000..3d1094322 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/mask_sampling_result.py @@ -0,0 +1,60 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""copy from +https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" + +import torch + +from .sampling_result import SamplingResult + + +class MaskSamplingResult(SamplingResult): + """Mask sampling result.""" + + def __init__(self, pos_inds, neg_inds, masks, gt_masks, assign_result, + gt_flags): + self.pos_inds = pos_inds + self.neg_inds = neg_inds + self.pos_masks = masks[pos_inds] + self.neg_masks = masks[neg_inds] + self.pos_is_gt = gt_flags[pos_inds] + + self.num_gts = gt_masks.shape[0] + self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 + + if gt_masks.numel() == 0: + # hack for index error case + assert self.pos_assigned_gt_inds.numel() == 0 + self.pos_gt_masks = torch.empty_like(gt_masks) + else: + self.pos_gt_masks = gt_masks[self.pos_assigned_gt_inds, :] + + if assign_result.labels is not None: + self.pos_gt_labels = assign_result.labels[pos_inds] + else: + self.pos_gt_labels = None + + @property + def masks(self): + """torch.Tensor: concatenated positive and negative boxes""" + return torch.cat([self.pos_masks, self.neg_masks]) + + def __nice__(self): + data = self.info.copy() + data['pos_masks'] = data.pop('pos_masks').shape + data['neg_masks'] = data.pop('neg_masks').shape + parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] + body = ' ' + ',\n '.join(parts) + return '{\n' + body + '\n}' + + @property + def info(self): + """Returns a dictionary of info about the object.""" + return { + 'pos_inds': self.pos_inds, + 'neg_inds': self.neg_inds, + 'pos_masks': self.pos_masks, + 'neg_masks': self.neg_masks, + 'pos_is_gt': self.pos_is_gt, + 'num_gts': self.num_gts, + 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, + } diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/ohem_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/ohem_sampler.py new file mode 100644 index 000000000..7eb066633 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/ohem_sampler.py @@ -0,0 +1,111 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_SAMPLERS +from ..transforms import bbox2roi +from .base_sampler import BaseSampler + + +@BBOX_SAMPLERS.register_module() +class OHEMSampler(BaseSampler): + r"""Online Hard Example Mining Sampler described in `Training Region-based + Object Detectors with Online Hard Example Mining + `_. + """ + + def __init__(self, + num, + pos_fraction, + context, + neg_pos_ub=-1, + add_gt_as_proposals=True, + loss_key='loss_cls', + **kwargs): + super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, + add_gt_as_proposals) + self.context = context + if not hasattr(self.context, 'num_stages'): + self.bbox_head = self.context.bbox_head + else: + self.bbox_head = self.context.bbox_head[self.context.current_stage] + + self.loss_key = loss_key + + def hard_mining(self, inds, num_expected, bboxes, labels, feats): + with torch.no_grad(): + rois = bbox2roi([bboxes]) + if not hasattr(self.context, 'num_stages'): + bbox_results = self.context._bbox_forward(feats, rois) + else: + bbox_results = self.context._bbox_forward( + self.context.current_stage, feats, rois) + cls_score = bbox_results['cls_score'] + loss = self.bbox_head.loss( + cls_score=cls_score, + bbox_pred=None, + rois=rois, + labels=labels, + label_weights=cls_score.new_ones(cls_score.size(0)), + bbox_targets=None, + bbox_weights=None, + reduction_override='none')[self.loss_key] + _, topk_loss_inds = loss.topk(num_expected) + return inds[topk_loss_inds] + + def _sample_pos(self, + assign_result, + num_expected, + bboxes=None, + feats=None, + **kwargs): + """Sample positive boxes. + + Args: + assign_result (:obj:`AssignResult`): Assigned results + num_expected (int): Number of expected positive samples + bboxes (torch.Tensor, optional): Boxes. Defaults to None. + feats (list[torch.Tensor], optional): Multi-level features. + Defaults to None. + + Returns: + torch.Tensor: Indices of positive samples + """ + # Sample some hard positive samples + pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) + if pos_inds.numel() != 0: + pos_inds = pos_inds.squeeze(1) + if pos_inds.numel() <= num_expected: + return pos_inds + else: + return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], + assign_result.labels[pos_inds], feats) + + def _sample_neg(self, + assign_result, + num_expected, + bboxes=None, + feats=None, + **kwargs): + """Sample negative boxes. + + Args: + assign_result (:obj:`AssignResult`): Assigned results + num_expected (int): Number of expected negative samples + bboxes (torch.Tensor, optional): Boxes. Defaults to None. + feats (list[torch.Tensor], optional): Multi-level features. + Defaults to None. + + Returns: + torch.Tensor: Indices of negative samples + """ + # Sample some hard negative samples + neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) + if neg_inds.numel() != 0: + neg_inds = neg_inds.squeeze(1) + if len(neg_inds) <= num_expected: + return neg_inds + else: + neg_labels = assign_result.labels.new_empty( + neg_inds.size(0)).fill_(self.bbox_head.num_classes) + return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], + neg_labels, feats) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/pseudo_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/pseudo_sampler.py new file mode 100644 index 000000000..b5ce298ed --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/pseudo_sampler.py @@ -0,0 +1,42 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_SAMPLERS +from .base_sampler import BaseSampler +from .sampling_result import SamplingResult + + +@BBOX_SAMPLERS.register_module() +class PseudoSampler(BaseSampler): + """A pseudo sampler that does not do sampling actually.""" + + def __init__(self, **kwargs): + pass + + def _sample_pos(self, **kwargs): + """Sample positive samples.""" + raise NotImplementedError + + def _sample_neg(self, **kwargs): + """Sample negative samples.""" + raise NotImplementedError + + def sample(self, assign_result, bboxes, gt_bboxes, *args, **kwargs): + """Directly returns the positive and negative indices of samples. + + Args: + assign_result (:obj:`AssignResult`): Assigned results + bboxes (torch.Tensor): Bounding boxes + gt_bboxes (torch.Tensor): Ground truth boxes + + Returns: + :obj:`SamplingResult`: sampler results + """ + pos_inds = torch.nonzero( + assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() + neg_inds = torch.nonzero( + assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() + gt_flags = bboxes.new_zeros(bboxes.shape[0], dtype=torch.uint8) + sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, + assign_result, gt_flags) + return sampling_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/random_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/random_sampler.py new file mode 100644 index 000000000..d09207e7f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/random_sampler.py @@ -0,0 +1,82 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import BBOX_SAMPLERS +from .base_sampler import BaseSampler + + +@BBOX_SAMPLERS.register_module() +class RandomSampler(BaseSampler): + """Random sampler. + + Args: + num (int): Number of samples + pos_fraction (float): Fraction of positive samples + neg_pos_up (int, optional): Upper bound number of negative and + positive samples. Defaults to -1. + add_gt_as_proposals (bool, optional): Whether to add ground truth + boxes as proposals. Defaults to True. + """ + + def __init__(self, + num, + pos_fraction, + neg_pos_ub=-1, + add_gt_as_proposals=True, + **kwargs): + from mmdet.core.bbox import demodata + super(RandomSampler, self).__init__(num, pos_fraction, neg_pos_ub, + add_gt_as_proposals) + self.rng = demodata.ensure_rng(kwargs.get('rng', None)) + + def random_choice(self, gallery, num): + """Random select some elements from the gallery. + + If `gallery` is a Tensor, the returned indices will be a Tensor; + If `gallery` is a ndarray or list, the returned indices will be a + ndarray. + + Args: + gallery (Tensor | ndarray | list): indices pool. + num (int): expected sample num. + + Returns: + Tensor or ndarray: sampled indices. + """ + assert len(gallery) >= num + + is_tensor = isinstance(gallery, torch.Tensor) + if not is_tensor: + if torch.cuda.is_available(): + device = torch.cuda.current_device() + else: + device = 'cpu' + gallery = torch.tensor(gallery, dtype=torch.long, device=device) + # This is a temporary fix. We can revert the following code + # when PyTorch fixes the abnormal return of torch.randperm. + # See: https://github.com/open-mmlab/mmdetection/pull/5014 + perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device) + rand_inds = gallery[perm] + if not is_tensor: + rand_inds = rand_inds.cpu().numpy() + return rand_inds + + def _sample_pos(self, assign_result, num_expected, **kwargs): + """Randomly sample some positive samples.""" + pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) + if pos_inds.numel() != 0: + pos_inds = pos_inds.squeeze(1) + if pos_inds.numel() <= num_expected: + return pos_inds + else: + return self.random_choice(pos_inds, num_expected) + + def _sample_neg(self, assign_result, num_expected, **kwargs): + """Randomly sample some negative samples.""" + neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) + if neg_inds.numel() != 0: + neg_inds = neg_inds.squeeze(1) + if len(neg_inds) <= num_expected: + return neg_inds + else: + return self.random_choice(neg_inds, num_expected) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/sampling_result.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/sampling_result.py new file mode 100644 index 000000000..50676d041 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/sampling_result.py @@ -0,0 +1,153 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.utils import util_mixins + + +class SamplingResult(util_mixins.NiceRepr): + """Bbox sampling result. + + Example: + >>> # xdoctest: +IGNORE_WANT + >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA + >>> self = SamplingResult.random(rng=10) + >>> print(f'self = {self}') + self = + """ + + def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, + gt_flags): + self.pos_inds = pos_inds + self.neg_inds = neg_inds + self.pos_bboxes = bboxes[pos_inds] + self.neg_bboxes = bboxes[neg_inds] + self.pos_is_gt = gt_flags[pos_inds] + + self.num_gts = gt_bboxes.shape[0] + self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 + + if gt_bboxes.numel() == 0: + # hack for index error case + assert self.pos_assigned_gt_inds.numel() == 0 + self.pos_gt_bboxes = torch.empty_like(gt_bboxes).view(-1, 4) + else: + if len(gt_bboxes.shape) < 2: + gt_bboxes = gt_bboxes.view(-1, 4) + + self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long(), :] + + if assign_result.labels is not None: + self.pos_gt_labels = assign_result.labels[pos_inds] + else: + self.pos_gt_labels = None + + @property + def bboxes(self): + """torch.Tensor: concatenated positive and negative boxes""" + return torch.cat([self.pos_bboxes, self.neg_bboxes]) + + def to(self, device): + """Change the device of the data inplace. + + Example: + >>> self = SamplingResult.random() + >>> print(f'self = {self.to(None)}') + >>> # xdoctest: +REQUIRES(--gpu) + >>> print(f'self = {self.to(0)}') + """ + _dict = self.__dict__ + for key, value in _dict.items(): + if isinstance(value, torch.Tensor): + _dict[key] = value.to(device) + return self + + def __nice__(self): + data = self.info.copy() + data['pos_bboxes'] = data.pop('pos_bboxes').shape + data['neg_bboxes'] = data.pop('neg_bboxes').shape + parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] + body = ' ' + ',\n '.join(parts) + return '{\n' + body + '\n}' + + @property + def info(self): + """Returns a dictionary of info about the object.""" + return { + 'pos_inds': self.pos_inds, + 'neg_inds': self.neg_inds, + 'pos_bboxes': self.pos_bboxes, + 'neg_bboxes': self.neg_bboxes, + 'pos_is_gt': self.pos_is_gt, + 'num_gts': self.num_gts, + 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, + } + + @classmethod + def random(cls, rng=None, **kwargs): + """ + Args: + rng (None | int | numpy.random.RandomState): seed or state. + kwargs (keyword arguments): + - num_preds: number of predicted boxes + - num_gts: number of true boxes + - p_ignore (float): probability of a predicted box assigned to \ + an ignored truth. + - p_assigned (float): probability of a predicted box not being \ + assigned. + - p_use_label (float | bool): with labels or not. + + Returns: + :obj:`SamplingResult`: Randomly generated sampling result. + + Example: + >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA + >>> self = SamplingResult.random() + >>> print(self.__dict__) + """ + from mmdet.core.bbox import demodata + from mmdet.core.bbox.assigners.assign_result import AssignResult + from mmdet.core.bbox.samplers.random_sampler import RandomSampler + rng = demodata.ensure_rng(rng) + + # make probabalistic? + num = 32 + pos_fraction = 0.5 + neg_pos_ub = -1 + + assign_result = AssignResult.random(rng=rng, **kwargs) + + # Note we could just compute an assignment + bboxes = demodata.random_boxes(assign_result.num_preds, rng=rng) + gt_bboxes = demodata.random_boxes(assign_result.num_gts, rng=rng) + + if rng.rand() > 0.2: + # sometimes algorithms squeeze their data, be robust to that + gt_bboxes = gt_bboxes.squeeze() + bboxes = bboxes.squeeze() + + if assign_result.labels is None: + gt_labels = None + else: + gt_labels = None # todo + + if gt_labels is None: + add_gt_as_proposals = False + else: + add_gt_as_proposals = True # make probabalistic? + + sampler = RandomSampler( + num, + pos_fraction, + neg_pos_ub=neg_pos_ub, + add_gt_as_proposals=add_gt_as_proposals, + rng=rng) + self = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) + return self diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/score_hlr_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/score_hlr_sampler.py new file mode 100644 index 000000000..f4be9b8cf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/samplers/score_hlr_sampler.py @@ -0,0 +1,265 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import nms_match + +from ..builder import BBOX_SAMPLERS +from ..transforms import bbox2roi +from .base_sampler import BaseSampler +from .sampling_result import SamplingResult + + +@BBOX_SAMPLERS.register_module() +class ScoreHLRSampler(BaseSampler): + r"""Importance-based Sample Reweighting (ISR_N), described in `Prime Sample + Attention in Object Detection `_. + + Score hierarchical local rank (HLR) differentiates with RandomSampler in + negative part. It firstly computes Score-HLR in a two-step way, + then linearly maps score hlr to the loss weights. + + Args: + num (int): Total number of sampled RoIs. + pos_fraction (float): Fraction of positive samples. + context (:class:`BaseRoIHead`): RoI head that the sampler belongs to. + neg_pos_ub (int): Upper bound of the ratio of num negative to num + positive, -1 means no upper bound. + add_gt_as_proposals (bool): Whether to add ground truth as proposals. + k (float): Power of the non-linear mapping. + bias (float): Shift of the non-linear mapping. + score_thr (float): Minimum score that a negative sample is to be + considered as valid bbox. + """ + + def __init__(self, + num, + pos_fraction, + context, + neg_pos_ub=-1, + add_gt_as_proposals=True, + k=0.5, + bias=0, + score_thr=0.05, + iou_thr=0.5, + **kwargs): + super().__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) + self.k = k + self.bias = bias + self.score_thr = score_thr + self.iou_thr = iou_thr + self.context = context + # context of cascade detectors is a list, so distinguish them here. + if not hasattr(context, 'num_stages'): + self.bbox_roi_extractor = context.bbox_roi_extractor + self.bbox_head = context.bbox_head + self.with_shared_head = context.with_shared_head + if self.with_shared_head: + self.shared_head = context.shared_head + else: + self.bbox_roi_extractor = context.bbox_roi_extractor[ + context.current_stage] + self.bbox_head = context.bbox_head[context.current_stage] + + @staticmethod + def random_choice(gallery, num): + """Randomly select some elements from the gallery. + + If `gallery` is a Tensor, the returned indices will be a Tensor; + If `gallery` is a ndarray or list, the returned indices will be a + ndarray. + + Args: + gallery (Tensor | ndarray | list): indices pool. + num (int): expected sample num. + + Returns: + Tensor or ndarray: sampled indices. + """ + assert len(gallery) >= num + + is_tensor = isinstance(gallery, torch.Tensor) + if not is_tensor: + if torch.cuda.is_available(): + device = torch.cuda.current_device() + else: + device = 'cpu' + gallery = torch.tensor(gallery, dtype=torch.long, device=device) + perm = torch.randperm(gallery.numel(), device=gallery.device)[:num] + rand_inds = gallery[perm] + if not is_tensor: + rand_inds = rand_inds.cpu().numpy() + return rand_inds + + def _sample_pos(self, assign_result, num_expected, **kwargs): + """Randomly sample some positive samples.""" + pos_inds = torch.nonzero(assign_result.gt_inds > 0).flatten() + if pos_inds.numel() <= num_expected: + return pos_inds + else: + return self.random_choice(pos_inds, num_expected) + + def _sample_neg(self, + assign_result, + num_expected, + bboxes, + feats=None, + img_meta=None, + **kwargs): + """Sample negative samples. + + Score-HLR sampler is done in the following steps: + 1. Take the maximum positive score prediction of each negative samples + as s_i. + 2. Filter out negative samples whose s_i <= score_thr, the left samples + are called valid samples. + 3. Use NMS-Match to divide valid samples into different groups, + samples in the same group will greatly overlap with each other + 4. Rank the matched samples in two-steps to get Score-HLR. + (1) In the same group, rank samples with their scores. + (2) In the same score rank across different groups, + rank samples with their scores again. + 5. Linearly map Score-HLR to the final label weights. + + Args: + assign_result (:obj:`AssignResult`): result of assigner. + num_expected (int): Expected number of samples. + bboxes (Tensor): bbox to be sampled. + feats (Tensor): Features come from FPN. + img_meta (dict): Meta information dictionary. + """ + neg_inds = torch.nonzero(assign_result.gt_inds == 0).flatten() + num_neg = neg_inds.size(0) + if num_neg == 0: + return neg_inds, None + with torch.no_grad(): + neg_bboxes = bboxes[neg_inds] + neg_rois = bbox2roi([neg_bboxes]) + bbox_result = self.context._bbox_forward(feats, neg_rois) + cls_score, bbox_pred = bbox_result['cls_score'], bbox_result[ + 'bbox_pred'] + + ori_loss = self.bbox_head.loss( + cls_score=cls_score, + bbox_pred=None, + rois=None, + labels=neg_inds.new_full((num_neg, ), + self.bbox_head.num_classes), + label_weights=cls_score.new_ones(num_neg), + bbox_targets=None, + bbox_weights=None, + reduction_override='none')['loss_cls'] + + # filter out samples with the max score lower than score_thr + max_score, argmax_score = cls_score.softmax(-1)[:, :-1].max(-1) + valid_inds = (max_score > self.score_thr).nonzero().view(-1) + invalid_inds = (max_score <= self.score_thr).nonzero().view(-1) + num_valid = valid_inds.size(0) + num_invalid = invalid_inds.size(0) + + num_expected = min(num_neg, num_expected) + num_hlr = min(num_valid, num_expected) + num_rand = num_expected - num_hlr + if num_valid > 0: + valid_rois = neg_rois[valid_inds] + valid_max_score = max_score[valid_inds] + valid_argmax_score = argmax_score[valid_inds] + valid_bbox_pred = bbox_pred[valid_inds] + + # valid_bbox_pred shape: [num_valid, #num_classes, 4] + valid_bbox_pred = valid_bbox_pred.view( + valid_bbox_pred.size(0), -1, 4) + selected_bbox_pred = valid_bbox_pred[range(num_valid), + valid_argmax_score] + pred_bboxes = self.bbox_head.bbox_coder.decode( + valid_rois[:, 1:], selected_bbox_pred) + pred_bboxes_with_score = torch.cat( + [pred_bboxes, valid_max_score[:, None]], -1) + group = nms_match(pred_bboxes_with_score, self.iou_thr) + + # imp: importance + imp = cls_score.new_zeros(num_valid) + for g in group: + g_score = valid_max_score[g] + # g_score has already sorted + rank = g_score.new_tensor(range(g_score.size(0))) + imp[g] = num_valid - rank + g_score + _, imp_rank_inds = imp.sort(descending=True) + _, imp_rank = imp_rank_inds.sort() + hlr_inds = imp_rank_inds[:num_expected] + + if num_rand > 0: + rand_inds = torch.randperm(num_invalid)[:num_rand] + select_inds = torch.cat( + [valid_inds[hlr_inds], invalid_inds[rand_inds]]) + else: + select_inds = valid_inds[hlr_inds] + + neg_label_weights = cls_score.new_ones(num_expected) + + up_bound = max(num_expected, num_valid) + imp_weights = (up_bound - + imp_rank[hlr_inds].float()) / up_bound + neg_label_weights[:num_hlr] = imp_weights + neg_label_weights[num_hlr:] = imp_weights.min() + neg_label_weights = (self.bias + + (1 - self.bias) * neg_label_weights).pow( + self.k) + ori_selected_loss = ori_loss[select_inds] + new_loss = ori_selected_loss * neg_label_weights + norm_ratio = ori_selected_loss.sum() / new_loss.sum() + neg_label_weights *= norm_ratio + else: + neg_label_weights = cls_score.new_ones(num_expected) + select_inds = torch.randperm(num_neg)[:num_expected] + + return neg_inds[select_inds], neg_label_weights + + def sample(self, + assign_result, + bboxes, + gt_bboxes, + gt_labels=None, + img_meta=None, + **kwargs): + """Sample positive and negative bboxes. + + This is a simple implementation of bbox sampling given candidates, + assigning results and ground truth bboxes. + + Args: + assign_result (:obj:`AssignResult`): Bbox assigning results. + bboxes (Tensor): Boxes to be sampled from. + gt_bboxes (Tensor): Ground truth bboxes. + gt_labels (Tensor, optional): Class labels of ground truth bboxes. + + Returns: + tuple[:obj:`SamplingResult`, Tensor]: Sampling result and negative + label weights. + """ + bboxes = bboxes[:, :4] + + gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) + if self.add_gt_as_proposals: + bboxes = torch.cat([gt_bboxes, bboxes], dim=0) + assign_result.add_gt_(gt_labels) + gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) + gt_flags = torch.cat([gt_ones, gt_flags]) + + num_expected_pos = int(self.num * self.pos_fraction) + pos_inds = self.pos_sampler._sample_pos( + assign_result, num_expected_pos, bboxes=bboxes, **kwargs) + num_sampled_pos = pos_inds.numel() + num_expected_neg = self.num - num_sampled_pos + if self.neg_pos_ub >= 0: + _pos = max(1, num_sampled_pos) + neg_upper_bound = int(self.neg_pos_ub * _pos) + if num_expected_neg > neg_upper_bound: + num_expected_neg = neg_upper_bound + neg_inds, neg_label_weights = self.neg_sampler._sample_neg( + assign_result, + num_expected_neg, + bboxes, + img_meta=img_meta, + **kwargs) + + return SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, + assign_result, gt_flags), neg_label_weights diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/transforms.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/transforms.py new file mode 100644 index 000000000..6d72076a5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/bbox/transforms.py @@ -0,0 +1,270 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + + +def find_inside_bboxes(bboxes, img_h, img_w): + """Find bboxes as long as a part of bboxes is inside the image. + + Args: + bboxes (Tensor): Shape (N, 4). + img_h (int): Image height. + img_w (int): Image width. + + Returns: + Tensor: Index of the remaining bboxes. + """ + inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \ + & (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0) + return inside_inds + + +def bbox_flip(bboxes, img_shape, direction='horizontal'): + """Flip bboxes horizontally or vertically. + + Args: + bboxes (Tensor): Shape (..., 4*k) + img_shape (tuple): Image shape. + direction (str): Flip direction, options are "horizontal", "vertical", + "diagonal". Default: "horizontal" + + Returns: + Tensor: Flipped bboxes. + """ + assert bboxes.shape[-1] % 4 == 0 + assert direction in ['horizontal', 'vertical', 'diagonal'] + flipped = bboxes.clone() + if direction == 'horizontal': + flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4] + flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4] + elif direction == 'vertical': + flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4] + flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4] + else: + flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4] + flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4] + flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4] + flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4] + return flipped + + +def bbox_mapping(bboxes, + img_shape, + scale_factor, + flip, + flip_direction='horizontal'): + """Map bboxes from the original image scale to testing scale.""" + new_bboxes = bboxes * bboxes.new_tensor(scale_factor) + if flip: + new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction) + return new_bboxes + + +def bbox_mapping_back(bboxes, + img_shape, + scale_factor, + flip, + flip_direction='horizontal'): + """Map bboxes from testing scale to original image scale.""" + new_bboxes = bbox_flip(bboxes, img_shape, + flip_direction) if flip else bboxes + new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor) + return new_bboxes.view(bboxes.shape) + + +def bbox2roi(bbox_list): + """Convert a list of bboxes to roi format. + + Args: + bbox_list (list[Tensor]): a list of bboxes corresponding to a batch + of images. + + Returns: + Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2] + """ + rois_list = [] + for img_id, bboxes in enumerate(bbox_list): + if bboxes.size(0) > 0: + img_inds = bboxes.new_full((bboxes.size(0), 1), img_id) + rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1) + else: + rois = bboxes.new_zeros((0, 5)) + rois_list.append(rois) + rois = torch.cat(rois_list, 0) + return rois + + +def roi2bbox(rois): + """Convert rois to bounding box format. + + Args: + rois (torch.Tensor): RoIs with the shape (n, 5) where the first + column indicates batch id of each RoI. + + Returns: + list[torch.Tensor]: Converted boxes of corresponding rois. + """ + bbox_list = [] + img_ids = torch.unique(rois[:, 0].cpu(), sorted=True) + for img_id in img_ids: + inds = (rois[:, 0] == img_id.item()) + bbox = rois[inds, 1:] + bbox_list.append(bbox) + return bbox_list + + +def bbox2result(bboxes, labels, num_classes): + """Convert detection results to a list of numpy arrays. + + Args: + bboxes (torch.Tensor | np.ndarray): shape (n, 5) + labels (torch.Tensor | np.ndarray): shape (n, ) + num_classes (int): class number, including background class + + Returns: + list(ndarray): bbox results of each class + """ + if bboxes.shape[0] == 0: + return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)] + else: + if isinstance(bboxes, torch.Tensor): + bboxes = bboxes.detach().cpu().numpy() + labels = labels.detach().cpu().numpy() + return [bboxes[labels == i, :] for i in range(num_classes)] + + +def distance2bbox(points, distance, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (B, N, 2) or (N, 2). + distance (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) + max_shape (Sequence[int] or torch.Tensor or Sequence[ + Sequence[int]],optional): Maximum bounds for boxes, specifies + (H, W, C) or (H, W). If priors shape is (B, N, 4), then + the max_shape should be a Sequence[Sequence[int]] + and the length of max_shape should also be B. + + Returns: + Tensor: Boxes with shape (N, 4) or (B, N, 4) + """ + + x1 = points[..., 0] - distance[..., 0] + y1 = points[..., 1] - distance[..., 1] + x2 = points[..., 0] + distance[..., 2] + y2 = points[..., 1] + distance[..., 3] + + bboxes = torch.stack([x1, y1, x2, y2], -1) + + if max_shape is not None: + if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export(): + # speed up + bboxes[:, 0::2].clamp_(min=0, max=max_shape[1]) + bboxes[:, 1::2].clamp_(min=0, max=max_shape[0]) + return bboxes + + # clip bboxes with dynamic `min` and `max` for onnx + if torch.onnx.is_in_onnx_export(): + from mmdet.core.export import dynamic_clip_for_onnx + x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape) + bboxes = torch.stack([x1, y1, x2, y2], dim=-1) + return bboxes + if not isinstance(max_shape, torch.Tensor): + max_shape = x1.new_tensor(max_shape) + max_shape = max_shape[..., :2].type_as(x1) + if max_shape.ndim == 2: + assert bboxes.ndim == 3 + assert max_shape.size(0) == bboxes.size(0) + + min_xy = x1.new_tensor(0) + max_xy = torch.cat([max_shape, max_shape], + dim=-1).flip(-1).unsqueeze(-2) + bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) + bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) + + return bboxes + + +def bbox2distance(points, bbox, max_dis=None, eps=0.1): + """Decode bounding box based on distances. + + Args: + points (Tensor): Shape (n, 2), [x, y]. + bbox (Tensor): Shape (n, 4), "xyxy" format + max_dis (float): Upper bound of the distance. + eps (float): a small value to ensure target < max_dis, instead <= + + Returns: + Tensor: Decoded distances. + """ + left = points[:, 0] - bbox[:, 0] + top = points[:, 1] - bbox[:, 1] + right = bbox[:, 2] - points[:, 0] + bottom = bbox[:, 3] - points[:, 1] + if max_dis is not None: + left = left.clamp(min=0, max=max_dis - eps) + top = top.clamp(min=0, max=max_dis - eps) + right = right.clamp(min=0, max=max_dis - eps) + bottom = bottom.clamp(min=0, max=max_dis - eps) + return torch.stack([left, top, right, bottom], -1) + + +def bbox_rescale(bboxes, scale_factor=1.0): + """Rescale bounding box w.r.t. scale_factor. + + Args: + bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois + scale_factor (float): rescale factor + + Returns: + Tensor: Rescaled bboxes. + """ + if bboxes.size(1) == 5: + bboxes_ = bboxes[:, 1:] + inds_ = bboxes[:, 0] + else: + bboxes_ = bboxes + cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5 + cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5 + w = bboxes_[:, 2] - bboxes_[:, 0] + h = bboxes_[:, 3] - bboxes_[:, 1] + w = w * scale_factor + h = h * scale_factor + x1 = cx - 0.5 * w + x2 = cx + 0.5 * w + y1 = cy - 0.5 * h + y2 = cy + 0.5 * h + if bboxes.size(1) == 5: + rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1) + else: + rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1) + return rescaled_bboxes + + +def bbox_cxcywh_to_xyxy(bbox): + """Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2). + + Args: + bbox (Tensor): Shape (n, 4) for bboxes. + + Returns: + Tensor: Converted bboxes. + """ + cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1) + bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)] + return torch.cat(bbox_new, dim=-1) + + +def bbox_xyxy_to_cxcywh(bbox): + """Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h). + + Args: + bbox (Tensor): Shape (n, 4) for bboxes. + + Returns: + Tensor: Converted bboxes. + """ + x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1) + bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)] + return torch.cat(bbox_new, dim=-1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/__init__.py new file mode 100644 index 000000000..11ab96c56 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .general_data import GeneralData +from .instance_data import InstanceData + +__all__ = ['GeneralData', 'InstanceData'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/general_data.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/general_data.py new file mode 100644 index 000000000..99316e41b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/general_data.py @@ -0,0 +1,326 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import numpy as np +import torch + +from mmdet.utils.util_mixins import NiceRepr + + +class GeneralData(NiceRepr): + """A general data structure of OpenMMlab. + + A data structure that stores the meta information, + the annotations of the images or the model predictions, + which can be used in communication between components. + + The attributes in `GeneralData` are divided into two parts, + the `meta_info_fields` and the `data_fields` respectively. + + - `meta_info_fields`: Usually contains the + information about the image such as filename, + image_shape, pad_shape, etc. All attributes in + it are immutable once set, + but the user can add new meta information with + `set_meta_info` function, all information can be accessed + with methods `meta_info_keys`, `meta_info_values`, + `meta_info_items`. + + - `data_fields`: Annotations or model predictions are + stored. The attributes can be accessed or modified by + dict-like or object-like operations, such as + `.` , `[]`, `in`, `del`, `pop(str)` `get(str)`, `keys()`, + `values()`, `items()`. Users can also apply tensor-like methods + to all obj:`torch.Tensor` in the `data_fileds`, + such as `.cuda()`, `.cpu()`, `.numpy()`, `device`, `.to()` + `.detach()`, `.numpy()` + + Args: + meta_info (dict, optional): A dict contains the meta information + of single image. such as `img_shape`, `scale_factor`, etc. + Default: None. + data (dict, optional): A dict contains annotations of single image or + model predictions. Default: None. + + Examples: + >>> from mmdet.core import GeneralData + >>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3)) + >>> instance_data = GeneralData(meta_info=img_meta) + >>> img_shape in instance_data + True + >>> instance_data.det_labels = torch.LongTensor([0, 1, 2, 3]) + >>> instance_data["det_scores"] = torch.Tensor([0.01, 0.1, 0.2, 0.3]) + >>> print(results) + + >>> instance_data.det_scores + tensor([0.0100, 0.1000, 0.2000, 0.3000]) + >>> instance_data.det_labels + tensor([0, 1, 2, 3]) + >>> instance_data['det_labels'] + tensor([0, 1, 2, 3]) + >>> 'det_labels' in instance_data + True + >>> instance_data.img_shape + (800, 1196, 3) + >>> 'det_scores' in instance_data + True + >>> del instance_data.det_scores + >>> 'det_scores' in instance_data + False + >>> det_labels = instance_data.pop('det_labels', None) + >>> det_labels + tensor([0, 1, 2, 3]) + >>> 'det_labels' in instance_data + >>> False + """ + + def __init__(self, meta_info=None, data=None): + + self._meta_info_fields = set() + self._data_fields = set() + + if meta_info is not None: + self.set_meta_info(meta_info=meta_info) + if data is not None: + self.set_data(data) + + def set_meta_info(self, meta_info): + """Add meta information. + + Args: + meta_info (dict): A dict contains the meta information + of image. such as `img_shape`, `scale_factor`, etc. + Default: None. + """ + assert isinstance(meta_info, + dict), f'meta should be a `dict` but get {meta_info}' + meta = copy.deepcopy(meta_info) + for k, v in meta.items(): + # should be consistent with original meta_info + if k in self._meta_info_fields: + ori_value = getattr(self, k) + if isinstance(ori_value, (torch.Tensor, np.ndarray)): + if (ori_value == v).all(): + continue + else: + raise KeyError( + f'img_meta_info {k} has been set as ' + f'{getattr(self, k)} before, which is immutable ') + elif ori_value == v: + continue + else: + raise KeyError( + f'img_meta_info {k} has been set as ' + f'{getattr(self, k)} before, which is immutable ') + else: + self._meta_info_fields.add(k) + self.__dict__[k] = v + + def set_data(self, data): + """Update a dict to `data_fields`. + + Args: + data (dict): A dict contains annotations of image or + model predictions. Default: None. + """ + assert isinstance(data, + dict), f'meta should be a `dict` but get {data}' + for k, v in data.items(): + self.__setattr__(k, v) + + def new(self, meta_info=None, data=None): + """Return a new results with same image meta information. + + Args: + meta_info (dict, optional): A dict contains the meta information + of image. such as `img_shape`, `scale_factor`, etc. + Default: None. + data (dict, optional): A dict contains annotations of image or + model predictions. Default: None. + """ + new_data = self.__class__() + new_data.set_meta_info(dict(self.meta_info_items())) + if meta_info is not None: + new_data.set_meta_info(meta_info) + if data is not None: + new_data.set_data(data) + return new_data + + def keys(self): + """ + Returns: + list: Contains all keys in data_fields. + """ + return [key for key in self._data_fields] + + def meta_info_keys(self): + """ + Returns: + list: Contains all keys in meta_info_fields. + """ + return [key for key in self._meta_info_fields] + + def values(self): + """ + Returns: + list: Contains all values in data_fields. + """ + return [getattr(self, k) for k in self.keys()] + + def meta_info_values(self): + """ + Returns: + list: Contains all values in meta_info_fields. + """ + return [getattr(self, k) for k in self.meta_info_keys()] + + def items(self): + for k in self.keys(): + yield (k, getattr(self, k)) + + def meta_info_items(self): + for k in self.meta_info_keys(): + yield (k, getattr(self, k)) + + def __setattr__(self, name, val): + if name in ('_meta_info_fields', '_data_fields'): + if not hasattr(self, name): + super().__setattr__(name, val) + else: + raise AttributeError( + f'{name} has been used as a ' + f'private attribute, which is immutable. ') + else: + if name in self._meta_info_fields: + raise AttributeError(f'`{name}` is used in meta information,' + f'which is immutable') + + self._data_fields.add(name) + super().__setattr__(name, val) + + def __delattr__(self, item): + + if item in ('_meta_info_fields', '_data_fields'): + raise AttributeError(f'{item} has been used as a ' + f'private attribute, which is immutable. ') + + if item in self._meta_info_fields: + raise KeyError(f'{item} is used in meta information, ' + f'which is immutable.') + super().__delattr__(item) + if item in self._data_fields: + self._data_fields.remove(item) + + # dict-like methods + __setitem__ = __setattr__ + __delitem__ = __delattr__ + + def __getitem__(self, name): + return getattr(self, name) + + def get(self, *args): + assert len(args) < 3, '`get` get more than 2 arguments' + return self.__dict__.get(*args) + + def pop(self, *args): + assert len(args) < 3, '`pop` get more than 2 arguments' + name = args[0] + if name in self._meta_info_fields: + raise KeyError(f'{name} is a key in meta information, ' + f'which is immutable') + + if args[0] in self._data_fields: + self._data_fields.remove(args[0]) + return self.__dict__.pop(*args) + + # with default value + elif len(args) == 2: + return args[1] + else: + raise KeyError(f'{args[0]}') + + def __contains__(self, item): + return item in self._data_fields or \ + item in self._meta_info_fields + + # Tensor-like methods + def to(self, *args, **kwargs): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if hasattr(v, 'to'): + v = v.to(*args, **kwargs) + new_data[k] = v + return new_data + + # Tensor-like methods + def cpu(self): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if isinstance(v, torch.Tensor): + v = v.cpu() + new_data[k] = v + return new_data + + # Tensor-like methods + def mlu(self): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if isinstance(v, torch.Tensor): + v = v.mlu() + new_data[k] = v + return new_data + + # Tensor-like methods + def cuda(self): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if isinstance(v, torch.Tensor): + v = v.cuda() + new_data[k] = v + return new_data + + # Tensor-like methods + def detach(self): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if isinstance(v, torch.Tensor): + v = v.detach() + new_data[k] = v + return new_data + + # Tensor-like methods + def numpy(self): + """Apply same name function to all tensors in data_fields.""" + new_data = self.new() + for k, v in self.items(): + if isinstance(v, torch.Tensor): + v = v.detach().cpu().numpy() + new_data[k] = v + return new_data + + def __nice__(self): + repr = '\n \n META INFORMATION \n' + for k, v in self.meta_info_items(): + repr += f'{k}: {v} \n' + repr += '\n DATA FIELDS \n' + for k, v in self.items(): + if isinstance(v, (torch.Tensor, np.ndarray)): + repr += f'shape of {k}: {v.shape} \n' + else: + repr += f'{k}: {v} \n' + return repr + '\n' diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/instance_data.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/instance_data.py new file mode 100644 index 000000000..eef2065c8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/data_structures/instance_data.py @@ -0,0 +1,188 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import itertools + +import numpy as np +import torch + +from .general_data import GeneralData + + +class InstanceData(GeneralData): + """Data structure for instance-level annnotations or predictions. + + Subclass of :class:`GeneralData`. All value in `data_fields` + should have the same length. This design refer to + https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/instances.py # noqa E501 + + Examples: + >>> from mmdet.core import InstanceData + >>> import numpy as np + >>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3)) + >>> results = InstanceData(img_meta) + >>> img_shape in results + True + >>> results.det_labels = torch.LongTensor([0, 1, 2, 3]) + >>> results["det_scores"] = torch.Tensor([0.01, 0.7, 0.6, 0.3]) + >>> results["det_masks"] = np.ndarray(4, 2, 2) + >>> len(results) + 4 + >>> print(resutls) + + >>> sorted_results = results[results.det_scores.sort().indices] + >>> sorted_results.det_scores + tensor([0.0100, 0.3000, 0.6000, 0.7000]) + >>> sorted_results.det_labels + tensor([0, 3, 2, 1]) + >>> print(results[results.scores > 0.5]) + + >>> results[results.det_scores > 0.5].det_labels + tensor([1, 2]) + >>> results[results.det_scores > 0.5].det_scores + tensor([0.7000, 0.6000]) + """ + + def __setattr__(self, name, value): + + if name in ('_meta_info_fields', '_data_fields'): + if not hasattr(self, name): + super().__setattr__(name, value) + else: + raise AttributeError( + f'{name} has been used as a ' + f'private attribute, which is immutable. ') + + else: + assert isinstance(value, (torch.Tensor, np.ndarray, list)), \ + f'Can set {type(value)}, only support' \ + f' {(torch.Tensor, np.ndarray, list)}' + + if self._data_fields: + assert len(value) == len(self), f'the length of ' \ + f'values {len(value)} is ' \ + f'not consistent with' \ + f' the length ' \ + f'of this :obj:`InstanceData` ' \ + f'{len(self)} ' + super().__setattr__(name, value) + + def __getitem__(self, item): + """ + Args: + item (str, obj:`slice`, + obj`torch.LongTensor`, obj:`torch.BoolTensor`): + get the corresponding values according to item. + + Returns: + obj:`InstanceData`: Corresponding values. + """ + assert len(self), ' This is a empty instance' + + assert isinstance( + item, (str, slice, int, torch.LongTensor, torch.BoolTensor)) + + if isinstance(item, str): + return getattr(self, item) + + if type(item) == int: + if item >= len(self) or item < -len(self): + raise IndexError(f'Index {item} out of range!') + else: + # keep the dimension + item = slice(item, None, len(self)) + + new_data = self.new() + if isinstance(item, (torch.Tensor)): + assert item.dim() == 1, 'Only support to get the' \ + ' values along the first dimension.' + if isinstance(item, torch.BoolTensor): + assert len(item) == len(self), f'The shape of the' \ + f' input(BoolTensor)) ' \ + f'{len(item)} ' \ + f' does not match the shape ' \ + f'of the indexed tensor ' \ + f'in results_filed ' \ + f'{len(self)} at ' \ + f'first dimension. ' + + for k, v in self.items(): + if isinstance(v, torch.Tensor): + new_data[k] = v[item] + elif isinstance(v, np.ndarray): + new_data[k] = v[item.cpu().numpy()] + elif isinstance(v, list): + r_list = [] + # convert to indexes from boolTensor + if isinstance(item, torch.BoolTensor): + indexes = torch.nonzero(item).view(-1) + else: + indexes = item + for index in indexes: + r_list.append(v[index]) + new_data[k] = r_list + else: + # item is a slice + for k, v in self.items(): + new_data[k] = v[item] + return new_data + + @staticmethod + def cat(instances_list): + """Concat the predictions of all :obj:`InstanceData` in the list. + + Args: + instances_list (list[:obj:`InstanceData`]): A list + of :obj:`InstanceData`. + + Returns: + obj:`InstanceData` + """ + assert all( + isinstance(results, InstanceData) for results in instances_list) + assert len(instances_list) > 0 + if len(instances_list) == 1: + return instances_list[0] + + new_data = instances_list[0].new() + for k in instances_list[0]._data_fields: + values = [results[k] for results in instances_list] + v0 = values[0] + if isinstance(v0, torch.Tensor): + values = torch.cat(values, dim=0) + elif isinstance(v0, np.ndarray): + values = np.concatenate(values, axis=0) + elif isinstance(v0, list): + values = list(itertools.chain(*values)) + else: + raise ValueError( + f'Can not concat the {k} which is a {type(v0)}') + new_data[k] = values + return new_data + + def __len__(self): + if len(self._data_fields): + for v in self.values(): + return len(v) + else: + raise AssertionError('This is an empty `InstanceData`.') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/__init__.py new file mode 100644 index 000000000..67e7c55b3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/__init__.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .class_names import (cityscapes_classes, coco_classes, dataset_aliases, + get_classes, imagenet_det_classes, + imagenet_vid_classes, oid_challenge_classes, + oid_v6_classes, voc_classes) +from .eval_hooks import DistEvalHook, EvalHook +from .mean_ap import average_precision, eval_map, print_map_summary +from .panoptic_utils import INSTANCE_OFFSET +from .recall import (eval_recalls, plot_iou_recall, plot_num_recall, + print_recall_summary) + +__all__ = [ + 'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes', + 'coco_classes', 'cityscapes_classes', 'dataset_aliases', 'get_classes', + 'DistEvalHook', 'EvalHook', 'average_precision', 'eval_map', + 'print_map_summary', 'eval_recalls', 'print_recall_summary', + 'plot_num_recall', 'plot_iou_recall', 'oid_v6_classes', + 'oid_challenge_classes', 'INSTANCE_OFFSET' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/bbox_overlaps.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/bbox_overlaps.py new file mode 100644 index 000000000..5d6eb82fc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/bbox_overlaps.py @@ -0,0 +1,65 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np + + +def bbox_overlaps(bboxes1, + bboxes2, + mode='iou', + eps=1e-6, + use_legacy_coordinate=False): + """Calculate the ious between each bbox of bboxes1 and bboxes2. + + Args: + bboxes1 (ndarray): Shape (n, 4) + bboxes2 (ndarray): Shape (k, 4) + mode (str): IOU (intersection over union) or IOF (intersection + over foreground) + use_legacy_coordinate (bool): Whether to use coordinate system in + mmdet v1.x. which means width, height should be + calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively. + Note when function is used in `VOCDataset`, it should be + True to align with the official implementation + `http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar` + Default: False. + + Returns: + ious (ndarray): Shape (n, k) + """ + + assert mode in ['iou', 'iof'] + if not use_legacy_coordinate: + extra_length = 0. + else: + extra_length = 1. + bboxes1 = bboxes1.astype(np.float32) + bboxes2 = bboxes2.astype(np.float32) + rows = bboxes1.shape[0] + cols = bboxes2.shape[0] + ious = np.zeros((rows, cols), dtype=np.float32) + if rows * cols == 0: + return ious + exchange = False + if bboxes1.shape[0] > bboxes2.shape[0]: + bboxes1, bboxes2 = bboxes2, bboxes1 + ious = np.zeros((cols, rows), dtype=np.float32) + exchange = True + area1 = (bboxes1[:, 2] - bboxes1[:, 0] + extra_length) * ( + bboxes1[:, 3] - bboxes1[:, 1] + extra_length) + area2 = (bboxes2[:, 2] - bboxes2[:, 0] + extra_length) * ( + bboxes2[:, 3] - bboxes2[:, 1] + extra_length) + for i in range(bboxes1.shape[0]): + x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) + y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) + x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) + y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) + overlap = np.maximum(x_end - x_start + extra_length, 0) * np.maximum( + y_end - y_start + extra_length, 0) + if mode == 'iou': + union = area1[i] + area2 - overlap + else: + union = area1[i] if not exchange else area2 + union = np.maximum(union, eps) + ious[i, :] = overlap / union + if exchange: + ious = ious.T + return ious diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/class_names.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/class_names.py new file mode 100644 index 000000000..737971182 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/class_names.py @@ -0,0 +1,332 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + + +def wider_face_classes(): + return ['face'] + + +def voc_classes(): + return [ + 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', + 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', + 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' + ] + + +def imagenet_det_classes(): + return [ + 'accordion', 'airplane', 'ant', 'antelope', 'apple', 'armadillo', + 'artichoke', 'axe', 'baby_bed', 'backpack', 'bagel', 'balance_beam', + 'banana', 'band_aid', 'banjo', 'baseball', 'basketball', 'bathing_cap', + 'beaker', 'bear', 'bee', 'bell_pepper', 'bench', 'bicycle', 'binder', + 'bird', 'bookshelf', 'bow_tie', 'bow', 'bowl', 'brassiere', 'burrito', + 'bus', 'butterfly', 'camel', 'can_opener', 'car', 'cart', 'cattle', + 'cello', 'centipede', 'chain_saw', 'chair', 'chime', 'cocktail_shaker', + 'coffee_maker', 'computer_keyboard', 'computer_mouse', 'corkscrew', + 'cream', 'croquet_ball', 'crutch', 'cucumber', 'cup_or_mug', 'diaper', + 'digital_clock', 'dishwasher', 'dog', 'domestic_cat', 'dragonfly', + 'drum', 'dumbbell', 'electric_fan', 'elephant', 'face_powder', 'fig', + 'filing_cabinet', 'flower_pot', 'flute', 'fox', 'french_horn', 'frog', + 'frying_pan', 'giant_panda', 'goldfish', 'golf_ball', 'golfcart', + 'guacamole', 'guitar', 'hair_dryer', 'hair_spray', 'hamburger', + 'hammer', 'hamster', 'harmonica', 'harp', 'hat_with_a_wide_brim', + 'head_cabbage', 'helmet', 'hippopotamus', 'horizontal_bar', 'horse', + 'hotdog', 'iPod', 'isopod', 'jellyfish', 'koala_bear', 'ladle', + 'ladybug', 'lamp', 'laptop', 'lemon', 'lion', 'lipstick', 'lizard', + 'lobster', 'maillot', 'maraca', 'microphone', 'microwave', 'milk_can', + 'miniskirt', 'monkey', 'motorcycle', 'mushroom', 'nail', 'neck_brace', + 'oboe', 'orange', 'otter', 'pencil_box', 'pencil_sharpener', 'perfume', + 'person', 'piano', 'pineapple', 'ping-pong_ball', 'pitcher', 'pizza', + 'plastic_bag', 'plate_rack', 'pomegranate', 'popsicle', 'porcupine', + 'power_drill', 'pretzel', 'printer', 'puck', 'punching_bag', 'purse', + 'rabbit', 'racket', 'ray', 'red_panda', 'refrigerator', + 'remote_control', 'rubber_eraser', 'rugby_ball', 'ruler', + 'salt_or_pepper_shaker', 'saxophone', 'scorpion', 'screwdriver', + 'seal', 'sheep', 'ski', 'skunk', 'snail', 'snake', 'snowmobile', + 'snowplow', 'soap_dispenser', 'soccer_ball', 'sofa', 'spatula', + 'squirrel', 'starfish', 'stethoscope', 'stove', 'strainer', + 'strawberry', 'stretcher', 'sunglasses', 'swimming_trunks', 'swine', + 'syringe', 'table', 'tape_player', 'tennis_ball', 'tick', 'tie', + 'tiger', 'toaster', 'traffic_light', 'train', 'trombone', 'trumpet', + 'turtle', 'tv_or_monitor', 'unicycle', 'vacuum', 'violin', + 'volleyball', 'waffle_iron', 'washer', 'water_bottle', 'watercraft', + 'whale', 'wine_bottle', 'zebra' + ] + + +def imagenet_vid_classes(): + return [ + 'airplane', 'antelope', 'bear', 'bicycle', 'bird', 'bus', 'car', + 'cattle', 'dog', 'domestic_cat', 'elephant', 'fox', 'giant_panda', + 'hamster', 'horse', 'lion', 'lizard', 'monkey', 'motorcycle', 'rabbit', + 'red_panda', 'sheep', 'snake', 'squirrel', 'tiger', 'train', 'turtle', + 'watercraft', 'whale', 'zebra' + ] + + +def coco_classes(): + return [ + 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', + 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', + 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', + 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', + 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', + 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', + 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', + 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', + 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', + 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', + 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', + 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', + 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush' + ] + + +def cityscapes_classes(): + return [ + 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', + 'bicycle' + ] + + +def oid_challenge_classes(): + return [ + 'Footwear', 'Jeans', 'House', 'Tree', 'Woman', 'Man', 'Land vehicle', + 'Person', 'Wheel', 'Bus', 'Human face', 'Bird', 'Dress', 'Girl', + 'Vehicle', 'Building', 'Cat', 'Car', 'Belt', 'Elephant', 'Dessert', + 'Butterfly', 'Train', 'Guitar', 'Poster', 'Book', 'Boy', 'Bee', + 'Flower', 'Window', 'Hat', 'Human head', 'Dog', 'Human arm', 'Drink', + 'Human mouth', 'Human hair', 'Human nose', 'Human hand', 'Table', + 'Marine invertebrates', 'Fish', 'Sculpture', 'Rose', 'Street light', + 'Glasses', 'Fountain', 'Skyscraper', 'Swimwear', 'Brassiere', 'Drum', + 'Duck', 'Countertop', 'Furniture', 'Ball', 'Human leg', 'Boat', + 'Balloon', 'Bicycle helmet', 'Goggles', 'Door', 'Human eye', 'Shirt', + 'Toy', 'Teddy bear', 'Pasta', 'Tomato', 'Human ear', + 'Vehicle registration plate', 'Microphone', 'Musical keyboard', + 'Tower', 'Houseplant', 'Flowerpot', 'Fruit', 'Vegetable', + 'Musical instrument', 'Suit', 'Motorcycle', 'Bagel', 'French fries', + 'Hamburger', 'Chair', 'Salt and pepper shakers', 'Snail', 'Airplane', + 'Horse', 'Laptop', 'Computer keyboard', 'Football helmet', 'Cocktail', + 'Juice', 'Tie', 'Computer monitor', 'Human beard', 'Bottle', + 'Saxophone', 'Lemon', 'Mouse', 'Sock', 'Cowboy hat', 'Sun hat', + 'Football', 'Porch', 'Sunglasses', 'Lobster', 'Crab', 'Picture frame', + 'Van', 'Crocodile', 'Surfboard', 'Shorts', 'Helicopter', 'Helmet', + 'Sports uniform', 'Taxi', 'Swan', 'Goose', 'Coat', 'Jacket', 'Handbag', + 'Flag', 'Skateboard', 'Television', 'Tire', 'Spoon', 'Palm tree', + 'Stairs', 'Salad', 'Castle', 'Oven', 'Microwave oven', 'Wine', + 'Ceiling fan', 'Mechanical fan', 'Cattle', 'Truck', 'Box', 'Ambulance', + 'Desk', 'Wine glass', 'Reptile', 'Tank', 'Traffic light', 'Billboard', + 'Tent', 'Insect', 'Spider', 'Treadmill', 'Cupboard', 'Shelf', + 'Seat belt', 'Human foot', 'Bicycle', 'Bicycle wheel', 'Couch', + 'Bookcase', 'Fedora', 'Backpack', 'Bench', 'Oyster', + 'Moths and butterflies', 'Lavender', 'Waffle', 'Fork', 'Animal', + 'Accordion', 'Mobile phone', 'Plate', 'Coffee cup', 'Saucer', + 'Platter', 'Dagger', 'Knife', 'Bull', 'Tortoise', 'Sea turtle', 'Deer', + 'Weapon', 'Apple', 'Ski', 'Taco', 'Traffic sign', 'Beer', 'Necklace', + 'Sunflower', 'Piano', 'Organ', 'Harpsichord', 'Bed', 'Cabinetry', + 'Nightstand', 'Curtain', 'Chest of drawers', 'Drawer', 'Parrot', + 'Sandal', 'High heels', 'Tableware', 'Cart', 'Mushroom', 'Kite', + 'Missile', 'Seafood', 'Camera', 'Paper towel', 'Toilet paper', + 'Sombrero', 'Radish', 'Lighthouse', 'Segway', 'Pig', 'Watercraft', + 'Golf cart', 'studio couch', 'Dolphin', 'Whale', 'Earrings', 'Otter', + 'Sea lion', 'Whiteboard', 'Monkey', 'Gondola', 'Zebra', + 'Baseball glove', 'Scarf', 'Adhesive tape', 'Trousers', 'Scoreboard', + 'Lily', 'Carnivore', 'Power plugs and sockets', 'Office building', + 'Sandwich', 'Swimming pool', 'Headphones', 'Tin can', 'Crown', 'Doll', + 'Cake', 'Frog', 'Beetle', 'Ant', 'Gas stove', 'Canoe', 'Falcon', + 'Blue jay', 'Egg', 'Fire hydrant', 'Raccoon', 'Muffin', 'Wall clock', + 'Coffee', 'Mug', 'Tea', 'Bear', 'Waste container', 'Home appliance', + 'Candle', 'Lion', 'Mirror', 'Starfish', 'Marine mammal', 'Wheelchair', + 'Umbrella', 'Alpaca', 'Violin', 'Cello', 'Brown bear', 'Canary', 'Bat', + 'Ruler', 'Plastic bag', 'Penguin', 'Watermelon', 'Harbor seal', 'Pen', + 'Pumpkin', 'Harp', 'Kitchen appliance', 'Roller skates', 'Bust', + 'Coffee table', 'Tennis ball', 'Tennis racket', 'Ladder', 'Boot', + 'Bowl', 'Stop sign', 'Volleyball', 'Eagle', 'Paddle', 'Chicken', + 'Skull', 'Lamp', 'Beehive', 'Maple', 'Sink', 'Goldfish', 'Tripod', + 'Coconut', 'Bidet', 'Tap', 'Bathroom cabinet', 'Toilet', + 'Filing cabinet', 'Pretzel', 'Table tennis racket', 'Bronze sculpture', + 'Rocket', 'Mouse', 'Hamster', 'Lizard', 'Lifejacket', 'Goat', + 'Washing machine', 'Trumpet', 'Horn', 'Trombone', 'Sheep', + 'Tablet computer', 'Pillow', 'Kitchen & dining room table', + 'Parachute', 'Raven', 'Glove', 'Loveseat', 'Christmas tree', + 'Shellfish', 'Rifle', 'Shotgun', 'Sushi', 'Sparrow', 'Bread', + 'Toaster', 'Watch', 'Asparagus', 'Artichoke', 'Suitcase', 'Antelope', + 'Broccoli', 'Ice cream', 'Racket', 'Banana', 'Cookie', 'Cucumber', + 'Dragonfly', 'Lynx', 'Caterpillar', 'Light bulb', 'Office supplies', + 'Miniskirt', 'Skirt', 'Fireplace', 'Potato', 'Light switch', + 'Croissant', 'Cabbage', 'Ladybug', 'Handgun', 'Luggage and bags', + 'Window blind', 'Snowboard', 'Baseball bat', 'Digital clock', + 'Serving tray', 'Infant bed', 'Sofa bed', 'Guacamole', 'Fox', 'Pizza', + 'Snowplow', 'Jet ski', 'Refrigerator', 'Lantern', 'Convenience store', + 'Sword', 'Rugby ball', 'Owl', 'Ostrich', 'Pancake', 'Strawberry', + 'Carrot', 'Tart', 'Dice', 'Turkey', 'Rabbit', 'Invertebrate', 'Vase', + 'Stool', 'Swim cap', 'Shower', 'Clock', 'Jellyfish', 'Aircraft', + 'Chopsticks', 'Orange', 'Snake', 'Sewing machine', 'Kangaroo', 'Mixer', + 'Food processor', 'Shrimp', 'Towel', 'Porcupine', 'Jaguar', 'Cannon', + 'Limousine', 'Mule', 'Squirrel', 'Kitchen knife', 'Tiara', 'Tiger', + 'Bow and arrow', 'Candy', 'Rhinoceros', 'Shark', 'Cricket ball', + 'Doughnut', 'Plumbing fixture', 'Camel', 'Polar bear', 'Coin', + 'Printer', 'Blender', 'Giraffe', 'Billiard table', 'Kettle', + 'Dinosaur', 'Pineapple', 'Zucchini', 'Jug', 'Barge', 'Teapot', + 'Golf ball', 'Binoculars', 'Scissors', 'Hot dog', 'Door handle', + 'Seahorse', 'Bathtub', 'Leopard', 'Centipede', 'Grapefruit', 'Snowman', + 'Cheetah', 'Alarm clock', 'Grape', 'Wrench', 'Wok', 'Bell pepper', + 'Cake stand', 'Barrel', 'Woodpecker', 'Flute', 'Corded phone', + 'Willow', 'Punching bag', 'Pomegranate', 'Telephone', 'Pear', + 'Common fig', 'Bench', 'Wood-burning stove', 'Burrito', 'Nail', + 'Turtle', 'Submarine sandwich', 'Drinking straw', 'Peach', 'Popcorn', + 'Frying pan', 'Picnic basket', 'Honeycomb', 'Envelope', 'Mango', + 'Cutting board', 'Pitcher', 'Stationary bicycle', 'Dumbbell', + 'Personal care', 'Dog bed', 'Snowmobile', 'Oboe', 'Briefcase', + 'Squash', 'Tick', 'Slow cooker', 'Coffeemaker', 'Measuring cup', + 'Crutch', 'Stretcher', 'Screwdriver', 'Flashlight', 'Spatula', + 'Pressure cooker', 'Ring binder', 'Beaker', 'Torch', 'Winter melon' + ] + + +def oid_v6_classes(): + return [ + 'Tortoise', 'Container', 'Magpie', 'Sea turtle', 'Football', + 'Ambulance', 'Ladder', 'Toothbrush', 'Syringe', 'Sink', 'Toy', + 'Organ (Musical Instrument)', 'Cassette deck', 'Apple', 'Human eye', + 'Cosmetics', 'Paddle', 'Snowman', 'Beer', 'Chopsticks', 'Human beard', + 'Bird', 'Parking meter', 'Traffic light', 'Croissant', 'Cucumber', + 'Radish', 'Towel', 'Doll', 'Skull', 'Washing machine', 'Glove', 'Tick', + 'Belt', 'Sunglasses', 'Banjo', 'Cart', 'Ball', 'Backpack', 'Bicycle', + 'Home appliance', 'Centipede', 'Boat', 'Surfboard', 'Boot', + 'Headphones', 'Hot dog', 'Shorts', 'Fast food', 'Bus', 'Boy', + 'Screwdriver', 'Bicycle wheel', 'Barge', 'Laptop', 'Miniskirt', + 'Drill (Tool)', 'Dress', 'Bear', 'Waffle', 'Pancake', 'Brown bear', + 'Woodpecker', 'Blue jay', 'Pretzel', 'Bagel', 'Tower', 'Teapot', + 'Person', 'Bow and arrow', 'Swimwear', 'Beehive', 'Brassiere', 'Bee', + 'Bat (Animal)', 'Starfish', 'Popcorn', 'Burrito', 'Chainsaw', + 'Balloon', 'Wrench', 'Tent', 'Vehicle registration plate', 'Lantern', + 'Toaster', 'Flashlight', 'Billboard', 'Tiara', 'Limousine', 'Necklace', + 'Carnivore', 'Scissors', 'Stairs', 'Computer keyboard', 'Printer', + 'Traffic sign', 'Chair', 'Shirt', 'Poster', 'Cheese', 'Sock', + 'Fire hydrant', 'Land vehicle', 'Earrings', 'Tie', 'Watercraft', + 'Cabinetry', 'Suitcase', 'Muffin', 'Bidet', 'Snack', 'Snowmobile', + 'Clock', 'Medical equipment', 'Cattle', 'Cello', 'Jet ski', 'Camel', + 'Coat', 'Suit', 'Desk', 'Cat', 'Bronze sculpture', 'Juice', 'Gondola', + 'Beetle', 'Cannon', 'Computer mouse', 'Cookie', 'Office building', + 'Fountain', 'Coin', 'Calculator', 'Cocktail', 'Computer monitor', + 'Box', 'Stapler', 'Christmas tree', 'Cowboy hat', 'Hiking equipment', + 'Studio couch', 'Drum', 'Dessert', 'Wine rack', 'Drink', 'Zucchini', + 'Ladle', 'Human mouth', 'Dairy Product', 'Dice', 'Oven', 'Dinosaur', + 'Ratchet (Device)', 'Couch', 'Cricket ball', 'Winter melon', 'Spatula', + 'Whiteboard', 'Pencil sharpener', 'Door', 'Hat', 'Shower', 'Eraser', + 'Fedora', 'Guacamole', 'Dagger', 'Scarf', 'Dolphin', 'Sombrero', + 'Tin can', 'Mug', 'Tap', 'Harbor seal', 'Stretcher', 'Can opener', + 'Goggles', 'Human body', 'Roller skates', 'Coffee cup', + 'Cutting board', 'Blender', 'Plumbing fixture', 'Stop sign', + 'Office supplies', 'Volleyball (Ball)', 'Vase', 'Slow cooker', + 'Wardrobe', 'Coffee', 'Whisk', 'Paper towel', 'Personal care', 'Food', + 'Sun hat', 'Tree house', 'Flying disc', 'Skirt', 'Gas stove', + 'Salt and pepper shakers', 'Mechanical fan', 'Face powder', 'Fax', + 'Fruit', 'French fries', 'Nightstand', 'Barrel', 'Kite', 'Tart', + 'Treadmill', 'Fox', 'Flag', 'French horn', 'Window blind', + 'Human foot', 'Golf cart', 'Jacket', 'Egg (Food)', 'Street light', + 'Guitar', 'Pillow', 'Human leg', 'Isopod', 'Grape', 'Human ear', + 'Power plugs and sockets', 'Panda', 'Giraffe', 'Woman', 'Door handle', + 'Rhinoceros', 'Bathtub', 'Goldfish', 'Houseplant', 'Goat', + 'Baseball bat', 'Baseball glove', 'Mixing bowl', + 'Marine invertebrates', 'Kitchen utensil', 'Light switch', 'House', + 'Horse', 'Stationary bicycle', 'Hammer', 'Ceiling fan', 'Sofa bed', + 'Adhesive tape', 'Harp', 'Sandal', 'Bicycle helmet', 'Saucer', + 'Harpsichord', 'Human hair', 'Heater', 'Harmonica', 'Hamster', + 'Curtain', 'Bed', 'Kettle', 'Fireplace', 'Scale', 'Drinking straw', + 'Insect', 'Hair dryer', 'Kitchenware', 'Indoor rower', 'Invertebrate', + 'Food processor', 'Bookcase', 'Refrigerator', 'Wood-burning stove', + 'Punching bag', 'Common fig', 'Cocktail shaker', 'Jaguar (Animal)', + 'Golf ball', 'Fashion accessory', 'Alarm clock', 'Filing cabinet', + 'Artichoke', 'Table', 'Tableware', 'Kangaroo', 'Koala', 'Knife', + 'Bottle', 'Bottle opener', 'Lynx', 'Lavender (Plant)', 'Lighthouse', + 'Dumbbell', 'Human head', 'Bowl', 'Humidifier', 'Porch', 'Lizard', + 'Billiard table', 'Mammal', 'Mouse', 'Motorcycle', + 'Musical instrument', 'Swim cap', 'Frying pan', 'Snowplow', + 'Bathroom cabinet', 'Missile', 'Bust', 'Man', 'Waffle iron', 'Milk', + 'Ring binder', 'Plate', 'Mobile phone', 'Baked goods', 'Mushroom', + 'Crutch', 'Pitcher (Container)', 'Mirror', 'Personal flotation device', + 'Table tennis racket', 'Pencil case', 'Musical keyboard', 'Scoreboard', + 'Briefcase', 'Kitchen knife', 'Nail (Construction)', 'Tennis ball', + 'Plastic bag', 'Oboe', 'Chest of drawers', 'Ostrich', 'Piano', 'Girl', + 'Plant', 'Potato', 'Hair spray', 'Sports equipment', 'Pasta', + 'Penguin', 'Pumpkin', 'Pear', 'Infant bed', 'Polar bear', 'Mixer', + 'Cupboard', 'Jacuzzi', 'Pizza', 'Digital clock', 'Pig', 'Reptile', + 'Rifle', 'Lipstick', 'Skateboard', 'Raven', 'High heels', 'Red panda', + 'Rose', 'Rabbit', 'Sculpture', 'Saxophone', 'Shotgun', 'Seafood', + 'Submarine sandwich', 'Snowboard', 'Sword', 'Picture frame', 'Sushi', + 'Loveseat', 'Ski', 'Squirrel', 'Tripod', 'Stethoscope', 'Submarine', + 'Scorpion', 'Segway', 'Training bench', 'Snake', 'Coffee table', + 'Skyscraper', 'Sheep', 'Television', 'Trombone', 'Tea', 'Tank', 'Taco', + 'Telephone', 'Torch', 'Tiger', 'Strawberry', 'Trumpet', 'Tree', + 'Tomato', 'Train', 'Tool', 'Picnic basket', 'Cooking spray', + 'Trousers', 'Bowling equipment', 'Football helmet', 'Truck', + 'Measuring cup', 'Coffeemaker', 'Violin', 'Vehicle', 'Handbag', + 'Paper cutter', 'Wine', 'Weapon', 'Wheel', 'Worm', 'Wok', 'Whale', + 'Zebra', 'Auto part', 'Jug', 'Pizza cutter', 'Cream', 'Monkey', 'Lion', + 'Bread', 'Platter', 'Chicken', 'Eagle', 'Helicopter', 'Owl', 'Duck', + 'Turtle', 'Hippopotamus', 'Crocodile', 'Toilet', 'Toilet paper', + 'Squid', 'Clothing', 'Footwear', 'Lemon', 'Spider', 'Deer', 'Frog', + 'Banana', 'Rocket', 'Wine glass', 'Countertop', 'Tablet computer', + 'Waste container', 'Swimming pool', 'Dog', 'Book', 'Elephant', 'Shark', + 'Candle', 'Leopard', 'Axe', 'Hand dryer', 'Soap dispenser', + 'Porcupine', 'Flower', 'Canary', 'Cheetah', 'Palm tree', 'Hamburger', + 'Maple', 'Building', 'Fish', 'Lobster', 'Garden Asparagus', + 'Furniture', 'Hedgehog', 'Airplane', 'Spoon', 'Otter', 'Bull', + 'Oyster', 'Horizontal bar', 'Convenience store', 'Bomb', 'Bench', + 'Ice cream', 'Caterpillar', 'Butterfly', 'Parachute', 'Orange', + 'Antelope', 'Beaker', 'Moths and butterflies', 'Window', 'Closet', + 'Castle', 'Jellyfish', 'Goose', 'Mule', 'Swan', 'Peach', 'Coconut', + 'Seat belt', 'Raccoon', 'Chisel', 'Fork', 'Lamp', 'Camera', + 'Squash (Plant)', 'Racket', 'Human face', 'Human arm', 'Vegetable', + 'Diaper', 'Unicycle', 'Falcon', 'Chime', 'Snail', 'Shellfish', + 'Cabbage', 'Carrot', 'Mango', 'Jeans', 'Flowerpot', 'Pineapple', + 'Drawer', 'Stool', 'Envelope', 'Cake', 'Dragonfly', 'Common sunflower', + 'Microwave oven', 'Honeycomb', 'Marine mammal', 'Sea lion', 'Ladybug', + 'Shelf', 'Watch', 'Candy', 'Salad', 'Parrot', 'Handgun', 'Sparrow', + 'Van', 'Grinder', 'Spice rack', 'Light bulb', 'Corded phone', + 'Sports uniform', 'Tennis racket', 'Wall clock', 'Serving tray', + 'Kitchen & dining room table', 'Dog bed', 'Cake stand', + 'Cat furniture', 'Bathroom accessory', 'Facial tissue holder', + 'Pressure cooker', 'Kitchen appliance', 'Tire', 'Ruler', + 'Luggage and bags', 'Microphone', 'Broccoli', 'Umbrella', 'Pastry', + 'Grapefruit', 'Band-aid', 'Animal', 'Bell pepper', 'Turkey', 'Lily', + 'Pomegranate', 'Doughnut', 'Glasses', 'Human nose', 'Pen', 'Ant', + 'Car', 'Aircraft', 'Human hand', 'Skunk', 'Teddy bear', 'Watermelon', + 'Cantaloupe', 'Dishwasher', 'Flute', 'Balance beam', 'Sandwich', + 'Shrimp', 'Sewing machine', 'Binoculars', 'Rays and skates', 'Ipod', + 'Accordion', 'Willow', 'Crab', 'Crown', 'Seahorse', 'Perfume', + 'Alpaca', 'Taxi', 'Canoe', 'Remote control', 'Wheelchair', + 'Rugby ball', 'Armadillo', 'Maracas', 'Helmet' + ] + + +dataset_aliases = { + 'voc': ['voc', 'pascal_voc', 'voc07', 'voc12'], + 'imagenet_det': ['det', 'imagenet_det', 'ilsvrc_det'], + 'imagenet_vid': ['vid', 'imagenet_vid', 'ilsvrc_vid'], + 'coco': ['coco', 'mscoco', 'ms_coco'], + 'wider_face': ['WIDERFaceDataset', 'wider_face', 'WIDERFace'], + 'cityscapes': ['cityscapes'], + 'oid_challenge': ['oid_challenge', 'openimages_challenge'], + 'oid_v6': ['oid_v6', 'openimages_v6'] +} + + +def get_classes(dataset): + """Get class names of a dataset.""" + alias2name = {} + for name, aliases in dataset_aliases.items(): + for alias in aliases: + alias2name[alias] = name + + if mmcv.is_str(dataset): + if dataset in alias2name: + labels = eval(alias2name[dataset] + '_classes()') + else: + raise ValueError(f'Unrecognized dataset: {dataset}') + else: + raise TypeError(f'dataset must a str, but got {type(dataset)}') + return labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/eval_hooks.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/eval_hooks.py new file mode 100644 index 000000000..7c1fbe968 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/eval_hooks.py @@ -0,0 +1,130 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import bisect +import os.path as osp + +import mmcv +import torch.distributed as dist +from mmcv.runner import DistEvalHook as BaseDistEvalHook +from mmcv.runner import EvalHook as BaseEvalHook +from torch.nn.modules.batchnorm import _BatchNorm + + +def _calc_dynamic_intervals(start_interval, dynamic_interval_list): + assert mmcv.is_list_of(dynamic_interval_list, tuple) + + dynamic_milestones = [0] + dynamic_milestones.extend( + [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) + dynamic_intervals = [start_interval] + dynamic_intervals.extend( + [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) + return dynamic_milestones, dynamic_intervals + + +class EvalHook(BaseEvalHook): + + def __init__(self, *args, dynamic_intervals=None, **kwargs): + super(EvalHook, self).__init__(*args, **kwargs) + + self.use_dynamic_intervals = dynamic_intervals is not None + if self.use_dynamic_intervals: + self.dynamic_milestones, self.dynamic_intervals = \ + _calc_dynamic_intervals(self.interval, dynamic_intervals) + + def _decide_interval(self, runner): + if self.use_dynamic_intervals: + progress = runner.epoch if self.by_epoch else runner.iter + step = bisect.bisect(self.dynamic_milestones, (progress + 1)) + # Dynamically modify the evaluation interval + self.interval = self.dynamic_intervals[step - 1] + + def before_train_epoch(self, runner): + """Evaluate the model only at the start of training by epoch.""" + self._decide_interval(runner) + super().before_train_epoch(runner) + + def before_train_iter(self, runner): + self._decide_interval(runner) + super().before_train_iter(runner) + + def _do_evaluate(self, runner): + """perform evaluation and save ckpt.""" + if not self._should_evaluate(runner): + return + + from mmdet.apis import single_gpu_test + results = single_gpu_test(runner.model, self.dataloader, show=False) + runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) + key_score = self.evaluate(runner, results) + # the key_score may be `None` so it needs to skip the action to save + # the best checkpoint + if self.save_best and key_score: + self._save_ckpt(runner, key_score) + + +# Note: Considering that MMCV's EvalHook updated its interface in V1.3.16, +# in order to avoid strong version dependency, we did not directly +# inherit EvalHook but BaseDistEvalHook. +class DistEvalHook(BaseDistEvalHook): + + def __init__(self, *args, dynamic_intervals=None, **kwargs): + super(DistEvalHook, self).__init__(*args, **kwargs) + + self.use_dynamic_intervals = dynamic_intervals is not None + if self.use_dynamic_intervals: + self.dynamic_milestones, self.dynamic_intervals = \ + _calc_dynamic_intervals(self.interval, dynamic_intervals) + + def _decide_interval(self, runner): + if self.use_dynamic_intervals: + progress = runner.epoch if self.by_epoch else runner.iter + step = bisect.bisect(self.dynamic_milestones, (progress + 1)) + # Dynamically modify the evaluation interval + self.interval = self.dynamic_intervals[step - 1] + + def before_train_epoch(self, runner): + """Evaluate the model only at the start of training by epoch.""" + self._decide_interval(runner) + super().before_train_epoch(runner) + + def before_train_iter(self, runner): + self._decide_interval(runner) + super().before_train_iter(runner) + + def _do_evaluate(self, runner): + """perform evaluation and save ckpt.""" + # Synchronization of BatchNorm's buffer (running_mean + # and running_var) is not supported in the DDP of pytorch, + # which may cause the inconsistent performance of models in + # different ranks, so we broadcast BatchNorm's buffers + # of rank 0 to other ranks to avoid this. + if self.broadcast_bn_buffer: + model = runner.model + for name, module in model.named_modules(): + if isinstance(module, + _BatchNorm) and module.track_running_stats: + dist.broadcast(module.running_var, 0) + dist.broadcast(module.running_mean, 0) + + if not self._should_evaluate(runner): + return + + tmpdir = self.tmpdir + if tmpdir is None: + tmpdir = osp.join(runner.work_dir, '.eval_hook') + + from mmdet.apis import multi_gpu_test + results = multi_gpu_test( + runner.model, + self.dataloader, + tmpdir=tmpdir, + gpu_collect=self.gpu_collect) + if runner.rank == 0: + print('\n') + runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) + key_score = self.evaluate(runner, results) + + # the key_score may be `None` so it needs to skip + # the action to save the best checkpoint + if self.save_best and key_score: + self._save_ckpt(runner, key_score) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/mean_ap.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/mean_ap.py new file mode 100644 index 000000000..fc1274aef --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/mean_ap.py @@ -0,0 +1,753 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from multiprocessing import Pool + +import mmcv +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from .bbox_overlaps import bbox_overlaps +from .class_names import get_classes + + +def average_precision(recalls, precisions, mode='area'): + """Calculate average precision (for single or multiple scales). + + Args: + recalls (ndarray): shape (num_scales, num_dets) or (num_dets, ) + precisions (ndarray): shape (num_scales, num_dets) or (num_dets, ) + mode (str): 'area' or '11points', 'area' means calculating the area + under precision-recall curve, '11points' means calculating + the average precision of recalls at [0, 0.1, ..., 1] + + Returns: + float or ndarray: calculated average precision + """ + no_scale = False + if recalls.ndim == 1: + no_scale = True + recalls = recalls[np.newaxis, :] + precisions = precisions[np.newaxis, :] + assert recalls.shape == precisions.shape and recalls.ndim == 2 + num_scales = recalls.shape[0] + ap = np.zeros(num_scales, dtype=np.float32) + if mode == 'area': + zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) + ones = np.ones((num_scales, 1), dtype=recalls.dtype) + mrec = np.hstack((zeros, recalls, ones)) + mpre = np.hstack((zeros, precisions, zeros)) + for i in range(mpre.shape[1] - 1, 0, -1): + mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) + for i in range(num_scales): + ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] + ap[i] = np.sum( + (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) + elif mode == '11points': + for i in range(num_scales): + for thr in np.arange(0, 1 + 1e-3, 0.1): + precs = precisions[i, recalls[i, :] >= thr] + prec = precs.max() if precs.size > 0 else 0 + ap[i] += prec + ap /= 11 + else: + raise ValueError( + 'Unrecognized mode, only "area" and "11points" are supported') + if no_scale: + ap = ap[0] + return ap + + +def tpfp_imagenet(det_bboxes, + gt_bboxes, + gt_bboxes_ignore=None, + default_iou_thr=0.5, + area_ranges=None, + use_legacy_coordinate=False): + """Check if detected bboxes are true positive or false positive. + + Args: + det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5). + gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4). + gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image, + of shape (k, 4). Default: None + default_iou_thr (float): IoU threshold to be considered as matched for + medium and large bboxes (small ones have special rules). + Default: 0.5. + area_ranges (list[tuple] | None): Range of bbox areas to be evaluated, + in the format [(min1, max1), (min2, max2), ...]. Default: None. + use_legacy_coordinate (bool): Whether to use coordinate system in + mmdet v1.x. which means width, height should be + calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively. + Default: False. + + Returns: + tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of + each array is (num_scales, m). + """ + + if not use_legacy_coordinate: + extra_length = 0. + else: + extra_length = 1. + + # an indicator of ignored gts + gt_ignore_inds = np.concatenate( + (np.zeros(gt_bboxes.shape[0], dtype=np.bool), + np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool))) + # stack gt_bboxes and gt_bboxes_ignore for convenience + gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore)) + + num_dets = det_bboxes.shape[0] + num_gts = gt_bboxes.shape[0] + if area_ranges is None: + area_ranges = [(None, None)] + num_scales = len(area_ranges) + # tp and fp are of shape (num_scales, num_gts), each row is tp or fp + # of a certain scale. + tp = np.zeros((num_scales, num_dets), dtype=np.float32) + fp = np.zeros((num_scales, num_dets), dtype=np.float32) + if gt_bboxes.shape[0] == 0: + if area_ranges == [(None, None)]: + fp[...] = 1 + else: + det_areas = ( + det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * ( + det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length) + for i, (min_area, max_area) in enumerate(area_ranges): + fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 + return tp, fp + ious = bbox_overlaps( + det_bboxes, gt_bboxes - 1, use_legacy_coordinate=use_legacy_coordinate) + gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length + gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length + iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)), + default_iou_thr) + # sort all detections by scores in descending order + sort_inds = np.argsort(-det_bboxes[:, -1]) + for k, (min_area, max_area) in enumerate(area_ranges): + gt_covered = np.zeros(num_gts, dtype=bool) + # if no area range is specified, gt_area_ignore is all False + if min_area is None: + gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) + else: + gt_areas = gt_w * gt_h + gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) + for i in sort_inds: + max_iou = -1 + matched_gt = -1 + # find best overlapped available gt + for j in range(num_gts): + # different from PASCAL VOC: allow finding other gts if the + # best overlapped ones are already matched by other det bboxes + if gt_covered[j]: + continue + elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou: + max_iou = ious[i, j] + matched_gt = j + # there are 4 cases for a det bbox: + # 1. it matches a gt, tp = 1, fp = 0 + # 2. it matches an ignored gt, tp = 0, fp = 0 + # 3. it matches no gt and within area range, tp = 0, fp = 1 + # 4. it matches no gt but is beyond area range, tp = 0, fp = 0 + if matched_gt >= 0: + gt_covered[matched_gt] = 1 + if not (gt_ignore_inds[matched_gt] + or gt_area_ignore[matched_gt]): + tp[k, i] = 1 + elif min_area is None: + fp[k, i] = 1 + else: + bbox = det_bboxes[i, :4] + area = (bbox[2] - bbox[0] + extra_length) * ( + bbox[3] - bbox[1] + extra_length) + if area >= min_area and area < max_area: + fp[k, i] = 1 + return tp, fp + + +def tpfp_default(det_bboxes, + gt_bboxes, + gt_bboxes_ignore=None, + iou_thr=0.5, + area_ranges=None, + use_legacy_coordinate=False): + """Check if detected bboxes are true positive or false positive. + + Args: + det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5). + gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4). + gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image, + of shape (k, 4). Default: None + iou_thr (float): IoU threshold to be considered as matched. + Default: 0.5. + area_ranges (list[tuple] | None): Range of bbox areas to be + evaluated, in the format [(min1, max1), (min2, max2), ...]. + Default: None. + use_legacy_coordinate (bool): Whether to use coordinate system in + mmdet v1.x. which means width, height should be + calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively. + Default: False. + + Returns: + tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of + each array is (num_scales, m). + """ + + if not use_legacy_coordinate: + extra_length = 0. + else: + extra_length = 1. + + # an indicator of ignored gts + gt_ignore_inds = np.concatenate( + (np.zeros(gt_bboxes.shape[0], dtype=np.bool), + np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool))) + # stack gt_bboxes and gt_bboxes_ignore for convenience + gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore)) + + num_dets = det_bboxes.shape[0] + num_gts = gt_bboxes.shape[0] + if area_ranges is None: + area_ranges = [(None, None)] + num_scales = len(area_ranges) + # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of + # a certain scale + tp = np.zeros((num_scales, num_dets), dtype=np.float32) + fp = np.zeros((num_scales, num_dets), dtype=np.float32) + + # if there is no gt bboxes in this image, then all det bboxes + # within area range are false positives + if gt_bboxes.shape[0] == 0: + if area_ranges == [(None, None)]: + fp[...] = 1 + else: + det_areas = ( + det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * ( + det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length) + for i, (min_area, max_area) in enumerate(area_ranges): + fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 + return tp, fp + + ious = bbox_overlaps( + det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate) + # for each det, the max iou with all gts + ious_max = ious.max(axis=1) + # for each det, which gt overlaps most with it + ious_argmax = ious.argmax(axis=1) + # sort all dets in descending order by scores + sort_inds = np.argsort(-det_bboxes[:, -1]) + for k, (min_area, max_area) in enumerate(area_ranges): + gt_covered = np.zeros(num_gts, dtype=bool) + # if no area range is specified, gt_area_ignore is all False + if min_area is None: + gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) + else: + gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * ( + gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length) + gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) + for i in sort_inds: + if ious_max[i] >= iou_thr: + matched_gt = ious_argmax[i] + if not (gt_ignore_inds[matched_gt] + or gt_area_ignore[matched_gt]): + if not gt_covered[matched_gt]: + gt_covered[matched_gt] = True + tp[k, i] = 1 + else: + fp[k, i] = 1 + # otherwise ignore this detected bbox, tp = 0, fp = 0 + elif min_area is None: + fp[k, i] = 1 + else: + bbox = det_bboxes[i, :4] + area = (bbox[2] - bbox[0] + extra_length) * ( + bbox[3] - bbox[1] + extra_length) + if area >= min_area and area < max_area: + fp[k, i] = 1 + return tp, fp + + +def tpfp_openimages(det_bboxes, + gt_bboxes, + gt_bboxes_ignore=None, + iou_thr=0.5, + area_ranges=None, + use_legacy_coordinate=False, + gt_bboxes_group_of=None, + use_group_of=True, + ioa_thr=0.5): + """Check if detected bboxes are true positive or false positive. + + Args: + det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5). + gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4). + gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image, + of shape (k, 4). Default: None + iou_thr (float): IoU threshold to be considered as matched. + Default: 0.5. + area_ranges (list[tuple] | None): Range of bbox areas to be + evaluated, in the format [(min1, max1), (min2, max2), ...]. + Default: None. + use_legacy_coordinate (bool): Whether to use coordinate system in + mmdet v1.x. which means width, height should be + calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively. + Default: False. + gt_bboxes_group_of (ndarray): GT group_of of this image, of shape + (k, 1). Default: None + use_group_of (bool): Whether to use group of when calculate TP and FP, + which only used in OpenImages evaluation. Default: True. + ioa_thr (float | None): IoA threshold to be considered as matched, + which only used in OpenImages evaluation. Default: 0.5. + + Returns: + tuple[np.ndarray]: Returns a tuple (tp, fp, det_bboxes), where + (tp, fp) whose elements are 0 and 1. The shape of each array is + (num_scales, m). (det_bboxes) whose will filter those are not + matched by group of gts when processing Open Images evaluation. + The shape is (num_scales, m). + """ + + if not use_legacy_coordinate: + extra_length = 0. + else: + extra_length = 1. + + # an indicator of ignored gts + gt_ignore_inds = np.concatenate( + (np.zeros(gt_bboxes.shape[0], dtype=np.bool), + np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool))) + # stack gt_bboxes and gt_bboxes_ignore for convenience + gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore)) + + num_dets = det_bboxes.shape[0] + num_gts = gt_bboxes.shape[0] + if area_ranges is None: + area_ranges = [(None, None)] + num_scales = len(area_ranges) + # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of + # a certain scale + tp = np.zeros((num_scales, num_dets), dtype=np.float32) + fp = np.zeros((num_scales, num_dets), dtype=np.float32) + + # if there is no gt bboxes in this image, then all det bboxes + # within area range are false positives + if gt_bboxes.shape[0] == 0: + if area_ranges == [(None, None)]: + fp[...] = 1 + else: + det_areas = ( + det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * ( + det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length) + for i, (min_area, max_area) in enumerate(area_ranges): + fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 + return tp, fp, det_bboxes + + if gt_bboxes_group_of is not None and use_group_of: + # if handle group-of boxes, divided gt boxes into two parts: + # non-group-of and group-of.Then calculate ious and ioas through + # non-group-of group-of gts respectively. This only used in + # OpenImages evaluation. + assert gt_bboxes_group_of.shape[0] == gt_bboxes.shape[0] + non_group_gt_bboxes = gt_bboxes[~gt_bboxes_group_of] + group_gt_bboxes = gt_bboxes[gt_bboxes_group_of] + num_gts_group = group_gt_bboxes.shape[0] + ious = bbox_overlaps(det_bboxes, non_group_gt_bboxes) + ioas = bbox_overlaps(det_bboxes, group_gt_bboxes, mode='iof') + else: + # if not consider group-of boxes, only calculate ious through gt boxes + ious = bbox_overlaps( + det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate) + ioas = None + + if ious.shape[1] > 0: + # for each det, the max iou with all gts + ious_max = ious.max(axis=1) + # for each det, which gt overlaps most with it + ious_argmax = ious.argmax(axis=1) + # sort all dets in descending order by scores + sort_inds = np.argsort(-det_bboxes[:, -1]) + for k, (min_area, max_area) in enumerate(area_ranges): + gt_covered = np.zeros(num_gts, dtype=bool) + # if no area range is specified, gt_area_ignore is all False + if min_area is None: + gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) + else: + gt_areas = ( + gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * ( + gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length) + gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) + for i in sort_inds: + if ious_max[i] >= iou_thr: + matched_gt = ious_argmax[i] + if not (gt_ignore_inds[matched_gt] + or gt_area_ignore[matched_gt]): + if not gt_covered[matched_gt]: + gt_covered[matched_gt] = True + tp[k, i] = 1 + else: + fp[k, i] = 1 + # otherwise ignore this detected bbox, tp = 0, fp = 0 + elif min_area is None: + fp[k, i] = 1 + else: + bbox = det_bboxes[i, :4] + area = (bbox[2] - bbox[0] + extra_length) * ( + bbox[3] - bbox[1] + extra_length) + if area >= min_area and area < max_area: + fp[k, i] = 1 + else: + # if there is no no-group-of gt bboxes in this image, + # then all det bboxes within area range are false positives. + # Only used in OpenImages evaluation. + if area_ranges == [(None, None)]: + fp[...] = 1 + else: + det_areas = ( + det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * ( + det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length) + for i, (min_area, max_area) in enumerate(area_ranges): + fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 + + if ioas is None or ioas.shape[1] <= 0: + return tp, fp, det_bboxes + else: + # The evaluation of group-of TP and FP are done in two stages: + # 1. All detections are first matched to non group-of boxes; true + # positives are determined. + # 2. Detections that are determined as false positives are matched + # against group-of boxes and calculated group-of TP and FP. + # Only used in OpenImages evaluation. + det_bboxes_group = np.zeros( + (num_scales, ioas.shape[1], det_bboxes.shape[1]), dtype=float) + match_group_of = np.zeros((num_scales, num_dets), dtype=bool) + tp_group = np.zeros((num_scales, num_gts_group), dtype=np.float32) + ioas_max = ioas.max(axis=1) + # for each det, which gt overlaps most with it + ioas_argmax = ioas.argmax(axis=1) + # sort all dets in descending order by scores + sort_inds = np.argsort(-det_bboxes[:, -1]) + for k, (min_area, max_area) in enumerate(area_ranges): + box_is_covered = tp[k] + # if no area range is specified, gt_area_ignore is all False + if min_area is None: + gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) + else: + gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( + gt_bboxes[:, 3] - gt_bboxes[:, 1]) + gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) + for i in sort_inds: + matched_gt = ioas_argmax[i] + if not box_is_covered[i]: + if ioas_max[i] >= ioa_thr: + if not (gt_ignore_inds[matched_gt] + or gt_area_ignore[matched_gt]): + if not tp_group[k, matched_gt]: + tp_group[k, matched_gt] = 1 + match_group_of[k, i] = True + else: + match_group_of[k, i] = True + + if det_bboxes_group[k, matched_gt, -1] < \ + det_bboxes[i, -1]: + det_bboxes_group[k, matched_gt] = \ + det_bboxes[i] + + fp_group = (tp_group <= 0).astype(float) + tps = [] + fps = [] + # concatenate tp, fp, and det-boxes which not matched group of + # gt boxes and tp_group, fp_group, and det_bboxes_group which + # matched group of boxes respectively. + for i in range(num_scales): + tps.append( + np.concatenate((tp[i][~match_group_of[i]], tp_group[i]))) + fps.append( + np.concatenate((fp[i][~match_group_of[i]], fp_group[i]))) + det_bboxes = np.concatenate( + (det_bboxes[~match_group_of[i]], det_bboxes_group[i])) + + tp = np.vstack(tps) + fp = np.vstack(fps) + return tp, fp, det_bboxes + + +def get_cls_results(det_results, annotations, class_id): + """Get det results and gt information of a certain class. + + Args: + det_results (list[list]): Same as `eval_map()`. + annotations (list[dict]): Same as `eval_map()`. + class_id (int): ID of a specific class. + + Returns: + tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes + """ + cls_dets = [img_res[class_id] for img_res in det_results] + cls_gts = [] + cls_gts_ignore = [] + for ann in annotations: + gt_inds = ann['labels'] == class_id + cls_gts.append(ann['bboxes'][gt_inds, :]) + + if ann.get('labels_ignore', None) is not None: + ignore_inds = ann['labels_ignore'] == class_id + cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :]) + else: + cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32)) + + return cls_dets, cls_gts, cls_gts_ignore + + +def get_cls_group_ofs(annotations, class_id): + """Get `gt_group_of` of a certain class, which is used in Open Images. + + Args: + annotations (list[dict]): Same as `eval_map()`. + class_id (int): ID of a specific class. + + Returns: + list[np.ndarray]: `gt_group_of` of a certain class. + """ + gt_group_ofs = [] + for ann in annotations: + gt_inds = ann['labels'] == class_id + if ann.get('gt_is_group_ofs', None) is not None: + gt_group_ofs.append(ann['gt_is_group_ofs'][gt_inds]) + else: + gt_group_ofs.append(np.empty((0, 1), dtype=np.bool)) + + return gt_group_ofs + + +def eval_map(det_results, + annotations, + scale_ranges=None, + iou_thr=0.5, + ioa_thr=None, + dataset=None, + logger=None, + tpfp_fn=None, + nproc=4, + use_legacy_coordinate=False, + use_group_of=False): + """Evaluate mAP of a dataset. + + Args: + det_results (list[list]): [[cls1_det, cls2_det, ...], ...]. + The outer list indicates images, and the inner list indicates + per-class detected bboxes. + annotations (list[dict]): Ground truth annotations where each item of + the list indicates an image. Keys of annotations are: + + - `bboxes`: numpy array of shape (n, 4) + - `labels`: numpy array of shape (n, ) + - `bboxes_ignore` (optional): numpy array of shape (k, 4) + - `labels_ignore` (optional): numpy array of shape (k, ) + scale_ranges (list[tuple] | None): Range of scales to be evaluated, + in the format [(min1, max1), (min2, max2), ...]. A range of + (32, 64) means the area range between (32**2, 64**2). + Default: None. + iou_thr (float): IoU threshold to be considered as matched. + Default: 0.5. + ioa_thr (float | None): IoA threshold to be considered as matched, + which only used in OpenImages evaluation. Default: None. + dataset (list[str] | str | None): Dataset name or dataset classes, + there are minor differences in metrics for different datasets, e.g. + "voc07", "imagenet_det", etc. Default: None. + logger (logging.Logger | str | None): The way to print the mAP + summary. See `mmcv.utils.print_log()` for details. Default: None. + tpfp_fn (callable | None): The function used to determine true/ + false positives. If None, :func:`tpfp_default` is used as default + unless dataset is 'det' or 'vid' (:func:`tpfp_imagenet` in this + case). If it is given as a function, then this function is used + to evaluate tp & fp. Default None. + nproc (int): Processes used for computing TP and FP. + Default: 4. + use_legacy_coordinate (bool): Whether to use coordinate system in + mmdet v1.x. which means width, height should be + calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively. + Default: False. + use_group_of (bool): Whether to use group of when calculate TP and FP, + which only used in OpenImages evaluation. Default: False. + + Returns: + tuple: (mAP, [dict, dict, ...]) + """ + assert len(det_results) == len(annotations) + if not use_legacy_coordinate: + extra_length = 0. + else: + extra_length = 1. + + num_imgs = len(det_results) + num_scales = len(scale_ranges) if scale_ranges is not None else 1 + num_classes = len(det_results[0]) # positive class num + area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges] + if scale_ranges is not None else None) + + pool = Pool(nproc) + eval_results = [] + for i in range(num_classes): + # get gt and det bboxes of this class + cls_dets, cls_gts, cls_gts_ignore = get_cls_results( + det_results, annotations, i) + # choose proper function according to datasets to compute tp and fp + if tpfp_fn is None: + if dataset in ['det', 'vid']: + tpfp_fn = tpfp_imagenet + elif dataset in ['oid_challenge', 'oid_v6'] \ + or use_group_of is True: + tpfp_fn = tpfp_openimages + else: + tpfp_fn = tpfp_default + if not callable(tpfp_fn): + raise ValueError( + f'tpfp_fn has to be a function or None, but got {tpfp_fn}') + args = [] + if use_group_of: + # used in Open Images Dataset evaluation + gt_group_ofs = get_cls_group_ofs(annotations, i) + args.append(gt_group_ofs) + args.append([use_group_of for _ in range(num_imgs)]) + if ioa_thr is not None: + args.append([ioa_thr for _ in range(num_imgs)]) + # compute tp and fp for each image with multiple processes + tpfp = pool.starmap( + tpfp_fn, + zip(cls_dets, cls_gts, cls_gts_ignore, + [iou_thr for _ in range(num_imgs)], + [area_ranges for _ in range(num_imgs)], + [use_legacy_coordinate for _ in range(num_imgs)], *args)) + if use_group_of: + tp, fp, cls_dets = tuple(zip(*tpfp)) + else: + tp, fp = tuple(zip(*tpfp)) + # calculate gt number of each scale + # ignored gts or gts beyond the specific scale are not counted + num_gts = np.zeros(num_scales, dtype=int) + for j, bbox in enumerate(cls_gts): + if area_ranges is None: + num_gts[0] += bbox.shape[0] + else: + gt_areas = (bbox[:, 2] - bbox[:, 0] + extra_length) * ( + bbox[:, 3] - bbox[:, 1] + extra_length) + for k, (min_area, max_area) in enumerate(area_ranges): + num_gts[k] += np.sum((gt_areas >= min_area) + & (gt_areas < max_area)) + # sort all det bboxes by score, also sort tp and fp + cls_dets = np.vstack(cls_dets) + num_dets = cls_dets.shape[0] + sort_inds = np.argsort(-cls_dets[:, -1]) + tp = np.hstack(tp)[:, sort_inds] + fp = np.hstack(fp)[:, sort_inds] + # calculate recall and precision with tp and fp + tp = np.cumsum(tp, axis=1) + fp = np.cumsum(fp, axis=1) + eps = np.finfo(np.float32).eps + recalls = tp / np.maximum(num_gts[:, np.newaxis], eps) + precisions = tp / np.maximum((tp + fp), eps) + # calculate AP + if scale_ranges is None: + recalls = recalls[0, :] + precisions = precisions[0, :] + num_gts = num_gts.item() + mode = 'area' if dataset != 'voc07' else '11points' + ap = average_precision(recalls, precisions, mode) + eval_results.append({ + 'num_gts': num_gts, + 'num_dets': num_dets, + 'recall': recalls, + 'precision': precisions, + 'ap': ap + }) + pool.close() + if scale_ranges is not None: + # shape (num_classes, num_scales) + all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results]) + all_num_gts = np.vstack( + [cls_result['num_gts'] for cls_result in eval_results]) + mean_ap = [] + for i in range(num_scales): + if np.any(all_num_gts[:, i] > 0): + mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean()) + else: + mean_ap.append(0.0) + else: + aps = [] + for cls_result in eval_results: + if cls_result['num_gts'] > 0: + aps.append(cls_result['ap']) + mean_ap = np.array(aps).mean().item() if aps else 0.0 + + print_map_summary( + mean_ap, eval_results, dataset, area_ranges, logger=logger) + + return mean_ap, eval_results + + +def print_map_summary(mean_ap, + results, + dataset=None, + scale_ranges=None, + logger=None): + """Print mAP and results of each class. + + A table will be printed to show the gts/dets/recall/AP of each class and + the mAP. + + Args: + mean_ap (float): Calculated from `eval_map()`. + results (list[dict]): Calculated from `eval_map()`. + dataset (list[str] | str | None): Dataset name or dataset classes. + scale_ranges (list[tuple] | None): Range of scales to be evaluated. + logger (logging.Logger | str | None): The way to print the mAP + summary. See `mmcv.utils.print_log()` for details. Default: None. + """ + + if logger == 'silent': + return + + if isinstance(results[0]['ap'], np.ndarray): + num_scales = len(results[0]['ap']) + else: + num_scales = 1 + + if scale_ranges is not None: + assert len(scale_ranges) == num_scales + + num_classes = len(results) + + recalls = np.zeros((num_scales, num_classes), dtype=np.float32) + aps = np.zeros((num_scales, num_classes), dtype=np.float32) + num_gts = np.zeros((num_scales, num_classes), dtype=int) + for i, cls_result in enumerate(results): + if cls_result['recall'].size > 0: + recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1] + aps[:, i] = cls_result['ap'] + num_gts[:, i] = cls_result['num_gts'] + + if dataset is None: + label_names = [str(i) for i in range(num_classes)] + elif mmcv.is_str(dataset): + label_names = get_classes(dataset) + else: + label_names = dataset + + if not isinstance(mean_ap, list): + mean_ap = [mean_ap] + + header = ['class', 'gts', 'dets', 'recall', 'ap'] + for i in range(num_scales): + if scale_ranges is not None: + print_log(f'Scale range {scale_ranges[i]}', logger=logger) + table_data = [header] + for j in range(num_classes): + row_data = [ + label_names[j], num_gts[i, j], results[j]['num_dets'], + f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}' + ] + table_data.append(row_data) + table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}']) + table = AsciiTable(table_data) + table.inner_footing_row_border = True + print_log('\n' + table.table, logger=logger) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/panoptic_utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/panoptic_utils.py new file mode 100644 index 000000000..10c9ad934 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/panoptic_utils.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# A custom value to distinguish instance ID and category ID; need to +# be greater than the number of categories. +# For a pixel in the panoptic result map: +# pan_id = ins_id * INSTANCE_OFFSET + cat_id +INSTANCE_OFFSET = 1000 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/recall.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/recall.py new file mode 100644 index 000000000..82b3c909b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/evaluation/recall.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections.abc import Sequence + +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from .bbox_overlaps import bbox_overlaps + + +def _recalls(all_ious, proposal_nums, thrs): + + img_num = all_ious.shape[0] + total_gt_num = sum([ious.shape[0] for ious in all_ious]) + + _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32) + for k, proposal_num in enumerate(proposal_nums): + tmp_ious = np.zeros(0) + for i in range(img_num): + ious = all_ious[i][:, :proposal_num].copy() + gt_ious = np.zeros((ious.shape[0])) + if ious.size == 0: + tmp_ious = np.hstack((tmp_ious, gt_ious)) + continue + for j in range(ious.shape[0]): + gt_max_overlaps = ious.argmax(axis=1) + max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps] + gt_idx = max_ious.argmax() + gt_ious[j] = max_ious[gt_idx] + box_idx = gt_max_overlaps[gt_idx] + ious[gt_idx, :] = -1 + ious[:, box_idx] = -1 + tmp_ious = np.hstack((tmp_ious, gt_ious)) + _ious[k, :] = tmp_ious + + _ious = np.fliplr(np.sort(_ious, axis=1)) + recalls = np.zeros((proposal_nums.size, thrs.size)) + for i, thr in enumerate(thrs): + recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num) + + return recalls + + +def set_recall_param(proposal_nums, iou_thrs): + """Check proposal_nums and iou_thrs and set correct format.""" + if isinstance(proposal_nums, Sequence): + _proposal_nums = np.array(proposal_nums) + elif isinstance(proposal_nums, int): + _proposal_nums = np.array([proposal_nums]) + else: + _proposal_nums = proposal_nums + + if iou_thrs is None: + _iou_thrs = np.array([0.5]) + elif isinstance(iou_thrs, Sequence): + _iou_thrs = np.array(iou_thrs) + elif isinstance(iou_thrs, float): + _iou_thrs = np.array([iou_thrs]) + else: + _iou_thrs = iou_thrs + + return _proposal_nums, _iou_thrs + + +def eval_recalls(gts, + proposals, + proposal_nums=None, + iou_thrs=0.5, + logger=None, + use_legacy_coordinate=False): + """Calculate recalls. + + Args: + gts (list[ndarray]): a list of arrays of shape (n, 4) + proposals (list[ndarray]): a list of arrays of shape (k, 4) or (k, 5) + proposal_nums (int | Sequence[int]): Top N proposals to be evaluated. + iou_thrs (float | Sequence[float]): IoU thresholds. Default: 0.5. + logger (logging.Logger | str | None): The way to print the recall + summary. See `mmcv.utils.print_log()` for details. Default: None. + use_legacy_coordinate (bool): Whether use coordinate system + in mmdet v1.x. "1" was added to both height and width + which means w, h should be + computed as 'x2 - x1 + 1` and 'y2 - y1 + 1'. Default: False. + + + Returns: + ndarray: recalls of different ious and proposal nums + """ + + img_num = len(gts) + assert img_num == len(proposals) + proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs) + all_ious = [] + for i in range(img_num): + if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: + scores = proposals[i][:, 4] + sort_idx = np.argsort(scores)[::-1] + img_proposal = proposals[i][sort_idx, :] + else: + img_proposal = proposals[i] + prop_num = min(img_proposal.shape[0], proposal_nums[-1]) + if gts[i] is None or gts[i].shape[0] == 0: + ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) + else: + ious = bbox_overlaps( + gts[i], + img_proposal[:prop_num, :4], + use_legacy_coordinate=use_legacy_coordinate) + all_ious.append(ious) + all_ious = np.array(all_ious) + recalls = _recalls(all_ious, proposal_nums, iou_thrs) + + print_recall_summary(recalls, proposal_nums, iou_thrs, logger=logger) + return recalls + + +def print_recall_summary(recalls, + proposal_nums, + iou_thrs, + row_idxs=None, + col_idxs=None, + logger=None): + """Print recalls in a table. + + Args: + recalls (ndarray): calculated from `bbox_recalls` + proposal_nums (ndarray or list): top N proposals + iou_thrs (ndarray or list): iou thresholds + row_idxs (ndarray): which rows(proposal nums) to print + col_idxs (ndarray): which cols(iou thresholds) to print + logger (logging.Logger | str | None): The way to print the recall + summary. See `mmcv.utils.print_log()` for details. Default: None. + """ + proposal_nums = np.array(proposal_nums, dtype=np.int32) + iou_thrs = np.array(iou_thrs) + if row_idxs is None: + row_idxs = np.arange(proposal_nums.size) + if col_idxs is None: + col_idxs = np.arange(iou_thrs.size) + row_header = [''] + iou_thrs[col_idxs].tolist() + table_data = [row_header] + for i, num in enumerate(proposal_nums[row_idxs]): + row = [f'{val:.3f}' for val in recalls[row_idxs[i], col_idxs].tolist()] + row.insert(0, num) + table_data.append(row) + table = AsciiTable(table_data) + print_log('\n' + table.table, logger=logger) + + +def plot_num_recall(recalls, proposal_nums): + """Plot Proposal_num-Recalls curve. + + Args: + recalls(ndarray or list): shape (k,) + proposal_nums(ndarray or list): same shape as `recalls` + """ + if isinstance(proposal_nums, np.ndarray): + _proposal_nums = proposal_nums.tolist() + else: + _proposal_nums = proposal_nums + if isinstance(recalls, np.ndarray): + _recalls = recalls.tolist() + else: + _recalls = recalls + + import matplotlib.pyplot as plt + f = plt.figure() + plt.plot([0] + _proposal_nums, [0] + _recalls) + plt.xlabel('Proposal num') + plt.ylabel('Recall') + plt.axis([0, proposal_nums.max(), 0, 1]) + f.show() + + +def plot_iou_recall(recalls, iou_thrs): + """Plot IoU-Recalls curve. + + Args: + recalls(ndarray or list): shape (k,) + iou_thrs(ndarray or list): same shape as `recalls` + """ + if isinstance(iou_thrs, np.ndarray): + _iou_thrs = iou_thrs.tolist() + else: + _iou_thrs = iou_thrs + if isinstance(recalls, np.ndarray): + _recalls = recalls.tolist() + else: + _recalls = recalls + + import matplotlib.pyplot as plt + f = plt.figure() + plt.plot(_iou_thrs + [1.0], _recalls + [0.]) + plt.xlabel('IoU') + plt.ylabel('Recall') + plt.axis([iou_thrs.min(), 1, 0, 1]) + f.show() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/export/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/__init__.py new file mode 100644 index 000000000..a8179c936 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/__init__.py @@ -0,0 +1,12 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .onnx_helper import (add_dummy_nms_for_onnx, dynamic_clip_for_onnx, + get_k_for_topk) +from .pytorch2onnx import (build_model_from_cfg, + generate_inputs_and_wrap_model, + preprocess_example_input) + +__all__ = [ + 'build_model_from_cfg', 'generate_inputs_and_wrap_model', + 'preprocess_example_input', 'get_k_for_topk', 'add_dummy_nms_for_onnx', + 'dynamic_clip_for_onnx' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/export/model_wrappers.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/model_wrappers.py new file mode 100644 index 000000000..2f62bb031 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/model_wrappers.py @@ -0,0 +1,183 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import warnings + +import numpy as np +import torch + +from mmdet.core import bbox2result +from mmdet.models import BaseDetector + + +class DeployBaseDetector(BaseDetector): + """DeployBaseDetector.""" + + def __init__(self, class_names, device_id): + super(DeployBaseDetector, self).__init__() + self.CLASSES = class_names + self.device_id = device_id + + def simple_test(self, img, img_metas, **kwargs): + raise NotImplementedError('This method is not implemented.') + + def aug_test(self, imgs, img_metas, **kwargs): + raise NotImplementedError('This method is not implemented.') + + def extract_feat(self, imgs): + raise NotImplementedError('This method is not implemented.') + + def forward_train(self, imgs, img_metas, **kwargs): + raise NotImplementedError('This method is not implemented.') + + def val_step(self, data, optimizer): + raise NotImplementedError('This method is not implemented.') + + def train_step(self, data, optimizer): + raise NotImplementedError('This method is not implemented.') + + def forward_test(self, *, img, img_metas, **kwargs): + raise NotImplementedError('This method is not implemented.') + + def async_simple_test(self, img, img_metas, **kwargs): + raise NotImplementedError('This method is not implemented.') + + def forward(self, img, img_metas, return_loss=True, **kwargs): + outputs = self.forward_test(img, img_metas, **kwargs) + batch_dets, batch_labels = outputs[:2] + batch_masks = outputs[2] if len(outputs) == 3 else None + batch_size = img[0].shape[0] + img_metas = img_metas[0] + results = [] + rescale = kwargs.get('rescale', True) + for i in range(batch_size): + dets, labels = batch_dets[i], batch_labels[i] + if rescale: + scale_factor = img_metas[i]['scale_factor'] + + if isinstance(scale_factor, (list, tuple, np.ndarray)): + assert len(scale_factor) == 4 + scale_factor = np.array(scale_factor)[None, :] # [1,4] + dets[:, :4] /= scale_factor + + if 'border' in img_metas[i]: + # offset pixel of the top-left corners between original image + # and padded/enlarged image, 'border' is used when exporting + # CornerNet and CentripetalNet to onnx + x_off = img_metas[i]['border'][2] + y_off = img_metas[i]['border'][0] + dets[:, [0, 2]] -= x_off + dets[:, [1, 3]] -= y_off + dets[:, :4] *= (dets[:, :4] > 0).astype(dets.dtype) + + dets_results = bbox2result(dets, labels, len(self.CLASSES)) + + if batch_masks is not None: + masks = batch_masks[i] + img_h, img_w = img_metas[i]['img_shape'][:2] + ori_h, ori_w = img_metas[i]['ori_shape'][:2] + masks = masks[:, :img_h, :img_w] + if rescale: + masks = masks.astype(np.float32) + masks = torch.from_numpy(masks) + masks = torch.nn.functional.interpolate( + masks.unsqueeze(0), size=(ori_h, ori_w)) + masks = masks.squeeze(0).detach().numpy() + if masks.dtype != np.bool: + masks = masks >= 0.5 + segms_results = [[] for _ in range(len(self.CLASSES))] + for j in range(len(dets)): + segms_results[labels[j]].append(masks[j]) + results.append((dets_results, segms_results)) + else: + results.append(dets_results) + return results + + +class ONNXRuntimeDetector(DeployBaseDetector): + """Wrapper for detector's inference with ONNXRuntime.""" + + def __init__(self, onnx_file, class_names, device_id): + super(ONNXRuntimeDetector, self).__init__(class_names, device_id) + import onnxruntime as ort + + # get the custom op path + ort_custom_op_path = '' + try: + from mmcv.ops import get_onnxruntime_op_path + ort_custom_op_path = get_onnxruntime_op_path() + except (ImportError, ModuleNotFoundError): + warnings.warn('If input model has custom op from mmcv, \ + you may have to build mmcv with ONNXRuntime from source.') + session_options = ort.SessionOptions() + # register custom op for onnxruntime + if osp.exists(ort_custom_op_path): + session_options.register_custom_ops_library(ort_custom_op_path) + sess = ort.InferenceSession(onnx_file, session_options) + providers = ['CPUExecutionProvider'] + options = [{}] + is_cuda_available = ort.get_device() == 'GPU' + if is_cuda_available: + providers.insert(0, 'CUDAExecutionProvider') + options.insert(0, {'device_id': device_id}) + + sess.set_providers(providers, options) + + self.sess = sess + self.io_binding = sess.io_binding() + self.output_names = [_.name for _ in sess.get_outputs()] + self.is_cuda_available = is_cuda_available + + def forward_test(self, imgs, img_metas, **kwargs): + input_data = imgs[0] + # set io binding for inputs/outputs + device_type = 'cuda' if self.is_cuda_available else 'cpu' + if not self.is_cuda_available: + input_data = input_data.cpu() + self.io_binding.bind_input( + name='input', + device_type=device_type, + device_id=self.device_id, + element_type=np.float32, + shape=input_data.shape, + buffer_ptr=input_data.data_ptr()) + + for name in self.output_names: + self.io_binding.bind_output(name) + # run session to get outputs + self.sess.run_with_iobinding(self.io_binding) + ort_outputs = self.io_binding.copy_outputs_to_cpu() + return ort_outputs + + +class TensorRTDetector(DeployBaseDetector): + """Wrapper for detector's inference with TensorRT.""" + + def __init__(self, engine_file, class_names, device_id, output_names=None): + super(TensorRTDetector, self).__init__(class_names, device_id) + warnings.warn('`output_names` is deprecated and will be removed in ' + 'future releases.') + from mmcv.tensorrt import TRTWraper, load_tensorrt_plugin + try: + load_tensorrt_plugin() + except (ImportError, ModuleNotFoundError): + warnings.warn('If input model has custom op from mmcv, \ + you may have to build mmcv with TensorRT from source.') + + output_names = ['dets', 'labels'] + model = TRTWraper(engine_file, ['input'], output_names) + with_masks = False + # if TensorRT has totally 4 inputs/outputs, then + # the detector should have `mask` output. + if len(model.engine) == 4: + model.output_names = output_names + ['masks'] + with_masks = True + self.model = model + self.with_masks = with_masks + + def forward_test(self, imgs, img_metas, **kwargs): + input_data = imgs[0].contiguous() + with torch.cuda.device(self.device_id), torch.no_grad(): + outputs = self.model({'input': input_data}) + outputs = [outputs[name] for name in self.model.output_names] + outputs = [out.detach().cpu().numpy() for out in outputs] + return outputs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/export/onnx_helper.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/onnx_helper.py new file mode 100644 index 000000000..9f6b9a012 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/onnx_helper.py @@ -0,0 +1,223 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os + +import torch + + +def dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape): + """Clip boxes dynamically for onnx. + + Since torch.clamp cannot have dynamic `min` and `max`, we scale the + boxes by 1/max_shape and clamp in the range [0, 1]. + + Args: + x1 (Tensor): The x1 for bounding boxes. + y1 (Tensor): The y1 for bounding boxes. + x2 (Tensor): The x2 for bounding boxes. + y2 (Tensor): The y2 for bounding boxes. + max_shape (Tensor or torch.Size): The (H,W) of original image. + Returns: + tuple(Tensor): The clipped x1, y1, x2, y2. + """ + assert isinstance( + max_shape, + torch.Tensor), '`max_shape` should be tensor of (h,w) for onnx' + + # scale by 1/max_shape + x1 = x1 / max_shape[1] + y1 = y1 / max_shape[0] + x2 = x2 / max_shape[1] + y2 = y2 / max_shape[0] + + # clamp [0, 1] + x1 = torch.clamp(x1, 0, 1) + y1 = torch.clamp(y1, 0, 1) + x2 = torch.clamp(x2, 0, 1) + y2 = torch.clamp(y2, 0, 1) + + # scale back + x1 = x1 * max_shape[1] + y1 = y1 * max_shape[0] + x2 = x2 * max_shape[1] + y2 = y2 * max_shape[0] + return x1, y1, x2, y2 + + +def get_k_for_topk(k, size): + """Get k of TopK for onnx exporting. + + The K of TopK in TensorRT should not be a Tensor, while in ONNX Runtime + it could be a Tensor.Due to dynamic shape feature, we have to decide + whether to do TopK and what K it should be while exporting to ONNX. + If returned K is less than zero, it means we do not have to do + TopK operation. + + Args: + k (int or Tensor): The set k value for nms from config file. + size (Tensor or torch.Size): The number of elements of \ + TopK's input tensor + Returns: + tuple: (int or Tensor): The final K for TopK. + """ + ret_k = -1 + if k <= 0 or size <= 0: + return ret_k + if torch.onnx.is_in_onnx_export(): + is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT' + if is_trt_backend: + # TensorRT does not support dynamic K with TopK op + if 0 < k < size: + ret_k = k + else: + # Always keep topk op for dynamic input in onnx for ONNX Runtime + ret_k = torch.where(k < size, k, size) + elif k < size: + ret_k = k + else: + # ret_k is -1 + pass + return ret_k + + +def add_dummy_nms_for_onnx(boxes, + scores, + max_output_boxes_per_class=1000, + iou_threshold=0.5, + score_threshold=0.05, + pre_top_k=-1, + after_top_k=-1, + labels=None): + """Create a dummy onnx::NonMaxSuppression op while exporting to ONNX. + + This function helps exporting to onnx with batch and multiclass NMS op. + It only supports class-agnostic detection results. That is, the scores + is of shape (N, num_bboxes, num_classes) and the boxes is of shape + (N, num_boxes, 4). + + Args: + boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4] + scores (Tensor): The detection scores of shape + [N, num_boxes, num_classes] + max_output_boxes_per_class (int): Maximum number of output + boxes per class of nms. Defaults to 1000. + iou_threshold (float): IOU threshold of nms. Defaults to 0.5 + score_threshold (float): score threshold of nms. + Defaults to 0.05. + pre_top_k (bool): Number of top K boxes to keep before nms. + Defaults to -1. + after_top_k (int): Number of top K boxes to keep after nms. + Defaults to -1. + labels (Tensor, optional): It not None, explicit labels would be used. + Otherwise, labels would be automatically generated using + num_classed. Defaults to None. + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + max_output_boxes_per_class = torch.LongTensor([max_output_boxes_per_class]) + iou_threshold = torch.tensor([iou_threshold], dtype=torch.float32) + score_threshold = torch.tensor([score_threshold], dtype=torch.float32) + batch_size = scores.shape[0] + num_class = scores.shape[2] + + nms_pre = torch.tensor(pre_top_k, device=scores.device, dtype=torch.long) + nms_pre = get_k_for_topk(nms_pre, boxes.shape[1]) + + if nms_pre > 0: + max_scores, _ = scores.max(-1) + _, topk_inds = max_scores.topk(nms_pre) + batch_inds = torch.arange(batch_size).view( + -1, 1).expand_as(topk_inds).long() + # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 + transformed_inds = boxes.shape[1] * batch_inds + topk_inds + boxes = boxes.reshape(-1, 4)[transformed_inds, :].reshape( + batch_size, -1, 4) + scores = scores.reshape(-1, num_class)[transformed_inds, :].reshape( + batch_size, -1, num_class) + if labels is not None: + labels = labels.reshape(-1, 1)[transformed_inds].reshape( + batch_size, -1) + + scores = scores.permute(0, 2, 1) + num_box = boxes.shape[1] + # turn off tracing to create a dummy output of nms + state = torch._C._get_tracing_state() + # dummy indices of nms's output + num_fake_det = 2 + batch_inds = torch.randint(batch_size, (num_fake_det, 1)) + cls_inds = torch.randint(num_class, (num_fake_det, 1)) + box_inds = torch.randint(num_box, (num_fake_det, 1)) + indices = torch.cat([batch_inds, cls_inds, box_inds], dim=1) + output = indices + setattr(DummyONNXNMSop, 'output', output) + + # open tracing + torch._C._set_tracing_state(state) + selected_indices = DummyONNXNMSop.apply(boxes, scores, + max_output_boxes_per_class, + iou_threshold, score_threshold) + + batch_inds, cls_inds = selected_indices[:, 0], selected_indices[:, 1] + box_inds = selected_indices[:, 2] + if labels is None: + labels = torch.arange(num_class, dtype=torch.long).to(scores.device) + labels = labels.view(1, num_class, 1).expand_as(scores) + scores = scores.reshape(-1, 1) + boxes = boxes.reshape(batch_size, -1).repeat(1, num_class).reshape(-1, 4) + pos_inds = (num_class * batch_inds + cls_inds) * num_box + box_inds + mask = scores.new_zeros(scores.shape) + # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 + # PyTorch style code: mask[batch_inds, box_inds] += 1 + mask[pos_inds, :] += 1 + scores = scores * mask + boxes = boxes * mask + + scores = scores.reshape(batch_size, -1) + boxes = boxes.reshape(batch_size, -1, 4) + labels = labels.reshape(batch_size, -1) + + nms_after = torch.tensor( + after_top_k, device=scores.device, dtype=torch.long) + nms_after = get_k_for_topk(nms_after, num_box * num_class) + + if nms_after > 0: + _, topk_inds = scores.topk(nms_after) + batch_inds = torch.arange(batch_size).view(-1, 1).expand_as(topk_inds) + # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 + transformed_inds = scores.shape[1] * batch_inds + topk_inds + scores = scores.reshape(-1, 1)[transformed_inds, :].reshape( + batch_size, -1) + boxes = boxes.reshape(-1, 4)[transformed_inds, :].reshape( + batch_size, -1, 4) + labels = labels.reshape(-1, 1)[transformed_inds, :].reshape( + batch_size, -1) + + scores = scores.unsqueeze(2) + dets = torch.cat([boxes, scores], dim=2) + return dets, labels + + +class DummyONNXNMSop(torch.autograd.Function): + """DummyONNXNMSop. + + This class is only for creating onnx::NonMaxSuppression. + """ + + @staticmethod + def forward(ctx, boxes, scores, max_output_boxes_per_class, iou_threshold, + score_threshold): + + return DummyONNXNMSop.output + + @staticmethod + def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, + score_threshold): + return g.op( + 'NonMaxSuppression', + boxes, + scores, + max_output_boxes_per_class, + iou_threshold, + score_threshold, + outputs=1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/export/pytorch2onnx.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/pytorch2onnx.py new file mode 100644 index 000000000..b8261eed9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/export/pytorch2onnx.py @@ -0,0 +1,159 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from functools import partial + +import mmcv +import numpy as np +import torch +from mmcv.runner import load_checkpoint + + +def generate_inputs_and_wrap_model(config_path, + checkpoint_path, + input_config, + cfg_options=None): + """Prepare sample input and wrap model for ONNX export. + + The ONNX export API only accept args, and all inputs should be + torch.Tensor or corresponding types (such as tuple of tensor). + So we should call this function before exporting. This function will: + + 1. generate corresponding inputs which are used to execute the model. + 2. Wrap the model's forward function. + + For example, the MMDet models' forward function has a parameter + ``return_loss:bool``. As we want to set it as False while export API + supports neither bool type or kwargs. So we have to replace the forward + method like ``model.forward = partial(model.forward, return_loss=False)``. + + Args: + config_path (str): the OpenMMLab config for the model we want to + export to ONNX + checkpoint_path (str): Path to the corresponding checkpoint + input_config (dict): the exactly data in this dict depends on the + framework. For MMSeg, we can just declare the input shape, + and generate the dummy data accordingly. However, for MMDet, + we may pass the real img path, or the NMS will return None + as there is no legal bbox. + + Returns: + tuple: (model, tensor_data) wrapped model which can be called by + ``model(*tensor_data)`` and a list of inputs which are used to + execute the model while exporting. + """ + + model = build_model_from_cfg( + config_path, checkpoint_path, cfg_options=cfg_options) + one_img, one_meta = preprocess_example_input(input_config) + tensor_data = [one_img] + model.forward = partial( + model.forward, img_metas=[[one_meta]], return_loss=False) + + # pytorch has some bug in pytorch1.3, we have to fix it + # by replacing these existing op + opset_version = 11 + # put the import within the function thus it will not cause import error + # when not using this function + try: + from mmcv.onnx.symbolic import register_extra_symbolics + except ModuleNotFoundError: + raise NotImplementedError('please update mmcv to version>=v1.0.4') + register_extra_symbolics(opset_version) + + return model, tensor_data + + +def build_model_from_cfg(config_path, checkpoint_path, cfg_options=None): + """Build a model from config and load the given checkpoint. + + Args: + config_path (str): the OpenMMLab config for the model we want to + export to ONNX + checkpoint_path (str): Path to the corresponding checkpoint + + Returns: + torch.nn.Module: the built model + """ + from mmdet.models import build_detector + + cfg = mmcv.Config.fromfile(config_path) + if cfg_options is not None: + cfg.merge_from_dict(cfg_options) + # set cudnn_benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + cfg.model.pretrained = None + cfg.data.test.test_mode = True + + # build the model + cfg.model.train_cfg = None + model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) + checkpoint = load_checkpoint(model, checkpoint_path, map_location='cpu') + if 'CLASSES' in checkpoint.get('meta', {}): + model.CLASSES = checkpoint['meta']['CLASSES'] + else: + from mmdet.datasets import DATASETS + dataset = DATASETS.get(cfg.data.test['type']) + assert (dataset is not None) + model.CLASSES = dataset.CLASSES + model.cpu().eval() + return model + + +def preprocess_example_input(input_config): + """Prepare an example input image for ``generate_inputs_and_wrap_model``. + + Args: + input_config (dict): customized config describing the example input. + + Returns: + tuple: (one_img, one_meta), tensor of the example input image and \ + meta information for the example input image. + + Examples: + >>> from mmdet.core.export import preprocess_example_input + >>> input_config = { + >>> 'input_shape': (1,3,224,224), + >>> 'input_path': 'demo/demo.jpg', + >>> 'normalize_cfg': { + >>> 'mean': (123.675, 116.28, 103.53), + >>> 'std': (58.395, 57.12, 57.375) + >>> } + >>> } + >>> one_img, one_meta = preprocess_example_input(input_config) + >>> print(one_img.shape) + torch.Size([1, 3, 224, 224]) + >>> print(one_meta) + {'img_shape': (224, 224, 3), + 'ori_shape': (224, 224, 3), + 'pad_shape': (224, 224, 3), + 'filename': '.png', + 'scale_factor': 1.0, + 'flip': False} + """ + input_path = input_config['input_path'] + input_shape = input_config['input_shape'] + one_img = mmcv.imread(input_path) + one_img = mmcv.imresize(one_img, input_shape[2:][::-1]) + show_img = one_img.copy() + if 'normalize_cfg' in input_config.keys(): + normalize_cfg = input_config['normalize_cfg'] + mean = np.array(normalize_cfg['mean'], dtype=np.float32) + std = np.array(normalize_cfg['std'], dtype=np.float32) + to_rgb = normalize_cfg.get('to_rgb', True) + one_img = mmcv.imnormalize(one_img, mean, std, to_rgb=to_rgb) + one_img = one_img.transpose(2, 0, 1) + one_img = torch.from_numpy(one_img).unsqueeze(0).float().requires_grad_( + True) + (_, C, H, W) = input_shape + one_meta = { + 'img_shape': (H, W, C), + 'ori_shape': (H, W, C), + 'pad_shape': (H, W, C), + 'filename': '.png', + 'scale_factor': np.ones(4, dtype=np.float32), + 'flip': False, + 'show_img': show_img, + 'flip_direction': None + } + + return one_img, one_meta diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/__init__.py new file mode 100644 index 000000000..788ab494c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .checkloss_hook import CheckInvalidLossHook +from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook +from .memory_profiler_hook import MemoryProfilerHook +from .set_epoch_info_hook import SetEpochInfoHook +from .sync_norm_hook import SyncNormHook +from .sync_random_size_hook import SyncRandomSizeHook +from .yolox_lrupdater_hook import YOLOXLrUpdaterHook +from .yolox_mode_switch_hook import YOLOXModeSwitchHook + +__all__ = [ + 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', + 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', + 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/checkloss_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/checkloss_hook.py new file mode 100644 index 000000000..754e61bef --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/checkloss_hook.py @@ -0,0 +1,24 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner.hooks import HOOKS, Hook + + +@HOOKS.register_module() +class CheckInvalidLossHook(Hook): + """Check invalid loss hook. + + This hook will regularly check whether the loss is valid + during training. + + Args: + interval (int): Checking interval (every k iterations). + Default: 50. + """ + + def __init__(self, interval=50): + self.interval = interval + + def after_train_iter(self, runner): + if self.every_n_iters(runner, self.interval): + assert torch.isfinite(runner.outputs['loss']), \ + runner.logger.info('loss become infinite or NaN!') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/ema.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/ema.py new file mode 100644 index 000000000..ff7bfbabe --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/ema.py @@ -0,0 +1,130 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +from mmcv.parallel import is_module_wrapper +from mmcv.runner.hooks import HOOKS, Hook + + +class BaseEMAHook(Hook): + """Exponential Moving Average Hook. + + Use Exponential Moving Average on all parameters of model in training + process. All parameters have a ema backup, which update by the formula + as below. EMAHook takes priority over EvalHook and CheckpointHook. Note, + the original model parameters are actually saved in ema field after train. + + Args: + momentum (float): The momentum used for updating ema parameter. + Ema's parameter are updated with the formula: + `ema_param = (1-momentum) * ema_param + momentum * cur_param`. + Defaults to 0.0002. + skip_buffers (bool): Whether to skip the model buffers, such as + batchnorm running stats (running_mean, running_var), it does not + perform the ema operation. Default to False. + interval (int): Update ema parameter every interval iteration. + Defaults to 1. + resume_from (str, optional): The checkpoint path. Defaults to None. + momentum_fun (func, optional): The function to change momentum + during early iteration (also warmup) to help early training. + It uses `momentum` as a constant. Defaults to None. + """ + + def __init__(self, + momentum=0.0002, + interval=1, + skip_buffers=False, + resume_from=None, + momentum_fun=None): + assert 0 < momentum < 1 + self.momentum = momentum + self.skip_buffers = skip_buffers + self.interval = interval + self.checkpoint = resume_from + self.momentum_fun = momentum_fun + + def before_run(self, runner): + """To resume model with it's ema parameters more friendly. + + Register ema parameter as ``named_buffer`` to model. + """ + model = runner.model + if is_module_wrapper(model): + model = model.module + self.param_ema_buffer = {} + if self.skip_buffers: + self.model_parameters = dict(model.named_parameters()) + else: + self.model_parameters = model.state_dict() + for name, value in self.model_parameters.items(): + # "." is not allowed in module's buffer name + buffer_name = f"ema_{name.replace('.', '_')}" + self.param_ema_buffer[name] = buffer_name + model.register_buffer(buffer_name, value.data.clone()) + self.model_buffers = dict(model.named_buffers()) + if self.checkpoint is not None: + runner.resume(self.checkpoint) + + def get_momentum(self, runner): + return self.momentum_fun(runner.iter) if self.momentum_fun else \ + self.momentum + + def after_train_iter(self, runner): + """Update ema parameter every self.interval iterations.""" + if (runner.iter + 1) % self.interval != 0: + return + momentum = self.get_momentum(runner) + for name, parameter in self.model_parameters.items(): + # exclude num_tracking + if parameter.dtype.is_floating_point: + buffer_name = self.param_ema_buffer[name] + buffer_parameter = self.model_buffers[buffer_name] + buffer_parameter.mul_(1 - momentum).add_( + parameter.data, alpha=momentum) + + def after_train_epoch(self, runner): + """We load parameter values from ema backup to model before the + EvalHook.""" + self._swap_ema_parameters() + + def before_train_epoch(self, runner): + """We recover model's parameter from ema backup after last epoch's + EvalHook.""" + self._swap_ema_parameters() + + def _swap_ema_parameters(self): + """Swap the parameter of model with parameter in ema_buffer.""" + for name, value in self.model_parameters.items(): + temp = value.data.clone() + ema_buffer = self.model_buffers[self.param_ema_buffer[name]] + value.data.copy_(ema_buffer.data) + ema_buffer.data.copy_(temp) + + +@HOOKS.register_module() +class ExpMomentumEMAHook(BaseEMAHook): + """EMAHook using exponential momentum strategy. + + Args: + total_iter (int): The total number of iterations of EMA momentum. + Defaults to 2000. + """ + + def __init__(self, total_iter=2000, **kwargs): + super(ExpMomentumEMAHook, self).__init__(**kwargs) + self.momentum_fun = lambda x: (1 - self.momentum) * math.exp(-( + 1 + x) / total_iter) + self.momentum + + +@HOOKS.register_module() +class LinearMomentumEMAHook(BaseEMAHook): + """EMAHook using linear momentum strategy. + + Args: + warm_up (int): During first warm_up steps, we may use smaller decay + to update ema parameters more slowly. Defaults to 100. + """ + + def __init__(self, warm_up=100, **kwargs): + super(LinearMomentumEMAHook, self).__init__(**kwargs) + self.momentum_fun = lambda x: min(self.momentum**self.interval, + (1 + x) / (warm_up + x)) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/memory_profiler_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/memory_profiler_hook.py new file mode 100644 index 000000000..e78a2838f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/memory_profiler_hook.py @@ -0,0 +1,55 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.runner.hooks import HOOKS, Hook + + +@HOOKS.register_module() +class MemoryProfilerHook(Hook): + """Memory profiler hook recording memory information: virtual memory, swap + memory and memory of current process. + + Args: + interval (int): Checking interval (every k iterations). + Default: 50. + """ + + def __init__(self, interval=50): + try: + from psutil import swap_memory, virtual_memory + self._swap_memory = swap_memory + self._virtual_memory = virtual_memory + except ImportError: + raise ImportError('psutil is not installed, please install it by: ' + 'pip install psutil') + + try: + from memory_profiler import memory_usage + self._memory_usage = memory_usage + except ImportError: + raise ImportError( + 'memory_profiler is not installed, please install it by: ' + 'pip install memory_profiler') + + self.interval = interval + + def after_iter(self, runner): + if self.every_n_iters(runner, self.interval): + # in Byte + virtual_memory = self._virtual_memory() + swap_memory = self._swap_memory() + # in MB + process_memory = self._memory_usage()[0] + factor = 1024 * 1024 + runner.logger.info( + 'Memory information ' + 'available_memory: ' + f'{round(virtual_memory.available / factor)} MB, ' + 'used_memory: ' + f'{round(virtual_memory.used / factor)} MB, ' + f'memory_utilization: {virtual_memory.percent} %, ' + 'available_swap_memory: ' + f'{round((swap_memory.total - swap_memory.used) / factor)}' + 'MB, ' + f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' + f'swap_memory_utilization: {swap_memory.percent} %, ' + 'current_process_memory: ' + f'{round(process_memory)} MB') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/set_epoch_info_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/set_epoch_info_hook.py new file mode 100644 index 000000000..c2b134ceb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/set_epoch_info_hook.py @@ -0,0 +1,15 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.parallel import is_module_wrapper +from mmcv.runner import HOOKS, Hook + + +@HOOKS.register_module() +class SetEpochInfoHook(Hook): + """Set runner's epoch information to the model.""" + + def before_train_epoch(self, runner): + epoch = runner.epoch + model = runner.model + if is_module_wrapper(model): + model = model.module + model.set_epoch(epoch) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_norm_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_norm_hook.py new file mode 100644 index 000000000..82931cef3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_norm_hook.py @@ -0,0 +1,52 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict + +from mmcv.runner import get_dist_info +from mmcv.runner.hooks import HOOKS, Hook +from torch import nn + +from ..utils.dist_utils import all_reduce_dict + + +def get_norm_states(module): + async_norm_states = OrderedDict() + for name, child in module.named_modules(): + if isinstance(child, nn.modules.batchnorm._NormBase): + for k, v in child.state_dict().items(): + async_norm_states['.'.join([name, k])] = v + return async_norm_states + + +@HOOKS.register_module() +class SyncNormHook(Hook): + """Synchronize Norm states after training epoch, currently used in YOLOX. + + Args: + num_last_epochs (int): The number of latter epochs in the end of the + training to switch to synchronizing norm interval. Default: 15. + interval (int): Synchronizing norm interval. Default: 1. + """ + + def __init__(self, num_last_epochs=15, interval=1): + self.interval = interval + self.num_last_epochs = num_last_epochs + + def before_train_epoch(self, runner): + epoch = runner.epoch + if (epoch + 1) == runner.max_epochs - self.num_last_epochs: + # Synchronize norm every epoch. + self.interval = 1 + + def after_train_epoch(self, runner): + """Synchronizing norm.""" + epoch = runner.epoch + module = runner.model + if (epoch + 1) % self.interval == 0: + _, world_size = get_dist_info() + if world_size == 1: + return + norm_states = get_norm_states(module) + if len(norm_states) == 0: + return + norm_states = all_reduce_dict(norm_states, op='mean') + module.load_state_dict(norm_states, strict=False) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_random_size_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_random_size_hook.py new file mode 100644 index 000000000..6d7e96c6a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/sync_random_size_hook.py @@ -0,0 +1,72 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import random +import warnings + +import torch +from mmcv.runner import get_dist_info +from mmcv.runner.hooks import HOOKS, Hook +from torch import distributed as dist + + +@HOOKS.register_module() +class SyncRandomSizeHook(Hook): + """Change and synchronize the random image size across ranks. + SyncRandomSizeHook is deprecated, please use Resize pipeline to achieve + similar functions. Such as `dict(type='Resize', img_scale=[(448, 448), + (832, 832)], multiscale_mode='range', keep_ratio=True)`. + + Note: Due to the multi-process dataloader, its behavior is different + from YOLOX's official implementation, the official is to change the + size every fixed iteration interval and what we achieved is a fixed + epoch interval. + + Args: + ratio_range (tuple[int]): Random ratio range. It will be multiplied + by 32, and then change the dataset output image size. + Default: (14, 26). + img_scale (tuple[int]): Size of input image. Default: (640, 640). + interval (int): The epoch interval of change image size. Default: 1. + device (torch.device | str): device for returned tensors. + Default: 'cuda'. + """ + + def __init__(self, + ratio_range=(14, 26), + img_scale=(640, 640), + interval=1, + device='cuda'): + warnings.warn('DeprecationWarning: SyncRandomSizeHook is deprecated. ' + 'Please use Resize pipeline to achieve similar ' + 'functions. Due to the multi-process dataloader, ' + 'its behavior is different from YOLOX\'s official ' + 'implementation, the official is to change the size ' + 'every fixed iteration interval and what we achieved ' + 'is a fixed epoch interval.') + self.rank, world_size = get_dist_info() + self.is_distributed = world_size > 1 + self.ratio_range = ratio_range + self.img_scale = img_scale + self.interval = interval + self.device = device + + def after_train_epoch(self, runner): + """Change the dataset output image size.""" + if self.ratio_range is not None and (runner.epoch + + 1) % self.interval == 0: + # Due to DDP and DP get the device behavior inconsistent, + # so we did not get the device from runner.model. + tensor = torch.LongTensor(2).to(self.device) + + if self.rank == 0: + size_factor = self.img_scale[1] * 1. / self.img_scale[0] + size = random.randint(*self.ratio_range) + size = (int(32 * size), 32 * int(size * size_factor)) + tensor[0] = size[0] + tensor[1] = size[1] + + if self.is_distributed: + dist.barrier() + dist.broadcast(tensor, 0) + + runner.data_loader.dataset.update_dynamic_scale( + (tensor[0].item(), tensor[1].item())) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_lrupdater_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_lrupdater_hook.py new file mode 100644 index 000000000..ecb028ed2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_lrupdater_hook.py @@ -0,0 +1,67 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.runner.hooks import HOOKS +from mmcv.runner.hooks.lr_updater import (CosineAnnealingLrUpdaterHook, + annealing_cos) + + +@HOOKS.register_module() +class YOLOXLrUpdaterHook(CosineAnnealingLrUpdaterHook): + """YOLOX learning rate scheme. + + There are two main differences between YOLOXLrUpdaterHook + and CosineAnnealingLrUpdaterHook. + + 1. When the current running epoch is greater than + `max_epoch-last_epoch`, a fixed learning rate will be used + 2. The exp warmup scheme is different with LrUpdaterHook in MMCV + + Args: + num_last_epochs (int): The number of epochs with a fixed learning rate + before the end of the training. + """ + + def __init__(self, num_last_epochs, **kwargs): + self.num_last_epochs = num_last_epochs + super(YOLOXLrUpdaterHook, self).__init__(**kwargs) + + def get_warmup_lr(self, cur_iters): + + def _get_warmup_lr(cur_iters, regular_lr): + # exp warmup scheme + k = self.warmup_ratio * pow( + (cur_iters + 1) / float(self.warmup_iters), 2) + warmup_lr = [_lr * k for _lr in regular_lr] + return warmup_lr + + if isinstance(self.base_lr, dict): + lr_groups = {} + for key, base_lr in self.base_lr.items(): + lr_groups[key] = _get_warmup_lr(cur_iters, base_lr) + return lr_groups + else: + return _get_warmup_lr(cur_iters, self.base_lr) + + def get_lr(self, runner, base_lr): + last_iter = len(runner.data_loader) * self.num_last_epochs + + if self.by_epoch: + progress = runner.epoch + max_progress = runner.max_epochs + else: + progress = runner.iter + max_progress = runner.max_iters + + progress += 1 + + if self.min_lr_ratio is not None: + target_lr = base_lr * self.min_lr_ratio + else: + target_lr = self.min_lr + + if progress >= max_progress - last_iter: + # fixed learning rate + return target_lr + else: + return annealing_cos( + base_lr, target_lr, (progress - self.warmup_iters) / + (max_progress - self.warmup_iters - last_iter)) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_mode_switch_hook.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_mode_switch_hook.py new file mode 100644 index 000000000..10834e686 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/hook/yolox_mode_switch_hook.py @@ -0,0 +1,52 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.parallel import is_module_wrapper +from mmcv.runner.hooks import HOOKS, Hook + + +@HOOKS.register_module() +class YOLOXModeSwitchHook(Hook): + """Switch the mode of YOLOX during training. + + This hook turns off the mosaic and mixup data augmentation and switches + to use L1 loss in bbox_head. + + Args: + num_last_epochs (int): The number of latter epochs in the end of the + training to close the data augmentation and switch to L1 loss. + Default: 15. + skip_type_keys (list[str], optional): Sequence of type string to be + skip pipeline. Default: ('Mosaic', 'RandomAffine', 'MixUp') + """ + + def __init__(self, + num_last_epochs=15, + skip_type_keys=('Mosaic', 'RandomAffine', 'MixUp')): + self.num_last_epochs = num_last_epochs + self.skip_type_keys = skip_type_keys + self._restart_dataloader = False + + def before_train_epoch(self, runner): + """Close mosaic and mixup augmentation and switches to use L1 loss.""" + epoch = runner.epoch + train_loader = runner.data_loader + model = runner.model + if is_module_wrapper(model): + model = model.module + if (epoch + 1) == runner.max_epochs - self.num_last_epochs: + runner.logger.info('No mosaic and mixup aug now!') + # The dataset pipeline cannot be updated when persistent_workers + # is True, so we need to force the dataloader's multi-process + # restart. This is a very hacky approach. + train_loader.dataset.update_skip_type_keys(self.skip_type_keys) + if hasattr(train_loader, 'persistent_workers' + ) and train_loader.persistent_workers is True: + train_loader._DataLoader__initialized = False + train_loader._iterator = None + self._restart_dataloader = True + runner.logger.info('Add additional L1 loss now!') + model.bbox_head.use_l1 = True + else: + # Once the restart is complete, we need to restore + # the initialization flag. + if self._restart_dataloader: + train_loader._DataLoader__initialized = True diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/__init__.py new file mode 100644 index 000000000..644a9b1d9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .mask_target import mask_target +from .structures import BaseInstanceMasks, BitmapMasks, PolygonMasks +from .utils import encode_mask_results, mask2bbox, split_combined_polys + +__all__ = [ + 'split_combined_polys', 'mask_target', 'BaseInstanceMasks', 'BitmapMasks', + 'PolygonMasks', 'encode_mask_results', 'mask2bbox' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/mask_target.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/mask_target.py new file mode 100644 index 000000000..273e7678f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/mask_target.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from torch.nn.modules.utils import _pair + + +def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list, + cfg): + """Compute mask target for positive proposals in multiple images. + + Args: + pos_proposals_list (list[Tensor]): Positive proposals in multiple + images. + pos_assigned_gt_inds_list (list[Tensor]): Assigned GT indices for each + positive proposals. + gt_masks_list (list[:obj:`BaseInstanceMasks`]): Ground truth masks of + each image. + cfg (dict): Config dict that specifies the mask size. + + Returns: + list[Tensor]: Mask target of each image. + + Example: + >>> import mmcv + >>> import mmdet + >>> from mmdet.core.mask import BitmapMasks + >>> from mmdet.core.mask.mask_target import * + >>> H, W = 17, 18 + >>> cfg = mmcv.Config({'mask_size': (13, 14)}) + >>> rng = np.random.RandomState(0) + >>> # Positive proposals (tl_x, tl_y, br_x, br_y) for each image + >>> pos_proposals_list = [ + >>> torch.Tensor([ + >>> [ 7.2425, 5.5929, 13.9414, 14.9541], + >>> [ 7.3241, 3.6170, 16.3850, 15.3102], + >>> ]), + >>> torch.Tensor([ + >>> [ 4.8448, 6.4010, 7.0314, 9.7681], + >>> [ 5.9790, 2.6989, 7.4416, 4.8580], + >>> [ 0.0000, 0.0000, 0.1398, 9.8232], + >>> ]), + >>> ] + >>> # Corresponding class index for each proposal for each image + >>> pos_assigned_gt_inds_list = [ + >>> torch.LongTensor([7, 0]), + >>> torch.LongTensor([5, 4, 1]), + >>> ] + >>> # Ground truth mask for each true object for each image + >>> gt_masks_list = [ + >>> BitmapMasks(rng.rand(8, H, W), height=H, width=W), + >>> BitmapMasks(rng.rand(6, H, W), height=H, width=W), + >>> ] + >>> mask_targets = mask_target( + >>> pos_proposals_list, pos_assigned_gt_inds_list, + >>> gt_masks_list, cfg) + >>> assert mask_targets.shape == (5,) + cfg['mask_size'] + """ + cfg_list = [cfg for _ in range(len(pos_proposals_list))] + mask_targets = map(mask_target_single, pos_proposals_list, + pos_assigned_gt_inds_list, gt_masks_list, cfg_list) + mask_targets = list(mask_targets) + if len(mask_targets) > 0: + mask_targets = torch.cat(mask_targets) + return mask_targets + + +def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg): + """Compute mask target for each positive proposal in the image. + + Args: + pos_proposals (Tensor): Positive proposals. + pos_assigned_gt_inds (Tensor): Assigned GT inds of positive proposals. + gt_masks (:obj:`BaseInstanceMasks`): GT masks in the format of Bitmap + or Polygon. + cfg (dict): Config dict that indicate the mask size. + + Returns: + Tensor: Mask target of each positive proposals in the image. + + Example: + >>> import mmcv + >>> import mmdet + >>> from mmdet.core.mask import BitmapMasks + >>> from mmdet.core.mask.mask_target import * # NOQA + >>> H, W = 32, 32 + >>> cfg = mmcv.Config({'mask_size': (7, 11)}) + >>> rng = np.random.RandomState(0) + >>> # Masks for each ground truth box (relative to the image) + >>> gt_masks_data = rng.rand(3, H, W) + >>> gt_masks = BitmapMasks(gt_masks_data, height=H, width=W) + >>> # Predicted positive boxes in one image + >>> pos_proposals = torch.FloatTensor([ + >>> [ 16.2, 5.5, 19.9, 20.9], + >>> [ 17.3, 13.6, 19.3, 19.3], + >>> [ 14.8, 16.4, 17.0, 23.7], + >>> [ 0.0, 0.0, 16.0, 16.0], + >>> [ 4.0, 0.0, 20.0, 16.0], + >>> ]) + >>> # For each predicted proposal, its assignment to a gt mask + >>> pos_assigned_gt_inds = torch.LongTensor([0, 1, 2, 1, 1]) + >>> mask_targets = mask_target_single( + >>> pos_proposals, pos_assigned_gt_inds, gt_masks, cfg) + >>> assert mask_targets.shape == (5,) + cfg['mask_size'] + """ + device = pos_proposals.device + mask_size = _pair(cfg.mask_size) + binarize = not cfg.get('soft_mask_target', False) + num_pos = pos_proposals.size(0) + if num_pos > 0: + proposals_np = pos_proposals.cpu().numpy() + maxh, maxw = gt_masks.height, gt_masks.width + proposals_np[:, [0, 2]] = np.clip(proposals_np[:, [0, 2]], 0, maxw) + proposals_np[:, [1, 3]] = np.clip(proposals_np[:, [1, 3]], 0, maxh) + pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy() + + mask_targets = gt_masks.crop_and_resize( + proposals_np, + mask_size, + device=device, + inds=pos_assigned_gt_inds, + binarize=binarize).to_ndarray() + + mask_targets = torch.from_numpy(mask_targets).float().to(device) + else: + mask_targets = pos_proposals.new_zeros((0, ) + mask_size) + + return mask_targets diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/structures.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/structures.py new file mode 100644 index 000000000..a9d0ebb4b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/structures.py @@ -0,0 +1,1102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import cv2 +import mmcv +import numpy as np +import pycocotools.mask as maskUtils +import torch +from mmcv.ops.roi_align import roi_align + + +class BaseInstanceMasks(metaclass=ABCMeta): + """Base class for instance masks.""" + + @abstractmethod + def rescale(self, scale, interpolation='nearest'): + """Rescale masks as large as possible while keeping the aspect ratio. + For details can refer to `mmcv.imrescale`. + + Args: + scale (tuple[int]): The maximum size (h, w) of rescaled mask. + interpolation (str): Same as :func:`mmcv.imrescale`. + + Returns: + BaseInstanceMasks: The rescaled masks. + """ + + @abstractmethod + def resize(self, out_shape, interpolation='nearest'): + """Resize masks to the given out_shape. + + Args: + out_shape: Target (h, w) of resized mask. + interpolation (str): See :func:`mmcv.imresize`. + + Returns: + BaseInstanceMasks: The resized masks. + """ + + @abstractmethod + def flip(self, flip_direction='horizontal'): + """Flip masks alone the given direction. + + Args: + flip_direction (str): Either 'horizontal' or 'vertical'. + + Returns: + BaseInstanceMasks: The flipped masks. + """ + + @abstractmethod + def pad(self, out_shape, pad_val): + """Pad masks to the given size of (h, w). + + Args: + out_shape (tuple[int]): Target (h, w) of padded mask. + pad_val (int): The padded value. + + Returns: + BaseInstanceMasks: The padded masks. + """ + + @abstractmethod + def crop(self, bbox): + """Crop each mask by the given bbox. + + Args: + bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ). + + Return: + BaseInstanceMasks: The cropped masks. + """ + + @abstractmethod + def crop_and_resize(self, + bboxes, + out_shape, + inds, + device, + interpolation='bilinear', + binarize=True): + """Crop and resize masks by the given bboxes. + + This function is mainly used in mask targets computation. + It firstly align mask to bboxes by assigned_inds, then crop mask by the + assigned bbox and resize to the size of (mask_h, mask_w) + + Args: + bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4) + out_shape (tuple[int]): Target (h, w) of resized mask + inds (ndarray): Indexes to assign masks to each bbox, + shape (N,) and values should be between [0, num_masks - 1]. + device (str): Device of bboxes + interpolation (str): See `mmcv.imresize` + binarize (bool): if True fractional values are rounded to 0 or 1 + after the resize operation. if False and unsupported an error + will be raised. Defaults to True. + + Return: + BaseInstanceMasks: the cropped and resized masks. + """ + + @abstractmethod + def expand(self, expanded_h, expanded_w, top, left): + """see :class:`Expand`.""" + + @property + @abstractmethod + def areas(self): + """ndarray: areas of each instance.""" + + @abstractmethod + def to_ndarray(self): + """Convert masks to the format of ndarray. + + Return: + ndarray: Converted masks in the format of ndarray. + """ + + @abstractmethod + def to_tensor(self, dtype, device): + """Convert masks to the format of Tensor. + + Args: + dtype (str): Dtype of converted mask. + device (torch.device): Device of converted masks. + + Returns: + Tensor: Converted masks in the format of Tensor. + """ + + @abstractmethod + def translate(self, + out_shape, + offset, + direction='horizontal', + fill_val=0, + interpolation='bilinear'): + """Translate the masks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + offset (int | float): The offset for translate. + direction (str): The translate direction, either "horizontal" + or "vertical". + fill_val (int | float): Border value. Default 0. + interpolation (str): Same as :func:`mmcv.imtranslate`. + + Returns: + Translated masks. + """ + + def shear(self, + out_shape, + magnitude, + direction='horizontal', + border_value=0, + interpolation='bilinear'): + """Shear the masks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + magnitude (int | float): The magnitude used for shear. + direction (str): The shear direction, either "horizontal" + or "vertical". + border_value (int | tuple[int]): Value used in case of a + constant border. Default 0. + interpolation (str): Same as in :func:`mmcv.imshear`. + + Returns: + ndarray: Sheared masks. + """ + + @abstractmethod + def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0): + """Rotate the masks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + angle (int | float): Rotation angle in degrees. Positive values + mean counter-clockwise rotation. + center (tuple[float], optional): Center point (w, h) of the + rotation in source image. If not specified, the center of + the image will be used. + scale (int | float): Isotropic scale factor. + fill_val (int | float): Border value. Default 0 for masks. + + Returns: + Rotated masks. + """ + + +class BitmapMasks(BaseInstanceMasks): + """This class represents masks in the form of bitmaps. + + Args: + masks (ndarray): ndarray of masks in shape (N, H, W), where N is + the number of objects. + height (int): height of masks + width (int): width of masks + + Example: + >>> from mmdet.core.mask.structures import * # NOQA + >>> num_masks, H, W = 3, 32, 32 + >>> rng = np.random.RandomState(0) + >>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int) + >>> self = BitmapMasks(masks, height=H, width=W) + + >>> # demo crop_and_resize + >>> num_boxes = 5 + >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) + >>> out_shape = (14, 14) + >>> inds = torch.randint(0, len(self), size=(num_boxes,)) + >>> device = 'cpu' + >>> interpolation = 'bilinear' + >>> new = self.crop_and_resize( + ... bboxes, out_shape, inds, device, interpolation) + >>> assert len(new) == num_boxes + >>> assert new.height, new.width == out_shape + """ + + def __init__(self, masks, height, width): + self.height = height + self.width = width + if len(masks) == 0: + self.masks = np.empty((0, self.height, self.width), dtype=np.uint8) + else: + assert isinstance(masks, (list, np.ndarray)) + if isinstance(masks, list): + assert isinstance(masks[0], np.ndarray) + assert masks[0].ndim == 2 # (H, W) + else: + assert masks.ndim == 3 # (N, H, W) + + self.masks = np.stack(masks).reshape(-1, height, width) + assert self.masks.shape[1] == self.height + assert self.masks.shape[2] == self.width + + def __getitem__(self, index): + """Index the BitmapMask. + + Args: + index (int | ndarray): Indices in the format of integer or ndarray. + + Returns: + :obj:`BitmapMasks`: Indexed bitmap masks. + """ + masks = self.masks[index].reshape(-1, self.height, self.width) + return BitmapMasks(masks, self.height, self.width) + + def __iter__(self): + return iter(self.masks) + + def __repr__(self): + s = self.__class__.__name__ + '(' + s += f'num_masks={len(self.masks)}, ' + s += f'height={self.height}, ' + s += f'width={self.width})' + return s + + def __len__(self): + """Number of masks.""" + return len(self.masks) + + def rescale(self, scale, interpolation='nearest'): + """See :func:`BaseInstanceMasks.rescale`.""" + if len(self.masks) == 0: + new_w, new_h = mmcv.rescale_size((self.width, self.height), scale) + rescaled_masks = np.empty((0, new_h, new_w), dtype=np.uint8) + else: + rescaled_masks = np.stack([ + mmcv.imrescale(mask, scale, interpolation=interpolation) + for mask in self.masks + ]) + height, width = rescaled_masks.shape[1:] + return BitmapMasks(rescaled_masks, height, width) + + def resize(self, out_shape, interpolation='nearest'): + """See :func:`BaseInstanceMasks.resize`.""" + if len(self.masks) == 0: + resized_masks = np.empty((0, *out_shape), dtype=np.uint8) + else: + resized_masks = np.stack([ + mmcv.imresize( + mask, out_shape[::-1], interpolation=interpolation) + for mask in self.masks + ]) + return BitmapMasks(resized_masks, *out_shape) + + def flip(self, flip_direction='horizontal'): + """See :func:`BaseInstanceMasks.flip`.""" + assert flip_direction in ('horizontal', 'vertical', 'diagonal') + + if len(self.masks) == 0: + flipped_masks = self.masks + else: + flipped_masks = np.stack([ + mmcv.imflip(mask, direction=flip_direction) + for mask in self.masks + ]) + return BitmapMasks(flipped_masks, self.height, self.width) + + def pad(self, out_shape, pad_val=0): + """See :func:`BaseInstanceMasks.pad`.""" + if len(self.masks) == 0: + padded_masks = np.empty((0, *out_shape), dtype=np.uint8) + else: + padded_masks = np.stack([ + mmcv.impad(mask, shape=out_shape, pad_val=pad_val) + for mask in self.masks + ]) + return BitmapMasks(padded_masks, *out_shape) + + def crop(self, bbox): + """See :func:`BaseInstanceMasks.crop`.""" + assert isinstance(bbox, np.ndarray) + assert bbox.ndim == 1 + + # clip the boundary + bbox = bbox.copy() + bbox[0::2] = np.clip(bbox[0::2], 0, self.width) + bbox[1::2] = np.clip(bbox[1::2], 0, self.height) + x1, y1, x2, y2 = bbox + w = np.maximum(x2 - x1, 1) + h = np.maximum(y2 - y1, 1) + + if len(self.masks) == 0: + cropped_masks = np.empty((0, h, w), dtype=np.uint8) + else: + cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w] + return BitmapMasks(cropped_masks, h, w) + + def crop_and_resize(self, + bboxes, + out_shape, + inds, + device='cpu', + interpolation='bilinear', + binarize=True): + """See :func:`BaseInstanceMasks.crop_and_resize`.""" + if len(self.masks) == 0: + empty_masks = np.empty((0, *out_shape), dtype=np.uint8) + return BitmapMasks(empty_masks, *out_shape) + + # convert bboxes to tensor + if isinstance(bboxes, np.ndarray): + bboxes = torch.from_numpy(bboxes).to(device=device) + if isinstance(inds, np.ndarray): + inds = torch.from_numpy(inds).to(device=device) + + num_bbox = bboxes.shape[0] + fake_inds = torch.arange( + num_bbox, device=device).to(dtype=bboxes.dtype)[:, None] + rois = torch.cat([fake_inds, bboxes], dim=1) # Nx5 + rois = rois.to(device=device) + if num_bbox > 0: + gt_masks_th = torch.from_numpy(self.masks).to(device).index_select( + 0, inds).to(dtype=rois.dtype) + targets = roi_align(gt_masks_th[:, None, :, :], rois, out_shape, + 1.0, 0, 'avg', True).squeeze(1) + if binarize: + resized_masks = (targets >= 0.5).cpu().numpy() + else: + resized_masks = targets.cpu().numpy() + else: + resized_masks = [] + return BitmapMasks(resized_masks, *out_shape) + + def expand(self, expanded_h, expanded_w, top, left): + """See :func:`BaseInstanceMasks.expand`.""" + if len(self.masks) == 0: + expanded_mask = np.empty((0, expanded_h, expanded_w), + dtype=np.uint8) + else: + expanded_mask = np.zeros((len(self), expanded_h, expanded_w), + dtype=np.uint8) + expanded_mask[:, top:top + self.height, + left:left + self.width] = self.masks + return BitmapMasks(expanded_mask, expanded_h, expanded_w) + + def translate(self, + out_shape, + offset, + direction='horizontal', + fill_val=0, + interpolation='bilinear'): + """Translate the BitmapMasks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + offset (int | float): The offset for translate. + direction (str): The translate direction, either "horizontal" + or "vertical". + fill_val (int | float): Border value. Default 0 for masks. + interpolation (str): Same as :func:`mmcv.imtranslate`. + + Returns: + BitmapMasks: Translated BitmapMasks. + + Example: + >>> from mmdet.core.mask.structures import BitmapMasks + >>> self = BitmapMasks.random(dtype=np.uint8) + >>> out_shape = (32, 32) + >>> offset = 4 + >>> direction = 'horizontal' + >>> fill_val = 0 + >>> interpolation = 'bilinear' + >>> # Note, There seem to be issues when: + >>> # * out_shape is different than self's shape + >>> # * the mask dtype is not supported by cv2.AffineWarp + >>> new = self.translate(out_shape, offset, direction, fill_val, + >>> interpolation) + >>> assert len(new) == len(self) + >>> assert new.height, new.width == out_shape + """ + if len(self.masks) == 0: + translated_masks = np.empty((0, *out_shape), dtype=np.uint8) + else: + translated_masks = mmcv.imtranslate( + self.masks.transpose((1, 2, 0)), + offset, + direction, + border_value=fill_val, + interpolation=interpolation) + if translated_masks.ndim == 2: + translated_masks = translated_masks[:, :, None] + translated_masks = translated_masks.transpose( + (2, 0, 1)).astype(self.masks.dtype) + return BitmapMasks(translated_masks, *out_shape) + + def shear(self, + out_shape, + magnitude, + direction='horizontal', + border_value=0, + interpolation='bilinear'): + """Shear the BitmapMasks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + magnitude (int | float): The magnitude used for shear. + direction (str): The shear direction, either "horizontal" + or "vertical". + border_value (int | tuple[int]): Value used in case of a + constant border. + interpolation (str): Same as in :func:`mmcv.imshear`. + + Returns: + BitmapMasks: The sheared masks. + """ + if len(self.masks) == 0: + sheared_masks = np.empty((0, *out_shape), dtype=np.uint8) + else: + sheared_masks = mmcv.imshear( + self.masks.transpose((1, 2, 0)), + magnitude, + direction, + border_value=border_value, + interpolation=interpolation) + if sheared_masks.ndim == 2: + sheared_masks = sheared_masks[:, :, None] + sheared_masks = sheared_masks.transpose( + (2, 0, 1)).astype(self.masks.dtype) + return BitmapMasks(sheared_masks, *out_shape) + + def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0): + """Rotate the BitmapMasks. + + Args: + out_shape (tuple[int]): Shape for output mask, format (h, w). + angle (int | float): Rotation angle in degrees. Positive values + mean counter-clockwise rotation. + center (tuple[float], optional): Center point (w, h) of the + rotation in source image. If not specified, the center of + the image will be used. + scale (int | float): Isotropic scale factor. + fill_val (int | float): Border value. Default 0 for masks. + + Returns: + BitmapMasks: Rotated BitmapMasks. + """ + if len(self.masks) == 0: + rotated_masks = np.empty((0, *out_shape), dtype=self.masks.dtype) + else: + rotated_masks = mmcv.imrotate( + self.masks.transpose((1, 2, 0)), + angle, + center=center, + scale=scale, + border_value=fill_val) + if rotated_masks.ndim == 2: + # case when only one mask, (h, w) + rotated_masks = rotated_masks[:, :, None] # (h, w, 1) + rotated_masks = rotated_masks.transpose( + (2, 0, 1)).astype(self.masks.dtype) + return BitmapMasks(rotated_masks, *out_shape) + + @property + def areas(self): + """See :py:attr:`BaseInstanceMasks.areas`.""" + return self.masks.sum((1, 2)) + + def to_ndarray(self): + """See :func:`BaseInstanceMasks.to_ndarray`.""" + return self.masks + + def to_tensor(self, dtype, device): + """See :func:`BaseInstanceMasks.to_tensor`.""" + return torch.tensor(self.masks, dtype=dtype, device=device) + + @classmethod + def random(cls, + num_masks=3, + height=32, + width=32, + dtype=np.uint8, + rng=None): + """Generate random bitmap masks for demo / testing purposes. + + Example: + >>> from mmdet.core.mask.structures import BitmapMasks + >>> self = BitmapMasks.random() + >>> print('self = {}'.format(self)) + self = BitmapMasks(num_masks=3, height=32, width=32) + """ + from mmdet.utils.util_random import ensure_rng + rng = ensure_rng(rng) + masks = (rng.rand(num_masks, height, width) > 0.1).astype(dtype) + self = cls(masks, height=height, width=width) + return self + + def get_bboxes(self): + num_masks = len(self) + boxes = np.zeros((num_masks, 4), dtype=np.float32) + x_any = self.masks.any(axis=1) + y_any = self.masks.any(axis=2) + for idx in range(num_masks): + x = np.where(x_any[idx, :])[0] + y = np.where(y_any[idx, :])[0] + if len(x) > 0 and len(y) > 0: + # use +1 for x_max and y_max so that the right and bottom + # boundary of instance masks are fully included by the box + boxes[idx, :] = np.array([x[0], y[0], x[-1] + 1, y[-1] + 1], + dtype=np.float32) + return boxes + + +class PolygonMasks(BaseInstanceMasks): + """This class represents masks in the form of polygons. + + Polygons is a list of three levels. The first level of the list + corresponds to objects, the second level to the polys that compose the + object, the third level to the poly coordinates + + Args: + masks (list[list[ndarray]]): The first level of the list + corresponds to objects, the second level to the polys that + compose the object, the third level to the poly coordinates + height (int): height of masks + width (int): width of masks + + Example: + >>> from mmdet.core.mask.structures import * # NOQA + >>> masks = [ + >>> [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ] + >>> ] + >>> height, width = 16, 16 + >>> self = PolygonMasks(masks, height, width) + + >>> # demo translate + >>> new = self.translate((16, 16), 4., direction='horizontal') + >>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2]) + >>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4) + + >>> # demo crop_and_resize + >>> num_boxes = 3 + >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) + >>> out_shape = (16, 16) + >>> inds = torch.randint(0, len(self), size=(num_boxes,)) + >>> device = 'cpu' + >>> interpolation = 'bilinear' + >>> new = self.crop_and_resize( + ... bboxes, out_shape, inds, device, interpolation) + >>> assert len(new) == num_boxes + >>> assert new.height, new.width == out_shape + """ + + def __init__(self, masks, height, width): + assert isinstance(masks, list) + if len(masks) > 0: + assert isinstance(masks[0], list) + assert isinstance(masks[0][0], np.ndarray) + + self.height = height + self.width = width + self.masks = masks + + def __getitem__(self, index): + """Index the polygon masks. + + Args: + index (ndarray | List): The indices. + + Returns: + :obj:`PolygonMasks`: The indexed polygon masks. + """ + if isinstance(index, np.ndarray): + index = index.tolist() + if isinstance(index, list): + masks = [self.masks[i] for i in index] + else: + try: + masks = self.masks[index] + except Exception: + raise ValueError( + f'Unsupported input of type {type(index)} for indexing!') + if len(masks) and isinstance(masks[0], np.ndarray): + masks = [masks] # ensure a list of three levels + return PolygonMasks(masks, self.height, self.width) + + def __iter__(self): + return iter(self.masks) + + def __repr__(self): + s = self.__class__.__name__ + '(' + s += f'num_masks={len(self.masks)}, ' + s += f'height={self.height}, ' + s += f'width={self.width})' + return s + + def __len__(self): + """Number of masks.""" + return len(self.masks) + + def rescale(self, scale, interpolation=None): + """see :func:`BaseInstanceMasks.rescale`""" + new_w, new_h = mmcv.rescale_size((self.width, self.height), scale) + if len(self.masks) == 0: + rescaled_masks = PolygonMasks([], new_h, new_w) + else: + rescaled_masks = self.resize((new_h, new_w)) + return rescaled_masks + + def resize(self, out_shape, interpolation=None): + """see :func:`BaseInstanceMasks.resize`""" + if len(self.masks) == 0: + resized_masks = PolygonMasks([], *out_shape) + else: + h_scale = out_shape[0] / self.height + w_scale = out_shape[1] / self.width + resized_masks = [] + for poly_per_obj in self.masks: + resized_poly = [] + for p in poly_per_obj: + p = p.copy() + p[0::2] = p[0::2] * w_scale + p[1::2] = p[1::2] * h_scale + resized_poly.append(p) + resized_masks.append(resized_poly) + resized_masks = PolygonMasks(resized_masks, *out_shape) + return resized_masks + + def flip(self, flip_direction='horizontal'): + """see :func:`BaseInstanceMasks.flip`""" + assert flip_direction in ('horizontal', 'vertical', 'diagonal') + if len(self.masks) == 0: + flipped_masks = PolygonMasks([], self.height, self.width) + else: + flipped_masks = [] + for poly_per_obj in self.masks: + flipped_poly_per_obj = [] + for p in poly_per_obj: + p = p.copy() + if flip_direction == 'horizontal': + p[0::2] = self.width - p[0::2] + elif flip_direction == 'vertical': + p[1::2] = self.height - p[1::2] + else: + p[0::2] = self.width - p[0::2] + p[1::2] = self.height - p[1::2] + flipped_poly_per_obj.append(p) + flipped_masks.append(flipped_poly_per_obj) + flipped_masks = PolygonMasks(flipped_masks, self.height, + self.width) + return flipped_masks + + def crop(self, bbox): + """see :func:`BaseInstanceMasks.crop`""" + assert isinstance(bbox, np.ndarray) + assert bbox.ndim == 1 + + # clip the boundary + bbox = bbox.copy() + bbox[0::2] = np.clip(bbox[0::2], 0, self.width) + bbox[1::2] = np.clip(bbox[1::2], 0, self.height) + x1, y1, x2, y2 = bbox + w = np.maximum(x2 - x1, 1) + h = np.maximum(y2 - y1, 1) + + if len(self.masks) == 0: + cropped_masks = PolygonMasks([], h, w) + else: + cropped_masks = [] + for poly_per_obj in self.masks: + cropped_poly_per_obj = [] + for p in poly_per_obj: + # pycocotools will clip the boundary + p = p.copy() + p[0::2] = p[0::2] - bbox[0] + p[1::2] = p[1::2] - bbox[1] + cropped_poly_per_obj.append(p) + cropped_masks.append(cropped_poly_per_obj) + cropped_masks = PolygonMasks(cropped_masks, h, w) + return cropped_masks + + def pad(self, out_shape, pad_val=0): + """padding has no effect on polygons`""" + return PolygonMasks(self.masks, *out_shape) + + def expand(self, *args, **kwargs): + """TODO: Add expand for polygon""" + raise NotImplementedError + + def crop_and_resize(self, + bboxes, + out_shape, + inds, + device='cpu', + interpolation='bilinear', + binarize=True): + """see :func:`BaseInstanceMasks.crop_and_resize`""" + out_h, out_w = out_shape + if len(self.masks) == 0: + return PolygonMasks([], out_h, out_w) + + if not binarize: + raise ValueError('Polygons are always binary, ' + 'setting binarize=False is unsupported') + + resized_masks = [] + for i in range(len(bboxes)): + mask = self.masks[inds[i]] + bbox = bboxes[i, :] + x1, y1, x2, y2 = bbox + w = np.maximum(x2 - x1, 1) + h = np.maximum(y2 - y1, 1) + h_scale = out_h / max(h, 0.1) # avoid too large scale + w_scale = out_w / max(w, 0.1) + + resized_mask = [] + for p in mask: + p = p.copy() + # crop + # pycocotools will clip the boundary + p[0::2] = p[0::2] - bbox[0] + p[1::2] = p[1::2] - bbox[1] + + # resize + p[0::2] = p[0::2] * w_scale + p[1::2] = p[1::2] * h_scale + resized_mask.append(p) + resized_masks.append(resized_mask) + return PolygonMasks(resized_masks, *out_shape) + + def translate(self, + out_shape, + offset, + direction='horizontal', + fill_val=None, + interpolation=None): + """Translate the PolygonMasks. + + Example: + >>> self = PolygonMasks.random(dtype=np.int) + >>> out_shape = (self.height, self.width) + >>> new = self.translate(out_shape, 4., direction='horizontal') + >>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2]) + >>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4) # noqa: E501 + """ + assert fill_val is None or fill_val == 0, 'Here fill_val is not '\ + f'used, and defaultly should be None or 0. got {fill_val}.' + if len(self.masks) == 0: + translated_masks = PolygonMasks([], *out_shape) + else: + translated_masks = [] + for poly_per_obj in self.masks: + translated_poly_per_obj = [] + for p in poly_per_obj: + p = p.copy() + if direction == 'horizontal': + p[0::2] = np.clip(p[0::2] + offset, 0, out_shape[1]) + elif direction == 'vertical': + p[1::2] = np.clip(p[1::2] + offset, 0, out_shape[0]) + translated_poly_per_obj.append(p) + translated_masks.append(translated_poly_per_obj) + translated_masks = PolygonMasks(translated_masks, *out_shape) + return translated_masks + + def shear(self, + out_shape, + magnitude, + direction='horizontal', + border_value=0, + interpolation='bilinear'): + """See :func:`BaseInstanceMasks.shear`.""" + if len(self.masks) == 0: + sheared_masks = PolygonMasks([], *out_shape) + else: + sheared_masks = [] + if direction == 'horizontal': + shear_matrix = np.stack([[1, magnitude], + [0, 1]]).astype(np.float32) + elif direction == 'vertical': + shear_matrix = np.stack([[1, 0], [magnitude, + 1]]).astype(np.float32) + for poly_per_obj in self.masks: + sheared_poly = [] + for p in poly_per_obj: + p = np.stack([p[0::2], p[1::2]], axis=0) # [2, n] + new_coords = np.matmul(shear_matrix, p) # [2, n] + new_coords[0, :] = np.clip(new_coords[0, :], 0, + out_shape[1]) + new_coords[1, :] = np.clip(new_coords[1, :], 0, + out_shape[0]) + sheared_poly.append( + new_coords.transpose((1, 0)).reshape(-1)) + sheared_masks.append(sheared_poly) + sheared_masks = PolygonMasks(sheared_masks, *out_shape) + return sheared_masks + + def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0): + """See :func:`BaseInstanceMasks.rotate`.""" + if len(self.masks) == 0: + rotated_masks = PolygonMasks([], *out_shape) + else: + rotated_masks = [] + rotate_matrix = cv2.getRotationMatrix2D(center, -angle, scale) + for poly_per_obj in self.masks: + rotated_poly = [] + for p in poly_per_obj: + p = p.copy() + coords = np.stack([p[0::2], p[1::2]], axis=1) # [n, 2] + # pad 1 to convert from format [x, y] to homogeneous + # coordinates format [x, y, 1] + coords = np.concatenate( + (coords, np.ones((coords.shape[0], 1), coords.dtype)), + axis=1) # [n, 3] + rotated_coords = np.matmul( + rotate_matrix[None, :, :], + coords[:, :, None])[..., 0] # [n, 2, 1] -> [n, 2] + rotated_coords[:, 0] = np.clip(rotated_coords[:, 0], 0, + out_shape[1]) + rotated_coords[:, 1] = np.clip(rotated_coords[:, 1], 0, + out_shape[0]) + rotated_poly.append(rotated_coords.reshape(-1)) + rotated_masks.append(rotated_poly) + rotated_masks = PolygonMasks(rotated_masks, *out_shape) + return rotated_masks + + def to_bitmap(self): + """convert polygon masks to bitmap masks.""" + bitmap_masks = self.to_ndarray() + return BitmapMasks(bitmap_masks, self.height, self.width) + + @property + def areas(self): + """Compute areas of masks. + + This func is modified from `detectron2 + `_. + The function only works with Polygons using the shoelace formula. + + Return: + ndarray: areas of each instance + """ # noqa: W501 + area = [] + for polygons_per_obj in self.masks: + area_per_obj = 0 + for p in polygons_per_obj: + area_per_obj += self._polygon_area(p[0::2], p[1::2]) + area.append(area_per_obj) + return np.asarray(area) + + def _polygon_area(self, x, y): + """Compute the area of a component of a polygon. + + Using the shoelace formula: + https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates + + Args: + x (ndarray): x coordinates of the component + y (ndarray): y coordinates of the component + + Return: + float: the are of the component + """ # noqa: 501 + return 0.5 * np.abs( + np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) + + def to_ndarray(self): + """Convert masks to the format of ndarray.""" + if len(self.masks) == 0: + return np.empty((0, self.height, self.width), dtype=np.uint8) + bitmap_masks = [] + for poly_per_obj in self.masks: + bitmap_masks.append( + polygon_to_bitmap(poly_per_obj, self.height, self.width)) + return np.stack(bitmap_masks) + + def to_tensor(self, dtype, device): + """See :func:`BaseInstanceMasks.to_tensor`.""" + if len(self.masks) == 0: + return torch.empty((0, self.height, self.width), + dtype=dtype, + device=device) + ndarray_masks = self.to_ndarray() + return torch.tensor(ndarray_masks, dtype=dtype, device=device) + + @classmethod + def random(cls, + num_masks=3, + height=32, + width=32, + n_verts=5, + dtype=np.float32, + rng=None): + """Generate random polygon masks for demo / testing purposes. + + Adapted from [1]_ + + References: + .. [1] https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379 # noqa: E501 + + Example: + >>> from mmdet.core.mask.structures import PolygonMasks + >>> self = PolygonMasks.random() + >>> print('self = {}'.format(self)) + """ + from mmdet.utils.util_random import ensure_rng + rng = ensure_rng(rng) + + def _gen_polygon(n, irregularity, spikeyness): + """Creates the polygon by sampling points on a circle around the + centre. Random noise is added by varying the angular spacing + between sequential points, and by varying the radial distance of + each point from the centre. + + Based on original code by Mike Ounsworth + + Args: + n (int): number of vertices + irregularity (float): [0,1] indicating how much variance there + is in the angular spacing of vertices. [0,1] will map to + [0, 2pi/numberOfVerts] + spikeyness (float): [0,1] indicating how much variance there is + in each vertex from the circle of radius aveRadius. [0,1] + will map to [0, aveRadius] + + Returns: + a list of vertices, in CCW order. + """ + from scipy.stats import truncnorm + + # Generate around the unit circle + cx, cy = (0.0, 0.0) + radius = 1 + + tau = np.pi * 2 + + irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / n + spikeyness = np.clip(spikeyness, 1e-9, 1) + + # generate n angle steps + lower = (tau / n) - irregularity + upper = (tau / n) + irregularity + angle_steps = rng.uniform(lower, upper, n) + + # normalize the steps so that point 0 and point n+1 are the same + k = angle_steps.sum() / (2 * np.pi) + angles = (angle_steps / k).cumsum() + rng.uniform(0, tau) + + # Convert high and low values to be wrt the standard normal range + # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html + low = 0 + high = 2 * radius + mean = radius + std = spikeyness + a = (low - mean) / std + b = (high - mean) / std + tnorm = truncnorm(a=a, b=b, loc=mean, scale=std) + + # now generate the points + radii = tnorm.rvs(n, random_state=rng) + x_pts = cx + radii * np.cos(angles) + y_pts = cy + radii * np.sin(angles) + + points = np.hstack([x_pts[:, None], y_pts[:, None]]) + + # Scale to 0-1 space + points = points - points.min(axis=0) + points = points / points.max(axis=0) + + # Randomly place within 0-1 space + points = points * (rng.rand() * .8 + .2) + min_pt = points.min(axis=0) + max_pt = points.max(axis=0) + + high = (1 - max_pt) + low = (0 - min_pt) + offset = (rng.rand(2) * (high - low)) + low + points = points + offset + return points + + def _order_vertices(verts): + """ + References: + https://stackoverflow.com/questions/1709283/how-can-i-sort-a-coordinate-list-for-a-rectangle-counterclockwise + """ + mlat = verts.T[0].sum() / len(verts) + mlng = verts.T[1].sum() / len(verts) + + tau = np.pi * 2 + angle = (np.arctan2(mlat - verts.T[0], verts.T[1] - mlng) + + tau) % tau + sortx = angle.argsort() + verts = verts.take(sortx, axis=0) + return verts + + # Generate a random exterior for each requested mask + masks = [] + for _ in range(num_masks): + exterior = _order_vertices(_gen_polygon(n_verts, 0.9, 0.9)) + exterior = (exterior * [(width, height)]).astype(dtype) + masks.append([exterior.ravel()]) + + self = cls(masks, height, width) + return self + + def get_bboxes(self): + num_masks = len(self) + boxes = np.zeros((num_masks, 4), dtype=np.float32) + for idx, poly_per_obj in enumerate(self.masks): + # simply use a number that is big enough for comparison with + # coordinates + xy_min = np.array([self.width * 2, self.height * 2], + dtype=np.float32) + xy_max = np.zeros(2, dtype=np.float32) + for p in poly_per_obj: + xy = np.array(p).reshape(-1, 2).astype(np.float32) + xy_min = np.minimum(xy_min, np.min(xy, axis=0)) + xy_max = np.maximum(xy_max, np.max(xy, axis=0)) + boxes[idx, :2] = xy_min + boxes[idx, 2:] = xy_max + + return boxes + + +def polygon_to_bitmap(polygons, height, width): + """Convert masks from the form of polygons to bitmaps. + + Args: + polygons (list[ndarray]): masks in polygon representation + height (int): mask height + width (int): mask width + + Return: + ndarray: the converted masks in bitmap representation + """ + rles = maskUtils.frPyObjects(polygons, height, width) + rle = maskUtils.merge(rles) + bitmap_mask = maskUtils.decode(rle).astype(np.bool) + return bitmap_mask + + +def bitmap_to_polygon(bitmap): + """Convert masks from the form of bitmaps to polygons. + + Args: + bitmap (ndarray): masks in bitmap representation. + + Return: + list[ndarray]: the converted mask in polygon representation. + bool: whether the mask has holes. + """ + bitmap = np.ascontiguousarray(bitmap).astype(np.uint8) + # cv2.RETR_CCOMP: retrieves all of the contours and organizes them + # into a two-level hierarchy. At the top level, there are external + # boundaries of the components. At the second level, there are + # boundaries of the holes. If there is another contour inside a hole + # of a connected component, it is still put at the top level. + # cv2.CHAIN_APPROX_NONE: stores absolutely all the contour points. + outs = cv2.findContours(bitmap, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) + contours = outs[-2] + hierarchy = outs[-1] + if hierarchy is None: + return [], False + # hierarchy[i]: 4 elements, for the indexes of next, previous, + # parent, or nested contours. If there is no corresponding contour, + # it will be -1. + with_hole = (hierarchy.reshape(-1, 4)[:, 3] >= 0).any() + contours = [c.reshape(-1, 2) for c in contours] + return contours, with_hole diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/utils.py new file mode 100644 index 000000000..90544b34f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/mask/utils.py @@ -0,0 +1,89 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import pycocotools.mask as mask_util +import torch + + +def split_combined_polys(polys, poly_lens, polys_per_mask): + """Split the combined 1-D polys into masks. + + A mask is represented as a list of polys, and a poly is represented as + a 1-D array. In dataset, all masks are concatenated into a single 1-D + tensor. Here we need to split the tensor into original representations. + + Args: + polys (list): a list (length = image num) of 1-D tensors + poly_lens (list): a list (length = image num) of poly length + polys_per_mask (list): a list (length = image num) of poly number + of each mask + + Returns: + list: a list (length = image num) of list (length = mask num) of \ + list (length = poly num) of numpy array. + """ + mask_polys_list = [] + for img_id in range(len(polys)): + polys_single = polys[img_id] + polys_lens_single = poly_lens[img_id].tolist() + polys_per_mask_single = polys_per_mask[img_id].tolist() + + split_polys = mmcv.slice_list(polys_single, polys_lens_single) + mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) + mask_polys_list.append(mask_polys) + return mask_polys_list + + +# TODO: move this function to more proper place +def encode_mask_results(mask_results): + """Encode bitmap mask to RLE code. + + Args: + mask_results (list | tuple[list]): bitmap mask results. + In mask scoring rcnn, mask_results is a tuple of (segm_results, + segm_cls_score). + + Returns: + list | tuple: RLE encoded mask. + """ + if isinstance(mask_results, tuple): # mask scoring + cls_segms, cls_mask_scores = mask_results + else: + cls_segms = mask_results + num_classes = len(cls_segms) + encoded_mask_results = [[] for _ in range(num_classes)] + for i in range(len(cls_segms)): + for cls_segm in cls_segms[i]: + encoded_mask_results[i].append( + mask_util.encode( + np.array( + cls_segm[:, :, np.newaxis], order='F', + dtype='uint8'))[0]) # encoded with RLE + if isinstance(mask_results, tuple): + return encoded_mask_results, cls_mask_scores + else: + return encoded_mask_results + + +def mask2bbox(masks): + """Obtain tight bounding boxes of binary masks. + + Args: + masks (Tensor): Binary mask of shape (n, h, w). + + Returns: + Tensor: Bboxe with shape (n, 4) of \ + positive region in binary mask. + """ + N = masks.shape[0] + bboxes = masks.new_zeros((N, 4), dtype=torch.float32) + x_any = torch.any(masks, dim=1) + y_any = torch.any(masks, dim=2) + for i in range(N): + x = torch.where(x_any[i, :])[0] + y = torch.where(y_any[i, :])[0] + if len(x) > 0 and len(y) > 0: + bboxes[i, :] = bboxes.new_tensor( + [x[0], y[0], x[-1] + 1, y[-1] + 1]) + + return bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/__init__.py new file mode 100644 index 000000000..00376bd49 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .bbox_nms import fast_nms, multiclass_nms +from .matrix_nms import mask_matrix_nms +from .merge_augs import (merge_aug_bboxes, merge_aug_masks, + merge_aug_proposals, merge_aug_scores) + +__all__ = [ + 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes', + 'merge_aug_scores', 'merge_aug_masks', 'mask_matrix_nms', 'fast_nms' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/bbox_nms.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/bbox_nms.py new file mode 100644 index 000000000..4fcf57bb5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/bbox_nms.py @@ -0,0 +1,171 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops.nms import batched_nms + +from mmdet.core.bbox.iou_calculators import bbox_overlaps + + +def multiclass_nms(multi_bboxes, + multi_scores, + score_thr, + nms_cfg, + max_num=-1, + score_factors=None, + return_inds=False): + """NMS for multi-class bboxes. + + Args: + multi_bboxes (Tensor): shape (n, #class*4) or (n, 4) + multi_scores (Tensor): shape (n, #class), where the last column + contains scores of the background class, but this will be ignored. + score_thr (float): bbox threshold, bboxes with scores lower than it + will not be considered. + nms_cfg (dict): a dict that contains the arguments of nms operations + max_num (int, optional): if there are more than max_num bboxes after + NMS, only top max_num will be kept. Default to -1. + score_factors (Tensor, optional): The factors multiplied to scores + before applying NMS. Default to None. + return_inds (bool, optional): Whether return the indices of kept + bboxes. Default to False. + + Returns: + tuple: (dets, labels, indices (optional)), tensors of shape (k, 5), + (k), and (k). Dets are boxes with scores. Labels are 0-based. + """ + num_classes = multi_scores.size(1) - 1 + # exclude background category + if multi_bboxes.shape[1] > 4: + bboxes = multi_bboxes.view(multi_scores.size(0), -1, 4) + else: + bboxes = multi_bboxes[:, None].expand( + multi_scores.size(0), num_classes, 4) + + scores = multi_scores[:, :-1] + + labels = torch.arange(num_classes, dtype=torch.long, device=scores.device) + labels = labels.view(1, -1).expand_as(scores) + + bboxes = bboxes.reshape(-1, 4) + scores = scores.reshape(-1) + labels = labels.reshape(-1) + + if not torch.onnx.is_in_onnx_export(): + # NonZero not supported in TensorRT + # remove low scoring boxes + valid_mask = scores > score_thr + # multiply score_factor after threshold to preserve more bboxes, improve + # mAP by 1% for YOLOv3 + if score_factors is not None: + # expand the shape to match original shape of score + score_factors = score_factors.view(-1, 1).expand( + multi_scores.size(0), num_classes) + score_factors = score_factors.reshape(-1) + scores = scores * score_factors + + if not torch.onnx.is_in_onnx_export(): + # NonZero not supported in TensorRT + inds = valid_mask.nonzero(as_tuple=False).squeeze(1) + bboxes, scores, labels = bboxes[inds], scores[inds], labels[inds] + else: + # TensorRT NMS plugin has invalid output filled with -1 + # add dummy data to make detection output correct. + bboxes = torch.cat([bboxes, bboxes.new_zeros(1, 4)], dim=0) + scores = torch.cat([scores, scores.new_zeros(1)], dim=0) + labels = torch.cat([labels, labels.new_zeros(1)], dim=0) + + if bboxes.numel() == 0: + if torch.onnx.is_in_onnx_export(): + raise RuntimeError('[ONNX Error] Can not record NMS ' + 'as it has not been executed this time') + dets = torch.cat([bboxes, scores[:, None]], -1) + if return_inds: + return dets, labels, inds + else: + return dets, labels + + dets, keep = batched_nms(bboxes, scores, labels, nms_cfg) + + if max_num > 0: + dets = dets[:max_num] + keep = keep[:max_num] + + if return_inds: + return dets, labels[keep], inds[keep] + else: + return dets, labels[keep] + + +def fast_nms(multi_bboxes, + multi_scores, + multi_coeffs, + score_thr, + iou_thr, + top_k, + max_num=-1): + """Fast NMS in `YOLACT `_. + + Fast NMS allows already-removed detections to suppress other detections so + that every instance can be decided to be kept or discarded in parallel, + which is not possible in traditional NMS. This relaxation allows us to + implement Fast NMS entirely in standard GPU-accelerated matrix operations. + + Args: + multi_bboxes (Tensor): shape (n, #class*4) or (n, 4) + multi_scores (Tensor): shape (n, #class+1), where the last column + contains scores of the background class, but this will be ignored. + multi_coeffs (Tensor): shape (n, #class*coeffs_dim). + score_thr (float): bbox threshold, bboxes with scores lower than it + will not be considered. + iou_thr (float): IoU threshold to be considered as conflicted. + top_k (int): if there are more than top_k bboxes before NMS, + only top top_k will be kept. + max_num (int): if there are more than max_num bboxes after NMS, + only top max_num will be kept. If -1, keep all the bboxes. + Default: -1. + + Returns: + tuple: (dets, labels, coefficients), tensors of shape (k, 5), (k, 1), + and (k, coeffs_dim). Dets are boxes with scores. + Labels are 0-based. + """ + + scores = multi_scores[:, :-1].t() # [#class, n] + scores, idx = scores.sort(1, descending=True) + + idx = idx[:, :top_k].contiguous() + scores = scores[:, :top_k] # [#class, topk] + num_classes, num_dets = idx.size() + boxes = multi_bboxes[idx.view(-1), :].view(num_classes, num_dets, 4) + coeffs = multi_coeffs[idx.view(-1), :].view(num_classes, num_dets, -1) + + iou = bbox_overlaps(boxes, boxes) # [#class, topk, topk] + iou.triu_(diagonal=1) + iou_max, _ = iou.max(dim=1) + + # Now just filter out the ones higher than the threshold + keep = iou_max <= iou_thr + + # Second thresholding introduces 0.2 mAP gain at negligible time cost + keep *= scores > score_thr + + # Assign each kept detection to its corresponding class + classes = torch.arange( + num_classes, device=boxes.device)[:, None].expand_as(keep) + classes = classes[keep] + + boxes = boxes[keep] + coeffs = coeffs[keep] + scores = scores[keep] + + # Only keep the top max_num highest scores across all classes + scores, idx = scores.sort(0, descending=True) + if max_num > 0: + idx = idx[:max_num] + scores = scores[:max_num] + + classes = classes[idx] + boxes = boxes[idx] + coeffs = coeffs[idx] + + cls_dets = torch.cat([boxes, scores[:, None]], dim=1) + return cls_dets, classes, coeffs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/matrix_nms.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/matrix_nms.py new file mode 100644 index 000000000..9dc8c4f74 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/matrix_nms.py @@ -0,0 +1,121 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def mask_matrix_nms(masks, + labels, + scores, + filter_thr=-1, + nms_pre=-1, + max_num=-1, + kernel='gaussian', + sigma=2.0, + mask_area=None): + """Matrix NMS for multi-class masks. + + Args: + masks (Tensor): Has shape (num_instances, h, w) + labels (Tensor): Labels of corresponding masks, + has shape (num_instances,). + scores (Tensor): Mask scores of corresponding masks, + has shape (num_instances). + filter_thr (float): Score threshold to filter the masks + after matrix nms. Default: -1, which means do not + use filter_thr. + nms_pre (int): The max number of instances to do the matrix nms. + Default: -1, which means do not use nms_pre. + max_num (int, optional): If there are more than max_num masks after + matrix, only top max_num will be kept. Default: -1, which means + do not use max_num. + kernel (str): 'linear' or 'gaussian'. + sigma (float): std in gaussian method. + mask_area (Tensor): The sum of seg_masks. + + Returns: + tuple(Tensor): Processed mask results. + + - scores (Tensor): Updated scores, has shape (n,). + - labels (Tensor): Remained labels, has shape (n,). + - masks (Tensor): Remained masks, has shape (n, w, h). + - keep_inds (Tensor): The indices number of + the remaining mask in the input mask, has shape (n,). + """ + assert len(labels) == len(masks) == len(scores) + if len(labels) == 0: + return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( + 0, *masks.shape[-2:]), labels.new_zeros(0) + if mask_area is None: + mask_area = masks.sum((1, 2)).float() + else: + assert len(masks) == len(mask_area) + + # sort and keep top nms_pre + scores, sort_inds = torch.sort(scores, descending=True) + + keep_inds = sort_inds + if nms_pre > 0 and len(sort_inds) > nms_pre: + sort_inds = sort_inds[:nms_pre] + keep_inds = keep_inds[:nms_pre] + scores = scores[:nms_pre] + masks = masks[sort_inds] + mask_area = mask_area[sort_inds] + labels = labels[sort_inds] + + num_masks = len(labels) + flatten_masks = masks.reshape(num_masks, -1).float() + # inter. + inter_matrix = torch.mm(flatten_masks, flatten_masks.transpose(1, 0)) + expanded_mask_area = mask_area.expand(num_masks, num_masks) + # Upper triangle iou matrix. + iou_matrix = (inter_matrix / + (expanded_mask_area + expanded_mask_area.transpose(1, 0) - + inter_matrix)).triu(diagonal=1) + # label_specific matrix. + expanded_labels = labels.expand(num_masks, num_masks) + # Upper triangle label matrix. + label_matrix = (expanded_labels == expanded_labels.transpose( + 1, 0)).triu(diagonal=1) + + # IoU compensation + compensate_iou, _ = (iou_matrix * label_matrix).max(0) + compensate_iou = compensate_iou.expand(num_masks, + num_masks).transpose(1, 0) + + # IoU decay + decay_iou = iou_matrix * label_matrix + + # Calculate the decay_coefficient + if kernel == 'gaussian': + decay_matrix = torch.exp(-1 * sigma * (decay_iou**2)) + compensate_matrix = torch.exp(-1 * sigma * (compensate_iou**2)) + decay_coefficient, _ = (decay_matrix / compensate_matrix).min(0) + elif kernel == 'linear': + decay_matrix = (1 - decay_iou) / (1 - compensate_iou) + decay_coefficient, _ = decay_matrix.min(0) + else: + raise NotImplementedError( + f'{kernel} kernel is not supported in matrix nms!') + # update the score. + scores = scores * decay_coefficient + + if filter_thr > 0: + keep = scores >= filter_thr + keep_inds = keep_inds[keep] + if not keep.any(): + return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( + 0, *masks.shape[-2:]), labels.new_zeros(0) + masks = masks[keep] + scores = scores[keep] + labels = labels[keep] + + # sort and keep top max_num + scores, sort_inds = torch.sort(scores, descending=True) + keep_inds = keep_inds[sort_inds] + if max_num > 0 and len(sort_inds) > max_num: + sort_inds = sort_inds[:max_num] + keep_inds = keep_inds[:max_num] + scores = scores[:max_num] + masks = masks[sort_inds] + labels = labels[sort_inds] + + return scores, labels, masks, keep_inds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/merge_augs.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/merge_augs.py new file mode 100644 index 000000000..2ac4603a1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/post_processing/merge_augs.py @@ -0,0 +1,154 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +import numpy as np +import torch +from mmcv import ConfigDict +from mmcv.ops import nms + +from ..bbox import bbox_mapping_back + + +def merge_aug_proposals(aug_proposals, img_metas, cfg): + """Merge augmented proposals (multiscale, flip, etc.) + + Args: + aug_proposals (list[Tensor]): proposals from different testing + schemes, shape (n, 5). Note that they are not rescaled to the + original image size. + + img_metas (list[dict]): list of image info dict where each dict has: + 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + + cfg (dict): rpn test config. + + Returns: + Tensor: shape (n, 4), proposals corresponding to original image scale. + """ + + cfg = copy.deepcopy(cfg) + + # deprecate arguments warning + if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: + warnings.warn( + 'In rpn_proposal or test_cfg, ' + 'nms_thr has been moved to a dict named nms as ' + 'iou_threshold, max_num has been renamed as max_per_img, ' + 'name of original arguments and the way to specify ' + 'iou_threshold of NMS will be deprecated.') + if 'nms' not in cfg: + cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) + if 'max_num' in cfg: + if 'max_per_img' in cfg: + assert cfg.max_num == cfg.max_per_img, f'You set max_num and ' \ + f'max_per_img at the same time, but get {cfg.max_num} ' \ + f'and {cfg.max_per_img} respectively' \ + f'Please delete max_num which will be deprecated.' + else: + cfg.max_per_img = cfg.max_num + if 'nms_thr' in cfg: + assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set ' \ + f'iou_threshold in nms and ' \ + f'nms_thr at the same time, but get ' \ + f'{cfg.nms.iou_threshold} and {cfg.nms_thr}' \ + f' respectively. Please delete the nms_thr ' \ + f'which will be deprecated.' + + recovered_proposals = [] + for proposals, img_info in zip(aug_proposals, img_metas): + img_shape = img_info['img_shape'] + scale_factor = img_info['scale_factor'] + flip = img_info['flip'] + flip_direction = img_info['flip_direction'] + _proposals = proposals.clone() + _proposals[:, :4] = bbox_mapping_back(_proposals[:, :4], img_shape, + scale_factor, flip, + flip_direction) + recovered_proposals.append(_proposals) + aug_proposals = torch.cat(recovered_proposals, dim=0) + merged_proposals, _ = nms(aug_proposals[:, :4].contiguous(), + aug_proposals[:, -1].contiguous(), + cfg.nms.iou_threshold) + scores = merged_proposals[:, 4] + _, order = scores.sort(0, descending=True) + num = min(cfg.max_per_img, merged_proposals.shape[0]) + order = order[:num] + merged_proposals = merged_proposals[order, :] + return merged_proposals + + +def merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg): + """Merge augmented detection bboxes and scores. + + Args: + aug_bboxes (list[Tensor]): shape (n, 4*#class) + aug_scores (list[Tensor] or None): shape (n, #class) + img_shapes (list[Tensor]): shape (3, ). + rcnn_test_cfg (dict): rcnn test config. + + Returns: + tuple: (bboxes, scores) + """ + recovered_bboxes = [] + for bboxes, img_info in zip(aug_bboxes, img_metas): + img_shape = img_info[0]['img_shape'] + scale_factor = img_info[0]['scale_factor'] + flip = img_info[0]['flip'] + flip_direction = img_info[0]['flip_direction'] + bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, + flip_direction) + recovered_bboxes.append(bboxes) + bboxes = torch.stack(recovered_bboxes).mean(dim=0) + if aug_scores is None: + return bboxes + else: + scores = torch.stack(aug_scores).mean(dim=0) + return bboxes, scores + + +def merge_aug_scores(aug_scores): + """Merge augmented bbox scores.""" + if isinstance(aug_scores[0], torch.Tensor): + return torch.mean(torch.stack(aug_scores), dim=0) + else: + return np.mean(aug_scores, axis=0) + + +def merge_aug_masks(aug_masks, img_metas, rcnn_test_cfg, weights=None): + """Merge augmented mask prediction. + + Args: + aug_masks (list[ndarray]): shape (n, #class, h, w) + img_shapes (list[ndarray]): shape (3, ). + rcnn_test_cfg (dict): rcnn test config. + + Returns: + tuple: (bboxes, scores) + """ + recovered_masks = [] + for mask, img_info in zip(aug_masks, img_metas): + flip = img_info[0]['flip'] + if flip: + flip_direction = img_info[0]['flip_direction'] + if flip_direction == 'horizontal': + mask = mask[:, :, :, ::-1] + elif flip_direction == 'vertical': + mask = mask[:, :, ::-1, :] + elif flip_direction == 'diagonal': + mask = mask[:, :, :, ::-1] + mask = mask[:, :, ::-1, :] + else: + raise ValueError( + f"Invalid flipping direction '{flip_direction}'") + recovered_masks.append(mask) + + if weights is None: + merged_masks = np.mean(recovered_masks, axis=0) + else: + merged_masks = np.average( + np.array(recovered_masks), axis=0, weights=np.array(weights)) + return merged_masks diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/__init__.py new file mode 100644 index 000000000..3f0d07081 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, + reduce_mean, sync_random_seed) +from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, + generate_coordinate, mask2ndarray, multi_apply, + select_single_mlvl, unmap) + +__all__ = [ + 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', + 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', + 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', + 'filter_scores_and_topk', 'sync_random_seed' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/dist_utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/dist_utils.py new file mode 100644 index 000000000..8760774fd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/dist_utils.py @@ -0,0 +1,193 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import functools +import pickle +import warnings +from collections import OrderedDict + +import numpy as np +import torch +import torch.distributed as dist +from mmcv.runner import OptimizerHook, get_dist_info +from torch._utils import (_flatten_dense_tensors, _take_tensors, + _unflatten_dense_tensors) + + +def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): + if bucket_size_mb > 0: + bucket_size_bytes = bucket_size_mb * 1024 * 1024 + buckets = _take_tensors(tensors, bucket_size_bytes) + else: + buckets = OrderedDict() + for tensor in tensors: + tp = tensor.type() + if tp not in buckets: + buckets[tp] = [] + buckets[tp].append(tensor) + buckets = buckets.values() + + for bucket in buckets: + flat_tensors = _flatten_dense_tensors(bucket) + dist.all_reduce(flat_tensors) + flat_tensors.div_(world_size) + for tensor, synced in zip( + bucket, _unflatten_dense_tensors(flat_tensors, bucket)): + tensor.copy_(synced) + + +def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): + """Allreduce gradients. + + Args: + params (list[torch.Parameters]): List of parameters of a model + coalesce (bool, optional): Whether allreduce parameters as a whole. + Defaults to True. + bucket_size_mb (int, optional): Size of bucket, the unit is MB. + Defaults to -1. + """ + grads = [ + param.grad.data for param in params + if param.requires_grad and param.grad is not None + ] + world_size = dist.get_world_size() + if coalesce: + _allreduce_coalesced(grads, world_size, bucket_size_mb) + else: + for tensor in grads: + dist.all_reduce(tensor.div_(world_size)) + + +class DistOptimizerHook(OptimizerHook): + """Deprecated optimizer hook for distributed training.""" + + def __init__(self, *args, **kwargs): + warnings.warn('"DistOptimizerHook" is deprecated, please switch to' + '"mmcv.runner.OptimizerHook".') + super().__init__(*args, **kwargs) + + +def reduce_mean(tensor): + """"Obtain the mean of tensor on different GPUs.""" + if not (dist.is_available() and dist.is_initialized()): + return tensor + tensor = tensor.clone() + dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) + return tensor + + +def obj2tensor(pyobj, device='cuda'): + """Serialize picklable python object to tensor.""" + storage = torch.ByteStorage.from_buffer(pickle.dumps(pyobj)) + return torch.ByteTensor(storage).to(device=device) + + +def tensor2obj(tensor): + """Deserialize tensor to picklable python object.""" + return pickle.loads(tensor.cpu().numpy().tobytes()) + + +@functools.lru_cache() +def _get_global_gloo_group(): + """Return a process group based on gloo backend, containing all the ranks + The result is cached.""" + if dist.get_backend() == 'nccl': + return dist.new_group(backend='gloo') + else: + return dist.group.WORLD + + +def all_reduce_dict(py_dict, op='sum', group=None, to_float=True): + """Apply all reduce function for python dict object. + + The code is modified from https://github.com/Megvii- + BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py. + + NOTE: make sure that py_dict in different ranks has the same keys and + the values should be in the same shape. Currently only supports + nccl backend. + + Args: + py_dict (dict): Dict to be applied all reduce op. + op (str): Operator, could be 'sum' or 'mean'. Default: 'sum' + group (:obj:`torch.distributed.group`, optional): Distributed group, + Default: None. + to_float (bool): Whether to convert all values of dict to float. + Default: True. + + Returns: + OrderedDict: reduced python dict object. + """ + warnings.warn( + 'group` is deprecated. Currently only supports NCCL backend.') + _, world_size = get_dist_info() + if world_size == 1: + return py_dict + + # all reduce logic across different devices. + py_key = list(py_dict.keys()) + if not isinstance(py_dict, OrderedDict): + py_key_tensor = obj2tensor(py_key) + dist.broadcast(py_key_tensor, src=0) + py_key = tensor2obj(py_key_tensor) + + tensor_shapes = [py_dict[k].shape for k in py_key] + tensor_numels = [py_dict[k].numel() for k in py_key] + + if to_float: + warnings.warn('Note: the "to_float" is True, you need to ' + 'ensure that the behavior is reasonable.') + flatten_tensor = torch.cat( + [py_dict[k].flatten().float() for k in py_key]) + else: + flatten_tensor = torch.cat([py_dict[k].flatten() for k in py_key]) + + dist.all_reduce(flatten_tensor, op=dist.ReduceOp.SUM) + if op == 'mean': + flatten_tensor /= world_size + + split_tensors = [ + x.reshape(shape) for x, shape in zip( + torch.split(flatten_tensor, tensor_numels), tensor_shapes) + ] + out_dict = {k: v for k, v in zip(py_key, split_tensors)} + if isinstance(py_dict, OrderedDict): + out_dict = OrderedDict(out_dict) + return out_dict + + +def sync_random_seed(seed=None, device='cuda'): + """Make sure different ranks share the same seed. + + All workers must call this function, otherwise it will deadlock. + This method is generally used in `DistributedSampler`, + because the seed should be identical across all processes + in the distributed group. + + In distributed sampling, different ranks should sample non-overlapped + data in the dataset. Therefore, this function is used to make sure that + each rank shuffles the data indices in the same order based + on the same seed. Then different ranks could use different indices + to select non-overlapped data from the same data list. + + Args: + seed (int, Optional): The seed. Default to None. + device (str): The device where the seed will be put on. + Default to 'cuda'. + + Returns: + int: Seed to be used. + """ + if seed is None: + seed = np.random.randint(2**31) + assert isinstance(seed, int) + + rank, world_size = get_dist_info() + + if world_size == 1: + return seed + + if rank == 0: + random_num = torch.tensor(seed, dtype=torch.int32, device=device) + else: + random_num = torch.tensor(0, dtype=torch.int32, device=device) + dist.broadcast(random_num, src=0) + return random_num.item() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/misc.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/misc.py new file mode 100644 index 000000000..14cb745e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/utils/misc.py @@ -0,0 +1,208 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from functools import partial + +import numpy as np +import torch +from six.moves import map, zip + +from ..mask.structures import BitmapMasks, PolygonMasks + + +def multi_apply(func, *args, **kwargs): + """Apply function to a list of arguments. + + Note: + This function applies the ``func`` to multiple inputs and + map the multiple outputs of the ``func`` into different + list. Each list contains the same type of outputs corresponding + to different inputs. + + Args: + func (Function): A function that will be applied to a list of + arguments + + Returns: + tuple(list): A tuple containing multiple list, each list contains \ + a kind of returned results by the function + """ + pfunc = partial(func, **kwargs) if kwargs else func + map_results = map(pfunc, *args) + return tuple(map(list, zip(*map_results))) + + +def unmap(data, count, inds, fill=0): + """Unmap a subset of item (data) back to the original set of items (of size + count)""" + if data.dim() == 1: + ret = data.new_full((count, ), fill) + ret[inds.type(torch.bool)] = data + else: + new_size = (count, ) + data.size()[1:] + ret = data.new_full(new_size, fill) + ret[inds.type(torch.bool), :] = data + return ret + + +def mask2ndarray(mask): + """Convert Mask to ndarray.. + + Args: + mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or + torch.Tensor or np.ndarray): The mask to be converted. + + Returns: + np.ndarray: Ndarray mask of shape (n, h, w) that has been converted + """ + if isinstance(mask, (BitmapMasks, PolygonMasks)): + mask = mask.to_ndarray() + elif isinstance(mask, torch.Tensor): + mask = mask.detach().cpu().numpy() + elif not isinstance(mask, np.ndarray): + raise TypeError(f'Unsupported {type(mask)} data type') + return mask + + +def flip_tensor(src_tensor, flip_direction): + """flip tensor base on flip_direction. + + Args: + src_tensor (Tensor): input feature map, shape (B, C, H, W). + flip_direction (str): The flipping direction. Options are + 'horizontal', 'vertical', 'diagonal'. + + Returns: + out_tensor (Tensor): Flipped tensor. + """ + assert src_tensor.ndim == 4 + valid_directions = ['horizontal', 'vertical', 'diagonal'] + assert flip_direction in valid_directions + if flip_direction == 'horizontal': + out_tensor = torch.flip(src_tensor, [3]) + elif flip_direction == 'vertical': + out_tensor = torch.flip(src_tensor, [2]) + else: + out_tensor = torch.flip(src_tensor, [2, 3]) + return out_tensor + + +def select_single_mlvl(mlvl_tensors, batch_id, detach=True): + """Extract a multi-scale single image tensor from a multi-scale batch + tensor based on batch index. + + Note: The default value of detach is True, because the proposal gradient + needs to be detached during the training of the two-stage model. E.g + Cascade Mask R-CNN. + + Args: + mlvl_tensors (list[Tensor]): Batch tensor for all scale levels, + each is a 4D-tensor. + batch_id (int): Batch index. + detach (bool): Whether detach gradient. Default True. + + Returns: + list[Tensor]: Multi-scale single image tensor. + """ + assert isinstance(mlvl_tensors, (list, tuple)) + num_levels = len(mlvl_tensors) + + if detach: + mlvl_tensor_list = [ + mlvl_tensors[i][batch_id].detach() for i in range(num_levels) + ] + else: + mlvl_tensor_list = [ + mlvl_tensors[i][batch_id] for i in range(num_levels) + ] + return mlvl_tensor_list + + +def filter_scores_and_topk(scores, score_thr, topk, results=None): + """Filter results using score threshold and topk candidates. + + Args: + scores (Tensor): The scores, shape (num_bboxes, K). + score_thr (float): The score filter threshold. + topk (int): The number of topk candidates. + results (dict or list or Tensor, Optional): The results to + which the filtering rule is to be applied. The shape + of each item is (num_bboxes, N). + + Returns: + tuple: Filtered results + + - scores (Tensor): The scores after being filtered, \ + shape (num_bboxes_filtered, ). + - labels (Tensor): The class labels, shape \ + (num_bboxes_filtered, ). + - anchor_idxs (Tensor): The anchor indexes, shape \ + (num_bboxes_filtered, ). + - filtered_results (dict or list or Tensor, Optional): \ + The filtered results. The shape of each item is \ + (num_bboxes_filtered, N). + """ + valid_mask = scores > score_thr + scores = scores[valid_mask] + valid_idxs = torch.nonzero(valid_mask) + + num_topk = min(topk, valid_idxs.size(0)) + # torch.sort is actually faster than .topk (at least on GPUs) + scores, idxs = scores.sort(descending=True) + scores = scores[:num_topk] + topk_idxs = valid_idxs[idxs[:num_topk]] + keep_idxs, labels = topk_idxs.unbind(dim=1) + + filtered_results = None + if results is not None: + if isinstance(results, dict): + filtered_results = {k: v[keep_idxs] for k, v in results.items()} + elif isinstance(results, list): + filtered_results = [result[keep_idxs] for result in results] + elif isinstance(results, torch.Tensor): + filtered_results = results[keep_idxs] + else: + raise NotImplementedError(f'Only supports dict or list or Tensor, ' + f'but get {type(results)}.') + return scores, labels, keep_idxs, filtered_results + + +def center_of_mass(mask, esp=1e-6): + """Calculate the centroid coordinates of the mask. + + Args: + mask (Tensor): The mask to be calculated, shape (h, w). + esp (float): Avoid dividing by zero. Default: 1e-6. + + Returns: + tuple[Tensor]: the coordinates of the center point of the mask. + + - center_h (Tensor): the center point of the height. + - center_w (Tensor): the center point of the width. + """ + h, w = mask.shape + grid_h = torch.arange(h, device=mask.device)[:, None] + grid_w = torch.arange(w, device=mask.device) + normalizer = mask.sum().float().clamp(min=esp) + center_h = (mask * grid_h).sum() / normalizer + center_w = (mask * grid_w).sum() / normalizer + return center_h, center_w + + +def generate_coordinate(featmap_sizes, device='cuda'): + """Generate the coordinate. + + Args: + featmap_sizes (tuple): The feature to be calculated, + of shape (N, C, W, H). + device (str): The device where the feature will be put on. + Returns: + coord_feat (Tensor): The coordinate feature, of shape (N, 2, W, H). + """ + + x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device) + y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device) + y, x = torch.meshgrid(y_range, x_range) + y = y.expand([featmap_sizes[0], 1, -1, -1]) + x = x.expand([featmap_sizes[0], 1, -1, -1]) + coord_feat = torch.cat([x, y], 1) + + return coord_feat diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/__init__.py new file mode 100644 index 000000000..2eb17c4b3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .image import (color_val_matplotlib, imshow_det_bboxes, + imshow_gt_det_bboxes) +from .palette import get_palette, palette_val + +__all__ = [ + 'imshow_det_bboxes', 'imshow_gt_det_bboxes', 'color_val_matplotlib', + 'palette_val', 'get_palette' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/image.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/image.py new file mode 100644 index 000000000..c574b2d46 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/image.py @@ -0,0 +1,524 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import cv2 +import matplotlib.pyplot as plt +import mmcv +import numpy as np +import pycocotools.mask as mask_util +from matplotlib.collections import PatchCollection +from matplotlib.patches import Polygon + +from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET +from ..mask.structures import bitmap_to_polygon +from ..utils import mask2ndarray +from .palette import get_palette, palette_val + +__all__ = [ + 'color_val_matplotlib', 'draw_masks', 'draw_bboxes', 'draw_labels', + 'imshow_det_bboxes', 'imshow_gt_det_bboxes' +] + +EPS = 1e-2 + + +def color_val_matplotlib(color): + """Convert various input in BGR order to normalized RGB matplotlib color + tuples. + + Args: + color (:obj`Color` | str | tuple | int | ndarray): Color inputs. + + Returns: + tuple[float]: A tuple of 3 normalized floats indicating RGB channels. + """ + color = mmcv.color_val(color) + color = [color / 255 for color in color[::-1]] + return tuple(color) + + +def _get_adaptive_scales(areas, min_area=800, max_area=30000): + """Get adaptive scales according to areas. + + The scale range is [0.5, 1.0]. When the area is less than + ``'min_area'``, the scale is 0.5 while the area is larger than + ``'max_area'``, the scale is 1.0. + + Args: + areas (ndarray): The areas of bboxes or masks with the + shape of (n, ). + min_area (int): Lower bound areas for adaptive scales. + Default: 800. + max_area (int): Upper bound areas for adaptive scales. + Default: 30000. + + Returns: + ndarray: The adaotive scales with the shape of (n, ). + """ + scales = 0.5 + (areas - min_area) / (max_area - min_area) + scales = np.clip(scales, 0.5, 1.0) + return scales + + +def _get_bias_color(base, max_dist=30): + """Get different colors for each masks. + + Get different colors for each masks by adding a bias + color to the base category color. + Args: + base (ndarray): The base category color with the shape + of (3, ). + max_dist (int): The max distance of bias. Default: 30. + + Returns: + ndarray: The new color for a mask with the shape of (3, ). + """ + new_color = base + np.random.randint( + low=-max_dist, high=max_dist + 1, size=3) + return np.clip(new_color, 0, 255, new_color) + + +def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2): + """Draw bounding boxes on the axes. + + Args: + ax (matplotlib.Axes): The input axes. + bboxes (ndarray): The input bounding boxes with the shape + of (n, 4). + color (list[tuple] | matplotlib.color): the colors for each + bounding boxes. + alpha (float): Transparency of bounding boxes. Default: 0.8. + thickness (int): Thickness of lines. Default: 2. + + Returns: + matplotlib.Axes: The result axes. + """ + polygons = [] + for i, bbox in enumerate(bboxes): + bbox_int = bbox.astype(np.int32) + poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]], + [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]] + np_poly = np.array(poly).reshape((4, 2)) + polygons.append(Polygon(np_poly)) + p = PatchCollection( + polygons, + facecolor='none', + edgecolors=color, + linewidths=thickness, + alpha=alpha) + ax.add_collection(p) + + return ax + + +def draw_labels(ax, + labels, + positions, + scores=None, + class_names=None, + color='w', + font_size=8, + scales=None, + horizontal_alignment='left'): + """Draw labels on the axes. + + Args: + ax (matplotlib.Axes): The input axes. + labels (ndarray): The labels with the shape of (n, ). + positions (ndarray): The positions to draw each labels. + scores (ndarray): The scores for each labels. + class_names (list[str]): The class names. + color (list[tuple] | matplotlib.color): The colors for labels. + font_size (int): Font size of texts. Default: 8. + scales (list[float]): Scales of texts. Default: None. + horizontal_alignment (str): The horizontal alignment method of + texts. Default: 'left'. + + Returns: + matplotlib.Axes: The result axes. + """ + for i, (pos, label) in enumerate(zip(positions, labels)): + label_text = class_names[ + label] if class_names is not None else f'class {label}' + if scores is not None: + label_text += f'|{scores[i]:.02f}' + text_color = color[i] if isinstance(color, list) else color + + font_size_mask = font_size if scales is None else font_size * scales[i] + ax.text( + pos[0], + pos[1], + f'{label_text}', + bbox={ + 'facecolor': 'black', + 'alpha': 0.8, + 'pad': 0.7, + 'edgecolor': 'none' + }, + color=text_color, + fontsize=font_size_mask, + verticalalignment='top', + horizontalalignment=horizontal_alignment) + + return ax + + +def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8): + """Draw masks on the image and their edges on the axes. + + Args: + ax (matplotlib.Axes): The input axes. + img (ndarray): The image with the shape of (3, h, w). + masks (ndarray): The masks with the shape of (n, h, w). + color (ndarray): The colors for each masks with the shape + of (n, 3). + with_edge (bool): Whether to draw edges. Default: True. + alpha (float): Transparency of bounding boxes. Default: 0.8. + + Returns: + matplotlib.Axes: The result axes. + ndarray: The result image. + """ + taken_colors = set([0, 0, 0]) + if color is None: + random_colors = np.random.randint(0, 255, (masks.size(0), 3)) + color = [tuple(c) for c in random_colors] + color = np.array(color, dtype=np.uint8) + polygons = [] + for i, mask in enumerate(masks): + if with_edge: + contours, _ = bitmap_to_polygon(mask) + polygons += [Polygon(c) for c in contours] + + color_mask = color[i] + while tuple(color_mask) in taken_colors: + color_mask = _get_bias_color(color_mask) + taken_colors.add(tuple(color_mask)) + + mask = mask.astype(bool) + img[mask] = img[mask] * (1 - alpha) + color_mask * alpha + + p = PatchCollection( + polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8) + ax.add_collection(p) + + return ax, img + + +def imshow_det_bboxes(img, + bboxes=None, + labels=None, + segms=None, + class_names=None, + score_thr=0, + bbox_color='green', + text_color='green', + mask_color=None, + thickness=2, + font_size=8, + win_name='', + show=True, + wait_time=0, + out_file=None): + """Draw bboxes and class labels (with scores) on an image. + + Args: + img (str | ndarray): The image to be displayed. + bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or + (n, 5). + labels (ndarray): Labels of bboxes. + segms (ndarray | None): Masks, shaped (n,h,w) or None. + class_names (list[str]): Names of each classes. + score_thr (float): Minimum score of bboxes to be shown. Default: 0. + bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: 'green'. + text_color (list[tuple] | tuple | str | None): Colors of texts. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: 'green'. + mask_color (list[tuple] | tuple | str | None, optional): Colors of + masks. If a single color is given, it will be applied to all + classes. The tuple of color should be in RGB order. + Default: None. + thickness (int): Thickness of lines. Default: 2. + font_size (int): Font size of texts. Default: 13. + show (bool): Whether to show the image. Default: True. + win_name (str): The window name. Default: ''. + wait_time (float): Value of waitKey param. Default: 0. + out_file (str, optional): The filename to write the image. + Default: None. + + Returns: + ndarray: The image with bboxes drawn on it. + """ + assert bboxes is None or bboxes.ndim == 2, \ + f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.' + assert labels.ndim == 1, \ + f' labels ndim should be 1, but its ndim is {labels.ndim}.' + assert bboxes is None or bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \ + f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.' + assert bboxes is None or bboxes.shape[0] <= labels.shape[0], \ + 'labels.shape[0] should not be less than bboxes.shape[0].' + assert segms is None or segms.shape[0] == labels.shape[0], \ + 'segms.shape[0] and labels.shape[0] should have the same length.' + assert segms is not None or bboxes is not None, \ + 'segms and bboxes should not be None at the same time.' + + img = mmcv.imread(img).astype(np.uint8) + + if score_thr > 0: + assert bboxes is not None and bboxes.shape[1] == 5 + scores = bboxes[:, -1] + inds = scores > score_thr + bboxes = bboxes[inds, :] + labels = labels[inds] + if segms is not None: + segms = segms[inds, ...] + + img = mmcv.bgr2rgb(img) + width, height = img.shape[1], img.shape[0] + img = np.ascontiguousarray(img) + + fig = plt.figure(win_name, frameon=False) + plt.title(win_name) + canvas = fig.canvas + dpi = fig.get_dpi() + # add a small EPS to avoid precision lost due to matplotlib's truncation + # (https://github.com/matplotlib/matplotlib/issues/15363) + fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi) + + # remove white edges by set subplot margin + plt.subplots_adjust(left=0, right=1, bottom=0, top=1) + ax = plt.gca() + ax.axis('off') + + max_label = int(max(labels) if len(labels) > 0 else 0) + text_palette = palette_val(get_palette(text_color, max_label + 1)) + text_colors = [text_palette[label] for label in labels] + + num_bboxes = 0 + if bboxes is not None: + num_bboxes = bboxes.shape[0] + bbox_palette = palette_val(get_palette(bbox_color, max_label + 1)) + colors = [bbox_palette[label] for label in labels[:num_bboxes]] + draw_bboxes(ax, bboxes, colors, alpha=0.8, thickness=thickness) + + horizontal_alignment = 'left' + positions = bboxes[:, :2].astype(np.int32) + thickness + areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0]) + scales = _get_adaptive_scales(areas) + scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None + draw_labels( + ax, + labels[:num_bboxes], + positions, + scores=scores, + class_names=class_names, + color=text_colors, + font_size=font_size, + scales=scales, + horizontal_alignment=horizontal_alignment) + + if segms is not None: + mask_palette = get_palette(mask_color, max_label + 1) + colors = [mask_palette[label] for label in labels] + colors = np.array(colors, dtype=np.uint8) + draw_masks(ax, img, segms, colors, with_edge=True) + + if num_bboxes < segms.shape[0]: + segms = segms[num_bboxes:] + horizontal_alignment = 'center' + areas = [] + positions = [] + for mask in segms: + _, _, stats, centroids = cv2.connectedComponentsWithStats( + mask.astype(np.uint8), connectivity=8) + largest_id = np.argmax(stats[1:, -1]) + 1 + positions.append(centroids[largest_id]) + areas.append(stats[largest_id, -1]) + areas = np.stack(areas, axis=0) + scales = _get_adaptive_scales(areas) + draw_labels( + ax, + labels[num_bboxes:], + positions, + class_names=class_names, + color=text_colors, + font_size=font_size, + scales=scales, + horizontal_alignment=horizontal_alignment) + + plt.imshow(img) + + stream, _ = canvas.print_to_buffer() + buffer = np.frombuffer(stream, dtype='uint8') + img_rgba = buffer.reshape(height, width, 4) + rgb, alpha = np.split(img_rgba, [3], axis=2) + img = rgb.astype('uint8') + img = mmcv.rgb2bgr(img) + + if show: + # We do not use cv2 for display because in some cases, opencv will + # conflict with Qt, it will output a warning: Current thread + # is not the object's thread. You can refer to + # https://github.com/opencv/opencv-python/issues/46 for details + if wait_time == 0: + plt.show() + else: + plt.show(block=False) + plt.pause(wait_time) + if out_file is not None: + mmcv.imwrite(img, out_file) + + plt.close() + + return img + + +def imshow_gt_det_bboxes(img, + annotation, + result, + class_names=None, + score_thr=0, + gt_bbox_color=(61, 102, 255), + gt_text_color=(200, 200, 200), + gt_mask_color=(61, 102, 255), + det_bbox_color=(241, 101, 72), + det_text_color=(200, 200, 200), + det_mask_color=(241, 101, 72), + thickness=2, + font_size=13, + win_name='', + show=True, + wait_time=0, + out_file=None): + """General visualization GT and result function. + + Args: + img (str | ndarray): The image to be displayed. + annotation (dict): Ground truth annotations where contain keys of + 'gt_bboxes' and 'gt_labels' or 'gt_masks'. + result (tuple[list] | list): The detection result, can be either + (bbox, segm) or just bbox. + class_names (list[str]): Names of each classes. + score_thr (float): Minimum score of bboxes to be shown. Default: 0. + gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (61, 102, 255). + gt_text_color (list[tuple] | tuple | str | None): Colors of texts. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (200, 200, 200). + gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of + masks. If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (61, 102, 255). + det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (241, 101, 72). + det_text_color (list[tuple] | tuple | str | None):Colors of texts. + If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (200, 200, 200). + det_mask_color (list[tuple] | tuple | str | None, optional): Color of + masks. If a single color is given, it will be applied to all classes. + The tuple of color should be in RGB order. Default: (241, 101, 72). + thickness (int): Thickness of lines. Default: 2. + font_size (int): Font size of texts. Default: 13. + win_name (str): The window name. Default: ''. + show (bool): Whether to show the image. Default: True. + wait_time (float): Value of waitKey param. Default: 0. + out_file (str, optional): The filename to write the image. + Default: None. + + Returns: + ndarray: The image with bboxes or masks drawn on it. + """ + assert 'gt_bboxes' in annotation + assert 'gt_labels' in annotation + assert isinstance(result, (tuple, list, dict)), 'Expected ' \ + f'tuple or list or dict, but get {type(result)}' + + gt_bboxes = annotation['gt_bboxes'] + gt_labels = annotation['gt_labels'] + gt_masks = annotation.get('gt_masks', None) + if gt_masks is not None: + gt_masks = mask2ndarray(gt_masks) + + gt_seg = annotation.get('gt_semantic_seg', None) + if gt_seg is not None: + pad_value = 255 # the padding value of gt_seg + sem_labels = np.unique(gt_seg) + all_labels = np.concatenate((gt_labels, sem_labels), axis=0) + all_labels, counts = np.unique(all_labels, return_counts=True) + stuff_labels = all_labels[np.logical_and(counts < 2, + all_labels != pad_value)] + stuff_masks = gt_seg[None] == stuff_labels[:, None, None] + gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0) + gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)), + axis=0) + # If you need to show the bounding boxes, + # please comment the following line + # gt_bboxes = None + + img = mmcv.imread(img) + + img = imshow_det_bboxes( + img, + gt_bboxes, + gt_labels, + gt_masks, + class_names=class_names, + bbox_color=gt_bbox_color, + text_color=gt_text_color, + mask_color=gt_mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=False) + + if not isinstance(result, dict): + if isinstance(result, tuple): + bbox_result, segm_result = result + if isinstance(segm_result, tuple): + segm_result = segm_result[0] # ms rcnn + else: + bbox_result, segm_result = result, None + + bboxes = np.vstack(bbox_result) + labels = [ + np.full(bbox.shape[0], i, dtype=np.int32) + for i, bbox in enumerate(bbox_result) + ] + labels = np.concatenate(labels) + + segms = None + if segm_result is not None and len(labels) > 0: # non empty + segms = mmcv.concat_list(segm_result) + segms = mask_util.decode(segms) + segms = segms.transpose(2, 0, 1) + else: + assert class_names is not None, 'We need to know the number ' \ + 'of classes.' + VOID = len(class_names) + bboxes = None + pan_results = result['pan_results'] + # keep objects ahead + ids = np.unique(pan_results)[::-1] + legal_indices = ids != VOID + ids = ids[legal_indices] + labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64) + segms = (pan_results[None] == ids[:, None, None]) + + img = imshow_det_bboxes( + img, + bboxes, + labels, + segms=segms, + class_names=class_names, + score_thr=score_thr, + bbox_color=det_bbox_color, + text_color=det_text_color, + mask_color=det_mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=show, + wait_time=wait_time, + out_file=out_file) + return img diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/palette.py b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/palette.py new file mode 100644 index 000000000..11692cdd0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/core/visualization/palette.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np + + +def palette_val(palette): + """Convert palette to matplotlib palette. + + Args: + palette List[tuple]: A list of color tuples. + + Returns: + List[tuple[float]]: A list of RGB matplotlib color tuples. + """ + new_palette = [] + for color in palette: + color = [c / 255 for c in color] + new_palette.append(tuple(color)) + return new_palette + + +def get_palette(palette, num_classes): + """Get palette from various inputs. + + Args: + palette (list[tuple] | str | tuple | :obj:`Color`): palette inputs. + num_classes (int): the number of classes. + + Returns: + list[tuple[int]]: A list of color tuples. + """ + assert isinstance(num_classes, int) + + if isinstance(palette, list): + dataset_palette = palette + elif isinstance(palette, tuple): + dataset_palette = [palette] * num_classes + elif palette == 'random' or palette is None: + state = np.random.get_state() + # random color + np.random.seed(42) + palette = np.random.randint(0, 256, size=(num_classes, 3)) + np.random.set_state(state) + dataset_palette = [tuple(c) for c in palette] + elif palette == 'coco': + from mmdet.datasets import CocoDataset, CocoPanopticDataset + dataset_palette = CocoDataset.PALETTE + if len(dataset_palette) < num_classes: + dataset_palette = CocoPanopticDataset.PALETTE + elif palette == 'citys': + from mmdet.datasets import CityscapesDataset + dataset_palette = CityscapesDataset.PALETTE + elif palette == 'voc': + from mmdet.datasets import VOCDataset + dataset_palette = VOCDataset.PALETTE + elif mmcv.is_str(palette): + dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes + else: + raise TypeError(f'Invalid type for palette: {type(palette)}') + + assert len(dataset_palette) >= num_classes, \ + 'The length of palette should not be less than `num_classes`.' + return dataset_palette diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/__init__.py new file mode 100644 index 000000000..f251d07e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/__init__.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset +from .cityscapes import CityscapesDataset +from .coco import CocoDataset +from .coco_panoptic import CocoPanopticDataset +from .custom import CustomDataset +from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, + MultiImageMixDataset, RepeatDataset) +from .deepfashion import DeepFashionDataset +from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset +from .openimages import OpenImagesChallengeDataset, OpenImagesDataset +from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler +from .utils import (NumClassCheckHook, get_loading_pipeline, + replace_ImageToTensor) +from .voc import VOCDataset +from .wider_face import WIDERFaceDataset +from .xml_style import XMLDataset + +__all__ = [ + 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', + 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', + 'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler', + 'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', + 'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', + 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', + 'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset', + 'OpenImagesDataset', 'OpenImagesChallengeDataset' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/__init__.py new file mode 100644 index 000000000..af8557593 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/__init__.py @@ -0,0 +1,7 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .coco_api import COCO, COCOeval +from .panoptic_evaluation import pq_compute_multi_core, pq_compute_single_core + +__all__ = [ + 'COCO', 'COCOeval', 'pq_compute_multi_core', 'pq_compute_single_core' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/coco_api.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/coco_api.py new file mode 100644 index 000000000..eef6341eb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/coco_api.py @@ -0,0 +1,47 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# This file add snake case alias for coco api + +import warnings + +import pycocotools +from pycocotools.coco import COCO as _COCO +from pycocotools.cocoeval import COCOeval as _COCOeval + + +class COCO(_COCO): + """This class is almost the same as official pycocotools package. + + It implements some snake case function aliases. So that the COCO class has + the same interface as LVIS class. + """ + + def __init__(self, annotation_file=None): + if getattr(pycocotools, '__version__', '0') >= '12.0.2': + warnings.warn( + 'mmpycocotools is deprecated. Please install official pycocotools by "pip install pycocotools"', # noqa: E501 + UserWarning) + super().__init__(annotation_file=annotation_file) + self.img_ann_map = self.imgToAnns + self.cat_img_map = self.catToImgs + + def get_ann_ids(self, img_ids=[], cat_ids=[], area_rng=[], iscrowd=None): + return self.getAnnIds(img_ids, cat_ids, area_rng, iscrowd) + + def get_cat_ids(self, cat_names=[], sup_names=[], cat_ids=[]): + return self.getCatIds(cat_names, sup_names, cat_ids) + + def get_img_ids(self, img_ids=[], cat_ids=[]): + return self.getImgIds(img_ids, cat_ids) + + def load_anns(self, ids): + return self.loadAnns(ids) + + def load_cats(self, ids): + return self.loadCats(ids) + + def load_imgs(self, ids): + return self.loadImgs(ids) + + +# just for the ease of import +COCOeval = _COCOeval diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/panoptic_evaluation.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/panoptic_evaluation.py new file mode 100644 index 000000000..b29d50079 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/api_wrappers/panoptic_evaluation.py @@ -0,0 +1,224 @@ +# Copyright (c) OpenMMLab. All rights reserved. + +# Copyright (c) 2018, Alexander Kirillov +# This file supports `file_client` for `panopticapi`, +# the source code is copied from `panopticapi`, +# only the way to load the gt images is modified. +import multiprocessing +import os + +import mmcv +import numpy as np + +try: + from panopticapi.evaluation import OFFSET, VOID, PQStat + from panopticapi.utils import rgb2id +except ImportError: + PQStat = None + rgb2id = None + VOID = 0 + OFFSET = 256 * 256 * 256 + + +def pq_compute_single_core(proc_id, + annotation_set, + gt_folder, + pred_folder, + categories, + file_client=None): + """The single core function to evaluate the metric of Panoptic + Segmentation. + + Same as the function with the same name in `panopticapi`. Only the function + to load the images is changed to use the file client. + + Args: + proc_id (int): The id of the mini process. + gt_folder (str): The path of the ground truth images. + pred_folder (str): The path of the prediction images. + categories (str): The categories of the dataset. + file_client (object): The file client of the dataset. If None, + the backend will be set to `disk`. + """ + if PQStat is None: + raise RuntimeError( + 'panopticapi is not installed, please install it by: ' + 'pip install git+https://github.com/cocodataset/' + 'panopticapi.git.') + + if file_client is None: + file_client_args = dict(backend='disk') + file_client = mmcv.FileClient(**file_client_args) + + pq_stat = PQStat() + + idx = 0 + for gt_ann, pred_ann in annotation_set: + if idx % 100 == 0: + print('Core: {}, {} from {} images processed'.format( + proc_id, idx, len(annotation_set))) + idx += 1 + # The gt images can be on the local disk or `ceph`, so we use + # file_client here. + img_bytes = file_client.get( + os.path.join(gt_folder, gt_ann['file_name'])) + pan_gt = mmcv.imfrombytes(img_bytes, flag='color', channel_order='rgb') + pan_gt = rgb2id(pan_gt) + + # The predictions can only be on the local dist now. + pan_pred = mmcv.imread( + os.path.join(pred_folder, pred_ann['file_name']), + flag='color', + channel_order='rgb') + pan_pred = rgb2id(pan_pred) + + gt_segms = {el['id']: el for el in gt_ann['segments_info']} + pred_segms = {el['id']: el for el in pred_ann['segments_info']} + + # predicted segments area calculation + prediction sanity checks + pred_labels_set = set(el['id'] for el in pred_ann['segments_info']) + labels, labels_cnt = np.unique(pan_pred, return_counts=True) + for label, label_cnt in zip(labels, labels_cnt): + if label not in pred_segms: + if label == VOID: + continue + raise KeyError( + 'In the image with ID {} segment with ID {} is ' + 'presented in PNG and not presented in JSON.'.format( + gt_ann['image_id'], label)) + pred_segms[label]['area'] = label_cnt + pred_labels_set.remove(label) + if pred_segms[label]['category_id'] not in categories: + raise KeyError( + 'In the image with ID {} segment with ID {} has ' + 'unknown category_id {}.'.format( + gt_ann['image_id'], label, + pred_segms[label]['category_id'])) + if len(pred_labels_set) != 0: + raise KeyError( + 'In the image with ID {} the following segment IDs {} ' + 'are presented in JSON and not presented in PNG.'.format( + gt_ann['image_id'], list(pred_labels_set))) + + # confusion matrix calculation + pan_gt_pred = pan_gt.astype(np.uint64) * OFFSET + pan_pred.astype( + np.uint64) + gt_pred_map = {} + labels, labels_cnt = np.unique(pan_gt_pred, return_counts=True) + for label, intersection in zip(labels, labels_cnt): + gt_id = label // OFFSET + pred_id = label % OFFSET + gt_pred_map[(gt_id, pred_id)] = intersection + + # count all matched pairs + gt_matched = set() + pred_matched = set() + for label_tuple, intersection in gt_pred_map.items(): + gt_label, pred_label = label_tuple + if gt_label not in gt_segms: + continue + if pred_label not in pred_segms: + continue + if gt_segms[gt_label]['iscrowd'] == 1: + continue + if gt_segms[gt_label]['category_id'] != pred_segms[pred_label][ + 'category_id']: + continue + + union = pred_segms[pred_label]['area'] + gt_segms[gt_label][ + 'area'] - intersection - gt_pred_map.get((VOID, pred_label), 0) + iou = intersection / union + if iou > 0.5: + pq_stat[gt_segms[gt_label]['category_id']].tp += 1 + pq_stat[gt_segms[gt_label]['category_id']].iou += iou + gt_matched.add(gt_label) + pred_matched.add(pred_label) + + # count false positives + crowd_labels_dict = {} + for gt_label, gt_info in gt_segms.items(): + if gt_label in gt_matched: + continue + # crowd segments are ignored + if gt_info['iscrowd'] == 1: + crowd_labels_dict[gt_info['category_id']] = gt_label + continue + pq_stat[gt_info['category_id']].fn += 1 + + # count false positives + for pred_label, pred_info in pred_segms.items(): + if pred_label in pred_matched: + continue + # intersection of the segment with VOID + intersection = gt_pred_map.get((VOID, pred_label), 0) + # plus intersection with corresponding CROWD region if it exists + if pred_info['category_id'] in crowd_labels_dict: + intersection += gt_pred_map.get( + (crowd_labels_dict[pred_info['category_id']], pred_label), + 0) + # predicted segment is ignored if more than half of + # the segment correspond to VOID and CROWD regions + if intersection / pred_info['area'] > 0.5: + continue + pq_stat[pred_info['category_id']].fp += 1 + print('Core: {}, all {} images processed'.format(proc_id, + len(annotation_set))) + return pq_stat + + +def pq_compute_multi_core(matched_annotations_list, + gt_folder, + pred_folder, + categories, + file_client=None, + nproc=32): + """Evaluate the metrics of Panoptic Segmentation with multithreading. + + Same as the function with the same name in `panopticapi`. + + Args: + matched_annotations_list (list): The matched annotation list. Each + element is a tuple of annotations of the same image with the + format (gt_anns, pred_anns). + gt_folder (str): The path of the ground truth images. + pred_folder (str): The path of the prediction images. + categories (str): The categories of the dataset. + file_client (object): The file client of the dataset. If None, + the backend will be set to `disk`. + nproc (int): Number of processes for panoptic quality computing. + Defaults to 32. When `nproc` exceeds the number of cpu cores, + the number of cpu cores is used. + """ + if PQStat is None: + raise RuntimeError( + 'panopticapi is not installed, please install it by: ' + 'pip install git+https://github.com/cocodataset/' + 'panopticapi.git.') + + if file_client is None: + file_client_args = dict(backend='disk') + file_client = mmcv.FileClient(**file_client_args) + + cpu_num = min(nproc, multiprocessing.cpu_count()) + + annotations_split = np.array_split(matched_annotations_list, cpu_num) + print('Number of cores: {}, images per core: {}'.format( + cpu_num, len(annotations_split[0]))) + workers = multiprocessing.Pool(processes=cpu_num) + processes = [] + for proc_id, annotation_set in enumerate(annotations_split): + p = workers.apply_async(pq_compute_single_core, + (proc_id, annotation_set, gt_folder, + pred_folder, categories, file_client)) + processes.append(p) + + # Close the process pool, otherwise it will lead to memory + # leaking problems. + workers.close() + workers.join() + + pq_stat = PQStat() + for p in processes: + pq_stat += p.get() + + return pq_stat diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/builder.py new file mode 100644 index 000000000..1936296a5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/builder.py @@ -0,0 +1,215 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import platform +import random +import warnings +from functools import partial + +import numpy as np +import torch +from mmcv.parallel import collate +from mmcv.runner import get_dist_info +from mmcv.utils import TORCH_VERSION, Registry, build_from_cfg, digit_version +from torch.utils.data import DataLoader + +from .samplers import (ClassAwareSampler, DistributedGroupSampler, + DistributedSampler, GroupSampler, InfiniteBatchSampler, + InfiniteGroupBatchSampler) + +if platform.system() != 'Windows': + # https://github.com/pytorch/pytorch/issues/973 + import resource + rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) + base_soft_limit = rlimit[0] + hard_limit = rlimit[1] + soft_limit = min(max(4096, base_soft_limit), hard_limit) + resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) + +DATASETS = Registry('dataset') +PIPELINES = Registry('pipeline') + + +def _concat_dataset(cfg, default_args=None): + from .dataset_wrappers import ConcatDataset + ann_files = cfg['ann_file'] + img_prefixes = cfg.get('img_prefix', None) + seg_prefixes = cfg.get('seg_prefix', None) + proposal_files = cfg.get('proposal_file', None) + separate_eval = cfg.get('separate_eval', True) + + datasets = [] + num_dset = len(ann_files) + for i in range(num_dset): + data_cfg = copy.deepcopy(cfg) + # pop 'separate_eval' since it is not a valid key for common datasets. + if 'separate_eval' in data_cfg: + data_cfg.pop('separate_eval') + data_cfg['ann_file'] = ann_files[i] + if isinstance(img_prefixes, (list, tuple)): + data_cfg['img_prefix'] = img_prefixes[i] + if isinstance(seg_prefixes, (list, tuple)): + data_cfg['seg_prefix'] = seg_prefixes[i] + if isinstance(proposal_files, (list, tuple)): + data_cfg['proposal_file'] = proposal_files[i] + datasets.append(build_dataset(data_cfg, default_args)) + + return ConcatDataset(datasets, separate_eval) + + +def build_dataset(cfg, default_args=None): + from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, + MultiImageMixDataset, RepeatDataset) + if isinstance(cfg, (list, tuple)): + dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) + elif cfg['type'] == 'ConcatDataset': + dataset = ConcatDataset( + [build_dataset(c, default_args) for c in cfg['datasets']], + cfg.get('separate_eval', True)) + elif cfg['type'] == 'RepeatDataset': + dataset = RepeatDataset( + build_dataset(cfg['dataset'], default_args), cfg['times']) + elif cfg['type'] == 'ClassBalancedDataset': + dataset = ClassBalancedDataset( + build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) + elif cfg['type'] == 'MultiImageMixDataset': + cp_cfg = copy.deepcopy(cfg) + cp_cfg['dataset'] = build_dataset(cp_cfg['dataset']) + cp_cfg.pop('type') + dataset = MultiImageMixDataset(**cp_cfg) + elif isinstance(cfg.get('ann_file'), (list, tuple)): + dataset = _concat_dataset(cfg, default_args) + else: + dataset = build_from_cfg(cfg, DATASETS, default_args) + + return dataset + + +def build_dataloader(dataset, + samples_per_gpu, + workers_per_gpu, + num_gpus=1, + dist=True, + shuffle=True, + seed=None, + runner_type='EpochBasedRunner', + persistent_workers=False, + class_aware_sampler=None, + **kwargs): + """Build PyTorch DataLoader. + + In distributed training, each GPU/process has a dataloader. + In non-distributed training, there is only one dataloader for all GPUs. + + Args: + dataset (Dataset): A PyTorch dataset. + samples_per_gpu (int): Number of training samples on each GPU, i.e., + batch size of each GPU. + workers_per_gpu (int): How many subprocesses to use for data loading + for each GPU. + num_gpus (int): Number of GPUs. Only used in non-distributed training. + dist (bool): Distributed training/test or not. Default: True. + shuffle (bool): Whether to shuffle the data at every epoch. + Default: True. + seed (int, Optional): Seed to be used. Default: None. + runner_type (str): Type of runner. Default: `EpochBasedRunner` + persistent_workers (bool): If True, the data loader will not shutdown + the worker processes after a dataset has been consumed once. + This allows to maintain the workers `Dataset` instances alive. + This argument is only valid when PyTorch>=1.7.0. Default: False. + class_aware_sampler (dict): Whether to use `ClassAwareSampler` + during training. Default: None. + kwargs: any keyword argument to be used to initialize DataLoader + + Returns: + DataLoader: A PyTorch dataloader. + """ + rank, world_size = get_dist_info() + + if dist: + # When model is :obj:`DistributedDataParallel`, + # `batch_size` of :obj:`dataloader` is the + # number of training samples on each GPU. + batch_size = samples_per_gpu + num_workers = workers_per_gpu + else: + # When model is obj:`DataParallel` + # the batch size is samples on all the GPUS + batch_size = num_gpus * samples_per_gpu + num_workers = num_gpus * workers_per_gpu + + if runner_type == 'IterBasedRunner': + # this is a batch sampler, which can yield + # a mini-batch indices each time. + # it can be used in both `DataParallel` and + # `DistributedDataParallel` + if shuffle: + batch_sampler = InfiniteGroupBatchSampler( + dataset, batch_size, world_size, rank, seed=seed) + else: + batch_sampler = InfiniteBatchSampler( + dataset, + batch_size, + world_size, + rank, + seed=seed, + shuffle=False) + batch_size = 1 + sampler = None + else: + if class_aware_sampler is not None: + # ClassAwareSampler can be used in both distributed and + # non-distributed training. + num_sample_class = class_aware_sampler.get('num_sample_class', 1) + sampler = ClassAwareSampler( + dataset, + samples_per_gpu, + world_size, + rank, + seed=seed, + num_sample_class=num_sample_class) + elif dist: + # DistributedGroupSampler will definitely shuffle the data to + # satisfy that images on each GPU are in the same group + if shuffle: + sampler = DistributedGroupSampler( + dataset, samples_per_gpu, world_size, rank, seed=seed) + else: + sampler = DistributedSampler( + dataset, world_size, rank, shuffle=False, seed=seed) + else: + sampler = GroupSampler(dataset, + samples_per_gpu) if shuffle else None + batch_sampler = None + + init_fn = partial( + worker_init_fn, num_workers=num_workers, rank=rank, + seed=seed) if seed is not None else None + + if (TORCH_VERSION != 'parrots' + and digit_version(TORCH_VERSION) >= digit_version('1.7.0')): + kwargs['persistent_workers'] = persistent_workers + elif persistent_workers is True: + warnings.warn('persistent_workers is invalid because your pytorch ' + 'version is lower than 1.7.0') + + data_loader = DataLoader( + dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=num_workers, + batch_sampler=batch_sampler, + collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), + pin_memory=kwargs.pop('pin_memory', False), + worker_init_fn=init_fn, + **kwargs) + + return data_loader + + +def worker_init_fn(worker_id, num_workers, rank, seed): + # The seed of each worker equals to + # num_worker * rank + worker_id + user_seed + worker_seed = num_workers * rank + worker_id + seed + np.random.seed(worker_seed) + random.seed(worker_seed) + torch.manual_seed(worker_seed) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/cityscapes.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/cityscapes.py new file mode 100644 index 000000000..da6a2adc1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/cityscapes.py @@ -0,0 +1,338 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa +# and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa + +import glob +import os +import os.path as osp +import tempfile +from collections import OrderedDict + +import mmcv +import numpy as np +import pycocotools.mask as maskUtils +from mmcv.utils import print_log + +from .builder import DATASETS +from .coco import CocoDataset + + +@DATASETS.register_module() +class CityscapesDataset(CocoDataset): + + CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', + 'bicycle') + + PALETTE = [(220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), + (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32)] + + def _filter_imgs(self, min_size=32): + """Filter images too small or without ground truths.""" + valid_inds = [] + # obtain images that contain annotation + ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) + # obtain images that contain annotations of the required categories + ids_in_cat = set() + for i, class_id in enumerate(self.cat_ids): + ids_in_cat |= set(self.coco.cat_img_map[class_id]) + # merge the image id sets of the two conditions and use the merged set + # to filter out images if self.filter_empty_gt=True + ids_in_cat &= ids_with_ann + + valid_img_ids = [] + for i, img_info in enumerate(self.data_infos): + img_id = img_info['id'] + ann_ids = self.coco.getAnnIds(imgIds=[img_id]) + ann_info = self.coco.loadAnns(ann_ids) + all_iscrowd = all([_['iscrowd'] for _ in ann_info]) + if self.filter_empty_gt and (self.img_ids[i] not in ids_in_cat + or all_iscrowd): + continue + if min(img_info['width'], img_info['height']) >= min_size: + valid_inds.append(i) + valid_img_ids.append(img_id) + self.img_ids = valid_img_ids + return valid_inds + + def _parse_ann_info(self, img_info, ann_info): + """Parse bbox and mask annotation. + + Args: + img_info (dict): Image info of an image. + ann_info (list[dict]): Annotation info of an image. + + Returns: + dict: A dict containing the following keys: bboxes, \ + bboxes_ignore, labels, masks, seg_map. \ + "masks" are already decoded into binary masks. + """ + gt_bboxes = [] + gt_labels = [] + gt_bboxes_ignore = [] + gt_masks_ann = [] + + for i, ann in enumerate(ann_info): + if ann.get('ignore', False): + continue + x1, y1, w, h = ann['bbox'] + if ann['area'] <= 0 or w < 1 or h < 1: + continue + if ann['category_id'] not in self.cat_ids: + continue + bbox = [x1, y1, x1 + w, y1 + h] + if ann.get('iscrowd', False): + gt_bboxes_ignore.append(bbox) + else: + gt_bboxes.append(bbox) + gt_labels.append(self.cat2label[ann['category_id']]) + gt_masks_ann.append(ann['segmentation']) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + ann = dict( + bboxes=gt_bboxes, + labels=gt_labels, + bboxes_ignore=gt_bboxes_ignore, + masks=gt_masks_ann, + seg_map=img_info['segm_file']) + + return ann + + def results2txt(self, results, outfile_prefix): + """Dump the detection results to a txt file. + + Args: + results (list[list | tuple]): Testing results of the + dataset. + outfile_prefix (str): The filename prefix of the json files. + If the prefix is "somepath/xxx", + the txt files will be named "somepath/xxx.txt". + + Returns: + list[str]: Result txt files which contains corresponding \ + instance segmentation images. + """ + try: + import cityscapesscripts.helpers.labels as CSLabels + except ImportError: + raise ImportError('Please run "pip install citscapesscripts" to ' + 'install cityscapesscripts first.') + result_files = [] + os.makedirs(outfile_prefix, exist_ok=True) + prog_bar = mmcv.ProgressBar(len(self)) + for idx in range(len(self)): + result = results[idx] + filename = self.data_infos[idx]['filename'] + basename = osp.splitext(osp.basename(filename))[0] + pred_txt = osp.join(outfile_prefix, basename + '_pred.txt') + + bbox_result, segm_result = result + bboxes = np.vstack(bbox_result) + # segm results + if isinstance(segm_result, tuple): + # Some detectors use different scores for bbox and mask, + # like Mask Scoring R-CNN. Score of segm will be used instead + # of bbox score. + segms = mmcv.concat_list(segm_result[0]) + mask_score = segm_result[1] + else: + # use bbox score for mask score + segms = mmcv.concat_list(segm_result) + mask_score = [bbox[-1] for bbox in bboxes] + labels = [ + np.full(bbox.shape[0], i, dtype=np.int32) + for i, bbox in enumerate(bbox_result) + ] + labels = np.concatenate(labels) + + assert len(bboxes) == len(segms) == len(labels) + num_instances = len(bboxes) + prog_bar.update() + with open(pred_txt, 'w') as fout: + for i in range(num_instances): + pred_class = labels[i] + classes = self.CLASSES[pred_class] + class_id = CSLabels.name2label[classes].id + score = mask_score[i] + mask = maskUtils.decode(segms[i]).astype(np.uint8) + png_filename = osp.join(outfile_prefix, + basename + f'_{i}_{classes}.png') + mmcv.imwrite(mask, png_filename) + fout.write(f'{osp.basename(png_filename)} {class_id} ' + f'{score}\n') + result_files.append(pred_txt) + + return result_files + + def format_results(self, results, txtfile_prefix=None): + """Format the results to txt (standard format for Cityscapes + evaluation). + + Args: + results (list): Testing results of the dataset. + txtfile_prefix (str | None): The prefix of txt files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing \ + the json filepaths, tmp_dir is the temporal directory created \ + for saving txt/png files when txtfile_prefix is not specified. + """ + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + if txtfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + txtfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + result_files = self.results2txt(results, txtfile_prefix) + + return result_files, tmp_dir + + def evaluate(self, + results, + metric='bbox', + logger=None, + outfile_prefix=None, + classwise=False, + proposal_nums=(100, 300, 1000), + iou_thrs=np.arange(0.5, 0.96, 0.05)): + """Evaluation in Cityscapes/COCO protocol. + + Args: + results (list[list | tuple]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. Options are + 'bbox', 'segm', 'proposal', 'proposal_fast'. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + outfile_prefix (str | None): The prefix of output file. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If results are evaluated with COCO protocol, it would be the + prefix of output json file. For example, the metric is 'bbox' + and 'segm', then json files would be "a/b/prefix.bbox.json" and + "a/b/prefix.segm.json". + If results are evaluated with cityscapes protocol, it would be + the prefix of output txt/png files. The output files would be + png images under folder "a/b/prefix/xxx/" and the file name of + images would be written into a txt file + "a/b/prefix/xxx_pred.txt", where "xxx" is the video name of + cityscapes. If not specified, a temp file will be created. + Default: None. + classwise (bool): Whether to evaluating the AP for each class. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thrs (Sequence[float]): IoU threshold used for evaluating + recalls. If set to a list, the average recall of all IoUs will + also be computed. Default: 0.5. + + Returns: + dict[str, float]: COCO style evaluation metric or cityscapes mAP \ + and AP@50. + """ + eval_results = dict() + + metrics = metric.copy() if isinstance(metric, list) else [metric] + + if 'cityscapes' in metrics: + eval_results.update( + self._evaluate_cityscapes(results, outfile_prefix, logger)) + metrics.remove('cityscapes') + + # left metrics are all coco metric + if len(metrics) > 0: + # create CocoDataset with CityscapesDataset annotation + self_coco = CocoDataset(self.ann_file, self.pipeline.transforms, + None, self.data_root, self.img_prefix, + self.seg_prefix, self.proposal_file, + self.test_mode, self.filter_empty_gt) + # TODO: remove this in the future + # reload annotations of correct class + self_coco.CLASSES = self.CLASSES + self_coco.data_infos = self_coco.load_annotations(self.ann_file) + eval_results.update( + self_coco.evaluate(results, metrics, logger, outfile_prefix, + classwise, proposal_nums, iou_thrs)) + + return eval_results + + def _evaluate_cityscapes(self, results, txtfile_prefix, logger): + """Evaluation in Cityscapes protocol. + + Args: + results (list): Testing results of the dataset. + txtfile_prefix (str | None): The prefix of output txt file + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + + Returns: + dict[str: float]: Cityscapes evaluation results, contains 'mAP' \ + and 'AP@50'. + """ + + try: + import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa + except ImportError: + raise ImportError('Please run "pip install citscapesscripts" to ' + 'install cityscapesscripts first.') + msg = 'Evaluating in Cityscapes style' + if logger is None: + msg = '\n' + msg + print_log(msg, logger=logger) + + result_files, tmp_dir = self.format_results(results, txtfile_prefix) + + if tmp_dir is None: + result_dir = osp.join(txtfile_prefix, 'results') + else: + result_dir = osp.join(tmp_dir.name, 'results') + + eval_results = OrderedDict() + print_log(f'Evaluating results under {result_dir} ...', logger=logger) + + # set global states in cityscapes evaluation API + CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..') + CSEval.args.predictionPath = os.path.abspath(result_dir) + CSEval.args.predictionWalk = None + CSEval.args.JSONOutput = False + CSEval.args.colorized = False + CSEval.args.gtInstancesFile = os.path.join(result_dir, + 'gtInstances.json') + CSEval.args.groundTruthSearch = os.path.join( + self.img_prefix.replace('leftImg8bit', 'gtFine'), + '*/*_gtFine_instanceIds.png') + + groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch) + assert len(groundTruthImgList), 'Cannot find ground truth images' \ + f' in {CSEval.args.groundTruthSearch}.' + predictionImgList = [] + for gt in groundTruthImgList: + predictionImgList.append(CSEval.getPrediction(gt, CSEval.args)) + CSEval_results = CSEval.evaluateImgLists(predictionImgList, + groundTruthImgList, + CSEval.args)['averages'] + + eval_results['mAP'] = CSEval_results['allAp'] + eval_results['AP@50'] = CSEval_results['allAp50%'] + if tmp_dir is not None: + tmp_dir.cleanup() + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco.py new file mode 100644 index 000000000..bcdd4df39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco.py @@ -0,0 +1,649 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import contextlib +import io +import itertools +import logging +import os.path as osp +import tempfile +import warnings +from collections import OrderedDict + +import mmcv +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from mmdet.core import eval_recalls +from .api_wrappers import COCO, COCOeval +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class CocoDataset(CustomDataset): + + CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', + 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', + 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', + 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', + 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', + 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', + 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', + 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', + 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', + 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', + 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', + 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', + 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', + 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush') + + PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), + (106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70), + (0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0), + (175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255), + (0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157), + (110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118), + (255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182), + (0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255), + (78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255), + (134, 134, 103), (145, 148, 174), (255, 208, 186), + (197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255), + (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105), + (166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149), + (179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205), + (147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0), + (119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88), + (95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118), + (219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15), + (127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0), + (95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122), + (191, 162, 208)] + + def load_annotations(self, ann_file): + """Load annotation from COCO style annotation file. + + Args: + ann_file (str): Path of annotation file. + + Returns: + list[dict]: Annotation info from COCO api. + """ + + self.coco = COCO(ann_file) + # The order of returned `cat_ids` will not + # change with the order of the CLASSES + self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) + + self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} + self.img_ids = self.coco.get_img_ids() + data_infos = [] + total_ann_ids = [] + for i in self.img_ids: + info = self.coco.load_imgs([i])[0] + info['filename'] = info['file_name'] + data_infos.append(info) + ann_ids = self.coco.get_ann_ids(img_ids=[i]) + total_ann_ids.extend(ann_ids) + assert len(set(total_ann_ids)) == len( + total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" + return data_infos + + def get_ann_info(self, idx): + """Get COCO annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + img_id = self.data_infos[idx]['id'] + ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) + ann_info = self.coco.load_anns(ann_ids) + return self._parse_ann_info(self.data_infos[idx], ann_info) + + def get_cat_ids(self, idx): + """Get COCO category ids by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + + img_id = self.data_infos[idx]['id'] + ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) + ann_info = self.coco.load_anns(ann_ids) + return [ann['category_id'] for ann in ann_info] + + def _filter_imgs(self, min_size=32): + """Filter images too small or without ground truths.""" + valid_inds = [] + # obtain images that contain annotation + ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) + # obtain images that contain annotations of the required categories + ids_in_cat = set() + for i, class_id in enumerate(self.cat_ids): + ids_in_cat |= set(self.coco.cat_img_map[class_id]) + # merge the image id sets of the two conditions and use the merged set + # to filter out images if self.filter_empty_gt=True + ids_in_cat &= ids_with_ann + + valid_img_ids = [] + for i, img_info in enumerate(self.data_infos): + img_id = self.img_ids[i] + if self.filter_empty_gt and img_id not in ids_in_cat: + continue + if min(img_info['width'], img_info['height']) >= min_size: + valid_inds.append(i) + valid_img_ids.append(img_id) + self.img_ids = valid_img_ids + return valid_inds + + def _parse_ann_info(self, img_info, ann_info): + """Parse bbox and mask annotation. + + Args: + ann_info (list[dict]): Annotation info of an image. + with_mask (bool): Whether to parse mask annotations. + + Returns: + dict: A dict containing the following keys: bboxes, bboxes_ignore,\ + labels, masks, seg_map. "masks" are raw annotations and not \ + decoded into binary masks. + """ + gt_bboxes = [] + gt_labels = [] + gt_bboxes_ignore = [] + gt_masks_ann = [] + for i, ann in enumerate(ann_info): + if ann.get('ignore', False): + continue + x1, y1, w, h = ann['bbox'] + inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) + inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) + if inter_w * inter_h == 0: + continue + if ann['area'] <= 0 or w < 1 or h < 1: + continue + if ann['category_id'] not in self.cat_ids: + continue + bbox = [x1, y1, x1 + w, y1 + h] + if ann.get('iscrowd', False): + gt_bboxes_ignore.append(bbox) + else: + gt_bboxes.append(bbox) + gt_labels.append(self.cat2label[ann['category_id']]) + gt_masks_ann.append(ann.get('segmentation', None)) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + seg_map = img_info['filename'].replace('jpg', 'png') + + ann = dict( + bboxes=gt_bboxes, + labels=gt_labels, + bboxes_ignore=gt_bboxes_ignore, + masks=gt_masks_ann, + seg_map=seg_map) + + return ann + + def xyxy2xywh(self, bbox): + """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO + evaluation. + + Args: + bbox (numpy.ndarray): The bounding boxes, shape (4, ), in + ``xyxy`` order. + + Returns: + list[float]: The converted bounding boxes, in ``xywh`` order. + """ + + _bbox = bbox.tolist() + return [ + _bbox[0], + _bbox[1], + _bbox[2] - _bbox[0], + _bbox[3] - _bbox[1], + ] + + def _proposal2json(self, results): + """Convert proposal results to COCO json style.""" + json_results = [] + for idx in range(len(self)): + img_id = self.img_ids[idx] + bboxes = results[idx] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = self.xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = 1 + json_results.append(data) + return json_results + + def _det2json(self, results): + """Convert detection results to COCO json style.""" + json_results = [] + for idx in range(len(self)): + img_id = self.img_ids[idx] + result = results[idx] + for label in range(len(result)): + bboxes = result[label] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = self.xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = self.cat_ids[label] + json_results.append(data) + return json_results + + def _segm2json(self, results): + """Convert instance segmentation results to COCO json style.""" + bbox_json_results = [] + segm_json_results = [] + for idx in range(len(self)): + img_id = self.img_ids[idx] + det, seg = results[idx] + for label in range(len(det)): + # bbox results + bboxes = det[label] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = self.xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = self.cat_ids[label] + bbox_json_results.append(data) + + # segm results + # some detectors use different scores for bbox and mask + if isinstance(seg, tuple): + segms = seg[0][label] + mask_score = seg[1][label] + else: + segms = seg[label] + mask_score = [bbox[4] for bbox in bboxes] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = self.xyxy2xywh(bboxes[i]) + data['score'] = float(mask_score[i]) + data['category_id'] = self.cat_ids[label] + if isinstance(segms[i]['counts'], bytes): + segms[i]['counts'] = segms[i]['counts'].decode() + data['segmentation'] = segms[i] + segm_json_results.append(data) + return bbox_json_results, segm_json_results + + def results2json(self, results, outfile_prefix): + """Dump the detection results to a COCO style json file. + + There are 3 types of results: proposals, bbox predictions, mask + predictions, and they have different data types. This method will + automatically recognize the type, and dump them to json files. + + Args: + results (list[list | tuple | ndarray]): Testing results of the + dataset. + outfile_prefix (str): The filename prefix of the json files. If the + prefix is "somepath/xxx", the json files will be named + "somepath/xxx.bbox.json", "somepath/xxx.segm.json", + "somepath/xxx.proposal.json". + + Returns: + dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ + values are corresponding filenames. + """ + result_files = dict() + if isinstance(results[0], list): + json_results = self._det2json(results) + result_files['bbox'] = f'{outfile_prefix}.bbox.json' + result_files['proposal'] = f'{outfile_prefix}.bbox.json' + mmcv.dump(json_results, result_files['bbox']) + elif isinstance(results[0], tuple): + json_results = self._segm2json(results) + result_files['bbox'] = f'{outfile_prefix}.bbox.json' + result_files['proposal'] = f'{outfile_prefix}.bbox.json' + result_files['segm'] = f'{outfile_prefix}.segm.json' + mmcv.dump(json_results[0], result_files['bbox']) + mmcv.dump(json_results[1], result_files['segm']) + elif isinstance(results[0], np.ndarray): + json_results = self._proposal2json(results) + result_files['proposal'] = f'{outfile_prefix}.proposal.json' + mmcv.dump(json_results, result_files['proposal']) + else: + raise TypeError('invalid type of results') + return result_files + + def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): + gt_bboxes = [] + for i in range(len(self.img_ids)): + ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) + ann_info = self.coco.load_anns(ann_ids) + if len(ann_info) == 0: + gt_bboxes.append(np.zeros((0, 4))) + continue + bboxes = [] + for ann in ann_info: + if ann.get('ignore', False) or ann['iscrowd']: + continue + x1, y1, w, h = ann['bbox'] + bboxes.append([x1, y1, x1 + w, y1 + h]) + bboxes = np.array(bboxes, dtype=np.float32) + if bboxes.shape[0] == 0: + bboxes = np.zeros((0, 4)) + gt_bboxes.append(bboxes) + + recalls = eval_recalls( + gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) + ar = recalls.mean(axis=1) + return ar + + def format_results(self, results, jsonfile_prefix=None, **kwargs): + """Format the results to json (standard format for COCO evaluation). + + Args: + results (list[tuple | numpy.ndarray]): Testing results of the + dataset. + jsonfile_prefix (str | None): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing \ + the json filepaths, tmp_dir is the temporal directory created \ + for saving json files when jsonfile_prefix is not specified. + """ + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + if jsonfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + jsonfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + result_files = self.results2json(results, jsonfile_prefix) + return result_files, tmp_dir + + def evaluate_det_segm(self, + results, + result_files, + coco_gt, + metrics, + logger=None, + classwise=False, + proposal_nums=(100, 300, 1000), + iou_thrs=None, + metric_items=None): + """Instance segmentation and object detection evaluation in COCO + protocol. + + Args: + results (list[list | tuple | dict]): Testing results of the + dataset. + result_files (dict[str, str]): a dict contains json file path. + coco_gt (COCO): COCO API object with ground truth annotation. + metric (str | list[str]): Metrics to be evaluated. Options are + 'bbox', 'segm', 'proposal', 'proposal_fast'. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + classwise (bool): Whether to evaluating the AP for each class. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thrs (Sequence[float], optional): IoU threshold used for + evaluating recalls/mAPs. If set to a list, the average of all + IoUs will also be computed. If not specified, [0.50, 0.55, + 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. + Default: None. + metric_items (list[str] | str, optional): Metric items that will + be returned. If not specified, ``['AR@100', 'AR@300', + 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be + used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', + 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when + ``metric=='bbox' or metric=='segm'``. + + Returns: + dict[str, float]: COCO style evaluation metric. + """ + if iou_thrs is None: + iou_thrs = np.linspace( + .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) + if metric_items is not None: + if not isinstance(metric_items, list): + metric_items = [metric_items] + + eval_results = OrderedDict() + for metric in metrics: + msg = f'Evaluating {metric}...' + if logger is None: + msg = '\n' + msg + print_log(msg, logger=logger) + + if metric == 'proposal_fast': + if isinstance(results[0], tuple): + raise KeyError('proposal_fast is not supported for ' + 'instance segmentation result.') + ar = self.fast_eval_recall( + results, proposal_nums, iou_thrs, logger='silent') + log_msg = [] + for i, num in enumerate(proposal_nums): + eval_results[f'AR@{num}'] = ar[i] + log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') + log_msg = ''.join(log_msg) + print_log(log_msg, logger=logger) + continue + + iou_type = 'bbox' if metric == 'proposal' else metric + if metric not in result_files: + raise KeyError(f'{metric} is not in results') + try: + predictions = mmcv.load(result_files[metric]) + if iou_type == 'segm': + # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa + # When evaluating mask AP, if the results contain bbox, + # cocoapi will use the box area instead of the mask area + # for calculating the instance area. Though the overall AP + # is not affected, this leads to different + # small/medium/large mask AP results. + for x in predictions: + x.pop('bbox') + warnings.simplefilter('once') + warnings.warn( + 'The key "bbox" is deleted for more accurate mask AP ' + 'of small/medium/large instances since v2.12.0. This ' + 'does not change the overall mAP calculation.', + UserWarning) + coco_det = coco_gt.loadRes(predictions) + except IndexError: + print_log( + 'The testing results of the whole dataset is empty.', + logger=logger, + level=logging.ERROR) + break + + cocoEval = COCOeval(coco_gt, coco_det, iou_type) + cocoEval.params.catIds = self.cat_ids + cocoEval.params.imgIds = self.img_ids + cocoEval.params.maxDets = list(proposal_nums) + cocoEval.params.iouThrs = iou_thrs + # mapping of cocoEval.stats + coco_metric_names = { + 'mAP': 0, + 'mAP_50': 1, + 'mAP_75': 2, + 'mAP_s': 3, + 'mAP_m': 4, + 'mAP_l': 5, + 'AR@100': 6, + 'AR@300': 7, + 'AR@1000': 8, + 'AR_s@1000': 9, + 'AR_m@1000': 10, + 'AR_l@1000': 11 + } + if metric_items is not None: + for metric_item in metric_items: + if metric_item not in coco_metric_names: + raise KeyError( + f'metric item {metric_item} is not supported') + + if metric == 'proposal': + cocoEval.params.useCats = 0 + cocoEval.evaluate() + cocoEval.accumulate() + + # Save coco summarize print information to logger + redirect_string = io.StringIO() + with contextlib.redirect_stdout(redirect_string): + cocoEval.summarize() + print_log('\n' + redirect_string.getvalue(), logger=logger) + + if metric_items is None: + metric_items = [ + 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', + 'AR_m@1000', 'AR_l@1000' + ] + + for item in metric_items: + val = float( + f'{cocoEval.stats[coco_metric_names[item]]:.3f}') + eval_results[item] = val + else: + cocoEval.evaluate() + cocoEval.accumulate() + + # Save coco summarize print information to logger + redirect_string = io.StringIO() + with contextlib.redirect_stdout(redirect_string): + cocoEval.summarize() + print_log('\n' + redirect_string.getvalue(), logger=logger) + + if classwise: # Compute per-category AP + # Compute per-category AP + # from https://github.com/facebookresearch/detectron2/ + precisions = cocoEval.eval['precision'] + # precision: (iou, recall, cls, area range, max dets) + assert len(self.cat_ids) == precisions.shape[2] + + results_per_category = [] + for idx, catId in enumerate(self.cat_ids): + # area range index 0: all area ranges + # max dets index -1: typically 100 per image + nm = self.coco.loadCats(catId)[0] + precision = precisions[:, :, idx, 0, -1] + precision = precision[precision > -1] + if precision.size: + ap = np.mean(precision) + else: + ap = float('nan') + results_per_category.append( + (f'{nm["name"]}', f'{float(ap):0.3f}')) + + num_columns = min(6, len(results_per_category) * 2) + results_flatten = list( + itertools.chain(*results_per_category)) + headers = ['category', 'AP'] * (num_columns // 2) + results_2d = itertools.zip_longest(*[ + results_flatten[i::num_columns] + for i in range(num_columns) + ]) + table_data = [headers] + table_data += [result for result in results_2d] + table = AsciiTable(table_data) + print_log('\n' + table.table, logger=logger) + + if metric_items is None: + metric_items = [ + 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' + ] + + for metric_item in metric_items: + key = f'{metric}_{metric_item}' + val = float( + f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' + ) + eval_results[key] = val + ap = cocoEval.stats[:6] + eval_results[f'{metric}_mAP_copypaste'] = ( + f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' + f'{ap[4]:.3f} {ap[5]:.3f}') + + return eval_results + + def evaluate(self, + results, + metric='bbox', + logger=None, + jsonfile_prefix=None, + classwise=False, + proposal_nums=(100, 300, 1000), + iou_thrs=None, + metric_items=None): + """Evaluation in COCO protocol. + + Args: + results (list[list | tuple]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. Options are + 'bbox', 'segm', 'proposal', 'proposal_fast'. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str | None): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + classwise (bool): Whether to evaluating the AP for each class. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thrs (Sequence[float], optional): IoU threshold used for + evaluating recalls/mAPs. If set to a list, the average of all + IoUs will also be computed. If not specified, [0.50, 0.55, + 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. + Default: None. + metric_items (list[str] | str, optional): Metric items that will + be returned. If not specified, ``['AR@100', 'AR@300', + 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be + used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', + 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when + ``metric=='bbox' or metric=='segm'``. + + Returns: + dict[str, float]: COCO style evaluation metric. + """ + + metrics = metric if isinstance(metric, list) else [metric] + allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] + for metric in metrics: + if metric not in allowed_metrics: + raise KeyError(f'metric {metric} is not supported') + + coco_gt = self.coco + self.cat_ids = coco_gt.get_cat_ids(cat_names=self.CLASSES) + + result_files, tmp_dir = self.format_results(results, jsonfile_prefix) + eval_results = self.evaluate_det_segm(results, result_files, coco_gt, + metrics, logger, classwise, + proposal_nums, iou_thrs, + metric_items) + + if tmp_dir is not None: + tmp_dir.cleanup() + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco_panoptic.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco_panoptic.py new file mode 100644 index 000000000..53ef5947d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/coco_panoptic.py @@ -0,0 +1,692 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import itertools +import os +from collections import defaultdict + +import mmcv +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from mmdet.core import INSTANCE_OFFSET +from .api_wrappers import COCO, pq_compute_multi_core +from .builder import DATASETS +from .coco import CocoDataset + +try: + import panopticapi + from panopticapi.evaluation import VOID + from panopticapi.utils import id2rgb +except ImportError: + panopticapi = None + id2rgb = None + VOID = None + +__all__ = ['CocoPanopticDataset'] + + +class COCOPanoptic(COCO): + """This wrapper is for loading the panoptic style annotation file. + + The format is shown in the CocoPanopticDataset class. + + Args: + annotation_file (str): Path of annotation file. + """ + + def __init__(self, annotation_file=None): + if panopticapi is None: + raise RuntimeError( + 'panopticapi is not installed, please install it by: ' + 'pip install git+https://github.com/cocodataset/' + 'panopticapi.git.') + + super(COCOPanoptic, self).__init__(annotation_file) + + def createIndex(self): + # create index + print('creating index...') + # anns stores 'segment_id -> annotation' + anns, cats, imgs = {}, {}, {} + img_to_anns, cat_to_imgs = defaultdict(list), defaultdict(list) + if 'annotations' in self.dataset: + for ann, img_info in zip(self.dataset['annotations'], + self.dataset['images']): + img_info['segm_file'] = ann['file_name'] + for seg_ann in ann['segments_info']: + # to match with instance.json + seg_ann['image_id'] = ann['image_id'] + seg_ann['height'] = img_info['height'] + seg_ann['width'] = img_info['width'] + img_to_anns[ann['image_id']].append(seg_ann) + # segment_id is not unique in coco dataset orz... + if seg_ann['id'] in anns.keys(): + anns[seg_ann['id']].append(seg_ann) + else: + anns[seg_ann['id']] = [seg_ann] + + if 'images' in self.dataset: + for img in self.dataset['images']: + imgs[img['id']] = img + + if 'categories' in self.dataset: + for cat in self.dataset['categories']: + cats[cat['id']] = cat + + if 'annotations' in self.dataset and 'categories' in self.dataset: + for ann in self.dataset['annotations']: + for seg_ann in ann['segments_info']: + cat_to_imgs[seg_ann['category_id']].append(ann['image_id']) + + print('index created!') + + self.anns = anns + self.imgToAnns = img_to_anns + self.catToImgs = cat_to_imgs + self.imgs = imgs + self.cats = cats + + def load_anns(self, ids=[]): + """Load anns with the specified ids. + + self.anns is a list of annotation lists instead of a + list of annotations. + + Args: + ids (int array): integer ids specifying anns + + Returns: + anns (object array): loaded ann objects + """ + anns = [] + + if hasattr(ids, '__iter__') and hasattr(ids, '__len__'): + # self.anns is a list of annotation lists instead of + # a list of annotations + for id in ids: + anns += self.anns[id] + return anns + elif type(ids) == int: + return self.anns[ids] + + +@DATASETS.register_module() +class CocoPanopticDataset(CocoDataset): + """Coco dataset for Panoptic segmentation. + + The annotation format is shown as follows. The `ann` field is optional + for testing. + + .. code-block:: none + + [ + { + 'filename': f'{image_id:012}.png', + 'image_id':9 + 'segments_info': { + [ + { + 'id': 8345037, (segment_id in panoptic png, + convert from rgb) + 'category_id': 51, + 'iscrowd': 0, + 'bbox': (x1, y1, w, h), + 'area': 24315, + 'segmentation': list,(coded mask) + }, + ... + } + } + }, + ... + ] + + Args: + ann_file (str): Panoptic segmentation annotation file path. + pipeline (list[dict]): Processing pipeline. + ins_ann_file (str): Instance segmentation annotation file path. + Defaults to None. + classes (str | Sequence[str], optional): Specify classes to load. + If is None, ``cls.CLASSES`` will be used. Defaults to None. + data_root (str, optional): Data root for ``ann_file``, + ``ins_ann_file`` ``img_prefix``, ``seg_prefix``, ``proposal_file`` + if specified. Defaults to None. + img_prefix (str, optional): Prefix of path to images. Defaults to ''. + seg_prefix (str, optional): Prefix of path to segmentation files. + Defaults to None. + proposal_file (str, optional): Path to proposal file. Defaults to None. + test_mode (bool, optional): If set True, annotation will not be loaded. + Defaults to False. + filter_empty_gt (bool, optional): If set true, images without bounding + boxes of the dataset's classes will be filtered out. This option + only works when `test_mode=False`, i.e., we never filter images + during tests. Defaults to True. + file_client_args (:obj:`mmcv.ConfigDict` | dict): file client args. + Defaults to dict(backend='disk'). + """ + CLASSES = [ + 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', + ' truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', + 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', + 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', + 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', + 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', + 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', + 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', + 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', + 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', + 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', + 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', + 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', + 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', + 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', + 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', + 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', + 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', + 'wall-wood', 'water-other', 'window-blind', 'window-other', + 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', + 'cabinet-merged', 'table-merged', 'floor-other-merged', + 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', + 'paper-merged', 'food-other-merged', 'building-other-merged', + 'rock-merged', 'wall-other-merged', 'rug-merged' + ] + THING_CLASSES = [ + 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', + 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', + 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', + 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', + 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', + 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', + 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', + 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', + 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', + 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', + 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', + 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', + 'scissors', 'teddy bear', 'hair drier', 'toothbrush' + ] + STUFF_CLASSES = [ + 'banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', + 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', + 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', + 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', + 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', + 'wall-wood', 'water-other', 'window-blind', 'window-other', + 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', + 'cabinet-merged', 'table-merged', 'floor-other-merged', + 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', + 'paper-merged', 'food-other-merged', 'building-other-merged', + 'rock-merged', 'wall-other-merged', 'rug-merged' + ] + + PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), + (106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70), + (0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0), + (175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255), + (0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157), + (110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118), + (255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182), + (0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255), + (78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255), + (134, 134, 103), (145, 148, 174), (255, 208, 186), + (197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255), + (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105), + (166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149), + (179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205), + (147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0), + (119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88), + (95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118), + (219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15), + (127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0), + (95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122), + (191, 162, 208), (255, 255, 128), (147, 211, 203), + (150, 100, 100), (168, 171, 172), (146, 112, 198), + (210, 170, 100), (92, 136, 89), (218, 88, 184), (241, 129, 0), + (217, 17, 255), (124, 74, 181), (70, 70, 70), (255, 228, 255), + (154, 208, 0), (193, 0, 92), (76, 91, 113), (255, 180, 195), + (106, 154, 176), + (230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55), + (254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255), + (104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74), + (135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149), + (183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153), + (146, 139, 141), + (70, 130, 180), (134, 199, 156), (209, 226, 140), (96, 36, 108), + (96, 96, 96), (64, 170, 64), (152, 251, 152), (208, 229, 228), + (206, 186, 171), (152, 161, 64), (116, 112, 0), (0, 114, 143), + (102, 102, 156), (250, 141, 255)] + + def __init__(self, + ann_file, + pipeline, + ins_ann_file=None, + classes=None, + data_root=None, + img_prefix='', + seg_prefix=None, + proposal_file=None, + test_mode=False, + filter_empty_gt=True, + file_client_args=dict(backend='disk')): + super().__init__( + ann_file, + pipeline, + classes=classes, + data_root=data_root, + img_prefix=img_prefix, + seg_prefix=seg_prefix, + proposal_file=proposal_file, + test_mode=test_mode, + filter_empty_gt=filter_empty_gt, + file_client_args=file_client_args) + self.ins_ann_file = ins_ann_file + + def load_annotations(self, ann_file): + """Load annotation from COCO Panoptic style annotation file. + + Args: + ann_file (str): Path of annotation file. + + Returns: + list[dict]: Annotation info from COCO api. + """ + self.coco = COCOPanoptic(ann_file) + self.cat_ids = self.coco.get_cat_ids() + self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} + self.categories = self.coco.cats + self.img_ids = self.coco.get_img_ids() + data_infos = [] + for i in self.img_ids: + info = self.coco.load_imgs([i])[0] + info['filename'] = info['file_name'] + info['segm_file'] = info['filename'].replace('jpg', 'png') + data_infos.append(info) + return data_infos + + def get_ann_info(self, idx): + """Get COCO annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + img_id = self.data_infos[idx]['id'] + ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) + ann_info = self.coco.load_anns(ann_ids) + # filter out unmatched images + ann_info = [i for i in ann_info if i['image_id'] == img_id] + return self._parse_ann_info(self.data_infos[idx], ann_info) + + def _parse_ann_info(self, img_info, ann_info): + """Parse annotations and load panoptic ground truths. + + Args: + img_info (int): Image info of an image. + ann_info (list[dict]): Annotation info of an image. + + Returns: + dict: A dict containing the following keys: bboxes, bboxes_ignore, + labels, masks, seg_map. + """ + gt_bboxes = [] + gt_labels = [] + gt_bboxes_ignore = [] + gt_mask_infos = [] + + for i, ann in enumerate(ann_info): + x1, y1, w, h = ann['bbox'] + if ann['area'] <= 0 or w < 1 or h < 1: + continue + bbox = [x1, y1, x1 + w, y1 + h] + + category_id = ann['category_id'] + contiguous_cat_id = self.cat2label[category_id] + + is_thing = self.coco.load_cats(ids=category_id)[0]['isthing'] + if is_thing: + is_crowd = ann.get('iscrowd', False) + if not is_crowd: + gt_bboxes.append(bbox) + gt_labels.append(contiguous_cat_id) + else: + gt_bboxes_ignore.append(bbox) + is_thing = False + + mask_info = { + 'id': ann['id'], + 'category': contiguous_cat_id, + 'is_thing': is_thing + } + gt_mask_infos.append(mask_info) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + ann = dict( + bboxes=gt_bboxes, + labels=gt_labels, + bboxes_ignore=gt_bboxes_ignore, + masks=gt_mask_infos, + seg_map=img_info['segm_file']) + + return ann + + def _filter_imgs(self, min_size=32): + """Filter images too small or without ground truths.""" + ids_with_ann = [] + # check whether images have legal thing annotations. + for lists in self.coco.anns.values(): + for item in lists: + category_id = item['category_id'] + is_thing = self.coco.load_cats(ids=category_id)[0]['isthing'] + if not is_thing: + continue + ids_with_ann.append(item['image_id']) + ids_with_ann = set(ids_with_ann) + + valid_inds = [] + valid_img_ids = [] + for i, img_info in enumerate(self.data_infos): + img_id = self.img_ids[i] + if self.filter_empty_gt and img_id not in ids_with_ann: + continue + if min(img_info['width'], img_info['height']) >= min_size: + valid_inds.append(i) + valid_img_ids.append(img_id) + self.img_ids = valid_img_ids + return valid_inds + + def _pan2json(self, results, outfile_prefix): + """Convert panoptic results to COCO panoptic json style.""" + label2cat = dict((v, k) for (k, v) in self.cat2label.items()) + pred_annotations = [] + outdir = os.path.join(os.path.dirname(outfile_prefix), 'panoptic') + + for idx in range(len(self)): + img_id = self.img_ids[idx] + segm_file = self.data_infos[idx]['segm_file'] + pan = results[idx] + + pan_labels = np.unique(pan) + segm_info = [] + for pan_label in pan_labels: + sem_label = pan_label % INSTANCE_OFFSET + # We reserve the length of self.CLASSES for VOID label + if sem_label == len(self.CLASSES): + continue + # convert sem_label to json label + cat_id = label2cat[sem_label] + is_thing = self.categories[cat_id]['isthing'] + mask = pan == pan_label + area = mask.sum() + segm_info.append({ + 'id': int(pan_label), + 'category_id': cat_id, + 'isthing': is_thing, + 'area': int(area) + }) + # evaluation script uses 0 for VOID label. + pan[pan % INSTANCE_OFFSET == len(self.CLASSES)] = VOID + pan = id2rgb(pan).astype(np.uint8) + mmcv.imwrite(pan[:, :, ::-1], os.path.join(outdir, segm_file)) + record = { + 'image_id': img_id, + 'segments_info': segm_info, + 'file_name': segm_file + } + pred_annotations.append(record) + pan_json_results = dict(annotations=pred_annotations) + return pan_json_results + + def results2json(self, results, outfile_prefix): + """Dump the results to a COCO style json file. + + There are 4 types of results: proposals, bbox predictions, mask + predictions, panoptic segmentation predictions, and they have + different data types. This method will automatically recognize + the type, and dump them to json files. + + .. code-block:: none + + [ + { + 'pan_results': np.array, # shape (h, w) + # ins_results which includes bboxes and RLE encoded masks + # is optional. + 'ins_results': (list[np.array], list[list[str]]) + }, + ... + ] + + Args: + results (list[dict]): Testing results of the dataset. + outfile_prefix (str): The filename prefix of the json files. If the + prefix is "somepath/xxx", the json files will be named + "somepath/xxx.panoptic.json", "somepath/xxx.bbox.json", + "somepath/xxx.segm.json" + + Returns: + dict[str: str]: Possible keys are "panoptic", "bbox", "segm", \ + "proposal", and values are corresponding filenames. + """ + result_files = dict() + # panoptic segmentation results + if 'pan_results' in results[0]: + pan_results = [result['pan_results'] for result in results] + pan_json_results = self._pan2json(pan_results, outfile_prefix) + result_files['panoptic'] = f'{outfile_prefix}.panoptic.json' + mmcv.dump(pan_json_results, result_files['panoptic']) + + # instance segmentation results + if 'ins_results' in results[0]: + ins_results = [result['ins_results'] for result in results] + bbox_json_results, segm_json_results = self._segm2json(ins_results) + result_files['bbox'] = f'{outfile_prefix}.bbox.json' + result_files['proposal'] = f'{outfile_prefix}.bbox.json' + result_files['segm'] = f'{outfile_prefix}.segm.json' + mmcv.dump(bbox_json_results, result_files['bbox']) + mmcv.dump(segm_json_results, result_files['segm']) + + return result_files + + def evaluate_pan_json(self, + result_files, + outfile_prefix, + logger=None, + classwise=False, + nproc=32): + """Evaluate PQ according to the panoptic results json file.""" + imgs = self.coco.imgs + gt_json = self.coco.img_ann_map # image to annotations + gt_json = [{ + 'image_id': k, + 'segments_info': v, + 'file_name': imgs[k]['segm_file'] + } for k, v in gt_json.items()] + pred_json = mmcv.load(result_files['panoptic']) + pred_json = dict( + (el['image_id'], el) for el in pred_json['annotations']) + + # match the gt_anns and pred_anns in the same image + matched_annotations_list = [] + for gt_ann in gt_json: + img_id = gt_ann['image_id'] + if img_id not in pred_json.keys(): + raise Exception('no prediction for the image' + ' with id: {}'.format(img_id)) + matched_annotations_list.append((gt_ann, pred_json[img_id])) + + gt_folder = self.seg_prefix + pred_folder = os.path.join(os.path.dirname(outfile_prefix), 'panoptic') + + pq_stat = pq_compute_multi_core( + matched_annotations_list, + gt_folder, + pred_folder, + self.categories, + self.file_client, + nproc=nproc) + + metrics = [('All', None), ('Things', True), ('Stuff', False)] + pq_results = {} + + for name, isthing in metrics: + pq_results[name], classwise_results = pq_stat.pq_average( + self.categories, isthing=isthing) + if name == 'All': + pq_results['classwise'] = classwise_results + + classwise_results = None + if classwise: + classwise_results = { + k: v + for k, v in zip(self.CLASSES, pq_results['classwise'].values()) + } + print_panoptic_table(pq_results, classwise_results, logger=logger) + results = parse_pq_results(pq_results) + results['PQ_copypaste'] = ( + f'{results["PQ"]:.3f} {results["SQ"]:.3f} ' + f'{results["RQ"]:.3f} ' + f'{results["PQ_th"]:.3f} {results["SQ_th"]:.3f} ' + f'{results["RQ_th"]:.3f} ' + f'{results["PQ_st"]:.3f} {results["SQ_st"]:.3f} ' + f'{results["RQ_st"]:.3f}') + + return results + + def evaluate(self, + results, + metric='PQ', + logger=None, + jsonfile_prefix=None, + classwise=False, + nproc=32, + **kwargs): + """Evaluation in COCO Panoptic protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. 'PQ', 'bbox', + 'segm', 'proposal' are supported. 'pq' will be regarded as 'PQ. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str | None): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + classwise (bool): Whether to print classwise evaluation results. + Default: False. + nproc (int): Number of processes for panoptic quality computing. + Defaults to 32. When `nproc` exceeds the number of cpu cores, + the number of cpu cores is used. + + Returns: + dict[str, float]: COCO Panoptic style evaluation metric. + """ + metrics = metric if isinstance(metric, list) else [metric] + # Compatible with lowercase 'pq' + metrics = ['PQ' if metric == 'pq' else metric for metric in metrics] + allowed_metrics = ['PQ', 'bbox', 'segm', 'proposal'] + for metric in metrics: + if metric not in allowed_metrics: + raise KeyError(f'metric {metric} is not supported') + + result_files, tmp_dir = self.format_results(results, jsonfile_prefix) + eval_results = {} + + outfile_prefix = os.path.join(tmp_dir.name, 'results') \ + if tmp_dir is not None else jsonfile_prefix + if 'PQ' in metrics: + eval_pan_results = self.evaluate_pan_json( + result_files, outfile_prefix, logger, classwise, nproc=nproc) + + eval_results.update(eval_pan_results) + metrics.remove('PQ') + + if (('bbox' in metrics) or ('segm' in metrics) + or ('proposal' in metrics)): + + assert 'ins_results' in results[0], 'instance segmentation' \ + 'results are absent from results' + + assert self.ins_ann_file is not None, 'Annotation '\ + 'file for instance segmentation or object detection ' \ + 'shuold not be None' + + coco_gt = COCO(self.ins_ann_file) + panoptic_cat_ids = self.cat_ids + self.cat_ids = coco_gt.get_cat_ids(cat_names=self.THING_CLASSES) + + eval_ins_results = self.evaluate_det_segm(results, result_files, + coco_gt, metrics, logger, + classwise, **kwargs) + self.cat_ids = panoptic_cat_ids + eval_results.update(eval_ins_results) + + if tmp_dir is not None: + tmp_dir.cleanup() + return eval_results + + +def parse_pq_results(pq_results): + """Parse the Panoptic Quality results.""" + result = dict() + result['PQ'] = 100 * pq_results['All']['pq'] + result['SQ'] = 100 * pq_results['All']['sq'] + result['RQ'] = 100 * pq_results['All']['rq'] + result['PQ_th'] = 100 * pq_results['Things']['pq'] + result['SQ_th'] = 100 * pq_results['Things']['sq'] + result['RQ_th'] = 100 * pq_results['Things']['rq'] + result['PQ_st'] = 100 * pq_results['Stuff']['pq'] + result['SQ_st'] = 100 * pq_results['Stuff']['sq'] + result['RQ_st'] = 100 * pq_results['Stuff']['rq'] + return result + + +def print_panoptic_table(pq_results, classwise_results=None, logger=None): + """Print the panoptic evaluation results table. + + Args: + pq_results(dict): The Panoptic Quality results. + classwise_results(dict | None): The classwise Panoptic Quality results. + The keys are class names and the values are metrics. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + """ + + headers = ['', 'PQ', 'SQ', 'RQ', 'categories'] + data = [headers] + for name in ['All', 'Things', 'Stuff']: + numbers = [ + f'{(pq_results[name][k] * 100):0.3f}' for k in ['pq', 'sq', 'rq'] + ] + row = [name] + numbers + [pq_results[name]['n']] + data.append(row) + table = AsciiTable(data) + print_log('Panoptic Evaluation Results:\n' + table.table, logger=logger) + + if classwise_results is not None: + class_metrics = [(name, ) + tuple(f'{(metrics[k] * 100):0.3f}' + for k in ['pq', 'sq', 'rq']) + for name, metrics in classwise_results.items()] + num_columns = min(8, len(class_metrics) * 4) + results_flatten = list(itertools.chain(*class_metrics)) + headers = ['category', 'PQ', 'SQ', 'RQ'] * (num_columns // 4) + results_2d = itertools.zip_longest( + *[results_flatten[i::num_columns] for i in range(num_columns)]) + data = [headers] + data += [result for result in results_2d] + table = AsciiTable(data) + print_log( + 'Classwise Panoptic Evaluation Results:\n' + table.table, + logger=logger) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/custom.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/custom.py new file mode 100644 index 000000000..a4d825898 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/custom.py @@ -0,0 +1,410 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import warnings +from collections import OrderedDict + +import mmcv +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable +from torch.utils.data import Dataset + +from mmdet.core import eval_map, eval_recalls +from .builder import DATASETS +from .pipelines import Compose + + +@DATASETS.register_module() +class CustomDataset(Dataset): + """Custom dataset for detection. + + The annotation format is shown as follows. The `ann` field is optional for + testing. + + .. code-block:: none + + [ + { + 'filename': 'a.jpg', + 'width': 1280, + 'height': 720, + 'ann': { + 'bboxes': (n, 4) in (x1, y1, x2, y2) order. + 'labels': (n, ), + 'bboxes_ignore': (k, 4), (optional field) + 'labels_ignore': (k, 4) (optional field) + } + }, + ... + ] + + Args: + ann_file (str): Annotation file path. + pipeline (list[dict]): Processing pipeline. + classes (str | Sequence[str], optional): Specify classes to load. + If is None, ``cls.CLASSES`` will be used. Default: None. + data_root (str, optional): Data root for ``ann_file``, + ``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified. + test_mode (bool, optional): If set True, annotation will not be loaded. + filter_empty_gt (bool, optional): If set true, images without bounding + boxes of the dataset's classes will be filtered out. This option + only works when `test_mode=False`, i.e., we never filter images + during tests. + """ + + CLASSES = None + + PALETTE = None + + def __init__(self, + ann_file, + pipeline, + classes=None, + data_root=None, + img_prefix='', + seg_prefix=None, + proposal_file=None, + test_mode=False, + filter_empty_gt=True, + file_client_args=dict(backend='disk')): + self.ann_file = ann_file + self.data_root = data_root + self.img_prefix = img_prefix + self.seg_prefix = seg_prefix + self.proposal_file = proposal_file + self.test_mode = test_mode + self.filter_empty_gt = filter_empty_gt + self.file_client = mmcv.FileClient(**file_client_args) + self.CLASSES = self.get_classes(classes) + + # join paths if data_root is specified + if self.data_root is not None: + if not osp.isabs(self.ann_file): + self.ann_file = osp.join(self.data_root, self.ann_file) + if not (self.img_prefix is None or osp.isabs(self.img_prefix)): + self.img_prefix = osp.join(self.data_root, self.img_prefix) + if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)): + self.seg_prefix = osp.join(self.data_root, self.seg_prefix) + if not (self.proposal_file is None + or osp.isabs(self.proposal_file)): + self.proposal_file = osp.join(self.data_root, + self.proposal_file) + # load annotations (and proposals) + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path(self.ann_file) as local_path: + self.data_infos = self.load_annotations(local_path) + else: + warnings.warn( + 'The used MMCV version does not have get_local_path. ' + f'We treat the {self.ann_file} as local paths and it ' + 'might cause errors if the path is not a local path. ' + 'Please use MMCV>= 1.3.16 if you meet errors.') + self.data_infos = self.load_annotations(self.ann_file) + + if self.proposal_file is not None: + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path( + self.proposal_file) as local_path: + self.proposals = self.load_proposals(local_path) + else: + warnings.warn( + 'The used MMCV version does not have get_local_path. ' + f'We treat the {self.ann_file} as local paths and it ' + 'might cause errors if the path is not a local path. ' + 'Please use MMCV>= 1.3.16 if you meet errors.') + self.proposals = self.load_proposals(self.proposal_file) + else: + self.proposals = None + + # filter images too small and containing no annotations + if not test_mode: + valid_inds = self._filter_imgs() + self.data_infos = [self.data_infos[i] for i in valid_inds] + if self.proposals is not None: + self.proposals = [self.proposals[i] for i in valid_inds] + # set group flag for the sampler + self._set_group_flag() + + # processing pipeline + self.pipeline = Compose(pipeline) + + def __len__(self): + """Total number of samples of data.""" + return len(self.data_infos) + + def load_annotations(self, ann_file): + """Load annotation from annotation file.""" + return mmcv.load(ann_file) + + def load_proposals(self, proposal_file): + """Load proposal from proposal file.""" + return mmcv.load(proposal_file) + + def get_ann_info(self, idx): + """Get annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + return self.data_infos[idx]['ann'] + + def get_cat_ids(self, idx): + """Get category ids by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + + return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist() + + def pre_pipeline(self, results): + """Prepare results dict for pipeline.""" + results['img_prefix'] = self.img_prefix + results['seg_prefix'] = self.seg_prefix + results['proposal_file'] = self.proposal_file + results['bbox_fields'] = [] + results['mask_fields'] = [] + results['seg_fields'] = [] + + def _filter_imgs(self, min_size=32): + """Filter images too small.""" + if self.filter_empty_gt: + warnings.warn( + 'CustomDataset does not support filtering empty gt images.') + valid_inds = [] + for i, img_info in enumerate(self.data_infos): + if min(img_info['width'], img_info['height']) >= min_size: + valid_inds.append(i) + return valid_inds + + def _set_group_flag(self): + """Set flag according to image aspect ratio. + + Images with aspect ratio greater than 1 will be set as group 1, + otherwise group 0. + """ + self.flag = np.zeros(len(self), dtype=np.uint8) + for i in range(len(self)): + img_info = self.data_infos[i] + if img_info['width'] / img_info['height'] > 1: + self.flag[i] = 1 + + def _rand_another(self, idx): + """Get another random index from the same group as the given index.""" + pool = np.where(self.flag == self.flag[idx])[0] + return np.random.choice(pool) + + def __getitem__(self, idx): + """Get training/test data after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Training/test data (with annotation if `test_mode` is set \ + True). + """ + + if self.test_mode: + return self.prepare_test_img(idx) + while True: + data = self.prepare_train_img(idx) + if data is None: + idx = self._rand_another(idx) + continue + return data + + def prepare_train_img(self, idx): + """Get training data and annotations after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Training data and annotation after pipeline with new keys \ + introduced by pipeline. + """ + + img_info = self.data_infos[idx] + ann_info = self.get_ann_info(idx) + results = dict(img_info=img_info, ann_info=ann_info) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + return self.pipeline(results) + + def prepare_test_img(self, idx): + """Get testing data after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Testing data after pipeline with new keys introduced by \ + pipeline. + """ + + img_info = self.data_infos[idx] + results = dict(img_info=img_info) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + return self.pipeline(results) + + @classmethod + def get_classes(cls, classes=None): + """Get class names of current dataset. + + Args: + classes (Sequence[str] | str | None): If classes is None, use + default CLASSES defined by builtin dataset. If classes is a + string, take it as a file name. The file contains the name of + classes where each line contains one class name. If classes is + a tuple or list, override the CLASSES defined by the dataset. + + Returns: + tuple[str] or list[str]: Names of categories of the dataset. + """ + if classes is None: + return cls.CLASSES + + if isinstance(classes, str): + # take it as a file path + class_names = mmcv.list_from_file(classes) + elif isinstance(classes, (tuple, list)): + class_names = classes + else: + raise ValueError(f'Unsupported type {type(classes)} of classes.') + + return class_names + + def get_cat2imgs(self): + """Get a dict with class as key and img_ids as values, which will be + used in :class:`ClassAwareSampler`. + + Returns: + dict[list]: A dict of per-label image list, + the item of the dict indicates a label index, + corresponds to the image index that contains the label. + """ + if self.CLASSES is None: + raise ValueError('self.CLASSES can not be None') + # sort the label index + cat2imgs = {i: [] for i in range(len(self.CLASSES))} + for i in range(len(self)): + cat_ids = set(self.get_cat_ids(i)) + for cat in cat_ids: + cat2imgs[cat].append(i) + return cat2imgs + + def format_results(self, results, **kwargs): + """Place holder to format result to dataset specific output.""" + + def evaluate(self, + results, + metric='mAP', + logger=None, + proposal_nums=(100, 300, 1000), + iou_thr=0.5, + scale_ranges=None): + """Evaluate the dataset. + + Args: + results (list): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. + logger (logging.Logger | None | str): Logger used for printing + related information during evaluation. Default: None. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thr (float | list[float]): IoU threshold. Default: 0.5. + scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP. + Default: None. + """ + + if not isinstance(metric, str): + assert len(metric) == 1 + metric = metric[0] + allowed_metrics = ['mAP', 'recall'] + if metric not in allowed_metrics: + raise KeyError(f'metric {metric} is not supported') + annotations = [self.get_ann_info(i) for i in range(len(self))] + eval_results = OrderedDict() + iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr + if metric == 'mAP': + assert isinstance(iou_thrs, list) + mean_aps = [] + for iou_thr in iou_thrs: + print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') + mean_ap, _ = eval_map( + results, + annotations, + scale_ranges=scale_ranges, + iou_thr=iou_thr, + dataset=self.CLASSES, + logger=logger) + mean_aps.append(mean_ap) + eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) + eval_results['mAP'] = sum(mean_aps) / len(mean_aps) + elif metric == 'recall': + gt_bboxes = [ann['bboxes'] for ann in annotations] + recalls = eval_recalls( + gt_bboxes, results, proposal_nums, iou_thr, logger=logger) + for i, num in enumerate(proposal_nums): + for j, iou in enumerate(iou_thrs): + eval_results[f'recall@{num}@{iou}'] = recalls[i, j] + if recalls.shape[1] > 1: + ar = recalls.mean(axis=1) + for i, num in enumerate(proposal_nums): + eval_results[f'AR@{num}'] = ar[i] + return eval_results + + def __repr__(self): + """Print the number of instance number.""" + dataset_type = 'Test' if self.test_mode else 'Train' + result = (f'\n{self.__class__.__name__} {dataset_type} dataset ' + f'with number of images {len(self)}, ' + f'and instance counts: \n') + if self.CLASSES is None: + result += 'Category names are not provided. \n' + return result + instance_count = np.zeros(len(self.CLASSES) + 1).astype(int) + # count the instance number in each image + for idx in range(len(self)): + label = self.get_ann_info(idx)['labels'] + unique, counts = np.unique(label, return_counts=True) + if len(unique) > 0: + # add the occurrence number to each class + instance_count[unique] += counts + else: + # background is the last index + instance_count[-1] += 1 + # create a table with category count + table_data = [['category', 'count'] * 5] + row_data = [] + for cls, count in enumerate(instance_count): + if cls < len(self.CLASSES): + row_data += [f'{cls} [{self.CLASSES[cls]}]', f'{count}'] + else: + # add the background number + row_data += ['-1 background', f'{count}'] + if len(row_data) == 10: + table_data.append(row_data) + row_data = [] + if len(row_data) >= 2: + if row_data[-1] == '0': + row_data = row_data[:-2] + if len(row_data) >= 2: + table_data.append([]) + table_data.append(row_data) + + table = AsciiTable(table_data) + result += table.table + return result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/dataset_wrappers.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/dataset_wrappers.py new file mode 100644 index 000000000..e62b88eb6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/dataset_wrappers.py @@ -0,0 +1,456 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import bisect +import collections +import copy +import math +from collections import defaultdict + +import numpy as np +from mmcv.utils import build_from_cfg, print_log +from torch.utils.data.dataset import ConcatDataset as _ConcatDataset + +from .builder import DATASETS, PIPELINES +from .coco import CocoDataset + + +@DATASETS.register_module() +class ConcatDataset(_ConcatDataset): + """A wrapper of concatenated dataset. + + Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but + concat the group flag for image aspect ratio. + + Args: + datasets (list[:obj:`Dataset`]): A list of datasets. + separate_eval (bool): Whether to evaluate the results + separately if it is used as validation dataset. + Defaults to True. + """ + + def __init__(self, datasets, separate_eval=True): + super(ConcatDataset, self).__init__(datasets) + self.CLASSES = datasets[0].CLASSES + self.PALETTE = getattr(datasets[0], 'PALETTE', None) + self.separate_eval = separate_eval + if not separate_eval: + if any([isinstance(ds, CocoDataset) for ds in datasets]): + raise NotImplementedError( + 'Evaluating concatenated CocoDataset as a whole is not' + ' supported! Please set "separate_eval=True"') + elif len(set([type(ds) for ds in datasets])) != 1: + raise NotImplementedError( + 'All the datasets should have same types') + + if hasattr(datasets[0], 'flag'): + flags = [] + for i in range(0, len(datasets)): + flags.append(datasets[i].flag) + self.flag = np.concatenate(flags) + + def get_cat_ids(self, idx): + """Get category ids of concatenated dataset by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + + if idx < 0: + if -idx > len(self): + raise ValueError( + 'absolute value of index should not exceed dataset length') + idx = len(self) + idx + dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) + if dataset_idx == 0: + sample_idx = idx + else: + sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] + return self.datasets[dataset_idx].get_cat_ids(sample_idx) + + def get_ann_info(self, idx): + """Get annotation of concatenated dataset by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + if idx < 0: + if -idx > len(self): + raise ValueError( + 'absolute value of index should not exceed dataset length') + idx = len(self) + idx + dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) + if dataset_idx == 0: + sample_idx = idx + else: + sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] + return self.datasets[dataset_idx].get_ann_info(sample_idx) + + def evaluate(self, results, logger=None, **kwargs): + """Evaluate the results. + + Args: + results (list[list | tuple]): Testing results of the dataset. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + + Returns: + dict[str: float]: AP results of the total dataset or each separate + dataset if `self.separate_eval=True`. + """ + assert len(results) == self.cumulative_sizes[-1], \ + ('Dataset and results have different sizes: ' + f'{self.cumulative_sizes[-1]} v.s. {len(results)}') + + # Check whether all the datasets support evaluation + for dataset in self.datasets: + assert hasattr(dataset, 'evaluate'), \ + f'{type(dataset)} does not implement evaluate function' + + if self.separate_eval: + dataset_idx = -1 + total_eval_results = dict() + for size, dataset in zip(self.cumulative_sizes, self.datasets): + start_idx = 0 if dataset_idx == -1 else \ + self.cumulative_sizes[dataset_idx] + end_idx = self.cumulative_sizes[dataset_idx + 1] + + results_per_dataset = results[start_idx:end_idx] + print_log( + f'\nEvaluateing {dataset.ann_file} with ' + f'{len(results_per_dataset)} images now', + logger=logger) + + eval_results_per_dataset = dataset.evaluate( + results_per_dataset, logger=logger, **kwargs) + dataset_idx += 1 + for k, v in eval_results_per_dataset.items(): + total_eval_results.update({f'{dataset_idx}_{k}': v}) + + return total_eval_results + elif any([isinstance(ds, CocoDataset) for ds in self.datasets]): + raise NotImplementedError( + 'Evaluating concatenated CocoDataset as a whole is not' + ' supported! Please set "separate_eval=True"') + elif len(set([type(ds) for ds in self.datasets])) != 1: + raise NotImplementedError( + 'All the datasets should have same types') + else: + original_data_infos = self.datasets[0].data_infos + self.datasets[0].data_infos = sum( + [dataset.data_infos for dataset in self.datasets], []) + eval_results = self.datasets[0].evaluate( + results, logger=logger, **kwargs) + self.datasets[0].data_infos = original_data_infos + return eval_results + + +@DATASETS.register_module() +class RepeatDataset: + """A wrapper of repeated dataset. + + The length of repeated dataset will be `times` larger than the original + dataset. This is useful when the data loading time is long but the dataset + is small. Using RepeatDataset can reduce the data loading time between + epochs. + + Args: + dataset (:obj:`Dataset`): The dataset to be repeated. + times (int): Repeat times. + """ + + def __init__(self, dataset, times): + self.dataset = dataset + self.times = times + self.CLASSES = dataset.CLASSES + self.PALETTE = getattr(dataset, 'PALETTE', None) + if hasattr(self.dataset, 'flag'): + self.flag = np.tile(self.dataset.flag, times) + + self._ori_len = len(self.dataset) + + def __getitem__(self, idx): + return self.dataset[idx % self._ori_len] + + def get_cat_ids(self, idx): + """Get category ids of repeat dataset by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + + return self.dataset.get_cat_ids(idx % self._ori_len) + + def get_ann_info(self, idx): + """Get annotation of repeat dataset by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + return self.dataset.get_ann_info(idx % self._ori_len) + + def __len__(self): + """Length after repetition.""" + return self.times * self._ori_len + + +# Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa +@DATASETS.register_module() +class ClassBalancedDataset: + """A wrapper of repeated dataset with repeat factor. + + Suitable for training on class imbalanced datasets like LVIS. Following + the sampling strategy in the `paper `_, + in each epoch, an image may appear multiple times based on its + "repeat factor". + The repeat factor for an image is a function of the frequency the rarest + category labeled in that image. The "frequency of category c" in [0, 1] + is defined by the fraction of images in the training set (without repeats) + in which category c appears. + The dataset needs to instantiate :func:`self.get_cat_ids` to support + ClassBalancedDataset. + + The repeat factor is computed as followed. + + 1. For each category c, compute the fraction # of images + that contain it: :math:`f(c)` + 2. For each category c, compute the category-level repeat factor: + :math:`r(c) = max(1, sqrt(t/f(c)))` + 3. For each image I, compute the image-level repeat factor: + :math:`r(I) = max_{c in I} r(c)` + + Args: + dataset (:obj:`CustomDataset`): The dataset to be repeated. + oversample_thr (float): frequency threshold below which data is + repeated. For categories with ``f_c >= oversample_thr``, there is + no oversampling. For categories with ``f_c < oversample_thr``, the + degree of oversampling following the square-root inverse frequency + heuristic above. + filter_empty_gt (bool, optional): If set true, images without bounding + boxes will not be oversampled. Otherwise, they will be categorized + as the pure background class and involved into the oversampling. + Default: True. + """ + + def __init__(self, dataset, oversample_thr, filter_empty_gt=True): + self.dataset = dataset + self.oversample_thr = oversample_thr + self.filter_empty_gt = filter_empty_gt + self.CLASSES = dataset.CLASSES + self.PALETTE = getattr(dataset, 'PALETTE', None) + + repeat_factors = self._get_repeat_factors(dataset, oversample_thr) + repeat_indices = [] + for dataset_idx, repeat_factor in enumerate(repeat_factors): + repeat_indices.extend([dataset_idx] * math.ceil(repeat_factor)) + self.repeat_indices = repeat_indices + + flags = [] + if hasattr(self.dataset, 'flag'): + for flag, repeat_factor in zip(self.dataset.flag, repeat_factors): + flags.extend([flag] * int(math.ceil(repeat_factor))) + assert len(flags) == len(repeat_indices) + self.flag = np.asarray(flags, dtype=np.uint8) + + def _get_repeat_factors(self, dataset, repeat_thr): + """Get repeat factor for each images in the dataset. + + Args: + dataset (:obj:`CustomDataset`): The dataset + repeat_thr (float): The threshold of frequency. If an image + contains the categories whose frequency below the threshold, + it would be repeated. + + Returns: + list[float]: The repeat factors for each images in the dataset. + """ + + # 1. For each category c, compute the fraction # of images + # that contain it: f(c) + category_freq = defaultdict(int) + num_images = len(dataset) + for idx in range(num_images): + cat_ids = set(self.dataset.get_cat_ids(idx)) + if len(cat_ids) == 0 and not self.filter_empty_gt: + cat_ids = set([len(self.CLASSES)]) + for cat_id in cat_ids: + category_freq[cat_id] += 1 + for k, v in category_freq.items(): + category_freq[k] = v / num_images + + # 2. For each category c, compute the category-level repeat factor: + # r(c) = max(1, sqrt(t/f(c))) + category_repeat = { + cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) + for cat_id, cat_freq in category_freq.items() + } + + # 3. For each image I, compute the image-level repeat factor: + # r(I) = max_{c in I} r(c) + repeat_factors = [] + for idx in range(num_images): + cat_ids = set(self.dataset.get_cat_ids(idx)) + if len(cat_ids) == 0 and not self.filter_empty_gt: + cat_ids = set([len(self.CLASSES)]) + repeat_factor = 1 + if len(cat_ids) > 0: + repeat_factor = max( + {category_repeat[cat_id] + for cat_id in cat_ids}) + repeat_factors.append(repeat_factor) + + return repeat_factors + + def __getitem__(self, idx): + ori_index = self.repeat_indices[idx] + return self.dataset[ori_index] + + def get_ann_info(self, idx): + """Get annotation of dataset by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + ori_index = self.repeat_indices[idx] + return self.dataset.get_ann_info(ori_index) + + def __len__(self): + """Length after repetition.""" + return len(self.repeat_indices) + + +@DATASETS.register_module() +class MultiImageMixDataset: + """A wrapper of multiple images mixed dataset. + + Suitable for training on multiple images mixed data augmentation like + mosaic and mixup. For the augmentation pipeline of mixed image data, + the `get_indexes` method needs to be provided to obtain the image + indexes, and you can set `skip_flags` to change the pipeline running + process. At the same time, we provide the `dynamic_scale` parameter + to dynamically change the output image size. + + Args: + dataset (:obj:`CustomDataset`): The dataset to be mixed. + pipeline (Sequence[dict]): Sequence of transform object or + config dict to be composed. + dynamic_scale (tuple[int], optional): The image scale can be changed + dynamically. Default to None. It is deprecated. + skip_type_keys (list[str], optional): Sequence of type string to + be skip pipeline. Default to None. + max_refetch (int): The maximum number of retry iterations for getting + valid results from the pipeline. If the number of iterations is + greater than `max_refetch`, but results is still None, then the + iteration is terminated and raise the error. Default: 15. + """ + + def __init__(self, + dataset, + pipeline, + dynamic_scale=None, + skip_type_keys=None, + max_refetch=15): + if dynamic_scale is not None: + raise RuntimeError( + 'dynamic_scale is deprecated. Please use Resize pipeline ' + 'to achieve similar functions') + assert isinstance(pipeline, collections.abc.Sequence) + if skip_type_keys is not None: + assert all([ + isinstance(skip_type_key, str) + for skip_type_key in skip_type_keys + ]) + self._skip_type_keys = skip_type_keys + + self.pipeline = [] + self.pipeline_types = [] + for transform in pipeline: + if isinstance(transform, dict): + self.pipeline_types.append(transform['type']) + transform = build_from_cfg(transform, PIPELINES) + self.pipeline.append(transform) + else: + raise TypeError('pipeline must be a dict') + + self.dataset = dataset + self.CLASSES = dataset.CLASSES + self.PALETTE = getattr(dataset, 'PALETTE', None) + if hasattr(self.dataset, 'flag'): + self.flag = dataset.flag + self.num_samples = len(dataset) + self.max_refetch = max_refetch + + def __len__(self): + return self.num_samples + + def __getitem__(self, idx): + results = copy.deepcopy(self.dataset[idx]) + for (transform, transform_type) in zip(self.pipeline, + self.pipeline_types): + if self._skip_type_keys is not None and \ + transform_type in self._skip_type_keys: + continue + + if hasattr(transform, 'get_indexes'): + for i in range(self.max_refetch): + # Make sure the results passed the loading pipeline + # of the original dataset is not None. + indexes = transform.get_indexes(self.dataset) + if not isinstance(indexes, collections.abc.Sequence): + indexes = [indexes] + mix_results = [ + copy.deepcopy(self.dataset[index]) for index in indexes + ] + if None not in mix_results: + results['mix_results'] = mix_results + break + else: + raise RuntimeError( + 'The loading pipeline of the original dataset' + ' always return None. Please check the correctness ' + 'of the dataset and its pipeline.') + + for i in range(self.max_refetch): + # To confirm the results passed the training pipeline + # of the wrapper is not None. + updated_results = transform(copy.deepcopy(results)) + if updated_results is not None: + results = updated_results + break + else: + raise RuntimeError( + 'The training pipeline of the dataset wrapper' + ' always return None.Please check the correctness ' + 'of the dataset and its pipeline.') + + if 'mix_results' in results: + results.pop('mix_results') + + return results + + def update_skip_type_keys(self, skip_type_keys): + """Update skip_type_keys. It is called by an external hook. + + Args: + skip_type_keys (list[str], optional): Sequence of type + string to be skip pipeline. + """ + assert all([ + isinstance(skip_type_key, str) for skip_type_key in skip_type_keys + ]) + self._skip_type_keys = skip_type_keys diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/deepfashion.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/deepfashion.py new file mode 100644 index 000000000..609f80913 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/deepfashion.py @@ -0,0 +1,16 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import DATASETS +from .coco import CocoDataset + + +@DATASETS.register_module() +class DeepFashionDataset(CocoDataset): + + CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag', + 'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair', + 'skin', 'face') + + PALETTE = [(0, 192, 64), (0, 64, 96), (128, 192, 192), (0, 64, 64), + (0, 192, 224), (0, 192, 192), (128, 192, 64), (0, 192, 96), + (128, 32, 192), (0, 0, 224), (0, 0, 64), (0, 160, 192), + (128, 0, 96), (128, 0, 192), (0, 32, 192)] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/lvis.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/lvis.py new file mode 100644 index 000000000..511e31aeb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/lvis.py @@ -0,0 +1,742 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import itertools +import logging +import os.path as osp +import tempfile +import warnings +from collections import OrderedDict + +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from .builder import DATASETS +from .coco import CocoDataset + + +@DATASETS.register_module() +class LVISV05Dataset(CocoDataset): + + CLASSES = ( + 'acorn', 'aerosol_can', 'air_conditioner', 'airplane', 'alarm_clock', + 'alcohol', 'alligator', 'almond', 'ambulance', 'amplifier', 'anklet', + 'antenna', 'apple', 'apple_juice', 'applesauce', 'apricot', 'apron', + 'aquarium', 'armband', 'armchair', 'armoire', 'armor', 'artichoke', + 'trash_can', 'ashtray', 'asparagus', 'atomizer', 'avocado', 'award', + 'awning', 'ax', 'baby_buggy', 'basketball_backboard', 'backpack', + 'handbag', 'suitcase', 'bagel', 'bagpipe', 'baguet', 'bait', 'ball', + 'ballet_skirt', 'balloon', 'bamboo', 'banana', 'Band_Aid', 'bandage', + 'bandanna', 'banjo', 'banner', 'barbell', 'barge', 'barrel', + 'barrette', 'barrow', 'baseball_base', 'baseball', 'baseball_bat', + 'baseball_cap', 'baseball_glove', 'basket', 'basketball_hoop', + 'basketball', 'bass_horn', 'bat_(animal)', 'bath_mat', 'bath_towel', + 'bathrobe', 'bathtub', 'batter_(food)', 'battery', 'beachball', 'bead', + 'beaker', 'bean_curd', 'beanbag', 'beanie', 'bear', 'bed', + 'bedspread', 'cow', 'beef_(food)', 'beeper', 'beer_bottle', 'beer_can', + 'beetle', 'bell', 'bell_pepper', 'belt', 'belt_buckle', 'bench', + 'beret', 'bib', 'Bible', 'bicycle', 'visor', 'binder', 'binoculars', + 'bird', 'birdfeeder', 'birdbath', 'birdcage', 'birdhouse', + 'birthday_cake', 'birthday_card', 'biscuit_(bread)', 'pirate_flag', + 'black_sheep', 'blackboard', 'blanket', 'blazer', 'blender', 'blimp', + 'blinker', 'blueberry', 'boar', 'gameboard', 'boat', 'bobbin', + 'bobby_pin', 'boiled_egg', 'bolo_tie', 'deadbolt', 'bolt', 'bonnet', + 'book', 'book_bag', 'bookcase', 'booklet', 'bookmark', + 'boom_microphone', 'boot', 'bottle', 'bottle_opener', 'bouquet', + 'bow_(weapon)', 'bow_(decorative_ribbons)', 'bow-tie', 'bowl', + 'pipe_bowl', 'bowler_hat', 'bowling_ball', 'bowling_pin', + 'boxing_glove', 'suspenders', 'bracelet', 'brass_plaque', 'brassiere', + 'bread-bin', 'breechcloth', 'bridal_gown', 'briefcase', + 'bristle_brush', 'broccoli', 'broach', 'broom', 'brownie', + 'brussels_sprouts', 'bubble_gum', 'bucket', 'horse_buggy', 'bull', + 'bulldog', 'bulldozer', 'bullet_train', 'bulletin_board', + 'bulletproof_vest', 'bullhorn', 'corned_beef', 'bun', 'bunk_bed', + 'buoy', 'burrito', 'bus_(vehicle)', 'business_card', 'butcher_knife', + 'butter', 'butterfly', 'button', 'cab_(taxi)', 'cabana', 'cabin_car', + 'cabinet', 'locker', 'cake', 'calculator', 'calendar', 'calf', + 'camcorder', 'camel', 'camera', 'camera_lens', 'camper_(vehicle)', + 'can', 'can_opener', 'candelabrum', 'candle', 'candle_holder', + 'candy_bar', 'candy_cane', 'walking_cane', 'canister', 'cannon', + 'canoe', 'cantaloup', 'canteen', 'cap_(headwear)', 'bottle_cap', + 'cape', 'cappuccino', 'car_(automobile)', 'railcar_(part_of_a_train)', + 'elevator_car', 'car_battery', 'identity_card', 'card', 'cardigan', + 'cargo_ship', 'carnation', 'horse_carriage', 'carrot', 'tote_bag', + 'cart', 'carton', 'cash_register', 'casserole', 'cassette', 'cast', + 'cat', 'cauliflower', 'caviar', 'cayenne_(spice)', 'CD_player', + 'celery', 'cellular_telephone', 'chain_mail', 'chair', 'chaise_longue', + 'champagne', 'chandelier', 'chap', 'checkbook', 'checkerboard', + 'cherry', 'chessboard', 'chest_of_drawers_(furniture)', + 'chicken_(animal)', 'chicken_wire', 'chickpea', 'Chihuahua', + 'chili_(vegetable)', 'chime', 'chinaware', 'crisp_(potato_chip)', + 'poker_chip', 'chocolate_bar', 'chocolate_cake', 'chocolate_milk', + 'chocolate_mousse', 'choker', 'chopping_board', 'chopstick', + 'Christmas_tree', 'slide', 'cider', 'cigar_box', 'cigarette', + 'cigarette_case', 'cistern', 'clarinet', 'clasp', 'cleansing_agent', + 'clementine', 'clip', 'clipboard', 'clock', 'clock_tower', + 'clothes_hamper', 'clothespin', 'clutch_bag', 'coaster', 'coat', + 'coat_hanger', 'coatrack', 'cock', 'coconut', 'coffee_filter', + 'coffee_maker', 'coffee_table', 'coffeepot', 'coil', 'coin', + 'colander', 'coleslaw', 'coloring_material', 'combination_lock', + 'pacifier', 'comic_book', 'computer_keyboard', 'concrete_mixer', + 'cone', 'control', 'convertible_(automobile)', 'sofa_bed', 'cookie', + 'cookie_jar', 'cooking_utensil', 'cooler_(for_food)', + 'cork_(bottle_plug)', 'corkboard', 'corkscrew', 'edible_corn', + 'cornbread', 'cornet', 'cornice', 'cornmeal', 'corset', + 'romaine_lettuce', 'costume', 'cougar', 'coverall', 'cowbell', + 'cowboy_hat', 'crab_(animal)', 'cracker', 'crape', 'crate', 'crayon', + 'cream_pitcher', 'credit_card', 'crescent_roll', 'crib', 'crock_pot', + 'crossbar', 'crouton', 'crow', 'crown', 'crucifix', 'cruise_ship', + 'police_cruiser', 'crumb', 'crutch', 'cub_(animal)', 'cube', + 'cucumber', 'cufflink', 'cup', 'trophy_cup', 'cupcake', 'hair_curler', + 'curling_iron', 'curtain', 'cushion', 'custard', 'cutting_tool', + 'cylinder', 'cymbal', 'dachshund', 'dagger', 'dartboard', + 'date_(fruit)', 'deck_chair', 'deer', 'dental_floss', 'desk', + 'detergent', 'diaper', 'diary', 'die', 'dinghy', 'dining_table', 'tux', + 'dish', 'dish_antenna', 'dishrag', 'dishtowel', 'dishwasher', + 'dishwasher_detergent', 'diskette', 'dispenser', 'Dixie_cup', 'dog', + 'dog_collar', 'doll', 'dollar', 'dolphin', 'domestic_ass', 'eye_mask', + 'doorbell', 'doorknob', 'doormat', 'doughnut', 'dove', 'dragonfly', + 'drawer', 'underdrawers', 'dress', 'dress_hat', 'dress_suit', + 'dresser', 'drill', 'drinking_fountain', 'drone', 'dropper', + 'drum_(musical_instrument)', 'drumstick', 'duck', 'duckling', + 'duct_tape', 'duffel_bag', 'dumbbell', 'dumpster', 'dustpan', + 'Dutch_oven', 'eagle', 'earphone', 'earplug', 'earring', 'easel', + 'eclair', 'eel', 'egg', 'egg_roll', 'egg_yolk', 'eggbeater', + 'eggplant', 'electric_chair', 'refrigerator', 'elephant', 'elk', + 'envelope', 'eraser', 'escargot', 'eyepatch', 'falcon', 'fan', + 'faucet', 'fedora', 'ferret', 'Ferris_wheel', 'ferry', 'fig_(fruit)', + 'fighter_jet', 'figurine', 'file_cabinet', 'file_(tool)', 'fire_alarm', + 'fire_engine', 'fire_extinguisher', 'fire_hose', 'fireplace', + 'fireplug', 'fish', 'fish_(food)', 'fishbowl', 'fishing_boat', + 'fishing_rod', 'flag', 'flagpole', 'flamingo', 'flannel', 'flash', + 'flashlight', 'fleece', 'flip-flop_(sandal)', 'flipper_(footwear)', + 'flower_arrangement', 'flute_glass', 'foal', 'folding_chair', + 'food_processor', 'football_(American)', 'football_helmet', + 'footstool', 'fork', 'forklift', 'freight_car', 'French_toast', + 'freshener', 'frisbee', 'frog', 'fruit_juice', 'fruit_salad', + 'frying_pan', 'fudge', 'funnel', 'futon', 'gag', 'garbage', + 'garbage_truck', 'garden_hose', 'gargle', 'gargoyle', 'garlic', + 'gasmask', 'gazelle', 'gelatin', 'gemstone', 'giant_panda', + 'gift_wrap', 'ginger', 'giraffe', 'cincture', + 'glass_(drink_container)', 'globe', 'glove', 'goat', 'goggles', + 'goldfish', 'golf_club', 'golfcart', 'gondola_(boat)', 'goose', + 'gorilla', 'gourd', 'surgical_gown', 'grape', 'grasshopper', 'grater', + 'gravestone', 'gravy_boat', 'green_bean', 'green_onion', 'griddle', + 'grillroom', 'grinder_(tool)', 'grits', 'grizzly', 'grocery_bag', + 'guacamole', 'guitar', 'gull', 'gun', 'hair_spray', 'hairbrush', + 'hairnet', 'hairpin', 'ham', 'hamburger', 'hammer', 'hammock', + 'hamper', 'hamster', 'hair_dryer', 'hand_glass', 'hand_towel', + 'handcart', 'handcuff', 'handkerchief', 'handle', 'handsaw', + 'hardback_book', 'harmonium', 'hat', 'hatbox', 'hatch', 'veil', + 'headband', 'headboard', 'headlight', 'headscarf', 'headset', + 'headstall_(for_horses)', 'hearing_aid', 'heart', 'heater', + 'helicopter', 'helmet', 'heron', 'highchair', 'hinge', 'hippopotamus', + 'hockey_stick', 'hog', 'home_plate_(baseball)', 'honey', 'fume_hood', + 'hook', 'horse', 'hose', 'hot-air_balloon', 'hotplate', 'hot_sauce', + 'hourglass', 'houseboat', 'hummingbird', 'hummus', 'polar_bear', + 'icecream', 'popsicle', 'ice_maker', 'ice_pack', 'ice_skate', + 'ice_tea', 'igniter', 'incense', 'inhaler', 'iPod', + 'iron_(for_clothing)', 'ironing_board', 'jacket', 'jam', 'jean', + 'jeep', 'jelly_bean', 'jersey', 'jet_plane', 'jewelry', 'joystick', + 'jumpsuit', 'kayak', 'keg', 'kennel', 'kettle', 'key', 'keycard', + 'kilt', 'kimono', 'kitchen_sink', 'kitchen_table', 'kite', 'kitten', + 'kiwi_fruit', 'knee_pad', 'knife', 'knight_(chess_piece)', + 'knitting_needle', 'knob', 'knocker_(on_a_door)', 'koala', 'lab_coat', + 'ladder', 'ladle', 'ladybug', 'lamb_(animal)', 'lamb-chop', 'lamp', + 'lamppost', 'lampshade', 'lantern', 'lanyard', 'laptop_computer', + 'lasagna', 'latch', 'lawn_mower', 'leather', 'legging_(clothing)', + 'Lego', 'lemon', 'lemonade', 'lettuce', 'license_plate', 'life_buoy', + 'life_jacket', 'lightbulb', 'lightning_rod', 'lime', 'limousine', + 'linen_paper', 'lion', 'lip_balm', 'lipstick', 'liquor', 'lizard', + 'Loafer_(type_of_shoe)', 'log', 'lollipop', 'lotion', + 'speaker_(stereo_equipment)', 'loveseat', 'machine_gun', 'magazine', + 'magnet', 'mail_slot', 'mailbox_(at_home)', 'mallet', 'mammoth', + 'mandarin_orange', 'manger', 'manhole', 'map', 'marker', 'martini', + 'mascot', 'mashed_potato', 'masher', 'mask', 'mast', + 'mat_(gym_equipment)', 'matchbox', 'mattress', 'measuring_cup', + 'measuring_stick', 'meatball', 'medicine', 'melon', 'microphone', + 'microscope', 'microwave_oven', 'milestone', 'milk', 'minivan', + 'mint_candy', 'mirror', 'mitten', 'mixer_(kitchen_tool)', 'money', + 'monitor_(computer_equipment) computer_monitor', 'monkey', 'motor', + 'motor_scooter', 'motor_vehicle', 'motorboat', 'motorcycle', + 'mound_(baseball)', 'mouse_(animal_rodent)', + 'mouse_(computer_equipment)', 'mousepad', 'muffin', 'mug', 'mushroom', + 'music_stool', 'musical_instrument', 'nailfile', 'nameplate', 'napkin', + 'neckerchief', 'necklace', 'necktie', 'needle', 'nest', 'newsstand', + 'nightshirt', 'nosebag_(for_animals)', 'noseband_(for_animals)', + 'notebook', 'notepad', 'nut', 'nutcracker', 'oar', 'octopus_(food)', + 'octopus_(animal)', 'oil_lamp', 'olive_oil', 'omelet', 'onion', + 'orange_(fruit)', 'orange_juice', 'oregano', 'ostrich', 'ottoman', + 'overalls_(clothing)', 'owl', 'packet', 'inkpad', 'pad', 'paddle', + 'padlock', 'paintbox', 'paintbrush', 'painting', 'pajamas', 'palette', + 'pan_(for_cooking)', 'pan_(metal_container)', 'pancake', 'pantyhose', + 'papaya', 'paperclip', 'paper_plate', 'paper_towel', 'paperback_book', + 'paperweight', 'parachute', 'parakeet', 'parasail_(sports)', + 'parchment', 'parka', 'parking_meter', 'parrot', + 'passenger_car_(part_of_a_train)', 'passenger_ship', 'passport', + 'pastry', 'patty_(food)', 'pea_(food)', 'peach', 'peanut_butter', + 'pear', 'peeler_(tool_for_fruit_and_vegetables)', 'pegboard', + 'pelican', 'pen', 'pencil', 'pencil_box', 'pencil_sharpener', + 'pendulum', 'penguin', 'pennant', 'penny_(coin)', 'pepper', + 'pepper_mill', 'perfume', 'persimmon', 'baby', 'pet', 'petfood', + 'pew_(church_bench)', 'phonebook', 'phonograph_record', 'piano', + 'pickle', 'pickup_truck', 'pie', 'pigeon', 'piggy_bank', 'pillow', + 'pin_(non_jewelry)', 'pineapple', 'pinecone', 'ping-pong_ball', + 'pinwheel', 'tobacco_pipe', 'pipe', 'pistol', 'pita_(bread)', + 'pitcher_(vessel_for_liquid)', 'pitchfork', 'pizza', 'place_mat', + 'plate', 'platter', 'playing_card', 'playpen', 'pliers', + 'plow_(farm_equipment)', 'pocket_watch', 'pocketknife', + 'poker_(fire_stirring_tool)', 'pole', 'police_van', 'polo_shirt', + 'poncho', 'pony', 'pool_table', 'pop_(soda)', 'portrait', + 'postbox_(public)', 'postcard', 'poster', 'pot', 'flowerpot', 'potato', + 'potholder', 'pottery', 'pouch', 'power_shovel', 'prawn', 'printer', + 'projectile_(weapon)', 'projector', 'propeller', 'prune', 'pudding', + 'puffer_(fish)', 'puffin', 'pug-dog', 'pumpkin', 'puncher', 'puppet', + 'puppy', 'quesadilla', 'quiche', 'quilt', 'rabbit', 'race_car', + 'racket', 'radar', 'radiator', 'radio_receiver', 'radish', 'raft', + 'rag_doll', 'raincoat', 'ram_(animal)', 'raspberry', 'rat', + 'razorblade', 'reamer_(juicer)', 'rearview_mirror', 'receipt', + 'recliner', 'record_player', 'red_cabbage', 'reflector', + 'remote_control', 'rhinoceros', 'rib_(food)', 'rifle', 'ring', + 'river_boat', 'road_map', 'robe', 'rocking_chair', 'roller_skate', + 'Rollerblade', 'rolling_pin', 'root_beer', + 'router_(computer_equipment)', 'rubber_band', 'runner_(carpet)', + 'plastic_bag', 'saddle_(on_an_animal)', 'saddle_blanket', 'saddlebag', + 'safety_pin', 'sail', 'salad', 'salad_plate', 'salami', + 'salmon_(fish)', 'salmon_(food)', 'salsa', 'saltshaker', + 'sandal_(type_of_shoe)', 'sandwich', 'satchel', 'saucepan', 'saucer', + 'sausage', 'sawhorse', 'saxophone', 'scale_(measuring_instrument)', + 'scarecrow', 'scarf', 'school_bus', 'scissors', 'scoreboard', + 'scrambled_eggs', 'scraper', 'scratcher', 'screwdriver', + 'scrubbing_brush', 'sculpture', 'seabird', 'seahorse', 'seaplane', + 'seashell', 'seedling', 'serving_dish', 'sewing_machine', 'shaker', + 'shampoo', 'shark', 'sharpener', 'Sharpie', 'shaver_(electric)', + 'shaving_cream', 'shawl', 'shears', 'sheep', 'shepherd_dog', + 'sherbert', 'shield', 'shirt', 'shoe', 'shopping_bag', 'shopping_cart', + 'short_pants', 'shot_glass', 'shoulder_bag', 'shovel', 'shower_head', + 'shower_curtain', 'shredder_(for_paper)', 'sieve', 'signboard', 'silo', + 'sink', 'skateboard', 'skewer', 'ski', 'ski_boot', 'ski_parka', + 'ski_pole', 'skirt', 'sled', 'sleeping_bag', 'sling_(bandage)', + 'slipper_(footwear)', 'smoothie', 'snake', 'snowboard', 'snowman', + 'snowmobile', 'soap', 'soccer_ball', 'sock', 'soda_fountain', + 'carbonated_water', 'sofa', 'softball', 'solar_array', 'sombrero', + 'soup', 'soup_bowl', 'soupspoon', 'sour_cream', 'soya_milk', + 'space_shuttle', 'sparkler_(fireworks)', 'spatula', 'spear', + 'spectacles', 'spice_rack', 'spider', 'sponge', 'spoon', 'sportswear', + 'spotlight', 'squirrel', 'stapler_(stapling_machine)', 'starfish', + 'statue_(sculpture)', 'steak_(food)', 'steak_knife', + 'steamer_(kitchen_appliance)', 'steering_wheel', 'stencil', + 'stepladder', 'step_stool', 'stereo_(sound_system)', 'stew', 'stirrer', + 'stirrup', 'stockings_(leg_wear)', 'stool', 'stop_sign', 'brake_light', + 'stove', 'strainer', 'strap', 'straw_(for_drinking)', 'strawberry', + 'street_sign', 'streetlight', 'string_cheese', 'stylus', 'subwoofer', + 'sugar_bowl', 'sugarcane_(plant)', 'suit_(clothing)', 'sunflower', + 'sunglasses', 'sunhat', 'sunscreen', 'surfboard', 'sushi', 'mop', + 'sweat_pants', 'sweatband', 'sweater', 'sweatshirt', 'sweet_potato', + 'swimsuit', 'sword', 'syringe', 'Tabasco_sauce', 'table-tennis_table', + 'table', 'table_lamp', 'tablecloth', 'tachometer', 'taco', 'tag', + 'taillight', 'tambourine', 'army_tank', 'tank_(storage_vessel)', + 'tank_top_(clothing)', 'tape_(sticky_cloth_or_paper)', 'tape_measure', + 'tapestry', 'tarp', 'tartan', 'tassel', 'tea_bag', 'teacup', + 'teakettle', 'teapot', 'teddy_bear', 'telephone', 'telephone_booth', + 'telephone_pole', 'telephoto_lens', 'television_camera', + 'television_set', 'tennis_ball', 'tennis_racket', 'tequila', + 'thermometer', 'thermos_bottle', 'thermostat', 'thimble', 'thread', + 'thumbtack', 'tiara', 'tiger', 'tights_(clothing)', 'timer', 'tinfoil', + 'tinsel', 'tissue_paper', 'toast_(food)', 'toaster', 'toaster_oven', + 'toilet', 'toilet_tissue', 'tomato', 'tongs', 'toolbox', 'toothbrush', + 'toothpaste', 'toothpick', 'cover', 'tortilla', 'tow_truck', 'towel', + 'towel_rack', 'toy', 'tractor_(farm_equipment)', 'traffic_light', + 'dirt_bike', 'trailer_truck', 'train_(railroad_vehicle)', 'trampoline', + 'tray', 'tree_house', 'trench_coat', 'triangle_(musical_instrument)', + 'tricycle', 'tripod', 'trousers', 'truck', 'truffle_(chocolate)', + 'trunk', 'vat', 'turban', 'turkey_(bird)', 'turkey_(food)', 'turnip', + 'turtle', 'turtleneck_(clothing)', 'typewriter', 'umbrella', + 'underwear', 'unicycle', 'urinal', 'urn', 'vacuum_cleaner', 'valve', + 'vase', 'vending_machine', 'vent', 'videotape', 'vinegar', 'violin', + 'vodka', 'volleyball', 'vulture', 'waffle', 'waffle_iron', 'wagon', + 'wagon_wheel', 'walking_stick', 'wall_clock', 'wall_socket', 'wallet', + 'walrus', 'wardrobe', 'wasabi', 'automatic_washer', 'watch', + 'water_bottle', 'water_cooler', 'water_faucet', 'water_filter', + 'water_heater', 'water_jug', 'water_gun', 'water_scooter', 'water_ski', + 'water_tower', 'watering_can', 'watermelon', 'weathervane', 'webcam', + 'wedding_cake', 'wedding_ring', 'wet_suit', 'wheel', 'wheelchair', + 'whipped_cream', 'whiskey', 'whistle', 'wick', 'wig', 'wind_chime', + 'windmill', 'window_box_(for_plants)', 'windshield_wiper', 'windsock', + 'wine_bottle', 'wine_bucket', 'wineglass', 'wing_chair', + 'blinder_(for_horses)', 'wok', 'wolf', 'wooden_spoon', 'wreath', + 'wrench', 'wristband', 'wristlet', 'yacht', 'yak', 'yogurt', + 'yoke_(animal_equipment)', 'zebra', 'zucchini') + + PALETTE = None + + def load_annotations(self, ann_file): + """Load annotation from lvis style annotation file. + + Args: + ann_file (str): Path of annotation file. + + Returns: + list[dict]: Annotation info from LVIS api. + """ + + try: + import lvis + if getattr(lvis, '__version__', '0') >= '10.5.3': + warnings.warn( + 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 + UserWarning) + from lvis import LVIS + except ImportError: + raise ImportError( + 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 + ) + self.coco = LVIS(ann_file) + self.cat_ids = self.coco.get_cat_ids() + self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} + self.img_ids = self.coco.get_img_ids() + data_infos = [] + for i in self.img_ids: + info = self.coco.load_imgs([i])[0] + if info['file_name'].startswith('COCO'): + # Convert form the COCO 2014 file naming convention of + # COCO_[train/val/test]2014_000000000000.jpg to the 2017 + # naming convention of 000000000000.jpg + # (LVIS v1 will fix this naming issue) + info['filename'] = info['file_name'][-16:] + else: + info['filename'] = info['file_name'] + data_infos.append(info) + return data_infos + + def evaluate(self, + results, + metric='bbox', + logger=None, + jsonfile_prefix=None, + classwise=False, + proposal_nums=(100, 300, 1000), + iou_thrs=np.arange(0.5, 0.96, 0.05)): + """Evaluation in LVIS protocol. + + Args: + results (list[list | tuple]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. Options are + 'bbox', 'segm', 'proposal', 'proposal_fast'. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str | None): + classwise (bool): Whether to evaluating the AP for each class. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thrs (Sequence[float]): IoU threshold used for evaluating + recalls. If set to a list, the average recall of all IoUs will + also be computed. Default: 0.5. + + Returns: + dict[str, float]: LVIS style metrics. + """ + + try: + import lvis + if getattr(lvis, '__version__', '0') >= '10.5.3': + warnings.warn( + 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 + UserWarning) + from lvis import LVISEval, LVISResults + except ImportError: + raise ImportError( + 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 + ) + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + metrics = metric if isinstance(metric, list) else [metric] + allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] + for metric in metrics: + if metric not in allowed_metrics: + raise KeyError('metric {} is not supported'.format(metric)) + + if jsonfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + jsonfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + result_files = self.results2json(results, jsonfile_prefix) + + eval_results = OrderedDict() + # get original api + lvis_gt = self.coco + for metric in metrics: + msg = 'Evaluating {}...'.format(metric) + if logger is None: + msg = '\n' + msg + print_log(msg, logger=logger) + + if metric == 'proposal_fast': + ar = self.fast_eval_recall( + results, proposal_nums, iou_thrs, logger='silent') + log_msg = [] + for i, num in enumerate(proposal_nums): + eval_results['AR@{}'.format(num)] = ar[i] + log_msg.append('\nAR@{}\t{:.4f}'.format(num, ar[i])) + log_msg = ''.join(log_msg) + print_log(log_msg, logger=logger) + continue + + if metric not in result_files: + raise KeyError('{} is not in results'.format(metric)) + try: + lvis_dt = LVISResults(lvis_gt, result_files[metric]) + except IndexError: + print_log( + 'The testing results of the whole dataset is empty.', + logger=logger, + level=logging.ERROR) + break + + iou_type = 'bbox' if metric == 'proposal' else metric + lvis_eval = LVISEval(lvis_gt, lvis_dt, iou_type) + lvis_eval.params.imgIds = self.img_ids + if metric == 'proposal': + lvis_eval.params.useCats = 0 + lvis_eval.params.maxDets = list(proposal_nums) + lvis_eval.evaluate() + lvis_eval.accumulate() + lvis_eval.summarize() + for k, v in lvis_eval.get_results().items(): + if k.startswith('AR'): + val = float('{:.3f}'.format(float(v))) + eval_results[k] = val + else: + lvis_eval.evaluate() + lvis_eval.accumulate() + lvis_eval.summarize() + lvis_results = lvis_eval.get_results() + if classwise: # Compute per-category AP + # Compute per-category AP + # from https://github.com/facebookresearch/detectron2/ + precisions = lvis_eval.eval['precision'] + # precision: (iou, recall, cls, area range, max dets) + assert len(self.cat_ids) == precisions.shape[2] + + results_per_category = [] + for idx, catId in enumerate(self.cat_ids): + # area range index 0: all area ranges + # max dets index -1: typically 100 per image + # the dimensions of precisions are + # [num_thrs, num_recalls, num_cats, num_area_rngs] + nm = self.coco.load_cats([catId])[0] + precision = precisions[:, :, idx, 0] + precision = precision[precision > -1] + if precision.size: + ap = np.mean(precision) + else: + ap = float('nan') + results_per_category.append( + (f'{nm["name"]}', f'{float(ap):0.3f}')) + + num_columns = min(6, len(results_per_category) * 2) + results_flatten = list( + itertools.chain(*results_per_category)) + headers = ['category', 'AP'] * (num_columns // 2) + results_2d = itertools.zip_longest(*[ + results_flatten[i::num_columns] + for i in range(num_columns) + ]) + table_data = [headers] + table_data += [result for result in results_2d] + table = AsciiTable(table_data) + print_log('\n' + table.table, logger=logger) + + for k, v in lvis_results.items(): + if k.startswith('AP'): + key = '{}_{}'.format(metric, k) + val = float('{:.3f}'.format(float(v))) + eval_results[key] = val + ap_summary = ' '.join([ + '{}:{:.3f}'.format(k, float(v)) + for k, v in lvis_results.items() if k.startswith('AP') + ]) + eval_results['{}_mAP_copypaste'.format(metric)] = ap_summary + lvis_eval.print_results() + if tmp_dir is not None: + tmp_dir.cleanup() + return eval_results + + +LVISDataset = LVISV05Dataset +DATASETS.register_module(name='LVISDataset', module=LVISDataset) + + +@DATASETS.register_module() +class LVISV1Dataset(LVISDataset): + + CLASSES = ( + 'aerosol_can', 'air_conditioner', 'airplane', 'alarm_clock', 'alcohol', + 'alligator', 'almond', 'ambulance', 'amplifier', 'anklet', 'antenna', + 'apple', 'applesauce', 'apricot', 'apron', 'aquarium', + 'arctic_(type_of_shoe)', 'armband', 'armchair', 'armoire', 'armor', + 'artichoke', 'trash_can', 'ashtray', 'asparagus', 'atomizer', + 'avocado', 'award', 'awning', 'ax', 'baboon', 'baby_buggy', + 'basketball_backboard', 'backpack', 'handbag', 'suitcase', 'bagel', + 'bagpipe', 'baguet', 'bait', 'ball', 'ballet_skirt', 'balloon', + 'bamboo', 'banana', 'Band_Aid', 'bandage', 'bandanna', 'banjo', + 'banner', 'barbell', 'barge', 'barrel', 'barrette', 'barrow', + 'baseball_base', 'baseball', 'baseball_bat', 'baseball_cap', + 'baseball_glove', 'basket', 'basketball', 'bass_horn', 'bat_(animal)', + 'bath_mat', 'bath_towel', 'bathrobe', 'bathtub', 'batter_(food)', + 'battery', 'beachball', 'bead', 'bean_curd', 'beanbag', 'beanie', + 'bear', 'bed', 'bedpan', 'bedspread', 'cow', 'beef_(food)', 'beeper', + 'beer_bottle', 'beer_can', 'beetle', 'bell', 'bell_pepper', 'belt', + 'belt_buckle', 'bench', 'beret', 'bib', 'Bible', 'bicycle', 'visor', + 'billboard', 'binder', 'binoculars', 'bird', 'birdfeeder', 'birdbath', + 'birdcage', 'birdhouse', 'birthday_cake', 'birthday_card', + 'pirate_flag', 'black_sheep', 'blackberry', 'blackboard', 'blanket', + 'blazer', 'blender', 'blimp', 'blinker', 'blouse', 'blueberry', + 'gameboard', 'boat', 'bob', 'bobbin', 'bobby_pin', 'boiled_egg', + 'bolo_tie', 'deadbolt', 'bolt', 'bonnet', 'book', 'bookcase', + 'booklet', 'bookmark', 'boom_microphone', 'boot', 'bottle', + 'bottle_opener', 'bouquet', 'bow_(weapon)', 'bow_(decorative_ribbons)', + 'bow-tie', 'bowl', 'pipe_bowl', 'bowler_hat', 'bowling_ball', 'box', + 'boxing_glove', 'suspenders', 'bracelet', 'brass_plaque', 'brassiere', + 'bread-bin', 'bread', 'breechcloth', 'bridal_gown', 'briefcase', + 'broccoli', 'broach', 'broom', 'brownie', 'brussels_sprouts', + 'bubble_gum', 'bucket', 'horse_buggy', 'bull', 'bulldog', 'bulldozer', + 'bullet_train', 'bulletin_board', 'bulletproof_vest', 'bullhorn', + 'bun', 'bunk_bed', 'buoy', 'burrito', 'bus_(vehicle)', 'business_card', + 'butter', 'butterfly', 'button', 'cab_(taxi)', 'cabana', 'cabin_car', + 'cabinet', 'locker', 'cake', 'calculator', 'calendar', 'calf', + 'camcorder', 'camel', 'camera', 'camera_lens', 'camper_(vehicle)', + 'can', 'can_opener', 'candle', 'candle_holder', 'candy_bar', + 'candy_cane', 'walking_cane', 'canister', 'canoe', 'cantaloup', + 'canteen', 'cap_(headwear)', 'bottle_cap', 'cape', 'cappuccino', + 'car_(automobile)', 'railcar_(part_of_a_train)', 'elevator_car', + 'car_battery', 'identity_card', 'card', 'cardigan', 'cargo_ship', + 'carnation', 'horse_carriage', 'carrot', 'tote_bag', 'cart', 'carton', + 'cash_register', 'casserole', 'cassette', 'cast', 'cat', 'cauliflower', + 'cayenne_(spice)', 'CD_player', 'celery', 'cellular_telephone', + 'chain_mail', 'chair', 'chaise_longue', 'chalice', 'chandelier', + 'chap', 'checkbook', 'checkerboard', 'cherry', 'chessboard', + 'chicken_(animal)', 'chickpea', 'chili_(vegetable)', 'chime', + 'chinaware', 'crisp_(potato_chip)', 'poker_chip', 'chocolate_bar', + 'chocolate_cake', 'chocolate_milk', 'chocolate_mousse', 'choker', + 'chopping_board', 'chopstick', 'Christmas_tree', 'slide', 'cider', + 'cigar_box', 'cigarette', 'cigarette_case', 'cistern', 'clarinet', + 'clasp', 'cleansing_agent', 'cleat_(for_securing_rope)', 'clementine', + 'clip', 'clipboard', 'clippers_(for_plants)', 'cloak', 'clock', + 'clock_tower', 'clothes_hamper', 'clothespin', 'clutch_bag', 'coaster', + 'coat', 'coat_hanger', 'coatrack', 'cock', 'cockroach', + 'cocoa_(beverage)', 'coconut', 'coffee_maker', 'coffee_table', + 'coffeepot', 'coil', 'coin', 'colander', 'coleslaw', + 'coloring_material', 'combination_lock', 'pacifier', 'comic_book', + 'compass', 'computer_keyboard', 'condiment', 'cone', 'control', + 'convertible_(automobile)', 'sofa_bed', 'cooker', 'cookie', + 'cooking_utensil', 'cooler_(for_food)', 'cork_(bottle_plug)', + 'corkboard', 'corkscrew', 'edible_corn', 'cornbread', 'cornet', + 'cornice', 'cornmeal', 'corset', 'costume', 'cougar', 'coverall', + 'cowbell', 'cowboy_hat', 'crab_(animal)', 'crabmeat', 'cracker', + 'crape', 'crate', 'crayon', 'cream_pitcher', 'crescent_roll', 'crib', + 'crock_pot', 'crossbar', 'crouton', 'crow', 'crowbar', 'crown', + 'crucifix', 'cruise_ship', 'police_cruiser', 'crumb', 'crutch', + 'cub_(animal)', 'cube', 'cucumber', 'cufflink', 'cup', 'trophy_cup', + 'cupboard', 'cupcake', 'hair_curler', 'curling_iron', 'curtain', + 'cushion', 'cylinder', 'cymbal', 'dagger', 'dalmatian', 'dartboard', + 'date_(fruit)', 'deck_chair', 'deer', 'dental_floss', 'desk', + 'detergent', 'diaper', 'diary', 'die', 'dinghy', 'dining_table', 'tux', + 'dish', 'dish_antenna', 'dishrag', 'dishtowel', 'dishwasher', + 'dishwasher_detergent', 'dispenser', 'diving_board', 'Dixie_cup', + 'dog', 'dog_collar', 'doll', 'dollar', 'dollhouse', 'dolphin', + 'domestic_ass', 'doorknob', 'doormat', 'doughnut', 'dove', 'dragonfly', + 'drawer', 'underdrawers', 'dress', 'dress_hat', 'dress_suit', + 'dresser', 'drill', 'drone', 'dropper', 'drum_(musical_instrument)', + 'drumstick', 'duck', 'duckling', 'duct_tape', 'duffel_bag', 'dumbbell', + 'dumpster', 'dustpan', 'eagle', 'earphone', 'earplug', 'earring', + 'easel', 'eclair', 'eel', 'egg', 'egg_roll', 'egg_yolk', 'eggbeater', + 'eggplant', 'electric_chair', 'refrigerator', 'elephant', 'elk', + 'envelope', 'eraser', 'escargot', 'eyepatch', 'falcon', 'fan', + 'faucet', 'fedora', 'ferret', 'Ferris_wheel', 'ferry', 'fig_(fruit)', + 'fighter_jet', 'figurine', 'file_cabinet', 'file_(tool)', 'fire_alarm', + 'fire_engine', 'fire_extinguisher', 'fire_hose', 'fireplace', + 'fireplug', 'first-aid_kit', 'fish', 'fish_(food)', 'fishbowl', + 'fishing_rod', 'flag', 'flagpole', 'flamingo', 'flannel', 'flap', + 'flash', 'flashlight', 'fleece', 'flip-flop_(sandal)', + 'flipper_(footwear)', 'flower_arrangement', 'flute_glass', 'foal', + 'folding_chair', 'food_processor', 'football_(American)', + 'football_helmet', 'footstool', 'fork', 'forklift', 'freight_car', + 'French_toast', 'freshener', 'frisbee', 'frog', 'fruit_juice', + 'frying_pan', 'fudge', 'funnel', 'futon', 'gag', 'garbage', + 'garbage_truck', 'garden_hose', 'gargle', 'gargoyle', 'garlic', + 'gasmask', 'gazelle', 'gelatin', 'gemstone', 'generator', + 'giant_panda', 'gift_wrap', 'ginger', 'giraffe', 'cincture', + 'glass_(drink_container)', 'globe', 'glove', 'goat', 'goggles', + 'goldfish', 'golf_club', 'golfcart', 'gondola_(boat)', 'goose', + 'gorilla', 'gourd', 'grape', 'grater', 'gravestone', 'gravy_boat', + 'green_bean', 'green_onion', 'griddle', 'grill', 'grits', 'grizzly', + 'grocery_bag', 'guitar', 'gull', 'gun', 'hairbrush', 'hairnet', + 'hairpin', 'halter_top', 'ham', 'hamburger', 'hammer', 'hammock', + 'hamper', 'hamster', 'hair_dryer', 'hand_glass', 'hand_towel', + 'handcart', 'handcuff', 'handkerchief', 'handle', 'handsaw', + 'hardback_book', 'harmonium', 'hat', 'hatbox', 'veil', 'headband', + 'headboard', 'headlight', 'headscarf', 'headset', + 'headstall_(for_horses)', 'heart', 'heater', 'helicopter', 'helmet', + 'heron', 'highchair', 'hinge', 'hippopotamus', 'hockey_stick', 'hog', + 'home_plate_(baseball)', 'honey', 'fume_hood', 'hook', 'hookah', + 'hornet', 'horse', 'hose', 'hot-air_balloon', 'hotplate', 'hot_sauce', + 'hourglass', 'houseboat', 'hummingbird', 'hummus', 'polar_bear', + 'icecream', 'popsicle', 'ice_maker', 'ice_pack', 'ice_skate', + 'igniter', 'inhaler', 'iPod', 'iron_(for_clothing)', 'ironing_board', + 'jacket', 'jam', 'jar', 'jean', 'jeep', 'jelly_bean', 'jersey', + 'jet_plane', 'jewel', 'jewelry', 'joystick', 'jumpsuit', 'kayak', + 'keg', 'kennel', 'kettle', 'key', 'keycard', 'kilt', 'kimono', + 'kitchen_sink', 'kitchen_table', 'kite', 'kitten', 'kiwi_fruit', + 'knee_pad', 'knife', 'knitting_needle', 'knob', 'knocker_(on_a_door)', + 'koala', 'lab_coat', 'ladder', 'ladle', 'ladybug', 'lamb_(animal)', + 'lamb-chop', 'lamp', 'lamppost', 'lampshade', 'lantern', 'lanyard', + 'laptop_computer', 'lasagna', 'latch', 'lawn_mower', 'leather', + 'legging_(clothing)', 'Lego', 'legume', 'lemon', 'lemonade', 'lettuce', + 'license_plate', 'life_buoy', 'life_jacket', 'lightbulb', + 'lightning_rod', 'lime', 'limousine', 'lion', 'lip_balm', 'liquor', + 'lizard', 'log', 'lollipop', 'speaker_(stereo_equipment)', 'loveseat', + 'machine_gun', 'magazine', 'magnet', 'mail_slot', 'mailbox_(at_home)', + 'mallard', 'mallet', 'mammoth', 'manatee', 'mandarin_orange', 'manger', + 'manhole', 'map', 'marker', 'martini', 'mascot', 'mashed_potato', + 'masher', 'mask', 'mast', 'mat_(gym_equipment)', 'matchbox', + 'mattress', 'measuring_cup', 'measuring_stick', 'meatball', 'medicine', + 'melon', 'microphone', 'microscope', 'microwave_oven', 'milestone', + 'milk', 'milk_can', 'milkshake', 'minivan', 'mint_candy', 'mirror', + 'mitten', 'mixer_(kitchen_tool)', 'money', + 'monitor_(computer_equipment) computer_monitor', 'monkey', 'motor', + 'motor_scooter', 'motor_vehicle', 'motorcycle', 'mound_(baseball)', + 'mouse_(computer_equipment)', 'mousepad', 'muffin', 'mug', 'mushroom', + 'music_stool', 'musical_instrument', 'nailfile', 'napkin', + 'neckerchief', 'necklace', 'necktie', 'needle', 'nest', 'newspaper', + 'newsstand', 'nightshirt', 'nosebag_(for_animals)', + 'noseband_(for_animals)', 'notebook', 'notepad', 'nut', 'nutcracker', + 'oar', 'octopus_(food)', 'octopus_(animal)', 'oil_lamp', 'olive_oil', + 'omelet', 'onion', 'orange_(fruit)', 'orange_juice', 'ostrich', + 'ottoman', 'oven', 'overalls_(clothing)', 'owl', 'packet', 'inkpad', + 'pad', 'paddle', 'padlock', 'paintbrush', 'painting', 'pajamas', + 'palette', 'pan_(for_cooking)', 'pan_(metal_container)', 'pancake', + 'pantyhose', 'papaya', 'paper_plate', 'paper_towel', 'paperback_book', + 'paperweight', 'parachute', 'parakeet', 'parasail_(sports)', 'parasol', + 'parchment', 'parka', 'parking_meter', 'parrot', + 'passenger_car_(part_of_a_train)', 'passenger_ship', 'passport', + 'pastry', 'patty_(food)', 'pea_(food)', 'peach', 'peanut_butter', + 'pear', 'peeler_(tool_for_fruit_and_vegetables)', 'wooden_leg', + 'pegboard', 'pelican', 'pen', 'pencil', 'pencil_box', + 'pencil_sharpener', 'pendulum', 'penguin', 'pennant', 'penny_(coin)', + 'pepper', 'pepper_mill', 'perfume', 'persimmon', 'person', 'pet', + 'pew_(church_bench)', 'phonebook', 'phonograph_record', 'piano', + 'pickle', 'pickup_truck', 'pie', 'pigeon', 'piggy_bank', 'pillow', + 'pin_(non_jewelry)', 'pineapple', 'pinecone', 'ping-pong_ball', + 'pinwheel', 'tobacco_pipe', 'pipe', 'pistol', 'pita_(bread)', + 'pitcher_(vessel_for_liquid)', 'pitchfork', 'pizza', 'place_mat', + 'plate', 'platter', 'playpen', 'pliers', 'plow_(farm_equipment)', + 'plume', 'pocket_watch', 'pocketknife', 'poker_(fire_stirring_tool)', + 'pole', 'polo_shirt', 'poncho', 'pony', 'pool_table', 'pop_(soda)', + 'postbox_(public)', 'postcard', 'poster', 'pot', 'flowerpot', 'potato', + 'potholder', 'pottery', 'pouch', 'power_shovel', 'prawn', 'pretzel', + 'printer', 'projectile_(weapon)', 'projector', 'propeller', 'prune', + 'pudding', 'puffer_(fish)', 'puffin', 'pug-dog', 'pumpkin', 'puncher', + 'puppet', 'puppy', 'quesadilla', 'quiche', 'quilt', 'rabbit', + 'race_car', 'racket', 'radar', 'radiator', 'radio_receiver', 'radish', + 'raft', 'rag_doll', 'raincoat', 'ram_(animal)', 'raspberry', 'rat', + 'razorblade', 'reamer_(juicer)', 'rearview_mirror', 'receipt', + 'recliner', 'record_player', 'reflector', 'remote_control', + 'rhinoceros', 'rib_(food)', 'rifle', 'ring', 'river_boat', 'road_map', + 'robe', 'rocking_chair', 'rodent', 'roller_skate', 'Rollerblade', + 'rolling_pin', 'root_beer', 'router_(computer_equipment)', + 'rubber_band', 'runner_(carpet)', 'plastic_bag', + 'saddle_(on_an_animal)', 'saddle_blanket', 'saddlebag', 'safety_pin', + 'sail', 'salad', 'salad_plate', 'salami', 'salmon_(fish)', + 'salmon_(food)', 'salsa', 'saltshaker', 'sandal_(type_of_shoe)', + 'sandwich', 'satchel', 'saucepan', 'saucer', 'sausage', 'sawhorse', + 'saxophone', 'scale_(measuring_instrument)', 'scarecrow', 'scarf', + 'school_bus', 'scissors', 'scoreboard', 'scraper', 'screwdriver', + 'scrubbing_brush', 'sculpture', 'seabird', 'seahorse', 'seaplane', + 'seashell', 'sewing_machine', 'shaker', 'shampoo', 'shark', + 'sharpener', 'Sharpie', 'shaver_(electric)', 'shaving_cream', 'shawl', + 'shears', 'sheep', 'shepherd_dog', 'sherbert', 'shield', 'shirt', + 'shoe', 'shopping_bag', 'shopping_cart', 'short_pants', 'shot_glass', + 'shoulder_bag', 'shovel', 'shower_head', 'shower_cap', + 'shower_curtain', 'shredder_(for_paper)', 'signboard', 'silo', 'sink', + 'skateboard', 'skewer', 'ski', 'ski_boot', 'ski_parka', 'ski_pole', + 'skirt', 'skullcap', 'sled', 'sleeping_bag', 'sling_(bandage)', + 'slipper_(footwear)', 'smoothie', 'snake', 'snowboard', 'snowman', + 'snowmobile', 'soap', 'soccer_ball', 'sock', 'sofa', 'softball', + 'solar_array', 'sombrero', 'soup', 'soup_bowl', 'soupspoon', + 'sour_cream', 'soya_milk', 'space_shuttle', 'sparkler_(fireworks)', + 'spatula', 'spear', 'spectacles', 'spice_rack', 'spider', 'crawfish', + 'sponge', 'spoon', 'sportswear', 'spotlight', 'squid_(food)', + 'squirrel', 'stagecoach', 'stapler_(stapling_machine)', 'starfish', + 'statue_(sculpture)', 'steak_(food)', 'steak_knife', 'steering_wheel', + 'stepladder', 'step_stool', 'stereo_(sound_system)', 'stew', 'stirrer', + 'stirrup', 'stool', 'stop_sign', 'brake_light', 'stove', 'strainer', + 'strap', 'straw_(for_drinking)', 'strawberry', 'street_sign', + 'streetlight', 'string_cheese', 'stylus', 'subwoofer', 'sugar_bowl', + 'sugarcane_(plant)', 'suit_(clothing)', 'sunflower', 'sunglasses', + 'sunhat', 'surfboard', 'sushi', 'mop', 'sweat_pants', 'sweatband', + 'sweater', 'sweatshirt', 'sweet_potato', 'swimsuit', 'sword', + 'syringe', 'Tabasco_sauce', 'table-tennis_table', 'table', + 'table_lamp', 'tablecloth', 'tachometer', 'taco', 'tag', 'taillight', + 'tambourine', 'army_tank', 'tank_(storage_vessel)', + 'tank_top_(clothing)', 'tape_(sticky_cloth_or_paper)', 'tape_measure', + 'tapestry', 'tarp', 'tartan', 'tassel', 'tea_bag', 'teacup', + 'teakettle', 'teapot', 'teddy_bear', 'telephone', 'telephone_booth', + 'telephone_pole', 'telephoto_lens', 'television_camera', + 'television_set', 'tennis_ball', 'tennis_racket', 'tequila', + 'thermometer', 'thermos_bottle', 'thermostat', 'thimble', 'thread', + 'thumbtack', 'tiara', 'tiger', 'tights_(clothing)', 'timer', 'tinfoil', + 'tinsel', 'tissue_paper', 'toast_(food)', 'toaster', 'toaster_oven', + 'toilet', 'toilet_tissue', 'tomato', 'tongs', 'toolbox', 'toothbrush', + 'toothpaste', 'toothpick', 'cover', 'tortilla', 'tow_truck', 'towel', + 'towel_rack', 'toy', 'tractor_(farm_equipment)', 'traffic_light', + 'dirt_bike', 'trailer_truck', 'train_(railroad_vehicle)', 'trampoline', + 'tray', 'trench_coat', 'triangle_(musical_instrument)', 'tricycle', + 'tripod', 'trousers', 'truck', 'truffle_(chocolate)', 'trunk', 'vat', + 'turban', 'turkey_(food)', 'turnip', 'turtle', 'turtleneck_(clothing)', + 'typewriter', 'umbrella', 'underwear', 'unicycle', 'urinal', 'urn', + 'vacuum_cleaner', 'vase', 'vending_machine', 'vent', 'vest', + 'videotape', 'vinegar', 'violin', 'vodka', 'volleyball', 'vulture', + 'waffle', 'waffle_iron', 'wagon', 'wagon_wheel', 'walking_stick', + 'wall_clock', 'wall_socket', 'wallet', 'walrus', 'wardrobe', + 'washbasin', 'automatic_washer', 'watch', 'water_bottle', + 'water_cooler', 'water_faucet', 'water_heater', 'water_jug', + 'water_gun', 'water_scooter', 'water_ski', 'water_tower', + 'watering_can', 'watermelon', 'weathervane', 'webcam', 'wedding_cake', + 'wedding_ring', 'wet_suit', 'wheel', 'wheelchair', 'whipped_cream', + 'whistle', 'wig', 'wind_chime', 'windmill', 'window_box_(for_plants)', + 'windshield_wiper', 'windsock', 'wine_bottle', 'wine_bucket', + 'wineglass', 'blinder_(for_horses)', 'wok', 'wolf', 'wooden_spoon', + 'wreath', 'wrench', 'wristband', 'wristlet', 'yacht', 'yogurt', + 'yoke_(animal_equipment)', 'zebra', 'zucchini') + + def load_annotations(self, ann_file): + try: + import lvis + if getattr(lvis, '__version__', '0') >= '10.5.3': + warnings.warn( + 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 + UserWarning) + from lvis import LVIS + except ImportError: + raise ImportError( + 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 + ) + self.coco = LVIS(ann_file) + self.cat_ids = self.coco.get_cat_ids() + self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} + self.img_ids = self.coco.get_img_ids() + data_infos = [] + for i in self.img_ids: + info = self.coco.load_imgs([i])[0] + # coco_url is used in LVISv1 instead of file_name + # e.g. http://images.cocodataset.org/train2017/000000391895.jpg + # train/val split in specified in url + info['filename'] = info['coco_url'].replace( + 'http://images.cocodataset.org/', '') + data_infos.append(info) + return data_infos diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/openimages.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/openimages.py new file mode 100644 index 000000000..fba660c39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/openimages.py @@ -0,0 +1,891 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import csv +import json +import os.path as osp +import warnings +from collections import OrderedDict, defaultdict + +import mmcv +import numpy as np +import torch.distributed as dist +from mmcv.runner import get_dist_info +from mmcv.utils import print_log + +from mmdet.core import eval_map +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class OpenImagesDataset(CustomDataset): + """Open Images dataset for detection. + + Args: + ann_file (str): Annotation file path. + label_file (str): File path of the label description file that + maps the classes names in MID format to their short + descriptions. + image_level_ann_file (str): Image level annotation, which is used + in evaluation. + get_supercategory (bool): Whether to get parent class of the + current class. Default: True. + hierarchy_file (str): The file path of the class hierarchy. + Default: None. + get_metas (bool): Whether to get image metas in testing or + validation time. This should be `True` during evaluation. + Default: True. The OpenImages annotations do not have image + metas (width and height of the image), which will be used + during evaluation. We provide two ways to get image metas + in `OpenImagesDataset`: + + - 1. `load from file`: Load image metas from pkl file, which + is suggested to use. We provided a script to get image metas: + `tools/misc/get_image_metas.py`, which need to run + this script before training/testing. Please refer to + `config/openimages/README.md` for more details. + + - 2. `load from pipeline`, which will get image metas during + test time. However, this may reduce the inference speed, + especially when using distribution. + + load_from_file (bool): Whether to get image metas from pkl file. + meta_file (str): File path to get image metas. + filter_labels (bool): Whether filter unannotated classes. + Default: True. + load_image_level_labels (bool): Whether load and consider image + level labels during evaluation. Default: True. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + """ + + def __init__(self, + ann_file, + label_file='', + image_level_ann_file='', + get_supercategory=True, + hierarchy_file=None, + get_metas=True, + load_from_file=True, + meta_file='', + filter_labels=True, + load_image_level_labels=True, + file_client_args=dict(backend='disk'), + **kwargs): + # may get error if use other file_client + self.file_client_args = file_client_args + + self.cat2label = defaultdict(str) + self.index_dict = {} + + # Although it will init file_client in `CustomDataset`, + # it needs to be init here. + file_client = mmcv.FileClient(**file_client_args) + # need get `index_dict` before load annotations + assert label_file.endswith('csv') + if hasattr(file_client, 'get_local_path'): + with file_client.get_local_path(label_file) as local_path: + class_names = self.get_classes_from_csv(local_path) + else: + class_names = self.get_classes_from_csv(label_file) + super(OpenImagesDataset, self).__init__( + ann_file=ann_file, file_client_args=file_client_args, **kwargs) + self.CLASSES = class_names + self.image_level_ann_file = image_level_ann_file + self.load_image_level_labels = load_image_level_labels + if get_supercategory is True: + assert hierarchy_file is not None + if self.__class__.__name__ == 'OpenImagesDataset': + assert hierarchy_file.endswith('json') + elif self.__class__.__name__ == 'OpenImagesChallengeDataset': + assert hierarchy_file.endswith('np') + else: + raise NotImplementedError + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path( + hierarchy_file) as local_path: + self.class_label_tree = self.get_relation_matrix( + local_path) + else: + self.class_label_tree = self.get_relation_matrix( + hierarchy_file) + self.get_supercategory = get_supercategory + self.get_metas = get_metas + self.load_from_file = load_from_file + self.meta_file = meta_file + if self.data_root is not None: + if not osp.isabs(self.meta_file): + self.meta_file = osp.join(self.data_root, self.meta_file) + self.filter_labels = filter_labels + self.rank, self.world_size = get_dist_info() + self.temp_img_metas = [] + self.test_img_metas = [] + self.test_img_shapes = [] + self.load_from_pipeline = False if load_from_file else True + + def get_classes_from_csv(self, label_file): + """Get classes name from file. + + Args: + label_file (str): File path of the label description file that + maps the classes names in MID format to their short + descriptions. + + Returns: + list[str]: Class name of OpenImages. + """ + + index_list = [] + classes_names = [] + with open(label_file, 'r') as f: + reader = csv.reader(f) + for line in reader: + self.cat2label[line[0]] = line[1] + classes_names.append(line[1]) + index_list.append(line[0]) + self.index_dict = {index: i for i, index in enumerate(index_list)} + return classes_names + + def load_annotations(self, ann_file): + """Load annotation from annotation file. + + Special described `self.data_infos` (defaultdict[list[dict]]) + in this function: Annotations where item of the defaultdict + indicates an image, each of which has (n) dicts. Keys of dicts are: + + - `bbox` (list): coordinates of the box, in normalized image + coordinates, of shape 4. + - `label` (int): the label id. + - `is_group_of` (bool): Indicates that the box spans a group + of objects (e.g., a bed of flowers or a crowd of people). + - `is_occluded` (bool): Indicates that the object is occluded + by another object in the image. + - `is_truncated` (bool): Indicates that the object extends + beyond the boundary of the image. + - `is_depiction` (bool): Indicates that the object is a + depiction. + - `is_inside` (bool): Indicates a picture taken from the + inside of the object. + + Args: + ann_file (str): CSV style annotation file path. + + Returns: + list[dict]: Data infos where each item of the list + indicates an image. Keys of annotations are: + + - `img_id` (str): Image name. + - `filename` (str): Image name with suffix. + """ + self.ann_infos = defaultdict(list) + data_infos = [] + cp_filename = None + with open(ann_file, 'r') as f: + reader = csv.reader(f) + for i, line in enumerate(reader): + if i == 0: + continue + img_id = line[0] + filename = f'{img_id}.jpg' + label_id = line[2] + assert label_id in self.index_dict + label = int(self.index_dict[label_id]) + bbox = [ + float(line[4]), # xmin + float(line[6]), # ymin + float(line[5]), # xmax + float(line[7]) # ymax + ] + is_occluded = True if int(line[8]) == 1 else False + is_truncated = True if int(line[9]) == 1 else False + is_group_of = True if int(line[10]) == 1 else False + is_depiction = True if int(line[11]) == 1 else False + is_inside = True if int(line[12]) == 1 else False + + self.ann_infos[img_id].append( + dict( + bbox=bbox, + label=label, + is_occluded=is_occluded, + is_truncated=is_truncated, + is_group_of=is_group_of, + is_depiction=is_depiction, + is_inside=is_inside)) + if filename != cp_filename: + data_infos.append(dict(img_id=img_id, filename=filename)) + cp_filename = filename + return data_infos + + def get_ann_info(self, idx): + """Get OpenImages annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + img_id = self.data_infos[idx]['img_id'] + bboxes = [] + labels = [] + bboxes_ignore = [] + labels_ignore = [] + is_occludeds = [] + is_truncateds = [] + is_group_ofs = [] + is_depictions = [] + is_insides = [] + for obj in self.ann_infos[img_id]: + label = int(obj['label']) + bbox = [ + float(obj['bbox'][0]), + float(obj['bbox'][1]), + float(obj['bbox'][2]), + float(obj['bbox'][3]) + ] + bboxes.append(bbox) + labels.append(label) + + # Other parameters + is_occludeds.append(obj['is_occluded']) + is_truncateds.append(obj['is_truncated']) + is_group_ofs.append(obj['is_group_of']) + is_depictions.append(obj['is_depiction']) + is_insides.append(obj['is_inside']) + if not bboxes: + bboxes = np.zeros((0, 4)) + labels = np.zeros((0, )) + else: + bboxes = np.array(bboxes) + labels = np.array(labels) + if not bboxes_ignore: + bboxes_ignore = np.zeros((0, 4)) + labels_ignore = np.zeros((0, )) + else: + bboxes_ignore = np.array(bboxes_ignore) + labels_ignore = np.array(labels_ignore) + + assert len(is_group_ofs) == len(labels) == len(bboxes) + gt_is_group_ofs = np.array(is_group_ofs, dtype=np.bool) + + # These parameters is not used yet. + is_occludeds = np.array(is_occludeds, dtype=np.bool) + is_truncateds = np.array(is_truncateds, dtype=np.bool) + is_depictions = np.array(is_depictions, dtype=np.bool) + is_insides = np.array(is_insides, dtype=np.bool) + + ann = dict( + bboxes=bboxes.astype(np.float32), + labels=labels.astype(np.int64), + bboxes_ignore=bboxes_ignore.astype(np.float32), + labels_ignore=labels_ignore.astype(np.int64), + gt_is_group_ofs=gt_is_group_ofs, + is_occludeds=is_occludeds, + is_truncateds=is_truncateds, + is_depictions=is_depictions, + is_insides=is_insides) + + return ann + + def get_meta_from_file(self, meta_file=''): + """Get image metas from pkl file.""" + metas = mmcv.load( + meta_file, + file_format='pkl', + file_client_args=self.file_client_args) + assert len(metas) == len(self) + for i in range(len(metas)): + file_name = osp.split(metas[i]['filename'])[-1] + img_info = self.data_infos[i].get('img_info', None) + if img_info is not None: + assert file_name == osp.split(img_info['filename'])[-1] + else: + assert file_name == self.data_infos[i]['filename'] + hw = metas[i]['ori_shape'][:2] + self.test_img_shapes.append(hw) + + def get_meta_from_pipeline(self, results): + """Get image metas from pipeline.""" + self.temp_img_metas.extend(results['img_metas']) + if dist.is_available() and self.world_size > 1: + from mmdet.apis.test import collect_results_cpu + + self.test_img_metas = collect_results_cpu(self.temp_img_metas, + len(self)) + else: + self.test_img_metas = self.temp_img_metas + + def get_img_shape(self, metas): + """Set images original shape into data_infos.""" + assert len(metas) == len(self) + for i in range(len(metas)): + file_name = osp.split(metas[i].data['ori_filename'])[-1] + img_info = self.data_infos[i].get('img_info', None) + if img_info is not None: + assert file_name == osp.split(img_info['filename'])[-1] + else: + assert file_name == self.data_infos[i]['filename'] + hw = metas[i].data['ori_shape'][:2] + self.test_img_shapes.append(hw) + + def prepare_test_img(self, idx): + """Get testing data after pipeline.""" + img_info = self.data_infos[idx] + results = dict(img_info=img_info) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + results = self.pipeline(results) + if self.get_metas and self.load_from_pipeline: + self.get_meta_from_pipeline(results) + return results + + def _filter_imgs(self, min_size=32): + """Filter images too small.""" + if self.filter_empty_gt: + warnings.warn('OpenImageDatasets does not support ' + 'filtering empty gt images.') + valid_inds = [i for i in range(len(self))] + return valid_inds + + def _set_group_flag(self): + """Set flag according to image aspect ratio.""" + self.flag = np.zeros(len(self), dtype=np.uint8) + # TODO: set flag without width and height + + def get_relation_matrix(self, hierarchy_file): + """Get hierarchy for classes. + + Args: + hierarchy_file (sty): File path to the hierarchy for classes. + + Returns: + ndarray: The matrix of the corresponding relationship between + the parent class and the child class, of shape + (class_num, class_num). + """ + + if self.data_root is not None: + if not osp.isabs(hierarchy_file): + hierarchy_file = osp.join(self.data_root, hierarchy_file) + with open(hierarchy_file, 'r') as f: + hierarchy = json.load(f) + class_num = len(self.CLASSES) + class_label_tree = np.eye(class_num, class_num) + class_label_tree = self._convert_hierarchy_tree( + hierarchy, class_label_tree) + return class_label_tree + + def _convert_hierarchy_tree(self, + hierarchy_map, + class_label_tree, + parents=[], + get_all_parents=True): + """Get matrix of the corresponding relationship between the parent + class and the child class. + + Args: + hierarchy_map (dict): Including label name and corresponding + subcategory. Keys of dicts are: + + - `LabeName` (str): Name of the label. + - `Subcategory` (dict | list): Corresponding subcategory(ies). + class_label_tree (ndarray): The matrix of the corresponding + relationship between the parent class and the child class, + of shape (class_num, class_num). + parents (list): Corresponding parent class. + get_all_parents (bool): Whether get all parent names. + Default: True + + Returns: + ndarray: The matrix of the corresponding relationship between + the parent class and the child class, of shape + (class_num, class_num). + """ + + if 'Subcategory' in hierarchy_map: + for node in hierarchy_map['Subcategory']: + if 'LabelName' in node: + children_name = node['LabelName'] + children_index = self.index_dict[children_name] + children = [children_index] + else: + continue + if len(parents) > 0: + for parent_index in parents: + if get_all_parents: + children.append(parent_index) + class_label_tree[children_index, parent_index] = 1 + + class_label_tree = self._convert_hierarchy_tree( + node, class_label_tree, parents=children) + + return class_label_tree + + def add_supercategory_ann(self, annotations): + """Add parent classes of the corresponding class of the ground truth + bboxes.""" + for i, ann in enumerate(annotations): + assert len(ann['labels']) == len(ann['bboxes']) == \ + len(ann['gt_is_group_ofs']) + gt_bboxes = [] + gt_is_group_ofs = [] + gt_labels = [] + for j in range(len(ann['labels'])): + label = ann['labels'][j] + bbox = ann['bboxes'][j] + is_group = ann['gt_is_group_ofs'][j] + label = np.where(self.class_label_tree[label])[0] + if len(label) > 1: + for k in range(len(label)): + gt_bboxes.append(bbox) + gt_is_group_ofs.append(is_group) + gt_labels.append(label[k]) + else: + gt_bboxes.append(bbox) + gt_is_group_ofs.append(is_group) + gt_labels.append(label[0]) + annotations[i] = dict( + bboxes=np.array(gt_bboxes).astype(np.float32), + labels=np.array(gt_labels).astype(np.int64), + bboxes_ignore=ann['bboxes_ignore'], + gt_is_group_ofs=np.array(gt_is_group_ofs).astype(np.bool)) + + return annotations + + def process_results(self, det_results, annotations, + image_level_annotations): + """Process results of the corresponding class of the detection bboxes. + + Note: It will choose to do the following two processing according to + the parameters: + + 1. Whether to add parent classes of the corresponding class of the + detection bboxes. + + 2. Whether to ignore the classes that unannotated on that image. + """ + if image_level_annotations is not None: + assert len(annotations) == \ + len(image_level_annotations) == \ + len(det_results) + else: + assert len(annotations) == len(det_results) + for i in range(len(det_results)): + results = copy.deepcopy(det_results[i]) + valid_classes = np.where( + np.array([[bbox.shape[0]] for bbox in det_results[i]]) != 0)[0] + if image_level_annotations is not None: + labels = annotations[i]['labels'] + image_level_labels = \ + image_level_annotations[i]['image_level_labels'] + allowed_labeles = np.unique( + np.append(labels, image_level_labels)) + else: + allowed_labeles = np.unique(annotations[i]['labels']) + + for valid_class in valid_classes: + det_cls = np.where(self.class_label_tree[valid_class])[0] + for index in det_cls: + if index in allowed_labeles and \ + index != valid_class and \ + self.get_supercategory: + det_results[i][index] = \ + np.concatenate((det_results[i][index], + results[valid_class])) + elif index not in allowed_labeles and self.filter_labels: + # Remove useless parts + det_results[i][index] = np.empty( + (0, 5)).astype(np.float32) + return det_results + + def load_image_label_from_csv(self, image_level_ann_file): + """Load image level annotations from csv style ann_file. + + Args: + image_level_ann_file (str): CSV style image level annotation + file path. + + Returns: + defaultdict[list[dict]]: Annotations where item of the defaultdict + indicates an image, each of which has (n) dicts. + Keys of dicts are: + + - `image_level_label` (int): Label id. + - `confidence` (float): Labels that are human-verified to be + present in an image have confidence = 1 (positive labels). + Labels that are human-verified to be absent from an image + have confidence = 0 (negative labels). Machine-generated + labels have fractional confidences, generally >= 0.5. + The higher the confidence, the smaller the chance for + the label to be a false positive. + """ + + item_lists = defaultdict(list) + with open(image_level_ann_file, 'r') as f: + reader = csv.reader(f) + for i, line in enumerate(reader): + if i == 0: + continue + img_id = line[0] + item_lists[img_id].append( + dict( + image_level_label=int(self.index_dict[line[2]]), + confidence=float(line[3]))) + return item_lists + + def get_image_level_ann(self, image_level_ann_file): + """Get OpenImages annotation by index. + + Args: + image_level_ann_file (str): CSV style image level annotation + file path. + + Returns: + dict: Annotation info of specified index. + """ + + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path(image_level_ann_file) \ + as local_path: + item_lists = self.load_image_label_from_csv(local_path) + else: + item_lists = self.load_image_label_from_csv(image_level_ann_file) + image_level_annotations = [] + for i in range(len(self)): + img_info = self.data_infos[i].get('img_info', None) + if img_info is not None: + # for Open Images Challenges + img_id = osp.split(img_info['filename'])[-1][:-4] + else: + # for Open Images v6 + img_id = self.data_infos[i]['img_id'] + item_list = item_lists.get(img_id, None) + if item_list is not None: + image_level_labels = [] + confidences = [] + for obj in item_list: + image_level_label = int(obj['image_level_label']) + confidence = float(obj['confidence']) + + image_level_labels.append(image_level_label) + confidences.append(confidence) + + if not image_level_labels: + image_level_labels = np.zeros((0, )) + confidences = np.zeros((0, )) + else: + image_level_labels = np.array(image_level_labels) + confidences = np.array(confidences) + else: + image_level_labels = np.zeros((0, )) + confidences = np.zeros((0, )) + ann = dict( + image_level_labels=image_level_labels.astype(np.int64), + confidences=confidences.astype(np.float32)) + image_level_annotations.append(ann) + + return image_level_annotations + + def denormalize_gt_bboxes(self, annotations): + """Convert ground truth bboxes from relative position to absolute + position. + + Only used in evaluating time. + """ + assert len(self.test_img_shapes) == len(annotations) + for i in range(len(annotations)): + h, w = self.test_img_shapes[i] + annotations[i]['bboxes'][:, 0::2] *= w + annotations[i]['bboxes'][:, 1::2] *= h + return annotations + + def get_cat_ids(self, idx): + """Get category ids by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + return self.get_ann_info(idx)['labels'].astype(np.int).tolist() + + def evaluate(self, + results, + metric='mAP', + logger=None, + iou_thr=0.5, + ioa_thr=0.5, + scale_ranges=None, + denorm_gt_bbox=True, + use_group_of=True): + """Evaluate in OpenImages. + + Args: + results (list[list | tuple]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. Option is + 'mAP'. Default: 'mAP'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + iou_thr (float | list[float]): IoU threshold. Default: 0.5. + ioa_thr (float | list[float]): IoA threshold. Default: 0.5. + scale_ranges (list[tuple], optional): Scale ranges for evaluating + mAP. If not specified, all bounding boxes would be included in + evaluation. Default: None + denorm_gt_bbox (bool): Whether to denorm ground truth bboxes from + relative position to absolute position. Default: True + use_group_of (bool): Whether consider group of groud truth bboxes + during evaluating. Default: True. + + Returns: + dict[str, float]: AP metrics. + """ + + if not isinstance(metric, str): + assert len(metric) == 1 + metric = metric[0] + allowed_metrics = ['mAP'] + if metric not in allowed_metrics: + raise KeyError(f'metric {metric} is not supported') + annotations = [self.get_ann_info(i) for i in range(len(self))] + + if self.load_image_level_labels: + image_level_annotations = \ + self.get_image_level_ann(self.image_level_ann_file) + else: + image_level_annotations = None + + # load metas from file + if self.get_metas and self.load_from_file: + assert self.meta_file.endswith( + 'pkl'), 'File name must be pkl suffix' + self.get_meta_from_file(self.meta_file) + # load metas from pipeline + else: + self.get_img_shape(self.test_img_metas) + + if len(self.test_img_shapes) > len(self): + self.test_img_shapes = self.test_img_shapes[:len(self)] + + if denorm_gt_bbox: + annotations = self.denormalize_gt_bboxes(annotations) + + # Reset test_image_metas, temp_image_metas and test_img_shapes + # to avoid potential error + self.temp_img_metas = [] + self.test_img_shapes = [] + self.test_img_metas = [] + if self.get_supercategory: + annotations = self.add_supercategory_ann(annotations) + + results = self.process_results(results, annotations, + image_level_annotations) + if use_group_of: + assert ioa_thr is not None, \ + 'ioa_thr must have value when using group_of in evaluation.' + + eval_results = OrderedDict() + iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr + ioa_thrs = [ioa_thr] if isinstance(ioa_thr, float) or ioa_thr is None \ + else ioa_thr + + # get dataset type + if len(self.CLASSES) == 500: + ds_name = 'oid_challenge' + elif len(self.CLASSES) == 601: + ds_name = 'oid_v6' + else: + ds_name = self.CLASSES + warnings.warn('Cannot infer dataset type from the length of the ' + 'classes. Set `oid_v6` as dataset type.') + + if metric == 'mAP': + assert isinstance(iou_thrs, list) and isinstance(ioa_thrs, list) + assert len(ioa_thrs) == len(iou_thrs) + mean_aps = [] + for iou_thr, ioa_thr in zip(iou_thrs, ioa_thrs): + print_log(f'\n{"-" * 15}iou_thr, ioa_thr: {iou_thr}, {ioa_thr}' + f'{"-" * 15}') + mean_ap, _ = eval_map( + results, + annotations, + scale_ranges=scale_ranges, + iou_thr=iou_thr, + ioa_thr=ioa_thr, + dataset=ds_name, + logger=logger, + use_group_of=use_group_of) + mean_aps.append(mean_ap) + eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) + eval_results['mAP'] = sum(mean_aps) / len(mean_aps) + return eval_results + + +@DATASETS.register_module() +class OpenImagesChallengeDataset(OpenImagesDataset): + """Open Images Challenge dataset for detection.""" + + def __init__(self, ann_file, **kwargs): + assert ann_file.endswith('txt') + super(OpenImagesChallengeDataset, self).__init__( + ann_file=ann_file, **kwargs) + + def get_classes_from_csv(self, label_file): + """Get classes name from file. + + Args: + label_file (str): File path of the label description file that + maps the classes names in MID format to their short + descriptions. + + Returns: + list: Class name of OpenImages. + """ + + label_list = [] + id_list = [] + with open(label_file, 'r') as f: + reader = csv.reader(f) + for line in reader: + label_name = line[0] + label_id = int(line[2]) + + label_list.append(line[1]) + id_list.append(label_id) + self.index_dict[label_name] = label_id - 1 + + indexes = np.argsort(id_list) + classes_names = [] + for index in indexes: + classes_names.append(label_list[index]) + return classes_names + + def load_annotations(self, ann_file): + """Load annotation from annotation file.""" + with open(ann_file) as f: + lines = f.readlines() + i = 0 + ann_infos = [] + while i < len(lines): + bboxes = [] + labels = [] + is_group_ofs = [] + filename = lines[i].rstrip() + i += 2 + img_gt_size = int(lines[i]) + i += 1 + for j in range(img_gt_size): + sp = lines[i + j].split() + bboxes.append( + [float(sp[1]), + float(sp[2]), + float(sp[3]), + float(sp[4])]) + labels.append(int(sp[0]) - 1) # labels begin from 1 + is_group_ofs.append(True if int(sp[5]) == 1 else False) + i += img_gt_size + + gt_bboxes = np.array(bboxes, dtype=np.float32) + gt_labels = np.array(labels, dtype=np.int64) + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + gt_is_group_ofs = np.array(is_group_ofs, dtype=np.bool) + + img_info = dict(filename=filename) + ann_info = dict( + bboxes=gt_bboxes, + labels=gt_labels, + bboxes_ignore=gt_bboxes_ignore, + gt_is_group_ofs=gt_is_group_ofs) + ann_infos.append(dict(img_info=img_info, ann_info=ann_info)) + + return ann_infos + + def prepare_train_img(self, idx): + """Get training data and annotations after pipeline.""" + ann_info = self.data_infos[idx] + results = dict( + img_info=ann_info['img_info'], + ann_info=ann_info['ann_info'], + ) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + return self.pipeline(results) + + def prepare_test_img(self, idx): + """Get testing data after pipeline.""" + ann_info = self.data_infos[idx] + results = dict(img_info=ann_info['img_info']) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + + results = self.pipeline(results) + if self.get_metas and self.load_from_pipeline: + self.get_meta_from_pipeline(results) + return results + + def get_relation_matrix(self, hierarchy_file): + """Get hierarchy for classes. + + Args: + hierarchy_file (str): File path to the hierarchy for classes. + + Returns: + ndarray: The matrix of the corresponding + relationship between the parent class and the child class, + of shape (class_num, class_num). + """ + class_label_tree = np.load(hierarchy_file, allow_pickle=True) + return class_label_tree[1:, 1:] + + def get_ann_info(self, idx): + """Get OpenImages annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + # avoid some potential error + data_infos = copy.deepcopy(self.data_infos[idx]['ann_info']) + return data_infos + + def load_image_label_from_csv(self, image_level_ann_file): + """Load image level annotations from csv style ann_file. + + Args: + image_level_ann_file (str): CSV style image level annotation + file path. + + Returns: + defaultdict[list[dict]]: Annotations where item of the defaultdict + indicates an image, each of which has (n) dicts. + Keys of dicts are: + + - `image_level_label` (int): of shape 1. + - `confidence` (float): of shape 1. + """ + + item_lists = defaultdict(list) + with open(image_level_ann_file, 'r') as f: + reader = csv.reader(f) + i = -1 + for line in reader: + i += 1 + if i == 0: + continue + else: + img_id = line[0] + label_id = line[1] + assert label_id in self.index_dict + image_level_label = int(self.index_dict[label_id]) + confidence = float(line[2]) + item_lists[img_id].append( + dict( + image_level_label=image_level_label, + confidence=confidence)) + return item_lists diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/__init__.py new file mode 100644 index 000000000..dae4b8b18 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/__init__.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, + ContrastTransform, EqualizeTransform, Rotate, Shear, + Translate) +from .compose import Compose +from .formatting import (Collect, DefaultFormatBundle, ImageToTensor, + ToDataContainer, ToTensor, Transpose, to_tensor) +from .instaboost import InstaBoost +from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, + LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, + LoadProposals) +from .test_time_aug import MultiScaleFlipAug +from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, + MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, + RandomAffine, RandomCenterCropPad, RandomCrop, + RandomFlip, RandomShift, Resize, SegRescale, + YOLOXHSVRandomAug) + +__all__ = [ + 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', + 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', + 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadPanopticAnnotations', + 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', + 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', + 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', + 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', + 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', + 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', + 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/auto_augment.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/auto_augment.py new file mode 100644 index 000000000..b0ff67dbd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/auto_augment.py @@ -0,0 +1,894 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import cv2 +import mmcv +import numpy as np + +from ..builder import PIPELINES +from .compose import Compose + +_MAX_LEVEL = 10 + + +def level_to_value(level, max_value): + """Map from level to values based on max_value.""" + return (level / _MAX_LEVEL) * max_value + + +def enhance_level_to_value(level, a=1.8, b=0.1): + """Map from level to values.""" + return (level / _MAX_LEVEL) * a + b + + +def random_negative(value, random_negative_prob): + """Randomly negate value based on random_negative_prob.""" + return -value if np.random.rand() < random_negative_prob else value + + +def bbox2fields(): + """The key correspondence from bboxes to labels, masks and + segmentations.""" + bbox2label = { + 'gt_bboxes': 'gt_labels', + 'gt_bboxes_ignore': 'gt_labels_ignore' + } + bbox2mask = { + 'gt_bboxes': 'gt_masks', + 'gt_bboxes_ignore': 'gt_masks_ignore' + } + bbox2seg = { + 'gt_bboxes': 'gt_semantic_seg', + } + return bbox2label, bbox2mask, bbox2seg + + +@PIPELINES.register_module() +class AutoAugment: + """Auto augmentation. + + This data augmentation is proposed in `Learning Data Augmentation + Strategies for Object Detection `_. + + TODO: Implement 'Shear', 'Sharpness' and 'Rotate' transforms + + Args: + policies (list[list[dict]]): The policies of auto augmentation. Each + policy in ``policies`` is a specific augmentation policy, and is + composed by several augmentations (dict). When AutoAugment is + called, a random policy in ``policies`` will be selected to + augment images. + + Examples: + >>> replace = (104, 116, 124) + >>> policies = [ + >>> [ + >>> dict(type='Sharpness', prob=0.0, level=8), + >>> dict( + >>> type='Shear', + >>> prob=0.4, + >>> level=0, + >>> replace=replace, + >>> axis='x') + >>> ], + >>> [ + >>> dict( + >>> type='Rotate', + >>> prob=0.6, + >>> level=10, + >>> replace=replace), + >>> dict(type='Color', prob=1.0, level=6) + >>> ] + >>> ] + >>> augmentation = AutoAugment(policies) + >>> img = np.ones(100, 100, 3) + >>> gt_bboxes = np.ones(10, 4) + >>> results = dict(img=img, gt_bboxes=gt_bboxes) + >>> results = augmentation(results) + """ + + def __init__(self, policies): + assert isinstance(policies, list) and len(policies) > 0, \ + 'Policies must be a non-empty list.' + for policy in policies: + assert isinstance(policy, list) and len(policy) > 0, \ + 'Each policy in policies must be a non-empty list.' + for augment in policy: + assert isinstance(augment, dict) and 'type' in augment, \ + 'Each specific augmentation must be a dict with key' \ + ' "type".' + + self.policies = copy.deepcopy(policies) + self.transforms = [Compose(policy) for policy in self.policies] + + def __call__(self, results): + transform = np.random.choice(self.transforms) + return transform(results) + + def __repr__(self): + return f'{self.__class__.__name__}(policies={self.policies})' + + +@PIPELINES.register_module() +class Shear: + """Apply Shear Transformation to image (and its corresponding bbox, mask, + segmentation). + + Args: + level (int | float): The level should be in range [0,_MAX_LEVEL]. + img_fill_val (int | float | tuple): The filled values for image border. + If float, the same fill value will be used for all the three + channels of image. If tuple, the should be 3 elements. + seg_ignore_label (int): The fill value used for segmentation map. + Note this value must equals ``ignore_label`` in ``semantic_head`` + of the corresponding config. Default 255. + prob (float): The probability for performing Shear and should be in + range [0, 1]. + direction (str): The direction for shear, either "horizontal" + or "vertical". + max_shear_magnitude (float): The maximum magnitude for Shear + transformation. + random_negative_prob (float): The probability that turns the + offset negative. Should be in range [0,1] + interpolation (str): Same as in :func:`mmcv.imshear`. + """ + + def __init__(self, + level, + img_fill_val=128, + seg_ignore_label=255, + prob=0.5, + direction='horizontal', + max_shear_magnitude=0.3, + random_negative_prob=0.5, + interpolation='bilinear'): + assert isinstance(level, (int, float)), 'The level must be type ' \ + f'int or float, got {type(level)}.' + assert 0 <= level <= _MAX_LEVEL, 'The level should be in range ' \ + f'[0,{_MAX_LEVEL}], got {level}.' + if isinstance(img_fill_val, (float, int)): + img_fill_val = tuple([float(img_fill_val)] * 3) + elif isinstance(img_fill_val, tuple): + assert len(img_fill_val) == 3, 'img_fill_val as tuple must ' \ + f'have 3 elements. got {len(img_fill_val)}.' + img_fill_val = tuple([float(val) for val in img_fill_val]) + else: + raise ValueError( + 'img_fill_val must be float or tuple with 3 elements.') + assert np.all([0 <= val <= 255 for val in img_fill_val]), 'all ' \ + 'elements of img_fill_val should between range [0,255].' \ + f'got {img_fill_val}.' + assert 0 <= prob <= 1.0, 'The probability of shear should be in ' \ + f'range [0,1]. got {prob}.' + assert direction in ('horizontal', 'vertical'), 'direction must ' \ + f'in be either "horizontal" or "vertical". got {direction}.' + assert isinstance(max_shear_magnitude, float), 'max_shear_magnitude ' \ + f'should be type float. got {type(max_shear_magnitude)}.' + assert 0. <= max_shear_magnitude <= 1., 'Defaultly ' \ + 'max_shear_magnitude should be in range [0,1]. ' \ + f'got {max_shear_magnitude}.' + self.level = level + self.magnitude = level_to_value(level, max_shear_magnitude) + self.img_fill_val = img_fill_val + self.seg_ignore_label = seg_ignore_label + self.prob = prob + self.direction = direction + self.max_shear_magnitude = max_shear_magnitude + self.random_negative_prob = random_negative_prob + self.interpolation = interpolation + + def _shear_img(self, + results, + magnitude, + direction='horizontal', + interpolation='bilinear'): + """Shear the image. + + Args: + results (dict): Result dict from loading pipeline. + magnitude (int | float): The magnitude used for shear. + direction (str): The direction for shear, either "horizontal" + or "vertical". + interpolation (str): Same as in :func:`mmcv.imshear`. + """ + for key in results.get('img_fields', ['img']): + img = results[key] + img_sheared = mmcv.imshear( + img, + magnitude, + direction, + border_value=self.img_fill_val, + interpolation=interpolation) + results[key] = img_sheared.astype(img.dtype) + results['img_shape'] = results[key].shape + + def _shear_bboxes(self, results, magnitude): + """Shear the bboxes.""" + h, w, c = results['img_shape'] + if self.direction == 'horizontal': + shear_matrix = np.stack([[1, magnitude], + [0, 1]]).astype(np.float32) # [2, 2] + else: + shear_matrix = np.stack([[1, 0], [magnitude, + 1]]).astype(np.float32) + for key in results.get('bbox_fields', []): + min_x, min_y, max_x, max_y = np.split( + results[key], results[key].shape[-1], axis=-1) + coordinates = np.stack([[min_x, min_y], [max_x, min_y], + [min_x, max_y], + [max_x, max_y]]) # [4, 2, nb_box, 1] + coordinates = coordinates[..., 0].transpose( + (2, 1, 0)).astype(np.float32) # [nb_box, 2, 4] + new_coords = np.matmul(shear_matrix[None, :, :], + coordinates) # [nb_box, 2, 4] + min_x = np.min(new_coords[:, 0, :], axis=-1) + min_y = np.min(new_coords[:, 1, :], axis=-1) + max_x = np.max(new_coords[:, 0, :], axis=-1) + max_y = np.max(new_coords[:, 1, :], axis=-1) + min_x = np.clip(min_x, a_min=0, a_max=w) + min_y = np.clip(min_y, a_min=0, a_max=h) + max_x = np.clip(max_x, a_min=min_x, a_max=w) + max_y = np.clip(max_y, a_min=min_y, a_max=h) + results[key] = np.stack([min_x, min_y, max_x, max_y], + axis=-1).astype(results[key].dtype) + + def _shear_masks(self, + results, + magnitude, + direction='horizontal', + fill_val=0, + interpolation='bilinear'): + """Shear the masks.""" + h, w, c = results['img_shape'] + for key in results.get('mask_fields', []): + masks = results[key] + results[key] = masks.shear((h, w), + magnitude, + direction, + border_value=fill_val, + interpolation=interpolation) + + def _shear_seg(self, + results, + magnitude, + direction='horizontal', + fill_val=255, + interpolation='bilinear'): + """Shear the segmentation maps.""" + for key in results.get('seg_fields', []): + seg = results[key] + results[key] = mmcv.imshear( + seg, + magnitude, + direction, + border_value=fill_val, + interpolation=interpolation).astype(seg.dtype) + + def _filter_invalid(self, results, min_bbox_size=0): + """Filter bboxes and corresponding masks too small after shear + augmentation.""" + bbox2label, bbox2mask, _ = bbox2fields() + for key in results.get('bbox_fields', []): + bbox_w = results[key][:, 2] - results[key][:, 0] + bbox_h = results[key][:, 3] - results[key][:, 1] + valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) + valid_inds = np.nonzero(valid_inds)[0] + results[key] = results[key][valid_inds] + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + # mask fields, e.g. gt_masks and gt_masks_ignore + mask_key = bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][valid_inds] + + def __call__(self, results): + """Call function to shear images, bounding boxes, masks and semantic + segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Sheared results. + """ + if np.random.rand() > self.prob: + return results + magnitude = random_negative(self.magnitude, self.random_negative_prob) + self._shear_img(results, magnitude, self.direction, self.interpolation) + self._shear_bboxes(results, magnitude) + # fill_val set to 0 for background of mask. + self._shear_masks( + results, + magnitude, + self.direction, + fill_val=0, + interpolation=self.interpolation) + self._shear_seg( + results, + magnitude, + self.direction, + fill_val=self.seg_ignore_label, + interpolation=self.interpolation) + self._filter_invalid(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(level={self.level}, ' + repr_str += f'img_fill_val={self.img_fill_val}, ' + repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' + repr_str += f'prob={self.prob}, ' + repr_str += f'direction={self.direction}, ' + repr_str += f'max_shear_magnitude={self.max_shear_magnitude}, ' + repr_str += f'random_negative_prob={self.random_negative_prob}, ' + repr_str += f'interpolation={self.interpolation})' + return repr_str + + +@PIPELINES.register_module() +class Rotate: + """Apply Rotate Transformation to image (and its corresponding bbox, mask, + segmentation). + + Args: + level (int | float): The level should be in range (0,_MAX_LEVEL]. + scale (int | float): Isotropic scale factor. Same in + ``mmcv.imrotate``. + center (int | float | tuple[float]): Center point (w, h) of the + rotation in the source image. If None, the center of the + image will be used. Same in ``mmcv.imrotate``. + img_fill_val (int | float | tuple): The fill value for image border. + If float, the same value will be used for all the three + channels of image. If tuple, the should be 3 elements (e.g. + equals the number of channels for image). + seg_ignore_label (int): The fill value used for segmentation map. + Note this value must equals ``ignore_label`` in ``semantic_head`` + of the corresponding config. Default 255. + prob (float): The probability for perform transformation and + should be in range 0 to 1. + max_rotate_angle (int | float): The maximum angles for rotate + transformation. + random_negative_prob (float): The probability that turns the + offset negative. + """ + + def __init__(self, + level, + scale=1, + center=None, + img_fill_val=128, + seg_ignore_label=255, + prob=0.5, + max_rotate_angle=30, + random_negative_prob=0.5): + assert isinstance(level, (int, float)), \ + f'The level must be type int or float. got {type(level)}.' + assert 0 <= level <= _MAX_LEVEL, \ + f'The level should be in range (0,{_MAX_LEVEL}]. got {level}.' + assert isinstance(scale, (int, float)), \ + f'The scale must be type int or float. got type {type(scale)}.' + if isinstance(center, (int, float)): + center = (center, center) + elif isinstance(center, tuple): + assert len(center) == 2, 'center with type tuple must have '\ + f'2 elements. got {len(center)} elements.' + else: + assert center is None, 'center must be None or type int, '\ + f'float or tuple, got type {type(center)}.' + if isinstance(img_fill_val, (float, int)): + img_fill_val = tuple([float(img_fill_val)] * 3) + elif isinstance(img_fill_val, tuple): + assert len(img_fill_val) == 3, 'img_fill_val as tuple must '\ + f'have 3 elements. got {len(img_fill_val)}.' + img_fill_val = tuple([float(val) for val in img_fill_val]) + else: + raise ValueError( + 'img_fill_val must be float or tuple with 3 elements.') + assert np.all([0 <= val <= 255 for val in img_fill_val]), \ + 'all elements of img_fill_val should between range [0,255]. '\ + f'got {img_fill_val}.' + assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\ + f'got {prob}.' + assert isinstance(max_rotate_angle, (int, float)), 'max_rotate_angle '\ + f'should be type int or float. got type {type(max_rotate_angle)}.' + self.level = level + self.scale = scale + # Rotation angle in degrees. Positive values mean + # clockwise rotation. + self.angle = level_to_value(level, max_rotate_angle) + self.center = center + self.img_fill_val = img_fill_val + self.seg_ignore_label = seg_ignore_label + self.prob = prob + self.max_rotate_angle = max_rotate_angle + self.random_negative_prob = random_negative_prob + + def _rotate_img(self, results, angle, center=None, scale=1.0): + """Rotate the image. + + Args: + results (dict): Result dict from loading pipeline. + angle (float): Rotation angle in degrees, positive values + mean clockwise rotation. Same in ``mmcv.imrotate``. + center (tuple[float], optional): Center point (w, h) of the + rotation. Same in ``mmcv.imrotate``. + scale (int | float): Isotropic scale factor. Same in + ``mmcv.imrotate``. + """ + for key in results.get('img_fields', ['img']): + img = results[key].copy() + img_rotated = mmcv.imrotate( + img, angle, center, scale, border_value=self.img_fill_val) + results[key] = img_rotated.astype(img.dtype) + results['img_shape'] = results[key].shape + + def _rotate_bboxes(self, results, rotate_matrix): + """Rotate the bboxes.""" + h, w, c = results['img_shape'] + for key in results.get('bbox_fields', []): + min_x, min_y, max_x, max_y = np.split( + results[key], results[key].shape[-1], axis=-1) + coordinates = np.stack([[min_x, min_y], [max_x, min_y], + [min_x, max_y], + [max_x, max_y]]) # [4, 2, nb_bbox, 1] + # pad 1 to convert from format [x, y] to homogeneous + # coordinates format [x, y, 1] + coordinates = np.concatenate( + (coordinates, + np.ones((4, 1, coordinates.shape[2], 1), coordinates.dtype)), + axis=1) # [4, 3, nb_bbox, 1] + coordinates = coordinates.transpose( + (2, 0, 1, 3)) # [nb_bbox, 4, 3, 1] + rotated_coords = np.matmul(rotate_matrix, + coordinates) # [nb_bbox, 4, 2, 1] + rotated_coords = rotated_coords[..., 0] # [nb_bbox, 4, 2] + min_x, min_y = np.min( + rotated_coords[:, :, 0], axis=1), np.min( + rotated_coords[:, :, 1], axis=1) + max_x, max_y = np.max( + rotated_coords[:, :, 0], axis=1), np.max( + rotated_coords[:, :, 1], axis=1) + min_x, min_y = np.clip( + min_x, a_min=0, a_max=w), np.clip( + min_y, a_min=0, a_max=h) + max_x, max_y = np.clip( + max_x, a_min=min_x, a_max=w), np.clip( + max_y, a_min=min_y, a_max=h) + results[key] = np.stack([min_x, min_y, max_x, max_y], + axis=-1).astype(results[key].dtype) + + def _rotate_masks(self, + results, + angle, + center=None, + scale=1.0, + fill_val=0): + """Rotate the masks.""" + h, w, c = results['img_shape'] + for key in results.get('mask_fields', []): + masks = results[key] + results[key] = masks.rotate((h, w), angle, center, scale, fill_val) + + def _rotate_seg(self, + results, + angle, + center=None, + scale=1.0, + fill_val=255): + """Rotate the segmentation map.""" + for key in results.get('seg_fields', []): + seg = results[key].copy() + results[key] = mmcv.imrotate( + seg, angle, center, scale, + border_value=fill_val).astype(seg.dtype) + + def _filter_invalid(self, results, min_bbox_size=0): + """Filter bboxes and corresponding masks too small after rotate + augmentation.""" + bbox2label, bbox2mask, _ = bbox2fields() + for key in results.get('bbox_fields', []): + bbox_w = results[key][:, 2] - results[key][:, 0] + bbox_h = results[key][:, 3] - results[key][:, 1] + valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) + valid_inds = np.nonzero(valid_inds)[0] + results[key] = results[key][valid_inds] + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + # mask fields, e.g. gt_masks and gt_masks_ignore + mask_key = bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][valid_inds] + + def __call__(self, results): + """Call function to rotate images, bounding boxes, masks and semantic + segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Rotated results. + """ + if np.random.rand() > self.prob: + return results + h, w = results['img'].shape[:2] + center = self.center + if center is None: + center = ((w - 1) * 0.5, (h - 1) * 0.5) + angle = random_negative(self.angle, self.random_negative_prob) + self._rotate_img(results, angle, center, self.scale) + rotate_matrix = cv2.getRotationMatrix2D(center, -angle, self.scale) + self._rotate_bboxes(results, rotate_matrix) + self._rotate_masks(results, angle, center, self.scale, fill_val=0) + self._rotate_seg( + results, angle, center, self.scale, fill_val=self.seg_ignore_label) + self._filter_invalid(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(level={self.level}, ' + repr_str += f'scale={self.scale}, ' + repr_str += f'center={self.center}, ' + repr_str += f'img_fill_val={self.img_fill_val}, ' + repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' + repr_str += f'prob={self.prob}, ' + repr_str += f'max_rotate_angle={self.max_rotate_angle}, ' + repr_str += f'random_negative_prob={self.random_negative_prob})' + return repr_str + + +@PIPELINES.register_module() +class Translate: + """Translate the images, bboxes, masks and segmentation maps horizontally + or vertically. + + Args: + level (int | float): The level for Translate and should be in + range [0,_MAX_LEVEL]. + prob (float): The probability for performing translation and + should be in range [0, 1]. + img_fill_val (int | float | tuple): The filled value for image + border. If float, the same fill value will be used for all + the three channels of image. If tuple, the should be 3 + elements (e.g. equals the number of channels for image). + seg_ignore_label (int): The fill value used for segmentation map. + Note this value must equals ``ignore_label`` in ``semantic_head`` + of the corresponding config. Default 255. + direction (str): The translate direction, either "horizontal" + or "vertical". + max_translate_offset (int | float): The maximum pixel's offset for + Translate. + random_negative_prob (float): The probability that turns the + offset negative. + min_size (int | float): The minimum pixel for filtering + invalid bboxes after the translation. + """ + + def __init__(self, + level, + prob=0.5, + img_fill_val=128, + seg_ignore_label=255, + direction='horizontal', + max_translate_offset=250., + random_negative_prob=0.5, + min_size=0): + assert isinstance(level, (int, float)), \ + 'The level must be type int or float.' + assert 0 <= level <= _MAX_LEVEL, \ + 'The level used for calculating Translate\'s offset should be ' \ + 'in range [0,_MAX_LEVEL]' + assert 0 <= prob <= 1.0, \ + 'The probability of translation should be in range [0, 1].' + if isinstance(img_fill_val, (float, int)): + img_fill_val = tuple([float(img_fill_val)] * 3) + elif isinstance(img_fill_val, tuple): + assert len(img_fill_val) == 3, \ + 'img_fill_val as tuple must have 3 elements.' + img_fill_val = tuple([float(val) for val in img_fill_val]) + else: + raise ValueError('img_fill_val must be type float or tuple.') + assert np.all([0 <= val <= 255 for val in img_fill_val]), \ + 'all elements of img_fill_val should between range [0,255].' + assert direction in ('horizontal', 'vertical'), \ + 'direction should be "horizontal" or "vertical".' + assert isinstance(max_translate_offset, (int, float)), \ + 'The max_translate_offset must be type int or float.' + # the offset used for translation + self.offset = int(level_to_value(level, max_translate_offset)) + self.level = level + self.prob = prob + self.img_fill_val = img_fill_val + self.seg_ignore_label = seg_ignore_label + self.direction = direction + self.max_translate_offset = max_translate_offset + self.random_negative_prob = random_negative_prob + self.min_size = min_size + + def _translate_img(self, results, offset, direction='horizontal'): + """Translate the image. + + Args: + results (dict): Result dict from loading pipeline. + offset (int | float): The offset for translate. + direction (str): The translate direction, either "horizontal" + or "vertical". + """ + for key in results.get('img_fields', ['img']): + img = results[key].copy() + results[key] = mmcv.imtranslate( + img, offset, direction, self.img_fill_val).astype(img.dtype) + results['img_shape'] = results[key].shape + + def _translate_bboxes(self, results, offset): + """Shift bboxes horizontally or vertically, according to offset.""" + h, w, c = results['img_shape'] + for key in results.get('bbox_fields', []): + min_x, min_y, max_x, max_y = np.split( + results[key], results[key].shape[-1], axis=-1) + if self.direction == 'horizontal': + min_x = np.maximum(0, min_x + offset) + max_x = np.minimum(w, max_x + offset) + elif self.direction == 'vertical': + min_y = np.maximum(0, min_y + offset) + max_y = np.minimum(h, max_y + offset) + + # the boxes translated outside of image will be filtered along with + # the corresponding masks, by invoking ``_filter_invalid``. + results[key] = np.concatenate([min_x, min_y, max_x, max_y], + axis=-1) + + def _translate_masks(self, + results, + offset, + direction='horizontal', + fill_val=0): + """Translate masks horizontally or vertically.""" + h, w, c = results['img_shape'] + for key in results.get('mask_fields', []): + masks = results[key] + results[key] = masks.translate((h, w), offset, direction, fill_val) + + def _translate_seg(self, + results, + offset, + direction='horizontal', + fill_val=255): + """Translate segmentation maps horizontally or vertically.""" + for key in results.get('seg_fields', []): + seg = results[key].copy() + results[key] = mmcv.imtranslate(seg, offset, direction, + fill_val).astype(seg.dtype) + + def _filter_invalid(self, results, min_size=0): + """Filter bboxes and masks too small or translated out of image.""" + bbox2label, bbox2mask, _ = bbox2fields() + for key in results.get('bbox_fields', []): + bbox_w = results[key][:, 2] - results[key][:, 0] + bbox_h = results[key][:, 3] - results[key][:, 1] + valid_inds = (bbox_w > min_size) & (bbox_h > min_size) + valid_inds = np.nonzero(valid_inds)[0] + results[key] = results[key][valid_inds] + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + # mask fields, e.g. gt_masks and gt_masks_ignore + mask_key = bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][valid_inds] + return results + + def __call__(self, results): + """Call function to translate images, bounding boxes, masks and + semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Translated results. + """ + if np.random.rand() > self.prob: + return results + offset = random_negative(self.offset, self.random_negative_prob) + self._translate_img(results, offset, self.direction) + self._translate_bboxes(results, offset) + # fill_val defaultly 0 for BitmapMasks and None for PolygonMasks. + self._translate_masks(results, offset, self.direction) + # fill_val set to ``seg_ignore_label`` for the ignored value + # of segmentation map. + self._translate_seg( + results, offset, self.direction, fill_val=self.seg_ignore_label) + self._filter_invalid(results, min_size=self.min_size) + return results + + +@PIPELINES.register_module() +class ColorTransform: + """Apply Color transformation to image. The bboxes, masks, and + segmentations are not modified. + + Args: + level (int | float): Should be in range [0,_MAX_LEVEL]. + prob (float): The probability for performing Color transformation. + """ + + def __init__(self, level, prob=0.5): + assert isinstance(level, (int, float)), \ + 'The level must be type int or float.' + assert 0 <= level <= _MAX_LEVEL, \ + 'The level should be in range [0,_MAX_LEVEL].' + assert 0 <= prob <= 1.0, \ + 'The probability should be in range [0,1].' + self.level = level + self.prob = prob + self.factor = enhance_level_to_value(level) + + def _adjust_color_img(self, results, factor=1.0): + """Apply Color transformation to image.""" + for key in results.get('img_fields', ['img']): + # NOTE defaultly the image should be BGR format + img = results[key] + results[key] = mmcv.adjust_color(img, factor).astype(img.dtype) + + def __call__(self, results): + """Call function for Color transformation. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Colored results. + """ + if np.random.rand() > self.prob: + return results + self._adjust_color_img(results, self.factor) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(level={self.level}, ' + repr_str += f'prob={self.prob})' + return repr_str + + +@PIPELINES.register_module() +class EqualizeTransform: + """Apply Equalize transformation to image. The bboxes, masks and + segmentations are not modified. + + Args: + prob (float): The probability for performing Equalize transformation. + """ + + def __init__(self, prob=0.5): + assert 0 <= prob <= 1.0, \ + 'The probability should be in range [0,1].' + self.prob = prob + + def _imequalize(self, results): + """Equalizes the histogram of one image.""" + for key in results.get('img_fields', ['img']): + img = results[key] + results[key] = mmcv.imequalize(img).astype(img.dtype) + + def __call__(self, results): + """Call function for Equalize transformation. + + Args: + results (dict): Results dict from loading pipeline. + + Returns: + dict: Results after the transformation. + """ + if np.random.rand() > self.prob: + return results + self._imequalize(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(prob={self.prob})' + + +@PIPELINES.register_module() +class BrightnessTransform: + """Apply Brightness transformation to image. The bboxes, masks and + segmentations are not modified. + + Args: + level (int | float): Should be in range [0,_MAX_LEVEL]. + prob (float): The probability for performing Brightness transformation. + """ + + def __init__(self, level, prob=0.5): + assert isinstance(level, (int, float)), \ + 'The level must be type int or float.' + assert 0 <= level <= _MAX_LEVEL, \ + 'The level should be in range [0,_MAX_LEVEL].' + assert 0 <= prob <= 1.0, \ + 'The probability should be in range [0,1].' + self.level = level + self.prob = prob + self.factor = enhance_level_to_value(level) + + def _adjust_brightness_img(self, results, factor=1.0): + """Adjust the brightness of image.""" + for key in results.get('img_fields', ['img']): + img = results[key] + results[key] = mmcv.adjust_brightness(img, + factor).astype(img.dtype) + + def __call__(self, results): + """Call function for Brightness transformation. + + Args: + results (dict): Results dict from loading pipeline. + + Returns: + dict: Results after the transformation. + """ + if np.random.rand() > self.prob: + return results + self._adjust_brightness_img(results, self.factor) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(level={self.level}, ' + repr_str += f'prob={self.prob})' + return repr_str + + +@PIPELINES.register_module() +class ContrastTransform: + """Apply Contrast transformation to image. The bboxes, masks and + segmentations are not modified. + + Args: + level (int | float): Should be in range [0,_MAX_LEVEL]. + prob (float): The probability for performing Contrast transformation. + """ + + def __init__(self, level, prob=0.5): + assert isinstance(level, (int, float)), \ + 'The level must be type int or float.' + assert 0 <= level <= _MAX_LEVEL, \ + 'The level should be in range [0,_MAX_LEVEL].' + assert 0 <= prob <= 1.0, \ + 'The probability should be in range [0,1].' + self.level = level + self.prob = prob + self.factor = enhance_level_to_value(level) + + def _adjust_contrast_img(self, results, factor=1.0): + """Adjust the image contrast.""" + for key in results.get('img_fields', ['img']): + img = results[key] + results[key] = mmcv.adjust_contrast(img, factor).astype(img.dtype) + + def __call__(self, results): + """Call function for Contrast transformation. + + Args: + results (dict): Results dict from loading pipeline. + + Returns: + dict: Results after the transformation. + """ + if np.random.rand() > self.prob: + return results + self._adjust_contrast_img(results, self.factor) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(level={self.level}, ' + repr_str += f'prob={self.prob})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/compose.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/compose.py new file mode 100644 index 000000000..d75922009 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/compose.py @@ -0,0 +1,55 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import collections + +from mmcv.utils import build_from_cfg + +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class Compose: + """Compose multiple transforms sequentially. + + Args: + transforms (Sequence[dict | callable]): Sequence of transform object or + config dict to be composed. + """ + + def __init__(self, transforms): + assert isinstance(transforms, collections.abc.Sequence) + self.transforms = [] + for transform in transforms: + if isinstance(transform, dict): + transform = build_from_cfg(transform, PIPELINES) + self.transforms.append(transform) + elif callable(transform): + self.transforms.append(transform) + else: + raise TypeError('transform must be callable or a dict') + + def __call__(self, data): + """Call function to apply transforms sequentially. + + Args: + data (dict): A result dict contains the data to transform. + + Returns: + dict: Transformed data. + """ + + for t in self.transforms: + data = t(data) + if data is None: + return None + return data + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + str_ = t.__repr__() + if 'Compose(' in str_: + str_ = str_.replace('\n', '\n ') + format_string += '\n' + format_string += f' {str_}' + format_string += '\n)' + return format_string diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formating.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formating.py new file mode 100644 index 000000000..3b3e45abb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formating.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# flake8: noqa +import warnings + +from .formatting import * + +warnings.warn('DeprecationWarning: mmdet.datasets.pipelines.formating will be ' + 'deprecated, please replace it with ' + 'mmdet.datasets.pipelines.formatting.') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formatting.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formatting.py new file mode 100644 index 000000000..45ca69cfc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/formatting.py @@ -0,0 +1,392 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections.abc import Sequence + +import mmcv +import numpy as np +import torch +from mmcv.parallel import DataContainer as DC + +from ..builder import PIPELINES + + +def to_tensor(data): + """Convert objects of various python types to :obj:`torch.Tensor`. + + Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, + :class:`Sequence`, :class:`int` and :class:`float`. + + Args: + data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to + be converted. + """ + + if isinstance(data, torch.Tensor): + return data + elif isinstance(data, np.ndarray): + return torch.from_numpy(data) + elif isinstance(data, Sequence) and not mmcv.is_str(data): + return torch.tensor(data) + elif isinstance(data, int): + return torch.LongTensor([data]) + elif isinstance(data, float): + return torch.FloatTensor([data]) + else: + raise TypeError(f'type {type(data)} cannot be converted to tensor.') + + +@PIPELINES.register_module() +class ToTensor: + """Convert some results to :obj:`torch.Tensor` by given keys. + + Args: + keys (Sequence[str]): Keys that need to be converted to Tensor. + """ + + def __init__(self, keys): + self.keys = keys + + def __call__(self, results): + """Call function to convert data in results to :obj:`torch.Tensor`. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data converted + to :obj:`torch.Tensor`. + """ + for key in self.keys: + results[key] = to_tensor(results[key]) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(keys={self.keys})' + + +@PIPELINES.register_module() +class ImageToTensor: + """Convert image to :obj:`torch.Tensor` by given keys. + + The dimension order of input image is (H, W, C). The pipeline will convert + it to (C, H, W). If only 2 dimension (H, W) is given, the output would be + (1, H, W). + + Args: + keys (Sequence[str]): Key of images to be converted to Tensor. + """ + + def __init__(self, keys): + self.keys = keys + + def __call__(self, results): + """Call function to convert image in results to :obj:`torch.Tensor` and + transpose the channel order. + + Args: + results (dict): Result dict contains the image data to convert. + + Returns: + dict: The result dict contains the image converted + to :obj:`torch.Tensor` and transposed to (C, H, W) order. + """ + for key in self.keys: + img = results[key] + if len(img.shape) < 3: + img = np.expand_dims(img, -1) + results[key] = (to_tensor(img.transpose(2, 0, 1))).contiguous() + return results + + def __repr__(self): + return self.__class__.__name__ + f'(keys={self.keys})' + + +@PIPELINES.register_module() +class Transpose: + """Transpose some results by given keys. + + Args: + keys (Sequence[str]): Keys of results to be transposed. + order (Sequence[int]): Order of transpose. + """ + + def __init__(self, keys, order): + self.keys = keys + self.order = order + + def __call__(self, results): + """Call function to transpose the channel order of data in results. + + Args: + results (dict): Result dict contains the data to transpose. + + Returns: + dict: The result dict contains the data transposed to \ + ``self.order``. + """ + for key in self.keys: + results[key] = results[key].transpose(self.order) + return results + + def __repr__(self): + return self.__class__.__name__ + \ + f'(keys={self.keys}, order={self.order})' + + +@PIPELINES.register_module() +class ToDataContainer: + """Convert results to :obj:`mmcv.DataContainer` by given fields. + + Args: + fields (Sequence[dict]): Each field is a dict like + ``dict(key='xxx', **kwargs)``. The ``key`` in result will + be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. + Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'), + dict(key='gt_labels'))``. + """ + + def __init__(self, + fields=(dict(key='img', stack=True), dict(key='gt_bboxes'), + dict(key='gt_labels'))): + self.fields = fields + + def __call__(self, results): + """Call function to convert data in results to + :obj:`mmcv.DataContainer`. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data converted to \ + :obj:`mmcv.DataContainer`. + """ + + for field in self.fields: + field = field.copy() + key = field.pop('key') + results[key] = DC(results[key], **field) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(fields={self.fields})' + + +@PIPELINES.register_module() +class DefaultFormatBundle: + """Default formatting bundle. + + It simplifies the pipeline of formatting common fields, including "img", + "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". + These fields are formatted as follows. + + - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) + - proposals: (1)to tensor, (2)to DataContainer + - gt_bboxes: (1)to tensor, (2)to DataContainer + - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer + - gt_labels: (1)to tensor, (2)to DataContainer + - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) + - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ + (3)to DataContainer (stack=True) + + Args: + img_to_float (bool): Whether to force the image to be converted to + float type. Default: True. + pad_val (dict): A dict for padding value in batch collating, + the default value is `dict(img=0, masks=0, seg=255)`. + Without this argument, the padding value of "gt_semantic_seg" + will be set to 0 by default, which should be 255. + """ + + def __init__(self, + img_to_float=True, + pad_val=dict(img=0, masks=0, seg=255)): + self.img_to_float = img_to_float + self.pad_val = pad_val + + def __call__(self, results): + """Call function to transform and format common fields in results. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data that is formatted with \ + default bundle. + """ + + if 'img' in results: + img = results['img'] + if self.img_to_float is True and img.dtype == np.uint8: + # Normally, image is of uint8 type without normalization. + # At this time, it needs to be forced to be converted to + # flot32, otherwise the model training and inference + # will be wrong. Only used for YOLOX currently . + img = img.astype(np.float32) + # add default meta keys + results = self._add_default_meta_keys(results) + if len(img.shape) < 3: + img = np.expand_dims(img, -1) + img = np.ascontiguousarray(img.transpose(2, 0, 1)) + results['img'] = DC( + to_tensor(img), padding_value=self.pad_val['img'], stack=True) + for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']: + if key not in results: + continue + results[key] = DC(to_tensor(results[key])) + if 'gt_masks' in results: + results['gt_masks'] = DC( + results['gt_masks'], + padding_value=self.pad_val['masks'], + cpu_only=True) + if 'gt_semantic_seg' in results: + results['gt_semantic_seg'] = DC( + to_tensor(results['gt_semantic_seg'][None, ...]), + padding_value=self.pad_val['seg'], + stack=True) + return results + + def _add_default_meta_keys(self, results): + """Add default meta keys. + + We set default meta keys including `pad_shape`, `scale_factor` and + `img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and + `Pad` are implemented during the whole pipeline. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + results (dict): Updated result dict contains the data to convert. + """ + img = results['img'] + results.setdefault('pad_shape', img.shape) + results.setdefault('scale_factor', 1.0) + num_channels = 1 if len(img.shape) < 3 else img.shape[2] + results.setdefault( + 'img_norm_cfg', + dict( + mean=np.zeros(num_channels, dtype=np.float32), + std=np.ones(num_channels, dtype=np.float32), + to_rgb=False)) + return results + + def __repr__(self): + return self.__class__.__name__ + \ + f'(img_to_float={self.img_to_float})' + + +@PIPELINES.register_module() +class Collect: + """Collect data from the loader relevant to the specific task. + + This is usually the last stage of the data loader pipeline. Typically keys + is set to some subset of "img", "proposals", "gt_bboxes", + "gt_bboxes_ignore", "gt_labels", and/or "gt_masks". + + The "img_meta" item is always populated. The contents of the "img_meta" + dictionary depends on "meta_keys". By default this includes: + + - "img_shape": shape of the image input to the network as a tuple \ + (h, w, c). Note that images may be zero padded on the \ + bottom/right if the batch tensor is larger than this shape. + + - "scale_factor": a float indicating the preprocessing scale + + - "flip": a boolean indicating if image flip transform was used + + - "filename": path to the image file + + - "ori_shape": original shape of the image as a tuple (h, w, c) + + - "pad_shape": image shape after padding + + - "img_norm_cfg": a dict of normalization information: + + - mean - per channel mean subtraction + - std - per channel std divisor + - to_rgb - bool indicating if bgr was converted to rgb + + Args: + keys (Sequence[str]): Keys of results to be collected in ``data``. + meta_keys (Sequence[str], optional): Meta keys to be converted to + ``mmcv.DataContainer`` and collected in ``data[img_metas]``. + Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', + 'pad_shape', 'scale_factor', 'flip', 'flip_direction', + 'img_norm_cfg')`` + """ + + def __init__(self, + keys, + meta_keys=('filename', 'ori_filename', 'ori_shape', + 'img_shape', 'pad_shape', 'scale_factor', 'flip', + 'flip_direction', 'img_norm_cfg')): + self.keys = keys + self.meta_keys = meta_keys + + def __call__(self, results): + """Call function to collect keys in results. The keys in ``meta_keys`` + will be converted to :obj:mmcv.DataContainer. + + Args: + results (dict): Result dict contains the data to collect. + + Returns: + dict: The result dict contains the following keys + + - keys in``self.keys`` + - ``img_metas`` + """ + + data = {} + img_meta = {} + for key in self.meta_keys: + img_meta[key] = results[key] + data['img_metas'] = DC(img_meta, cpu_only=True) + for key in self.keys: + data[key] = results[key] + return data + + def __repr__(self): + return self.__class__.__name__ + \ + f'(keys={self.keys}, meta_keys={self.meta_keys})' + + +@PIPELINES.register_module() +class WrapFieldsToLists: + """Wrap fields of the data dictionary into lists for evaluation. + + This class can be used as a last step of a test or validation + pipeline for single image evaluation or inference. + + Example: + >>> test_pipeline = [ + >>> dict(type='LoadImageFromFile'), + >>> dict(type='Normalize', + mean=[123.675, 116.28, 103.53], + std=[58.395, 57.12, 57.375], + to_rgb=True), + >>> dict(type='Pad', size_divisor=32), + >>> dict(type='ImageToTensor', keys=['img']), + >>> dict(type='Collect', keys=['img']), + >>> dict(type='WrapFieldsToLists') + >>> ] + """ + + def __call__(self, results): + """Call function to wrap fields into lists. + + Args: + results (dict): Result dict contains the data to wrap. + + Returns: + dict: The result dict where value of ``self.keys`` are wrapped \ + into list. + """ + + # Wrap dict fields into lists + for key, val in results.items(): + results[key] = [val] + return results + + def __repr__(self): + return f'{self.__class__.__name__}()' diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/instaboost.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/instaboost.py new file mode 100644 index 000000000..ca10c4c75 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/instaboost.py @@ -0,0 +1,118 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np + +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class InstaBoost: + r"""Data augmentation method in `InstaBoost: Boosting Instance + Segmentation Via Probability Map Guided Copy-Pasting + `_. + + Refer to https://github.com/GothicAi/Instaboost for implementation details. + + Args: + action_candidate (tuple): Action candidates. "normal", "horizontal", \ + "vertical", "skip" are supported. Default: ('normal', \ + 'horizontal', 'skip'). + action_prob (tuple): Corresponding action probabilities. Should be \ + the same length as action_candidate. Default: (1, 0, 0). + scale (tuple): (min scale, max scale). Default: (0.8, 1.2). + dx (int): The maximum x-axis shift will be (instance width) / dx. + Default 15. + dy (int): The maximum y-axis shift will be (instance height) / dy. + Default 15. + theta (tuple): (min rotation degree, max rotation degree). \ + Default: (-1, 1). + color_prob (float): Probability of images for color augmentation. + Default 0.5. + heatmap_flag (bool): Whether to use heatmap guided. Default False. + aug_ratio (float): Probability of applying this transformation. \ + Default 0.5. + """ + + def __init__(self, + action_candidate=('normal', 'horizontal', 'skip'), + action_prob=(1, 0, 0), + scale=(0.8, 1.2), + dx=15, + dy=15, + theta=(-1, 1), + color_prob=0.5, + hflag=False, + aug_ratio=0.5): + try: + import instaboostfast as instaboost + except ImportError: + raise ImportError( + 'Please run "pip install instaboostfast" ' + 'to install instaboostfast first for instaboost augmentation.') + self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob, + scale, dx, dy, theta, + color_prob, hflag) + self.aug_ratio = aug_ratio + + def _load_anns(self, results): + labels = results['ann_info']['labels'] + masks = results['ann_info']['masks'] + bboxes = results['ann_info']['bboxes'] + n = len(labels) + + anns = [] + for i in range(n): + label = labels[i] + bbox = bboxes[i] + mask = masks[i] + x1, y1, x2, y2 = bbox + # assert (x2 - x1) >= 1 and (y2 - y1) >= 1 + bbox = [x1, y1, x2 - x1, y2 - y1] + anns.append({ + 'category_id': label, + 'segmentation': mask, + 'bbox': bbox + }) + + return anns + + def _parse_anns(self, results, anns, img): + gt_bboxes = [] + gt_labels = [] + gt_masks_ann = [] + for ann in anns: + x1, y1, w, h = ann['bbox'] + # TODO: more essential bug need to be fixed in instaboost + if w <= 0 or h <= 0: + continue + bbox = [x1, y1, x1 + w, y1 + h] + gt_bboxes.append(bbox) + gt_labels.append(ann['category_id']) + gt_masks_ann.append(ann['segmentation']) + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + results['ann_info']['labels'] = gt_labels + results['ann_info']['bboxes'] = gt_bboxes + results['ann_info']['masks'] = gt_masks_ann + results['img'] = img + return results + + def __call__(self, results): + img = results['img'] + ori_type = img.dtype + anns = self._load_anns(results) + if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]): + try: + import instaboostfast as instaboost + except ImportError: + raise ImportError('Please run "pip install instaboostfast" ' + 'to install instaboostfast first.') + anns, img = instaboost.get_new_data( + anns, img.astype(np.uint8), self.cfg, background=None) + + results = self._parse_anns(results, anns, img.astype(ori_type)) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(cfg={self.cfg}, aug_ratio={self.aug_ratio})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/loading.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/loading.py new file mode 100644 index 000000000..41ccff5d3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/loading.py @@ -0,0 +1,609 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +import mmcv +import numpy as np +import pycocotools.mask as maskUtils + +from mmdet.core import BitmapMasks, PolygonMasks +from ..builder import PIPELINES + +try: + from panopticapi.utils import rgb2id +except ImportError: + rgb2id = None + + +@PIPELINES.register_module() +class LoadImageFromFile: + """Load an image from file. + + Required keys are "img_prefix" and "img_info" (a dict that must contain the + key "filename"). Added or updated keys are "filename", "img", "img_shape", + "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), + "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). + + Args: + to_float32 (bool): Whether to convert the loaded image to a float32 + numpy array. If set to False, the loaded image is an uint8 array. + Defaults to False. + color_type (str): The flag argument for :func:`mmcv.imfrombytes`. + Defaults to 'color'. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + """ + + def __init__(self, + to_float32=False, + color_type='color', + channel_order='bgr', + file_client_args=dict(backend='disk')): + self.to_float32 = to_float32 + self.color_type = color_type + self.channel_order = channel_order + self.file_client_args = file_client_args.copy() + self.file_client = None + + def __call__(self, results): + """Call functions to load image and get image meta information. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded image and meta information. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + if results['img_prefix'] is not None: + filename = osp.join(results['img_prefix'], + results['img_info']['filename']) + else: + filename = results['img_info']['filename'] + + img_bytes = self.file_client.get(filename) + img = mmcv.imfrombytes( + img_bytes, flag=self.color_type, channel_order=self.channel_order) + if self.to_float32: + img = img.astype(np.float32) + + results['filename'] = filename + results['ori_filename'] = results['img_info']['filename'] + results['img'] = img + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + results['img_fields'] = ['img'] + return results + + def __repr__(self): + repr_str = (f'{self.__class__.__name__}(' + f'to_float32={self.to_float32}, ' + f"color_type='{self.color_type}', " + f"channel_order='{self.channel_order}', " + f'file_client_args={self.file_client_args})') + return repr_str + + +@PIPELINES.register_module() +class LoadImageFromWebcam(LoadImageFromFile): + """Load an image from webcam. + + Similar with :obj:`LoadImageFromFile`, but the image read from webcam is in + ``results['img']``. + """ + + def __call__(self, results): + """Call functions to add image meta information. + + Args: + results (dict): Result dict with Webcam read image in + ``results['img']``. + + Returns: + dict: The dict contains loaded image and meta information. + """ + + img = results['img'] + if self.to_float32: + img = img.astype(np.float32) + + results['filename'] = None + results['ori_filename'] = None + results['img'] = img + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + results['img_fields'] = ['img'] + return results + + +@PIPELINES.register_module() +class LoadMultiChannelImageFromFiles: + """Load multi-channel images from a list of separate channel files. + + Required keys are "img_prefix" and "img_info" (a dict that must contain the + key "filename", which is expected to be a list of filenames). + Added or updated keys are "filename", "img", "img_shape", + "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), + "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). + + Args: + to_float32 (bool): Whether to convert the loaded image to a float32 + numpy array. If set to False, the loaded image is an uint8 array. + Defaults to False. + color_type (str): The flag argument for :func:`mmcv.imfrombytes`. + Defaults to 'color'. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + """ + + def __init__(self, + to_float32=False, + color_type='unchanged', + file_client_args=dict(backend='disk')): + self.to_float32 = to_float32 + self.color_type = color_type + self.file_client_args = file_client_args.copy() + self.file_client = None + + def __call__(self, results): + """Call functions to load multiple images and get images meta + information. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded images and meta information. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + if results['img_prefix'] is not None: + filename = [ + osp.join(results['img_prefix'], fname) + for fname in results['img_info']['filename'] + ] + else: + filename = results['img_info']['filename'] + + img = [] + for name in filename: + img_bytes = self.file_client.get(name) + img.append(mmcv.imfrombytes(img_bytes, flag=self.color_type)) + img = np.stack(img, axis=-1) + if self.to_float32: + img = img.astype(np.float32) + + results['filename'] = filename + results['ori_filename'] = results['img_info']['filename'] + results['img'] = img + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + # Set initial values for default meta_keys + results['pad_shape'] = img.shape + results['scale_factor'] = 1.0 + num_channels = 1 if len(img.shape) < 3 else img.shape[2] + results['img_norm_cfg'] = dict( + mean=np.zeros(num_channels, dtype=np.float32), + std=np.ones(num_channels, dtype=np.float32), + to_rgb=False) + return results + + def __repr__(self): + repr_str = (f'{self.__class__.__name__}(' + f'to_float32={self.to_float32}, ' + f"color_type='{self.color_type}', " + f'file_client_args={self.file_client_args})') + return repr_str + + +@PIPELINES.register_module() +class LoadAnnotations: + """Load multiple types of annotations. + + Args: + with_bbox (bool): Whether to parse and load the bbox annotation. + Default: True. + with_label (bool): Whether to parse and load the label annotation. + Default: True. + with_mask (bool): Whether to parse and load the mask annotation. + Default: False. + with_seg (bool): Whether to parse and load the semantic segmentation + annotation. Default: False. + poly2mask (bool): Whether to convert the instance masks from polygons + to bitmaps. Default: True. + denorm_bbox (bool): Whether to convert bbox from relative value to + absolute value. Only used in OpenImage Dataset. + Default: False. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + """ + + def __init__(self, + with_bbox=True, + with_label=True, + with_mask=False, + with_seg=False, + poly2mask=True, + denorm_bbox=False, + file_client_args=dict(backend='disk')): + self.with_bbox = with_bbox + self.with_label = with_label + self.with_mask = with_mask + self.with_seg = with_seg + self.poly2mask = poly2mask + self.denorm_bbox = denorm_bbox + self.file_client_args = file_client_args.copy() + self.file_client = None + + def _load_bboxes(self, results): + """Private function to load bounding box annotations. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded bounding box annotations. + """ + + ann_info = results['ann_info'] + results['gt_bboxes'] = ann_info['bboxes'].copy() + + if self.denorm_bbox: + bbox_num = results['gt_bboxes'].shape[0] + if bbox_num != 0: + h, w = results['img_shape'][:2] + results['gt_bboxes'][:, 0::2] *= w + results['gt_bboxes'][:, 1::2] *= h + + gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) + if gt_bboxes_ignore is not None: + results['gt_bboxes_ignore'] = gt_bboxes_ignore.copy() + results['bbox_fields'].append('gt_bboxes_ignore') + results['bbox_fields'].append('gt_bboxes') + + gt_is_group_ofs = ann_info.get('gt_is_group_ofs', None) + if gt_is_group_ofs is not None: + results['gt_is_group_ofs'] = gt_is_group_ofs.copy() + + return results + + def _load_labels(self, results): + """Private function to load label annotations. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded label annotations. + """ + + results['gt_labels'] = results['ann_info']['labels'].copy() + return results + + def _poly2mask(self, mask_ann, img_h, img_w): + """Private function to convert masks represented with polygon to + bitmaps. + + Args: + mask_ann (list | dict): Polygon mask annotation input. + img_h (int): The height of output mask. + img_w (int): The width of output mask. + + Returns: + numpy.ndarray: The decode bitmap mask of shape (img_h, img_w). + """ + + if isinstance(mask_ann, list): + # polygon -- a single object might consist of multiple parts + # we merge all parts into one mask rle code + rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) + rle = maskUtils.merge(rles) + elif isinstance(mask_ann['counts'], list): + # uncompressed RLE + rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) + else: + # rle + rle = mask_ann + mask = maskUtils.decode(rle) + return mask + + def process_polygons(self, polygons): + """Convert polygons to list of ndarray and filter invalid polygons. + + Args: + polygons (list[list]): Polygons of one instance. + + Returns: + list[numpy.ndarray]: Processed polygons. + """ + + polygons = [np.array(p) for p in polygons] + valid_polygons = [] + for polygon in polygons: + if len(polygon) % 2 == 0 and len(polygon) >= 6: + valid_polygons.append(polygon) + return valid_polygons + + def _load_masks(self, results): + """Private function to load mask annotations. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded mask annotations. + If ``self.poly2mask`` is set ``True``, `gt_mask` will contain + :obj:`PolygonMasks`. Otherwise, :obj:`BitmapMasks` is used. + """ + + h, w = results['img_info']['height'], results['img_info']['width'] + gt_masks = results['ann_info']['masks'] + if self.poly2mask: + gt_masks = BitmapMasks( + [self._poly2mask(mask, h, w) for mask in gt_masks], h, w) + else: + gt_masks = PolygonMasks( + [self.process_polygons(polygons) for polygons in gt_masks], h, + w) + results['gt_masks'] = gt_masks + results['mask_fields'].append('gt_masks') + return results + + def _load_semantic_seg(self, results): + """Private function to load semantic segmentation annotations. + + Args: + results (dict): Result dict from :obj:`dataset`. + + Returns: + dict: The dict contains loaded semantic segmentation annotations. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + filename = osp.join(results['seg_prefix'], + results['ann_info']['seg_map']) + img_bytes = self.file_client.get(filename) + results['gt_semantic_seg'] = mmcv.imfrombytes( + img_bytes, flag='unchanged').squeeze() + results['seg_fields'].append('gt_semantic_seg') + return results + + def __call__(self, results): + """Call function to load multiple types annotations. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded bounding box, label, mask and + semantic segmentation annotations. + """ + + if self.with_bbox: + results = self._load_bboxes(results) + if results is None: + return None + if self.with_label: + results = self._load_labels(results) + if self.with_mask: + results = self._load_masks(results) + if self.with_seg: + results = self._load_semantic_seg(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(with_bbox={self.with_bbox}, ' + repr_str += f'with_label={self.with_label}, ' + repr_str += f'with_mask={self.with_mask}, ' + repr_str += f'with_seg={self.with_seg}, ' + repr_str += f'poly2mask={self.poly2mask}, ' + repr_str += f'poly2mask={self.file_client_args})' + return repr_str + + +@PIPELINES.register_module() +class LoadPanopticAnnotations(LoadAnnotations): + """Load multiple types of panoptic annotations. + + Args: + with_bbox (bool): Whether to parse and load the bbox annotation. + Default: True. + with_label (bool): Whether to parse and load the label annotation. + Default: True. + with_mask (bool): Whether to parse and load the mask annotation. + Default: True. + with_seg (bool): Whether to parse and load the semantic segmentation + annotation. Default: True. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + """ + + def __init__(self, + with_bbox=True, + with_label=True, + with_mask=True, + with_seg=True, + file_client_args=dict(backend='disk')): + if rgb2id is None: + raise RuntimeError( + 'panopticapi is not installed, please install it by: ' + 'pip install git+https://github.com/cocodataset/' + 'panopticapi.git.') + + super(LoadPanopticAnnotations, self).__init__( + with_bbox=with_bbox, + with_label=with_label, + with_mask=with_mask, + with_seg=with_seg, + poly2mask=True, + denorm_bbox=False, + file_client_args=file_client_args) + + def _load_masks_and_semantic_segs(self, results): + """Private function to load mask and semantic segmentation annotations. + + In gt_semantic_seg, the foreground label is from `0` to + `num_things - 1`, the background label is from `num_things` to + `num_things + num_stuff - 1`, 255 means the ignored label (`VOID`). + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded mask and semantic segmentation + annotations. `BitmapMasks` is used for mask annotations. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + filename = osp.join(results['seg_prefix'], + results['ann_info']['seg_map']) + img_bytes = self.file_client.get(filename) + pan_png = mmcv.imfrombytes( + img_bytes, flag='color', channel_order='rgb').squeeze() + pan_png = rgb2id(pan_png) + + gt_masks = [] + gt_seg = np.zeros_like(pan_png) + 255 # 255 as ignore + + for mask_info in results['ann_info']['masks']: + mask = (pan_png == mask_info['id']) + gt_seg = np.where(mask, mask_info['category'], gt_seg) + + # The legal thing masks + if mask_info.get('is_thing'): + gt_masks.append(mask.astype(np.uint8)) + + if self.with_mask: + h, w = results['img_info']['height'], results['img_info']['width'] + gt_masks = BitmapMasks(gt_masks, h, w) + results['gt_masks'] = gt_masks + results['mask_fields'].append('gt_masks') + + if self.with_seg: + results['gt_semantic_seg'] = gt_seg + results['seg_fields'].append('gt_semantic_seg') + return results + + def __call__(self, results): + """Call function to load multiple types panoptic annotations. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded bounding box, label, mask and + semantic segmentation annotations. + """ + + if self.with_bbox: + results = self._load_bboxes(results) + if results is None: + return None + if self.with_label: + results = self._load_labels(results) + if self.with_mask or self.with_seg: + # The tasks completed by '_load_masks' and '_load_semantic_segs' + # in LoadAnnotations are merged to one function. + results = self._load_masks_and_semantic_segs(results) + + return results + + +@PIPELINES.register_module() +class LoadProposals: + """Load proposal pipeline. + + Required key is "proposals". Updated keys are "proposals", "bbox_fields". + + Args: + num_max_proposals (int, optional): Maximum number of proposals to load. + If not specified, all proposals will be loaded. + """ + + def __init__(self, num_max_proposals=None): + self.num_max_proposals = num_max_proposals + + def __call__(self, results): + """Call function to load proposals from file. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded proposal annotations. + """ + + proposals = results['proposals'] + if proposals.shape[1] not in (4, 5): + raise AssertionError( + 'proposals should have shapes (n, 4) or (n, 5), ' + f'but found {proposals.shape}') + proposals = proposals[:, :4] + + if self.num_max_proposals is not None: + proposals = proposals[:self.num_max_proposals] + + if len(proposals) == 0: + proposals = np.array([[0, 0, 0, 0]], dtype=np.float32) + results['proposals'] = proposals + results['bbox_fields'].append('proposals') + return results + + def __repr__(self): + return self.__class__.__name__ + \ + f'(num_max_proposals={self.num_max_proposals})' + + +@PIPELINES.register_module() +class FilterAnnotations: + """Filter invalid annotations. + + Args: + min_gt_bbox_wh (tuple[int]): Minimum width and height of ground truth + boxes. + keep_empty (bool): Whether to return None when it + becomes an empty bbox after filtering. Default: True + """ + + def __init__(self, min_gt_bbox_wh, keep_empty=True): + # TODO: add more filter options + self.min_gt_bbox_wh = min_gt_bbox_wh + self.keep_empty = keep_empty + + def __call__(self, results): + assert 'gt_bboxes' in results + gt_bboxes = results['gt_bboxes'] + if gt_bboxes.shape[0] == 0: + return results + w = gt_bboxes[:, 2] - gt_bboxes[:, 0] + h = gt_bboxes[:, 3] - gt_bboxes[:, 1] + keep = (w > self.min_gt_bbox_wh[0]) & (h > self.min_gt_bbox_wh[1]) + if not keep.any(): + if self.keep_empty: + return None + else: + return results + else: + keys = ('gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg') + for key in keys: + if key in results: + results[key] = results[key][keep] + return results + + def __repr__(self): + return self.__class__.__name__ + \ + f'(min_gt_bbox_wh={self.min_gt_bbox_wh},' \ + f'always_keep={self.always_keep})' diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/test_time_aug.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/test_time_aug.py new file mode 100644 index 000000000..5f1ab7b7c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/test_time_aug.py @@ -0,0 +1,121 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv + +from ..builder import PIPELINES +from .compose import Compose + + +@PIPELINES.register_module() +class MultiScaleFlipAug: + """Test-time augmentation with multiple scales and flipping. + + An example configuration is as followed: + + .. code-block:: + + img_scale=[(1333, 400), (1333, 800)], + flip=True, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ] + + After MultiScaleFLipAug with above configuration, the results are wrapped + into lists of the same length as followed: + + .. code-block:: + + dict( + img=[...], + img_shape=[...], + scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] + flip=[False, True, False, True] + ... + ) + + Args: + transforms (list[dict]): Transforms to apply in each augmentation. + img_scale (tuple | list[tuple] | None): Images scales for resizing. + scale_factor (float | list[float] | None): Scale factors for resizing. + flip (bool): Whether apply flip augmentation. Default: False. + flip_direction (str | list[str]): Flip augmentation directions, + options are "horizontal", "vertical" and "diagonal". If + flip_direction is a list, multiple flip augmentations will be + applied. It has no effect when flip == False. Default: + "horizontal". + """ + + def __init__(self, + transforms, + img_scale=None, + scale_factor=None, + flip=False, + flip_direction='horizontal'): + self.transforms = Compose(transforms) + assert (img_scale is None) ^ (scale_factor is None), ( + 'Must have but only one variable can be set') + if img_scale is not None: + self.img_scale = img_scale if isinstance(img_scale, + list) else [img_scale] + self.scale_key = 'scale' + assert mmcv.is_list_of(self.img_scale, tuple) + else: + self.img_scale = scale_factor if isinstance( + scale_factor, list) else [scale_factor] + self.scale_key = 'scale_factor' + + self.flip = flip + self.flip_direction = flip_direction if isinstance( + flip_direction, list) else [flip_direction] + assert mmcv.is_list_of(self.flip_direction, str) + if not self.flip and self.flip_direction != ['horizontal']: + warnings.warn( + 'flip_direction has no effect when flip is set to False') + if (self.flip + and not any([t['type'] == 'RandomFlip' for t in transforms])): + warnings.warn( + 'flip has no effect when RandomFlip is not in transforms') + + def __call__(self, results): + """Call function to apply test time augment transforms on results. + + Args: + results (dict): Result dict contains the data to transform. + + Returns: + dict[str: list]: The augmented data, where each value is wrapped + into a list. + """ + + aug_data = [] + flip_args = [(False, None)] + if self.flip: + flip_args += [(True, direction) + for direction in self.flip_direction] + for scale in self.img_scale: + for flip, direction in flip_args: + _results = results.copy() + _results[self.scale_key] = scale + _results['flip'] = flip + _results['flip_direction'] = direction + data = self.transforms(_results) + aug_data.append(data) + # list of dict to dict of list + aug_data_dict = {key: [] for key in aug_data[0]} + for data in aug_data: + for key, val in data.items(): + aug_data_dict[key].append(val) + return aug_data_dict + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(transforms={self.transforms}, ' + repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' + repr_str += f'flip_direction={self.flip_direction})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/transforms.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/transforms.py new file mode 100644 index 000000000..0a1b38911 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/pipelines/transforms.py @@ -0,0 +1,2919 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import inspect +import math +import warnings + +import cv2 +import mmcv +import numpy as np +from numpy import random + +from mmdet.core import BitmapMasks, PolygonMasks, find_inside_bboxes +from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps +from mmdet.utils import log_img_scale +from ..builder import PIPELINES + +try: + from imagecorruptions import corrupt +except ImportError: + corrupt = None + +try: + import albumentations + from albumentations import Compose +except ImportError: + albumentations = None + Compose = None + + +@PIPELINES.register_module() +class Resize: + """Resize images & bbox & mask. + + This transform resizes the input image to some scale. Bboxes and masks are + then resized with the same scale factor. If the input dict contains the key + "scale", then the scale in the input dict is used, otherwise the specified + scale in the init method is used. If the input dict contains the key + "scale_factor" (if MultiScaleFlipAug does not give img_scale but + scale_factor), the actual scale will be computed by image shape and + scale_factor. + + `img_scale` can either be a tuple (single-scale) or a list of tuple + (multi-scale). There are 3 multiscale modes: + + - ``ratio_range is not None``: randomly sample a ratio from the ratio \ + range and multiply it with the image scale. + - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \ + sample a scale from the multiscale range. + - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \ + sample a scale from multiple scales. + + Args: + img_scale (tuple or list[tuple]): Images scales for resizing. + multiscale_mode (str): Either "range" or "value". + ratio_range (tuple[float]): (min_ratio, max_ratio) + keep_ratio (bool): Whether to keep the aspect ratio when resizing the + image. + bbox_clip_border (bool, optional): Whether to clip the objects outside + the border of the image. In some dataset like MOT17, the gt bboxes + are allowed to cross the border of images. Therefore, we don't + need to clip the gt bboxes in these cases. Defaults to True. + backend (str): Image resize backend, choices are 'cv2' and 'pillow'. + These two backends generates slightly different results. Defaults + to 'cv2'. + interpolation (str): Interpolation method, accepted values are + "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' + backend, "nearest", "bilinear" for 'pillow' backend. + override (bool, optional): Whether to override `scale` and + `scale_factor` so as to call resize twice. Default False. If True, + after the first resizing, the existed `scale` and `scale_factor` + will be ignored so the second resizing can be allowed. + This option is a work-around for multiple times of resize in DETR. + Defaults to False. + """ + + def __init__(self, + img_scale=None, + multiscale_mode='range', + ratio_range=None, + keep_ratio=True, + bbox_clip_border=True, + backend='cv2', + interpolation='bilinear', + override=False): + if img_scale is None: + self.img_scale = None + else: + if isinstance(img_scale, list): + self.img_scale = img_scale + else: + self.img_scale = [img_scale] + assert mmcv.is_list_of(self.img_scale, tuple) + + if ratio_range is not None: + # mode 1: given a scale and a range of image ratio + assert len(self.img_scale) == 1 + else: + # mode 2: given multiple scales or a range of scales + assert multiscale_mode in ['value', 'range'] + + self.backend = backend + self.multiscale_mode = multiscale_mode + self.ratio_range = ratio_range + self.keep_ratio = keep_ratio + # TODO: refactor the override option in Resize + self.interpolation = interpolation + self.override = override + self.bbox_clip_border = bbox_clip_border + + @staticmethod + def random_select(img_scales): + """Randomly select an img_scale from given candidates. + + Args: + img_scales (list[tuple]): Images scales for selection. + + Returns: + (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \ + where ``img_scale`` is the selected image scale and \ + ``scale_idx`` is the selected index in the given candidates. + """ + + assert mmcv.is_list_of(img_scales, tuple) + scale_idx = np.random.randint(len(img_scales)) + img_scale = img_scales[scale_idx] + return img_scale, scale_idx + + @staticmethod + def random_sample(img_scales): + """Randomly sample an img_scale when ``multiscale_mode=='range'``. + + Args: + img_scales (list[tuple]): Images scale range for sampling. + There must be two tuples in img_scales, which specify the lower + and upper bound of image scales. + + Returns: + (tuple, None): Returns a tuple ``(img_scale, None)``, where \ + ``img_scale`` is sampled scale and None is just a placeholder \ + to be consistent with :func:`random_select`. + """ + + assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 + img_scale_long = [max(s) for s in img_scales] + img_scale_short = [min(s) for s in img_scales] + long_edge = np.random.randint( + min(img_scale_long), + max(img_scale_long) + 1) + short_edge = np.random.randint( + min(img_scale_short), + max(img_scale_short) + 1) + img_scale = (long_edge, short_edge) + return img_scale, None + + @staticmethod + def random_sample_ratio(img_scale, ratio_range): + """Randomly sample an img_scale when ``ratio_range`` is specified. + + A ratio will be randomly sampled from the range specified by + ``ratio_range``. Then it would be multiplied with ``img_scale`` to + generate sampled scale. + + Args: + img_scale (tuple): Images scale base to multiply with ratio. + ratio_range (tuple[float]): The minimum and maximum ratio to scale + the ``img_scale``. + + Returns: + (tuple, None): Returns a tuple ``(scale, None)``, where \ + ``scale`` is sampled ratio multiplied with ``img_scale`` and \ + None is just a placeholder to be consistent with \ + :func:`random_select`. + """ + + assert isinstance(img_scale, tuple) and len(img_scale) == 2 + min_ratio, max_ratio = ratio_range + assert min_ratio <= max_ratio + ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio + scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) + return scale, None + + def _random_scale(self, results): + """Randomly sample an img_scale according to ``ratio_range`` and + ``multiscale_mode``. + + If ``ratio_range`` is specified, a ratio will be sampled and be + multiplied with ``img_scale``. + If multiple scales are specified by ``img_scale``, a scale will be + sampled according to ``multiscale_mode``. + Otherwise, single scale will be used. + + Args: + results (dict): Result dict from :obj:`dataset`. + + Returns: + dict: Two new keys 'scale` and 'scale_idx` are added into \ + ``results``, which would be used by subsequent pipelines. + """ + + if self.ratio_range is not None: + scale, scale_idx = self.random_sample_ratio( + self.img_scale[0], self.ratio_range) + elif len(self.img_scale) == 1: + scale, scale_idx = self.img_scale[0], 0 + elif self.multiscale_mode == 'range': + scale, scale_idx = self.random_sample(self.img_scale) + elif self.multiscale_mode == 'value': + scale, scale_idx = self.random_select(self.img_scale) + else: + raise NotImplementedError + + results['scale'] = scale + results['scale_idx'] = scale_idx + + def _resize_img(self, results): + """Resize images with ``results['scale']``.""" + for key in results.get('img_fields', ['img']): + if self.keep_ratio: + img, scale_factor = mmcv.imrescale( + results[key], + results['scale'], + return_scale=True, + interpolation=self.interpolation, + backend=self.backend) + # the w_scale and h_scale has minor difference + # a real fix should be done in the mmcv.imrescale in the future + new_h, new_w = img.shape[:2] + h, w = results[key].shape[:2] + w_scale = new_w / w + h_scale = new_h / h + else: + img, w_scale, h_scale = mmcv.imresize( + results[key], + results['scale'], + return_scale=True, + interpolation=self.interpolation, + backend=self.backend) + results[key] = img + + scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], + dtype=np.float32) + results['img_shape'] = img.shape + # in case that there is no padding + results['pad_shape'] = img.shape + results['scale_factor'] = scale_factor + results['keep_ratio'] = self.keep_ratio + + def _resize_bboxes(self, results): + """Resize bounding boxes with ``results['scale_factor']``.""" + for key in results.get('bbox_fields', []): + bboxes = results[key] * results['scale_factor'] + if self.bbox_clip_border: + img_shape = results['img_shape'] + bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) + bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) + results[key] = bboxes + + def _resize_masks(self, results): + """Resize masks with ``results['scale']``""" + for key in results.get('mask_fields', []): + if results[key] is None: + continue + if self.keep_ratio: + results[key] = results[key].rescale(results['scale']) + else: + results[key] = results[key].resize(results['img_shape'][:2]) + + def _resize_seg(self, results): + """Resize semantic segmentation map with ``results['scale']``.""" + for key in results.get('seg_fields', []): + if self.keep_ratio: + gt_seg = mmcv.imrescale( + results[key], + results['scale'], + interpolation='nearest', + backend=self.backend) + else: + gt_seg = mmcv.imresize( + results[key], + results['scale'], + interpolation='nearest', + backend=self.backend) + results[key] = gt_seg + + def __call__(self, results): + """Call function to resize images, bounding boxes, masks, semantic + segmentation map. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \ + 'keep_ratio' keys are added into result dict. + """ + + if 'scale' not in results: + if 'scale_factor' in results: + img_shape = results['img'].shape[:2] + scale_factor = results['scale_factor'] + assert isinstance(scale_factor, float) + results['scale'] = tuple( + [int(x * scale_factor) for x in img_shape][::-1]) + else: + self._random_scale(results) + else: + if not self.override: + assert 'scale_factor' not in results, ( + 'scale and scale_factor cannot be both set.') + else: + results.pop('scale') + if 'scale_factor' in results: + results.pop('scale_factor') + self._random_scale(results) + + self._resize_img(results) + self._resize_bboxes(results) + self._resize_masks(results) + self._resize_seg(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(img_scale={self.img_scale}, ' + repr_str += f'multiscale_mode={self.multiscale_mode}, ' + repr_str += f'ratio_range={self.ratio_range}, ' + repr_str += f'keep_ratio={self.keep_ratio}, ' + repr_str += f'bbox_clip_border={self.bbox_clip_border})' + return repr_str + + +@PIPELINES.register_module() +class RandomFlip: + """Flip the image & bbox & mask. + + If the input dict contains the key "flip", then the flag will be used, + otherwise it will be randomly decided by a ratio specified in the init + method. + + When random flip is enabled, ``flip_ratio``/``direction`` can either be a + float/string or tuple of float/string. There are 3 flip modes: + + - ``flip_ratio`` is float, ``direction`` is string: the image will be + ``direction``ly flipped with probability of ``flip_ratio`` . + E.g., ``flip_ratio=0.5``, ``direction='horizontal'``, + then image will be horizontally flipped with probability of 0.5. + - ``flip_ratio`` is float, ``direction`` is list of string: the image will + be ``direction[i]``ly flipped with probability of + ``flip_ratio/len(direction)``. + E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``, + then image will be horizontally flipped with probability of 0.25, + vertically with probability of 0.25. + - ``flip_ratio`` is list of float, ``direction`` is list of string: + given ``len(flip_ratio) == len(direction)``, the image will + be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``. + E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal', + 'vertical']``, then image will be horizontally flipped with probability + of 0.3, vertically with probability of 0.5. + + Args: + flip_ratio (float | list[float], optional): The flipping probability. + Default: None. + direction(str | list[str], optional): The flipping direction. Options + are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'. + If input is a list, the length must equal ``flip_ratio``. Each + element in ``flip_ratio`` indicates the flip probability of + corresponding direction. + """ + + def __init__(self, flip_ratio=None, direction='horizontal'): + if isinstance(flip_ratio, list): + assert mmcv.is_list_of(flip_ratio, float) + assert 0 <= sum(flip_ratio) <= 1 + elif isinstance(flip_ratio, float): + assert 0 <= flip_ratio <= 1 + elif flip_ratio is None: + pass + else: + raise ValueError('flip_ratios must be None, float, ' + 'or list of float') + self.flip_ratio = flip_ratio + + valid_directions = ['horizontal', 'vertical', 'diagonal'] + if isinstance(direction, str): + assert direction in valid_directions + elif isinstance(direction, list): + assert mmcv.is_list_of(direction, str) + assert set(direction).issubset(set(valid_directions)) + else: + raise ValueError('direction must be either str or list of str') + self.direction = direction + + if isinstance(flip_ratio, list): + assert len(self.flip_ratio) == len(self.direction) + + def bbox_flip(self, bboxes, img_shape, direction): + """Flip bboxes horizontally. + + Args: + bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k) + img_shape (tuple[int]): Image shape (height, width) + direction (str): Flip direction. Options are 'horizontal', + 'vertical'. + + Returns: + numpy.ndarray: Flipped bounding boxes. + """ + + assert bboxes.shape[-1] % 4 == 0 + flipped = bboxes.copy() + if direction == 'horizontal': + w = img_shape[1] + flipped[..., 0::4] = w - bboxes[..., 2::4] + flipped[..., 2::4] = w - bboxes[..., 0::4] + elif direction == 'vertical': + h = img_shape[0] + flipped[..., 1::4] = h - bboxes[..., 3::4] + flipped[..., 3::4] = h - bboxes[..., 1::4] + elif direction == 'diagonal': + w = img_shape[1] + h = img_shape[0] + flipped[..., 0::4] = w - bboxes[..., 2::4] + flipped[..., 1::4] = h - bboxes[..., 3::4] + flipped[..., 2::4] = w - bboxes[..., 0::4] + flipped[..., 3::4] = h - bboxes[..., 1::4] + else: + raise ValueError(f"Invalid flipping direction '{direction}'") + return flipped + + def __call__(self, results): + """Call function to flip bounding boxes, masks, semantic segmentation + maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Flipped results, 'flip', 'flip_direction' keys are added \ + into result dict. + """ + + if 'flip' not in results: + if isinstance(self.direction, list): + # None means non-flip + direction_list = self.direction + [None] + else: + # None means non-flip + direction_list = [self.direction, None] + + if isinstance(self.flip_ratio, list): + non_flip_ratio = 1 - sum(self.flip_ratio) + flip_ratio_list = self.flip_ratio + [non_flip_ratio] + else: + non_flip_ratio = 1 - self.flip_ratio + # exclude non-flip + single_ratio = self.flip_ratio / (len(direction_list) - 1) + flip_ratio_list = [single_ratio] * (len(direction_list) - + 1) + [non_flip_ratio] + + cur_dir = np.random.choice(direction_list, p=flip_ratio_list) + + results['flip'] = cur_dir is not None + if 'flip_direction' not in results: + results['flip_direction'] = cur_dir + if results['flip']: + # flip image + for key in results.get('img_fields', ['img']): + results[key] = mmcv.imflip( + results[key], direction=results['flip_direction']) + # flip bboxes + for key in results.get('bbox_fields', []): + results[key] = self.bbox_flip(results[key], + results['img_shape'], + results['flip_direction']) + # flip masks + for key in results.get('mask_fields', []): + results[key] = results[key].flip(results['flip_direction']) + + # flip segs + for key in results.get('seg_fields', []): + results[key] = mmcv.imflip( + results[key], direction=results['flip_direction']) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})' + + +@PIPELINES.register_module() +class RandomShift: + """Shift the image and box given shift pixels and probability. + + Args: + shift_ratio (float): Probability of shifts. Default 0.5. + max_shift_px (int): The max pixels for shifting. Default 32. + filter_thr_px (int): The width and height threshold for filtering. + The bbox and the rest of the targets below the width and + height threshold will be filtered. Default 1. + """ + + def __init__(self, shift_ratio=0.5, max_shift_px=32, filter_thr_px=1): + assert 0 <= shift_ratio <= 1 + assert max_shift_px >= 0 + self.shift_ratio = shift_ratio + self.max_shift_px = max_shift_px + self.filter_thr_px = int(filter_thr_px) + # The key correspondence from bboxes to labels. + self.bbox2label = { + 'gt_bboxes': 'gt_labels', + 'gt_bboxes_ignore': 'gt_labels_ignore' + } + + def __call__(self, results): + """Call function to random shift images, bounding boxes. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Shift results. + """ + if random.random() < self.shift_ratio: + img_shape = results['img'].shape[:2] + + random_shift_x = random.randint(-self.max_shift_px, + self.max_shift_px) + random_shift_y = random.randint(-self.max_shift_px, + self.max_shift_px) + new_x = max(0, random_shift_x) + ori_x = max(0, -random_shift_x) + new_y = max(0, random_shift_y) + ori_y = max(0, -random_shift_y) + + # TODO: support mask and semantic segmentation maps. + for key in results.get('bbox_fields', []): + bboxes = results[key].copy() + bboxes[..., 0::2] += random_shift_x + bboxes[..., 1::2] += random_shift_y + + # clip border + bboxes[..., 0::2] = np.clip(bboxes[..., 0::2], 0, img_shape[1]) + bboxes[..., 1::2] = np.clip(bboxes[..., 1::2], 0, img_shape[0]) + + # remove invalid bboxes + bbox_w = bboxes[..., 2] - bboxes[..., 0] + bbox_h = bboxes[..., 3] - bboxes[..., 1] + valid_inds = (bbox_w > self.filter_thr_px) & ( + bbox_h > self.filter_thr_px) + # If the shift does not contain any gt-bbox area, skip this + # image. + if key == 'gt_bboxes' and not valid_inds.any(): + return results + bboxes = bboxes[valid_inds] + results[key] = bboxes + + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = self.bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + + for key in results.get('img_fields', ['img']): + img = results[key] + new_img = np.zeros_like(img) + img_h, img_w = img.shape[:2] + new_h = img_h - np.abs(random_shift_y) + new_w = img_w - np.abs(random_shift_x) + new_img[new_y:new_y + new_h, new_x:new_x + new_w] \ + = img[ori_y:ori_y + new_h, ori_x:ori_x + new_w] + results[key] = new_img + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(max_shift_px={self.max_shift_px}, ' + return repr_str + + +@PIPELINES.register_module() +class Pad: + """Pad the image & masks & segmentation map. + + There are two padding modes: (1) pad to a fixed size and (2) pad to the + minimum size that is divisible by some number. + Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", + + Args: + size (tuple, optional): Fixed padding size. + size_divisor (int, optional): The divisor of padded size. + pad_to_square (bool): Whether to pad the image into a square. + Currently only used for YOLOX. Default: False. + pad_val (dict, optional): A dict for padding value, the default + value is `dict(img=0, masks=0, seg=255)`. + """ + + def __init__(self, + size=None, + size_divisor=None, + pad_to_square=False, + pad_val=dict(img=0, masks=0, seg=255)): + self.size = size + self.size_divisor = size_divisor + if isinstance(pad_val, float) or isinstance(pad_val, int): + warnings.warn( + 'pad_val of float type is deprecated now, ' + f'please use pad_val=dict(img={pad_val}, ' + f'masks={pad_val}, seg=255) instead.', DeprecationWarning) + pad_val = dict(img=pad_val, masks=pad_val, seg=255) + assert isinstance(pad_val, dict) + self.pad_val = pad_val + self.pad_to_square = pad_to_square + + if pad_to_square: + assert size is None and size_divisor is None, \ + 'The size and size_divisor must be None ' \ + 'when pad2square is True' + else: + assert size is not None or size_divisor is not None, \ + 'only one of size and size_divisor should be valid' + assert size is None or size_divisor is None + + def _pad_img(self, results): + """Pad images according to ``self.size``.""" + pad_val = self.pad_val.get('img', 0) + for key in results.get('img_fields', ['img']): + if self.pad_to_square: + max_size = max(results[key].shape[:2]) + self.size = (max_size, max_size) + if self.size is not None: + padded_img = mmcv.impad( + results[key], shape=self.size, pad_val=pad_val) + elif self.size_divisor is not None: + padded_img = mmcv.impad_to_multiple( + results[key], self.size_divisor, pad_val=pad_val) + results[key] = padded_img + results['pad_shape'] = padded_img.shape + results['pad_fixed_size'] = self.size + results['pad_size_divisor'] = self.size_divisor + + def _pad_masks(self, results): + """Pad masks according to ``results['pad_shape']``.""" + pad_shape = results['pad_shape'][:2] + pad_val = self.pad_val.get('masks', 0) + for key in results.get('mask_fields', []): + results[key] = results[key].pad(pad_shape, pad_val=pad_val) + + def _pad_seg(self, results): + """Pad semantic segmentation map according to + ``results['pad_shape']``.""" + pad_val = self.pad_val.get('seg', 255) + for key in results.get('seg_fields', []): + results[key] = mmcv.impad( + results[key], shape=results['pad_shape'][:2], pad_val=pad_val) + + def __call__(self, results): + """Call function to pad images, masks, semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Updated result dict. + """ + self._pad_img(results) + self._pad_masks(results) + self._pad_seg(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(size={self.size}, ' + repr_str += f'size_divisor={self.size_divisor}, ' + repr_str += f'pad_to_square={self.pad_to_square}, ' + repr_str += f'pad_val={self.pad_val})' + return repr_str + + +@PIPELINES.register_module() +class Normalize: + """Normalize the image. + + Added key is "img_norm_cfg". + + Args: + mean (sequence): Mean values of 3 channels. + std (sequence): Std values of 3 channels. + to_rgb (bool): Whether to convert the image from BGR to RGB, + default is true. + """ + + def __init__(self, mean, std, to_rgb=True): + self.mean = np.array(mean, dtype=np.float32) + self.std = np.array(std, dtype=np.float32) + self.to_rgb = to_rgb + + def __call__(self, results): + """Call function to normalize images. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Normalized results, 'img_norm_cfg' key is added into + result dict. + """ + for key in results.get('img_fields', ['img']): + results[key] = mmcv.imnormalize(results[key], self.mean, self.std, + self.to_rgb) + results['img_norm_cfg'] = dict( + mean=self.mean, std=self.std, to_rgb=self.to_rgb) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})' + return repr_str + + +@PIPELINES.register_module() +class RandomCrop: + """Random crop the image & bboxes & masks. + + The absolute `crop_size` is sampled based on `crop_type` and `image_size`, + then the cropped results are generated. + + Args: + crop_size (tuple): The relative ratio or absolute pixels of + height and width. + crop_type (str, optional): one of "relative_range", "relative", + "absolute", "absolute_range". "relative" randomly crops + (h * crop_size[0], w * crop_size[1]) part from an input of size + (h, w). "relative_range" uniformly samples relative crop size from + range [crop_size[0], 1] and [crop_size[1], 1] for height and width + respectively. "absolute" crops from an input with absolute size + (crop_size[0], crop_size[1]). "absolute_range" uniformly samples + crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w + in range [crop_size[0], min(w, crop_size[1])]. Default "absolute". + allow_negative_crop (bool, optional): Whether to allow a crop that does + not contain any bbox area. Default False. + recompute_bbox (bool, optional): Whether to re-compute the boxes based + on cropped instance masks. Default False. + bbox_clip_border (bool, optional): Whether clip the objects outside + the border of the image. Defaults to True. + + Note: + - If the image is smaller than the absolute crop size, return the + original image. + - The keys for bboxes, labels and masks must be aligned. That is, + `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and + `gt_bboxes_ignore` corresponds to `gt_labels_ignore` and + `gt_masks_ignore`. + - If the crop does not contain any gt-bbox region and + `allow_negative_crop` is set to False, skip this image. + """ + + def __init__(self, + crop_size, + crop_type='absolute', + allow_negative_crop=False, + recompute_bbox=False, + bbox_clip_border=True): + if crop_type not in [ + 'relative_range', 'relative', 'absolute', 'absolute_range' + ]: + raise ValueError(f'Invalid crop_type {crop_type}.') + if crop_type in ['absolute', 'absolute_range']: + assert crop_size[0] > 0 and crop_size[1] > 0 + assert isinstance(crop_size[0], int) and isinstance( + crop_size[1], int) + else: + assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1 + self.crop_size = crop_size + self.crop_type = crop_type + self.allow_negative_crop = allow_negative_crop + self.bbox_clip_border = bbox_clip_border + self.recompute_bbox = recompute_bbox + # The key correspondence from bboxes to labels and masks. + self.bbox2label = { + 'gt_bboxes': 'gt_labels', + 'gt_bboxes_ignore': 'gt_labels_ignore' + } + self.bbox2mask = { + 'gt_bboxes': 'gt_masks', + 'gt_bboxes_ignore': 'gt_masks_ignore' + } + + def _crop_data(self, results, crop_size, allow_negative_crop): + """Function to randomly crop images, bounding boxes, masks, semantic + segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + crop_size (tuple): Expected absolute size after cropping, (h, w). + allow_negative_crop (bool): Whether to allow a crop that does not + contain any bbox area. Default to False. + + Returns: + dict: Randomly cropped results, 'img_shape' key in result dict is + updated according to crop size. + """ + assert crop_size[0] > 0 and crop_size[1] > 0 + for key in results.get('img_fields', ['img']): + img = results[key] + margin_h = max(img.shape[0] - crop_size[0], 0) + margin_w = max(img.shape[1] - crop_size[1], 0) + offset_h = np.random.randint(0, margin_h + 1) + offset_w = np.random.randint(0, margin_w + 1) + crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] + crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] + + # crop the image + img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] + img_shape = img.shape + results[key] = img + results['img_shape'] = img_shape + + # crop bboxes accordingly and clip to the image boundary + for key in results.get('bbox_fields', []): + # e.g. gt_bboxes and gt_bboxes_ignore + bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h], + dtype=np.float32) + bboxes = results[key] - bbox_offset + if self.bbox_clip_border: + bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) + bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) + valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & ( + bboxes[:, 3] > bboxes[:, 1]) + # If the crop does not contain any gt-bbox area and + # allow_negative_crop is False, skip this image. + if (key == 'gt_bboxes' and not valid_inds.any() + and not allow_negative_crop): + return None + results[key] = bboxes[valid_inds, :] + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = self.bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + + # mask fields, e.g. gt_masks and gt_masks_ignore + mask_key = self.bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][ + valid_inds.nonzero()[0]].crop( + np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) + if self.recompute_bbox: + results[key] = results[mask_key].get_bboxes() + + # crop semantic seg + for key in results.get('seg_fields', []): + results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2] + + return results + + def _get_crop_size(self, image_size): + """Randomly generates the absolute crop size based on `crop_type` and + `image_size`. + + Args: + image_size (tuple): (h, w). + + Returns: + crop_size (tuple): (crop_h, crop_w) in absolute pixels. + """ + h, w = image_size + if self.crop_type == 'absolute': + return (min(self.crop_size[0], h), min(self.crop_size[1], w)) + elif self.crop_type == 'absolute_range': + assert self.crop_size[0] <= self.crop_size[1] + crop_h = np.random.randint( + min(h, self.crop_size[0]), + min(h, self.crop_size[1]) + 1) + crop_w = np.random.randint( + min(w, self.crop_size[0]), + min(w, self.crop_size[1]) + 1) + return crop_h, crop_w + elif self.crop_type == 'relative': + crop_h, crop_w = self.crop_size + return int(h * crop_h + 0.5), int(w * crop_w + 0.5) + elif self.crop_type == 'relative_range': + crop_size = np.asarray(self.crop_size, dtype=np.float32) + crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size) + return int(h * crop_h + 0.5), int(w * crop_w + 0.5) + + def __call__(self, results): + """Call function to randomly crop images, bounding boxes, masks, + semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Randomly cropped results, 'img_shape' key in result dict is + updated according to crop size. + """ + image_size = results['img'].shape[:2] + crop_size = self._get_crop_size(image_size) + results = self._crop_data(results, crop_size, self.allow_negative_crop) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(crop_size={self.crop_size}, ' + repr_str += f'crop_type={self.crop_type}, ' + repr_str += f'allow_negative_crop={self.allow_negative_crop}, ' + repr_str += f'bbox_clip_border={self.bbox_clip_border})' + return repr_str + + +@PIPELINES.register_module() +class SegRescale: + """Rescale semantic segmentation maps. + + Args: + scale_factor (float): The scale factor of the final output. + backend (str): Image rescale backend, choices are 'cv2' and 'pillow'. + These two backends generates slightly different results. Defaults + to 'cv2'. + """ + + def __init__(self, scale_factor=1, backend='cv2'): + self.scale_factor = scale_factor + self.backend = backend + + def __call__(self, results): + """Call function to scale the semantic segmentation map. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with semantic segmentation map scaled. + """ + + for key in results.get('seg_fields', []): + if self.scale_factor != 1: + results[key] = mmcv.imrescale( + results[key], + self.scale_factor, + interpolation='nearest', + backend=self.backend) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' + + +@PIPELINES.register_module() +class PhotoMetricDistortion: + """Apply photometric distortion to image sequentially, every transformation + is applied with a probability of 0.5. The position of random contrast is in + second or second to last. + + 1. random brightness + 2. random contrast (mode 0) + 3. convert color from BGR to HSV + 4. random saturation + 5. random hue + 6. convert color from HSV to BGR + 7. random contrast (mode 1) + 8. randomly swap channels + + Args: + brightness_delta (int): delta of brightness. + contrast_range (tuple): range of contrast. + saturation_range (tuple): range of saturation. + hue_delta (int): delta of hue. + """ + + def __init__(self, + brightness_delta=32, + contrast_range=(0.5, 1.5), + saturation_range=(0.5, 1.5), + hue_delta=18): + self.brightness_delta = brightness_delta + self.contrast_lower, self.contrast_upper = contrast_range + self.saturation_lower, self.saturation_upper = saturation_range + self.hue_delta = hue_delta + + def __call__(self, results): + """Call function to perform photometric distortion on images. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with images distorted. + """ + + if 'img_fields' in results: + assert results['img_fields'] == ['img'], \ + 'Only single img_fields is allowed' + img = results['img'] + img = img.astype(np.float32) + # random brightness + if random.randint(2): + delta = random.uniform(-self.brightness_delta, + self.brightness_delta) + img += delta + + # mode == 0 --> do random contrast first + # mode == 1 --> do random contrast last + mode = random.randint(2) + if mode == 1: + if random.randint(2): + alpha = random.uniform(self.contrast_lower, + self.contrast_upper) + img *= alpha + + # convert color from BGR to HSV + img = mmcv.bgr2hsv(img) + + # random saturation + if random.randint(2): + img[..., 1] *= random.uniform(self.saturation_lower, + self.saturation_upper) + + # random hue + if random.randint(2): + img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) + img[..., 0][img[..., 0] > 360] -= 360 + img[..., 0][img[..., 0] < 0] += 360 + + # convert color from HSV to BGR + img = mmcv.hsv2bgr(img) + + # random contrast + if mode == 0: + if random.randint(2): + alpha = random.uniform(self.contrast_lower, + self.contrast_upper) + img *= alpha + + # randomly swap channels + if random.randint(2): + img = img[..., random.permutation(3)] + + results['img'] = img + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' + repr_str += 'contrast_range=' + repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' + repr_str += 'saturation_range=' + repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' + repr_str += f'hue_delta={self.hue_delta})' + return repr_str + + +@PIPELINES.register_module() +class Expand: + """Random expand the image & bboxes. + + Randomly place the original image on a canvas of 'ratio' x original image + size filled with mean values. The ratio is in the range of ratio_range. + + Args: + mean (tuple): mean value of dataset. + to_rgb (bool): if need to convert the order of mean to align with RGB. + ratio_range (tuple): range of expand ratio. + prob (float): probability of applying this transformation + """ + + def __init__(self, + mean=(0, 0, 0), + to_rgb=True, + ratio_range=(1, 4), + seg_ignore_label=None, + prob=0.5): + self.to_rgb = to_rgb + self.ratio_range = ratio_range + if to_rgb: + self.mean = mean[::-1] + else: + self.mean = mean + self.min_ratio, self.max_ratio = ratio_range + self.seg_ignore_label = seg_ignore_label + self.prob = prob + + def __call__(self, results): + """Call function to expand images, bounding boxes. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with images, bounding boxes expanded + """ + + if random.uniform(0, 1) > self.prob: + return results + + if 'img_fields' in results: + assert results['img_fields'] == ['img'], \ + 'Only single img_fields is allowed' + img = results['img'] + + h, w, c = img.shape + ratio = random.uniform(self.min_ratio, self.max_ratio) + # speedup expand when meets large image + if np.all(self.mean == self.mean[0]): + expand_img = np.empty((int(h * ratio), int(w * ratio), c), + img.dtype) + expand_img.fill(self.mean[0]) + else: + expand_img = np.full((int(h * ratio), int(w * ratio), c), + self.mean, + dtype=img.dtype) + left = int(random.uniform(0, w * ratio - w)) + top = int(random.uniform(0, h * ratio - h)) + expand_img[top:top + h, left:left + w] = img + + results['img'] = expand_img + # expand bboxes + for key in results.get('bbox_fields', []): + results[key] = results[key] + np.tile( + (left, top), 2).astype(results[key].dtype) + + # expand masks + for key in results.get('mask_fields', []): + results[key] = results[key].expand( + int(h * ratio), int(w * ratio), top, left) + + # expand segs + for key in results.get('seg_fields', []): + gt_seg = results[key] + expand_gt_seg = np.full((int(h * ratio), int(w * ratio)), + self.seg_ignore_label, + dtype=gt_seg.dtype) + expand_gt_seg[top:top + h, left:left + w] = gt_seg + results[key] = expand_gt_seg + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, ' + repr_str += f'ratio_range={self.ratio_range}, ' + repr_str += f'seg_ignore_label={self.seg_ignore_label})' + return repr_str + + +@PIPELINES.register_module() +class MinIoURandomCrop: + """Random crop the image & bboxes, the cropped patches have minimum IoU + requirement with original image & bboxes, the IoU threshold is randomly + selected from min_ious. + + Args: + min_ious (tuple): minimum IoU threshold for all intersections with + bounding boxes + min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, + where a >= min_crop_size). + bbox_clip_border (bool, optional): Whether clip the objects outside + the border of the image. Defaults to True. + + Note: + The keys for bboxes, labels and masks should be paired. That is, \ + `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ + `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. + """ + + def __init__(self, + min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), + min_crop_size=0.3, + bbox_clip_border=True): + # 1: return ori img + self.min_ious = min_ious + self.sample_mode = (1, *min_ious, 0) + self.min_crop_size = min_crop_size + self.bbox_clip_border = bbox_clip_border + self.bbox2label = { + 'gt_bboxes': 'gt_labels', + 'gt_bboxes_ignore': 'gt_labels_ignore' + } + self.bbox2mask = { + 'gt_bboxes': 'gt_masks', + 'gt_bboxes_ignore': 'gt_masks_ignore' + } + + def __call__(self, results): + """Call function to crop images and bounding boxes with minimum IoU + constraint. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with images and bounding boxes cropped, \ + 'img_shape' key is updated. + """ + + if 'img_fields' in results: + assert results['img_fields'] == ['img'], \ + 'Only single img_fields is allowed' + img = results['img'] + assert 'bbox_fields' in results + boxes = [results[key] for key in results['bbox_fields']] + boxes = np.concatenate(boxes, 0) + h, w, c = img.shape + while True: + mode = random.choice(self.sample_mode) + self.mode = mode + if mode == 1: + return results + + min_iou = mode + for i in range(50): + new_w = random.uniform(self.min_crop_size * w, w) + new_h = random.uniform(self.min_crop_size * h, h) + + # h / w in [0.5, 2] + if new_h / new_w < 0.5 or new_h / new_w > 2: + continue + + left = random.uniform(w - new_w) + top = random.uniform(h - new_h) + + patch = np.array( + (int(left), int(top), int(left + new_w), int(top + new_h))) + # Line or point crop is not allowed + if patch[2] == patch[0] or patch[3] == patch[1]: + continue + overlaps = bbox_overlaps( + patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) + if len(overlaps) > 0 and overlaps.min() < min_iou: + continue + + # center of boxes should inside the crop img + # only adjust boxes and instance masks when the gt is not empty + if len(overlaps) > 0: + # adjust boxes + def is_center_of_bboxes_in_patch(boxes, patch): + center = (boxes[:, :2] + boxes[:, 2:]) / 2 + mask = ((center[:, 0] > patch[0]) * + (center[:, 1] > patch[1]) * + (center[:, 0] < patch[2]) * + (center[:, 1] < patch[3])) + return mask + + mask = is_center_of_bboxes_in_patch(boxes, patch) + if not mask.any(): + continue + for key in results.get('bbox_fields', []): + boxes = results[key].copy() + mask = is_center_of_bboxes_in_patch(boxes, patch) + boxes = boxes[mask] + if self.bbox_clip_border: + boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) + boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) + boxes -= np.tile(patch[:2], 2) + + results[key] = boxes + # labels + label_key = self.bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][mask] + + # mask fields + mask_key = self.bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][ + mask.nonzero()[0]].crop(patch) + # adjust the img no matter whether the gt is empty before crop + img = img[patch[1]:patch[3], patch[0]:patch[2]] + results['img'] = img + results['img_shape'] = img.shape + + # seg fields + for key in results.get('seg_fields', []): + results[key] = results[key][patch[1]:patch[3], + patch[0]:patch[2]] + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(min_ious={self.min_ious}, ' + repr_str += f'min_crop_size={self.min_crop_size}, ' + repr_str += f'bbox_clip_border={self.bbox_clip_border})' + return repr_str + + +@PIPELINES.register_module() +class Corrupt: + """Corruption augmentation. + + Corruption transforms implemented based on + `imagecorruptions `_. + + Args: + corruption (str): Corruption name. + severity (int, optional): The severity of corruption. Default: 1. + """ + + def __init__(self, corruption, severity=1): + self.corruption = corruption + self.severity = severity + + def __call__(self, results): + """Call function to corrupt image. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with images corrupted. + """ + + if corrupt is None: + raise RuntimeError('imagecorruptions is not installed') + if 'img_fields' in results: + assert results['img_fields'] == ['img'], \ + 'Only single img_fields is allowed' + results['img'] = corrupt( + results['img'].astype(np.uint8), + corruption_name=self.corruption, + severity=self.severity) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(corruption={self.corruption}, ' + repr_str += f'severity={self.severity})' + return repr_str + + +@PIPELINES.register_module() +class Albu: + """Albumentation augmentation. + + Adds custom transformations from Albumentations library. + Please, visit `https://albumentations.readthedocs.io` + to get more information. + + An example of ``transforms`` is as followed: + + .. code-block:: + + [ + dict( + type='ShiftScaleRotate', + shift_limit=0.0625, + scale_limit=0.0, + rotate_limit=0, + interpolation=1, + p=0.5), + dict( + type='RandomBrightnessContrast', + brightness_limit=[0.1, 0.3], + contrast_limit=[0.1, 0.3], + p=0.2), + dict(type='ChannelShuffle', p=0.1), + dict( + type='OneOf', + transforms=[ + dict(type='Blur', blur_limit=3, p=1.0), + dict(type='MedianBlur', blur_limit=3, p=1.0) + ], + p=0.1), + ] + + Args: + transforms (list[dict]): A list of albu transformations + bbox_params (dict): Bbox_params for albumentation `Compose` + keymap (dict): Contains {'input key':'albumentation-style key'} + skip_img_without_anno (bool): Whether to skip the image if no ann left + after aug + """ + + def __init__(self, + transforms, + bbox_params=None, + keymap=None, + update_pad_shape=False, + skip_img_without_anno=False): + if Compose is None: + raise RuntimeError('albumentations is not installed') + + # Args will be modified later, copying it will be safer + transforms = copy.deepcopy(transforms) + if bbox_params is not None: + bbox_params = copy.deepcopy(bbox_params) + if keymap is not None: + keymap = copy.deepcopy(keymap) + self.transforms = transforms + self.filter_lost_elements = False + self.update_pad_shape = update_pad_shape + self.skip_img_without_anno = skip_img_without_anno + + # A simple workaround to remove masks without boxes + if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params + and 'filter_lost_elements' in bbox_params): + self.filter_lost_elements = True + self.origin_label_fields = bbox_params['label_fields'] + bbox_params['label_fields'] = ['idx_mapper'] + del bbox_params['filter_lost_elements'] + + self.bbox_params = ( + self.albu_builder(bbox_params) if bbox_params else None) + self.aug = Compose([self.albu_builder(t) for t in self.transforms], + bbox_params=self.bbox_params) + + if not keymap: + self.keymap_to_albu = { + 'img': 'image', + 'gt_masks': 'masks', + 'gt_bboxes': 'bboxes' + } + else: + self.keymap_to_albu = keymap + self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} + + def albu_builder(self, cfg): + """Import a module from albumentations. + + It inherits some of :func:`build_from_cfg` logic. + + Args: + cfg (dict): Config dict. It should at least contain the key "type". + + Returns: + obj: The constructed object. + """ + + assert isinstance(cfg, dict) and 'type' in cfg + args = cfg.copy() + + obj_type = args.pop('type') + if mmcv.is_str(obj_type): + if albumentations is None: + raise RuntimeError('albumentations is not installed') + obj_cls = getattr(albumentations, obj_type) + elif inspect.isclass(obj_type): + obj_cls = obj_type + else: + raise TypeError( + f'type must be a str or valid type, but got {type(obj_type)}') + + if 'transforms' in args: + args['transforms'] = [ + self.albu_builder(transform) + for transform in args['transforms'] + ] + + return obj_cls(**args) + + @staticmethod + def mapper(d, keymap): + """Dictionary mapper. Renames keys according to keymap provided. + + Args: + d (dict): old dict + keymap (dict): {'old_key':'new_key'} + Returns: + dict: new dict. + """ + + updated_dict = {} + for k, v in zip(d.keys(), d.values()): + new_k = keymap.get(k, k) + updated_dict[new_k] = d[k] + return updated_dict + + def __call__(self, results): + # dict to albumentations format + results = self.mapper(results, self.keymap_to_albu) + # TODO: add bbox_fields + if 'bboxes' in results: + # to list of boxes + if isinstance(results['bboxes'], np.ndarray): + results['bboxes'] = [x for x in results['bboxes']] + # add pseudo-field for filtration + if self.filter_lost_elements: + results['idx_mapper'] = np.arange(len(results['bboxes'])) + + # TODO: Support mask structure in albu + if 'masks' in results: + if isinstance(results['masks'], PolygonMasks): + raise NotImplementedError( + 'Albu only supports BitMap masks now') + ori_masks = results['masks'] + if albumentations.__version__ < '0.5': + results['masks'] = results['masks'].masks + else: + results['masks'] = [mask for mask in results['masks'].masks] + + results = self.aug(**results) + + if 'bboxes' in results: + if isinstance(results['bboxes'], list): + results['bboxes'] = np.array( + results['bboxes'], dtype=np.float32) + results['bboxes'] = results['bboxes'].reshape(-1, 4) + + # filter label_fields + if self.filter_lost_elements: + + for label in self.origin_label_fields: + results[label] = np.array( + [results[label][i] for i in results['idx_mapper']]) + if 'masks' in results: + results['masks'] = np.array( + [results['masks'][i] for i in results['idx_mapper']]) + results['masks'] = ori_masks.__class__( + results['masks'], results['image'].shape[0], + results['image'].shape[1]) + + if (not len(results['idx_mapper']) + and self.skip_img_without_anno): + return None + + if 'gt_labels' in results: + if isinstance(results['gt_labels'], list): + results['gt_labels'] = np.array(results['gt_labels']) + results['gt_labels'] = results['gt_labels'].astype(np.int64) + + # back to the original format + results = self.mapper(results, self.keymap_back) + + # update final shape + if self.update_pad_shape: + results['pad_shape'] = results['img'].shape + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' + return repr_str + + +@PIPELINES.register_module() +class RandomCenterCropPad: + """Random center crop and random around padding for CornerNet. + + This operation generates randomly cropped image from the original image and + pads it simultaneously. Different from :class:`RandomCrop`, the output + shape may not equal to ``crop_size`` strictly. We choose a random value + from ``ratios`` and the output shape could be larger or smaller than + ``crop_size``. The padding operation is also different from :class:`Pad`, + here we use around padding instead of right-bottom padding. + + The relation between output image (padding image) and original image: + + .. code:: text + + output image + + +----------------------------+ + | padded area | + +------|----------------------------|----------+ + | | cropped area | | + | | +---------------+ | | + | | | . center | | | original image + | | | range | | | + | | +---------------+ | | + +------|----------------------------|----------+ + | padded area | + +----------------------------+ + + There are 5 main areas in the figure: + + - output image: output image of this operation, also called padding + image in following instruction. + - original image: input image of this operation. + - padded area: non-intersect area of output image and original image. + - cropped area: the overlap of output image and original image. + - center range: a smaller area where random center chosen from. + center range is computed by ``border`` and original image's shape + to avoid our random center is too close to original image's border. + + Also this operation act differently in train and test mode, the summary + pipeline is listed below. + + Train pipeline: + + 1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image + will be ``random_ratio * crop_size``. + 2. Choose a ``random_center`` in center range. + 3. Generate padding image with center matches the ``random_center``. + 4. Initialize the padding image with pixel value equals to ``mean``. + 5. Copy the cropped area to padding image. + 6. Refine annotations. + + Test pipeline: + + 1. Compute output shape according to ``test_pad_mode``. + 2. Generate padding image with center matches the original image + center. + 3. Initialize the padding image with pixel value equals to ``mean``. + 4. Copy the ``cropped area`` to padding image. + + Args: + crop_size (tuple | None): expected size after crop, final size will + computed according to ratio. Requires (h, w) in train mode, and + None in test mode. + ratios (tuple): random select a ratio from tuple and crop image to + (crop_size[0] * ratio) * (crop_size[1] * ratio). + Only available in train mode. + border (int): max distance from center select area to image border. + Only available in train mode. + mean (sequence): Mean values of 3 channels. + std (sequence): Std values of 3 channels. + to_rgb (bool): Whether to convert the image from BGR to RGB. + test_mode (bool): whether involve random variables in transform. + In train mode, crop_size is fixed, center coords and ratio is + random selected from predefined lists. In test mode, crop_size + is image's original shape, center coords and ratio is fixed. + test_pad_mode (tuple): padding method and padding shape value, only + available in test mode. Default is using 'logical_or' with + 127 as padding shape value. + + - 'logical_or': final_shape = input_shape | padding_shape_value + - 'size_divisor': final_shape = int( + ceil(input_shape / padding_shape_value) * padding_shape_value) + test_pad_add_pix (int): Extra padding pixel in test mode. Default 0. + bbox_clip_border (bool, optional): Whether clip the objects outside + the border of the image. Defaults to True. + """ + + def __init__(self, + crop_size=None, + ratios=(0.9, 1.0, 1.1), + border=128, + mean=None, + std=None, + to_rgb=None, + test_mode=False, + test_pad_mode=('logical_or', 127), + test_pad_add_pix=0, + bbox_clip_border=True): + if test_mode: + assert crop_size is None, 'crop_size must be None in test mode' + assert ratios is None, 'ratios must be None in test mode' + assert border is None, 'border must be None in test mode' + assert isinstance(test_pad_mode, (list, tuple)) + assert test_pad_mode[0] in ['logical_or', 'size_divisor'] + else: + assert isinstance(crop_size, (list, tuple)) + assert crop_size[0] > 0 and crop_size[1] > 0, ( + 'crop_size must > 0 in train mode') + assert isinstance(ratios, (list, tuple)) + assert test_pad_mode is None, ( + 'test_pad_mode must be None in train mode') + + self.crop_size = crop_size + self.ratios = ratios + self.border = border + # We do not set default value to mean, std and to_rgb because these + # hyper-parameters are easy to forget but could affect the performance. + # Please use the same setting as Normalize for performance assurance. + assert mean is not None and std is not None and to_rgb is not None + self.to_rgb = to_rgb + self.input_mean = mean + self.input_std = std + if to_rgb: + self.mean = mean[::-1] + self.std = std[::-1] + else: + self.mean = mean + self.std = std + self.test_mode = test_mode + self.test_pad_mode = test_pad_mode + self.test_pad_add_pix = test_pad_add_pix + self.bbox_clip_border = bbox_clip_border + + def _get_border(self, border, size): + """Get final border for the target size. + + This function generates a ``final_border`` according to image's shape. + The area between ``final_border`` and ``size - final_border`` is the + ``center range``. We randomly choose center from the ``center range`` + to avoid our random center is too close to original image's border. + Also ``center range`` should be larger than 0. + + Args: + border (int): The initial border, default is 128. + size (int): The width or height of original image. + Returns: + int: The final border. + """ + k = 2 * border / size + i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k))) + return border // i + + def _filter_boxes(self, patch, boxes): + """Check whether the center of each box is in the patch. + + Args: + patch (list[int]): The cropped area, [left, top, right, bottom]. + boxes (numpy array, (N x 4)): Ground truth boxes. + + Returns: + mask (numpy array, (N,)): Each box is inside or outside the patch. + """ + center = (boxes[:, :2] + boxes[:, 2:]) / 2 + mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * ( + center[:, 0] < patch[2]) * ( + center[:, 1] < patch[3]) + return mask + + def _crop_image_and_paste(self, image, center, size): + """Crop image with a given center and size, then paste the cropped + image to a blank image with two centers align. + + This function is equivalent to generating a blank image with ``size`` + as its shape. Then cover it on the original image with two centers ( + the center of blank image and the random center of original image) + aligned. The overlap area is paste from the original image and the + outside area is filled with ``mean pixel``. + + Args: + image (np array, H x W x C): Original image. + center (list[int]): Target crop center coord. + size (list[int]): Target crop size. [target_h, target_w] + + Returns: + cropped_img (np array, target_h x target_w x C): Cropped image. + border (np array, 4): The distance of four border of + ``cropped_img`` to the original image area, [top, bottom, + left, right] + patch (list[int]): The cropped area, [left, top, right, bottom]. + """ + center_y, center_x = center + target_h, target_w = size + img_h, img_w, img_c = image.shape + + x0 = max(0, center_x - target_w // 2) + x1 = min(center_x + target_w // 2, img_w) + y0 = max(0, center_y - target_h // 2) + y1 = min(center_y + target_h // 2, img_h) + patch = np.array((int(x0), int(y0), int(x1), int(y1))) + + left, right = center_x - x0, x1 - center_x + top, bottom = center_y - y0, y1 - center_y + + cropped_center_y, cropped_center_x = target_h // 2, target_w // 2 + cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype) + for i in range(img_c): + cropped_img[:, :, i] += self.mean[i] + y_slice = slice(cropped_center_y - top, cropped_center_y + bottom) + x_slice = slice(cropped_center_x - left, cropped_center_x + right) + cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :] + + border = np.array([ + cropped_center_y - top, cropped_center_y + bottom, + cropped_center_x - left, cropped_center_x + right + ], + dtype=np.float32) + + return cropped_img, border, patch + + def _train_aug(self, results): + """Random crop and around padding the original image. + + Args: + results (dict): Image infomations in the augment pipeline. + + Returns: + results (dict): The updated dict. + """ + img = results['img'] + h, w, c = img.shape + boxes = results['gt_bboxes'] + while True: + scale = random.choice(self.ratios) + new_h = int(self.crop_size[0] * scale) + new_w = int(self.crop_size[1] * scale) + h_border = self._get_border(self.border, h) + w_border = self._get_border(self.border, w) + + for i in range(50): + center_x = random.randint(low=w_border, high=w - w_border) + center_y = random.randint(low=h_border, high=h - h_border) + + cropped_img, border, patch = self._crop_image_and_paste( + img, [center_y, center_x], [new_h, new_w]) + + mask = self._filter_boxes(patch, boxes) + # if image do not have valid bbox, any crop patch is valid. + if not mask.any() and len(boxes) > 0: + continue + + results['img'] = cropped_img + results['img_shape'] = cropped_img.shape + results['pad_shape'] = cropped_img.shape + + x0, y0, x1, y1 = patch + + left_w, top_h = center_x - x0, center_y - y0 + cropped_center_x, cropped_center_y = new_w // 2, new_h // 2 + + # crop bboxes accordingly and clip to the image boundary + for key in results.get('bbox_fields', []): + mask = self._filter_boxes(patch, results[key]) + bboxes = results[key][mask] + bboxes[:, 0:4:2] += cropped_center_x - left_w - x0 + bboxes[:, 1:4:2] += cropped_center_y - top_h - y0 + if self.bbox_clip_border: + bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w) + bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h) + keep = (bboxes[:, 2] > bboxes[:, 0]) & ( + bboxes[:, 3] > bboxes[:, 1]) + bboxes = bboxes[keep] + results[key] = bboxes + if key in ['gt_bboxes']: + if 'gt_labels' in results: + labels = results['gt_labels'][mask] + labels = labels[keep] + results['gt_labels'] = labels + if 'gt_masks' in results: + raise NotImplementedError( + 'RandomCenterCropPad only supports bbox.') + + # crop semantic seg + for key in results.get('seg_fields', []): + raise NotImplementedError( + 'RandomCenterCropPad only supports bbox.') + return results + + def _test_aug(self, results): + """Around padding the original image without cropping. + + The padding mode and value are from ``test_pad_mode``. + + Args: + results (dict): Image infomations in the augment pipeline. + + Returns: + results (dict): The updated dict. + """ + img = results['img'] + h, w, c = img.shape + results['img_shape'] = img.shape + if self.test_pad_mode[0] in ['logical_or']: + # self.test_pad_add_pix is only used for centernet + target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix + target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix + elif self.test_pad_mode[0] in ['size_divisor']: + divisor = self.test_pad_mode[1] + target_h = int(np.ceil(h / divisor)) * divisor + target_w = int(np.ceil(w / divisor)) * divisor + else: + raise NotImplementedError( + 'RandomCenterCropPad only support two testing pad mode:' + 'logical-or and size_divisor.') + + cropped_img, border, _ = self._crop_image_and_paste( + img, [h // 2, w // 2], [target_h, target_w]) + results['img'] = cropped_img + results['pad_shape'] = cropped_img.shape + results['border'] = border + return results + + def __call__(self, results): + img = results['img'] + assert img.dtype == np.float32, ( + 'RandomCenterCropPad needs the input image of dtype np.float32,' + ' please set "to_float32=True" in "LoadImageFromFile" pipeline') + h, w, c = img.shape + assert c == len(self.mean) + if self.test_mode: + return self._test_aug(results) + else: + return self._train_aug(results) + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(crop_size={self.crop_size}, ' + repr_str += f'ratios={self.ratios}, ' + repr_str += f'border={self.border}, ' + repr_str += f'mean={self.input_mean}, ' + repr_str += f'std={self.input_std}, ' + repr_str += f'to_rgb={self.to_rgb}, ' + repr_str += f'test_mode={self.test_mode}, ' + repr_str += f'test_pad_mode={self.test_pad_mode}, ' + repr_str += f'bbox_clip_border={self.bbox_clip_border})' + return repr_str + + +@PIPELINES.register_module() +class CutOut: + """CutOut operation. + + Randomly drop some regions of image used in + `Cutout `_. + + Args: + n_holes (int | tuple[int, int]): Number of regions to be dropped. + If it is given as a list, number of holes will be randomly + selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. + cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate + shape of dropped regions. It can be `tuple[int, int]` to use a + fixed cutout shape, or `list[tuple[int, int]]` to randomly choose + shape from the list. + cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The + candidate ratio of dropped regions. It can be `tuple[float, float]` + to use a fixed ratio or `list[tuple[float, float]]` to randomly + choose ratio from the list. Please note that `cutout_shape` + and `cutout_ratio` cannot be both given at the same time. + fill_in (tuple[float, float, float] | tuple[int, int, int]): The value + of pixel to fill in the dropped regions. Default: (0, 0, 0). + """ + + def __init__(self, + n_holes, + cutout_shape=None, + cutout_ratio=None, + fill_in=(0, 0, 0)): + + assert (cutout_shape is None) ^ (cutout_ratio is None), \ + 'Either cutout_shape or cutout_ratio should be specified.' + assert (isinstance(cutout_shape, (list, tuple)) + or isinstance(cutout_ratio, (list, tuple))) + if isinstance(n_holes, tuple): + assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] + else: + n_holes = (n_holes, n_holes) + self.n_holes = n_holes + self.fill_in = fill_in + self.with_ratio = cutout_ratio is not None + self.candidates = cutout_ratio if self.with_ratio else cutout_shape + if not isinstance(self.candidates, list): + self.candidates = [self.candidates] + + def __call__(self, results): + """Call function to drop some regions of image.""" + h, w, c = results['img'].shape + n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) + for _ in range(n_holes): + x1 = np.random.randint(0, w) + y1 = np.random.randint(0, h) + index = np.random.randint(0, len(self.candidates)) + if not self.with_ratio: + cutout_w, cutout_h = self.candidates[index] + else: + cutout_w = int(self.candidates[index][0] * w) + cutout_h = int(self.candidates[index][1] * h) + + x2 = np.clip(x1 + cutout_w, 0, w) + y2 = np.clip(y1 + cutout_h, 0, h) + results['img'][y1:y2, x1:x2, :] = self.fill_in + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(n_holes={self.n_holes}, ' + repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio + else f'cutout_shape={self.candidates}, ') + repr_str += f'fill_in={self.fill_in})' + return repr_str + + +@PIPELINES.register_module() +class Mosaic: + """Mosaic augmentation. + + Given 4 images, mosaic transform combines them into + one output image. The output image is composed of the parts from each sub- + image. + + .. code:: text + + mosaic transform + center_x + +------------------------------+ + | pad | pad | + | +-----------+ | + | | | | + | | image1 |--------+ | + | | | | | + | | | image2 | | + center_y |----+-------------+-----------| + | | cropped | | + |pad | image3 | image4 | + | | | | + +----|-------------+-----------+ + | | + +-------------+ + + The mosaic transform steps are as follows: + + 1. Choose the mosaic center as the intersections of 4 images + 2. Get the left top image according to the index, and randomly + sample another 3 images from the custom dataset. + 3. Sub image will be cropped if image is larger than mosaic patch + + Args: + img_scale (Sequence[int]): Image size after mosaic pipeline of single + image. The shape order should be (height, width). + Default to (640, 640). + center_ratio_range (Sequence[float]): Center ratio range of mosaic + output. Default to (0.5, 1.5). + min_bbox_size (int | float): The minimum pixel for filtering + invalid bboxes after the mosaic pipeline. Default to 0. + bbox_clip_border (bool, optional): Whether to clip the objects outside + the border of the image. In some dataset like MOT17, the gt bboxes + are allowed to cross the border of images. Therefore, we don't + need to clip the gt bboxes in these cases. Defaults to True. + skip_filter (bool): Whether to skip filtering rules. If it + is True, the filter rule will not be applied, and the + `min_bbox_size` is invalid. Default to True. + pad_val (int): Pad value. Default to 114. + prob (float): Probability of applying this transformation. + Default to 1.0. + """ + + def __init__(self, + img_scale=(640, 640), + center_ratio_range=(0.5, 1.5), + min_bbox_size=0, + bbox_clip_border=True, + skip_filter=True, + pad_val=114, + prob=1.0): + assert isinstance(img_scale, tuple) + assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\ + f'got {prob}.' + + log_img_scale(img_scale, skip_square=True) + self.img_scale = img_scale + self.center_ratio_range = center_ratio_range + self.min_bbox_size = min_bbox_size + self.bbox_clip_border = bbox_clip_border + self.skip_filter = skip_filter + self.pad_val = pad_val + self.prob = prob + + def __call__(self, results): + """Call function to make a mosaic of image. + + Args: + results (dict): Result dict. + + Returns: + dict: Result dict with mosaic transformed. + """ + + if random.uniform(0, 1) > self.prob: + return results + + results = self._mosaic_transform(results) + return results + + def get_indexes(self, dataset): + """Call function to collect indexes. + + Args: + dataset (:obj:`MultiImageMixDataset`): The dataset. + + Returns: + list: indexes. + """ + + indexes = [random.randint(0, len(dataset)) for _ in range(3)] + return indexes + + def _mosaic_transform(self, results): + """Mosaic transform function. + + Args: + results (dict): Result dict. + + Returns: + dict: Updated result dict. + """ + + assert 'mix_results' in results + mosaic_labels = [] + mosaic_bboxes = [] + if len(results['img'].shape) == 3: + mosaic_img = np.full( + (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3), + self.pad_val, + dtype=results['img'].dtype) + else: + mosaic_img = np.full( + (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), + self.pad_val, + dtype=results['img'].dtype) + + # mosaic center x, y + center_x = int( + random.uniform(*self.center_ratio_range) * self.img_scale[1]) + center_y = int( + random.uniform(*self.center_ratio_range) * self.img_scale[0]) + center_position = (center_x, center_y) + + loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') + for i, loc in enumerate(loc_strs): + if loc == 'top_left': + results_patch = copy.deepcopy(results) + else: + results_patch = copy.deepcopy(results['mix_results'][i - 1]) + + img_i = results_patch['img'] + h_i, w_i = img_i.shape[:2] + # keep_ratio resize + scale_ratio_i = min(self.img_scale[0] / h_i, + self.img_scale[1] / w_i) + img_i = mmcv.imresize( + img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) + + # compute the combine parameters + paste_coord, crop_coord = self._mosaic_combine( + loc, center_position, img_i.shape[:2][::-1]) + x1_p, y1_p, x2_p, y2_p = paste_coord + x1_c, y1_c, x2_c, y2_c = crop_coord + + # crop and paste image + mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] + + # adjust coordinate + gt_bboxes_i = results_patch['gt_bboxes'] + gt_labels_i = results_patch['gt_labels'] + + if gt_bboxes_i.shape[0] > 0: + padw = x1_p - x1_c + padh = y1_p - y1_c + gt_bboxes_i[:, 0::2] = \ + scale_ratio_i * gt_bboxes_i[:, 0::2] + padw + gt_bboxes_i[:, 1::2] = \ + scale_ratio_i * gt_bboxes_i[:, 1::2] + padh + + mosaic_bboxes.append(gt_bboxes_i) + mosaic_labels.append(gt_labels_i) + + if len(mosaic_labels) > 0: + mosaic_bboxes = np.concatenate(mosaic_bboxes, 0) + mosaic_labels = np.concatenate(mosaic_labels, 0) + + if self.bbox_clip_border: + mosaic_bboxes[:, 0::2] = np.clip(mosaic_bboxes[:, 0::2], 0, + 2 * self.img_scale[1]) + mosaic_bboxes[:, 1::2] = np.clip(mosaic_bboxes[:, 1::2], 0, + 2 * self.img_scale[0]) + + if not self.skip_filter: + mosaic_bboxes, mosaic_labels = \ + self._filter_box_candidates(mosaic_bboxes, mosaic_labels) + + # remove outside bboxes + inside_inds = find_inside_bboxes(mosaic_bboxes, 2 * self.img_scale[0], + 2 * self.img_scale[1]) + mosaic_bboxes = mosaic_bboxes[inside_inds] + mosaic_labels = mosaic_labels[inside_inds] + + results['img'] = mosaic_img + results['img_shape'] = mosaic_img.shape + results['gt_bboxes'] = mosaic_bboxes + results['gt_labels'] = mosaic_labels + + return results + + def _mosaic_combine(self, loc, center_position_xy, img_shape_wh): + """Calculate global coordinate of mosaic image and local coordinate of + cropped sub-image. + + Args: + loc (str): Index for the sub-image, loc in ('top_left', + 'top_right', 'bottom_left', 'bottom_right'). + center_position_xy (Sequence[float]): Mixing center for 4 images, + (x, y). + img_shape_wh (Sequence[int]): Width and height of sub-image + + Returns: + tuple[tuple[float]]: Corresponding coordinate of pasting and + cropping + - paste_coord (tuple): paste corner coordinate in mosaic image. + - crop_coord (tuple): crop corner coordinate in mosaic image. + """ + assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right') + if loc == 'top_left': + # index0 to top left part of image + x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ + max(center_position_xy[1] - img_shape_wh[1], 0), \ + center_position_xy[0], \ + center_position_xy[1] + crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - ( + y2 - y1), img_shape_wh[0], img_shape_wh[1] + + elif loc == 'top_right': + # index1 to top right part of image + x1, y1, x2, y2 = center_position_xy[0], \ + max(center_position_xy[1] - img_shape_wh[1], 0), \ + min(center_position_xy[0] + img_shape_wh[0], + self.img_scale[1] * 2), \ + center_position_xy[1] + crop_coord = 0, img_shape_wh[1] - (y2 - y1), min( + img_shape_wh[0], x2 - x1), img_shape_wh[1] + + elif loc == 'bottom_left': + # index2 to bottom left part of image + x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ + center_position_xy[1], \ + center_position_xy[0], \ + min(self.img_scale[0] * 2, center_position_xy[1] + + img_shape_wh[1]) + crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min( + y2 - y1, img_shape_wh[1]) + + else: + # index3 to bottom right part of image + x1, y1, x2, y2 = center_position_xy[0], \ + center_position_xy[1], \ + min(center_position_xy[0] + img_shape_wh[0], + self.img_scale[1] * 2), \ + min(self.img_scale[0] * 2, center_position_xy[1] + + img_shape_wh[1]) + crop_coord = 0, 0, min(img_shape_wh[0], + x2 - x1), min(y2 - y1, img_shape_wh[1]) + + paste_coord = x1, y1, x2, y2 + return paste_coord, crop_coord + + def _filter_box_candidates(self, bboxes, labels): + """Filter out bboxes too small after Mosaic.""" + bbox_w = bboxes[:, 2] - bboxes[:, 0] + bbox_h = bboxes[:, 3] - bboxes[:, 1] + valid_inds = (bbox_w > self.min_bbox_size) & \ + (bbox_h > self.min_bbox_size) + valid_inds = np.nonzero(valid_inds)[0] + return bboxes[valid_inds], labels[valid_inds] + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'img_scale={self.img_scale}, ' + repr_str += f'center_ratio_range={self.center_ratio_range}, ' + repr_str += f'pad_val={self.pad_val}, ' + repr_str += f'min_bbox_size={self.min_bbox_size}, ' + repr_str += f'skip_filter={self.skip_filter})' + return repr_str + + +@PIPELINES.register_module() +class MixUp: + """MixUp data augmentation. + + .. code:: text + + mixup transform + +------------------------------+ + | mixup image | | + | +--------|--------+ | + | | | | | + |---------------+ | | + | | | | + | | image | | + | | | | + | | | | + | |-----------------+ | + | pad | + +------------------------------+ + + The mixup transform steps are as follows: + + 1. Another random image is picked by dataset and embedded in + the top left patch(after padding and resizing) + 2. The target of mixup transform is the weighted average of mixup + image and origin image. + + Args: + img_scale (Sequence[int]): Image output size after mixup pipeline. + The shape order should be (height, width). Default: (640, 640). + ratio_range (Sequence[float]): Scale ratio of mixup image. + Default: (0.5, 1.5). + flip_ratio (float): Horizontal flip ratio of mixup image. + Default: 0.5. + pad_val (int): Pad value. Default: 114. + max_iters (int): The maximum number of iterations. If the number of + iterations is greater than `max_iters`, but gt_bbox is still + empty, then the iteration is terminated. Default: 15. + min_bbox_size (float): Width and height threshold to filter bboxes. + If the height or width of a box is smaller than this value, it + will be removed. Default: 5. + min_area_ratio (float): Threshold of area ratio between + original bboxes and wrapped bboxes. If smaller than this value, + the box will be removed. Default: 0.2. + max_aspect_ratio (float): Aspect ratio of width and height + threshold to filter bboxes. If max(h/w, w/h) larger than this + value, the box will be removed. Default: 20. + bbox_clip_border (bool, optional): Whether to clip the objects outside + the border of the image. In some dataset like MOT17, the gt bboxes + are allowed to cross the border of images. Therefore, we don't + need to clip the gt bboxes in these cases. Defaults to True. + skip_filter (bool): Whether to skip filtering rules. If it + is True, the filter rule will not be applied, and the + `min_bbox_size` and `min_area_ratio` and `max_aspect_ratio` + is invalid. Default to True. + """ + + def __init__(self, + img_scale=(640, 640), + ratio_range=(0.5, 1.5), + flip_ratio=0.5, + pad_val=114, + max_iters=15, + min_bbox_size=5, + min_area_ratio=0.2, + max_aspect_ratio=20, + bbox_clip_border=True, + skip_filter=True): + assert isinstance(img_scale, tuple) + log_img_scale(img_scale, skip_square=True) + self.dynamic_scale = img_scale + self.ratio_range = ratio_range + self.flip_ratio = flip_ratio + self.pad_val = pad_val + self.max_iters = max_iters + self.min_bbox_size = min_bbox_size + self.min_area_ratio = min_area_ratio + self.max_aspect_ratio = max_aspect_ratio + self.bbox_clip_border = bbox_clip_border + self.skip_filter = skip_filter + + def __call__(self, results): + """Call function to make a mixup of image. + + Args: + results (dict): Result dict. + + Returns: + dict: Result dict with mixup transformed. + """ + + results = self._mixup_transform(results) + return results + + def get_indexes(self, dataset): + """Call function to collect indexes. + + Args: + dataset (:obj:`MultiImageMixDataset`): The dataset. + + Returns: + list: indexes. + """ + + for i in range(self.max_iters): + index = random.randint(0, len(dataset)) + gt_bboxes_i = dataset.get_ann_info(index)['bboxes'] + if len(gt_bboxes_i) != 0: + break + + return index + + def _mixup_transform(self, results): + """MixUp transform function. + + Args: + results (dict): Result dict. + + Returns: + dict: Updated result dict. + """ + + assert 'mix_results' in results + assert len( + results['mix_results']) == 1, 'MixUp only support 2 images now !' + + if results['mix_results'][0]['gt_bboxes'].shape[0] == 0: + # empty bbox + return results + + retrieve_results = results['mix_results'][0] + retrieve_img = retrieve_results['img'] + + jit_factor = random.uniform(*self.ratio_range) + is_filp = random.uniform(0, 1) > self.flip_ratio + + if len(retrieve_img.shape) == 3: + out_img = np.ones( + (self.dynamic_scale[0], self.dynamic_scale[1], 3), + dtype=retrieve_img.dtype) * self.pad_val + else: + out_img = np.ones( + self.dynamic_scale, dtype=retrieve_img.dtype) * self.pad_val + + # 1. keep_ratio resize + scale_ratio = min(self.dynamic_scale[0] / retrieve_img.shape[0], + self.dynamic_scale[1] / retrieve_img.shape[1]) + retrieve_img = mmcv.imresize( + retrieve_img, (int(retrieve_img.shape[1] * scale_ratio), + int(retrieve_img.shape[0] * scale_ratio))) + + # 2. paste + out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img + + # 3. scale jit + scale_ratio *= jit_factor + out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor), + int(out_img.shape[0] * jit_factor))) + + # 4. flip + if is_filp: + out_img = out_img[:, ::-1, :] + + # 5. random crop + ori_img = results['img'] + origin_h, origin_w = out_img.shape[:2] + target_h, target_w = ori_img.shape[:2] + padded_img = np.zeros( + (max(origin_h, target_h), max(origin_w, + target_w), 3)).astype(np.uint8) + padded_img[:origin_h, :origin_w] = out_img + + x_offset, y_offset = 0, 0 + if padded_img.shape[0] > target_h: + y_offset = random.randint(0, padded_img.shape[0] - target_h) + if padded_img.shape[1] > target_w: + x_offset = random.randint(0, padded_img.shape[1] - target_w) + padded_cropped_img = padded_img[y_offset:y_offset + target_h, + x_offset:x_offset + target_w] + + # 6. adjust bbox + retrieve_gt_bboxes = retrieve_results['gt_bboxes'] + retrieve_gt_bboxes[:, 0::2] = retrieve_gt_bboxes[:, 0::2] * scale_ratio + retrieve_gt_bboxes[:, 1::2] = retrieve_gt_bboxes[:, 1::2] * scale_ratio + if self.bbox_clip_border: + retrieve_gt_bboxes[:, 0::2] = np.clip(retrieve_gt_bboxes[:, 0::2], + 0, origin_w) + retrieve_gt_bboxes[:, 1::2] = np.clip(retrieve_gt_bboxes[:, 1::2], + 0, origin_h) + + if is_filp: + retrieve_gt_bboxes[:, 0::2] = ( + origin_w - retrieve_gt_bboxes[:, 0::2][:, ::-1]) + + # 7. filter + cp_retrieve_gt_bboxes = retrieve_gt_bboxes.copy() + cp_retrieve_gt_bboxes[:, 0::2] = \ + cp_retrieve_gt_bboxes[:, 0::2] - x_offset + cp_retrieve_gt_bboxes[:, 1::2] = \ + cp_retrieve_gt_bboxes[:, 1::2] - y_offset + if self.bbox_clip_border: + cp_retrieve_gt_bboxes[:, 0::2] = np.clip( + cp_retrieve_gt_bboxes[:, 0::2], 0, target_w) + cp_retrieve_gt_bboxes[:, 1::2] = np.clip( + cp_retrieve_gt_bboxes[:, 1::2], 0, target_h) + + # 8. mix up + ori_img = ori_img.astype(np.float32) + mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32) + + retrieve_gt_labels = retrieve_results['gt_labels'] + if not self.skip_filter: + keep_list = self._filter_box_candidates(retrieve_gt_bboxes.T, + cp_retrieve_gt_bboxes.T) + + retrieve_gt_labels = retrieve_gt_labels[keep_list] + cp_retrieve_gt_bboxes = cp_retrieve_gt_bboxes[keep_list] + + mixup_gt_bboxes = np.concatenate( + (results['gt_bboxes'], cp_retrieve_gt_bboxes), axis=0) + mixup_gt_labels = np.concatenate( + (results['gt_labels'], retrieve_gt_labels), axis=0) + + # remove outside bbox + inside_inds = find_inside_bboxes(mixup_gt_bboxes, target_h, target_w) + mixup_gt_bboxes = mixup_gt_bboxes[inside_inds] + mixup_gt_labels = mixup_gt_labels[inside_inds] + + results['img'] = mixup_img.astype(np.uint8) + results['img_shape'] = mixup_img.shape + results['gt_bboxes'] = mixup_gt_bboxes + results['gt_labels'] = mixup_gt_labels + + return results + + def _filter_box_candidates(self, bbox1, bbox2): + """Compute candidate boxes which include following 5 things: + + bbox1 before augment, bbox2 after augment, min_bbox_size (pixels), + min_area_ratio, max_aspect_ratio. + """ + + w1, h1 = bbox1[2] - bbox1[0], bbox1[3] - bbox1[1] + w2, h2 = bbox2[2] - bbox2[0], bbox2[3] - bbox2[1] + ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) + return ((w2 > self.min_bbox_size) + & (h2 > self.min_bbox_size) + & (w2 * h2 / (w1 * h1 + 1e-16) > self.min_area_ratio) + & (ar < self.max_aspect_ratio)) + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'dynamic_scale={self.dynamic_scale}, ' + repr_str += f'ratio_range={self.ratio_range}, ' + repr_str += f'flip_ratio={self.flip_ratio}, ' + repr_str += f'pad_val={self.pad_val}, ' + repr_str += f'max_iters={self.max_iters}, ' + repr_str += f'min_bbox_size={self.min_bbox_size}, ' + repr_str += f'min_area_ratio={self.min_area_ratio}, ' + repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, ' + repr_str += f'skip_filter={self.skip_filter})' + return repr_str + + +@PIPELINES.register_module() +class RandomAffine: + """Random affine transform data augmentation. + + This operation randomly generates affine transform matrix which including + rotation, translation, shear and scaling transforms. + + Args: + max_rotate_degree (float): Maximum degrees of rotation transform. + Default: 10. + max_translate_ratio (float): Maximum ratio of translation. + Default: 0.1. + scaling_ratio_range (tuple[float]): Min and max ratio of + scaling transform. Default: (0.5, 1.5). + max_shear_degree (float): Maximum degrees of shear + transform. Default: 2. + border (tuple[int]): Distance from height and width sides of input + image to adjust output shape. Only used in mosaic dataset. + Default: (0, 0). + border_val (tuple[int]): Border padding values of 3 channels. + Default: (114, 114, 114). + min_bbox_size (float): Width and height threshold to filter bboxes. + If the height or width of a box is smaller than this value, it + will be removed. Default: 2. + min_area_ratio (float): Threshold of area ratio between + original bboxes and wrapped bboxes. If smaller than this value, + the box will be removed. Default: 0.2. + max_aspect_ratio (float): Aspect ratio of width and height + threshold to filter bboxes. If max(h/w, w/h) larger than this + value, the box will be removed. + bbox_clip_border (bool, optional): Whether to clip the objects outside + the border of the image. In some dataset like MOT17, the gt bboxes + are allowed to cross the border of images. Therefore, we don't + need to clip the gt bboxes in these cases. Defaults to True. + skip_filter (bool): Whether to skip filtering rules. If it + is True, the filter rule will not be applied, and the + `min_bbox_size` and `min_area_ratio` and `max_aspect_ratio` + is invalid. Default to True. + """ + + def __init__(self, + max_rotate_degree=10.0, + max_translate_ratio=0.1, + scaling_ratio_range=(0.5, 1.5), + max_shear_degree=2.0, + border=(0, 0), + border_val=(114, 114, 114), + min_bbox_size=2, + min_area_ratio=0.2, + max_aspect_ratio=20, + bbox_clip_border=True, + skip_filter=True): + assert 0 <= max_translate_ratio <= 1 + assert scaling_ratio_range[0] <= scaling_ratio_range[1] + assert scaling_ratio_range[0] > 0 + self.max_rotate_degree = max_rotate_degree + self.max_translate_ratio = max_translate_ratio + self.scaling_ratio_range = scaling_ratio_range + self.max_shear_degree = max_shear_degree + self.border = border + self.border_val = border_val + self.min_bbox_size = min_bbox_size + self.min_area_ratio = min_area_ratio + self.max_aspect_ratio = max_aspect_ratio + self.bbox_clip_border = bbox_clip_border + self.skip_filter = skip_filter + + def __call__(self, results): + img = results['img'] + height = img.shape[0] + self.border[0] * 2 + width = img.shape[1] + self.border[1] * 2 + + # Rotation + rotation_degree = random.uniform(-self.max_rotate_degree, + self.max_rotate_degree) + rotation_matrix = self._get_rotation_matrix(rotation_degree) + + # Scaling + scaling_ratio = random.uniform(self.scaling_ratio_range[0], + self.scaling_ratio_range[1]) + scaling_matrix = self._get_scaling_matrix(scaling_ratio) + + # Shear + x_degree = random.uniform(-self.max_shear_degree, + self.max_shear_degree) + y_degree = random.uniform(-self.max_shear_degree, + self.max_shear_degree) + shear_matrix = self._get_shear_matrix(x_degree, y_degree) + + # Translation + trans_x = random.uniform(-self.max_translate_ratio, + self.max_translate_ratio) * width + trans_y = random.uniform(-self.max_translate_ratio, + self.max_translate_ratio) * height + translate_matrix = self._get_translation_matrix(trans_x, trans_y) + + warp_matrix = ( + translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix) + + img = cv2.warpPerspective( + img, + warp_matrix, + dsize=(width, height), + borderValue=self.border_val) + results['img'] = img + results['img_shape'] = img.shape + + for key in results.get('bbox_fields', []): + bboxes = results[key] + num_bboxes = len(bboxes) + if num_bboxes: + # homogeneous coordinates + xs = bboxes[:, [0, 0, 2, 2]].reshape(num_bboxes * 4) + ys = bboxes[:, [1, 3, 3, 1]].reshape(num_bboxes * 4) + ones = np.ones_like(xs) + points = np.vstack([xs, ys, ones]) + + warp_points = warp_matrix @ points + warp_points = warp_points[:2] / warp_points[2] + xs = warp_points[0].reshape(num_bboxes, 4) + ys = warp_points[1].reshape(num_bboxes, 4) + + warp_bboxes = np.vstack( + (xs.min(1), ys.min(1), xs.max(1), ys.max(1))).T + + if self.bbox_clip_border: + warp_bboxes[:, [0, 2]] = \ + warp_bboxes[:, [0, 2]].clip(0, width) + warp_bboxes[:, [1, 3]] = \ + warp_bboxes[:, [1, 3]].clip(0, height) + + # remove outside bbox + valid_index = find_inside_bboxes(warp_bboxes, height, width) + if not self.skip_filter: + # filter bboxes + filter_index = self.filter_gt_bboxes( + bboxes * scaling_ratio, warp_bboxes) + valid_index = valid_index & filter_index + + results[key] = warp_bboxes[valid_index] + if key in ['gt_bboxes']: + if 'gt_labels' in results: + results['gt_labels'] = results['gt_labels'][ + valid_index] + + if 'gt_masks' in results: + raise NotImplementedError( + 'RandomAffine only supports bbox.') + return results + + def filter_gt_bboxes(self, origin_bboxes, wrapped_bboxes): + origin_w = origin_bboxes[:, 2] - origin_bboxes[:, 0] + origin_h = origin_bboxes[:, 3] - origin_bboxes[:, 1] + wrapped_w = wrapped_bboxes[:, 2] - wrapped_bboxes[:, 0] + wrapped_h = wrapped_bboxes[:, 3] - wrapped_bboxes[:, 1] + aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16), + wrapped_h / (wrapped_w + 1e-16)) + + wh_valid_idx = (wrapped_w > self.min_bbox_size) & \ + (wrapped_h > self.min_bbox_size) + area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h + + 1e-16) > self.min_area_ratio + aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio + return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(max_rotate_degree={self.max_rotate_degree}, ' + repr_str += f'max_translate_ratio={self.max_translate_ratio}, ' + repr_str += f'scaling_ratio={self.scaling_ratio_range}, ' + repr_str += f'max_shear_degree={self.max_shear_degree}, ' + repr_str += f'border={self.border}, ' + repr_str += f'border_val={self.border_val}, ' + repr_str += f'min_bbox_size={self.min_bbox_size}, ' + repr_str += f'min_area_ratio={self.min_area_ratio}, ' + repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, ' + repr_str += f'skip_filter={self.skip_filter})' + return repr_str + + @staticmethod + def _get_rotation_matrix(rotate_degrees): + radian = math.radians(rotate_degrees) + rotation_matrix = np.array( + [[np.cos(radian), -np.sin(radian), 0.], + [np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]], + dtype=np.float32) + return rotation_matrix + + @staticmethod + def _get_scaling_matrix(scale_ratio): + scaling_matrix = np.array( + [[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]], + dtype=np.float32) + return scaling_matrix + + @staticmethod + def _get_share_matrix(scale_ratio): + scaling_matrix = np.array( + [[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]], + dtype=np.float32) + return scaling_matrix + + @staticmethod + def _get_shear_matrix(x_shear_degrees, y_shear_degrees): + x_radian = math.radians(x_shear_degrees) + y_radian = math.radians(y_shear_degrees) + shear_matrix = np.array([[1, np.tan(x_radian), 0.], + [np.tan(y_radian), 1, 0.], [0., 0., 1.]], + dtype=np.float32) + return shear_matrix + + @staticmethod + def _get_translation_matrix(x, y): + translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]], + dtype=np.float32) + return translation_matrix + + +@PIPELINES.register_module() +class YOLOXHSVRandomAug: + """Apply HSV augmentation to image sequentially. It is referenced from + https://github.com/Megvii- + BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21. + + Args: + hue_delta (int): delta of hue. Default: 5. + saturation_delta (int): delta of saturation. Default: 30. + value_delta (int): delat of value. Default: 30. + """ + + def __init__(self, hue_delta=5, saturation_delta=30, value_delta=30): + self.hue_delta = hue_delta + self.saturation_delta = saturation_delta + self.value_delta = value_delta + + def __call__(self, results): + img = results['img'] + hsv_gains = np.random.uniform(-1, 1, 3) * [ + self.hue_delta, self.saturation_delta, self.value_delta + ] + # random selection of h, s, v + hsv_gains *= np.random.randint(0, 2, 3) + # prevent overflow + hsv_gains = hsv_gains.astype(np.int16) + img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16) + + img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180 + img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255) + img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255) + cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img) + + results['img'] = img + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(hue_delta={self.hue_delta}, ' + repr_str += f'saturation_delta={self.saturation_delta}, ' + repr_str += f'value_delta={self.value_delta})' + return repr_str + + +@PIPELINES.register_module() +class CopyPaste: + """Simple Copy-Paste is a Strong Data Augmentation Method for Instance + Segmentation The simple copy-paste transform steps are as follows: + + 1. The destination image is already resized with aspect ratio kept, + cropped and padded. + 2. Randomly select a source image, which is also already resized + with aspect ratio kept, cropped and padded in a similar way + as the destination image. + 3. Randomly select some objects from the source image. + 4. Paste these source objects to the destination image directly, + due to the source and destination image have the same size. + 5. Update object masks of the destination image, for some origin objects + may be occluded. + 6. Generate bboxes from the updated destination masks and + filter some objects which are totally occluded, and adjust bboxes + which are partly occluded. + 7. Append selected source bboxes, masks, and labels. + + Args: + max_num_pasted (int): The maximum number of pasted objects. + Default: 100. + bbox_occluded_thr (int): The threshold of occluded bbox. + Default: 10. + mask_occluded_thr (int): The threshold of occluded mask. + Default: 300. + selected (bool): Whether select objects or not. If select is False, + all objects of the source image will be pasted to the + destination image. + Default: True. + """ + + def __init__( + self, + max_num_pasted=100, + bbox_occluded_thr=10, + mask_occluded_thr=300, + selected=True, + ): + self.max_num_pasted = max_num_pasted + self.bbox_occluded_thr = bbox_occluded_thr + self.mask_occluded_thr = mask_occluded_thr + self.selected = selected + + def get_indexes(self, dataset): + """Call function to collect indexes.s. + + Args: + dataset (:obj:`MultiImageMixDataset`): The dataset. + Returns: + list: Indexes. + """ + return random.randint(0, len(dataset)) + + def __call__(self, results): + """Call function to make a copy-paste of image. + + Args: + results (dict): Result dict. + Returns: + dict: Result dict with copy-paste transformed. + """ + + assert 'mix_results' in results + num_images = len(results['mix_results']) + assert num_images == 1, \ + f'CopyPaste only supports processing 2 images, got {num_images}' + if self.selected: + selected_results = self._select_object(results['mix_results'][0]) + else: + selected_results = results['mix_results'][0] + return self._copy_paste(results, selected_results) + + def _select_object(self, results): + """Select some objects from the source results.""" + bboxes = results['gt_bboxes'] + labels = results['gt_labels'] + masks = results['gt_masks'] + max_num_pasted = min(bboxes.shape[0] + 1, self.max_num_pasted) + num_pasted = np.random.randint(0, max_num_pasted) + selected_inds = np.random.choice( + bboxes.shape[0], size=num_pasted, replace=False) + + selected_bboxes = bboxes[selected_inds] + selected_labels = labels[selected_inds] + selected_masks = masks[selected_inds] + + results['gt_bboxes'] = selected_bboxes + results['gt_labels'] = selected_labels + results['gt_masks'] = selected_masks + return results + + def _copy_paste(self, dst_results, src_results): + """CopyPaste transform function. + + Args: + dst_results (dict): Result dict of the destination image. + src_results (dict): Result dict of the source image. + Returns: + dict: Updated result dict. + """ + dst_img = dst_results['img'] + dst_bboxes = dst_results['gt_bboxes'] + dst_labels = dst_results['gt_labels'] + dst_masks = dst_results['gt_masks'] + + src_img = src_results['img'] + src_bboxes = src_results['gt_bboxes'] + src_labels = src_results['gt_labels'] + src_masks = src_results['gt_masks'] + + if len(src_bboxes) == 0: + return dst_results + + # update masks and generate bboxes from updated masks + composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0) + updated_dst_masks = self.get_updated_masks(dst_masks, composed_mask) + updated_dst_bboxes = updated_dst_masks.get_bboxes() + assert len(updated_dst_bboxes) == len(updated_dst_masks) + + # filter totally occluded objects + bboxes_inds = np.all( + np.abs( + (updated_dst_bboxes - dst_bboxes)) <= self.bbox_occluded_thr, + axis=-1) + masks_inds = updated_dst_masks.masks.sum( + axis=(1, 2)) > self.mask_occluded_thr + valid_inds = bboxes_inds | masks_inds + + # Paste source objects to destination image directly + img = dst_img * (1 - composed_mask[..., np.newaxis] + ) + src_img * composed_mask[..., np.newaxis] + bboxes = np.concatenate([updated_dst_bboxes[valid_inds], src_bboxes]) + labels = np.concatenate([dst_labels[valid_inds], src_labels]) + masks = np.concatenate( + [updated_dst_masks.masks[valid_inds], src_masks.masks]) + + dst_results['img'] = img + dst_results['gt_bboxes'] = bboxes + dst_results['gt_labels'] = labels + dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1], + masks.shape[2]) + + return dst_results + + def get_updated_masks(self, masks, composed_mask): + assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \ + 'Cannot compare two arrays of different size' + masks.masks = np.where(composed_mask, 0, masks.masks) + return masks + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'max_num_pasted={self.max_num_pasted}, ' + repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, ' + repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, ' + repr_str += f'selected={self.selected}, ' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/__init__.py new file mode 100644 index 000000000..a4c7ea135 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .class_aware_sampler import ClassAwareSampler +from .distributed_sampler import DistributedSampler +from .group_sampler import DistributedGroupSampler, GroupSampler +from .infinite_sampler import InfiniteBatchSampler, InfiniteGroupBatchSampler + +__all__ = [ + 'DistributedSampler', 'DistributedGroupSampler', 'GroupSampler', + 'InfiniteGroupBatchSampler', 'InfiniteBatchSampler', 'ClassAwareSampler' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/class_aware_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/class_aware_sampler.py new file mode 100644 index 000000000..c52708eb8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/class_aware_sampler.py @@ -0,0 +1,176 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +from mmcv.runner import get_dist_info +from torch.utils.data import Sampler + +from mmdet.core.utils import sync_random_seed + + +class ClassAwareSampler(Sampler): + r"""Sampler that restricts data loading to the label of the dataset. + + A class-aware sampling strategy to effectively tackle the + non-uniform class distribution. The length of the training data is + consistent with source data. Simple improvements based on `Relay + Backpropagation for Effective Learning of Deep Convolutional + Neural Networks `_ + + The implementation logic is referred to + https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py + + Args: + dataset: Dataset used for sampling. + samples_per_gpu (int): When model is :obj:`DistributedDataParallel`, + it is the number of training samples on each GPU. + When model is :obj:`DataParallel`, it is + `num_gpus * samples_per_gpu`. + Default : 1. + num_replicas (optional): Number of processes participating in + distributed training. + rank (optional): Rank of the current process within num_replicas. + seed (int, optional): random seed used to shuffle the sampler if + ``shuffle=True``. This number should be identical across all + processes in the distributed group. Default: 0. + num_sample_class (int): The number of samples taken from each + per-label list. Default: 1 + """ + + def __init__(self, + dataset, + samples_per_gpu=1, + num_replicas=None, + rank=None, + seed=0, + num_sample_class=1): + _rank, _num_replicas = get_dist_info() + if num_replicas is None: + num_replicas = _num_replicas + if rank is None: + rank = _rank + + self.dataset = dataset + self.num_replicas = num_replicas + self.samples_per_gpu = samples_per_gpu + self.rank = rank + self.epoch = 0 + # Must be the same across all workers. If None, will use a + # random seed shared among workers + # (require synchronization among all workers) + self.seed = sync_random_seed(seed) + + # The number of samples taken from each per-label list + assert num_sample_class > 0 and isinstance(num_sample_class, int) + self.num_sample_class = num_sample_class + # Get per-label image list from dataset + assert hasattr(dataset, 'get_cat2imgs'), \ + 'dataset must have `get_cat2imgs` function' + self.cat_dict = dataset.get_cat2imgs() + + self.num_samples = int( + math.ceil( + len(self.dataset) * 1.0 / self.num_replicas / + self.samples_per_gpu)) * self.samples_per_gpu + self.total_size = self.num_samples * self.num_replicas + + # get number of images containing each category + self.num_cat_imgs = [len(x) for x in self.cat_dict.values()] + # filter labels without images + self.valid_cat_inds = [ + i for i, length in enumerate(self.num_cat_imgs) if length != 0 + ] + self.num_classes = len(self.valid_cat_inds) + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch + self.seed) + + # initialize label list + label_iter_list = RandomCycleIter(self.valid_cat_inds, generator=g) + # initialize each per-label image list + data_iter_dict = dict() + for i in self.valid_cat_inds: + data_iter_dict[i] = RandomCycleIter(self.cat_dict[i], generator=g) + + def gen_cat_img_inds(cls_list, data_dict, num_sample_cls): + """Traverse the categories and extract `num_sample_cls` image + indexes of the corresponding categories one by one.""" + id_indices = [] + for _ in range(len(cls_list)): + cls_idx = next(cls_list) + for _ in range(num_sample_cls): + id = next(data_dict[cls_idx]) + id_indices.append(id) + return id_indices + + # deterministically shuffle based on epoch + num_bins = int( + math.ceil(self.total_size * 1.0 / self.num_classes / + self.num_sample_class)) + indices = [] + for i in range(num_bins): + indices += gen_cat_img_inds(label_iter_list, data_iter_dict, + self.num_sample_class) + + # fix extra samples to make it evenly divisible + if len(indices) >= self.total_size: + indices = indices[:self.total_size] + else: + indices += indices[:(self.total_size - len(indices))] + assert len(indices) == self.total_size + + # subsample + offset = self.num_samples * self.rank + indices = indices[offset:offset + self.num_samples] + assert len(indices) == self.num_samples + + return iter(indices) + + def __len__(self): + return self.num_samples + + def set_epoch(self, epoch): + self.epoch = epoch + + +class RandomCycleIter: + """Shuffle the list and do it again after the list have traversed. + + The implementation logic is referred to + https://github.com/wutong16/DistributionBalancedLoss/blob/master/mllt/datasets/loader/sampler.py + + Example: + >>> label_list = [0, 1, 2, 4, 5] + >>> g = torch.Generator() + >>> g.manual_seed(0) + >>> label_iter_list = RandomCycleIter(label_list, generator=g) + >>> index = next(label_iter_list) + Args: + data (list or ndarray): The data that needs to be shuffled. + generator: An torch.Generator object, which is used in setting the seed + for generating random numbers. + """ # noqa: W605 + + def __init__(self, data, generator=None): + self.data = data + self.length = len(data) + self.index = torch.randperm(self.length, generator=generator).numpy() + self.i = 0 + self.generator = generator + + def __iter__(self): + return self + + def __len__(self): + return len(self.data) + + def __next__(self): + if self.i == self.length: + self.index = torch.randperm( + self.length, generator=self.generator).numpy() + self.i = 0 + idx = self.data[self.index[self.i]] + self.i += 1 + return idx diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/distributed_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/distributed_sampler.py new file mode 100644 index 000000000..1bc8b7c36 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/distributed_sampler.py @@ -0,0 +1,54 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +from torch.utils.data import DistributedSampler as _DistributedSampler + +from mmdet.core.utils import sync_random_seed +from mmdet.utils import get_device + + +class DistributedSampler(_DistributedSampler): + + def __init__(self, + dataset, + num_replicas=None, + rank=None, + shuffle=True, + seed=0): + super().__init__( + dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) + + # In distributed sampling, different ranks should sample + # non-overlapped data in the dataset. Therefore, this function + # is used to make sure that each rank shuffles the data indices + # in the same order based on the same seed. Then different ranks + # could use different indices to select non-overlapped data from the + # same data list. + device = get_device() + self.seed = sync_random_seed(seed, device) + + def __iter__(self): + # deterministically shuffle based on epoch + if self.shuffle: + g = torch.Generator() + # When :attr:`shuffle=True`, this ensures all replicas + # use a different random ordering for each epoch. + # Otherwise, the next iteration of this sampler will + # yield the same ordering. + g.manual_seed(self.epoch + self.seed) + indices = torch.randperm(len(self.dataset), generator=g).tolist() + else: + indices = torch.arange(len(self.dataset)).tolist() + + # add extra samples to make it evenly divisible + # in case that indices is shorter than half of total_size + indices = (indices * + math.ceil(self.total_size / len(indices)))[:self.total_size] + assert len(indices) == self.total_size + + # subsample + indices = indices[self.rank:self.total_size:self.num_replicas] + assert len(indices) == self.num_samples + + return iter(indices) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/group_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/group_sampler.py new file mode 100644 index 000000000..783d2b21c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/group_sampler.py @@ -0,0 +1,148 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import numpy as np +import torch +from mmcv.runner import get_dist_info +from torch.utils.data import Sampler + + +class GroupSampler(Sampler): + + def __init__(self, dataset, samples_per_gpu=1): + assert hasattr(dataset, 'flag') + self.dataset = dataset + self.samples_per_gpu = samples_per_gpu + self.flag = dataset.flag.astype(np.int64) + self.group_sizes = np.bincount(self.flag) + self.num_samples = 0 + for i, size in enumerate(self.group_sizes): + self.num_samples += int(np.ceil( + size / self.samples_per_gpu)) * self.samples_per_gpu + + def __iter__(self): + indices = [] + for i, size in enumerate(self.group_sizes): + if size == 0: + continue + indice = np.where(self.flag == i)[0] + assert len(indice) == size + np.random.shuffle(indice) + num_extra = int(np.ceil(size / self.samples_per_gpu) + ) * self.samples_per_gpu - len(indice) + indice = np.concatenate( + [indice, np.random.choice(indice, num_extra)]) + indices.append(indice) + indices = np.concatenate(indices) + indices = [ + indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] + for i in np.random.permutation( + range(len(indices) // self.samples_per_gpu)) + ] + indices = np.concatenate(indices) + indices = indices.astype(np.int64).tolist() + assert len(indices) == self.num_samples + return iter(indices) + + def __len__(self): + return self.num_samples + + +class DistributedGroupSampler(Sampler): + """Sampler that restricts data loading to a subset of the dataset. + + It is especially useful in conjunction with + :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each + process can pass a DistributedSampler instance as a DataLoader sampler, + and load a subset of the original dataset that is exclusive to it. + + .. note:: + Dataset is assumed to be of constant size. + + Arguments: + dataset: Dataset used for sampling. + num_replicas (optional): Number of processes participating in + distributed training. + rank (optional): Rank of the current process within num_replicas. + seed (int, optional): random seed used to shuffle the sampler if + ``shuffle=True``. This number should be identical across all + processes in the distributed group. Default: 0. + """ + + def __init__(self, + dataset, + samples_per_gpu=1, + num_replicas=None, + rank=None, + seed=0): + _rank, _num_replicas = get_dist_info() + if num_replicas is None: + num_replicas = _num_replicas + if rank is None: + rank = _rank + self.dataset = dataset + self.samples_per_gpu = samples_per_gpu + self.num_replicas = num_replicas + self.rank = rank + self.epoch = 0 + self.seed = seed if seed is not None else 0 + + assert hasattr(self.dataset, 'flag') + self.flag = self.dataset.flag + self.group_sizes = np.bincount(self.flag) + + self.num_samples = 0 + for i, j in enumerate(self.group_sizes): + self.num_samples += int( + math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / + self.num_replicas)) * self.samples_per_gpu + self.total_size = self.num_samples * self.num_replicas + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch + self.seed) + + indices = [] + for i, size in enumerate(self.group_sizes): + if size > 0: + indice = np.where(self.flag == i)[0] + assert len(indice) == size + # add .numpy() to avoid bug when selecting indice in parrots. + # TODO: check whether torch.randperm() can be replaced by + # numpy.random.permutation(). + indice = indice[list( + torch.randperm(int(size), generator=g).numpy())].tolist() + extra = int( + math.ceil( + size * 1.0 / self.samples_per_gpu / self.num_replicas) + ) * self.samples_per_gpu * self.num_replicas - len(indice) + # pad indice + tmp = indice.copy() + for _ in range(extra // size): + indice.extend(tmp) + indice.extend(tmp[:extra % size]) + indices.extend(indice) + + assert len(indices) == self.total_size + + indices = [ + indices[j] for i in list( + torch.randperm( + len(indices) // self.samples_per_gpu, generator=g)) + for j in range(i * self.samples_per_gpu, (i + 1) * + self.samples_per_gpu) + ] + + # subsample + offset = self.num_samples * self.rank + indices = indices[offset:offset + self.num_samples] + assert len(indices) == self.num_samples + + return iter(indices) + + def __len__(self): + return self.num_samples + + def set_epoch(self, epoch): + self.epoch = epoch diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/infinite_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/infinite_sampler.py new file mode 100644 index 000000000..d42487e6a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/samplers/infinite_sampler.py @@ -0,0 +1,186 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import itertools + +import numpy as np +import torch +from mmcv.runner import get_dist_info +from torch.utils.data.sampler import Sampler + +from mmdet.core.utils import sync_random_seed + + +class InfiniteGroupBatchSampler(Sampler): + """Similar to `BatchSampler` warping a `GroupSampler. It is designed for + iteration-based runners like `IterBasedRunner` and yields a mini-batch + indices each time, all indices in a batch should be in the same group. + + The implementation logic is referred to + https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/samplers/grouped_batch_sampler.py + + Args: + dataset (object): The dataset. + batch_size (int): When model is :obj:`DistributedDataParallel`, + it is the number of training samples on each GPU. + When model is :obj:`DataParallel`, it is + `num_gpus * samples_per_gpu`. + Default : 1. + world_size (int, optional): Number of processes participating in + distributed training. Default: None. + rank (int, optional): Rank of current process. Default: None. + seed (int): Random seed. Default: 0. + shuffle (bool): Whether shuffle the indices of a dummy `epoch`, it + should be noted that `shuffle` can not guarantee that you can + generate sequential indices because it need to ensure + that all indices in a batch is in a group. Default: True. + """ # noqa: W605 + + def __init__(self, + dataset, + batch_size=1, + world_size=None, + rank=None, + seed=0, + shuffle=True): + _rank, _world_size = get_dist_info() + if world_size is None: + world_size = _world_size + if rank is None: + rank = _rank + self.rank = rank + self.world_size = world_size + self.dataset = dataset + self.batch_size = batch_size + # In distributed sampling, different ranks should sample + # non-overlapped data in the dataset. Therefore, this function + # is used to make sure that each rank shuffles the data indices + # in the same order based on the same seed. Then different ranks + # could use different indices to select non-overlapped data from the + # same data list. + self.seed = sync_random_seed(seed) + self.shuffle = shuffle + + assert hasattr(self.dataset, 'flag') + self.flag = self.dataset.flag + self.group_sizes = np.bincount(self.flag) + # buffer used to save indices of each group + self.buffer_per_group = {k: [] for k in range(len(self.group_sizes))} + + self.size = len(dataset) + self.indices = self._indices_of_rank() + + def _infinite_indices(self): + """Infinitely yield a sequence of indices.""" + g = torch.Generator() + g.manual_seed(self.seed) + while True: + if self.shuffle: + yield from torch.randperm(self.size, generator=g).tolist() + + else: + yield from torch.arange(self.size).tolist() + + def _indices_of_rank(self): + """Slice the infinite indices by rank.""" + yield from itertools.islice(self._infinite_indices(), self.rank, None, + self.world_size) + + def __iter__(self): + # once batch size is reached, yield the indices + for idx in self.indices: + flag = self.flag[idx] + group_buffer = self.buffer_per_group[flag] + group_buffer.append(idx) + if len(group_buffer) == self.batch_size: + yield group_buffer[:] + del group_buffer[:] + + def __len__(self): + """Length of base dataset.""" + return self.size + + def set_epoch(self, epoch): + """Not supported in `IterationBased` runner.""" + raise NotImplementedError + + +class InfiniteBatchSampler(Sampler): + """Similar to `BatchSampler` warping a `DistributedSampler. It is designed + iteration-based runners like `IterBasedRunner` and yields a mini-batch + indices each time. + + The implementation logic is referred to + https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/samplers/grouped_batch_sampler.py + + Args: + dataset (object): The dataset. + batch_size (int): When model is :obj:`DistributedDataParallel`, + it is the number of training samples on each GPU, + When model is :obj:`DataParallel`, it is + `num_gpus * samples_per_gpu`. + Default : 1. + world_size (int, optional): Number of processes participating in + distributed training. Default: None. + rank (int, optional): Rank of current process. Default: None. + seed (int): Random seed. Default: 0. + shuffle (bool): Whether shuffle the dataset or not. Default: True. + """ # noqa: W605 + + def __init__(self, + dataset, + batch_size=1, + world_size=None, + rank=None, + seed=0, + shuffle=True): + _rank, _world_size = get_dist_info() + if world_size is None: + world_size = _world_size + if rank is None: + rank = _rank + self.rank = rank + self.world_size = world_size + self.dataset = dataset + self.batch_size = batch_size + # In distributed sampling, different ranks should sample + # non-overlapped data in the dataset. Therefore, this function + # is used to make sure that each rank shuffles the data indices + # in the same order based on the same seed. Then different ranks + # could use different indices to select non-overlapped data from the + # same data list. + self.seed = sync_random_seed(seed) + self.shuffle = shuffle + self.size = len(dataset) + self.indices = self._indices_of_rank() + + def _infinite_indices(self): + """Infinitely yield a sequence of indices.""" + g = torch.Generator() + g.manual_seed(self.seed) + while True: + if self.shuffle: + yield from torch.randperm(self.size, generator=g).tolist() + + else: + yield from torch.arange(self.size).tolist() + + def _indices_of_rank(self): + """Slice the infinite indices by rank.""" + yield from itertools.islice(self._infinite_indices(), self.rank, None, + self.world_size) + + def __iter__(self): + # once batch size is reached, yield the indices + batch_buffer = [] + for idx in self.indices: + batch_buffer.append(idx) + if len(batch_buffer) == self.batch_size: + yield batch_buffer + batch_buffer = [] + + def __len__(self): + """Length of base dataset.""" + return self.size + + def set_epoch(self, epoch): + """Not supported in `IterationBased` runner.""" + raise NotImplementedError diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/utils.py new file mode 100644 index 000000000..26e922d2b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/utils.py @@ -0,0 +1,166 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +from mmcv.cnn import VGG +from mmcv.runner.hooks import HOOKS, Hook + +from mmdet.datasets.builder import PIPELINES +from mmdet.datasets.pipelines import (LoadAnnotations, LoadImageFromFile, + LoadPanopticAnnotations) +from mmdet.models.dense_heads import GARPNHead, RPNHead +from mmdet.models.roi_heads.mask_heads import FusedSemanticHead + + +def replace_ImageToTensor(pipelines): + """Replace the ImageToTensor transform in a data pipeline to + DefaultFormatBundle, which is normally useful in batch inference. + + Args: + pipelines (list[dict]): Data pipeline configs. + + Returns: + list: The new pipeline list with all ImageToTensor replaced by + DefaultFormatBundle. + + Examples: + >>> pipelines = [ + ... dict(type='LoadImageFromFile'), + ... dict( + ... type='MultiScaleFlipAug', + ... img_scale=(1333, 800), + ... flip=False, + ... transforms=[ + ... dict(type='Resize', keep_ratio=True), + ... dict(type='RandomFlip'), + ... dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]), + ... dict(type='Pad', size_divisor=32), + ... dict(type='ImageToTensor', keys=['img']), + ... dict(type='Collect', keys=['img']), + ... ]) + ... ] + >>> expected_pipelines = [ + ... dict(type='LoadImageFromFile'), + ... dict( + ... type='MultiScaleFlipAug', + ... img_scale=(1333, 800), + ... flip=False, + ... transforms=[ + ... dict(type='Resize', keep_ratio=True), + ... dict(type='RandomFlip'), + ... dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]), + ... dict(type='Pad', size_divisor=32), + ... dict(type='DefaultFormatBundle'), + ... dict(type='Collect', keys=['img']), + ... ]) + ... ] + >>> assert expected_pipelines == replace_ImageToTensor(pipelines) + """ + pipelines = copy.deepcopy(pipelines) + for i, pipeline in enumerate(pipelines): + if pipeline['type'] == 'MultiScaleFlipAug': + assert 'transforms' in pipeline + pipeline['transforms'] = replace_ImageToTensor( + pipeline['transforms']) + elif pipeline['type'] == 'ImageToTensor': + warnings.warn( + '"ImageToTensor" pipeline is replaced by ' + '"DefaultFormatBundle" for batch inference. It is ' + 'recommended to manually replace it in the test ' + 'data pipeline in your config file.', UserWarning) + pipelines[i] = {'type': 'DefaultFormatBundle'} + return pipelines + + +def get_loading_pipeline(pipeline): + """Only keep loading image and annotations related configuration. + + Args: + pipeline (list[dict]): Data pipeline configs. + + Returns: + list[dict]: The new pipeline list with only keep + loading image and annotations related configuration. + + Examples: + >>> pipelines = [ + ... dict(type='LoadImageFromFile'), + ... dict(type='LoadAnnotations', with_bbox=True), + ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), + ... dict(type='RandomFlip', flip_ratio=0.5), + ... dict(type='Normalize', **img_norm_cfg), + ... dict(type='Pad', size_divisor=32), + ... dict(type='DefaultFormatBundle'), + ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) + ... ] + >>> expected_pipelines = [ + ... dict(type='LoadImageFromFile'), + ... dict(type='LoadAnnotations', with_bbox=True) + ... ] + >>> assert expected_pipelines ==\ + ... get_loading_pipeline(pipelines) + """ + loading_pipeline_cfg = [] + for cfg in pipeline: + obj_cls = PIPELINES.get(cfg['type']) + # TODO:use more elegant way to distinguish loading modules + if obj_cls is not None and obj_cls in (LoadImageFromFile, + LoadAnnotations, + LoadPanopticAnnotations): + loading_pipeline_cfg.append(cfg) + assert len(loading_pipeline_cfg) == 2, \ + 'The data pipeline in your config file must include ' \ + 'loading image and annotations related pipeline.' + return loading_pipeline_cfg + + +@HOOKS.register_module() +class NumClassCheckHook(Hook): + + def _check_head(self, runner): + """Check whether the `num_classes` in head matches the length of + `CLASSES` in `dataset`. + + Args: + runner (obj:`EpochBasedRunner`): Epoch based Runner. + """ + model = runner.model + dataset = runner.data_loader.dataset + if dataset.CLASSES is None: + runner.logger.warning( + f'Please set `CLASSES` ' + f'in the {dataset.__class__.__name__} and' + f'check if it is consistent with the `num_classes` ' + f'of head') + else: + assert type(dataset.CLASSES) is not str, \ + (f'`CLASSES` in {dataset.__class__.__name__}' + f'should be a tuple of str.' + f'Add comma if number of classes is 1 as ' + f'CLASSES = ({dataset.CLASSES},)') + for name, module in model.named_modules(): + if hasattr(module, 'num_classes') and not isinstance( + module, (RPNHead, VGG, FusedSemanticHead, GARPNHead)): + assert module.num_classes == len(dataset.CLASSES), \ + (f'The `num_classes` ({module.num_classes}) in ' + f'{module.__class__.__name__} of ' + f'{model.__class__.__name__} does not matches ' + f'the length of `CLASSES` ' + f'{len(dataset.CLASSES)}) in ' + f'{dataset.__class__.__name__}') + + def before_train_epoch(self, runner): + """Check whether the training dataset is compatible with head. + + Args: + runner (obj:`EpochBasedRunner`): Epoch based Runner. + """ + self._check_head(runner) + + def before_val_epoch(self, runner): + """Check whether the dataset in val epoch is compatible with head. + + Args: + runner (obj:`EpochBasedRunner`): Epoch based Runner. + """ + self._check_head(runner) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/voc.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/voc.py new file mode 100644 index 000000000..0a3ea7aac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/voc.py @@ -0,0 +1,112 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict + +from mmcv.utils import print_log + +from mmdet.core import eval_map, eval_recalls +from .builder import DATASETS +from .xml_style import XMLDataset + + +@DATASETS.register_module() +class VOCDataset(XMLDataset): + + CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', + 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', + 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', + 'tvmonitor') + + PALETTE = [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), + (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), + (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), + (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), + (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] + + def __init__(self, **kwargs): + super(VOCDataset, self).__init__(**kwargs) + if 'VOC2007' in self.img_prefix: + self.year = 2007 + elif 'VOC2012' in self.img_prefix: + self.year = 2012 + else: + raise ValueError('Cannot infer dataset year from img_prefix') + + def evaluate(self, + results, + metric='mAP', + logger=None, + proposal_nums=(100, 300, 1000), + iou_thr=0.5, + scale_ranges=None): + """Evaluate in VOC protocol. + + Args: + results (list[list | tuple]): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. Options are + 'mAP', 'recall'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + proposal_nums (Sequence[int]): Proposal number used for evaluating + recalls, such as recall@100, recall@1000. + Default: (100, 300, 1000). + iou_thr (float | list[float]): IoU threshold. Default: 0.5. + scale_ranges (list[tuple], optional): Scale ranges for evaluating + mAP. If not specified, all bounding boxes would be included in + evaluation. Default: None. + + Returns: + dict[str, float]: AP/recall metrics. + """ + + if not isinstance(metric, str): + assert len(metric) == 1 + metric = metric[0] + allowed_metrics = ['mAP', 'recall'] + if metric not in allowed_metrics: + raise KeyError(f'metric {metric} is not supported') + annotations = [self.get_ann_info(i) for i in range(len(self))] + eval_results = OrderedDict() + iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr + if metric == 'mAP': + assert isinstance(iou_thrs, list) + if self.year == 2007: + ds_name = 'voc07' + else: + ds_name = self.CLASSES + mean_aps = [] + for iou_thr in iou_thrs: + print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') + # Follow the official implementation, + # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar + # we should use the legacy coordinate system in mmdet 1.x, + # which means w, h should be computed as 'x2 - x1 + 1` and + # `y2 - y1 + 1` + mean_ap, _ = eval_map( + results, + annotations, + scale_ranges=None, + iou_thr=iou_thr, + dataset=ds_name, + logger=logger, + use_legacy_coordinate=True) + mean_aps.append(mean_ap) + eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) + eval_results['mAP'] = sum(mean_aps) / len(mean_aps) + eval_results.move_to_end('mAP', last=False) + elif metric == 'recall': + gt_bboxes = [ann['bboxes'] for ann in annotations] + recalls = eval_recalls( + gt_bboxes, + results, + proposal_nums, + iou_thrs, + logger=logger, + use_legacy_coordinate=True) + for i, num in enumerate(proposal_nums): + for j, iou_thr in enumerate(iou_thrs): + eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] + if recalls.shape[1] > 1: + ar = recalls.mean(axis=1) + for i, num in enumerate(proposal_nums): + eval_results[f'AR@{num}'] = ar[i] + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/wider_face.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/wider_face.py new file mode 100644 index 000000000..85a5fdc54 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/wider_face.py @@ -0,0 +1,54 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import xml.etree.ElementTree as ET + +import mmcv + +from .builder import DATASETS +from .xml_style import XMLDataset + + +@DATASETS.register_module() +class WIDERFaceDataset(XMLDataset): + """Reader for the WIDER Face dataset in PASCAL VOC format. + + Conversion scripts can be found in + https://github.com/sovrasov/wider-face-pascal-voc-annotations + """ + CLASSES = ('face', ) + + PALETTE = [(0, 255, 0)] + + def __init__(self, **kwargs): + super(WIDERFaceDataset, self).__init__(**kwargs) + + def load_annotations(self, ann_file): + """Load annotation from WIDERFace XML style annotation file. + + Args: + ann_file (str): Path of XML file. + + Returns: + list[dict]: Annotation info from XML file. + """ + + data_infos = [] + img_ids = mmcv.list_from_file(ann_file) + for img_id in img_ids: + filename = f'{img_id}.jpg' + xml_path = osp.join(self.img_prefix, 'Annotations', + f'{img_id}.xml') + tree = ET.parse(xml_path) + root = tree.getroot() + size = root.find('size') + width = int(size.find('width').text) + height = int(size.find('height').text) + folder = root.find('folder').text + data_infos.append( + dict( + id=img_id, + filename=osp.join(folder, filename), + width=width, + height=height)) + + return data_infos diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/datasets/xml_style.py b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/xml_style.py new file mode 100644 index 000000000..039d5d7d0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/datasets/xml_style.py @@ -0,0 +1,178 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import xml.etree.ElementTree as ET + +import mmcv +import numpy as np +from PIL import Image + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class XMLDataset(CustomDataset): + """XML dataset for detection. + + Args: + min_size (int | float, optional): The minimum size of bounding + boxes in the images. If the size of a bounding box is less than + ``min_size``, it would be add to ignored field. + img_subdir (str): Subdir where images are stored. Default: JPEGImages. + ann_subdir (str): Subdir where annotations are. Default: Annotations. + """ + + def __init__(self, + min_size=None, + img_subdir='JPEGImages', + ann_subdir='Annotations', + **kwargs): + assert self.CLASSES or kwargs.get( + 'classes', None), 'CLASSES in `XMLDataset` can not be None.' + self.img_subdir = img_subdir + self.ann_subdir = ann_subdir + super(XMLDataset, self).__init__(**kwargs) + self.cat2label = {cat: i for i, cat in enumerate(self.CLASSES)} + self.min_size = min_size + + def load_annotations(self, ann_file): + """Load annotation from XML style ann_file. + + Args: + ann_file (str): Path of XML file. + + Returns: + list[dict]: Annotation info from XML file. + """ + + data_infos = [] + img_ids = mmcv.list_from_file(ann_file) + for img_id in img_ids: + filename = osp.join(self.img_subdir, f'{img_id}.jpg') + xml_path = osp.join(self.img_prefix, self.ann_subdir, + f'{img_id}.xml') + tree = ET.parse(xml_path) + root = tree.getroot() + size = root.find('size') + if size is not None: + width = int(size.find('width').text) + height = int(size.find('height').text) + else: + img_path = osp.join(self.img_prefix, filename) + img = Image.open(img_path) + width, height = img.size + data_infos.append( + dict(id=img_id, filename=filename, width=width, height=height)) + + return data_infos + + def _filter_imgs(self, min_size=32): + """Filter images too small or without annotation.""" + valid_inds = [] + for i, img_info in enumerate(self.data_infos): + if min(img_info['width'], img_info['height']) < min_size: + continue + if self.filter_empty_gt: + img_id = img_info['id'] + xml_path = osp.join(self.img_prefix, self.ann_subdir, + f'{img_id}.xml') + tree = ET.parse(xml_path) + root = tree.getroot() + for obj in root.findall('object'): + name = obj.find('name').text + if name in self.CLASSES: + valid_inds.append(i) + break + else: + valid_inds.append(i) + return valid_inds + + def get_ann_info(self, idx): + """Get annotation from XML file by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + img_id = self.data_infos[idx]['id'] + xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') + tree = ET.parse(xml_path) + root = tree.getroot() + bboxes = [] + labels = [] + bboxes_ignore = [] + labels_ignore = [] + for obj in root.findall('object'): + name = obj.find('name').text + if name not in self.CLASSES: + continue + label = self.cat2label[name] + difficult = obj.find('difficult') + difficult = 0 if difficult is None else int(difficult.text) + bnd_box = obj.find('bndbox') + # TODO: check whether it is necessary to use int + # Coordinates may be float type + bbox = [ + int(float(bnd_box.find('xmin').text)), + int(float(bnd_box.find('ymin').text)), + int(float(bnd_box.find('xmax').text)), + int(float(bnd_box.find('ymax').text)) + ] + ignore = False + if self.min_size: + assert not self.test_mode + w = bbox[2] - bbox[0] + h = bbox[3] - bbox[1] + if w < self.min_size or h < self.min_size: + ignore = True + if difficult or ignore: + bboxes_ignore.append(bbox) + labels_ignore.append(label) + else: + bboxes.append(bbox) + labels.append(label) + if not bboxes: + bboxes = np.zeros((0, 4)) + labels = np.zeros((0, )) + else: + bboxes = np.array(bboxes, ndmin=2) - 1 + labels = np.array(labels) + if not bboxes_ignore: + bboxes_ignore = np.zeros((0, 4)) + labels_ignore = np.zeros((0, )) + else: + bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1 + labels_ignore = np.array(labels_ignore) + ann = dict( + bboxes=bboxes.astype(np.float32), + labels=labels.astype(np.int64), + bboxes_ignore=bboxes_ignore.astype(np.float32), + labels_ignore=labels_ignore.astype(np.int64)) + return ann + + def get_cat_ids(self, idx): + """Get category ids in XML file by index. + + Args: + idx (int): Index of data. + + Returns: + list[int]: All categories in the image of specified index. + """ + + cat_ids = [] + img_id = self.data_infos[idx]['id'] + xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') + tree = ET.parse(xml_path) + root = tree.getroot() + for obj in root.findall('object'): + name = obj.find('name').text + if name not in self.CLASSES: + continue + label = self.cat2label[name] + cat_ids.append(label) + + return cat_ids diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/__init__.py new file mode 100644 index 000000000..12efb013d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/__init__.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .backbones import * # noqa: F401,F403 +from .builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, + ROI_EXTRACTORS, SHARED_HEADS, build_backbone, + build_detector, build_head, build_loss, build_neck, + build_roi_extractor, build_shared_head) +from .dense_heads import * # noqa: F401,F403 +from .detectors import * # noqa: F401,F403 +from .losses import * # noqa: F401,F403 +from .necks import * # noqa: F401,F403 +from .plugins import * # noqa: F401,F403 +from .roi_heads import * # noqa: F401,F403 +from .seg_heads import * # noqa: F401,F403 + +__all__ = [ + 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', + 'DETECTORS', 'build_backbone', 'build_neck', 'build_roi_extractor', + 'build_shared_head', 'build_head', 'build_loss', 'build_detector' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/__init__.py new file mode 100644 index 000000000..91b50d254 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/__init__.py @@ -0,0 +1,26 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .csp_darknet import CSPDarknet +from .darknet import Darknet +from .detectors_resnet import DetectoRS_ResNet +from .detectors_resnext import DetectoRS_ResNeXt +from .efficientnet import EfficientNet +from .hourglass import HourglassNet +from .hrnet import HRNet +from .mobilenet_v2 import MobileNetV2 +from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 +from .regnet import RegNet +from .res2net import Res2Net +from .resnest import ResNeSt +from .resnet import ResNet, ResNetV1d +from .resnext import ResNeXt +from .ssd_vgg import SSDVGG +from .swin import SwinTransformer +from .trident_resnet import TridentResNet + +__all__ = [ + 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', + 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', + 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', + 'SwinTransformer', 'PyramidVisionTransformer', + 'PyramidVisionTransformerV2', 'EfficientNet' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/csp_darknet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/csp_darknet.py new file mode 100644 index 000000000..2bbf3968a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/csp_darknet.py @@ -0,0 +1,284 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from ..utils import CSPLayer + + +class Focus(nn.Module): + """Focus width and height information into channel space. + + Args: + in_channels (int): The input channels of this Module. + out_channels (int): The output channels of this Module. + kernel_size (int): The kernel size of the convolution. Default: 1 + stride (int): The stride of the convolution. Default: 1 + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN', momentum=0.03, eps=0.001). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='Swish'). + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=1, + stride=1, + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish')): + super().__init__() + self.conv = ConvModule( + in_channels * 4, + out_channels, + kernel_size, + stride, + padding=(kernel_size - 1) // 2, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x): + # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) + patch_top_left = x[..., ::2, ::2] + patch_top_right = x[..., ::2, 1::2] + patch_bot_left = x[..., 1::2, ::2] + patch_bot_right = x[..., 1::2, 1::2] + x = torch.cat( + ( + patch_top_left, + patch_bot_left, + patch_top_right, + patch_bot_right, + ), + dim=1, + ) + return self.conv(x) + + +class SPPBottleneck(BaseModule): + """Spatial pyramid pooling layer used in YOLOv3-SPP. + + Args: + in_channels (int): The input channels of this Module. + out_channels (int): The output channels of this Module. + kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling + layers. Default: (5, 9, 13). + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='Swish'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + kernel_sizes=(5, 9, 13), + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + init_cfg=None): + super().__init__(init_cfg) + mid_channels = in_channels // 2 + self.conv1 = ConvModule( + in_channels, + mid_channels, + 1, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.poolings = nn.ModuleList([ + nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) + for ks in kernel_sizes + ]) + conv2_channels = mid_channels * (len(kernel_sizes) + 1) + self.conv2 = ConvModule( + conv2_channels, + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x): + x = self.conv1(x) + x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1) + x = self.conv2(x) + return x + + +@BACKBONES.register_module() +class CSPDarknet(BaseModule): + """CSP-Darknet backbone used in YOLOv5 and YOLOX. + + Args: + arch (str): Architecture of CSP-Darknet, from {P5, P6}. + Default: P5. + deepen_factor (float): Depth multiplier, multiply number of + blocks in CSP layer by this amount. Default: 1.0. + widen_factor (float): Width multiplier, multiply number of + channels in each layer by this amount. Default: 1.0. + out_indices (Sequence[int]): Output from which stages. + Default: (2, 3, 4). + frozen_stages (int): Stages to be frozen (stop grad and set eval + mode). -1 means not freezing any parameters. Default: -1. + use_depthwise (bool): Whether to use depthwise separable convolution. + Default: False. + arch_ovewrite(list): Overwrite default arch settings. Default: None. + spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP + layers. Default: (5, 9, 13). + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Example: + >>> from mmdet.models import CSPDarknet + >>> import torch + >>> self = CSPDarknet(depth=53) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 416, 416) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + ... + (1, 256, 52, 52) + (1, 512, 26, 26) + (1, 1024, 13, 13) + """ + # From left to right: + # in_channels, out_channels, num_blocks, add_identity, use_spp + arch_settings = { + 'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False], + [256, 512, 9, True, False], [512, 1024, 3, False, True]], + 'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False], + [256, 512, 9, True, False], [512, 768, 3, True, False], + [768, 1024, 3, False, True]] + } + + def __init__(self, + arch='P5', + deepen_factor=1.0, + widen_factor=1.0, + out_indices=(2, 3, 4), + frozen_stages=-1, + use_depthwise=False, + arch_ovewrite=None, + spp_kernal_sizes=(5, 9, 13), + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + norm_eval=False, + init_cfg=dict( + type='Kaiming', + layer='Conv2d', + a=math.sqrt(5), + distribution='uniform', + mode='fan_in', + nonlinearity='leaky_relu')): + super().__init__(init_cfg) + arch_setting = self.arch_settings[arch] + if arch_ovewrite: + arch_setting = arch_ovewrite + assert set(out_indices).issubset( + i for i in range(len(arch_setting) + 1)) + if frozen_stages not in range(-1, len(arch_setting) + 1): + raise ValueError('frozen_stages must be in range(-1, ' + 'len(arch_setting) + 1). But received ' + f'{frozen_stages}') + + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.use_depthwise = use_depthwise + self.norm_eval = norm_eval + conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule + + self.stem = Focus( + 3, + int(arch_setting[0][0] * widen_factor), + kernel_size=3, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.layers = ['stem'] + + for i, (in_channels, out_channels, num_blocks, add_identity, + use_spp) in enumerate(arch_setting): + in_channels = int(in_channels * widen_factor) + out_channels = int(out_channels * widen_factor) + num_blocks = max(round(num_blocks * deepen_factor), 1) + stage = [] + conv_layer = conv( + in_channels, + out_channels, + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + stage.append(conv_layer) + if use_spp: + spp = SPPBottleneck( + out_channels, + out_channels, + kernel_sizes=spp_kernal_sizes, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + stage.append(spp) + csp_layer = CSPLayer( + out_channels, + out_channels, + num_blocks=num_blocks, + add_identity=add_identity, + use_depthwise=use_depthwise, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + stage.append(csp_layer) + self.add_module(f'stage{i + 1}', nn.Sequential(*stage)) + self.layers.append(f'stage{i + 1}') + + def _freeze_stages(self): + if self.frozen_stages >= 0: + for i in range(self.frozen_stages + 1): + m = getattr(self, self.layers[i]) + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def train(self, mode=True): + super(CSPDarknet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, _BatchNorm): + m.eval() + + def forward(self, x): + outs = [] + for i, layer_name in enumerate(self.layers): + layer = getattr(self, layer_name) + x = layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/darknet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/darknet.py new file mode 100644 index 000000000..adfb1159b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/darknet.py @@ -0,0 +1,213 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2019 Western Digital Corporation or its affiliates. + +import warnings + +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES + + +class ResBlock(BaseModule): + """The basic residual block used in Darknet. Each ResBlock consists of two + ConvModules and the input is added to the final output. Each ConvModule is + composed of Conv, BN, and LeakyReLU. In YoloV3 paper, the first convLayer + has half of the number of the filters as much as the second convLayer. The + first convLayer has filter size of 1x1 and the second one has the filter + size of 3x3. + + Args: + in_channels (int): The input channels. Must be even. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True) + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', negative_slope=0.1), + init_cfg=None): + super(ResBlock, self).__init__(init_cfg) + assert in_channels % 2 == 0 # ensure the in_channels is even + half_in_channels = in_channels // 2 + + # shortcut + cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) + + self.conv1 = ConvModule(in_channels, half_in_channels, 1, **cfg) + self.conv2 = ConvModule( + half_in_channels, in_channels, 3, padding=1, **cfg) + + def forward(self, x): + residual = x + out = self.conv1(x) + out = self.conv2(out) + out = out + residual + + return out + + +@BACKBONES.register_module() +class Darknet(BaseModule): + """Darknet backbone. + + Args: + depth (int): Depth of Darknet. Currently only support 53. + out_indices (Sequence[int]): Output from which stages. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. Default: -1. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True) + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Example: + >>> from mmdet.models import Darknet + >>> import torch + >>> self = Darknet(depth=53) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 416, 416) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + ... + (1, 256, 52, 52) + (1, 512, 26, 26) + (1, 1024, 13, 13) + """ + + # Dict(depth: (layers, channels)) + arch_settings = { + 53: ((1, 2, 8, 8, 4), ((32, 64), (64, 128), (128, 256), (256, 512), + (512, 1024))) + } + + def __init__(self, + depth=53, + out_indices=(3, 4, 5), + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', negative_slope=0.1), + norm_eval=True, + pretrained=None, + init_cfg=None): + super(Darknet, self).__init__(init_cfg) + if depth not in self.arch_settings: + raise KeyError(f'invalid depth {depth} for darknet') + + self.depth = depth + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.layers, self.channels = self.arch_settings[depth] + + cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) + + self.conv1 = ConvModule(3, 32, 3, padding=1, **cfg) + + self.cr_blocks = ['conv1'] + for i, n_layers in enumerate(self.layers): + layer_name = f'conv_res_block{i + 1}' + in_c, out_c = self.channels[i] + self.add_module( + layer_name, + self.make_conv_res_block(in_c, out_c, n_layers, **cfg)) + self.cr_blocks.append(layer_name) + + self.norm_eval = norm_eval + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + def forward(self, x): + outs = [] + for i, layer_name in enumerate(self.cr_blocks): + cr_block = getattr(self, layer_name) + x = cr_block(x) + if i in self.out_indices: + outs.append(x) + + return tuple(outs) + + def _freeze_stages(self): + if self.frozen_stages >= 0: + for i in range(self.frozen_stages): + m = getattr(self, self.cr_blocks[i]) + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def train(self, mode=True): + super(Darknet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, _BatchNorm): + m.eval() + + @staticmethod + def make_conv_res_block(in_channels, + out_channels, + res_repeat, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', + negative_slope=0.1)): + """In Darknet backbone, ConvLayer is usually followed by ResBlock. This + function will make that. The Conv layers always have 3x3 filters with + stride=2. The number of the filters in Conv layer is the same as the + out channels of the ResBlock. + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + res_repeat (int): The number of ResBlocks. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True) + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + """ + + cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) + + model = nn.Sequential() + model.add_module( + 'conv', + ConvModule( + in_channels, out_channels, 3, stride=2, padding=1, **cfg)) + for idx in range(res_repeat): + model.add_module('res{}'.format(idx), + ResBlock(out_channels, **cfg)) + return model diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnet.py new file mode 100644 index 000000000..a3c0d40b4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnet.py @@ -0,0 +1,353 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, + kaiming_init) +from mmcv.runner import Sequential, load_checkpoint +from torch.nn.modules.batchnorm import _BatchNorm + +from mmdet.utils import get_root_logger +from ..builder import BACKBONES +from .resnet import BasicBlock +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNet + + +class Bottleneck(_Bottleneck): + r"""Bottleneck for the ResNet backbone in `DetectoRS + `_. + + This bottleneck allows the users to specify whether to use + SAC (Switchable Atrous Convolution) and RFP (Recursive Feature Pyramid). + + Args: + inplanes (int): The number of input channels. + planes (int): The number of output channels before expansion. + rfp_inplanes (int, optional): The number of channels from RFP. + Default: None. If specified, an additional conv layer will be + added for ``rfp_feat``. Otherwise, the structure is the same as + base class. + sac (dict, optional): Dictionary to construct SAC. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + expansion = 4 + + def __init__(self, + inplanes, + planes, + rfp_inplanes=None, + sac=None, + init_cfg=None, + **kwargs): + super(Bottleneck, self).__init__( + inplanes, planes, init_cfg=init_cfg, **kwargs) + + assert sac is None or isinstance(sac, dict) + self.sac = sac + self.with_sac = sac is not None + if self.with_sac: + self.conv2 = build_conv_layer( + self.sac, + planes, + planes, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + bias=False) + + self.rfp_inplanes = rfp_inplanes + if self.rfp_inplanes: + self.rfp_conv = build_conv_layer( + None, + self.rfp_inplanes, + planes * self.expansion, + 1, + stride=1, + bias=True) + if init_cfg is None: + self.init_cfg = dict( + type='Constant', val=0, override=dict(name='rfp_conv')) + + def rfp_forward(self, x, rfp_feat): + """The forward function that also takes the RFP features as input.""" + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + out = self.conv2(out) + out = self.norm2(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + if self.rfp_inplanes: + rfp_feat = self.rfp_conv(rfp_feat) + out = out + rfp_feat + + out = self.relu(out) + + return out + + +class ResLayer(Sequential): + """ResLayer to build ResNet style backbone for RPF in detectoRS. + + The difference between this module and base class is that we pass + ``rfp_inplanes`` to the first block. + + Args: + block (nn.Module): block used to build ResLayer. + inplanes (int): inplanes of block. + planes (int): planes of block. + num_blocks (int): number of blocks. + stride (int): stride of the first block. Default: 1 + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottleneck. Default: False + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None + norm_cfg (dict): dictionary to construct and config norm layer. + Default: dict(type='BN') + downsample_first (bool): Downsample at the first block or last block. + False for Hourglass, True for ResNet. Default: True + rfp_inplanes (int, optional): The number of channels from RFP. + Default: None. If specified, an additional conv layer will be + added for ``rfp_feat``. Otherwise, the structure is the same as + base class. + """ + + def __init__(self, + block, + inplanes, + planes, + num_blocks, + stride=1, + avg_down=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + downsample_first=True, + rfp_inplanes=None, + **kwargs): + self.block = block + assert downsample_first, f'downsample_first={downsample_first} is ' \ + 'not supported in DetectoRS' + + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = [] + conv_stride = stride + if avg_down and stride != 1: + conv_stride = 1 + downsample.append( + nn.AvgPool2d( + kernel_size=stride, + stride=stride, + ceil_mode=True, + count_include_pad=False)) + downsample.extend([ + build_conv_layer( + conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=conv_stride, + bias=False), + build_norm_layer(norm_cfg, planes * block.expansion)[1] + ]) + downsample = nn.Sequential(*downsample) + + layers = [] + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + rfp_inplanes=rfp_inplanes, + **kwargs)) + inplanes = planes * block.expansion + for _ in range(1, num_blocks): + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + + super(ResLayer, self).__init__(*layers) + + +@BACKBONES.register_module() +class DetectoRS_ResNet(ResNet): + """ResNet backbone for DetectoRS. + + Args: + sac (dict, optional): Dictionary to construct SAC (Switchable Atrous + Convolution). Default: None. + stage_with_sac (list): Which stage to use sac. Default: (False, False, + False, False). + rfp_inplanes (int, optional): The number of channels from RFP. + Default: None. If specified, an additional conv layer will be + added for ``rfp_feat``. Otherwise, the structure is the same as + base class. + output_img (bool): If ``True``, the input image will be inserted into + the starting position of output. Default: False. + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, + sac=None, + stage_with_sac=(False, False, False, False), + rfp_inplanes=None, + output_img=False, + pretrained=None, + init_cfg=None, + **kwargs): + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + self.pretrained = pretrained + if init_cfg is not None: + assert isinstance(init_cfg, dict), \ + f'init_cfg must be a dict, but got {type(init_cfg)}' + if 'type' in init_cfg: + assert init_cfg.get('type') == 'Pretrained', \ + 'Only can initialize module by loading a pretrained model' + else: + raise KeyError('`init_cfg` must contain the key "type"') + self.pretrained = init_cfg.get('checkpoint') + self.sac = sac + self.stage_with_sac = stage_with_sac + self.rfp_inplanes = rfp_inplanes + self.output_img = output_img + super(DetectoRS_ResNet, self).__init__(**kwargs) + + self.inplanes = self.stem_channels + self.res_layers = [] + for i, num_blocks in enumerate(self.stage_blocks): + stride = self.strides[i] + dilation = self.dilations[i] + dcn = self.dcn if self.stage_with_dcn[i] else None + sac = self.sac if self.stage_with_sac[i] else None + if self.plugins is not None: + stage_plugins = self.make_stage_plugins(self.plugins, i) + else: + stage_plugins = None + planes = self.base_channels * 2**i + res_layer = self.make_res_layer( + block=self.block, + inplanes=self.inplanes, + planes=planes, + num_blocks=num_blocks, + stride=stride, + dilation=dilation, + style=self.style, + avg_down=self.avg_down, + with_cp=self.with_cp, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dcn=dcn, + sac=sac, + rfp_inplanes=rfp_inplanes if i > 0 else None, + plugins=stage_plugins) + self.inplanes = planes * self.block.expansion + layer_name = f'layer{i + 1}' + self.add_module(layer_name, res_layer) + self.res_layers.append(layer_name) + + self._freeze_stages() + + # In order to be properly initialized by RFP + def init_weights(self): + # Calling this method will cause parameter initialization exception + # super(DetectoRS_ResNet, self).init_weights() + + if isinstance(self.pretrained, str): + logger = get_root_logger() + load_checkpoint(self, self.pretrained, strict=False, logger=logger) + elif self.pretrained is None: + for m in self.modules(): + if isinstance(m, nn.Conv2d): + kaiming_init(m) + elif isinstance(m, (_BatchNorm, nn.GroupNorm)): + constant_init(m, 1) + + if self.dcn is not None: + for m in self.modules(): + if isinstance(m, Bottleneck) and hasattr( + m.conv2, 'conv_offset'): + constant_init(m.conv2.conv_offset, 0) + + if self.zero_init_residual: + for m in self.modules(): + if isinstance(m, Bottleneck): + constant_init(m.norm3, 0) + elif isinstance(m, BasicBlock): + constant_init(m.norm2, 0) + else: + raise TypeError('pretrained must be a str or None') + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer`` for DetectoRS.""" + return ResLayer(**kwargs) + + def forward(self, x): + """Forward function.""" + outs = list(super(DetectoRS_ResNet, self).forward(x)) + if self.output_img: + outs.insert(0, x) + return tuple(outs) + + def rfp_forward(self, x, rfp_feats): + """Forward function for RFP.""" + if self.deep_stem: + x = self.stem(x) + else: + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + x = self.maxpool(x) + outs = [] + for i, layer_name in enumerate(self.res_layers): + res_layer = getattr(self, layer_name) + rfp_feat = rfp_feats[i] if i > 0 else None + for layer in res_layer: + x = layer.rfp_forward(x, rfp_feat) + if i in self.out_indices: + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnext.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnext.py new file mode 100644 index 000000000..5e8b20a02 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/detectors_resnext.py @@ -0,0 +1,123 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +from mmcv.cnn import build_conv_layer, build_norm_layer + +from ..builder import BACKBONES +from .detectors_resnet import Bottleneck as _Bottleneck +from .detectors_resnet import DetectoRS_ResNet + + +class Bottleneck(_Bottleneck): + expansion = 4 + + def __init__(self, + inplanes, + planes, + groups=1, + base_width=4, + base_channels=64, + **kwargs): + """Bottleneck block for ResNeXt. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if + it is "caffe", the stride-two layer is the first 1x1 conv layer. + """ + super(Bottleneck, self).__init__(inplanes, planes, **kwargs) + + if groups == 1: + width = self.planes + else: + width = math.floor(self.planes * + (base_width / base_channels)) * groups + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width, postfix=1) + self.norm2_name, norm2 = build_norm_layer( + self.norm_cfg, width, postfix=2) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + fallback_on_stride = False + self.with_modulated_dcn = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if self.with_sac: + self.conv2 = build_conv_layer( + self.sac, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + elif not self.with_dcn or fallback_on_stride: + self.conv2 = build_conv_layer( + self.conv_cfg, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + self.conv2 = build_conv_layer( + self.dcn, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.conv3 = build_conv_layer( + self.conv_cfg, + width, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + +@BACKBONES.register_module() +class DetectoRS_ResNeXt(DetectoRS_ResNet): + """ResNeXt backbone for DetectoRS. + + Args: + groups (int): The number of groups in ResNeXt. + base_width (int): The base width of ResNeXt. + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, groups=1, base_width=4, **kwargs): + self.groups = groups + self.base_width = base_width + super(DetectoRS_ResNeXt, self).__init__(**kwargs) + + def make_res_layer(self, **kwargs): + return super().make_res_layer( + groups=self.groups, + base_width=self.base_width, + base_channels=self.base_channels, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/efficientnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/efficientnet.py new file mode 100644 index 000000000..7ee359567 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/efficientnet.py @@ -0,0 +1,417 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import math +from functools import partial + +import torch +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn.bricks import ConvModule, DropPath +from mmcv.runner import BaseModule, Sequential + +from ..builder import BACKBONES +from ..utils import InvertedResidual, SELayer, make_divisible + + +class EdgeResidual(BaseModule): + """Edge Residual Block. + + Args: + in_channels (int): The input channels of this module. + out_channels (int): The output channels of this module. + mid_channels (int): The input channels of the second convolution. + kernel_size (int): The kernel size of the first convolution. + Defaults to 3. + stride (int): The stride of the first convolution. Defaults to 1. + se_cfg (dict, optional): Config dict for se layer. Defaults to None, + which means no se layer. + with_residual (bool): Use residual connection. Defaults to True. + conv_cfg (dict, optional): Config dict for convolution layer. + Defaults to None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Defaults to ``dict(type='BN')``. + act_cfg (dict): Config dict for activation layer. + Defaults to ``dict(type='ReLU')``. + drop_path_rate (float): stochastic depth rate. Defaults to 0. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Defaults to False. + init_cfg (dict | list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + mid_channels, + kernel_size=3, + stride=1, + se_cfg=None, + with_residual=True, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + drop_path_rate=0., + with_cp=False, + init_cfg=None, + **kwargs): + super(EdgeResidual, self).__init__(init_cfg=init_cfg) + assert stride in [1, 2] + self.with_cp = with_cp + self.drop_path = DropPath( + drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.with_se = se_cfg is not None + self.with_residual = ( + stride == 1 and in_channels == out_channels and with_residual) + + if self.with_se: + assert isinstance(se_cfg, dict) + + self.conv1 = ConvModule( + in_channels=in_channels, + out_channels=mid_channels, + kernel_size=kernel_size, + stride=1, + padding=kernel_size // 2, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + if self.with_se: + self.se = SELayer(**se_cfg) + + self.conv2 = ConvModule( + in_channels=mid_channels, + out_channels=out_channels, + kernel_size=1, + stride=stride, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + def forward(self, x): + + def _inner_forward(x): + out = x + out = self.conv1(out) + + if self.with_se: + out = self.se(out) + + out = self.conv2(out) + + if self.with_residual: + return x + self.drop_path(out) + else: + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out + + +def model_scaling(layer_setting, arch_setting): + """Scaling operation to the layer's parameters according to the + arch_setting.""" + # scale width + new_layer_setting = copy.deepcopy(layer_setting) + for layer_cfg in new_layer_setting: + for block_cfg in layer_cfg: + block_cfg[1] = make_divisible(block_cfg[1] * arch_setting[0], 8) + + # scale depth + split_layer_setting = [new_layer_setting[0]] + for layer_cfg in new_layer_setting[1:-1]: + tmp_index = [0] + for i in range(len(layer_cfg) - 1): + if layer_cfg[i + 1][1] != layer_cfg[i][1]: + tmp_index.append(i + 1) + tmp_index.append(len(layer_cfg)) + for i in range(len(tmp_index) - 1): + split_layer_setting.append(layer_cfg[tmp_index[i]:tmp_index[i + + 1]]) + split_layer_setting.append(new_layer_setting[-1]) + + num_of_layers = [len(layer_cfg) for layer_cfg in split_layer_setting[1:-1]] + new_layers = [ + int(math.ceil(arch_setting[1] * num)) for num in num_of_layers + ] + + merge_layer_setting = [split_layer_setting[0]] + for i, layer_cfg in enumerate(split_layer_setting[1:-1]): + if new_layers[i] <= num_of_layers[i]: + tmp_layer_cfg = layer_cfg[:new_layers[i]] + else: + tmp_layer_cfg = copy.deepcopy(layer_cfg) + [layer_cfg[-1]] * ( + new_layers[i] - num_of_layers[i]) + if tmp_layer_cfg[0][3] == 1 and i != 0: + merge_layer_setting[-1] += tmp_layer_cfg.copy() + else: + merge_layer_setting.append(tmp_layer_cfg.copy()) + merge_layer_setting.append(split_layer_setting[-1]) + + return merge_layer_setting + + +@BACKBONES.register_module() +class EfficientNet(BaseModule): + """EfficientNet backbone. + + Args: + arch (str): Architecture of efficientnet. Defaults to b0. + out_indices (Sequence[int]): Output from which stages. + Defaults to (6, ). + frozen_stages (int): Stages to be frozen (all param fixed). + Defaults to 0, which means not freezing any parameters. + conv_cfg (dict): Config dict for convolution layer. + Defaults to None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Defaults to dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Defaults to dict(type='Swish'). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Defaults to False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Defaults to False. + """ + + # Parameters to build layers. + # 'b' represents the architecture of normal EfficientNet family includes + # 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8'. + # 'e' represents the architecture of EfficientNet-EdgeTPU including 'es', + # 'em', 'el'. + # 6 parameters are needed to construct a layer, From left to right: + # - kernel_size: The kernel size of the block + # - out_channel: The number of out_channels of the block + # - se_ratio: The sequeeze ratio of SELayer. + # - stride: The stride of the block + # - expand_ratio: The expand_ratio of the mid_channels + # - block_type: -1: Not a block, 0: InvertedResidual, 1: EdgeResidual + layer_settings = { + 'b': [[[3, 32, 0, 2, 0, -1]], + [[3, 16, 4, 1, 1, 0]], + [[3, 24, 4, 2, 6, 0], + [3, 24, 4, 1, 6, 0]], + [[5, 40, 4, 2, 6, 0], + [5, 40, 4, 1, 6, 0]], + [[3, 80, 4, 2, 6, 0], + [3, 80, 4, 1, 6, 0], + [3, 80, 4, 1, 6, 0], + [5, 112, 4, 1, 6, 0], + [5, 112, 4, 1, 6, 0], + [5, 112, 4, 1, 6, 0]], + [[5, 192, 4, 2, 6, 0], + [5, 192, 4, 1, 6, 0], + [5, 192, 4, 1, 6, 0], + [5, 192, 4, 1, 6, 0], + [3, 320, 4, 1, 6, 0]], + [[1, 1280, 0, 1, 0, -1]] + ], + 'e': [[[3, 32, 0, 2, 0, -1]], + [[3, 24, 0, 1, 3, 1]], + [[3, 32, 0, 2, 8, 1], + [3, 32, 0, 1, 8, 1]], + [[3, 48, 0, 2, 8, 1], + [3, 48, 0, 1, 8, 1], + [3, 48, 0, 1, 8, 1], + [3, 48, 0, 1, 8, 1]], + [[5, 96, 0, 2, 8, 0], + [5, 96, 0, 1, 8, 0], + [5, 96, 0, 1, 8, 0], + [5, 96, 0, 1, 8, 0], + [5, 96, 0, 1, 8, 0], + [5, 144, 0, 1, 8, 0], + [5, 144, 0, 1, 8, 0], + [5, 144, 0, 1, 8, 0], + [5, 144, 0, 1, 8, 0]], + [[5, 192, 0, 2, 8, 0], + [5, 192, 0, 1, 8, 0]], + [[1, 1280, 0, 1, 0, -1]] + ] + } # yapf: disable + + # Parameters to build different kinds of architecture. + # From left to right: scaling factor for width, scaling factor for depth, + # resolution. + arch_settings = { + 'b0': (1.0, 1.0, 224), + 'b1': (1.0, 1.1, 240), + 'b2': (1.1, 1.2, 260), + 'b3': (1.2, 1.4, 300), + 'b4': (1.4, 1.8, 380), + 'b5': (1.6, 2.2, 456), + 'b6': (1.8, 2.6, 528), + 'b7': (2.0, 3.1, 600), + 'b8': (2.2, 3.6, 672), + 'es': (1.0, 1.0, 224), + 'em': (1.0, 1.1, 240), + 'el': (1.2, 1.4, 300) + } + + def __init__(self, + arch='b0', + drop_path_rate=0., + out_indices=(6, ), + frozen_stages=0, + conv_cfg=dict(type='Conv2dAdaptivePadding'), + norm_cfg=dict(type='BN', eps=1e-3), + act_cfg=dict(type='Swish'), + norm_eval=False, + with_cp=False, + init_cfg=[ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + layer=['_BatchNorm', 'GroupNorm'], + val=1) + ]): + super(EfficientNet, self).__init__(init_cfg) + assert arch in self.arch_settings, \ + f'"{arch}" is not one of the arch_settings ' \ + f'({", ".join(self.arch_settings.keys())})' + self.arch_setting = self.arch_settings[arch] + self.layer_setting = self.layer_settings[arch[:1]] + for index in out_indices: + if index not in range(0, len(self.layer_setting)): + raise ValueError('the item in out_indices must in ' + f'range(0, {len(self.layer_setting)}). ' + f'But received {index}') + + if frozen_stages not in range(len(self.layer_setting) + 1): + raise ValueError('frozen_stages must be in range(0, ' + f'{len(self.layer_setting) + 1}). ' + f'But received {frozen_stages}') + self.drop_path_rate = drop_path_rate + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.norm_eval = norm_eval + self.with_cp = with_cp + + self.layer_setting = model_scaling(self.layer_setting, + self.arch_setting) + block_cfg_0 = self.layer_setting[0][0] + block_cfg_last = self.layer_setting[-1][0] + self.in_channels = make_divisible(block_cfg_0[1], 8) + self.out_channels = block_cfg_last[1] + self.layers = nn.ModuleList() + self.layers.append( + ConvModule( + in_channels=3, + out_channels=self.in_channels, + kernel_size=block_cfg_0[0], + stride=block_cfg_0[3], + padding=block_cfg_0[0] // 2, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + self.make_layer() + # Avoid building unused layers in mmdetection. + if len(self.layers) < max(self.out_indices) + 1: + self.layers.append( + ConvModule( + in_channels=self.in_channels, + out_channels=self.out_channels, + kernel_size=block_cfg_last[0], + stride=block_cfg_last[3], + padding=block_cfg_last[0] // 2, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + + def make_layer(self): + # Without the first and the final conv block. + layer_setting = self.layer_setting[1:-1] + + total_num_blocks = sum([len(x) for x in layer_setting]) + block_idx = 0 + dpr = [ + x.item() + for x in torch.linspace(0, self.drop_path_rate, total_num_blocks) + ] # stochastic depth decay rule + + for i, layer_cfg in enumerate(layer_setting): + # Avoid building unused layers in mmdetection. + if i > max(self.out_indices) - 1: + break + layer = [] + for i, block_cfg in enumerate(layer_cfg): + (kernel_size, out_channels, se_ratio, stride, expand_ratio, + block_type) = block_cfg + + mid_channels = int(self.in_channels * expand_ratio) + out_channels = make_divisible(out_channels, 8) + if se_ratio <= 0: + se_cfg = None + else: + # In mmdetection, the `divisor` is deleted to align + # the logic of SELayer with mmcls. + se_cfg = dict( + channels=mid_channels, + ratio=expand_ratio * se_ratio, + act_cfg=(self.act_cfg, dict(type='Sigmoid'))) + if block_type == 1: # edge tpu + if i > 0 and expand_ratio == 3: + with_residual = False + expand_ratio = 4 + else: + with_residual = True + mid_channels = int(self.in_channels * expand_ratio) + if se_cfg is not None: + # In mmdetection, the `divisor` is deleted to align + # the logic of SELayer with mmcls. + se_cfg = dict( + channels=mid_channels, + ratio=se_ratio * expand_ratio, + act_cfg=(self.act_cfg, dict(type='Sigmoid'))) + block = partial(EdgeResidual, with_residual=with_residual) + else: + block = InvertedResidual + layer.append( + block( + in_channels=self.in_channels, + out_channels=out_channels, + mid_channels=mid_channels, + kernel_size=kernel_size, + stride=stride, + se_cfg=se_cfg, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + drop_path_rate=dpr[block_idx], + with_cp=self.with_cp, + # In mmdetection, `with_expand_conv` is set to align + # the logic of InvertedResidual with mmcls. + with_expand_conv=(mid_channels != self.in_channels))) + self.in_channels = out_channels + block_idx += 1 + self.layers.append(Sequential(*layer)) + + def forward(self, x): + outs = [] + for i, layer in enumerate(self.layers): + x = layer(x) + if i in self.out_indices: + outs.append(x) + + return tuple(outs) + + def _freeze_stages(self): + for i in range(self.frozen_stages): + m = self.layers[i] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def train(self, mode=True): + super(EfficientNet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hourglass.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hourglass.py new file mode 100644 index 000000000..f0dfb434f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hourglass.py @@ -0,0 +1,222 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from ..builder import BACKBONES +from ..utils import ResLayer +from .resnet import BasicBlock + + +class HourglassModule(BaseModule): + """Hourglass Module for HourglassNet backbone. + + Generate module recursively and use BasicBlock as the base unit. + + Args: + depth (int): Depth of current HourglassModule. + stage_channels (list[int]): Feature channels of sub-modules in current + and follow-up HourglassModule. + stage_blocks (list[int]): Number of sub-modules stacked in current and + follow-up HourglassModule. + norm_cfg (dict): Dictionary to construct and config norm layer. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + upsample_cfg (dict, optional): Config dict for interpolate layer. + Default: `dict(mode='nearest')` + """ + + def __init__(self, + depth, + stage_channels, + stage_blocks, + norm_cfg=dict(type='BN', requires_grad=True), + init_cfg=None, + upsample_cfg=dict(mode='nearest')): + super(HourglassModule, self).__init__(init_cfg) + + self.depth = depth + + cur_block = stage_blocks[0] + next_block = stage_blocks[1] + + cur_channel = stage_channels[0] + next_channel = stage_channels[1] + + self.up1 = ResLayer( + BasicBlock, cur_channel, cur_channel, cur_block, norm_cfg=norm_cfg) + + self.low1 = ResLayer( + BasicBlock, + cur_channel, + next_channel, + cur_block, + stride=2, + norm_cfg=norm_cfg) + + if self.depth > 1: + self.low2 = HourglassModule(depth - 1, stage_channels[1:], + stage_blocks[1:]) + else: + self.low2 = ResLayer( + BasicBlock, + next_channel, + next_channel, + next_block, + norm_cfg=norm_cfg) + + self.low3 = ResLayer( + BasicBlock, + next_channel, + cur_channel, + cur_block, + norm_cfg=norm_cfg, + downsample_first=False) + + self.up2 = F.interpolate + self.upsample_cfg = upsample_cfg + + def forward(self, x): + """Forward function.""" + up1 = self.up1(x) + low1 = self.low1(x) + low2 = self.low2(low1) + low3 = self.low3(low2) + # Fixing `scale factor` (e.g. 2) is common for upsampling, but + # in some cases the spatial size is mismatched and error will arise. + if 'scale_factor' in self.upsample_cfg: + up2 = self.up2(low3, **self.upsample_cfg) + else: + shape = up1.shape[2:] + up2 = self.up2(low3, size=shape, **self.upsample_cfg) + return up1 + up2 + + +@BACKBONES.register_module() +class HourglassNet(BaseModule): + """HourglassNet backbone. + + Stacked Hourglass Networks for Human Pose Estimation. + More details can be found in the `paper + `_ . + + Args: + downsample_times (int): Downsample times in a HourglassModule. + num_stacks (int): Number of HourglassModule modules stacked, + 1 for Hourglass-52, 2 for Hourglass-104. + stage_channels (list[int]): Feature channel of each sub-module in a + HourglassModule. + stage_blocks (list[int]): Number of sub-modules stacked in a + HourglassModule. + feat_channel (int): Feature channel of conv after a HourglassModule. + norm_cfg (dict): Dictionary to construct and config norm layer. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Example: + >>> from mmdet.models import HourglassNet + >>> import torch + >>> self = HourglassNet() + >>> self.eval() + >>> inputs = torch.rand(1, 3, 511, 511) + >>> level_outputs = self.forward(inputs) + >>> for level_output in level_outputs: + ... print(tuple(level_output.shape)) + (1, 256, 128, 128) + (1, 256, 128, 128) + """ + + def __init__(self, + downsample_times=5, + num_stacks=2, + stage_channels=(256, 256, 384, 384, 384, 512), + stage_blocks=(2, 2, 2, 2, 2, 4), + feat_channel=256, + norm_cfg=dict(type='BN', requires_grad=True), + pretrained=None, + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(HourglassNet, self).__init__(init_cfg) + + self.num_stacks = num_stacks + assert self.num_stacks >= 1 + assert len(stage_channels) == len(stage_blocks) + assert len(stage_channels) > downsample_times + + cur_channel = stage_channels[0] + + self.stem = nn.Sequential( + ConvModule( + 3, cur_channel // 2, 7, padding=3, stride=2, + norm_cfg=norm_cfg), + ResLayer( + BasicBlock, + cur_channel // 2, + cur_channel, + 1, + stride=2, + norm_cfg=norm_cfg)) + + self.hourglass_modules = nn.ModuleList([ + HourglassModule(downsample_times, stage_channels, stage_blocks) + for _ in range(num_stacks) + ]) + + self.inters = ResLayer( + BasicBlock, + cur_channel, + cur_channel, + num_stacks - 1, + norm_cfg=norm_cfg) + + self.conv1x1s = nn.ModuleList([ + ConvModule( + cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) + for _ in range(num_stacks - 1) + ]) + + self.out_convs = nn.ModuleList([ + ConvModule( + cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg) + for _ in range(num_stacks) + ]) + + self.remap_convs = nn.ModuleList([ + ConvModule( + feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) + for _ in range(num_stacks - 1) + ]) + + self.relu = nn.ReLU(inplace=True) + + def init_weights(self): + """Init module weights.""" + # Training Centripetal Model needs to reset parameters for Conv2d + super(HourglassNet, self).init_weights() + for m in self.modules(): + if isinstance(m, nn.Conv2d): + m.reset_parameters() + + def forward(self, x): + """Forward function.""" + inter_feat = self.stem(x) + out_feats = [] + + for ind in range(self.num_stacks): + single_hourglass = self.hourglass_modules[ind] + out_conv = self.out_convs[ind] + + hourglass_feat = single_hourglass(inter_feat) + out_feat = out_conv(hourglass_feat) + out_feats.append(out_feat) + + if ind < self.num_stacks - 1: + inter_feat = self.conv1x1s[ind]( + inter_feat) + self.remap_convs[ind]( + out_feat) + inter_feat = self.inters[ind](self.relu(inter_feat)) + + return out_feats diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hrnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hrnet.py new file mode 100644 index 000000000..06c210a6d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/hrnet.py @@ -0,0 +1,589 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule, ModuleList, Sequential +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from .resnet import BasicBlock, Bottleneck + + +class HRModule(BaseModule): + """High-Resolution Module for HRNet. + + In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange + is in this module. + """ + + def __init__(self, + num_branches, + blocks, + num_blocks, + in_channels, + num_channels, + multiscale_output=True, + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + block_init_cfg=None, + init_cfg=None): + super(HRModule, self).__init__(init_cfg) + self.block_init_cfg = block_init_cfg + self._check_branches(num_branches, num_blocks, in_channels, + num_channels) + + self.in_channels = in_channels + self.num_branches = num_branches + + self.multiscale_output = multiscale_output + self.norm_cfg = norm_cfg + self.conv_cfg = conv_cfg + self.with_cp = with_cp + self.branches = self._make_branches(num_branches, blocks, num_blocks, + num_channels) + self.fuse_layers = self._make_fuse_layers() + self.relu = nn.ReLU(inplace=False) + + def _check_branches(self, num_branches, num_blocks, in_channels, + num_channels): + if num_branches != len(num_blocks): + error_msg = f'NUM_BRANCHES({num_branches}) ' \ + f'!= NUM_BLOCKS({len(num_blocks)})' + raise ValueError(error_msg) + + if num_branches != len(num_channels): + error_msg = f'NUM_BRANCHES({num_branches}) ' \ + f'!= NUM_CHANNELS({len(num_channels)})' + raise ValueError(error_msg) + + if num_branches != len(in_channels): + error_msg = f'NUM_BRANCHES({num_branches}) ' \ + f'!= NUM_INCHANNELS({len(in_channels)})' + raise ValueError(error_msg) + + def _make_one_branch(self, + branch_index, + block, + num_blocks, + num_channels, + stride=1): + downsample = None + if stride != 1 or \ + self.in_channels[branch_index] != \ + num_channels[branch_index] * block.expansion: + downsample = nn.Sequential( + build_conv_layer( + self.conv_cfg, + self.in_channels[branch_index], + num_channels[branch_index] * block.expansion, + kernel_size=1, + stride=stride, + bias=False), + build_norm_layer(self.norm_cfg, num_channels[branch_index] * + block.expansion)[1]) + + layers = [] + layers.append( + block( + self.in_channels[branch_index], + num_channels[branch_index], + stride, + downsample=downsample, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=self.block_init_cfg)) + self.in_channels[branch_index] = \ + num_channels[branch_index] * block.expansion + for i in range(1, num_blocks[branch_index]): + layers.append( + block( + self.in_channels[branch_index], + num_channels[branch_index], + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=self.block_init_cfg)) + + return Sequential(*layers) + + def _make_branches(self, num_branches, block, num_blocks, num_channels): + branches = [] + + for i in range(num_branches): + branches.append( + self._make_one_branch(i, block, num_blocks, num_channels)) + + return ModuleList(branches) + + def _make_fuse_layers(self): + if self.num_branches == 1: + return None + + num_branches = self.num_branches + in_channels = self.in_channels + fuse_layers = [] + num_out_branches = num_branches if self.multiscale_output else 1 + for i in range(num_out_branches): + fuse_layer = [] + for j in range(num_branches): + if j > i: + fuse_layer.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[i], + kernel_size=1, + stride=1, + padding=0, + bias=False), + build_norm_layer(self.norm_cfg, in_channels[i])[1], + nn.Upsample( + scale_factor=2**(j - i), mode='nearest'))) + elif j == i: + fuse_layer.append(None) + else: + conv_downsamples = [] + for k in range(i - j): + if k == i - j - 1: + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[i], + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + in_channels[i])[1])) + else: + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[j], + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + in_channels[j])[1], + nn.ReLU(inplace=False))) + fuse_layer.append(nn.Sequential(*conv_downsamples)) + fuse_layers.append(nn.ModuleList(fuse_layer)) + + return nn.ModuleList(fuse_layers) + + def forward(self, x): + """Forward function.""" + if self.num_branches == 1: + return [self.branches[0](x[0])] + + for i in range(self.num_branches): + x[i] = self.branches[i](x[i]) + + x_fuse = [] + for i in range(len(self.fuse_layers)): + y = 0 + for j in range(self.num_branches): + if i == j: + y += x[j] + else: + y += self.fuse_layers[i][j](x[j]) + x_fuse.append(self.relu(y)) + return x_fuse + + +@BACKBONES.register_module() +class HRNet(BaseModule): + """HRNet backbone. + + `High-Resolution Representations for Labeling Pixels and Regions + arXiv: `_. + + Args: + extra (dict): Detailed configuration for each stage of HRNet. + There must be 4 stages, the configuration for each stage must have + 5 keys: + + - num_modules(int): The number of HRModule in this stage. + - num_branches(int): The number of branches in the HRModule. + - block(str): The type of convolution block. + - num_blocks(tuple): The number of blocks in each branch. + The length must be equal to num_branches. + - num_channels(tuple): The number of channels in each branch. + The length must be equal to num_branches. + in_channels (int): Number of input image channels. Default: 3. + conv_cfg (dict): Dictionary to construct and config conv layer. + norm_cfg (dict): Dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: True. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. Default: False. + multiscale_output (bool): Whether to output multi-level features + produced by multiple branches. If False, only the first level + feature will be output. Default: True. + pretrained (str, optional): Model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Example: + >>> from mmdet.models import HRNet + >>> import torch + >>> extra = dict( + >>> stage1=dict( + >>> num_modules=1, + >>> num_branches=1, + >>> block='BOTTLENECK', + >>> num_blocks=(4, ), + >>> num_channels=(64, )), + >>> stage2=dict( + >>> num_modules=1, + >>> num_branches=2, + >>> block='BASIC', + >>> num_blocks=(4, 4), + >>> num_channels=(32, 64)), + >>> stage3=dict( + >>> num_modules=4, + >>> num_branches=3, + >>> block='BASIC', + >>> num_blocks=(4, 4, 4), + >>> num_channels=(32, 64, 128)), + >>> stage4=dict( + >>> num_modules=3, + >>> num_branches=4, + >>> block='BASIC', + >>> num_blocks=(4, 4, 4, 4), + >>> num_channels=(32, 64, 128, 256))) + >>> self = HRNet(extra, in_channels=1) + >>> self.eval() + >>> inputs = torch.rand(1, 1, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 32, 8, 8) + (1, 64, 4, 4) + (1, 128, 2, 2) + (1, 256, 1, 1) + """ + + blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} + + def __init__(self, + extra, + in_channels=3, + conv_cfg=None, + norm_cfg=dict(type='BN'), + norm_eval=True, + with_cp=False, + zero_init_residual=False, + multiscale_output=True, + pretrained=None, + init_cfg=None): + super(HRNet, self).__init__(init_cfg) + + self.pretrained = pretrained + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + # Assert configurations of 4 stages are in extra + assert 'stage1' in extra and 'stage2' in extra \ + and 'stage3' in extra and 'stage4' in extra + # Assert whether the length of `num_blocks` and `num_channels` are + # equal to `num_branches` + for i in range(4): + cfg = extra[f'stage{i + 1}'] + assert len(cfg['num_blocks']) == cfg['num_branches'] and \ + len(cfg['num_channels']) == cfg['num_branches'] + + self.extra = extra + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.norm_eval = norm_eval + self.with_cp = with_cp + self.zero_init_residual = zero_init_residual + + # stem net + self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) + self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) + + self.conv1 = build_conv_layer( + self.conv_cfg, + in_channels, + 64, + kernel_size=3, + stride=2, + padding=1, + bias=False) + + self.add_module(self.norm1_name, norm1) + self.conv2 = build_conv_layer( + self.conv_cfg, + 64, + 64, + kernel_size=3, + stride=2, + padding=1, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.relu = nn.ReLU(inplace=True) + + # stage 1 + self.stage1_cfg = self.extra['stage1'] + num_channels = self.stage1_cfg['num_channels'][0] + block_type = self.stage1_cfg['block'] + num_blocks = self.stage1_cfg['num_blocks'][0] + + block = self.blocks_dict[block_type] + stage1_out_channels = num_channels * block.expansion + self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) + + # stage 2 + self.stage2_cfg = self.extra['stage2'] + num_channels = self.stage2_cfg['num_channels'] + block_type = self.stage2_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition1 = self._make_transition_layer([stage1_out_channels], + num_channels) + self.stage2, pre_stage_channels = self._make_stage( + self.stage2_cfg, num_channels) + + # stage 3 + self.stage3_cfg = self.extra['stage3'] + num_channels = self.stage3_cfg['num_channels'] + block_type = self.stage3_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition2 = self._make_transition_layer(pre_stage_channels, + num_channels) + self.stage3, pre_stage_channels = self._make_stage( + self.stage3_cfg, num_channels) + + # stage 4 + self.stage4_cfg = self.extra['stage4'] + num_channels = self.stage4_cfg['num_channels'] + block_type = self.stage4_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition3 = self._make_transition_layer(pre_stage_channels, + num_channels) + self.stage4, pre_stage_channels = self._make_stage( + self.stage4_cfg, num_channels, multiscale_output=multiscale_output) + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: the normalization layer named "norm2" """ + return getattr(self, self.norm2_name) + + def _make_transition_layer(self, num_channels_pre_layer, + num_channels_cur_layer): + num_branches_cur = len(num_channels_cur_layer) + num_branches_pre = len(num_channels_pre_layer) + + transition_layers = [] + for i in range(num_branches_cur): + if i < num_branches_pre: + if num_channels_cur_layer[i] != num_channels_pre_layer[i]: + transition_layers.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + num_channels_pre_layer[i], + num_channels_cur_layer[i], + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + num_channels_cur_layer[i])[1], + nn.ReLU(inplace=True))) + else: + transition_layers.append(None) + else: + conv_downsamples = [] + for j in range(i + 1 - num_branches_pre): + in_channels = num_channels_pre_layer[-1] + out_channels = num_channels_cur_layer[i] \ + if j == i - num_branches_pre else in_channels + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels, + out_channels, + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, out_channels)[1], + nn.ReLU(inplace=True))) + transition_layers.append(nn.Sequential(*conv_downsamples)) + + return nn.ModuleList(transition_layers) + + def _make_layer(self, block, inplanes, planes, blocks, stride=1): + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = nn.Sequential( + build_conv_layer( + self.conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias=False), + build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) + + layers = [] + block_init_cfg = None + if self.pretrained is None and not hasattr( + self, 'init_cfg') and self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm3')) + layers.append( + block( + inplanes, + planes, + stride, + downsample=downsample, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=block_init_cfg, + )) + inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append( + block( + inplanes, + planes, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=block_init_cfg)) + + return Sequential(*layers) + + def _make_stage(self, layer_config, in_channels, multiscale_output=True): + num_modules = layer_config['num_modules'] + num_branches = layer_config['num_branches'] + num_blocks = layer_config['num_blocks'] + num_channels = layer_config['num_channels'] + block = self.blocks_dict[layer_config['block']] + + hr_modules = [] + block_init_cfg = None + if self.pretrained is None and not hasattr( + self, 'init_cfg') and self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm3')) + + for i in range(num_modules): + # multi_scale_output is only used for the last module + if not multiscale_output and i == num_modules - 1: + reset_multiscale_output = False + else: + reset_multiscale_output = True + + hr_modules.append( + HRModule( + num_branches, + block, + num_blocks, + in_channels, + num_channels, + reset_multiscale_output, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + block_init_cfg=block_init_cfg)) + + return Sequential(*hr_modules), in_channels + + def forward(self, x): + """Forward function.""" + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.relu(x) + x = self.layer1(x) + + x_list = [] + for i in range(self.stage2_cfg['num_branches']): + if self.transition1[i] is not None: + x_list.append(self.transition1[i](x)) + else: + x_list.append(x) + y_list = self.stage2(x_list) + + x_list = [] + for i in range(self.stage3_cfg['num_branches']): + if self.transition2[i] is not None: + x_list.append(self.transition2[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage3(x_list) + + x_list = [] + for i in range(self.stage4_cfg['num_branches']): + if self.transition3[i] is not None: + x_list.append(self.transition3[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage4(x_list) + + return y_list + + def train(self, mode=True): + """Convert the model into training mode will keeping the normalization + layer freezed.""" + super(HRNet, self).train(mode) + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/mobilenet_v2.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/mobilenet_v2.py new file mode 100644 index 000000000..8c6fcfaaa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/mobilenet_v2.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from ..utils import InvertedResidual, make_divisible + + +@BACKBONES.register_module() +class MobileNetV2(BaseModule): + """MobileNetV2 backbone. + + Args: + widen_factor (float): Width multiplier, multiply number of + channels in each layer by this amount. Default: 1.0. + out_indices (Sequence[int], optional): Output from which stages. + Default: (1, 2, 4, 7). + frozen_stages (int): Stages to be frozen (all param fixed). + Default: -1, which means not freezing any parameters. + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU6'). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + # Parameters to build layers. 4 parameters are needed to construct a + # layer, from left to right: expand_ratio, channel, num_blocks, stride. + arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], + [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], + [6, 320, 1, 1]] + + def __init__(self, + widen_factor=1., + out_indices=(1, 2, 4, 7), + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU6'), + norm_eval=False, + with_cp=False, + pretrained=None, + init_cfg=None): + super(MobileNetV2, self).__init__(init_cfg) + + self.pretrained = pretrained + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + self.widen_factor = widen_factor + self.out_indices = out_indices + if not set(out_indices).issubset(set(range(0, 8))): + raise ValueError('out_indices must be a subset of range' + f'(0, 8). But received {out_indices}') + + if frozen_stages not in range(-1, 8): + raise ValueError('frozen_stages must be in range(-1, 8). ' + f'But received {frozen_stages}') + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.norm_eval = norm_eval + self.with_cp = with_cp + + self.in_channels = make_divisible(32 * widen_factor, 8) + + self.conv1 = ConvModule( + in_channels=3, + out_channels=self.in_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.layers = [] + + for i, layer_cfg in enumerate(self.arch_settings): + expand_ratio, channel, num_blocks, stride = layer_cfg + out_channels = make_divisible(channel * widen_factor, 8) + inverted_res_layer = self.make_layer( + out_channels=out_channels, + num_blocks=num_blocks, + stride=stride, + expand_ratio=expand_ratio) + layer_name = f'layer{i + 1}' + self.add_module(layer_name, inverted_res_layer) + self.layers.append(layer_name) + + if widen_factor > 1.0: + self.out_channel = int(1280 * widen_factor) + else: + self.out_channel = 1280 + + layer = ConvModule( + in_channels=self.in_channels, + out_channels=self.out_channel, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.add_module('conv2', layer) + self.layers.append('conv2') + + def make_layer(self, out_channels, num_blocks, stride, expand_ratio): + """Stack InvertedResidual blocks to build a layer for MobileNetV2. + + Args: + out_channels (int): out_channels of block. + num_blocks (int): number of blocks. + stride (int): stride of the first block. Default: 1 + expand_ratio (int): Expand the number of channels of the + hidden layer in InvertedResidual by this ratio. Default: 6. + """ + layers = [] + for i in range(num_blocks): + if i >= 1: + stride = 1 + layers.append( + InvertedResidual( + self.in_channels, + out_channels, + mid_channels=int(round(self.in_channels * expand_ratio)), + stride=stride, + with_expand_conv=expand_ratio != 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + with_cp=self.with_cp)) + self.in_channels = out_channels + + return nn.Sequential(*layers) + + def _freeze_stages(self): + if self.frozen_stages >= 0: + for param in self.conv1.parameters(): + param.requires_grad = False + for i in range(1, self.frozen_stages + 1): + layer = getattr(self, f'layer{i}') + layer.eval() + for param in layer.parameters(): + param.requires_grad = False + + def forward(self, x): + """Forward function.""" + x = self.conv1(x) + outs = [] + for i, layer_name in enumerate(self.layers): + layer = getattr(self, layer_name) + x = layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) + + def train(self, mode=True): + """Convert the model into training mode while keep normalization layer + frozen.""" + super(MobileNetV2, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/pvt.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/pvt.py new file mode 100644 index 000000000..8b7d5d534 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/pvt.py @@ -0,0 +1,591 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +import warnings + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (Conv2d, build_activation_layer, build_norm_layer, + constant_init, normal_init, trunc_normal_init) +from mmcv.cnn.bricks.drop import build_dropout +from mmcv.cnn.bricks.transformer import MultiheadAttention +from mmcv.cnn.utils.weight_init import trunc_normal_ +from mmcv.runner import (BaseModule, ModuleList, Sequential, _load_checkpoint, + load_state_dict) +from torch.nn.modules.utils import _pair as to_2tuple + +from ...utils import get_root_logger +from ..builder import BACKBONES +from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw, pvt_convert + + +class MixFFN(BaseModule): + """An implementation of MixFFN of PVT. + + The differences between MixFFN & FFN: + 1. Use 1X1 Conv to replace Linear layer. + 2. Introduce 3X3 Depth-wise Conv to encode positional information. + + Args: + embed_dims (int): The feature dimension. Same as + `MultiheadAttention`. + feedforward_channels (int): The hidden dimension of FFNs. + act_cfg (dict, optional): The activation config for FFNs. + Default: dict(type='GELU'). + ffn_drop (float, optional): Probability of an element to be + zeroed in FFN. Default 0.0. + dropout_layer (obj:`ConfigDict`): The dropout_layer used + when adding the shortcut. + Default: None. + use_conv (bool): If True, add 3x3 DWConv between two Linear layers. + Defaults: False. + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + feedforward_channels, + act_cfg=dict(type='GELU'), + ffn_drop=0., + dropout_layer=None, + use_conv=False, + init_cfg=None): + super(MixFFN, self).__init__(init_cfg=init_cfg) + + self.embed_dims = embed_dims + self.feedforward_channels = feedforward_channels + self.act_cfg = act_cfg + activate = build_activation_layer(act_cfg) + + in_channels = embed_dims + fc1 = Conv2d( + in_channels=in_channels, + out_channels=feedforward_channels, + kernel_size=1, + stride=1, + bias=True) + if use_conv: + # 3x3 depth wise conv to provide positional encode information + dw_conv = Conv2d( + in_channels=feedforward_channels, + out_channels=feedforward_channels, + kernel_size=3, + stride=1, + padding=(3 - 1) // 2, + bias=True, + groups=feedforward_channels) + fc2 = Conv2d( + in_channels=feedforward_channels, + out_channels=in_channels, + kernel_size=1, + stride=1, + bias=True) + drop = nn.Dropout(ffn_drop) + layers = [fc1, activate, drop, fc2, drop] + if use_conv: + layers.insert(1, dw_conv) + self.layers = Sequential(*layers) + self.dropout_layer = build_dropout( + dropout_layer) if dropout_layer else torch.nn.Identity() + + def forward(self, x, hw_shape, identity=None): + out = nlc_to_nchw(x, hw_shape) + out = self.layers(out) + out = nchw_to_nlc(out) + if identity is None: + identity = x + return identity + self.dropout_layer(out) + + +class SpatialReductionAttention(MultiheadAttention): + """An implementation of Spatial Reduction Attention of PVT. + + This module is modified from MultiheadAttention which is a module from + mmcv.cnn.bricks.transformer. + + Args: + embed_dims (int): The embedding dimension. + num_heads (int): Parallel attention heads. + attn_drop (float): A Dropout layer on attn_output_weights. + Default: 0.0. + proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. + Default: 0.0. + dropout_layer (obj:`ConfigDict`): The dropout_layer used + when adding the shortcut. Default: None. + batch_first (bool): Key, Query and Value are shape of + (batch, n, embed_dim) + or (n, batch, embed_dim). Default: False. + qkv_bias (bool): enable bias for qkv if True. Default: True. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + sr_ratio (int): The ratio of spatial reduction of Spatial Reduction + Attention of PVT. Default: 1. + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + attn_drop=0., + proj_drop=0., + dropout_layer=None, + batch_first=True, + qkv_bias=True, + norm_cfg=dict(type='LN'), + sr_ratio=1, + init_cfg=None): + super().__init__( + embed_dims, + num_heads, + attn_drop, + proj_drop, + batch_first=batch_first, + dropout_layer=dropout_layer, + bias=qkv_bias, + init_cfg=init_cfg) + + self.sr_ratio = sr_ratio + if sr_ratio > 1: + self.sr = Conv2d( + in_channels=embed_dims, + out_channels=embed_dims, + kernel_size=sr_ratio, + stride=sr_ratio) + # The ret[0] of build_norm_layer is norm name. + self.norm = build_norm_layer(norm_cfg, embed_dims)[1] + + # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa + from mmdet import digit_version, mmcv_version + if mmcv_version < digit_version('1.3.17'): + warnings.warn('The legacy version of forward function in' + 'SpatialReductionAttention is deprecated in' + 'mmcv>=1.3.17 and will no longer support in the' + 'future. Please upgrade your mmcv.') + self.forward = self.legacy_forward + + def forward(self, x, hw_shape, identity=None): + + x_q = x + if self.sr_ratio > 1: + x_kv = nlc_to_nchw(x, hw_shape) + x_kv = self.sr(x_kv) + x_kv = nchw_to_nlc(x_kv) + x_kv = self.norm(x_kv) + else: + x_kv = x + + if identity is None: + identity = x_q + + # Because the dataflow('key', 'query', 'value') of + # ``torch.nn.MultiheadAttention`` is (num_query, batch, + # embed_dims), We should adjust the shape of dataflow from + # batch_first (batch, num_query, embed_dims) to num_query_first + # (num_query ,batch, embed_dims), and recover ``attn_output`` + # from num_query_first to batch_first. + if self.batch_first: + x_q = x_q.transpose(0, 1) + x_kv = x_kv.transpose(0, 1) + + out = self.attn(query=x_q, key=x_kv, value=x_kv)[0] + + if self.batch_first: + out = out.transpose(0, 1) + + return identity + self.dropout_layer(self.proj_drop(out)) + + def legacy_forward(self, x, hw_shape, identity=None): + """multi head attention forward in mmcv version < 1.3.17.""" + x_q = x + if self.sr_ratio > 1: + x_kv = nlc_to_nchw(x, hw_shape) + x_kv = self.sr(x_kv) + x_kv = nchw_to_nlc(x_kv) + x_kv = self.norm(x_kv) + else: + x_kv = x + + if identity is None: + identity = x_q + + out = self.attn(query=x_q, key=x_kv, value=x_kv)[0] + + return identity + self.dropout_layer(self.proj_drop(out)) + + +class PVTEncoderLayer(BaseModule): + """Implements one encoder layer in PVT. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + drop_rate (float): Probability of an element to be zeroed. + after the feed forward layer. Default: 0.0. + attn_drop_rate (float): The drop out rate for attention layer. + Default: 0.0. + drop_path_rate (float): stochastic depth rate. Default: 0.0. + qkv_bias (bool): enable bias for qkv if True. + Default: True. + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + sr_ratio (int): The ratio of spatial reduction of Spatial Reduction + Attention of PVT. Default: 1. + use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN. + Default: False. + init_cfg (dict, optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + qkv_bias=True, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + sr_ratio=1, + use_conv_ffn=False, + init_cfg=None): + super(PVTEncoderLayer, self).__init__(init_cfg=init_cfg) + + # The ret[0] of build_norm_layer is norm name. + self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] + + self.attn = SpatialReductionAttention( + embed_dims=embed_dims, + num_heads=num_heads, + attn_drop=attn_drop_rate, + proj_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + qkv_bias=qkv_bias, + norm_cfg=norm_cfg, + sr_ratio=sr_ratio) + + # The ret[0] of build_norm_layer is norm name. + self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] + + self.ffn = MixFFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + use_conv=use_conv_ffn, + act_cfg=act_cfg) + + def forward(self, x, hw_shape): + x = self.attn(self.norm1(x), hw_shape, identity=x) + x = self.ffn(self.norm2(x), hw_shape, identity=x) + + return x + + +class AbsolutePositionEmbedding(BaseModule): + """An implementation of the absolute position embedding in PVT. + + Args: + pos_shape (int): The shape of the absolute position embedding. + pos_dim (int): The dimension of the absolute position embedding. + drop_rate (float): Probability of an element to be zeroed. + Default: 0.0. + """ + + def __init__(self, pos_shape, pos_dim, drop_rate=0., init_cfg=None): + super().__init__(init_cfg=init_cfg) + + if isinstance(pos_shape, int): + pos_shape = to_2tuple(pos_shape) + elif isinstance(pos_shape, tuple): + if len(pos_shape) == 1: + pos_shape = to_2tuple(pos_shape[0]) + assert len(pos_shape) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(pos_shape)}' + self.pos_shape = pos_shape + self.pos_dim = pos_dim + + self.pos_embed = nn.Parameter( + torch.zeros(1, pos_shape[0] * pos_shape[1], pos_dim)) + self.drop = nn.Dropout(p=drop_rate) + + def init_weights(self): + trunc_normal_(self.pos_embed, std=0.02) + + def resize_pos_embed(self, pos_embed, input_shape, mode='bilinear'): + """Resize pos_embed weights. + + Resize pos_embed using bilinear interpolate method. + + Args: + pos_embed (torch.Tensor): Position embedding weights. + input_shape (tuple): Tuple for (downsampled input image height, + downsampled input image width). + mode (str): Algorithm used for upsampling: + ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | + ``'trilinear'``. Default: ``'bilinear'``. + + Return: + torch.Tensor: The resized pos_embed of shape [B, L_new, C]. + """ + assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' + pos_h, pos_w = self.pos_shape + pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] + pos_embed_weight = pos_embed_weight.reshape( + 1, pos_h, pos_w, self.pos_dim).permute(0, 3, 1, 2).contiguous() + pos_embed_weight = F.interpolate( + pos_embed_weight, size=input_shape, mode=mode) + pos_embed_weight = torch.flatten(pos_embed_weight, + 2).transpose(1, 2).contiguous() + pos_embed = pos_embed_weight + + return pos_embed + + def forward(self, x, hw_shape, mode='bilinear'): + pos_embed = self.resize_pos_embed(self.pos_embed, hw_shape, mode) + return self.drop(x + pos_embed) + + +@BACKBONES.register_module() +class PyramidVisionTransformer(BaseModule): + """Pyramid Vision Transformer (PVT) + + Implementation of `Pyramid Vision Transformer: A Versatile Backbone for + Dense Prediction without Convolutions + `_. + + Args: + pretrain_img_size (int | tuple[int]): The size of input image when + pretrain. Defaults: 224. + in_channels (int): Number of input channels. Default: 3. + embed_dims (int): Embedding dimension. Default: 64. + num_stags (int): The num of stages. Default: 4. + num_layers (Sequence[int]): The layer number of each transformer encode + layer. Default: [3, 4, 6, 3]. + num_heads (Sequence[int]): The attention heads of each transformer + encode layer. Default: [1, 2, 5, 8]. + patch_sizes (Sequence[int]): The patch_size of each patch embedding. + Default: [4, 2, 2, 2]. + strides (Sequence[int]): The stride of each patch embedding. + Default: [4, 2, 2, 2]. + paddings (Sequence[int]): The padding of each patch embedding. + Default: [0, 0, 0, 0]. + sr_ratios (Sequence[int]): The spatial reduction rate of each + transformer encode layer. Default: [8, 4, 2, 1]. + out_indices (Sequence[int] | int): Output from which stages. + Default: (0, 1, 2, 3). + mlp_ratios (Sequence[int]): The ratio of the mlp hidden dim to the + embedding dim of each transformer encode layer. + Default: [8, 8, 4, 4]. + qkv_bias (bool): Enable bias for qkv if True. Default: True. + drop_rate (float): Probability of an element to be zeroed. + Default 0.0. + attn_drop_rate (float): The drop out rate for attention layer. + Default 0.0. + drop_path_rate (float): stochastic depth rate. Default 0.1. + use_abs_pos_embed (bool): If True, add absolute position embedding to + the patch embedding. Defaults: True. + use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN. + Default: False. + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + pretrained (str, optional): model pretrained path. Default: None. + convert_weights (bool): The flag indicates whether the + pre-trained model is from the original repo. We may need + to convert some keys to make it compatible. + Default: True. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + pretrain_img_size=224, + in_channels=3, + embed_dims=64, + num_stages=4, + num_layers=[3, 4, 6, 3], + num_heads=[1, 2, 5, 8], + patch_sizes=[4, 2, 2, 2], + strides=[4, 2, 2, 2], + paddings=[0, 0, 0, 0], + sr_ratios=[8, 4, 2, 1], + out_indices=(0, 1, 2, 3), + mlp_ratios=[8, 8, 4, 4], + qkv_bias=True, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0.1, + use_abs_pos_embed=True, + norm_after_stage=False, + use_conv_ffn=False, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN', eps=1e-6), + pretrained=None, + convert_weights=True, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + + self.convert_weights = convert_weights + if isinstance(pretrain_img_size, int): + pretrain_img_size = to_2tuple(pretrain_img_size) + elif isinstance(pretrain_img_size, tuple): + if len(pretrain_img_size) == 1: + pretrain_img_size = to_2tuple(pretrain_img_size[0]) + assert len(pretrain_img_size) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(pretrain_img_size)}' + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + self.init_cfg = init_cfg + else: + raise TypeError('pretrained must be a str or None') + + self.embed_dims = embed_dims + + self.num_stages = num_stages + self.num_layers = num_layers + self.num_heads = num_heads + self.patch_sizes = patch_sizes + self.strides = strides + self.sr_ratios = sr_ratios + assert num_stages == len(num_layers) == len(num_heads) \ + == len(patch_sizes) == len(strides) == len(sr_ratios) + + self.out_indices = out_indices + assert max(out_indices) < self.num_stages + self.pretrained = pretrained + + # transformer encoder + dpr = [ + x.item() + for x in torch.linspace(0, drop_path_rate, sum(num_layers)) + ] # stochastic num_layer decay rule + + cur = 0 + self.layers = ModuleList() + for i, num_layer in enumerate(num_layers): + embed_dims_i = embed_dims * num_heads[i] + patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims_i, + kernel_size=patch_sizes[i], + stride=strides[i], + padding=paddings[i], + bias=True, + norm_cfg=norm_cfg) + + layers = ModuleList() + if use_abs_pos_embed: + pos_shape = pretrain_img_size // np.prod(patch_sizes[:i + 1]) + pos_embed = AbsolutePositionEmbedding( + pos_shape=pos_shape, + pos_dim=embed_dims_i, + drop_rate=drop_rate) + layers.append(pos_embed) + layers.extend([ + PVTEncoderLayer( + embed_dims=embed_dims_i, + num_heads=num_heads[i], + feedforward_channels=mlp_ratios[i] * embed_dims_i, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[cur + idx], + qkv_bias=qkv_bias, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + sr_ratio=sr_ratios[i], + use_conv_ffn=use_conv_ffn) for idx in range(num_layer) + ]) + in_channels = embed_dims_i + # The ret[0] of build_norm_layer is norm name. + if norm_after_stage: + norm = build_norm_layer(norm_cfg, embed_dims_i)[1] + else: + norm = nn.Identity() + self.layers.append(ModuleList([patch_embed, layers, norm])) + cur += num_layer + + def init_weights(self): + logger = get_root_logger() + if self.init_cfg is None: + logger.warn(f'No pre-trained weights for ' + f'{self.__class__.__name__}, ' + f'training start from scratch') + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, nn.LayerNorm): + constant_init(m, 1.0) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[ + 1] * m.out_channels + fan_out //= m.groups + normal_init(m, 0, math.sqrt(2.0 / fan_out)) + elif isinstance(m, AbsolutePositionEmbedding): + m.init_weights() + else: + assert 'checkpoint' in self.init_cfg, f'Only support ' \ + f'specify `Pretrained` in ' \ + f'`init_cfg` in ' \ + f'{self.__class__.__name__} ' + checkpoint = _load_checkpoint( + self.init_cfg.checkpoint, logger=logger, map_location='cpu') + logger.warn(f'Load pre-trained model for ' + f'{self.__class__.__name__} from original repo') + if 'state_dict' in checkpoint: + state_dict = checkpoint['state_dict'] + elif 'model' in checkpoint: + state_dict = checkpoint['model'] + else: + state_dict = checkpoint + if self.convert_weights: + # Because pvt backbones are not supported by mmcls, + # so we need to convert pre-trained weights to match this + # implementation. + state_dict = pvt_convert(state_dict) + load_state_dict(self, state_dict, strict=False, logger=logger) + + def forward(self, x): + outs = [] + + for i, layer in enumerate(self.layers): + x, hw_shape = layer[0](x) + + for block in layer[1]: + x = block(x, hw_shape) + x = layer[2](x) + x = nlc_to_nchw(x, hw_shape) + if i in self.out_indices: + outs.append(x) + + return outs + + +@BACKBONES.register_module() +class PyramidVisionTransformerV2(PyramidVisionTransformer): + """Implementation of `PVTv2: Improved Baselines with Pyramid Vision + Transformer `_.""" + + def __init__(self, **kwargs): + super(PyramidVisionTransformerV2, self).__init__( + patch_sizes=[7, 3, 3, 3], + paddings=[3, 1, 1, 1], + use_abs_pos_embed=False, + norm_after_stage=True, + use_conv_ffn=True, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/regnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/regnet.py new file mode 100644 index 000000000..63adc3c1d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/regnet.py @@ -0,0 +1,356 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numpy as np +import torch.nn as nn +from mmcv.cnn import build_conv_layer, build_norm_layer + +from ..builder import BACKBONES +from .resnet import ResNet +from .resnext import Bottleneck + + +@BACKBONES.register_module() +class RegNet(ResNet): + """RegNet backbone. + + More details can be found in `paper `_ . + + Args: + arch (dict): The parameter of RegNets. + + - w0 (int): initial width + - wa (float): slope of width + - wm (float): quantization parameter to quantize the width + - depth (int): depth of the backbone + - group_w (int): width of group + - bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck. + strides (Sequence[int]): Strides of the first block of each stage. + base_channels (int): Base channels after stem layer. + in_channels (int): Number of input image channels. Default: 3. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + frozen_stages (int): Stages to be frozen (all param fixed). -1 means + not freezing any parameters. + norm_cfg (dict): dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): whether to use zero init for last norm layer + in resblocks to let them behave as identity. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Example: + >>> from mmdet.models import RegNet + >>> import torch + >>> self = RegNet( + arch=dict( + w0=88, + wa=26.31, + wm=2.25, + group_w=48, + depth=25, + bot_mul=1.0)) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 96, 8, 8) + (1, 192, 4, 4) + (1, 432, 2, 2) + (1, 1008, 1, 1) + """ + arch_settings = { + 'regnetx_400mf': + dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), + 'regnetx_800mf': + dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), + 'regnetx_1.6gf': + dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), + 'regnetx_3.2gf': + dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), + 'regnetx_4.0gf': + dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), + 'regnetx_6.4gf': + dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), + 'regnetx_8.0gf': + dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), + 'regnetx_12gf': + dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), + } + + def __init__(self, + arch, + in_channels=3, + stem_channels=32, + base_channels=32, + strides=(2, 2, 2, 2), + dilations=(1, 1, 1, 1), + out_indices=(0, 1, 2, 3), + style='pytorch', + deep_stem=False, + avg_down=False, + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + dcn=None, + stage_with_dcn=(False, False, False, False), + plugins=None, + with_cp=False, + zero_init_residual=True, + pretrained=None, + init_cfg=None): + super(ResNet, self).__init__(init_cfg) + + # Generate RegNet parameters first + if isinstance(arch, str): + assert arch in self.arch_settings, \ + f'"arch": "{arch}" is not one of the' \ + ' arch_settings' + arch = self.arch_settings[arch] + elif not isinstance(arch, dict): + raise ValueError('Expect "arch" to be either a string ' + f'or a dict, got {type(arch)}') + + widths, num_stages = self.generate_regnet( + arch['w0'], + arch['wa'], + arch['wm'], + arch['depth'], + ) + # Convert to per stage format + stage_widths, stage_blocks = self.get_stages_from_blocks(widths) + # Generate group widths and bot muls + group_widths = [arch['group_w'] for _ in range(num_stages)] + self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)] + # Adjust the compatibility of stage_widths and group_widths + stage_widths, group_widths = self.adjust_width_group( + stage_widths, self.bottleneck_ratio, group_widths) + + # Group params by stage + self.stage_widths = stage_widths + self.group_widths = group_widths + self.depth = sum(stage_blocks) + self.stem_channels = stem_channels + self.base_channels = base_channels + self.num_stages = num_stages + assert num_stages >= 1 and num_stages <= 4 + self.strides = strides + self.dilations = dilations + assert len(strides) == len(dilations) == num_stages + self.out_indices = out_indices + assert max(out_indices) < num_stages + self.style = style + self.deep_stem = deep_stem + self.avg_down = avg_down + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.with_cp = with_cp + self.norm_eval = norm_eval + self.dcn = dcn + self.stage_with_dcn = stage_with_dcn + if dcn is not None: + assert len(stage_with_dcn) == num_stages + self.plugins = plugins + self.zero_init_residual = zero_init_residual + self.block = Bottleneck + expansion_bak = self.block.expansion + self.block.expansion = 1 + self.stage_blocks = stage_blocks[:num_stages] + + self._make_stem_layer(in_channels, stem_channels) + + block_init_cfg = None + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + if self.zero_init_residual: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm3')) + else: + raise TypeError('pretrained must be a str or None') + + self.inplanes = stem_channels + self.res_layers = [] + for i, num_blocks in enumerate(self.stage_blocks): + stride = self.strides[i] + dilation = self.dilations[i] + group_width = self.group_widths[i] + width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i])) + stage_groups = width // group_width + + dcn = self.dcn if self.stage_with_dcn[i] else None + if self.plugins is not None: + stage_plugins = self.make_stage_plugins(self.plugins, i) + else: + stage_plugins = None + + res_layer = self.make_res_layer( + block=self.block, + inplanes=self.inplanes, + planes=self.stage_widths[i], + num_blocks=num_blocks, + stride=stride, + dilation=dilation, + style=self.style, + avg_down=self.avg_down, + with_cp=self.with_cp, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dcn=dcn, + plugins=stage_plugins, + groups=stage_groups, + base_width=group_width, + base_channels=self.stage_widths[i], + init_cfg=block_init_cfg) + self.inplanes = self.stage_widths[i] + layer_name = f'layer{i + 1}' + self.add_module(layer_name, res_layer) + self.res_layers.append(layer_name) + + self._freeze_stages() + + self.feat_dim = stage_widths[-1] + self.block.expansion = expansion_bak + + def _make_stem_layer(self, in_channels, base_channels): + self.conv1 = build_conv_layer( + self.conv_cfg, + in_channels, + base_channels, + kernel_size=3, + stride=2, + padding=1, + bias=False) + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, base_channels, postfix=1) + self.add_module(self.norm1_name, norm1) + self.relu = nn.ReLU(inplace=True) + + def generate_regnet(self, + initial_width, + width_slope, + width_parameter, + depth, + divisor=8): + """Generates per block width from RegNet parameters. + + Args: + initial_width ([int]): Initial width of the backbone + width_slope ([float]): Slope of the quantized linear function + width_parameter ([int]): Parameter used to quantize the width. + depth ([int]): Depth of the backbone. + divisor (int, optional): The divisor of channels. Defaults to 8. + + Returns: + list, int: return a list of widths of each stage and the number \ + of stages + """ + assert width_slope >= 0 + assert initial_width > 0 + assert width_parameter > 1 + assert initial_width % divisor == 0 + widths_cont = np.arange(depth) * width_slope + initial_width + ks = np.round( + np.log(widths_cont / initial_width) / np.log(width_parameter)) + widths = initial_width * np.power(width_parameter, ks) + widths = np.round(np.divide(widths, divisor)) * divisor + num_stages = len(np.unique(widths)) + widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() + return widths, num_stages + + @staticmethod + def quantize_float(number, divisor): + """Converts a float to closest non-zero int divisible by divisor. + + Args: + number (int): Original number to be quantized. + divisor (int): Divisor used to quantize the number. + + Returns: + int: quantized number that is divisible by devisor. + """ + return int(round(number / divisor) * divisor) + + def adjust_width_group(self, widths, bottleneck_ratio, groups): + """Adjusts the compatibility of widths and groups. + + Args: + widths (list[int]): Width of each stage. + bottleneck_ratio (float): Bottleneck ratio. + groups (int): number of groups in each stage + + Returns: + tuple(list): The adjusted widths and groups of each stage. + """ + bottleneck_width = [ + int(w * b) for w, b in zip(widths, bottleneck_ratio) + ] + groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)] + bottleneck_width = [ + self.quantize_float(w_bot, g) + for w_bot, g in zip(bottleneck_width, groups) + ] + widths = [ + int(w_bot / b) + for w_bot, b in zip(bottleneck_width, bottleneck_ratio) + ] + return widths, groups + + def get_stages_from_blocks(self, widths): + """Gets widths/stage_blocks of network at each stage. + + Args: + widths (list[int]): Width in each stage. + + Returns: + tuple(list): width and depth of each stage + """ + width_diff = [ + width != width_prev + for width, width_prev in zip(widths + [0], [0] + widths) + ] + stage_widths = [ + width for width, diff in zip(widths, width_diff[:-1]) if diff + ] + stage_blocks = np.diff([ + depth for depth, diff in zip(range(len(width_diff)), width_diff) + if diff + ]).tolist() + return stage_widths, stage_blocks + + def forward(self, x): + """Forward function.""" + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + + outs = [] + for i, layer_name in enumerate(self.res_layers): + res_layer = getattr(self, layer_name) + x = res_layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/res2net.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/res2net.py new file mode 100644 index 000000000..96afb2fb2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/res2net.py @@ -0,0 +1,327 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import Sequential + +from ..builder import BACKBONES +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNet + + +class Bottle2neck(_Bottleneck): + expansion = 4 + + def __init__(self, + inplanes, + planes, + scales=4, + base_width=26, + base_channels=64, + stage_type='normal', + **kwargs): + """Bottle2neck block for Res2Net. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if + it is "caffe", the stride-two layer is the first 1x1 conv layer. + """ + super(Bottle2neck, self).__init__(inplanes, planes, **kwargs) + assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.' + width = int(math.floor(self.planes * (base_width / base_channels))) + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width * scales, postfix=1) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width * scales, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + + if stage_type == 'stage' and self.conv2_stride != 1: + self.pool = nn.AvgPool2d( + kernel_size=3, stride=self.conv2_stride, padding=1) + convs = [] + bns = [] + + fallback_on_stride = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if not self.with_dcn or fallback_on_stride: + for i in range(scales - 1): + convs.append( + build_conv_layer( + self.conv_cfg, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + bias=False)) + bns.append( + build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + for i in range(scales - 1): + convs.append( + build_conv_layer( + self.dcn, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + bias=False)) + bns.append( + build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + + self.conv3 = build_conv_layer( + self.conv_cfg, + width * scales, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + self.stage_type = stage_type + self.scales = scales + self.width = width + delattr(self, 'conv2') + delattr(self, self.norm2_name) + + def forward(self, x): + """Forward function.""" + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + spx = torch.split(out, self.width, 1) + sp = self.convs[0](spx[0].contiguous()) + sp = self.relu(self.bns[0](sp)) + out = sp + for i in range(1, self.scales - 1): + if self.stage_type == 'stage': + sp = spx[i] + else: + sp = sp + spx[i] + sp = self.convs[i](sp.contiguous()) + sp = self.relu(self.bns[i](sp)) + out = torch.cat((out, sp), 1) + + if self.stage_type == 'normal' or self.conv2_stride == 1: + out = torch.cat((out, spx[self.scales - 1]), 1) + elif self.stage_type == 'stage': + out = torch.cat((out, self.pool(spx[self.scales - 1])), 1) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +class Res2Layer(Sequential): + """Res2Layer to build Res2Net style backbone. + + Args: + block (nn.Module): block used to build ResLayer. + inplanes (int): inplanes of block. + planes (int): planes of block. + num_blocks (int): number of blocks. + stride (int): stride of the first block. Default: 1 + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottle2neck. Default: False + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None + norm_cfg (dict): dictionary to construct and config norm layer. + Default: dict(type='BN') + scales (int): Scales used in Res2Net. Default: 4 + base_width (int): Basic width of each scale. Default: 26 + """ + + def __init__(self, + block, + inplanes, + planes, + num_blocks, + stride=1, + avg_down=True, + conv_cfg=None, + norm_cfg=dict(type='BN'), + scales=4, + base_width=26, + **kwargs): + self.block = block + + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.AvgPool2d( + kernel_size=stride, + stride=stride, + ceil_mode=True, + count_include_pad=False), + build_conv_layer( + conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=1, + bias=False), + build_norm_layer(norm_cfg, planes * block.expansion)[1], + ) + + layers = [] + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + scales=scales, + base_width=base_width, + stage_type='stage', + **kwargs)) + inplanes = planes * block.expansion + for i in range(1, num_blocks): + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + scales=scales, + base_width=base_width, + **kwargs)) + super(Res2Layer, self).__init__(*layers) + + +@BACKBONES.register_module() +class Res2Net(ResNet): + """Res2Net backbone. + + Args: + scales (int): Scales used in Res2Net. Default: 4 + base_width (int): Basic width of each scale. Default: 26 + depth (int): Depth of res2net, from {50, 101, 152}. + in_channels (int): Number of input image channels. Default: 3. + num_stages (int): Res2net stages. Default: 4. + strides (Sequence[int]): Strides of the first block of each stage. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottle2neck. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. + norm_cfg (dict): Dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + plugins (list[dict]): List of plugins for stages, each dict contains: + + - cfg (dict, required): Cfg dict to build plugin. + - position (str, required): Position inside block to insert + plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. + - stages (tuple[bool], optional): Stages to apply plugin, length + should be same as 'num_stages'. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Example: + >>> from mmdet.models import Res2Net + >>> import torch + >>> self = Res2Net(depth=50, scales=4, base_width=26) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 256, 8, 8) + (1, 512, 4, 4) + (1, 1024, 2, 2) + (1, 2048, 1, 1) + """ + + arch_settings = { + 50: (Bottle2neck, (3, 4, 6, 3)), + 101: (Bottle2neck, (3, 4, 23, 3)), + 152: (Bottle2neck, (3, 8, 36, 3)) + } + + def __init__(self, + scales=4, + base_width=26, + style='pytorch', + deep_stem=True, + avg_down=True, + pretrained=None, + init_cfg=None, + **kwargs): + self.scales = scales + self.base_width = base_width + super(Res2Net, self).__init__( + style='pytorch', + deep_stem=True, + avg_down=True, + pretrained=pretrained, + init_cfg=init_cfg, + **kwargs) + + def make_res_layer(self, **kwargs): + return Res2Layer( + scales=self.scales, + base_width=self.base_width, + base_channels=self.base_channels, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnest.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnest.py new file mode 100644 index 000000000..69629b96d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnest.py @@ -0,0 +1,322 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule + +from ..builder import BACKBONES +from ..utils import ResLayer +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNetV1d + + +class RSoftmax(nn.Module): + """Radix Softmax module in ``SplitAttentionConv2d``. + + Args: + radix (int): Radix of input. + groups (int): Groups of input. + """ + + def __init__(self, radix, groups): + super().__init__() + self.radix = radix + self.groups = groups + + def forward(self, x): + batch = x.size(0) + if self.radix > 1: + x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) + x = F.softmax(x, dim=1) + x = x.reshape(batch, -1) + else: + x = torch.sigmoid(x) + return x + + +class SplitAttentionConv2d(BaseModule): + """Split-Attention Conv2d in ResNeSt. + + Args: + in_channels (int): Number of channels in the input feature map. + channels (int): Number of intermediate channels. + kernel_size (int | tuple[int]): Size of the convolution kernel. + stride (int | tuple[int]): Stride of the convolution. + padding (int | tuple[int]): Zero-padding added to both sides of + dilation (int | tuple[int]): Spacing between kernel elements. + groups (int): Number of blocked connections from input channels to + output channels. + groups (int): Same as nn.Conv2d. + radix (int): Radix of SpltAtConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels. Default: 4. + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. Default: None. + dcn (dict): Config dict for DCN. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + radix=2, + reduction_factor=4, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + init_cfg=None): + super(SplitAttentionConv2d, self).__init__(init_cfg) + inter_channels = max(in_channels * radix // reduction_factor, 32) + self.radix = radix + self.groups = groups + self.channels = channels + self.with_dcn = dcn is not None + self.dcn = dcn + fallback_on_stride = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if self.with_dcn and not fallback_on_stride: + assert conv_cfg is None, 'conv_cfg must be None for DCN' + conv_cfg = dcn + self.conv = build_conv_layer( + conv_cfg, + in_channels, + channels * radix, + kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups * radix, + bias=False) + # To be consistent with original implementation, starting from 0 + self.norm0_name, norm0 = build_norm_layer( + norm_cfg, channels * radix, postfix=0) + self.add_module(self.norm0_name, norm0) + self.relu = nn.ReLU(inplace=True) + self.fc1 = build_conv_layer( + None, channels, inter_channels, 1, groups=self.groups) + self.norm1_name, norm1 = build_norm_layer( + norm_cfg, inter_channels, postfix=1) + self.add_module(self.norm1_name, norm1) + self.fc2 = build_conv_layer( + None, inter_channels, channels * radix, 1, groups=self.groups) + self.rsoftmax = RSoftmax(radix, groups) + + @property + def norm0(self): + """nn.Module: the normalization layer named "norm0" """ + return getattr(self, self.norm0_name) + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + def forward(self, x): + x = self.conv(x) + x = self.norm0(x) + x = self.relu(x) + + batch, rchannel = x.shape[:2] + batch = x.size(0) + if self.radix > 1: + splits = x.view(batch, self.radix, -1, *x.shape[2:]) + gap = splits.sum(dim=1) + else: + gap = x + gap = F.adaptive_avg_pool2d(gap, 1) + gap = self.fc1(gap) + + gap = self.norm1(gap) + gap = self.relu(gap) + + atten = self.fc2(gap) + atten = self.rsoftmax(atten).view(batch, -1, 1, 1) + + if self.radix > 1: + attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) + out = torch.sum(attens * splits, dim=1) + else: + out = atten * x + return out.contiguous() + + +class Bottleneck(_Bottleneck): + """Bottleneck block for ResNeSt. + + Args: + inplane (int): Input planes of this block. + planes (int): Middle planes of this block. + groups (int): Groups of conv2. + base_width (int): Base of width in terms of base channels. Default: 4. + base_channels (int): Base of channels for calculating width. + Default: 64. + radix (int): Radix of SpltAtConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels in + SplitAttentionConv2d. Default: 4. + avg_down_stride (bool): Whether to use average pool for stride in + Bottleneck. Default: True. + kwargs (dict): Key word arguments for base class. + """ + expansion = 4 + + def __init__(self, + inplanes, + planes, + groups=1, + base_width=4, + base_channels=64, + radix=2, + reduction_factor=4, + avg_down_stride=True, + **kwargs): + """Bottleneck block for ResNeSt.""" + super(Bottleneck, self).__init__(inplanes, planes, **kwargs) + + if groups == 1: + width = self.planes + else: + width = math.floor(self.planes * + (base_width / base_channels)) * groups + + self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width, postfix=1) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + self.with_modulated_dcn = False + self.conv2 = SplitAttentionConv2d( + width, + width, + kernel_size=3, + stride=1 if self.avg_down_stride else self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + radix=radix, + reduction_factor=reduction_factor, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dcn=self.dcn) + delattr(self, self.norm2_name) + + if self.avg_down_stride: + self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) + + self.conv3 = build_conv_layer( + self.conv_cfg, + width, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + def forward(self, x): + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + out = self.conv2(out) + + if self.avg_down_stride: + out = self.avd_layer(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +@BACKBONES.register_module() +class ResNeSt(ResNetV1d): + """ResNeSt backbone. + + Args: + groups (int): Number of groups of Bottleneck. Default: 1 + base_width (int): Base width of Bottleneck. Default: 4 + radix (int): Radix of SplitAttentionConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels in + SplitAttentionConv2d. Default: 4. + avg_down_stride (bool): Whether to use average pool for stride in + Bottleneck. Default: True. + kwargs (dict): Keyword arguments for ResNet. + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)), + 200: (Bottleneck, (3, 24, 36, 3)) + } + + def __init__(self, + groups=1, + base_width=4, + radix=2, + reduction_factor=4, + avg_down_stride=True, + **kwargs): + self.groups = groups + self.base_width = base_width + self.radix = radix + self.reduction_factor = reduction_factor + self.avg_down_stride = avg_down_stride + super(ResNeSt, self).__init__(**kwargs) + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``.""" + return ResLayer( + groups=self.groups, + base_width=self.base_width, + base_channels=self.base_channels, + radix=self.radix, + reduction_factor=self.reduction_factor, + avg_down_stride=self.avg_down_stride, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnet.py new file mode 100644 index 000000000..1eaaae67c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnet.py @@ -0,0 +1,672 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from ..utils import ResLayer + + +class BasicBlock(BaseModule): + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + dilation=1, + downsample=None, + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + init_cfg=None): + super(BasicBlock, self).__init__(init_cfg) + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + + self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) + self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) + + self.conv1 = build_conv_layer( + conv_cfg, + inplanes, + planes, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + bias=False) + self.add_module(self.norm1_name, norm1) + self.conv2 = build_conv_layer( + conv_cfg, planes, planes, 3, padding=1, bias=False) + self.add_module(self.norm2_name, norm2) + + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.with_cp = with_cp + + @property + def norm1(self): + """nn.Module: normalization layer after the first convolution layer""" + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: normalization layer after the second convolution layer""" + return getattr(self, self.norm2_name) + + def forward(self, x): + """Forward function.""" + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.norm2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +class Bottleneck(BaseModule): + expansion = 4 + + def __init__(self, + inplanes, + planes, + stride=1, + dilation=1, + downsample=None, + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + init_cfg=None): + """Bottleneck block for ResNet. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if + it is "caffe", the stride-two layer is the first 1x1 conv layer. + """ + super(Bottleneck, self).__init__(init_cfg) + assert style in ['pytorch', 'caffe'] + assert dcn is None or isinstance(dcn, dict) + assert plugins is None or isinstance(plugins, list) + if plugins is not None: + allowed_position = ['after_conv1', 'after_conv2', 'after_conv3'] + assert all(p['position'] in allowed_position for p in plugins) + + self.inplanes = inplanes + self.planes = planes + self.stride = stride + self.dilation = dilation + self.style = style + self.with_cp = with_cp + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.dcn = dcn + self.with_dcn = dcn is not None + self.plugins = plugins + self.with_plugins = plugins is not None + + if self.with_plugins: + # collect plugins for conv1/conv2/conv3 + self.after_conv1_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv1' + ] + self.after_conv2_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv2' + ] + self.after_conv3_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv3' + ] + + if self.style == 'pytorch': + self.conv1_stride = 1 + self.conv2_stride = stride + else: + self.conv1_stride = stride + self.conv2_stride = 1 + + self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) + self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) + self.norm3_name, norm3 = build_norm_layer( + norm_cfg, planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + conv_cfg, + inplanes, + planes, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + fallback_on_stride = False + if self.with_dcn: + fallback_on_stride = dcn.pop('fallback_on_stride', False) + if not self.with_dcn or fallback_on_stride: + self.conv2 = build_conv_layer( + conv_cfg, + planes, + planes, + kernel_size=3, + stride=self.conv2_stride, + padding=dilation, + dilation=dilation, + bias=False) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + self.conv2 = build_conv_layer( + dcn, + planes, + planes, + kernel_size=3, + stride=self.conv2_stride, + padding=dilation, + dilation=dilation, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.conv3 = build_conv_layer( + conv_cfg, + planes, + planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + + if self.with_plugins: + self.after_conv1_plugin_names = self.make_block_plugins( + planes, self.after_conv1_plugins) + self.after_conv2_plugin_names = self.make_block_plugins( + planes, self.after_conv2_plugins) + self.after_conv3_plugin_names = self.make_block_plugins( + planes * self.expansion, self.after_conv3_plugins) + + def make_block_plugins(self, in_channels, plugins): + """make plugins for block. + + Args: + in_channels (int): Input channels of plugin. + plugins (list[dict]): List of plugins cfg to build. + + Returns: + list[str]: List of the names of plugin. + """ + assert isinstance(plugins, list) + plugin_names = [] + for plugin in plugins: + plugin = plugin.copy() + name, layer = build_plugin_layer( + plugin, + in_channels=in_channels, + postfix=plugin.pop('postfix', '')) + assert not hasattr(self, name), f'duplicate plugin {name}' + self.add_module(name, layer) + plugin_names.append(name) + return plugin_names + + def forward_plugin(self, x, plugin_names): + out = x + for name in plugin_names: + out = getattr(self, name)(out) + return out + + @property + def norm1(self): + """nn.Module: normalization layer after the first convolution layer""" + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: normalization layer after the second convolution layer""" + return getattr(self, self.norm2_name) + + @property + def norm3(self): + """nn.Module: normalization layer after the third convolution layer""" + return getattr(self, self.norm3_name) + + def forward(self, x): + """Forward function.""" + + def _inner_forward(x): + identity = x + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + out = self.conv2(out) + out = self.norm2(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +@BACKBONES.register_module() +class ResNet(BaseModule): + """ResNet backbone. + + Args: + depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. + stem_channels (int | None): Number of stem channels. If not specified, + it will be the same as `base_channels`. Default: None. + base_channels (int): Number of base channels of res layer. Default: 64. + in_channels (int): Number of input image channels. Default: 3. + num_stages (int): Resnet stages. Default: 4. + strides (Sequence[int]): Strides of the first block of each stage. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottleneck. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. + norm_cfg (dict): Dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + plugins (list[dict]): List of plugins for stages, each dict contains: + + - cfg (dict, required): Cfg dict to build plugin. + - position (str, required): Position inside block to insert + plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. + - stages (tuple[bool], optional): Stages to apply plugin, length + should be same as 'num_stages'. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Example: + >>> from mmdet.models import ResNet + >>> import torch + >>> self = ResNet(depth=18) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 64, 8, 8) + (1, 128, 4, 4) + (1, 256, 2, 2) + (1, 512, 1, 1) + """ + + arch_settings = { + 18: (BasicBlock, (2, 2, 2, 2)), + 34: (BasicBlock, (3, 4, 6, 3)), + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, + depth, + in_channels=3, + stem_channels=None, + base_channels=64, + num_stages=4, + strides=(1, 2, 2, 2), + dilations=(1, 1, 1, 1), + out_indices=(0, 1, 2, 3), + style='pytorch', + deep_stem=False, + avg_down=False, + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + dcn=None, + stage_with_dcn=(False, False, False, False), + plugins=None, + with_cp=False, + zero_init_residual=True, + pretrained=None, + init_cfg=None): + super(ResNet, self).__init__(init_cfg) + self.zero_init_residual = zero_init_residual + if depth not in self.arch_settings: + raise KeyError(f'invalid depth {depth} for resnet') + + block_init_cfg = None + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + block = self.arch_settings[depth][0] + if self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', + val=0, + override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', + val=0, + override=dict(name='norm3')) + else: + raise TypeError('pretrained must be a str or None') + + self.depth = depth + if stem_channels is None: + stem_channels = base_channels + self.stem_channels = stem_channels + self.base_channels = base_channels + self.num_stages = num_stages + assert num_stages >= 1 and num_stages <= 4 + self.strides = strides + self.dilations = dilations + assert len(strides) == len(dilations) == num_stages + self.out_indices = out_indices + assert max(out_indices) < num_stages + self.style = style + self.deep_stem = deep_stem + self.avg_down = avg_down + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.with_cp = with_cp + self.norm_eval = norm_eval + self.dcn = dcn + self.stage_with_dcn = stage_with_dcn + if dcn is not None: + assert len(stage_with_dcn) == num_stages + self.plugins = plugins + self.block, stage_blocks = self.arch_settings[depth] + self.stage_blocks = stage_blocks[:num_stages] + self.inplanes = stem_channels + + self._make_stem_layer(in_channels, stem_channels) + + self.res_layers = [] + for i, num_blocks in enumerate(self.stage_blocks): + stride = strides[i] + dilation = dilations[i] + dcn = self.dcn if self.stage_with_dcn[i] else None + if plugins is not None: + stage_plugins = self.make_stage_plugins(plugins, i) + else: + stage_plugins = None + planes = base_channels * 2**i + res_layer = self.make_res_layer( + block=self.block, + inplanes=self.inplanes, + planes=planes, + num_blocks=num_blocks, + stride=stride, + dilation=dilation, + style=self.style, + avg_down=self.avg_down, + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + dcn=dcn, + plugins=stage_plugins, + init_cfg=block_init_cfg) + self.inplanes = planes * self.block.expansion + layer_name = f'layer{i + 1}' + self.add_module(layer_name, res_layer) + self.res_layers.append(layer_name) + + self._freeze_stages() + + self.feat_dim = self.block.expansion * base_channels * 2**( + len(self.stage_blocks) - 1) + + def make_stage_plugins(self, plugins, stage_idx): + """Make plugins for ResNet ``stage_idx`` th stage. + + Currently we support to insert ``context_block``, + ``empirical_attention_block``, ``nonlocal_block`` into the backbone + like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of + Bottleneck. + + An example of plugins format could be: + + Examples: + >>> plugins=[ + ... dict(cfg=dict(type='xxx', arg1='xxx'), + ... stages=(False, True, True, True), + ... position='after_conv2'), + ... dict(cfg=dict(type='yyy'), + ... stages=(True, True, True, True), + ... position='after_conv3'), + ... dict(cfg=dict(type='zzz', postfix='1'), + ... stages=(True, True, True, True), + ... position='after_conv3'), + ... dict(cfg=dict(type='zzz', postfix='2'), + ... stages=(True, True, True, True), + ... position='after_conv3') + ... ] + >>> self = ResNet(depth=18) + >>> stage_plugins = self.make_stage_plugins(plugins, 0) + >>> assert len(stage_plugins) == 3 + + Suppose ``stage_idx=0``, the structure of blocks in the stage would be: + + .. code-block:: none + + conv1-> conv2->conv3->yyy->zzz1->zzz2 + + Suppose 'stage_idx=1', the structure of blocks in the stage would be: + + .. code-block:: none + + conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2 + + If stages is missing, the plugin would be applied to all stages. + + Args: + plugins (list[dict]): List of plugins cfg to build. The postfix is + required if multiple same type plugins are inserted. + stage_idx (int): Index of stage to build + + Returns: + list[dict]: Plugins for current stage + """ + stage_plugins = [] + for plugin in plugins: + plugin = plugin.copy() + stages = plugin.pop('stages', None) + assert stages is None or len(stages) == self.num_stages + # whether to insert plugin into current stage + if stages is None or stages[stage_idx]: + stage_plugins.append(plugin) + + return stage_plugins + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``.""" + return ResLayer(**kwargs) + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + def _make_stem_layer(self, in_channels, stem_channels): + if self.deep_stem: + self.stem = nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels, + stem_channels // 2, + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels // 2)[1], + nn.ReLU(inplace=True), + build_conv_layer( + self.conv_cfg, + stem_channels // 2, + stem_channels // 2, + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels // 2)[1], + nn.ReLU(inplace=True), + build_conv_layer( + self.conv_cfg, + stem_channels // 2, + stem_channels, + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels)[1], + nn.ReLU(inplace=True)) + else: + self.conv1 = build_conv_layer( + self.conv_cfg, + in_channels, + stem_channels, + kernel_size=7, + stride=2, + padding=3, + bias=False) + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, stem_channels, postfix=1) + self.add_module(self.norm1_name, norm1) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + def _freeze_stages(self): + if self.frozen_stages >= 0: + if self.deep_stem: + self.stem.eval() + for param in self.stem.parameters(): + param.requires_grad = False + else: + self.norm1.eval() + for m in [self.conv1, self.norm1]: + for param in m.parameters(): + param.requires_grad = False + + for i in range(1, self.frozen_stages + 1): + m = getattr(self, f'layer{i}') + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def forward(self, x): + """Forward function.""" + if self.deep_stem: + x = self.stem(x) + else: + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + x = self.maxpool(x) + outs = [] + for i, layer_name in enumerate(self.res_layers): + res_layer = getattr(self, layer_name) + x = res_layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) + + def train(self, mode=True): + """Convert the model into training mode while keep normalization layer + freezed.""" + super(ResNet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() + + +@BACKBONES.register_module() +class ResNetV1d(ResNet): + r"""ResNetV1d variant described in `Bag of Tricks + `_. + + Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in + the input stem with three 3x3 convs. And in the downsampling block, a 2x2 + avg_pool with stride 2 is added before conv, whose stride is changed to 1. + """ + + def __init__(self, **kwargs): + super(ResNetV1d, self).__init__( + deep_stem=True, avg_down=True, **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnext.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnext.py new file mode 100644 index 000000000..8675d7c11 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/resnext.py @@ -0,0 +1,154 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +from mmcv.cnn import build_conv_layer, build_norm_layer + +from ..builder import BACKBONES +from ..utils import ResLayer +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNet + + +class Bottleneck(_Bottleneck): + expansion = 4 + + def __init__(self, + inplanes, + planes, + groups=1, + base_width=4, + base_channels=64, + **kwargs): + """Bottleneck block for ResNeXt. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if + it is "caffe", the stride-two layer is the first 1x1 conv layer. + """ + super(Bottleneck, self).__init__(inplanes, planes, **kwargs) + + if groups == 1: + width = self.planes + else: + width = math.floor(self.planes * + (base_width / base_channels)) * groups + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width, postfix=1) + self.norm2_name, norm2 = build_norm_layer( + self.norm_cfg, width, postfix=2) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + fallback_on_stride = False + self.with_modulated_dcn = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if not self.with_dcn or fallback_on_stride: + self.conv2 = build_conv_layer( + self.conv_cfg, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + self.conv2 = build_conv_layer( + self.dcn, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.conv3 = build_conv_layer( + self.conv_cfg, + width, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + if self.with_plugins: + self._del_block_plugins(self.after_conv1_plugin_names + + self.after_conv2_plugin_names + + self.after_conv3_plugin_names) + self.after_conv1_plugin_names = self.make_block_plugins( + width, self.after_conv1_plugins) + self.after_conv2_plugin_names = self.make_block_plugins( + width, self.after_conv2_plugins) + self.after_conv3_plugin_names = self.make_block_plugins( + self.planes * self.expansion, self.after_conv3_plugins) + + def _del_block_plugins(self, plugin_names): + """delete plugins for block if exist. + + Args: + plugin_names (list[str]): List of plugins name to delete. + """ + assert isinstance(plugin_names, list) + for plugin_name in plugin_names: + del self._modules[plugin_name] + + +@BACKBONES.register_module() +class ResNeXt(ResNet): + """ResNeXt backbone. + + Args: + depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. + in_channels (int): Number of input image channels. Default: 3. + num_stages (int): Resnet stages. Default: 4. + groups (int): Group of resnext. + base_width (int): Base width of resnext. + strides (Sequence[int]): Strides of the first block of each stage. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + frozen_stages (int): Stages to be frozen (all param fixed). -1 means + not freezing any parameters. + norm_cfg (dict): dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): whether to use zero init for last norm layer + in resblocks to let them behave as identity. + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, groups=1, base_width=4, **kwargs): + self.groups = groups + self.base_width = base_width + super(ResNeXt, self).__init__(**kwargs) + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``""" + return ResLayer( + groups=self.groups, + base_width=self.base_width, + base_channels=self.base_channels, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/ssd_vgg.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/ssd_vgg.py new file mode 100644 index 000000000..c15aeac00 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/ssd_vgg.py @@ -0,0 +1,128 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.cnn import VGG +from mmcv.runner import BaseModule + +from ..builder import BACKBONES +from ..necks import ssd_neck + + +@BACKBONES.register_module() +class SSDVGG(VGG, BaseModule): + """VGG Backbone network for single-shot-detection. + + Args: + depth (int): Depth of vgg, from {11, 13, 16, 19}. + with_last_pool (bool): Whether to add a pooling layer at the last + of the model + ceil_mode (bool): When True, will use `ceil` instead of `floor` + to compute the output shape. + out_indices (Sequence[int]): Output from which stages. + out_feature_indices (Sequence[int]): Output from which feature map. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + input_size (int, optional): Deprecated argumment. + Width and height of input, from {300, 512}. + l2_norm_scale (float, optional) : Deprecated argumment. + L2 normalization layer init scale. + + Example: + >>> self = SSDVGG(input_size=300, depth=11) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 300, 300) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 1024, 19, 19) + (1, 512, 10, 10) + (1, 256, 5, 5) + (1, 256, 3, 3) + (1, 256, 1, 1) + """ + extra_setting = { + 300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256), + 512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128), + } + + def __init__(self, + depth, + with_last_pool=False, + ceil_mode=True, + out_indices=(3, 4), + out_feature_indices=(22, 34), + pretrained=None, + init_cfg=None, + input_size=None, + l2_norm_scale=None): + # TODO: in_channels for mmcv.VGG + super(SSDVGG, self).__init__( + depth, + with_last_pool=with_last_pool, + ceil_mode=ceil_mode, + out_indices=out_indices) + + self.features.add_module( + str(len(self.features)), + nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) + self.features.add_module( + str(len(self.features)), + nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)) + self.features.add_module( + str(len(self.features)), nn.ReLU(inplace=True)) + self.features.add_module( + str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1)) + self.features.add_module( + str(len(self.features)), nn.ReLU(inplace=True)) + self.out_feature_indices = out_feature_indices + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + + if init_cfg is not None: + self.init_cfg = init_cfg + elif isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict(type='Constant', val=1, layer='BatchNorm2d'), + dict(type='Normal', std=0.01, layer='Linear'), + ] + else: + raise TypeError('pretrained must be a str or None') + + if input_size is not None: + warnings.warn('DeprecationWarning: input_size is deprecated') + if l2_norm_scale is not None: + warnings.warn('DeprecationWarning: l2_norm_scale in VGG is ' + 'deprecated, it has been moved to SSDNeck.') + + def init_weights(self, pretrained=None): + super(VGG, self).init_weights() + + def forward(self, x): + """Forward function.""" + outs = [] + for i, layer in enumerate(self.features): + x = layer(x) + if i in self.out_feature_indices: + outs.append(x) + + if len(outs) == 1: + return outs[0] + else: + return tuple(outs) + + +class L2Norm(ssd_neck.L2Norm): + + def __init__(self, **kwargs): + super(L2Norm, self).__init__(**kwargs) + warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py ' + 'is deprecated, please use L2Norm in ' + 'mmdet/models/necks/ssd_neck.py instead') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/swin.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/swin.py new file mode 100644 index 000000000..c9f1455ae --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/swin.py @@ -0,0 +1,763 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from collections import OrderedDict +from copy import deepcopy + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from mmcv.cnn import build_norm_layer, constant_init, trunc_normal_init +from mmcv.cnn.bricks.transformer import FFN, build_dropout +from mmcv.cnn.utils.weight_init import trunc_normal_ +from mmcv.runner import BaseModule, ModuleList, _load_checkpoint +from mmcv.utils import to_2tuple + +from ...utils import get_root_logger +from ..builder import BACKBONES +from ..utils.ckpt_convert import swin_converter +from ..utils.transformer import PatchEmbed, PatchMerging + + +class WindowMSA(BaseModule): + """Window based multi-head self-attention (W-MSA) module with relative + position bias. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (tuple[int]): The height and width of the window. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Default: 0.0 + proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. + init_cfg (dict | None, optional): The Config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0., + proj_drop_rate=0., + init_cfg=None): + + super().__init__() + self.embed_dims = embed_dims + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_embed_dims = embed_dims // num_heads + self.scale = qk_scale or head_embed_dims**-0.5 + self.init_cfg = init_cfg + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), + num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # About 2x faster than original impl + Wh, Ww = self.window_size + rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww) + rel_position_index = rel_index_coords + rel_index_coords.T + rel_position_index = rel_position_index.flip(1).contiguous() + self.register_buffer('relative_position_index', rel_position_index) + + self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop_rate) + self.proj = nn.Linear(embed_dims, embed_dims) + self.proj_drop = nn.Dropout(proj_drop_rate) + + self.softmax = nn.Softmax(dim=-1) + + def init_weights(self): + trunc_normal_(self.relative_position_bias_table, std=0.02) + + def forward(self, x, mask=None): + """ + Args: + + x (tensor): input features with shape of (num_windows*B, N, C) + mask (tensor | None, Optional): mask with shape of (num_windows, + Wh*Ww, Wh*Ww), value should be between (-inf, 0]. + """ + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, + C // self.num_heads).permute(2, 0, 3, 1, 4) + # make torchscript happy (cannot use tensor as tuple) + q, k, v = qkv[0], qkv[1], qkv[2] + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B // nW, nW, self.num_heads, N, + N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @staticmethod + def double_step_seq(step1, len1, step2, len2): + seq1 = torch.arange(0, step1 * len1, step1) + seq2 = torch.arange(0, step2 * len2, step2) + return (seq1[:, None] + seq2[None, :]).reshape(1, -1) + + +class ShiftWindowMSA(BaseModule): + """Shifted Window Multihead Self-Attention Module. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): The height and width of the window. + shift_size (int, optional): The shift step of each window towards + right-bottom. If zero, act as regular window-msa. Defaults to 0. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Defaults: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Defaults: 0. + proj_drop_rate (float, optional): Dropout ratio of output. + Defaults: 0. + dropout_layer (dict, optional): The dropout_layer used before output. + Defaults: dict(type='DropPath', drop_prob=0.). + init_cfg (dict, optional): The extra config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + shift_size=0, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0, + proj_drop_rate=0, + dropout_layer=dict(type='DropPath', drop_prob=0.), + init_cfg=None): + super().__init__(init_cfg) + + self.window_size = window_size + self.shift_size = shift_size + assert 0 <= self.shift_size < self.window_size + + self.w_msa = WindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=to_2tuple(window_size), + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=proj_drop_rate, + init_cfg=None) + + self.drop = build_dropout(dropout_layer) + + def forward(self, query, hw_shape): + B, L, C = query.shape + H, W = hw_shape + assert L == H * W, 'input feature has wrong size' + query = query.view(B, H, W, C) + + # pad feature maps to multiples of window size + pad_r = (self.window_size - W % self.window_size) % self.window_size + pad_b = (self.window_size - H % self.window_size) % self.window_size + query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b)) + H_pad, W_pad = query.shape[1], query.shape[2] + + # cyclic shift + if self.shift_size > 0: + shifted_query = torch.roll( + query, + shifts=(-self.shift_size, -self.shift_size), + dims=(1, 2)) + + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device) + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + # nW, window_size, window_size, 1 + mask_windows = self.window_partition(img_mask) + mask_windows = mask_windows.view( + -1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, + float(-100.0)).masked_fill( + attn_mask == 0, float(0.0)) + else: + shifted_query = query + attn_mask = None + + # nW*B, window_size, window_size, C + query_windows = self.window_partition(shifted_query) + # nW*B, window_size*window_size, C + query_windows = query_windows.view(-1, self.window_size**2, C) + + # W-MSA/SW-MSA (nW*B, window_size*window_size, C) + attn_windows = self.w_msa(query_windows, mask=attn_mask) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, + self.window_size, C) + + # B H' W' C + shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, + shifts=(self.shift_size, self.shift_size), + dims=(1, 2)) + else: + x = shifted_x + + if pad_r > 0 or pad_b: + x = x[:, :H, :W, :].contiguous() + + x = x.view(B, H * W, C) + + x = self.drop(x) + return x + + def window_reverse(self, windows, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + window_size = self.window_size + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, + window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + def window_partition(self, x): + """ + Args: + x: (B, H, W, C) + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + window_size = self.window_size + x = x.view(B, H // window_size, window_size, W // window_size, + window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() + windows = windows.view(-1, window_size, window_size, C) + return windows + + +class SwinBlock(BaseModule): + """" + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + window_size (int, optional): The local window scale. Default: 7. + shift (bool, optional): whether to shift window or not. Default False. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float, optional): Stochastic depth rate. Default: 0. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + init_cfg (dict | list | None, optional): The init config. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + window_size=7, + shift=False, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + init_cfg=None): + + super(SwinBlock, self).__init__() + + self.init_cfg = init_cfg + self.with_cp = with_cp + + self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] + self.attn = ShiftWindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=window_size, + shift_size=window_size // 2 if shift else 0, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + init_cfg=None) + + self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=2, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg, + add_identity=True, + init_cfg=None) + + def forward(self, x, hw_shape): + + def _inner_forward(x): + identity = x + x = self.norm1(x) + x = self.attn(x, hw_shape) + + x = x + identity + + identity = x + x = self.norm2(x) + x = self.ffn(x, identity=identity) + + return x + + if self.with_cp and x.requires_grad: + x = cp.checkpoint(_inner_forward, x) + else: + x = _inner_forward(x) + + return x + + +class SwinBlockSequence(BaseModule): + """Implements one stage in Swin Transformer. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + depth (int): The number of blocks in this stage. + window_size (int, optional): The local window scale. Default: 7. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float | list[float], optional): Stochastic depth + rate. Default: 0. + downsample (BaseModule | None, optional): The downsample operation + module. Default: None. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + init_cfg (dict | list | None, optional): The init config. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + depth, + window_size=7, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + downsample=None, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + + if isinstance(drop_path_rate, list): + drop_path_rates = drop_path_rate + assert len(drop_path_rates) == depth + else: + drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)] + + self.blocks = ModuleList() + for i in range(depth): + block = SwinBlock( + embed_dims=embed_dims, + num_heads=num_heads, + feedforward_channels=feedforward_channels, + window_size=window_size, + shift=False if i % 2 == 0 else True, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=drop_path_rates[i], + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp, + init_cfg=None) + self.blocks.append(block) + + self.downsample = downsample + + def forward(self, x, hw_shape): + for block in self.blocks: + x = block(x, hw_shape) + + if self.downsample: + x_down, down_hw_shape = self.downsample(x, hw_shape) + return x_down, down_hw_shape, x, hw_shape + else: + return x, hw_shape, x, hw_shape + + +@BACKBONES.register_module() +class SwinTransformer(BaseModule): + """ Swin Transformer + A PyTorch implement of : `Swin Transformer: + Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/abs/2103.14030 + + Inspiration from + https://github.com/microsoft/Swin-Transformer + + Args: + pretrain_img_size (int | tuple[int]): The size of input image when + pretrain. Defaults: 224. + in_channels (int): The num of input channels. + Defaults: 3. + embed_dims (int): The feature dimension. Default: 96. + patch_size (int | tuple[int]): Patch size. Default: 4. + window_size (int): Window size. Default: 7. + mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. + Default: 4. + depths (tuple[int]): Depths of each Swin Transformer stage. + Default: (2, 2, 6, 2). + num_heads (tuple[int]): Parallel attention heads of each Swin + Transformer stage. Default: (3, 6, 12, 24). + strides (tuple[int]): The patch merging or patch embedding stride of + each Swin Transformer stage. (In swin, we set kernel size equal to + stride.) Default: (4, 2, 2, 2). + out_indices (tuple[int]): Output from which stages. + Default: (0, 1, 2, 3). + qkv_bias (bool, optional): If True, add a learnable bias to query, key, + value. Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + patch_norm (bool): If add a norm layer for patch embed and patch + merging. Default: True. + drop_rate (float): Dropout rate. Defaults: 0. + attn_drop_rate (float): Attention dropout rate. Default: 0. + drop_path_rate (float): Stochastic depth rate. Defaults: 0.1. + use_abs_pos_embed (bool): If True, add absolute position embedding to + the patch embedding. Defaults: False. + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LN'). + norm_cfg (dict): Config dict for normalization layer at + output of backone. Defaults: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + pretrained (str, optional): model pretrained path. Default: None. + convert_weights (bool): The flag indicates whether the + pre-trained model is from the original repo. We may need + to convert some keys to make it compatible. + Default: False. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + Default: -1 (-1 means not freezing any parameters). + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + pretrain_img_size=224, + in_channels=3, + embed_dims=96, + patch_size=4, + window_size=7, + mlp_ratio=4, + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + strides=(4, 2, 2, 2), + out_indices=(0, 1, 2, 3), + qkv_bias=True, + qk_scale=None, + patch_norm=True, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0.1, + use_abs_pos_embed=False, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + pretrained=None, + convert_weights=False, + frozen_stages=-1, + init_cfg=None): + self.convert_weights = convert_weights + self.frozen_stages = frozen_stages + if isinstance(pretrain_img_size, int): + pretrain_img_size = to_2tuple(pretrain_img_size) + elif isinstance(pretrain_img_size, tuple): + if len(pretrain_img_size) == 1: + pretrain_img_size = to_2tuple(pretrain_img_size[0]) + assert len(pretrain_img_size) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(pretrain_img_size)}' + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + self.init_cfg = init_cfg + else: + raise TypeError('pretrained must be a str or None') + + super(SwinTransformer, self).__init__(init_cfg=init_cfg) + + num_layers = len(depths) + self.out_indices = out_indices + self.use_abs_pos_embed = use_abs_pos_embed + + assert strides[0] == patch_size, 'Use non-overlapping patch embed.' + + self.patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims, + conv_type='Conv2d', + kernel_size=patch_size, + stride=strides[0], + norm_cfg=norm_cfg if patch_norm else None, + init_cfg=None) + + if self.use_abs_pos_embed: + patch_row = pretrain_img_size[0] // patch_size + patch_col = pretrain_img_size[1] // patch_size + num_patches = patch_row * patch_col + self.absolute_pos_embed = nn.Parameter( + torch.zeros((1, num_patches, embed_dims))) + + self.drop_after_pos = nn.Dropout(p=drop_rate) + + # set stochastic depth decay rule + total_depth = sum(depths) + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, total_depth) + ] + + self.stages = ModuleList() + in_channels = embed_dims + for i in range(num_layers): + if i < num_layers - 1: + downsample = PatchMerging( + in_channels=in_channels, + out_channels=2 * in_channels, + stride=strides[i + 1], + norm_cfg=norm_cfg if patch_norm else None, + init_cfg=None) + else: + downsample = None + + stage = SwinBlockSequence( + embed_dims=in_channels, + num_heads=num_heads[i], + feedforward_channels=mlp_ratio * in_channels, + depth=depths[i], + window_size=window_size, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])], + downsample=downsample, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp, + init_cfg=None) + self.stages.append(stage) + if downsample: + in_channels = downsample.out_channels + + self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)] + # Add a norm layer for each output + for i in out_indices: + layer = build_norm_layer(norm_cfg, self.num_features[i])[1] + layer_name = f'norm{i}' + self.add_module(layer_name, layer) + + def train(self, mode=True): + """Convert the model into training mode while keep layers freezed.""" + super(SwinTransformer, self).train(mode) + self._freeze_stages() + + def _freeze_stages(self): + if self.frozen_stages >= 0: + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + if self.use_abs_pos_embed: + self.absolute_pos_embed.requires_grad = False + self.drop_after_pos.eval() + + for i in range(1, self.frozen_stages + 1): + + if (i - 1) in self.out_indices: + norm_layer = getattr(self, f'norm{i-1}') + norm_layer.eval() + for param in norm_layer.parameters(): + param.requires_grad = False + + m = self.stages[i - 1] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def init_weights(self): + logger = get_root_logger() + if self.init_cfg is None: + logger.warn(f'No pre-trained weights for ' + f'{self.__class__.__name__}, ' + f'training start from scratch') + if self.use_abs_pos_embed: + trunc_normal_(self.absolute_pos_embed, std=0.02) + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, nn.LayerNorm): + constant_init(m, 1.0) + else: + assert 'checkpoint' in self.init_cfg, f'Only support ' \ + f'specify `Pretrained` in ' \ + f'`init_cfg` in ' \ + f'{self.__class__.__name__} ' + ckpt = _load_checkpoint( + self.init_cfg.checkpoint, logger=logger, map_location='cpu') + if 'state_dict' in ckpt: + _state_dict = ckpt['state_dict'] + elif 'model' in ckpt: + _state_dict = ckpt['model'] + else: + _state_dict = ckpt + if self.convert_weights: + # supported loading weight from original repo, + _state_dict = swin_converter(_state_dict) + + state_dict = OrderedDict() + for k, v in _state_dict.items(): + if k.startswith('backbone.'): + state_dict[k[9:]] = v + + # strip prefix of state_dict + if list(state_dict.keys())[0].startswith('module.'): + state_dict = {k[7:]: v for k, v in state_dict.items()} + + # reshape absolute position embedding + if state_dict.get('absolute_pos_embed') is not None: + absolute_pos_embed = state_dict['absolute_pos_embed'] + N1, L, C1 = absolute_pos_embed.size() + N2, C2, H, W = self.absolute_pos_embed.size() + if N1 != N2 or C1 != C2 or L != H * W: + logger.warning('Error in loading absolute_pos_embed, pass') + else: + state_dict['absolute_pos_embed'] = absolute_pos_embed.view( + N2, H, W, C2).permute(0, 3, 1, 2).contiguous() + + # interpolate position bias table if needed + relative_position_bias_table_keys = [ + k for k in state_dict.keys() + if 'relative_position_bias_table' in k + ] + for table_key in relative_position_bias_table_keys: + table_pretrained = state_dict[table_key] + table_current = self.state_dict()[table_key] + L1, nH1 = table_pretrained.size() + L2, nH2 = table_current.size() + if nH1 != nH2: + logger.warning(f'Error in loading {table_key}, pass') + elif L1 != L2: + S1 = int(L1**0.5) + S2 = int(L2**0.5) + table_pretrained_resized = F.interpolate( + table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1), + size=(S2, S2), + mode='bicubic') + state_dict[table_key] = table_pretrained_resized.view( + nH2, L2).permute(1, 0).contiguous() + + # load state_dict + self.load_state_dict(state_dict, False) + + def forward(self, x): + x, hw_shape = self.patch_embed(x) + + if self.use_abs_pos_embed: + x = x + self.absolute_pos_embed + x = self.drop_after_pos(x) + + outs = [] + for i, stage in enumerate(self.stages): + x, hw_shape, out, out_hw_shape = stage(x, hw_shape) + if i in self.out_indices: + norm_layer = getattr(self, f'norm{i}') + out = norm_layer(out) + out = out.view(-1, *out_hw_shape, + self.num_features[i]).permute(0, 3, 1, + 2).contiguous() + outs.append(out) + + return outs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/trident_resnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/trident_resnet.py new file mode 100644 index 000000000..013ba64b5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/backbones/trident_resnet.py @@ -0,0 +1,298 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule +from torch.nn.modules.utils import _pair + +from mmdet.models.backbones.resnet import Bottleneck, ResNet +from mmdet.models.builder import BACKBONES + + +class TridentConv(BaseModule): + """Trident Convolution Module. + + Args: + in_channels (int): Number of channels in input. + out_channels (int): Number of channels in output. + kernel_size (int): Size of convolution kernel. + stride (int, optional): Convolution stride. Default: 1. + trident_dilations (tuple[int, int, int], optional): Dilations of + different trident branch. Default: (1, 2, 3). + test_branch_idx (int, optional): In inference, all 3 branches will + be used if `test_branch_idx==-1`, otherwise only branch with + index `test_branch_idx` will be used. Default: 1. + bias (bool, optional): Whether to use bias in convolution or not. + Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size, + stride=1, + trident_dilations=(1, 2, 3), + test_branch_idx=1, + bias=False, + init_cfg=None): + super(TridentConv, self).__init__(init_cfg) + self.num_branch = len(trident_dilations) + self.with_bias = bias + self.test_branch_idx = test_branch_idx + self.stride = _pair(stride) + self.kernel_size = _pair(kernel_size) + self.paddings = _pair(trident_dilations) + self.dilations = trident_dilations + self.in_channels = in_channels + self.out_channels = out_channels + self.bias = bias + + self.weight = nn.Parameter( + torch.Tensor(out_channels, in_channels, *self.kernel_size)) + if bias: + self.bias = nn.Parameter(torch.Tensor(out_channels)) + else: + self.bias = None + + def extra_repr(self): + tmpstr = f'in_channels={self.in_channels}' + tmpstr += f', out_channels={self.out_channels}' + tmpstr += f', kernel_size={self.kernel_size}' + tmpstr += f', num_branch={self.num_branch}' + tmpstr += f', test_branch_idx={self.test_branch_idx}' + tmpstr += f', stride={self.stride}' + tmpstr += f', paddings={self.paddings}' + tmpstr += f', dilations={self.dilations}' + tmpstr += f', bias={self.bias}' + return tmpstr + + def forward(self, inputs): + if self.training or self.test_branch_idx == -1: + outputs = [ + F.conv2d(input, self.weight, self.bias, self.stride, padding, + dilation) for input, dilation, padding in zip( + inputs, self.dilations, self.paddings) + ] + else: + assert len(inputs) == 1 + outputs = [ + F.conv2d(inputs[0], self.weight, self.bias, self.stride, + self.paddings[self.test_branch_idx], + self.dilations[self.test_branch_idx]) + ] + + return outputs + + +# Since TridentNet is defined over ResNet50 and ResNet101, here we +# only support TridentBottleneckBlock. +class TridentBottleneck(Bottleneck): + """BottleBlock for TridentResNet. + + Args: + trident_dilations (tuple[int, int, int]): Dilations of different + trident branch. + test_branch_idx (int): In inference, all 3 branches will be used + if `test_branch_idx==-1`, otherwise only branch with index + `test_branch_idx` will be used. + concat_output (bool): Whether to concat the output list to a Tensor. + `True` only in the last Block. + """ + + def __init__(self, trident_dilations, test_branch_idx, concat_output, + **kwargs): + + super(TridentBottleneck, self).__init__(**kwargs) + self.trident_dilations = trident_dilations + self.num_branch = len(trident_dilations) + self.concat_output = concat_output + self.test_branch_idx = test_branch_idx + self.conv2 = TridentConv( + self.planes, + self.planes, + kernel_size=3, + stride=self.conv2_stride, + bias=False, + trident_dilations=self.trident_dilations, + test_branch_idx=test_branch_idx, + init_cfg=dict( + type='Kaiming', + distribution='uniform', + mode='fan_in', + override=dict(name='conv2'))) + + def forward(self, x): + + def _inner_forward(x): + num_branch = ( + self.num_branch + if self.training or self.test_branch_idx == -1 else 1) + identity = x + if not isinstance(x, list): + x = (x, ) * num_branch + identity = x + if self.downsample is not None: + identity = [self.downsample(b) for b in x] + + out = [self.conv1(b) for b in x] + out = [self.norm1(b) for b in out] + out = [self.relu(b) for b in out] + + if self.with_plugins: + for k in range(len(out)): + out[k] = self.forward_plugin(out[k], + self.after_conv1_plugin_names) + + out = self.conv2(out) + out = [self.norm2(b) for b in out] + out = [self.relu(b) for b in out] + if self.with_plugins: + for k in range(len(out)): + out[k] = self.forward_plugin(out[k], + self.after_conv2_plugin_names) + + out = [self.conv3(b) for b in out] + out = [self.norm3(b) for b in out] + + if self.with_plugins: + for k in range(len(out)): + out[k] = self.forward_plugin(out[k], + self.after_conv3_plugin_names) + + out = [ + out_b + identity_b for out_b, identity_b in zip(out, identity) + ] + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = [self.relu(b) for b in out] + if self.concat_output: + out = torch.cat(out, dim=0) + return out + + +def make_trident_res_layer(block, + inplanes, + planes, + num_blocks, + stride=1, + trident_dilations=(1, 2, 3), + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + test_branch_idx=-1): + """Build Trident Res Layers.""" + + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = [] + conv_stride = stride + downsample.extend([ + build_conv_layer( + conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=conv_stride, + bias=False), + build_norm_layer(norm_cfg, planes * block.expansion)[1] + ]) + downsample = nn.Sequential(*downsample) + + layers = [] + for i in range(num_blocks): + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride if i == 0 else 1, + trident_dilations=trident_dilations, + downsample=downsample if i == 0 else None, + style=style, + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + dcn=dcn, + plugins=plugins, + test_branch_idx=test_branch_idx, + concat_output=True if i == num_blocks - 1 else False)) + inplanes = planes * block.expansion + return nn.Sequential(*layers) + + +@BACKBONES.register_module() +class TridentResNet(ResNet): + """The stem layer, stage 1 and stage 2 in Trident ResNet are identical to + ResNet, while in stage 3, Trident BottleBlock is utilized to replace the + normal BottleBlock to yield trident output. Different branch shares the + convolution weight but uses different dilations to achieve multi-scale + output. + + / stage3(b0) \ + x - stem - stage1 - stage2 - stage3(b1) - output + \ stage3(b2) / + + Args: + depth (int): Depth of resnet, from {50, 101, 152}. + num_branch (int): Number of branches in TridentNet. + test_branch_idx (int): In inference, all 3 branches will be used + if `test_branch_idx==-1`, otherwise only branch with index + `test_branch_idx` will be used. + trident_dilations (tuple[int]): Dilations of different trident branch. + len(trident_dilations) should be equal to num_branch. + """ # noqa + + def __init__(self, depth, num_branch, test_branch_idx, trident_dilations, + **kwargs): + + assert num_branch == len(trident_dilations) + assert depth in (50, 101, 152) + super(TridentResNet, self).__init__(depth, **kwargs) + assert self.num_stages == 3 + self.test_branch_idx = test_branch_idx + self.num_branch = num_branch + + last_stage_idx = self.num_stages - 1 + stride = self.strides[last_stage_idx] + dilation = trident_dilations + dcn = self.dcn if self.stage_with_dcn[last_stage_idx] else None + if self.plugins is not None: + stage_plugins = self.make_stage_plugins(self.plugins, + last_stage_idx) + else: + stage_plugins = None + planes = self.base_channels * 2**last_stage_idx + res_layer = make_trident_res_layer( + TridentBottleneck, + inplanes=(self.block.expansion * self.base_channels * + 2**(last_stage_idx - 1)), + planes=planes, + num_blocks=self.stage_blocks[last_stage_idx], + stride=stride, + trident_dilations=dilation, + style=self.style, + with_cp=self.with_cp, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dcn=dcn, + plugins=stage_plugins, + test_branch_idx=self.test_branch_idx) + + layer_name = f'layer{last_stage_idx + 1}' + + self.__setattr__(layer_name, res_layer) + self.res_layers.pop(last_stage_idx) + self.res_layers.insert(last_stage_idx, layer_name) + + self._freeze_stages() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/builder.py new file mode 100644 index 000000000..ace6209f7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/builder.py @@ -0,0 +1,59 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv.cnn import MODELS as MMCV_MODELS +from mmcv.utils import Registry + +MODELS = Registry('models', parent=MMCV_MODELS) + +BACKBONES = MODELS +NECKS = MODELS +ROI_EXTRACTORS = MODELS +SHARED_HEADS = MODELS +HEADS = MODELS +LOSSES = MODELS +DETECTORS = MODELS + + +def build_backbone(cfg): + """Build backbone.""" + return BACKBONES.build(cfg) + + +def build_neck(cfg): + """Build neck.""" + return NECKS.build(cfg) + + +def build_roi_extractor(cfg): + """Build roi extractor.""" + return ROI_EXTRACTORS.build(cfg) + + +def build_shared_head(cfg): + """Build shared head.""" + return SHARED_HEADS.build(cfg) + + +def build_head(cfg): + """Build head.""" + return HEADS.build(cfg) + + +def build_loss(cfg): + """Build loss.""" + return LOSSES.build(cfg) + + +def build_detector(cfg, train_cfg=None, test_cfg=None): + """Build detector.""" + if train_cfg is not None or test_cfg is not None: + warnings.warn( + 'train_cfg and test_cfg is deprecated, ' + 'please specify them in model', UserWarning) + assert cfg.get('train_cfg') is None or train_cfg is None, \ + 'train_cfg specified in both outer field and model field ' + assert cfg.get('test_cfg') is None or test_cfg is None, \ + 'test_cfg specified in both outer field and model field ' + return DETECTORS.build( + cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/__init__.py new file mode 100644 index 000000000..375197a69 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/__init__.py @@ -0,0 +1,56 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .anchor_free_head import AnchorFreeHead +from .anchor_head import AnchorHead +from .atss_head import ATSSHead +from .autoassign_head import AutoAssignHead +from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead +from .centernet_head import CenterNetHead +from .centripetal_head import CentripetalHead +from .corner_head import CornerHead +from .deformable_detr_head import DeformableDETRHead +from .detr_head import DETRHead +from .embedding_rpn_head import EmbeddingRPNHead +from .fcos_head import FCOSHead +from .fovea_head import FoveaHead +from .free_anchor_retina_head import FreeAnchorRetinaHead +from .fsaf_head import FSAFHead +from .ga_retina_head import GARetinaHead +from .ga_rpn_head import GARPNHead +from .gfl_head import GFLHead +from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead +from .lad_head import LADHead +from .ld_head import LDHead +from .mask2former_head import Mask2FormerHead +from .maskformer_head import MaskFormerHead +from .nasfcos_head import NASFCOSHead +from .paa_head import PAAHead +from .pisa_retinanet_head import PISARetinaHead +from .pisa_ssd_head import PISASSDHead +from .reppoints_head import RepPointsHead +from .retina_head import RetinaHead +from .retina_sepbn_head import RetinaSepBNHead +from .rpn_head import RPNHead +from .sabl_retina_head import SABLRetinaHead +from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead +from .ssd_head import SSDHead +from .tood_head import TOODHead +from .vfnet_head import VFNetHead +from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead +from .yolo_head import YOLOV3Head +from .yolof_head import YOLOFHead +from .yolox_head import YOLOXHead + +__all__ = [ + 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', + 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', + 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', + 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', + 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', + 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', + 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', + 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', + 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', + 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', + 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead', 'MaskFormerHead', + 'Mask2FormerHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_free_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_free_head.py new file mode 100644 index 000000000..b0460b945 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_free_head.py @@ -0,0 +1,350 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from abc import abstractmethod + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import force_fp32 + +from mmdet.core import build_bbox_coder, multi_apply +from mmdet.core.anchor.point_generator import MlvlPointGenerator +from ..builder import HEADS, build_loss +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +@HEADS.register_module() +class AnchorFreeHead(BaseDenseHead, BBoxTestMixin): + """Anchor-free head (FCOS, Fovea, RepPoints, etc.). + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + feat_channels (int): Number of hidden channels. Used in child classes. + stacked_convs (int): Number of stacking convs of the head. + strides (tuple): Downsample factor of each feature map. + dcn_on_last_conv (bool): If true, use dcn in the last layer of + towers. Default: False. + conv_bias (bool | str): If specified as `auto`, it will be decided by + the norm_cfg. Bias of conv will be set as True if `norm_cfg` is + None, otherwise False. Default: "auto". + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + bbox_coder (dict): Config of bbox coder. Defaults + 'DistancePointBBoxCoder'. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Config dict for normalization layer. Default: None. + train_cfg (dict): Training config of anchor head. + test_cfg (dict): Testing config of anchor head. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ # noqa: W605 + + _version = 1 + + def __init__(self, + num_classes, + in_channels, + feat_channels=256, + stacked_convs=4, + strides=(4, 8, 16, 32, 64), + dcn_on_last_conv=False, + conv_bias='auto', + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='IoULoss', loss_weight=1.0), + bbox_coder=dict(type='DistancePointBBoxCoder'), + conv_cfg=None, + norm_cfg=None, + train_cfg=None, + test_cfg=None, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='conv_cls', + std=0.01, + bias_prob=0.01))): + super(AnchorFreeHead, self).__init__(init_cfg) + self.num_classes = num_classes + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + if self.use_sigmoid_cls: + self.cls_out_channels = num_classes + else: + self.cls_out_channels = num_classes + 1 + self.in_channels = in_channels + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.strides = strides + self.dcn_on_last_conv = dcn_on_last_conv + assert conv_bias == 'auto' or isinstance(conv_bias, bool) + self.conv_bias = conv_bias + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.bbox_coder = build_bbox_coder(bbox_coder) + + self.prior_generator = MlvlPointGenerator(strides) + + # In order to keep a more general interface and be consistent with + # anchor_head. We can think of point like one anchor + self.num_base_priors = self.prior_generator.num_base_priors[0] + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.fp16_enabled = False + + self._init_layers() + + def _init_layers(self): + """Initialize layers of the head.""" + self._init_cls_convs() + self._init_reg_convs() + self._init_predictor() + + def _init_cls_convs(self): + """Initialize classification conv layers of the head.""" + self.cls_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + if self.dcn_on_last_conv and i == self.stacked_convs - 1: + conv_cfg = dict(type='DCNv2') + else: + conv_cfg = self.conv_cfg + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias)) + + def _init_reg_convs(self): + """Initialize bbox regression conv layers of the head.""" + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + if self.dcn_on_last_conv and i == self.stacked_convs - 1: + conv_cfg = dict(type='DCNv2') + else: + conv_cfg = self.conv_cfg + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias)) + + def _init_predictor(self): + """Initialize predictor layers of the head.""" + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + """Hack some keys of the model state dict so that can load checkpoints + of previous version.""" + version = local_metadata.get('version', None) + if version is None: + # the key is different in early versions + # for example, 'fcos_cls' become 'conv_cls' now + bbox_head_keys = [ + k for k in state_dict.keys() if k.startswith(prefix) + ] + ori_predictor_keys = [] + new_predictor_keys = [] + # e.g. 'fcos_cls' or 'fcos_reg' + for key in bbox_head_keys: + ori_predictor_keys.append(key) + key = key.split('.') + conv_name = None + if key[1].endswith('cls'): + conv_name = 'conv_cls' + elif key[1].endswith('reg'): + conv_name = 'conv_reg' + elif key[1].endswith('centerness'): + conv_name = 'conv_centerness' + else: + assert NotImplementedError + if conv_name is not None: + key[1] = conv_name + new_predictor_keys.append('.'.join(key)) + else: + ori_predictor_keys.pop(-1) + for i in range(len(new_predictor_keys)): + state_dict[new_predictor_keys[i]] = state_dict.pop( + ori_predictor_keys[i]) + super()._load_from_state_dict(state_dict, prefix, local_metadata, + strict, missing_keys, unexpected_keys, + error_msgs) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually contain classification scores and bbox predictions. + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * 4. + """ + return multi_apply(self.forward_single, feats)[:2] + + def forward_single(self, x): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + + Returns: + tuple: Scores for each class, bbox predictions, features + after classification and regression conv layers, some + models needs these features like FCOS. + """ + cls_feat = x + reg_feat = x + + for cls_layer in self.cls_convs: + cls_feat = cls_layer(cls_feat) + cls_score = self.conv_cls(cls_feat) + + for reg_layer in self.reg_convs: + reg_feat = reg_layer(reg_feat) + bbox_pred = self.conv_reg(reg_feat) + return cls_score, bbox_pred, cls_feat, reg_feat + + @abstractmethod + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * 4. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + """ + + raise NotImplementedError + + @abstractmethod + def get_targets(self, points, gt_bboxes_list, gt_labels_list): + """Compute regression, classification and centerness targets for points + in multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + """ + raise NotImplementedError + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Get points of a single scale level. + + This function will be deprecated soon. + """ + + warnings.warn( + '`_get_points_single` in `AnchorFreeHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of a single level feature map ' + 'with `self.prior_generator.single_level_grid_priors` ') + + h, w = featmap_size + # First create Range with the default dtype, than convert to + # target `dtype` for onnx exporting. + x_range = torch.arange(w, device=device).to(dtype) + y_range = torch.arange(h, device=device).to(dtype) + y, x = torch.meshgrid(y_range, x_range) + if flatten: + y = y.flatten() + x = x.flatten() + return y, x + + def get_points(self, featmap_sizes, dtype, device, flatten=False): + """Get points according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + dtype (torch.dtype): Type of points. + device (torch.device): Device of points. + + Returns: + tuple: points of each image. + """ + warnings.warn( + '`get_points` in `AnchorFreeHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of all levels ' + 'with `self.prior_generator.grid_priors` ') + + mlvl_points = [] + for i in range(len(featmap_sizes)): + mlvl_points.append( + self._get_points_single(featmap_sizes[i], self.strides[i], + dtype, device, flatten)) + return mlvl_points + + def aug_test(self, feats, img_metas, rescale=False): + """Test function with test time augmentation. + + Args: + feats (list[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains features for all images in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. each dict has image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[ndarray]: bbox results of each class + """ + return self.aug_test_bboxes(feats, img_metas, rescale=rescale) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_head.py new file mode 100644 index 000000000..d1bfab62d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/anchor_head.py @@ -0,0 +1,542 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +from mmcv.runner import force_fp32 + +from mmdet.core import (anchor_inside_flags, build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, images_to_levels, + multi_apply, unmap) +from ..builder import HEADS, build_loss +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +@HEADS.register_module() +class AnchorHead(BaseDenseHead, BBoxTestMixin): + """Anchor-based head (RPN, RetinaNet, SSD, etc.). + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + feat_channels (int): Number of hidden channels. Used in child classes. + anchor_generator (dict): Config dict for anchor generator + bbox_coder (dict): Config of bounding box coder. + reg_decoded_bbox (bool): If true, the regression loss would be + applied directly on decoded bounding boxes, converting both + the predicted boxes and regression targets to absolute + coordinates format. Default False. It should be `True` when + using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + train_cfg (dict): Training config of anchor head. + test_cfg (dict): Testing config of anchor head. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ # noqa: W605 + + def __init__(self, + num_classes, + in_channels, + feat_channels=256, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8, 16, 32], + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + clip_border=True, + target_means=(.0, .0, .0, .0), + target_stds=(1.0, 1.0, 1.0, 1.0)), + reg_decoded_bbox=False, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + train_cfg=None, + test_cfg=None, + init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)): + super(AnchorHead, self).__init__(init_cfg) + self.in_channels = in_channels + self.num_classes = num_classes + self.feat_channels = feat_channels + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + if self.use_sigmoid_cls: + self.cls_out_channels = num_classes + else: + self.cls_out_channels = num_classes + 1 + + if self.cls_out_channels <= 0: + raise ValueError(f'num_classes={num_classes} is too small') + self.reg_decoded_bbox = reg_decoded_bbox + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + if hasattr(self.train_cfg, + 'sampler') and self.train_cfg.sampler.type.split( + '.')[-1] != 'PseudoSampler': + self.sampling = True + sampler_cfg = self.train_cfg.sampler + # avoid BC-breaking + if loss_cls['type'] in [ + 'FocalLoss', 'GHMC', 'QualityFocalLoss' + ]: + warnings.warn( + 'DeprecationWarning: Determining whether to sampling' + 'by loss type is deprecated, please delete sampler in' + 'your config when using `FocalLoss`, `GHMC`, ' + '`QualityFocalLoss` or other FocalLoss variant.') + self.sampling = False + sampler_cfg = dict(type='PseudoSampler') + else: + self.sampling = False + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.fp16_enabled = False + + self.prior_generator = build_prior_generator(anchor_generator) + + # Usually the numbers of anchors for each level are the same + # except SSD detectors. So it is an int in the most dense + # heads but a list of int in SSDHead + self.num_base_priors = self.prior_generator.num_base_priors[0] + self._init_layers() + + @property + def num_anchors(self): + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'for consistency or also use ' + '`num_base_priors` instead') + return self.prior_generator.num_base_priors[0] + + @property + def anchor_generator(self): + warnings.warn('DeprecationWarning: anchor_generator is deprecated, ' + 'please use "prior_generator" instead') + return self.prior_generator + + def _init_layers(self): + """Initialize layers of the head.""" + self.conv_cls = nn.Conv2d(self.in_channels, + self.num_base_priors * self.cls_out_channels, + 1) + self.conv_reg = nn.Conv2d(self.in_channels, self.num_base_priors * 4, + 1) + + def forward_single(self, x): + """Forward feature of a single scale level. + + Args: + x (Tensor): Features of a single scale level. + + Returns: + tuple: + cls_score (Tensor): Cls scores for a single scale level \ + the channels number is num_base_priors * num_classes. + bbox_pred (Tensor): Box energies / deltas for a single scale \ + level, the channels number is num_base_priors * 4. + """ + cls_score = self.conv_cls(x) + bbox_pred = self.conv_reg(x) + return cls_score, bbox_pred + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: A tuple of classification scores and bbox prediction. + + - cls_scores (list[Tensor]): Classification scores for all \ + scale levels, each is a 4D-tensor, the channels number \ + is num_base_priors * num_classes. + - bbox_preds (list[Tensor]): Box energies / deltas for all \ + scale levels, each is a 4D-tensor, the channels number \ + is num_base_priors * 4. + """ + return multi_apply(self.forward_single, feats) + + def get_anchors(self, featmap_sizes, img_metas, device='cuda'): + """Get anchors according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + device (torch.device | str): Device for returned tensors + + Returns: + tuple: + anchor_list (list[Tensor]): Anchors of each image. + valid_flag_list (list[Tensor]): Valid flags of each image. + """ + num_imgs = len(img_metas) + + # since feature map sizes of all images are the same, we only compute + # anchors for one time + multi_level_anchors = self.prior_generator.grid_priors( + featmap_sizes, device=device) + anchor_list = [multi_level_anchors for _ in range(num_imgs)] + + # for each image, we compute valid flags of multi level anchors + valid_flag_list = [] + for img_id, img_meta in enumerate(img_metas): + multi_level_flags = self.prior_generator.valid_flags( + featmap_sizes, img_meta['pad_shape'], device) + valid_flag_list.append(multi_level_flags) + + return anchor_list, valid_flag_list + + def _get_targets_single(self, + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in a + single image. + + Args: + flat_anchors (Tensor): Multi-level anchors of the image, which are + concatenated into a single tensor of shape (num_anchors ,4) + valid_flags (Tensor): Multi level valid flags of the image, + which are concatenated into a single tensor of + shape (num_anchors,). + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + img_meta (dict): Meta info of the image. + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: + labels_list (list[Tensor]): Labels of each level + label_weights_list (list[Tensor]): Label weights of each level + bbox_targets_list (list[Tensor]): BBox targets of each level + bbox_weights_list (list[Tensor]): BBox weights of each level + num_total_pos (int): Number of positive samples in all images + num_total_neg (int): Number of negative samples in all images + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + # assign gt and sample anchors + anchors = flat_anchors[inside_flags, :] + + assign_result = self.assigner.assign( + anchors, gt_bboxes, gt_bboxes_ignore, + None if self.sampling else gt_labels) + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + else: + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class since v2.5.0 + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + labels = unmap( + labels, num_total_anchors, inside_flags, + fill=self.num_classes) # fill bg label + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + neg_inds, sampling_result) + + def get_targets(self, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True, + return_sampling_results=False): + """Compute regression and classification targets for anchors in + multiple images. + + Args: + anchor_list (list[list[Tensor]]): Multi level anchors of each + image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, 4). + valid_flag_list (list[list[Tensor]]): Multi level valid flags of + each image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, ) + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: Usually returns a tuple containing learning targets. + + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each + level. + - bbox_targets_list (list[Tensor]): BBox targets of each level. + - bbox_weights_list (list[Tensor]): BBox weights of each level. + - num_total_pos (int): Number of positive samples in all + images. + - num_total_neg (int): Number of negative samples in all + images. + + additional_returns: This function enables user-defined returns from + `self._get_targets_single`. These returns are currently refined + to properties at each feature map (i.e. having HxW dimension). + The results will be concatenated after the end + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + # concat all level anchors to a single tensor + concat_anchor_list = [] + concat_valid_flag_list = [] + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + concat_anchor_list.append(torch.cat(anchor_list[i])) + concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + results = multi_apply( + self._get_targets_single, + concat_anchor_list, + concat_valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, + pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] + rest_results = list(results[7:]) # user-added return values + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + res = (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) + if return_sampling_results: + res = res + (sampling_results_list, ) + for i, r in enumerate(rest_results): # user-added return values + rest_results[i] = images_to_levels(r, num_level_anchors) + + return res + tuple(rest_results) + + def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, + bbox_targets, bbox_weights, num_total_samples): + """Compute loss of a single scale level. + + Args: + cls_score (Tensor): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W). + bbox_pred (Tensor): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W). + anchors (Tensor): Box reference for each scale level with shape + (N, num_total_anchors, 4). + labels (Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (Tensor): Label weights of each anchor with shape + (N, num_total_anchors) + bbox_targets (Tensor): BBox regression targets of each anchor + weight shape (N, num_total_anchors, 4). + bbox_weights (Tensor): BBox regression loss weights of each anchor + with shape (N, num_total_anchors, 4). + num_total_samples (int): If sampling, num total samples equal to + the number of total anchors; Otherwise, it is the number of + positive anchors. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + # classification loss + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + # regression loss + bbox_targets = bbox_targets.reshape(-1, 4) + bbox_weights = bbox_weights.reshape(-1, 4) + bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + if self.reg_decoded_bbox: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, it + # decodes the already encoded coordinates to absolute format. + anchors = anchors.reshape(-1, 4) + bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) + loss_bbox = self.loss_bbox( + bbox_pred, + bbox_targets, + bbox_weights, + avg_factor=num_total_samples) + return loss_cls, loss_bbox + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + # concat all level anchors and flags to a single tensor + concat_anchor_list = [] + for i in range(len(anchor_list)): + concat_anchor_list.append(torch.cat(anchor_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + + losses_cls, losses_bbox = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + all_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) + + def aug_test(self, feats, img_metas, rescale=False): + """Test function with test time augmentation. + + Args: + feats (list[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains features for all images in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. each dict has image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is ``bboxes`` with shape (n, 5), where + 5 represent (tl_x, tl_y, br_x, br_y, score). + The shape of the second tensor in the tuple is ``labels`` + with shape (n,), The length of list should always be 1. + """ + return self.aug_test_bboxes(feats, img_metas, rescale=rescale) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/atss_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/atss_head.py new file mode 100644 index 000000000..e8f401caa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/atss_head.py @@ -0,0 +1,501 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, Scale +from mmcv.runner import force_fp32 + +from mmdet.core import (anchor_inside_flags, build_assigner, build_sampler, + images_to_levels, multi_apply, reduce_mean, unmap) +from ..builder import HEADS, build_loss +from .anchor_head import AnchorHead + + +@HEADS.register_module() +class ATSSHead(AnchorHead): + """Bridging the Gap Between Anchor-based and Anchor-free Detection via + Adaptive Training Sample Selection. + + ATSS head structure is similar with FCOS, however ATSS use anchor boxes + and assign label by Adaptive Training Sample Selection instead max-iou. + + https://arxiv.org/abs/1912.02424 + """ + + def __init__(self, + num_classes, + in_channels, + pred_kernel_size=3, + stacked_convs=4, + conv_cfg=None, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + reg_decoded_bbox=True, + loss_centerness=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='atss_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.pred_kernel_size = pred_kernel_size + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + super(ATSSHead, self).__init__( + num_classes, + in_channels, + reg_decoded_bbox=reg_decoded_bbox, + init_cfg=init_cfg, + **kwargs) + + self.sampling = False + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # SSD sampling=False so use PseudoSampler + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.loss_centerness = build_loss(loss_centerness) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + pred_pad_size = self.pred_kernel_size // 2 + self.atss_cls = nn.Conv2d( + self.feat_channels, + self.num_anchors * self.cls_out_channels, + self.pred_kernel_size, + padding=pred_pad_size) + self.atss_reg = nn.Conv2d( + self.feat_channels, + self.num_base_priors * 4, + self.pred_kernel_size, + padding=pred_pad_size) + self.atss_centerness = nn.Conv2d( + self.feat_channels, + self.num_base_priors * 1, + self.pred_kernel_size, + padding=pred_pad_size) + self.scales = nn.ModuleList( + [Scale(1.0) for _ in self.prior_generator.strides]) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually a tuple of classification scores and bbox prediction + cls_scores (list[Tensor]): Classification scores for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * 4. + """ + return multi_apply(self.forward_single, feats, self.scales) + + def forward_single(self, x, scale): + """Forward feature of a single scale level. + + Args: + x (Tensor): Features of a single scale level. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + + Returns: + tuple: + cls_score (Tensor): Cls scores for a single scale level + the channels number is num_anchors * num_classes. + bbox_pred (Tensor): Box energies / deltas for a single scale + level, the channels number is num_anchors * 4. + centerness (Tensor): Centerness for a single scale level, the + channel number is (N, num_anchors * 1, H, W). + """ + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + cls_score = self.atss_cls(cls_feat) + # we just follow atss, not apply exp in bbox_pred + bbox_pred = scale(self.atss_reg(reg_feat)).float() + centerness = self.atss_centerness(reg_feat) + return cls_score, bbox_pred, centerness + + def loss_single(self, anchors, cls_score, bbox_pred, centerness, labels, + label_weights, bbox_targets, num_total_samples): + """Compute loss of a single scale level. + + Args: + cls_score (Tensor): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W). + bbox_pred (Tensor): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W). + anchors (Tensor): Box reference for each scale level with shape + (N, num_total_anchors, 4). + labels (Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (Tensor): Label weights of each anchor with shape + (N, num_total_anchors) + bbox_targets (Tensor): BBox regression targets of each anchor + weight shape (N, num_total_anchors, 4). + num_total_samples (int): Number os positive samples that is + reduced over all GPUs. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + anchors = anchors.reshape(-1, 4) + cls_score = cls_score.permute(0, 2, 3, 1).reshape( + -1, self.cls_out_channels).contiguous() + bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + centerness = centerness.permute(0, 2, 3, 1).reshape(-1) + bbox_targets = bbox_targets.reshape(-1, 4) + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + + # classification loss + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((labels >= 0) + & (labels < bg_class_ind)).nonzero().squeeze(1) + + if len(pos_inds) > 0: + pos_bbox_targets = bbox_targets[pos_inds] + pos_bbox_pred = bbox_pred[pos_inds] + pos_anchors = anchors[pos_inds] + pos_centerness = centerness[pos_inds] + + centerness_targets = self.centerness_target( + pos_anchors, pos_bbox_targets) + pos_decode_bbox_pred = self.bbox_coder.decode( + pos_anchors, pos_bbox_pred) + + # regression loss + loss_bbox = self.loss_bbox( + pos_decode_bbox_pred, + pos_bbox_targets, + weight=centerness_targets, + avg_factor=1.0) + + # centerness loss + loss_centerness = self.loss_centerness( + pos_centerness, + centerness_targets, + avg_factor=num_total_samples) + + else: + loss_bbox = bbox_pred.sum() * 0 + loss_centerness = centerness.sum() * 0 + centerness_targets = bbox_targets.new_tensor(0.) + + return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum() + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) + def loss(self, + cls_scores, + bbox_preds, + centernesses, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + centernesses (list[Tensor]): Centerness for each scale + level with shape (N, num_anchors * 1, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + + (anchor_list, labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets + + num_total_samples = reduce_mean( + torch.tensor(num_total_pos, dtype=torch.float, + device=device)).item() + num_total_samples = max(num_total_samples, 1.0) + + losses_cls, losses_bbox, loss_centerness,\ + bbox_avg_factor = multi_apply( + self.loss_single, + anchor_list, + cls_scores, + bbox_preds, + centernesses, + labels_list, + label_weights_list, + bbox_targets_list, + num_total_samples=num_total_samples) + + bbox_avg_factor = sum(bbox_avg_factor) + bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item() + losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) + return dict( + loss_cls=losses_cls, + loss_bbox=losses_bbox, + loss_centerness=loss_centerness) + + def centerness_target(self, anchors, gts): + # only calculate pos centerness targets, otherwise there may be nan + anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 + anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 + l_ = anchors_cx - gts[:, 0] + t_ = anchors_cy - gts[:, 1] + r_ = gts[:, 2] - anchors_cx + b_ = gts[:, 3] - anchors_cy + + left_right = torch.stack([l_, r_], dim=1) + top_bottom = torch.stack([t_, b_], dim=1) + centerness = torch.sqrt( + (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * + (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])) + assert not torch.isnan(centerness).any() + return centerness + + def get_targets(self, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True): + """Get targets for ATSS head. + + This method is almost the same as `AnchorHead.get_targets()`. Besides + returning the targets as the parent method does, it also returns the + anchors as the first element of the returned tuple. + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + num_level_anchors_list = [num_level_anchors] * num_imgs + + # concat all level anchors and flags to a single tensor + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + anchor_list[i] = torch.cat(anchor_list[i]) + valid_flag_list[i] = torch.cat(valid_flag_list[i]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + (all_anchors, all_labels, all_label_weights, all_bbox_targets, + all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( + self._get_target_single, + anchor_list, + valid_flag_list, + num_level_anchors_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + anchors_list = images_to_levels(all_anchors, num_level_anchors) + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + return (anchors_list, labels_list, label_weights_list, + bbox_targets_list, bbox_weights_list, num_total_pos, + num_total_neg) + + def _get_target_single(self, + flat_anchors, + valid_flags, + num_level_anchors, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression, classification targets for anchors in a single + image. + + Args: + flat_anchors (Tensor): Multi-level anchors of the image, which are + concatenated into a single tensor of shape (num_anchors ,4) + valid_flags (Tensor): Multi level valid flags of the image, + which are concatenated into a single tensor of + shape (num_anchors,). + num_level_anchors Tensor): Number of anchors of each scale level. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + img_meta (dict): Meta info of the image. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: N is the number of total anchors in the image. + labels (Tensor): Labels of all anchors in the image with shape + (N,). + label_weights (Tensor): Label weights of all anchor in the + image with shape (N,). + bbox_targets (Tensor): BBox targets of all anchors in the + image with shape (N, 4). + bbox_weights (Tensor): BBox weights of all anchors in the + image with shape (N, 4) + pos_inds (Tensor): Indices of positive anchor with shape + (num_pos,). + neg_inds (Tensor): Indices of negative anchor with shape + (num_neg,). + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + # assign gt and sample anchors + anchors = flat_anchors[inside_flags, :] + + num_level_anchors_inside = self.get_num_level_anchors_inside( + num_level_anchors, inside_flags) + assign_result = self.assigner.assign(anchors, num_level_anchors_inside, + gt_bboxes, gt_bboxes_ignore, + gt_labels) + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + if self.reg_decoded_bbox: + pos_bbox_targets = sampling_result.pos_gt_bboxes + else: + pos_bbox_targets = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class since v2.5.0 + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + anchors = unmap(anchors, num_total_anchors, inside_flags) + labels = unmap( + labels, num_total_anchors, inside_flags, fill=self.num_classes) + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + + return (anchors, labels, label_weights, bbox_targets, bbox_weights, + pos_inds, neg_inds) + + def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): + split_inside_flags = torch.split(inside_flags, num_level_anchors) + num_level_anchors_inside = [ + int(flags.sum()) for flags in split_inside_flags + ] + return num_level_anchors_inside diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/autoassign_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/autoassign_head.py new file mode 100644 index 000000000..446da244b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/autoassign_head.py @@ -0,0 +1,527 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import bias_init_with_prob, normal_init +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply +from mmdet.core.anchor.point_generator import MlvlPointGenerator +from mmdet.core.bbox import bbox_overlaps +from mmdet.models import HEADS +from mmdet.models.dense_heads.atss_head import reduce_mean +from mmdet.models.dense_heads.fcos_head import FCOSHead +from mmdet.models.dense_heads.paa_head import levels_to_images + +EPS = 1e-12 + + +class CenterPrior(nn.Module): + """Center Weighting module to adjust the category-specific prior + distributions. + + Args: + force_topk (bool): When no point falls into gt_bbox, forcibly + select the k points closest to the center to calculate + the center prior. Defaults to False. + topk (int): The number of points used to calculate the + center prior when no point falls in gt_bbox. Only work when + force_topk if True. Defaults to 9. + num_classes (int): The class number of dataset. Defaults to 80. + strides (tuple[int]): The stride of each input feature map. Defaults + to (8, 16, 32, 64, 128). + """ + + def __init__(self, + force_topk=False, + topk=9, + num_classes=80, + strides=(8, 16, 32, 64, 128)): + super(CenterPrior, self).__init__() + self.mean = nn.Parameter(torch.zeros(num_classes, 2)) + self.sigma = nn.Parameter(torch.ones(num_classes, 2)) + self.strides = strides + self.force_topk = force_topk + self.topk = topk + + def forward(self, anchor_points_list, gt_bboxes, labels, + inside_gt_bbox_mask): + """Get the center prior of each point on the feature map for each + instance. + + Args: + anchor_points_list (list[Tensor]): list of coordinate + of points on feature map. Each with shape + (num_points, 2). + gt_bboxes (Tensor): The gt_bboxes with shape of + (num_gt, 4). + labels (Tensor): The gt_labels with shape of (num_gt). + inside_gt_bbox_mask (Tensor): Tensor of bool type, + with shape of (num_points, num_gt), each + value is used to mark whether this point falls + within a certain gt. + + Returns: + tuple(Tensor): + + - center_prior_weights(Tensor): Float tensor with shape \ + of (num_points, num_gt). Each value represents \ + the center weighting coefficient. + - inside_gt_bbox_mask (Tensor): Tensor of bool type, \ + with shape of (num_points, num_gt), each \ + value is used to mark whether this point falls \ + within a certain gt or is the topk nearest points for \ + a specific gt_bbox. + """ + inside_gt_bbox_mask = inside_gt_bbox_mask.clone() + num_gts = len(labels) + num_points = sum([len(item) for item in anchor_points_list]) + if num_gts == 0: + return gt_bboxes.new_zeros(num_points, + num_gts), inside_gt_bbox_mask + center_prior_list = [] + for slvl_points, stride in zip(anchor_points_list, self.strides): + # slvl_points: points from single level in FPN, has shape (h*w, 2) + # single_level_points has shape (h*w, num_gt, 2) + single_level_points = slvl_points[:, None, :].expand( + (slvl_points.size(0), len(gt_bboxes), 2)) + gt_center_x = ((gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2) + gt_center_y = ((gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2) + gt_center = torch.stack((gt_center_x, gt_center_y), dim=1) + gt_center = gt_center[None] + # instance_center has shape (1, num_gt, 2) + instance_center = self.mean[labels][None] + # instance_sigma has shape (1, num_gt, 2) + instance_sigma = self.sigma[labels][None] + # distance has shape (num_points, num_gt, 2) + distance = (((single_level_points - gt_center) / float(stride) - + instance_center)**2) + center_prior = torch.exp(-distance / + (2 * instance_sigma**2)).prod(dim=-1) + center_prior_list.append(center_prior) + center_prior_weights = torch.cat(center_prior_list, dim=0) + + if self.force_topk: + gt_inds_no_points_inside = torch.nonzero( + inside_gt_bbox_mask.sum(0) == 0).reshape(-1) + if gt_inds_no_points_inside.numel(): + topk_center_index = \ + center_prior_weights[:, gt_inds_no_points_inside].topk( + self.topk, + dim=0)[1] + temp_mask = inside_gt_bbox_mask[:, gt_inds_no_points_inside] + inside_gt_bbox_mask[:, gt_inds_no_points_inside] = \ + torch.scatter(temp_mask, + dim=0, + index=topk_center_index, + src=torch.ones_like( + topk_center_index, + dtype=torch.bool)) + + center_prior_weights[~inside_gt_bbox_mask] = 0 + return center_prior_weights, inside_gt_bbox_mask + + +@HEADS.register_module() +class AutoAssignHead(FCOSHead): + """AutoAssignHead head used in AutoAssign. + + More details can be found in the `paper + `_ . + + Args: + force_topk (bool): Used in center prior initialization to + handle extremely small gt. Default is False. + topk (int): The number of points used to calculate the + center prior when no point falls in gt_bbox. Only work when + force_topk if True. Defaults to 9. + pos_loss_weight (float): The loss weight of positive loss + and with default value 0.25. + neg_loss_weight (float): The loss weight of negative loss + and with default value 0.75. + center_loss_weight (float): The loss weight of center prior + loss and with default value 0.75. + """ + + def __init__(self, + *args, + force_topk=False, + topk=9, + pos_loss_weight=0.25, + neg_loss_weight=0.75, + center_loss_weight=0.75, + **kwargs): + super().__init__(*args, conv_bias=True, **kwargs) + self.center_prior = CenterPrior( + force_topk=force_topk, + topk=topk, + num_classes=self.num_classes, + strides=self.strides) + self.pos_loss_weight = pos_loss_weight + self.neg_loss_weight = neg_loss_weight + self.center_loss_weight = center_loss_weight + self.prior_generator = MlvlPointGenerator(self.strides, offset=0) + + def init_weights(self): + """Initialize weights of the head. + + In particular, we have special initialization for classified conv's and + regression conv's bias + """ + + super(AutoAssignHead, self).init_weights() + bias_cls = bias_init_with_prob(0.02) + normal_init(self.conv_cls, std=0.01, bias=bias_cls) + normal_init(self.conv_reg, std=0.01, bias=4.0) + + def forward_single(self, x, scale, stride): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + stride (int): The corresponding stride for feature maps, only + used to normalize the bbox prediction when self.norm_on_bbox + is True. + + Returns: + tuple: scores for each class, bbox predictions and centerness \ + predictions of input feature maps. + """ + cls_score, bbox_pred, cls_feat, reg_feat = super( + FCOSHead, self).forward_single(x) + centerness = self.conv_centerness(reg_feat) + # scale the bbox_pred of different level + # float to avoid overflow when enabling FP16 + bbox_pred = scale(bbox_pred).float() + # bbox_pred needed for gradient computation has been modified + # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace + # F.relu(bbox_pred) with bbox_pred.clamp(min=0) + bbox_pred = bbox_pred.clamp(min=0) + bbox_pred *= stride + return cls_score, bbox_pred, centerness + + def get_pos_loss_single(self, cls_score, objectness, reg_loss, gt_labels, + center_prior_weights): + """Calculate the positive loss of all points in gt_bboxes. + + Args: + cls_score (Tensor): All category scores for each point on + the feature map. The shape is (num_points, num_class). + objectness (Tensor): Foreground probability of all points, + has shape (num_points, 1). + reg_loss (Tensor): The regression loss of each gt_bbox and each + prediction box, has shape of (num_points, num_gt). + gt_labels (Tensor): The zeros based gt_labels of all gt + with shape of (num_gt,). + center_prior_weights (Tensor): Float tensor with shape + of (num_points, num_gt). Each value represents + the center weighting coefficient. + + Returns: + tuple[Tensor]: + + - pos_loss (Tensor): The positive loss of all points + in the gt_bboxes. + """ + # p_loc: localization confidence + p_loc = torch.exp(-reg_loss) + # p_cls: classification confidence + p_cls = (cls_score * objectness)[:, gt_labels] + # p_pos: joint confidence indicator + p_pos = p_cls * p_loc + + # 3 is a hyper-parameter to control the contributions of high and + # low confidence locations towards positive losses. + confidence_weight = torch.exp(p_pos * 3) + p_pos_weight = (confidence_weight * center_prior_weights) / ( + (confidence_weight * center_prior_weights).sum( + 0, keepdim=True)).clamp(min=EPS) + reweighted_p_pos = (p_pos * p_pos_weight).sum(0) + pos_loss = F.binary_cross_entropy( + reweighted_p_pos, + torch.ones_like(reweighted_p_pos), + reduction='none') + pos_loss = pos_loss.sum() * self.pos_loss_weight + return pos_loss, + + def get_neg_loss_single(self, cls_score, objectness, gt_labels, ious, + inside_gt_bbox_mask): + """Calculate the negative loss of all points in feature map. + + Args: + cls_score (Tensor): All category scores for each point on + the feature map. The shape is (num_points, num_class). + objectness (Tensor): Foreground probability of all points + and is shape of (num_points, 1). + gt_labels (Tensor): The zeros based label of all gt with shape of + (num_gt). + ious (Tensor): Float tensor with shape of (num_points, num_gt). + Each value represent the iou of pred_bbox and gt_bboxes. + inside_gt_bbox_mask (Tensor): Tensor of bool type, + with shape of (num_points, num_gt), each + value is used to mark whether this point falls + within a certain gt. + + Returns: + tuple[Tensor]: + + - neg_loss (Tensor): The negative loss of all points + in the feature map. + """ + num_gts = len(gt_labels) + joint_conf = (cls_score * objectness) + p_neg_weight = torch.ones_like(joint_conf) + if num_gts > 0: + # the order of dinmension would affect the value of + # p_neg_weight, we strictly follow the original + # implementation. + inside_gt_bbox_mask = inside_gt_bbox_mask.permute(1, 0) + ious = ious.permute(1, 0) + + foreground_idxs = torch.nonzero(inside_gt_bbox_mask, as_tuple=True) + temp_weight = (1 / (1 - ious[foreground_idxs]).clamp_(EPS)) + + def normalize(x): + return (x - x.min() + EPS) / (x.max() - x.min() + EPS) + + for instance_idx in range(num_gts): + idxs = foreground_idxs[0] == instance_idx + if idxs.any(): + temp_weight[idxs] = normalize(temp_weight[idxs]) + + p_neg_weight[foreground_idxs[1], + gt_labels[foreground_idxs[0]]] = 1 - temp_weight + + logits = (joint_conf * p_neg_weight) + neg_loss = ( + logits**2 * F.binary_cross_entropy( + logits, torch.zeros_like(logits), reduction='none')) + neg_loss = neg_loss.sum() * self.neg_loss_weight + return neg_loss, + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses')) + def loss(self, + cls_scores, + bbox_preds, + objectnesses, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * 4. + objectnesses (list[Tensor]): objectness for each scale level, each + is a 4D-tensor, the channel number is num_points * 1. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + assert len(cls_scores) == len(bbox_preds) == len(objectnesses) + all_num_gt = sum([len(item) for item in gt_bboxes]) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + all_level_points = self.prior_generator.grid_priors( + featmap_sizes, + dtype=bbox_preds[0].dtype, + device=bbox_preds[0].device) + inside_gt_bbox_mask_list, bbox_targets_list = self.get_targets( + all_level_points, gt_bboxes) + + center_prior_weight_list = [] + temp_inside_gt_bbox_mask_list = [] + for gt_bboxe, gt_label, inside_gt_bbox_mask in zip( + gt_bboxes, gt_labels, inside_gt_bbox_mask_list): + center_prior_weight, inside_gt_bbox_mask = \ + self.center_prior(all_level_points, gt_bboxe, gt_label, + inside_gt_bbox_mask) + center_prior_weight_list.append(center_prior_weight) + temp_inside_gt_bbox_mask_list.append(inside_gt_bbox_mask) + inside_gt_bbox_mask_list = temp_inside_gt_bbox_mask_list + mlvl_points = torch.cat(all_level_points, dim=0) + bbox_preds = levels_to_images(bbox_preds) + cls_scores = levels_to_images(cls_scores) + objectnesses = levels_to_images(objectnesses) + + reg_loss_list = [] + ious_list = [] + num_points = len(mlvl_points) + + for bbox_pred, encoded_targets, inside_gt_bbox_mask in zip( + bbox_preds, bbox_targets_list, inside_gt_bbox_mask_list): + temp_num_gt = encoded_targets.size(1) + expand_mlvl_points = mlvl_points[:, None, :].expand( + num_points, temp_num_gt, 2).reshape(-1, 2) + encoded_targets = encoded_targets.reshape(-1, 4) + expand_bbox_pred = bbox_pred[:, None, :].expand( + num_points, temp_num_gt, 4).reshape(-1, 4) + decoded_bbox_preds = self.bbox_coder.decode( + expand_mlvl_points, expand_bbox_pred) + decoded_target_preds = self.bbox_coder.decode( + expand_mlvl_points, encoded_targets) + with torch.no_grad(): + ious = bbox_overlaps( + decoded_bbox_preds, decoded_target_preds, is_aligned=True) + ious = ious.reshape(num_points, temp_num_gt) + if temp_num_gt: + ious = ious.max( + dim=-1, keepdim=True).values.repeat(1, temp_num_gt) + else: + ious = ious.new_zeros(num_points, temp_num_gt) + ious[~inside_gt_bbox_mask] = 0 + ious_list.append(ious) + loss_bbox = self.loss_bbox( + decoded_bbox_preds, + decoded_target_preds, + weight=None, + reduction_override='none') + reg_loss_list.append(loss_bbox.reshape(num_points, temp_num_gt)) + + cls_scores = [item.sigmoid() for item in cls_scores] + objectnesses = [item.sigmoid() for item in objectnesses] + pos_loss_list, = multi_apply(self.get_pos_loss_single, cls_scores, + objectnesses, reg_loss_list, gt_labels, + center_prior_weight_list) + pos_avg_factor = reduce_mean( + bbox_pred.new_tensor(all_num_gt)).clamp_(min=1) + pos_loss = sum(pos_loss_list) / pos_avg_factor + + neg_loss_list, = multi_apply(self.get_neg_loss_single, cls_scores, + objectnesses, gt_labels, ious_list, + inside_gt_bbox_mask_list) + neg_avg_factor = sum(item.data.sum() + for item in center_prior_weight_list) + neg_avg_factor = reduce_mean(neg_avg_factor).clamp_(min=1) + neg_loss = sum(neg_loss_list) / neg_avg_factor + + center_loss = [] + for i in range(len(img_metas)): + + if inside_gt_bbox_mask_list[i].any(): + center_loss.append( + len(gt_bboxes[i]) / + center_prior_weight_list[i].sum().clamp_(min=EPS)) + # when width or height of gt_bbox is smaller than stride of p3 + else: + center_loss.append(center_prior_weight_list[i].sum() * 0) + + center_loss = torch.stack(center_loss).mean() * self.center_loss_weight + + # avoid dead lock in DDP + if all_num_gt == 0: + pos_loss = bbox_preds[0].sum() * 0 + dummy_center_prior_loss = self.center_prior.mean.sum( + ) * 0 + self.center_prior.sigma.sum() * 0 + center_loss = objectnesses[0].sum() * 0 + dummy_center_prior_loss + + loss = dict( + loss_pos=pos_loss, loss_neg=neg_loss, loss_center=center_loss) + + return loss + + def get_targets(self, points, gt_bboxes_list): + """Compute regression targets and each point inside or outside gt_bbox + in multiple images. + + Args: + points (list[Tensor]): Points of all fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + + Returns: + tuple(list[Tensor]): + + - inside_gt_bbox_mask_list (list[Tensor]): Each + Tensor is with bool type and shape of + (num_points, num_gt), each value + is used to mark whether this point falls + within a certain gt. + - concat_lvl_bbox_targets (list[Tensor]): BBox + targets of each level. Each tensor has shape + (num_points, num_gt, 4). + """ + + concat_points = torch.cat(points, dim=0) + # the number of points per img, per lvl + inside_gt_bbox_mask_list, bbox_targets_list = multi_apply( + self._get_target_single, gt_bboxes_list, points=concat_points) + return inside_gt_bbox_mask_list, bbox_targets_list + + def _get_target_single(self, gt_bboxes, points): + """Compute regression targets and each point inside or outside gt_bbox + for a single image. + + Args: + gt_bboxes (Tensor): gt_bbox of single image, has shape + (num_gt, 4). + points (Tensor): Points of all fpn level, has shape + (num_points, 2). + + Returns: + tuple[Tensor]: Containing the following Tensors: + + - inside_gt_bbox_mask (Tensor): Bool tensor with shape + (num_points, num_gt), each value is used to mark + whether this point falls within a certain gt. + - bbox_targets (Tensor): BBox targets of each points with + each gt_bboxes, has shape (num_points, num_gt, 4). + """ + num_points = points.size(0) + num_gts = gt_bboxes.size(0) + gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) + xs, ys = points[:, 0], points[:, 1] + xs = xs[:, None] + ys = ys[:, None] + left = xs - gt_bboxes[..., 0] + right = gt_bboxes[..., 2] - xs + top = ys - gt_bboxes[..., 1] + bottom = gt_bboxes[..., 3] - ys + bbox_targets = torch.stack((left, top, right, bottom), -1) + if num_gts: + inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 + else: + inside_gt_bbox_mask = bbox_targets.new_zeros((num_points, num_gts), + dtype=torch.bool) + + return inside_gt_bbox_mask, bbox_targets + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Almost the same as the implementation in fcos, we remove half stride + offset to align with the original implementation. + + This function will be deprecated soon. + """ + warnings.warn( + '`_get_points_single` in `AutoAssignHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of a single level feature map ' + 'with `self.prior_generator.single_level_grid_priors` ') + y, x = super(FCOSHead, + self)._get_points_single(featmap_size, stride, dtype, + device) + points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), + dim=-1) + return points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_dense_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_dense_head.py new file mode 100644 index 000000000..0c7abb7b9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_dense_head.py @@ -0,0 +1,526 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import torch +from mmcv.cnn.utils.weight_init import constant_init +from mmcv.ops import batched_nms +from mmcv.runner import BaseModule, force_fp32 + +from mmdet.core.utils import filter_scores_and_topk, select_single_mlvl + + +class BaseDenseHead(BaseModule, metaclass=ABCMeta): + """Base class for DenseHeads.""" + + def __init__(self, init_cfg=None): + super(BaseDenseHead, self).__init__(init_cfg) + + def init_weights(self): + super(BaseDenseHead, self).init_weights() + # avoid init_cfg overwrite the initialization of `conv_offset` + for m in self.modules(): + # DeformConv2dPack, ModulatedDeformConv2dPack + if hasattr(m, 'conv_offset'): + constant_init(m.conv_offset, 0) + + @abstractmethod + def loss(self, **kwargs): + """Compute losses of the head.""" + pass + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + score_factors=None, + img_metas=None, + cfg=None, + rescale=False, + with_nms=True, + **kwargs): + """Transform network outputs of a batch into bbox results. + + Note: When score_factors is not None, the cls_scores are + usually multiplied by it then obtain the real score used in NMS, + such as CenterNess in FCOS, IoU branch in ATSS. + + Args: + cls_scores (list[Tensor]): Classification scores for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * 4, H, W). + score_factors (list[Tensor], Optional): Score factor for + all scale level, each is a 4D-tensor, has shape + (batch_size, num_priors * 1, H, W). Default None. + img_metas (list[dict], Optional): Image meta info. Default None. + cfg (mmcv.Config, Optional): Test / postprocessing configuration, + if None, test_cfg would be used. Default None. + rescale (bool): If True, return boxes in original image space. + Default False. + with_nms (bool): If True, do nms before return boxes. + Default True. + + Returns: + list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 5) tensor, where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. The second item is a + (n,) tensor where each item is the predicted class label of + the corresponding box. + """ + assert len(cls_scores) == len(bbox_preds) + + if score_factors is None: + # e.g. Retina, FreeAnchor, Foveabox, etc. + with_score_factors = False + else: + # e.g. FCOS, PAA, ATSS, AutoAssign, etc. + with_score_factors = True + assert len(cls_scores) == len(score_factors) + + num_levels = len(cls_scores) + + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + mlvl_priors = self.prior_generator.grid_priors( + featmap_sizes, + dtype=cls_scores[0].dtype, + device=cls_scores[0].device) + + result_list = [] + + for img_id in range(len(img_metas)): + img_meta = img_metas[img_id] + cls_score_list = select_single_mlvl(cls_scores, img_id) + bbox_pred_list = select_single_mlvl(bbox_preds, img_id) + if with_score_factors: + score_factor_list = select_single_mlvl(score_factors, img_id) + else: + score_factor_list = [None for _ in range(num_levels)] + + results = self._get_bboxes_single(cls_score_list, bbox_pred_list, + score_factor_list, mlvl_priors, + img_meta, cfg, rescale, with_nms, + **kwargs) + result_list.append(results) + return result_list + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image, each item has shape + (num_priors * 1, H, W). + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid. In all + anchor-based methods, it has shape (num_priors, 4). In + all anchor-free methods, it has shape (num_priors, 2) + when `with_stride=True`, otherwise it still has shape + (num_priors, 4). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + if score_factor_list[0] is None: + # e.g. Retina, FreeAnchor, etc. + with_score_factors = False + else: + # e.g. FCOS, PAA, ATSS, etc. + with_score_factors = True + + cfg = self.test_cfg if cfg is None else cfg + img_shape = img_meta['img_shape'] + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_labels = [] + if with_score_factors: + mlvl_score_factors = [] + else: + mlvl_score_factors = None + for level_idx, (cls_score, bbox_pred, score_factor, priors) in \ + enumerate(zip(cls_score_list, bbox_pred_list, + score_factor_list, mlvl_priors)): + + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + if with_score_factors: + score_factor = score_factor.permute(1, 2, + 0).reshape(-1).sigmoid() + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + scores = cls_score.softmax(-1)[:, :-1] + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict(bbox_pred=bbox_pred, priors=priors)) + scores, labels, keep_idxs, filtered_results = results + + bbox_pred = filtered_results['bbox_pred'] + priors = filtered_results['priors'] + + if with_score_factors: + score_factor = score_factor[keep_idxs] + + bboxes = self.bbox_coder.decode( + priors, bbox_pred, max_shape=img_shape) + + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_labels.append(labels) + if with_score_factors: + mlvl_score_factors.append(score_factor) + + return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes, + img_meta['scale_factor'], cfg, rescale, + with_nms, mlvl_score_factors, **kwargs) + + def _bbox_post_process(self, + mlvl_scores, + mlvl_labels, + mlvl_bboxes, + scale_factor, + cfg, + rescale=False, + with_nms=True, + mlvl_score_factors=None, + **kwargs): + """bbox post-processing method. + + The boxes would be rescaled to the original image scale and do + the nms operation. Usually `with_nms` is False is used for aug test. + + Args: + mlvl_scores (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_bboxes, ). + mlvl_labels (list[Tensor]): Box class labels from all scale + levels of a single image, each item has shape + (num_bboxes, ). + mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale + levels of a single image, each item has shape (num_bboxes, 4). + scale_factor (ndarray, optional): Scale factor of the image arange + as (w_scale, h_scale, w_scale, h_scale). + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + mlvl_score_factors (list[Tensor], optional): Score factor from + all scale levels of a single image, each item has shape + (num_bboxes, ). Default: None. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels) + + mlvl_bboxes = torch.cat(mlvl_bboxes) + if rescale: + mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) + mlvl_scores = torch.cat(mlvl_scores) + mlvl_labels = torch.cat(mlvl_labels) + + if mlvl_score_factors is not None: + # TODO: Add sqrt operation in order to be consistent with + # the paper. + mlvl_score_factors = torch.cat(mlvl_score_factors) + mlvl_scores = mlvl_scores * mlvl_score_factors + + if with_nms: + if mlvl_bboxes.numel() == 0: + det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1) + return det_bboxes, mlvl_labels + + det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores, + mlvl_labels, cfg.nms) + det_bboxes = det_bboxes[:cfg.max_per_img] + det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img] + return det_bboxes, det_labels + else: + return mlvl_bboxes, mlvl_scores, mlvl_labels + + def forward_train(self, + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=None, + proposal_cfg=None, + **kwargs): + """ + Args: + x (list[Tensor]): Features from FPN. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + proposal_cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + + Returns: + tuple: + losses: (dict[str, Tensor]): A dictionary of loss components. + proposal_list (list[Tensor]): Proposals of each image. + """ + outs = self(x) + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, img_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) + losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + if proposal_cfg is None: + return losses + else: + proposal_list = self.get_bboxes( + *outs, img_metas=img_metas, cfg=proposal_cfg) + return losses, proposal_list + + def simple_test(self, feats, img_metas, rescale=False): + """Test function without test-time augmentation. + + Args: + feats (tuple[torch.Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is ``bboxes`` with shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + The shape of the second tensor in the tuple is ``labels`` + with shape (n, ). + """ + return self.simple_test_bboxes(feats, img_metas, rescale=rescale) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def onnx_export(self, + cls_scores, + bbox_preds, + score_factors=None, + img_metas=None, + with_nms=True): + """Transform network output for a batch into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + with shape (N, num_points * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_points * 4, H, W). + score_factors (list[Tensor]): score_factors for each s + cale level with shape (N, num_points * 1, H, W). + Default: None. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. Default: None. + with_nms (bool): Whether apply nms to the bboxes. Default: True. + + Returns: + tuple[Tensor, Tensor] | list[tuple]: When `with_nms` is True, + it is tuple[Tensor, Tensor], first tensor bboxes with shape + [N, num_det, 5], 5 arrange as (x1, y1, x2, y2, score) + and second element is class labels of shape [N, num_det]. + When `with_nms` is False, first tensor is bboxes with + shape [N, num_det, 4], second tensor is raw score has + shape [N, num_det, num_classes]. + """ + assert len(cls_scores) == len(bbox_preds) + + num_levels = len(cls_scores) + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + mlvl_priors = self.prior_generator.grid_priors( + featmap_sizes, + dtype=bbox_preds[0].dtype, + device=bbox_preds[0].device) + + mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] + mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] + + assert len( + img_metas + ) == 1, 'Only support one input image while in exporting to ONNX' + img_shape = img_metas[0]['img_shape_for_onnx'] + + cfg = self.test_cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) + device = cls_scores[0].device + batch_size = cls_scores[0].shape[0] + # convert to tensor to keep tracing + nms_pre_tensor = torch.tensor( + cfg.get('nms_pre', -1), device=device, dtype=torch.long) + + # e.g. Retina, FreeAnchor, etc. + if score_factors is None: + with_score_factors = False + mlvl_score_factor = [None for _ in range(num_levels)] + else: + # e.g. FCOS, PAA, ATSS, etc. + with_score_factors = True + mlvl_score_factor = [ + score_factors[i].detach() for i in range(num_levels) + ] + mlvl_score_factors = [] + + mlvl_batch_bboxes = [] + mlvl_scores = [] + + for cls_score, bbox_pred, score_factors, priors in zip( + mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor, + mlvl_priors): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + + scores = cls_score.permute(0, 2, 3, + 1).reshape(batch_size, -1, + self.cls_out_channels) + if self.use_sigmoid_cls: + scores = scores.sigmoid() + nms_pre_score = scores + else: + scores = scores.softmax(-1) + nms_pre_score = scores + + if with_score_factors: + score_factors = score_factors.permute(0, 2, 3, 1).reshape( + batch_size, -1).sigmoid() + bbox_pred = bbox_pred.permute(0, 2, 3, + 1).reshape(batch_size, -1, 4) + priors = priors.expand(batch_size, -1, priors.size(-1)) + # Get top-k predictions + from mmdet.core.export import get_k_for_topk + nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1]) + if nms_pre > 0: + + if with_score_factors: + nms_pre_score = (nms_pre_score * score_factors[..., None]) + else: + nms_pre_score = nms_pre_score + + # Get maximum scores for foreground classes. + if self.use_sigmoid_cls: + max_scores, _ = nms_pre_score.max(-1) + else: + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + max_scores, _ = nms_pre_score[..., :-1].max(-1) + _, topk_inds = max_scores.topk(nms_pre) + + batch_inds = torch.arange( + batch_size, device=bbox_pred.device).view( + -1, 1).expand_as(topk_inds).long() + # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 + transformed_inds = bbox_pred.shape[1] * batch_inds + topk_inds + priors = priors.reshape( + -1, priors.size(-1))[transformed_inds, :].reshape( + batch_size, -1, priors.size(-1)) + bbox_pred = bbox_pred.reshape(-1, + 4)[transformed_inds, :].reshape( + batch_size, -1, 4) + scores = scores.reshape( + -1, self.cls_out_channels)[transformed_inds, :].reshape( + batch_size, -1, self.cls_out_channels) + if with_score_factors: + score_factors = score_factors.reshape( + -1, 1)[transformed_inds].reshape(batch_size, -1) + + bboxes = self.bbox_coder.decode( + priors, bbox_pred, max_shape=img_shape) + + mlvl_batch_bboxes.append(bboxes) + mlvl_scores.append(scores) + if with_score_factors: + mlvl_score_factors.append(score_factors) + + batch_bboxes = torch.cat(mlvl_batch_bboxes, dim=1) + batch_scores = torch.cat(mlvl_scores, dim=1) + if with_score_factors: + batch_score_factors = torch.cat(mlvl_score_factors, dim=1) + + # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment + + from mmdet.core.export import add_dummy_nms_for_onnx + + if not self.use_sigmoid_cls: + batch_scores = batch_scores[..., :self.num_classes] + + if with_score_factors: + batch_scores = batch_scores * (batch_score_factors.unsqueeze(2)) + + if with_nms: + max_output_boxes_per_class = cfg.nms.get( + 'max_output_boxes_per_class', 200) + iou_threshold = cfg.nms.get('iou_threshold', 0.5) + score_threshold = cfg.score_thr + nms_pre = cfg.get('deploy_nms_pre', -1) + return add_dummy_nms_for_onnx(batch_bboxes, batch_scores, + max_output_boxes_per_class, + iou_threshold, score_threshold, + nms_pre, cfg.max_per_img) + else: + return batch_bboxes, batch_scores diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_mask_head.py new file mode 100644 index 000000000..5eb94fb28 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/base_mask_head.py @@ -0,0 +1,116 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.runner import BaseModule + + +class BaseMaskHead(BaseModule, metaclass=ABCMeta): + """Base class for mask heads used in One-Stage Instance Segmentation.""" + + def __init__(self, init_cfg): + super(BaseMaskHead, self).__init__(init_cfg) + + @abstractmethod + def loss(self, **kwargs): + pass + + @abstractmethod + def get_results(self, **kwargs): + """Get precessed :obj:`InstanceData` of multiple images.""" + pass + + def forward_train(self, + x, + gt_labels, + gt_masks, + img_metas, + gt_bboxes=None, + gt_bboxes_ignore=None, + positive_infos=None, + **kwargs): + """ + Args: + x (list[Tensor] | tuple[Tensor]): Features from FPN. + Each has a shape (B, C, H, W). + gt_labels (list[Tensor]): Ground truth labels of all images. + each has a shape (num_gts,). + gt_masks (list[Tensor]) : Masks for each bbox, has a shape + (num_gts, h , w). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (list[Tensor]): Ground truth bboxes of the image, + each item has a shape (num_gts, 4). + gt_bboxes_ignore (list[Tensor], None): Ground truth bboxes to be + ignored, each item has a shape (num_ignored_gts, 4). + positive_infos (list[:obj:`InstanceData`], optional): Information + of positive samples. Used when the label assignment is + done outside the MaskHead, e.g., in BboxHead in + YOLACT or CondInst, etc. When the label assignment is done in + MaskHead, it would be None, like SOLO. All values + in it should have shape (num_positive_samples, *). + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + if positive_infos is None: + outs = self(x) + else: + outs = self(x, positive_infos) + + assert isinstance(outs, tuple), 'Forward results should be a tuple, ' \ + 'even if only one item is returned' + loss = self.loss( + *outs, + gt_labels=gt_labels, + gt_masks=gt_masks, + img_metas=img_metas, + gt_bboxes=gt_bboxes, + gt_bboxes_ignore=gt_bboxes_ignore, + positive_infos=positive_infos, + **kwargs) + return loss + + def simple_test(self, + feats, + img_metas, + rescale=False, + instances_list=None, + **kwargs): + """Test function without test-time augmentation. + + Args: + feats (tuple[torch.Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + instances_list (list[obj:`InstanceData`], optional): Detection + results of each image after the post process. Only exist + if there is a `bbox_head`, like `YOLACT`, `CondInst`, etc. + + Returns: + list[obj:`InstanceData`]: Instance segmentation \ + results of each image after the post process. \ + Each item usually contains following keys. \ + + - scores (Tensor): Classification scores, has a shape + (num_instance,) + - labels (Tensor): Has a shape (num_instances,). + - masks (Tensor): Processed mask results, has a + shape (num_instances, h, w). + """ + if instances_list is None: + outs = self(feats) + else: + outs = self(feats, instances_list=instances_list) + mask_inputs = outs + (img_metas, ) + results_list = self.get_results( + *mask_inputs, + rescale=rescale, + instances_list=instances_list, + **kwargs) + return results_list + + def onnx_export(self, img, img_metas): + raise NotImplementedError(f'{self.__class__.__name__} does ' + f'not support ONNX EXPORT') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/cascade_rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/cascade_rpn_head.py new file mode 100644 index 000000000..69347e00c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/cascade_rpn_head.py @@ -0,0 +1,801 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from __future__ import division +import copy +import warnings + +import torch +import torch.nn as nn +from mmcv import ConfigDict +from mmcv.ops import DeformConv2d, batched_nms +from mmcv.runner import BaseModule, ModuleList + +from mmdet.core import (RegionAssigner, build_assigner, build_sampler, + images_to_levels, multi_apply) +from mmdet.core.utils import select_single_mlvl +from ..builder import HEADS, build_head +from .base_dense_head import BaseDenseHead +from .rpn_head import RPNHead + + +class AdaptiveConv(BaseModule): + """AdaptiveConv used to adapt the sampling location with the anchors. + + Args: + in_channels (int): Number of channels in the input image + out_channels (int): Number of channels produced by the convolution + kernel_size (int or tuple): Size of the conv kernel. Default: 3 + stride (int or tuple, optional): Stride of the convolution. Default: 1 + padding (int or tuple, optional): Zero-padding added to both sides of + the input. Default: 1 + dilation (int or tuple, optional): Spacing between kernel elements. + Default: 3 + groups (int, optional): Number of blocked connections from input + channels to output channels. Default: 1 + bias (bool, optional): If set True, adds a learnable bias to the + output. Default: False. + type (str, optional): Type of adaptive conv, can be either 'offset' + (arbitrary anchors) or 'dilation' (uniform anchor). + Default: 'dilation'. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + dilation=3, + groups=1, + bias=False, + type='dilation', + init_cfg=dict( + type='Normal', std=0.01, override=dict(name='conv'))): + super(AdaptiveConv, self).__init__(init_cfg) + assert type in ['offset', 'dilation'] + self.adapt_type = type + + assert kernel_size == 3, 'Adaptive conv only supports kernels 3' + if self.adapt_type == 'offset': + assert stride == 1 and padding == 1 and groups == 1, \ + 'Adaptive conv offset mode only supports padding: {1}, ' \ + f'stride: {1}, groups: {1}' + self.conv = DeformConv2d( + in_channels, + out_channels, + kernel_size, + padding=padding, + stride=stride, + groups=groups, + bias=bias) + else: + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size, + padding=dilation, + dilation=dilation) + + def forward(self, x, offset): + """Forward function.""" + if self.adapt_type == 'offset': + N, _, H, W = x.shape + assert offset is not None + assert H * W == offset.shape[1] + # reshape [N, NA, 18] to (N, 18, H, W) + offset = offset.permute(0, 2, 1).reshape(N, -1, H, W) + offset = offset.contiguous() + x = self.conv(x, offset) + else: + assert offset is None + x = self.conv(x) + return x + + +@HEADS.register_module() +class StageCascadeRPNHead(RPNHead): + """Stage of CascadeRPNHead. + + Args: + in_channels (int): Number of channels in the input feature map. + anchor_generator (dict): anchor generator config. + adapt_cfg (dict): adaptation config. + bridged_feature (bool, optional): whether update rpn feature. + Default: False. + with_cls (bool, optional): whether use classification branch. + Default: True. + sampling (bool, optional): whether use sampling. Default: True. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + anchor_generator=dict( + type='AnchorGenerator', + scales=[8], + ratios=[1.0], + strides=[4, 8, 16, 32, 64]), + adapt_cfg=dict(type='dilation', dilation=3), + bridged_feature=False, + with_cls=True, + sampling=True, + init_cfg=None, + **kwargs): + self.with_cls = with_cls + self.anchor_strides = anchor_generator['strides'] + self.anchor_scales = anchor_generator['scales'] + self.bridged_feature = bridged_feature + self.adapt_cfg = adapt_cfg + super(StageCascadeRPNHead, self).__init__( + in_channels, + anchor_generator=anchor_generator, + init_cfg=init_cfg, + **kwargs) + + # override sampling and sampler + self.sampling = sampling + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # use PseudoSampler when sampling is False + if self.sampling and hasattr(self.train_cfg, 'sampler'): + sampler_cfg = self.train_cfg.sampler + else: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + + if init_cfg is None: + self.init_cfg = dict( + type='Normal', std=0.01, override=[dict(name='rpn_reg')]) + if self.with_cls: + self.init_cfg['override'].append(dict(name='rpn_cls')) + + def _init_layers(self): + """Init layers of a CascadeRPN stage.""" + self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels, + **self.adapt_cfg) + if self.with_cls: + self.rpn_cls = nn.Conv2d(self.feat_channels, + self.num_anchors * self.cls_out_channels, + 1) + self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) + self.relu = nn.ReLU(inplace=True) + + def forward_single(self, x, offset): + """Forward function of single scale.""" + bridged_x = x + x = self.relu(self.rpn_conv(x, offset)) + if self.bridged_feature: + bridged_x = x # update feature + cls_score = self.rpn_cls(x) if self.with_cls else None + bbox_pred = self.rpn_reg(x) + return bridged_x, cls_score, bbox_pred + + def forward(self, feats, offset_list=None): + """Forward function.""" + if offset_list is None: + offset_list = [None for _ in range(len(feats))] + return multi_apply(self.forward_single, feats, offset_list) + + def _region_targets_single(self, + anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + featmap_sizes, + label_channels=1): + """Get anchor targets based on region for single level.""" + assign_result = self.assigner.assign( + anchors, + valid_flags, + gt_bboxes, + img_meta, + featmap_sizes, + self.anchor_scales[0], + self.anchor_strides, + gt_bboxes_ignore=gt_bboxes_ignore, + gt_labels=None, + allowed_border=self.train_cfg.allowed_border) + flat_anchors = torch.cat(anchors) + sampling_result = self.sampler.sample(assign_result, flat_anchors, + gt_bboxes) + + num_anchors = flat_anchors.shape[0] + bbox_targets = torch.zeros_like(flat_anchors) + bbox_weights = torch.zeros_like(flat_anchors) + labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long) + label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + else: + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + if gt_labels is None: + labels[pos_inds] = 1 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + neg_inds) + + def region_targets(self, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + featmap_sizes, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True): + """See :func:`StageCascadeRPNHead.get_targets`.""" + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, + pos_inds_list, neg_inds_list) = multi_apply( + self._region_targets_single, + anchor_list, + valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + featmap_sizes=featmap_sizes, + label_channels=label_channels) + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + return (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) + + def get_targets(self, + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + featmap_sizes, + gt_bboxes_ignore=None, + label_channels=1): + """Compute regression and classification targets for anchors. + + Args: + anchor_list (list[list]): Multi level anchors of each image. + valid_flag_list (list[list]): Multi level valid flags of each + image. + gt_bboxes (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + featmap_sizes (list[Tensor]): Feature mapsize each level + gt_bboxes_ignore (list[Tensor]): Ignore bboxes of each images + label_channels (int): Channel of label. + + Returns: + cls_reg_targets (tuple) + """ + if isinstance(self.assigner, RegionAssigner): + cls_reg_targets = self.region_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + featmap_sizes, + gt_bboxes_ignore_list=gt_bboxes_ignore, + label_channels=label_channels) + else: + cls_reg_targets = super(StageCascadeRPNHead, self).get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + label_channels=label_channels) + return cls_reg_targets + + def anchor_offset(self, anchor_list, anchor_strides, featmap_sizes): + """ Get offset for deformable conv based on anchor shape + NOTE: currently support deformable kernel_size=3 and dilation=1 + + Args: + anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of + multi-level anchors + anchor_strides (list[int]): anchor stride of each level + + Returns: + offset_list (list[tensor]): [NLVL, NA, 2, 18]: offset of DeformConv + kernel. + """ + + def _shape_offset(anchors, stride, ks=3, dilation=1): + # currently support kernel_size=3 and dilation=1 + assert ks == 3 and dilation == 1 + pad = (ks - 1) // 2 + idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device) + yy, xx = torch.meshgrid(idx, idx) # return order matters + xx = xx.reshape(-1) + yy = yy.reshape(-1) + w = (anchors[:, 2] - anchors[:, 0]) / stride + h = (anchors[:, 3] - anchors[:, 1]) / stride + w = w / (ks - 1) - dilation + h = h / (ks - 1) - dilation + offset_x = w[:, None] * xx # (NA, ks**2) + offset_y = h[:, None] * yy # (NA, ks**2) + return offset_x, offset_y + + def _ctr_offset(anchors, stride, featmap_size): + feat_h, feat_w = featmap_size + assert len(anchors) == feat_h * feat_w + + x = (anchors[:, 0] + anchors[:, 2]) * 0.5 + y = (anchors[:, 1] + anchors[:, 3]) * 0.5 + # compute centers on feature map + x = x / stride + y = y / stride + # compute predefine centers + xx = torch.arange(0, feat_w, device=anchors.device) + yy = torch.arange(0, feat_h, device=anchors.device) + yy, xx = torch.meshgrid(yy, xx) + xx = xx.reshape(-1).type_as(x) + yy = yy.reshape(-1).type_as(y) + + offset_x = x - xx # (NA, ) + offset_y = y - yy # (NA, ) + return offset_x, offset_y + + num_imgs = len(anchor_list) + num_lvls = len(anchor_list[0]) + dtype = anchor_list[0][0].dtype + device = anchor_list[0][0].device + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + + offset_list = [] + for i in range(num_imgs): + mlvl_offset = [] + for lvl in range(num_lvls): + c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl], + anchor_strides[lvl], + featmap_sizes[lvl]) + s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl], + anchor_strides[lvl]) + + # offset = ctr_offset + shape_offset + offset_x = s_offset_x + c_offset_x[:, None] + offset_y = s_offset_y + c_offset_y[:, None] + + # offset order (y0, x0, y1, x2, .., y8, x8, y9, x9) + offset = torch.stack([offset_y, offset_x], dim=-1) + offset = offset.reshape(offset.size(0), -1) # [NA, 2*ks**2] + mlvl_offset.append(offset) + offset_list.append(torch.cat(mlvl_offset)) # [totalNA, 2*ks**2] + offset_list = images_to_levels(offset_list, num_level_anchors) + return offset_list + + def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, + bbox_targets, bbox_weights, num_total_samples): + """Loss function on single scale.""" + # classification loss + if self.with_cls: + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + # regression loss + bbox_targets = bbox_targets.reshape(-1, 4) + bbox_weights = bbox_weights.reshape(-1, 4) + bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + if self.reg_decoded_bbox: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, it + # decodes the already encoded coordinates to absolute format. + anchors = anchors.reshape(-1, 4) + bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) + loss_reg = self.loss_bbox( + bbox_pred, + bbox_targets, + bbox_weights, + avg_factor=num_total_samples) + if self.with_cls: + return loss_cls, loss_reg + return None, loss_reg + + def loss(self, + anchor_list, + valid_flag_list, + cls_scores, + bbox_preds, + gt_bboxes, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + anchor_list (list[list]): Multi level anchors of each image. + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + featmap_sizes, + gt_bboxes_ignore=gt_bboxes_ignore, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + if self.sampling: + num_total_samples = num_total_pos + num_total_neg + else: + # 200 is hard-coded average factor, + # which follows guided anchoring. + num_total_samples = sum([label.numel() + for label in labels_list]) / 200.0 + + # change per image, per level anchor_list to per_level, per_image + mlvl_anchor_list = list(zip(*anchor_list)) + # concat mlvl_anchor_list + mlvl_anchor_list = [ + torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list + ] + + losses = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + mlvl_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + if self.with_cls: + return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1]) + return dict(loss_rpn_reg=losses[1]) + + def get_bboxes(self, + anchor_list, + cls_scores, + bbox_preds, + img_metas, + cfg, + rescale=False): + """Get proposal predict. + + Args: + anchor_list (list[list]): Multi level anchors of each image. + cls_scores (list[Tensor]): Classification scores for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * 4, H, W). + img_metas (list[dict], Optional): Image meta info. Default None. + cfg (mmcv.Config, Optional): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + + Returns: + Tensor: Labeled boxes in shape (n, 5), where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. + """ + assert len(cls_scores) == len(bbox_preds) + + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = select_single_mlvl(cls_scores, img_id) + bbox_pred_list = select_single_mlvl(bbox_preds, img_id) + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, + anchor_list[img_id], img_shape, + scale_factor, cfg, rescale) + result_list.append(proposals) + return result_list + + def _get_bboxes_single(self, + cls_scores, + bbox_preds, + mlvl_anchors, + img_shape, + scale_factor, + cfg, + rescale=False): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_anchors * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has + shape (num_anchors * 4, H, W). + mlvl_anchors (list[Tensor]): Box reference from all scale + levels of a single image, each item has shape + (num_total_anchors, 4). + img_shape (tuple[int]): Shape of the input image, + (height, width, 3). + scale_factor (ndarray): Scale factor of the image arange as + (w_scale, h_scale, w_scale, h_scale). + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default False. + + Returns: + Tensor: Labeled boxes in shape (n, 5), where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. + """ + cfg = self.test_cfg if cfg is None else cfg + cfg = copy.deepcopy(cfg) + # bboxes from different level should be independent during NMS, + # level_ids are used as labels for batched NMS to separate them + level_ids = [] + mlvl_scores = [] + mlvl_bbox_preds = [] + mlvl_valid_anchors = [] + nms_pre = cfg.get('nms_pre', -1) + for idx in range(len(cls_scores)): + rpn_cls_score = cls_scores[idx] + rpn_bbox_pred = bbox_preds[idx] + assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] + rpn_cls_score = rpn_cls_score.permute(1, 2, 0) + if self.use_sigmoid_cls: + rpn_cls_score = rpn_cls_score.reshape(-1) + scores = rpn_cls_score.sigmoid() + else: + rpn_cls_score = rpn_cls_score.reshape(-1, 2) + # We set FG labels to [0, num_class-1] and BG label to + # num_class in RPN head since mmdet v2.5, which is unified to + # be consistent with other head since mmdet v2.0. In mmdet v2.0 + # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. + scores = rpn_cls_score.softmax(dim=1)[:, 0] + rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) + anchors = mlvl_anchors[idx] + + if 0 < nms_pre < scores.shape[0]: + # sort is faster than topk + # _, topk_inds = scores.topk(cfg.nms_pre) + ranked_scores, rank_inds = scores.sort(descending=True) + topk_inds = rank_inds[:nms_pre] + scores = ranked_scores[:nms_pre] + rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] + anchors = anchors[topk_inds, :] + mlvl_scores.append(scores) + mlvl_bbox_preds.append(rpn_bbox_pred) + mlvl_valid_anchors.append(anchors) + level_ids.append( + scores.new_full((scores.size(0), ), idx, dtype=torch.long)) + + scores = torch.cat(mlvl_scores) + anchors = torch.cat(mlvl_valid_anchors) + rpn_bbox_pred = torch.cat(mlvl_bbox_preds) + proposals = self.bbox_coder.decode( + anchors, rpn_bbox_pred, max_shape=img_shape) + ids = torch.cat(level_ids) + + if cfg.min_bbox_size >= 0: + w = proposals[:, 2] - proposals[:, 0] + h = proposals[:, 3] - proposals[:, 1] + valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) + if not valid_mask.all(): + proposals = proposals[valid_mask] + scores = scores[valid_mask] + ids = ids[valid_mask] + + # deprecate arguments warning + if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: + warnings.warn( + 'In rpn_proposal or test_cfg, ' + 'nms_thr has been moved to a dict named nms as ' + 'iou_threshold, max_num has been renamed as max_per_img, ' + 'name of original arguments and the way to specify ' + 'iou_threshold of NMS will be deprecated.') + if 'nms' not in cfg: + cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) + if 'max_num' in cfg: + if 'max_per_img' in cfg: + assert cfg.max_num == cfg.max_per_img, f'You ' \ + f'set max_num and ' \ + f'max_per_img at the same time, but get {cfg.max_num} ' \ + f'and {cfg.max_per_img} respectively' \ + 'Please delete max_num which will be deprecated.' + else: + cfg.max_per_img = cfg.max_num + if 'nms_thr' in cfg: + assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \ + f' iou_threshold in nms and ' \ + f'nms_thr at the same time, but get' \ + f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \ + f' respectively. Please delete the nms_thr ' \ + f'which will be deprecated.' + + if proposals.numel() > 0: + dets, _ = batched_nms(proposals, scores, ids, cfg.nms) + else: + return proposals.new_zeros(0, 5) + + return dets[:cfg.max_per_img] + + def refine_bboxes(self, anchor_list, bbox_preds, img_metas): + """Refine bboxes through stages.""" + num_levels = len(bbox_preds) + new_anchor_list = [] + for img_id in range(len(img_metas)): + mlvl_anchors = [] + for i in range(num_levels): + bbox_pred = bbox_preds[i][img_id].detach() + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + img_shape = img_metas[img_id]['img_shape'] + bboxes = self.bbox_coder.decode(anchor_list[img_id][i], + bbox_pred, img_shape) + mlvl_anchors.append(bboxes) + new_anchor_list.append(mlvl_anchors) + return new_anchor_list + + +@HEADS.register_module() +class CascadeRPNHead(BaseDenseHead): + """The CascadeRPNHead will predict more accurate region proposals, which is + required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN + consists of a sequence of RPNStage to progressively improve the accuracy of + the detected proposals. + + More details can be found in ``https://arxiv.org/abs/1909.06720``. + + Args: + num_stages (int): number of CascadeRPN stages. + stages (list[dict]): list of configs to build the stages. + train_cfg (list[dict]): list of configs at training time each stage. + test_cfg (dict): config at testing time. + """ + + def __init__(self, num_stages, stages, train_cfg, test_cfg, init_cfg=None): + super(CascadeRPNHead, self).__init__(init_cfg) + assert num_stages == len(stages) + self.num_stages = num_stages + # Be careful! Pretrained weights cannot be loaded when use + # nn.ModuleList + self.stages = ModuleList() + for i in range(len(stages)): + train_cfg_i = train_cfg[i] if train_cfg is not None else None + stages[i].update(train_cfg=train_cfg_i) + stages[i].update(test_cfg=test_cfg) + self.stages.append(build_head(stages[i])) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def loss(self): + """loss() is implemented in StageCascadeRPNHead.""" + pass + + def get_bboxes(self): + """get_bboxes() is implemented in StageCascadeRPNHead.""" + pass + + def forward_train(self, + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=None, + proposal_cfg=None): + """Forward train function.""" + assert gt_labels is None, 'RPN does not require gt_labels' + + featmap_sizes = [featmap.size()[-2:] for featmap in x] + device = x[0].device + anchor_list, valid_flag_list = self.stages[0].get_anchors( + featmap_sizes, img_metas, device=device) + + losses = dict() + + for i in range(self.num_stages): + stage = self.stages[i] + + if stage.adapt_cfg['type'] == 'offset': + offset_list = stage.anchor_offset(anchor_list, + stage.anchor_strides, + featmap_sizes) + else: + offset_list = None + x, cls_score, bbox_pred = stage(x, offset_list) + rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, + bbox_pred, gt_bboxes, img_metas) + stage_loss = stage.loss(*rpn_loss_inputs) + for name, value in stage_loss.items(): + losses['s{}.{}'.format(i, name)] = value + + # refine boxes + if i < self.num_stages - 1: + anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, + img_metas) + if proposal_cfg is None: + return losses + else: + proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, + bbox_pred, img_metas, + self.test_cfg) + return losses, proposal_list + + def simple_test_rpn(self, x, img_metas): + """Simple forward test function.""" + featmap_sizes = [featmap.size()[-2:] for featmap in x] + device = x[0].device + anchor_list, _ = self.stages[0].get_anchors( + featmap_sizes, img_metas, device=device) + + for i in range(self.num_stages): + stage = self.stages[i] + if stage.adapt_cfg['type'] == 'offset': + offset_list = stage.anchor_offset(anchor_list, + stage.anchor_strides, + featmap_sizes) + else: + offset_list = None + x, cls_score, bbox_pred = stage(x, offset_list) + if i < self.num_stages - 1: + anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, + img_metas) + + proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, + bbox_pred, img_metas, + self.test_cfg) + return proposal_list + + def aug_test_rpn(self, x, img_metas): + """Augmented forward test function.""" + raise NotImplementedError( + 'CascadeRPNHead does not support test-time augmentation') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centernet_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centernet_head.py new file mode 100644 index 000000000..b9d5d2f01 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centernet_head.py @@ -0,0 +1,412 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import bias_init_with_prob, normal_init +from mmcv.ops import batched_nms +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply +from mmdet.models import HEADS, build_loss +from mmdet.models.utils import gaussian_radius, gen_gaussian_target +from ..utils.gaussian_target import (get_local_maximum, get_topk_from_heatmap, + transpose_and_gather_feat) +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +@HEADS.register_module() +class CenterNetHead(BaseDenseHead, BBoxTestMixin): + """Objects as Points Head. CenterHead use center_point to indicate object's + position. Paper link + + Args: + in_channel (int): Number of channel in the input feature map. + feat_channel (int): Number of channel in the intermediate feature map. + num_classes (int): Number of categories excluding the background + category. + loss_center_heatmap (dict | None): Config of center heatmap loss. + Default: GaussianFocalLoss. + loss_wh (dict | None): Config of wh loss. Default: L1Loss. + loss_offset (dict | None): Config of offset loss. Default: L1Loss. + train_cfg (dict | None): Training config. Useless in CenterNet, + but we keep this variable for SingleStageDetector. Default: None. + test_cfg (dict | None): Testing config of CenterNet. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channel, + feat_channel, + num_classes, + loss_center_heatmap=dict( + type='GaussianFocalLoss', loss_weight=1.0), + loss_wh=dict(type='L1Loss', loss_weight=0.1), + loss_offset=dict(type='L1Loss', loss_weight=1.0), + train_cfg=None, + test_cfg=None, + init_cfg=None): + super(CenterNetHead, self).__init__(init_cfg) + self.num_classes = num_classes + self.heatmap_head = self._build_head(in_channel, feat_channel, + num_classes) + self.wh_head = self._build_head(in_channel, feat_channel, 2) + self.offset_head = self._build_head(in_channel, feat_channel, 2) + + self.loss_center_heatmap = build_loss(loss_center_heatmap) + self.loss_wh = build_loss(loss_wh) + self.loss_offset = build_loss(loss_offset) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.fp16_enabled = False + + def _build_head(self, in_channel, feat_channel, out_channel): + """Build head for each branch.""" + layer = nn.Sequential( + nn.Conv2d(in_channel, feat_channel, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(feat_channel, out_channel, kernel_size=1)) + return layer + + def init_weights(self): + """Initialize weights of the head.""" + bias_init = bias_init_with_prob(0.1) + self.heatmap_head[-1].bias.data.fill_(bias_init) + for head in [self.wh_head, self.offset_head]: + for m in head.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, std=0.001) + + def forward(self, feats): + """Forward features. Notice CenterNet head does not use FPN. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + center_heatmap_preds (List[Tensor]): center predict heatmaps for + all levels, the channels number is num_classes. + wh_preds (List[Tensor]): wh predicts for all levels, the channels + number is 2. + offset_preds (List[Tensor]): offset predicts for all levels, the + channels number is 2. + """ + return multi_apply(self.forward_single, feats) + + def forward_single(self, feat): + """Forward feature of a single level. + + Args: + feat (Tensor): Feature of a single level. + + Returns: + center_heatmap_pred (Tensor): center predict heatmaps, the + channels number is num_classes. + wh_pred (Tensor): wh predicts, the channels number is 2. + offset_pred (Tensor): offset predicts, the channels number is 2. + """ + center_heatmap_pred = self.heatmap_head(feat).sigmoid() + wh_pred = self.wh_head(feat) + offset_pred = self.offset_head(feat) + return center_heatmap_pred, wh_pred, offset_pred + + @force_fp32(apply_to=('center_heatmap_preds', 'wh_preds', 'offset_preds')) + def loss(self, + center_heatmap_preds, + wh_preds, + offset_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + center_heatmap_preds (list[Tensor]): center predict heatmaps for + all levels with shape (B, num_classes, H, W). + wh_preds (list[Tensor]): wh predicts for all levels with + shape (B, 2, H, W). + offset_preds (list[Tensor]): offset predicts for all levels + with shape (B, 2, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + dict[str, Tensor]: which has components below: + - loss_center_heatmap (Tensor): loss of center heatmap. + - loss_wh (Tensor): loss of hw heatmap + - loss_offset (Tensor): loss of offset heatmap. + """ + assert len(center_heatmap_preds) == len(wh_preds) == len( + offset_preds) == 1 + center_heatmap_pred = center_heatmap_preds[0] + wh_pred = wh_preds[0] + offset_pred = offset_preds[0] + + target_result, avg_factor = self.get_targets(gt_bboxes, gt_labels, + center_heatmap_pred.shape, + img_metas[0]['pad_shape']) + + center_heatmap_target = target_result['center_heatmap_target'] + wh_target = target_result['wh_target'] + offset_target = target_result['offset_target'] + wh_offset_target_weight = target_result['wh_offset_target_weight'] + + # Since the channel of wh_target and offset_target is 2, the avg_factor + # of loss_center_heatmap is always 1/2 of loss_wh and loss_offset. + loss_center_heatmap = self.loss_center_heatmap( + center_heatmap_pred, center_heatmap_target, avg_factor=avg_factor) + loss_wh = self.loss_wh( + wh_pred, + wh_target, + wh_offset_target_weight, + avg_factor=avg_factor * 2) + loss_offset = self.loss_offset( + offset_pred, + offset_target, + wh_offset_target_weight, + avg_factor=avg_factor * 2) + return dict( + loss_center_heatmap=loss_center_heatmap, + loss_wh=loss_wh, + loss_offset=loss_offset) + + def get_targets(self, gt_bboxes, gt_labels, feat_shape, img_shape): + """Compute regression and classification targets in multiple images. + + Args: + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box. + feat_shape (list[int]): feature map shape with value [B, _, H, W] + img_shape (list[int]): image shape in [h, w] format. + + Returns: + tuple[dict,float]: The float value is mean avg_factor, the dict has + components below: + - center_heatmap_target (Tensor): targets of center heatmap, \ + shape (B, num_classes, H, W). + - wh_target (Tensor): targets of wh predict, shape \ + (B, 2, H, W). + - offset_target (Tensor): targets of offset predict, shape \ + (B, 2, H, W). + - wh_offset_target_weight (Tensor): weights of wh and offset \ + predict, shape (B, 2, H, W). + """ + img_h, img_w = img_shape[:2] + bs, _, feat_h, feat_w = feat_shape + + width_ratio = float(feat_w / img_w) + height_ratio = float(feat_h / img_h) + + center_heatmap_target = gt_bboxes[-1].new_zeros( + [bs, self.num_classes, feat_h, feat_w]) + wh_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w]) + offset_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w]) + wh_offset_target_weight = gt_bboxes[-1].new_zeros( + [bs, 2, feat_h, feat_w]) + + for batch_id in range(bs): + gt_bbox = gt_bboxes[batch_id] + gt_label = gt_labels[batch_id] + center_x = (gt_bbox[:, [0]] + gt_bbox[:, [2]]) * width_ratio / 2 + center_y = (gt_bbox[:, [1]] + gt_bbox[:, [3]]) * height_ratio / 2 + gt_centers = torch.cat((center_x, center_y), dim=1) + + for j, ct in enumerate(gt_centers): + ctx_int, cty_int = ct.int() + ctx, cty = ct + scale_box_h = (gt_bbox[j][3] - gt_bbox[j][1]) * height_ratio + scale_box_w = (gt_bbox[j][2] - gt_bbox[j][0]) * width_ratio + radius = gaussian_radius([scale_box_h, scale_box_w], + min_overlap=0.3) + radius = max(0, int(radius)) + ind = gt_label[j] + gen_gaussian_target(center_heatmap_target[batch_id, ind], + [ctx_int, cty_int], radius) + + wh_target[batch_id, 0, cty_int, ctx_int] = scale_box_w + wh_target[batch_id, 1, cty_int, ctx_int] = scale_box_h + + offset_target[batch_id, 0, cty_int, ctx_int] = ctx - ctx_int + offset_target[batch_id, 1, cty_int, ctx_int] = cty - cty_int + + wh_offset_target_weight[batch_id, :, cty_int, ctx_int] = 1 + + avg_factor = max(1, center_heatmap_target.eq(1).sum()) + target_result = dict( + center_heatmap_target=center_heatmap_target, + wh_target=wh_target, + offset_target=offset_target, + wh_offset_target_weight=wh_offset_target_weight) + return target_result, avg_factor + + @force_fp32(apply_to=('center_heatmap_preds', 'wh_preds', 'offset_preds')) + def get_bboxes(self, + center_heatmap_preds, + wh_preds, + offset_preds, + img_metas, + rescale=True, + with_nms=False): + """Transform network output for a batch into bbox predictions. + + Args: + center_heatmap_preds (list[Tensor]): Center predict heatmaps for + all levels with shape (B, num_classes, H, W). + wh_preds (list[Tensor]): WH predicts for all levels with + shape (B, 2, H, W). + offset_preds (list[Tensor]): Offset predicts for all levels + with shape (B, 2, H, W). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: True. + with_nms (bool): If True, do nms before return boxes. + Default: False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 5) tensor, where 5 represent + (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. + The shape of the second tensor in the tuple is (n,), and + each element represents the class label of the corresponding + box. + """ + assert len(center_heatmap_preds) == len(wh_preds) == len( + offset_preds) == 1 + result_list = [] + for img_id in range(len(img_metas)): + result_list.append( + self._get_bboxes_single( + center_heatmap_preds[0][img_id:img_id + 1, ...], + wh_preds[0][img_id:img_id + 1, ...], + offset_preds[0][img_id:img_id + 1, ...], + img_metas[img_id], + rescale=rescale, + with_nms=with_nms)) + return result_list + + def _get_bboxes_single(self, + center_heatmap_pred, + wh_pred, + offset_pred, + img_meta, + rescale=False, + with_nms=True): + """Transform outputs of a single image into bbox results. + + Args: + center_heatmap_pred (Tensor): Center heatmap for current level with + shape (1, num_classes, H, W). + wh_pred (Tensor): WH heatmap for current level with shape + (1, num_classes, H, W). + offset_pred (Tensor): Offset for current level with shape + (1, corner_offset_channels, H, W). + img_meta (dict): Meta information of current image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor, Tensor]: The first item is an (n, 5) tensor, where + 5 represent (tl_x, tl_y, br_x, br_y, score) and the score + between 0 and 1. The shape of the second tensor in the tuple + is (n,), and each element represents the class label of the + corresponding box. + """ + batch_det_bboxes, batch_labels = self.decode_heatmap( + center_heatmap_pred, + wh_pred, + offset_pred, + img_meta['batch_input_shape'], + k=self.test_cfg.topk, + kernel=self.test_cfg.local_maximum_kernel) + + det_bboxes = batch_det_bboxes.view([-1, 5]) + det_labels = batch_labels.view(-1) + + batch_border = det_bboxes.new_tensor(img_meta['border'])[..., + [2, 0, 2, 0]] + det_bboxes[..., :4] -= batch_border + + if rescale: + det_bboxes[..., :4] /= det_bboxes.new_tensor( + img_meta['scale_factor']) + + if with_nms: + det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels, + self.test_cfg) + return det_bboxes, det_labels + + def decode_heatmap(self, + center_heatmap_pred, + wh_pred, + offset_pred, + img_shape, + k=100, + kernel=3): + """Transform outputs into detections raw bbox prediction. + + Args: + center_heatmap_pred (Tensor): center predict heatmap, + shape (B, num_classes, H, W). + wh_pred (Tensor): wh predict, shape (B, 2, H, W). + offset_pred (Tensor): offset predict, shape (B, 2, H, W). + img_shape (list[int]): image shape in [h, w] format. + k (int): Get top k center keypoints from heatmap. Default 100. + kernel (int): Max pooling kernel for extract local maximum pixels. + Default 3. + + Returns: + tuple[torch.Tensor]: Decoded output of CenterNetHead, containing + the following Tensors: + + - batch_bboxes (Tensor): Coords of each box with shape (B, k, 5) + - batch_topk_labels (Tensor): Categories of each box with \ + shape (B, k) + """ + height, width = center_heatmap_pred.shape[2:] + inp_h, inp_w = img_shape + + center_heatmap_pred = get_local_maximum( + center_heatmap_pred, kernel=kernel) + + *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap( + center_heatmap_pred, k=k) + batch_scores, batch_index, batch_topk_labels = batch_dets + + wh = transpose_and_gather_feat(wh_pred, batch_index) + offset = transpose_and_gather_feat(offset_pred, batch_index) + topk_xs = topk_xs + offset[..., 0] + topk_ys = topk_ys + offset[..., 1] + tl_x = (topk_xs - wh[..., 0] / 2) * (inp_w / width) + tl_y = (topk_ys - wh[..., 1] / 2) * (inp_h / height) + br_x = (topk_xs + wh[..., 0] / 2) * (inp_w / width) + br_y = (topk_ys + wh[..., 1] / 2) * (inp_h / height) + + batch_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=2) + batch_bboxes = torch.cat((batch_bboxes, batch_scores[..., None]), + dim=-1) + return batch_bboxes, batch_topk_labels + + def _bboxes_nms(self, bboxes, labels, cfg): + if labels.numel() > 0: + max_num = cfg.max_per_img + bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, + -1].contiguous(), + labels, cfg.nms) + if max_num > 0: + bboxes = bboxes[:max_num] + labels = labels[keep][:max_num] + + return bboxes, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centripetal_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centripetal_head.py new file mode 100644 index 000000000..ebc721b76 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/centripetal_head.py @@ -0,0 +1,430 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, normal_init +from mmcv.ops import DeformConv2d +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply +from ..builder import HEADS, build_loss +from .corner_head import CornerHead + + +@HEADS.register_module() +class CentripetalHead(CornerHead): + """Head of CentripetalNet: Pursuing High-quality Keypoint Pairs for Object + Detection. + + CentripetalHead inherits from :class:`CornerHead`. It removes the + embedding branch and adds guiding shift and centripetal shift branches. + More details can be found in the `paper + `_ . + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + num_feat_levels (int): Levels of feature from the previous module. 2 + for HourglassNet-104 and 1 for HourglassNet-52. HourglassNet-104 + outputs the final feature and intermediate supervision feature and + HourglassNet-52 only outputs the final feature. Default: 2. + corner_emb_channels (int): Channel of embedding vector. Default: 1. + train_cfg (dict | None): Training config. Useless in CornerHead, + but we keep this variable for SingleStageDetector. Default: None. + test_cfg (dict | None): Testing config of CornerHead. Default: None. + loss_heatmap (dict | None): Config of corner heatmap loss. Default: + GaussianFocalLoss. + loss_embedding (dict | None): Config of corner embedding loss. Default: + AssociativeEmbeddingLoss. + loss_offset (dict | None): Config of corner offset loss. Default: + SmoothL1Loss. + loss_guiding_shift (dict): Config of guiding shift loss. Default: + SmoothL1Loss. + loss_centripetal_shift (dict): Config of centripetal shift loss. + Default: SmoothL1Loss. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + *args, + centripetal_shift_channels=2, + guiding_shift_channels=2, + feat_adaption_conv_kernel=3, + loss_guiding_shift=dict( + type='SmoothL1Loss', beta=1.0, loss_weight=0.05), + loss_centripetal_shift=dict( + type='SmoothL1Loss', beta=1.0, loss_weight=1), + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + assert centripetal_shift_channels == 2, ( + 'CentripetalHead only support centripetal_shift_channels == 2') + self.centripetal_shift_channels = centripetal_shift_channels + assert guiding_shift_channels == 2, ( + 'CentripetalHead only support guiding_shift_channels == 2') + self.guiding_shift_channels = guiding_shift_channels + self.feat_adaption_conv_kernel = feat_adaption_conv_kernel + super(CentripetalHead, self).__init__( + *args, init_cfg=init_cfg, **kwargs) + self.loss_guiding_shift = build_loss(loss_guiding_shift) + self.loss_centripetal_shift = build_loss(loss_centripetal_shift) + + def _init_centripetal_layers(self): + """Initialize centripetal layers. + + Including feature adaption deform convs (feat_adaption), deform offset + prediction convs (dcn_off), guiding shift (guiding_shift) and + centripetal shift ( centripetal_shift). Each branch has two parts: + prefix `tl_` for top-left and `br_` for bottom-right. + """ + self.tl_feat_adaption = nn.ModuleList() + self.br_feat_adaption = nn.ModuleList() + self.tl_dcn_offset = nn.ModuleList() + self.br_dcn_offset = nn.ModuleList() + self.tl_guiding_shift = nn.ModuleList() + self.br_guiding_shift = nn.ModuleList() + self.tl_centripetal_shift = nn.ModuleList() + self.br_centripetal_shift = nn.ModuleList() + + for _ in range(self.num_feat_levels): + self.tl_feat_adaption.append( + DeformConv2d(self.in_channels, self.in_channels, + self.feat_adaption_conv_kernel, 1, 1)) + self.br_feat_adaption.append( + DeformConv2d(self.in_channels, self.in_channels, + self.feat_adaption_conv_kernel, 1, 1)) + + self.tl_guiding_shift.append( + self._make_layers( + out_channels=self.guiding_shift_channels, + in_channels=self.in_channels)) + self.br_guiding_shift.append( + self._make_layers( + out_channels=self.guiding_shift_channels, + in_channels=self.in_channels)) + + self.tl_dcn_offset.append( + ConvModule( + self.guiding_shift_channels, + self.feat_adaption_conv_kernel**2 * + self.guiding_shift_channels, + 1, + bias=False, + act_cfg=None)) + self.br_dcn_offset.append( + ConvModule( + self.guiding_shift_channels, + self.feat_adaption_conv_kernel**2 * + self.guiding_shift_channels, + 1, + bias=False, + act_cfg=None)) + + self.tl_centripetal_shift.append( + self._make_layers( + out_channels=self.centripetal_shift_channels, + in_channels=self.in_channels)) + self.br_centripetal_shift.append( + self._make_layers( + out_channels=self.centripetal_shift_channels, + in_channels=self.in_channels)) + + def _init_layers(self): + """Initialize layers for CentripetalHead. + + Including two parts: CornerHead layers and CentripetalHead layers + """ + super()._init_layers() # using _init_layers in CornerHead + self._init_centripetal_layers() + + def init_weights(self): + super(CentripetalHead, self).init_weights() + for i in range(self.num_feat_levels): + normal_init(self.tl_feat_adaption[i], std=0.01) + normal_init(self.br_feat_adaption[i], std=0.01) + normal_init(self.tl_dcn_offset[i].conv, std=0.1) + normal_init(self.br_dcn_offset[i].conv, std=0.1) + _ = [x.conv.reset_parameters() for x in self.tl_guiding_shift[i]] + _ = [x.conv.reset_parameters() for x in self.br_guiding_shift[i]] + _ = [ + x.conv.reset_parameters() for x in self.tl_centripetal_shift[i] + ] + _ = [ + x.conv.reset_parameters() for x in self.br_centripetal_shift[i] + ] + + def forward_single(self, x, lvl_ind): + """Forward feature of a single level. + + Args: + x (Tensor): Feature of a single level. + lvl_ind (int): Level index of current feature. + + Returns: + tuple[Tensor]: A tuple of CentripetalHead's output for current + feature level. Containing the following Tensors: + + - tl_heat (Tensor): Predicted top-left corner heatmap. + - br_heat (Tensor): Predicted bottom-right corner heatmap. + - tl_off (Tensor): Predicted top-left offset heatmap. + - br_off (Tensor): Predicted bottom-right offset heatmap. + - tl_guiding_shift (Tensor): Predicted top-left guiding shift + heatmap. + - br_guiding_shift (Tensor): Predicted bottom-right guiding + shift heatmap. + - tl_centripetal_shift (Tensor): Predicted top-left centripetal + shift heatmap. + - br_centripetal_shift (Tensor): Predicted bottom-right + centripetal shift heatmap. + """ + tl_heat, br_heat, _, _, tl_off, br_off, tl_pool, br_pool = super( + ).forward_single( + x, lvl_ind, return_pool=True) + + tl_guiding_shift = self.tl_guiding_shift[lvl_ind](tl_pool) + br_guiding_shift = self.br_guiding_shift[lvl_ind](br_pool) + + tl_dcn_offset = self.tl_dcn_offset[lvl_ind](tl_guiding_shift.detach()) + br_dcn_offset = self.br_dcn_offset[lvl_ind](br_guiding_shift.detach()) + + tl_feat_adaption = self.tl_feat_adaption[lvl_ind](tl_pool, + tl_dcn_offset) + br_feat_adaption = self.br_feat_adaption[lvl_ind](br_pool, + br_dcn_offset) + + tl_centripetal_shift = self.tl_centripetal_shift[lvl_ind]( + tl_feat_adaption) + br_centripetal_shift = self.br_centripetal_shift[lvl_ind]( + br_feat_adaption) + + result_list = [ + tl_heat, br_heat, tl_off, br_off, tl_guiding_shift, + br_guiding_shift, tl_centripetal_shift, br_centripetal_shift + ] + return result_list + + @force_fp32() + def loss(self, + tl_heats, + br_heats, + tl_offs, + br_offs, + tl_guiding_shifts, + br_guiding_shifts, + tl_centripetal_shifts, + br_centripetal_shifts, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + tl_heats (list[Tensor]): Top-left corner heatmaps for each level + with shape (N, num_classes, H, W). + br_heats (list[Tensor]): Bottom-right corner heatmaps for each + level with shape (N, num_classes, H, W). + tl_offs (list[Tensor]): Top-left corner offsets for each level + with shape (N, corner_offset_channels, H, W). + br_offs (list[Tensor]): Bottom-right corner offsets for each level + with shape (N, corner_offset_channels, H, W). + tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each + level with shape (N, guiding_shift_channels, H, W). + br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for + each level with shape (N, guiding_shift_channels, H, W). + tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts + for each level with shape (N, centripetal_shift_channels, H, + W). + br_centripetal_shifts (list[Tensor]): Bottom-right centripetal + shifts for each level with shape (N, + centripetal_shift_channels, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [left, top, right, bottom] format. + gt_labels (list[Tensor]): Class indices corresponding to each box. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. Containing the + following losses: + + - det_loss (list[Tensor]): Corner keypoint losses of all + feature levels. + - off_loss (list[Tensor]): Corner offset losses of all feature + levels. + - guiding_loss (list[Tensor]): Guiding shift losses of all + feature levels. + - centripetal_loss (list[Tensor]): Centripetal shift losses of + all feature levels. + """ + targets = self.get_targets( + gt_bboxes, + gt_labels, + tl_heats[-1].shape, + img_metas[0]['pad_shape'], + with_corner_emb=self.with_corner_emb, + with_guiding_shift=True, + with_centripetal_shift=True) + mlvl_targets = [targets for _ in range(self.num_feat_levels)] + [det_losses, off_losses, guiding_losses, centripetal_losses + ] = multi_apply(self.loss_single, tl_heats, br_heats, tl_offs, + br_offs, tl_guiding_shifts, br_guiding_shifts, + tl_centripetal_shifts, br_centripetal_shifts, + mlvl_targets) + loss_dict = dict( + det_loss=det_losses, + off_loss=off_losses, + guiding_loss=guiding_losses, + centripetal_loss=centripetal_losses) + return loss_dict + + def loss_single(self, tl_hmp, br_hmp, tl_off, br_off, tl_guiding_shift, + br_guiding_shift, tl_centripetal_shift, + br_centripetal_shift, targets): + """Compute losses for single level. + + Args: + tl_hmp (Tensor): Top-left corner heatmap for current level with + shape (N, num_classes, H, W). + br_hmp (Tensor): Bottom-right corner heatmap for current level with + shape (N, num_classes, H, W). + tl_off (Tensor): Top-left corner offset for current level with + shape (N, corner_offset_channels, H, W). + br_off (Tensor): Bottom-right corner offset for current level with + shape (N, corner_offset_channels, H, W). + tl_guiding_shift (Tensor): Top-left guiding shift for current level + with shape (N, guiding_shift_channels, H, W). + br_guiding_shift (Tensor): Bottom-right guiding shift for current + level with shape (N, guiding_shift_channels, H, W). + tl_centripetal_shift (Tensor): Top-left centripetal shift for + current level with shape (N, centripetal_shift_channels, H, W). + br_centripetal_shift (Tensor): Bottom-right centripetal shift for + current level with shape (N, centripetal_shift_channels, H, W). + targets (dict): Corner target generated by `get_targets`. + + Returns: + tuple[torch.Tensor]: Losses of the head's different branches + containing the following losses: + + - det_loss (Tensor): Corner keypoint loss. + - off_loss (Tensor): Corner offset loss. + - guiding_loss (Tensor): Guiding shift loss. + - centripetal_loss (Tensor): Centripetal shift loss. + """ + targets['corner_embedding'] = None + + det_loss, _, _, off_loss = super().loss_single(tl_hmp, br_hmp, None, + None, tl_off, br_off, + targets) + + gt_tl_guiding_shift = targets['topleft_guiding_shift'] + gt_br_guiding_shift = targets['bottomright_guiding_shift'] + gt_tl_centripetal_shift = targets['topleft_centripetal_shift'] + gt_br_centripetal_shift = targets['bottomright_centripetal_shift'] + + gt_tl_heatmap = targets['topleft_heatmap'] + gt_br_heatmap = targets['bottomright_heatmap'] + # We only compute the offset loss at the real corner position. + # The value of real corner would be 1 in heatmap ground truth. + # The mask is computed in class agnostic mode and its shape is + # batch * 1 * width * height. + tl_mask = gt_tl_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as( + gt_tl_heatmap) + br_mask = gt_br_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as( + gt_br_heatmap) + + # Guiding shift loss + tl_guiding_loss = self.loss_guiding_shift( + tl_guiding_shift, + gt_tl_guiding_shift, + tl_mask, + avg_factor=tl_mask.sum()) + br_guiding_loss = self.loss_guiding_shift( + br_guiding_shift, + gt_br_guiding_shift, + br_mask, + avg_factor=br_mask.sum()) + guiding_loss = (tl_guiding_loss + br_guiding_loss) / 2.0 + # Centripetal shift loss + tl_centripetal_loss = self.loss_centripetal_shift( + tl_centripetal_shift, + gt_tl_centripetal_shift, + tl_mask, + avg_factor=tl_mask.sum()) + br_centripetal_loss = self.loss_centripetal_shift( + br_centripetal_shift, + gt_br_centripetal_shift, + br_mask, + avg_factor=br_mask.sum()) + centripetal_loss = (tl_centripetal_loss + br_centripetal_loss) / 2.0 + + return det_loss, off_loss, guiding_loss, centripetal_loss + + @force_fp32() + def get_bboxes(self, + tl_heats, + br_heats, + tl_offs, + br_offs, + tl_guiding_shifts, + br_guiding_shifts, + tl_centripetal_shifts, + br_centripetal_shifts, + img_metas, + rescale=False, + with_nms=True): + """Transform network output for a batch into bbox predictions. + + Args: + tl_heats (list[Tensor]): Top-left corner heatmaps for each level + with shape (N, num_classes, H, W). + br_heats (list[Tensor]): Bottom-right corner heatmaps for each + level with shape (N, num_classes, H, W). + tl_offs (list[Tensor]): Top-left corner offsets for each level + with shape (N, corner_offset_channels, H, W). + br_offs (list[Tensor]): Bottom-right corner offsets for each level + with shape (N, corner_offset_channels, H, W). + tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each + level with shape (N, guiding_shift_channels, H, W). Useless in + this function, we keep this arg because it's the raw output + from CentripetalHead. + br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for + each level with shape (N, guiding_shift_channels, H, W). + Useless in this function, we keep this arg because it's the + raw output from CentripetalHead. + tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts + for each level with shape (N, centripetal_shift_channels, H, + W). + br_centripetal_shifts (list[Tensor]): Bottom-right centripetal + shifts for each level with shape (N, + centripetal_shift_channels, H, W). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + """ + assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(img_metas) + result_list = [] + for img_id in range(len(img_metas)): + result_list.append( + self._get_bboxes_single( + tl_heats[-1][img_id:img_id + 1, :], + br_heats[-1][img_id:img_id + 1, :], + tl_offs[-1][img_id:img_id + 1, :], + br_offs[-1][img_id:img_id + 1, :], + img_metas[img_id], + tl_emb=None, + br_emb=None, + tl_centripetal_shift=tl_centripetal_shifts[-1][ + img_id:img_id + 1, :], + br_centripetal_shift=br_centripetal_shifts[-1][ + img_id:img_id + 1, :], + rescale=rescale, + with_nms=with_nms)) + + return result_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/corner_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/corner_head.py new file mode 100644 index 000000000..c6a2866f9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/corner_head.py @@ -0,0 +1,1086 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from logging import warning +from math import ceil, log + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, bias_init_with_prob +from mmcv.ops import CornerPool, batched_nms +from mmcv.runner import BaseModule, force_fp32 + +from mmdet.core import multi_apply +from ..builder import HEADS, build_loss +from ..utils import gaussian_radius, gen_gaussian_target +from ..utils.gaussian_target import (gather_feat, get_local_maximum, + get_topk_from_heatmap, + transpose_and_gather_feat) +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +class BiCornerPool(BaseModule): + """Bidirectional Corner Pooling Module (TopLeft, BottomRight, etc.) + + Args: + in_channels (int): Input channels of module. + out_channels (int): Output channels of module. + feat_channels (int): Feature channels of module. + directions (list[str]): Directions of two CornerPools. + norm_cfg (dict): Dictionary to construct and config norm layer. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + directions, + feat_channels=128, + out_channels=128, + norm_cfg=dict(type='BN', requires_grad=True), + init_cfg=None): + super(BiCornerPool, self).__init__(init_cfg) + self.direction1_conv = ConvModule( + in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg) + self.direction2_conv = ConvModule( + in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg) + + self.aftpool_conv = ConvModule( + feat_channels, + out_channels, + 3, + padding=1, + norm_cfg=norm_cfg, + act_cfg=None) + + self.conv1 = ConvModule( + in_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=None) + self.conv2 = ConvModule( + in_channels, out_channels, 3, padding=1, norm_cfg=norm_cfg) + + self.direction1_pool = CornerPool(directions[0]) + self.direction2_pool = CornerPool(directions[1]) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + """Forward features from the upstream network. + + Args: + x (tensor): Input feature of BiCornerPool. + + Returns: + conv2 (tensor): Output feature of BiCornerPool. + """ + direction1_conv = self.direction1_conv(x) + direction2_conv = self.direction2_conv(x) + direction1_feat = self.direction1_pool(direction1_conv) + direction2_feat = self.direction2_pool(direction2_conv) + aftpool_conv = self.aftpool_conv(direction1_feat + direction2_feat) + conv1 = self.conv1(x) + relu = self.relu(aftpool_conv + conv1) + conv2 = self.conv2(relu) + return conv2 + + +@HEADS.register_module() +class CornerHead(BaseDenseHead, BBoxTestMixin): + """Head of CornerNet: Detecting Objects as Paired Keypoints. + + Code is modified from the `official github repo + `_ . + + More details can be found in the `paper + `_ . + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + num_feat_levels (int): Levels of feature from the previous module. 2 + for HourglassNet-104 and 1 for HourglassNet-52. Because + HourglassNet-104 outputs the final feature and intermediate + supervision feature and HourglassNet-52 only outputs the final + feature. Default: 2. + corner_emb_channels (int): Channel of embedding vector. Default: 1. + train_cfg (dict | None): Training config. Useless in CornerHead, + but we keep this variable for SingleStageDetector. Default: None. + test_cfg (dict | None): Testing config of CornerHead. Default: None. + loss_heatmap (dict | None): Config of corner heatmap loss. Default: + GaussianFocalLoss. + loss_embedding (dict | None): Config of corner embedding loss. Default: + AssociativeEmbeddingLoss. + loss_offset (dict | None): Config of corner offset loss. Default: + SmoothL1Loss. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + num_classes, + in_channels, + num_feat_levels=2, + corner_emb_channels=1, + train_cfg=None, + test_cfg=None, + loss_heatmap=dict( + type='GaussianFocalLoss', + alpha=2.0, + gamma=4.0, + loss_weight=1), + loss_embedding=dict( + type='AssociativeEmbeddingLoss', + pull_weight=0.25, + push_weight=0.25), + loss_offset=dict( + type='SmoothL1Loss', beta=1.0, loss_weight=1), + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(CornerHead, self).__init__(init_cfg) + self.num_classes = num_classes + self.in_channels = in_channels + self.corner_emb_channels = corner_emb_channels + self.with_corner_emb = self.corner_emb_channels > 0 + self.corner_offset_channels = 2 + self.num_feat_levels = num_feat_levels + self.loss_heatmap = build_loss( + loss_heatmap) if loss_heatmap is not None else None + self.loss_embedding = build_loss( + loss_embedding) if loss_embedding is not None else None + self.loss_offset = build_loss( + loss_offset) if loss_offset is not None else None + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + self.fp16_enabled = False + self._init_layers() + + def _make_layers(self, out_channels, in_channels=256, feat_channels=256): + """Initialize conv sequential for CornerHead.""" + return nn.Sequential( + ConvModule(in_channels, feat_channels, 3, padding=1), + ConvModule( + feat_channels, out_channels, 1, norm_cfg=None, act_cfg=None)) + + def _init_corner_kpt_layers(self): + """Initialize corner keypoint layers. + + Including corner heatmap branch and corner offset branch. Each branch + has two parts: prefix `tl_` for top-left and `br_` for bottom-right. + """ + self.tl_pool, self.br_pool = nn.ModuleList(), nn.ModuleList() + self.tl_heat, self.br_heat = nn.ModuleList(), nn.ModuleList() + self.tl_off, self.br_off = nn.ModuleList(), nn.ModuleList() + + for _ in range(self.num_feat_levels): + self.tl_pool.append( + BiCornerPool( + self.in_channels, ['top', 'left'], + out_channels=self.in_channels)) + self.br_pool.append( + BiCornerPool( + self.in_channels, ['bottom', 'right'], + out_channels=self.in_channels)) + + self.tl_heat.append( + self._make_layers( + out_channels=self.num_classes, + in_channels=self.in_channels)) + self.br_heat.append( + self._make_layers( + out_channels=self.num_classes, + in_channels=self.in_channels)) + + self.tl_off.append( + self._make_layers( + out_channels=self.corner_offset_channels, + in_channels=self.in_channels)) + self.br_off.append( + self._make_layers( + out_channels=self.corner_offset_channels, + in_channels=self.in_channels)) + + def _init_corner_emb_layers(self): + """Initialize corner embedding layers. + + Only include corner embedding branch with two parts: prefix `tl_` for + top-left and `br_` for bottom-right. + """ + self.tl_emb, self.br_emb = nn.ModuleList(), nn.ModuleList() + + for _ in range(self.num_feat_levels): + self.tl_emb.append( + self._make_layers( + out_channels=self.corner_emb_channels, + in_channels=self.in_channels)) + self.br_emb.append( + self._make_layers( + out_channels=self.corner_emb_channels, + in_channels=self.in_channels)) + + def _init_layers(self): + """Initialize layers for CornerHead. + + Including two parts: corner keypoint layers and corner embedding layers + """ + self._init_corner_kpt_layers() + if self.with_corner_emb: + self._init_corner_emb_layers() + + def init_weights(self): + super(CornerHead, self).init_weights() + bias_init = bias_init_with_prob(0.1) + for i in range(self.num_feat_levels): + # The initialization of parameters are different between + # nn.Conv2d and ConvModule. Our experiments show that + # using the original initialization of nn.Conv2d increases + # the final mAP by about 0.2% + self.tl_heat[i][-1].conv.reset_parameters() + self.tl_heat[i][-1].conv.bias.data.fill_(bias_init) + self.br_heat[i][-1].conv.reset_parameters() + self.br_heat[i][-1].conv.bias.data.fill_(bias_init) + self.tl_off[i][-1].conv.reset_parameters() + self.br_off[i][-1].conv.reset_parameters() + if self.with_corner_emb: + self.tl_emb[i][-1].conv.reset_parameters() + self.br_emb[i][-1].conv.reset_parameters() + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually a tuple of corner heatmaps, offset heatmaps and + embedding heatmaps. + - tl_heats (list[Tensor]): Top-left corner heatmaps for all + levels, each is a 4D-tensor, the channels number is + num_classes. + - br_heats (list[Tensor]): Bottom-right corner heatmaps for all + levels, each is a 4D-tensor, the channels number is + num_classes. + - tl_embs (list[Tensor] | list[None]): Top-left embedding + heatmaps for all levels, each is a 4D-tensor or None. + If not None, the channels number is corner_emb_channels. + - br_embs (list[Tensor] | list[None]): Bottom-right embedding + heatmaps for all levels, each is a 4D-tensor or None. + If not None, the channels number is corner_emb_channels. + - tl_offs (list[Tensor]): Top-left offset heatmaps for all + levels, each is a 4D-tensor. The channels number is + corner_offset_channels. + - br_offs (list[Tensor]): Bottom-right offset heatmaps for all + levels, each is a 4D-tensor. The channels number is + corner_offset_channels. + """ + lvl_ind = list(range(self.num_feat_levels)) + return multi_apply(self.forward_single, feats, lvl_ind) + + def forward_single(self, x, lvl_ind, return_pool=False): + """Forward feature of a single level. + + Args: + x (Tensor): Feature of a single level. + lvl_ind (int): Level index of current feature. + return_pool (bool): Return corner pool feature or not. + + Returns: + tuple[Tensor]: A tuple of CornerHead's output for current feature + level. Containing the following Tensors: + + - tl_heat (Tensor): Predicted top-left corner heatmap. + - br_heat (Tensor): Predicted bottom-right corner heatmap. + - tl_emb (Tensor | None): Predicted top-left embedding heatmap. + None for `self.with_corner_emb == False`. + - br_emb (Tensor | None): Predicted bottom-right embedding + heatmap. None for `self.with_corner_emb == False`. + - tl_off (Tensor): Predicted top-left offset heatmap. + - br_off (Tensor): Predicted bottom-right offset heatmap. + - tl_pool (Tensor): Top-left corner pool feature. Not must + have. + - br_pool (Tensor): Bottom-right corner pool feature. Not must + have. + """ + tl_pool = self.tl_pool[lvl_ind](x) + tl_heat = self.tl_heat[lvl_ind](tl_pool) + br_pool = self.br_pool[lvl_ind](x) + br_heat = self.br_heat[lvl_ind](br_pool) + + tl_emb, br_emb = None, None + if self.with_corner_emb: + tl_emb = self.tl_emb[lvl_ind](tl_pool) + br_emb = self.br_emb[lvl_ind](br_pool) + + tl_off = self.tl_off[lvl_ind](tl_pool) + br_off = self.br_off[lvl_ind](br_pool) + + result_list = [tl_heat, br_heat, tl_emb, br_emb, tl_off, br_off] + if return_pool: + result_list.append(tl_pool) + result_list.append(br_pool) + + return result_list + + def get_targets(self, + gt_bboxes, + gt_labels, + feat_shape, + img_shape, + with_corner_emb=False, + with_guiding_shift=False, + with_centripetal_shift=False): + """Generate corner targets. + + Including corner heatmap, corner offset. + + Optional: corner embedding, corner guiding shift, centripetal shift. + + For CornerNet, we generate corner heatmap, corner offset and corner + embedding from this function. + + For CentripetalNet, we generate corner heatmap, corner offset, guiding + shift and centripetal shift from this function. + + Args: + gt_bboxes (list[Tensor]): Ground truth bboxes of each image, each + has shape (num_gt, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, each has + shape (num_gt,). + feat_shape (list[int]): Shape of output feature, + [batch, channel, height, width]. + img_shape (list[int]): Shape of input image, + [height, width, channel]. + with_corner_emb (bool): Generate corner embedding target or not. + Default: False. + with_guiding_shift (bool): Generate guiding shift target or not. + Default: False. + with_centripetal_shift (bool): Generate centripetal shift target or + not. Default: False. + + Returns: + dict: Ground truth of corner heatmap, corner offset, corner + embedding, guiding shift and centripetal shift. Containing the + following keys: + + - topleft_heatmap (Tensor): Ground truth top-left corner + heatmap. + - bottomright_heatmap (Tensor): Ground truth bottom-right + corner heatmap. + - topleft_offset (Tensor): Ground truth top-left corner offset. + - bottomright_offset (Tensor): Ground truth bottom-right corner + offset. + - corner_embedding (list[list[list[int]]]): Ground truth corner + embedding. Not must have. + - topleft_guiding_shift (Tensor): Ground truth top-left corner + guiding shift. Not must have. + - bottomright_guiding_shift (Tensor): Ground truth bottom-right + corner guiding shift. Not must have. + - topleft_centripetal_shift (Tensor): Ground truth top-left + corner centripetal shift. Not must have. + - bottomright_centripetal_shift (Tensor): Ground truth + bottom-right corner centripetal shift. Not must have. + """ + batch_size, _, height, width = feat_shape + img_h, img_w = img_shape[:2] + + width_ratio = float(width / img_w) + height_ratio = float(height / img_h) + + gt_tl_heatmap = gt_bboxes[-1].new_zeros( + [batch_size, self.num_classes, height, width]) + gt_br_heatmap = gt_bboxes[-1].new_zeros( + [batch_size, self.num_classes, height, width]) + gt_tl_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width]) + gt_br_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width]) + + if with_corner_emb: + match = [] + + # Guiding shift is a kind of offset, from center to corner + if with_guiding_shift: + gt_tl_guiding_shift = gt_bboxes[-1].new_zeros( + [batch_size, 2, height, width]) + gt_br_guiding_shift = gt_bboxes[-1].new_zeros( + [batch_size, 2, height, width]) + # Centripetal shift is also a kind of offset, from center to corner + # and normalized by log. + if with_centripetal_shift: + gt_tl_centripetal_shift = gt_bboxes[-1].new_zeros( + [batch_size, 2, height, width]) + gt_br_centripetal_shift = gt_bboxes[-1].new_zeros( + [batch_size, 2, height, width]) + + for batch_id in range(batch_size): + # Ground truth of corner embedding per image is a list of coord set + corner_match = [] + for box_id in range(len(gt_labels[batch_id])): + left, top, right, bottom = gt_bboxes[batch_id][box_id] + center_x = (left + right) / 2.0 + center_y = (top + bottom) / 2.0 + label = gt_labels[batch_id][box_id] + + # Use coords in the feature level to generate ground truth + scale_left = left * width_ratio + scale_right = right * width_ratio + scale_top = top * height_ratio + scale_bottom = bottom * height_ratio + scale_center_x = center_x * width_ratio + scale_center_y = center_y * height_ratio + + # Int coords on feature map/ground truth tensor + left_idx = int(min(scale_left, width - 1)) + right_idx = int(min(scale_right, width - 1)) + top_idx = int(min(scale_top, height - 1)) + bottom_idx = int(min(scale_bottom, height - 1)) + + # Generate gaussian heatmap + scale_box_width = ceil(scale_right - scale_left) + scale_box_height = ceil(scale_bottom - scale_top) + radius = gaussian_radius((scale_box_height, scale_box_width), + min_overlap=0.3) + radius = max(0, int(radius)) + gt_tl_heatmap[batch_id, label] = gen_gaussian_target( + gt_tl_heatmap[batch_id, label], [left_idx, top_idx], + radius) + gt_br_heatmap[batch_id, label] = gen_gaussian_target( + gt_br_heatmap[batch_id, label], [right_idx, bottom_idx], + radius) + + # Generate corner offset + left_offset = scale_left - left_idx + top_offset = scale_top - top_idx + right_offset = scale_right - right_idx + bottom_offset = scale_bottom - bottom_idx + gt_tl_offset[batch_id, 0, top_idx, left_idx] = left_offset + gt_tl_offset[batch_id, 1, top_idx, left_idx] = top_offset + gt_br_offset[batch_id, 0, bottom_idx, right_idx] = right_offset + gt_br_offset[batch_id, 1, bottom_idx, + right_idx] = bottom_offset + + # Generate corner embedding + if with_corner_emb: + corner_match.append([[top_idx, left_idx], + [bottom_idx, right_idx]]) + # Generate guiding shift + if with_guiding_shift: + gt_tl_guiding_shift[batch_id, 0, top_idx, + left_idx] = scale_center_x - left_idx + gt_tl_guiding_shift[batch_id, 1, top_idx, + left_idx] = scale_center_y - top_idx + gt_br_guiding_shift[batch_id, 0, bottom_idx, + right_idx] = right_idx - scale_center_x + gt_br_guiding_shift[ + batch_id, 1, bottom_idx, + right_idx] = bottom_idx - scale_center_y + # Generate centripetal shift + if with_centripetal_shift: + gt_tl_centripetal_shift[batch_id, 0, top_idx, + left_idx] = log(scale_center_x - + scale_left) + gt_tl_centripetal_shift[batch_id, 1, top_idx, + left_idx] = log(scale_center_y - + scale_top) + gt_br_centripetal_shift[batch_id, 0, bottom_idx, + right_idx] = log(scale_right - + scale_center_x) + gt_br_centripetal_shift[batch_id, 1, bottom_idx, + right_idx] = log(scale_bottom - + scale_center_y) + + if with_corner_emb: + match.append(corner_match) + + target_result = dict( + topleft_heatmap=gt_tl_heatmap, + topleft_offset=gt_tl_offset, + bottomright_heatmap=gt_br_heatmap, + bottomright_offset=gt_br_offset) + + if with_corner_emb: + target_result.update(corner_embedding=match) + if with_guiding_shift: + target_result.update( + topleft_guiding_shift=gt_tl_guiding_shift, + bottomright_guiding_shift=gt_br_guiding_shift) + if with_centripetal_shift: + target_result.update( + topleft_centripetal_shift=gt_tl_centripetal_shift, + bottomright_centripetal_shift=gt_br_centripetal_shift) + + return target_result + + @force_fp32() + def loss(self, + tl_heats, + br_heats, + tl_embs, + br_embs, + tl_offs, + br_offs, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + tl_heats (list[Tensor]): Top-left corner heatmaps for each level + with shape (N, num_classes, H, W). + br_heats (list[Tensor]): Bottom-right corner heatmaps for each + level with shape (N, num_classes, H, W). + tl_embs (list[Tensor]): Top-left corner embeddings for each level + with shape (N, corner_emb_channels, H, W). + br_embs (list[Tensor]): Bottom-right corner embeddings for each + level with shape (N, corner_emb_channels, H, W). + tl_offs (list[Tensor]): Top-left corner offsets for each level + with shape (N, corner_offset_channels, H, W). + br_offs (list[Tensor]): Bottom-right corner offsets for each level + with shape (N, corner_offset_channels, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [left, top, right, bottom] format. + gt_labels (list[Tensor]): Class indices corresponding to each box. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. Containing the + following losses: + + - det_loss (list[Tensor]): Corner keypoint losses of all + feature levels. + - pull_loss (list[Tensor]): Part one of AssociativeEmbedding + losses of all feature levels. + - push_loss (list[Tensor]): Part two of AssociativeEmbedding + losses of all feature levels. + - off_loss (list[Tensor]): Corner offset losses of all feature + levels. + """ + targets = self.get_targets( + gt_bboxes, + gt_labels, + tl_heats[-1].shape, + img_metas[0]['pad_shape'], + with_corner_emb=self.with_corner_emb) + mlvl_targets = [targets for _ in range(self.num_feat_levels)] + det_losses, pull_losses, push_losses, off_losses = multi_apply( + self.loss_single, tl_heats, br_heats, tl_embs, br_embs, tl_offs, + br_offs, mlvl_targets) + loss_dict = dict(det_loss=det_losses, off_loss=off_losses) + if self.with_corner_emb: + loss_dict.update(pull_loss=pull_losses, push_loss=push_losses) + return loss_dict + + def loss_single(self, tl_hmp, br_hmp, tl_emb, br_emb, tl_off, br_off, + targets): + """Compute losses for single level. + + Args: + tl_hmp (Tensor): Top-left corner heatmap for current level with + shape (N, num_classes, H, W). + br_hmp (Tensor): Bottom-right corner heatmap for current level with + shape (N, num_classes, H, W). + tl_emb (Tensor): Top-left corner embedding for current level with + shape (N, corner_emb_channels, H, W). + br_emb (Tensor): Bottom-right corner embedding for current level + with shape (N, corner_emb_channels, H, W). + tl_off (Tensor): Top-left corner offset for current level with + shape (N, corner_offset_channels, H, W). + br_off (Tensor): Bottom-right corner offset for current level with + shape (N, corner_offset_channels, H, W). + targets (dict): Corner target generated by `get_targets`. + + Returns: + tuple[torch.Tensor]: Losses of the head's different branches + containing the following losses: + + - det_loss (Tensor): Corner keypoint loss. + - pull_loss (Tensor): Part one of AssociativeEmbedding loss. + - push_loss (Tensor): Part two of AssociativeEmbedding loss. + - off_loss (Tensor): Corner offset loss. + """ + gt_tl_hmp = targets['topleft_heatmap'] + gt_br_hmp = targets['bottomright_heatmap'] + gt_tl_off = targets['topleft_offset'] + gt_br_off = targets['bottomright_offset'] + gt_embedding = targets['corner_embedding'] + + # Detection loss + tl_det_loss = self.loss_heatmap( + tl_hmp.sigmoid(), + gt_tl_hmp, + avg_factor=max(1, + gt_tl_hmp.eq(1).sum())) + br_det_loss = self.loss_heatmap( + br_hmp.sigmoid(), + gt_br_hmp, + avg_factor=max(1, + gt_br_hmp.eq(1).sum())) + det_loss = (tl_det_loss + br_det_loss) / 2.0 + + # AssociativeEmbedding loss + if self.with_corner_emb and self.loss_embedding is not None: + pull_loss, push_loss = self.loss_embedding(tl_emb, br_emb, + gt_embedding) + else: + pull_loss, push_loss = None, None + + # Offset loss + # We only compute the offset loss at the real corner position. + # The value of real corner would be 1 in heatmap ground truth. + # The mask is computed in class agnostic mode and its shape is + # batch * 1 * width * height. + tl_off_mask = gt_tl_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as( + gt_tl_hmp) + br_off_mask = gt_br_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as( + gt_br_hmp) + tl_off_loss = self.loss_offset( + tl_off, + gt_tl_off, + tl_off_mask, + avg_factor=max(1, tl_off_mask.sum())) + br_off_loss = self.loss_offset( + br_off, + gt_br_off, + br_off_mask, + avg_factor=max(1, br_off_mask.sum())) + + off_loss = (tl_off_loss + br_off_loss) / 2.0 + + return det_loss, pull_loss, push_loss, off_loss + + @force_fp32() + def get_bboxes(self, + tl_heats, + br_heats, + tl_embs, + br_embs, + tl_offs, + br_offs, + img_metas, + rescale=False, + with_nms=True): + """Transform network output for a batch into bbox predictions. + + Args: + tl_heats (list[Tensor]): Top-left corner heatmaps for each level + with shape (N, num_classes, H, W). + br_heats (list[Tensor]): Bottom-right corner heatmaps for each + level with shape (N, num_classes, H, W). + tl_embs (list[Tensor]): Top-left corner embeddings for each level + with shape (N, corner_emb_channels, H, W). + br_embs (list[Tensor]): Bottom-right corner embeddings for each + level with shape (N, corner_emb_channels, H, W). + tl_offs (list[Tensor]): Top-left corner offsets for each level + with shape (N, corner_offset_channels, H, W). + br_offs (list[Tensor]): Bottom-right corner offsets for each level + with shape (N, corner_offset_channels, H, W). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + """ + assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(img_metas) + result_list = [] + for img_id in range(len(img_metas)): + result_list.append( + self._get_bboxes_single( + tl_heats[-1][img_id:img_id + 1, :], + br_heats[-1][img_id:img_id + 1, :], + tl_offs[-1][img_id:img_id + 1, :], + br_offs[-1][img_id:img_id + 1, :], + img_metas[img_id], + tl_emb=tl_embs[-1][img_id:img_id + 1, :], + br_emb=br_embs[-1][img_id:img_id + 1, :], + rescale=rescale, + with_nms=with_nms)) + + return result_list + + def _get_bboxes_single(self, + tl_heat, + br_heat, + tl_off, + br_off, + img_meta, + tl_emb=None, + br_emb=None, + tl_centripetal_shift=None, + br_centripetal_shift=None, + rescale=False, + with_nms=True): + """Transform outputs for a single batch item into bbox predictions. + + Args: + tl_heat (Tensor): Top-left corner heatmap for current level with + shape (N, num_classes, H, W). + br_heat (Tensor): Bottom-right corner heatmap for current level + with shape (N, num_classes, H, W). + tl_off (Tensor): Top-left corner offset for current level with + shape (N, corner_offset_channels, H, W). + br_off (Tensor): Bottom-right corner offset for current level with + shape (N, corner_offset_channels, H, W). + img_meta (dict): Meta information of current image, e.g., + image size, scaling factor, etc. + tl_emb (Tensor): Top-left corner embedding for current level with + shape (N, corner_emb_channels, H, W). + br_emb (Tensor): Bottom-right corner embedding for current level + with shape (N, corner_emb_channels, H, W). + tl_centripetal_shift: Top-left corner's centripetal shift for + current level with shape (N, 2, H, W). + br_centripetal_shift: Bottom-right corner's centripetal shift for + current level with shape (N, 2, H, W). + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + """ + if isinstance(img_meta, (list, tuple)): + img_meta = img_meta[0] + + batch_bboxes, batch_scores, batch_clses = self.decode_heatmap( + tl_heat=tl_heat.sigmoid(), + br_heat=br_heat.sigmoid(), + tl_off=tl_off, + br_off=br_off, + tl_emb=tl_emb, + br_emb=br_emb, + tl_centripetal_shift=tl_centripetal_shift, + br_centripetal_shift=br_centripetal_shift, + img_meta=img_meta, + k=self.test_cfg.corner_topk, + kernel=self.test_cfg.local_maximum_kernel, + distance_threshold=self.test_cfg.distance_threshold) + + if rescale: + batch_bboxes /= batch_bboxes.new_tensor(img_meta['scale_factor']) + + bboxes = batch_bboxes.view([-1, 4]) + scores = batch_scores.view(-1) + clses = batch_clses.view(-1) + + detections = torch.cat([bboxes, scores.unsqueeze(-1)], -1) + keepinds = (detections[:, -1] > -0.1) + detections = detections[keepinds] + labels = clses[keepinds] + + if with_nms: + detections, labels = self._bboxes_nms(detections, labels, + self.test_cfg) + + return detections, labels + + def _bboxes_nms(self, bboxes, labels, cfg): + if 'nms_cfg' in cfg: + warning.warn('nms_cfg in test_cfg will be deprecated. ' + 'Please rename it as nms') + if 'nms' not in cfg: + cfg.nms = cfg.nms_cfg + + if labels.numel() > 0: + max_num = cfg.max_per_img + bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, + -1].contiguous(), + labels, cfg.nms) + if max_num > 0: + bboxes = bboxes[:max_num] + labels = labels[keep][:max_num] + + return bboxes, labels + + def decode_heatmap(self, + tl_heat, + br_heat, + tl_off, + br_off, + tl_emb=None, + br_emb=None, + tl_centripetal_shift=None, + br_centripetal_shift=None, + img_meta=None, + k=100, + kernel=3, + distance_threshold=0.5, + num_dets=1000): + """Transform outputs for a single batch item into raw bbox predictions. + + Args: + tl_heat (Tensor): Top-left corner heatmap for current level with + shape (N, num_classes, H, W). + br_heat (Tensor): Bottom-right corner heatmap for current level + with shape (N, num_classes, H, W). + tl_off (Tensor): Top-left corner offset for current level with + shape (N, corner_offset_channels, H, W). + br_off (Tensor): Bottom-right corner offset for current level with + shape (N, corner_offset_channels, H, W). + tl_emb (Tensor | None): Top-left corner embedding for current + level with shape (N, corner_emb_channels, H, W). + br_emb (Tensor | None): Bottom-right corner embedding for current + level with shape (N, corner_emb_channels, H, W). + tl_centripetal_shift (Tensor | None): Top-left centripetal shift + for current level with shape (N, 2, H, W). + br_centripetal_shift (Tensor | None): Bottom-right centripetal + shift for current level with shape (N, 2, H, W). + img_meta (dict): Meta information of current image, e.g., + image size, scaling factor, etc. + k (int): Get top k corner keypoints from heatmap. + kernel (int): Max pooling kernel for extract local maximum pixels. + distance_threshold (float): Distance threshold. Top-left and + bottom-right corner keypoints with feature distance less than + the threshold will be regarded as keypoints from same object. + num_dets (int): Num of raw boxes before doing nms. + + Returns: + tuple[torch.Tensor]: Decoded output of CornerHead, containing the + following Tensors: + + - bboxes (Tensor): Coords of each box. + - scores (Tensor): Scores of each box. + - clses (Tensor): Categories of each box. + """ + with_embedding = tl_emb is not None and br_emb is not None + with_centripetal_shift = ( + tl_centripetal_shift is not None + and br_centripetal_shift is not None) + assert with_embedding + with_centripetal_shift == 1 + batch, _, height, width = tl_heat.size() + if torch.onnx.is_in_onnx_export(): + inp_h, inp_w = img_meta['pad_shape_for_onnx'][:2] + else: + inp_h, inp_w, _ = img_meta['pad_shape'] + + # perform nms on heatmaps + tl_heat = get_local_maximum(tl_heat, kernel=kernel) + br_heat = get_local_maximum(br_heat, kernel=kernel) + + tl_scores, tl_inds, tl_clses, tl_ys, tl_xs = get_topk_from_heatmap( + tl_heat, k=k) + br_scores, br_inds, br_clses, br_ys, br_xs = get_topk_from_heatmap( + br_heat, k=k) + + # We use repeat instead of expand here because expand is a + # shallow-copy function. Thus it could cause unexpected testing result + # sometimes. Using expand will decrease about 10% mAP during testing + # compared to repeat. + tl_ys = tl_ys.view(batch, k, 1).repeat(1, 1, k) + tl_xs = tl_xs.view(batch, k, 1).repeat(1, 1, k) + br_ys = br_ys.view(batch, 1, k).repeat(1, k, 1) + br_xs = br_xs.view(batch, 1, k).repeat(1, k, 1) + + tl_off = transpose_and_gather_feat(tl_off, tl_inds) + tl_off = tl_off.view(batch, k, 1, 2) + br_off = transpose_and_gather_feat(br_off, br_inds) + br_off = br_off.view(batch, 1, k, 2) + + tl_xs = tl_xs + tl_off[..., 0] + tl_ys = tl_ys + tl_off[..., 1] + br_xs = br_xs + br_off[..., 0] + br_ys = br_ys + br_off[..., 1] + + if with_centripetal_shift: + tl_centripetal_shift = transpose_and_gather_feat( + tl_centripetal_shift, tl_inds).view(batch, k, 1, 2).exp() + br_centripetal_shift = transpose_and_gather_feat( + br_centripetal_shift, br_inds).view(batch, 1, k, 2).exp() + + tl_ctxs = tl_xs + tl_centripetal_shift[..., 0] + tl_ctys = tl_ys + tl_centripetal_shift[..., 1] + br_ctxs = br_xs - br_centripetal_shift[..., 0] + br_ctys = br_ys - br_centripetal_shift[..., 1] + + # all possible boxes based on top k corners (ignoring class) + tl_xs *= (inp_w / width) + tl_ys *= (inp_h / height) + br_xs *= (inp_w / width) + br_ys *= (inp_h / height) + + if with_centripetal_shift: + tl_ctxs *= (inp_w / width) + tl_ctys *= (inp_h / height) + br_ctxs *= (inp_w / width) + br_ctys *= (inp_h / height) + + x_off, y_off = 0, 0 # no crop + if not torch.onnx.is_in_onnx_export(): + # since `RandomCenterCropPad` is done on CPU with numpy and it's + # not dynamic traceable when exporting to ONNX, thus 'border' + # does not appears as key in 'img_meta'. As a tmp solution, + # we move this 'border' handle part to the postprocess after + # finished exporting to ONNX, which is handle in + # `mmdet/core/export/model_wrappers.py`. Though difference between + # pytorch and exported onnx model, it might be ignored since + # comparable performance is achieved between them (e.g. 40.4 vs + # 40.6 on COCO val2017, for CornerNet without test-time flip) + if 'border' in img_meta: + x_off = img_meta['border'][2] + y_off = img_meta['border'][0] + + tl_xs -= x_off + tl_ys -= y_off + br_xs -= x_off + br_ys -= y_off + + zeros = tl_xs.new_zeros(*tl_xs.size()) + tl_xs = torch.where(tl_xs > 0.0, tl_xs, zeros) + tl_ys = torch.where(tl_ys > 0.0, tl_ys, zeros) + br_xs = torch.where(br_xs > 0.0, br_xs, zeros) + br_ys = torch.where(br_ys > 0.0, br_ys, zeros) + + bboxes = torch.stack((tl_xs, tl_ys, br_xs, br_ys), dim=3) + area_bboxes = ((br_xs - tl_xs) * (br_ys - tl_ys)).abs() + + if with_centripetal_shift: + tl_ctxs -= x_off + tl_ctys -= y_off + br_ctxs -= x_off + br_ctys -= y_off + + tl_ctxs *= tl_ctxs.gt(0.0).type_as(tl_ctxs) + tl_ctys *= tl_ctys.gt(0.0).type_as(tl_ctys) + br_ctxs *= br_ctxs.gt(0.0).type_as(br_ctxs) + br_ctys *= br_ctys.gt(0.0).type_as(br_ctys) + + ct_bboxes = torch.stack((tl_ctxs, tl_ctys, br_ctxs, br_ctys), + dim=3) + area_ct_bboxes = ((br_ctxs - tl_ctxs) * (br_ctys - tl_ctys)).abs() + + rcentral = torch.zeros_like(ct_bboxes) + # magic nums from paper section 4.1 + mu = torch.ones_like(area_bboxes) / 2.4 + mu[area_bboxes > 3500] = 1 / 2.1 # large bbox have smaller mu + + bboxes_center_x = (bboxes[..., 0] + bboxes[..., 2]) / 2 + bboxes_center_y = (bboxes[..., 1] + bboxes[..., 3]) / 2 + rcentral[..., 0] = bboxes_center_x - mu * (bboxes[..., 2] - + bboxes[..., 0]) / 2 + rcentral[..., 1] = bboxes_center_y - mu * (bboxes[..., 3] - + bboxes[..., 1]) / 2 + rcentral[..., 2] = bboxes_center_x + mu * (bboxes[..., 2] - + bboxes[..., 0]) / 2 + rcentral[..., 3] = bboxes_center_y + mu * (bboxes[..., 3] - + bboxes[..., 1]) / 2 + area_rcentral = ((rcentral[..., 2] - rcentral[..., 0]) * + (rcentral[..., 3] - rcentral[..., 1])).abs() + dists = area_ct_bboxes / area_rcentral + + tl_ctx_inds = (ct_bboxes[..., 0] <= rcentral[..., 0]) | ( + ct_bboxes[..., 0] >= rcentral[..., 2]) + tl_cty_inds = (ct_bboxes[..., 1] <= rcentral[..., 1]) | ( + ct_bboxes[..., 1] >= rcentral[..., 3]) + br_ctx_inds = (ct_bboxes[..., 2] <= rcentral[..., 0]) | ( + ct_bboxes[..., 2] >= rcentral[..., 2]) + br_cty_inds = (ct_bboxes[..., 3] <= rcentral[..., 1]) | ( + ct_bboxes[..., 3] >= rcentral[..., 3]) + + if with_embedding: + tl_emb = transpose_and_gather_feat(tl_emb, tl_inds) + tl_emb = tl_emb.view(batch, k, 1) + br_emb = transpose_and_gather_feat(br_emb, br_inds) + br_emb = br_emb.view(batch, 1, k) + dists = torch.abs(tl_emb - br_emb) + + tl_scores = tl_scores.view(batch, k, 1).repeat(1, 1, k) + br_scores = br_scores.view(batch, 1, k).repeat(1, k, 1) + + scores = (tl_scores + br_scores) / 2 # scores for all possible boxes + + # tl and br should have same class + tl_clses = tl_clses.view(batch, k, 1).repeat(1, 1, k) + br_clses = br_clses.view(batch, 1, k).repeat(1, k, 1) + cls_inds = (tl_clses != br_clses) + + # reject boxes based on distances + dist_inds = dists > distance_threshold + + # reject boxes based on widths and heights + width_inds = (br_xs <= tl_xs) + height_inds = (br_ys <= tl_ys) + + # No use `scores[cls_inds]`, instead we use `torch.where` here. + # Since only 1-D indices with type 'tensor(bool)' are supported + # when exporting to ONNX, any other bool indices with more dimensions + # (e.g. 2-D bool tensor) as input parameter in node is invalid + negative_scores = -1 * torch.ones_like(scores) + scores = torch.where(cls_inds, negative_scores, scores) + scores = torch.where(width_inds, negative_scores, scores) + scores = torch.where(height_inds, negative_scores, scores) + scores = torch.where(dist_inds, negative_scores, scores) + + if with_centripetal_shift: + scores[tl_ctx_inds] = -1 + scores[tl_cty_inds] = -1 + scores[br_ctx_inds] = -1 + scores[br_cty_inds] = -1 + + scores = scores.view(batch, -1) + scores, inds = torch.topk(scores, num_dets) + scores = scores.unsqueeze(2) + + bboxes = bboxes.view(batch, -1, 4) + bboxes = gather_feat(bboxes, inds) + + clses = tl_clses.contiguous().view(batch, -1, 1) + clses = gather_feat(clses, inds).float() + + return bboxes, scores, clses + + def onnx_export(self, + tl_heats, + br_heats, + tl_embs, + br_embs, + tl_offs, + br_offs, + img_metas, + rescale=False, + with_nms=True): + """Transform network output for a batch into bbox predictions. + + Args: + tl_heats (list[Tensor]): Top-left corner heatmaps for each level + with shape (N, num_classes, H, W). + br_heats (list[Tensor]): Bottom-right corner heatmaps for each + level with shape (N, num_classes, H, W). + tl_embs (list[Tensor]): Top-left corner embeddings for each level + with shape (N, corner_emb_channels, H, W). + br_embs (list[Tensor]): Bottom-right corner embeddings for each + level with shape (N, corner_emb_channels, H, W). + tl_offs (list[Tensor]): Top-left corner offsets for each level + with shape (N, corner_offset_channels, H, W). + br_offs (list[Tensor]): Bottom-right corner offsets for each level + with shape (N, corner_offset_channels, H, W). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor, Tensor]: First tensor bboxes with shape + [N, num_det, 5], 5 arrange as (x1, y1, x2, y2, score) + and second element is class labels of shape [N, num_det]. + """ + assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len( + img_metas) == 1 + result_list = [] + for img_id in range(len(img_metas)): + result_list.append( + self._get_bboxes_single( + tl_heats[-1][img_id:img_id + 1, :], + br_heats[-1][img_id:img_id + 1, :], + tl_offs[-1][img_id:img_id + 1, :], + br_offs[-1][img_id:img_id + 1, :], + img_metas[img_id], + tl_emb=tl_embs[-1][img_id:img_id + 1, :], + br_emb=br_embs[-1][img_id:img_id + 1, :], + rescale=rescale, + with_nms=with_nms)) + + detections, labels = result_list[0] + # batch_size 1 here, [1, num_det, 5], [1, num_det] + return detections.unsqueeze(0), labels.unsqueeze(0) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/deformable_detr_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/deformable_detr_head.py new file mode 100644 index 000000000..71c278523 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/deformable_detr_head.py @@ -0,0 +1,318 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import Linear, bias_init_with_prob, constant_init +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply +from mmdet.models.utils.transformer import inverse_sigmoid +from ..builder import HEADS +from .detr_head import DETRHead + + +@HEADS.register_module() +class DeformableDETRHead(DETRHead): + """Head of DeformDETR: Deformable DETR: Deformable Transformers for End-to- + End Object Detection. + + Code is modified from the `official github repo + `_. + + More details can be found in the `paper + `_ . + + Args: + with_box_refine (bool): Whether to refine the reference points + in the decoder. Defaults to False. + as_two_stage (bool) : Whether to generate the proposal from + the outputs of encoder. + transformer (obj:`ConfigDict`): ConfigDict is used for building + the Encoder and Decoder. + """ + + def __init__(self, + *args, + with_box_refine=False, + as_two_stage=False, + transformer=None, + **kwargs): + self.with_box_refine = with_box_refine + self.as_two_stage = as_two_stage + if self.as_two_stage: + transformer['as_two_stage'] = self.as_two_stage + + super(DeformableDETRHead, self).__init__( + *args, transformer=transformer, **kwargs) + + def _init_layers(self): + """Initialize classification branch and regression branch of head.""" + + fc_cls = Linear(self.embed_dims, self.cls_out_channels) + reg_branch = [] + for _ in range(self.num_reg_fcs): + reg_branch.append(Linear(self.embed_dims, self.embed_dims)) + reg_branch.append(nn.ReLU()) + reg_branch.append(Linear(self.embed_dims, 4)) + reg_branch = nn.Sequential(*reg_branch) + + def _get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + # last reg_branch is used to generate proposal from + # encode feature map when as_two_stage is True. + num_pred = (self.transformer.decoder.num_layers + 1) if \ + self.as_two_stage else self.transformer.decoder.num_layers + + if self.with_box_refine: + self.cls_branches = _get_clones(fc_cls, num_pred) + self.reg_branches = _get_clones(reg_branch, num_pred) + else: + + self.cls_branches = nn.ModuleList( + [fc_cls for _ in range(num_pred)]) + self.reg_branches = nn.ModuleList( + [reg_branch for _ in range(num_pred)]) + + if not self.as_two_stage: + self.query_embedding = nn.Embedding(self.num_query, + self.embed_dims * 2) + + def init_weights(self): + """Initialize weights of the DeformDETR head.""" + self.transformer.init_weights() + if self.loss_cls.use_sigmoid: + bias_init = bias_init_with_prob(0.01) + for m in self.cls_branches: + nn.init.constant_(m.bias, bias_init) + for m in self.reg_branches: + constant_init(m[-1], 0, bias=0) + nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0) + if self.as_two_stage: + for m in self.reg_branches: + nn.init.constant_(m[-1].bias.data[2:], 0.0) + + def forward(self, mlvl_feats, img_metas): + """Forward function. + + Args: + mlvl_feats (tuple[Tensor]): Features from the upstream + network, each is a 4D-tensor with shape + (N, C, H, W). + img_metas (list[dict]): List of image information. + + Returns: + all_cls_scores (Tensor): Outputs from the classification head, \ + shape [nb_dec, bs, num_query, cls_out_channels]. Note \ + cls_out_channels should includes background. + all_bbox_preds (Tensor): Sigmoid outputs from the regression \ + head with normalized coordinate format (cx, cy, w, h). \ + Shape [nb_dec, bs, num_query, 4]. + enc_outputs_class (Tensor): The score of each point on encode \ + feature map, has shape (N, h*w, num_class). Only when \ + as_two_stage is True it would be returned, otherwise \ + `None` would be returned. + enc_outputs_coord (Tensor): The proposal generate from the \ + encode feature map, has shape (N, h*w, 4). Only when \ + as_two_stage is True it would be returned, otherwise \ + `None` would be returned. + """ + + batch_size = mlvl_feats[0].size(0) + input_img_h, input_img_w = img_metas[0]['batch_input_shape'] + img_masks = mlvl_feats[0].new_ones( + (batch_size, input_img_h, input_img_w)) + for img_id in range(batch_size): + img_h, img_w, _ = img_metas[img_id]['img_shape'] + img_masks[img_id, :img_h, :img_w] = 0 + + mlvl_masks = [] + mlvl_positional_encodings = [] + for feat in mlvl_feats: + mlvl_masks.append( + F.interpolate(img_masks[None], + size=feat.shape[-2:]).to(torch.bool).squeeze(0)) + mlvl_positional_encodings.append( + self.positional_encoding(mlvl_masks[-1])) + + query_embeds = None + if not self.as_two_stage: + query_embeds = self.query_embedding.weight + hs, init_reference, inter_references, \ + enc_outputs_class, enc_outputs_coord = self.transformer( + mlvl_feats, + mlvl_masks, + query_embeds, + mlvl_positional_encodings, + reg_branches=self.reg_branches if self.with_box_refine else None, # noqa:E501 + cls_branches=self.cls_branches if self.as_two_stage else None # noqa:E501 + ) + hs = hs.permute(0, 2, 1, 3) + outputs_classes = [] + outputs_coords = [] + + for lvl in range(hs.shape[0]): + if lvl == 0: + reference = init_reference + else: + reference = inter_references[lvl - 1] + reference = inverse_sigmoid(reference) + outputs_class = self.cls_branches[lvl](hs[lvl]) + tmp = self.reg_branches[lvl](hs[lvl]) + if reference.shape[-1] == 4: + tmp += reference + else: + assert reference.shape[-1] == 2 + tmp[..., :2] += reference + outputs_coord = tmp.sigmoid() + outputs_classes.append(outputs_class) + outputs_coords.append(outputs_coord) + + outputs_classes = torch.stack(outputs_classes) + outputs_coords = torch.stack(outputs_coords) + if self.as_two_stage: + return outputs_classes, outputs_coords, \ + enc_outputs_class, \ + enc_outputs_coord.sigmoid() + else: + return outputs_classes, outputs_coords, \ + None, None + + @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) + def loss(self, + all_cls_scores, + all_bbox_preds, + enc_cls_scores, + enc_bbox_preds, + gt_bboxes_list, + gt_labels_list, + img_metas, + gt_bboxes_ignore=None): + """"Loss function. + + Args: + all_cls_scores (Tensor): Classification score of all + decoder layers, has shape + [nb_dec, bs, num_query, cls_out_channels]. + all_bbox_preds (Tensor): Sigmoid regression + outputs of all decode layers. Each is a 4D-tensor with + normalized coordinate format (cx, cy, w, h) and shape + [nb_dec, bs, num_query, 4]. + enc_cls_scores (Tensor): Classification scores of + points on encode feature map , has shape + (N, h*w, num_classes). Only be passed when as_two_stage is + True, otherwise is None. + enc_bbox_preds (Tensor): Regression results of each points + on the encode feature map, has shape (N, h*w, 4). Only be + passed when as_two_stage is True, otherwise is None. + gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image + with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels_list (list[Tensor]): Ground truth class indices for each + image with shape (num_gts, ). + img_metas (list[dict]): List of image meta information. + gt_bboxes_ignore (list[Tensor], optional): Bounding boxes + which can be ignored for each image. Default None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert gt_bboxes_ignore is None, \ + f'{self.__class__.__name__} only supports ' \ + f'for gt_bboxes_ignore setting to None.' + + num_dec_layers = len(all_cls_scores) + all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] + all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] + all_gt_bboxes_ignore_list = [ + gt_bboxes_ignore for _ in range(num_dec_layers) + ] + img_metas_list = [img_metas for _ in range(num_dec_layers)] + + losses_cls, losses_bbox, losses_iou = multi_apply( + self.loss_single, all_cls_scores, all_bbox_preds, + all_gt_bboxes_list, all_gt_labels_list, img_metas_list, + all_gt_bboxes_ignore_list) + + loss_dict = dict() + # loss of proposal generated from encode feature map. + if enc_cls_scores is not None: + binary_labels_list = [ + torch.zeros_like(gt_labels_list[i]) + for i in range(len(img_metas)) + ] + enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ + self.loss_single(enc_cls_scores, enc_bbox_preds, + gt_bboxes_list, binary_labels_list, + img_metas, gt_bboxes_ignore) + loss_dict['enc_loss_cls'] = enc_loss_cls + loss_dict['enc_loss_bbox'] = enc_losses_bbox + loss_dict['enc_loss_iou'] = enc_losses_iou + + # loss from the last decoder layer + loss_dict['loss_cls'] = losses_cls[-1] + loss_dict['loss_bbox'] = losses_bbox[-1] + loss_dict['loss_iou'] = losses_iou[-1] + # loss from other decoder layers + num_dec_layer = 0 + for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], + losses_bbox[:-1], + losses_iou[:-1]): + loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i + loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i + loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i + num_dec_layer += 1 + return loss_dict + + @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) + def get_bboxes(self, + all_cls_scores, + all_bbox_preds, + enc_cls_scores, + enc_bbox_preds, + img_metas, + rescale=False): + """Transform network outputs for a batch into bbox predictions. + + Args: + all_cls_scores (Tensor): Classification score of all + decoder layers, has shape + [nb_dec, bs, num_query, cls_out_channels]. + all_bbox_preds (Tensor): Sigmoid regression + outputs of all decode layers. Each is a 4D-tensor with + normalized coordinate format (cx, cy, w, h) and shape + [nb_dec, bs, num_query, 4]. + enc_cls_scores (Tensor): Classification scores of + points on encode feature map , has shape + (N, h*w, num_classes). Only be passed when as_two_stage is + True, otherwise is None. + enc_bbox_preds (Tensor): Regression results of each points + on the encode feature map, has shape (N, h*w, 4). Only be + passed when as_two_stage is True, otherwise is None. + img_metas (list[dict]): Meta information of each image. + rescale (bool, optional): If True, return boxes in original + image space. Default False. + + Returns: + list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ + The first item is an (n, 5) tensor, where the first 4 columns \ + are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ + 5-th column is a score between 0 and 1. The second item is a \ + (n,) tensor where each item is the predicted class label of \ + the corresponding box. + """ + cls_scores = all_cls_scores[-1] + bbox_preds = all_bbox_preds[-1] + + result_list = [] + for img_id in range(len(img_metas)): + cls_score = cls_scores[img_id] + bbox_pred = bbox_preds[img_id] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + proposals = self._get_bboxes_single(cls_score, bbox_pred, + img_shape, scale_factor, + rescale) + result_list.append(proposals) + return result_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/dense_test_mixins.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/dense_test_mixins.py new file mode 100644 index 000000000..342154895 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/dense_test_mixins.py @@ -0,0 +1,206 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import sys +from inspect import signature + +import torch +from mmcv.ops import batched_nms + +from mmdet.core import bbox_mapping_back, merge_aug_proposals + +if sys.version_info >= (3, 7): + from mmdet.utils.contextmanagers import completed + + +class BBoxTestMixin(object): + """Mixin class for testing det bboxes via DenseHead.""" + + def simple_test_bboxes(self, feats, img_metas, rescale=False): + """Test det bboxes without test-time augmentation, can be applied in + DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``, + etc. + + Args: + feats (tuple[torch.Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is ``bboxes`` with shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + The shape of the second tensor in the tuple is ``labels`` + with shape (n,) + """ + outs = self.forward(feats) + results_list = self.get_bboxes( + *outs, img_metas=img_metas, rescale=rescale) + return results_list + + def aug_test_bboxes(self, feats, img_metas, rescale=False): + """Test det bboxes with test time augmentation, can be applied in + DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``, + etc. + + Args: + feats (list[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains features for all images in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. each dict has image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is ``bboxes`` with shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + The shape of the second tensor in the tuple is ``labels`` + with shape (n,). The length of list should always be 1. + """ + # check with_nms argument + gb_sig = signature(self.get_bboxes) + gb_args = [p.name for p in gb_sig.parameters.values()] + gbs_sig = signature(self._get_bboxes_single) + gbs_args = [p.name for p in gbs_sig.parameters.values()] + assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \ + f'{self.__class__.__name__}' \ + ' does not support test-time augmentation' + + aug_bboxes = [] + aug_scores = [] + aug_labels = [] + for x, img_meta in zip(feats, img_metas): + # only one image in the batch + outs = self.forward(x) + bbox_outputs = self.get_bboxes( + *outs, + img_metas=img_meta, + cfg=self.test_cfg, + rescale=False, + with_nms=False)[0] + aug_bboxes.append(bbox_outputs[0]) + aug_scores.append(bbox_outputs[1]) + if len(bbox_outputs) >= 3: + aug_labels.append(bbox_outputs[2]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = self.merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas) + merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None + + if merged_bboxes.numel() == 0: + det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1) + return [ + (det_bboxes, merged_labels), + ] + + det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores, + merged_labels, self.test_cfg.nms) + det_bboxes = det_bboxes[:self.test_cfg.max_per_img] + det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img] + + if rescale: + _det_bboxes = det_bboxes + else: + _det_bboxes = det_bboxes.clone() + _det_bboxes[:, :4] *= det_bboxes.new_tensor( + img_metas[0][0]['scale_factor']) + + return [ + (_det_bboxes, det_labels), + ] + + def simple_test_rpn(self, x, img_metas): + """Test without augmentation, only for ``RPNHead`` and its variants, + e.g., ``GARPNHead``, etc. + + Args: + x (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + img_metas (list[dict]): Meta info of each image. + + Returns: + list[Tensor]: Proposals of each image, each item has shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + """ + rpn_outs = self(x) + proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas) + return proposal_list + + def aug_test_rpn(self, feats, img_metas): + """Test with augmentation for only for ``RPNHead`` and its variants, + e.g., ``GARPNHead``, etc. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + img_metas (list[dict]): Meta info of each image. + + Returns: + list[Tensor]: Proposals of each image, each item has shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + """ + samples_per_gpu = len(img_metas[0]) + aug_proposals = [[] for _ in range(samples_per_gpu)] + for x, img_meta in zip(feats, img_metas): + proposal_list = self.simple_test_rpn(x, img_meta) + for i, proposals in enumerate(proposal_list): + aug_proposals[i].append(proposals) + # reorganize the order of 'img_metas' to match the dimensions + # of 'aug_proposals' + aug_img_metas = [] + for i in range(samples_per_gpu): + aug_img_meta = [] + for j in range(len(img_metas)): + aug_img_meta.append(img_metas[j][i]) + aug_img_metas.append(aug_img_meta) + # after merging, proposals will be rescaled to the original image size + merged_proposals = [ + merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) + for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) + ] + return merged_proposals + + if sys.version_info >= (3, 7): + + async def async_simple_test_rpn(self, x, img_metas): + sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025) + async with completed( + __name__, 'rpn_head_forward', + sleep_interval=sleep_interval): + rpn_outs = self(x) + + proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas) + return proposal_list + + def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas): + """Merge augmented detection bboxes and scores. + + Args: + aug_bboxes (list[Tensor]): shape (n, 4*#class) + aug_scores (list[Tensor] or None): shape (n, #class) + img_shapes (list[Tensor]): shape (3, ). + + Returns: + tuple[Tensor]: ``bboxes`` with shape (n,4), where + 4 represent (tl_x, tl_y, br_x, br_y) + and ``scores`` with shape (n,). + """ + recovered_bboxes = [] + for bboxes, img_info in zip(aug_bboxes, img_metas): + img_shape = img_info[0]['img_shape'] + scale_factor = img_info[0]['scale_factor'] + flip = img_info[0]['flip'] + flip_direction = img_info[0]['flip_direction'] + bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, + flip_direction) + recovered_bboxes.append(bboxes) + bboxes = torch.cat(recovered_bboxes, dim=0) + if aug_scores is None: + return bboxes + else: + scores = torch.cat(aug_scores, dim=0) + return bboxes, scores diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/detr_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/detr_head.py new file mode 100644 index 000000000..de1913c9d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/detr_head.py @@ -0,0 +1,844 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import Conv2d, Linear, build_activation_layer +from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding +from mmcv.runner import force_fp32 + +from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, + build_assigner, build_sampler, multi_apply, + reduce_mean) +from mmdet.models.utils import build_transformer +from ..builder import HEADS, build_loss +from .anchor_free_head import AnchorFreeHead + + +@HEADS.register_module() +class DETRHead(AnchorFreeHead): + """Implements the DETR transformer head. + + See `paper: End-to-End Object Detection with Transformers + `_ for details. + + Args: + num_classes (int): Number of categories excluding the background. + in_channels (int): Number of channels in the input feature map. + num_query (int): Number of query in Transformer. + num_reg_fcs (int, optional): Number of fully-connected layers used in + `FFN`, which is then used for the regression head. Default 2. + transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer. + Default: None. + sync_cls_avg_factor (bool): Whether to sync the avg_factor of + all ranks. Default to False. + positional_encoding (obj:`mmcv.ConfigDict`|dict): + Config for position encoding. + loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the + classification loss. Default `CrossEntropyLoss`. + loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the + regression loss. Default `L1Loss`. + loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the + regression iou loss. Default `GIoULoss`. + tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of + transformer head. + test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of + transformer head. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + _version = 2 + + def __init__(self, + num_classes, + in_channels, + num_query=100, + num_reg_fcs=2, + transformer=None, + sync_cls_avg_factor=False, + positional_encoding=dict( + type='SinePositionalEncoding', + num_feats=128, + normalize=True), + loss_cls=dict( + type='CrossEntropyLoss', + bg_cls_weight=0.1, + use_sigmoid=False, + loss_weight=1.0, + class_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=5.0), + loss_iou=dict(type='GIoULoss', loss_weight=2.0), + train_cfg=dict( + assigner=dict( + type='HungarianAssigner', + cls_cost=dict(type='ClassificationCost', weight=1.), + reg_cost=dict(type='BBoxL1Cost', weight=5.0), + iou_cost=dict( + type='IoUCost', iou_mode='giou', weight=2.0))), + test_cfg=dict(max_per_img=100), + init_cfg=None, + **kwargs): + # NOTE here use `AnchorFreeHead` instead of `TransformerHead`, + # since it brings inconvenience when the initialization of + # `AnchorFreeHead` is called. + super(AnchorFreeHead, self).__init__(init_cfg) + self.bg_cls_weight = 0 + self.sync_cls_avg_factor = sync_cls_avg_factor + class_weight = loss_cls.get('class_weight', None) + if class_weight is not None and (self.__class__ is DETRHead): + assert isinstance(class_weight, float), 'Expected ' \ + 'class_weight to have type float. Found ' \ + f'{type(class_weight)}.' + # NOTE following the official DETR rep0, bg_cls_weight means + # relative classification weight of the no-object class. + bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) + assert isinstance(bg_cls_weight, float), 'Expected ' \ + 'bg_cls_weight to have type float. Found ' \ + f'{type(bg_cls_weight)}.' + class_weight = torch.ones(num_classes + 1) * class_weight + # set background class as the last indice + class_weight[num_classes] = bg_cls_weight + loss_cls.update({'class_weight': class_weight}) + if 'bg_cls_weight' in loss_cls: + loss_cls.pop('bg_cls_weight') + self.bg_cls_weight = bg_cls_weight + + if train_cfg: + assert 'assigner' in train_cfg, 'assigner should be provided '\ + 'when train_cfg is set.' + assigner = train_cfg['assigner'] + assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \ + 'The classification weight for loss and matcher should be' \ + 'exactly the same.' + assert loss_bbox['loss_weight'] == assigner['reg_cost'][ + 'weight'], 'The regression L1 weight for loss and matcher ' \ + 'should be exactly the same.' + assert loss_iou['loss_weight'] == assigner['iou_cost']['weight'], \ + 'The regression iou weight for loss and matcher should be' \ + 'exactly the same.' + self.assigner = build_assigner(assigner) + # DETR sampling=False, so use PseudoSampler + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.num_query = num_query + self.num_classes = num_classes + self.in_channels = in_channels + self.num_reg_fcs = num_reg_fcs + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.fp16_enabled = False + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.loss_iou = build_loss(loss_iou) + + if self.loss_cls.use_sigmoid: + self.cls_out_channels = num_classes + else: + self.cls_out_channels = num_classes + 1 + self.act_cfg = transformer.get('act_cfg', + dict(type='ReLU', inplace=True)) + self.activate = build_activation_layer(self.act_cfg) + self.positional_encoding = build_positional_encoding( + positional_encoding) + self.transformer = build_transformer(transformer) + self.embed_dims = self.transformer.embed_dims + assert 'num_feats' in positional_encoding + num_feats = positional_encoding['num_feats'] + assert num_feats * 2 == self.embed_dims, 'embed_dims should' \ + f' be exactly 2 times of num_feats. Found {self.embed_dims}' \ + f' and {num_feats}.' + self._init_layers() + + def _init_layers(self): + """Initialize layers of the transformer head.""" + self.input_proj = Conv2d( + self.in_channels, self.embed_dims, kernel_size=1) + self.fc_cls = Linear(self.embed_dims, self.cls_out_channels) + self.reg_ffn = FFN( + self.embed_dims, + self.embed_dims, + self.num_reg_fcs, + self.act_cfg, + dropout=0.0, + add_residual=False) + self.fc_reg = Linear(self.embed_dims, 4) + self.query_embedding = nn.Embedding(self.num_query, self.embed_dims) + + def init_weights(self): + """Initialize weights of the transformer head.""" + # The initialization for transformer is important + self.transformer.init_weights() + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + """load checkpoints.""" + # NOTE here use `AnchorFreeHead` instead of `TransformerHead`, + # since `AnchorFreeHead._load_from_state_dict` should not be + # called here. Invoking the default `Module._load_from_state_dict` + # is enough. + + # Names of some parameters in has been changed. + version = local_metadata.get('version', None) + if (version is None or version < 2) and self.__class__ is DETRHead: + convert_dict = { + '.self_attn.': '.attentions.0.', + '.ffn.': '.ffns.0.', + '.multihead_attn.': '.attentions.1.', + '.decoder.norm.': '.decoder.post_norm.' + } + state_dict_keys = list(state_dict.keys()) + for k in state_dict_keys: + for ori_key, convert_key in convert_dict.items(): + if ori_key in k: + convert_key = k.replace(ori_key, convert_key) + state_dict[convert_key] = state_dict[k] + del state_dict[k] + + super(AnchorFreeHead, + self)._load_from_state_dict(state_dict, prefix, local_metadata, + strict, missing_keys, + unexpected_keys, error_msgs) + + def forward(self, feats, img_metas): + """Forward function. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + img_metas (list[dict]): List of image information. + + Returns: + tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. + + - all_cls_scores_list (list[Tensor]): Classification scores \ + for each scale level. Each is a 4D-tensor with shape \ + [nb_dec, bs, num_query, cls_out_channels]. Note \ + `cls_out_channels` should includes background. + - all_bbox_preds_list (list[Tensor]): Sigmoid regression \ + outputs for each scale level. Each is a 4D-tensor with \ + normalized coordinate format (cx, cy, w, h) and shape \ + [nb_dec, bs, num_query, 4]. + """ + num_levels = len(feats) + img_metas_list = [img_metas for _ in range(num_levels)] + return multi_apply(self.forward_single, feats, img_metas_list) + + def forward_single(self, x, img_metas): + """"Forward function for a single feature level. + + Args: + x (Tensor): Input feature from backbone's single stage, shape + [bs, c, h, w]. + img_metas (list[dict]): List of image information. + + Returns: + all_cls_scores (Tensor): Outputs from the classification head, + shape [nb_dec, bs, num_query, cls_out_channels]. Note + cls_out_channels should includes background. + all_bbox_preds (Tensor): Sigmoid outputs from the regression + head with normalized coordinate format (cx, cy, w, h). + Shape [nb_dec, bs, num_query, 4]. + """ + # construct binary masks which used for the transformer. + # NOTE following the official DETR repo, non-zero values representing + # ignored positions, while zero values means valid positions. + batch_size = x.size(0) + input_img_h, input_img_w = img_metas[0]['batch_input_shape'] + masks = x.new_ones((batch_size, input_img_h, input_img_w)) + for img_id in range(batch_size): + img_h, img_w, _ = img_metas[img_id]['img_shape'] + masks[img_id, :img_h, :img_w] = 0 + + x = self.input_proj(x) + # interpolate masks to have the same spatial shape with x + masks = F.interpolate( + masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) + # position encoding + pos_embed = self.positional_encoding(masks) # [bs, embed_dim, h, w] + # outs_dec: [nb_dec, bs, num_query, embed_dim] + outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, + pos_embed) + + all_cls_scores = self.fc_cls(outs_dec) + all_bbox_preds = self.fc_reg(self.activate( + self.reg_ffn(outs_dec))).sigmoid() + return all_cls_scores, all_bbox_preds + + @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) + def loss(self, + all_cls_scores_list, + all_bbox_preds_list, + gt_bboxes_list, + gt_labels_list, + img_metas, + gt_bboxes_ignore=None): + """"Loss function. + + Only outputs from the last feature level are used for computing + losses by default. + + Args: + all_cls_scores_list (list[Tensor]): Classification outputs + for each feature level. Each is a 4D-tensor with shape + [nb_dec, bs, num_query, cls_out_channels]. + all_bbox_preds_list (list[Tensor]): Sigmoid regression + outputs for each feature level. Each is a 4D-tensor with + normalized coordinate format (cx, cy, w, h) and shape + [nb_dec, bs, num_query, 4]. + gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image + with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels_list (list[Tensor]): Ground truth class indices for each + image with shape (num_gts, ). + img_metas (list[dict]): List of image meta information. + gt_bboxes_ignore (list[Tensor], optional): Bounding boxes + which can be ignored for each image. Default None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + # NOTE defaultly only the outputs from the last feature scale is used. + all_cls_scores = all_cls_scores_list[-1] + all_bbox_preds = all_bbox_preds_list[-1] + assert gt_bboxes_ignore is None, \ + 'Only supports for gt_bboxes_ignore setting to None.' + + num_dec_layers = len(all_cls_scores) + all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] + all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] + all_gt_bboxes_ignore_list = [ + gt_bboxes_ignore for _ in range(num_dec_layers) + ] + img_metas_list = [img_metas for _ in range(num_dec_layers)] + + losses_cls, losses_bbox, losses_iou = multi_apply( + self.loss_single, all_cls_scores, all_bbox_preds, + all_gt_bboxes_list, all_gt_labels_list, img_metas_list, + all_gt_bboxes_ignore_list) + + loss_dict = dict() + # loss from the last decoder layer + loss_dict['loss_cls'] = losses_cls[-1] + loss_dict['loss_bbox'] = losses_bbox[-1] + loss_dict['loss_iou'] = losses_iou[-1] + # loss from other decoder layers + num_dec_layer = 0 + for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], + losses_bbox[:-1], + losses_iou[:-1]): + loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i + loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i + loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i + num_dec_layer += 1 + return loss_dict + + def loss_single(self, + cls_scores, + bbox_preds, + gt_bboxes_list, + gt_labels_list, + img_metas, + gt_bboxes_ignore_list=None): + """"Loss function for outputs from a single decoder layer of a single + feature level. + + Args: + cls_scores (Tensor): Box score logits from a single decoder layer + for all images. Shape [bs, num_query, cls_out_channels]. + bbox_preds (Tensor): Sigmoid outputs from a single decoder layer + for all images, with normalized coordinate (cx, cy, w, h) and + shape [bs, num_query, 4]. + gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image + with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels_list (list[Tensor]): Ground truth class indices for each + image with shape (num_gts, ). + img_metas (list[dict]): List of image meta information. + gt_bboxes_ignore_list (list[Tensor], optional): Bounding + boxes which can be ignored for each image. Default None. + + Returns: + dict[str, Tensor]: A dictionary of loss components for outputs from + a single decoder layer. + """ + num_imgs = cls_scores.size(0) + cls_scores_list = [cls_scores[i] for i in range(num_imgs)] + bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] + cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list, + gt_bboxes_list, gt_labels_list, + img_metas, gt_bboxes_ignore_list) + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + labels = torch.cat(labels_list, 0) + label_weights = torch.cat(label_weights_list, 0) + bbox_targets = torch.cat(bbox_targets_list, 0) + bbox_weights = torch.cat(bbox_weights_list, 0) + + # classification loss + cls_scores = cls_scores.reshape(-1, self.cls_out_channels) + # construct weighted avg_factor to match with the official DETR repo + cls_avg_factor = num_total_pos * 1.0 + \ + num_total_neg * self.bg_cls_weight + if self.sync_cls_avg_factor: + cls_avg_factor = reduce_mean( + cls_scores.new_tensor([cls_avg_factor])) + cls_avg_factor = max(cls_avg_factor, 1) + + loss_cls = self.loss_cls( + cls_scores, labels, label_weights, avg_factor=cls_avg_factor) + + # Compute the average number of gt boxes across all gpus, for + # normalization purposes + num_total_pos = loss_cls.new_tensor([num_total_pos]) + num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() + + # construct factors used for rescale bboxes + factors = [] + for img_meta, bbox_pred in zip(img_metas, bbox_preds): + img_h, img_w, _ = img_meta['img_shape'] + factor = bbox_pred.new_tensor([img_w, img_h, img_w, + img_h]).unsqueeze(0).repeat( + bbox_pred.size(0), 1) + factors.append(factor) + factors = torch.cat(factors, 0) + + # DETR regress the relative position of boxes (cxcywh) in the image, + # thus the learning target is normalized by the image size. So here + # we need to re-scale them for calculating IoU loss + bbox_preds = bbox_preds.reshape(-1, 4) + bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors + bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors + + # regression IoU loss, defaultly GIoU loss + loss_iou = self.loss_iou( + bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) + + # regression L1 loss + loss_bbox = self.loss_bbox( + bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) + return loss_cls, loss_bbox, loss_iou + + def get_targets(self, + cls_scores_list, + bbox_preds_list, + gt_bboxes_list, + gt_labels_list, + img_metas, + gt_bboxes_ignore_list=None): + """"Compute regression and classification targets for a batch image. + + Outputs from a single decoder layer of a single feature level are used. + + Args: + cls_scores_list (list[Tensor]): Box score logits from a single + decoder layer for each image with shape [num_query, + cls_out_channels]. + bbox_preds_list (list[Tensor]): Sigmoid outputs from a single + decoder layer for each image, with normalized coordinate + (cx, cy, w, h) and shape [num_query, 4]. + gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image + with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels_list (list[Tensor]): Ground truth class indices for each + image with shape (num_gts, ). + img_metas (list[dict]): List of image meta information. + gt_bboxes_ignore_list (list[Tensor], optional): Bounding + boxes which can be ignored for each image. Default None. + + Returns: + tuple: a tuple containing the following targets. + + - labels_list (list[Tensor]): Labels for all images. + - label_weights_list (list[Tensor]): Label weights for all \ + images. + - bbox_targets_list (list[Tensor]): BBox targets for all \ + images. + - bbox_weights_list (list[Tensor]): BBox weights for all \ + images. + - num_total_pos (int): Number of positive samples in all \ + images. + - num_total_neg (int): Number of negative samples in all \ + images. + """ + assert gt_bboxes_ignore_list is None, \ + 'Only supports for gt_bboxes_ignore setting to None.' + num_imgs = len(cls_scores_list) + gt_bboxes_ignore_list = [ + gt_bboxes_ignore_list for _ in range(num_imgs) + ] + + (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply( + self._get_target_single, cls_scores_list, bbox_preds_list, + gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list) + num_total_pos = sum((inds.numel() for inds in pos_inds_list)) + num_total_neg = sum((inds.numel() for inds in neg_inds_list)) + return (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) + + def _get_target_single(self, + cls_score, + bbox_pred, + gt_bboxes, + gt_labels, + img_meta, + gt_bboxes_ignore=None): + """"Compute regression and classification targets for one image. + + Outputs from a single decoder layer of a single feature level are used. + + Args: + cls_score (Tensor): Box score logits from a single decoder layer + for one image. Shape [num_query, cls_out_channels]. + bbox_pred (Tensor): Sigmoid outputs from a single decoder layer + for one image, with normalized coordinate (cx, cy, w, h) and + shape [num_query, 4]. + gt_bboxes (Tensor): Ground truth bboxes for one image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (Tensor): Ground truth class indices for one image + with shape (num_gts, ). + img_meta (dict): Meta information for one image. + gt_bboxes_ignore (Tensor, optional): Bounding boxes + which can be ignored. Default None. + + Returns: + tuple[Tensor]: a tuple containing the following for one image. + + - labels (Tensor): Labels of each image. + - label_weights (Tensor]): Label weights of each image. + - bbox_targets (Tensor): BBox targets of each image. + - bbox_weights (Tensor): BBox weights of each image. + - pos_inds (Tensor): Sampled positive indices for each image. + - neg_inds (Tensor): Sampled negative indices for each image. + """ + + num_bboxes = bbox_pred.size(0) + # assigner and sampler + assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes, + gt_labels, img_meta, + gt_bboxes_ignore) + sampling_result = self.sampler.sample(assign_result, bbox_pred, + gt_bboxes) + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + + # label targets + labels = gt_bboxes.new_full((num_bboxes, ), + self.num_classes, + dtype=torch.long) + labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] + label_weights = gt_bboxes.new_ones(num_bboxes) + + # bbox targets + bbox_targets = torch.zeros_like(bbox_pred) + bbox_weights = torch.zeros_like(bbox_pred) + bbox_weights[pos_inds] = 1.0 + img_h, img_w, _ = img_meta['img_shape'] + + # DETR regress the relative position of boxes (cxcywh) in the image. + # Thus the learning target should be normalized by the image size, also + # the box format should be converted from defaultly x1y1x2y2 to cxcywh. + factor = bbox_pred.new_tensor([img_w, img_h, img_w, + img_h]).unsqueeze(0) + pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor + pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized) + bbox_targets[pos_inds] = pos_gt_bboxes_targets + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + neg_inds) + + # over-write because img_metas are needed as inputs for bbox_head. + def forward_train(self, + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=None, + proposal_cfg=None, + **kwargs): + """Forward function for training mode. + + Args: + x (list[Tensor]): Features from backbone. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + proposal_cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert proposal_cfg is None, '"proposal_cfg" must be None' + outs = self(x, img_metas) + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, img_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) + losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + return losses + + @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list')) + def get_bboxes(self, + all_cls_scores_list, + all_bbox_preds_list, + img_metas, + rescale=False): + """Transform network outputs for a batch into bbox predictions. + + Args: + all_cls_scores_list (list[Tensor]): Classification outputs + for each feature level. Each is a 4D-tensor with shape + [nb_dec, bs, num_query, cls_out_channels]. + all_bbox_preds_list (list[Tensor]): Sigmoid regression + outputs for each feature level. Each is a 4D-tensor with + normalized coordinate format (cx, cy, w, h) and shape + [nb_dec, bs, num_query, 4]. + img_metas (list[dict]): Meta information of each image. + rescale (bool, optional): If True, return boxes in original + image space. Default False. + + Returns: + list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ + The first item is an (n, 5) tensor, where the first 4 columns \ + are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ + 5-th column is a score between 0 and 1. The second item is a \ + (n,) tensor where each item is the predicted class label of \ + the corresponding box. + """ + # NOTE defaultly only using outputs from the last feature level, + # and only the outputs from the last decoder layer is used. + cls_scores = all_cls_scores_list[-1][-1] + bbox_preds = all_bbox_preds_list[-1][-1] + + result_list = [] + for img_id in range(len(img_metas)): + cls_score = cls_scores[img_id] + bbox_pred = bbox_preds[img_id] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + proposals = self._get_bboxes_single(cls_score, bbox_pred, + img_shape, scale_factor, + rescale) + result_list.append(proposals) + + return result_list + + def _get_bboxes_single(self, + cls_score, + bbox_pred, + img_shape, + scale_factor, + rescale=False): + """Transform outputs from the last decoder layer into bbox predictions + for each image. + + Args: + cls_score (Tensor): Box score logits from the last decoder layer + for each image. Shape [num_query, cls_out_channels]. + bbox_pred (Tensor): Sigmoid outputs from the last decoder layer + for each image, with coordinate format (cx, cy, w, h) and + shape [num_query, 4]. + img_shape (tuple[int]): Shape of input image, (height, width, 3). + scale_factor (ndarray, optional): Scale factor of the image arange + as (w_scale, h_scale, w_scale, h_scale). + rescale (bool, optional): If True, return boxes in original image + space. Default False. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. + + - det_bboxes: Predicted bboxes with shape [num_query, 5], \ + where the first 4 columns are bounding box positions \ + (tl_x, tl_y, br_x, br_y) and the 5-th column are scores \ + between 0 and 1. + - det_labels: Predicted labels of the corresponding box with \ + shape [num_query]. + """ + assert len(cls_score) == len(bbox_pred) + max_per_img = self.test_cfg.get('max_per_img', self.num_query) + # exclude background + if self.loss_cls.use_sigmoid: + cls_score = cls_score.sigmoid() + scores, indexes = cls_score.view(-1).topk(max_per_img) + det_labels = indexes % self.num_classes + bbox_index = indexes // self.num_classes + bbox_pred = bbox_pred[bbox_index] + else: + scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1) + scores, bbox_index = scores.topk(max_per_img) + bbox_pred = bbox_pred[bbox_index] + det_labels = det_labels[bbox_index] + + det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) + det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] + det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] + det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) + det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) + if rescale: + det_bboxes /= det_bboxes.new_tensor(scale_factor) + det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1) + + return det_bboxes, det_labels + + def simple_test_bboxes(self, feats, img_metas, rescale=False): + """Test det bboxes without test-time augmentation. + + Args: + feats (tuple[torch.Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is ``bboxes`` with shape (n, 5), + where 5 represent (tl_x, tl_y, br_x, br_y, score). + The shape of the second tensor in the tuple is ``labels`` + with shape (n,) + """ + # forward of this head requires img_metas + outs = self.forward(feats, img_metas) + results_list = self.get_bboxes(*outs, img_metas, rescale=rescale) + return results_list + + def forward_onnx(self, feats, img_metas): + """Forward function for exporting to ONNX. + + Over-write `forward` because: `masks` is directly created with + zero (valid position tag) and has the same spatial size as `x`. + Thus the construction of `masks` is different from that in `forward`. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + img_metas (list[dict]): List of image information. + + Returns: + tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. + + - all_cls_scores_list (list[Tensor]): Classification scores \ + for each scale level. Each is a 4D-tensor with shape \ + [nb_dec, bs, num_query, cls_out_channels]. Note \ + `cls_out_channels` should includes background. + - all_bbox_preds_list (list[Tensor]): Sigmoid regression \ + outputs for each scale level. Each is a 4D-tensor with \ + normalized coordinate format (cx, cy, w, h) and shape \ + [nb_dec, bs, num_query, 4]. + """ + num_levels = len(feats) + img_metas_list = [img_metas for _ in range(num_levels)] + return multi_apply(self.forward_single_onnx, feats, img_metas_list) + + def forward_single_onnx(self, x, img_metas): + """"Forward function for a single feature level with ONNX exportation. + + Args: + x (Tensor): Input feature from backbone's single stage, shape + [bs, c, h, w]. + img_metas (list[dict]): List of image information. + + Returns: + all_cls_scores (Tensor): Outputs from the classification head, + shape [nb_dec, bs, num_query, cls_out_channels]. Note + cls_out_channels should includes background. + all_bbox_preds (Tensor): Sigmoid outputs from the regression + head with normalized coordinate format (cx, cy, w, h). + Shape [nb_dec, bs, num_query, 4]. + """ + # Note `img_shape` is not dynamically traceable to ONNX, + # since the related augmentation was done with numpy under + # CPU. Thus `masks` is directly created with zeros (valid tag) + # and the same spatial shape as `x`. + # The difference between torch and exported ONNX model may be + # ignored, since the same performance is achieved (e.g. + # 40.1 vs 40.1 for DETR) + batch_size = x.size(0) + h, w = x.size()[-2:] + masks = x.new_zeros((batch_size, h, w)) # [B,h,w] + + x = self.input_proj(x) + # interpolate masks to have the same spatial shape with x + masks = F.interpolate( + masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) + pos_embed = self.positional_encoding(masks) + outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, + pos_embed) + + all_cls_scores = self.fc_cls(outs_dec) + all_bbox_preds = self.fc_reg(self.activate( + self.reg_ffn(outs_dec))).sigmoid() + return all_cls_scores, all_bbox_preds + + def onnx_export(self, all_cls_scores_list, all_bbox_preds_list, img_metas): + """Transform network outputs into bbox predictions, with ONNX + exportation. + + Args: + all_cls_scores_list (list[Tensor]): Classification outputs + for each feature level. Each is a 4D-tensor with shape + [nb_dec, bs, num_query, cls_out_channels]. + all_bbox_preds_list (list[Tensor]): Sigmoid regression + outputs for each feature level. Each is a 4D-tensor with + normalized coordinate format (cx, cy, w, h) and shape + [nb_dec, bs, num_query, 4]. + img_metas (list[dict]): Meta information of each image. + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + assert len(img_metas) == 1, \ + 'Only support one input image while in exporting to ONNX' + + cls_scores = all_cls_scores_list[-1][-1] + bbox_preds = all_bbox_preds_list[-1][-1] + + # Note `img_shape` is not dynamically traceable to ONNX, + # here `img_shape_for_onnx` (padded shape of image tensor) + # is used. + img_shape = img_metas[0]['img_shape_for_onnx'] + max_per_img = self.test_cfg.get('max_per_img', self.num_query) + batch_size = cls_scores.size(0) + # `batch_index_offset` is used for the gather of concatenated tensor + batch_index_offset = torch.arange(batch_size).to( + cls_scores.device) * max_per_img + batch_index_offset = batch_index_offset.unsqueeze(1).expand( + batch_size, max_per_img) + + # supports dynamical batch inference + if self.loss_cls.use_sigmoid: + cls_scores = cls_scores.sigmoid() + scores, indexes = cls_scores.view(batch_size, -1).topk( + max_per_img, dim=1) + det_labels = indexes % self.num_classes + bbox_index = indexes // self.num_classes + bbox_index = (bbox_index + batch_index_offset).view(-1) + bbox_preds = bbox_preds.view(-1, 4)[bbox_index] + bbox_preds = bbox_preds.view(batch_size, -1, 4) + else: + scores, det_labels = F.softmax( + cls_scores, dim=-1)[..., :-1].max(-1) + scores, bbox_index = scores.topk(max_per_img, dim=1) + bbox_index = (bbox_index + batch_index_offset).view(-1) + bbox_preds = bbox_preds.view(-1, 4)[bbox_index] + det_labels = det_labels.view(-1)[bbox_index] + bbox_preds = bbox_preds.view(batch_size, -1, 4) + det_labels = det_labels.view(batch_size, -1) + + det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds) + # use `img_shape_tensor` for dynamically exporting to ONNX + img_shape_tensor = img_shape.flip(0).repeat(2) # [w,h,w,h] + img_shape_tensor = img_shape_tensor.unsqueeze(0).unsqueeze(0).expand( + batch_size, det_bboxes.size(1), 4) + det_bboxes = det_bboxes * img_shape_tensor + # dynamically clip bboxes + x1, y1, x2, y2 = det_bboxes.split((1, 1, 1, 1), dim=-1) + from mmdet.core.export import dynamic_clip_for_onnx + x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, img_shape) + det_bboxes = torch.cat([x1, y1, x2, y2], dim=-1) + det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1) + + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/embedding_rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/embedding_rpn_head.py new file mode 100644 index 000000000..22060b964 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/embedding_rpn_head.py @@ -0,0 +1,116 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.runner import BaseModule + +from mmdet.models.builder import HEADS +from ...core import bbox_cxcywh_to_xyxy + + +@HEADS.register_module() +class EmbeddingRPNHead(BaseModule): + """RPNHead in the `Sparse R-CNN `_ . + + Unlike traditional RPNHead, this module does not need FPN input, but just + decode `init_proposal_bboxes` and expand the first dimension of + `init_proposal_bboxes` and `init_proposal_features` to the batch_size. + + Args: + num_proposals (int): Number of init_proposals. Default 100. + proposal_feature_channel (int): Channel number of + init_proposal_feature. Defaults to 256. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + num_proposals=100, + proposal_feature_channel=256, + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(EmbeddingRPNHead, self).__init__(init_cfg) + self.num_proposals = num_proposals + self.proposal_feature_channel = proposal_feature_channel + self._init_layers() + + def _init_layers(self): + """Initialize a sparse set of proposal boxes and proposal features.""" + self.init_proposal_bboxes = nn.Embedding(self.num_proposals, 4) + self.init_proposal_features = nn.Embedding( + self.num_proposals, self.proposal_feature_channel) + + def init_weights(self): + """Initialize the init_proposal_bboxes as normalized. + + [c_x, c_y, w, h], and we initialize it to the size of the entire + image. + """ + super(EmbeddingRPNHead, self).init_weights() + nn.init.constant_(self.init_proposal_bboxes.weight[:, :2], 0.5) + nn.init.constant_(self.init_proposal_bboxes.weight[:, 2:], 1) + + def _decode_init_proposals(self, imgs, img_metas): + """Decode init_proposal_bboxes according to the size of images and + expand dimension of init_proposal_features to batch_size. + + Args: + imgs (list[Tensor]): List of FPN features. + img_metas (list[dict]): List of meta-information of + images. Need the img_shape to decode the init_proposals. + + Returns: + Tuple(Tensor): + + - proposals (Tensor): Decoded proposal bboxes, + has shape (batch_size, num_proposals, 4). + - init_proposal_features (Tensor): Expanded proposal + features, has shape + (batch_size, num_proposals, proposal_feature_channel). + - imgs_whwh (Tensor): Tensor with shape + (batch_size, 4), the dimension means + [img_width, img_height, img_width, img_height]. + """ + proposals = self.init_proposal_bboxes.weight.clone() + proposals = bbox_cxcywh_to_xyxy(proposals) + num_imgs = len(imgs[0]) + imgs_whwh = [] + for meta in img_metas: + h, w, _ = meta['img_shape'] + imgs_whwh.append(imgs[0].new_tensor([[w, h, w, h]])) + imgs_whwh = torch.cat(imgs_whwh, dim=0) + imgs_whwh = imgs_whwh[:, None, :] + + # imgs_whwh has shape (batch_size, 1, 4) + # The shape of proposals change from (num_proposals, 4) + # to (batch_size ,num_proposals, 4) + proposals = proposals * imgs_whwh + + init_proposal_features = self.init_proposal_features.weight.clone() + init_proposal_features = init_proposal_features[None].expand( + num_imgs, *init_proposal_features.size()) + return proposals, init_proposal_features, imgs_whwh + + def forward_dummy(self, img, img_metas): + """Dummy forward function. + + Used in flops calculation. + """ + return self._decode_init_proposals(img, img_metas) + + def forward_train(self, img, img_metas): + """Forward function in training stage.""" + return self._decode_init_proposals(img, img_metas) + + def simple_test_rpn(self, img, img_metas): + """Forward function in testing stage.""" + return self._decode_init_proposals(img, img_metas) + + def simple_test(self, img, img_metas): + """Forward function in testing stage.""" + raise NotImplementedError + + def aug_test_rpn(self, feats, img_metas): + raise NotImplementedError( + 'EmbeddingRPNHead does not support test-time augmentation') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fcos_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fcos_head.py new file mode 100644 index 000000000..d72fb56ca --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fcos_head.py @@ -0,0 +1,455 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +from mmcv.cnn import Scale +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply, reduce_mean +from ..builder import HEADS, build_loss +from .anchor_free_head import AnchorFreeHead + +INF = 1e8 + + +@HEADS.register_module() +class FCOSHead(AnchorFreeHead): + """Anchor-free head used in `FCOS `_. + + The FCOS head does not use anchor boxes. Instead bounding boxes are + predicted at each pixel and a centerness measure is used to suppress + low-quality predictions. + Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training + tricks used in official repo, which will bring remarkable mAP gains + of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for + more detail. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + strides (list[int] | list[tuple[int, int]]): Strides of points + in multiple feature levels. Default: (4, 8, 16, 32, 64). + regress_ranges (tuple[tuple[int, int]]): Regress range of multiple + level points. + center_sampling (bool): If true, use center sampling. Default: False. + center_sample_radius (float): Radius of center sampling. Default: 1.5. + norm_on_bbox (bool): If true, normalize the regression targets + with FPN strides. Default: False. + centerness_on_reg (bool): If true, position centerness on the + regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. + Default: False. + conv_bias (bool | str): If specified as `auto`, it will be decided by the + norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise + False. Default: "auto". + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + loss_centerness (dict): Config of centerness loss. + norm_cfg (dict): dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). + init_cfg (dict or list[dict], optional): Initialization config dict. + + Example: + >>> self = FCOSHead(11, 7) + >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] + >>> cls_score, bbox_pred, centerness = self.forward(feats) + >>> assert len(cls_score) == len(self.scales) + """ # noqa: E501 + + def __init__(self, + num_classes, + in_channels, + regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), + (512, INF)), + center_sampling=False, + center_sample_radius=1.5, + norm_on_bbox=False, + centerness_on_reg=False, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict(type='IoULoss', loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='conv_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.regress_ranges = regress_ranges + self.center_sampling = center_sampling + self.center_sample_radius = center_sample_radius + self.norm_on_bbox = norm_on_bbox + self.centerness_on_reg = centerness_on_reg + super().__init__( + num_classes, + in_channels, + loss_cls=loss_cls, + loss_bbox=loss_bbox, + norm_cfg=norm_cfg, + init_cfg=init_cfg, + **kwargs) + self.loss_centerness = build_loss(loss_centerness) + + def _init_layers(self): + """Initialize layers of the head.""" + super()._init_layers() + self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) + self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Box scores for each scale level, \ + each is a 4D-tensor, the channel number is \ + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each \ + scale level, each is a 4D-tensor, the channel number is \ + num_points * 4. + centernesses (list[Tensor]): centerness for each scale level, \ + each is a 4D-tensor, the channel number is num_points * 1. + """ + return multi_apply(self.forward_single, feats, self.scales, + self.strides) + + def forward_single(self, x, scale, stride): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + stride (int): The corresponding stride for feature maps, only + used to normalize the bbox prediction when self.norm_on_bbox + is True. + + Returns: + tuple: scores for each class, bbox predictions and centerness \ + predictions of input feature maps. + """ + cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) + if self.centerness_on_reg: + centerness = self.conv_centerness(reg_feat) + else: + centerness = self.conv_centerness(cls_feat) + # scale the bbox_pred of different level + # float to avoid overflow when enabling FP16 + bbox_pred = scale(bbox_pred).float() + if self.norm_on_bbox: + # bbox_pred needed for gradient computation has been modified + # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace + # F.relu(bbox_pred) with bbox_pred.clamp(min=0) + bbox_pred = bbox_pred.clamp(min=0) + if not self.training: + bbox_pred *= stride + else: + bbox_pred = bbox_pred.exp() + return cls_score, bbox_pred, centerness + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) + def loss(self, + cls_scores, + bbox_preds, + centernesses, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * 4. + centernesses (list[Tensor]): centerness for each scale level, each + is a 4D-tensor, the channel number is num_points * 1. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == len(centernesses) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + all_level_points = self.prior_generator.grid_priors( + featmap_sizes, + dtype=bbox_preds[0].dtype, + device=bbox_preds[0].device) + labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes, + gt_labels) + + num_imgs = cls_scores[0].size(0) + # flatten cls_scores, bbox_preds and centerness + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + for bbox_pred in bbox_preds + ] + flatten_centerness = [ + centerness.permute(0, 2, 3, 1).reshape(-1) + for centerness in centernesses + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_centerness = torch.cat(flatten_centerness) + flatten_labels = torch.cat(labels) + flatten_bbox_targets = torch.cat(bbox_targets) + # repeat points to align with bbox_preds + flatten_points = torch.cat( + [points.repeat(num_imgs, 1) for points in all_level_points]) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((flatten_labels >= 0) + & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) + num_pos = torch.tensor( + len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) + num_pos = max(reduce_mean(num_pos), 1.0) + loss_cls = self.loss_cls( + flatten_cls_scores, flatten_labels, avg_factor=num_pos) + + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_centerness = flatten_centerness[pos_inds] + pos_bbox_targets = flatten_bbox_targets[pos_inds] + pos_centerness_targets = self.centerness_target(pos_bbox_targets) + # centerness weighted iou loss + centerness_denorm = max( + reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) + + if len(pos_inds) > 0: + pos_points = flatten_points[pos_inds] + pos_decoded_bbox_preds = self.bbox_coder.decode( + pos_points, pos_bbox_preds) + pos_decoded_target_preds = self.bbox_coder.decode( + pos_points, pos_bbox_targets) + loss_bbox = self.loss_bbox( + pos_decoded_bbox_preds, + pos_decoded_target_preds, + weight=pos_centerness_targets, + avg_factor=centerness_denorm) + loss_centerness = self.loss_centerness( + pos_centerness, pos_centerness_targets, avg_factor=num_pos) + else: + loss_bbox = pos_bbox_preds.sum() + loss_centerness = pos_centerness.sum() + + return dict( + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_centerness=loss_centerness) + + def get_targets(self, points, gt_bboxes_list, gt_labels_list): + """Compute regression, classification and centerness targets for points + in multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + + Returns: + tuple: + concat_lvl_labels (list[Tensor]): Labels of each level. \ + concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ + level. + """ + assert len(points) == len(self.regress_ranges) + num_levels = len(points) + # expand regress ranges to align with points + expanded_regress_ranges = [ + points[i].new_tensor(self.regress_ranges[i])[None].expand_as( + points[i]) for i in range(num_levels) + ] + # concat all levels points and regress ranges + concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) + concat_points = torch.cat(points, dim=0) + + # the number of points per img, per lvl + num_points = [center.size(0) for center in points] + + # get labels and bbox_targets of each image + labels_list, bbox_targets_list = multi_apply( + self._get_target_single, + gt_bboxes_list, + gt_labels_list, + points=concat_points, + regress_ranges=concat_regress_ranges, + num_points_per_lvl=num_points) + + # split to per img, per level + labels_list = [labels.split(num_points, 0) for labels in labels_list] + bbox_targets_list = [ + bbox_targets.split(num_points, 0) + for bbox_targets in bbox_targets_list + ] + + # concat per level image + concat_lvl_labels = [] + concat_lvl_bbox_targets = [] + for i in range(num_levels): + concat_lvl_labels.append( + torch.cat([labels[i] for labels in labels_list])) + bbox_targets = torch.cat( + [bbox_targets[i] for bbox_targets in bbox_targets_list]) + if self.norm_on_bbox: + bbox_targets = bbox_targets / self.strides[i] + concat_lvl_bbox_targets.append(bbox_targets) + return concat_lvl_labels, concat_lvl_bbox_targets + + def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, + num_points_per_lvl): + """Compute regression and classification targets for a single image.""" + num_points = points.size(0) + num_gts = gt_labels.size(0) + if num_gts == 0: + return gt_labels.new_full((num_points,), self.num_classes), \ + gt_bboxes.new_zeros((num_points, 4)) + + areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( + gt_bboxes[:, 3] - gt_bboxes[:, 1]) + # TODO: figure out why these two are different + # areas = areas[None].expand(num_points, num_gts) + areas = areas[None].repeat(num_points, 1) + regress_ranges = regress_ranges[:, None, :].expand( + num_points, num_gts, 2) + gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) + xs, ys = points[:, 0], points[:, 1] + xs = xs[:, None].expand(num_points, num_gts) + ys = ys[:, None].expand(num_points, num_gts) + + left = xs - gt_bboxes[..., 0] + right = gt_bboxes[..., 2] - xs + top = ys - gt_bboxes[..., 1] + bottom = gt_bboxes[..., 3] - ys + bbox_targets = torch.stack((left, top, right, bottom), -1) + + if self.center_sampling: + # condition1: inside a `center bbox` + radius = self.center_sample_radius + center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2 + center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2 + center_gts = torch.zeros_like(gt_bboxes) + stride = center_xs.new_zeros(center_xs.shape) + + # project the points on current lvl back to the `original` sizes + lvl_begin = 0 + for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): + lvl_end = lvl_begin + num_points_lvl + stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius + lvl_begin = lvl_end + + x_mins = center_xs - stride + y_mins = center_ys - stride + x_maxs = center_xs + stride + y_maxs = center_ys + stride + center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0], + x_mins, gt_bboxes[..., 0]) + center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1], + y_mins, gt_bboxes[..., 1]) + center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2], + gt_bboxes[..., 2], x_maxs) + center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3], + gt_bboxes[..., 3], y_maxs) + + cb_dist_left = xs - center_gts[..., 0] + cb_dist_right = center_gts[..., 2] - xs + cb_dist_top = ys - center_gts[..., 1] + cb_dist_bottom = center_gts[..., 3] - ys + center_bbox = torch.stack( + (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) + inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 + else: + # condition1: inside a gt bbox + inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 + + # condition2: limit the regression range for each location + max_regress_distance = bbox_targets.max(-1)[0] + inside_regress_range = ( + (max_regress_distance >= regress_ranges[..., 0]) + & (max_regress_distance <= regress_ranges[..., 1])) + + # if there are still more than one objects for a location, + # we choose the one with minimal area + areas[inside_gt_bbox_mask == 0] = INF + areas[inside_regress_range == 0] = INF + min_area, min_area_inds = areas.min(dim=1) + + labels = gt_labels[min_area_inds] + labels[min_area == INF] = self.num_classes # set as BG + bbox_targets = bbox_targets[range(num_points), min_area_inds] + + return labels, bbox_targets + + def centerness_target(self, pos_bbox_targets): + """Compute centerness targets. + + Args: + pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape + (num_pos, 4) + + Returns: + Tensor: Centerness target. + """ + # only calculate pos centerness targets, otherwise there may be nan + left_right = pos_bbox_targets[:, [0, 2]] + top_bottom = pos_bbox_targets[:, [1, 3]] + if len(left_right) == 0: + centerness_targets = left_right[..., 0] + else: + centerness_targets = ( + left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( + top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) + return torch.sqrt(centerness_targets) + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Get points according to feature map size. + + This function will be deprecated soon. + """ + warnings.warn( + '`_get_points_single` in `FCOSHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of a single level feature map ' + 'with `self.prior_generator.single_level_grid_priors` ') + + y, x = super()._get_points_single(featmap_size, stride, dtype, device) + points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), + dim=-1) + stride // 2 + return points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fovea_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fovea_head.py new file mode 100644 index 000000000..8be7fc94c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fovea_head.py @@ -0,0 +1,385 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops import DeformConv2d +from mmcv.runner import BaseModule + +from mmdet.core import multi_apply +from mmdet.core.utils import filter_scores_and_topk +from ..builder import HEADS +from .anchor_free_head import AnchorFreeHead + +INF = 1e8 + + +class FeatureAlign(BaseModule): + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + deform_groups=4, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.1, + override=dict( + type='Normal', name='conv_adaption', std=0.01))): + super(FeatureAlign, self).__init__(init_cfg) + offset_channels = kernel_size * kernel_size * 2 + self.conv_offset = nn.Conv2d( + 4, deform_groups * offset_channels, 1, bias=False) + self.conv_adaption = DeformConv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + deform_groups=deform_groups) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shape): + offset = self.conv_offset(shape) + x = self.relu(self.conv_adaption(x, offset)) + return x + + +@HEADS.register_module() +class FoveaHead(AnchorFreeHead): + """FoveaBox: Beyond Anchor-based Object Detector + https://arxiv.org/abs/1904.03797 + """ + + def __init__(self, + num_classes, + in_channels, + base_edge_list=(16, 32, 64, 128, 256), + scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, + 512)), + sigma=0.4, + with_deform=False, + deform_groups=4, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='conv_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.base_edge_list = base_edge_list + self.scale_ranges = scale_ranges + self.sigma = sigma + self.with_deform = with_deform + self.deform_groups = deform_groups + super().__init__(num_classes, in_channels, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + # box branch + super()._init_reg_convs() + self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + + # cls branch + if not self.with_deform: + super()._init_cls_convs() + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + else: + self.cls_convs = nn.ModuleList() + self.cls_convs.append( + ConvModule( + self.feat_channels, (self.feat_channels * 4), + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.cls_convs.append( + ConvModule((self.feat_channels * 4), (self.feat_channels * 4), + 1, + stride=1, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.feature_adaption = FeatureAlign( + self.feat_channels, + self.feat_channels, + kernel_size=3, + deform_groups=self.deform_groups) + self.conv_cls = nn.Conv2d( + int(self.feat_channels * 4), + self.cls_out_channels, + 3, + padding=1) + + def forward_single(self, x): + cls_feat = x + reg_feat = x + for reg_layer in self.reg_convs: + reg_feat = reg_layer(reg_feat) + bbox_pred = self.conv_reg(reg_feat) + if self.with_deform: + cls_feat = self.feature_adaption(cls_feat, bbox_pred.exp()) + for cls_layer in self.cls_convs: + cls_feat = cls_layer(cls_feat) + cls_score = self.conv_cls(cls_feat) + return cls_score, bbox_pred + + def loss(self, + cls_scores, + bbox_preds, + gt_bbox_list, + gt_label_list, + img_metas, + gt_bboxes_ignore=None): + assert len(cls_scores) == len(bbox_preds) + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + points = self.prior_generator.grid_priors( + featmap_sizes, + dtype=bbox_preds[0].dtype, + device=bbox_preds[0].device) + num_imgs = cls_scores[0].size(0) + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + for bbox_pred in bbox_preds + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_labels, flatten_bbox_targets = self.get_targets( + gt_bbox_list, gt_label_list, featmap_sizes, points) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + pos_inds = ((flatten_labels >= 0) + & (flatten_labels < self.num_classes)).nonzero().view(-1) + num_pos = len(pos_inds) + + loss_cls = self.loss_cls( + flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) + if num_pos > 0: + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_bbox_targets = flatten_bbox_targets[pos_inds] + pos_weights = pos_bbox_targets.new_zeros( + pos_bbox_targets.size()) + 1.0 + loss_bbox = self.loss_bbox( + pos_bbox_preds, + pos_bbox_targets, + pos_weights, + avg_factor=num_pos) + else: + loss_bbox = torch.tensor( + 0, + dtype=flatten_bbox_preds.dtype, + device=flatten_bbox_preds.device) + return dict(loss_cls=loss_cls, loss_bbox=loss_bbox) + + def get_targets(self, gt_bbox_list, gt_label_list, featmap_sizes, points): + label_list, bbox_target_list = multi_apply( + self._get_target_single, + gt_bbox_list, + gt_label_list, + featmap_size_list=featmap_sizes, + point_list=points) + flatten_labels = [ + torch.cat([ + labels_level_img.flatten() for labels_level_img in labels_level + ]) for labels_level in zip(*label_list) + ] + flatten_bbox_targets = [ + torch.cat([ + bbox_targets_level_img.reshape(-1, 4) + for bbox_targets_level_img in bbox_targets_level + ]) for bbox_targets_level in zip(*bbox_target_list) + ] + flatten_labels = torch.cat(flatten_labels) + flatten_bbox_targets = torch.cat(flatten_bbox_targets) + return flatten_labels, flatten_bbox_targets + + def _get_target_single(self, + gt_bboxes_raw, + gt_labels_raw, + featmap_size_list=None, + point_list=None): + + gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) * + (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1])) + label_list = [] + bbox_target_list = [] + # for each pyramid, find the cls and box target + for base_len, (lower_bound, upper_bound), stride, featmap_size, \ + points in zip(self.base_edge_list, self.scale_ranges, + self.strides, featmap_size_list, point_list): + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + points = points.view(*featmap_size, 2) + x, y = points[..., 0], points[..., 1] + labels = gt_labels_raw.new_zeros(featmap_size) + self.num_classes + bbox_targets = gt_bboxes_raw.new(featmap_size[0], featmap_size[1], + 4) + 1 + # scale assignment + hit_indices = ((gt_areas >= lower_bound) & + (gt_areas <= upper_bound)).nonzero().flatten() + if len(hit_indices) == 0: + label_list.append(labels) + bbox_target_list.append(torch.log(bbox_targets)) + continue + _, hit_index_order = torch.sort(-gt_areas[hit_indices]) + hit_indices = hit_indices[hit_index_order] + gt_bboxes = gt_bboxes_raw[hit_indices, :] / stride + gt_labels = gt_labels_raw[hit_indices] + half_w = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0]) + half_h = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) + # valid fovea area: left, right, top, down + pos_left = torch.ceil( + gt_bboxes[:, 0] + (1 - self.sigma) * half_w - 0.5).long(). \ + clamp(0, featmap_size[1] - 1) + pos_right = torch.floor( + gt_bboxes[:, 0] + (1 + self.sigma) * half_w - 0.5).long(). \ + clamp(0, featmap_size[1] - 1) + pos_top = torch.ceil( + gt_bboxes[:, 1] + (1 - self.sigma) * half_h - 0.5).long(). \ + clamp(0, featmap_size[0] - 1) + pos_down = torch.floor( + gt_bboxes[:, 1] + (1 + self.sigma) * half_h - 0.5).long(). \ + clamp(0, featmap_size[0] - 1) + for px1, py1, px2, py2, label, (gt_x1, gt_y1, gt_x2, gt_y2) in \ + zip(pos_left, pos_top, pos_right, pos_down, gt_labels, + gt_bboxes_raw[hit_indices, :]): + labels[py1:py2 + 1, px1:px2 + 1] = label + bbox_targets[py1:py2 + 1, px1:px2 + 1, 0] = \ + (x[py1:py2 + 1, px1:px2 + 1] - gt_x1) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 1] = \ + (y[py1:py2 + 1, px1:px2 + 1] - gt_y1) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 2] = \ + (gt_x2 - x[py1:py2 + 1, px1:px2 + 1]) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 3] = \ + (gt_y2 - y[py1:py2 + 1, px1:px2 + 1]) / base_len + bbox_targets = bbox_targets.clamp(min=1. / 16, max=16.) + label_list.append(labels) + bbox_target_list.append(torch.log(bbox_targets)) + return label_list, bbox_target_list + + # Same as base_dense_head/_get_bboxes_single except self._bbox_decode + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image. Fovea head does not need this value. + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid, has shape + (num_priors, 2). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_score_list) == len(bbox_pred_list) + img_shape = img_meta['img_shape'] + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_labels = [] + for level_idx, (cls_score, bbox_pred, stride, base_len, priors) in \ + enumerate(zip(cls_score_list, bbox_pred_list, self.strides, + self.base_edge_list, mlvl_priors)): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict(bbox_pred=bbox_pred, priors=priors)) + scores, labels, _, filtered_results = results + + bbox_pred = filtered_results['bbox_pred'] + priors = filtered_results['priors'] + + bboxes = self._bbox_decode(priors, bbox_pred, base_len, img_shape) + + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_labels.append(labels) + + return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes, + img_meta['scale_factor'], cfg, rescale, + with_nms) + + def _bbox_decode(self, priors, bbox_pred, base_len, max_shape): + bbox_pred = bbox_pred.exp() + + y = priors[:, 1] + x = priors[:, 0] + x1 = (x - base_len * bbox_pred[:, 0]). \ + clamp(min=0, max=max_shape[1] - 1) + y1 = (y - base_len * bbox_pred[:, 1]). \ + clamp(min=0, max=max_shape[0] - 1) + x2 = (x + base_len * bbox_pred[:, 2]). \ + clamp(min=0, max=max_shape[1] - 1) + y2 = (y + base_len * bbox_pred[:, 3]). \ + clamp(min=0, max=max_shape[0] - 1) + decoded_bboxes = torch.stack([x1, y1, x2, y2], -1) + return decoded_bboxes + + def _get_points_single(self, *args, **kwargs): + """Get points according to feature map size. + + This function will be deprecated soon. + """ + warnings.warn( + '`_get_points_single` in `FoveaHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of a single level feature map ' + 'with `self.prior_generator.single_level_grid_priors` ') + y, x = super()._get_points_single(*args, **kwargs) + return y + 0.5, x + 0.5 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/free_anchor_retina_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/free_anchor_retina_head.py new file mode 100644 index 000000000..3acd25ecb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/free_anchor_retina_head.py @@ -0,0 +1,272 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn.functional as F + +from mmdet.core import bbox_overlaps +from ..builder import HEADS +from .retina_head import RetinaHead + +EPS = 1e-12 + + +@HEADS.register_module() +class FreeAnchorRetinaHead(RetinaHead): + """FreeAnchor RetinaHead used in https://arxiv.org/abs/1909.02466. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + stacked_convs (int): Number of conv layers in cls and reg tower. + Default: 4. + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, + requires_grad=True). + pre_anchor_topk (int): Number of boxes that be token in each bag. + bbox_thr (float): The threshold of the saturated linear function. It is + usually the same with the IoU threshold used in NMS. + gamma (float): Gamma parameter in focal loss. + alpha (float): Alpha parameter in focal loss. + """ # noqa: W605 + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=None, + pre_anchor_topk=50, + bbox_thr=0.6, + gamma=2.0, + alpha=0.5, + **kwargs): + super(FreeAnchorRetinaHead, + self).__init__(num_classes, in_channels, stacked_convs, conv_cfg, + norm_cfg, **kwargs) + + self.pre_anchor_topk = pre_anchor_topk + self.bbox_thr = bbox_thr + self.gamma = gamma + self.alpha = alpha + + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + device = cls_scores[0].device + anchor_list, _ = self.get_anchors( + featmap_sizes, img_metas, device=device) + anchors = [torch.cat(anchor) for anchor in anchor_list] + + # concatenate each level + cls_scores = [ + cls.permute(0, 2, 3, + 1).reshape(cls.size(0), -1, self.cls_out_channels) + for cls in cls_scores + ] + bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(bbox_pred.size(0), -1, 4) + for bbox_pred in bbox_preds + ] + cls_scores = torch.cat(cls_scores, dim=1) + bbox_preds = torch.cat(bbox_preds, dim=1) + + cls_prob = torch.sigmoid(cls_scores) + box_prob = [] + num_pos = 0 + positive_losses = [] + for _, (anchors_, gt_labels_, gt_bboxes_, cls_prob_, + bbox_preds_) in enumerate( + zip(anchors, gt_labels, gt_bboxes, cls_prob, bbox_preds)): + + with torch.no_grad(): + if len(gt_bboxes_) == 0: + image_box_prob = torch.zeros( + anchors_.size(0), + self.cls_out_channels).type_as(bbox_preds_) + else: + # box_localization: a_{j}^{loc}, shape: [j, 4] + pred_boxes = self.bbox_coder.decode(anchors_, bbox_preds_) + + # object_box_iou: IoU_{ij}^{loc}, shape: [i, j] + object_box_iou = bbox_overlaps(gt_bboxes_, pred_boxes) + + # object_box_prob: P{a_{j} -> b_{i}}, shape: [i, j] + t1 = self.bbox_thr + t2 = object_box_iou.max( + dim=1, keepdim=True).values.clamp(min=t1 + 1e-12) + object_box_prob = ((object_box_iou - t1) / + (t2 - t1)).clamp( + min=0, max=1) + + # object_cls_box_prob: P{a_{j} -> b_{i}}, shape: [i, c, j] + num_obj = gt_labels_.size(0) + indices = torch.stack([ + torch.arange(num_obj).type_as(gt_labels_), gt_labels_ + ], + dim=0) + object_cls_box_prob = torch.sparse_coo_tensor( + indices, object_box_prob) + + # image_box_iou: P{a_{j} \in A_{+}}, shape: [c, j] + """ + from "start" to "end" implement: + image_box_iou = torch.sparse.max(object_cls_box_prob, + dim=0).t() + + """ + # start + box_cls_prob = torch.sparse.sum( + object_cls_box_prob, dim=0).to_dense() + + indices = torch.nonzero(box_cls_prob, as_tuple=False).t_() + if indices.numel() == 0: + image_box_prob = torch.zeros( + anchors_.size(0), + self.cls_out_channels).type_as(object_box_prob) + else: + nonzero_box_prob = torch.where( + (gt_labels_.unsqueeze(dim=-1) == indices[0]), + object_box_prob[:, indices[1]], + torch.tensor([ + 0 + ]).type_as(object_box_prob)).max(dim=0).values + + # upmap to shape [j, c] + image_box_prob = torch.sparse_coo_tensor( + indices.flip([0]), + nonzero_box_prob, + size=(anchors_.size(0), + self.cls_out_channels)).to_dense() + # end + + box_prob.append(image_box_prob) + + # construct bags for objects + match_quality_matrix = bbox_overlaps(gt_bboxes_, anchors_) + _, matched = torch.topk( + match_quality_matrix, + self.pre_anchor_topk, + dim=1, + sorted=False) + del match_quality_matrix + + # matched_cls_prob: P_{ij}^{cls} + matched_cls_prob = torch.gather( + cls_prob_[matched], 2, + gt_labels_.view(-1, 1, 1).repeat(1, self.pre_anchor_topk, + 1)).squeeze(2) + + # matched_box_prob: P_{ij}^{loc} + matched_anchors = anchors_[matched] + matched_object_targets = self.bbox_coder.encode( + matched_anchors, + gt_bboxes_.unsqueeze(dim=1).expand_as(matched_anchors)) + loss_bbox = self.loss_bbox( + bbox_preds_[matched], + matched_object_targets, + reduction_override='none').sum(-1) + matched_box_prob = torch.exp(-loss_bbox) + + # positive_losses: {-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )} + num_pos += len(gt_bboxes_) + positive_losses.append( + self.positive_bag_loss(matched_cls_prob, matched_box_prob)) + positive_loss = torch.cat(positive_losses).sum() / max(1, num_pos) + + # box_prob: P{a_{j} \in A_{+}} + box_prob = torch.stack(box_prob, dim=0) + + # negative_loss: + # \sum_{j}{ FL((1 - P{a_{j} \in A_{+}}) * (1 - P_{j}^{bg})) } / n||B|| + negative_loss = self.negative_bag_loss(cls_prob, box_prob).sum() / max( + 1, num_pos * self.pre_anchor_topk) + + # avoid the absence of gradients in regression subnet + # when no ground-truth in a batch + if num_pos == 0: + positive_loss = bbox_preds.sum() * 0 + + losses = { + 'positive_bag_loss': positive_loss, + 'negative_bag_loss': negative_loss + } + return losses + + def positive_bag_loss(self, matched_cls_prob, matched_box_prob): + """Compute positive bag loss. + + :math:`-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )`. + + :math:`P_{ij}^{cls}`: matched_cls_prob, classification probability of matched samples. + + :math:`P_{ij}^{loc}`: matched_box_prob, box probability of matched samples. + + Args: + matched_cls_prob (Tensor): Classification probability of matched + samples in shape (num_gt, pre_anchor_topk). + matched_box_prob (Tensor): BBox probability of matched samples, + in shape (num_gt, pre_anchor_topk). + + Returns: + Tensor: Positive bag loss in shape (num_gt,). + """ # noqa: E501, W605 + # bag_prob = Mean-max(matched_prob) + matched_prob = matched_cls_prob * matched_box_prob + weight = 1 / torch.clamp(1 - matched_prob, 1e-12, None) + weight /= weight.sum(dim=1).unsqueeze(dim=-1) + bag_prob = (weight * matched_prob).sum(dim=1) + # positive_bag_loss = -self.alpha * log(bag_prob) + return self.alpha * F.binary_cross_entropy( + bag_prob, torch.ones_like(bag_prob), reduction='none') + + def negative_bag_loss(self, cls_prob, box_prob): + """Compute negative bag loss. + + :math:`FL((1 - P_{a_{j} \in A_{+}}) * (1 - P_{j}^{bg}))`. + + :math:`P_{a_{j} \in A_{+}}`: Box_probability of matched samples. + + :math:`P_{j}^{bg}`: Classification probability of negative samples. + + Args: + cls_prob (Tensor): Classification probability, in shape + (num_img, num_anchors, num_classes). + box_prob (Tensor): Box probability, in shape + (num_img, num_anchors, num_classes). + + Returns: + Tensor: Negative bag loss in shape (num_img, num_anchors, num_classes). + """ # noqa: E501, W605 + prob = cls_prob * (1 - box_prob) + # There are some cases when neg_prob = 0. + # This will cause the neg_prob.log() to be inf without clamp. + prob = prob.clamp(min=EPS, max=1 - EPS) + negative_bag_loss = prob**self.gamma * F.binary_cross_entropy( + prob, torch.zeros_like(prob), reduction='none') + return (1 - self.alpha) * negative_bag_loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fsaf_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fsaf_head.py new file mode 100644 index 000000000..2d2b78796 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/fsaf_head.py @@ -0,0 +1,433 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.runner import force_fp32 + +from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply, + unmap) +from ..builder import HEADS +from ..losses.accuracy import accuracy +from ..losses.utils import weight_reduce_loss +from .retina_head import RetinaHead + + +@HEADS.register_module() +class FSAFHead(RetinaHead): + """Anchor-free head used in `FSAF `_. + + The head contains two subnetworks. The first classifies anchor boxes and + the second regresses deltas for the anchors (num_anchors is 1 for anchor- + free methods) + + Args: + *args: Same as its base class in :class:`RetinaHead` + score_threshold (float, optional): The score_threshold to calculate + positive recall. If given, prediction scores lower than this value + is counted as incorrect prediction. Default to None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + **kwargs: Same as its base class in :class:`RetinaHead` + + Example: + >>> import torch + >>> self = FSAFHead(11, 7) + >>> x = torch.rand(1, 7, 32, 32) + >>> cls_score, bbox_pred = self.forward_single(x) + >>> # Each anchor predicts a score for each class except background + >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors + >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors + >>> assert cls_per_anchor == self.num_classes + >>> assert box_per_anchor == 4 + """ + + def __init__(self, *args, score_threshold=None, init_cfg=None, **kwargs): + # The positive bias in self.retina_reg conv is to prevent predicted \ + # bbox with 0 area + if init_cfg is None: + init_cfg = dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=[ + dict( + type='Normal', + name='retina_cls', + std=0.01, + bias_prob=0.01), + dict( + type='Normal', name='retina_reg', std=0.01, bias=0.25) + ]) + super().__init__(*args, init_cfg=init_cfg, **kwargs) + self.score_threshold = score_threshold + + def forward_single(self, x): + """Forward feature map of a single scale level. + + Args: + x (Tensor): Feature map of a single scale level. + + Returns: + tuple (Tensor): + cls_score (Tensor): Box scores for each scale level + Has shape (N, num_points * num_classes, H, W). + bbox_pred (Tensor): Box energies / deltas for each scale + level with shape (N, num_points * 4, H, W). + """ + cls_score, bbox_pred = super().forward_single(x) + # relu: TBLR encoder only accepts positive bbox_pred + return cls_score, self.relu(bbox_pred) + + def _get_targets_single(self, + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in a + single image. + + Most of the codes are the same with the base class + :obj: `AnchorHead`, except that it also collects and returns + the matched gt index in the image (from 0 to num_gt-1). If the + anchor bbox is not matched to any gt, the corresponding value in + pos_gt_inds is -1. + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + # Assign gt and sample anchors + anchors = flat_anchors[inside_flags.type(torch.bool), :] + assign_result = self.assigner.assign( + anchors, gt_bboxes, gt_bboxes_ignore, + None if self.sampling else gt_labels) + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros((num_valid_anchors, label_channels), + dtype=torch.float) + pos_gt_inds = anchors.new_full((num_valid_anchors, ), + -1, + dtype=torch.long) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + + if len(pos_inds) > 0: + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + else: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, both + # the predicted boxes and regression targets should be with + # absolute coordinate format. + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + # The assigned gt_index for each anchor. (0-based) + pos_gt_inds[pos_inds] = sampling_result.pos_assigned_gt_inds + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # shadowed_labels is a tensor composed of tuples + # (anchor_inds, class_label) that indicate those anchors lying in the + # outer region of a gt or overlapped by another gt with a smaller + # area. + # + # Therefore, only the shadowed labels are ignored for loss calculation. + # the key `shadowed_labels` is defined in :obj:`CenterRegionAssigner` + shadowed_labels = assign_result.get_extra_property('shadowed_labels') + if shadowed_labels is not None and shadowed_labels.numel(): + if len(shadowed_labels.shape) == 2: + idx_, label_ = shadowed_labels[:, 0], shadowed_labels[:, 1] + assert (labels[idx_] != label_).all(), \ + 'One label cannot be both positive and ignored' + label_weights[idx_, label_] = 0 + else: + label_weights[shadowed_labels] = 0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + labels = unmap(labels, num_total_anchors, inside_flags) + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + pos_gt_inds = unmap( + pos_gt_inds, num_total_anchors, inside_flags, fill=-1) + + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + neg_inds, sampling_result, pos_gt_inds) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_points * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_points * 4, H, W). + gt_bboxes (list[Tensor]): each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + for i in range(len(bbox_preds)): # loop over fpn level + # avoid 0 area of the predicted bbox + bbox_preds[i] = bbox_preds[i].clamp(min=1e-4) + # TODO: It may directly use the base-class loss function. + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + batch_size = len(gt_bboxes) + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg, + pos_assigned_gt_inds_list) = cls_reg_targets + + num_gts = np.array(list(map(len, gt_labels))) + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + # concat all level anchors and flags to a single tensor + concat_anchor_list = [] + for i in range(len(anchor_list)): + concat_anchor_list.append(torch.cat(anchor_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + losses_cls, losses_bbox = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + all_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + + # `pos_assigned_gt_inds_list` (length: fpn_levels) stores the assigned + # gt index of each anchor bbox in each fpn level. + cum_num_gts = list(np.cumsum(num_gts)) # length of batch_size + for i, assign in enumerate(pos_assigned_gt_inds_list): + # loop over fpn levels + for j in range(1, batch_size): + # loop over batch size + # Convert gt indices in each img to those in the batch + assign[j][assign[j] >= 0] += int(cum_num_gts[j - 1]) + pos_assigned_gt_inds_list[i] = assign.flatten() + labels_list[i] = labels_list[i].flatten() + num_gts = sum(map(len, gt_labels)) # total number of gt in the batch + # The unique label index of each gt in the batch + label_sequence = torch.arange(num_gts, device=device) + # Collect the average loss of each gt in each level + with torch.no_grad(): + loss_levels, = multi_apply( + self.collect_loss_level_single, + losses_cls, + losses_bbox, + pos_assigned_gt_inds_list, + labels_seq=label_sequence) + # Shape: (fpn_levels, num_gts). Loss of each gt at each fpn level + loss_levels = torch.stack(loss_levels, dim=0) + # Locate the best fpn level for loss back-propagation + if loss_levels.numel() == 0: # zero gt + argmin = loss_levels.new_empty((num_gts, ), dtype=torch.long) + else: + _, argmin = loss_levels.min(dim=0) + + # Reweight the loss of each (anchor, label) pair, so that only those + # at the best gt level are back-propagated. + losses_cls, losses_bbox, pos_inds = multi_apply( + self.reweight_loss_single, + losses_cls, + losses_bbox, + pos_assigned_gt_inds_list, + labels_list, + list(range(len(losses_cls))), + min_levels=argmin) + num_pos = torch.cat(pos_inds, 0).sum().float() + pos_recall = self.calculate_pos_recall(cls_scores, labels_list, + pos_inds) + + if num_pos == 0: # No gt + avg_factor = num_pos + float(num_total_neg) + else: + avg_factor = num_pos + for i in range(len(losses_cls)): + losses_cls[i] /= avg_factor + losses_bbox[i] /= avg_factor + return dict( + loss_cls=losses_cls, + loss_bbox=losses_bbox, + num_pos=num_pos / batch_size, + pos_recall=pos_recall) + + def calculate_pos_recall(self, cls_scores, labels_list, pos_inds): + """Calculate positive recall with score threshold. + + Args: + cls_scores (list[Tensor]): Classification scores at all fpn levels. + Each tensor is in shape (N, num_classes * num_anchors, H, W) + labels_list (list[Tensor]): The label that each anchor is assigned + to. Shape (N * H * W * num_anchors, ) + pos_inds (list[Tensor]): List of bool tensors indicating whether + the anchor is assigned to a positive label. + Shape (N * H * W * num_anchors, ) + + Returns: + Tensor: A single float number indicating the positive recall. + """ + with torch.no_grad(): + num_class = self.num_classes + scores = [ + cls.permute(0, 2, 3, 1).reshape(-1, num_class)[pos] + for cls, pos in zip(cls_scores, pos_inds) + ] + labels = [ + label.reshape(-1)[pos] + for label, pos in zip(labels_list, pos_inds) + ] + scores = torch.cat(scores, dim=0) + labels = torch.cat(labels, dim=0) + if self.use_sigmoid_cls: + scores = scores.sigmoid() + else: + scores = scores.softmax(dim=1) + + return accuracy(scores, labels, thresh=self.score_threshold) + + def collect_loss_level_single(self, cls_loss, reg_loss, assigned_gt_inds, + labels_seq): + """Get the average loss in each FPN level w.r.t. each gt label. + + Args: + cls_loss (Tensor): Classification loss of each feature map pixel, + shape (num_anchor, num_class) + reg_loss (Tensor): Regression loss of each feature map pixel, + shape (num_anchor, 4) + assigned_gt_inds (Tensor): It indicates which gt the prior is + assigned to (0-based, -1: no assignment). shape (num_anchor), + labels_seq: The rank of labels. shape (num_gt) + + Returns: + shape: (num_gt), average loss of each gt in this level + """ + if len(reg_loss.shape) == 2: # iou loss has shape (num_prior, 4) + reg_loss = reg_loss.sum(dim=-1) # sum loss in tblr dims + if len(cls_loss.shape) == 2: + cls_loss = cls_loss.sum(dim=-1) # sum loss in class dims + loss = cls_loss + reg_loss + assert loss.size(0) == assigned_gt_inds.size(0) + # Default loss value is 1e6 for a layer where no anchor is positive + # to ensure it will not be chosen to back-propagate gradient + losses_ = loss.new_full(labels_seq.shape, 1e6) + for i, l in enumerate(labels_seq): + match = assigned_gt_inds == l + if match.any(): + losses_[i] = loss[match].mean() + return losses_, + + def reweight_loss_single(self, cls_loss, reg_loss, assigned_gt_inds, + labels, level, min_levels): + """Reweight loss values at each level. + + Reassign loss values at each level by masking those where the + pre-calculated loss is too large. Then return the reduced losses. + + Args: + cls_loss (Tensor): Element-wise classification loss. + Shape: (num_anchors, num_classes) + reg_loss (Tensor): Element-wise regression loss. + Shape: (num_anchors, 4) + assigned_gt_inds (Tensor): The gt indices that each anchor bbox + is assigned to. -1 denotes a negative anchor, otherwise it is the + gt index (0-based). Shape: (num_anchors, ), + labels (Tensor): Label assigned to anchors. Shape: (num_anchors, ). + level (int): The current level index in the pyramid + (0-4 for RetinaNet) + min_levels (Tensor): The best-matching level for each gt. + Shape: (num_gts, ), + + Returns: + tuple: + - cls_loss: Reduced corrected classification loss. Scalar. + - reg_loss: Reduced corrected regression loss. Scalar. + - pos_flags (Tensor): Corrected bool tensor indicating the + final positive anchors. Shape: (num_anchors, ). + """ + loc_weight = torch.ones_like(reg_loss) + cls_weight = torch.ones_like(cls_loss) + pos_flags = assigned_gt_inds >= 0 # positive pixel flag + pos_indices = torch.nonzero(pos_flags, as_tuple=False).flatten() + + if pos_flags.any(): # pos pixels exist + pos_assigned_gt_inds = assigned_gt_inds[pos_flags] + zeroing_indices = (min_levels[pos_assigned_gt_inds] != level) + neg_indices = pos_indices[zeroing_indices] + + if neg_indices.numel(): + pos_flags[neg_indices] = 0 + loc_weight[neg_indices] = 0 + # Only the weight corresponding to the label is + # zeroed out if not selected + zeroing_labels = labels[neg_indices] + assert (zeroing_labels >= 0).all() + cls_weight[neg_indices, zeroing_labels] = 0 + + # Weighted loss for both cls and reg loss + cls_loss = weight_reduce_loss(cls_loss, cls_weight, reduction='sum') + reg_loss = weight_reduce_loss(reg_loss, loc_weight, reduction='sum') + + return cls_loss, reg_loss, pos_flags diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_retina_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_retina_head.py new file mode 100644 index 000000000..6d9e874c2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_retina_head.py @@ -0,0 +1,113 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops import MaskedConv2d + +from ..builder import HEADS +from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead + + +@HEADS.register_module() +class GARetinaHead(GuidedAnchorHead): + """Guided-Anchor-based RetinaNet head.""" + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=None, + init_cfg=None, + **kwargs): + if init_cfg is None: + init_cfg = dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=[ + dict( + type='Normal', + name='conv_loc', + std=0.01, + bias_prob=0.01), + dict( + type='Normal', + name='retina_cls', + std=0.01, + bias_prob=0.01) + ]) + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + super(GARetinaHead, self).__init__( + num_classes, in_channels, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + + self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1) + self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2, + 1) + self.feature_adaption_cls = FeatureAdaption( + self.feat_channels, + self.feat_channels, + kernel_size=3, + deform_groups=self.deform_groups) + self.feature_adaption_reg = FeatureAdaption( + self.feat_channels, + self.feat_channels, + kernel_size=3, + deform_groups=self.deform_groups) + self.retina_cls = MaskedConv2d( + self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 3, + padding=1) + self.retina_reg = MaskedConv2d( + self.feat_channels, self.num_base_priors * 4, 3, padding=1) + + def forward_single(self, x): + """Forward feature map of a single scale level.""" + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + + loc_pred = self.conv_loc(cls_feat) + shape_pred = self.conv_shape(reg_feat) + + cls_feat = self.feature_adaption_cls(cls_feat, shape_pred) + reg_feat = self.feature_adaption_reg(reg_feat, shape_pred) + + if not self.training: + mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr + else: + mask = None + cls_score = self.retina_cls(cls_feat, mask) + bbox_pred = self.retina_reg(reg_feat, mask) + return cls_score, bbox_pred, shape_pred, loc_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_rpn_head.py new file mode 100644 index 000000000..4123c8b3f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ga_rpn_head.py @@ -0,0 +1,177 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv import ConfigDict +from mmcv.ops import nms + +from ..builder import HEADS +from .guided_anchor_head import GuidedAnchorHead + + +@HEADS.register_module() +class GARPNHead(GuidedAnchorHead): + """Guided-Anchor-based RPN head.""" + + def __init__(self, + in_channels, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='conv_loc', + std=0.01, + bias_prob=0.01)), + **kwargs): + super(GARPNHead, self).__init__( + 1, in_channels, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + self.rpn_conv = nn.Conv2d( + self.in_channels, self.feat_channels, 3, padding=1) + super(GARPNHead, self)._init_layers() + + def forward_single(self, x): + """Forward feature of a single scale level.""" + + x = self.rpn_conv(x) + x = F.relu(x, inplace=True) + (cls_score, bbox_pred, shape_pred, + loc_pred) = super(GARPNHead, self).forward_single(x) + return cls_score, bbox_pred, shape_pred, loc_pred + + def loss(self, + cls_scores, + bbox_preds, + shape_preds, + loc_preds, + gt_bboxes, + img_metas, + gt_bboxes_ignore=None): + losses = super(GARPNHead, self).loss( + cls_scores, + bbox_preds, + shape_preds, + loc_preds, + gt_bboxes, + None, + img_metas, + gt_bboxes_ignore=gt_bboxes_ignore) + return dict( + loss_rpn_cls=losses['loss_cls'], + loss_rpn_bbox=losses['loss_bbox'], + loss_anchor_shape=losses['loss_shape'], + loss_anchor_loc=losses['loss_loc']) + + def _get_bboxes_single(self, + cls_scores, + bbox_preds, + mlvl_anchors, + mlvl_masks, + img_shape, + scale_factor, + cfg, + rescale=False): + cfg = self.test_cfg if cfg is None else cfg + + cfg = copy.deepcopy(cfg) + + # deprecate arguments warning + if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: + warnings.warn( + 'In rpn_proposal or test_cfg, ' + 'nms_thr has been moved to a dict named nms as ' + 'iou_threshold, max_num has been renamed as max_per_img, ' + 'name of original arguments and the way to specify ' + 'iou_threshold of NMS will be deprecated.') + if 'nms' not in cfg: + cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) + if 'max_num' in cfg: + if 'max_per_img' in cfg: + assert cfg.max_num == cfg.max_per_img, f'You ' \ + f'set max_num and max_per_img at the same time, ' \ + f'but get {cfg.max_num} ' \ + f'and {cfg.max_per_img} respectively' \ + 'Please delete max_num which will be deprecated.' + else: + cfg.max_per_img = cfg.max_num + if 'nms_thr' in cfg: + assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set ' \ + f'iou_threshold in nms and ' \ + f'nms_thr at the same time, but get ' \ + f'{cfg.nms.iou_threshold} and {cfg.nms_thr}' \ + f' respectively. Please delete the ' \ + f'nms_thr which will be deprecated.' + + assert cfg.nms.get('type', 'nms') == 'nms', 'GARPNHead only support ' \ + 'naive nms.' + + mlvl_proposals = [] + for idx in range(len(cls_scores)): + rpn_cls_score = cls_scores[idx] + rpn_bbox_pred = bbox_preds[idx] + anchors = mlvl_anchors[idx] + mask = mlvl_masks[idx] + assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] + # if no location is kept, end. + if mask.sum() == 0: + continue + rpn_cls_score = rpn_cls_score.permute(1, 2, 0) + if self.use_sigmoid_cls: + rpn_cls_score = rpn_cls_score.reshape(-1) + scores = rpn_cls_score.sigmoid() + else: + rpn_cls_score = rpn_cls_score.reshape(-1, 2) + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + scores = rpn_cls_score.softmax(dim=1)[:, :-1] + # filter scores, bbox_pred w.r.t. mask. + # anchors are filtered in get_anchors() beforehand. + scores = scores[mask] + rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, + 4)[mask, :] + if scores.dim() == 0: + rpn_bbox_pred = rpn_bbox_pred.unsqueeze(0) + anchors = anchors.unsqueeze(0) + scores = scores.unsqueeze(0) + # filter anchors, bbox_pred, scores w.r.t. scores + if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: + _, topk_inds = scores.topk(cfg.nms_pre) + rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] + anchors = anchors[topk_inds, :] + scores = scores[topk_inds] + # get proposals w.r.t. anchors and rpn_bbox_pred + proposals = self.bbox_coder.decode( + anchors, rpn_bbox_pred, max_shape=img_shape) + # filter out too small bboxes + if cfg.min_bbox_size >= 0: + w = proposals[:, 2] - proposals[:, 0] + h = proposals[:, 3] - proposals[:, 1] + valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) + if not valid_mask.all(): + proposals = proposals[valid_mask] + scores = scores[valid_mask] + + # NMS in current level + proposals, _ = nms(proposals, scores, cfg.nms.iou_threshold) + proposals = proposals[:cfg.nms_post, :] + mlvl_proposals.append(proposals) + proposals = torch.cat(mlvl_proposals, 0) + if cfg.get('nms_across_levels', False): + # NMS across multi levels + proposals, _ = nms(proposals[:, :4], proposals[:, -1], + cfg.nms.iou_threshold) + proposals = proposals[:cfg.max_per_img, :] + else: + scores = proposals[:, 4] + num = min(cfg.max_per_img, proposals.shape[0]) + _, topk_inds = scores.topk(num) + proposals = proposals[topk_inds, :] + return proposals diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/gfl_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/gfl_head.py new file mode 100644 index 000000000..12eb89db8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/gfl_head.py @@ -0,0 +1,648 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, Scale +from mmcv.runner import force_fp32 + +from mmdet.core import (anchor_inside_flags, bbox_overlaps, build_assigner, + build_sampler, images_to_levels, multi_apply, + reduce_mean, unmap) +from mmdet.core.utils import filter_scores_and_topk +from ..builder import HEADS, build_loss +from .anchor_head import AnchorHead + + +class Integral(nn.Module): + """A fixed layer for calculating integral result from distribution. + + This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, + P(y_i) denotes the softmax vector that represents the discrete distribution + y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} + + Args: + reg_max (int): The maximal value of the discrete set. Default: 16. You + may want to reset it according to your new dataset or related + settings. + """ + + def __init__(self, reg_max=16): + super(Integral, self).__init__() + self.reg_max = reg_max + self.register_buffer('project', + torch.linspace(0, self.reg_max, self.reg_max + 1)) + + def forward(self, x): + """Forward feature from the regression head to get integral result of + bounding box location. + + Args: + x (Tensor): Features of the regression head, shape (N, 4*(n+1)), + n is self.reg_max. + + Returns: + x (Tensor): Integral result of box locations, i.e., distance + offsets from the box center in four directions, shape (N, 4). + """ + x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) + x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) + return x + + +@HEADS.register_module() +class GFLHead(AnchorHead): + """Generalized Focal Loss: Learning Qualified and Distributed Bounding + Boxes for Dense Object Detection. + + GFL head structure is similar with ATSS, however GFL uses + 1) joint representation for classification and localization quality, and + 2) flexible General distribution for bounding box locations, + which are supervised by + Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively + + https://arxiv.org/abs/2006.04388 + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + stacked_convs (int): Number of conv layers in cls and reg tower. + Default: 4. + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): dictionary to construct and config norm layer. + Default: dict(type='GN', num_groups=32, requires_grad=True). + loss_qfl (dict): Config of Quality Focal Loss (QFL). + bbox_coder (dict): Config of bbox coder. Defaults + 'DistancePointBBoxCoder'. + reg_max (int): Max value of integral set :math: `{0, ..., reg_max}` + in QFL setting. Default: 16. + init_cfg (dict or list[dict], optional): Initialization config dict. + Example: + >>> self = GFLHead(11, 7) + >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] + >>> cls_quality_score, bbox_pred = self.forward(feats) + >>> assert len(cls_quality_score) == len(self.scales) + """ + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), + bbox_coder=dict(type='DistancePointBBoxCoder'), + reg_max=16, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='gfl_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.reg_max = reg_max + super(GFLHead, self).__init__( + num_classes, + in_channels, + bbox_coder=bbox_coder, + init_cfg=init_cfg, + **kwargs) + + self.sampling = False + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # SSD sampling=False so use PseudoSampler + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + + self.integral = Integral(self.reg_max) + self.loss_dfl = build_loss(loss_dfl) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + assert self.num_anchors == 1, 'anchor free version' + self.gfl_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + self.gfl_reg = nn.Conv2d( + self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) + self.scales = nn.ModuleList( + [Scale(1.0) for _ in self.prior_generator.strides]) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually a tuple of classification scores and bbox prediction + cls_scores (list[Tensor]): Classification and quality (IoU) + joint scores for all scale levels, each is a 4D-tensor, + the channel number is num_classes. + bbox_preds (list[Tensor]): Box distribution logits for all + scale levels, each is a 4D-tensor, the channel number is + 4*(n+1), n is max value of integral set. + """ + return multi_apply(self.forward_single, feats, self.scales) + + def forward_single(self, x, scale): + """Forward feature of a single scale level. + + Args: + x (Tensor): Features of a single scale level. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + + Returns: + tuple: + cls_score (Tensor): Cls and quality joint scores for a single + scale level the channel number is num_classes. + bbox_pred (Tensor): Box distribution logits for a single scale + level, the channel number is 4*(n+1), n is max value of + integral set. + """ + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + cls_score = self.gfl_cls(cls_feat) + bbox_pred = scale(self.gfl_reg(reg_feat)).float() + return cls_score, bbox_pred + + def anchor_center(self, anchors): + """Get anchor centers from anchors. + + Args: + anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. + + Returns: + Tensor: Anchor centers with shape (N, 2), "xy" format. + """ + anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 + anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 + return torch.stack([anchors_cx, anchors_cy], dim=-1) + + def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, + bbox_targets, stride, num_total_samples): + """Compute loss of a single scale level. + + Args: + anchors (Tensor): Box reference for each scale level with shape + (N, num_total_anchors, 4). + cls_score (Tensor): Cls and quality joint scores for each scale + level has shape (N, num_classes, H, W). + bbox_pred (Tensor): Box distribution logits for each scale + level with shape (N, 4*(n+1), H, W), n is max value of integral + set. + labels (Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (Tensor): Label weights of each anchor with shape + (N, num_total_anchors) + bbox_targets (Tensor): BBox regression targets of each anchor + weight shape (N, num_total_anchors, 4). + stride (tuple): Stride in this scale level. + num_total_samples (int): Number of positive samples that is + reduced over all GPUs. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert stride[0] == stride[1], 'h stride is not equal to w stride!' + anchors = anchors.reshape(-1, 4) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + bbox_pred = bbox_pred.permute(0, 2, 3, + 1).reshape(-1, 4 * (self.reg_max + 1)) + bbox_targets = bbox_targets.reshape(-1, 4) + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((labels >= 0) + & (labels < bg_class_ind)).nonzero().squeeze(1) + score = label_weights.new_zeros(labels.shape) + + if len(pos_inds) > 0: + pos_bbox_targets = bbox_targets[pos_inds] + pos_bbox_pred = bbox_pred[pos_inds] + pos_anchors = anchors[pos_inds] + pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] + + weight_targets = cls_score.detach().sigmoid() + weight_targets = weight_targets.max(dim=1)[0][pos_inds] + pos_bbox_pred_corners = self.integral(pos_bbox_pred) + pos_decode_bbox_pred = self.bbox_coder.decode( + pos_anchor_centers, pos_bbox_pred_corners) + pos_decode_bbox_targets = pos_bbox_targets / stride[0] + score[pos_inds] = bbox_overlaps( + pos_decode_bbox_pred.detach(), + pos_decode_bbox_targets, + is_aligned=True) + pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) + target_corners = self.bbox_coder.encode(pos_anchor_centers, + pos_decode_bbox_targets, + self.reg_max).reshape(-1) + + # regression loss + loss_bbox = self.loss_bbox( + pos_decode_bbox_pred, + pos_decode_bbox_targets, + weight=weight_targets, + avg_factor=1.0) + + # dfl loss + loss_dfl = self.loss_dfl( + pred_corners, + target_corners, + weight=weight_targets[:, None].expand(-1, 4).reshape(-1), + avg_factor=4.0) + else: + loss_bbox = bbox_pred.sum() * 0 + loss_dfl = bbox_pred.sum() * 0 + weight_targets = bbox_pred.new_tensor(0) + + # cls (qfl) loss + loss_cls = self.loss_cls( + cls_score, (labels, score), + weight=label_weights, + avg_factor=num_total_samples) + + return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Cls and quality scores for each scale + level has shape (N, num_classes, H, W). + bbox_preds (list[Tensor]): Box distribution logits for each scale + level with shape (N, 4*(n+1), H, W), n is max value of integral + set. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + + (anchor_list, labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets + + num_total_samples = reduce_mean( + torch.tensor(num_total_pos, dtype=torch.float, + device=device)).item() + num_total_samples = max(num_total_samples, 1.0) + + losses_cls, losses_bbox, losses_dfl,\ + avg_factor = multi_apply( + self.loss_single, + anchor_list, + cls_scores, + bbox_preds, + labels_list, + label_weights_list, + bbox_targets_list, + self.prior_generator.strides, + num_total_samples=num_total_samples) + + avg_factor = sum(avg_factor) + avg_factor = reduce_mean(avg_factor).clamp_(min=1).item() + losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) + losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image. GFL head does not need this value. + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid, has shape + (num_priors, 4). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + cfg = self.test_cfg if cfg is None else cfg + img_shape = img_meta['img_shape'] + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_labels = [] + for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate( + zip(cls_score_list, bbox_pred_list, + self.prior_generator.strides, mlvl_priors)): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + assert stride[0] == stride[1] + + bbox_pred = bbox_pred.permute(1, 2, 0) + bbox_pred = self.integral(bbox_pred) * stride[0] + + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict(bbox_pred=bbox_pred, priors=priors)) + scores, labels, _, filtered_results = results + + bbox_pred = filtered_results['bbox_pred'] + priors = filtered_results['priors'] + + bboxes = self.bbox_coder.decode( + self.anchor_center(priors), bbox_pred, max_shape=img_shape) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_labels.append(labels) + + return self._bbox_post_process( + mlvl_scores, + mlvl_labels, + mlvl_bboxes, + img_meta['scale_factor'], + cfg, + rescale=rescale, + with_nms=with_nms) + + def get_targets(self, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True): + """Get targets for GFL head. + + This method is almost the same as `AnchorHead.get_targets()`. Besides + returning the targets as the parent method does, it also returns the + anchors as the first element of the returned tuple. + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + num_level_anchors_list = [num_level_anchors] * num_imgs + + # concat all level anchors and flags to a single tensor + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + anchor_list[i] = torch.cat(anchor_list[i]) + valid_flag_list[i] = torch.cat(valid_flag_list[i]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + (all_anchors, all_labels, all_label_weights, all_bbox_targets, + all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( + self._get_target_single, + anchor_list, + valid_flag_list, + num_level_anchors_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + anchors_list = images_to_levels(all_anchors, num_level_anchors) + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + return (anchors_list, labels_list, label_weights_list, + bbox_targets_list, bbox_weights_list, num_total_pos, + num_total_neg) + + def _get_target_single(self, + flat_anchors, + valid_flags, + num_level_anchors, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression, classification targets for anchors in a single + image. + + Args: + flat_anchors (Tensor): Multi-level anchors of the image, which are + concatenated into a single tensor of shape (num_anchors, 4) + valid_flags (Tensor): Multi level valid flags of the image, + which are concatenated into a single tensor of + shape (num_anchors,). + num_level_anchors Tensor): Number of anchors of each scale level. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + img_meta (dict): Meta info of the image. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: N is the number of total anchors in the image. + anchors (Tensor): All anchors in the image with shape (N, 4). + labels (Tensor): Labels of all anchors in the image with shape + (N,). + label_weights (Tensor): Label weights of all anchor in the + image with shape (N,). + bbox_targets (Tensor): BBox targets of all anchors in the + image with shape (N, 4). + bbox_weights (Tensor): BBox weights of all anchors in the + image with shape (N, 4). + pos_inds (Tensor): Indices of positive anchor with shape + (num_pos,). + neg_inds (Tensor): Indices of negative anchor with shape + (num_neg,). + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + # assign gt and sample anchors + anchors = flat_anchors[inside_flags, :] + + num_level_anchors_inside = self.get_num_level_anchors_inside( + num_level_anchors, inside_flags) + assign_result = self.assigner.assign(anchors, num_level_anchors_inside, + gt_bboxes, gt_bboxes_ignore, + gt_labels) + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + anchors = unmap(anchors, num_total_anchors, inside_flags) + labels = unmap( + labels, num_total_anchors, inside_flags, fill=self.num_classes) + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + + return (anchors, labels, label_weights, bbox_targets, bbox_weights, + pos_inds, neg_inds) + + def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): + split_inside_flags = torch.split(inside_flags, num_level_anchors) + num_level_anchors_inside = [ + int(flags.sum()) for flags in split_inside_flags + ] + return num_level_anchors_inside diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/guided_anchor_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/guided_anchor_head.py new file mode 100644 index 000000000..53e8cd8a7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/guided_anchor_head.py @@ -0,0 +1,868 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +from mmcv.ops import DeformConv2d, MaskedConv2d +from mmcv.runner import BaseModule, force_fp32 + +from mmdet.core import (anchor_inside_flags, build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, calc_region, + images_to_levels, multi_apply, multiclass_nms, unmap) +from ..builder import HEADS, build_loss +from .anchor_head import AnchorHead + + +class FeatureAdaption(BaseModule): + """Feature Adaption Module. + + Feature Adaption Module is implemented based on DCN v1. + It uses anchor shape prediction rather than feature map to + predict offsets of deform conv layer. + + Args: + in_channels (int): Number of channels in the input feature map. + out_channels (int): Number of channels in the output feature map. + kernel_size (int): Deformable conv kernel size. + deform_groups (int): Deformable conv group size. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + deform_groups=4, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.1, + override=dict( + type='Normal', name='conv_adaption', std=0.01))): + super(FeatureAdaption, self).__init__(init_cfg) + offset_channels = kernel_size * kernel_size * 2 + self.conv_offset = nn.Conv2d( + 2, deform_groups * offset_channels, 1, bias=False) + self.conv_adaption = DeformConv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + deform_groups=deform_groups) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shape): + offset = self.conv_offset(shape.detach()) + x = self.relu(self.conv_adaption(x, offset)) + return x + + +@HEADS.register_module() +class GuidedAnchorHead(AnchorHead): + """Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.). + + This GuidedAnchorHead will predict high-quality feature guided + anchors and locations where anchors will be kept in inference. + There are mainly 3 categories of bounding-boxes. + + - Sampled 9 pairs for target assignment. (approxes) + - The square boxes where the predicted anchors are based on. (squares) + - Guided anchors. + + Please refer to https://arxiv.org/abs/1901.03278 for more details. + + Args: + num_classes (int): Number of classes. + in_channels (int): Number of channels in the input feature map. + feat_channels (int): Number of hidden channels. + approx_anchor_generator (dict): Config dict for approx generator + square_anchor_generator (dict): Config dict for square generator + anchor_coder (dict): Config dict for anchor coder + bbox_coder (dict): Config dict for bbox coder + reg_decoded_bbox (bool): If true, the regression loss would be + applied directly on decoded bounding boxes, converting both + the predicted boxes and regression targets to absolute + coordinates format. Default False. It should be `True` when + using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. + deform_groups: (int): Group number of DCN in + FeatureAdaption module. + loc_filter_thr (float): Threshold to filter out unconcerned regions. + loss_loc (dict): Config of location loss. + loss_shape (dict): Config of anchor shape loss. + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of bbox regression loss. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__( + self, + num_classes, + in_channels, + feat_channels=256, + approx_anchor_generator=dict( + type='AnchorGenerator', + octave_base_scale=8, + scales_per_octave=3, + ratios=[0.5, 1.0, 2.0], + strides=[4, 8, 16, 32, 64]), + square_anchor_generator=dict( + type='AnchorGenerator', + ratios=[1.0], + scales=[8], + strides=[4, 8, 16, 32, 64]), + anchor_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0] + ), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0] + ), + reg_decoded_bbox=False, + deform_groups=4, + loc_filter_thr=0.01, + train_cfg=None, + test_cfg=None, + loss_loc=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), + loss_cls=dict( + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=1.0, + loss_weight=1.0), + init_cfg=dict(type='Normal', layer='Conv2d', std=0.01, + override=dict(type='Normal', + name='conv_loc', + std=0.01, + bias_prob=0.01))): # yapf: disable + super(AnchorHead, self).__init__(init_cfg) + self.in_channels = in_channels + self.num_classes = num_classes + self.feat_channels = feat_channels + self.deform_groups = deform_groups + self.loc_filter_thr = loc_filter_thr + + # build approx_anchor_generator and square_anchor_generator + assert (approx_anchor_generator['octave_base_scale'] == + square_anchor_generator['scales'][0]) + assert (approx_anchor_generator['strides'] == + square_anchor_generator['strides']) + self.approx_anchor_generator = build_prior_generator( + approx_anchor_generator) + self.square_anchor_generator = build_prior_generator( + square_anchor_generator) + self.approxs_per_octave = self.approx_anchor_generator \ + .num_base_priors[0] + + self.reg_decoded_bbox = reg_decoded_bbox + + # one anchor per location + self.num_base_priors = self.square_anchor_generator.num_base_priors[0] + + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + self.loc_focal_loss = loss_loc['type'] in ['FocalLoss'] + self.sampling = loss_cls['type'] not in ['FocalLoss'] + self.ga_sampling = train_cfg is not None and hasattr( + train_cfg, 'ga_sampler') + if self.use_sigmoid_cls: + self.cls_out_channels = self.num_classes + else: + self.cls_out_channels = self.num_classes + 1 + + # build bbox_coder + self.anchor_coder = build_bbox_coder(anchor_coder) + self.bbox_coder = build_bbox_coder(bbox_coder) + + # build losses + self.loss_loc = build_loss(loss_loc) + self.loss_shape = build_loss(loss_shape) + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # use PseudoSampler when sampling is False + if self.sampling and hasattr(self.train_cfg, 'sampler'): + sampler_cfg = self.train_cfg.sampler + else: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + + self.ga_assigner = build_assigner(self.train_cfg.ga_assigner) + if self.ga_sampling: + ga_sampler_cfg = self.train_cfg.ga_sampler + else: + ga_sampler_cfg = dict(type='PseudoSampler') + self.ga_sampler = build_sampler(ga_sampler_cfg, context=self) + + self.fp16_enabled = False + + self._init_layers() + + @property + def num_anchors(self): + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'please use "num_base_priors" instead') + return self.square_anchor_generator.num_base_priors[0] + + def _init_layers(self): + self.relu = nn.ReLU(inplace=True) + self.conv_loc = nn.Conv2d(self.in_channels, 1, 1) + self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2, + 1) + self.feature_adaption = FeatureAdaption( + self.in_channels, + self.feat_channels, + kernel_size=3, + deform_groups=self.deform_groups) + self.conv_cls = MaskedConv2d( + self.feat_channels, self.num_base_priors * self.cls_out_channels, + 1) + self.conv_reg = MaskedConv2d(self.feat_channels, + self.num_base_priors * 4, 1) + + def forward_single(self, x): + loc_pred = self.conv_loc(x) + shape_pred = self.conv_shape(x) + x = self.feature_adaption(x, shape_pred) + # masked conv is only used during inference for speed-up + if not self.training: + mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr + else: + mask = None + cls_score = self.conv_cls(x, mask) + bbox_pred = self.conv_reg(x, mask) + return cls_score, bbox_pred, shape_pred, loc_pred + + def forward(self, feats): + return multi_apply(self.forward_single, feats) + + def get_sampled_approxs(self, featmap_sizes, img_metas, device='cuda'): + """Get sampled approxs and inside flags according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + device (torch.device | str): device for returned tensors + + Returns: + tuple: approxes of each image, inside flags of each image + """ + num_imgs = len(img_metas) + + # since feature map sizes of all images are the same, we only compute + # approxes for one time + multi_level_approxs = self.approx_anchor_generator.grid_priors( + featmap_sizes, device=device) + approxs_list = [multi_level_approxs for _ in range(num_imgs)] + + # for each image, we compute inside flags of multi level approxes + inside_flag_list = [] + for img_id, img_meta in enumerate(img_metas): + multi_level_flags = [] + multi_level_approxs = approxs_list[img_id] + + # obtain valid flags for each approx first + multi_level_approx_flags = self.approx_anchor_generator \ + .valid_flags(featmap_sizes, + img_meta['pad_shape'], + device=device) + + for i, flags in enumerate(multi_level_approx_flags): + approxs = multi_level_approxs[i] + inside_flags_list = [] + for i in range(self.approxs_per_octave): + split_valid_flags = flags[i::self.approxs_per_octave] + split_approxs = approxs[i::self.approxs_per_octave, :] + inside_flags = anchor_inside_flags( + split_approxs, split_valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + inside_flags_list.append(inside_flags) + # inside_flag for a position is true if any anchor in this + # position is true + inside_flags = ( + torch.stack(inside_flags_list, 0).sum(dim=0) > 0) + multi_level_flags.append(inside_flags) + inside_flag_list.append(multi_level_flags) + return approxs_list, inside_flag_list + + def get_anchors(self, + featmap_sizes, + shape_preds, + loc_preds, + img_metas, + use_loc_filter=False, + device='cuda'): + """Get squares according to feature map sizes and guided anchors. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + shape_preds (list[tensor]): Multi-level shape predictions. + loc_preds (list[tensor]): Multi-level location predictions. + img_metas (list[dict]): Image meta info. + use_loc_filter (bool): Use loc filter or not. + device (torch.device | str): device for returned tensors + + Returns: + tuple: square approxs of each image, guided anchors of each image, + loc masks of each image + """ + num_imgs = len(img_metas) + num_levels = len(featmap_sizes) + + # since feature map sizes of all images are the same, we only compute + # squares for one time + multi_level_squares = self.square_anchor_generator.grid_priors( + featmap_sizes, device=device) + squares_list = [multi_level_squares for _ in range(num_imgs)] + + # for each image, we compute multi level guided anchors + guided_anchors_list = [] + loc_mask_list = [] + for img_id, img_meta in enumerate(img_metas): + multi_level_guided_anchors = [] + multi_level_loc_mask = [] + for i in range(num_levels): + squares = squares_list[img_id][i] + shape_pred = shape_preds[i][img_id] + loc_pred = loc_preds[i][img_id] + guided_anchors, loc_mask = self._get_guided_anchors_single( + squares, + shape_pred, + loc_pred, + use_loc_filter=use_loc_filter) + multi_level_guided_anchors.append(guided_anchors) + multi_level_loc_mask.append(loc_mask) + guided_anchors_list.append(multi_level_guided_anchors) + loc_mask_list.append(multi_level_loc_mask) + return squares_list, guided_anchors_list, loc_mask_list + + def _get_guided_anchors_single(self, + squares, + shape_pred, + loc_pred, + use_loc_filter=False): + """Get guided anchors and loc masks for a single level. + + Args: + square (tensor): Squares of a single level. + shape_pred (tensor): Shape predictions of a single level. + loc_pred (tensor): Loc predictions of a single level. + use_loc_filter (list[tensor]): Use loc filter or not. + + Returns: + tuple: guided anchors, location masks + """ + # calculate location filtering mask + loc_pred = loc_pred.sigmoid().detach() + if use_loc_filter: + loc_mask = loc_pred >= self.loc_filter_thr + else: + loc_mask = loc_pred >= 0.0 + mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors) + mask = mask.contiguous().view(-1) + # calculate guided anchors + squares = squares[mask] + anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view( + -1, 2).detach()[mask] + bbox_deltas = anchor_deltas.new_full(squares.size(), 0) + bbox_deltas[:, 2:] = anchor_deltas + guided_anchors = self.anchor_coder.decode( + squares, bbox_deltas, wh_ratio_clip=1e-6) + return guided_anchors, mask + + def ga_loc_targets(self, gt_bboxes_list, featmap_sizes): + """Compute location targets for guided anchoring. + + Each feature map is divided into positive, negative and ignore regions. + - positive regions: target 1, weight 1 + - ignore regions: target 0, weight 0 + - negative regions: target 0, weight 0.1 + + Args: + gt_bboxes_list (list[Tensor]): Gt bboxes of each image. + featmap_sizes (list[tuple]): Multi level sizes of each feature + maps. + + Returns: + tuple + """ + anchor_scale = self.approx_anchor_generator.octave_base_scale + anchor_strides = self.approx_anchor_generator.strides + # Currently only supports same stride in x and y direction. + for stride in anchor_strides: + assert (stride[0] == stride[1]) + anchor_strides = [stride[0] for stride in anchor_strides] + + center_ratio = self.train_cfg.center_ratio + ignore_ratio = self.train_cfg.ignore_ratio + img_per_gpu = len(gt_bboxes_list) + num_lvls = len(featmap_sizes) + r1 = (1 - center_ratio) / 2 + r2 = (1 - ignore_ratio) / 2 + all_loc_targets = [] + all_loc_weights = [] + all_ignore_map = [] + for lvl_id in range(num_lvls): + h, w = featmap_sizes[lvl_id] + loc_targets = torch.zeros( + img_per_gpu, + 1, + h, + w, + device=gt_bboxes_list[0].device, + dtype=torch.float32) + loc_weights = torch.full_like(loc_targets, -1) + ignore_map = torch.zeros_like(loc_targets) + all_loc_targets.append(loc_targets) + all_loc_weights.append(loc_weights) + all_ignore_map.append(ignore_map) + for img_id in range(img_per_gpu): + gt_bboxes = gt_bboxes_list[img_id] + scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * + (gt_bboxes[:, 3] - gt_bboxes[:, 1])) + min_anchor_size = scale.new_full( + (1, ), float(anchor_scale * anchor_strides[0])) + # assign gt bboxes to different feature levels w.r.t. their scales + target_lvls = torch.floor( + torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) + target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() + for gt_id in range(gt_bboxes.size(0)): + lvl = target_lvls[gt_id].item() + # rescaled to corresponding feature map + gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl] + # calculate ignore regions + ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( + gt_, r2, featmap_sizes[lvl]) + # calculate positive (center) regions + ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region( + gt_, r1, featmap_sizes[lvl]) + all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, + ctr_x1:ctr_x2 + 1] = 1 + all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1, + ignore_x1:ignore_x2 + 1] = 0 + all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, + ctr_x1:ctr_x2 + 1] = 1 + # calculate ignore map on nearby low level feature + if lvl > 0: + d_lvl = lvl - 1 + # rescaled to corresponding feature map + gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl] + ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( + gt_, r2, featmap_sizes[d_lvl]) + all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, + ignore_x1:ignore_x2 + 1] = 1 + # calculate ignore map on nearby high level feature + if lvl < num_lvls - 1: + u_lvl = lvl + 1 + # rescaled to corresponding feature map + gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl] + ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( + gt_, r2, featmap_sizes[u_lvl]) + all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, + ignore_x1:ignore_x2 + 1] = 1 + for lvl_id in range(num_lvls): + # ignore negative regions w.r.t. ignore map + all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0) + & (all_ignore_map[lvl_id] > 0)] = 0 + # set negative regions with weight 0.1 + all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1 + # loc average factor to balance loss + loc_avg_factor = sum( + [t.size(0) * t.size(-1) * t.size(-2) + for t in all_loc_targets]) / 200 + return all_loc_targets, all_loc_weights, loc_avg_factor + + def _ga_shape_target_single(self, + flat_approxs, + inside_flags, + flat_squares, + gt_bboxes, + gt_bboxes_ignore, + img_meta, + unmap_outputs=True): + """Compute guided anchoring targets. + + This function returns sampled anchors and gt bboxes directly + rather than calculates regression targets. + + Args: + flat_approxs (Tensor): flat approxs of a single image, + shape (n, 4) + inside_flags (Tensor): inside flags of a single image, + shape (n, ). + flat_squares (Tensor): flat squares of a single image, + shape (approxs_per_octave * n, 4) + gt_bboxes (Tensor): Ground truth bboxes of a single image. + img_meta (dict): Meta info of a single image. + approxs_per_octave (int): number of approxs per octave + cfg (dict): RPN train configs. + unmap_outputs (bool): unmap outputs or not. + + Returns: + tuple + """ + if not inside_flags.any(): + return (None, ) * 5 + # assign gt and sample anchors + expand_inside_flags = inside_flags[:, None].expand( + -1, self.approxs_per_octave).reshape(-1) + approxs = flat_approxs[expand_inside_flags, :] + squares = flat_squares[inside_flags, :] + + assign_result = self.ga_assigner.assign(approxs, squares, + self.approxs_per_octave, + gt_bboxes, gt_bboxes_ignore) + sampling_result = self.ga_sampler.sample(assign_result, squares, + gt_bboxes) + + bbox_anchors = torch.zeros_like(squares) + bbox_gts = torch.zeros_like(squares) + bbox_weights = torch.zeros_like(squares) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes + bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes + bbox_weights[pos_inds, :] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_squares.size(0) + bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags) + bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags) + bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) + + return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds) + + def ga_shape_targets(self, + approx_list, + inside_flag_list, + square_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + unmap_outputs=True): + """Compute guided anchoring targets. + + Args: + approx_list (list[list]): Multi level approxs of each image. + inside_flag_list (list[list]): Multi level inside flags of each + image. + square_list (list[list]): Multi level squares of each image. + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes. + unmap_outputs (bool): unmap outputs or not. + + Returns: + tuple + """ + num_imgs = len(img_metas) + assert len(approx_list) == len(inside_flag_list) == len( + square_list) == num_imgs + # anchor number of multi levels + num_level_squares = [squares.size(0) for squares in square_list[0]] + # concat all level anchors and flags to a single tensor + inside_flag_flat_list = [] + approx_flat_list = [] + square_flat_list = [] + for i in range(num_imgs): + assert len(square_list[i]) == len(inside_flag_list[i]) + inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) + approx_flat_list.append(torch.cat(approx_list[i])) + square_flat_list.append(torch.cat(square_list[i])) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + (all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list, + neg_inds_list) = multi_apply( + self._ga_shape_target_single, + approx_flat_list, + inside_flag_flat_list, + square_flat_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + img_metas, + unmap_outputs=unmap_outputs) + # no valid anchors + if any([bbox_anchors is None for bbox_anchors in all_bbox_anchors]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + bbox_anchors_list = images_to_levels(all_bbox_anchors, + num_level_squares) + bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_squares) + return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, + num_total_pos, num_total_neg) + + def loss_shape_single(self, shape_pred, bbox_anchors, bbox_gts, + anchor_weights, anchor_total_num): + shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2) + bbox_anchors = bbox_anchors.contiguous().view(-1, 4) + bbox_gts = bbox_gts.contiguous().view(-1, 4) + anchor_weights = anchor_weights.contiguous().view(-1, 4) + bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0) + bbox_deltas[:, 2:] += shape_pred + # filter out negative samples to speed-up weighted_bounded_iou_loss + inds = torch.nonzero( + anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1) + bbox_deltas_ = bbox_deltas[inds] + bbox_anchors_ = bbox_anchors[inds] + bbox_gts_ = bbox_gts[inds] + anchor_weights_ = anchor_weights[inds] + pred_anchors_ = self.anchor_coder.decode( + bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6) + loss_shape = self.loss_shape( + pred_anchors_, + bbox_gts_, + anchor_weights_, + avg_factor=anchor_total_num) + return loss_shape + + def loss_loc_single(self, loc_pred, loc_target, loc_weight, + loc_avg_factor): + loss_loc = self.loss_loc( + loc_pred.reshape(-1, 1), + loc_target.reshape(-1).long(), + loc_weight.reshape(-1), + avg_factor=loc_avg_factor) + return loss_loc + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'shape_preds', 'loc_preds')) + def loss(self, + cls_scores, + bbox_preds, + shape_preds, + loc_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.approx_anchor_generator.num_levels + + device = cls_scores[0].device + + # get loc targets + loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets( + gt_bboxes, featmap_sizes) + + # get sampled approxes + approxs_list, inside_flag_list = self.get_sampled_approxs( + featmap_sizes, img_metas, device=device) + # get squares and guided anchors + squares_list, guided_anchors_list, _ = self.get_anchors( + featmap_sizes, shape_preds, loc_preds, img_metas, device=device) + + # get shape targets + shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list, + squares_list, gt_bboxes, + img_metas) + if shape_targets is None: + return None + (bbox_anchors_list, bbox_gts_list, anchor_weights_list, anchor_fg_num, + anchor_bg_num) = shape_targets + anchor_total_num = ( + anchor_fg_num if not self.ga_sampling else anchor_fg_num + + anchor_bg_num) + + # get anchor targets + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + guided_anchors_list, + inside_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + # anchor number of multi levels + num_level_anchors = [ + anchors.size(0) for anchors in guided_anchors_list[0] + ] + # concat all level anchors to a single tensor + concat_anchor_list = [] + for i in range(len(guided_anchors_list)): + concat_anchor_list.append(torch.cat(guided_anchors_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + + # get classification and bbox regression losses + losses_cls, losses_bbox = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + all_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + + # get anchor location loss + losses_loc = [] + for i in range(len(loc_preds)): + loss_loc = self.loss_loc_single( + loc_preds[i], + loc_targets[i], + loc_weights[i], + loc_avg_factor=loc_avg_factor) + losses_loc.append(loss_loc) + + # get anchor shape loss + losses_shape = [] + for i in range(len(shape_preds)): + loss_shape = self.loss_shape_single( + shape_preds[i], + bbox_anchors_list[i], + bbox_gts_list[i], + anchor_weights_list[i], + anchor_total_num=anchor_total_num) + losses_shape.append(loss_shape) + + return dict( + loss_cls=losses_cls, + loss_bbox=losses_bbox, + loss_shape=losses_shape, + loss_loc=losses_loc) + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'shape_preds', 'loc_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + shape_preds, + loc_preds, + img_metas, + cfg=None, + rescale=False): + assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len( + loc_preds) + num_levels = len(cls_scores) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + device = cls_scores[0].device + # get guided anchors + _, guided_anchors, loc_masks = self.get_anchors( + featmap_sizes, + shape_preds, + loc_preds, + img_metas, + use_loc_filter=not self.training, + device=device) + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + guided_anchor_list = [ + guided_anchors[img_id][i].detach() for i in range(num_levels) + ] + loc_mask_list = [ + loc_masks[img_id][i].detach() for i in range(num_levels) + ] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, + guided_anchor_list, + loc_mask_list, img_shape, + scale_factor, cfg, rescale) + result_list.append(proposals) + return result_list + + def _get_bboxes_single(self, + cls_scores, + bbox_preds, + mlvl_anchors, + mlvl_masks, + img_shape, + scale_factor, + cfg, + rescale=False): + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) + mlvl_bboxes = [] + mlvl_scores = [] + for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds, + mlvl_anchors, + mlvl_masks): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + # if no location is kept, end. + if mask.sum() == 0: + continue + # reshape scores and bbox_pred + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1) + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + # filter scores, bbox_pred w.r.t. mask. + # anchors are filtered in get_anchors() beforehand. + scores = scores[mask, :] + bbox_pred = bbox_pred[mask, :] + if scores.dim() == 0: + anchors = anchors.unsqueeze(0) + scores = scores.unsqueeze(0) + bbox_pred = bbox_pred.unsqueeze(0) + # filter anchors, bbox_pred, scores w.r.t. scores + nms_pre = cfg.get('nms_pre', -1) + if nms_pre > 0 and scores.shape[0] > nms_pre: + if self.use_sigmoid_cls: + max_scores, _ = scores.max(dim=1) + else: + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + max_scores, _ = scores[:, :-1].max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + anchors = anchors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + bboxes = self.bbox_coder.decode( + anchors, bbox_pred, max_shape=img_shape) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_bboxes = torch.cat(mlvl_bboxes) + if rescale: + mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) + mlvl_scores = torch.cat(mlvl_scores) + if self.use_sigmoid_cls: + # Add a dummy background class to the backend when using sigmoid + # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 + # BG cat_id: num_class + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + # multi class NMS + det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, + cfg.score_thr, cfg.nms, + cfg.max_per_img) + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/lad_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/lad_head.py new file mode 100644 index 000000000..85273bcb2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/lad_head.py @@ -0,0 +1,232 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 + +from mmdet.core import bbox_overlaps, multi_apply +from ..builder import HEADS +from .paa_head import PAAHead, levels_to_images + + +@HEADS.register_module() +class LADHead(PAAHead): + """Label Assignment Head from the paper: `Improving Object Detection by + Label Assignment Distillation `_""" + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds')) + def get_label_assignment(self, + cls_scores, + bbox_preds, + iou_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Get label assignment (from teacher). + + Args: + cls_scores (list[Tensor]): Box scores for each scale level. + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + iou_preds (list[Tensor]): iou_preds for each scale + level with shape (N, num_anchors * 1, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when are computing the loss. + + Returns: + tuple: Returns a tuple containing label assignment variables. + + - labels (Tensor): Labels of all anchors, each with + shape (num_anchors,). + - labels_weight (Tensor): Label weights of all anchor. + each with shape (num_anchors,). + - bboxes_target (Tensor): BBox targets of all anchors. + each with shape (num_anchors, 4). + - bboxes_weight (Tensor): BBox weights of all anchors. + each with shape (num_anchors, 4). + - pos_inds_flatten (Tensor): Contains all index of positive + sample in all anchor. + - pos_anchors (Tensor): Positive anchors. + - num_pos (int): Number of positive anchors. + """ + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + ) + (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, + pos_gt_index) = cls_reg_targets + cls_scores = levels_to_images(cls_scores) + cls_scores = [ + item.reshape(-1, self.cls_out_channels) for item in cls_scores + ] + bbox_preds = levels_to_images(bbox_preds) + bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] + pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, + cls_scores, bbox_preds, labels, + labels_weight, bboxes_target, + bboxes_weight, pos_inds) + + with torch.no_grad(): + reassign_labels, reassign_label_weight, \ + reassign_bbox_weights, num_pos = multi_apply( + self.paa_reassign, + pos_losses_list, + labels, + labels_weight, + bboxes_weight, + pos_inds, + pos_gt_index, + anchor_list) + num_pos = sum(num_pos) + # convert all tensor list to a flatten tensor + labels = torch.cat(reassign_labels, 0).view(-1) + flatten_anchors = torch.cat( + [torch.cat(item, 0) for item in anchor_list]) + labels_weight = torch.cat(reassign_label_weight, 0).view(-1) + bboxes_target = torch.cat(bboxes_target, + 0).view(-1, bboxes_target[0].size(-1)) + + pos_inds_flatten = ((labels >= 0) + & + (labels < self.num_classes)).nonzero().reshape(-1) + + if num_pos: + pos_anchors = flatten_anchors[pos_inds_flatten] + else: + pos_anchors = None + + label_assignment_results = (labels, labels_weight, bboxes_target, + bboxes_weight, pos_inds_flatten, + pos_anchors, num_pos) + return label_assignment_results + + def forward_train(self, + x, + label_assignment_results, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=None, + **kwargs): + """Forward train with the available label assignment (student receives + from teacher). + + Args: + x (list[Tensor]): Features from FPN. + label_assignment_results (tuple): As the outputs defined in the + function `self.get_label_assignment`. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + + Returns: + losses: (dict[str, Tensor]): A dictionary of loss components. + """ + outs = self(x) + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, img_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) + losses = self.loss( + *loss_inputs, + gt_bboxes_ignore=gt_bboxes_ignore, + label_assignment_results=label_assignment_results) + return losses + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds')) + def loss(self, + cls_scores, + bbox_preds, + iou_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None, + label_assignment_results=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + iou_preds (list[Tensor]): iou_preds for each scale + level with shape (N, num_anchors * 1, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when are computing the loss. + label_assignment_results (tuple): As the outputs defined in the + function `self.get_label_assignment`. + + Returns: + dict[str, Tensor]: A dictionary of loss gmm_assignment. + """ + + (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds_flatten, + pos_anchors, num_pos) = label_assignment_results + + cls_scores = levels_to_images(cls_scores) + cls_scores = [ + item.reshape(-1, self.cls_out_channels) for item in cls_scores + ] + bbox_preds = levels_to_images(bbox_preds) + bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] + iou_preds = levels_to_images(iou_preds) + iou_preds = [item.reshape(-1, 1) for item in iou_preds] + + # convert all tensor list to a flatten tensor + cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) + bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) + iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) + + losses_cls = self.loss_cls( + cls_scores, + labels, + labels_weight, + avg_factor=max(num_pos, len(img_metas))) # avoid num_pos=0 + if num_pos: + pos_bbox_pred = self.bbox_coder.decode( + pos_anchors, bbox_preds[pos_inds_flatten]) + pos_bbox_target = bboxes_target[pos_inds_flatten] + iou_target = bbox_overlaps( + pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) + losses_iou = self.loss_centerness( + iou_preds[pos_inds_flatten], + iou_target.unsqueeze(-1), + avg_factor=num_pos) + losses_bbox = self.loss_bbox( + pos_bbox_pred, pos_bbox_target, avg_factor=num_pos) + + else: + losses_iou = iou_preds.sum() * 0 + losses_bbox = bbox_preds.sum() * 0 + + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ld_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ld_head.py new file mode 100644 index 000000000..c5a945fe2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ld_head.py @@ -0,0 +1,261 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 + +from mmdet.core import bbox_overlaps, multi_apply, reduce_mean +from ..builder import HEADS, build_loss +from .gfl_head import GFLHead + + +@HEADS.register_module() +class LDHead(GFLHead): + """Localization distillation Head. (Short description) + + It utilizes the learned bbox distributions to transfer the localization + dark knowledge from teacher to student. Original paper: `Localization + Distillation for Object Detection. `_ + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + loss_ld (dict): Config of Localization Distillation Loss (LD), + T is the temperature for distillation. + """ + + def __init__(self, + num_classes, + in_channels, + loss_ld=dict( + type='LocalizationDistillationLoss', + loss_weight=0.25, + T=10), + **kwargs): + + super(LDHead, self).__init__(num_classes, in_channels, **kwargs) + self.loss_ld = build_loss(loss_ld) + + def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, + bbox_targets, stride, soft_targets, num_total_samples): + """Compute loss of a single scale level. + + Args: + anchors (Tensor): Box reference for each scale level with shape + (N, num_total_anchors, 4). + cls_score (Tensor): Cls and quality joint scores for each scale + level has shape (N, num_classes, H, W). + bbox_pred (Tensor): Box distribution logits for each scale + level with shape (N, 4*(n+1), H, W), n is max value of integral + set. + labels (Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (Tensor): Label weights of each anchor with shape + (N, num_total_anchors) + bbox_targets (Tensor): BBox regression targets of each anchor + weight shape (N, num_total_anchors, 4). + stride (tuple): Stride in this scale level. + num_total_samples (int): Number of positive samples that is + reduced over all GPUs. + + Returns: + dict[tuple, Tensor]: Loss components and weight targets. + """ + assert stride[0] == stride[1], 'h stride is not equal to w stride!' + anchors = anchors.reshape(-1, 4) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + bbox_pred = bbox_pred.permute(0, 2, 3, + 1).reshape(-1, 4 * (self.reg_max + 1)) + soft_targets = soft_targets.permute(0, 2, 3, + 1).reshape(-1, + 4 * (self.reg_max + 1)) + + bbox_targets = bbox_targets.reshape(-1, 4) + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((labels >= 0) + & (labels < bg_class_ind)).nonzero().squeeze(1) + score = label_weights.new_zeros(labels.shape) + + if len(pos_inds) > 0: + pos_bbox_targets = bbox_targets[pos_inds] + pos_bbox_pred = bbox_pred[pos_inds] + pos_anchors = anchors[pos_inds] + pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] + + weight_targets = cls_score.detach().sigmoid() + weight_targets = weight_targets.max(dim=1)[0][pos_inds] + pos_bbox_pred_corners = self.integral(pos_bbox_pred) + pos_decode_bbox_pred = self.bbox_coder.decode( + pos_anchor_centers, pos_bbox_pred_corners) + pos_decode_bbox_targets = pos_bbox_targets / stride[0] + score[pos_inds] = bbox_overlaps( + pos_decode_bbox_pred.detach(), + pos_decode_bbox_targets, + is_aligned=True) + pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) + pos_soft_targets = soft_targets[pos_inds] + soft_corners = pos_soft_targets.reshape(-1, self.reg_max + 1) + + target_corners = self.bbox_coder.encode(pos_anchor_centers, + pos_decode_bbox_targets, + self.reg_max).reshape(-1) + + # regression loss + loss_bbox = self.loss_bbox( + pos_decode_bbox_pred, + pos_decode_bbox_targets, + weight=weight_targets, + avg_factor=1.0) + + # dfl loss + loss_dfl = self.loss_dfl( + pred_corners, + target_corners, + weight=weight_targets[:, None].expand(-1, 4).reshape(-1), + avg_factor=4.0) + + # ld loss + loss_ld = self.loss_ld( + pred_corners, + soft_corners, + weight=weight_targets[:, None].expand(-1, 4).reshape(-1), + avg_factor=4.0) + + else: + loss_ld = bbox_pred.sum() * 0 + loss_bbox = bbox_pred.sum() * 0 + loss_dfl = bbox_pred.sum() * 0 + weight_targets = bbox_pred.new_tensor(0) + + # cls (qfl) loss + loss_cls = self.loss_cls( + cls_score, (labels, score), + weight=label_weights, + avg_factor=num_total_samples) + + return loss_cls, loss_bbox, loss_dfl, loss_ld, weight_targets.sum() + + def forward_train(self, + x, + out_teacher, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=None, + proposal_cfg=None, + **kwargs): + """ + Args: + x (list[Tensor]): Features from FPN. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + proposal_cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + + Returns: + tuple[dict, list]: The loss components and proposals of each image. + + - losses (dict[str, Tensor]): A dictionary of loss components. + - proposal_list (list[Tensor]): Proposals of each image. + """ + outs = self(x) + soft_target = out_teacher[1] + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, soft_target, img_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, soft_target, img_metas) + losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + if proposal_cfg is None: + return losses + else: + proposal_list = self.get_bboxes(*outs, img_metas, cfg=proposal_cfg) + return losses, proposal_list + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + soft_target, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Cls and quality scores for each scale + level has shape (N, num_classes, H, W). + bbox_preds (list[Tensor]): Box distribution logits for each scale + level with shape (N, 4*(n+1), H, W), n is max value of integral + set. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + + (anchor_list, labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets + + num_total_samples = reduce_mean( + torch.tensor(num_total_pos, dtype=torch.float, + device=device)).item() + num_total_samples = max(num_total_samples, 1.0) + + losses_cls, losses_bbox, losses_dfl, losses_ld, \ + avg_factor = multi_apply( + self.loss_single, + anchor_list, + cls_scores, + bbox_preds, + labels_list, + label_weights_list, + bbox_targets_list, + self.prior_generator.strides, + soft_target, + num_total_samples=num_total_samples) + + avg_factor = sum(avg_factor) + 1e-6 + avg_factor = reduce_mean(avg_factor).item() + losses_bbox = [x / avg_factor for x in losses_bbox] + losses_dfl = [x / avg_factor for x in losses_dfl] + return dict( + loss_cls=losses_cls, + loss_bbox=losses_bbox, + loss_dfl=losses_dfl, + loss_ld=losses_ld) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/mask2former_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/mask2former_head.py new file mode 100644 index 000000000..78e4d49bb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/mask2former_head.py @@ -0,0 +1,430 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import Conv2d, build_plugin_layer, caffe2_xavier_init +from mmcv.cnn.bricks.transformer import (build_positional_encoding, + build_transformer_layer_sequence) +from mmcv.ops import point_sample +from mmcv.runner import ModuleList + +from mmdet.core import build_assigner, build_sampler, reduce_mean +from mmdet.models.utils import get_uncertain_point_coords_with_randomness +from ..builder import HEADS, build_loss +from .anchor_free_head import AnchorFreeHead +from .maskformer_head import MaskFormerHead + + +@HEADS.register_module() +class Mask2FormerHead(MaskFormerHead): + """Implements the Mask2Former head. + + See `Masked-attention Mask Transformer for Universal Image + Segmentation `_ for details. + + Args: + in_channels (list[int]): Number of channels in the input feature map. + feat_channels (int): Number of channels for features. + out_channels (int): Number of channels for output. + num_things_classes (int): Number of things. + num_stuff_classes (int): Number of stuff. + num_queries (int): Number of query in Transformer decoder. + pixel_decoder (:obj:`mmcv.ConfigDict` | dict): Config for pixel + decoder. Defaults to None. + enforce_decoder_input_project (bool, optional): Whether to add + a layer to change the embed_dim of tranformer encoder in + pixel decoder to the embed_dim of transformer decoder. + Defaults to False. + transformer_decoder (:obj:`mmcv.ConfigDict` | dict): Config for + transformer decoder. Defaults to None. + positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for + transformer decoder position encoding. Defaults to None. + loss_cls (:obj:`mmcv.ConfigDict` | dict): Config of the classification + loss. Defaults to None. + loss_mask (:obj:`mmcv.ConfigDict` | dict): Config of the mask loss. + Defaults to None. + loss_dice (:obj:`mmcv.ConfigDict` | dict): Config of the dice loss. + Defaults to None. + train_cfg (:obj:`mmcv.ConfigDict` | dict): Training config of + Mask2Former head. + test_cfg (:obj:`mmcv.ConfigDict` | dict): Testing config of + Mask2Former head. + init_cfg (dict or list[dict], optional): Initialization config dict. + Defaults to None. + """ + + def __init__(self, + in_channels, + feat_channels, + out_channels, + num_things_classes=80, + num_stuff_classes=53, + num_queries=100, + num_transformer_feat_level=3, + pixel_decoder=None, + enforce_decoder_input_project=False, + transformer_decoder=None, + positional_encoding=None, + loss_cls=None, + loss_mask=None, + loss_dice=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + **kwargs): + super(AnchorFreeHead, self).__init__(init_cfg) + self.num_things_classes = num_things_classes + self.num_stuff_classes = num_stuff_classes + self.num_classes = self.num_things_classes + self.num_stuff_classes + self.num_queries = num_queries + self.num_transformer_feat_level = num_transformer_feat_level + self.num_heads = transformer_decoder.transformerlayers.\ + attn_cfgs.num_heads + self.num_transformer_decoder_layers = transformer_decoder.num_layers + assert pixel_decoder.encoder.transformerlayers.\ + attn_cfgs.num_levels == num_transformer_feat_level + pixel_decoder_ = copy.deepcopy(pixel_decoder) + pixel_decoder_.update( + in_channels=in_channels, + feat_channels=feat_channels, + out_channels=out_channels) + self.pixel_decoder = build_plugin_layer(pixel_decoder_)[1] + self.transformer_decoder = build_transformer_layer_sequence( + transformer_decoder) + self.decoder_embed_dims = self.transformer_decoder.embed_dims + + self.decoder_input_projs = ModuleList() + # from low resolution to high resolution + for _ in range(num_transformer_feat_level): + if (self.decoder_embed_dims != feat_channels + or enforce_decoder_input_project): + self.decoder_input_projs.append( + Conv2d( + feat_channels, self.decoder_embed_dims, kernel_size=1)) + else: + self.decoder_input_projs.append(nn.Identity()) + self.decoder_positional_encoding = build_positional_encoding( + positional_encoding) + self.query_embed = nn.Embedding(self.num_queries, feat_channels) + self.query_feat = nn.Embedding(self.num_queries, feat_channels) + # from low resolution to high resolution + self.level_embed = nn.Embedding(self.num_transformer_feat_level, + feat_channels) + + self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1) + self.mask_embed = nn.Sequential( + nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), + nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), + nn.Linear(feat_channels, out_channels)) + + self.test_cfg = test_cfg + self.train_cfg = train_cfg + if train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + self.sampler = build_sampler(self.train_cfg.sampler, context=self) + self.num_points = self.train_cfg.get('num_points', 12544) + self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0) + self.importance_sample_ratio = self.train_cfg.get( + 'importance_sample_ratio', 0.75) + + self.class_weight = loss_cls.class_weight + self.loss_cls = build_loss(loss_cls) + self.loss_mask = build_loss(loss_mask) + self.loss_dice = build_loss(loss_dice) + + def init_weights(self): + for m in self.decoder_input_projs: + if isinstance(m, Conv2d): + caffe2_xavier_init(m, bias=0) + + self.pixel_decoder.init_weights() + + for p in self.transformer_decoder.parameters(): + if p.dim() > 1: + nn.init.xavier_normal_(p) + + def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks, + img_metas): + """Compute classification and mask targets for one image. + + Args: + cls_score (Tensor): Mask score logits from a single decoder layer + for one image. Shape (num_queries, cls_out_channels). + mask_pred (Tensor): Mask logits for a single decoder layer for one + image. Shape (num_queries, h, w). + gt_labels (Tensor): Ground truth class indices for one image with + shape (num_gts, ). + gt_masks (Tensor): Ground truth mask for each image, each with + shape (num_gts, h, w). + img_metas (dict): Image informtation. + + Returns: + tuple[Tensor]: A tuple containing the following for one image. + + - labels (Tensor): Labels of each image. \ + shape (num_queries, ). + - label_weights (Tensor): Label weights of each image. \ + shape (num_queries, ). + - mask_targets (Tensor): Mask targets of each image. \ + shape (num_queries, h, w). + - mask_weights (Tensor): Mask weights of each image. \ + shape (num_queries, ). + - pos_inds (Tensor): Sampled positive indices for each \ + image. + - neg_inds (Tensor): Sampled negative indices for each \ + image. + """ + # sample points + num_queries = cls_score.shape[0] + num_gts = gt_labels.shape[0] + + point_coords = torch.rand((1, self.num_points, 2), + device=cls_score.device) + # shape (num_queries, num_points) + mask_points_pred = point_sample( + mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1, + 1)).squeeze(1) + # shape (num_gts, num_points) + gt_points_masks = point_sample( + gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1, + 1)).squeeze(1) + + # assign and sample + assign_result = self.assigner.assign(cls_score, mask_points_pred, + gt_labels, gt_points_masks, + img_metas) + sampling_result = self.sampler.sample(assign_result, mask_pred, + gt_masks) + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + + # label target + labels = gt_labels.new_full((self.num_queries, ), + self.num_classes, + dtype=torch.long) + labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] + label_weights = gt_labels.new_ones((self.num_queries, )) + + # mask target + mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds] + mask_weights = mask_pred.new_zeros((self.num_queries, )) + mask_weights[pos_inds] = 1.0 + + return (labels, label_weights, mask_targets, mask_weights, pos_inds, + neg_inds) + + def loss_single(self, cls_scores, mask_preds, gt_labels_list, + gt_masks_list, img_metas): + """Loss function for outputs from a single decoder layer. + + Args: + cls_scores (Tensor): Mask score logits from a single decoder layer + for all images. Shape (batch_size, num_queries, + cls_out_channels). Note `cls_out_channels` should includes + background. + mask_preds (Tensor): Mask logits for a pixel decoder for all + images. Shape (batch_size, num_queries, h, w). + gt_labels_list (list[Tensor]): Ground truth class indices for each + image, each with shape (num_gts, ). + gt_masks_list (list[Tensor]): Ground truth mask for each image, + each with shape (num_gts, h, w). + img_metas (list[dict]): List of image meta information. + + Returns: + tuple[Tensor]: Loss components for outputs from a single \ + decoder layer. + """ + num_imgs = cls_scores.size(0) + cls_scores_list = [cls_scores[i] for i in range(num_imgs)] + mask_preds_list = [mask_preds[i] for i in range(num_imgs)] + (labels_list, label_weights_list, mask_targets_list, mask_weights_list, + num_total_pos, + num_total_neg) = self.get_targets(cls_scores_list, mask_preds_list, + gt_labels_list, gt_masks_list, + img_metas) + # shape (batch_size, num_queries) + labels = torch.stack(labels_list, dim=0) + # shape (batch_size, num_queries) + label_weights = torch.stack(label_weights_list, dim=0) + # shape (num_total_gts, h, w) + mask_targets = torch.cat(mask_targets_list, dim=0) + # shape (batch_size, num_queries) + mask_weights = torch.stack(mask_weights_list, dim=0) + + # classfication loss + # shape (batch_size * num_queries, ) + cls_scores = cls_scores.flatten(0, 1) + labels = labels.flatten(0, 1) + label_weights = label_weights.flatten(0, 1) + + class_weight = cls_scores.new_tensor(self.class_weight) + loss_cls = self.loss_cls( + cls_scores, + labels, + label_weights, + avg_factor=class_weight[labels].sum()) + + num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos])) + num_total_masks = max(num_total_masks, 1) + + # extract positive ones + # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w) + mask_preds = mask_preds[mask_weights > 0] + + if mask_targets.shape[0] == 0: + # zero match + loss_dice = mask_preds.sum() + loss_mask = mask_preds.sum() + return loss_cls, loss_mask, loss_dice + + with torch.no_grad(): + points_coords = get_uncertain_point_coords_with_randomness( + mask_preds.unsqueeze(1), None, self.num_points, + self.oversample_ratio, self.importance_sample_ratio) + # shape (num_total_gts, h, w) -> (num_total_gts, num_points) + mask_point_targets = point_sample( + mask_targets.unsqueeze(1).float(), points_coords).squeeze(1) + # shape (num_queries, h, w) -> (num_queries, num_points) + mask_point_preds = point_sample( + mask_preds.unsqueeze(1), points_coords).squeeze(1) + + # dice loss + loss_dice = self.loss_dice( + mask_point_preds, mask_point_targets, avg_factor=num_total_masks) + + # mask loss + # shape (num_queries, num_points) -> (num_queries * num_points, ) + mask_point_preds = mask_point_preds.reshape(-1) + # shape (num_total_gts, num_points) -> (num_total_gts * num_points, ) + mask_point_targets = mask_point_targets.reshape(-1) + loss_mask = self.loss_mask( + mask_point_preds, + mask_point_targets, + avg_factor=num_total_masks * self.num_points) + + return loss_cls, loss_mask, loss_dice + + def forward_head(self, decoder_out, mask_feature, attn_mask_target_size): + """Forward for head part which is called after every decoder layer. + + Args: + decoder_out (Tensor): in shape (num_queries, batch_size, c). + mask_feature (Tensor): in shape (batch_size, c, h, w). + attn_mask_target_size (tuple[int, int]): target attention + mask size. + + Returns: + tuple: A tuple contain three elements. + + - cls_pred (Tensor): Classification scores in shape \ + (batch_size, num_queries, cls_out_channels). \ + Note `cls_out_channels` should includes background. + - mask_pred (Tensor): Mask scores in shape \ + (batch_size, num_queries,h, w). + - attn_mask (Tensor): Attention mask in shape \ + (batch_size * num_heads, num_queries, h, w). + """ + decoder_out = self.transformer_decoder.post_norm(decoder_out) + decoder_out = decoder_out.transpose(0, 1) + # shape (num_queries, batch_size, c) + cls_pred = self.cls_embed(decoder_out) + # shape (num_queries, batch_size, c) + mask_embed = self.mask_embed(decoder_out) + # shape (num_queries, batch_size, h, w) + mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature) + attn_mask = F.interpolate( + mask_pred, + attn_mask_target_size, + mode='bilinear', + align_corners=False) + # shape (num_queries, batch_size, h, w) -> + # (batch_size * num_head, num_queries, h, w) + attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat( + (1, self.num_heads, 1, 1)).flatten(0, 1) + attn_mask = attn_mask.sigmoid() < 0.5 + attn_mask = attn_mask.detach() + + return cls_pred, mask_pred, attn_mask + + def forward(self, feats, img_metas): + """Forward function. + + Args: + feats (list[Tensor]): Multi scale Features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + + Returns: + tuple: A tuple contains two elements. + + - cls_pred_list (list[Tensor)]: Classification logits \ + for each decoder layer. Each is a 3D-tensor with shape \ + (batch_size, num_queries, cls_out_channels). \ + Note `cls_out_channels` should includes background. + - mask_pred_list (list[Tensor]): Mask logits for each \ + decoder layer. Each with shape (batch_size, num_queries, \ + h, w). + """ + batch_size = len(img_metas) + mask_features, multi_scale_memorys = self.pixel_decoder(feats) + # multi_scale_memorys (from low resolution to high resolution) + decoder_inputs = [] + decoder_positional_encodings = [] + for i in range(self.num_transformer_feat_level): + decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i]) + # shape (batch_size, c, h, w) -> (h*w, batch_size, c) + decoder_input = decoder_input.flatten(2).permute(2, 0, 1) + level_embed = self.level_embed.weight[i].view(1, 1, -1) + decoder_input = decoder_input + level_embed + # shape (batch_size, c, h, w) -> (h*w, batch_size, c) + mask = decoder_input.new_zeros( + (batch_size, ) + multi_scale_memorys[i].shape[-2:], + dtype=torch.bool) + decoder_positional_encoding = self.decoder_positional_encoding( + mask) + decoder_positional_encoding = decoder_positional_encoding.flatten( + 2).permute(2, 0, 1) + decoder_inputs.append(decoder_input) + decoder_positional_encodings.append(decoder_positional_encoding) + # shape (num_queries, c) -> (num_queries, batch_size, c) + query_feat = self.query_feat.weight.unsqueeze(1).repeat( + (1, batch_size, 1)) + query_embed = self.query_embed.weight.unsqueeze(1).repeat( + (1, batch_size, 1)) + + cls_pred_list = [] + mask_pred_list = [] + cls_pred, mask_pred, attn_mask = self.forward_head( + query_feat, mask_features, multi_scale_memorys[0].shape[-2:]) + cls_pred_list.append(cls_pred) + mask_pred_list.append(mask_pred) + + for i in range(self.num_transformer_decoder_layers): + level_idx = i % self.num_transformer_feat_level + # if a mask is all True(all background), then set it all False. + attn_mask[torch.where( + attn_mask.sum(-1) == attn_mask.shape[-1])] = False + + # cross_attn + self_attn + layer = self.transformer_decoder.layers[i] + attn_masks = [attn_mask, None] + query_feat = layer( + query=query_feat, + key=decoder_inputs[level_idx], + value=decoder_inputs[level_idx], + query_pos=query_embed, + key_pos=decoder_positional_encodings[level_idx], + attn_masks=attn_masks, + query_key_padding_mask=None, + # here we do not apply masking on padded region + key_padding_mask=None) + cls_pred, mask_pred, attn_mask = self.forward_head( + query_feat, mask_features, multi_scale_memorys[ + (i + 1) % self.num_transformer_feat_level].shape[-2:]) + + cls_pred_list.append(cls_pred) + mask_pred_list.append(mask_pred) + + return cls_pred_list, mask_pred_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/maskformer_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/maskformer_head.py new file mode 100644 index 000000000..4541e018c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/maskformer_head.py @@ -0,0 +1,553 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import Conv2d, build_plugin_layer, caffe2_xavier_init +from mmcv.cnn.bricks.transformer import (build_positional_encoding, + build_transformer_layer_sequence) +from mmcv.runner import force_fp32 + +from mmdet.core import build_assigner, build_sampler, multi_apply, reduce_mean +from mmdet.models.utils import preprocess_panoptic_gt +from ..builder import HEADS, build_loss +from .anchor_free_head import AnchorFreeHead + + +@HEADS.register_module() +class MaskFormerHead(AnchorFreeHead): + """Implements the MaskFormer head. + + See `Per-Pixel Classification is Not All You Need for Semantic + Segmentation `_ for details. + + Args: + in_channels (list[int]): Number of channels in the input feature map. + feat_channels (int): Number of channels for feature. + out_channels (int): Number of channels for output. + num_things_classes (int): Number of things. + num_stuff_classes (int): Number of stuff. + num_queries (int): Number of query in Transformer. + pixel_decoder (:obj:`mmcv.ConfigDict` | dict): Config for pixel + decoder. Defaults to None. + enforce_decoder_input_project (bool, optional): Whether to add a layer + to change the embed_dim of tranformer encoder in pixel decoder to + the embed_dim of transformer decoder. Defaults to False. + transformer_decoder (:obj:`mmcv.ConfigDict` | dict): Config for + transformer decoder. Defaults to None. + positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for + transformer decoder position encoding. Defaults to None. + loss_cls (:obj:`mmcv.ConfigDict` | dict): Config of the classification + loss. Defaults to `CrossEntropyLoss`. + loss_mask (:obj:`mmcv.ConfigDict` | dict): Config of the mask loss. + Defaults to `FocalLoss`. + loss_dice (:obj:`mmcv.ConfigDict` | dict): Config of the dice loss. + Defaults to `DiceLoss`. + train_cfg (:obj:`mmcv.ConfigDict` | dict): Training config of + Maskformer head. + test_cfg (:obj:`mmcv.ConfigDict` | dict): Testing config of Maskformer + head. + init_cfg (dict or list[dict], optional): Initialization config dict. + Defaults to None. + """ + + def __init__(self, + in_channels, + feat_channels, + out_channels, + num_things_classes=80, + num_stuff_classes=53, + num_queries=100, + pixel_decoder=None, + enforce_decoder_input_project=False, + transformer_decoder=None, + positional_encoding=None, + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0, + class_weight=[1.0] * 133 + [0.1]), + loss_mask=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=20.0), + loss_dice=dict( + type='DiceLoss', + use_sigmoid=True, + activate=True, + naive_dice=True, + loss_weight=1.0), + train_cfg=None, + test_cfg=None, + init_cfg=None, + **kwargs): + super(AnchorFreeHead, self).__init__(init_cfg) + self.num_things_classes = num_things_classes + self.num_stuff_classes = num_stuff_classes + self.num_classes = self.num_things_classes + self.num_stuff_classes + self.num_queries = num_queries + + pixel_decoder.update( + in_channels=in_channels, + feat_channels=feat_channels, + out_channels=out_channels) + self.pixel_decoder = build_plugin_layer(pixel_decoder)[1] + self.transformer_decoder = build_transformer_layer_sequence( + transformer_decoder) + self.decoder_embed_dims = self.transformer_decoder.embed_dims + pixel_decoder_type = pixel_decoder.get('type') + if pixel_decoder_type == 'PixelDecoder' and ( + self.decoder_embed_dims != in_channels[-1] + or enforce_decoder_input_project): + self.decoder_input_proj = Conv2d( + in_channels[-1], self.decoder_embed_dims, kernel_size=1) + else: + self.decoder_input_proj = nn.Identity() + self.decoder_pe = build_positional_encoding(positional_encoding) + self.query_embed = nn.Embedding(self.num_queries, out_channels) + + self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1) + self.mask_embed = nn.Sequential( + nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), + nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True), + nn.Linear(feat_channels, out_channels)) + + self.test_cfg = test_cfg + self.train_cfg = train_cfg + if train_cfg: + self.assigner = build_assigner(train_cfg.assigner) + self.sampler = build_sampler(train_cfg.sampler, context=self) + + self.class_weight = loss_cls.class_weight + self.loss_cls = build_loss(loss_cls) + self.loss_mask = build_loss(loss_mask) + self.loss_dice = build_loss(loss_dice) + + def init_weights(self): + if isinstance(self.decoder_input_proj, Conv2d): + caffe2_xavier_init(self.decoder_input_proj, bias=0) + + self.pixel_decoder.init_weights() + + for p in self.transformer_decoder.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def preprocess_gt(self, gt_labels_list, gt_masks_list, gt_semantic_segs): + """Preprocess the ground truth for all images. + + Args: + gt_labels_list (list[Tensor]): Each is ground truth + labels of each bbox, with shape (num_gts, ). + gt_masks_list (list[BitmapMasks]): Each is ground truth + masks of each instances of a image, shape + (num_gts, h, w). + gt_semantic_seg (Tensor): Ground truth of semantic + segmentation with the shape (batch_size, n, h, w). + [0, num_thing_class - 1] means things, + [num_thing_class, num_class-1] means stuff, + 255 means VOID. + target_shape (tuple[int]): Shape of output mask_preds. + Resize the masks to shape of mask_preds. + + Returns: + tuple: a tuple containing the following targets. + - labels (list[Tensor]): Ground truth class indices\ + for all images. Each with shape (n, ), n is the sum of\ + number of stuff type and number of instance in a image. + - masks (list[Tensor]): Ground truth mask for each\ + image, each with shape (n, h, w). + """ + num_things_list = [self.num_things_classes] * len(gt_labels_list) + num_stuff_list = [self.num_stuff_classes] * len(gt_labels_list) + + targets = multi_apply(preprocess_panoptic_gt, gt_labels_list, + gt_masks_list, gt_semantic_segs, num_things_list, + num_stuff_list) + labels, masks = targets + return labels, masks + + def get_targets(self, cls_scores_list, mask_preds_list, gt_labels_list, + gt_masks_list, img_metas): + """Compute classification and mask targets for all images for a decoder + layer. + + Args: + cls_scores_list (list[Tensor]): Mask score logits from a single + decoder layer for all images. Each with shape (num_queries, + cls_out_channels). + mask_preds_list (list[Tensor]): Mask logits from a single decoder + layer for all images. Each with shape (num_queries, h, w). + gt_labels_list (list[Tensor]): Ground truth class indices for all + images. Each with shape (n, ), n is the sum of number of stuff + type and number of instance in a image. + gt_masks_list (list[Tensor]): Ground truth mask for each image, + each with shape (n, h, w). + img_metas (list[dict]): List of image meta information. + + Returns: + tuple[list[Tensor]]: a tuple containing the following targets. + - labels_list (list[Tensor]): Labels of all images.\ + Each with shape (num_queries, ). + - label_weights_list (list[Tensor]): Label weights\ + of all images. Each with shape (num_queries, ). + - mask_targets_list (list[Tensor]): Mask targets of\ + all images. Each with shape (num_queries, h, w). + - mask_weights_list (list[Tensor]): Mask weights of\ + all images. Each with shape (num_queries, ). + - num_total_pos (int): Number of positive samples in\ + all images. + - num_total_neg (int): Number of negative samples in\ + all images. + """ + (labels_list, label_weights_list, mask_targets_list, mask_weights_list, + pos_inds_list, + neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list, + mask_preds_list, gt_labels_list, + gt_masks_list, img_metas) + + num_total_pos = sum((inds.numel() for inds in pos_inds_list)) + num_total_neg = sum((inds.numel() for inds in neg_inds_list)) + return (labels_list, label_weights_list, mask_targets_list, + mask_weights_list, num_total_pos, num_total_neg) + + def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks, + img_metas): + """Compute classification and mask targets for one image. + + Args: + cls_score (Tensor): Mask score logits from a single decoder layer + for one image. Shape (num_queries, cls_out_channels). + mask_pred (Tensor): Mask logits for a single decoder layer for one + image. Shape (num_queries, h, w). + gt_labels (Tensor): Ground truth class indices for one image with + shape (n, ). n is the sum of number of stuff type and number + of instance in a image. + gt_masks (Tensor): Ground truth mask for each image, each with + shape (n, h, w). + img_metas (dict): Image informtation. + + Returns: + tuple[Tensor]: a tuple containing the following for one image. + - labels (Tensor): Labels of each image. + shape (num_queries, ). + - label_weights (Tensor): Label weights of each image. + shape (num_queries, ). + - mask_targets (Tensor): Mask targets of each image. + shape (num_queries, h, w). + - mask_weights (Tensor): Mask weights of each image. + shape (num_queries, ). + - pos_inds (Tensor): Sampled positive indices for each image. + - neg_inds (Tensor): Sampled negative indices for each image. + """ + target_shape = mask_pred.shape[-2:] + if gt_masks.shape[0] > 0: + gt_masks_downsampled = F.interpolate( + gt_masks.unsqueeze(1).float(), target_shape, + mode='nearest').squeeze(1).long() + else: + gt_masks_downsampled = gt_masks + + # assign and sample + assign_result = self.assigner.assign(cls_score, mask_pred, gt_labels, + gt_masks_downsampled, img_metas) + sampling_result = self.sampler.sample(assign_result, mask_pred, + gt_masks) + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + + # label target + labels = gt_labels.new_full((self.num_queries, ), + self.num_classes, + dtype=torch.long) + labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] + label_weights = gt_labels.new_ones(self.num_queries) + + # mask target + mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds] + mask_weights = mask_pred.new_zeros((self.num_queries, )) + mask_weights[pos_inds] = 1.0 + + return (labels, label_weights, mask_targets, mask_weights, pos_inds, + neg_inds) + + @force_fp32(apply_to=('all_cls_scores', 'all_mask_preds')) + def loss(self, all_cls_scores, all_mask_preds, gt_labels_list, + gt_masks_list, img_metas): + """Loss function. + + Args: + all_cls_scores (Tensor): Classification scores for all decoder + layers with shape (num_decoder, batch_size, num_queries, + cls_out_channels). Note `cls_out_channels` should includes + background. + all_mask_preds (Tensor): Mask scores for all decoder layers with + shape (num_decoder, batch_size, num_queries, h, w). + gt_labels_list (list[Tensor]): Ground truth class indices for each + image with shape (n, ). n is the sum of number of stuff type + and number of instance in a image. + gt_masks_list (list[Tensor]): Ground truth mask for each image with + shape (n, h, w). + img_metas (list[dict]): List of image meta information. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + num_dec_layers = len(all_cls_scores) + all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] + all_gt_masks_list = [gt_masks_list for _ in range(num_dec_layers)] + img_metas_list = [img_metas for _ in range(num_dec_layers)] + losses_cls, losses_mask, losses_dice = multi_apply( + self.loss_single, all_cls_scores, all_mask_preds, + all_gt_labels_list, all_gt_masks_list, img_metas_list) + + loss_dict = dict() + # loss from the last decoder layer + loss_dict['loss_cls'] = losses_cls[-1] + loss_dict['loss_mask'] = losses_mask[-1] + loss_dict['loss_dice'] = losses_dice[-1] + # loss from other decoder layers + num_dec_layer = 0 + for loss_cls_i, loss_mask_i, loss_dice_i in zip( + losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]): + loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i + loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i + loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i + num_dec_layer += 1 + return loss_dict + + def loss_single(self, cls_scores, mask_preds, gt_labels_list, + gt_masks_list, img_metas): + """Loss function for outputs from a single decoder layer. + + Args: + cls_scores (Tensor): Mask score logits from a single decoder layer + for all images. Shape (batch_size, num_queries, + cls_out_channels). Note `cls_out_channels` should includes + background. + mask_preds (Tensor): Mask logits for a pixel decoder for all + images. Shape (batch_size, num_queries, h, w). + gt_labels_list (list[Tensor]): Ground truth class indices for each + image, each with shape (n, ). n is the sum of number of stuff + types and number of instances in a image. + gt_masks_list (list[Tensor]): Ground truth mask for each image, + each with shape (n, h, w). + img_metas (list[dict]): List of image meta information. + + Returns: + tuple[Tensor]: Loss components for outputs from a single decoder\ + layer. + """ + num_imgs = cls_scores.size(0) + cls_scores_list = [cls_scores[i] for i in range(num_imgs)] + mask_preds_list = [mask_preds[i] for i in range(num_imgs)] + + (labels_list, label_weights_list, mask_targets_list, mask_weights_list, + num_total_pos, + num_total_neg) = self.get_targets(cls_scores_list, mask_preds_list, + gt_labels_list, gt_masks_list, + img_metas) + # shape (batch_size, num_queries) + labels = torch.stack(labels_list, dim=0) + # shape (batch_size, num_queries) + label_weights = torch.stack(label_weights_list, dim=0) + # shape (num_total_gts, h, w) + mask_targets = torch.cat(mask_targets_list, dim=0) + # shape (batch_size, num_queries) + mask_weights = torch.stack(mask_weights_list, dim=0) + + # classfication loss + # shape (batch_size * num_queries, ) + cls_scores = cls_scores.flatten(0, 1) + labels = labels.flatten(0, 1) + label_weights = label_weights.flatten(0, 1) + + class_weight = cls_scores.new_tensor(self.class_weight) + loss_cls = self.loss_cls( + cls_scores, + labels, + label_weights, + avg_factor=class_weight[labels].sum()) + + num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos])) + num_total_masks = max(num_total_masks, 1) + + # extract positive ones + # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w) + mask_preds = mask_preds[mask_weights > 0] + target_shape = mask_targets.shape[-2:] + + if mask_targets.shape[0] == 0: + # zero match + loss_dice = mask_preds.sum() + loss_mask = mask_preds.sum() + return loss_cls, loss_mask, loss_dice + + # upsample to shape of target + # shape (num_total_gts, h, w) + mask_preds = F.interpolate( + mask_preds.unsqueeze(1), + target_shape, + mode='bilinear', + align_corners=False).squeeze(1) + + # dice loss + loss_dice = self.loss_dice( + mask_preds, mask_targets, avg_factor=num_total_masks) + + # mask loss + # FocalLoss support input of shape (n, num_class) + h, w = mask_preds.shape[-2:] + # shape (num_total_gts, h, w) -> (num_total_gts * h * w, 1) + mask_preds = mask_preds.reshape(-1, 1) + # shape (num_total_gts, h, w) -> (num_total_gts * h * w) + mask_targets = mask_targets.reshape(-1) + # target is (1 - mask_targets) !!! + loss_mask = self.loss_mask( + mask_preds, 1 - mask_targets, avg_factor=num_total_masks * h * w) + + return loss_cls, loss_mask, loss_dice + + def forward(self, feats, img_metas): + """Forward function. + + Args: + feats (list[Tensor]): Features from the upstream network, each + is a 4D-tensor. + img_metas (list[dict]): List of image information. + + Returns: + tuple: a tuple contains two elements. + - all_cls_scores (Tensor): Classification scores for each\ + scale level. Each is a 4D-tensor with shape\ + (num_decoder, batch_size, num_queries, cls_out_channels).\ + Note `cls_out_channels` should includes background. + - all_mask_preds (Tensor): Mask scores for each decoder\ + layer. Each with shape (num_decoder, batch_size,\ + num_queries, h, w). + """ + batch_size = len(img_metas) + input_img_h, input_img_w = img_metas[0]['batch_input_shape'] + padding_mask = feats[-1].new_ones( + (batch_size, input_img_h, input_img_w), dtype=torch.float32) + for i in range(batch_size): + img_h, img_w, _ = img_metas[i]['img_shape'] + padding_mask[i, :img_h, :img_w] = 0 + padding_mask = F.interpolate( + padding_mask.unsqueeze(1), + size=feats[-1].shape[-2:], + mode='nearest').to(torch.bool).squeeze(1) + # when backbone is swin, memory is output of last stage of swin. + # when backbone is r50, memory is output of tranformer encoder. + mask_features, memory = self.pixel_decoder(feats, img_metas) + pos_embed = self.decoder_pe(padding_mask) + memory = self.decoder_input_proj(memory) + # shape (batch_size, c, h, w) -> (h*w, batch_size, c) + memory = memory.flatten(2).permute(2, 0, 1) + pos_embed = pos_embed.flatten(2).permute(2, 0, 1) + # shape (batch_size, h * w) + padding_mask = padding_mask.flatten(1) + # shape = (num_queries, embed_dims) + query_embed = self.query_embed.weight + # shape = (num_queries, batch_size, embed_dims) + query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1) + target = torch.zeros_like(query_embed) + # shape (num_decoder, num_queries, batch_size, embed_dims) + out_dec = self.transformer_decoder( + query=target, + key=memory, + value=memory, + key_pos=pos_embed, + query_pos=query_embed, + key_padding_mask=padding_mask) + # shape (num_decoder, batch_size, num_queries, embed_dims) + out_dec = out_dec.transpose(1, 2) + + # cls_scores + all_cls_scores = self.cls_embed(out_dec) + + # mask_preds + mask_embed = self.mask_embed(out_dec) + all_mask_preds = torch.einsum('lbqc,bchw->lbqhw', mask_embed, + mask_features) + + return all_cls_scores, all_mask_preds + + def forward_train(self, + feats, + img_metas, + gt_bboxes, + gt_labels, + gt_masks, + gt_semantic_seg, + gt_bboxes_ignore=None): + """Forward function for training mode. + + Args: + feats (list[Tensor]): Multi-level features from the upstream + network, each is a 4D-tensor. + img_metas (list[Dict]): List of image information. + gt_bboxes (list[Tensor]): Each element is ground truth bboxes of + the image, shape (num_gts, 4). Not used here. + gt_labels (list[Tensor]): Each element is ground truth labels of + each box, shape (num_gts,). + gt_masks (list[BitmapMasks]): Each element is masks of instances + of a image, shape (num_gts, h, w). + gt_semantic_seg (list[tensor]):Each element is the ground truth + of semantic segmentation with the shape (N, H, W). + [0, num_thing_class - 1] means things, + [num_thing_class, num_class-1] means stuff, + 255 means VOID. + gt_bboxes_ignore (list[Tensor]): Ground truth bboxes to be + ignored. Defaults to None. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # not consider ignoring bboxes + assert gt_bboxes_ignore is None + + # forward + all_cls_scores, all_mask_preds = self(feats, img_metas) + + # preprocess ground truth + gt_labels, gt_masks = self.preprocess_gt(gt_labels, gt_masks, + gt_semantic_seg) + + # loss + losses = self.loss(all_cls_scores, all_mask_preds, gt_labels, gt_masks, + img_metas) + + return losses + + def simple_test(self, feats, img_metas, **kwargs): + """Test without augmentaton. + + Args: + feats (list[Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + img_metas (list[dict]): List of image information. + + Returns: + tuple: A tuple contains two tensors. + + - mask_cls_results (Tensor): Mask classification logits,\ + shape (batch_size, num_queries, cls_out_channels). + Note `cls_out_channels` should includes background. + - mask_pred_results (Tensor): Mask logits, shape \ + (batch_size, num_queries, h, w). + """ + all_cls_scores, all_mask_preds = self(feats, img_metas) + mask_cls_results = all_cls_scores[-1] + mask_pred_results = all_mask_preds[-1] + + # upsample masks + img_shape = img_metas[0]['batch_input_shape'] + mask_pred_results = F.interpolate( + mask_pred_results, + size=(img_shape[0], img_shape[1]), + mode='bilinear', + align_corners=False) + + return mask_cls_results, mask_pred_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/nasfcos_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/nasfcos_head.py new file mode 100644 index 000000000..380c912c7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/nasfcos_head.py @@ -0,0 +1,80 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch.nn as nn +from mmcv.cnn import ConvModule, Scale + +from mmdet.models.dense_heads.fcos_head import FCOSHead +from ..builder import HEADS + + +@HEADS.register_module() +class NASFCOSHead(FCOSHead): + """Anchor-free head used in `NASFCOS `_. + + It is quite similar with FCOS head, except for the searched structure of + classification branch and bbox regression branch, where a structure of + "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. + """ + + def __init__(self, *args, init_cfg=None, **kwargs): + if init_cfg is None: + init_cfg = [ + dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), + dict( + type='Normal', + std=0.01, + override=[ + dict(name='conv_reg'), + dict(name='conv_centerness'), + dict( + name='conv_cls', + type='Normal', + std=0.01, + bias_prob=0.01) + ]), + ] + super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + dconv3x3_config = dict( + type='DCNv2', + kernel_size=3, + use_bias=True, + deform_groups=2, + padding=1) + conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) + conv1x1_config = dict(type='Conv', kernel_size=1) + + self.arch_config = [ + dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config + ] + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i, op_ in enumerate(self.arch_config): + op = copy.deepcopy(op_) + chn = self.in_channels if i == 0 else self.feat_channels + assert isinstance(op, dict) + use_bias = op.pop('use_bias', False) + padding = op.pop('padding', 0) + kernel_size = op.pop('kernel_size') + module = ConvModule( + chn, + self.feat_channels, + kernel_size, + stride=1, + padding=padding, + norm_cfg=self.norm_cfg, + bias=use_bias, + conv_cfg=op) + + self.cls_convs.append(copy.deepcopy(module)) + self.reg_convs.append(copy.deepcopy(module)) + + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) + + self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/paa_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/paa_head.py new file mode 100644 index 000000000..d79b5b9f4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/paa_head.py @@ -0,0 +1,756 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.runner import force_fp32 + +from mmdet.core import multi_apply, multiclass_nms +from mmdet.core.bbox.iou_calculators import bbox_overlaps +from mmdet.models import HEADS +from mmdet.models.dense_heads import ATSSHead + +EPS = 1e-12 +try: + import sklearn.mixture as skm +except ImportError: + skm = None + + +def levels_to_images(mlvl_tensor): + """Concat multi-level feature maps by image. + + [feature_level0, feature_level1...] -> [feature_image0, feature_image1...] + Convert the shape of each element in mlvl_tensor from (N, C, H, W) to + (N, H*W , C), then split the element to N elements with shape (H*W, C), and + concat elements in same image of all level along first dimension. + + Args: + mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from + corresponding level. Each element is of shape (N, C, H, W) + + Returns: + list[torch.Tensor]: A list that contains N tensors and each tensor is + of shape (num_elements, C) + """ + batch_size = mlvl_tensor[0].size(0) + batch_list = [[] for _ in range(batch_size)] + channels = mlvl_tensor[0].size(1) + for t in mlvl_tensor: + t = t.permute(0, 2, 3, 1) + t = t.view(batch_size, -1, channels).contiguous() + for img in range(batch_size): + batch_list[img].append(t[img]) + return [torch.cat(item, 0) for item in batch_list] + + +@HEADS.register_module() +class PAAHead(ATSSHead): + """Head of PAAAssignment: Probabilistic Anchor Assignment with IoU + Prediction for Object Detection. + + Code is modified from the `official github repo + `_. + + More details can be found in the `paper + `_ . + + Args: + topk (int): Select topk samples with smallest loss in + each level. + score_voting (bool): Whether to use score voting in post-process. + covariance_type : String describing the type of covariance parameters + to be used in :class:`sklearn.mixture.GaussianMixture`. + It must be one of: + + - 'full': each component has its own general covariance matrix + - 'tied': all components share the same general covariance matrix + - 'diag': each component has its own diagonal covariance matrix + - 'spherical': each component has its own single variance + Default: 'diag'. From 'full' to 'spherical', the gmm fitting + process is faster yet the performance could be influenced. For most + cases, 'diag' should be a good choice. + """ + + def __init__(self, + *args, + topk=9, + score_voting=True, + covariance_type='diag', + **kwargs): + # topk used in paa reassign process + self.topk = topk + self.with_score_voting = score_voting + self.covariance_type = covariance_type + super(PAAHead, self).__init__(*args, **kwargs) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds')) + def loss(self, + cls_scores, + bbox_preds, + iou_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + iou_preds (list[Tensor]): iou_preds for each scale + level with shape (N, num_anchors * 1, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when are computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss gmm_assignment. + """ + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + ) + (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, + pos_gt_index) = cls_reg_targets + cls_scores = levels_to_images(cls_scores) + cls_scores = [ + item.reshape(-1, self.cls_out_channels) for item in cls_scores + ] + bbox_preds = levels_to_images(bbox_preds) + bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] + iou_preds = levels_to_images(iou_preds) + iou_preds = [item.reshape(-1, 1) for item in iou_preds] + pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, + cls_scores, bbox_preds, labels, + labels_weight, bboxes_target, + bboxes_weight, pos_inds) + + with torch.no_grad(): + reassign_labels, reassign_label_weight, \ + reassign_bbox_weights, num_pos = multi_apply( + self.paa_reassign, + pos_losses_list, + labels, + labels_weight, + bboxes_weight, + pos_inds, + pos_gt_index, + anchor_list) + num_pos = sum(num_pos) + # convert all tensor list to a flatten tensor + cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) + bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) + iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) + labels = torch.cat(reassign_labels, 0).view(-1) + flatten_anchors = torch.cat( + [torch.cat(item, 0) for item in anchor_list]) + labels_weight = torch.cat(reassign_label_weight, 0).view(-1) + bboxes_target = torch.cat(bboxes_target, + 0).view(-1, bboxes_target[0].size(-1)) + + pos_inds_flatten = ((labels >= 0) + & + (labels < self.num_classes)).nonzero().reshape(-1) + + losses_cls = self.loss_cls( + cls_scores, + labels, + labels_weight, + avg_factor=max(num_pos, len(img_metas))) # avoid num_pos=0 + if num_pos: + pos_bbox_pred = self.bbox_coder.decode( + flatten_anchors[pos_inds_flatten], + bbox_preds[pos_inds_flatten]) + pos_bbox_target = bboxes_target[pos_inds_flatten] + iou_target = bbox_overlaps( + pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) + losses_iou = self.loss_centerness( + iou_preds[pos_inds_flatten], + iou_target.unsqueeze(-1), + avg_factor=num_pos) + losses_bbox = self.loss_bbox( + pos_bbox_pred, + pos_bbox_target, + iou_target.clamp(min=EPS), + avg_factor=iou_target.sum()) + else: + losses_iou = iou_preds.sum() * 0 + losses_bbox = bbox_preds.sum() * 0 + + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) + + def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight, + bbox_target, bbox_weight, pos_inds): + """Calculate loss of all potential positive samples obtained from first + match process. + + Args: + anchors (list[Tensor]): Anchors of each scale. + cls_score (Tensor): Box scores of single image with shape + (num_anchors, num_classes) + bbox_pred (Tensor): Box energies / deltas of single image + with shape (num_anchors, 4) + label (Tensor): classification target of each anchor with + shape (num_anchors,) + label_weight (Tensor): Classification loss weight of each + anchor with shape (num_anchors). + bbox_target (dict): Regression target of each anchor with + shape (num_anchors, 4). + bbox_weight (Tensor): Bbox weight of each anchor with shape + (num_anchors, 4). + pos_inds (Tensor): Index of all positive samples got from + first assign process. + + Returns: + Tensor: Losses of all positive samples in single image. + """ + if not len(pos_inds): + return cls_score.new([]), + anchors_all_level = torch.cat(anchors, 0) + pos_scores = cls_score[pos_inds] + pos_bbox_pred = bbox_pred[pos_inds] + pos_label = label[pos_inds] + pos_label_weight = label_weight[pos_inds] + pos_bbox_target = bbox_target[pos_inds] + pos_bbox_weight = bbox_weight[pos_inds] + pos_anchors = anchors_all_level[pos_inds] + pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred) + + # to keep loss dimension + loss_cls = self.loss_cls( + pos_scores, + pos_label, + pos_label_weight, + avg_factor=1.0, + reduction_override='none') + + loss_bbox = self.loss_bbox( + pos_bbox_pred, + pos_bbox_target, + pos_bbox_weight, + avg_factor=1.0, # keep same loss weight before reassign + reduction_override='none') + + loss_cls = loss_cls.sum(-1) + pos_loss = loss_bbox + loss_cls + return pos_loss, + + def paa_reassign(self, pos_losses, label, label_weight, bbox_weight, + pos_inds, pos_gt_inds, anchors): + """Fit loss to GMM distribution and separate positive, ignore, negative + samples again with GMM model. + + Args: + pos_losses (Tensor): Losses of all positive samples in + single image. + label (Tensor): classification target of each anchor with + shape (num_anchors,) + label_weight (Tensor): Classification loss weight of each + anchor with shape (num_anchors). + bbox_weight (Tensor): Bbox weight of each anchor with shape + (num_anchors, 4). + pos_inds (Tensor): Index of all positive samples got from + first assign process. + pos_gt_inds (Tensor): Gt_index of all positive samples got + from first assign process. + anchors (list[Tensor]): Anchors of each scale. + + Returns: + tuple: Usually returns a tuple containing learning targets. + + - label (Tensor): classification target of each anchor after + paa assign, with shape (num_anchors,) + - label_weight (Tensor): Classification loss weight of each + anchor after paa assign, with shape (num_anchors). + - bbox_weight (Tensor): Bbox weight of each anchor with shape + (num_anchors, 4). + - num_pos (int): The number of positive samples after paa + assign. + """ + if not len(pos_inds): + return label, label_weight, bbox_weight, 0 + label = label.clone() + label_weight = label_weight.clone() + bbox_weight = bbox_weight.clone() + num_gt = pos_gt_inds.max() + 1 + num_level = len(anchors) + num_anchors_each_level = [item.size(0) for item in anchors] + num_anchors_each_level.insert(0, 0) + inds_level_interval = np.cumsum(num_anchors_each_level) + pos_level_mask = [] + for i in range(num_level): + mask = (pos_inds >= inds_level_interval[i]) & ( + pos_inds < inds_level_interval[i + 1]) + pos_level_mask.append(mask) + pos_inds_after_paa = [label.new_tensor([])] + ignore_inds_after_paa = [label.new_tensor([])] + for gt_ind in range(num_gt): + pos_inds_gmm = [] + pos_loss_gmm = [] + gt_mask = pos_gt_inds == gt_ind + for level in range(num_level): + level_mask = pos_level_mask[level] + level_gt_mask = level_mask & gt_mask + value, topk_inds = pos_losses[level_gt_mask].topk( + min(level_gt_mask.sum(), self.topk), largest=False) + pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds]) + pos_loss_gmm.append(value) + pos_inds_gmm = torch.cat(pos_inds_gmm) + pos_loss_gmm = torch.cat(pos_loss_gmm) + # fix gmm need at least two sample + if len(pos_inds_gmm) < 2: + continue + device = pos_inds_gmm.device + pos_loss_gmm, sort_inds = pos_loss_gmm.sort() + pos_inds_gmm = pos_inds_gmm[sort_inds] + pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy() + min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max() + means_init = np.array([min_loss, max_loss]).reshape(2, 1) + weights_init = np.array([0.5, 0.5]) + precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1) # full + if self.covariance_type == 'spherical': + precisions_init = precisions_init.reshape(2) + elif self.covariance_type == 'diag': + precisions_init = precisions_init.reshape(2, 1) + elif self.covariance_type == 'tied': + precisions_init = np.array([[1.0]]) + if skm is None: + raise ImportError('Please run "pip install sklearn" ' + 'to install sklearn first.') + gmm = skm.GaussianMixture( + 2, + weights_init=weights_init, + means_init=means_init, + precisions_init=precisions_init, + covariance_type=self.covariance_type) + gmm.fit(pos_loss_gmm) + gmm_assignment = gmm.predict(pos_loss_gmm) + scores = gmm.score_samples(pos_loss_gmm) + gmm_assignment = torch.from_numpy(gmm_assignment).to(device) + scores = torch.from_numpy(scores).to(device) + + pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme( + gmm_assignment, scores, pos_inds_gmm) + pos_inds_after_paa.append(pos_inds_temp) + ignore_inds_after_paa.append(ignore_inds_temp) + + pos_inds_after_paa = torch.cat(pos_inds_after_paa) + ignore_inds_after_paa = torch.cat(ignore_inds_after_paa) + reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1) + reassign_ids = pos_inds[reassign_mask] + label[reassign_ids] = self.num_classes + label_weight[ignore_inds_after_paa] = 0 + bbox_weight[reassign_ids] = 0 + num_pos = len(pos_inds_after_paa) + return label, label_weight, bbox_weight, num_pos + + def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm): + """A general separation scheme for gmm model. + + It separates a GMM distribution of candidate samples into three + parts, 0 1 and uncertain areas, and you can implement other + separation schemes by rewriting this function. + + Args: + gmm_assignment (Tensor): The prediction of GMM which is of shape + (num_samples,). The 0/1 value indicates the distribution + that each sample comes from. + scores (Tensor): The probability of sample coming from the + fit GMM distribution. The tensor is of shape (num_samples,). + pos_inds_gmm (Tensor): All the indexes of samples which are used + to fit GMM model. The tensor is of shape (num_samples,) + + Returns: + tuple[Tensor]: The indices of positive and ignored samples. + + - pos_inds_temp (Tensor): Indices of positive samples. + - ignore_inds_temp (Tensor): Indices of ignore samples. + """ + # The implementation is (c) in Fig.3 in origin paper instead of (b). + # You can refer to issues such as + # https://github.com/kkhoot/PAA/issues/8 and + # https://github.com/kkhoot/PAA/issues/9. + fgs = gmm_assignment == 0 + pos_inds_temp = fgs.new_tensor([], dtype=torch.long) + ignore_inds_temp = fgs.new_tensor([], dtype=torch.long) + if fgs.nonzero().numel(): + _, pos_thr_ind = scores[fgs].topk(1) + pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1] + ignore_inds_temp = pos_inds_gmm.new_tensor([]) + return pos_inds_temp, ignore_inds_temp + + def get_targets( + self, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True, + ): + """Get targets for PAA head. + + This method is almost the same as `AnchorHead.get_targets()`. We direct + return the results from _get_targets_single instead map it to levels + by images_to_levels function. + + Args: + anchor_list (list[list[Tensor]]): Multi level anchors of each + image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, 4). + valid_flag_list (list[list[Tensor]]): Multi level valid flags of + each image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, ) + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: Usually returns a tuple containing learning targets. + + - labels (list[Tensor]): Labels of all anchors, each with + shape (num_anchors,). + - label_weights (list[Tensor]): Label weights of all anchor. + each with shape (num_anchors,). + - bbox_targets (list[Tensor]): BBox targets of all anchors. + each with shape (num_anchors, 4). + - bbox_weights (list[Tensor]): BBox weights of all anchors. + each with shape (num_anchors, 4). + - pos_inds (list[Tensor]): Contains all index of positive + sample in all anchor. + - gt_inds (list[Tensor]): Contains all gt_index of positive + sample in all anchor. + """ + + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + concat_anchor_list = [] + concat_valid_flag_list = [] + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + concat_anchor_list.append(torch.cat(anchor_list[i])) + concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + results = multi_apply( + self._get_targets_single, + concat_anchor_list, + concat_valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + + (labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds, + valid_neg_inds, sampling_result) = results + + # Due to valid flag of anchors, we have to calculate the real pos_inds + # in origin anchor set. + pos_inds = [] + for i, single_labels in enumerate(labels): + pos_mask = (0 <= single_labels) & ( + single_labels < self.num_classes) + pos_inds.append(pos_mask.nonzero().view(-1)) + + gt_inds = [item.pos_assigned_gt_inds for item in sampling_result] + return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, + gt_inds) + + def _get_targets_single(self, + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in a + single image. + + This method is same as `AnchorHead._get_targets_single()`. + """ + assert unmap_outputs, 'We must map outputs back to the original' \ + 'set of anchors in PAAhead' + return super(ATSSHead, self)._get_targets_single( + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + score_factors=None, + img_metas=None, + cfg=None, + rescale=False, + with_nms=True, + **kwargs): + assert with_nms, 'PAA only supports "with_nms=True" now and it ' \ + 'means PAAHead does not support ' \ + 'test-time augmentation' + return super(ATSSHead, self).get_bboxes(cls_scores, bbox_preds, + score_factors, img_metas, cfg, + rescale, with_nms, **kwargs) + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factors from all scale + levels of a single image, each item has shape + (num_priors * 1, H, W). + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid, has shape + (num_priors, 4). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + cfg = self.test_cfg if cfg is None else cfg + img_shape = img_meta['img_shape'] + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_score_factors = [] + for level_idx, (cls_score, bbox_pred, score_factor, priors) in \ + enumerate(zip(cls_score_list, bbox_pred_list, + score_factor_list, mlvl_priors)): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + score_factor = score_factor.permute(1, 2, 0).reshape(-1).sigmoid() + + if 0 < nms_pre < scores.shape[0]: + max_scores, _ = (scores * + score_factor[:, None]).sqrt().max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + priors = priors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + score_factor = score_factor[topk_inds] + + bboxes = self.bbox_coder.decode( + priors, bbox_pred, max_shape=img_shape) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_score_factors.append(score_factor) + + return self._bbox_post_process(mlvl_scores, mlvl_bboxes, + img_meta['scale_factor'], cfg, rescale, + with_nms, mlvl_score_factors, **kwargs) + + def _bbox_post_process(self, + mlvl_scores, + mlvl_bboxes, + scale_factor, + cfg, + rescale=False, + with_nms=True, + mlvl_score_factors=None, + **kwargs): + """bbox post-processing method. + + The boxes would be rescaled to the original image scale and do + the nms operation. Usually with_nms is False is used for aug test. + + Args: + mlvl_scores (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_bboxes, num_class). + mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale + levels of a single image, each item has shape (num_bboxes, 4). + scale_factor (ndarray, optional): Scale factor of the image arange + as (w_scale, h_scale, w_scale, h_scale). + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + mlvl_score_factors (list[Tensor], optional): Score factor from + all scale levels of a single image, each item has shape + (num_bboxes, ). Default: None. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + mlvl_bboxes = torch.cat(mlvl_bboxes) + if rescale: + mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) + mlvl_scores = torch.cat(mlvl_scores) + # Add a dummy background class to the backend when using sigmoid + # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 + # BG cat_id: num_class + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + + mlvl_iou_preds = torch.cat(mlvl_score_factors) + mlvl_nms_scores = (mlvl_scores * mlvl_iou_preds[:, None]).sqrt() + det_bboxes, det_labels = multiclass_nms( + mlvl_bboxes, + mlvl_nms_scores, + cfg.score_thr, + cfg.nms, + cfg.max_per_img, + score_factors=None) + if self.with_score_voting and len(det_bboxes) > 0: + det_bboxes, det_labels = self.score_voting(det_bboxes, det_labels, + mlvl_bboxes, + mlvl_nms_scores, + cfg.score_thr) + + return det_bboxes, det_labels + + def score_voting(self, det_bboxes, det_labels, mlvl_bboxes, + mlvl_nms_scores, score_thr): + """Implementation of score voting method works on each remaining boxes + after NMS procedure. + + Args: + det_bboxes (Tensor): Remaining boxes after NMS procedure, + with shape (k, 5), each dimension means + (x1, y1, x2, y2, score). + det_labels (Tensor): The label of remaining boxes, with shape + (k, 1),Labels are 0-based. + mlvl_bboxes (Tensor): All boxes before the NMS procedure, + with shape (num_anchors,4). + mlvl_nms_scores (Tensor): The scores of all boxes which is used + in the NMS procedure, with shape (num_anchors, num_class) + score_thr (float): The score threshold of bboxes. + + Returns: + tuple: Usually returns a tuple containing voting results. + + - det_bboxes_voted (Tensor): Remaining boxes after + score voting procedure, with shape (k, 5), each + dimension means (x1, y1, x2, y2, score). + - det_labels_voted (Tensor): Label of remaining bboxes + after voting, with shape (num_anchors,). + """ + candidate_mask = mlvl_nms_scores > score_thr + candidate_mask_nonzeros = candidate_mask.nonzero(as_tuple=False) + candidate_inds = candidate_mask_nonzeros[:, 0] + candidate_labels = candidate_mask_nonzeros[:, 1] + candidate_bboxes = mlvl_bboxes[candidate_inds] + candidate_scores = mlvl_nms_scores[candidate_mask] + det_bboxes_voted = [] + det_labels_voted = [] + for cls in range(self.cls_out_channels): + candidate_cls_mask = candidate_labels == cls + if not candidate_cls_mask.any(): + continue + candidate_cls_scores = candidate_scores[candidate_cls_mask] + candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask] + det_cls_mask = det_labels == cls + det_cls_bboxes = det_bboxes[det_cls_mask].view( + -1, det_bboxes.size(-1)) + det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4], + candidate_cls_bboxes) + for det_ind in range(len(det_cls_bboxes)): + single_det_ious = det_candidate_ious[det_ind] + pos_ious_mask = single_det_ious > 0.01 + pos_ious = single_det_ious[pos_ious_mask] + pos_bboxes = candidate_cls_bboxes[pos_ious_mask] + pos_scores = candidate_cls_scores[pos_ious_mask] + pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) * + pos_scores)[:, None] + voted_box = torch.sum( + pis * pos_bboxes, dim=0) / torch.sum( + pis, dim=0) + voted_score = det_cls_bboxes[det_ind][-1:][None, :] + det_bboxes_voted.append( + torch.cat((voted_box[None, :], voted_score), dim=1)) + det_labels_voted.append(cls) + + det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0) + det_labels_voted = det_labels.new_tensor(det_labels_voted) + return det_bboxes_voted, det_labels_voted diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_retinanet_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_retinanet_head.py new file mode 100644 index 000000000..8654ef453 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_retinanet_head.py @@ -0,0 +1,155 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 + +from mmdet.core import images_to_levels +from ..builder import HEADS +from ..losses import carl_loss, isr_p +from .retina_head import RetinaHead + + +@HEADS.register_module() +class PISARetinaHead(RetinaHead): + """PISA Retinanet Head. + + The head owns the same structure with Retinanet Head, but differs in two + aspects: + 1. Importance-based Sample Reweighting Positive (ISR-P) is applied to + change the positive loss weights. + 2. Classification-aware regression loss is adopted as a third loss. + """ + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes of each image + with shape (num_obj, 4). + gt_labels (list[Tensor]): Ground truth labels of each image + with shape (num_obj, 4). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image. + Default: None. + + Returns: + dict: Loss dict, comprise classification loss, regression loss and + carl loss. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + return_sampling_results=True) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + # concat all level anchors and flags to a single tensor + concat_anchor_list = [] + for i in range(len(anchor_list)): + concat_anchor_list.append(torch.cat(anchor_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + + num_imgs = len(img_metas) + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, label_channels) + for cls_score in cls_scores + ] + flatten_cls_scores = torch.cat( + flatten_cls_scores, dim=1).reshape(-1, + flatten_cls_scores[0].size(-1)) + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) + for bbox_pred in bbox_preds + ] + flatten_bbox_preds = torch.cat( + flatten_bbox_preds, dim=1).view(-1, flatten_bbox_preds[0].size(-1)) + flatten_labels = torch.cat(labels_list, dim=1).reshape(-1) + flatten_label_weights = torch.cat( + label_weights_list, dim=1).reshape(-1) + flatten_anchors = torch.cat(all_anchor_list, dim=1).reshape(-1, 4) + flatten_bbox_targets = torch.cat( + bbox_targets_list, dim=1).reshape(-1, 4) + flatten_bbox_weights = torch.cat( + bbox_weights_list, dim=1).reshape(-1, 4) + + # Apply ISR-P + isr_cfg = self.train_cfg.get('isr', None) + if isr_cfg is not None: + all_targets = (flatten_labels, flatten_label_weights, + flatten_bbox_targets, flatten_bbox_weights) + with torch.no_grad(): + all_targets = isr_p( + flatten_cls_scores, + flatten_bbox_preds, + all_targets, + flatten_anchors, + sampling_results_list, + bbox_coder=self.bbox_coder, + loss_cls=self.loss_cls, + num_class=self.num_classes, + **self.train_cfg.isr) + (flatten_labels, flatten_label_weights, flatten_bbox_targets, + flatten_bbox_weights) = all_targets + + # For convenience we compute loss once instead separating by fpn level, + # so that we don't need to separate the weights by level again. + # The result should be the same + losses_cls = self.loss_cls( + flatten_cls_scores, + flatten_labels, + flatten_label_weights, + avg_factor=num_total_samples) + losses_bbox = self.loss_bbox( + flatten_bbox_preds, + flatten_bbox_targets, + flatten_bbox_weights, + avg_factor=num_total_samples) + loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox) + + # CARL Loss + carl_cfg = self.train_cfg.get('carl', None) + if carl_cfg is not None: + loss_carl = carl_loss( + flatten_cls_scores, + flatten_labels, + flatten_bbox_preds, + flatten_bbox_targets, + self.loss_bbox, + **self.train_cfg.carl, + avg_factor=num_total_pos, + sigmoid=True, + num_class=self.num_classes) + loss_dict.update(loss_carl) + + return loss_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_ssd_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_ssd_head.py new file mode 100644 index 000000000..86b67abe9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/pisa_ssd_head.py @@ -0,0 +1,140 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import multi_apply +from ..builder import HEADS +from ..losses import CrossEntropyLoss, SmoothL1Loss, carl_loss, isr_p +from .ssd_head import SSDHead + + +# TODO: add loss evaluator for SSD +@HEADS.register_module() +class PISASSDHead(SSDHead): + + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes of each image + with shape (num_obj, 4). + gt_labels (list[Tensor]): Ground truth labels of each image + with shape (num_obj, 4). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image. + Default: None. + + Returns: + dict: Loss dict, comprise classification loss regression loss and + carl loss. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=1, + unmap_outputs=False, + return_sampling_results=True) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets + + num_images = len(img_metas) + all_cls_scores = torch.cat([ + s.permute(0, 2, 3, 1).reshape( + num_images, -1, self.cls_out_channels) for s in cls_scores + ], 1) + all_labels = torch.cat(labels_list, -1).view(num_images, -1) + all_label_weights = torch.cat(label_weights_list, + -1).view(num_images, -1) + all_bbox_preds = torch.cat([ + b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) + for b in bbox_preds + ], -2) + all_bbox_targets = torch.cat(bbox_targets_list, + -2).view(num_images, -1, 4) + all_bbox_weights = torch.cat(bbox_weights_list, + -2).view(num_images, -1, 4) + + # concat all level anchors to a single tensor + all_anchors = [] + for i in range(num_images): + all_anchors.append(torch.cat(anchor_list[i])) + + isr_cfg = self.train_cfg.get('isr', None) + all_targets = (all_labels.view(-1), all_label_weights.view(-1), + all_bbox_targets.view(-1, + 4), all_bbox_weights.view(-1, 4)) + # apply ISR-P + if isr_cfg is not None: + all_targets = isr_p( + all_cls_scores.view(-1, all_cls_scores.size(-1)), + all_bbox_preds.view(-1, 4), + all_targets, + torch.cat(all_anchors), + sampling_results_list, + loss_cls=CrossEntropyLoss(), + bbox_coder=self.bbox_coder, + **self.train_cfg.isr, + num_class=self.num_classes) + (new_labels, new_label_weights, new_bbox_targets, + new_bbox_weights) = all_targets + all_labels = new_labels.view(all_labels.shape) + all_label_weights = new_label_weights.view(all_label_weights.shape) + all_bbox_targets = new_bbox_targets.view(all_bbox_targets.shape) + all_bbox_weights = new_bbox_weights.view(all_bbox_weights.shape) + + # add CARL loss + carl_loss_cfg = self.train_cfg.get('carl', None) + if carl_loss_cfg is not None: + loss_carl = carl_loss( + all_cls_scores.view(-1, all_cls_scores.size(-1)), + all_targets[0], + all_bbox_preds.view(-1, 4), + all_targets[2], + SmoothL1Loss(beta=1.), + **self.train_cfg.carl, + avg_factor=num_total_pos, + num_class=self.num_classes) + + # check NaN and Inf + assert torch.isfinite(all_cls_scores).all().item(), \ + 'classification scores become infinite or NaN!' + assert torch.isfinite(all_bbox_preds).all().item(), \ + 'bbox predications become infinite or NaN!' + + losses_cls, losses_bbox = multi_apply( + self.loss_single, + all_cls_scores, + all_bbox_preds, + all_anchors, + all_labels, + all_label_weights, + all_bbox_targets, + all_bbox_weights, + num_total_samples=num_total_pos) + loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox) + if carl_loss_cfg is not None: + loss_dict.update(loss_carl) + return loss_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/reppoints_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/reppoints_head.py new file mode 100644 index 000000000..f7204141d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/reppoints_head.py @@ -0,0 +1,764 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops import DeformConv2d + +from mmdet.core import (build_assigner, build_sampler, images_to_levels, + multi_apply, unmap) +from mmdet.core.anchor.point_generator import MlvlPointGenerator +from mmdet.core.utils import filter_scores_and_topk +from ..builder import HEADS, build_loss +from .anchor_free_head import AnchorFreeHead + + +@HEADS.register_module() +class RepPointsHead(AnchorFreeHead): + """RepPoint head. + + Args: + point_feat_channels (int): Number of channels of points features. + gradient_mul (float): The multiplier to gradients from + points refinement and recognition. + point_strides (Iterable): points strides. + point_base_scale (int): bbox scale for assigning labels. + loss_cls (dict): Config of classification loss. + loss_bbox_init (dict): Config of initial points loss. + loss_bbox_refine (dict): Config of points loss in refinement. + use_grid_points (bool): If we use bounding box representation, the + reppoints is represented as grid points on the bounding box. + center_init (bool): Whether to use center point assignment. + transform_method (str): The methods to transform RepPoints to bbox. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ # noqa: W605 + + def __init__(self, + num_classes, + in_channels, + point_feat_channels=256, + num_points=9, + gradient_mul=0.1, + point_strides=[8, 16, 32, 64, 128], + point_base_scale=4, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox_init=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5), + loss_bbox_refine=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + use_grid_points=False, + center_init=True, + transform_method='moment', + moment_mul=0.01, + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='reppoints_cls_out', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.num_points = num_points + self.point_feat_channels = point_feat_channels + self.use_grid_points = use_grid_points + self.center_init = center_init + + # we use deform conv to extract points features + self.dcn_kernel = int(np.sqrt(num_points)) + self.dcn_pad = int((self.dcn_kernel - 1) / 2) + assert self.dcn_kernel * self.dcn_kernel == num_points, \ + 'The points number should be a square number.' + assert self.dcn_kernel % 2 == 1, \ + 'The points number should be an odd square number.' + dcn_base = np.arange(-self.dcn_pad, + self.dcn_pad + 1).astype(np.float64) + dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) + dcn_base_x = np.tile(dcn_base, self.dcn_kernel) + dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( + (-1)) + self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) + + super().__init__( + num_classes, + in_channels, + loss_cls=loss_cls, + init_cfg=init_cfg, + **kwargs) + + self.gradient_mul = gradient_mul + self.point_base_scale = point_base_scale + self.point_strides = point_strides + self.prior_generator = MlvlPointGenerator( + self.point_strides, offset=0.) + + self.sampling = loss_cls['type'] not in ['FocalLoss'] + if self.train_cfg: + self.init_assigner = build_assigner(self.train_cfg.init.assigner) + self.refine_assigner = build_assigner( + self.train_cfg.refine.assigner) + # use PseudoSampler when sampling is False + if self.sampling and hasattr(self.train_cfg, 'sampler'): + sampler_cfg = self.train_cfg.sampler + else: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.transform_method = transform_method + if self.transform_method == 'moment': + self.moment_transfer = nn.Parameter( + data=torch.zeros(2), requires_grad=True) + self.moment_mul = moment_mul + + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + if self.use_sigmoid_cls: + self.cls_out_channels = self.num_classes + else: + self.cls_out_channels = self.num_classes + 1 + self.loss_bbox_init = build_loss(loss_bbox_init) + self.loss_bbox_refine = build_loss(loss_bbox_refine) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points + self.reppoints_cls_conv = DeformConv2d(self.feat_channels, + self.point_feat_channels, + self.dcn_kernel, 1, + self.dcn_pad) + self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels, + self.cls_out_channels, 1, 1, 0) + self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels, + self.point_feat_channels, 3, + 1, 1) + self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels, + pts_out_dim, 1, 1, 0) + self.reppoints_pts_refine_conv = DeformConv2d(self.feat_channels, + self.point_feat_channels, + self.dcn_kernel, 1, + self.dcn_pad) + self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels, + pts_out_dim, 1, 1, 0) + + def points2bbox(self, pts, y_first=True): + """Converting the points set into bounding box. + + :param pts: the input points sets (fields), each points + set (fields) is represented as 2n scalar. + :param y_first: if y_first=True, the point set is represented as + [y1, x1, y2, x2 ... yn, xn], otherwise the point set is + represented as [x1, y1, x2, y2 ... xn, yn]. + :return: each points set is converting to a bbox [x1, y1, x2, y2]. + """ + pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:]) + pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1, + ...] + pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0, + ...] + if self.transform_method == 'minmax': + bbox_left = pts_x.min(dim=1, keepdim=True)[0] + bbox_right = pts_x.max(dim=1, keepdim=True)[0] + bbox_up = pts_y.min(dim=1, keepdim=True)[0] + bbox_bottom = pts_y.max(dim=1, keepdim=True)[0] + bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom], + dim=1) + elif self.transform_method == 'partial_minmax': + pts_y = pts_y[:, :4, ...] + pts_x = pts_x[:, :4, ...] + bbox_left = pts_x.min(dim=1, keepdim=True)[0] + bbox_right = pts_x.max(dim=1, keepdim=True)[0] + bbox_up = pts_y.min(dim=1, keepdim=True)[0] + bbox_bottom = pts_y.max(dim=1, keepdim=True)[0] + bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom], + dim=1) + elif self.transform_method == 'moment': + pts_y_mean = pts_y.mean(dim=1, keepdim=True) + pts_x_mean = pts_x.mean(dim=1, keepdim=True) + pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True) + pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True) + moment_transfer = (self.moment_transfer * self.moment_mul) + ( + self.moment_transfer.detach() * (1 - self.moment_mul)) + moment_width_transfer = moment_transfer[0] + moment_height_transfer = moment_transfer[1] + half_width = pts_x_std * torch.exp(moment_width_transfer) + half_height = pts_y_std * torch.exp(moment_height_transfer) + bbox = torch.cat([ + pts_x_mean - half_width, pts_y_mean - half_height, + pts_x_mean + half_width, pts_y_mean + half_height + ], + dim=1) + else: + raise NotImplementedError + return bbox + + def gen_grid_from_reg(self, reg, previous_boxes): + """Base on the previous bboxes and regression values, we compute the + regressed bboxes and generate the grids on the bboxes. + + :param reg: the regression value to previous bboxes. + :param previous_boxes: previous bboxes. + :return: generate grids on the regressed bboxes. + """ + b, _, h, w = reg.shape + bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2. + bwh = (previous_boxes[:, 2:, ...] - + previous_boxes[:, :2, ...]).clamp(min=1e-6) + grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp( + reg[:, 2:, ...]) + grid_wh = bwh * torch.exp(reg[:, 2:, ...]) + grid_left = grid_topleft[:, [0], ...] + grid_top = grid_topleft[:, [1], ...] + grid_width = grid_wh[:, [0], ...] + grid_height = grid_wh[:, [1], ...] + intervel = torch.linspace(0., 1., self.dcn_kernel).view( + 1, self.dcn_kernel, 1, 1).type_as(reg) + grid_x = grid_left + grid_width * intervel + grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1) + grid_x = grid_x.view(b, -1, h, w) + grid_y = grid_top + grid_height * intervel + grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1) + grid_y = grid_y.view(b, -1, h, w) + grid_yx = torch.stack([grid_y, grid_x], dim=2) + grid_yx = grid_yx.view(b, -1, h, w) + regressed_bbox = torch.cat([ + grid_left, grid_top, grid_left + grid_width, grid_top + grid_height + ], 1) + return grid_yx, regressed_bbox + + def forward(self, feats): + return multi_apply(self.forward_single, feats) + + def forward_single(self, x): + """Forward feature map of a single FPN level.""" + dcn_base_offset = self.dcn_base_offset.type_as(x) + # If we use center_init, the initial reppoints is from center points. + # If we use bounding bbox representation, the initial reppoints is + # from regular grid placed on a pre-defined bbox. + if self.use_grid_points or not self.center_init: + scale = self.point_base_scale / 2 + points_init = dcn_base_offset / dcn_base_offset.max() * scale + bbox_init = x.new_tensor([-scale, -scale, scale, + scale]).view(1, 4, 1, 1) + else: + points_init = 0 + cls_feat = x + pts_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + pts_feat = reg_conv(pts_feat) + # initialize reppoints + pts_out_init = self.reppoints_pts_init_out( + self.relu(self.reppoints_pts_init_conv(pts_feat))) + if self.use_grid_points: + pts_out_init, bbox_out_init = self.gen_grid_from_reg( + pts_out_init, bbox_init.detach()) + else: + pts_out_init = pts_out_init + points_init + # refine and classify reppoints + pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach( + ) + self.gradient_mul * pts_out_init + dcn_offset = pts_out_init_grad_mul - dcn_base_offset + cls_out = self.reppoints_cls_out( + self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset))) + pts_out_refine = self.reppoints_pts_refine_out( + self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset))) + if self.use_grid_points: + pts_out_refine, bbox_out_refine = self.gen_grid_from_reg( + pts_out_refine, bbox_out_init.detach()) + else: + pts_out_refine = pts_out_refine + pts_out_init.detach() + + if self.training: + return cls_out, pts_out_init, pts_out_refine + else: + return cls_out, self.points2bbox(pts_out_refine) + + def get_points(self, featmap_sizes, img_metas, device): + """Get points according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + + Returns: + tuple: points of each image, valid flags of each image + """ + num_imgs = len(img_metas) + + # since feature map sizes of all images are the same, we only compute + # points center for one time + multi_level_points = self.prior_generator.grid_priors( + featmap_sizes, device=device, with_stride=True) + points_list = [[point.clone() for point in multi_level_points] + for _ in range(num_imgs)] + + # for each image, we compute valid flags of multi level grids + valid_flag_list = [] + for img_id, img_meta in enumerate(img_metas): + multi_level_flags = self.prior_generator.valid_flags( + featmap_sizes, img_meta['pad_shape']) + valid_flag_list.append(multi_level_flags) + + return points_list, valid_flag_list + + def centers_to_bboxes(self, point_list): + """Get bboxes according to center points. + + Only used in :class:`MaxIoUAssigner`. + """ + bbox_list = [] + for i_img, point in enumerate(point_list): + bbox = [] + for i_lvl in range(len(self.point_strides)): + scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5 + bbox_shift = torch.Tensor([-scale, -scale, scale, + scale]).view(1, 4).type_as(point[0]) + bbox_center = torch.cat( + [point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1) + bbox.append(bbox_center + bbox_shift) + bbox_list.append(bbox) + return bbox_list + + def offset_to_pts(self, center_list, pred_list): + """Change from point offset to point coordinate.""" + pts_list = [] + for i_lvl in range(len(self.point_strides)): + pts_lvl = [] + for i_img in range(len(center_list)): + pts_center = center_list[i_img][i_lvl][:, :2].repeat( + 1, self.num_points) + pts_shift = pred_list[i_lvl][i_img] + yx_pts_shift = pts_shift.permute(1, 2, 0).view( + -1, 2 * self.num_points) + y_pts_shift = yx_pts_shift[..., 0::2] + x_pts_shift = yx_pts_shift[..., 1::2] + xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1) + xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1) + pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center + pts_lvl.append(pts) + pts_lvl = torch.stack(pts_lvl, 0) + pts_list.append(pts_lvl) + return pts_list + + def _point_target_single(self, + flat_proposals, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + stage='init', + unmap_outputs=True): + inside_flags = valid_flags + if not inside_flags.any(): + return (None, ) * 7 + # assign gt and sample proposals + proposals = flat_proposals[inside_flags, :] + + if stage == 'init': + assigner = self.init_assigner + pos_weight = self.train_cfg.init.pos_weight + else: + assigner = self.refine_assigner + pos_weight = self.train_cfg.refine.pos_weight + assign_result = assigner.assign(proposals, gt_bboxes, gt_bboxes_ignore, + None if self.sampling else gt_labels) + sampling_result = self.sampler.sample(assign_result, proposals, + gt_bboxes) + + num_valid_proposals = proposals.shape[0] + bbox_gt = proposals.new_zeros([num_valid_proposals, 4]) + pos_proposals = torch.zeros_like(proposals) + proposals_weights = proposals.new_zeros([num_valid_proposals, 4]) + labels = proposals.new_full((num_valid_proposals, ), + self.num_classes, + dtype=torch.long) + label_weights = proposals.new_zeros( + num_valid_proposals, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + pos_gt_bboxes = sampling_result.pos_gt_bboxes + bbox_gt[pos_inds, :] = pos_gt_bboxes + pos_proposals[pos_inds, :] = proposals[pos_inds, :] + proposals_weights[pos_inds, :] = 1.0 + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of proposals + if unmap_outputs: + num_total_proposals = flat_proposals.size(0) + labels = unmap(labels, num_total_proposals, inside_flags) + label_weights = unmap(label_weights, num_total_proposals, + inside_flags) + bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags) + pos_proposals = unmap(pos_proposals, num_total_proposals, + inside_flags) + proposals_weights = unmap(proposals_weights, num_total_proposals, + inside_flags) + + return (labels, label_weights, bbox_gt, pos_proposals, + proposals_weights, pos_inds, neg_inds) + + def get_targets(self, + proposals_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + stage='init', + label_channels=1, + unmap_outputs=True): + """Compute corresponding GT box and classification targets for + proposals. + + Args: + proposals_list (list[list]): Multi level points/bboxes of each + image. + valid_flag_list (list[list]): Multi level valid flags of each + image. + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_bboxes_list (list[Tensor]): Ground truth labels of each box. + stage (str): `init` or `refine`. Generate target for init stage or + refine stage + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each level. # noqa: E501 + - bbox_gt_list (list[Tensor]): Ground truth bbox of each level. + - proposal_list (list[Tensor]): Proposals(points/bboxes) of each level. # noqa: E501 + - proposal_weights_list (list[Tensor]): Proposal weights of each level. # noqa: E501 + - num_total_pos (int): Number of positive samples in all images. # noqa: E501 + - num_total_neg (int): Number of negative samples in all images. # noqa: E501 + """ + assert stage in ['init', 'refine'] + num_imgs = len(img_metas) + assert len(proposals_list) == len(valid_flag_list) == num_imgs + + # points number of multi levels + num_level_proposals = [points.size(0) for points in proposals_list[0]] + + # concat all level points and flags to a single tensor + for i in range(num_imgs): + assert len(proposals_list[i]) == len(valid_flag_list[i]) + proposals_list[i] = torch.cat(proposals_list[i]) + valid_flag_list[i] = torch.cat(valid_flag_list[i]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + (all_labels, all_label_weights, all_bbox_gt, all_proposals, + all_proposal_weights, pos_inds_list, neg_inds_list) = multi_apply( + self._point_target_single, + proposals_list, + valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + stage=stage, + unmap_outputs=unmap_outputs) + # no valid points + if any([labels is None for labels in all_labels]): + return None + # sampled points of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + labels_list = images_to_levels(all_labels, num_level_proposals) + label_weights_list = images_to_levels(all_label_weights, + num_level_proposals) + bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals) + proposals_list = images_to_levels(all_proposals, num_level_proposals) + proposal_weights_list = images_to_levels(all_proposal_weights, + num_level_proposals) + return (labels_list, label_weights_list, bbox_gt_list, proposals_list, + proposal_weights_list, num_total_pos, num_total_neg) + + def loss_single(self, cls_score, pts_pred_init, pts_pred_refine, labels, + label_weights, bbox_gt_init, bbox_weights_init, + bbox_gt_refine, bbox_weights_refine, stride, + num_total_samples_init, num_total_samples_refine): + # classification loss + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + cls_score = cls_score.contiguous() + loss_cls = self.loss_cls( + cls_score, + labels, + label_weights, + avg_factor=num_total_samples_refine) + + # points loss + bbox_gt_init = bbox_gt_init.reshape(-1, 4) + bbox_weights_init = bbox_weights_init.reshape(-1, 4) + bbox_pred_init = self.points2bbox( + pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False) + bbox_gt_refine = bbox_gt_refine.reshape(-1, 4) + bbox_weights_refine = bbox_weights_refine.reshape(-1, 4) + bbox_pred_refine = self.points2bbox( + pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False) + normalize_term = self.point_base_scale * stride + loss_pts_init = self.loss_bbox_init( + bbox_pred_init / normalize_term, + bbox_gt_init / normalize_term, + bbox_weights_init, + avg_factor=num_total_samples_init) + loss_pts_refine = self.loss_bbox_refine( + bbox_pred_refine / normalize_term, + bbox_gt_refine / normalize_term, + bbox_weights_refine, + avg_factor=num_total_samples_refine) + return loss_cls, loss_pts_init, loss_pts_refine + + def loss(self, + cls_scores, + pts_preds_init, + pts_preds_refine, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + device = cls_scores[0].device + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + # target for initial stage + center_list, valid_flag_list = self.get_points(featmap_sizes, + img_metas, device) + pts_coordinate_preds_init = self.offset_to_pts(center_list, + pts_preds_init) + if self.train_cfg.init.assigner['type'] == 'PointAssigner': + # Assign target for center list + candidate_list = center_list + else: + # transform center list to bbox list and + # assign target for bbox list + bbox_list = self.centers_to_bboxes(center_list) + candidate_list = bbox_list + cls_reg_targets_init = self.get_targets( + candidate_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + stage='init', + label_channels=label_channels) + (*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init, + num_total_pos_init, num_total_neg_init) = cls_reg_targets_init + num_total_samples_init = ( + num_total_pos_init + + num_total_neg_init if self.sampling else num_total_pos_init) + + # target for refinement stage + center_list, valid_flag_list = self.get_points(featmap_sizes, + img_metas, device) + pts_coordinate_preds_refine = self.offset_to_pts( + center_list, pts_preds_refine) + bbox_list = [] + for i_img, center in enumerate(center_list): + bbox = [] + for i_lvl in range(len(pts_preds_refine)): + bbox_preds_init = self.points2bbox( + pts_preds_init[i_lvl].detach()) + bbox_shift = bbox_preds_init * self.point_strides[i_lvl] + bbox_center = torch.cat( + [center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1) + bbox.append(bbox_center + + bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4)) + bbox_list.append(bbox) + cls_reg_targets_refine = self.get_targets( + bbox_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + stage='refine', + label_channels=label_channels) + (labels_list, label_weights_list, bbox_gt_list_refine, + candidate_list_refine, bbox_weights_list_refine, num_total_pos_refine, + num_total_neg_refine) = cls_reg_targets_refine + num_total_samples_refine = ( + num_total_pos_refine + + num_total_neg_refine if self.sampling else num_total_pos_refine) + + # compute loss + losses_cls, losses_pts_init, losses_pts_refine = multi_apply( + self.loss_single, + cls_scores, + pts_coordinate_preds_init, + pts_coordinate_preds_refine, + labels_list, + label_weights_list, + bbox_gt_list_init, + bbox_weights_list_init, + bbox_gt_list_refine, + bbox_weights_list_refine, + self.point_strides, + num_total_samples_init=num_total_samples_init, + num_total_samples_refine=num_total_samples_refine) + loss_dict_all = { + 'loss_cls': losses_cls, + 'loss_pts_init': losses_pts_init, + 'loss_pts_refine': losses_pts_refine + } + return loss_dict_all + + # Same as base_dense_head/_get_bboxes_single except self._bbox_decode + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image. RepPoints head does not need + this value. + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid, has shape + (num_priors, 2). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_score_list) == len(bbox_pred_list) + img_shape = img_meta['img_shape'] + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_labels = [] + for level_idx, (cls_score, bbox_pred, priors) in enumerate( + zip(cls_score_list, bbox_pred_list, mlvl_priors)): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1)[:, :-1] + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict(bbox_pred=bbox_pred, priors=priors)) + scores, labels, _, filtered_results = results + + bbox_pred = filtered_results['bbox_pred'] + priors = filtered_results['priors'] + + bboxes = self._bbox_decode(priors, bbox_pred, + self.point_strides[level_idx], + img_shape) + + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_labels.append(labels) + + return self._bbox_post_process( + mlvl_scores, + mlvl_labels, + mlvl_bboxes, + img_meta['scale_factor'], + cfg, + rescale=rescale, + with_nms=with_nms) + + def _bbox_decode(self, points, bbox_pred, stride, max_shape): + bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1) + bboxes = bbox_pred * stride + bbox_pos_center + x1 = bboxes[:, 0].clamp(min=0, max=max_shape[1]) + y1 = bboxes[:, 1].clamp(min=0, max=max_shape[0]) + x2 = bboxes[:, 2].clamp(min=0, max=max_shape[1]) + y2 = bboxes[:, 3].clamp(min=0, max=max_shape[0]) + decoded_bboxes = torch.stack([x1, y1, x2, y2], dim=-1) + return decoded_bboxes diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_head.py new file mode 100644 index 000000000..a48720c2e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_head.py @@ -0,0 +1,115 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule + +from ..builder import HEADS +from .anchor_head import AnchorHead + + +@HEADS.register_module() +class RetinaHead(AnchorHead): + r"""An anchor-based head used in `RetinaNet + `_. + + The head contains two subnetworks. The first classifies anchor boxes and + the second regresses deltas for the anchors. + + Example: + >>> import torch + >>> self = RetinaHead(11, 7) + >>> x = torch.rand(1, 7, 32, 32) + >>> cls_score, bbox_pred = self.forward_single(x) + >>> # Each anchor predicts a score for each class except background + >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors + >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors + >>> assert cls_per_anchor == (self.num_classes) + >>> assert box_per_anchor == 4 + """ + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=None, + anchor_generator=dict( + type='AnchorGenerator', + octave_base_scale=4, + scales_per_octave=3, + ratios=[0.5, 1.0, 2.0], + strides=[8, 16, 32, 64, 128]), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='retina_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + super(RetinaHead, self).__init__( + num_classes, + in_channels, + anchor_generator=anchor_generator, + init_cfg=init_cfg, + **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.retina_cls = nn.Conv2d( + self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 3, + padding=1) + self.retina_reg = nn.Conv2d( + self.feat_channels, self.num_base_priors * 4, 3, padding=1) + + def forward_single(self, x): + """Forward feature of a single scale level. + + Args: + x (Tensor): Features of a single scale level. + + Returns: + tuple: + cls_score (Tensor): Cls scores for a single scale level + the channels number is num_anchors * num_classes. + bbox_pred (Tensor): Box energies / deltas for a single scale + level, the channels number is num_anchors * 4. + """ + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + cls_score = self.retina_cls(cls_feat) + bbox_pred = self.retina_reg(reg_feat) + return cls_score, bbox_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_sepbn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_sepbn_head.py new file mode 100644 index 000000000..b385c6181 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/retina_sepbn_head.py @@ -0,0 +1,118 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init + +from ..builder import HEADS +from .anchor_head import AnchorHead + + +@HEADS.register_module() +class RetinaSepBNHead(AnchorHead): + """"RetinaHead with separate BN. + + In RetinaHead, conv/norm layers are shared across different FPN levels, + while in RetinaSepBNHead, conv layers are shared across different FPN + levels, but BN layers are separated. + """ + + def __init__(self, + num_classes, + num_ins, + in_channels, + stacked_convs=4, + conv_cfg=None, + norm_cfg=None, + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.num_ins = num_ins + super(RetinaSepBNHead, self).__init__( + num_classes, in_channels, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.num_ins): + cls_convs = nn.ModuleList() + reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.cls_convs.append(cls_convs) + self.reg_convs.append(reg_convs) + for i in range(self.stacked_convs): + for j in range(1, self.num_ins): + self.cls_convs[j][i].conv = self.cls_convs[0][i].conv + self.reg_convs[j][i].conv = self.reg_convs[0][i].conv + self.retina_cls = nn.Conv2d( + self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 3, + padding=1) + self.retina_reg = nn.Conv2d( + self.feat_channels, self.num_base_priors * 4, 3, padding=1) + + def init_weights(self): + """Initialize weights of the head.""" + super(RetinaSepBNHead, self).init_weights() + for m in self.cls_convs[0]: + normal_init(m.conv, std=0.01) + for m in self.reg_convs[0]: + normal_init(m.conv, std=0.01) + bias_cls = bias_init_with_prob(0.01) + normal_init(self.retina_cls, std=0.01, bias=bias_cls) + normal_init(self.retina_reg, std=0.01) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually a tuple of classification scores and bbox prediction + cls_scores (list[Tensor]): Classification scores for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * 4. + """ + cls_scores = [] + bbox_preds = [] + for i, x in enumerate(feats): + cls_feat = feats[i] + reg_feat = feats[i] + for cls_conv in self.cls_convs[i]: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs[i]: + reg_feat = reg_conv(reg_feat) + cls_score = self.retina_cls(cls_feat) + bbox_pred = self.retina_reg(reg_feat) + cls_scores.append(cls_score) + bbox_preds.append(bbox_pred) + return cls_scores, bbox_preds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/rpn_head.py new file mode 100644 index 000000000..f5d6a3b38 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/rpn_head.py @@ -0,0 +1,265 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.ops import batched_nms + +from ..builder import HEADS +from .anchor_head import AnchorHead + + +@HEADS.register_module() +class RPNHead(AnchorHead): + """RPN head. + + Args: + in_channels (int): Number of channels in the input feature map. + init_cfg (dict or list[dict], optional): Initialization config dict. + num_convs (int): Number of convolution layers in the head. Default 1. + """ # noqa: W605 + + def __init__(self, + in_channels, + init_cfg=dict(type='Normal', layer='Conv2d', std=0.01), + num_convs=1, + **kwargs): + self.num_convs = num_convs + super(RPNHead, self).__init__( + 1, in_channels, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + """Initialize layers of the head.""" + if self.num_convs > 1: + rpn_convs = [] + for i in range(self.num_convs): + if i == 0: + in_channels = self.in_channels + else: + in_channels = self.feat_channels + # use ``inplace=False`` to avoid error: one of the variables + # needed for gradient computation has been modified by an + # inplace operation. + rpn_convs.append( + ConvModule( + in_channels, + self.feat_channels, + 3, + padding=1, + inplace=False)) + self.rpn_conv = nn.Sequential(*rpn_convs) + else: + self.rpn_conv = nn.Conv2d( + self.in_channels, self.feat_channels, 3, padding=1) + self.rpn_cls = nn.Conv2d(self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 1) + self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_base_priors * 4, + 1) + + def forward_single(self, x): + """Forward feature map of a single scale level.""" + x = self.rpn_conv(x) + x = F.relu(x, inplace=True) + rpn_cls_score = self.rpn_cls(x) + rpn_bbox_pred = self.rpn_reg(x) + return rpn_cls_score, rpn_bbox_pred + + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + losses = super(RPNHead, self).loss( + cls_scores, + bbox_preds, + gt_bboxes, + None, + img_metas, + gt_bboxes_ignore=gt_bboxes_ignore) + return dict( + loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox']) + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_anchors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_anchors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has + shape (num_anchors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image. RPN head does not need this value. + mlvl_anchors (list[Tensor]): Anchors of all scale level + each item has shape (num_anchors, 4). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + Tensor: Labeled boxes in shape (n, 5), where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. + """ + cfg = self.test_cfg if cfg is None else cfg + cfg = copy.deepcopy(cfg) + img_shape = img_meta['img_shape'] + + # bboxes from different level should be independent during NMS, + # level_ids are used as labels for batched NMS to separate them + level_ids = [] + mlvl_scores = [] + mlvl_bbox_preds = [] + mlvl_valid_anchors = [] + nms_pre = cfg.get('nms_pre', -1) + for level_idx in range(len(cls_score_list)): + rpn_cls_score = cls_score_list[level_idx] + rpn_bbox_pred = bbox_pred_list[level_idx] + assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] + rpn_cls_score = rpn_cls_score.permute(1, 2, 0) + if self.use_sigmoid_cls: + rpn_cls_score = rpn_cls_score.reshape(-1) + scores = rpn_cls_score.sigmoid() + else: + rpn_cls_score = rpn_cls_score.reshape(-1, 2) + # We set FG labels to [0, num_class-1] and BG label to + # num_class in RPN head since mmdet v2.5, which is unified to + # be consistent with other head since mmdet v2.0. In mmdet v2.0 + # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. + scores = rpn_cls_score.softmax(dim=1)[:, 0] + rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) + + anchors = mlvl_anchors[level_idx] + if 0 < nms_pre < scores.shape[0]: + # sort is faster than topk + # _, topk_inds = scores.topk(cfg.nms_pre) + ranked_scores, rank_inds = scores.sort(descending=True) + topk_inds = rank_inds[:nms_pre] + scores = ranked_scores[:nms_pre] + rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] + anchors = anchors[topk_inds, :] + + mlvl_scores.append(scores) + mlvl_bbox_preds.append(rpn_bbox_pred) + mlvl_valid_anchors.append(anchors) + level_ids.append( + scores.new_full((scores.size(0), ), + level_idx, + dtype=torch.long)) + + return self._bbox_post_process(mlvl_scores, mlvl_bbox_preds, + mlvl_valid_anchors, level_ids, cfg, + img_shape) + + def _bbox_post_process(self, mlvl_scores, mlvl_bboxes, mlvl_valid_anchors, + level_ids, cfg, img_shape, **kwargs): + """bbox post-processing method. + + Do the nms operation for bboxes in same level. + + Args: + mlvl_scores (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_bboxes, ). + mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale + levels of a single image, each item has shape (num_bboxes, 4). + mlvl_valid_anchors (list[Tensor]): Anchors of all scale level + each item has shape (num_bboxes, 4). + level_ids (list[Tensor]): Indexes from all scale levels of a + single image, each item has shape (num_bboxes, ). + cfg (mmcv.Config): Test / postprocessing configuration, + if None, `self.test_cfg` would be used. + img_shape (tuple(int)): The shape of model's input image. + + Returns: + Tensor: Labeled boxes in shape (n, 5), where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. + """ + scores = torch.cat(mlvl_scores) + anchors = torch.cat(mlvl_valid_anchors) + rpn_bbox_pred = torch.cat(mlvl_bboxes) + proposals = self.bbox_coder.decode( + anchors, rpn_bbox_pred, max_shape=img_shape) + ids = torch.cat(level_ids) + + if cfg.min_bbox_size >= 0: + w = proposals[:, 2] - proposals[:, 0] + h = proposals[:, 3] - proposals[:, 1] + valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) + if not valid_mask.all(): + proposals = proposals[valid_mask] + scores = scores[valid_mask] + ids = ids[valid_mask] + + if proposals.numel() > 0: + dets, _ = batched_nms(proposals, scores, ids, cfg.nms) + else: + return proposals.new_zeros(0, 5) + + return dets[:cfg.max_per_img] + + def onnx_export(self, x, img_metas): + """Test without augmentation. + + Args: + x (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + img_metas (list[dict]): Meta info of each image. + Returns: + Tensor: dets of shape [N, num_det, 5]. + """ + cls_scores, bbox_preds = self(x) + + assert len(cls_scores) == len(bbox_preds) + + batch_bboxes, batch_scores = super(RPNHead, self).onnx_export( + cls_scores, bbox_preds, img_metas=img_metas, with_nms=False) + # Use ONNX::NonMaxSuppression in deployment + from mmdet.core.export import add_dummy_nms_for_onnx + cfg = copy.deepcopy(self.test_cfg) + score_threshold = cfg.nms.get('score_thr', 0.0) + nms_pre = cfg.get('deploy_nms_pre', -1) + # Different from the normal forward doing NMS level by level, + # we do NMS across all levels when exporting ONNX. + dets, _ = add_dummy_nms_for_onnx(batch_bboxes, batch_scores, + cfg.max_per_img, + cfg.nms.iou_threshold, + score_threshold, nms_pre, + cfg.max_per_img) + return dets diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/sabl_retina_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/sabl_retina_head.py new file mode 100644 index 000000000..4fede7109 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/sabl_retina_head.py @@ -0,0 +1,630 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numpy as np +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import force_fp32 + +from mmdet.core import (build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, images_to_levels, + multi_apply, unmap) +from mmdet.core.utils import filter_scores_and_topk +from ..builder import HEADS, build_loss +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin +from .guided_anchor_head import GuidedAnchorHead + + +@HEADS.register_module() +class SABLRetinaHead(BaseDenseHead, BBoxTestMixin): + """Side-Aware Boundary Localization (SABL) for RetinaNet. + + The anchor generation, assigning and sampling in SABLRetinaHead + are the same as GuidedAnchorHead for guided anchoring. + + Please refer to https://arxiv.org/abs/1912.04260 for more details. + + Args: + num_classes (int): Number of classes. + in_channels (int): Number of channels in the input feature map. + stacked_convs (int): Number of Convs for classification \ + and regression branches. Defaults to 4. + feat_channels (int): Number of hidden channels. \ + Defaults to 256. + approx_anchor_generator (dict): Config dict for approx generator. + square_anchor_generator (dict): Config dict for square generator. + conv_cfg (dict): Config dict for ConvModule. Defaults to None. + norm_cfg (dict): Config dict for Norm Layer. Defaults to None. + bbox_coder (dict): Config dict for bbox coder. + reg_decoded_bbox (bool): If true, the regression loss would be + applied directly on decoded bounding boxes, converting both + the predicted boxes and regression targets to absolute + coordinates format. Default False. It should be `True` when + using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. + train_cfg (dict): Training config of SABLRetinaHead. + test_cfg (dict): Testing config of SABLRetinaHead. + loss_cls (dict): Config of classification loss. + loss_bbox_cls (dict): Config of classification loss for bbox branch. + loss_bbox_reg (dict): Config of regression loss for bbox branch. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels, + stacked_convs=4, + feat_channels=256, + approx_anchor_generator=dict( + type='AnchorGenerator', + octave_base_scale=4, + scales_per_octave=3, + ratios=[0.5, 1.0, 2.0], + strides=[8, 16, 32, 64, 128]), + square_anchor_generator=dict( + type='AnchorGenerator', + ratios=[1.0], + scales=[4], + strides=[8, 16, 32, 64, 128]), + conv_cfg=None, + norm_cfg=None, + bbox_coder=dict( + type='BucketingBBoxCoder', + num_buckets=14, + scale_factor=3.0), + reg_decoded_bbox=False, + train_cfg=None, + test_cfg=None, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.5), + loss_bbox_reg=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='retina_cls', + std=0.01, + bias_prob=0.01))): + super(SABLRetinaHead, self).__init__(init_cfg) + self.in_channels = in_channels + self.num_classes = num_classes + self.feat_channels = feat_channels + self.num_buckets = bbox_coder['num_buckets'] + self.side_num = int(np.ceil(self.num_buckets / 2)) + + assert (approx_anchor_generator['octave_base_scale'] == + square_anchor_generator['scales'][0]) + assert (approx_anchor_generator['strides'] == + square_anchor_generator['strides']) + + self.approx_anchor_generator = build_prior_generator( + approx_anchor_generator) + self.square_anchor_generator = build_prior_generator( + square_anchor_generator) + self.approxs_per_octave = ( + self.approx_anchor_generator.num_base_priors[0]) + + # one anchor per location + self.num_base_priors = self.square_anchor_generator.num_base_priors[0] + + self.stacked_convs = stacked_convs + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + + self.reg_decoded_bbox = reg_decoded_bbox + + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + self.sampling = loss_cls['type'] not in [ + 'FocalLoss', 'GHMC', 'QualityFocalLoss' + ] + if self.use_sigmoid_cls: + self.cls_out_channels = num_classes + else: + self.cls_out_channels = num_classes + 1 + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.loss_cls = build_loss(loss_cls) + self.loss_bbox_cls = build_loss(loss_bbox_cls) + self.loss_bbox_reg = build_loss(loss_bbox_reg) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # use PseudoSampler when sampling is False + if self.sampling and hasattr(self.train_cfg, 'sampler'): + sampler_cfg = self.train_cfg.sampler + else: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + + self.fp16_enabled = False + self._init_layers() + + @property + def num_anchors(self): + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'please use "num_base_priors" instead') + return self.square_anchor_generator.num_base_priors[0] + + def _init_layers(self): + self.relu = nn.ReLU(inplace=True) + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.retina_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + self.retina_bbox_reg = nn.Conv2d( + self.feat_channels, self.side_num * 4, 3, padding=1) + self.retina_bbox_cls = nn.Conv2d( + self.feat_channels, self.side_num * 4, 3, padding=1) + + def forward_single(self, x): + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + cls_score = self.retina_cls(cls_feat) + bbox_cls_pred = self.retina_bbox_cls(reg_feat) + bbox_reg_pred = self.retina_bbox_reg(reg_feat) + bbox_pred = (bbox_cls_pred, bbox_reg_pred) + return cls_score, bbox_pred + + def forward(self, feats): + return multi_apply(self.forward_single, feats) + + def get_anchors(self, featmap_sizes, img_metas, device='cuda'): + """Get squares according to feature map sizes and guided anchors. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + device (torch.device | str): device for returned tensors + + Returns: + tuple: square approxs of each image + """ + num_imgs = len(img_metas) + + # since feature map sizes of all images are the same, we only compute + # squares for one time + multi_level_squares = self.square_anchor_generator.grid_priors( + featmap_sizes, device=device) + squares_list = [multi_level_squares for _ in range(num_imgs)] + + return squares_list + + def get_target(self, + approx_list, + inside_flag_list, + square_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=None, + sampling=True, + unmap_outputs=True): + """Compute bucketing targets. + Args: + approx_list (list[list]): Multi level approxs of each image. + inside_flag_list (list[list]): Multi level inside flags of each + image. + square_list (list[list]): Multi level squares of each image. + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes. + gt_bboxes_list (list[Tensor]): Gt bboxes of each image. + label_channels (int): Channel of label. + sampling (bool): Sample Anchors or not. + unmap_outputs (bool): unmap outputs or not. + + Returns: + tuple: Returns a tuple containing learning targets. + + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each \ + level. + - bbox_cls_targets_list (list[Tensor]): BBox cls targets of \ + each level. + - bbox_cls_weights_list (list[Tensor]): BBox cls weights of \ + each level. + - bbox_reg_targets_list (list[Tensor]): BBox reg targets of \ + each level. + - bbox_reg_weights_list (list[Tensor]): BBox reg weights of \ + each level. + - num_total_pos (int): Number of positive samples in all \ + images. + - num_total_neg (int): Number of negative samples in all \ + images. + """ + num_imgs = len(img_metas) + assert len(approx_list) == len(inside_flag_list) == len( + square_list) == num_imgs + # anchor number of multi levels + num_level_squares = [squares.size(0) for squares in square_list[0]] + # concat all level anchors and flags to a single tensor + inside_flag_flat_list = [] + approx_flat_list = [] + square_flat_list = [] + for i in range(num_imgs): + assert len(square_list[i]) == len(inside_flag_list[i]) + inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) + approx_flat_list.append(torch.cat(approx_list[i])) + square_flat_list.append(torch.cat(square_list[i])) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + (all_labels, all_label_weights, all_bbox_cls_targets, + all_bbox_cls_weights, all_bbox_reg_targets, all_bbox_reg_weights, + pos_inds_list, neg_inds_list) = multi_apply( + self._get_target_single, + approx_flat_list, + inside_flag_flat_list, + square_flat_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + sampling=sampling, + unmap_outputs=unmap_outputs) + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + labels_list = images_to_levels(all_labels, num_level_squares) + label_weights_list = images_to_levels(all_label_weights, + num_level_squares) + bbox_cls_targets_list = images_to_levels(all_bbox_cls_targets, + num_level_squares) + bbox_cls_weights_list = images_to_levels(all_bbox_cls_weights, + num_level_squares) + bbox_reg_targets_list = images_to_levels(all_bbox_reg_targets, + num_level_squares) + bbox_reg_weights_list = images_to_levels(all_bbox_reg_weights, + num_level_squares) + return (labels_list, label_weights_list, bbox_cls_targets_list, + bbox_cls_weights_list, bbox_reg_targets_list, + bbox_reg_weights_list, num_total_pos, num_total_neg) + + def _get_target_single(self, + flat_approxs, + inside_flags, + flat_squares, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=None, + sampling=True, + unmap_outputs=True): + """Compute regression and classification targets for anchors in a + single image. + + Args: + flat_approxs (Tensor): flat approxs of a single image, + shape (n, 4) + inside_flags (Tensor): inside flags of a single image, + shape (n, ). + flat_squares (Tensor): flat squares of a single image, + shape (approxs_per_octave * n, 4) + gt_bboxes (Tensor): Ground truth bboxes of a single image, \ + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + img_meta (dict): Meta info of the image. + label_channels (int): Channel of label. + sampling (bool): Sample Anchors or not. + unmap_outputs (bool): unmap outputs or not. + + Returns: + tuple: + + - labels_list (Tensor): Labels in a single image + - label_weights (Tensor): Label weights in a single image + - bbox_cls_targets (Tensor): BBox cls targets in a single image + - bbox_cls_weights (Tensor): BBox cls weights in a single image + - bbox_reg_targets (Tensor): BBox reg targets in a single image + - bbox_reg_weights (Tensor): BBox reg weights in a single image + - num_total_pos (int): Number of positive samples \ + in a single image + - num_total_neg (int): Number of negative samples \ + in a single image + """ + if not inside_flags.any(): + return (None, ) * 8 + # assign gt and sample anchors + expand_inside_flags = inside_flags[:, None].expand( + -1, self.approxs_per_octave).reshape(-1) + approxs = flat_approxs[expand_inside_flags, :] + squares = flat_squares[inside_flags, :] + + assign_result = self.assigner.assign(approxs, squares, + self.approxs_per_octave, + gt_bboxes, gt_bboxes_ignore) + sampling_result = self.sampler.sample(assign_result, squares, + gt_bboxes) + + num_valid_squares = squares.shape[0] + bbox_cls_targets = squares.new_zeros( + (num_valid_squares, self.side_num * 4)) + bbox_cls_weights = squares.new_zeros( + (num_valid_squares, self.side_num * 4)) + bbox_reg_targets = squares.new_zeros( + (num_valid_squares, self.side_num * 4)) + bbox_reg_weights = squares.new_zeros( + (num_valid_squares, self.side_num * 4)) + labels = squares.new_full((num_valid_squares, ), + self.num_classes, + dtype=torch.long) + label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + (pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets, + pos_bbox_cls_weights) = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + + bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets + bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets + bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights + bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_squares.size(0) + labels = unmap( + labels, num_total_anchors, inside_flags, fill=self.num_classes) + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors, + inside_flags) + bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors, + inside_flags) + bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors, + inside_flags) + bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors, + inside_flags) + return (labels, label_weights, bbox_cls_targets, bbox_cls_weights, + bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds) + + def loss_single(self, cls_score, bbox_pred, labels, label_weights, + bbox_cls_targets, bbox_cls_weights, bbox_reg_targets, + bbox_reg_weights, num_total_samples): + # classification loss + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + # regression loss + bbox_cls_targets = bbox_cls_targets.reshape(-1, self.side_num * 4) + bbox_cls_weights = bbox_cls_weights.reshape(-1, self.side_num * 4) + bbox_reg_targets = bbox_reg_targets.reshape(-1, self.side_num * 4) + bbox_reg_weights = bbox_reg_weights.reshape(-1, self.side_num * 4) + (bbox_cls_pred, bbox_reg_pred) = bbox_pred + bbox_cls_pred = bbox_cls_pred.permute(0, 2, 3, 1).reshape( + -1, self.side_num * 4) + bbox_reg_pred = bbox_reg_pred.permute(0, 2, 3, 1).reshape( + -1, self.side_num * 4) + loss_bbox_cls = self.loss_bbox_cls( + bbox_cls_pred, + bbox_cls_targets.long(), + bbox_cls_weights, + avg_factor=num_total_samples * 4 * self.side_num) + loss_bbox_reg = self.loss_bbox_reg( + bbox_reg_pred, + bbox_reg_targets, + bbox_reg_weights, + avg_factor=num_total_samples * 4 * self.bbox_coder.offset_topk) + return loss_cls, loss_bbox_cls, loss_bbox_reg + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.approx_anchor_generator.num_levels + + device = cls_scores[0].device + + # get sampled approxes + approxs_list, inside_flag_list = GuidedAnchorHead.get_sampled_approxs( + self, featmap_sizes, img_metas, device=device) + + square_list = self.get_anchors(featmap_sizes, img_metas, device=device) + + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + cls_reg_targets = self.get_target( + approxs_list, + inside_flag_list, + square_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + sampling=self.sampling) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_cls_targets_list, + bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + losses_cls, losses_bbox_cls, losses_bbox_reg = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + labels_list, + label_weights_list, + bbox_cls_targets_list, + bbox_cls_weights_list, + bbox_reg_targets_list, + bbox_reg_weights_list, + num_total_samples=num_total_samples) + return dict( + loss_cls=losses_cls, + loss_bbox_cls=losses_bbox_cls, + loss_bbox_reg=losses_bbox_reg) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + img_metas, + cfg=None, + rescale=False): + assert len(cls_scores) == len(bbox_preds) + num_levels = len(cls_scores) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + + device = cls_scores[0].device + mlvl_anchors = self.get_anchors( + featmap_sizes, img_metas, device=device) + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_cls_pred_list = [ + bbox_preds[i][0][img_id].detach() for i in range(num_levels) + ] + bbox_reg_pred_list = [ + bbox_preds[i][1][img_id].detach() for i in range(num_levels) + ] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + proposals = self._get_bboxes_single( + cls_score_list, bbox_cls_pred_list, bbox_reg_pred_list, + mlvl_anchors[img_id], img_shape, scale_factor, cfg, rescale) + result_list.append(proposals) + return result_list + + def _get_bboxes_single(self, + cls_scores, + bbox_cls_preds, + bbox_reg_preds, + mlvl_anchors, + img_shape, + scale_factor, + cfg, + rescale=False): + cfg = self.test_cfg if cfg is None else cfg + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_confids = [] + mlvl_labels = [] + assert len(cls_scores) == len(bbox_cls_preds) == len( + bbox_reg_preds) == len(mlvl_anchors) + for cls_score, bbox_cls_pred, bbox_reg_pred, anchors in zip( + cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors): + assert cls_score.size()[-2:] == bbox_cls_pred.size( + )[-2:] == bbox_reg_pred.size()[-2::] + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1)[:, :-1] + bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape( + -1, self.side_num * 4) + bbox_reg_pred = bbox_reg_pred.permute(1, 2, 0).reshape( + -1, self.side_num * 4) + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict( + anchors=anchors, + bbox_cls_pred=bbox_cls_pred, + bbox_reg_pred=bbox_reg_pred)) + scores, labels, _, filtered_results = results + + anchors = filtered_results['anchors'] + bbox_cls_pred = filtered_results['bbox_cls_pred'] + bbox_reg_pred = filtered_results['bbox_reg_pred'] + + bbox_preds = [ + bbox_cls_pred.contiguous(), + bbox_reg_pred.contiguous() + ] + bboxes, confids = self.bbox_coder.decode( + anchors.contiguous(), bbox_preds, max_shape=img_shape) + + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_confids.append(confids) + mlvl_labels.append(labels) + return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes, + scale_factor, cfg, rescale, True, + mlvl_confids) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/solo_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/solo_head.py new file mode 100644 index 000000000..148f819fa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/solo_head.py @@ -0,0 +1,1177 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from mmdet.core import InstanceData, mask_matrix_nms, multi_apply +from mmdet.core.utils import center_of_mass, generate_coordinate +from mmdet.models.builder import HEADS, build_loss +from .base_mask_head import BaseMaskHead + + +@HEADS.register_module() +class SOLOHead(BaseMaskHead): + """SOLO mask head used in `SOLO: Segmenting Objects by Locations. + + `_ + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + feat_channels (int): Number of hidden channels. Used in child classes. + Default: 256. + stacked_convs (int): Number of stacking convs of the head. + Default: 4. + strides (tuple): Downsample factor of each feature map. + scale_ranges (tuple[tuple[int, int]]): Area range of multiple + level masks, in the format [(min1, max1), (min2, max2), ...]. + A range of (16, 64) means the area range between (16, 64). + pos_scale (float): Constant scale factor to control the center region. + num_grids (list[int]): Divided image into a uniform grids, each + feature map has a different grid value. The number of output + channels is grid ** 2. Default: [40, 36, 24, 16, 12]. + cls_down_index (int): The index of downsample operation in + classification branch. Default: 0. + loss_mask (dict): Config of mask loss. + loss_cls (dict): Config of classification loss. + norm_cfg (dict): dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, + requires_grad=True). + train_cfg (dict): Training config of head. + test_cfg (dict): Testing config of head. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__( + self, + num_classes, + in_channels, + feat_channels=256, + stacked_convs=4, + strides=(4, 8, 16, 32, 64), + scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, 512)), + pos_scale=0.2, + num_grids=[40, 36, 24, 16, 12], + cls_down_index=0, + loss_mask=None, + loss_cls=None, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + train_cfg=None, + test_cfg=None, + init_cfg=[ + dict(type='Normal', layer='Conv2d', std=0.01), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_mask_list')), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_cls')) + ], + ): + super(SOLOHead, self).__init__(init_cfg) + self.num_classes = num_classes + self.cls_out_channels = self.num_classes + self.in_channels = in_channels + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.strides = strides + self.num_grids = num_grids + # number of FPN feats + self.num_levels = len(strides) + assert self.num_levels == len(scale_ranges) == len(num_grids) + self.scale_ranges = scale_ranges + self.pos_scale = pos_scale + + self.cls_down_index = cls_down_index + self.loss_cls = build_loss(loss_cls) + self.loss_mask = build_loss(loss_mask) + self.norm_cfg = norm_cfg + self.init_cfg = init_cfg + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self._init_layers() + + def _init_layers(self): + self.mask_convs = nn.ModuleList() + self.cls_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels + 2 if i == 0 else self.feat_channels + self.mask_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + norm_cfg=self.norm_cfg)) + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + norm_cfg=self.norm_cfg)) + self.conv_mask_list = nn.ModuleList() + for num_grid in self.num_grids: + self.conv_mask_list.append( + nn.Conv2d(self.feat_channels, num_grid**2, 1)) + + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + + def resize_feats(self, feats): + """Downsample the first feat and upsample last feat in feats.""" + out = [] + for i in range(len(feats)): + if i == 0: + out.append( + F.interpolate(feats[0], scale_factor=0.5, mode='bilinear')) + elif i == len(feats) - 1: + out.append( + F.interpolate( + feats[i], + size=feats[i - 1].shape[-2:], + mode='bilinear')) + else: + out.append(feats[i]) + return out + + def forward(self, feats): + assert len(feats) == self.num_levels + feats = self.resize_feats(feats) + mlvl_mask_preds = [] + mlvl_cls_preds = [] + for i in range(self.num_levels): + x = feats[i] + mask_feat = x + cls_feat = x + # generate and concat the coordinate + coord_feat = generate_coordinate(mask_feat.size(), + mask_feat.device) + mask_feat = torch.cat([mask_feat, coord_feat], 1) + + for mask_layer in (self.mask_convs): + mask_feat = mask_layer(mask_feat) + + mask_feat = F.interpolate( + mask_feat, scale_factor=2, mode='bilinear') + mask_pred = self.conv_mask_list[i](mask_feat) + + # cls branch + for j, cls_layer in enumerate(self.cls_convs): + if j == self.cls_down_index: + num_grid = self.num_grids[i] + cls_feat = F.interpolate( + cls_feat, size=num_grid, mode='bilinear') + cls_feat = cls_layer(cls_feat) + + cls_pred = self.conv_cls(cls_feat) + + if not self.training: + feat_wh = feats[0].size()[-2:] + upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) + mask_pred = F.interpolate( + mask_pred.sigmoid(), size=upsampled_size, mode='bilinear') + cls_pred = cls_pred.sigmoid() + # get local maximum + local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) + keep_mask = local_max[:, :, :-1, :-1] == cls_pred + cls_pred = cls_pred * keep_mask + + mlvl_mask_preds.append(mask_pred) + mlvl_cls_preds.append(cls_pred) + return mlvl_mask_preds, mlvl_cls_preds + + def loss(self, + mlvl_mask_preds, + mlvl_cls_preds, + gt_labels, + gt_masks, + img_metas, + gt_bboxes=None, + **kwargs): + """Calculate the loss of total batch. + + Args: + mlvl_mask_preds (list[Tensor]): Multi-level mask prediction. + Each element in the list has shape + (batch_size, num_grids**2 ,h ,w). + mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element + in the list has shape + (batch_size, num_classes, num_grids ,num_grids). + gt_labels (list[Tensor]): Labels of multiple images. + gt_masks (list[Tensor]): Ground truth masks of multiple images. + Each has shape (num_instances, h, w). + img_metas (list[dict]): Meta information of multiple images. + gt_bboxes (list[Tensor]): Ground truth bboxes of multiple + images. Default: None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + num_levels = self.num_levels + num_imgs = len(gt_labels) + + featmap_sizes = [featmap.size()[-2:] for featmap in mlvl_mask_preds] + + # `BoolTensor` in `pos_masks` represent + # whether the corresponding point is + # positive + pos_mask_targets, labels, pos_masks = multi_apply( + self._get_targets_single, + gt_bboxes, + gt_labels, + gt_masks, + featmap_sizes=featmap_sizes) + + # change from the outside list meaning multi images + # to the outside list meaning multi levels + mlvl_pos_mask_targets = [[] for _ in range(num_levels)] + mlvl_pos_mask_preds = [[] for _ in range(num_levels)] + mlvl_pos_masks = [[] for _ in range(num_levels)] + mlvl_labels = [[] for _ in range(num_levels)] + for img_id in range(num_imgs): + assert num_levels == len(pos_mask_targets[img_id]) + for lvl in range(num_levels): + mlvl_pos_mask_targets[lvl].append( + pos_mask_targets[img_id][lvl]) + mlvl_pos_mask_preds[lvl].append( + mlvl_mask_preds[lvl][img_id, pos_masks[img_id][lvl], ...]) + mlvl_pos_masks[lvl].append(pos_masks[img_id][lvl].flatten()) + mlvl_labels[lvl].append(labels[img_id][lvl].flatten()) + + # cat multiple image + temp_mlvl_cls_preds = [] + for lvl in range(num_levels): + mlvl_pos_mask_targets[lvl] = torch.cat( + mlvl_pos_mask_targets[lvl], dim=0) + mlvl_pos_mask_preds[lvl] = torch.cat( + mlvl_pos_mask_preds[lvl], dim=0) + mlvl_pos_masks[lvl] = torch.cat(mlvl_pos_masks[lvl], dim=0) + mlvl_labels[lvl] = torch.cat(mlvl_labels[lvl], dim=0) + temp_mlvl_cls_preds.append(mlvl_cls_preds[lvl].permute( + 0, 2, 3, 1).reshape(-1, self.cls_out_channels)) + + num_pos = sum(item.sum() for item in mlvl_pos_masks) + # dice loss + loss_mask = [] + for pred, target in zip(mlvl_pos_mask_preds, mlvl_pos_mask_targets): + if pred.size()[0] == 0: + loss_mask.append(pred.sum().unsqueeze(0)) + continue + loss_mask.append( + self.loss_mask(pred, target, reduction_override='none')) + if num_pos > 0: + loss_mask = torch.cat(loss_mask).sum() / num_pos + else: + loss_mask = torch.cat(loss_mask).mean() + + flatten_labels = torch.cat(mlvl_labels) + flatten_cls_preds = torch.cat(temp_mlvl_cls_preds) + loss_cls = self.loss_cls( + flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1) + return dict(loss_mask=loss_mask, loss_cls=loss_cls) + + def _get_targets_single(self, + gt_bboxes, + gt_labels, + gt_masks, + featmap_sizes=None): + """Compute targets for predictions of single image. + + Args: + gt_bboxes (Tensor): Ground truth bbox of each instance, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth label of each instance, + shape (num_gts,). + gt_masks (Tensor): Ground truth mask of each instance, + shape (num_gts, h, w). + featmap_sizes (list[:obj:`torch.size`]): Size of each + feature map from feature pyramid, each element + means (feat_h, feat_w). Default: None. + + Returns: + Tuple: Usually returns a tuple containing targets for predictions. + + - mlvl_pos_mask_targets (list[Tensor]): Each element represent + the binary mask targets for positive points in this + level, has shape (num_pos, out_h, out_w). + - mlvl_labels (list[Tensor]): Each element is + classification labels for all + points in this level, has shape + (num_grid, num_grid). + - mlvl_pos_masks (list[Tensor]): Each element is + a `BoolTensor` to represent whether the + corresponding point in single level + is positive, has shape (num_grid **2). + """ + device = gt_labels.device + gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * + (gt_bboxes[:, 3] - gt_bboxes[:, 1])) + + mlvl_pos_mask_targets = [] + mlvl_labels = [] + mlvl_pos_masks = [] + for (lower_bound, upper_bound), stride, featmap_size, num_grid \ + in zip(self.scale_ranges, self.strides, + featmap_sizes, self.num_grids): + + mask_target = torch.zeros( + [num_grid**2, featmap_size[0], featmap_size[1]], + dtype=torch.uint8, + device=device) + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + labels = torch.zeros([num_grid, num_grid], + dtype=torch.int64, + device=device) + self.num_classes + pos_mask = torch.zeros([num_grid**2], + dtype=torch.bool, + device=device) + + gt_inds = ((gt_areas >= lower_bound) & + (gt_areas <= upper_bound)).nonzero().flatten() + if len(gt_inds) == 0: + mlvl_pos_mask_targets.append( + mask_target.new_zeros(0, featmap_size[0], featmap_size[1])) + mlvl_labels.append(labels) + mlvl_pos_masks.append(pos_mask) + continue + hit_gt_bboxes = gt_bboxes[gt_inds] + hit_gt_labels = gt_labels[gt_inds] + hit_gt_masks = gt_masks[gt_inds, ...] + + pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] - + hit_gt_bboxes[:, 0]) * self.pos_scale + pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] - + hit_gt_bboxes[:, 1]) * self.pos_scale + + # Make sure hit_gt_masks has a value + valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0 + output_stride = stride / 2 + + for gt_mask, gt_label, pos_h_range, pos_w_range, \ + valid_mask_flag in \ + zip(hit_gt_masks, hit_gt_labels, pos_h_ranges, + pos_w_ranges, valid_mask_flags): + if not valid_mask_flag: + continue + upsampled_size = (featmap_sizes[0][0] * 4, + featmap_sizes[0][1] * 4) + center_h, center_w = center_of_mass(gt_mask) + + coord_w = int( + (center_w / upsampled_size[1]) // (1. / num_grid)) + coord_h = int( + (center_h / upsampled_size[0]) // (1. / num_grid)) + + # left, top, right, down + top_box = max( + 0, + int(((center_h - pos_h_range) / upsampled_size[0]) // + (1. / num_grid))) + down_box = min( + num_grid - 1, + int(((center_h + pos_h_range) / upsampled_size[0]) // + (1. / num_grid))) + left_box = max( + 0, + int(((center_w - pos_w_range) / upsampled_size[1]) // + (1. / num_grid))) + right_box = min( + num_grid - 1, + int(((center_w + pos_w_range) / upsampled_size[1]) // + (1. / num_grid))) + + top = max(top_box, coord_h - 1) + down = min(down_box, coord_h + 1) + left = max(coord_w - 1, left_box) + right = min(right_box, coord_w + 1) + + labels[top:(down + 1), left:(right + 1)] = gt_label + # ins + gt_mask = np.uint8(gt_mask.cpu().numpy()) + # Follow the original implementation, F.interpolate is + # different from cv2 and opencv + gt_mask = mmcv.imrescale(gt_mask, scale=1. / output_stride) + gt_mask = torch.from_numpy(gt_mask).to(device=device) + + for i in range(top, down + 1): + for j in range(left, right + 1): + index = int(i * num_grid + j) + mask_target[index, :gt_mask.shape[0], :gt_mask. + shape[1]] = gt_mask + pos_mask[index] = True + mlvl_pos_mask_targets.append(mask_target[pos_mask]) + mlvl_labels.append(labels) + mlvl_pos_masks.append(pos_mask) + return mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks + + def get_results(self, mlvl_mask_preds, mlvl_cls_scores, img_metas, + **kwargs): + """Get multi-image mask results. + + Args: + mlvl_mask_preds (list[Tensor]): Multi-level mask prediction. + Each element in the list has shape + (batch_size, num_grids**2 ,h ,w). + mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element + in the list has shape + (batch_size, num_classes, num_grids ,num_grids). + img_metas (list[dict]): Meta information of all images. + + Returns: + list[:obj:`InstanceData`]: Processed results of multiple + images.Each :obj:`InstanceData` usually contains + following keys. + + - scores (Tensor): Classification scores, has shape + (num_instance,). + - labels (Tensor): Has shape (num_instances,). + - masks (Tensor): Processed mask results, has + shape (num_instances, h, w). + """ + mlvl_cls_scores = [ + item.permute(0, 2, 3, 1) for item in mlvl_cls_scores + ] + assert len(mlvl_mask_preds) == len(mlvl_cls_scores) + num_levels = len(mlvl_cls_scores) + + results_list = [] + for img_id in range(len(img_metas)): + cls_pred_list = [ + mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels) + for lvl in range(num_levels) + ] + mask_pred_list = [ + mlvl_mask_preds[lvl][img_id] for lvl in range(num_levels) + ] + + cls_pred_list = torch.cat(cls_pred_list, dim=0) + mask_pred_list = torch.cat(mask_pred_list, dim=0) + + results = self._get_results_single( + cls_pred_list, mask_pred_list, img_meta=img_metas[img_id]) + results_list.append(results) + + return results_list + + def _get_results_single(self, cls_scores, mask_preds, img_meta, cfg=None): + """Get processed mask related results of single image. + + Args: + cls_scores (Tensor): Classification score of all points + in single image, has shape (num_points, num_classes). + mask_preds (Tensor): Mask prediction of all points in + single image, has shape (num_points, feat_h, feat_w). + img_meta (dict): Meta information of corresponding image. + cfg (dict, optional): Config used in test phase. + Default: None. + + Returns: + :obj:`InstanceData`: Processed results of single image. + it usually contains following keys. + + - scores (Tensor): Classification scores, has shape + (num_instance,). + - labels (Tensor): Has shape (num_instances,). + - masks (Tensor): Processed mask results, has + shape (num_instances, h, w). + """ + + def empty_results(results, cls_scores): + """Generate a empty results.""" + results.scores = cls_scores.new_ones(0) + results.masks = cls_scores.new_zeros(0, *results.ori_shape[:2]) + results.labels = cls_scores.new_ones(0) + return results + + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(mask_preds) + results = InstanceData(img_meta) + + featmap_size = mask_preds.size()[-2:] + + img_shape = results.img_shape + ori_shape = results.ori_shape + + h, w, _ = img_shape + upsampled_size = (featmap_size[0] * 4, featmap_size[1] * 4) + + score_mask = (cls_scores > cfg.score_thr) + cls_scores = cls_scores[score_mask] + if len(cls_scores) == 0: + return empty_results(results, cls_scores) + + inds = score_mask.nonzero() + cls_labels = inds[:, 1] + + # Filter the mask mask with an area is smaller than + # stride of corresponding feature level + lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0) + strides = cls_scores.new_ones(lvl_interval[-1]) + strides[:lvl_interval[0]] *= self.strides[0] + for lvl in range(1, self.num_levels): + strides[lvl_interval[lvl - + 1]:lvl_interval[lvl]] *= self.strides[lvl] + strides = strides[inds[:, 0]] + mask_preds = mask_preds[inds[:, 0]] + + masks = mask_preds > cfg.mask_thr + sum_masks = masks.sum((1, 2)).float() + keep = sum_masks > strides + if keep.sum() == 0: + return empty_results(results, cls_scores) + masks = masks[keep] + mask_preds = mask_preds[keep] + sum_masks = sum_masks[keep] + cls_scores = cls_scores[keep] + cls_labels = cls_labels[keep] + + # maskness. + mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks + cls_scores *= mask_scores + + scores, labels, _, keep_inds = mask_matrix_nms( + masks, + cls_labels, + cls_scores, + mask_area=sum_masks, + nms_pre=cfg.nms_pre, + max_num=cfg.max_per_img, + kernel=cfg.kernel, + sigma=cfg.sigma, + filter_thr=cfg.filter_thr) + mask_preds = mask_preds[keep_inds] + mask_preds = F.interpolate( + mask_preds.unsqueeze(0), size=upsampled_size, + mode='bilinear')[:, :, :h, :w] + mask_preds = F.interpolate( + mask_preds, size=ori_shape[:2], mode='bilinear').squeeze(0) + masks = mask_preds > cfg.mask_thr + + results.masks = masks + results.labels = labels + results.scores = scores + + return results + + +@HEADS.register_module() +class DecoupledSOLOHead(SOLOHead): + """Decoupled SOLO mask head used in `SOLO: Segmenting Objects by Locations. + + `_ + + Args: + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + *args, + init_cfg=[ + dict(type='Normal', layer='Conv2d', std=0.01), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_mask_list_x')), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_mask_list_y')), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_cls')) + ], + **kwargs): + super(DecoupledSOLOHead, self).__init__( + *args, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + self.mask_convs_x = nn.ModuleList() + self.mask_convs_y = nn.ModuleList() + self.cls_convs = nn.ModuleList() + + for i in range(self.stacked_convs): + chn = self.in_channels + 1 if i == 0 else self.feat_channels + self.mask_convs_x.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + norm_cfg=self.norm_cfg)) + self.mask_convs_y.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + norm_cfg=self.norm_cfg)) + + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + norm_cfg=self.norm_cfg)) + + self.conv_mask_list_x = nn.ModuleList() + self.conv_mask_list_y = nn.ModuleList() + for num_grid in self.num_grids: + self.conv_mask_list_x.append( + nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) + self.conv_mask_list_y.append( + nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + + def forward(self, feats): + assert len(feats) == self.num_levels + feats = self.resize_feats(feats) + mask_preds_x = [] + mask_preds_y = [] + cls_preds = [] + for i in range(self.num_levels): + x = feats[i] + mask_feat = x + cls_feat = x + # generate and concat the coordinate + coord_feat = generate_coordinate(mask_feat.size(), + mask_feat.device) + mask_feat_x = torch.cat([mask_feat, coord_feat[:, 0:1, ...]], 1) + mask_feat_y = torch.cat([mask_feat, coord_feat[:, 1:2, ...]], 1) + + for mask_layer_x, mask_layer_y in \ + zip(self.mask_convs_x, self.mask_convs_y): + mask_feat_x = mask_layer_x(mask_feat_x) + mask_feat_y = mask_layer_y(mask_feat_y) + + mask_feat_x = F.interpolate( + mask_feat_x, scale_factor=2, mode='bilinear') + mask_feat_y = F.interpolate( + mask_feat_y, scale_factor=2, mode='bilinear') + + mask_pred_x = self.conv_mask_list_x[i](mask_feat_x) + mask_pred_y = self.conv_mask_list_y[i](mask_feat_y) + + # cls branch + for j, cls_layer in enumerate(self.cls_convs): + if j == self.cls_down_index: + num_grid = self.num_grids[i] + cls_feat = F.interpolate( + cls_feat, size=num_grid, mode='bilinear') + cls_feat = cls_layer(cls_feat) + + cls_pred = self.conv_cls(cls_feat) + + if not self.training: + feat_wh = feats[0].size()[-2:] + upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) + mask_pred_x = F.interpolate( + mask_pred_x.sigmoid(), + size=upsampled_size, + mode='bilinear') + mask_pred_y = F.interpolate( + mask_pred_y.sigmoid(), + size=upsampled_size, + mode='bilinear') + cls_pred = cls_pred.sigmoid() + # get local maximum + local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) + keep_mask = local_max[:, :, :-1, :-1] == cls_pred + cls_pred = cls_pred * keep_mask + + mask_preds_x.append(mask_pred_x) + mask_preds_y.append(mask_pred_y) + cls_preds.append(cls_pred) + return mask_preds_x, mask_preds_y, cls_preds + + def loss(self, + mlvl_mask_preds_x, + mlvl_mask_preds_y, + mlvl_cls_preds, + gt_labels, + gt_masks, + img_metas, + gt_bboxes=None, + **kwargs): + """Calculate the loss of total batch. + + Args: + mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction + from x branch. Each element in the list has shape + (batch_size, num_grids ,h ,w). + mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction + from y branch. Each element in the list has shape + (batch_size, num_grids ,h ,w). + mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element + in the list has shape + (batch_size, num_classes, num_grids ,num_grids). + gt_labels (list[Tensor]): Labels of multiple images. + gt_masks (list[Tensor]): Ground truth masks of multiple images. + Each has shape (num_instances, h, w). + img_metas (list[dict]): Meta information of multiple images. + gt_bboxes (list[Tensor]): Ground truth bboxes of multiple + images. Default: None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + num_levels = self.num_levels + num_imgs = len(gt_labels) + featmap_sizes = [featmap.size()[-2:] for featmap in mlvl_mask_preds_x] + + pos_mask_targets, labels, \ + xy_pos_indexes = \ + multi_apply(self._get_targets_single, + gt_bboxes, + gt_labels, + gt_masks, + featmap_sizes=featmap_sizes) + + # change from the outside list meaning multi images + # to the outside list meaning multi levels + mlvl_pos_mask_targets = [[] for _ in range(num_levels)] + mlvl_pos_mask_preds_x = [[] for _ in range(num_levels)] + mlvl_pos_mask_preds_y = [[] for _ in range(num_levels)] + mlvl_labels = [[] for _ in range(num_levels)] + for img_id in range(num_imgs): + + for lvl in range(num_levels): + mlvl_pos_mask_targets[lvl].append( + pos_mask_targets[img_id][lvl]) + mlvl_pos_mask_preds_x[lvl].append( + mlvl_mask_preds_x[lvl][img_id, + xy_pos_indexes[img_id][lvl][:, 1]]) + mlvl_pos_mask_preds_y[lvl].append( + mlvl_mask_preds_y[lvl][img_id, + xy_pos_indexes[img_id][lvl][:, 0]]) + mlvl_labels[lvl].append(labels[img_id][lvl].flatten()) + + # cat multiple image + temp_mlvl_cls_preds = [] + for lvl in range(num_levels): + mlvl_pos_mask_targets[lvl] = torch.cat( + mlvl_pos_mask_targets[lvl], dim=0) + mlvl_pos_mask_preds_x[lvl] = torch.cat( + mlvl_pos_mask_preds_x[lvl], dim=0) + mlvl_pos_mask_preds_y[lvl] = torch.cat( + mlvl_pos_mask_preds_y[lvl], dim=0) + mlvl_labels[lvl] = torch.cat(mlvl_labels[lvl], dim=0) + temp_mlvl_cls_preds.append(mlvl_cls_preds[lvl].permute( + 0, 2, 3, 1).reshape(-1, self.cls_out_channels)) + + num_pos = 0. + # dice loss + loss_mask = [] + for pred_x, pred_y, target in \ + zip(mlvl_pos_mask_preds_x, + mlvl_pos_mask_preds_y, mlvl_pos_mask_targets): + num_masks = pred_x.size(0) + if num_masks == 0: + # make sure can get grad + loss_mask.append((pred_x.sum() + pred_y.sum()).unsqueeze(0)) + continue + num_pos += num_masks + pred_mask = pred_y.sigmoid() * pred_x.sigmoid() + loss_mask.append( + self.loss_mask(pred_mask, target, reduction_override='none')) + if num_pos > 0: + loss_mask = torch.cat(loss_mask).sum() / num_pos + else: + loss_mask = torch.cat(loss_mask).mean() + + # cate + flatten_labels = torch.cat(mlvl_labels) + flatten_cls_preds = torch.cat(temp_mlvl_cls_preds) + + loss_cls = self.loss_cls( + flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1) + return dict(loss_mask=loss_mask, loss_cls=loss_cls) + + def _get_targets_single(self, + gt_bboxes, + gt_labels, + gt_masks, + featmap_sizes=None): + """Compute targets for predictions of single image. + + Args: + gt_bboxes (Tensor): Ground truth bbox of each instance, + shape (num_gts, 4). + gt_labels (Tensor): Ground truth label of each instance, + shape (num_gts,). + gt_masks (Tensor): Ground truth mask of each instance, + shape (num_gts, h, w). + featmap_sizes (list[:obj:`torch.size`]): Size of each + feature map from feature pyramid, each element + means (feat_h, feat_w). Default: None. + + Returns: + Tuple: Usually returns a tuple containing targets for predictions. + + - mlvl_pos_mask_targets (list[Tensor]): Each element represent + the binary mask targets for positive points in this + level, has shape (num_pos, out_h, out_w). + - mlvl_labels (list[Tensor]): Each element is + classification labels for all + points in this level, has shape + (num_grid, num_grid). + - mlvl_xy_pos_indexes (list[Tensor]): Each element + in the list contains the index of positive samples in + corresponding level, has shape (num_pos, 2), last + dimension 2 present (index_x, index_y). + """ + mlvl_pos_mask_targets, mlvl_labels, \ + mlvl_pos_masks = \ + super()._get_targets_single(gt_bboxes, gt_labels, gt_masks, + featmap_sizes=featmap_sizes) + + mlvl_xy_pos_indexes = [(item - self.num_classes).nonzero() + for item in mlvl_labels] + + return mlvl_pos_mask_targets, mlvl_labels, mlvl_xy_pos_indexes + + def get_results(self, + mlvl_mask_preds_x, + mlvl_mask_preds_y, + mlvl_cls_scores, + img_metas, + rescale=None, + **kwargs): + """Get multi-image mask results. + + Args: + mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction + from x branch. Each element in the list has shape + (batch_size, num_grids ,h ,w). + mlvl_mask_preds_y (list[Tensor]): Multi-level mask prediction + from y branch. Each element in the list has shape + (batch_size, num_grids ,h ,w). + mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element + in the list has shape + (batch_size, num_classes ,num_grids ,num_grids). + img_metas (list[dict]): Meta information of all images. + + Returns: + list[:obj:`InstanceData`]: Processed results of multiple + images.Each :obj:`InstanceData` usually contains + following keys. + + - scores (Tensor): Classification scores, has shape + (num_instance,). + - labels (Tensor): Has shape (num_instances,). + - masks (Tensor): Processed mask results, has + shape (num_instances, h, w). + """ + mlvl_cls_scores = [ + item.permute(0, 2, 3, 1) for item in mlvl_cls_scores + ] + assert len(mlvl_mask_preds_x) == len(mlvl_cls_scores) + num_levels = len(mlvl_cls_scores) + + results_list = [] + for img_id in range(len(img_metas)): + cls_pred_list = [ + mlvl_cls_scores[i][img_id].view( + -1, self.cls_out_channels).detach() + for i in range(num_levels) + ] + mask_pred_list_x = [ + mlvl_mask_preds_x[i][img_id] for i in range(num_levels) + ] + mask_pred_list_y = [ + mlvl_mask_preds_y[i][img_id] for i in range(num_levels) + ] + + cls_pred_list = torch.cat(cls_pred_list, dim=0) + mask_pred_list_x = torch.cat(mask_pred_list_x, dim=0) + mask_pred_list_y = torch.cat(mask_pred_list_y, dim=0) + + results = self._get_results_single( + cls_pred_list, + mask_pred_list_x, + mask_pred_list_y, + img_meta=img_metas[img_id], + cfg=self.test_cfg) + results_list.append(results) + return results_list + + def _get_results_single(self, cls_scores, mask_preds_x, mask_preds_y, + img_meta, cfg): + """Get processed mask related results of single image. + + Args: + cls_scores (Tensor): Classification score of all points + in single image, has shape (num_points, num_classes). + mask_preds_x (Tensor): Mask prediction of x branch of + all points in single image, has shape + (sum_num_grids, feat_h, feat_w). + mask_preds_y (Tensor): Mask prediction of y branch of + all points in single image, has shape + (sum_num_grids, feat_h, feat_w). + img_meta (dict): Meta information of corresponding image. + cfg (dict): Config used in test phase. + + Returns: + :obj:`InstanceData`: Processed results of single image. + it usually contains following keys. + + - scores (Tensor): Classification scores, has shape + (num_instance,). + - labels (Tensor): Has shape (num_instances,). + - masks (Tensor): Processed mask results, has + shape (num_instances, h, w). + """ + + def empty_results(results, cls_scores): + """Generate a empty results.""" + results.scores = cls_scores.new_ones(0) + results.masks = cls_scores.new_zeros(0, *results.ori_shape[:2]) + results.labels = cls_scores.new_ones(0) + return results + + cfg = self.test_cfg if cfg is None else cfg + + results = InstanceData(img_meta) + img_shape = results.img_shape + ori_shape = results.ori_shape + h, w, _ = img_shape + featmap_size = mask_preds_x.size()[-2:] + upsampled_size = (featmap_size[0] * 4, featmap_size[1] * 4) + + score_mask = (cls_scores > cfg.score_thr) + cls_scores = cls_scores[score_mask] + inds = score_mask.nonzero() + lvl_interval = inds.new_tensor(self.num_grids).pow(2).cumsum(0) + num_all_points = lvl_interval[-1] + lvl_start_index = inds.new_ones(num_all_points) + num_grids = inds.new_ones(num_all_points) + seg_size = inds.new_tensor(self.num_grids).cumsum(0) + mask_lvl_start_index = inds.new_ones(num_all_points) + strides = inds.new_ones(num_all_points) + + lvl_start_index[:lvl_interval[0]] *= 0 + mask_lvl_start_index[:lvl_interval[0]] *= 0 + num_grids[:lvl_interval[0]] *= self.num_grids[0] + strides[:lvl_interval[0]] *= self.strides[0] + + for lvl in range(1, self.num_levels): + lvl_start_index[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ + lvl_interval[lvl - 1] + mask_lvl_start_index[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ + seg_size[lvl - 1] + num_grids[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ + self.num_grids[lvl] + strides[lvl_interval[lvl - 1]:lvl_interval[lvl]] *= \ + self.strides[lvl] + + lvl_start_index = lvl_start_index[inds[:, 0]] + mask_lvl_start_index = mask_lvl_start_index[inds[:, 0]] + num_grids = num_grids[inds[:, 0]] + strides = strides[inds[:, 0]] + + y_lvl_offset = (inds[:, 0] - lvl_start_index) // num_grids + x_lvl_offset = (inds[:, 0] - lvl_start_index) % num_grids + y_inds = mask_lvl_start_index + y_lvl_offset + x_inds = mask_lvl_start_index + x_lvl_offset + + cls_labels = inds[:, 1] + mask_preds = mask_preds_x[x_inds, ...] * mask_preds_y[y_inds, ...] + + masks = mask_preds > cfg.mask_thr + sum_masks = masks.sum((1, 2)).float() + keep = sum_masks > strides + if keep.sum() == 0: + return empty_results(results, cls_scores) + + masks = masks[keep] + mask_preds = mask_preds[keep] + sum_masks = sum_masks[keep] + cls_scores = cls_scores[keep] + cls_labels = cls_labels[keep] + + # maskness. + mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks + cls_scores *= mask_scores + + scores, labels, _, keep_inds = mask_matrix_nms( + masks, + cls_labels, + cls_scores, + mask_area=sum_masks, + nms_pre=cfg.nms_pre, + max_num=cfg.max_per_img, + kernel=cfg.kernel, + sigma=cfg.sigma, + filter_thr=cfg.filter_thr) + mask_preds = mask_preds[keep_inds] + mask_preds = F.interpolate( + mask_preds.unsqueeze(0), size=upsampled_size, + mode='bilinear')[:, :, :h, :w] + mask_preds = F.interpolate( + mask_preds, size=ori_shape[:2], mode='bilinear').squeeze(0) + masks = mask_preds > cfg.mask_thr + + results.masks = masks + results.labels = labels + results.scores = scores + + return results + + +@HEADS.register_module() +class DecoupledSOLOLightHead(DecoupledSOLOHead): + """Decoupled Light SOLO mask head used in `SOLO: Segmenting Objects by + Locations `_ + + Args: + with_dcn (bool): Whether use dcn in mask_convs and cls_convs, + default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + *args, + dcn_cfg=None, + init_cfg=[ + dict(type='Normal', layer='Conv2d', std=0.01), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_mask_list_x')), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_mask_list_y')), + dict( + type='Normal', + std=0.01, + bias_prob=0.01, + override=dict(name='conv_cls')) + ], + **kwargs): + assert dcn_cfg is None or isinstance(dcn_cfg, dict) + self.dcn_cfg = dcn_cfg + super(DecoupledSOLOLightHead, self).__init__( + *args, init_cfg=init_cfg, **kwargs) + + def _init_layers(self): + self.mask_convs = nn.ModuleList() + self.cls_convs = nn.ModuleList() + + for i in range(self.stacked_convs): + if self.dcn_cfg is not None\ + and i == self.stacked_convs - 1: + conv_cfg = self.dcn_cfg + else: + conv_cfg = None + + chn = self.in_channels + 2 if i == 0 else self.feat_channels + self.mask_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg)) + + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg)) + + self.conv_mask_list_x = nn.ModuleList() + self.conv_mask_list_y = nn.ModuleList() + for num_grid in self.num_grids: + self.conv_mask_list_x.append( + nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) + self.conv_mask_list_y.append( + nn.Conv2d(self.feat_channels, num_grid, 3, padding=1)) + self.conv_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + + def forward(self, feats): + assert len(feats) == self.num_levels + feats = self.resize_feats(feats) + mask_preds_x = [] + mask_preds_y = [] + cls_preds = [] + for i in range(self.num_levels): + x = feats[i] + mask_feat = x + cls_feat = x + # generate and concat the coordinate + coord_feat = generate_coordinate(mask_feat.size(), + mask_feat.device) + mask_feat = torch.cat([mask_feat, coord_feat], 1) + + for mask_layer in self.mask_convs: + mask_feat = mask_layer(mask_feat) + + mask_feat = F.interpolate( + mask_feat, scale_factor=2, mode='bilinear') + + mask_pred_x = self.conv_mask_list_x[i](mask_feat) + mask_pred_y = self.conv_mask_list_y[i](mask_feat) + + # cls branch + for j, cls_layer in enumerate(self.cls_convs): + if j == self.cls_down_index: + num_grid = self.num_grids[i] + cls_feat = F.interpolate( + cls_feat, size=num_grid, mode='bilinear') + cls_feat = cls_layer(cls_feat) + + cls_pred = self.conv_cls(cls_feat) + + if not self.training: + feat_wh = feats[0].size()[-2:] + upsampled_size = (feat_wh[0] * 2, feat_wh[1] * 2) + mask_pred_x = F.interpolate( + mask_pred_x.sigmoid(), + size=upsampled_size, + mode='bilinear') + mask_pred_y = F.interpolate( + mask_pred_y.sigmoid(), + size=upsampled_size, + mode='bilinear') + cls_pred = cls_pred.sigmoid() + # get local maximum + local_max = F.max_pool2d(cls_pred, 2, stride=1, padding=1) + keep_mask = local_max[:, :, :-1, :-1] == cls_pred + cls_pred = cls_pred * keep_mask + + mask_preds_x.append(mask_pred_x) + mask_preds_y.append(mask_pred_y) + cls_preds.append(cls_pred) + return mask_preds_x, mask_preds_y, cls_preds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ssd_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ssd_head.py new file mode 100644 index 000000000..e362fd801 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/ssd_head.py @@ -0,0 +1,357 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import force_fp32 + +from mmdet.core import (build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, multi_apply) +from ..builder import HEADS +from ..losses import smooth_l1_loss +from .anchor_head import AnchorHead + + +# TODO: add loss evaluator for SSD +@HEADS.register_module() +class SSDHead(AnchorHead): + """SSD head used in https://arxiv.org/abs/1512.02325. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + stacked_convs (int): Number of conv layers in cls and reg tower. + Default: 0. + feat_channels (int): Number of hidden channels when stacked_convs + > 0. Default: 256. + use_depthwise (bool): Whether to use DepthwiseSeparableConv. + Default: False. + conv_cfg (dict): Dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: None. + act_cfg (dict): Dictionary to construct and config activation layer. + Default: None. + anchor_generator (dict): Config dict for anchor generator + bbox_coder (dict): Config of bounding box coder. + reg_decoded_bbox (bool): If true, the regression loss would be + applied directly on decoded bounding boxes, converting both + the predicted boxes and regression targets to absolute + coordinates format. Default False. It should be `True` when + using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. + train_cfg (dict): Training config of anchor head. + test_cfg (dict): Testing config of anchor head. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ # noqa: W605 + + def __init__(self, + num_classes=80, + in_channels=(512, 1024, 512, 256, 256, 256), + stacked_convs=0, + feat_channels=256, + use_depthwise=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=None, + anchor_generator=dict( + type='SSDAnchorGenerator', + scale_major=False, + input_size=300, + strides=[8, 16, 32, 64, 100, 300], + ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]), + basesize_ratio_range=(0.1, 0.9)), + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + clip_border=True, + target_means=[.0, .0, .0, .0], + target_stds=[1.0, 1.0, 1.0, 1.0], + ), + reg_decoded_bbox=False, + train_cfg=None, + test_cfg=None, + init_cfg=dict( + type='Xavier', + layer='Conv2d', + distribution='uniform', + bias=0)): + super(AnchorHead, self).__init__(init_cfg) + self.num_classes = num_classes + self.in_channels = in_channels + self.stacked_convs = stacked_convs + self.feat_channels = feat_channels + self.use_depthwise = use_depthwise + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.cls_out_channels = num_classes + 1 # add background class + self.prior_generator = build_prior_generator(anchor_generator) + + # Usually the numbers of anchors for each level are the same + # except SSD detectors. So it is an int in the most dense + # heads but a list of int in SSDHead + self.num_base_priors = self.prior_generator.num_base_priors + + self._init_layers() + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.reg_decoded_bbox = reg_decoded_bbox + self.use_sigmoid_cls = False + self.cls_focal_loss = False + self.train_cfg = train_cfg + self.test_cfg = test_cfg + # set sampling=False for archor_target + self.sampling = False + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # SSD sampling=False so use PseudoSampler + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.fp16_enabled = False + + @property + def num_anchors(self): + """ + Returns: + list[int]: Number of base_anchors on each point of each level. + """ + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'please use "num_base_priors" instead') + return self.num_base_priors + + def _init_layers(self): + """Initialize layers of the head.""" + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + # TODO: Use registry to choose ConvModule type + conv = DepthwiseSeparableConvModule \ + if self.use_depthwise else ConvModule + + for channel, num_base_priors in zip(self.in_channels, + self.num_base_priors): + cls_layers = [] + reg_layers = [] + in_channel = channel + # build stacked conv tower, not used in default ssd + for i in range(self.stacked_convs): + cls_layers.append( + conv( + in_channel, + self.feat_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + reg_layers.append( + conv( + in_channel, + self.feat_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + in_channel = self.feat_channels + # SSD-Lite head + if self.use_depthwise: + cls_layers.append( + ConvModule( + in_channel, + in_channel, + 3, + padding=1, + groups=in_channel, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + reg_layers.append( + ConvModule( + in_channel, + in_channel, + 3, + padding=1, + groups=in_channel, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + cls_layers.append( + nn.Conv2d( + in_channel, + num_base_priors * self.cls_out_channels, + kernel_size=1 if self.use_depthwise else 3, + padding=0 if self.use_depthwise else 1)) + reg_layers.append( + nn.Conv2d( + in_channel, + num_base_priors * 4, + kernel_size=1 if self.use_depthwise else 3, + padding=0 if self.use_depthwise else 1)) + self.cls_convs.append(nn.Sequential(*cls_layers)) + self.reg_convs.append(nn.Sequential(*reg_layers)) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Classification scores for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * 4. + """ + cls_scores = [] + bbox_preds = [] + for feat, reg_conv, cls_conv in zip(feats, self.reg_convs, + self.cls_convs): + cls_scores.append(cls_conv(feat)) + bbox_preds.append(reg_conv(feat)) + return cls_scores, bbox_preds + + def loss_single(self, cls_score, bbox_pred, anchor, labels, label_weights, + bbox_targets, bbox_weights, num_total_samples): + """Compute loss of a single image. + + Args: + cls_score (Tensor): Box scores for eachimage + Has shape (num_total_anchors, num_classes). + bbox_pred (Tensor): Box energies / deltas for each image + level with shape (num_total_anchors, 4). + anchors (Tensor): Box reference for each scale level with shape + (num_total_anchors, 4). + labels (Tensor): Labels of each anchors with shape + (num_total_anchors,). + label_weights (Tensor): Label weights of each anchor with shape + (num_total_anchors,) + bbox_targets (Tensor): BBox regression targets of each anchor + weight shape (num_total_anchors, 4). + bbox_weights (Tensor): BBox regression loss weights of each anchor + with shape (num_total_anchors, 4). + num_total_samples (int): If sampling, num total samples equal to + the number of total anchors; Otherwise, it is the number of + positive anchors. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + loss_cls_all = F.cross_entropy( + cls_score, labels, reduction='none') * label_weights + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( + as_tuple=False).reshape(-1) + neg_inds = (labels == self.num_classes).nonzero( + as_tuple=False).view(-1) + + num_pos_samples = pos_inds.size(0) + num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples + if num_neg_samples > neg_inds.size(0): + num_neg_samples = neg_inds.size(0) + topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) + loss_cls_pos = loss_cls_all[pos_inds].sum() + loss_cls_neg = topk_loss_cls_neg.sum() + loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples + + if self.reg_decoded_bbox: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, it + # decodes the already encoded coordinates to absolute format. + bbox_pred = self.bbox_coder.decode(anchor, bbox_pred) + + loss_bbox = smooth_l1_loss( + bbox_pred, + bbox_targets, + bbox_weights, + beta=self.train_cfg.smoothl1_beta, + avg_factor=num_total_samples) + return loss_cls[None], loss_bbox + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=1, + unmap_outputs=True) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg) = cls_reg_targets + + num_images = len(img_metas) + all_cls_scores = torch.cat([ + s.permute(0, 2, 3, 1).reshape( + num_images, -1, self.cls_out_channels) for s in cls_scores + ], 1) + all_labels = torch.cat(labels_list, -1).view(num_images, -1) + all_label_weights = torch.cat(label_weights_list, + -1).view(num_images, -1) + all_bbox_preds = torch.cat([ + b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) + for b in bbox_preds + ], -2) + all_bbox_targets = torch.cat(bbox_targets_list, + -2).view(num_images, -1, 4) + all_bbox_weights = torch.cat(bbox_weights_list, + -2).view(num_images, -1, 4) + + # concat all level anchors to a single tensor + all_anchors = [] + for i in range(num_images): + all_anchors.append(torch.cat(anchor_list[i])) + + losses_cls, losses_bbox = multi_apply( + self.loss_single, + all_cls_scores, + all_bbox_preds, + all_anchors, + all_labels, + all_label_weights, + all_bbox_targets, + all_bbox_weights, + num_total_samples=num_total_pos) + return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/tood_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/tood_head.py new file mode 100644 index 000000000..c64ebf7a8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/tood_head.py @@ -0,0 +1,778 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init +from mmcv.ops import deform_conv2d +from mmcv.runner import force_fp32 + +from mmdet.core import (anchor_inside_flags, build_assigner, distance2bbox, + images_to_levels, multi_apply, reduce_mean, unmap) +from mmdet.core.utils import filter_scores_and_topk +from mmdet.models.utils import sigmoid_geometric_mean +from ..builder import HEADS, build_loss +from .atss_head import ATSSHead + + +class TaskDecomposition(nn.Module): + """Task decomposition module in task-aligned predictor of TOOD. + + Args: + feat_channels (int): Number of feature channels in TOOD head. + stacked_convs (int): Number of conv layers in TOOD head. + la_down_rate (int): Downsample rate of layer attention. + conv_cfg (dict): Config dict for convolution layer. + norm_cfg (dict): Config dict for normalization layer. + """ + + def __init__(self, + feat_channels, + stacked_convs, + la_down_rate=8, + conv_cfg=None, + norm_cfg=None): + super(TaskDecomposition, self).__init__() + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.in_channels = self.feat_channels * self.stacked_convs + self.norm_cfg = norm_cfg + self.layer_attention = nn.Sequential( + nn.Conv2d(self.in_channels, self.in_channels // la_down_rate, 1), + nn.ReLU(inplace=True), + nn.Conv2d( + self.in_channels // la_down_rate, + self.stacked_convs, + 1, + padding=0), nn.Sigmoid()) + + self.reduction_conv = ConvModule( + self.in_channels, + self.feat_channels, + 1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=norm_cfg is None) + + def init_weights(self): + for m in self.layer_attention.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, std=0.001) + normal_init(self.reduction_conv.conv, std=0.01) + + def forward(self, feat, avg_feat=None): + b, c, h, w = feat.shape + if avg_feat is None: + avg_feat = F.adaptive_avg_pool2d(feat, (1, 1)) + weight = self.layer_attention(avg_feat) + + # here we first compute the product between layer attention weight and + # conv weight, and then compute the convolution between new conv weight + # and feature map, in order to save memory and FLOPs. + conv_weight = weight.reshape( + b, 1, self.stacked_convs, + 1) * self.reduction_conv.conv.weight.reshape( + 1, self.feat_channels, self.stacked_convs, self.feat_channels) + conv_weight = conv_weight.reshape(b, self.feat_channels, + self.in_channels) + feat = feat.reshape(b, self.in_channels, h * w) + feat = torch.bmm(conv_weight, feat).reshape(b, self.feat_channels, h, + w) + if self.norm_cfg is not None: + feat = self.reduction_conv.norm(feat) + feat = self.reduction_conv.activate(feat) + + return feat + + +@HEADS.register_module() +class TOODHead(ATSSHead): + """TOODHead used in `TOOD: Task-aligned One-stage Object Detection. + + `_. + + TOOD uses Task-aligned head (T-head) and is optimized by Task Alignment + Learning (TAL). + + Args: + num_dcn (int): Number of deformable convolution in the head. + Default: 0. + anchor_type (str): If set to `anchor_free`, the head will use centers + to regress bboxes. If set to `anchor_based`, the head will + regress bboxes based on anchors. Default: `anchor_free`. + initial_loss_cls (dict): Config of initial loss. + + Example: + >>> self = TOODHead(11, 7) + >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] + >>> cls_score, bbox_pred = self.forward(feats) + >>> assert len(cls_score) == len(self.scales) + """ + + def __init__(self, + num_classes, + in_channels, + num_dcn=0, + anchor_type='anchor_free', + initial_loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + activated=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + **kwargs): + assert anchor_type in ['anchor_free', 'anchor_based'] + self.num_dcn = num_dcn + self.anchor_type = anchor_type + self.epoch = 0 # which would be update in SetEpochInfoHook! + super(TOODHead, self).__init__(num_classes, in_channels, **kwargs) + + if self.train_cfg: + self.initial_epoch = self.train_cfg.initial_epoch + self.initial_assigner = build_assigner( + self.train_cfg.initial_assigner) + self.initial_loss_cls = build_loss(initial_loss_cls) + self.assigner = self.initial_assigner + self.alignment_assigner = build_assigner(self.train_cfg.assigner) + self.alpha = self.train_cfg.alpha + self.beta = self.train_cfg.beta + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.inter_convs = nn.ModuleList() + for i in range(self.stacked_convs): + if i < self.num_dcn: + conv_cfg = dict(type='DCNv2', deform_groups=4) + else: + conv_cfg = self.conv_cfg + chn = self.in_channels if i == 0 else self.feat_channels + self.inter_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg)) + + self.cls_decomp = TaskDecomposition(self.feat_channels, + self.stacked_convs, + self.stacked_convs * 8, + self.conv_cfg, self.norm_cfg) + self.reg_decomp = TaskDecomposition(self.feat_channels, + self.stacked_convs, + self.stacked_convs * 8, + self.conv_cfg, self.norm_cfg) + + self.tood_cls = nn.Conv2d( + self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 3, + padding=1) + self.tood_reg = nn.Conv2d( + self.feat_channels, self.num_base_priors * 4, 3, padding=1) + + self.cls_prob_module = nn.Sequential( + nn.Conv2d(self.feat_channels * self.stacked_convs, + self.feat_channels // 4, 1), nn.ReLU(inplace=True), + nn.Conv2d(self.feat_channels // 4, 1, 3, padding=1)) + self.reg_offset_module = nn.Sequential( + nn.Conv2d(self.feat_channels * self.stacked_convs, + self.feat_channels // 4, 1), nn.ReLU(inplace=True), + nn.Conv2d(self.feat_channels // 4, 4 * 2, 3, padding=1)) + + self.scales = nn.ModuleList( + [Scale(1.0) for _ in self.prior_generator.strides]) + + def init_weights(self): + """Initialize weights of the head.""" + bias_cls = bias_init_with_prob(0.01) + for m in self.inter_convs: + normal_init(m.conv, std=0.01) + for m in self.cls_prob_module: + if isinstance(m, nn.Conv2d): + normal_init(m, std=0.01) + for m in self.reg_offset_module: + if isinstance(m, nn.Conv2d): + normal_init(m, std=0.001) + normal_init(self.cls_prob_module[-1], std=0.01, bias=bias_cls) + + self.cls_decomp.init_weights() + self.reg_decomp.init_weights() + + normal_init(self.tood_cls, std=0.01, bias=bias_cls) + normal_init(self.tood_reg, std=0.01) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually a tuple of classification scores and bbox prediction + cls_scores (list[Tensor]): Classification scores for all scale + levels, each is a 4D-tensor, the channels number is + num_anchors * num_classes. + bbox_preds (list[Tensor]): Decoded box for all scale levels, + each is a 4D-tensor, the channels number is + num_anchors * 4. In [tl_x, tl_y, br_x, br_y] format. + """ + cls_scores = [] + bbox_preds = [] + for idx, (x, scale, stride) in enumerate( + zip(feats, self.scales, self.prior_generator.strides)): + b, c, h, w = x.shape + anchor = self.prior_generator.single_level_grid_priors( + (h, w), idx, device=x.device) + anchor = torch.cat([anchor for _ in range(b)]) + # extract task interactive features + inter_feats = [] + for inter_conv in self.inter_convs: + x = inter_conv(x) + inter_feats.append(x) + feat = torch.cat(inter_feats, 1) + + # task decomposition + avg_feat = F.adaptive_avg_pool2d(feat, (1, 1)) + cls_feat = self.cls_decomp(feat, avg_feat) + reg_feat = self.reg_decomp(feat, avg_feat) + + # cls prediction and alignment + cls_logits = self.tood_cls(cls_feat) + cls_prob = self.cls_prob_module(feat) + cls_score = sigmoid_geometric_mean(cls_logits, cls_prob) + + # reg prediction and alignment + if self.anchor_type == 'anchor_free': + reg_dist = scale(self.tood_reg(reg_feat).exp()).float() + reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4) + reg_bbox = distance2bbox( + self.anchor_center(anchor) / stride[0], + reg_dist).reshape(b, h, w, 4).permute(0, 3, 1, + 2) # (b, c, h, w) + elif self.anchor_type == 'anchor_based': + reg_dist = scale(self.tood_reg(reg_feat)).float() + reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4) + reg_bbox = self.bbox_coder.decode(anchor, reg_dist).reshape( + b, h, w, 4).permute(0, 3, 1, 2) / stride[0] + else: + raise NotImplementedError( + f'Unknown anchor type: {self.anchor_type}.' + f'Please use `anchor_free` or `anchor_based`.') + reg_offset = self.reg_offset_module(feat) + bbox_pred = self.deform_sampling(reg_bbox.contiguous(), + reg_offset.contiguous()) + + # After deform_sampling, some boxes will become invalid (The + # left-top point is at the right or bottom of the right-bottom + # point), which will make the GIoULoss negative. + invalid_bbox_idx = (bbox_pred[:, [0]] > bbox_pred[:, [2]]) | \ + (bbox_pred[:, [1]] > bbox_pred[:, [3]]) + invalid_bbox_idx = invalid_bbox_idx.expand_as(bbox_pred) + bbox_pred = torch.where(invalid_bbox_idx, reg_bbox, bbox_pred) + + cls_scores.append(cls_score) + bbox_preds.append(bbox_pred) + return tuple(cls_scores), tuple(bbox_preds) + + def deform_sampling(self, feat, offset): + """Sampling the feature x according to offset. + + Args: + feat (Tensor): Feature + offset (Tensor): Spatial offset for feature sampling + """ + # it is an equivalent implementation of bilinear interpolation + b, c, h, w = feat.shape + weight = feat.new_ones(c, 1, 1, 1) + y = deform_conv2d(feat, offset, weight, 1, 0, 1, c, c) + return y + + def anchor_center(self, anchors): + """Get anchor centers from anchors. + + Args: + anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. + + Returns: + Tensor: Anchor centers with shape (N, 2), "xy" format. + """ + anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 + anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 + return torch.stack([anchors_cx, anchors_cy], dim=-1) + + def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, + bbox_targets, alignment_metrics, stride): + """Compute loss of a single scale level. + + Args: + anchors (Tensor): Box reference for each scale level with shape + (N, num_total_anchors, 4). + cls_score (Tensor): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W). + bbox_pred (Tensor): Decoded bboxes for each scale + level with shape (N, num_anchors * 4, H, W). + labels (Tensor): Labels of each anchors with shape + (N, num_total_anchors). + label_weights (Tensor): Label weights of each anchor with shape + (N, num_total_anchors). + bbox_targets (Tensor): BBox regression targets of each anchor with + shape (N, num_total_anchors, 4). + alignment_metrics (Tensor): Alignment metrics with shape + (N, num_total_anchors). + stride (tuple[int]): Downsample stride of the feature map. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert stride[0] == stride[1], 'h stride is not equal to w stride!' + anchors = anchors.reshape(-1, 4) + cls_score = cls_score.permute(0, 2, 3, 1).reshape( + -1, self.cls_out_channels).contiguous() + bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + bbox_targets = bbox_targets.reshape(-1, 4) + labels = labels.reshape(-1) + alignment_metrics = alignment_metrics.reshape(-1) + label_weights = label_weights.reshape(-1) + targets = labels if self.epoch < self.initial_epoch else ( + labels, alignment_metrics) + cls_loss_func = self.initial_loss_cls \ + if self.epoch < self.initial_epoch else self.loss_cls + + loss_cls = cls_loss_func( + cls_score, targets, label_weights, avg_factor=1.0) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((labels >= 0) + & (labels < bg_class_ind)).nonzero().squeeze(1) + + if len(pos_inds) > 0: + pos_bbox_targets = bbox_targets[pos_inds] + pos_bbox_pred = bbox_pred[pos_inds] + pos_anchors = anchors[pos_inds] + + pos_decode_bbox_pred = pos_bbox_pred + pos_decode_bbox_targets = pos_bbox_targets / stride[0] + + # regression loss + pos_bbox_weight = self.centerness_target( + pos_anchors, pos_bbox_targets + ) if self.epoch < self.initial_epoch else alignment_metrics[ + pos_inds] + + loss_bbox = self.loss_bbox( + pos_decode_bbox_pred, + pos_decode_bbox_targets, + weight=pos_bbox_weight, + avg_factor=1.0) + else: + loss_bbox = bbox_pred.sum() * 0 + pos_bbox_weight = bbox_targets.new_tensor(0.) + + return loss_cls, loss_bbox, alignment_metrics.sum( + ), pos_bbox_weight.sum() + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Decoded box for each scale + level with shape (N, num_anchors * 4, H, W) in + [tl_x, tl_y, br_x, br_y] format. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor] | None): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + num_imgs = len(img_metas) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + flatten_cls_scores = torch.cat([ + cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, + self.cls_out_channels) + for cls_score in cls_scores + ], 1) + flatten_bbox_preds = torch.cat([ + bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) * stride[0] + for bbox_pred, stride in zip(bbox_preds, + self.prior_generator.strides) + ], 1) + + cls_reg_targets = self.get_targets( + flatten_cls_scores, + flatten_bbox_preds, + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + (anchor_list, labels_list, label_weights_list, bbox_targets_list, + alignment_metrics_list) = cls_reg_targets + + losses_cls, losses_bbox,\ + cls_avg_factors, bbox_avg_factors = multi_apply( + self.loss_single, + anchor_list, + cls_scores, + bbox_preds, + labels_list, + label_weights_list, + bbox_targets_list, + alignment_metrics_list, + self.prior_generator.strides) + + cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() + losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) + + bbox_avg_factor = reduce_mean( + sum(bbox_avg_factors)).clamp_(min=1).item() + losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) + return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + score_factor_list, + mlvl_priors, + img_meta, + cfg, + rescale=False, + with_nms=True, + **kwargs): + """Transform outputs of a single image into bbox predictions. + + Args: + cls_score_list (list[Tensor]): Box scores from all scale + levels of a single image, each item has shape + (num_priors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas from + all scale levels of a single image, each item has shape + (num_priors * 4, H, W). + score_factor_list (list[Tensor]): Score factor from all scale + levels of a single image, each item has shape + (num_priors * 1, H, W). + mlvl_priors (list[Tensor]): Each element in the list is + the priors of a single level in feature pyramid. In all + anchor-based methods, it has shape (num_priors, 4). In + all anchor-free methods, it has shape (num_priors, 2) + when `with_stride=True`, otherwise it still has shape + (num_priors, 4). + img_meta (dict): Image meta info. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + tuple[Tensor]: Results of detected bboxes and labels. If with_nms + is False and mlvl_score_factor is None, return mlvl_bboxes and + mlvl_scores, else return mlvl_bboxes, mlvl_scores and + mlvl_score_factor. Usually with_nms is False is used for aug + test. If with_nms is True, then return the following format + + - det_bboxes (Tensor): Predicted bboxes with shape \ + [num_bboxes, 5], where the first 4 columns are bounding \ + box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ + column are scores between 0 and 1. + - det_labels (Tensor): Predicted labels of the corresponding \ + box with shape [num_bboxes]. + """ + + cfg = self.test_cfg if cfg is None else cfg + nms_pre = cfg.get('nms_pre', -1) + + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_labels = [] + for cls_score, bbox_pred, priors, stride in zip( + cls_score_list, bbox_pred_list, mlvl_priors, + self.prior_generator.strides): + + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) * stride[0] + scores = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + + # After https://github.com/open-mmlab/mmdetection/pull/6268/, + # this operation keeps fewer bboxes under the same `nms_pre`. + # There is no difference in performance for most models. If you + # find a slight drop in performance, you can set a larger + # `nms_pre` than before. + results = filter_scores_and_topk( + scores, cfg.score_thr, nms_pre, + dict(bbox_pred=bbox_pred, priors=priors)) + scores, labels, keep_idxs, filtered_results = results + + bboxes = filtered_results['bbox_pred'] + + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_labels.append(labels) + + return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes, + img_meta['scale_factor'], cfg, rescale, + with_nms, None, **kwargs) + + def get_targets(self, + cls_scores, + bbox_preds, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in + multiple images. + + Args: + cls_scores (Tensor): Classification predictions of images, + a 3D-Tensor with shape [num_imgs, num_priors, num_classes]. + bbox_preds (Tensor): Decoded bboxes predictions of one image, + a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x, + tl_y, br_x, br_y] format. + anchor_list (list[list[Tensor]]): Multi level anchors of each + image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, 4). + valid_flag_list (list[list[Tensor]]): Multi level valid flags of + each image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_anchors, ) + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: a tuple containing learning targets. + + - anchors_list (list[list[Tensor]]): Anchors of each level. + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each + level. + - bbox_targets_list (list[Tensor]): BBox targets of each level. + - norm_alignment_metrics_list (list[Tensor]): Normalized + alignment metrics of each level. + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + num_level_anchors_list = [num_level_anchors] * num_imgs + + # concat all level anchors and flags to a single tensor + for i in range(num_imgs): + assert len(anchor_list[i]) == len(valid_flag_list[i]) + anchor_list[i] = torch.cat(anchor_list[i]) + valid_flag_list[i] = torch.cat(valid_flag_list[i]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + # anchor_list: list(b * [-1, 4]) + + if self.epoch < self.initial_epoch: + (all_anchors, all_labels, all_label_weights, all_bbox_targets, + all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( + super()._get_target_single, + anchor_list, + valid_flag_list, + num_level_anchors_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + all_assign_metrics = [ + weight[..., 0] for weight in all_bbox_weights + ] + else: + (all_anchors, all_labels, all_label_weights, all_bbox_targets, + all_assign_metrics) = multi_apply( + self._get_target_single, + cls_scores, + bbox_preds, + anchor_list, + valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + + # split targets to a list w.r.t. multiple levels + anchors_list = images_to_levels(all_anchors, num_level_anchors) + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + norm_alignment_metrics_list = images_to_levels(all_assign_metrics, + num_level_anchors) + + return (anchors_list, labels_list, label_weights_list, + bbox_targets_list, norm_alignment_metrics_list) + + def _get_target_single(self, + cls_scores, + bbox_preds, + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression, classification targets for anchors in a single + image. + + Args: + cls_scores (list(Tensor)): Box scores for each image. + bbox_preds (list(Tensor)): Box energies / deltas for each image. + flat_anchors (Tensor): Multi-level anchors of the image, which are + concatenated into a single tensor of shape (num_anchors ,4) + valid_flags (Tensor): Multi level valid flags of the image, + which are concatenated into a single tensor of + shape (num_anchors,). + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + img_meta (dict): Meta info of the image. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: N is the number of total anchors in the image. + anchors (Tensor): All anchors in the image with shape (N, 4). + labels (Tensor): Labels of all anchors in the image with shape + (N,). + label_weights (Tensor): Label weights of all anchor in the + image with shape (N,). + bbox_targets (Tensor): BBox targets of all anchors in the + image with shape (N, 4). + norm_alignment_metrics (Tensor): Normalized alignment metrics + of all priors in the image with shape (N,). + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 7 + # assign gt and sample anchors + anchors = flat_anchors[inside_flags, :] + assign_result = self.alignment_assigner.assign( + cls_scores[inside_flags, :], bbox_preds[inside_flags, :], anchors, + gt_bboxes, gt_bboxes_ignore, gt_labels, self.alpha, self.beta) + assign_ious = assign_result.max_overlaps + assign_metrics = assign_result.assign_metrics + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + norm_alignment_metrics = anchors.new_zeros( + num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + # point-based + pos_bbox_targets = sampling_result.pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class since v2.5.0 + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + class_assigned_gt_inds = torch.unique( + sampling_result.pos_assigned_gt_inds) + for gt_inds in class_assigned_gt_inds: + gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds == + gt_inds] + pos_alignment_metrics = assign_metrics[gt_class_inds] + pos_ious = assign_ious[gt_class_inds] + pos_norm_alignment_metrics = pos_alignment_metrics / ( + pos_alignment_metrics.max() + 10e-8) * pos_ious.max() + norm_alignment_metrics[gt_class_inds] = pos_norm_alignment_metrics + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + anchors = unmap(anchors, num_total_anchors, inside_flags) + labels = unmap( + labels, num_total_anchors, inside_flags, fill=self.num_classes) + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) + norm_alignment_metrics = unmap(norm_alignment_metrics, + num_total_anchors, inside_flags) + return (anchors, labels, label_weights, bbox_targets, + norm_alignment_metrics) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/vfnet_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/vfnet_head.py new file mode 100644 index 000000000..ba285e22e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/vfnet_head.py @@ -0,0 +1,740 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numpy as np +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, Scale +from mmcv.ops import DeformConv2d +from mmcv.runner import force_fp32 + +from mmdet.core import (MlvlPointGenerator, bbox_overlaps, build_assigner, + build_prior_generator, build_sampler, multi_apply, + reduce_mean) +from ..builder import HEADS, build_loss +from .atss_head import ATSSHead +from .fcos_head import FCOSHead + +INF = 1e8 + + +@HEADS.register_module() +class VFNetHead(ATSSHead, FCOSHead): + """Head of `VarifocalNet (VFNet): An IoU-aware Dense Object + Detector.`_. + + The VFNet predicts IoU-aware classification scores which mix the + object presence confidence and object localization accuracy as the + detection score. It is built on the FCOS architecture and uses ATSS + for defining positive/negative training examples. The VFNet is trained + with Varifocal Loss and empolys star-shaped deformable convolution to + extract features for a bbox. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + regress_ranges (tuple[tuple[int, int]]): Regress range of multiple + level points. + center_sampling (bool): If true, use center sampling. Default: False. + center_sample_radius (float): Radius of center sampling. Default: 1.5. + sync_num_pos (bool): If true, synchronize the number of positive + examples across GPUs. Default: True + gradient_mul (float): The multiplier to gradients from bbox refinement + and recognition. Default: 0.1. + bbox_norm_type (str): The bbox normalization type, 'reg_denom' or + 'stride'. Default: reg_denom + loss_cls_fl (dict): Config of focal loss. + use_vfl (bool): If true, use varifocal loss for training. + Default: True. + loss_cls (dict): Config of varifocal loss. + loss_bbox (dict): Config of localization loss, GIoU Loss. + loss_bbox (dict): Config of localization refinement loss, GIoU Loss. + norm_cfg (dict): dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, + requires_grad=True). + use_atss (bool): If true, use ATSS to define positive/negative + examples. Default: True. + anchor_generator (dict): Config of anchor generator for ATSS. + init_cfg (dict or list[dict], optional): Initialization config dict. + + Example: + >>> self = VFNetHead(11, 7) + >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] + >>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats) + >>> assert len(cls_score) == len(self.scales) + """ # noqa: E501 + + def __init__(self, + num_classes, + in_channels, + regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), + (512, INF)), + center_sampling=False, + center_sample_radius=1.5, + sync_num_pos=True, + gradient_mul=0.1, + bbox_norm_type='reg_denom', + loss_cls_fl=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + use_vfl=True, + loss_cls=dict( + type='VarifocalLoss', + use_sigmoid=True, + alpha=0.75, + gamma=2.0, + iou_weighted=True, + loss_weight=1.0), + loss_bbox=dict(type='GIoULoss', loss_weight=1.5), + loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0), + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + use_atss=True, + reg_decoded_bbox=True, + anchor_generator=dict( + type='AnchorGenerator', + ratios=[1.0], + octave_base_scale=8, + scales_per_octave=1, + center_offset=0.0, + strides=[8, 16, 32, 64, 128]), + init_cfg=dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', + name='vfnet_cls', + std=0.01, + bias_prob=0.01)), + **kwargs): + # dcn base offsets, adapted from reppoints_head.py + self.num_dconv_points = 9 + self.dcn_kernel = int(np.sqrt(self.num_dconv_points)) + self.dcn_pad = int((self.dcn_kernel - 1) / 2) + dcn_base = np.arange(-self.dcn_pad, + self.dcn_pad + 1).astype(np.float64) + dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) + dcn_base_x = np.tile(dcn_base, self.dcn_kernel) + dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( + (-1)) + self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) + + super(FCOSHead, self).__init__( + num_classes, + in_channels, + norm_cfg=norm_cfg, + init_cfg=init_cfg, + **kwargs) + self.regress_ranges = regress_ranges + self.reg_denoms = [ + regress_range[-1] for regress_range in regress_ranges + ] + self.reg_denoms[-1] = self.reg_denoms[-2] * 2 + self.center_sampling = center_sampling + self.center_sample_radius = center_sample_radius + self.sync_num_pos = sync_num_pos + self.bbox_norm_type = bbox_norm_type + self.gradient_mul = gradient_mul + self.use_vfl = use_vfl + if self.use_vfl: + self.loss_cls = build_loss(loss_cls) + else: + self.loss_cls = build_loss(loss_cls_fl) + self.loss_bbox = build_loss(loss_bbox) + self.loss_bbox_refine = build_loss(loss_bbox_refine) + + # for getting ATSS targets + self.use_atss = use_atss + self.reg_decoded_bbox = reg_decoded_bbox + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + + self.anchor_center_offset = anchor_generator['center_offset'] + + self.num_base_priors = self.prior_generator.num_base_priors[0] + + self.sampling = False + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + # only be used in `get_atss_targets` when `use_atss` is True + self.atss_prior_generator = build_prior_generator(anchor_generator) + + self.fcos_prior_generator = MlvlPointGenerator( + anchor_generator['strides'], + self.anchor_center_offset if self.use_atss else 0.5) + + # In order to reuse the `get_bboxes` in `BaseDenseHead. + # Only be used in testing phase. + self.prior_generator = self.fcos_prior_generator + + @property + def num_anchors(self): + """ + Returns: + int: Number of anchors on each point of feature map. + """ + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'please use "num_base_priors" instead') + return self.num_base_priors + + @property + def anchor_generator(self): + warnings.warn('DeprecationWarning: anchor_generator is deprecated, ' + 'please use "atss_prior_generator" instead') + return self.prior_generator + + def _init_layers(self): + """Initialize layers of the head.""" + super(FCOSHead, self)._init_cls_convs() + super(FCOSHead, self)._init_reg_convs() + self.relu = nn.ReLU(inplace=True) + self.vfnet_reg_conv = ConvModule( + self.feat_channels, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias) + self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) + + self.vfnet_reg_refine_dconv = DeformConv2d( + self.feat_channels, + self.feat_channels, + self.dcn_kernel, + 1, + padding=self.dcn_pad) + self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides]) + + self.vfnet_cls_dconv = DeformConv2d( + self.feat_channels, + self.feat_channels, + self.dcn_kernel, + 1, + padding=self.dcn_pad) + self.vfnet_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Box iou-aware scores for each scale + level, each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box offsets for each + scale level, each is a 4D-tensor, the channel number is + num_points * 4. + bbox_preds_refine (list[Tensor]): Refined Box offsets for + each scale level, each is a 4D-tensor, the channel + number is num_points * 4. + """ + return multi_apply(self.forward_single, feats, self.scales, + self.scales_refine, self.strides, self.reg_denoms) + + def forward_single(self, x, scale, scale_refine, stride, reg_denom): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to + resize the refined bbox prediction. + stride (int): The corresponding stride for feature maps, + used to normalize the bbox prediction when + bbox_norm_type = 'stride'. + reg_denom (int): The corresponding regression range for feature + maps, only used to normalize the bbox prediction when + bbox_norm_type = 'reg_denom'. + + Returns: + tuple: iou-aware cls scores for each box, bbox predictions and + refined bbox predictions of input feature maps. + """ + cls_feat = x + reg_feat = x + + for cls_layer in self.cls_convs: + cls_feat = cls_layer(cls_feat) + + for reg_layer in self.reg_convs: + reg_feat = reg_layer(reg_feat) + + # predict the bbox_pred of different level + reg_feat_init = self.vfnet_reg_conv(reg_feat) + if self.bbox_norm_type == 'reg_denom': + bbox_pred = scale( + self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom + elif self.bbox_norm_type == 'stride': + bbox_pred = scale( + self.vfnet_reg(reg_feat_init)).float().exp() * stride + else: + raise NotImplementedError + + # compute star deformable convolution offsets + # converting dcn_offset to reg_feat.dtype thus VFNet can be + # trained with FP16 + dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul, + stride).to(reg_feat.dtype) + + # refine the bbox_pred + reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset)) + bbox_pred_refine = scale_refine( + self.vfnet_reg_refine(reg_feat)).float().exp() + bbox_pred_refine = bbox_pred_refine * bbox_pred.detach() + + # predict the iou-aware cls score + cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset)) + cls_score = self.vfnet_cls(cls_feat) + + if self.training: + return cls_score, bbox_pred, bbox_pred_refine + else: + return cls_score, bbox_pred_refine + + def star_dcn_offset(self, bbox_pred, gradient_mul, stride): + """Compute the star deformable conv offsets. + + Args: + bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b). + gradient_mul (float): Gradient multiplier. + stride (int): The corresponding stride for feature maps, + used to project the bbox onto the feature map. + + Returns: + dcn_offsets (Tensor): The offsets for deformable convolution. + """ + dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred) + bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \ + gradient_mul * bbox_pred + # map to the feature map scale + bbox_pred_grad_mul = bbox_pred_grad_mul / stride + N, C, H, W = bbox_pred.size() + + x1 = bbox_pred_grad_mul[:, 0, :, :] + y1 = bbox_pred_grad_mul[:, 1, :, :] + x2 = bbox_pred_grad_mul[:, 2, :, :] + y2 = bbox_pred_grad_mul[:, 3, :, :] + bbox_pred_grad_mul_offset = bbox_pred.new_zeros( + N, 2 * self.num_dconv_points, H, W) + bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1 + bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1 + bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1 + bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1 + bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2 + bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1 + bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2 + bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2 + bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1 + bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2 + bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2 + bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2 + dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset + + return dcn_offset + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine')) + def loss(self, + cls_scores, + bbox_preds, + bbox_preds_refine, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box iou-aware scores for each scale + level, each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box offsets for each + scale level, each is a 4D-tensor, the channel number is + num_points * 4. + bbox_preds_refine (list[Tensor]): Refined Box offsets for + each scale level, each is a 4D-tensor, the channel + number is num_points * 4. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + Default: None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + all_level_points = self.fcos_prior_generator.grid_priors( + featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) + labels, label_weights, bbox_targets, bbox_weights = self.get_targets( + cls_scores, all_level_points, gt_bboxes, gt_labels, img_metas, + gt_bboxes_ignore) + + num_imgs = cls_scores[0].size(0) + # flatten cls_scores, bbox_preds and bbox_preds_refine + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, + 1).reshape(-1, + self.cls_out_channels).contiguous() + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() + for bbox_pred in bbox_preds + ] + flatten_bbox_preds_refine = [ + bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() + for bbox_pred_refine in bbox_preds_refine + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine) + flatten_labels = torch.cat(labels) + flatten_bbox_targets = torch.cat(bbox_targets) + # repeat points to align with bbox_preds + flatten_points = torch.cat( + [points.repeat(num_imgs, 1) for points in all_level_points]) + + # FG cat_id: [0, num_classes - 1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = torch.where( + ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0] + num_pos = len(pos_inds) + + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds] + pos_labels = flatten_labels[pos_inds] + + # sync num_pos across all gpus + if self.sync_num_pos: + num_pos_avg_per_gpu = reduce_mean( + pos_inds.new_tensor(num_pos).float()).item() + num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0) + else: + num_pos_avg_per_gpu = num_pos + + pos_bbox_targets = flatten_bbox_targets[pos_inds] + pos_points = flatten_points[pos_inds] + + pos_decoded_bbox_preds = self.bbox_coder.decode( + pos_points, pos_bbox_preds) + pos_decoded_target_preds = self.bbox_coder.decode( + pos_points, pos_bbox_targets) + iou_targets_ini = bbox_overlaps( + pos_decoded_bbox_preds, + pos_decoded_target_preds.detach(), + is_aligned=True).clamp(min=1e-6) + bbox_weights_ini = iou_targets_ini.clone().detach() + bbox_avg_factor_ini = reduce_mean( + bbox_weights_ini.sum()).clamp_(min=1).item() + + pos_decoded_bbox_preds_refine = \ + self.bbox_coder.decode(pos_points, pos_bbox_preds_refine) + iou_targets_rf = bbox_overlaps( + pos_decoded_bbox_preds_refine, + pos_decoded_target_preds.detach(), + is_aligned=True).clamp(min=1e-6) + bbox_weights_rf = iou_targets_rf.clone().detach() + bbox_avg_factor_rf = reduce_mean( + bbox_weights_rf.sum()).clamp_(min=1).item() + + if num_pos > 0: + loss_bbox = self.loss_bbox( + pos_decoded_bbox_preds, + pos_decoded_target_preds.detach(), + weight=bbox_weights_ini, + avg_factor=bbox_avg_factor_ini) + + loss_bbox_refine = self.loss_bbox_refine( + pos_decoded_bbox_preds_refine, + pos_decoded_target_preds.detach(), + weight=bbox_weights_rf, + avg_factor=bbox_avg_factor_rf) + + # build IoU-aware cls_score targets + if self.use_vfl: + pos_ious = iou_targets_rf.clone().detach() + cls_iou_targets = torch.zeros_like(flatten_cls_scores) + cls_iou_targets[pos_inds, pos_labels] = pos_ious + else: + loss_bbox = pos_bbox_preds.sum() * 0 + loss_bbox_refine = pos_bbox_preds_refine.sum() * 0 + if self.use_vfl: + cls_iou_targets = torch.zeros_like(flatten_cls_scores) + + if self.use_vfl: + loss_cls = self.loss_cls( + flatten_cls_scores, + cls_iou_targets, + avg_factor=num_pos_avg_per_gpu) + else: + loss_cls = self.loss_cls( + flatten_cls_scores, + flatten_labels, + weight=label_weights, + avg_factor=num_pos_avg_per_gpu) + + return dict( + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_bbox_rf=loss_bbox_refine) + + def get_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels, + img_metas, gt_bboxes_ignore): + """A wrapper for computing ATSS and FCOS targets for points in multiple + images. + + Args: + cls_scores (list[Tensor]): Box iou-aware scores for each scale + level with shape (N, num_points * num_classes, H, W). + mlvl_points (list[Tensor]): Points of each fpn level, each has + shape (num_points, 2). + gt_bboxes (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + + Returns: + tuple: + labels_list (list[Tensor]): Labels of each level. + label_weights (Tensor/None): Label weights of all levels. + bbox_targets_list (list[Tensor]): Regression targets of each + level, (l, t, r, b). + bbox_weights (Tensor/None): Bbox weights of all levels. + """ + if self.use_atss: + return self.get_atss_targets(cls_scores, mlvl_points, gt_bboxes, + gt_labels, img_metas, + gt_bboxes_ignore) + else: + self.norm_on_bbox = False + return self.get_fcos_targets(mlvl_points, gt_bboxes, gt_labels) + + def _get_target_single(self, *args, **kwargs): + """Avoid ambiguity in multiple inheritance.""" + if self.use_atss: + return ATSSHead._get_target_single(self, *args, **kwargs) + else: + return FCOSHead._get_target_single(self, *args, **kwargs) + + def get_fcos_targets(self, points, gt_bboxes_list, gt_labels_list): + """Compute FCOS regression and classification targets for points in + multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + + Returns: + tuple: + labels (list[Tensor]): Labels of each level. + label_weights: None, to be compatible with ATSS targets. + bbox_targets (list[Tensor]): BBox targets of each level. + bbox_weights: None, to be compatible with ATSS targets. + """ + labels, bbox_targets = FCOSHead.get_targets(self, points, + gt_bboxes_list, + gt_labels_list) + label_weights = None + bbox_weights = None + return labels, label_weights, bbox_targets, bbox_weights + + def get_anchors(self, featmap_sizes, img_metas, device='cuda'): + """Get anchors according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + device (torch.device | str): Device for returned tensors + + Returns: + tuple: + anchor_list (list[Tensor]): Anchors of each image. + valid_flag_list (list[Tensor]): Valid flags of each image. + """ + num_imgs = len(img_metas) + + # since feature map sizes of all images are the same, we only compute + # anchors for one time + multi_level_anchors = self.atss_prior_generator.grid_priors( + featmap_sizes, device=device) + anchor_list = [multi_level_anchors for _ in range(num_imgs)] + + # for each image, we compute valid flags of multi level anchors + valid_flag_list = [] + for img_id, img_meta in enumerate(img_metas): + multi_level_flags = self.atss_prior_generator.valid_flags( + featmap_sizes, img_meta['pad_shape'], device=device) + valid_flag_list.append(multi_level_flags) + + return anchor_list, valid_flag_list + + def get_atss_targets(self, + cls_scores, + mlvl_points, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """A wrapper for computing ATSS targets for points in multiple images. + + Args: + cls_scores (list[Tensor]): Box iou-aware scores for each scale + level with shape (N, num_points * num_classes, H, W). + mlvl_points (list[Tensor]): Points of each fpn level, each has + shape (num_points, 2). + gt_bboxes (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). Default: None. + + Returns: + tuple: + labels_list (list[Tensor]): Labels of each level. + label_weights (Tensor): Label weights of all levels. + bbox_targets_list (list[Tensor]): Regression targets of each + level, (l, t, r, b). + bbox_weights (Tensor): Bbox weights of all levels. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len( + featmap_sizes + ) == self.atss_prior_generator.num_levels == \ + self.fcos_prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + + cls_reg_targets = ATSSHead.get_targets( + self, + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + unmap_outputs=True) + if cls_reg_targets is None: + return None + + (anchor_list, labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets + + bbox_targets_list = [ + bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list + ] + + num_imgs = len(img_metas) + # transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format + bbox_targets_list = self.transform_bbox_targets( + bbox_targets_list, mlvl_points, num_imgs) + + labels_list = [labels.reshape(-1) for labels in labels_list] + label_weights_list = [ + label_weights.reshape(-1) for label_weights in label_weights_list + ] + bbox_weights_list = [ + bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list + ] + label_weights = torch.cat(label_weights_list) + bbox_weights = torch.cat(bbox_weights_list) + return labels_list, label_weights, bbox_targets_list, bbox_weights + + def transform_bbox_targets(self, decoded_bboxes, mlvl_points, num_imgs): + """Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format. + + Args: + decoded_bboxes (list[Tensor]): Regression targets of each level, + in the form of (x1, y1, x2, y2). + mlvl_points (list[Tensor]): Points of each fpn level, each has + shape (num_points, 2). + num_imgs (int): the number of images in a batch. + + Returns: + bbox_targets (list[Tensor]): Regression targets of each level in + the form of (l, t, r, b). + """ + # TODO: Re-implemented in Class PointCoder + assert len(decoded_bboxes) == len(mlvl_points) + num_levels = len(decoded_bboxes) + mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points] + bbox_targets = [] + for i in range(num_levels): + bbox_target = self.bbox_coder.encode(mlvl_points[i], + decoded_bboxes[i]) + bbox_targets.append(bbox_target) + + return bbox_targets + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + """Override the method in the parent class to avoid changing para's + name.""" + pass + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Get points according to feature map size. + + This function will be deprecated soon. + """ + + warnings.warn( + '`_get_points_single` in `VFNetHead` will be ' + 'deprecated soon, we support a multi level point generator now' + 'you can get points of a single level feature map' + 'with `self.fcos_prior_generator.single_level_grid_priors` ') + + h, w = featmap_size + x_range = torch.arange( + 0, w * stride, stride, dtype=dtype, device=device) + y_range = torch.arange( + 0, h * stride, stride, dtype=dtype, device=device) + y, x = torch.meshgrid(y_range, x_range) + # to be compatible with anchor points in ATSS + if self.use_atss: + points = torch.stack( + (x.reshape(-1), y.reshape(-1)), dim=-1) + \ + stride * self.anchor_center_offset + else: + points = torch.stack( + (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 + return points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolact_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolact_head.py new file mode 100644 index 000000000..8f89a271b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolact_head.py @@ -0,0 +1,1018 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, ModuleList, force_fp32 + +from mmdet.core import build_sampler, fast_nms, images_to_levels, multi_apply +from mmdet.core.utils import select_single_mlvl +from ..builder import HEADS, build_loss +from .anchor_head import AnchorHead + + +@HEADS.register_module() +class YOLACTHead(AnchorHead): + """YOLACT box head used in https://arxiv.org/abs/1904.02689. + + Note that YOLACT head is a light version of RetinaNet head. + Four differences are described as follows: + + 1. YOLACT box head has three-times fewer anchors. + 2. YOLACT box head shares the convs for box and cls branches. + 3. YOLACT box head uses OHEM instead of Focal loss. + 4. YOLACT box head predicts a set of mask coefficients for each box. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + anchor_generator (dict): Config dict for anchor generator + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + num_head_convs (int): Number of the conv layers shared by + box and cls branches. + num_protos (int): Number of the mask coefficients. + use_ohem (bool): If true, ``loss_single_OHEM`` will be used for + cls loss calculation. If false, ``loss_single`` will be used. + conv_cfg (dict): Dictionary to construct and config conv layer. + norm_cfg (dict): Dictionary to construct and config norm layer. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels, + anchor_generator=dict( + type='AnchorGenerator', + octave_base_scale=3, + scales_per_octave=1, + ratios=[0.5, 1.0, 2.0], + strides=[8, 16, 32, 64, 128]), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + reduction='none', + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0, loss_weight=1.5), + num_head_convs=1, + num_protos=32, + use_ohem=True, + conv_cfg=None, + norm_cfg=None, + init_cfg=dict( + type='Xavier', + distribution='uniform', + bias=0, + layer='Conv2d'), + **kwargs): + self.num_head_convs = num_head_convs + self.num_protos = num_protos + self.use_ohem = use_ohem + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + super(YOLACTHead, self).__init__( + num_classes, + in_channels, + loss_cls=loss_cls, + loss_bbox=loss_bbox, + anchor_generator=anchor_generator, + init_cfg=init_cfg, + **kwargs) + if self.use_ohem: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.sampling = False + + def _init_layers(self): + """Initialize layers of the head.""" + self.relu = nn.ReLU(inplace=True) + self.head_convs = ModuleList() + for i in range(self.num_head_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.head_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.conv_cls = nn.Conv2d( + self.feat_channels, + self.num_base_priors * self.cls_out_channels, + 3, + padding=1) + self.conv_reg = nn.Conv2d( + self.feat_channels, self.num_base_priors * 4, 3, padding=1) + self.conv_coeff = nn.Conv2d( + self.feat_channels, + self.num_base_priors * self.num_protos, + 3, + padding=1) + + def forward_single(self, x): + """Forward feature of a single scale level. + + Args: + x (Tensor): Features of a single scale level. + + Returns: + tuple: + cls_score (Tensor): Cls scores for a single scale level \ + the channels number is num_anchors * num_classes. + bbox_pred (Tensor): Box energies / deltas for a single scale \ + level, the channels number is num_anchors * 4. + coeff_pred (Tensor): Mask coefficients for a single scale \ + level, the channels number is num_anchors * num_protos. + """ + for head_conv in self.head_convs: + x = head_conv(x) + cls_score = self.conv_cls(x) + bbox_pred = self.conv_reg(x) + coeff_pred = self.conv_coeff(x).tanh() + return cls_score, bbox_pred, coeff_pred + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """A combination of the func:``AnchorHead.loss`` and + func:``SSDHead.loss``. + + When ``self.use_ohem == True``, it functions like ``SSDHead.loss``, + otherwise, it follows ``AnchorHead.loss``. Besides, it additionally + returns ``sampling_results``. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + tuple: + dict[str, Tensor]: A dictionary of loss components. + List[:obj:``SamplingResult``]: Sampler results for each image. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.prior_generator.num_levels + + device = cls_scores[0].device + + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels, + unmap_outputs=not self.use_ohem, + return_sampling_results=True) + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + num_total_pos, num_total_neg, sampling_results) = cls_reg_targets + + if self.use_ohem: + num_images = len(img_metas) + all_cls_scores = torch.cat([ + s.permute(0, 2, 3, 1).reshape( + num_images, -1, self.cls_out_channels) for s in cls_scores + ], 1) + all_labels = torch.cat(labels_list, -1).view(num_images, -1) + all_label_weights = torch.cat(label_weights_list, + -1).view(num_images, -1) + all_bbox_preds = torch.cat([ + b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) + for b in bbox_preds + ], -2) + all_bbox_targets = torch.cat(bbox_targets_list, + -2).view(num_images, -1, 4) + all_bbox_weights = torch.cat(bbox_weights_list, + -2).view(num_images, -1, 4) + + # concat all level anchors to a single tensor + all_anchors = [] + for i in range(num_images): + all_anchors.append(torch.cat(anchor_list[i])) + + # check NaN and Inf + assert torch.isfinite(all_cls_scores).all().item(), \ + 'classification scores become infinite or NaN!' + assert torch.isfinite(all_bbox_preds).all().item(), \ + 'bbox predications become infinite or NaN!' + + losses_cls, losses_bbox = multi_apply( + self.loss_single_OHEM, + all_cls_scores, + all_bbox_preds, + all_anchors, + all_labels, + all_label_weights, + all_bbox_targets, + all_bbox_weights, + num_total_samples=num_total_pos) + else: + num_total_samples = ( + num_total_pos + + num_total_neg if self.sampling else num_total_pos) + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + # concat all level anchors and flags to a single tensor + concat_anchor_list = [] + for i in range(len(anchor_list)): + concat_anchor_list.append(torch.cat(anchor_list[i])) + all_anchor_list = images_to_levels(concat_anchor_list, + num_level_anchors) + losses_cls, losses_bbox = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + all_anchor_list, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + num_total_samples=num_total_samples) + + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox), sampling_results + + def loss_single_OHEM(self, cls_score, bbox_pred, anchors, labels, + label_weights, bbox_targets, bbox_weights, + num_total_samples): + """"See func:``SSDHead.loss``.""" + loss_cls_all = self.loss_cls(cls_score, labels, label_weights) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( + as_tuple=False).reshape(-1) + neg_inds = (labels == self.num_classes).nonzero( + as_tuple=False).view(-1) + + num_pos_samples = pos_inds.size(0) + if num_pos_samples == 0: + num_neg_samples = neg_inds.size(0) + else: + num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples + if num_neg_samples > neg_inds.size(0): + num_neg_samples = neg_inds.size(0) + topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) + loss_cls_pos = loss_cls_all[pos_inds].sum() + loss_cls_neg = topk_loss_cls_neg.sum() + loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples + if self.reg_decoded_bbox: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, it + # decodes the already encoded coordinates to absolute format. + bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) + loss_bbox = self.loss_bbox( + bbox_pred, + bbox_targets, + bbox_weights, + avg_factor=num_total_samples) + return loss_cls[None], loss_bbox + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'coeff_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + coeff_preds, + img_metas, + cfg=None, + rescale=False): + """"Similar to func:``AnchorHead.get_bboxes``, but additionally + processes coeff_preds. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + with shape (N, num_anchors * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_anchors * 4, H, W) + coeff_preds (list[Tensor]): Mask coefficients for each scale + level with shape (N, num_anchors * num_protos, H, W) + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config | None): Test / postprocessing configuration, + if None, test_cfg would be used + rescale (bool): If True, return boxes in original image space. + Default: False. + + Returns: + list[tuple[Tensor, Tensor, Tensor]]: Each item in result_list is + a 3-tuple. The first item is an (n, 5) tensor, where the + first 4 columns are bounding box positions + (tl_x, tl_y, br_x, br_y) and the 5-th column is a score + between 0 and 1. The second item is an (n,) tensor where each + item is the predicted class label of the corresponding box. + The third item is an (n, num_protos) tensor where each item + is the predicted mask coefficients of instance inside the + corresponding box. + """ + assert len(cls_scores) == len(bbox_preds) + num_levels = len(cls_scores) + + device = cls_scores[0].device + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + mlvl_anchors = self.prior_generator.grid_priors( + featmap_sizes, device=device) + + det_bboxes = [] + det_labels = [] + det_coeffs = [] + for img_id in range(len(img_metas)): + cls_score_list = select_single_mlvl(cls_scores, img_id) + bbox_pred_list = select_single_mlvl(bbox_preds, img_id) + coeff_pred_list = select_single_mlvl(coeff_preds, img_id) + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + bbox_res = self._get_bboxes_single(cls_score_list, bbox_pred_list, + coeff_pred_list, mlvl_anchors, + img_shape, scale_factor, cfg, + rescale) + det_bboxes.append(bbox_res[0]) + det_labels.append(bbox_res[1]) + det_coeffs.append(bbox_res[2]) + return det_bboxes, det_labels, det_coeffs + + def _get_bboxes_single(self, + cls_score_list, + bbox_pred_list, + coeff_preds_list, + mlvl_anchors, + img_shape, + scale_factor, + cfg, + rescale=False): + """"Similar to func:``AnchorHead._get_bboxes_single``, but additionally + processes coeff_preds_list and uses fast NMS instead of traditional + NMS. + + Args: + cls_score_list (list[Tensor]): Box scores for a single scale level + Has shape (num_anchors * num_classes, H, W). + bbox_pred_list (list[Tensor]): Box energies / deltas for a single + scale level with shape (num_anchors * 4, H, W). + coeff_preds_list (list[Tensor]): Mask coefficients for a single + scale level with shape (num_anchors * num_protos, H, W). + mlvl_anchors (list[Tensor]): Box reference for a single scale level + with shape (num_total_anchors, 4). + img_shape (tuple[int]): Shape of the input image, + (height, width, 3). + scale_factor (ndarray): Scale factor of the image arange as + (w_scale, h_scale, w_scale, h_scale). + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + + Returns: + tuple[Tensor, Tensor, Tensor]: The first item is an (n, 5) tensor, + where the first 4 columns are bounding box positions + (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between + 0 and 1. The second item is an (n,) tensor where each item is + the predicted class label of the corresponding box. The third + item is an (n, num_protos) tensor where each item is the + predicted mask coefficients of instance inside the + corresponding box. + """ + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) + nms_pre = cfg.get('nms_pre', -1) + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_coeffs = [] + for cls_score, bbox_pred, coeff_pred, anchors in \ + zip(cls_score_list, bbox_pred_list, + coeff_preds_list, mlvl_anchors): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.cls_out_channels) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1) + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) + coeff_pred = coeff_pred.permute(1, 2, + 0).reshape(-1, self.num_protos) + + if 0 < nms_pre < scores.shape[0]: + # Get maximum scores for foreground classes. + if self.use_sigmoid_cls: + max_scores, _ = scores.max(dim=1) + else: + # remind that we set FG labels to [0, num_class-1] + # since mmdet v2.0 + # BG cat_id: num_class + max_scores, _ = scores[:, :-1].max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + anchors = anchors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + coeff_pred = coeff_pred[topk_inds, :] + bboxes = self.bbox_coder.decode( + anchors, bbox_pred, max_shape=img_shape) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_coeffs.append(coeff_pred) + mlvl_bboxes = torch.cat(mlvl_bboxes) + if rescale: + mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) + mlvl_scores = torch.cat(mlvl_scores) + mlvl_coeffs = torch.cat(mlvl_coeffs) + if self.use_sigmoid_cls: + # Add a dummy background class to the backend when using sigmoid + # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 + # BG cat_id: num_class + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + det_bboxes, det_labels, det_coeffs = fast_nms(mlvl_bboxes, mlvl_scores, + mlvl_coeffs, + cfg.score_thr, + cfg.iou_thr, cfg.top_k, + cfg.max_per_img) + return det_bboxes, det_labels, det_coeffs + + +@HEADS.register_module() +class YOLACTSegmHead(BaseModule): + """YOLACT segmentation head used in https://arxiv.org/abs/1904.02689. + + Apply a semantic segmentation loss on feature space using layers that are + only evaluated during training to increase performance with no speed + penalty. + + Args: + in_channels (int): Number of channels in the input feature map. + num_classes (int): Number of categories excluding the background + category. + loss_segm (dict): Config of semantic segmentation loss. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels=256, + loss_segm=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + init_cfg=dict( + type='Xavier', + distribution='uniform', + override=dict(name='segm_conv'))): + super(YOLACTSegmHead, self).__init__(init_cfg) + self.in_channels = in_channels + self.num_classes = num_classes + self.loss_segm = build_loss(loss_segm) + self._init_layers() + self.fp16_enabled = False + + def _init_layers(self): + """Initialize layers of the head.""" + self.segm_conv = nn.Conv2d( + self.in_channels, self.num_classes, kernel_size=1) + + def forward(self, x): + """Forward feature from the upstream network. + + Args: + x (Tensor): Feature from the upstream network, which is + a 4D-tensor. + + Returns: + Tensor: Predicted semantic segmentation map with shape + (N, num_classes, H, W). + """ + return self.segm_conv(x) + + @force_fp32(apply_to=('segm_pred', )) + def loss(self, segm_pred, gt_masks, gt_labels): + """Compute loss of the head. + + Args: + segm_pred (list[Tensor]): Predicted semantic segmentation map + with shape (N, num_classes, H, W). + gt_masks (list[Tensor]): Ground truth masks for each image with + the same shape of the input image. + gt_labels (list[Tensor]): Class indices corresponding to each box. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + loss_segm = [] + num_imgs, num_classes, mask_h, mask_w = segm_pred.size() + for idx in range(num_imgs): + cur_segm_pred = segm_pred[idx] + cur_gt_masks = gt_masks[idx].float() + cur_gt_labels = gt_labels[idx] + segm_targets = self.get_targets(cur_segm_pred, cur_gt_masks, + cur_gt_labels) + if segm_targets is None: + loss = self.loss_segm(cur_segm_pred, + torch.zeros_like(cur_segm_pred), + torch.zeros_like(cur_segm_pred)) + else: + loss = self.loss_segm( + cur_segm_pred, + segm_targets, + avg_factor=num_imgs * mask_h * mask_w) + loss_segm.append(loss) + return dict(loss_segm=loss_segm) + + def get_targets(self, segm_pred, gt_masks, gt_labels): + """Compute semantic segmentation targets for each image. + + Args: + segm_pred (Tensor): Predicted semantic segmentation map + with shape (num_classes, H, W). + gt_masks (Tensor): Ground truth masks for each image with + the same shape of the input image. + gt_labels (Tensor): Class indices corresponding to each box. + + Returns: + Tensor: Semantic segmentation targets with shape + (num_classes, H, W). + """ + if gt_masks.size(0) == 0: + return None + num_classes, mask_h, mask_w = segm_pred.size() + with torch.no_grad(): + downsampled_masks = F.interpolate( + gt_masks.unsqueeze(0), (mask_h, mask_w), + mode='bilinear', + align_corners=False).squeeze(0) + downsampled_masks = downsampled_masks.gt(0.5).float() + segm_targets = torch.zeros_like(segm_pred, requires_grad=False) + for obj_idx in range(downsampled_masks.size(0)): + segm_targets[gt_labels[obj_idx] - 1] = torch.max( + segm_targets[gt_labels[obj_idx] - 1], + downsampled_masks[obj_idx]) + return segm_targets + + def simple_test(self, feats, img_metas, rescale=False): + """Test function without test-time augmentation.""" + raise NotImplementedError( + 'simple_test of YOLACTSegmHead is not implemented ' + 'because this head is only evaluated during training') + + +@HEADS.register_module() +class YOLACTProtonet(BaseModule): + """YOLACT mask head used in https://arxiv.org/abs/1904.02689. + + This head outputs the mask prototypes for YOLACT. + + Args: + in_channels (int): Number of channels in the input feature map. + proto_channels (tuple[int]): Output channels of protonet convs. + proto_kernel_sizes (tuple[int]): Kernel sizes of protonet convs. + include_last_relu (Bool): If keep the last relu of protonet. + num_protos (int): Number of prototypes. + num_classes (int): Number of categories excluding the background + category. + loss_mask_weight (float): Reweight the mask loss by this factor. + max_masks_to_train (int): Maximum number of masks to train for + each image. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels=256, + proto_channels=(256, 256, 256, None, 256, 32), + proto_kernel_sizes=(3, 3, 3, -2, 3, 1), + include_last_relu=True, + num_protos=32, + loss_mask_weight=1.0, + max_masks_to_train=100, + init_cfg=dict( + type='Xavier', + distribution='uniform', + override=dict(name='protonet'))): + super(YOLACTProtonet, self).__init__(init_cfg) + self.in_channels = in_channels + self.proto_channels = proto_channels + self.proto_kernel_sizes = proto_kernel_sizes + self.include_last_relu = include_last_relu + self.protonet = self._init_layers() + + self.loss_mask_weight = loss_mask_weight + self.num_protos = num_protos + self.num_classes = num_classes + self.max_masks_to_train = max_masks_to_train + self.fp16_enabled = False + + def _init_layers(self): + """A helper function to take a config setting and turn it into a + network.""" + # Possible patterns: + # ( 256, 3) -> conv + # ( 256,-2) -> deconv + # (None,-2) -> bilinear interpolate + in_channels = self.in_channels + protonets = ModuleList() + for num_channels, kernel_size in zip(self.proto_channels, + self.proto_kernel_sizes): + if kernel_size > 0: + layer = nn.Conv2d( + in_channels, + num_channels, + kernel_size, + padding=kernel_size // 2) + else: + if num_channels is None: + layer = InterpolateModule( + scale_factor=-kernel_size, + mode='bilinear', + align_corners=False) + else: + layer = nn.ConvTranspose2d( + in_channels, + num_channels, + -kernel_size, + padding=kernel_size // 2) + protonets.append(layer) + protonets.append(nn.ReLU(inplace=True)) + in_channels = num_channels if num_channels is not None \ + else in_channels + if not self.include_last_relu: + protonets = protonets[:-1] + return nn.Sequential(*protonets) + + def forward_dummy(self, x): + prototypes = self.protonet(x) + return prototypes + + def forward(self, x, coeff_pred, bboxes, img_meta, sampling_results=None): + """Forward feature from the upstream network to get prototypes and + linearly combine the prototypes, using masks coefficients, into + instance masks. Finally, crop the instance masks with given bboxes. + + Args: + x (Tensor): Feature from the upstream network, which is + a 4D-tensor. + coeff_pred (list[Tensor]): Mask coefficients for each scale + level with shape (N, num_anchors * num_protos, H, W). + bboxes (list[Tensor]): Box used for cropping with shape + (N, num_anchors * 4, H, W). During training, they are + ground truth boxes. During testing, they are predicted + boxes. + img_meta (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + sampling_results (List[:obj:``SamplingResult``]): Sampler results + for each image. + + Returns: + list[Tensor]: Predicted instance segmentation masks. + """ + prototypes = self.protonet(x) + prototypes = prototypes.permute(0, 2, 3, 1).contiguous() + + num_imgs = x.size(0) + + # The reason for not using self.training is that + # val workflow will have a dimension mismatch error. + # Note that this writing method is very tricky. + # Fix https://github.com/open-mmlab/mmdetection/issues/5978 + is_train_or_val_workflow = (coeff_pred[0].dim() == 4) + + # Train or val workflow + if is_train_or_val_workflow: + coeff_pred_list = [] + for coeff_pred_per_level in coeff_pred: + coeff_pred_per_level = \ + coeff_pred_per_level.permute( + 0, 2, 3, 1).reshape(num_imgs, -1, self.num_protos) + coeff_pred_list.append(coeff_pred_per_level) + coeff_pred = torch.cat(coeff_pred_list, dim=1) + + mask_pred_list = [] + for idx in range(num_imgs): + cur_prototypes = prototypes[idx] + cur_coeff_pred = coeff_pred[idx] + cur_bboxes = bboxes[idx] + cur_img_meta = img_meta[idx] + + # Testing state + if not is_train_or_val_workflow: + bboxes_for_cropping = cur_bboxes + else: + cur_sampling_results = sampling_results[idx] + pos_assigned_gt_inds = \ + cur_sampling_results.pos_assigned_gt_inds + bboxes_for_cropping = cur_bboxes[pos_assigned_gt_inds].clone() + pos_inds = cur_sampling_results.pos_inds + cur_coeff_pred = cur_coeff_pred[pos_inds] + + # Linearly combine the prototypes with the mask coefficients + mask_pred = cur_prototypes @ cur_coeff_pred.t() + mask_pred = torch.sigmoid(mask_pred) + + h, w = cur_img_meta['img_shape'][:2] + bboxes_for_cropping[:, 0] /= w + bboxes_for_cropping[:, 1] /= h + bboxes_for_cropping[:, 2] /= w + bboxes_for_cropping[:, 3] /= h + + mask_pred = self.crop(mask_pred, bboxes_for_cropping) + mask_pred = mask_pred.permute(2, 0, 1).contiguous() + mask_pred_list.append(mask_pred) + return mask_pred_list + + @force_fp32(apply_to=('mask_pred', )) + def loss(self, mask_pred, gt_masks, gt_bboxes, img_meta, sampling_results): + """Compute loss of the head. + + Args: + mask_pred (list[Tensor]): Predicted prototypes with shape + (num_classes, H, W). + gt_masks (list[Tensor]): Ground truth masks for each image with + the same shape of the input image. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + img_meta (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + sampling_results (List[:obj:``SamplingResult``]): Sampler results + for each image. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + loss_mask = [] + num_imgs = len(mask_pred) + total_pos = 0 + for idx in range(num_imgs): + cur_mask_pred = mask_pred[idx] + cur_gt_masks = gt_masks[idx].float() + cur_gt_bboxes = gt_bboxes[idx] + cur_img_meta = img_meta[idx] + cur_sampling_results = sampling_results[idx] + + pos_assigned_gt_inds = cur_sampling_results.pos_assigned_gt_inds + num_pos = pos_assigned_gt_inds.size(0) + # Since we're producing (near) full image masks, + # it'd take too much vram to backprop on every single mask. + # Thus we select only a subset. + if num_pos > self.max_masks_to_train: + perm = torch.randperm(num_pos) + select = perm[:self.max_masks_to_train] + cur_mask_pred = cur_mask_pred[select] + pos_assigned_gt_inds = pos_assigned_gt_inds[select] + num_pos = self.max_masks_to_train + total_pos += num_pos + + gt_bboxes_for_reweight = cur_gt_bboxes[pos_assigned_gt_inds] + + mask_targets = self.get_targets(cur_mask_pred, cur_gt_masks, + pos_assigned_gt_inds) + if num_pos == 0: + loss = cur_mask_pred.sum() * 0. + elif mask_targets is None: + loss = F.binary_cross_entropy(cur_mask_pred, + torch.zeros_like(cur_mask_pred), + torch.zeros_like(cur_mask_pred)) + else: + cur_mask_pred = torch.clamp(cur_mask_pred, 0, 1) + loss = F.binary_cross_entropy( + cur_mask_pred, mask_targets, + reduction='none') * self.loss_mask_weight + + h, w = cur_img_meta['img_shape'][:2] + gt_bboxes_width = (gt_bboxes_for_reweight[:, 2] - + gt_bboxes_for_reweight[:, 0]) / w + gt_bboxes_height = (gt_bboxes_for_reweight[:, 3] - + gt_bboxes_for_reweight[:, 1]) / h + loss = loss.mean(dim=(1, + 2)) / gt_bboxes_width / gt_bboxes_height + loss = torch.sum(loss) + loss_mask.append(loss) + + if total_pos == 0: + total_pos += 1 # avoid nan + loss_mask = [x / total_pos for x in loss_mask] + + return dict(loss_mask=loss_mask) + + def get_targets(self, mask_pred, gt_masks, pos_assigned_gt_inds): + """Compute instance segmentation targets for each image. + + Args: + mask_pred (Tensor): Predicted prototypes with shape + (num_classes, H, W). + gt_masks (Tensor): Ground truth masks for each image with + the same shape of the input image. + pos_assigned_gt_inds (Tensor): GT indices of the corresponding + positive samples. + Returns: + Tensor: Instance segmentation targets with shape + (num_instances, H, W). + """ + if gt_masks.size(0) == 0: + return None + mask_h, mask_w = mask_pred.shape[-2:] + gt_masks = F.interpolate( + gt_masks.unsqueeze(0), (mask_h, mask_w), + mode='bilinear', + align_corners=False).squeeze(0) + gt_masks = gt_masks.gt(0.5).float() + mask_targets = gt_masks[pos_assigned_gt_inds] + return mask_targets + + def get_seg_masks(self, mask_pred, label_pred, img_meta, rescale): + """Resize, binarize, and format the instance mask predictions. + + Args: + mask_pred (Tensor): shape (N, H, W). + label_pred (Tensor): shape (N, ). + img_meta (dict): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If rescale is False, then returned masks will + fit the scale of imgs[0]. + Returns: + list[ndarray]: Mask predictions grouped by their predicted classes. + """ + ori_shape = img_meta['ori_shape'] + scale_factor = img_meta['scale_factor'] + if rescale: + img_h, img_w = ori_shape[:2] + else: + img_h = np.round(ori_shape[0] * scale_factor[1]).astype(np.int32) + img_w = np.round(ori_shape[1] * scale_factor[0]).astype(np.int32) + + cls_segms = [[] for _ in range(self.num_classes)] + if mask_pred.size(0) == 0: + return cls_segms + + mask_pred = F.interpolate( + mask_pred.unsqueeze(0), (img_h, img_w), + mode='bilinear', + align_corners=False).squeeze(0) > 0.5 + mask_pred = mask_pred.cpu().numpy().astype(np.uint8) + + for m, l in zip(mask_pred, label_pred): + cls_segms[l].append(m) + return cls_segms + + def crop(self, masks, boxes, padding=1): + """Crop predicted masks by zeroing out everything not in the predicted + bbox. + + Args: + masks (Tensor): shape [H, W, N]. + boxes (Tensor): bbox coords in relative point form with + shape [N, 4]. + + Return: + Tensor: The cropped masks. + """ + h, w, n = masks.size() + x1, x2 = self.sanitize_coordinates( + boxes[:, 0], boxes[:, 2], w, padding, cast=False) + y1, y2 = self.sanitize_coordinates( + boxes[:, 1], boxes[:, 3], h, padding, cast=False) + + rows = torch.arange( + w, device=masks.device, dtype=x1.dtype).view(1, -1, + 1).expand(h, w, n) + cols = torch.arange( + h, device=masks.device, dtype=x1.dtype).view(-1, 1, + 1).expand(h, w, n) + + masks_left = rows >= x1.view(1, 1, -1) + masks_right = rows < x2.view(1, 1, -1) + masks_up = cols >= y1.view(1, 1, -1) + masks_down = cols < y2.view(1, 1, -1) + + crop_mask = masks_left * masks_right * masks_up * masks_down + + return masks * crop_mask.float() + + def sanitize_coordinates(self, x1, x2, img_size, padding=0, cast=True): + """Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, + and x2 <= image_size. Also converts from relative to absolute + coordinates and casts the results to long tensors. + + Warning: this does things in-place behind the scenes so + copy if necessary. + + Args: + _x1 (Tensor): shape (N, ). + _x2 (Tensor): shape (N, ). + img_size (int): Size of the input image. + padding (int): x1 >= padding, x2 <= image_size-padding. + cast (bool): If cast is false, the result won't be cast to longs. + + Returns: + tuple: + x1 (Tensor): Sanitized _x1. + x2 (Tensor): Sanitized _x2. + """ + x1 = x1 * img_size + x2 = x2 * img_size + if cast: + x1 = x1.long() + x2 = x2.long() + x1 = torch.min(x1, x2) + x2 = torch.max(x1, x2) + x1 = torch.clamp(x1 - padding, min=0) + x2 = torch.clamp(x2 + padding, max=img_size) + return x1, x2 + + def simple_test(self, + feats, + det_bboxes, + det_labels, + det_coeffs, + img_metas, + rescale=False): + """Test function without test-time augmentation. + + Args: + feats (tuple[torch.Tensor]): Multi-level features from the + upstream network, each is a 4D-tensor. + det_bboxes (list[Tensor]): BBox results of each image. each + element is (n, 5) tensor, where 5 represent + (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. + det_labels (list[Tensor]): BBox results of each image. each + element is (n, ) tensor, each element represents the class + label of the corresponding box. + det_coeffs (list[Tensor]): BBox coefficient of each image. each + element is (n, m) tensor, m is vector length. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[list]: encoded masks. The c-th item in the outer list + corresponds to the c-th class. Given the c-th outer list, the + i-th item in that inner list is the mask for the i-th box with + class label c. + """ + num_imgs = len(img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + segm_results = [[[] for _ in range(self.num_classes)] + for _ in range(num_imgs)] + else: + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i][:, :4] + for i in range(len(det_bboxes)) + ] + mask_preds = self.forward(feats[0], det_coeffs, _bboxes, img_metas) + # apply mask post-processing to each image individually + segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append([[] for _ in range(self.num_classes)]) + else: + segm_result = self.get_seg_masks(mask_preds[i], + det_labels[i], + img_metas[i], rescale) + segm_results.append(segm_result) + return segm_results + + +class InterpolateModule(BaseModule): + """This is a module version of F.interpolate. + + Any arguments you give it just get passed along for the ride. + """ + + def __init__(self, *args, init_cfg=None, **kwargs): + super().__init__(init_cfg) + + self.args = args + self.kwargs = kwargs + + def forward(self, x): + """Forward features from the upstream network.""" + return F.interpolate(x, *self.args, **self.kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolo_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolo_head.py new file mode 100644 index 000000000..08957e6a1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolo_head.py @@ -0,0 +1,619 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2019 Western Digital Corporation or its affiliates. + +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm, + normal_init) +from mmcv.runner import force_fp32 + +from mmdet.core import (build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, images_to_levels, + multi_apply, multiclass_nms) +from ..builder import HEADS, build_loss +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +@HEADS.register_module() +class YOLOV3Head(BaseDenseHead, BBoxTestMixin): + """YOLOV3Head Paper link: https://arxiv.org/abs/1804.02767. + + Args: + num_classes (int): The number of object classes (w/o background) + in_channels (List[int]): Number of input channels per scale. + out_channels (List[int]): The number of output channels per scale + before the final 1x1 layer. Default: (1024, 512, 256). + anchor_generator (dict): Config dict for anchor generator + bbox_coder (dict): Config of bounding box coder. + featmap_strides (List[int]): The stride of each scale. + Should be in descending order. Default: (32, 16, 8). + one_hot_smoother (float): Set a non-zero value to enable label-smooth + Default: 0. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True) + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + loss_cls (dict): Config of classification loss. + loss_conf (dict): Config of confidence loss. + loss_xy (dict): Config of xy coordinate loss. + loss_wh (dict): Config of wh coordinate loss. + train_cfg (dict): Training config of YOLOV3 head. Default: None. + test_cfg (dict): Testing config of YOLOV3 head. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels, + out_channels=(1024, 512, 256), + anchor_generator=dict( + type='YOLOAnchorGenerator', + base_sizes=[[(116, 90), (156, 198), (373, 326)], + [(30, 61), (62, 45), (59, 119)], + [(10, 13), (16, 30), (33, 23)]], + strides=[32, 16, 8]), + bbox_coder=dict(type='YOLOBBoxCoder'), + featmap_strides=[32, 16, 8], + one_hot_smoother=0., + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', negative_slope=0.1), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_conf=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_xy=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_wh=dict(type='MSELoss', loss_weight=1.0), + train_cfg=None, + test_cfg=None, + init_cfg=dict( + type='Normal', std=0.01, + override=dict(name='convs_pred'))): + super(YOLOV3Head, self).__init__(init_cfg) + # Check params + assert (len(in_channels) == len(out_channels) == len(featmap_strides)) + + self.num_classes = num_classes + self.in_channels = in_channels + self.out_channels = out_channels + self.featmap_strides = featmap_strides + self.train_cfg = train_cfg + self.test_cfg = test_cfg + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + if hasattr(self.train_cfg, 'sampler'): + sampler_cfg = self.train_cfg.sampler + else: + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + self.fp16_enabled = False + + self.one_hot_smoother = one_hot_smoother + + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.bbox_coder = build_bbox_coder(bbox_coder) + + self.prior_generator = build_prior_generator(anchor_generator) + + self.loss_cls = build_loss(loss_cls) + self.loss_conf = build_loss(loss_conf) + self.loss_xy = build_loss(loss_xy) + self.loss_wh = build_loss(loss_wh) + + self.num_base_priors = self.prior_generator.num_base_priors[0] + assert len( + self.prior_generator.num_base_priors) == len(featmap_strides) + self._init_layers() + + @property + def anchor_generator(self): + + warnings.warn('DeprecationWarning: `anchor_generator` is deprecated, ' + 'please use "prior_generator" instead') + return self.prior_generator + + @property + def num_anchors(self): + """ + Returns: + int: Number of anchors on each point of feature map. + """ + warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' + 'please use "num_base_priors" instead') + return self.num_base_priors + + @property + def num_levels(self): + return len(self.featmap_strides) + + @property + def num_attrib(self): + """int: number of attributes in pred_map, bboxes (4) + + objectness (1) + num_classes""" + + return 5 + self.num_classes + + def _init_layers(self): + self.convs_bridge = nn.ModuleList() + self.convs_pred = nn.ModuleList() + for i in range(self.num_levels): + conv_bridge = ConvModule( + self.in_channels[i], + self.out_channels[i], + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + conv_pred = nn.Conv2d(self.out_channels[i], + self.num_base_priors * self.num_attrib, 1) + + self.convs_bridge.append(conv_bridge) + self.convs_pred.append(conv_pred) + + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, mean=0, std=0.01) + if is_norm(m): + constant_init(m, 1) + + # Use prior in model initialization to improve stability + for conv_pred, stride in zip(self.convs_pred, self.featmap_strides): + bias = conv_pred.bias.reshape(self.num_base_priors, -1) + # init objectness with prior of 8 objects per feature map + # refer to https://github.com/ultralytics/yolov3 + nn.init.constant_(bias.data[:, 4], + bias_init_with_prob(8 / (608 / stride)**2)) + nn.init.constant_(bias.data[:, 5:], bias_init_with_prob(0.01)) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple[Tensor]: A tuple of multi-level predication map, each is a + 4D-tensor of shape (batch_size, 5+num_classes, height, width). + """ + + assert len(feats) == self.num_levels + pred_maps = [] + for i in range(self.num_levels): + x = feats[i] + x = self.convs_bridge[i](x) + pred_map = self.convs_pred[i](x) + pred_maps.append(pred_map) + + return tuple(pred_maps), + + @force_fp32(apply_to=('pred_maps', )) + def get_bboxes(self, + pred_maps, + img_metas, + cfg=None, + rescale=False, + with_nms=True): + """Transform network output for a batch into bbox predictions. It has + been accelerated since PR #5991. + + Args: + pred_maps (list[Tensor]): Raw predictions for a batch of images. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config | None): Test / postprocessing configuration, + if None, test_cfg would be used. Default: None. + rescale (bool): If True, return boxes in original image space. + Default: False. + with_nms (bool): If True, do nms before return boxes. + Default: True. + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 5) tensor, where 5 represent + (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. + The shape of the second tensor in the tuple is (n,), and + each element represents the class label of the corresponding + box. + """ + assert len(pred_maps) == self.num_levels + cfg = self.test_cfg if cfg is None else cfg + scale_factors = [img_meta['scale_factor'] for img_meta in img_metas] + + num_imgs = len(img_metas) + featmap_sizes = [pred_map.shape[-2:] for pred_map in pred_maps] + + mlvl_anchors = self.prior_generator.grid_priors( + featmap_sizes, device=pred_maps[0].device) + flatten_preds = [] + flatten_strides = [] + for pred, stride in zip(pred_maps, self.featmap_strides): + pred = pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, + self.num_attrib) + pred[..., :2].sigmoid_() + flatten_preds.append(pred) + flatten_strides.append( + pred.new_tensor(stride).expand(pred.size(1))) + + flatten_preds = torch.cat(flatten_preds, dim=1) + flatten_bbox_preds = flatten_preds[..., :4] + flatten_objectness = flatten_preds[..., 4].sigmoid() + flatten_cls_scores = flatten_preds[..., 5:].sigmoid() + flatten_anchors = torch.cat(mlvl_anchors) + flatten_strides = torch.cat(flatten_strides) + flatten_bboxes = self.bbox_coder.decode(flatten_anchors, + flatten_bbox_preds, + flatten_strides.unsqueeze(-1)) + + if with_nms and (flatten_objectness.size(0) == 0): + return torch.zeros((0, 5)), torch.zeros((0, )) + + if rescale: + flatten_bboxes /= flatten_bboxes.new_tensor( + scale_factors).unsqueeze(1) + + padding = flatten_bboxes.new_zeros(num_imgs, flatten_bboxes.shape[1], + 1) + flatten_cls_scores = torch.cat([flatten_cls_scores, padding], dim=-1) + + det_results = [] + for (bboxes, scores, objectness) in zip(flatten_bboxes, + flatten_cls_scores, + flatten_objectness): + # Filtering out all predictions with conf < conf_thr + conf_thr = cfg.get('conf_thr', -1) + if conf_thr > 0: + conf_inds = objectness >= conf_thr + bboxes = bboxes[conf_inds, :] + scores = scores[conf_inds, :] + objectness = objectness[conf_inds] + + det_bboxes, det_labels = multiclass_nms( + bboxes, + scores, + cfg.score_thr, + cfg.nms, + cfg.max_per_img, + score_factors=objectness) + det_results.append(tuple([det_bboxes, det_labels])) + return det_results + + @force_fp32(apply_to=('pred_maps', )) + def loss(self, + pred_maps, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + pred_maps (list[Tensor]): Prediction map for each scale level, + shape (N, num_anchors * num_attrib, H, W) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + num_imgs = len(img_metas) + device = pred_maps[0][0].device + + featmap_sizes = [ + pred_maps[i].shape[-2:] for i in range(self.num_levels) + ] + mlvl_anchors = self.prior_generator.grid_priors( + featmap_sizes, device=device) + anchor_list = [mlvl_anchors for _ in range(num_imgs)] + + responsible_flag_list = [] + for img_id in range(len(img_metas)): + responsible_flag_list.append( + self.prior_generator.responsible_flags(featmap_sizes, + gt_bboxes[img_id], + device)) + + target_maps_list, neg_maps_list = self.get_targets( + anchor_list, responsible_flag_list, gt_bboxes, gt_labels) + + losses_cls, losses_conf, losses_xy, losses_wh = multi_apply( + self.loss_single, pred_maps, target_maps_list, neg_maps_list) + + return dict( + loss_cls=losses_cls, + loss_conf=losses_conf, + loss_xy=losses_xy, + loss_wh=losses_wh) + + def loss_single(self, pred_map, target_map, neg_map): + """Compute loss of a single image from a batch. + + Args: + pred_map (Tensor): Raw predictions for a single level. + target_map (Tensor): The Ground-Truth target for a single level. + neg_map (Tensor): The negative masks for a single level. + + Returns: + tuple: + loss_cls (Tensor): Classification loss. + loss_conf (Tensor): Confidence loss. + loss_xy (Tensor): Regression loss of x, y coordinate. + loss_wh (Tensor): Regression loss of w, h coordinate. + """ + + num_imgs = len(pred_map) + pred_map = pred_map.permute(0, 2, 3, + 1).reshape(num_imgs, -1, self.num_attrib) + neg_mask = neg_map.float() + pos_mask = target_map[..., 4] + pos_and_neg_mask = neg_mask + pos_mask + pos_mask = pos_mask.unsqueeze(dim=-1) + if torch.max(pos_and_neg_mask) > 1.: + warnings.warn('There is overlap between pos and neg sample.') + pos_and_neg_mask = pos_and_neg_mask.clamp(min=0., max=1.) + + pred_xy = pred_map[..., :2] + pred_wh = pred_map[..., 2:4] + pred_conf = pred_map[..., 4] + pred_label = pred_map[..., 5:] + + target_xy = target_map[..., :2] + target_wh = target_map[..., 2:4] + target_conf = target_map[..., 4] + target_label = target_map[..., 5:] + + loss_cls = self.loss_cls(pred_label, target_label, weight=pos_mask) + loss_conf = self.loss_conf( + pred_conf, target_conf, weight=pos_and_neg_mask) + loss_xy = self.loss_xy(pred_xy, target_xy, weight=pos_mask) + loss_wh = self.loss_wh(pred_wh, target_wh, weight=pos_mask) + + return loss_cls, loss_conf, loss_xy, loss_wh + + def get_targets(self, anchor_list, responsible_flag_list, gt_bboxes_list, + gt_labels_list): + """Compute target maps for anchors in multiple images. + + Args: + anchor_list (list[list[Tensor]]): Multi level anchors of each + image. The outer list indicates images, and the inner list + corresponds to feature levels of the image. Each element of + the inner list is a tensor of shape (num_total_anchors, 4). + responsible_flag_list (list[list[Tensor]]): Multi level responsible + flags of each image. Each element is a tensor of shape + (num_total_anchors, ) + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + + Returns: + tuple: Usually returns a tuple containing learning targets. + - target_map_list (list[Tensor]): Target map of each level. + - neg_map_list (list[Tensor]): Negative map of each level. + """ + num_imgs = len(anchor_list) + + # anchor number of multi levels + num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] + + results = multi_apply(self._get_targets_single, anchor_list, + responsible_flag_list, gt_bboxes_list, + gt_labels_list) + + all_target_maps, all_neg_maps = results + assert num_imgs == len(all_target_maps) == len(all_neg_maps) + target_maps_list = images_to_levels(all_target_maps, num_level_anchors) + neg_maps_list = images_to_levels(all_neg_maps, num_level_anchors) + + return target_maps_list, neg_maps_list + + def _get_targets_single(self, anchors, responsible_flags, gt_bboxes, + gt_labels): + """Generate matching bounding box prior and converted GT. + + Args: + anchors (list[Tensor]): Multi-level anchors of the image. + responsible_flags (list[Tensor]): Multi-level responsible flags of + anchors + gt_bboxes (Tensor): Ground truth bboxes of single image. + gt_labels (Tensor): Ground truth labels of single image. + + Returns: + tuple: + target_map (Tensor): Predication target map of each + scale level, shape (num_total_anchors, + 5+num_classes) + neg_map (Tensor): Negative map of each scale level, + shape (num_total_anchors,) + """ + + anchor_strides = [] + for i in range(len(anchors)): + anchor_strides.append( + torch.tensor(self.featmap_strides[i], + device=gt_bboxes.device).repeat(len(anchors[i]))) + concat_anchors = torch.cat(anchors) + concat_responsible_flags = torch.cat(responsible_flags) + + anchor_strides = torch.cat(anchor_strides) + assert len(anchor_strides) == len(concat_anchors) == \ + len(concat_responsible_flags) + assign_result = self.assigner.assign(concat_anchors, + concat_responsible_flags, + gt_bboxes) + sampling_result = self.sampler.sample(assign_result, concat_anchors, + gt_bboxes) + + target_map = concat_anchors.new_zeros( + concat_anchors.size(0), self.num_attrib) + + target_map[sampling_result.pos_inds, :4] = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes, + anchor_strides[sampling_result.pos_inds]) + + target_map[sampling_result.pos_inds, 4] = 1 + + gt_labels_one_hot = F.one_hot( + gt_labels, num_classes=self.num_classes).float() + if self.one_hot_smoother != 0: # label smooth + gt_labels_one_hot = gt_labels_one_hot * ( + 1 - self.one_hot_smoother + ) + self.one_hot_smoother / self.num_classes + target_map[sampling_result.pos_inds, 5:] = gt_labels_one_hot[ + sampling_result.pos_assigned_gt_inds] + + neg_map = concat_anchors.new_zeros( + concat_anchors.size(0), dtype=torch.uint8) + neg_map[sampling_result.neg_inds] = 1 + + return target_map, neg_map + + def aug_test(self, feats, img_metas, rescale=False): + """Test function with test time augmentation. + + Args: + feats (list[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains features for all images in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. each dict has image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[ndarray]: bbox results of each class + """ + return self.aug_test_bboxes(feats, img_metas, rescale=rescale) + + @force_fp32(apply_to=('pred_maps')) + def onnx_export(self, pred_maps, img_metas, with_nms=True): + num_levels = len(pred_maps) + pred_maps_list = [pred_maps[i].detach() for i in range(num_levels)] + + cfg = self.test_cfg + assert len(pred_maps_list) == self.num_levels + + device = pred_maps_list[0].device + batch_size = pred_maps_list[0].shape[0] + + featmap_sizes = [ + pred_maps_list[i].shape[-2:] for i in range(self.num_levels) + ] + mlvl_anchors = self.prior_generator.grid_priors( + featmap_sizes, device=device) + # convert to tensor to keep tracing + nms_pre_tensor = torch.tensor( + cfg.get('nms_pre', -1), device=device, dtype=torch.long) + + multi_lvl_bboxes = [] + multi_lvl_cls_scores = [] + multi_lvl_conf_scores = [] + for i in range(self.num_levels): + # get some key info for current scale + pred_map = pred_maps_list[i] + stride = self.featmap_strides[i] + # (b,h, w, num_anchors*num_attrib) -> + # (b,h*w*num_anchors, num_attrib) + pred_map = pred_map.permute(0, 2, 3, + 1).reshape(batch_size, -1, + self.num_attrib) + # Inplace operation like + # ```pred_map[..., :2] = \torch.sigmoid(pred_map[..., :2])``` + # would create constant tensor when exporting to onnx + pred_map_conf = torch.sigmoid(pred_map[..., :2]) + pred_map_rest = pred_map[..., 2:] + pred_map = torch.cat([pred_map_conf, pred_map_rest], dim=-1) + pred_map_boxes = pred_map[..., :4] + multi_lvl_anchor = mlvl_anchors[i] + multi_lvl_anchor = multi_lvl_anchor.expand_as(pred_map_boxes) + bbox_pred = self.bbox_coder.decode(multi_lvl_anchor, + pred_map_boxes, stride) + # conf and cls + conf_pred = torch.sigmoid(pred_map[..., 4]) + cls_pred = torch.sigmoid(pred_map[..., 5:]).view( + batch_size, -1, self.num_classes) # Cls pred one-hot. + + # Get top-k prediction + from mmdet.core.export import get_k_for_topk + nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1]) + if nms_pre > 0: + _, topk_inds = conf_pred.topk(nms_pre) + batch_inds = torch.arange(batch_size).view( + -1, 1).expand_as(topk_inds).long() + # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 + transformed_inds = ( + bbox_pred.shape[1] * batch_inds + topk_inds) + bbox_pred = bbox_pred.reshape(-1, + 4)[transformed_inds, :].reshape( + batch_size, -1, 4) + cls_pred = cls_pred.reshape( + -1, self.num_classes)[transformed_inds, :].reshape( + batch_size, -1, self.num_classes) + conf_pred = conf_pred.reshape(-1, 1)[transformed_inds].reshape( + batch_size, -1) + + # Save the result of current scale + multi_lvl_bboxes.append(bbox_pred) + multi_lvl_cls_scores.append(cls_pred) + multi_lvl_conf_scores.append(conf_pred) + + # Merge the results of different scales together + batch_mlvl_bboxes = torch.cat(multi_lvl_bboxes, dim=1) + batch_mlvl_scores = torch.cat(multi_lvl_cls_scores, dim=1) + batch_mlvl_conf_scores = torch.cat(multi_lvl_conf_scores, dim=1) + + # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment + from mmdet.core.export import add_dummy_nms_for_onnx + conf_thr = cfg.get('conf_thr', -1) + score_thr = cfg.get('score_thr', -1) + # follow original pipeline of YOLOv3 + if conf_thr > 0: + mask = (batch_mlvl_conf_scores >= conf_thr).float() + batch_mlvl_conf_scores *= mask + if score_thr > 0: + mask = (batch_mlvl_scores > score_thr).float() + batch_mlvl_scores *= mask + batch_mlvl_conf_scores = batch_mlvl_conf_scores.unsqueeze(2).expand_as( + batch_mlvl_scores) + batch_mlvl_scores = batch_mlvl_scores * batch_mlvl_conf_scores + if with_nms: + max_output_boxes_per_class = cfg.nms.get( + 'max_output_boxes_per_class', 200) + iou_threshold = cfg.nms.get('iou_threshold', 0.5) + # keep aligned with original pipeline, improve + # mAP by 1% for YOLOv3 in ONNX + score_threshold = 0 + nms_pre = cfg.get('deploy_nms_pre', -1) + return add_dummy_nms_for_onnx( + batch_mlvl_bboxes, + batch_mlvl_scores, + max_output_boxes_per_class, + iou_threshold, + score_threshold, + nms_pre, + cfg.max_per_img, + ) + else: + return batch_mlvl_bboxes, batch_mlvl_scores diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolof_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolof_head.py new file mode 100644 index 000000000..1063524a7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolof_head.py @@ -0,0 +1,416 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm, + normal_init) +from mmcv.runner import force_fp32 + +from mmdet.core import anchor_inside_flags, multi_apply, reduce_mean, unmap +from ..builder import HEADS +from .anchor_head import AnchorHead + +INF = 1e8 + + +def levels_to_images(mlvl_tensor): + """Concat multi-level feature maps by image. + + [feature_level0, feature_level1...] -> [feature_image0, feature_image1...] + Convert the shape of each element in mlvl_tensor from (N, C, H, W) to + (N, H*W , C), then split the element to N elements with shape (H*W, C), and + concat elements in same image of all level along first dimension. + + Args: + mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from + corresponding level. Each element is of shape (N, C, H, W) + + Returns: + list[torch.Tensor]: A list that contains N tensors and each tensor is + of shape (num_elements, C) + """ + batch_size = mlvl_tensor[0].size(0) + batch_list = [[] for _ in range(batch_size)] + channels = mlvl_tensor[0].size(1) + for t in mlvl_tensor: + t = t.permute(0, 2, 3, 1) + t = t.view(batch_size, -1, channels).contiguous() + for img in range(batch_size): + batch_list[img].append(t[img]) + return [torch.cat(item, 0) for item in batch_list] + + +@HEADS.register_module() +class YOLOFHead(AnchorHead): + """YOLOFHead Paper link: https://arxiv.org/abs/2103.09460. + + Args: + num_classes (int): The number of object classes (w/o background) + in_channels (List[int]): The number of input channels per scale. + cls_num_convs (int): The number of convolutions of cls branch. + Default 2. + reg_num_convs (int): The number of convolutions of reg branch. + Default 4. + norm_cfg (dict): Dictionary to construct and config norm layer. + """ + + def __init__(self, + num_classes, + in_channels, + num_cls_convs=2, + num_reg_convs=4, + norm_cfg=dict(type='BN', requires_grad=True), + **kwargs): + self.num_cls_convs = num_cls_convs + self.num_reg_convs = num_reg_convs + self.norm_cfg = norm_cfg + super(YOLOFHead, self).__init__(num_classes, in_channels, **kwargs) + + def _init_layers(self): + cls_subnet = [] + bbox_subnet = [] + for i in range(self.num_cls_convs): + cls_subnet.append( + ConvModule( + self.in_channels, + self.in_channels, + kernel_size=3, + padding=1, + norm_cfg=self.norm_cfg)) + for i in range(self.num_reg_convs): + bbox_subnet.append( + ConvModule( + self.in_channels, + self.in_channels, + kernel_size=3, + padding=1, + norm_cfg=self.norm_cfg)) + self.cls_subnet = nn.Sequential(*cls_subnet) + self.bbox_subnet = nn.Sequential(*bbox_subnet) + self.cls_score = nn.Conv2d( + self.in_channels, + self.num_base_priors * self.num_classes, + kernel_size=3, + stride=1, + padding=1) + self.bbox_pred = nn.Conv2d( + self.in_channels, + self.num_base_priors * 4, + kernel_size=3, + stride=1, + padding=1) + self.object_pred = nn.Conv2d( + self.in_channels, + self.num_base_priors, + kernel_size=3, + stride=1, + padding=1) + + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, mean=0, std=0.01) + if is_norm(m): + constant_init(m, 1) + + # Use prior in model initialization to improve stability + bias_cls = bias_init_with_prob(0.01) + torch.nn.init.constant_(self.cls_score.bias, bias_cls) + + def forward_single(self, feature): + cls_score = self.cls_score(self.cls_subnet(feature)) + N, _, H, W = cls_score.shape + cls_score = cls_score.view(N, -1, self.num_classes, H, W) + + reg_feat = self.bbox_subnet(feature) + bbox_reg = self.bbox_pred(reg_feat) + objectness = self.object_pred(reg_feat) + + # implicit objectness + objectness = objectness.view(N, -1, 1, H, W) + normalized_cls_score = cls_score + objectness - torch.log( + 1. + torch.clamp(cls_score.exp(), max=INF) + + torch.clamp(objectness.exp(), max=INF)) + normalized_cls_score = normalized_cls_score.view(N, -1, H, W) + return normalized_cls_score, bbox_reg + + @force_fp32(apply_to=('cls_scores', 'bbox_preds')) + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute losses of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (batch, num_anchors * num_classes, h, w) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (batch, num_anchors * 4, h, w) + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. Default: None + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == 1 + assert self.prior_generator.num_levels == 1 + + device = cls_scores[0].device + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + anchor_list, valid_flag_list = self.get_anchors( + featmap_sizes, img_metas, device=device) + + # The output level is always 1 + anchor_list = [anchors[0] for anchors in anchor_list] + valid_flag_list = [valid_flags[0] for valid_flags in valid_flag_list] + + cls_scores_list = levels_to_images(cls_scores) + bbox_preds_list = levels_to_images(bbox_preds) + + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.get_targets( + cls_scores_list, + bbox_preds_list, + anchor_list, + valid_flag_list, + gt_bboxes, + img_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + label_channels=label_channels) + if cls_reg_targets is None: + return None + (batch_labels, batch_label_weights, num_total_pos, num_total_neg, + batch_bbox_weights, batch_pos_predicted_boxes, + batch_target_boxes) = cls_reg_targets + + flatten_labels = batch_labels.reshape(-1) + batch_label_weights = batch_label_weights.reshape(-1) + cls_score = cls_scores[0].permute(0, 2, 3, + 1).reshape(-1, self.cls_out_channels) + + num_total_samples = (num_total_pos + + num_total_neg) if self.sampling else num_total_pos + num_total_samples = reduce_mean( + cls_score.new_tensor(num_total_samples)).clamp_(1.0).item() + + # classification loss + loss_cls = self.loss_cls( + cls_score, + flatten_labels, + batch_label_weights, + avg_factor=num_total_samples) + + # regression loss + if batch_pos_predicted_boxes.shape[0] == 0: + # no pos sample + loss_bbox = batch_pos_predicted_boxes.sum() * 0 + else: + loss_bbox = self.loss_bbox( + batch_pos_predicted_boxes, + batch_target_boxes, + batch_bbox_weights.float(), + avg_factor=num_total_samples) + + return dict(loss_cls=loss_cls, loss_bbox=loss_bbox) + + def get_targets(self, + cls_scores_list, + bbox_preds_list, + anchor_list, + valid_flag_list, + gt_bboxes_list, + img_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in + multiple images. + + Args: + cls_scores_list (list[Tensor]): Classification scores of + each image. each is a 4D-tensor, the shape is + (h * w, num_anchors * num_classes). + bbox_preds_list (list[Tensor]): Bbox preds of each image. + each is a 4D-tensor, the shape is (h * w, num_anchors * 4). + anchor_list (list[Tensor]): Anchors of each image. Each element of + is a tensor of shape (h * w * num_anchors, 4). + valid_flag_list (list[Tensor]): Valid flags of each image. Each + element of is a tensor of shape (h * w * num_anchors, ) + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. + img_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be + ignored. + gt_labels_list (list[Tensor]): Ground truth labels of each box. + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: Usually returns a tuple containing learning targets. + + - batch_labels (Tensor): Label of all images. Each element \ + of is a tensor of shape (batch, h * w * num_anchors) + - batch_label_weights (Tensor): Label weights of all images \ + of is a tensor of shape (batch, h * w * num_anchors) + - num_total_pos (int): Number of positive samples in all \ + images. + - num_total_neg (int): Number of negative samples in all \ + images. + additional_returns: This function enables user-defined returns from + `self._get_targets_single`. These returns are currently refined + to properties at each feature map (i.e. having HxW dimension). + The results will be concatenated after the end + """ + num_imgs = len(img_metas) + assert len(anchor_list) == len(valid_flag_list) == num_imgs + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + results = multi_apply( + self._get_targets_single, + bbox_preds_list, + anchor_list, + valid_flag_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + img_metas, + label_channels=label_channels, + unmap_outputs=unmap_outputs) + (all_labels, all_label_weights, pos_inds_list, neg_inds_list, + sampling_results_list) = results[:5] + rest_results = list(results[5:]) # user-added return values + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + + batch_labels = torch.stack(all_labels, 0) + batch_label_weights = torch.stack(all_label_weights, 0) + + res = (batch_labels, batch_label_weights, num_total_pos, num_total_neg) + for i, rests in enumerate(rest_results): # user-added return values + rest_results[i] = torch.cat(rests, 0) + + return res + tuple(rest_results) + + def _get_targets_single(self, + bbox_preds, + flat_anchors, + valid_flags, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + img_meta, + label_channels=1, + unmap_outputs=True): + """Compute regression and classification targets for anchors in a + single image. + + Args: + bbox_preds (Tensor): Bbox prediction of the image, which + shape is (h * w ,4) + flat_anchors (Tensor): Anchors of the image, which shape is + (h * w * num_anchors ,4) + valid_flags (Tensor): Valid flags of the image, which shape is + (h * w * num_anchors,). + gt_bboxes (Tensor): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_bboxes_ignore (Tensor): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + img_meta (dict): Meta info of the image. + gt_labels (Tensor): Ground truth labels of each box, + shape (num_gts,). + label_channels (int): Channel of label. + unmap_outputs (bool): Whether to map outputs back to the original + set of anchors. + + Returns: + tuple: + labels (Tensor): Labels of image, which shape is + (h * w * num_anchors, ). + label_weights (Tensor): Label weights of image, which shape is + (h * w * num_anchors, ). + pos_inds (Tensor): Pos index of image. + neg_inds (Tensor): Neg index of image. + sampling_result (obj:`SamplingResult`): Sampling result. + pos_bbox_weights (Tensor): The Weight of using to calculate + the bbox branch loss, which shape is (num, ). + pos_predicted_boxes (Tensor): boxes predicted value of + using to calculate the bbox branch loss, which shape is + (num, 4). + pos_target_boxes (Tensor): boxes target value of + using to calculate the bbox branch loss, which shape is + (num, 4). + """ + inside_flags = anchor_inside_flags(flat_anchors, valid_flags, + img_meta['img_shape'][:2], + self.train_cfg.allowed_border) + if not inside_flags.any(): + return (None, ) * 8 + # assign gt and sample anchors + anchors = flat_anchors[inside_flags, :] + bbox_preds = bbox_preds.reshape(-1, 4) + bbox_preds = bbox_preds[inside_flags, :] + + # decoded bbox + decoder_bbox_preds = self.bbox_coder.decode(anchors, bbox_preds) + assign_result = self.assigner.assign( + decoder_bbox_preds, anchors, gt_bboxes, gt_bboxes_ignore, + None if self.sampling else gt_labels) + + pos_bbox_weights = assign_result.get_extra_property('pos_idx') + pos_predicted_boxes = assign_result.get_extra_property( + 'pos_predicted_boxes') + pos_target_boxes = assign_result.get_extra_property('target_boxes') + + sampling_result = self.sampler.sample(assign_result, anchors, + gt_bboxes) + num_valid_anchors = anchors.shape[0] + labels = anchors.new_full((num_valid_anchors, ), + self.num_classes, + dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + if len(pos_inds) > 0: + if gt_labels is None: + # Only rpn gives gt_labels as None + # Foreground is the first class since v2.5.0 + labels[pos_inds] = 0 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + + # map up to original set of anchors + if unmap_outputs: + num_total_anchors = flat_anchors.size(0) + labels = unmap( + labels, num_total_anchors, inside_flags, + fill=self.num_classes) # fill bg label + label_weights = unmap(label_weights, num_total_anchors, + inside_flags) + + return (labels, label_weights, pos_inds, neg_inds, sampling_result, + pos_bbox_weights, pos_predicted_boxes, pos_target_boxes) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolox_head.py new file mode 100644 index 000000000..de3f93ccd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/dense_heads/yolox_head.py @@ -0,0 +1,491 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, + bias_init_with_prob) +from mmcv.ops.nms import batched_nms +from mmcv.runner import force_fp32 + +from mmdet.core import (MlvlPointGenerator, bbox_xyxy_to_cxcywh, + build_assigner, build_sampler, multi_apply, + reduce_mean) +from ..builder import HEADS, build_loss +from .base_dense_head import BaseDenseHead +from .dense_test_mixins import BBoxTestMixin + + +@HEADS.register_module() +class YOLOXHead(BaseDenseHead, BBoxTestMixin): + """YOLOXHead head used in `YOLOX `_. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + feat_channels (int): Number of hidden channels in stacking convs. + Default: 256 + stacked_convs (int): Number of stacking convs of the head. + Default: 2. + strides (tuple): Downsample factor of each feature map. + use_depthwise (bool): Whether to depthwise separable convolution in + blocks. Default: False + dcn_on_last_conv (bool): If true, use dcn in the last layer of + towers. Default: False. + conv_bias (bool | str): If specified as `auto`, it will be decided by + the norm_cfg. Bias of conv will be set as True if `norm_cfg` is + None, otherwise False. Default: "auto". + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (dict): Config dict for activation layer. Default: None. + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + loss_obj (dict): Config of objectness loss. + loss_l1 (dict): Config of L1 loss. + train_cfg (dict): Training config of anchor head. + test_cfg (dict): Testing config of anchor head. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + in_channels, + feat_channels=256, + stacked_convs=2, + strides=[8, 16, 32], + use_depthwise=False, + dcn_on_last_conv=False, + conv_bias='auto', + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0), + loss_bbox=dict( + type='IoULoss', + mode='square', + eps=1e-16, + reduction='sum', + loss_weight=5.0), + loss_obj=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0), + loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0), + train_cfg=None, + test_cfg=None, + init_cfg=dict( + type='Kaiming', + layer='Conv2d', + a=math.sqrt(5), + distribution='uniform', + mode='fan_in', + nonlinearity='leaky_relu')): + + super().__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.cls_out_channels = num_classes + self.in_channels = in_channels + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.strides = strides + self.use_depthwise = use_depthwise + self.dcn_on_last_conv = dcn_on_last_conv + assert conv_bias == 'auto' or isinstance(conv_bias, bool) + self.conv_bias = conv_bias + self.use_sigmoid_cls = True + + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.loss_obj = build_loss(loss_obj) + + self.use_l1 = False # This flag will be modified by hooks. + self.loss_l1 = build_loss(loss_l1) + + self.prior_generator = MlvlPointGenerator(strides, offset=0) + + self.test_cfg = test_cfg + self.train_cfg = train_cfg + + self.sampling = False + if self.train_cfg: + self.assigner = build_assigner(self.train_cfg.assigner) + # sampling=False so use PseudoSampler + sampler_cfg = dict(type='PseudoSampler') + self.sampler = build_sampler(sampler_cfg, context=self) + + self.fp16_enabled = False + self._init_layers() + + def _init_layers(self): + self.multi_level_cls_convs = nn.ModuleList() + self.multi_level_reg_convs = nn.ModuleList() + self.multi_level_conv_cls = nn.ModuleList() + self.multi_level_conv_reg = nn.ModuleList() + self.multi_level_conv_obj = nn.ModuleList() + for _ in self.strides: + self.multi_level_cls_convs.append(self._build_stacked_convs()) + self.multi_level_reg_convs.append(self._build_stacked_convs()) + conv_cls, conv_reg, conv_obj = self._build_predictor() + self.multi_level_conv_cls.append(conv_cls) + self.multi_level_conv_reg.append(conv_reg) + self.multi_level_conv_obj.append(conv_obj) + + def _build_stacked_convs(self): + """Initialize conv layers of a single level head.""" + conv = DepthwiseSeparableConvModule \ + if self.use_depthwise else ConvModule + stacked_convs = [] + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + if self.dcn_on_last_conv and i == self.stacked_convs - 1: + conv_cfg = dict(type='DCNv2') + else: + conv_cfg = self.conv_cfg + stacked_convs.append( + conv( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + bias=self.conv_bias)) + return nn.Sequential(*stacked_convs) + + def _build_predictor(self): + """Initialize predictor layers of a single level head.""" + conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1) + conv_reg = nn.Conv2d(self.feat_channels, 4, 1) + conv_obj = nn.Conv2d(self.feat_channels, 1, 1) + return conv_cls, conv_reg, conv_obj + + def init_weights(self): + super(YOLOXHead, self).init_weights() + # Use prior in model initialization to improve stability + bias_init = bias_init_with_prob(0.01) + for conv_cls, conv_obj in zip(self.multi_level_conv_cls, + self.multi_level_conv_obj): + conv_cls.bias.data.fill_(bias_init) + conv_obj.bias.data.fill_(bias_init) + + def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg, + conv_obj): + """Forward feature of a single scale level.""" + + cls_feat = cls_convs(x) + reg_feat = reg_convs(x) + + cls_score = conv_cls(cls_feat) + bbox_pred = conv_reg(reg_feat) + objectness = conv_obj(reg_feat) + + return cls_score, bbox_pred, objectness + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + Returns: + tuple[Tensor]: A tuple of multi-level predication map, each is a + 4D-tensor of shape (batch_size, 5+num_classes, height, width). + """ + + return multi_apply(self.forward_single, feats, + self.multi_level_cls_convs, + self.multi_level_reg_convs, + self.multi_level_conv_cls, + self.multi_level_conv_reg, + self.multi_level_conv_obj) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses')) + def get_bboxes(self, + cls_scores, + bbox_preds, + objectnesses, + img_metas=None, + cfg=None, + rescale=False, + with_nms=True): + """Transform network outputs of a batch into bbox results. + Args: + cls_scores (list[Tensor]): Classification scores for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for all + scale levels, each is a 4D-tensor, has shape + (batch_size, num_priors * 4, H, W). + objectnesses (list[Tensor], Optional): Score factor for + all scale level, each is a 4D-tensor, has shape + (batch_size, 1, H, W). + img_metas (list[dict], Optional): Image meta info. Default None. + cfg (mmcv.Config, Optional): Test / postprocessing configuration, + if None, test_cfg would be used. Default None. + rescale (bool): If True, return boxes in original image space. + Default False. + with_nms (bool): If True, do nms before return boxes. + Default True. + Returns: + list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 5) tensor, where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. The second item is a + (n,) tensor where each item is the predicted class label of + the corresponding box. + """ + assert len(cls_scores) == len(bbox_preds) == len(objectnesses) + cfg = self.test_cfg if cfg is None else cfg + scale_factors = [img_meta['scale_factor'] for img_meta in img_metas] + + num_imgs = len(img_metas) + featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] + mlvl_priors = self.prior_generator.grid_priors( + featmap_sizes, + dtype=cls_scores[0].dtype, + device=cls_scores[0].device, + with_stride=True) + + # flatten cls_scores, bbox_preds and objectness + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, + self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) + for bbox_pred in bbox_preds + ] + flatten_objectness = [ + objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) + for objectness in objectnesses + ] + + flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() + flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) + flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid() + flatten_priors = torch.cat(mlvl_priors) + + flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) + + if rescale: + flatten_bboxes[..., :4] /= flatten_bboxes.new_tensor( + scale_factors).unsqueeze(1) + + result_list = [] + for img_id in range(len(img_metas)): + cls_scores = flatten_cls_scores[img_id] + score_factor = flatten_objectness[img_id] + bboxes = flatten_bboxes[img_id] + + result_list.append( + self._bboxes_nms(cls_scores, bboxes, score_factor, cfg)) + + return result_list + + def _bbox_decode(self, priors, bbox_preds): + xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2] + whs = bbox_preds[..., 2:].exp() * priors[:, 2:] + + tl_x = (xys[..., 0] - whs[..., 0] / 2) + tl_y = (xys[..., 1] - whs[..., 1] / 2) + br_x = (xys[..., 0] + whs[..., 0] / 2) + br_y = (xys[..., 1] + whs[..., 1] / 2) + + decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) + return decoded_bboxes + + def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg): + max_scores, labels = torch.max(cls_scores, 1) + valid_mask = score_factor * max_scores >= cfg.score_thr + + bboxes = bboxes[valid_mask] + scores = max_scores[valid_mask] * score_factor[valid_mask] + labels = labels[valid_mask] + + if labels.numel() == 0: + return bboxes, labels + else: + dets, keep = batched_nms(bboxes, scores, labels, cfg.nms) + return dets, labels[keep] + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses')) + def loss(self, + cls_scores, + bbox_preds, + objectnesses, + gt_bboxes, + gt_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_priors * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_priors * 4. + objectnesses (list[Tensor], Optional): Score factor for + all scale level, each is a 4D-tensor, has shape + (batch_size, 1, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + """ + num_imgs = len(img_metas) + featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] + mlvl_priors = self.prior_generator.grid_priors( + featmap_sizes, + dtype=cls_scores[0].dtype, + device=cls_scores[0].device, + with_stride=True) + + flatten_cls_preds = [ + cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, + self.cls_out_channels) + for cls_pred in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) + for bbox_pred in bbox_preds + ] + flatten_objectness = [ + objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) + for objectness in objectnesses + ] + + flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1) + flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) + flatten_objectness = torch.cat(flatten_objectness, dim=1) + flatten_priors = torch.cat(mlvl_priors) + flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) + + (pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets, + num_fg_imgs) = multi_apply( + self._get_target_single, flatten_cls_preds.detach(), + flatten_objectness.detach(), + flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1), + flatten_bboxes.detach(), gt_bboxes, gt_labels) + + # The experimental results show that ‘reduce_mean’ can improve + # performance on the COCO dataset. + num_pos = torch.tensor( + sum(num_fg_imgs), + dtype=torch.float, + device=flatten_cls_preds.device) + num_total_samples = max(reduce_mean(num_pos), 1.0) + + pos_masks = torch.cat(pos_masks, 0) + cls_targets = torch.cat(cls_targets, 0) + obj_targets = torch.cat(obj_targets, 0) + bbox_targets = torch.cat(bbox_targets, 0) + if self.use_l1: + l1_targets = torch.cat(l1_targets, 0) + + loss_bbox = self.loss_bbox( + flatten_bboxes.view(-1, 4)[pos_masks], + bbox_targets) / num_total_samples + loss_obj = self.loss_obj(flatten_objectness.view(-1, 1), + obj_targets) / num_total_samples + loss_cls = self.loss_cls( + flatten_cls_preds.view(-1, self.num_classes)[pos_masks], + cls_targets) / num_total_samples + + loss_dict = dict( + loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj) + + if self.use_l1: + loss_l1 = self.loss_l1( + flatten_bbox_preds.view(-1, 4)[pos_masks], + l1_targets) / num_total_samples + loss_dict.update(loss_l1=loss_l1) + + return loss_dict + + @torch.no_grad() + def _get_target_single(self, cls_preds, objectness, priors, decoded_bboxes, + gt_bboxes, gt_labels): + """Compute classification, regression, and objectness targets for + priors in a single image. + Args: + cls_preds (Tensor): Classification predictions of one image, + a 2D-Tensor with shape [num_priors, num_classes] + objectness (Tensor): Objectness predictions of one image, + a 1D-Tensor with shape [num_priors] + priors (Tensor): All priors of one image, a 2D-Tensor with shape + [num_priors, 4] in [cx, xy, stride_w, stride_y] format. + decoded_bboxes (Tensor): Decoded bboxes predictions of one image, + a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y, + br_x, br_y] format. + gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor + with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format. + gt_labels (Tensor): Ground truth labels of one image, a Tensor + with shape [num_gts]. + """ + + num_priors = priors.size(0) + num_gts = gt_labels.size(0) + gt_bboxes = gt_bboxes.to(decoded_bboxes.dtype) + # No target + if num_gts == 0: + cls_target = cls_preds.new_zeros((0, self.num_classes)) + bbox_target = cls_preds.new_zeros((0, 4)) + l1_target = cls_preds.new_zeros((0, 4)) + obj_target = cls_preds.new_zeros((num_priors, 1)) + foreground_mask = cls_preds.new_zeros(num_priors).bool() + return (foreground_mask, cls_target, obj_target, bbox_target, + l1_target, 0) + + # YOLOX uses center priors with 0.5 offset to assign targets, + # but use center priors without offset to regress bboxes. + offset_priors = torch.cat( + [priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1) + + assign_result = self.assigner.assign( + cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid(), + offset_priors, decoded_bboxes, gt_bboxes, gt_labels) + + sampling_result = self.sampler.sample(assign_result, priors, gt_bboxes) + pos_inds = sampling_result.pos_inds + num_pos_per_img = pos_inds.size(0) + + pos_ious = assign_result.max_overlaps[pos_inds] + # IOU aware classification score + cls_target = F.one_hot(sampling_result.pos_gt_labels, + self.num_classes) * pos_ious.unsqueeze(-1) + obj_target = torch.zeros_like(objectness).unsqueeze(-1) + obj_target[pos_inds] = 1 + bbox_target = sampling_result.pos_gt_bboxes + l1_target = cls_preds.new_zeros((num_pos_per_img, 4)) + if self.use_l1: + l1_target = self._get_l1_target(l1_target, bbox_target, + priors[pos_inds]) + foreground_mask = torch.zeros_like(objectness).to(torch.bool) + foreground_mask[pos_inds] = 1 + return (foreground_mask, cls_target, obj_target, bbox_target, + l1_target, num_pos_per_img) + + def _get_l1_target(self, l1_target, gt_bboxes, priors, eps=1e-8): + """Convert gt bboxes to center offset and log width height.""" + gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes) + l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:] + l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps) + return l1_target diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/__init__.py new file mode 100644 index 000000000..5f2b3088d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/__init__.py @@ -0,0 +1,56 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .atss import ATSS +from .autoassign import AutoAssign +from .base import BaseDetector +from .cascade_rcnn import CascadeRCNN +from .centernet import CenterNet +from .cornernet import CornerNet +from .deformable_detr import DeformableDETR +from .detr import DETR +from .fast_rcnn import FastRCNN +from .faster_rcnn import FasterRCNN +from .fcos import FCOS +from .fovea import FOVEA +from .fsaf import FSAF +from .gfl import GFL +from .grid_rcnn import GridRCNN +from .htc import HybridTaskCascade +from .kd_one_stage import KnowledgeDistillationSingleStageDetector +from .lad import LAD +from .mask2former import Mask2Former +from .mask_rcnn import MaskRCNN +from .mask_scoring_rcnn import MaskScoringRCNN +from .maskformer import MaskFormer +from .nasfcos import NASFCOS +from .paa import PAA +from .panoptic_fpn import PanopticFPN +from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor +from .point_rend import PointRend +from .queryinst import QueryInst +from .reppoints_detector import RepPointsDetector +from .retinanet import RetinaNet +from .rpn import RPN +from .scnet import SCNet +from .single_stage import SingleStageDetector +from .solo import SOLO +from .sparse_rcnn import SparseRCNN +from .tood import TOOD +from .trident_faster_rcnn import TridentFasterRCNN +from .two_stage import TwoStageDetector +from .vfnet import VFNet +from .yolact import YOLACT +from .yolo import YOLOV3 +from .yolof import YOLOF +from .yolox import YOLOX + +__all__ = [ + 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', + 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', + 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', + 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', + 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', + 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', + 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', + 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', + 'MaskFormer', 'Mask2Former' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/atss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/atss.py new file mode 100644 index 000000000..00f1acd9a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/atss.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class ATSS(SingleStageDetector): + """Implementation of `ATSS `_.""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(ATSS, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/autoassign.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/autoassign.py new file mode 100644 index 000000000..30ab72075 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/autoassign.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class AutoAssign(SingleStageDetector): + """Implementation of `AutoAssign: Differentiable Label Assignment for Dense + Object Detection `_.""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(AutoAssign, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/base.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/base.py new file mode 100644 index 000000000..bf64bce63 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/base.py @@ -0,0 +1,360 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod +from collections import OrderedDict + +import mmcv +import numpy as np +import torch +import torch.distributed as dist +from mmcv.runner import BaseModule, auto_fp16 + +from mmdet.core.visualization import imshow_det_bboxes + + +class BaseDetector(BaseModule, metaclass=ABCMeta): + """Base class for detectors.""" + + def __init__(self, init_cfg=None): + super(BaseDetector, self).__init__(init_cfg) + self.fp16_enabled = False + + @property + def with_neck(self): + """bool: whether the detector has a neck""" + return hasattr(self, 'neck') and self.neck is not None + + # TODO: these properties need to be carefully handled + # for both single stage & two stage detectors + @property + def with_shared_head(self): + """bool: whether the detector has a shared head in the RoI Head""" + return hasattr(self, 'roi_head') and self.roi_head.with_shared_head + + @property + def with_bbox(self): + """bool: whether the detector has a bbox head""" + return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox) + or (hasattr(self, 'bbox_head') and self.bbox_head is not None)) + + @property + def with_mask(self): + """bool: whether the detector has a mask head""" + return ((hasattr(self, 'roi_head') and self.roi_head.with_mask) + or (hasattr(self, 'mask_head') and self.mask_head is not None)) + + @abstractmethod + def extract_feat(self, imgs): + """Extract features from images.""" + pass + + def extract_feats(self, imgs): + """Extract features from multiple images. + + Args: + imgs (list[torch.Tensor]): A list of images. The images are + augmented from the same image but in different ways. + + Returns: + list[torch.Tensor]: Features of different images + """ + assert isinstance(imgs, list) + return [self.extract_feat(img) for img in imgs] + + def forward_train(self, imgs, img_metas, **kwargs): + """ + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys, see + :class:`mmdet.datasets.pipelines.Collect`. + kwargs (keyword arguments): Specific to concrete implementation. + """ + # NOTE the batched image size information may be useful, e.g. + # in DETR, this is needed for the construction of masks, which is + # then used for the transformer_head. + batch_input_shape = tuple(imgs[0].size()[-2:]) + for img_meta in img_metas: + img_meta['batch_input_shape'] = batch_input_shape + + async def async_simple_test(self, img, img_metas, **kwargs): + raise NotImplementedError + + @abstractmethod + def simple_test(self, img, img_metas, **kwargs): + pass + + @abstractmethod + def aug_test(self, imgs, img_metas, **kwargs): + """Test function with test time augmentation.""" + pass + + async def aforward_test(self, *, img, img_metas, **kwargs): + for var, name in [(img, 'img'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError(f'{name} must be a list, but got {type(var)}') + + num_augs = len(img) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(img)}) ' + f'!= num of image metas ({len(img_metas)})') + # TODO: remove the restriction of samples_per_gpu == 1 when prepared + samples_per_gpu = img[0].size(0) + assert samples_per_gpu == 1 + + if num_augs == 1: + return await self.async_simple_test(img[0], img_metas[0], **kwargs) + else: + raise NotImplementedError + + def forward_test(self, imgs, img_metas, **kwargs): + """ + Args: + imgs (List[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains all images in the batch. + img_metas (List[List[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. + """ + for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError(f'{name} must be a list, but got {type(var)}') + + num_augs = len(imgs) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(imgs)}) ' + f'!= num of image meta ({len(img_metas)})') + + # NOTE the batched image size information may be useful, e.g. + # in DETR, this is needed for the construction of masks, which is + # then used for the transformer_head. + for img, img_meta in zip(imgs, img_metas): + batch_size = len(img_meta) + for img_id in range(batch_size): + img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:]) + + if num_augs == 1: + # proposals (List[List[Tensor]]): the outer list indicates + # test-time augs (multiscale, flip, etc.) and the inner list + # indicates images in a batch. + # The Tensor should have a shape Px4, where P is the number of + # proposals. + if 'proposals' in kwargs: + kwargs['proposals'] = kwargs['proposals'][0] + return self.simple_test(imgs[0], img_metas[0], **kwargs) + else: + assert imgs[0].size(0) == 1, 'aug test does not support ' \ + 'inference with batch size ' \ + f'{imgs[0].size(0)}' + # TODO: support test augmentation for predefined proposals + assert 'proposals' not in kwargs + return self.aug_test(imgs, img_metas, **kwargs) + + @auto_fp16(apply_to=('img', )) + def forward(self, img, img_metas, return_loss=True, **kwargs): + """Calls either :func:`forward_train` or :func:`forward_test` depending + on whether ``return_loss`` is ``True``. + + Note this setting will change the expected inputs. When + ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor + and List[dict]), and when ``resturn_loss=False``, img and img_meta + should be double nested (i.e. List[Tensor], List[List[dict]]), with + the outer list indicating test time augmentations. + """ + if torch.onnx.is_in_onnx_export(): + assert len(img_metas) == 1 + return self.onnx_export(img[0], img_metas[0]) + + if return_loss: + return self.forward_train(img, img_metas, **kwargs) + else: + return self.forward_test(img, img_metas, **kwargs) + + def _parse_losses(self, losses): + """Parse the raw outputs (losses) of the network. + + Args: + losses (dict): Raw output of the network, which usually contain + losses and other necessary information. + + Returns: + tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \ + which may be a weighted sum of all losses, log_vars contains \ + all the variables to be sent to the logger. + """ + log_vars = OrderedDict() + for loss_name, loss_value in losses.items(): + if isinstance(loss_value, torch.Tensor): + log_vars[loss_name] = loss_value.mean() + elif isinstance(loss_value, list): + log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) + else: + raise TypeError( + f'{loss_name} is not a tensor or list of tensors') + + loss = sum(_value for _key, _value in log_vars.items() + if 'loss' in _key) + + # If the loss_vars has different length, GPUs will wait infinitely + if dist.is_available() and dist.is_initialized(): + log_var_length = torch.tensor(len(log_vars), device=loss.device) + dist.all_reduce(log_var_length) + message = (f'rank {dist.get_rank()}' + + f' len(log_vars): {len(log_vars)}' + ' keys: ' + + ','.join(log_vars.keys())) + assert log_var_length == len(log_vars) * dist.get_world_size(), \ + 'loss log variables are different across GPUs!\n' + message + + log_vars['loss'] = loss + for loss_name, loss_value in log_vars.items(): + # reduce loss when distributed training + if dist.is_available() and dist.is_initialized(): + loss_value = loss_value.data.clone() + dist.all_reduce(loss_value.div_(dist.get_world_size())) + log_vars[loss_name] = loss_value.item() + + return loss, log_vars + + def train_step(self, data, optimizer): + """The iteration step during training. + + This method defines an iteration step during training, except for the + back propagation and optimizer updating, which are done in an optimizer + hook. Note that in some complicated cases or models, the whole process + including back propagation and optimizer updating is also defined in + this method, such as GAN. + + Args: + data (dict): The output of dataloader. + optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of + runner is passed to ``train_step()``. This argument is unused + and reserved. + + Returns: + dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \ + ``num_samples``. + + - ``loss`` is a tensor for back propagation, which can be a + weighted sum of multiple losses. + - ``log_vars`` contains all the variables to be sent to the + logger. + - ``num_samples`` indicates the batch size (when the model is + DDP, it means the batch size on each GPU), which is used for + averaging the logs. + """ + losses = self(**data) + loss, log_vars = self._parse_losses(losses) + + outputs = dict( + loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) + + return outputs + + def val_step(self, data, optimizer=None): + """The iteration step during validation. + + This method shares the same signature as :func:`train_step`, but used + during val epochs. Note that the evaluation after training epochs is + not implemented with this method, but an evaluation hook. + """ + losses = self(**data) + loss, log_vars = self._parse_losses(losses) + + outputs = dict( + loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) + + return outputs + + def show_result(self, + img, + result, + score_thr=0.3, + bbox_color=(72, 101, 241), + text_color=(72, 101, 241), + mask_color=None, + thickness=2, + font_size=13, + win_name='', + show=False, + wait_time=0, + out_file=None): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (Tensor or tuple): The results to draw over `img` + bbox_result or (bbox_result, segm_result). + score_thr (float, optional): Minimum score of bboxes to be shown. + Default: 0.3. + bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. + The tuple of color should be in BGR order. Default: 'green' + text_color (str or tuple(int) or :obj:`Color`):Color of texts. + The tuple of color should be in BGR order. Default: 'green' + mask_color (None or str or tuple(int) or :obj:`Color`): + Color of masks. The tuple of color should be in BGR order. + Default: None + thickness (int): Thickness of lines. Default: 2 + font_size (int): Font size of texts. Default: 13 + win_name (str): The window name. Default: '' + wait_time (float): Value of waitKey param. + Default: 0. + show (bool): Whether to show the image. + Default: False. + out_file (str or None): The filename to write the image. + Default: None. + + Returns: + img (Tensor): Only if not `show` or `out_file` + """ + img = mmcv.imread(img) + img = img.copy() + if isinstance(result, tuple): + bbox_result, segm_result = result + if isinstance(segm_result, tuple): + segm_result = segm_result[0] # ms rcnn + else: + bbox_result, segm_result = result, None + bboxes = np.vstack(bbox_result) + labels = [ + np.full(bbox.shape[0], i, dtype=np.int32) + for i, bbox in enumerate(bbox_result) + ] + labels = np.concatenate(labels) + # draw segmentation masks + segms = None + if segm_result is not None and len(labels) > 0: # non empty + segms = mmcv.concat_list(segm_result) + if isinstance(segms[0], torch.Tensor): + segms = torch.stack(segms, dim=0).detach().cpu().numpy() + else: + segms = np.stack(segms, axis=0) + # if out_file specified, do not show image in window + if out_file is not None: + show = False + # draw bounding boxes + img = imshow_det_bboxes( + img, + bboxes, + labels, + segms, + class_names=self.CLASSES, + score_thr=score_thr, + bbox_color=bbox_color, + text_color=text_color, + mask_color=mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=show, + wait_time=wait_time, + out_file=out_file) + + if not (show or out_file): + return img + + def onnx_export(self, img, img_metas): + raise NotImplementedError(f'{self.__class__.__name__} does ' + f'not support ONNX EXPORT') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cascade_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cascade_rcnn.py new file mode 100644 index 000000000..d8c738271 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cascade_rcnn.py @@ -0,0 +1,49 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class CascadeRCNN(TwoStageDetector): + r"""Implementation of `Cascade R-CNN: Delving into High Quality Object + Detection `_""" + + def __init__(self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(CascadeRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def show_result(self, data, result, **kwargs): + """Show prediction results of the detector. + + Args: + data (str or np.ndarray): Image filename or loaded image. + result (Tensor or tuple): The results to draw over `img` + bbox_result or (bbox_result, segm_result). + + Returns: + np.ndarray: The image with bboxes drawn on it. + """ + if self.with_mask: + ms_bbox_result, ms_segm_result = result + if isinstance(ms_bbox_result, dict): + result = (ms_bbox_result['ensemble'], + ms_segm_result['ensemble']) + else: + if isinstance(result, dict): + result = result['ensemble'] + return super(CascadeRCNN, self).show_result(data, result, **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/centernet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/centernet.py new file mode 100644 index 000000000..e1e3fd3cc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/centernet.py @@ -0,0 +1,111 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import bbox2result +from mmdet.models.builder import DETECTORS +from ...core.utils import flip_tensor +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class CenterNet(SingleStageDetector): + """Implementation of CenterNet(Objects as Points) + + . + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(CenterNet, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + + def merge_aug_results(self, aug_results, with_nms): + """Merge augmented detection bboxes and score. + + Args: + aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each + image. + with_nms (bool): If True, do nms before return boxes. + + Returns: + tuple: (out_bboxes, out_labels) + """ + recovered_bboxes, aug_labels = [], [] + for single_result in aug_results: + recovered_bboxes.append(single_result[0][0]) + aug_labels.append(single_result[0][1]) + + bboxes = torch.cat(recovered_bboxes, dim=0).contiguous() + labels = torch.cat(aug_labels).contiguous() + if with_nms: + out_bboxes, out_labels = self.bbox_head._bboxes_nms( + bboxes, labels, self.bbox_head.test_cfg) + else: + out_bboxes, out_labels = bboxes, labels + + return out_bboxes, out_labels + + def aug_test(self, imgs, img_metas, rescale=True): + """Augment testing of CenterNet. Aug test must have flipped image pair, + and unlike CornerNet, it will perform an averaging operation on the + feature map instead of detecting bbox. + + Args: + imgs (list[Tensor]): Augmented images. + img_metas (list[list[dict]]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: True. + + Note: + ``imgs`` must including flipped image pairs. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + img_inds = list(range(len(imgs))) + assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( + 'aug test must have flipped image pair') + aug_results = [] + for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): + flip_direction = img_metas[flip_ind][0]['flip_direction'] + img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) + x = self.extract_feat(img_pair) + center_heatmap_preds, wh_preds, offset_preds = self.bbox_head(x) + assert len(center_heatmap_preds) == len(wh_preds) == len( + offset_preds) == 1 + + # Feature map averaging + center_heatmap_preds[0] = ( + center_heatmap_preds[0][0:1] + + flip_tensor(center_heatmap_preds[0][1:2], flip_direction)) / 2 + wh_preds[0] = (wh_preds[0][0:1] + + flip_tensor(wh_preds[0][1:2], flip_direction)) / 2 + + bbox_list = self.bbox_head.get_bboxes( + center_heatmap_preds, + wh_preds, [offset_preds[0][0:1]], + img_metas[ind], + rescale=rescale, + with_nms=False) + aug_results.append(bbox_list) + + nms_cfg = self.bbox_head.test_cfg.get('nms_cfg', None) + if nms_cfg is None: + with_nms = False + else: + with_nms = True + bbox_list = [self.merge_aug_results(aug_results, with_nms)] + bbox_results = [ + bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) + for det_bboxes, det_labels in bbox_list + ] + return bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cornernet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cornernet.py new file mode 100644 index 000000000..ce921cc3b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/cornernet.py @@ -0,0 +1,97 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import bbox2result, bbox_mapping_back +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class CornerNet(SingleStageDetector): + """CornerNet. + + This detector is the implementation of the paper `CornerNet: Detecting + Objects as Paired Keypoints `_ . + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(CornerNet, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + + def merge_aug_results(self, aug_results, img_metas): + """Merge augmented detection bboxes and score. + + Args: + aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each + image. + img_metas (list[list[dict]]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple: (bboxes, labels) + """ + recovered_bboxes, aug_labels = [], [] + for bboxes_labels, img_info in zip(aug_results, img_metas): + img_shape = img_info[0]['img_shape'] # using shape before padding + scale_factor = img_info[0]['scale_factor'] + flip = img_info[0]['flip'] + bboxes, labels = bboxes_labels + bboxes, scores = bboxes[:, :4], bboxes[:, -1:] + bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) + recovered_bboxes.append(torch.cat([bboxes, scores], dim=-1)) + aug_labels.append(labels) + + bboxes = torch.cat(recovered_bboxes, dim=0) + labels = torch.cat(aug_labels) + + if bboxes.shape[0] > 0: + out_bboxes, out_labels = self.bbox_head._bboxes_nms( + bboxes, labels, self.bbox_head.test_cfg) + else: + out_bboxes, out_labels = bboxes, labels + + return out_bboxes, out_labels + + def aug_test(self, imgs, img_metas, rescale=False): + """Augment testing of CornerNet. + + Args: + imgs (list[Tensor]): Augmented images. + img_metas (list[list[dict]]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Default: False. + + Note: + ``imgs`` must including flipped image pairs. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + img_inds = list(range(len(imgs))) + + assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( + 'aug test must have flipped image pair') + aug_results = [] + for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): + img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) + x = self.extract_feat(img_pair) + outs = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes( + *outs, [img_metas[ind], img_metas[flip_ind]], False, False) + aug_results.append(bbox_list[0]) + aug_results.append(bbox_list[1]) + + bboxes, labels = self.merge_aug_results(aug_results, img_metas) + bbox_results = bbox2result(bboxes, labels, self.bbox_head.num_classes) + + return [bbox_results] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/deformable_detr.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/deformable_detr.py new file mode 100644 index 000000000..b1f164221 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/deformable_detr.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .detr import DETR + + +@DETECTORS.register_module() +class DeformableDETR(DETR): + + def __init__(self, *args, **kwargs): + super(DETR, self).__init__(*args, **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/detr.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/detr.py new file mode 100644 index 000000000..06d76913b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/detr.py @@ -0,0 +1,70 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch + +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class DETR(SingleStageDetector): + r"""Implementation of `DETR: End-to-End Object Detection with + Transformers `_""" + + def __init__(self, + backbone, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(DETR, self).__init__(backbone, None, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + + # over-write `forward_dummy` because: + # the forward of bbox_head requires img_metas + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + warnings.warn('Warning! MultiheadAttention in DETR does not ' + 'support flops computation! Do not use the ' + 'results in your papers!') + + batch_size, _, height, width = img.shape + dummy_img_metas = [ + dict( + batch_input_shape=(height, width), + img_shape=(height, width, 3)) for _ in range(batch_size) + ] + x = self.extract_feat(img) + outs = self.bbox_head(x, dummy_img_metas) + return outs + + # over-write `onnx_export` because: + # (1) the forward of bbox_head requires img_metas + # (2) the different behavior (e.g. construction of `masks`) between + # torch and ONNX model, during the forward of bbox_head + def onnx_export(self, img, img_metas): + """Test function for exporting to ONNX, without test time augmentation. + + Args: + img (torch.Tensor): input images. + img_metas (list[dict]): List of image information. + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + x = self.extract_feat(img) + # forward of this head requires img_metas + outs = self.bbox_head.forward_onnx(x, img_metas) + # get shape as tensor + img_shape = torch._shape_as_tensor(img)[2:] + img_metas[0]['img_shape_for_onnx'] = img_shape + + det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas) + + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fast_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fast_rcnn.py new file mode 100644 index 000000000..7aebe151f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fast_rcnn.py @@ -0,0 +1,55 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class FastRCNN(TwoStageDetector): + """Implementation of `Fast R-CNN `_""" + + def __init__(self, + backbone, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(FastRCNN, self).__init__( + backbone=backbone, + neck=neck, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def forward_test(self, imgs, img_metas, proposals, **kwargs): + """ + Args: + imgs (List[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains all images in the batch. + img_metas (List[List[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. + proposals (List[List[Tensor]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. The Tensor should have a shape Px4, where + P is the number of proposals. + """ + for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError(f'{name} must be a list, but got {type(var)}') + + num_augs = len(imgs) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(imgs)}) ' + f'!= num of image meta ({len(img_metas)})') + + if num_augs == 1: + return self.simple_test(imgs[0], img_metas[0], proposals[0], + **kwargs) + else: + # TODO: support test-time augmentation + assert NotImplementedError diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/faster_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/faster_rcnn.py new file mode 100644 index 000000000..70fb662f1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/faster_rcnn.py @@ -0,0 +1,27 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class FasterRCNN(TwoStageDetector): + """Implementation of `Faster R-CNN `_""" + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(FasterRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fcos.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fcos.py new file mode 100644 index 000000000..d985bd02d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fcos.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class FCOS(SingleStageDetector): + """Implementation of `FCOS `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(FCOS, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fovea.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fovea.py new file mode 100644 index 000000000..6fd908c7e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fovea.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class FOVEA(SingleStageDetector): + """Implementation of `FoveaBox `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(FOVEA, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fsaf.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fsaf.py new file mode 100644 index 000000000..81ed1bdef --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/fsaf.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class FSAF(SingleStageDetector): + """Implementation of `FSAF `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/gfl.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/gfl.py new file mode 100644 index 000000000..4628e2e7c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/gfl.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class GFL(SingleStageDetector): + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(GFL, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/grid_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/grid_rcnn.py new file mode 100644 index 000000000..bba7873bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/grid_rcnn.py @@ -0,0 +1,32 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class GridRCNN(TwoStageDetector): + """Grid R-CNN. + + This detector is the implementation of: + - Grid R-CNN (https://arxiv.org/abs/1811.12030) + - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) + """ + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(GridRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/htc.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/htc.py new file mode 100644 index 000000000..f7c95338a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/htc.py @@ -0,0 +1,16 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .cascade_rcnn import CascadeRCNN + + +@DETECTORS.register_module() +class HybridTaskCascade(CascadeRCNN): + """Implementation of `HTC `_""" + + def __init__(self, **kwargs): + super(HybridTaskCascade, self).__init__(**kwargs) + + @property + def with_semantic(self): + """bool: whether the detector has a semantic head""" + return self.roi_head.with_semantic diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/kd_one_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/kd_one_stage.py new file mode 100644 index 000000000..fb66b5152 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/kd_one_stage.py @@ -0,0 +1,103 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from pathlib import Path + +import mmcv +import torch +from mmcv.runner import load_checkpoint + +from .. import build_detector +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class KnowledgeDistillationSingleStageDetector(SingleStageDetector): + r"""Implementation of `Distilling the Knowledge in a Neural Network. + `_. + + Args: + teacher_config (str | dict): Config file path + or the config object of teacher model. + teacher_ckpt (str, optional): Checkpoint path of teacher model. + If left as None, the model will not load any weights. + """ + + def __init__(self, + backbone, + neck, + bbox_head, + teacher_config, + teacher_ckpt=None, + eval_teacher=True, + train_cfg=None, + test_cfg=None, + pretrained=None): + super().__init__(backbone, neck, bbox_head, train_cfg, test_cfg, + pretrained) + self.eval_teacher = eval_teacher + # Build teacher model + if isinstance(teacher_config, (str, Path)): + teacher_config = mmcv.Config.fromfile(teacher_config) + self.teacher_model = build_detector(teacher_config['model']) + if teacher_ckpt is not None: + load_checkpoint( + self.teacher_model, teacher_ckpt, map_location='cpu') + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + x = self.extract_feat(img) + with torch.no_grad(): + teacher_x = self.teacher_model.extract_feat(img) + out_teacher = self.teacher_model.bbox_head(teacher_x) + losses = self.bbox_head.forward_train(x, out_teacher, img_metas, + gt_bboxes, gt_labels, + gt_bboxes_ignore) + return losses + + def cuda(self, device=None): + """Since teacher_model is registered as a plain object, it is necessary + to put the teacher model to cuda when calling cuda function.""" + self.teacher_model.cuda(device=device) + return super().cuda(device=device) + + def train(self, mode=True): + """Set the same train mode for teacher and student model.""" + if self.eval_teacher: + self.teacher_model.train(False) + else: + self.teacher_model.train(mode) + super().train(mode) + + def __setattr__(self, name, value): + """Set attribute, i.e. self.name = value + + This reloading prevent the teacher model from being registered as a + nn.Module. The teacher module is registered as a plain object, so that + the teacher parameters will not show up when calling + ``self.parameters``, ``self.modules``, ``self.children`` methods. + """ + if name == 'teacher_model': + object.__setattr__(self, name, value) + else: + super().__setattr__(name, value) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/lad.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/lad.py new file mode 100644 index 000000000..c6cc1e0b2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/lad.py @@ -0,0 +1,92 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.runner import load_checkpoint + +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .kd_one_stage import KnowledgeDistillationSingleStageDetector + + +@DETECTORS.register_module() +class LAD(KnowledgeDistillationSingleStageDetector): + """Implementation of `LAD `_.""" + + def __init__(self, + backbone, + neck, + bbox_head, + teacher_backbone, + teacher_neck, + teacher_bbox_head, + teacher_ckpt, + eval_teacher=True, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(KnowledgeDistillationSingleStageDetector, + self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, + pretrained) + self.eval_teacher = eval_teacher + self.teacher_model = nn.Module() + self.teacher_model.backbone = build_backbone(teacher_backbone) + if teacher_neck is not None: + self.teacher_model.neck = build_neck(teacher_neck) + teacher_bbox_head.update(train_cfg=train_cfg) + teacher_bbox_head.update(test_cfg=test_cfg) + self.teacher_model.bbox_head = build_head(teacher_bbox_head) + if teacher_ckpt is not None: + load_checkpoint( + self.teacher_model, teacher_ckpt, map_location='cpu') + + @property + def with_teacher_neck(self): + """bool: whether the detector has a teacher_neck""" + return hasattr(self.teacher_model, 'neck') and \ + self.teacher_model.neck is not None + + def extract_teacher_feat(self, img): + """Directly extract teacher features from the backbone+neck.""" + x = self.teacher_model.backbone(img) + if self.with_teacher_neck: + x = self.teacher_model.neck(x) + return x + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + # get label assignment from the teacher + with torch.no_grad(): + x_teacher = self.extract_teacher_feat(img) + outs_teacher = self.teacher_model.bbox_head(x_teacher) + label_assignment_results = \ + self.teacher_model.bbox_head.get_label_assignment( + *outs_teacher, gt_bboxes, gt_labels, img_metas, + gt_bboxes_ignore) + + # the student use the label assignment from the teacher to learn + x = self.extract_feat(img) + losses = self.bbox_head.forward_train(x, label_assignment_results, + img_metas, gt_bboxes, gt_labels, + gt_bboxes_ignore) + return losses diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask2former.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask2former.py new file mode 100644 index 000000000..b9ad2ed25 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask2former.py @@ -0,0 +1,27 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .maskformer import MaskFormer + + +@DETECTORS.register_module() +class Mask2Former(MaskFormer): + r"""Implementation of `Masked-attention Mask + Transformer for Universal Image Segmentation + `_.""" + + def __init__(self, + backbone, + neck=None, + panoptic_head=None, + panoptic_fusion_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None): + super().__init__( + backbone, + neck=neck, + panoptic_head=panoptic_head, + panoptic_fusion_head=panoptic_fusion_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_rcnn.py new file mode 100644 index 000000000..c68489f9c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_rcnn.py @@ -0,0 +1,27 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class MaskRCNN(TwoStageDetector): + """Implementation of `Mask R-CNN `_""" + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(MaskRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_scoring_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_scoring_rcnn.py new file mode 100644 index 000000000..5f55656f3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/mask_scoring_rcnn.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class MaskScoringRCNN(TwoStageDetector): + """Mask Scoring RCNN. + + https://arxiv.org/abs/1903.00241 + """ + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(MaskScoringRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/maskformer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/maskformer.py new file mode 100644 index 000000000..b626e0708 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/maskformer.py @@ -0,0 +1,233 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np + +from mmdet.core import INSTANCE_OFFSET, bbox2result +from mmdet.core.visualization import imshow_det_bboxes +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class MaskFormer(SingleStageDetector): + r"""Implementation of `Per-Pixel Classification is + NOT All You Need for Semantic Segmentation + `_.""" + + def __init__(self, + backbone, + neck=None, + panoptic_head=None, + panoptic_fusion_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None): + super(SingleStageDetector, self).__init__(init_cfg=init_cfg) + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + + panoptic_head_ = panoptic_head.deepcopy() + panoptic_head_.update(train_cfg=train_cfg) + panoptic_head_.update(test_cfg=test_cfg) + self.panoptic_head = build_head(panoptic_head_) + + panoptic_fusion_head_ = panoptic_fusion_head.deepcopy() + panoptic_fusion_head_.update(test_cfg=test_cfg) + self.panoptic_fusion_head = build_head(panoptic_fusion_head_) + + self.num_things_classes = self.panoptic_head.num_things_classes + self.num_stuff_classes = self.panoptic_head.num_stuff_classes + self.num_classes = self.panoptic_head.num_classes + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def forward_dummy(self, img, img_metas): + """Used for computing network flops. See + `mmdetection/tools/analysis_tools/get_flops.py` + + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[Dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + """ + super(SingleStageDetector, self).forward_train(img, img_metas) + x = self.extract_feat(img) + outs = self.panoptic_head(x, img_metas) + return outs + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_masks, + gt_semantic_seg, + gt_bboxes_ignore=None, + **kargs): + """ + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[Dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box. + gt_masks (list[BitmapMasks]): true segmentation masks for each box + used if the architecture supports a segmentation task. + gt_semantic_seg (list[tensor]): semantic segmentation mask for + images. + gt_bboxes_ignore (list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + Defaults to None. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # add batch_input_shape in img_metas + super(SingleStageDetector, self).forward_train(img, img_metas) + x = self.extract_feat(img) + losses = self.panoptic_head.forward_train(x, img_metas, gt_bboxes, + gt_labels, gt_masks, + gt_semantic_seg, + gt_bboxes_ignore) + + return losses + + def simple_test(self, imgs, img_metas, **kwargs): + """Test without augmentation. + + Args: + imgs (Tensor): A batch of images. + img_metas (list[dict]): List of image information. + + Returns: + list[dict[str, np.array | tuple]]: Semantic segmentation \ + results and panoptic segmentation results for each \ + image. + + .. code-block:: none + + [ + { + 'pan_results': np.array, # shape = [h, w] + 'ins_results': tuple[list], + # semantic segmentation results are not supported yet + 'sem_results': np.array + }, + ... + ] + """ + feats = self.extract_feat(imgs) + mask_cls_results, mask_pred_results = self.panoptic_head.simple_test( + feats, img_metas, **kwargs) + results = self.panoptic_fusion_head.simple_test( + mask_cls_results, mask_pred_results, img_metas, **kwargs) + for i in range(len(results)): + if 'pan_results' in results[i]: + results[i]['pan_results'] = results[i]['pan_results'].detach( + ).cpu().numpy() + + if 'ins_results' in results[i]: + labels_per_image, bboxes, mask_pred_binary = results[i][ + 'ins_results'] + bbox_results = bbox2result(bboxes, labels_per_image, + self.num_things_classes) + mask_results = [[] for _ in range(self.num_things_classes)] + for j, label in enumerate(labels_per_image): + mask = mask_pred_binary[j].detach().cpu().numpy() + mask_results[label].append(mask) + results[i]['ins_results'] = bbox_results, mask_results + + assert 'sem_results' not in results[i], 'segmantic segmentation '\ + 'results are not supported yet.' + + return results + + def aug_test(self, imgs, img_metas, **kwargs): + raise NotImplementedError + + def onnx_export(self, img, img_metas): + raise NotImplementedError + + def show_result(self, + img, + result, + score_thr=0.3, + bbox_color=(72, 101, 241), + text_color=(72, 101, 241), + mask_color=None, + thickness=2, + font_size=13, + win_name='', + show=False, + wait_time=0, + out_file=None): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (dict): The results. + + score_thr (float, optional): Minimum score of bboxes to be shown. + Default: 0.3. + bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. + The tuple of color should be in BGR order. Default: 'green'. + text_color (str or tuple(int) or :obj:`Color`):Color of texts. + The tuple of color should be in BGR order. Default: 'green'. + mask_color (None or str or tuple(int) or :obj:`Color`): + Color of masks. The tuple of color should be in BGR order. + Default: None. + thickness (int): Thickness of lines. Default: 2. + font_size (int): Font size of texts. Default: 13. + win_name (str): The window name. Default: ''. + wait_time (float): Value of waitKey param. + Default: 0. + show (bool): Whether to show the image. + Default: False. + out_file (str or None): The filename to write the image. + Default: None. + + Returns: + img (Tensor): Only if not `show` or `out_file`. + """ + img = mmcv.imread(img) + img = img.copy() + pan_results = result['pan_results'] + # keep objects ahead + ids = np.unique(pan_results)[::-1] + legal_indices = ids != self.num_classes # for VOID label + ids = ids[legal_indices] + labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64) + segms = (pan_results[None] == ids[:, None, None]) + + # if out_file specified, do not show image in window + if out_file is not None: + show = False + # draw bounding boxes + img = imshow_det_bboxes( + img, + segms=segms, + labels=labels, + class_names=self.CLASSES, + bbox_color=bbox_color, + text_color=text_color, + mask_color=mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=show, + wait_time=wait_time, + out_file=out_file) + + if not (show or out_file): + return img diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/nasfcos.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/nasfcos.py new file mode 100644 index 000000000..a34c2280f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/nasfcos.py @@ -0,0 +1,22 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class NASFCOS(SingleStageDetector): + """NAS-FCOS: Fast Neural Architecture Search for Object Detection. + + https://arxiv.org/abs/1906.0442 + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/paa.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/paa.py new file mode 100644 index 000000000..f5cb8372a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/paa.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class PAA(SingleStageDetector): + """Implementation of `PAA `_.""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(PAA, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_fpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_fpn.py new file mode 100644 index 000000000..f8ac751fa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_fpn.py @@ -0,0 +1,34 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor + + +@DETECTORS.register_module() +class PanopticFPN(TwoStagePanopticSegmentor): + r"""Implementation of `Panoptic feature pyramid + networks `_""" + + def __init__( + self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None, + # for panoptic segmentation + semantic_head=None, + panoptic_fusion_head=None): + super(PanopticFPN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg, + semantic_head=semantic_head, + panoptic_fusion_head=panoptic_fusion_head) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_two_stage_segmentor.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_two_stage_segmentor.py new file mode 100644 index 000000000..5ad49bac7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/panoptic_two_stage_segmentor.py @@ -0,0 +1,279 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import torch + +from mmdet.core import INSTANCE_OFFSET, bbox2roi, multiclass_nms +from mmdet.core.visualization import imshow_det_bboxes +from ..builder import DETECTORS, build_head +from ..roi_heads.mask_heads.fcn_mask_head import _do_paste_mask +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class TwoStagePanopticSegmentor(TwoStageDetector): + """Base class of Two-stage Panoptic Segmentor. + + As well as the components in TwoStageDetector, Panoptic Segmentor has extra + semantic_head and panoptic_fusion_head. + """ + + def __init__( + self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None, + # for panoptic segmentation + semantic_head=None, + panoptic_fusion_head=None): + super(TwoStagePanopticSegmentor, + self).__init__(backbone, neck, rpn_head, roi_head, train_cfg, + test_cfg, pretrained, init_cfg) + if semantic_head is not None: + self.semantic_head = build_head(semantic_head) + if panoptic_fusion_head is not None: + panoptic_cfg = test_cfg.panoptic if test_cfg is not None else None + panoptic_fusion_head_ = panoptic_fusion_head.deepcopy() + panoptic_fusion_head_.update(test_cfg=panoptic_cfg) + self.panoptic_fusion_head = build_head(panoptic_fusion_head_) + + self.num_things_classes = self.panoptic_fusion_head.\ + num_things_classes + self.num_stuff_classes = self.panoptic_fusion_head.\ + num_stuff_classes + self.num_classes = self.panoptic_fusion_head.num_classes + + @property + def with_semantic_head(self): + return hasattr(self, + 'semantic_head') and self.semantic_head is not None + + @property + def with_panoptic_fusion_head(self): + return hasattr(self, 'panoptic_fusion_heads') and \ + self.panoptic_fusion_head is not None + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/get_flops.py` + """ + raise NotImplementedError( + f'`forward_dummy` is not implemented in {self.__class__.__name__}') + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + gt_semantic_seg=None, + proposals=None, + **kwargs): + x = self.extract_feat(img) + losses = dict() + + # RPN forward and loss + if self.with_rpn: + proposal_cfg = self.train_cfg.get('rpn_proposal', + self.test_cfg.rpn) + rpn_losses, proposal_list = self.rpn_head.forward_train( + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=gt_bboxes_ignore, + proposal_cfg=proposal_cfg) + losses.update(rpn_losses) + else: + proposal_list = proposals + + roi_losses = self.roi_head.forward_train(x, img_metas, proposal_list, + gt_bboxes, gt_labels, + gt_bboxes_ignore, gt_masks, + **kwargs) + losses.update(roi_losses) + + semantic_loss = self.semantic_head.forward_train(x, gt_semantic_seg) + losses.update(semantic_loss) + + return losses + + def simple_test_mask(self, + x, + img_metas, + det_bboxes, + det_labels, + rescale=False): + """Simple test for mask head without augmentation.""" + img_shapes = tuple(meta['ori_shape'] + for meta in img_metas) if rescale else tuple( + meta['pad_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + masks = [] + for img_shape in img_shapes: + out_shape = (0, self.roi_head.bbox_head.num_classes) \ + + img_shape[:2] + masks.append(det_bboxes[0].new_zeros(out_shape)) + mask_pred = det_bboxes[0].new_zeros((0, 80, 28, 28)) + mask_results = dict( + masks=masks, mask_pred=mask_pred, mask_feats=None) + return mask_results + + _bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))] + if rescale: + if not isinstance(scale_factors[0], float): + scale_factors = [ + det_bboxes[0].new_tensor(scale_factor) + for scale_factor in scale_factors + ] + _bboxes = [ + _bboxes[i] * scale_factors[i] for i in range(len(_bboxes)) + ] + + mask_rois = bbox2roi(_bboxes) + mask_results = self.roi_head._mask_forward(x, mask_rois) + mask_pred = mask_results['mask_pred'] + # split batch mask prediction back to each image + num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] + mask_preds = mask_pred.split(num_mask_roi_per_img, 0) + + # resize the mask_preds to (K, H, W) + masks = [] + for i in range(len(_bboxes)): + det_bbox = det_bboxes[i][:, :4] + det_label = det_labels[i] + + mask_pred = mask_preds[i].sigmoid() + + box_inds = torch.arange(mask_pred.shape[0]) + mask_pred = mask_pred[box_inds, det_label][:, None] + + img_h, img_w, _ = img_shapes[i] + mask_pred, _ = _do_paste_mask( + mask_pred, det_bbox, img_h, img_w, skip_empty=False) + masks.append(mask_pred) + + mask_results['masks'] = masks + + return mask_results + + def simple_test(self, img, img_metas, proposals=None, rescale=False): + """Test without Augmentation.""" + x = self.extract_feat(img) + + if proposals is None: + proposal_list = self.rpn_head.simple_test_rpn(x, img_metas) + else: + proposal_list = proposals + + bboxes, scores = self.roi_head.simple_test_bboxes( + x, img_metas, proposal_list, None, rescale=rescale) + + pan_cfg = self.test_cfg.panoptic + # class-wise predictions + det_bboxes = [] + det_labels = [] + for bboxe, score in zip(bboxes, scores): + det_bbox, det_label = multiclass_nms(bboxe, score, + pan_cfg.score_thr, + pan_cfg.nms, + pan_cfg.max_per_img) + det_bboxes.append(det_bbox) + det_labels.append(det_label) + + mask_results = self.simple_test_mask( + x, img_metas, det_bboxes, det_labels, rescale=rescale) + masks = mask_results['masks'] + + seg_preds = self.semantic_head.simple_test(x, img_metas, rescale) + + results = [] + for i in range(len(det_bboxes)): + pan_results = self.panoptic_fusion_head.simple_test( + det_bboxes[i], det_labels[i], masks[i], seg_preds[i]) + pan_results = pan_results.int().detach().cpu().numpy() + result = dict(pan_results=pan_results) + results.append(result) + return results + + def show_result(self, + img, + result, + score_thr=0.3, + bbox_color=(72, 101, 241), + text_color=(72, 101, 241), + mask_color=None, + thickness=2, + font_size=13, + win_name='', + show=False, + wait_time=0, + out_file=None): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (dict): The results. + + score_thr (float, optional): Minimum score of bboxes to be shown. + Default: 0.3. + bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. + The tuple of color should be in BGR order. Default: 'green'. + text_color (str or tuple(int) or :obj:`Color`):Color of texts. + The tuple of color should be in BGR order. Default: 'green'. + mask_color (None or str or tuple(int) or :obj:`Color`): + Color of masks. The tuple of color should be in BGR order. + Default: None. + thickness (int): Thickness of lines. Default: 2. + font_size (int): Font size of texts. Default: 13. + win_name (str): The window name. Default: ''. + wait_time (float): Value of waitKey param. + Default: 0. + show (bool): Whether to show the image. + Default: False. + out_file (str or None): The filename to write the image. + Default: None. + + Returns: + img (Tensor): Only if not `show` or `out_file`. + """ + img = mmcv.imread(img) + img = img.copy() + pan_results = result['pan_results'] + # keep objects ahead + ids = np.unique(pan_results)[::-1] + legal_indices = ids != self.num_classes # for VOID label + ids = ids[legal_indices] + labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64) + segms = (pan_results[None] == ids[:, None, None]) + + # if out_file specified, do not show image in window + if out_file is not None: + show = False + # draw bounding boxes + img = imshow_det_bboxes( + img, + segms=segms, + labels=labels, + class_names=self.CLASSES, + bbox_color=bbox_color, + text_color=text_color, + mask_color=mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=show, + wait_time=wait_time, + out_file=out_file) + + if not (show or out_file): + return img diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/point_rend.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/point_rend.py new file mode 100644 index 000000000..90eb4d40e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/point_rend.py @@ -0,0 +1,32 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class PointRend(TwoStageDetector): + """PointRend: Image Segmentation as Rendering + + This detector is the implementation of + `PointRend `_. + + """ + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(PointRend, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/queryinst.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/queryinst.py new file mode 100644 index 000000000..5fc216c47 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/queryinst.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .sparse_rcnn import SparseRCNN + + +@DETECTORS.register_module() +class QueryInst(SparseRCNN): + r"""Implementation of + `Instances as Queries `_""" + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + super(QueryInst, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/reppoints_detector.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/reppoints_detector.py new file mode 100644 index 000000000..f1986cdcc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/reppoints_detector.py @@ -0,0 +1,24 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class RepPointsDetector(SingleStageDetector): + """RepPoints: Point Set Representation for Object Detection. + + This detector is the implementation of: + - RepPoints detector (https://arxiv.org/pdf/1904.11490) + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(RepPointsDetector, + self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, + pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/retinanet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/retinanet.py new file mode 100644 index 000000000..c28545abb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/retinanet.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class RetinaNet(SingleStageDetector): + """Implementation of `RetinaNet `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/rpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/rpn.py new file mode 100644 index 000000000..6ec326b75 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/rpn.py @@ -0,0 +1,159 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv +import torch +from mmcv.image import tensor2imgs + +from mmdet.core import bbox_mapping +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import BaseDetector + + +@DETECTORS.register_module() +class RPN(BaseDetector): + """Implementation of Region Proposal Network.""" + + def __init__(self, + backbone, + neck, + rpn_head, + train_cfg, + test_cfg, + pretrained=None, + init_cfg=None): + super(RPN, self).__init__(init_cfg) + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + self.backbone = build_backbone(backbone) + self.neck = build_neck(neck) if neck is not None else None + rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None + rpn_head.update(train_cfg=rpn_train_cfg) + rpn_head.update(test_cfg=test_cfg.rpn) + self.rpn_head = build_head(rpn_head) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def extract_feat(self, img): + """Extract features. + + Args: + img (torch.Tensor): Image tensor with shape (n, c, h ,w). + + Returns: + list[torch.Tensor]: Multi-level features that may have + different resolutions. + """ + x = self.backbone(img) + if self.with_neck: + x = self.neck(x) + return x + + def forward_dummy(self, img): + """Dummy forward function.""" + x = self.extract_feat(img) + rpn_outs = self.rpn_head(x) + return rpn_outs + + def forward_train(self, + img, + img_metas, + gt_bboxes=None, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + if (isinstance(self.train_cfg.rpn, dict) + and self.train_cfg.rpn.get('debug', False)): + self.rpn_head.debug_imgs = tensor2imgs(img) + + x = self.extract_feat(img) + losses = self.rpn_head.forward_train(x, img_metas, gt_bboxes, None, + gt_bboxes_ignore) + return losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test time augmentation. + + Args: + imgs (list[torch.Tensor]): List of multiple images + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[np.ndarray]: proposals + """ + x = self.extract_feat(img) + # get origin input shape to onnx dynamic input shape + if torch.onnx.is_in_onnx_export(): + img_shape = torch._shape_as_tensor(img)[2:] + img_metas[0]['img_shape_for_onnx'] = img_shape + proposal_list = self.rpn_head.simple_test_rpn(x, img_metas) + if rescale: + for proposals, meta in zip(proposal_list, img_metas): + proposals[:, :4] /= proposals.new_tensor(meta['scale_factor']) + if torch.onnx.is_in_onnx_export(): + return proposal_list + + return [proposal.cpu().numpy() for proposal in proposal_list] + + def aug_test(self, imgs, img_metas, rescale=False): + """Test function with test time augmentation. + + Args: + imgs (list[torch.Tensor]): List of multiple images + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[np.ndarray]: proposals + """ + proposal_list = self.rpn_head.aug_test_rpn( + self.extract_feats(imgs), img_metas) + if not rescale: + for proposals, img_meta in zip(proposal_list, img_metas[0]): + img_shape = img_meta['img_shape'] + scale_factor = img_meta['scale_factor'] + flip = img_meta['flip'] + flip_direction = img_meta['flip_direction'] + proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, + scale_factor, flip, + flip_direction) + return [proposal.cpu().numpy() for proposal in proposal_list] + + def show_result(self, data, result, top_k=20, **kwargs): + """Show RPN proposals on the image. + + Args: + data (str or np.ndarray): Image filename or loaded image. + result (Tensor or tuple): The results to draw over `img` + bbox_result or (bbox_result, segm_result). + top_k (int): Plot the first k bboxes only + if set positive. Default: 20 + + Returns: + np.ndarray: The image with bboxes drawn on it. + """ + if kwargs is not None: + kwargs.pop('score_thr', None) + kwargs.pop('text_color', None) + kwargs['colors'] = kwargs.pop('bbox_color', 'green') + mmcv.imshow_bboxes(data, result, top_k=top_k, **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/scnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/scnet.py new file mode 100644 index 000000000..a361d81c3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/scnet.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .cascade_rcnn import CascadeRCNN + + +@DETECTORS.register_module() +class SCNet(CascadeRCNN): + """Implementation of `SCNet `_""" + + def __init__(self, **kwargs): + super(SCNet, self).__init__(**kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage.py new file mode 100644 index 000000000..c375c72d6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage.py @@ -0,0 +1,171 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch + +from mmdet.core import bbox2result +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import BaseDetector + + +@DETECTORS.register_module() +class SingleStageDetector(BaseDetector): + """Base class for single-stage detectors. + + Single-stage detectors directly and densely predict bounding boxes on the + output features of the backbone+neck. + """ + + def __init__(self, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(SingleStageDetector, self).__init__(init_cfg) + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + bbox_head.update(train_cfg=train_cfg) + bbox_head.update(test_cfg=test_cfg) + self.bbox_head = build_head(bbox_head) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def extract_feat(self, img): + """Directly extract features from the backbone+neck.""" + x = self.backbone(img) + if self.with_neck: + x = self.neck(x) + return x + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + x = self.extract_feat(img) + outs = self.bbox_head(x) + return outs + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + super(SingleStageDetector, self).forward_train(img, img_metas) + x = self.extract_feat(img) + losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes, + gt_labels, gt_bboxes_ignore) + return losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test-time augmentation. + + Args: + img (torch.Tensor): Images with shape (N, C, H, W). + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + feat = self.extract_feat(img) + results_list = self.bbox_head.simple_test( + feat, img_metas, rescale=rescale) + bbox_results = [ + bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) + for det_bboxes, det_labels in results_list + ] + return bbox_results + + def aug_test(self, imgs, img_metas, rescale=False): + """Test function with test time augmentation. + + Args: + imgs (list[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains all images in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. each dict has image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + assert hasattr(self.bbox_head, 'aug_test'), \ + f'{self.bbox_head.__class__.__name__}' \ + ' does not support test-time augmentation' + + feats = self.extract_feats(imgs) + results_list = self.bbox_head.aug_test( + feats, img_metas, rescale=rescale) + bbox_results = [ + bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) + for det_bboxes, det_labels in results_list + ] + return bbox_results + + def onnx_export(self, img, img_metas, with_nms=True): + """Test function without test time augmentation. + + Args: + img (torch.Tensor): input images. + img_metas (list[dict]): List of image information. + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + x = self.extract_feat(img) + outs = self.bbox_head(x) + # get origin input shape to support onnx dynamic shape + + # get shape as tensor + img_shape = torch._shape_as_tensor(img)[2:] + img_metas[0]['img_shape_for_onnx'] = img_shape + # get pad input shape to support onnx dynamic shape for exporting + # `CornerNet` and `CentripetalNet`, which 'pad_shape' is used + # for inference + img_metas[0]['pad_shape_for_onnx'] = img_shape + + if len(outs) == 2: + # add dummy score_factor + outs = (*outs, None) + # TODO Can we change to `get_bboxes` when `onnx_export` fail + det_bboxes, det_labels = self.bbox_head.onnx_export( + *outs, img_metas, with_nms=with_nms) + + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage_instance_seg.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage_instance_seg.py new file mode 100644 index 000000000..239b66997 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/single_stage_instance_seg.py @@ -0,0 +1,363 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +import mmcv +import numpy as np +import torch + +from mmdet.core.visualization.image import imshow_det_bboxes +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import BaseDetector + +INF = 1e8 + + +@DETECTORS.register_module() +class SingleStageInstanceSegmentor(BaseDetector): + """Base class for single-stage instance segmentors.""" + + def __init__(self, + backbone, + neck=None, + bbox_head=None, + mask_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + super(SingleStageInstanceSegmentor, self).__init__(init_cfg=init_cfg) + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + else: + self.neck = None + if bbox_head is not None: + bbox_head.update(train_cfg=copy.deepcopy(train_cfg)) + bbox_head.update(test_cfg=copy.deepcopy(test_cfg)) + self.bbox_head = build_head(bbox_head) + else: + self.bbox_head = None + + assert mask_head, f'`mask_head` must ' \ + f'be implemented in {self.__class__.__name__}' + mask_head.update(train_cfg=copy.deepcopy(train_cfg)) + mask_head.update(test_cfg=copy.deepcopy(test_cfg)) + self.mask_head = build_head(mask_head) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def extract_feat(self, img): + """Directly extract features from the backbone and neck.""" + x = self.backbone(img) + if self.with_neck: + x = self.neck(x) + return x + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + raise NotImplementedError( + f'`forward_dummy` is not implemented in {self.__class__.__name__}') + + def forward_train(self, + img, + img_metas, + gt_masks, + gt_labels, + gt_bboxes=None, + gt_bboxes_ignore=None, + **kwargs): + """ + Args: + img (Tensor): Input images of shape (B, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_masks (list[:obj:`BitmapMasks`] | None) : The segmentation + masks for each box. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes (list[Tensor]): Each item is the truth boxes + of each image in [tl_x, tl_y, br_x, br_y] format. + Default: None. + gt_bboxes_ignore (list[Tensor] | None): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + + gt_masks = [ + gt_mask.to_tensor(dtype=torch.bool, device=img.device) + for gt_mask in gt_masks + ] + x = self.extract_feat(img) + losses = dict() + + # CondInst and YOLACT have bbox_head + if self.bbox_head: + # bbox_head_preds is a tuple + bbox_head_preds = self.bbox_head(x) + # positive_infos is a list of obj:`InstanceData` + # It contains the information about the positive samples + # CondInst, YOLACT + det_losses, positive_infos = self.bbox_head.loss( + *bbox_head_preds, + gt_bboxes=gt_bboxes, + gt_labels=gt_labels, + gt_masks=gt_masks, + img_metas=img_metas, + gt_bboxes_ignore=gt_bboxes_ignore, + **kwargs) + losses.update(det_losses) + else: + positive_infos = None + + mask_loss = self.mask_head.forward_train( + x, + gt_labels, + gt_masks, + img_metas, + positive_infos=positive_infos, + gt_bboxes=gt_bboxes, + gt_bboxes_ignore=gt_bboxes_ignore, + **kwargs) + # avoid loss override + assert not set(mask_loss.keys()) & set(losses.keys()) + + losses.update(mask_loss) + return losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test-time augmentation. + + Args: + img (torch.Tensor): Images with shape (B, C, H, W). + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list(tuple): Formatted bbox and mask results of multiple \ + images. The outer list corresponds to each image. \ + Each tuple contains two type of results of single image: + + - bbox_results (list[np.ndarray]): BBox results of + single image. The list corresponds to each class. + each ndarray has a shape (N, 5), N is the number of + bboxes with this category, and last dimension + 5 arrange as (x1, y1, x2, y2, scores). + - mask_results (list[np.ndarray]): Mask results of + single image. The list corresponds to each class. + each ndarray has a shape (N, img_h, img_w), N + is the number of masks with this category. + """ + feat = self.extract_feat(img) + if self.bbox_head: + outs = self.bbox_head(feat) + # results_list is list[obj:`InstanceData`] + results_list = self.bbox_head.get_results( + *outs, img_metas=img_metas, cfg=self.test_cfg, rescale=rescale) + else: + results_list = None + + results_list = self.mask_head.simple_test( + feat, img_metas, rescale=rescale, instances_list=results_list) + + format_results_list = [] + for results in results_list: + format_results_list.append(self.format_results(results)) + + return format_results_list + + def format_results(self, results): + """Format the model predictions according to the interface with + dataset. + + Args: + results (:obj:`InstanceData`): Processed + results of single images. Usually contains + following keys. + + - scores (Tensor): Classification scores, has shape + (num_instance,) + - labels (Tensor): Has shape (num_instances,). + - masks (Tensor): Processed mask results, has + shape (num_instances, h, w). + + Returns: + tuple: Formatted bbox and mask results.. It contains two items: + + - bbox_results (list[np.ndarray]): BBox results of + single image. The list corresponds to each class. + each ndarray has a shape (N, 5), N is the number of + bboxes with this category, and last dimension + 5 arrange as (x1, y1, x2, y2, scores). + - mask_results (list[np.ndarray]): Mask results of + single image. The list corresponds to each class. + each ndarray has shape (N, img_h, img_w), N + is the number of masks with this category. + """ + data_keys = results.keys() + assert 'scores' in data_keys + assert 'labels' in data_keys + + assert 'masks' in data_keys, \ + 'results should contain ' \ + 'masks when format the results ' + mask_results = [[] for _ in range(self.mask_head.num_classes)] + + num_masks = len(results) + + if num_masks == 0: + bbox_results = [ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.mask_head.num_classes) + ] + return bbox_results, mask_results + + labels = results.labels.detach().cpu().numpy() + + if 'bboxes' not in results: + # create dummy bbox results to store the scores + results.bboxes = results.scores.new_zeros(len(results), 4) + + det_bboxes = torch.cat([results.bboxes, results.scores[:, None]], + dim=-1) + det_bboxes = det_bboxes.detach().cpu().numpy() + bbox_results = [ + det_bboxes[labels == i, :] + for i in range(self.mask_head.num_classes) + ] + + masks = results.masks.detach().cpu().numpy() + + for idx in range(num_masks): + mask = masks[idx] + mask_results[labels[idx]].append(mask) + + return bbox_results, mask_results + + def aug_test(self, imgs, img_metas, rescale=False): + raise NotImplementedError + + def show_result(self, + img, + result, + score_thr=0.3, + bbox_color=(72, 101, 241), + text_color=(72, 101, 241), + mask_color=None, + thickness=2, + font_size=13, + win_name='', + show=False, + wait_time=0, + out_file=None): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (tuple): Format bbox and mask results. + It contains two items: + + - bbox_results (list[np.ndarray]): BBox results of + single image. The list corresponds to each class. + each ndarray has a shape (N, 5), N is the number of + bboxes with this category, and last dimension + 5 arrange as (x1, y1, x2, y2, scores). + - mask_results (list[np.ndarray]): Mask results of + single image. The list corresponds to each class. + each ndarray has shape (N, img_h, img_w), N + is the number of masks with this category. + + score_thr (float, optional): Minimum score of bboxes to be shown. + Default: 0.3. + bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. + The tuple of color should be in BGR order. Default: 'green' + text_color (str or tuple(int) or :obj:`Color`):Color of texts. + The tuple of color should be in BGR order. Default: 'green' + mask_color (None or str or tuple(int) or :obj:`Color`): + Color of masks. The tuple of color should be in BGR order. + Default: None + thickness (int): Thickness of lines. Default: 2 + font_size (int): Font size of texts. Default: 13 + win_name (str): The window name. Default: '' + wait_time (float): Value of waitKey param. + Default: 0. + show (bool): Whether to show the image. + Default: False. + out_file (str or None): The filename to write the image. + Default: None. + + Returns: + img (Tensor): Only if not `show` or `out_file` + """ + + assert isinstance(result, tuple) + bbox_result, mask_result = result + bboxes = np.vstack(bbox_result) + img = mmcv.imread(img) + img = img.copy() + labels = [ + np.full(bbox.shape[0], i, dtype=np.int32) + for i, bbox in enumerate(bbox_result) + ] + labels = np.concatenate(labels) + if len(labels) == 0: + bboxes = np.zeros([0, 5]) + masks = np.zeros([0, 0, 0]) + # draw segmentation masks + else: + masks = mmcv.concat_list(mask_result) + + if isinstance(masks[0], torch.Tensor): + masks = torch.stack(masks, dim=0).detach().cpu().numpy() + else: + masks = np.stack(masks, axis=0) + # dummy bboxes + if bboxes[:, :4].sum() == 0: + num_masks = len(bboxes) + x_any = masks.any(axis=1) + y_any = masks.any(axis=2) + for idx in range(num_masks): + x = np.where(x_any[idx, :])[0] + y = np.where(y_any[idx, :])[0] + if len(x) > 0 and len(y) > 0: + bboxes[idx, :4] = np.array( + [x[0], y[0], x[-1] + 1, y[-1] + 1], + dtype=np.float32) + # if out_file specified, do not show image in window + if out_file is not None: + show = False + # draw bounding boxes + img = imshow_det_bboxes( + img, + bboxes, + labels, + masks, + class_names=self.CLASSES, + score_thr=score_thr, + bbox_color=bbox_color, + text_color=text_color, + mask_color=mask_color, + thickness=thickness, + font_size=font_size, + win_name=win_name, + show=show, + wait_time=wait_time, + out_file=out_file) + + if not (show or out_file): + return img diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/solo.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/solo.py new file mode 100644 index 000000000..df6f6de01 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/solo.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage_instance_seg import SingleStageInstanceSegmentor + + +@DETECTORS.register_module() +class SOLO(SingleStageInstanceSegmentor): + """`SOLO: Segmenting Objects by Locations + `_ + + """ + + def __init__(self, + backbone, + neck=None, + bbox_head=None, + mask_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super().__init__( + backbone=backbone, + neck=neck, + bbox_head=bbox_head, + mask_head=mask_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg, + pretrained=pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/sparse_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/sparse_rcnn.py new file mode 100644 index 000000000..e90c2a5ab --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/sparse_rcnn.py @@ -0,0 +1,111 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .two_stage import TwoStageDetector + + +@DETECTORS.register_module() +class SparseRCNN(TwoStageDetector): + r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with + Learnable Proposals `_""" + + def __init__(self, *args, **kwargs): + super(SparseRCNN, self).__init__(*args, **kwargs) + assert self.with_rpn, 'Sparse R-CNN and QueryInst ' \ + 'do not support external proposals' + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + proposals=None, + **kwargs): + """Forward function of SparseR-CNN and QueryInst in train stage. + + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor): specify which bounding + boxes can be ignored when computing the loss. + gt_masks (List[Tensor], optional) : Segmentation masks for + each box. This is required to train QueryInst. + proposals (List[Tensor], optional): override rpn proposals with + custom proposals. Use when `with_rpn` is False. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + + assert proposals is None, 'Sparse R-CNN and QueryInst ' \ + 'do not support external proposals' + + x = self.extract_feat(img) + proposal_boxes, proposal_features, imgs_whwh = \ + self.rpn_head.forward_train(x, img_metas) + roi_losses = self.roi_head.forward_train( + x, + proposal_boxes, + proposal_features, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=gt_bboxes_ignore, + gt_masks=gt_masks, + imgs_whwh=imgs_whwh) + return roi_losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test time augmentation. + + Args: + imgs (list[torch.Tensor]): List of multiple images + img_metas (list[dict]): List of image information. + rescale (bool): Whether to rescale the results. + Defaults to False. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + x = self.extract_feat(img) + proposal_boxes, proposal_features, imgs_whwh = \ + self.rpn_head.simple_test_rpn(x, img_metas) + results = self.roi_head.simple_test( + x, + proposal_boxes, + proposal_features, + img_metas, + imgs_whwh=imgs_whwh, + rescale=rescale) + return results + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + # backbone + x = self.extract_feat(img) + # rpn + num_imgs = len(img) + dummy_img_metas = [ + dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs) + ] + proposal_boxes, proposal_features, imgs_whwh = \ + self.rpn_head.simple_test_rpn(x, dummy_img_metas) + # roi_head + roi_outs = self.roi_head.forward_dummy(x, proposal_boxes, + proposal_features, + dummy_img_metas) + return roi_outs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/tood.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/tood.py new file mode 100644 index 000000000..7dd18c3c9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/tood.py @@ -0,0 +1,23 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class TOOD(SingleStageDetector): + r"""Implementation of `TOOD: Task-aligned One-stage Object Detection. + `_.""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(TOOD, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + + def set_epoch(self, epoch): + self.bbox_head.epoch = epoch diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/trident_faster_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/trident_faster_rcnn.py new file mode 100644 index 000000000..fb26168ca --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/trident_faster_rcnn.py @@ -0,0 +1,70 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .faster_rcnn import FasterRCNN + + +@DETECTORS.register_module() +class TridentFasterRCNN(FasterRCNN): + """Implementation of `TridentNet `_""" + + def __init__(self, + backbone, + rpn_head, + roi_head, + train_cfg, + test_cfg, + neck=None, + pretrained=None, + init_cfg=None): + + super(TridentFasterRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + assert self.backbone.num_branch == self.roi_head.num_branch + assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx + self.num_branch = self.backbone.num_branch + self.test_branch_idx = self.backbone.test_branch_idx + + def simple_test(self, img, img_metas, proposals=None, rescale=False): + """Test without augmentation.""" + assert self.with_bbox, 'Bbox head must be implemented.' + x = self.extract_feat(img) + if proposals is None: + num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) + trident_img_metas = img_metas * num_branch + proposal_list = self.rpn_head.simple_test_rpn(x, trident_img_metas) + else: + proposal_list = proposals + # TODO: Fix trident_img_metas undefined errors + # when proposals is specified + return self.roi_head.simple_test( + x, proposal_list, trident_img_metas, rescale=rescale) + + def aug_test(self, imgs, img_metas, rescale=False): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + x = self.extract_feats(imgs) + num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) + trident_img_metas = [img_metas * num_branch for img_metas in img_metas] + proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) + return self.roi_head.aug_test( + x, proposal_list, img_metas, rescale=rescale) + + def forward_train(self, img, img_metas, gt_bboxes, gt_labels, **kwargs): + """make copies of img and gts to fit multi-branch.""" + trident_gt_bboxes = tuple(gt_bboxes * self.num_branch) + trident_gt_labels = tuple(gt_labels * self.num_branch) + trident_img_metas = tuple(img_metas * self.num_branch) + + return super(TridentFasterRCNN, + self).forward_train(img, trident_img_metas, + trident_gt_bboxes, trident_gt_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/two_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/two_stage.py new file mode 100644 index 000000000..870e2b847 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/two_stage.py @@ -0,0 +1,211 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch + +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import BaseDetector + + +@DETECTORS.register_module() +class TwoStageDetector(BaseDetector): + """Base class for two-stage detectors. + + Two-stage detectors typically consisting of a region proposal network and a + task-specific regression head. + """ + + def __init__(self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(TwoStageDetector, self).__init__(init_cfg) + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + self.backbone = build_backbone(backbone) + + if neck is not None: + self.neck = build_neck(neck) + + if rpn_head is not None: + rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None + rpn_head_ = rpn_head.copy() + rpn_head_.update(train_cfg=rpn_train_cfg, test_cfg=test_cfg.rpn) + self.rpn_head = build_head(rpn_head_) + + if roi_head is not None: + # update train and test cfg here for now + # TODO: refactor assigner & sampler + rcnn_train_cfg = train_cfg.rcnn if train_cfg is not None else None + roi_head.update(train_cfg=rcnn_train_cfg) + roi_head.update(test_cfg=test_cfg.rcnn) + roi_head.pretrained = pretrained + self.roi_head = build_head(roi_head) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + @property + def with_rpn(self): + """bool: whether the detector has RPN""" + return hasattr(self, 'rpn_head') and self.rpn_head is not None + + @property + def with_roi_head(self): + """bool: whether the detector has a RoI head""" + return hasattr(self, 'roi_head') and self.roi_head is not None + + def extract_feat(self, img): + """Directly extract features from the backbone+neck.""" + x = self.backbone(img) + if self.with_neck: + x = self.neck(x) + return x + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + outs = () + # backbone + x = self.extract_feat(img) + # rpn + if self.with_rpn: + rpn_outs = self.rpn_head(x) + outs = outs + (rpn_outs, ) + proposals = torch.randn(1000, 4).to(img.device) + # roi_head + roi_outs = self.roi_head.forward_dummy(x, proposals) + outs = outs + (roi_outs, ) + return outs + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + proposals=None, + **kwargs): + """ + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + + gt_labels (list[Tensor]): class indices corresponding to each box + + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + proposals : override rpn proposals with custom proposals. Use when + `with_rpn` is False. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + x = self.extract_feat(img) + + losses = dict() + + # RPN forward and loss + if self.with_rpn: + proposal_cfg = self.train_cfg.get('rpn_proposal', + self.test_cfg.rpn) + rpn_losses, proposal_list = self.rpn_head.forward_train( + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=gt_bboxes_ignore, + proposal_cfg=proposal_cfg, + **kwargs) + losses.update(rpn_losses) + else: + proposal_list = proposals + + roi_losses = self.roi_head.forward_train(x, img_metas, proposal_list, + gt_bboxes, gt_labels, + gt_bboxes_ignore, gt_masks, + **kwargs) + losses.update(roi_losses) + + return losses + + async def async_simple_test(self, + img, + img_meta, + proposals=None, + rescale=False): + """Async test without augmentation.""" + assert self.with_bbox, 'Bbox head must be implemented.' + x = self.extract_feat(img) + + if proposals is None: + proposal_list = await self.rpn_head.async_simple_test_rpn( + x, img_meta) + else: + proposal_list = proposals + + return await self.roi_head.async_simple_test( + x, proposal_list, img_meta, rescale=rescale) + + def simple_test(self, img, img_metas, proposals=None, rescale=False): + """Test without augmentation.""" + + assert self.with_bbox, 'Bbox head must be implemented.' + x = self.extract_feat(img) + if proposals is None: + proposal_list = self.rpn_head.simple_test_rpn(x, img_metas) + else: + proposal_list = proposals + + return self.roi_head.simple_test( + x, proposal_list, img_metas, rescale=rescale) + + def aug_test(self, imgs, img_metas, rescale=False): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + x = self.extract_feats(imgs) + proposal_list = self.rpn_head.aug_test_rpn(x, img_metas) + return self.roi_head.aug_test( + x, proposal_list, img_metas, rescale=rescale) + + def onnx_export(self, img, img_metas): + + img_shape = torch._shape_as_tensor(img)[2:] + img_metas[0]['img_shape_for_onnx'] = img_shape + x = self.extract_feat(img) + proposals = self.rpn_head.onnx_export(x, img_metas) + if hasattr(self.roi_head, 'onnx_export'): + return self.roi_head.onnx_export(x, proposals, img_metas) + else: + raise NotImplementedError( + f'{self.__class__.__name__} can not ' + f'be exported to ONNX. Please refer to the ' + f'list of supported models,' + f'https://mmdetection.readthedocs.io/en/latest/tutorials/pytorch2onnx.html#list-of-supported-models-exportable-to-onnx' # noqa E501 + ) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/vfnet.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/vfnet.py new file mode 100644 index 000000000..38ddcdabd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/vfnet.py @@ -0,0 +1,20 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class VFNet(SingleStageDetector): + """Implementation of `VarifocalNet + (VFNet).`_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(VFNet, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolact.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolact.py new file mode 100644 index 000000000..4ddea0b22 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolact.py @@ -0,0 +1,120 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import bbox2result +from ..builder import DETECTORS, build_head +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class YOLACT(SingleStageDetector): + """Implementation of `YOLACT `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + segm_head, + mask_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + self.segm_head = build_head(segm_head) + self.mask_head = build_head(mask_head) + + def forward_dummy(self, img): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + feat = self.extract_feat(img) + bbox_outs = self.bbox_head(feat) + prototypes = self.mask_head.forward_dummy(feat[0]) + return (bbox_outs, prototypes) + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None): + """ + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # convert Bitmap mask or Polygon Mask to Tensor here + gt_masks = [ + gt_mask.to_tensor(dtype=torch.uint8, device=img.device) + for gt_mask in gt_masks + ] + + x = self.extract_feat(img) + + cls_score, bbox_pred, coeff_pred = self.bbox_head(x) + bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, + img_metas) + losses, sampling_results = self.bbox_head.loss( + *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + + segm_head_outs = self.segm_head(x[0]) + loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) + losses.update(loss_segm) + + mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, + sampling_results) + loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, + img_metas, sampling_results) + losses.update(loss_mask) + + # check NaN and Inf + for loss_name in losses.keys(): + assert torch.isfinite(torch.stack(losses[loss_name]))\ + .all().item(), '{} becomes infinite or NaN!'\ + .format(loss_name) + + return losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test-time augmentation.""" + feat = self.extract_feat(img) + det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test( + feat, img_metas, rescale=rescale) + bbox_results = [ + bbox2result(det_bbox, det_label, self.bbox_head.num_classes) + for det_bbox, det_label in zip(det_bboxes, det_labels) + ] + + segm_results = self.mask_head.simple_test( + feat, + det_bboxes, + det_labels, + det_coeffs, + img_metas, + rescale=rescale) + + return list(zip(bbox_results, segm_results)) + + def aug_test(self, imgs, img_metas, rescale=False): + """Test with augmentations.""" + raise NotImplementedError( + 'YOLACT does not support test-time augmentation') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolo.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolo.py new file mode 100644 index 000000000..0ccd41777 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolo.py @@ -0,0 +1,42 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2019 Western Digital Corporation or its affiliates. +import torch + +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class YOLOV3(SingleStageDetector): + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(YOLOV3, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + + def onnx_export(self, img, img_metas): + """Test function for exporting to ONNX, without test time augmentation. + + Args: + img (torch.Tensor): input images. + img_metas (list[dict]): List of image information. + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + x = self.extract_feat(img) + outs = self.bbox_head.forward(x) + # get shape as tensor + img_shape = torch._shape_as_tensor(img)[2:] + img_metas[0]['img_shape_for_onnx'] = img_shape + + det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas) + + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolof.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolof.py new file mode 100644 index 000000000..6d08d16dc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolof.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class YOLOF(SingleStageDetector): + r"""Implementation of `You Only Look One-level Feature + `_""" + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(YOLOF, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolox.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolox.py new file mode 100644 index 000000000..d26dc7349 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/detectors/yolox.py @@ -0,0 +1,136 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import random + +import torch +import torch.distributed as dist +import torch.nn.functional as F +from mmcv.runner import get_dist_info + +from ...utils import log_img_scale +from ..builder import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module() +class YOLOX(SingleStageDetector): + r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 + `_ + + Note: Considering the trade-off between training speed and accuracy, + multi-scale training is temporarily kept. More elegant implementation + will be adopted in the future. + + Args: + backbone (nn.Module): The backbone module. + neck (nn.Module): The neck module. + bbox_head (nn.Module): The bbox head module. + train_cfg (obj:`ConfigDict`, optional): The training config + of YOLOX. Default: None. + test_cfg (obj:`ConfigDict`, optional): The testing config + of YOLOX. Default: None. + pretrained (str, optional): model pretrained path. + Default: None. + input_size (tuple): The model default input image size. The shape + order should be (height, width). Default: (640, 640). + size_multiplier (int): Image size multiplication factor. + Default: 32. + random_size_range (tuple): The multi-scale random range during + multi-scale training. The real training image size will + be multiplied by size_multiplier. Default: (15, 25). + random_size_interval (int): The iter interval of change + image size. Default: 10. + init_cfg (dict, optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None, + input_size=(640, 640), + size_multiplier=32, + random_size_range=(15, 25), + random_size_interval=10, + init_cfg=None): + super(YOLOX, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained, init_cfg) + log_img_scale(input_size, skip_square=True) + self.rank, self.world_size = get_dist_info() + self._default_input_size = input_size + self._input_size = input_size + self._random_size_range = random_size_range + self._random_size_interval = random_size_interval + self._size_multiplier = size_multiplier + self._progress_in_iter = 0 + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + # Multi-scale training + img, gt_bboxes = self._preprocess(img, gt_bboxes) + + losses = super(YOLOX, self).forward_train(img, img_metas, gt_bboxes, + gt_labels, gt_bboxes_ignore) + + # random resizing + if (self._progress_in_iter + 1) % self._random_size_interval == 0: + self._input_size = self._random_resize() + self._progress_in_iter += 1 + + return losses + + def _preprocess(self, img, gt_bboxes): + scale_y = self._input_size[0] / self._default_input_size[0] + scale_x = self._input_size[1] / self._default_input_size[1] + if scale_x != 1 or scale_y != 1: + img = F.interpolate( + img, + size=self._input_size, + mode='bilinear', + align_corners=False) + for gt_bbox in gt_bboxes: + gt_bbox[..., 0::2] = gt_bbox[..., 0::2] * scale_x + gt_bbox[..., 1::2] = gt_bbox[..., 1::2] * scale_y + return img, gt_bboxes + + def _random_resize(self): + tensor = torch.LongTensor(2).cuda() + + if self.rank == 0: + size = random.randint(*self._random_size_range) + aspect_ratio = float( + self._default_input_size[1]) / self._default_input_size[0] + size = (self._size_multiplier * size, + self._size_multiplier * int(aspect_ratio * size)) + tensor[0] = size[0] + tensor[1] = size[1] + + if self.world_size > 1: + dist.barrier() + dist.broadcast(tensor, 0) + + input_size = (tensor[0].item(), tensor[1].item()) + return input_size diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/__init__.py new file mode 100644 index 000000000..068a54d65 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/__init__.py @@ -0,0 +1,32 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .accuracy import Accuracy, accuracy +from .ae_loss import AssociativeEmbeddingLoss +from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss +from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, + cross_entropy, mask_cross_entropy) +from .dice_loss import DiceLoss +from .focal_loss import FocalLoss, sigmoid_focal_loss +from .gaussian_focal_loss import GaussianFocalLoss +from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss +from .ghm_loss import GHMC, GHMR +from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, GIoULoss, IoULoss, + bounded_iou_loss, iou_loss) +from .kd_loss import KnowledgeDistillationKLDivLoss +from .mse_loss import MSELoss, mse_loss +from .pisa_loss import carl_loss, isr_p +from .seesaw_loss import SeesawLoss +from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss +from .utils import reduce_loss, weight_reduce_loss, weighted_loss +from .varifocal_loss import VarifocalLoss + +__all__ = [ + 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', + 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', + 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', + 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', + 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'GHMC', + 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', + 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', + 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', + 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/accuracy.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/accuracy.py new file mode 100644 index 000000000..fe765a39f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/accuracy.py @@ -0,0 +1,79 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn + + +@mmcv.jit(coderize=True) +def accuracy(pred, target, topk=1, thresh=None): + """Calculate accuracy according to the prediction and target. + + Args: + pred (torch.Tensor): The model prediction, shape (N, num_class) + target (torch.Tensor): The target of each prediction, shape (N, ) + topk (int | tuple[int], optional): If the predictions in ``topk`` + matches the target, the predictions will be regarded as + correct ones. Defaults to 1. + thresh (float, optional): If not None, predictions with scores under + this threshold are considered incorrect. Default to None. + + Returns: + float | tuple[float]: If the input ``topk`` is a single integer, + the function will return a single float as accuracy. If + ``topk`` is a tuple containing multiple integers, the + function will return a tuple containing accuracies of + each ``topk`` number. + """ + assert isinstance(topk, (int, tuple)) + if isinstance(topk, int): + topk = (topk, ) + return_single = True + else: + return_single = False + + maxk = max(topk) + if pred.size(0) == 0: + accu = [pred.new_tensor(0.) for i in range(len(topk))] + return accu[0] if return_single else accu + assert pred.ndim == 2 and target.ndim == 1 + assert pred.size(0) == target.size(0) + assert maxk <= pred.size(1), \ + f'maxk {maxk} exceeds pred dimension {pred.size(1)}' + pred_value, pred_label = pred.topk(maxk, dim=1) + pred_label = pred_label.t() # transpose to shape (maxk, N) + correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) + if thresh is not None: + # Only prediction values larger than thresh are counted as correct + correct = correct & (pred_value > thresh).t() + res = [] + for k in topk: + correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / pred.size(0))) + return res[0] if return_single else res + + +class Accuracy(nn.Module): + + def __init__(self, topk=(1, ), thresh=None): + """Module to calculate the accuracy. + + Args: + topk (tuple, optional): The criterion used to calculate the + accuracy. Defaults to (1,). + thresh (float, optional): If not None, predictions with scores + under this threshold are considered incorrect. Default to None. + """ + super().__init__() + self.topk = topk + self.thresh = thresh + + def forward(self, pred, target): + """Forward function to calculate accuracy. + + Args: + pred (torch.Tensor): Prediction of models. + target (torch.Tensor): Target for each prediction. + + Returns: + tuple[float]: The accuracies under different topk criterions. + """ + return accuracy(pred, target, self.topk, self.thresh) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ae_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ae_loss.py new file mode 100644 index 000000000..5c6da22a9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ae_loss.py @@ -0,0 +1,103 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES + + +@mmcv.jit(derivate=True, coderize=True) +def ae_loss_per_image(tl_preds, br_preds, match): + """Associative Embedding Loss in one image. + + Associative Embedding Loss including two parts: pull loss and push loss. + Pull loss makes embedding vectors from same object closer to each other. + Push loss distinguish embedding vector from different objects, and makes + the gap between them is large enough. + + During computing, usually there are 3 cases: + - no object in image: both pull loss and push loss will be 0. + - one object in image: push loss will be 0 and pull loss is computed + by the two corner of the only object. + - more than one objects in image: pull loss is computed by corner pairs + from each object, push loss is computed by each object with all + other objects. We use confusion matrix with 0 in diagonal to + compute the push loss. + + Args: + tl_preds (tensor): Embedding feature map of left-top corner. + br_preds (tensor): Embedding feature map of bottim-right corner. + match (list): Downsampled coordinates pair of each ground truth box. + """ + + tl_list, br_list, me_list = [], [], [] + if len(match) == 0: # no object in image + pull_loss = tl_preds.sum() * 0. + push_loss = tl_preds.sum() * 0. + else: + for m in match: + [tl_y, tl_x], [br_y, br_x] = m + tl_e = tl_preds[:, tl_y, tl_x].view(-1, 1) + br_e = br_preds[:, br_y, br_x].view(-1, 1) + tl_list.append(tl_e) + br_list.append(br_e) + me_list.append((tl_e + br_e) / 2.0) + + tl_list = torch.cat(tl_list) + br_list = torch.cat(br_list) + me_list = torch.cat(me_list) + + assert tl_list.size() == br_list.size() + + # N is object number in image, M is dimension of embedding vector + N, M = tl_list.size() + + pull_loss = (tl_list - me_list).pow(2) + (br_list - me_list).pow(2) + pull_loss = pull_loss.sum() / N + + margin = 1 # exp setting of CornerNet, details in section 3.3 of paper + + # confusion matrix of push loss + conf_mat = me_list.expand((N, N, M)).permute(1, 0, 2) - me_list + conf_weight = 1 - torch.eye(N).type_as(me_list) + conf_mat = conf_weight * (margin - conf_mat.sum(-1).abs()) + + if N > 1: # more than one object in current image + push_loss = F.relu(conf_mat).sum() / (N * (N - 1)) + else: + push_loss = tl_preds.sum() * 0. + + return pull_loss, push_loss + + +@LOSSES.register_module() +class AssociativeEmbeddingLoss(nn.Module): + """Associative Embedding Loss. + + More details can be found in + `Associative Embedding `_ and + `CornerNet `_ . + Code is modified from `kp_utils.py `_ # noqa: E501 + + Args: + pull_weight (float): Loss weight for corners from same object. + push_weight (float): Loss weight for corners from different object. + """ + + def __init__(self, pull_weight=0.25, push_weight=0.25): + super(AssociativeEmbeddingLoss, self).__init__() + self.pull_weight = pull_weight + self.push_weight = push_weight + + def forward(self, pred, target, match): + """Forward function.""" + batch = pred.size(0) + pull_all, push_all = 0.0, 0.0 + for i in range(batch): + pull, push = ae_loss_per_image(pred[i], target[i], match[i]) + + pull_all += self.pull_weight * pull + push_all += self.push_weight * push + + return pull_all, push_all diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/balanced_l1_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/balanced_l1_loss.py new file mode 100644 index 000000000..8500345f0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/balanced_l1_loss.py @@ -0,0 +1,124 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +import torch +import torch.nn as nn + +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def balanced_l1_loss(pred, + target, + beta=1.0, + alpha=0.5, + gamma=1.5, + reduction='mean'): + """Calculate balanced L1 loss. + + Please see the `Libra R-CNN `_ + + Args: + pred (torch.Tensor): The prediction with shape (N, 4). + target (torch.Tensor): The learning target of the prediction with + shape (N, 4). + beta (float): The loss is a piecewise function of prediction and target + and ``beta`` serves as a threshold for the difference between the + prediction and target. Defaults to 1.0. + alpha (float): The denominator ``alpha`` in the balanced L1 loss. + Defaults to 0.5. + gamma (float): The ``gamma`` in the balanced L1 loss. + Defaults to 1.5. + reduction (str, optional): The method that reduces the loss to a + scalar. Options are "none", "mean" and "sum". + + Returns: + torch.Tensor: The calculated loss + """ + assert beta > 0 + if target.numel() == 0: + return pred.sum() * 0 + + assert pred.size() == target.size() + + diff = torch.abs(pred - target) + b = np.e**(gamma / alpha) - 1 + loss = torch.where( + diff < beta, alpha / b * + (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff, + gamma * diff + gamma / b - alpha * beta) + + return loss + + +@LOSSES.register_module() +class BalancedL1Loss(nn.Module): + """Balanced L1 Loss. + + arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) + + Args: + alpha (float): The denominator ``alpha`` in the balanced L1 loss. + Defaults to 0.5. + gamma (float): The ``gamma`` in the balanced L1 loss. Defaults to 1.5. + beta (float, optional): The loss is a piecewise function of prediction + and target. ``beta`` serves as a threshold for the difference + between the prediction and target. Defaults to 1.0. + reduction (str, optional): The method that reduces the loss to a + scalar. Options are "none", "mean" and "sum". + loss_weight (float, optional): The weight of the loss. Defaults to 1.0 + """ + + def __init__(self, + alpha=0.5, + gamma=1.5, + beta=1.0, + reduction='mean', + loss_weight=1.0): + super(BalancedL1Loss, self).__init__() + self.alpha = alpha + self.gamma = gamma + self.beta = beta + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function of loss. + + Args: + pred (torch.Tensor): The prediction with shape (N, 4). + target (torch.Tensor): The learning target of the prediction with + shape (N, 4). + weight (torch.Tensor, optional): Sample-wise loss weight with + shape (N, ). + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Options are "none", "mean" and "sum". + + Returns: + torch.Tensor: The calculated loss + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_bbox = self.loss_weight * balanced_l1_loss( + pred, + target, + weight, + alpha=self.alpha, + gamma=self.gamma, + beta=self.beta, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss_bbox diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/cross_entropy_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/cross_entropy_loss.py new file mode 100644 index 000000000..41411fc54 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/cross_entropy_loss.py @@ -0,0 +1,301 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +def cross_entropy(pred, + label, + weight=None, + reduction='mean', + avg_factor=None, + class_weight=None, + ignore_index=-100, + avg_non_ignore=False): + """Calculate the CrossEntropy loss. + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the number + of classes. + label (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + reduction (str, optional): The method used to reduce the loss. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + class_weight (list[float], optional): The weight for each class. + ignore_index (int | None): The label index to be ignored. + If None, it will be set to default value. Default: -100. + avg_non_ignore (bool): The flag decides to whether the loss is + only averaged over non-ignored targets. Default: False. + + Returns: + torch.Tensor: The calculated loss + """ + # The default value of ignore_index is the same as F.cross_entropy + ignore_index = -100 if ignore_index is None else ignore_index + # element-wise losses + loss = F.cross_entropy( + pred, + label, + weight=class_weight, + reduction='none', + ignore_index=ignore_index) + + # average loss over non-ignored elements + # pytorch's official cross_entropy average loss over non-ignored elements + # refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa + if (avg_factor is None) and avg_non_ignore and reduction == 'mean': + avg_factor = label.numel() - (label == ignore_index).sum().item() + + # apply weights and do the reduction + if weight is not None: + weight = weight.float() + loss = weight_reduce_loss( + loss, weight=weight, reduction=reduction, avg_factor=avg_factor) + + return loss + + +def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index): + """Expand onehot labels to match the size of prediction.""" + bin_labels = labels.new_full((labels.size(0), label_channels), 0) + valid_mask = (labels >= 0) & (labels != ignore_index) + inds = torch.nonzero( + valid_mask & (labels < label_channels), as_tuple=False) + + if inds.numel() > 0: + bin_labels[inds, labels[inds]] = 1 + + valid_mask = valid_mask.view(-1, 1).expand(labels.size(0), + label_channels).float() + if label_weights is None: + bin_label_weights = valid_mask + else: + bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels) + bin_label_weights *= valid_mask + + return bin_labels, bin_label_weights, valid_mask + + +def binary_cross_entropy(pred, + label, + weight=None, + reduction='mean', + avg_factor=None, + class_weight=None, + ignore_index=-100, + avg_non_ignore=False): + """Calculate the binary CrossEntropy loss. + + Args: + pred (torch.Tensor): The prediction with shape (N, 1) or (N, ). + When the shape of pred is (N, 1), label will be expanded to + one-hot format, and when the shape of pred is (N, ), label + will not be expanded to one-hot format. + label (torch.Tensor): The learning label of the prediction, + with shape (N, ). + weight (torch.Tensor, optional): Sample-wise loss weight. + reduction (str, optional): The method used to reduce the loss. + Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + class_weight (list[float], optional): The weight for each class. + ignore_index (int | None): The label index to be ignored. + If None, it will be set to default value. Default: -100. + avg_non_ignore (bool): The flag decides to whether the loss is + only averaged over non-ignored targets. Default: False. + + Returns: + torch.Tensor: The calculated loss. + """ + # The default value of ignore_index is the same as F.cross_entropy + ignore_index = -100 if ignore_index is None else ignore_index + + if pred.dim() != label.dim(): + label, weight, valid_mask = _expand_onehot_labels( + label, weight, pred.size(-1), ignore_index) + else: + # should mask out the ignored elements + valid_mask = ((label >= 0) & (label != ignore_index)).float() + if weight is not None: + # The inplace writing method will have a mismatched broadcast + # shape error if the weight and valid_mask dimensions + # are inconsistent such as (B,N,1) and (B,N,C). + weight = weight * valid_mask + else: + weight = valid_mask + + # average loss over non-ignored elements + if (avg_factor is None) and avg_non_ignore and reduction == 'mean': + avg_factor = valid_mask.sum().item() + + # weighted element-wise losses + weight = weight.float() + loss = F.binary_cross_entropy_with_logits( + pred, label.float(), pos_weight=class_weight, reduction='none') + # do the reduction for the weighted loss + loss = weight_reduce_loss( + loss, weight, reduction=reduction, avg_factor=avg_factor) + + return loss + + +def mask_cross_entropy(pred, + target, + label, + reduction='mean', + avg_factor=None, + class_weight=None, + ignore_index=None, + **kwargs): + """Calculate the CrossEntropy loss for masks. + + Args: + pred (torch.Tensor): The prediction with shape (N, C, *), C is the + number of classes. The trailing * indicates arbitrary shape. + target (torch.Tensor): The learning label of the prediction. + label (torch.Tensor): ``label`` indicates the class label of the mask + corresponding object. This will be used to select the mask in the + of the class which the object belongs to when the mask prediction + if not class-agnostic. + reduction (str, optional): The method used to reduce the loss. + Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + class_weight (list[float], optional): The weight for each class. + ignore_index (None): Placeholder, to be consistent with other loss. + Default: None. + + Returns: + torch.Tensor: The calculated loss + + Example: + >>> N, C = 3, 11 + >>> H, W = 2, 2 + >>> pred = torch.randn(N, C, H, W) * 1000 + >>> target = torch.rand(N, H, W) + >>> label = torch.randint(0, C, size=(N,)) + >>> reduction = 'mean' + >>> avg_factor = None + >>> class_weights = None + >>> loss = mask_cross_entropy(pred, target, label, reduction, + >>> avg_factor, class_weights) + >>> assert loss.shape == (1,) + """ + assert ignore_index is None, 'BCE loss does not support ignore_index' + # TODO: handle these two reserved arguments + assert reduction == 'mean' and avg_factor is None + num_rois = pred.size()[0] + inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) + pred_slice = pred[inds, label].squeeze(1) + return F.binary_cross_entropy_with_logits( + pred_slice, target, weight=class_weight, reduction='mean')[None] + + +@LOSSES.register_module() +class CrossEntropyLoss(nn.Module): + + def __init__(self, + use_sigmoid=False, + use_mask=False, + reduction='mean', + class_weight=None, + ignore_index=None, + loss_weight=1.0, + avg_non_ignore=False): + """CrossEntropyLoss. + + Args: + use_sigmoid (bool, optional): Whether the prediction uses sigmoid + of softmax. Defaults to False. + use_mask (bool, optional): Whether to use mask cross entropy loss. + Defaults to False. + reduction (str, optional): . Defaults to 'mean'. + Options are "none", "mean" and "sum". + class_weight (list[float], optional): Weight of each class. + Defaults to None. + ignore_index (int | None): The label index to be ignored. + Defaults to None. + loss_weight (float, optional): Weight of the loss. Defaults to 1.0. + avg_non_ignore (bool): The flag decides to whether the loss is + only averaged over non-ignored targets. Default: False. + """ + super(CrossEntropyLoss, self).__init__() + assert (use_sigmoid is False) or (use_mask is False) + self.use_sigmoid = use_sigmoid + self.use_mask = use_mask + self.reduction = reduction + self.loss_weight = loss_weight + self.class_weight = class_weight + self.ignore_index = ignore_index + self.avg_non_ignore = avg_non_ignore + if ((ignore_index is not None) and not self.avg_non_ignore + and self.reduction == 'mean'): + warnings.warn( + 'Default ``avg_non_ignore`` is False, if you would like to ' + 'ignore the certain label and average loss over non-ignore ' + 'labels, which is the same with PyTorch official ' + 'cross_entropy, set ``avg_non_ignore=True``.') + + if self.use_sigmoid: + self.cls_criterion = binary_cross_entropy + elif self.use_mask: + self.cls_criterion = mask_cross_entropy + else: + self.cls_criterion = cross_entropy + + def extra_repr(self): + """Extra repr.""" + s = f'avg_non_ignore={self.avg_non_ignore}' + return s + + def forward(self, + cls_score, + label, + weight=None, + avg_factor=None, + reduction_override=None, + ignore_index=None, + **kwargs): + """Forward function. + + Args: + cls_score (torch.Tensor): The prediction. + label (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The method used to reduce the + loss. Options are "none", "mean" and "sum". + ignore_index (int | None): The label index to be ignored. + If not None, it will override the default value. Default: None. + Returns: + torch.Tensor: The calculated loss. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if ignore_index is None: + ignore_index = self.ignore_index + + if self.class_weight is not None: + class_weight = cls_score.new_tensor( + self.class_weight, device=cls_score.device) + else: + class_weight = None + loss_cls = self.loss_weight * self.cls_criterion( + cls_score, + label, + weight, + class_weight=class_weight, + reduction=reduction, + avg_factor=avg_factor, + ignore_index=ignore_index, + avg_non_ignore=self.avg_non_ignore, + **kwargs) + return loss_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/dice_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/dice_loss.py new file mode 100644 index 000000000..585beeaf1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/dice_loss.py @@ -0,0 +1,146 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +def dice_loss(pred, + target, + weight=None, + eps=1e-3, + reduction='mean', + naive_dice=False, + avg_factor=None): + """Calculate dice loss, there are two forms of dice loss is supported: + + - the one proposed in `V-Net: Fully Convolutional Neural + Networks for Volumetric Medical Image Segmentation + `_. + - the dice loss in which the power of the number in the + denominator is the first power instead of the second + power. + + Args: + pred (torch.Tensor): The prediction, has a shape (n, *) + target (torch.Tensor): The learning label of the prediction, + shape (n, *), same shape of pred. + weight (torch.Tensor, optional): The weight of loss for each + prediction, has a shape (n,). Defaults to None. + eps (float): Avoid dividing by zero. Default: 1e-3. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. + Options are "none", "mean" and "sum". + naive_dice (bool, optional): If false, use the dice + loss defined in the V-Net paper, otherwise, use the + naive dice loss in which the power of the number in the + denominator is the first power instead of the second + power.Defaults to False. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + + input = pred.flatten(1) + target = target.flatten(1).float() + + a = torch.sum(input * target, 1) + if naive_dice: + b = torch.sum(input, 1) + c = torch.sum(target, 1) + d = (2 * a + eps) / (b + c + eps) + else: + b = torch.sum(input * input, 1) + eps + c = torch.sum(target * target, 1) + eps + d = (2 * a) / (b + c) + + loss = 1 - d + if weight is not None: + assert weight.ndim == loss.ndim + assert len(weight) == len(pred) + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + +@LOSSES.register_module() +class DiceLoss(nn.Module): + + def __init__(self, + use_sigmoid=True, + activate=True, + reduction='mean', + naive_dice=False, + loss_weight=1.0, + eps=1e-3): + """Compute dice loss. + + Args: + use_sigmoid (bool, optional): Whether to the prediction is + used for sigmoid or softmax. Defaults to True. + activate (bool): Whether to activate the predictions inside, + this will disable the inside sigmoid operation. + Defaults to True. + reduction (str, optional): The method used + to reduce the loss. Options are "none", + "mean" and "sum". Defaults to 'mean'. + naive_dice (bool, optional): If false, use the dice + loss defined in the V-Net paper, otherwise, use the + naive dice loss in which the power of the number in the + denominator is the first power instead of the second + power. Defaults to False. + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + eps (float): Avoid dividing by zero. Defaults to 1e-3. + """ + + super(DiceLoss, self).__init__() + self.use_sigmoid = use_sigmoid + self.reduction = reduction + self.naive_dice = naive_dice + self.loss_weight = loss_weight + self.eps = eps + self.activate = activate + + def forward(self, + pred, + target, + weight=None, + reduction_override=None, + avg_factor=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction, has a shape (n, *). + target (torch.Tensor): The label of the prediction, + shape (n, *), same shape of pred. + weight (torch.Tensor, optional): The weight of loss for each + prediction, has a shape (n,). Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Options are "none", "mean" and "sum". + + Returns: + torch.Tensor: The calculated loss + """ + + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + + if self.activate: + if self.use_sigmoid: + pred = pred.sigmoid() + else: + raise NotImplementedError + + loss = self.loss_weight * dice_loss( + pred, + target, + weight, + eps=self.eps, + reduction=reduction, + naive_dice=self.naive_dice, + avg_factor=avg_factor) + + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/focal_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/focal_loss.py new file mode 100644 index 000000000..6c20fddd5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/focal_loss.py @@ -0,0 +1,244 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +# This method is only for debugging +def py_sigmoid_focal_loss(pred, + target, + weight=None, + gamma=2.0, + alpha=0.25, + reduction='mean', + avg_factor=None): + """PyTorch version of `Focal Loss `_. + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the + number of classes + target (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float, optional): A balanced form for Focal Loss. + Defaults to 0.25. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + pred_sigmoid = pred.sigmoid() + target = target.type_as(pred) + pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target) + focal_weight = (alpha * target + (1 - alpha) * + (1 - target)) * pt.pow(gamma) + loss = F.binary_cross_entropy_with_logits( + pred, target, reduction='none') * focal_weight + if weight is not None: + if weight.shape != loss.shape: + if weight.size(0) == loss.size(0): + # For most cases, weight is of shape (num_priors, ), + # which means it does not have the second axis num_class + weight = weight.view(-1, 1) + else: + # Sometimes, weight per anchor per class is also needed. e.g. + # in FSAF. But it may be flattened of shape + # (num_priors x num_class, ), while loss is still of shape + # (num_priors, num_class). + assert weight.numel() == loss.numel() + weight = weight.view(loss.size(0), -1) + assert weight.ndim == loss.ndim + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + +def py_focal_loss_with_prob(pred, + target, + weight=None, + gamma=2.0, + alpha=0.25, + reduction='mean', + avg_factor=None): + """PyTorch version of `Focal Loss `_. + Different from `py_sigmoid_focal_loss`, this function accepts probability + as input. + + Args: + pred (torch.Tensor): The prediction probability with shape (N, C), + C is the number of classes. + target (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float, optional): A balanced form for Focal Loss. + Defaults to 0.25. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + num_classes = pred.size(1) + target = F.one_hot(target, num_classes=num_classes + 1) + target = target[:, :num_classes] + + target = target.type_as(pred) + pt = (1 - pred) * target + pred * (1 - target) + focal_weight = (alpha * target + (1 - alpha) * + (1 - target)) * pt.pow(gamma) + loss = F.binary_cross_entropy( + pred, target, reduction='none') * focal_weight + if weight is not None: + if weight.shape != loss.shape: + if weight.size(0) == loss.size(0): + # For most cases, weight is of shape (num_priors, ), + # which means it does not have the second axis num_class + weight = weight.view(-1, 1) + else: + # Sometimes, weight per anchor per class is also needed. e.g. + # in FSAF. But it may be flattened of shape + # (num_priors x num_class, ), while loss is still of shape + # (num_priors, num_class). + assert weight.numel() == loss.numel() + weight = weight.view(loss.size(0), -1) + assert weight.ndim == loss.ndim + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + +def sigmoid_focal_loss(pred, + target, + weight=None, + gamma=2.0, + alpha=0.25, + reduction='mean', + avg_factor=None): + r"""A warpper of cuda version `Focal Loss + `_. + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the number + of classes. + target (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float, optional): A balanced form for Focal Loss. + Defaults to 0.25. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + # Function.apply does not accept keyword arguments, so the decorator + # "weighted_loss" is not applicable + loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(), gamma, + alpha, None, 'none') + if weight is not None: + if weight.shape != loss.shape: + if weight.size(0) == loss.size(0): + # For most cases, weight is of shape (num_priors, ), + # which means it does not have the second axis num_class + weight = weight.view(-1, 1) + else: + # Sometimes, weight per anchor per class is also needed. e.g. + # in FSAF. But it may be flattened of shape + # (num_priors x num_class, ), while loss is still of shape + # (num_priors, num_class). + assert weight.numel() == loss.numel() + weight = weight.view(loss.size(0), -1) + assert weight.ndim == loss.ndim + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + +@LOSSES.register_module() +class FocalLoss(nn.Module): + + def __init__(self, + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + reduction='mean', + loss_weight=1.0, + activated=False): + """`Focal Loss `_ + + Args: + use_sigmoid (bool, optional): Whether to the prediction is + used for sigmoid or softmax. Defaults to True. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float, optional): A balanced form for Focal Loss. + Defaults to 0.25. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and + "sum". + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + activated (bool, optional): Whether the input is activated. + If True, it means the input has been activated and can be + treated as probabilities. Else, it should be treated as logits. + Defaults to False. + """ + super(FocalLoss, self).__init__() + assert use_sigmoid is True, 'Only sigmoid focal loss supported now.' + self.use_sigmoid = use_sigmoid + self.gamma = gamma + self.alpha = alpha + self.reduction = reduction + self.loss_weight = loss_weight + self.activated = activated + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Options are "none", "mean" and "sum". + + Returns: + torch.Tensor: The calculated loss + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.use_sigmoid: + if self.activated: + calculate_loss_func = py_focal_loss_with_prob + else: + if torch.cuda.is_available() and pred.is_cuda: + calculate_loss_func = sigmoid_focal_loss + else: + num_classes = pred.size(1) + target = F.one_hot(target, num_classes=num_classes + 1) + target = target[:, :num_classes] + calculate_loss_func = py_sigmoid_focal_loss + + loss_cls = self.loss_weight * calculate_loss_func( + pred, + target, + weight, + gamma=self.gamma, + alpha=self.alpha, + reduction=reduction, + avg_factor=avg_factor) + + else: + raise NotImplementedError + return loss_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gaussian_focal_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gaussian_focal_loss.py new file mode 100644 index 000000000..7abcb691a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gaussian_focal_loss.py @@ -0,0 +1,92 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn + +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def gaussian_focal_loss(pred, gaussian_target, alpha=2.0, gamma=4.0): + """`Focal Loss `_ for targets in gaussian + distribution. + + Args: + pred (torch.Tensor): The prediction. + gaussian_target (torch.Tensor): The learning target of the prediction + in gaussian distribution. + alpha (float, optional): A balanced form for Focal Loss. + Defaults to 2.0. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 4.0. + """ + eps = 1e-12 + pos_weights = gaussian_target.eq(1) + neg_weights = (1 - gaussian_target).pow(gamma) + pos_loss = -(pred + eps).log() * (1 - pred).pow(alpha) * pos_weights + neg_loss = -(1 - pred + eps).log() * pred.pow(alpha) * neg_weights + return pos_loss + neg_loss + + +@LOSSES.register_module() +class GaussianFocalLoss(nn.Module): + """GaussianFocalLoss is a variant of focal loss. + + More details can be found in the `paper + `_ + Code is modified from `kp_utils.py + `_ # noqa: E501 + Please notice that the target in GaussianFocalLoss is a gaussian heatmap, + not 0/1 binary target. + + Args: + alpha (float): Power of prediction. + gamma (float): Power of target for negative samples. + reduction (str): Options are "none", "mean" and "sum". + loss_weight (float): Loss weight of current loss. + """ + + def __init__(self, + alpha=2.0, + gamma=4.0, + reduction='mean', + loss_weight=1.0): + super(GaussianFocalLoss, self).__init__() + self.alpha = alpha + self.gamma = gamma + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction + in gaussian distribution. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_reg = self.loss_weight * gaussian_focal_loss( + pred, + target, + weight, + alpha=self.alpha, + gamma=self.gamma, + reduction=reduction, + avg_factor=avg_factor) + return loss_reg diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gfocal_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gfocal_loss.py new file mode 100644 index 000000000..0e8d26373 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/gfocal_loss.py @@ -0,0 +1,245 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def quality_focal_loss(pred, target, beta=2.0): + r"""Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning + Qualified and Distributed Bounding Boxes for Dense Object Detection + `_. + + Args: + pred (torch.Tensor): Predicted joint representation of classification + and quality (IoU) estimation with shape (N, C), C is the number of + classes. + target (tuple([torch.Tensor])): Target category label with shape (N,) + and target quality label with shape (N,). + beta (float): The beta parameter for calculating the modulating factor. + Defaults to 2.0. + + Returns: + torch.Tensor: Loss tensor with shape (N,). + """ + assert len(target) == 2, """target for QFL must be a tuple of two elements, + including category label and quality label, respectively""" + # label denotes the category id, score denotes the quality score + label, score = target + + # negatives are supervised by 0 quality score + pred_sigmoid = pred.sigmoid() + scale_factor = pred_sigmoid + zerolabel = scale_factor.new_zeros(pred.shape) + loss = F.binary_cross_entropy_with_logits( + pred, zerolabel, reduction='none') * scale_factor.pow(beta) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = pred.size(1) + pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1) + pos_label = label[pos].long() + # positives are supervised by bbox quality (IoU) score + scale_factor = score[pos] - pred_sigmoid[pos, pos_label] + loss[pos, pos_label] = F.binary_cross_entropy_with_logits( + pred[pos, pos_label], score[pos], + reduction='none') * scale_factor.abs().pow(beta) + + loss = loss.sum(dim=1, keepdim=False) + return loss + + +@weighted_loss +def quality_focal_loss_with_prob(pred, target, beta=2.0): + r"""Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning + Qualified and Distributed Bounding Boxes for Dense Object Detection + `_. + Different from `quality_focal_loss`, this function accepts probability + as input. + + Args: + pred (torch.Tensor): Predicted joint representation of classification + and quality (IoU) estimation with shape (N, C), C is the number of + classes. + target (tuple([torch.Tensor])): Target category label with shape (N,) + and target quality label with shape (N,). + beta (float): The beta parameter for calculating the modulating factor. + Defaults to 2.0. + + Returns: + torch.Tensor: Loss tensor with shape (N,). + """ + assert len(target) == 2, """target for QFL must be a tuple of two elements, + including category label and quality label, respectively""" + # label denotes the category id, score denotes the quality score + label, score = target + + # negatives are supervised by 0 quality score + pred_sigmoid = pred + scale_factor = pred_sigmoid + zerolabel = scale_factor.new_zeros(pred.shape) + loss = F.binary_cross_entropy( + pred, zerolabel, reduction='none') * scale_factor.pow(beta) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = pred.size(1) + pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1) + pos_label = label[pos].long() + # positives are supervised by bbox quality (IoU) score + scale_factor = score[pos] - pred_sigmoid[pos, pos_label] + loss[pos, pos_label] = F.binary_cross_entropy( + pred[pos, pos_label], score[pos], + reduction='none') * scale_factor.abs().pow(beta) + + loss = loss.sum(dim=1, keepdim=False) + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def distribution_focal_loss(pred, label): + r"""Distribution Focal Loss (DFL) is from `Generalized Focal Loss: Learning + Qualified and Distributed Bounding Boxes for Dense Object Detection + `_. + + Args: + pred (torch.Tensor): Predicted general distribution of bounding boxes + (before softmax) with shape (N, n+1), n is the max value of the + integral set `{0, ..., n}` in paper. + label (torch.Tensor): Target distance label for bounding boxes with + shape (N,). + + Returns: + torch.Tensor: Loss tensor with shape (N,). + """ + dis_left = label.long() + dis_right = dis_left + 1 + weight_left = dis_right.float() - label + weight_right = label - dis_left.float() + loss = F.cross_entropy(pred, dis_left, reduction='none') * weight_left \ + + F.cross_entropy(pred, dis_right, reduction='none') * weight_right + return loss + + +@LOSSES.register_module() +class QualityFocalLoss(nn.Module): + r"""Quality Focal Loss (QFL) is a variant of `Generalized Focal Loss: + Learning Qualified and Distributed Bounding Boxes for Dense Object + Detection `_. + + Args: + use_sigmoid (bool): Whether sigmoid operation is conducted in QFL. + Defaults to True. + beta (float): The beta parameter for calculating the modulating factor. + Defaults to 2.0. + reduction (str): Options are "none", "mean" and "sum". + loss_weight (float): Loss weight of current loss. + activated (bool, optional): Whether the input is activated. + If True, it means the input has been activated and can be + treated as probabilities. Else, it should be treated as logits. + Defaults to False. + """ + + def __init__(self, + use_sigmoid=True, + beta=2.0, + reduction='mean', + loss_weight=1.0, + activated=False): + super(QualityFocalLoss, self).__init__() + assert use_sigmoid is True, 'Only sigmoid in QFL supported now.' + self.use_sigmoid = use_sigmoid + self.beta = beta + self.reduction = reduction + self.loss_weight = loss_weight + self.activated = activated + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): Predicted joint representation of + classification and quality (IoU) estimation with shape (N, C), + C is the number of classes. + target (tuple([torch.Tensor])): Target category label with shape + (N,) and target quality label with shape (N,). + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.use_sigmoid: + if self.activated: + calculate_loss_func = quality_focal_loss_with_prob + else: + calculate_loss_func = quality_focal_loss + loss_cls = self.loss_weight * calculate_loss_func( + pred, + target, + weight, + beta=self.beta, + reduction=reduction, + avg_factor=avg_factor) + else: + raise NotImplementedError + return loss_cls + + +@LOSSES.register_module() +class DistributionFocalLoss(nn.Module): + r"""Distribution Focal Loss (DFL) is a variant of `Generalized Focal Loss: + Learning Qualified and Distributed Bounding Boxes for Dense Object + Detection `_. + + Args: + reduction (str): Options are `'none'`, `'mean'` and `'sum'`. + loss_weight (float): Loss weight of current loss. + """ + + def __init__(self, reduction='mean', loss_weight=1.0): + super(DistributionFocalLoss, self).__init__() + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): Predicted general distribution of bounding + boxes (before softmax) with shape (N, n+1), n is the max value + of the integral set `{0, ..., n}` in paper. + target (torch.Tensor): Target distance label for bounding boxes + with shape (N,). + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_cls = self.loss_weight * distribution_focal_loss( + pred, target, weight, reduction=reduction, avg_factor=avg_factor) + return loss_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ghm_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ghm_loss.py new file mode 100644 index 000000000..a4df9fe8e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/ghm_loss.py @@ -0,0 +1,213 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +def _expand_onehot_labels(labels, label_weights, label_channels): + bin_labels = labels.new_full((labels.size(0), label_channels), 0) + inds = torch.nonzero( + (labels >= 0) & (labels < label_channels), as_tuple=False).squeeze() + if inds.numel() > 0: + bin_labels[inds, labels[inds]] = 1 + bin_label_weights = label_weights.view(-1, 1).expand( + label_weights.size(0), label_channels) + return bin_labels, bin_label_weights + + +# TODO: code refactoring to make it consistent with other losses +@LOSSES.register_module() +class GHMC(nn.Module): + """GHM Classification Loss. + + Details of the theorem can be viewed in the paper + `Gradient Harmonized Single-stage Detector + `_. + + Args: + bins (int): Number of the unit regions for distribution calculation. + momentum (float): The parameter for moving average. + use_sigmoid (bool): Can only be true for BCE based loss now. + loss_weight (float): The weight of the total GHM-C loss. + reduction (str): Options are "none", "mean" and "sum". + Defaults to "mean" + """ + + def __init__(self, + bins=10, + momentum=0, + use_sigmoid=True, + loss_weight=1.0, + reduction='mean'): + super(GHMC, self).__init__() + self.bins = bins + self.momentum = momentum + edges = torch.arange(bins + 1).float() / bins + self.register_buffer('edges', edges) + self.edges[-1] += 1e-6 + if momentum > 0: + acc_sum = torch.zeros(bins) + self.register_buffer('acc_sum', acc_sum) + self.use_sigmoid = use_sigmoid + if not self.use_sigmoid: + raise NotImplementedError + self.loss_weight = loss_weight + self.reduction = reduction + + def forward(self, + pred, + target, + label_weight, + reduction_override=None, + **kwargs): + """Calculate the GHM-C loss. + + Args: + pred (float tensor of size [batch_num, class_num]): + The direct prediction of classification fc layer. + target (float tensor of size [batch_num, class_num]): + Binary class target for each sample. + label_weight (float tensor of size [batch_num, class_num]): + the value is 1 if the sample is valid and 0 if ignored. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + Returns: + The gradient harmonized loss. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + # the target should be binary class label + if pred.dim() != target.dim(): + target, label_weight = _expand_onehot_labels( + target, label_weight, pred.size(-1)) + target, label_weight = target.float(), label_weight.float() + edges = self.edges + mmt = self.momentum + weights = torch.zeros_like(pred) + + # gradient length + g = torch.abs(pred.sigmoid().detach() - target) + + valid = label_weight > 0 + tot = max(valid.float().sum().item(), 1.0) + n = 0 # n valid bins + for i in range(self.bins): + inds = (g >= edges[i]) & (g < edges[i + 1]) & valid + num_in_bin = inds.sum().item() + if num_in_bin > 0: + if mmt > 0: + self.acc_sum[i] = mmt * self.acc_sum[i] \ + + (1 - mmt) * num_in_bin + weights[inds] = tot / self.acc_sum[i] + else: + weights[inds] = tot / num_in_bin + n += 1 + if n > 0: + weights = weights / n + + loss = F.binary_cross_entropy_with_logits( + pred, target, reduction='none') + loss = weight_reduce_loss( + loss, weights, reduction=reduction, avg_factor=tot) + return loss * self.loss_weight + + +# TODO: code refactoring to make it consistent with other losses +@LOSSES.register_module() +class GHMR(nn.Module): + """GHM Regression Loss. + + Details of the theorem can be viewed in the paper + `Gradient Harmonized Single-stage Detector + `_. + + Args: + mu (float): The parameter for the Authentic Smooth L1 loss. + bins (int): Number of the unit regions for distribution calculation. + momentum (float): The parameter for moving average. + loss_weight (float): The weight of the total GHM-R loss. + reduction (str): Options are "none", "mean" and "sum". + Defaults to "mean" + """ + + def __init__(self, + mu=0.02, + bins=10, + momentum=0, + loss_weight=1.0, + reduction='mean'): + super(GHMR, self).__init__() + self.mu = mu + self.bins = bins + edges = torch.arange(bins + 1).float() / bins + self.register_buffer('edges', edges) + self.edges[-1] = 1e3 + self.momentum = momentum + if momentum > 0: + acc_sum = torch.zeros(bins) + self.register_buffer('acc_sum', acc_sum) + self.loss_weight = loss_weight + self.reduction = reduction + + # TODO: support reduction parameter + def forward(self, + pred, + target, + label_weight, + avg_factor=None, + reduction_override=None): + """Calculate the GHM-R loss. + + Args: + pred (float tensor of size [batch_num, 4 (* class_num)]): + The prediction of box regression layer. Channel number can be 4 + or 4 * class_num depending on whether it is class-agnostic. + target (float tensor of size [batch_num, 4 (* class_num)]): + The target regression values with the same size of pred. + label_weight (float tensor of size [batch_num, 4 (* class_num)]): + The weight of each sample, 0 if ignored. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + Returns: + The gradient harmonized loss. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + mu = self.mu + edges = self.edges + mmt = self.momentum + + # ASL1 loss + diff = pred - target + loss = torch.sqrt(diff * diff + mu * mu) - mu + + # gradient length + g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach() + weights = torch.zeros_like(g) + + valid = label_weight > 0 + tot = max(label_weight.float().sum().item(), 1.0) + n = 0 # n: valid bins + for i in range(self.bins): + inds = (g >= edges[i]) & (g < edges[i + 1]) & valid + num_in_bin = inds.sum().item() + if num_in_bin > 0: + n += 1 + if mmt > 0: + self.acc_sum[i] = mmt * self.acc_sum[i] \ + + (1 - mmt) * num_in_bin + weights[inds] = tot / self.acc_sum[i] + else: + weights[inds] = tot / num_in_bin + if n > 0: + weights /= n + loss = weight_reduce_loss( + loss, weights, reduction=reduction, avg_factor=tot) + return loss * self.loss_weight diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/iou_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/iou_loss.py new file mode 100644 index 000000000..bf1ed04e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/iou_loss.py @@ -0,0 +1,474 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +import warnings + +import mmcv +import torch +import torch.nn as nn + +from mmdet.core import bbox_overlaps +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def iou_loss(pred, target, linear=False, mode='log', eps=1e-6): + """IoU loss. + + Computing the IoU loss between a set of predicted bboxes and target bboxes. + The loss is calculated as negative log of IoU. + + Args: + pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), + shape (n, 4). + target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). + linear (bool, optional): If True, use linear scale of loss instead of + log scale. Default: False. + mode (str): Loss scaling mode, including "linear", "square", and "log". + Default: 'log' + eps (float): Eps to avoid log(0). + + Return: + torch.Tensor: Loss tensor. + """ + assert mode in ['linear', 'square', 'log'] + if linear: + mode = 'linear' + warnings.warn('DeprecationWarning: Setting "linear=True" in ' + 'iou_loss is deprecated, please use "mode=`linear`" ' + 'instead.') + ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps) + if mode == 'linear': + loss = 1 - ious + elif mode == 'square': + loss = 1 - ious**2 + elif mode == 'log': + loss = -ious.log() + else: + raise NotImplementedError + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3): + """BIoULoss. + + This is an implementation of paper + `Improving Object Localization with Fitness NMS and Bounded IoU Loss. + `_. + + Args: + pred (torch.Tensor): Predicted bboxes. + target (torch.Tensor): Target bboxes. + beta (float): beta parameter in smoothl1. + eps (float): eps to avoid NaN. + """ + pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 + pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 + pred_w = pred[:, 2] - pred[:, 0] + pred_h = pred[:, 3] - pred[:, 1] + with torch.no_grad(): + target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 + target_ctry = (target[:, 1] + target[:, 3]) * 0.5 + target_w = target[:, 2] - target[:, 0] + target_h = target[:, 3] - target[:, 1] + + dx = target_ctrx - pred_ctrx + dy = target_ctry - pred_ctry + + loss_dx = 1 - torch.max( + (target_w - 2 * dx.abs()) / + (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) + loss_dy = 1 - torch.max( + (target_h - 2 * dy.abs()) / + (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) + loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / + (target_w + eps)) + loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / + (target_h + eps)) + # view(..., -1) does not work for empty tensor + loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], + dim=-1).flatten(1) + + loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, + loss_comb - 0.5 * beta) + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def giou_loss(pred, target, eps=1e-7): + r"""`Generalized Intersection over Union: A Metric and A Loss for Bounding + Box Regression `_. + + Args: + pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), + shape (n, 4). + target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). + eps (float): Eps to avoid log(0). + + Return: + Tensor: Loss tensor. + """ + gious = bbox_overlaps(pred, target, mode='giou', is_aligned=True, eps=eps) + loss = 1 - gious + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def diou_loss(pred, target, eps=1e-7): + r"""`Implementation of Distance-IoU Loss: Faster and Better + Learning for Bounding Box Regression, https://arxiv.org/abs/1911.08287`_. + + Code is modified from https://github.com/Zzh-tju/DIoU. + + Args: + pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), + shape (n, 4). + target (Tensor): Corresponding gt bboxes, shape (n, 4). + eps (float): Eps to avoid log(0). + Return: + Tensor: Loss tensor. + """ + # overlap + lt = torch.max(pred[:, :2], target[:, :2]) + rb = torch.min(pred[:, 2:], target[:, 2:]) + wh = (rb - lt).clamp(min=0) + overlap = wh[:, 0] * wh[:, 1] + + # union + ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) + ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) + union = ap + ag - overlap + eps + + # IoU + ious = overlap / union + + # enclose area + enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) + enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) + enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) + + cw = enclose_wh[:, 0] + ch = enclose_wh[:, 1] + + c2 = cw**2 + ch**2 + eps + + b1_x1, b1_y1 = pred[:, 0], pred[:, 1] + b1_x2, b1_y2 = pred[:, 2], pred[:, 3] + b2_x1, b2_y1 = target[:, 0], target[:, 1] + b2_x2, b2_y2 = target[:, 2], target[:, 3] + + left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 + right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 + rho2 = left + right + + # DIoU + dious = ious - rho2 / c2 + loss = 1 - dious + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def ciou_loss(pred, target, eps=1e-7): + r"""`Implementation of paper `Enhancing Geometric Factors into + Model Learning and Inference for Object Detection and Instance + Segmentation `_. + + Code is modified from https://github.com/Zzh-tju/CIoU. + + Args: + pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), + shape (n, 4). + target (Tensor): Corresponding gt bboxes, shape (n, 4). + eps (float): Eps to avoid log(0). + Return: + Tensor: Loss tensor. + """ + # overlap + lt = torch.max(pred[:, :2], target[:, :2]) + rb = torch.min(pred[:, 2:], target[:, 2:]) + wh = (rb - lt).clamp(min=0) + overlap = wh[:, 0] * wh[:, 1] + + # union + ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) + ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) + union = ap + ag - overlap + eps + + # IoU + ious = overlap / union + + # enclose area + enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) + enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) + enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) + + cw = enclose_wh[:, 0] + ch = enclose_wh[:, 1] + + c2 = cw**2 + ch**2 + eps + + b1_x1, b1_y1 = pred[:, 0], pred[:, 1] + b1_x2, b1_y2 = pred[:, 2], pred[:, 3] + b2_x1, b2_y1 = target[:, 0], target[:, 1] + b2_x2, b2_y2 = target[:, 2], target[:, 3] + + w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps + w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps + + left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 + right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 + rho2 = left + right + + factor = 4 / math.pi**2 + v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) + + with torch.no_grad(): + alpha = (ious > 0.5).float() * v / (1 - ious + v) + + # CIoU + cious = ious - (rho2 / c2 + alpha * v) + loss = 1 - cious.clamp(min=-1.0, max=1.0) + return loss + + +@LOSSES.register_module() +class IoULoss(nn.Module): + """IoULoss. + + Computing the IoU loss between a set of predicted bboxes and target bboxes. + + Args: + linear (bool): If True, use linear scale of loss else determined + by mode. Default: False. + eps (float): Eps to avoid log(0). + reduction (str): Options are "none", "mean" and "sum". + loss_weight (float): Weight of loss. + mode (str): Loss scaling mode, including "linear", "square", and "log". + Default: 'log' + """ + + def __init__(self, + linear=False, + eps=1e-6, + reduction='mean', + loss_weight=1.0, + mode='log'): + super(IoULoss, self).__init__() + assert mode in ['linear', 'square', 'log'] + if linear: + mode = 'linear' + warnings.warn('DeprecationWarning: Setting "linear=True" in ' + 'IOULoss is deprecated, please use "mode=`linear`" ' + 'instead.') + self.mode = mode + self.linear = linear + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. Options are "none", "mean" and "sum". + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if (weight is not None) and (not torch.any(weight > 0)) and ( + reduction != 'none'): + if pred.dim() == weight.dim() + 1: + weight = weight.unsqueeze(1) + return (pred * weight).sum() # 0 + if weight is not None and weight.dim() > 1: + # TODO: remove this in the future + # reduce the weight of shape (n, 4) to (n,) to match the + # iou_loss of shape (n,) + assert weight.shape == pred.shape + weight = weight.mean(-1) + loss = self.loss_weight * iou_loss( + pred, + target, + weight, + mode=self.mode, + eps=self.eps, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss + + +@LOSSES.register_module() +class BoundedIoULoss(nn.Module): + + def __init__(self, beta=0.2, eps=1e-3, reduction='mean', loss_weight=1.0): + super(BoundedIoULoss, self).__init__() + self.beta = beta + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + if weight is not None and not torch.any(weight > 0): + if pred.dim() == weight.dim() + 1: + weight = weight.unsqueeze(1) + return (pred * weight).sum() # 0 + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss = self.loss_weight * bounded_iou_loss( + pred, + target, + weight, + beta=self.beta, + eps=self.eps, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss + + +@LOSSES.register_module() +class GIoULoss(nn.Module): + + def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): + super(GIoULoss, self).__init__() + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + if weight is not None and not torch.any(weight > 0): + if pred.dim() == weight.dim() + 1: + weight = weight.unsqueeze(1) + return (pred * weight).sum() # 0 + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if weight is not None and weight.dim() > 1: + # TODO: remove this in the future + # reduce the weight of shape (n, 4) to (n,) to match the + # giou_loss of shape (n,) + assert weight.shape == pred.shape + weight = weight.mean(-1) + loss = self.loss_weight * giou_loss( + pred, + target, + weight, + eps=self.eps, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss + + +@LOSSES.register_module() +class DIoULoss(nn.Module): + + def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): + super(DIoULoss, self).__init__() + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + if weight is not None and not torch.any(weight > 0): + if pred.dim() == weight.dim() + 1: + weight = weight.unsqueeze(1) + return (pred * weight).sum() # 0 + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if weight is not None and weight.dim() > 1: + # TODO: remove this in the future + # reduce the weight of shape (n, 4) to (n,) to match the + # giou_loss of shape (n,) + assert weight.shape == pred.shape + weight = weight.mean(-1) + loss = self.loss_weight * diou_loss( + pred, + target, + weight, + eps=self.eps, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss + + +@LOSSES.register_module() +class CIoULoss(nn.Module): + + def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): + super(CIoULoss, self).__init__() + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + if weight is not None and not torch.any(weight > 0): + if pred.dim() == weight.dim() + 1: + weight = weight.unsqueeze(1) + return (pred * weight).sum() # 0 + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if weight is not None and weight.dim() > 1: + # TODO: remove this in the future + # reduce the weight of shape (n, 4) to (n,) to match the + # giou_loss of shape (n,) + assert weight.shape == pred.shape + weight = weight.mean(-1) + loss = self.loss_weight * ciou_loss( + pred, + target, + weight, + eps=self.eps, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/kd_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/kd_loss.py new file mode 100644 index 000000000..75c19355f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/kd_loss.py @@ -0,0 +1,88 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def knowledge_distillation_kl_div_loss(pred, + soft_label, + T, + detach_target=True): + r"""Loss function for knowledge distilling using KL divergence. + + Args: + pred (Tensor): Predicted logits with shape (N, n + 1). + soft_label (Tensor): Target logits with shape (N, N + 1). + T (int): Temperature for distillation. + detach_target (bool): Remove soft_label from automatic differentiation + + Returns: + torch.Tensor: Loss tensor with shape (N,). + """ + assert pred.size() == soft_label.size() + target = F.softmax(soft_label / T, dim=1) + if detach_target: + target = target.detach() + + kd_loss = F.kl_div( + F.log_softmax(pred / T, dim=1), target, reduction='none').mean(1) * ( + T * T) + + return kd_loss + + +@LOSSES.register_module() +class KnowledgeDistillationKLDivLoss(nn.Module): + """Loss function for knowledge distilling using KL divergence. + + Args: + reduction (str): Options are `'none'`, `'mean'` and `'sum'`. + loss_weight (float): Loss weight of current loss. + T (int): Temperature for distillation. + """ + + def __init__(self, reduction='mean', loss_weight=1.0, T=10): + super(KnowledgeDistillationKLDivLoss, self).__init__() + assert T >= 1 + self.reduction = reduction + self.loss_weight = loss_weight + self.T = T + + def forward(self, + pred, + soft_label, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (Tensor): Predicted logits with shape (N, n + 1). + soft_label (Tensor): Target logits with shape (N, N + 1). + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + + reduction = ( + reduction_override if reduction_override else self.reduction) + + loss_kd = self.loss_weight * knowledge_distillation_kl_div_loss( + pred, + soft_label, + weight, + reduction=reduction, + avg_factor=avg_factor, + T=self.T) + + return loss_kd diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/mse_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/mse_loss.py new file mode 100644 index 000000000..4a622f86d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/mse_loss.py @@ -0,0 +1,57 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weighted_loss + + +@weighted_loss +def mse_loss(pred, target): + """Warpper of mse loss.""" + return F.mse_loss(pred, target, reduction='none') + + +@LOSSES.register_module() +class MSELoss(nn.Module): + """MSELoss. + + Args: + reduction (str, optional): The method that reduces the loss to a + scalar. Options are "none", "mean" and "sum". + loss_weight (float, optional): The weight of the loss. Defaults to 1.0 + """ + + def __init__(self, reduction='mean', loss_weight=1.0): + super().__init__() + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function of loss. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + weight (torch.Tensor, optional): Weight of the loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + + Returns: + torch.Tensor: The calculated loss + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss = self.loss_weight * mse_loss( + pred, target, weight, reduction=reduction, avg_factor=avg_factor) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/pisa_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/pisa_loss.py new file mode 100644 index 000000000..6afea0e5d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/pisa_loss.py @@ -0,0 +1,184 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch + +from mmdet.core import bbox_overlaps + + +@mmcv.jit(derivate=True, coderize=True) +def isr_p(cls_score, + bbox_pred, + bbox_targets, + rois, + sampling_results, + loss_cls, + bbox_coder, + k=2, + bias=0, + num_class=80): + """Importance-based Sample Reweighting (ISR_P), positive part. + + Args: + cls_score (Tensor): Predicted classification scores. + bbox_pred (Tensor): Predicted bbox deltas. + bbox_targets (tuple[Tensor]): A tuple of bbox targets, the are + labels, label_weights, bbox_targets, bbox_weights, respectively. + rois (Tensor): Anchors (single_stage) in shape (n, 4) or RoIs + (two_stage) in shape (n, 5). + sampling_results (obj): Sampling results. + loss_cls (func): Classification loss func of the head. + bbox_coder (obj): BBox coder of the head. + k (float): Power of the non-linear mapping. + bias (float): Shift of the non-linear mapping. + num_class (int): Number of classes, default: 80. + + Return: + tuple([Tensor]): labels, imp_based_label_weights, bbox_targets, + bbox_target_weights + """ + + labels, label_weights, bbox_targets, bbox_weights = bbox_targets + pos_label_inds = ((labels >= 0) & + (labels < num_class)).nonzero().reshape(-1) + pos_labels = labels[pos_label_inds] + + # if no positive samples, return the original targets + num_pos = float(pos_label_inds.size(0)) + if num_pos == 0: + return labels, label_weights, bbox_targets, bbox_weights + + # merge pos_assigned_gt_inds of per image to a single tensor + gts = list() + last_max_gt = 0 + for i in range(len(sampling_results)): + gt_i = sampling_results[i].pos_assigned_gt_inds + gts.append(gt_i + last_max_gt) + if len(gt_i) != 0: + last_max_gt = gt_i.max() + 1 + gts = torch.cat(gts) + assert len(gts) == num_pos + + cls_score = cls_score.detach() + bbox_pred = bbox_pred.detach() + + # For single stage detectors, rois here indicate anchors, in shape (N, 4) + # For two stage detectors, rois are in shape (N, 5) + if rois.size(-1) == 5: + pos_rois = rois[pos_label_inds][:, 1:] + else: + pos_rois = rois[pos_label_inds] + + if bbox_pred.size(-1) > 4: + bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4) + pos_delta_pred = bbox_pred[pos_label_inds, pos_labels].view(-1, 4) + else: + pos_delta_pred = bbox_pred[pos_label_inds].view(-1, 4) + + # compute iou of the predicted bbox and the corresponding GT + pos_delta_target = bbox_targets[pos_label_inds].view(-1, 4) + pos_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_pred) + target_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_target) + ious = bbox_overlaps(pos_bbox_pred, target_bbox_pred, is_aligned=True) + + pos_imp_weights = label_weights[pos_label_inds] + # Two steps to compute IoU-HLR. Samples are first sorted by IoU locally, + # then sorted again within the same-rank group + max_l_num = pos_labels.bincount().max() + for label in pos_labels.unique(): + l_inds = (pos_labels == label).nonzero().view(-1) + l_gts = gts[l_inds] + for t in l_gts.unique(): + t_inds = l_inds[l_gts == t] + t_ious = ious[t_inds] + _, t_iou_rank_idx = t_ious.sort(descending=True) + _, t_iou_rank = t_iou_rank_idx.sort() + ious[t_inds] += max_l_num - t_iou_rank.float() + l_ious = ious[l_inds] + _, l_iou_rank_idx = l_ious.sort(descending=True) + _, l_iou_rank = l_iou_rank_idx.sort() # IoU-HLR + # linearly map HLR to label weights + pos_imp_weights[l_inds] *= (max_l_num - l_iou_rank.float()) / max_l_num + + pos_imp_weights = (bias + pos_imp_weights * (1 - bias)).pow(k) + + # normalize to make the new weighted loss value equal to the original loss + pos_loss_cls = loss_cls( + cls_score[pos_label_inds], pos_labels, reduction_override='none') + if pos_loss_cls.dim() > 1: + ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds][:, + None] + new_pos_loss_cls = pos_loss_cls * pos_imp_weights[:, None] + else: + ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds] + new_pos_loss_cls = pos_loss_cls * pos_imp_weights + pos_loss_cls_ratio = ori_pos_loss_cls.sum() / new_pos_loss_cls.sum() + pos_imp_weights = pos_imp_weights * pos_loss_cls_ratio + label_weights[pos_label_inds] = pos_imp_weights + + bbox_targets = labels, label_weights, bbox_targets, bbox_weights + return bbox_targets + + +@mmcv.jit(derivate=True, coderize=True) +def carl_loss(cls_score, + labels, + bbox_pred, + bbox_targets, + loss_bbox, + k=1, + bias=0.2, + avg_factor=None, + sigmoid=False, + num_class=80): + """Classification-Aware Regression Loss (CARL). + + Args: + cls_score (Tensor): Predicted classification scores. + labels (Tensor): Targets of classification. + bbox_pred (Tensor): Predicted bbox deltas. + bbox_targets (Tensor): Target of bbox regression. + loss_bbox (func): Regression loss func of the head. + bbox_coder (obj): BBox coder of the head. + k (float): Power of the non-linear mapping. + bias (float): Shift of the non-linear mapping. + avg_factor (int): Average factor used in regression loss. + sigmoid (bool): Activation of the classification score. + num_class (int): Number of classes, default: 80. + + Return: + dict: CARL loss dict. + """ + pos_label_inds = ((labels >= 0) & + (labels < num_class)).nonzero().reshape(-1) + if pos_label_inds.numel() == 0: + return dict(loss_carl=cls_score.sum()[None] * 0.) + pos_labels = labels[pos_label_inds] + + # multiply pos_cls_score with the corresponding bbox weight + # and remain gradient + if sigmoid: + pos_cls_score = cls_score.sigmoid()[pos_label_inds, pos_labels] + else: + pos_cls_score = cls_score.softmax(-1)[pos_label_inds, pos_labels] + carl_loss_weights = (bias + (1 - bias) * pos_cls_score).pow(k) + + # normalize carl_loss_weight to make its sum equal to num positive + num_pos = float(pos_cls_score.size(0)) + weight_ratio = num_pos / carl_loss_weights.sum() + carl_loss_weights *= weight_ratio + + if avg_factor is None: + avg_factor = bbox_targets.size(0) + # if is class agnostic, bbox pred is in shape (N, 4) + # otherwise, bbox pred is in shape (N, #classes, 4) + if bbox_pred.size(-1) > 4: + bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4) + pos_bbox_preds = bbox_pred[pos_label_inds, pos_labels] + else: + pos_bbox_preds = bbox_pred[pos_label_inds] + ori_loss_reg = loss_bbox( + pos_bbox_preds, + bbox_targets[pos_label_inds], + reduction_override='none') / avg_factor + loss_carl = (ori_loss_reg * carl_loss_weights[:, None]).sum() + return dict(loss_carl=loss_carl[None]) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/seesaw_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/seesaw_loss.py new file mode 100644 index 000000000..01040472d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/seesaw_loss.py @@ -0,0 +1,262 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .accuracy import accuracy +from .cross_entropy_loss import cross_entropy +from .utils import weight_reduce_loss + + +def seesaw_ce_loss(cls_score, + labels, + label_weights, + cum_samples, + num_classes, + p, + q, + eps, + reduction='mean', + avg_factor=None): + """Calculate the Seesaw CrossEntropy loss. + + Args: + cls_score (torch.Tensor): The prediction with shape (N, C), + C is the number of classes. + labels (torch.Tensor): The learning label of the prediction. + label_weights (torch.Tensor): Sample-wise loss weight. + cum_samples (torch.Tensor): Cumulative samples for each category. + num_classes (int): The number of classes. + p (float): The ``p`` in the mitigation factor. + q (float): The ``q`` in the compenstation factor. + eps (float): The minimal value of divisor to smooth + the computation of compensation factor + reduction (str, optional): The method used to reduce the loss. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + + Returns: + torch.Tensor: The calculated loss + """ + assert cls_score.size(-1) == num_classes + assert len(cum_samples) == num_classes + + onehot_labels = F.one_hot(labels, num_classes) + seesaw_weights = cls_score.new_ones(onehot_labels.size()) + + # mitigation factor + if p > 0: + sample_ratio_matrix = cum_samples[None, :].clamp( + min=1) / cum_samples[:, None].clamp(min=1) + index = (sample_ratio_matrix < 1.0).float() + sample_weights = sample_ratio_matrix.pow(p) * index + (1 - index) + mitigation_factor = sample_weights[labels.long(), :] + seesaw_weights = seesaw_weights * mitigation_factor + + # compensation factor + if q > 0: + scores = F.softmax(cls_score.detach(), dim=1) + self_scores = scores[ + torch.arange(0, len(scores)).to(scores.device).long(), + labels.long()] + score_matrix = scores / self_scores[:, None].clamp(min=eps) + index = (score_matrix > 1.0).float() + compensation_factor = score_matrix.pow(q) * index + (1 - index) + seesaw_weights = seesaw_weights * compensation_factor + + cls_score = cls_score + (seesaw_weights.log() * (1 - onehot_labels)) + + loss = F.cross_entropy(cls_score, labels, weight=None, reduction='none') + + if label_weights is not None: + label_weights = label_weights.float() + loss = weight_reduce_loss( + loss, weight=label_weights, reduction=reduction, avg_factor=avg_factor) + return loss + + +@LOSSES.register_module() +class SeesawLoss(nn.Module): + """ + Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021) + arXiv: https://arxiv.org/abs/2008.10032 + + Args: + use_sigmoid (bool, optional): Whether the prediction uses sigmoid + of softmax. Only False is supported. + p (float, optional): The ``p`` in the mitigation factor. + Defaults to 0.8. + q (float, optional): The ``q`` in the compenstation factor. + Defaults to 2.0. + num_classes (int, optional): The number of classes. + Default to 1203 for LVIS v1 dataset. + eps (float, optional): The minimal value of divisor to smooth + the computation of compensation factor + reduction (str, optional): The method that reduces the loss to a + scalar. Options are "none", "mean" and "sum". + loss_weight (float, optional): The weight of the loss. Defaults to 1.0 + return_dict (bool, optional): Whether return the losses as a dict. + Default to True. + """ + + def __init__(self, + use_sigmoid=False, + p=0.8, + q=2.0, + num_classes=1203, + eps=1e-2, + reduction='mean', + loss_weight=1.0, + return_dict=True): + super(SeesawLoss, self).__init__() + assert not use_sigmoid + self.use_sigmoid = False + self.p = p + self.q = q + self.num_classes = num_classes + self.eps = eps + self.reduction = reduction + self.loss_weight = loss_weight + self.return_dict = return_dict + + # 0 for pos, 1 for neg + self.cls_criterion = seesaw_ce_loss + + # cumulative samples for each category + self.register_buffer( + 'cum_samples', + torch.zeros(self.num_classes + 1, dtype=torch.float)) + + # custom output channels of the classifier + self.custom_cls_channels = True + # custom activation of cls_score + self.custom_activation = True + # custom accuracy of the classsifier + self.custom_accuracy = True + + def _split_cls_score(self, cls_score): + # split cls_score to cls_score_classes and cls_score_objectness + assert cls_score.size(-1) == self.num_classes + 2 + cls_score_classes = cls_score[..., :-2] + cls_score_objectness = cls_score[..., -2:] + return cls_score_classes, cls_score_objectness + + def get_cls_channels(self, num_classes): + """Get custom classification channels. + + Args: + num_classes (int): The number of classes. + + Returns: + int: The custom classification channels. + """ + assert num_classes == self.num_classes + return num_classes + 2 + + def get_activation(self, cls_score): + """Get custom activation of cls_score. + + Args: + cls_score (torch.Tensor): The prediction with shape (N, C + 2). + + Returns: + torch.Tensor: The custom activation of cls_score with shape + (N, C + 1). + """ + cls_score_classes, cls_score_objectness = self._split_cls_score( + cls_score) + score_classes = F.softmax(cls_score_classes, dim=-1) + score_objectness = F.softmax(cls_score_objectness, dim=-1) + score_pos = score_objectness[..., [0]] + score_neg = score_objectness[..., [1]] + score_classes = score_classes * score_pos + scores = torch.cat([score_classes, score_neg], dim=-1) + return scores + + def get_accuracy(self, cls_score, labels): + """Get custom accuracy w.r.t. cls_score and labels. + + Args: + cls_score (torch.Tensor): The prediction with shape (N, C + 2). + labels (torch.Tensor): The learning label of the prediction. + + Returns: + Dict [str, torch.Tensor]: The accuracy for objectness and classes, + respectively. + """ + pos_inds = labels < self.num_classes + obj_labels = (labels == self.num_classes).long() + cls_score_classes, cls_score_objectness = self._split_cls_score( + cls_score) + acc_objectness = accuracy(cls_score_objectness, obj_labels) + acc_classes = accuracy(cls_score_classes[pos_inds], labels[pos_inds]) + acc = dict() + acc['acc_objectness'] = acc_objectness + acc['acc_classes'] = acc_classes + return acc + + def forward(self, + cls_score, + labels, + label_weights=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + cls_score (torch.Tensor): The prediction with shape (N, C + 2). + labels (torch.Tensor): The learning label of the prediction. + label_weights (torch.Tensor, optional): Sample-wise loss weight. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction (str, optional): The method used to reduce the loss. + Options are "none", "mean" and "sum". + Returns: + torch.Tensor | Dict [str, torch.Tensor]: + if return_dict == False: The calculated loss | + if return_dict == True: The dict of calculated losses + for objectness and classes, respectively. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + assert cls_score.size(-1) == self.num_classes + 2 + pos_inds = labels < self.num_classes + # 0 for pos, 1 for neg + obj_labels = (labels == self.num_classes).long() + + # accumulate the samples for each category + unique_labels = labels.unique() + for u_l in unique_labels: + inds_ = labels == u_l.item() + self.cum_samples[u_l] += inds_.sum() + + if label_weights is not None: + label_weights = label_weights.float() + else: + label_weights = labels.new_ones(labels.size(), dtype=torch.float) + + cls_score_classes, cls_score_objectness = self._split_cls_score( + cls_score) + # calculate loss_cls_classes (only need pos samples) + if pos_inds.sum() > 0: + loss_cls_classes = self.loss_weight * self.cls_criterion( + cls_score_classes[pos_inds], labels[pos_inds], + label_weights[pos_inds], self.cum_samples[:self.num_classes], + self.num_classes, self.p, self.q, self.eps, reduction, + avg_factor) + else: + loss_cls_classes = cls_score_classes[pos_inds].sum() + # calculate loss_cls_objectness + loss_cls_objectness = self.loss_weight * cross_entropy( + cls_score_objectness, obj_labels, label_weights, reduction, + avg_factor) + + if self.return_dict: + loss_cls = dict() + loss_cls['loss_cls_objectness'] = loss_cls_objectness + loss_cls['loss_cls_classes'] = loss_cls_classes + else: + loss_cls = loss_cls_classes + loss_cls_objectness + return loss_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/smooth_l1_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/smooth_l1_loss.py new file mode 100644 index 000000000..551174672 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/smooth_l1_loss.py @@ -0,0 +1,146 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch +import torch.nn as nn + +from ..builder import LOSSES +from .utils import weighted_loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def smooth_l1_loss(pred, target, beta=1.0): + """Smooth L1 loss. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + beta (float, optional): The threshold in the piecewise function. + Defaults to 1.0. + + Returns: + torch.Tensor: Calculated loss + """ + assert beta > 0 + if target.numel() == 0: + return pred.sum() * 0 + + assert pred.size() == target.size() + diff = torch.abs(pred - target) + loss = torch.where(diff < beta, 0.5 * diff * diff / beta, + diff - 0.5 * beta) + return loss + + +@mmcv.jit(derivate=True, coderize=True) +@weighted_loss +def l1_loss(pred, target): + """L1 loss. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + + Returns: + torch.Tensor: Calculated loss + """ + if target.numel() == 0: + return pred.sum() * 0 + + assert pred.size() == target.size() + loss = torch.abs(pred - target) + return loss + + +@LOSSES.register_module() +class SmoothL1Loss(nn.Module): + """Smooth L1 loss. + + Args: + beta (float, optional): The threshold in the piecewise function. + Defaults to 1.0. + reduction (str, optional): The method to reduce the loss. + Options are "none", "mean" and "sum". Defaults to "mean". + loss_weight (float, optional): The weight of loss. + """ + + def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): + super(SmoothL1Loss, self).__init__() + self.beta = beta + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_bbox = self.loss_weight * smooth_l1_loss( + pred, + target, + weight, + beta=self.beta, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss_bbox + + +@LOSSES.register_module() +class L1Loss(nn.Module): + """L1 loss. + + Args: + reduction (str, optional): The method to reduce the loss. + Options are "none", "mean" and "sum". + loss_weight (float, optional): The weight of loss. + """ + + def __init__(self, reduction='mean', loss_weight=1.0): + super(L1Loss, self).__init__() + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_bbox = self.loss_weight * l1_loss( + pred, target, weight, reduction=reduction, avg_factor=avg_factor) + return loss_bbox diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/utils.py new file mode 100644 index 000000000..778237ebf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/utils.py @@ -0,0 +1,105 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import functools + +import mmcv +import torch +import torch.nn.functional as F + + +def reduce_loss(loss, reduction): + """Reduce loss as specified. + + Args: + loss (Tensor): Elementwise loss tensor. + reduction (str): Options are "none", "mean" and "sum". + + Return: + Tensor: Reduced loss tensor. + """ + reduction_enum = F._Reduction.get_enum(reduction) + # none: 0, elementwise_mean:1, sum: 2 + if reduction_enum == 0: + return loss + elif reduction_enum == 1: + return loss.mean() + elif reduction_enum == 2: + return loss.sum() + + +@mmcv.jit(derivate=True, coderize=True) +def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): + """Apply element-wise weight and reduce loss. + + Args: + loss (Tensor): Element-wise loss. + weight (Tensor): Element-wise weights. + reduction (str): Same as built-in losses of PyTorch. + avg_factor (float): Average factor when computing the mean of losses. + + Returns: + Tensor: Processed loss values. + """ + # if weight is specified, apply element-wise weight + if weight is not None: + loss = loss * weight + + # if avg_factor is not specified, just reduce the loss + if avg_factor is None: + loss = reduce_loss(loss, reduction) + else: + # if reduction is mean, then average the loss by avg_factor + if reduction == 'mean': + # Avoid causing ZeroDivisionError when avg_factor is 0.0, + # i.e., all labels of an image belong to ignore index. + eps = torch.finfo(torch.float32).eps + loss = loss.sum() / (avg_factor + eps) + # if reduction is 'none', then do nothing, otherwise raise an error + elif reduction != 'none': + raise ValueError('avg_factor can not be used with reduction="sum"') + return loss + + +def weighted_loss(loss_func): + """Create a weighted version of a given loss function. + + To use this decorator, the loss function must have the signature like + `loss_func(pred, target, **kwargs)`. The function only needs to compute + element-wise loss without any reduction. This decorator will add weight + and reduction arguments to the function. The decorated function will have + the signature like `loss_func(pred, target, weight=None, reduction='mean', + avg_factor=None, **kwargs)`. + + :Example: + + >>> import torch + >>> @weighted_loss + >>> def l1_loss(pred, target): + >>> return (pred - target).abs() + + >>> pred = torch.Tensor([0, 2, 3]) + >>> target = torch.Tensor([1, 1, 1]) + >>> weight = torch.Tensor([1, 0, 1]) + + >>> l1_loss(pred, target) + tensor(1.3333) + >>> l1_loss(pred, target, weight) + tensor(1.) + >>> l1_loss(pred, target, reduction='none') + tensor([1., 1., 2.]) + >>> l1_loss(pred, target, weight, avg_factor=2) + tensor(1.5000) + """ + + @functools.wraps(loss_func) + def wrapper(pred, + target, + weight=None, + reduction='mean', + avg_factor=None, + **kwargs): + # get element-wise loss + loss = loss_func(pred, target, **kwargs) + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + return wrapper diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/varifocal_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/varifocal_loss.py new file mode 100644 index 000000000..42f0eef9c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/losses/varifocal_loss.py @@ -0,0 +1,134 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +@mmcv.jit(derivate=True, coderize=True) +def varifocal_loss(pred, + target, + weight=None, + alpha=0.75, + gamma=2.0, + iou_weighted=True, + reduction='mean', + avg_factor=None): + """`Varifocal Loss `_ + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the + number of classes + target (torch.Tensor): The learning target of the iou-aware + classification score with shape (N, C), C is the number of classes. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + alpha (float, optional): A balance factor for the negative part of + Varifocal Loss, which is different from the alpha of Focal Loss. + Defaults to 0.75. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + iou_weighted (bool, optional): Whether to weight the loss of the + positive example with the iou target. Defaults to True. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and + "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + # pred and target should be of the same size + assert pred.size() == target.size() + pred_sigmoid = pred.sigmoid() + target = target.type_as(pred) + if iou_weighted: + focal_weight = target * (target > 0.0).float() + \ + alpha * (pred_sigmoid - target).abs().pow(gamma) * \ + (target <= 0.0).float() + else: + focal_weight = (target > 0.0).float() + \ + alpha * (pred_sigmoid - target).abs().pow(gamma) * \ + (target <= 0.0).float() + loss = F.binary_cross_entropy_with_logits( + pred, target, reduction='none') * focal_weight + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + +@LOSSES.register_module() +class VarifocalLoss(nn.Module): + + def __init__(self, + use_sigmoid=True, + alpha=0.75, + gamma=2.0, + iou_weighted=True, + reduction='mean', + loss_weight=1.0): + """`Varifocal Loss `_ + + Args: + use_sigmoid (bool, optional): Whether the prediction is + used for sigmoid or softmax. Defaults to True. + alpha (float, optional): A balance factor for the negative part of + Varifocal Loss, which is different from the alpha of Focal + Loss. Defaults to 0.75. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + iou_weighted (bool, optional): Whether to weight the loss of the + positive examples with the iou target. Defaults to True. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and + "sum". + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + """ + super(VarifocalLoss, self).__init__() + assert use_sigmoid is True, \ + 'Only sigmoid varifocal loss supported now.' + assert alpha >= 0.0 + self.use_sigmoid = use_sigmoid + self.alpha = alpha + self.gamma = gamma + self.iou_weighted = iou_weighted + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Options are "none", "mean" and "sum". + + Returns: + torch.Tensor: The calculated loss + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.use_sigmoid: + loss_cls = self.loss_weight * varifocal_loss( + pred, + target, + weight, + alpha=self.alpha, + gamma=self.gamma, + iou_weighted=self.iou_weighted, + reduction=reduction, + avg_factor=avg_factor) + else: + raise NotImplementedError + return loss_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/__init__.py new file mode 100644 index 000000000..6f2fa823f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/__init__.py @@ -0,0 +1,23 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .bfp import BFP +from .channel_mapper import ChannelMapper +from .ct_resnet_neck import CTResNetNeck +from .dilated_encoder import DilatedEncoder +from .dyhead import DyHead +from .fpg import FPG +from .fpn import FPN +from .fpn_carafe import FPN_CARAFE +from .hrfpn import HRFPN +from .nas_fpn import NASFPN +from .nasfcos_fpn import NASFCOS_FPN +from .pafpn import PAFPN +from .rfp import RFP +from .ssd_neck import SSDNeck +from .yolo_neck import YOLOV3Neck +from .yolox_pafpn import YOLOXPAFPN + +__all__ = [ + 'FPN', 'BFP', 'ChannelMapper', 'HRFPN', 'NASFPN', 'FPN_CARAFE', 'PAFPN', + 'NASFCOS_FPN', 'RFP', 'YOLOV3Neck', 'FPG', 'DilatedEncoder', + 'CTResNetNeck', 'SSDNeck', 'YOLOXPAFPN', 'DyHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/bfp.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/bfp.py new file mode 100644 index 000000000..9fdfa036d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/bfp.py @@ -0,0 +1,102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.cnn.bricks import NonLocal2d +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +@NECKS.register_module() +class BFP(BaseModule): + """BFP (Balanced Feature Pyramids) + + BFP takes multi-level features as inputs and gather them into a single one, + then refine the gathered feature and scatter the refined results to + multi-level features. This module is used in Libra R-CNN (CVPR 2019), see + the paper `Libra R-CNN: Towards Balanced Learning for Object Detection + `_ for details. + + Args: + in_channels (int): Number of input channels (feature maps of all levels + should have the same channels). + num_levels (int): Number of input feature levels. + conv_cfg (dict): The config dict for convolution layers. + norm_cfg (dict): The config dict for normalization layers. + refine_level (int): Index of integration and refine level of BSF in + multi-level features from bottom to top. + refine_type (str): Type of the refine op, currently support + [None, 'conv', 'non_local']. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + num_levels, + refine_level=2, + refine_type=None, + conv_cfg=None, + norm_cfg=None, + init_cfg=dict( + type='Xavier', layer='Conv2d', distribution='uniform')): + super(BFP, self).__init__(init_cfg) + assert refine_type in [None, 'conv', 'non_local'] + + self.in_channels = in_channels + self.num_levels = num_levels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + + self.refine_level = refine_level + self.refine_type = refine_type + assert 0 <= self.refine_level < self.num_levels + + if self.refine_type == 'conv': + self.refine = ConvModule( + self.in_channels, + self.in_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + elif self.refine_type == 'non_local': + self.refine = NonLocal2d( + self.in_channels, + reduction=1, + use_scale=False, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == self.num_levels + + # step 1: gather multi-level features by resize and average + feats = [] + gather_size = inputs[self.refine_level].size()[2:] + for i in range(self.num_levels): + if i < self.refine_level: + gathered = F.adaptive_max_pool2d( + inputs[i], output_size=gather_size) + else: + gathered = F.interpolate( + inputs[i], size=gather_size, mode='nearest') + feats.append(gathered) + + bsf = sum(feats) / len(feats) + + # step 2: refine gathered features + if self.refine_type is not None: + bsf = self.refine(bsf) + + # step 3: scatter refined features to multi-levels by a residual path + outs = [] + for i in range(self.num_levels): + out_size = inputs[i].size()[2:] + if i < self.refine_level: + residual = F.interpolate(bsf, size=out_size, mode='nearest') + else: + residual = F.adaptive_max_pool2d(bsf, output_size=out_size) + outs.append(residual + inputs[i]) + + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/channel_mapper.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/channel_mapper.py new file mode 100644 index 000000000..774bdb1d7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/channel_mapper.py @@ -0,0 +1,100 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +@NECKS.register_module() +class ChannelMapper(BaseModule): + r"""Channel Mapper to reduce/increase channels of backbone features. + + This is used to reduce/increase channels of backbone features. + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale). + kernel_size (int, optional): kernel_size for reducing channels (used + at each scale). Default: 3. + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + act_cfg (dict, optional): Config dict for activation layer in + ConvModule. Default: dict(type='ReLU'). + num_outs (int, optional): Number of output feature maps. There + would be extra_convs when num_outs larger than the length + of in_channels. + init_cfg (dict or list[dict], optional): Initialization config dict. + Example: + >>> import torch + >>> in_channels = [2, 3, 5, 7] + >>> scales = [340, 170, 84, 43] + >>> inputs = [torch.rand(1, c, s, s) + ... for c, s in zip(in_channels, scales)] + >>> self = ChannelMapper(in_channels, 11, 3).eval() + >>> outputs = self.forward(inputs) + >>> for i in range(len(outputs)): + ... print(f'outputs[{i}].shape = {outputs[i].shape}') + outputs[0].shape = torch.Size([1, 11, 340, 340]) + outputs[1].shape = torch.Size([1, 11, 170, 170]) + outputs[2].shape = torch.Size([1, 11, 84, 84]) + outputs[3].shape = torch.Size([1, 11, 43, 43]) + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + conv_cfg=None, + norm_cfg=None, + act_cfg=dict(type='ReLU'), + num_outs=None, + init_cfg=dict( + type='Xavier', layer='Conv2d', distribution='uniform')): + super(ChannelMapper, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.extra_convs = None + if num_outs is None: + num_outs = len(in_channels) + self.convs = nn.ModuleList() + for in_channel in in_channels: + self.convs.append( + ConvModule( + in_channel, + out_channels, + kernel_size, + padding=(kernel_size - 1) // 2, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + if num_outs > len(in_channels): + self.extra_convs = nn.ModuleList() + for i in range(len(in_channels), num_outs): + if i == len(in_channels): + in_channel = in_channels[-1] + else: + in_channel = out_channels + self.extra_convs.append( + ConvModule( + in_channel, + out_channels, + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == len(self.convs) + outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] + if self.extra_convs: + for i in range(len(self.extra_convs)): + if i == 0: + outs.append(self.extra_convs[0](inputs[-1])) + else: + outs.append(self.extra_convs[i](outs[-1])) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ct_resnet_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ct_resnet_neck.py new file mode 100644 index 000000000..40eb26857 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ct_resnet_neck.py @@ -0,0 +1,94 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16 + +from mmdet.models.builder import NECKS + + +@NECKS.register_module() +class CTResNetNeck(BaseModule): + """The neck used in `CenterNet `_ for + object classification and box regression. + + Args: + in_channel (int): Number of input channels. + num_deconv_filters (tuple[int]): Number of filters per stage. + num_deconv_kernels (tuple[int]): Number of kernels per stage. + use_dcn (bool): If True, use DCNv2. Default: True. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channel, + num_deconv_filters, + num_deconv_kernels, + use_dcn=True, + init_cfg=None): + super(CTResNetNeck, self).__init__(init_cfg) + assert len(num_deconv_filters) == len(num_deconv_kernels) + self.fp16_enabled = False + self.use_dcn = use_dcn + self.in_channel = in_channel + self.deconv_layers = self._make_deconv_layer(num_deconv_filters, + num_deconv_kernels) + + def _make_deconv_layer(self, num_deconv_filters, num_deconv_kernels): + """use deconv layers to upsample backbone's output.""" + layers = [] + for i in range(len(num_deconv_filters)): + feat_channel = num_deconv_filters[i] + conv_module = ConvModule( + self.in_channel, + feat_channel, + 3, + padding=1, + conv_cfg=dict(type='DCNv2') if self.use_dcn else None, + norm_cfg=dict(type='BN')) + layers.append(conv_module) + upsample_module = ConvModule( + feat_channel, + feat_channel, + num_deconv_kernels[i], + stride=2, + padding=1, + conv_cfg=dict(type='deconv'), + norm_cfg=dict(type='BN')) + layers.append(upsample_module) + self.in_channel = feat_channel + + return nn.Sequential(*layers) + + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.ConvTranspose2d): + # In order to be consistent with the source code, + # reset the ConvTranspose2d initialization parameters + m.reset_parameters() + # Simulated bilinear upsampling kernel + w = m.weight.data + f = math.ceil(w.size(2) / 2) + c = (2 * f - 1 - f % 2) / (2. * f) + for i in range(w.size(2)): + for j in range(w.size(3)): + w[0, 0, i, j] = \ + (1 - math.fabs(i / f - c)) * ( + 1 - math.fabs(j / f - c)) + for c in range(1, w.size(0)): + w[c, 0, :, :] = w[0, 0, :, :] + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + # self.use_dcn is False + elif not self.use_dcn and isinstance(m, nn.Conv2d): + # In order to be consistent with the source code, + # reset the Conv2d initialization parameters + m.reset_parameters() + + @auto_fp16() + def forward(self, inputs): + assert isinstance(inputs, (list, tuple)) + outs = self.deconv_layers(inputs[-1]) + return outs, diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dilated_encoder.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dilated_encoder.py new file mode 100644 index 000000000..6679835bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dilated_encoder.py @@ -0,0 +1,108 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, + normal_init) +from torch.nn import BatchNorm2d + +from ..builder import NECKS + + +class Bottleneck(nn.Module): + """Bottleneck block for DilatedEncoder used in `YOLOF. + + `. + + The Bottleneck contains three ConvLayers and one residual connection. + + Args: + in_channels (int): The number of input channels. + mid_channels (int): The number of middle output channels. + dilation (int): Dilation rate. + norm_cfg (dict): Dictionary to construct and config norm layer. + """ + + def __init__(self, + in_channels, + mid_channels, + dilation, + norm_cfg=dict(type='BN', requires_grad=True)): + super(Bottleneck, self).__init__() + self.conv1 = ConvModule( + in_channels, mid_channels, 1, norm_cfg=norm_cfg) + self.conv2 = ConvModule( + mid_channels, + mid_channels, + 3, + padding=dilation, + dilation=dilation, + norm_cfg=norm_cfg) + self.conv3 = ConvModule( + mid_channels, in_channels, 1, norm_cfg=norm_cfg) + + def forward(self, x): + identity = x + out = self.conv1(x) + out = self.conv2(out) + out = self.conv3(out) + out = out + identity + return out + + +@NECKS.register_module() +class DilatedEncoder(nn.Module): + """Dilated Encoder for YOLOF `. + + This module contains two types of components: + - the original FPN lateral convolution layer and fpn convolution layer, + which are 1x1 conv + 3x3 conv + - the dilated residual block + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + block_mid_channels (int): The number of middle block output channels + num_residual_blocks (int): The number of residual blocks. + """ + + def __init__(self, in_channels, out_channels, block_mid_channels, + num_residual_blocks): + super(DilatedEncoder, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.block_mid_channels = block_mid_channels + self.num_residual_blocks = num_residual_blocks + self.block_dilations = [2, 4, 6, 8] + self._init_layers() + + def _init_layers(self): + self.lateral_conv = nn.Conv2d( + self.in_channels, self.out_channels, kernel_size=1) + self.lateral_norm = BatchNorm2d(self.out_channels) + self.fpn_conv = nn.Conv2d( + self.out_channels, self.out_channels, kernel_size=3, padding=1) + self.fpn_norm = BatchNorm2d(self.out_channels) + encoder_blocks = [] + for i in range(self.num_residual_blocks): + dilation = self.block_dilations[i] + encoder_blocks.append( + Bottleneck( + self.out_channels, + self.block_mid_channels, + dilation=dilation)) + self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) + + def init_weights(self): + caffe2_xavier_init(self.lateral_conv) + caffe2_xavier_init(self.fpn_conv) + for m in [self.lateral_norm, self.fpn_norm]: + constant_init(m, 1) + for m in self.dilated_encoder_blocks.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, mean=0, std=0.01) + if is_norm(m): + constant_init(m, 1) + + def forward(self, feature): + out = self.lateral_norm(self.lateral_conv(feature[-1])) + out = self.fpn_norm(self.fpn_conv(out)) + return self.dilated_encoder_blocks(out), diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dyhead.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dyhead.py new file mode 100644 index 000000000..5d752c348 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/dyhead.py @@ -0,0 +1,174 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (build_activation_layer, build_norm_layer, constant_init, + normal_init) +from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d +from mmcv.runner import BaseModule + +from ..builder import NECKS +from ..utils import DyReLU + +# Reference: +# https://github.com/microsoft/DynamicHead +# https://github.com/jshilong/SEPC + + +class DyDCNv2(nn.Module): + """ModulatedDeformConv2d with normalization layer used in DyHead. + + This module cannot be configured with `conv_cfg=dict(type='DCNv2')` + because DyHead calculates offset and mask from middle-level feature. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + stride (int | tuple[int], optional): Stride of the convolution. + Default: 1. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: dict(type='GN', num_groups=16, requires_grad=True). + """ + + def __init__(self, + in_channels, + out_channels, + stride=1, + norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)): + super().__init__() + self.with_norm = norm_cfg is not None + bias = not self.with_norm + self.conv = ModulatedDeformConv2d( + in_channels, out_channels, 3, stride=stride, padding=1, bias=bias) + if self.with_norm: + self.norm = build_norm_layer(norm_cfg, out_channels)[1] + + def forward(self, x, offset, mask): + """Forward function.""" + x = self.conv(x.contiguous(), offset, mask) + if self.with_norm: + x = self.norm(x) + return x + + +class DyHeadBlock(nn.Module): + """DyHead Block with three types of attention. + + HSigmoid arguments in default act_cfg follow official code, not paper. + https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + zero_init_offset (bool, optional): Whether to use zero init for + `spatial_conv_offset`. Default: True. + act_cfg (dict, optional): Config dict for the last activation layer of + scale-aware attention. Default: dict(type='HSigmoid', bias=3.0, + divisor=6.0). + """ + + def __init__(self, + in_channels, + out_channels, + zero_init_offset=True, + act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)): + super().__init__() + self.zero_init_offset = zero_init_offset + # (offset_x, offset_y, mask) * kernel_size_y * kernel_size_x + self.offset_and_mask_dim = 3 * 3 * 3 + self.offset_dim = 2 * 3 * 3 + + self.spatial_conv_high = DyDCNv2(in_channels, out_channels) + self.spatial_conv_mid = DyDCNv2(in_channels, out_channels) + self.spatial_conv_low = DyDCNv2(in_channels, out_channels, stride=2) + self.spatial_conv_offset = nn.Conv2d( + in_channels, self.offset_and_mask_dim, 3, padding=1) + self.scale_attn_module = nn.Sequential( + nn.AdaptiveAvgPool2d(1), nn.Conv2d(out_channels, 1, 1), + nn.ReLU(inplace=True), build_activation_layer(act_cfg)) + self.task_attn_module = DyReLU(out_channels) + self._init_weights() + + def _init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + normal_init(m, 0, 0.01) + if self.zero_init_offset: + constant_init(self.spatial_conv_offset, 0) + + def forward(self, x): + """Forward function.""" + outs = [] + for level in range(len(x)): + # calculate offset and mask of DCNv2 from middle-level feature + offset_and_mask = self.spatial_conv_offset(x[level]) + offset = offset_and_mask[:, :self.offset_dim, :, :] + mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid() + + mid_feat = self.spatial_conv_mid(x[level], offset, mask) + sum_feat = mid_feat * self.scale_attn_module(mid_feat) + summed_levels = 1 + if level > 0: + low_feat = self.spatial_conv_low(x[level - 1], offset, mask) + sum_feat += low_feat * self.scale_attn_module(low_feat) + summed_levels += 1 + if level < len(x) - 1: + # this upsample order is weird, but faster than natural order + # https://github.com/microsoft/DynamicHead/issues/25 + high_feat = F.interpolate( + self.spatial_conv_high(x[level + 1], offset, mask), + size=x[level].shape[-2:], + mode='bilinear', + align_corners=True) + sum_feat += high_feat * self.scale_attn_module(high_feat) + summed_levels += 1 + outs.append(self.task_attn_module(sum_feat / summed_levels)) + + return outs + + +@NECKS.register_module() +class DyHead(BaseModule): + """DyHead neck consisting of multiple DyHead Blocks. + + See `Dynamic Head: Unifying Object Detection Heads with Attentions + `_ for details. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + num_blocks (int, optional): Number of DyHead Blocks. Default: 6. + zero_init_offset (bool, optional): Whether to use zero init for + `spatial_conv_offset`. Default: True. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + num_blocks=6, + zero_init_offset=True, + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super().__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_blocks = num_blocks + self.zero_init_offset = zero_init_offset + + dyhead_blocks = [] + for i in range(num_blocks): + in_channels = self.in_channels if i == 0 else self.out_channels + dyhead_blocks.append( + DyHeadBlock( + in_channels, + self.out_channels, + zero_init_offset=zero_init_offset)) + self.dyhead_blocks = nn.Sequential(*dyhead_blocks) + + def forward(self, inputs): + """Forward function.""" + assert isinstance(inputs, (tuple, list)) + outs = self.dyhead_blocks(inputs) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpg.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpg.py new file mode 100644 index 000000000..a6a2a12ed --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpg.py @@ -0,0 +1,406 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +class Transition(BaseModule): + """Base class for transition. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + """ + + def __init__(self, in_channels, out_channels, init_cfg=None): + super().__init__(init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + + def forward(x): + pass + + +class UpInterpolationConv(Transition): + """A transition used for up-sampling. + + Up-sample the input by interpolation then refines the feature by + a convolution layer. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + scale_factor (int): Up-sampling factor. Default: 2. + mode (int): Interpolation mode. Default: nearest. + align_corners (bool): Whether align corners when interpolation. + Default: None. + kernel_size (int): Kernel size for the conv. Default: 3. + """ + + def __init__(self, + in_channels, + out_channels, + scale_factor=2, + mode='nearest', + align_corners=None, + kernel_size=3, + init_cfg=None, + **kwargs): + super().__init__(in_channels, out_channels, init_cfg) + self.mode = mode + self.scale_factor = scale_factor + self.align_corners = align_corners + self.conv = ConvModule( + in_channels, + out_channels, + kernel_size, + padding=(kernel_size - 1) // 2, + **kwargs) + + def forward(self, x): + x = F.interpolate( + x, + scale_factor=self.scale_factor, + mode=self.mode, + align_corners=self.align_corners) + x = self.conv(x) + return x + + +class LastConv(Transition): + """A transition used for refining the output of the last stage. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + num_inputs (int): Number of inputs of the FPN features. + kernel_size (int): Kernel size for the conv. Default: 3. + """ + + def __init__(self, + in_channels, + out_channels, + num_inputs, + kernel_size=3, + init_cfg=None, + **kwargs): + super().__init__(in_channels, out_channels, init_cfg) + self.num_inputs = num_inputs + self.conv_out = ConvModule( + in_channels, + out_channels, + kernel_size, + padding=(kernel_size - 1) // 2, + **kwargs) + + def forward(self, inputs): + assert len(inputs) == self.num_inputs + return self.conv_out(inputs[-1]) + + +@NECKS.register_module() +class FPG(BaseModule): + """FPG. + + Implementation of `Feature Pyramid Grids (FPG) + `_. + This implementation only gives the basic structure stated in the paper. + But users can implement different type of transitions to fully explore the + the potential power of the structure of FPG. + + Args: + in_channels (int): Number of input channels (feature maps of all levels + should have the same channels). + out_channels (int): Number of output channels (used at each scale) + num_outs (int): Number of output scales. + stack_times (int): The number of times the pyramid architecture will + be stacked. + paths (list[str]): Specify the path order of each stack level. + Each element in the list should be either 'bu' (bottom-up) or + 'td' (top-down). + inter_channels (int): Number of inter channels. + same_up_trans (dict): Transition that goes down at the same stage. + same_down_trans (dict): Transition that goes up at the same stage. + across_lateral_trans (dict): Across-pathway same-stage + across_down_trans (dict): Across-pathway bottom-up connection. + across_up_trans (dict): Across-pathway top-down connection. + across_skip_trans (dict): Across-pathway skip connection. + output_trans (dict): Transition that trans the output of the + last stage. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool): It decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, its actual mode is specified by `extra_convs_on_inputs`. + norm_cfg (dict): Config dict for normalization layer. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + transition_types = { + 'conv': ConvModule, + 'interpolation_conv': UpInterpolationConv, + 'last_conv': LastConv, + } + + def __init__(self, + in_channels, + out_channels, + num_outs, + stack_times, + paths, + inter_channels=None, + same_down_trans=None, + same_up_trans=dict( + type='conv', kernel_size=3, stride=2, padding=1), + across_lateral_trans=dict(type='conv', kernel_size=1), + across_down_trans=dict(type='conv', kernel_size=3), + across_up_trans=None, + across_skip_trans=dict(type='identity'), + output_trans=dict(type='last_conv', kernel_size=3), + start_level=0, + end_level=-1, + add_extra_convs=False, + norm_cfg=None, + skip_inds=None, + init_cfg=[ + dict(type='Caffe2Xavier', layer='Conv2d'), + dict( + type='Constant', + layer=[ + '_BatchNorm', '_InstanceNorm', 'GroupNorm', + 'LayerNorm' + ], + val=1.0) + ]): + super(FPG, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + if inter_channels is None: + self.inter_channels = [out_channels for _ in range(num_outs)] + elif isinstance(inter_channels, int): + self.inter_channels = [inter_channels for _ in range(num_outs)] + else: + assert isinstance(inter_channels, list) + assert len(inter_channels) == num_outs + self.inter_channels = inter_channels + self.stack_times = stack_times + self.paths = paths + assert isinstance(paths, list) and len(paths) == stack_times + for d in paths: + assert d in ('bu', 'td') + + self.same_down_trans = same_down_trans + self.same_up_trans = same_up_trans + self.across_lateral_trans = across_lateral_trans + self.across_down_trans = across_down_trans + self.across_up_trans = across_up_trans + self.output_trans = output_trans + self.across_skip_trans = across_skip_trans + + self.with_bias = norm_cfg is None + # skip inds must be specified if across skip trans is not None + if self.across_skip_trans is not None: + skip_inds is not None + self.skip_inds = skip_inds + assert len(self.skip_inds[0]) <= self.stack_times + + if end_level == -1 or end_level == self.num_ins - 1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level is not the last level, no extra level is allowed + self.backbone_end_level = end_level + 1 + assert end_level < self.num_ins + assert num_outs == end_level - start_level + 1 + self.start_level = start_level + self.end_level = end_level + self.add_extra_convs = add_extra_convs + + # build lateral 1x1 convs to reduce channels + self.lateral_convs = nn.ModuleList() + for i in range(self.start_level, self.backbone_end_level): + l_conv = nn.Conv2d(self.in_channels[i], + self.inter_channels[i - self.start_level], 1) + self.lateral_convs.append(l_conv) + + extra_levels = num_outs - self.backbone_end_level + self.start_level + self.extra_downsamples = nn.ModuleList() + for i in range(extra_levels): + if self.add_extra_convs: + fpn_idx = self.backbone_end_level - self.start_level + i + extra_conv = nn.Conv2d( + self.inter_channels[fpn_idx - 1], + self.inter_channels[fpn_idx], + 3, + stride=2, + padding=1) + self.extra_downsamples.append(extra_conv) + else: + self.extra_downsamples.append(nn.MaxPool2d(1, stride=2)) + + self.fpn_transitions = nn.ModuleList() # stack times + for s in range(self.stack_times): + stage_trans = nn.ModuleList() # num of feature levels + for i in range(self.num_outs): + # same, across_lateral, across_down, across_up + trans = nn.ModuleDict() + if s in self.skip_inds[i]: + stage_trans.append(trans) + continue + # build same-stage down trans (used in bottom-up paths) + if i == 0 or self.same_up_trans is None: + same_up_trans = None + else: + same_up_trans = self.build_trans( + self.same_up_trans, self.inter_channels[i - 1], + self.inter_channels[i]) + trans['same_up'] = same_up_trans + # build same-stage up trans (used in top-down paths) + if i == self.num_outs - 1 or self.same_down_trans is None: + same_down_trans = None + else: + same_down_trans = self.build_trans( + self.same_down_trans, self.inter_channels[i + 1], + self.inter_channels[i]) + trans['same_down'] = same_down_trans + # build across lateral trans + across_lateral_trans = self.build_trans( + self.across_lateral_trans, self.inter_channels[i], + self.inter_channels[i]) + trans['across_lateral'] = across_lateral_trans + # build across down trans + if i == self.num_outs - 1 or self.across_down_trans is None: + across_down_trans = None + else: + across_down_trans = self.build_trans( + self.across_down_trans, self.inter_channels[i + 1], + self.inter_channels[i]) + trans['across_down'] = across_down_trans + # build across up trans + if i == 0 or self.across_up_trans is None: + across_up_trans = None + else: + across_up_trans = self.build_trans( + self.across_up_trans, self.inter_channels[i - 1], + self.inter_channels[i]) + trans['across_up'] = across_up_trans + if self.across_skip_trans is None: + across_skip_trans = None + else: + across_skip_trans = self.build_trans( + self.across_skip_trans, self.inter_channels[i - 1], + self.inter_channels[i]) + trans['across_skip'] = across_skip_trans + # build across_skip trans + stage_trans.append(trans) + self.fpn_transitions.append(stage_trans) + + self.output_transition = nn.ModuleList() # output levels + for i in range(self.num_outs): + trans = self.build_trans( + self.output_trans, + self.inter_channels[i], + self.out_channels, + num_inputs=self.stack_times + 1) + self.output_transition.append(trans) + + self.relu = nn.ReLU(inplace=True) + + def build_trans(self, cfg, in_channels, out_channels, **extra_args): + cfg_ = cfg.copy() + trans_type = cfg_.pop('type') + trans_cls = self.transition_types[trans_type] + return trans_cls(in_channels, out_channels, **cfg_, **extra_args) + + def fuse(self, fuse_dict): + out = None + for item in fuse_dict.values(): + if item is not None: + if out is None: + out = item + else: + out = out + item + return out + + def forward(self, inputs): + assert len(inputs) == len(self.in_channels) + + # build all levels from original feature maps + feats = [ + lateral_conv(inputs[i + self.start_level]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + for downsample in self.extra_downsamples: + feats.append(downsample(feats[-1])) + + outs = [feats] + + for i in range(self.stack_times): + current_outs = outs[-1] + next_outs = [] + direction = self.paths[i] + for j in range(self.num_outs): + if i in self.skip_inds[j]: + next_outs.append(outs[-1][j]) + continue + # feature level + if direction == 'td': + lvl = self.num_outs - j - 1 + else: + lvl = j + # get transitions + if direction == 'td': + same_trans = self.fpn_transitions[i][lvl]['same_down'] + else: + same_trans = self.fpn_transitions[i][lvl]['same_up'] + across_lateral_trans = self.fpn_transitions[i][lvl][ + 'across_lateral'] + across_down_trans = self.fpn_transitions[i][lvl]['across_down'] + across_up_trans = self.fpn_transitions[i][lvl]['across_up'] + across_skip_trans = self.fpn_transitions[i][lvl]['across_skip'] + # init output + to_fuse = dict( + same=None, lateral=None, across_up=None, across_down=None) + # same downsample/upsample + if same_trans is not None: + to_fuse['same'] = same_trans(next_outs[-1]) + # across lateral + if across_lateral_trans is not None: + to_fuse['lateral'] = across_lateral_trans( + current_outs[lvl]) + # across downsample + if lvl > 0 and across_up_trans is not None: + to_fuse['across_up'] = across_up_trans(current_outs[lvl - + 1]) + # across upsample + if (lvl < self.num_outs - 1 and across_down_trans is not None): + to_fuse['across_down'] = across_down_trans( + current_outs[lvl + 1]) + if across_skip_trans is not None: + to_fuse['across_skip'] = across_skip_trans(outs[0][lvl]) + x = self.fuse(to_fuse) + next_outs.append(x) + + if direction == 'td': + outs.append(next_outs[::-1]) + else: + outs.append(next_outs) + + # output trans + final_outs = [] + for i in range(self.num_outs): + lvl_out_list = [] + for s in range(len(outs)): + lvl_out_list.append(outs[s][i]) + lvl_out = self.output_transition[i](lvl_out_list) + final_outs.append(lvl_out) + + return final_outs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn.py new file mode 100644 index 000000000..4bdb5b221 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn.py @@ -0,0 +1,204 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16 + +from ..builder import NECKS + + +@NECKS.register_module() +class FPN(BaseModule): + r"""Feature Pyramid Network. + + This is an implementation of paper `Feature Pyramid Networks for Object + Detection `_. + + Args: + in_channels (list[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale). + num_outs (int): Number of output scales. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool | str): If bool, it decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, it is equivalent to `add_extra_convs='on_input'`. + If str, it specifies the source feature map of the extra convs. + Only the following options are allowed + + - 'on_input': Last feat map of neck inputs (i.e. backbone feature). + - 'on_lateral': Last feature map after lateral convs. + - 'on_output': The last output feature map after fpn convs. + relu_before_extra_convs (bool): Whether to apply relu before the extra + conv. Default: False. + no_norm_on_lateral (bool): Whether to apply norm on lateral. + Default: False. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (dict): Config dict for activation layer in ConvModule. + Default: None. + upsample_cfg (dict): Config dict for interpolate layer. + Default: dict(mode='nearest'). + init_cfg (dict or list[dict], optional): Initialization config dict. + + Example: + >>> import torch + >>> in_channels = [2, 3, 5, 7] + >>> scales = [340, 170, 84, 43] + >>> inputs = [torch.rand(1, c, s, s) + ... for c, s in zip(in_channels, scales)] + >>> self = FPN(in_channels, 11, len(in_channels)).eval() + >>> outputs = self.forward(inputs) + >>> for i in range(len(outputs)): + ... print(f'outputs[{i}].shape = {outputs[i].shape}') + outputs[0].shape = torch.Size([1, 11, 340, 340]) + outputs[1].shape = torch.Size([1, 11, 170, 170]) + outputs[2].shape = torch.Size([1, 11, 84, 84]) + outputs[3].shape = torch.Size([1, 11, 43, 43]) + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + start_level=0, + end_level=-1, + add_extra_convs=False, + relu_before_extra_convs=False, + no_norm_on_lateral=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=None, + upsample_cfg=dict(mode='nearest'), + init_cfg=dict( + type='Xavier', layer='Conv2d', distribution='uniform')): + super(FPN, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + self.relu_before_extra_convs = relu_before_extra_convs + self.no_norm_on_lateral = no_norm_on_lateral + self.fp16_enabled = False + self.upsample_cfg = upsample_cfg.copy() + + if end_level == -1 or end_level == self.num_ins - 1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level is not the last level, no extra level is allowed + self.backbone_end_level = end_level + 1 + assert end_level < self.num_ins + assert num_outs == end_level - start_level + 1 + self.start_level = start_level + self.end_level = end_level + self.add_extra_convs = add_extra_convs + assert isinstance(add_extra_convs, (str, bool)) + if isinstance(add_extra_convs, str): + # Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' + assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') + elif add_extra_convs: # True + self.add_extra_convs = 'on_input' + + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + + for i in range(self.start_level, self.backbone_end_level): + l_conv = ConvModule( + in_channels[i], + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, + act_cfg=act_cfg, + inplace=False) + fpn_conv = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + # add extra conv layers (e.g., RetinaNet) + extra_levels = num_outs - self.backbone_end_level + self.start_level + if self.add_extra_convs and extra_levels >= 1: + for i in range(extra_levels): + if i == 0 and self.add_extra_convs == 'on_input': + in_channels = self.in_channels[self.backbone_end_level - 1] + else: + in_channels = out_channels + extra_fpn_conv = ConvModule( + in_channels, + out_channels, + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + self.fpn_convs.append(extra_fpn_conv) + + @auto_fp16() + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == len(self.in_channels) + + # build laterals + laterals = [ + lateral_conv(inputs[i + self.start_level]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + # In some cases, fixing `scale factor` (e.g. 2) is preferred, but + # it cannot co-exist with `size` in `F.interpolate`. + if 'scale_factor' in self.upsample_cfg: + # fix runtime error of "+=" inplace operation in PyTorch 1.10 + laterals[i - 1] = laterals[i - 1] + F.interpolate( + laterals[i], **self.upsample_cfg) + else: + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + F.interpolate( + laterals[i], size=prev_shape, **self.upsample_cfg) + + # build outputs + # part 1: from original levels + outs = [ + self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) + ] + # part 2: add extra levels + if self.num_outs > len(outs): + # use max pool to get more levels on top of outputs + # (e.g., Faster R-CNN, Mask R-CNN) + if not self.add_extra_convs: + for i in range(self.num_outs - used_backbone_levels): + outs.append(F.max_pool2d(outs[-1], 1, stride=2)) + # add conv layers on top of original feature maps (RetinaNet) + else: + if self.add_extra_convs == 'on_input': + extra_source = inputs[self.backbone_end_level - 1] + elif self.add_extra_convs == 'on_lateral': + extra_source = laterals[-1] + elif self.add_extra_convs == 'on_output': + extra_source = outs[-1] + else: + raise NotImplementedError + outs.append(self.fpn_convs[used_backbone_levels](extra_source)) + for i in range(used_backbone_levels + 1, self.num_outs): + if self.relu_before_extra_convs: + outs.append(self.fpn_convs[i](F.relu(outs[-1]))) + else: + outs.append(self.fpn_convs[i](outs[-1])) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn_carafe.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn_carafe.py new file mode 100644 index 000000000..fdd91f34c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/fpn_carafe.py @@ -0,0 +1,275 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, build_upsample_layer, xavier_init +from mmcv.ops.carafe import CARAFEPack +from mmcv.runner import BaseModule, ModuleList + +from ..builder import NECKS + + +@NECKS.register_module() +class FPN_CARAFE(BaseModule): + """FPN_CARAFE is a more flexible implementation of FPN. It allows more + choice for upsample methods during the top-down pathway. + + It can reproduce the performance of ICCV 2019 paper + CARAFE: Content-Aware ReAssembly of FEatures + Please refer to https://arxiv.org/abs/1905.02188 for more details. + + Args: + in_channels (list[int]): Number of channels for each input feature map. + out_channels (int): Output channels of feature pyramids. + num_outs (int): Number of output stages. + start_level (int): Start level of feature pyramids. + (Default: 0) + end_level (int): End level of feature pyramids. + (Default: -1 indicates the last level). + norm_cfg (dict): Dictionary to construct and config norm layer. + activate (str): Type of activation function in ConvModule + (Default: None indicates w/o activation). + order (dict): Order of components in ConvModule. + upsample (str): Type of upsample layer. + upsample_cfg (dict): Dictionary to construct and config upsample layer. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + start_level=0, + end_level=-1, + norm_cfg=None, + act_cfg=None, + order=('conv', 'norm', 'act'), + upsample_cfg=dict( + type='carafe', + up_kernel=5, + up_group=1, + encoder_kernel=3, + encoder_dilation=1), + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(FPN_CARAFE, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.with_bias = norm_cfg is None + self.upsample_cfg = upsample_cfg.copy() + self.upsample = self.upsample_cfg.get('type') + self.relu = nn.ReLU(inplace=False) + + self.order = order + assert order in [('conv', 'norm', 'act'), ('act', 'conv', 'norm')] + + assert self.upsample in [ + 'nearest', 'bilinear', 'deconv', 'pixel_shuffle', 'carafe', None + ] + if self.upsample in ['deconv', 'pixel_shuffle']: + assert hasattr( + self.upsample_cfg, + 'upsample_kernel') and self.upsample_cfg.upsample_kernel > 0 + self.upsample_kernel = self.upsample_cfg.pop('upsample_kernel') + + if end_level == -1 or end_level == self.num_ins - 1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level is not the last level, no extra level is allowed + self.backbone_end_level = end_level + 1 + assert end_level < self.num_ins + assert num_outs == end_level - start_level + 1 + self.start_level = start_level + self.end_level = end_level + + self.lateral_convs = ModuleList() + self.fpn_convs = ModuleList() + self.upsample_modules = ModuleList() + + for i in range(self.start_level, self.backbone_end_level): + l_conv = ConvModule( + in_channels[i], + out_channels, + 1, + norm_cfg=norm_cfg, + bias=self.with_bias, + act_cfg=act_cfg, + inplace=False, + order=self.order) + fpn_conv = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + norm_cfg=self.norm_cfg, + bias=self.with_bias, + act_cfg=act_cfg, + inplace=False, + order=self.order) + if i != self.backbone_end_level - 1: + upsample_cfg_ = self.upsample_cfg.copy() + if self.upsample == 'deconv': + upsample_cfg_.update( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=self.upsample_kernel, + stride=2, + padding=(self.upsample_kernel - 1) // 2, + output_padding=(self.upsample_kernel - 1) // 2) + elif self.upsample == 'pixel_shuffle': + upsample_cfg_.update( + in_channels=out_channels, + out_channels=out_channels, + scale_factor=2, + upsample_kernel=self.upsample_kernel) + elif self.upsample == 'carafe': + upsample_cfg_.update(channels=out_channels, scale_factor=2) + else: + # suppress warnings + align_corners = (None + if self.upsample == 'nearest' else False) + upsample_cfg_.update( + scale_factor=2, + mode=self.upsample, + align_corners=align_corners) + upsample_module = build_upsample_layer(upsample_cfg_) + self.upsample_modules.append(upsample_module) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + # add extra conv layers (e.g., RetinaNet) + extra_out_levels = ( + num_outs - self.backbone_end_level + self.start_level) + if extra_out_levels >= 1: + for i in range(extra_out_levels): + in_channels = ( + self.in_channels[self.backbone_end_level - + 1] if i == 0 else out_channels) + extra_l_conv = ConvModule( + in_channels, + out_channels, + 3, + stride=2, + padding=1, + norm_cfg=norm_cfg, + bias=self.with_bias, + act_cfg=act_cfg, + inplace=False, + order=self.order) + if self.upsample == 'deconv': + upsampler_cfg_ = dict( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=self.upsample_kernel, + stride=2, + padding=(self.upsample_kernel - 1) // 2, + output_padding=(self.upsample_kernel - 1) // 2) + elif self.upsample == 'pixel_shuffle': + upsampler_cfg_ = dict( + in_channels=out_channels, + out_channels=out_channels, + scale_factor=2, + upsample_kernel=self.upsample_kernel) + elif self.upsample == 'carafe': + upsampler_cfg_ = dict( + channels=out_channels, + scale_factor=2, + **self.upsample_cfg) + else: + # suppress warnings + align_corners = (None + if self.upsample == 'nearest' else False) + upsampler_cfg_ = dict( + scale_factor=2, + mode=self.upsample, + align_corners=align_corners) + upsampler_cfg_['type'] = self.upsample + upsample_module = build_upsample_layer(upsampler_cfg_) + extra_fpn_conv = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + norm_cfg=self.norm_cfg, + bias=self.with_bias, + act_cfg=act_cfg, + inplace=False, + order=self.order) + self.upsample_modules.append(upsample_module) + self.fpn_convs.append(extra_fpn_conv) + self.lateral_convs.append(extra_l_conv) + + # default init_weights for conv(msra) and norm in ConvModule + def init_weights(self): + """Initialize the weights of module.""" + super(FPN_CARAFE, self).init_weights() + for m in self.modules(): + if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): + xavier_init(m, distribution='uniform') + for m in self.modules(): + if isinstance(m, CARAFEPack): + m.init_weights() + + def slice_as(self, src, dst): + """Slice ``src`` as ``dst`` + + Note: + ``src`` should have the same or larger size than ``dst``. + + Args: + src (torch.Tensor): Tensors to be sliced. + dst (torch.Tensor): ``src`` will be sliced to have the same + size as ``dst``. + + Returns: + torch.Tensor: Sliced tensor. + """ + assert (src.size(2) >= dst.size(2)) and (src.size(3) >= dst.size(3)) + if src.size(2) == dst.size(2) and src.size(3) == dst.size(3): + return src + else: + return src[:, :, :dst.size(2), :dst.size(3)] + + def tensor_add(self, a, b): + """Add tensors ``a`` and ``b`` that might have different sizes.""" + if a.size() == b.size(): + c = a + b + else: + c = a + self.slice_as(b, a) + return c + + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == len(self.in_channels) + + # build laterals + laterals = [] + for i, lateral_conv in enumerate(self.lateral_convs): + if i <= self.backbone_end_level - self.start_level: + input = inputs[min(i + self.start_level, len(inputs) - 1)] + else: + input = laterals[-1] + lateral = lateral_conv(input) + laterals.append(lateral) + + # build top-down path + for i in range(len(laterals) - 1, 0, -1): + if self.upsample is not None: + upsample_feat = self.upsample_modules[i - 1](laterals[i]) + else: + upsample_feat = laterals[i] + laterals[i - 1] = self.tensor_add(laterals[i - 1], upsample_feat) + + # build outputs + num_conv_outs = len(self.fpn_convs) + outs = [] + for i in range(num_conv_outs): + out = self.fpn_convs[i](laterals[i]) + outs.append(out) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/hrfpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/hrfpn.py new file mode 100644 index 000000000..ca15be6b2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/hrfpn.py @@ -0,0 +1,100 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch.utils.checkpoint import checkpoint + +from ..builder import NECKS + + +@NECKS.register_module() +class HRFPN(BaseModule): + """HRFPN (High Resolution Feature Pyramids) + + paper: `High-Resolution Representations for Labeling Pixels and Regions + `_. + + Args: + in_channels (list): number of channels for each branch. + out_channels (int): output channels of feature pyramids. + num_outs (int): number of output stages. + pooling_type (str): pooling for generating feature pyramids + from {MAX, AVG}. + conv_cfg (dict): dictionary to construct and config conv layer. + norm_cfg (dict): dictionary to construct and config norm layer. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + stride (int): stride of 3x3 convolutional layers + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + num_outs=5, + pooling_type='AVG', + conv_cfg=None, + norm_cfg=None, + with_cp=False, + stride=1, + init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): + super(HRFPN, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + self.with_cp = with_cp + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + + self.reduction_conv = ConvModule( + sum(in_channels), + out_channels, + kernel_size=1, + conv_cfg=self.conv_cfg, + act_cfg=None) + + self.fpn_convs = nn.ModuleList() + for i in range(self.num_outs): + self.fpn_convs.append( + ConvModule( + out_channels, + out_channels, + kernel_size=3, + padding=1, + stride=stride, + conv_cfg=self.conv_cfg, + act_cfg=None)) + + if pooling_type == 'MAX': + self.pooling = F.max_pool2d + else: + self.pooling = F.avg_pool2d + + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == self.num_ins + outs = [inputs[0]] + for i in range(1, self.num_ins): + outs.append( + F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) + out = torch.cat(outs, dim=1) + if out.requires_grad and self.with_cp: + out = checkpoint(self.reduction_conv, out) + else: + out = self.reduction_conv(out) + outs = [out] + for i in range(1, self.num_outs): + outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) + outputs = [] + + for i in range(self.num_outs): + if outs[i].requires_grad and self.with_cp: + tmp_out = checkpoint(self.fpn_convs[i], outs[i]) + else: + tmp_out = self.fpn_convs[i](outs[i]) + outputs.append(tmp_out) + return tuple(outputs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nas_fpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nas_fpn.py new file mode 100644 index 000000000..710592ecc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nas_fpn.py @@ -0,0 +1,158 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops.merge_cells import GlobalPoolingCell, SumCell +from mmcv.runner import BaseModule, ModuleList + +from ..builder import NECKS + + +@NECKS.register_module() +class NASFPN(BaseModule): + """NAS-FPN. + + Implementation of `NAS-FPN: Learning Scalable Feature Pyramid Architecture + for Object Detection `_ + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale) + num_outs (int): Number of output scales. + stack_times (int): The number of times the pyramid architecture will + be stacked. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool): It decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, its actual mode is specified by `extra_convs_on_inputs`. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + stack_times, + start_level=0, + end_level=-1, + add_extra_convs=False, + norm_cfg=None, + init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): + super(NASFPN, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) # num of input feature levels + self.num_outs = num_outs # num of output feature levels + self.stack_times = stack_times + self.norm_cfg = norm_cfg + + if end_level == -1 or end_level == self.num_ins - 1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level is not the last level, no extra level is allowed + self.backbone_end_level = end_level + 1 + assert end_level < self.num_ins + assert num_outs == end_level - start_level + 1 + self.start_level = start_level + self.end_level = end_level + self.add_extra_convs = add_extra_convs + + # add lateral connections + self.lateral_convs = nn.ModuleList() + for i in range(self.start_level, self.backbone_end_level): + l_conv = ConvModule( + in_channels[i], + out_channels, + 1, + norm_cfg=norm_cfg, + act_cfg=None) + self.lateral_convs.append(l_conv) + + # add extra downsample layers (stride-2 pooling or conv) + extra_levels = num_outs - self.backbone_end_level + self.start_level + self.extra_downsamples = nn.ModuleList() + for i in range(extra_levels): + extra_conv = ConvModule( + out_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=None) + self.extra_downsamples.append( + nn.Sequential(extra_conv, nn.MaxPool2d(2, 2))) + + # add NAS FPN connections + self.fpn_stages = ModuleList() + for _ in range(self.stack_times): + stage = nn.ModuleDict() + # gp(p6, p4) -> p4_1 + stage['gp_64_4'] = GlobalPoolingCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # sum(p4_1, p4) -> p4_2 + stage['sum_44_4'] = SumCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # sum(p4_2, p3) -> p3_out + stage['sum_43_3'] = SumCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # sum(p3_out, p4_2) -> p4_out + stage['sum_34_4'] = SumCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # sum(p5, gp(p4_out, p3_out)) -> p5_out + stage['gp_43_5'] = GlobalPoolingCell(with_out_conv=False) + stage['sum_55_5'] = SumCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # sum(p7, gp(p5_out, p4_2)) -> p7_out + stage['gp_54_7'] = GlobalPoolingCell(with_out_conv=False) + stage['sum_77_7'] = SumCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + # gp(p7_out, p5_out) -> p6_out + stage['gp_75_6'] = GlobalPoolingCell( + in_channels=out_channels, + out_channels=out_channels, + out_norm_cfg=norm_cfg) + self.fpn_stages.append(stage) + + def forward(self, inputs): + """Forward function.""" + # build P3-P5 + feats = [ + lateral_conv(inputs[i + self.start_level]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + # build P6-P7 on top of P5 + for downsample in self.extra_downsamples: + feats.append(downsample(feats[-1])) + + p3, p4, p5, p6, p7 = feats + + for stage in self.fpn_stages: + # gp(p6, p4) -> p4_1 + p4_1 = stage['gp_64_4'](p6, p4, out_size=p4.shape[-2:]) + # sum(p4_1, p4) -> p4_2 + p4_2 = stage['sum_44_4'](p4_1, p4, out_size=p4.shape[-2:]) + # sum(p4_2, p3) -> p3_out + p3 = stage['sum_43_3'](p4_2, p3, out_size=p3.shape[-2:]) + # sum(p3_out, p4_2) -> p4_out + p4 = stage['sum_34_4'](p3, p4_2, out_size=p4.shape[-2:]) + # sum(p5, gp(p4_out, p3_out)) -> p5_out + p5_tmp = stage['gp_43_5'](p4, p3, out_size=p5.shape[-2:]) + p5 = stage['sum_55_5'](p5, p5_tmp, out_size=p5.shape[-2:]) + # sum(p7, gp(p5_out, p4_2)) -> p7_out + p7_tmp = stage['gp_54_7'](p5, p4_2, out_size=p7.shape[-2:]) + p7 = stage['sum_77_7'](p7, p7_tmp, out_size=p7.shape[-2:]) + # gp(p7_out, p5_out) -> p6_out + p6 = stage['gp_75_6'](p7, p5, out_size=p6.shape[-2:]) + + return p3, p4, p5, p6, p7 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nasfcos_fpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nasfcos_fpn.py new file mode 100644 index 000000000..c4abfe7bd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/nasfcos_fpn.py @@ -0,0 +1,170 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, caffe2_xavier_init +from mmcv.ops.merge_cells import ConcatCell +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +@NECKS.register_module() +class NASFCOS_FPN(BaseModule): + """FPN structure in NASFPN. + + Implementation of paper `NAS-FCOS: Fast Neural Architecture Search for + Object Detection `_ + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale) + num_outs (int): Number of output scales. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool): It decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, its actual mode is specified by `extra_convs_on_inputs`. + conv_cfg (dict): dictionary to construct and config conv layer. + norm_cfg (dict): dictionary to construct and config norm layer. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + start_level=1, + end_level=-1, + add_extra_convs=False, + conv_cfg=None, + norm_cfg=None, + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(NASFCOS_FPN, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + self.norm_cfg = norm_cfg + self.conv_cfg = conv_cfg + + if end_level == -1 or end_level == self.num_ins - 1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level is not the last level, no extra level is allowed + self.backbone_end_level = end_level + 1 + assert end_level < self.num_ins + assert num_outs == end_level - start_level + 1 + self.start_level = start_level + self.end_level = end_level + self.add_extra_convs = add_extra_convs + + self.adapt_convs = nn.ModuleList() + for i in range(self.start_level, self.backbone_end_level): + adapt_conv = ConvModule( + in_channels[i], + out_channels, + 1, + stride=1, + padding=0, + bias=False, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU', inplace=False)) + self.adapt_convs.append(adapt_conv) + + # C2 is omitted according to the paper + extra_levels = num_outs - self.backbone_end_level + self.start_level + + def build_concat_cell(with_input1_conv, with_input2_conv): + cell_conv_cfg = dict( + kernel_size=1, padding=0, bias=False, groups=out_channels) + return ConcatCell( + in_channels=out_channels, + out_channels=out_channels, + with_out_conv=True, + out_conv_cfg=cell_conv_cfg, + out_norm_cfg=dict(type='BN'), + out_conv_order=('norm', 'act', 'conv'), + with_input1_conv=with_input1_conv, + with_input2_conv=with_input2_conv, + input_conv_cfg=conv_cfg, + input_norm_cfg=norm_cfg, + upsample_mode='nearest') + + # Denote c3=f0, c4=f1, c5=f2 for convince + self.fpn = nn.ModuleDict() + self.fpn['c22_1'] = build_concat_cell(True, True) + self.fpn['c22_2'] = build_concat_cell(True, True) + self.fpn['c32'] = build_concat_cell(True, False) + self.fpn['c02'] = build_concat_cell(True, False) + self.fpn['c42'] = build_concat_cell(True, True) + self.fpn['c36'] = build_concat_cell(True, True) + self.fpn['c61'] = build_concat_cell(True, True) # f9 + self.extra_downsamples = nn.ModuleList() + for i in range(extra_levels): + extra_act_cfg = None if i == 0 \ + else dict(type='ReLU', inplace=False) + self.extra_downsamples.append( + ConvModule( + out_channels, + out_channels, + 3, + stride=2, + padding=1, + act_cfg=extra_act_cfg, + order=('act', 'norm', 'conv'))) + + def forward(self, inputs): + """Forward function.""" + feats = [ + adapt_conv(inputs[i + self.start_level]) + for i, adapt_conv in enumerate(self.adapt_convs) + ] + + for (i, module_name) in enumerate(self.fpn): + idx_1, idx_2 = int(module_name[1]), int(module_name[2]) + res = self.fpn[module_name](feats[idx_1], feats[idx_2]) + feats.append(res) + + ret = [] + for (idx, input_idx) in zip([9, 8, 7], [1, 2, 3]): # add P3, P4, P5 + feats1, feats2 = feats[idx], feats[5] + feats2_resize = F.interpolate( + feats2, + size=feats1.size()[2:], + mode='bilinear', + align_corners=False) + + feats_sum = feats1 + feats2_resize + ret.append( + F.interpolate( + feats_sum, + size=inputs[input_idx].size()[2:], + mode='bilinear', + align_corners=False)) + + for submodule in self.extra_downsamples: + ret.append(submodule(ret[-1])) + + return tuple(ret) + + def init_weights(self): + """Initialize the weights of module.""" + super(NASFCOS_FPN, self).init_weights() + for module in self.fpn.values(): + if hasattr(module, 'conv_out'): + caffe2_xavier_init(module.out_conv.conv) + + for modules in [ + self.adapt_convs.modules(), + self.extra_downsamples.modules() + ]: + for module in modules: + if isinstance(module, nn.Conv2d): + caffe2_xavier_init(module) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/pafpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/pafpn.py new file mode 100644 index 000000000..8d5e32f03 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/pafpn.py @@ -0,0 +1,158 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import auto_fp16 + +from ..builder import NECKS +from .fpn import FPN + + +@NECKS.register_module() +class PAFPN(FPN): + """Path Aggregation Network for Instance Segmentation. + + This is an implementation of the `PAFPN in Path Aggregation Network + `_. + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale) + num_outs (int): Number of output scales. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool | str): If bool, it decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, it is equivalent to `add_extra_convs='on_input'`. + If str, it specifies the source feature map of the extra convs. + Only the following options are allowed + + - 'on_input': Last feat map of neck inputs (i.e. backbone feature). + - 'on_lateral': Last feature map after lateral convs. + - 'on_output': The last output feature map after fpn convs. + relu_before_extra_convs (bool): Whether to apply relu before the extra + conv. Default: False. + no_norm_on_lateral (bool): Whether to apply norm on lateral. + Default: False. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (str): Config dict for activation layer in ConvModule. + Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + start_level=0, + end_level=-1, + add_extra_convs=False, + relu_before_extra_convs=False, + no_norm_on_lateral=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=None, + init_cfg=dict( + type='Xavier', layer='Conv2d', distribution='uniform')): + super(PAFPN, self).__init__( + in_channels, + out_channels, + num_outs, + start_level, + end_level, + add_extra_convs, + relu_before_extra_convs, + no_norm_on_lateral, + conv_cfg, + norm_cfg, + act_cfg, + init_cfg=init_cfg) + # add extra bottom up pathway + self.downsample_convs = nn.ModuleList() + self.pafpn_convs = nn.ModuleList() + for i in range(self.start_level + 1, self.backbone_end_level): + d_conv = ConvModule( + out_channels, + out_channels, + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + pafpn_conv = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + self.downsample_convs.append(d_conv) + self.pafpn_convs.append(pafpn_conv) + + @auto_fp16() + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == len(self.in_channels) + + # build laterals + laterals = [ + lateral_conv(inputs[i + self.start_level]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] += F.interpolate( + laterals[i], size=prev_shape, mode='nearest') + + # build outputs + # part 1: from original levels + inter_outs = [ + self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) + ] + + # part 2: add bottom-up path + for i in range(0, used_backbone_levels - 1): + inter_outs[i + 1] += self.downsample_convs[i](inter_outs[i]) + + outs = [] + outs.append(inter_outs[0]) + outs.extend([ + self.pafpn_convs[i - 1](inter_outs[i]) + for i in range(1, used_backbone_levels) + ]) + + # part 3: add extra levels + if self.num_outs > len(outs): + # use max pool to get more levels on top of outputs + # (e.g., Faster R-CNN, Mask R-CNN) + if not self.add_extra_convs: + for i in range(self.num_outs - used_backbone_levels): + outs.append(F.max_pool2d(outs[-1], 1, stride=2)) + # add conv layers on top of original feature maps (RetinaNet) + else: + if self.add_extra_convs == 'on_input': + orig = inputs[self.backbone_end_level - 1] + outs.append(self.fpn_convs[used_backbone_levels](orig)) + elif self.add_extra_convs == 'on_lateral': + outs.append(self.fpn_convs[used_backbone_levels]( + laterals[-1])) + elif self.add_extra_convs == 'on_output': + outs.append(self.fpn_convs[used_backbone_levels](outs[-1])) + else: + raise NotImplementedError + for i in range(used_backbone_levels + 1, self.num_outs): + if self.relu_before_extra_convs: + outs.append(self.fpn_convs[i](F.relu(outs[-1]))) + else: + outs.append(self.fpn_convs[i](outs[-1])) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/rfp.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/rfp.py new file mode 100644 index 000000000..6976f4daf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/rfp.py @@ -0,0 +1,135 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import constant_init, xavier_init +from mmcv.runner import BaseModule, ModuleList + +from ..builder import NECKS, build_backbone +from .fpn import FPN + + +class ASPP(BaseModule): + """ASPP (Atrous Spatial Pyramid Pooling) + + This is an implementation of the ASPP module used in DetectoRS + (https://arxiv.org/pdf/2006.02334.pdf) + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of channels produced by this module + dilations (tuple[int]): Dilations of the four branches. + Default: (1, 3, 6, 1) + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + dilations=(1, 3, 6, 1), + init_cfg=dict(type='Kaiming', layer='Conv2d')): + super().__init__(init_cfg) + assert dilations[-1] == 1 + self.aspp = nn.ModuleList() + for dilation in dilations: + kernel_size = 3 if dilation > 1 else 1 + padding = dilation if dilation > 1 else 0 + conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=1, + dilation=dilation, + padding=padding, + bias=True) + self.aspp.append(conv) + self.gap = nn.AdaptiveAvgPool2d(1) + + def forward(self, x): + avg_x = self.gap(x) + out = [] + for aspp_idx in range(len(self.aspp)): + inp = avg_x if (aspp_idx == len(self.aspp) - 1) else x + out.append(F.relu_(self.aspp[aspp_idx](inp))) + out[-1] = out[-1].expand_as(out[-2]) + out = torch.cat(out, dim=1) + return out + + +@NECKS.register_module() +class RFP(FPN): + """RFP (Recursive Feature Pyramid) + + This is an implementation of RFP in `DetectoRS + `_. Different from standard FPN, the + input of RFP should be multi level features along with origin input image + of backbone. + + Args: + rfp_steps (int): Number of unrolled steps of RFP. + rfp_backbone (dict): Configuration of the backbone for RFP. + aspp_out_channels (int): Number of output channels of ASPP module. + aspp_dilations (tuple[int]): Dilation rates of four branches. + Default: (1, 3, 6, 1) + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + rfp_steps, + rfp_backbone, + aspp_out_channels, + aspp_dilations=(1, 3, 6, 1), + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super().__init__(init_cfg=init_cfg, **kwargs) + self.rfp_steps = rfp_steps + # Be careful! Pretrained weights cannot be loaded when use + # nn.ModuleList + self.rfp_modules = ModuleList() + for rfp_idx in range(1, rfp_steps): + rfp_module = build_backbone(rfp_backbone) + self.rfp_modules.append(rfp_module) + self.rfp_aspp = ASPP(self.out_channels, aspp_out_channels, + aspp_dilations) + self.rfp_weight = nn.Conv2d( + self.out_channels, + 1, + kernel_size=1, + stride=1, + padding=0, + bias=True) + + def init_weights(self): + # Avoid using super().init_weights(), which may alter the default + # initialization of the modules in self.rfp_modules that have missing + # keys in the pretrained checkpoint. + for convs in [self.lateral_convs, self.fpn_convs]: + for m in convs.modules(): + if isinstance(m, nn.Conv2d): + xavier_init(m, distribution='uniform') + for rfp_idx in range(self.rfp_steps - 1): + self.rfp_modules[rfp_idx].init_weights() + constant_init(self.rfp_weight, 0) + + def forward(self, inputs): + inputs = list(inputs) + assert len(inputs) == len(self.in_channels) + 1 # +1 for input image + img = inputs.pop(0) + # FPN forward + x = super().forward(tuple(inputs)) + for rfp_idx in range(self.rfp_steps - 1): + rfp_feats = [x[0]] + list( + self.rfp_aspp(x[i]) for i in range(1, len(x))) + x_idx = self.rfp_modules[rfp_idx].rfp_forward(img, rfp_feats) + # FPN forward + x_idx = super().forward(x_idx) + x_new = [] + for ft_idx in range(len(x_idx)): + add_weight = torch.sigmoid(self.rfp_weight(x_idx[ft_idx])) + x_new.append(add_weight * x_idx[ft_idx] + + (1 - add_weight) * x[ft_idx]) + x = x_new + return x diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ssd_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ssd_neck.py new file mode 100644 index 000000000..179d575e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/ssd_neck.py @@ -0,0 +1,129 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +@NECKS.register_module() +class SSDNeck(BaseModule): + """Extra layers of SSD backbone to generate multi-scale feature maps. + + Args: + in_channels (Sequence[int]): Number of input channels per scale. + out_channels (Sequence[int]): Number of output channels per scale. + level_strides (Sequence[int]): Stride of 3x3 conv per level. + level_paddings (Sequence[int]): Padding size of 3x3 conv per level. + l2_norm_scale (float|None): L2 normalization layer init scale. + If None, not use L2 normalization on the first input feature. + last_kernel_size (int): Kernel size of the last conv layer. + Default: 3. + use_depthwise (bool): Whether to use DepthwiseSeparableConv. + Default: False. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: None. + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + out_channels, + level_strides, + level_paddings, + l2_norm_scale=20., + last_kernel_size=3, + use_depthwise=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=dict(type='ReLU'), + init_cfg=[ + dict( + type='Xavier', distribution='uniform', + layer='Conv2d'), + dict(type='Constant', val=1, layer='BatchNorm2d'), + ]): + super(SSDNeck, self).__init__(init_cfg) + assert len(out_channels) > len(in_channels) + assert len(out_channels) - len(in_channels) == len(level_strides) + assert len(level_strides) == len(level_paddings) + assert in_channels == out_channels[:len(in_channels)] + + if l2_norm_scale: + self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) + self.init_cfg += [ + dict( + type='Constant', + val=self.l2_norm.scale, + override=dict(name='l2_norm')) + ] + + self.extra_layers = nn.ModuleList() + extra_layer_channels = out_channels[len(in_channels):] + second_conv = DepthwiseSeparableConvModule if \ + use_depthwise else ConvModule + + for i, (out_channel, stride, padding) in enumerate( + zip(extra_layer_channels, level_strides, level_paddings)): + kernel_size = last_kernel_size \ + if i == len(extra_layer_channels) - 1 else 3 + per_lvl_convs = nn.Sequential( + ConvModule( + out_channels[len(in_channels) - 1 + i], + out_channel // 2, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + second_conv( + out_channel // 2, + out_channel, + kernel_size, + stride=stride, + padding=padding, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.extra_layers.append(per_lvl_convs) + + def forward(self, inputs): + """Forward function.""" + outs = [feat for feat in inputs] + if hasattr(self, 'l2_norm'): + outs[0] = self.l2_norm(outs[0]) + + feat = outs[-1] + for layer in self.extra_layers: + feat = layer(feat) + outs.append(feat) + return tuple(outs) + + +class L2Norm(nn.Module): + + def __init__(self, n_dims, scale=20., eps=1e-10): + """L2 normalization layer. + + Args: + n_dims (int): Number of dimensions to be normalized + scale (float, optional): Defaults to 20.. + eps (float, optional): Used to avoid division by zero. + Defaults to 1e-10. + """ + super(L2Norm, self).__init__() + self.n_dims = n_dims + self.weight = nn.Parameter(torch.Tensor(self.n_dims)) + self.eps = eps + self.scale = scale + + def forward(self, x): + """Forward function.""" + # normalization layer convert to FP32 in FP16 training + x_float = x.float() + norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps + return (self.weight[None, :, None, None].float().expand_as(x_float) * + x_float / norm).type_as(x) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolo_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolo_neck.py new file mode 100644 index 000000000..c8eeb5737 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolo_neck.py @@ -0,0 +1,140 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2019 Western Digital Corporation or its affiliates. + +import torch +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from ..builder import NECKS + + +class DetectionBlock(BaseModule): + """Detection block in YOLO neck. + + Let out_channels = n, the DetectionBlock contains: + Six ConvLayers, 1 Conv2D Layer and 1 YoloLayer. + The first 6 ConvLayers are formed the following way: + 1x1xn, 3x3x2n, 1x1xn, 3x3x2n, 1x1xn, 3x3x2n. + The Conv2D layer is 1x1x255. + Some block will have branch after the fifth ConvLayer. + The input channel is arbitrary (in_channels) + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True) + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', negative_slope=0.1), + init_cfg=None): + super(DetectionBlock, self).__init__(init_cfg) + double_out_channels = out_channels * 2 + + # shortcut + cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) + self.conv1 = ConvModule(in_channels, out_channels, 1, **cfg) + self.conv2 = ConvModule( + out_channels, double_out_channels, 3, padding=1, **cfg) + self.conv3 = ConvModule(double_out_channels, out_channels, 1, **cfg) + self.conv4 = ConvModule( + out_channels, double_out_channels, 3, padding=1, **cfg) + self.conv5 = ConvModule(double_out_channels, out_channels, 1, **cfg) + + def forward(self, x): + tmp = self.conv1(x) + tmp = self.conv2(tmp) + tmp = self.conv3(tmp) + tmp = self.conv4(tmp) + out = self.conv5(tmp) + return out + + +@NECKS.register_module() +class YOLOV3Neck(BaseModule): + """The neck of YOLOV3. + + It can be treated as a simplified version of FPN. It + will take the result from Darknet backbone and do some upsampling and + concatenation. It will finally output the detection result. + + Note: + The input feats should be from top to bottom. + i.e., from high-lvl to low-lvl + But YOLOV3Neck will process them in reversed order. + i.e., from bottom (high-lvl) to top (low-lvl) + + Args: + num_scales (int): The number of scales / stages. + in_channels (List[int]): The number of input channels per scale. + out_channels (List[int]): The number of output channels per scale. + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None. + norm_cfg (dict, optional): Dictionary to construct and config norm + layer. Default: dict(type='BN', requires_grad=True) + act_cfg (dict, optional): Config dict for activation layer. + Default: dict(type='LeakyReLU', negative_slope=0.1). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + num_scales, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='LeakyReLU', negative_slope=0.1), + init_cfg=None): + super(YOLOV3Neck, self).__init__(init_cfg) + assert (num_scales == len(in_channels) == len(out_channels)) + self.num_scales = num_scales + self.in_channels = in_channels + self.out_channels = out_channels + + # shortcut + cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) + + # To support arbitrary scales, the code looks awful, but it works. + # Better solution is welcomed. + self.detect1 = DetectionBlock(in_channels[0], out_channels[0], **cfg) + for i in range(1, self.num_scales): + in_c, out_c = self.in_channels[i], self.out_channels[i] + inter_c = out_channels[i - 1] + self.add_module(f'conv{i}', ConvModule(inter_c, out_c, 1, **cfg)) + # in_c + out_c : High-lvl feats will be cat with low-lvl feats + self.add_module(f'detect{i+1}', + DetectionBlock(in_c + out_c, out_c, **cfg)) + + def forward(self, feats): + assert len(feats) == self.num_scales + + # processed from bottom (high-lvl) to top (low-lvl) + outs = [] + out = self.detect1(feats[-1]) + outs.append(out) + + for i, x in enumerate(reversed(feats[:-1])): + conv = getattr(self, f'conv{i+1}') + tmp = conv(out) + + # Cat with low-lvl feats + tmp = F.interpolate(tmp, scale_factor=2) + tmp = torch.cat((tmp, x), 1) + + detect = getattr(self, f'detect{i+2}') + out = detect(tmp) + outs.append(out) + + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolox_pafpn.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolox_pafpn.py new file mode 100644 index 000000000..b0f6f7068 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/necks/yolox_pafpn.py @@ -0,0 +1,156 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule + +from ..builder import NECKS +from ..utils import CSPLayer + + +@NECKS.register_module() +class YOLOXPAFPN(BaseModule): + """Path Aggregation Network used in YOLOX. + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale) + num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 3 + use_depthwise (bool): Whether to depthwise separable convolution in + blocks. Default: False + upsample_cfg (dict): Config dict for interpolate layer. + Default: `dict(scale_factor=2, mode='nearest')` + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN') + act_cfg (dict): Config dict for activation layer. + Default: dict(type='Swish') + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + num_csp_blocks=3, + use_depthwise=False, + upsample_cfg=dict(scale_factor=2, mode='nearest'), + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + init_cfg=dict( + type='Kaiming', + layer='Conv2d', + a=math.sqrt(5), + distribution='uniform', + mode='fan_in', + nonlinearity='leaky_relu')): + super(YOLOXPAFPN, self).__init__(init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + + conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule + + # build top-down blocks + self.upsample = nn.Upsample(**upsample_cfg) + self.reduce_layers = nn.ModuleList() + self.top_down_blocks = nn.ModuleList() + for idx in range(len(in_channels) - 1, 0, -1): + self.reduce_layers.append( + ConvModule( + in_channels[idx], + in_channels[idx - 1], + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.top_down_blocks.append( + CSPLayer( + in_channels[idx - 1] * 2, + in_channels[idx - 1], + num_blocks=num_csp_blocks, + add_identity=False, + use_depthwise=use_depthwise, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + # build bottom-up blocks + self.downsamples = nn.ModuleList() + self.bottom_up_blocks = nn.ModuleList() + for idx in range(len(in_channels) - 1): + self.downsamples.append( + conv( + in_channels[idx], + in_channels[idx], + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.bottom_up_blocks.append( + CSPLayer( + in_channels[idx] * 2, + in_channels[idx + 1], + num_blocks=num_csp_blocks, + add_identity=False, + use_depthwise=use_depthwise, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + self.out_convs = nn.ModuleList() + for i in range(len(in_channels)): + self.out_convs.append( + ConvModule( + in_channels[i], + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, inputs): + """ + Args: + inputs (tuple[Tensor]): input features. + + Returns: + tuple[Tensor]: YOLOXPAFPN features. + """ + assert len(inputs) == len(self.in_channels) + + # top-down path + inner_outs = [inputs[-1]] + for idx in range(len(self.in_channels) - 1, 0, -1): + feat_heigh = inner_outs[0] + feat_low = inputs[idx - 1] + feat_heigh = self.reduce_layers[len(self.in_channels) - 1 - idx]( + feat_heigh) + inner_outs[0] = feat_heigh + + upsample_feat = self.upsample(feat_heigh) + + inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx]( + torch.cat([upsample_feat, feat_low], 1)) + inner_outs.insert(0, inner_out) + + # bottom-up path + outs = [inner_outs[0]] + for idx in range(len(self.in_channels) - 1): + feat_low = outs[-1] + feat_height = inner_outs[idx + 1] + downsample_feat = self.downsamples[idx](feat_low) + out = self.bottom_up_blocks[idx]( + torch.cat([downsample_feat, feat_height], 1)) + outs.append(out) + + # out convs + for idx, conv in enumerate(self.out_convs): + outs[idx] = conv(outs[idx]) + + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/__init__.py new file mode 100644 index 000000000..a455c07bb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .dropblock import DropBlock +from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder +from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder + +__all__ = [ + 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', + 'MSDeformAttnPixelDecoder' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/dropblock.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/dropblock.py new file mode 100644 index 000000000..bb00ade73 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/dropblock.py @@ -0,0 +1,85 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import PLUGIN_LAYERS + +eps = 1e-6 + + +@PLUGIN_LAYERS.register_module() +class DropBlock(nn.Module): + """Randomly drop some regions of feature maps. + + Please refer to the method proposed in `DropBlock + `_ for details. + + Args: + drop_prob (float): The probability of dropping each block. + block_size (int): The size of dropped blocks. + warmup_iters (int): The drop probability will linearly increase + from `0` to `drop_prob` during the first `warmup_iters` iterations. + Default: 2000. + """ + + def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): + super(DropBlock, self).__init__() + assert block_size % 2 == 1 + assert 0 < drop_prob <= 1 + assert warmup_iters >= 0 + self.drop_prob = drop_prob + self.block_size = block_size + self.warmup_iters = warmup_iters + self.iter_cnt = 0 + + def forward(self, x): + """ + Args: + x (Tensor): Input feature map on which some areas will be randomly + dropped. + + Returns: + Tensor: The tensor after DropBlock layer. + """ + if not self.training: + return x + self.iter_cnt += 1 + N, C, H, W = list(x.shape) + gamma = self._compute_gamma((H, W)) + mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) + mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) + + mask = F.pad(mask, [self.block_size // 2] * 4, value=0) + mask = F.max_pool2d( + input=mask, + stride=(1, 1), + kernel_size=(self.block_size, self.block_size), + padding=self.block_size // 2) + mask = 1 - mask + x = x * mask * mask.numel() / (eps + mask.sum()) + return x + + def _compute_gamma(self, feat_size): + """Compute the value of gamma according to paper. gamma is the + parameter of bernoulli distribution, which controls the number of + features to drop. + + gamma = (drop_prob * fm_area) / (drop_area * keep_area) + + Args: + feat_size (tuple[int, int]): The height and width of feature map. + + Returns: + float: The value of gamma. + """ + gamma = (self.drop_prob * feat_size[0] * feat_size[1]) + gamma /= ((feat_size[0] - self.block_size + 1) * + (feat_size[1] - self.block_size + 1)) + gamma /= (self.block_size**2) + factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / + self.warmup_iters) + return gamma * factor + + def extra_repr(self): + return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, ' + f'warmup_iters={self.warmup_iters}') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/msdeformattn_pixel_decoder.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/msdeformattn_pixel_decoder.py new file mode 100644 index 000000000..d553582ba --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/msdeformattn_pixel_decoder.py @@ -0,0 +1,269 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init, + normal_init, xavier_init) +from mmcv.cnn.bricks.transformer import (build_positional_encoding, + build_transformer_layer_sequence) +from mmcv.runner import BaseModule, ModuleList + +from mmdet.core.anchor import MlvlPointGenerator +from mmdet.models.utils.transformer import MultiScaleDeformableAttention + + +@PLUGIN_LAYERS.register_module() +class MSDeformAttnPixelDecoder(BaseModule): + """Pixel decoder with multi-scale deformable attention. + + Args: + in_channels (list[int] | tuple[int]): Number of channels in the + input feature maps. + strides (list[int] | tuple[int]): Output strides of feature from + backbone. + feat_channels (int): Number of channels for feature. + out_channels (int): Number of channels for output. + num_outs (int): Number of output scales. + norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. + Defaults to dict(type='GN', num_groups=32). + act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. + Defaults to dict(type='ReLU'). + encoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer + encoder. Defaults to `DetrTransformerEncoder`. + positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for + transformer encoder position encoding. Defaults to + dict(type='SinePositionalEncoding', num_feats=128, + normalize=True). + init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. + """ + + def __init__(self, + in_channels=[256, 512, 1024, 2048], + strides=[4, 8, 16, 32], + feat_channels=256, + out_channels=256, + num_outs=3, + norm_cfg=dict(type='GN', num_groups=32), + act_cfg=dict(type='ReLU'), + encoder=dict( + type='DetrTransformerEncoder', + num_layers=6, + transformerlayers=dict( + type='BaseTransformerLayer', + attn_cfgs=dict( + type='MultiScaleDeformableAttention', + embed_dims=256, + num_heads=8, + num_levels=3, + num_points=4, + im2col_step=64, + dropout=0.0, + batch_first=False, + norm_cfg=None, + init_cfg=None), + feedforward_channels=1024, + ffn_dropout=0.0, + operation_order=('self_attn', 'norm', 'ffn', 'norm')), + init_cfg=None), + positional_encoding=dict( + type='SinePositionalEncoding', + num_feats=128, + normalize=True), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.strides = strides + self.num_input_levels = len(in_channels) + self.num_encoder_levels = \ + encoder.transformerlayers.attn_cfgs.num_levels + assert self.num_encoder_levels >= 1, \ + 'num_levels in attn_cfgs must be at least one' + input_conv_list = [] + # from top to down (low to high resolution) + for i in range(self.num_input_levels - 1, + self.num_input_levels - self.num_encoder_levels - 1, + -1): + input_conv = ConvModule( + in_channels[i], + feat_channels, + kernel_size=1, + norm_cfg=norm_cfg, + act_cfg=None, + bias=True) + input_conv_list.append(input_conv) + self.input_convs = ModuleList(input_conv_list) + + self.encoder = build_transformer_layer_sequence(encoder) + self.postional_encoding = build_positional_encoding( + positional_encoding) + # high resolution to low resolution + self.level_encoding = nn.Embedding(self.num_encoder_levels, + feat_channels) + + # fpn-like structure + self.lateral_convs = ModuleList() + self.output_convs = ModuleList() + self.use_bias = norm_cfg is None + # from top to down (low to high resolution) + # fpn for the rest features that didn't pass in encoder + for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, + -1): + lateral_conv = ConvModule( + in_channels[i], + feat_channels, + kernel_size=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=None) + output_conv = ConvModule( + feat_channels, + feat_channels, + kernel_size=3, + stride=1, + padding=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.lateral_convs.append(lateral_conv) + self.output_convs.append(output_conv) + + self.mask_feature = Conv2d( + feat_channels, out_channels, kernel_size=1, stride=1, padding=0) + + self.num_outs = num_outs + self.point_generator = MlvlPointGenerator(strides) + + def init_weights(self): + """Initialize weights.""" + for i in range(0, self.num_encoder_levels): + xavier_init( + self.input_convs[i].conv, + gain=1, + bias=0, + distribution='uniform') + + for i in range(0, self.num_input_levels - self.num_encoder_levels): + caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) + caffe2_xavier_init(self.output_convs[i].conv, bias=0) + + caffe2_xavier_init(self.mask_feature, bias=0) + + normal_init(self.level_encoding, mean=0, std=1) + for p in self.encoder.parameters(): + if p.dim() > 1: + nn.init.xavier_normal_(p) + + # init_weights defined in MultiScaleDeformableAttention + for layer in self.encoder.layers: + for attn in layer.attentions: + if isinstance(attn, MultiScaleDeformableAttention): + attn.init_weights() + + def forward(self, feats): + """ + Args: + feats (list[Tensor]): Feature maps of each level. Each has + shape of (batch_size, c, h, w). + + Returns: + tuple: A tuple containing the following: + + - mask_feature (Tensor): shape (batch_size, c, h, w). + - multi_scale_features (list[Tensor]): Multi scale \ + features, each in shape (batch_size, c, h, w). + """ + # generate padding mask for each level, for each image + batch_size = feats[0].shape[0] + encoder_input_list = [] + padding_mask_list = [] + level_positional_encoding_list = [] + spatial_shapes = [] + reference_points_list = [] + for i in range(self.num_encoder_levels): + level_idx = self.num_input_levels - i - 1 + feat = feats[level_idx] + feat_projected = self.input_convs[i](feat) + h, w = feat.shape[-2:] + + # no padding + padding_mask_resized = feat.new_zeros( + (batch_size, ) + feat.shape[-2:], dtype=torch.bool) + pos_embed = self.postional_encoding(padding_mask_resized) + level_embed = self.level_encoding.weight[i] + level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed + # (h_i * w_i, 2) + reference_points = self.point_generator.single_level_grid_priors( + feat.shape[-2:], level_idx, device=feat.device) + # normalize + factor = feat.new_tensor([[w, h]]) * self.strides[level_idx] + reference_points = reference_points / factor + + # shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c) + feat_projected = feat_projected.flatten(2).permute(2, 0, 1) + level_pos_embed = level_pos_embed.flatten(2).permute(2, 0, 1) + padding_mask_resized = padding_mask_resized.flatten(1) + + encoder_input_list.append(feat_projected) + padding_mask_list.append(padding_mask_resized) + level_positional_encoding_list.append(level_pos_embed) + spatial_shapes.append(feat.shape[-2:]) + reference_points_list.append(reference_points) + # shape (batch_size, total_num_query), + # total_num_query=sum([., h_i * w_i,.]) + padding_masks = torch.cat(padding_mask_list, dim=1) + # shape (total_num_query, batch_size, c) + encoder_inputs = torch.cat(encoder_input_list, dim=0) + level_positional_encodings = torch.cat( + level_positional_encoding_list, dim=0) + device = encoder_inputs.device + # shape (num_encoder_levels, 2), from low + # resolution to high resolution + spatial_shapes = torch.as_tensor( + spatial_shapes, dtype=torch.long, device=device) + # shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...) + level_start_index = torch.cat((spatial_shapes.new_zeros( + (1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) + reference_points = torch.cat(reference_points_list, dim=0) + reference_points = reference_points[None, :, None].repeat( + batch_size, 1, self.num_encoder_levels, 1) + valid_radios = reference_points.new_ones( + (batch_size, self.num_encoder_levels, 2)) + # shape (num_total_query, batch_size, c) + memory = self.encoder( + query=encoder_inputs, + key=None, + value=None, + query_pos=level_positional_encodings, + key_pos=None, + attn_masks=None, + key_padding_mask=None, + query_key_padding_mask=padding_masks, + spatial_shapes=spatial_shapes, + reference_points=reference_points, + level_start_index=level_start_index, + valid_radios=valid_radios) + # (num_total_query, batch_size, c) -> (batch_size, c, num_total_query) + memory = memory.permute(1, 2, 0) + + # from low resolution to high resolution + num_query_per_level = [e[0] * e[1] for e in spatial_shapes] + outs = torch.split(memory, num_query_per_level, dim=-1) + outs = [ + x.reshape(batch_size, -1, spatial_shapes[i][0], + spatial_shapes[i][1]) for i, x in enumerate(outs) + ] + + for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, + -1): + x = feats[i] + cur_feat = self.lateral_convs[i](x) + y = cur_feat + F.interpolate( + outs[-1], + size=cur_feat.shape[-2:], + mode='bilinear', + align_corners=False) + y = self.output_convs[i](y) + outs.append(y) + multi_scale_features = outs[:self.num_outs] + + mask_feature = self.mask_feature(outs[-1]) + return mask_feature, multi_scale_features diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/pixel_decoder.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/pixel_decoder.py new file mode 100644 index 000000000..537a187dc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/plugins/pixel_decoder.py @@ -0,0 +1,243 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init +from mmcv.cnn.bricks.transformer import (build_positional_encoding, + build_transformer_layer_sequence) +from mmcv.runner import BaseModule, ModuleList + + +@PLUGIN_LAYERS.register_module() +class PixelDecoder(BaseModule): + """Pixel decoder with a structure like fpn. + + Args: + in_channels (list[int] | tuple[int]): Number of channels in the + input feature maps. + feat_channels (int): Number channels for feature. + out_channels (int): Number channels for output. + norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. + Defaults to dict(type='GN', num_groups=32). + act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. + Defaults to dict(type='ReLU'). + encoder (:obj:`mmcv.ConfigDict` | dict): Config for transorformer + encoder.Defaults to None. + positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for + transformer encoder position encoding. Defaults to + dict(type='SinePositionalEncoding', num_feats=128, + normalize=True). + init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + feat_channels, + out_channels, + norm_cfg=dict(type='GN', num_groups=32), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.num_inputs = len(in_channels) + self.lateral_convs = ModuleList() + self.output_convs = ModuleList() + self.use_bias = norm_cfg is None + for i in range(0, self.num_inputs - 1): + lateral_conv = ConvModule( + in_channels[i], + feat_channels, + kernel_size=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=None) + output_conv = ConvModule( + feat_channels, + feat_channels, + kernel_size=3, + stride=1, + padding=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.lateral_convs.append(lateral_conv) + self.output_convs.append(output_conv) + + self.last_feat_conv = ConvModule( + in_channels[-1], + feat_channels, + kernel_size=3, + padding=1, + stride=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.mask_feature = Conv2d( + feat_channels, out_channels, kernel_size=3, stride=1, padding=1) + + def init_weights(self): + """Initialize weights.""" + for i in range(0, self.num_inputs - 2): + caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) + caffe2_xavier_init(self.output_convs[i].conv, bias=0) + + caffe2_xavier_init(self.mask_feature, bias=0) + caffe2_xavier_init(self.last_feat_conv, bias=0) + + def forward(self, feats, img_metas): + """ + Args: + feats (list[Tensor]): Feature maps of each level. Each has + shape of (batch_size, c, h, w). + img_metas (list[dict]): List of image information. Pass in + for creating more accurate padding mask. Not used here. + + Returns: + tuple: a tuple containing the following: + - mask_feature (Tensor): Shape (batch_size, c, h, w). + - memory (Tensor): Output of last stage of backbone.\ + Shape (batch_size, c, h, w). + """ + y = self.last_feat_conv(feats[-1]) + for i in range(self.num_inputs - 2, -1, -1): + x = feats[i] + cur_feat = self.lateral_convs[i](x) + y = cur_feat + \ + F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest') + y = self.output_convs[i](y) + + mask_feature = self.mask_feature(y) + memory = feats[-1] + return mask_feature, memory + + +@PLUGIN_LAYERS.register_module() +class TransformerEncoderPixelDecoder(PixelDecoder): + """Pixel decoder with transormer encoder inside. + + Args: + in_channels (list[int] | tuple[int]): Number of channels in the + input feature maps. + feat_channels (int): Number channels for feature. + out_channels (int): Number channels for output. + norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. + Defaults to dict(type='GN', num_groups=32). + act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. + Defaults to dict(type='ReLU'). + encoder (:obj:`mmcv.ConfigDict` | dict): Config for transorformer + encoder.Defaults to None. + positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for + transformer encoder position encoding. Defaults to + dict(type='SinePositionalEncoding', num_feats=128, + normalize=True). + init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + feat_channels, + out_channels, + norm_cfg=dict(type='GN', num_groups=32), + act_cfg=dict(type='ReLU'), + encoder=None, + positional_encoding=dict( + type='SinePositionalEncoding', + num_feats=128, + normalize=True), + init_cfg=None): + super(TransformerEncoderPixelDecoder, self).__init__( + in_channels, + feat_channels, + out_channels, + norm_cfg, + act_cfg, + init_cfg=init_cfg) + self.last_feat_conv = None + + self.encoder = build_transformer_layer_sequence(encoder) + self.encoder_embed_dims = self.encoder.embed_dims + assert self.encoder_embed_dims == feat_channels, 'embed_dims({}) of ' \ + 'tranformer encoder must equal to feat_channels({})'.format( + feat_channels, self.encoder_embed_dims) + self.positional_encoding = build_positional_encoding( + positional_encoding) + self.encoder_in_proj = Conv2d( + in_channels[-1], feat_channels, kernel_size=1) + self.encoder_out_proj = ConvModule( + feat_channels, + feat_channels, + kernel_size=3, + stride=1, + padding=1, + bias=self.use_bias, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def init_weights(self): + """Initialize weights.""" + for i in range(0, self.num_inputs - 2): + caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) + caffe2_xavier_init(self.output_convs[i].conv, bias=0) + + caffe2_xavier_init(self.mask_feature, bias=0) + caffe2_xavier_init(self.encoder_in_proj, bias=0) + caffe2_xavier_init(self.encoder_out_proj.conv, bias=0) + + for p in self.encoder.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward(self, feats, img_metas): + """ + Args: + feats (list[Tensor]): Feature maps of each level. Each has + shape of (batch_size, c, h, w). + img_metas (list[dict]): List of image information. Pass in + for creating more accurate padding mask. + + Returns: + tuple: a tuple containing the following: + - mask_feature (Tensor): shape (batch_size, c, h, w). + - memory (Tensor): shape (batch_size, c, h, w). + """ + feat_last = feats[-1] + bs, c, h, w = feat_last.shape + input_img_h, input_img_w = img_metas[0]['batch_input_shape'] + padding_mask = feat_last.new_ones((bs, input_img_h, input_img_w), + dtype=torch.float32) + for i in range(bs): + img_h, img_w, _ = img_metas[i]['img_shape'] + padding_mask[i, :img_h, :img_w] = 0 + padding_mask = F.interpolate( + padding_mask.unsqueeze(1), + size=feat_last.shape[-2:], + mode='nearest').to(torch.bool).squeeze(1) + + pos_embed = self.positional_encoding(padding_mask) + feat_last = self.encoder_in_proj(feat_last) + # (batch_size, c, h, w) -> (num_queries, batch_size, c) + feat_last = feat_last.flatten(2).permute(2, 0, 1) + pos_embed = pos_embed.flatten(2).permute(2, 0, 1) + # (batch_size, h, w) -> (batch_size, h*w) + padding_mask = padding_mask.flatten(1) + memory = self.encoder( + query=feat_last, + key=None, + value=None, + query_pos=pos_embed, + query_key_padding_mask=padding_mask) + # (num_queries, batch_size, c) -> (batch_size, c, h, w) + memory = memory.permute(1, 2, 0).view(bs, self.encoder_embed_dims, h, + w) + y = self.encoder_out_proj(memory) + for i in range(self.num_inputs - 2, -1, -1): + x = feats[i] + cur_feat = self.lateral_convs[i](x) + y = cur_feat + \ + F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest') + y = self.output_convs[i](y) + + mask_feature = self.mask_feature(y) + return mask_feature, memory diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/__init__.py new file mode 100644 index 000000000..baae2a053 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/__init__.py @@ -0,0 +1,37 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_roi_head import BaseRoIHead +from .bbox_heads import (BBoxHead, ConvFCBBoxHead, DIIHead, + DoubleConvFCBBoxHead, SABLHead, SCNetBBoxHead, + Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) +from .cascade_roi_head import CascadeRoIHead +from .double_roi_head import DoubleHeadRoIHead +from .dynamic_roi_head import DynamicRoIHead +from .grid_roi_head import GridRoIHead +from .htc_roi_head import HybridTaskCascadeRoIHead +from .mask_heads import (CoarseMaskHead, FCNMaskHead, FeatureRelayHead, + FusedSemanticHead, GlobalContextHead, GridHead, + HTCMaskHead, MaskIoUHead, MaskPointHead, + SCNetMaskHead, SCNetSemanticHead) +from .mask_scoring_roi_head import MaskScoringRoIHead +from .pisa_roi_head import PISARoIHead +from .point_rend_roi_head import PointRendRoIHead +from .roi_extractors import (BaseRoIExtractor, GenericRoIExtractor, + SingleRoIExtractor) +from .scnet_roi_head import SCNetRoIHead +from .shared_heads import ResLayer +from .sparse_roi_head import SparseRoIHead +from .standard_roi_head import StandardRoIHead +from .trident_roi_head import TridentRoIHead + +__all__ = [ + 'BaseRoIHead', 'CascadeRoIHead', 'DoubleHeadRoIHead', 'MaskScoringRoIHead', + 'HybridTaskCascadeRoIHead', 'GridRoIHead', 'ResLayer', 'BBoxHead', + 'ConvFCBBoxHead', 'DIIHead', 'SABLHead', 'Shared2FCBBoxHead', + 'StandardRoIHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', + 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', + 'MaskIoUHead', 'BaseRoIExtractor', 'GenericRoIExtractor', + 'SingleRoIExtractor', 'PISARoIHead', 'PointRendRoIHead', 'MaskPointHead', + 'CoarseMaskHead', 'DynamicRoIHead', 'SparseRoIHead', 'TridentRoIHead', + 'SCNetRoIHead', 'SCNetMaskHead', 'SCNetSemanticHead', 'SCNetBBoxHead', + 'FeatureRelayHead', 'GlobalContextHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/base_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/base_roi_head.py new file mode 100644 index 000000000..4adbdef8f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/base_roi_head.py @@ -0,0 +1,103 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.runner import BaseModule + +from ..builder import build_shared_head + + +class BaseRoIHead(BaseModule, metaclass=ABCMeta): + """Base class for RoIHeads.""" + + def __init__(self, + bbox_roi_extractor=None, + bbox_head=None, + mask_roi_extractor=None, + mask_head=None, + shared_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(BaseRoIHead, self).__init__(init_cfg) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + if shared_head is not None: + shared_head.pretrained = pretrained + self.shared_head = build_shared_head(shared_head) + + if bbox_head is not None: + self.init_bbox_head(bbox_roi_extractor, bbox_head) + + if mask_head is not None: + self.init_mask_head(mask_roi_extractor, mask_head) + + self.init_assigner_sampler() + + @property + def with_bbox(self): + """bool: whether the RoI head contains a `bbox_head`""" + return hasattr(self, 'bbox_head') and self.bbox_head is not None + + @property + def with_mask(self): + """bool: whether the RoI head contains a `mask_head`""" + return hasattr(self, 'mask_head') and self.mask_head is not None + + @property + def with_shared_head(self): + """bool: whether the RoI head contains a `shared_head`""" + return hasattr(self, 'shared_head') and self.shared_head is not None + + @abstractmethod + def init_bbox_head(self): + """Initialize ``bbox_head``""" + pass + + @abstractmethod + def init_mask_head(self): + """Initialize ``mask_head``""" + pass + + @abstractmethod + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + pass + + @abstractmethod + def forward_train(self, + x, + img_meta, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + **kwargs): + """Forward function during training.""" + + async def async_simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False, + **kwargs): + """Asynchronized test function.""" + raise NotImplementedError + + def simple_test(self, + x, + proposal_list, + img_meta, + proposals=None, + rescale=False, + **kwargs): + """Test without augmentation.""" + + def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/__init__.py new file mode 100644 index 000000000..d1207dbee --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .bbox_head import BBoxHead +from .convfc_bbox_head import (ConvFCBBoxHead, Shared2FCBBoxHead, + Shared4Conv1FCBBoxHead) +from .dii_head import DIIHead +from .double_bbox_head import DoubleConvFCBBoxHead +from .sabl_head import SABLHead +from .scnet_bbox_head import SCNetBBoxHead + +__all__ = [ + 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead', + 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'SABLHead', 'DIIHead', + 'SCNetBBoxHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/bbox_head.py new file mode 100644 index 000000000..461b18b7f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/bbox_head.py @@ -0,0 +1,594 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.runner import BaseModule, auto_fp16, force_fp32 +from torch.nn.modules.utils import _pair + +from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms +from mmdet.models.builder import HEADS, build_loss +from mmdet.models.losses import accuracy +from mmdet.models.utils import build_linear_layer + + +@HEADS.register_module() +class BBoxHead(BaseModule): + """Simplest RoI head, with only two fc layers for classification and + regression respectively.""" + + def __init__(self, + with_avg_pool=False, + with_cls=True, + with_reg=True, + roi_feat_size=7, + in_channels=256, + num_classes=80, + bbox_coder=dict( + type='DeltaXYWHBBoxCoder', + clip_border=True, + target_means=[0., 0., 0., 0.], + target_stds=[0.1, 0.1, 0.2, 0.2]), + reg_class_agnostic=False, + reg_decoded_bbox=False, + reg_predictor_cfg=dict(type='Linear'), + cls_predictor_cfg=dict(type='Linear'), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0, loss_weight=1.0), + init_cfg=None): + super(BBoxHead, self).__init__(init_cfg) + assert with_cls or with_reg + self.with_avg_pool = with_avg_pool + self.with_cls = with_cls + self.with_reg = with_reg + self.roi_feat_size = _pair(roi_feat_size) + self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1] + self.in_channels = in_channels + self.num_classes = num_classes + self.reg_class_agnostic = reg_class_agnostic + self.reg_decoded_bbox = reg_decoded_bbox + self.reg_predictor_cfg = reg_predictor_cfg + self.cls_predictor_cfg = cls_predictor_cfg + self.fp16_enabled = False + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + + in_channels = self.in_channels + if self.with_avg_pool: + self.avg_pool = nn.AvgPool2d(self.roi_feat_size) + else: + in_channels *= self.roi_feat_area + if self.with_cls: + # need to add background class + if self.custom_cls_channels: + cls_channels = self.loss_cls.get_cls_channels(self.num_classes) + else: + cls_channels = num_classes + 1 + self.fc_cls = build_linear_layer( + self.cls_predictor_cfg, + in_features=in_channels, + out_features=cls_channels) + if self.with_reg: + out_dim_reg = 4 if reg_class_agnostic else 4 * num_classes + self.fc_reg = build_linear_layer( + self.reg_predictor_cfg, + in_features=in_channels, + out_features=out_dim_reg) + self.debug_imgs = None + if init_cfg is None: + self.init_cfg = [] + if self.with_cls: + self.init_cfg += [ + dict( + type='Normal', std=0.01, override=dict(name='fc_cls')) + ] + if self.with_reg: + self.init_cfg += [ + dict( + type='Normal', std=0.001, override=dict(name='fc_reg')) + ] + + @property + def custom_cls_channels(self): + return getattr(self.loss_cls, 'custom_cls_channels', False) + + @property + def custom_activation(self): + return getattr(self.loss_cls, 'custom_activation', False) + + @property + def custom_accuracy(self): + return getattr(self.loss_cls, 'custom_accuracy', False) + + @auto_fp16() + def forward(self, x): + if self.with_avg_pool: + if x.numel() > 0: + x = self.avg_pool(x) + x = x.view(x.size(0), -1) + else: + # avg_pool does not support empty tensor, + # so use torch.mean instead it + x = torch.mean(x, dim=(-1, -2)) + cls_score = self.fc_cls(x) if self.with_cls else None + bbox_pred = self.fc_reg(x) if self.with_reg else None + return cls_score, bbox_pred + + def _get_target_single(self, pos_bboxes, neg_bboxes, pos_gt_bboxes, + pos_gt_labels, cfg): + """Calculate the ground truth for proposals in the single image + according to the sampling results. + + Args: + pos_bboxes (Tensor): Contains all the positive boxes, + has shape (num_pos, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + neg_bboxes (Tensor): Contains all the negative boxes, + has shape (num_neg, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + pos_gt_bboxes (Tensor): Contains gt_boxes for + all positive samples, has shape (num_pos, 4), + the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + pos_gt_labels (Tensor): Contains gt_labels for + all positive samples, has shape (num_pos, ). + cfg (obj:`ConfigDict`): `train_cfg` of R-CNN. + + Returns: + Tuple[Tensor]: Ground truth for proposals + in a single image. Containing the following Tensors: + + - labels(Tensor): Gt_labels for all proposals, has + shape (num_proposals,). + - label_weights(Tensor): Labels_weights for all + proposals, has shape (num_proposals,). + - bbox_targets(Tensor):Regression target for all + proposals, has shape (num_proposals, 4), the + last dimension 4 represents [tl_x, tl_y, br_x, br_y]. + - bbox_weights(Tensor):Regression weights for all + proposals, has shape (num_proposals, 4). + """ + num_pos = pos_bboxes.size(0) + num_neg = neg_bboxes.size(0) + num_samples = num_pos + num_neg + + # original implementation uses new_zeros since BG are set to be 0 + # now use empty & fill because BG cat_id = num_classes, + # FG cat_id = [0, num_classes-1] + labels = pos_bboxes.new_full((num_samples, ), + self.num_classes, + dtype=torch.long) + label_weights = pos_bboxes.new_zeros(num_samples) + bbox_targets = pos_bboxes.new_zeros(num_samples, 4) + bbox_weights = pos_bboxes.new_zeros(num_samples, 4) + if num_pos > 0: + labels[:num_pos] = pos_gt_labels + pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight + label_weights[:num_pos] = pos_weight + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + pos_bboxes, pos_gt_bboxes) + else: + # When the regression loss (e.g. `IouLoss`, `GIouLoss`) + # is applied directly on the decoded bounding boxes, both + # the predicted boxes and regression targets should be with + # absolute coordinate format. + pos_bbox_targets = pos_gt_bboxes + bbox_targets[:num_pos, :] = pos_bbox_targets + bbox_weights[:num_pos, :] = 1 + if num_neg > 0: + label_weights[-num_neg:] = 1.0 + + return labels, label_weights, bbox_targets, bbox_weights + + def get_targets(self, + sampling_results, + gt_bboxes, + gt_labels, + rcnn_train_cfg, + concat=True): + """Calculate the ground truth for all samples in a batch according to + the sampling_results. + + Almost the same as the implementation in bbox_head, we passed + additional parameters pos_inds_list and neg_inds_list to + `_get_target_single` function. + + Args: + sampling_results (List[obj:SamplingResults]): Assign results of + all images in a batch after sampling. + gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch, + each tensor has shape (num_gt, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + gt_labels (list[Tensor]): Gt_labels of all images in a batch, + each tensor has shape (num_gt,). + rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. + concat (bool): Whether to concatenate the results of all + the images in a single batch. + + Returns: + Tuple[Tensor]: Ground truth for proposals in a single image. + Containing the following list of Tensors: + + - labels (list[Tensor],Tensor): Gt_labels for all + proposals in a batch, each tensor in list has + shape (num_proposals,) when `concat=False`, otherwise + just a single tensor has shape (num_all_proposals,). + - label_weights (list[Tensor]): Labels_weights for + all proposals in a batch, each tensor in list has + shape (num_proposals,) when `concat=False`, otherwise + just a single tensor has shape (num_all_proposals,). + - bbox_targets (list[Tensor],Tensor): Regression target + for all proposals in a batch, each tensor in list + has shape (num_proposals, 4) when `concat=False`, + otherwise just a single tensor has shape + (num_all_proposals, 4), the last dimension 4 represents + [tl_x, tl_y, br_x, br_y]. + - bbox_weights (list[tensor],Tensor): Regression weights for + all proposals in a batch, each tensor in list has shape + (num_proposals, 4) when `concat=False`, otherwise just a + single tensor has shape (num_all_proposals, 4). + """ + pos_bboxes_list = [res.pos_bboxes for res in sampling_results] + neg_bboxes_list = [res.neg_bboxes for res in sampling_results] + pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] + pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] + labels, label_weights, bbox_targets, bbox_weights = multi_apply( + self._get_target_single, + pos_bboxes_list, + neg_bboxes_list, + pos_gt_bboxes_list, + pos_gt_labels_list, + cfg=rcnn_train_cfg) + + if concat: + labels = torch.cat(labels, 0) + label_weights = torch.cat(label_weights, 0) + bbox_targets = torch.cat(bbox_targets, 0) + bbox_weights = torch.cat(bbox_weights, 0) + return labels, label_weights, bbox_targets, bbox_weights + + @force_fp32(apply_to=('cls_score', 'bbox_pred')) + def loss(self, + cls_score, + bbox_pred, + rois, + labels, + label_weights, + bbox_targets, + bbox_weights, + reduction_override=None): + losses = dict() + if cls_score is not None: + avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.) + if cls_score.numel() > 0: + loss_cls_ = self.loss_cls( + cls_score, + labels, + label_weights, + avg_factor=avg_factor, + reduction_override=reduction_override) + if isinstance(loss_cls_, dict): + losses.update(loss_cls_) + else: + losses['loss_cls'] = loss_cls_ + if self.custom_activation: + acc_ = self.loss_cls.get_accuracy(cls_score, labels) + losses.update(acc_) + else: + losses['acc'] = accuracy(cls_score, labels) + if bbox_pred is not None: + bg_class_ind = self.num_classes + # 0~self.num_classes-1 are FG, self.num_classes is BG + pos_inds = (labels >= 0) & (labels < bg_class_ind) + # do not perform bounding box regression for BG anymore. + if pos_inds.any(): + if self.reg_decoded_bbox: + # When the regression loss (e.g. `IouLoss`, + # `GIouLoss`, `DIouLoss`) is applied directly on + # the decoded bounding boxes, it decodes the + # already encoded coordinates to absolute format. + bbox_pred = self.bbox_coder.decode(rois[:, 1:], bbox_pred) + if self.reg_class_agnostic: + pos_bbox_pred = bbox_pred.view( + bbox_pred.size(0), 4)[pos_inds.type(torch.bool)] + else: + pos_bbox_pred = bbox_pred.view( + bbox_pred.size(0), -1, + 4)[pos_inds.type(torch.bool), + labels[pos_inds.type(torch.bool)]] + losses['loss_bbox'] = self.loss_bbox( + pos_bbox_pred, + bbox_targets[pos_inds.type(torch.bool)], + bbox_weights[pos_inds.type(torch.bool)], + avg_factor=bbox_targets.size(0), + reduction_override=reduction_override) + else: + losses['loss_bbox'] = bbox_pred[pos_inds].sum() + return losses + + @force_fp32(apply_to=('cls_score', 'bbox_pred')) + def get_bboxes(self, + rois, + cls_score, + bbox_pred, + img_shape, + scale_factor, + rescale=False, + cfg=None): + """Transform network output for a batch into bbox predictions. + + Args: + rois (Tensor): Boxes to be transformed. Has shape (num_boxes, 5). + last dimension 5 arrange as (batch_index, x1, y1, x2, y2). + cls_score (Tensor): Box scores, has shape + (num_boxes, num_classes + 1). + bbox_pred (Tensor, optional): Box energies / deltas. + has shape (num_boxes, num_classes * 4). + img_shape (Sequence[int], optional): Maximum bounds for boxes, + specifies (H, W, C) or (H, W). + scale_factor (ndarray): Scale factor of the + image arrange as (w_scale, h_scale, w_scale, h_scale). + rescale (bool): If True, return boxes in original image space. + Default: False. + cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Default: None + + Returns: + tuple[Tensor, Tensor]: + First tensor is `det_bboxes`, has the shape + (num_boxes, 5) and last + dimension 5 represent (tl_x, tl_y, br_x, br_y, score). + Second tensor is the labels with shape (num_boxes, ). + """ + + # some loss (Seesaw loss..) may have custom activation + if self.custom_cls_channels: + scores = self.loss_cls.get_activation(cls_score) + else: + scores = F.softmax( + cls_score, dim=-1) if cls_score is not None else None + # bbox_pred would be None in some detector when with_reg is False, + # e.g. Grid R-CNN. + if bbox_pred is not None: + bboxes = self.bbox_coder.decode( + rois[..., 1:], bbox_pred, max_shape=img_shape) + else: + bboxes = rois[:, 1:].clone() + if img_shape is not None: + bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1]) + bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0]) + + if rescale and bboxes.size(0) > 0: + scale_factor = bboxes.new_tensor(scale_factor) + bboxes = (bboxes.view(bboxes.size(0), -1, 4) / scale_factor).view( + bboxes.size()[0], -1) + + if cfg is None: + return bboxes, scores + else: + det_bboxes, det_labels = multiclass_nms(bboxes, scores, + cfg.score_thr, cfg.nms, + cfg.max_per_img) + + return det_bboxes, det_labels + + @force_fp32(apply_to=('bbox_preds', )) + def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas): + """Refine bboxes during training. + + Args: + rois (Tensor): Shape (n*bs, 5), where n is image number per GPU, + and bs is the sampled RoIs per image. The first column is + the image id and the next 4 columns are x1, y1, x2, y2. + labels (Tensor): Shape (n*bs, ). + bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class). + pos_is_gts (list[Tensor]): Flags indicating if each positive bbox + is a gt bbox. + img_metas (list[dict]): Meta info of each image. + + Returns: + list[Tensor]: Refined bboxes of each image in a mini-batch. + + Example: + >>> # xdoctest: +REQUIRES(module:kwarray) + >>> import kwarray + >>> import numpy as np + >>> from mmdet.core.bbox.demodata import random_boxes + >>> self = BBoxHead(reg_class_agnostic=True) + >>> n_roi = 2 + >>> n_img = 4 + >>> scale = 512 + >>> rng = np.random.RandomState(0) + >>> img_metas = [{'img_shape': (scale, scale)} + ... for _ in range(n_img)] + >>> # Create rois in the expected format + >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng) + >>> img_ids = torch.randint(0, n_img, (n_roi,)) + >>> img_ids = img_ids.float() + >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1) + >>> # Create other args + >>> labels = torch.randint(0, 2, (n_roi,)).long() + >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng) + >>> # For each image, pretend random positive boxes are gts + >>> is_label_pos = (labels.numpy() > 0).astype(np.int) + >>> lbl_per_img = kwarray.group_items(is_label_pos, + ... img_ids.numpy()) + >>> pos_per_img = [sum(lbl_per_img.get(gid, [])) + ... for gid in range(n_img)] + >>> pos_is_gts = [ + >>> torch.randint(0, 2, (npos,)).byte().sort( + >>> descending=True)[0] + >>> for npos in pos_per_img + >>> ] + >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds, + >>> pos_is_gts, img_metas) + >>> print(bboxes_list) + """ + img_ids = rois[:, 0].long().unique(sorted=True) + assert img_ids.numel() <= len(img_metas) + + bboxes_list = [] + for i in range(len(img_metas)): + inds = torch.nonzero( + rois[:, 0] == i, as_tuple=False).squeeze(dim=1) + num_rois = inds.numel() + + bboxes_ = rois[inds, 1:] + label_ = labels[inds] + bbox_pred_ = bbox_preds[inds] + img_meta_ = img_metas[i] + pos_is_gts_ = pos_is_gts[i] + + bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_, + img_meta_) + + # filter gt bboxes + pos_keep = 1 - pos_is_gts_ + keep_inds = pos_is_gts_.new_ones(num_rois) + keep_inds[:len(pos_is_gts_)] = pos_keep + + bboxes_list.append(bboxes[keep_inds.type(torch.bool)]) + + return bboxes_list + + @force_fp32(apply_to=('bbox_pred', )) + def regress_by_class(self, rois, label, bbox_pred, img_meta): + """Regress the bbox for the predicted class. Used in Cascade R-CNN. + + Args: + rois (Tensor): Rois from `rpn_head` or last stage + `bbox_head`, has shape (num_proposals, 4) or + (num_proposals, 5). + label (Tensor): Only used when `self.reg_class_agnostic` + is False, has shape (num_proposals, ). + bbox_pred (Tensor): Regression prediction of + current stage `bbox_head`. When `self.reg_class_agnostic` + is False, it has shape (n, num_classes * 4), otherwise + it has shape (n, 4). + img_meta (dict): Image meta info. + + Returns: + Tensor: Regressed bboxes, the same shape as input rois. + """ + + assert rois.size(1) == 4 or rois.size(1) == 5, repr(rois.shape) + + if not self.reg_class_agnostic: + label = label * 4 + inds = torch.stack((label, label + 1, label + 2, label + 3), 1) + bbox_pred = torch.gather(bbox_pred, 1, inds) + assert bbox_pred.size(1) == 4 + + max_shape = img_meta['img_shape'] + + if rois.size(1) == 4: + new_rois = self.bbox_coder.decode( + rois, bbox_pred, max_shape=max_shape) + else: + bboxes = self.bbox_coder.decode( + rois[:, 1:], bbox_pred, max_shape=max_shape) + new_rois = torch.cat((rois[:, [0]], bboxes), dim=1) + + return new_rois + + def onnx_export(self, + rois, + cls_score, + bbox_pred, + img_shape, + cfg=None, + **kwargs): + """Transform network output for a batch into bbox predictions. + + Args: + rois (Tensor): Boxes to be transformed. + Has shape (B, num_boxes, 5) + cls_score (Tensor): Box scores. has shape + (B, num_boxes, num_classes + 1), 1 represent the background. + bbox_pred (Tensor, optional): Box energies / deltas for, + has shape (B, num_boxes, num_classes * 4) when. + img_shape (torch.Tensor): Shape of image. + cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Default: None + + Returns: + tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] + and class labels of shape [N, num_det]. + """ + + assert rois.ndim == 3, 'Only support export two stage ' \ + 'model to ONNX ' \ + 'with batch dimension. ' + if self.custom_cls_channels: + scores = self.loss_cls.get_activation(cls_score) + else: + scores = F.softmax( + cls_score, dim=-1) if cls_score is not None else None + + if bbox_pred is not None: + bboxes = self.bbox_coder.decode( + rois[..., 1:], bbox_pred, max_shape=img_shape) + else: + bboxes = rois[..., 1:].clone() + if img_shape is not None: + max_shape = bboxes.new_tensor(img_shape)[..., :2] + min_xy = bboxes.new_tensor(0) + max_xy = torch.cat( + [max_shape] * 2, dim=-1).flip(-1).unsqueeze(-2) + bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) + bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) + + # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment + from mmdet.core.export import add_dummy_nms_for_onnx + max_output_boxes_per_class = cfg.nms.get('max_output_boxes_per_class', + cfg.max_per_img) + iou_threshold = cfg.nms.get('iou_threshold', 0.5) + score_threshold = cfg.score_thr + nms_pre = cfg.get('deploy_nms_pre', -1) + + scores = scores[..., :self.num_classes] + if self.reg_class_agnostic: + return add_dummy_nms_for_onnx( + bboxes, + scores, + max_output_boxes_per_class, + iou_threshold, + score_threshold, + pre_top_k=nms_pre, + after_top_k=cfg.max_per_img) + else: + batch_size = scores.shape[0] + labels = torch.arange( + self.num_classes, dtype=torch.long).to(scores.device) + labels = labels.view(1, 1, -1).expand_as(scores) + labels = labels.reshape(batch_size, -1) + scores = scores.reshape(batch_size, -1) + bboxes = bboxes.reshape(batch_size, -1, 4) + + max_size = torch.max(img_shape) + # Offset bboxes of each class so that bboxes of different labels + # do not overlap. + offsets = (labels * max_size + 1).unsqueeze(2) + bboxes_for_nms = bboxes + offsets + + batch_dets, labels = add_dummy_nms_for_onnx( + bboxes_for_nms, + scores.unsqueeze(2), + max_output_boxes_per_class, + iou_threshold, + score_threshold, + pre_top_k=nms_pre, + after_top_k=cfg.max_per_img, + labels=labels) + # Offset the bboxes back after dummy nms. + offsets = (labels * max_size + 1).unsqueeze(2) + # Indexing + inplace operation fails with dynamic shape in ONNX + # original style: batch_dets[..., :4] -= offsets + bboxes, scores = batch_dets[..., 0:4], batch_dets[..., 4:5] + bboxes -= offsets + batch_dets = torch.cat([bboxes, scores], dim=2) + return batch_dets, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py new file mode 100644 index 000000000..21124b9c9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py @@ -0,0 +1,229 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmdet.models.builder import HEADS +from mmdet.models.utils import build_linear_layer +from .bbox_head import BBoxHead + + +@HEADS.register_module() +class ConvFCBBoxHead(BBoxHead): + r"""More general bbox head, with shared conv and fc layers and two optional + separated branches. + + .. code-block:: none + + /-> cls convs -> cls fcs -> cls + shared convs -> shared fcs + \-> reg convs -> reg fcs -> reg + """ # noqa: W605 + + def __init__(self, + num_shared_convs=0, + num_shared_fcs=0, + num_cls_convs=0, + num_cls_fcs=0, + num_reg_convs=0, + num_reg_fcs=0, + conv_out_channels=256, + fc_out_channels=1024, + conv_cfg=None, + norm_cfg=None, + init_cfg=None, + *args, + **kwargs): + super(ConvFCBBoxHead, self).__init__( + *args, init_cfg=init_cfg, **kwargs) + assert (num_shared_convs + num_shared_fcs + num_cls_convs + + num_cls_fcs + num_reg_convs + num_reg_fcs > 0) + if num_cls_convs > 0 or num_reg_convs > 0: + assert num_shared_fcs == 0 + if not self.with_cls: + assert num_cls_convs == 0 and num_cls_fcs == 0 + if not self.with_reg: + assert num_reg_convs == 0 and num_reg_fcs == 0 + self.num_shared_convs = num_shared_convs + self.num_shared_fcs = num_shared_fcs + self.num_cls_convs = num_cls_convs + self.num_cls_fcs = num_cls_fcs + self.num_reg_convs = num_reg_convs + self.num_reg_fcs = num_reg_fcs + self.conv_out_channels = conv_out_channels + self.fc_out_channels = fc_out_channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + + # add shared convs and fcs + self.shared_convs, self.shared_fcs, last_layer_dim = \ + self._add_conv_fc_branch( + self.num_shared_convs, self.num_shared_fcs, self.in_channels, + True) + self.shared_out_channels = last_layer_dim + + # add cls specific branch + self.cls_convs, self.cls_fcs, self.cls_last_dim = \ + self._add_conv_fc_branch( + self.num_cls_convs, self.num_cls_fcs, self.shared_out_channels) + + # add reg specific branch + self.reg_convs, self.reg_fcs, self.reg_last_dim = \ + self._add_conv_fc_branch( + self.num_reg_convs, self.num_reg_fcs, self.shared_out_channels) + + if self.num_shared_fcs == 0 and not self.with_avg_pool: + if self.num_cls_fcs == 0: + self.cls_last_dim *= self.roi_feat_area + if self.num_reg_fcs == 0: + self.reg_last_dim *= self.roi_feat_area + + self.relu = nn.ReLU(inplace=True) + # reconstruct fc_cls and fc_reg since input channels are changed + if self.with_cls: + if self.custom_cls_channels: + cls_channels = self.loss_cls.get_cls_channels(self.num_classes) + else: + cls_channels = self.num_classes + 1 + self.fc_cls = build_linear_layer( + self.cls_predictor_cfg, + in_features=self.cls_last_dim, + out_features=cls_channels) + if self.with_reg: + out_dim_reg = (4 if self.reg_class_agnostic else 4 * + self.num_classes) + self.fc_reg = build_linear_layer( + self.reg_predictor_cfg, + in_features=self.reg_last_dim, + out_features=out_dim_reg) + + if init_cfg is None: + # when init_cfg is None, + # It has been set to + # [[dict(type='Normal', std=0.01, override=dict(name='fc_cls'))], + # [dict(type='Normal', std=0.001, override=dict(name='fc_reg'))] + # after `super(ConvFCBBoxHead, self).__init__()` + # we only need to append additional configuration + # for `shared_fcs`, `cls_fcs` and `reg_fcs` + self.init_cfg += [ + dict( + type='Xavier', + distribution='uniform', + override=[ + dict(name='shared_fcs'), + dict(name='cls_fcs'), + dict(name='reg_fcs') + ]) + ] + + def _add_conv_fc_branch(self, + num_branch_convs, + num_branch_fcs, + in_channels, + is_shared=False): + """Add shared or separable branch. + + convs -> avg pool (optional) -> fcs + """ + last_layer_dim = in_channels + # add branch specific conv layers + branch_convs = nn.ModuleList() + if num_branch_convs > 0: + for i in range(num_branch_convs): + conv_in_channels = ( + last_layer_dim if i == 0 else self.conv_out_channels) + branch_convs.append( + ConvModule( + conv_in_channels, + self.conv_out_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + last_layer_dim = self.conv_out_channels + # add branch specific fc layers + branch_fcs = nn.ModuleList() + if num_branch_fcs > 0: + # for shared branch, only consider self.with_avg_pool + # for separated branches, also consider self.num_shared_fcs + if (is_shared + or self.num_shared_fcs == 0) and not self.with_avg_pool: + last_layer_dim *= self.roi_feat_area + for i in range(num_branch_fcs): + fc_in_channels = ( + last_layer_dim if i == 0 else self.fc_out_channels) + branch_fcs.append( + nn.Linear(fc_in_channels, self.fc_out_channels)) + last_layer_dim = self.fc_out_channels + return branch_convs, branch_fcs, last_layer_dim + + def forward(self, x): + # shared part + if self.num_shared_convs > 0: + for conv in self.shared_convs: + x = conv(x) + + if self.num_shared_fcs > 0: + if self.with_avg_pool: + x = self.avg_pool(x) + + x = x.flatten(1) + + for fc in self.shared_fcs: + x = self.relu(fc(x)) + # separate branches + x_cls = x + x_reg = x + + for conv in self.cls_convs: + x_cls = conv(x_cls) + if x_cls.dim() > 2: + if self.with_avg_pool: + x_cls = self.avg_pool(x_cls) + x_cls = x_cls.flatten(1) + for fc in self.cls_fcs: + x_cls = self.relu(fc(x_cls)) + + for conv in self.reg_convs: + x_reg = conv(x_reg) + if x_reg.dim() > 2: + if self.with_avg_pool: + x_reg = self.avg_pool(x_reg) + x_reg = x_reg.flatten(1) + for fc in self.reg_fcs: + x_reg = self.relu(fc(x_reg)) + + cls_score = self.fc_cls(x_cls) if self.with_cls else None + bbox_pred = self.fc_reg(x_reg) if self.with_reg else None + return cls_score, bbox_pred + + +@HEADS.register_module() +class Shared2FCBBoxHead(ConvFCBBoxHead): + + def __init__(self, fc_out_channels=1024, *args, **kwargs): + super(Shared2FCBBoxHead, self).__init__( + num_shared_convs=0, + num_shared_fcs=2, + num_cls_convs=0, + num_cls_fcs=0, + num_reg_convs=0, + num_reg_fcs=0, + fc_out_channels=fc_out_channels, + *args, + **kwargs) + + +@HEADS.register_module() +class Shared4Conv1FCBBoxHead(ConvFCBBoxHead): + + def __init__(self, fc_out_channels=1024, *args, **kwargs): + super(Shared4Conv1FCBBoxHead, self).__init__( + num_shared_convs=4, + num_shared_fcs=1, + num_cls_convs=0, + num_cls_fcs=0, + num_reg_convs=0, + num_reg_fcs=0, + fc_out_channels=fc_out_channels, + *args, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/dii_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/dii_head.py new file mode 100644 index 000000000..3777f52be --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/dii_head.py @@ -0,0 +1,426 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import (bias_init_with_prob, build_activation_layer, + build_norm_layer) +from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention +from mmcv.runner import auto_fp16, force_fp32 + +from mmdet.core import multi_apply +from mmdet.models.builder import HEADS, build_loss +from mmdet.models.dense_heads.atss_head import reduce_mean +from mmdet.models.losses import accuracy +from mmdet.models.utils import build_transformer +from .bbox_head import BBoxHead + + +@HEADS.register_module() +class DIIHead(BBoxHead): + r"""Dynamic Instance Interactive Head for `Sparse R-CNN: End-to-End Object + Detection with Learnable Proposals `_ + + Args: + num_classes (int): Number of class in dataset. + Defaults to 80. + num_ffn_fcs (int): The number of fully-connected + layers in FFNs. Defaults to 2. + num_heads (int): The hidden dimension of FFNs. + Defaults to 8. + num_cls_fcs (int): The number of fully-connected + layers in classification subnet. Defaults to 1. + num_reg_fcs (int): The number of fully-connected + layers in regression subnet. Defaults to 3. + feedforward_channels (int): The hidden dimension + of FFNs. Defaults to 2048 + in_channels (int): Hidden_channels of MultiheadAttention. + Defaults to 256. + dropout (float): Probability of drop the channel. + Defaults to 0.0 + ffn_act_cfg (dict): The activation config for FFNs. + dynamic_conv_cfg (dict): The convolution config + for DynamicConv. + loss_iou (dict): The config for iou or giou loss. + + """ + + def __init__(self, + num_classes=80, + num_ffn_fcs=2, + num_heads=8, + num_cls_fcs=1, + num_reg_fcs=3, + feedforward_channels=2048, + in_channels=256, + dropout=0.0, + ffn_act_cfg=dict(type='ReLU', inplace=True), + dynamic_conv_cfg=dict( + type='DynamicConv', + in_channels=256, + feat_channels=64, + out_channels=256, + input_feat_shape=7, + act_cfg=dict(type='ReLU', inplace=True), + norm_cfg=dict(type='LN')), + loss_iou=dict(type='GIoULoss', loss_weight=2.0), + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(DIIHead, self).__init__( + num_classes=num_classes, + reg_decoded_bbox=True, + reg_class_agnostic=True, + init_cfg=init_cfg, + **kwargs) + self.loss_iou = build_loss(loss_iou) + self.in_channels = in_channels + self.fp16_enabled = False + self.attention = MultiheadAttention(in_channels, num_heads, dropout) + self.attention_norm = build_norm_layer(dict(type='LN'), in_channels)[1] + + self.instance_interactive_conv = build_transformer(dynamic_conv_cfg) + self.instance_interactive_conv_dropout = nn.Dropout(dropout) + self.instance_interactive_conv_norm = build_norm_layer( + dict(type='LN'), in_channels)[1] + + self.ffn = FFN( + in_channels, + feedforward_channels, + num_ffn_fcs, + act_cfg=ffn_act_cfg, + dropout=dropout) + self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1] + + self.cls_fcs = nn.ModuleList() + for _ in range(num_cls_fcs): + self.cls_fcs.append( + nn.Linear(in_channels, in_channels, bias=False)) + self.cls_fcs.append( + build_norm_layer(dict(type='LN'), in_channels)[1]) + self.cls_fcs.append( + build_activation_layer(dict(type='ReLU', inplace=True))) + + # over load the self.fc_cls in BBoxHead + if self.loss_cls.use_sigmoid: + self.fc_cls = nn.Linear(in_channels, self.num_classes) + else: + self.fc_cls = nn.Linear(in_channels, self.num_classes + 1) + + self.reg_fcs = nn.ModuleList() + for _ in range(num_reg_fcs): + self.reg_fcs.append( + nn.Linear(in_channels, in_channels, bias=False)) + self.reg_fcs.append( + build_norm_layer(dict(type='LN'), in_channels)[1]) + self.reg_fcs.append( + build_activation_layer(dict(type='ReLU', inplace=True))) + # over load the self.fc_cls in BBoxHead + self.fc_reg = nn.Linear(in_channels, 4) + + assert self.reg_class_agnostic, 'DIIHead only ' \ + 'suppport `reg_class_agnostic=True` ' + assert self.reg_decoded_bbox, 'DIIHead only ' \ + 'suppport `reg_decoded_bbox=True`' + + def init_weights(self): + """Use xavier initialization for all weight parameter and set + classification head bias as a specific value when use focal loss.""" + super(DIIHead, self).init_weights() + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + else: + # adopt the default initialization for + # the weight and bias of the layer norm + pass + if self.loss_cls.use_sigmoid: + bias_init = bias_init_with_prob(0.01) + nn.init.constant_(self.fc_cls.bias, bias_init) + + @auto_fp16() + def forward(self, roi_feat, proposal_feat): + """Forward function of Dynamic Instance Interactive Head. + + Args: + roi_feat (Tensor): Roi-pooling features with shape + (batch_size*num_proposals, feature_dimensions, + pooling_h , pooling_w). + proposal_feat (Tensor): Intermediate feature get from + diihead in last stage, has shape + (batch_size, num_proposals, feature_dimensions) + + Returns: + tuple[Tensor]: Usually a tuple of classification scores + and bbox prediction and a intermediate feature. + + - cls_scores (Tensor): Classification scores for + all proposals, has shape + (batch_size, num_proposals, num_classes). + - bbox_preds (Tensor): Box energies / deltas for + all proposals, has shape + (batch_size, num_proposals, 4). + - obj_feat (Tensor): Object feature before classification + and regression subnet, has shape + (batch_size, num_proposal, feature_dimensions). + """ + N, num_proposals = proposal_feat.shape[:2] + + # Self attention + proposal_feat = proposal_feat.permute(1, 0, 2) + proposal_feat = self.attention_norm(self.attention(proposal_feat)) + attn_feats = proposal_feat.permute(1, 0, 2) + + # instance interactive + proposal_feat = attn_feats.reshape(-1, self.in_channels) + proposal_feat_iic = self.instance_interactive_conv( + proposal_feat, roi_feat) + proposal_feat = proposal_feat + self.instance_interactive_conv_dropout( + proposal_feat_iic) + obj_feat = self.instance_interactive_conv_norm(proposal_feat) + + # FFN + obj_feat = self.ffn_norm(self.ffn(obj_feat)) + + cls_feat = obj_feat + reg_feat = obj_feat + + for cls_layer in self.cls_fcs: + cls_feat = cls_layer(cls_feat) + for reg_layer in self.reg_fcs: + reg_feat = reg_layer(reg_feat) + + cls_score = self.fc_cls(cls_feat).view( + N, num_proposals, self.num_classes + if self.loss_cls.use_sigmoid else self.num_classes + 1) + bbox_delta = self.fc_reg(reg_feat).view(N, num_proposals, 4) + + return cls_score, bbox_delta, obj_feat.view( + N, num_proposals, self.in_channels), attn_feats + + @force_fp32(apply_to=('cls_score', 'bbox_pred')) + def loss(self, + cls_score, + bbox_pred, + labels, + label_weights, + bbox_targets, + bbox_weights, + imgs_whwh=None, + reduction_override=None, + **kwargs): + """"Loss function of DIIHead, get loss of all images. + + Args: + cls_score (Tensor): Classification prediction + results of all class, has shape + (batch_size * num_proposals_single_image, num_classes) + bbox_pred (Tensor): Regression prediction results, + has shape + (batch_size * num_proposals_single_image, 4), the last + dimension 4 represents [tl_x, tl_y, br_x, br_y]. + labels (Tensor): Label of each proposals, has shape + (batch_size * num_proposals_single_image + label_weights (Tensor): Classification loss + weight of each proposals, has shape + (batch_size * num_proposals_single_image + bbox_targets (Tensor): Regression targets of each + proposals, has shape + (batch_size * num_proposals_single_image, 4), + the last dimension 4 represents + [tl_x, tl_y, br_x, br_y]. + bbox_weights (Tensor): Regression loss weight of each + proposals's coordinate, has shape + (batch_size * num_proposals_single_image, 4), + imgs_whwh (Tensor): imgs_whwh (Tensor): Tensor with\ + shape (batch_size, num_proposals, 4), the last + dimension means + [img_width,img_height, img_width, img_height]. + reduction_override (str, optional): The reduction + method used to override the original reduction + method of the loss. Options are "none", + "mean" and "sum". Defaults to None, + + Returns: + dict[str, Tensor]: Dictionary of loss components + """ + losses = dict() + bg_class_ind = self.num_classes + # note in spare rcnn num_gt == num_pos + pos_inds = (labels >= 0) & (labels < bg_class_ind) + num_pos = pos_inds.sum().float() + avg_factor = reduce_mean(num_pos) + if cls_score is not None: + if cls_score.numel() > 0: + losses['loss_cls'] = self.loss_cls( + cls_score, + labels, + label_weights, + avg_factor=avg_factor, + reduction_override=reduction_override) + losses['pos_acc'] = accuracy(cls_score[pos_inds], + labels[pos_inds]) + if bbox_pred is not None: + # 0~self.num_classes-1 are FG, self.num_classes is BG + # do not perform bounding box regression for BG anymore. + if pos_inds.any(): + pos_bbox_pred = bbox_pred.reshape(bbox_pred.size(0), + 4)[pos_inds.type(torch.bool)] + imgs_whwh = imgs_whwh.reshape(bbox_pred.size(0), + 4)[pos_inds.type(torch.bool)] + losses['loss_bbox'] = self.loss_bbox( + pos_bbox_pred / imgs_whwh, + bbox_targets[pos_inds.type(torch.bool)] / imgs_whwh, + bbox_weights[pos_inds.type(torch.bool)], + avg_factor=avg_factor) + losses['loss_iou'] = self.loss_iou( + pos_bbox_pred, + bbox_targets[pos_inds.type(torch.bool)], + bbox_weights[pos_inds.type(torch.bool)], + avg_factor=avg_factor) + else: + losses['loss_bbox'] = bbox_pred.sum() * 0 + losses['loss_iou'] = bbox_pred.sum() * 0 + return losses + + def _get_target_single(self, pos_inds, neg_inds, pos_bboxes, neg_bboxes, + pos_gt_bboxes, pos_gt_labels, cfg): + """Calculate the ground truth for proposals in the single image + according to the sampling results. + + Almost the same as the implementation in `bbox_head`, + we add pos_inds and neg_inds to select positive and + negative samples instead of selecting the first num_pos + as positive samples. + + Args: + pos_inds (Tensor): The length is equal to the + positive sample numbers contain all index + of the positive sample in the origin proposal set. + neg_inds (Tensor): The length is equal to the + negative sample numbers contain all index + of the negative sample in the origin proposal set. + pos_bboxes (Tensor): Contains all the positive boxes, + has shape (num_pos, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + neg_bboxes (Tensor): Contains all the negative boxes, + has shape (num_neg, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + pos_gt_bboxes (Tensor): Contains gt_boxes for + all positive samples, has shape (num_pos, 4), + the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + pos_gt_labels (Tensor): Contains gt_labels for + all positive samples, has shape (num_pos, ). + cfg (obj:`ConfigDict`): `train_cfg` of R-CNN. + + Returns: + Tuple[Tensor]: Ground truth for proposals in a single image. + Containing the following Tensors: + + - labels(Tensor): Gt_labels for all proposals, has + shape (num_proposals,). + - label_weights(Tensor): Labels_weights for all proposals, has + shape (num_proposals,). + - bbox_targets(Tensor):Regression target for all proposals, has + shape (num_proposals, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + - bbox_weights(Tensor):Regression weights for all proposals, + has shape (num_proposals, 4). + """ + num_pos = pos_bboxes.size(0) + num_neg = neg_bboxes.size(0) + num_samples = num_pos + num_neg + + # original implementation uses new_zeros since BG are set to be 0 + # now use empty & fill because BG cat_id = num_classes, + # FG cat_id = [0, num_classes-1] + labels = pos_bboxes.new_full((num_samples, ), + self.num_classes, + dtype=torch.long) + label_weights = pos_bboxes.new_zeros(num_samples) + bbox_targets = pos_bboxes.new_zeros(num_samples, 4) + bbox_weights = pos_bboxes.new_zeros(num_samples, 4) + if num_pos > 0: + labels[pos_inds] = pos_gt_labels + pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight + label_weights[pos_inds] = pos_weight + if not self.reg_decoded_bbox: + pos_bbox_targets = self.bbox_coder.encode( + pos_bboxes, pos_gt_bboxes) + else: + pos_bbox_targets = pos_gt_bboxes + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1 + if num_neg > 0: + label_weights[neg_inds] = 1.0 + + return labels, label_weights, bbox_targets, bbox_weights + + def get_targets(self, + sampling_results, + gt_bboxes, + gt_labels, + rcnn_train_cfg, + concat=True): + """Calculate the ground truth for all samples in a batch according to + the sampling_results. + + Almost the same as the implementation in bbox_head, we passed + additional parameters pos_inds_list and neg_inds_list to + `_get_target_single` function. + + Args: + sampling_results (List[obj:SamplingResults]): Assign results of + all images in a batch after sampling. + gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch, + each tensor has shape (num_gt, 4), the last dimension 4 + represents [tl_x, tl_y, br_x, br_y]. + gt_labels (list[Tensor]): Gt_labels of all images in a batch, + each tensor has shape (num_gt,). + rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN. + concat (bool): Whether to concatenate the results of all + the images in a single batch. + + Returns: + Tuple[Tensor]: Ground truth for proposals in a single image. + Containing the following list of Tensors: + + - labels (list[Tensor],Tensor): Gt_labels for all + proposals in a batch, each tensor in list has + shape (num_proposals,) when `concat=False`, otherwise just + a single tensor has shape (num_all_proposals,). + - label_weights (list[Tensor]): Labels_weights for + all proposals in a batch, each tensor in list has shape + (num_proposals,) when `concat=False`, otherwise just a + single tensor has shape (num_all_proposals,). + - bbox_targets (list[Tensor],Tensor): Regression target + for all proposals in a batch, each tensor in list has + shape (num_proposals, 4) when `concat=False`, otherwise + just a single tensor has shape (num_all_proposals, 4), + the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. + - bbox_weights (list[tensor],Tensor): Regression weights for + all proposals in a batch, each tensor in list has shape + (num_proposals, 4) when `concat=False`, otherwise just a + single tensor has shape (num_all_proposals, 4). + """ + pos_inds_list = [res.pos_inds for res in sampling_results] + neg_inds_list = [res.neg_inds for res in sampling_results] + pos_bboxes_list = [res.pos_bboxes for res in sampling_results] + neg_bboxes_list = [res.neg_bboxes for res in sampling_results] + pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] + pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] + labels, label_weights, bbox_targets, bbox_weights = multi_apply( + self._get_target_single, + pos_inds_list, + neg_inds_list, + pos_bboxes_list, + neg_bboxes_list, + pos_gt_bboxes_list, + pos_gt_labels_list, + cfg=rcnn_train_cfg) + if concat: + labels = torch.cat(labels, 0) + label_weights = torch.cat(label_weights, 0) + bbox_targets = torch.cat(bbox_targets, 0) + bbox_weights = torch.cat(bbox_weights, 0) + return labels, label_weights, bbox_targets, bbox_weights diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py new file mode 100644 index 000000000..2a38d591f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py @@ -0,0 +1,178 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, ModuleList + +from mmdet.models.backbones.resnet import Bottleneck +from mmdet.models.builder import HEADS +from .bbox_head import BBoxHead + + +class BasicResBlock(BaseModule): + """Basic residual block. + + This block is a little different from the block in the ResNet backbone. + The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock. + + Args: + in_channels (int): Channels of the input feature map. + out_channels (int): Channels of the output feature map. + conv_cfg (dict): The config dict for convolution layers. + norm_cfg (dict): The config dict for normalization layers. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN'), + init_cfg=None): + super(BasicResBlock, self).__init__(init_cfg) + + # main path + self.conv1 = ConvModule( + in_channels, + in_channels, + kernel_size=3, + padding=1, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg) + self.conv2 = ConvModule( + in_channels, + out_channels, + kernel_size=1, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + # identity path + self.conv_identity = ConvModule( + in_channels, + out_channels, + kernel_size=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + identity = x + + x = self.conv1(x) + x = self.conv2(x) + + identity = self.conv_identity(identity) + out = x + identity + + out = self.relu(out) + return out + + +@HEADS.register_module() +class DoubleConvFCBBoxHead(BBoxHead): + r"""Bbox head used in Double-Head R-CNN + + .. code-block:: none + + /-> cls + /-> shared convs -> + \-> reg + roi features + /-> cls + \-> shared fc -> + \-> reg + """ # noqa: W605 + + def __init__(self, + num_convs=0, + num_fcs=0, + conv_out_channels=1024, + fc_out_channels=1024, + conv_cfg=None, + norm_cfg=dict(type='BN'), + init_cfg=dict( + type='Normal', + override=[ + dict(type='Normal', name='fc_cls', std=0.01), + dict(type='Normal', name='fc_reg', std=0.001), + dict( + type='Xavier', + name='fc_branch', + distribution='uniform') + ]), + **kwargs): + kwargs.setdefault('with_avg_pool', True) + super(DoubleConvFCBBoxHead, self).__init__(init_cfg=init_cfg, **kwargs) + assert self.with_avg_pool + assert num_convs > 0 + assert num_fcs > 0 + self.num_convs = num_convs + self.num_fcs = num_fcs + self.conv_out_channels = conv_out_channels + self.fc_out_channels = fc_out_channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + + # increase the channel of input features + self.res_block = BasicResBlock(self.in_channels, + self.conv_out_channels) + + # add conv heads + self.conv_branch = self._add_conv_branch() + # add fc heads + self.fc_branch = self._add_fc_branch() + + out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes + self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg) + + self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes + 1) + self.relu = nn.ReLU(inplace=True) + + def _add_conv_branch(self): + """Add the fc branch which consists of a sequential of conv layers.""" + branch_convs = ModuleList() + for i in range(self.num_convs): + branch_convs.append( + Bottleneck( + inplanes=self.conv_out_channels, + planes=self.conv_out_channels // 4, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + return branch_convs + + def _add_fc_branch(self): + """Add the fc branch which consists of a sequential of fc layers.""" + branch_fcs = ModuleList() + for i in range(self.num_fcs): + fc_in_channels = ( + self.in_channels * + self.roi_feat_area if i == 0 else self.fc_out_channels) + branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) + return branch_fcs + + def forward(self, x_cls, x_reg): + # conv head + x_conv = self.res_block(x_reg) + + for conv in self.conv_branch: + x_conv = conv(x_conv) + + if self.with_avg_pool: + x_conv = self.avg_pool(x_conv) + + x_conv = x_conv.view(x_conv.size(0), -1) + bbox_pred = self.fc_reg(x_conv) + + # fc head + x_fc = x_cls.view(x_cls.size(0), -1) + for fc in self.fc_branch: + x_fc = self.relu(fc(x_fc)) + + cls_score = self.fc_cls(x_fc) + + return cls_score, bbox_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/sabl_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/sabl_head.py new file mode 100644 index 000000000..0ce986b9a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/sabl_head.py @@ -0,0 +1,596 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, force_fp32 + +from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms +from mmdet.models.builder import HEADS, build_loss +from mmdet.models.losses import accuracy + + +@HEADS.register_module() +class SABLHead(BaseModule): + """Side-Aware Boundary Localization (SABL) for RoI-Head. + + Side-Aware features are extracted by conv layers + with an attention mechanism. + Boundary Localization with Bucketing and Bucketing Guided Rescoring + are implemented in BucketingBBoxCoder. + + Please refer to https://arxiv.org/abs/1912.04260 for more details. + + Args: + cls_in_channels (int): Input channels of cls RoI feature. \ + Defaults to 256. + reg_in_channels (int): Input channels of reg RoI feature. \ + Defaults to 256. + roi_feat_size (int): Size of RoI features. Defaults to 7. + reg_feat_up_ratio (int): Upsample ratio of reg features. \ + Defaults to 2. + reg_pre_kernel (int): Kernel of 2D conv layers before \ + attention pooling. Defaults to 3. + reg_post_kernel (int): Kernel of 1D conv layers after \ + attention pooling. Defaults to 3. + reg_pre_num (int): Number of pre convs. Defaults to 2. + reg_post_num (int): Number of post convs. Defaults to 1. + num_classes (int): Number of classes in dataset. Defaults to 80. + cls_out_channels (int): Hidden channels in cls fcs. Defaults to 1024. + reg_offset_out_channels (int): Hidden and output channel \ + of reg offset branch. Defaults to 256. + reg_cls_out_channels (int): Hidden and output channel \ + of reg cls branch. Defaults to 256. + num_cls_fcs (int): Number of fcs for cls branch. Defaults to 1. + num_reg_fcs (int): Number of fcs for reg branch.. Defaults to 0. + reg_class_agnostic (bool): Class agnostic regression or not. \ + Defaults to True. + norm_cfg (dict): Config of norm layers. Defaults to None. + bbox_coder (dict): Config of bbox coder. Defaults 'BucketingBBoxCoder'. + loss_cls (dict): Config of classification loss. + loss_bbox_cls (dict): Config of classification loss for bbox branch. + loss_bbox_reg (dict): Config of regression loss for bbox branch. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + num_classes, + cls_in_channels=256, + reg_in_channels=256, + roi_feat_size=7, + reg_feat_up_ratio=2, + reg_pre_kernel=3, + reg_post_kernel=3, + reg_pre_num=2, + reg_post_num=1, + cls_out_channels=1024, + reg_offset_out_channels=256, + reg_cls_out_channels=256, + num_cls_fcs=1, + num_reg_fcs=0, + reg_class_agnostic=True, + norm_cfg=None, + bbox_coder=dict( + type='BucketingBBoxCoder', + num_buckets=14, + scale_factor=1.7), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_bbox_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_bbox_reg=dict( + type='SmoothL1Loss', beta=0.1, loss_weight=1.0), + init_cfg=None): + super(SABLHead, self).__init__(init_cfg) + self.cls_in_channels = cls_in_channels + self.reg_in_channels = reg_in_channels + self.roi_feat_size = roi_feat_size + self.reg_feat_up_ratio = int(reg_feat_up_ratio) + self.num_buckets = bbox_coder['num_buckets'] + assert self.reg_feat_up_ratio // 2 >= 1 + self.up_reg_feat_size = roi_feat_size * self.reg_feat_up_ratio + assert self.up_reg_feat_size == bbox_coder['num_buckets'] + self.reg_pre_kernel = reg_pre_kernel + self.reg_post_kernel = reg_post_kernel + self.reg_pre_num = reg_pre_num + self.reg_post_num = reg_post_num + self.num_classes = num_classes + self.cls_out_channels = cls_out_channels + self.reg_offset_out_channels = reg_offset_out_channels + self.reg_cls_out_channels = reg_cls_out_channels + self.num_cls_fcs = num_cls_fcs + self.num_reg_fcs = num_reg_fcs + self.reg_class_agnostic = reg_class_agnostic + assert self.reg_class_agnostic + self.norm_cfg = norm_cfg + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.loss_cls = build_loss(loss_cls) + self.loss_bbox_cls = build_loss(loss_bbox_cls) + self.loss_bbox_reg = build_loss(loss_bbox_reg) + + self.cls_fcs = self._add_fc_branch(self.num_cls_fcs, + self.cls_in_channels, + self.roi_feat_size, + self.cls_out_channels) + + self.side_num = int(np.ceil(self.num_buckets / 2)) + + if self.reg_feat_up_ratio > 1: + self.upsample_x = nn.ConvTranspose1d( + reg_in_channels, + reg_in_channels, + self.reg_feat_up_ratio, + stride=self.reg_feat_up_ratio) + self.upsample_y = nn.ConvTranspose1d( + reg_in_channels, + reg_in_channels, + self.reg_feat_up_ratio, + stride=self.reg_feat_up_ratio) + + self.reg_pre_convs = nn.ModuleList() + for i in range(self.reg_pre_num): + reg_pre_conv = ConvModule( + reg_in_channels, + reg_in_channels, + kernel_size=reg_pre_kernel, + padding=reg_pre_kernel // 2, + norm_cfg=norm_cfg, + act_cfg=dict(type='ReLU')) + self.reg_pre_convs.append(reg_pre_conv) + + self.reg_post_conv_xs = nn.ModuleList() + for i in range(self.reg_post_num): + reg_post_conv_x = ConvModule( + reg_in_channels, + reg_in_channels, + kernel_size=(1, reg_post_kernel), + padding=(0, reg_post_kernel // 2), + norm_cfg=norm_cfg, + act_cfg=dict(type='ReLU')) + self.reg_post_conv_xs.append(reg_post_conv_x) + self.reg_post_conv_ys = nn.ModuleList() + for i in range(self.reg_post_num): + reg_post_conv_y = ConvModule( + reg_in_channels, + reg_in_channels, + kernel_size=(reg_post_kernel, 1), + padding=(reg_post_kernel // 2, 0), + norm_cfg=norm_cfg, + act_cfg=dict(type='ReLU')) + self.reg_post_conv_ys.append(reg_post_conv_y) + + self.reg_conv_att_x = nn.Conv2d(reg_in_channels, 1, 1) + self.reg_conv_att_y = nn.Conv2d(reg_in_channels, 1, 1) + + self.fc_cls = nn.Linear(self.cls_out_channels, self.num_classes + 1) + self.relu = nn.ReLU(inplace=True) + + self.reg_cls_fcs = self._add_fc_branch(self.num_reg_fcs, + self.reg_in_channels, 1, + self.reg_cls_out_channels) + self.reg_offset_fcs = self._add_fc_branch(self.num_reg_fcs, + self.reg_in_channels, 1, + self.reg_offset_out_channels) + self.fc_reg_cls = nn.Linear(self.reg_cls_out_channels, 1) + self.fc_reg_offset = nn.Linear(self.reg_offset_out_channels, 1) + + if init_cfg is None: + self.init_cfg = [ + dict( + type='Xavier', + layer='Linear', + distribution='uniform', + override=[ + dict(type='Normal', name='reg_conv_att_x', std=0.01), + dict(type='Normal', name='reg_conv_att_y', std=0.01), + dict(type='Normal', name='fc_reg_cls', std=0.01), + dict(type='Normal', name='fc_cls', std=0.01), + dict(type='Normal', name='fc_reg_offset', std=0.001) + ]) + ] + if self.reg_feat_up_ratio > 1: + self.init_cfg += [ + dict( + type='Kaiming', + distribution='normal', + override=[ + dict(name='upsample_x'), + dict(name='upsample_y') + ]) + ] + + @property + def custom_cls_channels(self): + return getattr(self.loss_cls, 'custom_cls_channels', False) + + @property + def custom_activation(self): + return getattr(self.loss_cls, 'custom_activation', False) + + @property + def custom_accuracy(self): + return getattr(self.loss_cls, 'custom_accuracy', False) + + def _add_fc_branch(self, num_branch_fcs, in_channels, roi_feat_size, + fc_out_channels): + in_channels = in_channels * roi_feat_size * roi_feat_size + branch_fcs = nn.ModuleList() + for i in range(num_branch_fcs): + fc_in_channels = (in_channels if i == 0 else fc_out_channels) + branch_fcs.append(nn.Linear(fc_in_channels, fc_out_channels)) + return branch_fcs + + def cls_forward(self, cls_x): + cls_x = cls_x.view(cls_x.size(0), -1) + for fc in self.cls_fcs: + cls_x = self.relu(fc(cls_x)) + cls_score = self.fc_cls(cls_x) + return cls_score + + def attention_pool(self, reg_x): + """Extract direction-specific features fx and fy with attention + methanism.""" + reg_fx = reg_x + reg_fy = reg_x + reg_fx_att = self.reg_conv_att_x(reg_fx).sigmoid() + reg_fy_att = self.reg_conv_att_y(reg_fy).sigmoid() + reg_fx_att = reg_fx_att / reg_fx_att.sum(dim=2).unsqueeze(2) + reg_fy_att = reg_fy_att / reg_fy_att.sum(dim=3).unsqueeze(3) + reg_fx = (reg_fx * reg_fx_att).sum(dim=2) + reg_fy = (reg_fy * reg_fy_att).sum(dim=3) + return reg_fx, reg_fy + + def side_aware_feature_extractor(self, reg_x): + """Refine and extract side-aware features without split them.""" + for reg_pre_conv in self.reg_pre_convs: + reg_x = reg_pre_conv(reg_x) + reg_fx, reg_fy = self.attention_pool(reg_x) + + if self.reg_post_num > 0: + reg_fx = reg_fx.unsqueeze(2) + reg_fy = reg_fy.unsqueeze(3) + for i in range(self.reg_post_num): + reg_fx = self.reg_post_conv_xs[i](reg_fx) + reg_fy = self.reg_post_conv_ys[i](reg_fy) + reg_fx = reg_fx.squeeze(2) + reg_fy = reg_fy.squeeze(3) + if self.reg_feat_up_ratio > 1: + reg_fx = self.relu(self.upsample_x(reg_fx)) + reg_fy = self.relu(self.upsample_y(reg_fy)) + reg_fx = torch.transpose(reg_fx, 1, 2) + reg_fy = torch.transpose(reg_fy, 1, 2) + return reg_fx.contiguous(), reg_fy.contiguous() + + def reg_pred(self, x, offset_fcs, cls_fcs): + """Predict bucketing estimation (cls_pred) and fine regression (offset + pred) with side-aware features.""" + x_offset = x.view(-1, self.reg_in_channels) + x_cls = x.view(-1, self.reg_in_channels) + + for fc in offset_fcs: + x_offset = self.relu(fc(x_offset)) + for fc in cls_fcs: + x_cls = self.relu(fc(x_cls)) + offset_pred = self.fc_reg_offset(x_offset) + cls_pred = self.fc_reg_cls(x_cls) + + offset_pred = offset_pred.view(x.size(0), -1) + cls_pred = cls_pred.view(x.size(0), -1) + + return offset_pred, cls_pred + + def side_aware_split(self, feat): + """Split side-aware features aligned with orders of bucketing + targets.""" + l_end = int(np.ceil(self.up_reg_feat_size / 2)) + r_start = int(np.floor(self.up_reg_feat_size / 2)) + feat_fl = feat[:, :l_end] + feat_fr = feat[:, r_start:].flip(dims=(1, )) + feat_fl = feat_fl.contiguous() + feat_fr = feat_fr.contiguous() + feat = torch.cat([feat_fl, feat_fr], dim=-1) + return feat + + def bbox_pred_split(self, bbox_pred, num_proposals_per_img): + """Split batch bbox prediction back to each image.""" + bucket_cls_preds, bucket_offset_preds = bbox_pred + bucket_cls_preds = bucket_cls_preds.split(num_proposals_per_img, 0) + bucket_offset_preds = bucket_offset_preds.split( + num_proposals_per_img, 0) + bbox_pred = tuple(zip(bucket_cls_preds, bucket_offset_preds)) + return bbox_pred + + def reg_forward(self, reg_x): + outs = self.side_aware_feature_extractor(reg_x) + edge_offset_preds = [] + edge_cls_preds = [] + reg_fx = outs[0] + reg_fy = outs[1] + offset_pred_x, cls_pred_x = self.reg_pred(reg_fx, self.reg_offset_fcs, + self.reg_cls_fcs) + offset_pred_y, cls_pred_y = self.reg_pred(reg_fy, self.reg_offset_fcs, + self.reg_cls_fcs) + offset_pred_x = self.side_aware_split(offset_pred_x) + offset_pred_y = self.side_aware_split(offset_pred_y) + cls_pred_x = self.side_aware_split(cls_pred_x) + cls_pred_y = self.side_aware_split(cls_pred_y) + edge_offset_preds = torch.cat([offset_pred_x, offset_pred_y], dim=-1) + edge_cls_preds = torch.cat([cls_pred_x, cls_pred_y], dim=-1) + + return (edge_cls_preds, edge_offset_preds) + + def forward(self, x): + + bbox_pred = self.reg_forward(x) + cls_score = self.cls_forward(x) + + return cls_score, bbox_pred + + def get_targets(self, sampling_results, gt_bboxes, gt_labels, + rcnn_train_cfg): + pos_proposals = [res.pos_bboxes for res in sampling_results] + neg_proposals = [res.neg_bboxes for res in sampling_results] + pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results] + pos_gt_labels = [res.pos_gt_labels for res in sampling_results] + cls_reg_targets = self.bucket_target(pos_proposals, neg_proposals, + pos_gt_bboxes, pos_gt_labels, + rcnn_train_cfg) + (labels, label_weights, bucket_cls_targets, bucket_cls_weights, + bucket_offset_targets, bucket_offset_weights) = cls_reg_targets + return (labels, label_weights, (bucket_cls_targets, + bucket_offset_targets), + (bucket_cls_weights, bucket_offset_weights)) + + def bucket_target(self, + pos_proposals_list, + neg_proposals_list, + pos_gt_bboxes_list, + pos_gt_labels_list, + rcnn_train_cfg, + concat=True): + (labels, label_weights, bucket_cls_targets, bucket_cls_weights, + bucket_offset_targets, bucket_offset_weights) = multi_apply( + self._bucket_target_single, + pos_proposals_list, + neg_proposals_list, + pos_gt_bboxes_list, + pos_gt_labels_list, + cfg=rcnn_train_cfg) + + if concat: + labels = torch.cat(labels, 0) + label_weights = torch.cat(label_weights, 0) + bucket_cls_targets = torch.cat(bucket_cls_targets, 0) + bucket_cls_weights = torch.cat(bucket_cls_weights, 0) + bucket_offset_targets = torch.cat(bucket_offset_targets, 0) + bucket_offset_weights = torch.cat(bucket_offset_weights, 0) + return (labels, label_weights, bucket_cls_targets, bucket_cls_weights, + bucket_offset_targets, bucket_offset_weights) + + def _bucket_target_single(self, pos_proposals, neg_proposals, + pos_gt_bboxes, pos_gt_labels, cfg): + """Compute bucketing estimation targets and fine regression targets for + a single image. + + Args: + pos_proposals (Tensor): positive proposals of a single image, + Shape (n_pos, 4) + neg_proposals (Tensor): negative proposals of a single image, + Shape (n_neg, 4). + pos_gt_bboxes (Tensor): gt bboxes assigned to positive proposals + of a single image, Shape (n_pos, 4). + pos_gt_labels (Tensor): gt labels assigned to positive proposals + of a single image, Shape (n_pos, ). + cfg (dict): Config of calculating targets + + Returns: + tuple: + + - labels (Tensor): Labels in a single image. \ + Shape (n,). + - label_weights (Tensor): Label weights in a single image.\ + Shape (n,) + - bucket_cls_targets (Tensor): Bucket cls targets in \ + a single image. Shape (n, num_buckets*2). + - bucket_cls_weights (Tensor): Bucket cls weights in \ + a single image. Shape (n, num_buckets*2). + - bucket_offset_targets (Tensor): Bucket offset targets \ + in a single image. Shape (n, num_buckets*2). + - bucket_offset_targets (Tensor): Bucket offset weights \ + in a single image. Shape (n, num_buckets*2). + """ + num_pos = pos_proposals.size(0) + num_neg = neg_proposals.size(0) + num_samples = num_pos + num_neg + labels = pos_gt_bboxes.new_full((num_samples, ), + self.num_classes, + dtype=torch.long) + label_weights = pos_proposals.new_zeros(num_samples) + bucket_cls_targets = pos_proposals.new_zeros(num_samples, + 4 * self.side_num) + bucket_cls_weights = pos_proposals.new_zeros(num_samples, + 4 * self.side_num) + bucket_offset_targets = pos_proposals.new_zeros( + num_samples, 4 * self.side_num) + bucket_offset_weights = pos_proposals.new_zeros( + num_samples, 4 * self.side_num) + if num_pos > 0: + labels[:num_pos] = pos_gt_labels + label_weights[:num_pos] = 1.0 + (pos_bucket_offset_targets, pos_bucket_offset_weights, + pos_bucket_cls_targets, + pos_bucket_cls_weights) = self.bbox_coder.encode( + pos_proposals, pos_gt_bboxes) + bucket_cls_targets[:num_pos, :] = pos_bucket_cls_targets + bucket_cls_weights[:num_pos, :] = pos_bucket_cls_weights + bucket_offset_targets[:num_pos, :] = pos_bucket_offset_targets + bucket_offset_weights[:num_pos, :] = pos_bucket_offset_weights + if num_neg > 0: + label_weights[-num_neg:] = 1.0 + return (labels, label_weights, bucket_cls_targets, bucket_cls_weights, + bucket_offset_targets, bucket_offset_weights) + + def loss(self, + cls_score, + bbox_pred, + rois, + labels, + label_weights, + bbox_targets, + bbox_weights, + reduction_override=None): + losses = dict() + if cls_score is not None: + avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.) + losses['loss_cls'] = self.loss_cls( + cls_score, + labels, + label_weights, + avg_factor=avg_factor, + reduction_override=reduction_override) + losses['acc'] = accuracy(cls_score, labels) + + if bbox_pred is not None: + bucket_cls_preds, bucket_offset_preds = bbox_pred + bucket_cls_targets, bucket_offset_targets = bbox_targets + bucket_cls_weights, bucket_offset_weights = bbox_weights + # edge cls + bucket_cls_preds = bucket_cls_preds.view(-1, self.side_num) + bucket_cls_targets = bucket_cls_targets.view(-1, self.side_num) + bucket_cls_weights = bucket_cls_weights.view(-1, self.side_num) + losses['loss_bbox_cls'] = self.loss_bbox_cls( + bucket_cls_preds, + bucket_cls_targets, + bucket_cls_weights, + avg_factor=bucket_cls_targets.size(0), + reduction_override=reduction_override) + + losses['loss_bbox_reg'] = self.loss_bbox_reg( + bucket_offset_preds, + bucket_offset_targets, + bucket_offset_weights, + avg_factor=bucket_offset_targets.size(0), + reduction_override=reduction_override) + + return losses + + @force_fp32(apply_to=('cls_score', 'bbox_pred')) + def get_bboxes(self, + rois, + cls_score, + bbox_pred, + img_shape, + scale_factor, + rescale=False, + cfg=None): + if isinstance(cls_score, list): + cls_score = sum(cls_score) / float(len(cls_score)) + scores = F.softmax(cls_score, dim=1) if cls_score is not None else None + + if bbox_pred is not None: + bboxes, confidences = self.bbox_coder.decode( + rois[:, 1:], bbox_pred, img_shape) + else: + bboxes = rois[:, 1:].clone() + confidences = None + if img_shape is not None: + bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1] - 1) + bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0] - 1) + + if rescale and bboxes.size(0) > 0: + if isinstance(scale_factor, float): + bboxes /= scale_factor + else: + bboxes /= torch.from_numpy(scale_factor).to(bboxes.device) + + if cfg is None: + return bboxes, scores + else: + det_bboxes, det_labels = multiclass_nms( + bboxes, + scores, + cfg.score_thr, + cfg.nms, + cfg.max_per_img, + score_factors=confidences) + + return det_bboxes, det_labels + + @force_fp32(apply_to=('bbox_preds', )) + def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas): + """Refine bboxes during training. + + Args: + rois (Tensor): Shape (n*bs, 5), where n is image number per GPU, + and bs is the sampled RoIs per image. + labels (Tensor): Shape (n*bs, ). + bbox_preds (list[Tensor]): Shape [(n*bs, num_buckets*2), \ + (n*bs, num_buckets*2)]. + pos_is_gts (list[Tensor]): Flags indicating if each positive bbox + is a gt bbox. + img_metas (list[dict]): Meta info of each image. + + Returns: + list[Tensor]: Refined bboxes of each image in a mini-batch. + """ + img_ids = rois[:, 0].long().unique(sorted=True) + assert img_ids.numel() == len(img_metas) + + bboxes_list = [] + for i in range(len(img_metas)): + inds = torch.nonzero( + rois[:, 0] == i, as_tuple=False).squeeze(dim=1) + num_rois = inds.numel() + + bboxes_ = rois[inds, 1:] + label_ = labels[inds] + edge_cls_preds, edge_offset_preds = bbox_preds + edge_cls_preds_ = edge_cls_preds[inds] + edge_offset_preds_ = edge_offset_preds[inds] + bbox_pred_ = [edge_cls_preds_, edge_offset_preds_] + img_meta_ = img_metas[i] + pos_is_gts_ = pos_is_gts[i] + + bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_, + img_meta_) + # filter gt bboxes + pos_keep = 1 - pos_is_gts_ + keep_inds = pos_is_gts_.new_ones(num_rois) + keep_inds[:len(pos_is_gts_)] = pos_keep + + bboxes_list.append(bboxes[keep_inds.type(torch.bool)]) + + return bboxes_list + + @force_fp32(apply_to=('bbox_pred', )) + def regress_by_class(self, rois, label, bbox_pred, img_meta): + """Regress the bbox for the predicted class. Used in Cascade R-CNN. + + Args: + rois (Tensor): shape (n, 4) or (n, 5) + label (Tensor): shape (n, ) + bbox_pred (list[Tensor]): shape [(n, num_buckets *2), \ + (n, num_buckets *2)] + img_meta (dict): Image meta info. + + Returns: + Tensor: Regressed bboxes, the same shape as input rois. + """ + assert rois.size(1) == 4 or rois.size(1) == 5 + + if rois.size(1) == 4: + new_rois, _ = self.bbox_coder.decode(rois, bbox_pred, + img_meta['img_shape']) + else: + bboxes, _ = self.bbox_coder.decode(rois[:, 1:], bbox_pred, + img_meta['img_shape']) + new_rois = torch.cat((rois[:, [0]], bboxes), dim=1) + + return new_rois diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/scnet_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/scnet_bbox_head.py new file mode 100644 index 000000000..cf39ebef2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/bbox_heads/scnet_bbox_head.py @@ -0,0 +1,77 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.builder import HEADS +from .convfc_bbox_head import ConvFCBBoxHead + + +@HEADS.register_module() +class SCNetBBoxHead(ConvFCBBoxHead): + """BBox head for `SCNet `_. + + This inherits ``ConvFCBBoxHead`` with modified forward() function, allow us + to get intermediate shared feature. + """ + + def _forward_shared(self, x): + """Forward function for shared part.""" + if self.num_shared_convs > 0: + for conv in self.shared_convs: + x = conv(x) + + if self.num_shared_fcs > 0: + if self.with_avg_pool: + x = self.avg_pool(x) + + x = x.flatten(1) + + for fc in self.shared_fcs: + x = self.relu(fc(x)) + + return x + + def _forward_cls_reg(self, x): + """Forward function for classification and regression parts.""" + x_cls = x + x_reg = x + + for conv in self.cls_convs: + x_cls = conv(x_cls) + if x_cls.dim() > 2: + if self.with_avg_pool: + x_cls = self.avg_pool(x_cls) + x_cls = x_cls.flatten(1) + for fc in self.cls_fcs: + x_cls = self.relu(fc(x_cls)) + + for conv in self.reg_convs: + x_reg = conv(x_reg) + if x_reg.dim() > 2: + if self.with_avg_pool: + x_reg = self.avg_pool(x_reg) + x_reg = x_reg.flatten(1) + for fc in self.reg_fcs: + x_reg = self.relu(fc(x_reg)) + + cls_score = self.fc_cls(x_cls) if self.with_cls else None + bbox_pred = self.fc_reg(x_reg) if self.with_reg else None + + return cls_score, bbox_pred + + def forward(self, x, return_shared_feat=False): + """Forward function. + + Args: + x (Tensor): input features + return_shared_feat (bool): If True, return cls-reg-shared feature. + + Return: + out (tuple[Tensor]): contain ``cls_score`` and ``bbox_pred``, + if ``return_shared_feat`` is True, append ``x_shared`` to the + returned tuple. + """ + x_shared = self._forward_shared(x) + out = self._forward_cls_reg(x_shared) + + if return_shared_feat: + out += (x_shared, ) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/cascade_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/cascade_roi_head.py new file mode 100644 index 000000000..e17313f20 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/cascade_roi_head.py @@ -0,0 +1,631 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +from mmcv.runner import ModuleList + +from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, build_assigner, + build_sampler, merge_aug_bboxes, merge_aug_masks, + multiclass_nms) +from ..builder import HEADS, build_head, build_roi_extractor +from .base_roi_head import BaseRoIHead +from .test_mixins import BBoxTestMixin, MaskTestMixin + + +@HEADS.register_module() +class CascadeRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): + """Cascade roi head including one bbox head and one mask head. + + https://arxiv.org/abs/1712.00726 + """ + + def __init__(self, + num_stages, + stage_loss_weights, + bbox_roi_extractor=None, + bbox_head=None, + mask_roi_extractor=None, + mask_head=None, + shared_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + assert bbox_roi_extractor is not None + assert bbox_head is not None + assert shared_head is None, \ + 'Shared head is not supported in Cascade RCNN anymore' + + self.num_stages = num_stages + self.stage_loss_weights = stage_loss_weights + super(CascadeRoIHead, self).__init__( + bbox_roi_extractor=bbox_roi_extractor, + bbox_head=bbox_head, + mask_roi_extractor=mask_roi_extractor, + mask_head=mask_head, + shared_head=shared_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def init_bbox_head(self, bbox_roi_extractor, bbox_head): + """Initialize box head and box roi extractor. + + Args: + bbox_roi_extractor (dict): Config of box roi extractor. + bbox_head (dict): Config of box in box head. + """ + self.bbox_roi_extractor = ModuleList() + self.bbox_head = ModuleList() + if not isinstance(bbox_roi_extractor, list): + bbox_roi_extractor = [ + bbox_roi_extractor for _ in range(self.num_stages) + ] + if not isinstance(bbox_head, list): + bbox_head = [bbox_head for _ in range(self.num_stages)] + assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages + for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): + self.bbox_roi_extractor.append(build_roi_extractor(roi_extractor)) + self.bbox_head.append(build_head(head)) + + def init_mask_head(self, mask_roi_extractor, mask_head): + """Initialize mask head and mask roi extractor. + + Args: + mask_roi_extractor (dict): Config of mask roi extractor. + mask_head (dict): Config of mask in mask head. + """ + self.mask_head = nn.ModuleList() + if not isinstance(mask_head, list): + mask_head = [mask_head for _ in range(self.num_stages)] + assert len(mask_head) == self.num_stages + for head in mask_head: + self.mask_head.append(build_head(head)) + if mask_roi_extractor is not None: + self.share_roi_extractor = False + self.mask_roi_extractor = ModuleList() + if not isinstance(mask_roi_extractor, list): + mask_roi_extractor = [ + mask_roi_extractor for _ in range(self.num_stages) + ] + assert len(mask_roi_extractor) == self.num_stages + for roi_extractor in mask_roi_extractor: + self.mask_roi_extractor.append( + build_roi_extractor(roi_extractor)) + else: + self.share_roi_extractor = True + self.mask_roi_extractor = self.bbox_roi_extractor + + def init_assigner_sampler(self): + """Initialize assigner and sampler for each stage.""" + self.bbox_assigner = [] + self.bbox_sampler = [] + if self.train_cfg is not None: + for idx, rcnn_train_cfg in enumerate(self.train_cfg): + self.bbox_assigner.append( + build_assigner(rcnn_train_cfg.assigner)) + self.current_stage = idx + self.bbox_sampler.append( + build_sampler(rcnn_train_cfg.sampler, context=self)) + + def forward_dummy(self, x, proposals): + """Dummy forward function.""" + # bbox head + outs = () + rois = bbox2roi([proposals]) + if self.with_bbox: + for i in range(self.num_stages): + bbox_results = self._bbox_forward(i, x, rois) + outs = outs + (bbox_results['cls_score'], + bbox_results['bbox_pred']) + # mask heads + if self.with_mask: + mask_rois = rois[:100] + for i in range(self.num_stages): + mask_results = self._mask_forward(i, x, mask_rois) + outs = outs + (mask_results['mask_pred'], ) + return outs + + def _bbox_forward(self, stage, x, rois): + """Box head forward function used in both training and testing.""" + bbox_roi_extractor = self.bbox_roi_extractor[stage] + bbox_head = self.bbox_head[stage] + bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], + rois) + # do not support caffe_c4 model anymore + cls_score, bbox_pred = bbox_head(bbox_feats) + + bbox_results = dict( + cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) + return bbox_results + + def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes, + gt_labels, rcnn_train_cfg): + """Run forward function and calculate loss for box head in training.""" + rois = bbox2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward(stage, x, rois) + bbox_targets = self.bbox_head[stage].get_targets( + sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) + loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update( + loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) + return bbox_results + + def _mask_forward(self, stage, x, rois): + """Mask head forward function used in both training and testing.""" + mask_roi_extractor = self.mask_roi_extractor[stage] + mask_head = self.mask_head[stage] + mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], + rois) + # do not support caffe_c4 model anymore + mask_pred = mask_head(mask_feats) + + mask_results = dict(mask_pred=mask_pred) + return mask_results + + def _mask_forward_train(self, + stage, + x, + sampling_results, + gt_masks, + rcnn_train_cfg, + bbox_feats=None): + """Run forward function and calculate loss for mask head in + training.""" + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + mask_results = self._mask_forward(stage, x, pos_rois) + + mask_targets = self.mask_head[stage].get_targets( + sampling_results, gt_masks, rcnn_train_cfg) + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'], + mask_targets, pos_labels) + + mask_results.update(loss_mask=loss_mask) + return mask_results + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None): + """ + Args: + x (list[Tensor]): list of multi-level img features. + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + proposals (list[Tensors]): list of region proposals. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + losses = dict() + for i in range(self.num_stages): + self.current_stage = i + rcnn_train_cfg = self.train_cfg[i] + lw = self.stage_loss_weights[i] + + # assign gts and sample proposals + sampling_results = [] + if self.with_bbox or self.with_mask: + bbox_assigner = self.bbox_assigner[i] + bbox_sampler = self.bbox_sampler[i] + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + + for j in range(num_imgs): + assign_result = bbox_assigner.assign( + proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j], + gt_labels[j]) + sampling_result = bbox_sampler.sample( + assign_result, + proposal_list[j], + gt_bboxes[j], + gt_labels[j], + feats=[lvl_feat[j][None] for lvl_feat in x]) + sampling_results.append(sampling_result) + + # bbox head forward and loss + bbox_results = self._bbox_forward_train(i, x, sampling_results, + gt_bboxes, gt_labels, + rcnn_train_cfg) + + for name, value in bbox_results['loss_bbox'].items(): + losses[f's{i}.{name}'] = ( + value * lw if 'loss' in name else value) + + # mask head forward and loss + if self.with_mask: + mask_results = self._mask_forward_train( + i, x, sampling_results, gt_masks, rcnn_train_cfg, + bbox_results['bbox_feats']) + for name, value in mask_results['loss_mask'].items(): + losses[f's{i}.{name}'] = ( + value * lw if 'loss' in name else value) + + # refine bboxes + if i < self.num_stages - 1: + pos_is_gts = [res.pos_is_gt for res in sampling_results] + # bbox_targets is a tuple + roi_labels = bbox_results['bbox_targets'][0] + with torch.no_grad(): + cls_score = bbox_results['cls_score'] + if self.bbox_head[i].custom_activation: + cls_score = self.bbox_head[i].loss_cls.get_activation( + cls_score) + + # Empty proposal. + if cls_score.numel() == 0: + break + + roi_labels = torch.where( + roi_labels == self.bbox_head[i].num_classes, + cls_score[:, :-1].argmax(1), roi_labels) + proposal_list = self.bbox_head[i].refine_bboxes( + bbox_results['rois'], roi_labels, + bbox_results['bbox_pred'], pos_is_gts, img_metas) + + return losses + + def simple_test(self, x, proposal_list, img_metas, rescale=False): + """Test without augmentation. + + Args: + x (tuple[Tensor]): Features from upstream network. Each + has shape (batch_size, c, h, w). + proposal_list (list(Tensor)): Proposals from rpn head. + Each has shape (num_proposals, 5), last dimension + 5 represent (x1, y1, x2, y2, score). + img_metas (list[dict]): Meta information of images. + rescale (bool): Whether to rescale the results to + the original image. Default: True. + + Returns: + list[list[np.ndarray]] or list[tuple]: When no mask branch, + it is bbox results of each image and classes with type + `list[list[np.ndarray]]`. The outer list + corresponds to each image. The inner list + corresponds to each class. When the model has mask branch, + it contains bbox results and mask results. + The outer list corresponds to each image, and first element + of tuple is bbox results, second element is mask results. + """ + assert self.with_bbox, 'Bbox head must be implemented.' + num_imgs = len(proposal_list) + img_shapes = tuple(meta['img_shape'] for meta in img_metas) + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + # "ms" in variable names means multi-stage + ms_bbox_result = {} + ms_segm_result = {} + ms_scores = [] + rcnn_test_cfg = self.test_cfg + + rois = bbox2roi(proposal_list) + + if rois.shape[0] == 0: + # There is no proposal in the whole batch + bbox_results = [[ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.bbox_head[-1].num_classes) + ]] * num_imgs + + if self.with_mask: + mask_classes = self.mask_head[-1].num_classes + segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + results = list(zip(bbox_results, segm_results)) + else: + results = bbox_results + + return results + + for i in range(self.num_stages): + bbox_results = self._bbox_forward(i, x, rois) + + # split batch bbox prediction back to each image + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + num_proposals_per_img = tuple( + len(proposals) for proposals in proposal_list) + rois = rois.split(num_proposals_per_img, 0) + cls_score = cls_score.split(num_proposals_per_img, 0) + if isinstance(bbox_pred, torch.Tensor): + bbox_pred = bbox_pred.split(num_proposals_per_img, 0) + else: + bbox_pred = self.bbox_head[i].bbox_pred_split( + bbox_pred, num_proposals_per_img) + ms_scores.append(cls_score) + + if i < self.num_stages - 1: + if self.bbox_head[i].custom_activation: + cls_score = [ + self.bbox_head[i].loss_cls.get_activation(s) + for s in cls_score + ] + refine_rois_list = [] + for j in range(num_imgs): + if rois[j].shape[0] > 0: + bbox_label = cls_score[j][:, :-1].argmax(dim=1) + refined_rois = self.bbox_head[i].regress_by_class( + rois[j], bbox_label, bbox_pred[j], img_metas[j]) + refine_rois_list.append(refined_rois) + rois = torch.cat(refine_rois_list) + + # average scores of each image by stages + cls_score = [ + sum([score[i] for score in ms_scores]) / float(len(ms_scores)) + for i in range(num_imgs) + ] + + # apply bbox post-processing to each image individually + det_bboxes = [] + det_labels = [] + for i in range(num_imgs): + det_bbox, det_label = self.bbox_head[-1].get_bboxes( + rois[i], + cls_score[i], + bbox_pred[i], + img_shapes[i], + scale_factors[i], + rescale=rescale, + cfg=rcnn_test_cfg) + det_bboxes.append(det_bbox) + det_labels.append(det_label) + + bbox_results = [ + bbox2result(det_bboxes[i], det_labels[i], + self.bbox_head[-1].num_classes) + for i in range(num_imgs) + ] + ms_bbox_result['ensemble'] = bbox_results + + if self.with_mask: + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + mask_classes = self.mask_head[-1].num_classes + segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + else: + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i][:, :4] + for i in range(len(det_bboxes)) + ] + mask_rois = bbox2roi(_bboxes) + num_mask_rois_per_img = tuple( + _bbox.size(0) for _bbox in _bboxes) + aug_masks = [] + for i in range(self.num_stages): + mask_results = self._mask_forward(i, x, mask_rois) + mask_pred = mask_results['mask_pred'] + # split batch mask prediction back to each image + mask_pred = mask_pred.split(num_mask_rois_per_img, 0) + aug_masks.append([ + m.sigmoid().cpu().detach().numpy() for m in mask_pred + ]) + + # apply mask post-processing to each image individually + segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append( + [[] + for _ in range(self.mask_head[-1].num_classes)]) + else: + aug_mask = [mask[i] for mask in aug_masks] + merged_masks = merge_aug_masks( + aug_mask, [[img_metas[i]]] * self.num_stages, + rcnn_test_cfg) + segm_result = self.mask_head[-1].get_seg_masks( + merged_masks, _bboxes[i], det_labels[i], + rcnn_test_cfg, ori_shapes[i], scale_factors[i], + rescale) + segm_results.append(segm_result) + ms_segm_result['ensemble'] = segm_results + + if self.with_mask: + results = list( + zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) + else: + results = ms_bbox_result['ensemble'] + + return results + + def aug_test(self, features, proposal_list, img_metas, rescale=False): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + rcnn_test_cfg = self.test_cfg + aug_bboxes = [] + aug_scores = [] + for x, img_meta in zip(features, img_metas): + # only one image in the batch + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + + proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, + scale_factor, flip, flip_direction) + # "ms" in variable names means multi-stage + ms_scores = [] + + rois = bbox2roi([proposals]) + + if rois.shape[0] == 0: + # There is no proposal in the single image + aug_bboxes.append(rois.new_zeros(0, 4)) + aug_scores.append(rois.new_zeros(0, 1)) + continue + + for i in range(self.num_stages): + bbox_results = self._bbox_forward(i, x, rois) + ms_scores.append(bbox_results['cls_score']) + + if i < self.num_stages - 1: + cls_score = bbox_results['cls_score'] + if self.bbox_head[i].custom_activation: + cls_score = self.bbox_head[i].loss_cls.get_activation( + cls_score) + bbox_label = cls_score[:, :-1].argmax(dim=1) + rois = self.bbox_head[i].regress_by_class( + rois, bbox_label, bbox_results['bbox_pred'], + img_meta[0]) + + cls_score = sum(ms_scores) / float(len(ms_scores)) + bboxes, scores = self.bbox_head[-1].get_bboxes( + rois, + cls_score, + bbox_results['bbox_pred'], + img_shape, + scale_factor, + rescale=False, + cfg=None) + aug_bboxes.append(bboxes) + aug_scores.append(scores) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) + det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, + rcnn_test_cfg.score_thr, + rcnn_test_cfg.nms, + rcnn_test_cfg.max_per_img) + + bbox_result = bbox2result(det_bboxes, det_labels, + self.bbox_head[-1].num_classes) + + if self.with_mask: + if det_bboxes.shape[0] == 0: + segm_result = [[] + for _ in range(self.mask_head[-1].num_classes)] + else: + aug_masks = [] + aug_img_metas = [] + for x, img_meta in zip(features, img_metas): + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, + scale_factor, flip, flip_direction) + mask_rois = bbox2roi([_bboxes]) + for i in range(self.num_stages): + mask_results = self._mask_forward(i, x, mask_rois) + aug_masks.append( + mask_results['mask_pred'].sigmoid().cpu().numpy()) + aug_img_metas.append(img_meta) + merged_masks = merge_aug_masks(aug_masks, aug_img_metas, + self.test_cfg) + + ori_shape = img_metas[0][0]['ori_shape'] + dummy_scale_factor = np.ones(4) + segm_result = self.mask_head[-1].get_seg_masks( + merged_masks, + det_bboxes, + det_labels, + rcnn_test_cfg, + ori_shape, + scale_factor=dummy_scale_factor, + rescale=False) + return [(bbox_result, segm_result)] + else: + return [bbox_result] + + def onnx_export(self, x, proposals, img_metas): + + assert self.with_bbox, 'Bbox head must be implemented.' + assert proposals.shape[0] == 1, 'Only support one input image ' \ + 'while in exporting to ONNX' + # remove the scores + rois = proposals[..., :-1] + batch_size = rois.shape[0] + num_proposals_per_img = rois.shape[1] + # Eliminate the batch dimension + rois = rois.view(-1, 4) + + # add dummy batch index + rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois], dim=-1) + + max_shape = img_metas[0]['img_shape_for_onnx'] + ms_scores = [] + rcnn_test_cfg = self.test_cfg + + for i in range(self.num_stages): + bbox_results = self._bbox_forward(i, x, rois) + + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + # Recover the batch dimension + rois = rois.reshape(batch_size, num_proposals_per_img, + rois.size(-1)) + cls_score = cls_score.reshape(batch_size, num_proposals_per_img, + cls_score.size(-1)) + bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4) + ms_scores.append(cls_score) + if i < self.num_stages - 1: + assert self.bbox_head[i].reg_class_agnostic + new_rois = self.bbox_head[i].bbox_coder.decode( + rois[..., 1:], bbox_pred, max_shape=max_shape) + rois = new_rois.reshape(-1, new_rois.shape[-1]) + # add dummy batch index + rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois], + dim=-1) + + cls_score = sum(ms_scores) / float(len(ms_scores)) + bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4) + rois = rois.reshape(batch_size, num_proposals_per_img, -1) + det_bboxes, det_labels = self.bbox_head[-1].onnx_export( + rois, cls_score, bbox_pred, max_shape, cfg=rcnn_test_cfg) + + if not self.with_mask: + return det_bboxes, det_labels + else: + batch_index = torch.arange( + det_bboxes.size(0), + device=det_bboxes.device).float().view(-1, 1, 1).expand( + det_bboxes.size(0), det_bboxes.size(1), 1) + rois = det_bboxes[..., :4] + mask_rois = torch.cat([batch_index, rois], dim=-1) + mask_rois = mask_rois.view(-1, 5) + aug_masks = [] + for i in range(self.num_stages): + mask_results = self._mask_forward(i, x, mask_rois) + mask_pred = mask_results['mask_pred'] + aug_masks.append(mask_pred) + max_shape = img_metas[0]['img_shape_for_onnx'] + # calculate the mean of masks from several stage + mask_pred = sum(aug_masks) / len(aug_masks) + segm_results = self.mask_head[-1].onnx_export( + mask_pred, rois.reshape(-1, 4), det_labels.reshape(-1), + self.test_cfg, max_shape) + segm_results = segm_results.reshape(batch_size, + det_bboxes.shape[1], + max_shape[0], max_shape[1]) + return det_bboxes, det_labels, segm_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/double_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/double_roi_head.py new file mode 100644 index 000000000..895b5d306 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/double_roi_head.py @@ -0,0 +1,34 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import HEADS +from .standard_roi_head import StandardRoIHead + + +@HEADS.register_module() +class DoubleHeadRoIHead(StandardRoIHead): + """RoI head for Double Head RCNN. + + https://arxiv.org/abs/1904.06493 + """ + + def __init__(self, reg_roi_scale_factor, **kwargs): + super(DoubleHeadRoIHead, self).__init__(**kwargs) + self.reg_roi_scale_factor = reg_roi_scale_factor + + def _bbox_forward(self, x, rois): + """Box head forward function used in both training and testing time.""" + bbox_cls_feats = self.bbox_roi_extractor( + x[:self.bbox_roi_extractor.num_inputs], rois) + bbox_reg_feats = self.bbox_roi_extractor( + x[:self.bbox_roi_extractor.num_inputs], + rois, + roi_scale_factor=self.reg_roi_scale_factor) + if self.with_shared_head: + bbox_cls_feats = self.shared_head(bbox_cls_feats) + bbox_reg_feats = self.shared_head(bbox_reg_feats) + cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) + + bbox_results = dict( + cls_score=cls_score, + bbox_pred=bbox_pred, + bbox_feats=bbox_cls_feats) + return bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/dynamic_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/dynamic_roi_head.py new file mode 100644 index 000000000..4c2b6cdac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/dynamic_roi_head.py @@ -0,0 +1,155 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core import bbox2roi +from mmdet.models.losses import SmoothL1Loss +from ..builder import HEADS +from .standard_roi_head import StandardRoIHead + +EPS = 1e-15 + + +@HEADS.register_module() +class DynamicRoIHead(StandardRoIHead): + """RoI head for `Dynamic R-CNN `_.""" + + def __init__(self, **kwargs): + super(DynamicRoIHead, self).__init__(**kwargs) + assert isinstance(self.bbox_head.loss_bbox, SmoothL1Loss) + # the IoU history of the past `update_iter_interval` iterations + self.iou_history = [] + # the beta history of the past `update_iter_interval` iterations + self.beta_history = [] + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None): + """Forward function for training. + + Args: + x (list[Tensor]): list of multi-level img features. + + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + + proposals (list[Tensors]): list of region proposals. + + gt_bboxes (list[Tensor]): each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + + gt_labels (list[Tensor]): class indices corresponding to each box + + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # assign gts and sample proposals + if self.with_bbox or self.with_mask: + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + sampling_results = [] + cur_iou = [] + for i in range(num_imgs): + assign_result = self.bbox_assigner.assign( + proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], + gt_labels[i]) + sampling_result = self.bbox_sampler.sample( + assign_result, + proposal_list[i], + gt_bboxes[i], + gt_labels[i], + feats=[lvl_feat[i][None] for lvl_feat in x]) + # record the `iou_topk`-th largest IoU in an image + iou_topk = min(self.train_cfg.dynamic_rcnn.iou_topk, + len(assign_result.max_overlaps)) + ious, _ = torch.topk(assign_result.max_overlaps, iou_topk) + cur_iou.append(ious[-1].item()) + sampling_results.append(sampling_result) + # average the current IoUs over images + cur_iou = np.mean(cur_iou) + self.iou_history.append(cur_iou) + + losses = dict() + # bbox head forward and loss + if self.with_bbox: + bbox_results = self._bbox_forward_train(x, sampling_results, + gt_bboxes, gt_labels, + img_metas) + losses.update(bbox_results['loss_bbox']) + + # mask head forward and loss + if self.with_mask: + mask_results = self._mask_forward_train(x, sampling_results, + bbox_results['bbox_feats'], + gt_masks, img_metas) + losses.update(mask_results['loss_mask']) + + # update IoU threshold and SmoothL1 beta + update_iter_interval = self.train_cfg.dynamic_rcnn.update_iter_interval + if len(self.iou_history) % update_iter_interval == 0: + new_iou_thr, new_beta = self.update_hyperparameters() + + return losses + + def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, + img_metas): + num_imgs = len(img_metas) + rois = bbox2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward(x, rois) + + bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, + gt_labels, self.train_cfg) + # record the `beta_topk`-th smallest target + # `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets + # and bbox_weights, respectively + pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1) + num_pos = len(pos_inds) + cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1) + beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs, + num_pos) + cur_target = torch.kthvalue(cur_target, beta_topk)[0].item() + self.beta_history.append(cur_target) + loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update(loss_bbox=loss_bbox) + return bbox_results + + def update_hyperparameters(self): + """Update hyperparameters like IoU thresholds for assigner and beta for + SmoothL1 loss based on the training statistics. + + Returns: + tuple[float]: the updated ``iou_thr`` and ``beta``. + """ + new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou, + np.mean(self.iou_history)) + self.iou_history = [] + self.bbox_assigner.pos_iou_thr = new_iou_thr + self.bbox_assigner.neg_iou_thr = new_iou_thr + self.bbox_assigner.min_pos_iou = new_iou_thr + if (np.median(self.beta_history) < EPS): + # avoid 0 or too small value for new_beta + new_beta = self.bbox_head.loss_bbox.beta + else: + new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta, + np.median(self.beta_history)) + self.beta_history = [] + self.bbox_head.loss_bbox.beta = new_beta + return new_iou_thr, new_beta diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/grid_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/grid_roi_head.py new file mode 100644 index 000000000..333f62975 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/grid_roi_head.py @@ -0,0 +1,170 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core import bbox2result, bbox2roi +from ..builder import HEADS, build_head, build_roi_extractor +from .standard_roi_head import StandardRoIHead + + +@HEADS.register_module() +class GridRoIHead(StandardRoIHead): + """Grid roi head for Grid R-CNN. + + https://arxiv.org/abs/1811.12030 + """ + + def __init__(self, grid_roi_extractor, grid_head, **kwargs): + assert grid_head is not None + super(GridRoIHead, self).__init__(**kwargs) + if grid_roi_extractor is not None: + self.grid_roi_extractor = build_roi_extractor(grid_roi_extractor) + self.share_roi_extractor = False + else: + self.share_roi_extractor = True + self.grid_roi_extractor = self.bbox_roi_extractor + self.grid_head = build_head(grid_head) + + def _random_jitter(self, sampling_results, img_metas, amplitude=0.15): + """Ramdom jitter positive proposals for training.""" + for sampling_result, img_meta in zip(sampling_results, img_metas): + bboxes = sampling_result.pos_bboxes + random_offsets = bboxes.new_empty(bboxes.shape[0], 4).uniform_( + -amplitude, amplitude) + # before jittering + cxcy = (bboxes[:, 2:4] + bboxes[:, :2]) / 2 + wh = (bboxes[:, 2:4] - bboxes[:, :2]).abs() + # after jittering + new_cxcy = cxcy + wh * random_offsets[:, :2] + new_wh = wh * (1 + random_offsets[:, 2:]) + # xywh to xyxy + new_x1y1 = (new_cxcy - new_wh / 2) + new_x2y2 = (new_cxcy + new_wh / 2) + new_bboxes = torch.cat([new_x1y1, new_x2y2], dim=1) + # clip bboxes + max_shape = img_meta['img_shape'] + if max_shape is not None: + new_bboxes[:, 0::2].clamp_(min=0, max=max_shape[1] - 1) + new_bboxes[:, 1::2].clamp_(min=0, max=max_shape[0] - 1) + + sampling_result.pos_bboxes = new_bboxes + return sampling_results + + def forward_dummy(self, x, proposals): + """Dummy forward function.""" + # bbox head + outs = () + rois = bbox2roi([proposals]) + if self.with_bbox: + bbox_results = self._bbox_forward(x, rois) + outs = outs + (bbox_results['cls_score'], + bbox_results['bbox_pred']) + + # grid head + grid_rois = rois[:100] + grid_feats = self.grid_roi_extractor( + x[:self.grid_roi_extractor.num_inputs], grid_rois) + if self.with_shared_head: + grid_feats = self.shared_head(grid_feats) + grid_pred = self.grid_head(grid_feats) + outs = outs + (grid_pred, ) + + # mask head + if self.with_mask: + mask_rois = rois[:100] + mask_results = self._mask_forward(x, mask_rois) + outs = outs + (mask_results['mask_pred'], ) + return outs + + def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, + img_metas): + """Run forward function and calculate loss for box head in training.""" + bbox_results = super(GridRoIHead, + self)._bbox_forward_train(x, sampling_results, + gt_bboxes, gt_labels, + img_metas) + + # Grid head forward and loss + sampling_results = self._random_jitter(sampling_results, img_metas) + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + + # GN in head does not support zero shape input + if pos_rois.shape[0] == 0: + return bbox_results + + grid_feats = self.grid_roi_extractor( + x[:self.grid_roi_extractor.num_inputs], pos_rois) + if self.with_shared_head: + grid_feats = self.shared_head(grid_feats) + # Accelerate training + max_sample_num_grid = self.train_cfg.get('max_num_grid', 192) + sample_idx = torch.randperm( + grid_feats.shape[0])[:min(grid_feats.shape[0], max_sample_num_grid + )] + grid_feats = grid_feats[sample_idx] + + grid_pred = self.grid_head(grid_feats) + + grid_targets = self.grid_head.get_targets(sampling_results, + self.train_cfg) + grid_targets = grid_targets[sample_idx] + + loss_grid = self.grid_head.loss(grid_pred, grid_targets) + + bbox_results['loss_bbox'].update(loss_grid) + return bbox_results + + def simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False): + """Test without augmentation.""" + assert self.with_bbox, 'Bbox head must be implemented.' + + det_bboxes, det_labels = self.simple_test_bboxes( + x, img_metas, proposal_list, self.test_cfg, rescale=False) + # pack rois into bboxes + grid_rois = bbox2roi([det_bbox[:, :4] for det_bbox in det_bboxes]) + if grid_rois.shape[0] != 0: + grid_feats = self.grid_roi_extractor( + x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) + self.grid_head.test_mode = True + grid_pred = self.grid_head(grid_feats) + # split batch grid head prediction back to each image + num_roi_per_img = tuple(len(det_bbox) for det_bbox in det_bboxes) + grid_pred = { + k: v.split(num_roi_per_img, 0) + for k, v in grid_pred.items() + } + + # apply bbox post-processing to each image individually + bbox_results = [] + num_imgs = len(det_bboxes) + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + bbox_results.append([ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.bbox_head.num_classes) + ]) + else: + det_bbox = self.grid_head.get_bboxes( + det_bboxes[i], grid_pred['fused'][i], [img_metas[i]]) + if rescale: + det_bbox[:, :4] /= img_metas[i]['scale_factor'] + bbox_results.append( + bbox2result(det_bbox, det_labels[i], + self.bbox_head.num_classes)) + else: + bbox_results = [[ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.bbox_head.num_classes) + ] for _ in range(len(det_bboxes))] + + if not self.with_mask: + return bbox_results + else: + segm_results = self.simple_test_mask( + x, img_metas, det_bboxes, det_labels, rescale=rescale) + return list(zip(bbox_results, segm_results)) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/htc_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/htc_roi_head.py new file mode 100644 index 000000000..08bc1dbfd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/htc_roi_head.py @@ -0,0 +1,628 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn.functional as F + +from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, + merge_aug_masks, multiclass_nms) +from ..builder import HEADS, build_head, build_roi_extractor +from ..utils.brick_wrappers import adaptive_avg_pool2d +from .cascade_roi_head import CascadeRoIHead + + +@HEADS.register_module() +class HybridTaskCascadeRoIHead(CascadeRoIHead): + """Hybrid task cascade roi head including one bbox head and one mask head. + + https://arxiv.org/abs/1901.07518 + """ + + def __init__(self, + num_stages, + stage_loss_weights, + semantic_roi_extractor=None, + semantic_head=None, + semantic_fusion=('bbox', 'mask'), + interleaved=True, + mask_info_flow=True, + **kwargs): + super(HybridTaskCascadeRoIHead, + self).__init__(num_stages, stage_loss_weights, **kwargs) + assert self.with_bbox + assert not self.with_shared_head # shared head is not supported + + if semantic_head is not None: + self.semantic_roi_extractor = build_roi_extractor( + semantic_roi_extractor) + self.semantic_head = build_head(semantic_head) + + self.semantic_fusion = semantic_fusion + self.interleaved = interleaved + self.mask_info_flow = mask_info_flow + + @property + def with_semantic(self): + """bool: whether the head has semantic head""" + if hasattr(self, 'semantic_head') and self.semantic_head is not None: + return True + else: + return False + + def forward_dummy(self, x, proposals): + """Dummy forward function.""" + outs = () + # semantic head + if self.with_semantic: + _, semantic_feat = self.semantic_head(x) + else: + semantic_feat = None + # bbox heads + rois = bbox2roi([proposals]) + for i in range(self.num_stages): + bbox_results = self._bbox_forward( + i, x, rois, semantic_feat=semantic_feat) + outs = outs + (bbox_results['cls_score'], + bbox_results['bbox_pred']) + # mask heads + if self.with_mask: + mask_rois = rois[:100] + mask_roi_extractor = self.mask_roi_extractor[-1] + mask_feats = mask_roi_extractor( + x[:len(mask_roi_extractor.featmap_strides)], mask_rois) + if self.with_semantic and 'mask' in self.semantic_fusion: + mask_semantic_feat = self.semantic_roi_extractor( + [semantic_feat], mask_rois) + mask_feats += mask_semantic_feat + last_feat = None + for i in range(self.num_stages): + mask_head = self.mask_head[i] + if self.mask_info_flow: + mask_pred, last_feat = mask_head(mask_feats, last_feat) + else: + mask_pred = mask_head(mask_feats) + outs = outs + (mask_pred, ) + return outs + + def _bbox_forward_train(self, + stage, + x, + sampling_results, + gt_bboxes, + gt_labels, + rcnn_train_cfg, + semantic_feat=None): + """Run forward function and calculate loss for box head in training.""" + bbox_head = self.bbox_head[stage] + rois = bbox2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward( + stage, x, rois, semantic_feat=semantic_feat) + + bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes, + gt_labels, rcnn_train_cfg) + loss_bbox = bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update( + loss_bbox=loss_bbox, + rois=rois, + bbox_targets=bbox_targets, + ) + return bbox_results + + def _mask_forward_train(self, + stage, + x, + sampling_results, + gt_masks, + rcnn_train_cfg, + semantic_feat=None): + """Run forward function and calculate loss for mask head in + training.""" + mask_roi_extractor = self.mask_roi_extractor[stage] + mask_head = self.mask_head[stage] + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], + pos_rois) + + # semantic feature fusion + # element-wise sum for original features and pooled semantic features + if self.with_semantic and 'mask' in self.semantic_fusion: + mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], + pos_rois) + if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: + mask_semantic_feat = F.adaptive_avg_pool2d( + mask_semantic_feat, mask_feats.shape[-2:]) + mask_feats += mask_semantic_feat + + # mask information flow + # forward all previous mask heads to obtain last_feat, and fuse it + # with the normal mask feature + if self.mask_info_flow: + last_feat = None + for i in range(stage): + last_feat = self.mask_head[i]( + mask_feats, last_feat, return_logits=False) + mask_pred = mask_head(mask_feats, last_feat, return_feat=False) + else: + mask_pred = mask_head(mask_feats, return_feat=False) + + mask_targets = mask_head.get_targets(sampling_results, gt_masks, + rcnn_train_cfg) + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels) + + mask_results = dict(loss_mask=loss_mask) + return mask_results + + def _bbox_forward(self, stage, x, rois, semantic_feat=None): + """Box head forward function used in both training and testing.""" + bbox_roi_extractor = self.bbox_roi_extractor[stage] + bbox_head = self.bbox_head[stage] + bbox_feats = bbox_roi_extractor( + x[:len(bbox_roi_extractor.featmap_strides)], rois) + if self.with_semantic and 'bbox' in self.semantic_fusion: + bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], + rois) + if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: + bbox_semantic_feat = adaptive_avg_pool2d( + bbox_semantic_feat, bbox_feats.shape[-2:]) + bbox_feats += bbox_semantic_feat + cls_score, bbox_pred = bbox_head(bbox_feats) + + bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred) + return bbox_results + + def _mask_forward_test(self, stage, x, bboxes, semantic_feat=None): + """Mask head forward function for testing.""" + mask_roi_extractor = self.mask_roi_extractor[stage] + mask_head = self.mask_head[stage] + mask_rois = bbox2roi([bboxes]) + mask_feats = mask_roi_extractor( + x[:len(mask_roi_extractor.featmap_strides)], mask_rois) + if self.with_semantic and 'mask' in self.semantic_fusion: + mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], + mask_rois) + if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: + mask_semantic_feat = F.adaptive_avg_pool2d( + mask_semantic_feat, mask_feats.shape[-2:]) + mask_feats += mask_semantic_feat + if self.mask_info_flow: + last_feat = None + last_pred = None + for i in range(stage): + mask_pred, last_feat = self.mask_head[i](mask_feats, last_feat) + if last_pred is not None: + mask_pred = mask_pred + last_pred + last_pred = mask_pred + mask_pred = mask_head(mask_feats, last_feat, return_feat=False) + if last_pred is not None: + mask_pred = mask_pred + last_pred + else: + mask_pred = mask_head(mask_feats) + return mask_pred + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + gt_semantic_seg=None): + """ + Args: + x (list[Tensor]): list of multi-level img features. + + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + + proposal_list (list[Tensors]): list of region proposals. + + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + + gt_labels (list[Tensor]): class indices corresponding to each box + + gt_bboxes_ignore (None, list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + gt_masks (None, Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + gt_semantic_seg (None, list[Tensor]): semantic segmentation masks + used if the architecture supports semantic segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # semantic segmentation part + # 2 outputs: segmentation prediction and embedded features + losses = dict() + if self.with_semantic: + semantic_pred, semantic_feat = self.semantic_head(x) + loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg) + losses['loss_semantic_seg'] = loss_seg + else: + semantic_feat = None + + for i in range(self.num_stages): + self.current_stage = i + rcnn_train_cfg = self.train_cfg[i] + lw = self.stage_loss_weights[i] + + # assign gts and sample proposals + sampling_results = [] + bbox_assigner = self.bbox_assigner[i] + bbox_sampler = self.bbox_sampler[i] + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + + for j in range(num_imgs): + assign_result = bbox_assigner.assign(proposal_list[j], + gt_bboxes[j], + gt_bboxes_ignore[j], + gt_labels[j]) + sampling_result = bbox_sampler.sample( + assign_result, + proposal_list[j], + gt_bboxes[j], + gt_labels[j], + feats=[lvl_feat[j][None] for lvl_feat in x]) + sampling_results.append(sampling_result) + + # bbox head forward and loss + bbox_results = \ + self._bbox_forward_train( + i, x, sampling_results, gt_bboxes, gt_labels, + rcnn_train_cfg, semantic_feat) + roi_labels = bbox_results['bbox_targets'][0] + + for name, value in bbox_results['loss_bbox'].items(): + losses[f's{i}.{name}'] = ( + value * lw if 'loss' in name else value) + + # mask head forward and loss + if self.with_mask: + # interleaved execution: use regressed bboxes by the box branch + # to train the mask branch + if self.interleaved: + pos_is_gts = [res.pos_is_gt for res in sampling_results] + with torch.no_grad(): + proposal_list = self.bbox_head[i].refine_bboxes( + bbox_results['rois'], roi_labels, + bbox_results['bbox_pred'], pos_is_gts, img_metas) + # re-assign and sample 512 RoIs from 512 RoIs + sampling_results = [] + for j in range(num_imgs): + assign_result = bbox_assigner.assign( + proposal_list[j], gt_bboxes[j], + gt_bboxes_ignore[j], gt_labels[j]) + sampling_result = bbox_sampler.sample( + assign_result, + proposal_list[j], + gt_bboxes[j], + gt_labels[j], + feats=[lvl_feat[j][None] for lvl_feat in x]) + sampling_results.append(sampling_result) + mask_results = self._mask_forward_train( + i, x, sampling_results, gt_masks, rcnn_train_cfg, + semantic_feat) + for name, value in mask_results['loss_mask'].items(): + losses[f's{i}.{name}'] = ( + value * lw if 'loss' in name else value) + + # refine bboxes (same as Cascade R-CNN) + if i < self.num_stages - 1 and not self.interleaved: + pos_is_gts = [res.pos_is_gt for res in sampling_results] + with torch.no_grad(): + proposal_list = self.bbox_head[i].refine_bboxes( + bbox_results['rois'], roi_labels, + bbox_results['bbox_pred'], pos_is_gts, img_metas) + + return losses + + def simple_test(self, x, proposal_list, img_metas, rescale=False): + """Test without augmentation. + + Args: + x (tuple[Tensor]): Features from upstream network. Each + has shape (batch_size, c, h, w). + proposal_list (list(Tensor)): Proposals from rpn head. + Each has shape (num_proposals, 5), last dimension + 5 represent (x1, y1, x2, y2, score). + img_metas (list[dict]): Meta information of images. + rescale (bool): Whether to rescale the results to + the original image. Default: True. + + Returns: + list[list[np.ndarray]] or list[tuple]: When no mask branch, + it is bbox results of each image and classes with type + `list[list[np.ndarray]]`. The outer list + corresponds to each image. The inner list + corresponds to each class. When the model has mask branch, + it contains bbox results and mask results. + The outer list corresponds to each image, and first element + of tuple is bbox results, second element is mask results. + """ + if self.with_semantic: + _, semantic_feat = self.semantic_head(x) + else: + semantic_feat = None + + num_imgs = len(proposal_list) + img_shapes = tuple(meta['img_shape'] for meta in img_metas) + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + # "ms" in variable names means multi-stage + ms_bbox_result = {} + ms_segm_result = {} + ms_scores = [] + rcnn_test_cfg = self.test_cfg + + rois = bbox2roi(proposal_list) + + if rois.shape[0] == 0: + # There is no proposal in the whole batch + bbox_results = [[ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.bbox_head[-1].num_classes) + ]] * num_imgs + + if self.with_mask: + mask_classes = self.mask_head[-1].num_classes + segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + results = list(zip(bbox_results, segm_results)) + else: + results = bbox_results + + return results + + for i in range(self.num_stages): + bbox_head = self.bbox_head[i] + bbox_results = self._bbox_forward( + i, x, rois, semantic_feat=semantic_feat) + # split batch bbox prediction back to each image + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + num_proposals_per_img = tuple(len(p) for p in proposal_list) + rois = rois.split(num_proposals_per_img, 0) + cls_score = cls_score.split(num_proposals_per_img, 0) + bbox_pred = bbox_pred.split(num_proposals_per_img, 0) + ms_scores.append(cls_score) + + if i < self.num_stages - 1: + refine_rois_list = [] + for j in range(num_imgs): + if rois[j].shape[0] > 0: + bbox_label = cls_score[j][:, :-1].argmax(dim=1) + refine_rois = bbox_head.regress_by_class( + rois[j], bbox_label, bbox_pred[j], img_metas[j]) + refine_rois_list.append(refine_rois) + rois = torch.cat(refine_rois_list) + + # average scores of each image by stages + cls_score = [ + sum([score[i] for score in ms_scores]) / float(len(ms_scores)) + for i in range(num_imgs) + ] + + # apply bbox post-processing to each image individually + det_bboxes = [] + det_labels = [] + for i in range(num_imgs): + det_bbox, det_label = self.bbox_head[-1].get_bboxes( + rois[i], + cls_score[i], + bbox_pred[i], + img_shapes[i], + scale_factors[i], + rescale=rescale, + cfg=rcnn_test_cfg) + det_bboxes.append(det_bbox) + det_labels.append(det_label) + bbox_result = [ + bbox2result(det_bboxes[i], det_labels[i], + self.bbox_head[-1].num_classes) + for i in range(num_imgs) + ] + ms_bbox_result['ensemble'] = bbox_result + + if self.with_mask: + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + mask_classes = self.mask_head[-1].num_classes + segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + else: + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i] + for i in range(num_imgs) + ] + mask_rois = bbox2roi(_bboxes) + aug_masks = [] + mask_roi_extractor = self.mask_roi_extractor[-1] + mask_feats = mask_roi_extractor( + x[:len(mask_roi_extractor.featmap_strides)], mask_rois) + if self.with_semantic and 'mask' in self.semantic_fusion: + mask_semantic_feat = self.semantic_roi_extractor( + [semantic_feat], mask_rois) + mask_feats += mask_semantic_feat + last_feat = None + + num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes) + for i in range(self.num_stages): + mask_head = self.mask_head[i] + if self.mask_info_flow: + mask_pred, last_feat = mask_head(mask_feats, last_feat) + else: + mask_pred = mask_head(mask_feats) + + # split batch mask prediction back to each image + mask_pred = mask_pred.split(num_bbox_per_img, 0) + aug_masks.append( + [mask.sigmoid().cpu().numpy() for mask in mask_pred]) + + # apply mask post-processing to each image individually + segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append( + [[] + for _ in range(self.mask_head[-1].num_classes)]) + else: + aug_mask = [mask[i] for mask in aug_masks] + merged_mask = merge_aug_masks( + aug_mask, [[img_metas[i]]] * self.num_stages, + rcnn_test_cfg) + segm_result = self.mask_head[-1].get_seg_masks( + merged_mask, _bboxes[i], det_labels[i], + rcnn_test_cfg, ori_shapes[i], scale_factors[i], + rescale) + segm_results.append(segm_result) + ms_segm_result['ensemble'] = segm_results + + if self.with_mask: + results = list( + zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) + else: + results = ms_bbox_result['ensemble'] + + return results + + def aug_test(self, img_feats, proposal_list, img_metas, rescale=False): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + if self.with_semantic: + semantic_feats = [ + self.semantic_head(feat)[1] for feat in img_feats + ] + else: + semantic_feats = [None] * len(img_metas) + + rcnn_test_cfg = self.test_cfg + aug_bboxes = [] + aug_scores = [] + for x, img_meta, semantic in zip(img_feats, img_metas, semantic_feats): + # only one image in the batch + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + + proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, + scale_factor, flip, flip_direction) + # "ms" in variable names means multi-stage + ms_scores = [] + + rois = bbox2roi([proposals]) + + if rois.shape[0] == 0: + # There is no proposal in the single image + aug_bboxes.append(rois.new_zeros(0, 4)) + aug_scores.append(rois.new_zeros(0, 1)) + continue + + for i in range(self.num_stages): + bbox_head = self.bbox_head[i] + bbox_results = self._bbox_forward( + i, x, rois, semantic_feat=semantic) + ms_scores.append(bbox_results['cls_score']) + + if i < self.num_stages - 1: + bbox_label = bbox_results['cls_score'].argmax(dim=1) + rois = bbox_head.regress_by_class( + rois, bbox_label, bbox_results['bbox_pred'], + img_meta[0]) + + cls_score = sum(ms_scores) / float(len(ms_scores)) + bboxes, scores = self.bbox_head[-1].get_bboxes( + rois, + cls_score, + bbox_results['bbox_pred'], + img_shape, + scale_factor, + rescale=False, + cfg=None) + aug_bboxes.append(bboxes) + aug_scores.append(scores) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) + det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, + rcnn_test_cfg.score_thr, + rcnn_test_cfg.nms, + rcnn_test_cfg.max_per_img) + + bbox_result = bbox2result(det_bboxes, det_labels, + self.bbox_head[-1].num_classes) + + if self.with_mask: + if det_bboxes.shape[0] == 0: + segm_result = [[] + for _ in range(self.mask_head[-1].num_classes)] + else: + aug_masks = [] + aug_img_metas = [] + for x, img_meta, semantic in zip(img_feats, img_metas, + semantic_feats): + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, + scale_factor, flip, flip_direction) + mask_rois = bbox2roi([_bboxes]) + mask_feats = self.mask_roi_extractor[-1]( + x[:len(self.mask_roi_extractor[-1].featmap_strides)], + mask_rois) + if self.with_semantic: + semantic_feat = semantic + mask_semantic_feat = self.semantic_roi_extractor( + [semantic_feat], mask_rois) + if mask_semantic_feat.shape[-2:] != mask_feats.shape[ + -2:]: + mask_semantic_feat = F.adaptive_avg_pool2d( + mask_semantic_feat, mask_feats.shape[-2:]) + mask_feats += mask_semantic_feat + last_feat = None + for i in range(self.num_stages): + mask_head = self.mask_head[i] + if self.mask_info_flow: + mask_pred, last_feat = mask_head( + mask_feats, last_feat) + else: + mask_pred = mask_head(mask_feats) + aug_masks.append(mask_pred.sigmoid().cpu().numpy()) + aug_img_metas.append(img_meta) + merged_masks = merge_aug_masks(aug_masks, aug_img_metas, + self.test_cfg) + + ori_shape = img_metas[0][0]['ori_shape'] + segm_result = self.mask_head[-1].get_seg_masks( + merged_masks, + det_bboxes, + det_labels, + rcnn_test_cfg, + ori_shape, + scale_factor=1.0, + rescale=False) + return [(bbox_result, segm_result)] + else: + return [bbox_result] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/__init__.py new file mode 100644 index 000000000..48a5d4227 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/__init__.py @@ -0,0 +1,20 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .coarse_mask_head import CoarseMaskHead +from .dynamic_mask_head import DynamicMaskHead +from .fcn_mask_head import FCNMaskHead +from .feature_relay_head import FeatureRelayHead +from .fused_semantic_head import FusedSemanticHead +from .global_context_head import GlobalContextHead +from .grid_head import GridHead +from .htc_mask_head import HTCMaskHead +from .mask_point_head import MaskPointHead +from .maskiou_head import MaskIoUHead +from .scnet_mask_head import SCNetMaskHead +from .scnet_semantic_head import SCNetSemanticHead + +__all__ = [ + 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', + 'MaskIoUHead', 'CoarseMaskHead', 'MaskPointHead', 'SCNetMaskHead', + 'SCNetSemanticHead', 'GlobalContextHead', 'FeatureRelayHead', + 'DynamicMaskHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/coarse_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/coarse_mask_head.py new file mode 100644 index 000000000..946254cb4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/coarse_mask_head.py @@ -0,0 +1,100 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule, Linear +from mmcv.runner import ModuleList, auto_fp16 + +from mmdet.models.builder import HEADS +from .fcn_mask_head import FCNMaskHead + + +@HEADS.register_module() +class CoarseMaskHead(FCNMaskHead): + """Coarse mask head used in PointRend. + + Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample + the input feature map instead of upsample it. + + Args: + num_convs (int): Number of conv layers in the head. Default: 0. + num_fcs (int): Number of fc layers in the head. Default: 2. + fc_out_channels (int): Number of output channels of fc layer. + Default: 1024. + downsample_factor (int): The factor that feature map is downsampled by. + Default: 2. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_convs=0, + num_fcs=2, + fc_out_channels=1024, + downsample_factor=2, + init_cfg=dict( + type='Xavier', + override=[ + dict(name='fcs'), + dict(type='Constant', val=0.001, name='fc_logits') + ]), + *arg, + **kwarg): + super(CoarseMaskHead, self).__init__( + *arg, + num_convs=num_convs, + upsample_cfg=dict(type=None), + init_cfg=None, + **kwarg) + self.init_cfg = init_cfg + self.num_fcs = num_fcs + assert self.num_fcs > 0 + self.fc_out_channels = fc_out_channels + self.downsample_factor = downsample_factor + assert self.downsample_factor >= 1 + # remove conv_logit + delattr(self, 'conv_logits') + + if downsample_factor > 1: + downsample_in_channels = ( + self.conv_out_channels + if self.num_convs > 0 else self.in_channels) + self.downsample_conv = ConvModule( + downsample_in_channels, + self.conv_out_channels, + kernel_size=downsample_factor, + stride=downsample_factor, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + else: + self.downsample_conv = None + + self.output_size = (self.roi_feat_size[0] // downsample_factor, + self.roi_feat_size[1] // downsample_factor) + self.output_area = self.output_size[0] * self.output_size[1] + + last_layer_dim = self.conv_out_channels * self.output_area + + self.fcs = ModuleList() + for i in range(num_fcs): + fc_in_channels = ( + last_layer_dim if i == 0 else self.fc_out_channels) + self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) + last_layer_dim = self.fc_out_channels + output_channels = self.num_classes * self.output_area + self.fc_logits = Linear(last_layer_dim, output_channels) + + def init_weights(self): + super(FCNMaskHead, self).init_weights() + + @auto_fp16() + def forward(self, x): + for conv in self.convs: + x = conv(x) + + if self.downsample_conv is not None: + x = self.downsample_conv(x) + + x = x.flatten(1) + for fc in self.fcs: + x = self.relu(fc(x)) + mask_pred = self.fc_logits(x).view( + x.size(0), self.num_classes, *self.output_size) + return mask_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/dynamic_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/dynamic_mask_head.py new file mode 100644 index 000000000..5bbe7eea4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/dynamic_mask_head.py @@ -0,0 +1,147 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.runner import auto_fp16, force_fp32 + +from mmdet.core import mask_target +from mmdet.models.builder import HEADS +from mmdet.models.dense_heads.atss_head import reduce_mean +from mmdet.models.utils import build_transformer +from .fcn_mask_head import FCNMaskHead + + +@HEADS.register_module() +class DynamicMaskHead(FCNMaskHead): + r"""Dynamic Mask Head for + `Instances as Queries `_ + + Args: + num_convs (int): Number of convolution layer. + Defaults to 4. + roi_feat_size (int): The output size of RoI extractor, + Defaults to 14. + in_channels (int): Input feature channels. + Defaults to 256. + conv_kernel_size (int): Kernel size of convolution layers. + Defaults to 3. + conv_out_channels (int): Output channels of convolution layers. + Defaults to 256. + num_classes (int): Number of classes. + Defaults to 80 + class_agnostic (int): Whether generate class agnostic prediction. + Defaults to False. + dropout (float): Probability of drop the channel. + Defaults to 0.0 + upsample_cfg (dict): The config for upsample layer. + conv_cfg (dict): The convolution layer config. + norm_cfg (dict): The norm layer config. + dynamic_conv_cfg (dict): The dynamic convolution layer config. + loss_mask (dict): The config for mask loss. + """ + + def __init__(self, + num_convs=4, + roi_feat_size=14, + in_channels=256, + conv_kernel_size=3, + conv_out_channels=256, + num_classes=80, + class_agnostic=False, + upsample_cfg=dict(type='deconv', scale_factor=2), + conv_cfg=None, + norm_cfg=None, + dynamic_conv_cfg=dict( + type='DynamicConv', + in_channels=256, + feat_channels=64, + out_channels=256, + input_feat_shape=14, + with_proj=False, + act_cfg=dict(type='ReLU', inplace=True), + norm_cfg=dict(type='LN')), + loss_mask=dict(type='DiceLoss', loss_weight=8.0), + **kwargs): + super(DynamicMaskHead, self).__init__( + num_convs=num_convs, + roi_feat_size=roi_feat_size, + in_channels=in_channels, + conv_kernel_size=conv_kernel_size, + conv_out_channels=conv_out_channels, + num_classes=num_classes, + class_agnostic=class_agnostic, + upsample_cfg=upsample_cfg, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + loss_mask=loss_mask, + **kwargs) + assert class_agnostic is False, \ + 'DynamicMaskHead only support class_agnostic=False' + self.fp16_enabled = False + + self.instance_interactive_conv = build_transformer(dynamic_conv_cfg) + + def init_weights(self): + """Use xavier initialization for all weight parameter and set + classification head bias as a specific value when use focal loss.""" + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + nn.init.constant_(self.conv_logits.bias, 0.) + + @auto_fp16() + def forward(self, roi_feat, proposal_feat): + """Forward function of DynamicMaskHead. + + Args: + roi_feat (Tensor): Roi-pooling features with shape + (batch_size*num_proposals, feature_dimensions, + pooling_h , pooling_w). + proposal_feat (Tensor): Intermediate feature get from + diihead in last stage, has shape + (batch_size*num_proposals, feature_dimensions) + + Returns: + mask_pred (Tensor): Predicted foreground masks with shape + (batch_size*num_proposals, num_classes, + pooling_h*2, pooling_w*2). + """ + + proposal_feat = proposal_feat.reshape(-1, self.in_channels) + proposal_feat_iic = self.instance_interactive_conv( + proposal_feat, roi_feat) + + x = proposal_feat_iic.permute(0, 2, 1).reshape(roi_feat.size()) + + for conv in self.convs: + x = conv(x) + if self.upsample is not None: + x = self.upsample(x) + if self.upsample_method == 'deconv': + x = self.relu(x) + mask_pred = self.conv_logits(x) + return mask_pred + + @force_fp32(apply_to=('mask_pred', )) + def loss(self, mask_pred, mask_targets, labels): + num_pos = labels.new_ones(labels.size()).float().sum() + avg_factor = torch.clamp(reduce_mean(num_pos), min=1.).item() + loss = dict() + if mask_pred.size(0) == 0: + loss_mask = mask_pred.sum() + else: + loss_mask = self.loss_mask( + mask_pred[torch.arange(num_pos).long(), labels, ...].sigmoid(), + mask_targets, + avg_factor=avg_factor) + loss['loss_mask'] = loss_mask + return loss + + def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg): + + pos_proposals = [res.pos_bboxes for res in sampling_results] + pos_assigned_gt_inds = [ + res.pos_assigned_gt_inds for res in sampling_results + ] + mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, + gt_masks, rcnn_train_cfg) + return mask_targets diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py new file mode 100644 index 000000000..355d88221 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py @@ -0,0 +1,412 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from warnings import warn + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, build_conv_layer, build_upsample_layer +from mmcv.ops.carafe import CARAFEPack +from mmcv.runner import BaseModule, ModuleList, auto_fp16, force_fp32 +from torch.nn.modules.utils import _pair + +from mmdet.core import mask_target +from mmdet.models.builder import HEADS, build_loss + +BYTES_PER_FLOAT = 4 +# TODO: This memory limit may be too much or too little. It would be better to +# determine it based on available resources. +GPU_MEM_LIMIT = 1024**3 # 1 GB memory limit + + +@HEADS.register_module() +class FCNMaskHead(BaseModule): + + def __init__(self, + num_convs=4, + roi_feat_size=14, + in_channels=256, + conv_kernel_size=3, + conv_out_channels=256, + num_classes=80, + class_agnostic=False, + upsample_cfg=dict(type='deconv', scale_factor=2), + conv_cfg=None, + norm_cfg=None, + predictor_cfg=dict(type='Conv'), + loss_mask=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0), + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(FCNMaskHead, self).__init__(init_cfg) + self.upsample_cfg = upsample_cfg.copy() + if self.upsample_cfg['type'] not in [ + None, 'deconv', 'nearest', 'bilinear', 'carafe' + ]: + raise ValueError( + f'Invalid upsample method {self.upsample_cfg["type"]}, ' + 'accepted methods are "deconv", "nearest", "bilinear", ' + '"carafe"') + self.num_convs = num_convs + # WARN: roi_feat_size is reserved and not used + self.roi_feat_size = _pair(roi_feat_size) + self.in_channels = in_channels + self.conv_kernel_size = conv_kernel_size + self.conv_out_channels = conv_out_channels + self.upsample_method = self.upsample_cfg.get('type') + self.scale_factor = self.upsample_cfg.pop('scale_factor', None) + self.num_classes = num_classes + self.class_agnostic = class_agnostic + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.predictor_cfg = predictor_cfg + self.fp16_enabled = False + self.loss_mask = build_loss(loss_mask) + + self.convs = ModuleList() + for i in range(self.num_convs): + in_channels = ( + self.in_channels if i == 0 else self.conv_out_channels) + padding = (self.conv_kernel_size - 1) // 2 + self.convs.append( + ConvModule( + in_channels, + self.conv_out_channels, + self.conv_kernel_size, + padding=padding, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg)) + upsample_in_channels = ( + self.conv_out_channels if self.num_convs > 0 else in_channels) + upsample_cfg_ = self.upsample_cfg.copy() + if self.upsample_method is None: + self.upsample = None + elif self.upsample_method == 'deconv': + upsample_cfg_.update( + in_channels=upsample_in_channels, + out_channels=self.conv_out_channels, + kernel_size=self.scale_factor, + stride=self.scale_factor) + self.upsample = build_upsample_layer(upsample_cfg_) + elif self.upsample_method == 'carafe': + upsample_cfg_.update( + channels=upsample_in_channels, scale_factor=self.scale_factor) + self.upsample = build_upsample_layer(upsample_cfg_) + else: + # suppress warnings + align_corners = (None + if self.upsample_method == 'nearest' else False) + upsample_cfg_.update( + scale_factor=self.scale_factor, + mode=self.upsample_method, + align_corners=align_corners) + self.upsample = build_upsample_layer(upsample_cfg_) + + out_channels = 1 if self.class_agnostic else self.num_classes + logits_in_channel = ( + self.conv_out_channels + if self.upsample_method == 'deconv' else upsample_in_channels) + self.conv_logits = build_conv_layer(self.predictor_cfg, + logits_in_channel, out_channels, 1) + self.relu = nn.ReLU(inplace=True) + self.debug_imgs = None + + def init_weights(self): + super(FCNMaskHead, self).init_weights() + for m in [self.upsample, self.conv_logits]: + if m is None: + continue + elif isinstance(m, CARAFEPack): + m.init_weights() + elif hasattr(m, 'weight') and hasattr(m, 'bias'): + nn.init.kaiming_normal_( + m.weight, mode='fan_out', nonlinearity='relu') + nn.init.constant_(m.bias, 0) + + @auto_fp16() + def forward(self, x): + for conv in self.convs: + x = conv(x) + if self.upsample is not None: + x = self.upsample(x) + if self.upsample_method == 'deconv': + x = self.relu(x) + mask_pred = self.conv_logits(x) + return mask_pred + + def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg): + pos_proposals = [res.pos_bboxes for res in sampling_results] + pos_assigned_gt_inds = [ + res.pos_assigned_gt_inds for res in sampling_results + ] + mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, + gt_masks, rcnn_train_cfg) + return mask_targets + + @force_fp32(apply_to=('mask_pred', )) + def loss(self, mask_pred, mask_targets, labels): + """ + Example: + >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA + >>> N = 7 # N = number of extracted ROIs + >>> C, H, W = 11, 32, 32 + >>> # Create example instance of FCN Mask Head. + >>> # There are lots of variations depending on the configuration + >>> self = FCNMaskHead(num_classes=C, num_convs=1) + >>> inputs = torch.rand(N, self.in_channels, H, W) + >>> mask_pred = self.forward(inputs) + >>> sf = self.scale_factor + >>> labels = torch.randint(0, C, size=(N,)) + >>> # With the default properties the mask targets should indicate + >>> # a (potentially soft) single-class label + >>> mask_targets = torch.rand(N, H * sf, W * sf) + >>> loss = self.loss(mask_pred, mask_targets, labels) + >>> print('loss = {!r}'.format(loss)) + """ + loss = dict() + if mask_pred.size(0) == 0: + loss_mask = mask_pred.sum() + else: + if self.class_agnostic: + loss_mask = self.loss_mask(mask_pred, mask_targets, + torch.zeros_like(labels)) + else: + loss_mask = self.loss_mask(mask_pred, mask_targets, labels) + loss['loss_mask'] = loss_mask + return loss + + def get_seg_masks(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg, + ori_shape, scale_factor, rescale): + """Get segmentation masks from mask_pred and bboxes. + + Args: + mask_pred (Tensor or ndarray): shape (n, #class, h, w). + For single-scale testing, mask_pred is the direct output of + model, whose type is Tensor, while for multi-scale testing, + it will be converted to numpy array outside of this method. + det_bboxes (Tensor): shape (n, 4/5) + det_labels (Tensor): shape (n, ) + rcnn_test_cfg (dict): rcnn testing config + ori_shape (Tuple): original image height and width, shape (2,) + scale_factor(ndarray | Tensor): If ``rescale is True``, box + coordinates are divided by this scale factor to fit + ``ori_shape``. + rescale (bool): If True, the resulting masks will be rescaled to + ``ori_shape``. + + Returns: + list[list]: encoded masks. The c-th item in the outer list + corresponds to the c-th class. Given the c-th outer list, the + i-th item in that inner list is the mask for the i-th box with + class label c. + + Example: + >>> import mmcv + >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA + >>> N = 7 # N = number of extracted ROIs + >>> C, H, W = 11, 32, 32 + >>> # Create example instance of FCN Mask Head. + >>> self = FCNMaskHead(num_classes=C, num_convs=0) + >>> inputs = torch.rand(N, self.in_channels, H, W) + >>> mask_pred = self.forward(inputs) + >>> # Each input is associated with some bounding box + >>> det_bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N) + >>> det_labels = torch.randint(0, C, size=(N,)) + >>> rcnn_test_cfg = mmcv.Config({'mask_thr_binary': 0, }) + >>> ori_shape = (H * 4, W * 4) + >>> scale_factor = torch.FloatTensor((1, 1)) + >>> rescale = False + >>> # Encoded masks are a list for each category. + >>> encoded_masks = self.get_seg_masks( + >>> mask_pred, det_bboxes, det_labels, rcnn_test_cfg, ori_shape, + >>> scale_factor, rescale + >>> ) + >>> assert len(encoded_masks) == C + >>> assert sum(list(map(len, encoded_masks))) == N + """ + if isinstance(mask_pred, torch.Tensor): + mask_pred = mask_pred.sigmoid() + else: + # In AugTest, has been activated before + mask_pred = det_bboxes.new_tensor(mask_pred) + + device = mask_pred.device + cls_segms = [[] for _ in range(self.num_classes) + ] # BG is not included in num_classes + bboxes = det_bboxes[:, :4] + labels = det_labels + + # In most cases, scale_factor should have been + # converted to Tensor when rescale the bbox + if not isinstance(scale_factor, torch.Tensor): + if isinstance(scale_factor, float): + scale_factor = np.array([scale_factor] * 4) + warn('Scale_factor should be a Tensor or ndarray ' + 'with shape (4,), float would be deprecated. ') + assert isinstance(scale_factor, np.ndarray) + scale_factor = torch.Tensor(scale_factor) + + if rescale: + img_h, img_w = ori_shape[:2] + bboxes = bboxes / scale_factor.to(bboxes) + else: + w_scale, h_scale = scale_factor[0], scale_factor[1] + img_h = np.round(ori_shape[0] * h_scale.item()).astype(np.int32) + img_w = np.round(ori_shape[1] * w_scale.item()).astype(np.int32) + + N = len(mask_pred) + # The actual implementation split the input into chunks, + # and paste them chunk by chunk. + if device.type == 'cpu': + # CPU is most efficient when they are pasted one by one with + # skip_empty=True, so that it performs minimal number of + # operations. + num_chunks = N + else: + # GPU benefits from parallelism for larger chunks, + # but may have memory issue + # the types of img_w and img_h are np.int32, + # when the image resolution is large, + # the calculation of num_chunks will overflow. + # so we need to change the types of img_w and img_h to int. + # See https://github.com/open-mmlab/mmdetection/pull/5191 + num_chunks = int( + np.ceil(N * int(img_h) * int(img_w) * BYTES_PER_FLOAT / + GPU_MEM_LIMIT)) + assert (num_chunks <= + N), 'Default GPU_MEM_LIMIT is too small; try increasing it' + chunks = torch.chunk(torch.arange(N, device=device), num_chunks) + + threshold = rcnn_test_cfg.mask_thr_binary + im_mask = torch.zeros( + N, + img_h, + img_w, + device=device, + dtype=torch.bool if threshold >= 0 else torch.uint8) + + if not self.class_agnostic: + mask_pred = mask_pred[range(N), labels][:, None] + + for inds in chunks: + masks_chunk, spatial_inds = _do_paste_mask( + mask_pred[inds], + bboxes[inds], + img_h, + img_w, + skip_empty=device.type == 'cpu') + + if threshold >= 0: + masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool) + else: + # for visualization and debugging + masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8) + + im_mask[(inds, ) + spatial_inds] = masks_chunk + + for i in range(N): + cls_segms[labels[i]].append(im_mask[i].detach().cpu().numpy()) + return cls_segms + + def onnx_export(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg, + ori_shape, **kwargs): + """Get segmentation masks from mask_pred and bboxes. + + Args: + mask_pred (Tensor): shape (n, #class, h, w). + det_bboxes (Tensor): shape (n, 4/5) + det_labels (Tensor): shape (n, ) + rcnn_test_cfg (dict): rcnn testing config + ori_shape (Tuple): original image height and width, shape (2,) + + Returns: + Tensor: a mask of shape (N, img_h, img_w). + """ + + mask_pred = mask_pred.sigmoid() + bboxes = det_bboxes[:, :4] + labels = det_labels + # No need to consider rescale and scale_factor while exporting to ONNX + img_h, img_w = ori_shape[:2] + threshold = rcnn_test_cfg.mask_thr_binary + if not self.class_agnostic: + box_inds = torch.arange(mask_pred.shape[0]) + mask_pred = mask_pred[box_inds, labels][:, None] + masks, _ = _do_paste_mask( + mask_pred, bboxes, img_h, img_w, skip_empty=False) + if threshold >= 0: + # should convert to float to avoid problems in TRT + masks = (masks >= threshold).to(dtype=torch.float) + return masks + + +def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True): + """Paste instance masks according to boxes. + + This implementation is modified from + https://github.com/facebookresearch/detectron2/ + + Args: + masks (Tensor): N, 1, H, W + boxes (Tensor): N, 4 + img_h (int): Height of the image to be pasted. + img_w (int): Width of the image to be pasted. + skip_empty (bool): Only paste masks within the region that + tightly bound all boxes, and returns the results this region only. + An important optimization for CPU. + + Returns: + tuple: (Tensor, tuple). The first item is mask tensor, the second one + is the slice object. + If skip_empty == False, the whole image will be pasted. It will + return a mask of shape (N, img_h, img_w) and an empty tuple. + If skip_empty == True, only area around the mask will be pasted. + A mask of shape (N, h', w') and its start and end coordinates + in the original image will be returned. + """ + # On GPU, paste all masks together (up to chunk size) + # by using the entire image to sample the masks + # Compared to pasting them one by one, + # this has more operations but is faster on COCO-scale dataset. + device = masks.device + if skip_empty: + x0_int, y0_int = torch.clamp( + boxes.min(dim=0).values.floor()[:2] - 1, + min=0).to(dtype=torch.int32) + x1_int = torch.clamp( + boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32) + y1_int = torch.clamp( + boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32) + else: + x0_int, y0_int = 0, 0 + x1_int, y1_int = img_w, img_h + x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1 + + N = masks.shape[0] + + img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5 + img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5 + img_y = (img_y - y0) / (y1 - y0) * 2 - 1 + img_x = (img_x - x0) / (x1 - x0) * 2 - 1 + # img_x, img_y have shapes (N, w), (N, h) + # IsInf op is not supported with ONNX<=1.7.0 + if not torch.onnx.is_in_onnx_export(): + if torch.isinf(img_x).any(): + inds = torch.where(torch.isinf(img_x)) + img_x[inds] = 0 + if torch.isinf(img_y).any(): + inds = torch.where(torch.isinf(img_y)) + img_y[inds] = 0 + + gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1)) + gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1)) + grid = torch.stack([gx, gy], dim=3) + + img_masks = F.grid_sample( + masks.to(dtype=torch.float32), grid, align_corners=False) + + if skip_empty: + return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int)) + else: + return img_masks[:, 0], () diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/feature_relay_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/feature_relay_head.py new file mode 100644 index 000000000..452f37afd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/feature_relay_head.py @@ -0,0 +1,53 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.runner import BaseModule, auto_fp16 + +from mmdet.models.builder import HEADS + + +@HEADS.register_module() +class FeatureRelayHead(BaseModule): + """Feature Relay Head used in `SCNet `_. + + Args: + in_channels (int, optional): number of input channels. Default: 256. + conv_out_channels (int, optional): number of output channels before + classification layer. Default: 256. + roi_feat_size (int, optional): roi feat size at box head. Default: 7. + scale_factor (int, optional): scale factor to match roi feat size + at mask head. Default: 2. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels=1024, + out_conv_channels=256, + roi_feat_size=7, + scale_factor=2, + init_cfg=dict(type='Kaiming', layer='Linear')): + super(FeatureRelayHead, self).__init__(init_cfg) + assert isinstance(roi_feat_size, int) + + self.in_channels = in_channels + self.out_conv_channels = out_conv_channels + self.roi_feat_size = roi_feat_size + self.out_channels = (roi_feat_size**2) * out_conv_channels + self.scale_factor = scale_factor + self.fp16_enabled = False + + self.fc = nn.Linear(self.in_channels, self.out_channels) + self.upsample = nn.Upsample( + scale_factor=scale_factor, mode='bilinear', align_corners=True) + + @auto_fp16() + def forward(self, x): + """Forward function.""" + N, in_C = x.shape + if N > 0: + out_C = self.out_conv_channels + out_HW = self.roi_feat_size + x = self.fc(x) + x = x.reshape(N, out_C, out_HW, out_HW) + x = self.upsample(x) + return x + return None diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py new file mode 100644 index 000000000..8494f7e4d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py @@ -0,0 +1,117 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16, force_fp32 + +from mmdet.models.builder import HEADS, build_loss + + +@HEADS.register_module() +class FusedSemanticHead(BaseModule): + r"""Multi-level fused semantic segmentation head. + + .. code-block:: none + + in_1 -> 1x1 conv --- + | + in_2 -> 1x1 conv -- | + || + in_3 -> 1x1 conv - || + ||| /-> 1x1 conv (mask prediction) + in_4 -> 1x1 conv -----> 3x3 convs (*4) + | \-> 1x1 conv (feature) + in_5 -> 1x1 conv --- + """ # noqa: W605 + + def __init__(self, + num_ins, + fusion_level, + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=183, + conv_cfg=None, + norm_cfg=None, + ignore_label=None, + loss_weight=None, + loss_seg=dict( + type='CrossEntropyLoss', + ignore_index=255, + loss_weight=0.2), + init_cfg=dict( + type='Kaiming', override=dict(name='conv_logits'))): + super(FusedSemanticHead, self).__init__(init_cfg) + self.num_ins = num_ins + self.fusion_level = fusion_level + self.num_convs = num_convs + self.in_channels = in_channels + self.conv_out_channels = conv_out_channels + self.num_classes = num_classes + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.fp16_enabled = False + + self.lateral_convs = nn.ModuleList() + for i in range(self.num_ins): + self.lateral_convs.append( + ConvModule( + self.in_channels, + self.in_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + inplace=False)) + + self.convs = nn.ModuleList() + for i in range(self.num_convs): + in_channels = self.in_channels if i == 0 else conv_out_channels + self.convs.append( + ConvModule( + in_channels, + conv_out_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + self.conv_embedding = ConvModule( + conv_out_channels, + conv_out_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + self.conv_logits = nn.Conv2d(conv_out_channels, self.num_classes, 1) + if ignore_label: + loss_seg['ignore_index'] = ignore_label + if loss_weight: + loss_seg['loss_weight'] = loss_weight + if ignore_label or loss_weight: + warnings.warn('``ignore_label`` and ``loss_weight`` would be ' + 'deprecated soon. Please set ``ingore_index`` and ' + '``loss_weight`` in ``loss_seg`` instead.') + self.criterion = build_loss(loss_seg) + + @auto_fp16() + def forward(self, feats): + x = self.lateral_convs[self.fusion_level](feats[self.fusion_level]) + fused_size = tuple(x.shape[-2:]) + for i, feat in enumerate(feats): + if i != self.fusion_level: + feat = F.interpolate( + feat, size=fused_size, mode='bilinear', align_corners=True) + x += self.lateral_convs[i](feat) + + for i in range(self.num_convs): + x = self.convs[i](x) + + mask_pred = self.conv_logits(x) + x = self.conv_embedding(x) + return mask_pred, x + + @force_fp32(apply_to=('mask_pred', )) + def loss(self, mask_pred, labels): + labels = labels.squeeze(1).long() + loss_semantic_seg = self.criterion(mask_pred, labels) + return loss_semantic_seg diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/global_context_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/global_context_head.py new file mode 100644 index 000000000..af76a174b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/global_context_head.py @@ -0,0 +1,101 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16, force_fp32 + +from mmdet.models.builder import HEADS +from mmdet.models.utils import ResLayer, SimplifiedBasicBlock + + +@HEADS.register_module() +class GlobalContextHead(BaseModule): + """Global context head used in `SCNet `_. + + Args: + num_convs (int, optional): number of convolutional layer in GlbCtxHead. + Default: 4. + in_channels (int, optional): number of input channels. Default: 256. + conv_out_channels (int, optional): number of output channels before + classification layer. Default: 256. + num_classes (int, optional): number of classes. Default: 80. + loss_weight (float, optional): global context loss weight. Default: 1. + conv_cfg (dict, optional): config to init conv layer. Default: None. + norm_cfg (dict, optional): config to init norm layer. Default: None. + conv_to_res (bool, optional): if True, 2 convs will be grouped into + 1 `SimplifiedBasicBlock` using a skip connection. Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_convs=4, + in_channels=256, + conv_out_channels=256, + num_classes=80, + loss_weight=1.0, + conv_cfg=None, + norm_cfg=None, + conv_to_res=False, + init_cfg=dict( + type='Normal', std=0.01, override=dict(name='fc'))): + super(GlobalContextHead, self).__init__(init_cfg) + self.num_convs = num_convs + self.in_channels = in_channels + self.conv_out_channels = conv_out_channels + self.num_classes = num_classes + self.loss_weight = loss_weight + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.conv_to_res = conv_to_res + self.fp16_enabled = False + + if self.conv_to_res: + num_res_blocks = num_convs // 2 + self.convs = ResLayer( + SimplifiedBasicBlock, + in_channels, + self.conv_out_channels, + num_res_blocks, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + self.num_convs = num_res_blocks + else: + self.convs = nn.ModuleList() + for i in range(self.num_convs): + in_channels = self.in_channels if i == 0 else conv_out_channels + self.convs.append( + ConvModule( + in_channels, + conv_out_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg)) + + self.pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Linear(conv_out_channels, num_classes) + + self.criterion = nn.BCEWithLogitsLoss() + + @auto_fp16() + def forward(self, feats): + """Forward function.""" + x = feats[-1] + for i in range(self.num_convs): + x = self.convs[i](x) + x = self.pool(x) + + # multi-class prediction + mc_pred = x.reshape(x.size(0), -1) + mc_pred = self.fc(mc_pred) + + return mc_pred, x + + @force_fp32(apply_to=('pred', )) + def loss(self, pred, labels): + """Loss function.""" + labels = [lbl.unique() for lbl in labels] + targets = pred.new_zeros(pred.size()) + for i, label in enumerate(labels): + targets[i, label] = 1.0 + loss = self.loss_weight * self.criterion(pred, targets) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/grid_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/grid_head.py new file mode 100644 index 000000000..0c0702d2a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/grid_head.py @@ -0,0 +1,363 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from mmdet.models.builder import HEADS, build_loss + + +@HEADS.register_module() +class GridHead(BaseModule): + + def __init__(self, + grid_points=9, + num_convs=8, + roi_feat_size=14, + in_channels=256, + conv_kernel_size=3, + point_feat_channels=64, + deconv_kernel_size=4, + class_agnostic=False, + loss_grid=dict( + type='CrossEntropyLoss', use_sigmoid=True, + loss_weight=15), + conv_cfg=None, + norm_cfg=dict(type='GN', num_groups=36), + init_cfg=[ + dict(type='Kaiming', layer=['Conv2d', 'Linear']), + dict( + type='Normal', + layer='ConvTranspose2d', + std=0.001, + override=dict( + type='Normal', + name='deconv2', + std=0.001, + bias=-np.log(0.99 / 0.01))) + ]): + super(GridHead, self).__init__(init_cfg) + self.grid_points = grid_points + self.num_convs = num_convs + self.roi_feat_size = roi_feat_size + self.in_channels = in_channels + self.conv_kernel_size = conv_kernel_size + self.point_feat_channels = point_feat_channels + self.conv_out_channels = self.point_feat_channels * self.grid_points + self.class_agnostic = class_agnostic + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + if isinstance(norm_cfg, dict) and norm_cfg['type'] == 'GN': + assert self.conv_out_channels % norm_cfg['num_groups'] == 0 + + assert self.grid_points >= 4 + self.grid_size = int(np.sqrt(self.grid_points)) + if self.grid_size * self.grid_size != self.grid_points: + raise ValueError('grid_points must be a square number') + + # the predicted heatmap is half of whole_map_size + if not isinstance(self.roi_feat_size, int): + raise ValueError('Only square RoIs are supporeted in Grid R-CNN') + self.whole_map_size = self.roi_feat_size * 4 + + # compute point-wise sub-regions + self.sub_regions = self.calc_sub_regions() + + self.convs = [] + for i in range(self.num_convs): + in_channels = ( + self.in_channels if i == 0 else self.conv_out_channels) + stride = 2 if i == 0 else 1 + padding = (self.conv_kernel_size - 1) // 2 + self.convs.append( + ConvModule( + in_channels, + self.conv_out_channels, + self.conv_kernel_size, + stride=stride, + padding=padding, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=True)) + self.convs = nn.Sequential(*self.convs) + + self.deconv1 = nn.ConvTranspose2d( + self.conv_out_channels, + self.conv_out_channels, + kernel_size=deconv_kernel_size, + stride=2, + padding=(deconv_kernel_size - 2) // 2, + groups=grid_points) + self.norm1 = nn.GroupNorm(grid_points, self.conv_out_channels) + self.deconv2 = nn.ConvTranspose2d( + self.conv_out_channels, + grid_points, + kernel_size=deconv_kernel_size, + stride=2, + padding=(deconv_kernel_size - 2) // 2, + groups=grid_points) + + # find the 4-neighbor of each grid point + self.neighbor_points = [] + grid_size = self.grid_size + for i in range(grid_size): # i-th column + for j in range(grid_size): # j-th row + neighbors = [] + if i > 0: # left: (i - 1, j) + neighbors.append((i - 1) * grid_size + j) + if j > 0: # up: (i, j - 1) + neighbors.append(i * grid_size + j - 1) + if j < grid_size - 1: # down: (i, j + 1) + neighbors.append(i * grid_size + j + 1) + if i < grid_size - 1: # right: (i + 1, j) + neighbors.append((i + 1) * grid_size + j) + self.neighbor_points.append(tuple(neighbors)) + # total edges in the grid + self.num_edges = sum([len(p) for p in self.neighbor_points]) + + self.forder_trans = nn.ModuleList() # first-order feature transition + self.sorder_trans = nn.ModuleList() # second-order feature transition + for neighbors in self.neighbor_points: + fo_trans = nn.ModuleList() + so_trans = nn.ModuleList() + for _ in range(len(neighbors)): + # each transition module consists of a 5x5 depth-wise conv and + # 1x1 conv. + fo_trans.append( + nn.Sequential( + nn.Conv2d( + self.point_feat_channels, + self.point_feat_channels, + 5, + stride=1, + padding=2, + groups=self.point_feat_channels), + nn.Conv2d(self.point_feat_channels, + self.point_feat_channels, 1))) + so_trans.append( + nn.Sequential( + nn.Conv2d( + self.point_feat_channels, + self.point_feat_channels, + 5, + 1, + 2, + groups=self.point_feat_channels), + nn.Conv2d(self.point_feat_channels, + self.point_feat_channels, 1))) + self.forder_trans.append(fo_trans) + self.sorder_trans.append(so_trans) + + self.loss_grid = build_loss(loss_grid) + + def forward(self, x): + assert x.shape[-1] == x.shape[-2] == self.roi_feat_size + # RoI feature transformation, downsample 2x + x = self.convs(x) + + c = self.point_feat_channels + # first-order fusion + x_fo = [None for _ in range(self.grid_points)] + for i, points in enumerate(self.neighbor_points): + x_fo[i] = x[:, i * c:(i + 1) * c] + for j, point_idx in enumerate(points): + x_fo[i] = x_fo[i] + self.forder_trans[i][j]( + x[:, point_idx * c:(point_idx + 1) * c]) + + # second-order fusion + x_so = [None for _ in range(self.grid_points)] + for i, points in enumerate(self.neighbor_points): + x_so[i] = x[:, i * c:(i + 1) * c] + for j, point_idx in enumerate(points): + x_so[i] = x_so[i] + self.sorder_trans[i][j](x_fo[point_idx]) + + # predicted heatmap with fused features + x2 = torch.cat(x_so, dim=1) + x2 = self.deconv1(x2) + x2 = F.relu(self.norm1(x2), inplace=True) + heatmap = self.deconv2(x2) + + # predicted heatmap with original features (applicable during training) + if self.training: + x1 = x + x1 = self.deconv1(x1) + x1 = F.relu(self.norm1(x1), inplace=True) + heatmap_unfused = self.deconv2(x1) + else: + heatmap_unfused = heatmap + + return dict(fused=heatmap, unfused=heatmap_unfused) + + def calc_sub_regions(self): + """Compute point specific representation regions. + + See Grid R-CNN Plus (https://arxiv.org/abs/1906.05688) for details. + """ + # to make it consistent with the original implementation, half_size + # is computed as 2 * quarter_size, which is smaller + half_size = self.whole_map_size // 4 * 2 + sub_regions = [] + for i in range(self.grid_points): + x_idx = i // self.grid_size + y_idx = i % self.grid_size + if x_idx == 0: + sub_x1 = 0 + elif x_idx == self.grid_size - 1: + sub_x1 = half_size + else: + ratio = x_idx / (self.grid_size - 1) - 0.25 + sub_x1 = max(int(ratio * self.whole_map_size), 0) + + if y_idx == 0: + sub_y1 = 0 + elif y_idx == self.grid_size - 1: + sub_y1 = half_size + else: + ratio = y_idx / (self.grid_size - 1) - 0.25 + sub_y1 = max(int(ratio * self.whole_map_size), 0) + sub_regions.append( + (sub_x1, sub_y1, sub_x1 + half_size, sub_y1 + half_size)) + return sub_regions + + def get_targets(self, sampling_results, rcnn_train_cfg): + # mix all samples (across images) together. + pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results], + dim=0).cpu() + pos_gt_bboxes = torch.cat( + [res.pos_gt_bboxes for res in sampling_results], dim=0).cpu() + assert pos_bboxes.shape == pos_gt_bboxes.shape + + # expand pos_bboxes to 2x of original size + x1 = pos_bboxes[:, 0] - (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2 + y1 = pos_bboxes[:, 1] - (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2 + x2 = pos_bboxes[:, 2] + (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2 + y2 = pos_bboxes[:, 3] + (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2 + pos_bboxes = torch.stack([x1, y1, x2, y2], dim=-1) + pos_bbox_ws = (pos_bboxes[:, 2] - pos_bboxes[:, 0]).unsqueeze(-1) + pos_bbox_hs = (pos_bboxes[:, 3] - pos_bboxes[:, 1]).unsqueeze(-1) + + num_rois = pos_bboxes.shape[0] + map_size = self.whole_map_size + # this is not the final target shape + targets = torch.zeros((num_rois, self.grid_points, map_size, map_size), + dtype=torch.float) + + # pre-compute interpolation factors for all grid points. + # the first item is the factor of x-dim, and the second is y-dim. + # for a 9-point grid, factors are like (1, 0), (0.5, 0.5), (0, 1) + factors = [] + for j in range(self.grid_points): + x_idx = j // self.grid_size + y_idx = j % self.grid_size + factors.append((1 - x_idx / (self.grid_size - 1), + 1 - y_idx / (self.grid_size - 1))) + + radius = rcnn_train_cfg.pos_radius + radius2 = radius**2 + for i in range(num_rois): + # ignore small bboxes + if (pos_bbox_ws[i] <= self.grid_size + or pos_bbox_hs[i] <= self.grid_size): + continue + # for each grid point, mark a small circle as positive + for j in range(self.grid_points): + factor_x, factor_y = factors[j] + gridpoint_x = factor_x * pos_gt_bboxes[i, 0] + ( + 1 - factor_x) * pos_gt_bboxes[i, 2] + gridpoint_y = factor_y * pos_gt_bboxes[i, 1] + ( + 1 - factor_y) * pos_gt_bboxes[i, 3] + + cx = int((gridpoint_x - pos_bboxes[i, 0]) / pos_bbox_ws[i] * + map_size) + cy = int((gridpoint_y - pos_bboxes[i, 1]) / pos_bbox_hs[i] * + map_size) + + for x in range(cx - radius, cx + radius + 1): + for y in range(cy - radius, cy + radius + 1): + if x >= 0 and x < map_size and y >= 0 and y < map_size: + if (x - cx)**2 + (y - cy)**2 <= radius2: + targets[i, j, y, x] = 1 + # reduce the target heatmap size by a half + # proposed in Grid R-CNN Plus (https://arxiv.org/abs/1906.05688). + sub_targets = [] + for i in range(self.grid_points): + sub_x1, sub_y1, sub_x2, sub_y2 = self.sub_regions[i] + sub_targets.append(targets[:, [i], sub_y1:sub_y2, sub_x1:sub_x2]) + sub_targets = torch.cat(sub_targets, dim=1) + sub_targets = sub_targets.to(sampling_results[0].pos_bboxes.device) + return sub_targets + + def loss(self, grid_pred, grid_targets): + loss_fused = self.loss_grid(grid_pred['fused'], grid_targets) + loss_unfused = self.loss_grid(grid_pred['unfused'], grid_targets) + loss_grid = loss_fused + loss_unfused + return dict(loss_grid=loss_grid) + + def get_bboxes(self, det_bboxes, grid_pred, img_metas): + # TODO: refactoring + assert det_bboxes.shape[0] == grid_pred.shape[0] + det_bboxes = det_bboxes.cpu() + cls_scores = det_bboxes[:, [4]] + det_bboxes = det_bboxes[:, :4] + grid_pred = grid_pred.sigmoid().cpu() + + R, c, h, w = grid_pred.shape + half_size = self.whole_map_size // 4 * 2 + assert h == w == half_size + assert c == self.grid_points + + # find the point with max scores in the half-sized heatmap + grid_pred = grid_pred.view(R * c, h * w) + pred_scores, pred_position = grid_pred.max(dim=1) + xs = pred_position % w + ys = pred_position // w + + # get the position in the whole heatmap instead of half-sized heatmap + for i in range(self.grid_points): + xs[i::self.grid_points] += self.sub_regions[i][0] + ys[i::self.grid_points] += self.sub_regions[i][1] + + # reshape to (num_rois, grid_points) + pred_scores, xs, ys = tuple( + map(lambda x: x.view(R, c), [pred_scores, xs, ys])) + + # get expanded pos_bboxes + widths = (det_bboxes[:, 2] - det_bboxes[:, 0]).unsqueeze(-1) + heights = (det_bboxes[:, 3] - det_bboxes[:, 1]).unsqueeze(-1) + x1 = (det_bboxes[:, 0, None] - widths / 2) + y1 = (det_bboxes[:, 1, None] - heights / 2) + # map the grid point to the absolute coordinates + abs_xs = (xs.float() + 0.5) / w * widths + x1 + abs_ys = (ys.float() + 0.5) / h * heights + y1 + + # get the grid points indices that fall on the bbox boundaries + x1_inds = [i for i in range(self.grid_size)] + y1_inds = [i * self.grid_size for i in range(self.grid_size)] + x2_inds = [ + self.grid_points - self.grid_size + i + for i in range(self.grid_size) + ] + y2_inds = [(i + 1) * self.grid_size - 1 for i in range(self.grid_size)] + + # voting of all grid points on some boundary + bboxes_x1 = (abs_xs[:, x1_inds] * pred_scores[:, x1_inds]).sum( + dim=1, keepdim=True) / ( + pred_scores[:, x1_inds].sum(dim=1, keepdim=True)) + bboxes_y1 = (abs_ys[:, y1_inds] * pred_scores[:, y1_inds]).sum( + dim=1, keepdim=True) / ( + pred_scores[:, y1_inds].sum(dim=1, keepdim=True)) + bboxes_x2 = (abs_xs[:, x2_inds] * pred_scores[:, x2_inds]).sum( + dim=1, keepdim=True) / ( + pred_scores[:, x2_inds].sum(dim=1, keepdim=True)) + bboxes_y2 = (abs_ys[:, y2_inds] * pred_scores[:, y2_inds]).sum( + dim=1, keepdim=True) / ( + pred_scores[:, y2_inds].sum(dim=1, keepdim=True)) + + bbox_res = torch.cat( + [bboxes_x1, bboxes_y1, bboxes_x2, bboxes_y2, cls_scores], dim=1) + bbox_res[:, [0, 2]].clamp_(min=0, max=img_metas[0]['img_shape'][1]) + bbox_res[:, [1, 3]].clamp_(min=0, max=img_metas[0]['img_shape'][0]) + + return bbox_res diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/htc_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/htc_mask_head.py new file mode 100644 index 000000000..7ad8592b4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/htc_mask_head.py @@ -0,0 +1,39 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule + +from mmdet.models.builder import HEADS +from .fcn_mask_head import FCNMaskHead + + +@HEADS.register_module() +class HTCMaskHead(FCNMaskHead): + + def __init__(self, with_conv_res=True, *args, **kwargs): + super(HTCMaskHead, self).__init__(*args, **kwargs) + self.with_conv_res = with_conv_res + if self.with_conv_res: + self.conv_res = ConvModule( + self.conv_out_channels, + self.conv_out_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + + def forward(self, x, res_feat=None, return_logits=True, return_feat=True): + if res_feat is not None: + assert self.with_conv_res + res_feat = self.conv_res(res_feat) + x = x + res_feat + for conv in self.convs: + x = conv(x) + res_feat = x + outs = [] + if return_logits: + x = self.upsample(x) + if self.upsample_method == 'deconv': + x = self.relu(x) + mask_pred = self.conv_logits(x) + outs.append(mask_pred) + if return_feat: + outs.append(res_feat) + return outs if len(outs) > 1 else outs[0] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/mask_point_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/mask_point_head.py new file mode 100644 index 000000000..c77c46d2c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/mask_point_head.py @@ -0,0 +1,253 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py # noqa + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point +from mmcv.runner import BaseModule + +from mmdet.models.builder import HEADS, build_loss +from mmdet.models.utils import (get_uncertain_point_coords_with_randomness, + get_uncertainty) + + +@HEADS.register_module() +class MaskPointHead(BaseModule): + """A mask point head use in PointRend. + + ``MaskPointHead`` use shared multi-layer perceptron (equivalent to + nn.Conv1d) to predict the logit of input points. The fine-grained feature + and coarse feature will be concatenate together for predication. + + Args: + num_fcs (int): Number of fc layers in the head. Default: 3. + in_channels (int): Number of input channels. Default: 256. + fc_channels (int): Number of fc channels. Default: 256. + num_classes (int): Number of classes for logits. Default: 80. + class_agnostic (bool): Whether use class agnostic classification. + If so, the output channels of logits will be 1. Default: False. + coarse_pred_each_layer (bool): Whether concatenate coarse feature with + the output of each fc layer. Default: True. + conv_cfg (dict | None): Dictionary to construct and config conv layer. + Default: dict(type='Conv1d')) + norm_cfg (dict | None): Dictionary to construct and config norm layer. + Default: None. + loss_point (dict): Dictionary to construct and config loss layer of + point head. Default: dict(type='CrossEntropyLoss', use_mask=True, + loss_weight=1.0). + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_classes, + num_fcs=3, + in_channels=256, + fc_channels=256, + class_agnostic=False, + coarse_pred_each_layer=True, + conv_cfg=dict(type='Conv1d'), + norm_cfg=None, + act_cfg=dict(type='ReLU'), + loss_point=dict( + type='CrossEntropyLoss', use_mask=True, loss_weight=1.0), + init_cfg=dict( + type='Normal', std=0.001, + override=dict(name='fc_logits'))): + super().__init__(init_cfg) + self.num_fcs = num_fcs + self.in_channels = in_channels + self.fc_channels = fc_channels + self.num_classes = num_classes + self.class_agnostic = class_agnostic + self.coarse_pred_each_layer = coarse_pred_each_layer + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.loss_point = build_loss(loss_point) + + fc_in_channels = in_channels + num_classes + self.fcs = nn.ModuleList() + for _ in range(num_fcs): + fc = ConvModule( + fc_in_channels, + fc_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.fcs.append(fc) + fc_in_channels = fc_channels + fc_in_channels += num_classes if self.coarse_pred_each_layer else 0 + + out_channels = 1 if self.class_agnostic else self.num_classes + self.fc_logits = nn.Conv1d( + fc_in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, fine_grained_feats, coarse_feats): + """Classify each point base on fine grained and coarse feats. + + Args: + fine_grained_feats (Tensor): Fine grained feature sampled from FPN, + shape (num_rois, in_channels, num_points). + coarse_feats (Tensor): Coarse feature sampled from CoarseMaskHead, + shape (num_rois, num_classes, num_points). + + Returns: + Tensor: Point classification results, + shape (num_rois, num_class, num_points). + """ + + x = torch.cat([fine_grained_feats, coarse_feats], dim=1) + for fc in self.fcs: + x = fc(x) + if self.coarse_pred_each_layer: + x = torch.cat((x, coarse_feats), dim=1) + return self.fc_logits(x) + + def get_targets(self, rois, rel_roi_points, sampling_results, gt_masks, + cfg): + """Get training targets of MaskPointHead for all images. + + Args: + rois (Tensor): Region of Interest, shape (num_rois, 5). + rel_roi_points: Points coordinates relative to RoI, shape + (num_rois, num_points, 2). + sampling_results (:obj:`SamplingResult`): Sampling result after + sampling and assignment. + gt_masks (Tensor) : Ground truth segmentation masks of + corresponding boxes, shape (num_rois, height, width). + cfg (dict): Training cfg. + + Returns: + Tensor: Point target, shape (num_rois, num_points). + """ + + num_imgs = len(sampling_results) + rois_list = [] + rel_roi_points_list = [] + for batch_ind in range(num_imgs): + inds = (rois[:, 0] == batch_ind) + rois_list.append(rois[inds]) + rel_roi_points_list.append(rel_roi_points[inds]) + pos_assigned_gt_inds_list = [ + res.pos_assigned_gt_inds for res in sampling_results + ] + cfg_list = [cfg for _ in range(num_imgs)] + + point_targets = map(self._get_target_single, rois_list, + rel_roi_points_list, pos_assigned_gt_inds_list, + gt_masks, cfg_list) + point_targets = list(point_targets) + + if len(point_targets) > 0: + point_targets = torch.cat(point_targets) + + return point_targets + + def _get_target_single(self, rois, rel_roi_points, pos_assigned_gt_inds, + gt_masks, cfg): + """Get training target of MaskPointHead for each image.""" + num_pos = rois.size(0) + num_points = cfg.num_points + if num_pos > 0: + gt_masks_th = ( + gt_masks.to_tensor(rois.dtype, rois.device).index_select( + 0, pos_assigned_gt_inds)) + gt_masks_th = gt_masks_th.unsqueeze(1) + rel_img_points = rel_roi_point_to_rel_img_point( + rois, rel_roi_points, gt_masks_th) + point_targets = point_sample(gt_masks_th, + rel_img_points).squeeze(1) + else: + point_targets = rois.new_zeros((0, num_points)) + return point_targets + + def loss(self, point_pred, point_targets, labels): + """Calculate loss for MaskPointHead. + + Args: + point_pred (Tensor): Point predication result, shape + (num_rois, num_classes, num_points). + point_targets (Tensor): Point targets, shape (num_roi, num_points). + labels (Tensor): Class label of corresponding boxes, + shape (num_rois, ) + + Returns: + dict[str, Tensor]: a dictionary of point loss components + """ + + loss = dict() + if self.class_agnostic: + loss_point = self.loss_point(point_pred, point_targets, + torch.zeros_like(labels)) + else: + loss_point = self.loss_point(point_pred, point_targets, labels) + loss['loss_point'] = loss_point + return loss + + def get_roi_rel_points_train(self, mask_pred, labels, cfg): + """Get ``num_points`` most uncertain points with random points during + train. + + Sample points in [0, 1] x [0, 1] coordinate space based on their + uncertainty. The uncertainties are calculated for each point using + '_get_uncertainty()' function that takes point's logit prediction as + input. + + Args: + mask_pred (Tensor): A tensor of shape (num_rois, num_classes, + mask_height, mask_width) for class-specific or class-agnostic + prediction. + labels (list): The ground truth class for each instance. + cfg (dict): Training config of point head. + + Returns: + point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) + that contains the coordinates sampled points. + """ + point_coords = get_uncertain_point_coords_with_randomness( + mask_pred, labels, cfg.num_points, cfg.oversample_ratio, + cfg.importance_sample_ratio) + return point_coords + + def get_roi_rel_points_test(self, mask_pred, pred_label, cfg): + """Get ``num_points`` most uncertain points during test. + + Args: + mask_pred (Tensor): A tensor of shape (num_rois, num_classes, + mask_height, mask_width) for class-specific or class-agnostic + prediction. + pred_label (list): The predication class for each instance. + cfg (dict): Testing config of point head. + + Returns: + point_indices (Tensor): A tensor of shape (num_rois, num_points) + that contains indices from [0, mask_height x mask_width) of the + most uncertain points. + point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) + that contains [0, 1] x [0, 1] normalized coordinates of the + most uncertain points from the [mask_height, mask_width] grid . + """ + num_points = cfg.subdivision_num_points + uncertainty_map = get_uncertainty(mask_pred, pred_label) + num_rois, _, mask_height, mask_width = uncertainty_map.shape + + # During ONNX exporting, the type of each elements of 'shape' is + # `Tensor(float)`, while it is `float` during PyTorch inference. + if isinstance(mask_height, torch.Tensor): + h_step = 1.0 / mask_height.float() + w_step = 1.0 / mask_width.float() + else: + h_step = 1.0 / mask_height + w_step = 1.0 / mask_width + # cast to int to avoid dynamic K for TopK op in ONNX + mask_size = int(mask_height * mask_width) + uncertainty_map = uncertainty_map.view(num_rois, mask_size) + num_points = min(mask_size, num_points) + point_indices = uncertainty_map.topk(num_points, dim=1)[1] + xs = w_step / 2.0 + (point_indices % mask_width).float() * w_step + ys = h_step / 2.0 + (point_indices // mask_width).float() * h_step + point_coords = torch.stack([xs, ys], dim=2) + return point_indices, point_coords diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/maskiou_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/maskiou_head.py new file mode 100644 index 000000000..a7ff7c7c4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/maskiou_head.py @@ -0,0 +1,183 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn as nn +from mmcv.cnn import Conv2d, Linear, MaxPool2d +from mmcv.runner import BaseModule, force_fp32 +from torch.nn.modules.utils import _pair + +from mmdet.models.builder import HEADS, build_loss + + +@HEADS.register_module() +class MaskIoUHead(BaseModule): + """Mask IoU Head. + + This head predicts the IoU of predicted masks and corresponding gt masks. + """ + + def __init__(self, + num_convs=4, + num_fcs=2, + roi_feat_size=14, + in_channels=256, + conv_out_channels=256, + fc_out_channels=1024, + num_classes=80, + loss_iou=dict(type='MSELoss', loss_weight=0.5), + init_cfg=[ + dict(type='Kaiming', override=dict(name='convs')), + dict(type='Caffe2Xavier', override=dict(name='fcs')), + dict( + type='Normal', + std=0.01, + override=dict(name='fc_mask_iou')) + ]): + super(MaskIoUHead, self).__init__(init_cfg) + self.in_channels = in_channels + self.conv_out_channels = conv_out_channels + self.fc_out_channels = fc_out_channels + self.num_classes = num_classes + self.fp16_enabled = False + + self.convs = nn.ModuleList() + for i in range(num_convs): + if i == 0: + # concatenation of mask feature and mask prediction + in_channels = self.in_channels + 1 + else: + in_channels = self.conv_out_channels + stride = 2 if i == num_convs - 1 else 1 + self.convs.append( + Conv2d( + in_channels, + self.conv_out_channels, + 3, + stride=stride, + padding=1)) + + roi_feat_size = _pair(roi_feat_size) + pooled_area = (roi_feat_size[0] // 2) * (roi_feat_size[1] // 2) + self.fcs = nn.ModuleList() + for i in range(num_fcs): + in_channels = ( + self.conv_out_channels * + pooled_area if i == 0 else self.fc_out_channels) + self.fcs.append(Linear(in_channels, self.fc_out_channels)) + + self.fc_mask_iou = Linear(self.fc_out_channels, self.num_classes) + self.relu = nn.ReLU() + self.max_pool = MaxPool2d(2, 2) + self.loss_iou = build_loss(loss_iou) + + def forward(self, mask_feat, mask_pred): + mask_pred = mask_pred.sigmoid() + mask_pred_pooled = self.max_pool(mask_pred.unsqueeze(1)) + + x = torch.cat((mask_feat, mask_pred_pooled), 1) + + for conv in self.convs: + x = self.relu(conv(x)) + x = x.flatten(1) + for fc in self.fcs: + x = self.relu(fc(x)) + mask_iou = self.fc_mask_iou(x) + return mask_iou + + @force_fp32(apply_to=('mask_iou_pred', )) + def loss(self, mask_iou_pred, mask_iou_targets): + pos_inds = mask_iou_targets > 0 + if pos_inds.sum() > 0: + loss_mask_iou = self.loss_iou(mask_iou_pred[pos_inds], + mask_iou_targets[pos_inds]) + else: + loss_mask_iou = mask_iou_pred.sum() * 0 + return dict(loss_mask_iou=loss_mask_iou) + + @force_fp32(apply_to=('mask_pred', )) + def get_targets(self, sampling_results, gt_masks, mask_pred, mask_targets, + rcnn_train_cfg): + """Compute target of mask IoU. + + Mask IoU target is the IoU of the predicted mask (inside a bbox) and + the gt mask of corresponding gt mask (the whole instance). + The intersection area is computed inside the bbox, and the gt mask area + is computed with two steps, firstly we compute the gt area inside the + bbox, then divide it by the area ratio of gt area inside the bbox and + the gt area of the whole instance. + + Args: + sampling_results (list[:obj:`SamplingResult`]): sampling results. + gt_masks (BitmapMask | PolygonMask): Gt masks (the whole instance) + of each image, with the same shape of the input image. + mask_pred (Tensor): Predicted masks of each positive proposal, + shape (num_pos, h, w). + mask_targets (Tensor): Gt mask of each positive proposal, + binary map of the shape (num_pos, h, w). + rcnn_train_cfg (dict): Training config for R-CNN part. + + Returns: + Tensor: mask iou target (length == num positive). + """ + pos_proposals = [res.pos_bboxes for res in sampling_results] + pos_assigned_gt_inds = [ + res.pos_assigned_gt_inds for res in sampling_results + ] + + # compute the area ratio of gt areas inside the proposals and + # the whole instance + area_ratios = map(self._get_area_ratio, pos_proposals, + pos_assigned_gt_inds, gt_masks) + area_ratios = torch.cat(list(area_ratios)) + assert mask_targets.size(0) == area_ratios.size(0) + + mask_pred = (mask_pred > rcnn_train_cfg.mask_thr_binary).float() + mask_pred_areas = mask_pred.sum((-1, -2)) + + # mask_pred and mask_targets are binary maps + overlap_areas = (mask_pred * mask_targets).sum((-1, -2)) + + # compute the mask area of the whole instance + gt_full_areas = mask_targets.sum((-1, -2)) / (area_ratios + 1e-7) + + mask_iou_targets = overlap_areas / ( + mask_pred_areas + gt_full_areas - overlap_areas) + return mask_iou_targets + + def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks): + """Compute area ratio of the gt mask inside the proposal and the gt + mask of the corresponding instance.""" + num_pos = pos_proposals.size(0) + if num_pos > 0: + area_ratios = [] + proposals_np = pos_proposals.cpu().numpy() + pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy() + # compute mask areas of gt instances (batch processing for speedup) + gt_instance_mask_area = gt_masks.areas + for i in range(num_pos): + gt_mask = gt_masks[pos_assigned_gt_inds[i]] + + # crop the gt mask inside the proposal + bbox = proposals_np[i, :].astype(np.int32) + gt_mask_in_proposal = gt_mask.crop(bbox) + + ratio = gt_mask_in_proposal.areas[0] / ( + gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7) + area_ratios.append(ratio) + area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to( + pos_proposals.device) + else: + area_ratios = pos_proposals.new_zeros((0, )) + return area_ratios + + @force_fp32(apply_to=('mask_iou_pred', )) + def get_mask_scores(self, mask_iou_pred, det_bboxes, det_labels): + """Get the mask scores. + + mask_score = bbox_score * mask_iou + """ + inds = range(det_labels.size(0)) + mask_scores = mask_iou_pred[inds, det_labels] * det_bboxes[inds, -1] + mask_scores = mask_scores.cpu().numpy() + det_labels = det_labels.cpu().numpy() + return [mask_scores[det_labels == i] for i in range(self.num_classes)] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_mask_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_mask_head.py new file mode 100644 index 000000000..ca6248661 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_mask_head.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.builder import HEADS +from mmdet.models.utils import ResLayer, SimplifiedBasicBlock +from .fcn_mask_head import FCNMaskHead + + +@HEADS.register_module() +class SCNetMaskHead(FCNMaskHead): + """Mask head for `SCNet `_. + + Args: + conv_to_res (bool, optional): if True, change the conv layers to + ``SimplifiedBasicBlock``. + """ + + def __init__(self, conv_to_res=True, **kwargs): + super(SCNetMaskHead, self).__init__(**kwargs) + self.conv_to_res = conv_to_res + if conv_to_res: + assert self.conv_kernel_size == 3 + self.num_res_blocks = self.num_convs // 2 + self.convs = ResLayer( + SimplifiedBasicBlock, + self.in_channels, + self.conv_out_channels, + self.num_res_blocks, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_semantic_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_semantic_head.py new file mode 100644 index 000000000..2b8c5c32b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_heads/scnet_semantic_head.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.builder import HEADS +from mmdet.models.utils import ResLayer, SimplifiedBasicBlock +from .fused_semantic_head import FusedSemanticHead + + +@HEADS.register_module() +class SCNetSemanticHead(FusedSemanticHead): + """Mask head for `SCNet `_. + + Args: + conv_to_res (bool, optional): if True, change the conv layers to + ``SimplifiedBasicBlock``. + """ + + def __init__(self, conv_to_res=True, **kwargs): + super(SCNetSemanticHead, self).__init__(**kwargs) + self.conv_to_res = conv_to_res + if self.conv_to_res: + num_res_blocks = self.num_convs // 2 + self.convs = ResLayer( + SimplifiedBasicBlock, + self.in_channels, + self.conv_out_channels, + num_res_blocks, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg) + self.num_convs = num_res_blocks diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_scoring_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_scoring_roi_head.py new file mode 100644 index 000000000..4617988e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/mask_scoring_roi_head.py @@ -0,0 +1,113 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import bbox2roi +from ..builder import HEADS, build_head +from .standard_roi_head import StandardRoIHead + + +@HEADS.register_module() +class MaskScoringRoIHead(StandardRoIHead): + """Mask Scoring RoIHead for Mask Scoring RCNN. + + https://arxiv.org/abs/1903.00241 + """ + + def __init__(self, mask_iou_head, **kwargs): + assert mask_iou_head is not None + super(MaskScoringRoIHead, self).__init__(**kwargs) + self.mask_iou_head = build_head(mask_iou_head) + + def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, + img_metas): + """Run forward function and calculate loss for Mask head in + training.""" + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + mask_results = super(MaskScoringRoIHead, + self)._mask_forward_train(x, sampling_results, + bbox_feats, gt_masks, + img_metas) + if mask_results['loss_mask'] is None: + return mask_results + + # mask iou head forward and loss + pos_mask_pred = mask_results['mask_pred'][ + range(mask_results['mask_pred'].size(0)), pos_labels] + mask_iou_pred = self.mask_iou_head(mask_results['mask_feats'], + pos_mask_pred) + pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), + pos_labels] + + mask_iou_targets = self.mask_iou_head.get_targets( + sampling_results, gt_masks, pos_mask_pred, + mask_results['mask_targets'], self.train_cfg) + loss_mask_iou = self.mask_iou_head.loss(pos_mask_iou_pred, + mask_iou_targets) + mask_results['loss_mask'].update(loss_mask_iou) + return mask_results + + def simple_test_mask(self, + x, + img_metas, + det_bboxes, + det_labels, + rescale=False): + """Obtain mask prediction without augmentation.""" + # image shapes of images in the batch + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + num_imgs = len(det_bboxes) + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + num_classes = self.mask_head.num_classes + segm_results = [[[] for _ in range(num_classes)] + for _ in range(num_imgs)] + mask_scores = [[[] for _ in range(num_classes)] + for _ in range(num_imgs)] + else: + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i] + for i in range(num_imgs) + ] + mask_rois = bbox2roi(_bboxes) + mask_results = self._mask_forward(x, mask_rois) + concat_det_labels = torch.cat(det_labels) + # get mask scores with mask iou head + mask_feats = mask_results['mask_feats'] + mask_pred = mask_results['mask_pred'] + mask_iou_pred = self.mask_iou_head( + mask_feats, mask_pred[range(concat_det_labels.size(0)), + concat_det_labels]) + # split batch mask prediction back to each image + num_bboxes_per_img = tuple(len(_bbox) for _bbox in _bboxes) + mask_preds = mask_pred.split(num_bboxes_per_img, 0) + mask_iou_preds = mask_iou_pred.split(num_bboxes_per_img, 0) + + # apply mask post-processing to each image individually + segm_results = [] + mask_scores = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append( + [[] for _ in range(self.mask_head.num_classes)]) + mask_scores.append( + [[] for _ in range(self.mask_head.num_classes)]) + else: + segm_result = self.mask_head.get_seg_masks( + mask_preds[i], _bboxes[i], det_labels[i], + self.test_cfg, ori_shapes[i], scale_factors[i], + rescale) + # get mask scores with mask iou head + mask_score = self.mask_iou_head.get_mask_scores( + mask_iou_preds[i], det_bboxes[i], det_labels[i]) + segm_results.append(segm_result) + mask_scores.append(mask_score) + return list(zip(segm_results, mask_scores)) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/pisa_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/pisa_roi_head.py new file mode 100644 index 000000000..92a51186e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/pisa_roi_head.py @@ -0,0 +1,160 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core import bbox2roi +from ..builder import HEADS +from ..losses.pisa_loss import carl_loss, isr_p +from .standard_roi_head import StandardRoIHead + + +@HEADS.register_module() +class PISARoIHead(StandardRoIHead): + r"""The RoI head for `Prime Sample Attention in Object Detection + `_.""" + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None): + """Forward function for training. + + Args: + x (list[Tensor]): List of multi-level img features. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + proposals (list[Tensors]): List of region proposals. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_ignore (list[Tensor], optional): Specify which bounding + boxes can be ignored when computing the loss. + gt_masks (None | Tensor) : True segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # assign gts and sample proposals + if self.with_bbox or self.with_mask: + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + sampling_results = [] + neg_label_weights = [] + for i in range(num_imgs): + assign_result = self.bbox_assigner.assign( + proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], + gt_labels[i]) + sampling_result = self.bbox_sampler.sample( + assign_result, + proposal_list[i], + gt_bboxes[i], + gt_labels[i], + feats=[lvl_feat[i][None] for lvl_feat in x]) + # neg label weight is obtained by sampling when using ISR-N + neg_label_weight = None + if isinstance(sampling_result, tuple): + sampling_result, neg_label_weight = sampling_result + sampling_results.append(sampling_result) + neg_label_weights.append(neg_label_weight) + + losses = dict() + # bbox head forward and loss + if self.with_bbox: + bbox_results = self._bbox_forward_train( + x, + sampling_results, + gt_bboxes, + gt_labels, + img_metas, + neg_label_weights=neg_label_weights) + losses.update(bbox_results['loss_bbox']) + + # mask head forward and loss + if self.with_mask: + mask_results = self._mask_forward_train(x, sampling_results, + bbox_results['bbox_feats'], + gt_masks, img_metas) + losses.update(mask_results['loss_mask']) + + return losses + + def _bbox_forward(self, x, rois): + """Box forward function used in both training and testing.""" + # TODO: a more flexible way to decide which feature maps to use + bbox_feats = self.bbox_roi_extractor( + x[:self.bbox_roi_extractor.num_inputs], rois) + if self.with_shared_head: + bbox_feats = self.shared_head(bbox_feats) + cls_score, bbox_pred = self.bbox_head(bbox_feats) + + bbox_results = dict( + cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) + return bbox_results + + def _bbox_forward_train(self, + x, + sampling_results, + gt_bboxes, + gt_labels, + img_metas, + neg_label_weights=None): + """Run forward function and calculate loss for box head in training.""" + rois = bbox2roi([res.bboxes for res in sampling_results]) + + bbox_results = self._bbox_forward(x, rois) + + bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, + gt_labels, self.train_cfg) + + # neg_label_weights obtained by sampler is image-wise, mapping back to + # the corresponding location in label weights + if neg_label_weights[0] is not None: + label_weights = bbox_targets[1] + cur_num_rois = 0 + for i in range(len(sampling_results)): + num_pos = sampling_results[i].pos_inds.size(0) + num_neg = sampling_results[i].neg_inds.size(0) + label_weights[cur_num_rois + num_pos:cur_num_rois + num_pos + + num_neg] = neg_label_weights[i] + cur_num_rois += num_pos + num_neg + + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + + # Apply ISR-P + isr_cfg = self.train_cfg.get('isr', None) + if isr_cfg is not None: + bbox_targets = isr_p( + cls_score, + bbox_pred, + bbox_targets, + rois, + sampling_results, + self.bbox_head.loss_cls, + self.bbox_head.bbox_coder, + **isr_cfg, + num_class=self.bbox_head.num_classes) + loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, rois, + *bbox_targets) + + # Add CARL Loss + carl_cfg = self.train_cfg.get('carl', None) + if carl_cfg is not None: + loss_carl = carl_loss( + cls_score, + bbox_targets[0], + bbox_pred, + bbox_targets[2], + self.bbox_head.loss_bbox, + **carl_cfg, + num_class=self.bbox_head.num_classes) + loss_bbox.update(loss_carl) + + bbox_results.update(loss_bbox=loss_bbox) + return bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/point_rend_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/point_rend_roi_head.py new file mode 100644 index 000000000..9f667793f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/point_rend_roi_head.py @@ -0,0 +1,393 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa +import os +import warnings + +import numpy as np +import torch +import torch.nn.functional as F +from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point + +from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks +from .. import builder +from ..builder import HEADS +from .standard_roi_head import StandardRoIHead + + +@HEADS.register_module() +class PointRendRoIHead(StandardRoIHead): + """`PointRend `_.""" + + def __init__(self, point_head, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.with_bbox and self.with_mask + self.init_point_head(point_head) + + def init_point_head(self, point_head): + """Initialize ``point_head``""" + self.point_head = builder.build_head(point_head) + + def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, + img_metas): + """Run forward function and calculate loss for mask head and point head + in training.""" + mask_results = super()._mask_forward_train(x, sampling_results, + bbox_feats, gt_masks, + img_metas) + if mask_results['loss_mask'] is not None: + loss_point = self._mask_point_forward_train( + x, sampling_results, mask_results['mask_pred'], gt_masks, + img_metas) + mask_results['loss_mask'].update(loss_point) + + return mask_results + + def _mask_point_forward_train(self, x, sampling_results, mask_pred, + gt_masks, img_metas): + """Run forward function and calculate loss for point head in + training.""" + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + rel_roi_points = self.point_head.get_roi_rel_points_train( + mask_pred, pos_labels, cfg=self.train_cfg) + rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + + fine_grained_point_feats = self._get_fine_grained_point_feats( + x, rois, rel_roi_points, img_metas) + coarse_point_feats = point_sample(mask_pred, rel_roi_points) + mask_point_pred = self.point_head(fine_grained_point_feats, + coarse_point_feats) + mask_point_target = self.point_head.get_targets( + rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg) + loss_mask_point = self.point_head.loss(mask_point_pred, + mask_point_target, pos_labels) + + return loss_mask_point + + def _get_fine_grained_point_feats(self, x, rois, rel_roi_points, + img_metas): + """Sample fine grained feats from each level feature map and + concatenate them together. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + rois (Tensor): shape (num_rois, 5). + rel_roi_points (Tensor): A tensor of shape (num_rois, num_points, + 2) that contains [0, 1] x [0, 1] normalized coordinates of the + most uncertain points from the [mask_height, mask_width] grid. + img_metas (list[dict]): Image meta info. + + Returns: + Tensor: The fine grained features for each points, + has shape (num_rois, feats_channels, num_points). + """ + num_imgs = len(img_metas) + fine_grained_feats = [] + for idx in range(self.mask_roi_extractor.num_inputs): + feats = x[idx] + spatial_scale = 1. / float( + self.mask_roi_extractor.featmap_strides[idx]) + point_feats = [] + for batch_ind in range(num_imgs): + # unravel batch dim + feat = feats[batch_ind].unsqueeze(0) + inds = (rois[:, 0].long() == batch_ind) + if inds.any(): + rel_img_points = rel_roi_point_to_rel_img_point( + rois[inds], rel_roi_points[inds], feat.shape[2:], + spatial_scale).unsqueeze(0) + point_feat = point_sample(feat, rel_img_points) + point_feat = point_feat.squeeze(0).transpose(0, 1) + point_feats.append(point_feat) + fine_grained_feats.append(torch.cat(point_feats, dim=0)) + return torch.cat(fine_grained_feats, dim=1) + + def _mask_point_forward_test(self, x, rois, label_pred, mask_pred, + img_metas): + """Mask refining process with point head in testing. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + rois (Tensor): shape (num_rois, 5). + label_pred (Tensor): The predication class for each rois. + mask_pred (Tensor): The predication coarse masks of + shape (num_rois, num_classes, small_size, small_size). + img_metas (list[dict]): Image meta info. + + Returns: + Tensor: The refined masks of shape (num_rois, num_classes, + large_size, large_size). + """ + refined_mask_pred = mask_pred.clone() + for subdivision_step in range(self.test_cfg.subdivision_steps): + refined_mask_pred = F.interpolate( + refined_mask_pred, + scale_factor=self.test_cfg.scale_factor, + mode='bilinear', + align_corners=False) + # If `subdivision_num_points` is larger or equal to the + # resolution of the next step, then we can skip this step + num_rois, channels, mask_height, mask_width = \ + refined_mask_pred.shape + if (self.test_cfg.subdivision_num_points >= + self.test_cfg.scale_factor**2 * mask_height * mask_width + and + subdivision_step < self.test_cfg.subdivision_steps - 1): + continue + point_indices, rel_roi_points = \ + self.point_head.get_roi_rel_points_test( + refined_mask_pred, label_pred, cfg=self.test_cfg) + fine_grained_point_feats = self._get_fine_grained_point_feats( + x, rois, rel_roi_points, img_metas) + coarse_point_feats = point_sample(mask_pred, rel_roi_points) + mask_point_pred = self.point_head(fine_grained_point_feats, + coarse_point_feats) + + point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) + refined_mask_pred = refined_mask_pred.reshape( + num_rois, channels, mask_height * mask_width) + refined_mask_pred = refined_mask_pred.scatter_( + 2, point_indices, mask_point_pred) + refined_mask_pred = refined_mask_pred.view(num_rois, channels, + mask_height, mask_width) + + return refined_mask_pred + + def simple_test_mask(self, + x, + img_metas, + det_bboxes, + det_labels, + rescale=False): + """Obtain mask prediction without augmentation.""" + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + if isinstance(scale_factors[0], float): + warnings.warn( + 'Scale factor in img_metas should be a ' + 'ndarray with shape (4,) ' + 'arrange as (factor_w, factor_h, factor_w, factor_h), ' + 'The scale_factor with float type has been deprecated. ') + scale_factors = np.array([scale_factors] * 4, dtype=np.float32) + + num_imgs = len(det_bboxes) + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + segm_results = [[[] for _ in range(self.mask_head.num_classes)] + for _ in range(num_imgs)] + else: + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + _bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))] + if rescale: + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + _bboxes[i] * scale_factors[i] for i in range(len(_bboxes)) + ] + + mask_rois = bbox2roi(_bboxes) + mask_results = self._mask_forward(x, mask_rois) + # split batch mask prediction back to each image + mask_pred = mask_results['mask_pred'] + num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] + mask_preds = mask_pred.split(num_mask_roi_per_img, 0) + mask_rois = mask_rois.split(num_mask_roi_per_img, 0) + + # apply mask post-processing to each image individually + segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append( + [[] for _ in range(self.mask_head.num_classes)]) + else: + x_i = [xx[[i]] for xx in x] + mask_rois_i = mask_rois[i] + mask_rois_i[:, 0] = 0 # TODO: remove this hack + mask_pred_i = self._mask_point_forward_test( + x_i, mask_rois_i, det_labels[i], mask_preds[i], + [img_metas]) + segm_result = self.mask_head.get_seg_masks( + mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg, + ori_shapes[i], scale_factors[i], rescale) + segm_results.append(segm_result) + return segm_results + + def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): + """Test for mask head with test time augmentation.""" + if det_bboxes.shape[0] == 0: + segm_result = [[] for _ in range(self.mask_head.num_classes)] + else: + aug_masks = [] + for x, img_meta in zip(feats, img_metas): + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, + scale_factor, flip) + mask_rois = bbox2roi([_bboxes]) + mask_results = self._mask_forward(x, mask_rois) + mask_results['mask_pred'] = self._mask_point_forward_test( + x, mask_rois, det_labels, mask_results['mask_pred'], + img_meta) + # convert to numpy array to save memory + aug_masks.append( + mask_results['mask_pred'].sigmoid().cpu().numpy()) + merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) + + ori_shape = img_metas[0][0]['ori_shape'] + segm_result = self.mask_head.get_seg_masks( + merged_masks, + det_bboxes, + det_labels, + self.test_cfg, + ori_shape, + scale_factor=1.0, + rescale=False) + return segm_result + + def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points): + """Export the process of sampling fine grained feats to onnx. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + rois (Tensor): shape (num_rois, 5). + rel_roi_points (Tensor): A tensor of shape (num_rois, num_points, + 2) that contains [0, 1] x [0, 1] normalized coordinates of the + most uncertain points from the [mask_height, mask_width] grid. + + Returns: + Tensor: The fine grained features for each points, + has shape (num_rois, feats_channels, num_points). + """ + batch_size = x[0].shape[0] + num_rois = rois.shape[0] + fine_grained_feats = [] + for idx in range(self.mask_roi_extractor.num_inputs): + feats = x[idx] + spatial_scale = 1. / float( + self.mask_roi_extractor.featmap_strides[idx]) + + rel_img_points = rel_roi_point_to_rel_img_point( + rois, rel_roi_points, feats, spatial_scale) + channels = feats.shape[1] + num_points = rel_img_points.shape[1] + rel_img_points = rel_img_points.reshape(batch_size, -1, num_points, + 2) + point_feats = point_sample(feats, rel_img_points) + point_feats = point_feats.transpose(1, 2).reshape( + num_rois, channels, num_points) + fine_grained_feats.append(point_feats) + return torch.cat(fine_grained_feats, dim=1) + + def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred): + """Export mask refining process with point head to onnx. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + rois (Tensor): shape (num_rois, 5). + label_pred (Tensor): The predication class for each rois. + mask_pred (Tensor): The predication coarse masks of + shape (num_rois, num_classes, small_size, small_size). + + Returns: + Tensor: The refined masks of shape (num_rois, num_classes, + large_size, large_size). + """ + refined_mask_pred = mask_pred.clone() + for subdivision_step in range(self.test_cfg.subdivision_steps): + refined_mask_pred = F.interpolate( + refined_mask_pred, + scale_factor=self.test_cfg.scale_factor, + mode='bilinear', + align_corners=False) + # If `subdivision_num_points` is larger or equal to the + # resolution of the next step, then we can skip this step + num_rois, channels, mask_height, mask_width = \ + refined_mask_pred.shape + if (self.test_cfg.subdivision_num_points >= + self.test_cfg.scale_factor**2 * mask_height * mask_width + and + subdivision_step < self.test_cfg.subdivision_steps - 1): + continue + point_indices, rel_roi_points = \ + self.point_head.get_roi_rel_points_test( + refined_mask_pred, label_pred, cfg=self.test_cfg) + fine_grained_point_feats = self._onnx_get_fine_grained_point_feats( + x, rois, rel_roi_points) + coarse_point_feats = point_sample(mask_pred, rel_roi_points) + mask_point_pred = self.point_head(fine_grained_point_feats, + coarse_point_feats) + + point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) + refined_mask_pred = refined_mask_pred.reshape( + num_rois, channels, mask_height * mask_width) + + is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT' + # avoid ScatterElements op in ONNX for TensorRT + if is_trt_backend: + mask_shape = refined_mask_pred.shape + point_shape = point_indices.shape + inds_dim0 = torch.arange(point_shape[0]).reshape( + point_shape[0], 1, 1).expand_as(point_indices) + inds_dim1 = torch.arange(point_shape[1]).reshape( + 1, point_shape[1], 1).expand_as(point_indices) + inds_1d = inds_dim0.reshape( + -1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape( + -1) * mask_shape[2] + point_indices.reshape(-1) + refined_mask_pred = refined_mask_pred.reshape(-1) + refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1) + refined_mask_pred = refined_mask_pred.reshape(*mask_shape) + else: + refined_mask_pred = refined_mask_pred.scatter_( + 2, point_indices, mask_point_pred) + + refined_mask_pred = refined_mask_pred.view(num_rois, channels, + mask_height, mask_width) + + return refined_mask_pred + + def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs): + """Export mask branch to onnx which supports batch inference. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + img_metas (list[dict]): Image meta info. + det_bboxes (Tensor): Bboxes and corresponding scores. + has shape [N, num_bboxes, 5]. + det_labels (Tensor): class labels of + shape [N, num_bboxes]. + + Returns: + Tensor: The segmentation results of shape [N, num_bboxes, + image_height, image_width]. + """ + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + raise RuntimeError('[ONNX Error] Can not record MaskHead ' + 'as it has not been executed this time') + batch_size = det_bboxes.size(0) + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + det_bboxes = det_bboxes[..., :4] + batch_index = torch.arange( + det_bboxes.size(0), device=det_bboxes.device).float().view( + -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) + mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) + mask_rois = mask_rois.view(-1, 5) + mask_results = self._mask_forward(x, mask_rois) + mask_pred = mask_results['mask_pred'] + max_shape = img_metas[0]['img_shape_for_onnx'] + num_det = det_bboxes.shape[1] + det_bboxes = det_bboxes.reshape(-1, 4) + det_labels = det_labels.reshape(-1) + + mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels, + mask_pred) + + segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes, + det_labels, self.test_cfg, + max_shape) + segm_results = segm_results.reshape(batch_size, num_det, max_shape[0], + max_shape[1]) + return segm_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/__init__.py new file mode 100644 index 000000000..0f6021499 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_roi_extractor import BaseRoIExtractor +from .generic_roi_extractor import GenericRoIExtractor +from .single_level_roi_extractor import SingleRoIExtractor + +__all__ = ['BaseRoIExtractor', 'SingleRoIExtractor', 'GenericRoIExtractor'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/base_roi_extractor.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/base_roi_extractor.py new file mode 100644 index 000000000..82629757d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/base_roi_extractor.py @@ -0,0 +1,88 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import torch +import torch.nn as nn +from mmcv import ops +from mmcv.runner import BaseModule + + +class BaseRoIExtractor(BaseModule, metaclass=ABCMeta): + """Base class for RoI extractor. + + Args: + roi_layer (dict): Specify RoI layer type and arguments. + out_channels (int): Output channels of RoI layers. + featmap_strides (int): Strides of input feature maps. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + roi_layer, + out_channels, + featmap_strides, + init_cfg=None): + super(BaseRoIExtractor, self).__init__(init_cfg) + self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) + self.out_channels = out_channels + self.featmap_strides = featmap_strides + self.fp16_enabled = False + + @property + def num_inputs(self): + """int: Number of input feature maps.""" + return len(self.featmap_strides) + + def build_roi_layers(self, layer_cfg, featmap_strides): + """Build RoI operator to extract feature from each level feature map. + + Args: + layer_cfg (dict): Dictionary to construct and config RoI layer + operation. Options are modules under ``mmcv/ops`` such as + ``RoIAlign``. + featmap_strides (List[int]): The stride of input feature map w.r.t + to the original image size, which would be used to scale RoI + coordinate (original image coordinate system) to feature + coordinate system. + + Returns: + nn.ModuleList: The RoI extractor modules for each level feature + map. + """ + + cfg = layer_cfg.copy() + layer_type = cfg.pop('type') + assert hasattr(ops, layer_type) + layer_cls = getattr(ops, layer_type) + roi_layers = nn.ModuleList( + [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) + return roi_layers + + def roi_rescale(self, rois, scale_factor): + """Scale RoI coordinates by scale factor. + + Args: + rois (torch.Tensor): RoI (Region of Interest), shape (n, 5) + scale_factor (float): Scale factor that RoI will be multiplied by. + + Returns: + torch.Tensor: Scaled RoI. + """ + + cx = (rois[:, 1] + rois[:, 3]) * 0.5 + cy = (rois[:, 2] + rois[:, 4]) * 0.5 + w = rois[:, 3] - rois[:, 1] + h = rois[:, 4] - rois[:, 2] + new_w = w * scale_factor + new_h = h * scale_factor + x1 = cx - new_w * 0.5 + x2 = cx + new_w * 0.5 + y1 = cy - new_h * 0.5 + y2 = cy + new_h * 0.5 + new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) + return new_rois + + @abstractmethod + def forward(self, feats, rois, roi_scale_factor=None): + pass diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py new file mode 100644 index 000000000..566d3de87 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py @@ -0,0 +1,84 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn.bricks import build_plugin_layer +from mmcv.runner import force_fp32 + +from mmdet.models.builder import ROI_EXTRACTORS +from .base_roi_extractor import BaseRoIExtractor + + +@ROI_EXTRACTORS.register_module() +class GenericRoIExtractor(BaseRoIExtractor): + """Extract RoI features from all level feature maps levels. + + This is the implementation of `A novel Region of Interest Extraction Layer + for Instance Segmentation `_. + + Args: + aggregation (str): The method to aggregate multiple feature maps. + Options are 'sum', 'concat'. Default: 'sum'. + pre_cfg (dict | None): Specify pre-processing modules. Default: None. + post_cfg (dict | None): Specify post-processing modules. Default: None. + kwargs (keyword arguments): Arguments that are the same + as :class:`BaseRoIExtractor`. + """ + + def __init__(self, + aggregation='sum', + pre_cfg=None, + post_cfg=None, + **kwargs): + super(GenericRoIExtractor, self).__init__(**kwargs) + + assert aggregation in ['sum', 'concat'] + + self.aggregation = aggregation + self.with_post = post_cfg is not None + self.with_pre = pre_cfg is not None + # build pre/post processing modules + if self.with_post: + self.post_module = build_plugin_layer(post_cfg, '_post_module')[1] + if self.with_pre: + self.pre_module = build_plugin_layer(pre_cfg, '_pre_module')[1] + + @force_fp32(apply_to=('feats', ), out_fp16=True) + def forward(self, feats, rois, roi_scale_factor=None): + """Forward function.""" + if len(feats) == 1: + return self.roi_layers[0](feats[0], rois) + + out_size = self.roi_layers[0].output_size + num_levels = len(feats) + roi_feats = feats[0].new_zeros( + rois.size(0), self.out_channels, *out_size) + + # some times rois is an empty tensor + if roi_feats.shape[0] == 0: + return roi_feats + + if roi_scale_factor is not None: + rois = self.roi_rescale(rois, roi_scale_factor) + + # mark the starting channels for concat mode + start_channels = 0 + for i in range(num_levels): + roi_feats_t = self.roi_layers[i](feats[i], rois) + end_channels = start_channels + roi_feats_t.size(1) + if self.with_pre: + # apply pre-processing to a RoI extracted from each layer + roi_feats_t = self.pre_module(roi_feats_t) + if self.aggregation == 'sum': + # and sum them all + roi_feats += roi_feats_t + else: + # and concat them along channel dimension + roi_feats[:, start_channels:end_channels] = roi_feats_t + # update channels starting position + start_channels = end_channels + # check if concat channels match at the end + if self.aggregation == 'concat': + assert start_channels == self.out_channels + + if self.with_post: + # apply post-processing before return the result + roi_feats = self.post_module(roi_feats) + return roi_feats diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py new file mode 100644 index 000000000..1b569ce1d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py @@ -0,0 +1,115 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 + +from mmdet.models.builder import ROI_EXTRACTORS +from .base_roi_extractor import BaseRoIExtractor + + +@ROI_EXTRACTORS.register_module() +class SingleRoIExtractor(BaseRoIExtractor): + """Extract RoI features from a single level feature map. + + If there are multiple input feature levels, each RoI is mapped to a level + according to its scale. The mapping rule is proposed in + `FPN `_. + + Args: + roi_layer (dict): Specify RoI layer type and arguments. + out_channels (int): Output channels of RoI layers. + featmap_strides (List[int]): Strides of input feature maps. + finest_scale (int): Scale threshold of mapping to level 0. Default: 56. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + roi_layer, + out_channels, + featmap_strides, + finest_scale=56, + init_cfg=None): + super(SingleRoIExtractor, self).__init__(roi_layer, out_channels, + featmap_strides, init_cfg) + self.finest_scale = finest_scale + + def map_roi_levels(self, rois, num_levels): + """Map rois to corresponding feature levels by scales. + + - scale < finest_scale * 2: level 0 + - finest_scale * 2 <= scale < finest_scale * 4: level 1 + - finest_scale * 4 <= scale < finest_scale * 8: level 2 + - scale >= finest_scale * 8: level 3 + + Args: + rois (Tensor): Input RoIs, shape (k, 5). + num_levels (int): Total level number. + + Returns: + Tensor: Level index (0-based) of each RoI, shape (k, ) + """ + scale = torch.sqrt( + (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])) + target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) + target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() + return target_lvls + + @force_fp32(apply_to=('feats', ), out_fp16=True) + def forward(self, feats, rois, roi_scale_factor=None): + """Forward function.""" + out_size = self.roi_layers[0].output_size + num_levels = len(feats) + expand_dims = (-1, self.out_channels * out_size[0] * out_size[1]) + if torch.onnx.is_in_onnx_export(): + # Work around to export mask-rcnn to onnx + roi_feats = rois[:, :1].clone().detach() + roi_feats = roi_feats.expand(*expand_dims) + roi_feats = roi_feats.reshape(-1, self.out_channels, *out_size) + roi_feats = roi_feats * 0 + else: + roi_feats = feats[0].new_zeros( + rois.size(0), self.out_channels, *out_size) + # TODO: remove this when parrots supports + if torch.__version__ == 'parrots': + roi_feats.requires_grad = True + + if num_levels == 1: + if len(rois) == 0: + return roi_feats + return self.roi_layers[0](feats[0], rois) + + target_lvls = self.map_roi_levels(rois, num_levels) + + if roi_scale_factor is not None: + rois = self.roi_rescale(rois, roi_scale_factor) + + for i in range(num_levels): + mask = target_lvls == i + if torch.onnx.is_in_onnx_export(): + # To keep all roi_align nodes exported to onnx + # and skip nonzero op + mask = mask.float().unsqueeze(-1) + # select target level rois and reset the rest rois to zero. + rois_i = rois.clone().detach() + rois_i *= mask + mask_exp = mask.expand(*expand_dims).reshape(roi_feats.shape) + roi_feats_t = self.roi_layers[i](feats[i], rois_i) + roi_feats_t *= mask_exp + roi_feats += roi_feats_t + continue + inds = mask.nonzero(as_tuple=False).squeeze(1) + if inds.numel() > 0: + rois_ = rois[inds] + roi_feats_t = self.roi_layers[i](feats[i], rois_) + roi_feats[inds] = roi_feats_t + else: + # Sometimes some pyramid levels will not be used for RoI + # feature extraction and this will cause an incomplete + # computation graph in one GPU, which is different from those + # in other GPUs and will cause a hanging error. + # Therefore, we add it to ensure each feature pyramid is + # included in the computation graph to avoid runtime bugs. + roi_feats += sum( + x.view(-1)[0] + for x in self.parameters()) * 0. + feats[i].sum() * 0. + return roi_feats diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/scnet_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/scnet_roi_head.py new file mode 100644 index 000000000..705430a2d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/scnet_roi_head.py @@ -0,0 +1,605 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +import torch.nn.functional as F + +from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, + merge_aug_masks, multiclass_nms) +from ..builder import HEADS, build_head, build_roi_extractor +from ..utils.brick_wrappers import adaptive_avg_pool2d +from .cascade_roi_head import CascadeRoIHead + + +@HEADS.register_module() +class SCNetRoIHead(CascadeRoIHead): + """RoIHead for `SCNet `_. + + Args: + num_stages (int): number of cascade stages. + stage_loss_weights (list): loss weight of cascade stages. + semantic_roi_extractor (dict): config to init semantic roi extractor. + semantic_head (dict): config to init semantic head. + feat_relay_head (dict): config to init feature_relay_head. + glbctx_head (dict): config to init global context head. + """ + + def __init__(self, + num_stages, + stage_loss_weights, + semantic_roi_extractor=None, + semantic_head=None, + feat_relay_head=None, + glbctx_head=None, + **kwargs): + super(SCNetRoIHead, self).__init__(num_stages, stage_loss_weights, + **kwargs) + assert self.with_bbox and self.with_mask + assert not self.with_shared_head # shared head is not supported + + if semantic_head is not None: + self.semantic_roi_extractor = build_roi_extractor( + semantic_roi_extractor) + self.semantic_head = build_head(semantic_head) + + if feat_relay_head is not None: + self.feat_relay_head = build_head(feat_relay_head) + + if glbctx_head is not None: + self.glbctx_head = build_head(glbctx_head) + + def init_mask_head(self, mask_roi_extractor, mask_head): + """Initialize ``mask_head``""" + if mask_roi_extractor is not None: + self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor) + self.mask_head = build_head(mask_head) + + @property + def with_semantic(self): + """bool: whether the head has semantic head""" + return hasattr(self, + 'semantic_head') and self.semantic_head is not None + + @property + def with_feat_relay(self): + """bool: whether the head has feature relay head""" + return (hasattr(self, 'feat_relay_head') + and self.feat_relay_head is not None) + + @property + def with_glbctx(self): + """bool: whether the head has global context head""" + return hasattr(self, 'glbctx_head') and self.glbctx_head is not None + + def _fuse_glbctx(self, roi_feats, glbctx_feat, rois): + """Fuse global context feats with roi feats.""" + assert roi_feats.size(0) == rois.size(0) + img_inds = torch.unique(rois[:, 0].cpu(), sorted=True).long() + fused_feats = torch.zeros_like(roi_feats) + for img_id in img_inds: + inds = (rois[:, 0] == img_id.item()) + fused_feats[inds] = roi_feats[inds] + glbctx_feat[img_id] + return fused_feats + + def _slice_pos_feats(self, feats, sampling_results): + """Get features from pos rois.""" + num_rois = [res.bboxes.size(0) for res in sampling_results] + num_pos_rois = [res.pos_bboxes.size(0) for res in sampling_results] + inds = torch.zeros(sum(num_rois), dtype=torch.bool) + start = 0 + for i in range(len(num_rois)): + start = 0 if i == 0 else start + num_rois[i - 1] + stop = start + num_pos_rois[i] + inds[start:stop] = 1 + sliced_feats = feats[inds] + return sliced_feats + + def _bbox_forward(self, + stage, + x, + rois, + semantic_feat=None, + glbctx_feat=None): + """Box head forward function used in both training and testing.""" + bbox_roi_extractor = self.bbox_roi_extractor[stage] + bbox_head = self.bbox_head[stage] + bbox_feats = bbox_roi_extractor( + x[:len(bbox_roi_extractor.featmap_strides)], rois) + if self.with_semantic and semantic_feat is not None: + bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], + rois) + if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: + bbox_semantic_feat = adaptive_avg_pool2d( + bbox_semantic_feat, bbox_feats.shape[-2:]) + bbox_feats += bbox_semantic_feat + if self.with_glbctx and glbctx_feat is not None: + bbox_feats = self._fuse_glbctx(bbox_feats, glbctx_feat, rois) + cls_score, bbox_pred, relayed_feat = bbox_head( + bbox_feats, return_shared_feat=True) + + bbox_results = dict( + cls_score=cls_score, + bbox_pred=bbox_pred, + relayed_feat=relayed_feat) + return bbox_results + + def _mask_forward(self, + x, + rois, + semantic_feat=None, + glbctx_feat=None, + relayed_feat=None): + """Mask head forward function used in both training and testing.""" + mask_feats = self.mask_roi_extractor( + x[:self.mask_roi_extractor.num_inputs], rois) + if self.with_semantic and semantic_feat is not None: + mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], + rois) + if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: + mask_semantic_feat = F.adaptive_avg_pool2d( + mask_semantic_feat, mask_feats.shape[-2:]) + mask_feats += mask_semantic_feat + if self.with_glbctx and glbctx_feat is not None: + mask_feats = self._fuse_glbctx(mask_feats, glbctx_feat, rois) + if self.with_feat_relay and relayed_feat is not None: + mask_feats = mask_feats + relayed_feat + mask_pred = self.mask_head(mask_feats) + mask_results = dict(mask_pred=mask_pred) + + return mask_results + + def _bbox_forward_train(self, + stage, + x, + sampling_results, + gt_bboxes, + gt_labels, + rcnn_train_cfg, + semantic_feat=None, + glbctx_feat=None): + """Run forward function and calculate loss for box head in training.""" + bbox_head = self.bbox_head[stage] + rois = bbox2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward( + stage, + x, + rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat) + + bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes, + gt_labels, rcnn_train_cfg) + loss_bbox = bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update( + loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) + return bbox_results + + def _mask_forward_train(self, + x, + sampling_results, + gt_masks, + rcnn_train_cfg, + semantic_feat=None, + glbctx_feat=None, + relayed_feat=None): + """Run forward function and calculate loss for mask head in + training.""" + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + mask_results = self._mask_forward( + x, + pos_rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat, + relayed_feat=relayed_feat) + + mask_targets = self.mask_head.get_targets(sampling_results, gt_masks, + rcnn_train_cfg) + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + loss_mask = self.mask_head.loss(mask_results['mask_pred'], + mask_targets, pos_labels) + + mask_results = loss_mask + return mask_results + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + gt_semantic_seg=None): + """ + Args: + x (list[Tensor]): list of multi-level img features. + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + proposal_list (list[Tensors]): list of region proposals. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None, list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + gt_masks (None, Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + gt_semantic_seg (None, list[Tensor]): semantic segmentation masks + used if the architecture supports semantic segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + losses = dict() + + # semantic segmentation branch + if self.with_semantic: + semantic_pred, semantic_feat = self.semantic_head(x) + loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg) + losses['loss_semantic_seg'] = loss_seg + else: + semantic_feat = None + + # global context branch + if self.with_glbctx: + mc_pred, glbctx_feat = self.glbctx_head(x) + loss_glbctx = self.glbctx_head.loss(mc_pred, gt_labels) + losses['loss_glbctx'] = loss_glbctx + else: + glbctx_feat = None + + for i in range(self.num_stages): + self.current_stage = i + rcnn_train_cfg = self.train_cfg[i] + lw = self.stage_loss_weights[i] + + # assign gts and sample proposals + sampling_results = [] + bbox_assigner = self.bbox_assigner[i] + bbox_sampler = self.bbox_sampler[i] + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + + for j in range(num_imgs): + assign_result = bbox_assigner.assign(proposal_list[j], + gt_bboxes[j], + gt_bboxes_ignore[j], + gt_labels[j]) + sampling_result = bbox_sampler.sample( + assign_result, + proposal_list[j], + gt_bboxes[j], + gt_labels[j], + feats=[lvl_feat[j][None] for lvl_feat in x]) + sampling_results.append(sampling_result) + + bbox_results = \ + self._bbox_forward_train( + i, x, sampling_results, gt_bboxes, gt_labels, + rcnn_train_cfg, semantic_feat, glbctx_feat) + roi_labels = bbox_results['bbox_targets'][0] + + for name, value in bbox_results['loss_bbox'].items(): + losses[f's{i}.{name}'] = ( + value * lw if 'loss' in name else value) + + # refine boxes + if i < self.num_stages - 1: + pos_is_gts = [res.pos_is_gt for res in sampling_results] + with torch.no_grad(): + proposal_list = self.bbox_head[i].refine_bboxes( + bbox_results['rois'], roi_labels, + bbox_results['bbox_pred'], pos_is_gts, img_metas) + + if self.with_feat_relay: + relayed_feat = self._slice_pos_feats(bbox_results['relayed_feat'], + sampling_results) + relayed_feat = self.feat_relay_head(relayed_feat) + else: + relayed_feat = None + + mask_results = self._mask_forward_train(x, sampling_results, gt_masks, + rcnn_train_cfg, semantic_feat, + glbctx_feat, relayed_feat) + mask_lw = sum(self.stage_loss_weights) + losses['loss_mask'] = mask_lw * mask_results['loss_mask'] + + return losses + + def simple_test(self, x, proposal_list, img_metas, rescale=False): + """Test without augmentation. + + Args: + x (tuple[Tensor]): Features from upstream network. Each + has shape (batch_size, c, h, w). + proposal_list (list(Tensor)): Proposals from rpn head. + Each has shape (num_proposals, 5), last dimension + 5 represent (x1, y1, x2, y2, score). + img_metas (list[dict]): Meta information of images. + rescale (bool): Whether to rescale the results to + the original image. Default: True. + + Returns: + list[list[np.ndarray]] or list[tuple]: When no mask branch, + it is bbox results of each image and classes with type + `list[list[np.ndarray]]`. The outer list + corresponds to each image. The inner list + corresponds to each class. When the model has mask branch, + it contains bbox results and mask results. + The outer list corresponds to each image, and first element + of tuple is bbox results, second element is mask results. + """ + if self.with_semantic: + _, semantic_feat = self.semantic_head(x) + else: + semantic_feat = None + + if self.with_glbctx: + mc_pred, glbctx_feat = self.glbctx_head(x) + else: + glbctx_feat = None + + num_imgs = len(proposal_list) + img_shapes = tuple(meta['img_shape'] for meta in img_metas) + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + # "ms" in variable names means multi-stage + ms_scores = [] + rcnn_test_cfg = self.test_cfg + + rois = bbox2roi(proposal_list) + + if rois.shape[0] == 0: + # There is no proposal in the whole batch + bbox_results = [[ + np.zeros((0, 5), dtype=np.float32) + for _ in range(self.bbox_head[-1].num_classes) + ]] * num_imgs + + if self.with_mask: + mask_classes = self.mask_head.num_classes + segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + results = list(zip(bbox_results, segm_results)) + else: + results = bbox_results + + return results + + for i in range(self.num_stages): + bbox_head = self.bbox_head[i] + bbox_results = self._bbox_forward( + i, + x, + rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat) + # split batch bbox prediction back to each image + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + num_proposals_per_img = tuple(len(p) for p in proposal_list) + rois = rois.split(num_proposals_per_img, 0) + cls_score = cls_score.split(num_proposals_per_img, 0) + bbox_pred = bbox_pred.split(num_proposals_per_img, 0) + ms_scores.append(cls_score) + + if i < self.num_stages - 1: + refine_rois_list = [] + for j in range(num_imgs): + if rois[j].shape[0] > 0: + bbox_label = cls_score[j][:, :-1].argmax(dim=1) + refine_rois = bbox_head.regress_by_class( + rois[j], bbox_label, bbox_pred[j], img_metas[j]) + refine_rois_list.append(refine_rois) + rois = torch.cat(refine_rois_list) + + # average scores of each image by stages + cls_score = [ + sum([score[i] for score in ms_scores]) / float(len(ms_scores)) + for i in range(num_imgs) + ] + + # apply bbox post-processing to each image individually + det_bboxes = [] + det_labels = [] + for i in range(num_imgs): + det_bbox, det_label = self.bbox_head[-1].get_bboxes( + rois[i], + cls_score[i], + bbox_pred[i], + img_shapes[i], + scale_factors[i], + rescale=rescale, + cfg=rcnn_test_cfg) + det_bboxes.append(det_bbox) + det_labels.append(det_label) + det_bbox_results = [ + bbox2result(det_bboxes[i], det_labels[i], + self.bbox_head[-1].num_classes) + for i in range(num_imgs) + ] + + if self.with_mask: + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + mask_classes = self.mask_head.num_classes + det_segm_results = [[[] for _ in range(mask_classes)] + for _ in range(num_imgs)] + else: + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i] + for i in range(num_imgs) + ] + mask_rois = bbox2roi(_bboxes) + + # get relay feature on mask_rois + bbox_results = self._bbox_forward( + -1, + x, + mask_rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat) + relayed_feat = bbox_results['relayed_feat'] + relayed_feat = self.feat_relay_head(relayed_feat) + + mask_results = self._mask_forward( + x, + mask_rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat, + relayed_feat=relayed_feat) + mask_pred = mask_results['mask_pred'] + + # split batch mask prediction back to each image + num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes) + mask_preds = mask_pred.split(num_bbox_per_img, 0) + + # apply mask post-processing to each image individually + det_segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + det_segm_results.append( + [[] for _ in range(self.mask_head.num_classes)]) + else: + segm_result = self.mask_head.get_seg_masks( + mask_preds[i], _bboxes[i], det_labels[i], + self.test_cfg, ori_shapes[i], scale_factors[i], + rescale) + det_segm_results.append(segm_result) + + # return results + if self.with_mask: + return list(zip(det_bbox_results, det_segm_results)) + else: + return det_bbox_results + + def aug_test(self, img_feats, proposal_list, img_metas, rescale=False): + if self.with_semantic: + semantic_feats = [ + self.semantic_head(feat)[1] for feat in img_feats + ] + else: + semantic_feats = [None] * len(img_metas) + + if self.with_glbctx: + glbctx_feats = [self.glbctx_head(feat)[1] for feat in img_feats] + else: + glbctx_feats = [None] * len(img_metas) + + rcnn_test_cfg = self.test_cfg + aug_bboxes = [] + aug_scores = [] + for x, img_meta, semantic_feat, glbctx_feat in zip( + img_feats, img_metas, semantic_feats, glbctx_feats): + # only one image in the batch + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + + proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, + scale_factor, flip) + # "ms" in variable names means multi-stage + ms_scores = [] + + rois = bbox2roi([proposals]) + + if rois.shape[0] == 0: + # There is no proposal in the single image + aug_bboxes.append(rois.new_zeros(0, 4)) + aug_scores.append(rois.new_zeros(0, 1)) + continue + + for i in range(self.num_stages): + bbox_head = self.bbox_head[i] + bbox_results = self._bbox_forward( + i, + x, + rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat) + ms_scores.append(bbox_results['cls_score']) + if i < self.num_stages - 1: + bbox_label = bbox_results['cls_score'].argmax(dim=1) + rois = bbox_head.regress_by_class( + rois, bbox_label, bbox_results['bbox_pred'], + img_meta[0]) + + cls_score = sum(ms_scores) / float(len(ms_scores)) + bboxes, scores = self.bbox_head[-1].get_bboxes( + rois, + cls_score, + bbox_results['bbox_pred'], + img_shape, + scale_factor, + rescale=False, + cfg=None) + aug_bboxes.append(bboxes) + aug_scores.append(scores) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) + det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, + rcnn_test_cfg.score_thr, + rcnn_test_cfg.nms, + rcnn_test_cfg.max_per_img) + + det_bbox_results = bbox2result(det_bboxes, det_labels, + self.bbox_head[-1].num_classes) + + if self.with_mask: + if det_bboxes.shape[0] == 0: + det_segm_results = [[] + for _ in range(self.mask_head.num_classes)] + else: + aug_masks = [] + for x, img_meta, semantic_feat, glbctx_feat in zip( + img_feats, img_metas, semantic_feats, glbctx_feats): + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, + scale_factor, flip) + mask_rois = bbox2roi([_bboxes]) + # get relay feature on mask_rois + bbox_results = self._bbox_forward( + -1, + x, + mask_rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat) + relayed_feat = bbox_results['relayed_feat'] + relayed_feat = self.feat_relay_head(relayed_feat) + mask_results = self._mask_forward( + x, + mask_rois, + semantic_feat=semantic_feat, + glbctx_feat=glbctx_feat, + relayed_feat=relayed_feat) + mask_pred = mask_results['mask_pred'] + aug_masks.append(mask_pred.sigmoid().cpu().numpy()) + merged_masks = merge_aug_masks(aug_masks, img_metas, + self.test_cfg) + ori_shape = img_metas[0][0]['ori_shape'] + det_segm_results = self.mask_head.get_seg_masks( + merged_masks, + det_bboxes, + det_labels, + rcnn_test_cfg, + ori_shape, + scale_factor=1.0, + rescale=False) + return [(det_bbox_results, det_segm_results)] + else: + return [det_bbox_results] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/__init__.py new file mode 100644 index 000000000..d56636ab3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .res_layer import ResLayer + +__all__ = ['ResLayer'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/res_layer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/res_layer.py new file mode 100644 index 000000000..bef00a058 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/shared_heads/res_layer.py @@ -0,0 +1,80 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.runner import BaseModule, auto_fp16 + +from mmdet.models.backbones import ResNet +from mmdet.models.builder import SHARED_HEADS +from mmdet.models.utils import ResLayer as _ResLayer + + +@SHARED_HEADS.register_module() +class ResLayer(BaseModule): + + def __init__(self, + depth, + stage=3, + stride=2, + dilation=1, + style='pytorch', + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=True, + with_cp=False, + dcn=None, + pretrained=None, + init_cfg=None): + super(ResLayer, self).__init__(init_cfg) + + self.norm_eval = norm_eval + self.norm_cfg = norm_cfg + self.stage = stage + self.fp16_enabled = False + block, stage_blocks = ResNet.arch_settings[depth] + stage_block = stage_blocks[stage] + planes = 64 * 2**stage + inplanes = 64 * 2**(stage - 1) * block.expansion + + res_layer = _ResLayer( + block, + inplanes, + planes, + stage_block, + stride=stride, + dilation=dilation, + style=style, + with_cp=with_cp, + norm_cfg=self.norm_cfg, + dcn=dcn) + self.add_module(f'layer{stage + 1}', res_layer) + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + @auto_fp16() + def forward(self, x): + res_layer = getattr(self, f'layer{self.stage + 1}') + out = res_layer(x) + return out + + def train(self, mode=True): + super(ResLayer, self).train(mode) + if self.norm_eval: + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/sparse_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/sparse_roi_head.py new file mode 100644 index 000000000..2613469e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/sparse_roi_head.py @@ -0,0 +1,424 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core import bbox2result, bbox2roi, bbox_xyxy_to_cxcywh +from mmdet.core.bbox.samplers import PseudoSampler +from ..builder import HEADS +from .cascade_roi_head import CascadeRoIHead + + +@HEADS.register_module() +class SparseRoIHead(CascadeRoIHead): + r"""The RoIHead for `Sparse R-CNN: End-to-End Object Detection with + Learnable Proposals `_ + and `Instances as Queries `_ + + Args: + num_stages (int): Number of stage whole iterative process. + Defaults to 6. + stage_loss_weights (Tuple[float]): The loss + weight of each stage. By default all stages have + the same weight 1. + bbox_roi_extractor (dict): Config of box roi extractor. + mask_roi_extractor (dict): Config of mask roi extractor. + bbox_head (dict): Config of box head. + mask_head (dict): Config of mask head. + train_cfg (dict, optional): Configuration information in train stage. + Defaults to None. + test_cfg (dict, optional): Configuration information in test stage. + Defaults to None. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + """ + + def __init__(self, + num_stages=6, + stage_loss_weights=(1, 1, 1, 1, 1, 1), + proposal_feature_channel=256, + bbox_roi_extractor=dict( + type='SingleRoIExtractor', + roi_layer=dict( + type='RoIAlign', output_size=7, sampling_ratio=2), + out_channels=256, + featmap_strides=[4, 8, 16, 32]), + mask_roi_extractor=None, + bbox_head=dict( + type='DIIHead', + num_classes=80, + num_fcs=2, + num_heads=8, + num_cls_fcs=1, + num_reg_fcs=3, + feedforward_channels=2048, + hidden_channels=256, + dropout=0.0, + roi_feat_size=7, + ffn_act_cfg=dict(type='ReLU', inplace=True)), + mask_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + assert bbox_roi_extractor is not None + assert bbox_head is not None + assert len(stage_loss_weights) == num_stages + self.num_stages = num_stages + self.stage_loss_weights = stage_loss_weights + self.proposal_feature_channel = proposal_feature_channel + super(SparseRoIHead, self).__init__( + num_stages, + stage_loss_weights, + bbox_roi_extractor=bbox_roi_extractor, + mask_roi_extractor=mask_roi_extractor, + bbox_head=bbox_head, + mask_head=mask_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + # train_cfg would be None when run the test.py + if train_cfg is not None: + for stage in range(num_stages): + assert isinstance(self.bbox_sampler[stage], PseudoSampler), \ + 'Sparse R-CNN and QueryInst only support `PseudoSampler`' + + def _bbox_forward(self, stage, x, rois, object_feats, img_metas): + """Box head forward function used in both training and testing. Returns + all regression, classification results and a intermediate feature. + + Args: + stage (int): The index of current stage in + iterative process. + x (List[Tensor]): List of FPN features + rois (Tensor): Rois in total batch. With shape (num_proposal, 5). + the last dimension 5 represents (img_index, x1, y1, x2, y2). + object_feats (Tensor): The object feature extracted from + the previous stage. + img_metas (dict): meta information of images. + + Returns: + dict[str, Tensor]: a dictionary of bbox head outputs, + Containing the following results: + + - cls_score (Tensor): The score of each class, has + shape (batch_size, num_proposals, num_classes) + when use focal loss or + (batch_size, num_proposals, num_classes+1) + otherwise. + - decode_bbox_pred (Tensor): The regression results + with shape (batch_size, num_proposal, 4). + The last dimension 4 represents + [tl_x, tl_y, br_x, br_y]. + - object_feats (Tensor): The object feature extracted + from current stage + - detach_cls_score_list (list[Tensor]): The detached + classification results, length is batch_size, and + each tensor has shape (num_proposal, num_classes). + - detach_proposal_list (list[tensor]): The detached + regression results, length is batch_size, and each + tensor has shape (num_proposal, 4). The last + dimension 4 represents [tl_x, tl_y, br_x, br_y]. + """ + num_imgs = len(img_metas) + bbox_roi_extractor = self.bbox_roi_extractor[stage] + bbox_head = self.bbox_head[stage] + bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], + rois) + cls_score, bbox_pred, object_feats, attn_feats = bbox_head( + bbox_feats, object_feats) + proposal_list = self.bbox_head[stage].refine_bboxes( + rois, + rois.new_zeros(len(rois)), # dummy arg + bbox_pred.view(-1, bbox_pred.size(-1)), + [rois.new_zeros(object_feats.size(1)) for _ in range(num_imgs)], + img_metas) + bbox_results = dict( + cls_score=cls_score, + decode_bbox_pred=torch.cat(proposal_list), + object_feats=object_feats, + attn_feats=attn_feats, + # detach then use it in label assign + detach_cls_score_list=[ + cls_score[i].detach() for i in range(num_imgs) + ], + detach_proposal_list=[item.detach() for item in proposal_list]) + + return bbox_results + + def _mask_forward(self, stage, x, rois, attn_feats): + """Mask head forward function used in both training and testing.""" + mask_roi_extractor = self.mask_roi_extractor[stage] + mask_head = self.mask_head[stage] + mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], + rois) + # do not support caffe_c4 model anymore + mask_pred = mask_head(mask_feats, attn_feats) + + mask_results = dict(mask_pred=mask_pred) + return mask_results + + def _mask_forward_train(self, stage, x, attn_feats, sampling_results, + gt_masks, rcnn_train_cfg): + """Run forward function and calculate loss for mask head in + training.""" + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + attn_feats = torch.cat([ + feats[res.pos_inds] + for (feats, res) in zip(attn_feats, sampling_results) + ]) + mask_results = self._mask_forward(stage, x, pos_rois, attn_feats) + + mask_targets = self.mask_head[stage].get_targets( + sampling_results, gt_masks, rcnn_train_cfg) + + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + + loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'], + mask_targets, pos_labels) + mask_results.update(loss_mask) + return mask_results + + def forward_train(self, + x, + proposal_boxes, + proposal_features, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + imgs_whwh=None, + gt_masks=None): + """Forward function in training stage. + + Args: + x (list[Tensor]): list of multi-level img features. + proposals (Tensor): Decoded proposal bboxes, has shape + (batch_size, num_proposals, 4) + proposal_features (Tensor): Expanded proposal + features, has shape + (batch_size, num_proposals, proposal_feature_channel) + img_metas (list[dict]): list of image info dict where + each dict has: 'img_shape', 'scale_factor', 'flip', + and may also contain 'filename', 'ori_shape', + 'pad_shape', and 'img_norm_cfg'. For details on the + values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + imgs_whwh (Tensor): Tensor with shape (batch_size, 4), + the dimension means + [img_width,img_height, img_width, img_height]. + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components of all stage. + """ + + num_imgs = len(img_metas) + num_proposals = proposal_boxes.size(1) + imgs_whwh = imgs_whwh.repeat(1, num_proposals, 1) + all_stage_bbox_results = [] + proposal_list = [proposal_boxes[i] for i in range(len(proposal_boxes))] + object_feats = proposal_features + all_stage_loss = {} + for stage in range(self.num_stages): + rois = bbox2roi(proposal_list) + bbox_results = self._bbox_forward(stage, x, rois, object_feats, + img_metas) + all_stage_bbox_results.append(bbox_results) + if gt_bboxes_ignore is None: + # TODO support ignore + gt_bboxes_ignore = [None for _ in range(num_imgs)] + sampling_results = [] + cls_pred_list = bbox_results['detach_cls_score_list'] + proposal_list = bbox_results['detach_proposal_list'] + for i in range(num_imgs): + normalize_bbox_ccwh = bbox_xyxy_to_cxcywh(proposal_list[i] / + imgs_whwh[i]) + assign_result = self.bbox_assigner[stage].assign( + normalize_bbox_ccwh, cls_pred_list[i], gt_bboxes[i], + gt_labels[i], img_metas[i]) + sampling_result = self.bbox_sampler[stage].sample( + assign_result, proposal_list[i], gt_bboxes[i]) + sampling_results.append(sampling_result) + bbox_targets = self.bbox_head[stage].get_targets( + sampling_results, gt_bboxes, gt_labels, self.train_cfg[stage], + True) + cls_score = bbox_results['cls_score'] + decode_bbox_pred = bbox_results['decode_bbox_pred'] + + single_stage_loss = self.bbox_head[stage].loss( + cls_score.view(-1, cls_score.size(-1)), + decode_bbox_pred.view(-1, 4), + *bbox_targets, + imgs_whwh=imgs_whwh) + + if self.with_mask: + mask_results = self._mask_forward_train( + stage, x, bbox_results['attn_feats'], sampling_results, + gt_masks, self.train_cfg[stage]) + single_stage_loss['loss_mask'] = mask_results['loss_mask'] + + for key, value in single_stage_loss.items(): + all_stage_loss[f'stage{stage}_{key}'] = value * \ + self.stage_loss_weights[stage] + object_feats = bbox_results['object_feats'] + + return all_stage_loss + + def simple_test(self, + x, + proposal_boxes, + proposal_features, + img_metas, + imgs_whwh, + rescale=False): + """Test without augmentation. + + Args: + x (list[Tensor]): list of multi-level img features. + proposal_boxes (Tensor): Decoded proposal bboxes, has shape + (batch_size, num_proposals, 4) + proposal_features (Tensor): Expanded proposal + features, has shape + (batch_size, num_proposals, proposal_feature_channel) + img_metas (dict): meta information of images. + imgs_whwh (Tensor): Tensor with shape (batch_size, 4), + the dimension means + [img_width,img_height, img_width, img_height]. + rescale (bool): If True, return boxes in original image + space. Defaults to False. + + Returns: + list[list[np.ndarray]] or list[tuple]: When no mask branch, + it is bbox results of each image and classes with type + `list[list[np.ndarray]]`. The outer list + corresponds to each image. The inner list + corresponds to each class. When the model has a mask branch, + it is a list[tuple] that contains bbox results and mask results. + The outer list corresponds to each image, and first element + of tuple is bbox results, second element is mask results. + """ + assert self.with_bbox, 'Bbox head must be implemented.' + # Decode initial proposals + num_imgs = len(img_metas) + proposal_list = [proposal_boxes[i] for i in range(num_imgs)] + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + object_feats = proposal_features + if all([proposal.shape[0] == 0 for proposal in proposal_list]): + # There is no proposal in the whole batch + bbox_results = [[ + np.zeros((0, 5), dtype=np.float32) + for i in range(self.bbox_head[-1].num_classes) + ]] * num_imgs + return bbox_results + + for stage in range(self.num_stages): + rois = bbox2roi(proposal_list) + bbox_results = self._bbox_forward(stage, x, rois, object_feats, + img_metas) + object_feats = bbox_results['object_feats'] + cls_score = bbox_results['cls_score'] + proposal_list = bbox_results['detach_proposal_list'] + + if self.with_mask: + rois = bbox2roi(proposal_list) + mask_results = self._mask_forward(stage, x, rois, + bbox_results['attn_feats']) + mask_results['mask_pred'] = mask_results['mask_pred'].reshape( + num_imgs, -1, *mask_results['mask_pred'].size()[1:]) + + num_classes = self.bbox_head[-1].num_classes + det_bboxes = [] + det_labels = [] + + if self.bbox_head[-1].loss_cls.use_sigmoid: + cls_score = cls_score.sigmoid() + else: + cls_score = cls_score.softmax(-1)[..., :-1] + + for img_id in range(num_imgs): + cls_score_per_img = cls_score[img_id] + scores_per_img, topk_indices = cls_score_per_img.flatten( + 0, 1).topk( + self.test_cfg.max_per_img, sorted=False) + labels_per_img = topk_indices % num_classes + bbox_pred_per_img = proposal_list[img_id][topk_indices // + num_classes] + if rescale: + scale_factor = img_metas[img_id]['scale_factor'] + bbox_pred_per_img /= bbox_pred_per_img.new_tensor(scale_factor) + det_bboxes.append( + torch.cat([bbox_pred_per_img, scores_per_img[:, None]], dim=1)) + det_labels.append(labels_per_img) + + bbox_results = [ + bbox2result(det_bboxes[i], det_labels[i], num_classes) + for i in range(num_imgs) + ] + + if self.with_mask: + if rescale and not isinstance(scale_factors[0], float): + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i][:, :4] + for i in range(len(det_bboxes)) + ] + segm_results = [] + mask_pred = mask_results['mask_pred'] + for img_id in range(num_imgs): + mask_pred_per_img = mask_pred[img_id].flatten(0, + 1)[topk_indices] + mask_pred_per_img = mask_pred_per_img[:, None, ...].repeat( + 1, num_classes, 1, 1) + segm_result = self.mask_head[-1].get_seg_masks( + mask_pred_per_img, _bboxes[img_id], det_labels[img_id], + self.test_cfg, ori_shapes[img_id], scale_factors[img_id], + rescale) + segm_results.append(segm_result) + + if self.with_mask: + results = list(zip(bbox_results, segm_results)) + else: + results = bbox_results + + return results + + def aug_test(self, features, proposal_list, img_metas, rescale=False): + raise NotImplementedError( + 'Sparse R-CNN and QueryInst does not support `aug_test`') + + def forward_dummy(self, x, proposal_boxes, proposal_features, img_metas): + """Dummy forward function when do the flops computing.""" + all_stage_bbox_results = [] + proposal_list = [proposal_boxes[i] for i in range(len(proposal_boxes))] + object_feats = proposal_features + if self.with_bbox: + for stage in range(self.num_stages): + rois = bbox2roi(proposal_list) + bbox_results = self._bbox_forward(stage, x, rois, object_feats, + img_metas) + + all_stage_bbox_results.append((bbox_results, )) + proposal_list = bbox_results['detach_proposal_list'] + object_feats = bbox_results['object_feats'] + + if self.with_mask: + rois = bbox2roi(proposal_list) + mask_results = self._mask_forward( + stage, x, rois, bbox_results['attn_feats']) + all_stage_bbox_results[-1] += (mask_results, ) + return all_stage_bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/standard_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/standard_roi_head.py new file mode 100644 index 000000000..3fdd82ad1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/standard_roi_head.py @@ -0,0 +1,397 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler +from ..builder import HEADS, build_head, build_roi_extractor +from .base_roi_head import BaseRoIHead +from .test_mixins import BBoxTestMixin, MaskTestMixin + + +@HEADS.register_module() +class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): + """Simplest base roi head including one bbox head and one mask head.""" + + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + self.bbox_assigner = None + self.bbox_sampler = None + if self.train_cfg: + self.bbox_assigner = build_assigner(self.train_cfg.assigner) + self.bbox_sampler = build_sampler( + self.train_cfg.sampler, context=self) + + def init_bbox_head(self, bbox_roi_extractor, bbox_head): + """Initialize ``bbox_head``""" + self.bbox_roi_extractor = build_roi_extractor(bbox_roi_extractor) + self.bbox_head = build_head(bbox_head) + + def init_mask_head(self, mask_roi_extractor, mask_head): + """Initialize ``mask_head``""" + if mask_roi_extractor is not None: + self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor) + self.share_roi_extractor = False + else: + self.share_roi_extractor = True + self.mask_roi_extractor = self.bbox_roi_extractor + self.mask_head = build_head(mask_head) + + def forward_dummy(self, x, proposals): + """Dummy forward function.""" + # bbox head + outs = () + rois = bbox2roi([proposals]) + if self.with_bbox: + bbox_results = self._bbox_forward(x, rois) + outs = outs + (bbox_results['cls_score'], + bbox_results['bbox_pred']) + # mask head + if self.with_mask: + mask_rois = rois[:100] + mask_results = self._mask_forward(x, mask_rois) + outs = outs + (mask_results['mask_pred'], ) + return outs + + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + gt_masks=None, + **kwargs): + """ + Args: + x (list[Tensor]): list of multi-level img features. + img_metas (list[dict]): list of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmdet/datasets/pipelines/formatting.py:Collect`. + proposals (list[Tensors]): list of region proposals. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_ignore (None | list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + gt_masks (None | Tensor) : true segmentation masks for each box + used if the architecture supports a segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + # assign gts and sample proposals + if self.with_bbox or self.with_mask: + num_imgs = len(img_metas) + if gt_bboxes_ignore is None: + gt_bboxes_ignore = [None for _ in range(num_imgs)] + sampling_results = [] + for i in range(num_imgs): + assign_result = self.bbox_assigner.assign( + proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], + gt_labels[i]) + sampling_result = self.bbox_sampler.sample( + assign_result, + proposal_list[i], + gt_bboxes[i], + gt_labels[i], + feats=[lvl_feat[i][None] for lvl_feat in x]) + sampling_results.append(sampling_result) + + losses = dict() + # bbox head forward and loss + if self.with_bbox: + bbox_results = self._bbox_forward_train(x, sampling_results, + gt_bboxes, gt_labels, + img_metas) + losses.update(bbox_results['loss_bbox']) + + # mask head forward and loss + if self.with_mask: + mask_results = self._mask_forward_train(x, sampling_results, + bbox_results['bbox_feats'], + gt_masks, img_metas) + losses.update(mask_results['loss_mask']) + + return losses + + def _bbox_forward(self, x, rois): + """Box head forward function used in both training and testing.""" + # TODO: a more flexible way to decide which feature maps to use + bbox_feats = self.bbox_roi_extractor( + x[:self.bbox_roi_extractor.num_inputs], rois) + if self.with_shared_head: + bbox_feats = self.shared_head(bbox_feats) + cls_score, bbox_pred = self.bbox_head(bbox_feats) + + bbox_results = dict( + cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) + return bbox_results + + def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, + img_metas): + """Run forward function and calculate loss for box head in training.""" + rois = bbox2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward(x, rois) + + bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, + gt_labels, self.train_cfg) + loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update(loss_bbox=loss_bbox) + return bbox_results + + def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, + img_metas): + """Run forward function and calculate loss for mask head in + training.""" + if not self.share_roi_extractor: + pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) + mask_results = self._mask_forward(x, pos_rois) + else: + pos_inds = [] + device = bbox_feats.device + for res in sampling_results: + pos_inds.append( + torch.ones( + res.pos_bboxes.shape[0], + device=device, + dtype=torch.uint8)) + pos_inds.append( + torch.zeros( + res.neg_bboxes.shape[0], + device=device, + dtype=torch.uint8)) + pos_inds = torch.cat(pos_inds) + + mask_results = self._mask_forward( + x, pos_inds=pos_inds, bbox_feats=bbox_feats) + + mask_targets = self.mask_head.get_targets(sampling_results, gt_masks, + self.train_cfg) + pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) + loss_mask = self.mask_head.loss(mask_results['mask_pred'], + mask_targets, pos_labels) + + mask_results.update(loss_mask=loss_mask, mask_targets=mask_targets) + return mask_results + + def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None): + """Mask head forward function used in both training and testing.""" + assert ((rois is not None) ^ + (pos_inds is not None and bbox_feats is not None)) + if rois is not None: + mask_feats = self.mask_roi_extractor( + x[:self.mask_roi_extractor.num_inputs], rois) + if self.with_shared_head: + mask_feats = self.shared_head(mask_feats) + else: + assert bbox_feats is not None + mask_feats = bbox_feats[pos_inds] + + mask_pred = self.mask_head(mask_feats) + mask_results = dict(mask_pred=mask_pred, mask_feats=mask_feats) + return mask_results + + async def async_simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False): + """Async test without augmentation.""" + assert self.with_bbox, 'Bbox head must be implemented.' + + det_bboxes, det_labels = await self.async_test_bboxes( + x, img_metas, proposal_list, self.test_cfg, rescale=rescale) + bbox_results = bbox2result(det_bboxes, det_labels, + self.bbox_head.num_classes) + if not self.with_mask: + return bbox_results + else: + segm_results = await self.async_test_mask( + x, + img_metas, + det_bboxes, + det_labels, + rescale=rescale, + mask_test_cfg=self.test_cfg.get('mask')) + return bbox_results, segm_results + + def simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False): + """Test without augmentation. + + Args: + x (tuple[Tensor]): Features from upstream network. Each + has shape (batch_size, c, h, w). + proposal_list (list(Tensor)): Proposals from rpn head. + Each has shape (num_proposals, 5), last dimension + 5 represent (x1, y1, x2, y2, score). + img_metas (list[dict]): Meta information of images. + rescale (bool): Whether to rescale the results to + the original image. Default: True. + + Returns: + list[list[np.ndarray]] or list[tuple]: When no mask branch, + it is bbox results of each image and classes with type + `list[list[np.ndarray]]`. The outer list + corresponds to each image. The inner list + corresponds to each class. When the model has mask branch, + it contains bbox results and mask results. + The outer list corresponds to each image, and first element + of tuple is bbox results, second element is mask results. + """ + assert self.with_bbox, 'Bbox head must be implemented.' + + det_bboxes, det_labels = self.simple_test_bboxes( + x, img_metas, proposal_list, self.test_cfg, rescale=rescale) + + bbox_results = [ + bbox2result(det_bboxes[i], det_labels[i], + self.bbox_head.num_classes) + for i in range(len(det_bboxes)) + ] + + if not self.with_mask: + return bbox_results + else: + segm_results = self.simple_test_mask( + x, img_metas, det_bboxes, det_labels, rescale=rescale) + return list(zip(bbox_results, segm_results)) + + def aug_test(self, x, proposal_list, img_metas, rescale=False): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + det_bboxes, det_labels = self.aug_test_bboxes(x, img_metas, + proposal_list, + self.test_cfg) + if rescale: + _det_bboxes = det_bboxes + else: + _det_bboxes = det_bboxes.clone() + _det_bboxes[:, :4] *= det_bboxes.new_tensor( + img_metas[0][0]['scale_factor']) + bbox_results = bbox2result(_det_bboxes, det_labels, + self.bbox_head.num_classes) + + # det_bboxes always keep the original scale + if self.with_mask: + segm_results = self.aug_test_mask(x, img_metas, det_bboxes, + det_labels) + return [(bbox_results, segm_results)] + else: + return [bbox_results] + + def onnx_export(self, x, proposals, img_metas, rescale=False): + """Test without augmentation.""" + assert self.with_bbox, 'Bbox head must be implemented.' + det_bboxes, det_labels = self.bbox_onnx_export( + x, img_metas, proposals, self.test_cfg, rescale=rescale) + + if not self.with_mask: + return det_bboxes, det_labels + else: + segm_results = self.mask_onnx_export( + x, img_metas, det_bboxes, det_labels, rescale=rescale) + return det_bboxes, det_labels, segm_results + + def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs): + """Export mask branch to onnx which supports batch inference. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + img_metas (list[dict]): Image meta info. + det_bboxes (Tensor): Bboxes and corresponding scores. + has shape [N, num_bboxes, 5]. + det_labels (Tensor): class labels of + shape [N, num_bboxes]. + + Returns: + Tensor: The segmentation results of shape [N, num_bboxes, + image_height, image_width]. + """ + # image shapes of images in the batch + + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + raise RuntimeError('[ONNX Error] Can not record MaskHead ' + 'as it has not been executed this time') + batch_size = det_bboxes.size(0) + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + det_bboxes = det_bboxes[..., :4] + batch_index = torch.arange( + det_bboxes.size(0), device=det_bboxes.device).float().view( + -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) + mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) + mask_rois = mask_rois.view(-1, 5) + mask_results = self._mask_forward(x, mask_rois) + mask_pred = mask_results['mask_pred'] + max_shape = img_metas[0]['img_shape_for_onnx'] + num_det = det_bboxes.shape[1] + det_bboxes = det_bboxes.reshape(-1, 4) + det_labels = det_labels.reshape(-1) + segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes, + det_labels, self.test_cfg, + max_shape) + segm_results = segm_results.reshape(batch_size, num_det, max_shape[0], + max_shape[1]) + return segm_results + + def bbox_onnx_export(self, x, img_metas, proposals, rcnn_test_cfg, + **kwargs): + """Export bbox branch to onnx which supports batch inference. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + img_metas (list[dict]): Image meta info. + proposals (Tensor): Region proposals with + batch dimension, has shape [N, num_bboxes, 5]. + rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. + + Returns: + tuple[Tensor, Tensor]: bboxes of shape [N, num_bboxes, 5] + and class labels of shape [N, num_bboxes]. + """ + # get origin input shape to support onnx dynamic input shape + assert len( + img_metas + ) == 1, 'Only support one input image while in exporting to ONNX' + img_shapes = img_metas[0]['img_shape_for_onnx'] + + rois = proposals + + batch_index = torch.arange( + rois.size(0), device=rois.device).float().view(-1, 1, 1).expand( + rois.size(0), rois.size(1), 1) + + rois = torch.cat([batch_index, rois[..., :4]], dim=-1) + batch_size = rois.shape[0] + num_proposals_per_img = rois.shape[1] + + # Eliminate the batch dimension + rois = rois.view(-1, 5) + bbox_results = self._bbox_forward(x, rois) + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + + # Recover the batch dimension + rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) + cls_score = cls_score.reshape(batch_size, num_proposals_per_img, + cls_score.size(-1)) + + bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, + bbox_pred.size(-1)) + det_bboxes, det_labels = self.bbox_head.onnx_export( + rois, cls_score, bbox_pred, img_shapes, cfg=rcnn_test_cfg) + + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/test_mixins.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/test_mixins.py new file mode 100644 index 000000000..ae6e79aec --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/test_mixins.py @@ -0,0 +1,311 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import sys +import warnings + +import numpy as np +import torch + +from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes, + merge_aug_masks, multiclass_nms) + +if sys.version_info >= (3, 7): + from mmdet.utils.contextmanagers import completed + + +class BBoxTestMixin: + + if sys.version_info >= (3, 7): + + async def async_test_bboxes(self, + x, + img_metas, + proposals, + rcnn_test_cfg, + rescale=False, + **kwargs): + """Asynchronized test for box head without augmentation.""" + rois = bbox2roi(proposals) + roi_feats = self.bbox_roi_extractor( + x[:len(self.bbox_roi_extractor.featmap_strides)], rois) + if self.with_shared_head: + roi_feats = self.shared_head(roi_feats) + sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017) + + async with completed( + __name__, 'bbox_head_forward', + sleep_interval=sleep_interval): + cls_score, bbox_pred = self.bbox_head(roi_feats) + + img_shape = img_metas[0]['img_shape'] + scale_factor = img_metas[0]['scale_factor'] + det_bboxes, det_labels = self.bbox_head.get_bboxes( + rois, + cls_score, + bbox_pred, + img_shape, + scale_factor, + rescale=rescale, + cfg=rcnn_test_cfg) + return det_bboxes, det_labels + + def simple_test_bboxes(self, + x, + img_metas, + proposals, + rcnn_test_cfg, + rescale=False): + """Test only det bboxes without augmentation. + + Args: + x (tuple[Tensor]): Feature maps of all scale level. + img_metas (list[dict]): Image meta info. + proposals (List[Tensor]): Region proposals. + rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. + rescale (bool): If True, return boxes in original image space. + Default: False. + + Returns: + tuple[list[Tensor], list[Tensor]]: The first list contains + the boxes of the corresponding image in a batch, each + tensor has the shape (num_boxes, 5) and last dimension + 5 represent (tl_x, tl_y, br_x, br_y, score). Each Tensor + in the second list is the labels with shape (num_boxes, ). + The length of both lists should be equal to batch_size. + """ + + rois = bbox2roi(proposals) + + if rois.shape[0] == 0: + batch_size = len(proposals) + det_bbox = rois.new_zeros(0, 5) + det_label = rois.new_zeros((0, ), dtype=torch.long) + if rcnn_test_cfg is None: + det_bbox = det_bbox[:, :4] + det_label = rois.new_zeros( + (0, self.bbox_head.fc_cls.out_features)) + # There is no proposal in the whole batch + return [det_bbox] * batch_size, [det_label] * batch_size + + bbox_results = self._bbox_forward(x, rois) + img_shapes = tuple(meta['img_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + # split batch bbox prediction back to each image + cls_score = bbox_results['cls_score'] + bbox_pred = bbox_results['bbox_pred'] + num_proposals_per_img = tuple(len(p) for p in proposals) + rois = rois.split(num_proposals_per_img, 0) + cls_score = cls_score.split(num_proposals_per_img, 0) + + # some detector with_reg is False, bbox_pred will be None + if bbox_pred is not None: + # TODO move this to a sabl_roi_head + # the bbox prediction of some detectors like SABL is not Tensor + if isinstance(bbox_pred, torch.Tensor): + bbox_pred = bbox_pred.split(num_proposals_per_img, 0) + else: + bbox_pred = self.bbox_head.bbox_pred_split( + bbox_pred, num_proposals_per_img) + else: + bbox_pred = (None, ) * len(proposals) + + # apply bbox post-processing to each image individually + det_bboxes = [] + det_labels = [] + for i in range(len(proposals)): + if rois[i].shape[0] == 0: + # There is no proposal in the single image + det_bbox = rois[i].new_zeros(0, 5) + det_label = rois[i].new_zeros((0, ), dtype=torch.long) + if rcnn_test_cfg is None: + det_bbox = det_bbox[:, :4] + det_label = rois[i].new_zeros( + (0, self.bbox_head.fc_cls.out_features)) + + else: + det_bbox, det_label = self.bbox_head.get_bboxes( + rois[i], + cls_score[i], + bbox_pred[i], + img_shapes[i], + scale_factors[i], + rescale=rescale, + cfg=rcnn_test_cfg) + det_bboxes.append(det_bbox) + det_labels.append(det_label) + return det_bboxes, det_labels + + def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): + """Test det bboxes with test time augmentation.""" + aug_bboxes = [] + aug_scores = [] + for x, img_meta in zip(feats, img_metas): + # only one image in the batch + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + # TODO more flexible + proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, + scale_factor, flip, flip_direction) + rois = bbox2roi([proposals]) + bbox_results = self._bbox_forward(x, rois) + bboxes, scores = self.bbox_head.get_bboxes( + rois, + bbox_results['cls_score'], + bbox_results['bbox_pred'], + img_shape, + scale_factor, + rescale=False, + cfg=None) + aug_bboxes.append(bboxes) + aug_scores.append(scores) + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) + if merged_bboxes.shape[0] == 0: + # There is no proposal in the single image + det_bboxes = merged_bboxes.new_zeros(0, 5) + det_labels = merged_bboxes.new_zeros((0, ), dtype=torch.long) + else: + det_bboxes, det_labels = multiclass_nms(merged_bboxes, + merged_scores, + rcnn_test_cfg.score_thr, + rcnn_test_cfg.nms, + rcnn_test_cfg.max_per_img) + return det_bboxes, det_labels + + +class MaskTestMixin: + + if sys.version_info >= (3, 7): + + async def async_test_mask(self, + x, + img_metas, + det_bboxes, + det_labels, + rescale=False, + mask_test_cfg=None): + """Asynchronized test for mask head without augmentation.""" + # image shape of the first image in the batch (only one) + ori_shape = img_metas[0]['ori_shape'] + scale_factor = img_metas[0]['scale_factor'] + if det_bboxes.shape[0] == 0: + segm_result = [[] for _ in range(self.mask_head.num_classes)] + else: + if rescale and not isinstance(scale_factor, + (float, torch.Tensor)): + scale_factor = det_bboxes.new_tensor(scale_factor) + _bboxes = ( + det_bboxes[:, :4] * + scale_factor if rescale else det_bboxes) + mask_rois = bbox2roi([_bboxes]) + mask_feats = self.mask_roi_extractor( + x[:len(self.mask_roi_extractor.featmap_strides)], + mask_rois) + + if self.with_shared_head: + mask_feats = self.shared_head(mask_feats) + if mask_test_cfg and mask_test_cfg.get('async_sleep_interval'): + sleep_interval = mask_test_cfg['async_sleep_interval'] + else: + sleep_interval = 0.035 + async with completed( + __name__, + 'mask_head_forward', + sleep_interval=sleep_interval): + mask_pred = self.mask_head(mask_feats) + segm_result = self.mask_head.get_seg_masks( + mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape, + scale_factor, rescale) + return segm_result + + def simple_test_mask(self, + x, + img_metas, + det_bboxes, + det_labels, + rescale=False): + """Simple test for mask head without augmentation.""" + # image shapes of images in the batch + ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) + scale_factors = tuple(meta['scale_factor'] for meta in img_metas) + + if isinstance(scale_factors[0], float): + warnings.warn( + 'Scale factor in img_metas should be a ' + 'ndarray with shape (4,) ' + 'arrange as (factor_w, factor_h, factor_w, factor_h), ' + 'The scale_factor with float type has been deprecated. ') + scale_factors = np.array([scale_factors] * 4, dtype=np.float32) + + num_imgs = len(det_bboxes) + if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): + segm_results = [[[] for _ in range(self.mask_head.num_classes)] + for _ in range(num_imgs)] + else: + # if det_bboxes is rescaled to the original image size, we need to + # rescale it back to the testing scale to obtain RoIs. + if rescale: + scale_factors = [ + torch.from_numpy(scale_factor).to(det_bboxes[0].device) + for scale_factor in scale_factors + ] + _bboxes = [ + det_bboxes[i][:, :4] * + scale_factors[i] if rescale else det_bboxes[i][:, :4] + for i in range(len(det_bboxes)) + ] + mask_rois = bbox2roi(_bboxes) + mask_results = self._mask_forward(x, mask_rois) + mask_pred = mask_results['mask_pred'] + # split batch mask prediction back to each image + num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] + mask_preds = mask_pred.split(num_mask_roi_per_img, 0) + + # apply mask post-processing to each image individually + segm_results = [] + for i in range(num_imgs): + if det_bboxes[i].shape[0] == 0: + segm_results.append( + [[] for _ in range(self.mask_head.num_classes)]) + else: + segm_result = self.mask_head.get_seg_masks( + mask_preds[i], _bboxes[i], det_labels[i], + self.test_cfg, ori_shapes[i], scale_factors[i], + rescale) + segm_results.append(segm_result) + return segm_results + + def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): + """Test for mask head with test time augmentation.""" + if det_bboxes.shape[0] == 0: + segm_result = [[] for _ in range(self.mask_head.num_classes)] + else: + aug_masks = [] + for x, img_meta in zip(feats, img_metas): + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, + scale_factor, flip, flip_direction) + mask_rois = bbox2roi([_bboxes]) + mask_results = self._mask_forward(x, mask_rois) + # convert to numpy array to save memory + aug_masks.append( + mask_results['mask_pred'].sigmoid().cpu().numpy()) + merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) + + ori_shape = img_metas[0][0]['ori_shape'] + scale_factor = det_bboxes.new_ones(4) + segm_result = self.mask_head.get_seg_masks( + merged_masks, + det_bboxes, + det_labels, + self.test_cfg, + ori_shape, + scale_factor=scale_factor, + rescale=False) + return segm_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/trident_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/trident_roi_head.py new file mode 100644 index 000000000..09758792d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/roi_heads/trident_roi_head.py @@ -0,0 +1,120 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import batched_nms + +from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, + multiclass_nms) +from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead +from ..builder import HEADS + + +@HEADS.register_module() +class TridentRoIHead(StandardRoIHead): + """Trident roi head. + + Args: + num_branch (int): Number of branches in TridentNet. + test_branch_idx (int): In inference, all 3 branches will be used + if `test_branch_idx==-1`, otherwise only branch with index + `test_branch_idx` will be used. + """ + + def __init__(self, num_branch, test_branch_idx, **kwargs): + self.num_branch = num_branch + self.test_branch_idx = test_branch_idx + super(TridentRoIHead, self).__init__(**kwargs) + + def merge_trident_bboxes(self, trident_det_bboxes, trident_det_labels): + """Merge bbox predictions of each branch.""" + if trident_det_bboxes.numel() == 0: + det_bboxes = trident_det_bboxes.new_zeros((0, 5)) + det_labels = trident_det_bboxes.new_zeros((0, ), dtype=torch.long) + else: + nms_bboxes = trident_det_bboxes[:, :4] + nms_scores = trident_det_bboxes[:, 4].contiguous() + nms_inds = trident_det_labels + nms_cfg = self.test_cfg['nms'] + det_bboxes, keep = batched_nms(nms_bboxes, nms_scores, nms_inds, + nms_cfg) + det_labels = trident_det_labels[keep] + if self.test_cfg['max_per_img'] > 0: + det_labels = det_labels[:self.test_cfg['max_per_img']] + det_bboxes = det_bboxes[:self.test_cfg['max_per_img']] + + return det_bboxes, det_labels + + def simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False): + """Test without augmentation as follows: + + 1. Compute prediction bbox and label per branch. + 2. Merge predictions of each branch according to scores of + bboxes, i.e., bboxes with higher score are kept to give + top-k prediction. + """ + assert self.with_bbox, 'Bbox head must be implemented.' + det_bboxes_list, det_labels_list = self.simple_test_bboxes( + x, img_metas, proposal_list, self.test_cfg, rescale=rescale) + num_branch = self.num_branch if self.test_branch_idx == -1 else 1 + for _ in range(len(det_bboxes_list)): + if det_bboxes_list[_].shape[0] == 0: + det_bboxes_list[_] = det_bboxes_list[_].new_empty((0, 5)) + det_bboxes, det_labels = [], [] + for i in range(len(img_metas) // num_branch): + det_result = self.merge_trident_bboxes( + torch.cat(det_bboxes_list[i * num_branch:(i + 1) * + num_branch]), + torch.cat(det_labels_list[i * num_branch:(i + 1) * + num_branch])) + det_bboxes.append(det_result[0]) + det_labels.append(det_result[1]) + + bbox_results = [ + bbox2result(det_bboxes[i], det_labels[i], + self.bbox_head.num_classes) + for i in range(len(det_bboxes)) + ] + return bbox_results + + def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): + """Test det bboxes with test time augmentation.""" + aug_bboxes = [] + aug_scores = [] + for x, img_meta in zip(feats, img_metas): + # only one image in the batch + img_shape = img_meta[0]['img_shape'] + scale_factor = img_meta[0]['scale_factor'] + flip = img_meta[0]['flip'] + flip_direction = img_meta[0]['flip_direction'] + + trident_bboxes, trident_scores = [], [] + for branch_idx in range(len(proposal_list)): + proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, + scale_factor, flip, flip_direction) + rois = bbox2roi([proposals]) + bbox_results = self._bbox_forward(x, rois) + bboxes, scores = self.bbox_head.get_bboxes( + rois, + bbox_results['cls_score'], + bbox_results['bbox_pred'], + img_shape, + scale_factor, + rescale=False, + cfg=None) + trident_bboxes.append(bboxes) + trident_scores.append(scores) + + aug_bboxes.append(torch.cat(trident_bboxes, 0)) + aug_scores.append(torch.cat(trident_scores, 0)) + # after merging, bboxes will be rescaled to the original image size + merged_bboxes, merged_scores = merge_aug_bboxes( + aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) + det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, + rcnn_test_cfg.score_thr, + rcnn_test_cfg.nms, + rcnn_test_cfg.max_per_img) + return det_bboxes, det_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/__init__.py new file mode 100644 index 000000000..b489a905b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/__init__.py @@ -0,0 +1,3 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403 +from .panoptic_fusion_heads import * # noqa: F401,F403 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/base_semantic_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/base_semantic_head.py new file mode 100644 index 000000000..2b6ca145f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/base_semantic_head.py @@ -0,0 +1,86 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import torch.nn.functional as F +from mmcv.runner import BaseModule, force_fp32 + +from ..builder import build_loss +from ..utils import interpolate_as + + +class BaseSemanticHead(BaseModule, metaclass=ABCMeta): + """Base module of Semantic Head. + + Args: + num_classes (int): the number of classes. + init_cfg (dict): the initialization config. + loss_seg (dict): the loss of the semantic head. + """ + + def __init__(self, + num_classes, + init_cfg=None, + loss_seg=dict( + type='CrossEntropyLoss', + ignore_index=255, + loss_weight=1.0)): + super(BaseSemanticHead, self).__init__(init_cfg) + self.loss_seg = build_loss(loss_seg) + self.num_classes = num_classes + + @force_fp32(apply_to=('seg_preds', )) + def loss(self, seg_preds, gt_semantic_seg): + """Get the loss of semantic head. + + Args: + seg_preds (Tensor): The input logits with the shape (N, C, H, W). + gt_semantic_seg: The ground truth of semantic segmentation with + the shape (N, H, W). + label_bias: The starting number of the semantic label. + Default: 1. + + Returns: + dict: the loss of semantic head. + """ + if seg_preds.shape[-2:] != gt_semantic_seg.shape[-2:]: + seg_preds = interpolate_as(seg_preds, gt_semantic_seg) + seg_preds = seg_preds.permute((0, 2, 3, 1)) + + loss_seg = self.loss_seg( + seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] + gt_semantic_seg.reshape(-1).long()) + return dict(loss_seg=loss_seg) + + @abstractmethod + def forward(self, x): + """Placeholder of forward function. + + Returns: + dict[str, Tensor]: A dictionary, including features + and predicted scores. Required keys: 'seg_preds' + and 'feats'. + """ + pass + + def forward_train(self, x, gt_semantic_seg): + output = self.forward(x) + seg_preds = output['seg_preds'] + return self.loss(seg_preds, gt_semantic_seg) + + def simple_test(self, x, img_metas, rescale=False): + output = self.forward(x) + seg_preds = output['seg_preds'] + seg_preds = F.interpolate( + seg_preds, + size=img_metas[0]['pad_shape'][:2], + mode='bilinear', + align_corners=False) + + if rescale: + h, w, _ = img_metas[0]['img_shape'] + seg_preds = seg_preds[:, :, :h, :w] + + h, w, _ = img_metas[0]['ori_shape'] + seg_preds = F.interpolate( + seg_preds, size=(h, w), mode='bilinear', align_corners=False) + return seg_preds diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fpn_head.py new file mode 100644 index 000000000..f1df29761 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fpn_head.py @@ -0,0 +1,155 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +from mmcv.runner import ModuleList + +from ..builder import HEADS +from ..utils import ConvUpsample +from .base_semantic_head import BaseSemanticHead + + +@HEADS.register_module() +class PanopticFPNHead(BaseSemanticHead): + """PanopticFPNHead used in Panoptic FPN. + + In this head, the number of output channels is ``num_stuff_classes + + 1``, including all stuff classes and one thing class. The stuff + classes will be reset from ``0`` to ``num_stuff_classes - 1``, the + thing classes will be merged to ``num_stuff_classes``-th channel. + + Arg: + num_things_classes (int): Number of thing classes. Default: 80. + num_stuff_classes (int): Number of stuff classes. Default: 53. + num_classes (int): Number of classes, including all stuff + classes and one thing class. This argument is deprecated, + please use ``num_things_classes`` and ``num_stuff_classes``. + The module will automatically infer the num_classes by + ``num_stuff_classes + 1``. + in_channels (int): Number of channels in the input feature + map. + inner_channels (int): Number of channels in inner features. + start_level (int): The start level of the input features + used in PanopticFPN. + end_level (int): The end level of the used features, the + ``end_level``-th layer will not be used. + fg_range (tuple): Range of the foreground classes. It starts + from ``0`` to ``num_things_classes-1``. Deprecated, please use + ``num_things_classes`` directly. + bg_range (tuple): Range of the background classes. It starts + from ``num_things_classes`` to ``num_things_classes + + num_stuff_classes - 1``. Deprecated, please use + ``num_stuff_classes`` and ``num_things_classes`` directly. + conv_cfg (dict): Dictionary to construct and config + conv layer. Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Use ``GN`` by default. + init_cfg (dict or list[dict], optional): Initialization config dict. + loss_seg (dict): the loss of the semantic head. + """ + + def __init__(self, + num_things_classes=80, + num_stuff_classes=53, + num_classes=None, + in_channels=256, + inner_channels=128, + start_level=0, + end_level=4, + fg_range=None, + bg_range=None, + conv_cfg=None, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + init_cfg=None, + loss_seg=dict( + type='CrossEntropyLoss', ignore_index=-1, + loss_weight=1.0)): + if num_classes is not None: + warnings.warn( + '`num_classes` is deprecated now, please set ' + '`num_stuff_classes` directly, the `num_classes` will be ' + 'set to `num_stuff_classes + 1`') + # num_classes = num_stuff_classes + 1 for PanopticFPN. + assert num_classes == num_stuff_classes + 1 + super(PanopticFPNHead, self).__init__(num_stuff_classes + 1, init_cfg, + loss_seg) + self.num_things_classes = num_things_classes + self.num_stuff_classes = num_stuff_classes + if fg_range is not None and bg_range is not None: + self.fg_range = fg_range + self.bg_range = bg_range + self.num_things_classes = fg_range[1] - fg_range[0] + 1 + self.num_stuff_classes = bg_range[1] - bg_range[0] + 1 + warnings.warn( + '`fg_range` and `bg_range` are deprecated now, ' + f'please use `num_things_classes`={self.num_things_classes} ' + f'and `num_stuff_classes`={self.num_stuff_classes} instead.') + + # Used feature layers are [start_level, end_level) + self.start_level = start_level + self.end_level = end_level + self.num_stages = end_level - start_level + self.inner_channels = inner_channels + + self.conv_upsample_layers = ModuleList() + for i in range(start_level, end_level): + self.conv_upsample_layers.append( + ConvUpsample( + in_channels, + inner_channels, + num_layers=i if i > 0 else 1, + num_upsample=i if i > 0 else 0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + )) + self.conv_logits = nn.Conv2d(inner_channels, self.num_classes, 1) + + def _set_things_to_void(self, gt_semantic_seg): + """Merge thing classes to one class. + + In PanopticFPN, the background labels will be reset from `0` to + `self.num_stuff_classes-1`, the foreground labels will be merged to + `self.num_stuff_classes`-th channel. + """ + gt_semantic_seg = gt_semantic_seg.int() + fg_mask = gt_semantic_seg < self.num_things_classes + bg_mask = (gt_semantic_seg >= self.num_things_classes) * ( + gt_semantic_seg < self.num_things_classes + self.num_stuff_classes) + + new_gt_seg = torch.clone(gt_semantic_seg) + new_gt_seg = torch.where(bg_mask, + gt_semantic_seg - self.num_things_classes, + new_gt_seg) + new_gt_seg = torch.where(fg_mask, + fg_mask.int() * self.num_stuff_classes, + new_gt_seg) + return new_gt_seg + + def loss(self, seg_preds, gt_semantic_seg): + """The loss of PanopticFPN head. + + Things classes will be merged to one class in PanopticFPN. + """ + gt_semantic_seg = self._set_things_to_void(gt_semantic_seg) + return super().loss(seg_preds, gt_semantic_seg) + + def init_weights(self): + super().init_weights() + nn.init.normal_(self.conv_logits.weight.data, 0, 0.01) + self.conv_logits.bias.data.zero_() + + def forward(self, x): + # the number of subnets must be not more than + # the length of features. + assert self.num_stages <= len(x) + + feats = [] + for i, layer in enumerate(self.conv_upsample_layers): + f = layer(x[self.start_level + i]) + feats.append(f) + + feats = torch.sum(torch.stack(feats, dim=0), dim=0) + seg_preds = self.conv_logits(feats) + out = dict(seg_preds=seg_preds, feats=feats) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py new file mode 100644 index 000000000..41625a61d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_panoptic_fusion_head import \ + BasePanopticFusionHead # noqa: F401,F403 +from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403 +from .maskformer_fusion_head import MaskFormerFusionHead # noqa: F401,F403 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/base_panoptic_fusion_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/base_panoptic_fusion_head.py new file mode 100644 index 000000000..a38ac1c6c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/base_panoptic_fusion_head.py @@ -0,0 +1,48 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.runner import BaseModule + +from ...builder import build_loss + + +class BasePanopticFusionHead(BaseModule, metaclass=ABCMeta): + """Base class for panoptic heads.""" + + def __init__(self, + num_things_classes=80, + num_stuff_classes=53, + test_cfg=None, + loss_panoptic=None, + init_cfg=None, + **kwargs): + super(BasePanopticFusionHead, self).__init__(init_cfg) + self.num_things_classes = num_things_classes + self.num_stuff_classes = num_stuff_classes + self.num_classes = num_things_classes + num_stuff_classes + self.test_cfg = test_cfg + + if loss_panoptic: + self.loss_panoptic = build_loss(loss_panoptic) + else: + self.loss_panoptic = None + + @property + def with_loss(self): + """bool: whether the panoptic head contains loss function.""" + return self.loss_panoptic is not None + + @abstractmethod + def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): + """Forward function during training.""" + + @abstractmethod + def simple_test(self, + img_metas, + det_labels, + mask_preds, + seg_preds, + det_bboxes, + cfg=None, + **kwargs): + """Test without augmentation.""" diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/heuristic_fusion_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/heuristic_fusion_head.py new file mode 100644 index 000000000..06c1de2b9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/heuristic_fusion_head.py @@ -0,0 +1,126 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET +from mmdet.models.builder import HEADS +from .base_panoptic_fusion_head import BasePanopticFusionHead + + +@HEADS.register_module() +class HeuristicFusionHead(BasePanopticFusionHead): + """Fusion Head with Heuristic method.""" + + def __init__(self, + num_things_classes=80, + num_stuff_classes=53, + test_cfg=None, + init_cfg=None, + **kwargs): + super(HeuristicFusionHead, + self).__init__(num_things_classes, num_stuff_classes, test_cfg, + None, init_cfg, **kwargs) + + def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): + """HeuristicFusionHead has no training loss.""" + return dict() + + def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): + """Lay instance masks to a result map. + + Args: + bboxes: The bboxes results, (K, 4). + labels: The labels of bboxes, (K, ). + masks: The instance masks, (K, H, W). + overlap_thr: Threshold to determine whether two masks overlap. + default: 0.5. + + Returns: + Tensor: The result map, (H, W). + """ + num_insts = bboxes.shape[0] + id_map = torch.zeros( + masks.shape[-2:], device=bboxes.device, dtype=torch.long) + if num_insts == 0: + return id_map, labels + + scores, bboxes = bboxes[:, -1], bboxes[:, :4] + + # Sort by score to use heuristic fusion + order = torch.argsort(-scores) + bboxes = bboxes[order] + labels = labels[order] + segm_masks = masks[order] + + instance_id = 1 + left_labels = [] + for idx in range(bboxes.shape[0]): + _cls = labels[idx] + _mask = segm_masks[idx] + instance_id_map = torch.ones_like( + _mask, dtype=torch.long) * instance_id + area = _mask.sum() + if area == 0: + continue + + pasted = id_map > 0 + intersect = (_mask * pasted).sum() + if (intersect / (area + 1e-5)) > overlap_thr: + continue + + _part = _mask * (~pasted) + id_map = torch.where(_part, instance_id_map, id_map) + left_labels.append(_cls) + instance_id += 1 + + if len(left_labels) > 0: + instance_labels = torch.stack(left_labels) + else: + instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) + assert instance_id == (len(instance_labels) + 1) + return id_map, instance_labels + + def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, + **kwargs): + """Fuse the results of instance and semantic segmentations. + + Args: + det_bboxes: The bboxes results, (K, 4). + det_labels: The labels of bboxes, (K,). + mask_preds: The masks results, (K, H, W). + seg_preds: The semantic segmentation results, + (K, num_stuff + 1, H, W). + + Returns: + Tensor : The panoptic segmentation result, (H, W). + """ + mask_preds = mask_preds >= self.test_cfg.mask_thr_binary + id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, + self.test_cfg.mask_overlap) + + seg_results = seg_preds.argmax(dim=0) + seg_results = seg_results + self.num_things_classes + + pan_results = seg_results + instance_id = 1 + for idx in range(det_labels.shape[0]): + _mask = id_map == (idx + 1) + if _mask.sum() == 0: + continue + _cls = labels[idx] + # simply trust detection + segment_id = _cls + instance_id * INSTANCE_OFFSET + pan_results[_mask] = segment_id + instance_id += 1 + + ids, counts = torch.unique( + pan_results % INSTANCE_OFFSET, return_counts=True) + stuff_ids = ids[ids >= self.num_things_classes] + stuff_counts = counts[ids >= self.num_things_classes] + ignore_stuff_ids = stuff_ids[ + stuff_counts < self.test_cfg.stuff_area_limit] + + assert pan_results.ndim == 2 + pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( + 1, 1, -1)).any(dim=2)] = self.num_classes + + return pan_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/maskformer_fusion_head.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/maskformer_fusion_head.py new file mode 100644 index 000000000..5b59ce4de --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/seg_heads/panoptic_fusion_heads/maskformer_fusion_head.py @@ -0,0 +1,241 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn.functional as F + +from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET +from mmdet.core.mask import mask2bbox +from mmdet.models.builder import HEADS +from .base_panoptic_fusion_head import BasePanopticFusionHead + + +@HEADS.register_module() +class MaskFormerFusionHead(BasePanopticFusionHead): + + def __init__(self, + num_things_classes=80, + num_stuff_classes=53, + test_cfg=None, + loss_panoptic=None, + init_cfg=None, + **kwargs): + super().__init__(num_things_classes, num_stuff_classes, test_cfg, + loss_panoptic, init_cfg, **kwargs) + + def forward_train(self, **kwargs): + """MaskFormerFusionHead has no training loss.""" + return dict() + + def panoptic_postprocess(self, mask_cls, mask_pred): + """Panoptic segmengation inference. + + Args: + mask_cls (Tensor): Classfication outputs of shape + (num_queries, cls_out_channels) for a image. + Note `cls_out_channels` should includes + background. + mask_pred (Tensor): Mask outputs of shape + (num_queries, h, w) for a image. + + Returns: + Tensor: Panoptic segment result of shape \ + (h, w), each element in Tensor means: \ + ``segment_id = _cls + instance_id * INSTANCE_OFFSET``. + """ + object_mask_thr = self.test_cfg.get('object_mask_thr', 0.8) + iou_thr = self.test_cfg.get('iou_thr', 0.8) + filter_low_score = self.test_cfg.get('filter_low_score', False) + + scores, labels = F.softmax(mask_cls, dim=-1).max(-1) + mask_pred = mask_pred.sigmoid() + + keep = labels.ne(self.num_classes) & (scores > object_mask_thr) + cur_scores = scores[keep] + cur_classes = labels[keep] + cur_masks = mask_pred[keep] + + cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks + + h, w = cur_masks.shape[-2:] + panoptic_seg = torch.full((h, w), + self.num_classes, + dtype=torch.int32, + device=cur_masks.device) + if cur_masks.shape[0] == 0: + # We didn't detect any mask :( + pass + else: + cur_mask_ids = cur_prob_masks.argmax(0) + instance_id = 1 + for k in range(cur_classes.shape[0]): + pred_class = int(cur_classes[k].item()) + isthing = pred_class < self.num_things_classes + mask = cur_mask_ids == k + mask_area = mask.sum().item() + original_area = (cur_masks[k] >= 0.5).sum().item() + + if filter_low_score: + mask = mask & (cur_masks[k] >= 0.5) + + if mask_area > 0 and original_area > 0: + if mask_area / original_area < iou_thr: + continue + + if not isthing: + # different stuff regions of same class will be + # merged here, and stuff share the instance_id 0. + panoptic_seg[mask] = pred_class + else: + panoptic_seg[mask] = ( + pred_class + instance_id * INSTANCE_OFFSET) + instance_id += 1 + + return panoptic_seg + + def semantic_postprocess(self, mask_cls, mask_pred): + """Semantic segmengation postprocess. + + Args: + mask_cls (Tensor): Classfication outputs of shape + (num_queries, cls_out_channels) for a image. + Note `cls_out_channels` should includes + background. + mask_pred (Tensor): Mask outputs of shape + (num_queries, h, w) for a image. + + Returns: + Tensor: Semantic segment result of shape \ + (cls_out_channels, h, w). + """ + # TODO add semantic segmentation result + raise NotImplementedError + + def instance_postprocess(self, mask_cls, mask_pred): + """Instance segmengation postprocess. + + Args: + mask_cls (Tensor): Classfication outputs of shape + (num_queries, cls_out_channels) for a image. + Note `cls_out_channels` should includes + background. + mask_pred (Tensor): Mask outputs of shape + (num_queries, h, w) for a image. + + Returns: + tuple[Tensor]: Instance segmentation results. + + - labels_per_image (Tensor): Predicted labels,\ + shape (n, ). + - bboxes (Tensor): Bboxes and scores with shape (n, 5) of \ + positive region in binary mask, the last column is scores. + - mask_pred_binary (Tensor): Instance masks of \ + shape (n, h, w). + """ + max_per_image = self.test_cfg.get('max_per_image', 100) + num_queries = mask_cls.shape[0] + # shape (num_queries, num_class) + scores = F.softmax(mask_cls, dim=-1)[:, :-1] + # shape (num_queries * num_class, ) + labels = torch.arange(self.num_classes, device=mask_cls.device).\ + unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) + scores_per_image, top_indices = scores.flatten(0, 1).topk( + max_per_image, sorted=False) + labels_per_image = labels[top_indices] + + query_indices = top_indices // self.num_classes + mask_pred = mask_pred[query_indices] + + # extract things + is_thing = labels_per_image < self.num_things_classes + scores_per_image = scores_per_image[is_thing] + labels_per_image = labels_per_image[is_thing] + mask_pred = mask_pred[is_thing] + + mask_pred_binary = (mask_pred > 0).float() + mask_scores_per_image = (mask_pred.sigmoid() * + mask_pred_binary).flatten(1).sum(1) / ( + mask_pred_binary.flatten(1).sum(1) + 1e-6) + det_scores = scores_per_image * mask_scores_per_image + mask_pred_binary = mask_pred_binary.bool() + bboxes = mask2bbox(mask_pred_binary) + bboxes = torch.cat([bboxes, det_scores[:, None]], dim=-1) + + return labels_per_image, bboxes, mask_pred_binary + + def simple_test(self, + mask_cls_results, + mask_pred_results, + img_metas, + rescale=False, + **kwargs): + """Test segment without test-time aumengtation. + + Only the output of last decoder layers was used. + + Args: + mask_cls_results (Tensor): Mask classification logits, + shape (batch_size, num_queries, cls_out_channels). + Note `cls_out_channels` should includes background. + mask_pred_results (Tensor): Mask logits, shape + (batch_size, num_queries, h, w). + img_metas (list[dict]): List of image information. + rescale (bool, optional): If True, return boxes in + original image space. Default False. + + Returns: + list[dict[str, Tensor | tuple[Tensor]]]: Semantic segmentation \ + results and panoptic segmentation results for each \ + image. + + .. code-block:: none + + [ + { + 'pan_results': Tensor, # shape = [h, w] + 'ins_results': tuple[Tensor], + # semantic segmentation results are not supported yet + 'sem_results': Tensor + }, + ... + ] + """ + panoptic_on = self.test_cfg.get('panoptic_on', True) + semantic_on = self.test_cfg.get('semantic_on', False) + instance_on = self.test_cfg.get('instance_on', False) + assert not semantic_on, 'segmantic segmentation '\ + 'results are not supported yet.' + + results = [] + for mask_cls_result, mask_pred_result, meta in zip( + mask_cls_results, mask_pred_results, img_metas): + # remove padding + img_height, img_width = meta['img_shape'][:2] + mask_pred_result = mask_pred_result[:, :img_height, :img_width] + + if rescale: + # return result in original resolution + ori_height, ori_width = meta['ori_shape'][:2] + mask_pred_result = F.interpolate( + mask_pred_result[:, None], + size=(ori_height, ori_width), + mode='bilinear', + align_corners=False)[:, 0] + + result = dict() + if panoptic_on: + pan_results = self.panoptic_postprocess( + mask_cls_result, mask_pred_result) + result['pan_results'] = pan_results + + if instance_on: + ins_results = self.instance_postprocess( + mask_cls_result, mask_pred_result) + result['ins_results'] = ins_results + + if semantic_on: + sem_results = self.semantic_postprocess( + mask_cls_result, mask_pred_result) + result['sem_results'] = sem_results + + results.append(result) + + return results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/__init__.py new file mode 100644 index 000000000..e74ba89e8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/__init__.py @@ -0,0 +1,34 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d +from .builder import build_linear_layer, build_transformer +from .ckpt_convert import pvt_convert +from .conv_upsample import ConvUpsample +from .csp_layer import CSPLayer +from .gaussian_target import gaussian_radius, gen_gaussian_target +from .inverted_residual import InvertedResidual +from .make_divisible import make_divisible +from .misc import interpolate_as, sigmoid_geometric_mean +from .normed_predictor import NormedConv2d, NormedLinear +from .panoptic_gt_processing import preprocess_panoptic_gt +from .point_sample import (get_uncertain_point_coords_with_randomness, + get_uncertainty) +from .positional_encoding import (LearnedPositionalEncoding, + SinePositionalEncoding) +from .res_layer import ResLayer, SimplifiedBasicBlock +from .se_layer import DyReLU, SELayer +from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, + DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, + nlc_to_nchw) + +__all__ = [ + 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', + 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', + 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', + 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', + 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', + 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', + 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', + 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', + 'preprocess_panoptic_gt', 'DyReLU', + 'get_uncertain_point_coords_with_randomness', 'get_uncertainty' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/brick_wrappers.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/brick_wrappers.py new file mode 100644 index 000000000..fa0279ab6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/brick_wrappers.py @@ -0,0 +1,51 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn.bricks.wrappers import NewEmptyTensorOp, obsolete_torch_version + +if torch.__version__ == 'parrots': + TORCH_VERSION = torch.__version__ +else: + # torch.__version__ could be 1.3.1+cu92, we only need the first two + # for comparison + TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2]) + + +def adaptive_avg_pool2d(input, output_size): + """Handle empty batch dimension to adaptive_avg_pool2d. + + Args: + input (tensor): 4D tensor. + output_size (int, tuple[int,int]): the target output size. + """ + if input.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): + if isinstance(output_size, int): + output_size = [output_size, output_size] + output_size = [*input.shape[:2], *output_size] + empty = NewEmptyTensorOp.apply(input, output_size) + return empty + else: + return F.adaptive_avg_pool2d(input, output_size) + + +class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d): + """Handle empty batch dimension to AdaptiveAvgPool2d.""" + + def forward(self, x): + # PyTorch 1.9 does not support empty tensor inference yet + if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): + output_size = self.output_size + if isinstance(output_size, int): + output_size = [output_size, output_size] + else: + output_size = [ + v if v is not None else d + for v, d in zip(output_size, + x.size()[-2:]) + ] + output_size = [*x.shape[:2], *output_size] + empty = NewEmptyTensorOp.apply(x, output_size) + return empty + + return super().forward(x) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/builder.py new file mode 100644 index 000000000..20fe7a6dc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/builder.py @@ -0,0 +1,47 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.utils import Registry, build_from_cfg + +TRANSFORMER = Registry('Transformer') +LINEAR_LAYERS = Registry('linear layers') + + +def build_transformer(cfg, default_args=None): + """Builder for Transformer.""" + return build_from_cfg(cfg, TRANSFORMER, default_args) + + +LINEAR_LAYERS.register_module('Linear', module=nn.Linear) + + +def build_linear_layer(cfg, *args, **kwargs): + """Build linear layer. + Args: + cfg (None or dict): The linear layer config, which should contain: + - type (str): Layer type. + - layer args: Args needed to instantiate an linear layer. + args (argument list): Arguments passed to the `__init__` + method of the corresponding linear layer. + kwargs (keyword arguments): Keyword arguments passed to the `__init__` + method of the corresponding linear layer. + Returns: + nn.Module: Created linear layer. + """ + if cfg is None: + cfg_ = dict(type='Linear') + else: + if not isinstance(cfg, dict): + raise TypeError('cfg must be a dict') + if 'type' not in cfg: + raise KeyError('the cfg dict must contain the key "type"') + cfg_ = cfg.copy() + + layer_type = cfg_.pop('type') + if layer_type not in LINEAR_LAYERS: + raise KeyError(f'Unrecognized linear type {layer_type}') + else: + linear_layer = LINEAR_LAYERS.get(layer_type) + + layer = linear_layer(*args, **kwargs, **cfg_) + + return layer diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/ckpt_convert.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/ckpt_convert.py new file mode 100644 index 000000000..4d660c4e4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/ckpt_convert.py @@ -0,0 +1,137 @@ +# Copyright (c) OpenMMLab. All rights reserved. + +# This script consists of several convert functions which +# can modify the weights of model in original repo to be +# pre-trained weights. + +from collections import OrderedDict + +import torch + + +def pvt_convert(ckpt): + new_ckpt = OrderedDict() + # Process the concat between q linear weights and kv linear weights + use_abs_pos_embed = False + use_conv_ffn = False + for k in ckpt.keys(): + if k.startswith('pos_embed'): + use_abs_pos_embed = True + if k.find('dwconv') >= 0: + use_conv_ffn = True + for k, v in ckpt.items(): + if k.startswith('head'): + continue + if k.startswith('norm.'): + continue + if k.startswith('cls_token'): + continue + if k.startswith('pos_embed'): + stage_i = int(k.replace('pos_embed', '')) + new_k = k.replace(f'pos_embed{stage_i}', + f'layers.{stage_i - 1}.1.0.pos_embed') + if stage_i == 4 and v.size(1) == 50: # 1 (cls token) + 7 * 7 + new_v = v[:, 1:, :] # remove cls token + else: + new_v = v + elif k.startswith('patch_embed'): + stage_i = int(k.split('.')[0].replace('patch_embed', '')) + new_k = k.replace(f'patch_embed{stage_i}', + f'layers.{stage_i - 1}.0') + new_v = v + if 'proj.' in new_k: + new_k = new_k.replace('proj.', 'projection.') + elif k.startswith('block'): + stage_i = int(k.split('.')[0].replace('block', '')) + layer_i = int(k.split('.')[1]) + new_layer_i = layer_i + use_abs_pos_embed + new_k = k.replace(f'block{stage_i}.{layer_i}', + f'layers.{stage_i - 1}.1.{new_layer_i}') + new_v = v + if 'attn.q.' in new_k: + sub_item_k = k.replace('q.', 'kv.') + new_k = new_k.replace('q.', 'attn.in_proj_') + new_v = torch.cat([v, ckpt[sub_item_k]], dim=0) + elif 'attn.kv.' in new_k: + continue + elif 'attn.proj.' in new_k: + new_k = new_k.replace('proj.', 'attn.out_proj.') + elif 'attn.sr.' in new_k: + new_k = new_k.replace('sr.', 'sr.') + elif 'mlp.' in new_k: + string = f'{new_k}-' + new_k = new_k.replace('mlp.', 'ffn.layers.') + if 'fc1.weight' in new_k or 'fc2.weight' in new_k: + new_v = v.reshape((*v.shape, 1, 1)) + new_k = new_k.replace('fc1.', '0.') + new_k = new_k.replace('dwconv.dwconv.', '1.') + if use_conv_ffn: + new_k = new_k.replace('fc2.', '4.') + else: + new_k = new_k.replace('fc2.', '3.') + string += f'{new_k} {v.shape}-{new_v.shape}' + elif k.startswith('norm'): + stage_i = int(k[4]) + new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i - 1}.2') + new_v = v + else: + new_k = k + new_v = v + new_ckpt[new_k] = new_v + + return new_ckpt + + +def swin_converter(ckpt): + + new_ckpt = OrderedDict() + + def correct_unfold_reduction_order(x): + out_channel, in_channel = x.shape + x = x.reshape(out_channel, 4, in_channel // 4) + x = x[:, [0, 2, 1, 3], :].transpose(1, + 2).reshape(out_channel, in_channel) + return x + + def correct_unfold_norm_order(x): + in_channel = x.shape[0] + x = x.reshape(4, in_channel // 4) + x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) + return x + + for k, v in ckpt.items(): + if k.startswith('head'): + continue + elif k.startswith('layers'): + new_v = v + if 'attn.' in k: + new_k = k.replace('attn.', 'attn.w_msa.') + elif 'mlp.' in k: + if 'mlp.fc1.' in k: + new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') + elif 'mlp.fc2.' in k: + new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') + else: + new_k = k.replace('mlp.', 'ffn.') + elif 'downsample' in k: + new_k = k + if 'reduction.' in k: + new_v = correct_unfold_reduction_order(v) + elif 'norm.' in k: + new_v = correct_unfold_norm_order(v) + else: + new_k = k + new_k = new_k.replace('layers', 'stages', 1) + elif k.startswith('patch_embed'): + new_v = v + if 'proj' in k: + new_k = k.replace('proj', 'projection') + else: + new_k = k + else: + new_v = v + new_k = k + + new_ckpt['backbone.' + new_k] = new_v + + return new_ckpt diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/conv_upsample.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/conv_upsample.py new file mode 100644 index 000000000..bb5ba7670 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/conv_upsample.py @@ -0,0 +1,67 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, ModuleList + + +class ConvUpsample(BaseModule): + """ConvUpsample performs 2x upsampling after Conv. + + There are several `ConvModule` layers. In the first few layers, upsampling + will be applied after each layer of convolution. The number of upsampling + must be no more than the number of ConvModule layers. + + Args: + in_channels (int): Number of channels in the input feature map. + inner_channels (int): Number of channels produced by the convolution. + num_layers (int): Number of convolution layers. + num_upsample (int | optional): Number of upsampling layer. Must be no + more than num_layers. Upsampling will be applied after the first + ``num_upsample`` layers of convolution. Default: ``num_layers``. + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. Default: None. + init_cfg (dict): Config dict for initialization. Default: None. + kwargs (key word augments): Other augments used in ConvModule. + """ + + def __init__(self, + in_channels, + inner_channels, + num_layers=1, + num_upsample=None, + conv_cfg=None, + norm_cfg=None, + init_cfg=None, + **kwargs): + super(ConvUpsample, self).__init__(init_cfg) + if num_upsample is None: + num_upsample = num_layers + assert num_upsample <= num_layers, \ + f'num_upsample({num_upsample})must be no more than ' \ + f'num_layers({num_layers})' + self.num_layers = num_layers + self.num_upsample = num_upsample + self.conv = ModuleList() + for i in range(num_layers): + self.conv.append( + ConvModule( + in_channels, + inner_channels, + 3, + padding=1, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + in_channels = inner_channels + + def forward(self, x): + num_upsample = self.num_upsample + for i in range(self.num_layers): + x = self.conv[i](x) + if num_upsample > 0: + num_upsample -= 1 + x = F.interpolate( + x, scale_factor=2, mode='bilinear', align_corners=False) + return x diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/csp_layer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/csp_layer.py new file mode 100644 index 000000000..5760b014f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/csp_layer.py @@ -0,0 +1,150 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule + + +class DarknetBottleneck(BaseModule): + """The basic bottleneck block used in Darknet. + + Each ResBlock consists of two ConvModules and the input is added to the + final output. Each ConvModule is composed of Conv, BN, and LeakyReLU. + The first convLayer has filter size of 1x1 and the second one has the + filter size of 3x3. + + Args: + in_channels (int): The input channels of this Module. + out_channels (int): The output channels of this Module. + expansion (int): The kernel size of the convolution. Default: 0.5 + add_identity (bool): Whether to add identity to the out. + Default: True + use_depthwise (bool): Whether to use depthwise separable convolution. + Default: False + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='Swish'). + """ + + def __init__(self, + in_channels, + out_channels, + expansion=0.5, + add_identity=True, + use_depthwise=False, + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + init_cfg=None): + super().__init__(init_cfg) + hidden_channels = int(out_channels * expansion) + conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule + self.conv1 = ConvModule( + in_channels, + hidden_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.conv2 = conv( + hidden_channels, + out_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.add_identity = \ + add_identity and in_channels == out_channels + + def forward(self, x): + identity = x + out = self.conv1(x) + out = self.conv2(out) + + if self.add_identity: + return out + identity + else: + return out + + +class CSPLayer(BaseModule): + """Cross Stage Partial Layer. + + Args: + in_channels (int): The input channels of the CSP layer. + out_channels (int): The output channels of the CSP layer. + expand_ratio (float): Ratio to adjust the number of channels of the + hidden layer. Default: 0.5 + num_blocks (int): Number of blocks. Default: 1 + add_identity (bool): Whether to add identity in blocks. + Default: True + use_depthwise (bool): Whether to depthwise separable convolution in + blocks. Default: False + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN') + act_cfg (dict): Config dict for activation layer. + Default: dict(type='Swish') + """ + + def __init__(self, + in_channels, + out_channels, + expand_ratio=0.5, + num_blocks=1, + add_identity=True, + use_depthwise=False, + conv_cfg=None, + norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), + act_cfg=dict(type='Swish'), + init_cfg=None): + super().__init__(init_cfg) + mid_channels = int(out_channels * expand_ratio) + self.main_conv = ConvModule( + in_channels, + mid_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.short_conv = ConvModule( + in_channels, + mid_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.final_conv = ConvModule( + 2 * mid_channels, + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + self.blocks = nn.Sequential(*[ + DarknetBottleneck( + mid_channels, + mid_channels, + 1.0, + add_identity, + use_depthwise, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) for _ in range(num_blocks) + ]) + + def forward(self, x): + x_short = self.short_conv(x) + + x_main = self.main_conv(x) + x_main = self.blocks(x_main) + + x_final = torch.cat((x_main, x_short), dim=1) + return self.final_conv(x_final) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/gaussian_target.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/gaussian_target.py new file mode 100644 index 000000000..5bf4d558c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/gaussian_target.py @@ -0,0 +1,268 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from math import sqrt + +import torch +import torch.nn.functional as F + + +def gaussian2D(radius, sigma=1, dtype=torch.float32, device='cpu'): + """Generate 2D gaussian kernel. + + Args: + radius (int): Radius of gaussian kernel. + sigma (int): Sigma of gaussian function. Default: 1. + dtype (torch.dtype): Dtype of gaussian tensor. Default: torch.float32. + device (str): Device of gaussian tensor. Default: 'cpu'. + + Returns: + h (Tensor): Gaussian kernel with a + ``(2 * radius + 1) * (2 * radius + 1)`` shape. + """ + x = torch.arange( + -radius, radius + 1, dtype=dtype, device=device).view(1, -1) + y = torch.arange( + -radius, radius + 1, dtype=dtype, device=device).view(-1, 1) + + h = (-(x * x + y * y) / (2 * sigma * sigma)).exp() + + h[h < torch.finfo(h.dtype).eps * h.max()] = 0 + return h + + +def gen_gaussian_target(heatmap, center, radius, k=1): + """Generate 2D gaussian heatmap. + + Args: + heatmap (Tensor): Input heatmap, the gaussian kernel will cover on + it and maintain the max value. + center (list[int]): Coord of gaussian kernel's center. + radius (int): Radius of gaussian kernel. + k (int): Coefficient of gaussian kernel. Default: 1. + + Returns: + out_heatmap (Tensor): Updated heatmap covered by gaussian kernel. + """ + diameter = 2 * radius + 1 + gaussian_kernel = gaussian2D( + radius, sigma=diameter / 6, dtype=heatmap.dtype, device=heatmap.device) + + x, y = center + + height, width = heatmap.shape[:2] + + left, right = min(x, radius), min(width - x, radius + 1) + top, bottom = min(y, radius), min(height - y, radius + 1) + + masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] + masked_gaussian = gaussian_kernel[radius - top:radius + bottom, + radius - left:radius + right] + out_heatmap = heatmap + torch.max( + masked_heatmap, + masked_gaussian * k, + out=out_heatmap[y - top:y + bottom, x - left:x + right]) + + return out_heatmap + + +def gaussian_radius(det_size, min_overlap): + r"""Generate 2D gaussian radius. + + This function is modified from the `official github repo + `_. + + Given ``min_overlap``, radius could computed by a quadratic equation + according to Vieta's formulas. + + There are 3 cases for computing gaussian radius, details are following: + + - Explanation of figure: ``lt`` and ``br`` indicates the left-top and + bottom-right corner of ground truth box. ``x`` indicates the + generated corner at the limited position when ``radius=r``. + + - Case1: one corner is inside the gt box and the other is outside. + + .. code:: text + + |< width >| + + lt-+----------+ - + | | | ^ + +--x----------+--+ + | | | | + | | | | height + | | overlap | | + | | | | + | | | | v + +--+---------br--+ - + | | | + +----------+--x + + To ensure IoU of generated box and gt box is larger than ``min_overlap``: + + .. math:: + \cfrac{(w-r)*(h-r)}{w*h+(w+h)r-r^2} \ge {iou} \quad\Rightarrow\quad + {r^2-(w+h)r+\cfrac{1-iou}{1+iou}*w*h} \ge 0 \\ + {a} = 1,\quad{b} = {-(w+h)},\quad{c} = {\cfrac{1-iou}{1+iou}*w*h} + {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a} + + - Case2: both two corners are inside the gt box. + + .. code:: text + + |< width >| + + lt-+----------+ - + | | | ^ + +--x-------+ | + | | | | + | |overlap| | height + | | | | + | +-------x--+ + | | | v + +----------+-br - + + To ensure IoU of generated box and gt box is larger than ``min_overlap``: + + .. math:: + \cfrac{(w-2*r)*(h-2*r)}{w*h} \ge {iou} \quad\Rightarrow\quad + {4r^2-2(w+h)r+(1-iou)*w*h} \ge 0 \\ + {a} = 4,\quad {b} = {-2(w+h)},\quad {c} = {(1-iou)*w*h} + {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a} + + - Case3: both two corners are outside the gt box. + + .. code:: text + + |< width >| + + x--+----------------+ + | | | + +-lt-------------+ | - + | | | | ^ + | | | | + | | overlap | | height + | | | | + | | | | v + | +------------br--+ - + | | | + +----------------+--x + + To ensure IoU of generated box and gt box is larger than ``min_overlap``: + + .. math:: + \cfrac{w*h}{(w+2*r)*(h+2*r)} \ge {iou} \quad\Rightarrow\quad + {4*iou*r^2+2*iou*(w+h)r+(iou-1)*w*h} \le 0 \\ + {a} = {4*iou},\quad {b} = {2*iou*(w+h)},\quad {c} = {(iou-1)*w*h} \\ + {r} \le \cfrac{-b+\sqrt{b^2-4*a*c}}{2*a} + + Args: + det_size (list[int]): Shape of object. + min_overlap (float): Min IoU with ground truth for boxes generated by + keypoints inside the gaussian kernel. + + Returns: + radius (int): Radius of gaussian kernel. + """ + height, width = det_size + + a1 = 1 + b1 = (height + width) + c1 = width * height * (1 - min_overlap) / (1 + min_overlap) + sq1 = sqrt(b1**2 - 4 * a1 * c1) + r1 = (b1 - sq1) / (2 * a1) + + a2 = 4 + b2 = 2 * (height + width) + c2 = (1 - min_overlap) * width * height + sq2 = sqrt(b2**2 - 4 * a2 * c2) + r2 = (b2 - sq2) / (2 * a2) + + a3 = 4 * min_overlap + b3 = -2 * min_overlap * (height + width) + c3 = (min_overlap - 1) * width * height + sq3 = sqrt(b3**2 - 4 * a3 * c3) + r3 = (b3 + sq3) / (2 * a3) + return min(r1, r2, r3) + + +def get_local_maximum(heat, kernel=3): + """Extract local maximum pixel with given kernel. + + Args: + heat (Tensor): Target heatmap. + kernel (int): Kernel size of max pooling. Default: 3. + + Returns: + heat (Tensor): A heatmap where local maximum pixels maintain its + own value and other positions are 0. + """ + pad = (kernel - 1) // 2 + hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad) + keep = (hmax == heat).float() + return heat * keep + + +def get_topk_from_heatmap(scores, k=20): + """Get top k positions from heatmap. + + Args: + scores (Tensor): Target heatmap with shape + [batch, num_classes, height, width]. + k (int): Target number. Default: 20. + + Returns: + tuple[torch.Tensor]: Scores, indexes, categories and coords of + topk keypoint. Containing following Tensors: + + - topk_scores (Tensor): Max scores of each topk keypoint. + - topk_inds (Tensor): Indexes of each topk keypoint. + - topk_clses (Tensor): Categories of each topk keypoint. + - topk_ys (Tensor): Y-coord of each topk keypoint. + - topk_xs (Tensor): X-coord of each topk keypoint. + """ + batch, _, height, width = scores.size() + topk_scores, topk_inds = torch.topk(scores.view(batch, -1), k) + topk_clses = topk_inds // (height * width) + topk_inds = topk_inds % (height * width) + topk_ys = topk_inds // width + topk_xs = (topk_inds % width).int().float() + return topk_scores, topk_inds, topk_clses, topk_ys, topk_xs + + +def gather_feat(feat, ind, mask=None): + """Gather feature according to index. + + Args: + feat (Tensor): Target feature map. + ind (Tensor): Target coord index. + mask (Tensor | None): Mask of feature map. Default: None. + + Returns: + feat (Tensor): Gathered feature. + """ + dim = feat.size(2) + ind = ind.unsqueeze(2).repeat(1, 1, dim) + feat = feat.gather(1, ind) + if mask is not None: + mask = mask.unsqueeze(2).expand_as(feat) + feat = feat[mask] + feat = feat.view(-1, dim) + return feat + + +def transpose_and_gather_feat(feat, ind): + """Transpose and gather feature according to index. + + Args: + feat (Tensor): Target feature map. + ind (Tensor): Target coord index. + + Returns: + feat (Tensor): Transposed and gathered feature. + """ + feat = feat.permute(0, 2, 3, 1).contiguous() + feat = feat.view(feat.size(0), -1, feat.size(3)) + feat = gather_feat(feat, ind) + return feat diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/inverted_residual.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/inverted_residual.py new file mode 100644 index 000000000..1f241ae3e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/inverted_residual.py @@ -0,0 +1,130 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import ConvModule +from mmcv.cnn.bricks import DropPath +from mmcv.runner import BaseModule + +from .se_layer import SELayer + + +class InvertedResidual(BaseModule): + """Inverted Residual Block. + + Args: + in_channels (int): The input channels of this Module. + out_channels (int): The output channels of this Module. + mid_channels (int): The input channels of the depthwise convolution. + kernel_size (int): The kernel size of the depthwise convolution. + Default: 3. + stride (int): The stride of the depthwise convolution. Default: 1. + se_cfg (dict): Config dict for se layer. Default: None, which means no + se layer. + with_expand_conv (bool): Use expand conv or not. If set False, + mid_channels must be the same with in_channels. + Default: True. + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU'). + drop_path_rate (float): stochastic depth rate. Defaults to 0. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Returns: + Tensor: The output tensor. + """ + + def __init__(self, + in_channels, + out_channels, + mid_channels, + kernel_size=3, + stride=1, + se_cfg=None, + with_expand_conv=True, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + drop_path_rate=0., + with_cp=False, + init_cfg=None): + super(InvertedResidual, self).__init__(init_cfg) + self.with_res_shortcut = (stride == 1 and in_channels == out_channels) + assert stride in [1, 2], f'stride must in [1, 2]. ' \ + f'But received {stride}.' + self.with_cp = with_cp + self.drop_path = DropPath( + drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.with_se = se_cfg is not None + self.with_expand_conv = with_expand_conv + + if self.with_se: + assert isinstance(se_cfg, dict) + if not self.with_expand_conv: + assert mid_channels == in_channels + + if self.with_expand_conv: + self.expand_conv = ConvModule( + in_channels=in_channels, + out_channels=mid_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.depthwise_conv = ConvModule( + in_channels=mid_channels, + out_channels=mid_channels, + kernel_size=kernel_size, + stride=stride, + padding=kernel_size // 2, + groups=mid_channels, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + if self.with_se: + self.se = SELayer(**se_cfg) + + self.linear_conv = ConvModule( + in_channels=mid_channels, + out_channels=out_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + def forward(self, x): + + def _inner_forward(x): + out = x + + if self.with_expand_conv: + out = self.expand_conv(out) + + out = self.depthwise_conv(out) + + if self.with_se: + out = self.se(out) + + out = self.linear_conv(out) + + if self.with_res_shortcut: + return x + self.drop_path(out) + else: + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/make_divisible.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/make_divisible.py new file mode 100644 index 000000000..ed42c2eee --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/make_divisible.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +def make_divisible(value, divisor, min_value=None, min_ratio=0.9): + """Make divisible function. + + This function rounds the channel number to the nearest value that can be + divisible by the divisor. It is taken from the original tf repo. It ensures + that all layers have a channel number that is divisible by divisor. It can + be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa + + Args: + value (int): The original channel number. + divisor (int): The divisor to fully divide the channel number. + min_value (int): The minimum value of the output channel. + Default: None, means that the minimum value equal to the divisor. + min_ratio (float): The minimum ratio of the rounded channel number to + the original channel number. Default: 0.9. + + Returns: + int: The modified output channel number. + """ + + if min_value is None: + min_value = divisor + new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than (1-min_ratio). + if new_value < min_ratio * value: + new_value += divisor + return new_value diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/misc.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/misc.py new file mode 100644 index 000000000..8f9be9abb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/misc.py @@ -0,0 +1,72 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from torch.autograd import Function +from torch.nn import functional as F + + +class SigmoidGeometricMean(Function): + """Forward and backward function of geometric mean of two sigmoid + functions. + + This implementation with analytical gradient function substitutes + the autograd function of (x.sigmoid() * y.sigmoid()).sqrt(). The + original implementation incurs none during gradient backprapagation + if both x and y are very small values. + """ + + @staticmethod + def forward(ctx, x, y): + x_sigmoid = x.sigmoid() + y_sigmoid = y.sigmoid() + z = (x_sigmoid * y_sigmoid).sqrt() + ctx.save_for_backward(x_sigmoid, y_sigmoid, z) + return z + + @staticmethod + def backward(ctx, grad_output): + x_sigmoid, y_sigmoid, z = ctx.saved_tensors + grad_x = grad_output * z * (1 - x_sigmoid) / 2 + grad_y = grad_output * z * (1 - y_sigmoid) / 2 + return grad_x, grad_y + + +sigmoid_geometric_mean = SigmoidGeometricMean.apply + + +def interpolate_as(source, target, mode='bilinear', align_corners=False): + """Interpolate the `source` to the shape of the `target`. + + The `source` must be a Tensor, but the `target` can be a Tensor or a + np.ndarray with the shape (..., target_h, target_w). + + Args: + source (Tensor): A 3D/4D Tensor with the shape (N, H, W) or + (N, C, H, W). + target (Tensor | np.ndarray): The interpolation target with the shape + (..., target_h, target_w). + mode (str): Algorithm used for interpolation. The options are the + same as those in F.interpolate(). Default: ``'bilinear'``. + align_corners (bool): The same as the argument in F.interpolate(). + + Returns: + Tensor: The interpolated source Tensor. + """ + assert len(target.shape) >= 2 + + def _interpolate_as(source, target, mode='bilinear', align_corners=False): + """Interpolate the `source` (4D) to the shape of the `target`.""" + target_h, target_w = target.shape[-2:] + source_h, source_w = source.shape[-2:] + if target_h != source_h or target_w != source_w: + source = F.interpolate( + source, + size=(target_h, target_w), + mode=mode, + align_corners=align_corners) + return source + + if len(source.shape) == 3: + source = source[:, None, :, :] + source = _interpolate_as(source, target, mode, align_corners) + return source[:, 0, :, :] + else: + return _interpolate_as(source, target, mode, align_corners) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/normed_predictor.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/normed_predictor.py new file mode 100644 index 000000000..f0eeef7db --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/normed_predictor.py @@ -0,0 +1,88 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import CONV_LAYERS + +from .builder import LINEAR_LAYERS + + +@LINEAR_LAYERS.register_module(name='NormedLinear') +class NormedLinear(nn.Linear): + """Normalized Linear Layer. + + Args: + tempeature (float, optional): Tempeature term. Default to 20. + power (int, optional): Power term. Default to 1.0. + eps (float, optional): The minimal value of divisor to + keep numerical stability. Default to 1e-6. + """ + + def __init__(self, *args, tempearture=20, power=1.0, eps=1e-6, **kwargs): + super(NormedLinear, self).__init__(*args, **kwargs) + self.tempearture = tempearture + self.power = power + self.eps = eps + self.init_weights() + + def init_weights(self): + nn.init.normal_(self.weight, mean=0, std=0.01) + if self.bias is not None: + nn.init.constant_(self.bias, 0) + + def forward(self, x): + weight_ = self.weight / ( + self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) + x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) + x_ = x_ * self.tempearture + + return F.linear(x_, weight_, self.bias) + + +@CONV_LAYERS.register_module(name='NormedConv2d') +class NormedConv2d(nn.Conv2d): + """Normalized Conv2d Layer. + + Args: + tempeature (float, optional): Tempeature term. Default to 20. + power (int, optional): Power term. Default to 1.0. + eps (float, optional): The minimal value of divisor to + keep numerical stability. Default to 1e-6. + norm_over_kernel (bool, optional): Normalize over kernel. + Default to False. + """ + + def __init__(self, + *args, + tempearture=20, + power=1.0, + eps=1e-6, + norm_over_kernel=False, + **kwargs): + super(NormedConv2d, self).__init__(*args, **kwargs) + self.tempearture = tempearture + self.power = power + self.norm_over_kernel = norm_over_kernel + self.eps = eps + + def forward(self, x): + if not self.norm_over_kernel: + weight_ = self.weight / ( + self.weight.norm(dim=1, keepdim=True).pow(self.power) + + self.eps) + else: + weight_ = self.weight / ( + self.weight.view(self.weight.size(0), -1).norm( + dim=1, keepdim=True).pow(self.power)[..., None, None] + + self.eps) + x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) + x_ = x_ * self.tempearture + + if hasattr(self, 'conv2d_forward'): + x_ = self.conv2d_forward(x_, weight_) + else: + if torch.__version__ >= '1.8': + x_ = self._conv_forward(x_, weight_, self.bias) + else: + x_ = self._conv_forward(x_, weight_) + return x_ diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/panoptic_gt_processing.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/panoptic_gt_processing.py new file mode 100644 index 000000000..513f64494 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/panoptic_gt_processing.py @@ -0,0 +1,62 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def preprocess_panoptic_gt(gt_labels, gt_masks, gt_semantic_seg, num_things, + num_stuff): + """Preprocess the ground truth for a image. + + Args: + gt_labels (Tensor): Ground truth labels of each bbox, + with shape (num_gts, ). + gt_masks (BitmapMasks): Ground truth masks of each instances + of a image, shape (num_gts, h, w). + gt_semantic_seg (Tensor): Ground truth of semantic + segmentation with the shape (1, h, w). + [0, num_thing_class - 1] means things, + [num_thing_class, num_class-1] means stuff, + 255 means VOID. + target_shape (tuple[int]): Shape of output mask_preds. + Resize the masks to shape of mask_preds. + + Returns: + tuple: a tuple containing the following targets. + + - labels (Tensor): Ground truth class indices for a + image, with shape (n, ), n is the sum of number + of stuff type and number of instance in a image. + - masks (Tensor): Ground truth mask for a image, with + shape (n, h, w). + """ + num_classes = num_things + num_stuff + things_labels = gt_labels + gt_semantic_seg = gt_semantic_seg.squeeze(0) + + things_masks = gt_masks.pad(gt_semantic_seg.shape[-2:], pad_val=0)\ + .to_tensor(dtype=torch.bool, device=gt_labels.device) + + semantic_labels = torch.unique( + gt_semantic_seg, + sorted=False, + return_inverse=False, + return_counts=False) + stuff_masks_list = [] + stuff_labels_list = [] + for label in semantic_labels: + if label < num_things or label >= num_classes: + continue + stuff_mask = gt_semantic_seg == label + stuff_masks_list.append(stuff_mask) + stuff_labels_list.append(label) + + if len(stuff_masks_list) > 0: + stuff_masks = torch.stack(stuff_masks_list, dim=0) + stuff_labels = torch.stack(stuff_labels_list, dim=0) + labels = torch.cat([things_labels, stuff_labels], dim=0) + masks = torch.cat([things_masks, stuff_masks], dim=0) + else: + labels = things_labels + masks = things_masks + + masks = masks.long() + return labels, masks diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/point_sample.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/point_sample.py new file mode 100644 index 000000000..c2c3cf91c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/point_sample.py @@ -0,0 +1,87 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import point_sample + + +def get_uncertainty(mask_pred, labels): + """Estimate uncertainty based on pred logits. + + We estimate uncertainty as L1 distance between 0.0 and the logits + prediction in 'mask_pred' for the foreground class in `classes`. + + Args: + mask_pred (Tensor): mask predication logits, shape (num_rois, + num_classes, mask_height, mask_width). + + labels (list[Tensor]): Either predicted or ground truth label for + each predicted mask, of length num_rois. + + Returns: + scores (Tensor): Uncertainty scores with the most uncertain + locations having the highest uncertainty score, + shape (num_rois, 1, mask_height, mask_width) + """ + if mask_pred.shape[1] == 1: + gt_class_logits = mask_pred.clone() + else: + inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) + gt_class_logits = mask_pred[inds, labels].unsqueeze(1) + return -torch.abs(gt_class_logits) + + +def get_uncertain_point_coords_with_randomness(mask_pred, labels, num_points, + oversample_ratio, + importance_sample_ratio): + """Get ``num_points`` most uncertain points with random points during + train. + + Sample points in [0, 1] x [0, 1] coordinate space based on their + uncertainty. The uncertainties are calculated for each point using + 'get_uncertainty()' function that takes point's logit prediction as + input. + + Args: + mask_pred (Tensor): A tensor of shape (num_rois, num_classes, + mask_height, mask_width) for class-specific or class-agnostic + prediction. + labels (list): The ground truth class for each instance. + num_points (int): The number of points to sample. + oversample_ratio (int): Oversampling parameter. + importance_sample_ratio (float): Ratio of points that are sampled + via importnace sampling. + + Returns: + point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) + that contains the coordinates sampled points. + """ + assert oversample_ratio >= 1 + assert 0 <= importance_sample_ratio <= 1 + batch_size = mask_pred.shape[0] + num_sampled = int(num_points * oversample_ratio) + point_coords = torch.rand( + batch_size, num_sampled, 2, device=mask_pred.device) + point_logits = point_sample(mask_pred, point_coords) + # It is crucial to calculate uncertainty based on the sampled + # prediction value for the points. Calculating uncertainties of the + # coarse predictions first and sampling them for points leads to + # incorrect results. To illustrate this: assume uncertainty func( + # logits)=-abs(logits), a sampled point between two coarse + # predictions with -1 and 1 logits has 0 logits, and therefore 0 + # uncertainty value. However, if we calculate uncertainties for the + # coarse predictions first, both will have -1 uncertainty, + # and sampled point will get -1 uncertainty. + point_uncertainties = get_uncertainty(point_logits, labels) + num_uncertain_points = int(importance_sample_ratio * num_points) + num_random_points = num_points - num_uncertain_points + idx = torch.topk( + point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] + shift = num_sampled * torch.arange( + batch_size, dtype=torch.long, device=mask_pred.device) + idx += shift[:, None] + point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( + batch_size, num_uncertain_points, 2) + if num_random_points > 0: + rand_roi_coords = torch.rand( + batch_size, num_random_points, 2, device=mask_pred.device) + point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) + return point_coords diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/positional_encoding.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/positional_encoding.py new file mode 100644 index 000000000..dd29cd656 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/positional_encoding.py @@ -0,0 +1,163 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING +from mmcv.runner import BaseModule + + +@POSITIONAL_ENCODING.register_module() +class SinePositionalEncoding(BaseModule): + """Position encoding with sine and cosine functions. + + See `End-to-End Object Detection with Transformers + `_ for details. + + Args: + num_feats (int): The feature dimension for each position + along x-axis or y-axis. Note the final returned dimension + for each position is 2 times of this value. + temperature (int, optional): The temperature used for scaling + the position embedding. Defaults to 10000. + normalize (bool, optional): Whether to normalize the position + embedding. Defaults to False. + scale (float, optional): A scale factor that scales the position + embedding. The scale will be used only when `normalize` is True. + Defaults to 2*pi. + eps (float, optional): A value added to the denominator for + numerical stability. Defaults to 1e-6. + offset (float): offset add to embed when do the normalization. + Defaults to 0. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + num_feats, + temperature=10000, + normalize=False, + scale=2 * math.pi, + eps=1e-6, + offset=0., + init_cfg=None): + super(SinePositionalEncoding, self).__init__(init_cfg) + if normalize: + assert isinstance(scale, (float, int)), 'when normalize is set,' \ + 'scale should be provided and in float or int type, ' \ + f'found {type(scale)}' + self.num_feats = num_feats + self.temperature = temperature + self.normalize = normalize + self.scale = scale + self.eps = eps + self.offset = offset + + def forward(self, mask): + """Forward function for `SinePositionalEncoding`. + + Args: + mask (Tensor): ByteTensor mask. Non-zero values representing + ignored positions, while zero values means valid positions + for this image. Shape [bs, h, w]. + + Returns: + pos (Tensor): Returned position embedding with shape + [bs, num_feats*2, h, w]. + """ + # For convenience of exporting to ONNX, it's required to convert + # `masks` from bool to int. + mask = mask.to(torch.int) + not_mask = 1 - mask # logical_not + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + y_embed = (y_embed + self.offset) / \ + (y_embed[:, -1:, :] + self.eps) * self.scale + x_embed = (x_embed + self.offset) / \ + (x_embed[:, :, -1:] + self.eps) * self.scale + dim_t = torch.arange( + self.num_feats, dtype=torch.float32, device=mask.device) + dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats) + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + # use `view` instead of `flatten` for dynamically exporting to ONNX + B, H, W = mask.size() + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), + dim=4).view(B, H, W, -1) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), + dim=4).view(B, H, W, -1) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + def __repr__(self): + """str: a string that describes the module""" + repr_str = self.__class__.__name__ + repr_str += f'(num_feats={self.num_feats}, ' + repr_str += f'temperature={self.temperature}, ' + repr_str += f'normalize={self.normalize}, ' + repr_str += f'scale={self.scale}, ' + repr_str += f'eps={self.eps})' + return repr_str + + +@POSITIONAL_ENCODING.register_module() +class LearnedPositionalEncoding(BaseModule): + """Position embedding with learnable embedding weights. + + Args: + num_feats (int): The feature dimension for each position + along x-axis or y-axis. The final returned dimension for + each position is 2 times of this value. + row_num_embed (int, optional): The dictionary size of row embeddings. + Default 50. + col_num_embed (int, optional): The dictionary size of col embeddings. + Default 50. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + num_feats, + row_num_embed=50, + col_num_embed=50, + init_cfg=dict(type='Uniform', layer='Embedding')): + super(LearnedPositionalEncoding, self).__init__(init_cfg) + self.row_embed = nn.Embedding(row_num_embed, num_feats) + self.col_embed = nn.Embedding(col_num_embed, num_feats) + self.num_feats = num_feats + self.row_num_embed = row_num_embed + self.col_num_embed = col_num_embed + + def forward(self, mask): + """Forward function for `LearnedPositionalEncoding`. + + Args: + mask (Tensor): ByteTensor mask. Non-zero values representing + ignored positions, while zero values means valid positions + for this image. Shape [bs, h, w]. + + Returns: + pos (Tensor): Returned position embedding with shape + [bs, num_feats*2, h, w]. + """ + h, w = mask.shape[-2:] + x = torch.arange(w, device=mask.device) + y = torch.arange(h, device=mask.device) + x_embed = self.col_embed(x) + y_embed = self.row_embed(y) + pos = torch.cat( + (x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat( + 1, w, 1)), + dim=-1).permute(2, 0, + 1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1) + return pos + + def __repr__(self): + """str: a string that describes the module""" + repr_str = self.__class__.__name__ + repr_str += f'(num_feats={self.num_feats}, ' + repr_str += f'row_num_embed={self.row_num_embed}, ' + repr_str += f'col_num_embed={self.col_num_embed})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/res_layer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/res_layer.py new file mode 100644 index 000000000..5c3e89fb0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/res_layer.py @@ -0,0 +1,190 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule, Sequential +from torch import nn as nn + + +class ResLayer(Sequential): + """ResLayer to build ResNet style backbone. + + Args: + block (nn.Module): block used to build ResLayer. + inplanes (int): inplanes of block. + planes (int): planes of block. + num_blocks (int): number of blocks. + stride (int): stride of the first block. Default: 1 + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottleneck. Default: False + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None + norm_cfg (dict): dictionary to construct and config norm layer. + Default: dict(type='BN') + downsample_first (bool): Downsample at the first block or last block. + False for Hourglass, True for ResNet. Default: True + """ + + def __init__(self, + block, + inplanes, + planes, + num_blocks, + stride=1, + avg_down=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + downsample_first=True, + **kwargs): + self.block = block + + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = [] + conv_stride = stride + if avg_down: + conv_stride = 1 + downsample.append( + nn.AvgPool2d( + kernel_size=stride, + stride=stride, + ceil_mode=True, + count_include_pad=False)) + downsample.extend([ + build_conv_layer( + conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=conv_stride, + bias=False), + build_norm_layer(norm_cfg, planes * block.expansion)[1] + ]) + downsample = nn.Sequential(*downsample) + + layers = [] + if downsample_first: + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + inplanes = planes * block.expansion + for _ in range(1, num_blocks): + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + + else: # downsample_first=False is for HourglassModule + for _ in range(num_blocks - 1): + layers.append( + block( + inplanes=inplanes, + planes=inplanes, + stride=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + super(ResLayer, self).__init__(*layers) + + +class SimplifiedBasicBlock(BaseModule): + """Simplified version of original basic residual block. This is used in + `SCNet `_. + + - Norm layer is now optional + - Last ReLU in forward function is removed + """ + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + dilation=1, + downsample=None, + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + init_fg=None): + super(SimplifiedBasicBlock, self).__init__(init_fg) + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + assert not with_cp, 'Not implemented yet.' + self.with_norm = norm_cfg is not None + with_bias = True if norm_cfg is None else False + self.conv1 = build_conv_layer( + conv_cfg, + inplanes, + planes, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + bias=with_bias) + if self.with_norm: + self.norm1_name, norm1 = build_norm_layer( + norm_cfg, planes, postfix=1) + self.add_module(self.norm1_name, norm1) + self.conv2 = build_conv_layer( + conv_cfg, planes, planes, 3, padding=1, bias=with_bias) + if self.with_norm: + self.norm2_name, norm2 = build_norm_layer( + norm_cfg, planes, postfix=2) + self.add_module(self.norm2_name, norm2) + + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.with_cp = with_cp + + @property + def norm1(self): + """nn.Module: normalization layer after the first convolution layer""" + return getattr(self, self.norm1_name) if self.with_norm else None + + @property + def norm2(self): + """nn.Module: normalization layer after the second convolution layer""" + return getattr(self, self.norm2_name) if self.with_norm else None + + def forward(self, x): + """Forward function.""" + + identity = x + + out = self.conv1(x) + if self.with_norm: + out = self.norm1(out) + out = self.relu(out) + + out = self.conv2(out) + if self.with_norm: + out = self.norm2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/se_layer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/se_layer.py new file mode 100644 index 000000000..a2492103b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/se_layer.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + + +class SELayer(BaseModule): + """Squeeze-and-Excitation Module. + + Args: + channels (int): The input (and output) channels of the SE layer. + ratio (int): Squeeze ratio in SELayer, the intermediate channel will be + ``int(channels/ratio)``. Default: 16. + conv_cfg (None or dict): Config dict for convolution layer. + Default: None, which means using conv2d. + act_cfg (dict or Sequence[dict]): Config dict for activation layer. + If act_cfg is a dict, two activation layers will be configurated + by this dict. If act_cfg is a sequence of dicts, the first + activation layer will be configurated by the first dict and the + second activation layer will be configurated by the second dict. + Default: (dict(type='ReLU'), dict(type='Sigmoid')) + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + channels, + ratio=16, + conv_cfg=None, + act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), + init_cfg=None): + super(SELayer, self).__init__(init_cfg) + if isinstance(act_cfg, dict): + act_cfg = (act_cfg, act_cfg) + assert len(act_cfg) == 2 + assert mmcv.is_tuple_of(act_cfg, dict) + self.global_avgpool = nn.AdaptiveAvgPool2d(1) + self.conv1 = ConvModule( + in_channels=channels, + out_channels=int(channels / ratio), + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[0]) + self.conv2 = ConvModule( + in_channels=int(channels / ratio), + out_channels=channels, + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[1]) + + def forward(self, x): + out = self.global_avgpool(x) + out = self.conv1(out) + out = self.conv2(out) + return x * out + + +class DyReLU(BaseModule): + """Dynamic ReLU (DyReLU) module. + + See `Dynamic ReLU `_ for details. + Current implementation is specialized for task-aware attention in DyHead. + HSigmoid arguments in default act_cfg follow DyHead official code. + https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py + + Args: + channels (int): The input (and output) channels of DyReLU module. + ratio (int): Squeeze ratio in Squeeze-and-Excitation-like module, + the intermediate channel will be ``int(channels/ratio)``. + Default: 4. + conv_cfg (None or dict): Config dict for convolution layer. + Default: None, which means using conv2d. + act_cfg (dict or Sequence[dict]): Config dict for activation layer. + If act_cfg is a dict, two activation layers will be configurated + by this dict. If act_cfg is a sequence of dicts, the first + activation layer will be configurated by the first dict and the + second activation layer will be configurated by the second dict. + Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, + divisor=6.0)) + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + channels, + ratio=4, + conv_cfg=None, + act_cfg=(dict(type='ReLU'), + dict(type='HSigmoid', bias=3.0, divisor=6.0)), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + if isinstance(act_cfg, dict): + act_cfg = (act_cfg, act_cfg) + assert len(act_cfg) == 2 + assert mmcv.is_tuple_of(act_cfg, dict) + self.channels = channels + self.expansion = 4 # for a1, b1, a2, b2 + self.global_avgpool = nn.AdaptiveAvgPool2d(1) + self.conv1 = ConvModule( + in_channels=channels, + out_channels=int(channels / ratio), + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[0]) + self.conv2 = ConvModule( + in_channels=int(channels / ratio), + out_channels=channels * self.expansion, + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[1]) + + def forward(self, x): + """Forward function.""" + coeffs = self.global_avgpool(x) + coeffs = self.conv1(coeffs) + coeffs = self.conv2(coeffs) - 0.5 # value range: [-0.5, 0.5] + a1, b1, a2, b2 = torch.split(coeffs, self.channels, dim=1) + a1 = a1 * 2.0 + 1.0 # [-1.0, 1.0] + 1.0 + a2 = a2 * 2.0 # [-1.0, 1.0] + out = torch.max(x * a1 + b1, x * a2 + b2) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/transformer.py b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/transformer.py new file mode 100644 index 000000000..3c390c83a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/models/utils/transformer.py @@ -0,0 +1,1167 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +import warnings +from typing import Sequence + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import (build_activation_layer, build_conv_layer, + build_norm_layer, xavier_init) +from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER, + TRANSFORMER_LAYER_SEQUENCE) +from mmcv.cnn.bricks.transformer import (BaseTransformerLayer, + TransformerLayerSequence, + build_transformer_layer_sequence) +from mmcv.runner.base_module import BaseModule +from mmcv.utils import to_2tuple +from torch.nn.init import normal_ + +from mmdet.models.utils.builder import TRANSFORMER + +try: + from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention + +except ImportError: + warnings.warn( + '`MultiScaleDeformableAttention` in MMCV has been moved to ' + '`mmcv.ops.multi_scale_deform_attn`, please update your MMCV') + from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention + + +def nlc_to_nchw(x, hw_shape): + """Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. + + Args: + x (Tensor): The input tensor of shape [N, L, C] before conversion. + hw_shape (Sequence[int]): The height and width of output feature map. + + Returns: + Tensor: The output tensor of shape [N, C, H, W] after conversion. + """ + H, W = hw_shape + assert len(x.shape) == 3 + B, L, C = x.shape + assert L == H * W, 'The seq_len does not match H, W' + return x.transpose(1, 2).reshape(B, C, H, W).contiguous() + + +def nchw_to_nlc(x): + """Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. + + Args: + x (Tensor): The input tensor of shape [N, C, H, W] before conversion. + + Returns: + Tensor: The output tensor of shape [N, L, C] after conversion. + """ + assert len(x.shape) == 4 + return x.flatten(2).transpose(1, 2).contiguous() + + +class AdaptivePadding(nn.Module): + """Applies padding to input (if needed) so that input can get fully covered + by filter you specified. It support two modes "same" and "corner". The + "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around + input. The "corner" mode would pad zero to bottom right. + + Args: + kernel_size (int | tuple): Size of the kernel: + stride (int | tuple): Stride of the filter. Default: 1: + dilation (int | tuple): Spacing between kernel elements. + Default: 1 + padding (str): Support "same" and "corner", "corner" mode + would pad zero to bottom right, and "same" mode would + pad zero around input. Default: "corner". + Example: + >>> kernel_size = 16 + >>> stride = 16 + >>> dilation = 1 + >>> input = torch.rand(1, 1, 15, 17) + >>> adap_pad = AdaptivePadding( + >>> kernel_size=kernel_size, + >>> stride=stride, + >>> dilation=dilation, + >>> padding="corner") + >>> out = adap_pad(input) + >>> assert (out.shape[2], out.shape[3]) == (16, 32) + >>> input = torch.rand(1, 1, 16, 17) + >>> out = adap_pad(input) + >>> assert (out.shape[2], out.shape[3]) == (16, 32) + """ + + def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): + + super(AdaptivePadding, self).__init__() + + assert padding in ('same', 'corner') + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + padding = to_2tuple(padding) + dilation = to_2tuple(dilation) + + self.padding = padding + self.kernel_size = kernel_size + self.stride = stride + self.dilation = dilation + + def get_pad_shape(self, input_shape): + input_h, input_w = input_shape + kernel_h, kernel_w = self.kernel_size + stride_h, stride_w = self.stride + output_h = math.ceil(input_h / stride_h) + output_w = math.ceil(input_w / stride_w) + pad_h = max((output_h - 1) * stride_h + + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) + pad_w = max((output_w - 1) * stride_w + + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) + return pad_h, pad_w + + def forward(self, x): + pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) + if pad_h > 0 or pad_w > 0: + if self.padding == 'corner': + x = F.pad(x, [0, pad_w, 0, pad_h]) + elif self.padding == 'same': + x = F.pad(x, [ + pad_w // 2, pad_w - pad_w // 2, pad_h // 2, + pad_h - pad_h // 2 + ]) + return x + + +class PatchEmbed(BaseModule): + """Image to Patch Embedding. + + We use a conv layer to implement PatchEmbed. + + Args: + in_channels (int): The num of input channels. Default: 3 + embed_dims (int): The dimensions of embedding. Default: 768 + conv_type (str): The config dict for embedding + conv layer type selection. Default: "Conv2d. + kernel_size (int): The kernel_size of embedding conv. Default: 16. + stride (int): The slide stride of embedding conv. + Default: None (Would be set as `kernel_size`). + padding (int | tuple | string ): The padding length of + embedding conv. When it is a string, it means the mode + of adaptive padding, support "same" and "corner" now. + Default: "corner". + dilation (int): The dilation rate of embedding conv. Default: 1. + bias (bool): Bias of embed conv. Default: True. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + input_size (int | tuple | None): The size of input, which will be + used to calculate the out size. Only work when `dynamic_size` + is False. Default: None. + init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. + Default: None. + """ + + def __init__( + self, + in_channels=3, + embed_dims=768, + conv_type='Conv2d', + kernel_size=16, + stride=16, + padding='corner', + dilation=1, + bias=True, + norm_cfg=None, + input_size=None, + init_cfg=None, + ): + super(PatchEmbed, self).__init__(init_cfg=init_cfg) + + self.embed_dims = embed_dims + if stride is None: + stride = kernel_size + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + + if isinstance(padding, str): + self.adap_padding = AdaptivePadding( + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=padding) + # disable the padding of conv + padding = 0 + else: + self.adap_padding = None + padding = to_2tuple(padding) + + self.projection = build_conv_layer( + dict(type=conv_type), + in_channels=in_channels, + out_channels=embed_dims, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=bias) + + if norm_cfg is not None: + self.norm = build_norm_layer(norm_cfg, embed_dims)[1] + else: + self.norm = None + + if input_size: + input_size = to_2tuple(input_size) + # `init_out_size` would be used outside to + # calculate the num_patches + # when `use_abs_pos_embed` outside + self.init_input_size = input_size + if self.adap_padding: + pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) + input_h, input_w = input_size + input_h = input_h + pad_h + input_w = input_w + pad_w + input_size = (input_h, input_w) + + # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html + h_out = (input_size[0] + 2 * padding[0] - dilation[0] * + (kernel_size[0] - 1) - 1) // stride[0] + 1 + w_out = (input_size[1] + 2 * padding[1] - dilation[1] * + (kernel_size[1] - 1) - 1) // stride[1] + 1 + self.init_out_size = (h_out, w_out) + else: + self.init_input_size = None + self.init_out_size = None + + def forward(self, x): + """ + Args: + x (Tensor): Has shape (B, C, H, W). In most case, C is 3. + + Returns: + tuple: Contains merged results and its spatial shape. + + - x (Tensor): Has shape (B, out_h * out_w, embed_dims) + - out_size (tuple[int]): Spatial shape of x, arrange as + (out_h, out_w). + """ + + if self.adap_padding: + x = self.adap_padding(x) + + x = self.projection(x) + out_size = (x.shape[2], x.shape[3]) + x = x.flatten(2).transpose(1, 2) + if self.norm is not None: + x = self.norm(x) + return x, out_size + + +class PatchMerging(BaseModule): + """Merge patch feature map. + + This layer groups feature map by kernel_size, and applies norm and linear + layers to the grouped feature map. Our implementation uses `nn.Unfold` to + merge patch, which is about 25% faster than original implementation. + Instead, we need to modify pretrained models for compatibility. + + Args: + in_channels (int): The num of input channels. + to gets fully covered by filter and stride you specified.. + Default: True. + out_channels (int): The num of output channels. + kernel_size (int | tuple, optional): the kernel size in the unfold + layer. Defaults to 2. + stride (int | tuple, optional): the stride of the sliding blocks in the + unfold layer. Default: None. (Would be set as `kernel_size`) + padding (int | tuple | string ): The padding length of + embedding conv. When it is a string, it means the mode + of adaptive padding, support "same" and "corner" now. + Default: "corner". + dilation (int | tuple, optional): dilation parameter in the unfold + layer. Default: 1. + bias (bool, optional): Whether to add bias in linear layer or not. + Defaults: False. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: dict(type='LN'). + init_cfg (dict, optional): The extra config for initialization. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=2, + stride=None, + padding='corner', + dilation=1, + bias=False, + norm_cfg=dict(type='LN'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + if stride: + stride = stride + else: + stride = kernel_size + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + + if isinstance(padding, str): + self.adap_padding = AdaptivePadding( + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=padding) + # disable the padding of unfold + padding = 0 + else: + self.adap_padding = None + + padding = to_2tuple(padding) + self.sampler = nn.Unfold( + kernel_size=kernel_size, + dilation=dilation, + padding=padding, + stride=stride) + + sample_dim = kernel_size[0] * kernel_size[1] * in_channels + + if norm_cfg is not None: + self.norm = build_norm_layer(norm_cfg, sample_dim)[1] + else: + self.norm = None + + self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) + + def forward(self, x, input_size): + """ + Args: + x (Tensor): Has shape (B, H*W, C_in). + input_size (tuple[int]): The spatial shape of x, arrange as (H, W). + Default: None. + + Returns: + tuple: Contains merged results and its spatial shape. + + - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) + - out_size (tuple[int]): Spatial shape of x, arrange as + (Merged_H, Merged_W). + """ + B, L, C = x.shape + assert isinstance(input_size, Sequence), f'Expect ' \ + f'input_size is ' \ + f'`Sequence` ' \ + f'but get {input_size}' + + H, W = input_size + assert L == H * W, 'input feature has wrong size' + + x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W + # Use nn.Unfold to merge patch. About 25% faster than original method, + # but need to modify pretrained model for compatibility + + if self.adap_padding: + x = self.adap_padding(x) + H, W = x.shape[-2:] + + x = self.sampler(x) + # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) + + out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * + (self.sampler.kernel_size[0] - 1) - + 1) // self.sampler.stride[0] + 1 + out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * + (self.sampler.kernel_size[1] - 1) - + 1) // self.sampler.stride[1] + 1 + + output_size = (out_h, out_w) + x = x.transpose(1, 2) # B, H/2*W/2, 4*C + x = self.norm(x) if self.norm else x + x = self.reduction(x) + return x, output_size + + +def inverse_sigmoid(x, eps=1e-5): + """Inverse function of sigmoid. + + Args: + x (Tensor): The tensor to do the + inverse. + eps (float): EPS avoid numerical + overflow. Defaults 1e-5. + Returns: + Tensor: The x has passed the inverse + function of sigmoid, has same + shape with input. + """ + x = x.clamp(min=0, max=1) + x1 = x.clamp(min=eps) + x2 = (1 - x).clamp(min=eps) + return torch.log(x1 / x2) + + +@TRANSFORMER_LAYER.register_module() +class DetrTransformerDecoderLayer(BaseTransformerLayer): + """Implements decoder layer in DETR transformer. + + Args: + attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )): + Configs for self_attention or cross_attention, the order + should be consistent with it in `operation_order`. If it is + a dict, it would be expand to the number of attention in + `operation_order`. + feedforward_channels (int): The hidden dimension for FFNs. + ffn_dropout (float): Probability of an element to be zeroed + in ffn. Default 0.0. + operation_order (tuple[str]): The execution order of operation + in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). + Default:None + act_cfg (dict): The activation config for FFNs. Default: `LN` + norm_cfg (dict): Config dict for normalization layer. + Default: `LN`. + ffn_num_fcs (int): The number of fully-connected layers in FFNs. + Default:2. + """ + + def __init__(self, + attn_cfgs, + feedforward_channels, + ffn_dropout=0.0, + operation_order=None, + act_cfg=dict(type='ReLU', inplace=True), + norm_cfg=dict(type='LN'), + ffn_num_fcs=2, + **kwargs): + super(DetrTransformerDecoderLayer, self).__init__( + attn_cfgs=attn_cfgs, + feedforward_channels=feedforward_channels, + ffn_dropout=ffn_dropout, + operation_order=operation_order, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + ffn_num_fcs=ffn_num_fcs, + **kwargs) + assert len(operation_order) == 6 + assert set(operation_order) == set( + ['self_attn', 'norm', 'cross_attn', 'ffn']) + + +@TRANSFORMER_LAYER_SEQUENCE.register_module() +class DetrTransformerEncoder(TransformerLayerSequence): + """TransformerEncoder of DETR. + + Args: + post_norm_cfg (dict): Config of last normalization layer. Default: + `LN`. Only used when `self.pre_norm` is `True` + """ + + def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs): + super(DetrTransformerEncoder, self).__init__(*args, **kwargs) + if post_norm_cfg is not None: + self.post_norm = build_norm_layer( + post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None + else: + assert not self.pre_norm, f'Use prenorm in ' \ + f'{self.__class__.__name__},' \ + f'Please specify post_norm_cfg' + self.post_norm = None + + def forward(self, *args, **kwargs): + """Forward function for `TransformerCoder`. + + Returns: + Tensor: forwarded results with shape [num_query, bs, embed_dims]. + """ + x = super(DetrTransformerEncoder, self).forward(*args, **kwargs) + if self.post_norm is not None: + x = self.post_norm(x) + return x + + +@TRANSFORMER_LAYER_SEQUENCE.register_module() +class DetrTransformerDecoder(TransformerLayerSequence): + """Implements the decoder in DETR transformer. + + Args: + return_intermediate (bool): Whether to return intermediate outputs. + post_norm_cfg (dict): Config of last normalization layer. Default: + `LN`. + """ + + def __init__(self, + *args, + post_norm_cfg=dict(type='LN'), + return_intermediate=False, + **kwargs): + + super(DetrTransformerDecoder, self).__init__(*args, **kwargs) + self.return_intermediate = return_intermediate + if post_norm_cfg is not None: + self.post_norm = build_norm_layer(post_norm_cfg, + self.embed_dims)[1] + else: + self.post_norm = None + + def forward(self, query, *args, **kwargs): + """Forward function for `TransformerDecoder`. + + Args: + query (Tensor): Input query with shape + `(num_query, bs, embed_dims)`. + + Returns: + Tensor: Results with shape [1, num_query, bs, embed_dims] when + return_intermediate is `False`, otherwise it has shape + [num_layers, num_query, bs, embed_dims]. + """ + if not self.return_intermediate: + x = super().forward(query, *args, **kwargs) + if self.post_norm: + x = self.post_norm(x)[None] + return x + + intermediate = [] + for layer in self.layers: + query = layer(query, *args, **kwargs) + if self.return_intermediate: + if self.post_norm is not None: + intermediate.append(self.post_norm(query)) + else: + intermediate.append(query) + return torch.stack(intermediate) + + +@TRANSFORMER.register_module() +class Transformer(BaseModule): + """Implements the DETR transformer. + + Following the official DETR implementation, this module copy-paste + from torch.nn.Transformer with modifications: + + * positional encodings are passed in MultiheadAttention + * extra LN at the end of encoder is removed + * decoder returns a stack of activations from all decoding layers + + See `paper: End-to-End Object Detection with Transformers + `_ for details. + + Args: + encoder (`mmcv.ConfigDict` | Dict): Config of + TransformerEncoder. Defaults to None. + decoder ((`mmcv.ConfigDict` | Dict)): Config of + TransformerDecoder. Defaults to None + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Defaults to None. + """ + + def __init__(self, encoder=None, decoder=None, init_cfg=None): + super(Transformer, self).__init__(init_cfg=init_cfg) + self.encoder = build_transformer_layer_sequence(encoder) + self.decoder = build_transformer_layer_sequence(decoder) + self.embed_dims = self.encoder.embed_dims + + def init_weights(self): + # follow the official DETR to init parameters + for m in self.modules(): + if hasattr(m, 'weight') and m.weight.dim() > 1: + xavier_init(m, distribution='uniform') + self._is_init = True + + def forward(self, x, mask, query_embed, pos_embed): + """Forward function for `Transformer`. + + Args: + x (Tensor): Input query with shape [bs, c, h, w] where + c = embed_dims. + mask (Tensor): The key_padding_mask used for encoder and decoder, + with shape [bs, h, w]. + query_embed (Tensor): The query embedding for decoder, with shape + [num_query, c]. + pos_embed (Tensor): The positional encoding for encoder and + decoder, with the same shape as `x`. + + Returns: + tuple[Tensor]: results of decoder containing the following tensor. + + - out_dec: Output from decoder. If return_intermediate_dec \ + is True output has shape [num_dec_layers, bs, + num_query, embed_dims], else has shape [1, bs, \ + num_query, embed_dims]. + - memory: Output results from encoder, with shape \ + [bs, embed_dims, h, w]. + """ + bs, c, h, w = x.shape + # use `view` instead of `flatten` for dynamically exporting to ONNX + x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] + pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) + query_embed = query_embed.unsqueeze(1).repeat( + 1, bs, 1) # [num_query, dim] -> [num_query, bs, dim] + mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] + memory = self.encoder( + query=x, + key=None, + value=None, + query_pos=pos_embed, + query_key_padding_mask=mask) + target = torch.zeros_like(query_embed) + # out_dec: [num_layers, num_query, bs, dim] + out_dec = self.decoder( + query=target, + key=memory, + value=memory, + key_pos=pos_embed, + query_pos=query_embed, + key_padding_mask=mask) + out_dec = out_dec.transpose(1, 2) + memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) + return out_dec, memory + + +@TRANSFORMER_LAYER_SEQUENCE.register_module() +class DeformableDetrTransformerDecoder(TransformerLayerSequence): + """Implements the decoder in DETR transformer. + + Args: + return_intermediate (bool): Whether to return intermediate outputs. + coder_norm_cfg (dict): Config of last normalization layer. Default: + `LN`. + """ + + def __init__(self, *args, return_intermediate=False, **kwargs): + + super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) + self.return_intermediate = return_intermediate + + def forward(self, + query, + *args, + reference_points=None, + valid_ratios=None, + reg_branches=None, + **kwargs): + """Forward function for `TransformerDecoder`. + + Args: + query (Tensor): Input query with shape + `(num_query, bs, embed_dims)`. + reference_points (Tensor): The reference + points of offset. has shape + (bs, num_query, 4) when as_two_stage, + otherwise has shape ((bs, num_query, 2). + valid_ratios (Tensor): The radios of valid + points on the feature map, has shape + (bs, num_levels, 2) + reg_branch: (obj:`nn.ModuleList`): Used for + refining the regression results. Only would + be passed when with_box_refine is True, + otherwise would be passed a `None`. + + Returns: + Tensor: Results with shape [1, num_query, bs, embed_dims] when + return_intermediate is `False`, otherwise it has shape + [num_layers, num_query, bs, embed_dims]. + """ + output = query + intermediate = [] + intermediate_reference_points = [] + for lid, layer in enumerate(self.layers): + if reference_points.shape[-1] == 4: + reference_points_input = reference_points[:, :, None] * \ + torch.cat([valid_ratios, valid_ratios], -1)[:, None] + else: + assert reference_points.shape[-1] == 2 + reference_points_input = reference_points[:, :, None] * \ + valid_ratios[:, None] + output = layer( + output, + *args, + reference_points=reference_points_input, + **kwargs) + output = output.permute(1, 0, 2) + + if reg_branches is not None: + tmp = reg_branches[lid](output) + if reference_points.shape[-1] == 4: + new_reference_points = tmp + inverse_sigmoid( + reference_points) + new_reference_points = new_reference_points.sigmoid() + else: + assert reference_points.shape[-1] == 2 + new_reference_points = tmp + new_reference_points[..., :2] = tmp[ + ..., :2] + inverse_sigmoid(reference_points) + new_reference_points = new_reference_points.sigmoid() + reference_points = new_reference_points.detach() + + output = output.permute(1, 0, 2) + if self.return_intermediate: + intermediate.append(output) + intermediate_reference_points.append(reference_points) + + if self.return_intermediate: + return torch.stack(intermediate), torch.stack( + intermediate_reference_points) + + return output, reference_points + + +@TRANSFORMER.register_module() +class DeformableDetrTransformer(Transformer): + """Implements the DeformableDETR transformer. + + Args: + as_two_stage (bool): Generate query from encoder features. + Default: False. + num_feature_levels (int): Number of feature maps from FPN: + Default: 4. + two_stage_num_proposals (int): Number of proposals when set + `as_two_stage` as True. Default: 300. + """ + + def __init__(self, + as_two_stage=False, + num_feature_levels=4, + two_stage_num_proposals=300, + **kwargs): + super(DeformableDetrTransformer, self).__init__(**kwargs) + self.as_two_stage = as_two_stage + self.num_feature_levels = num_feature_levels + self.two_stage_num_proposals = two_stage_num_proposals + self.embed_dims = self.encoder.embed_dims + self.init_layers() + + def init_layers(self): + """Initialize layers of the DeformableDetrTransformer.""" + self.level_embeds = nn.Parameter( + torch.Tensor(self.num_feature_levels, self.embed_dims)) + + if self.as_two_stage: + self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) + self.enc_output_norm = nn.LayerNorm(self.embed_dims) + self.pos_trans = nn.Linear(self.embed_dims * 2, + self.embed_dims * 2) + self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) + else: + self.reference_points = nn.Linear(self.embed_dims, 2) + + def init_weights(self): + """Initialize the transformer weights.""" + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + for m in self.modules(): + if isinstance(m, MultiScaleDeformableAttention): + m.init_weights() + if not self.as_two_stage: + xavier_init(self.reference_points, distribution='uniform', bias=0.) + normal_(self.level_embeds) + + def gen_encoder_output_proposals(self, memory, memory_padding_mask, + spatial_shapes): + """Generate proposals from encoded memory. + + Args: + memory (Tensor) : The output of encoder, + has shape (bs, num_key, embed_dim). num_key is + equal the number of points on feature map from + all level. + memory_padding_mask (Tensor): Padding mask for memory. + has shape (bs, num_key). + spatial_shapes (Tensor): The shape of all feature maps. + has shape (num_level, 2). + + Returns: + tuple: A tuple of feature map and bbox prediction. + + - output_memory (Tensor): The input of decoder, \ + has shape (bs, num_key, embed_dim). num_key is \ + equal the number of points on feature map from \ + all levels. + - output_proposals (Tensor): The normalized proposal \ + after a inverse sigmoid, has shape \ + (bs, num_keys, 4). + """ + + N, S, C = memory.shape + proposals = [] + _cur = 0 + for lvl, (H, W) in enumerate(spatial_shapes): + mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view( + N, H, W, 1) + valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) + valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) + + grid_y, grid_x = torch.meshgrid( + torch.linspace( + 0, H - 1, H, dtype=torch.float32, device=memory.device), + torch.linspace( + 0, W - 1, W, dtype=torch.float32, device=memory.device)) + grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) + + scale = torch.cat([valid_W.unsqueeze(-1), + valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) + grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale + wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) + proposal = torch.cat((grid, wh), -1).view(N, -1, 4) + proposals.append(proposal) + _cur += (H * W) + output_proposals = torch.cat(proposals, 1) + output_proposals_valid = ((output_proposals > 0.01) & + (output_proposals < 0.99)).all( + -1, keepdim=True) + output_proposals = torch.log(output_proposals / (1 - output_proposals)) + output_proposals = output_proposals.masked_fill( + memory_padding_mask.unsqueeze(-1), float('inf')) + output_proposals = output_proposals.masked_fill( + ~output_proposals_valid, float('inf')) + + output_memory = memory + output_memory = output_memory.masked_fill( + memory_padding_mask.unsqueeze(-1), float(0)) + output_memory = output_memory.masked_fill(~output_proposals_valid, + float(0)) + output_memory = self.enc_output_norm(self.enc_output(output_memory)) + return output_memory, output_proposals + + @staticmethod + def get_reference_points(spatial_shapes, valid_ratios, device): + """Get the reference points used in decoder. + + Args: + spatial_shapes (Tensor): The shape of all + feature maps, has shape (num_level, 2). + valid_ratios (Tensor): The radios of valid + points on the feature map, has shape + (bs, num_levels, 2) + device (obj:`device`): The device where + reference_points should be. + + Returns: + Tensor: reference points used in decoder, has \ + shape (bs, num_keys, num_levels, 2). + """ + reference_points_list = [] + for lvl, (H, W) in enumerate(spatial_shapes): + # TODO check this 0.5 + ref_y, ref_x = torch.meshgrid( + torch.linspace( + 0.5, H - 0.5, H, dtype=torch.float32, device=device), + torch.linspace( + 0.5, W - 0.5, W, dtype=torch.float32, device=device)) + ref_y = ref_y.reshape(-1)[None] / ( + valid_ratios[:, None, lvl, 1] * H) + ref_x = ref_x.reshape(-1)[None] / ( + valid_ratios[:, None, lvl, 0] * W) + ref = torch.stack((ref_x, ref_y), -1) + reference_points_list.append(ref) + reference_points = torch.cat(reference_points_list, 1) + reference_points = reference_points[:, :, None] * valid_ratios[:, None] + return reference_points + + def get_valid_ratio(self, mask): + """Get the valid radios of feature maps of all level.""" + _, H, W = mask.shape + valid_H = torch.sum(~mask[:, :, 0], 1) + valid_W = torch.sum(~mask[:, 0, :], 1) + valid_ratio_h = valid_H.float() / H + valid_ratio_w = valid_W.float() / W + valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) + return valid_ratio + + def get_proposal_pos_embed(self, + proposals, + num_pos_feats=128, + temperature=10000): + """Get the position embedding of proposal.""" + scale = 2 * math.pi + dim_t = torch.arange( + num_pos_feats, dtype=torch.float32, device=proposals.device) + dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) + # N, L, 4 + proposals = proposals.sigmoid() * scale + # N, L, 4, 128 + pos = proposals[:, :, :, None] / dim_t + # N, L, 4, 64, 2 + pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), + dim=4).flatten(2) + return pos + + def forward(self, + mlvl_feats, + mlvl_masks, + query_embed, + mlvl_pos_embeds, + reg_branches=None, + cls_branches=None, + **kwargs): + """Forward function for `Transformer`. + + Args: + mlvl_feats (list(Tensor)): Input queries from + different level. Each element has shape + [bs, embed_dims, h, w]. + mlvl_masks (list(Tensor)): The key_padding_mask from + different level used for encoder and decoder, + each element has shape [bs, h, w]. + query_embed (Tensor): The query embedding for decoder, + with shape [num_query, c]. + mlvl_pos_embeds (list(Tensor)): The positional encoding + of feats from different level, has the shape + [bs, embed_dims, h, w]. + reg_branches (obj:`nn.ModuleList`): Regression heads for + feature maps from each decoder layer. Only would + be passed when + `with_box_refine` is True. Default to None. + cls_branches (obj:`nn.ModuleList`): Classification heads + for feature maps from each decoder layer. Only would + be passed when `as_two_stage` + is True. Default to None. + + + Returns: + tuple[Tensor]: results of decoder containing the following tensor. + + - inter_states: Outputs from decoder. If + return_intermediate_dec is True output has shape \ + (num_dec_layers, bs, num_query, embed_dims), else has \ + shape (1, bs, num_query, embed_dims). + - init_reference_out: The initial value of reference \ + points, has shape (bs, num_queries, 4). + - inter_references_out: The internal value of reference \ + points in decoder, has shape \ + (num_dec_layers, bs,num_query, embed_dims) + - enc_outputs_class: The classification score of \ + proposals generated from \ + encoder's feature maps, has shape \ + (batch, h*w, num_classes). \ + Only would be returned when `as_two_stage` is True, \ + otherwise None. + - enc_outputs_coord_unact: The regression results \ + generated from encoder's feature maps., has shape \ + (batch, h*w, 4). Only would \ + be returned when `as_two_stage` is True, \ + otherwise None. + """ + assert self.as_two_stage or query_embed is not None + + feat_flatten = [] + mask_flatten = [] + lvl_pos_embed_flatten = [] + spatial_shapes = [] + for lvl, (feat, mask, pos_embed) in enumerate( + zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): + bs, c, h, w = feat.shape + spatial_shape = (h, w) + spatial_shapes.append(spatial_shape) + feat = feat.flatten(2).transpose(1, 2) + mask = mask.flatten(1) + pos_embed = pos_embed.flatten(2).transpose(1, 2) + lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) + lvl_pos_embed_flatten.append(lvl_pos_embed) + feat_flatten.append(feat) + mask_flatten.append(mask) + feat_flatten = torch.cat(feat_flatten, 1) + mask_flatten = torch.cat(mask_flatten, 1) + lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) + spatial_shapes = torch.as_tensor( + spatial_shapes, dtype=torch.long, device=feat_flatten.device) + level_start_index = torch.cat((spatial_shapes.new_zeros( + (1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) + valid_ratios = torch.stack( + [self.get_valid_ratio(m) for m in mlvl_masks], 1) + + reference_points = \ + self.get_reference_points(spatial_shapes, + valid_ratios, + device=feat.device) + + feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) + lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( + 1, 0, 2) # (H*W, bs, embed_dims) + memory = self.encoder( + query=feat_flatten, + key=None, + value=None, + query_pos=lvl_pos_embed_flatten, + query_key_padding_mask=mask_flatten, + spatial_shapes=spatial_shapes, + reference_points=reference_points, + level_start_index=level_start_index, + valid_ratios=valid_ratios, + **kwargs) + + memory = memory.permute(1, 0, 2) + bs, _, c = memory.shape + if self.as_two_stage: + output_memory, output_proposals = \ + self.gen_encoder_output_proposals( + memory, mask_flatten, spatial_shapes) + enc_outputs_class = cls_branches[self.decoder.num_layers]( + output_memory) + enc_outputs_coord_unact = \ + reg_branches[ + self.decoder.num_layers](output_memory) + output_proposals + + topk = self.two_stage_num_proposals + # We only use the first channel in enc_outputs_class as foreground, + # the other (num_classes - 1) channels are actually not used. + # Its targets are set to be 0s, which indicates the first + # class (foreground) because we use [0, num_classes - 1] to + # indicate class labels, background class is indicated by + # num_classes (similar convention in RPN). + # See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa + # This follows the official implementation of Deformable DETR. + topk_proposals = torch.topk( + enc_outputs_class[..., 0], topk, dim=1)[1] + topk_coords_unact = torch.gather( + enc_outputs_coord_unact, 1, + topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) + topk_coords_unact = topk_coords_unact.detach() + reference_points = topk_coords_unact.sigmoid() + init_reference_out = reference_points + pos_trans_out = self.pos_trans_norm( + self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) + query_pos, query = torch.split(pos_trans_out, c, dim=2) + else: + query_pos, query = torch.split(query_embed, c, dim=1) + query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) + query = query.unsqueeze(0).expand(bs, -1, -1) + reference_points = self.reference_points(query_pos).sigmoid() + init_reference_out = reference_points + + # decoder + query = query.permute(1, 0, 2) + memory = memory.permute(1, 0, 2) + query_pos = query_pos.permute(1, 0, 2) + inter_states, inter_references = self.decoder( + query=query, + key=None, + value=memory, + query_pos=query_pos, + key_padding_mask=mask_flatten, + reference_points=reference_points, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + valid_ratios=valid_ratios, + reg_branches=reg_branches, + **kwargs) + + inter_references_out = inter_references + if self.as_two_stage: + return inter_states, init_reference_out,\ + inter_references_out, enc_outputs_class,\ + enc_outputs_coord_unact + return inter_states, init_reference_out, \ + inter_references_out, None, None + + +@TRANSFORMER.register_module() +class DynamicConv(BaseModule): + """Implements Dynamic Convolution. + + This module generate parameters for each sample and + use bmm to implement 1*1 convolution. Code is modified + from the `official github repo `_ . + + Args: + in_channels (int): The input feature channel. + Defaults to 256. + feat_channels (int): The inner feature channel. + Defaults to 64. + out_channels (int, optional): The output feature channel. + When not specified, it will be set to `in_channels` + by default + input_feat_shape (int): The shape of input feature. + Defaults to 7. + with_proj (bool): Project two-dimentional feature to + one-dimentional feature. Default to True. + act_cfg (dict): The activation config for DynamicConv. + norm_cfg (dict): Config dict for normalization layer. Default + layer normalization. + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Default: None. + """ + + def __init__(self, + in_channels=256, + feat_channels=64, + out_channels=None, + input_feat_shape=7, + with_proj=True, + act_cfg=dict(type='ReLU', inplace=True), + norm_cfg=dict(type='LN'), + init_cfg=None): + super(DynamicConv, self).__init__(init_cfg) + self.in_channels = in_channels + self.feat_channels = feat_channels + self.out_channels_raw = out_channels + self.input_feat_shape = input_feat_shape + self.with_proj = with_proj + self.act_cfg = act_cfg + self.norm_cfg = norm_cfg + self.out_channels = out_channels if out_channels else in_channels + + self.num_params_in = self.in_channels * self.feat_channels + self.num_params_out = self.out_channels * self.feat_channels + self.dynamic_layer = nn.Linear( + self.in_channels, self.num_params_in + self.num_params_out) + + self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] + self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] + + self.activation = build_activation_layer(act_cfg) + + num_output = self.out_channels * input_feat_shape**2 + if self.with_proj: + self.fc_layer = nn.Linear(num_output, self.out_channels) + self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] + + def forward(self, param_feature, input_feature): + """Forward function for `DynamicConv`. + + Args: + param_feature (Tensor): The feature can be used + to generate the parameter, has shape + (num_all_proposals, in_channels). + input_feature (Tensor): Feature that + interact with parameters, has shape + (num_all_proposals, in_channels, H, W). + + Returns: + Tensor: The output feature has shape + (num_all_proposals, out_channels). + """ + input_feature = input_feature.flatten(2).permute(2, 0, 1) + + input_feature = input_feature.permute(1, 0, 2) + parameters = self.dynamic_layer(param_feature) + + param_in = parameters[:, :self.num_params_in].view( + -1, self.in_channels, self.feat_channels) + param_out = parameters[:, -self.num_params_out:].view( + -1, self.feat_channels, self.out_channels) + + # input_feature has shape (num_all_proposals, H*W, in_channels) + # param_in has shape (num_all_proposals, in_channels, feat_channels) + # feature has shape (num_all_proposals, H*W, feat_channels) + features = torch.bmm(input_feature, param_in) + features = self.norm_in(features) + features = self.activation(features) + + # param_out has shape (batch_size, feat_channels, out_channels) + features = torch.bmm(features, param_out) + features = self.norm_out(features) + features = self.activation(features) + + if self.with_proj: + features = features.flatten(1) + features = self.fc_layer(features) + features = self.fc_norm(features) + features = self.activation(features) + + return features diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/__init__.py new file mode 100644 index 000000000..350452a95 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .collect_env import collect_env +from .compat_config import compat_cfg +from .logger import get_caller_name, get_root_logger, log_img_scale +from .misc import find_latest_checkpoint, update_data_root +from .setup_env import setup_multi_processes +from .split_batch import split_batch +from .util_distribution import build_ddp, build_dp, get_device + +__all__ = [ + 'get_root_logger', 'collect_env', 'find_latest_checkpoint', + 'update_data_root', 'setup_multi_processes', 'get_caller_name', + 'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp', + 'get_device' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/collect_env.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/collect_env.py new file mode 100644 index 000000000..97e25c0e9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/collect_env.py @@ -0,0 +1,17 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import collect_env as collect_base_env +from mmcv.utils import get_git_hash + +import mmdet + + +def collect_env(): + """Collect the information of the running environments.""" + env_info = collect_base_env() + env_info['MMDetection'] = mmdet.__version__ + '+' + get_git_hash()[:7] + return env_info + + +if __name__ == '__main__': + for name, val in collect_env().items(): + print(f'{name}: {val}') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/compat_config.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/compat_config.py new file mode 100644 index 000000000..05aa37dcd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/compat_config.py @@ -0,0 +1,139 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +from mmcv import ConfigDict + + +def compat_cfg(cfg): + """This function would modify some filed to keep the compatibility of + config. + + For example, it will move some args which will be deprecated to the correct + fields. + """ + cfg = copy.deepcopy(cfg) + cfg = compat_imgs_per_gpu(cfg) + cfg = compat_loader_args(cfg) + cfg = compat_runner_args(cfg) + return cfg + + +def compat_runner_args(cfg): + if 'runner' not in cfg: + cfg.runner = ConfigDict({ + 'type': 'EpochBasedRunner', + 'max_epochs': cfg.total_epochs + }) + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + else: + if 'total_epochs' in cfg: + assert cfg.total_epochs == cfg.runner.max_epochs + return cfg + + +def compat_imgs_per_gpu(cfg): + cfg = copy.deepcopy(cfg) + if 'imgs_per_gpu' in cfg.data: + warnings.warn('"imgs_per_gpu" is deprecated in MMDet V2.0. ' + 'Please use "samples_per_gpu" instead') + if 'samples_per_gpu' in cfg.data: + warnings.warn( + f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' + f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' + f'={cfg.data.imgs_per_gpu} is used in this experiments') + else: + warnings.warn('Automatically set "samples_per_gpu"="imgs_per_gpu"=' + f'{cfg.data.imgs_per_gpu} in this experiments') + cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu + return cfg + + +def compat_loader_args(cfg): + """Deprecated sample_per_gpu in cfg.data.""" + + cfg = copy.deepcopy(cfg) + if 'train_dataloader' not in cfg.data: + cfg.data['train_dataloader'] = ConfigDict() + if 'val_dataloader' not in cfg.data: + cfg.data['val_dataloader'] = ConfigDict() + if 'test_dataloader' not in cfg.data: + cfg.data['test_dataloader'] = ConfigDict() + + # special process for train_dataloader + if 'samples_per_gpu' in cfg.data: + + samples_per_gpu = cfg.data.pop('samples_per_gpu') + assert 'samples_per_gpu' not in \ + cfg.data.train_dataloader, ('`samples_per_gpu` are set ' + 'in `data` field and ` ' + 'data.train_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.train_dataloader`. ') + cfg.data.train_dataloader['samples_per_gpu'] = samples_per_gpu + + if 'persistent_workers' in cfg.data: + + persistent_workers = cfg.data.pop('persistent_workers') + assert 'persistent_workers' not in \ + cfg.data.train_dataloader, ('`persistent_workers` are set ' + 'in `data` field and ` ' + 'data.train_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.train_dataloader`. ') + cfg.data.train_dataloader['persistent_workers'] = persistent_workers + + if 'workers_per_gpu' in cfg.data: + + workers_per_gpu = cfg.data.pop('workers_per_gpu') + cfg.data.train_dataloader['workers_per_gpu'] = workers_per_gpu + cfg.data.val_dataloader['workers_per_gpu'] = workers_per_gpu + cfg.data.test_dataloader['workers_per_gpu'] = workers_per_gpu + + # special process for val_dataloader + if 'samples_per_gpu' in cfg.data.val: + # keep default value of `sample_per_gpu` is 1 + assert 'samples_per_gpu' not in \ + cfg.data.val_dataloader, ('`samples_per_gpu` are set ' + 'in `data.val` field and ` ' + 'data.val_dataloader` at ' + 'the same time. ' + 'Please only set it in ' + '`data.val_dataloader`. ') + cfg.data.val_dataloader['samples_per_gpu'] = \ + cfg.data.val.pop('samples_per_gpu') + # special process for val_dataloader + + # in case the test dataset is concatenated + if isinstance(cfg.data.test, dict): + if 'samples_per_gpu' in cfg.data.test: + assert 'samples_per_gpu' not in \ + cfg.data.test_dataloader, ('`samples_per_gpu` are set ' + 'in `data.test` field and ` ' + 'data.test_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.test_dataloader`. ') + + cfg.data.test_dataloader['samples_per_gpu'] = \ + cfg.data.test.pop('samples_per_gpu') + + elif isinstance(cfg.data.test, list): + for ds_cfg in cfg.data.test: + if 'samples_per_gpu' in ds_cfg: + assert 'samples_per_gpu' not in \ + cfg.data.test_dataloader, ('`samples_per_gpu` are set ' + 'in `data.test` field and ` ' + 'data.test_dataloader` at' + ' the same time. ' + 'Please only set it in ' + '`data.test_dataloader`. ') + samples_per_gpu = max( + [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) + cfg.data.test_dataloader['samples_per_gpu'] = samples_per_gpu + + return cfg diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/contextmanagers.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/contextmanagers.py new file mode 100644 index 000000000..fa12bfcaf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/contextmanagers.py @@ -0,0 +1,122 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import asyncio +import contextlib +import logging +import os +import time +from typing import List + +import torch + +logger = logging.getLogger(__name__) + +DEBUG_COMPLETED_TIME = bool(os.environ.get('DEBUG_COMPLETED_TIME', False)) + + +@contextlib.asynccontextmanager +async def completed(trace_name='', + name='', + sleep_interval=0.05, + streams: List[torch.cuda.Stream] = None): + """Async context manager that waits for work to complete on given CUDA + streams.""" + if not torch.cuda.is_available(): + yield + return + + stream_before_context_switch = torch.cuda.current_stream() + if not streams: + streams = [stream_before_context_switch] + else: + streams = [s if s else stream_before_context_switch for s in streams] + + end_events = [ + torch.cuda.Event(enable_timing=DEBUG_COMPLETED_TIME) for _ in streams + ] + + if DEBUG_COMPLETED_TIME: + start = torch.cuda.Event(enable_timing=True) + stream_before_context_switch.record_event(start) + + cpu_start = time.monotonic() + logger.debug('%s %s starting, streams: %s', trace_name, name, streams) + grad_enabled_before = torch.is_grad_enabled() + try: + yield + finally: + current_stream = torch.cuda.current_stream() + assert current_stream == stream_before_context_switch + + if DEBUG_COMPLETED_TIME: + cpu_end = time.monotonic() + for i, stream in enumerate(streams): + event = end_events[i] + stream.record_event(event) + + grad_enabled_after = torch.is_grad_enabled() + + # observed change of torch.is_grad_enabled() during concurrent run of + # async_test_bboxes code + assert (grad_enabled_before == grad_enabled_after + ), 'Unexpected is_grad_enabled() value change' + + are_done = [e.query() for e in end_events] + logger.debug('%s %s completed: %s streams: %s', trace_name, name, + are_done, streams) + with torch.cuda.stream(stream_before_context_switch): + while not all(are_done): + await asyncio.sleep(sleep_interval) + are_done = [e.query() for e in end_events] + logger.debug( + '%s %s completed: %s streams: %s', + trace_name, + name, + are_done, + streams, + ) + + current_stream = torch.cuda.current_stream() + assert current_stream == stream_before_context_switch + + if DEBUG_COMPLETED_TIME: + cpu_time = (cpu_end - cpu_start) * 1000 + stream_times_ms = '' + for i, stream in enumerate(streams): + elapsed_time = start.elapsed_time(end_events[i]) + stream_times_ms += f' {stream} {elapsed_time:.2f} ms' + logger.info('%s %s %.2f ms %s', trace_name, name, cpu_time, + stream_times_ms) + + +@contextlib.asynccontextmanager +async def concurrent(streamqueue: asyncio.Queue, + trace_name='concurrent', + name='stream'): + """Run code concurrently in different streams. + + :param streamqueue: asyncio.Queue instance. + + Queue tasks define the pool of streams used for concurrent execution. + """ + if not torch.cuda.is_available(): + yield + return + + initial_stream = torch.cuda.current_stream() + + with torch.cuda.stream(initial_stream): + stream = await streamqueue.get() + assert isinstance(stream, torch.cuda.Stream) + + try: + with torch.cuda.stream(stream): + logger.debug('%s %s is starting, stream: %s', trace_name, name, + stream) + yield + current = torch.cuda.current_stream() + assert current == stream + logger.debug('%s %s has finished, stream: %s', trace_name, + name, stream) + finally: + streamqueue.task_done() + streamqueue.put_nowait(stream) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/logger.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/logger.py new file mode 100644 index 000000000..485f641b7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/logger.py @@ -0,0 +1,65 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import inspect +import logging + +from mmcv.utils import get_logger + + +def get_root_logger(log_file=None, log_level=logging.INFO): + """Get root logger. + + Args: + log_file (str, optional): File path of log. Defaults to None. + log_level (int, optional): The level of logger. + Defaults to logging.INFO. + + Returns: + :obj:`logging.Logger`: The obtained logger + """ + logger = get_logger(name='mmdet', log_file=log_file, log_level=log_level) + + return logger + + +def get_caller_name(): + """Get name of caller method.""" + # this_func_frame = inspect.stack()[0][0] # i.e., get_caller_name + # callee_frame = inspect.stack()[1][0] # e.g., log_img_scale + caller_frame = inspect.stack()[2][0] # e.g., caller of log_img_scale + caller_method = caller_frame.f_code.co_name + try: + caller_class = caller_frame.f_locals['self'].__class__.__name__ + return f'{caller_class}.{caller_method}' + except KeyError: # caller is a function + return caller_method + + +def log_img_scale(img_scale, shape_order='hw', skip_square=False): + """Log image size. + + Args: + img_scale (tuple): Image size to be logged. + shape_order (str, optional): The order of image shape. + 'hw' for (height, width) and 'wh' for (width, height). + Defaults to 'hw'. + skip_square (bool, optional): Whether to skip logging for square + img_scale. Defaults to False. + + Returns: + bool: Whether to have done logging. + """ + if shape_order == 'hw': + height, width = img_scale + elif shape_order == 'wh': + width, height = img_scale + else: + raise ValueError(f'Invalid shape_order {shape_order}.') + + if skip_square and (height == width): + return False + + logger = get_root_logger() + caller = get_caller_name() + logger.info(f'image shape: height={height}, width={width} in {caller}') + + return True diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/misc.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/misc.py new file mode 100644 index 000000000..4113672ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/misc.py @@ -0,0 +1,76 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import glob +import os +import os.path as osp +import warnings + +import mmcv +from mmcv.utils import print_log + + +def find_latest_checkpoint(path, suffix='pth'): + """Find the latest checkpoint from the working directory. + + Args: + path(str): The path to find checkpoints. + suffix(str): File extension. + Defaults to pth. + + Returns: + latest_path(str | None): File path of the latest checkpoint. + References: + .. [1] https://github.com/microsoft/SoftTeacher + /blob/main/ssod/utils/patch.py + """ + if not osp.exists(path): + warnings.warn('The path of checkpoints does not exist.') + return None + if osp.exists(osp.join(path, f'latest.{suffix}')): + return osp.join(path, f'latest.{suffix}') + + checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) + if len(checkpoints) == 0: + warnings.warn('There are no checkpoints in the path.') + return None + latest = -1 + latest_path = None + for checkpoint in checkpoints: + count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) + if count > latest: + latest = count + latest_path = checkpoint + return latest_path + + +def update_data_root(cfg, logger=None): + """Update data root according to env MMDET_DATASETS. + + If set env MMDET_DATASETS, update cfg.data_root according to + MMDET_DATASETS. Otherwise, using cfg.data_root as default. + + Args: + cfg (mmcv.Config): The model config need to modify + logger (logging.Logger | str | None): the way to print msg + """ + assert isinstance(cfg, mmcv.Config), \ + f'cfg got wrong type: {type(cfg)}, expected mmcv.Config' + + if 'MMDET_DATASETS' in os.environ: + dst_root = os.environ['MMDET_DATASETS'] + print_log(f'MMDET_DATASETS has been set to be {dst_root}.' + f'Using {dst_root} as data root.') + else: + return + + assert isinstance(cfg, mmcv.Config), \ + f'cfg got wrong type: {type(cfg)}, expected mmcv.Config' + + def update(cfg, src_str, dst_str): + for k, v in cfg.items(): + if isinstance(v, mmcv.ConfigDict): + update(cfg[k], src_str, dst_str) + if isinstance(v, str) and src_str in v: + cfg[k] = v.replace(src_str, dst_str) + + update(cfg.data, cfg.data_root, dst_root) + cfg.data_root = dst_root diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/profiling.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/profiling.py new file mode 100644 index 000000000..2f53f456c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/profiling.py @@ -0,0 +1,40 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import contextlib +import sys +import time + +import torch + +if sys.version_info >= (3, 7): + + @contextlib.contextmanager + def profile_time(trace_name, + name, + enabled=True, + stream=None, + end_stream=None): + """Print time spent by CPU and GPU. + + Useful as a temporary context manager to find sweet spots of code + suitable for async implementation. + """ + if (not enabled) or not torch.cuda.is_available(): + yield + return + stream = stream if stream else torch.cuda.current_stream() + end_stream = end_stream if end_stream else stream + start = torch.cuda.Event(enable_timing=True) + end = torch.cuda.Event(enable_timing=True) + stream.record_event(start) + try: + cpu_start = time.monotonic() + yield + finally: + cpu_end = time.monotonic() + end_stream.record_event(end) + end.synchronize() + cpu_time = (cpu_end - cpu_start) * 1000 + gpu_time = start.elapsed_time(end) + msg = f'{trace_name} {name} cpu_time {cpu_time:.2f} ms ' + msg += f'gpu_time {gpu_time:.2f} ms stream {stream}' + print(msg, end_stream) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/setup_env.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/setup_env.py new file mode 100644 index 000000000..6637cf878 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/setup_env.py @@ -0,0 +1,53 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import platform +import warnings + +import cv2 +import torch.multiprocessing as mp + + +def setup_multi_processes(cfg): + """Setup multi-processing environment variables.""" + # set multi-process start method as `fork` to speed up the training + if platform.system() != 'Windows': + mp_start_method = cfg.get('mp_start_method', 'fork') + current_method = mp.get_start_method(allow_none=True) + if current_method is not None and current_method != mp_start_method: + warnings.warn( + f'Multi-processing start method `{mp_start_method}` is ' + f'different from the previous setting `{current_method}`.' + f'It will be force set to `{mp_start_method}`. You can change ' + f'this behavior by changing `mp_start_method` in your config.') + mp.set_start_method(mp_start_method, force=True) + + # disable opencv multithreading to avoid system being overloaded + opencv_num_threads = cfg.get('opencv_num_threads', 0) + cv2.setNumThreads(opencv_num_threads) + + # setup OMP threads + # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa + workers_per_gpu = cfg.data.get('workers_per_gpu', 1) + if 'train_dataloader' in cfg.data: + workers_per_gpu = \ + max(cfg.data.train_dataloader.get('workers_per_gpu', 1), + workers_per_gpu) + + if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: + omp_num_threads = 1 + warnings.warn( + f'Setting OMP_NUM_THREADS environment variable for each process ' + f'to be {omp_num_threads} in default, to avoid your system being ' + f'overloaded, please further tune the variable for optimal ' + f'performance in your application as needed.') + os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) + + # setup MKL threads + if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: + mkl_num_threads = 1 + warnings.warn( + f'Setting MKL_NUM_THREADS environment variable for each process ' + f'to be {mkl_num_threads} in default, to avoid your system being ' + f'overloaded, please further tune the variable for optimal ' + f'performance in your application as needed.') + os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/split_batch.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/split_batch.py new file mode 100644 index 000000000..0276fb331 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/split_batch.py @@ -0,0 +1,45 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def split_batch(img, img_metas, kwargs): + """Split data_batch by tags. + + Code is modified from + # noqa: E501 + + Args: + img (Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys, see + :class:`mmdet.datasets.pipelines.Collect`. + kwargs (dict): Specific to concrete implementation. + + Returns: + data_groups (dict): a dict that data_batch splited by tags, + such as 'sup', 'unsup_teacher', and 'unsup_student'. + """ + + # only stack img in the batch + def fuse_list(obj_list, obj): + return torch.stack(obj_list) if isinstance(obj, + torch.Tensor) else obj_list + + # select data with tag from data_batch + def select_group(data_batch, current_tag): + group_flag = [tag == current_tag for tag in data_batch['tag']] + return { + k: fuse_list([vv for vv, gf in zip(v, group_flag) if gf], v) + for k, v in data_batch.items() + } + + kwargs.update({'img': img, 'img_metas': img_metas}) + kwargs.update({'tag': [meta['tag'] for meta in img_metas]}) + tags = list(set(kwargs['tag'])) + data_groups = {tag: select_group(kwargs, tag) for tag in tags} + for tag, group in data_groups.items(): + group.pop('tag') + return data_groups diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_distribution.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_distribution.py new file mode 100644 index 000000000..a186bf6cb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_distribution.py @@ -0,0 +1,74 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.parallel import MMDataParallel, MMDistributedDataParallel + +dp_factory = {'cuda': MMDataParallel, 'cpu': MMDataParallel} + +ddp_factory = {'cuda': MMDistributedDataParallel} + + +def build_dp(model, device='cuda', dim=0, *args, **kwargs): + """build DataParallel module by device type. + + if device is cuda, return a MMDataParallel model; if device is mlu, + return a MLUDataParallel model. + + Args: + model (:class:`nn.Module`): model to be parallelized. + device (str): device type, cuda, cpu or mlu. Defaults to cuda. + dim (int): Dimension used to scatter the data. Defaults to 0. + + Returns: + nn.Module: the model to be parallelized. + """ + if device == 'cuda': + model = model.cuda() + elif device == 'mlu': + from mmcv.device.mlu import MLUDataParallel + dp_factory['mlu'] = MLUDataParallel + model = model.mlu() + + return dp_factory[device](model, dim=dim, *args, **kwargs) + + +def build_ddp(model, device='cuda', *args, **kwargs): + """Build DistributedDataParallel module by device type. + + If device is cuda, return a MMDistributedDataParallel model; + if device is mlu, return a MLUDistributedDataParallel model. + + Args: + model (:class:`nn.Module`): module to be parallelized. + device (str): device type, mlu or cuda. + + Returns: + :class:`nn.Module`: the module to be parallelized + + References: + .. [1] https://pytorch.org/docs/stable/generated/torch.nn.parallel. + DistributedDataParallel.html + """ + assert device in ['cuda', 'mlu'], 'Only available for cuda or mlu devices.' + if device == 'cuda': + model = model.cuda() + elif device == 'mlu': + from mmcv.device.mlu import MLUDistributedDataParallel + ddp_factory['mlu'] = MLUDistributedDataParallel + model = model.mlu() + + return ddp_factory[device](model, *args, **kwargs) + + +def is_mlu_available(): + """Returns a bool indicating if MLU is currently available.""" + return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() + + +def get_device(): + """Returns an available device, cpu, cuda or mlu.""" + is_device_available = { + 'cuda': torch.cuda.is_available(), + 'mlu': is_mlu_available() + } + device_list = [k for k, v in is_device_available.items() if v] + return device_list[0] if len(device_list) == 1 else 'cpu' diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_mixins.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_mixins.py new file mode 100644 index 000000000..b83b6617f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_mixins.py @@ -0,0 +1,105 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""This module defines the :class:`NiceRepr` mixin class, which defines a +``__repr__`` and ``__str__`` method that only depend on a custom ``__nice__`` +method, which you must define. This means you only have to overload one +function instead of two. Furthermore, if the object defines a ``__len__`` +method, then the ``__nice__`` method defaults to something sensible, otherwise +it is treated as abstract and raises ``NotImplementedError``. + +To use simply have your object inherit from :class:`NiceRepr` +(multi-inheritance should be ok). + +This code was copied from the ubelt library: https://github.com/Erotemic/ubelt + +Example: + >>> # Objects that define __nice__ have a default __str__ and __repr__ + >>> class Student(NiceRepr): + ... def __init__(self, name): + ... self.name = name + ... def __nice__(self): + ... return self.name + >>> s1 = Student('Alice') + >>> s2 = Student('Bob') + >>> print(f's1 = {s1}') + >>> print(f's2 = {s2}') + s1 = + s2 = + +Example: + >>> # Objects that define __len__ have a default __nice__ + >>> class Group(NiceRepr): + ... def __init__(self, data): + ... self.data = data + ... def __len__(self): + ... return len(self.data) + >>> g = Group([1, 2, 3]) + >>> print(f'g = {g}') + g = +""" +import warnings + + +class NiceRepr: + """Inherit from this class and define ``__nice__`` to "nicely" print your + objects. + + Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function + Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. + If the inheriting class has a ``__len__``, method then the default + ``__nice__`` method will return its length. + + Example: + >>> class Foo(NiceRepr): + ... def __nice__(self): + ... return 'info' + >>> foo = Foo() + >>> assert str(foo) == '' + >>> assert repr(foo).startswith('>> class Bar(NiceRepr): + ... pass + >>> bar = Bar() + >>> import pytest + >>> with pytest.warns(None) as record: + >>> assert 'object at' in str(bar) + >>> assert 'object at' in repr(bar) + + Example: + >>> class Baz(NiceRepr): + ... def __len__(self): + ... return 5 + >>> baz = Baz() + >>> assert str(baz) == '' + """ + + def __nice__(self): + """str: a "nice" summary string describing this module""" + if hasattr(self, '__len__'): + # It is a common pattern for objects to use __len__ in __nice__ + # As a convenience we define a default __nice__ for these objects + return str(len(self)) + else: + # In all other cases force the subclass to overload __nice__ + raise NotImplementedError( + f'Define the __nice__ method for {self.__class__!r}') + + def __repr__(self): + """str: the string of the module""" + try: + nice = self.__nice__() + classname = self.__class__.__name__ + return f'<{classname}({nice}) at {hex(id(self))}>' + except NotImplementedError as ex: + warnings.warn(str(ex), category=RuntimeWarning) + return object.__repr__(self) + + def __str__(self): + """str: the string of the module""" + try: + classname = self.__class__.__name__ + nice = self.__nice__() + return f'<{classname}({nice})>' + except NotImplementedError as ex: + warnings.warn(str(ex), category=RuntimeWarning) + return object.__repr__(self) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_random.py b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_random.py new file mode 100644 index 000000000..dc1ecb6c0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/utils/util_random.py @@ -0,0 +1,34 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""Helpers for random number generators.""" +import numpy as np + + +def ensure_rng(rng=None): + """Coerces input into a random number generator. + + If the input is None, then a global random state is returned. + + If the input is a numeric value, then that is used as a seed to construct a + random state. Otherwise the input is returned as-is. + + Adapted from [1]_. + + Args: + rng (int | numpy.random.RandomState | None): + if None, then defaults to the global rng. Otherwise this can be an + integer or a RandomState class + Returns: + (numpy.random.RandomState) : rng - + a numpy random number generator + + References: + .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 + """ + + if rng is None: + rng = np.random.mtrand._rand + elif isinstance(rng, int): + rng = np.random.RandomState(rng) + else: + rng = rng + return rng diff --git a/cv/3d_detection/PAConv/pytorch/mmdet/version.py b/cv/3d_detection/PAConv/pytorch/mmdet/version.py new file mode 100644 index 000000000..0e03a9d35 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet/version.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. + +__version__ = '2.24.0' +short_version = __version__ + + +def parse_version_info(version_str): + version_info = [] + for x in version_str.split('.'): + if x.isdigit(): + version_info.append(int(x)) + elif x.find('rc') != -1: + patch_version = x.split('rc') + version_info.append(int(patch_version[0])) + version_info.append(f'rc{patch_version[1]}') + return tuple(version_info) + + +version_info = parse_version_info(__version__) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/__init__.py new file mode 100644 index 000000000..190764ba5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/__init__.py @@ -0,0 +1,49 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + +import mmdet +import mmseg +from .version import __version__, short_version + + +def digit_version(version_str): + digit_version = [] + for x in version_str.split('.'): + if x.isdigit(): + digit_version.append(int(x)) + elif x.find('rc') != -1: + patch_version = x.split('rc') + digit_version.append(int(patch_version[0]) - 1) + digit_version.append(int(patch_version[1])) + return digit_version + + +mmcv_minimum_version = '1.4.8' +mmcv_maximum_version = '1.6.0' +mmcv_version = digit_version(mmcv.__version__) + + +# assert (mmcv_version >= digit_version(mmcv_minimum_version) +# and mmcv_version <= digit_version(mmcv_maximum_version)), \ +# f'MMCV=={mmcv.__version__} is used but incompatible. ' \ +# f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' + +mmdet_minimum_version = '2.24.0' +mmdet_maximum_version = '3.0.0' +mmdet_version = digit_version(mmdet.__version__) +assert (mmdet_version >= digit_version(mmdet_minimum_version) + and mmdet_version <= digit_version(mmdet_maximum_version)), \ + f'MMDET=={mmdet.__version__} is used but incompatible. ' \ + f'Please install mmdet>={mmdet_minimum_version}, ' \ + f'<={mmdet_maximum_version}.' + +mmseg_minimum_version = '0.20.0' +mmseg_maximum_version = '1.0.0' +mmseg_version = digit_version(mmseg.__version__) +assert (mmseg_version >= digit_version(mmseg_minimum_version) + and mmseg_version <= digit_version(mmseg_maximum_version)), \ + f'MMSEG=={mmseg.__version__} is used but incompatible. ' \ + f'Please install mmseg>={mmseg_minimum_version}, ' \ + f'<={mmseg_maximum_version}.' + +__all__ = ['__version__', 'short_version'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/__init__.py new file mode 100644 index 000000000..5befc10d5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .inference import (convert_SyncBN, inference_detector, + inference_mono_3d_detector, + inference_multi_modality_detector, inference_segmentor, + init_model, show_result_meshlab) +from .test import single_gpu_test +from .train import init_random_seed, train_model + +__all__ = [ + 'inference_detector', 'init_model', 'single_gpu_test', + 'inference_mono_3d_detector', 'show_result_meshlab', 'convert_SyncBN', + 'train_model', 'inference_multi_modality_detector', 'inference_segmentor', + 'init_random_seed' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/inference.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/inference.py new file mode 100644 index 000000000..1457182cd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/inference.py @@ -0,0 +1,526 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import re +from copy import deepcopy +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.parallel import collate, scatter +from mmcv.runner import load_checkpoint + +from mmdet3d.core import (Box3DMode, CameraInstance3DBoxes, Coord3DMode, + DepthInstance3DBoxes, LiDARInstance3DBoxes, + show_multi_modality_result, show_result, + show_seg_result) +from mmdet3d.core.bbox import get_box_type +from mmdet3d.datasets.pipelines import Compose +from mmdet3d.models import build_model +from mmdet3d.utils import get_root_logger + + +def convert_SyncBN(config): + """Convert config's naiveSyncBN to BN. + + Args: + config (str or :obj:`mmcv.Config`): Config file path or the config + object. + """ + if isinstance(config, dict): + for item in config: + if item == 'norm_cfg': + config[item]['type'] = config[item]['type']. \ + replace('naiveSyncBN', 'BN') + else: + convert_SyncBN(config[item]) + + +def init_model(config, checkpoint=None, device='cuda:0'): + """Initialize a model from config file, which could be a 3D detector or a + 3D segmentor. + + Args: + config (str or :obj:`mmcv.Config`): Config file path or the config + object. + checkpoint (str, optional): Checkpoint path. If left as None, the model + will not load any weights. + device (str): Device to use. + + Returns: + nn.Module: The constructed detector. + """ + if isinstance(config, str): + config = mmcv.Config.fromfile(config) + elif not isinstance(config, mmcv.Config): + raise TypeError('config must be a filename or Config object, ' + f'but got {type(config)}') + config.model.pretrained = None + convert_SyncBN(config.model) + config.model.train_cfg = None + model = build_model(config.model, test_cfg=config.get('test_cfg')) + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') + if 'CLASSES' in checkpoint['meta']: + model.CLASSES = checkpoint['meta']['CLASSES'] + else: + model.CLASSES = config.class_names + if 'PALETTE' in checkpoint['meta']: # 3D Segmentor + model.PALETTE = checkpoint['meta']['PALETTE'] + model.cfg = config # save the config in the model for convenience + if device != 'cpu': + torch.cuda.set_device(device) + else: + logger = get_root_logger() + logger.warning('Don\'t suggest using CPU device. ' + 'Some functions are not supported for now.') + model.to(device) + model.eval() + return model + + +def inference_detector(model, pcd): + """Inference point cloud with the detector. + + Args: + model (nn.Module): The loaded detector. + pcd (str): Point cloud files. + + Returns: + tuple: Predicted results and data from pipeline. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + + if not isinstance(pcd, str): + cfg = cfg.copy() + # set loading pipeline type + cfg.data.test.pipeline[0].type = 'LoadPointsFromDict' + + # build the data pipeline + test_pipeline = deepcopy(cfg.data.test.pipeline) + test_pipeline = Compose(test_pipeline) + box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d) + + if isinstance(pcd, str): + # load from point clouds file + data = dict( + pts_filename=pcd, + box_type_3d=box_type_3d, + box_mode_3d=box_mode_3d, + # for ScanNet demo we need axis_align_matrix + ann_info=dict(axis_align_matrix=np.eye(4)), + sweeps=[], + # set timestamp = 0 + timestamp=[0], + img_fields=[], + bbox3d_fields=[], + pts_mask_fields=[], + pts_seg_fields=[], + bbox_fields=[], + mask_fields=[], + seg_fields=[]) + else: + # load from http + data = dict( + points=pcd, + box_type_3d=box_type_3d, + box_mode_3d=box_mode_3d, + # for ScanNet demo we need axis_align_matrix + ann_info=dict(axis_align_matrix=np.eye(4)), + sweeps=[], + # set timestamp = 0 + timestamp=[0], + img_fields=[], + bbox3d_fields=[], + pts_mask_fields=[], + pts_seg_fields=[], + bbox_fields=[], + mask_fields=[], + seg_fields=[]) + data = test_pipeline(data) + data = collate([data], samples_per_gpu=1) + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device.index])[0] + else: + # this is a workaround to avoid the bug of MMDataParallel + data['img_metas'] = data['img_metas'][0].data + data['points'] = data['points'][0].data + # forward the model + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + return result, data + + +def inference_multi_modality_detector(model, pcd, image, ann_file): + """Inference point cloud with the multi-modality detector. + + Args: + model (nn.Module): The loaded detector. + pcd (str): Point cloud files. + image (str): Image files. + ann_file (str): Annotation files. + + Returns: + tuple: Predicted results and data from pipeline. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + # build the data pipeline + test_pipeline = deepcopy(cfg.data.test.pipeline) + test_pipeline = Compose(test_pipeline) + box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d) + # get data info containing calib + data_infos = mmcv.load(ann_file) + image_idx = int(re.findall(r'\d+', image)[-1]) # xxx/sunrgbd_000017.jpg + for x in data_infos: + if int(x['image']['image_idx']) != image_idx: + continue + info = x + break + data = dict( + pts_filename=pcd, + img_prefix=osp.dirname(image), + img_info=dict(filename=osp.basename(image)), + box_type_3d=box_type_3d, + box_mode_3d=box_mode_3d, + img_fields=[], + bbox3d_fields=[], + pts_mask_fields=[], + pts_seg_fields=[], + bbox_fields=[], + mask_fields=[], + seg_fields=[]) + data = test_pipeline(data) + + # TODO: this code is dataset-specific. Move lidar2img and + # depth2img to .pkl annotations in the future. + # LiDAR to image conversion + if box_mode_3d == Box3DMode.LIDAR: + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P2 = info['calib']['P2'].astype(np.float32) + lidar2img = P2 @ rect @ Trv2c + data['img_metas'][0].data['lidar2img'] = lidar2img + # Depth to image conversion + elif box_mode_3d == Box3DMode.DEPTH: + rt_mat = info['calib']['Rt'] + # follow Coord3DMode.convert_point + rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0] + ]) @ rt_mat.transpose(1, 0) + depth2img = info['calib']['K'] @ rt_mat + data['img_metas'][0].data['depth2img'] = depth2img + + data = collate([data], samples_per_gpu=1) + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device.index])[0] + else: + # this is a workaround to avoid the bug of MMDataParallel + data['img_metas'] = data['img_metas'][0].data + data['points'] = data['points'][0].data + data['img'] = data['img'][0].data + + # forward the model + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + return result, data + + +def inference_mono_3d_detector(model, image, ann_file): + """Inference image with the monocular 3D detector. + + Args: + model (nn.Module): The loaded detector. + image (str): Image files. + ann_file (str): Annotation files. + + Returns: + tuple: Predicted results and data from pipeline. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + # build the data pipeline + test_pipeline = deepcopy(cfg.data.test.pipeline) + test_pipeline = Compose(test_pipeline) + box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d) + # get data info containing calib + data_infos = mmcv.load(ann_file) + # find the info corresponding to this image + for x in data_infos['images']: + if osp.basename(x['file_name']) != osp.basename(image): + continue + img_info = x + break + data = dict( + img_prefix=osp.dirname(image), + img_info=dict(filename=osp.basename(image)), + box_type_3d=box_type_3d, + box_mode_3d=box_mode_3d, + img_fields=[], + bbox3d_fields=[], + pts_mask_fields=[], + pts_seg_fields=[], + bbox_fields=[], + mask_fields=[], + seg_fields=[]) + + # camera points to image conversion + if box_mode_3d == Box3DMode.CAM: + data['img_info'].update(dict(cam_intrinsic=img_info['cam_intrinsic'])) + + data = test_pipeline(data) + + data = collate([data], samples_per_gpu=1) + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device.index])[0] + else: + # this is a workaround to avoid the bug of MMDataParallel + data['img_metas'] = data['img_metas'][0].data + data['img'] = data['img'][0].data + + # forward the model + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + return result, data + + +def inference_segmentor(model, pcd): + """Inference point cloud with the segmentor. + + Args: + model (nn.Module): The loaded segmentor. + pcd (str): Point cloud files. + + Returns: + tuple: Predicted results and data from pipeline. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + # build the data pipeline + test_pipeline = deepcopy(cfg.data.test.pipeline) + test_pipeline = Compose(test_pipeline) + data = dict( + pts_filename=pcd, + img_fields=[], + bbox3d_fields=[], + pts_mask_fields=[], + pts_seg_fields=[], + bbox_fields=[], + mask_fields=[], + seg_fields=[]) + data = test_pipeline(data) + data = collate([data], samples_per_gpu=1) + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device.index])[0] + else: + # this is a workaround to avoid the bug of MMDataParallel + data['img_metas'] = data['img_metas'][0].data + data['points'] = data['points'][0].data + # forward the model + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + return result, data + + +def show_det_result_meshlab(data, + result, + out_dir, + score_thr=0.0, + show=False, + snapshot=False): + """Show 3D detection result by meshlab.""" + points = data['points'][0][0].cpu().numpy() + pts_filename = data['img_metas'][0][0]['pts_filename'] + file_name = osp.split(pts_filename)[-1].split('.')[0] + + if 'pts_bbox' in result[0].keys(): + pred_bboxes = result[0]['pts_bbox']['boxes_3d'].tensor.numpy() + pred_scores = result[0]['pts_bbox']['scores_3d'].numpy() + else: + pred_bboxes = result[0]['boxes_3d'].tensor.numpy() + pred_scores = result[0]['scores_3d'].numpy() + + # filter out low score bboxes for visualization + if score_thr > 0: + inds = pred_scores > score_thr + pred_bboxes = pred_bboxes[inds] + + # for now we convert points into depth mode + box_mode = data['img_metas'][0][0]['box_mode_3d'] + if box_mode != Box3DMode.DEPTH: + points = Coord3DMode.convert(points, box_mode, Coord3DMode.DEPTH) + show_bboxes = Box3DMode.convert(pred_bboxes, box_mode, Box3DMode.DEPTH) + else: + show_bboxes = deepcopy(pred_bboxes) + + show_result( + points, + None, + show_bboxes, + out_dir, + file_name, + show=show, + snapshot=snapshot) + + return file_name + + +def show_seg_result_meshlab(data, + result, + out_dir, + palette, + show=False, + snapshot=False): + """Show 3D segmentation result by meshlab.""" + points = data['points'][0][0].cpu().numpy() + pts_filename = data['img_metas'][0][0]['pts_filename'] + file_name = osp.split(pts_filename)[-1].split('.')[0] + + pred_seg = result[0]['semantic_mask'].numpy() + + if palette is None: + # generate random color map + max_idx = pred_seg.max() + palette = np.random.randint(0, 256, size=(max_idx + 1, 3)) + palette = np.array(palette).astype(np.int) + + show_seg_result( + points, + None, + pred_seg, + out_dir, + file_name, + palette=palette, + show=show, + snapshot=snapshot) + + return file_name + + +def show_proj_det_result_meshlab(data, + result, + out_dir, + score_thr=0.0, + show=False, + snapshot=False): + """Show result of projecting 3D bbox to 2D image by meshlab.""" + assert 'img' in data.keys(), 'image data is not provided for visualization' + + img_filename = data['img_metas'][0][0]['filename'] + file_name = osp.split(img_filename)[-1].split('.')[0] + + # read from file because img in data_dict has undergone pipeline transform + img = mmcv.imread(img_filename) + + if 'pts_bbox' in result[0].keys(): + result[0] = result[0]['pts_bbox'] + elif 'img_bbox' in result[0].keys(): + result[0] = result[0]['img_bbox'] + pred_bboxes = result[0]['boxes_3d'].tensor.numpy() + pred_scores = result[0]['scores_3d'].numpy() + + # filter out low score bboxes for visualization + if score_thr > 0: + inds = pred_scores > score_thr + pred_bboxes = pred_bboxes[inds] + + box_mode = data['img_metas'][0][0]['box_mode_3d'] + if box_mode == Box3DMode.LIDAR: + if 'lidar2img' not in data['img_metas'][0][0]: + raise NotImplementedError( + 'LiDAR to image transformation matrix is not provided') + + show_bboxes = LiDARInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0)) + + show_multi_modality_result( + img, + None, + show_bboxes, + data['img_metas'][0][0]['lidar2img'], + out_dir, + file_name, + box_mode='lidar', + show=show) + elif box_mode == Box3DMode.DEPTH: + show_bboxes = DepthInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0)) + + show_multi_modality_result( + img, + None, + show_bboxes, + None, + out_dir, + file_name, + box_mode='depth', + img_metas=data['img_metas'][0][0], + show=show) + elif box_mode == Box3DMode.CAM: + if 'cam2img' not in data['img_metas'][0][0]: + raise NotImplementedError( + 'camera intrinsic matrix is not provided') + + show_bboxes = CameraInstance3DBoxes( + pred_bboxes, box_dim=pred_bboxes.shape[-1], origin=(0.5, 1.0, 0.5)) + + show_multi_modality_result( + img, + None, + show_bboxes, + data['img_metas'][0][0]['cam2img'], + out_dir, + file_name, + box_mode='camera', + show=show) + else: + raise NotImplementedError( + f'visualization of {box_mode} bbox is not supported') + + return file_name + + +def show_result_meshlab(data, + result, + out_dir, + score_thr=0.0, + show=False, + snapshot=False, + task='det', + palette=None): + """Show result by meshlab. + + Args: + data (dict): Contain data from pipeline. + result (dict): Predicted result from model. + out_dir (str): Directory to save visualized result. + score_thr (float, optional): Minimum score of bboxes to be shown. + Default: 0.0 + show (bool, optional): Visualize the results online. Defaults to False. + snapshot (bool, optional): Whether to save the online results. + Defaults to False. + task (str, optional): Distinguish which task result to visualize. + Currently we support 3D detection, multi-modality detection and + 3D segmentation. Defaults to 'det'. + palette (list[list[int]]] | np.ndarray, optional): The palette + of segmentation map. If None is given, random palette will be + generated. Defaults to None. + """ + assert task in ['det', 'multi_modality-det', 'seg', 'mono-det'], \ + f'unsupported visualization task {task}' + assert out_dir is not None, 'Expect out_dir, got none.' + + if task in ['det', 'multi_modality-det']: + file_name = show_det_result_meshlab(data, result, out_dir, score_thr, + show, snapshot) + + if task in ['seg']: + file_name = show_seg_result_meshlab(data, result, out_dir, palette, + show, snapshot) + + if task in ['multi_modality-det', 'mono-det']: + file_name = show_proj_det_result_meshlab(data, result, out_dir, + score_thr, show, snapshot) + + return out_dir, file_name diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/test.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/test.py new file mode 100644 index 000000000..c0e66c07f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/test.py @@ -0,0 +1,90 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import mmcv +import torch +from mmcv.image import tensor2imgs + +from mmdet3d.models import (Base3DDetector, Base3DSegmentor, + SingleStageMono3DDetector) + + +def single_gpu_test(model, + data_loader, + show=False, + out_dir=None, + show_score_thr=0.3): + """Test model with single gpu. + + This method tests model with single gpu and gives the 'show' option. + By setting ``show=True``, it saves the visualization results under + ``out_dir``. + + Args: + model (nn.Module): Model to be tested. + data_loader (nn.Dataloader): Pytorch data loader. + show (bool, optional): Whether to save viualization results. + Default: True. + out_dir (str, optional): The path to save visualization results. + Default: None. + + Returns: + list[dict]: The prediction results. + """ + model.eval() + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + for i, data in enumerate(data_loader): + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + + if show: + # Visualize the results of MMDetection3D model + # 'show_results' is MMdetection3D visualization API + models_3d = (Base3DDetector, Base3DSegmentor, + SingleStageMono3DDetector) + if isinstance(model.module, models_3d): + model.module.show_results( + data, + result, + out_dir=out_dir, + show=show, + score_thr=show_score_thr) + # Visualize the results of MMDetection model + # 'show_result' is MMdetection visualization API + else: + batch_size = len(result) + if batch_size == 1 and isinstance(data['img'][0], + torch.Tensor): + img_tensor = data['img'][0] + else: + img_tensor = data['img'][0].data[0] + img_metas = data['img_metas'][0].data[0] + imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) + assert len(imgs) == len(img_metas) + + for i, (img, img_meta) in enumerate(zip(imgs, img_metas)): + h, w, _ = img_meta['img_shape'] + img_show = img[:h, :w, :] + + ori_h, ori_w = img_meta['ori_shape'][:-1] + img_show = mmcv.imresize(img_show, (ori_w, ori_h)) + + if out_dir: + out_file = osp.join(out_dir, img_meta['ori_filename']) + else: + out_file = None + + model.module.show_result( + img_show, + result[i], + show=show, + out_file=out_file, + score_thr=show_score_thr) + results.extend(result) + + batch_size = len(result) + for _ in range(batch_size): + prog_bar.update() + return results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/train.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/train.py new file mode 100644 index 000000000..4d9702642 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/apis/train.py @@ -0,0 +1,351 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import random +import warnings + +import numpy as np +import torch +from mmcv.parallel import MMDataParallel, MMDistributedDataParallel +from mmcv.runner import (HOOKS, DistSamplerSeedHook, EpochBasedRunner, + Fp16OptimizerHook, OptimizerHook, build_optimizer, + build_runner, get_dist_info) +from mmcv.utils import build_from_cfg +from torch import distributed as dist + +from mmdet3d.datasets import build_dataset +from mmdet3d.utils import find_latest_checkpoint +from mmdet.core import DistEvalHook as MMDET_DistEvalHook +from mmdet.core import EvalHook as MMDET_EvalHook +from mmdet.datasets import build_dataloader as build_mmdet_dataloader +from mmdet.datasets import replace_ImageToTensor +from mmdet.utils import get_root_logger as get_mmdet_root_logger +from mmseg.core import DistEvalHook as MMSEG_DistEvalHook +from mmseg.core import EvalHook as MMSEG_EvalHook +from mmseg.datasets import build_dataloader as build_mmseg_dataloader +from mmseg.utils import get_root_logger as get_mmseg_root_logger + + +def init_random_seed(seed=None, device='cuda'): + """Initialize random seed. + + If the seed is not set, the seed will be automatically randomized, + and then broadcast to all processes to prevent some potential bugs. + Args: + seed (int, optional): The seed. Default to None. + device (str, optional): The device where the seed will be put on. + Default to 'cuda'. + Returns: + int: Seed to be used. + """ + if seed is not None: + return seed + + # Make sure all ranks share the same random seed to prevent + # some potential bugs. Please refer to + # https://github.com/open-mmlab/mmdetection/issues/6339 + rank, world_size = get_dist_info() + seed = np.random.randint(2**31) + if world_size == 1: + return seed + + if rank == 0: + random_num = torch.tensor(seed, dtype=torch.int32, device=device) + else: + random_num = torch.tensor(0, dtype=torch.int32, device=device) + dist.broadcast(random_num, src=0) + return random_num.item() + + +def set_random_seed(seed, deterministic=False): + """Set random seed. + + Args: + seed (int): Seed to be used. + deterministic (bool): Whether to set the deterministic option for + CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` + to True and `torch.backends.cudnn.benchmark` to False. + Default: False. + """ + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + if deterministic: + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +def train_segmentor(model, + dataset, + cfg, + distributed=False, + validate=False, + timestamp=None, + meta=None): + """Launch segmentor training.""" + logger = get_mmseg_root_logger(cfg.log_level) + + # prepare data loaders + dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] + data_loaders = [ + build_mmseg_dataloader( + ds, + cfg.data.samples_per_gpu, + cfg.data.workers_per_gpu, + # cfg.gpus will be ignored if distributed + len(cfg.gpu_ids), + dist=distributed, + seed=cfg.seed, + drop_last=True) for ds in dataset + ] + + # put model on gpus + if distributed: + find_unused_parameters = cfg.get('find_unused_parameters', False) + # Sets the `find_unused_parameters` parameter in + # torch.nn.parallel.DistributedDataParallel + model = MMDistributedDataParallel( + model.cuda(), + device_ids=[torch.cuda.current_device()], + broadcast_buffers=False, + find_unused_parameters=find_unused_parameters) + else: + model = MMDataParallel( + model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) + + # build runner + optimizer = build_optimizer(model, cfg.optimizer) + + if cfg.get('runner') is None: + cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + + runner = build_runner( + cfg.runner, + default_args=dict( + model=model, + batch_processor=None, + optimizer=optimizer, + work_dir=cfg.work_dir, + logger=logger, + meta=meta)) + + # register hooks + runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, + cfg.checkpoint_config, cfg.log_config, + cfg.get('momentum_config', None)) + + # an ugly walkaround to make the .log and .log.json filenames the same + runner.timestamp = timestamp + + # register eval hooks + if validate: + val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) + val_dataloader = build_mmseg_dataloader( + val_dataset, + samples_per_gpu=1, + workers_per_gpu=cfg.data.workers_per_gpu, + dist=distributed, + shuffle=False) + eval_cfg = cfg.get('evaluation', {}) + eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' + eval_hook = MMSEG_DistEvalHook if distributed else MMSEG_EvalHook + # In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the + # priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'. + runner.register_hook( + eval_hook(val_dataloader, **eval_cfg), priority='LOW') + + # user-defined hooks + if cfg.get('custom_hooks', None): + custom_hooks = cfg.custom_hooks + assert isinstance(custom_hooks, list), \ + f'custom_hooks expect list type, but got {type(custom_hooks)}' + for hook_cfg in cfg.custom_hooks: + assert isinstance(hook_cfg, dict), \ + 'Each item in custom_hooks expects dict type, but got ' \ + f'{type(hook_cfg)}' + hook_cfg = hook_cfg.copy() + priority = hook_cfg.pop('priority', 'NORMAL') + hook = build_from_cfg(hook_cfg, HOOKS) + runner.register_hook(hook, priority=priority) + + if cfg.resume_from: + runner.resume(cfg.resume_from) + elif cfg.load_from: + runner.load_checkpoint(cfg.load_from) + runner.run(data_loaders, cfg.workflow) + + +def train_detector(model, + dataset, + cfg, + distributed=False, + validate=False, + timestamp=None, + meta=None): + logger = get_mmdet_root_logger(log_level=cfg.log_level) + + # prepare data loaders + dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] + if 'imgs_per_gpu' in cfg.data: + logger.warning('"imgs_per_gpu" is deprecated in MMDet V2.0. ' + 'Please use "samples_per_gpu" instead') + if 'samples_per_gpu' in cfg.data: + logger.warning( + f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' + f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' + f'={cfg.data.imgs_per_gpu} is used in this experiments') + else: + logger.warning( + 'Automatically set "samples_per_gpu"="imgs_per_gpu"=' + f'{cfg.data.imgs_per_gpu} in this experiments') + cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu + + runner_type = 'EpochBasedRunner' if 'runner' not in cfg else cfg.runner[ + 'type'] + data_loaders = [ + build_mmdet_dataloader( + ds, + cfg.data.samples_per_gpu, + cfg.data.workers_per_gpu, + # `num_gpus` will be ignored if distributed + num_gpus=len(cfg.gpu_ids), + dist=distributed, + seed=cfg.seed, + runner_type=runner_type, + persistent_workers=cfg.data.get('persistent_workers', False)) + for ds in dataset + ] + + # put model on gpus + if distributed: + find_unused_parameters = cfg.get('find_unused_parameters', False) + # Sets the `find_unused_parameters` parameter in + # torch.nn.parallel.DistributedDataParallel + model = MMDistributedDataParallel( + model.cuda(), + device_ids=[torch.cuda.current_device()], + broadcast_buffers=False, + find_unused_parameters=find_unused_parameters) + else: + model = MMDataParallel( + model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) + + # build runner + optimizer = build_optimizer(model, cfg.optimizer) + + if 'runner' not in cfg: + cfg.runner = { + 'type': 'EpochBasedRunner', + 'max_epochs': cfg.total_epochs + } + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + else: + if 'total_epochs' in cfg: + assert cfg.total_epochs == cfg.runner.max_epochs + + runner = build_runner( + cfg.runner, + default_args=dict( + model=model, + optimizer=optimizer, + work_dir=cfg.work_dir, + logger=logger, + meta=meta)) + + # an ugly workaround to make .log and .log.json filenames the same + runner.timestamp = timestamp + + # fp16 setting + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + optimizer_config = Fp16OptimizerHook( + **cfg.optimizer_config, **fp16_cfg, distributed=distributed) + elif distributed and 'type' not in cfg.optimizer_config: + optimizer_config = OptimizerHook(**cfg.optimizer_config) + else: + optimizer_config = cfg.optimizer_config + + # register hooks + runner.register_training_hooks( + cfg.lr_config, + optimizer_config, + cfg.checkpoint_config, + cfg.log_config, + cfg.get('momentum_config', None), + custom_hooks_config=cfg.get('custom_hooks', None)) + + if distributed: + if isinstance(runner, EpochBasedRunner): + runner.register_hook(DistSamplerSeedHook()) + + # register eval hooks + if validate: + # Support batch_size > 1 in validation + val_samples_per_gpu = cfg.data.val.pop('samples_per_gpu', 1) + if val_samples_per_gpu > 1: + # Replace 'ImageToTensor' to 'DefaultFormatBundle' + cfg.data.val.pipeline = replace_ImageToTensor( + cfg.data.val.pipeline) + val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) + val_dataloader = build_mmdet_dataloader( + val_dataset, + samples_per_gpu=val_samples_per_gpu, + workers_per_gpu=cfg.data.workers_per_gpu, + dist=distributed, + shuffle=False) + eval_cfg = cfg.get('evaluation', {}) + eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' + eval_hook = MMDET_DistEvalHook if distributed else MMDET_EvalHook + # In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the + # priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'. + runner.register_hook( + eval_hook(val_dataloader, **eval_cfg), priority='LOW') + + resume_from = None + if cfg.resume_from is None and cfg.get('auto_resume'): + resume_from = find_latest_checkpoint(cfg.work_dir) + + if resume_from is not None: + cfg.resume_from = resume_from + + if cfg.resume_from: + runner.resume(cfg.resume_from) + elif cfg.load_from: + runner.load_checkpoint(cfg.load_from) + runner.run(data_loaders, cfg.workflow) + + +def train_model(model, + dataset, + cfg, + distributed=False, + validate=False, + timestamp=None, + meta=None): + """A function wrapper for launching model training according to cfg. + + Because we need different eval_hook in runner. Should be deprecated in the + future. + """ + if cfg.model.type in ['EncoderDecoder3D']: + train_segmentor( + model, + dataset, + cfg, + distributed=distributed, + validate=validate, + timestamp=timestamp, + meta=meta) + else: + train_detector( + model, + dataset, + cfg, + distributed=distributed, + validate=validate, + timestamp=timestamp, + meta=meta) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/__init__.py new file mode 100644 index 000000000..ffb0c1acb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .anchor import * # noqa: F401, F403 +from .bbox import * # noqa: F401, F403 +from .evaluation import * # noqa: F401, F403 +from .points import * # noqa: F401, F403 +from .post_processing import * # noqa: F401, F403 +from .utils import * # noqa: F401, F403 +from .visualizer import * # noqa: F401, F403 +from .voxel import * # noqa: F401, F403 diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/__init__.py new file mode 100644 index 000000000..7a34bf56c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core.anchor import build_prior_generator +from .anchor_3d_generator import (AlignedAnchor3DRangeGenerator, + AlignedAnchor3DRangeGeneratorPerCls, + Anchor3DRangeGenerator) + +__all__ = [ + 'AlignedAnchor3DRangeGenerator', 'Anchor3DRangeGenerator', + 'build_prior_generator', 'AlignedAnchor3DRangeGeneratorPerCls' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/anchor_3d_generator.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/anchor_3d_generator.py new file mode 100644 index 000000000..e8681b71d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/anchor/anchor_3d_generator.py @@ -0,0 +1,419 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch + +from mmdet.core.anchor import ANCHOR_GENERATORS + + +@ANCHOR_GENERATORS.register_module() +class Anchor3DRangeGenerator(object): + """3D Anchor Generator by range. + + This anchor generator generates anchors by the given range in different + feature levels. + Due the convention in 3D detection, different anchor sizes are related to + different ranges for different categories. However we find this setting + does not effect the performance much in some datasets, e.g., nuScenes. + + Args: + ranges (list[list[float]]): Ranges of different anchors. + The ranges are the same across different feature levels. But may + vary for different anchor sizes if size_per_range is True. + sizes (list[list[float]], optional): 3D sizes of anchors. + Defaults to [[3.9, 1.6, 1.56]]. + scales (list[int], optional): Scales of anchors in different feature + levels. Defaults to [1]. + rotations (list[float], optional): Rotations of anchors in a feature + grid. Defaults to [0, 1.5707963]. + custom_values (tuple[float], optional): Customized values of that + anchor. For example, in nuScenes the anchors have velocities. + Defaults to (). + reshape_out (bool, optional): Whether to reshape the output into + (N x 4). Defaults to True. + size_per_range (bool, optional): Whether to use separate ranges for + different sizes. If size_per_range is True, the ranges should have + the same length as the sizes, if not, it will be duplicated. + Defaults to True. + """ + + def __init__(self, + ranges, + sizes=[[3.9, 1.6, 1.56]], + scales=[1], + rotations=[0, 1.5707963], + custom_values=(), + reshape_out=True, + size_per_range=True): + assert mmcv.is_list_of(ranges, list) + if size_per_range: + if len(sizes) != len(ranges): + assert len(ranges) == 1 + ranges = ranges * len(sizes) + assert len(ranges) == len(sizes) + else: + assert len(ranges) == 1 + assert mmcv.is_list_of(sizes, list) + assert isinstance(scales, list) + + self.sizes = sizes + self.scales = scales + self.ranges = ranges + self.rotations = rotations + self.custom_values = custom_values + self.cached_anchors = None + self.reshape_out = reshape_out + self.size_per_range = size_per_range + + def __repr__(self): + s = self.__class__.__name__ + '(' + s += f'anchor_range={self.ranges},\n' + s += f'scales={self.scales},\n' + s += f'sizes={self.sizes},\n' + s += f'rotations={self.rotations},\n' + s += f'reshape_out={self.reshape_out},\n' + s += f'size_per_range={self.size_per_range})' + return s + + @property + def num_base_anchors(self): + """list[int]: Total number of base anchors in a feature grid.""" + num_rot = len(self.rotations) + num_size = torch.tensor(self.sizes).reshape(-1, 3).size(0) + return num_rot * num_size + + @property + def num_levels(self): + """int: Number of feature levels that the generator is applied to.""" + return len(self.scales) + + def grid_anchors(self, featmap_sizes, device='cuda'): + """Generate grid anchors in multiple feature levels. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes in + multiple feature levels. + device (str, optional): Device where the anchors will be put on. + Defaults to 'cuda'. + + Returns: + list[torch.Tensor]: Anchors in multiple feature levels. + The sizes of each tensor should be [N, 4], where + N = width * height * num_base_anchors, width and height + are the sizes of the corresponding feature level, + num_base_anchors is the number of anchors for that level. + """ + assert self.num_levels == len(featmap_sizes) + multi_level_anchors = [] + for i in range(self.num_levels): + anchors = self.single_level_grid_anchors( + featmap_sizes[i], self.scales[i], device=device) + if self.reshape_out: + anchors = anchors.reshape(-1, anchors.size(-1)) + multi_level_anchors.append(anchors) + return multi_level_anchors + + def single_level_grid_anchors(self, featmap_size, scale, device='cuda'): + """Generate grid anchors of a single level feature map. + + This function is usually called by method ``self.grid_anchors``. + + Args: + featmap_size (tuple[int]): Size of the feature map. + scale (float): Scale factor of the anchors in the current level. + device (str, optional): Device the tensor will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors in the overall feature map. + """ + # We reimplement the anchor generator using torch in cuda + # torch: 0.6975 s for 1000 times + # numpy: 4.3345 s for 1000 times + # which is ~5 times faster than the numpy implementation + if not self.size_per_range: + return self.anchors_single_range( + featmap_size, + self.ranges[0], + scale, + self.sizes, + self.rotations, + device=device) + + mr_anchors = [] + for anchor_range, anchor_size in zip(self.ranges, self.sizes): + mr_anchors.append( + self.anchors_single_range( + featmap_size, + anchor_range, + scale, + anchor_size, + self.rotations, + device=device)) + mr_anchors = torch.cat(mr_anchors, dim=-3) + return mr_anchors + + def anchors_single_range(self, + feature_size, + anchor_range, + scale=1, + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.5707963], + device='cuda'): + """Generate anchors in a single range. + + Args: + feature_size (list[float] | tuple[float]): Feature map size. It is + either a list of a tuple of [D, H, W](in order of z, y, and x). + anchor_range (torch.Tensor | list[float]): Range of anchors with + shape [6]. The order is consistent with that of anchors, i.e., + (x_min, y_min, z_min, x_max, y_max, z_max). + scale (float | int, optional): The scale factor of anchors. + Defaults to 1. + sizes (list[list] | np.ndarray | torch.Tensor, optional): + Anchor size with shape [N, 3], in order of x, y, z. + Defaults to [[3.9, 1.6, 1.56]]. + rotations (list[float] | np.ndarray | torch.Tensor, optional): + Rotations of anchors in a single feature grid. + Defaults to [0, 1.5707963]. + device (str): Devices that the anchors will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors with shape + [*feature_size, num_sizes, num_rots, 7]. + """ + if len(feature_size) == 2: + feature_size = [1, feature_size[0], feature_size[1]] + anchor_range = torch.tensor(anchor_range, device=device) + z_centers = torch.linspace( + anchor_range[2], anchor_range[5], feature_size[0], device=device) + y_centers = torch.linspace( + anchor_range[1], anchor_range[4], feature_size[1], device=device) + x_centers = torch.linspace( + anchor_range[0], anchor_range[3], feature_size[2], device=device) + sizes = torch.tensor(sizes, device=device).reshape(-1, 3) * scale + rotations = torch.tensor(rotations, device=device) + + # torch.meshgrid default behavior is 'id', np's default is 'xy' + rets = torch.meshgrid(x_centers, y_centers, z_centers, rotations) + # torch.meshgrid returns a tuple rather than list + rets = list(rets) + tile_shape = [1] * 5 + tile_shape[-2] = int(sizes.shape[0]) + for i in range(len(rets)): + rets[i] = rets[i].unsqueeze(-2).repeat(tile_shape).unsqueeze(-1) + + sizes = sizes.reshape([1, 1, 1, -1, 1, 3]) + tile_size_shape = list(rets[0].shape) + tile_size_shape[3] = 1 + sizes = sizes.repeat(tile_size_shape) + rets.insert(3, sizes) + + ret = torch.cat(rets, dim=-1).permute([2, 1, 0, 3, 4, 5]) + # [1, 200, 176, N, 2, 7] for kitti after permute + + if len(self.custom_values) > 0: + custom_ndim = len(self.custom_values) + custom = ret.new_zeros([*ret.shape[:-1], custom_ndim]) + # custom[:] = self.custom_values + ret = torch.cat([ret, custom], dim=-1) + # [1, 200, 176, N, 2, 9] for nus dataset after permute + return ret + + +@ANCHOR_GENERATORS.register_module() +class AlignedAnchor3DRangeGenerator(Anchor3DRangeGenerator): + """Aligned 3D Anchor Generator by range. + + This anchor generator uses a different manner to generate the positions + of anchors' centers from :class:`Anchor3DRangeGenerator`. + + Note: + The `align` means that the anchor's center is aligned with the voxel + grid, which is also the feature grid. The previous implementation of + :class:`Anchor3DRangeGenerator` does not generate the anchors' center + according to the voxel grid. Rather, it generates the center by + uniformly distributing the anchors inside the minimum and maximum + anchor ranges according to the feature map sizes. + However, this makes the anchors center does not match the feature grid. + The :class:`AlignedAnchor3DRangeGenerator` add + 1 when using the + feature map sizes to obtain the corners of the voxel grid. Then it + shifts the coordinates to the center of voxel grid and use the left + up corner to distribute anchors. + + Args: + anchor_corner (bool, optional): Whether to align with the corner of the + voxel grid. By default it is False and the anchor's center will be + the same as the corresponding voxel's center, which is also the + center of the corresponding greature grid. Defaults to False. + """ + + def __init__(self, align_corner=False, **kwargs): + super(AlignedAnchor3DRangeGenerator, self).__init__(**kwargs) + self.align_corner = align_corner + + def anchors_single_range(self, + feature_size, + anchor_range, + scale, + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.5707963], + device='cuda'): + """Generate anchors in a single range. + + Args: + feature_size (list[float] | tuple[float]): Feature map size. It is + either a list of a tuple of [D, H, W](in order of z, y, and x). + anchor_range (torch.Tensor | list[float]): Range of anchors with + shape [6]. The order is consistent with that of anchors, i.e., + (x_min, y_min, z_min, x_max, y_max, z_max). + scale (float | int): The scale factor of anchors. + sizes (list[list] | np.ndarray | torch.Tensor, optional): + Anchor size with shape [N, 3], in order of x, y, z. + Defaults to [[3.9, 1.6, 1.56]]. + rotations (list[float] | np.ndarray | torch.Tensor, optional): + Rotations of anchors in a single feature grid. + Defaults to [0, 1.5707963]. + device (str, optional): Devices that the anchors will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors with shape + [*feature_size, num_sizes, num_rots, 7]. + """ + if len(feature_size) == 2: + feature_size = [1, feature_size[0], feature_size[1]] + anchor_range = torch.tensor(anchor_range, device=device) + z_centers = torch.linspace( + anchor_range[2], + anchor_range[5], + feature_size[0] + 1, + device=device) + y_centers = torch.linspace( + anchor_range[1], + anchor_range[4], + feature_size[1] + 1, + device=device) + x_centers = torch.linspace( + anchor_range[0], + anchor_range[3], + feature_size[2] + 1, + device=device) + sizes = torch.tensor(sizes, device=device).reshape(-1, 3) * scale + rotations = torch.tensor(rotations, device=device) + + # shift the anchor center + if not self.align_corner: + z_shift = (z_centers[1] - z_centers[0]) / 2 + y_shift = (y_centers[1] - y_centers[0]) / 2 + x_shift = (x_centers[1] - x_centers[0]) / 2 + z_centers += z_shift + y_centers += y_shift + x_centers += x_shift + + # torch.meshgrid default behavior is 'id', np's default is 'xy' + rets = torch.meshgrid(x_centers[:feature_size[2]], + y_centers[:feature_size[1]], + z_centers[:feature_size[0]], rotations) + + # torch.meshgrid returns a tuple rather than list + rets = list(rets) + tile_shape = [1] * 5 + tile_shape[-2] = int(sizes.shape[0]) + for i in range(len(rets)): + rets[i] = rets[i].unsqueeze(-2).repeat(tile_shape).unsqueeze(-1) + + sizes = sizes.reshape([1, 1, 1, -1, 1, 3]) + tile_size_shape = list(rets[0].shape) + tile_size_shape[3] = 1 + sizes = sizes.repeat(tile_size_shape) + rets.insert(3, sizes) + + ret = torch.cat(rets, dim=-1).permute([2, 1, 0, 3, 4, 5]) + + if len(self.custom_values) > 0: + custom_ndim = len(self.custom_values) + custom = ret.new_zeros([*ret.shape[:-1], custom_ndim]) + # TODO: check the support of custom values + # custom[:] = self.custom_values + ret = torch.cat([ret, custom], dim=-1) + return ret + + +@ANCHOR_GENERATORS.register_module() +class AlignedAnchor3DRangeGeneratorPerCls(AlignedAnchor3DRangeGenerator): + """3D Anchor Generator by range for per class. + + This anchor generator generates anchors by the given range for per class. + Note that feature maps of different classes may be different. + + Args: + kwargs (dict): Arguments are the same as those in + :class:`AlignedAnchor3DRangeGenerator`. + """ + + def __init__(self, **kwargs): + super(AlignedAnchor3DRangeGeneratorPerCls, self).__init__(**kwargs) + assert len(self.scales) == 1, 'Multi-scale feature map levels are' + \ + ' not supported currently in this kind of anchor generator.' + + def grid_anchors(self, featmap_sizes, device='cuda'): + """Generate grid anchors in multiple feature levels. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes for + different classes in a single feature level. + device (str, optional): Device where the anchors will be put on. + Defaults to 'cuda'. + + Returns: + list[list[torch.Tensor]]: Anchors in multiple feature levels. + Note that in this anchor generator, we currently only + support single feature level. The sizes of each tensor + should be [num_sizes/ranges*num_rots*featmap_size, + box_code_size]. + """ + multi_level_anchors = [] + anchors = self.multi_cls_grid_anchors( + featmap_sizes, self.scales[0], device=device) + multi_level_anchors.append(anchors) + return multi_level_anchors + + def multi_cls_grid_anchors(self, featmap_sizes, scale, device='cuda'): + """Generate grid anchors of a single level feature map for multi-class + with different feature map sizes. + + This function is usually called by method ``self.grid_anchors``. + + Args: + featmap_sizes (list[tuple]): List of feature map sizes for + different classes in a single feature level. + scale (float): Scale factor of the anchors in the current level. + device (str, optional): Device the tensor will be put on. + Defaults to 'cuda'. + + Returns: + torch.Tensor: Anchors in the overall feature map. + """ + assert len(featmap_sizes) == len(self.sizes) == len(self.ranges), \ + 'The number of different feature map sizes anchor sizes and ' + \ + 'ranges should be the same.' + + multi_cls_anchors = [] + for i in range(len(featmap_sizes)): + anchors = self.anchors_single_range( + featmap_sizes[i], + self.ranges[i], + scale, + self.sizes[i], + self.rotations, + device=device) + # [*featmap_size, num_sizes/ranges, num_rots, box_code_size] + ndim = len(featmap_sizes[i]) + anchors = anchors.view(*featmap_sizes[i], -1, anchors.size(-1)) + # [*featmap_size, num_sizes/ranges*num_rots, box_code_size] + anchors = anchors.permute(ndim, *range(0, ndim), ndim + 1) + # [num_sizes/ranges*num_rots, *featmap_size, box_code_size] + multi_cls_anchors.append(anchors.reshape(-1, anchors.size(-1))) + # [num_sizes/ranges*num_rots*featmap_size, box_code_size] + return multi_cls_anchors diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/__init__.py new file mode 100644 index 000000000..8c6663068 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/__init__.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .assigners import AssignResult, BaseAssigner, MaxIoUAssigner +from .coders import DeltaXYZWLHRBBoxCoder +# from .bbox_target import bbox_target +from .iou_calculators import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, + BboxOverlapsNearest3D, + axis_aligned_bbox_overlaps_3d, bbox_overlaps_3d, + bbox_overlaps_nearest_3d) +from .samplers import (BaseSampler, CombinedSampler, + InstanceBalancedPosSampler, IoUBalancedNegSampler, + PseudoSampler, RandomSampler, SamplingResult) +from .structures import (BaseInstance3DBoxes, Box3DMode, CameraInstance3DBoxes, + Coord3DMode, DepthInstance3DBoxes, + LiDARInstance3DBoxes, get_box_type, limit_period, + mono_cam_box2vis, points_cam2img, points_img2cam, + xywhr2xyxyr) +from .transforms import bbox3d2result, bbox3d2roi, bbox3d_mapping_back + +__all__ = [ + 'BaseSampler', 'AssignResult', 'BaseAssigner', 'MaxIoUAssigner', + 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', + 'IoUBalancedNegSampler', 'CombinedSampler', 'SamplingResult', + 'DeltaXYZWLHRBBoxCoder', 'BboxOverlapsNearest3D', 'BboxOverlaps3D', + 'bbox_overlaps_nearest_3d', 'bbox_overlaps_3d', + 'AxisAlignedBboxOverlaps3D', 'axis_aligned_bbox_overlaps_3d', 'Box3DMode', + 'LiDARInstance3DBoxes', 'CameraInstance3DBoxes', 'bbox3d2roi', + 'bbox3d2result', 'DepthInstance3DBoxes', 'BaseInstance3DBoxes', + 'bbox3d_mapping_back', 'xywhr2xyxyr', 'limit_period', 'points_cam2img', + 'points_img2cam', 'get_box_type', 'Coord3DMode', 'mono_cam_box2vis' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/assigners/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/assigners/__init__.py new file mode 100644 index 000000000..d14936871 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/assigners/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core.bbox import AssignResult, BaseAssigner, MaxIoUAssigner + +__all__ = ['BaseAssigner', 'MaxIoUAssigner', 'AssignResult'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/box_np_ops.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/box_np_ops.py new file mode 100644 index 000000000..bb52bbbfc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/box_np_ops.py @@ -0,0 +1,827 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# TODO: clean the functions in this file and move the APIs into box structures +# in the future +# NOTICE: All functions in this file are valid for LiDAR or depth boxes only +# if we use default parameters. + +import numba +import numpy as np + +from .structures.utils import limit_period, points_cam2img, rotation_3d_in_axis + + +def camera_to_lidar(points, r_rect, velo2cam): + """Convert points in camera coordinate to lidar coordinate. + + Note: + This function is for KITTI only. + + Args: + points (np.ndarray, shape=[N, 3]): Points in camera coordinate. + r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in + specific camera coordinate (e.g. CAM2) to CAM0. + velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in + camera coordinate to lidar coordinate. + + Returns: + np.ndarray, shape=[N, 3]: Points in lidar coordinate. + """ + points_shape = list(points.shape[0:-1]) + if points.shape[-1] == 3: + points = np.concatenate([points, np.ones(points_shape + [1])], axis=-1) + lidar_points = points @ np.linalg.inv((r_rect @ velo2cam).T) + return lidar_points[..., :3] + + +def box_camera_to_lidar(data, r_rect, velo2cam): + """Convert boxes in camera coordinate to lidar coordinate. + + Note: + This function is for KITTI only. + + Args: + data (np.ndarray, shape=[N, 7]): Boxes in camera coordinate. + r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in + specific camera coordinate (e.g. CAM2) to CAM0. + velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in + camera coordinate to lidar coordinate. + + Returns: + np.ndarray, shape=[N, 3]: Boxes in lidar coordinate. + """ + xyz = data[:, 0:3] + x_size, y_size, z_size = data[:, 3:4], data[:, 4:5], data[:, 5:6] + r = data[:, 6:7] + xyz_lidar = camera_to_lidar(xyz, r_rect, velo2cam) + # yaw and dims also needs to be converted + r_new = -r - np.pi / 2 + r_new = limit_period(r_new, period=np.pi * 2) + return np.concatenate([xyz_lidar, x_size, z_size, y_size, r_new], axis=1) + + +def corners_nd(dims, origin=0.5): + """Generate relative box corners based on length per dim and origin point. + + Args: + dims (np.ndarray, shape=[N, ndim]): Array of length per dim + origin (list or array or float, optional): origin point relate to + smallest point. Defaults to 0.5 + + Returns: + np.ndarray, shape=[N, 2 ** ndim, ndim]: Returned corners. + point layout example: (2d) x0y0, x0y1, x1y0, x1y1; + (3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1 + where x0 < x1, y0 < y1, z0 < z1. + """ + ndim = int(dims.shape[1]) + corners_norm = np.stack( + np.unravel_index(np.arange(2**ndim), [2] * ndim), + axis=1).astype(dims.dtype) + # now corners_norm has format: (2d) x0y0, x0y1, x1y0, x1y1 + # (3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1 + # so need to convert to a format which is convenient to do other computing. + # for 2d boxes, format is clockwise start with minimum point + # for 3d boxes, please draw lines by your hand. + if ndim == 2: + # generate clockwise box corners + corners_norm = corners_norm[[0, 1, 3, 2]] + elif ndim == 3: + corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] + corners_norm = corners_norm - np.array(origin, dtype=dims.dtype) + corners = dims.reshape([-1, 1, ndim]) * corners_norm.reshape( + [1, 2**ndim, ndim]) + return corners + + +def center_to_corner_box2d(centers, dims, angles=None, origin=0.5): + """Convert kitti locations, dimensions and angles to corners. + format: center(xy), dims(xy), angles(counterclockwise when positive) + + Args: + centers (np.ndarray): Locations in kitti label file with shape (N, 2). + dims (np.ndarray): Dimensions in kitti label file with shape (N, 2). + angles (np.ndarray, optional): Rotation_y in kitti label file with + shape (N). Defaults to None. + origin (list or array or float, optional): origin point relate to + smallest point. Defaults to 0.5. + + Returns: + np.ndarray: Corners with the shape of (N, 4, 2). + """ + # 'length' in kitti format is in x axis. + # xyz(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(wlh)(lidar) + # center in kitti format is [0.5, 1.0, 0.5] in xyz. + corners = corners_nd(dims, origin=origin) + # corners: [N, 4, 2] + if angles is not None: + corners = rotation_3d_in_axis(corners, angles) + corners += centers.reshape([-1, 1, 2]) + return corners + + +@numba.jit(nopython=True) +def depth_to_points(depth, trunc_pixel): + """Convert depth map to points. + + Args: + depth (np.array, shape=[H, W]): Depth map which + the row of [0~`trunc_pixel`] are truncated. + trunc_pixel (int): The number of truncated row. + + Returns: + np.ndarray: Points in camera coordinates. + """ + num_pts = np.sum(depth[trunc_pixel:, ] > 0.1) + points = np.zeros((num_pts, 3), dtype=depth.dtype) + x = np.array([0, 0, 1], dtype=depth.dtype) + k = 0 + for i in range(trunc_pixel, depth.shape[0]): + for j in range(depth.shape[1]): + if depth[i, j] > 0.1: + x = np.array([j, i, 1], dtype=depth.dtype) + points[k] = x * depth[i, j] + k += 1 + return points + + +def depth_to_lidar_points(depth, trunc_pixel, P2, r_rect, velo2cam): + """Convert depth map to points in lidar coordinate. + + Args: + depth (np.array, shape=[H, W]): Depth map which + the row of [0~`trunc_pixel`] are truncated. + trunc_pixel (int): The number of truncated row. + P2 (p.array, shape=[4, 4]): Intrinsics of Camera2. + r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in + specific camera coordinate (e.g. CAM2) to CAM0. + velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in + camera coordinate to lidar coordinate. + + Returns: + np.ndarray: Points in lidar coordinates. + """ + pts = depth_to_points(depth, trunc_pixel) + points_shape = list(pts.shape[0:-1]) + points = np.concatenate([pts, np.ones(points_shape + [1])], axis=-1) + points = points @ np.linalg.inv(P2.T) + lidar_points = camera_to_lidar(points, r_rect, velo2cam) + return lidar_points + + +def center_to_corner_box3d(centers, + dims, + angles=None, + origin=(0.5, 1.0, 0.5), + axis=1): + """Convert kitti locations, dimensions and angles to corners. + + Args: + centers (np.ndarray): Locations in kitti label file with shape (N, 3). + dims (np.ndarray): Dimensions in kitti label file with shape (N, 3). + angles (np.ndarray, optional): Rotation_y in kitti label file with + shape (N). Defaults to None. + origin (list or array or float, optional): Origin point relate to + smallest point. Use (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) + in lidar. Defaults to (0.5, 1.0, 0.5). + axis (int, optional): Rotation axis. 1 for camera and 2 for lidar. + Defaults to 1. + + Returns: + np.ndarray: Corners with the shape of (N, 8, 3). + """ + # 'length' in kitti format is in x axis. + # yzx(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(lwh)(lidar) + # center in kitti format is [0.5, 1.0, 0.5] in xyz. + corners = corners_nd(dims, origin=origin) + # corners: [N, 8, 3] + if angles is not None: + corners = rotation_3d_in_axis(corners, angles, axis=axis) + corners += centers.reshape([-1, 1, 3]) + return corners + + +@numba.jit(nopython=True) +def box2d_to_corner_jit(boxes): + """Convert box2d to corner. + + Args: + boxes (np.ndarray, shape=[N, 5]): Boxes2d with rotation. + + Returns: + box_corners (np.ndarray, shape=[N, 4, 2]): Box corners. + """ + num_box = boxes.shape[0] + corners_norm = np.zeros((4, 2), dtype=boxes.dtype) + corners_norm[1, 1] = 1.0 + corners_norm[2] = 1.0 + corners_norm[3, 0] = 1.0 + corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) + corners = boxes.reshape(num_box, 1, 5)[:, :, 2:4] * corners_norm.reshape( + 1, 4, 2) + rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) + box_corners = np.zeros((num_box, 4, 2), dtype=boxes.dtype) + for i in range(num_box): + rot_sin = np.sin(boxes[i, -1]) + rot_cos = np.cos(boxes[i, -1]) + rot_mat_T[0, 0] = rot_cos + rot_mat_T[0, 1] = rot_sin + rot_mat_T[1, 0] = -rot_sin + rot_mat_T[1, 1] = rot_cos + box_corners[i] = corners[i] @ rot_mat_T + boxes[i, :2] + return box_corners + + +@numba.njit +def corner_to_standup_nd_jit(boxes_corner): + """Convert boxes_corner to aligned (min-max) boxes. + + Args: + boxes_corner (np.ndarray, shape=[N, 2**dim, dim]): Boxes corners. + + Returns: + np.ndarray, shape=[N, dim*2]: Aligned (min-max) boxes. + """ + num_boxes = boxes_corner.shape[0] + ndim = boxes_corner.shape[-1] + result = np.zeros((num_boxes, ndim * 2), dtype=boxes_corner.dtype) + for i in range(num_boxes): + for j in range(ndim): + result[i, j] = np.min(boxes_corner[i, :, j]) + for j in range(ndim): + result[i, j + ndim] = np.max(boxes_corner[i, :, j]) + return result + + +@numba.jit(nopython=True) +def corner_to_surfaces_3d_jit(corners): + """Convert 3d box corners from corner function above to surfaces that + normal vectors all direct to internal. + + Args: + corners (np.ndarray): 3d box corners with the shape of (N, 8, 3). + + Returns: + np.ndarray: Surfaces with the shape of (N, 6, 4, 3). + """ + # box_corners: [N, 8, 3], must from corner functions in this module + num_boxes = corners.shape[0] + surfaces = np.zeros((num_boxes, 6, 4, 3), dtype=corners.dtype) + corner_idxes = np.array([ + 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 1, 5, 6, 2, 0, 4, 5, 1, 3, 2, 6, 7 + ]).reshape(6, 4) + for i in range(num_boxes): + for j in range(6): + for k in range(4): + surfaces[i, j, k] = corners[i, corner_idxes[j, k]] + return surfaces + + +def rotation_points_single_angle(points, angle, axis=0): + """Rotate points with a single angle. + + Args: + points (np.ndarray, shape=[N, 3]]): + angle (np.ndarray, shape=[1]]): + axis (int, optional): Axis to rotate at. Defaults to 0. + + Returns: + np.ndarray: Rotated points. + """ + # points: [N, 3] + rot_sin = np.sin(angle) + rot_cos = np.cos(angle) + if axis == 1: + rot_mat_T = np.array( + [[rot_cos, 0, rot_sin], [0, 1, 0], [-rot_sin, 0, rot_cos]], + dtype=points.dtype) + elif axis == 2 or axis == -1: + rot_mat_T = np.array( + [[rot_cos, rot_sin, 0], [-rot_sin, rot_cos, 0], [0, 0, 1]], + dtype=points.dtype) + elif axis == 0: + rot_mat_T = np.array( + [[1, 0, 0], [0, rot_cos, rot_sin], [0, -rot_sin, rot_cos]], + dtype=points.dtype) + else: + raise ValueError('axis should in range') + + return points @ rot_mat_T, rot_mat_T + + +def box3d_to_bbox(box3d, P2): + """Convert box3d in camera coordinates to bbox in image coordinates. + + Args: + box3d (np.ndarray, shape=[N, 7]): Boxes in camera coordinate. + P2 (np.array, shape=[4, 4]): Intrinsics of Camera2. + + Returns: + np.ndarray, shape=[N, 4]: Boxes 2d in image coordinates. + """ + box_corners = center_to_corner_box3d( + box3d[:, :3], box3d[:, 3:6], box3d[:, 6], [0.5, 1.0, 0.5], axis=1) + box_corners_in_image = points_cam2img(box_corners, P2) + # box_corners_in_image: [N, 8, 2] + minxy = np.min(box_corners_in_image, axis=1) + maxxy = np.max(box_corners_in_image, axis=1) + bbox = np.concatenate([minxy, maxxy], axis=1) + return bbox + + +def corner_to_surfaces_3d(corners): + """convert 3d box corners from corner function above to surfaces that + normal vectors all direct to internal. + + Args: + corners (np.ndarray): 3D box corners with shape of (N, 8, 3). + + Returns: + np.ndarray: Surfaces with the shape of (N, 6, 4, 3). + """ + # box_corners: [N, 8, 3], must from corner functions in this module + surfaces = np.array([ + [corners[:, 0], corners[:, 1], corners[:, 2], corners[:, 3]], + [corners[:, 7], corners[:, 6], corners[:, 5], corners[:, 4]], + [corners[:, 0], corners[:, 3], corners[:, 7], corners[:, 4]], + [corners[:, 1], corners[:, 5], corners[:, 6], corners[:, 2]], + [corners[:, 0], corners[:, 4], corners[:, 5], corners[:, 1]], + [corners[:, 3], corners[:, 2], corners[:, 6], corners[:, 7]], + ]).transpose([2, 0, 1, 3]) + return surfaces + + +def points_in_rbbox(points, rbbox, z_axis=2, origin=(0.5, 0.5, 0)): + """Check points in rotated bbox and return indices. + + Note: + This function is for counterclockwise boxes. + + Args: + points (np.ndarray, shape=[N, 3+dim]): Points to query. + rbbox (np.ndarray, shape=[M, 7]): Boxes3d with rotation. + z_axis (int, optional): Indicate which axis is height. + Defaults to 2. + origin (tuple[int], optional): Indicate the position of + box center. Defaults to (0.5, 0.5, 0). + + Returns: + np.ndarray, shape=[N, M]: Indices of points in each box. + """ + # TODO: this function is different from PointCloud3D, be careful + # when start to use nuscene, check the input + rbbox_corners = center_to_corner_box3d( + rbbox[:, :3], rbbox[:, 3:6], rbbox[:, 6], origin=origin, axis=z_axis) + surfaces = corner_to_surfaces_3d(rbbox_corners) + indices = points_in_convex_polygon_3d_jit(points[:, :3], surfaces) + return indices + + +def minmax_to_corner_2d(minmax_box): + """Convert minmax box to corners2d. + + Args: + minmax_box (np.ndarray, shape=[N, dims]): minmax boxes. + + Returns: + np.ndarray: 2d corners of boxes + """ + ndim = minmax_box.shape[-1] // 2 + center = minmax_box[..., :ndim] + dims = minmax_box[..., ndim:] - center + return center_to_corner_box2d(center, dims, origin=0.0) + + +def create_anchors_3d_range(feature_size, + anchor_range, + sizes=((3.9, 1.6, 1.56), ), + rotations=(0, np.pi / 2), + dtype=np.float32): + """Create anchors 3d by range. + + Args: + feature_size (list[float] | tuple[float]): Feature map size. It is + either a list of a tuple of [D, H, W](in order of z, y, and x). + anchor_range (torch.Tensor | list[float]): Range of anchors with + shape [6]. The order is consistent with that of anchors, i.e., + (x_min, y_min, z_min, x_max, y_max, z_max). + sizes (list[list] | np.ndarray | torch.Tensor, optional): + Anchor size with shape [N, 3], in order of x, y, z. + Defaults to ((3.9, 1.6, 1.56), ). + rotations (list[float] | np.ndarray | torch.Tensor, optional): + Rotations of anchors in a single feature grid. + Defaults to (0, np.pi / 2). + dtype (type, optional): Data type. Defaults to np.float32. + + Returns: + np.ndarray: Range based anchors with shape of + (*feature_size, num_sizes, num_rots, 7). + """ + anchor_range = np.array(anchor_range, dtype) + z_centers = np.linspace( + anchor_range[2], anchor_range[5], feature_size[0], dtype=dtype) + y_centers = np.linspace( + anchor_range[1], anchor_range[4], feature_size[1], dtype=dtype) + x_centers = np.linspace( + anchor_range[0], anchor_range[3], feature_size[2], dtype=dtype) + sizes = np.reshape(np.array(sizes, dtype=dtype), [-1, 3]) + rotations = np.array(rotations, dtype=dtype) + rets = np.meshgrid( + x_centers, y_centers, z_centers, rotations, indexing='ij') + tile_shape = [1] * 5 + tile_shape[-2] = int(sizes.shape[0]) + for i in range(len(rets)): + rets[i] = np.tile(rets[i][..., np.newaxis, :], tile_shape) + rets[i] = rets[i][..., np.newaxis] # for concat + sizes = np.reshape(sizes, [1, 1, 1, -1, 1, 3]) + tile_size_shape = list(rets[0].shape) + tile_size_shape[3] = 1 + sizes = np.tile(sizes, tile_size_shape) + rets.insert(3, sizes) + ret = np.concatenate(rets, axis=-1) + return np.transpose(ret, [2, 1, 0, 3, 4, 5]) + + +def center_to_minmax_2d(centers, dims, origin=0.5): + """Center to minmax. + + Args: + centers (np.ndarray): Center points. + dims (np.ndarray): Dimensions. + origin (list or array or float, optional): Origin point relate + to smallest point. Defaults to 0.5. + + Returns: + np.ndarray: Minmax points. + """ + if origin == 0.5: + return np.concatenate([centers - dims / 2, centers + dims / 2], + axis=-1) + corners = center_to_corner_box2d(centers, dims, origin=origin) + return corners[:, [0, 2]].reshape([-1, 4]) + + +def rbbox2d_to_near_bbox(rbboxes): + """convert rotated bbox to nearest 'standing' or 'lying' bbox. + + Args: + rbboxes (np.ndarray): Rotated bboxes with shape of + (N, 5(x, y, xdim, ydim, rad)). + + Returns: + np.ndarray: Bounding boxes with the shape of + (N, 4(xmin, ymin, xmax, ymax)). + """ + rots = rbboxes[..., -1] + rots_0_pi_div_2 = np.abs(limit_period(rots, 0.5, np.pi)) + cond = (rots_0_pi_div_2 > np.pi / 4)[..., np.newaxis] + bboxes_center = np.where(cond, rbboxes[:, [0, 1, 3, 2]], rbboxes[:, :4]) + bboxes = center_to_minmax_2d(bboxes_center[:, :2], bboxes_center[:, 2:]) + return bboxes + + +@numba.jit(nopython=True) +def iou_jit(boxes, query_boxes, mode='iou', eps=0.0): + """Calculate box iou. Note that jit version runs ~10x faster than the + box_overlaps function in mmdet3d.core.evaluation. + + Note: + This function is for counterclockwise boxes. + + Args: + boxes (np.ndarray): Input bounding boxes with shape of (N, 4). + query_boxes (np.ndarray): Query boxes with shape of (K, 4). + mode (str, optional): IoU mode. Defaults to 'iou'. + eps (float, optional): Value added to denominator. Defaults to 0. + + Returns: + np.ndarray: Overlap between boxes and query_boxes + with the shape of [N, K]. + """ + N = boxes.shape[0] + K = query_boxes.shape[0] + overlaps = np.zeros((N, K), dtype=boxes.dtype) + for k in range(K): + box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + eps) * + (query_boxes[k, 3] - query_boxes[k, 1] + eps)) + for n in range(N): + iw = ( + min(boxes[n, 2], query_boxes[k, 2]) - + max(boxes[n, 0], query_boxes[k, 0]) + eps) + if iw > 0: + ih = ( + min(boxes[n, 3], query_boxes[k, 3]) - + max(boxes[n, 1], query_boxes[k, 1]) + eps) + if ih > 0: + if mode == 'iou': + ua = ((boxes[n, 2] - boxes[n, 0] + eps) * + (boxes[n, 3] - boxes[n, 1] + eps) + box_area - + iw * ih) + else: + ua = ((boxes[n, 2] - boxes[n, 0] + eps) * + (boxes[n, 3] - boxes[n, 1] + eps)) + overlaps[n, k] = iw * ih / ua + return overlaps + + +def projection_matrix_to_CRT_kitti(proj): + """Split projection matrix of KITTI. + + Note: + This function is for KITTI only. + + P = C @ [R|T] + C is upper triangular matrix, so we need to inverse CR and use QR + stable for all kitti camera projection matrix. + + Args: + proj (p.array, shape=[4, 4]): Intrinsics of camera. + + Returns: + tuple[np.ndarray]: Splited matrix of C, R and T. + """ + + CR = proj[0:3, 0:3] + CT = proj[0:3, 3] + RinvCinv = np.linalg.inv(CR) + Rinv, Cinv = np.linalg.qr(RinvCinv) + C = np.linalg.inv(Cinv) + R = np.linalg.inv(Rinv) + T = Cinv @ CT + return C, R, T + + +def remove_outside_points(points, rect, Trv2c, P2, image_shape): + """Remove points which are outside of image. + + Note: + This function is for KITTI only. + + Args: + points (np.ndarray, shape=[N, 3+dims]): Total points. + rect (np.ndarray, shape=[4, 4]): Matrix to project points in + specific camera coordinate (e.g. CAM2) to CAM0. + Trv2c (np.ndarray, shape=[4, 4]): Matrix to project points in + camera coordinate to lidar coordinate. + P2 (p.array, shape=[4, 4]): Intrinsics of Camera2. + image_shape (list[int]): Shape of image. + + Returns: + np.ndarray, shape=[N, 3+dims]: Filtered points. + """ + # 5x faster than remove_outside_points_v1(2ms vs 10ms) + C, R, T = projection_matrix_to_CRT_kitti(P2) + image_bbox = [0, 0, image_shape[1], image_shape[0]] + frustum = get_frustum(image_bbox, C) + frustum -= T + frustum = np.linalg.inv(R) @ frustum.T + frustum = camera_to_lidar(frustum.T, rect, Trv2c) + frustum_surfaces = corner_to_surfaces_3d_jit(frustum[np.newaxis, ...]) + indices = points_in_convex_polygon_3d_jit(points[:, :3], frustum_surfaces) + points = points[indices.reshape([-1])] + return points + + +def get_frustum(bbox_image, C, near_clip=0.001, far_clip=100): + """Get frustum corners in camera coordinates. + + Args: + bbox_image (list[int]): box in image coordinates. + C (np.ndarray): Intrinsics. + near_clip (float, optional): Nearest distance of frustum. + Defaults to 0.001. + far_clip (float, optional): Farthest distance of frustum. + Defaults to 100. + + Returns: + np.ndarray, shape=[8, 3]: coordinates of frustum corners. + """ + fku = C[0, 0] + fkv = -C[1, 1] + u0v0 = C[0:2, 2] + z_points = np.array( + [near_clip] * 4 + [far_clip] * 4, dtype=C.dtype)[:, np.newaxis] + b = bbox_image + box_corners = np.array( + [[b[0], b[1]], [b[0], b[3]], [b[2], b[3]], [b[2], b[1]]], + dtype=C.dtype) + near_box_corners = (box_corners - u0v0) / np.array( + [fku / near_clip, -fkv / near_clip], dtype=C.dtype) + far_box_corners = (box_corners - u0v0) / np.array( + [fku / far_clip, -fkv / far_clip], dtype=C.dtype) + ret_xy = np.concatenate([near_box_corners, far_box_corners], + axis=0) # [8, 2] + ret_xyz = np.concatenate([ret_xy, z_points], axis=1) + return ret_xyz + + +def surface_equ_3d(polygon_surfaces): + """ + + Args: + polygon_surfaces (np.ndarray): Polygon surfaces with shape of + [num_polygon, max_num_surfaces, max_num_points_of_surface, 3]. + All surfaces' normal vector must direct to internal. + Max_num_points_of_surface must at least 3. + + Returns: + tuple: normal vector and its direction. + """ + # return [a, b, c], d in ax+by+cz+d=0 + # polygon_surfaces: [num_polygon, num_surfaces, num_points_of_polygon, 3] + surface_vec = polygon_surfaces[:, :, :2, :] - \ + polygon_surfaces[:, :, 1:3, :] + # normal_vec: [..., 3] + normal_vec = np.cross(surface_vec[:, :, 0, :], surface_vec[:, :, 1, :]) + # print(normal_vec.shape, points[..., 0, :].shape) + # d = -np.inner(normal_vec, points[..., 0, :]) + d = np.einsum('aij, aij->ai', normal_vec, polygon_surfaces[:, :, 0, :]) + return normal_vec, -d + + +@numba.njit +def _points_in_convex_polygon_3d_jit(points, polygon_surfaces, normal_vec, d, + num_surfaces): + """ + Args: + points (np.ndarray): Input points with shape of (num_points, 3). + polygon_surfaces (np.ndarray): Polygon surfaces with shape of + (num_polygon, max_num_surfaces, max_num_points_of_surface, 3). + All surfaces' normal vector must direct to internal. + Max_num_points_of_surface must at least 3. + normal_vec (np.ndarray): Normal vector of polygon_surfaces. + d (int): Directions of normal vector. + num_surfaces (np.ndarray): Number of surfaces a polygon contains + shape of (num_polygon). + + Returns: + np.ndarray: Result matrix with the shape of [num_points, num_polygon]. + """ + max_num_surfaces, max_num_points_of_surface = polygon_surfaces.shape[1:3] + num_points = points.shape[0] + num_polygons = polygon_surfaces.shape[0] + ret = np.ones((num_points, num_polygons), dtype=np.bool_) + sign = 0.0 + for i in range(num_points): + for j in range(num_polygons): + for k in range(max_num_surfaces): + if k > num_surfaces[j]: + break + sign = ( + points[i, 0] * normal_vec[j, k, 0] + + points[i, 1] * normal_vec[j, k, 1] + + points[i, 2] * normal_vec[j, k, 2] + d[j, k]) + if sign >= 0: + ret[i, j] = False + break + return ret + + +def points_in_convex_polygon_3d_jit(points, + polygon_surfaces, + num_surfaces=None): + """Check points is in 3d convex polygons. + + Args: + points (np.ndarray): Input points with shape of (num_points, 3). + polygon_surfaces (np.ndarray): Polygon surfaces with shape of + (num_polygon, max_num_surfaces, max_num_points_of_surface, 3). + All surfaces' normal vector must direct to internal. + Max_num_points_of_surface must at least 3. + num_surfaces (np.ndarray, optional): Number of surfaces a polygon + contains shape of (num_polygon). Defaults to None. + + Returns: + np.ndarray: Result matrix with the shape of [num_points, num_polygon]. + """ + max_num_surfaces, max_num_points_of_surface = polygon_surfaces.shape[1:3] + # num_points = points.shape[0] + num_polygons = polygon_surfaces.shape[0] + if num_surfaces is None: + num_surfaces = np.full((num_polygons, ), 9999999, dtype=np.int64) + normal_vec, d = surface_equ_3d(polygon_surfaces[:, :, :3, :]) + # normal_vec: [num_polygon, max_num_surfaces, 3] + # d: [num_polygon, max_num_surfaces] + return _points_in_convex_polygon_3d_jit(points, polygon_surfaces, + normal_vec, d, num_surfaces) + + +@numba.njit +def points_in_convex_polygon_jit(points, polygon, clockwise=False): + """Check points is in 2d convex polygons. True when point in polygon. + + Args: + points (np.ndarray): Input points with the shape of [num_points, 2]. + polygon (np.ndarray): Input polygon with the shape of + [num_polygon, num_points_of_polygon, 2]. + clockwise (bool, optional): Indicate polygon is clockwise. Defaults + to True. + + Returns: + np.ndarray: Result matrix with the shape of [num_points, num_polygon]. + """ + # first convert polygon to directed lines + num_points_of_polygon = polygon.shape[1] + num_points = points.shape[0] + num_polygons = polygon.shape[0] + # vec for all the polygons + if clockwise: + vec1 = polygon - polygon[:, + np.array([num_points_of_polygon - 1] + list( + range(num_points_of_polygon - 1))), :] + else: + vec1 = polygon[:, + np.array([num_points_of_polygon - 1] + + list(range(num_points_of_polygon - + 1))), :] - polygon + ret = np.zeros((num_points, num_polygons), dtype=np.bool_) + success = True + cross = 0.0 + for i in range(num_points): + for j in range(num_polygons): + success = True + for k in range(num_points_of_polygon): + vec = vec1[j, k] + cross = vec[1] * (polygon[j, k, 0] - points[i, 0]) + cross -= vec[0] * (polygon[j, k, 1] - points[i, 1]) + if cross >= 0: + success = False + break + ret[i, j] = success + return ret + + +def boxes3d_to_corners3d_lidar(boxes3d, bottom_center=True): + """Convert kitti center boxes to corners. + + 7 -------- 4 + /| /| + 6 -------- 5 . + | | | | + . 3 -------- 0 + |/ |/ + 2 -------- 1 + + Note: + This function is for LiDAR boxes only. + + Args: + boxes3d (np.ndarray): Boxes with shape of (N, 7) + [x, y, z, x_size, y_size, z_size, ry] in LiDAR coords, + see the definition of ry in KITTI dataset. + bottom_center (bool, optional): Whether z is on the bottom center + of object. Defaults to True. + + Returns: + np.ndarray: Box corners with the shape of [N, 8, 3]. + """ + boxes_num = boxes3d.shape[0] + x_size, y_size, z_size = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5] + x_corners = np.array([ + x_size / 2., -x_size / 2., -x_size / 2., x_size / 2., x_size / 2., + -x_size / 2., -x_size / 2., x_size / 2. + ], + dtype=np.float32).T + y_corners = np.array([ + -y_size / 2., -y_size / 2., y_size / 2., y_size / 2., -y_size / 2., + -y_size / 2., y_size / 2., y_size / 2. + ], + dtype=np.float32).T + if bottom_center: + z_corners = np.zeros((boxes_num, 8), dtype=np.float32) + z_corners[:, 4:8] = z_size.reshape(boxes_num, 1).repeat( + 4, axis=1) # (N, 8) + else: + z_corners = np.array([ + -z_size / 2., -z_size / 2., -z_size / 2., -z_size / 2., + z_size / 2., z_size / 2., z_size / 2., z_size / 2. + ], + dtype=np.float32).T + + ry = boxes3d[:, 6] + zeros, ones = np.zeros( + ry.size, dtype=np.float32), np.ones( + ry.size, dtype=np.float32) + rot_list = np.array([[np.cos(ry), np.sin(ry), zeros], + [-np.sin(ry), np.cos(ry), zeros], + [zeros, zeros, ones]]) # (3, 3, N) + R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3) + + temp_corners = np.concatenate((x_corners.reshape( + -1, 8, 1), y_corners.reshape(-1, 8, 1), z_corners.reshape(-1, 8, 1)), + axis=2) # (N, 8, 3) + rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3) + x_corners = rotated_corners[:, :, 0] + y_corners = rotated_corners[:, :, 1] + z_corners = rotated_corners[:, :, 2] + + x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2] + + x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8) + y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8) + z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8) + + corners = np.concatenate( + (x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), + axis=2) + + return corners.astype(np.float32) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/__init__.py new file mode 100644 index 000000000..b306525c0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/__init__.py @@ -0,0 +1,19 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core.bbox import build_bbox_coder +from .anchor_free_bbox_coder import AnchorFreeBBoxCoder +from .centerpoint_bbox_coders import CenterPointBBoxCoder +from .delta_xyzwhlr_bbox_coder import DeltaXYZWLHRBBoxCoder +from .fcos3d_bbox_coder import FCOS3DBBoxCoder +from .groupfree3d_bbox_coder import GroupFree3DBBoxCoder +from .monoflex_bbox_coder import MonoFlexCoder +from .partial_bin_based_bbox_coder import PartialBinBasedBBoxCoder +from .pgd_bbox_coder import PGDBBoxCoder +from .point_xyzwhlr_bbox_coder import PointXYZWHLRBBoxCoder +from .smoke_bbox_coder import SMOKECoder + +__all__ = [ + 'build_bbox_coder', 'DeltaXYZWLHRBBoxCoder', 'PartialBinBasedBBoxCoder', + 'CenterPointBBoxCoder', 'AnchorFreeBBoxCoder', 'GroupFree3DBBoxCoder', + 'PointXYZWHLRBBoxCoder', 'FCOS3DBBoxCoder', 'PGDBBoxCoder', 'SMOKECoder', + 'MonoFlexCoder' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/anchor_free_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/anchor_free_bbox_coder.py new file mode 100644 index 000000000..d64f38b5c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/anchor_free_bbox_coder.py @@ -0,0 +1,130 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core.bbox.builder import BBOX_CODERS +from .partial_bin_based_bbox_coder import PartialBinBasedBBoxCoder + + +@BBOX_CODERS.register_module() +class AnchorFreeBBoxCoder(PartialBinBasedBBoxCoder): + """Anchor free bbox coder for 3D boxes. + + Args: + num_dir_bins (int): Number of bins to encode direction angle. + with_rot (bool): Whether the bbox is with rotation. + """ + + def __init__(self, num_dir_bins, with_rot=True): + super(AnchorFreeBBoxCoder, self).__init__( + num_dir_bins, 0, [], with_rot=with_rot) + self.num_dir_bins = num_dir_bins + self.with_rot = with_rot + + def encode(self, gt_bboxes_3d, gt_labels_3d): + """Encode ground truth to prediction targets. + + Args: + gt_bboxes_3d (BaseInstance3DBoxes): Ground truth bboxes + with shape (n, 7). + gt_labels_3d (torch.Tensor): Ground truth classes. + + Returns: + tuple: Targets of center, size and direction. + """ + # generate center target + center_target = gt_bboxes_3d.gravity_center + + # generate bbox size target + size_res_target = gt_bboxes_3d.dims / 2 + + # generate dir target + box_num = gt_labels_3d.shape[0] + if self.with_rot: + (dir_class_target, + dir_res_target) = self.angle2class(gt_bboxes_3d.yaw) + dir_res_target /= (2 * np.pi / self.num_dir_bins) + else: + dir_class_target = gt_labels_3d.new_zeros(box_num) + dir_res_target = gt_bboxes_3d.tensor.new_zeros(box_num) + + return (center_target, size_res_target, dir_class_target, + dir_res_target) + + def decode(self, bbox_out): + """Decode predicted parts to bbox3d. + + Args: + bbox_out (dict): Predictions from model, should contain keys below. + + - center: predicted bottom center of bboxes. + - dir_class: predicted bbox direction class. + - dir_res: predicted bbox direction residual. + - size: predicted bbox size. + + Returns: + torch.Tensor: Decoded bbox3d with shape (batch, n, 7). + """ + center = bbox_out['center'] + batch_size, num_proposal = center.shape[:2] + + # decode heading angle + if self.with_rot: + dir_class = torch.argmax(bbox_out['dir_class'], -1) + dir_res = torch.gather(bbox_out['dir_res'], 2, + dir_class.unsqueeze(-1)) + dir_res.squeeze_(2) + dir_angle = self.class2angle(dir_class, dir_res).reshape( + batch_size, num_proposal, 1) + else: + dir_angle = center.new_zeros(batch_size, num_proposal, 1) + + # decode bbox size + bbox_size = torch.clamp(bbox_out['size'] * 2, min=0.1) + + bbox3d = torch.cat([center, bbox_size, dir_angle], dim=-1) + return bbox3d + + def split_pred(self, cls_preds, reg_preds, base_xyz): + """Split predicted features to specific parts. + + Args: + cls_preds (torch.Tensor): Class predicted features to split. + reg_preds (torch.Tensor): Regression predicted features to split. + base_xyz (torch.Tensor): Coordinates of points. + + Returns: + dict[str, torch.Tensor]: Split results. + """ + results = {} + results['obj_scores'] = cls_preds + + start, end = 0, 0 + reg_preds_trans = reg_preds.transpose(2, 1) + + # decode center + end += 3 + # (batch_size, num_proposal, 3) + results['center_offset'] = reg_preds_trans[..., start:end] + results['center'] = base_xyz.detach() + reg_preds_trans[..., start:end] + start = end + + # decode center + end += 3 + # (batch_size, num_proposal, 3) + results['size'] = reg_preds_trans[..., start:end] + start = end + + # decode direction + end += self.num_dir_bins + results['dir_class'] = reg_preds_trans[..., start:end] + start = end + + end += self.num_dir_bins + dir_res_norm = reg_preds_trans[..., start:end] + start = end + + results['dir_res_norm'] = dir_res_norm + results['dir_res'] = dir_res_norm * (2 * np.pi / self.num_dir_bins) + + return results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/centerpoint_bbox_coders.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/centerpoint_bbox_coders.py new file mode 100644 index 000000000..6d43a63d4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/centerpoint_bbox_coders.py @@ -0,0 +1,229 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class CenterPointBBoxCoder(BaseBBoxCoder): + """Bbox coder for CenterPoint. + + Args: + pc_range (list[float]): Range of point cloud. + out_size_factor (int): Downsample factor of the model. + voxel_size (list[float]): Size of voxel. + post_center_range (list[float], optional): Limit of the center. + Default: None. + max_num (int, optional): Max number to be kept. Default: 100. + score_threshold (float, optional): Threshold to filter boxes + based on score. Default: None. + code_size (int, optional): Code size of bboxes. Default: 9 + """ + + def __init__(self, + pc_range, + out_size_factor, + voxel_size, + post_center_range=None, + max_num=100, + score_threshold=None, + code_size=9): + + self.pc_range = pc_range + self.out_size_factor = out_size_factor + self.voxel_size = voxel_size + self.post_center_range = post_center_range + self.max_num = max_num + self.score_threshold = score_threshold + self.code_size = code_size + + def _gather_feat(self, feats, inds, feat_masks=None): + """Given feats and indexes, returns the gathered feats. + + Args: + feats (torch.Tensor): Features to be transposed and gathered + with the shape of [B, 2, W, H]. + inds (torch.Tensor): Indexes with the shape of [B, N]. + feat_masks (torch.Tensor, optional): Mask of the feats. + Default: None. + + Returns: + torch.Tensor: Gathered feats. + """ + dim = feats.size(2) + inds = inds.unsqueeze(2).expand(inds.size(0), inds.size(1), dim) + feats = feats.gather(1, inds) + if feat_masks is not None: + feat_masks = feat_masks.unsqueeze(2).expand_as(feats) + feats = feats[feat_masks] + feats = feats.view(-1, dim) + return feats + + def _topk(self, scores, K=80): + """Get indexes based on scores. + + Args: + scores (torch.Tensor): scores with the shape of [B, N, W, H]. + K (int, optional): Number to be kept. Defaults to 80. + + Returns: + tuple[torch.Tensor] + torch.Tensor: Selected scores with the shape of [B, K]. + torch.Tensor: Selected indexes with the shape of [B, K]. + torch.Tensor: Selected classes with the shape of [B, K]. + torch.Tensor: Selected y coord with the shape of [B, K]. + torch.Tensor: Selected x coord with the shape of [B, K]. + """ + batch, cat, height, width = scores.size() + + topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K) + + topk_inds = topk_inds % (height * width) + topk_ys = (topk_inds.float() / + torch.tensor(width, dtype=torch.float)).int().float() + topk_xs = (topk_inds % width).int().float() + + topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K) + topk_clses = (topk_ind / torch.tensor(K, dtype=torch.float)).int() + topk_inds = self._gather_feat(topk_inds.view(batch, -1, 1), + topk_ind).view(batch, K) + topk_ys = self._gather_feat(topk_ys.view(batch, -1, 1), + topk_ind).view(batch, K) + topk_xs = self._gather_feat(topk_xs.view(batch, -1, 1), + topk_ind).view(batch, K) + + return topk_score, topk_inds, topk_clses, topk_ys, topk_xs + + def _transpose_and_gather_feat(self, feat, ind): + """Given feats and indexes, returns the transposed and gathered feats. + + Args: + feat (torch.Tensor): Features to be transposed and gathered + with the shape of [B, 2, W, H]. + ind (torch.Tensor): Indexes with the shape of [B, N]. + + Returns: + torch.Tensor: Transposed and gathered feats. + """ + feat = feat.permute(0, 2, 3, 1).contiguous() + feat = feat.view(feat.size(0), -1, feat.size(3)) + feat = self._gather_feat(feat, ind) + return feat + + def encode(self): + pass + + def decode(self, + heat, + rot_sine, + rot_cosine, + hei, + dim, + vel, + reg=None, + task_id=-1): + """Decode bboxes. + + Args: + heat (torch.Tensor): Heatmap with the shape of [B, N, W, H]. + rot_sine (torch.Tensor): Sine of rotation with the shape of + [B, 1, W, H]. + rot_cosine (torch.Tensor): Cosine of rotation with the shape of + [B, 1, W, H]. + hei (torch.Tensor): Height of the boxes with the shape + of [B, 1, W, H]. + dim (torch.Tensor): Dim of the boxes with the shape of + [B, 1, W, H]. + vel (torch.Tensor): Velocity with the shape of [B, 1, W, H]. + reg (torch.Tensor, optional): Regression value of the boxes in + 2D with the shape of [B, 2, W, H]. Default: None. + task_id (int, optional): Index of task. Default: -1. + + Returns: + list[dict]: Decoded boxes. + """ + batch, cat, _, _ = heat.size() + + scores, inds, clses, ys, xs = self._topk(heat, K=self.max_num) + + if reg is not None: + reg = self._transpose_and_gather_feat(reg, inds) + reg = reg.view(batch, self.max_num, 2) + xs = xs.view(batch, self.max_num, 1) + reg[:, :, 0:1] + ys = ys.view(batch, self.max_num, 1) + reg[:, :, 1:2] + else: + xs = xs.view(batch, self.max_num, 1) + 0.5 + ys = ys.view(batch, self.max_num, 1) + 0.5 + + # rotation value and direction label + rot_sine = self._transpose_and_gather_feat(rot_sine, inds) + rot_sine = rot_sine.view(batch, self.max_num, 1) + + rot_cosine = self._transpose_and_gather_feat(rot_cosine, inds) + rot_cosine = rot_cosine.view(batch, self.max_num, 1) + rot = torch.atan2(rot_sine, rot_cosine) + + # height in the bev + hei = self._transpose_and_gather_feat(hei, inds) + hei = hei.view(batch, self.max_num, 1) + + # dim of the box + dim = self._transpose_and_gather_feat(dim, inds) + dim = dim.view(batch, self.max_num, 3) + + # class label + clses = clses.view(batch, self.max_num).float() + scores = scores.view(batch, self.max_num) + + xs = xs.view( + batch, self.max_num, + 1) * self.out_size_factor * self.voxel_size[0] + self.pc_range[0] + ys = ys.view( + batch, self.max_num, + 1) * self.out_size_factor * self.voxel_size[1] + self.pc_range[1] + + if vel is None: # KITTI FORMAT + final_box_preds = torch.cat([xs, ys, hei, dim, rot], dim=2) + else: # exist velocity, nuscene format + vel = self._transpose_and_gather_feat(vel, inds) + vel = vel.view(batch, self.max_num, 2) + final_box_preds = torch.cat([xs, ys, hei, dim, rot, vel], dim=2) + + final_scores = scores + final_preds = clses + + # use score threshold + if self.score_threshold is not None: + thresh_mask = final_scores > self.score_threshold + + if self.post_center_range is not None: + self.post_center_range = torch.tensor( + self.post_center_range, device=heat.device) + mask = (final_box_preds[..., :3] >= + self.post_center_range[:3]).all(2) + mask &= (final_box_preds[..., :3] <= + self.post_center_range[3:]).all(2) + + predictions_dicts = [] + for i in range(batch): + cmask = mask[i, :] + if self.score_threshold: + cmask &= thresh_mask[i] + + boxes3d = final_box_preds[i, cmask] + scores = final_scores[i, cmask] + labels = final_preds[i, cmask] + predictions_dict = { + 'bboxes': boxes3d, + 'scores': scores, + 'labels': labels + } + + predictions_dicts.append(predictions_dict) + else: + raise NotImplementedError( + 'Need to reorganize output as a batch, only ' + 'support post_center_range is not None for now!') + + return predictions_dicts diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/delta_xyzwhlr_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/delta_xyzwhlr_bbox_coder.py new file mode 100644 index 000000000..931e83987 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/delta_xyzwhlr_bbox_coder.py @@ -0,0 +1,91 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class DeltaXYZWLHRBBoxCoder(BaseBBoxCoder): + """Bbox Coder for 3D boxes. + + Args: + code_size (int): The dimension of boxes to be encoded. + """ + + def __init__(self, code_size=7): + super(DeltaXYZWLHRBBoxCoder, self).__init__() + self.code_size = code_size + + @staticmethod + def encode(src_boxes, dst_boxes): + """Get box regression transformation deltas (dx, dy, dz, dx_size, + dy_size, dz_size, dr, dv*) that can be used to transform the + `src_boxes` into the `target_boxes`. + + Args: + src_boxes (torch.Tensor): source boxes, e.g., object proposals. + dst_boxes (torch.Tensor): target of the transformation, e.g., + ground-truth boxes. + + Returns: + torch.Tensor: Box transformation deltas. + """ + box_ndim = src_boxes.shape[-1] + cas, cgs, cts = [], [], [] + if box_ndim > 7: + xa, ya, za, wa, la, ha, ra, *cas = torch.split( + src_boxes, 1, dim=-1) + xg, yg, zg, wg, lg, hg, rg, *cgs = torch.split( + dst_boxes, 1, dim=-1) + cts = [g - a for g, a in zip(cgs, cas)] + else: + xa, ya, za, wa, la, ha, ra = torch.split(src_boxes, 1, dim=-1) + xg, yg, zg, wg, lg, hg, rg = torch.split(dst_boxes, 1, dim=-1) + za = za + ha / 2 + zg = zg + hg / 2 + diagonal = torch.sqrt(la**2 + wa**2) + xt = (xg - xa) / diagonal + yt = (yg - ya) / diagonal + zt = (zg - za) / ha + lt = torch.log(lg / la) + wt = torch.log(wg / wa) + ht = torch.log(hg / ha) + rt = rg - ra + return torch.cat([xt, yt, zt, wt, lt, ht, rt, *cts], dim=-1) + + @staticmethod + def decode(anchors, deltas): + """Apply transformation `deltas` (dx, dy, dz, dx_size, dy_size, + dz_size, dr, dv*) to `boxes`. + + Args: + anchors (torch.Tensor): Parameters of anchors with shape (N, 7). + deltas (torch.Tensor): Encoded boxes with shape + (N, 7+n) [x, y, z, x_size, y_size, z_size, r, velo*]. + + Returns: + torch.Tensor: Decoded boxes. + """ + cas, cts = [], [] + box_ndim = anchors.shape[-1] + if box_ndim > 7: + xa, ya, za, wa, la, ha, ra, *cas = torch.split(anchors, 1, dim=-1) + xt, yt, zt, wt, lt, ht, rt, *cts = torch.split(deltas, 1, dim=-1) + else: + xa, ya, za, wa, la, ha, ra = torch.split(anchors, 1, dim=-1) + xt, yt, zt, wt, lt, ht, rt = torch.split(deltas, 1, dim=-1) + + za = za + ha / 2 + diagonal = torch.sqrt(la**2 + wa**2) + xg = xt * diagonal + xa + yg = yt * diagonal + ya + zg = zt * ha + za + + lg = torch.exp(lt) * la + wg = torch.exp(wt) * wa + hg = torch.exp(ht) * ha + rg = rt + ra + zg = zg - hg / 2 + cgs = [t + a for t, a in zip(cts, cas)] + return torch.cat([xg, yg, zg, wg, lg, hg, rg, *cgs], dim=-1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/fcos3d_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/fcos3d_bbox_coder.py new file mode 100644 index 000000000..7cb6b1a33 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/fcos3d_bbox_coder.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS +from ..structures import limit_period + + +@BBOX_CODERS.register_module() +class FCOS3DBBoxCoder(BaseBBoxCoder): + """Bounding box coder for FCOS3D. + + Args: + base_depths (tuple[tuple[float]]): Depth references for decode box + depth. Defaults to None. + base_dims (tuple[tuple[float]]): Dimension references for decode box + dimension. Defaults to None. + code_size (int): The dimension of boxes to be encoded. Defaults to 7. + norm_on_bbox (bool): Whether to apply normalization on the bounding + box 2D attributes. Defaults to True. + """ + + def __init__(self, + base_depths=None, + base_dims=None, + code_size=7, + norm_on_bbox=True): + super(FCOS3DBBoxCoder, self).__init__() + self.base_depths = base_depths + self.base_dims = base_dims + self.bbox_code_size = code_size + self.norm_on_bbox = norm_on_bbox + + def encode(self, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels): + # TODO: refactor the encoder in the FCOS3D and PGD head + pass + + def decode(self, bbox, scale, stride, training, cls_score=None): + """Decode regressed results into 3D predictions. + + Note that offsets are not transformed to the projected 3D centers. + + Args: + bbox (torch.Tensor): Raw bounding box predictions in shape + [N, C, H, W]. + scale (tuple[`Scale`]): Learnable scale parameters. + stride (int): Stride for a specific feature level. + training (bool): Whether the decoding is in the training + procedure. + cls_score (torch.Tensor): Classification score map for deciding + which base depth or dim is used. Defaults to None. + + Returns: + torch.Tensor: Decoded boxes. + """ + # scale the bbox of different level + # only apply to offset, depth and size prediction + scale_offset, scale_depth, scale_size = scale[0:3] + + clone_bbox = bbox.clone() + bbox[:, :2] = scale_offset(clone_bbox[:, :2]).float() + bbox[:, 2] = scale_depth(clone_bbox[:, 2]).float() + bbox[:, 3:6] = scale_size(clone_bbox[:, 3:6]).float() + + if self.base_depths is None: + bbox[:, 2] = bbox[:, 2].exp() + elif len(self.base_depths) == 1: # only single prior + mean = self.base_depths[0][0] + std = self.base_depths[0][1] + bbox[:, 2] = mean + bbox.clone()[:, 2] * std + else: # multi-class priors + assert len(self.base_depths) == cls_score.shape[1], \ + 'The number of multi-class depth priors should be equal to ' \ + 'the number of categories.' + indices = cls_score.max(dim=1)[1] + depth_priors = cls_score.new_tensor( + self.base_depths)[indices, :].permute(0, 3, 1, 2) + mean = depth_priors[:, 0] + std = depth_priors[:, 1] + bbox[:, 2] = mean + bbox.clone()[:, 2] * std + + bbox[:, 3:6] = bbox[:, 3:6].exp() + if self.base_dims is not None: + assert len(self.base_dims) == cls_score.shape[1], \ + 'The number of anchor sizes should be equal to the number ' \ + 'of categories.' + indices = cls_score.max(dim=1)[1] + size_priors = cls_score.new_tensor( + self.base_dims)[indices, :].permute(0, 3, 1, 2) + bbox[:, 3:6] = size_priors * bbox.clone()[:, 3:6] + + assert self.norm_on_bbox is True, 'Setting norm_on_bbox to False '\ + 'has not been thoroughly tested for FCOS3D.' + if self.norm_on_bbox: + if not training: + # Note that this line is conducted only when testing + bbox[:, :2] *= stride + + return bbox + + @staticmethod + def decode_yaw(bbox, centers2d, dir_cls, dir_offset, cam2img): + """Decode yaw angle and change it from local to global.i. + + Args: + bbox (torch.Tensor): Bounding box predictions in shape + [N, C] with yaws to be decoded. + centers2d (torch.Tensor): Projected 3D-center on the image planes + corresponding to the box predictions. + dir_cls (torch.Tensor): Predicted direction classes. + dir_offset (float): Direction offset before dividing all the + directions into several classes. + cam2img (torch.Tensor): Camera intrinsic matrix in shape [4, 4]. + + Returns: + torch.Tensor: Bounding boxes with decoded yaws. + """ + if bbox.shape[0] > 0: + dir_rot = limit_period(bbox[..., 6] - dir_offset, 0, np.pi) + bbox[..., 6] = \ + dir_rot + dir_offset + np.pi * dir_cls.to(bbox.dtype) + + bbox[:, 6] = torch.atan2(centers2d[:, 0] - cam2img[0, 2], + cam2img[0, 0]) + bbox[:, 6] + + return bbox diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/groupfree3d_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/groupfree3d_bbox_coder.py new file mode 100644 index 000000000..08d83e92c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/groupfree3d_bbox_coder.py @@ -0,0 +1,191 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core.bbox.builder import BBOX_CODERS +from .partial_bin_based_bbox_coder import PartialBinBasedBBoxCoder + + +@BBOX_CODERS.register_module() +class GroupFree3DBBoxCoder(PartialBinBasedBBoxCoder): + """Modified partial bin based bbox coder for GroupFree3D. + + Args: + num_dir_bins (int): Number of bins to encode direction angle. + num_sizes (int): Number of size clusters. + mean_sizes (list[list[int]]): Mean size of bboxes in each class. + with_rot (bool, optional): Whether the bbox is with rotation. + Defaults to True. + size_cls_agnostic (bool, optional): Whether the predicted size is + class-agnostic. Defaults to True. + """ + + def __init__(self, + num_dir_bins, + num_sizes, + mean_sizes, + with_rot=True, + size_cls_agnostic=True): + super(GroupFree3DBBoxCoder, self).__init__( + num_dir_bins=num_dir_bins, + num_sizes=num_sizes, + mean_sizes=mean_sizes, + with_rot=with_rot) + self.size_cls_agnostic = size_cls_agnostic + + def encode(self, gt_bboxes_3d, gt_labels_3d): + """Encode ground truth to prediction targets. + + Args: + gt_bboxes_3d (BaseInstance3DBoxes): Ground truth bboxes + with shape (n, 7). + gt_labels_3d (torch.Tensor): Ground truth classes. + + Returns: + tuple: Targets of center, size and direction. + """ + # generate center target + center_target = gt_bboxes_3d.gravity_center + + # generate bbox size target + size_target = gt_bboxes_3d.dims + size_class_target = gt_labels_3d + size_res_target = gt_bboxes_3d.dims - gt_bboxes_3d.tensor.new_tensor( + self.mean_sizes)[size_class_target] + + # generate dir target + box_num = gt_labels_3d.shape[0] + if self.with_rot: + (dir_class_target, + dir_res_target) = self.angle2class(gt_bboxes_3d.yaw) + else: + dir_class_target = gt_labels_3d.new_zeros(box_num) + dir_res_target = gt_bboxes_3d.tensor.new_zeros(box_num) + + return (center_target, size_target, size_class_target, size_res_target, + dir_class_target, dir_res_target) + + def decode(self, bbox_out, prefix=''): + """Decode predicted parts to bbox3d. + + Args: + bbox_out (dict): Predictions from model, should contain keys below. + + - center: predicted bottom center of bboxes. + - dir_class: predicted bbox direction class. + - dir_res: predicted bbox direction residual. + - size_class: predicted bbox size class. + - size_res: predicted bbox size residual. + - size: predicted class-agnostic bbox size + prefix (str, optional): Decode predictions with specific prefix. + Defaults to ''. + + Returns: + torch.Tensor: Decoded bbox3d with shape (batch, n, 7). + """ + center = bbox_out[f'{prefix}center'] + batch_size, num_proposal = center.shape[:2] + + # decode heading angle + if self.with_rot: + dir_class = torch.argmax(bbox_out[f'{prefix}dir_class'], -1) + dir_res = torch.gather(bbox_out[f'{prefix}dir_res'], 2, + dir_class.unsqueeze(-1)) + dir_res.squeeze_(2) + dir_angle = self.class2angle(dir_class, dir_res).reshape( + batch_size, num_proposal, 1) + else: + dir_angle = center.new_zeros(batch_size, num_proposal, 1) + + # decode bbox size + if self.size_cls_agnostic: + bbox_size = bbox_out[f'{prefix}size'].reshape( + batch_size, num_proposal, 3) + else: + size_class = torch.argmax( + bbox_out[f'{prefix}size_class'], -1, keepdim=True) + size_res = torch.gather( + bbox_out[f'{prefix}size_res'], 2, + size_class.unsqueeze(-1).repeat(1, 1, 1, 3)) + mean_sizes = center.new_tensor(self.mean_sizes) + size_base = torch.index_select(mean_sizes, 0, + size_class.reshape(-1)) + bbox_size = size_base.reshape(batch_size, num_proposal, + -1) + size_res.squeeze(2) + + bbox3d = torch.cat([center, bbox_size, dir_angle], dim=-1) + return bbox3d + + def split_pred(self, cls_preds, reg_preds, base_xyz, prefix=''): + """Split predicted features to specific parts. + + Args: + cls_preds (torch.Tensor): Class predicted features to split. + reg_preds (torch.Tensor): Regression predicted features to split. + base_xyz (torch.Tensor): Coordinates of points. + prefix (str, optional): Decode predictions with specific prefix. + Defaults to ''. + + Returns: + dict[str, torch.Tensor]: Split results. + """ + results = {} + start, end = 0, 0 + + cls_preds_trans = cls_preds.transpose(2, 1) + reg_preds_trans = reg_preds.transpose(2, 1) + + # decode center + end += 3 + # (batch_size, num_proposal, 3) + results[f'{prefix}center_residual'] = \ + reg_preds_trans[..., start:end].contiguous() + results[f'{prefix}center'] = base_xyz + \ + reg_preds_trans[..., start:end].contiguous() + start = end + + # decode direction + end += self.num_dir_bins + results[f'{prefix}dir_class'] = \ + reg_preds_trans[..., start:end].contiguous() + start = end + + end += self.num_dir_bins + dir_res_norm = reg_preds_trans[..., start:end].contiguous() + start = end + + results[f'{prefix}dir_res_norm'] = dir_res_norm + results[f'{prefix}dir_res'] = dir_res_norm * ( + np.pi / self.num_dir_bins) + + # decode size + if self.size_cls_agnostic: + end += 3 + results[f'{prefix}size'] = \ + reg_preds_trans[..., start:end].contiguous() + else: + end += self.num_sizes + results[f'{prefix}size_class'] = reg_preds_trans[ + ..., start:end].contiguous() + start = end + + end += self.num_sizes * 3 + size_res_norm = reg_preds_trans[..., start:end] + batch_size, num_proposal = reg_preds_trans.shape[:2] + size_res_norm = size_res_norm.view( + [batch_size, num_proposal, self.num_sizes, 3]) + start = end + + results[f'{prefix}size_res_norm'] = size_res_norm.contiguous() + mean_sizes = reg_preds.new_tensor(self.mean_sizes) + results[f'{prefix}size_res'] = ( + size_res_norm * mean_sizes.unsqueeze(0).unsqueeze(0)) + + # decode objectness score + # Group-Free-3D objectness output shape (batch, proposal, 1) + results[f'{prefix}obj_scores'] = cls_preds_trans[..., :1].contiguous() + + # decode semantic score + results[f'{prefix}sem_scores'] = cls_preds_trans[..., 1:].contiguous() + + return results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/monoflex_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/monoflex_bbox_coder.py new file mode 100644 index 000000000..e2ada29ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/monoflex_bbox_coder.py @@ -0,0 +1,515 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from torch.nn import functional as F + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class MonoFlexCoder(BaseBBoxCoder): + """Bbox Coder for MonoFlex. + + Args: + depth_mode (str): The mode for depth calculation. + Available options are "linear", "inv_sigmoid", and "exp". + base_depth (tuple[float]): References for decoding box depth. + depth_range (list): Depth range of predicted depth. + combine_depth (bool): Whether to use combined depth (direct depth + and depth from keypoints) or use direct depth only. + uncertainty_range (list): Uncertainty range of predicted depth. + base_dims (tuple[tuple[float]]): Dimensions mean and std of decode bbox + dimensions [l, h, w] for each category. + dims_mode (str): The mode for dimension calculation. + Available options are "linear" and "exp". + multibin (bool): Whether to use multibin representation. + num_dir_bins (int): Number of Number of bins to encode + direction angle. + bin_centers (list[float]): Local yaw centers while using multibin + representations. + bin_margin (float): Margin of multibin representations. + code_size (int): The dimension of boxes to be encoded. + eps (float, optional): A value added to the denominator for numerical + stability. Default 1e-3. + """ + + def __init__(self, + depth_mode, + base_depth, + depth_range, + combine_depth, + uncertainty_range, + base_dims, + dims_mode, + multibin, + num_dir_bins, + bin_centers, + bin_margin, + code_size, + eps=1e-3): + super(MonoFlexCoder, self).__init__() + + # depth related + self.depth_mode = depth_mode + self.base_depth = base_depth + self.depth_range = depth_range + self.combine_depth = combine_depth + self.uncertainty_range = uncertainty_range + + # dimensions related + self.base_dims = base_dims + self.dims_mode = dims_mode + + # orientation related + self.multibin = multibin + self.num_dir_bins = num_dir_bins + self.bin_centers = bin_centers + self.bin_margin = bin_margin + + # output related + self.bbox_code_size = code_size + self.eps = eps + + def encode(self, gt_bboxes_3d): + """Encode ground truth to prediction targets. + + Args: + gt_bboxes_3d (`BaseInstance3DBoxes`): Ground truth 3D bboxes. + shape: (N, 7). + + Returns: + torch.Tensor: Targets of orientations. + """ + local_yaw = gt_bboxes_3d.local_yaw + # encode local yaw (-pi ~ pi) to multibin format + encode_local_yaw = local_yaw.new_zeros( + [local_yaw.shape[0], self.num_dir_bins * 2]) + bin_size = 2 * np.pi / self.num_dir_bins + margin_size = bin_size * self.bin_margin + + bin_centers = local_yaw.new_tensor(self.bin_centers) + range_size = bin_size / 2 + margin_size + + offsets = local_yaw.unsqueeze(1) - bin_centers.unsqueeze(0) + offsets[offsets > np.pi] = offsets[offsets > np.pi] - 2 * np.pi + offsets[offsets < -np.pi] = offsets[offsets < -np.pi] + 2 * np.pi + + for i in range(self.num_dir_bins): + offset = offsets[:, i] + inds = abs(offset) < range_size + encode_local_yaw[inds, i] = 1 + encode_local_yaw[inds, i + self.num_dir_bins] = offset[inds] + + orientation_target = encode_local_yaw + + return orientation_target + + def decode(self, bbox, base_centers2d, labels, downsample_ratio, cam2imgs): + """Decode bounding box regression into 3D predictions. + + Args: + bbox (Tensor): Raw bounding box predictions for each + predict center2d point. + shape: (N, C) + base_centers2d (torch.Tensor): Base centers2d for 3D bboxes. + shape: (N, 2). + labels (Tensor): Batch predict class label for each predict + center2d point. + shape: (N, ) + downsample_ratio (int): The stride of feature map. + cam2imgs (Tensor): Batch images' camera intrinsic matrix. + shape: kitti (N, 4, 4) nuscenes (N, 3, 3) + + Return: + dict: The 3D prediction dict decoded from regression map. + the dict has components below: + - bboxes2d (torch.Tensor): Decoded [x1, y1, x2, y2] format + 2D bboxes. + - dimensions (torch.Tensor): Decoded dimensions for each + object. + - offsets2d (torch.Tenosr): Offsets between base centers2d + and real centers2d. + - direct_depth (torch.Tensor): Decoded directly regressed + depth. + - keypoints2d (torch.Tensor): Keypoints of each projected + 3D box on image. + - keypoints_depth (torch.Tensor): Decoded depth from keypoints. + - combined_depth (torch.Tensor): Combined depth using direct + depth and keypoints depth with depth uncertainty. + - orientations (torch.Tensor): Multibin format orientations + (local yaw) for each objects. + """ + + # 4 dimensions for FCOS style regression + pred_bboxes2d = bbox[:, 0:4] + + # change FCOS style to [x1, y1, x2, y2] format for IOU Loss + pred_bboxes2d = self.decode_bboxes2d(pred_bboxes2d, base_centers2d) + + # 2 dimensions for projected centers2d offsets + pred_offsets2d = bbox[:, 4:6] + + # 3 dimensions for 3D bbox dimensions offsets + pred_dimensions_offsets3d = bbox[:, 29:32] + + # the first 8 dimensions are for orientation bin classification + # and the second 8 dimensions are for orientation offsets. + pred_orientations = torch.cat((bbox[:, 32:40], bbox[:, 40:48]), dim=1) + + # 3 dimensions for the uncertainties of the solved depths from + # groups of keypoints + pred_keypoints_depth_uncertainty = bbox[:, 26:29] + + # 1 dimension for the uncertainty of directly regressed depth + pred_direct_depth_uncertainty = bbox[:, 49:50].squeeze(-1) + + # 2 dimension of offsets x keypoints (8 corners + top/bottom center) + pred_keypoints2d = bbox[:, 6:26].reshape(-1, 10, 2) + + # 1 dimension for depth offsets + pred_direct_depth_offsets = bbox[:, 48:49].squeeze(-1) + + # decode the pred residual dimensions to real dimensions + pred_dimensions = self.decode_dims(labels, pred_dimensions_offsets3d) + pred_direct_depth = self.decode_direct_depth(pred_direct_depth_offsets) + pred_keypoints_depth = self.keypoints2depth(pred_keypoints2d, + pred_dimensions, cam2imgs, + downsample_ratio) + + pred_direct_depth_uncertainty = torch.clamp( + pred_direct_depth_uncertainty, self.uncertainty_range[0], + self.uncertainty_range[1]) + pred_keypoints_depth_uncertainty = torch.clamp( + pred_keypoints_depth_uncertainty, self.uncertainty_range[0], + self.uncertainty_range[1]) + + if self.combine_depth: + pred_depth_uncertainty = torch.cat( + (pred_direct_depth_uncertainty.unsqueeze(-1), + pred_keypoints_depth_uncertainty), + dim=1).exp() + pred_depth = torch.cat( + (pred_direct_depth.unsqueeze(-1), pred_keypoints_depth), dim=1) + pred_combined_depth = \ + self.combine_depths(pred_depth, pred_depth_uncertainty) + else: + pred_combined_depth = None + + preds = dict( + bboxes2d=pred_bboxes2d, + dimensions=pred_dimensions, + offsets2d=pred_offsets2d, + keypoints2d=pred_keypoints2d, + orientations=pred_orientations, + direct_depth=pred_direct_depth, + keypoints_depth=pred_keypoints_depth, + combined_depth=pred_combined_depth, + direct_depth_uncertainty=pred_direct_depth_uncertainty, + keypoints_depth_uncertainty=pred_keypoints_depth_uncertainty, + ) + + return preds + + def decode_direct_depth(self, depth_offsets): + """Transform depth offset to directly regressed depth. + + Args: + depth_offsets (torch.Tensor): Predicted depth offsets. + shape: (N, ) + + Return: + torch.Tensor: Directly regressed depth. + shape: (N, ) + """ + if self.depth_mode == 'exp': + direct_depth = depth_offsets.exp() + elif self.depth_mode == 'linear': + base_depth = depth_offsets.new_tensor(self.base_depth) + direct_depth = depth_offsets * base_depth[1] + base_depth[0] + elif self.depth_mode == 'inv_sigmoid': + direct_depth = 1 / torch.sigmoid(depth_offsets) - 1 + else: + raise ValueError + + if self.depth_range is not None: + direct_depth = torch.clamp( + direct_depth, min=self.depth_range[0], max=self.depth_range[1]) + + return direct_depth + + def decode_location(self, + base_centers2d, + offsets2d, + depths, + cam2imgs, + downsample_ratio, + pad_mode='default'): + """Retrieve object location. + + Args: + base_centers2d (torch.Tensor): predicted base centers2d. + shape: (N, 2) + offsets2d (torch.Tensor): The offsets between real centers2d + and base centers2d. + shape: (N , 2) + depths (torch.Tensor): Depths of objects. + shape: (N, ) + cam2imgs (torch.Tensor): Batch images' camera intrinsic matrix. + shape: kitti (N, 4, 4) nuscenes (N, 3, 3) + downsample_ratio (int): The stride of feature map. + pad_mode (str, optional): Padding mode used in + training data augmentation. + + Return: + tuple(torch.Tensor): Centers of 3D boxes. + shape: (N, 3) + """ + N = cam2imgs.shape[0] + # (N, 4, 4) + cam2imgs_inv = cam2imgs.inverse() + if pad_mode == 'default': + centers2d_img = (base_centers2d + offsets2d) * downsample_ratio + else: + raise NotImplementedError + # (N, 3) + centers2d_img = \ + torch.cat((centers2d_img, depths.unsqueeze(-1)), dim=1) + # (N, 4, 1) + centers2d_extend = \ + torch.cat((centers2d_img, centers2d_img.new_ones(N, 1)), + dim=1).unsqueeze(-1) + locations = torch.matmul(cam2imgs_inv, centers2d_extend).squeeze(-1) + + return locations[:, :3] + + def keypoints2depth(self, + keypoints2d, + dimensions, + cam2imgs, + downsample_ratio=4, + group0_index=[(7, 3), (0, 4)], + group1_index=[(2, 6), (1, 5)]): + """Decode depth form three groups of keypoints and geometry projection + model. 2D keypoints inlucding 8 coreners and top/bottom centers will be + divided into three groups which will be used to calculate three depths + of object. + + .. code-block:: none + + Group center keypoints: + + + --------------- + + /| top center /| + / | . / | + / | | / | + + ---------|----- + + + | / | | / + | / . | / + |/ bottom center |/ + + --------------- + + + Group 0 keypoints: + + 0 + + -------------- + + /| /| + / | / | + / | 5/ | + + -------------- + + + | /3 | / + | / | / + |/ |/ + + -------------- + 6 + + Group 1 keypoints: + + 4 + + -------------- + + /| /| + / | / | + / | / | + 1 + -------------- + + 7 + | / | / + | / | / + |/ |/ + 2 + -------------- + + + + Args: + keypoints2d (torch.Tensor): Keypoints of objects. + 8 vertices + top/bottom center. + shape: (N, 10, 2) + dimensions (torch.Tensor): Dimensions of objetcts. + shape: (N, 3) + cam2imgs (torch.Tensor): Batch images' camera intrinsic matrix. + shape: kitti (N, 4, 4) nuscenes (N, 3, 3) + downsample_ratio (int, opitonal): The stride of feature map. + Defaults: 4. + group0_index(list[tuple[int]], optional): Keypoints group 0 + of index to calculate the depth. + Defaults: [0, 3, 4, 7]. + group1_index(list[tuple[int]], optional): Keypoints group 1 + of index to calculate the depth. + Defaults: [1, 2, 5, 6] + + Return: + tuple(torch.Tensor): Depth computed from three groups of + keypoints (top/bottom, group0, group1) + shape: (N, 3) + """ + + pred_height_3d = dimensions[:, 1].clone() + f_u = cam2imgs[:, 0, 0] + center_height = keypoints2d[:, -2, 1] - keypoints2d[:, -1, 1] + corner_group0_height = keypoints2d[:, group0_index[0], 1] \ + - keypoints2d[:, group0_index[1], 1] + corner_group1_height = keypoints2d[:, group1_index[0], 1] \ + - keypoints2d[:, group1_index[1], 1] + center_depth = f_u * pred_height_3d / ( + F.relu(center_height) * downsample_ratio + self.eps) + corner_group0_depth = (f_u * pred_height_3d).unsqueeze(-1) / ( + F.relu(corner_group0_height) * downsample_ratio + self.eps) + corner_group1_depth = (f_u * pred_height_3d).unsqueeze(-1) / ( + F.relu(corner_group1_height) * downsample_ratio + self.eps) + + corner_group0_depth = corner_group0_depth.mean(dim=1) + corner_group1_depth = corner_group1_depth.mean(dim=1) + + keypoints_depth = torch.stack( + (center_depth, corner_group0_depth, corner_group1_depth), dim=1) + keypoints_depth = torch.clamp( + keypoints_depth, min=self.depth_range[0], max=self.depth_range[1]) + + return keypoints_depth + + def decode_dims(self, labels, dims_offset): + """Retrieve object dimensions. + + Args: + labels (torch.Tensor): Each points' category id. + shape: (N, K) + dims_offset (torch.Tensor): Dimension offsets. + shape: (N, 3) + + Returns: + torch.Tensor: Shape (N, 3) + """ + + if self.dims_mode == 'exp': + dims_offset = dims_offset.exp() + elif self.dims_mode == 'linear': + labels = labels.long() + base_dims = dims_offset.new_tensor(self.base_dims) + dims_mean = base_dims[:, :3] + dims_std = base_dims[:, 3:6] + cls_dimension_mean = dims_mean[labels, :] + cls_dimension_std = dims_std[labels, :] + dimensions = dims_offset * cls_dimension_mean + cls_dimension_std + else: + raise ValueError + + return dimensions + + def decode_orientation(self, ori_vector, locations): + """Retrieve object orientation. + + Args: + ori_vector (torch.Tensor): Local orientation vector + in [axis_cls, head_cls, sin, cos] format. + shape: (N, num_dir_bins * 4) + locations (torch.Tensor): Object location. + shape: (N, 3) + + Returns: + tuple[torch.Tensor]: yaws and local yaws of 3d bboxes. + """ + if self.multibin: + pred_bin_cls = ori_vector[:, :self.num_dir_bins * 2].view( + -1, self.num_dir_bins, 2) + pred_bin_cls = pred_bin_cls.softmax(dim=2)[..., 1] + orientations = ori_vector.new_zeros(ori_vector.shape[0]) + for i in range(self.num_dir_bins): + mask_i = (pred_bin_cls.argmax(dim=1) == i) + start_bin = self.num_dir_bins * 2 + i * 2 + end_bin = start_bin + 2 + pred_bin_offset = ori_vector[mask_i, start_bin:end_bin] + orientations[mask_i] = pred_bin_offset[:, 0].atan2( + pred_bin_offset[:, 1]) + self.bin_centers[i] + else: + axis_cls = ori_vector[:, :2].softmax(dim=1) + axis_cls = axis_cls[:, 0] < axis_cls[:, 1] + head_cls = ori_vector[:, 2:4].softmax(dim=1) + head_cls = head_cls[:, 0] < head_cls[:, 1] + # cls axis + orientations = self.bin_centers[axis_cls + head_cls * 2] + sin_cos_offset = F.normalize(ori_vector[:, 4:]) + orientations += sin_cos_offset[:, 0].atan(sin_cos_offset[:, 1]) + + locations = locations.view(-1, 3) + rays = locations[:, 0].atan2(locations[:, 2]) + local_yaws = orientations + yaws = local_yaws + rays + + larger_idx = (yaws > np.pi).nonzero(as_tuple=False) + small_idx = (yaws < -np.pi).nonzero(as_tuple=False) + if len(larger_idx) != 0: + yaws[larger_idx] -= 2 * np.pi + if len(small_idx) != 0: + yaws[small_idx] += 2 * np.pi + + larger_idx = (local_yaws > np.pi).nonzero(as_tuple=False) + small_idx = (local_yaws < -np.pi).nonzero(as_tuple=False) + if len(larger_idx) != 0: + local_yaws[larger_idx] -= 2 * np.pi + if len(small_idx) != 0: + local_yaws[small_idx] += 2 * np.pi + + return yaws, local_yaws + + def decode_bboxes2d(self, reg_bboxes2d, base_centers2d): + """Retrieve [x1, y1, x2, y2] format 2D bboxes. + + Args: + reg_bboxes2d (torch.Tensor): Predicted FCOS style + 2D bboxes. + shape: (N, 4) + base_centers2d (torch.Tensor): predicted base centers2d. + shape: (N, 2) + + Returns: + torch.Tenosr: [x1, y1, x2, y2] format 2D bboxes. + """ + centers_x = base_centers2d[:, 0] + centers_y = base_centers2d[:, 1] + + xs_min = centers_x - reg_bboxes2d[..., 0] + ys_min = centers_y - reg_bboxes2d[..., 1] + xs_max = centers_x + reg_bboxes2d[..., 2] + ys_max = centers_y + reg_bboxes2d[..., 3] + + bboxes2d = torch.stack([xs_min, ys_min, xs_max, ys_max], dim=-1) + + return bboxes2d + + def combine_depths(self, depth, depth_uncertainty): + """Combine all the prediced depths with depth uncertainty. + + Args: + depth (torch.Tensor): Predicted depths of each object. + 2D bboxes. + shape: (N, 4) + depth_uncertainty (torch.Tensor): Depth uncertainty for + each depth of each object. + shape: (N, 4) + + Returns: + torch.Tenosr: combined depth. + """ + uncertainty_weights = 1 / depth_uncertainty + uncertainty_weights = \ + uncertainty_weights / \ + uncertainty_weights.sum(dim=1, keepdim=True) + combined_depth = torch.sum(depth * uncertainty_weights, dim=1) + + return combined_depth diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/partial_bin_based_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/partial_bin_based_bbox_coder.py new file mode 100644 index 000000000..ed8020d70 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/partial_bin_based_bbox_coder.py @@ -0,0 +1,241 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class PartialBinBasedBBoxCoder(BaseBBoxCoder): + """Partial bin based bbox coder. + + Args: + num_dir_bins (int): Number of bins to encode direction angle. + num_sizes (int): Number of size clusters. + mean_sizes (list[list[int]]): Mean size of bboxes in each class. + with_rot (bool): Whether the bbox is with rotation. + """ + + def __init__(self, num_dir_bins, num_sizes, mean_sizes, with_rot=True): + super(PartialBinBasedBBoxCoder, self).__init__() + assert len(mean_sizes) == num_sizes + self.num_dir_bins = num_dir_bins + self.num_sizes = num_sizes + self.mean_sizes = mean_sizes + self.with_rot = with_rot + + def encode(self, gt_bboxes_3d, gt_labels_3d): + """Encode ground truth to prediction targets. + + Args: + gt_bboxes_3d (BaseInstance3DBoxes): Ground truth bboxes + with shape (n, 7). + gt_labels_3d (torch.Tensor): Ground truth classes. + + Returns: + tuple: Targets of center, size and direction. + """ + # generate center target + center_target = gt_bboxes_3d.gravity_center + + # generate bbox size target + size_class_target = gt_labels_3d + size_res_target = gt_bboxes_3d.dims - gt_bboxes_3d.tensor.new_tensor( + self.mean_sizes)[size_class_target] + + # generate dir target + box_num = gt_labels_3d.shape[0] + if self.with_rot: + (dir_class_target, + dir_res_target) = self.angle2class(gt_bboxes_3d.yaw) + else: + dir_class_target = gt_labels_3d.new_zeros(box_num) + dir_res_target = gt_bboxes_3d.tensor.new_zeros(box_num) + + return (center_target, size_class_target, size_res_target, + dir_class_target, dir_res_target) + + def decode(self, bbox_out, suffix=''): + """Decode predicted parts to bbox3d. + + Args: + bbox_out (dict): Predictions from model, should contain keys below. + + - center: predicted bottom center of bboxes. + - dir_class: predicted bbox direction class. + - dir_res: predicted bbox direction residual. + - size_class: predicted bbox size class. + - size_res: predicted bbox size residual. + suffix (str): Decode predictions with specific suffix. + + Returns: + torch.Tensor: Decoded bbox3d with shape (batch, n, 7). + """ + center = bbox_out['center' + suffix] + batch_size, num_proposal = center.shape[:2] + + # decode heading angle + if self.with_rot: + dir_class = torch.argmax(bbox_out['dir_class' + suffix], -1) + dir_res = torch.gather(bbox_out['dir_res' + suffix], 2, + dir_class.unsqueeze(-1)) + dir_res.squeeze_(2) + dir_angle = self.class2angle(dir_class, dir_res).reshape( + batch_size, num_proposal, 1) + else: + dir_angle = center.new_zeros(batch_size, num_proposal, 1) + + # decode bbox size + size_class = torch.argmax( + bbox_out['size_class' + suffix], -1, keepdim=True) + size_res = torch.gather(bbox_out['size_res' + suffix], 2, + size_class.unsqueeze(-1).repeat(1, 1, 1, 3)) + mean_sizes = center.new_tensor(self.mean_sizes) + size_base = torch.index_select(mean_sizes, 0, size_class.reshape(-1)) + bbox_size = size_base.reshape(batch_size, num_proposal, + -1) + size_res.squeeze(2) + + bbox3d = torch.cat([center, bbox_size, dir_angle], dim=-1) + return bbox3d + + def decode_corners(self, center, size_res, size_class): + """Decode center, size residuals and class to corners. Only useful for + axis-aligned bounding boxes, so angle isn't considered. + + Args: + center (torch.Tensor): Shape [B, N, 3] + size_res (torch.Tensor): Shape [B, N, 3] or [B, N, C, 3] + size_class (torch.Tensor): Shape: [B, N] or [B, N, 1] + or [B, N, C, 3] + + Returns: + torch.Tensor: Corners with shape [B, N, 6] + """ + if len(size_class.shape) == 2 or size_class.shape[-1] == 1: + batch_size, proposal_num = size_class.shape[:2] + one_hot_size_class = size_res.new_zeros( + (batch_size, proposal_num, self.num_sizes)) + if len(size_class.shape) == 2: + size_class = size_class.unsqueeze(-1) + one_hot_size_class.scatter_(2, size_class, 1) + one_hot_size_class_expand = one_hot_size_class.unsqueeze( + -1).repeat(1, 1, 1, 3).contiguous() + else: + one_hot_size_class_expand = size_class + + if len(size_res.shape) == 4: + size_res = torch.sum(size_res * one_hot_size_class_expand, 2) + + mean_sizes = size_res.new_tensor(self.mean_sizes) + mean_sizes = torch.sum(mean_sizes * one_hot_size_class_expand, 2) + size_full = (size_res + 1) * mean_sizes + size_full = torch.clamp(size_full, 0) + half_size_full = size_full / 2 + corner1 = center - half_size_full + corner2 = center + half_size_full + corners = torch.cat([corner1, corner2], dim=-1) + return corners + + def split_pred(self, cls_preds, reg_preds, base_xyz): + """Split predicted features to specific parts. + + Args: + cls_preds (torch.Tensor): Class predicted features to split. + reg_preds (torch.Tensor): Regression predicted features to split. + base_xyz (torch.Tensor): Coordinates of points. + + Returns: + dict[str, torch.Tensor]: Split results. + """ + results = {} + start, end = 0, 0 + + cls_preds_trans = cls_preds.transpose(2, 1) + reg_preds_trans = reg_preds.transpose(2, 1) + + # decode center + end += 3 + # (batch_size, num_proposal, 3) + results['center'] = base_xyz + \ + reg_preds_trans[..., start:end].contiguous() + start = end + + # decode direction + end += self.num_dir_bins + results['dir_class'] = reg_preds_trans[..., start:end].contiguous() + start = end + + end += self.num_dir_bins + dir_res_norm = reg_preds_trans[..., start:end].contiguous() + start = end + + results['dir_res_norm'] = dir_res_norm + results['dir_res'] = dir_res_norm * (np.pi / self.num_dir_bins) + + # decode size + end += self.num_sizes + results['size_class'] = reg_preds_trans[..., start:end].contiguous() + start = end + + end += self.num_sizes * 3 + size_res_norm = reg_preds_trans[..., start:end] + batch_size, num_proposal = reg_preds_trans.shape[:2] + size_res_norm = size_res_norm.view( + [batch_size, num_proposal, self.num_sizes, 3]) + start = end + + results['size_res_norm'] = size_res_norm.contiguous() + mean_sizes = reg_preds.new_tensor(self.mean_sizes) + results['size_res'] = ( + size_res_norm * mean_sizes.unsqueeze(0).unsqueeze(0)) + + # decode objectness score + start = 0 + end = 2 + results['obj_scores'] = cls_preds_trans[..., start:end].contiguous() + start = end + + # decode semantic score + results['sem_scores'] = cls_preds_trans[..., start:].contiguous() + + return results + + def angle2class(self, angle): + """Convert continuous angle to a discrete class and a residual. + + Convert continuous angle to a discrete class and a small + regression number from class center angle to current angle. + + Args: + angle (torch.Tensor): Angle is from 0-2pi (or -pi~pi), + class center at 0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N). + + Returns: + tuple: Encoded discrete class and residual. + """ + angle = angle % (2 * np.pi) + angle_per_class = 2 * np.pi / float(self.num_dir_bins) + shifted_angle = (angle + angle_per_class / 2) % (2 * np.pi) + angle_cls = shifted_angle // angle_per_class + angle_res = shifted_angle - ( + angle_cls * angle_per_class + angle_per_class / 2) + return angle_cls.long(), angle_res + + def class2angle(self, angle_cls, angle_res, limit_period=True): + """Inverse function to angle2class. + + Args: + angle_cls (torch.Tensor): Angle class to decode. + angle_res (torch.Tensor): Angle residual to decode. + limit_period (bool): Whether to limit angle to [-pi, pi]. + + Returns: + torch.Tensor: Angle decoded from angle_cls and angle_res. + """ + angle_per_class = 2 * np.pi / float(self.num_dir_bins) + angle_center = angle_cls.float() * angle_per_class + angle = angle_center + angle_res + if limit_period: + angle[angle > np.pi] -= 2 * np.pi + return angle diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/pgd_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/pgd_bbox_coder.py new file mode 100644 index 000000000..094ed39dc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/pgd_bbox_coder.py @@ -0,0 +1,128 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from torch.nn import functional as F + +from mmdet.core.bbox.builder import BBOX_CODERS +from .fcos3d_bbox_coder import FCOS3DBBoxCoder + + +@BBOX_CODERS.register_module() +class PGDBBoxCoder(FCOS3DBBoxCoder): + """Bounding box coder for PGD.""" + + def encode(self, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels): + # TODO: refactor the encoder codes in the FCOS3D and PGD head + pass + + def decode_2d(self, + bbox, + scale, + stride, + max_regress_range, + training, + pred_keypoints=False, + pred_bbox2d=True): + """Decode regressed 2D attributes. + + Args: + bbox (torch.Tensor): Raw bounding box predictions in shape + [N, C, H, W]. + scale (tuple[`Scale`]): Learnable scale parameters. + stride (int): Stride for a specific feature level. + max_regress_range (int): Maximum regression range for a specific + feature level. + training (bool): Whether the decoding is in the training + procedure. + pred_keypoints (bool, optional): Whether to predict keypoints. + Defaults to False. + pred_bbox2d (bool, optional): Whether to predict 2D bounding + boxes. Defaults to False. + + Returns: + torch.Tensor: Decoded boxes. + """ + clone_bbox = bbox.clone() + if pred_keypoints: + scale_kpts = scale[3] + # 2 dimension of offsets x 8 corners of a 3D bbox + bbox[:, self.bbox_code_size:self.bbox_code_size + 16] = \ + torch.tanh(scale_kpts(clone_bbox[ + :, self.bbox_code_size:self.bbox_code_size + 16]).float()) + + if pred_bbox2d: + scale_bbox2d = scale[-1] + # The last four dimensions are offsets to four sides of a 2D bbox + bbox[:, -4:] = scale_bbox2d(clone_bbox[:, -4:]).float() + + if self.norm_on_bbox: + if pred_bbox2d: + bbox[:, -4:] = F.relu(bbox.clone()[:, -4:]) + if not training: + if pred_keypoints: + bbox[ + :, self.bbox_code_size:self.bbox_code_size + 16] *= \ + max_regress_range + if pred_bbox2d: + bbox[:, -4:] *= stride + else: + if pred_bbox2d: + bbox[:, -4:] = bbox.clone()[:, -4:].exp() + return bbox + + def decode_prob_depth(self, depth_cls_preds, depth_range, depth_unit, + division, num_depth_cls): + """Decode probabilistic depth map. + + Args: + depth_cls_preds (torch.Tensor): Depth probabilistic map in shape + [..., self.num_depth_cls] (raw output before softmax). + depth_range (tuple[float]): Range of depth estimation. + depth_unit (int): Unit of depth range division. + division (str): Depth division method. Options include 'uniform', + 'linear', 'log', 'loguniform'. + num_depth_cls (int): Number of depth classes. + + Returns: + torch.Tensor: Decoded probabilistic depth estimation. + """ + if division == 'uniform': + depth_multiplier = depth_unit * \ + depth_cls_preds.new_tensor( + list(range(num_depth_cls))).reshape([1, -1]) + prob_depth_preds = (F.softmax(depth_cls_preds.clone(), dim=-1) * + depth_multiplier).sum(dim=-1) + return prob_depth_preds + elif division == 'linear': + split_pts = depth_cls_preds.new_tensor(list( + range(num_depth_cls))).reshape([1, -1]) + depth_multiplier = depth_range[0] + ( + depth_range[1] - depth_range[0]) / \ + (num_depth_cls * (num_depth_cls - 1)) * \ + (split_pts * (split_pts+1)) + prob_depth_preds = (F.softmax(depth_cls_preds.clone(), dim=-1) * + depth_multiplier).sum(dim=-1) + return prob_depth_preds + elif division == 'log': + split_pts = depth_cls_preds.new_tensor(list( + range(num_depth_cls))).reshape([1, -1]) + start = max(depth_range[0], 1) + end = depth_range[1] + depth_multiplier = (np.log(start) + + split_pts * np.log(end / start) / + (num_depth_cls - 1)).exp() + prob_depth_preds = (F.softmax(depth_cls_preds.clone(), dim=-1) * + depth_multiplier).sum(dim=-1) + return prob_depth_preds + elif division == 'loguniform': + split_pts = depth_cls_preds.new_tensor(list( + range(num_depth_cls))).reshape([1, -1]) + start = max(depth_range[0], 1) + end = depth_range[1] + log_multiplier = np.log(start) + \ + split_pts * np.log(end / start) / (num_depth_cls - 1) + prob_depth_preds = (F.softmax(depth_cls_preds.clone(), dim=-1) * + log_multiplier).sum(dim=-1).exp() + return prob_depth_preds + else: + raise NotImplementedError diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/point_xyzwhlr_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/point_xyzwhlr_bbox_coder.py new file mode 100644 index 000000000..d246777ba --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/point_xyzwhlr_bbox_coder.py @@ -0,0 +1,117 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class PointXYZWHLRBBoxCoder(BaseBBoxCoder): + """Point based bbox coder for 3D boxes. + + Args: + code_size (int): The dimension of boxes to be encoded. + use_mean_size (bool, optional): Whether using anchors based on class. + Defaults to True. + mean_size (list[list[float]], optional): Mean size of bboxes in + each class. Defaults to None. + """ + + def __init__(self, code_size=7, use_mean_size=True, mean_size=None): + super(PointXYZWHLRBBoxCoder, self).__init__() + self.code_size = code_size + self.use_mean_size = use_mean_size + if self.use_mean_size: + self.mean_size = torch.from_numpy(np.array(mean_size)).float() + assert self.mean_size.min() > 0, \ + f'The min of mean_size should > 0, however currently it is '\ + f'{self.mean_size.min()}, please check it in your config.' + + def encode(self, gt_bboxes_3d, points, gt_labels_3d=None): + """Encode ground truth to prediction targets. + + Args: + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth bboxes + with shape (N, 7 + C). + points (torch.Tensor): Point cloud with shape (N, 3). + gt_labels_3d (torch.Tensor, optional): Ground truth classes. + Defaults to None. + + Returns: + torch.Tensor: Encoded boxes with shape (N, 8 + C). + """ + gt_bboxes_3d[:, 3:6] = torch.clamp_min(gt_bboxes_3d[:, 3:6], min=1e-5) + + xg, yg, zg, dxg, dyg, dzg, rg, *cgs = torch.split( + gt_bboxes_3d, 1, dim=-1) + xa, ya, za = torch.split(points, 1, dim=-1) + + if self.use_mean_size: + assert gt_labels_3d.max() <= self.mean_size.shape[0] - 1, \ + f'the max gt label {gt_labels_3d.max()} is bigger than' \ + f'anchor types {self.mean_size.shape[0] - 1}.' + self.mean_size = self.mean_size.to(gt_labels_3d.device) + point_anchor_size = self.mean_size[gt_labels_3d] + dxa, dya, dza = torch.split(point_anchor_size, 1, dim=-1) + diagonal = torch.sqrt(dxa**2 + dya**2) + xt = (xg - xa) / diagonal + yt = (yg - ya) / diagonal + zt = (zg - za) / dza + dxt = torch.log(dxg / dxa) + dyt = torch.log(dyg / dya) + dzt = torch.log(dzg / dza) + else: + xt = (xg - xa) + yt = (yg - ya) + zt = (zg - za) + dxt = torch.log(dxg) + dyt = torch.log(dyg) + dzt = torch.log(dzg) + + return torch.cat( + [xt, yt, zt, dxt, dyt, dzt, + torch.cos(rg), + torch.sin(rg), *cgs], + dim=-1) + + def decode(self, box_encodings, points, pred_labels_3d=None): + """Decode predicted parts and points to bbox3d. + + Args: + box_encodings (torch.Tensor): Encoded boxes with shape (N, 8 + C). + points (torch.Tensor): Point cloud with shape (N, 3). + pred_labels_3d (torch.Tensor): Bbox predicted labels (N, M). + + Returns: + torch.Tensor: Decoded boxes with shape (N, 7 + C) + """ + xt, yt, zt, dxt, dyt, dzt, cost, sint, *cts = torch.split( + box_encodings, 1, dim=-1) + xa, ya, za = torch.split(points, 1, dim=-1) + + if self.use_mean_size: + assert pred_labels_3d.max() <= self.mean_size.shape[0] - 1, \ + f'The max pred label {pred_labels_3d.max()} is bigger than' \ + f'anchor types {self.mean_size.shape[0] - 1}.' + self.mean_size = self.mean_size.to(pred_labels_3d.device) + point_anchor_size = self.mean_size[pred_labels_3d] + dxa, dya, dza = torch.split(point_anchor_size, 1, dim=-1) + diagonal = torch.sqrt(dxa**2 + dya**2) + xg = xt * diagonal + xa + yg = yt * diagonal + ya + zg = zt * dza + za + + dxg = torch.exp(dxt) * dxa + dyg = torch.exp(dyt) * dya + dzg = torch.exp(dzt) * dza + else: + xg = xt + xa + yg = yt + ya + zg = zt + za + dxg, dyg, dzg = torch.split( + torch.exp(box_encodings[..., 3:6]), 1, dim=-1) + + rg = torch.atan2(sint, cost) + + return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cts], dim=-1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/smoke_bbox_coder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/smoke_bbox_coder.py new file mode 100644 index 000000000..66aae9178 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/coders/smoke_bbox_coder.py @@ -0,0 +1,216 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +import numpy as np +import torch + +from mmdet.core.bbox import BaseBBoxCoder +from mmdet.core.bbox.builder import BBOX_CODERS + + +@BBOX_CODERS.register_module() +class SMOKECoder(BaseBBoxCoder): + """Bbox Coder for SMOKE. + + Args: + base_depth (tuple[float]): Depth references for decode box depth. + base_dims (tuple[tuple[float]]): Dimension references [l, h, w] + for decode box dimension for each category. + code_size (int): The dimension of boxes to be encoded. + """ + + def __init__(self, base_depth, base_dims, code_size): + super(SMOKECoder, self).__init__() + self.base_depth = base_depth + self.base_dims = base_dims + self.bbox_code_size = code_size + + def encode(self, locations, dimensions, orientations, input_metas): + """Encode CameraInstance3DBoxes by locations, dimensions, orientations. + + Args: + locations (Tensor): Center location for 3D boxes. + (N, 3) + dimensions (Tensor): Dimensions for 3D boxes. + shape (N, 3) + orientations (Tensor): Orientations for 3D boxes. + shape (N, 1) + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Return: + :obj:`CameraInstance3DBoxes`: 3D bboxes of batch images, + shape (N, bbox_code_size). + """ + + bboxes = torch.cat((locations, dimensions, orientations), dim=1) + assert bboxes.shape[1] == self.bbox_code_size, 'bboxes shape dose not'\ + 'match the bbox_code_size.' + batch_bboxes = input_metas[0]['box_type_3d']( + bboxes, box_dim=self.bbox_code_size) + + return batch_bboxes + + def decode(self, + reg, + points, + labels, + cam2imgs, + trans_mats, + locations=None): + """Decode regression into locations, dimensions, orientations. + + Args: + reg (Tensor): Batch regression for each predict center2d point. + shape: (batch * K (max_objs), C) + points(Tensor): Batch projected bbox centers on image plane. + shape: (batch * K (max_objs) , 2) + labels (Tensor): Batch predict class label for each predict + center2d point. + shape: (batch, K (max_objs)) + cam2imgs (Tensor): Batch images' camera intrinsic matrix. + shape: kitti (batch, 4, 4) nuscenes (batch, 3, 3) + trans_mats (Tensor): transformation matrix from original image + to feature map. + shape: (batch, 3, 3) + locations (None | Tensor): if locations is None, this function + is used to decode while inference, otherwise, it's used while + training using the ground truth 3d bbox locations. + shape: (batch * K (max_objs), 3) + + Return: + tuple(Tensor): The tuple has components below: + - locations (Tensor): Centers of 3D boxes. + shape: (batch * K (max_objs), 3) + - dimensions (Tensor): Dimensions of 3D boxes. + shape: (batch * K (max_objs), 3) + - orientations (Tensor): Orientations of 3D + boxes. + shape: (batch * K (max_objs), 1) + """ + depth_offsets = reg[:, 0] + centers2d_offsets = reg[:, 1:3] + dimensions_offsets = reg[:, 3:6] + orientations = reg[:, 6:8] + depths = self._decode_depth(depth_offsets) + # get the 3D Bounding box's center location. + pred_locations = self._decode_location(points, centers2d_offsets, + depths, cam2imgs, trans_mats) + pred_dimensions = self._decode_dimension(labels, dimensions_offsets) + if locations is None: + pred_orientations = self._decode_orientation( + orientations, pred_locations) + else: + pred_orientations = self._decode_orientation( + orientations, locations) + + return pred_locations, pred_dimensions, pred_orientations + + def _decode_depth(self, depth_offsets): + """Transform depth offset to depth.""" + base_depth = depth_offsets.new_tensor(self.base_depth) + depths = depth_offsets * base_depth[1] + base_depth[0] + + return depths + + def _decode_location(self, points, centers2d_offsets, depths, cam2imgs, + trans_mats): + """Retrieve objects location in camera coordinate based on projected + points. + + Args: + points (Tensor): Projected points on feature map in (x, y) + shape: (batch * K, 2) + centers2d_offset (Tensor): Project points offset in + (delta_x, delta_y). shape: (batch * K, 2) + depths (Tensor): Object depth z. + shape: (batch * K) + cam2imgs (Tensor): Batch camera intrinsics matrix. + shape: kitti (batch, 4, 4) nuscenes (batch, 3, 3) + trans_mats (Tensor): transformation matrix from original image + to feature map. + shape: (batch, 3, 3) + """ + # number of points + N = centers2d_offsets.shape[0] + # batch_size + N_batch = cam2imgs.shape[0] + batch_id = torch.arange(N_batch).unsqueeze(1) + obj_id = batch_id.repeat(1, N // N_batch).flatten() + # trans_mats_inv = trans_mats.inverse()[obj_id] + # cam2imgs_inv = cam2imgs.inverse()[obj_id] + + #change for smoke + device = trans_mats.device + trans_mats_inv = trans_mats.cpu().inverse()[obj_id].to(device) + cam2imgs_inv = cam2imgs.cpu().inverse()[obj_id].to(device) + + centers2d = points + centers2d_offsets + centers2d_extend = torch.cat((centers2d, centers2d.new_ones(N, 1)), + dim=1) + # expand project points as [N, 3, 1] + centers2d_extend = centers2d_extend.unsqueeze(-1) + # transform project points back on original image + centers2d_img = torch.matmul(trans_mats_inv, centers2d_extend) + centers2d_img = centers2d_img * depths.view(N, -1, 1) + if cam2imgs.shape[1] == 4: + centers2d_img = torch.cat( + (centers2d_img, centers2d.new_ones(N, 1, 1)), dim=1) + locations = torch.matmul(cam2imgs_inv, centers2d_img).squeeze(2) + + return locations[:, :3] + + def _decode_dimension(self, labels, dims_offset): + """Transform dimension offsets to dimension according to its category. + + Args: + labels (Tensor): Each points' category id. + shape: (N, K) + dims_offset (Tensor): Dimension offsets. + shape: (N, 3) + """ + labels = labels.flatten().long() + base_dims = dims_offset.new_tensor(self.base_dims) + dims_select = base_dims[labels, :] + dimensions = dims_offset.exp() * dims_select + + return dimensions + + def _decode_orientation(self, ori_vector, locations): + """Retrieve object orientation. + + Args: + ori_vector (Tensor): Local orientation in [sin, cos] format. + shape: (N, 2) + locations (Tensor): Object location. + shape: (N, 3) + + Return: + Tensor: yaw(Orientation). Notice that the yaw's + range is [-np.pi, np.pi]. + shape:(N, 1) + """ + assert len(ori_vector) == len(locations) + locations = locations.view(-1, 3) + rays = torch.atan(locations[:, 0] / (locations[:, 2] + 1e-7)) + alphas = torch.atan(ori_vector[:, 0] / (ori_vector[:, 1] + 1e-7)) + + # get cosine value positive and negative index. + cos_pos_inds = (ori_vector[:, 1] >= 0).nonzero(as_tuple=False) + cos_neg_inds = (ori_vector[:, 1] < 0).nonzero(as_tuple=False) + + alphas[cos_pos_inds] -= np.pi / 2 + alphas[cos_neg_inds] += np.pi / 2 + # retrieve object rotation y angle. + yaws = alphas + rays + + larger_inds = (yaws > np.pi).nonzero(as_tuple=False) + small_inds = (yaws < -np.pi).nonzero(as_tuple=False) + + if len(larger_inds) != 0: + yaws[larger_inds] -= 2 * np.pi + if len(small_inds) != 0: + yaws[small_inds] += 2 * np.pi + + yaws = yaws.unsqueeze(-1) + return yaws diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/__init__.py new file mode 100644 index 000000000..d2faf69cd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .iou3d_calculator import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, + BboxOverlapsNearest3D, + axis_aligned_bbox_overlaps_3d, bbox_overlaps_3d, + bbox_overlaps_nearest_3d) + +__all__ = [ + 'BboxOverlapsNearest3D', 'BboxOverlaps3D', 'bbox_overlaps_nearest_3d', + 'bbox_overlaps_3d', 'AxisAlignedBboxOverlaps3D', + 'axis_aligned_bbox_overlaps_3d' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py new file mode 100644 index 000000000..2b1d8eabb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py @@ -0,0 +1,329 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.bbox import bbox_overlaps +from mmdet.core.bbox.iou_calculators.builder import IOU_CALCULATORS +from ..structures import get_box_type + + +@IOU_CALCULATORS.register_module() +class BboxOverlapsNearest3D(object): + """Nearest 3D IoU Calculator. + + Note: + This IoU calculator first finds the nearest 2D boxes in bird eye view + (BEV), and then calculates the 2D IoU using :meth:`bbox_overlaps`. + + Args: + coordinate (str): 'camera', 'lidar', or 'depth' coordinate system. + """ + + def __init__(self, coordinate='lidar'): + assert coordinate in ['camera', 'lidar', 'depth'] + self.coordinate = coordinate + + def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): + """Calculate nearest 3D IoU. + + Note: + If ``is_aligned`` is ``False``, then it calculates the ious between + each bbox of bboxes1 and bboxes2, otherwise it calculates the ious + between each aligned pair of bboxes1 and bboxes2. + + Args: + bboxes1 (torch.Tensor): shape (N, 7+N) + [x, y, z, x_size, y_size, z_size, ry, v]. + bboxes2 (torch.Tensor): shape (M, 7+N) + [x, y, z, x_size, y_size, z_size, ry, v]. + mode (str): "iou" (intersection over union) or iof + (intersection over foreground). + is_aligned (bool): Whether the calculation is aligned. + + Return: + torch.Tensor: If ``is_aligned`` is ``True``, return ious between + bboxes1 and bboxes2 with shape (M, N). If ``is_aligned`` is + ``False``, return shape is M. + """ + return bbox_overlaps_nearest_3d(bboxes1, bboxes2, mode, is_aligned, + self.coordinate) + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(coordinate={self.coordinate}' + return repr_str + + +@IOU_CALCULATORS.register_module() +class BboxOverlaps3D(object): + """3D IoU Calculator. + + Args: + coordinate (str): The coordinate system, valid options are + 'camera', 'lidar', and 'depth'. + """ + + def __init__(self, coordinate): + assert coordinate in ['camera', 'lidar', 'depth'] + self.coordinate = coordinate + + def __call__(self, bboxes1, bboxes2, mode='iou'): + """Calculate 3D IoU using cuda implementation. + + Note: + This function calculate the IoU of 3D boxes based on their volumes. + IoU calculator ``:class:BboxOverlaps3D`` uses this function to + calculate the actual 3D IoUs of boxes. + + Args: + bboxes1 (torch.Tensor): with shape (N, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + bboxes2 (torch.Tensor): with shape (M, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + mode (str): "iou" (intersection over union) or + iof (intersection over foreground). + + Return: + torch.Tensor: Bbox overlaps results of bboxes1 and bboxes2 + with shape (M, N) (aligned mode is not supported currently). + """ + return bbox_overlaps_3d(bboxes1, bboxes2, mode, self.coordinate) + + def __repr__(self): + """str: return a string that describes the module""" + repr_str = self.__class__.__name__ + repr_str += f'(coordinate={self.coordinate}' + return repr_str + + +def bbox_overlaps_nearest_3d(bboxes1, + bboxes2, + mode='iou', + is_aligned=False, + coordinate='lidar'): + """Calculate nearest 3D IoU. + + Note: + This function first finds the nearest 2D boxes in bird eye view + (BEV), and then calculates the 2D IoU using :meth:`bbox_overlaps`. + This IoU calculator :class:`BboxOverlapsNearest3D` uses this + function to calculate IoUs of boxes. + + If ``is_aligned`` is ``False``, then it calculates the ious between + each bbox of bboxes1 and bboxes2, otherwise the ious between each + aligned pair of bboxes1 and bboxes2. + + Args: + bboxes1 (torch.Tensor): with shape (N, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + bboxes2 (torch.Tensor): with shape (M, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + mode (str): "iou" (intersection over union) or iof + (intersection over foreground). + is_aligned (bool): Whether the calculation is aligned + + Return: + torch.Tensor: If ``is_aligned`` is ``True``, return ious between + bboxes1 and bboxes2 with shape (M, N). If ``is_aligned`` is + ``False``, return shape is M. + """ + assert bboxes1.size(-1) == bboxes2.size(-1) >= 7 + + box_type, _ = get_box_type(coordinate) + + bboxes1 = box_type(bboxes1, box_dim=bboxes1.shape[-1]) + bboxes2 = box_type(bboxes2, box_dim=bboxes2.shape[-1]) + + # Change the bboxes to bev + # box conversion and iou calculation in torch version on CUDA + # is 10x faster than that in numpy version + bboxes1_bev = bboxes1.nearest_bev + bboxes2_bev = bboxes2.nearest_bev + + ret = bbox_overlaps( + bboxes1_bev, bboxes2_bev, mode=mode, is_aligned=is_aligned) + return ret + + +def bbox_overlaps_3d(bboxes1, bboxes2, mode='iou', coordinate='camera'): + """Calculate 3D IoU using cuda implementation. + + Note: + This function calculates the IoU of 3D boxes based on their volumes. + IoU calculator :class:`BboxOverlaps3D` uses this function to + calculate the actual IoUs of boxes. + + Args: + bboxes1 (torch.Tensor): with shape (N, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + bboxes2 (torch.Tensor): with shape (M, 7+C), + (x, y, z, x_size, y_size, z_size, ry, v*). + mode (str): "iou" (intersection over union) or + iof (intersection over foreground). + coordinate (str): 'camera' or 'lidar' coordinate system. + + Return: + torch.Tensor: Bbox overlaps results of bboxes1 and bboxes2 + with shape (M, N) (aligned mode is not supported currently). + """ + assert bboxes1.size(-1) == bboxes2.size(-1) >= 7 + + box_type, _ = get_box_type(coordinate) + + bboxes1 = box_type(bboxes1, box_dim=bboxes1.shape[-1]) + bboxes2 = box_type(bboxes2, box_dim=bboxes2.shape[-1]) + + return bboxes1.overlaps(bboxes1, bboxes2, mode=mode) + + +@IOU_CALCULATORS.register_module() +class AxisAlignedBboxOverlaps3D(object): + """Axis-aligned 3D Overlaps (IoU) Calculator.""" + + def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): + """Calculate IoU between 2D bboxes. + + Args: + bboxes1 (Tensor): shape (B, m, 6) in + format or empty. + bboxes2 (Tensor): shape (B, n, 6) in + format or empty. + B indicates the batch dim, in shape (B1, B2, ..., Bn). + If ``is_aligned`` is ``True``, then m and n must be equal. + mode (str): "iou" (intersection over union) or "giou" (generalized + intersection over union). + is_aligned (bool, optional): If True, then m and n must be equal. + Defaults to False. + Returns: + Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) + """ + assert bboxes1.size(-1) == bboxes2.size(-1) == 6 + return axis_aligned_bbox_overlaps_3d(bboxes1, bboxes2, mode, + is_aligned) + + def __repr__(self): + """str: a string describing the module""" + repr_str = self.__class__.__name__ + '()' + return repr_str + + +def axis_aligned_bbox_overlaps_3d(bboxes1, + bboxes2, + mode='iou', + is_aligned=False, + eps=1e-6): + """Calculate overlap between two set of axis aligned 3D bboxes. If + ``is_aligned`` is ``False``, then calculate the overlaps between each bbox + of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of + bboxes1 and bboxes2. + + Args: + bboxes1 (Tensor): shape (B, m, 6) in + format or empty. + bboxes2 (Tensor): shape (B, n, 6) in + format or empty. + B indicates the batch dim, in shape (B1, B2, ..., Bn). + If ``is_aligned`` is ``True``, then m and n must be equal. + mode (str): "iou" (intersection over union) or "giou" (generalized + intersection over union). + is_aligned (bool, optional): If True, then m and n must be equal. + Defaults to False. + eps (float, optional): A value added to the denominator for numerical + stability. Defaults to 1e-6. + + Returns: + Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) + + Example: + >>> bboxes1 = torch.FloatTensor([ + >>> [0, 0, 0, 10, 10, 10], + >>> [10, 10, 10, 20, 20, 20], + >>> [32, 32, 32, 38, 40, 42], + >>> ]) + >>> bboxes2 = torch.FloatTensor([ + >>> [0, 0, 0, 10, 20, 20], + >>> [0, 10, 10, 10, 19, 20], + >>> [10, 10, 10, 20, 20, 20], + >>> ]) + >>> overlaps = axis_aligned_bbox_overlaps_3d(bboxes1, bboxes2) + >>> assert overlaps.shape == (3, 3) + >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) + >>> assert overlaps.shape == (3, ) + Example: + >>> empty = torch.empty(0, 6) + >>> nonempty = torch.FloatTensor([[0, 0, 0, 10, 9, 10]]) + >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) + >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) + >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0) + """ + + assert mode in ['iou', 'giou'], f'Unsupported mode {mode}' + # Either the boxes are empty or the length of boxes's last dimension is 6 + assert (bboxes1.size(-1) == 6 or bboxes1.size(0) == 0) + assert (bboxes2.size(-1) == 6 or bboxes2.size(0) == 0) + + # Batch dim must be the same + # Batch dim: (B1, B2, ... Bn) + assert bboxes1.shape[:-2] == bboxes2.shape[:-2] + batch_shape = bboxes1.shape[:-2] + + rows = bboxes1.size(-2) + cols = bboxes2.size(-2) + if is_aligned: + assert rows == cols + + if rows * cols == 0: + if is_aligned: + return bboxes1.new(batch_shape + (rows, )) + else: + return bboxes1.new(batch_shape + (rows, cols)) + + area1 = (bboxes1[..., 3] - + bboxes1[..., 0]) * (bboxes1[..., 4] - bboxes1[..., 1]) * ( + bboxes1[..., 5] - bboxes1[..., 2]) + area2 = (bboxes2[..., 3] - + bboxes2[..., 0]) * (bboxes2[..., 4] - bboxes2[..., 1]) * ( + bboxes2[..., 5] - bboxes2[..., 2]) + + if is_aligned: + lt = torch.max(bboxes1[..., :3], bboxes2[..., :3]) # [B, rows, 3] + rb = torch.min(bboxes1[..., 3:], bboxes2[..., 3:]) # [B, rows, 3] + + wh = (rb - lt).clamp(min=0) # [B, rows, 2] + overlap = wh[..., 0] * wh[..., 1] * wh[..., 2] + + if mode in ['iou', 'giou']: + union = area1 + area2 - overlap + else: + union = area1 + if mode == 'giou': + enclosed_lt = torch.min(bboxes1[..., :3], bboxes2[..., :3]) + enclosed_rb = torch.max(bboxes1[..., 3:], bboxes2[..., 3:]) + else: + lt = torch.max(bboxes1[..., :, None, :3], + bboxes2[..., None, :, :3]) # [B, rows, cols, 3] + rb = torch.min(bboxes1[..., :, None, 3:], + bboxes2[..., None, :, 3:]) # [B, rows, cols, 3] + + wh = (rb - lt).clamp(min=0) # [B, rows, cols, 3] + overlap = wh[..., 0] * wh[..., 1] * wh[..., 2] + + if mode in ['iou', 'giou']: + union = area1[..., None] + area2[..., None, :] - overlap + if mode == 'giou': + enclosed_lt = torch.min(bboxes1[..., :, None, :3], + bboxes2[..., None, :, :3]) + enclosed_rb = torch.max(bboxes1[..., :, None, 3:], + bboxes2[..., None, :, 3:]) + + eps = union.new_tensor([eps]) + union = torch.max(union, eps) + ious = overlap / union + if mode in ['iou']: + return ious + # calculate gious + enclose_wh = (enclosed_rb - enclosed_lt).clamp(min=0) + enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] * enclose_wh[..., 2] + enclose_area = torch.max(enclose_area, eps) + gious = ious - (enclose_area - union) / enclose_area + return gious diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/__init__.py new file mode 100644 index 000000000..168780b2d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core.bbox.samplers import (BaseSampler, CombinedSampler, + InstanceBalancedPosSampler, + IoUBalancedNegSampler, OHEMSampler, + PseudoSampler, RandomSampler, + SamplingResult) +from .iou_neg_piecewise_sampler import IoUNegPiecewiseSampler + +__all__ = [ + 'BaseSampler', 'PseudoSampler', 'RandomSampler', + 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', + 'OHEMSampler', 'SamplingResult', 'IoUNegPiecewiseSampler' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/iou_neg_piecewise_sampler.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/iou_neg_piecewise_sampler.py new file mode 100644 index 000000000..cbd8483ca --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/samplers/iou_neg_piecewise_sampler.py @@ -0,0 +1,183 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet.core.bbox.builder import BBOX_SAMPLERS +from . import RandomSampler, SamplingResult + + +@BBOX_SAMPLERS.register_module() +class IoUNegPiecewiseSampler(RandomSampler): + """IoU Piece-wise Sampling. + + Sampling negative proposals according to a list of IoU thresholds. + The negative proposals are divided into several pieces according + to `neg_iou_piece_thrs`. And the ratio of each piece is indicated + by `neg_piece_fractions`. + + Args: + num (int): Number of proposals. + pos_fraction (float): The fraction of positive proposals. + neg_piece_fractions (list): A list contains fractions that indicates + the ratio of each piece of total negative samplers. + neg_iou_piece_thrs (list): A list contains IoU thresholds that + indicate the upper bound of this piece. + neg_pos_ub (float): The total ratio to limit the upper bound + number of negative samples. + add_gt_as_proposals (bool): Whether to add gt as proposals. + """ + + def __init__(self, + num, + pos_fraction=None, + neg_piece_fractions=None, + neg_iou_piece_thrs=None, + neg_pos_ub=-1, + add_gt_as_proposals=False, + return_iou=False): + super(IoUNegPiecewiseSampler, + self).__init__(num, pos_fraction, neg_pos_ub, + add_gt_as_proposals) + assert isinstance(neg_piece_fractions, list) + assert len(neg_piece_fractions) == len(neg_iou_piece_thrs) + self.neg_piece_fractions = neg_piece_fractions + self.neg_iou_thr = neg_iou_piece_thrs + self.return_iou = return_iou + self.neg_piece_num = len(self.neg_piece_fractions) + + def _sample_pos(self, assign_result, num_expected, **kwargs): + """Randomly sample some positive samples.""" + pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) + if pos_inds.numel() != 0: + pos_inds = pos_inds.squeeze(1) + if pos_inds.numel() <= num_expected: + return pos_inds + else: + return self.random_choice(pos_inds, num_expected) + + def _sample_neg(self, assign_result, num_expected, **kwargs): + """Randomly sample some negative samples.""" + neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) + if neg_inds.numel() != 0: + neg_inds = neg_inds.squeeze(1) + if len(neg_inds) <= 0: + return neg_inds.squeeze(1) + else: + neg_inds_choice = neg_inds.new_zeros([0]) + extend_num = 0 + max_overlaps = assign_result.max_overlaps[neg_inds] + + for piece_inds in range(self.neg_piece_num): + if piece_inds == self.neg_piece_num - 1: # for the last piece + piece_expected_num = num_expected - len(neg_inds_choice) + min_iou_thr = 0 + else: + # if the numbers of negative samplers in previous + # pieces are less than the expected number, extend + # the same number in the current piece. + piece_expected_num = int( + num_expected * + self.neg_piece_fractions[piece_inds]) + extend_num + min_iou_thr = self.neg_iou_thr[piece_inds + 1] + max_iou_thr = self.neg_iou_thr[piece_inds] + piece_neg_inds = torch.nonzero( + (max_overlaps >= min_iou_thr) + & (max_overlaps < max_iou_thr), + as_tuple=False).view(-1) + + if len(piece_neg_inds) < piece_expected_num: + neg_inds_choice = torch.cat( + [neg_inds_choice, neg_inds[piece_neg_inds]], dim=0) + extend_num += piece_expected_num - len(piece_neg_inds) + + # for the last piece + if piece_inds == self.neg_piece_num - 1: + extend_neg_num = num_expected - len(neg_inds_choice) + # if the numbers of nagetive samples > 0, we will + # randomly select num_expected samples in last piece + if piece_neg_inds.numel() > 0: + rand_idx = torch.randint( + low=0, + high=piece_neg_inds.numel(), + size=(extend_neg_num, )).long() + neg_inds_choice = torch.cat( + [neg_inds_choice, piece_neg_inds[rand_idx]], + dim=0) + # if the numbers of nagetive samples == 0, we will + # randomly select num_expected samples in all + # previous pieces + else: + rand_idx = torch.randint( + low=0, + high=neg_inds_choice.numel(), + size=(extend_neg_num, )).long() + neg_inds_choice = torch.cat( + [neg_inds_choice, neg_inds_choice[rand_idx]], + dim=0) + else: + piece_choice = self.random_choice(piece_neg_inds, + piece_expected_num) + neg_inds_choice = torch.cat( + [neg_inds_choice, neg_inds[piece_choice]], dim=0) + extend_num = 0 + assert len(neg_inds_choice) == num_expected + return neg_inds_choice + + def sample(self, + assign_result, + bboxes, + gt_bboxes, + gt_labels=None, + **kwargs): + """Sample positive and negative bboxes. + + This is a simple implementation of bbox sampling given candidates, + assigning results and ground truth bboxes. + + Args: + assign_result (:obj:`AssignResult`): Bbox assigning results. + bboxes (torch.Tensor): Boxes to be sampled from. + gt_bboxes (torch.Tensor): Ground truth bboxes. + gt_labels (torch.Tensor, optional): Class labels of ground truth + bboxes. + + Returns: + :obj:`SamplingResult`: Sampling result. + """ + if len(bboxes.shape) < 2: + bboxes = bboxes[None, :] + + gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.bool) + if self.add_gt_as_proposals and len(gt_bboxes) > 0: + if gt_labels is None: + raise ValueError( + 'gt_labels must be given when add_gt_as_proposals is True') + bboxes = torch.cat([gt_bboxes, bboxes], dim=0) + assign_result.add_gt_(gt_labels) + gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.bool) + gt_flags = torch.cat([gt_ones, gt_flags]) + + num_expected_pos = int(self.num * self.pos_fraction) + pos_inds = self.pos_sampler._sample_pos( + assign_result, num_expected_pos, bboxes=bboxes, **kwargs) + # We found that sampled indices have duplicated items occasionally. + # (may be a bug of PyTorch) + pos_inds = pos_inds.unique() + num_sampled_pos = pos_inds.numel() + num_expected_neg = self.num - num_sampled_pos + if self.neg_pos_ub >= 0: + _pos = max(1, num_sampled_pos) + neg_upper_bound = int(self.neg_pos_ub * _pos) + if num_expected_neg > neg_upper_bound: + num_expected_neg = neg_upper_bound + neg_inds = self.neg_sampler._sample_neg( + assign_result, num_expected_neg, bboxes=bboxes, **kwargs) + + sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, + assign_result, gt_flags) + if self.return_iou: + # PartA2 needs iou score to regression. + sampling_result.iou = assign_result.max_overlaps[torch.cat( + [pos_inds, neg_inds])] + sampling_result.iou.detach_() + + return sampling_result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/__init__.py new file mode 100644 index 000000000..460035a53 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/__init__.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_box3d import BaseInstance3DBoxes +from .box_3d_mode import Box3DMode +from .cam_box3d import CameraInstance3DBoxes +from .coord_3d_mode import Coord3DMode +from .depth_box3d import DepthInstance3DBoxes +from .lidar_box3d import LiDARInstance3DBoxes +from .utils import (get_box_type, get_proj_mat_by_coord_type, limit_period, + mono_cam_box2vis, points_cam2img, points_img2cam, + rotation_3d_in_axis, xywhr2xyxyr) + +__all__ = [ + 'Box3DMode', 'BaseInstance3DBoxes', 'LiDARInstance3DBoxes', + 'CameraInstance3DBoxes', 'DepthInstance3DBoxes', 'xywhr2xyxyr', + 'get_box_type', 'rotation_3d_in_axis', 'limit_period', 'points_cam2img', + 'points_img2cam', 'Coord3DMode', 'mono_cam_box2vis', + 'get_proj_mat_by_coord_type' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/base_box3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/base_box3d.py new file mode 100644 index 000000000..3c74f6703 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/base_box3d.py @@ -0,0 +1,578 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from abc import abstractmethod + +import numpy as np +import torch +from mmcv.ops import box_iou_rotated, points_in_boxes_all, points_in_boxes_part + +from .utils import limit_period + + +class BaseInstance3DBoxes(object): + """Base class for 3D Boxes. + + Note: + The box is bottom centered, i.e. the relative position of origin in + the box is (0.5, 0.5, 0). + + Args: + tensor (torch.Tensor | np.ndarray | list): a N x box_dim matrix. + box_dim (int): Number of the dimension of a box. + Each row is (x, y, z, x_size, y_size, z_size, yaw). + Defaults to 7. + with_yaw (bool): Whether the box is with yaw rotation. + If False, the value of yaw will be set to 0 as minmax boxes. + Defaults to True. + origin (tuple[float], optional): Relative position of the box origin. + Defaults to (0.5, 0.5, 0). This will guide the box be converted to + (0.5, 0.5, 0) mode. + + Attributes: + tensor (torch.Tensor): Float matrix of N x box_dim. + box_dim (int): Integer indicating the dimension of a box. + Each row is (x, y, z, x_size, y_size, z_size, yaw, ...). + with_yaw (bool): If True, the value of yaw will be set to 0 as minmax + boxes. + """ + + def __init__(self, tensor, box_dim=7, with_yaw=True, origin=(0.5, 0.5, 0)): + if isinstance(tensor, torch.Tensor): + device = tensor.device + else: + device = torch.device('cpu') + tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) + if tensor.numel() == 0: + # Use reshape, so we don't end up creating a new tensor that + # does not depend on the inputs (and consequently confuses jit) + tensor = tensor.reshape((0, box_dim)).to( + dtype=torch.float32, device=device) + assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size() + + if tensor.shape[-1] == 6: + # If the dimension of boxes is 6, we expand box_dim by padding + # 0 as a fake yaw and set with_yaw to False. + assert box_dim == 6 + fake_rot = tensor.new_zeros(tensor.shape[0], 1) + tensor = torch.cat((tensor, fake_rot), dim=-1) + self.box_dim = box_dim + 1 + self.with_yaw = False + else: + self.box_dim = box_dim + self.with_yaw = with_yaw + self.tensor = tensor.clone() + + if origin != (0.5, 0.5, 0): + dst = self.tensor.new_tensor((0.5, 0.5, 0)) + src = self.tensor.new_tensor(origin) + self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src) + + @property + def volume(self): + """torch.Tensor: A vector with volume of each box.""" + return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5] + + @property + def dims(self): + """torch.Tensor: Size dimensions of each box in shape (N, 3).""" + return self.tensor[:, 3:6] + + @property + def yaw(self): + """torch.Tensor: A vector with yaw of each box in shape (N, ).""" + return self.tensor[:, 6] + + @property + def height(self): + """torch.Tensor: A vector with height of each box in shape (N, ).""" + return self.tensor[:, 5] + + @property + def top_height(self): + """torch.Tensor: + A vector with the top height of each box in shape (N, ).""" + return self.bottom_height + self.height + + @property + def bottom_height(self): + """torch.Tensor: + A vector with bottom's height of each box in shape (N, ).""" + return self.tensor[:, 2] + + @property + def center(self): + """Calculate the center of all the boxes. + + Note: + In MMDetection3D's convention, the bottom center is + usually taken as the default center. + + The relative position of the centers in different kinds of + boxes are different, e.g., the relative center of a boxes is + (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. + It is recommended to use ``bottom_center`` or ``gravity_center`` + for clearer usage. + + Returns: + torch.Tensor: A tensor with center of each box in shape (N, 3). + """ + return self.bottom_center + + @property + def bottom_center(self): + """torch.Tensor: A tensor with center of each box in shape (N, 3).""" + return self.tensor[:, :3] + + @property + def gravity_center(self): + """torch.Tensor: A tensor with center of each box in shape (N, 3).""" + pass + + @property + def corners(self): + """torch.Tensor: + a tensor with 8 corners of each box in shape (N, 8, 3).""" + pass + + @property + def bev(self): + """torch.Tensor: 2D BEV box of each box with rotation + in XYWHR format, in shape (N, 5).""" + return self.tensor[:, [0, 1, 3, 4, 6]] + + @property + def nearest_bev(self): + """torch.Tensor: A tensor of 2D BEV box of each box + without rotation.""" + # Obtain BEV boxes with rotation in XYWHR format + bev_rotated_boxes = self.bev + # convert the rotation to a valid range + rotations = bev_rotated_boxes[:, -1] + normed_rotations = torch.abs(limit_period(rotations, 0.5, np.pi)) + + # find the center of boxes + conditions = (normed_rotations > np.pi / 4)[..., None] + bboxes_xywh = torch.where(conditions, bev_rotated_boxes[:, + [0, 1, 3, 2]], + bev_rotated_boxes[:, :4]) + + centers = bboxes_xywh[:, :2] + dims = bboxes_xywh[:, 2:] + bev_boxes = torch.cat([centers - dims / 2, centers + dims / 2], dim=-1) + return bev_boxes + + def in_range_bev(self, box_range): + """Check whether the boxes are in the given range. + + Args: + box_range (list | torch.Tensor): the range of box + (x_min, y_min, x_max, y_max) + + Note: + The original implementation of SECOND checks whether boxes in + a range by checking whether the points are in a convex + polygon, we reduce the burden for simpler cases. + + Returns: + torch.Tensor: Whether each box is inside the reference range. + """ + in_range_flags = ((self.bev[:, 0] > box_range[0]) + & (self.bev[:, 1] > box_range[1]) + & (self.bev[:, 0] < box_range[2]) + & (self.bev[:, 1] < box_range[3])) + return in_range_flags + + @abstractmethod + def rotate(self, angle, points=None): + """Rotate boxes with points (optional) with the given angle or rotation + matrix. + + Args: + angle (float | torch.Tensor | np.ndarray): + Rotation angle or rotation matrix. + points (torch.Tensor | numpy.ndarray | + :obj:`BasePoints`, optional): + Points to rotate. Defaults to None. + """ + pass + + @abstractmethod + def flip(self, bev_direction='horizontal'): + """Flip the boxes in BEV along given BEV direction. + + Args: + bev_direction (str, optional): Direction by which to flip. + Can be chosen from 'horizontal' and 'vertical'. + Defaults to 'horizontal'. + """ + pass + + def translate(self, trans_vector): + """Translate boxes with the given translation vector. + + Args: + trans_vector (torch.Tensor): Translation vector of size (1, 3). + """ + if not isinstance(trans_vector, torch.Tensor): + trans_vector = self.tensor.new_tensor(trans_vector) + self.tensor[:, :3] += trans_vector + + def in_range_3d(self, box_range): + """Check whether the boxes are in the given range. + + Args: + box_range (list | torch.Tensor): The range of box + (x_min, y_min, z_min, x_max, y_max, z_max) + + Note: + In the original implementation of SECOND, checking whether + a box in the range checks whether the points are in a convex + polygon, we try to reduce the burden for simpler cases. + + Returns: + torch.Tensor: A binary vector indicating whether each box is + inside the reference range. + """ + in_range_flags = ((self.tensor[:, 0] > box_range[0]) + & (self.tensor[:, 1] > box_range[1]) + & (self.tensor[:, 2] > box_range[2]) + & (self.tensor[:, 0] < box_range[3]) + & (self.tensor[:, 1] < box_range[4]) + & (self.tensor[:, 2] < box_range[5])) + return in_range_flags + + @abstractmethod + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`Box3DMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BaseInstance3DBoxes`: The converted box of the same type + in the `dst` mode. + """ + pass + + def scale(self, scale_factor): + """Scale the box with horizontal and vertical scaling factors. + + Args: + scale_factors (float): Scale factors to scale the boxes. + """ + self.tensor[:, :6] *= scale_factor + self.tensor[:, 7:] *= scale_factor # velocity + + def limit_yaw(self, offset=0.5, period=np.pi): + """Limit the yaw to a given period and offset. + + Args: + offset (float, optional): The offset of the yaw. Defaults to 0.5. + period (float, optional): The expected period. Defaults to np.pi. + """ + self.tensor[:, 6] = limit_period(self.tensor[:, 6], offset, period) + + def nonempty(self, threshold=0.0): + """Find boxes that are non-empty. + + A box is considered empty, + if either of its side is no larger than threshold. + + Args: + threshold (float, optional): The threshold of minimal sizes. + Defaults to 0.0. + + Returns: + torch.Tensor: A binary vector which represents whether each + box is empty (False) or non-empty (True). + """ + box = self.tensor + size_x = box[..., 3] + size_y = box[..., 4] + size_z = box[..., 5] + keep = ((size_x > threshold) + & (size_y > threshold) & (size_z > threshold)) + return keep + + def __getitem__(self, item): + """ + Note: + The following usage are allowed: + 1. `new_boxes = boxes[3]`: + return a `Boxes` that contains only one box. + 2. `new_boxes = boxes[2:10]`: + return a slice of boxes. + 3. `new_boxes = boxes[vector]`: + where vector is a torch.BoolTensor with `length = len(boxes)`. + Nonzero elements in the vector will be selected. + Note that the returned Boxes might share storage with this Boxes, + subject to Pytorch's indexing semantics. + + Returns: + :obj:`BaseInstance3DBoxes`: A new object of + :class:`BaseInstance3DBoxes` after indexing. + """ + original_type = type(self) + if isinstance(item, int): + return original_type( + self.tensor[item].view(1, -1), + box_dim=self.box_dim, + with_yaw=self.with_yaw) + b = self.tensor[item] + assert b.dim() == 2, \ + f'Indexing on Boxes with {item} failed to return a matrix!' + return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw) + + def __len__(self): + """int: Number of boxes in the current object.""" + return self.tensor.shape[0] + + def __repr__(self): + """str: Return a strings that describes the object.""" + return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')' + + @classmethod + def cat(cls, boxes_list): + """Concatenate a list of Boxes into a single Boxes. + + Args: + boxes_list (list[:obj:`BaseInstance3DBoxes`]): List of boxes. + + Returns: + :obj:`BaseInstance3DBoxes`: The concatenated Boxes. + """ + assert isinstance(boxes_list, (list, tuple)) + if len(boxes_list) == 0: + return cls(torch.empty(0)) + assert all(isinstance(box, cls) for box in boxes_list) + + # use torch.cat (v.s. layers.cat) + # so the returned boxes never share storage with input + cat_boxes = cls( + torch.cat([b.tensor for b in boxes_list], dim=0), + box_dim=boxes_list[0].tensor.shape[1], + with_yaw=boxes_list[0].with_yaw) + return cat_boxes + + def to(self, device): + """Convert current boxes to a specific device. + + Args: + device (str | :obj:`torch.device`): The name of the device. + + Returns: + :obj:`BaseInstance3DBoxes`: A new boxes object on the + specific device. + """ + original_type = type(self) + return original_type( + self.tensor.to(device), + box_dim=self.box_dim, + with_yaw=self.with_yaw) + + def clone(self): + """Clone the Boxes. + + Returns: + :obj:`BaseInstance3DBoxes`: Box object with the same properties + as self. + """ + original_type = type(self) + return original_type( + self.tensor.clone(), box_dim=self.box_dim, with_yaw=self.with_yaw) + + @property + def device(self): + """str: The device of the boxes are on.""" + return self.tensor.device + + def __iter__(self): + """Yield a box as a Tensor of shape (4,) at a time. + + Returns: + torch.Tensor: A box of shape (4,). + """ + yield from self.tensor + + @classmethod + def height_overlaps(cls, boxes1, boxes2, mode='iou'): + """Calculate height overlaps of two boxes. + + Note: + This function calculates the height overlaps between boxes1 and + boxes2, boxes1 and boxes2 should be in the same type. + + Args: + boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes. + boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes. + mode (str, optional): Mode of IoU calculation. Defaults to 'iou'. + + Returns: + torch.Tensor: Calculated iou of boxes. + """ + assert isinstance(boxes1, BaseInstance3DBoxes) + assert isinstance(boxes2, BaseInstance3DBoxes) + assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \ + f'be in the same type, got {type(boxes1)} and {type(boxes2)}.' + + boxes1_top_height = boxes1.top_height.view(-1, 1) + boxes1_bottom_height = boxes1.bottom_height.view(-1, 1) + boxes2_top_height = boxes2.top_height.view(1, -1) + boxes2_bottom_height = boxes2.bottom_height.view(1, -1) + + heighest_of_bottom = torch.max(boxes1_bottom_height, + boxes2_bottom_height) + lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height) + overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0) + return overlaps_h + + @classmethod + def overlaps(cls, boxes1, boxes2, mode='iou'): + """Calculate 3D overlaps of two boxes. + + Note: + This function calculates the overlaps between ``boxes1`` and + ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type. + + Args: + boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes. + boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes. + mode (str, optional): Mode of iou calculation. Defaults to 'iou'. + + Returns: + torch.Tensor: Calculated 3D overlaps of the boxes. + """ + assert isinstance(boxes1, BaseInstance3DBoxes) + assert isinstance(boxes2, BaseInstance3DBoxes) + assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \ + f'be in the same type, got {type(boxes1)} and {type(boxes2)}.' + + assert mode in ['iou', 'iof'] + + rows = len(boxes1) + cols = len(boxes2) + if rows * cols == 0: + return boxes1.tensor.new(rows, cols) + + # height overlap + overlaps_h = cls.height_overlaps(boxes1, boxes2) + + # bev overlap + iou2d = box_iou_rotated(boxes1.bev, boxes2.bev) + areas1 = (boxes1.bev[:, 2] * boxes1.bev[:, 3]).unsqueeze(1).expand( + rows, cols) + areas2 = (boxes2.bev[:, 2] * boxes2.bev[:, 3]).unsqueeze(0).expand( + rows, cols) + overlaps_bev = iou2d * (areas1 + areas2) / (1 + iou2d) + + # 3d overlaps + overlaps_3d = overlaps_bev.to(boxes1.device) * overlaps_h + + volume1 = boxes1.volume.view(-1, 1) + volume2 = boxes2.volume.view(1, -1) + + if mode == 'iou': + # the clamp func is used to avoid division of 0 + iou3d = overlaps_3d / torch.clamp( + volume1 + volume2 - overlaps_3d, min=1e-8) + else: + iou3d = overlaps_3d / torch.clamp(volume1, min=1e-8) + + return iou3d + + def new_box(self, data): + """Create a new box object with data. + + The new box and its tensor has the similar properties + as self and self.tensor, respectively. + + Args: + data (torch.Tensor | numpy.array | list): Data to be copied. + + Returns: + :obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, + the object's other properties are similar to ``self``. + """ + new_tensor = self.tensor.new_tensor(data) \ + if not isinstance(data, torch.Tensor) else data.to(self.device) + original_type = type(self) + return original_type( + new_tensor, box_dim=self.box_dim, with_yaw=self.with_yaw) + + def points_in_boxes_part(self, points, boxes_override=None): + """Find the box in which each point is. + + Args: + points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), + 3 dimensions are (x, y, z) in LiDAR or depth coordinate. + boxes_override (torch.Tensor, optional): Boxes to override + `self.tensor`. Defaults to None. + + Returns: + torch.Tensor: The index of the first box that each point + is in, in shape (M, ). Default value is -1 + (if the point is not enclosed by any box). + + Note: + If a point is enclosed by multiple boxes, the index of the + first box will be returned. + """ + if boxes_override is not None: + boxes = boxes_override + else: + boxes = self.tensor + if points.dim() == 2: + points = points.unsqueeze(0) + box_idx = points_in_boxes_part(points, + boxes.unsqueeze(0).to( + points.device)).squeeze(0) + return box_idx + + def points_in_boxes_all(self, points, boxes_override=None): + """Find all boxes in which each point is. + + Args: + points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), + 3 dimensions are (x, y, z) in LiDAR or depth coordinate. + boxes_override (torch.Tensor, optional): Boxes to override + `self.tensor`. Defaults to None. + + Returns: + torch.Tensor: A tensor indicating whether a point is in a box, + in shape (M, T). T is the number of boxes. Denote this + tensor as A, if the m^th point is in the t^th box, then + `A[m, t] == 1`, elsewise `A[m, t] == 0`. + """ + if boxes_override is not None: + boxes = boxes_override + else: + boxes = self.tensor + + points_clone = points.clone()[..., :3] + if points_clone.dim() == 2: + points_clone = points_clone.unsqueeze(0) + else: + assert points_clone.dim() == 3 and points_clone.shape[0] == 1 + + boxes = boxes.to(points_clone.device).unsqueeze(0) + box_idxs_of_pts = points_in_boxes_all(points_clone, boxes) + + return box_idxs_of_pts.squeeze(0) + + def points_in_boxes(self, points, boxes_override=None): + warnings.warn('DeprecationWarning: points_in_boxes is a ' + 'deprecated method, please consider using ' + 'points_in_boxes_part.') + return self.points_in_boxes_part(points, boxes_override) + + def points_in_boxes_batch(self, points, boxes_override=None): + warnings.warn('DeprecationWarning: points_in_boxes_batch is a ' + 'deprecated method, please consider using ' + 'points_in_boxes_all.') + return self.points_in_boxes_all(points, boxes_override) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/box_3d_mode.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/box_3d_mode.py new file mode 100644 index 000000000..3048b0add --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/box_3d_mode.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from enum import IntEnum, unique + +import numpy as np +import torch + +from .base_box3d import BaseInstance3DBoxes +from .cam_box3d import CameraInstance3DBoxes +from .depth_box3d import DepthInstance3DBoxes +from .lidar_box3d import LiDARInstance3DBoxes +from .utils import limit_period + + +@unique +class Box3DMode(IntEnum): + r"""Enum of different ways to represent a box. + + Coordinates in LiDAR: + + .. code-block:: none + + up z + ^ x front + | / + | / + left y <------ 0 + + The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + + Coordinates in camera: + + .. code-block:: none + + z front + / + / + 0 ------> x right + | + | + v + down y + + The relative coordinate of bottom center in a CAM box is [0.5, 1.0, 0.5], + and the yaw is around the y axis, thus the rotation axis=1. + + Coordinates in Depth mode: + + .. code-block:: none + + up z + ^ y front + | / + | / + 0 ------> x right + + The relative coordinate of bottom center in a DEPTH box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + """ + + LIDAR = 0 + CAM = 1 + DEPTH = 2 + + @staticmethod + def convert(box, src, dst, rt_mat=None, with_yaw=True): + """Convert boxes from `src` mode to `dst` mode. + + Args: + box (tuple | list | np.ndarray | + torch.Tensor | :obj:`BaseInstance3DBoxes`): + Can be a k-tuple, k-list or an Nxk array/tensor, where k = 7. + src (:obj:`Box3DMode`): The src Box mode. + dst (:obj:`Box3DMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + with_yaw (bool, optional): If `box` is an instance of + :obj:`BaseInstance3DBoxes`, whether or not it has a yaw angle. + Defaults to True. + + Returns: + (tuple | list | np.ndarray | torch.Tensor | + :obj:`BaseInstance3DBoxes`): + The converted box of the same type. + """ + if src == dst: + return box + + is_numpy = isinstance(box, np.ndarray) + is_Instance3DBoxes = isinstance(box, BaseInstance3DBoxes) + single_box = isinstance(box, (list, tuple)) + if single_box: + assert len(box) >= 7, ( + 'Box3DMode.convert takes either a k-tuple/list or ' + 'an Nxk array/tensor, where k >= 7') + arr = torch.tensor(box)[None, :] + else: + # avoid modifying the input box + if is_numpy: + arr = torch.from_numpy(np.asarray(box)).clone() + elif is_Instance3DBoxes: + arr = box.tensor.clone() + else: + arr = box.clone() + + if is_Instance3DBoxes: + with_yaw = box.with_yaw + + # convert box from `src` mode to `dst` mode. + x_size, y_size, z_size = arr[..., 3:4], arr[..., 4:5], arr[..., 5:6] + if with_yaw: + yaw = arr[..., 6:7] + if src == Box3DMode.LIDAR and dst == Box3DMode.CAM: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, -1, 0], [0, 0, -1], [1, 0, 0]]) + xyz_size = torch.cat([x_size, z_size, y_size], dim=-1) + if with_yaw: + yaw = -yaw - np.pi / 2 + yaw = limit_period(yaw, period=np.pi * 2) + elif src == Box3DMode.CAM and dst == Box3DMode.LIDAR: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, 0, 1], [-1, 0, 0], [0, -1, 0]]) + xyz_size = torch.cat([x_size, z_size, y_size], dim=-1) + if with_yaw: + yaw = -yaw - np.pi / 2 + yaw = limit_period(yaw, period=np.pi * 2) + elif src == Box3DMode.DEPTH and dst == Box3DMode.CAM: + if rt_mat is None: + rt_mat = arr.new_tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) + xyz_size = torch.cat([x_size, z_size, y_size], dim=-1) + if with_yaw: + yaw = -yaw + elif src == Box3DMode.CAM and dst == Box3DMode.DEPTH: + if rt_mat is None: + rt_mat = arr.new_tensor([[1, 0, 0], [0, 0, 1], [0, -1, 0]]) + xyz_size = torch.cat([x_size, z_size, y_size], dim=-1) + if with_yaw: + yaw = -yaw + elif src == Box3DMode.LIDAR and dst == Box3DMode.DEPTH: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) + xyz_size = torch.cat([x_size, y_size, z_size], dim=-1) + if with_yaw: + yaw = yaw + np.pi / 2 + yaw = limit_period(yaw, period=np.pi * 2) + elif src == Box3DMode.DEPTH and dst == Box3DMode.LIDAR: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) + xyz_size = torch.cat([x_size, y_size, z_size], dim=-1) + if with_yaw: + yaw = yaw - np.pi / 2 + yaw = limit_period(yaw, period=np.pi * 2) + else: + raise NotImplementedError( + f'Conversion from Box3DMode {src} to {dst} ' + 'is not supported yet') + + if not isinstance(rt_mat, torch.Tensor): + rt_mat = arr.new_tensor(rt_mat) + if rt_mat.size(1) == 4: + extended_xyz = torch.cat( + [arr[..., :3], arr.new_ones(arr.size(0), 1)], dim=-1) + xyz = extended_xyz @ rt_mat.t() + else: + xyz = arr[..., :3] @ rt_mat.t() + + if with_yaw: + remains = arr[..., 7:] + arr = torch.cat([xyz[..., :3], xyz_size, yaw, remains], dim=-1) + else: + remains = arr[..., 6:] + arr = torch.cat([xyz[..., :3], xyz_size, remains], dim=-1) + + # convert arr to the original type + original_type = type(box) + if single_box: + return original_type(arr.flatten().tolist()) + if is_numpy: + return arr.numpy() + elif is_Instance3DBoxes: + if dst == Box3DMode.CAM: + target_type = CameraInstance3DBoxes + elif dst == Box3DMode.LIDAR: + target_type = LiDARInstance3DBoxes + elif dst == Box3DMode.DEPTH: + target_type = DepthInstance3DBoxes + else: + raise NotImplementedError( + f'Conversion to {dst} through {original_type}' + ' is not supported yet') + return target_type(arr, box_dim=arr.size(-1), with_yaw=with_yaw) + else: + return arr diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/cam_box3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/cam_box3d.py new file mode 100644 index 000000000..b70861344 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/cam_box3d.py @@ -0,0 +1,354 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from ...points import BasePoints +from .base_box3d import BaseInstance3DBoxes +from .utils import rotation_3d_in_axis, yaw2local + + +class CameraInstance3DBoxes(BaseInstance3DBoxes): + """3D boxes of instances in CAM coordinates. + + Coordinates in camera: + + .. code-block:: none + + z front (yaw=-0.5*pi) + / + / + 0 ------> x right (yaw=0) + | + | + v + down y + + The relative coordinate of bottom center in a CAM box is (0.5, 1.0, 0.5), + and the yaw is around the y axis, thus the rotation axis=1. + The yaw is 0 at the positive direction of x axis, and decreases from + the positive direction of x to the positive direction of z. + + Attributes: + tensor (torch.Tensor): Float matrix in shape (N, box_dim). + box_dim (int): Integer indicating the dimension of a box + Each row is (x, y, z, x_size, y_size, z_size, yaw, ...). + with_yaw (bool): If True, the value of yaw will be set to 0 as + axis-aligned boxes tightly enclosing the original boxes. + """ + YAW_AXIS = 1 + + def __init__(self, + tensor, + box_dim=7, + with_yaw=True, + origin=(0.5, 1.0, 0.5)): + if isinstance(tensor, torch.Tensor): + device = tensor.device + else: + device = torch.device('cpu') + tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) + if tensor.numel() == 0: + # Use reshape, so we don't end up creating a new tensor that + # does not depend on the inputs (and consequently confuses jit) + tensor = tensor.reshape((0, box_dim)).to( + dtype=torch.float32, device=device) + assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size() + + if tensor.shape[-1] == 6: + # If the dimension of boxes is 6, we expand box_dim by padding + # 0 as a fake yaw and set with_yaw to False. + assert box_dim == 6 + fake_rot = tensor.new_zeros(tensor.shape[0], 1) + tensor = torch.cat((tensor, fake_rot), dim=-1) + self.box_dim = box_dim + 1 + self.with_yaw = False + else: + self.box_dim = box_dim + self.with_yaw = with_yaw + self.tensor = tensor.clone() + + if origin != (0.5, 1.0, 0.5): + dst = self.tensor.new_tensor((0.5, 1.0, 0.5)) + src = self.tensor.new_tensor(origin) + self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src) + + @property + def height(self): + """torch.Tensor: A vector with height of each box in shape (N, ).""" + return self.tensor[:, 4] + + @property + def top_height(self): + """torch.Tensor: + A vector with the top height of each box in shape (N, ).""" + # the positive direction is down rather than up + return self.bottom_height - self.height + + @property + def bottom_height(self): + """torch.Tensor: + A vector with bottom's height of each box in shape (N, ).""" + return self.tensor[:, 1] + + @property + def local_yaw(self): + """torch.Tensor: + A vector with local yaw of each box in shape (N, ). + local_yaw equals to alpha in kitti, which is commonly + used in monocular 3D object detection task, so only + :obj:`CameraInstance3DBoxes` has the property. + """ + yaw = self.yaw + loc = self.gravity_center + local_yaw = yaw2local(yaw, loc) + + return local_yaw + + @property + def gravity_center(self): + """torch.Tensor: A tensor with center of each box in shape (N, 3).""" + bottom_center = self.bottom_center + gravity_center = torch.zeros_like(bottom_center) + gravity_center[:, [0, 2]] = bottom_center[:, [0, 2]] + gravity_center[:, 1] = bottom_center[:, 1] - self.tensor[:, 4] * 0.5 + return gravity_center + + @property + def corners(self): + """torch.Tensor: Coordinates of corners of all the boxes in + shape (N, 8, 3). + + Convert the boxes to in clockwise order, in the form of + (x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0) + + .. code-block:: none + + front z + / + / + (x0, y0, z1) + ----------- + (x1, y0, z1) + /| / | + / | / | + (x0, y0, z0) + ----------- + + (x1, y1, z1) + | / . | / + | / origin | / + (x0, y1, z0) + ----------- + -------> x right + | (x1, y1, z0) + | + v + down y + """ + if self.tensor.numel() == 0: + return torch.empty([0, 8, 3], device=self.tensor.device) + + dims = self.dims + corners_norm = torch.from_numpy( + np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)).to( + device=dims.device, dtype=dims.dtype) + + corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] + # use relative origin [0.5, 1, 0.5] + corners_norm = corners_norm - dims.new_tensor([0.5, 1, 0.5]) + corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3]) + + corners = rotation_3d_in_axis( + corners, self.tensor[:, 6], axis=self.YAW_AXIS) + corners += self.tensor[:, :3].view(-1, 1, 3) + return corners + + @property + def bev(self): + """torch.Tensor: 2D BEV box of each box with rotation + in XYWHR format, in shape (N, 5).""" + bev = self.tensor[:, [0, 2, 3, 5, 6]].clone() + # positive direction of the gravity axis + # in cam coord system points to the earth + # so the bev yaw angle needs to be reversed + bev[:, -1] = -bev[:, -1] + return bev + + def rotate(self, angle, points=None): + """Rotate boxes with points (optional) with the given angle or rotation + matrix. + + Args: + angle (float | torch.Tensor | np.ndarray): + Rotation angle or rotation matrix. + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to rotate. Defaults to None. + + Returns: + tuple or None: When ``points`` is None, the function returns + None, otherwise it returns the rotated points and the + rotation matrix ``rot_mat_T``. + """ + if not isinstance(angle, torch.Tensor): + angle = self.tensor.new_tensor(angle) + + assert angle.shape == torch.Size([3, 3]) or angle.numel() == 1, \ + f'invalid rotation angle shape {angle.shape}' + + if angle.numel() == 1: + self.tensor[:, 0:3], rot_mat_T = rotation_3d_in_axis( + self.tensor[:, 0:3], + angle, + axis=self.YAW_AXIS, + return_mat=True) + else: + rot_mat_T = angle + rot_sin = rot_mat_T[2, 0] + rot_cos = rot_mat_T[0, 0] + angle = np.arctan2(rot_sin, rot_cos) + self.tensor[:, 0:3] = self.tensor[:, 0:3] @ rot_mat_T + + self.tensor[:, 6] += angle + + if points is not None: + if isinstance(points, torch.Tensor): + points[:, :3] = points[:, :3] @ rot_mat_T + elif isinstance(points, np.ndarray): + rot_mat_T = rot_mat_T.cpu().numpy() + points[:, :3] = np.dot(points[:, :3], rot_mat_T) + elif isinstance(points, BasePoints): + points.rotate(rot_mat_T) + else: + raise ValueError + return points, rot_mat_T + + def flip(self, bev_direction='horizontal', points=None): + """Flip the boxes in BEV along given BEV direction. + + In CAM coordinates, it flips the x (horizontal) or z (vertical) axis. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to flip. Defaults to None. + + Returns: + torch.Tensor, numpy.ndarray or None: Flipped points. + """ + assert bev_direction in ('horizontal', 'vertical') + if bev_direction == 'horizontal': + self.tensor[:, 0::7] = -self.tensor[:, 0::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + np.pi + elif bev_direction == 'vertical': + self.tensor[:, 2::7] = -self.tensor[:, 2::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + + if points is not None: + assert isinstance(points, (torch.Tensor, np.ndarray, BasePoints)) + if isinstance(points, (torch.Tensor, np.ndarray)): + if bev_direction == 'horizontal': + points[:, 0] = -points[:, 0] + elif bev_direction == 'vertical': + points[:, 2] = -points[:, 2] + elif isinstance(points, BasePoints): + points.flip(bev_direction) + return points + + @classmethod + def height_overlaps(cls, boxes1, boxes2, mode='iou'): + """Calculate height overlaps of two boxes. + + This function calculates the height overlaps between ``boxes1`` and + ``boxes2``, where ``boxes1`` and ``boxes2`` should be in the same type. + + Args: + boxes1 (:obj:`CameraInstance3DBoxes`): Boxes 1 contain N boxes. + boxes2 (:obj:`CameraInstance3DBoxes`): Boxes 2 contain M boxes. + mode (str, optional): Mode of iou calculation. Defaults to 'iou'. + + Returns: + torch.Tensor: Calculated iou of boxes' heights. + """ + assert isinstance(boxes1, CameraInstance3DBoxes) + assert isinstance(boxes2, CameraInstance3DBoxes) + + boxes1_top_height = boxes1.top_height.view(-1, 1) + boxes1_bottom_height = boxes1.bottom_height.view(-1, 1) + boxes2_top_height = boxes2.top_height.view(1, -1) + boxes2_bottom_height = boxes2.bottom_height.view(1, -1) + + # positive direction of the gravity axis + # in cam coord system points to the earth + heighest_of_bottom = torch.min(boxes1_bottom_height, + boxes2_bottom_height) + lowest_of_top = torch.max(boxes1_top_height, boxes2_top_height) + overlaps_h = torch.clamp(heighest_of_bottom - lowest_of_top, min=0) + return overlaps_h + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`Box3DMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from ``src`` coordinates to ``dst`` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BaseInstance3DBoxes`: + The converted box of the same type in the ``dst`` mode. + """ + from .box_3d_mode import Box3DMode + return Box3DMode.convert( + box=self, src=Box3DMode.CAM, dst=dst, rt_mat=rt_mat) + + def points_in_boxes_part(self, points, boxes_override=None): + """Find the box in which each point is. + + Args: + points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), + 3 dimensions are (x, y, z) in LiDAR or depth coordinate. + boxes_override (torch.Tensor, optional): Boxes to override + `self.tensor `. Defaults to None. + + Returns: + torch.Tensor: The index of the box in which + each point is, in shape (M, ). Default value is -1 + (if the point is not enclosed by any box). + """ + from .coord_3d_mode import Coord3DMode + + points_lidar = Coord3DMode.convert(points, Coord3DMode.CAM, + Coord3DMode.LIDAR) + if boxes_override is not None: + boxes_lidar = boxes_override + else: + boxes_lidar = Coord3DMode.convert(self.tensor, Coord3DMode.CAM, + Coord3DMode.LIDAR) + + box_idx = super().points_in_boxes_part(points_lidar, boxes_lidar) + return box_idx + + def points_in_boxes_all(self, points, boxes_override=None): + """Find all boxes in which each point is. + + Args: + points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), + 3 dimensions are (x, y, z) in LiDAR or depth coordinate. + boxes_override (torch.Tensor, optional): Boxes to override + `self.tensor `. Defaults to None. + + Returns: + torch.Tensor: The index of all boxes in which each point is, + in shape (B, M, T). + """ + from .coord_3d_mode import Coord3DMode + + points_lidar = Coord3DMode.convert(points, Coord3DMode.CAM, + Coord3DMode.LIDAR) + if boxes_override is not None: + boxes_lidar = boxes_override + else: + boxes_lidar = Coord3DMode.convert(self.tensor, Coord3DMode.CAM, + Coord3DMode.LIDAR) + + box_idx = super().points_in_boxes_all(points_lidar, boxes_lidar) + return box_idx diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/coord_3d_mode.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/coord_3d_mode.py new file mode 100644 index 000000000..6309b6547 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/coord_3d_mode.py @@ -0,0 +1,234 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from enum import IntEnum, unique + +import numpy as np +import torch + +from ...points import BasePoints, CameraPoints, DepthPoints, LiDARPoints +from .base_box3d import BaseInstance3DBoxes +from .box_3d_mode import Box3DMode + + +@unique +class Coord3DMode(IntEnum): + r"""Enum of different ways to represent a box + and point cloud. + + Coordinates in LiDAR: + + .. code-block:: none + + up z + ^ x front + | / + | / + left y <------ 0 + + The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + + Coordinates in camera: + + .. code-block:: none + + z front + / + / + 0 ------> x right + | + | + v + down y + + The relative coordinate of bottom center in a CAM box is [0.5, 1.0, 0.5], + and the yaw is around the y axis, thus the rotation axis=1. + + Coordinates in Depth mode: + + .. code-block:: none + + up z + ^ y front + | / + | / + 0 ------> x right + + The relative coordinate of bottom center in a DEPTH box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + """ + + LIDAR = 0 + CAM = 1 + DEPTH = 2 + + @staticmethod + def convert(input, src, dst, rt_mat=None, with_yaw=True, is_point=True): + """Convert boxes or points from `src` mode to `dst` mode. + + Args: + input (tuple | list | np.ndarray | torch.Tensor | + :obj:`BaseInstance3DBoxes` | :obj:`BasePoints`): + Can be a k-tuple, k-list or an Nxk array/tensor, where k = 7. + src (:obj:`Box3DMode` | :obj:`Coord3DMode`): The source mode. + dst (:obj:`Box3DMode` | :obj:`Coord3DMode`): The target mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + with_yaw (bool): If `box` is an instance of + :obj:`BaseInstance3DBoxes`, whether or not it has a yaw angle. + Defaults to True. + is_point (bool): If `input` is neither an instance of + :obj:`BaseInstance3DBoxes` nor an instance of + :obj:`BasePoints`, whether or not it is point data. + Defaults to True. + + Returns: + (tuple | list | np.ndarray | torch.Tensor | + :obj:`BaseInstance3DBoxes` | :obj:`BasePoints`): + The converted box of the same type. + """ + if isinstance(input, BaseInstance3DBoxes): + return Coord3DMode.convert_box( + input, src, dst, rt_mat=rt_mat, with_yaw=with_yaw) + elif isinstance(input, BasePoints): + return Coord3DMode.convert_point(input, src, dst, rt_mat=rt_mat) + elif isinstance(input, (tuple, list, np.ndarray, torch.Tensor)): + if is_point: + return Coord3DMode.convert_point( + input, src, dst, rt_mat=rt_mat) + else: + return Coord3DMode.convert_box( + input, src, dst, rt_mat=rt_mat, with_yaw=with_yaw) + else: + raise NotImplementedError + + @staticmethod + def convert_box(box, src, dst, rt_mat=None, with_yaw=True): + """Convert boxes from `src` mode to `dst` mode. + + Args: + box (tuple | list | np.ndarray | + torch.Tensor | :obj:`BaseInstance3DBoxes`): + Can be a k-tuple, k-list or an Nxk array/tensor, where k = 7. + src (:obj:`Box3DMode`): The src Box mode. + dst (:obj:`Box3DMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + with_yaw (bool): If `box` is an instance of + :obj:`BaseInstance3DBoxes`, whether or not it has a yaw angle. + Defaults to True. + + Returns: + (tuple | list | np.ndarray | torch.Tensor | + :obj:`BaseInstance3DBoxes`): + The converted box of the same type. + """ + return Box3DMode.convert(box, src, dst, rt_mat=rt_mat) + + @staticmethod + def convert_point(point, src, dst, rt_mat=None): + """Convert points from `src` mode to `dst` mode. + + Args: + point (tuple | list | np.ndarray | + torch.Tensor | :obj:`BasePoints`): + Can be a k-tuple, k-list or an Nxk array/tensor. + src (:obj:`CoordMode`): The src Point mode. + dst (:obj:`CoordMode`): The target Point mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + (tuple | list | np.ndarray | torch.Tensor | :obj:`BasePoints`): + The converted point of the same type. + """ + if src == dst: + return point + + is_numpy = isinstance(point, np.ndarray) + is_InstancePoints = isinstance(point, BasePoints) + single_point = isinstance(point, (list, tuple)) + if single_point: + assert len(point) >= 3, ( + 'CoordMode.convert takes either a k-tuple/list or ' + 'an Nxk array/tensor, where k >= 3') + arr = torch.tensor(point)[None, :] + else: + # avoid modifying the input point + if is_numpy: + arr = torch.from_numpy(np.asarray(point)).clone() + elif is_InstancePoints: + arr = point.tensor.clone() + else: + arr = point.clone() + + # convert point from `src` mode to `dst` mode. + if src == Coord3DMode.LIDAR and dst == Coord3DMode.CAM: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, -1, 0], [0, 0, -1], [1, 0, 0]]) + elif src == Coord3DMode.CAM and dst == Coord3DMode.LIDAR: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, 0, 1], [-1, 0, 0], [0, -1, 0]]) + elif src == Coord3DMode.DEPTH and dst == Coord3DMode.CAM: + if rt_mat is None: + rt_mat = arr.new_tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) + elif src == Coord3DMode.CAM and dst == Coord3DMode.DEPTH: + if rt_mat is None: + rt_mat = arr.new_tensor([[1, 0, 0], [0, 0, 1], [0, -1, 0]]) + elif src == Coord3DMode.LIDAR and dst == Coord3DMode.DEPTH: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) + elif src == Coord3DMode.DEPTH and dst == Coord3DMode.LIDAR: + if rt_mat is None: + rt_mat = arr.new_tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) + else: + raise NotImplementedError( + f'Conversion from Coord3DMode {src} to {dst} ' + 'is not supported yet') + + if not isinstance(rt_mat, torch.Tensor): + rt_mat = arr.new_tensor(rt_mat) + if rt_mat.size(1) == 4: + extended_xyz = torch.cat( + [arr[..., :3], arr.new_ones(arr.size(0), 1)], dim=-1) + xyz = extended_xyz @ rt_mat.t() + else: + xyz = arr[..., :3] @ rt_mat.t() + + remains = arr[..., 3:] + arr = torch.cat([xyz[..., :3], remains], dim=-1) + + # convert arr to the original type + original_type = type(point) + if single_point: + return original_type(arr.flatten().tolist()) + if is_numpy: + return arr.numpy() + elif is_InstancePoints: + if dst == Coord3DMode.CAM: + target_type = CameraPoints + elif dst == Coord3DMode.LIDAR: + target_type = LiDARPoints + elif dst == Coord3DMode.DEPTH: + target_type = DepthPoints + else: + raise NotImplementedError( + f'Conversion to {dst} through {original_type}' + ' is not supported yet') + return target_type( + arr, + points_dim=arr.size(-1), + attribute_dims=point.attribute_dims) + else: + return arr diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/depth_box3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/depth_box3d.py new file mode 100644 index 000000000..dd9278bfb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/depth_box3d.py @@ -0,0 +1,270 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet3d.core.points import BasePoints +from .base_box3d import BaseInstance3DBoxes +from .utils import rotation_3d_in_axis + + +class DepthInstance3DBoxes(BaseInstance3DBoxes): + """3D boxes of instances in Depth coordinates. + + Coordinates in Depth: + + .. code-block:: none + + up z y front (yaw=-0.5*pi) + ^ ^ + | / + | / + 0 ------> x right (yaw=0) + + The relative coordinate of bottom center in a Depth box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + The yaw is 0 at the positive direction of x axis, and decreases from + the positive direction of x to the positive direction of y. + Also note that rotation of DepthInstance3DBoxes is counterclockwise, + which is reverse to the definition of the yaw angle (clockwise). + + A refactor is ongoing to make the three coordinate systems + easier to understand and convert between each other. + + Attributes: + tensor (torch.Tensor): Float matrix of N x box_dim. + box_dim (int): Integer indicates the dimension of a box + Each row is (x, y, z, x_size, y_size, z_size, yaw, ...). + with_yaw (bool): If True, the value of yaw will be set to 0 as minmax + boxes. + """ + YAW_AXIS = 2 + + @property + def gravity_center(self): + """torch.Tensor: A tensor with center of each box in shape (N, 3).""" + bottom_center = self.bottom_center + gravity_center = torch.zeros_like(bottom_center) + gravity_center[:, :2] = bottom_center[:, :2] + gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5 + return gravity_center + + @property + def corners(self): + """torch.Tensor: Coordinates of corners of all the boxes + in shape (N, 8, 3). + + Convert the boxes to corners in clockwise order, in form of + ``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)`` + + .. code-block:: none + + up z + front y ^ + / | + / | + (x0, y1, z1) + ----------- + (x1, y1, z1) + /| / | + / | / | + (x0, y0, z1) + ----------- + + (x1, y1, z0) + | / . | / + | / origin | / + (x0, y0, z0) + ----------- + --------> right x + (x1, y0, z0) + """ + if self.tensor.numel() == 0: + return torch.empty([0, 8, 3], device=self.tensor.device) + + dims = self.dims + corners_norm = torch.from_numpy( + np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)).to( + device=dims.device, dtype=dims.dtype) + + corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] + # use relative origin (0.5, 0.5, 0) + corners_norm = corners_norm - dims.new_tensor([0.5, 0.5, 0]) + corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3]) + + # rotate around z axis + corners = rotation_3d_in_axis( + corners, self.tensor[:, 6], axis=self.YAW_AXIS) + corners += self.tensor[:, :3].view(-1, 1, 3) + return corners + + def rotate(self, angle, points=None): + """Rotate boxes with points (optional) with the given angle or rotation + matrix. + + Args: + angle (float | torch.Tensor | np.ndarray): + Rotation angle or rotation matrix. + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to rotate. Defaults to None. + + Returns: + tuple or None: When ``points`` is None, the function returns + None, otherwise it returns the rotated points and the + rotation matrix ``rot_mat_T``. + """ + if not isinstance(angle, torch.Tensor): + angle = self.tensor.new_tensor(angle) + + assert angle.shape == torch.Size([3, 3]) or angle.numel() == 1, \ + f'invalid rotation angle shape {angle.shape}' + + if angle.numel() == 1: + self.tensor[:, 0:3], rot_mat_T = rotation_3d_in_axis( + self.tensor[:, 0:3], + angle, + axis=self.YAW_AXIS, + return_mat=True) + else: + rot_mat_T = angle + rot_sin = rot_mat_T[0, 1] + rot_cos = rot_mat_T[0, 0] + angle = np.arctan2(rot_sin, rot_cos) + self.tensor[:, 0:3] = self.tensor[:, 0:3] @ rot_mat_T + + if self.with_yaw: + self.tensor[:, 6] += angle + else: + # for axis-aligned boxes, we take the new + # enclosing axis-aligned boxes after rotation + corners_rot = self.corners @ rot_mat_T + new_x_size = corners_rot[..., 0].max( + dim=1, keepdim=True)[0] - corners_rot[..., 0].min( + dim=1, keepdim=True)[0] + new_y_size = corners_rot[..., 1].max( + dim=1, keepdim=True)[0] - corners_rot[..., 1].min( + dim=1, keepdim=True)[0] + self.tensor[:, 3:5] = torch.cat((new_x_size, new_y_size), dim=-1) + + if points is not None: + if isinstance(points, torch.Tensor): + points[:, :3] = points[:, :3] @ rot_mat_T + elif isinstance(points, np.ndarray): + rot_mat_T = rot_mat_T.cpu().numpy() + points[:, :3] = np.dot(points[:, :3], rot_mat_T) + elif isinstance(points, BasePoints): + points.rotate(rot_mat_T) + else: + raise ValueError + return points, rot_mat_T + + def flip(self, bev_direction='horizontal', points=None): + """Flip the boxes in BEV along given BEV direction. + + In Depth coordinates, it flips x (horizontal) or y (vertical) axis. + + Args: + bev_direction (str, optional): Flip direction + (horizontal or vertical). Defaults to 'horizontal'. + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to flip. Defaults to None. + + Returns: + torch.Tensor, numpy.ndarray or None: Flipped points. + """ + assert bev_direction in ('horizontal', 'vertical') + if bev_direction == 'horizontal': + self.tensor[:, 0::7] = -self.tensor[:, 0::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + np.pi + elif bev_direction == 'vertical': + self.tensor[:, 1::7] = -self.tensor[:, 1::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + + if points is not None: + assert isinstance(points, (torch.Tensor, np.ndarray, BasePoints)) + if isinstance(points, (torch.Tensor, np.ndarray)): + if bev_direction == 'horizontal': + points[:, 0] = -points[:, 0] + elif bev_direction == 'vertical': + points[:, 1] = -points[:, 1] + elif isinstance(points, BasePoints): + points.flip(bev_direction) + return points + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`Box3DMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from ``src`` coordinates to ``dst`` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`DepthInstance3DBoxes`: + The converted box of the same type in the ``dst`` mode. + """ + from .box_3d_mode import Box3DMode + return Box3DMode.convert( + box=self, src=Box3DMode.DEPTH, dst=dst, rt_mat=rt_mat) + + def enlarged_box(self, extra_width): + """Enlarge the length, width and height boxes. + + Args: + extra_width (float | torch.Tensor): Extra width to enlarge the box. + + Returns: + :obj:`DepthInstance3DBoxes`: Enlarged boxes. + """ + enlarged_boxes = self.tensor.clone() + enlarged_boxes[:, 3:6] += extra_width * 2 + # bottom center z minus extra_width + enlarged_boxes[:, 2] -= extra_width + return self.new_box(enlarged_boxes) + + def get_surface_line_center(self): + """Compute surface and line center of bounding boxes. + + Returns: + torch.Tensor: Surface and line center of bounding boxes. + """ + obj_size = self.dims + center = self.gravity_center.view(-1, 1, 3) + batch_size = center.shape[0] + + rot_sin = torch.sin(-self.yaw) + rot_cos = torch.cos(-self.yaw) + rot_mat_T = self.yaw.new_zeros(tuple(list(self.yaw.shape) + [3, 3])) + rot_mat_T[..., 0, 0] = rot_cos + rot_mat_T[..., 0, 1] = -rot_sin + rot_mat_T[..., 1, 0] = rot_sin + rot_mat_T[..., 1, 1] = rot_cos + rot_mat_T[..., 2, 2] = 1 + + # Get the object surface center + offset = obj_size.new_tensor([[0, 0, 1], [0, 0, -1], [0, 1, 0], + [0, -1, 0], [1, 0, 0], [-1, 0, 0]]) + offset = offset.view(1, 6, 3) / 2 + surface_3d = (offset * + obj_size.view(batch_size, 1, 3).repeat(1, 6, 1)).reshape( + -1, 3) + + # Get the object line center + offset = obj_size.new_tensor([[1, 0, 1], [-1, 0, 1], [0, 1, 1], + [0, -1, 1], [1, 0, -1], [-1, 0, -1], + [0, 1, -1], [0, -1, -1], [1, 1, 0], + [1, -1, 0], [-1, 1, 0], [-1, -1, 0]]) + offset = offset.view(1, 12, 3) / 2 + + line_3d = (offset * + obj_size.view(batch_size, 1, 3).repeat(1, 12, 1)).reshape( + -1, 3) + + surface_rot = rot_mat_T.repeat(6, 1, 1) + surface_3d = torch.matmul(surface_3d.unsqueeze(-2), + surface_rot).squeeze(-2) + surface_center = center.repeat(1, 6, 1).reshape(-1, 3) + surface_3d + + line_rot = rot_mat_T.repeat(12, 1, 1) + line_3d = torch.matmul(line_3d.unsqueeze(-2), line_rot).squeeze(-2) + line_center = center.repeat(1, 12, 1).reshape(-1, 3) + line_3d + + return surface_center, line_center diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/lidar_box3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/lidar_box3d.py new file mode 100644 index 000000000..706a6c0d5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/lidar_box3d.py @@ -0,0 +1,210 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet3d.core.points import BasePoints +from .base_box3d import BaseInstance3DBoxes +from .utils import rotation_3d_in_axis + + +class LiDARInstance3DBoxes(BaseInstance3DBoxes): + """3D boxes of instances in LIDAR coordinates. + + Coordinates in LiDAR: + + .. code-block:: none + + up z x front (yaw=0) + ^ ^ + | / + | / + (yaw=0.5*pi) left y <------ 0 + + The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), + and the yaw is around the z axis, thus the rotation axis=2. + The yaw is 0 at the positive direction of x axis, and increases from + the positive direction of x to the positive direction of y. + + A refactor is ongoing to make the three coordinate systems + easier to understand and convert between each other. + + Attributes: + tensor (torch.Tensor): Float matrix of N x box_dim. + box_dim (int): Integer indicating the dimension of a box. + Each row is (x, y, z, x_size, y_size, z_size, yaw, ...). + with_yaw (bool): If True, the value of yaw will be set to 0 as minmax + boxes. + """ + YAW_AXIS = 2 + + @property + def gravity_center(self): + """torch.Tensor: A tensor with center of each box in shape (N, 3).""" + bottom_center = self.bottom_center + gravity_center = torch.zeros_like(bottom_center) + gravity_center[:, :2] = bottom_center[:, :2] + gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5 + return gravity_center + + @property + def corners(self): + """torch.Tensor: Coordinates of corners of all the boxes + in shape (N, 8, 3). + + Convert the boxes to corners in clockwise order, in form of + ``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)`` + + .. code-block:: none + + up z + front x ^ + / | + / | + (x1, y0, z1) + ----------- + (x1, y1, z1) + /| / | + / | / | + (x0, y0, z1) + ----------- + + (x1, y1, z0) + | / . | / + | / origin | / + left y<-------- + ----------- + (x0, y1, z0) + (x0, y0, z0) + """ + if self.tensor.numel() == 0: + return torch.empty([0, 8, 3], device=self.tensor.device) + + dims = self.dims + corners_norm = torch.from_numpy( + np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)).to( + device=dims.device, dtype=dims.dtype) + + corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] + # use relative origin [0.5, 0.5, 0] + corners_norm = corners_norm - dims.new_tensor([0.5, 0.5, 0]) + corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3]) + + # rotate around z axis + corners = rotation_3d_in_axis( + corners, self.tensor[:, 6], axis=self.YAW_AXIS) + corners += self.tensor[:, :3].view(-1, 1, 3) + return corners + + def rotate(self, angle, points=None): + """Rotate boxes with points (optional) with the given angle or rotation + matrix. + + Args: + angles (float | torch.Tensor | np.ndarray): + Rotation angle or rotation matrix. + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to rotate. Defaults to None. + + Returns: + tuple or None: When ``points`` is None, the function returns + None, otherwise it returns the rotated points and the + rotation matrix ``rot_mat_T``. + """ + if not isinstance(angle, torch.Tensor): + angle = self.tensor.new_tensor(angle) + + assert angle.shape == torch.Size([3, 3]) or angle.numel() == 1, \ + f'invalid rotation angle shape {angle.shape}' + + if angle.numel() == 1: + self.tensor[:, 0:3], rot_mat_T = rotation_3d_in_axis( + self.tensor[:, 0:3], + angle, + axis=self.YAW_AXIS, + return_mat=True) + else: + rot_mat_T = angle + rot_sin = rot_mat_T[0, 1] + rot_cos = rot_mat_T[0, 0] + angle = np.arctan2(rot_sin, rot_cos) + self.tensor[:, 0:3] = self.tensor[:, 0:3] @ rot_mat_T + + self.tensor[:, 6] += angle + + if self.tensor.shape[1] == 9: + # rotate velo vector + self.tensor[:, 7:9] = self.tensor[:, 7:9] @ rot_mat_T[:2, :2] + + if points is not None: + if isinstance(points, torch.Tensor): + points[:, :3] = points[:, :3] @ rot_mat_T + elif isinstance(points, np.ndarray): + rot_mat_T = rot_mat_T.cpu().numpy() + points[:, :3] = np.dot(points[:, :3], rot_mat_T) + elif isinstance(points, BasePoints): + points.rotate(rot_mat_T) + else: + raise ValueError + return points, rot_mat_T + + def flip(self, bev_direction='horizontal', points=None): + """Flip the boxes in BEV along given BEV direction. + + In LIDAR coordinates, it flips the y (horizontal) or x (vertical) axis. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + points (torch.Tensor | np.ndarray | :obj:`BasePoints`, optional): + Points to flip. Defaults to None. + + Returns: + torch.Tensor, numpy.ndarray or None: Flipped points. + """ + assert bev_direction in ('horizontal', 'vertical') + if bev_direction == 'horizontal': + self.tensor[:, 1::7] = -self.tensor[:, 1::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + elif bev_direction == 'vertical': + self.tensor[:, 0::7] = -self.tensor[:, 0::7] + if self.with_yaw: + self.tensor[:, 6] = -self.tensor[:, 6] + np.pi + + if points is not None: + assert isinstance(points, (torch.Tensor, np.ndarray, BasePoints)) + if isinstance(points, (torch.Tensor, np.ndarray)): + if bev_direction == 'horizontal': + points[:, 1] = -points[:, 1] + elif bev_direction == 'vertical': + points[:, 0] = -points[:, 0] + elif isinstance(points, BasePoints): + points.flip(bev_direction) + return points + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`Box3DMode`): the target Box mode + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from ``src`` coordinates to ``dst`` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BaseInstance3DBoxes`: + The converted box of the same type in the ``dst`` mode. + """ + from .box_3d_mode import Box3DMode + return Box3DMode.convert( + box=self, src=Box3DMode.LIDAR, dst=dst, rt_mat=rt_mat) + + def enlarged_box(self, extra_width): + """Enlarge the length, width and height boxes. + + Args: + extra_width (float | torch.Tensor): Extra width to enlarge the box. + + Returns: + :obj:`LiDARInstance3DBoxes`: Enlarged boxes. + """ + enlarged_boxes = self.tensor.clone() + enlarged_boxes[:, 3:6] += extra_width * 2 + # bottom center z minus extra_width + enlarged_boxes[:, 2] -= extra_width + return self.new_box(enlarged_boxes) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/utils.py new file mode 100644 index 000000000..6ebaabe03 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/structures/utils.py @@ -0,0 +1,342 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from logging import warning + +import numpy as np +import torch + +from mmdet3d.core.utils import array_converter + + +@array_converter(apply_to=('val', )) +def limit_period(val, offset=0.5, period=np.pi): + """Limit the value into a period for periodic function. + + Args: + val (torch.Tensor | np.ndarray): The value to be converted. + offset (float, optional): Offset to set the value range. + Defaults to 0.5. + period ([type], optional): Period of the value. Defaults to np.pi. + + Returns: + (torch.Tensor | np.ndarray): Value in the range of + [-offset * period, (1-offset) * period] + """ + limited_val = val - torch.floor(val / period + offset) * period + return limited_val + + +@array_converter(apply_to=('points', 'angles')) +def rotation_3d_in_axis(points, + angles, + axis=0, + return_mat=False, + clockwise=False): + """Rotate points by angles according to axis. + + Args: + points (np.ndarray | torch.Tensor | list | tuple ): + Points of shape (N, M, 3). + angles (np.ndarray | torch.Tensor | list | tuple | float): + Vector of angles in shape (N,) + axis (int, optional): The axis to be rotated. Defaults to 0. + return_mat: Whether or not return the rotation matrix (transposed). + Defaults to False. + clockwise: Whether the rotation is clockwise. Defaults to False. + + Raises: + ValueError: when the axis is not in range [0, 1, 2], it will + raise value error. + + Returns: + (torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3). + """ + batch_free = len(points.shape) == 2 + if batch_free: + points = points[None] + + if isinstance(angles, float) or len(angles.shape) == 0: + angles = torch.full(points.shape[:1], angles) + + assert len(points.shape) == 3 and len(angles.shape) == 1 \ + and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \ + f'angles: {points.shape}, {angles.shape}' + + assert points.shape[-1] in [2, 3], \ + f'Points size should be 2 or 3 instead of {points.shape[-1]}' + + rot_sin = torch.sin(angles) + rot_cos = torch.cos(angles) + ones = torch.ones_like(rot_cos) + zeros = torch.zeros_like(rot_cos) + + if points.shape[-1] == 3: + if axis == 1 or axis == -2: + rot_mat_T = torch.stack([ + torch.stack([rot_cos, zeros, -rot_sin]), + torch.stack([zeros, ones, zeros]), + torch.stack([rot_sin, zeros, rot_cos]) + ]) + elif axis == 2 or axis == -1: + rot_mat_T = torch.stack([ + torch.stack([rot_cos, rot_sin, zeros]), + torch.stack([-rot_sin, rot_cos, zeros]), + torch.stack([zeros, zeros, ones]) + ]) + elif axis == 0 or axis == -3: + rot_mat_T = torch.stack([ + torch.stack([ones, zeros, zeros]), + torch.stack([zeros, rot_cos, rot_sin]), + torch.stack([zeros, -rot_sin, rot_cos]) + ]) + else: + raise ValueError(f'axis should in range ' + f'[-3, -2, -1, 0, 1, 2], got {axis}') + else: + rot_mat_T = torch.stack([ + torch.stack([rot_cos, rot_sin]), + torch.stack([-rot_sin, rot_cos]) + ]) + + if clockwise: + rot_mat_T = rot_mat_T.transpose(0, 1) + + if points.shape[0] == 0: + points_new = points + else: + points_new = torch.einsum('aij,jka->aik', points, rot_mat_T) + + if batch_free: + points_new = points_new.squeeze(0) + + if return_mat: + rot_mat_T = torch.einsum('jka->ajk', rot_mat_T) + if batch_free: + rot_mat_T = rot_mat_T.squeeze(0) + return points_new, rot_mat_T + else: + return points_new + + +@array_converter(apply_to=('boxes_xywhr', )) +def xywhr2xyxyr(boxes_xywhr): + """Convert a rotated boxes in XYWHR format to XYXYR format. + + Args: + boxes_xywhr (torch.Tensor | np.ndarray): Rotated boxes in XYWHR format. + + Returns: + (torch.Tensor | np.ndarray): Converted boxes in XYXYR format. + """ + boxes = torch.zeros_like(boxes_xywhr) + half_w = boxes_xywhr[..., 2] / 2 + half_h = boxes_xywhr[..., 3] / 2 + + boxes[..., 0] = boxes_xywhr[..., 0] - half_w + boxes[..., 1] = boxes_xywhr[..., 1] - half_h + boxes[..., 2] = boxes_xywhr[..., 0] + half_w + boxes[..., 3] = boxes_xywhr[..., 1] + half_h + boxes[..., 4] = boxes_xywhr[..., 4] + return boxes + + +def get_box_type(box_type): + """Get the type and mode of box structure. + + Args: + box_type (str): The type of box structure. + The valid value are "LiDAR", "Camera", or "Depth". + + Raises: + ValueError: A ValueError is raised when `box_type` + does not belong to the three valid types. + + Returns: + tuple: Box type and box mode. + """ + from .box_3d_mode import (Box3DMode, CameraInstance3DBoxes, + DepthInstance3DBoxes, LiDARInstance3DBoxes) + box_type_lower = box_type.lower() + if box_type_lower == 'lidar': + box_type_3d = LiDARInstance3DBoxes + box_mode_3d = Box3DMode.LIDAR + elif box_type_lower == 'camera': + box_type_3d = CameraInstance3DBoxes + box_mode_3d = Box3DMode.CAM + elif box_type_lower == 'depth': + box_type_3d = DepthInstance3DBoxes + box_mode_3d = Box3DMode.DEPTH + else: + raise ValueError('Only "box_type" of "camera", "lidar", "depth"' + f' are supported, got {box_type}') + + return box_type_3d, box_mode_3d + + +@array_converter(apply_to=('points_3d', 'proj_mat')) +def points_cam2img(points_3d, proj_mat, with_depth=False): + """Project points in camera coordinates to image coordinates. + + Args: + points_3d (torch.Tensor | np.ndarray): Points in shape (N, 3) + proj_mat (torch.Tensor | np.ndarray): + Transformation matrix between coordinates. + with_depth (bool, optional): Whether to keep depth in the output. + Defaults to False. + + Returns: + (torch.Tensor | np.ndarray): Points in image coordinates, + with shape [N, 2] if `with_depth=False`, else [N, 3]. + """ + points_shape = list(points_3d.shape) + points_shape[-1] = 1 + + assert len(proj_mat.shape) == 2, 'The dimension of the projection'\ + f' matrix should be 2 instead of {len(proj_mat.shape)}.' + d1, d2 = proj_mat.shape[:2] + assert (d1 == 3 and d2 == 3) or (d1 == 3 and d2 == 4) or ( + d1 == 4 and d2 == 4), 'The shape of the projection matrix'\ + f' ({d1}*{d2}) is not supported.' + if d1 == 3: + proj_mat_expanded = torch.eye( + 4, device=proj_mat.device, dtype=proj_mat.dtype) + proj_mat_expanded[:d1, :d2] = proj_mat + proj_mat = proj_mat_expanded + + # previous implementation use new_zeros, new_one yields better results + points_4 = torch.cat([points_3d, points_3d.new_ones(points_shape)], dim=-1) + + point_2d = points_4 @ proj_mat.T + point_2d_res = point_2d[..., :2] / point_2d[..., 2:3] + + if with_depth: + point_2d_res = torch.cat([point_2d_res, point_2d[..., 2:3]], dim=-1) + + return point_2d_res + + +@array_converter(apply_to=('points', 'cam2img')) +def points_img2cam(points, cam2img): + """Project points in image coordinates to camera coordinates. + + Args: + points (torch.Tensor): 2.5D points in 2D images, [N, 3], + 3 corresponds with x, y in the image and depth. + cam2img (torch.Tensor): Camera intrinsic matrix. The shape can be + [3, 3], [3, 4] or [4, 4]. + + Returns: + torch.Tensor: points in 3D space. [N, 3], + 3 corresponds with x, y, z in 3D space. + """ + assert cam2img.shape[0] <= 4 + assert cam2img.shape[1] <= 4 + assert points.shape[1] == 3 + + xys = points[:, :2] + depths = points[:, 2].view(-1, 1) + unnormed_xys = torch.cat([xys * depths, depths], dim=1) + + pad_cam2img = torch.eye(4, dtype=xys.dtype, device=xys.device) + pad_cam2img[:cam2img.shape[0], :cam2img.shape[1]] = cam2img + # inv_pad_cam2img = torch.inverse(pad_cam2img).transpose(0, 1) + + #change for pgd + device = pad_cam2img.device + inv_pad_cam2img = torch.inverse(pad_cam2img.cpu()).transpose(0, 1).cpu() + inv_pad_cam2img = inv_pad_cam2img.to(device) + + # Do operation in homogeneous coordinates. + num_points = unnormed_xys.shape[0] + homo_xys = torch.cat([unnormed_xys, xys.new_ones((num_points, 1))], dim=1) + points3D = torch.mm(homo_xys, inv_pad_cam2img)[:, :3] + + return points3D + + +def mono_cam_box2vis(cam_box): + """This is a post-processing function on the bboxes from Mono-3D task. If + we want to perform projection visualization, we need to: + + 1. rotate the box along x-axis for np.pi / 2 (roll) + 2. change orientation from local yaw to global yaw + 3. convert yaw by (np.pi / 2 - yaw) + + After applying this function, we can project and draw it on 2D images. + + Args: + cam_box (:obj:`CameraInstance3DBoxes`): 3D bbox in camera coordinate + system before conversion. Could be gt bbox loaded from dataset + or network prediction output. + + Returns: + :obj:`CameraInstance3DBoxes`: Box after conversion. + """ + warning.warn('DeprecationWarning: The hack of yaw and dimension in the ' + 'monocular 3D detection on nuScenes has been removed. The ' + 'function mono_cam_box2vis will be deprecated.') + from . import CameraInstance3DBoxes + assert isinstance(cam_box, CameraInstance3DBoxes), \ + 'input bbox should be CameraInstance3DBoxes!' + + loc = cam_box.gravity_center + dim = cam_box.dims + yaw = cam_box.yaw + feats = cam_box.tensor[:, 7:] + # rotate along x-axis for np.pi / 2 + # see also here: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L557 # noqa + dim[:, [1, 2]] = dim[:, [2, 1]] + # change local yaw to global yaw for visualization + # refer to https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L164-L166 # noqa + yaw += torch.atan2(loc[:, 0], loc[:, 2]) + # convert yaw by (-yaw - np.pi / 2) + # this is because mono 3D box class such as `NuScenesBox` has different + # definition of rotation with our `CameraInstance3DBoxes` + yaw = -yaw - np.pi / 2 + cam_box = torch.cat([loc, dim, yaw[:, None], feats], dim=1) + cam_box = CameraInstance3DBoxes( + cam_box, box_dim=cam_box.shape[-1], origin=(0.5, 0.5, 0.5)) + + return cam_box + + +def get_proj_mat_by_coord_type(img_meta, coord_type): + """Obtain image features using points. + + Args: + img_meta (dict): Meta info. + coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. + Can be case-insensitive. + + Returns: + torch.Tensor: transformation matrix. + """ + coord_type = coord_type.upper() + mapping = {'LIDAR': 'lidar2img', 'DEPTH': 'depth2img', 'CAMERA': 'cam2img'} + assert coord_type in mapping.keys() + return img_meta[mapping[coord_type]] + + +def yaw2local(yaw, loc): + """Transform global yaw to local yaw (alpha in kitti) in camera + coordinates, ranges from -pi to pi. + + Args: + yaw (torch.Tensor): A vector with local yaw of each box. + shape: (N, ) + loc (torch.Tensor): gravity center of each box. + shape: (N, 3) + + Returns: + torch.Tensor: local yaw (alpha in kitti). + """ + local_yaw = yaw - torch.atan2(loc[:, 0], loc[:, 2]) + larger_idx = (local_yaw > np.pi).nonzero(as_tuple=False) + small_idx = (local_yaw < -np.pi).nonzero(as_tuple=False) + if len(larger_idx) != 0: + local_yaw[larger_idx] -= 2 * np.pi + if len(small_idx) != 0: + local_yaw[small_idx] += 2 * np.pi + + return local_yaw diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/transforms.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/transforms.py new file mode 100644 index 000000000..8a2eb90f5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/bbox/transforms.py @@ -0,0 +1,76 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def bbox3d_mapping_back(bboxes, scale_factor, flip_horizontal, flip_vertical): + """Map bboxes from testing scale to original image scale. + + Args: + bboxes (:obj:`BaseInstance3DBoxes`): Boxes to be mapped back. + scale_factor (float): Scale factor. + flip_horizontal (bool): Whether to flip horizontally. + flip_vertical (bool): Whether to flip vertically. + + Returns: + :obj:`BaseInstance3DBoxes`: Boxes mapped back. + """ + new_bboxes = bboxes.clone() + if flip_horizontal: + new_bboxes.flip('horizontal') + if flip_vertical: + new_bboxes.flip('vertical') + new_bboxes.scale(1 / scale_factor) + + return new_bboxes + + +def bbox3d2roi(bbox_list): + """Convert a list of bounding boxes to roi format. + + Args: + bbox_list (list[torch.Tensor]): A list of bounding boxes + corresponding to a batch of images. + + Returns: + torch.Tensor: Region of interests in shape (n, c), where + the channels are in order of [batch_ind, x, y ...]. + """ + rois_list = [] + for img_id, bboxes in enumerate(bbox_list): + if bboxes.size(0) > 0: + img_inds = bboxes.new_full((bboxes.size(0), 1), img_id) + rois = torch.cat([img_inds, bboxes], dim=-1) + else: + rois = torch.zeros_like(bboxes) + rois_list.append(rois) + rois = torch.cat(rois_list, 0) + return rois + + +def bbox3d2result(bboxes, scores, labels, attrs=None): + """Convert detection results to a list of numpy arrays. + + Args: + bboxes (torch.Tensor): Bounding boxes with shape (N, 5). + labels (torch.Tensor): Labels with shape (N, ). + scores (torch.Tensor): Scores with shape (N, ). + attrs (torch.Tensor, optional): Attributes with shape (N, ). + Defaults to None. + + Returns: + dict[str, torch.Tensor]: Bounding box results in cpu mode. + + - boxes_3d (torch.Tensor): 3D boxes. + - scores (torch.Tensor): Prediction scores. + - labels_3d (torch.Tensor): Box labels. + - attrs_3d (torch.Tensor, optional): Box attributes. + """ + result_dict = dict( + boxes_3d=bboxes.to('cpu'), + scores_3d=scores.cpu(), + labels_3d=labels.cpu()) + + if attrs is not None: + result_dict['attrs_3d'] = attrs.cpu() + + return result_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/__init__.py new file mode 100644 index 000000000..b1d489f36 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .indoor_eval import indoor_eval +from .instance_seg_eval import instance_seg_eval +from .kitti_utils import kitti_eval, kitti_eval_coco_style +from .lyft_eval import lyft_eval +from .seg_eval import seg_eval + +__all__ = [ + 'kitti_eval_coco_style', 'kitti_eval', 'indoor_eval', 'lyft_eval', + 'seg_eval', 'instance_seg_eval' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/indoor_eval.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/indoor_eval.py new file mode 100644 index 000000000..2ff987732 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/indoor_eval.py @@ -0,0 +1,309 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.utils import print_log +from terminaltables import AsciiTable + + +def average_precision(recalls, precisions, mode='area'): + """Calculate average precision (for single or multiple scales). + + Args: + recalls (np.ndarray): Recalls with shape of (num_scales, num_dets) + or (num_dets, ). + precisions (np.ndarray): Precisions with shape of + (num_scales, num_dets) or (num_dets, ). + mode (str): 'area' or '11points', 'area' means calculating the area + under precision-recall curve, '11points' means calculating + the average precision of recalls at [0, 0.1, ..., 1] + + Returns: + float or np.ndarray: Calculated average precision. + """ + if recalls.ndim == 1: + recalls = recalls[np.newaxis, :] + precisions = precisions[np.newaxis, :] + + assert recalls.shape == precisions.shape + assert recalls.ndim == 2 + + num_scales = recalls.shape[0] + ap = np.zeros(num_scales, dtype=np.float32) + if mode == 'area': + zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) + ones = np.ones((num_scales, 1), dtype=recalls.dtype) + mrec = np.hstack((zeros, recalls, ones)) + mpre = np.hstack((zeros, precisions, zeros)) + for i in range(mpre.shape[1] - 1, 0, -1): + mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) + for i in range(num_scales): + ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] + ap[i] = np.sum( + (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) + elif mode == '11points': + for i in range(num_scales): + for thr in np.arange(0, 1 + 1e-3, 0.1): + precs = precisions[i, recalls[i, :] >= thr] + prec = precs.max() if precs.size > 0 else 0 + ap[i] += prec + ap /= 11 + else: + raise ValueError( + 'Unrecognized mode, only "area" and "11points" are supported') + return ap + + +def eval_det_cls(pred, gt, iou_thr=None): + """Generic functions to compute precision/recall for object detection for a + single class. + + Args: + pred (dict): Predictions mapping from image id to bounding boxes + and scores. + gt (dict): Ground truths mapping from image id to bounding boxes. + iou_thr (list[float]): A list of iou thresholds. + + Return: + tuple (np.ndarray, np.ndarray, float): Recalls, precisions and + average precision. + """ + + # {img_id: {'bbox': box structure, 'det': matched list}} + class_recs = {} + npos = 0 + for img_id in gt.keys(): + cur_gt_num = len(gt[img_id]) + if cur_gt_num != 0: + gt_cur = torch.zeros([cur_gt_num, 7], dtype=torch.float32) + for i in range(cur_gt_num): + gt_cur[i] = gt[img_id][i].tensor + bbox = gt[img_id][0].new_box(gt_cur) + else: + bbox = gt[img_id] + det = [[False] * len(bbox) for i in iou_thr] + npos += len(bbox) + class_recs[img_id] = {'bbox': bbox, 'det': det} + + # construct dets + image_ids = [] + confidence = [] + ious = [] + for img_id in pred.keys(): + cur_num = len(pred[img_id]) + if cur_num == 0: + continue + pred_cur = torch.zeros((cur_num, 7), dtype=torch.float32) + box_idx = 0 + for box, score in pred[img_id]: + image_ids.append(img_id) + confidence.append(score) + pred_cur[box_idx] = box.tensor + box_idx += 1 + pred_cur = box.new_box(pred_cur) + gt_cur = class_recs[img_id]['bbox'] + if len(gt_cur) > 0: + # calculate iou in each image + iou_cur = pred_cur.overlaps(pred_cur, gt_cur) + for i in range(cur_num): + ious.append(iou_cur[i]) + else: + for i in range(cur_num): + ious.append(np.zeros(1)) + + confidence = np.array(confidence) + + # sort by confidence + sorted_ind = np.argsort(-confidence) + image_ids = [image_ids[x] for x in sorted_ind] + ious = [ious[x] for x in sorted_ind] + + # go down dets and mark TPs and FPs + nd = len(image_ids) + tp_thr = [np.zeros(nd) for i in iou_thr] + fp_thr = [np.zeros(nd) for i in iou_thr] + for d in range(nd): + R = class_recs[image_ids[d]] + iou_max = -np.inf + BBGT = R['bbox'] + cur_iou = ious[d] + + if len(BBGT) > 0: + # compute overlaps + for j in range(len(BBGT)): + # iou = get_iou_main(get_iou_func, (bb, BBGT[j,...])) + iou = cur_iou[j] + if iou > iou_max: + iou_max = iou + jmax = j + + for iou_idx, thresh in enumerate(iou_thr): + if iou_max > thresh: + if not R['det'][iou_idx][jmax]: + tp_thr[iou_idx][d] = 1. + R['det'][iou_idx][jmax] = 1 + else: + fp_thr[iou_idx][d] = 1. + else: + fp_thr[iou_idx][d] = 1. + + ret = [] + for iou_idx, thresh in enumerate(iou_thr): + # compute precision recall + fp = np.cumsum(fp_thr[iou_idx]) + tp = np.cumsum(tp_thr[iou_idx]) + recall = tp / float(npos) + # avoid divide by zero in case the first detection matches a difficult + # ground truth + precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) + ap = average_precision(recall, precision) + ret.append((recall, precision, ap)) + + return ret + + +def eval_map_recall(pred, gt, ovthresh=None): + """Evaluate mAP and recall. + + Generic functions to compute precision/recall for object detection + for multiple classes. + + Args: + pred (dict): Information of detection results, + which maps class_id and predictions. + gt (dict): Information of ground truths, which maps class_id and + ground truths. + ovthresh (list[float], optional): iou threshold. Default: None. + + Return: + tuple[dict]: dict results of recall, AP, and precision for all classes. + """ + + ret_values = {} + for classname in gt.keys(): + if classname in pred: + ret_values[classname] = eval_det_cls(pred[classname], + gt[classname], ovthresh) + recall = [{} for i in ovthresh] + precision = [{} for i in ovthresh] + ap = [{} for i in ovthresh] + + for label in gt.keys(): + for iou_idx, thresh in enumerate(ovthresh): + if label in pred: + recall[iou_idx][label], precision[iou_idx][label], ap[iou_idx][ + label] = ret_values[label][iou_idx] + else: + recall[iou_idx][label] = np.zeros(1) + precision[iou_idx][label] = np.zeros(1) + ap[iou_idx][label] = np.zeros(1) + + return recall, precision, ap + + +def indoor_eval(gt_annos, + dt_annos, + metric, + label2cat, + logger=None, + box_type_3d=None, + box_mode_3d=None): + """Indoor Evaluation. + + Evaluate the result of the detection. + + Args: + gt_annos (list[dict]): Ground truth annotations. + dt_annos (list[dict]): Detection annotations. the dict + includes the following keys + + - labels_3d (torch.Tensor): Labels of boxes. + - boxes_3d (:obj:`BaseInstance3DBoxes`): + 3D bounding boxes in Depth coordinate. + - scores_3d (torch.Tensor): Scores of boxes. + metric (list[float]): IoU thresholds for computing average precisions. + label2cat (dict): Map from label to category. + logger (logging.Logger | str, optional): The way to print the mAP + summary. See `mmdet.utils.print_log()` for details. Default: None. + + Return: + dict[str, float]: Dict of results. + """ + assert len(dt_annos) == len(gt_annos) + pred = {} # map {class_id: pred} + gt = {} # map {class_id: gt} + for img_id in range(len(dt_annos)): + # parse detected annotations + det_anno = dt_annos[img_id] + for i in range(len(det_anno['labels_3d'])): + label = det_anno['labels_3d'].numpy()[i] + bbox = det_anno['boxes_3d'].convert_to(box_mode_3d)[i] + score = det_anno['scores_3d'].numpy()[i] + if label not in pred: + pred[int(label)] = {} + if img_id not in pred[label]: + pred[int(label)][img_id] = [] + if label not in gt: + gt[int(label)] = {} + if img_id not in gt[label]: + gt[int(label)][img_id] = [] + pred[int(label)][img_id].append((bbox, score)) + + # parse gt annotations + gt_anno = gt_annos[img_id] + if gt_anno['gt_num'] != 0: + gt_boxes = box_type_3d( + gt_anno['gt_boxes_upright_depth'], + box_dim=gt_anno['gt_boxes_upright_depth'].shape[-1], + origin=(0.5, 0.5, 0.5)).convert_to(box_mode_3d) + labels_3d = gt_anno['class'] + else: + gt_boxes = box_type_3d(np.array([], dtype=np.float32)) + labels_3d = np.array([], dtype=np.int64) + + for i in range(len(labels_3d)): + label = labels_3d[i] + bbox = gt_boxes[i] + if label not in gt: + gt[label] = {} + if img_id not in gt[label]: + gt[label][img_id] = [] + gt[label][img_id].append(bbox) + + rec, prec, ap = eval_map_recall(pred, gt, metric) + ret_dict = dict() + header = ['classes'] + table_columns = [[label2cat[label] + for label in ap[0].keys()] + ['Overall']] + + for i, iou_thresh in enumerate(metric): + header.append(f'AP_{iou_thresh:.2f}') + header.append(f'AR_{iou_thresh:.2f}') + rec_list = [] + for label in ap[i].keys(): + ret_dict[f'{label2cat[label]}_AP_{iou_thresh:.2f}'] = float( + ap[i][label][0]) + ret_dict[f'mAP_{iou_thresh:.2f}'] = float( + np.mean(list(ap[i].values()))) + + table_columns.append(list(map(float, list(ap[i].values())))) + table_columns[-1] += [ret_dict[f'mAP_{iou_thresh:.2f}']] + table_columns[-1] = [f'{x:.4f}' for x in table_columns[-1]] + + for label in rec[i].keys(): + ret_dict[f'{label2cat[label]}_rec_{iou_thresh:.2f}'] = float( + rec[i][label][-1]) + rec_list.append(rec[i][label][-1]) + ret_dict[f'mAR_{iou_thresh:.2f}'] = float(np.mean(rec_list)) + + table_columns.append(list(map(float, rec_list))) + table_columns[-1] += [ret_dict[f'mAR_{iou_thresh:.2f}']] + table_columns[-1] = [f'{x:.4f}' for x in table_columns[-1]] + + table_data = [header] + table_rows = list(zip(*table_columns)) + table_data += table_rows + table = AsciiTable(table_data) + table.inner_footing_row_border = True + print_log('\n' + table.table, logger=logger) + + return ret_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/instance_seg_eval.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/instance_seg_eval.py new file mode 100644 index 000000000..31f5110ab --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/instance_seg_eval.py @@ -0,0 +1,128 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + +from .scannet_utils.evaluate_semantic_instance import scannet_eval + + +def aggregate_predictions(masks, labels, scores, valid_class_ids): + """Maps predictions to ScanNet evaluator format. + + Args: + masks (list[torch.Tensor]): Per scene predicted instance masks. + labels (list[torch.Tensor]): Per scene predicted instance labels. + scores (list[torch.Tensor]): Per scene predicted instance scores. + valid_class_ids (tuple[int]): Ids of valid categories. + + Returns: + list[dict]: Per scene aggregated predictions. + """ + infos = [] + for id, (mask, label, score) in enumerate(zip(masks, labels, scores)): + mask = mask.clone().numpy() + label = label.clone().numpy() + score = score.clone().numpy() + info = dict() + n_instances = mask.max() + 1 + for i in range(n_instances): + # match pred_instance['filename'] from assign_instances_for_scan + file_name = f'{id}_{i}' + info[file_name] = dict() + info[file_name]['mask'] = (mask == i).astype(np.int) + info[file_name]['label_id'] = valid_class_ids[label[i]] + info[file_name]['conf'] = score[i] + infos.append(info) + return infos + + +def rename_gt(gt_semantic_masks, gt_instance_masks, valid_class_ids): + """Maps gt instance and semantic masks to instance masks for ScanNet + evaluator. + + Args: + gt_semantic_masks (list[torch.Tensor]): Per scene gt semantic masks. + gt_instance_masks (list[torch.Tensor]): Per scene gt instance masks. + valid_class_ids (tuple[int]): Ids of valid categories. + + Returns: + list[np.array]: Per scene instance masks. + """ + renamed_instance_masks = [] + for semantic_mask, instance_mask in zip(gt_semantic_masks, + gt_instance_masks): + semantic_mask = semantic_mask.clone().numpy() + instance_mask = instance_mask.clone().numpy() + unique = np.unique(instance_mask) + assert len(unique) < 1000 + for i in unique: + semantic_instance = semantic_mask[instance_mask == i] + semantic_unique = np.unique(semantic_instance) + assert len(semantic_unique) == 1 + if semantic_unique[0] < len(valid_class_ids): + instance_mask[ + instance_mask == + i] = 1000 * valid_class_ids[semantic_unique[0]] + i + renamed_instance_masks.append(instance_mask) + return renamed_instance_masks + + +def instance_seg_eval(gt_semantic_masks, + gt_instance_masks, + pred_instance_masks, + pred_instance_labels, + pred_instance_scores, + valid_class_ids, + class_labels, + options=None, + logger=None): + """Instance Segmentation Evaluation. + + Evaluate the result of the instance segmentation. + + Args: + gt_semantic_masks (list[torch.Tensor]): Ground truth semantic masks. + gt_instance_masks (list[torch.Tensor]): Ground truth instance masks. + pred_instance_masks (list[torch.Tensor]): Predicted instance masks. + pred_instance_labels (list[torch.Tensor]): Predicted instance labels. + pred_instance_scores (list[torch.Tensor]): Predicted instance labels. + valid_class_ids (tuple[int]): Ids of valid categories. + class_labels (tuple[str]): Names of valid categories. + options (dict, optional): Additional options. Keys may contain: + `overlaps`, `min_region_sizes`, `distance_threshes`, + `distance_confs`. Default: None. + logger (logging.Logger | str, optional): The way to print the mAP + summary. See `mmdet.utils.print_log()` for details. Default: None. + + Returns: + dict[str, float]: Dict of results. + """ + assert len(valid_class_ids) == len(class_labels) + id_to_label = { + valid_class_ids[i]: class_labels[i] + for i in range(len(valid_class_ids)) + } + preds = aggregate_predictions( + masks=pred_instance_masks, + labels=pred_instance_labels, + scores=pred_instance_scores, + valid_class_ids=valid_class_ids) + gts = rename_gt(gt_semantic_masks, gt_instance_masks, valid_class_ids) + metrics = scannet_eval( + preds=preds, + gts=gts, + options=options, + valid_class_ids=valid_class_ids, + class_labels=class_labels, + id_to_label=id_to_label) + header = ['classes', 'AP_0.25', 'AP_0.50', 'AP'] + rows = [] + for label, data in metrics['classes'].items(): + aps = [data['ap25%'], data['ap50%'], data['ap']] + rows.append([label] + [f'{ap:.4f}' for ap in aps]) + aps = metrics['all_ap_25%'], metrics['all_ap_50%'], metrics['all_ap'] + footer = ['Overall'] + [f'{ap:.4f}' for ap in aps] + table = AsciiTable([header] + rows + [footer]) + table.inner_footing_row_border = True + print_log('\n' + table.table, logger=logger) + return metrics diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/__init__.py new file mode 100644 index 000000000..23c1cdf25 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .eval import kitti_eval, kitti_eval_coco_style + +__all__ = ['kitti_eval', 'kitti_eval_coco_style'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/eval.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/eval.py new file mode 100644 index 000000000..f8408dfa6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/eval.py @@ -0,0 +1,950 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import gc +import io as sysio + +import numba +import numpy as np + + +@numba.jit +def get_thresholds(scores: np.ndarray, num_gt, num_sample_pts=41): + scores.sort() + scores = scores[::-1] + current_recall = 0 + thresholds = [] + for i, score in enumerate(scores): + l_recall = (i + 1) / num_gt + if i < (len(scores) - 1): + r_recall = (i + 2) / num_gt + else: + r_recall = l_recall + if (((r_recall - current_recall) < (current_recall - l_recall)) + and (i < (len(scores) - 1))): + continue + # recall = l_recall + thresholds.append(score) + current_recall += 1 / (num_sample_pts - 1.0) + return thresholds + + +def clean_data(gt_anno, dt_anno, current_class, difficulty): + CLASS_NAMES = ['car', 'pedestrian', 'cyclist'] + MIN_HEIGHT = [40, 25, 25] + MAX_OCCLUSION = [0, 1, 2] + MAX_TRUNCATION = [0.15, 0.3, 0.5] + dc_bboxes, ignored_gt, ignored_dt = [], [], [] + current_cls_name = CLASS_NAMES[current_class].lower() + num_gt = len(gt_anno['name']) + num_dt = len(dt_anno['name']) + num_valid_gt = 0 + for i in range(num_gt): + bbox = gt_anno['bbox'][i] + gt_name = gt_anno['name'][i].lower() + height = bbox[3] - bbox[1] + valid_class = -1 + if (gt_name == current_cls_name): + valid_class = 1 + elif (current_cls_name == 'Pedestrian'.lower() + and 'Person_sitting'.lower() == gt_name): + valid_class = 0 + elif (current_cls_name == 'Car'.lower() and 'Van'.lower() == gt_name): + valid_class = 0 + else: + valid_class = -1 + ignore = False + if ((gt_anno['occluded'][i] > MAX_OCCLUSION[difficulty]) + or (gt_anno['truncated'][i] > MAX_TRUNCATION[difficulty]) + or (height <= MIN_HEIGHT[difficulty])): + ignore = True + if valid_class == 1 and not ignore: + ignored_gt.append(0) + num_valid_gt += 1 + elif (valid_class == 0 or (ignore and (valid_class == 1))): + ignored_gt.append(1) + else: + ignored_gt.append(-1) + # for i in range(num_gt): + if gt_anno['name'][i] == 'DontCare': + dc_bboxes.append(gt_anno['bbox'][i]) + for i in range(num_dt): + if (dt_anno['name'][i].lower() == current_cls_name): + valid_class = 1 + else: + valid_class = -1 + height = abs(dt_anno['bbox'][i, 3] - dt_anno['bbox'][i, 1]) + if height < MIN_HEIGHT[difficulty]: + ignored_dt.append(1) + elif valid_class == 1: + ignored_dt.append(0) + else: + ignored_dt.append(-1) + + return num_valid_gt, ignored_gt, ignored_dt, dc_bboxes + + +@numba.jit(nopython=True) +def image_box_overlap(boxes, query_boxes, criterion=-1): + N = boxes.shape[0] + K = query_boxes.shape[0] + overlaps = np.zeros((N, K), dtype=boxes.dtype) + for k in range(K): + qbox_area = ((query_boxes[k, 2] - query_boxes[k, 0]) * + (query_boxes[k, 3] - query_boxes[k, 1])) + for n in range(N): + iw = ( + min(boxes[n, 2], query_boxes[k, 2]) - + max(boxes[n, 0], query_boxes[k, 0])) + if iw > 0: + ih = ( + min(boxes[n, 3], query_boxes[k, 3]) - + max(boxes[n, 1], query_boxes[k, 1])) + if ih > 0: + if criterion == -1: + ua = ((boxes[n, 2] - boxes[n, 0]) * + (boxes[n, 3] - boxes[n, 1]) + qbox_area - + iw * ih) + elif criterion == 0: + ua = ((boxes[n, 2] - boxes[n, 0]) * + (boxes[n, 3] - boxes[n, 1])) + elif criterion == 1: + ua = qbox_area + else: + ua = 1.0 + overlaps[n, k] = iw * ih / ua + return overlaps + + +def bev_box_overlap(boxes, qboxes, criterion=-1): + from .rotate_iou import rotate_iou_gpu_eval + riou = rotate_iou_gpu_eval(boxes, qboxes, criterion) + return riou + + +@numba.jit(nopython=True, parallel=True) +def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1): + # ONLY support overlap in CAMERA, not lidar. + # TODO: change to use prange for parallel mode, should check the difference + N, K = boxes.shape[0], qboxes.shape[0] + for i in numba.prange(N): + for j in numba.prange(K): + if rinc[i, j] > 0: + # iw = (min(boxes[i, 1] + boxes[i, 4], qboxes[j, 1] + + # qboxes[j, 4]) - max(boxes[i, 1], qboxes[j, 1])) + iw = ( + min(boxes[i, 1], qboxes[j, 1]) - + max(boxes[i, 1] - boxes[i, 4], + qboxes[j, 1] - qboxes[j, 4])) + + if iw > 0: + area1 = boxes[i, 3] * boxes[i, 4] * boxes[i, 5] + area2 = qboxes[j, 3] * qboxes[j, 4] * qboxes[j, 5] + inc = iw * rinc[i, j] + if criterion == -1: + ua = (area1 + area2 - inc) + elif criterion == 0: + ua = area1 + elif criterion == 1: + ua = area2 + else: + ua = inc + rinc[i, j] = inc / ua + else: + rinc[i, j] = 0.0 + + +def d3_box_overlap(boxes, qboxes, criterion=-1): + from .rotate_iou import rotate_iou_gpu_eval + rinc = rotate_iou_gpu_eval(boxes[:, [0, 2, 3, 5, 6]], + qboxes[:, [0, 2, 3, 5, 6]], 2) + d3_box_overlap_kernel(boxes, qboxes, rinc, criterion) + return rinc + + +@numba.jit(nopython=True) +def compute_statistics_jit(overlaps, + gt_datas, + dt_datas, + ignored_gt, + ignored_det, + dc_bboxes, + metric, + min_overlap, + thresh=0, + compute_fp=False, + compute_aos=False): + + det_size = dt_datas.shape[0] + gt_size = gt_datas.shape[0] + dt_scores = dt_datas[:, -1] + dt_alphas = dt_datas[:, 4] + gt_alphas = gt_datas[:, 4] + dt_bboxes = dt_datas[:, :4] + # gt_bboxes = gt_datas[:, :4] + + assigned_detection = [False] * det_size + ignored_threshold = [False] * det_size + if compute_fp: + for i in range(det_size): + if (dt_scores[i] < thresh): + ignored_threshold[i] = True + NO_DETECTION = -10000000 + tp, fp, fn, similarity = 0, 0, 0, 0 + # thresholds = [0.0] + # delta = [0.0] + thresholds = np.zeros((gt_size, )) + thresh_idx = 0 + delta = np.zeros((gt_size, )) + delta_idx = 0 + for i in range(gt_size): + if ignored_gt[i] == -1: + continue + det_idx = -1 + valid_detection = NO_DETECTION + max_overlap = 0 + assigned_ignored_det = False + + for j in range(det_size): + if (ignored_det[j] == -1): + continue + if (assigned_detection[j]): + continue + if (ignored_threshold[j]): + continue + overlap = overlaps[j, i] + dt_score = dt_scores[j] + if (not compute_fp and (overlap > min_overlap) + and dt_score > valid_detection): + det_idx = j + valid_detection = dt_score + elif (compute_fp and (overlap > min_overlap) + and (overlap > max_overlap or assigned_ignored_det) + and ignored_det[j] == 0): + max_overlap = overlap + det_idx = j + valid_detection = 1 + assigned_ignored_det = False + elif (compute_fp and (overlap > min_overlap) + and (valid_detection == NO_DETECTION) + and ignored_det[j] == 1): + det_idx = j + valid_detection = 1 + assigned_ignored_det = True + + if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0: + fn += 1 + elif ((valid_detection != NO_DETECTION) + and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)): + assigned_detection[det_idx] = True + elif valid_detection != NO_DETECTION: + tp += 1 + # thresholds.append(dt_scores[det_idx]) + thresholds[thresh_idx] = dt_scores[det_idx] + thresh_idx += 1 + if compute_aos: + # delta.append(gt_alphas[i] - dt_alphas[det_idx]) + delta[delta_idx] = gt_alphas[i] - dt_alphas[det_idx] + delta_idx += 1 + + assigned_detection[det_idx] = True + if compute_fp: + for i in range(det_size): + if (not (assigned_detection[i] or ignored_det[i] == -1 + or ignored_det[i] == 1 or ignored_threshold[i])): + fp += 1 + nstuff = 0 + if metric == 0: + overlaps_dt_dc = image_box_overlap(dt_bboxes, dc_bboxes, 0) + for i in range(dc_bboxes.shape[0]): + for j in range(det_size): + if (assigned_detection[j]): + continue + if (ignored_det[j] == -1 or ignored_det[j] == 1): + continue + if (ignored_threshold[j]): + continue + if overlaps_dt_dc[j, i] > min_overlap: + assigned_detection[j] = True + nstuff += 1 + fp -= nstuff + if compute_aos: + tmp = np.zeros((fp + delta_idx, )) + # tmp = [0] * fp + for i in range(delta_idx): + tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0 + # tmp.append((1.0 + np.cos(delta[i])) / 2.0) + # assert len(tmp) == fp + tp + # assert len(delta) == tp + if tp > 0 or fp > 0: + similarity = np.sum(tmp) + else: + similarity = -1 + return tp, fp, fn, similarity, thresholds[:thresh_idx] + + +def get_split_parts(num, num_part): + same_part = num // num_part + remain_num = num % num_part + if remain_num == 0: + return [same_part] * num_part + else: + return [same_part] * num_part + [remain_num] + + +@numba.jit(nopython=True) +def fused_compute_statistics(overlaps, + pr, + gt_nums, + dt_nums, + dc_nums, + gt_datas, + dt_datas, + dontcares, + ignored_gts, + ignored_dets, + metric, + min_overlap, + thresholds, + compute_aos=False): + gt_num = 0 + dt_num = 0 + dc_num = 0 + for i in range(gt_nums.shape[0]): + for t, thresh in enumerate(thresholds): + overlap = overlaps[dt_num:dt_num + dt_nums[i], + gt_num:gt_num + gt_nums[i]] + + gt_data = gt_datas[gt_num:gt_num + gt_nums[i]] + dt_data = dt_datas[dt_num:dt_num + dt_nums[i]] + ignored_gt = ignored_gts[gt_num:gt_num + gt_nums[i]] + ignored_det = ignored_dets[dt_num:dt_num + dt_nums[i]] + dontcare = dontcares[dc_num:dc_num + dc_nums[i]] + tp, fp, fn, similarity, _ = compute_statistics_jit( + overlap, + gt_data, + dt_data, + ignored_gt, + ignored_det, + dontcare, + metric, + min_overlap=min_overlap, + thresh=thresh, + compute_fp=True, + compute_aos=compute_aos) + pr[t, 0] += tp + pr[t, 1] += fp + pr[t, 2] += fn + if similarity != -1: + pr[t, 3] += similarity + gt_num += gt_nums[i] + dt_num += dt_nums[i] + dc_num += dc_nums[i] + + +def calculate_iou_partly(gt_annos, dt_annos, metric, num_parts=50): + """Fast iou algorithm. this function can be used independently to do result + analysis. Must be used in CAMERA coordinate system. + + Args: + gt_annos (dict): Must from get_label_annos() in kitti_common.py. + dt_annos (dict): Must from get_label_annos() in kitti_common.py. + metric (int): Eval type. 0: bbox, 1: bev, 2: 3d. + num_parts (int): A parameter for fast calculate algorithm. + """ + assert len(gt_annos) == len(dt_annos) + total_dt_num = np.stack([len(a['name']) for a in dt_annos], 0) + total_gt_num = np.stack([len(a['name']) for a in gt_annos], 0) + num_examples = len(gt_annos) + split_parts = get_split_parts(num_examples, num_parts) + parted_overlaps = [] + example_idx = 0 + + for num_part in split_parts: + gt_annos_part = gt_annos[example_idx:example_idx + num_part] + dt_annos_part = dt_annos[example_idx:example_idx + num_part] + if metric == 0: + gt_boxes = np.concatenate([a['bbox'] for a in gt_annos_part], 0) + dt_boxes = np.concatenate([a['bbox'] for a in dt_annos_part], 0) + overlap_part = image_box_overlap(gt_boxes, dt_boxes) + elif metric == 1: + loc = np.concatenate( + [a['location'][:, [0, 2]] for a in gt_annos_part], 0) + dims = np.concatenate( + [a['dimensions'][:, [0, 2]] for a in gt_annos_part], 0) + rots = np.concatenate([a['rotation_y'] for a in gt_annos_part], 0) + gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + loc = np.concatenate( + [a['location'][:, [0, 2]] for a in dt_annos_part], 0) + dims = np.concatenate( + [a['dimensions'][:, [0, 2]] for a in dt_annos_part], 0) + rots = np.concatenate([a['rotation_y'] for a in dt_annos_part], 0) + dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + overlap_part = bev_box_overlap(gt_boxes, + dt_boxes).astype(np.float64) + elif metric == 2: + loc = np.concatenate([a['location'] for a in gt_annos_part], 0) + dims = np.concatenate([a['dimensions'] for a in gt_annos_part], 0) + rots = np.concatenate([a['rotation_y'] for a in gt_annos_part], 0) + gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + loc = np.concatenate([a['location'] for a in dt_annos_part], 0) + dims = np.concatenate([a['dimensions'] for a in dt_annos_part], 0) + rots = np.concatenate([a['rotation_y'] for a in dt_annos_part], 0) + dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + overlap_part = d3_box_overlap(gt_boxes, + dt_boxes).astype(np.float64) + else: + raise ValueError('unknown metric') + parted_overlaps.append(overlap_part) + example_idx += num_part + overlaps = [] + example_idx = 0 + for j, num_part in enumerate(split_parts): + gt_annos_part = gt_annos[example_idx:example_idx + num_part] + dt_annos_part = dt_annos[example_idx:example_idx + num_part] + gt_num_idx, dt_num_idx = 0, 0 + for i in range(num_part): + gt_box_num = total_gt_num[example_idx + i] + dt_box_num = total_dt_num[example_idx + i] + overlaps.append( + parted_overlaps[j][gt_num_idx:gt_num_idx + gt_box_num, + dt_num_idx:dt_num_idx + dt_box_num]) + gt_num_idx += gt_box_num + dt_num_idx += dt_box_num + example_idx += num_part + + return overlaps, parted_overlaps, total_gt_num, total_dt_num + + +def _prepare_data(gt_annos, dt_annos, current_class, difficulty): + gt_datas_list = [] + dt_datas_list = [] + total_dc_num = [] + ignored_gts, ignored_dets, dontcares = [], [], [] + total_num_valid_gt = 0 + for i in range(len(gt_annos)): + rets = clean_data(gt_annos[i], dt_annos[i], current_class, difficulty) + num_valid_gt, ignored_gt, ignored_det, dc_bboxes = rets + ignored_gts.append(np.array(ignored_gt, dtype=np.int64)) + ignored_dets.append(np.array(ignored_det, dtype=np.int64)) + if len(dc_bboxes) == 0: + dc_bboxes = np.zeros((0, 4)).astype(np.float64) + else: + dc_bboxes = np.stack(dc_bboxes, 0).astype(np.float64) + total_dc_num.append(dc_bboxes.shape[0]) + dontcares.append(dc_bboxes) + total_num_valid_gt += num_valid_gt + gt_datas = np.concatenate( + [gt_annos[i]['bbox'], gt_annos[i]['alpha'][..., np.newaxis]], 1) + dt_datas = np.concatenate([ + dt_annos[i]['bbox'], dt_annos[i]['alpha'][..., np.newaxis], + dt_annos[i]['score'][..., np.newaxis] + ], 1) + gt_datas_list.append(gt_datas) + dt_datas_list.append(dt_datas) + total_dc_num = np.stack(total_dc_num, axis=0) + return (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, + total_dc_num, total_num_valid_gt) + + +def eval_class(gt_annos, + dt_annos, + current_classes, + difficultys, + metric, + min_overlaps, + compute_aos=False, + num_parts=200): + """Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP. + + Args: + gt_annos (dict): Must from get_label_annos() in kitti_common.py. + dt_annos (dict): Must from get_label_annos() in kitti_common.py. + current_classes (list[int]): 0: car, 1: pedestrian, 2: cyclist. + difficultys (list[int]): Eval difficulty, 0: easy, 1: normal, 2: hard + metric (int): Eval type. 0: bbox, 1: bev, 2: 3d + min_overlaps (float): Min overlap. format: + [num_overlap, metric, class]. + num_parts (int): A parameter for fast calculate algorithm + + Returns: + dict[str, np.ndarray]: recall, precision and aos + """ + assert len(gt_annos) == len(dt_annos) + num_examples = len(gt_annos) + if num_examples < num_parts: + num_parts = num_examples + split_parts = get_split_parts(num_examples, num_parts) + + rets = calculate_iou_partly(dt_annos, gt_annos, metric, num_parts) + overlaps, parted_overlaps, total_dt_num, total_gt_num = rets + N_SAMPLE_PTS = 41 + num_minoverlap = len(min_overlaps) + num_class = len(current_classes) + num_difficulty = len(difficultys) + precision = np.zeros( + [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) + recall = np.zeros( + [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) + aos = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) + for m, current_class in enumerate(current_classes): + for idx_l, difficulty in enumerate(difficultys): + rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty) + (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, + dontcares, total_dc_num, total_num_valid_gt) = rets + for k, min_overlap in enumerate(min_overlaps[:, metric, m]): + thresholdss = [] + for i in range(len(gt_annos)): + rets = compute_statistics_jit( + overlaps[i], + gt_datas_list[i], + dt_datas_list[i], + ignored_gts[i], + ignored_dets[i], + dontcares[i], + metric, + min_overlap=min_overlap, + thresh=0.0, + compute_fp=False) + tp, fp, fn, similarity, thresholds = rets + thresholdss += thresholds.tolist() + thresholdss = np.array(thresholdss) + thresholds = get_thresholds(thresholdss, total_num_valid_gt) + thresholds = np.array(thresholds) + pr = np.zeros([len(thresholds), 4]) + idx = 0 + for j, num_part in enumerate(split_parts): + gt_datas_part = np.concatenate( + gt_datas_list[idx:idx + num_part], 0) + dt_datas_part = np.concatenate( + dt_datas_list[idx:idx + num_part], 0) + dc_datas_part = np.concatenate( + dontcares[idx:idx + num_part], 0) + ignored_dets_part = np.concatenate( + ignored_dets[idx:idx + num_part], 0) + ignored_gts_part = np.concatenate( + ignored_gts[idx:idx + num_part], 0) + fused_compute_statistics( + parted_overlaps[j], + pr, + total_gt_num[idx:idx + num_part], + total_dt_num[idx:idx + num_part], + total_dc_num[idx:idx + num_part], + gt_datas_part, + dt_datas_part, + dc_datas_part, + ignored_gts_part, + ignored_dets_part, + metric, + min_overlap=min_overlap, + thresholds=thresholds, + compute_aos=compute_aos) + idx += num_part + for i in range(len(thresholds)): + recall[m, idx_l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2]) + precision[m, idx_l, k, i] = pr[i, 0] / ( + pr[i, 0] + pr[i, 1]) + if compute_aos: + aos[m, idx_l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1]) + for i in range(len(thresholds)): + precision[m, idx_l, k, i] = np.max( + precision[m, idx_l, k, i:], axis=-1) + recall[m, idx_l, k, i] = np.max( + recall[m, idx_l, k, i:], axis=-1) + if compute_aos: + aos[m, idx_l, k, i] = np.max( + aos[m, idx_l, k, i:], axis=-1) + ret_dict = { + 'recall': recall, + 'precision': precision, + 'orientation': aos, + } + + # clean temp variables + del overlaps + del parted_overlaps + + gc.collect() + return ret_dict + + +def get_mAP11(prec): + sums = 0 + for i in range(0, prec.shape[-1], 4): + sums = sums + prec[..., i] + return sums / 11 * 100 + + +def get_mAP40(prec): + sums = 0 + for i in range(1, prec.shape[-1]): + sums = sums + prec[..., i] + return sums / 40 * 100 + + +def print_str(value, *arg, sstream=None): + if sstream is None: + sstream = sysio.StringIO() + sstream.truncate(0) + sstream.seek(0) + print(value, *arg, file=sstream) + return sstream.getvalue() + + +def do_eval(gt_annos, + dt_annos, + current_classes, + min_overlaps, + eval_types=['bbox', 'bev', '3d']): + # min_overlaps: [num_minoverlap, metric, num_class] + difficultys = [0, 1, 2] + mAP11_bbox = None + mAP11_aos = None + mAP40_bbox = None + mAP40_aos = None + if 'bbox' in eval_types: + ret = eval_class( + gt_annos, + dt_annos, + current_classes, + difficultys, + 0, + min_overlaps, + compute_aos=('aos' in eval_types)) + # ret: [num_class, num_diff, num_minoverlap, num_sample_points] + mAP11_bbox = get_mAP11(ret['precision']) + mAP40_bbox = get_mAP40(ret['precision']) + if 'aos' in eval_types: + mAP11_aos = get_mAP11(ret['orientation']) + mAP40_aos = get_mAP40(ret['orientation']) + + mAP11_bev = None + mAP40_bev = None + if 'bev' in eval_types: + ret = eval_class(gt_annos, dt_annos, current_classes, difficultys, 1, + min_overlaps) + mAP11_bev = get_mAP11(ret['precision']) + mAP40_bev = get_mAP40(ret['precision']) + + mAP11_3d = None + mAP40_3d = None + if '3d' in eval_types: + ret = eval_class(gt_annos, dt_annos, current_classes, difficultys, 2, + min_overlaps) + mAP11_3d = get_mAP11(ret['precision']) + mAP40_3d = get_mAP40(ret['precision']) + return (mAP11_bbox, mAP11_bev, mAP11_3d, mAP11_aos, mAP40_bbox, mAP40_bev, + mAP40_3d, mAP40_aos) + + +def do_coco_style_eval(gt_annos, dt_annos, current_classes, overlap_ranges, + compute_aos): + # overlap_ranges: [range, metric, num_class] + min_overlaps = np.zeros([10, *overlap_ranges.shape[1:]]) + for i in range(overlap_ranges.shape[1]): + for j in range(overlap_ranges.shape[2]): + min_overlaps[:, i, j] = np.linspace(*overlap_ranges[:, i, j]) + mAP_bbox, mAP_bev, mAP_3d, mAP_aos, _, _, \ + _, _ = do_eval(gt_annos, dt_annos, + current_classes, min_overlaps, + compute_aos) + # ret: [num_class, num_diff, num_minoverlap] + mAP_bbox = mAP_bbox.mean(-1) + mAP_bev = mAP_bev.mean(-1) + mAP_3d = mAP_3d.mean(-1) + if mAP_aos is not None: + mAP_aos = mAP_aos.mean(-1) + return mAP_bbox, mAP_bev, mAP_3d, mAP_aos + + +def kitti_eval(gt_annos, + dt_annos, + current_classes, + eval_types=['bbox', 'bev', '3d']): + """KITTI evaluation. + + Args: + gt_annos (list[dict]): Contain gt information of each sample. + dt_annos (list[dict]): Contain detected information of each sample. + current_classes (list[str]): Classes to evaluation. + eval_types (list[str], optional): Types to eval. + Defaults to ['bbox', 'bev', '3d']. + + Returns: + tuple: String and dict of evaluation results. + """ + assert len(eval_types) > 0, 'must contain at least one evaluation type' + if 'aos' in eval_types: + assert 'bbox' in eval_types, 'must evaluate bbox when evaluating aos' + overlap_0_7 = np.array([[0.7, 0.5, 0.5, 0.7, + 0.5], [0.7, 0.5, 0.5, 0.7, 0.5], + [0.7, 0.5, 0.5, 0.7, 0.5]]) + overlap_0_5 = np.array([[0.7, 0.5, 0.5, 0.7, 0.5], + [0.5, 0.25, 0.25, 0.5, 0.25], + [0.5, 0.25, 0.25, 0.5, 0.25]]) + min_overlaps = np.stack([overlap_0_7, overlap_0_5], axis=0) # [2, 3, 5] + class_to_name = { + 0: 'Car', + 1: 'Pedestrian', + 2: 'Cyclist', + 3: 'Van', + 4: 'Person_sitting', + } + name_to_class = {v: n for n, v in class_to_name.items()} + if not isinstance(current_classes, (list, tuple)): + current_classes = [current_classes] + current_classes_int = [] + for curcls in current_classes: + if isinstance(curcls, str): + current_classes_int.append(name_to_class[curcls]) + else: + current_classes_int.append(curcls) + current_classes = current_classes_int + min_overlaps = min_overlaps[:, :, current_classes] + result = '' + # check whether alpha is valid + compute_aos = False + pred_alpha = False + valid_alpha_gt = False + for anno in dt_annos: + mask = (anno['alpha'] != -10) + if anno['alpha'][mask].shape[0] != 0: + pred_alpha = True + break + for anno in gt_annos: + if anno['alpha'][0] != -10: + valid_alpha_gt = True + break + compute_aos = (pred_alpha and valid_alpha_gt) + if compute_aos: + eval_types.append('aos') + + mAP11_bbox, mAP11_bev, mAP11_3d, mAP11_aos, mAP40_bbox, mAP40_bev, \ + mAP40_3d, mAP40_aos = do_eval(gt_annos, dt_annos, + current_classes, min_overlaps, + eval_types) + + ret_dict = {} + difficulty = ['easy', 'moderate', 'hard'] + + # calculate AP11 + result += '\n----------- AP11 Results ------------\n\n' + for j, curcls in enumerate(current_classes): + # mAP threshold array: [num_minoverlap, metric, class] + # mAP result: [num_class, num_diff, num_minoverlap] + curcls_name = class_to_name[curcls] + for i in range(min_overlaps.shape[0]): + # prepare results for print + result += ('{} AP11@{:.2f}, {:.2f}, {:.2f}:\n'.format( + curcls_name, *min_overlaps[i, :, j])) + if mAP11_bbox is not None: + result += 'bbox AP11:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP11_bbox[j, :, i]) + if mAP11_bev is not None: + result += 'bev AP11:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP11_bev[j, :, i]) + if mAP11_3d is not None: + result += '3d AP11:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP11_3d[j, :, i]) + if compute_aos: + result += 'aos AP11:{:.2f}, {:.2f}, {:.2f}\n'.format( + *mAP11_aos[j, :, i]) + + # prepare results for logger + for idx in range(3): + if i == 0: + postfix = f'{difficulty[idx]}_strict' + else: + postfix = f'{difficulty[idx]}_loose' + prefix = f'KITTI/{curcls_name}' + if mAP11_3d is not None: + ret_dict[f'{prefix}_3D_AP11_{postfix}'] =\ + mAP11_3d[j, idx, i] + if mAP11_bev is not None: + ret_dict[f'{prefix}_BEV_AP11_{postfix}'] =\ + mAP11_bev[j, idx, i] + if mAP11_bbox is not None: + ret_dict[f'{prefix}_2D_AP11_{postfix}'] =\ + mAP11_bbox[j, idx, i] + + # calculate mAP11 over all classes if there are multiple classes + if len(current_classes) > 1: + # prepare results for print + result += ('\nOverall AP11@{}, {}, {}:\n'.format(*difficulty)) + if mAP11_bbox is not None: + mAP11_bbox = mAP11_bbox.mean(axis=0) + result += 'bbox AP11:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP11_bbox[:, 0]) + if mAP11_bev is not None: + mAP11_bev = mAP11_bev.mean(axis=0) + result += 'bev AP11:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP11_bev[:, 0]) + if mAP11_3d is not None: + mAP11_3d = mAP11_3d.mean(axis=0) + result += '3d AP11:{:.4f}, {:.4f}, {:.4f}\n'.format(*mAP11_3d[:, + 0]) + if compute_aos: + mAP11_aos = mAP11_aos.mean(axis=0) + result += 'aos AP11:{:.2f}, {:.2f}, {:.2f}\n'.format( + *mAP11_aos[:, 0]) + + # prepare results for logger + for idx in range(3): + postfix = f'{difficulty[idx]}' + if mAP11_3d is not None: + ret_dict[f'KITTI/Overall_3D_AP11_{postfix}'] = mAP11_3d[idx, 0] + if mAP11_bev is not None: + ret_dict[f'KITTI/Overall_BEV_AP11_{postfix}'] =\ + mAP11_bev[idx, 0] + if mAP11_bbox is not None: + ret_dict[f'KITTI/Overall_2D_AP11_{postfix}'] =\ + mAP11_bbox[idx, 0] + + # Calculate AP40 + result += '\n----------- AP40 Results ------------\n\n' + for j, curcls in enumerate(current_classes): + # mAP threshold array: [num_minoverlap, metric, class] + # mAP result: [num_class, num_diff, num_minoverlap] + curcls_name = class_to_name[curcls] + for i in range(min_overlaps.shape[0]): + # prepare results for print + result += ('{} AP40@{:.2f}, {:.2f}, {:.2f}:\n'.format( + curcls_name, *min_overlaps[i, :, j])) + if mAP40_bbox is not None: + result += 'bbox AP40:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP40_bbox[j, :, i]) + if mAP40_bev is not None: + result += 'bev AP40:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP40_bev[j, :, i]) + if mAP40_3d is not None: + result += '3d AP40:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP40_3d[j, :, i]) + if compute_aos: + result += 'aos AP40:{:.2f}, {:.2f}, {:.2f}\n'.format( + *mAP40_aos[j, :, i]) + + # prepare results for logger + for idx in range(3): + if i == 0: + postfix = f'{difficulty[idx]}_strict' + else: + postfix = f'{difficulty[idx]}_loose' + prefix = f'KITTI/{curcls_name}' + if mAP40_3d is not None: + ret_dict[f'{prefix}_3D_AP40_{postfix}'] =\ + mAP40_3d[j, idx, i] + if mAP40_bev is not None: + ret_dict[f'{prefix}_BEV_AP40_{postfix}'] =\ + mAP40_bev[j, idx, i] + if mAP40_bbox is not None: + ret_dict[f'{prefix}_2D_AP40_{postfix}'] =\ + mAP40_bbox[j, idx, i] + + # calculate mAP40 over all classes if there are multiple classes + if len(current_classes) > 1: + # prepare results for print + result += ('\nOverall AP40@{}, {}, {}:\n'.format(*difficulty)) + if mAP40_bbox is not None: + mAP40_bbox = mAP40_bbox.mean(axis=0) + result += 'bbox AP40:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP40_bbox[:, 0]) + if mAP40_bev is not None: + mAP40_bev = mAP40_bev.mean(axis=0) + result += 'bev AP40:{:.4f}, {:.4f}, {:.4f}\n'.format( + *mAP40_bev[:, 0]) + if mAP40_3d is not None: + mAP40_3d = mAP40_3d.mean(axis=0) + result += '3d AP40:{:.4f}, {:.4f}, {:.4f}\n'.format(*mAP40_3d[:, + 0]) + if compute_aos: + mAP40_aos = mAP40_aos.mean(axis=0) + result += 'aos AP40:{:.2f}, {:.2f}, {:.2f}\n'.format( + *mAP40_aos[:, 0]) + + # prepare results for logger + for idx in range(3): + postfix = f'{difficulty[idx]}' + if mAP40_3d is not None: + ret_dict[f'KITTI/Overall_3D_AP40_{postfix}'] = mAP40_3d[idx, 0] + if mAP40_bev is not None: + ret_dict[f'KITTI/Overall_BEV_AP40_{postfix}'] =\ + mAP40_bev[idx, 0] + if mAP40_bbox is not None: + ret_dict[f'KITTI/Overall_2D_AP40_{postfix}'] =\ + mAP40_bbox[idx, 0] + + return result, ret_dict + + +def kitti_eval_coco_style(gt_annos, dt_annos, current_classes): + """coco style evaluation of kitti. + + Args: + gt_annos (list[dict]): Contain gt information of each sample. + dt_annos (list[dict]): Contain detected information of each sample. + current_classes (list[str]): Classes to evaluation. + + Returns: + string: Evaluation results. + """ + class_to_name = { + 0: 'Car', + 1: 'Pedestrian', + 2: 'Cyclist', + 3: 'Van', + 4: 'Person_sitting', + } + class_to_range = { + 0: [0.5, 0.95, 10], + 1: [0.25, 0.7, 10], + 2: [0.25, 0.7, 10], + 3: [0.5, 0.95, 10], + 4: [0.25, 0.7, 10], + } + name_to_class = {v: n for n, v in class_to_name.items()} + if not isinstance(current_classes, (list, tuple)): + current_classes = [current_classes] + current_classes_int = [] + for curcls in current_classes: + if isinstance(curcls, str): + current_classes_int.append(name_to_class[curcls]) + else: + current_classes_int.append(curcls) + current_classes = current_classes_int + overlap_ranges = np.zeros([3, 3, len(current_classes)]) + for i, curcls in enumerate(current_classes): + overlap_ranges[:, :, i] = np.array(class_to_range[curcls])[:, + np.newaxis] + result = '' + # check whether alpha is valid + compute_aos = False + for anno in dt_annos: + if anno['alpha'].shape[0] != 0: + if anno['alpha'][0] != -10: + compute_aos = True + break + mAPbbox, mAPbev, mAP3d, mAPaos = do_coco_style_eval( + gt_annos, dt_annos, current_classes, overlap_ranges, compute_aos) + for j, curcls in enumerate(current_classes): + # mAP threshold array: [num_minoverlap, metric, class] + # mAP result: [num_class, num_diff, num_minoverlap] + o_range = np.array(class_to_range[curcls])[[0, 2, 1]] + o_range[1] = (o_range[2] - o_range[0]) / (o_range[1] - 1) + result += print_str((f'{class_to_name[curcls]} ' + 'coco AP@{:.2f}:{:.2f}:{:.2f}:'.format(*o_range))) + result += print_str((f'bbox AP:{mAPbbox[j, 0]:.2f}, ' + f'{mAPbbox[j, 1]:.2f}, ' + f'{mAPbbox[j, 2]:.2f}')) + result += print_str((f'bev AP:{mAPbev[j, 0]:.2f}, ' + f'{mAPbev[j, 1]:.2f}, ' + f'{mAPbev[j, 2]:.2f}')) + result += print_str((f'3d AP:{mAP3d[j, 0]:.2f}, ' + f'{mAP3d[j, 1]:.2f}, ' + f'{mAP3d[j, 2]:.2f}')) + if compute_aos: + result += print_str((f'aos AP:{mAPaos[j, 0]:.2f}, ' + f'{mAPaos[j, 1]:.2f}, ' + f'{mAPaos[j, 2]:.2f}')) + return result diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/rotate_iou.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/rotate_iou.py new file mode 100644 index 000000000..9ed75bf08 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/kitti_utils/rotate_iou.py @@ -0,0 +1,379 @@ +# Copyright (c) OpenMMLab. All rights reserved. +##################### +# Based on https://github.com/hongzhenwang/RRPN-revise +# Licensed under The MIT License +# Author: yanyan, scrin@foxmail.com +##################### +import math + +import numba +import numpy as np +from numba import cuda + + +@numba.jit(nopython=True) +def div_up(m, n): + return m // n + (m % n > 0) + + +@cuda.jit(device=True, inline=True) +def trangle_area(a, b, c): + return ((a[0] - c[0]) * (b[1] - c[1]) - (a[1] - c[1]) * + (b[0] - c[0])) / 2.0 + + +@cuda.jit(device=True, inline=True) +def area(int_pts, num_of_inter): + area_val = 0.0 + for i in range(num_of_inter - 2): + area_val += abs( + trangle_area(int_pts[:2], int_pts[2 * i + 2:2 * i + 4], + int_pts[2 * i + 4:2 * i + 6])) + return area_val + + +@cuda.jit(device=True, inline=True) +def sort_vertex_in_convex_polygon(int_pts, num_of_inter): + if num_of_inter > 0: + center = cuda.local.array((2, ), dtype=numba.float32) + center[:] = 0.0 + for i in range(num_of_inter): + center[0] += int_pts[2 * i] + center[1] += int_pts[2 * i + 1] + center[0] /= num_of_inter + center[1] /= num_of_inter + v = cuda.local.array((2, ), dtype=numba.float32) + vs = cuda.local.array((16, ), dtype=numba.float32) + for i in range(num_of_inter): + v[0] = int_pts[2 * i] - center[0] + v[1] = int_pts[2 * i + 1] - center[1] + d = math.sqrt(v[0] * v[0] + v[1] * v[1]) + v[0] = v[0] / d + v[1] = v[1] / d + if v[1] < 0: + v[0] = -2 - v[0] + vs[i] = v[0] + j = 0 + temp = 0 + for i in range(1, num_of_inter): + if vs[i - 1] > vs[i]: + temp = vs[i] + tx = int_pts[2 * i] + ty = int_pts[2 * i + 1] + j = i + while j > 0 and vs[j - 1] > temp: + vs[j] = vs[j - 1] + int_pts[j * 2] = int_pts[j * 2 - 2] + int_pts[j * 2 + 1] = int_pts[j * 2 - 1] + j -= 1 + + vs[j] = temp + int_pts[j * 2] = tx + int_pts[j * 2 + 1] = ty + + +@cuda.jit(device=True, inline=True) +def line_segment_intersection(pts1, pts2, i, j, temp_pts): + A = cuda.local.array((2, ), dtype=numba.float32) + B = cuda.local.array((2, ), dtype=numba.float32) + C = cuda.local.array((2, ), dtype=numba.float32) + D = cuda.local.array((2, ), dtype=numba.float32) + + A[0] = pts1[2 * i] + A[1] = pts1[2 * i + 1] + + B[0] = pts1[2 * ((i + 1) % 4)] + B[1] = pts1[2 * ((i + 1) % 4) + 1] + + C[0] = pts2[2 * j] + C[1] = pts2[2 * j + 1] + + D[0] = pts2[2 * ((j + 1) % 4)] + D[1] = pts2[2 * ((j + 1) % 4) + 1] + BA0 = B[0] - A[0] + BA1 = B[1] - A[1] + DA0 = D[0] - A[0] + CA0 = C[0] - A[0] + DA1 = D[1] - A[1] + CA1 = C[1] - A[1] + acd = DA1 * CA0 > CA1 * DA0 + bcd = (D[1] - B[1]) * (C[0] - B[0]) > (C[1] - B[1]) * (D[0] - B[0]) + if acd != bcd: + abc = CA1 * BA0 > BA1 * CA0 + abd = DA1 * BA0 > BA1 * DA0 + if abc != abd: + DC0 = D[0] - C[0] + DC1 = D[1] - C[1] + ABBA = A[0] * B[1] - B[0] * A[1] + CDDC = C[0] * D[1] - D[0] * C[1] + DH = BA1 * DC0 - BA0 * DC1 + Dx = ABBA * DC0 - BA0 * CDDC + Dy = ABBA * DC1 - BA1 * CDDC + temp_pts[0] = Dx / DH + temp_pts[1] = Dy / DH + return True + return False + + +@cuda.jit(device=True, inline=True) +def line_segment_intersection_v1(pts1, pts2, i, j, temp_pts): + a = cuda.local.array((2, ), dtype=numba.float32) + b = cuda.local.array((2, ), dtype=numba.float32) + c = cuda.local.array((2, ), dtype=numba.float32) + d = cuda.local.array((2, ), dtype=numba.float32) + + a[0] = pts1[2 * i] + a[1] = pts1[2 * i + 1] + + b[0] = pts1[2 * ((i + 1) % 4)] + b[1] = pts1[2 * ((i + 1) % 4) + 1] + + c[0] = pts2[2 * j] + c[1] = pts2[2 * j + 1] + + d[0] = pts2[2 * ((j + 1) % 4)] + d[1] = pts2[2 * ((j + 1) % 4) + 1] + + area_abc = trangle_area(a, b, c) + area_abd = trangle_area(a, b, d) + + if area_abc * area_abd >= 0: + return False + + area_cda = trangle_area(c, d, a) + area_cdb = area_cda + area_abc - area_abd + + if area_cda * area_cdb >= 0: + return False + t = area_cda / (area_abd - area_abc) + + dx = t * (b[0] - a[0]) + dy = t * (b[1] - a[1]) + temp_pts[0] = a[0] + dx + temp_pts[1] = a[1] + dy + return True + + +@cuda.jit(device=True, inline=True) +def point_in_quadrilateral(pt_x, pt_y, corners): + ab0 = corners[2] - corners[0] + ab1 = corners[3] - corners[1] + + ad0 = corners[6] - corners[0] + ad1 = corners[7] - corners[1] + + ap0 = pt_x - corners[0] + ap1 = pt_y - corners[1] + + abab = ab0 * ab0 + ab1 * ab1 + abap = ab0 * ap0 + ab1 * ap1 + adad = ad0 * ad0 + ad1 * ad1 + adap = ad0 * ap0 + ad1 * ap1 + + return abab >= abap and abap >= 0 and adad >= adap and adap >= 0 + + +@cuda.jit(device=True, inline=True) +def quadrilateral_intersection(pts1, pts2, int_pts): + num_of_inter = 0 + for i in range(4): + if point_in_quadrilateral(pts1[2 * i], pts1[2 * i + 1], pts2): + int_pts[num_of_inter * 2] = pts1[2 * i] + int_pts[num_of_inter * 2 + 1] = pts1[2 * i + 1] + num_of_inter += 1 + if point_in_quadrilateral(pts2[2 * i], pts2[2 * i + 1], pts1): + int_pts[num_of_inter * 2] = pts2[2 * i] + int_pts[num_of_inter * 2 + 1] = pts2[2 * i + 1] + num_of_inter += 1 + temp_pts = cuda.local.array((2, ), dtype=numba.float32) + for i in range(4): + for j in range(4): + has_pts = line_segment_intersection(pts1, pts2, i, j, temp_pts) + if has_pts: + int_pts[num_of_inter * 2] = temp_pts[0] + int_pts[num_of_inter * 2 + 1] = temp_pts[1] + num_of_inter += 1 + + return num_of_inter + + +@cuda.jit(device=True, inline=True) +def rbbox_to_corners(corners, rbbox): + # generate clockwise corners and rotate it clockwise + angle = rbbox[4] + a_cos = math.cos(angle) + a_sin = math.sin(angle) + center_x = rbbox[0] + center_y = rbbox[1] + x_d = rbbox[2] + y_d = rbbox[3] + corners_x = cuda.local.array((4, ), dtype=numba.float32) + corners_y = cuda.local.array((4, ), dtype=numba.float32) + corners_x[0] = -x_d / 2 + corners_x[1] = -x_d / 2 + corners_x[2] = x_d / 2 + corners_x[3] = x_d / 2 + corners_y[0] = -y_d / 2 + corners_y[1] = y_d / 2 + corners_y[2] = y_d / 2 + corners_y[3] = -y_d / 2 + for i in range(4): + corners[2 * i] = a_cos * corners_x[i] + a_sin * corners_y[i] + center_x + corners[2 * i + + 1] = -a_sin * corners_x[i] + a_cos * corners_y[i] + center_y + + +@cuda.jit(device=True, inline=True) +def inter(rbbox1, rbbox2): + """Compute intersection of two rotated boxes. + + Args: + rbox1 (np.ndarray, shape=[5]): Rotated 2d box. + rbox2 (np.ndarray, shape=[5]): Rotated 2d box. + + Returns: + float: Intersection of two rotated boxes. + """ + corners1 = cuda.local.array((8, ), dtype=numba.float32) + corners2 = cuda.local.array((8, ), dtype=numba.float32) + intersection_corners = cuda.local.array((16, ), dtype=numba.float32) + + rbbox_to_corners(corners1, rbbox1) + rbbox_to_corners(corners2, rbbox2) + + num_intersection = quadrilateral_intersection(corners1, corners2, + intersection_corners) + sort_vertex_in_convex_polygon(intersection_corners, num_intersection) + # print(intersection_corners.reshape([-1, 2])[:num_intersection]) + + return area(intersection_corners, num_intersection) + + +@cuda.jit(device=True, inline=True) +def devRotateIoUEval(rbox1, rbox2, criterion=-1): + """Compute rotated iou on device. + + Args: + rbox1 (np.ndarray, shape=[5]): Rotated 2d box. + rbox2 (np.ndarray, shape=[5]): Rotated 2d box. + criterion (int, optional): Indicate different type of iou. + -1 indicate `area_inter / (area1 + area2 - area_inter)`, + 0 indicate `area_inter / area1`, + 1 indicate `area_inter / area2`. + + Returns: + float: iou between two input boxes. + """ + area1 = rbox1[2] * rbox1[3] + area2 = rbox2[2] * rbox2[3] + area_inter = inter(rbox1, rbox2) + if criterion == -1: + return area_inter / (area1 + area2 - area_inter) + elif criterion == 0: + return area_inter / area1 + elif criterion == 1: + return area_inter / area2 + else: + return area_inter + + +@cuda.jit( + '(int64, int64, float32[:], float32[:], float32[:], int32)', + fastmath=False) +def rotate_iou_kernel_eval(N, + K, + dev_boxes, + dev_query_boxes, + dev_iou, + criterion=-1): + """Kernel of computing rotated IoU. This function is for bev boxes in + camera coordinate system ONLY (the rotation is clockwise). + + Args: + N (int): The number of boxes. + K (int): The number of query boxes. + dev_boxes (np.ndarray): Boxes on device. + dev_query_boxes (np.ndarray): Query boxes on device. + dev_iou (np.ndarray): Computed iou to return. + criterion (int, optional): Indicate different type of iou. + -1 indicate `area_inter / (area1 + area2 - area_inter)`, + 0 indicate `area_inter / area1`, + 1 indicate `area_inter / area2`. + """ + threadsPerBlock = 8 * 8 + row_start = cuda.blockIdx.x + col_start = cuda.blockIdx.y + tx = cuda.threadIdx.x + row_size = min(N - row_start * threadsPerBlock, threadsPerBlock) + col_size = min(K - col_start * threadsPerBlock, threadsPerBlock) + block_boxes = cuda.shared.array(shape=(64 * 5, ), dtype=numba.float32) + block_qboxes = cuda.shared.array(shape=(64 * 5, ), dtype=numba.float32) + + dev_query_box_idx = threadsPerBlock * col_start + tx + dev_box_idx = threadsPerBlock * row_start + tx + if (tx < col_size): + block_qboxes[tx * 5 + 0] = dev_query_boxes[dev_query_box_idx * 5 + 0] + block_qboxes[tx * 5 + 1] = dev_query_boxes[dev_query_box_idx * 5 + 1] + block_qboxes[tx * 5 + 2] = dev_query_boxes[dev_query_box_idx * 5 + 2] + block_qboxes[tx * 5 + 3] = dev_query_boxes[dev_query_box_idx * 5 + 3] + block_qboxes[tx * 5 + 4] = dev_query_boxes[dev_query_box_idx * 5 + 4] + if (tx < row_size): + block_boxes[tx * 5 + 0] = dev_boxes[dev_box_idx * 5 + 0] + block_boxes[tx * 5 + 1] = dev_boxes[dev_box_idx * 5 + 1] + block_boxes[tx * 5 + 2] = dev_boxes[dev_box_idx * 5 + 2] + block_boxes[tx * 5 + 3] = dev_boxes[dev_box_idx * 5 + 3] + block_boxes[tx * 5 + 4] = dev_boxes[dev_box_idx * 5 + 4] + cuda.syncthreads() + if tx < row_size: + for i in range(col_size): + offset = ( + row_start * threadsPerBlock * K + col_start * threadsPerBlock + + tx * K + i) + dev_iou[offset] = devRotateIoUEval(block_qboxes[i * 5:i * 5 + 5], + block_boxes[tx * 5:tx * 5 + 5], + criterion) + + +def rotate_iou_gpu_eval(boxes, query_boxes, criterion=-1, device_id=0): + """Rotated box iou running in gpu. 500x faster than cpu version (take 5ms + in one example with numba.cuda code). convert from [this project]( + https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation). + + This function is for bev boxes in camera coordinate system ONLY + (the rotation is clockwise). + + Args: + boxes (torch.Tensor): rbboxes. format: centers, dims, + angles(clockwise when positive) with the shape of [N, 5]. + query_boxes (torch.FloatTensor, shape=(K, 5)): + rbboxes to compute iou with boxes. + device_id (int, optional): Defaults to 0. Device to use. + criterion (int, optional): Indicate different type of iou. + -1 indicate `area_inter / (area1 + area2 - area_inter)`, + 0 indicate `area_inter / area1`, + 1 indicate `area_inter / area2`. + + Returns: + np.ndarray: IoU results. + """ + boxes = boxes.astype(np.float32) + query_boxes = query_boxes.astype(np.float32) + N = boxes.shape[0] + K = query_boxes.shape[0] + iou = np.zeros((N, K), dtype=np.float32) + if N == 0 or K == 0: + return iou + threadsPerBlock = 8 * 8 + cuda.select_device(device_id) + blockspergrid = (div_up(N, threadsPerBlock), div_up(K, threadsPerBlock)) + + stream = cuda.stream() + with stream.auto_synchronize(): + boxes_dev = cuda.to_device(boxes.reshape([-1]), stream) + query_boxes_dev = cuda.to_device(query_boxes.reshape([-1]), stream) + iou_dev = cuda.to_device(iou.reshape([-1]), stream) + rotate_iou_kernel_eval[blockspergrid, threadsPerBlock, + stream](N, K, boxes_dev, query_boxes_dev, + iou_dev, criterion) + iou_dev.copy_to_host(iou.reshape([-1]), stream=stream) + return iou.astype(boxes.dtype) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/lyft_eval.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/lyft_eval.py new file mode 100644 index 000000000..47c5cd6a6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/lyft_eval.py @@ -0,0 +1,285 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import mmcv +import numpy as np +from lyft_dataset_sdk.eval.detection.mAP_evaluation import (Box3D, get_ap, + get_class_names, + get_ious, + group_by_key, + wrap_in_box) +from mmcv.utils import print_log +from terminaltables import AsciiTable + + +def load_lyft_gts(lyft, data_root, eval_split, logger=None): + """Loads ground truth boxes from database. + + Args: + lyft (:obj:`LyftDataset`): Lyft class in the sdk. + data_root (str): Root of data for reading splits. + eval_split (str): Name of the split for evaluation. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + + Returns: + list[dict]: List of annotation dictionaries. + """ + split_scenes = mmcv.list_from_file( + osp.join(data_root, f'{eval_split}.txt')) + + # Read out all sample_tokens in DB. + sample_tokens_all = [s['token'] for s in lyft.sample] + assert len(sample_tokens_all) > 0, 'Error: Database has no samples!' + + if eval_split == 'test': + # Check that you aren't trying to cheat :) + assert len(lyft.sample_annotation) > 0, \ + 'Error: You are trying to evaluate on the test set \ + but you do not have the annotations!' + + sample_tokens = [] + for sample_token in sample_tokens_all: + scene_token = lyft.get('sample', sample_token)['scene_token'] + scene_record = lyft.get('scene', scene_token) + if scene_record['name'] in split_scenes: + sample_tokens.append(sample_token) + + all_annotations = [] + + print_log('Loading ground truth annotations...', logger=logger) + # Load annotations and filter predictions and annotations. + for sample_token in mmcv.track_iter_progress(sample_tokens): + sample = lyft.get('sample', sample_token) + sample_annotation_tokens = sample['anns'] + for sample_annotation_token in sample_annotation_tokens: + # Get label name in detection task and filter unused labels. + sample_annotation = \ + lyft.get('sample_annotation', sample_annotation_token) + detection_name = sample_annotation['category_name'] + if detection_name is None: + continue + annotation = { + 'sample_token': sample_token, + 'translation': sample_annotation['translation'], + 'size': sample_annotation['size'], + 'rotation': sample_annotation['rotation'], + 'name': detection_name, + } + all_annotations.append(annotation) + + return all_annotations + + +def load_lyft_predictions(res_path): + """Load Lyft predictions from json file. + + Args: + res_path (str): Path of result json file recording detections. + + Returns: + list[dict]: List of prediction dictionaries. + """ + predictions = mmcv.load(res_path) + predictions = predictions['results'] + all_preds = [] + for sample_token in predictions.keys(): + all_preds.extend(predictions[sample_token]) + return all_preds + + +def lyft_eval(lyft, data_root, res_path, eval_set, output_dir, logger=None): + """Evaluation API for Lyft dataset. + + Args: + lyft (:obj:`LyftDataset`): Lyft class in the sdk. + data_root (str): Root of data for reading splits. + res_path (str): Path of result json file recording detections. + eval_set (str): Name of the split for evaluation. + output_dir (str): Output directory for output json files. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + + Returns: + dict[str, float]: The evaluation results. + """ + # evaluate by lyft metrics + gts = load_lyft_gts(lyft, data_root, eval_set, logger) + predictions = load_lyft_predictions(res_path) + + class_names = get_class_names(gts) + print('Calculating mAP@0.5:0.95...') + + iou_thresholds = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] + metrics = {} + average_precisions = \ + get_classwise_aps(gts, predictions, class_names, iou_thresholds) + APs_data = [['IOU', 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]] + + mAPs = np.mean(average_precisions, axis=0) + mAPs_cate = np.mean(average_precisions, axis=1) + final_mAP = np.mean(mAPs) + + metrics['average_precisions'] = average_precisions.tolist() + metrics['mAPs'] = mAPs.tolist() + metrics['Final mAP'] = float(final_mAP) + metrics['class_names'] = class_names + metrics['mAPs_cate'] = mAPs_cate.tolist() + + APs_data = [['class', 'mAP@0.5:0.95']] + for i in range(len(class_names)): + row = [class_names[i], round(mAPs_cate[i], 3)] + APs_data.append(row) + APs_data.append(['Overall', round(final_mAP, 3)]) + APs_table = AsciiTable(APs_data, title='mAPs@0.5:0.95') + APs_table.inner_footing_row_border = True + print_log(APs_table.table, logger=logger) + + res_path = osp.join(output_dir, 'lyft_metrics.json') + mmcv.dump(metrics, res_path) + return metrics + + +def get_classwise_aps(gt, predictions, class_names, iou_thresholds): + """Returns an array with an average precision per class. + + Note: Ground truth and predictions should have the following format. + + .. code-block:: + + gt = [{ + 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207 + fbb039a550991a5149214f98cec136ac', + 'translation': [974.2811881299899, 1714.6815014457964, + -23.689857123368846], + 'size': [1.796, 4.488, 1.664], + 'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121], + 'name': 'car' + }] + + predictions = [{ + 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207 + fbb039a550991a5149214f98cec136ac', + 'translation': [971.8343488872263, 1713.6816097857359, + -25.82534357061308], + 'size': [2.519726579986132, 7.810161372666739, 3.483438286096803], + 'rotation': [0.10913582721095375, 0.04099572636992043, + 0.01927712319721745, 1.029328402625659], + 'name': 'car', + 'score': 0.3077029437237213 + }] + + Args: + gt (list[dict]): list of dictionaries in the format described below. + predictions (list[dict]): list of dictionaries in the format + described below. + class_names (list[str]): list of the class names. + iou_thresholds (list[float]): IOU thresholds used to calculate + TP / FN + + Returns: + np.ndarray: an array with an average precision per class. + """ + assert all([0 <= iou_th <= 1 for iou_th in iou_thresholds]) + + gt_by_class_name = group_by_key(gt, 'name') + pred_by_class_name = group_by_key(predictions, 'name') + + average_precisions = np.zeros((len(class_names), len(iou_thresholds))) + + for class_id, class_name in enumerate(class_names): + if class_name in pred_by_class_name: + recalls, precisions, average_precision = get_single_class_aps( + gt_by_class_name[class_name], pred_by_class_name[class_name], + iou_thresholds) + average_precisions[class_id, :] = average_precision + + return average_precisions + + +def get_single_class_aps(gt, predictions, iou_thresholds): + """Compute recall and precision for all iou thresholds. Adapted from + LyftDatasetDevkit. + + Args: + gt (list[dict]): list of dictionaries in the format described above. + predictions (list[dict]): list of dictionaries in the format + described below. + iou_thresholds (list[float]): IOU thresholds used to calculate + TP / FN + + Returns: + tuple[np.ndarray]: Returns (recalls, precisions, average precisions) + for each class. + """ + num_gts = len(gt) + image_gts = group_by_key(gt, 'sample_token') + image_gts = wrap_in_box(image_gts) + + sample_gt_checked = { + sample_token: np.zeros((len(boxes), len(iou_thresholds))) + for sample_token, boxes in image_gts.items() + } + + predictions = sorted(predictions, key=lambda x: x['score'], reverse=True) + + # go down dets and mark TPs and FPs + num_predictions = len(predictions) + tps = np.zeros((num_predictions, len(iou_thresholds))) + fps = np.zeros((num_predictions, len(iou_thresholds))) + + for prediction_index, prediction in enumerate(predictions): + predicted_box = Box3D(**prediction) + + sample_token = prediction['sample_token'] + + max_overlap = -np.inf + jmax = -1 + + if sample_token in image_gts: + gt_boxes = image_gts[sample_token] + # gt_boxes per sample + gt_checked = sample_gt_checked[sample_token] + # gt flags per sample + else: + gt_boxes = [] + gt_checked = None + + if len(gt_boxes) > 0: + overlaps = get_ious(gt_boxes, predicted_box) + + max_overlap = np.max(overlaps) + + jmax = np.argmax(overlaps) + + for i, iou_threshold in enumerate(iou_thresholds): + if max_overlap > iou_threshold: + if gt_checked[jmax, i] == 0: + tps[prediction_index, i] = 1.0 + gt_checked[jmax, i] = 1 + else: + fps[prediction_index, i] = 1.0 + else: + fps[prediction_index, i] = 1.0 + + # compute precision recall + fps = np.cumsum(fps, axis=0) + tps = np.cumsum(tps, axis=0) + + recalls = tps / float(num_gts) + # avoid divide by zero in case the first detection + # matches a difficult ground truth + precisions = tps / np.maximum(tps + fps, np.finfo(np.float64).eps) + + aps = [] + for i in range(len(iou_thresholds)): + recall = recalls[:, i] + precision = precisions[:, i] + assert np.all(0 <= recall) & np.all(recall <= 1) + assert np.all(0 <= precision) & np.all(precision <= 1) + ap = get_ap(recall, precision) + aps.append(ap) + + aps = np.array(aps) + + return recalls, precisions, aps diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/__init__.py new file mode 100644 index 000000000..c98ea835b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .evaluate_semantic_instance import evaluate_matches, scannet_eval + +__all__ = ['scannet_eval', 'evaluate_matches'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/evaluate_semantic_instance.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/evaluate_semantic_instance.py new file mode 100644 index 000000000..e4b94395f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/evaluate_semantic_instance.py @@ -0,0 +1,347 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# adapted from https://github.com/ScanNet/ScanNet/blob/master/BenchmarkScripts/3d_evaluation/evaluate_semantic_instance.py # noqa +from copy import deepcopy + +import numpy as np + +from . import util_3d + + +def evaluate_matches(matches, class_labels, options): + """Evaluate instance segmentation from matched gt and predicted instances + for all scenes. + + Args: + matches (dict): Contains gt2pred and pred2gt infos for every scene. + class_labels (tuple[str]): Class names. + options (dict): ScanNet evaluator options. See get_options. + + Returns: + np.array: Average precision scores for all thresholds and categories. + """ + overlaps = options['overlaps'] + min_region_sizes = [options['min_region_sizes'][0]] + dist_threshes = [options['distance_threshes'][0]] + dist_confs = [options['distance_confs'][0]] + + # results: class x overlap + ap = np.zeros((len(dist_threshes), len(class_labels), len(overlaps)), + np.float) + for di, (min_region_size, distance_thresh, distance_conf) in enumerate( + zip(min_region_sizes, dist_threshes, dist_confs)): + for oi, overlap_th in enumerate(overlaps): + pred_visited = {} + for m in matches: + for label_name in class_labels: + for p in matches[m]['pred'][label_name]: + if 'filename' in p: + pred_visited[p['filename']] = False + for li, label_name in enumerate(class_labels): + y_true = np.empty(0) + y_score = np.empty(0) + hard_false_negatives = 0 + has_gt = False + has_pred = False + for m in matches: + pred_instances = matches[m]['pred'][label_name] + gt_instances = matches[m]['gt'][label_name] + # filter groups in ground truth + gt_instances = [ + gt for gt in gt_instances + if gt['instance_id'] >= 1000 and gt['vert_count'] >= + min_region_size and gt['med_dist'] <= distance_thresh + and gt['dist_conf'] >= distance_conf + ] + if gt_instances: + has_gt = True + if pred_instances: + has_pred = True + + cur_true = np.ones(len(gt_instances)) + cur_score = np.ones(len(gt_instances)) * (-float('inf')) + cur_match = np.zeros(len(gt_instances), dtype=np.bool) + # collect matches + for (gti, gt) in enumerate(gt_instances): + found_match = False + for pred in gt['matched_pred']: + # greedy assignments + if pred_visited[pred['filename']]: + continue + overlap = float(pred['intersection']) / ( + gt['vert_count'] + pred['vert_count'] - + pred['intersection']) + if overlap > overlap_th: + confidence = pred['confidence'] + # if already have a prediction for this gt, + # the prediction with the lower score is automatically a false positive # noqa + if cur_match[gti]: + max_score = max(cur_score[gti], confidence) + min_score = min(cur_score[gti], confidence) + cur_score[gti] = max_score + # append false positive + cur_true = np.append(cur_true, 0) + cur_score = np.append(cur_score, min_score) + cur_match = np.append(cur_match, True) + # otherwise set score + else: + found_match = True + cur_match[gti] = True + cur_score[gti] = confidence + pred_visited[pred['filename']] = True + if not found_match: + hard_false_negatives += 1 + # remove non-matched ground truth instances + cur_true = cur_true[cur_match] + cur_score = cur_score[cur_match] + + # collect non-matched predictions as false positive + for pred in pred_instances: + found_gt = False + for gt in pred['matched_gt']: + overlap = float(gt['intersection']) / ( + gt['vert_count'] + pred['vert_count'] - + gt['intersection']) + if overlap > overlap_th: + found_gt = True + break + if not found_gt: + num_ignore = pred['void_intersection'] + for gt in pred['matched_gt']: + # group? + if gt['instance_id'] < 1000: + num_ignore += gt['intersection'] + # small ground truth instances + if gt['vert_count'] < min_region_size or gt[ + 'med_dist'] > distance_thresh or gt[ + 'dist_conf'] < distance_conf: + num_ignore += gt['intersection'] + proportion_ignore = float( + num_ignore) / pred['vert_count'] + # if not ignored append false positive + if proportion_ignore <= overlap_th: + cur_true = np.append(cur_true, 0) + confidence = pred['confidence'] + cur_score = np.append(cur_score, confidence) + + # append to overall results + y_true = np.append(y_true, cur_true) + y_score = np.append(y_score, cur_score) + + # compute average precision + if has_gt and has_pred: + # compute precision recall curve first + + # sorting and cumsum + score_arg_sort = np.argsort(y_score) + y_score_sorted = y_score[score_arg_sort] + y_true_sorted = y_true[score_arg_sort] + y_true_sorted_cumsum = np.cumsum(y_true_sorted) + + # unique thresholds + (thresholds, unique_indices) = np.unique( + y_score_sorted, return_index=True) + num_prec_recall = len(unique_indices) + 1 + + # prepare precision recall + num_examples = len(y_score_sorted) + # follow https://github.com/ScanNet/ScanNet/pull/26 ? # noqa + num_true_examples = y_true_sorted_cumsum[-1] if len( + y_true_sorted_cumsum) > 0 else 0 + precision = np.zeros(num_prec_recall) + recall = np.zeros(num_prec_recall) + + # deal with the first point + y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0) + # deal with remaining + for idx_res, idx_scores in enumerate(unique_indices): + cumsum = y_true_sorted_cumsum[idx_scores - 1] + tp = num_true_examples - cumsum + fp = num_examples - idx_scores - tp + fn = cumsum + hard_false_negatives + p = float(tp) / (tp + fp) + r = float(tp) / (tp + fn) + precision[idx_res] = p + recall[idx_res] = r + + # first point in curve is artificial + precision[-1] = 1. + recall[-1] = 0. + + # compute average of precision-recall curve + recall_for_conv = np.copy(recall) + recall_for_conv = np.append(recall_for_conv[0], + recall_for_conv) + recall_for_conv = np.append(recall_for_conv, 0.) + + stepWidths = np.convolve(recall_for_conv, [-0.5, 0, 0.5], + 'valid') + # integrate is now simply a dot product + ap_current = np.dot(precision, stepWidths) + + elif has_gt: + ap_current = 0.0 + else: + ap_current = float('nan') + ap[di, li, oi] = ap_current + return ap + + +def compute_averages(aps, options, class_labels): + """Averages AP scores for all categories. + + Args: + aps (np.array): AP scores for all thresholds and categories. + options (dict): ScanNet evaluator options. See get_options. + class_labels (tuple[str]): Class names. + + Returns: + dict: Overall and per-category AP scores. + """ + d_inf = 0 + o50 = np.where(np.isclose(options['overlaps'], 0.5)) + o25 = np.where(np.isclose(options['overlaps'], 0.25)) + o_all_but25 = np.where( + np.logical_not(np.isclose(options['overlaps'], 0.25))) + avg_dict = {} + avg_dict['all_ap'] = np.nanmean(aps[d_inf, :, o_all_but25]) + avg_dict['all_ap_50%'] = np.nanmean(aps[d_inf, :, o50]) + avg_dict['all_ap_25%'] = np.nanmean(aps[d_inf, :, o25]) + avg_dict['classes'] = {} + for (li, label_name) in enumerate(class_labels): + avg_dict['classes'][label_name] = {} + avg_dict['classes'][label_name]['ap'] = np.average(aps[d_inf, li, + o_all_but25]) + avg_dict['classes'][label_name]['ap50%'] = np.average(aps[d_inf, li, + o50]) + avg_dict['classes'][label_name]['ap25%'] = np.average(aps[d_inf, li, + o25]) + return avg_dict + + +def assign_instances_for_scan(pred_info, gt_ids, options, valid_class_ids, + class_labels, id_to_label): + """Assign gt and predicted instances for a single scene. + + Args: + pred_info (dict): Predicted masks, labels and scores. + gt_ids (np.array): Ground truth instance masks. + options (dict): ScanNet evaluator options. See get_options. + valid_class_ids (tuple[int]): Ids of valid categories. + class_labels (tuple[str]): Class names. + id_to_label (dict[int, str]): Mapping of valid class id to class label. + + Returns: + dict: Per class assigned gt to predicted instances. + dict: Per class assigned predicted to gt instances. + """ + # get gt instances + gt_instances = util_3d.get_instances(gt_ids, valid_class_ids, class_labels, + id_to_label) + # associate + gt2pred = deepcopy(gt_instances) + for label in gt2pred: + for gt in gt2pred[label]: + gt['matched_pred'] = [] + pred2gt = {} + for label in class_labels: + pred2gt[label] = [] + num_pred_instances = 0 + # mask of void labels in the ground truth + bool_void = np.logical_not(np.in1d(gt_ids // 1000, valid_class_ids)) + # go through all prediction masks + for pred_mask_file in pred_info: + label_id = int(pred_info[pred_mask_file]['label_id']) + conf = pred_info[pred_mask_file]['conf'] + if not label_id in id_to_label: # noqa E713 + continue + label_name = id_to_label[label_id] + # read the mask + pred_mask = pred_info[pred_mask_file]['mask'] + if len(pred_mask) != len(gt_ids): + raise ValueError('len(pred_mask) != len(gt_ids)') + # convert to binary + pred_mask = np.not_equal(pred_mask, 0) + num = np.count_nonzero(pred_mask) + if num < options['min_region_sizes'][0]: + continue # skip if empty + + pred_instance = {} + pred_instance['filename'] = pred_mask_file + pred_instance['pred_id'] = num_pred_instances + pred_instance['label_id'] = label_id + pred_instance['vert_count'] = num + pred_instance['confidence'] = conf + pred_instance['void_intersection'] = np.count_nonzero( + np.logical_and(bool_void, pred_mask)) + + # matched gt instances + matched_gt = [] + # go through all gt instances with matching label + for (gt_num, gt_inst) in enumerate(gt2pred[label_name]): + intersection = np.count_nonzero( + np.logical_and(gt_ids == gt_inst['instance_id'], pred_mask)) + if intersection > 0: + gt_copy = gt_inst.copy() + pred_copy = pred_instance.copy() + gt_copy['intersection'] = intersection + pred_copy['intersection'] = intersection + matched_gt.append(gt_copy) + gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy) + pred_instance['matched_gt'] = matched_gt + num_pred_instances += 1 + pred2gt[label_name].append(pred_instance) + + return gt2pred, pred2gt + + +def scannet_eval(preds, gts, options, valid_class_ids, class_labels, + id_to_label): + """Evaluate instance segmentation in ScanNet protocol. + + Args: + preds (list[dict]): Per scene predictions of mask, label and + confidence. + gts (list[np.array]): Per scene ground truth instance masks. + options (dict): ScanNet evaluator options. See get_options. + valid_class_ids (tuple[int]): Ids of valid categories. + class_labels (tuple[str]): Class names. + id_to_label (dict[int, str]): Mapping of valid class id to class label. + + Returns: + dict: Overall and per-category AP scores. + """ + options = get_options(options) + matches = {} + for i, (pred, gt) in enumerate(zip(preds, gts)): + matches_key = i + # assign gt to predictions + gt2pred, pred2gt = assign_instances_for_scan(pred, gt, options, + valid_class_ids, + class_labels, id_to_label) + matches[matches_key] = {} + matches[matches_key]['gt'] = gt2pred + matches[matches_key]['pred'] = pred2gt + + ap_scores = evaluate_matches(matches, class_labels, options) + avgs = compute_averages(ap_scores, options, class_labels) + return avgs + + +def get_options(options=None): + """Set ScanNet evaluator options. + + Args: + options (dict, optional): Not default options. Default: None. + + Returns: + dict: Updated options with all 4 keys. + """ + assert options is None or isinstance(options, dict) + _options = dict( + overlaps=np.append(np.arange(0.5, 0.95, 0.05), 0.25), + min_region_sizes=np.array([100]), + distance_threshes=np.array([float('inf')]), + distance_confs=np.array([-float('inf')])) + if options is not None: + _options.update(options) + return _options diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/util_3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/util_3d.py new file mode 100644 index 000000000..527d34126 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/scannet_utils/util_3d.py @@ -0,0 +1,84 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# adapted from https://github.com/ScanNet/ScanNet/blob/master/BenchmarkScripts/util_3d.py # noqa +import json + +import numpy as np + + +class Instance: + """Single instance for ScanNet evaluator. + + Args: + mesh_vert_instances (np.array): Instance ids for each point. + instance_id: Id of single instance. + """ + instance_id = 0 + label_id = 0 + vert_count = 0 + med_dist = -1 + dist_conf = 0.0 + + def __init__(self, mesh_vert_instances, instance_id): + if instance_id == -1: + return + self.instance_id = int(instance_id) + self.label_id = int(self.get_label_id(instance_id)) + self.vert_count = int( + self.get_instance_verts(mesh_vert_instances, instance_id)) + + @staticmethod + def get_label_id(instance_id): + return int(instance_id // 1000) + + @staticmethod + def get_instance_verts(mesh_vert_instances, instance_id): + return (mesh_vert_instances == instance_id).sum() + + def to_json(self): + return json.dumps( + self, default=lambda o: o.__dict__, sort_keys=True, indent=4) + + def to_dict(self): + dict = {} + dict['instance_id'] = self.instance_id + dict['label_id'] = self.label_id + dict['vert_count'] = self.vert_count + dict['med_dist'] = self.med_dist + dict['dist_conf'] = self.dist_conf + return dict + + def from_json(self, data): + self.instance_id = int(data['instance_id']) + self.label_id = int(data['label_id']) + self.vert_count = int(data['vert_count']) + if 'med_dist' in data: + self.med_dist = float(data['med_dist']) + self.dist_conf = float(data['dist_conf']) + + def __str__(self): + return '(' + str(self.instance_id) + ')' + + +def get_instances(ids, class_ids, class_labels, id2label): + """Transform gt instance mask to Instance objects. + + Args: + ids (np.array): Instance ids for each point. + class_ids: (tuple[int]): Ids of valid categories. + class_labels (tuple[str]): Class names. + id2label: (dict[int, str]): Mapping of valid class id to class label. + + Returns: + dict [str, list]: Instance objects grouped by class label. + """ + instances = {} + for label in class_labels: + instances[label] = [] + instance_ids = np.unique(ids) + for id in instance_ids: + if id == 0: + continue + inst = Instance(ids, id) + if inst.label_id in class_ids: + instances[id2label[inst.label_id]].append(inst.to_dict()) + return instances diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/seg_eval.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/seg_eval.py new file mode 100644 index 000000000..4a3166d68 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/seg_eval.py @@ -0,0 +1,131 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +from mmcv.utils import print_log +from terminaltables import AsciiTable + + +def fast_hist(preds, labels, num_classes): + """Compute the confusion matrix for every batch. + + Args: + preds (np.ndarray): Prediction labels of points with shape of + (num_points, ). + labels (np.ndarray): Ground truth labels of points with shape of + (num_points, ). + num_classes (int): number of classes + + Returns: + np.ndarray: Calculated confusion matrix. + """ + + k = (labels >= 0) & (labels < num_classes) + bin_count = np.bincount( + num_classes * labels[k].astype(int) + preds[k], + minlength=num_classes**2) + return bin_count[:num_classes**2].reshape(num_classes, num_classes) + + +def per_class_iou(hist): + """Compute the per class iou. + + Args: + hist(np.ndarray): Overall confusion martix + (num_classes, num_classes ). + + Returns: + np.ndarray: Calculated per class iou + """ + + return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) + + +def get_acc(hist): + """Compute the overall accuracy. + + Args: + hist(np.ndarray): Overall confusion martix + (num_classes, num_classes ). + + Returns: + float: Calculated overall acc + """ + + return np.diag(hist).sum() / hist.sum() + + +def get_acc_cls(hist): + """Compute the class average accuracy. + + Args: + hist(np.ndarray): Overall confusion martix + (num_classes, num_classes ). + + Returns: + float: Calculated class average acc + """ + + return np.nanmean(np.diag(hist) / hist.sum(axis=1)) + + +def seg_eval(gt_labels, seg_preds, label2cat, ignore_index, logger=None): + """Semantic Segmentation Evaluation. + + Evaluate the result of the Semantic Segmentation. + + Args: + gt_labels (list[torch.Tensor]): Ground truth labels. + seg_preds (list[torch.Tensor]): Predictions. + label2cat (dict): Map from label to category name. + ignore_index (int): Index that will be ignored in evaluation. + logger (logging.Logger | str, optional): The way to print the mAP + summary. See `mmdet.utils.print_log()` for details. Default: None. + + Returns: + dict[str, float]: Dict of results. + """ + assert len(seg_preds) == len(gt_labels) + num_classes = len(label2cat) + + hist_list = [] + for i in range(len(gt_labels)): + gt_seg = gt_labels[i].clone().numpy().astype(np.int) + pred_seg = seg_preds[i].clone().numpy().astype(np.int) + + # filter out ignored points + pred_seg[gt_seg == ignore_index] = -1 + gt_seg[gt_seg == ignore_index] = -1 + + # calculate one instance result + hist_list.append(fast_hist(pred_seg, gt_seg, num_classes)) + + iou = per_class_iou(sum(hist_list)) + miou = np.nanmean(iou) + acc = get_acc(sum(hist_list)) + acc_cls = get_acc_cls(sum(hist_list)) + + header = ['classes'] + for i in range(len(label2cat)): + header.append(label2cat[i]) + header.extend(['miou', 'acc', 'acc_cls']) + + ret_dict = dict() + table_columns = [['results']] + for i in range(len(label2cat)): + ret_dict[label2cat[i]] = float(iou[i]) + table_columns.append([f'{iou[i]:.4f}']) + ret_dict['miou'] = float(miou) + ret_dict['acc'] = float(acc) + ret_dict['acc_cls'] = float(acc_cls) + + table_columns.append([f'{miou:.4f}']) + table_columns.append([f'{acc:.4f}']) + table_columns.append([f'{acc_cls:.4f}']) + + table_data = [header] + table_rows = list(zip(*table_columns)) + table_data += table_rows + table = AsciiTable(table_data) + table.inner_footing_row_border = True + print_log('\n' + table.table, logger=logger) + + return ret_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/__init__.py new file mode 100644 index 000000000..72d3a9bd1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .prediction_kitti_to_waymo import KITTI2Waymo + +__all__ = ['KITTI2Waymo'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/prediction_kitti_to_waymo.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/prediction_kitti_to_waymo.py new file mode 100644 index 000000000..205c24cbc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/evaluation/waymo_utils/prediction_kitti_to_waymo.py @@ -0,0 +1,263 @@ +# Copyright (c) OpenMMLab. All rights reserved. +r"""Adapted from `Waymo to KITTI converter + `_. +""" + +try: + from waymo_open_dataset import dataset_pb2 as open_dataset +except ImportError: + raise ImportError( + 'Please run "pip install waymo-open-dataset-tf-2-1-0==1.2.0" ' + 'to install the official devkit first.') + +from glob import glob +from os.path import join + +import mmcv +import numpy as np +import tensorflow as tf +from waymo_open_dataset import label_pb2 +from waymo_open_dataset.protos import metrics_pb2 + + +class KITTI2Waymo(object): + """KITTI predictions to Waymo converter. + + This class serves as the converter to change predictions from KITTI to + Waymo format. + + Args: + kitti_result_files (list[dict]): Predictions in KITTI format. + waymo_tfrecords_dir (str): Directory to load waymo raw data. + waymo_results_save_dir (str): Directory to save converted predictions + in waymo format (.bin files). + waymo_results_final_path (str): Path to save combined + predictions in waymo format (.bin file), like 'a/b/c.bin'. + prefix (str): Prefix of filename. In general, 0 for training, 1 for + validation and 2 for testing. + workers (str): Number of parallel processes. + """ + + def __init__(self, + kitti_result_files, + waymo_tfrecords_dir, + waymo_results_save_dir, + waymo_results_final_path, + prefix, + workers=64): + + self.kitti_result_files = kitti_result_files + self.waymo_tfrecords_dir = waymo_tfrecords_dir + self.waymo_results_save_dir = waymo_results_save_dir + self.waymo_results_final_path = waymo_results_final_path + self.prefix = prefix + self.workers = int(workers) + self.name2idx = {} + for idx, result in enumerate(kitti_result_files): + if len(result['sample_idx']) > 0: + self.name2idx[str(result['sample_idx'][0])] = idx + + # turn on eager execution for older tensorflow versions + if int(tf.__version__.split('.')[0]) < 2: + tf.enable_eager_execution() + + self.k2w_cls_map = { + 'Car': label_pb2.Label.TYPE_VEHICLE, + 'Pedestrian': label_pb2.Label.TYPE_PEDESTRIAN, + 'Sign': label_pb2.Label.TYPE_SIGN, + 'Cyclist': label_pb2.Label.TYPE_CYCLIST, + } + + self.T_ref_to_front_cam = np.array([[0.0, 0.0, 1.0, 0.0], + [-1.0, 0.0, 0.0, 0.0], + [0.0, -1.0, 0.0, 0.0], + [0.0, 0.0, 0.0, 1.0]]) + + self.get_file_names() + self.create_folder() + + def get_file_names(self): + """Get file names of waymo raw data.""" + self.waymo_tfrecord_pathnames = sorted( + glob(join(self.waymo_tfrecords_dir, '*.tfrecord'))) + print(len(self.waymo_tfrecord_pathnames), 'tfrecords found.') + + def create_folder(self): + """Create folder for data conversion.""" + mmcv.mkdir_or_exist(self.waymo_results_save_dir) + + def parse_objects(self, kitti_result, T_k2w, context_name, + frame_timestamp_micros): + """Parse one prediction with several instances in kitti format and + convert them to `Object` proto. + + Args: + kitti_result (dict): Predictions in kitti format. + + - name (np.ndarray): Class labels of predictions. + - dimensions (np.ndarray): Height, width, length of boxes. + - location (np.ndarray): Bottom center of boxes (x, y, z). + - rotation_y (np.ndarray): Orientation of boxes. + - score (np.ndarray): Scores of predictions. + T_k2w (np.ndarray): Transformation matrix from kitti to waymo. + context_name (str): Context name of the frame. + frame_timestamp_micros (int): Frame timestamp. + + Returns: + :obj:`Object`: Predictions in waymo dataset Object proto. + """ + + def parse_one_object(instance_idx): + """Parse one instance in kitti format and convert them to `Object` + proto. + + Args: + instance_idx (int): Index of the instance to be converted. + + Returns: + :obj:`Object`: Predicted instance in waymo dataset + Object proto. + """ + cls = kitti_result['name'][instance_idx] + length = round(kitti_result['dimensions'][instance_idx, 0], 4) + height = round(kitti_result['dimensions'][instance_idx, 1], 4) + width = round(kitti_result['dimensions'][instance_idx, 2], 4) + x = round(kitti_result['location'][instance_idx, 0], 4) + y = round(kitti_result['location'][instance_idx, 1], 4) + z = round(kitti_result['location'][instance_idx, 2], 4) + rotation_y = round(kitti_result['rotation_y'][instance_idx], 4) + score = round(kitti_result['score'][instance_idx], 4) + + # y: downwards; move box origin from bottom center (kitti) to + # true center (waymo) + y -= height / 2 + # frame transformation: kitti -> waymo + x, y, z = self.transform(T_k2w, x, y, z) + + # different conventions + heading = -(rotation_y + np.pi / 2) + while heading < -np.pi: + heading += 2 * np.pi + while heading > np.pi: + heading -= 2 * np.pi + + box = label_pb2.Label.Box() + box.center_x = x + box.center_y = y + box.center_z = z + box.length = length + box.width = width + box.height = height + box.heading = heading + + o = metrics_pb2.Object() + o.object.box.CopyFrom(box) + o.object.type = self.k2w_cls_map[cls] + o.score = score + + o.context_name = context_name + o.frame_timestamp_micros = frame_timestamp_micros + + return o + + objects = metrics_pb2.Objects() + + for instance_idx in range(len(kitti_result['name'])): + o = parse_one_object(instance_idx) + objects.objects.append(o) + + return objects + + def convert_one(self, file_idx): + """Convert action for single file. + + Args: + file_idx (int): Index of the file to be converted. + """ + file_pathname = self.waymo_tfrecord_pathnames[file_idx] + file_data = tf.data.TFRecordDataset(file_pathname, compression_type='') + + for frame_num, frame_data in enumerate(file_data): + frame = open_dataset.Frame() + frame.ParseFromString(bytearray(frame_data.numpy())) + + filename = f'{self.prefix}{file_idx:03d}{frame_num:03d}' + + for camera in frame.context.camera_calibrations: + # FRONT = 1, see dataset.proto for details + if camera.name == 1: + T_front_cam_to_vehicle = np.array( + camera.extrinsic.transform).reshape(4, 4) + + T_k2w = T_front_cam_to_vehicle @ self.T_ref_to_front_cam + + context_name = frame.context.name + frame_timestamp_micros = frame.timestamp_micros + + if filename in self.name2idx: + kitti_result = \ + self.kitti_result_files[self.name2idx[filename]] + objects = self.parse_objects(kitti_result, T_k2w, context_name, + frame_timestamp_micros) + else: + print(filename, 'not found.') + objects = metrics_pb2.Objects() + + with open( + join(self.waymo_results_save_dir, f'{filename}.bin'), + 'wb') as f: + f.write(objects.SerializeToString()) + + def convert(self): + """Convert action.""" + print('Start converting ...') + mmcv.track_parallel_progress(self.convert_one, range(len(self)), + self.workers) + print('\nFinished ...') + + # combine all files into one .bin + pathnames = sorted(glob(join(self.waymo_results_save_dir, '*.bin'))) + combined = self.combine(pathnames) + + with open(self.waymo_results_final_path, 'wb') as f: + f.write(combined.SerializeToString()) + + def __len__(self): + """Length of the filename list.""" + return len(self.waymo_tfrecord_pathnames) + + def transform(self, T, x, y, z): + """Transform the coordinates with matrix T. + + Args: + T (np.ndarray): Transformation matrix. + x(float): Coordinate in x axis. + y(float): Coordinate in y axis. + z(float): Coordinate in z axis. + + Returns: + list: Coordinates after transformation. + """ + pt_bef = np.array([x, y, z, 1.0]).reshape(4, 1) + pt_aft = np.matmul(T, pt_bef) + return pt_aft[:3].flatten().tolist() + + def combine(self, pathnames): + """Combine predictions in waymo format for each sample together. + + Args: + pathnames (str): Paths to save predictions. + + Returns: + :obj:`Objects`: Combined predictions in Objects proto. + """ + combined = metrics_pb2.Objects() + + for pathname in pathnames: + objects = metrics_pb2.Objects() + with open(pathname, 'rb') as f: + objects.ParseFromString(f.read()) + for o in objects.objects: + combined.objects.append(o) + + return combined diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/__init__.py new file mode 100644 index 000000000..73d2d8338 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/__init__.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_points import BasePoints +from .cam_points import CameraPoints +from .depth_points import DepthPoints +from .lidar_points import LiDARPoints + +__all__ = ['BasePoints', 'CameraPoints', 'DepthPoints', 'LiDARPoints'] + + +def get_points_type(points_type): + """Get the class of points according to coordinate type. + + Args: + points_type (str): The type of points coordinate. + The valid value are "CAMERA", "LIDAR", or "DEPTH". + + Returns: + class: Points type. + """ + if points_type == 'CAMERA': + points_cls = CameraPoints + elif points_type == 'LIDAR': + points_cls = LiDARPoints + elif points_type == 'DEPTH': + points_cls = DepthPoints + else: + raise ValueError('Only "points_type" of "CAMERA", "LIDAR", or "DEPTH"' + f' are supported, got {points_type}') + + return points_cls diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/base_points.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/base_points.py new file mode 100644 index 000000000..929fa21e6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/base_points.py @@ -0,0 +1,440 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from abc import abstractmethod + +import numpy as np +import torch + +from ..bbox.structures.utils import rotation_3d_in_axis + + +class BasePoints(object): + """Base class for Points. + + Args: + tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix. + points_dim (int, optional): Number of the dimension of a point. + Each row is (x, y, z). Defaults to 3. + attribute_dims (dict, optional): Dictionary to indicate the + meaning of extra dimension. Defaults to None. + + Attributes: + tensor (torch.Tensor): Float matrix of N x points_dim. + points_dim (int): Integer indicating the dimension of a point. + Each row is (x, y, z, ...). + attribute_dims (bool): Dictionary to indicate the meaning of extra + dimension. Defaults to None. + rotation_axis (int): Default rotation axis for points rotation. + """ + + def __init__(self, tensor, points_dim=3, attribute_dims=None): + if isinstance(tensor, torch.Tensor): + device = tensor.device + else: + device = torch.device('cpu') + tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) + if tensor.numel() == 0: + # Use reshape, so we don't end up creating a new tensor that + # does not depend on the inputs (and consequently confuses jit) + tensor = tensor.reshape((0, points_dim)).to( + dtype=torch.float32, device=device) + assert tensor.dim() == 2 and tensor.size(-1) == \ + points_dim, tensor.size() + + self.tensor = tensor + self.points_dim = points_dim + self.attribute_dims = attribute_dims + self.rotation_axis = 0 + + @property + def coord(self): + """torch.Tensor: Coordinates of each point in shape (N, 3).""" + return self.tensor[:, :3] + + @coord.setter + def coord(self, tensor): + """Set the coordinates of each point.""" + try: + tensor = tensor.reshape(self.shape[0], 3) + except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray + raise ValueError(f'got unexpected shape {tensor.shape}') + if not isinstance(tensor, torch.Tensor): + tensor = self.tensor.new_tensor(tensor) + self.tensor[:, :3] = tensor + + @property + def height(self): + """torch.Tensor: + A vector with height of each point in shape (N, 1), or None.""" + if self.attribute_dims is not None and \ + 'height' in self.attribute_dims.keys(): + return self.tensor[:, self.attribute_dims['height']] + else: + return None + + @height.setter + def height(self, tensor): + """Set the height of each point.""" + try: + tensor = tensor.reshape(self.shape[0]) + except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray + raise ValueError(f'got unexpected shape {tensor.shape}') + if not isinstance(tensor, torch.Tensor): + tensor = self.tensor.new_tensor(tensor) + if self.attribute_dims is not None and \ + 'height' in self.attribute_dims.keys(): + self.tensor[:, self.attribute_dims['height']] = tensor + else: + # add height attribute + if self.attribute_dims is None: + self.attribute_dims = dict() + attr_dim = self.shape[1] + self.tensor = torch.cat([self.tensor, tensor.unsqueeze(1)], dim=1) + self.attribute_dims.update(dict(height=attr_dim)) + self.points_dim += 1 + + @property + def color(self): + """torch.Tensor: + A vector with color of each point in shape (N, 3), or None.""" + if self.attribute_dims is not None and \ + 'color' in self.attribute_dims.keys(): + return self.tensor[:, self.attribute_dims['color']] + else: + return None + + @color.setter + def color(self, tensor): + """Set the color of each point.""" + try: + tensor = tensor.reshape(self.shape[0], 3) + except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray + raise ValueError(f'got unexpected shape {tensor.shape}') + if tensor.max() >= 256 or tensor.min() < 0: + warnings.warn('point got color value beyond [0, 255]') + if not isinstance(tensor, torch.Tensor): + tensor = self.tensor.new_tensor(tensor) + if self.attribute_dims is not None and \ + 'color' in self.attribute_dims.keys(): + self.tensor[:, self.attribute_dims['color']] = tensor + else: + # add color attribute + if self.attribute_dims is None: + self.attribute_dims = dict() + attr_dim = self.shape[1] + self.tensor = torch.cat([self.tensor, tensor], dim=1) + self.attribute_dims.update( + dict(color=[attr_dim, attr_dim + 1, attr_dim + 2])) + self.points_dim += 3 + + @property + def shape(self): + """torch.Shape: Shape of points.""" + return self.tensor.shape + + def shuffle(self): + """Shuffle the points. + + Returns: + torch.Tensor: The shuffled index. + """ + idx = torch.randperm(self.__len__(), device=self.tensor.device) + self.tensor = self.tensor[idx] + return idx + + def rotate(self, rotation, axis=None): + """Rotate points with the given rotation matrix or angle. + + Args: + rotation (float | np.ndarray | torch.Tensor): Rotation matrix + or angle. + axis (int, optional): Axis to rotate at. Defaults to None. + """ + if not isinstance(rotation, torch.Tensor): + rotation = self.tensor.new_tensor(rotation) + assert rotation.shape == torch.Size([3, 3]) or \ + rotation.numel() == 1, f'invalid rotation shape {rotation.shape}' + + if axis is None: + axis = self.rotation_axis + + if rotation.numel() == 1: + rotated_points, rot_mat_T = rotation_3d_in_axis( + self.tensor[:, :3][None], rotation, axis=axis, return_mat=True) + self.tensor[:, :3] = rotated_points.squeeze(0) + rot_mat_T = rot_mat_T.squeeze(0) + else: + # rotation.numel() == 9 + self.tensor[:, :3] = self.tensor[:, :3] @ rotation + rot_mat_T = rotation + + return rot_mat_T + + @abstractmethod + def flip(self, bev_direction='horizontal'): + """Flip the points along given BEV direction. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + """ + pass + + def translate(self, trans_vector): + """Translate points with the given translation vector. + + Args: + trans_vector (np.ndarray, torch.Tensor): Translation + vector of size 3 or nx3. + """ + if not isinstance(trans_vector, torch.Tensor): + trans_vector = self.tensor.new_tensor(trans_vector) + trans_vector = trans_vector.squeeze(0) + if trans_vector.dim() == 1: + assert trans_vector.shape[0] == 3 + elif trans_vector.dim() == 2: + assert trans_vector.shape[0] == self.tensor.shape[0] and \ + trans_vector.shape[1] == 3 + else: + raise NotImplementedError( + f'Unsupported translation vector of shape {trans_vector.shape}' + ) + self.tensor[:, :3] += trans_vector + + def in_range_3d(self, point_range): + """Check whether the points are in the given range. + + Args: + point_range (list | torch.Tensor): The range of point + (x_min, y_min, z_min, x_max, y_max, z_max) + + Note: + In the original implementation of SECOND, checking whether + a box in the range checks whether the points are in a convex + polygon, we try to reduce the burden for simpler cases. + + Returns: + torch.Tensor: A binary vector indicating whether each point is + inside the reference range. + """ + in_range_flags = ((self.tensor[:, 0] > point_range[0]) + & (self.tensor[:, 1] > point_range[1]) + & (self.tensor[:, 2] > point_range[2]) + & (self.tensor[:, 0] < point_range[3]) + & (self.tensor[:, 1] < point_range[4]) + & (self.tensor[:, 2] < point_range[5])) + return in_range_flags + + @property + def bev(self): + """torch.Tensor: BEV of the points in shape (N, 2).""" + return self.tensor[:, [0, 1]] + + def in_range_bev(self, point_range): + """Check whether the points are in the given range. + + Args: + point_range (list | torch.Tensor): The range of point + in order of (x_min, y_min, x_max, y_max). + + Returns: + torch.Tensor: Indicating whether each point is inside + the reference range. + """ + in_range_flags = ((self.bev[:, 0] > point_range[0]) + & (self.bev[:, 1] > point_range[1]) + & (self.bev[:, 0] < point_range[2]) + & (self.bev[:, 1] < point_range[3])) + return in_range_flags + + @abstractmethod + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`CoordMode`): The target Box mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BasePoints`: The converted box of the same type + in the `dst` mode. + """ + pass + + def scale(self, scale_factor): + """Scale the points with horizontal and vertical scaling factors. + + Args: + scale_factors (float): Scale factors to scale the points. + """ + self.tensor[:, :3] *= scale_factor + + def __getitem__(self, item): + """ + Note: + The following usage are allowed: + 1. `new_points = points[3]`: + return a `Points` that contains only one point. + 2. `new_points = points[2:10]`: + return a slice of points. + 3. `new_points = points[vector]`: + where vector is a torch.BoolTensor with `length = len(points)`. + Nonzero elements in the vector will be selected. + 4. `new_points = points[3:11, vector]`: + return a slice of points and attribute dims. + 5. `new_points = points[4:12, 2]`: + return a slice of points with single attribute. + Note that the returned Points might share storage with this Points, + subject to Pytorch's indexing semantics. + + Returns: + :obj:`BasePoints`: A new object of + :class:`BasePoints` after indexing. + """ + original_type = type(self) + if isinstance(item, int): + return original_type( + self.tensor[item].view(1, -1), + points_dim=self.points_dim, + attribute_dims=self.attribute_dims) + elif isinstance(item, tuple) and len(item) == 2: + if isinstance(item[1], slice): + start = 0 if item[1].start is None else item[1].start + stop = self.tensor.shape[1] if \ + item[1].stop is None else item[1].stop + step = 1 if item[1].step is None else item[1].step + item = list(item) + item[1] = list(range(start, stop, step)) + item = tuple(item) + elif isinstance(item[1], int): + item = list(item) + item[1] = [item[1]] + item = tuple(item) + p = self.tensor[item[0], item[1]] + + keep_dims = list( + set(item[1]).intersection(set(range(3, self.tensor.shape[1])))) + if self.attribute_dims is not None: + attribute_dims = self.attribute_dims.copy() + for key in self.attribute_dims.keys(): + cur_attribute_dims = attribute_dims[key] + if isinstance(cur_attribute_dims, int): + cur_attribute_dims = [cur_attribute_dims] + intersect_attr = list( + set(cur_attribute_dims).intersection(set(keep_dims))) + if len(intersect_attr) == 1: + attribute_dims[key] = intersect_attr[0] + elif len(intersect_attr) > 1: + attribute_dims[key] = intersect_attr + else: + attribute_dims.pop(key) + else: + attribute_dims = None + elif isinstance(item, (slice, np.ndarray, torch.Tensor)): + p = self.tensor[item] + attribute_dims = self.attribute_dims + else: + raise NotImplementedError(f'Invalid slice {item}!') + + assert p.dim() == 2, \ + f'Indexing on Points with {item} failed to return a matrix!' + return original_type( + p, points_dim=p.shape[1], attribute_dims=attribute_dims) + + def __len__(self): + """int: Number of points in the current object.""" + return self.tensor.shape[0] + + def __repr__(self): + """str: Return a strings that describes the object.""" + return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')' + + @classmethod + def cat(cls, points_list): + """Concatenate a list of Points into a single Points. + + Args: + points_list (list[:obj:`BasePoints`]): List of points. + + Returns: + :obj:`BasePoints`: The concatenated Points. + """ + assert isinstance(points_list, (list, tuple)) + if len(points_list) == 0: + return cls(torch.empty(0)) + assert all(isinstance(points, cls) for points in points_list) + + # use torch.cat (v.s. layers.cat) + # so the returned points never share storage with input + cat_points = cls( + torch.cat([p.tensor for p in points_list], dim=0), + points_dim=points_list[0].tensor.shape[1], + attribute_dims=points_list[0].attribute_dims) + return cat_points + + def to(self, device): + """Convert current points to a specific device. + + Args: + device (str | :obj:`torch.device`): The name of the device. + + Returns: + :obj:`BasePoints`: A new boxes object on the + specific device. + """ + original_type = type(self) + return original_type( + self.tensor.to(device), + points_dim=self.points_dim, + attribute_dims=self.attribute_dims) + + def clone(self): + """Clone the Points. + + Returns: + :obj:`BasePoints`: Box object with the same properties + as self. + """ + original_type = type(self) + return original_type( + self.tensor.clone(), + points_dim=self.points_dim, + attribute_dims=self.attribute_dims) + + @property + def device(self): + """str: The device of the points are on.""" + return self.tensor.device + + def __iter__(self): + """Yield a point as a Tensor of shape (4,) at a time. + + Returns: + torch.Tensor: A point of shape (4,). + """ + yield from self.tensor + + def new_point(self, data): + """Create a new point object with data. + + The new point and its tensor has the similar properties + as self and self.tensor, respectively. + + Args: + data (torch.Tensor | numpy.array | list): Data to be copied. + + Returns: + :obj:`BasePoints`: A new point object with ``data``, + the object's other properties are similar to ``self``. + """ + new_tensor = self.tensor.new_tensor(data) \ + if not isinstance(data, torch.Tensor) else data.to(self.device) + original_type = type(self) + return original_type( + new_tensor, + points_dim=self.points_dim, + attribute_dims=self.attribute_dims) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/cam_points.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/cam_points.py new file mode 100644 index 000000000..a57c3db1e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/cam_points.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_points import BasePoints + + +class CameraPoints(BasePoints): + """Points of instances in CAM coordinates. + + Args: + tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix. + points_dim (int, optional): Number of the dimension of a point. + Each row is (x, y, z). Defaults to 3. + attribute_dims (dict, optional): Dictionary to indicate the + meaning of extra dimension. Defaults to None. + + Attributes: + tensor (torch.Tensor): Float matrix of N x points_dim. + points_dim (int): Integer indicating the dimension of a point. + Each row is (x, y, z, ...). + attribute_dims (bool): Dictionary to indicate the meaning of extra + dimension. Defaults to None. + rotation_axis (int): Default rotation axis for points rotation. + """ + + def __init__(self, tensor, points_dim=3, attribute_dims=None): + super(CameraPoints, self).__init__( + tensor, points_dim=points_dim, attribute_dims=attribute_dims) + self.rotation_axis = 1 + + def flip(self, bev_direction='horizontal'): + """Flip the points along given BEV direction. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + """ + if bev_direction == 'horizontal': + self.tensor[:, 0] = -self.tensor[:, 0] + elif bev_direction == 'vertical': + self.tensor[:, 2] = -self.tensor[:, 2] + + @property + def bev(self): + """torch.Tensor: BEV of the points in shape (N, 2).""" + return self.tensor[:, [0, 2]] + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`CoordMode`): The target Point mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BasePoints`: The converted point of the same type + in the `dst` mode. + """ + from mmdet3d.core.bbox import Coord3DMode + return Coord3DMode.convert_point( + point=self, src=Coord3DMode.CAM, dst=dst, rt_mat=rt_mat) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/depth_points.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/depth_points.py new file mode 100644 index 000000000..2d9221fb2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/depth_points.py @@ -0,0 +1,58 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_points import BasePoints + + +class DepthPoints(BasePoints): + """Points of instances in DEPTH coordinates. + + Args: + tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix. + points_dim (int, optional): Number of the dimension of a point. + Each row is (x, y, z). Defaults to 3. + attribute_dims (dict, optional): Dictionary to indicate the + meaning of extra dimension. Defaults to None. + + Attributes: + tensor (torch.Tensor): Float matrix of N x points_dim. + points_dim (int): Integer indicating the dimension of a point. + Each row is (x, y, z, ...). + attribute_dims (bool): Dictionary to indicate the meaning of extra + dimension. Defaults to None. + rotation_axis (int): Default rotation axis for points rotation. + """ + + def __init__(self, tensor, points_dim=3, attribute_dims=None): + super(DepthPoints, self).__init__( + tensor, points_dim=points_dim, attribute_dims=attribute_dims) + self.rotation_axis = 2 + + def flip(self, bev_direction='horizontal'): + """Flip the points along given BEV direction. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + """ + if bev_direction == 'horizontal': + self.tensor[:, 0] = -self.tensor[:, 0] + elif bev_direction == 'vertical': + self.tensor[:, 1] = -self.tensor[:, 1] + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`CoordMode`): The target Point mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BasePoints`: The converted point of the same type + in the `dst` mode. + """ + from mmdet3d.core.bbox import Coord3DMode + return Coord3DMode.convert_point( + point=self, src=Coord3DMode.DEPTH, dst=dst, rt_mat=rt_mat) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/lidar_points.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/lidar_points.py new file mode 100644 index 000000000..ff4f57ab0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/points/lidar_points.py @@ -0,0 +1,58 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_points import BasePoints + + +class LiDARPoints(BasePoints): + """Points of instances in LIDAR coordinates. + + Args: + tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix. + points_dim (int, optional): Number of the dimension of a point. + Each row is (x, y, z). Defaults to 3. + attribute_dims (dict, optional): Dictionary to indicate the + meaning of extra dimension. Defaults to None. + + Attributes: + tensor (torch.Tensor): Float matrix of N x points_dim. + points_dim (int): Integer indicating the dimension of a point. + Each row is (x, y, z, ...). + attribute_dims (bool): Dictionary to indicate the meaning of extra + dimension. Defaults to None. + rotation_axis (int): Default rotation axis for points rotation. + """ + + def __init__(self, tensor, points_dim=3, attribute_dims=None): + super(LiDARPoints, self).__init__( + tensor, points_dim=points_dim, attribute_dims=attribute_dims) + self.rotation_axis = 2 + + def flip(self, bev_direction='horizontal'): + """Flip the points along given BEV direction. + + Args: + bev_direction (str): Flip direction (horizontal or vertical). + """ + if bev_direction == 'horizontal': + self.tensor[:, 1] = -self.tensor[:, 1] + elif bev_direction == 'vertical': + self.tensor[:, 0] = -self.tensor[:, 0] + + def convert_to(self, dst, rt_mat=None): + """Convert self to ``dst`` mode. + + Args: + dst (:obj:`CoordMode`): The target Point mode. + rt_mat (np.ndarray | torch.Tensor, optional): The rotation and + translation matrix between different coordinates. + Defaults to None. + The conversion from `src` coordinates to `dst` coordinates + usually comes along the change of sensors, e.g., from camera + to LiDAR. This requires a transformation matrix. + + Returns: + :obj:`BasePoints`: The converted point of the same type + in the `dst` mode. + """ + from mmdet3d.core.bbox import Coord3DMode + return Coord3DMode.convert_point( + point=self, src=Coord3DMode.LIDAR, dst=dst, rt_mat=rt_mat) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/__init__.py new file mode 100644 index 000000000..2fb534e06 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.core.post_processing import (merge_aug_bboxes, merge_aug_masks, + merge_aug_proposals, merge_aug_scores, + multiclass_nms) +from .box3d_nms import (aligned_3d_nms, box3d_multiclass_nms, circle_nms, + nms_bev, nms_normal_bev) +from .merge_augs import merge_aug_bboxes_3d + +__all__ = [ + 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes', + 'merge_aug_scores', 'merge_aug_masks', 'box3d_multiclass_nms', + 'aligned_3d_nms', 'merge_aug_bboxes_3d', 'circle_nms', 'nms_bev', + 'nms_normal_bev' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/box3d_nms.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/box3d_nms.py new file mode 100644 index 000000000..2d42085ed --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/box3d_nms.py @@ -0,0 +1,288 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numba +import numpy as np +import torch +from mmcv.ops import nms, nms_rotated + + +def box3d_multiclass_nms(mlvl_bboxes, + mlvl_bboxes_for_nms, + mlvl_scores, + score_thr, + max_num, + cfg, + mlvl_dir_scores=None, + mlvl_attr_scores=None, + mlvl_bboxes2d=None): + """Multi-class NMS for 3D boxes. The IoU used for NMS is defined as the 2D + IoU between BEV boxes. + + Args: + mlvl_bboxes (torch.Tensor): Multi-level boxes with shape (N, M). + M is the dimensions of boxes. + mlvl_bboxes_for_nms (torch.Tensor): Multi-level boxes with shape + (N, 5) ([x1, y1, x2, y2, ry]). N is the number of boxes. + The coordinate system of the BEV boxes is counterclockwise. + mlvl_scores (torch.Tensor): Multi-level boxes with shape + (N, C + 1). N is the number of boxes. C is the number of classes. + score_thr (float): Score threshold to filter boxes with low + confidence. + max_num (int): Maximum number of boxes will be kept. + cfg (dict): Configuration dict of NMS. + mlvl_dir_scores (torch.Tensor, optional): Multi-level scores + of direction classifier. Defaults to None. + mlvl_attr_scores (torch.Tensor, optional): Multi-level scores + of attribute classifier. Defaults to None. + mlvl_bboxes2d (torch.Tensor, optional): Multi-level 2D bounding + boxes. Defaults to None. + + Returns: + tuple[torch.Tensor]: Return results after nms, including 3D + bounding boxes, scores, labels, direction scores, attribute + scores (optional) and 2D bounding boxes (optional). + """ + # do multi class nms + # the fg class id range: [0, num_classes-1] + num_classes = mlvl_scores.shape[1] - 1 + bboxes = [] + scores = [] + labels = [] + dir_scores = [] + attr_scores = [] + bboxes2d = [] + for i in range(0, num_classes): + # get bboxes and scores of this class + cls_inds = mlvl_scores[:, i] > score_thr + if not cls_inds.any(): + continue + + _scores = mlvl_scores[cls_inds, i] + _bboxes_for_nms = mlvl_bboxes_for_nms[cls_inds, :] + + if cfg.use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + + selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr) + _mlvl_bboxes = mlvl_bboxes[cls_inds, :] + bboxes.append(_mlvl_bboxes[selected]) + scores.append(_scores[selected]) + cls_label = mlvl_bboxes.new_full((len(selected), ), + i, + dtype=torch.long) + labels.append(cls_label) + + if mlvl_dir_scores is not None: + _mlvl_dir_scores = mlvl_dir_scores[cls_inds] + dir_scores.append(_mlvl_dir_scores[selected]) + if mlvl_attr_scores is not None: + _mlvl_attr_scores = mlvl_attr_scores[cls_inds] + attr_scores.append(_mlvl_attr_scores[selected]) + if mlvl_bboxes2d is not None: + _mlvl_bboxes2d = mlvl_bboxes2d[cls_inds] + bboxes2d.append(_mlvl_bboxes2d[selected]) + + if bboxes: + bboxes = torch.cat(bboxes, dim=0) + scores = torch.cat(scores, dim=0) + labels = torch.cat(labels, dim=0) + if mlvl_dir_scores is not None: + dir_scores = torch.cat(dir_scores, dim=0) + if mlvl_attr_scores is not None: + attr_scores = torch.cat(attr_scores, dim=0) + if mlvl_bboxes2d is not None: + bboxes2d = torch.cat(bboxes2d, dim=0) + if bboxes.shape[0] > max_num: + _, inds = scores.sort(descending=True) + inds = inds[:max_num] + bboxes = bboxes[inds, :] + labels = labels[inds] + scores = scores[inds] + if mlvl_dir_scores is not None: + dir_scores = dir_scores[inds] + if mlvl_attr_scores is not None: + attr_scores = attr_scores[inds] + if mlvl_bboxes2d is not None: + bboxes2d = bboxes2d[inds] + else: + bboxes = mlvl_scores.new_zeros((0, mlvl_bboxes.size(-1))) + scores = mlvl_scores.new_zeros((0, )) + labels = mlvl_scores.new_zeros((0, ), dtype=torch.long) + if mlvl_dir_scores is not None: + dir_scores = mlvl_scores.new_zeros((0, )) + if mlvl_attr_scores is not None: + attr_scores = mlvl_scores.new_zeros((0, )) + if mlvl_bboxes2d is not None: + bboxes2d = mlvl_scores.new_zeros((0, 4)) + + results = (bboxes, scores, labels) + + if mlvl_dir_scores is not None: + results = results + (dir_scores, ) + if mlvl_attr_scores is not None: + results = results + (attr_scores, ) + if mlvl_bboxes2d is not None: + results = results + (bboxes2d, ) + + return results + + +def aligned_3d_nms(boxes, scores, classes, thresh): + """3D NMS for aligned boxes. + + Args: + boxes (torch.Tensor): Aligned box with shape [n, 6]. + scores (torch.Tensor): Scores of each box. + classes (torch.Tensor): Class of each box. + thresh (float): IoU threshold for nms. + + Returns: + torch.Tensor: Indices of selected boxes. + """ + x1 = boxes[:, 0] + y1 = boxes[:, 1] + z1 = boxes[:, 2] + x2 = boxes[:, 3] + y2 = boxes[:, 4] + z2 = boxes[:, 5] + area = (x2 - x1) * (y2 - y1) * (z2 - z1) + zero = boxes.new_zeros(1, ) + + score_sorted = torch.argsort(scores) + pick = [] + while (score_sorted.shape[0] != 0): + last = score_sorted.shape[0] + i = score_sorted[-1] + pick.append(i) + + xx1 = torch.max(x1[i], x1[score_sorted[:last - 1]]) + yy1 = torch.max(y1[i], y1[score_sorted[:last - 1]]) + zz1 = torch.max(z1[i], z1[score_sorted[:last - 1]]) + xx2 = torch.min(x2[i], x2[score_sorted[:last - 1]]) + yy2 = torch.min(y2[i], y2[score_sorted[:last - 1]]) + zz2 = torch.min(z2[i], z2[score_sorted[:last - 1]]) + classes1 = classes[i] + classes2 = classes[score_sorted[:last - 1]] + inter_l = torch.max(zero, xx2 - xx1) + inter_w = torch.max(zero, yy2 - yy1) + inter_h = torch.max(zero, zz2 - zz1) + + inter = inter_l * inter_w * inter_h + iou = inter / (area[i] + area[score_sorted[:last - 1]] - inter) + iou = iou * (classes1 == classes2).float() + score_sorted = score_sorted[torch.nonzero( + iou <= thresh, as_tuple=False).flatten()] + + indices = boxes.new_tensor(pick, dtype=torch.long) + return indices + + +@numba.jit(nopython=True) +def circle_nms(dets, thresh, post_max_size=83): + """Circular NMS. + + An object is only counted as positive if no other center + with a higher confidence exists within a radius r using a + bird-eye view distance metric. + + Args: + dets (torch.Tensor): Detection results with the shape of [N, 3]. + thresh (float): Value of threshold. + post_max_size (int, optional): Max number of prediction to be kept. + Defaults to 83. + + Returns: + torch.Tensor: Indexes of the detections to be kept. + """ + x1 = dets[:, 0] + y1 = dets[:, 1] + scores = dets[:, 2] + order = scores.argsort()[::-1].astype(np.int32) # highest->lowest + ndets = dets.shape[0] + suppressed = np.zeros((ndets), dtype=np.int32) + keep = [] + for _i in range(ndets): + i = order[_i] # start with highest score box + if suppressed[ + i] == 1: # if any box have enough iou with this, remove it + continue + keep.append(i) + for _j in range(_i + 1, ndets): + j = order[_j] + if suppressed[j] == 1: + continue + # calculate center distance between i and j box + dist = (x1[i] - x1[j])**2 + (y1[i] - y1[j])**2 + + # ovr = inter / areas[j] + if dist <= thresh: + suppressed[j] = 1 + + if post_max_size < len(keep): + return keep[:post_max_size] + + return keep + + +# This function duplicates functionality of mmcv.ops.iou_3d.nms_bev +# from mmcv<=1.5, but using cuda ops from mmcv.ops.nms.nms_rotated. +# Nms api will be unified in mmdetection3d one day. +def nms_bev(boxes, scores, thresh, pre_max_size=None, post_max_size=None): + """NMS function GPU implementation (for BEV boxes). The overlap of two + boxes for IoU calculation is defined as the exact overlapping area of the + two boxes. In this function, one can also set ``pre_max_size`` and + ``post_max_size``. + + Args: + boxes (torch.Tensor): Input boxes with the shape of [N, 5] + ([x1, y1, x2, y2, ry]). + scores (torch.Tensor): Scores of boxes with the shape of [N]. + thresh (float): Overlap threshold of NMS. + pre_max_size (int, optional): Max size of boxes before NMS. + Default: None. + post_max_size (int, optional): Max size of boxes after NMS. + Default: None. + + Returns: + torch.Tensor: Indexes after NMS. + """ + assert boxes.size(1) == 5, 'Input boxes shape should be [N, 5]' + order = scores.sort(0, descending=True)[1] + if pre_max_size is not None: + order = order[:pre_max_size] + boxes = boxes[order].contiguous() + scores = scores[order] + + # xyxyr -> back to xywhr + # note: better skip this step before nms_bev call in the future + boxes = torch.stack( + ((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2, + boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1], boxes[:, 4]), + dim=-1) + + keep = nms_rotated(boxes, scores, thresh)[1] + keep = order[keep] + if post_max_size is not None: + keep = keep[:post_max_size] + return keep + + +# This function duplicates functionality of mmcv.ops.iou_3d.nms_normal_bev +# from mmcv<=1.5, but using cuda ops from mmcv.ops.nms.nms. +# Nms api will be unified in mmdetection3d one day. +def nms_normal_bev(boxes, scores, thresh): + """Normal NMS function GPU implementation (for BEV boxes). The overlap of + two boxes for IoU calculation is defined as the exact overlapping area of + the two boxes WITH their yaw angle set to 0. + + Args: + boxes (torch.Tensor): Input boxes with shape (N, 5). + scores (torch.Tensor): Scores of predicted boxes with shape (N). + thresh (float): Overlap threshold of NMS. + + Returns: + torch.Tensor: Remaining indices with scores in descending order. + """ + assert boxes.shape[1] == 5, 'Input boxes shape should be [N, 5]' + return nms(boxes[:, :-1], scores, thresh)[1] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/merge_augs.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/merge_augs.py new file mode 100644 index 000000000..0e20dcd5a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/post_processing/merge_augs.py @@ -0,0 +1,92 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core.post_processing import nms_bev, nms_normal_bev +from ..bbox import bbox3d2result, bbox3d_mapping_back, xywhr2xyxyr + + +def merge_aug_bboxes_3d(aug_results, img_metas, test_cfg): + """Merge augmented detection 3D bboxes and scores. + + Args: + aug_results (list[dict]): The dict of detection results. + The dict contains the following keys + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox. + - scores_3d (torch.Tensor): Detection scores. + - labels_3d (torch.Tensor): Predicted box labels. + img_metas (list[dict]): Meta information of each sample. + test_cfg (dict): Test config. + + Returns: + dict: Bounding boxes results in cpu mode, containing merged results. + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Merged detection bbox. + - scores_3d (torch.Tensor): Merged detection scores. + - labels_3d (torch.Tensor): Merged predicted box labels. + """ + + assert len(aug_results) == len(img_metas), \ + '"aug_results" should have the same length as "img_metas", got len(' \ + f'aug_results)={len(aug_results)} and len(img_metas)={len(img_metas)}' + + recovered_bboxes = [] + recovered_scores = [] + recovered_labels = [] + + for bboxes, img_info in zip(aug_results, img_metas): + scale_factor = img_info[0]['pcd_scale_factor'] + pcd_horizontal_flip = img_info[0]['pcd_horizontal_flip'] + pcd_vertical_flip = img_info[0]['pcd_vertical_flip'] + recovered_scores.append(bboxes['scores_3d']) + recovered_labels.append(bboxes['labels_3d']) + bboxes = bbox3d_mapping_back(bboxes['boxes_3d'], scale_factor, + pcd_horizontal_flip, pcd_vertical_flip) + recovered_bboxes.append(bboxes) + + aug_bboxes = recovered_bboxes[0].cat(recovered_bboxes) + aug_bboxes_for_nms = xywhr2xyxyr(aug_bboxes.bev) + aug_scores = torch.cat(recovered_scores, dim=0) + aug_labels = torch.cat(recovered_labels, dim=0) + + # TODO: use a more elegent way to deal with nms + if test_cfg.use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + + merged_bboxes = [] + merged_scores = [] + merged_labels = [] + + # Apply multi-class nms when merge bboxes + if len(aug_labels) == 0: + return bbox3d2result(aug_bboxes, aug_scores, aug_labels) + + for class_id in range(torch.max(aug_labels).item() + 1): + class_inds = (aug_labels == class_id) + bboxes_i = aug_bboxes[class_inds] + bboxes_nms_i = aug_bboxes_for_nms[class_inds, :] + scores_i = aug_scores[class_inds] + labels_i = aug_labels[class_inds] + if len(bboxes_nms_i) == 0: + continue + selected = nms_func(bboxes_nms_i, scores_i, test_cfg.nms_thr) + + merged_bboxes.append(bboxes_i[selected, :]) + merged_scores.append(scores_i[selected]) + merged_labels.append(labels_i[selected]) + + merged_bboxes = merged_bboxes[0].cat(merged_bboxes) + merged_scores = torch.cat(merged_scores, dim=0) + merged_labels = torch.cat(merged_labels, dim=0) + + _, order = merged_scores.sort(0, descending=True) + num = min(test_cfg.max_num, len(aug_bboxes)) + order = order[:num] + + merged_bboxes = merged_bboxes[order] + merged_scores = merged_scores[order] + merged_labels = merged_labels[order] + + return bbox3d2result(merged_bboxes, merged_scores, merged_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/__init__.py new file mode 100644 index 000000000..b2a8deca2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .array_converter import ArrayConverter, array_converter +from .gaussian import (draw_heatmap_gaussian, ellip_gaussian2D, gaussian_2d, + gaussian_radius, get_ellip_gaussian_2D) + +__all__ = [ + 'gaussian_2d', 'gaussian_radius', 'draw_heatmap_gaussian', + 'ArrayConverter', 'array_converter', 'ellip_gaussian2D', + 'get_ellip_gaussian_2D' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/array_converter.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/array_converter.py new file mode 100644 index 000000000..a555aa601 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/array_converter.py @@ -0,0 +1,324 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import functools +from inspect import getfullargspec + +import numpy as np +import torch + + +def array_converter(to_torch=True, + apply_to=tuple(), + template_arg_name_=None, + recover=True): + """Wrapper function for data-type agnostic processing. + + First converts input arrays to PyTorch tensors or NumPy ndarrays + for middle calculation, then convert output to original data-type if + `recover=True`. + + Args: + to_torch (Bool, optional): Whether convert to PyTorch tensors + for middle calculation. Defaults to True. + apply_to (tuple[str], optional): The arguments to which we apply + data-type conversion. Defaults to an empty tuple. + template_arg_name_ (str, optional): Argument serving as the template ( + return arrays should have the same dtype and device + as the template). Defaults to None. If None, we will use the + first argument in `apply_to` as the template argument. + recover (Bool, optional): Whether or not recover the wrapped function + outputs to the `template_arg_name_` type. Defaults to True. + + Raises: + ValueError: When template_arg_name_ is not among all args, or + when apply_to contains an arg which is not among all args, + a ValueError will be raised. When the template argument or + an argument to convert is a list or tuple, and cannot be + converted to a NumPy array, a ValueError will be raised. + TypeError: When the type of the template argument or + an argument to convert does not belong to the above range, + or the contents of such an list-or-tuple-type argument + do not share the same data type, a TypeError is raised. + + Returns: + (function): wrapped function. + + Example: + >>> import torch + >>> import numpy as np + >>> + >>> # Use torch addition for a + b, + >>> # and convert return values to the type of a + >>> @array_converter(apply_to=('a', 'b')) + >>> def simple_add(a, b): + >>> return a + b + >>> + >>> a = np.array([1.1]) + >>> b = np.array([2.2]) + >>> simple_add(a, b) + >>> + >>> # Use numpy addition for a + b, + >>> # and convert return values to the type of b + >>> @array_converter(to_torch=False, apply_to=('a', 'b'), + >>> template_arg_name_='b') + >>> def simple_add(a, b): + >>> return a + b + >>> + >>> simple_add() + >>> + >>> # Use torch funcs for floor(a) if flag=True else ceil(a), + >>> # and return the torch tensor + >>> @array_converter(apply_to=('a',), recover=False) + >>> def floor_or_ceil(a, flag=True): + >>> return torch.floor(a) if flag else torch.ceil(a) + >>> + >>> floor_or_ceil(a, flag=False) + """ + + def array_converter_wrapper(func): + """Outer wrapper for the function.""" + + @functools.wraps(func) + def new_func(*args, **kwargs): + """Inner wrapper for the arguments.""" + if len(apply_to) == 0: + return func(*args, **kwargs) + + func_name = func.__name__ + + arg_spec = getfullargspec(func) + + arg_names = arg_spec.args + arg_num = len(arg_names) + default_arg_values = arg_spec.defaults + if default_arg_values is None: + default_arg_values = [] + no_default_arg_num = len(arg_names) - len(default_arg_values) + + kwonly_arg_names = arg_spec.kwonlyargs + kwonly_default_arg_values = arg_spec.kwonlydefaults + if kwonly_default_arg_values is None: + kwonly_default_arg_values = {} + + all_arg_names = arg_names + kwonly_arg_names + + # in case there are args in the form of *args + if len(args) > arg_num: + named_args = args[:arg_num] + nameless_args = args[arg_num:] + else: + named_args = args + nameless_args = [] + + # template argument data type is used for all array-like arguments + if template_arg_name_ is None: + template_arg_name = apply_to[0] + else: + template_arg_name = template_arg_name_ + + if template_arg_name not in all_arg_names: + raise ValueError(f'{template_arg_name} is not among the ' + f'argument list of function {func_name}') + + # inspect apply_to + for arg_to_apply in apply_to: + if arg_to_apply not in all_arg_names: + raise ValueError(f'{arg_to_apply} is not ' + f'an argument of {func_name}') + + new_args = [] + new_kwargs = {} + + converter = ArrayConverter() + target_type = torch.Tensor if to_torch else np.ndarray + + # non-keyword arguments + for i, arg_value in enumerate(named_args): + if arg_names[i] in apply_to: + new_args.append( + converter.convert( + input_array=arg_value, target_type=target_type)) + else: + new_args.append(arg_value) + + if arg_names[i] == template_arg_name: + template_arg_value = arg_value + + kwonly_default_arg_values.update(kwargs) + kwargs = kwonly_default_arg_values + + # keyword arguments and non-keyword arguments using default value + for i in range(len(named_args), len(all_arg_names)): + arg_name = all_arg_names[i] + if arg_name in kwargs: + if arg_name in apply_to: + new_kwargs[arg_name] = converter.convert( + input_array=kwargs[arg_name], + target_type=target_type) + else: + new_kwargs[arg_name] = kwargs[arg_name] + else: + default_value = default_arg_values[i - no_default_arg_num] + if arg_name in apply_to: + new_kwargs[arg_name] = converter.convert( + input_array=default_value, target_type=target_type) + else: + new_kwargs[arg_name] = default_value + if arg_name == template_arg_name: + template_arg_value = kwargs[arg_name] + + # add nameless args provided by *args (if exists) + new_args += nameless_args + + return_values = func(*new_args, **new_kwargs) + converter.set_template(template_arg_value) + + def recursive_recover(input_data): + if isinstance(input_data, (tuple, list)): + new_data = [] + for item in input_data: + new_data.append(recursive_recover(item)) + return tuple(new_data) if isinstance(input_data, + tuple) else new_data + elif isinstance(input_data, dict): + new_data = {} + for k, v in input_data.items(): + new_data[k] = recursive_recover(v) + return new_data + elif isinstance(input_data, (torch.Tensor, np.ndarray)): + return converter.recover(input_data) + else: + return input_data + + if recover: + return recursive_recover(return_values) + else: + return return_values + + return new_func + + return array_converter_wrapper + + +class ArrayConverter: + + SUPPORTED_NON_ARRAY_TYPES = (int, float, np.int8, np.int16, np.int32, + np.int64, np.uint8, np.uint16, np.uint32, + np.uint64, np.float16, np.float32, np.float64) + + def __init__(self, template_array=None): + if template_array is not None: + self.set_template(template_array) + + def set_template(self, array): + """Set template array. + + Args: + array (tuple | list | int | float | np.ndarray | torch.Tensor): + Template array. + + Raises: + ValueError: If input is list or tuple and cannot be converted to + to a NumPy array, a ValueError is raised. + TypeError: If input type does not belong to the above range, + or the contents of a list or tuple do not share the + same data type, a TypeError is raised. + """ + self.array_type = type(array) + self.is_num = False + self.device = 'cpu' + + if isinstance(array, np.ndarray): + self.dtype = array.dtype + elif isinstance(array, torch.Tensor): + self.dtype = array.dtype + self.device = array.device + elif isinstance(array, (list, tuple)): + try: + array = np.array(array) + if array.dtype not in self.SUPPORTED_NON_ARRAY_TYPES: + raise TypeError + self.dtype = array.dtype + except (ValueError, TypeError): + print(f'The following list cannot be converted to' + f' a numpy array of supported dtype:\n{array}') + raise + elif isinstance(array, self.SUPPORTED_NON_ARRAY_TYPES): + self.array_type = np.ndarray + self.is_num = True + self.dtype = np.dtype(type(array)) + else: + raise TypeError(f'Template type {self.array_type}' + f' is not supported.') + + def convert(self, input_array, target_type=None, target_array=None): + """Convert input array to target data type. + + Args: + input_array (tuple | list | np.ndarray | + torch.Tensor | int | float ): + Input array. Defaults to None. + target_type ( | , + optional): + Type to which input array is converted. Defaults to None. + target_array (np.ndarray | torch.Tensor, optional): + Template array to which input array is converted. + Defaults to None. + + Raises: + ValueError: If input is list or tuple and cannot be converted to + to a NumPy array, a ValueError is raised. + TypeError: If input type does not belong to the above range, + or the contents of a list or tuple do not share the + same data type, a TypeError is raised. + """ + if isinstance(input_array, (list, tuple)): + try: + input_array = np.array(input_array) + if input_array.dtype not in self.SUPPORTED_NON_ARRAY_TYPES: + raise TypeError + except (ValueError, TypeError): + print(f'The input cannot be converted to' + f' a single-type numpy array:\n{input_array}') + raise + elif isinstance(input_array, self.SUPPORTED_NON_ARRAY_TYPES): + input_array = np.array(input_array) + array_type = type(input_array) + assert target_type is not None or target_array is not None, \ + 'must specify a target' + if target_type is not None: + assert target_type in (np.ndarray, torch.Tensor), \ + 'invalid target type' + if target_type == array_type: + return input_array + elif target_type == np.ndarray: + # default dtype is float32 + converted_array = input_array.cpu().numpy().astype(np.float32) + else: + # default dtype is float32, device is 'cpu' + converted_array = torch.tensor( + input_array, dtype=torch.float32) + else: + assert isinstance(target_array, (np.ndarray, torch.Tensor)), \ + 'invalid target array type' + if isinstance(target_array, array_type): + return input_array + elif isinstance(target_array, np.ndarray): + converted_array = input_array.cpu().numpy().astype( + target_array.dtype) + else: + converted_array = target_array.new_tensor(input_array) + return converted_array + + def recover(self, input_array): + assert isinstance(input_array, (np.ndarray, torch.Tensor)), \ + 'invalid input array type' + if isinstance(input_array, self.array_type): + return input_array + elif isinstance(input_array, torch.Tensor): + converted_array = input_array.cpu().numpy().astype(self.dtype) + else: + converted_array = torch.tensor( + input_array, dtype=self.dtype, device=self.device) + if self.is_num: + converted_array = converted_array.item() + return converted_array diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/gaussian.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/gaussian.py new file mode 100644 index 000000000..66ccbd9e7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/utils/gaussian.py @@ -0,0 +1,158 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + + +def gaussian_2d(shape, sigma=1): + """Generate gaussian map. + + Args: + shape (list[int]): Shape of the map. + sigma (float, optional): Sigma to generate gaussian map. + Defaults to 1. + + Returns: + np.ndarray: Generated gaussian map. + """ + m, n = [(ss - 1.) / 2. for ss in shape] + y, x = np.ogrid[-m:m + 1, -n:n + 1] + + h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) + h[h < np.finfo(h.dtype).eps * h.max()] = 0 + return h + + +def draw_heatmap_gaussian(heatmap, center, radius, k=1): + """Get gaussian masked heatmap. + + Args: + heatmap (torch.Tensor): Heatmap to be masked. + center (torch.Tensor): Center coord of the heatmap. + radius (int): Radius of gaussian. + K (int, optional): Multiple of masked_gaussian. Defaults to 1. + + Returns: + torch.Tensor: Masked heatmap. + """ + diameter = 2 * radius + 1 + gaussian = gaussian_2d((diameter, diameter), sigma=diameter / 6) + + x, y = int(center[0]), int(center[1]) + + height, width = heatmap.shape[0:2] + + left, right = min(x, radius), min(width - x, radius + 1) + top, bottom = min(y, radius), min(height - y, radius + 1) + + masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] + masked_gaussian = torch.from_numpy( + gaussian[radius - top:radius + bottom, + radius - left:radius + right]).to(heatmap.device, + torch.float32) + if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: + torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap) + return heatmap + + +def gaussian_radius(det_size, min_overlap=0.5): + """Get radius of gaussian. + + Args: + det_size (tuple[torch.Tensor]): Size of the detection result. + min_overlap (float, optional): Gaussian_overlap. Defaults to 0.5. + + Returns: + torch.Tensor: Computed radius. + """ + height, width = det_size + + a1 = 1 + b1 = (height + width) + c1 = width * height * (1 - min_overlap) / (1 + min_overlap) + sq1 = torch.sqrt(b1**2 - 4 * a1 * c1) + r1 = (b1 + sq1) / 2 + + a2 = 4 + b2 = 2 * (height + width) + c2 = (1 - min_overlap) * width * height + sq2 = torch.sqrt(b2**2 - 4 * a2 * c2) + r2 = (b2 + sq2) / 2 + + a3 = 4 * min_overlap + b3 = -2 * min_overlap * (height + width) + c3 = (min_overlap - 1) * width * height + sq3 = torch.sqrt(b3**2 - 4 * a3 * c3) + r3 = (b3 + sq3) / 2 + return min(r1, r2, r3) + + +def get_ellip_gaussian_2D(heatmap, center, radius_x, radius_y, k=1): + """Generate 2D ellipse gaussian heatmap. + + Args: + heatmap (Tensor): Input heatmap, the gaussian kernel will cover on + it and maintain the max value. + center (list[int]): Coord of gaussian kernel's center. + radius_x (int): X-axis radius of gaussian kernel. + radius_y (int): Y-axis radius of gaussian kernel. + k (int, optional): Coefficient of gaussian kernel. Default: 1. + + Returns: + out_heatmap (Tensor): Updated heatmap covered by gaussian kernel. + """ + diameter_x, diameter_y = 2 * radius_x + 1, 2 * radius_y + 1 + gaussian_kernel = ellip_gaussian2D((radius_x, radius_y), + sigma_x=diameter_x / 6, + sigma_y=diameter_y / 6, + dtype=heatmap.dtype, + device=heatmap.device) + + x, y = int(center[0]), int(center[1]) + height, width = heatmap.shape[0:2] + + left, right = min(x, radius_x), min(width - x, radius_x + 1) + top, bottom = min(y, radius_y), min(height - y, radius_y + 1) + + masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] + masked_gaussian = gaussian_kernel[radius_y - top:radius_y + bottom, + radius_x - left:radius_x + right] + out_heatmap = heatmap + torch.max( + masked_heatmap, + masked_gaussian * k, + out=out_heatmap[y - top:y + bottom, x - left:x + right]) + + return out_heatmap + + +def ellip_gaussian2D(radius, + sigma_x, + sigma_y, + dtype=torch.float32, + device='cpu'): + """Generate 2D ellipse gaussian kernel. + + Args: + radius (tuple(int)): Ellipse radius (radius_x, radius_y) of gaussian + kernel. + sigma_x (int): X-axis sigma of gaussian function. + sigma_y (int): Y-axis sigma of gaussian function. + dtype (torch.dtype, optional): Dtype of gaussian tensor. + Default: torch.float32. + device (str, optional): Device of gaussian tensor. + Default: 'cpu'. + + Returns: + h (Tensor): Gaussian kernel with a + ``(2 * radius_y + 1) * (2 * radius_x + 1)`` shape. + """ + x = torch.arange( + -radius[0], radius[0] + 1, dtype=dtype, device=device).view(1, -1) + y = torch.arange( + -radius[1], radius[1] + 1, dtype=dtype, device=device).view(-1, 1) + + h = (-(x * x) / (2 * sigma_x * sigma_x) - (y * y) / + (2 * sigma_y * sigma_y)).exp() + h[h < torch.finfo(h.dtype).eps * h.max()] = 0 + + return h diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/__init__.py new file mode 100644 index 000000000..bbf1e60fc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .show_result import (show_multi_modality_result, show_result, + show_seg_result) + +__all__ = ['show_result', 'show_seg_result', 'show_multi_modality_result'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/image_vis.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/image_vis.py new file mode 100644 index 000000000..7ac765c20 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/image_vis.py @@ -0,0 +1,206 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import cv2 +import numpy as np +import torch +from matplotlib import pyplot as plt + + +def project_pts_on_img(points, + raw_img, + lidar2img_rt, + max_distance=70, + thickness=-1): + """Project the 3D points cloud on 2D image. + + Args: + points (numpy.array): 3D points cloud (x, y, z) to visualize. + raw_img (numpy.array): The numpy array of image. + lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix + according to the camera intrinsic parameters. + max_distance (float, optional): the max distance of the points cloud. + Default: 70. + thickness (int, optional): The thickness of 2D points. Default: -1. + """ + img = raw_img.copy() + num_points = points.shape[0] + pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1) + pts_2d = pts_4d @ lidar2img_rt.T + + # cam_points is Tensor of Nx4 whose last column is 1 + # transform camera coordinate to image coordinate + pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999) + pts_2d[:, 0] /= pts_2d[:, 2] + pts_2d[:, 1] /= pts_2d[:, 2] + + fov_inds = ((pts_2d[:, 0] < img.shape[1]) + & (pts_2d[:, 0] >= 0) + & (pts_2d[:, 1] < img.shape[0]) + & (pts_2d[:, 1] >= 0)) + + imgfov_pts_2d = pts_2d[fov_inds, :3] # u, v, d + + cmap = plt.cm.get_cmap('hsv', 256) + cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255 + for i in range(imgfov_pts_2d.shape[0]): + depth = imgfov_pts_2d[i, 2] + color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :] + cv2.circle( + img, + center=(int(np.round(imgfov_pts_2d[i, 0])), + int(np.round(imgfov_pts_2d[i, 1]))), + radius=1, + color=tuple(color), + thickness=thickness, + ) + cv2.imshow('project_pts_img', img.astype(np.uint8)) + cv2.waitKey(100) + + +def plot_rect3d_on_img(img, + num_rects, + rect_corners, + color=(0, 255, 0), + thickness=1): + """Plot the boundary lines of 3D rectangular on 2D images. + + Args: + img (numpy.array): The numpy array of image. + num_rects (int): Number of 3D rectangulars. + rect_corners (numpy.array): Coordinates of the corners of 3D + rectangulars. Should be in the shape of [num_rect, 8, 2]. + color (tuple[int], optional): The color to draw bboxes. + Default: (0, 255, 0). + thickness (int, optional): The thickness of bboxes. Default: 1. + """ + line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7), + (4, 5), (4, 7), (2, 6), (5, 6), (6, 7)) + for i in range(num_rects): + corners = rect_corners[i].astype(np.int) + for start, end in line_indices: + cv2.line(img, (corners[start, 0], corners[start, 1]), + (corners[end, 0], corners[end, 1]), color, thickness, + cv2.LINE_AA) + + return img.astype(np.uint8) + + +def draw_lidar_bbox3d_on_img(bboxes3d, + raw_img, + lidar2img_rt, + img_metas, + color=(0, 255, 0), + thickness=1): + """Project the 3D bbox on 2D plane and draw on input image. + + Args: + bboxes3d (:obj:`LiDARInstance3DBoxes`): + 3d bbox in lidar coordinate system to visualize. + raw_img (numpy.array): The numpy array of image. + lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix + according to the camera intrinsic parameters. + img_metas (dict): Useless here. + color (tuple[int], optional): The color to draw bboxes. + Default: (0, 255, 0). + thickness (int, optional): The thickness of bboxes. Default: 1. + """ + img = raw_img.copy() + corners_3d = bboxes3d.corners + num_bbox = corners_3d.shape[0] + pts_4d = np.concatenate( + [corners_3d.reshape(-1, 3), + np.ones((num_bbox * 8, 1))], axis=-1) + lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4) + if isinstance(lidar2img_rt, torch.Tensor): + lidar2img_rt = lidar2img_rt.cpu().numpy() + pts_2d = pts_4d @ lidar2img_rt.T + + pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5) + pts_2d[:, 0] /= pts_2d[:, 2] + pts_2d[:, 1] /= pts_2d[:, 2] + imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2) + + return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness) + + +# TODO: remove third parameter in all functions here in favour of img_metas +def draw_depth_bbox3d_on_img(bboxes3d, + raw_img, + calibs, + img_metas, + color=(0, 255, 0), + thickness=1): + """Project the 3D bbox on 2D plane and draw on input image. + + Args: + bboxes3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]): + 3d bbox in depth coordinate system to visualize. + raw_img (numpy.array): The numpy array of image. + calibs (dict): Camera calibration information, Rt and K. + img_metas (dict): Used in coordinates transformation. + color (tuple[int], optional): The color to draw bboxes. + Default: (0, 255, 0). + thickness (int, optional): The thickness of bboxes. Default: 1. + """ + from mmdet3d.core.bbox import points_cam2img + from mmdet3d.models import apply_3d_transformation + + img = raw_img.copy() + img_metas = copy.deepcopy(img_metas) + corners_3d = bboxes3d.corners + num_bbox = corners_3d.shape[0] + points_3d = corners_3d.reshape(-1, 3) + + # first reverse the data transformations + xyz_depth = apply_3d_transformation( + points_3d, 'DEPTH', img_metas, reverse=True) + + # project to 2d to get image coords (uv) + uv_origin = points_cam2img(xyz_depth, + xyz_depth.new_tensor(img_metas['depth2img'])) + uv_origin = (uv_origin - 1).round() + imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy() + + return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness) + + +def draw_camera_bbox3d_on_img(bboxes3d, + raw_img, + cam2img, + img_metas, + color=(0, 255, 0), + thickness=1): + """Project the 3D bbox on 2D plane and draw on input image. + + Args: + bboxes3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]): + 3d bbox in camera coordinate system to visualize. + raw_img (numpy.array): The numpy array of image. + cam2img (dict): Camera intrinsic matrix, + denoted as `K` in depth bbox coordinate system. + img_metas (dict): Useless here. + color (tuple[int], optional): The color to draw bboxes. + Default: (0, 255, 0). + thickness (int, optional): The thickness of bboxes. Default: 1. + """ + from mmdet3d.core.bbox import points_cam2img + + img = raw_img.copy() + cam2img = copy.deepcopy(cam2img) + corners_3d = bboxes3d.corners + num_bbox = corners_3d.shape[0] + points_3d = corners_3d.reshape(-1, 3) + if not isinstance(cam2img, torch.Tensor): + cam2img = torch.from_numpy(np.array(cam2img)) + + assert (cam2img.shape == torch.Size([3, 3]) + or cam2img.shape == torch.Size([4, 4])) + cam2img = cam2img.float().cpu() + + # project to 2d to get image coords (uv) + uv_origin = points_cam2img(points_3d, cam2img) + uv_origin = (uv_origin - 1).round() + imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy() + + return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/open3d_vis.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/open3d_vis.py new file mode 100644 index 000000000..c63b6eca0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/open3d_vis.py @@ -0,0 +1,460 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import numpy as np +import torch + +try: + import open3d as o3d + from open3d import geometry +except ImportError: + raise ImportError( + 'Please run "pip install open3d" to install open3d first.') + + +def _draw_points(points, + vis, + points_size=2, + point_color=(0.5, 0.5, 0.5), + mode='xyz'): + """Draw points on visualizer. + + Args: + points (numpy.array | torch.tensor, shape=[N, 3+C]): + points to visualize. + vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer. + points_size (int, optional): the size of points to show on visualizer. + Default: 2. + point_color (tuple[float], optional): the color of points. + Default: (0.5, 0.5, 0.5). + mode (str, optional): indicate type of the input points, + available mode ['xyz', 'xyzrgb']. Default: 'xyz'. + + Returns: + tuple: points, color of each point. + """ + vis.get_render_option().point_size = points_size # set points size + if isinstance(points, torch.Tensor): + points = points.cpu().numpy() + + points = points.copy() + pcd = geometry.PointCloud() + if mode == 'xyz': + pcd.points = o3d.utility.Vector3dVector(points[:, :3]) + points_colors = np.tile(np.array(point_color), (points.shape[0], 1)) + elif mode == 'xyzrgb': + pcd.points = o3d.utility.Vector3dVector(points[:, :3]) + points_colors = points[:, 3:6] + # normalize to [0, 1] for open3d drawing + if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all(): + points_colors /= 255.0 + else: + raise NotImplementedError + + pcd.colors = o3d.utility.Vector3dVector(points_colors) + vis.add_geometry(pcd) + + return pcd, points_colors + + +def _draw_bboxes(bbox3d, + vis, + points_colors, + pcd=None, + bbox_color=(0, 1, 0), + points_in_box_color=(1, 0, 0), + rot_axis=2, + center_mode='lidar_bottom', + mode='xyz'): + """Draw bbox on visualizer and change the color of points inside bbox3d. + + Args: + bbox3d (numpy.array | torch.tensor, shape=[M, 7]): + 3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize. + vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer. + points_colors (numpy.array): color of each points. + pcd (:obj:`open3d.geometry.PointCloud`, optional): point cloud. + Default: None. + bbox_color (tuple[float], optional): the color of bbox. + Default: (0, 1, 0). + points_in_box_color (tuple[float], optional): + the color of points inside bbox3d. Default: (1, 0, 0). + rot_axis (int, optional): rotation axis of bbox. Default: 2. + center_mode (bool, optional): indicate the center of bbox is + bottom center or gravity center. available mode + ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'. + mode (str, optional): indicate type of the input points, + available mode ['xyz', 'xyzrgb']. Default: 'xyz'. + """ + if isinstance(bbox3d, torch.Tensor): + bbox3d = bbox3d.cpu().numpy() + bbox3d = bbox3d.copy() + + in_box_color = np.array(points_in_box_color) + for i in range(len(bbox3d)): + center = bbox3d[i, 0:3] + dim = bbox3d[i, 3:6] + yaw = np.zeros(3) + yaw[rot_axis] = bbox3d[i, 6] + rot_mat = geometry.get_rotation_matrix_from_xyz(yaw) + + if center_mode == 'lidar_bottom': + center[rot_axis] += dim[ + rot_axis] / 2 # bottom center to gravity center + elif center_mode == 'camera_bottom': + center[rot_axis] -= dim[ + rot_axis] / 2 # bottom center to gravity center + box3d = geometry.OrientedBoundingBox(center, rot_mat, dim) + + line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d) + line_set.paint_uniform_color(bbox_color) + # draw bboxes on visualizer + vis.add_geometry(line_set) + + # change the color of points which are in box + if pcd is not None and mode == 'xyz': + indices = box3d.get_point_indices_within_bounding_box(pcd.points) + points_colors[indices] = in_box_color + + # update points colors + if pcd is not None: + pcd.colors = o3d.utility.Vector3dVector(points_colors) + vis.update_geometry(pcd) + + +def show_pts_boxes(points, + bbox3d=None, + show=True, + save_path=None, + points_size=2, + point_color=(0.5, 0.5, 0.5), + bbox_color=(0, 1, 0), + points_in_box_color=(1, 0, 0), + rot_axis=2, + center_mode='lidar_bottom', + mode='xyz'): + """Draw bbox and points on visualizer. + + Args: + points (numpy.array | torch.tensor, shape=[N, 3+C]): + points to visualize. + bbox3d (numpy.array | torch.tensor, shape=[M, 7], optional): + 3D bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize. + Defaults to None. + show (bool, optional): whether to show the visualization results. + Default: True. + save_path (str, optional): path to save visualized results. + Default: None. + points_size (int, optional): the size of points to show on visualizer. + Default: 2. + point_color (tuple[float], optional): the color of points. + Default: (0.5, 0.5, 0.5). + bbox_color (tuple[float], optional): the color of bbox. + Default: (0, 1, 0). + points_in_box_color (tuple[float], optional): + the color of points which are in bbox3d. Default: (1, 0, 0). + rot_axis (int, optional): rotation axis of bbox. Default: 2. + center_mode (bool, optional): indicate the center of bbox is bottom + center or gravity center. available mode + ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'. + mode (str, optional): indicate type of the input points, available + mode ['xyz', 'xyzrgb']. Default: 'xyz'. + """ + # TODO: support score and class info + assert 0 <= rot_axis <= 2 + + # init visualizer + vis = o3d.visualization.Visualizer() + vis.create_window() + mesh_frame = geometry.TriangleMesh.create_coordinate_frame( + size=1, origin=[0, 0, 0]) # create coordinate frame + vis.add_geometry(mesh_frame) + + # draw points + pcd, points_colors = _draw_points(points, vis, points_size, point_color, + mode) + + # draw boxes + if bbox3d is not None: + _draw_bboxes(bbox3d, vis, points_colors, pcd, bbox_color, + points_in_box_color, rot_axis, center_mode, mode) + + if show: + vis.run() + + if save_path is not None: + vis.capture_screen_image(save_path) + + vis.destroy_window() + + +def _draw_bboxes_ind(bbox3d, + vis, + indices, + points_colors, + pcd=None, + bbox_color=(0, 1, 0), + points_in_box_color=(1, 0, 0), + rot_axis=2, + center_mode='lidar_bottom', + mode='xyz'): + """Draw bbox on visualizer and change the color or points inside bbox3d + with indices. + + Args: + bbox3d (numpy.array | torch.tensor, shape=[M, 7]): + 3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize. + vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer. + indices (numpy.array | torch.tensor, shape=[N, M]): + indicate which bbox3d that each point lies in. + points_colors (numpy.array): color of each points. + pcd (:obj:`open3d.geometry.PointCloud`, optional): point cloud. + Default: None. + bbox_color (tuple[float], optional): the color of bbox. + Default: (0, 1, 0). + points_in_box_color (tuple[float], optional): + the color of points which are in bbox3d. Default: (1, 0, 0). + rot_axis (int, optional): rotation axis of bbox. Default: 2. + center_mode (bool, optional): indicate the center of bbox is + bottom center or gravity center. available mode + ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'. + mode (str, optional): indicate type of the input points, + available mode ['xyz', 'xyzrgb']. Default: 'xyz'. + """ + if isinstance(bbox3d, torch.Tensor): + bbox3d = bbox3d.cpu().numpy() + if isinstance(indices, torch.Tensor): + indices = indices.cpu().numpy() + bbox3d = bbox3d.copy() + + in_box_color = np.array(points_in_box_color) + for i in range(len(bbox3d)): + center = bbox3d[i, 0:3] + dim = bbox3d[i, 3:6] + yaw = np.zeros(3) + # TODO: fix problem of current coordinate system + # dim[0], dim[1] = dim[1], dim[0] # for current coordinate + # yaw[rot_axis] = -(bbox3d[i, 6] - 0.5 * np.pi) + yaw[rot_axis] = -bbox3d[i, 6] + rot_mat = geometry.get_rotation_matrix_from_xyz(yaw) + if center_mode == 'lidar_bottom': + center[rot_axis] += dim[ + rot_axis] / 2 # bottom center to gravity center + elif center_mode == 'camera_bottom': + center[rot_axis] -= dim[ + rot_axis] / 2 # bottom center to gravity center + box3d = geometry.OrientedBoundingBox(center, rot_mat, dim) + + line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d) + line_set.paint_uniform_color(bbox_color) + # draw bboxes on visualizer + vis.add_geometry(line_set) + + # change the color of points which are in box + if pcd is not None and mode == 'xyz': + points_colors[indices[:, i].astype(np.bool)] = in_box_color + + # update points colors + if pcd is not None: + pcd.colors = o3d.utility.Vector3dVector(points_colors) + vis.update_geometry(pcd) + + +def show_pts_index_boxes(points, + bbox3d=None, + show=True, + indices=None, + save_path=None, + points_size=2, + point_color=(0.5, 0.5, 0.5), + bbox_color=(0, 1, 0), + points_in_box_color=(1, 0, 0), + rot_axis=2, + center_mode='lidar_bottom', + mode='xyz'): + """Draw bbox and points on visualizer with indices that indicate which + bbox3d that each point lies in. + + Args: + points (numpy.array | torch.tensor, shape=[N, 3+C]): + points to visualize. + bbox3d (numpy.array | torch.tensor, shape=[M, 7]): + 3D bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize. + Defaults to None. + show (bool, optional): whether to show the visualization results. + Default: True. + indices (numpy.array | torch.tensor, shape=[N, M], optional): + indicate which bbox3d that each point lies in. Default: None. + save_path (str, optional): path to save visualized results. + Default: None. + points_size (int, optional): the size of points to show on visualizer. + Default: 2. + point_color (tuple[float], optional): the color of points. + Default: (0.5, 0.5, 0.5). + bbox_color (tuple[float], optional): the color of bbox. + Default: (0, 1, 0). + points_in_box_color (tuple[float], optional): + the color of points which are in bbox3d. Default: (1, 0, 0). + rot_axis (int, optional): rotation axis of bbox. Default: 2. + center_mode (bool, optional): indicate the center of bbox is + bottom center or gravity center. available mode + ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'. + mode (str, optional): indicate type of the input points, + available mode ['xyz', 'xyzrgb']. Default: 'xyz'. + """ + # TODO: support score and class info + assert 0 <= rot_axis <= 2 + + # init visualizer + vis = o3d.visualization.Visualizer() + vis.create_window() + mesh_frame = geometry.TriangleMesh.create_coordinate_frame( + size=1, origin=[0, 0, 0]) # create coordinate frame + vis.add_geometry(mesh_frame) + + # draw points + pcd, points_colors = _draw_points(points, vis, points_size, point_color, + mode) + + # draw boxes + if bbox3d is not None: + _draw_bboxes_ind(bbox3d, vis, indices, points_colors, pcd, bbox_color, + points_in_box_color, rot_axis, center_mode, mode) + + if show: + vis.run() + + if save_path is not None: + vis.capture_screen_image(save_path) + + vis.destroy_window() + + +class Visualizer(object): + r"""Online visualizer implemented with Open3d. + + Args: + points (numpy.array, shape=[N, 3+C]): Points to visualize. The Points + cloud is in mode of Coord3DMode.DEPTH (please refer to + core.structures.coord_3d_mode). + bbox3d (numpy.array, shape=[M, 7], optional): 3D bbox + (x, y, z, x_size, y_size, z_size, yaw) to visualize. + The 3D bbox is in mode of Box3DMode.DEPTH with + gravity_center (please refer to core.structures.box_3d_mode). + Default: None. + save_path (str, optional): path to save visualized results. + Default: None. + points_size (int, optional): the size of points to show on visualizer. + Default: 2. + point_color (tuple[float], optional): the color of points. + Default: (0.5, 0.5, 0.5). + bbox_color (tuple[float], optional): the color of bbox. + Default: (0, 1, 0). + points_in_box_color (tuple[float], optional): + the color of points which are in bbox3d. Default: (1, 0, 0). + rot_axis (int, optional): rotation axis of bbox. Default: 2. + center_mode (bool, optional): indicate the center of bbox is + bottom center or gravity center. available mode + ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'. + mode (str, optional): indicate type of the input points, + available mode ['xyz', 'xyzrgb']. Default: 'xyz'. + """ + + def __init__(self, + points, + bbox3d=None, + save_path=None, + points_size=2, + point_color=(0.5, 0.5, 0.5), + bbox_color=(0, 1, 0), + points_in_box_color=(1, 0, 0), + rot_axis=2, + center_mode='lidar_bottom', + mode='xyz'): + super(Visualizer, self).__init__() + assert 0 <= rot_axis <= 2 + + # init visualizer + self.o3d_visualizer = o3d.visualization.Visualizer() + self.o3d_visualizer.create_window() + mesh_frame = geometry.TriangleMesh.create_coordinate_frame( + size=1, origin=[0, 0, 0]) # create coordinate frame + self.o3d_visualizer.add_geometry(mesh_frame) + + self.points_size = points_size + self.point_color = point_color + self.bbox_color = bbox_color + self.points_in_box_color = points_in_box_color + self.rot_axis = rot_axis + self.center_mode = center_mode + self.mode = mode + self.seg_num = 0 + + # draw points + if points is not None: + self.pcd, self.points_colors = _draw_points( + points, self.o3d_visualizer, points_size, point_color, mode) + + # draw boxes + if bbox3d is not None: + _draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors, + self.pcd, bbox_color, points_in_box_color, rot_axis, + center_mode, mode) + + def add_bboxes(self, bbox3d, bbox_color=None, points_in_box_color=None): + """Add bounding box to visualizer. + + Args: + bbox3d (numpy.array, shape=[M, 7]): + 3D bbox (x, y, z, x_size, y_size, z_size, yaw) + to be visualized. The 3d bbox is in mode of + Box3DMode.DEPTH with gravity_center (please refer to + core.structures.box_3d_mode). + bbox_color (tuple[float]): the color of bbox. Default: None. + points_in_box_color (tuple[float]): the color of points which + are in bbox3d. Default: None. + """ + if bbox_color is None: + bbox_color = self.bbox_color + if points_in_box_color is None: + points_in_box_color = self.points_in_box_color + _draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors, self.pcd, + bbox_color, points_in_box_color, self.rot_axis, + self.center_mode, self.mode) + + def add_seg_mask(self, seg_mask_colors): + """Add segmentation mask to visualizer via per-point colorization. + + Args: + seg_mask_colors (numpy.array, shape=[N, 6]): + The segmentation mask whose first 3 dims are point coordinates + and last 3 dims are converted colors. + """ + # we can't draw the colors on existing points + # in case gt and pred mask would overlap + # instead we set a large offset along x-axis for each seg mask + self.seg_num += 1 + offset = (np.array(self.pcd.points).max(0) - + np.array(self.pcd.points).min(0))[0] * 1.2 * self.seg_num + mesh_frame = geometry.TriangleMesh.create_coordinate_frame( + size=1, origin=[offset, 0, 0]) # create coordinate frame for seg + self.o3d_visualizer.add_geometry(mesh_frame) + seg_points = copy.deepcopy(seg_mask_colors) + seg_points[:, 0] += offset + _draw_points( + seg_points, self.o3d_visualizer, self.points_size, mode='xyzrgb') + + def show(self, save_path=None): + """Visualize the points cloud. + + Args: + save_path (str, optional): path to save image. Default: None. + """ + + self.o3d_visualizer.run() + + if save_path is not None: + self.o3d_visualizer.capture_screen_image(save_path) + + self.o3d_visualizer.destroy_window() + return diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/show_result.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/show_result.py new file mode 100644 index 000000000..aa732cf47 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/visualizer/show_result.py @@ -0,0 +1,291 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import mmcv +import numpy as np +import trimesh + +from .image_vis import (draw_camera_bbox3d_on_img, draw_depth_bbox3d_on_img, + draw_lidar_bbox3d_on_img) + + +def _write_obj(points, out_filename): + """Write points into ``obj`` format for meshlab visualization. + + Args: + points (np.ndarray): Points in shape (N, dim). + out_filename (str): Filename to be saved. + """ + N = points.shape[0] + fout = open(out_filename, 'w') + for i in range(N): + if points.shape[1] == 6: + c = points[i, 3:].astype(int) + fout.write( + 'v %f %f %f %d %d %d\n' % + (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2])) + + else: + fout.write('v %f %f %f\n' % + (points[i, 0], points[i, 1], points[i, 2])) + fout.close() + + +def _write_oriented_bbox(scene_bbox, out_filename): + """Export oriented (around Z axis) scene bbox to meshes. + + Args: + scene_bbox(list[ndarray] or ndarray): xyz pos of center and + 3 lengths (x_size, y_size, z_size) and heading angle around Z axis. + Y forward, X right, Z upward. heading angle of positive X is 0, + heading angle of positive Y is 90 degrees. + out_filename(str): Filename. + """ + + def heading2rotmat(heading_angle): + rotmat = np.zeros((3, 3)) + rotmat[2, 2] = 1 + cosval = np.cos(heading_angle) + sinval = np.sin(heading_angle) + rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]]) + return rotmat + + def convert_oriented_box_to_trimesh_fmt(box): + ctr = box[:3] + lengths = box[3:6] + trns = np.eye(4) + trns[0:3, 3] = ctr + trns[3, 3] = 1.0 + trns[0:3, 0:3] = heading2rotmat(box[6]) + box_trimesh_fmt = trimesh.creation.box(lengths, trns) + return box_trimesh_fmt + + if len(scene_bbox) == 0: + scene_bbox = np.zeros((1, 7)) + scene = trimesh.scene.Scene() + for box in scene_bbox: + scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) + + mesh_list = trimesh.util.concatenate(scene.dump()) + # save to obj file + trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj') + + return + + +def show_result(points, + gt_bboxes, + pred_bboxes, + out_dir, + filename, + show=False, + snapshot=False, + pred_labels=None): + """Convert results into format that is directly readable for meshlab. + + Args: + points (np.ndarray): Points. + gt_bboxes (np.ndarray): Ground truth boxes. + pred_bboxes (np.ndarray): Predicted boxes. + out_dir (str): Path of output directory + filename (str): Filename of the current frame. + show (bool, optional): Visualize the results online. Defaults to False. + snapshot (bool, optional): Whether to save the online results. + Defaults to False. + pred_labels (np.ndarray, optional): Predicted labels of boxes. + Defaults to None. + """ + result_path = osp.join(out_dir, filename) + mmcv.mkdir_or_exist(result_path) + + if show: + from .open3d_vis import Visualizer + + vis = Visualizer(points) + if pred_bboxes is not None: + if pred_labels is None: + vis.add_bboxes(bbox3d=pred_bboxes) + else: + palette = np.random.randint( + 0, 255, size=(pred_labels.max() + 1, 3)) / 256 + labelDict = {} + for j in range(len(pred_labels)): + i = int(pred_labels[j].numpy()) + if labelDict.get(i) is None: + labelDict[i] = [] + labelDict[i].append(pred_bboxes[j]) + for i in labelDict: + vis.add_bboxes( + bbox3d=np.array(labelDict[i]), + bbox_color=palette[i], + points_in_box_color=palette[i]) + + if gt_bboxes is not None: + vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1)) + show_path = osp.join(result_path, + f'{filename}_online.png') if snapshot else None + vis.show(show_path) + + if points is not None: + _write_obj(points, osp.join(result_path, f'{filename}_points.obj')) + + if gt_bboxes is not None: + # bottom center to gravity center + gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2 + + _write_oriented_bbox(gt_bboxes, + osp.join(result_path, f'{filename}_gt.obj')) + + if pred_bboxes is not None: + # bottom center to gravity center + pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2 + + _write_oriented_bbox(pred_bboxes, + osp.join(result_path, f'{filename}_pred.obj')) + + +def show_seg_result(points, + gt_seg, + pred_seg, + out_dir, + filename, + palette, + ignore_index=None, + show=False, + snapshot=False): + """Convert results into format that is directly readable for meshlab. + + Args: + points (np.ndarray): Points. + gt_seg (np.ndarray): Ground truth segmentation mask. + pred_seg (np.ndarray): Predicted segmentation mask. + out_dir (str): Path of output directory + filename (str): Filename of the current frame. + palette (np.ndarray): Mapping between class labels and colors. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. Defaults to None. + show (bool, optional): Visualize the results online. Defaults to False. + snapshot (bool, optional): Whether to save the online results. + Defaults to False. + """ + # we need 3D coordinates to visualize segmentation mask + if gt_seg is not None or pred_seg is not None: + assert points is not None, \ + '3D coordinates are required for segmentation visualization' + + # filter out ignored points + if gt_seg is not None and ignore_index is not None: + if points is not None: + points = points[gt_seg != ignore_index] + if pred_seg is not None: + pred_seg = pred_seg[gt_seg != ignore_index] + gt_seg = gt_seg[gt_seg != ignore_index] + + if gt_seg is not None: + gt_seg_color = palette[gt_seg] + gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1) + if pred_seg is not None: + pred_seg_color = palette[pred_seg] + pred_seg_color = np.concatenate([points[:, :3], pred_seg_color], + axis=1) + + result_path = osp.join(out_dir, filename) + mmcv.mkdir_or_exist(result_path) + + # online visualization of segmentation mask + # we show three masks in a row, scene_points, gt_mask, pred_mask + if show: + from .open3d_vis import Visualizer + mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz' + vis = Visualizer(points, mode=mode) + if gt_seg is not None: + vis.add_seg_mask(gt_seg_color) + if pred_seg is not None: + vis.add_seg_mask(pred_seg_color) + show_path = osp.join(result_path, + f'{filename}_online.png') if snapshot else None + vis.show(show_path) + + if points is not None: + _write_obj(points, osp.join(result_path, f'{filename}_points.obj')) + + if gt_seg is not None: + _write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj')) + + if pred_seg is not None: + _write_obj(pred_seg_color, osp.join(result_path, + f'{filename}_pred.obj')) + + +def show_multi_modality_result(img, + gt_bboxes, + pred_bboxes, + proj_mat, + out_dir, + filename, + box_mode='lidar', + img_metas=None, + show=False, + gt_bbox_color=(61, 102, 255), + pred_bbox_color=(241, 101, 72)): + """Convert multi-modality detection results into 2D results. + + Project the predicted 3D bbox to 2D image plane and visualize them. + + Args: + img (np.ndarray): The numpy array of image in cv2 fashion. + gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes. + pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes. + proj_mat (numpy.array, shape=[4, 4]): The projection matrix + according to the camera intrinsic parameters. + out_dir (str): Path of output directory. + filename (str): Filename of the current frame. + box_mode (str, optional): Coordinate system the boxes are in. + Should be one of 'depth', 'lidar' and 'camera'. + Defaults to 'lidar'. + img_metas (dict, optional): Used in projecting depth bbox. + Defaults to None. + show (bool, optional): Visualize the results online. Defaults to False. + gt_bbox_color (str or tuple(int), optional): Color of bbox lines. + The tuple of color should be in BGR order. Default: (255, 102, 61). + pred_bbox_color (str or tuple(int), optional): Color of bbox lines. + The tuple of color should be in BGR order. Default: (72, 101, 241). + """ + if box_mode == 'depth': + draw_bbox = draw_depth_bbox3d_on_img + elif box_mode == 'lidar': + draw_bbox = draw_lidar_bbox3d_on_img + elif box_mode == 'camera': + draw_bbox = draw_camera_bbox3d_on_img + else: + raise NotImplementedError(f'unsupported box mode {box_mode}') + + result_path = osp.join(out_dir, filename) + mmcv.mkdir_or_exist(result_path) + + if show: + show_img = img.copy() + if gt_bboxes is not None: + show_img = draw_bbox( + gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color) + if pred_bboxes is not None: + show_img = draw_bbox( + pred_bboxes, + show_img, + proj_mat, + img_metas, + color=pred_bbox_color) + mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0) + + if img is not None: + mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png')) + + if gt_bboxes is not None: + gt_img = draw_bbox( + gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color) + mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png')) + + if pred_bboxes is not None: + pred_img = draw_bbox( + pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color) + mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png')) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/__init__.py new file mode 100644 index 000000000..8d6954371 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import build_voxel_generator +from .voxel_generator import VoxelGenerator + +__all__ = ['build_voxel_generator', 'VoxelGenerator'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/builder.py new file mode 100644 index 000000000..bc663ee4a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/builder.py @@ -0,0 +1,16 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + +from . import voxel_generator + + +def build_voxel_generator(cfg, **kwargs): + """Builder of voxel generator.""" + if isinstance(cfg, voxel_generator.VoxelGenerator): + return cfg + elif isinstance(cfg, dict): + return mmcv.runner.obj_from_dict( + cfg, voxel_generator, default_args=kwargs) + else: + raise TypeError('Invalid type {} for building a sampler'.format( + type(cfg))) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/voxel_generator.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/voxel_generator.py new file mode 100644 index 000000000..404f2cdc9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/core/voxel/voxel_generator.py @@ -0,0 +1,280 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numba +import numpy as np + + +class VoxelGenerator(object): + """Voxel generator in numpy implementation. + + Args: + voxel_size (list[float]): Size of a single voxel + point_cloud_range (list[float]): Range of points + max_num_points (int): Maximum number of points in a single voxel + max_voxels (int, optional): Maximum number of voxels. + Defaults to 20000. + """ + + def __init__(self, + voxel_size, + point_cloud_range, + max_num_points, + max_voxels=20000): + + point_cloud_range = np.array(point_cloud_range, dtype=np.float32) + # [0, -40, -3, 70.4, 40, 1] + voxel_size = np.array(voxel_size, dtype=np.float32) + grid_size = (point_cloud_range[3:] - + point_cloud_range[:3]) / voxel_size + grid_size = np.round(grid_size).astype(np.int64) + + self._voxel_size = voxel_size + self._point_cloud_range = point_cloud_range + self._max_num_points = max_num_points + self._max_voxels = max_voxels + self._grid_size = grid_size + + def generate(self, points): + """Generate voxels given points.""" + return points_to_voxel(points, self._voxel_size, + self._point_cloud_range, self._max_num_points, + True, self._max_voxels) + + @property + def voxel_size(self): + """list[float]: Size of a single voxel.""" + return self._voxel_size + + @property + def max_num_points_per_voxel(self): + """int: Maximum number of points per voxel.""" + return self._max_num_points + + @property + def point_cloud_range(self): + """list[float]: Range of point cloud.""" + return self._point_cloud_range + + @property + def grid_size(self): + """np.ndarray: The size of grids.""" + return self._grid_size + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + indent = ' ' * (len(repr_str) + 1) + repr_str += f'(voxel_size={self._voxel_size},\n' + repr_str += indent + 'point_cloud_range=' + repr_str += f'{self._point_cloud_range.tolist()},\n' + repr_str += indent + f'max_num_points={self._max_num_points},\n' + repr_str += indent + f'max_voxels={self._max_voxels},\n' + repr_str += indent + f'grid_size={self._grid_size.tolist()}' + repr_str += ')' + return repr_str + + +def points_to_voxel(points, + voxel_size, + coors_range, + max_points=35, + reverse_index=True, + max_voxels=20000): + """convert kitti points(N, >=3) to voxels. + + Args: + points (np.ndarray): [N, ndim]. points[:, :3] contain xyz points and + points[:, 3:] contain other information such as reflectivity. + voxel_size (list, tuple, np.ndarray): [3] xyz, indicate voxel size + coors_range (list[float | tuple[float] | ndarray]): Voxel range. + format: xyzxyz, minmax + max_points (int): Indicate maximum points contained in a voxel. + reverse_index (bool): Whether return reversed coordinates. + if points has xyz format and reverse_index is True, output + coordinates will be zyx format, but points in features always + xyz format. + max_voxels (int): Maximum number of voxels this function creates. + For second, 20000 is a good choice. Points should be shuffled for + randomness before this function because max_voxels drops points. + + Returns: + tuple[np.ndarray]: + voxels: [M, max_points, ndim] float tensor. only contain points. + coordinates: [M, 3] int32 tensor. + num_points_per_voxel: [M] int32 tensor. + """ + if not isinstance(voxel_size, np.ndarray): + voxel_size = np.array(voxel_size, dtype=points.dtype) + if not isinstance(coors_range, np.ndarray): + coors_range = np.array(coors_range, dtype=points.dtype) + voxelmap_shape = (coors_range[3:] - coors_range[:3]) / voxel_size + voxelmap_shape = tuple(np.round(voxelmap_shape).astype(np.int32).tolist()) + if reverse_index: + voxelmap_shape = voxelmap_shape[::-1] + # don't create large array in jit(nopython=True) code. + num_points_per_voxel = np.zeros(shape=(max_voxels, ), dtype=np.int32) + coor_to_voxelidx = -np.ones(shape=voxelmap_shape, dtype=np.int32) + voxels = np.zeros( + shape=(max_voxels, max_points, points.shape[-1]), dtype=points.dtype) + coors = np.zeros(shape=(max_voxels, 3), dtype=np.int32) + if reverse_index: + voxel_num = _points_to_voxel_reverse_kernel( + points, voxel_size, coors_range, num_points_per_voxel, + coor_to_voxelidx, voxels, coors, max_points, max_voxels) + + else: + voxel_num = _points_to_voxel_kernel(points, voxel_size, coors_range, + num_points_per_voxel, + coor_to_voxelidx, voxels, coors, + max_points, max_voxels) + + coors = coors[:voxel_num] + voxels = voxels[:voxel_num] + num_points_per_voxel = num_points_per_voxel[:voxel_num] + + return voxels, coors, num_points_per_voxel + + +@numba.jit(nopython=True) +def _points_to_voxel_reverse_kernel(points, + voxel_size, + coors_range, + num_points_per_voxel, + coor_to_voxelidx, + voxels, + coors, + max_points=35, + max_voxels=20000): + """convert kitti points(N, >=3) to voxels. + + Args: + points (np.ndarray): [N, ndim]. points[:, :3] contain xyz points and + points[:, 3:] contain other information such as reflectivity. + voxel_size (list, tuple, np.ndarray): [3] xyz, indicate voxel size + coors_range (list[float | tuple[float] | ndarray]): Range of voxels. + format: xyzxyz, minmax + num_points_per_voxel (int): Number of points per voxel. + coor_to_voxel_idx (np.ndarray): A voxel grid of shape (D, H, W), + which has the same shape as the complete voxel map. It indicates + the index of each corresponding voxel. + voxels (np.ndarray): Created empty voxels. + coors (np.ndarray): Created coordinates of each voxel. + max_points (int): Indicate maximum points contained in a voxel. + max_voxels (int): Maximum number of voxels this function create. + for second, 20000 is a good choice. Points should be shuffled for + randomness before this function because max_voxels drops points. + + Returns: + tuple[np.ndarray]: + voxels: Shape [M, max_points, ndim], only contain points. + coordinates: Shape [M, 3]. + num_points_per_voxel: Shape [M]. + """ + # put all computations to one loop. + # we shouldn't create large array in main jit code, otherwise + # reduce performance + N = points.shape[0] + # ndim = points.shape[1] - 1 + ndim = 3 + ndim_minus_1 = ndim - 1 + grid_size = (coors_range[3:] - coors_range[:3]) / voxel_size + # np.round(grid_size) + # grid_size = np.round(grid_size).astype(np.int64)(np.int32) + grid_size = np.round(grid_size, 0, grid_size).astype(np.int32) + coor = np.zeros(shape=(3, ), dtype=np.int32) + voxel_num = 0 + failed = False + for i in range(N): + failed = False + for j in range(ndim): + c = np.floor((points[i, j] - coors_range[j]) / voxel_size[j]) + if c < 0 or c >= grid_size[j]: + failed = True + break + coor[ndim_minus_1 - j] = c + if failed: + continue + voxelidx = coor_to_voxelidx[coor[0], coor[1], coor[2]] + if voxelidx == -1: + voxelidx = voxel_num + if voxel_num >= max_voxels: + continue + voxel_num += 1 + coor_to_voxelidx[coor[0], coor[1], coor[2]] = voxelidx + coors[voxelidx] = coor + num = num_points_per_voxel[voxelidx] + if num < max_points: + voxels[voxelidx, num] = points[i] + num_points_per_voxel[voxelidx] += 1 + return voxel_num + + +@numba.jit(nopython=True) +def _points_to_voxel_kernel(points, + voxel_size, + coors_range, + num_points_per_voxel, + coor_to_voxelidx, + voxels, + coors, + max_points=35, + max_voxels=20000): + """convert kitti points(N, >=3) to voxels. + + Args: + points (np.ndarray): [N, ndim]. points[:, :3] contain xyz points and + points[:, 3:] contain other information such as reflectivity. + voxel_size (list, tuple, np.ndarray): [3] xyz, indicate voxel size. + coors_range (list[float | tuple[float] | ndarray]): Range of voxels. + format: xyzxyz, minmax + num_points_per_voxel (int): Number of points per voxel. + coor_to_voxel_idx (np.ndarray): A voxel grid of shape (D, H, W), + which has the same shape as the complete voxel map. It indicates + the index of each corresponding voxel. + voxels (np.ndarray): Created empty voxels. + coors (np.ndarray): Created coordinates of each voxel. + max_points (int): Indicate maximum points contained in a voxel. + max_voxels (int): Maximum number of voxels this function create. + for second, 20000 is a good choice. Points should be shuffled for + randomness before this function because max_voxels drops points. + + Returns: + tuple[np.ndarray]: + voxels: Shape [M, max_points, ndim], only contain points. + coordinates: Shape [M, 3]. + num_points_per_voxel: Shape [M]. + """ + N = points.shape[0] + # ndim = points.shape[1] - 1 + ndim = 3 + grid_size = (coors_range[3:] - coors_range[:3]) / voxel_size + # grid_size = np.round(grid_size).astype(np.int64)(np.int32) + grid_size = np.round(grid_size, 0, grid_size).astype(np.int32) + + # lower_bound = coors_range[:3] + # upper_bound = coors_range[3:] + coor = np.zeros(shape=(3, ), dtype=np.int32) + voxel_num = 0 + failed = False + for i in range(N): + failed = False + for j in range(ndim): + c = np.floor((points[i, j] - coors_range[j]) / voxel_size[j]) + if c < 0 or c >= grid_size[j]: + failed = True + break + coor[j] = c + if failed: + continue + voxelidx = coor_to_voxelidx[coor[0], coor[1], coor[2]] + if voxelidx == -1: + voxelidx = voxel_num + if voxel_num >= max_voxels: + continue + voxel_num += 1 + coor_to_voxelidx[coor[0], coor[1], coor[2]] = voxelidx + coors[voxelidx] = coor + num = num_points_per_voxel[voxelidx] + if num < max_points: + voxels[voxelidx, num] = points[i] + num_points_per_voxel[voxelidx] += 1 + return voxel_num diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/__init__.py new file mode 100644 index 000000000..49cbc6b18 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/__init__.py @@ -0,0 +1,49 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from mmdet.datasets.builder import build_dataloader +from .builder import DATASETS, PIPELINES, build_dataset +from .custom_3d import Custom3DDataset +from .custom_3d_seg import Custom3DSegDataset +from .kitti_dataset import KittiDataset +from .kitti_mono_dataset import KittiMonoDataset +from .lyft_dataset import LyftDataset +from .nuscenes_dataset import NuScenesDataset +from .nuscenes_mono_dataset import NuScenesMonoDataset +# yapf: disable +from .pipelines import (AffineResize, BackgroundPointsFilter, GlobalAlignment, + GlobalRotScaleTrans, IndoorPatchPointSample, + IndoorPointSample, LoadAnnotations3D, + LoadPointsFromDict, LoadPointsFromFile, + LoadPointsFromMultiSweeps, MultiViewWrapper, + NormalizePointsColor, ObjectNameFilter, ObjectNoise, + ObjectRangeFilter, ObjectSample, PointSample, + PointShuffle, PointsRangeFilter, RandomDropPointsColor, + RandomFlip3D, RandomJitterPoints, RandomRotate, + RandomShiftScale, RangeLimitedRandomCrop, + VoxelBasedPointSampler) +# yapf: enable +from .s3dis_dataset import S3DISDataset, S3DISSegDataset +from .scannet_dataset import (ScanNetDataset, ScanNetInstanceSegDataset, + ScanNetSegDataset) +from .semantickitti_dataset import SemanticKITTIDataset +from .sunrgbd_dataset import SUNRGBDDataset +from .utils import get_loading_pipeline +from .waymo_dataset import WaymoDataset + +__all__ = [ + 'KittiDataset', 'KittiMonoDataset', 'build_dataloader', 'DATASETS', + 'build_dataset', 'NuScenesDataset', 'NuScenesMonoDataset', 'LyftDataset', + 'ObjectSample', 'RandomFlip3D', 'ObjectNoise', 'GlobalRotScaleTrans', + 'PointShuffle', 'ObjectRangeFilter', 'PointsRangeFilter', + 'LoadPointsFromFile', 'S3DISSegDataset', 'S3DISDataset', + 'NormalizePointsColor', 'IndoorPatchPointSample', 'IndoorPointSample', + 'PointSample', 'LoadAnnotations3D', 'GlobalAlignment', 'SUNRGBDDataset', + 'ScanNetDataset', 'ScanNetSegDataset', 'ScanNetInstanceSegDataset', + 'SemanticKITTIDataset', 'Custom3DDataset', 'Custom3DSegDataset', + 'LoadPointsFromMultiSweeps', 'WaymoDataset', 'BackgroundPointsFilter', + 'VoxelBasedPointSampler', 'get_loading_pipeline', 'RandomDropPointsColor', + 'RandomJitterPoints', 'ObjectNameFilter', 'AffineResize', + 'RandomShiftScale', 'LoadPointsFromDict', 'PIPELINES', + 'RangeLimitedRandomCrop', 'RandomRotate', 'MultiViewWrapper' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/builder.py new file mode 100644 index 000000000..157f64048 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/builder.py @@ -0,0 +1,47 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import platform + +from mmcv.utils import Registry, build_from_cfg + +from mmdet.datasets import DATASETS as MMDET_DATASETS +from mmdet.datasets.builder import _concat_dataset + +if platform.system() != 'Windows': + # https://github.com/pytorch/pytorch/issues/973 + import resource + rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) + base_soft_limit = rlimit[0] + hard_limit = rlimit[1] + soft_limit = min(max(4096, base_soft_limit), hard_limit) + resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) + +OBJECTSAMPLERS = Registry('Object sampler') +DATASETS = Registry('dataset') +PIPELINES = Registry('pipeline') + + +def build_dataset(cfg, default_args=None): + from mmdet3d.datasets.dataset_wrappers import CBGSDataset + from mmdet.datasets.dataset_wrappers import (ClassBalancedDataset, + ConcatDataset, RepeatDataset) + if isinstance(cfg, (list, tuple)): + dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) + elif cfg['type'] == 'ConcatDataset': + dataset = ConcatDataset( + [build_dataset(c, default_args) for c in cfg['datasets']], + cfg.get('separate_eval', True)) + elif cfg['type'] == 'RepeatDataset': + dataset = RepeatDataset( + build_dataset(cfg['dataset'], default_args), cfg['times']) + elif cfg['type'] == 'ClassBalancedDataset': + dataset = ClassBalancedDataset( + build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) + elif cfg['type'] == 'CBGSDataset': + dataset = CBGSDataset(build_dataset(cfg['dataset'], default_args)) + elif isinstance(cfg.get('ann_file'), (list, tuple)): + dataset = _concat_dataset(cfg, default_args) + elif cfg['type'] in DATASETS._module_dict.keys(): + dataset = build_from_cfg(cfg, DATASETS, default_args) + else: + dataset = build_from_cfg(cfg, MMDET_DATASETS, default_args) + return dataset diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d.py new file mode 100644 index 000000000..9c6e35175 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d.py @@ -0,0 +1,448 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import tempfile +import warnings +from os import path as osp + +import mmcv +import numpy as np +from torch.utils.data import Dataset + +from ..core.bbox import get_box_type +from .builder import DATASETS +from .pipelines import Compose +from .utils import extract_result_dict, get_loading_pipeline + + +@DATASETS.register_module() +class Custom3DDataset(Dataset): + """Customized 3D dataset. + + This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI + dataset. + + .. code-block:: none + + [ + {'sample_idx': + 'lidar_points': {'lidar_path': velodyne_path, + .... + }, + 'annos': {'box_type_3d': (str) 'LiDAR/Camera/Depth' + 'gt_bboxes_3d': (n, 7) + 'gt_names': [list] + .... + } + 'calib': { .....} + 'images': { .....} + } + ] + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR'. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + modality=None, + box_type_3d='LiDAR', + filter_empty_gt=True, + test_mode=False, + file_client_args=dict(backend='disk')): + super().__init__() + self.data_root = data_root + self.ann_file = ann_file + self.test_mode = test_mode + self.modality = modality + self.filter_empty_gt = filter_empty_gt + self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d) + + self.CLASSES = self.get_classes(classes) + self.file_client = mmcv.FileClient(**file_client_args) + self.cat2id = {name: i for i, name in enumerate(self.CLASSES)} + + # load annotations + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path(self.ann_file) as local_path: + self.data_infos = self.load_annotations(open(local_path, 'rb')) + else: + warnings.warn( + 'The used MMCV version does not have get_local_path. ' + f'We treat the {self.ann_file} as local paths and it ' + 'might cause errors if the path is not a local path. ' + 'Please use MMCV>= 1.3.16 if you meet errors.') + self.data_infos = self.load_annotations(self.ann_file) + + # process pipeline + if pipeline is not None: + self.pipeline = Compose(pipeline) + + # set group flag for the samplers + if not self.test_mode: + self._set_group_flag() + + def load_annotations(self, ann_file): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations. + """ + # loading data from a file-like object needs file format + return mmcv.load(ann_file, file_format='pkl') + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - file_name (str): Filename of point clouds. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['sample_idx'] + pts_filename = osp.join(self.data_root, + info['lidar_points']['lidar_path']) + + input_dict = dict( + pts_filename=pts_filename, + sample_idx=sample_idx, + file_name=pts_filename) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any(): + return None + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: Annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): + 3D ground truth bboxes + - gt_labels_3d (np.ndarray): Labels of ground truths. + - gt_names (list[str]): Class names of ground truths. + """ + info = self.data_infos[index] + gt_bboxes_3d = info['annos']['gt_bboxes_3d'] + gt_names_3d = info['annos']['gt_names'] + gt_labels_3d = [] + for cat in gt_names_3d: + if cat in self.CLASSES: + gt_labels_3d.append(self.CLASSES.index(cat)) + else: + gt_labels_3d.append(-1) + gt_labels_3d = np.array(gt_labels_3d) + + # Obtain original box 3d type in info file + ori_box_type_3d = info['annos']['box_type_3d'] + ori_box_type_3d, _ = get_box_type(ori_box_type_3d) + + # turn original box type to target box type + gt_bboxes_3d = ori_box_type_3d( + gt_bboxes_3d, + box_dim=gt_bboxes_3d.shape[-1], + origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + gt_names=gt_names_3d) + return anns_results + + def pre_pipeline(self, results): + """Initialization before data preparation. + + Args: + results (dict): Dict before data preprocessing. + + - img_fields (list): Image fields. + - bbox3d_fields (list): 3D bounding boxes fields. + - pts_mask_fields (list): Mask fields of points. + - pts_seg_fields (list): Mask fields of point segments. + - bbox_fields (list): Fields of bounding boxes. + - mask_fields (list): Fields of masks. + - seg_fields (list): Segment fields. + - box_type_3d (str): 3D box type. + - box_mode_3d (str): 3D box mode. + """ + results['img_fields'] = [] + results['bbox3d_fields'] = [] + results['pts_mask_fields'] = [] + results['pts_seg_fields'] = [] + results['bbox_fields'] = [] + results['mask_fields'] = [] + results['seg_fields'] = [] + results['box_type_3d'] = self.box_type_3d + results['box_mode_3d'] = self.box_mode_3d + + def prepare_train_data(self, index): + """Training data preparation. + + Args: + index (int): Index for accessing the target data. + + Returns: + dict: Training data dict of the corresponding index. + """ + input_dict = self.get_data_info(index) + if input_dict is None: + return None + self.pre_pipeline(input_dict) + example = self.pipeline(input_dict) + if self.filter_empty_gt and \ + (example is None or + ~(example['gt_labels_3d']._data != -1).any()): + return None + return example + + def prepare_test_data(self, index): + """Prepare data for testing. + + Args: + index (int): Index for accessing the target data. + + Returns: + dict: Testing data dict of the corresponding index. + """ + input_dict = self.get_data_info(index) + self.pre_pipeline(input_dict) + example = self.pipeline(input_dict) + return example + + @classmethod + def get_classes(cls, classes=None): + """Get class names of current dataset. + + Args: + classes (Sequence[str] | str): If classes is None, use + default CLASSES defined by builtin dataset. If classes is a + string, take it as a file name. The file contains the name of + classes where each line contains one class name. If classes is + a tuple or list, override the CLASSES defined by the dataset. + + Return: + list[str]: A list of class names. + """ + if classes is None: + return cls.CLASSES + + if isinstance(classes, str): + # take it as a file path + class_names = mmcv.list_from_file(classes) + elif isinstance(classes, (tuple, list)): + class_names = classes + else: + raise ValueError(f'Unsupported type {type(classes)} of classes.') + + return class_names + + def format_results(self, + outputs, + pklfile_prefix=None, + submission_prefix=None): + """Format the results to pkl file. + + Args: + outputs (list[dict]): Testing results of the dataset. + pklfile_prefix (str): The prefix of pkl files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (outputs, tmp_dir), outputs is the detection results, + tmp_dir is the temporal directory created for saving json + files when ``jsonfile_prefix`` is not specified. + """ + if pklfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(tmp_dir.name, 'results') + out = f'{pklfile_prefix}.pkl' + mmcv.dump(outputs, out) + return outputs, tmp_dir + + def evaluate(self, + results, + metric=None, + iou_thr=(0.25, 0.5), + logger=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluate. + + Evaluation in indoor protocol. + + Args: + results (list[dict]): List of results. + metric (str | list[str], optional): Metrics to be evaluated. + Defaults to None. + iou_thr (list[float]): AP IoU thresholds. Defaults to (0.25, 0.5). + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Defaults to None. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict: Evaluation results. + """ + from mmdet3d.core.evaluation import indoor_eval + assert isinstance( + results, list), f'Expect results to be list, got {type(results)}.' + assert len(results) > 0, 'Expect length of results > 0.' + assert len(results) == len(self.data_infos) + assert isinstance( + results[0], dict + ), f'Expect elements in results to be dict, got {type(results[0])}.' + gt_annos = [info['annos'] for info in self.data_infos] + label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)} + ret_dict = indoor_eval( + gt_annos, + results, + iou_thr, + label2cat, + logger=logger, + box_type_3d=self.box_type_3d, + box_mode_3d=self.box_mode_3d) + if show: + self.show(results, out_dir, pipeline=pipeline) + + return ret_dict + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + raise NotImplementedError('_build_default_pipeline is not implemented ' + f'for dataset {self.__class__.__name__}') + + def _get_pipeline(self, pipeline): + """Get data loading pipeline in self.show/evaluate function. + + Args: + pipeline (list[dict]): Input pipeline. If None is given, + get from self.pipeline. + """ + if pipeline is None: + if not hasattr(self, 'pipeline') or self.pipeline is None: + warnings.warn( + 'Use default pipeline for data loading, this may cause ' + 'errors when data is on ceph') + return self._build_default_pipeline() + loading_pipeline = get_loading_pipeline(self.pipeline.transforms) + return Compose(loading_pipeline) + return Compose(pipeline) + + def _extract_data(self, index, pipeline, key, load_annos=False): + """Load data using input pipeline and extract data according to key. + + Args: + index (int): Index for accessing the target data. + pipeline (:obj:`Compose`): Composed data loading pipeline. + key (str | list[str]): One single or a list of data key. + load_annos (bool): Whether to load data annotations. + If True, need to set self.test_mode as False before loading. + + Returns: + np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]: + A single or a list of loaded data. + """ + assert pipeline is not None, 'data loading pipeline is not provided' + # when we want to load ground-truth via pipeline (e.g. bbox, seg mask) + # we need to set self.test_mode as False so that we have 'annos' + if load_annos: + original_test_mode = self.test_mode + self.test_mode = False + input_dict = self.get_data_info(index) + self.pre_pipeline(input_dict) + example = pipeline(input_dict) + + # extract data items according to keys + if isinstance(key, str): + data = extract_result_dict(example, key) + else: + data = [extract_result_dict(example, k) for k in key] + if load_annos: + self.test_mode = original_test_mode + + return data + + def __len__(self): + """Return the length of data infos. + + Returns: + int: Length of data infos. + """ + return len(self.data_infos) + + def _rand_another(self, idx): + """Randomly get another item with the same flag. + + Returns: + int: Another index of item with the same flag. + """ + pool = np.where(self.flag == self.flag[idx])[0] + return np.random.choice(pool) + + def __getitem__(self, idx): + """Get item from infos according to the given index. + + Returns: + dict: Data dictionary of the corresponding index. + """ + if self.test_mode: + return self.prepare_test_data(idx) + while True: + data = self.prepare_train_data(idx) + if data is None: + idx = self._rand_another(idx) + continue + return data + + def _set_group_flag(self): + """Set flag according to image aspect ratio. + + Images with aspect ratio greater than 1 will be set as group 1, + otherwise group 0. In 3D datasets, they are all the same, thus are all + zeros. + """ + self.flag = np.zeros(len(self), dtype=np.uint8) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d_seg.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d_seg.py new file mode 100644 index 000000000..e123611d8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/custom_3d_seg.py @@ -0,0 +1,465 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import tempfile +import warnings +from os import path as osp + +import mmcv +import numpy as np +from torch.utils.data import Dataset + +from mmseg.datasets import DATASETS as SEG_DATASETS +from .builder import DATASETS +from .pipelines import Compose +from .utils import extract_result_dict, get_loading_pipeline + + +@DATASETS.register_module() +@SEG_DATASETS.register_module() +class Custom3DSegDataset(Dataset): + """Customized 3D dataset for semantic segmentation task. + + This is the base dataset of ScanNet and S3DIS dataset. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + palette (list[list[int]], optional): The palette of segmentation map. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. If None is given, set to len(self.CLASSES) to + be consistent with PointSegClassMapping function in pipeline. + Defaults to None. + scene_idxs (np.ndarray | str, optional): Precomputed index to load + data. For scenes with many points, we may sample it several times. + Defaults to None. + """ + # names of all classes data used for the task + CLASSES = None + + # class_ids used for training + VALID_CLASS_IDS = None + + # all possible class_ids in loaded segmentation mask + ALL_CLASS_IDS = None + + # official color for visualization + PALETTE = None + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + palette=None, + modality=None, + test_mode=False, + ignore_index=None, + scene_idxs=None, + file_client_args=dict(backend='disk')): + super().__init__() + self.data_root = data_root + self.ann_file = ann_file + self.test_mode = test_mode + self.modality = modality + self.file_client = mmcv.FileClient(**file_client_args) + + # load annotations + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path(self.ann_file) as local_path: + self.data_infos = self.load_annotations(open(local_path, 'rb')) + else: + warnings.warn( + 'The used MMCV version does not have get_local_path. ' + f'We treat the {self.ann_file} as local paths and it ' + 'might cause errors if the path is not a local path. ' + 'Please use MMCV>= 1.3.16 if you meet errors.') + self.data_infos = self.load_annotations(self.ann_file) + + if pipeline is not None: + self.pipeline = Compose(pipeline) + + self.ignore_index = len(self.CLASSES) if \ + ignore_index is None else ignore_index + + self.scene_idxs = self.get_scene_idxs(scene_idxs) + self.CLASSES, self.PALETTE = \ + self.get_classes_and_palette(classes, palette) + + # set group flag for the sampler + if not self.test_mode: + self._set_group_flag() + + def load_annotations(self, ann_file): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations. + """ + # loading data from a file-like object needs file format + return mmcv.load(ann_file, file_format='pkl') + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - file_name (str): Filename of point clouds. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['point_cloud']['lidar_idx'] + pts_filename = osp.join(self.data_root, info['pts_path']) + + input_dict = dict( + pts_filename=pts_filename, + sample_idx=sample_idx, + file_name=pts_filename) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + return input_dict + + def pre_pipeline(self, results): + """Initialization before data preparation. + + Args: + results (dict): Dict before data preprocessing. + + - img_fields (list): Image fields. + - pts_mask_fields (list): Mask fields of points. + - pts_seg_fields (list): Mask fields of point segments. + - mask_fields (list): Fields of masks. + - seg_fields (list): Segment fields. + """ + results['img_fields'] = [] + results['pts_mask_fields'] = [] + results['pts_seg_fields'] = [] + results['mask_fields'] = [] + results['seg_fields'] = [] + results['bbox3d_fields'] = [] + + def prepare_train_data(self, index): + """Training data preparation. + + Args: + index (int): Index for accessing the target data. + + Returns: + dict: Training data dict of the corresponding index. + """ + input_dict = self.get_data_info(index) + if input_dict is None: + return None + self.pre_pipeline(input_dict) + example = self.pipeline(input_dict) + return example + + def prepare_test_data(self, index): + """Prepare data for testing. + + Args: + index (int): Index for accessing the target data. + + Returns: + dict: Testing data dict of the corresponding index. + """ + input_dict = self.get_data_info(index) + self.pre_pipeline(input_dict) + example = self.pipeline(input_dict) + return example + + def get_classes_and_palette(self, classes=None, palette=None): + """Get class names of current dataset. + + This function is taken from MMSegmentation. + + Args: + classes (Sequence[str] | str): If classes is None, use + default CLASSES defined by builtin dataset. If classes is a + string, take it as a file name. The file contains the name of + classes where each line contains one class name. If classes is + a tuple or list, override the CLASSES defined by the dataset. + Defaults to None. + palette (Sequence[Sequence[int]]] | np.ndarray): + The palette of segmentation map. If None is given, random + palette will be generated. Defaults to None. + """ + if classes is None: + self.custom_classes = False + # map id in the loaded mask to label used for training + self.label_map = { + cls_id: self.ignore_index + for cls_id in self.ALL_CLASS_IDS + } + self.label_map.update( + {cls_id: i + for i, cls_id in enumerate(self.VALID_CLASS_IDS)}) + # map label to category name + self.label2cat = { + i: cat_name + for i, cat_name in enumerate(self.CLASSES) + } + return self.CLASSES, self.PALETTE + + self.custom_classes = True + if isinstance(classes, str): + # take it as a file path + class_names = mmcv.list_from_file(classes) + elif isinstance(classes, (tuple, list)): + class_names = classes + else: + raise ValueError(f'Unsupported type {type(classes)} of classes.') + + if self.CLASSES: + if not set(class_names).issubset(self.CLASSES): + raise ValueError('classes is not a subset of CLASSES.') + + # update valid_class_ids + self.VALID_CLASS_IDS = [ + self.VALID_CLASS_IDS[self.CLASSES.index(cls_name)] + for cls_name in class_names + ] + + # dictionary, its keys are the old label ids and its values + # are the new label ids. + # used for changing pixel labels in load_annotations. + self.label_map = { + cls_id: self.ignore_index + for cls_id in self.ALL_CLASS_IDS + } + self.label_map.update( + {cls_id: i + for i, cls_id in enumerate(self.VALID_CLASS_IDS)}) + self.label2cat = { + i: cat_name + for i, cat_name in enumerate(class_names) + } + + # modify palette for visualization + palette = [ + self.PALETTE[self.CLASSES.index(cls_name)] + for cls_name in class_names + ] + + return class_names, palette + + def get_scene_idxs(self, scene_idxs): + """Compute scene_idxs for data sampling. + + We sample more times for scenes with more points. + """ + if self.test_mode: + # when testing, we load one whole scene every time + return np.arange(len(self.data_infos)).astype(np.int32) + + # we may need to re-sample different scenes according to scene_idxs + # this is necessary for indoor scene segmentation such as ScanNet + if scene_idxs is None: + scene_idxs = np.arange(len(self.data_infos)) + if isinstance(scene_idxs, str): + with self.file_client.get_local_path(scene_idxs) as local_path: + scene_idxs = np.load(local_path) + else: + scene_idxs = np.array(scene_idxs) + + return scene_idxs.astype(np.int32) + + def format_results(self, + outputs, + pklfile_prefix=None, + submission_prefix=None): + """Format the results to pkl file. + + Args: + outputs (list[dict]): Testing results of the dataset. + pklfile_prefix (str): The prefix of pkl files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (outputs, tmp_dir), outputs is the detection results, + tmp_dir is the temporal directory created for saving json + files when ``jsonfile_prefix`` is not specified. + """ + if pklfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(tmp_dir.name, 'results') + out = f'{pklfile_prefix}.pkl' + mmcv.dump(outputs, out) + return outputs, tmp_dir + + def evaluate(self, + results, + metric=None, + logger=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluate. + + Evaluation in semantic segmentation protocol. + + Args: + results (list[dict]): List of results. + metric (str | list[str]): Metrics to be evaluated. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Defaults to None. + show (bool, optional): Whether to visualize. + Defaults to False. + out_dir (str, optional): Path to save the visualization results. + Defaults to None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict: Evaluation results. + """ + from mmdet3d.core.evaluation import seg_eval + assert isinstance( + results, list), f'Expect results to be list, got {type(results)}.' + assert len(results) > 0, 'Expect length of results > 0.' + assert len(results) == len(self.data_infos) + assert isinstance( + results[0], dict + ), f'Expect elements in results to be dict, got {type(results[0])}.' + + load_pipeline = self._get_pipeline(pipeline) + pred_sem_masks = [result['semantic_mask'] for result in results] + gt_sem_masks = [ + self._extract_data( + i, load_pipeline, 'pts_semantic_mask', load_annos=True) + for i in range(len(self.data_infos)) + ] + ret_dict = seg_eval( + gt_sem_masks, + pred_sem_masks, + self.label2cat, + self.ignore_index, + logger=logger) + + if show: + self.show(pred_sem_masks, out_dir, pipeline=pipeline) + + return ret_dict + + def _rand_another(self, idx): + """Randomly get another item with the same flag. + + Returns: + int: Another index of item with the same flag. + """ + pool = np.where(self.flag == self.flag[idx])[0] + return np.random.choice(pool) + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + raise NotImplementedError('_build_default_pipeline is not implemented ' + f'for dataset {self.__class__.__name__}') + + def _get_pipeline(self, pipeline): + """Get data loading pipeline in self.show/evaluate function. + + Args: + pipeline (list[dict]): Input pipeline. If None is given, + get from self.pipeline. + """ + if pipeline is None: + if not hasattr(self, 'pipeline') or self.pipeline is None: + warnings.warn( + 'Use default pipeline for data loading, this may cause ' + 'errors when data is on ceph') + return self._build_default_pipeline() + loading_pipeline = get_loading_pipeline(self.pipeline.transforms) + return Compose(loading_pipeline) + return Compose(pipeline) + + def _extract_data(self, index, pipeline, key, load_annos=False): + """Load data using input pipeline and extract data according to key. + + Args: + index (int): Index for accessing the target data. + pipeline (:obj:`Compose`): Composed data loading pipeline. + key (str | list[str]): One single or a list of data key. + load_annos (bool): Whether to load data annotations. + If True, need to set self.test_mode as False before loading. + + Returns: + np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]: + A single or a list of loaded data. + """ + assert pipeline is not None, 'data loading pipeline is not provided' + # when we want to load ground-truth via pipeline (e.g. bbox, seg mask) + # we need to set self.test_mode as False so that we have 'annos' + if load_annos: + original_test_mode = self.test_mode + self.test_mode = False + input_dict = self.get_data_info(index) + self.pre_pipeline(input_dict) + example = pipeline(input_dict) + + # extract data items according to keys + if isinstance(key, str): + data = extract_result_dict(example, key) + else: + data = [extract_result_dict(example, k) for k in key] + if load_annos: + self.test_mode = original_test_mode + + return data + + def __len__(self): + """Return the length of scene_idxs. + + Returns: + int: Length of data infos. + """ + return len(self.scene_idxs) + + def __getitem__(self, idx): + """Get item from infos according to the given index. + + In indoor scene segmentation task, each scene contains millions of + points. However, we only sample less than 10k points within a patch + each time. Therefore, we use `scene_idxs` to re-sample different rooms. + + Returns: + dict: Data dictionary of the corresponding index. + """ + scene_idx = self.scene_idxs[idx] # map to scene idx + if self.test_mode: + return self.prepare_test_data(scene_idx) + while True: + data = self.prepare_train_data(scene_idx) + if data is None: + idx = self._rand_another(idx) + scene_idx = self.scene_idxs[idx] # map to scene idx + continue + return data + + def _set_group_flag(self): + """Set flag according to image aspect ratio. + + Images with aspect ratio greater than 1 will be set as group 1, + otherwise group 0. In 3D datasets, they are all the same, thus are all + zeros. + """ + self.flag = np.zeros(len(self), dtype=np.uint8) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/dataset_wrappers.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/dataset_wrappers.py new file mode 100644 index 000000000..2ae33279e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/dataset_wrappers.py @@ -0,0 +1,76 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np + +from .builder import DATASETS + + +@DATASETS.register_module() +class CBGSDataset(object): + """A wrapper of class sampled dataset with ann_file path. Implementation of + paper `Class-balanced Grouping and Sampling for Point Cloud 3D Object + Detection `_. + + Balance the number of scenes under different classes. + + Args: + dataset (:obj:`CustomDataset`): The dataset to be class sampled. + """ + + def __init__(self, dataset): + self.dataset = dataset + self.CLASSES = dataset.CLASSES + self.cat2id = {name: i for i, name in enumerate(self.CLASSES)} + self.sample_indices = self._get_sample_indices() + # self.dataset.data_infos = self.data_infos + if hasattr(self.dataset, 'flag'): + self.flag = np.array( + [self.dataset.flag[ind] for ind in self.sample_indices], + dtype=np.uint8) + + def _get_sample_indices(self): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations after class sampling. + """ + class_sample_idxs = {cat_id: [] for cat_id in self.cat2id.values()} + for idx in range(len(self.dataset)): + sample_cat_ids = self.dataset.get_cat_ids(idx) + for cat_id in sample_cat_ids: + class_sample_idxs[cat_id].append(idx) + duplicated_samples = sum( + [len(v) for _, v in class_sample_idxs.items()]) + class_distribution = { + k: len(v) / duplicated_samples + for k, v in class_sample_idxs.items() + } + + sample_indices = [] + + frac = 1.0 / len(self.CLASSES) + ratios = [frac / v for v in class_distribution.values()] + for cls_inds, ratio in zip(list(class_sample_idxs.values()), ratios): + sample_indices += np.random.choice(cls_inds, + int(len(cls_inds) * + ratio)).tolist() + return sample_indices + + def __getitem__(self, idx): + """Get item from infos according to the given index. + + Returns: + dict: Data dictionary of the corresponding index. + """ + ori_idx = self.sample_indices[idx] + return self.dataset[ori_idx] + + def __len__(self): + """Return the length of data infos. + + Returns: + int: Length of data infos. + """ + return len(self.sample_indices) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti2d_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti2d_dataset.py new file mode 100644 index 000000000..a94393210 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti2d_dataset.py @@ -0,0 +1,241 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np + +from mmdet.datasets import CustomDataset +from .builder import DATASETS + + +@DATASETS.register_module() +class Kitti2DDataset(CustomDataset): + r"""KITTI 2D Dataset. + + This class serves as the API for experiments on the `KITTI Dataset + `_. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR'. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + + CLASSES = ('car', 'pedestrian', 'cyclist') + """ + Annotation format: + [ + { + 'image': { + 'image_idx': 0, + 'image_path': 'training/image_2/000000.png', + 'image_shape': array([ 370, 1224], dtype=int32) + }, + 'point_cloud': { + 'num_features': 4, + 'velodyne_path': 'training/velodyne/000000.bin' + }, + 'calib': { + 'P0': (4, 4), + 'P1': (4, 4), + 'P2': (4, 4), + 'P3': (4, 4), + 'R0_rect':4x4 np.array, + 'Tr_velo_to_cam': 4x4 np.array, + 'Tr_imu_to_velo': 4x4 np.array + }, + 'annos': { + 'name': (n), + 'truncated': (n), + 'occluded': (n), + 'alpha': (n), + 'bbox': (n, 4), + 'dimensions': (n, 3), + 'location': (n, 3), + 'rotation_y': (n), + 'score': (n), + 'index': array([0], dtype=int32), + 'group_ids': array([0], dtype=int32), + 'difficulty': array([0], dtype=int32), + 'num_points_in_gt': (n), + } + } + ] + """ + + def load_annotations(self, ann_file): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations. + """ + self.data_infos = mmcv.load(ann_file) + self.cat2label = { + cat_name: i + for i, cat_name in enumerate(self.CLASSES) + } + return self.data_infos + + def _filter_imgs(self, min_size=32): + """Filter images without ground truths.""" + valid_inds = [] + for i, img_info in enumerate(self.data_infos): + if len(img_info['annos']['name']) > 0: + valid_inds.append(i) + return valid_inds + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: Annotation information consists of the following keys: + + - bboxes (np.ndarray): Ground truth bboxes. + - labels (np.ndarray): Labels of ground truths. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + annos = info['annos'] + gt_names = annos['name'] + gt_bboxes = annos['bbox'] + difficulty = annos['difficulty'] + + # remove classes that is not needed + selected = self.keep_arrays_by_name(gt_names, self.CLASSES) + gt_bboxes = gt_bboxes[selected] + gt_names = gt_names[selected] + difficulty = difficulty[selected] + gt_labels = np.array([self.cat2label[n] for n in gt_names]) + + anns_results = dict( + bboxes=gt_bboxes.astype(np.float32), + labels=gt_labels, + ) + return anns_results + + def prepare_train_img(self, idx): + """Training image preparation. + + Args: + index (int): Index for accessing the target image data. + + Returns: + dict: Training image data dict after preprocessing + corresponding to the index. + """ + img_raw_info = self.data_infos[idx]['image'] + img_info = dict(filename=img_raw_info['image_path']) + ann_info = self.get_ann_info(idx) + if len(ann_info['bboxes']) == 0: + return None + results = dict(img_info=img_info, ann_info=ann_info) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + return self.pipeline(results) + + def prepare_test_img(self, idx): + """Prepare data for testing. + + Args: + index (int): Index for accessing the target image data. + + Returns: + dict: Testing image data dict after preprocessing + corresponding to the index. + """ + img_raw_info = self.data_infos[idx]['image'] + img_info = dict(filename=img_raw_info['image_path']) + results = dict(img_info=img_info) + if self.proposals is not None: + results['proposals'] = self.proposals[idx] + self.pre_pipeline(results) + return self.pipeline(results) + + def drop_arrays_by_name(self, gt_names, used_classes): + """Drop irrelevant ground truths by name. + + Args: + gt_names (list[str]): Names of ground truths. + used_classes (list[str]): Classes of interest. + + Returns: + np.ndarray: Indices of ground truths that will be dropped. + """ + inds = [i for i, x in enumerate(gt_names) if x not in used_classes] + inds = np.array(inds, dtype=np.int64) + return inds + + def keep_arrays_by_name(self, gt_names, used_classes): + """Keep useful ground truths by name. + + Args: + gt_names (list[str]): Names of ground truths. + used_classes (list[str]): Classes of interest. + + Returns: + np.ndarray: Indices of ground truths that will be keeped. + """ + inds = [i for i, x in enumerate(gt_names) if x in used_classes] + inds = np.array(inds, dtype=np.int64) + return inds + + def reformat_bbox(self, outputs, out=None): + """Reformat bounding boxes to KITTI 2D styles. + + Args: + outputs (list[np.ndarray]): List of arrays storing the inferenced + bounding boxes and scores. + out (str, optional): The prefix of output file. + Default: None. + + Returns: + list[dict]: A list of dictionaries with the kitti 2D format. + """ + from mmdet3d.core.bbox.transforms import bbox2result_kitti2d + sample_idx = [info['image']['image_idx'] for info in self.data_infos] + result_files = bbox2result_kitti2d(outputs, self.CLASSES, sample_idx, + out) + return result_files + + def evaluate(self, result_files, eval_types=None): + """Evaluation in KITTI protocol. + + Args: + result_files (str): Path of result files. + eval_types (str, optional): Types of evaluation. Default: None. + KITTI dataset only support 'bbox' evaluation type. + + Returns: + tuple (str, dict): Average precision results in str format + and average precision results in dict format. + """ + from mmdet3d.core.evaluation import kitti_eval + eval_types = ['bbox'] if not eval_types else eval_types + assert eval_types in ('bbox', ['bbox' + ]), 'KITTI data set only evaluate bbox' + gt_annos = [info['annos'] for info in self.data_infos] + ap_result_str, ap_dict = kitti_eval( + gt_annos, result_files, self.CLASSES, eval_types=['bbox']) + return ap_result_str, ap_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_dataset.py new file mode 100644 index 000000000..48025387f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_dataset.py @@ -0,0 +1,773 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import os +import tempfile +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.utils import print_log + +from ..core import show_multi_modality_result, show_result +from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode, + LiDARInstance3DBoxes, points_cam2img) +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class KittiDataset(Custom3DDataset): + r"""KITTI Dataset. + + This class serves as the API for experiments on the `KITTI Dataset + `_. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + split (str): Split of input data. + pts_prefix (str, optional): Prefix of points files. + Defaults to 'velodyne'. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + pcd_limit_range (list, optional): The range of point cloud used to + filter invalid predicted boxes. + Default: [0, -40, -3, 70.4, 40, 0.0]. + """ + CLASSES = ('car', 'pedestrian', 'cyclist') + + def __init__(self, + data_root, + ann_file, + split, + pts_prefix='velodyne', + pipeline=None, + classes=None, + modality=None, + box_type_3d='LiDAR', + filter_empty_gt=True, + test_mode=False, + pcd_limit_range=[0, -40, -3, 70.4, 40, 0.0], + **kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + **kwargs) + + self.split = split + self.root_split = os.path.join(self.data_root, split) + assert self.modality is not None + self.pcd_limit_range = pcd_limit_range + self.pts_prefix = pts_prefix + + def _get_pts_filename(self, idx): + """Get point cloud filename according to the given index. + + Args: + index (int): Index of the point cloud file to get. + + Returns: + str: Name of the point cloud file. + """ + pts_filename = osp.join(self.root_split, self.pts_prefix, + f'{idx:06d}.bin') + return pts_filename + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - img_prefix (str): Prefix of image files. + - img_info (dict): Image info. + - lidar2img (list[np.ndarray], optional): Transformations + from lidar to different cameras. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['image']['image_idx'] + img_filename = os.path.join(self.data_root, + info['image']['image_path']) + + # TODO: consider use torch.Tensor only + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P2 = info['calib']['P2'].astype(np.float32) + lidar2img = P2 @ rect @ Trv2c + + pts_filename = self._get_pts_filename(sample_idx) + input_dict = dict( + sample_idx=sample_idx, + pts_filename=pts_filename, + img_prefix=None, + img_info=dict(filename=img_filename), + lidar2img=lidar2img) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): + 3D ground truth bboxes. + - gt_labels_3d (np.ndarray): Labels of ground truths. + - gt_bboxes (np.ndarray): 2D ground truth bboxes. + - gt_labels (np.ndarray): Labels of ground truths. + - gt_names (list[str]): Class names of ground truths. + - difficulty (int): Difficulty defined by KITTI. + 0, 1, 2 represent xxxxx respectively. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + + if 'plane' in info: + # convert ground plane to velodyne coordinates + reverse = np.linalg.inv(rect @ Trv2c) + + (plane_norm_cam, + plane_off_cam) = (info['plane'][:3], + -info['plane'][:3] * info['plane'][3]) + plane_norm_lidar = \ + (reverse[:3, :3] @ plane_norm_cam[:, None])[:, 0] + plane_off_lidar = ( + reverse[:3, :3] @ plane_off_cam[:, None][:, 0] + + reverse[:3, 3]) + plane_lidar = np.zeros_like(plane_norm_lidar, shape=(4, )) + plane_lidar[:3] = plane_norm_lidar + plane_lidar[3] = -plane_norm_lidar.T @ plane_off_lidar + else: + plane_lidar = None + + difficulty = info['annos']['difficulty'] + annos = info['annos'] + # we need other objects to avoid collision when sample + annos = self.remove_dontcare(annos) + loc = annos['location'] + dims = annos['dimensions'] + rots = annos['rotation_y'] + gt_names = annos['name'] + gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1).astype(np.float32) + + # convert gt_bboxes_3d to velodyne coordinates + gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to( + self.box_mode_3d, np.linalg.inv(rect @ Trv2c)) + gt_bboxes = annos['bbox'] + + selected = self.drop_arrays_by_name(gt_names, ['DontCare']) + gt_bboxes = gt_bboxes[selected].astype('float32') + gt_names = gt_names[selected] + + gt_labels = [] + for cat in gt_names: + if cat in self.CLASSES: + gt_labels.append(self.CLASSES.index(cat)) + else: + gt_labels.append(-1) + gt_labels = np.array(gt_labels).astype(np.int64) + gt_labels_3d = copy.deepcopy(gt_labels) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + bboxes=gt_bboxes, + labels=gt_labels, + gt_names=gt_names, + plane=plane_lidar, + difficulty=difficulty) + return anns_results + + def drop_arrays_by_name(self, gt_names, used_classes): + """Drop irrelevant ground truths by name. + + Args: + gt_names (list[str]): Names of ground truths. + used_classes (list[str]): Classes of interest. + + Returns: + np.ndarray: Indices of ground truths that will be dropped. + """ + inds = [i for i, x in enumerate(gt_names) if x not in used_classes] + inds = np.array(inds, dtype=np.int64) + return inds + + def keep_arrays_by_name(self, gt_names, used_classes): + """Keep useful ground truths by name. + + Args: + gt_names (list[str]): Names of ground truths. + used_classes (list[str]): Classes of interest. + + Returns: + np.ndarray: Indices of ground truths that will be keeped. + """ + inds = [i for i, x in enumerate(gt_names) if x in used_classes] + inds = np.array(inds, dtype=np.int64) + return inds + + def remove_dontcare(self, ann_info): + """Remove annotations that do not need to be cared. + + Args: + ann_info (dict): Dict of annotation infos. The ``'DontCare'`` + annotations will be removed according to ann_file['name']. + + Returns: + dict: Annotations after filtering. + """ + img_filtered_annotations = {} + relevant_annotation_indices = [ + i for i, x in enumerate(ann_info['name']) if x != 'DontCare' + ] + for key in ann_info.keys(): + img_filtered_annotations[key] = ( + ann_info[key][relevant_annotation_indices]) + return img_filtered_annotations + + def format_results(self, + outputs, + pklfile_prefix=None, + submission_prefix=None): + """Format the results to pkl file. + + Args: + outputs (list[dict]): Testing results of the dataset. + pklfile_prefix (str): The prefix of pkl files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str): The prefix of submitted files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". If not specified, a temp file will be created. + Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing + the json filepaths, tmp_dir is the temporal directory created + for saving json files when jsonfile_prefix is not specified. + """ + if pklfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + if not isinstance(outputs[0], dict): + result_files = self.bbox2result_kitti2d(outputs, self.CLASSES, + pklfile_prefix, + submission_prefix) + elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]: + result_files = dict() + for name in outputs[0]: + results_ = [out[name] for out in outputs] + pklfile_prefix_ = pklfile_prefix + name + if submission_prefix is not None: + submission_prefix_ = submission_prefix + name + else: + submission_prefix_ = None + if 'img' in name: + result_files = self.bbox2result_kitti2d( + results_, self.CLASSES, pklfile_prefix_, + submission_prefix_) + else: + result_files_ = self.bbox2result_kitti( + results_, self.CLASSES, pklfile_prefix_, + submission_prefix_) + result_files[name] = result_files_ + else: + result_files = self.bbox2result_kitti(outputs, self.CLASSES, + pklfile_prefix, + submission_prefix) + return result_files, tmp_dir + + def evaluate(self, + results, + metric=None, + logger=None, + pklfile_prefix=None, + submission_prefix=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluation in KITTI protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Default: None. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + pklfile_prefix (str, optional): The prefix of pkl files, including + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str, optional): The prefix of submission data. + If not specified, the submission data will not be generated. + Default: None. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str, float]: Results of each evaluation metric. + """ + result_files, tmp_dir = self.format_results(results, pklfile_prefix) + from mmdet3d.core.evaluation import kitti_eval + gt_annos = [info['annos'] for info in self.data_infos] + + if isinstance(result_files, dict): + ap_dict = dict() + for name, result_files_ in result_files.items(): + eval_types = ['bbox', 'bev', '3d'] + if 'img' in name: + eval_types = ['bbox'] + ap_result_str, ap_dict_ = kitti_eval( + gt_annos, + result_files_, + self.CLASSES, + eval_types=eval_types) + for ap_type, ap in ap_dict_.items(): + ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap)) + + print_log( + f'Results of {name}:\n' + ap_result_str, logger=logger) + + else: + if metric == 'img_bbox': + ap_result_str, ap_dict = kitti_eval( + gt_annos, result_files, self.CLASSES, eval_types=['bbox']) + else: + ap_result_str, ap_dict = kitti_eval(gt_annos, result_files, + self.CLASSES) + print_log('\n' + ap_result_str, logger=logger) + + if tmp_dir is not None: + tmp_dir.cleanup() + if show or out_dir: + self.show(results, out_dir, show=show, pipeline=pipeline) + return ap_dict + + def bbox2result_kitti(self, + net_outputs, + class_names, + pklfile_prefix=None, + submission_prefix=None): + """Convert 3D detection results to kitti format for evaluation and test + submission. + + Args: + net_outputs (list[np.ndarray]): List of array storing the + inferenced bounding boxes and scores. + class_names (list[String]): A list of class names. + pklfile_prefix (str): The prefix of pkl file. + submission_prefix (str): The prefix of submission file. + + Returns: + list[dict]: A list of dictionaries with the kitti format. + """ + assert len(net_outputs) == len(self.data_infos), \ + 'invalid list length of network outputs' + if submission_prefix is not None: + mmcv.mkdir_or_exist(submission_prefix) + + det_annos = [] + print('\nConverting prediction to KITTI format') + for idx, pred_dicts in enumerate( + mmcv.track_iter_progress(net_outputs)): + annos = [] + info = self.data_infos[idx] + sample_idx = info['image']['image_idx'] + image_shape = info['image']['image_shape'][:2] + box_dict = self.convert_valid_bboxes(pred_dicts, info) + anno = { + 'name': [], + 'truncated': [], + 'occluded': [], + 'alpha': [], + 'bbox': [], + 'dimensions': [], + 'location': [], + 'rotation_y': [], + 'score': [] + } + if len(box_dict['bbox']) > 0: + box_2d_preds = box_dict['bbox'] + box_preds = box_dict['box3d_camera'] + scores = box_dict['scores'] + box_preds_lidar = box_dict['box3d_lidar'] + label_preds = box_dict['label_preds'] + + for box, box_lidar, bbox, score, label in zip( + box_preds, box_preds_lidar, box_2d_preds, scores, + label_preds): + bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) + bbox[:2] = np.maximum(bbox[:2], [0, 0]) + anno['name'].append(class_names[int(label)]) + anno['truncated'].append(0.0) + anno['occluded'].append(0) + anno['alpha'].append( + -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6]) + anno['bbox'].append(bbox) + anno['dimensions'].append(box[3:6]) + anno['location'].append(box[:3]) + anno['rotation_y'].append(box[6]) + anno['score'].append(score) + + anno = {k: np.stack(v) for k, v in anno.items()} + annos.append(anno) + else: + anno = { + 'name': np.array([]), + 'truncated': np.array([]), + 'occluded': np.array([]), + 'alpha': np.array([]), + 'bbox': np.zeros([0, 4]), + 'dimensions': np.zeros([0, 3]), + 'location': np.zeros([0, 3]), + 'rotation_y': np.array([]), + 'score': np.array([]), + } + annos.append(anno) + + if submission_prefix is not None: + curr_file = f'{submission_prefix}/{sample_idx:06d}.txt' + with open(curr_file, 'w') as f: + bbox = anno['bbox'] + loc = anno['location'] + dims = anno['dimensions'] # lhw -> hwl + + for idx in range(len(bbox)): + print( + '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( + anno['name'][idx], anno['alpha'][idx], + bbox[idx][0], bbox[idx][1], bbox[idx][2], + bbox[idx][3], dims[idx][1], dims[idx][2], + dims[idx][0], loc[idx][0], loc[idx][1], + loc[idx][2], anno['rotation_y'][idx], + anno['score'][idx]), + file=f) + + annos[-1]['sample_idx'] = np.array( + [sample_idx] * len(annos[-1]['score']), dtype=np.int64) + + det_annos += annos + + if pklfile_prefix is not None: + if not pklfile_prefix.endswith(('.pkl', '.pickle')): + out = f'{pklfile_prefix}.pkl' + mmcv.dump(det_annos, out) + print(f'Result is saved to {out}.') + + return det_annos + + def bbox2result_kitti2d(self, + net_outputs, + class_names, + pklfile_prefix=None, + submission_prefix=None): + """Convert 2D detection results to kitti format for evaluation and test + submission. + + Args: + net_outputs (list[np.ndarray]): List of array storing the + inferenced bounding boxes and scores. + class_names (list[String]): A list of class names. + pklfile_prefix (str): The prefix of pkl file. + submission_prefix (str): The prefix of submission file. + + Returns: + list[dict]: A list of dictionaries have the kitti format + """ + assert len(net_outputs) == len(self.data_infos), \ + 'invalid list length of network outputs' + det_annos = [] + print('\nConverting prediction to KITTI format') + for i, bboxes_per_sample in enumerate( + mmcv.track_iter_progress(net_outputs)): + annos = [] + anno = dict( + name=[], + truncated=[], + occluded=[], + alpha=[], + bbox=[], + dimensions=[], + location=[], + rotation_y=[], + score=[]) + sample_idx = self.data_infos[i]['image']['image_idx'] + + num_example = 0 + for label in range(len(bboxes_per_sample)): + bbox = bboxes_per_sample[label] + for i in range(bbox.shape[0]): + anno['name'].append(class_names[int(label)]) + anno['truncated'].append(0.0) + anno['occluded'].append(0) + anno['alpha'].append(0.0) + anno['bbox'].append(bbox[i, :4]) + # set dimensions (height, width, length) to zero + anno['dimensions'].append( + np.zeros(shape=[3], dtype=np.float32)) + # set the 3D translation to (-1000, -1000, -1000) + anno['location'].append( + np.ones(shape=[3], dtype=np.float32) * (-1000.0)) + anno['rotation_y'].append(0.0) + anno['score'].append(bbox[i, 4]) + num_example += 1 + + if num_example == 0: + annos.append( + dict( + name=np.array([]), + truncated=np.array([]), + occluded=np.array([]), + alpha=np.array([]), + bbox=np.zeros([0, 4]), + dimensions=np.zeros([0, 3]), + location=np.zeros([0, 3]), + rotation_y=np.array([]), + score=np.array([]), + )) + else: + anno = {k: np.stack(v) for k, v in anno.items()} + annos.append(anno) + + annos[-1]['sample_idx'] = np.array( + [sample_idx] * num_example, dtype=np.int64) + det_annos += annos + + if pklfile_prefix is not None: + # save file in pkl format + pklfile_path = ( + pklfile_prefix[:-4] if pklfile_prefix.endswith( + ('.pkl', '.pickle')) else pklfile_prefix) + mmcv.dump(det_annos, pklfile_path) + + if submission_prefix is not None: + # save file in submission format + mmcv.mkdir_or_exist(submission_prefix) + print(f'Saving KITTI submission to {submission_prefix}') + for i, anno in enumerate(det_annos): + sample_idx = self.data_infos[i]['image']['image_idx'] + cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt' + with open(cur_det_file, 'w') as f: + bbox = anno['bbox'] + loc = anno['location'] + dims = anno['dimensions'][::-1] # lhw -> hwl + for idx in range(len(bbox)): + print( + '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} ' + '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format( + anno['name'][idx], + anno['alpha'][idx], + *bbox[idx], # 4 float + *dims[idx], # 3 float + *loc[idx], # 3 float + anno['rotation_y'][idx], + anno['score'][idx]), + file=f, + ) + print(f'Result is saved to {submission_prefix}') + + return det_annos + + def convert_valid_bboxes(self, box_dict, info): + """Convert the predicted boxes into valid ones. + + Args: + box_dict (dict): Box dictionaries to be converted. + + - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes. + - scores_3d (torch.Tensor): Scores of boxes. + - labels_3d (torch.Tensor): Class labels of boxes. + info (dict): Data info. + + Returns: + dict: Valid predicted boxes. + + - bbox (np.ndarray): 2D bounding boxes. + - box3d_camera (np.ndarray): 3D bounding boxes in + camera coordinate. + - box3d_lidar (np.ndarray): 3D bounding boxes in + LiDAR coordinate. + - scores (np.ndarray): Scores of boxes. + - label_preds (np.ndarray): Class label predictions. + - sample_idx (int): Sample index. + """ + # TODO: refactor this function + box_preds = box_dict['boxes_3d'] + scores = box_dict['scores_3d'] + labels = box_dict['labels_3d'] + sample_idx = info['image']['image_idx'] + box_preds.limit_yaw(offset=0.5, period=np.pi * 2) + + if len(box_preds) == 0: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + box3d_lidar=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx) + + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P2 = info['calib']['P2'].astype(np.float32) + img_shape = info['image']['image_shape'] + P2 = box_preds.tensor.new_tensor(P2) + + box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c) + + box_corners = box_preds_camera.corners + box_corners_in_image = points_cam2img(box_corners, P2) + # box_corners_in_image: [N, 8, 2] + minxy = torch.min(box_corners_in_image, dim=1)[0] + maxxy = torch.max(box_corners_in_image, dim=1)[0] + box_2d_preds = torch.cat([minxy, maxxy], dim=1) + # Post-processing + # check box_preds_camera + image_shape = box_preds.tensor.new_tensor(img_shape) + valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) & + (box_2d_preds[:, 1] < image_shape[0]) & + (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) + # check box_preds + limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range) + valid_pcd_inds = ((box_preds.center > limit_range[:3]) & + (box_preds.center < limit_range[3:])) + valid_inds = valid_cam_inds & valid_pcd_inds.all(-1) + + if valid_inds.sum() > 0: + return dict( + bbox=box_2d_preds[valid_inds, :].numpy(), + box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), + box3d_lidar=box_preds[valid_inds].tensor.numpy(), + scores=scores[valid_inds].numpy(), + label_preds=labels[valid_inds].numpy(), + sample_idx=sample_idx) + else: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + box3d_lidar=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx) + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=dict(backend='disk')), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + if self.modality['use_camera']: + pipeline.insert(0, dict(type='LoadImageFromFile')) + return Compose(pipeline) + + def show(self, results, out_dir, show=True, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Whether to visualize the results online. + Default: False. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + if 'pts_bbox' in result.keys(): + result = result['pts_bbox'] + data_info = self.data_infos[i] + pts_path = data_info['point_cloud']['velodyne_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points, img_metas, img = self._extract_data( + i, pipeline, ['points', 'img_metas', 'img']) + points = points.numpy() + # for now we convert points into depth mode + points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() + show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + pred_bboxes = result['boxes_3d'].tensor.numpy() + show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir, + file_name, show) + + # multi-modality visualization + if self.modality['use_camera'] and 'lidar2img' in img_metas.keys(): + img = img.numpy() + # need to transpose channel to first dim + img = img.transpose(1, 2, 0) + show_pred_bboxes = LiDARInstance3DBoxes( + pred_bboxes, origin=(0.5, 0.5, 0)) + show_gt_bboxes = LiDARInstance3DBoxes( + gt_bboxes, origin=(0.5, 0.5, 0)) + show_multi_modality_result( + img, + show_gt_bboxes, + show_pred_bboxes, + img_metas['lidar2img'], + out_dir, + file_name, + box_mode='lidar', + show=show) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_mono_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_mono_dataset.py new file mode 100644 index 000000000..c669b0afd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/kitti_mono_dataset.py @@ -0,0 +1,569 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import tempfile +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.utils import print_log + +from ..core.bbox import Box3DMode, CameraInstance3DBoxes, points_cam2img +from .builder import DATASETS +from .nuscenes_mono_dataset import NuScenesMonoDataset + + +@DATASETS.register_module() +class KittiMonoDataset(NuScenesMonoDataset): + """Monocular 3D detection on KITTI Dataset. + + Args: + data_root (str): Path of dataset root. + info_file (str): Path of info file. + load_interval (int, optional): Interval of loading the dataset. It is + used to uniformly sample the dataset. Defaults to 1. + with_velocity (bool, optional): Whether include velocity prediction + into the experiments. Defaults to False. + eval_version (str, optional): Configuration version of evaluation. + Defaults to None. + version (str, optional): Dataset version. Defaults to None. + kwargs (dict): Other arguments are the same of NuScenesMonoDataset. + """ + + CLASSES = ('Pedestrian', 'Cyclist', 'Car') + + def __init__(self, + data_root, + info_file, + ann_file, + pipeline, + load_interval=1, + with_velocity=False, + eval_version=None, + version=None, + **kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + load_interval=load_interval, + with_velocity=with_velocity, + eval_version=eval_version, + version=version, + **kwargs) + self.anno_infos = mmcv.load(info_file) + self.bbox_code_size = 7 + + def _parse_ann_info(self, img_info, ann_info): + """Parse bbox and mask annotation. + + Args: + ann_info (list[dict]): Annotation info of an image. + with_mask (bool): Whether to parse mask annotations. + + Returns: + dict: A dict containing the following keys: bboxes, bboxes_ignore, + labels, masks, seg_map. "masks" are raw annotations and not + decoded into binary masks. + """ + gt_bboxes = [] + gt_labels = [] + gt_bboxes_ignore = [] + gt_masks_ann = [] + gt_bboxes_cam3d = [] + centers2d = [] + depths = [] + for i, ann in enumerate(ann_info): + if ann.get('ignore', False): + continue + x1, y1, w, h = ann['bbox'] + inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) + inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) + if inter_w * inter_h == 0: + continue + if ann['area'] <= 0 or w < 1 or h < 1: + continue + if ann['category_id'] not in self.cat_ids: + continue + bbox = [x1, y1, x1 + w, y1 + h] + if ann.get('iscrowd', False): + gt_bboxes_ignore.append(bbox) + else: + gt_bboxes.append(bbox) + gt_labels.append(self.cat2label[ann['category_id']]) + gt_masks_ann.append(ann.get('segmentation', None)) + # 3D annotations in camera coordinates + bbox_cam3d = np.array(ann['bbox_cam3d']).reshape(-1, ) + gt_bboxes_cam3d.append(bbox_cam3d) + # 2.5D annotations in camera coordinates + center2d = ann['center2d'][:2] + depth = ann['center2d'][2] + centers2d.append(center2d) + depths.append(depth) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + + if gt_bboxes_cam3d: + gt_bboxes_cam3d = np.array(gt_bboxes_cam3d, dtype=np.float32) + centers2d = np.array(centers2d, dtype=np.float32) + depths = np.array(depths, dtype=np.float32) + else: + gt_bboxes_cam3d = np.zeros((0, self.bbox_code_size), + dtype=np.float32) + centers2d = np.zeros((0, 2), dtype=np.float32) + depths = np.zeros((0), dtype=np.float32) + + gt_bboxes_cam3d = CameraInstance3DBoxes( + gt_bboxes_cam3d, + box_dim=gt_bboxes_cam3d.shape[-1], + origin=(0.5, 0.5, 0.5)) + gt_labels_3d = copy.deepcopy(gt_labels) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + seg_map = img_info['filename'].replace('jpg', 'png') + + ann = dict( + bboxes=gt_bboxes, + labels=gt_labels, + gt_bboxes_3d=gt_bboxes_cam3d, + gt_labels_3d=gt_labels_3d, + centers2d=centers2d, + depths=depths, + bboxes_ignore=gt_bboxes_ignore, + masks=gt_masks_ann, + seg_map=seg_map) + + return ann + + def format_results(self, + outputs, + pklfile_prefix=None, + submission_prefix=None): + """Format the results to pkl file. + + Args: + outputs (list[dict]): Testing results of the dataset. + pklfile_prefix (str): The prefix of pkl files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str): The prefix of submitted files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". If not specified, a temp file will be created. + Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing + the json filepaths, tmp_dir is the temporal directory created + for saving json files when jsonfile_prefix is not specified. + """ + if pklfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + if not isinstance(outputs[0], dict): + result_files = self.bbox2result_kitti2d(outputs, self.CLASSES, + pklfile_prefix, + submission_prefix) + elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0] or \ + 'img_bbox2d' in outputs[0]: + result_files = dict() + for name in outputs[0]: + results_ = [out[name] for out in outputs] + pklfile_prefix_ = pklfile_prefix + name + if submission_prefix is not None: + submission_prefix_ = submission_prefix + name + else: + submission_prefix_ = None + if '2d' in name: + result_files_ = self.bbox2result_kitti2d( + results_, self.CLASSES, pklfile_prefix_, + submission_prefix_) + else: + result_files_ = self.bbox2result_kitti( + results_, self.CLASSES, pklfile_prefix_, + submission_prefix_) + result_files[name] = result_files_ + else: + result_files = self.bbox2result_kitti(outputs, self.CLASSES, + pklfile_prefix, + submission_prefix) + return result_files, tmp_dir + + def evaluate(self, + results, + metric=None, + logger=None, + pklfile_prefix=None, + submission_prefix=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluation in KITTI protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Defaults to None. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + pklfile_prefix (str, optional): The prefix of pkl files, including + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str, optional): The prefix of submission data. + If not specified, the submission data will not be generated. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str, float]: Results of each evaluation metric. + """ + result_files, tmp_dir = self.format_results(results, pklfile_prefix) + from mmdet3d.core.evaluation import kitti_eval + gt_annos = [info['annos'] for info in self.anno_infos] + + if isinstance(result_files, dict): + ap_dict = dict() + for name, result_files_ in result_files.items(): + eval_types = ['bbox', 'bev', '3d'] + if '2d' in name: + eval_types = ['bbox'] + ap_result_str, ap_dict_ = kitti_eval( + gt_annos, + result_files_, + self.CLASSES, + eval_types=eval_types) + for ap_type, ap in ap_dict_.items(): + ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap)) + + print_log( + f'Results of {name}:\n' + ap_result_str, logger=logger) + + else: + if metric == 'img_bbox2d': + ap_result_str, ap_dict = kitti_eval( + gt_annos, result_files, self.CLASSES, eval_types=['bbox']) + else: + ap_result_str, ap_dict = kitti_eval(gt_annos, result_files, + self.CLASSES) + print_log('\n' + ap_result_str, logger=logger) + + if tmp_dir is not None: + tmp_dir.cleanup() + if show or out_dir: + self.show(results, out_dir, show=show, pipeline=pipeline) + return ap_dict + + def bbox2result_kitti(self, + net_outputs, + class_names, + pklfile_prefix=None, + submission_prefix=None): + """Convert 3D detection results to kitti format for evaluation and test + submission. + + Args: + net_outputs (list[np.ndarray]): List of array storing the + inferenced bounding boxes and scores. + class_names (list[String]): A list of class names. + pklfile_prefix (str): The prefix of pkl file. + submission_prefix (str): The prefix of submission file. + + Returns: + list[dict]: A list of dictionaries with the kitti format. + """ + assert len(net_outputs) == len(self.anno_infos) + if submission_prefix is not None: + mmcv.mkdir_or_exist(submission_prefix) + + det_annos = [] + print('\nConverting prediction to KITTI format') + for idx, pred_dicts in enumerate( + mmcv.track_iter_progress(net_outputs)): + annos = [] + info = self.anno_infos[idx] + sample_idx = info['image']['image_idx'] + image_shape = info['image']['image_shape'][:2] + + box_dict = self.convert_valid_bboxes(pred_dicts, info) + anno = { + 'name': [], + 'truncated': [], + 'occluded': [], + 'alpha': [], + 'bbox': [], + 'dimensions': [], + 'location': [], + 'rotation_y': [], + 'score': [] + } + if len(box_dict['bbox']) > 0: + box_2d_preds = box_dict['bbox'] + box_preds = box_dict['box3d_camera'] + scores = box_dict['scores'] + box_preds_lidar = box_dict['box3d_lidar'] + label_preds = box_dict['label_preds'] + + for box, box_lidar, bbox, score, label in zip( + box_preds, box_preds_lidar, box_2d_preds, scores, + label_preds): + bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) + bbox[:2] = np.maximum(bbox[:2], [0, 0]) + anno['name'].append(class_names[int(label)]) + anno['truncated'].append(0.0) + anno['occluded'].append(0) + anno['alpha'].append(-np.arctan2(box[0], box[2]) + box[6]) + anno['bbox'].append(bbox) + anno['dimensions'].append(box[3:6]) + anno['location'].append(box[:3]) + anno['rotation_y'].append(box[6]) + anno['score'].append(score) + + anno = {k: np.stack(v) for k, v in anno.items()} + annos.append(anno) + + else: + anno = { + 'name': np.array([]), + 'truncated': np.array([]), + 'occluded': np.array([]), + 'alpha': np.array([]), + 'bbox': np.zeros([0, 4]), + 'dimensions': np.zeros([0, 3]), + 'location': np.zeros([0, 3]), + 'rotation_y': np.array([]), + 'score': np.array([]), + } + annos.append(anno) + + if submission_prefix is not None: + curr_file = f'{submission_prefix}/{sample_idx:06d}.txt' + with open(curr_file, 'w') as f: + bbox = anno['bbox'] + loc = anno['location'] + dims = anno['dimensions'] # lhw -> hwl + + for idx in range(len(bbox)): + print( + '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( + anno['name'][idx], anno['alpha'][idx], + bbox[idx][0], bbox[idx][1], bbox[idx][2], + bbox[idx][3], dims[idx][1], dims[idx][2], + dims[idx][0], loc[idx][0], loc[idx][1], + loc[idx][2], anno['rotation_y'][idx], + anno['score'][idx]), + file=f) + + annos[-1]['sample_idx'] = np.array( + [sample_idx] * len(annos[-1]['score']), dtype=np.int64) + + det_annos += annos + + if pklfile_prefix is not None: + if not pklfile_prefix.endswith(('.pkl', '.pickle')): + out = f'{pklfile_prefix}.pkl' + mmcv.dump(det_annos, out) + print('Result is saved to %s' % out) + + return det_annos + + def bbox2result_kitti2d(self, + net_outputs, + class_names, + pklfile_prefix=None, + submission_prefix=None): + """Convert 2D detection results to kitti format for evaluation and test + submission. + + Args: + net_outputs (list[np.ndarray]): List of array storing the + inferenced bounding boxes and scores. + class_names (list[String]): A list of class names. + pklfile_prefix (str): The prefix of pkl file. + submission_prefix (str): The prefix of submission file. + + Returns: + list[dict]: A list of dictionaries have the kitti format + """ + assert len(net_outputs) == len(self.anno_infos) + + det_annos = [] + print('\nConverting prediction to KITTI format') + for i, bboxes_per_sample in enumerate( + mmcv.track_iter_progress(net_outputs)): + annos = [] + anno = dict( + name=[], + truncated=[], + occluded=[], + alpha=[], + bbox=[], + dimensions=[], + location=[], + rotation_y=[], + score=[]) + sample_idx = self.anno_infos[i]['image']['image_idx'] + + num_example = 0 + for label in range(len(bboxes_per_sample)): + bbox = bboxes_per_sample[label] + for i in range(bbox.shape[0]): + anno['name'].append(class_names[int(label)]) + anno['truncated'].append(0.0) + anno['occluded'].append(0) + anno['alpha'].append(-10) + anno['bbox'].append(bbox[i, :4]) + # set dimensions (height, width, length) to zero + anno['dimensions'].append( + np.zeros(shape=[3], dtype=np.float32)) + # set the 3D translation to (-1000, -1000, -1000) + anno['location'].append( + np.ones(shape=[3], dtype=np.float32) * (-1000.0)) + anno['rotation_y'].append(0.0) + anno['score'].append(bbox[i, 4]) + num_example += 1 + + if num_example == 0: + annos.append( + dict( + name=np.array([]), + truncated=np.array([]), + occluded=np.array([]), + alpha=np.array([]), + bbox=np.zeros([0, 4]), + dimensions=np.zeros([0, 3]), + location=np.zeros([0, 3]), + rotation_y=np.array([]), + score=np.array([]), + )) + else: + anno = {k: np.stack(v) for k, v in anno.items()} + annos.append(anno) + + annos[-1]['sample_idx'] = np.array( + [sample_idx] * num_example, dtype=np.int64) + det_annos += annos + + if pklfile_prefix is not None: + if not pklfile_prefix.endswith(('.pkl', '.pickle')): + out = f'{pklfile_prefix}.pkl' + mmcv.dump(det_annos, out) + print('Result is saved to %s' % out) + + if submission_prefix is not None: + # save file in submission format + mmcv.mkdir_or_exist(submission_prefix) + print(f'Saving KITTI submission to {submission_prefix}') + for i, anno in enumerate(det_annos): + sample_idx = self.anno_infos[i]['image']['image_idx'] + cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt' + with open(cur_det_file, 'w') as f: + bbox = anno['bbox'] + loc = anno['location'] + dims = anno['dimensions'][::-1] # lhw -> hwl + for idx in range(len(bbox)): + print( + '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} ' + '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format( + anno['name'][idx], + anno['alpha'][idx], + *bbox[idx], # 4 float + *dims[idx], # 3 float + *loc[idx], # 3 float + anno['rotation_y'][idx], + anno['score'][idx]), + file=f, + ) + print(f'Result is saved to {submission_prefix}') + + return det_annos + + def convert_valid_bboxes(self, box_dict, info): + """Convert the predicted boxes into valid ones. + + Args: + box_dict (dict): Box dictionaries to be converted. + - boxes_3d (:obj:`CameraInstance3DBoxes`): 3D bounding boxes. + - scores_3d (torch.Tensor): Scores of boxes. + - labels_3d (torch.Tensor): Class labels of boxes. + info (dict): Data info. + + Returns: + dict: Valid predicted boxes. + - bbox (np.ndarray): 2D bounding boxes. + - box3d_camera (np.ndarray): 3D bounding boxes in + camera coordinate. + - scores (np.ndarray): Scores of boxes. + - label_preds (np.ndarray): Class label predictions. + - sample_idx (int): Sample index. + """ + box_preds = box_dict['boxes_3d'] + scores = box_dict['scores_3d'] + labels = box_dict['labels_3d'] + sample_idx = info['image']['image_idx'] + + if len(box_preds) == 0: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx) + + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P2 = info['calib']['P2'].astype(np.float32) + img_shape = info['image']['image_shape'] + P2 = box_preds.tensor.new_tensor(P2) + + box_preds_camera = box_preds + box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR, + np.linalg.inv(rect @ Trv2c)) + + box_corners = box_preds_camera.corners + box_corners_in_image = points_cam2img(box_corners, P2) + # box_corners_in_image: [N, 8, 2] + minxy = torch.min(box_corners_in_image, dim=1)[0] + maxxy = torch.max(box_corners_in_image, dim=1)[0] + box_2d_preds = torch.cat([minxy, maxxy], dim=1) + # Post-processing + # check box_preds_camera + image_shape = box_preds.tensor.new_tensor(img_shape) + valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) & + (box_2d_preds[:, 1] < image_shape[0]) & + (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) + # check box_preds + valid_inds = valid_cam_inds + + if valid_inds.sum() > 0: + return dict( + bbox=box_2d_preds[valid_inds, :].numpy(), + box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), + box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(), + scores=scores[valid_inds].numpy(), + label_preds=labels[valid_inds].numpy(), + sample_idx=sample_idx) + else: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + box3d_lidar=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/lyft_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/lyft_dataset.py new file mode 100644 index 000000000..031d86a97 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/lyft_dataset.py @@ -0,0 +1,567 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import tempfile +from os import path as osp + +import mmcv +import numpy as np +import pandas as pd +from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft +from lyft_dataset_sdk.utils.data_classes import Box as LyftBox +from pyquaternion import Quaternion + +from mmdet3d.core.evaluation.lyft_eval import lyft_eval +from ..core import show_result +from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class LyftDataset(Custom3DDataset): + r"""Lyft Dataset. + + This class serves as the API for experiments on the Lyft Dataset. + + Please refer to + ``_ + for data downloading. + + Args: + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + data_root (str): Path of dataset root. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + load_interval (int, optional): Interval of loading the dataset. It is + used to uniformly sample the dataset. Defaults to 1. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ # noqa: E501 + NameMapping = { + 'bicycle': 'bicycle', + 'bus': 'bus', + 'car': 'car', + 'emergency_vehicle': 'emergency_vehicle', + 'motorcycle': 'motorcycle', + 'other_vehicle': 'other_vehicle', + 'pedestrian': 'pedestrian', + 'truck': 'truck', + 'animal': 'animal' + } + DefaultAttribute = { + 'car': 'is_stationary', + 'truck': 'is_stationary', + 'bus': 'is_stationary', + 'emergency_vehicle': 'is_stationary', + 'other_vehicle': 'is_stationary', + 'motorcycle': 'is_stationary', + 'bicycle': 'is_stationary', + 'pedestrian': 'is_stationary', + 'animal': 'is_stationary' + } + CLASSES = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', + 'motorcycle', 'bicycle', 'pedestrian', 'animal') + + def __init__(self, + ann_file, + pipeline=None, + data_root=None, + classes=None, + load_interval=1, + modality=None, + box_type_3d='LiDAR', + filter_empty_gt=True, + test_mode=False, + **kwargs): + self.load_interval = load_interval + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + **kwargs) + + if self.modality is None: + self.modality = dict( + use_camera=False, + use_lidar=True, + use_radar=False, + use_map=False, + use_external=False, + ) + + def load_annotations(self, ann_file): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations sorted by timestamps. + """ + # loading data from a file-like object needs file format + data = mmcv.load(ann_file, file_format='pkl') + data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp'])) + data_infos = data_infos[::self.load_interval] + self.metadata = data['metadata'] + self.version = self.metadata['version'] + return data_infos + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): sample index + - pts_filename (str): filename of point clouds + - sweeps (list[dict]): infos of sweeps + - timestamp (float): sample timestamp + - img_filename (str, optional): image filename + - lidar2img (list[np.ndarray], optional): transformations + from lidar to different cameras + - ann_info (dict): annotation info + """ + info = self.data_infos[index] + + # standard protocol modified from SECOND.Pytorch + input_dict = dict( + sample_idx=info['token'], + pts_filename=info['lidar_path'], + sweeps=info['sweeps'], + timestamp=info['timestamp'] / 1e6, + ) + + if self.modality['use_camera']: + image_paths = [] + lidar2img_rts = [] + for cam_type, cam_info in info['cams'].items(): + image_paths.append(cam_info['data_path']) + # obtain lidar to image transformation matrix + lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation']) + lidar2cam_t = cam_info[ + 'sensor2lidar_translation'] @ lidar2cam_r.T + lidar2cam_rt = np.eye(4) + lidar2cam_rt[:3, :3] = lidar2cam_r.T + lidar2cam_rt[3, :3] = -lidar2cam_t + intrinsic = cam_info['cam_intrinsic'] + viewpad = np.eye(4) + viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic + lidar2img_rt = (viewpad @ lidar2cam_rt.T) + lidar2img_rts.append(lidar2img_rt) + + input_dict.update( + dict( + img_filename=image_paths, + lidar2img=lidar2img_rts, + )) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: Annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): + 3D ground truth bboxes. + - gt_labels_3d (np.ndarray): Labels of ground truths. + - gt_names (list[str]): Class names of ground truths. + """ + info = self.data_infos[index] + gt_bboxes_3d = info['gt_boxes'] + gt_names_3d = info['gt_names'] + gt_labels_3d = [] + for cat in gt_names_3d: + if cat in self.CLASSES: + gt_labels_3d.append(self.CLASSES.index(cat)) + else: + gt_labels_3d.append(-1) + gt_labels_3d = np.array(gt_labels_3d) + + if 'gt_shape' in info: + gt_shape = info['gt_shape'] + gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_shape], axis=-1) + + # the lyft box center is [0.5, 0.5, 0.5], we change it to be + # the same as KITTI (0.5, 0.5, 0) + gt_bboxes_3d = LiDARInstance3DBoxes( + gt_bboxes_3d, + box_dim=gt_bboxes_3d.shape[-1], + origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + ) + return anns_results + + def _format_bbox(self, results, jsonfile_prefix=None): + """Convert the results to the standard format. + + Args: + results (list[dict]): Testing results of the dataset. + jsonfile_prefix (str): The prefix of the output jsonfile. + You can specify the output directory/filename by + modifying the jsonfile_prefix. Default: None. + + Returns: + str: Path of the output json file. + """ + lyft_annos = {} + mapped_class_names = self.CLASSES + + print('Start to convert detection format...') + for sample_id, det in enumerate(mmcv.track_iter_progress(results)): + annos = [] + boxes = output_to_lyft_box(det) + sample_token = self.data_infos[sample_id]['token'] + boxes = lidar_lyft_box_to_global(self.data_infos[sample_id], boxes) + for i, box in enumerate(boxes): + name = mapped_class_names[box.label] + lyft_anno = dict( + sample_token=sample_token, + translation=box.center.tolist(), + size=box.wlh.tolist(), + rotation=box.orientation.elements.tolist(), + name=name, + score=box.score) + annos.append(lyft_anno) + lyft_annos[sample_token] = annos + lyft_submissions = { + 'meta': self.modality, + 'results': lyft_annos, + } + + mmcv.mkdir_or_exist(jsonfile_prefix) + res_path = osp.join(jsonfile_prefix, 'results_lyft.json') + print('Results writes to', res_path) + mmcv.dump(lyft_submissions, res_path) + return res_path + + def _evaluate_single(self, + result_path, + logger=None, + metric='bbox', + result_name='pts_bbox'): + """Evaluation for a single model in Lyft protocol. + + Args: + result_path (str): Path of the result file. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + metric (str, optional): Metric name used for evaluation. + Default: 'bbox'. + result_name (str, optional): Result name in the metric prefix. + Default: 'pts_bbox'. + + Returns: + dict: Dictionary of evaluation details. + """ + + output_dir = osp.join(*osp.split(result_path)[:-1]) + lyft = Lyft( + data_path=osp.join(self.data_root, self.version), + json_path=osp.join(self.data_root, self.version, self.version), + verbose=True) + eval_set_map = { + 'v1.01-train': 'val', + } + metrics = lyft_eval(lyft, self.data_root, result_path, + eval_set_map[self.version], output_dir, logger) + + # record metrics + detail = dict() + metric_prefix = f'{result_name}_Lyft' + + for i, name in enumerate(metrics['class_names']): + AP = float(metrics['mAPs_cate'][i]) + detail[f'{metric_prefix}/{name}_AP'] = AP + + detail[f'{metric_prefix}/mAP'] = metrics['Final mAP'] + return detail + + def format_results(self, results, jsonfile_prefix=None, csv_savepath=None): + """Format the results to json (standard format for COCO evaluation). + + Args: + results (list[dict]): Testing results of the dataset. + jsonfile_prefix (str): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + csv_savepath (str): The path for saving csv files. + It includes the file path and the csv filename, + e.g., "a/b/filename.csv". If not specified, + the result will not be converted to csv file. + + Returns: + tuple: Returns (result_files, tmp_dir), where `result_files` is a + dict containing the json filepaths, `tmp_dir` is the temporal + directory created for saving json files when + `jsonfile_prefix` is not specified. + """ + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + if jsonfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + jsonfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + # currently the output prediction results could be in two formats + # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...) + # 2. list of dict('pts_bbox' or 'img_bbox': + # dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)) + # this is a workaround to enable evaluation of both formats on Lyft + # refer to https://github.com/open-mmlab/mmdetection3d/issues/449 + if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]): + result_files = self._format_bbox(results, jsonfile_prefix) + else: + # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict + result_files = dict() + for name in results[0]: + print(f'\nFormating bboxes of {name}') + results_ = [out[name] for out in results] + tmp_file_ = osp.join(jsonfile_prefix, name) + result_files.update( + {name: self._format_bbox(results_, tmp_file_)}) + if csv_savepath is not None: + self.json2csv(result_files['pts_bbox'], csv_savepath) + return result_files, tmp_dir + + def evaluate(self, + results, + metric='bbox', + logger=None, + jsonfile_prefix=None, + csv_savepath=None, + result_names=['pts_bbox'], + show=False, + out_dir=None, + pipeline=None): + """Evaluation in Lyft protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Default: 'bbox'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str, optional): The prefix of json files including + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + csv_savepath (str, optional): The path for saving csv files. + It includes the file path and the csv filename, + e.g., "a/b/filename.csv". If not specified, + the result will not be converted to csv file. + result_names (list[str], optional): Result names in the + metric prefix. Default: ['pts_bbox']. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str, float]: Evaluation results. + """ + result_files, tmp_dir = self.format_results(results, jsonfile_prefix, + csv_savepath) + + if isinstance(result_files, dict): + results_dict = dict() + for name in result_names: + print(f'Evaluating bboxes of {name}') + ret_dict = self._evaluate_single(result_files[name]) + results_dict.update(ret_dict) + elif isinstance(result_files, str): + results_dict = self._evaluate_single(result_files) + + if tmp_dir is not None: + tmp_dir.cleanup() + + if show or out_dir: + self.show(results, out_dir, show=show, pipeline=pipeline) + return results_dict + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=dict(backend='disk')), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=dict(backend='disk')), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=False, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Whether to visualize the results online. + Default: False. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + if 'pts_bbox' in result.keys(): + result = result['pts_bbox'] + data_info = self.data_infos[i] + pts_path = data_info['lidar_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points = self._extract_data(i, pipeline, 'points').numpy() + points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + inds = result['scores_3d'] > 0.1 + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() + show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + pred_bboxes = result['boxes_3d'][inds].tensor.numpy() + show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir, + file_name, show) + + def json2csv(self, json_path, csv_savepath): + """Convert the json file to csv format for submission. + + Args: + json_path (str): Path of the result json file. + csv_savepath (str): Path to save the csv file. + """ + results = mmcv.load(json_path)['results'] + sample_list_path = osp.join(self.data_root, 'sample_submission.csv') + data = pd.read_csv(sample_list_path) + Id_list = list(data['Id']) + pred_list = list(data['PredictionString']) + cnt = 0 + print('Converting the json to csv...') + for token in results.keys(): + cnt += 1 + predictions = results[token] + prediction_str = '' + for i in range(len(predictions)): + prediction_str += \ + str(predictions[i]['score']) + ' ' + \ + str(predictions[i]['translation'][0]) + ' ' + \ + str(predictions[i]['translation'][1]) + ' ' + \ + str(predictions[i]['translation'][2]) + ' ' + \ + str(predictions[i]['size'][0]) + ' ' + \ + str(predictions[i]['size'][1]) + ' ' + \ + str(predictions[i]['size'][2]) + ' ' + \ + str(Quaternion(list(predictions[i]['rotation'])) + .yaw_pitch_roll[0]) + ' ' + \ + predictions[i]['name'] + ' ' + prediction_str = prediction_str[:-1] + idx = Id_list.index(token) + pred_list[idx] = prediction_str + df = pd.DataFrame({'Id': Id_list, 'PredictionString': pred_list}) + mmcv.mkdir_or_exist(os.path.dirname(csv_savepath)) + df.to_csv(csv_savepath, index=False) + + +def output_to_lyft_box(detection): + """Convert the output to the box class in the Lyft. + + Args: + detection (dict): Detection results. + + Returns: + list[:obj:`LyftBox`]: List of standard LyftBoxes. + """ + box3d = detection['boxes_3d'] + scores = detection['scores_3d'].numpy() + labels = detection['labels_3d'].numpy() + + box_gravity_center = box3d.gravity_center.numpy() + box_dims = box3d.dims.numpy() + box_yaw = box3d.yaw.numpy() + + # our LiDAR coordinate system -> Lyft box coordinate system + lyft_box_dims = box_dims[:, [1, 0, 2]] + + box_list = [] + for i in range(len(box3d)): + quat = Quaternion(axis=[0, 0, 1], radians=box_yaw[i]) + box = LyftBox( + box_gravity_center[i], + lyft_box_dims[i], + quat, + label=labels[i], + score=scores[i]) + box_list.append(box) + return box_list + + +def lidar_lyft_box_to_global(info, boxes): + """Convert the box from ego to global coordinate. + + Args: + info (dict): Info for a specific sample data, including the + calibration information. + boxes (list[:obj:`LyftBox`]): List of predicted LyftBoxes. + + Returns: + list: List of standard LyftBoxes in the global + coordinate. + """ + box_list = [] + for box in boxes: + # Move box to ego vehicle coord system + box.rotate(Quaternion(info['lidar2ego_rotation'])) + box.translate(np.array(info['lidar2ego_translation'])) + # Move box to global coord system + box.rotate(Quaternion(info['ego2global_rotation'])) + box.translate(np.array(info['ego2global_translation'])) + box_list.append(box) + return box_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_dataset.py new file mode 100644 index 000000000..1ca826571 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_dataset.py @@ -0,0 +1,654 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import tempfile +from os import path as osp + +import mmcv +import numpy as np +import pyquaternion +from nuscenes.utils.data_classes import Box as NuScenesBox + +from ..core import show_result +from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class NuScenesDataset(Custom3DDataset): + r"""NuScenes Dataset. + + This class serves as the API for experiments on the NuScenes Dataset. + + Please refer to `NuScenes Dataset `_ + for data downloading. + + Args: + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + data_root (str): Path of dataset root. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + load_interval (int, optional): Interval of loading the dataset. It is + used to uniformly sample the dataset. Defaults to 1. + with_velocity (bool, optional): Whether include velocity prediction + into the experiments. Defaults to True. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR' in this dataset. Available options includes. + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + eval_version (bool, optional): Configuration version of evaluation. + Defaults to 'detection_cvpr_2019'. + use_valid_flag (bool, optional): Whether to use `use_valid_flag` key + in the info file as mask to filter gt_boxes and gt_names. + Defaults to False. + """ + NameMapping = { + 'movable_object.barrier': 'barrier', + 'vehicle.bicycle': 'bicycle', + 'vehicle.bus.bendy': 'bus', + 'vehicle.bus.rigid': 'bus', + 'vehicle.car': 'car', + 'vehicle.construction': 'construction_vehicle', + 'vehicle.motorcycle': 'motorcycle', + 'human.pedestrian.adult': 'pedestrian', + 'human.pedestrian.child': 'pedestrian', + 'human.pedestrian.construction_worker': 'pedestrian', + 'human.pedestrian.police_officer': 'pedestrian', + 'movable_object.trafficcone': 'traffic_cone', + 'vehicle.trailer': 'trailer', + 'vehicle.truck': 'truck' + } + DefaultAttribute = { + 'car': 'vehicle.parked', + 'pedestrian': 'pedestrian.moving', + 'trailer': 'vehicle.parked', + 'truck': 'vehicle.parked', + 'bus': 'vehicle.moving', + 'motorcycle': 'cycle.without_rider', + 'construction_vehicle': 'vehicle.parked', + 'bicycle': 'cycle.without_rider', + 'barrier': '', + 'traffic_cone': '', + } + AttrMapping = { + 'cycle.with_rider': 0, + 'cycle.without_rider': 1, + 'pedestrian.moving': 2, + 'pedestrian.standing': 3, + 'pedestrian.sitting_lying_down': 4, + 'vehicle.moving': 5, + 'vehicle.parked': 6, + 'vehicle.stopped': 7, + } + AttrMapping_rev = [ + 'cycle.with_rider', + 'cycle.without_rider', + 'pedestrian.moving', + 'pedestrian.standing', + 'pedestrian.sitting_lying_down', + 'vehicle.moving', + 'vehicle.parked', + 'vehicle.stopped', + ] + # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa + ErrNameMapping = { + 'trans_err': 'mATE', + 'scale_err': 'mASE', + 'orient_err': 'mAOE', + 'vel_err': 'mAVE', + 'attr_err': 'mAAE' + } + CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', + 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', + 'barrier') + + def __init__(self, + ann_file, + pipeline=None, + data_root=None, + classes=None, + load_interval=1, + with_velocity=True, + modality=None, + box_type_3d='LiDAR', + filter_empty_gt=True, + test_mode=False, + eval_version='detection_cvpr_2019', + use_valid_flag=False): + self.load_interval = load_interval + self.use_valid_flag = use_valid_flag + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode) + + self.with_velocity = with_velocity + self.eval_version = eval_version + from nuscenes.eval.detection.config import config_factory + self.eval_detection_configs = config_factory(self.eval_version) + if self.modality is None: + self.modality = dict( + use_camera=False, + use_lidar=True, + use_radar=False, + use_map=False, + use_external=False, + ) + + def get_cat_ids(self, idx): + """Get category distribution of single scene. + + Args: + idx (int): Index of the data_info. + + Returns: + dict[list]: for each category, if the current scene + contains such boxes, store a list containing idx, + otherwise, store empty list. + """ + info = self.data_infos[idx] + if self.use_valid_flag: + mask = info['valid_flag'] + gt_names = set(info['gt_names'][mask]) + else: + gt_names = set(info['gt_names']) + + cat_ids = [] + for name in gt_names: + if name in self.CLASSES: + cat_ids.append(self.cat2id[name]) + return cat_ids + + def load_annotations(self, ann_file): + """Load annotations from ann_file. + + Args: + ann_file (str): Path of the annotation file. + + Returns: + list[dict]: List of annotations sorted by timestamps. + """ + data = mmcv.load(ann_file, file_format='pkl') + data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp'])) + data_infos = data_infos[::self.load_interval] + self.metadata = data['metadata'] + self.version = self.metadata['version'] + return data_infos + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - sweeps (list[dict]): Infos of sweeps. + - timestamp (float): Sample timestamp. + - img_filename (str, optional): Image filename. + - lidar2img (list[np.ndarray], optional): Transformations + from lidar to different cameras. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + # standard protocol modified from SECOND.Pytorch + input_dict = dict( + sample_idx=info['token'], + pts_filename=info['lidar_path'], + sweeps=info['sweeps'], + timestamp=info['timestamp'] / 1e6, + ) + + if self.modality['use_camera']: + image_paths = [] + lidar2img_rts = [] + for cam_type, cam_info in info['cams'].items(): + image_paths.append(cam_info['data_path']) + # obtain lidar to image transformation matrix + lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation']) + lidar2cam_t = cam_info[ + 'sensor2lidar_translation'] @ lidar2cam_r.T + lidar2cam_rt = np.eye(4) + lidar2cam_rt[:3, :3] = lidar2cam_r.T + lidar2cam_rt[3, :3] = -lidar2cam_t + intrinsic = cam_info['cam_intrinsic'] + viewpad = np.eye(4) + viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic + lidar2img_rt = (viewpad @ lidar2cam_rt.T) + lidar2img_rts.append(lidar2img_rt) + + input_dict.update( + dict( + img_filename=image_paths, + lidar2img=lidar2img_rts, + )) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: Annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): + 3D ground truth bboxes + - gt_labels_3d (np.ndarray): Labels of ground truths. + - gt_names (list[str]): Class names of ground truths. + """ + info = self.data_infos[index] + # filter out bbox containing no points + if self.use_valid_flag: + mask = info['valid_flag'] + else: + mask = info['num_lidar_pts'] > 0 + gt_bboxes_3d = info['gt_boxes'][mask] + gt_names_3d = info['gt_names'][mask] + gt_labels_3d = [] + for cat in gt_names_3d: + if cat in self.CLASSES: + gt_labels_3d.append(self.CLASSES.index(cat)) + else: + gt_labels_3d.append(-1) + gt_labels_3d = np.array(gt_labels_3d) + + if self.with_velocity: + gt_velocity = info['gt_velocity'][mask] + nan_mask = np.isnan(gt_velocity[:, 0]) + gt_velocity[nan_mask] = [0.0, 0.0] + gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1) + + # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be + # the same as KITTI (0.5, 0.5, 0) + gt_bboxes_3d = LiDARInstance3DBoxes( + gt_bboxes_3d, + box_dim=gt_bboxes_3d.shape[-1], + origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + gt_names=gt_names_3d) + return anns_results + + def _format_bbox(self, results, jsonfile_prefix=None): + """Convert the results to the standard format. + + Args: + results (list[dict]): Testing results of the dataset. + jsonfile_prefix (str): The prefix of the output jsonfile. + You can specify the output directory/filename by + modifying the jsonfile_prefix. Default: None. + + Returns: + str: Path of the output json file. + """ + nusc_annos = {} + mapped_class_names = self.CLASSES + + print('Start to convert detection format...') + for sample_id, det in enumerate(mmcv.track_iter_progress(results)): + annos = [] + boxes = output_to_nusc_box(det) + sample_token = self.data_infos[sample_id]['token'] + boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes, + mapped_class_names, + self.eval_detection_configs, + self.eval_version) + for i, box in enumerate(boxes): + name = mapped_class_names[box.label] + if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2: + if name in [ + 'car', + 'construction_vehicle', + 'bus', + 'truck', + 'trailer', + ]: + attr = 'vehicle.moving' + elif name in ['bicycle', 'motorcycle']: + attr = 'cycle.with_rider' + else: + attr = NuScenesDataset.DefaultAttribute[name] + else: + if name in ['pedestrian']: + attr = 'pedestrian.standing' + elif name in ['bus']: + attr = 'vehicle.stopped' + else: + attr = NuScenesDataset.DefaultAttribute[name] + + nusc_anno = dict( + sample_token=sample_token, + translation=box.center.tolist(), + size=box.wlh.tolist(), + rotation=box.orientation.elements.tolist(), + velocity=box.velocity[:2].tolist(), + detection_name=name, + detection_score=box.score, + attribute_name=attr) + annos.append(nusc_anno) + nusc_annos[sample_token] = annos + nusc_submissions = { + 'meta': self.modality, + 'results': nusc_annos, + } + + mmcv.mkdir_or_exist(jsonfile_prefix) + res_path = osp.join(jsonfile_prefix, 'results_nusc.json') + print('Results writes to', res_path) + mmcv.dump(nusc_submissions, res_path) + return res_path + + def _evaluate_single(self, + result_path, + logger=None, + metric='bbox', + result_name='pts_bbox'): + """Evaluation for a single model in nuScenes protocol. + + Args: + result_path (str): Path of the result file. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + metric (str, optional): Metric name used for evaluation. + Default: 'bbox'. + result_name (str, optional): Result name in the metric prefix. + Default: 'pts_bbox'. + + Returns: + dict: Dictionary of evaluation details. + """ + from nuscenes import NuScenes + from nuscenes.eval.detection.evaluate import NuScenesEval + + output_dir = osp.join(*osp.split(result_path)[:-1]) + nusc = NuScenes( + version=self.version, dataroot=self.data_root, verbose=False) + eval_set_map = { + 'v1.0-mini': 'mini_val', + 'v1.0-trainval': 'val', + } + nusc_eval = NuScenesEval( + nusc, + config=self.eval_detection_configs, + result_path=result_path, + eval_set=eval_set_map[self.version], + output_dir=output_dir, + verbose=False) + nusc_eval.main(render_curves=False) + + # record metrics + metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json')) + detail = dict() + metric_prefix = f'{result_name}_NuScenes' + for name in self.CLASSES: + for k, v in metrics['label_aps'][name].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val + for k, v in metrics['label_tp_errors'][name].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}_{}'.format(metric_prefix, name, k)] = val + for k, v in metrics['tp_errors'].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}'.format(metric_prefix, + self.ErrNameMapping[k])] = val + + detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score'] + detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap'] + return detail + + def format_results(self, results, jsonfile_prefix=None): + """Format the results to json (standard format for COCO evaluation). + + Args: + results (list[dict]): Testing results of the dataset. + jsonfile_prefix (str): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: Returns (result_files, tmp_dir), where `result_files` is a + dict containing the json filepaths, `tmp_dir` is the temporal + directory created for saving json files when + `jsonfile_prefix` is not specified. + """ + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + if jsonfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + jsonfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + # currently the output prediction results could be in two formats + # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...) + # 2. list of dict('pts_bbox' or 'img_bbox': + # dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)) + # this is a workaround to enable evaluation of both formats on nuScenes + # refer to https://github.com/open-mmlab/mmdetection3d/issues/449 + if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]): + result_files = self._format_bbox(results, jsonfile_prefix) + else: + # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict + result_files = dict() + for name in results[0]: + print(f'\nFormating bboxes of {name}') + results_ = [out[name] for out in results] + tmp_file_ = osp.join(jsonfile_prefix, name) + result_files.update( + {name: self._format_bbox(results_, tmp_file_)}) + return result_files, tmp_dir + + def evaluate(self, + results, + metric='bbox', + logger=None, + jsonfile_prefix=None, + result_names=['pts_bbox'], + show=False, + out_dir=None, + pipeline=None): + """Evaluation in nuScenes protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Default: 'bbox'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str, optional): The prefix of json files including + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str, float]: Results of each evaluation metric. + """ + result_files, tmp_dir = self.format_results(results, jsonfile_prefix) + + if isinstance(result_files, dict): + results_dict = dict() + for name in result_names: + print('Evaluating bboxes of {}'.format(name)) + ret_dict = self._evaluate_single(result_files[name]) + results_dict.update(ret_dict) + elif isinstance(result_files, str): + results_dict = self._evaluate_single(result_files) + + if tmp_dir is not None: + tmp_dir.cleanup() + + if show or out_dir: + self.show(results, out_dir, show=show, pipeline=pipeline) + return results_dict + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5, + file_client_args=dict(backend='disk')), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + file_client_args=dict(backend='disk')), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=False, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Whether to visualize the results online. + Default: False. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + if 'pts_bbox' in result.keys(): + result = result['pts_bbox'] + data_info = self.data_infos[i] + pts_path = data_info['lidar_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points = self._extract_data(i, pipeline, 'points').numpy() + # for now we convert points into depth mode + points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + inds = result['scores_3d'] > 0.1 + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() + show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + pred_bboxes = result['boxes_3d'][inds].tensor.numpy() + show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR, + Box3DMode.DEPTH) + show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir, + file_name, show) + + +def output_to_nusc_box(detection): + """Convert the output to the box class in the nuScenes. + + Args: + detection (dict): Detection results. + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox. + - scores_3d (torch.Tensor): Detection scores. + - labels_3d (torch.Tensor): Predicted box labels. + + Returns: + list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes. + """ + box3d = detection['boxes_3d'] + scores = detection['scores_3d'].numpy() + labels = detection['labels_3d'].numpy() + + box_gravity_center = box3d.gravity_center.numpy() + box_dims = box3d.dims.numpy() + box_yaw = box3d.yaw.numpy() + + # our LiDAR coordinate system -> nuScenes box coordinate system + nus_box_dims = box_dims[:, [1, 0, 2]] + + box_list = [] + for i in range(len(box3d)): + quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i]) + velocity = (*box3d.tensor[i, 7:9], 0.0) + # velo_val = np.linalg.norm(box3d[i, 7:9]) + # velo_ori = box3d[i, 6] + # velocity = ( + # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0) + box = NuScenesBox( + box_gravity_center[i], + nus_box_dims[i], + quat, + label=labels[i], + score=scores[i], + velocity=velocity) + box_list.append(box) + return box_list + + +def lidar_nusc_box_to_global(info, + boxes, + classes, + eval_configs, + eval_version='detection_cvpr_2019'): + """Convert the box from ego to global coordinate. + + Args: + info (dict): Info for a specific sample data, including the + calibration information. + boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes. + classes (list[str]): Mapped classes in the evaluation. + eval_configs (object): Evaluation configuration object. + eval_version (str, optional): Evaluation version. + Default: 'detection_cvpr_2019' + + Returns: + list: List of standard NuScenesBoxes in the global + coordinate. + """ + box_list = [] + for box in boxes: + # Move box to ego vehicle coord system + box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation'])) + box.translate(np.array(info['lidar2ego_translation'])) + # filter det in ego. + cls_range_map = eval_configs.class_range + radius = np.linalg.norm(box.center[:2], 2) + det_range = cls_range_map[classes[box.label]] + if radius > det_range: + continue + # Move box to global coord system + box.rotate(pyquaternion.Quaternion(info['ego2global_rotation'])) + box.translate(np.array(info['ego2global_translation'])) + box_list.append(box) + return box_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_mono_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_mono_dataset.py new file mode 100644 index 000000000..c3eb8f1ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/nuscenes_mono_dataset.py @@ -0,0 +1,840 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import tempfile +import warnings +from os import path as osp + +import mmcv +import numpy as np +import pyquaternion +import torch +from nuscenes.utils.data_classes import Box as NuScenesBox + +from mmdet3d.core import bbox3d2result, box3d_multiclass_nms, xywhr2xyxyr +from mmdet.datasets import CocoDataset +from ..core import show_multi_modality_result +from ..core.bbox import CameraInstance3DBoxes, get_box_type +from .builder import DATASETS +from .pipelines import Compose +from .utils import extract_result_dict, get_loading_pipeline + + +@DATASETS.register_module() +class NuScenesMonoDataset(CocoDataset): + r"""Monocular 3D detection on NuScenes Dataset. + + This class serves as the API for experiments on the NuScenes Dataset. + + Please refer to `NuScenes Dataset `_ + for data downloading. + + Args: + ann_file (str): Path of annotation file. + data_root (str): Path of dataset root. + load_interval (int, optional): Interval of loading the dataset. It is + used to uniformly sample the dataset. Defaults to 1. + with_velocity (bool, optional): Whether include velocity prediction + into the experiments. Defaults to True. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'Camera' in this class. Available options includes. + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + eval_version (str, optional): Configuration version of evaluation. + Defaults to 'detection_cvpr_2019'. + use_valid_flag (bool, optional): Whether to use `use_valid_flag` key + in the info file as mask to filter gt_boxes and gt_names. + Defaults to False. + version (str, optional): Dataset version. Defaults to 'v1.0-trainval'. + """ + CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', + 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', + 'barrier') + DefaultAttribute = { + 'car': 'vehicle.parked', + 'pedestrian': 'pedestrian.moving', + 'trailer': 'vehicle.parked', + 'truck': 'vehicle.parked', + 'bus': 'vehicle.moving', + 'motorcycle': 'cycle.without_rider', + 'construction_vehicle': 'vehicle.parked', + 'bicycle': 'cycle.without_rider', + 'barrier': '', + 'traffic_cone': '', + } + # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa + ErrNameMapping = { + 'trans_err': 'mATE', + 'scale_err': 'mASE', + 'orient_err': 'mAOE', + 'vel_err': 'mAVE', + 'attr_err': 'mAAE' + } + + def __init__(self, + data_root, + ann_file, + pipeline, + load_interval=1, + with_velocity=True, + modality=None, + box_type_3d='Camera', + eval_version='detection_cvpr_2019', + use_valid_flag=False, + version='v1.0-trainval', + classes=None, + img_prefix='', + seg_prefix=None, + proposal_file=None, + test_mode=False, + filter_empty_gt=True, + file_client_args=dict(backend='disk')): + self.ann_file = ann_file + self.data_root = data_root + self.img_prefix = img_prefix + self.seg_prefix = seg_prefix + self.proposal_file = proposal_file + self.test_mode = test_mode + self.filter_empty_gt = filter_empty_gt + self.CLASSES = self.get_classes(classes) + self.file_client = mmcv.FileClient(**file_client_args) + + # load annotations (and proposals) + with self.file_client.get_local_path(self.ann_file) as local_path: + self.data_infos = self.load_annotations(local_path) + + if self.proposal_file is not None: + with self.file_client.get_local_path( + self.proposal_file) as local_path: + self.proposals = self.load_proposals(local_path) + else: + self.proposals = None + + # filter images too small and containing no annotations + if not test_mode: + valid_inds = self._filter_imgs() + self.data_infos = [self.data_infos[i] for i in valid_inds] + if self.proposals is not None: + self.proposals = [self.proposals[i] for i in valid_inds] + # set group flag for the sampler + self._set_group_flag() + + # processing pipeline + self.pipeline = Compose(pipeline) + + self.load_interval = load_interval + self.with_velocity = with_velocity + self.modality = modality + self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d) + self.eval_version = eval_version + self.use_valid_flag = use_valid_flag + self.bbox_code_size = 9 + self.version = version + if self.eval_version is not None: + from nuscenes.eval.detection.config import config_factory + self.eval_detection_configs = config_factory(self.eval_version) + if self.modality is None: + self.modality = dict( + use_camera=True, + use_lidar=False, + use_radar=False, + use_map=False, + use_external=False) + + def pre_pipeline(self, results): + """Initialization before data preparation. + + Args: + results (dict): Dict before data preprocessing. + + - img_fields (list): Image fields. + - bbox3d_fields (list): 3D bounding boxes fields. + - pts_mask_fields (list): Mask fields of points. + - pts_seg_fields (list): Mask fields of point segments. + - bbox_fields (list): Fields of bounding boxes. + - mask_fields (list): Fields of masks. + - seg_fields (list): Segment fields. + - box_type_3d (str): 3D box type. + - box_mode_3d (str): 3D box mode. + """ + results['img_prefix'] = self.img_prefix + results['seg_prefix'] = self.seg_prefix + results['proposal_file'] = self.proposal_file + results['img_fields'] = [] + results['bbox3d_fields'] = [] + results['pts_mask_fields'] = [] + results['pts_seg_fields'] = [] + results['bbox_fields'] = [] + results['mask_fields'] = [] + results['seg_fields'] = [] + results['box_type_3d'] = self.box_type_3d + results['box_mode_3d'] = self.box_mode_3d + + def _parse_ann_info(self, img_info, ann_info): + """Parse bbox annotation. + + Args: + img_info (list[dict]): Image info. + ann_info (list[dict]): Annotation info of an image. + + Returns: + dict: A dict containing the following keys: bboxes, labels, + gt_bboxes_3d, gt_labels_3d, attr_labels, centers2d, + depths, bboxes_ignore, masks, seg_map + """ + gt_bboxes = [] + gt_labels = [] + attr_labels = [] + gt_bboxes_ignore = [] + gt_masks_ann = [] + gt_bboxes_cam3d = [] + centers2d = [] + depths = [] + for i, ann in enumerate(ann_info): + if ann.get('ignore', False): + continue + x1, y1, w, h = ann['bbox'] + inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) + inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) + if inter_w * inter_h == 0: + continue + if ann['area'] <= 0 or w < 1 or h < 1: + continue + if ann['category_id'] not in self.cat_ids: + continue + bbox = [x1, y1, x1 + w, y1 + h] + if ann.get('iscrowd', False): + gt_bboxes_ignore.append(bbox) + else: + gt_bboxes.append(bbox) + gt_labels.append(self.cat2label[ann['category_id']]) + attr_labels.append(ann['attribute_id']) + gt_masks_ann.append(ann.get('segmentation', None)) + # 3D annotations in camera coordinates + bbox_cam3d = np.array(ann['bbox_cam3d']).reshape(1, -1) + velo_cam3d = np.array(ann['velo_cam3d']).reshape(1, 2) + nan_mask = np.isnan(velo_cam3d[:, 0]) + velo_cam3d[nan_mask] = [0.0, 0.0] + bbox_cam3d = np.concatenate([bbox_cam3d, velo_cam3d], axis=-1) + gt_bboxes_cam3d.append(bbox_cam3d.squeeze()) + # 2.5D annotations in camera coordinates + center2d = ann['center2d'][:2] + depth = ann['center2d'][2] + centers2d.append(center2d) + depths.append(depth) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + attr_labels = np.array(attr_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + attr_labels = np.array([], dtype=np.int64) + + if gt_bboxes_cam3d: + gt_bboxes_cam3d = np.array(gt_bboxes_cam3d, dtype=np.float32) + centers2d = np.array(centers2d, dtype=np.float32) + depths = np.array(depths, dtype=np.float32) + else: + gt_bboxes_cam3d = np.zeros((0, self.bbox_code_size), + dtype=np.float32) + centers2d = np.zeros((0, 2), dtype=np.float32) + depths = np.zeros((0), dtype=np.float32) + + gt_bboxes_cam3d = CameraInstance3DBoxes( + gt_bboxes_cam3d, + box_dim=gt_bboxes_cam3d.shape[-1], + origin=(0.5, 0.5, 0.5)) + gt_labels_3d = copy.deepcopy(gt_labels) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + seg_map = img_info['filename'].replace('jpg', 'png') + + ann = dict( + bboxes=gt_bboxes, + labels=gt_labels, + gt_bboxes_3d=gt_bboxes_cam3d, + gt_labels_3d=gt_labels_3d, + attr_labels=attr_labels, + centers2d=centers2d, + depths=depths, + bboxes_ignore=gt_bboxes_ignore, + masks=gt_masks_ann, + seg_map=seg_map) + + return ann + + def get_attr_name(self, attr_idx, label_name): + """Get attribute from predicted index. + + This is a workaround to predict attribute when the predicted velocity + is not reliable. We map the predicted attribute index to the one + in the attribute set. If it is consistent with the category, we will + keep it. Otherwise, we will use the default attribute. + + Args: + attr_idx (int): Attribute index. + label_name (str): Predicted category name. + + Returns: + str: Predicted attribute name. + """ + # TODO: Simplify the variable name + AttrMapping_rev2 = [ + 'cycle.with_rider', 'cycle.without_rider', 'pedestrian.moving', + 'pedestrian.standing', 'pedestrian.sitting_lying_down', + 'vehicle.moving', 'vehicle.parked', 'vehicle.stopped', 'None' + ] + if label_name == 'car' or label_name == 'bus' \ + or label_name == 'truck' or label_name == 'trailer' \ + or label_name == 'construction_vehicle': + if AttrMapping_rev2[attr_idx] == 'vehicle.moving' or \ + AttrMapping_rev2[attr_idx] == 'vehicle.parked' or \ + AttrMapping_rev2[attr_idx] == 'vehicle.stopped': + return AttrMapping_rev2[attr_idx] + else: + return NuScenesMonoDataset.DefaultAttribute[label_name] + elif label_name == 'pedestrian': + if AttrMapping_rev2[attr_idx] == 'pedestrian.moving' or \ + AttrMapping_rev2[attr_idx] == 'pedestrian.standing' or \ + AttrMapping_rev2[attr_idx] == \ + 'pedestrian.sitting_lying_down': + return AttrMapping_rev2[attr_idx] + else: + return NuScenesMonoDataset.DefaultAttribute[label_name] + elif label_name == 'bicycle' or label_name == 'motorcycle': + if AttrMapping_rev2[attr_idx] == 'cycle.with_rider' or \ + AttrMapping_rev2[attr_idx] == 'cycle.without_rider': + return AttrMapping_rev2[attr_idx] + else: + return NuScenesMonoDataset.DefaultAttribute[label_name] + else: + return NuScenesMonoDataset.DefaultAttribute[label_name] + + def _format_bbox(self, results, jsonfile_prefix=None): + """Convert the results to the standard format. + + Args: + results (list[dict]): Testing results of the dataset. + jsonfile_prefix (str): The prefix of the output jsonfile. + You can specify the output directory/filename by + modifying the jsonfile_prefix. Default: None. + + Returns: + str: Path of the output json file. + """ + nusc_annos = {} + mapped_class_names = self.CLASSES + + print('Start to convert detection format...') + + CAM_NUM = 6 + + for sample_id, det in enumerate(mmcv.track_iter_progress(results)): + + if sample_id % CAM_NUM == 0: + boxes_per_frame = [] + attrs_per_frame = [] + + # need to merge results from images of the same sample + annos = [] + boxes, attrs = output_to_nusc_box(det) + sample_token = self.data_infos[sample_id]['token'] + boxes, attrs = cam_nusc_box_to_global(self.data_infos[sample_id], + boxes, attrs, + mapped_class_names, + self.eval_detection_configs, + self.eval_version) + + boxes_per_frame.extend(boxes) + attrs_per_frame.extend(attrs) + # Remove redundant predictions caused by overlap of images + if (sample_id + 1) % CAM_NUM != 0: + continue + boxes = global_nusc_box_to_cam( + self.data_infos[sample_id + 1 - CAM_NUM], boxes_per_frame, + mapped_class_names, self.eval_detection_configs, + self.eval_version) + cam_boxes3d, scores, labels = nusc_box_to_cam_box3d(boxes) + # box nms 3d over 6 images in a frame + # TODO: move this global setting into config + nms_cfg = dict( + use_rotate_nms=True, + nms_across_levels=False, + nms_pre=4096, + nms_thr=0.05, + score_thr=0.01, + min_bbox_size=0, + max_per_frame=500) + from mmcv import Config + nms_cfg = Config(nms_cfg) + cam_boxes3d_for_nms = xywhr2xyxyr(cam_boxes3d.bev) + boxes3d = cam_boxes3d.tensor + # generate attr scores from attr labels + attrs = labels.new_tensor([attr for attr in attrs_per_frame]) + boxes3d, scores, labels, attrs = box3d_multiclass_nms( + boxes3d, + cam_boxes3d_for_nms, + scores, + nms_cfg.score_thr, + nms_cfg.max_per_frame, + nms_cfg, + mlvl_attr_scores=attrs) + cam_boxes3d = CameraInstance3DBoxes(boxes3d, box_dim=9) + det = bbox3d2result(cam_boxes3d, scores, labels, attrs) + boxes, attrs = output_to_nusc_box(det) + boxes, attrs = cam_nusc_box_to_global( + self.data_infos[sample_id + 1 - CAM_NUM], boxes, attrs, + mapped_class_names, self.eval_detection_configs, + self.eval_version) + + for i, box in enumerate(boxes): + name = mapped_class_names[box.label] + attr = self.get_attr_name(attrs[i], name) + nusc_anno = dict( + sample_token=sample_token, + translation=box.center.tolist(), + size=box.wlh.tolist(), + rotation=box.orientation.elements.tolist(), + velocity=box.velocity[:2].tolist(), + detection_name=name, + detection_score=box.score, + attribute_name=attr) + annos.append(nusc_anno) + # other views results of the same frame should be concatenated + if sample_token in nusc_annos: + nusc_annos[sample_token].extend(annos) + else: + nusc_annos[sample_token] = annos + + nusc_submissions = { + 'meta': self.modality, + 'results': nusc_annos, + } + + mmcv.mkdir_or_exist(jsonfile_prefix) + res_path = osp.join(jsonfile_prefix, 'results_nusc.json') + print('Results writes to', res_path) + mmcv.dump(nusc_submissions, res_path) + return res_path + + def _evaluate_single(self, + result_path, + logger=None, + metric='bbox', + result_name='img_bbox'): + """Evaluation for a single model in nuScenes protocol. + + Args: + result_path (str): Path of the result file. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + metric (str, optional): Metric name used for evaluation. + Default: 'bbox'. + result_name (str, optional): Result name in the metric prefix. + Default: 'img_bbox'. + + Returns: + dict: Dictionary of evaluation details. + """ + from nuscenes import NuScenes + from nuscenes.eval.detection.evaluate import NuScenesEval + + output_dir = osp.join(*osp.split(result_path)[:-1]) + nusc = NuScenes( + version=self.version, dataroot=self.data_root, verbose=False) + eval_set_map = { + 'v1.0-mini': 'mini_val', + 'v1.0-trainval': 'val', + } + nusc_eval = NuScenesEval( + nusc, + config=self.eval_detection_configs, + result_path=result_path, + eval_set=eval_set_map[self.version], + output_dir=output_dir, + verbose=False) + nusc_eval.main(render_curves=True) + + # record metrics + metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json')) + detail = dict() + metric_prefix = f'{result_name}_NuScenes' + for name in self.CLASSES: + for k, v in metrics['label_aps'][name].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val + for k, v in metrics['label_tp_errors'][name].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}_{}'.format(metric_prefix, name, k)] = val + for k, v in metrics['tp_errors'].items(): + val = float('{:.4f}'.format(v)) + detail['{}/{}'.format(metric_prefix, + self.ErrNameMapping[k])] = val + + detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score'] + detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap'] + return detail + + def format_results(self, results, jsonfile_prefix=None, **kwargs): + """Format the results to json (standard format for COCO evaluation). + + Args: + results (list[tuple | numpy.ndarray]): Testing results of the + dataset. + jsonfile_prefix (str): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing + the json filepaths, tmp_dir is the temporal directory created + for saving json files when jsonfile_prefix is not specified. + """ + assert isinstance(results, list), 'results must be a list' + assert len(results) == len(self), ( + 'The length of results is not equal to the dataset len: {} != {}'. + format(len(results), len(self))) + + if jsonfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + jsonfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + # currently the output prediction results could be in two formats + # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...) + # 2. list of dict('pts_bbox' or 'img_bbox': + # dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)) + # this is a workaround to enable evaluation of both formats on nuScenes + # refer to https://github.com/open-mmlab/mmdetection3d/issues/449 + if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]): + result_files = self._format_bbox(results, jsonfile_prefix) + else: + # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict + result_files = dict() + for name in results[0]: + # not evaluate 2D predictions on nuScenes + if '2d' in name: + continue + print(f'\nFormating bboxes of {name}') + results_ = [out[name] for out in results] + tmp_file_ = osp.join(jsonfile_prefix, name) + result_files.update( + {name: self._format_bbox(results_, tmp_file_)}) + + return result_files, tmp_dir + + def evaluate(self, + results, + metric='bbox', + logger=None, + jsonfile_prefix=None, + result_names=['img_bbox'], + show=False, + out_dir=None, + pipeline=None): + """Evaluation in nuScenes protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Default: 'bbox'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + jsonfile_prefix (str): The prefix of json files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + result_names (list[str], optional): Result names in the + metric prefix. Default: ['img_bbox']. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str, float]: Results of each evaluation metric. + """ + + result_files, tmp_dir = self.format_results(results, jsonfile_prefix) + + if isinstance(result_files, dict): + results_dict = dict() + for name in result_names: + print('Evaluating bboxes of {}'.format(name)) + ret_dict = self._evaluate_single(result_files[name]) + results_dict.update(ret_dict) + elif isinstance(result_files, str): + results_dict = self._evaluate_single(result_files) + + if tmp_dir is not None: + tmp_dir.cleanup() + + if show or out_dir: + self.show(results, out_dir, pipeline=pipeline) + return results_dict + + def _extract_data(self, index, pipeline, key, load_annos=False): + """Load data using input pipeline and extract data according to key. + + Args: + index (int): Index for accessing the target data. + pipeline (:obj:`Compose`): Composed data loading pipeline. + key (str | list[str]): One single or a list of data key. + load_annos (bool): Whether to load data annotations. + If True, need to set self.test_mode as False before loading. + + Returns: + np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]: + A single or a list of loaded data. + """ + assert pipeline is not None, 'data loading pipeline is not provided' + img_info = self.data_infos[index] + input_dict = dict(img_info=img_info) + + if load_annos: + ann_info = self.get_ann_info(index) + input_dict.update(dict(ann_info=ann_info)) + + self.pre_pipeline(input_dict) + example = pipeline(input_dict) + + # extract data items according to keys + if isinstance(key, str): + data = extract_result_dict(example, key) + else: + data = [extract_result_dict(example, k) for k in key] + + return data + + def _get_pipeline(self, pipeline): + """Get data loading pipeline in self.show/evaluate function. + + Args: + pipeline (list[dict]): Input pipeline. If None is given, + get from self.pipeline. + """ + if pipeline is None: + if not hasattr(self, 'pipeline') or self.pipeline is None: + warnings.warn( + 'Use default pipeline for data loading, this may cause ' + 'errors when data is on ceph') + return self._build_default_pipeline() + loading_pipeline = get_loading_pipeline(self.pipeline.transforms) + return Compose(loading_pipeline) + return Compose(pipeline) + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict(type='LoadImageFromFileMono3D'), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['img']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=False, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Whether to visualize the results online. + Default: False. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + if 'img_bbox' in result.keys(): + result = result['img_bbox'] + data_info = self.data_infos[i] + img_path = data_info['file_name'] + file_name = osp.split(img_path)[-1].split('.')[0] + img, img_metas = self._extract_data(i, pipeline, + ['img', 'img_metas']) + # need to transpose channel to first dim + img = img.numpy().transpose(1, 2, 0) + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'] + pred_bboxes = result['boxes_3d'] + show_multi_modality_result( + img, + gt_bboxes, + pred_bboxes, + img_metas['cam2img'], + out_dir, + file_name, + box_mode='camera', + show=show) + + +def output_to_nusc_box(detection): + """Convert the output to the box class in the nuScenes. + + Args: + detection (dict): Detection results. + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox. + - scores_3d (torch.Tensor): Detection scores. + - labels_3d (torch.Tensor): Predicted box labels. + - attrs_3d (torch.Tensor, optional): Predicted attributes. + + Returns: + list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes. + """ + box3d = detection['boxes_3d'] + scores = detection['scores_3d'].numpy() + labels = detection['labels_3d'].numpy() + attrs = None + if 'attrs_3d' in detection: + attrs = detection['attrs_3d'].numpy() + + box_gravity_center = box3d.gravity_center.numpy() + box_dims = box3d.dims.numpy() + box_yaw = box3d.yaw.numpy() + + # convert the dim/rot to nuscbox convention + box_dims[:, [0, 1, 2]] = box_dims[:, [2, 0, 1]] + box_yaw = -box_yaw + + box_list = [] + for i in range(len(box3d)): + q1 = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i]) + q2 = pyquaternion.Quaternion(axis=[1, 0, 0], radians=np.pi / 2) + quat = q2 * q1 + velocity = (box3d.tensor[i, 7], 0.0, box3d.tensor[i, 8]) + box = NuScenesBox( + box_gravity_center[i], + box_dims[i], + quat, + label=labels[i], + score=scores[i], + velocity=velocity) + box_list.append(box) + return box_list, attrs + + +def cam_nusc_box_to_global(info, + boxes, + attrs, + classes, + eval_configs, + eval_version='detection_cvpr_2019'): + """Convert the box from camera to global coordinate. + + Args: + info (dict): Info for a specific sample data, including the + calibration information. + boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes. + classes (list[str]): Mapped classes in the evaluation. + eval_configs (object): Evaluation configuration object. + eval_version (str, optional): Evaluation version. + Default: 'detection_cvpr_2019' + + Returns: + list: List of standard NuScenesBoxes in the global + coordinate. + """ + box_list = [] + attr_list = [] + for (box, attr) in zip(boxes, attrs): + # Move box to ego vehicle coord system + box.rotate(pyquaternion.Quaternion(info['cam2ego_rotation'])) + box.translate(np.array(info['cam2ego_translation'])) + # filter det in ego. + cls_range_map = eval_configs.class_range + radius = np.linalg.norm(box.center[:2], 2) + det_range = cls_range_map[classes[box.label]] + if radius > det_range: + continue + # Move box to global coord system + box.rotate(pyquaternion.Quaternion(info['ego2global_rotation'])) + box.translate(np.array(info['ego2global_translation'])) + box_list.append(box) + attr_list.append(attr) + return box_list, attr_list + + +def global_nusc_box_to_cam(info, + boxes, + classes, + eval_configs, + eval_version='detection_cvpr_2019'): + """Convert the box from global to camera coordinate. + + Args: + info (dict): Info for a specific sample data, including the + calibration information. + boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes. + classes (list[str]): Mapped classes in the evaluation. + eval_configs (object): Evaluation configuration object. + eval_version (str, optional): Evaluation version. + Default: 'detection_cvpr_2019' + + Returns: + list: List of standard NuScenesBoxes in the global + coordinate. + """ + box_list = [] + for box in boxes: + # Move box to ego vehicle coord system + box.translate(-np.array(info['ego2global_translation'])) + box.rotate( + pyquaternion.Quaternion(info['ego2global_rotation']).inverse) + # filter det in ego. + cls_range_map = eval_configs.class_range + radius = np.linalg.norm(box.center[:2], 2) + det_range = cls_range_map[classes[box.label]] + if radius > det_range: + continue + # Move box to camera coord system + box.translate(-np.array(info['cam2ego_translation'])) + box.rotate(pyquaternion.Quaternion(info['cam2ego_rotation']).inverse) + box_list.append(box) + return box_list + + +def nusc_box_to_cam_box3d(boxes): + """Convert boxes from :obj:`NuScenesBox` to :obj:`CameraInstance3DBoxes`. + + Args: + boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes. + + Returns: + tuple (:obj:`CameraInstance3DBoxes` | torch.Tensor | torch.Tensor): + Converted 3D bounding boxes, scores and labels. + """ + locs = torch.Tensor([b.center for b in boxes]).view(-1, 3) + dims = torch.Tensor([b.wlh for b in boxes]).view(-1, 3) + rots = torch.Tensor([b.orientation.yaw_pitch_roll[0] + for b in boxes]).view(-1, 1) + velocity = torch.Tensor([b.velocity[0::2] for b in boxes]).view(-1, 2) + + # convert nusbox to cambox convention + dims[:, [0, 1, 2]] = dims[:, [1, 2, 0]] + rots = -rots + + boxes_3d = torch.cat([locs, dims, rots, velocity], dim=1).cuda() + cam_boxes3d = CameraInstance3DBoxes( + boxes_3d, box_dim=9, origin=(0.5, 0.5, 0.5)) + scores = torch.Tensor([b.score for b in boxes]).cuda() + labels = torch.LongTensor([b.label for b in boxes]).cuda() + nms_scores = scores.new_zeros(scores.shape[0], 10 + 1) + indices = labels.new_tensor(list(range(scores.shape[0]))) + nms_scores[indices, labels] = scores + return cam_boxes3d, nms_scores, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/__init__.py new file mode 100644 index 000000000..7a5a71d63 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/__init__.py @@ -0,0 +1,36 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from .compose import Compose +from .dbsampler import DataBaseSampler +from .formating import Collect3D, DefaultFormatBundle, DefaultFormatBundle3D +from .loading import (LoadAnnotations3D, LoadImageFromFileMono3D, + LoadMultiViewImageFromFiles, LoadPointsFromDict, + LoadPointsFromFile, LoadPointsFromMultiSweeps, + NormalizePointsColor, PointSegClassMapping) +from .test_time_aug import MultiScaleFlipAug3D +# yapf: disable +from .transforms_3d import (AffineResize, BackgroundPointsFilter, + GlobalAlignment, GlobalRotScaleTrans, + IndoorPatchPointSample, IndoorPointSample, + MultiViewWrapper, ObjectNameFilter, ObjectNoise, + ObjectRangeFilter, ObjectSample, PointSample, + PointShuffle, PointsRangeFilter, + RandomDropPointsColor, RandomFlip3D, + RandomJitterPoints, RandomRotate, RandomShiftScale, + RangeLimitedRandomCrop, VoxelBasedPointSampler) + +__all__ = [ + 'ObjectSample', 'RandomFlip3D', 'ObjectNoise', 'GlobalRotScaleTrans', + 'PointShuffle', 'ObjectRangeFilter', 'PointsRangeFilter', 'Collect3D', + 'Compose', 'LoadMultiViewImageFromFiles', 'LoadPointsFromFile', + 'DefaultFormatBundle', 'DefaultFormatBundle3D', 'DataBaseSampler', + 'NormalizePointsColor', 'LoadAnnotations3D', 'IndoorPointSample', + 'PointSample', 'PointSegClassMapping', 'MultiScaleFlipAug3D', + 'LoadPointsFromMultiSweeps', 'BackgroundPointsFilter', + 'VoxelBasedPointSampler', 'GlobalAlignment', 'IndoorPatchPointSample', + 'LoadImageFromFileMono3D', 'ObjectNameFilter', 'RandomDropPointsColor', + 'RandomJitterPoints', 'AffineResize', 'RandomShiftScale', + 'LoadPointsFromDict', 'MultiViewWrapper', 'RandomRotate', + 'RangeLimitedRandomCrop' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/compose.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/compose.py new file mode 100644 index 000000000..9ab25d9ec --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/compose.py @@ -0,0 +1,60 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import collections + +from mmcv.utils import build_from_cfg + +from mmdet.datasets.builder import PIPELINES as MMDET_PIPELINES +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class Compose: + """Compose multiple transforms sequentially. The pipeline registry of + mmdet3d separates with mmdet, however, sometimes we may need to use mmdet's + pipeline. So the class is rewritten to be able to use pipelines from both + mmdet3d and mmdet. + + Args: + transforms (Sequence[dict | callable]): Sequence of transform object or + config dict to be composed. + """ + + def __init__(self, transforms): + assert isinstance(transforms, collections.abc.Sequence) + self.transforms = [] + for transform in transforms: + if isinstance(transform, dict): + _, key = PIPELINES.split_scope_key(transform['type']) + if key in PIPELINES._module_dict.keys(): + transform = build_from_cfg(transform, PIPELINES) + else: + transform = build_from_cfg(transform, MMDET_PIPELINES) + self.transforms.append(transform) + elif callable(transform): + self.transforms.append(transform) + else: + raise TypeError('transform must be callable or a dict') + + def __call__(self, data): + """Call function to apply transforms sequentially. + + Args: + data (dict): A result dict contains the data to transform. + + Returns: + dict: Transformed data. + """ + + for t in self.transforms: + data = t(data) + if data is None: + return None + return data + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += f' {t}' + format_string += '\n)' + return format_string diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/data_augment_utils.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/data_augment_utils.py new file mode 100644 index 000000000..21be3c06f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/data_augment_utils.py @@ -0,0 +1,411 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numba +import numpy as np +from numba.core.errors import NumbaPerformanceWarning + +from mmdet3d.core.bbox import box_np_ops + +warnings.filterwarnings('ignore', category=NumbaPerformanceWarning) + + +@numba.njit +def _rotation_box2d_jit_(corners, angle, rot_mat_T): + """Rotate 2D boxes. + + Args: + corners (np.ndarray): Corners of boxes. + angle (float): Rotation angle. + rot_mat_T (np.ndarray): Transposed rotation matrix. + """ + rot_sin = np.sin(angle) + rot_cos = np.cos(angle) + rot_mat_T[0, 0] = rot_cos + rot_mat_T[0, 1] = rot_sin + rot_mat_T[1, 0] = -rot_sin + rot_mat_T[1, 1] = rot_cos + corners[:] = corners @ rot_mat_T + + +@numba.jit(nopython=True) +def box_collision_test(boxes, qboxes, clockwise=True): + """Box collision test. + + Args: + boxes (np.ndarray): Corners of current boxes. + qboxes (np.ndarray): Boxes to be avoid colliding. + clockwise (bool, optional): Whether the corners are in + clockwise order. Default: True. + """ + N = boxes.shape[0] + K = qboxes.shape[0] + ret = np.zeros((N, K), dtype=np.bool_) + slices = np.array([1, 2, 3, 0]) + lines_boxes = np.stack((boxes, boxes[:, slices, :]), + axis=2) # [N, 4, 2(line), 2(xy)] + lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2) + # vec = np.zeros((2,), dtype=boxes.dtype) + boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes) + qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes) + for i in range(N): + for j in range(K): + # calculate standup first + iw = ( + min(boxes_standup[i, 2], qboxes_standup[j, 2]) - + max(boxes_standup[i, 0], qboxes_standup[j, 0])) + if iw > 0: + ih = ( + min(boxes_standup[i, 3], qboxes_standup[j, 3]) - + max(boxes_standup[i, 1], qboxes_standup[j, 1])) + if ih > 0: + for k in range(4): + for box_l in range(4): + A = lines_boxes[i, k, 0] + B = lines_boxes[i, k, 1] + C = lines_qboxes[j, box_l, 0] + D = lines_qboxes[j, box_l, 1] + acd = (D[1] - A[1]) * (C[0] - + A[0]) > (C[1] - A[1]) * ( + D[0] - A[0]) + bcd = (D[1] - B[1]) * (C[0] - + B[0]) > (C[1] - B[1]) * ( + D[0] - B[0]) + if acd != bcd: + abc = (C[1] - A[1]) * (B[0] - A[0]) > ( + B[1] - A[1]) * ( + C[0] - A[0]) + abd = (D[1] - A[1]) * (B[0] - A[0]) > ( + B[1] - A[1]) * ( + D[0] - A[0]) + if abc != abd: + ret[i, j] = True # collision. + break + if ret[i, j] is True: + break + if ret[i, j] is False: + # now check complete overlap. + # box overlap qbox: + box_overlap_qbox = True + for box_l in range(4): # point l in qboxes + for k in range(4): # corner k in boxes + vec = boxes[i, k] - boxes[i, (k + 1) % 4] + if clockwise: + vec = -vec + cross = vec[1] * ( + boxes[i, k, 0] - qboxes[j, box_l, 0]) + cross -= vec[0] * ( + boxes[i, k, 1] - qboxes[j, box_l, 1]) + if cross >= 0: + box_overlap_qbox = False + break + if box_overlap_qbox is False: + break + + if box_overlap_qbox is False: + qbox_overlap_box = True + for box_l in range(4): # point box_l in boxes + for k in range(4): # corner k in qboxes + vec = qboxes[j, k] - qboxes[j, (k + 1) % 4] + if clockwise: + vec = -vec + cross = vec[1] * ( + qboxes[j, k, 0] - boxes[i, box_l, 0]) + cross -= vec[0] * ( + qboxes[j, k, 1] - boxes[i, box_l, 1]) + if cross >= 0: # + qbox_overlap_box = False + break + if qbox_overlap_box is False: + break + if qbox_overlap_box: + ret[i, j] = True # collision. + else: + ret[i, j] = True # collision. + return ret + + +@numba.njit +def noise_per_box(boxes, valid_mask, loc_noises, rot_noises): + """Add noise to every box (only on the horizontal plane). + + Args: + boxes (np.ndarray): Input boxes with shape (N, 5). + valid_mask (np.ndarray): Mask to indicate which boxes are valid + with shape (N). + loc_noises (np.ndarray): Location noises with shape (N, M, 3). + rot_noises (np.ndarray): Rotation noises with shape (N, M). + + Returns: + np.ndarray: Mask to indicate whether the noise is + added successfully (pass the collision test). + """ + num_boxes = boxes.shape[0] + num_tests = loc_noises.shape[1] + box_corners = box_np_ops.box2d_to_corner_jit(boxes) + current_corners = np.zeros((4, 2), dtype=boxes.dtype) + rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) + success_mask = -np.ones((num_boxes, ), dtype=np.int64) + # print(valid_mask) + for i in range(num_boxes): + if valid_mask[i]: + for j in range(num_tests): + current_corners[:] = box_corners[i] + current_corners -= boxes[i, :2] + _rotation_box2d_jit_(current_corners, rot_noises[i, j], + rot_mat_T) + current_corners += boxes[i, :2] + loc_noises[i, j, :2] + coll_mat = box_collision_test( + current_corners.reshape(1, 4, 2), box_corners) + coll_mat[0, i] = False + # print(coll_mat) + if not coll_mat.any(): + success_mask[i] = j + box_corners[i] = current_corners + break + return success_mask + + +@numba.njit +def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises, + global_rot_noises): + """Add noise to every box (only on the horizontal plane). Version 2 used + when enable global rotations. + + Args: + boxes (np.ndarray): Input boxes with shape (N, 5). + valid_mask (np.ndarray): Mask to indicate which boxes are valid + with shape (N). + loc_noises (np.ndarray): Location noises with shape (N, M, 3). + rot_noises (np.ndarray): Rotation noises with shape (N, M). + + Returns: + np.ndarray: Mask to indicate whether the noise is + added successfully (pass the collision test). + """ + num_boxes = boxes.shape[0] + num_tests = loc_noises.shape[1] + box_corners = box_np_ops.box2d_to_corner_jit(boxes) + current_corners = np.zeros((4, 2), dtype=boxes.dtype) + current_box = np.zeros((1, 5), dtype=boxes.dtype) + rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) + dst_pos = np.zeros((2, ), dtype=boxes.dtype) + success_mask = -np.ones((num_boxes, ), dtype=np.int64) + corners_norm = np.zeros((4, 2), dtype=boxes.dtype) + corners_norm[1, 1] = 1.0 + corners_norm[2] = 1.0 + corners_norm[3, 0] = 1.0 + corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) + corners_norm = corners_norm.reshape(4, 2) + for i in range(num_boxes): + if valid_mask[i]: + for j in range(num_tests): + current_box[0, :] = boxes[i] + current_radius = np.sqrt(boxes[i, 0]**2 + boxes[i, 1]**2) + current_grot = np.arctan2(boxes[i, 0], boxes[i, 1]) + dst_grot = current_grot + global_rot_noises[i, j] + dst_pos[0] = current_radius * np.sin(dst_grot) + dst_pos[1] = current_radius * np.cos(dst_grot) + current_box[0, :2] = dst_pos + current_box[0, -1] += (dst_grot - current_grot) + + rot_sin = np.sin(current_box[0, -1]) + rot_cos = np.cos(current_box[0, -1]) + rot_mat_T[0, 0] = rot_cos + rot_mat_T[0, 1] = rot_sin + rot_mat_T[1, 0] = -rot_sin + rot_mat_T[1, 1] = rot_cos + current_corners[:] = current_box[ + 0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2] + current_corners -= current_box[0, :2] + _rotation_box2d_jit_(current_corners, rot_noises[i, j], + rot_mat_T) + current_corners += current_box[0, :2] + loc_noises[i, j, :2] + coll_mat = box_collision_test( + current_corners.reshape(1, 4, 2), box_corners) + coll_mat[0, i] = False + if not coll_mat.any(): + success_mask[i] = j + box_corners[i] = current_corners + loc_noises[i, j, :2] += (dst_pos - boxes[i, :2]) + rot_noises[i, j] += (dst_grot - current_grot) + break + return success_mask + + +def _select_transform(transform, indices): + """Select transform. + + Args: + transform (np.ndarray): Transforms to select from. + indices (np.ndarray): Mask to indicate which transform to select. + + Returns: + np.ndarray: Selected transforms. + """ + result = np.zeros((transform.shape[0], *transform.shape[2:]), + dtype=transform.dtype) + for i in range(transform.shape[0]): + if indices[i] != -1: + result[i] = transform[i, indices[i]] + return result + + +@numba.njit +def _rotation_matrix_3d_(rot_mat_T, angle, axis): + """Get the 3D rotation matrix. + + Args: + rot_mat_T (np.ndarray): Transposed rotation matrix. + angle (float): Rotation angle. + axis (int): Rotation axis. + """ + rot_sin = np.sin(angle) + rot_cos = np.cos(angle) + rot_mat_T[:] = np.eye(3) + if axis == 1: + rot_mat_T[0, 0] = rot_cos + rot_mat_T[0, 2] = rot_sin + rot_mat_T[2, 0] = -rot_sin + rot_mat_T[2, 2] = rot_cos + elif axis == 2 or axis == -1: + rot_mat_T[0, 0] = rot_cos + rot_mat_T[0, 1] = rot_sin + rot_mat_T[1, 0] = -rot_sin + rot_mat_T[1, 1] = rot_cos + elif axis == 0: + rot_mat_T[1, 1] = rot_cos + rot_mat_T[1, 2] = rot_sin + rot_mat_T[2, 1] = -rot_sin + rot_mat_T[2, 2] = rot_cos + + +@numba.njit +def points_transform_(points, centers, point_masks, loc_transform, + rot_transform, valid_mask): + """Apply transforms to points and box centers. + + Args: + points (np.ndarray): Input points. + centers (np.ndarray): Input box centers. + point_masks (np.ndarray): Mask to indicate which points need + to be transformed. + loc_transform (np.ndarray): Location transform to be applied. + rot_transform (np.ndarray): Rotation transform to be applied. + valid_mask (np.ndarray): Mask to indicate which boxes are valid. + """ + num_box = centers.shape[0] + num_points = points.shape[0] + rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype) + for i in range(num_box): + _rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2) + for i in range(num_points): + for j in range(num_box): + if valid_mask[j]: + if point_masks[i, j] == 1: + points[i, :3] -= centers[j, :3] + points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j] + points[i, :3] += centers[j, :3] + points[i, :3] += loc_transform[j] + break # only apply first box's transform + + +@numba.njit +def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask): + """Transform 3D boxes. + + Args: + boxes (np.ndarray): 3D boxes to be transformed. + loc_transform (np.ndarray): Location transform to be applied. + rot_transform (np.ndarray): Rotation transform to be applied. + valid_mask (np.ndarray): Mask to indicate which boxes are valid. + """ + num_box = boxes.shape[0] + for i in range(num_box): + if valid_mask[i]: + boxes[i, :3] += loc_transform[i] + boxes[i, 6] += rot_transform[i] + + +def noise_per_object_v3_(gt_boxes, + points=None, + valid_mask=None, + rotation_perturb=np.pi / 4, + center_noise_std=1.0, + global_random_rot_range=np.pi / 4, + num_try=100): + """Random rotate or remove each groundtruth independently. use kitti viewer + to test this function points_transform_ + + Args: + gt_boxes (np.ndarray): Ground truth boxes with shape (N, 7). + points (np.ndarray, optional): Input point cloud with + shape (M, 4). Default: None. + valid_mask (np.ndarray, optional): Mask to indicate which + boxes are valid. Default: None. + rotation_perturb (float, optional): Rotation perturbation. + Default: pi / 4. + center_noise_std (float, optional): Center noise standard deviation. + Default: 1.0. + global_random_rot_range (float, optional): Global random rotation + range. Default: pi/4. + num_try (int, optional): Number of try. Default: 100. + """ + num_boxes = gt_boxes.shape[0] + if not isinstance(rotation_perturb, (list, tuple, np.ndarray)): + rotation_perturb = [-rotation_perturb, rotation_perturb] + if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)): + global_random_rot_range = [ + -global_random_rot_range, global_random_rot_range + ] + enable_grot = np.abs(global_random_rot_range[0] - + global_random_rot_range[1]) >= 1e-3 + + if not isinstance(center_noise_std, (list, tuple, np.ndarray)): + center_noise_std = [ + center_noise_std, center_noise_std, center_noise_std + ] + if valid_mask is None: + valid_mask = np.ones((num_boxes, ), dtype=np.bool_) + center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype) + + loc_noises = np.random.normal( + scale=center_noise_std, size=[num_boxes, num_try, 3]) + rot_noises = np.random.uniform( + rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try]) + gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1]) + grot_lowers = global_random_rot_range[0] - gt_grots + grot_uppers = global_random_rot_range[1] - gt_grots + global_rot_noises = np.random.uniform( + grot_lowers[..., np.newaxis], + grot_uppers[..., np.newaxis], + size=[num_boxes, num_try]) + + origin = (0.5, 0.5, 0) + gt_box_corners = box_np_ops.center_to_corner_box3d( + gt_boxes[:, :3], + gt_boxes[:, 3:6], + gt_boxes[:, 6], + origin=origin, + axis=2) + + # TODO: rewrite this noise box function? + if not enable_grot: + selected_noise = noise_per_box(gt_boxes[:, [0, 1, 3, 4, 6]], + valid_mask, loc_noises, rot_noises) + else: + selected_noise = noise_per_box_v2_(gt_boxes[:, [0, 1, 3, 4, 6]], + valid_mask, loc_noises, rot_noises, + global_rot_noises) + + loc_transforms = _select_transform(loc_noises, selected_noise) + rot_transforms = _select_transform(rot_noises, selected_noise) + surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners) + if points is not None: + # TODO: replace this points_in_convex function by my tools? + point_masks = box_np_ops.points_in_convex_polygon_3d_jit( + points[:, :3], surfaces) + points_transform_(points, gt_boxes[:, :3], point_masks, loc_transforms, + rot_transforms, valid_mask) + + box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/dbsampler.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/dbsampler.py new file mode 100644 index 000000000..ef82c88e2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/dbsampler.py @@ -0,0 +1,340 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import os +import warnings + +import mmcv +import numpy as np + +from mmdet3d.core.bbox import box_np_ops +from mmdet3d.datasets.pipelines import data_augment_utils +from ..builder import OBJECTSAMPLERS, PIPELINES + + +class BatchSampler: + """Class for sampling specific category of ground truths. + + Args: + sample_list (list[dict]): List of samples. + name (str, optional): The category of samples. Default: None. + epoch (int, optional): Sampling epoch. Default: None. + shuffle (bool, optional): Whether to shuffle indices. Default: False. + drop_reminder (bool, optional): Drop reminder. Default: False. + """ + + def __init__(self, + sampled_list, + name=None, + epoch=None, + shuffle=True, + drop_reminder=False): + self._sampled_list = sampled_list + self._indices = np.arange(len(sampled_list)) + if shuffle: + np.random.shuffle(self._indices) + self._idx = 0 + self._example_num = len(sampled_list) + self._name = name + self._shuffle = shuffle + self._epoch = epoch + self._epoch_counter = 0 + self._drop_reminder = drop_reminder + + def _sample(self, num): + """Sample specific number of ground truths and return indices. + + Args: + num (int): Sampled number. + + Returns: + list[int]: Indices of sampled ground truths. + """ + if self._idx + num >= self._example_num: + ret = self._indices[self._idx:].copy() + self._reset() + else: + ret = self._indices[self._idx:self._idx + num] + self._idx += num + return ret + + def _reset(self): + """Reset the index of batchsampler to zero.""" + assert self._name is not None + # print("reset", self._name) + if self._shuffle: + np.random.shuffle(self._indices) + self._idx = 0 + + def sample(self, num): + """Sample specific number of ground truths. + + Args: + num (int): Sampled number. + + Returns: + list[dict]: Sampled ground truths. + """ + indices = self._sample(num) + return [self._sampled_list[i] for i in indices] + + +@OBJECTSAMPLERS.register_module() +class DataBaseSampler(object): + """Class for sampling data from the ground truth database. + + Args: + info_path (str): Path of groundtruth database info. + data_root (str): Path of groundtruth database. + rate (float): Rate of actual sampled over maximum sampled number. + prepare (dict): Name of preparation functions and the input value. + sample_groups (dict): Sampled classes and numbers. + classes (list[str], optional): List of classes. Default: None. + points_loader(dict, optional): Config of points loader. Default: + dict(type='LoadPointsFromFile', load_dim=4, use_dim=[0,1,2,3]) + """ + + def __init__(self, + info_path, + data_root, + rate, + prepare, + sample_groups, + classes=None, + points_loader=dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=[0, 1, 2, 3]), + file_client_args=dict(backend='disk')): + super().__init__() + self.data_root = data_root + self.info_path = info_path + self.rate = rate + self.prepare = prepare + self.classes = classes + self.cat2label = {name: i for i, name in enumerate(classes)} + self.label2cat = {i: name for i, name in enumerate(classes)} + self.points_loader = mmcv.build_from_cfg(points_loader, PIPELINES) + self.file_client = mmcv.FileClient(**file_client_args) + + # load data base infos + if hasattr(self.file_client, 'get_local_path'): + with self.file_client.get_local_path(info_path) as local_path: + # loading data from a file-like object needs file format + db_infos = mmcv.load(open(local_path, 'rb'), file_format='pkl') + else: + warnings.warn( + 'The used MMCV version does not have get_local_path. ' + f'We treat the {info_path} as local paths and it ' + 'might cause errors if the path is not a local path. ' + 'Please use MMCV>= 1.3.16 if you meet errors.') + db_infos = mmcv.load(info_path) + + # filter database infos + from mmdet3d.utils import get_root_logger + logger = get_root_logger() + for k, v in db_infos.items(): + logger.info(f'load {len(v)} {k} database infos') + for prep_func, val in prepare.items(): + db_infos = getattr(self, prep_func)(db_infos, val) + logger.info('After filter database:') + for k, v in db_infos.items(): + logger.info(f'load {len(v)} {k} database infos') + + self.db_infos = db_infos + + # load sample groups + # TODO: more elegant way to load sample groups + self.sample_groups = [] + for name, num in sample_groups.items(): + self.sample_groups.append({name: int(num)}) + + self.group_db_infos = self.db_infos # just use db_infos + self.sample_classes = [] + self.sample_max_nums = [] + for group_info in self.sample_groups: + self.sample_classes += list(group_info.keys()) + self.sample_max_nums += list(group_info.values()) + + self.sampler_dict = {} + for k, v in self.group_db_infos.items(): + self.sampler_dict[k] = BatchSampler(v, k, shuffle=True) + # TODO: No group_sampling currently + + @staticmethod + def filter_by_difficulty(db_infos, removed_difficulty): + """Filter ground truths by difficulties. + + Args: + db_infos (dict): Info of groundtruth database. + removed_difficulty (list): Difficulties that are not qualified. + + Returns: + dict: Info of database after filtering. + """ + new_db_infos = {} + for key, dinfos in db_infos.items(): + new_db_infos[key] = [ + info for info in dinfos + if info['difficulty'] not in removed_difficulty + ] + return new_db_infos + + @staticmethod + def filter_by_min_points(db_infos, min_gt_points_dict): + """Filter ground truths by number of points in the bbox. + + Args: + db_infos (dict): Info of groundtruth database. + min_gt_points_dict (dict): Different number of minimum points + needed for different categories of ground truths. + + Returns: + dict: Info of database after filtering. + """ + for name, min_num in min_gt_points_dict.items(): + min_num = int(min_num) + if min_num > 0: + filtered_infos = [] + for info in db_infos[name]: + if info['num_points_in_gt'] >= min_num: + filtered_infos.append(info) + db_infos[name] = filtered_infos + return db_infos + + def sample_all(self, gt_bboxes, gt_labels, img=None, ground_plane=None): + """Sampling all categories of bboxes. + + Args: + gt_bboxes (np.ndarray): Ground truth bounding boxes. + gt_labels (np.ndarray): Ground truth labels of boxes. + + Returns: + dict: Dict of sampled 'pseudo ground truths'. + + - gt_labels_3d (np.ndarray): ground truths labels + of sampled objects. + - gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): + sampled ground truth 3D bounding boxes + - points (np.ndarray): sampled points + - group_ids (np.ndarray): ids of sampled ground truths + """ + sampled_num_dict = {} + sample_num_per_class = [] + for class_name, max_sample_num in zip(self.sample_classes, + self.sample_max_nums): + class_label = self.cat2label[class_name] + # sampled_num = int(max_sample_num - + # np.sum([n == class_name for n in gt_names])) + sampled_num = int(max_sample_num - + np.sum([n == class_label for n in gt_labels])) + sampled_num = np.round(self.rate * sampled_num).astype(np.int64) + sampled_num_dict[class_name] = sampled_num + sample_num_per_class.append(sampled_num) + + sampled = [] + sampled_gt_bboxes = [] + avoid_coll_boxes = gt_bboxes + + for class_name, sampled_num in zip(self.sample_classes, + sample_num_per_class): + if sampled_num > 0: + sampled_cls = self.sample_class_v2(class_name, sampled_num, + avoid_coll_boxes) + + sampled += sampled_cls + if len(sampled_cls) > 0: + if len(sampled_cls) == 1: + sampled_gt_box = sampled_cls[0]['box3d_lidar'][ + np.newaxis, ...] + else: + sampled_gt_box = np.stack( + [s['box3d_lidar'] for s in sampled_cls], axis=0) + + sampled_gt_bboxes += [sampled_gt_box] + avoid_coll_boxes = np.concatenate( + [avoid_coll_boxes, sampled_gt_box], axis=0) + + ret = None + if len(sampled) > 0: + sampled_gt_bboxes = np.concatenate(sampled_gt_bboxes, axis=0) + # center = sampled_gt_bboxes[:, 0:3] + + # num_sampled = len(sampled) + s_points_list = [] + count = 0 + for info in sampled: + file_path = os.path.join( + self.data_root, + info['path']) if self.data_root else info['path'] + results = dict(pts_filename=file_path) + s_points = self.points_loader(results)['points'] + s_points.translate(info['box3d_lidar'][:3]) + + count += 1 + + s_points_list.append(s_points) + + gt_labels = np.array([self.cat2label[s['name']] for s in sampled], + dtype=np.long) + + if ground_plane is not None: + xyz = sampled_gt_bboxes[:, :3] + dz = (ground_plane[:3][None, :] * + xyz).sum(-1) + ground_plane[3] + sampled_gt_bboxes[:, 2] -= dz + for i, s_points in enumerate(s_points_list): + s_points.tensor[:, 2].sub_(dz[i]) + + ret = { + 'gt_labels_3d': + gt_labels, + 'gt_bboxes_3d': + sampled_gt_bboxes, + 'points': + s_points_list[0].cat(s_points_list), + 'group_ids': + np.arange(gt_bboxes.shape[0], + gt_bboxes.shape[0] + len(sampled)) + } + + return ret + + def sample_class_v2(self, name, num, gt_bboxes): + """Sampling specific categories of bounding boxes. + + Args: + name (str): Class of objects to be sampled. + num (int): Number of sampled bboxes. + gt_bboxes (np.ndarray): Ground truth boxes. + + Returns: + list[dict]: Valid samples after collision test. + """ + sampled = self.sampler_dict[name].sample(num) + sampled = copy.deepcopy(sampled) + num_gt = gt_bboxes.shape[0] + num_sampled = len(sampled) + gt_bboxes_bv = box_np_ops.center_to_corner_box2d( + gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6]) + + sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0) + boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy() + + sp_boxes_new = boxes[gt_bboxes.shape[0]:] + sp_boxes_bv = box_np_ops.center_to_corner_box2d( + sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6]) + + total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0) + coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv) + diag = np.arange(total_bv.shape[0]) + coll_mat[diag, diag] = False + + valid_samples = [] + for i in range(num_gt, num_gt + num_sampled): + if coll_mat[i].any(): + coll_mat[i] = False + coll_mat[:, i] = False + else: + valid_samples.append(sampled[i - num_gt]) + return valid_samples diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/formating.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/formating.py new file mode 100644 index 000000000..94a62e656 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/formating.py @@ -0,0 +1,266 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +from mmcv.parallel import DataContainer as DC + +from mmdet3d.core.bbox import BaseInstance3DBoxes +from mmdet3d.core.points import BasePoints +from mmdet.datasets.pipelines import to_tensor +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class DefaultFormatBundle(object): + """Default formatting bundle. + + It simplifies the pipeline of formatting common fields, including "img", + "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". + These fields are formatted as follows. + + - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) + - proposals: (1)to tensor, (2)to DataContainer + - gt_bboxes: (1)to tensor, (2)to DataContainer + - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer + - gt_labels: (1)to tensor, (2)to DataContainer + - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) + - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, + (3)to DataContainer (stack=True) + """ + + def __init__(self, ): + return + + def __call__(self, results): + """Call function to transform and format common fields in results. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data that is formatted with + default bundle. + """ + if 'img' in results: + if isinstance(results['img'], list): + # process multiple imgs in single frame + imgs = [img.transpose(2, 0, 1) for img in results['img']] + imgs = np.ascontiguousarray(np.stack(imgs, axis=0)) + results['img'] = DC(to_tensor(imgs), stack=True) + else: + img = np.ascontiguousarray(results['img'].transpose(2, 0, 1)) + results['img'] = DC(to_tensor(img), stack=True) + for key in [ + 'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels', + 'gt_labels_3d', 'attr_labels', 'pts_instance_mask', + 'pts_semantic_mask', 'centers2d', 'depths' + ]: + if key not in results: + continue + if isinstance(results[key], list): + results[key] = DC([to_tensor(res) for res in results[key]]) + else: + results[key] = DC(to_tensor(results[key])) + if 'gt_bboxes_3d' in results: + if isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes): + results['gt_bboxes_3d'] = DC( + results['gt_bboxes_3d'], cpu_only=True) + else: + results['gt_bboxes_3d'] = DC( + to_tensor(results['gt_bboxes_3d'])) + + if 'gt_masks' in results: + results['gt_masks'] = DC(results['gt_masks'], cpu_only=True) + if 'gt_semantic_seg' in results: + results['gt_semantic_seg'] = DC( + to_tensor(results['gt_semantic_seg'][None, ...]), stack=True) + + return results + + def __repr__(self): + return self.__class__.__name__ + + +@PIPELINES.register_module() +class Collect3D(object): + """Collect data from the loader relevant to the specific task. + + This is usually the last stage of the data loader pipeline. Typically keys + is set to some subset of "img", "proposals", "gt_bboxes", + "gt_bboxes_ignore", "gt_labels", and/or "gt_masks". + + The "img_meta" item is always populated. The contents of the "img_meta" + dictionary depends on "meta_keys". By default this includes: + + - 'img_shape': shape of the image input to the network as a tuple + (h, w, c). Note that images may be zero padded on the + bottom/right if the batch tensor is larger than this shape. + - 'scale_factor': a float indicating the preprocessing scale + - 'flip': a boolean indicating if image flip transform was used + - 'filename': path to the image file + - 'ori_shape': original shape of the image as a tuple (h, w, c) + - 'pad_shape': image shape after padding + - 'lidar2img': transform from lidar to image + - 'depth2img': transform from depth to image + - 'cam2img': transform from camera to image + - 'pcd_horizontal_flip': a boolean indicating if point cloud is + flipped horizontally + - 'pcd_vertical_flip': a boolean indicating if point cloud is + flipped vertically + - 'box_mode_3d': 3D box mode + - 'box_type_3d': 3D box type + - 'img_norm_cfg': a dict of normalization information: + - mean: per channel mean subtraction + - std: per channel std divisor + - to_rgb: bool indicating if bgr was converted to rgb + - 'pcd_trans': point cloud transformations + - 'sample_idx': sample index + - 'pcd_scale_factor': point cloud scale factor + - 'pcd_rotation': rotation applied to point cloud + - 'pts_filename': path to point cloud file. + + Args: + keys (Sequence[str]): Keys of results to be collected in ``data``. + meta_keys (Sequence[str], optional): Meta keys to be converted to + ``mmcv.DataContainer`` and collected in ``data[img_metas]``. + Default: ('filename', 'ori_shape', 'img_shape', 'lidar2img', + 'depth2img', 'cam2img', 'pad_shape', 'scale_factor', 'flip', + 'pcd_horizontal_flip', 'pcd_vertical_flip', 'box_mode_3d', + 'box_type_3d', 'img_norm_cfg', 'pcd_trans', + 'sample_idx', 'pcd_scale_factor', 'pcd_rotation', 'pts_filename') + """ + + def __init__( + self, + keys, + meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img', + 'depth2img', 'cam2img', 'pad_shape', 'scale_factor', 'flip', + 'pcd_horizontal_flip', 'pcd_vertical_flip', 'box_mode_3d', + 'box_type_3d', 'img_norm_cfg', 'pcd_trans', 'sample_idx', + 'pcd_scale_factor', 'pcd_rotation', 'pcd_rotation_angle', + 'pts_filename', 'transformation_3d_flow', 'trans_mat', + 'affine_aug')): + self.keys = keys + self.meta_keys = meta_keys + + def __call__(self, results): + """Call function to collect keys in results. The keys in ``meta_keys`` + will be converted to :obj:`mmcv.DataContainer`. + + Args: + results (dict): Result dict contains the data to collect. + + Returns: + dict: The result dict contains the following keys + - keys in ``self.keys`` + - ``img_metas`` + """ + data = {} + img_metas = {} + for key in self.meta_keys: + if key in results: + img_metas[key] = results[key] + + data['img_metas'] = DC(img_metas, cpu_only=True) + for key in self.keys: + data[key] = results[key] + return data + + def __repr__(self): + """str: Return a string that describes the module.""" + return self.__class__.__name__ + \ + f'(keys={self.keys}, meta_keys={self.meta_keys})' + + +@PIPELINES.register_module() +class DefaultFormatBundle3D(DefaultFormatBundle): + """Default formatting bundle. + + It simplifies the pipeline of formatting common fields for voxels, + including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and + "gt_semantic_seg". + These fields are formatted as follows. + + - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) + - proposals: (1)to tensor, (2)to DataContainer + - gt_bboxes: (1)to tensor, (2)to DataContainer + - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer + - gt_labels: (1)to tensor, (2)to DataContainer + """ + + def __init__(self, class_names, with_gt=True, with_label=True): + super(DefaultFormatBundle3D, self).__init__() + self.class_names = class_names + self.with_gt = with_gt + self.with_label = with_label + + def __call__(self, results): + """Call function to transform and format common fields in results. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data that is formatted with + default bundle. + """ + # Format 3D data + if 'points' in results: + assert isinstance(results['points'], BasePoints) + results['points'] = DC(results['points'].tensor) + + for key in ['voxels', 'coors', 'voxel_centers', 'num_points']: + if key not in results: + continue + results[key] = DC(to_tensor(results[key]), stack=False) + + if self.with_gt: + # Clean GT bboxes in the final + if 'gt_bboxes_3d_mask' in results: + gt_bboxes_3d_mask = results['gt_bboxes_3d_mask'] + results['gt_bboxes_3d'] = results['gt_bboxes_3d'][ + gt_bboxes_3d_mask] + if 'gt_names_3d' in results: + results['gt_names_3d'] = results['gt_names_3d'][ + gt_bboxes_3d_mask] + if 'centers2d' in results: + results['centers2d'] = results['centers2d'][ + gt_bboxes_3d_mask] + if 'depths' in results: + results['depths'] = results['depths'][gt_bboxes_3d_mask] + if 'gt_bboxes_mask' in results: + gt_bboxes_mask = results['gt_bboxes_mask'] + if 'gt_bboxes' in results: + results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask] + results['gt_names'] = results['gt_names'][gt_bboxes_mask] + if self.with_label: + if 'gt_names' in results and len(results['gt_names']) == 0: + results['gt_labels'] = np.array([], dtype=np.int64) + results['attr_labels'] = np.array([], dtype=np.int64) + elif 'gt_names' in results and isinstance( + results['gt_names'][0], list): + # gt_labels might be a list of list in multi-view setting + results['gt_labels'] = [ + np.array([self.class_names.index(n) for n in res], + dtype=np.int64) for res in results['gt_names'] + ] + elif 'gt_names' in results: + results['gt_labels'] = np.array([ + self.class_names.index(n) for n in results['gt_names'] + ], + dtype=np.int64) + # we still assume one pipeline for one frame LiDAR + # thus, the 3D name is list[string] + if 'gt_names_3d' in results: + results['gt_labels_3d'] = np.array([ + self.class_names.index(n) + for n in results['gt_names_3d'] + ], + dtype=np.int64) + results = super(DefaultFormatBundle3D, self).__call__(results) + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(class_names={self.class_names}, ' + repr_str += f'with_gt={self.with_gt}, with_label={self.with_label})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/loading.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/loading.py new file mode 100644 index 000000000..bbdcb8ed2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/loading.py @@ -0,0 +1,685 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np + +from mmdet3d.core.points import BasePoints, get_points_type +from mmdet.datasets.pipelines import LoadAnnotations, LoadImageFromFile +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class LoadMultiViewImageFromFiles(object): + """Load multi channel images from a list of separate channel files. + + Expects results['img_filename'] to be a list of filenames. + + Args: + to_float32 (bool, optional): Whether to convert the img to float32. + Defaults to False. + color_type (str, optional): Color type of the file. + Defaults to 'unchanged'. + """ + + def __init__(self, to_float32=False, color_type='unchanged'): + self.to_float32 = to_float32 + self.color_type = color_type + + def __call__(self, results): + """Call function to load multi-view image from files. + + Args: + results (dict): Result dict containing multi-view image filenames. + + Returns: + dict: The result dict containing the multi-view image data. + Added keys and values are described below. + + - filename (str): Multi-view image filenames. + - img (np.ndarray): Multi-view image arrays. + - img_shape (tuple[int]): Shape of multi-view image arrays. + - ori_shape (tuple[int]): Shape of original image arrays. + - pad_shape (tuple[int]): Shape of padded image arrays. + - scale_factor (float): Scale factor. + - img_norm_cfg (dict): Normalization configuration of images. + """ + filename = results['img_filename'] + # img is of shape (h, w, c, num_views) + img = np.stack( + [mmcv.imread(name, self.color_type) for name in filename], axis=-1) + if self.to_float32: + img = img.astype(np.float32) + results['filename'] = filename + # unravel to list, see `DefaultFormatBundle` in formatting.py + # which will transpose each image separately and then stack into array + results['img'] = [img[..., i] for i in range(img.shape[-1])] + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + # Set initial values for default meta_keys + results['pad_shape'] = img.shape + results['scale_factor'] = 1.0 + num_channels = 1 if len(img.shape) < 3 else img.shape[2] + results['img_norm_cfg'] = dict( + mean=np.zeros(num_channels, dtype=np.float32), + std=np.ones(num_channels, dtype=np.float32), + to_rgb=False) + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(to_float32={self.to_float32}, ' + repr_str += f"color_type='{self.color_type}')" + return repr_str + + +@PIPELINES.register_module() +class LoadImageFromFileMono3D(LoadImageFromFile): + """Load an image from file in monocular 3D object detection. Compared to 2D + detection, additional camera parameters need to be loaded. + + Args: + kwargs (dict): Arguments are the same as those in + :class:`LoadImageFromFile`. + """ + + def __call__(self, results): + """Call functions to load image and get image meta information. + + Args: + results (dict): Result dict from :obj:`mmdet.CustomDataset`. + + Returns: + dict: The dict contains loaded image and meta information. + """ + super().__call__(results) + results['cam2img'] = results['img_info']['cam_intrinsic'] + return results + + +@PIPELINES.register_module() +class LoadPointsFromMultiSweeps(object): + """Load points from multiple sweeps. + + This is usually used for nuScenes dataset to utilize previous sweeps. + + Args: + sweeps_num (int, optional): Number of sweeps. Defaults to 10. + load_dim (int, optional): Dimension number of the loaded points. + Defaults to 5. + use_dim (list[int], optional): Which dimension to use. + Defaults to [0, 1, 2, 4]. + file_client_args (dict, optional): Config dict of file clients, + refer to + https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py + for more details. Defaults to dict(backend='disk'). + pad_empty_sweeps (bool, optional): Whether to repeat keyframe when + sweeps is empty. Defaults to False. + remove_close (bool, optional): Whether to remove close points. + Defaults to False. + test_mode (bool, optional): If `test_mode=True`, it will not + randomly sample sweeps but select the nearest N frames. + Defaults to False. + """ + + def __init__(self, + sweeps_num=10, + load_dim=5, + use_dim=[0, 1, 2, 4], + file_client_args=dict(backend='disk'), + pad_empty_sweeps=False, + remove_close=False, + test_mode=False): + self.load_dim = load_dim + self.sweeps_num = sweeps_num + self.use_dim = use_dim + self.file_client_args = file_client_args.copy() + self.file_client = None + self.pad_empty_sweeps = pad_empty_sweeps + self.remove_close = remove_close + self.test_mode = test_mode + + def _load_points(self, pts_filename): + """Private function to load point clouds data. + + Args: + pts_filename (str): Filename of point clouds data. + + Returns: + np.ndarray: An array containing point clouds data. + """ + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + try: + pts_bytes = self.file_client.get(pts_filename) + points = np.frombuffer(pts_bytes, dtype=np.float32) + except ConnectionError: + mmcv.check_file_exist(pts_filename) + if pts_filename.endswith('.npy'): + points = np.load(pts_filename) + else: + points = np.fromfile(pts_filename, dtype=np.float32) + return points + + def _remove_close(self, points, radius=1.0): + """Removes point too close within a certain radius from origin. + + Args: + points (np.ndarray | :obj:`BasePoints`): Sweep points. + radius (float, optional): Radius below which points are removed. + Defaults to 1.0. + + Returns: + np.ndarray: Points after removing. + """ + if isinstance(points, np.ndarray): + points_numpy = points + elif isinstance(points, BasePoints): + points_numpy = points.tensor.numpy() + else: + raise NotImplementedError + x_filt = np.abs(points_numpy[:, 0]) < radius + y_filt = np.abs(points_numpy[:, 1]) < radius + not_close = np.logical_not(np.logical_and(x_filt, y_filt)) + return points[not_close] + + def __call__(self, results): + """Call function to load multi-sweep point clouds from files. + + Args: + results (dict): Result dict containing multi-sweep point cloud + filenames. + + Returns: + dict: The result dict containing the multi-sweep points data. + Added key and value are described below. + + - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point + cloud arrays. + """ + points = results['points'] + points.tensor[:, 4] = 0 + sweep_points_list = [points] + ts = results['timestamp'] + if self.pad_empty_sweeps and len(results['sweeps']) == 0: + for i in range(self.sweeps_num): + if self.remove_close: + sweep_points_list.append(self._remove_close(points)) + else: + sweep_points_list.append(points) + else: + if len(results['sweeps']) <= self.sweeps_num: + choices = np.arange(len(results['sweeps'])) + elif self.test_mode: + choices = np.arange(self.sweeps_num) + else: + choices = np.random.choice( + len(results['sweeps']), self.sweeps_num, replace=False) + for idx in choices: + sweep = results['sweeps'][idx] + points_sweep = self._load_points(sweep['data_path']) + points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim) + if self.remove_close: + points_sweep = self._remove_close(points_sweep) + sweep_ts = sweep['timestamp'] / 1e6 + points_sweep[:, :3] = points_sweep[:, :3] @ sweep[ + 'sensor2lidar_rotation'].T + points_sweep[:, :3] += sweep['sensor2lidar_translation'] + points_sweep[:, 4] = ts - sweep_ts + points_sweep = points.new_point(points_sweep) + sweep_points_list.append(points_sweep) + + points = points.cat(sweep_points_list) + points = points[:, self.use_dim] + results['points'] = points + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})' + + +@PIPELINES.register_module() +class PointSegClassMapping(object): + """Map original semantic class to valid category ids. + + Map valid classes as 0~len(valid_cat_ids)-1 and + others as len(valid_cat_ids). + + Args: + valid_cat_ids (tuple[int]): A tuple of valid category. + max_cat_id (int, optional): The max possible cat_id in input + segmentation mask. Defaults to 40. + """ + + def __init__(self, valid_cat_ids, max_cat_id=40): + assert max_cat_id >= np.max(valid_cat_ids), \ + 'max_cat_id should be greater than maximum id in valid_cat_ids' + + self.valid_cat_ids = valid_cat_ids + self.max_cat_id = int(max_cat_id) + + # build cat_id to class index mapping + neg_cls = len(valid_cat_ids) + self.cat_id2class = np.ones( + self.max_cat_id + 1, dtype=np.int) * neg_cls + for cls_idx, cat_id in enumerate(valid_cat_ids): + self.cat_id2class[cat_id] = cls_idx + + def __call__(self, results): + """Call function to map original semantic class to valid category ids. + + Args: + results (dict): Result dict containing point semantic masks. + + Returns: + dict: The result dict containing the mapped category ids. + Updated key and value are described below. + + - pts_semantic_mask (np.ndarray): Mapped semantic masks. + """ + assert 'pts_semantic_mask' in results + pts_semantic_mask = results['pts_semantic_mask'] + + converted_pts_sem_mask = self.cat_id2class[pts_semantic_mask] + + results['pts_semantic_mask'] = converted_pts_sem_mask + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(valid_cat_ids={self.valid_cat_ids}, ' + repr_str += f'max_cat_id={self.max_cat_id})' + return repr_str + + +@PIPELINES.register_module() +class NormalizePointsColor(object): + """Normalize color of points. + + Args: + color_mean (list[float]): Mean color of the point cloud. + """ + + def __init__(self, color_mean): + self.color_mean = color_mean + + def __call__(self, results): + """Call function to normalize color of points. + + Args: + results (dict): Result dict containing point clouds data. + + Returns: + dict: The result dict containing the normalized points. + Updated key and value are described below. + + - points (:obj:`BasePoints`): Points after color normalization. + """ + points = results['points'] + assert points.attribute_dims is not None and \ + 'color' in points.attribute_dims.keys(), \ + 'Expect points have color attribute' + if self.color_mean is not None: + points.color = points.color - \ + points.color.new_tensor(self.color_mean) + points.color = points.color / 255.0 + results['points'] = points + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(color_mean={self.color_mean})' + return repr_str + + +@PIPELINES.register_module() +class LoadPointsFromFile(object): + """Load Points From File. + + Load points from file. + + Args: + coord_type (str): The type of coordinates of points cloud. + Available options includes: + - 'LIDAR': Points in LiDAR coordinates. + - 'DEPTH': Points in depth coordinates, usually for indoor dataset. + - 'CAMERA': Points in camera coordinates. + load_dim (int, optional): The dimension of the loaded points. + Defaults to 6. + use_dim (list[int], optional): Which dimensions of the points to use. + Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4 + or use_dim=[0, 1, 2, 3] to use the intensity dimension. + shift_height (bool, optional): Whether to use shifted height. + Defaults to False. + use_color (bool, optional): Whether to use color features. + Defaults to False. + file_client_args (dict, optional): Config dict of file clients, + refer to + https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py + for more details. Defaults to dict(backend='disk'). + """ + + def __init__(self, + coord_type, + load_dim=6, + use_dim=[0, 1, 2], + shift_height=False, + use_color=False, + file_client_args=dict(backend='disk')): + self.shift_height = shift_height + self.use_color = use_color + if isinstance(use_dim, int): + use_dim = list(range(use_dim)) + assert max(use_dim) < load_dim, \ + f'Expect all used dimensions < {load_dim}, got {use_dim}' + assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH'] + + self.coord_type = coord_type + self.load_dim = load_dim + self.use_dim = use_dim + self.file_client_args = file_client_args.copy() + self.file_client = None + + def _load_points(self, pts_filename): + """Private function to load point clouds data. + + Args: + pts_filename (str): Filename of point clouds data. + + Returns: + np.ndarray: An array containing point clouds data. + """ + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + try: + pts_bytes = self.file_client.get(pts_filename) + points = np.frombuffer(pts_bytes, dtype=np.float32) + except ConnectionError: + mmcv.check_file_exist(pts_filename) + if pts_filename.endswith('.npy'): + points = np.load(pts_filename) + else: + points = np.fromfile(pts_filename, dtype=np.float32) + + return points + + def __call__(self, results): + """Call function to load points data from file. + + Args: + results (dict): Result dict containing point clouds data. + + Returns: + dict: The result dict containing the point clouds data. + Added key and value are described below. + + - points (:obj:`BasePoints`): Point clouds data. + """ + pts_filename = results['pts_filename'] + points = self._load_points(pts_filename) + points = points.reshape(-1, self.load_dim) + points = points[:, self.use_dim] + attribute_dims = None + + if self.shift_height: + floor_height = np.percentile(points[:, 2], 0.99) + height = points[:, 2] - floor_height + points = np.concatenate( + [points[:, :3], + np.expand_dims(height, 1), points[:, 3:]], 1) + attribute_dims = dict(height=3) + + if self.use_color: + assert len(self.use_dim) >= 6 + if attribute_dims is None: + attribute_dims = dict() + attribute_dims.update( + dict(color=[ + points.shape[1] - 3, + points.shape[1] - 2, + points.shape[1] - 1, + ])) + + points_class = get_points_type(self.coord_type) + points = points_class( + points, points_dim=points.shape[-1], attribute_dims=attribute_dims) + results['points'] = points + + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + '(' + repr_str += f'shift_height={self.shift_height}, ' + repr_str += f'use_color={self.use_color}, ' + repr_str += f'file_client_args={self.file_client_args}, ' + repr_str += f'load_dim={self.load_dim}, ' + repr_str += f'use_dim={self.use_dim})' + return repr_str + + +@PIPELINES.register_module() +class LoadPointsFromDict(LoadPointsFromFile): + """Load Points From Dict.""" + + def __call__(self, results): + assert 'points' in results + return results + + +@PIPELINES.register_module() +class LoadAnnotations3D(LoadAnnotations): + """Load Annotations3D. + + Load instance mask and semantic mask of points and + encapsulate the items into related fields. + + Args: + with_bbox_3d (bool, optional): Whether to load 3D boxes. + Defaults to True. + with_label_3d (bool, optional): Whether to load 3D labels. + Defaults to True. + with_attr_label (bool, optional): Whether to load attribute label. + Defaults to False. + with_mask_3d (bool, optional): Whether to load 3D instance masks. + for points. Defaults to False. + with_seg_3d (bool, optional): Whether to load 3D semantic masks. + for points. Defaults to False. + with_bbox (bool, optional): Whether to load 2D boxes. + Defaults to False. + with_label (bool, optional): Whether to load 2D labels. + Defaults to False. + with_mask (bool, optional): Whether to load 2D instance masks. + Defaults to False. + with_seg (bool, optional): Whether to load 2D semantic masks. + Defaults to False. + with_bbox_depth (bool, optional): Whether to load 2.5D boxes. + Defaults to False. + poly2mask (bool, optional): Whether to convert polygon annotations + to bitmasks. Defaults to True. + seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks. + Defaults to int64 + file_client_args (dict): Config dict of file clients, refer to + https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py + for more details. + """ + + def __init__(self, + with_bbox_3d=True, + with_label_3d=True, + with_attr_label=False, + with_mask_3d=False, + with_seg_3d=False, + with_bbox=False, + with_label=False, + with_mask=False, + with_seg=False, + with_bbox_depth=False, + poly2mask=True, + seg_3d_dtype=np.int64, + file_client_args=dict(backend='disk')): + super().__init__( + with_bbox, + with_label, + with_mask, + with_seg, + poly2mask, + file_client_args=file_client_args) + self.with_bbox_3d = with_bbox_3d + self.with_bbox_depth = with_bbox_depth + self.with_label_3d = with_label_3d + self.with_attr_label = with_attr_label + self.with_mask_3d = with_mask_3d + self.with_seg_3d = with_seg_3d + self.seg_3d_dtype = seg_3d_dtype + + def _load_bboxes_3d(self, results): + """Private function to load 3D bounding box annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded 3D bounding box annotations. + """ + results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d'] + results['bbox3d_fields'].append('gt_bboxes_3d') + return results + + def _load_bboxes_depth(self, results): + """Private function to load 2.5D bounding box annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded 2.5D bounding box annotations. + """ + results['centers2d'] = results['ann_info']['centers2d'] + results['depths'] = results['ann_info']['depths'] + return results + + def _load_labels_3d(self, results): + """Private function to load label annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded label annotations. + """ + results['gt_labels_3d'] = results['ann_info']['gt_labels_3d'] + return results + + def _load_attr_labels(self, results): + """Private function to load label annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded label annotations. + """ + results['attr_labels'] = results['ann_info']['attr_labels'] + return results + + def _load_masks_3d(self, results): + """Private function to load 3D mask annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded 3D mask annotations. + """ + pts_instance_mask_path = results['ann_info']['pts_instance_mask_path'] + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + try: + mask_bytes = self.file_client.get(pts_instance_mask_path) + pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64) + except ConnectionError: + mmcv.check_file_exist(pts_instance_mask_path) + pts_instance_mask = np.fromfile( + pts_instance_mask_path, dtype=np.int64) + + results['pts_instance_mask'] = pts_instance_mask + results['pts_mask_fields'].append('pts_instance_mask') + return results + + def _load_semantic_seg_3d(self, results): + """Private function to load 3D semantic segmentation annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing the semantic segmentation annotations. + """ + pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path'] + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + try: + mask_bytes = self.file_client.get(pts_semantic_mask_path) + # add .copy() to fix read-only bug + pts_semantic_mask = np.frombuffer( + mask_bytes, dtype=self.seg_3d_dtype).copy() + except ConnectionError: + mmcv.check_file_exist(pts_semantic_mask_path) + pts_semantic_mask = np.fromfile( + pts_semantic_mask_path, dtype=np.int64) + + results['pts_semantic_mask'] = pts_semantic_mask + results['pts_seg_fields'].append('pts_semantic_mask') + return results + + def __call__(self, results): + """Call function to load multiple types annotations. + + Args: + results (dict): Result dict from :obj:`mmdet3d.CustomDataset`. + + Returns: + dict: The dict containing loaded 3D bounding box, label, mask and + semantic segmentation annotations. + """ + results = super().__call__(results) + if self.with_bbox_3d: + results = self._load_bboxes_3d(results) + if results is None: + return None + if self.with_bbox_depth: + results = self._load_bboxes_depth(results) + if results is None: + return None + if self.with_label_3d: + results = self._load_labels_3d(results) + if self.with_attr_label: + results = self._load_attr_labels(results) + if self.with_mask_3d: + results = self._load_masks_3d(results) + if self.with_seg_3d: + results = self._load_semantic_seg_3d(results) + + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + indent_str = ' ' + repr_str = self.__class__.__name__ + '(\n' + repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, ' + repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, ' + repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, ' + repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, ' + repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, ' + repr_str += f'{indent_str}with_bbox={self.with_bbox}, ' + repr_str += f'{indent_str}with_label={self.with_label}, ' + repr_str += f'{indent_str}with_mask={self.with_mask}, ' + repr_str += f'{indent_str}with_seg={self.with_seg}, ' + repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, ' + repr_str += f'{indent_str}poly2mask={self.poly2mask})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/test_time_aug.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/test_time_aug.py new file mode 100644 index 000000000..d53f11094 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/test_time_aug.py @@ -0,0 +1,229 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from copy import deepcopy + +import mmcv + +from ..builder import PIPELINES +from .compose import Compose + + +@PIPELINES.register_module() +class MultiScaleFlipAug: + """Test-time augmentation with multiple scales and flipping. An example + configuration is as followed: + + .. code-block:: + img_scale=[(1333, 400), (1333, 800)], + flip=True, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ] + After MultiScaleFLipAug with above configuration, the results are wrapped + into lists of the same length as followed: + .. code-block:: + dict( + img=[...], + img_shape=[...], + scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] + flip=[False, True, False, True] + ... + ) + Args: + transforms (list[dict]): Transforms to apply in each augmentation. + img_scale (tuple | list[tuple] | None): Images scales for resizing. + scale_factor (float | list[float] | None): Scale factors for resizing. + flip (bool): Whether apply flip augmentation. Default: False. + flip_direction (str | list[str]): Flip augmentation directions, + options are "horizontal", "vertical" and "diagonal". If + flip_direction is a list, multiple flip augmentations will be + applied. It has no effect when flip == False. Default: + "horizontal". + """ + + def __init__(self, + transforms, + img_scale=None, + scale_factor=None, + flip=False, + flip_direction='horizontal'): + self.transforms = Compose(transforms) + assert (img_scale is None) ^ (scale_factor is None), ( + 'Must have but only one variable can be set') + if img_scale is not None: + self.img_scale = img_scale if isinstance(img_scale, + list) else [img_scale] + self.scale_key = 'scale' + assert mmcv.is_list_of(self.img_scale, tuple) + else: + self.img_scale = scale_factor if isinstance( + scale_factor, list) else [scale_factor] + self.scale_key = 'scale_factor' + + self.flip = flip + self.flip_direction = flip_direction if isinstance( + flip_direction, list) else [flip_direction] + assert mmcv.is_list_of(self.flip_direction, str) + if not self.flip and self.flip_direction != ['horizontal']: + warnings.warn( + 'flip_direction has no effect when flip is set to False') + if (self.flip + and not any([t['type'] == 'RandomFlip' for t in transforms])): + warnings.warn( + 'flip has no effect when RandomFlip is not in transforms') + + def __call__(self, results): + """Call function to apply test time augment transforms on results. + + Args: + results (dict): Result dict contains the data to transform. + Returns: + dict[str: list]: The augmented data, where each value is wrapped + into a list. + """ + + aug_data = [] + flip_args = [(False, None)] + if self.flip: + flip_args += [(True, direction) + for direction in self.flip_direction] + for scale in self.img_scale: + for flip, direction in flip_args: + _results = results.copy() + _results[self.scale_key] = scale + _results['flip'] = flip + _results['flip_direction'] = direction + data = self.transforms(_results) + aug_data.append(data) + # list of dict to dict of list + aug_data_dict = {key: [] for key in aug_data[0]} + for data in aug_data: + for key, val in data.items(): + aug_data_dict[key].append(val) + return aug_data_dict + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(transforms={self.transforms}, ' + repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' + repr_str += f'flip_direction={self.flip_direction})' + return repr_str + + +@PIPELINES.register_module() +class MultiScaleFlipAug3D(object): + """Test-time augmentation with multiple scales and flipping. + + Args: + transforms (list[dict]): Transforms to apply in each augmentation. + img_scale (tuple | list[tuple]: Images scales for resizing. + pts_scale_ratio (float | list[float]): Points scale ratios for + resizing. + flip (bool, optional): Whether apply flip augmentation. + Defaults to False. + flip_direction (str | list[str], optional): Flip augmentation + directions for images, options are "horizontal" and "vertical". + If flip_direction is list, multiple flip augmentations will + be applied. It has no effect when ``flip == False``. + Defaults to "horizontal". + pcd_horizontal_flip (bool, optional): Whether apply horizontal + flip augmentation to point cloud. Defaults to True. + Note that it works only when 'flip' is turned on. + pcd_vertical_flip (bool, optional): Whether apply vertical flip + augmentation to point cloud. Defaults to True. + Note that it works only when 'flip' is turned on. + """ + + def __init__(self, + transforms, + img_scale, + pts_scale_ratio, + flip=False, + flip_direction='horizontal', + pcd_horizontal_flip=False, + pcd_vertical_flip=False): + self.transforms = Compose(transforms) + self.img_scale = img_scale if isinstance(img_scale, + list) else [img_scale] + self.pts_scale_ratio = pts_scale_ratio \ + if isinstance(pts_scale_ratio, list) else[float(pts_scale_ratio)] + + assert mmcv.is_list_of(self.img_scale, tuple) + assert mmcv.is_list_of(self.pts_scale_ratio, float) + + self.flip = flip + self.pcd_horizontal_flip = pcd_horizontal_flip + self.pcd_vertical_flip = pcd_vertical_flip + + self.flip_direction = flip_direction if isinstance( + flip_direction, list) else [flip_direction] + assert mmcv.is_list_of(self.flip_direction, str) + if not self.flip and self.flip_direction != ['horizontal']: + warnings.warn( + 'flip_direction has no effect when flip is set to False') + if (self.flip and not any([(t['type'] == 'RandomFlip3D' + or t['type'] == 'RandomFlip') + for t in transforms])): + warnings.warn( + 'flip has no effect when RandomFlip is not in transforms') + + def __call__(self, results): + """Call function to augment common fields in results. + + Args: + results (dict): Result dict contains the data to augment. + + Returns: + dict: The result dict contains the data that is augmented with + different scales and flips. + """ + aug_data = [] + + # modified from `flip_aug = [False, True] if self.flip else [False]` + # to reduce unnecessary scenes when using double flip augmentation + # during test time + flip_aug = [True] if self.flip else [False] + pcd_horizontal_flip_aug = [False, True] \ + if self.flip and self.pcd_horizontal_flip else [False] + pcd_vertical_flip_aug = [False, True] \ + if self.flip and self.pcd_vertical_flip else [False] + for scale in self.img_scale: + for pts_scale_ratio in self.pts_scale_ratio: + for flip in flip_aug: + for pcd_horizontal_flip in pcd_horizontal_flip_aug: + for pcd_vertical_flip in pcd_vertical_flip_aug: + for direction in self.flip_direction: + # results.copy will cause bug + # since it is shallow copy + _results = deepcopy(results) + _results['scale'] = scale + _results['flip'] = flip + _results['pcd_scale_factor'] = \ + pts_scale_ratio + _results['flip_direction'] = direction + _results['pcd_horizontal_flip'] = \ + pcd_horizontal_flip + _results['pcd_vertical_flip'] = \ + pcd_vertical_flip + data = self.transforms(_results) + aug_data.append(data) + # list of dict to dict of list + aug_data_dict = {key: [] for key in aug_data[0]} + for data in aug_data: + for key, val in data.items(): + aug_data_dict[key].append(val) + return aug_data_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(transforms={self.transforms}, ' + repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' + repr_str += f'pts_scale_ratio={self.pts_scale_ratio}, ' + repr_str += f'flip_direction={self.flip_direction})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/transforms_3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/transforms_3d.py new file mode 100644 index 000000000..46f4765c4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/pipelines/transforms_3d.py @@ -0,0 +1,1855 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +import random +import warnings + +import cv2 +import numpy as np +from mmcv import is_tuple_of +from mmcv.utils import build_from_cfg + +from mmdet3d.core import VoxelGenerator +from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes, + LiDARInstance3DBoxes, box_np_ops) +from mmdet3d.datasets.pipelines.compose import Compose +from mmdet.datasets.pipelines import RandomCrop, RandomFlip, Rotate +from ..builder import OBJECTSAMPLERS, PIPELINES +from .data_augment_utils import noise_per_object_v3_ + + +@PIPELINES.register_module() +class RandomDropPointsColor(object): + r"""Randomly set the color of points to all zeros. + + Once this transform is executed, all the points' color will be dropped. + Refer to `PAConv `_ for more details. + + Args: + drop_ratio (float, optional): The probability of dropping point colors. + Defaults to 0.2. + """ + + def __init__(self, drop_ratio=0.2): + assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \ + f'invalid drop_ratio value {drop_ratio}' + self.drop_ratio = drop_ratio + + def __call__(self, input_dict): + """Call function to drop point colors. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after color dropping, + 'points' key is updated in the result dict. + """ + points = input_dict['points'] + assert points.attribute_dims is not None and \ + 'color' in points.attribute_dims, \ + 'Expect points have color attribute' + + # this if-expression is a bit strange + # `RandomDropPointsColor` is used in training 3D segmentor PAConv + # we discovered in our experiments that, using + # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to + # better results than using `if np.random.rand() < self.drop_ratio` + # so we keep this hack in our codebase + if np.random.rand() > 1.0 - self.drop_ratio: + points.color = points.color * 0.0 + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(drop_ratio={self.drop_ratio})' + return repr_str + + +@PIPELINES.register_module() +class RandomFlip3D(RandomFlip): + """Flip the points & bbox. + + If the input dict contains the key "flip", then the flag will be used, + otherwise it will be randomly decided by a ratio specified in the init + method. + + Args: + sync_2d (bool, optional): Whether to apply flip according to the 2D + images. If True, it will apply the same flip as that to 2D images. + If False, it will decide whether to flip randomly and independently + to that of 2D images. Defaults to True. + flip_ratio_bev_horizontal (float, optional): The flipping probability + in horizontal direction. Defaults to 0.0. + flip_ratio_bev_vertical (float, optional): The flipping probability + in vertical direction. Defaults to 0.0. + """ + + def __init__(self, + sync_2d=True, + flip_ratio_bev_horizontal=0.0, + flip_ratio_bev_vertical=0.0, + **kwargs): + super(RandomFlip3D, self).__init__( + flip_ratio=flip_ratio_bev_horizontal, **kwargs) + self.sync_2d = sync_2d + self.flip_ratio_bev_vertical = flip_ratio_bev_vertical + if flip_ratio_bev_horizontal is not None: + assert isinstance( + flip_ratio_bev_horizontal, + (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1 + if flip_ratio_bev_vertical is not None: + assert isinstance( + flip_ratio_bev_vertical, + (int, float)) and 0 <= flip_ratio_bev_vertical <= 1 + + def random_flip_data_3d(self, input_dict, direction='horizontal'): + """Flip 3D data randomly. + + Args: + input_dict (dict): Result dict from loading pipeline. + direction (str, optional): Flip direction. + Default: 'horizontal'. + + Returns: + dict: Flipped results, 'points', 'bbox3d_fields' keys are + updated in the result dict. + """ + assert direction in ['horizontal', 'vertical'] + # for semantic segmentation task, only points will be flipped. + if 'bbox3d_fields' not in input_dict: + input_dict['points'].flip(direction) + return + if len(input_dict['bbox3d_fields']) == 0: # test mode + input_dict['bbox3d_fields'].append('empty_box3d') + input_dict['empty_box3d'] = input_dict['box_type_3d']( + np.array([], dtype=np.float32)) + assert len(input_dict['bbox3d_fields']) == 1 + for key in input_dict['bbox3d_fields']: + if 'points' in input_dict: + input_dict['points'] = input_dict[key].flip( + direction, points=input_dict['points']) + else: + input_dict[key].flip(direction) + if 'centers2d' in input_dict: + assert self.sync_2d is True and direction == 'horizontal', \ + 'Only support sync_2d=True and horizontal flip with images' + w = input_dict['ori_shape'][1] + input_dict['centers2d'][..., 0] = \ + w - input_dict['centers2d'][..., 0] + # need to modify the horizontal position of camera center + # along u-axis in the image (flip like centers2d) + # ['cam2img'][0][2] = c_u + # see more details and examples at + # https://github.com/open-mmlab/mmdetection3d/pull/744 + input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2] + + def __call__(self, input_dict): + """Call function to flip points, values in the ``bbox3d_fields`` and + also flip 2D image and its annotations. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Flipped results, 'flip', 'flip_direction', + 'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added + into result dict. + """ + # flip 2D image and its annotations + super(RandomFlip3D, self).__call__(input_dict) + + if self.sync_2d: + input_dict['pcd_horizontal_flip'] = input_dict['flip'] + input_dict['pcd_vertical_flip'] = False + else: + if 'pcd_horizontal_flip' not in input_dict: + flip_horizontal = True if np.random.rand( + ) < self.flip_ratio else False + input_dict['pcd_horizontal_flip'] = flip_horizontal + if 'pcd_vertical_flip' not in input_dict: + flip_vertical = True if np.random.rand( + ) < self.flip_ratio_bev_vertical else False + input_dict['pcd_vertical_flip'] = flip_vertical + + if 'transformation_3d_flow' not in input_dict: + input_dict['transformation_3d_flow'] = [] + + if input_dict['pcd_horizontal_flip']: + self.random_flip_data_3d(input_dict, 'horizontal') + input_dict['transformation_3d_flow'].extend(['HF']) + if input_dict['pcd_vertical_flip']: + self.random_flip_data_3d(input_dict, 'vertical') + input_dict['transformation_3d_flow'].extend(['VF']) + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(sync_2d={self.sync_2d},' + repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})' + return repr_str + + +@PIPELINES.register_module() +class MultiViewWrapper(object): + """Wrap transformation from single-view into multi-view. + + The wrapper processes the images from multi-view one by one. For each + image, it constructs a pseudo dict according to the keys specified by the + 'process_fields' parameter. After the transformation is finished, desired + information can be collected by specifying the keys in the 'collected_keys' + parameter. Multi-view images share the same transformation parameters + but do not share the same magnitude when a random transformation is + conducted. + + Args: + transforms (list[dict]): A list of dict specifying the transformations + for the monocular situation. + process_fields (dict): Desired keys that the transformations should + be conducted on. Default to dict(img_fields=['img']). + collected_keys (list[str]): Collect information in transformation + like rotate angles, crop roi, and flip state. + """ + + def __init__(self, + transforms, + process_fields=dict(img_fields=['img']), + collected_keys=[]): + self.transform = Compose(transforms) + self.collected_keys = collected_keys + self.process_fields = process_fields + + def __call__(self, input_dict): + for key in self.collected_keys: + input_dict[key] = [] + for img_id in range(len(input_dict['img'])): + process_dict = self.process_fields.copy() + for field in self.process_fields: + for key in self.process_fields[field]: + process_dict[key] = input_dict[key][img_id] + process_dict = self.transform(process_dict) + for field in self.process_fields: + for key in self.process_fields[field]: + input_dict[key][img_id] = process_dict[key] + for key in self.collected_keys: + input_dict[key].append(process_dict[key]) + return input_dict + + +@PIPELINES.register_module() +class RangeLimitedRandomCrop(RandomCrop): + """Randomly crop image-view objects under a limitation of range. + + Args: + relative_x_offset_range (tuple[float]): Relative range of random crop + in x direction. (x_min, x_max) in [0, 1.0]. Default to (0.0, 1.0). + relative_y_offset_range (tuple[float]): Relative range of random crop + in y direction. (y_min, y_max) in [0, 1.0]. Default to (0.0, 1.0). + """ + + def __init__(self, + relative_x_offset_range=(0.0, 1.0), + relative_y_offset_range=(0.0, 1.0), + **kwargs): + super(RangeLimitedRandomCrop, self).__init__(**kwargs) + for range in [relative_x_offset_range, relative_y_offset_range]: + assert 0 <= range[0] <= range[1] <= 1 + self.relative_x_offset_range = relative_x_offset_range + self.relative_y_offset_range = relative_y_offset_range + + def _crop_data(self, results, crop_size, allow_negative_crop): + """Function to randomly crop images. + + Modified from RandomCrop in mmdet==2.25.0 + + Args: + results (dict): Result dict from loading pipeline. + crop_size (tuple): Expected absolute size after cropping, (h, w). + + Returns: + dict: Randomly cropped results, 'img_shape' key in result dict is + updated according to crop size. + """ + assert crop_size[0] > 0 and crop_size[1] > 0 + for key in results.get('img_fields', ['img']): + img = results[key] + margin_h = max(img.shape[0] - crop_size[0], 0) + margin_w = max(img.shape[1] - crop_size[1], 0) + offset_range_h = (margin_h * self.relative_y_offset_range[0], + margin_h * self.relative_y_offset_range[1] + 1) + offset_h = np.random.randint(*offset_range_h) + offset_range_w = (margin_w * self.relative_x_offset_range[0], + margin_w * self.relative_x_offset_range[1] + 1) + offset_w = np.random.randint(*offset_range_w) + crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] + crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] + + # crop the image + img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] + img_shape = img.shape + results[key] = img + results['crop'] = (crop_x1, crop_y1, crop_x2, crop_y2) + results['img_shape'] = img_shape + + # crop bboxes accordingly and clip to the image boundary + for key in results.get('bbox_fields', []): + # e.g. gt_bboxes and gt_bboxes_ignore + bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h], + dtype=np.float32) + bboxes = results[key] - bbox_offset + if self.bbox_clip_border: + bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) + bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) + valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & ( + bboxes[:, 3] > bboxes[:, 1]) + # If the crop does not contain any gt-bbox area and + # allow_negative_crop is False, skip this image. + if (key == 'gt_bboxes' and not valid_inds.any() + and not allow_negative_crop): + return None + results[key] = bboxes[valid_inds, :] + # label fields. e.g. gt_labels and gt_labels_ignore + label_key = self.bbox2label.get(key) + if label_key in results: + results[label_key] = results[label_key][valid_inds] + + # mask fields, e.g. gt_masks and gt_masks_ignore + mask_key = self.bbox2mask.get(key) + if mask_key in results: + results[mask_key] = results[mask_key][ + valid_inds.nonzero()[0]].crop( + np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) + if self.recompute_bbox: + results[key] = results[mask_key].get_bboxes() + + # crop semantic seg + for key in results.get('seg_fields', []): + results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2] + + return results + + +@PIPELINES.register_module() +class RandomRotate(Rotate): + """Randomly rotate images. + + The ratation angle is selected uniformly within the interval specified by + the 'range' parameter. + + Args: + range (tuple[float]): Define the range of random rotation. + (angle_min, angle_max) in angle. + """ + + def __init__(self, range, **kwargs): + super(RandomRotate, self).__init__(**kwargs) + self.range = range + + def __call__(self, results): + self.angle = np.random.uniform(self.range[0], self.range[1]) + super(RandomRotate, self).__call__(results) + results['rotate'] = self.angle + return results + + +@PIPELINES.register_module() +class RandomJitterPoints(object): + """Randomly jitter point coordinates. + + Different from the global translation in ``GlobalRotScaleTrans``, here we + apply different noises to each point in a scene. + + Args: + jitter_std (list[float]): The standard deviation of jittering noise. + This applies random noise to all points in a 3D scene, which is + sampled from a gaussian distribution whose standard deviation is + set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01] + clip_range (list[float]): Clip the randomly generated jitter + noise into this range. If None is given, don't perform clipping. + Defaults to [-0.05, 0.05] + + Note: + This transform should only be used in point cloud segmentation tasks + because we don't transform ground-truth bboxes accordingly. + For similar transform in detection task, please refer to `ObjectNoise`. + """ + + def __init__(self, + jitter_std=[0.01, 0.01, 0.01], + clip_range=[-0.05, 0.05]): + seq_types = (list, tuple, np.ndarray) + if not isinstance(jitter_std, seq_types): + assert isinstance(jitter_std, (int, float)), \ + f'unsupported jitter_std type {type(jitter_std)}' + jitter_std = [jitter_std, jitter_std, jitter_std] + self.jitter_std = jitter_std + + if clip_range is not None: + if not isinstance(clip_range, seq_types): + assert isinstance(clip_range, (int, float)), \ + f'unsupported clip_range type {type(clip_range)}' + clip_range = [-clip_range, clip_range] + self.clip_range = clip_range + + def __call__(self, input_dict): + """Call function to jitter all the points in the scene. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after adding noise to each point, + 'points' key is updated in the result dict. + """ + points = input_dict['points'] + jitter_std = np.array(self.jitter_std, dtype=np.float32) + jitter_noise = \ + np.random.randn(points.shape[0], 3) * jitter_std[None, :] + if self.clip_range is not None: + jitter_noise = np.clip(jitter_noise, self.clip_range[0], + self.clip_range[1]) + + points.translate(jitter_noise) + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(jitter_std={self.jitter_std},' + repr_str += f' clip_range={self.clip_range})' + return repr_str + + +@PIPELINES.register_module() +class ObjectSample(object): + """Sample GT objects to the data. + + Args: + db_sampler (dict): Config dict of the database sampler. + sample_2d (bool): Whether to also paste 2D image patch to the images + This should be true when applying multi-modality cut-and-paste. + Defaults to False. + use_ground_plane (bool): Whether to use gound plane to adjust the + 3D labels. + """ + + def __init__(self, db_sampler, sample_2d=False, use_ground_plane=False): + self.sampler_cfg = db_sampler + self.sample_2d = sample_2d + if 'type' not in db_sampler.keys(): + db_sampler['type'] = 'DataBaseSampler' + self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS) + self.use_ground_plane = use_ground_plane + + @staticmethod + def remove_points_in_boxes(points, boxes): + """Remove the points in the sampled bounding boxes. + + Args: + points (:obj:`BasePoints`): Input point cloud array. + boxes (np.ndarray): Sampled ground truth boxes. + + Returns: + np.ndarray: Points with those in the boxes removed. + """ + masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes) + points = points[np.logical_not(masks.any(-1))] + return points + + def __call__(self, input_dict): + """Call function to sample ground truth objects to the data. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after object sampling augmentation, + 'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated + in the result dict. + """ + gt_bboxes_3d = input_dict['gt_bboxes_3d'] + gt_labels_3d = input_dict['gt_labels_3d'] + + if self.use_ground_plane and 'plane' in input_dict['ann_info']: + ground_plane = input_dict['ann_info']['plane'] + input_dict['plane'] = ground_plane + else: + ground_plane = None + # change to float for blending operation + points = input_dict['points'] + if self.sample_2d: + img = input_dict['img'] + gt_bboxes_2d = input_dict['gt_bboxes'] + # Assume for now 3D & 2D bboxes are the same + sampled_dict = self.db_sampler.sample_all( + gt_bboxes_3d.tensor.numpy(), + gt_labels_3d, + gt_bboxes_2d=gt_bboxes_2d, + img=img) + else: + sampled_dict = self.db_sampler.sample_all( + gt_bboxes_3d.tensor.numpy(), + gt_labels_3d, + img=None, + ground_plane=ground_plane) + + if sampled_dict is not None: + sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d'] + sampled_points = sampled_dict['points'] + sampled_gt_labels = sampled_dict['gt_labels_3d'] + + gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels], + axis=0) + gt_bboxes_3d = gt_bboxes_3d.new_box( + np.concatenate( + [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d])) + + points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d) + # check the points dimension + points = points.cat([sampled_points, points]) + + if self.sample_2d: + sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d'] + gt_bboxes_2d = np.concatenate( + [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32) + + input_dict['gt_bboxes'] = gt_bboxes_2d + input_dict['img'] = sampled_dict['img'] + + input_dict['gt_bboxes_3d'] = gt_bboxes_3d + input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64) + input_dict['points'] = points + + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f' sample_2d={self.sample_2d},' + repr_str += f' data_root={self.sampler_cfg.data_root},' + repr_str += f' info_path={self.sampler_cfg.info_path},' + repr_str += f' rate={self.sampler_cfg.rate},' + repr_str += f' prepare={self.sampler_cfg.prepare},' + repr_str += f' classes={self.sampler_cfg.classes},' + repr_str += f' sample_groups={self.sampler_cfg.sample_groups}' + return repr_str + + +@PIPELINES.register_module() +class ObjectNoise(object): + """Apply noise to each GT objects in the scene. + + Args: + translation_std (list[float], optional): Standard deviation of the + distribution where translation noise are sampled from. + Defaults to [0.25, 0.25, 0.25]. + global_rot_range (list[float], optional): Global rotation to the scene. + Defaults to [0.0, 0.0]. + rot_range (list[float], optional): Object rotation range. + Defaults to [-0.15707963267, 0.15707963267]. + num_try (int, optional): Number of times to try if the noise applied is + invalid. Defaults to 100. + """ + + def __init__(self, + translation_std=[0.25, 0.25, 0.25], + global_rot_range=[0.0, 0.0], + rot_range=[-0.15707963267, 0.15707963267], + num_try=100): + self.translation_std = translation_std + self.global_rot_range = global_rot_range + self.rot_range = rot_range + self.num_try = num_try + + def __call__(self, input_dict): + """Call function to apply noise to each ground truth in the scene. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after adding noise to each object, + 'points', 'gt_bboxes_3d' keys are updated in the result dict. + """ + gt_bboxes_3d = input_dict['gt_bboxes_3d'] + points = input_dict['points'] + + # TODO: this is inplace operation + numpy_box = gt_bboxes_3d.tensor.numpy() + numpy_points = points.tensor.numpy() + + noise_per_object_v3_( + numpy_box, + numpy_points, + rotation_perturb=self.rot_range, + center_noise_std=self.translation_std, + global_random_rot_range=self.global_rot_range, + num_try=self.num_try) + + input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box) + input_dict['points'] = points.new_point(numpy_points) + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(num_try={self.num_try},' + repr_str += f' translation_std={self.translation_std},' + repr_str += f' global_rot_range={self.global_rot_range},' + repr_str += f' rot_range={self.rot_range})' + return repr_str + + +@PIPELINES.register_module() +class GlobalAlignment(object): + """Apply global alignment to 3D scene points by rotation and translation. + + Args: + rotation_axis (int): Rotation axis for points and bboxes rotation. + + Note: + We do not record the applied rotation and translation as in + GlobalRotScaleTrans. Because usually, we do not need to reverse + the alignment step. + For example, ScanNet 3D detection task uses aligned ground-truth + bounding boxes for evaluation. + """ + + def __init__(self, rotation_axis): + self.rotation_axis = rotation_axis + + def _trans_points(self, input_dict, trans_factor): + """Private function to translate points. + + Args: + input_dict (dict): Result dict from loading pipeline. + trans_factor (np.ndarray): Translation vector to be applied. + + Returns: + dict: Results after translation, 'points' is updated in the dict. + """ + input_dict['points'].translate(trans_factor) + + def _rot_points(self, input_dict, rot_mat): + """Private function to rotate bounding boxes and points. + + Args: + input_dict (dict): Result dict from loading pipeline. + rot_mat (np.ndarray): Rotation matrix to be applied. + + Returns: + dict: Results after rotation, 'points' is updated in the dict. + """ + # input should be rot_mat_T so I transpose it here + input_dict['points'].rotate(rot_mat.T) + + def _check_rot_mat(self, rot_mat): + """Check if rotation matrix is valid for self.rotation_axis. + + Args: + rot_mat (np.ndarray): Rotation matrix to be applied. + """ + is_valid = np.allclose(np.linalg.det(rot_mat), 1.0) + valid_array = np.zeros(3) + valid_array[self.rotation_axis] = 1.0 + is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all() + is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all() + assert is_valid, f'invalid rotation matrix {rot_mat}' + + def __call__(self, input_dict): + """Call function to shuffle points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after global alignment, 'points' and keys in + input_dict['bbox3d_fields'] are updated in the result dict. + """ + assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \ + 'axis_align_matrix is not provided in GlobalAlignment' + + axis_align_matrix = input_dict['ann_info']['axis_align_matrix'] + assert axis_align_matrix.shape == (4, 4), \ + f'invalid shape {axis_align_matrix.shape} for axis_align_matrix' + rot_mat = axis_align_matrix[:3, :3] + trans_vec = axis_align_matrix[:3, -1] + + self._check_rot_mat(rot_mat) + self._rot_points(input_dict, rot_mat) + self._trans_points(input_dict, trans_vec) + + return input_dict + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(rotation_axis={self.rotation_axis})' + return repr_str + + +@PIPELINES.register_module() +class GlobalRotScaleTrans(object): + """Apply global rotation, scaling and translation to a 3D scene. + + Args: + rot_range (list[float], optional): Range of rotation angle. + Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]). + scale_ratio_range (list[float], optional): Range of scale ratio. + Defaults to [0.95, 1.05]. + translation_std (list[float], optional): The standard deviation of + translation noise applied to a scene, which + is sampled from a gaussian distribution whose standard deviation + is set by ``translation_std``. Defaults to [0, 0, 0] + shift_height (bool, optional): Whether to shift height. + (the fourth dimension of indoor points) when scaling. + Defaults to False. + """ + + def __init__(self, + rot_range=[-0.78539816, 0.78539816], + scale_ratio_range=[0.95, 1.05], + translation_std=[0, 0, 0], + shift_height=False): + seq_types = (list, tuple, np.ndarray) + if not isinstance(rot_range, seq_types): + assert isinstance(rot_range, (int, float)), \ + f'unsupported rot_range type {type(rot_range)}' + rot_range = [-rot_range, rot_range] + self.rot_range = rot_range + + assert isinstance(scale_ratio_range, seq_types), \ + f'unsupported scale_ratio_range type {type(scale_ratio_range)}' + self.scale_ratio_range = scale_ratio_range + + if not isinstance(translation_std, seq_types): + assert isinstance(translation_std, (int, float)), \ + f'unsupported translation_std type {type(translation_std)}' + translation_std = [ + translation_std, translation_std, translation_std + ] + assert all([std >= 0 for std in translation_std]), \ + 'translation_std should be positive' + self.translation_std = translation_std + self.shift_height = shift_height + + def _trans_bbox_points(self, input_dict): + """Private function to translate bounding boxes and points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after translation, 'points', 'pcd_trans' + and keys in input_dict['bbox3d_fields'] are updated + in the result dict. + """ + translation_std = np.array(self.translation_std, dtype=np.float32) + trans_factor = np.random.normal(scale=translation_std, size=3).T + + input_dict['points'].translate(trans_factor) + input_dict['pcd_trans'] = trans_factor + for key in input_dict['bbox3d_fields']: + input_dict[key].translate(trans_factor) + + def _rot_bbox_points(self, input_dict): + """Private function to rotate bounding boxes and points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after rotation, 'points', 'pcd_rotation' + and keys in input_dict['bbox3d_fields'] are updated + in the result dict. + """ + rotation = self.rot_range + noise_rotation = np.random.uniform(rotation[0], rotation[1]) + + # if no bbox in input_dict, only rotate points + if len(input_dict['bbox3d_fields']) == 0: + rot_mat_T = input_dict['points'].rotate(noise_rotation) + input_dict['pcd_rotation'] = rot_mat_T + input_dict['pcd_rotation_angle'] = noise_rotation + return + + # rotate points with bboxes + for key in input_dict['bbox3d_fields']: + if len(input_dict[key].tensor) != 0: + points, rot_mat_T = input_dict[key].rotate( + noise_rotation, input_dict['points']) + input_dict['points'] = points + input_dict['pcd_rotation'] = rot_mat_T + input_dict['pcd_rotation_angle'] = noise_rotation + + def _scale_bbox_points(self, input_dict): + """Private function to scale bounding boxes and points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after scaling, 'points'and keys in + input_dict['bbox3d_fields'] are updated in the result dict. + """ + scale = input_dict['pcd_scale_factor'] + points = input_dict['points'] + points.scale(scale) + if self.shift_height: + assert 'height' in points.attribute_dims.keys(), \ + 'setting shift_height=True but points have no height attribute' + points.tensor[:, points.attribute_dims['height']] *= scale + input_dict['points'] = points + + for key in input_dict['bbox3d_fields']: + input_dict[key].scale(scale) + + def _random_scale(self, input_dict): + """Private function to randomly set the scale factor. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after scaling, 'pcd_scale_factor' are updated + in the result dict. + """ + scale_factor = np.random.uniform(self.scale_ratio_range[0], + self.scale_ratio_range[1]) + input_dict['pcd_scale_factor'] = scale_factor + + def __call__(self, input_dict): + """Private function to rotate, scale and translate bounding boxes and + points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after scaling, 'points', 'pcd_rotation', + 'pcd_scale_factor', 'pcd_trans' and keys in + input_dict['bbox3d_fields'] are updated in the result dict. + """ + if 'transformation_3d_flow' not in input_dict: + input_dict['transformation_3d_flow'] = [] + + self._rot_bbox_points(input_dict) + + if 'pcd_scale_factor' not in input_dict: + self._random_scale(input_dict) + self._scale_bbox_points(input_dict) + + self._trans_bbox_points(input_dict) + + input_dict['transformation_3d_flow'].extend(['R', 'S', 'T']) + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(rot_range={self.rot_range},' + repr_str += f' scale_ratio_range={self.scale_ratio_range},' + repr_str += f' translation_std={self.translation_std},' + repr_str += f' shift_height={self.shift_height})' + return repr_str + + +@PIPELINES.register_module() +class PointShuffle(object): + """Shuffle input points.""" + + def __call__(self, input_dict): + """Call function to shuffle points. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after filtering, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + idx = input_dict['points'].shuffle() + idx = idx.numpy() + + pts_instance_mask = input_dict.get('pts_instance_mask', None) + pts_semantic_mask = input_dict.get('pts_semantic_mask', None) + + if pts_instance_mask is not None: + input_dict['pts_instance_mask'] = pts_instance_mask[idx] + + if pts_semantic_mask is not None: + input_dict['pts_semantic_mask'] = pts_semantic_mask[idx] + + return input_dict + + def __repr__(self): + return self.__class__.__name__ + + +@PIPELINES.register_module() +class ObjectRangeFilter(object): + """Filter objects by the range. + + Args: + point_cloud_range (list[float]): Point cloud range. + """ + + def __init__(self, point_cloud_range): + self.pcd_range = np.array(point_cloud_range, dtype=np.float32) + + def __call__(self, input_dict): + """Call function to filter objects by the range. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' + keys are updated in the result dict. + """ + # Check points instance type and initialise bev_range + if isinstance(input_dict['gt_bboxes_3d'], + (LiDARInstance3DBoxes, DepthInstance3DBoxes)): + bev_range = self.pcd_range[[0, 1, 3, 4]] + elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes): + bev_range = self.pcd_range[[0, 2, 3, 5]] + + gt_bboxes_3d = input_dict['gt_bboxes_3d'] + gt_labels_3d = input_dict['gt_labels_3d'] + mask = gt_bboxes_3d.in_range_bev(bev_range) + gt_bboxes_3d = gt_bboxes_3d[mask] + # mask is a torch tensor but gt_labels_3d is still numpy array + # using mask to index gt_labels_3d will cause bug when + # len(gt_labels_3d) == 1, where mask=1 will be interpreted + # as gt_labels_3d[1] and cause out of index error + gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)] + + # limit rad to [-pi, pi] + gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi) + input_dict['gt_bboxes_3d'] = gt_bboxes_3d + input_dict['gt_labels_3d'] = gt_labels_3d + + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(point_cloud_range={self.pcd_range.tolist()})' + return repr_str + + +@PIPELINES.register_module() +class PointsRangeFilter(object): + """Filter points by the range. + + Args: + point_cloud_range (list[float]): Point cloud range. + """ + + def __init__(self, point_cloud_range): + self.pcd_range = np.array(point_cloud_range, dtype=np.float32) + + def __call__(self, input_dict): + """Call function to filter points by the range. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after filtering, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + points = input_dict['points'] + points_mask = points.in_range_3d(self.pcd_range) + clean_points = points[points_mask] + input_dict['points'] = clean_points + points_mask = points_mask.numpy() + + pts_instance_mask = input_dict.get('pts_instance_mask', None) + pts_semantic_mask = input_dict.get('pts_semantic_mask', None) + + if pts_instance_mask is not None: + input_dict['pts_instance_mask'] = pts_instance_mask[points_mask] + + if pts_semantic_mask is not None: + input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask] + + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(point_cloud_range={self.pcd_range.tolist()})' + return repr_str + + +@PIPELINES.register_module() +class ObjectNameFilter(object): + """Filter GT objects by their names. + + Args: + classes (list[str]): List of class names to be kept for training. + """ + + def __init__(self, classes): + self.classes = classes + self.labels = list(range(len(self.classes))) + + def __call__(self, input_dict): + """Call function to filter objects by their names. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' + keys are updated in the result dict. + """ + gt_labels_3d = input_dict['gt_labels_3d'] + gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d], + dtype=np.bool_) + input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask] + input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask] + + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(classes={self.classes})' + return repr_str + + +@PIPELINES.register_module() +class PointSample(object): + """Point sample. + + Sampling data to a certain number. + + Args: + num_points (int): Number of points to be sampled. + sample_range (float, optional): The range where to sample points. + If not None, the points with depth larger than `sample_range` are + prior to be sampled. Defaults to None. + replace (bool, optional): Whether the sampling is with or without + replacement. Defaults to False. + """ + + def __init__(self, num_points, sample_range=None, replace=False): + self.num_points = num_points + self.sample_range = sample_range + self.replace = replace + + def _points_random_sampling(self, + points, + num_samples, + sample_range=None, + replace=False, + return_choices=False): + """Points random sampling. + + Sample points to a certain number. + + Args: + points (np.ndarray | :obj:`BasePoints`): 3D Points. + num_samples (int): Number of samples to be sampled. + sample_range (float, optional): Indicating the range where the + points will be sampled. Defaults to None. + replace (bool, optional): Sampling with or without replacement. + Defaults to None. + return_choices (bool, optional): Whether return choice. + Defaults to False. + Returns: + tuple[np.ndarray] | np.ndarray: + - points (np.ndarray | :obj:`BasePoints`): 3D Points. + - choices (np.ndarray, optional): The generated random samples. + """ + if not replace: + replace = (points.shape[0] < num_samples) + point_range = range(len(points)) + if sample_range is not None and not replace: + # Only sampling the near points when len(points) >= num_samples + dist = np.linalg.norm(points.tensor, axis=1) + far_inds = np.where(dist >= sample_range)[0] + near_inds = np.where(dist < sample_range)[0] + # in case there are too many far points + if len(far_inds) > num_samples: + far_inds = np.random.choice( + far_inds, num_samples, replace=False) + point_range = near_inds + num_samples -= len(far_inds) + choices = np.random.choice(point_range, num_samples, replace=replace) + if sample_range is not None and not replace: + choices = np.concatenate((far_inds, choices)) + # Shuffle points after sampling + np.random.shuffle(choices) + if return_choices: + return points[choices], choices + else: + return points[choices] + + def __call__(self, results): + """Call function to sample points to in indoor scenes. + + Args: + input_dict (dict): Result dict from loading pipeline. + Returns: + dict: Results after sampling, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + points = results['points'] + points, choices = self._points_random_sampling( + points, + self.num_points, + self.sample_range, + self.replace, + return_choices=True) + results['points'] = points + + pts_instance_mask = results.get('pts_instance_mask', None) + pts_semantic_mask = results.get('pts_semantic_mask', None) + + if pts_instance_mask is not None: + pts_instance_mask = pts_instance_mask[choices] + results['pts_instance_mask'] = pts_instance_mask + + if pts_semantic_mask is not None: + pts_semantic_mask = pts_semantic_mask[choices] + results['pts_semantic_mask'] = pts_semantic_mask + + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(num_points={self.num_points},' + repr_str += f' sample_range={self.sample_range},' + repr_str += f' replace={self.replace})' + + return repr_str + + +@PIPELINES.register_module() +class IndoorPointSample(PointSample): + """Indoor point sample. + + Sampling data to a certain number. + NOTE: IndoorPointSample is deprecated in favor of PointSample + + Args: + num_points (int): Number of points to be sampled. + """ + + def __init__(self, *args, **kwargs): + warnings.warn( + 'IndoorPointSample is deprecated in favor of PointSample') + super(IndoorPointSample, self).__init__(*args, **kwargs) + + +@PIPELINES.register_module() +class IndoorPatchPointSample(object): + r"""Indoor point sample within a patch. Modified from `PointNet++ `_. + + Sampling data to a certain number for semantic segmentation. + + Args: + num_points (int): Number of points to be sampled. + block_size (float, optional): Size of a block to sample points from. + Defaults to 1.5. + sample_rate (float, optional): Stride used in sliding patch generation. + This parameter is unused in `IndoorPatchPointSample` and thus has + been deprecated. We plan to remove it in the future. + Defaults to None. + ignore_index (int, optional): Label index that won't be used for the + segmentation task. This is set in PointSegClassMapping as neg_cls. + If not None, will be used as a patch selection criterion. + Defaults to None. + use_normalized_coord (bool, optional): Whether to use normalized xyz as + additional features. Defaults to False. + num_try (int, optional): Number of times to try if the patch selected + is invalid. Defaults to 10. + enlarge_size (float, optional): Enlarge the sampled patch to + [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as + an augmentation. If None, set it as 0. Defaults to 0.2. + min_unique_num (int, optional): Minimum number of unique points + the sampled patch should contain. If None, use PointNet++'s method + to judge uniqueness. Defaults to None. + eps (float, optional): A value added to patch boundary to guarantee + points coverage. Defaults to 1e-2. + + Note: + This transform should only be used in the training process of point + cloud segmentation tasks. For the sliding patch generation and + inference process in testing, please refer to the `slide_inference` + function of `EncoderDecoder3D` class. + """ + + def __init__(self, + num_points, + block_size=1.5, + sample_rate=None, + ignore_index=None, + use_normalized_coord=False, + num_try=10, + enlarge_size=0.2, + min_unique_num=None, + eps=1e-2): + self.num_points = num_points + self.block_size = block_size + self.ignore_index = ignore_index + self.use_normalized_coord = use_normalized_coord + self.num_try = num_try + self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0 + self.min_unique_num = min_unique_num + self.eps = eps + + if sample_rate is not None: + warnings.warn( + "'sample_rate' has been deprecated and will be removed in " + 'the future. Please remove them from your code.') + + def _input_generation(self, coords, patch_center, coord_max, attributes, + attribute_dims, point_type): + """Generating model input. + + Generate input by subtracting patch center and adding additional + features. Currently support colors and normalized xyz as features. + + Args: + coords (np.ndarray): Sampled 3D Points. + patch_center (np.ndarray): Center coordinate of the selected patch. + coord_max (np.ndarray): Max coordinate of all 3D Points. + attributes (np.ndarray): features of input points. + attribute_dims (dict): Dictionary to indicate the meaning of extra + dimension. + point_type (type): class of input points inherited from BasePoints. + + Returns: + :obj:`BasePoints`: The generated input data. + """ + # subtract patch center, the z dimension is not centered + centered_coords = coords.copy() + centered_coords[:, 0] -= patch_center[0] + centered_coords[:, 1] -= patch_center[1] + + if self.use_normalized_coord: + normalized_coord = coords / coord_max + attributes = np.concatenate([attributes, normalized_coord], axis=1) + if attribute_dims is None: + attribute_dims = dict() + attribute_dims.update( + dict(normalized_coord=[ + attributes.shape[1], attributes.shape[1] + + 1, attributes.shape[1] + 2 + ])) + + points = np.concatenate([centered_coords, attributes], axis=1) + points = point_type( + points, points_dim=points.shape[1], attribute_dims=attribute_dims) + + return points + + def _patch_points_sampling(self, points, sem_mask): + """Patch points sampling. + + First sample a valid patch. + Then sample points within that patch to a certain number. + + Args: + points (:obj:`BasePoints`): 3D Points. + sem_mask (np.ndarray): semantic segmentation mask for input points. + + Returns: + tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`: + + - points (:obj:`BasePoints`): 3D Points. + - choices (np.ndarray): The generated random samples. + """ + coords = points.coord.numpy() + attributes = points.tensor[:, 3:].numpy() + attribute_dims = points.attribute_dims + point_type = type(points) + + coord_max = np.amax(coords, axis=0) + coord_min = np.amin(coords, axis=0) + + for _ in range(self.num_try): + # random sample a point as patch center + cur_center = coords[np.random.choice(coords.shape[0])] + + # boundary of a patch, which would be enlarged by + # `self.enlarge_size` as an augmentation + cur_max = cur_center + np.array( + [self.block_size / 2.0, self.block_size / 2.0, 0.0]) + cur_min = cur_center - np.array( + [self.block_size / 2.0, self.block_size / 2.0, 0.0]) + cur_max[2] = coord_max[2] + cur_min[2] = coord_min[2] + cur_choice = np.sum( + (coords >= (cur_min - self.enlarge_size)) * + (coords <= (cur_max + self.enlarge_size)), + axis=1) == 3 + + if not cur_choice.any(): # no points in this patch + continue + + cur_coords = coords[cur_choice, :] + cur_sem_mask = sem_mask[cur_choice] + point_idxs = np.where(cur_choice)[0] + mask = np.sum( + (cur_coords >= (cur_min - self.eps)) * (cur_coords <= + (cur_max + self.eps)), + axis=1) == 3 + + # two criteria for patch sampling, adopted from PointNet++ + # 1. selected patch should contain enough unique points + if self.min_unique_num is None: + # use PointNet++'s method as default + # [31, 31, 62] are just some big values used to transform + # coords from 3d array to 1d and then check their uniqueness + # this is used in all the ScanNet code following PointNet++ + vidx = np.ceil( + (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) * + np.array([31.0, 31.0, 62.0])) + vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 + + vidx[:, 2]) + flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02 + else: + # if `min_unique_num` is provided, directly compare with it + flag1 = mask.sum() >= self.min_unique_num + + # 2. selected patch should contain enough annotated points + if self.ignore_index is None: + flag2 = True + else: + flag2 = np.sum(cur_sem_mask != self.ignore_index) / \ + len(cur_sem_mask) >= 0.7 + + if flag1 and flag2: + break + + # sample idx to `self.num_points` + if point_idxs.size >= self.num_points: + # no duplicate in sub-sampling + choices = np.random.choice( + point_idxs, self.num_points, replace=False) + else: + # do not use random choice here to avoid some points not counted + dup = np.random.choice(point_idxs.size, + self.num_points - point_idxs.size) + idx_dup = np.concatenate( + [np.arange(point_idxs.size), + np.array(dup)], 0) + choices = point_idxs[idx_dup] + + # construct model input + points = self._input_generation(coords[choices], cur_center, coord_max, + attributes[choices], attribute_dims, + point_type) + + return points, choices + + def __call__(self, results): + """Call function to sample points to in indoor scenes. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after sampling, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + points = results['points'] + + assert 'pts_semantic_mask' in results.keys(), \ + 'semantic mask should be provided in training and evaluation' + pts_semantic_mask = results['pts_semantic_mask'] + + points, choices = self._patch_points_sampling(points, + pts_semantic_mask) + + results['points'] = points + results['pts_semantic_mask'] = pts_semantic_mask[choices] + pts_instance_mask = results.get('pts_instance_mask', None) + if pts_instance_mask is not None: + results['pts_instance_mask'] = pts_instance_mask[choices] + + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(num_points={self.num_points},' + repr_str += f' block_size={self.block_size},' + repr_str += f' ignore_index={self.ignore_index},' + repr_str += f' use_normalized_coord={self.use_normalized_coord},' + repr_str += f' num_try={self.num_try},' + repr_str += f' enlarge_size={self.enlarge_size},' + repr_str += f' min_unique_num={self.min_unique_num},' + repr_str += f' eps={self.eps})' + return repr_str + + +@PIPELINES.register_module() +class BackgroundPointsFilter(object): + """Filter background points near the bounding box. + + Args: + bbox_enlarge_range (tuple[float], float): Bbox enlarge range. + """ + + def __init__(self, bbox_enlarge_range): + assert (is_tuple_of(bbox_enlarge_range, float) + and len(bbox_enlarge_range) == 3) \ + or isinstance(bbox_enlarge_range, float), \ + f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}' + + if isinstance(bbox_enlarge_range, float): + bbox_enlarge_range = [bbox_enlarge_range] * 3 + self.bbox_enlarge_range = np.array( + bbox_enlarge_range, dtype=np.float32)[np.newaxis, :] + + def __call__(self, input_dict): + """Call function to filter points by the range. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after filtering, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + points = input_dict['points'] + gt_bboxes_3d = input_dict['gt_bboxes_3d'] + + # avoid groundtruth being modified + gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy() + gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy() + + enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy() + enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range + points_numpy = points.tensor.clone().numpy() + foreground_masks = box_np_ops.points_in_rbbox( + points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5)) + enlarge_foreground_masks = box_np_ops.points_in_rbbox( + points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5)) + foreground_masks = foreground_masks.max(1) + enlarge_foreground_masks = enlarge_foreground_masks.max(1) + valid_masks = ~np.logical_and(~foreground_masks, + enlarge_foreground_masks) + + input_dict['points'] = points[valid_masks] + pts_instance_mask = input_dict.get('pts_instance_mask', None) + if pts_instance_mask is not None: + input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks] + + pts_semantic_mask = input_dict.get('pts_semantic_mask', None) + if pts_semantic_mask is not None: + input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks] + return input_dict + + def __repr__(self): + """str: Return a string that describes the module.""" + repr_str = self.__class__.__name__ + repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})' + return repr_str + + +@PIPELINES.register_module() +class VoxelBasedPointSampler(object): + """Voxel based point sampler. + + Apply voxel sampling to multiple sweep points. + + Args: + cur_sweep_cfg (dict): Config for sampling current points. + prev_sweep_cfg (dict): Config for sampling previous points. + time_dim (int): Index that indicate the time dimension + for input points. + """ + + def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3): + self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg) + self.cur_voxel_num = self.cur_voxel_generator._max_voxels + self.time_dim = time_dim + if prev_sweep_cfg is not None: + assert prev_sweep_cfg['max_num_points'] == \ + cur_sweep_cfg['max_num_points'] + self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg) + self.prev_voxel_num = self.prev_voxel_generator._max_voxels + else: + self.prev_voxel_generator = None + self.prev_voxel_num = 0 + + def _sample_points(self, points, sampler, point_dim): + """Sample points for each points subset. + + Args: + points (np.ndarray): Points subset to be sampled. + sampler (VoxelGenerator): Voxel based sampler for + each points subset. + point_dim (int): The dimension of each points + + Returns: + np.ndarray: Sampled points. + """ + voxels, coors, num_points_per_voxel = sampler.generate(points) + if voxels.shape[0] < sampler._max_voxels: + padding_points = np.zeros([ + sampler._max_voxels - voxels.shape[0], sampler._max_num_points, + point_dim + ], + dtype=points.dtype) + padding_points[:] = voxels[0] + sample_points = np.concatenate([voxels, padding_points], axis=0) + else: + sample_points = voxels + + return sample_points + + def __call__(self, results): + """Call function to sample points from multiple sweeps. + + Args: + input_dict (dict): Result dict from loading pipeline. + + Returns: + dict: Results after sampling, 'points', 'pts_instance_mask' + and 'pts_semantic_mask' keys are updated in the result dict. + """ + points = results['points'] + original_dim = points.shape[1] + + # TODO: process instance and semantic mask while _max_num_points + # is larger than 1 + # Extend points with seg and mask fields + map_fields2dim = [] + start_dim = original_dim + points_numpy = points.tensor.numpy() + extra_channel = [points_numpy] + for idx, key in enumerate(results['pts_mask_fields']): + map_fields2dim.append((key, idx + start_dim)) + extra_channel.append(results[key][..., None]) + + start_dim += len(results['pts_mask_fields']) + for idx, key in enumerate(results['pts_seg_fields']): + map_fields2dim.append((key, idx + start_dim)) + extra_channel.append(results[key][..., None]) + + points_numpy = np.concatenate(extra_channel, axis=-1) + + # Split points into two part, current sweep points and + # previous sweeps points. + # TODO: support different sampling methods for next sweeps points + # and previous sweeps points. + cur_points_flag = (points_numpy[:, self.time_dim] == 0) + cur_sweep_points = points_numpy[cur_points_flag] + prev_sweeps_points = points_numpy[~cur_points_flag] + if prev_sweeps_points.shape[0] == 0: + prev_sweeps_points = cur_sweep_points + + # Shuffle points before sampling + np.random.shuffle(cur_sweep_points) + np.random.shuffle(prev_sweeps_points) + + cur_sweep_points = self._sample_points(cur_sweep_points, + self.cur_voxel_generator, + points_numpy.shape[1]) + if self.prev_voxel_generator is not None: + prev_sweeps_points = self._sample_points(prev_sweeps_points, + self.prev_voxel_generator, + points_numpy.shape[1]) + + points_numpy = np.concatenate( + [cur_sweep_points, prev_sweeps_points], 0) + else: + points_numpy = cur_sweep_points + + if self.cur_voxel_generator._max_num_points == 1: + points_numpy = points_numpy.squeeze(1) + results['points'] = points.new_point(points_numpy[..., :original_dim]) + + # Restore the corresponding seg and mask fields + for key, dim_index in map_fields2dim: + results[key] = points_numpy[..., dim_index] + + return results + + def __repr__(self): + """str: Return a string that describes the module.""" + + def _auto_indent(repr_str, indent): + repr_str = repr_str.split('\n') + repr_str = [' ' * indent + t + '\n' for t in repr_str] + repr_str = ''.join(repr_str)[:-1] + return repr_str + + repr_str = self.__class__.__name__ + indent = 4 + repr_str += '(\n' + repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n' + repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n' + repr_str += ' ' * indent + f'time_dim={self.time_dim},\n' + repr_str += ' ' * indent + 'cur_voxel_generator=\n' + repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n' + repr_str += ' ' * indent + 'prev_voxel_generator=\n' + repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})' + return repr_str + + +@PIPELINES.register_module() +class AffineResize(object): + """Get the affine transform matrices to the target size. + + Different from :class:`RandomAffine` in MMDetection, this class can + calculate the affine transform matrices while resizing the input image + to a fixed size. The affine transform matrices include: 1) matrix + transforming original image to the network input image size. 2) matrix + transforming original image to the network output feature map size. + + Args: + img_scale (tuple): Images scales for resizing. + down_ratio (int): The down ratio of feature map. + Actually the arg should be >= 1. + bbox_clip_border (bool, optional): Whether clip the objects + outside the border of the image. Defaults to True. + """ + + def __init__(self, img_scale, down_ratio, bbox_clip_border=True): + + self.img_scale = img_scale + self.down_ratio = down_ratio + self.bbox_clip_border = bbox_clip_border + + def __call__(self, results): + """Call function to do affine transform to input image and labels. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Results after affine resize, 'affine_aug', 'trans_mat' + keys are added in the result dict. + """ + # The results have gone through RandomShiftScale before AffineResize + if 'center' not in results: + img = results['img'] + height, width = img.shape[:2] + center = np.array([width / 2, height / 2], dtype=np.float32) + size = np.array([width, height], dtype=np.float32) + results['affine_aug'] = False + else: + # The results did not go through RandomShiftScale before + # AffineResize + img = results['img'] + center = results['center'] + size = results['size'] + + trans_affine = self._get_transform_matrix(center, size, self.img_scale) + + img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale) + + if isinstance(self.down_ratio, tuple): + trans_mat = [ + self._get_transform_matrix( + center, size, + (self.img_scale[0] // ratio, self.img_scale[1] // ratio)) + for ratio in self.down_ratio + ] # (3, 3) + else: + trans_mat = self._get_transform_matrix( + center, size, (self.img_scale[0] // self.down_ratio, + self.img_scale[1] // self.down_ratio)) + + results['img'] = img + results['img_shape'] = img.shape + results['pad_shape'] = img.shape + results['trans_mat'] = trans_mat + + self._affine_bboxes(results, trans_affine) + + if 'centers2d' in results: + centers2d = self._affine_transform(results['centers2d'], + trans_affine) + valid_index = (centers2d[:, 0] > + 0) & (centers2d[:, 0] < + self.img_scale[0]) & (centers2d[:, 1] > 0) & ( + centers2d[:, 1] < self.img_scale[1]) + results['centers2d'] = centers2d[valid_index] + + for key in results.get('bbox_fields', []): + if key in ['gt_bboxes']: + results[key] = results[key][valid_index] + if 'gt_labels' in results: + results['gt_labels'] = results['gt_labels'][ + valid_index] + if 'gt_masks' in results: + raise NotImplementedError( + 'AffineResize only supports bbox.') + + for key in results.get('bbox3d_fields', []): + if key in ['gt_bboxes_3d']: + results[key].tensor = results[key].tensor[valid_index] + if 'gt_labels_3d' in results: + results['gt_labels_3d'] = results['gt_labels_3d'][ + valid_index] + + results['depths'] = results['depths'][valid_index] + + return results + + def _affine_bboxes(self, results, matrix): + """Affine transform bboxes to input image. + + Args: + results (dict): Result dict from loading pipeline. + matrix (np.ndarray): Matrix transforming original + image to the network input image size. + shape: (3, 3) + """ + + for key in results.get('bbox_fields', []): + bboxes = results[key] + bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix) + bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix) + if self.bbox_clip_border: + bboxes[:, + [0, 2]] = bboxes[:, + [0, 2]].clip(0, self.img_scale[0] - 1) + bboxes[:, + [1, 3]] = bboxes[:, + [1, 3]].clip(0, self.img_scale[1] - 1) + results[key] = bboxes + + def _affine_transform(self, points, matrix): + """Affine transform bbox points to input image. + + Args: + points (np.ndarray): Points to be transformed. + shape: (N, 2) + matrix (np.ndarray): Affine transform matrix. + shape: (3, 3) + + Returns: + np.ndarray: Transformed points. + """ + num_points = points.shape[0] + hom_points_2d = np.concatenate((points, np.ones((num_points, 1))), + axis=1) + hom_points_2d = hom_points_2d.T + affined_points = np.matmul(matrix, hom_points_2d).T + return affined_points[:, :2] + + def _get_transform_matrix(self, center, scale, output_scale): + """Get affine transform matrix. + + Args: + center (tuple): Center of current image. + scale (tuple): Scale of current image. + output_scale (tuple[float]): The transform target image scales. + + Returns: + np.ndarray: Affine transform matrix. + """ + # TODO: further add rot and shift here. + src_w = scale[0] + dst_w = output_scale[0] + dst_h = output_scale[1] + + src_dir = np.array([0, src_w * -0.5]) + dst_dir = np.array([0, dst_w * -0.5]) + + src = np.zeros((3, 2), dtype=np.float32) + dst = np.zeros((3, 2), dtype=np.float32) + src[0, :] = center + src[1, :] = center + src_dir + dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir + + src[2, :] = self._get_ref_point(src[0, :], src[1, :]) + dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :]) + + get_matrix = cv2.getAffineTransform(src, dst) + + matrix = np.concatenate((get_matrix, [[0., 0., 1.]])) + + return matrix.astype(np.float32) + + def _get_ref_point(self, ref_point1, ref_point2): + """Get reference point to calculate affine transform matrix. + + While using opencv to calculate the affine matrix, we need at least + three corresponding points separately on original image and target + image. Here we use two points to get the the third reference point. + """ + d = ref_point1 - ref_point2 + ref_point3 = ref_point2 + np.array([-d[1], d[0]]) + return ref_point3 + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(img_scale={self.img_scale}, ' + repr_str += f'down_ratio={self.down_ratio}) ' + return repr_str + + +@PIPELINES.register_module() +class RandomShiftScale(object): + """Random shift scale. + + Different from the normal shift and scale function, it doesn't + directly shift or scale image. It can record the shift and scale + infos into loading pipelines. It's designed to be used with + AffineResize together. + + Args: + shift_scale (tuple[float]): Shift and scale range. + aug_prob (float): The shifting and scaling probability. + """ + + def __init__(self, shift_scale, aug_prob): + + self.shift_scale = shift_scale + self.aug_prob = aug_prob + + def __call__(self, results): + """Call function to record random shift and scale infos. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Results after random shift and scale, 'center', 'size' + and 'affine_aug' keys are added in the result dict. + """ + img = results['img'] + + height, width = img.shape[:2] + + center = np.array([width / 2, height / 2], dtype=np.float32) + size = np.array([width, height], dtype=np.float32) + + if random.random() < self.aug_prob: + shift, scale = self.shift_scale[0], self.shift_scale[1] + shift_ranges = np.arange(-shift, shift + 0.1, 0.1) + center[0] += size[0] * random.choice(shift_ranges) + center[1] += size[1] * random.choice(shift_ranges) + scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1) + size *= random.choice(scale_ranges) + results['affine_aug'] = True + else: + results['affine_aug'] = False + + results['center'] = center + results['size'] = size + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(shift_scale={self.shift_scale}, ' + repr_str += f'aug_prob={self.aug_prob}) ' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/s3dis_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/s3dis_dataset.py new file mode 100644 index 000000000..e38dc7ab9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/s3dis_dataset.py @@ -0,0 +1,445 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import numpy as np + +from mmdet3d.core import show_seg_result +from mmdet3d.core.bbox import DepthInstance3DBoxes +from mmseg.datasets import DATASETS as SEG_DATASETS +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .custom_3d_seg import Custom3DSegDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class S3DISDataset(Custom3DDataset): + r"""S3DIS Dataset for Detection Task. + + This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we + often train on 5 of them and test on the remaining one. The one for + test is Area_5 as suggested in `GSDN `_. + To concatenate 5 areas during training + `mmdet.datasets.dataset_wrappers.ConcatDataset` should be used. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'Depth' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + CLASSES = ('table', 'chair', 'sofa', 'bookcase', 'board') + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + modality=None, + box_type_3d='Depth', + filter_empty_gt=True, + test_mode=False, + *kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + *kwargs) + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): + 3D ground truth bboxes + - gt_labels_3d (np.ndarray): Labels of ground truths. + - pts_instance_mask_path (str): Path of instance masks. + - pts_semantic_mask_path (str): Path of semantic masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + if info['annos']['gt_num'] != 0: + gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype( + np.float32) # k, 6 + gt_labels_3d = info['annos']['class'].astype(np.int64) + else: + gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32) + gt_labels_3d = np.zeros((0, ), dtype=np.int64) + + # to target box structure + gt_bboxes_3d = DepthInstance3DBoxes( + gt_bboxes_3d, + box_dim=gt_bboxes_3d.shape[-1], + with_yaw=False, + origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + pts_instance_mask_path = osp.join(self.data_root, + info['pts_instance_mask_path']) + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + pts_instance_mask_path=pts_instance_mask_path, + pts_semantic_mask_path=pts_semantic_mask_path) + return anns_results + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - pts_filename (str): Filename of point clouds. + - file_name (str): Filename of point clouds. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + pts_filename = osp.join(self.data_root, info['pts_path']) + input_dict = dict(pts_filename=pts_filename) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any(): + return None + return input_dict + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + return Compose(pipeline) + + +class _S3DISSegDataset(Custom3DSegDataset): + r"""S3DIS Dataset for Semantic Segmentation Task. + + This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we + often train on 5 of them and test on the remaining one. + However, there is not a fixed train-test split of S3DIS. People often test + on Area_5 as suggested by `SEGCloud `_. + But many papers also report the average results of 6-fold cross validation + over the 6 areas (e.g. `DGCNN `_). + Therefore, we use an inner dataset for one area, and further use a dataset + wrapper to concat all the provided data in different areas. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + palette (list[list[int]], optional): The palette of segmentation map. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. If None is given, set to len(self.CLASSES). + Defaults to None. + scene_idxs (np.ndarray | str, optional): Precomputed index to load + data. For scenes with many points, we may sample it several times. + Defaults to None. + """ + CLASSES = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', + 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') + + VALID_CLASS_IDS = tuple(range(13)) + + ALL_CLASS_IDS = tuple(range(14)) # possibly with 'stair' class + + PALETTE = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0], + [255, 0, 255], [100, 100, 255], [200, 200, 100], + [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100], + [200, 200, 200], [50, 50, 50]] + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + palette=None, + modality=None, + test_mode=False, + ignore_index=None, + scene_idxs=None, + **kwargs): + + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + palette=palette, + modality=modality, + test_mode=test_mode, + ignore_index=ignore_index, + scene_idxs=scene_idxs, + **kwargs) + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - pts_semantic_mask_path (str): Path of semantic masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path) + return anns_results + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=self.VALID_CLASS_IDS, + max_cat_id=np.max(self.ALL_CLASS_IDS)), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=self.CLASSES), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=True, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Visualize the results online. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + data_info = self.data_infos[i] + pts_path = data_info['pts_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points, gt_sem_mask = self._extract_data( + i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True) + points = points.numpy() + pred_sem_mask = result['semantic_mask'].numpy() + show_seg_result(points, gt_sem_mask, + pred_sem_mask, out_dir, file_name, + np.array(self.PALETTE), self.ignore_index, show) + + def get_scene_idxs(self, scene_idxs): + """Compute scene_idxs for data sampling. + + We sample more times for scenes with more points. + """ + # when testing, we load one whole scene every time + if not self.test_mode and scene_idxs is None: + raise NotImplementedError( + 'please provide re-sampled scene indexes for training') + + return super().get_scene_idxs(scene_idxs) + + +@DATASETS.register_module() +@SEG_DATASETS.register_module() +class S3DISSegDataset(_S3DISSegDataset): + r"""S3DIS Dataset for Semantic Segmentation Task. + + This class serves as the API for experiments on the S3DIS Dataset. + It wraps the provided datasets of different areas. + We don't use `mmdet.datasets.dataset_wrappers.ConcatDataset` because we + need to concat the `scene_idxs` of different areas. + + Please refer to the `google form `_ for + data downloading. + + Args: + data_root (str): Path of dataset root. + ann_files (list[str]): Path of several annotation files. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + palette (list[list[int]], optional): The palette of segmentation map. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. If None is given, set to len(self.CLASSES). + Defaults to None. + scene_idxs (list[np.ndarray] | list[str], optional): Precomputed index + to load data. For scenes with many points, we may sample it several + times. Defaults to None. + """ + + def __init__(self, + data_root, + ann_files, + pipeline=None, + classes=None, + palette=None, + modality=None, + test_mode=False, + ignore_index=None, + scene_idxs=None, + **kwargs): + + # make sure that ann_files and scene_idxs have same length + ann_files = self._check_ann_files(ann_files) + scene_idxs = self._check_scene_idxs(scene_idxs, len(ann_files)) + + # initialize some attributes as datasets[0] + super().__init__( + data_root=data_root, + ann_file=ann_files[0], + pipeline=pipeline, + classes=classes, + palette=palette, + modality=modality, + test_mode=test_mode, + ignore_index=ignore_index, + scene_idxs=scene_idxs[0], + **kwargs) + + datasets = [ + _S3DISSegDataset( + data_root=data_root, + ann_file=ann_files[i], + pipeline=pipeline, + classes=classes, + palette=palette, + modality=modality, + test_mode=test_mode, + ignore_index=ignore_index, + scene_idxs=scene_idxs[i], + **kwargs) for i in range(len(ann_files)) + ] + + # data_infos and scene_idxs need to be concat + self.concat_data_infos([dst.data_infos for dst in datasets]) + self.concat_scene_idxs([dst.scene_idxs for dst in datasets]) + + # set group flag for the sampler + if not self.test_mode: + self._set_group_flag() + + def concat_data_infos(self, data_infos): + """Concat data_infos from several datasets to form self.data_infos. + + Args: + data_infos (list[list[dict]]) + """ + self.data_infos = [ + info for one_data_infos in data_infos for info in one_data_infos + ] + + def concat_scene_idxs(self, scene_idxs): + """Concat scene_idxs from several datasets to form self.scene_idxs. + + Needs to manually add offset to scene_idxs[1, 2, ...]. + + Args: + scene_idxs (list[np.ndarray]) + """ + self.scene_idxs = np.array([], dtype=np.int32) + offset = 0 + for one_scene_idxs in scene_idxs: + self.scene_idxs = np.concatenate( + [self.scene_idxs, one_scene_idxs + offset]).astype(np.int32) + offset = np.unique(self.scene_idxs).max() + 1 + + @staticmethod + def _duplicate_to_list(x, num): + """Repeat x `num` times to form a list.""" + return [x for _ in range(num)] + + def _check_ann_files(self, ann_file): + """Make ann_files as list/tuple.""" + # ann_file could be str + if not isinstance(ann_file, (list, tuple)): + ann_file = self._duplicate_to_list(ann_file, 1) + return ann_file + + def _check_scene_idxs(self, scene_idx, num): + """Make scene_idxs as list/tuple.""" + if scene_idx is None: + return self._duplicate_to_list(scene_idx, num) + # scene_idx could be str, np.ndarray, list or tuple + if isinstance(scene_idx, str): # str + return self._duplicate_to_list(scene_idx, num) + if isinstance(scene_idx[0], str): # list of str + return scene_idx + if isinstance(scene_idx[0], (list, tuple, np.ndarray)): # list of idx + return scene_idx + # single idx + return self._duplicate_to_list(scene_idx, num) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/scannet_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/scannet_dataset.py new file mode 100644 index 000000000..3e691260b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/scannet_dataset.py @@ -0,0 +1,614 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import tempfile +import warnings +from os import path as osp + +import numpy as np + +from mmdet3d.core import instance_seg_eval, show_result, show_seg_result +from mmdet3d.core.bbox import DepthInstance3DBoxes +from mmseg.datasets import DATASETS as SEG_DATASETS +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .custom_3d_seg import Custom3DSegDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class ScanNetDataset(Custom3DDataset): + r"""ScanNet Dataset for Detection Task. + + This class serves as the API for experiments on the ScanNet Dataset. + + Please refer to the `github repo `_ + for data downloading. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'Depth' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + modality=dict(use_camera=False, use_depth=True), + box_type_3d='Depth', + filter_empty_gt=True, + test_mode=False, + **kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + **kwargs) + assert 'use_camera' in self.modality and \ + 'use_depth' in self.modality + assert self.modality['use_camera'] or self.modality['use_depth'] + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - file_name (str): Filename of point clouds. + - img_prefix (str, optional): Prefix of image files. + - img_info (dict, optional): Image info. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['point_cloud']['lidar_idx'] + pts_filename = osp.join(self.data_root, info['pts_path']) + input_dict = dict(sample_idx=sample_idx) + + if self.modality['use_depth']: + input_dict['pts_filename'] = pts_filename + input_dict['file_name'] = pts_filename + + if self.modality['use_camera']: + img_info = [] + for img_path in info['img_paths']: + img_info.append( + dict(filename=osp.join(self.data_root, img_path))) + intrinsic = info['intrinsics'] + axis_align_matrix = self._get_axis_align_matrix(info) + depth2img = [] + for extrinsic in info['extrinsics']: + depth2img.append( + intrinsic @ np.linalg.inv(axis_align_matrix @ extrinsic)) + + input_dict['img_prefix'] = None + input_dict['img_info'] = img_info + input_dict['depth2img'] = depth2img + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any(): + return None + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): + 3D ground truth bboxes + - gt_labels_3d (np.ndarray): Labels of ground truths. + - pts_instance_mask_path (str): Path of instance masks. + - pts_semantic_mask_path (str): Path of semantic masks. + - axis_align_matrix (np.ndarray): Transformation matrix for + global scene alignment. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + if info['annos']['gt_num'] != 0: + gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype( + np.float32) # k, 6 + gt_labels_3d = info['annos']['class'].astype(np.int64) + else: + gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32) + gt_labels_3d = np.zeros((0, ), dtype=np.int64) + + # to target box structure + gt_bboxes_3d = DepthInstance3DBoxes( + gt_bboxes_3d, + box_dim=gt_bboxes_3d.shape[-1], + with_yaw=False, + origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + pts_instance_mask_path = osp.join(self.data_root, + info['pts_instance_mask_path']) + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + axis_align_matrix = self._get_axis_align_matrix(info) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + pts_instance_mask_path=pts_instance_mask_path, + pts_semantic_mask_path=pts_semantic_mask_path, + axis_align_matrix=axis_align_matrix) + return anns_results + + def prepare_test_data(self, index): + """Prepare data for testing. + + We should take axis_align_matrix from self.data_infos since we need + to align point clouds. + + Args: + index (int): Index for accessing the target data. + + Returns: + dict: Testing data dict of the corresponding index. + """ + input_dict = self.get_data_info(index) + # take the axis_align_matrix from data_infos + input_dict['ann_info'] = dict( + axis_align_matrix=self._get_axis_align_matrix( + self.data_infos[index])) + self.pre_pipeline(input_dict) + example = self.pipeline(input_dict) + return example + + @staticmethod + def _get_axis_align_matrix(info): + """Get axis_align_matrix from info. If not exist, return identity mat. + + Args: + info (dict): one data info term. + + Returns: + np.ndarray: 4x4 transformation matrix. + """ + if 'axis_align_matrix' in info['annos'].keys(): + return info['annos']['axis_align_matrix'].astype(np.float32) + else: + warnings.warn( + 'axis_align_matrix is not found in ScanNet data info, please ' + 'use new pre-process scripts to re-generate ScanNet data') + return np.eye(4).astype(np.float32) + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict(type='GlobalAlignment', rotation_axis=2), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=True, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Visualize the results online. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + data_info = self.data_infos[i] + pts_path = data_info['pts_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points = self._extract_data(i, pipeline, 'points').numpy() + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() + pred_bboxes = result['boxes_3d'].tensor.numpy() + show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name, + show) + + +@DATASETS.register_module() +@SEG_DATASETS.register_module() +class ScanNetSegDataset(Custom3DSegDataset): + r"""ScanNet Dataset for Semantic Segmentation Task. + + This class serves as the API for experiments on the ScanNet Dataset. + + Please refer to the `github repo `_ + for data downloading. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + palette (list[list[int]], optional): The palette of segmentation map. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. If None is given, set to len(self.CLASSES). + Defaults to None. + scene_idxs (np.ndarray | str, optional): Precomputed index to load + data. For scenes with many points, we may sample it several times. + Defaults to None. + """ + CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', + 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', + 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', + 'bathtub', 'otherfurniture') + + VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, + 33, 34, 36, 39) + + ALL_CLASS_IDS = tuple(range(41)) + + PALETTE = [ + [174, 199, 232], + [152, 223, 138], + [31, 119, 180], + [255, 187, 120], + [188, 189, 34], + [140, 86, 75], + [255, 152, 150], + [214, 39, 40], + [197, 176, 213], + [148, 103, 189], + [196, 156, 148], + [23, 190, 207], + [247, 182, 210], + [219, 219, 141], + [255, 127, 14], + [158, 218, 229], + [44, 160, 44], + [112, 128, 144], + [227, 119, 194], + [82, 84, 163], + ] + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + palette=None, + modality=None, + test_mode=False, + ignore_index=None, + scene_idxs=None, + **kwargs): + + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + palette=palette, + modality=modality, + test_mode=test_mode, + ignore_index=ignore_index, + scene_idxs=scene_idxs, + **kwargs) + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - pts_semantic_mask_path (str): Path of semantic masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path) + return anns_results + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=False, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=self.VALID_CLASS_IDS, + max_cat_id=np.max(self.ALL_CLASS_IDS)), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=self.CLASSES), + dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) + ] + return Compose(pipeline) + + def show(self, results, out_dir, show=True, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Visualize the results online. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + data_info = self.data_infos[i] + pts_path = data_info['pts_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points, gt_sem_mask = self._extract_data( + i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True) + points = points.numpy() + pred_sem_mask = result['semantic_mask'].numpy() + show_seg_result(points, gt_sem_mask, + pred_sem_mask, out_dir, file_name, + np.array(self.PALETTE), self.ignore_index, show) + + def get_scene_idxs(self, scene_idxs): + """Compute scene_idxs for data sampling. + + We sample more times for scenes with more points. + """ + # when testing, we load one whole scene every time + if not self.test_mode and scene_idxs is None: + raise NotImplementedError( + 'please provide re-sampled scene indexes for training') + + return super().get_scene_idxs(scene_idxs) + + def format_results(self, results, txtfile_prefix=None): + r"""Format the results to txt file. Refer to `ScanNet documentation + `_. + + Args: + outputs (list[dict]): Testing results of the dataset. + txtfile_prefix (str): The prefix of saved files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + + Returns: + tuple: (outputs, tmp_dir), outputs is the detection results, + tmp_dir is the temporal directory created for saving submission + files when ``submission_prefix`` is not specified. + """ + import mmcv + + if txtfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + txtfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + mmcv.mkdir_or_exist(txtfile_prefix) + + # need to map network output to original label idx + pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int) + for original_label, output_idx in self.label_map.items(): + if output_idx != self.ignore_index: + pred2label[output_idx] = original_label + + outputs = [] + for i, result in enumerate(results): + info = self.data_infos[i] + sample_idx = info['point_cloud']['lidar_idx'] + pred_sem_mask = result['semantic_mask'].numpy().astype(np.int) + pred_label = pred2label[pred_sem_mask] + curr_file = f'{txtfile_prefix}/{sample_idx}.txt' + np.savetxt(curr_file, pred_label, fmt='%d') + outputs.append(dict(seg_mask=pred_label)) + + return outputs, tmp_dir + + +@DATASETS.register_module() +@SEG_DATASETS.register_module() +class ScanNetInstanceSegDataset(Custom3DSegDataset): + CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin') + + VALID_CLASS_IDS = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, + 36, 39) + + ALL_CLASS_IDS = tuple(range(41)) + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + - pts_semantic_mask_path (str): Path of semantic masks. + - pts_instance_mask_path (str): Path of instance masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + + pts_instance_mask_path = osp.join(self.data_root, + info['pts_instance_mask_path']) + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + anns_results = dict( + pts_instance_mask_path=pts_instance_mask_path, + pts_semantic_mask_path=pts_semantic_mask_path) + return anns_results + + def get_classes_and_palette(self, classes=None, palette=None): + """Get class names of current dataset. Palette is simply ignored for + instance segmentation. + + Args: + classes (Sequence[str] | str | None): If classes is None, use + default CLASSES defined by builtin dataset. If classes is a + string, take it as a file name. The file contains the name of + classes where each line contains one class name. If classes is + a tuple or list, override the CLASSES defined by the dataset. + Defaults to None. + palette (Sequence[Sequence[int]]] | np.ndarray | None): + The palette of segmentation map. If None is given, random + palette will be generated. Defaults to None. + """ + if classes is not None: + return classes, None + return self.CLASSES, None + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + use_color=True, + load_dim=6, + use_dim=[0, 1, 2, 3, 4, 5]), + dict( + type='LoadAnnotations3D', + with_bbox_3d=False, + with_label_3d=False, + with_mask_3d=True, + with_seg_3d=True), + dict( + type='PointSegClassMapping', + valid_cat_ids=self.VALID_CLASS_IDS, + max_cat_id=40), + dict( + type='DefaultFormatBundle3D', + with_label=False, + class_names=self.CLASSES), + dict( + type='Collect3D', + keys=['points', 'pts_semantic_mask', 'pts_instance_mask']) + ] + return Compose(pipeline) + + def evaluate(self, + results, + metric=None, + options=None, + logger=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluation in instance segmentation protocol. + + Args: + results (list[dict]): List of results. + metric (str | list[str]): Metrics to be evaluated. + options (dict, optional): options for instance_seg_eval. + logger (logging.Logger | None | str): Logger used for printing + related information during evaluation. Defaults to None. + show (bool, optional): Whether to visualize. + Defaults to False. + out_dir (str, optional): Path to save the visualization results. + Defaults to None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict: Evaluation results. + """ + assert isinstance( + results, list), f'Expect results to be list, got {type(results)}.' + assert len(results) > 0, 'Expect length of results > 0.' + assert len(results) == len(self.data_infos) + assert isinstance( + results[0], dict + ), f'Expect elements in results to be dict, got {type(results[0])}.' + + load_pipeline = self._get_pipeline(pipeline) + pred_instance_masks = [result['instance_mask'] for result in results] + pred_instance_labels = [result['instance_label'] for result in results] + pred_instance_scores = [result['instance_score'] for result in results] + gt_semantic_masks, gt_instance_masks = zip(*[ + self._extract_data( + index=i, + pipeline=load_pipeline, + key=['pts_semantic_mask', 'pts_instance_mask'], + load_annos=True) for i in range(len(self.data_infos)) + ]) + ret_dict = instance_seg_eval( + gt_semantic_masks, + gt_instance_masks, + pred_instance_masks, + pred_instance_labels, + pred_instance_scores, + valid_class_ids=self.VALID_CLASS_IDS, + class_labels=self.CLASSES, + options=options, + logger=logger) + + if show: + raise NotImplementedError('show is not implemented for now') + + return ret_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/semantickitti_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/semantickitti_dataset.py new file mode 100644 index 000000000..03afbe0cd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/semantickitti_dataset.py @@ -0,0 +1,110 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +from .builder import DATASETS +from .custom_3d import Custom3DDataset + + +@DATASETS.register_module() +class SemanticKITTIDataset(Custom3DDataset): + r"""SemanticKITTI Dataset. + + This class serves as the API for experiments on the SemanticKITTI Dataset + Please refer to `_ + for data downloading + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): NO 3D box for this dataset. + You can choose any type + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + CLASSES = ('unlabeled', 'car', 'bicycle', 'motorcycle', 'truck', 'bus', + 'person', 'bicyclist', 'motorcyclist', 'road', 'parking', + 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', + 'trunck', 'terrian', 'pole', 'traffic-sign') + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + modality=None, + box_type_3d='Lidar', + filter_empty_gt=False, + test_mode=False): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode) + + def get_data_info(self, index): + """Get data info according to the given index. + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + - sample_idx (str): Sample index. + - pts_filename (str): Filename of point clouds. + - file_name (str): Filename of point clouds. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['point_cloud']['lidar_idx'] + pts_filename = osp.join(self.data_root, info['pts_path']) + + input_dict = dict( + pts_filename=pts_filename, + sample_idx=sample_idx, + file_name=pts_filename) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any(): + return None + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - pts_semantic_mask_path (str): Path of semantic masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + + pts_semantic_mask_path = osp.join(self.data_root, + info['pts_semantic_mask_path']) + + anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path) + return anns_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/sunrgbd_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/sunrgbd_dataset.py new file mode 100644 index 000000000..623ab885e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/sunrgbd_dataset.py @@ -0,0 +1,280 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict +from os import path as osp + +import numpy as np + +from mmdet3d.core import show_multi_modality_result, show_result +from mmdet3d.core.bbox import DepthInstance3DBoxes +from mmdet.core import eval_map +from .builder import DATASETS +from .custom_3d import Custom3DDataset +from .pipelines import Compose + + +@DATASETS.register_module() +class SUNRGBDDataset(Custom3DDataset): + r"""SUNRGBD Dataset. + + This class serves as the API for experiments on the SUNRGBD Dataset. + + See the `download page `_ + for data downloading. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'Depth' in this dataset. Available options includes + + - 'LiDAR': Box in LiDAR coordinates. + - 'Depth': Box in depth coordinates, usually for indoor dataset. + - 'Camera': Box in camera coordinates. + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + """ + CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', + 'night_stand', 'bookshelf', 'bathtub') + + def __init__(self, + data_root, + ann_file, + pipeline=None, + classes=None, + modality=dict(use_camera=True, use_lidar=True), + box_type_3d='Depth', + filter_empty_gt=True, + test_mode=False, + **kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + **kwargs) + assert 'use_camera' in self.modality and \ + 'use_lidar' in self.modality + assert self.modality['use_camera'] or self.modality['use_lidar'] + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Data information that will be passed to the data + preprocessing pipelines. It includes the following keys: + + - sample_idx (str): Sample index. + - pts_filename (str, optional): Filename of point clouds. + - file_name (str, optional): Filename of point clouds. + - img_prefix (str, optional): Prefix of image files. + - img_info (dict, optional): Image info. + - calib (dict, optional): Camera calibration info. + - ann_info (dict): Annotation info. + """ + info = self.data_infos[index] + sample_idx = info['point_cloud']['lidar_idx'] + assert info['point_cloud']['lidar_idx'] == info['image']['image_idx'] + input_dict = dict(sample_idx=sample_idx) + + if self.modality['use_lidar']: + pts_filename = osp.join(self.data_root, info['pts_path']) + input_dict['pts_filename'] = pts_filename + input_dict['file_name'] = pts_filename + + if self.modality['use_camera']: + img_filename = osp.join( + osp.join(self.data_root, 'sunrgbd_trainval'), + info['image']['image_path']) + input_dict['img_prefix'] = None + input_dict['img_info'] = dict(filename=img_filename) + calib = info['calib'] + rt_mat = calib['Rt'] + # follow Coord3DMode.convert_point + rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0] + ]) @ rt_mat.transpose(1, 0) + depth2img = calib['K'] @ rt_mat + input_dict['depth2img'] = depth2img + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + if self.filter_empty_gt and len(annos['gt_bboxes_3d']) == 0: + return None + return input_dict + + def get_ann_info(self, index): + """Get annotation info according to the given index. + + Args: + index (int): Index of the annotation data to get. + + Returns: + dict: annotation information consists of the following keys: + + - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): + 3D ground truth bboxes + - gt_labels_3d (np.ndarray): Labels of ground truths. + - pts_instance_mask_path (str): Path of instance masks. + - pts_semantic_mask_path (str): Path of semantic masks. + """ + # Use index to get the annos, thus the evalhook could also use this api + info = self.data_infos[index] + if info['annos']['gt_num'] != 0: + gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype( + np.float32) # k, 6 + gt_labels_3d = info['annos']['class'].astype(np.int64) + else: + gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32) + gt_labels_3d = np.zeros((0, ), dtype=np.int64) + + # to target box structure + gt_bboxes_3d = DepthInstance3DBoxes( + gt_bboxes_3d, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) + + anns_results = dict( + gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d) + + if self.modality['use_camera']: + if info['annos']['gt_num'] != 0: + gt_bboxes_2d = info['annos']['bbox'].astype(np.float32) + else: + gt_bboxes_2d = np.zeros((0, 4), dtype=np.float32) + anns_results['bboxes'] = gt_bboxes_2d + anns_results['labels'] = gt_labels_3d + + return anns_results + + def _build_default_pipeline(self): + """Build the default pipeline for this dataset.""" + pipeline = [ + dict( + type='LoadPointsFromFile', + coord_type='DEPTH', + shift_height=False, + load_dim=6, + use_dim=[0, 1, 2]), + dict( + type='DefaultFormatBundle3D', + class_names=self.CLASSES, + with_label=False), + dict(type='Collect3D', keys=['points']) + ] + if self.modality['use_camera']: + pipeline.insert(0, dict(type='LoadImageFromFile')) + return Compose(pipeline) + + def show(self, results, out_dir, show=True, pipeline=None): + """Results visualization. + + Args: + results (list[dict]): List of bounding boxes results. + out_dir (str): Output directory of visualization result. + show (bool): Visualize the results online. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + pipeline = self._get_pipeline(pipeline) + for i, result in enumerate(results): + data_info = self.data_infos[i] + pts_path = data_info['pts_path'] + file_name = osp.split(pts_path)[-1].split('.')[0] + points, img_metas, img = self._extract_data( + i, pipeline, ['points', 'img_metas', 'img']) + # scale colors to [0, 255] + points = points.numpy() + points[:, 3:] *= 255 + + gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() + pred_bboxes = result['boxes_3d'].tensor.numpy() + show_result(points, gt_bboxes.copy(), pred_bboxes.copy(), out_dir, + file_name, show) + + # multi-modality visualization + if self.modality['use_camera']: + img = img.numpy() + # need to transpose channel to first dim + img = img.transpose(1, 2, 0) + pred_bboxes = DepthInstance3DBoxes( + pred_bboxes, origin=(0.5, 0.5, 0)) + gt_bboxes = DepthInstance3DBoxes( + gt_bboxes, origin=(0.5, 0.5, 0)) + show_multi_modality_result( + img, + gt_bboxes, + pred_bboxes, + None, + out_dir, + file_name, + box_mode='depth', + img_metas=img_metas, + show=show) + + def evaluate(self, + results, + metric=None, + iou_thr=(0.25, 0.5), + iou_thr_2d=(0.5, ), + logger=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluate. + + Evaluation in indoor protocol. + + Args: + results (list[dict]): List of results. + metric (str | list[str], optional): Metrics to be evaluated. + Default: None. + iou_thr (list[float], optional): AP IoU thresholds for 3D + evaluation. Default: (0.25, 0.5). + iou_thr_2d (list[float], optional): AP IoU thresholds for 2D + evaluation. Default: (0.5, ). + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict: Evaluation results. + """ + # evaluate 3D detection performance + if isinstance(results[0], dict): + return super().evaluate(results, metric, iou_thr, logger, show, + out_dir, pipeline) + # evaluate 2D detection performance + else: + eval_results = OrderedDict() + annotations = [self.get_ann_info(i) for i in range(len(self))] + iou_thr_2d = (iou_thr_2d) if isinstance(iou_thr_2d, + float) else iou_thr_2d + for iou_thr_2d_single in iou_thr_2d: + mean_ap, _ = eval_map( + results, + annotations, + scale_ranges=None, + iou_thr=iou_thr_2d_single, + dataset=self.CLASSES, + logger=logger) + eval_results['mAP_' + str(iou_thr_2d_single)] = mean_ap + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/utils.py new file mode 100644 index 000000000..e9cfda124 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/utils.py @@ -0,0 +1,140 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + +# yapf: disable +from mmdet3d.datasets.pipelines import (Collect3D, DefaultFormatBundle3D, + LoadAnnotations3D, + LoadImageFromFileMono3D, + LoadMultiViewImageFromFiles, + LoadPointsFromFile, + LoadPointsFromMultiSweeps, + MultiScaleFlipAug3D, + PointSegClassMapping) +from mmdet.datasets.pipelines import LoadImageFromFile, MultiScaleFlipAug +# yapf: enable +from .builder import PIPELINES + + +def is_loading_function(transform): + """Judge whether a transform function is a loading function. + + Note: `MultiScaleFlipAug3D` is a wrapper for multiple pipeline functions, + so we need to search if its inner transforms contain any loading function. + + Args: + transform (dict | :obj:`Pipeline`): A transform config or a function. + + Returns: + bool: Whether it is a loading function. None means can't judge. + When transform is `MultiScaleFlipAug3D`, we return None. + """ + # TODO: use more elegant way to distinguish loading modules + loading_functions = (LoadImageFromFile, LoadPointsFromFile, + LoadAnnotations3D, LoadMultiViewImageFromFiles, + LoadPointsFromMultiSweeps, DefaultFormatBundle3D, + Collect3D, LoadImageFromFileMono3D, + PointSegClassMapping) + if isinstance(transform, dict): + obj_cls = PIPELINES.get(transform['type']) + if obj_cls is None: + return False + if obj_cls in loading_functions: + return True + if obj_cls in (MultiScaleFlipAug3D, MultiScaleFlipAug): + return None + elif callable(transform): + if isinstance(transform, loading_functions): + return True + if isinstance(transform, (MultiScaleFlipAug3D, MultiScaleFlipAug)): + return None + return False + + +def get_loading_pipeline(pipeline): + """Only keep loading image, points and annotations related configuration. + + Args: + pipeline (list[dict] | list[:obj:`Pipeline`]): + Data pipeline configs or list of pipeline functions. + + Returns: + list[dict] | list[:obj:`Pipeline`]): The new pipeline list with only + keep loading image, points and annotations related configuration. + + Examples: + >>> pipelines = [ + ... dict(type='LoadPointsFromFile', + ... coord_type='LIDAR', load_dim=4, use_dim=4), + ... dict(type='LoadImageFromFile'), + ... dict(type='LoadAnnotations3D', + ... with_bbox=True, with_label_3d=True), + ... dict(type='Resize', + ... img_scale=[(640, 192), (2560, 768)], keep_ratio=True), + ... dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), + ... dict(type='PointsRangeFilter', + ... point_cloud_range=point_cloud_range), + ... dict(type='ObjectRangeFilter', + ... point_cloud_range=point_cloud_range), + ... dict(type='PointShuffle'), + ... dict(type='Normalize', **img_norm_cfg), + ... dict(type='Pad', size_divisor=32), + ... dict(type='DefaultFormatBundle3D', class_names=class_names), + ... dict(type='Collect3D', + ... keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']) + ... ] + >>> expected_pipelines = [ + ... dict(type='LoadPointsFromFile', + ... coord_type='LIDAR', load_dim=4, use_dim=4), + ... dict(type='LoadImageFromFile'), + ... dict(type='LoadAnnotations3D', + ... with_bbox=True, with_label_3d=True), + ... dict(type='DefaultFormatBundle3D', class_names=class_names), + ... dict(type='Collect3D', + ... keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']) + ... ] + >>> assert expected_pipelines == \ + ... get_loading_pipeline(pipelines) + """ + loading_pipeline = [] + for transform in pipeline: + is_loading = is_loading_function(transform) + if is_loading is None: # MultiScaleFlipAug3D + # extract its inner pipeline + if isinstance(transform, dict): + inner_pipeline = transform.get('transforms', []) + else: + inner_pipeline = transform.transforms.transforms + loading_pipeline.extend(get_loading_pipeline(inner_pipeline)) + elif is_loading: + loading_pipeline.append(transform) + assert len(loading_pipeline) > 0, \ + 'The data pipeline in your config file must include ' \ + 'loading step.' + return loading_pipeline + + +def extract_result_dict(results, key): + """Extract and return the data corresponding to key in result dict. + + ``results`` is a dict output from `pipeline(input_dict)`, which is the + loaded data from ``Dataset`` class. + The data terms inside may be wrapped in list, tuple and DataContainer, so + this function essentially extracts data from these wrappers. + + Args: + results (dict): Data loaded using pipeline. + key (str): Key of the desired data. + + Returns: + np.ndarray | torch.Tensor: Data term. + """ + if key not in results.keys(): + return None + # results[key] may be data or list[data] or tuple[data] + # data may be wrapped inside DataContainer + data = results[key] + if isinstance(data, (list, tuple)): + data = data[0] + if isinstance(data, mmcv.parallel.DataContainer): + data = data._data + return data diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/waymo_dataset.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/waymo_dataset.py new file mode 100644 index 000000000..6e204df9a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/datasets/waymo_dataset.py @@ -0,0 +1,549 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import tempfile +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.utils import print_log + +from ..core.bbox import Box3DMode, points_cam2img +from .builder import DATASETS +from .kitti_dataset import KittiDataset + + +@DATASETS.register_module() +class WaymoDataset(KittiDataset): + """Waymo Dataset. + + This class serves as the API for experiments on the Waymo Dataset. + + Please refer to ``_for data downloading. + It is recommended to symlink the dataset root to $MMDETECTION3D/data and + organize them as the doc shows. + + Args: + data_root (str): Path of dataset root. + ann_file (str): Path of annotation file. + split (str): Split of input data. + pts_prefix (str, optional): Prefix of points files. + Defaults to 'velodyne'. + pipeline (list[dict], optional): Pipeline used for data processing. + Defaults to None. + classes (tuple[str], optional): Classes used in the dataset. + Defaults to None. + modality (dict, optional): Modality to specify the sensor data used + as input. Defaults to None. + box_type_3d (str, optional): Type of 3D box of this dataset. + Based on the `box_type_3d`, the dataset will encapsulate the box + to its original format then converted them to `box_type_3d`. + Defaults to 'LiDAR' in this dataset. Available options includes + + - 'LiDAR': box in LiDAR coordinates + - 'Depth': box in depth coordinates, usually for indoor dataset + - 'Camera': box in camera coordinates + filter_empty_gt (bool, optional): Whether to filter empty GT. + Defaults to True. + test_mode (bool, optional): Whether the dataset is in test mode. + Defaults to False. + pcd_limit_range (list(float), optional): The range of point cloud used + to filter invalid predicted boxes. + Default: [-85, -85, -5, 85, 85, 5]. + """ + + CLASSES = ('Car', 'Cyclist', 'Pedestrian') + + def __init__(self, + data_root, + ann_file, + split, + pts_prefix='velodyne', + pipeline=None, + classes=None, + modality=None, + box_type_3d='LiDAR', + filter_empty_gt=True, + test_mode=False, + load_interval=1, + pcd_limit_range=[-85, -85, -5, 85, 85, 5], + **kwargs): + super().__init__( + data_root=data_root, + ann_file=ann_file, + split=split, + pts_prefix=pts_prefix, + pipeline=pipeline, + classes=classes, + modality=modality, + box_type_3d=box_type_3d, + filter_empty_gt=filter_empty_gt, + test_mode=test_mode, + pcd_limit_range=pcd_limit_range, + **kwargs) + + # to load a subset, just set the load_interval in the dataset config + self.data_infos = self.data_infos[::load_interval] + if hasattr(self, 'flag'): + self.flag = self.flag[::load_interval] + + def _get_pts_filename(self, idx): + pts_filename = osp.join(self.root_split, self.pts_prefix, + f'{idx:07d}.bin') + return pts_filename + + def get_data_info(self, index): + """Get data info according to the given index. + + Args: + index (int): Index of the sample data to get. + + Returns: + dict: Standard input_dict consists of the + data information. + + - sample_idx (str): sample index + - pts_filename (str): filename of point clouds + - img_prefix (str): prefix of image files + - img_info (dict): image info + - lidar2img (list[np.ndarray], optional): transformations from + lidar to different cameras + - ann_info (dict): annotation info + """ + info = self.data_infos[index] + sample_idx = info['image']['image_idx'] + img_filename = os.path.join(self.data_root, + info['image']['image_path']) + + # TODO: consider use torch.Tensor only + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P0 = info['calib']['P0'].astype(np.float32) + lidar2img = P0 @ rect @ Trv2c + + pts_filename = self._get_pts_filename(sample_idx) + input_dict = dict( + sample_idx=sample_idx, + pts_filename=pts_filename, + img_prefix=None, + img_info=dict(filename=img_filename), + lidar2img=lidar2img) + + if not self.test_mode: + annos = self.get_ann_info(index) + input_dict['ann_info'] = annos + + return input_dict + + def format_results(self, + outputs, + pklfile_prefix=None, + submission_prefix=None, + data_format='waymo'): + """Format the results to pkl file. + + Args: + outputs (list[dict]): Testing results of the dataset. + pklfile_prefix (str): The prefix of pkl files. It includes + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str): The prefix of submitted files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". If not specified, a temp file will be created. + Default: None. + data_format (str, optional): Output data format. + Default: 'waymo'. Another supported choice is 'kitti'. + + Returns: + tuple: (result_files, tmp_dir), result_files is a dict containing + the json filepaths, tmp_dir is the temporal directory created + for saving json files when jsonfile_prefix is not specified. + """ + if pklfile_prefix is None: + tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(tmp_dir.name, 'results') + else: + tmp_dir = None + + assert ('waymo' in data_format or 'kitti' in data_format), \ + f'invalid data_format {data_format}' + + if (not isinstance(outputs[0], dict)) or 'img_bbox' in outputs[0]: + raise TypeError('Not supported type for reformat results.') + elif 'pts_bbox' in outputs[0]: + result_files = dict() + for name in outputs[0]: + results_ = [out[name] for out in outputs] + pklfile_prefix_ = pklfile_prefix + name + if submission_prefix is not None: + submission_prefix_ = f'{submission_prefix}_{name}' + else: + submission_prefix_ = None + result_files_ = self.bbox2result_kitti(results_, self.CLASSES, + pklfile_prefix_, + submission_prefix_) + result_files[name] = result_files_ + else: + result_files = self.bbox2result_kitti(outputs, self.CLASSES, + pklfile_prefix, + submission_prefix) + if 'waymo' in data_format: + from ..core.evaluation.waymo_utils.prediction_kitti_to_waymo import \ + KITTI2Waymo # noqa + waymo_root = osp.join( + self.data_root.split('kitti_format')[0], 'waymo_format') + if self.split == 'training': + waymo_tfrecords_dir = osp.join(waymo_root, 'validation') + prefix = '1' + elif self.split == 'testing': + waymo_tfrecords_dir = osp.join(waymo_root, 'testing') + prefix = '2' + else: + raise ValueError('Not supported split value.') + save_tmp_dir = tempfile.TemporaryDirectory() + waymo_results_save_dir = save_tmp_dir.name + waymo_results_final_path = f'{pklfile_prefix}.bin' + if 'pts_bbox' in result_files: + converter = KITTI2Waymo(result_files['pts_bbox'], + waymo_tfrecords_dir, + waymo_results_save_dir, + waymo_results_final_path, prefix) + else: + converter = KITTI2Waymo(result_files, waymo_tfrecords_dir, + waymo_results_save_dir, + waymo_results_final_path, prefix) + converter.convert() + save_tmp_dir.cleanup() + + return result_files, tmp_dir + + def evaluate(self, + results, + metric='waymo', + logger=None, + pklfile_prefix=None, + submission_prefix=None, + show=False, + out_dir=None, + pipeline=None): + """Evaluation in KITTI protocol. + + Args: + results (list[dict]): Testing results of the dataset. + metric (str | list[str], optional): Metrics to be evaluated. + Default: 'waymo'. Another supported metric is 'kitti'. + logger (logging.Logger | str, optional): Logger used for printing + related information during evaluation. Default: None. + pklfile_prefix (str, optional): The prefix of pkl files including + the file path and the prefix of filename, e.g., "a/b/prefix". + If not specified, a temp file will be created. Default: None. + submission_prefix (str, optional): The prefix of submission data. + If not specified, the submission data will not be generated. + show (bool, optional): Whether to visualize. + Default: False. + out_dir (str, optional): Path to save the visualization results. + Default: None. + pipeline (list[dict], optional): raw data loading for showing. + Default: None. + + Returns: + dict[str: float]: results of each evaluation metric + """ + assert ('waymo' in metric or 'kitti' in metric), \ + f'invalid metric {metric}' + if 'kitti' in metric: + result_files, tmp_dir = self.format_results( + results, + pklfile_prefix, + submission_prefix, + data_format='kitti') + from mmdet3d.core.evaluation import kitti_eval + gt_annos = [info['annos'] for info in self.data_infos] + + if isinstance(result_files, dict): + ap_dict = dict() + for name, result_files_ in result_files.items(): + eval_types = ['bev', '3d'] + ap_result_str, ap_dict_ = kitti_eval( + gt_annos, + result_files_, + self.CLASSES, + eval_types=eval_types) + for ap_type, ap in ap_dict_.items(): + ap_dict[f'{name}/{ap_type}'] = float( + '{:.4f}'.format(ap)) + + print_log( + f'Results of {name}:\n' + ap_result_str, logger=logger) + + else: + ap_result_str, ap_dict = kitti_eval( + gt_annos, + result_files, + self.CLASSES, + eval_types=['bev', '3d']) + print_log('\n' + ap_result_str, logger=logger) + if 'waymo' in metric: + waymo_root = osp.join( + self.data_root.split('kitti_format')[0], 'waymo_format') + if pklfile_prefix is None: + eval_tmp_dir = tempfile.TemporaryDirectory() + pklfile_prefix = osp.join(eval_tmp_dir.name, 'results') + else: + eval_tmp_dir = None + result_files, tmp_dir = self.format_results( + results, + pklfile_prefix, + submission_prefix, + data_format='waymo') + import subprocess + ret_bytes = subprocess.check_output( + 'mmdet3d/core/evaluation/waymo_utils/' + + f'compute_detection_metrics_main {pklfile_prefix}.bin ' + + f'{waymo_root}/gt.bin', + shell=True) + ret_texts = ret_bytes.decode('utf-8') + print_log(ret_texts) + # parse the text to get ap_dict + ap_dict = { + 'Vehicle/L1 mAP': 0, + 'Vehicle/L1 mAPH': 0, + 'Vehicle/L2 mAP': 0, + 'Vehicle/L2 mAPH': 0, + 'Pedestrian/L1 mAP': 0, + 'Pedestrian/L1 mAPH': 0, + 'Pedestrian/L2 mAP': 0, + 'Pedestrian/L2 mAPH': 0, + 'Sign/L1 mAP': 0, + 'Sign/L1 mAPH': 0, + 'Sign/L2 mAP': 0, + 'Sign/L2 mAPH': 0, + 'Cyclist/L1 mAP': 0, + 'Cyclist/L1 mAPH': 0, + 'Cyclist/L2 mAP': 0, + 'Cyclist/L2 mAPH': 0, + 'Overall/L1 mAP': 0, + 'Overall/L1 mAPH': 0, + 'Overall/L2 mAP': 0, + 'Overall/L2 mAPH': 0 + } + mAP_splits = ret_texts.split('mAP ') + mAPH_splits = ret_texts.split('mAPH ') + for idx, key in enumerate(ap_dict.keys()): + split_idx = int(idx / 2) + 1 + if idx % 2 == 0: # mAP + ap_dict[key] = float(mAP_splits[split_idx].split(']')[0]) + else: # mAPH + ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0]) + ap_dict['Overall/L1 mAP'] = \ + (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] + + ap_dict['Cyclist/L1 mAP']) / 3 + ap_dict['Overall/L1 mAPH'] = \ + (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] + + ap_dict['Cyclist/L1 mAPH']) / 3 + ap_dict['Overall/L2 mAP'] = \ + (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] + + ap_dict['Cyclist/L2 mAP']) / 3 + ap_dict['Overall/L2 mAPH'] = \ + (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] + + ap_dict['Cyclist/L2 mAPH']) / 3 + if eval_tmp_dir is not None: + eval_tmp_dir.cleanup() + + if tmp_dir is not None: + tmp_dir.cleanup() + + if show or out_dir: + self.show(results, out_dir, show=show, pipeline=pipeline) + return ap_dict + + def bbox2result_kitti(self, + net_outputs, + class_names, + pklfile_prefix=None, + submission_prefix=None): + """Convert results to kitti format for evaluation and test submission. + + Args: + net_outputs (List[np.ndarray]): list of array storing the + bbox and score + class_nanes (List[String]): A list of class names + pklfile_prefix (str): The prefix of pkl file. + submission_prefix (str): The prefix of submission file. + + Returns: + List[dict]: A list of dict have the kitti 3d format + """ + assert len(net_outputs) == len(self.data_infos), \ + 'invalid list length of network outputs' + if submission_prefix is not None: + mmcv.mkdir_or_exist(submission_prefix) + + det_annos = [] + print('\nConverting prediction to KITTI format') + for idx, pred_dicts in enumerate( + mmcv.track_iter_progress(net_outputs)): + annos = [] + info = self.data_infos[idx] + sample_idx = info['image']['image_idx'] + image_shape = info['image']['image_shape'][:2] + + box_dict = self.convert_valid_bboxes(pred_dicts, info) + if len(box_dict['bbox']) > 0: + box_2d_preds = box_dict['bbox'] + box_preds = box_dict['box3d_camera'] + scores = box_dict['scores'] + box_preds_lidar = box_dict['box3d_lidar'] + label_preds = box_dict['label_preds'] + + anno = { + 'name': [], + 'truncated': [], + 'occluded': [], + 'alpha': [], + 'bbox': [], + 'dimensions': [], + 'location': [], + 'rotation_y': [], + 'score': [] + } + + for box, box_lidar, bbox, score, label in zip( + box_preds, box_preds_lidar, box_2d_preds, scores, + label_preds): + bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) + bbox[:2] = np.maximum(bbox[:2], [0, 0]) + anno['name'].append(class_names[int(label)]) + anno['truncated'].append(0.0) + anno['occluded'].append(0) + anno['alpha'].append( + -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6]) + anno['bbox'].append(bbox) + anno['dimensions'].append(box[3:6]) + anno['location'].append(box[:3]) + anno['rotation_y'].append(box[6]) + anno['score'].append(score) + + anno = {k: np.stack(v) for k, v in anno.items()} + annos.append(anno) + + if submission_prefix is not None: + curr_file = f'{submission_prefix}/{sample_idx:07d}.txt' + with open(curr_file, 'w') as f: + bbox = anno['bbox'] + loc = anno['location'] + dims = anno['dimensions'] # lhw -> hwl + + for idx in range(len(bbox)): + print( + '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} ' + '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'. + format(anno['name'][idx], anno['alpha'][idx], + bbox[idx][0], bbox[idx][1], + bbox[idx][2], bbox[idx][3], + dims[idx][1], dims[idx][2], + dims[idx][0], loc[idx][0], loc[idx][1], + loc[idx][2], anno['rotation_y'][idx], + anno['score'][idx]), + file=f) + else: + annos.append({ + 'name': np.array([]), + 'truncated': np.array([]), + 'occluded': np.array([]), + 'alpha': np.array([]), + 'bbox': np.zeros([0, 4]), + 'dimensions': np.zeros([0, 3]), + 'location': np.zeros([0, 3]), + 'rotation_y': np.array([]), + 'score': np.array([]), + }) + annos[-1]['sample_idx'] = np.array( + [sample_idx] * len(annos[-1]['score']), dtype=np.int64) + + det_annos += annos + + if pklfile_prefix is not None: + if not pklfile_prefix.endswith(('.pkl', '.pickle')): + out = f'{pklfile_prefix}.pkl' + mmcv.dump(det_annos, out) + print(f'Result is saved to {out}.') + + return det_annos + + def convert_valid_bboxes(self, box_dict, info): + """Convert the boxes into valid format. + + Args: + box_dict (dict): Bounding boxes to be converted. + + - boxes_3d (:obj:``LiDARInstance3DBoxes``): 3D bounding boxes. + - scores_3d (np.ndarray): Scores of predicted boxes. + - labels_3d (np.ndarray): Class labels of predicted boxes. + info (dict): Dataset information dictionary. + + Returns: + dict: Valid boxes after conversion. + + - bbox (np.ndarray): 2D bounding boxes (in camera 0). + - box3d_camera (np.ndarray): 3D boxes in camera coordinates. + - box3d_lidar (np.ndarray): 3D boxes in lidar coordinates. + - scores (np.ndarray): Scores of predicted boxes. + - label_preds (np.ndarray): Class labels of predicted boxes. + - sample_idx (np.ndarray): Sample index. + """ + # TODO: refactor this function + box_preds = box_dict['boxes_3d'] + scores = box_dict['scores_3d'] + labels = box_dict['labels_3d'] + sample_idx = info['image']['image_idx'] + box_preds.limit_yaw(offset=0.5, period=np.pi * 2) + + if len(box_preds) == 0: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + box3d_lidar=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx) + + rect = info['calib']['R0_rect'].astype(np.float32) + Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) + P0 = info['calib']['P0'].astype(np.float32) + P0 = box_preds.tensor.new_tensor(P0) + + box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c) + + box_corners = box_preds_camera.corners + box_corners_in_image = points_cam2img(box_corners, P0) + # box_corners_in_image: [N, 8, 2] + minxy = torch.min(box_corners_in_image, dim=1)[0] + maxxy = torch.max(box_corners_in_image, dim=1)[0] + box_2d_preds = torch.cat([minxy, maxxy], dim=1) + # Post-processing + # check box_preds + limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range) + valid_pcd_inds = ((box_preds.center > limit_range[:3]) & + (box_preds.center < limit_range[3:])) + valid_inds = valid_pcd_inds.all(-1) + + if valid_inds.sum() > 0: + return dict( + bbox=box_2d_preds[valid_inds, :].numpy(), + box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), + box3d_lidar=box_preds[valid_inds].tensor.numpy(), + scores=scores[valid_inds].numpy(), + label_preds=labels[valid_inds].numpy(), + sample_idx=sample_idx, + ) + else: + return dict( + bbox=np.zeros([0, 4]), + box3d_camera=np.zeros([0, 7]), + box3d_lidar=np.zeros([0, 7]), + scores=np.zeros([0]), + label_preds=np.zeros([0, 4]), + sample_idx=sample_idx, + ) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/__init__.py new file mode 100644 index 000000000..7c7e8fc61 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/__init__.py @@ -0,0 +1,29 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .backbones import * # noqa: F401,F403 +from .builder import (BACKBONES, DETECTORS, FUSION_LAYERS, HEADS, LOSSES, + MIDDLE_ENCODERS, NECKS, ROI_EXTRACTORS, SEGMENTORS, + SHARED_HEADS, VOXEL_ENCODERS, build_backbone, + build_detector, build_fusion_layer, build_head, + build_loss, build_middle_encoder, build_model, + build_neck, build_roi_extractor, build_shared_head, + build_voxel_encoder) +from .decode_heads import * # noqa: F401,F403 +from .dense_heads import * # noqa: F401,F403 +from .detectors import * # noqa: F401,F403 +from .fusion_layers import * # noqa: F401,F403 +from .losses import * # noqa: F401,F403 +from .middle_encoders import * # noqa: F401,F403 +from .model_utils import * # noqa: F401,F403 +from .necks import * # noqa: F401,F403 +from .roi_heads import * # noqa: F401,F403 +from .segmentors import * # noqa: F401,F403 +from .voxel_encoders import * # noqa: F401,F403 + +__all__ = [ + 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', + 'DETECTORS', 'SEGMENTORS', 'VOXEL_ENCODERS', 'MIDDLE_ENCODERS', + 'FUSION_LAYERS', 'build_backbone', 'build_neck', 'build_roi_extractor', + 'build_shared_head', 'build_head', 'build_loss', 'build_detector', + 'build_fusion_layer', 'build_model', 'build_middle_encoder', + 'build_voxel_encoder' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/__init__.py new file mode 100644 index 000000000..d51c16d2f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.backbones import SSDVGG, HRNet, ResNet, ResNetV1d, ResNeXt +from .dgcnn import DGCNNBackbone +from .dla import DLANet +from .mink_resnet import MinkResNet +from .multi_backbone import MultiBackbone +from .nostem_regnet import NoStemRegNet +from .pointnet2_sa_msg import PointNet2SAMSG +from .pointnet2_sa_ssg import PointNet2SASSG +from .second import SECOND + +__all__ = [ + 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'NoStemRegNet', + 'SECOND', 'DGCNNBackbone', 'PointNet2SASSG', 'PointNet2SAMSG', + 'MultiBackbone', 'DLANet', 'MinkResNet' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/base_pointnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/base_pointnet.py new file mode 100644 index 000000000..31439e6a6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/base_pointnet.py @@ -0,0 +1,39 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from abc import ABCMeta + +from mmcv.runner import BaseModule + + +class BasePointNet(BaseModule, metaclass=ABCMeta): + """Base class for PointNet.""" + + def __init__(self, init_cfg=None, pretrained=None): + super(BasePointNet, self).__init__(init_cfg) + self.fp16_enabled = False + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + + @staticmethod + def _split_point_feats(points): + """Split coordinates and features of input points. + + Args: + points (torch.Tensor): Point coordinates with features, + with shape (B, N, 3 + input_feature_dim). + + Returns: + torch.Tensor: Coordinates of input points. + torch.Tensor: Features of input points. + """ + xyz = points[..., 0:3].contiguous() + if points.size(-1) > 3: + features = points[..., 3:].transpose(1, 2).contiguous() + else: + features = None + + return xyz, features diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dgcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dgcnn.py new file mode 100644 index 000000000..20e82d9cc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dgcnn.py @@ -0,0 +1,98 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.runner import BaseModule, auto_fp16 +from torch import nn as nn + +from mmdet3d.ops import DGCNNFAModule, DGCNNGFModule +from ..builder import BACKBONES + + +@BACKBONES.register_module() +class DGCNNBackbone(BaseModule): + """Backbone network for DGCNN. + + Args: + in_channels (int): Input channels of point cloud. + num_samples (tuple[int], optional): The number of samples for knn or + ball query in each graph feature (GF) module. + Defaults to (20, 20, 20). + knn_modes (tuple[str], optional): Mode of KNN of each knn module. + Defaults to ('D-KNN', 'F-KNN', 'F-KNN'). + radius (tuple[float], optional): Sampling radii of each GF module. + Defaults to (None, None, None). + gf_channels (tuple[tuple[int]], optional): Out channels of each mlp in + GF module. Defaults to ((64, 64), (64, 64), (64, )). + fa_channels (tuple[int], optional): Out channels of each mlp in FA + module. Defaults to (1024, ). + act_cfg (dict, optional): Config of activation layer. + Defaults to dict(type='ReLU'). + init_cfg (dict, optional): Initialization config. + Defaults to None. + """ + + def __init__(self, + in_channels, + num_samples=(20, 20, 20), + knn_modes=('D-KNN', 'F-KNN', 'F-KNN'), + radius=(None, None, None), + gf_channels=((64, 64), (64, 64), (64, )), + fa_channels=(1024, ), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.num_gf = len(gf_channels) + + assert len(num_samples) == len(knn_modes) == len(radius) == len( + gf_channels), 'Num_samples, knn_modes, radius and gf_channels \ + should have the same length.' + + self.GF_modules = nn.ModuleList() + gf_in_channel = in_channels * 2 + skip_channel_list = [gf_in_channel] # input channel list + + for gf_index in range(self.num_gf): + cur_gf_mlps = list(gf_channels[gf_index]) + cur_gf_mlps = [gf_in_channel] + cur_gf_mlps + gf_out_channel = cur_gf_mlps[-1] + + self.GF_modules.append( + DGCNNGFModule( + mlp_channels=cur_gf_mlps, + num_sample=num_samples[gf_index], + knn_mode=knn_modes[gf_index], + radius=radius[gf_index], + act_cfg=act_cfg)) + skip_channel_list.append(gf_out_channel) + gf_in_channel = gf_out_channel * 2 + + fa_in_channel = sum(skip_channel_list[1:]) + cur_fa_mlps = list(fa_channels) + cur_fa_mlps = [fa_in_channel] + cur_fa_mlps + + self.FA_module = DGCNNFAModule( + mlp_channels=cur_fa_mlps, act_cfg=act_cfg) + + @auto_fp16(apply_to=('points', )) + def forward(self, points): + """Forward pass. + + Args: + points (torch.Tensor): point coordinates with features, + with shape (B, N, in_channels). + + Returns: + dict[str, list[torch.Tensor]]: Outputs after graph feature (GF) and + feature aggregation (FA) modules. + + - gf_points (list[torch.Tensor]): Outputs after each GF module. + - fa_points (torch.Tensor): Outputs after FA module. + """ + gf_points = [points] + + for i in range(self.num_gf): + cur_points = self.GF_modules[i](gf_points[i]) + gf_points.append(cur_points) + + fa_points = self.FA_module(gf_points) + + out = dict(gf_points=gf_points, fa_points=fa_points) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dla.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dla.py new file mode 100644 index 000000000..a5479091b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/dla.py @@ -0,0 +1,446 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule +from torch import nn + +from ..builder import BACKBONES + + +def dla_build_norm_layer(cfg, num_features): + """Build normalization layer specially designed for DLANet. + + Args: + cfg (dict): The norm layer config, which should contain: + + - type (str): Layer type. + - layer args: Args needed to instantiate a norm layer. + - requires_grad (bool, optional): Whether stop gradient updates. + num_features (int): Number of input channels. + + + Returns: + Function: Build normalization layer in mmcv. + """ + cfg_ = cfg.copy() + if cfg_['type'] == 'GN': + if num_features % 32 == 0: + return build_norm_layer(cfg_, num_features) + else: + assert 'num_groups' in cfg_ + cfg_['num_groups'] = cfg_['num_groups'] // 2 + return build_norm_layer(cfg_, num_features) + else: + return build_norm_layer(cfg_, num_features) + + +class BasicBlock(BaseModule): + """BasicBlock in DLANet. + + Args: + in_channels (int): Input feature channel. + out_channels (int): Output feature channel. + norm_cfg (dict): Dictionary to construct and config + norm layer. + conv_cfg (dict): Dictionary to construct and config + conv layer. + stride (int, optional): Conv stride. Default: 1. + dilation (int, optional): Conv dilation. Default: 1. + init_cfg (dict, optional): Initialization config. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + norm_cfg, + conv_cfg, + stride=1, + dilation=1, + init_cfg=None): + super(BasicBlock, self).__init__(init_cfg) + self.conv1 = build_conv_layer( + conv_cfg, + in_channels, + out_channels, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + bias=False) + self.norm1 = dla_build_norm_layer(norm_cfg, out_channels)[1] + self.relu = nn.ReLU(inplace=True) + self.conv2 = build_conv_layer( + conv_cfg, + out_channels, + out_channels, + 3, + stride=1, + padding=dilation, + dilation=dilation, + bias=False) + self.norm2 = dla_build_norm_layer(norm_cfg, out_channels)[1] + self.stride = stride + + def forward(self, x, identity=None): + """Forward function.""" + + if identity is None: + identity = x + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + out = self.conv2(out) + out = self.norm2(out) + out += identity + out = self.relu(out) + + return out + + +class Root(BaseModule): + """Root in DLANet. + + Args: + in_channels (int): Input feature channel. + out_channels (int): Output feature channel. + norm_cfg (dict): Dictionary to construct and config + norm layer. + conv_cfg (dict): Dictionary to construct and config + conv layer. + kernel_size (int): Size of convolution kernel. + add_identity (bool): Whether to add identity in root. + init_cfg (dict, optional): Initialization config. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + norm_cfg, + conv_cfg, + kernel_size, + add_identity, + init_cfg=None): + super(Root, self).__init__(init_cfg) + self.conv = build_conv_layer( + conv_cfg, + in_channels, + out_channels, + 1, + stride=1, + padding=(kernel_size - 1) // 2, + bias=False) + self.norm = dla_build_norm_layer(norm_cfg, out_channels)[1] + self.relu = nn.ReLU(inplace=True) + self.add_identity = add_identity + + def forward(self, feat_list): + """Forward function. + + Args: + feat_list (list[torch.Tensor]): Output features from + multiple layers. + """ + children = feat_list + x = self.conv(torch.cat(feat_list, 1)) + x = self.norm(x) + if self.add_identity: + x += children[0] + x = self.relu(x) + + return x + + +class Tree(BaseModule): + """Tree in DLANet. + + Args: + levels (int): The level of the tree. + block (nn.Module): The block module in tree. + in_channels: Input feature channel. + out_channels: Output feature channel. + norm_cfg (dict): Dictionary to construct and config + norm layer. + conv_cfg (dict): Dictionary to construct and config + conv layer. + stride (int, optional): Convolution stride. + Default: 1. + level_root (bool, optional): whether belongs to the + root layer. + root_dim (int, optional): Root input feature channel. + root_kernel_size (int, optional): Size of root + convolution kernel. Default: 1. + dilation (int, optional): Conv dilation. Default: 1. + add_identity (bool, optional): Whether to add + identity in root. Default: False. + init_cfg (dict, optional): Initialization config. + Default: None. + """ + + def __init__(self, + levels, + block, + in_channels, + out_channels, + norm_cfg, + conv_cfg, + stride=1, + level_root=False, + root_dim=None, + root_kernel_size=1, + dilation=1, + add_identity=False, + init_cfg=None): + super(Tree, self).__init__(init_cfg) + if root_dim is None: + root_dim = 2 * out_channels + if level_root: + root_dim += in_channels + if levels == 1: + self.root = Root(root_dim, out_channels, norm_cfg, conv_cfg, + root_kernel_size, add_identity) + self.tree1 = block( + in_channels, + out_channels, + norm_cfg, + conv_cfg, + stride, + dilation=dilation) + self.tree2 = block( + out_channels, + out_channels, + norm_cfg, + conv_cfg, + 1, + dilation=dilation) + else: + self.tree1 = Tree( + levels - 1, + block, + in_channels, + out_channels, + norm_cfg, + conv_cfg, + stride, + root_dim=None, + root_kernel_size=root_kernel_size, + dilation=dilation, + add_identity=add_identity) + self.tree2 = Tree( + levels - 1, + block, + out_channels, + out_channels, + norm_cfg, + conv_cfg, + root_dim=root_dim + out_channels, + root_kernel_size=root_kernel_size, + dilation=dilation, + add_identity=add_identity) + self.level_root = level_root + self.root_dim = root_dim + self.downsample = None + self.project = None + self.levels = levels + if stride > 1: + self.downsample = nn.MaxPool2d(stride, stride=stride) + if in_channels != out_channels: + self.project = nn.Sequential( + build_conv_layer( + conv_cfg, + in_channels, + out_channels, + 1, + stride=1, + bias=False), + dla_build_norm_layer(norm_cfg, out_channels)[1]) + + def forward(self, x, identity=None, children=None): + children = [] if children is None else children + bottom = self.downsample(x) if self.downsample else x + identity = self.project(bottom) if self.project else bottom + if self.level_root: + children.append(bottom) + x1 = self.tree1(x, identity) + if self.levels == 1: + x2 = self.tree2(x1) + feat_list = [x2, x1] + children + x = self.root(feat_list) + else: + children.append(x1) + x = self.tree2(x1, children=children) + return x + + +@BACKBONES.register_module() +class DLANet(BaseModule): + r"""`DLA backbone `_. + + Args: + depth (int): Depth of DLA. Default: 34. + in_channels (int, optional): Number of input image channels. + Default: 3. + norm_cfg (dict, optional): Dictionary to construct and config + norm layer. Default: None. + conv_cfg (dict, optional): Dictionary to construct and config + conv layer. Default: None. + layer_with_level_root (list[bool], optional): Whether to apply + level_root in each DLA layer, this is only used for + tree levels. Default: (False, True, True, True). + with_identity_root (bool, optional): Whether to add identity + in root layer. Default: False. + pretrained (str, optional): model pretrained path. + Default: None. + init_cfg (dict or list[dict], optional): Initialization + config dict. Default: None + """ + arch_settings = { + 34: (BasicBlock, (1, 1, 1, 2, 2, 1), (16, 32, 64, 128, 256, 512)), + } + + def __init__(self, + depth, + in_channels=3, + out_indices=(0, 1, 2, 3, 4, 5), + frozen_stages=-1, + norm_cfg=None, + conv_cfg=None, + layer_with_level_root=(False, True, True, True), + with_identity_root=False, + pretrained=None, + init_cfg=None): + super(DLANet, self).__init__(init_cfg) + if depth not in self.arch_settings: + raise KeyError(f'invalida depth {depth} for DLA') + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + + block, levels, channels = self.arch_settings[depth] + self.channels = channels + self.num_levels = len(levels) + self.frozen_stages = frozen_stages + self.out_indices = out_indices + assert max(out_indices) < self.num_levels + self.base_layer = nn.Sequential( + build_conv_layer( + conv_cfg, + in_channels, + channels[0], + 7, + stride=1, + padding=3, + bias=False), + dla_build_norm_layer(norm_cfg, channels[0])[1], + nn.ReLU(inplace=True)) + + # DLANet first uses two conv layers then uses several + # Tree layers + for i in range(2): + level_layer = self._make_conv_level( + channels[0], + channels[i], + levels[i], + norm_cfg, + conv_cfg, + stride=i + 1) + layer_name = f'level{i}' + self.add_module(layer_name, level_layer) + + for i in range(2, self.num_levels): + dla_layer = Tree( + levels[i], + block, + channels[i - 1], + channels[i], + norm_cfg, + conv_cfg, + 2, + level_root=layer_with_level_root[i - 2], + add_identity=with_identity_root) + layer_name = f'level{i}' + self.add_module(layer_name, dla_layer) + + self._freeze_stages() + + def _make_conv_level(self, + in_channels, + out_channels, + num_convs, + norm_cfg, + conv_cfg, + stride=1, + dilation=1): + """Conv modules. + + Args: + in_channels (int): Input feature channel. + out_channels (int): Output feature channel. + num_convs (int): Number of Conv module. + norm_cfg (dict): Dictionary to construct and config + norm layer. + conv_cfg (dict): Dictionary to construct and config + conv layer. + stride (int, optional): Conv stride. Default: 1. + dilation (int, optional): Conv dilation. Default: 1. + """ + modules = [] + for i in range(num_convs): + modules.extend([ + build_conv_layer( + conv_cfg, + in_channels, + out_channels, + 3, + stride=stride if i == 0 else 1, + padding=dilation, + bias=False, + dilation=dilation), + dla_build_norm_layer(norm_cfg, out_channels)[1], + nn.ReLU(inplace=True) + ]) + in_channels = out_channels + return nn.Sequential(*modules) + + def _freeze_stages(self): + if self.frozen_stages >= 0: + self.base_layer.eval() + for param in self.base_layer.parameters(): + param.requires_grad = False + + for i in range(2): + m = getattr(self, f'level{i}') + m.eval() + for param in m.parameters(): + param.requires_grad = False + + for i in range(1, self.frozen_stages + 1): + m = getattr(self, f'level{i+1}') + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def forward(self, x): + outs = [] + x = self.base_layer(x) + for i in range(self.num_levels): + x = getattr(self, 'level{}'.format(i))(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/mink_resnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/mink_resnet.py new file mode 100644 index 000000000..35a79ce23 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/mink_resnet.py @@ -0,0 +1,116 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Follow https://github.com/NVIDIA/MinkowskiEngine/blob/master/examples/resnet.py # noqa +# and mmcv.cnn.ResNet +try: + import MinkowskiEngine as ME + from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck +except ImportError: + import warnings + warnings.warn( + 'Please follow `getting_started.md` to install MinkowskiEngine.`') + # blocks are used in the static part of MinkResNet + BasicBlock, Bottleneck = None, None + +import torch.nn as nn + +from mmdet3d.models.builder import BACKBONES + + +@BACKBONES.register_module() +class MinkResNet(nn.Module): + r"""Minkowski ResNet backbone. See `4D Spatio-Temporal ConvNets + `_ for more details. + + Args: + depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. + in_channels (ont): Number of input channels, 3 for RGB. + num_stages (int, optional): Resnet stages. Default: 4. + pool (bool, optional): Add max pooling after first conv if True. + Default: True. + """ + arch_settings = { + 18: (BasicBlock, (2, 2, 2, 2)), + 34: (BasicBlock, (3, 4, 6, 3)), + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, depth, in_channels, num_stages=4, pool=True): + super(MinkResNet, self).__init__() + if depth not in self.arch_settings: + raise KeyError(f'invalid depth {depth} for resnet') + assert 4 >= num_stages >= 1 + block, stage_blocks = self.arch_settings[depth] + stage_blocks = stage_blocks[:num_stages] + self.num_stages = num_stages + self.pool = pool + + self.inplanes = 64 + self.conv1 = ME.MinkowskiConvolution( + in_channels, self.inplanes, kernel_size=3, stride=2, dimension=3) + # May be BatchNorm is better, but we follow original implementation. + self.norm1 = ME.MinkowskiInstanceNorm(self.inplanes) + self.relu = ME.MinkowskiReLU(inplace=True) + if self.pool: + self.maxpool = ME.MinkowskiMaxPooling( + kernel_size=2, stride=2, dimension=3) + + for i, num_blocks in enumerate(stage_blocks): + setattr( + self, f'layer{i}', + self._make_layer(block, 64 * 2**i, stage_blocks[i], stride=2)) + + def init_weights(self): + for m in self.modules(): + if isinstance(m, ME.MinkowskiConvolution): + ME.utils.kaiming_normal_( + m.kernel, mode='fan_out', nonlinearity='relu') + + if isinstance(m, ME.MinkowskiBatchNorm): + nn.init.constant_(m.bn.weight, 1) + nn.init.constant_(m.bn.bias, 0) + + def _make_layer(self, block, planes, blocks, stride): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + ME.MinkowskiConvolution( + self.inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + dimension=3), + ME.MinkowskiBatchNorm(planes * block.expansion)) + layers = [] + layers.append( + block( + self.inplanes, + planes, + stride=stride, + downsample=downsample, + dimension=3)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, stride=1, dimension=3)) + return nn.Sequential(*layers) + + def forward(self, x): + """Forward pass of ResNet. + + Args: + x (ME.SparseTensor): Input sparse tensor. + + Returns: + list[ME.SparseTensor]: Output sparse tensors. + """ + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + if self.pool: + x = self.maxpool(x) + outs = [] + for i in range(self.num_stages): + x = getattr(self, f'layer{i}')(x) + outs.append(x) + return outs diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/multi_backbone.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/multi_backbone.py new file mode 100644 index 000000000..ed04ecddc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/multi_backbone.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16 +from torch import nn as nn + +from ..builder import BACKBONES, build_backbone + + +@BACKBONES.register_module() +class MultiBackbone(BaseModule): + """MultiBackbone with different configs. + + Args: + num_streams (int): The number of backbones. + backbones (list or dict): A list of backbone configs. + aggregation_mlp_channels (list[int]): Specify the mlp layers + for feature aggregation. + conv_cfg (dict): Config dict of convolutional layers. + norm_cfg (dict): Config dict of normalization layers. + act_cfg (dict): Config dict of activation layers. + suffixes (list): A list of suffixes to rename the return dict + for each backbone. + """ + + def __init__(self, + num_streams, + backbones, + aggregation_mlp_channels=None, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-5, momentum=0.01), + act_cfg=dict(type='ReLU'), + suffixes=('net0', 'net1'), + init_cfg=None, + pretrained=None, + **kwargs): + super().__init__(init_cfg=init_cfg) + assert isinstance(backbones, dict) or isinstance(backbones, list) + if isinstance(backbones, dict): + backbones_list = [] + for ind in range(num_streams): + backbones_list.append(copy.deepcopy(backbones)) + backbones = backbones_list + + assert len(backbones) == num_streams + assert len(suffixes) == num_streams + + self.backbone_list = nn.ModuleList() + # Rename the ret_dict with different suffixs. + self.suffixes = suffixes + + out_channels = 0 + + for backbone_cfg in backbones: + out_channels += backbone_cfg['fp_channels'][-1][-1] + self.backbone_list.append(build_backbone(backbone_cfg)) + + # Feature aggregation layers + if aggregation_mlp_channels is None: + aggregation_mlp_channels = [ + out_channels, out_channels // 2, + out_channels // len(self.backbone_list) + ] + else: + aggregation_mlp_channels.insert(0, out_channels) + + self.aggregation_layers = nn.Sequential() + for i in range(len(aggregation_mlp_channels) - 1): + self.aggregation_layers.add_module( + f'layer{i}', + ConvModule( + aggregation_mlp_channels[i], + aggregation_mlp_channels[i + 1], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=True, + inplace=True)) + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + + @auto_fp16() + def forward(self, points): + """Forward pass. + + Args: + points (torch.Tensor): point coordinates with features, + with shape (B, N, 3 + input_feature_dim). + + Returns: + dict[str, list[torch.Tensor]]: Outputs from multiple backbones. + + - fp_xyz[suffix] (list[torch.Tensor]): The coordinates of + each fp features. + - fp_features[suffix] (list[torch.Tensor]): The features + from each Feature Propagate Layers. + - fp_indices[suffix] (list[torch.Tensor]): Indices of the + input points. + - hd_feature (torch.Tensor): The aggregation feature + from multiple backbones. + """ + ret = {} + fp_features = [] + for ind in range(len(self.backbone_list)): + cur_ret = self.backbone_list[ind](points) + cur_suffix = self.suffixes[ind] + fp_features.append(cur_ret['fp_features'][-1]) + if cur_suffix != '': + for k in cur_ret.keys(): + cur_ret[k + '_' + cur_suffix] = cur_ret.pop(k) + ret.update(cur_ret) + + # Combine the features here + hd_feature = torch.cat(fp_features, dim=1) + hd_feature = self.aggregation_layers(hd_feature) + ret['hd_feature'] = hd_feature + return ret diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/nostem_regnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/nostem_regnet.py new file mode 100644 index 000000000..309050833 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/nostem_regnet.py @@ -0,0 +1,84 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.backbones import RegNet +from ..builder import BACKBONES + + +@BACKBONES.register_module() +class NoStemRegNet(RegNet): + """RegNet backbone without Stem for 3D detection. + + More details can be found in `paper `_ . + + Args: + arch (dict): The parameter of RegNets. + - w0 (int): Initial width. + - wa (float): Slope of width. + - wm (float): Quantization parameter to quantize the width. + - depth (int): Depth of the backbone. + - group_w (int): Width of group. + - bot_mul (float): Bottleneck ratio, i.e. expansion of bottleneck. + strides (Sequence[int]): Strides of the first block of each stage. + base_channels (int): Base channels after stem layer. + in_channels (int): Number of input image channels. Normally 3. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + frozen_stages (int): Stages to be frozen (all param fixed). -1 means + not freezing any parameters. + norm_cfg (dict): Dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. + + Example: + >>> from mmdet3d.models import NoStemRegNet + >>> import torch + >>> self = NoStemRegNet( + arch=dict( + w0=88, + wa=26.31, + wm=2.25, + group_w=48, + depth=25, + bot_mul=1.0)) + >>> self.eval() + >>> inputs = torch.rand(1, 64, 16, 16) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 96, 8, 8) + (1, 192, 4, 4) + (1, 432, 2, 2) + (1, 1008, 1, 1) + """ + + def __init__(self, arch, init_cfg=None, **kwargs): + super(NoStemRegNet, self).__init__(arch, init_cfg=init_cfg, **kwargs) + + def _make_stem_layer(self, in_channels, base_channels): + """Override the original function that do not initialize a stem layer + since 3D detector's voxel encoder works like a stem layer.""" + return + + def forward(self, x): + """Forward function of backbone. + + Args: + x (torch.Tensor): Features in shape (N, C, H, W). + + Returns: + tuple[torch.Tensor]: Multi-scale features. + """ + outs = [] + for i, layer_name in enumerate(self.res_layers): + res_layer = getattr(self, layer_name) + x = res_layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_msg.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_msg.py new file mode 100644 index 000000000..f6b1e47bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_msg.py @@ -0,0 +1,175 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import auto_fp16 +from torch import nn as nn + +from mmdet3d.ops import build_sa_module +from ..builder import BACKBONES +from .base_pointnet import BasePointNet + + +@BACKBONES.register_module() +class PointNet2SAMSG(BasePointNet): + """PointNet2 with Multi-scale grouping. + + Args: + in_channels (int): Input channels of point cloud. + num_points (tuple[int]): The number of points which each SA + module samples. + radii (tuple[float]): Sampling radii of each SA module. + num_samples (tuple[int]): The number of samples for ball + query in each SA module. + sa_channels (tuple[tuple[int]]): Out channels of each mlp in SA module. + aggregation_channels (tuple[int]): Out channels of aggregation + multi-scale grouping features. + fps_mods (tuple[int]): Mod of FPS for each SA module. + fps_sample_range_lists (tuple[tuple[int]]): The number of sampling + points which each SA module samples. + dilated_group (tuple[bool]): Whether to use dilated ball query for + out_indices (Sequence[int]): Output from which stages. + norm_cfg (dict): Config of normalization layer. + sa_cfg (dict): Config of set abstraction module, which may contain + the following keys and values: + + - pool_mod (str): Pool method ('max' or 'avg') for SA modules. + - use_xyz (bool): Whether to use xyz as a part of features. + - normalize_xyz (bool): Whether to normalize xyz with radii in + each SA module. + """ + + def __init__(self, + in_channels, + num_points=(2048, 1024, 512, 256), + radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)), + num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)), + sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)), + ((64, 64, 128), (64, 64, 128), (64, 96, 128)), + ((128, 128, 256), (128, 192, 256), (128, 256, + 256))), + aggregation_channels=(64, 128, 256), + fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')), + fps_sample_range_lists=((-1), (-1), (512, -1)), + dilated_group=(True, True, True), + out_indices=(2, ), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModuleMSG', + pool_mod='max', + use_xyz=True, + normalize_xyz=False), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.num_sa = len(sa_channels) + self.out_indices = out_indices + assert max(out_indices) < self.num_sa + assert len(num_points) == len(radii) == len(num_samples) == len( + sa_channels) + if aggregation_channels is not None: + assert len(sa_channels) == len(aggregation_channels) + else: + aggregation_channels = [None] * len(sa_channels) + + self.SA_modules = nn.ModuleList() + self.aggregation_mlps = nn.ModuleList() + sa_in_channel = in_channels - 3 # number of channels without xyz + skip_channel_list = [sa_in_channel] + + for sa_index in range(self.num_sa): + cur_sa_mlps = list(sa_channels[sa_index]) + sa_out_channel = 0 + for radius_index in range(len(radii[sa_index])): + cur_sa_mlps[radius_index] = [sa_in_channel] + list( + cur_sa_mlps[radius_index]) + sa_out_channel += cur_sa_mlps[radius_index][-1] + + if isinstance(fps_mods[sa_index], tuple): + cur_fps_mod = list(fps_mods[sa_index]) + else: + cur_fps_mod = list([fps_mods[sa_index]]) + + if isinstance(fps_sample_range_lists[sa_index], tuple): + cur_fps_sample_range_list = list( + fps_sample_range_lists[sa_index]) + else: + cur_fps_sample_range_list = list( + [fps_sample_range_lists[sa_index]]) + + self.SA_modules.append( + build_sa_module( + num_point=num_points[sa_index], + radii=radii[sa_index], + sample_nums=num_samples[sa_index], + mlp_channels=cur_sa_mlps, + fps_mod=cur_fps_mod, + fps_sample_range_list=cur_fps_sample_range_list, + dilated_group=dilated_group[sa_index], + norm_cfg=norm_cfg, + cfg=sa_cfg, + bias=True)) + skip_channel_list.append(sa_out_channel) + + cur_aggregation_channel = aggregation_channels[sa_index] + if cur_aggregation_channel is None: + self.aggregation_mlps.append(None) + sa_in_channel = sa_out_channel + else: + self.aggregation_mlps.append( + ConvModule( + sa_out_channel, + cur_aggregation_channel, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + kernel_size=1, + bias=True)) + sa_in_channel = cur_aggregation_channel + + @auto_fp16(apply_to=('points', )) + def forward(self, points): + """Forward pass. + + Args: + points (torch.Tensor): point coordinates with features, + with shape (B, N, 3 + input_feature_dim). + + Returns: + dict[str, torch.Tensor]: Outputs of the last SA module. + + - sa_xyz (torch.Tensor): The coordinates of sa features. + - sa_features (torch.Tensor): The features from the + last Set Aggregation Layers. + - sa_indices (torch.Tensor): Indices of the + input points. + """ + xyz, features = self._split_point_feats(points) + + batch, num_points = xyz.shape[:2] + indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat( + batch, 1).long() + + sa_xyz = [xyz] + sa_features = [features] + sa_indices = [indices] + + out_sa_xyz = [xyz] + out_sa_features = [features] + out_sa_indices = [indices] + + for i in range(self.num_sa): + cur_xyz, cur_features, cur_indices = self.SA_modules[i]( + sa_xyz[i], sa_features[i]) + if self.aggregation_mlps[i] is not None: + cur_features = self.aggregation_mlps[i](cur_features) + sa_xyz.append(cur_xyz) + sa_features.append(cur_features) + sa_indices.append( + torch.gather(sa_indices[-1], 1, cur_indices.long())) + if i in self.out_indices: + out_sa_xyz.append(sa_xyz[-1]) + out_sa_features.append(sa_features[-1]) + out_sa_indices.append(sa_indices[-1]) + + return dict( + sa_xyz=out_sa_xyz, + sa_features=out_sa_features, + sa_indices=out_sa_indices) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_ssg.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_ssg.py new file mode 100644 index 000000000..c7b415266 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/pointnet2_sa_ssg.py @@ -0,0 +1,143 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import auto_fp16 +from torch import nn as nn + +from mmdet3d.ops import PointFPModule, build_sa_module +from ..builder import BACKBONES +from .base_pointnet import BasePointNet + + +@BACKBONES.register_module() +class PointNet2SASSG(BasePointNet): + """PointNet2 with Single-scale grouping. + + Args: + in_channels (int): Input channels of point cloud. + num_points (tuple[int]): The number of points which each SA + module samples. + radius (tuple[float]): Sampling radii of each SA module. + num_samples (tuple[int]): The number of samples for ball + query in each SA module. + sa_channels (tuple[tuple[int]]): Out channels of each mlp in SA module. + fp_channels (tuple[tuple[int]]): Out channels of each mlp in FP module. + norm_cfg (dict): Config of normalization layer. + sa_cfg (dict): Config of set abstraction module, which may contain + the following keys and values: + + - pool_mod (str): Pool method ('max' or 'avg') for SA modules. + - use_xyz (bool): Whether to use xyz as a part of features. + - normalize_xyz (bool): Whether to normalize xyz with radii in + each SA module. + """ + + def __init__(self, + in_channels, + num_points=(2048, 1024, 512, 256), + radius=(0.2, 0.4, 0.8, 1.2), + num_samples=(64, 32, 16, 16), + sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), + (128, 128, 256)), + fp_channels=((256, 256), (256, 256)), + norm_cfg=dict(type='BN2d'), + sa_cfg=dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.num_sa = len(sa_channels) + self.num_fp = len(fp_channels) + + assert len(num_points) == len(radius) == len(num_samples) == len( + sa_channels) + assert len(sa_channels) >= len(fp_channels) + + self.SA_modules = nn.ModuleList() + sa_in_channel = in_channels - 3 # number of channels without xyz + skip_channel_list = [sa_in_channel] + + for sa_index in range(self.num_sa): + cur_sa_mlps = list(sa_channels[sa_index]) + cur_sa_mlps = [sa_in_channel] + cur_sa_mlps + sa_out_channel = cur_sa_mlps[-1] + + self.SA_modules.append( + build_sa_module( + num_point=num_points[sa_index], + radius=radius[sa_index], + num_sample=num_samples[sa_index], + mlp_channels=cur_sa_mlps, + norm_cfg=norm_cfg, + cfg=sa_cfg)) + skip_channel_list.append(sa_out_channel) + sa_in_channel = sa_out_channel + + self.FP_modules = nn.ModuleList() + + fp_source_channel = skip_channel_list.pop() + fp_target_channel = skip_channel_list.pop() + for fp_index in range(len(fp_channels)): + cur_fp_mlps = list(fp_channels[fp_index]) + cur_fp_mlps = [fp_source_channel + fp_target_channel] + cur_fp_mlps + self.FP_modules.append(PointFPModule(mlp_channels=cur_fp_mlps)) + if fp_index != len(fp_channels) - 1: + fp_source_channel = cur_fp_mlps[-1] + fp_target_channel = skip_channel_list.pop() + + @auto_fp16(apply_to=('points', )) + def forward(self, points): + """Forward pass. + + Args: + points (torch.Tensor): point coordinates with features, + with shape (B, N, 3 + input_feature_dim). + + Returns: + dict[str, list[torch.Tensor]]: Outputs after SA and FP modules. + + - fp_xyz (list[torch.Tensor]): The coordinates of + each fp features. + - fp_features (list[torch.Tensor]): The features + from each Feature Propagate Layers. + - fp_indices (list[torch.Tensor]): Indices of the + input points. + """ + xyz, features = self._split_point_feats(points) + + batch, num_points = xyz.shape[:2] + indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat( + batch, 1).long() + + sa_xyz = [xyz] + sa_features = [features] + sa_indices = [indices] + + for i in range(self.num_sa): + cur_xyz, cur_features, cur_indices = self.SA_modules[i]( + sa_xyz[i], sa_features[i]) + sa_xyz.append(cur_xyz) + sa_features.append(cur_features) + sa_indices.append( + torch.gather(sa_indices[-1], 1, cur_indices.long())) + + fp_xyz = [sa_xyz[-1]] + fp_features = [sa_features[-1]] + fp_indices = [sa_indices[-1]] + + for i in range(self.num_fp): + fp_features.append(self.FP_modules[i]( + sa_xyz[self.num_sa - i - 1], sa_xyz[self.num_sa - i], + sa_features[self.num_sa - i - 1], fp_features[-1])) + fp_xyz.append(sa_xyz[self.num_sa - i - 1]) + fp_indices.append(sa_indices[self.num_sa - i - 1]) + + ret = dict( + fp_xyz=fp_xyz, + fp_features=fp_features, + fp_indices=fp_indices, + sa_xyz=sa_xyz, + sa_features=sa_features, + sa_indices=sa_indices) + return ret diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/second.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/second.py new file mode 100644 index 000000000..680dbbecd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/backbones/second.py @@ -0,0 +1,91 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule +from torch import nn as nn + +from ..builder import BACKBONES + + +@BACKBONES.register_module() +class SECOND(BaseModule): + """Backbone network for SECOND/PointPillars/PartA2/MVXNet. + + Args: + in_channels (int): Input channels. + out_channels (list[int]): Output channels for multi-scale feature maps. + layer_nums (list[int]): Number of layers in each stage. + layer_strides (list[int]): Strides of each stage. + norm_cfg (dict): Config dict of normalization layers. + conv_cfg (dict): Config dict of convolutional layers. + """ + + def __init__(self, + in_channels=128, + out_channels=[128, 128, 256], + layer_nums=[3, 5, 5], + layer_strides=[2, 2, 2], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + conv_cfg=dict(type='Conv2d', bias=False), + init_cfg=None, + pretrained=None): + super(SECOND, self).__init__(init_cfg=init_cfg) + assert len(layer_strides) == len(layer_nums) + assert len(out_channels) == len(layer_nums) + + in_filters = [in_channels, *out_channels[:-1]] + # note that when stride > 1, conv2d with same padding isn't + # equal to pad-conv2d. we should use pad-conv2d. + blocks = [] + for i, layer_num in enumerate(layer_nums): + block = [ + build_conv_layer( + conv_cfg, + in_filters[i], + out_channels[i], + 3, + stride=layer_strides[i], + padding=1), + build_norm_layer(norm_cfg, out_channels[i])[1], + nn.ReLU(inplace=True), + ] + for j in range(layer_num): + block.append( + build_conv_layer( + conv_cfg, + out_channels[i], + out_channels[i], + 3, + padding=1)) + block.append(build_norm_layer(norm_cfg, out_channels[i])[1]) + block.append(nn.ReLU(inplace=True)) + + block = nn.Sequential(*block) + blocks.append(block) + + self.blocks = nn.ModuleList(blocks) + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + else: + self.init_cfg = dict(type='Kaiming', layer='Conv2d') + + def forward(self, x): + """Forward function. + + Args: + x (torch.Tensor): Input with shape (N, C, H, W). + + Returns: + tuple[torch.Tensor]: Multi-scale features. + """ + outs = [] + for i in range(len(self.blocks)): + x = self.blocks[i](x) + outs.append(x) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/builder.py new file mode 100644 index 000000000..fb8b8c236 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/builder.py @@ -0,0 +1,137 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv.cnn import MODELS as MMCV_MODELS +from mmcv.utils import Registry + +from mmdet.models.builder import BACKBONES as MMDET_BACKBONES +from mmdet.models.builder import DETECTORS as MMDET_DETECTORS +from mmdet.models.builder import HEADS as MMDET_HEADS +from mmdet.models.builder import LOSSES as MMDET_LOSSES +from mmdet.models.builder import NECKS as MMDET_NECKS +from mmdet.models.builder import ROI_EXTRACTORS as MMDET_ROI_EXTRACTORS +from mmdet.models.builder import SHARED_HEADS as MMDET_SHARED_HEADS +from mmseg.models.builder import LOSSES as MMSEG_LOSSES + +MODELS = Registry('models', parent=MMCV_MODELS) + +BACKBONES = MODELS +NECKS = MODELS +ROI_EXTRACTORS = MODELS +SHARED_HEADS = MODELS +HEADS = MODELS +LOSSES = MODELS +DETECTORS = MODELS +VOXEL_ENCODERS = MODELS +MIDDLE_ENCODERS = MODELS +FUSION_LAYERS = MODELS +SEGMENTORS = MODELS + + +def build_backbone(cfg): + """Build backbone.""" + if cfg['type'] in BACKBONES._module_dict.keys(): + return BACKBONES.build(cfg) + else: + return MMDET_BACKBONES.build(cfg) + + +def build_neck(cfg): + """Build neck.""" + if cfg['type'] in NECKS._module_dict.keys(): + return NECKS.build(cfg) + else: + return MMDET_NECKS.build(cfg) + + +def build_roi_extractor(cfg): + """Build RoI feature extractor.""" + if cfg['type'] in ROI_EXTRACTORS._module_dict.keys(): + return ROI_EXTRACTORS.build(cfg) + else: + return MMDET_ROI_EXTRACTORS.build(cfg) + + +def build_shared_head(cfg): + """Build shared head of detector.""" + if cfg['type'] in SHARED_HEADS._module_dict.keys(): + return SHARED_HEADS.build(cfg) + else: + return MMDET_SHARED_HEADS.build(cfg) + + +def build_head(cfg): + """Build head.""" + if cfg['type'] in HEADS._module_dict.keys(): + return HEADS.build(cfg) + else: + return MMDET_HEADS.build(cfg) + + +def build_loss(cfg): + """Build loss function.""" + if cfg['type'] in LOSSES._module_dict.keys(): + return LOSSES.build(cfg) + elif cfg['type'] in MMDET_LOSSES._module_dict.keys(): + return MMDET_LOSSES.build(cfg) + else: + return MMSEG_LOSSES.build(cfg) + + +def build_detector(cfg, train_cfg=None, test_cfg=None): + """Build detector.""" + if train_cfg is not None or test_cfg is not None: + warnings.warn( + 'train_cfg and test_cfg is deprecated, ' + 'please specify them in model', UserWarning) + assert cfg.get('train_cfg') is None or train_cfg is None, \ + 'train_cfg specified in both outer field and model field ' + assert cfg.get('test_cfg') is None or test_cfg is None, \ + 'test_cfg specified in both outer field and model field ' + if cfg['type'] in DETECTORS._module_dict.keys(): + return DETECTORS.build( + cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) + else: + return MMDET_DETECTORS.build( + cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) + + +def build_segmentor(cfg, train_cfg=None, test_cfg=None): + """Build segmentor.""" + if train_cfg is not None or test_cfg is not None: + warnings.warn( + 'train_cfg and test_cfg is deprecated, ' + 'please specify them in model', UserWarning) + assert cfg.get('train_cfg') is None or train_cfg is None, \ + 'train_cfg specified in both outer field and model field ' + assert cfg.get('test_cfg') is None or test_cfg is None, \ + 'test_cfg specified in both outer field and model field ' + return SEGMENTORS.build( + cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) + + +def build_model(cfg, train_cfg=None, test_cfg=None): + """A function warpper for building 3D detector or segmentor according to + cfg. + + Should be deprecated in the future. + """ + if cfg.type in ['EncoderDecoder3D']: + return build_segmentor(cfg, train_cfg=train_cfg, test_cfg=test_cfg) + else: + return build_detector(cfg, train_cfg=train_cfg, test_cfg=test_cfg) + + +def build_voxel_encoder(cfg): + """Build voxel encoder.""" + return VOXEL_ENCODERS.build(cfg) + + +def build_middle_encoder(cfg): + """Build middle level encoder.""" + return MIDDLE_ENCODERS.build(cfg) + + +def build_fusion_layer(cfg): + """Build fusion layer.""" + return FUSION_LAYERS.build(cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/__init__.py new file mode 100644 index 000000000..2e86c7c8a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .dgcnn_head import DGCNNHead +from .paconv_head import PAConvHead +from .pointnet2_head import PointNet2Head + +__all__ = ['PointNet2Head', 'DGCNNHead', 'PAConvHead'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/decode_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/decode_head.py new file mode 100644 index 000000000..6ccbfe0ec --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/decode_head.py @@ -0,0 +1,123 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.cnn import normal_init +from mmcv.runner import BaseModule, auto_fp16, force_fp32 +from torch import nn as nn + +from mmseg.models.builder import build_loss + + +class Base3DDecodeHead(BaseModule, metaclass=ABCMeta): + """Base class for BaseDecodeHead. + + Args: + channels (int): Channels after modules, before conv_seg. + num_classes (int): Number of classes. + dropout_ratio (float, optional): Ratio of dropout layer. Default: 0.5. + conv_cfg (dict, optional): Config of conv layers. + Default: dict(type='Conv1d'). + norm_cfg (dict, optional): Config of norm layers. + Default: dict(type='BN1d'). + act_cfg (dict, optional): Config of activation layers. + Default: dict(type='ReLU'). + loss_decode (dict, optional): Config of decode loss. + Default: dict(type='CrossEntropyLoss'). + ignore_index (int, optional): The label index to be ignored. + When using masked BCE loss, ignore_index should be set to None. + Default: 255. + """ + + def __init__(self, + channels, + num_classes, + dropout_ratio=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + loss_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + class_weight=None, + loss_weight=1.0), + ignore_index=255, + init_cfg=None): + super(Base3DDecodeHead, self).__init__(init_cfg=init_cfg) + self.channels = channels + self.num_classes = num_classes + self.dropout_ratio = dropout_ratio + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.loss_decode = build_loss(loss_decode) + self.ignore_index = ignore_index + + self.conv_seg = nn.Conv1d(channels, num_classes, kernel_size=1) + if dropout_ratio > 0: + self.dropout = nn.Dropout(dropout_ratio) + else: + self.dropout = None + self.fp16_enabled = False + + def init_weights(self): + """Initialize weights of classification layer.""" + super().init_weights() + normal_init(self.conv_seg, mean=0, std=0.01) + + @auto_fp16() + @abstractmethod + def forward(self, inputs): + """Placeholder of forward function.""" + pass + + def forward_train(self, inputs, img_metas, pts_semantic_mask, train_cfg): + """Forward function for training. + + Args: + inputs (list[torch.Tensor]): List of multi-level point features. + img_metas (list[dict]): Meta information of each sample. + pts_semantic_mask (torch.Tensor): Semantic segmentation masks + used if the architecture supports semantic segmentation task. + train_cfg (dict): The training config. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + seg_logits = self.forward(inputs) + losses = self.losses(seg_logits, pts_semantic_mask) + return losses + + def forward_test(self, inputs, img_metas, test_cfg): + """Forward function for testing. + + Args: + inputs (list[Tensor]): List of multi-level point features. + img_metas (list[dict]): Meta information of each sample. + test_cfg (dict): The testing config. + + Returns: + Tensor: Output segmentation map. + """ + return self.forward(inputs) + + def cls_seg(self, feat): + """Classify each points.""" + if self.dropout is not None: + feat = self.dropout(feat) + output = self.conv_seg(feat) + return output + + @force_fp32(apply_to=('seg_logit', )) + def losses(self, seg_logit, seg_label): + """Compute semantic segmentation loss. + + Args: + seg_logit (torch.Tensor): Predicted per-point segmentation logits + of shape [B, num_classes, N]. + seg_label (torch.Tensor): Ground-truth segmentation label of + shape [B, N]. + """ + loss = dict() + loss['loss_sem_seg'] = self.loss_decode( + seg_logit, seg_label, ignore_index=self.ignore_index) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/dgcnn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/dgcnn_head.py new file mode 100644 index 000000000..1249b3d1a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/dgcnn_head.py @@ -0,0 +1,67 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn.bricks import ConvModule + +from mmdet3d.ops import DGCNNFPModule +from ..builder import HEADS +from .decode_head import Base3DDecodeHead + + +@HEADS.register_module() +class DGCNNHead(Base3DDecodeHead): + r"""DGCNN decoder head. + + Decoder head used in `DGCNN `_. + Refer to the + `reimplementation code `_. + + Args: + fp_channels (tuple[int], optional): Tuple of mlp channels in feature + propagation (FP) modules. Defaults to (1216, 512). + """ + + def __init__(self, fp_channels=(1216, 512), **kwargs): + super(DGCNNHead, self).__init__(**kwargs) + + self.FP_module = DGCNNFPModule( + mlp_channels=fp_channels, act_cfg=self.act_cfg) + + # https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_sem_seg.py#L40 + self.pre_seg_conv = ConvModule( + fp_channels[-1], + self.channels, + kernel_size=1, + bias=False, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: points for decoder. + """ + fa_points = feat_dict['fa_points'] + + return fa_points + + def forward(self, feat_dict): + """Forward pass. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Segmentation map of shape [B, num_classes, N]. + """ + fa_points = self._extract_input(feat_dict) + + fp_points = self.FP_module(fa_points) + fp_points = fp_points.transpose(1, 2).contiguous() + output = self.pre_seg_conv(fp_points) + output = self.cls_seg(output) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/paconv_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/paconv_head.py new file mode 100644 index 000000000..63cc3fdb2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/paconv_head.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn.bricks import ConvModule + +from ..builder import HEADS +from .pointnet2_head import PointNet2Head + + +@HEADS.register_module() +class PAConvHead(PointNet2Head): + r"""PAConv decoder head. + + Decoder head used in `PAConv `_. + Refer to the `official code `_. + + Args: + fp_channels (tuple[tuple[int]]): Tuple of mlp channels in FP modules. + fp_norm_cfg (dict): Config of norm layers used in FP modules. + Default: dict(type='BN2d'). + """ + + def __init__(self, + fp_channels=((768, 256, 256), (384, 256, 256), + (320, 256, 128), (128 + 6, 128, 128, 128)), + fp_norm_cfg=dict(type='BN2d'), + **kwargs): + super(PAConvHead, self).__init__(fp_channels, fp_norm_cfg, **kwargs) + + # https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/model/pointnet2/pointnet2_paconv_seg.py#L53 + # PointNet++'s decoder conv has bias while PAConv's doesn't have + # so we need to rebuild it here + self.pre_seg_conv = ConvModule( + fp_channels[-1][-1], + self.channels, + kernel_size=1, + bias=False, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, feat_dict): + """Forward pass. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Segmentation map of shape [B, num_classes, N]. + """ + sa_xyz, sa_features = self._extract_input(feat_dict) + + # PointNet++ doesn't use the first level of `sa_features` as input + # while PAConv inputs it through skip-connection + fp_feature = sa_features[-1] + + for i in range(self.num_fp): + # consume the points in a bottom-up manner + fp_feature = self.FP_modules[i](sa_xyz[-(i + 2)], sa_xyz[-(i + 1)], + sa_features[-(i + 2)], fp_feature) + + output = self.pre_seg_conv(fp_feature) + output = self.cls_seg(output) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/pointnet2_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/pointnet2_head.py new file mode 100644 index 000000000..28b677e07 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/decode_heads/pointnet2_head.py @@ -0,0 +1,85 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn.bricks import ConvModule +from torch import nn as nn + +from mmdet3d.ops import PointFPModule +from ..builder import HEADS +from .decode_head import Base3DDecodeHead + + +@HEADS.register_module() +class PointNet2Head(Base3DDecodeHead): + r"""PointNet2 decoder head. + + Decoder head used in `PointNet++ `_. + Refer to the `official code `_. + + Args: + fp_channels (tuple[tuple[int]]): Tuple of mlp channels in FP modules. + fp_norm_cfg (dict): Config of norm layers used in FP modules. + Default: dict(type='BN2d'). + """ + + def __init__(self, + fp_channels=((768, 256, 256), (384, 256, 256), + (320, 256, 128), (128, 128, 128, 128)), + fp_norm_cfg=dict(type='BN2d'), + **kwargs): + super(PointNet2Head, self).__init__(**kwargs) + + self.num_fp = len(fp_channels) + self.FP_modules = nn.ModuleList() + for cur_fp_mlps in fp_channels: + self.FP_modules.append( + PointFPModule(mlp_channels=cur_fp_mlps, norm_cfg=fp_norm_cfg)) + + # https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_sem_seg.py#L40 + self.pre_seg_conv = ConvModule( + fp_channels[-1][-1], + self.channels, + kernel_size=1, + bias=True, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + list[torch.Tensor]: Coordinates of multiple levels of points. + list[torch.Tensor]: Features of multiple levels of points. + """ + sa_xyz = feat_dict['sa_xyz'] + sa_features = feat_dict['sa_features'] + assert len(sa_xyz) == len(sa_features) + + return sa_xyz, sa_features + + def forward(self, feat_dict): + """Forward pass. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Segmentation map of shape [B, num_classes, N]. + """ + sa_xyz, sa_features = self._extract_input(feat_dict) + + # https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_sem_seg.py#L24 + sa_features[0] = None + + fp_feature = sa_features[-1] + + for i in range(self.num_fp): + # consume the points in a bottom-up manner + fp_feature = self.FP_modules[i](sa_xyz[-(i + 2)], sa_xyz[-(i + 1)], + sa_features[-(i + 2)], fp_feature) + output = self.pre_seg_conv(fp_feature) + output = self.cls_seg(output) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/__init__.py new file mode 100644 index 000000000..25008c95b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/__init__.py @@ -0,0 +1,25 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .anchor3d_head import Anchor3DHead +from .anchor_free_mono3d_head import AnchorFreeMono3DHead +from .base_conv_bbox_head import BaseConvBboxHead +from .base_mono3d_dense_head import BaseMono3DDenseHead +from .centerpoint_head import CenterHead +from .fcos_mono3d_head import FCOSMono3DHead +from .free_anchor3d_head import FreeAnchor3DHead +from .groupfree3d_head import GroupFree3DHead +from .monoflex_head import MonoFlexHead +from .parta2_rpn_head import PartA2RPNHead +from .pgd_head import PGDHead +from .point_rpn_head import PointRPNHead +from .shape_aware_head import ShapeAwareHead +from .smoke_mono3d_head import SMOKEMono3DHead +from .ssd_3d_head import SSD3DHead +from .vote_head import VoteHead + +__all__ = [ + 'Anchor3DHead', 'FreeAnchor3DHead', 'PartA2RPNHead', 'VoteHead', + 'SSD3DHead', 'BaseConvBboxHead', 'CenterHead', 'ShapeAwareHead', + 'BaseMono3DDenseHead', 'AnchorFreeMono3DHead', 'FCOSMono3DHead', + 'GroupFree3DHead', 'PointRPNHead', 'SMOKEMono3DHead', 'PGDHead', + 'MonoFlexHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor3d_head.py new file mode 100644 index 000000000..b7472645b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor3d_head.py @@ -0,0 +1,516 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn + +from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, limit_period, + xywhr2xyxyr) +from mmdet.core import (build_assigner, build_bbox_coder, + build_prior_generator, build_sampler, multi_apply) +from ..builder import HEADS, build_loss +from .train_mixins import AnchorTrainMixin + + +@HEADS.register_module() +class Anchor3DHead(BaseModule, AnchorTrainMixin): + """Anchor head for SECOND/PointPillars/MVXNet/PartA2. + + Args: + num_classes (int): Number of classes. + in_channels (int): Number of channels in the input feature map. + train_cfg (dict): Train configs. + test_cfg (dict): Test configs. + feat_channels (int): Number of channels of the feature map. + use_direction_classifier (bool): Whether to add a direction classifier. + anchor_generator(dict): Config dict of anchor generator. + assigner_per_size (bool): Whether to do assignment for each separate + anchor size. + assign_per_class (bool): Whether to do assignment for each class. + diff_rad_by_sin (bool): Whether to change the difference into sin + difference for box regression loss. + dir_offset (float | int): The offset of BEV rotation angles. + (TODO: may be moved into box coder) + dir_limit_offset (float | int): The limited range of BEV + rotation angles. (TODO: may be moved into box coder) + bbox_coder (dict): Config dict of box coders. + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + loss_dir (dict): Config of direction classifier loss. + """ + + def __init__(self, + num_classes, + in_channels, + train_cfg, + test_cfg, + feat_channels=256, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + range=[0, -39.68, -1.78, 69.12, 39.68, -1.78], + strides=[2], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + custom_values=[], + reshape_out=False), + assigner_per_size=False, + assign_per_class=False, + diff_rad_by_sin=True, + dir_offset=-np.pi / 2, + dir_limit_offset=0, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.num_classes = num_classes + self.feat_channels = feat_channels + self.diff_rad_by_sin = diff_rad_by_sin + self.use_direction_classifier = use_direction_classifier + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.assigner_per_size = assigner_per_size + self.assign_per_class = assign_per_class + self.dir_offset = dir_offset + self.dir_limit_offset = dir_limit_offset + import warnings + warnings.warn( + 'dir_offset and dir_limit_offset will be depressed and be ' + 'incorporated into box coder in the future') + self.fp16_enabled = False + + # build anchor generator + self.anchor_generator = build_prior_generator(anchor_generator) + # In 3D detection, the anchor stride is connected with anchor size + self.num_anchors = self.anchor_generator.num_base_anchors + # build box coder + self.bbox_coder = build_bbox_coder(bbox_coder) + self.box_code_size = self.bbox_coder.code_size + + # build loss function + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC'] + if not self.use_sigmoid_cls: + self.num_classes += 1 + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.loss_dir = build_loss(loss_dir) + self.fp16_enabled = False + + self._init_layers() + self._init_assigner_sampler() + + if init_cfg is None: + self.init_cfg = dict( + type='Normal', + layer='Conv2d', + std=0.01, + override=dict( + type='Normal', name='conv_cls', std=0.01, bias_prob=0.01)) + + def _init_assigner_sampler(self): + """Initialize the target assigner and sampler of the head.""" + if self.train_cfg is None: + return + + if self.sampling: + self.bbox_sampler = build_sampler(self.train_cfg.sampler) + else: + self.bbox_sampler = PseudoSampler() + if isinstance(self.train_cfg.assigner, dict): + self.bbox_assigner = build_assigner(self.train_cfg.assigner) + elif isinstance(self.train_cfg.assigner, list): + self.bbox_assigner = [ + build_assigner(res) for res in self.train_cfg.assigner + ] + + def _init_layers(self): + """Initialize neural network layers of the head.""" + self.cls_out_channels = self.num_anchors * self.num_classes + self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1) + self.conv_reg = nn.Conv2d(self.feat_channels, + self.num_anchors * self.box_code_size, 1) + if self.use_direction_classifier: + self.conv_dir_cls = nn.Conv2d(self.feat_channels, + self.num_anchors * 2, 1) + + def forward_single(self, x): + """Forward function on a single-scale feature map. + + Args: + x (torch.Tensor): Input features. + + Returns: + tuple[torch.Tensor]: Contain score of each class, bbox + regression and direction classification predictions. + """ + cls_score = self.conv_cls(x) + bbox_pred = self.conv_reg(x) + dir_cls_preds = None + if self.use_direction_classifier: + dir_cls_preds = self.conv_dir_cls(x) + return cls_score, bbox_pred, dir_cls_preds + + def forward(self, feats): + """Forward pass. + + Args: + feats (list[torch.Tensor]): Multi-level features, e.g., + features produced by FPN. + + Returns: + tuple[list[torch.Tensor]]: Multi-level class score, bbox + and direction predictions. + """ + return multi_apply(self.forward_single, feats) + + def get_anchors(self, featmap_sizes, input_metas, device='cuda'): + """Get anchors according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + input_metas (list[dict]): contain pcd and img's meta info. + device (str): device of current module. + + Returns: + list[list[torch.Tensor]]: Anchors of each image, valid flags + of each image. + """ + num_imgs = len(input_metas) + # since feature map sizes of all images are the same, we only compute + # anchors for one time + multi_level_anchors = self.anchor_generator.grid_anchors( + featmap_sizes, device=device) + anchor_list = [multi_level_anchors for _ in range(num_imgs)] + return anchor_list + + def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels, + label_weights, bbox_targets, bbox_weights, dir_targets, + dir_weights, num_total_samples): + """Calculate loss of Single-level results. + + Args: + cls_score (torch.Tensor): Class score in single-level. + bbox_pred (torch.Tensor): Bbox prediction in single-level. + dir_cls_preds (torch.Tensor): Predictions of direction class + in single-level. + labels (torch.Tensor): Labels of class. + label_weights (torch.Tensor): Weights of class loss. + bbox_targets (torch.Tensor): Targets of bbox predictions. + bbox_weights (torch.Tensor): Weights of bbox loss. + dir_targets (torch.Tensor): Targets of direction predictions. + dir_weights (torch.Tensor): Weights of direction loss. + num_total_samples (int): The number of valid samples. + + Returns: + tuple[torch.Tensor]: Losses of class, bbox + and direction, respectively. + """ + # classification loss + if num_total_samples is None: + num_total_samples = int(cls_score.shape[0]) + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes) + assert labels.max().item() <= self.num_classes + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + + # regression loss + bbox_pred = bbox_pred.permute(0, 2, 3, + 1).reshape(-1, self.box_code_size) + bbox_targets = bbox_targets.reshape(-1, self.box_code_size) + bbox_weights = bbox_weights.reshape(-1, self.box_code_size) + + bg_class_ind = self.num_classes + pos_inds = ((labels >= 0) + & (labels < bg_class_ind)).nonzero( + as_tuple=False).reshape(-1) + num_pos = len(pos_inds) + + pos_bbox_pred = bbox_pred[pos_inds] + pos_bbox_targets = bbox_targets[pos_inds] + pos_bbox_weights = bbox_weights[pos_inds] + + # dir loss + if self.use_direction_classifier: + dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2) + dir_targets = dir_targets.reshape(-1) + dir_weights = dir_weights.reshape(-1) + pos_dir_cls_preds = dir_cls_preds[pos_inds] + pos_dir_targets = dir_targets[pos_inds] + pos_dir_weights = dir_weights[pos_inds] + + if num_pos > 0: + code_weight = self.train_cfg.get('code_weight', None) + if code_weight: + pos_bbox_weights = pos_bbox_weights * bbox_weights.new_tensor( + code_weight) + if self.diff_rad_by_sin: + pos_bbox_pred, pos_bbox_targets = self.add_sin_difference( + pos_bbox_pred, pos_bbox_targets) + loss_bbox = self.loss_bbox( + pos_bbox_pred, + pos_bbox_targets, + pos_bbox_weights, + avg_factor=num_total_samples) + + # direction classification loss + loss_dir = None + if self.use_direction_classifier: + loss_dir = self.loss_dir( + pos_dir_cls_preds, + pos_dir_targets, + pos_dir_weights, + avg_factor=num_total_samples) + else: + loss_bbox = pos_bbox_pred.sum() + if self.use_direction_classifier: + loss_dir = pos_dir_cls_preds.sum() + + return loss_cls, loss_bbox, loss_dir + + @staticmethod + def add_sin_difference(boxes1, boxes2): + """Convert the rotation difference to difference in sine function. + + Args: + boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7 + and the 7th dimension is rotation dimension. + boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and + the 7th dimension is rotation dimension. + + Returns: + tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th + dimensions are changed. + """ + rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos( + boxes2[..., 6:7]) + rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[..., + 6:7]) + boxes1 = torch.cat( + [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1) + boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]], + dim=-1) + return boxes1, boxes2 + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + gt_bboxes, + gt_labels, + input_metas, + gt_bboxes_ignore=None): + """Calculate losses. + + Args: + cls_scores (list[torch.Tensor]): Multi-level class scores. + bbox_preds (list[torch.Tensor]): Multi-level bbox predictions. + dir_cls_preds (list[torch.Tensor]): Multi-level direction + class predictions. + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes + of each sample. + gt_labels (list[torch.Tensor]): Gt labels of each sample. + input_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding boxes to ignore. + + Returns: + dict[str, list[torch.Tensor]]: Classification, bbox, and + direction losses of each level. + + - loss_cls (list[torch.Tensor]): Classification losses. + - loss_bbox (list[torch.Tensor]): Box regression losses. + - loss_dir (list[torch.Tensor]): Direction classification + losses. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.anchor_generator.num_levels + device = cls_scores[0].device + anchor_list = self.get_anchors( + featmap_sizes, input_metas, device=device) + label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 + cls_reg_targets = self.anchor_target_3d( + anchor_list, + gt_bboxes, + input_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + num_classes=self.num_classes, + label_channels=label_channels, + sampling=self.sampling) + + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + dir_targets_list, dir_weights_list, num_total_pos, + num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + # num_total_samples = None + losses_cls, losses_bbox, losses_dir = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + dir_cls_preds, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + dir_targets_list, + dir_weights_list, + num_total_samples=num_total_samples) + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir) + + def get_bboxes(self, + cls_scores, + bbox_preds, + dir_cls_preds, + input_metas, + cfg=None, + rescale=False): + """Get bboxes of anchor head. + + Args: + cls_scores (list[torch.Tensor]): Multi-level class scores. + bbox_preds (list[torch.Tensor]): Multi-level bbox predictions. + dir_cls_preds (list[torch.Tensor]): Multi-level direction + class predictions. + input_metas (list[dict]): Contain pcd and img's meta info. + cfg (:obj:`ConfigDict`): Training or testing config. + rescale (list[torch.Tensor]): Whether th rescale bbox. + + Returns: + list[tuple]: Prediction resultes of batches. + """ + assert len(cls_scores) == len(bbox_preds) + assert len(cls_scores) == len(dir_cls_preds) + num_levels = len(cls_scores) + featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] + device = cls_scores[0].device + mlvl_anchors = self.anchor_generator.grid_anchors( + featmap_sizes, device=device) + mlvl_anchors = [ + anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors + ] + + result_list = [] + for img_id in range(len(input_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + dir_cls_pred_list = [ + dir_cls_preds[i][img_id].detach() for i in range(num_levels) + ] + + input_meta = input_metas[img_id] + proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list, + dir_cls_pred_list, mlvl_anchors, + input_meta, cfg, rescale) + result_list.append(proposals) + return result_list + + def get_bboxes_single(self, + cls_scores, + bbox_preds, + dir_cls_preds, + mlvl_anchors, + input_meta, + cfg=None, + rescale=False): + """Get bboxes of single branch. + + Args: + cls_scores (torch.Tensor): Class score in single batch. + bbox_preds (torch.Tensor): Bbox prediction in single batch. + dir_cls_preds (torch.Tensor): Predictions of direction class + in single batch. + mlvl_anchors (List[torch.Tensor]): Multi-level anchors + in single batch. + input_meta (list[dict]): Contain pcd and img's meta info. + cfg (:obj:`ConfigDict`): Training or testing config. + rescale (list[torch.Tensor]): whether th rescale bbox. + + Returns: + tuple: Contain predictions of single batch. + + - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes. + - scores (torch.Tensor): Class score of each bbox. + - labels (torch.Tensor): Label of each bbox. + """ + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_dir_scores = [] + for cls_score, bbox_pred, dir_cls_pred, anchors in zip( + cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:] + dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2) + dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] + + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.num_classes) + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1) + bbox_pred = bbox_pred.permute(1, 2, + 0).reshape(-1, self.box_code_size) + + nms_pre = cfg.get('nms_pre', -1) + if nms_pre > 0 and scores.shape[0] > nms_pre: + if self.use_sigmoid_cls: + max_scores, _ = scores.max(dim=1) + else: + max_scores, _ = scores[:, :-1].max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + anchors = anchors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + dir_cls_score = dir_cls_score[topk_inds] + + bboxes = self.bbox_coder.decode(anchors, bbox_pred) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_dir_scores.append(dir_cls_score) + + mlvl_bboxes = torch.cat(mlvl_bboxes) + mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + mlvl_bboxes, box_dim=self.box_code_size).bev) + mlvl_scores = torch.cat(mlvl_scores) + mlvl_dir_scores = torch.cat(mlvl_dir_scores) + + if self.use_sigmoid_cls: + # Add a dummy background class to the front when using sigmoid + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + + score_thr = cfg.get('score_thr', 0) + results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_scores, score_thr, cfg.max_num, + cfg, mlvl_dir_scores) + bboxes, scores, labels, dir_scores = results + if bboxes.shape[0] > 0: + dir_rot = limit_period(bboxes[..., 6] - self.dir_offset, + self.dir_limit_offset, np.pi) + bboxes[..., 6] = ( + dir_rot + self.dir_offset + + np.pi * dir_scores.to(bboxes.dtype)) + bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size) + return bboxes, scores, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor_free_mono3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor_free_mono3d_head.py new file mode 100644 index 000000000..e9b27d0b8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/anchor_free_mono3d_head.py @@ -0,0 +1,534 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import abstractmethod + +import torch +from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init +from mmcv.runner import force_fp32 +from torch import nn as nn + +from mmdet.core import multi_apply +from ..builder import HEADS, build_loss +from .base_mono3d_dense_head import BaseMono3DDenseHead + + +@HEADS.register_module() +class AnchorFreeMono3DHead(BaseMono3DDenseHead): + """Anchor-free head for monocular 3D object detection. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + feat_channels (int, optional): Number of hidden channels. + Used in child classes. Defaults to 256. + stacked_convs (int, optional): Number of stacking convs of the head. + strides (tuple, optional): Downsample factor of each feature map. + dcn_on_last_conv (bool, optional): If true, use dcn in the last + layer of towers. Default: False. + conv_bias (bool | str, optional): If specified as `auto`, it will be + decided by the norm_cfg. Bias of conv will be set as True + if `norm_cfg` is None, otherwise False. Default: 'auto'. + background_label (int, optional): Label ID of background, + set as 0 for RPN and num_classes for other heads. + It will automatically set as `num_classes` if None is given. + use_direction_classifier (bool, optional): + Whether to add a direction classifier. + diff_rad_by_sin (bool, optional): Whether to change the difference + into sin difference for box regression loss. Defaults to True. + dir_offset (float, optional): Parameter used in direction + classification. Defaults to 0. + dir_limit_offset (float, optional): Parameter used in direction + classification. Defaults to 0. + loss_cls (dict, optional): Config of classification loss. + loss_bbox (dict, optional): Config of localization loss. + loss_dir (dict, optional): Config of direction classifier loss. + loss_attr (dict, optional): Config of attribute classifier loss, + which is only active when `pred_attrs=True`. + bbox_code_size (int, optional): Dimensions of predicted bounding boxes. + pred_attrs (bool, optional): Whether to predict attributes. + Defaults to False. + num_attrs (int, optional): The number of attributes to be predicted. + Default: 9. + pred_velo (bool, optional): Whether to predict velocity. + Defaults to False. + pred_bbox2d (bool, optional): Whether to predict 2D boxes. + Defaults to False. + group_reg_dims (tuple[int], optional): The dimension of each regression + target group. Default: (2, 1, 3, 1, 2). + cls_branch (tuple[int], optional): Channels for classification branch. + Default: (128, 64). + reg_branch (tuple[tuple], optional): Channels for regression branch. + Default: ( + (128, 64), # offset + (128, 64), # depth + (64, ), # size + (64, ), # rot + () # velo + ), + dir_branch (tuple[int], optional): Channels for direction + classification branch. Default: (64, ). + attr_branch (tuple[int], optional): Channels for classification branch. + Default: (64, ). + conv_cfg (dict, optional): Config dict for convolution layer. + Default: None. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + train_cfg (dict, optional): Training config of anchor head. + test_cfg (dict, optional): Testing config of anchor head. + """ # noqa: W605 + + _version = 1 + + def __init__( + self, + num_classes, + in_channels, + feat_channels=256, + stacked_convs=4, + strides=(4, 8, 16, 32, 64), + dcn_on_last_conv=False, + conv_bias='auto', + background_label=None, + use_direction_classifier=True, + diff_rad_by_sin=True, + dir_offset=0, + dir_limit_offset=0, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + loss_attr=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), + bbox_code_size=9, # For nuscenes + pred_attrs=False, + num_attrs=9, # For nuscenes + pred_velo=False, + pred_bbox2d=False, + group_reg_dims=(2, 1, 3, 1, 2), # offset, depth, size, rot, velo, + cls_branch=(128, 64), + reg_branch=( + (128, 64), # offset + (128, 64), # depth + (64, ), # size + (64, ), # rot + () # velo + ), + dir_branch=(64, ), + attr_branch=(64, ), + conv_cfg=None, + norm_cfg=None, + train_cfg=None, + test_cfg=None, + init_cfg=None): + super(AnchorFreeMono3DHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.cls_out_channels = num_classes + self.in_channels = in_channels + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.strides = strides + self.dcn_on_last_conv = dcn_on_last_conv + assert conv_bias == 'auto' or isinstance(conv_bias, bool) + self.conv_bias = conv_bias + self.use_direction_classifier = use_direction_classifier + self.diff_rad_by_sin = diff_rad_by_sin + self.dir_offset = dir_offset + self.dir_limit_offset = dir_limit_offset + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.loss_dir = build_loss(loss_dir) + self.bbox_code_size = bbox_code_size + self.group_reg_dims = list(group_reg_dims) + self.cls_branch = cls_branch + self.reg_branch = reg_branch + assert len(reg_branch) == len(group_reg_dims), 'The number of '\ + 'element in reg_branch and group_reg_dims should be the same.' + self.pred_velo = pred_velo + self.pred_bbox2d = pred_bbox2d + self.out_channels = [] + for reg_branch_channels in reg_branch: + if len(reg_branch_channels) > 0: + self.out_channels.append(reg_branch_channels[-1]) + else: + self.out_channels.append(-1) + self.dir_branch = dir_branch + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.fp16_enabled = False + self.background_label = ( + num_classes if background_label is None else background_label) + # background_label should be either 0 or num_classes + assert (self.background_label == 0 + or self.background_label == num_classes) + self.pred_attrs = pred_attrs + self.attr_background_label = -1 + self.num_attrs = num_attrs + if self.pred_attrs: + self.attr_background_label = num_attrs + self.loss_attr = build_loss(loss_attr) + self.attr_branch = attr_branch + + self._init_layers() + + def _init_layers(self): + """Initialize layers of the head.""" + self._init_cls_convs() + self._init_reg_convs() + self._init_predictor() + + def _init_cls_convs(self): + """Initialize classification conv layers of the head.""" + self.cls_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + if self.dcn_on_last_conv and i == self.stacked_convs - 1: + conv_cfg = dict(type='DCNv2') + else: + conv_cfg = self.conv_cfg + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias)) + + def _init_reg_convs(self): + """Initialize bbox regression conv layers of the head.""" + self.reg_convs = nn.ModuleList() + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + if self.dcn_on_last_conv and i == self.stacked_convs - 1: + conv_cfg = dict(type='DCNv2') + else: + conv_cfg = self.conv_cfg + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias)) + + def _init_branch(self, conv_channels=(64), conv_strides=(1)): + """Initialize conv layers as a prediction branch.""" + conv_before_pred = nn.ModuleList() + if isinstance(conv_channels, int): + conv_channels = [self.feat_channels] + [conv_channels] + conv_strides = [conv_strides] + else: + conv_channels = [self.feat_channels] + list(conv_channels) + conv_strides = list(conv_strides) + for i in range(len(conv_strides)): + conv_before_pred.append( + ConvModule( + conv_channels[i], + conv_channels[i + 1], + 3, + stride=conv_strides[i], + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.conv_bias)) + + return conv_before_pred + + def _init_predictor(self): + """Initialize predictor layers of the head.""" + self.conv_cls_prev = self._init_branch( + conv_channels=self.cls_branch, + conv_strides=(1, ) * len(self.cls_branch)) + self.conv_cls = nn.Conv2d(self.cls_branch[-1], self.cls_out_channels, + 1) + self.conv_reg_prevs = nn.ModuleList() + self.conv_regs = nn.ModuleList() + for i in range(len(self.group_reg_dims)): + reg_dim = self.group_reg_dims[i] + reg_branch_channels = self.reg_branch[i] + out_channel = self.out_channels[i] + if len(reg_branch_channels) > 0: + self.conv_reg_prevs.append( + self._init_branch( + conv_channels=reg_branch_channels, + conv_strides=(1, ) * len(reg_branch_channels))) + self.conv_regs.append(nn.Conv2d(out_channel, reg_dim, 1)) + else: + self.conv_reg_prevs.append(None) + self.conv_regs.append( + nn.Conv2d(self.feat_channels, reg_dim, 1)) + if self.use_direction_classifier: + self.conv_dir_cls_prev = self._init_branch( + conv_channels=self.dir_branch, + conv_strides=(1, ) * len(self.dir_branch)) + self.conv_dir_cls = nn.Conv2d(self.dir_branch[-1], 2, 1) + if self.pred_attrs: + self.conv_attr_prev = self._init_branch( + conv_channels=self.attr_branch, + conv_strides=(1, ) * len(self.attr_branch)) + self.conv_attr = nn.Conv2d(self.attr_branch[-1], self.num_attrs, 1) + + def init_weights(self): + """Initialize weights of the head. + + We currently still use the customized defined init_weights because the + default init of DCN triggered by the init_cfg will init + conv_offset.weight, which mistakenly affects the training stability. + """ + for modules in [self.cls_convs, self.reg_convs, self.conv_cls_prev]: + for m in modules: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + for conv_reg_prev in self.conv_reg_prevs: + if conv_reg_prev is None: + continue + for m in conv_reg_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + if self.use_direction_classifier: + for m in self.conv_dir_cls_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + if self.pred_attrs: + for m in self.conv_attr_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + bias_cls = bias_init_with_prob(0.01) + normal_init(self.conv_cls, std=0.01, bias=bias_cls) + for conv_reg in self.conv_regs: + normal_init(conv_reg, std=0.01) + if self.use_direction_classifier: + normal_init(self.conv_dir_cls, std=0.01, bias=bias_cls) + if self.pred_attrs: + normal_init(self.conv_attr, std=0.01, bias=bias_cls) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: Usually contain classification scores, bbox predictions, + and direction class predictions. + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + attr_preds (list[Tensor]): Attribute scores for each scale + level, each is a 4D-tensor, the channel number is + num_points * num_attrs. + """ + return multi_apply(self.forward_single, feats)[:5] + + def forward_single(self, x): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + + Returns: + tuple: Scores for each class, bbox predictions, direction class, + and attributes, features after classification and regression + conv layers, some models needs these features like FCOS. + """ + cls_feat = x + reg_feat = x + + for cls_layer in self.cls_convs: + cls_feat = cls_layer(cls_feat) + # clone the cls_feat for reusing the feature map afterwards + clone_cls_feat = cls_feat.clone() + for conv_cls_prev_layer in self.conv_cls_prev: + clone_cls_feat = conv_cls_prev_layer(clone_cls_feat) + cls_score = self.conv_cls(clone_cls_feat) + + for reg_layer in self.reg_convs: + reg_feat = reg_layer(reg_feat) + bbox_pred = [] + for i in range(len(self.group_reg_dims)): + # clone the reg_feat for reusing the feature map afterwards + clone_reg_feat = reg_feat.clone() + if len(self.reg_branch[i]) > 0: + for conv_reg_prev_layer in self.conv_reg_prevs[i]: + clone_reg_feat = conv_reg_prev_layer(clone_reg_feat) + bbox_pred.append(self.conv_regs[i](clone_reg_feat)) + bbox_pred = torch.cat(bbox_pred, dim=1) + + dir_cls_pred = None + if self.use_direction_classifier: + clone_reg_feat = reg_feat.clone() + for conv_dir_cls_prev_layer in self.conv_dir_cls_prev: + clone_reg_feat = conv_dir_cls_prev_layer(clone_reg_feat) + dir_cls_pred = self.conv_dir_cls(clone_reg_feat) + + attr_pred = None + if self.pred_attrs: + # clone the cls_feat for reusing the feature map afterwards + clone_cls_feat = cls_feat.clone() + for conv_attr_prev_layer in self.conv_attr_prev: + clone_cls_feat = conv_attr_prev_layer(clone_cls_feat) + attr_pred = self.conv_attr(clone_cls_feat) + + return cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, \ + reg_feat + + @abstractmethod + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + attr_preds, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + attr_preds (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_attrs. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_3d (list[Tensor]): 3D Ground truth bboxes for each + image with shape (num_gts, bbox_code_size). + gt_labels_3d (list[Tensor]): 3D class indices of each box. + centers2d (list[Tensor]): Projected 3D centers onto 2D images. + depths (list[Tensor]): Depth of projected centers on 2D images. + attr_labels (list[Tensor], optional): Attribute indices + corresponding to each box + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + """ + + raise NotImplementedError + + @abstractmethod + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds')) + def get_bboxes(self, + cls_scores, + bbox_preds, + dir_cls_preds, + attr_preds, + img_metas, + cfg=None, + rescale=None): + """Transform network output for a batch into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_points * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_points * bbox_code_size, H, W) + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + attr_preds (list[Tensor]): Attribute scores for each scale level + Has shape (N, num_points * num_attrs, H, W) + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + rescale (bool): If True, return boxes in original image space + """ + + raise NotImplementedError + + @abstractmethod + def get_targets(self, points, gt_bboxes_list, gt_labels_list, + gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list, + depths_list, attr_labels_list): + """Compute regression, classification and centerss targets for points + in multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each + image, each has shape (num_gt, bbox_code_size). + gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each + box, each has shape (num_gt,). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + each has shape (num_gt, 2). + depths_list (list[Tensor]): Depth of projected 3D centers onto 2D + image, each has shape (num_gt, 1). + attr_labels_list (list[Tensor]): Attribute labels of each box, + each has shape (num_gt,). + """ + raise NotImplementedError + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Get points of a single scale level.""" + h, w = featmap_size + x_range = torch.arange(w, dtype=dtype, device=device) + y_range = torch.arange(h, dtype=dtype, device=device) + y, x = torch.meshgrid(y_range, x_range) + if flatten: + y = y.flatten() + x = x.flatten() + return y, x + + def get_points(self, featmap_sizes, dtype, device, flatten=False): + """Get points according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + dtype (torch.dtype): Type of points. + device (torch.device): Device of points. + + Returns: + tuple: points of each image. + """ + mlvl_points = [] + for i in range(len(featmap_sizes)): + mlvl_points.append( + self._get_points_single(featmap_sizes[i], self.strides[i], + dtype, device, flatten)) + return mlvl_points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_conv_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_conv_bbox_head.py new file mode 100644 index 000000000..ec5eaa616 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_conv_bbox_head.py @@ -0,0 +1,131 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from mmcv.cnn.bricks import build_conv_layer +from mmcv.runner import BaseModule +from torch import nn as nn + +from ..builder import HEADS + + +@HEADS.register_module() +class BaseConvBboxHead(BaseModule): + r"""More general bbox head, with shared conv layers and two optional + separated branches. + + .. code-block:: none + + /-> cls convs -> cls_score + shared convs + \-> reg convs -> bbox_pred + """ + + def __init__(self, + in_channels=0, + shared_conv_channels=(), + cls_conv_channels=(), + num_cls_out_channels=0, + reg_conv_channels=(), + num_reg_out_channels=0, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + bias='auto', + init_cfg=None, + *args, + **kwargs): + super(BaseConvBboxHead, self).__init__( + init_cfg=init_cfg, *args, **kwargs) + assert in_channels > 0 + assert num_cls_out_channels > 0 + assert num_reg_out_channels > 0 + self.in_channels = in_channels + self.shared_conv_channels = shared_conv_channels + self.cls_conv_channels = cls_conv_channels + self.num_cls_out_channels = num_cls_out_channels + self.reg_conv_channels = reg_conv_channels + self.num_reg_out_channels = num_reg_out_channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.bias = bias + + # add shared convs + if len(self.shared_conv_channels) > 0: + self.shared_convs = self._add_conv_branch( + self.in_channels, self.shared_conv_channels) + out_channels = self.shared_conv_channels[-1] + else: + out_channels = self.in_channels + + # add cls specific branch + prev_channel = out_channels + if len(self.cls_conv_channels) > 0: + self.cls_convs = self._add_conv_branch(prev_channel, + self.cls_conv_channels) + prev_channel = self.cls_conv_channels[-1] + + self.conv_cls = build_conv_layer( + conv_cfg, + in_channels=prev_channel, + out_channels=num_cls_out_channels, + kernel_size=1) + # add reg specific branch + prev_channel = out_channels + if len(self.reg_conv_channels) > 0: + self.reg_convs = self._add_conv_branch(prev_channel, + self.reg_conv_channels) + prev_channel = self.reg_conv_channels[-1] + + self.conv_reg = build_conv_layer( + conv_cfg, + in_channels=prev_channel, + out_channels=num_reg_out_channels, + kernel_size=1) + + def _add_conv_branch(self, in_channels, conv_channels): + """Add shared or separable branch.""" + conv_spec = [in_channels] + list(conv_channels) + # add branch specific conv layers + conv_layers = nn.Sequential() + for i in range(len(conv_spec) - 1): + conv_layers.add_module( + f'layer{i}', + ConvModule( + conv_spec[i], + conv_spec[i + 1], + kernel_size=1, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + bias=self.bias, + inplace=True)) + return conv_layers + + def forward(self, feats): + """Forward. + + Args: + feats (Tensor): Input features + + Returns: + Tensor: Class scores predictions + Tensor: Regression predictions + """ + # shared part + if len(self.shared_conv_channels) > 0: + x = self.shared_convs(feats) + + # separate branches + x_cls = x + x_reg = x + + if len(self.cls_conv_channels) > 0: + x_cls = self.cls_convs(x_cls) + cls_score = self.conv_cls(x_cls) + + if len(self.reg_conv_channels) > 0: + x_reg = self.reg_convs(x_reg) + bbox_pred = self.conv_reg(x_reg) + + return cls_score, bbox_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_mono3d_dense_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_mono3d_dense_head.py new file mode 100644 index 000000000..244447305 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/base_mono3d_dense_head.py @@ -0,0 +1,78 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.runner import BaseModule + + +class BaseMono3DDenseHead(BaseModule, metaclass=ABCMeta): + """Base class for Monocular 3D DenseHeads.""" + + def __init__(self, init_cfg=None): + super(BaseMono3DDenseHead, self).__init__(init_cfg=init_cfg) + + @abstractmethod + def loss(self, **kwargs): + """Compute losses of the head.""" + pass + + @abstractmethod + def get_bboxes(self, **kwargs): + """Transform network output for a batch into bbox predictions.""" + pass + + def forward_train(self, + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_3d=None, + gt_labels_3d=None, + centers2d=None, + depths=None, + attr_labels=None, + gt_bboxes_ignore=None, + proposal_cfg=None, + **kwargs): + """ + Args: + x (list[Tensor]): Features from FPN. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (list[Tensor]): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_3d (list[Tensor]): 3D ground truth bboxes of the image, + shape (num_gts, self.bbox_code_size). + gt_labels_3d (list[Tensor]): 3D ground truth labels of each box, + shape (num_gts,). + centers2d (list[Tensor]): Projected 3D center of each box, + shape (num_gts, 2). + depths (list[Tensor]): Depth of projected 3D center of each box, + shape (num_gts,). + attr_labels (list[Tensor]): Attribute labels of each box, + shape (num_gts,). + gt_bboxes_ignore (list[Tensor]): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + proposal_cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + + Returns: + tuple: + losses: (dict[str, Tensor]): A dictionary of loss components. + proposal_list (list[Tensor]): Proposals of each image. + """ + outs = self(x) + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, gt_bboxes_3d, centers2d, depths, + attr_labels, img_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels, + img_metas) + losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + if proposal_cfg is None: + return losses + else: + proposal_list = self.get_bboxes(*outs, img_metas, cfg=proposal_cfg) + return losses, proposal_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/centerpoint_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/centerpoint_head.py new file mode 100644 index 000000000..2cf758bd0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/centerpoint_head.py @@ -0,0 +1,830 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch +from mmcv.cnn import ConvModule, build_conv_layer +from mmcv.runner import BaseModule, force_fp32 +from torch import nn + +from mmdet3d.core import (circle_nms, draw_heatmap_gaussian, gaussian_radius, + xywhr2xyxyr) +from mmdet3d.core.post_processing import nms_bev +from mmdet3d.models import builder +from mmdet3d.models.utils import clip_sigmoid +from mmdet.core import build_bbox_coder, multi_apply +from ..builder import HEADS, build_loss + + +@HEADS.register_module() +class SeparateHead(BaseModule): + """SeparateHead for CenterHead. + + Args: + in_channels (int): Input channels for conv_layer. + heads (dict): Conv information. + head_conv (int, optional): Output channels. + Default: 64. + final_kernel (int, optional): Kernel size for the last conv layer. + Default: 1. + init_bias (float, optional): Initial bias. Default: -2.19. + conv_cfg (dict, optional): Config of conv layer. + Default: dict(type='Conv2d') + norm_cfg (dict, optional): Config of norm layer. + Default: dict(type='BN2d'). + bias (str, optional): Type of bias. Default: 'auto'. + """ + + def __init__(self, + in_channels, + heads, + head_conv=64, + final_kernel=1, + init_bias=-2.19, + conv_cfg=dict(type='Conv2d'), + norm_cfg=dict(type='BN2d'), + bias='auto', + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(SeparateHead, self).__init__(init_cfg=init_cfg) + self.heads = heads + self.init_bias = init_bias + for head in self.heads: + classes, num_conv = self.heads[head] + + conv_layers = [] + c_in = in_channels + for i in range(num_conv - 1): + conv_layers.append( + ConvModule( + c_in, + head_conv, + kernel_size=final_kernel, + stride=1, + padding=final_kernel // 2, + bias=bias, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg)) + c_in = head_conv + + conv_layers.append( + build_conv_layer( + conv_cfg, + head_conv, + classes, + kernel_size=final_kernel, + stride=1, + padding=final_kernel // 2, + bias=True)) + conv_layers = nn.Sequential(*conv_layers) + + self.__setattr__(head, conv_layers) + + if init_cfg is None: + self.init_cfg = dict(type='Kaiming', layer='Conv2d') + + def init_weights(self): + """Initialize weights.""" + super().init_weights() + for head in self.heads: + if head == 'heatmap': + self.__getattr__(head)[-1].bias.data.fill_(self.init_bias) + + def forward(self, x): + """Forward function for SepHead. + + Args: + x (torch.Tensor): Input feature map with the shape of + [B, 512, 128, 128]. + + Returns: + dict[str: torch.Tensor]: contains the following keys: + + -reg (torch.Tensor): 2D regression value with the + shape of [B, 2, H, W]. + -height (torch.Tensor): Height value with the + shape of [B, 1, H, W]. + -dim (torch.Tensor): Size value with the shape + of [B, 3, H, W]. + -rot (torch.Tensor): Rotation value with the + shape of [B, 2, H, W]. + -vel (torch.Tensor): Velocity value with the + shape of [B, 2, H, W]. + -heatmap (torch.Tensor): Heatmap with the shape of + [B, N, H, W]. + """ + ret_dict = dict() + for head in self.heads: + ret_dict[head] = self.__getattr__(head)(x) + + return ret_dict + + +@HEADS.register_module() +class DCNSeparateHead(BaseModule): + r"""DCNSeparateHead for CenterHead. + + .. code-block:: none + /-----> DCN for heatmap task -----> heatmap task. + feature + \-----> DCN for regression tasks -----> regression tasks + + Args: + in_channels (int): Input channels for conv_layer. + num_cls (int): Number of classes. + heads (dict): Conv information. + dcn_config (dict): Config of dcn layer. + head_conv (int, optional): Output channels. + Default: 64. + final_kernel (int, optional): Kernel size for the last conv + layer. Default: 1. + init_bias (float, optional): Initial bias. Default: -2.19. + conv_cfg (dict, optional): Config of conv layer. + Default: dict(type='Conv2d') + norm_cfg (dict, optional): Config of norm layer. + Default: dict(type='BN2d'). + bias (str, optional): Type of bias. Default: 'auto'. + """ # noqa: W605 + + def __init__(self, + in_channels, + num_cls, + heads, + dcn_config, + head_conv=64, + final_kernel=1, + init_bias=-2.19, + conv_cfg=dict(type='Conv2d'), + norm_cfg=dict(type='BN2d'), + bias='auto', + init_cfg=None, + **kwargs): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(DCNSeparateHead, self).__init__(init_cfg=init_cfg) + if 'heatmap' in heads: + heads.pop('heatmap') + # feature adaptation with dcn + # use separate features for classification / regression + self.feature_adapt_cls = build_conv_layer(dcn_config) + + self.feature_adapt_reg = build_conv_layer(dcn_config) + + # heatmap prediction head + cls_head = [ + ConvModule( + in_channels, + head_conv, + kernel_size=3, + padding=1, + conv_cfg=conv_cfg, + bias=bias, + norm_cfg=norm_cfg), + build_conv_layer( + conv_cfg, + head_conv, + num_cls, + kernel_size=3, + stride=1, + padding=1, + bias=bias) + ] + self.cls_head = nn.Sequential(*cls_head) + self.init_bias = init_bias + # other regression target + self.task_head = SeparateHead( + in_channels, + heads, + head_conv=head_conv, + final_kernel=final_kernel, + bias=bias) + if init_cfg is None: + self.init_cfg = dict(type='Kaiming', layer='Conv2d') + + def init_weights(self): + """Initialize weights.""" + super().init_weights() + self.cls_head[-1].bias.data.fill_(self.init_bias) + + def forward(self, x): + """Forward function for DCNSepHead. + + Args: + x (torch.Tensor): Input feature map with the shape of + [B, 512, 128, 128]. + + Returns: + dict[str: torch.Tensor]: contains the following keys: + + -reg (torch.Tensor): 2D regression value with the + shape of [B, 2, H, W]. + -height (torch.Tensor): Height value with the + shape of [B, 1, H, W]. + -dim (torch.Tensor): Size value with the shape + of [B, 3, H, W]. + -rot (torch.Tensor): Rotation value with the + shape of [B, 2, H, W]. + -vel (torch.Tensor): Velocity value with the + shape of [B, 2, H, W]. + -heatmap (torch.Tensor): Heatmap with the shape of + [B, N, H, W]. + """ + center_feat = self.feature_adapt_cls(x) + reg_feat = self.feature_adapt_reg(x) + + cls_score = self.cls_head(center_feat) + ret = self.task_head(reg_feat) + ret['heatmap'] = cls_score + + return ret + + +@HEADS.register_module() +class CenterHead(BaseModule): + """CenterHead for CenterPoint. + + Args: + in_channels (list[int] | int, optional): Channels of the input + feature map. Default: [128]. + tasks (list[dict], optional): Task information including class number + and class names. Default: None. + train_cfg (dict, optional): Train-time configs. Default: None. + test_cfg (dict, optional): Test-time configs. Default: None. + bbox_coder (dict, optional): Bbox coder configs. Default: None. + common_heads (dict, optional): Conv information for common heads. + Default: dict(). + loss_cls (dict, optional): Config of classification loss function. + Default: dict(type='GaussianFocalLoss', reduction='mean'). + loss_bbox (dict, optional): Config of regression loss function. + Default: dict(type='L1Loss', reduction='none'). + separate_head (dict, optional): Config of separate head. Default: dict( + type='SeparateHead', init_bias=-2.19, final_kernel=3) + share_conv_channel (int, optional): Output channels for share_conv + layer. Default: 64. + num_heatmap_convs (int, optional): Number of conv layers for heatmap + conv layer. Default: 2. + conv_cfg (dict, optional): Config of conv layer. + Default: dict(type='Conv2d') + norm_cfg (dict, optional): Config of norm layer. + Default: dict(type='BN2d'). + bias (str, optional): Type of bias. Default: 'auto'. + """ + + def __init__(self, + in_channels=[128], + tasks=None, + train_cfg=None, + test_cfg=None, + bbox_coder=None, + common_heads=dict(), + loss_cls=dict(type='GaussianFocalLoss', reduction='mean'), + loss_bbox=dict( + type='L1Loss', reduction='none', loss_weight=0.25), + separate_head=dict( + type='SeparateHead', init_bias=-2.19, final_kernel=3), + share_conv_channel=64, + num_heatmap_convs=2, + conv_cfg=dict(type='Conv2d'), + norm_cfg=dict(type='BN2d'), + bias='auto', + norm_bbox=True, + init_cfg=None): + assert init_cfg is None, 'To prevent abnormal initialization ' \ + 'behavior, init_cfg is not allowed to be set' + super(CenterHead, self).__init__(init_cfg=init_cfg) + + num_classes = [len(t['class_names']) for t in tasks] + self.class_names = [t['class_names'] for t in tasks] + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.in_channels = in_channels + self.num_classes = num_classes + self.norm_bbox = norm_bbox + + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.bbox_coder = build_bbox_coder(bbox_coder) + self.num_anchor_per_locs = [n for n in num_classes] + self.fp16_enabled = False + + # a shared convolution + self.shared_conv = ConvModule( + in_channels, + share_conv_channel, + kernel_size=3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=bias) + + self.task_heads = nn.ModuleList() + + for num_cls in num_classes: + heads = copy.deepcopy(common_heads) + heads.update(dict(heatmap=(num_cls, num_heatmap_convs))) + separate_head.update( + in_channels=share_conv_channel, heads=heads, num_cls=num_cls) + self.task_heads.append(builder.build_head(separate_head)) + + def forward_single(self, x): + """Forward function for CenterPoint. + + Args: + x (torch.Tensor): Input feature map with the shape of + [B, 512, 128, 128]. + + Returns: + list[dict]: Output results for tasks. + """ + ret_dicts = [] + + x = self.shared_conv(x) + + for task in self.task_heads: + ret_dicts.append(task(x)) + + return ret_dicts + + def forward(self, feats): + """Forward pass. + + Args: + feats (list[torch.Tensor]): Multi-level features, e.g., + features produced by FPN. + + Returns: + tuple(list[dict]): Output results for tasks. + """ + return multi_apply(self.forward_single, feats) + + def _gather_feat(self, feat, ind, mask=None): + """Gather feature map. + + Given feature map and index, return indexed feature map. + + Args: + feat (torch.tensor): Feature map with the shape of [B, H*W, 10]. + ind (torch.Tensor): Index of the ground truth boxes with the + shape of [B, max_obj]. + mask (torch.Tensor, optional): Mask of the feature map with the + shape of [B, max_obj]. Default: None. + + Returns: + torch.Tensor: Feature map after gathering with the shape + of [B, max_obj, 10]. + """ + dim = feat.size(2) + ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) + feat = feat.gather(1, ind) + if mask is not None: + mask = mask.unsqueeze(2).expand_as(feat) + feat = feat[mask] + feat = feat.view(-1, dim) + return feat + + def get_targets(self, gt_bboxes_3d, gt_labels_3d): + """Generate targets. + + How each output is transformed: + + Each nested list is transposed so that all same-index elements in + each sub-list (1, ..., N) become the new sub-lists. + [ [a0, a1, a2, ... ], [b0, b1, b2, ... ], ... ] + ==> [ [a0, b0, ... ], [a1, b1, ... ], [a2, b2, ... ] ] + + The new transposed nested list is converted into a list of N + tensors generated by concatenating tensors in the new sub-lists. + [ tensor0, tensor1, tensor2, ... ] + + Args: + gt_bboxes_3d (list[:obj:`LiDARInstance3DBoxes`]): Ground + truth gt boxes. + gt_labels_3d (list[torch.Tensor]): Labels of boxes. + + Returns: + Returns: + tuple[list[torch.Tensor]]: Tuple of target including + the following results in order. + + - list[torch.Tensor]: Heatmap scores. + - list[torch.Tensor]: Ground truth boxes. + - list[torch.Tensor]: Indexes indicating the + position of the valid boxes. + - list[torch.Tensor]: Masks indicating which + boxes are valid. + """ + heatmaps, anno_boxes, inds, masks = multi_apply( + self.get_targets_single, gt_bboxes_3d, gt_labels_3d) + # Transpose heatmaps + heatmaps = list(map(list, zip(*heatmaps))) + heatmaps = [torch.stack(hms_) for hms_ in heatmaps] + # Transpose anno_boxes + anno_boxes = list(map(list, zip(*anno_boxes))) + anno_boxes = [torch.stack(anno_boxes_) for anno_boxes_ in anno_boxes] + # Transpose inds + inds = list(map(list, zip(*inds))) + inds = [torch.stack(inds_) for inds_ in inds] + # Transpose inds + masks = list(map(list, zip(*masks))) + masks = [torch.stack(masks_) for masks_ in masks] + return heatmaps, anno_boxes, inds, masks + + def get_targets_single(self, gt_bboxes_3d, gt_labels_3d): + """Generate training targets for a single sample. + + Args: + gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): Ground truth gt boxes. + gt_labels_3d (torch.Tensor): Labels of boxes. + + Returns: + tuple[list[torch.Tensor]]: Tuple of target including + the following results in order. + + - list[torch.Tensor]: Heatmap scores. + - list[torch.Tensor]: Ground truth boxes. + - list[torch.Tensor]: Indexes indicating the position + of the valid boxes. + - list[torch.Tensor]: Masks indicating which boxes + are valid. + """ + device = gt_labels_3d.device + gt_bboxes_3d = torch.cat( + (gt_bboxes_3d.gravity_center, gt_bboxes_3d.tensor[:, 3:]), + dim=1).to(device) + max_objs = self.train_cfg['max_objs'] * self.train_cfg['dense_reg'] + grid_size = torch.tensor(self.train_cfg['grid_size']) + pc_range = torch.tensor(self.train_cfg['point_cloud_range']) + voxel_size = torch.tensor(self.train_cfg['voxel_size']) + + feature_map_size = grid_size[:2] // self.train_cfg['out_size_factor'] + + # reorganize the gt_dict by tasks + task_masks = [] + flag = 0 + for class_name in self.class_names: + task_masks.append([ + torch.where(gt_labels_3d == class_name.index(i) + flag) + for i in class_name + ]) + flag += len(class_name) + + task_boxes = [] + task_classes = [] + flag2 = 0 + for idx, mask in enumerate(task_masks): + task_box = [] + task_class = [] + for m in mask: + task_box.append(gt_bboxes_3d[m]) + # 0 is background for each task, so we need to add 1 here. + task_class.append(gt_labels_3d[m] + 1 - flag2) + task_boxes.append(torch.cat(task_box, axis=0).to(device)) + task_classes.append(torch.cat(task_class).long().to(device)) + flag2 += len(mask) + draw_gaussian = draw_heatmap_gaussian + heatmaps, anno_boxes, inds, masks = [], [], [], [] + + for idx, task_head in enumerate(self.task_heads): + heatmap = gt_bboxes_3d.new_zeros( + (len(self.class_names[idx]), feature_map_size[1], + feature_map_size[0])) + + anno_box = gt_bboxes_3d.new_zeros((max_objs, 10), + dtype=torch.float32) + + ind = gt_labels_3d.new_zeros((max_objs), dtype=torch.int64) + mask = gt_bboxes_3d.new_zeros((max_objs), dtype=torch.uint8) + + num_objs = min(task_boxes[idx].shape[0], max_objs) + + for k in range(num_objs): + cls_id = task_classes[idx][k] - 1 + + width = task_boxes[idx][k][3] + length = task_boxes[idx][k][4] + width = width / voxel_size[0] / self.train_cfg[ + 'out_size_factor'] + length = length / voxel_size[1] / self.train_cfg[ + 'out_size_factor'] + + if width > 0 and length > 0: + radius = gaussian_radius( + (length, width), + min_overlap=self.train_cfg['gaussian_overlap']) + radius = max(self.train_cfg['min_radius'], int(radius)) + + # be really careful for the coordinate system of + # your box annotation. + x, y, z = task_boxes[idx][k][0], task_boxes[idx][k][ + 1], task_boxes[idx][k][2] + + coor_x = ( + x - pc_range[0] + ) / voxel_size[0] / self.train_cfg['out_size_factor'] + coor_y = ( + y - pc_range[1] + ) / voxel_size[1] / self.train_cfg['out_size_factor'] + + center = torch.tensor([coor_x, coor_y], + dtype=torch.float32, + device=device) + center_int = center.to(torch.int32) + + # throw out not in range objects to avoid out of array + # area when creating the heatmap + if not (0 <= center_int[0] < feature_map_size[0] + and 0 <= center_int[1] < feature_map_size[1]): + continue + + draw_gaussian(heatmap[cls_id], center_int, radius) + + new_idx = k + x, y = center_int[0], center_int[1] + + assert (y * feature_map_size[0] + x < + feature_map_size[0] * feature_map_size[1]) + + ind[new_idx] = y * feature_map_size[0] + x + mask[new_idx] = 1 + # TODO: support other outdoor dataset + vx, vy = task_boxes[idx][k][7:] + rot = task_boxes[idx][k][6] + box_dim = task_boxes[idx][k][3:6] + if self.norm_bbox: + box_dim = box_dim.log() + anno_box[new_idx] = torch.cat([ + center - torch.tensor([x, y], device=device), + z.unsqueeze(0), box_dim, + torch.sin(rot).unsqueeze(0), + torch.cos(rot).unsqueeze(0), + vx.unsqueeze(0), + vy.unsqueeze(0) + ]) + + heatmaps.append(heatmap) + anno_boxes.append(anno_box) + masks.append(mask) + inds.append(ind) + return heatmaps, anno_boxes, inds, masks + + @force_fp32(apply_to=('preds_dicts')) + def loss(self, gt_bboxes_3d, gt_labels_3d, preds_dicts, **kwargs): + """Loss function for CenterHead. + + Args: + gt_bboxes_3d (list[:obj:`LiDARInstance3DBoxes`]): Ground + truth gt boxes. + gt_labels_3d (list[torch.Tensor]): Labels of boxes. + preds_dicts (dict): Output of forward function. + + Returns: + dict[str:torch.Tensor]: Loss of heatmap and bbox of each task. + """ + heatmaps, anno_boxes, inds, masks = self.get_targets( + gt_bboxes_3d, gt_labels_3d) + loss_dict = dict() + for task_id, preds_dict in enumerate(preds_dicts): + # heatmap focal loss + preds_dict[0]['heatmap'] = clip_sigmoid(preds_dict[0]['heatmap']) + num_pos = heatmaps[task_id].eq(1).float().sum().item() + loss_heatmap = self.loss_cls( + preds_dict[0]['heatmap'], + heatmaps[task_id], + avg_factor=max(num_pos, 1)) + target_box = anno_boxes[task_id] + # reconstruct the anno_box from multiple reg heads + preds_dict[0]['anno_box'] = torch.cat( + (preds_dict[0]['reg'], preds_dict[0]['height'], + preds_dict[0]['dim'], preds_dict[0]['rot'], + preds_dict[0]['vel']), + dim=1) + + # Regression loss for dimension, offset, height, rotation + ind = inds[task_id] + num = masks[task_id].float().sum() + pred = preds_dict[0]['anno_box'].permute(0, 2, 3, 1).contiguous() + pred = pred.view(pred.size(0), -1, pred.size(3)) + pred = self._gather_feat(pred, ind) + mask = masks[task_id].unsqueeze(2).expand_as(target_box).float() + isnotnan = (~torch.isnan(target_box)).float() + mask *= isnotnan + + code_weights = self.train_cfg.get('code_weights', None) + bbox_weights = mask * mask.new_tensor(code_weights) + loss_bbox = self.loss_bbox( + pred, target_box, bbox_weights, avg_factor=(num + 1e-4)) + loss_dict[f'task{task_id}.loss_heatmap'] = loss_heatmap + loss_dict[f'task{task_id}.loss_bbox'] = loss_bbox + return loss_dict + + def get_bboxes(self, preds_dicts, img_metas, img=None, rescale=False): + """Generate bboxes from bbox head predictions. + + Args: + preds_dicts (tuple[list[dict]]): Prediction results. + img_metas (list[dict]): Point cloud and image's meta info. + + Returns: + list[dict]: Decoded bbox, scores and labels after nms. + """ + rets = [] + for task_id, preds_dict in enumerate(preds_dicts): + num_class_with_bg = self.num_classes[task_id] + batch_size = preds_dict[0]['heatmap'].shape[0] + batch_heatmap = preds_dict[0]['heatmap'].sigmoid() + + batch_reg = preds_dict[0]['reg'] + batch_hei = preds_dict[0]['height'] + + if self.norm_bbox: + batch_dim = torch.exp(preds_dict[0]['dim']) + else: + batch_dim = preds_dict[0]['dim'] + + batch_rots = preds_dict[0]['rot'][:, 0].unsqueeze(1) + batch_rotc = preds_dict[0]['rot'][:, 1].unsqueeze(1) + + if 'vel' in preds_dict[0]: + batch_vel = preds_dict[0]['vel'] + else: + batch_vel = None + temp = self.bbox_coder.decode( + batch_heatmap, + batch_rots, + batch_rotc, + batch_hei, + batch_dim, + batch_vel, + reg=batch_reg, + task_id=task_id) + assert self.test_cfg['nms_type'] in ['circle', 'rotate'] + batch_reg_preds = [box['bboxes'] for box in temp] + batch_cls_preds = [box['scores'] for box in temp] + batch_cls_labels = [box['labels'] for box in temp] + if self.test_cfg['nms_type'] == 'circle': + ret_task = [] + for i in range(batch_size): + boxes3d = temp[i]['bboxes'] + scores = temp[i]['scores'] + labels = temp[i]['labels'] + centers = boxes3d[:, [0, 1]] + boxes = torch.cat([centers, scores.view(-1, 1)], dim=1) + keep = torch.tensor( + circle_nms( + boxes.detach().cpu().numpy(), + self.test_cfg['min_radius'][task_id], + post_max_size=self.test_cfg['post_max_size']), + dtype=torch.long, + device=boxes.device) + + boxes3d = boxes3d[keep] + scores = scores[keep] + labels = labels[keep] + ret = dict(bboxes=boxes3d, scores=scores, labels=labels) + ret_task.append(ret) + rets.append(ret_task) + else: + rets.append( + self.get_task_detections(num_class_with_bg, + batch_cls_preds, batch_reg_preds, + batch_cls_labels, img_metas)) + + # Merge branches results + num_samples = len(rets[0]) + + ret_list = [] + for i in range(num_samples): + for k in rets[0][i].keys(): + if k == 'bboxes': + bboxes = torch.cat([ret[i][k] for ret in rets]) + bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5 + bboxes = img_metas[i]['box_type_3d']( + bboxes, self.bbox_coder.code_size) + elif k == 'scores': + scores = torch.cat([ret[i][k] for ret in rets]) + elif k == 'labels': + flag = 0 + for j, num_class in enumerate(self.num_classes): + rets[j][i][k] += flag + flag += num_class + labels = torch.cat([ret[i][k].int() for ret in rets]) + ret_list.append([bboxes, scores, labels]) + return ret_list + + def get_task_detections(self, num_class_with_bg, batch_cls_preds, + batch_reg_preds, batch_cls_labels, img_metas): + """Rotate nms for each task. + + Args: + num_class_with_bg (int): Number of classes for the current task. + batch_cls_preds (list[torch.Tensor]): Prediction score with the + shape of [N]. + batch_reg_preds (list[torch.Tensor]): Prediction bbox with the + shape of [N, 9]. + batch_cls_labels (list[torch.Tensor]): Prediction label with the + shape of [N]. + img_metas (list[dict]): Meta information of each sample. + + Returns: + list[dict[str: torch.Tensor]]: contains the following keys: + + -bboxes (torch.Tensor): Prediction bboxes after nms with the + shape of [N, 9]. + -scores (torch.Tensor): Prediction scores after nms with the + shape of [N]. + -labels (torch.Tensor): Prediction labels after nms with the + shape of [N]. + """ + predictions_dicts = [] + post_center_range = self.test_cfg['post_center_limit_range'] + if len(post_center_range) > 0: + post_center_range = torch.tensor( + post_center_range, + dtype=batch_reg_preds[0].dtype, + device=batch_reg_preds[0].device) + + for i, (box_preds, cls_preds, cls_labels) in enumerate( + zip(batch_reg_preds, batch_cls_preds, batch_cls_labels)): + + # Apply NMS in bird eye view + + # get the highest score per prediction, then apply nms + # to remove overlapped box. + if num_class_with_bg == 1: + top_scores = cls_preds.squeeze(-1) + top_labels = torch.zeros( + cls_preds.shape[0], + device=cls_preds.device, + dtype=torch.long) + + else: + top_labels = cls_labels.long() + top_scores = cls_preds.squeeze(-1) + + if self.test_cfg['score_threshold'] > 0.0: + thresh = torch.tensor( + [self.test_cfg['score_threshold']], + device=cls_preds.device).type_as(cls_preds) + top_scores_keep = top_scores >= thresh + top_scores = top_scores.masked_select(top_scores_keep) + + if top_scores.shape[0] != 0: + if self.test_cfg['score_threshold'] > 0.0: + box_preds = box_preds[top_scores_keep] + top_labels = top_labels[top_scores_keep] + + boxes_for_nms = xywhr2xyxyr(img_metas[i]['box_type_3d']( + box_preds[:, :], self.bbox_coder.code_size).bev) + # the nms in 3d detection just remove overlap boxes. + + selected = nms_bev( + boxes_for_nms, + top_scores, + thresh=self.test_cfg['nms_thr'], + pre_max_size=self.test_cfg['pre_max_size'], + post_max_size=self.test_cfg['post_max_size']) + else: + selected = [] + + # if selected is not None: + selected_boxes = box_preds[selected] + selected_labels = top_labels[selected] + selected_scores = top_scores[selected] + + # finally generate predictions. + if selected_boxes.shape[0] != 0: + box_preds = selected_boxes + scores = selected_scores + label_preds = selected_labels + final_box_preds = box_preds + final_scores = scores + final_labels = label_preds + if post_center_range is not None: + mask = (final_box_preds[:, :3] >= + post_center_range[:3]).all(1) + mask &= (final_box_preds[:, :3] <= + post_center_range[3:]).all(1) + predictions_dict = dict( + bboxes=final_box_preds[mask], + scores=final_scores[mask], + labels=final_labels[mask]) + else: + predictions_dict = dict( + bboxes=final_box_preds, + scores=final_scores, + labels=final_labels) + else: + dtype = batch_reg_preds[0].dtype + device = batch_reg_preds[0].device + predictions_dict = dict( + bboxes=torch.zeros([0, self.bbox_coder.code_size], + dtype=dtype, + device=device), + scores=torch.zeros([0], dtype=dtype, device=device), + labels=torch.zeros([0], + dtype=top_labels.dtype, + device=device)) + + predictions_dicts.append(predictions_dict) + return predictions_dicts diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/fcos_mono3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/fcos_mono3d_head.py new file mode 100644 index 000000000..d0aa29f85 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/fcos_mono3d_head.py @@ -0,0 +1,956 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from logging import warning + +import numpy as np +import torch +from mmcv.cnn import Scale, normal_init +from mmcv.runner import force_fp32 +from torch import nn as nn + +from mmdet3d.core import (box3d_multiclass_nms, limit_period, points_img2cam, + xywhr2xyxyr) +from mmdet.core import multi_apply +from mmdet.core.bbox.builder import build_bbox_coder +from ..builder import HEADS, build_loss +from .anchor_free_mono3d_head import AnchorFreeMono3DHead + +INF = 1e8 + + +@HEADS.register_module() +class FCOSMono3DHead(AnchorFreeMono3DHead): + """Anchor-free head used in FCOS3D. + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + regress_ranges (tuple[tuple[int, int]], optional): Regress range of multiple + level points. + center_sampling (bool, optional): If true, use center sampling. Default: True. + center_sample_radius (float, optional): Radius of center sampling. Default: 1.5. + norm_on_bbox (bool, optional): If true, normalize the regression targets + with FPN strides. Default: True. + centerness_on_reg (bool, optional): If true, position centerness on the + regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. + Default: True. + centerness_alpha (int, optional): Parameter used to adjust the intensity + attenuation from the center to the periphery. Default: 2.5. + loss_cls (dict, optional): Config of classification loss. + loss_bbox (dict, optional): Config of localization loss. + loss_dir (dict, optional): Config of direction classification loss. + loss_attr (dict, optional): Config of attribute classification loss. + loss_centerness (dict, optional): Config of centerness loss. + norm_cfg (dict, optional): dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). + centerness_branch (tuple[int], optional): Channels for centerness branch. + Default: (64, ). + """ # noqa: E501 + + def __init__(self, + regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384), + (384, INF)), + center_sampling=True, + center_sample_radius=1.5, + norm_on_bbox=True, + centerness_on_reg=True, + centerness_alpha=2.5, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_dir=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_attr=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + loss_centerness=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + bbox_coder=dict(type='FCOS3DBBoxCoder', code_size=9), + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + centerness_branch=(64, ), + init_cfg=None, + **kwargs): + self.regress_ranges = regress_ranges + self.center_sampling = center_sampling + self.center_sample_radius = center_sample_radius + self.norm_on_bbox = norm_on_bbox + self.centerness_on_reg = centerness_on_reg + self.centerness_alpha = centerness_alpha + self.centerness_branch = centerness_branch + super().__init__( + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_dir=loss_dir, + loss_attr=loss_attr, + norm_cfg=norm_cfg, + init_cfg=init_cfg, + **kwargs) + self.loss_centerness = build_loss(loss_centerness) + bbox_coder['code_size'] = self.bbox_code_size + self.bbox_coder = build_bbox_coder(bbox_coder) + + def _init_layers(self): + """Initialize layers of the head.""" + super()._init_layers() + self.conv_centerness_prev = self._init_branch( + conv_channels=self.centerness_branch, + conv_strides=(1, ) * len(self.centerness_branch)) + self.conv_centerness = nn.Conv2d(self.centerness_branch[-1], 1, 1) + self.scale_dim = 3 # only for offset, depth and size regression + self.scales = nn.ModuleList([ + nn.ModuleList([Scale(1.0) for _ in range(self.scale_dim)]) + for _ in self.strides + ]) + + def init_weights(self): + """Initialize weights of the head. + + We currently still use the customized init_weights because the default + init of DCN triggered by the init_cfg will init conv_offset.weight, + which mistakenly affects the training stability. + """ + super().init_weights() + for m in self.conv_centerness_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + normal_init(self.conv_centerness, std=0.01) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2). + attr_preds (list[Tensor]): Attribute scores for each scale + level, each is a 4D-tensor, the channel number is + num_points * num_attrs. + centernesses (list[Tensor]): Centerness for each scale level, + each is a 4D-tensor, the channel number is num_points * 1. + """ + # Note: we use [:5] to filter feats and only return predictions + return multi_apply(self.forward_single, feats, self.scales, + self.strides)[:5] + + def forward_single(self, x, scale, stride): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + stride (int): The corresponding stride for feature maps, only + used to normalize the bbox prediction when self.norm_on_bbox + is True. + + Returns: + tuple: scores for each class, bbox and direction class + predictions, centerness predictions of input feature maps. + """ + cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, reg_feat = \ + super().forward_single(x) + + if self.centerness_on_reg: + clone_reg_feat = reg_feat.clone() + for conv_centerness_prev_layer in self.conv_centerness_prev: + clone_reg_feat = conv_centerness_prev_layer(clone_reg_feat) + centerness = self.conv_centerness(clone_reg_feat) + else: + clone_cls_feat = cls_feat.clone() + for conv_centerness_prev_layer in self.conv_centerness_prev: + clone_cls_feat = conv_centerness_prev_layer(clone_cls_feat) + centerness = self.conv_centerness(clone_cls_feat) + + bbox_pred = self.bbox_coder.decode(bbox_pred, scale, stride, + self.training, cls_score) + + return cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \ + cls_feat, reg_feat + + @staticmethod + def add_sin_difference(boxes1, boxes2): + """Convert the rotation difference to difference in sine function. + + Args: + boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7 + and the 7th dimension is rotation dimension. + boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and + the 7th dimension is rotation dimension. + + Returns: + tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th + dimensions are changed. + """ + rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos( + boxes2[..., 6:7]) + rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[..., + 6:7]) + boxes1 = torch.cat( + [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1) + boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]], + dim=-1) + return boxes1, boxes2 + + @staticmethod + def get_direction_target(reg_targets, + dir_offset=0, + dir_limit_offset=0.0, + num_bins=2, + one_hot=True): + """Encode direction to 0 ~ num_bins-1. + + Args: + reg_targets (torch.Tensor): Bbox regression targets. + dir_offset (int, optional): Direction offset. Default to 0. + dir_limit_offset (float, optional): Offset to set the direction + range. Default to 0.0. + num_bins (int, optional): Number of bins to divide 2*PI. + Default to 2. + one_hot (bool, optional): Whether to encode as one hot. + Default to True. + + Returns: + torch.Tensor: Encoded direction targets. + """ + rot_gt = reg_targets[..., 6] + offset_rot = limit_period(rot_gt - dir_offset, dir_limit_offset, + 2 * np.pi) + dir_cls_targets = torch.floor(offset_rot / + (2 * np.pi / num_bins)).long() + dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1) + if one_hot: + dir_targets = torch.zeros( + *list(dir_cls_targets.shape), + num_bins, + dtype=reg_targets.dtype, + device=dir_cls_targets.device) + dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0) + dir_cls_targets = dir_targets + return dir_cls_targets + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds', + 'centernesses')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + attr_preds, + centernesses, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + attr_preds (list[Tensor]): Attribute scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_attrs. + centernesses (list[Tensor]): Centerness for each scale level, each + is a 4D-tensor, the channel number is num_points * 1. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_3d (list[Tensor]): 3D boxes ground truth with shape of + (num_gts, code_size). + gt_labels_3d (list[Tensor]): same as gt_labels + centers2d (list[Tensor]): 2D centers on the image with shape of + (num_gts, 2). + depths (list[Tensor]): Depth ground truth with shape of + (num_gts, ). + attr_labels (list[Tensor]): Attributes indices of each box. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor]): specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len( + attr_preds) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, + bbox_preds[0].device) + labels_3d, bbox_targets_3d, centerness_targets, attr_targets = \ + self.get_targets( + all_level_points, gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels) + + num_imgs = cls_scores[0].size(0) + # flatten cls_scores, bbox_preds, dir_cls_preds and centerness + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, sum(self.group_reg_dims)) + for bbox_pred in bbox_preds + ] + flatten_dir_cls_preds = [ + dir_cls_pred.permute(0, 2, 3, 1).reshape(-1, 2) + for dir_cls_pred in dir_cls_preds + ] + flatten_centerness = [ + centerness.permute(0, 2, 3, 1).reshape(-1) + for centerness in centernesses + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_dir_cls_preds = torch.cat(flatten_dir_cls_preds) + flatten_centerness = torch.cat(flatten_centerness) + flatten_labels_3d = torch.cat(labels_3d) + flatten_bbox_targets_3d = torch.cat(bbox_targets_3d) + flatten_centerness_targets = torch.cat(centerness_targets) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((flatten_labels_3d >= 0) + & (flatten_labels_3d < bg_class_ind)).nonzero().reshape(-1) + num_pos = len(pos_inds) + + loss_cls = self.loss_cls( + flatten_cls_scores, + flatten_labels_3d, + avg_factor=num_pos + num_imgs) # avoid num_pos is 0 + + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_dir_cls_preds = flatten_dir_cls_preds[pos_inds] + pos_centerness = flatten_centerness[pos_inds] + + if self.pred_attrs: + flatten_attr_preds = [ + attr_pred.permute(0, 2, 3, 1).reshape(-1, self.num_attrs) + for attr_pred in attr_preds + ] + flatten_attr_preds = torch.cat(flatten_attr_preds) + flatten_attr_targets = torch.cat(attr_targets) + pos_attr_preds = flatten_attr_preds[pos_inds] + + if num_pos > 0: + pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds] + pos_centerness_targets = flatten_centerness_targets[pos_inds] + if self.pred_attrs: + pos_attr_targets = flatten_attr_targets[pos_inds] + bbox_weights = pos_centerness_targets.new_ones( + len(pos_centerness_targets), sum(self.group_reg_dims)) + equal_weights = pos_centerness_targets.new_ones( + pos_centerness_targets.shape) + + code_weight = self.train_cfg.get('code_weight', None) + if code_weight: + assert len(code_weight) == sum(self.group_reg_dims) + bbox_weights = bbox_weights * bbox_weights.new_tensor( + code_weight) + + if self.use_direction_classifier: + pos_dir_cls_targets = self.get_direction_target( + pos_bbox_targets_3d, + self.dir_offset, + self.dir_limit_offset, + one_hot=False) + + if self.diff_rad_by_sin: + pos_bbox_preds, pos_bbox_targets_3d = self.add_sin_difference( + pos_bbox_preds, pos_bbox_targets_3d) + + loss_offset = self.loss_bbox( + pos_bbox_preds[:, :2], + pos_bbox_targets_3d[:, :2], + weight=bbox_weights[:, :2], + avg_factor=equal_weights.sum()) + loss_depth = self.loss_bbox( + pos_bbox_preds[:, 2], + pos_bbox_targets_3d[:, 2], + weight=bbox_weights[:, 2], + avg_factor=equal_weights.sum()) + loss_size = self.loss_bbox( + pos_bbox_preds[:, 3:6], + pos_bbox_targets_3d[:, 3:6], + weight=bbox_weights[:, 3:6], + avg_factor=equal_weights.sum()) + loss_rotsin = self.loss_bbox( + pos_bbox_preds[:, 6], + pos_bbox_targets_3d[:, 6], + weight=bbox_weights[:, 6], + avg_factor=equal_weights.sum()) + loss_velo = None + if self.pred_velo: + loss_velo = self.loss_bbox( + pos_bbox_preds[:, 7:9], + pos_bbox_targets_3d[:, 7:9], + weight=bbox_weights[:, 7:9], + avg_factor=equal_weights.sum()) + + loss_centerness = self.loss_centerness(pos_centerness, + pos_centerness_targets) + + # direction classification loss + loss_dir = None + # TODO: add more check for use_direction_classifier + if self.use_direction_classifier: + loss_dir = self.loss_dir( + pos_dir_cls_preds, + pos_dir_cls_targets, + equal_weights, + avg_factor=equal_weights.sum()) + + # attribute classification loss + loss_attr = None + if self.pred_attrs: + loss_attr = self.loss_attr( + pos_attr_preds, + pos_attr_targets, + pos_centerness_targets, + avg_factor=pos_centerness_targets.sum()) + + else: + # need absolute due to possible negative delta x/y + loss_offset = pos_bbox_preds[:, :2].sum() + loss_depth = pos_bbox_preds[:, 2].sum() + loss_size = pos_bbox_preds[:, 3:6].sum() + loss_rotsin = pos_bbox_preds[:, 6].sum() + loss_velo = None + if self.pred_velo: + loss_velo = pos_bbox_preds[:, 7:9].sum() + loss_centerness = pos_centerness.sum() + loss_dir = None + if self.use_direction_classifier: + loss_dir = pos_dir_cls_preds.sum() + loss_attr = None + if self.pred_attrs: + loss_attr = pos_attr_preds.sum() + + loss_dict = dict( + loss_cls=loss_cls, + loss_offset=loss_offset, + loss_depth=loss_depth, + loss_size=loss_size, + loss_rotsin=loss_rotsin, + loss_centerness=loss_centerness) + + if loss_velo is not None: + loss_dict['loss_velo'] = loss_velo + + if loss_dir is not None: + loss_dict['loss_dir'] = loss_dir + + if loss_attr is not None: + loss_dict['loss_attr'] = loss_attr + + return loss_dict + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds', + 'centernesses')) + def get_bboxes(self, + cls_scores, + bbox_preds, + dir_cls_preds, + attr_preds, + centernesses, + img_metas, + cfg=None, + rescale=None): + """Transform network output for a batch into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_points * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_points * 4, H, W) + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + attr_preds (list[Tensor]): Attribute scores for each scale level + Has shape (N, num_points * num_attrs, H, W) + centernesses (list[Tensor]): Centerness for each scale level with + shape (N, num_points * 1, H, W) + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + rescale (bool): If True, return boxes in original image space + + Returns: + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. + The first item is an (n, 5) tensor, where the first 4 columns + are bounding box positions (tl_x, tl_y, br_x, br_y) and the + 5-th column is a score between 0 and 1. The second item is a + (n,) tensor where each item is the predicted class label of + the corresponding box. + """ + assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \ + len(centernesses) == len(attr_preds) + num_levels = len(cls_scores) + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, + bbox_preds[0].device) + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + if self.use_direction_classifier: + dir_cls_pred_list = [ + dir_cls_preds[i][img_id].detach() + for i in range(num_levels) + ] + else: + dir_cls_pred_list = [ + cls_scores[i][img_id].new_full( + [2, *cls_scores[i][img_id].shape[1:]], 0).detach() + for i in range(num_levels) + ] + if self.pred_attrs: + attr_pred_list = [ + attr_preds[i][img_id].detach() for i in range(num_levels) + ] + else: + attr_pred_list = [ + cls_scores[i][img_id].new_full( + [self.num_attrs, *cls_scores[i][img_id].shape[1:]], + self.attr_background_label).detach() + for i in range(num_levels) + ] + centerness_pred_list = [ + centernesses[i][img_id].detach() for i in range(num_levels) + ] + input_meta = img_metas[img_id] + det_bboxes = self._get_bboxes_single( + cls_score_list, bbox_pred_list, dir_cls_pred_list, + attr_pred_list, centerness_pred_list, mlvl_points, input_meta, + cfg, rescale) + result_list.append(det_bboxes) + return result_list + + def _get_bboxes_single(self, + cls_scores, + bbox_preds, + dir_cls_preds, + attr_preds, + centernesses, + mlvl_points, + input_meta, + cfg, + rescale=False): + """Transform outputs for a single batch item into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for a single scale level + Has shape (num_points * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for a single scale + level with shape (num_points * bbox_code_size, H, W). + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on a single scale level with shape + (num_points * 2, H, W) + attr_preds (list[Tensor]): Attribute scores for each scale level + Has shape (N, num_points * num_attrs, H, W) + centernesses (list[Tensor]): Centerness for a single scale level + with shape (num_points, H, W). + mlvl_points (list[Tensor]): Box reference for a single scale level + with shape (num_total_points, 2). + input_meta (dict): Metadata of input image. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool): If True, return boxes in original image space. + + Returns: + tuples[Tensor]: Predicted 3D boxes, scores, labels and attributes. + """ + view = np.array(input_meta['cam2img']) + scale_factor = input_meta['scale_factor'] + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) + mlvl_centers2d = [] + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_dir_scores = [] + mlvl_attr_scores = [] + mlvl_centerness = [] + + for cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \ + points in zip(cls_scores, bbox_preds, dir_cls_preds, + attr_preds, centernesses, mlvl_points): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2) + dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] + attr_pred = attr_pred.permute(1, 2, 0).reshape(-1, self.num_attrs) + attr_score = torch.max(attr_pred, dim=-1)[1] + centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() + + bbox_pred = bbox_pred.permute(1, 2, + 0).reshape(-1, + sum(self.group_reg_dims)) + bbox_pred = bbox_pred[:, :self.bbox_code_size] + nms_pre = cfg.get('nms_pre', -1) + if nms_pre > 0 and scores.shape[0] > nms_pre: + max_scores, _ = (scores * centerness[:, None]).max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + points = points[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + dir_cls_pred = dir_cls_pred[topk_inds, :] + centerness = centerness[topk_inds] + dir_cls_score = dir_cls_score[topk_inds] + attr_score = attr_score[topk_inds] + # change the offset to actual center predictions + bbox_pred[:, :2] = points - bbox_pred[:, :2] + if rescale: + bbox_pred[:, :2] /= bbox_pred[:, :2].new_tensor(scale_factor) + pred_center2d = bbox_pred[:, :3].clone() + bbox_pred[:, :3] = points_img2cam(bbox_pred[:, :3], view) + mlvl_centers2d.append(pred_center2d) + mlvl_bboxes.append(bbox_pred) + mlvl_scores.append(scores) + mlvl_dir_scores.append(dir_cls_score) + mlvl_attr_scores.append(attr_score) + mlvl_centerness.append(centerness) + + mlvl_centers2d = torch.cat(mlvl_centers2d) + mlvl_bboxes = torch.cat(mlvl_bboxes) + mlvl_dir_scores = torch.cat(mlvl_dir_scores) + + # change local yaw to global yaw for 3D nms + cam2img = mlvl_centers2d.new_zeros((4, 4)) + cam2img[:view.shape[0], :view.shape[1]] = \ + mlvl_centers2d.new_tensor(view) + mlvl_bboxes = self.bbox_coder.decode_yaw(mlvl_bboxes, mlvl_centers2d, + mlvl_dir_scores, + self.dir_offset, cam2img) + + mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + mlvl_bboxes, box_dim=self.bbox_code_size, + origin=(0.5, 0.5, 0.5)).bev) + + mlvl_scores = torch.cat(mlvl_scores) + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 + # BG cat_id: num_class + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + mlvl_attr_scores = torch.cat(mlvl_attr_scores) + mlvl_centerness = torch.cat(mlvl_centerness) + # no scale_factors in box3d_multiclass_nms + # Then we multiply it from outside + mlvl_nms_scores = mlvl_scores * mlvl_centerness[:, None] + results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_nms_scores, cfg.score_thr, + cfg.max_per_img, cfg, mlvl_dir_scores, + mlvl_attr_scores) + bboxes, scores, labels, dir_scores, attrs = results + attrs = attrs.to(labels.dtype) # change data type to int + bboxes = input_meta['box_type_3d']( + bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5)) + # Note that the predictions use origin (0.5, 0.5, 0.5) + # Due to the ground truth centers2d are the gravity center of objects + # v0.10.0 fix inplace operation to the input tensor of cam_box3d + # So here we also need to add origin=(0.5, 0.5, 0.5) + if not self.pred_attrs: + attrs = None + + return bboxes, scores, labels, attrs + + @staticmethod + def pts2Dto3D(points, view): + """ + Args: + points (torch.Tensor): points in 2D images, [N, 3], + 3 corresponds with x, y in the image and depth. + view (np.ndarray): camera intrinsic, [3, 3] + + Returns: + torch.Tensor: points in 3D space. [N, 3], + 3 corresponds with x, y, z in 3D space. + """ + warning.warn('DeprecationWarning: This static method has been moved ' + 'out of this class to mmdet3d/core. The function ' + 'pts2Dto3D will be deprecated.') + + assert view.shape[0] <= 4 + assert view.shape[1] <= 4 + assert points.shape[1] == 3 + + points2D = points[:, :2] + depths = points[:, 2].view(-1, 1) + unnorm_points2D = torch.cat([points2D * depths, depths], dim=1) + + viewpad = torch.eye(4, dtype=points2D.dtype, device=points2D.device) + viewpad[:view.shape[0], :view.shape[1]] = points2D.new_tensor(view) + inv_viewpad = torch.inverse(viewpad).transpose(0, 1) + + # Do operation in homogeneous coordinates. + nbr_points = unnorm_points2D.shape[0] + homo_points2D = torch.cat( + [unnorm_points2D, + points2D.new_ones((nbr_points, 1))], dim=1) + points3D = torch.mm(homo_points2D, inv_viewpad)[:, :3] + + return points3D + + def _get_points_single(self, + featmap_size, + stride, + dtype, + device, + flatten=False): + """Get points according to feature map sizes.""" + y, x = super()._get_points_single(featmap_size, stride, dtype, device) + points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), + dim=-1) + stride // 2 + return points + + def get_targets(self, points, gt_bboxes_list, gt_labels_list, + gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list, + depths_list, attr_labels_list): + """Compute regression, classification and centerss targets for points + in multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each + image, each has shape (num_gt, bbox_code_size). + gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each + box, each has shape (num_gt,). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + each has shape (num_gt, 2). + depths_list (list[Tensor]): Depth of projected 3D centers onto 2D + image, each has shape (num_gt, 1). + attr_labels_list (list[Tensor]): Attribute labels of each box, + each has shape (num_gt,). + + Returns: + tuple: + concat_lvl_labels (list[Tensor]): Labels of each level. + concat_lvl_bbox_targets (list[Tensor]): BBox targets of each + level. + """ + assert len(points) == len(self.regress_ranges) + num_levels = len(points) + # expand regress ranges to align with points + expanded_regress_ranges = [ + points[i].new_tensor(self.regress_ranges[i])[None].expand_as( + points[i]) for i in range(num_levels) + ] + # concat all levels points and regress ranges + concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) + concat_points = torch.cat(points, dim=0) + + # the number of points per img, per lvl + num_points = [center.size(0) for center in points] + + if attr_labels_list is None: + attr_labels_list = [ + gt_labels.new_full(gt_labels.shape, self.attr_background_label) + for gt_labels in gt_labels_list + ] + + # get labels and bbox_targets of each image + _, _, labels_3d_list, bbox_targets_3d_list, centerness_targets_list, \ + attr_targets_list = multi_apply( + self._get_target_single, + gt_bboxes_list, + gt_labels_list, + gt_bboxes_3d_list, + gt_labels_3d_list, + centers2d_list, + depths_list, + attr_labels_list, + points=concat_points, + regress_ranges=concat_regress_ranges, + num_points_per_lvl=num_points) + + # split to per img, per level + labels_3d_list = [ + labels_3d.split(num_points, 0) for labels_3d in labels_3d_list + ] + bbox_targets_3d_list = [ + bbox_targets_3d.split(num_points, 0) + for bbox_targets_3d in bbox_targets_3d_list + ] + centerness_targets_list = [ + centerness_targets.split(num_points, 0) + for centerness_targets in centerness_targets_list + ] + attr_targets_list = [ + attr_targets.split(num_points, 0) + for attr_targets in attr_targets_list + ] + + # concat per level image + concat_lvl_labels_3d = [] + concat_lvl_bbox_targets_3d = [] + concat_lvl_centerness_targets = [] + concat_lvl_attr_targets = [] + for i in range(num_levels): + concat_lvl_labels_3d.append( + torch.cat([labels[i] for labels in labels_3d_list])) + concat_lvl_centerness_targets.append( + torch.cat([ + centerness_targets[i] + for centerness_targets in centerness_targets_list + ])) + bbox_targets_3d = torch.cat([ + bbox_targets_3d[i] for bbox_targets_3d in bbox_targets_3d_list + ]) + concat_lvl_attr_targets.append( + torch.cat( + [attr_targets[i] for attr_targets in attr_targets_list])) + if self.norm_on_bbox: + bbox_targets_3d[:, : + 2] = bbox_targets_3d[:, :2] / self.strides[i] + concat_lvl_bbox_targets_3d.append(bbox_targets_3d) + return concat_lvl_labels_3d, concat_lvl_bbox_targets_3d, \ + concat_lvl_centerness_targets, concat_lvl_attr_targets + + def _get_target_single(self, gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels, + points, regress_ranges, num_points_per_lvl): + """Compute regression and classification targets for a single image.""" + num_points = points.size(0) + num_gts = gt_labels.size(0) + if not isinstance(gt_bboxes_3d, torch.Tensor): + gt_bboxes_3d = gt_bboxes_3d.tensor.to(gt_bboxes.device) + if num_gts == 0: + return gt_labels.new_full((num_points,), self.background_label), \ + gt_bboxes.new_zeros((num_points, 4)), \ + gt_labels_3d.new_full( + (num_points,), self.background_label), \ + gt_bboxes_3d.new_zeros((num_points, self.bbox_code_size)), \ + gt_bboxes_3d.new_zeros((num_points,)), \ + attr_labels.new_full( + (num_points,), self.attr_background_label) + + # change orientation to local yaw + gt_bboxes_3d[..., 6] = -torch.atan2( + gt_bboxes_3d[..., 0], gt_bboxes_3d[..., 2]) + gt_bboxes_3d[..., 6] + + areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( + gt_bboxes[:, 3] - gt_bboxes[:, 1]) + areas = areas[None].repeat(num_points, 1) + regress_ranges = regress_ranges[:, None, :].expand( + num_points, num_gts, 2) + gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) + centers2d = centers2d[None].expand(num_points, num_gts, 2) + gt_bboxes_3d = gt_bboxes_3d[None].expand(num_points, num_gts, + self.bbox_code_size) + depths = depths[None, :, None].expand(num_points, num_gts, 1) + xs, ys = points[:, 0], points[:, 1] + xs = xs[:, None].expand(num_points, num_gts) + ys = ys[:, None].expand(num_points, num_gts) + + delta_xs = (xs - centers2d[..., 0])[..., None] + delta_ys = (ys - centers2d[..., 1])[..., None] + bbox_targets_3d = torch.cat( + (delta_xs, delta_ys, depths, gt_bboxes_3d[..., 3:]), dim=-1) + + left = xs - gt_bboxes[..., 0] + right = gt_bboxes[..., 2] - xs + top = ys - gt_bboxes[..., 1] + bottom = gt_bboxes[..., 3] - ys + bbox_targets = torch.stack((left, top, right, bottom), -1) + + assert self.center_sampling is True, 'Setting center_sampling to '\ + 'False has not been implemented for FCOS3D.' + # condition1: inside a `center bbox` + radius = self.center_sample_radius + center_xs = centers2d[..., 0] + center_ys = centers2d[..., 1] + center_gts = torch.zeros_like(gt_bboxes) + stride = center_xs.new_zeros(center_xs.shape) + + # project the points on current lvl back to the `original` sizes + lvl_begin = 0 + for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): + lvl_end = lvl_begin + num_points_lvl + stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius + lvl_begin = lvl_end + + center_gts[..., 0] = center_xs - stride + center_gts[..., 1] = center_ys - stride + center_gts[..., 2] = center_xs + stride + center_gts[..., 3] = center_ys + stride + + cb_dist_left = xs - center_gts[..., 0] + cb_dist_right = center_gts[..., 2] - xs + cb_dist_top = ys - center_gts[..., 1] + cb_dist_bottom = center_gts[..., 3] - ys + center_bbox = torch.stack( + (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) + inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 + + # condition2: limit the regression range for each location + max_regress_distance = bbox_targets.max(-1)[0] + inside_regress_range = ( + (max_regress_distance >= regress_ranges[..., 0]) + & (max_regress_distance <= regress_ranges[..., 1])) + + # center-based criterion to deal with ambiguity + dists = torch.sqrt(torch.sum(bbox_targets_3d[..., :2]**2, dim=-1)) + dists[inside_gt_bbox_mask == 0] = INF + dists[inside_regress_range == 0] = INF + min_dist, min_dist_inds = dists.min(dim=1) + + labels = gt_labels[min_dist_inds] + labels_3d = gt_labels_3d[min_dist_inds] + attr_labels = attr_labels[min_dist_inds] + labels[min_dist == INF] = self.background_label # set as BG + labels_3d[min_dist == INF] = self.background_label # set as BG + attr_labels[min_dist == INF] = self.attr_background_label + + bbox_targets = bbox_targets[range(num_points), min_dist_inds] + bbox_targets_3d = bbox_targets_3d[range(num_points), min_dist_inds] + relative_dists = torch.sqrt( + torch.sum(bbox_targets_3d[..., :2]**2, + dim=-1)) / (1.414 * stride[:, 0]) + # [N, 1] / [N, 1] + centerness_targets = torch.exp(-self.centerness_alpha * relative_dists) + + return labels, bbox_targets, labels_3d, bbox_targets_3d, \ + centerness_targets, attr_labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/free_anchor3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/free_anchor3d_head.py new file mode 100644 index 000000000..a56f2c7c7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/free_anchor3d_head.py @@ -0,0 +1,285 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from mmdet3d.core.bbox import bbox_overlaps_nearest_3d +from ..builder import HEADS +from .anchor3d_head import Anchor3DHead +from .train_mixins import get_direction_target + + +@HEADS.register_module() +class FreeAnchor3DHead(Anchor3DHead): + r"""`FreeAnchor `_ head for 3D detection. + + Note: + This implementation is directly modified from the `mmdet implementation + `_. + We find it also works on 3D detection with minor modification, i.e., + different hyper-parameters and a additional direction classifier. + + Args: + pre_anchor_topk (int): Number of boxes that be token in each bag. + bbox_thr (float): The threshold of the saturated linear function. It is + usually the same with the IoU threshold used in NMS. + gamma (float): Gamma parameter in focal loss. + alpha (float): Alpha parameter in focal loss. + kwargs (dict): Other arguments are the same as those in :class:`Anchor3DHead`. + """ # noqa: E501 + + def __init__(self, + pre_anchor_topk=50, + bbox_thr=0.6, + gamma=2.0, + alpha=0.5, + init_cfg=None, + **kwargs): + super().__init__(init_cfg=init_cfg, **kwargs) + self.pre_anchor_topk = pre_anchor_topk + self.bbox_thr = bbox_thr + self.gamma = gamma + self.alpha = alpha + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + gt_bboxes, + gt_labels, + input_metas, + gt_bboxes_ignore=None): + """Calculate loss of FreeAnchor head. + + Args: + cls_scores (list[torch.Tensor]): Classification scores of + different samples. + bbox_preds (list[torch.Tensor]): Box predictions of + different samples + dir_cls_preds (list[torch.Tensor]): Direction predictions of + different samples + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth boxes. + gt_labels (list[torch.Tensor]): Ground truth labels. + input_metas (list[dict]): List of input meta information. + gt_bboxes_ignore (list[:obj:`BaseInstance3DBoxes`], optional): + Ground truth boxes that should be ignored. Defaults to None. + + Returns: + dict[str, torch.Tensor]: Loss items. + + - positive_bag_loss (torch.Tensor): Loss of positive samples. + - negative_bag_loss (torch.Tensor): Loss of negative samples. + """ + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + assert len(featmap_sizes) == self.anchor_generator.num_levels + + anchor_list = self.get_anchors(featmap_sizes, input_metas) + anchors = [torch.cat(anchor) for anchor in anchor_list] + + # concatenate each level + cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape( + cls_score.size(0), -1, self.num_classes) + for cls_score in cls_scores + ] + bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape( + bbox_pred.size(0), -1, self.box_code_size) + for bbox_pred in bbox_preds + ] + dir_cls_preds = [ + dir_cls_pred.permute(0, 2, 3, + 1).reshape(dir_cls_pred.size(0), -1, 2) + for dir_cls_pred in dir_cls_preds + ] + + cls_scores = torch.cat(cls_scores, dim=1) + bbox_preds = torch.cat(bbox_preds, dim=1) + dir_cls_preds = torch.cat(dir_cls_preds, dim=1) + + cls_prob = torch.sigmoid(cls_scores) + box_prob = [] + num_pos = 0 + positive_losses = [] + for _, (anchors_, gt_labels_, gt_bboxes_, cls_prob_, bbox_preds_, + dir_cls_preds_) in enumerate( + zip(anchors, gt_labels, gt_bboxes, cls_prob, bbox_preds, + dir_cls_preds)): + + gt_bboxes_ = gt_bboxes_.tensor.to(anchors_.device) + + with torch.no_grad(): + # box_localization: a_{j}^{loc}, shape: [j, 4] + pred_boxes = self.bbox_coder.decode(anchors_, bbox_preds_) + + # object_box_iou: IoU_{ij}^{loc}, shape: [i, j] + object_box_iou = bbox_overlaps_nearest_3d( + gt_bboxes_, pred_boxes) + + # object_box_prob: P{a_{j} -> b_{i}}, shape: [i, j] + t1 = self.bbox_thr + t2 = object_box_iou.max( + dim=1, keepdim=True).values.clamp(min=t1 + 1e-6) + object_box_prob = ((object_box_iou - t1) / (t2 - t1)).clamp( + min=0, max=1) + + # object_cls_box_prob: P{a_{j} -> b_{i}}, shape: [i, c, j] + num_obj = gt_labels_.size(0) + indices = torch.stack( + [torch.arange(num_obj).type_as(gt_labels_), gt_labels_], + dim=0) + + object_cls_box_prob = torch.sparse_coo_tensor( + indices, object_box_prob) + + # image_box_iou: P{a_{j} \in A_{+}}, shape: [c, j] + """ + from "start" to "end" implement: + image_box_iou = torch.sparse.max(object_cls_box_prob, + dim=0).t() + + """ + # start + box_cls_prob = torch.sparse.sum( + object_cls_box_prob, dim=0).to_dense() + + indices = torch.nonzero(box_cls_prob, as_tuple=False).t_() + if indices.numel() == 0: + image_box_prob = torch.zeros( + anchors_.size(0), + self.num_classes).type_as(object_box_prob) + else: + nonzero_box_prob = torch.where( + (gt_labels_.unsqueeze(dim=-1) == indices[0]), + object_box_prob[:, indices[1]], + torch.tensor( + [0]).type_as(object_box_prob)).max(dim=0).values + + # upmap to shape [j, c] + image_box_prob = torch.sparse_coo_tensor( + indices.flip([0]), + nonzero_box_prob, + size=(anchors_.size(0), self.num_classes)).to_dense() + # end + + box_prob.append(image_box_prob) + + # construct bags for objects + match_quality_matrix = bbox_overlaps_nearest_3d( + gt_bboxes_, anchors_) + _, matched = torch.topk( + match_quality_matrix, + self.pre_anchor_topk, + dim=1, + sorted=False) + del match_quality_matrix + + # matched_cls_prob: P_{ij}^{cls} + matched_cls_prob = torch.gather( + cls_prob_[matched], 2, + gt_labels_.view(-1, 1, 1).repeat(1, self.pre_anchor_topk, + 1)).squeeze(2) + + # matched_box_prob: P_{ij}^{loc} + matched_anchors = anchors_[matched] + matched_object_targets = self.bbox_coder.encode( + matched_anchors, + gt_bboxes_.unsqueeze(dim=1).expand_as(matched_anchors)) + + # direction classification loss + loss_dir = None + if self.use_direction_classifier: + # also calculate direction prob: P_{ij}^{dir} + matched_dir_targets = get_direction_target( + matched_anchors, + matched_object_targets, + self.dir_offset, + self.dir_limit_offset, + one_hot=False) + loss_dir = self.loss_dir( + dir_cls_preds_[matched].transpose(-2, -1), + matched_dir_targets, + reduction_override='none') + + # generate bbox weights + if self.diff_rad_by_sin: + bbox_preds_[matched], matched_object_targets = \ + self.add_sin_difference( + bbox_preds_[matched], matched_object_targets) + bbox_weights = matched_anchors.new_ones(matched_anchors.size()) + # Use pop is not right, check performance + code_weight = self.train_cfg.get('code_weight', None) + if code_weight: + bbox_weights = bbox_weights * bbox_weights.new_tensor( + code_weight) + loss_bbox = self.loss_bbox( + bbox_preds_[matched], + matched_object_targets, + bbox_weights, + reduction_override='none').sum(-1) + + if loss_dir is not None: + loss_bbox += loss_dir + matched_box_prob = torch.exp(-loss_bbox) + + # positive_losses: {-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )} + num_pos += len(gt_bboxes_) + positive_losses.append( + self.positive_bag_loss(matched_cls_prob, matched_box_prob)) + + positive_loss = torch.cat(positive_losses).sum() / max(1, num_pos) + + # box_prob: P{a_{j} \in A_{+}} + box_prob = torch.stack(box_prob, dim=0) + + # negative_loss: + # \sum_{j}{ FL((1 - P{a_{j} \in A_{+}}) * (1 - P_{j}^{bg})) } / n||B|| + negative_loss = self.negative_bag_loss(cls_prob, box_prob).sum() / max( + 1, num_pos * self.pre_anchor_topk) + + losses = { + 'positive_bag_loss': positive_loss, + 'negative_bag_loss': negative_loss + } + return losses + + def positive_bag_loss(self, matched_cls_prob, matched_box_prob): + """Generate positive bag loss. + + Args: + matched_cls_prob (torch.Tensor): Classification probability + of matched positive samples. + matched_box_prob (torch.Tensor): Bounding box probability + of matched positive samples. + + Returns: + torch.Tensor: Loss of positive samples. + """ + # bag_prob = Mean-max(matched_prob) + matched_prob = matched_cls_prob * matched_box_prob + weight = 1 / torch.clamp(1 - matched_prob, 1e-12, None) + weight /= weight.sum(dim=1).unsqueeze(dim=-1) + bag_prob = (weight * matched_prob).sum(dim=1) + # positive_bag_loss = -self.alpha * log(bag_prob) + bag_prob = bag_prob.clamp(0, 1) # to avoid bug of BCE, check + return self.alpha * F.binary_cross_entropy( + bag_prob, torch.ones_like(bag_prob), reduction='none') + + def negative_bag_loss(self, cls_prob, box_prob): + """Generate negative bag loss. + + Args: + cls_prob (torch.Tensor): Classification probability + of negative samples. + box_prob (torch.Tensor): Bounding box probability + of negative samples. + + Returns: + torch.Tensor: Loss of negative samples. + """ + prob = cls_prob * (1 - box_prob) + prob = prob.clamp(0, 1) # to avoid bug of BCE, check + negative_bag_loss = prob**self.gamma * F.binary_cross_entropy( + prob, torch.zeros_like(prob), reduction='none') + return (1 - self.alpha) * negative_bag_loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/groupfree3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/groupfree3d_head.py new file mode 100644 index 000000000..b76cb05ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/groupfree3d_head.py @@ -0,0 +1,994 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import numpy as np +import torch +from mmcv import ConfigDict +from mmcv.cnn import ConvModule, xavier_init +from mmcv.cnn.bricks.transformer import (build_positional_encoding, + build_transformer_layer) +from mmcv.ops import PointsSampler as Points_Sampler +from mmcv.ops import gather_points +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.core.post_processing import aligned_3d_nms +from mmdet.core import build_bbox_coder, multi_apply +from ..builder import HEADS, build_loss +from .base_conv_bbox_head import BaseConvBboxHead + +EPS = 1e-6 + + +class PointsObjClsModule(BaseModule): + """object candidate point prediction from seed point features. + + Args: + in_channel (int): number of channels of seed point features. + num_convs (int, optional): number of conv layers. + Default: 3. + conv_cfg (dict, optional): Config of convolution. + Default: dict(type='Conv1d'). + norm_cfg (dict, optional): Config of normalization. + Default: dict(type='BN1d'). + act_cfg (dict, optional): Config of activation. + Default: dict(type='ReLU'). + """ + + def __init__(self, + in_channel, + num_convs=3, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + conv_channels = [in_channel for _ in range(num_convs - 1)] + conv_channels.append(1) + + self.mlp = nn.Sequential() + prev_channels = in_channel + for i in range(num_convs): + self.mlp.add_module( + f'layer{i}', + ConvModule( + prev_channels, + conv_channels[i], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg if i < num_convs - 1 else None, + act_cfg=act_cfg if i < num_convs - 1 else None, + bias=True, + inplace=True)) + prev_channels = conv_channels[i] + + def forward(self, seed_features): + """Forward pass. + + Args: + seed_features (torch.Tensor): seed features, dims: + (batch_size, feature_dim, num_seed) + + Returns: + torch.Tensor: objectness logits, dim: + (batch_size, 1, num_seed) + """ + return self.mlp(seed_features) + + +class GeneralSamplingModule(nn.Module): + """Sampling Points. + + Sampling points with given index. + """ + + def forward(self, xyz, features, sample_inds): + """Forward pass. + + Args: + xyz: (B, N, 3) the coordinates of the features. + features (Tensor): (B, C, N) features to sample. + sample_inds (Tensor): (B, M) the given index, + where M is the number of points. + + Returns: + Tensor: (B, M, 3) coordinates of sampled features + Tensor: (B, C, M) the sampled features. + Tensor: (B, M) the given index. + """ + xyz_t = xyz.transpose(1, 2).contiguous() + new_xyz = gather_points(xyz_t, sample_inds).transpose(1, + 2).contiguous() + new_features = gather_points(features, sample_inds).contiguous() + + return new_xyz, new_features, sample_inds + + +@HEADS.register_module() +class GroupFree3DHead(BaseModule): + r"""Bbox head of `Group-Free 3D `_. + + Args: + num_classes (int): The number of class. + in_channels (int): The dims of input features from backbone. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and + decoding boxes. + num_decoder_layers (int): The number of transformer decoder layers. + transformerlayers (dict): Config for transformer decoder. + train_cfg (dict): Config for training. + test_cfg (dict): Config for testing. + num_proposal (int): The number of initial sampling candidates. + pred_layer_cfg (dict): Config of classfication and regression + prediction layers. + size_cls_agnostic (bool): Whether the predicted size is class-agnostic. + gt_per_seed (int): the number of candidate instance each point belongs + to. + sampling_objectness_loss (dict): Config of initial sampling + objectness loss. + objectness_loss (dict): Config of objectness loss. + center_loss (dict): Config of center loss. + dir_class_loss (dict): Config of direction classification loss. + dir_res_loss (dict): Config of direction residual regression loss. + size_class_loss (dict): Config of size classification loss. + size_res_loss (dict): Config of size residual regression loss. + size_reg_loss (dict): Config of class-agnostic size regression loss. + semantic_loss (dict): Config of point-wise semantic segmentation loss. + """ + + def __init__(self, + num_classes, + in_channels, + bbox_coder, + num_decoder_layers, + transformerlayers, + decoder_self_posembeds=dict( + type='ConvBNPositionalEncoding', + input_channel=6, + num_pos_feats=288), + decoder_cross_posembeds=dict( + type='ConvBNPositionalEncoding', + input_channel=3, + num_pos_feats=288), + train_cfg=None, + test_cfg=None, + num_proposal=128, + pred_layer_cfg=None, + size_cls_agnostic=True, + gt_per_seed=3, + sampling_objectness_loss=None, + objectness_loss=None, + center_loss=None, + dir_class_loss=None, + dir_res_loss=None, + size_class_loss=None, + size_res_loss=None, + size_reg_loss=None, + semantic_loss=None, + init_cfg=None): + super(GroupFree3DHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.num_proposal = num_proposal + self.in_channels = in_channels + self.num_decoder_layers = num_decoder_layers + self.size_cls_agnostic = size_cls_agnostic + self.gt_per_seed = gt_per_seed + + # Transformer decoder layers + if isinstance(transformerlayers, ConfigDict): + transformerlayers = [ + copy.deepcopy(transformerlayers) + for _ in range(num_decoder_layers) + ] + else: + assert isinstance(transformerlayers, list) and \ + len(transformerlayers) == num_decoder_layers + self.decoder_layers = nn.ModuleList() + for i in range(self.num_decoder_layers): + self.decoder_layers.append( + build_transformer_layer(transformerlayers[i])) + self.embed_dims = self.decoder_layers[0].embed_dims + assert self.embed_dims == decoder_self_posembeds['num_pos_feats'] + assert self.embed_dims == decoder_cross_posembeds['num_pos_feats'] + + # bbox_coder + self.bbox_coder = build_bbox_coder(bbox_coder) + self.num_sizes = self.bbox_coder.num_sizes + self.num_dir_bins = self.bbox_coder.num_dir_bins + + # Initial object candidate sampling + self.gsample_module = GeneralSamplingModule() + self.fps_module = Points_Sampler([self.num_proposal]) + self.points_obj_cls = PointsObjClsModule(self.in_channels) + + self.fp16_enabled = False + + # initial candidate prediction + self.conv_pred = BaseConvBboxHead( + **pred_layer_cfg, + num_cls_out_channels=self._get_cls_out_channels(), + num_reg_out_channels=self._get_reg_out_channels()) + + # query proj and key proj + self.decoder_query_proj = nn.Conv1d( + self.embed_dims, self.embed_dims, kernel_size=1) + self.decoder_key_proj = nn.Conv1d( + self.embed_dims, self.embed_dims, kernel_size=1) + + # query position embed + self.decoder_self_posembeds = nn.ModuleList() + for _ in range(self.num_decoder_layers): + self.decoder_self_posembeds.append( + build_positional_encoding(decoder_self_posembeds)) + # key position embed + self.decoder_cross_posembeds = nn.ModuleList() + for _ in range(self.num_decoder_layers): + self.decoder_cross_posembeds.append( + build_positional_encoding(decoder_cross_posembeds)) + + # Prediction Head + self.prediction_heads = nn.ModuleList() + for i in range(self.num_decoder_layers): + self.prediction_heads.append( + BaseConvBboxHead( + **pred_layer_cfg, + num_cls_out_channels=self._get_cls_out_channels(), + num_reg_out_channels=self._get_reg_out_channels())) + + self.sampling_objectness_loss = build_loss(sampling_objectness_loss) + self.objectness_loss = build_loss(objectness_loss) + self.center_loss = build_loss(center_loss) + self.dir_res_loss = build_loss(dir_res_loss) + self.dir_class_loss = build_loss(dir_class_loss) + self.semantic_loss = build_loss(semantic_loss) + if self.size_cls_agnostic: + self.size_reg_loss = build_loss(size_reg_loss) + else: + self.size_res_loss = build_loss(size_res_loss) + self.size_class_loss = build_loss(size_class_loss) + + def init_weights(self): + """Initialize weights of transformer decoder in GroupFree3DHead.""" + # initialize transformer + for m in self.decoder_layers.parameters(): + if m.dim() > 1: + xavier_init(m, distribution='uniform') + for m in self.decoder_self_posembeds.parameters(): + if m.dim() > 1: + xavier_init(m, distribution='uniform') + for m in self.decoder_cross_posembeds.parameters(): + if m.dim() > 1: + xavier_init(m, distribution='uniform') + + def _get_cls_out_channels(self): + """Return the channel number of classification outputs.""" + # Class numbers (k) + objectness (1) + return self.num_classes + 1 + + def _get_reg_out_channels(self): + """Return the channel number of regression outputs.""" + # center residual (3), + # heading class+residual (num_dir_bins*2), + # size class+residual(num_sizes*4 or 3) + if self.size_cls_agnostic: + return 6 + self.num_dir_bins * 2 + else: + return 3 + self.num_dir_bins * 2 + self.num_sizes * 4 + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Coordinates of input points. + torch.Tensor: Features of input points. + torch.Tensor: Indices of input points. + """ + + seed_points = feat_dict['fp_xyz'][-1] + seed_features = feat_dict['fp_features'][-1] + seed_indices = feat_dict['fp_indices'][-1] + + return seed_points, seed_features, seed_indices + + def forward(self, feat_dict, sample_mod): + """Forward pass. + + Note: + The forward of GroupFree3DHead is divided into 2 steps: + + 1. Initial object candidates sampling. + 2. Iterative object box prediction by transformer decoder. + + Args: + feat_dict (dict): Feature dict from backbone. + sample_mod (str): sample mode for initial candidates sampling. + + Returns: + results (dict): Predictions of GroupFree3D head. + """ + assert sample_mod in ['fps', 'kps'] + + seed_xyz, seed_features, seed_indices = self._extract_input(feat_dict) + + results = dict( + seed_points=seed_xyz, + seed_features=seed_features, + seed_indices=seed_indices) + + # 1. Initial object candidates sampling. + if sample_mod == 'fps': + sample_inds = self.fps_module(seed_xyz, seed_features) + elif sample_mod == 'kps': + points_obj_cls_logits = self.points_obj_cls( + seed_features) # (batch_size, 1, num_seed) + points_obj_cls_scores = points_obj_cls_logits.sigmoid().squeeze(1) + sample_inds = torch.topk(points_obj_cls_scores, + self.num_proposal)[1].int() + results['seeds_obj_cls_logits'] = points_obj_cls_logits + else: + raise NotImplementedError( + f'Sample mode {sample_mod} is not supported!') + + candidate_xyz, candidate_features, sample_inds = self.gsample_module( + seed_xyz, seed_features, sample_inds) + + results['query_points_xyz'] = candidate_xyz # (B, M, 3) + results['query_points_feature'] = candidate_features # (B, C, M) + results['query_points_sample_inds'] = sample_inds.long() # (B, M) + + prefix = 'proposal.' + cls_predictions, reg_predictions = self.conv_pred(candidate_features) + decode_res = self.bbox_coder.split_pred(cls_predictions, + reg_predictions, candidate_xyz, + prefix) + + results.update(decode_res) + bbox3d = self.bbox_coder.decode(results, prefix) + + # 2. Iterative object box prediction by transformer decoder. + base_bbox3d = bbox3d[:, :, :6].detach().clone() + + query = self.decoder_query_proj(candidate_features).permute(2, 0, 1) + key = self.decoder_key_proj(seed_features).permute(2, 0, 1) + value = key + + # transformer decoder + results['num_decoder_layers'] = 0 + for i in range(self.num_decoder_layers): + prefix = f's{i}.' + + query_pos = self.decoder_self_posembeds[i](base_bbox3d).permute( + 2, 0, 1) + key_pos = self.decoder_cross_posembeds[i](seed_xyz).permute( + 2, 0, 1) + + query = self.decoder_layers[i]( + query, key, value, query_pos=query_pos, + key_pos=key_pos).permute(1, 2, 0) + + results[f'{prefix}query'] = query + + cls_predictions, reg_predictions = self.prediction_heads[i](query) + decode_res = self.bbox_coder.split_pred(cls_predictions, + reg_predictions, + candidate_xyz, prefix) + # TODO: should save bbox3d instead of decode_res? + results.update(decode_res) + + bbox3d = self.bbox_coder.decode(results, prefix) + results[f'{prefix}bbox3d'] = bbox3d + base_bbox3d = bbox3d[:, :, :6].detach().clone() + query = query.permute(2, 0, 1) + + results['num_decoder_layers'] += 1 + + return results + + @force_fp32(apply_to=('bbox_preds', )) + def loss(self, + bbox_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + img_metas=None, + gt_bboxes_ignore=None, + ret_target=False): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of vote head. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + img_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + ret_target (Bool): Return targets or not. + + Returns: + dict: Losses of GroupFree3D. + """ + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + bbox_preds) + (sampling_targets, sampling_weights, assigned_size_targets, + size_class_targets, size_res_targets, dir_class_targets, + dir_res_targets, center_targets, assigned_center_targets, + mask_targets, valid_gt_masks, objectness_targets, objectness_weights, + box_loss_weights, valid_gt_weights) = targets + + batch_size, proposal_num = size_class_targets.shape[:2] + + losses = dict() + + # calculate objectness classification loss + sampling_obj_score = bbox_preds['seeds_obj_cls_logits'].reshape(-1, 1) + sampling_objectness_loss = self.sampling_objectness_loss( + sampling_obj_score, + 1 - sampling_targets.reshape(-1), + sampling_weights.reshape(-1), + avg_factor=batch_size) + losses['sampling_objectness_loss'] = sampling_objectness_loss + + prefixes = ['proposal.'] + [ + f's{i}.' for i in range(bbox_preds['num_decoder_layers']) + ] + num_stages = len(prefixes) + for prefix in prefixes: + + # calculate objectness loss + obj_score = bbox_preds[f'{prefix}obj_scores'].transpose(2, 1) + objectness_loss = self.objectness_loss( + obj_score.reshape(-1, 1), + 1 - objectness_targets.reshape(-1), + objectness_weights.reshape(-1), + avg_factor=batch_size) + losses[f'{prefix}objectness_loss'] = objectness_loss / num_stages + + # calculate center loss + box_loss_weights_expand = box_loss_weights.unsqueeze(-1).expand( + -1, -1, 3) + center_loss = self.center_loss( + bbox_preds[f'{prefix}center'], + assigned_center_targets, + weight=box_loss_weights_expand) + losses[f'{prefix}center_loss'] = center_loss / num_stages + + # calculate direction class loss + dir_class_loss = self.dir_class_loss( + bbox_preds[f'{prefix}dir_class'].transpose(2, 1), + dir_class_targets, + weight=box_loss_weights) + losses[f'{prefix}dir_class_loss'] = dir_class_loss / num_stages + + # calculate direction residual loss + heading_label_one_hot = size_class_targets.new_zeros( + (batch_size, proposal_num, self.num_dir_bins)) + heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), + 1) + dir_res_norm = torch.sum( + bbox_preds[f'{prefix}dir_res_norm'] * heading_label_one_hot, + -1) + dir_res_loss = self.dir_res_loss( + dir_res_norm, dir_res_targets, weight=box_loss_weights) + losses[f'{prefix}dir_res_loss'] = dir_res_loss / num_stages + + if self.size_cls_agnostic: + # calculate class-agnostic size loss + size_reg_loss = self.size_reg_loss( + bbox_preds[f'{prefix}size'], + assigned_size_targets, + weight=box_loss_weights_expand) + losses[f'{prefix}size_reg_loss'] = size_reg_loss / num_stages + + else: + # calculate size class loss + size_class_loss = self.size_class_loss( + bbox_preds[f'{prefix}size_class'].transpose(2, 1), + size_class_targets, + weight=box_loss_weights) + losses[ + f'{prefix}size_class_loss'] = size_class_loss / num_stages + + # calculate size residual loss + one_hot_size_targets = size_class_targets.new_zeros( + (batch_size, proposal_num, self.num_sizes)) + one_hot_size_targets.scatter_(2, + size_class_targets.unsqueeze(-1), + 1) + one_hot_size_targets_expand = one_hot_size_targets.unsqueeze( + -1).expand(-1, -1, -1, 3).contiguous() + size_residual_norm = torch.sum( + bbox_preds[f'{prefix}size_res_norm'] * + one_hot_size_targets_expand, 2) + box_loss_weights_expand = box_loss_weights.unsqueeze( + -1).expand(-1, -1, 3) + size_res_loss = self.size_res_loss( + size_residual_norm, + size_res_targets, + weight=box_loss_weights_expand) + losses[f'{prefix}size_res_loss'] = size_res_loss / num_stages + + # calculate semantic loss + semantic_loss = self.semantic_loss( + bbox_preds[f'{prefix}sem_scores'].transpose(2, 1), + mask_targets, + weight=box_loss_weights) + losses[f'{prefix}semantic_loss'] = semantic_loss / num_stages + + if ret_target: + losses['targets'] = targets + + return losses + + def get_targets(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + bbox_preds=None, + max_gt_num=64): + """Generate targets of GroupFree3D head. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + pts_semantic_mask (list[torch.Tensor]): Point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): Point-wise instance + label of each batch. + bbox_preds (torch.Tensor): Bounding box predictions of vote head. + max_gt_num (int): Max number of GTs for single batch. + + Returns: + tuple[torch.Tensor]: Targets of GroupFree3D head. + """ + # find empty example + valid_gt_masks = list() + gt_num = list() + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + valid_gt_masks.append(gt_labels_3d[index].new_zeros(1)) + gt_num.append(1) + else: + valid_gt_masks.append(gt_labels_3d[index].new_ones( + gt_labels_3d[index].shape)) + gt_num.append(gt_labels_3d[index].shape[0]) + # max_gt_num = max(gt_num) + + max_gt_nums = [max_gt_num for _ in range(len(gt_labels_3d))] + + if pts_semantic_mask is None: + pts_semantic_mask = [None for i in range(len(gt_labels_3d))] + pts_instance_mask = [None for i in range(len(gt_labels_3d))] + + seed_points = [ + bbox_preds['seed_points'][i] for i in range(len(gt_labels_3d)) + ] + + seed_indices = [ + bbox_preds['seed_indices'][i] for i in range(len(gt_labels_3d)) + ] + + candidate_indices = [ + bbox_preds['query_points_sample_inds'][i] + for i in range(len(gt_labels_3d)) + ] + + (sampling_targets, assigned_size_targets, size_class_targets, + size_res_targets, dir_class_targets, dir_res_targets, center_targets, + assigned_center_targets, mask_targets, objectness_targets, + objectness_masks) = multi_apply(self.get_targets_single, points, + gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + max_gt_nums, seed_points, + seed_indices, candidate_indices) + + # pad targets as original code of GroupFree3D. + for index in range(len(gt_labels_3d)): + pad_num = max_gt_num - gt_labels_3d[index].shape[0] + valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num)) + + sampling_targets = torch.stack(sampling_targets) + sampling_weights = (sampling_targets >= 0).float() + sampling_normalizer = sampling_weights.sum(dim=1, keepdim=True).float() + sampling_weights /= sampling_normalizer.clamp(min=1.0) + + assigned_size_targets = torch.stack(assigned_size_targets) + center_targets = torch.stack(center_targets) + valid_gt_masks = torch.stack(valid_gt_masks) + + assigned_center_targets = torch.stack(assigned_center_targets) + objectness_targets = torch.stack(objectness_targets) + + objectness_weights = torch.stack(objectness_masks) + cls_normalizer = objectness_weights.sum(dim=1, keepdim=True).float() + objectness_weights /= cls_normalizer.clamp(min=1.0) + + box_loss_weights = objectness_targets.float() / ( + objectness_targets.sum().float() + EPS) + + valid_gt_weights = valid_gt_masks.float() / ( + valid_gt_masks.sum().float() + EPS) + + dir_class_targets = torch.stack(dir_class_targets) + dir_res_targets = torch.stack(dir_res_targets) + size_class_targets = torch.stack(size_class_targets) + size_res_targets = torch.stack(size_res_targets) + mask_targets = torch.stack(mask_targets) + + return (sampling_targets, sampling_weights, assigned_size_targets, + size_class_targets, size_res_targets, dir_class_targets, + dir_res_targets, center_targets, assigned_center_targets, + mask_targets, valid_gt_masks, objectness_targets, + objectness_weights, box_loss_weights, valid_gt_weights) + + def get_targets_single(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + max_gt_nums=None, + seed_points=None, + seed_indices=None, + candidate_indices=None, + seed_points_obj_topk=4): + """Generate targets of GroupFree3D head for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + pts_semantic_mask (torch.Tensor): Point-wise semantic + label of each batch. + pts_instance_mask (torch.Tensor): Point-wise instance + label of each batch. + max_gt_nums (int): Max number of GTs for single batch. + seed_points (torch.Tensor): Coordinates of seed points. + seed_indices (torch.Tensor): Indices of seed points. + candidate_indices (torch.Tensor): Indices of object candidates. + seed_points_obj_topk (int): k value of k-Closest Points Sampling. + + Returns: + tuple[torch.Tensor]: Targets of GroupFree3D head. + """ + + assert self.bbox_coder.with_rot or pts_semantic_mask is not None + + gt_bboxes_3d = gt_bboxes_3d.to(points.device) + + # generate center, dir, size target + (center_targets, size_targets, size_class_targets, size_res_targets, + dir_class_targets, + dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d) + + # pad targets as original code of GroupFree3D + pad_num = max_gt_nums - gt_labels_3d.shape[0] + box_label_mask = points.new_zeros([max_gt_nums]) + box_label_mask[:gt_labels_3d.shape[0]] = 1 + + gt_bboxes_pad = F.pad(gt_bboxes_3d.tensor, (0, 0, 0, pad_num)) + gt_bboxes_pad[gt_labels_3d.shape[0]:, 0:3] += 1000 + gt_bboxes_3d = gt_bboxes_3d.new_box(gt_bboxes_pad) + + gt_labels_3d = F.pad(gt_labels_3d, (0, pad_num)) + + center_targets = F.pad(center_targets, (0, 0, 0, pad_num), value=1000) + size_targets = F.pad(size_targets, (0, 0, 0, pad_num)) + size_class_targets = F.pad(size_class_targets, (0, pad_num)) + size_res_targets = F.pad(size_res_targets, (0, 0, 0, pad_num)) + dir_class_targets = F.pad(dir_class_targets, (0, pad_num)) + dir_res_targets = F.pad(dir_res_targets, (0, pad_num)) + + # 0. generate pts_instance_label and pts_obj_mask + num_points = points.shape[0] + pts_obj_mask = points.new_zeros([num_points], dtype=torch.long) + pts_instance_label = points.new_zeros([num_points], + dtype=torch.long) - 1 + + if self.bbox_coder.with_rot: + vote_targets = points.new_zeros([num_points, 4 * self.gt_per_seed]) + vote_target_idx = points.new_zeros([num_points], dtype=torch.long) + box_indices_all = gt_bboxes_3d.points_in_boxes_part(points) + for i in range(gt_labels_3d.shape[0]): + box_indices = box_indices_all[:, i] + indices = torch.nonzero( + box_indices, as_tuple=False).squeeze(-1) + selected_points = points[indices] + pts_obj_mask[indices] = 1 + vote_targets_tmp = vote_targets[indices] + votes = gt_bboxes_3d.gravity_center[i].unsqueeze( + 0) - selected_points[:, :3] + + for j in range(self.gt_per_seed): + column_indices = torch.nonzero( + vote_target_idx[indices] == j, + as_tuple=False).squeeze(-1) + vote_targets_tmp[column_indices, + int(j * 3):int(j * 3 + + 3)] = votes[column_indices] + vote_targets_tmp[column_indices, + j + 3 * self.gt_per_seed] = i + if j == 0: + vote_targets_tmp[ + column_indices, :3 * + self.gt_per_seed] = votes[column_indices].repeat( + 1, self.gt_per_seed) + vote_targets_tmp[column_indices, + 3 * self.gt_per_seed:] = i + + vote_targets[indices] = vote_targets_tmp + vote_target_idx[indices] = torch.clamp( + vote_target_idx[indices] + 1, max=2) + + dist = points.new_zeros([num_points, self.gt_per_seed]) + 1000 + for j in range(self.gt_per_seed): + dist[:, j] = (vote_targets[:, 3 * j:3 * j + 3]**2).sum(-1) + + instance_indices = torch.argmin( + dist, dim=-1).unsqueeze(-1) + 3 * self.gt_per_seed + instance_lable = torch.gather(vote_targets, 1, + instance_indices).squeeze(-1) + pts_instance_label = instance_lable.long() + pts_instance_label[pts_obj_mask == 0] = -1 + + elif pts_semantic_mask is not None: + for i in torch.unique(pts_instance_mask): + indices = torch.nonzero( + pts_instance_mask == i, as_tuple=False).squeeze(-1) + + if pts_semantic_mask[indices[0]] < self.num_classes: + selected_points = points[indices, :3] + center = 0.5 * ( + selected_points.min(0)[0] + selected_points.max(0)[0]) + + delta_xyz = center - center_targets + instance_lable = torch.argmin((delta_xyz**2).sum(-1)) + pts_instance_label[indices] = instance_lable + pts_obj_mask[indices] = 1 + + else: + raise NotImplementedError + + # 1. generate objectness targets in sampling head + gt_num = gt_labels_3d.shape[0] + num_seed = seed_points.shape[0] + num_candidate = candidate_indices.shape[0] + + object_assignment = torch.gather(pts_instance_label, 0, seed_indices) + # set background points to the last gt bbox as original code + object_assignment[object_assignment < 0] = gt_num - 1 + object_assignment_one_hot = gt_bboxes_3d.tensor.new_zeros( + (num_seed, gt_num)) + object_assignment_one_hot.scatter_(1, object_assignment.unsqueeze(-1), + 1) # (num_seed, gt_num) + + delta_xyz = seed_points.unsqueeze( + 1) - gt_bboxes_3d.gravity_center.unsqueeze( + 0) # (num_seed, gt_num, 3) + delta_xyz = delta_xyz / (gt_bboxes_3d.dims.unsqueeze(0) + EPS) + + new_dist = torch.sum(delta_xyz**2, dim=-1) + euclidean_dist1 = torch.sqrt(new_dist + EPS) + euclidean_dist1 = euclidean_dist1 * object_assignment_one_hot + 100 * ( + 1 - object_assignment_one_hot) + # (gt_num, num_seed) + euclidean_dist1 = euclidean_dist1.permute(1, 0) + + # gt_num x topk + topk_inds = torch.topk( + euclidean_dist1, + seed_points_obj_topk, + largest=False)[1] * box_label_mask[:, None] + \ + (box_label_mask[:, None] - 1) + topk_inds = topk_inds.long() + topk_inds = topk_inds.view(-1).contiguous() + + sampling_targets = torch.zeros( + num_seed + 1, dtype=torch.long).to(points.device) + sampling_targets[topk_inds] = 1 + sampling_targets = sampling_targets[:num_seed] + # pts_instance_label + objectness_label_mask = torch.gather(pts_instance_label, 0, + seed_indices) # num_seed + sampling_targets[objectness_label_mask < 0] = 0 + + # 2. objectness target + seed_obj_gt = torch.gather(pts_obj_mask, 0, seed_indices) # num_seed + objectness_targets = torch.gather(seed_obj_gt, 0, + candidate_indices) # num_candidate + + # 3. box target + seed_instance_label = torch.gather(pts_instance_label, 0, + seed_indices) # num_seed + query_points_instance_label = torch.gather( + seed_instance_label, 0, candidate_indices) # num_candidate + + # Set assignment + # (num_candidate, ) with values in 0,1,...,gt_num-1 + assignment = query_points_instance_label + # set background points to the last gt bbox as original code + assignment[assignment < 0] = gt_num - 1 + assignment_expand = assignment.unsqueeze(1).expand(-1, 3) + + assigned_center_targets = center_targets[assignment] + assigned_size_targets = size_targets[assignment] + + dir_class_targets = dir_class_targets[assignment] + dir_res_targets = dir_res_targets[assignment] + dir_res_targets /= (np.pi / self.num_dir_bins) + + size_class_targets = size_class_targets[assignment] + size_res_targets = \ + torch.gather(size_res_targets, 0, assignment_expand) + one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros( + (num_candidate, self.num_sizes)) + one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1) + one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).expand( + -1, -1, 3) # (num_candidate,num_size_cluster,3) + mean_sizes = size_res_targets.new_tensor( + self.bbox_coder.mean_sizes).unsqueeze(0) + pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1) + size_res_targets /= pos_mean_sizes + + mask_targets = gt_labels_3d[assignment].long() + + objectness_masks = points.new_ones((num_candidate)) + + return (sampling_targets, assigned_size_targets, size_class_targets, + size_res_targets, dir_class_targets, dir_res_targets, + center_targets, assigned_center_targets, mask_targets, + objectness_targets, objectness_masks) + + def get_bboxes(self, + points, + bbox_preds, + input_metas, + rescale=False, + use_nms=True): + """Generate bboxes from GroupFree3D head predictions. + + Args: + points (torch.Tensor): Input points. + bbox_preds (dict): Predictions from GroupFree3D head. + input_metas (list[dict]): Point cloud and image's meta info. + rescale (bool): Whether to rescale bboxes. + use_nms (bool): Whether to apply NMS, skip nms postprocessing + while using GroupFree3D head in rpn stage. + + Returns: + list[tuple[torch.Tensor]]: Bounding boxes, scores and labels. + """ + # support multi-stage predictions + assert self.test_cfg['prediction_stages'] in \ + ['last', 'all', 'last_three'] + + prefixes = list() + if self.test_cfg['prediction_stages'] == 'last': + prefixes = [f's{self.num_decoder_layers - 1}.'] + elif self.test_cfg['prediction_stages'] == 'all': + prefixes = ['proposal.'] + \ + [f's{i}.' for i in range(self.num_decoder_layers)] + elif self.test_cfg['prediction_stages'] == 'last_three': + prefixes = [ + f's{i}.' for i in range(self.num_decoder_layers - + 3, self.num_decoder_layers) + ] + else: + raise NotImplementedError + + obj_scores = list() + sem_scores = list() + bbox3d = list() + for prefix in prefixes: + # decode boxes + obj_score = bbox_preds[f'{prefix}obj_scores'][..., -1].sigmoid() + sem_score = bbox_preds[f'{prefix}sem_scores'].softmax(-1) + bbox = self.bbox_coder.decode(bbox_preds, prefix) + obj_scores.append(obj_score) + sem_scores.append(sem_score) + bbox3d.append(bbox) + + obj_scores = torch.cat(obj_scores, dim=1) + sem_scores = torch.cat(sem_scores, dim=1) + bbox3d = torch.cat(bbox3d, dim=1) + + if use_nms: + batch_size = bbox3d.shape[0] + results = list() + for b in range(batch_size): + bbox_selected, score_selected, labels = \ + self.multiclass_nms_single(obj_scores[b], sem_scores[b], + bbox3d[b], points[b, ..., :3], + input_metas[b]) + bbox = input_metas[b]['box_type_3d']( + bbox_selected, + box_dim=bbox_selected.shape[-1], + with_yaw=self.bbox_coder.with_rot) + results.append((bbox, score_selected, labels)) + + return results + else: + return bbox3d + + def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points, + input_meta): + """Multi-class nms in single batch. + + Args: + obj_scores (torch.Tensor): Objectness score of bounding boxes. + sem_scores (torch.Tensor): semantic class score of bounding boxes. + bbox (torch.Tensor): Predicted bounding boxes. + points (torch.Tensor): Input points. + input_meta (dict): Point cloud and image's meta info. + + Returns: + tuple[torch.Tensor]: Bounding boxes, scores and labels. + """ + bbox = input_meta['box_type_3d']( + bbox, + box_dim=bbox.shape[-1], + with_yaw=self.bbox_coder.with_rot, + origin=(0.5, 0.5, 0.5)) + box_indices = bbox.points_in_boxes_all(points) + + corner3d = bbox.corners + minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6))) + minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0] + minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0] + + nonempty_box_mask = box_indices.T.sum(1) > 5 + + bbox_classes = torch.argmax(sem_scores, -1) + nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask], + obj_scores[nonempty_box_mask], + bbox_classes[nonempty_box_mask], + self.test_cfg.nms_thr) + + # filter empty boxes and boxes with low score + scores_mask = (obj_scores > self.test_cfg.score_thr) + nonempty_box_inds = torch.nonzero( + nonempty_box_mask, as_tuple=False).flatten() + nonempty_mask = torch.zeros_like(bbox_classes).scatter( + 0, nonempty_box_inds[nms_selected], 1) + selected = (nonempty_mask.bool() & scores_mask.bool()) + + if self.test_cfg.per_class_proposal: + bbox_selected, score_selected, labels = [], [], [] + for k in range(sem_scores.shape[-1]): + bbox_selected.append(bbox[selected].tensor) + score_selected.append(obj_scores[selected] * + sem_scores[selected][:, k]) + labels.append( + torch.zeros_like(bbox_classes[selected]).fill_(k)) + bbox_selected = torch.cat(bbox_selected, 0) + score_selected = torch.cat(score_selected, 0) + labels = torch.cat(labels, 0) + else: + bbox_selected = bbox[selected].tensor + score_selected = obj_scores[selected] + labels = bbox_classes[selected] + + return bbox_selected, score_selected, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/monoflex_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/monoflex_head.py new file mode 100644 index 000000000..2253c7582 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/monoflex_head.py @@ -0,0 +1,771 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import xavier_init +from torch import nn as nn + +from mmdet3d.core.utils import get_ellip_gaussian_2D +from mmdet3d.models.model_utils import EdgeFusionModule +from mmdet3d.models.utils import (filter_outside_objs, get_edge_indices, + get_keypoints, handle_proj_objs) +from mmdet.core import multi_apply +from mmdet.core.bbox.builder import build_bbox_coder +from mmdet.models.utils import gaussian_radius, gen_gaussian_target +from mmdet.models.utils.gaussian_target import (get_local_maximum, + get_topk_from_heatmap, + transpose_and_gather_feat) +from ..builder import HEADS, build_loss +from .anchor_free_mono3d_head import AnchorFreeMono3DHead + + +@HEADS.register_module() +class MonoFlexHead(AnchorFreeMono3DHead): + r"""MonoFlex head used in `MonoFlex `_ + + .. code-block:: none + + / --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> cls + | + | --> 3 x 3 conv --> 1 x 1 conv --> 2d bbox + | + | --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> 2d offsets + | + | --> 3 x 3 conv --> 1 x 1 conv --> keypoints offsets + | + | --> 3 x 3 conv --> 1 x 1 conv --> keypoints uncertainty + feature + | --> 3 x 3 conv --> 1 x 1 conv --> keypoints uncertainty + | + | --> 3 x 3 conv --> 1 x 1 conv --> 3d dimensions + | + | |--- 1 x 1 conv --> ori cls + | --> 3 x 3 conv --| + | |--- 1 x 1 conv --> ori offsets + | + | --> 3 x 3 conv --> 1 x 1 conv --> depth + | + \ --> 3 x 3 conv --> 1 x 1 conv --> depth uncertainty + + Args: + use_edge_fusion (bool): Whether to use edge fusion module while + feature extraction. + edge_fusion_inds (list[tuple]): Indices of feature to use edge fusion. + edge_heatmap_ratio (float): Ratio of generating target heatmap. + filter_outside_objs (bool, optional): Whether to filter the + outside objects. Default: True. + loss_cls (dict, optional): Config of classification loss. + Default: loss_cls=dict(type='GaussionFocalLoss', loss_weight=1.0). + loss_bbox (dict, optional): Config of localization loss. + Default: loss_bbox=dict(type='IOULoss', loss_weight=10.0). + loss_dir (dict, optional): Config of direction classification loss. + Default: dict(type='MultibinLoss', loss_weight=0.1). + loss_keypoints (dict, optional): Config of keypoints loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_dims: (dict, optional): Config of dimensions loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_offsets2d: (dict, optional): Config of offsets2d loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_direct_depth: (dict, optional): Config of directly regression depth loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_keypoints_depth: (dict, optional): Config of keypoints decoded depth loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_combined_depth: (dict, optional): Config of combined depth loss. + Default: dict(type='L1Loss', loss_weight=0.1). + loss_attr (dict, optional): Config of attribute classification loss. + In MonoFlex, Default: None. + bbox_coder (dict, optional): Bbox coder for encoding and decoding boxes. + Default: dict(type='MonoFlexCoder', code_size=7). + norm_cfg (dict, optional): Dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). + init_cfg (dict): Initialization config dict. Default: None. + """ # noqa: E501 + + def __init__(self, + num_classes, + in_channels, + use_edge_fusion, + edge_fusion_inds, + edge_heatmap_ratio, + filter_outside_objs=True, + loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0), + loss_bbox=dict(type='IoULoss', loss_weight=0.1), + loss_dir=dict(type='MultiBinLoss', loss_weight=0.1), + loss_keypoints=dict(type='L1Loss', loss_weight=0.1), + loss_dims=dict(type='L1Loss', loss_weight=0.1), + loss_offsets2d=dict(type='L1Loss', loss_weight=0.1), + loss_direct_depth=dict(type='L1Loss', loss_weight=0.1), + loss_keypoints_depth=dict(type='L1Loss', loss_weight=0.1), + loss_combined_depth=dict(type='L1Loss', loss_weight=0.1), + loss_attr=None, + bbox_coder=dict(type='MonoFlexCoder', code_size=7), + norm_cfg=dict(type='BN'), + init_cfg=None, + init_bias=-2.19, + **kwargs): + self.use_edge_fusion = use_edge_fusion + self.edge_fusion_inds = edge_fusion_inds + super().__init__( + num_classes, + in_channels, + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_dir=loss_dir, + loss_attr=loss_attr, + norm_cfg=norm_cfg, + init_cfg=init_cfg, + **kwargs) + self.filter_outside_objs = filter_outside_objs + self.edge_heatmap_ratio = edge_heatmap_ratio + self.init_bias = init_bias + self.loss_dir = build_loss(loss_dir) + self.loss_keypoints = build_loss(loss_keypoints) + self.loss_dims = build_loss(loss_dims) + self.loss_offsets2d = build_loss(loss_offsets2d) + self.loss_direct_depth = build_loss(loss_direct_depth) + self.loss_keypoints_depth = build_loss(loss_keypoints_depth) + self.loss_combined_depth = build_loss(loss_combined_depth) + self.bbox_coder = build_bbox_coder(bbox_coder) + + def _init_edge_module(self): + """Initialize edge fusion module for feature extraction.""" + self.edge_fuse_cls = EdgeFusionModule(self.num_classes, 256) + for i in range(len(self.edge_fusion_inds)): + reg_inds, out_inds = self.edge_fusion_inds[i] + out_channels = self.group_reg_dims[reg_inds][out_inds] + fusion_layer = EdgeFusionModule(out_channels, 256) + layer_name = f'edge_fuse_reg_{reg_inds}_{out_inds}' + self.add_module(layer_name, fusion_layer) + + def init_weights(self): + """Initialize weights.""" + super().init_weights() + self.conv_cls.bias.data.fill_(self.init_bias) + xavier_init(self.conv_regs[4][0], gain=0.01) + xavier_init(self.conv_regs[7][0], gain=0.01) + for m in self.conv_regs.modules(): + if isinstance(m, nn.Conv2d): + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _init_predictor(self): + """Initialize predictor layers of the head.""" + self.conv_cls_prev = self._init_branch( + conv_channels=self.cls_branch, + conv_strides=(1, ) * len(self.cls_branch)) + self.conv_cls = nn.Conv2d(self.cls_branch[-1], self.cls_out_channels, + 1) + # init regression head + self.conv_reg_prevs = nn.ModuleList() + # init output head + self.conv_regs = nn.ModuleList() + # group_reg_dims: + # ((4, ), (2, ), (20, ), (3, ), (3, ), (8, 8), (1, ), (1, )) + for i in range(len(self.group_reg_dims)): + reg_dims = self.group_reg_dims[i] + reg_branch_channels = self.reg_branch[i] + out_channel = self.out_channels[i] + reg_list = nn.ModuleList() + if len(reg_branch_channels) > 0: + self.conv_reg_prevs.append( + self._init_branch( + conv_channels=reg_branch_channels, + conv_strides=(1, ) * len(reg_branch_channels))) + for reg_dim in reg_dims: + reg_list.append(nn.Conv2d(out_channel, reg_dim, 1)) + self.conv_regs.append(reg_list) + else: + self.conv_reg_prevs.append(None) + for reg_dim in reg_dims: + reg_list.append(nn.Conv2d(self.feat_channels, reg_dim, 1)) + self.conv_regs.append(reg_list) + + def _init_layers(self): + """Initialize layers of the head.""" + self._init_predictor() + if self.use_edge_fusion: + self._init_edge_module() + + def forward_train(self, x, input_metas, gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels, + gt_bboxes_ignore, proposal_cfg, **kwargs): + """ + Args: + x (list[Tensor]): Features from FPN. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes (list[Tensor]): Ground truth bboxes of the image, + shape (num_gts, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, + shape (num_gts,). + gt_bboxes_3d (list[Tensor]): 3D ground truth bboxes of the image, + shape (num_gts, self.bbox_code_size). + gt_labels_3d (list[Tensor]): 3D ground truth labels of each box, + shape (num_gts,). + centers2d (list[Tensor]): Projected 3D center of each box, + shape (num_gts, 2). + depths (list[Tensor]): Depth of projected 3D center of each box, + shape (num_gts,). + attr_labels (list[Tensor]): Attribute labels of each box, + shape (num_gts,). + gt_bboxes_ignore (list[Tensor]): Ground truth bboxes to be + ignored, shape (num_ignored_gts, 4). + proposal_cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used + Returns: + tuple: + losses: (dict[str, Tensor]): A dictionary of loss components. + proposal_list (list[Tensor]): Proposals of each image. + """ + outs = self(x, input_metas) + if gt_labels is None: + loss_inputs = outs + (gt_bboxes, gt_bboxes_3d, centers2d, depths, + attr_labels, input_metas) + else: + loss_inputs = outs + (gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels, + input_metas) + losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + if proposal_cfg is None: + return losses + else: + proposal_list = self.get_bboxes( + *outs, input_metas, cfg=proposal_cfg) + return losses, proposal_list + + def forward(self, feats, input_metas): + """Forward features from the upstream network. + + Args: + feats (list[Tensor]): Features from the upstream network, each is + a 4D-tensor. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + """ + mlvl_input_metas = [input_metas for i in range(len(feats))] + return multi_apply(self.forward_single, feats, mlvl_input_metas) + + def forward_single(self, x, input_metas): + """Forward features of a single scale level. + + Args: + x (Tensor): Feature maps from a specific FPN feature level. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple: Scores for each class, bbox predictions. + """ + img_h, img_w = input_metas[0]['pad_shape'][:2] + batch_size, _, feat_h, feat_w = x.shape + downsample_ratio = img_h / feat_h + + for conv_cls_prev_layer in self.conv_cls_prev: + cls_feat = conv_cls_prev_layer(x) + out_cls = self.conv_cls(cls_feat) + + if self.use_edge_fusion: + # calculate the edge indices for the batch data + edge_indices_list = get_edge_indices( + input_metas, downsample_ratio, device=x.device) + edge_lens = [ + edge_indices.shape[0] for edge_indices in edge_indices_list + ] + max_edge_len = max(edge_lens) + edge_indices = x.new_zeros((batch_size, max_edge_len, 2), + dtype=torch.long) + for i in range(batch_size): + edge_indices[i, :edge_lens[i]] = edge_indices_list[i] + # cls feature map edge fusion + out_cls = self.edge_fuse_cls(cls_feat, out_cls, edge_indices, + edge_lens, feat_h, feat_w) + + bbox_pred = [] + + for i in range(len(self.group_reg_dims)): + reg_feat = x.clone() + # feature regression head + if len(self.reg_branch[i]) > 0: + for conv_reg_prev_layer in self.conv_reg_prevs[i]: + reg_feat = conv_reg_prev_layer(reg_feat) + + for j, conv_reg in enumerate(self.conv_regs[i]): + out_reg = conv_reg(reg_feat) + # Use Edge Fusion Module + if self.use_edge_fusion and (i, j) in self.edge_fusion_inds: + # reg feature map edge fusion + out_reg = getattr(self, 'edge_fuse_reg_{}_{}'.format( + i, j))(reg_feat, out_reg, edge_indices, edge_lens, + feat_h, feat_w) + bbox_pred.append(out_reg) + + bbox_pred = torch.cat(bbox_pred, dim=1) + cls_score = out_cls.sigmoid() # turn to 0-1 + cls_score = cls_score.clamp(min=1e-4, max=1 - 1e-4) + + return cls_score, bbox_pred + + def get_bboxes(self, cls_scores, bbox_preds, input_metas): + """Generate bboxes from bbox head predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level. + bbox_preds (list[Tensor]): Box regression for each scale. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + Returns: + list[tuple[:obj:`CameraInstance3DBoxes`, Tensor, Tensor, None]]: + Each item in result_list is 4-tuple. + """ + assert len(cls_scores) == len(bbox_preds) == 1 + cam2imgs = torch.stack([ + cls_scores[0].new_tensor(input_meta['cam2img']) + for input_meta in input_metas + ]) + batch_bboxes, batch_scores, batch_topk_labels = self.decode_heatmap( + cls_scores[0], + bbox_preds[0], + input_metas, + cam2imgs=cam2imgs, + topk=100, + kernel=3) + + result_list = [] + for img_id in range(len(input_metas)): + + bboxes = batch_bboxes[img_id] + scores = batch_scores[img_id] + labels = batch_topk_labels[img_id] + + keep_idx = scores > 0.25 + bboxes = bboxes[keep_idx] + scores = scores[keep_idx] + labels = labels[keep_idx] + + bboxes = input_metas[img_id]['box_type_3d']( + bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5)) + attrs = None + result_list.append((bboxes, scores, labels, attrs)) + + return result_list + + def decode_heatmap(self, + cls_score, + reg_pred, + input_metas, + cam2imgs, + topk=100, + kernel=3): + """Transform outputs into detections raw bbox predictions. + + Args: + class_score (Tensor): Center predict heatmap, + shape (B, num_classes, H, W). + reg_pred (Tensor): Box regression map. + shape (B, channel, H , W). + input_metas (List[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cam2imgs (Tensor): Camera intrinsic matrix. + shape (N, 4, 4) + topk (int, optional): Get top k center keypoints from heatmap. + Default 100. + kernel (int, optional): Max pooling kernel for extract local + maximum pixels. Default 3. + + Returns: + tuple[torch.Tensor]: Decoded output of SMOKEHead, containing + the following Tensors: + - batch_bboxes (Tensor): Coords of each 3D box. + shape (B, k, 7) + - batch_scores (Tensor): Scores of each 3D box. + shape (B, k) + - batch_topk_labels (Tensor): Categories of each 3D box. + shape (B, k) + """ + img_h, img_w = input_metas[0]['pad_shape'][:2] + batch_size, _, feat_h, feat_w = cls_score.shape + + downsample_ratio = img_h / feat_h + center_heatmap_pred = get_local_maximum(cls_score, kernel=kernel) + + *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap( + center_heatmap_pred, k=topk) + batch_scores, batch_index, batch_topk_labels = batch_dets + + regression = transpose_and_gather_feat(reg_pred, batch_index) + regression = regression.view(-1, 8) + + pred_base_centers2d = torch.cat( + [topk_xs.view(-1, 1), + topk_ys.view(-1, 1).float()], dim=1) + preds = self.bbox_coder.decode(regression, batch_topk_labels, + downsample_ratio, cam2imgs) + pred_locations = self.bbox_coder.decode_location( + pred_base_centers2d, preds['offsets2d'], preds['combined_depth'], + cam2imgs, downsample_ratio) + pred_yaws = self.bbox_coder.decode_orientation( + preds['orientations']).unsqueeze(-1) + pred_dims = preds['dimensions'] + batch_bboxes = torch.cat((pred_locations, pred_dims, pred_yaws), dim=1) + batch_bboxes = batch_bboxes.view(batch_size, -1, self.bbox_code_size) + return batch_bboxes, batch_scores, batch_topk_labels + + def get_predictions(self, pred_reg, labels3d, centers2d, reg_mask, + batch_indices, input_metas, downsample_ratio): + """Prepare predictions for computing loss. + + Args: + pred_reg (Tensor): Box regression map. + shape (B, channel, H , W). + labels3d (Tensor): Labels of each 3D box. + shape (B * max_objs, ) + centers2d (Tensor): Coords of each projected 3D box + center on image. shape (N, 2) + reg_mask (Tensor): Indexes of the existence of the 3D box. + shape (B * max_objs, ) + batch_indices (Tenosr): Batch indices of the 3D box. + shape (N, 3) + input_metas (list[dict]): Meta information of each image, + e.g., image size, scaling factor, etc. + downsample_ratio (int): The stride of feature map. + + Returns: + dict: The predictions for computing loss. + """ + batch, channel = pred_reg.shape[0], pred_reg.shape[1] + w = pred_reg.shape[3] + cam2imgs = torch.stack([ + centers2d.new_tensor(input_meta['cam2img']) + for input_meta in input_metas + ]) + # (batch_size, 4, 4) -> (N, 4, 4) + cam2imgs = cam2imgs[batch_indices, :, :] + centers2d_inds = centers2d[:, 1] * w + centers2d[:, 0] + centers2d_inds = centers2d_inds.view(batch, -1) + pred_regression = transpose_and_gather_feat(pred_reg, centers2d_inds) + pred_regression_pois = pred_regression.view(-1, channel)[reg_mask] + preds = self.bbox_coder.decode(pred_regression_pois, labels3d, + downsample_ratio, cam2imgs) + + return preds + + def get_targets(self, gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list, + gt_labels_3d_list, centers2d_list, depths_list, feat_shape, + img_shape, input_metas): + """Get training targets for batch images. +`` + Args: + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each + image, shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each + box, shape (num_gt,). + gt_bboxes_3d_list (list[:obj:`CameraInstance3DBoxes`]): 3D + Ground truth bboxes of each image, + shape (num_gt, bbox_code_size). + gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of + each box, shape (num_gt,). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D + image, shape (num_gt, 2). + depths_list (list[Tensor]): Depth of projected 3D centers onto 2D + image, each has shape (num_gt, 1). + feat_shape (tuple[int]): Feature map shape with value, + shape (B, _, H, W). + img_shape (tuple[int]): Image shape in [h, w] format. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple[Tensor, dict]: The Tensor value is the targets of + center heatmap, the dict has components below: + - base_centers2d_target (Tensor): Coords of each projected 3D box + center on image. shape (B * max_objs, 2), [dtype: int] + - labels3d (Tensor): Labels of each 3D box. + shape (N, ) + - reg_mask (Tensor): Mask of the existence of the 3D box. + shape (B * max_objs, ) + - batch_indices (Tensor): Batch id of the 3D box. + shape (N, ) + - depth_target (Tensor): Depth target of each 3D box. + shape (N, ) + - keypoints2d_target (Tensor): Keypoints of each projected 3D box + on image. shape (N, 10, 2) + - keypoints_mask (Tensor): Keypoints mask of each projected 3D + box on image. shape (N, 10) + - keypoints_depth_mask (Tensor): Depths decoded from keypoints + of each 3D box. shape (N, 3) + - orientations_target (Tensor): Orientation (encoded local yaw) + target of each 3D box. shape (N, ) + - offsets2d_target (Tensor): Offsets target of each projected + 3D box. shape (N, 2) + - dimensions_target (Tensor): Dimensions target of each 3D box. + shape (N, 3) + - downsample_ratio (int): The stride of feature map. + """ + + img_h, img_w = img_shape[:2] + batch_size, _, feat_h, feat_w = feat_shape + + width_ratio = float(feat_w / img_w) # 1/4 + height_ratio = float(feat_h / img_h) # 1/4 + + assert width_ratio == height_ratio + + # Whether to filter the objects which are not in FOV. + if self.filter_outside_objs: + filter_outside_objs(gt_bboxes_list, gt_labels_list, + gt_bboxes_3d_list, gt_labels_3d_list, + centers2d_list, input_metas) + + # transform centers2d to base centers2d for regression and + # heatmap generation. + # centers2d = int(base_centers2d) + offsets2d + base_centers2d_list, offsets2d_list, trunc_mask_list = \ + handle_proj_objs(centers2d_list, gt_bboxes_list, input_metas) + + keypoints2d_list, keypoints_mask_list, keypoints_depth_mask_list = \ + get_keypoints(gt_bboxes_3d_list, centers2d_list, input_metas) + + center_heatmap_target = gt_bboxes_list[-1].new_zeros( + [batch_size, self.num_classes, feat_h, feat_w]) + + for batch_id in range(batch_size): + # project gt_bboxes from input image to feat map + gt_bboxes = gt_bboxes_list[batch_id] * width_ratio + gt_labels = gt_labels_list[batch_id] + + # project base centers2d from input image to feat map + gt_base_centers2d = base_centers2d_list[batch_id] * width_ratio + trunc_masks = trunc_mask_list[batch_id] + + for j, base_center2d in enumerate(gt_base_centers2d): + if trunc_masks[j]: + # for outside objects, generate ellipse heatmap + base_center2d_x_int, base_center2d_y_int = \ + base_center2d.int() + scale_box_w = min(base_center2d_x_int - gt_bboxes[j][0], + gt_bboxes[j][2] - base_center2d_x_int) + scale_box_h = min(base_center2d_y_int - gt_bboxes[j][1], + gt_bboxes[j][3] - base_center2d_y_int) + radius_x = scale_box_w * self.edge_heatmap_ratio + radius_y = scale_box_h * self.edge_heatmap_ratio + radius_x, radius_y = max(0, int(radius_x)), max( + 0, int(radius_y)) + assert min(radius_x, radius_y) == 0 + ind = gt_labels[j] + get_ellip_gaussian_2D( + center_heatmap_target[batch_id, ind], + [base_center2d_x_int, base_center2d_y_int], radius_x, + radius_y) + else: + base_center2d_x_int, base_center2d_y_int = \ + base_center2d.int() + scale_box_h = (gt_bboxes[j][3] - gt_bboxes[j][1]) + scale_box_w = (gt_bboxes[j][2] - gt_bboxes[j][0]) + radius = gaussian_radius([scale_box_h, scale_box_w], + min_overlap=0.7) + radius = max(0, int(radius)) + ind = gt_labels[j] + gen_gaussian_target( + center_heatmap_target[batch_id, ind], + [base_center2d_x_int, base_center2d_y_int], radius) + + avg_factor = max(1, center_heatmap_target.eq(1).sum()) + num_ctrs = [centers2d.shape[0] for centers2d in centers2d_list] + max_objs = max(num_ctrs) + batch_indices = [ + centers2d_list[0].new_full((num_ctrs[i], ), i) + for i in range(batch_size) + ] + batch_indices = torch.cat(batch_indices, dim=0) + reg_mask = torch.zeros( + (batch_size, max_objs), + dtype=torch.bool).to(base_centers2d_list[0].device) + gt_bboxes_3d = input_metas['box_type_3d'].cat(gt_bboxes_3d_list) + gt_bboxes_3d = gt_bboxes_3d.to(base_centers2d_list[0].device) + + # encode original local yaw to multibin format + orienations_target = self.bbox_coder.encode(gt_bboxes_3d) + + batch_base_centers2d = base_centers2d_list[0].new_zeros( + (batch_size, max_objs, 2)) + + for i in range(batch_size): + reg_mask[i, :num_ctrs[i]] = 1 + batch_base_centers2d[i, :num_ctrs[i]] = base_centers2d_list[i] + + flatten_reg_mask = reg_mask.flatten() + + # transform base centers2d from input scale to output scale + batch_base_centers2d = batch_base_centers2d.view(-1, 2) * width_ratio + + dimensions_target = gt_bboxes_3d.tensor[:, 3:6] + labels_3d = torch.cat(gt_labels_3d_list) + keypoints2d_target = torch.cat(keypoints2d_list) + keypoints_mask = torch.cat(keypoints_mask_list) + keypoints_depth_mask = torch.cat(keypoints_depth_mask_list) + offsets2d_target = torch.cat(offsets2d_list) + bboxes2d = torch.cat(gt_bboxes_list) + + # transform FCOS style bbox into [x1, y1, x2, y2] format. + bboxes2d_target = torch.cat([bboxes2d[:, 0:2] * -1, bboxes2d[:, 2:]], + dim=-1) + depths = torch.cat(depths_list) + + target_labels = dict( + base_centers2d_target=batch_base_centers2d.int(), + labels3d=labels_3d, + reg_mask=flatten_reg_mask, + batch_indices=batch_indices, + bboxes2d_target=bboxes2d_target, + depth_target=depths, + keypoints2d_target=keypoints2d_target, + keypoints_mask=keypoints_mask, + keypoints_depth_mask=keypoints_depth_mask, + orienations_target=orienations_target, + offsets2d_target=offsets2d_target, + dimensions_target=dimensions_target, + downsample_ratio=1 / width_ratio) + + return center_heatmap_target, avg_factor, target_labels + + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels, + input_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level. + shape (num_gt, 4). + bbox_preds (list[Tensor]): Box dims is a 4D-tensor, the channel + number is bbox_code_size. + shape (B, 7, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image. + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box. + shape (num_gts, ). + gt_bboxes_3d (list[:obj:`CameraInstance3DBoxes`]): 3D boxes ground + truth. it is the flipped gt_bboxes + gt_labels_3d (list[Tensor]): Same as gt_labels. + centers2d (list[Tensor]): 2D centers on the image. + shape (num_gts, 2). + depths (list[Tensor]): Depth ground truth. + shape (num_gts, ). + attr_labels (list[Tensor]): Attributes indices of each box. + In kitti it's None. + input_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + Default: None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == 1 + assert attr_labels is None + assert gt_bboxes_ignore is None + center2d_heatmap = cls_scores[0] + pred_reg = bbox_preds[0] + + center2d_heatmap_target, avg_factor, target_labels = \ + self.get_targets(gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, + center2d_heatmap.shape, + input_metas[0]['pad_shape'], + input_metas) + + preds = self.get_predictions( + pred_reg=pred_reg, + labels3d=target_labels['labels3d'], + centers2d=target_labels['base_centers2d_target'], + reg_mask=target_labels['reg_mask'], + batch_indices=target_labels['batch_indices'], + input_metas=input_metas, + downsample_ratio=target_labels['downsample_ratio']) + + # heatmap loss + loss_cls = self.loss_cls( + center2d_heatmap, center2d_heatmap_target, avg_factor=avg_factor) + + # bbox2d regression loss + loss_bbox = self.loss_bbox(preds['bboxes2d'], + target_labels['bboxes2d_target']) + + # keypoints loss, the keypoints in predictions and target are all + # local coordinates. Check the mask dtype should be bool, not int + # or float to ensure the indexing is bool index + keypoints2d_mask = target_labels['keypoints2d_mask'] + loss_keypoints = self.loss_keypoints( + preds['keypoints2d'][keypoints2d_mask], + target_labels['keypoints2d_target'][keypoints2d_mask]) + + # orientations loss + loss_dir = self.loss_dir(preds['orientations'], + target_labels['orientations_target']) + + # dimensions loss + loss_dims = self.loss_dims(preds['dimensions'], + target_labels['dimensions_target']) + + # offsets for center heatmap + loss_offsets2d = self.loss_offsets2d(preds['offsets2d'], + target_labels['offsets2d_target']) + + # directly regressed depth loss with direct depth uncertainty loss + direct_depth_weights = torch.exp(-preds['direct_depth_uncertainty']) + loss_weight_1 = self.loss_direct_depth.loss_weight + loss_direct_depth = self.loss_direct_depth( + preds['direct_depth'], target_labels['depth_target'], + direct_depth_weights) + loss_uncertainty_1 =\ + preds['direct_depth_uncertainty'] * loss_weight_1 + loss_direct_depth = loss_direct_depth + loss_uncertainty_1.mean() + + # keypoints decoded depth loss with keypoints depth uncertainty loss + depth_mask = target_labels['keypoints_depth_mask'] + depth_target = target_labels['depth_target'].unsqueeze(-1).repeat(1, 3) + valid_keypoints_depth_uncertainty = preds[ + 'keypoints_depth_uncertainty'][depth_mask] + valid_keypoints_depth_weights = torch.exp( + -valid_keypoints_depth_uncertainty) + loss_keypoints_depth = self.loss_keypoint_depth( + preds['keypoints_depth'][depth_mask], depth_target[depth_mask], + valid_keypoints_depth_weights) + loss_weight_2 = self.loss_keypoints_depth.loss_weight + loss_uncertainty_2 =\ + valid_keypoints_depth_uncertainty * loss_weight_2 + loss_keypoints_depth = loss_keypoints_depth + loss_uncertainty_2.mean() + + # combined depth loss for optimiaze the uncertainty + loss_combined_depth = self.loss_combined_depth( + preds['combined_depth'], target_labels['depth_target']) + + loss_dict = dict( + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_keypoints=loss_keypoints, + loss_dir=loss_dir, + loss_dims=loss_dims, + loss_offsets2d=loss_offsets2d, + loss_direct_depth=loss_direct_depth, + loss_keypoints_depth=loss_keypoints_depth, + loss_combined_depth=loss_combined_depth) + + return loss_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/parta2_rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/parta2_rpn_head.py new file mode 100644 index 000000000..a57e1a124 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/parta2_rpn_head.py @@ -0,0 +1,310 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.runner import force_fp32 + +from mmdet3d.core import limit_period, xywhr2xyxyr +from mmdet3d.core.post_processing import nms_bev, nms_normal_bev +from ..builder import HEADS +from .anchor3d_head import Anchor3DHead + + +@HEADS.register_module() +class PartA2RPNHead(Anchor3DHead): + """RPN head for PartA2. + + Note: + The main difference between the PartA2 RPN head and the Anchor3DHead + lies in their output during inference. PartA2 RPN head further returns + the original classification score for the second stage since the bbox + head in RoI head does not do classification task. + + Different from RPN heads in 2D detectors, this RPN head does + multi-class classification task and uses FocalLoss like the SECOND and + PointPillars do. But this head uses class agnostic nms rather than + multi-class nms. + + Args: + num_classes (int): Number of classes. + in_channels (int): Number of channels in the input feature map. + train_cfg (dict): Train configs. + test_cfg (dict): Test configs. + feat_channels (int): Number of channels of the feature map. + use_direction_classifier (bool): Whether to add a direction classifier. + anchor_generator(dict): Config dict of anchor generator. + assigner_per_size (bool): Whether to do assignment for each separate + anchor size. + assign_per_class (bool): Whether to do assignment for each class. + diff_rad_by_sin (bool): Whether to change the difference into sin + difference for box regression loss. + dir_offset (float | int): The offset of BEV rotation angles + (TODO: may be moved into box coder) + dir_limit_offset (float | int): The limited range of BEV + rotation angles. (TODO: may be moved into box coder) + bbox_coder (dict): Config dict of box coders. + loss_cls (dict): Config of classification loss. + loss_bbox (dict): Config of localization loss. + loss_dir (dict): Config of direction classifier loss. + """ + + def __init__(self, + num_classes, + in_channels, + train_cfg, + test_cfg, + feat_channels=256, + use_direction_classifier=True, + anchor_generator=dict( + type='Anchor3DRangeGenerator', + range=[0, -39.68, -1.78, 69.12, 39.68, -1.78], + strides=[2], + sizes=[[3.9, 1.6, 1.56]], + rotations=[0, 1.57], + custom_values=[], + reshape_out=False), + assigner_per_size=False, + assign_per_class=False, + diff_rad_by_sin=True, + dir_offset=-np.pi / 2, + dir_limit_offset=0, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2), + init_cfg=None): + super().__init__(num_classes, in_channels, train_cfg, test_cfg, + feat_channels, use_direction_classifier, + anchor_generator, assigner_per_size, assign_per_class, + diff_rad_by_sin, dir_offset, dir_limit_offset, + bbox_coder, loss_cls, loss_bbox, loss_dir, init_cfg) + + @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + gt_bboxes, + gt_labels, + input_metas, + gt_bboxes_ignore=None): + """Calculate losses. + + Args: + cls_scores (list[torch.Tensor]): Multi-level class scores. + bbox_preds (list[torch.Tensor]): Multi-level bbox predictions. + dir_cls_preds (list[torch.Tensor]): Multi-level direction + class predictions. + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth boxes + of each sample. + gt_labels (list[torch.Tensor]): Labels of each sample. + input_metas (list[dict]): Point cloud and image's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict[str, list[torch.Tensor]]: Classification, bbox, and + direction losses of each level. + + - loss_rpn_cls (list[torch.Tensor]): Classification losses. + - loss_rpn_bbox (list[torch.Tensor]): Box regression losses. + - loss_rpn_dir (list[torch.Tensor]): Direction classification + losses. + """ + loss_dict = super().loss(cls_scores, bbox_preds, dir_cls_preds, + gt_bboxes, gt_labels, input_metas, + gt_bboxes_ignore) + # change the loss key names to avoid conflict + return dict( + loss_rpn_cls=loss_dict['loss_cls'], + loss_rpn_bbox=loss_dict['loss_bbox'], + loss_rpn_dir=loss_dict['loss_dir']) + + def get_bboxes_single(self, + cls_scores, + bbox_preds, + dir_cls_preds, + mlvl_anchors, + input_meta, + cfg, + rescale=False): + """Get bboxes of single branch. + + Args: + cls_scores (torch.Tensor): Class score in single batch. + bbox_preds (torch.Tensor): Bbox prediction in single batch. + dir_cls_preds (torch.Tensor): Predictions of direction class + in single batch. + mlvl_anchors (List[torch.Tensor]): Multi-level anchors + in single batch. + input_meta (list[dict]): Contain pcd and img's meta info. + cfg (:obj:`ConfigDict`): Training or testing config. + rescale (list[torch.Tensor]): whether th rescale bbox. + + Returns: + dict: Predictions of single batch containing the following keys: + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes. + - scores_3d (torch.Tensor): Score of each bbox. + - labels_3d (torch.Tensor): Label of each bbox. + - cls_preds (torch.Tensor): Class score of each bbox. + """ + assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) + mlvl_bboxes = [] + mlvl_max_scores = [] + mlvl_label_pred = [] + mlvl_dir_scores = [] + mlvl_cls_score = [] + for cls_score, bbox_pred, dir_cls_pred, anchors in zip( + cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:] + dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2) + dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] + + cls_score = cls_score.permute(1, 2, + 0).reshape(-1, self.num_classes) + + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1) + bbox_pred = bbox_pred.permute(1, 2, + 0).reshape(-1, self.box_code_size) + + nms_pre = cfg.get('nms_pre', -1) + if self.use_sigmoid_cls: + max_scores, pred_labels = scores.max(dim=1) + else: + max_scores, pred_labels = scores[:, :-1].max(dim=1) + # get topk + if nms_pre > 0 and scores.shape[0] > nms_pre: + topk_scores, topk_inds = max_scores.topk(nms_pre) + anchors = anchors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + max_scores = topk_scores + cls_score = scores[topk_inds, :] + dir_cls_score = dir_cls_score[topk_inds] + pred_labels = pred_labels[topk_inds] + + bboxes = self.bbox_coder.decode(anchors, bbox_pred) + mlvl_bboxes.append(bboxes) + mlvl_max_scores.append(max_scores) + mlvl_cls_score.append(cls_score) + mlvl_label_pred.append(pred_labels) + mlvl_dir_scores.append(dir_cls_score) + + mlvl_bboxes = torch.cat(mlvl_bboxes) + mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + mlvl_bboxes, box_dim=self.box_code_size).bev) + mlvl_max_scores = torch.cat(mlvl_max_scores) + mlvl_label_pred = torch.cat(mlvl_label_pred) + mlvl_dir_scores = torch.cat(mlvl_dir_scores) + # shape [k, num_class] before sigmoid + # PartA2 need to keep raw classification score + # because the bbox head in the second stage does not have + # classification branch, + # roi head need this score as classification score + mlvl_cls_score = torch.cat(mlvl_cls_score) + + score_thr = cfg.get('score_thr', 0) + result = self.class_agnostic_nms(mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_max_scores, mlvl_label_pred, + mlvl_cls_score, mlvl_dir_scores, + score_thr, cfg.nms_post, cfg, + input_meta) + + return result + + def class_agnostic_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_max_scores, mlvl_label_pred, mlvl_cls_score, + mlvl_dir_scores, score_thr, max_num, cfg, + input_meta): + """Class agnostic nms for single batch. + + Args: + mlvl_bboxes (torch.Tensor): Bboxes from Multi-level. + mlvl_bboxes_for_nms (torch.Tensor): Bboxes for nms + (bev or minmax boxes) from Multi-level. + mlvl_max_scores (torch.Tensor): Max scores of Multi-level bbox. + mlvl_label_pred (torch.Tensor): Class predictions + of Multi-level bbox. + mlvl_cls_score (torch.Tensor): Class scores of + Multi-level bbox. + mlvl_dir_scores (torch.Tensor): Direction scores of + Multi-level bbox. + score_thr (int): Score threshold. + max_num (int): Max number of bboxes after nms. + cfg (:obj:`ConfigDict`): Training or testing config. + input_meta (dict): Contain pcd and img's meta info. + + Returns: + dict: Predictions of single batch. Contain the keys: + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes. + - scores_3d (torch.Tensor): Score of each bbox. + - labels_3d (torch.Tensor): Label of each bbox. + - cls_preds (torch.Tensor): Class score of each bbox. + """ + bboxes = [] + scores = [] + labels = [] + dir_scores = [] + cls_scores = [] + score_thr_inds = mlvl_max_scores > score_thr + _scores = mlvl_max_scores[score_thr_inds] + _bboxes_for_nms = mlvl_bboxes_for_nms[score_thr_inds, :] + if cfg.use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr) + + _mlvl_bboxes = mlvl_bboxes[score_thr_inds, :] + _mlvl_dir_scores = mlvl_dir_scores[score_thr_inds] + _mlvl_label_pred = mlvl_label_pred[score_thr_inds] + _mlvl_cls_score = mlvl_cls_score[score_thr_inds] + + if len(selected) > 0: + bboxes.append(_mlvl_bboxes[selected]) + scores.append(_scores[selected]) + labels.append(_mlvl_label_pred[selected]) + cls_scores.append(_mlvl_cls_score[selected]) + dir_scores.append(_mlvl_dir_scores[selected]) + dir_rot = limit_period(bboxes[-1][..., 6] - self.dir_offset, + self.dir_limit_offset, np.pi) + bboxes[-1][..., 6] = ( + dir_rot + self.dir_offset + + np.pi * dir_scores[-1].to(bboxes[-1].dtype)) + + if bboxes: + bboxes = torch.cat(bboxes, dim=0) + scores = torch.cat(scores, dim=0) + cls_scores = torch.cat(cls_scores, dim=0) + labels = torch.cat(labels, dim=0) + if bboxes.shape[0] > max_num: + _, inds = scores.sort(descending=True) + inds = inds[:max_num] + bboxes = bboxes[inds, :] + labels = labels[inds] + scores = scores[inds] + cls_scores = cls_scores[inds] + bboxes = input_meta['box_type_3d']( + bboxes, box_dim=self.box_code_size) + return dict( + boxes_3d=bboxes, + scores_3d=scores, + labels_3d=labels, + cls_preds=cls_scores # raw scores [max_num, cls_num] + ) + else: + return dict( + boxes_3d=input_meta['box_type_3d']( + mlvl_bboxes.new_zeros([0, self.box_code_size]), + box_dim=self.box_code_size), + scores_3d=mlvl_bboxes.new_zeros([0]), + labels_3d=mlvl_bboxes.new_zeros([0]), + cls_preds=mlvl_bboxes.new_zeros([0, mlvl_cls_score.shape[-1]])) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/pgd_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/pgd_head.py new file mode 100644 index 000000000..d9bfadb0a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/pgd_head.py @@ -0,0 +1,1229 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.cnn import Scale, bias_init_with_prob, normal_init +from mmcv.runner import force_fp32 +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.core import box3d_multiclass_nms, xywhr2xyxyr +from mmdet3d.core.bbox import points_cam2img, points_img2cam +from mmdet.core import distance2bbox, multi_apply +from ..builder import HEADS, build_loss +from .fcos_mono3d_head import FCOSMono3DHead + + +@HEADS.register_module() +class PGDHead(FCOSMono3DHead): + r"""Anchor-free head used in `PGD `_. + + Args: + use_depth_classifer (bool, optional): Whether to use depth classifier. + Defaults to True. + use_only_reg_proj (bool, optional): Whether to use only direct + regressed depth in the re-projection (to make the network easier + to learn). Defaults to False. + weight_dim (int, optional): Dimension of the location-aware weight + map. Defaults to -1. + weight_branch (tuple[tuple[int]], optional): Feature map channels of + the convolutional branch for weight map. Defaults to ((256, ), ). + depth_branch (tuple[int], optional): Feature map channels of the + branch for probabilistic depth estimation. Defaults to (64, ), + depth_range (tuple[float], optional): Range of depth estimation. + Defaults to (0, 70), + depth_unit (int, optional): Unit of depth range division. Defaults to + 10. + division (str, optional): Depth division method. Options include + 'uniform', 'linear', 'log', 'loguniform'. Defaults to 'uniform'. + depth_bins (int, optional): Discrete bins of depth division. Defaults + to 8. + loss_depth (dict, optional): Depth loss. Defaults to dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0). + loss_bbox2d (dict, optional): Loss for 2D box estimation. Defaults to + dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0). + loss_consistency (dict, optional): Consistency loss. Defaults to + dict(type='GIoULoss', loss_weight=1.0), + pred_velo (bool, optional): Whether to predict velocity. Defaults to + False. + pred_bbox2d (bool, optional): Whether to predict 2D bounding boxes. + Defaults to True. + pred_keypoints (bool, optional): Whether to predict keypoints. + Defaults to False, + bbox_coder (dict, optional): Bounding box coder. Defaults to + dict(type='PGDBBoxCoder', base_depths=((28.01, 16.32), ), + base_dims=((0.8, 1.73, 0.6), (1.76, 1.73, 0.6), (3.9, 1.56, 1.6)), + code_size=7). + """ + + def __init__(self, + use_depth_classifier=True, + use_onlyreg_proj=False, + weight_dim=-1, + weight_branch=((256, ), ), + depth_branch=(64, ), + depth_range=(0, 70), + depth_unit=10, + division='uniform', + depth_bins=8, + loss_depth=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_bbox2d=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), + loss_consistency=dict(type='GIoULoss', loss_weight=1.0), + pred_bbox2d=True, + pred_keypoints=False, + bbox_coder=dict( + type='PGDBBoxCoder', + base_depths=((28.01, 16.32), ), + base_dims=((0.8, 1.73, 0.6), (1.76, 1.73, 0.6), + (3.9, 1.56, 1.6)), + code_size=7), + **kwargs): + self.use_depth_classifier = use_depth_classifier + self.use_onlyreg_proj = use_onlyreg_proj + self.depth_branch = depth_branch + self.pred_keypoints = pred_keypoints + self.weight_dim = weight_dim + self.weight_branch = weight_branch + self.weight_out_channels = [] + for weight_branch_channels in weight_branch: + if len(weight_branch_channels) > 0: + self.weight_out_channels.append(weight_branch_channels[-1]) + else: + self.weight_out_channels.append(-1) + self.depth_range = depth_range + self.depth_unit = depth_unit + self.division = division + if self.division == 'uniform': + self.num_depth_cls = int( + (depth_range[1] - depth_range[0]) / depth_unit) + 1 + if self.num_depth_cls != depth_bins: + print('Warning: The number of bins computed from ' + + 'depth_unit is different from given parameter! ' + + 'Depth_unit will be considered with priority in ' + + 'Uniform Division.') + else: + self.num_depth_cls = depth_bins + super().__init__( + pred_bbox2d=pred_bbox2d, bbox_coder=bbox_coder, **kwargs) + self.loss_depth = build_loss(loss_depth) + if self.pred_bbox2d: + self.loss_bbox2d = build_loss(loss_bbox2d) + self.loss_consistency = build_loss(loss_consistency) + if self.pred_keypoints: + self.kpts_start = 9 if self.pred_velo else 7 + + def _init_layers(self): + """Initialize layers of the head.""" + super()._init_layers() + if self.pred_bbox2d: + self.scale_dim += 1 + if self.pred_keypoints: + self.scale_dim += 1 + self.scales = nn.ModuleList([ + nn.ModuleList([Scale(1.0) for _ in range(self.scale_dim)]) + for _ in self.strides + ]) + + def _init_predictor(self): + """Initialize predictor layers of the head.""" + super()._init_predictor() + + if self.use_depth_classifier: + self.conv_depth_cls_prev = self._init_branch( + conv_channels=self.depth_branch, + conv_strides=(1, ) * len(self.depth_branch)) + self.conv_depth_cls = nn.Conv2d(self.depth_branch[-1], + self.num_depth_cls, 1) + # Data-agnostic single param lambda for local depth fusion + self.fuse_lambda = nn.Parameter(torch.tensor(10e-5)) + + if self.weight_dim != -1: + self.conv_weight_prevs = nn.ModuleList() + self.conv_weights = nn.ModuleList() + for i in range(self.weight_dim): + weight_branch_channels = self.weight_branch[i] + weight_out_channel = self.weight_out_channels[i] + if len(weight_branch_channels) > 0: + self.conv_weight_prevs.append( + self._init_branch( + conv_channels=weight_branch_channels, + conv_strides=(1, ) * len(weight_branch_channels))) + self.conv_weights.append( + nn.Conv2d(weight_out_channel, 1, 1)) + else: + self.conv_weight_prevs.append(None) + self.conv_weights.append( + nn.Conv2d(self.feat_channels, 1, 1)) + + def init_weights(self): + """Initialize weights of the head. + + We currently still use the customized defined init_weights because the + default init of DCN triggered by the init_cfg will init + conv_offset.weight, which mistakenly affects the training stability. + """ + super().init_weights() + + bias_cls = bias_init_with_prob(0.01) + if self.use_depth_classifier: + for m in self.conv_depth_cls_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + normal_init(self.conv_depth_cls, std=0.01, bias=bias_cls) + + if self.weight_dim != -1: + for conv_weight_prev in self.conv_weight_prevs: + if conv_weight_prev is None: + continue + for m in conv_weight_prev: + if isinstance(m.conv, nn.Conv2d): + normal_init(m.conv, std=0.01) + for conv_weight in self.conv_weights: + normal_init(conv_weight, std=0.01) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2). + weight (list[Tensor]): Location-aware weight maps on each + scale level, each is a 4D-tensor, the channel number is + num_points * 1. + depth_cls_preds (list[Tensor]): Box scores for depth class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * self.num_depth_cls. + attr_preds (list[Tensor]): Attribute scores for each scale + level, each is a 4D-tensor, the channel number is + num_points * num_attrs. + centernesses (list[Tensor]): Centerness for each scale level, + each is a 4D-tensor, the channel number is num_points * 1. + """ + return multi_apply(self.forward_single, feats, self.scales, + self.strides) + + def forward_single(self, x, scale, stride): + """Forward features of a single scale level. + + Args: + x (Tensor): FPN feature maps of the specified stride. + scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize + the bbox prediction. + stride (int): The corresponding stride for feature maps, only + used to normalize the bbox prediction when self.norm_on_bbox + is True. + + Returns: + tuple: scores for each class, bbox and direction class + predictions, depth class predictions, location-aware weights, + attribute and centerness predictions of input feature maps. + """ + cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, cls_feat, \ + reg_feat = super().forward_single(x, scale, stride) + + max_regress_range = stride * self.regress_ranges[0][1] / \ + self.strides[0] + bbox_pred = self.bbox_coder.decode_2d(bbox_pred, scale, stride, + max_regress_range, self.training, + self.pred_keypoints, + self.pred_bbox2d) + + depth_cls_pred = None + if self.use_depth_classifier: + clone_reg_feat = reg_feat.clone() + for conv_depth_cls_prev_layer in self.conv_depth_cls_prev: + clone_reg_feat = conv_depth_cls_prev_layer(clone_reg_feat) + depth_cls_pred = self.conv_depth_cls(clone_reg_feat) + + weight = None + if self.weight_dim != -1: + weight = [] + for i in range(self.weight_dim): + clone_reg_feat = reg_feat.clone() + if len(self.weight_branch[i]) > 0: + for conv_weight_prev_layer in self.conv_weight_prevs[i]: + clone_reg_feat = conv_weight_prev_layer(clone_reg_feat) + weight.append(self.conv_weights[i](clone_reg_feat)) + weight = torch.cat(weight, dim=1) + + return cls_score, bbox_pred, dir_cls_pred, depth_cls_pred, weight, \ + attr_pred, centerness + + def get_proj_bbox2d(self, + bbox_preds, + pos_dir_cls_preds, + labels_3d, + bbox_targets_3d, + pos_points, + pos_inds, + img_metas, + pos_depth_cls_preds=None, + pos_weights=None, + pos_cls_scores=None, + with_kpts=False): + """Decode box predictions and get projected 2D attributes. + + Args: + bbox_preds (list[Tensor]): Box predictions for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + pos_dir_cls_preds (Tensor): Box scores for direction class + predictions of positive boxes on all the scale levels in shape + (num_pos_points, 2). + labels_3d (list[Tensor]): 3D box category labels for each scale + level, each is a 4D-tensor. + bbox_targets_3d (list[Tensor]): 3D box targets for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + pos_points (Tensor): Foreground points. + pos_inds (Tensor): Index of foreground points from flattened + tensors. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + pos_depth_cls_preds (Tensor, optional): Probabilistic depth map of + positive boxes on all the scale levels in shape + (num_pos_points, self.num_depth_cls). Defaults to None. + pos_weights (Tensor, optional): Location-aware weights of positive + boxes in shape (num_pos_points, self.weight_dim). Defaults to + None. + pos_cls_scores (Tensor, optional): Classification scores of + positive boxes in shape (num_pos_points, self.num_classes). + Defaults to None. + with_kpts (bool, optional): Whether to output keypoints targets. + Defaults to False. + + Returns: + tuple[Tensor]: Exterior 2D boxes from projected 3D boxes, + predicted 2D boxes and keypoint targets (if necessary). + """ + views = [np.array(img_meta['cam2img']) for img_meta in img_metas] + num_imgs = len(img_metas) + img_idx = [] + for label in labels_3d: + for idx in range(num_imgs): + img_idx.append( + labels_3d[0].new_ones(int(len(label) / num_imgs)) * idx) + img_idx = torch.cat(img_idx) + pos_img_idx = img_idx[pos_inds] + + flatten_strided_bbox_preds = [] + flatten_strided_bbox2d_preds = [] + flatten_bbox_targets_3d = [] + flatten_strides = [] + + for stride_idx, bbox_pred in enumerate(bbox_preds): + flatten_bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape( + -1, sum(self.group_reg_dims)) + flatten_bbox_pred[:, :2] *= self.strides[stride_idx] + flatten_bbox_pred[:, -4:] *= self.strides[stride_idx] + flatten_strided_bbox_preds.append( + flatten_bbox_pred[:, :self.bbox_coder.bbox_code_size]) + flatten_strided_bbox2d_preds.append(flatten_bbox_pred[:, -4:]) + + bbox_target_3d = bbox_targets_3d[stride_idx].clone() + bbox_target_3d[:, :2] *= self.strides[stride_idx] + bbox_target_3d[:, -4:] *= self.strides[stride_idx] + flatten_bbox_targets_3d.append(bbox_target_3d) + + flatten_stride = flatten_bbox_pred.new_ones( + *flatten_bbox_pred.shape[:-1], 1) * self.strides[stride_idx] + flatten_strides.append(flatten_stride) + + flatten_strided_bbox_preds = torch.cat(flatten_strided_bbox_preds) + flatten_strided_bbox2d_preds = torch.cat(flatten_strided_bbox2d_preds) + flatten_bbox_targets_3d = torch.cat(flatten_bbox_targets_3d) + flatten_strides = torch.cat(flatten_strides) + pos_strided_bbox_preds = flatten_strided_bbox_preds[pos_inds] + pos_strided_bbox2d_preds = flatten_strided_bbox2d_preds[pos_inds] + pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds] + pos_strides = flatten_strides[pos_inds] + + pos_decoded_bbox2d_preds = distance2bbox(pos_points, + pos_strided_bbox2d_preds) + + pos_strided_bbox_preds[:, :2] = \ + pos_points - pos_strided_bbox_preds[:, :2] + pos_bbox_targets_3d[:, :2] = \ + pos_points - pos_bbox_targets_3d[:, :2] + + if self.use_depth_classifier and (not self.use_onlyreg_proj): + pos_prob_depth_preds = self.bbox_coder.decode_prob_depth( + pos_depth_cls_preds, self.depth_range, self.depth_unit, + self.division, self.num_depth_cls) + sig_alpha = torch.sigmoid(self.fuse_lambda) + pos_strided_bbox_preds[:, 2] = \ + sig_alpha * pos_strided_bbox_preds.clone()[:, 2] + \ + (1 - sig_alpha) * pos_prob_depth_preds + + box_corners_in_image = pos_strided_bbox_preds.new_zeros( + (*pos_strided_bbox_preds.shape[:-1], 8, 2)) + box_corners_in_image_gt = pos_strided_bbox_preds.new_zeros( + (*pos_strided_bbox_preds.shape[:-1], 8, 2)) + + for idx in range(num_imgs): + mask = (pos_img_idx == idx) + if pos_strided_bbox_preds[mask].shape[0] == 0: + continue + cam2img = torch.eye( + 4, + dtype=pos_strided_bbox_preds.dtype, + device=pos_strided_bbox_preds.device) + view_shape = views[idx].shape + cam2img[:view_shape[0], :view_shape[1]] = \ + pos_strided_bbox_preds.new_tensor(views[idx]) + + centers2d_preds = pos_strided_bbox_preds.clone()[mask, :2] + centers2d_targets = pos_bbox_targets_3d.clone()[mask, :2] + centers3d_targets = points_img2cam(pos_bbox_targets_3d[mask, :3], + views[idx]) + + # use predicted depth to re-project the 2.5D centers + pos_strided_bbox_preds[mask, :3] = points_img2cam( + pos_strided_bbox_preds[mask, :3], views[idx]) + pos_bbox_targets_3d[mask, :3] = centers3d_targets + + # depth fixed when computing re-project 3D bboxes + pos_strided_bbox_preds[mask, 2] = \ + pos_bbox_targets_3d.clone()[mask, 2] + + # decode yaws + if self.use_direction_classifier: + pos_dir_cls_scores = torch.max( + pos_dir_cls_preds[mask], dim=-1)[1] + pos_strided_bbox_preds[mask] = self.bbox_coder.decode_yaw( + pos_strided_bbox_preds[mask], centers2d_preds, + pos_dir_cls_scores, self.dir_offset, cam2img) + pos_bbox_targets_3d[mask, 6] = torch.atan2( + centers2d_targets[:, 0] - cam2img[0, 2], + cam2img[0, 0]) + pos_bbox_targets_3d[mask, 6] + + corners = img_metas[0]['box_type_3d']( + pos_strided_bbox_preds[mask], + box_dim=self.bbox_coder.bbox_code_size, + origin=(0.5, 0.5, 0.5)).corners + box_corners_in_image[mask] = points_cam2img(corners, cam2img) + + corners_gt = img_metas[0]['box_type_3d']( + pos_bbox_targets_3d[mask, :self.bbox_code_size], + box_dim=self.bbox_coder.bbox_code_size, + origin=(0.5, 0.5, 0.5)).corners + box_corners_in_image_gt[mask] = points_cam2img(corners_gt, cam2img) + + minxy = torch.min(box_corners_in_image, dim=1)[0] + maxxy = torch.max(box_corners_in_image, dim=1)[0] + proj_bbox2d_preds = torch.cat([minxy, maxxy], dim=1) + + outputs = (proj_bbox2d_preds, pos_decoded_bbox2d_preds) + + if with_kpts: + norm_strides = pos_strides * self.regress_ranges[0][1] / \ + self.strides[0] + kpts_targets = box_corners_in_image_gt - pos_points[..., None, :] + kpts_targets = kpts_targets.view( + (*pos_strided_bbox_preds.shape[:-1], 16)) + kpts_targets /= norm_strides + + outputs += (kpts_targets, ) + + return outputs + + def get_pos_predictions(self, bbox_preds, dir_cls_preds, depth_cls_preds, + weights, attr_preds, centernesses, pos_inds, + img_metas): + """Flatten predictions and get positive ones. + + Args: + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + depth_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * self.num_depth_cls. + attr_preds (list[Tensor]): Attribute scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_attrs. + centernesses (list[Tensor]): Centerness for each scale level, each + is a 4D-tensor, the channel number is num_points * 1. + pos_inds (Tensor): Index of foreground points from flattened + tensors. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple[Tensor]: Box predictions, direction classes, probabilistic + depth maps, location-aware weight maps, attributes and + centerness predictions. + """ + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, sum(self.group_reg_dims)) + for bbox_pred in bbox_preds + ] + flatten_dir_cls_preds = [ + dir_cls_pred.permute(0, 2, 3, 1).reshape(-1, 2) + for dir_cls_pred in dir_cls_preds + ] + flatten_centerness = [ + centerness.permute(0, 2, 3, 1).reshape(-1) + for centerness in centernesses + ] + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_dir_cls_preds = torch.cat(flatten_dir_cls_preds) + flatten_centerness = torch.cat(flatten_centerness) + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_dir_cls_preds = flatten_dir_cls_preds[pos_inds] + pos_centerness = flatten_centerness[pos_inds] + + pos_depth_cls_preds = None + if self.use_depth_classifier: + flatten_depth_cls_preds = [ + depth_cls_pred.permute(0, 2, 3, + 1).reshape(-1, self.num_depth_cls) + for depth_cls_pred in depth_cls_preds + ] + flatten_depth_cls_preds = torch.cat(flatten_depth_cls_preds) + pos_depth_cls_preds = flatten_depth_cls_preds[pos_inds] + + pos_weights = None + if self.weight_dim != -1: + flatten_weights = [ + weight.permute(0, 2, 3, 1).reshape(-1, self.weight_dim) + for weight in weights + ] + flatten_weights = torch.cat(flatten_weights) + pos_weights = flatten_weights[pos_inds] + + pos_attr_preds = None + if self.pred_attrs: + flatten_attr_preds = [ + attr_pred.permute(0, 2, 3, 1).reshape(-1, self.num_attrs) + for attr_pred in attr_preds + ] + flatten_attr_preds = torch.cat(flatten_attr_preds) + pos_attr_preds = flatten_attr_preds[pos_inds] + + return pos_bbox_preds, pos_dir_cls_preds, pos_depth_cls_preds, \ + pos_weights, pos_attr_preds, pos_centerness + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', + 'depth_cls_preds', 'weights', 'attr_preds', 'centernesses')) + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + depth_cls_preds, + weights, + attr_preds, + centernesses, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + depth_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * self.num_depth_cls. + weights (list[Tensor]): Location-aware weights for each scale + level, each is a 4D-tensor, the channel number is + num_points * self.weight_dim. + attr_preds (list[Tensor]): Attribute scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_attrs. + centernesses (list[Tensor]): Centerness for each scale level, each + is a 4D-tensor, the channel number is num_points * 1. + gt_bboxes (list[Tensor]): Ground truth bboxes for each image with + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): class indices corresponding to each box + gt_bboxes_3d (list[Tensor]): 3D boxes ground truth with shape of + (num_gts, code_size). + gt_labels_3d (list[Tensor]): same as gt_labels + centers2d (list[Tensor]): 2D centers on the image with shape of + (num_gts, 2). + depths (list[Tensor]): Depth ground truth with shape of + (num_gts, ). + attr_labels (list[Tensor]): Attributes indices of each box. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (list[Tensor]): specify which bounding boxes can + be ignored when computing the loss. Defaults to None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \ + len(depth_cls_preds) == len(weights) == len(centernesses) == \ + len(attr_preds), 'The length of cls_scores, bbox_preds, ' \ + 'dir_cls_preds, depth_cls_preds, weights, centernesses, and' \ + f'attr_preds: {len(cls_scores)}, {len(bbox_preds)}, ' \ + f'{len(dir_cls_preds)}, {len(depth_cls_preds)}, {len(weights)}' \ + f'{len(centernesses)}, {len(attr_preds)} are inconsistent.' + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, + bbox_preds[0].device) + labels_3d, bbox_targets_3d, centerness_targets, attr_targets = \ + self.get_targets( + all_level_points, gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, attr_labels) + + num_imgs = cls_scores[0].size(0) + # flatten cls_scores and targets + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_labels_3d = torch.cat(labels_3d) + flatten_bbox_targets_3d = torch.cat(bbox_targets_3d) + flatten_centerness_targets = torch.cat(centerness_targets) + flatten_points = torch.cat( + [points.repeat(num_imgs, 1) for points in all_level_points]) + if self.pred_attrs: + flatten_attr_targets = torch.cat(attr_targets) + + # FG cat_id: [0, num_classes -1], BG cat_id: num_classes + bg_class_ind = self.num_classes + pos_inds = ((flatten_labels_3d >= 0) + & (flatten_labels_3d < bg_class_ind)).nonzero().reshape(-1) + num_pos = len(pos_inds) + + loss_dict = dict() + + loss_dict['loss_cls'] = self.loss_cls( + flatten_cls_scores, + flatten_labels_3d, + avg_factor=num_pos + num_imgs) # avoid num_pos is 0 + + pos_bbox_preds, pos_dir_cls_preds, pos_depth_cls_preds, pos_weights, \ + pos_attr_preds, pos_centerness = self.get_pos_predictions( + bbox_preds, dir_cls_preds, depth_cls_preds, weights, + attr_preds, centernesses, pos_inds, img_metas) + + if num_pos > 0: + pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds] + pos_centerness_targets = flatten_centerness_targets[pos_inds] + pos_points = flatten_points[pos_inds] + if self.pred_attrs: + pos_attr_targets = flatten_attr_targets[pos_inds] + if self.use_direction_classifier: + pos_dir_cls_targets = self.get_direction_target( + pos_bbox_targets_3d, self.dir_offset, one_hot=False) + + bbox_weights = pos_centerness_targets.new_ones( + len(pos_centerness_targets), sum(self.group_reg_dims)) + equal_weights = pos_centerness_targets.new_ones( + pos_centerness_targets.shape) + code_weight = self.train_cfg.get('code_weight', None) + if code_weight: + assert len(code_weight) == sum(self.group_reg_dims) + bbox_weights = bbox_weights * bbox_weights.new_tensor( + code_weight) + + if self.diff_rad_by_sin: + pos_bbox_preds, pos_bbox_targets_3d = self.add_sin_difference( + pos_bbox_preds, pos_bbox_targets_3d) + + loss_dict['loss_offset'] = self.loss_bbox( + pos_bbox_preds[:, :2], + pos_bbox_targets_3d[:, :2], + weight=bbox_weights[:, :2], + avg_factor=equal_weights.sum()) + loss_dict['loss_size'] = self.loss_bbox( + pos_bbox_preds[:, 3:6], + pos_bbox_targets_3d[:, 3:6], + weight=bbox_weights[:, 3:6], + avg_factor=equal_weights.sum()) + loss_dict['loss_rotsin'] = self.loss_bbox( + pos_bbox_preds[:, 6], + pos_bbox_targets_3d[:, 6], + weight=bbox_weights[:, 6], + avg_factor=equal_weights.sum()) + if self.pred_velo: + loss_dict['loss_velo'] = self.loss_bbox( + pos_bbox_preds[:, 7:9], + pos_bbox_targets_3d[:, 7:9], + weight=bbox_weights[:, 7:9], + avg_factor=equal_weights.sum()) + + proj_bbox2d_inputs = (bbox_preds, pos_dir_cls_preds, labels_3d, + bbox_targets_3d, pos_points, pos_inds, + img_metas) + + # direction classification loss + # TODO: add more check for use_direction_classifier + if self.use_direction_classifier: + loss_dict['loss_dir'] = self.loss_dir( + pos_dir_cls_preds, + pos_dir_cls_targets, + equal_weights, + avg_factor=equal_weights.sum()) + + # init depth loss with the one computed from direct regression + loss_dict['loss_depth'] = self.loss_bbox( + pos_bbox_preds[:, 2], + pos_bbox_targets_3d[:, 2], + weight=bbox_weights[:, 2], + avg_factor=equal_weights.sum()) + # depth classification loss + if self.use_depth_classifier: + pos_prob_depth_preds = self.bbox_coder.decode_prob_depth( + pos_depth_cls_preds, self.depth_range, self.depth_unit, + self.division, self.num_depth_cls) + sig_alpha = torch.sigmoid(self.fuse_lambda) + if self.weight_dim != -1: + loss_fuse_depth = self.loss_depth( + sig_alpha * pos_bbox_preds[:, 2] + + (1 - sig_alpha) * pos_prob_depth_preds, + pos_bbox_targets_3d[:, 2], + sigma=pos_weights[:, 0], + weight=bbox_weights[:, 2], + avg_factor=equal_weights.sum()) + else: + loss_fuse_depth = self.loss_depth( + sig_alpha * pos_bbox_preds[:, 2] + + (1 - sig_alpha) * pos_prob_depth_preds, + pos_bbox_targets_3d[:, 2], + weight=bbox_weights[:, 2], + avg_factor=equal_weights.sum()) + loss_dict['loss_depth'] = loss_fuse_depth + + proj_bbox2d_inputs += (pos_depth_cls_preds, ) + + if self.pred_keypoints: + # use smoothL1 to compute consistency loss for keypoints + # normalize the offsets with strides + proj_bbox2d_preds, pos_decoded_bbox2d_preds, kpts_targets = \ + self.get_proj_bbox2d(*proj_bbox2d_inputs, with_kpts=True) + loss_dict['loss_kpts'] = self.loss_bbox( + pos_bbox_preds[:, self.kpts_start:self.kpts_start + 16], + kpts_targets, + weight=bbox_weights[:, + self.kpts_start:self.kpts_start + 16], + avg_factor=equal_weights.sum()) + + if self.pred_bbox2d: + loss_dict['loss_bbox2d'] = self.loss_bbox2d( + pos_bbox_preds[:, -4:], + pos_bbox_targets_3d[:, -4:], + weight=bbox_weights[:, -4:], + avg_factor=equal_weights.sum()) + if not self.pred_keypoints: + proj_bbox2d_preds, pos_decoded_bbox2d_preds = \ + self.get_proj_bbox2d(*proj_bbox2d_inputs) + loss_dict['loss_consistency'] = self.loss_consistency( + proj_bbox2d_preds, + pos_decoded_bbox2d_preds, + weight=bbox_weights[:, -4:], + avg_factor=equal_weights.sum()) + + loss_dict['loss_centerness'] = self.loss_centerness( + pos_centerness, pos_centerness_targets) + + # attribute classification loss + if self.pred_attrs: + loss_dict['loss_attr'] = self.loss_attr( + pos_attr_preds, + pos_attr_targets, + pos_centerness_targets, + avg_factor=pos_centerness_targets.sum()) + + else: + # need absolute due to possible negative delta x/y + loss_dict['loss_offset'] = pos_bbox_preds[:, :2].sum() + loss_dict['loss_size'] = pos_bbox_preds[:, 3:6].sum() + loss_dict['loss_rotsin'] = pos_bbox_preds[:, 6].sum() + loss_dict['loss_depth'] = pos_bbox_preds[:, 2].sum() + if self.pred_velo: + loss_dict['loss_velo'] = pos_bbox_preds[:, 7:9].sum() + if self.pred_keypoints: + loss_dict['loss_kpts'] = pos_bbox_preds[:, + self.kpts_start:self. + kpts_start + 16].sum() + if self.pred_bbox2d: + loss_dict['loss_bbox2d'] = pos_bbox_preds[:, -4:].sum() + loss_dict['loss_consistency'] = pos_bbox_preds[:, -4:].sum() + loss_dict['loss_centerness'] = pos_centerness.sum() + if self.use_direction_classifier: + loss_dict['loss_dir'] = pos_dir_cls_preds.sum() + if self.use_depth_classifier: + sig_alpha = torch.sigmoid(self.fuse_lambda) + loss_fuse_depth = \ + sig_alpha * pos_bbox_preds[:, 2].sum() + \ + (1 - sig_alpha) * pos_depth_cls_preds.sum() + if self.weight_dim != -1: + loss_fuse_depth *= torch.exp(-pos_weights[:, 0].sum()) + loss_dict['loss_depth'] = loss_fuse_depth + if self.pred_attrs: + loss_dict['loss_attr'] = pos_attr_preds.sum() + + return loss_dict + + @force_fp32( + apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', + 'depth_cls_preds', 'weights', 'attr_preds', 'centernesses')) + def get_bboxes(self, + cls_scores, + bbox_preds, + dir_cls_preds, + depth_cls_preds, + weights, + attr_preds, + centernesses, + img_metas, + cfg=None, + rescale=None): + """Transform network output for a batch into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level + Has shape (N, num_points * num_classes, H, W) + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level with shape (N, num_points * 4, H, W) + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * 2. (bin = 2) + depth_cls_preds (list[Tensor]): Box scores for direction class + predictions on each scale level, each is a 4D-tensor, + the channel number is num_points * self.num_depth_cls. + weights (list[Tensor]): Location-aware weights for each scale + level, each is a 4D-tensor, the channel number is + num_points * self.weight_dim. + attr_preds (list[Tensor]): Attribute scores for each scale level + Has shape (N, num_points * num_attrs, H, W) + centernesses (list[Tensor]): Centerness for each scale level with + shape (N, num_points * 1, H, W) + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cfg (mmcv.Config, optional): Test / postprocessing configuration, + if None, test_cfg would be used. Defaults to None. + rescale (bool, optional): If True, return boxes in original image + space. Defaults to None. + + Returns: + list[tuple[Tensor]]: Each item in result_list is a tuple, which + consists of predicted 3D boxes, scores, labels, attributes and + 2D boxes (if necessary). + """ + assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \ + len(depth_cls_preds) == len(weights) == len(centernesses) == \ + len(attr_preds), 'The length of cls_scores, bbox_preds, ' \ + 'dir_cls_preds, depth_cls_preds, weights, centernesses, and' \ + f'attr_preds: {len(cls_scores)}, {len(bbox_preds)}, ' \ + f'{len(dir_cls_preds)}, {len(depth_cls_preds)}, {len(weights)}' \ + f'{len(centernesses)}, {len(attr_preds)} are inconsistent.' + num_levels = len(cls_scores) + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, + bbox_preds[0].device) + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + if self.use_direction_classifier: + dir_cls_pred_list = [ + dir_cls_preds[i][img_id].detach() + for i in range(num_levels) + ] + else: + dir_cls_pred_list = [ + cls_scores[i][img_id].new_full( + [2, *cls_scores[i][img_id].shape[1:]], 0).detach() + for i in range(num_levels) + ] + if self.use_depth_classifier: + depth_cls_pred_list = [ + depth_cls_preds[i][img_id].detach() + for i in range(num_levels) + ] + else: + depth_cls_pred_list = [ + cls_scores[i][img_id].new_full( + [self.num_depth_cls, *cls_scores[i][img_id].shape[1:]], + 0).detach() for i in range(num_levels) + ] + if self.weight_dim != -1: + weight_list = [ + weights[i][img_id].detach() for i in range(num_levels) + ] + else: + weight_list = [ + cls_scores[i][img_id].new_full( + [1, *cls_scores[i][img_id].shape[1:]], 0).detach() + for i in range(num_levels) + ] + if self.pred_attrs: + attr_pred_list = [ + attr_preds[i][img_id].detach() for i in range(num_levels) + ] + else: + attr_pred_list = [ + cls_scores[i][img_id].new_full( + [self.num_attrs, *cls_scores[i][img_id].shape[1:]], + self.attr_background_label).detach() + for i in range(num_levels) + ] + centerness_pred_list = [ + centernesses[i][img_id].detach() for i in range(num_levels) + ] + input_meta = img_metas[img_id] + det_bboxes = self._get_bboxes_single( + cls_score_list, bbox_pred_list, dir_cls_pred_list, + depth_cls_pred_list, weight_list, attr_pred_list, + centerness_pred_list, mlvl_points, input_meta, cfg, rescale) + result_list.append(det_bboxes) + return result_list + + def _get_bboxes_single(self, + cls_scores, + bbox_preds, + dir_cls_preds, + depth_cls_preds, + weights, + attr_preds, + centernesses, + mlvl_points, + input_meta, + cfg, + rescale=False): + """Transform outputs for a single batch item into bbox predictions. + + Args: + cls_scores (list[Tensor]): Box scores for a single scale level + Has shape (num_points * num_classes, H, W). + bbox_preds (list[Tensor]): Box energies / deltas for a single scale + level with shape (num_points * bbox_code_size, H, W). + dir_cls_preds (list[Tensor]): Box scores for direction class + predictions on a single scale level with shape + (num_points * 2, H, W) + depth_cls_preds (list[Tensor]): Box scores for probabilistic depth + predictions on a single scale level with shape + (num_points * self.num_depth_cls, H, W) + weights (list[Tensor]): Location-aware weight maps on a single + scale level with shape (num_points * self.weight_dim, H, W). + attr_preds (list[Tensor]): Attribute scores for each scale level + Has shape (N, num_points * num_attrs, H, W) + centernesses (list[Tensor]): Centerness for a single scale level + with shape (num_points, H, W). + mlvl_points (list[Tensor]): Box reference for a single scale level + with shape (num_total_points, 2). + input_meta (dict): Metadata of input image. + cfg (mmcv.Config): Test / postprocessing configuration, + if None, test_cfg would be used. + rescale (bool, optional): If True, return boxes in original image + space. Defaults to False. + + Returns: + tuples[Tensor]: Predicted 3D boxes, scores, labels, attributes and + 2D boxes (if necessary). + """ + view = np.array(input_meta['cam2img']) + scale_factor = input_meta['scale_factor'] + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) + mlvl_centers2d = [] + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_dir_scores = [] + mlvl_attr_scores = [] + mlvl_centerness = [] + mlvl_depth_cls_scores = [] + mlvl_depth_uncertainty = [] + mlvl_bboxes2d = None + if self.pred_bbox2d: + mlvl_bboxes2d = [] + + for cls_score, bbox_pred, dir_cls_pred, depth_cls_pred, weight, \ + attr_pred, centerness, points in zip( + cls_scores, bbox_preds, dir_cls_preds, depth_cls_preds, + weights, attr_preds, centernesses, mlvl_points): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2) + dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] + depth_cls_pred = depth_cls_pred.permute(1, 2, 0).reshape( + -1, self.num_depth_cls) + depth_cls_score = F.softmax( + depth_cls_pred, dim=-1).topk( + k=2, dim=-1)[0].mean(dim=-1) + if self.weight_dim != -1: + weight = weight.permute(1, 2, 0).reshape(-1, self.weight_dim) + else: + weight = weight.permute(1, 2, 0).reshape(-1, 1) + depth_uncertainty = torch.exp(-weight[:, -1]) + attr_pred = attr_pred.permute(1, 2, 0).reshape(-1, self.num_attrs) + attr_score = torch.max(attr_pred, dim=-1)[1] + centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() + + bbox_pred = bbox_pred.permute(1, 2, + 0).reshape(-1, + sum(self.group_reg_dims)) + bbox_pred3d = bbox_pred[:, :self.bbox_coder.bbox_code_size] + if self.pred_bbox2d: + bbox_pred2d = bbox_pred[:, -4:] + nms_pre = cfg.get('nms_pre', -1) + if nms_pre > 0 and scores.shape[0] > nms_pre: + merged_scores = scores * centerness[:, None] + if self.use_depth_classifier: + merged_scores *= depth_cls_score[:, None] + if self.weight_dim != -1: + merged_scores *= depth_uncertainty[:, None] + max_scores, _ = merged_scores.max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + points = points[topk_inds, :] + bbox_pred3d = bbox_pred3d[topk_inds, :] + scores = scores[topk_inds, :] + dir_cls_pred = dir_cls_pred[topk_inds, :] + depth_cls_pred = depth_cls_pred[topk_inds, :] + centerness = centerness[topk_inds] + dir_cls_score = dir_cls_score[topk_inds] + depth_cls_score = depth_cls_score[topk_inds] + depth_uncertainty = depth_uncertainty[topk_inds] + attr_score = attr_score[topk_inds] + if self.pred_bbox2d: + bbox_pred2d = bbox_pred2d[topk_inds, :] + # change the offset to actual center predictions + bbox_pred3d[:, :2] = points - bbox_pred3d[:, :2] + if rescale: + bbox_pred3d[:, :2] /= bbox_pred3d[:, :2].new_tensor( + scale_factor) + if self.pred_bbox2d: + bbox_pred2d /= bbox_pred2d.new_tensor(scale_factor) + if self.use_depth_classifier: + prob_depth_pred = self.bbox_coder.decode_prob_depth( + depth_cls_pred, self.depth_range, self.depth_unit, + self.division, self.num_depth_cls) + sig_alpha = torch.sigmoid(self.fuse_lambda) + bbox_pred3d[:, 2] = sig_alpha * bbox_pred3d[:, 2] + \ + (1 - sig_alpha) * prob_depth_pred + pred_center2d = bbox_pred3d[:, :3].clone() + bbox_pred3d[:, :3] = points_img2cam(bbox_pred3d[:, :3], view) + mlvl_centers2d.append(pred_center2d) + mlvl_bboxes.append(bbox_pred3d) + mlvl_scores.append(scores) + mlvl_dir_scores.append(dir_cls_score) + mlvl_depth_cls_scores.append(depth_cls_score) + mlvl_attr_scores.append(attr_score) + mlvl_centerness.append(centerness) + mlvl_depth_uncertainty.append(depth_uncertainty) + if self.pred_bbox2d: + bbox_pred2d = distance2bbox( + points, bbox_pred2d, max_shape=input_meta['img_shape']) + mlvl_bboxes2d.append(bbox_pred2d) + + mlvl_centers2d = torch.cat(mlvl_centers2d) + mlvl_bboxes = torch.cat(mlvl_bboxes) + mlvl_dir_scores = torch.cat(mlvl_dir_scores) + if self.pred_bbox2d: + mlvl_bboxes2d = torch.cat(mlvl_bboxes2d) + + # change local yaw to global yaw for 3D nms + cam2img = torch.eye( + 4, dtype=mlvl_centers2d.dtype, device=mlvl_centers2d.device) + cam2img[:view.shape[0], :view.shape[1]] = \ + mlvl_centers2d.new_tensor(view) + mlvl_bboxes = self.bbox_coder.decode_yaw(mlvl_bboxes, mlvl_centers2d, + mlvl_dir_scores, + self.dir_offset, cam2img) + + mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + mlvl_bboxes, + box_dim=self.bbox_coder.bbox_code_size, + origin=(0.5, 0.5, 0.5)).bev) + + mlvl_scores = torch.cat(mlvl_scores) + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 + # BG cat_id: num_class + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + mlvl_attr_scores = torch.cat(mlvl_attr_scores) + mlvl_centerness = torch.cat(mlvl_centerness) + # no scale_factors in box3d_multiclass_nms + # Then we multiply it from outside + mlvl_nms_scores = mlvl_scores * mlvl_centerness[:, None] + if self.use_depth_classifier: # multiply the depth confidence + mlvl_depth_cls_scores = torch.cat(mlvl_depth_cls_scores) + mlvl_nms_scores *= mlvl_depth_cls_scores[:, None] + if self.weight_dim != -1: + mlvl_depth_uncertainty = torch.cat(mlvl_depth_uncertainty) + mlvl_nms_scores *= mlvl_depth_uncertainty[:, None] + results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_nms_scores, cfg.score_thr, + cfg.max_per_img, cfg, mlvl_dir_scores, + mlvl_attr_scores, mlvl_bboxes2d) + bboxes, scores, labels, dir_scores, attrs = results[0:5] + attrs = attrs.to(labels.dtype) # change data type to int + bboxes = input_meta['box_type_3d']( + bboxes, + box_dim=self.bbox_coder.bbox_code_size, + origin=(0.5, 0.5, 0.5)) + # Note that the predictions use origin (0.5, 0.5, 0.5) + # Due to the ground truth centers2d are the gravity center of objects + # v0.10.0 fix inplace operation to the input tensor of cam_box3d + # So here we also need to add origin=(0.5, 0.5, 0.5) + if not self.pred_attrs: + attrs = None + + outputs = (bboxes, scores, labels, attrs) + if self.pred_bbox2d: + bboxes2d = results[-1] + bboxes2d = torch.cat([bboxes2d, scores[:, None]], dim=1) + outputs = outputs + (bboxes2d, ) + + return outputs + + def get_targets(self, points, gt_bboxes_list, gt_labels_list, + gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list, + depths_list, attr_labels_list): + """Compute regression, classification and centerss targets for points + in multiple images. + + Args: + points (list[Tensor]): Points of each fpn level, each has shape + (num_points, 2). + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each + image, each has shape (num_gt, bbox_code_size). + gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each + box, each has shape (num_gt,). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + each has shape (num_gt, 2). + depths_list (list[Tensor]): Depth of projected 3D centers onto 2D + image, each has shape (num_gt, 1). + attr_labels_list (list[Tensor]): Attribute labels of each box, + each has shape (num_gt,). + + Returns: + tuple: + concat_lvl_labels (list[Tensor]): Labels of each level. \ + concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ + level. + """ + assert len(points) == len(self.regress_ranges) + num_levels = len(points) + # expand regress ranges to align with points + expanded_regress_ranges = [ + points[i].new_tensor(self.regress_ranges[i])[None].expand_as( + points[i]) for i in range(num_levels) + ] + # concat all levels points and regress ranges + concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) + concat_points = torch.cat(points, dim=0) + + # the number of points per img, per lvl + num_points = [center.size(0) for center in points] + + if attr_labels_list is None: + attr_labels_list = [ + gt_labels.new_full(gt_labels.shape, self.attr_background_label) + for gt_labels in gt_labels_list + ] + + # get labels and bbox_targets of each image + _, bbox_targets_list, labels_3d_list, bbox_targets_3d_list, \ + centerness_targets_list, attr_targets_list = multi_apply( + self._get_target_single, + gt_bboxes_list, + gt_labels_list, + gt_bboxes_3d_list, + gt_labels_3d_list, + centers2d_list, + depths_list, + attr_labels_list, + points=concat_points, + regress_ranges=concat_regress_ranges, + num_points_per_lvl=num_points) + + # split to per img, per level + bbox_targets_list = [ + bbox_targets.split(num_points, 0) + for bbox_targets in bbox_targets_list + ] + labels_3d_list = [ + labels_3d.split(num_points, 0) for labels_3d in labels_3d_list + ] + bbox_targets_3d_list = [ + bbox_targets_3d.split(num_points, 0) + for bbox_targets_3d in bbox_targets_3d_list + ] + centerness_targets_list = [ + centerness_targets.split(num_points, 0) + for centerness_targets in centerness_targets_list + ] + attr_targets_list = [ + attr_targets.split(num_points, 0) + for attr_targets in attr_targets_list + ] + + # concat per level image + concat_lvl_labels_3d = [] + concat_lvl_bbox_targets_3d = [] + concat_lvl_centerness_targets = [] + concat_lvl_attr_targets = [] + for i in range(num_levels): + concat_lvl_labels_3d.append( + torch.cat([labels[i] for labels in labels_3d_list])) + concat_lvl_centerness_targets.append( + torch.cat([ + centerness_targets[i] + for centerness_targets in centerness_targets_list + ])) + bbox_targets_3d = torch.cat([ + bbox_targets_3d[i] for bbox_targets_3d in bbox_targets_3d_list + ]) + if self.pred_bbox2d: + bbox_targets = torch.cat( + [bbox_targets[i] for bbox_targets in bbox_targets_list]) + bbox_targets_3d = torch.cat([bbox_targets_3d, bbox_targets], + dim=1) + concat_lvl_attr_targets.append( + torch.cat( + [attr_targets[i] for attr_targets in attr_targets_list])) + if self.norm_on_bbox: + bbox_targets_3d[:, :2] = \ + bbox_targets_3d[:, :2] / self.strides[i] + if self.pred_bbox2d: + bbox_targets_3d[:, -4:] = \ + bbox_targets_3d[:, -4:] / self.strides[i] + concat_lvl_bbox_targets_3d.append(bbox_targets_3d) + return concat_lvl_labels_3d, concat_lvl_bbox_targets_3d, \ + concat_lvl_centerness_targets, concat_lvl_attr_targets diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/point_rpn_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/point_rpn_head.py new file mode 100644 index 000000000..546cf1665 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/point_rpn_head.py @@ -0,0 +1,381 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn + +from mmdet3d.core import xywhr2xyxyr +from mmdet3d.core.bbox.structures import (DepthInstance3DBoxes, + LiDARInstance3DBoxes) +from mmdet3d.core.post_processing import nms_bev, nms_normal_bev +from mmdet.core import build_bbox_coder, multi_apply +from ..builder import HEADS, build_loss + + +@HEADS.register_module() +class PointRPNHead(BaseModule): + """RPN module for PointRCNN. + + Args: + num_classes (int): Number of classes. + train_cfg (dict): Train configs. + test_cfg (dict): Test configs. + pred_layer_cfg (dict, optional): Config of classification and + regression prediction layers. Defaults to None. + enlarge_width (float, optional): Enlarge bbox for each side to ignore + close points. Defaults to 0.1. + cls_loss (dict, optional): Config of direction classification loss. + Defaults to None. + bbox_loss (dict, optional): Config of localization loss. + Defaults to None. + bbox_coder (dict, optional): Config dict of box coders. + Defaults to None. + init_cfg (dict, optional): Config of initialization. Defaults to None. + """ + + def __init__(self, + num_classes, + train_cfg, + test_cfg, + pred_layer_cfg=None, + enlarge_width=0.1, + cls_loss=None, + bbox_loss=None, + bbox_coder=None, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.enlarge_width = enlarge_width + + # build loss function + self.bbox_loss = build_loss(bbox_loss) + self.cls_loss = build_loss(cls_loss) + + # build box coder + self.bbox_coder = build_bbox_coder(bbox_coder) + + # build pred conv + self.cls_layers = self._make_fc_layers( + fc_cfg=pred_layer_cfg.cls_linear_channels, + input_channels=pred_layer_cfg.in_channels, + output_channels=self._get_cls_out_channels()) + + self.reg_layers = self._make_fc_layers( + fc_cfg=pred_layer_cfg.reg_linear_channels, + input_channels=pred_layer_cfg.in_channels, + output_channels=self._get_reg_out_channels()) + + def _make_fc_layers(self, fc_cfg, input_channels, output_channels): + """Make fully connect layers. + + Args: + fc_cfg (dict): Config of fully connect. + input_channels (int): Input channels for fc_layers. + output_channels (int): Input channels for fc_layers. + + Returns: + nn.Sequential: Fully connect layers. + """ + fc_layers = [] + c_in = input_channels + for k in range(0, fc_cfg.__len__()): + fc_layers.extend([ + nn.Linear(c_in, fc_cfg[k], bias=False), + nn.BatchNorm1d(fc_cfg[k]), + nn.ReLU(), + ]) + c_in = fc_cfg[k] + fc_layers.append(nn.Linear(c_in, output_channels, bias=True)) + return nn.Sequential(*fc_layers) + + def _get_cls_out_channels(self): + """Return the channel number of classification outputs.""" + # Class numbers (k) + objectness (1) + return self.num_classes + + def _get_reg_out_channels(self): + """Return the channel number of regression outputs.""" + # Bbox classification and regression + # (center residual (3), size regression (3) + # torch.cos(yaw) (1), torch.sin(yaw) (1) + return self.bbox_coder.code_size + + def forward(self, feat_dict): + """Forward pass. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + tuple[list[torch.Tensor]]: Predicted boxes and classification + scores. + """ + point_features = feat_dict['fp_features'] + point_features = point_features.permute(0, 2, 1).contiguous() + batch_size = point_features.shape[0] + feat_cls = point_features.view(-1, point_features.shape[-1]) + feat_reg = point_features.view(-1, point_features.shape[-1]) + + point_cls_preds = self.cls_layers(feat_cls).reshape( + batch_size, -1, self._get_cls_out_channels()) + point_box_preds = self.reg_layers(feat_reg).reshape( + batch_size, -1, self._get_reg_out_channels()) + return point_box_preds, point_cls_preds + + @force_fp32(apply_to=('bbox_preds')) + def loss(self, + bbox_preds, + cls_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + img_metas=None): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of PointRCNN RPN_Head. + cls_preds (dict): Classification from forward of PointRCNN + RPN_Head. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + img_metas (list[dict], Optional): Contain pcd and img's meta info. + Defaults to None. + + Returns: + dict: Losses of PointRCNN RPN module. + """ + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d) + (bbox_targets, mask_targets, positive_mask, negative_mask, + box_loss_weights, point_targets) = targets + + # bbox loss + bbox_loss = self.bbox_loss(bbox_preds, bbox_targets, + box_loss_weights.unsqueeze(-1)) + # calculate semantic loss + semantic_points = cls_preds.reshape(-1, self.num_classes) + semantic_targets = mask_targets + semantic_targets[negative_mask] = self.num_classes + semantic_points_label = semantic_targets + # for ignore, but now we do not have ignored label + semantic_loss_weight = negative_mask.float() + positive_mask.float() + semantic_loss = self.cls_loss(semantic_points, + semantic_points_label.reshape(-1), + semantic_loss_weight.reshape(-1)) + semantic_loss /= positive_mask.float().sum() + losses = dict(bbox_loss=bbox_loss, semantic_loss=semantic_loss) + + return losses + + def get_targets(self, points, gt_bboxes_3d, gt_labels_3d): + """Generate targets of PointRCNN RPN head. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + + Returns: + tuple[torch.Tensor]: Targets of PointRCNN RPN head. + """ + # find empty example + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + + (bbox_targets, mask_targets, positive_mask, negative_mask, + point_targets) = multi_apply(self.get_targets_single, points, + gt_bboxes_3d, gt_labels_3d) + + bbox_targets = torch.stack(bbox_targets) + mask_targets = torch.stack(mask_targets) + positive_mask = torch.stack(positive_mask) + negative_mask = torch.stack(negative_mask) + box_loss_weights = positive_mask / (positive_mask.sum() + 1e-6) + + return (bbox_targets, mask_targets, positive_mask, negative_mask, + box_loss_weights, point_targets) + + def get_targets_single(self, points, gt_bboxes_3d, gt_labels_3d): + """Generate targets of PointRCNN RPN head for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + + Returns: + tuple[torch.Tensor]: Targets of ssd3d head. + """ + gt_bboxes_3d = gt_bboxes_3d.to(points.device) + + valid_gt = gt_labels_3d != -1 + gt_bboxes_3d = gt_bboxes_3d[valid_gt] + gt_labels_3d = gt_labels_3d[valid_gt] + + # transform the bbox coordinate to the point cloud coordinate + gt_bboxes_3d_tensor = gt_bboxes_3d.tensor.clone() + gt_bboxes_3d_tensor[..., 2] += gt_bboxes_3d_tensor[..., 5] / 2 + + points_mask, assignment = self._assign_targets_by_points_inside( + gt_bboxes_3d, points) + gt_bboxes_3d_tensor = gt_bboxes_3d_tensor[assignment] + mask_targets = gt_labels_3d[assignment] + + bbox_targets = self.bbox_coder.encode(gt_bboxes_3d_tensor, + points[..., 0:3], mask_targets) + + positive_mask = (points_mask.max(1)[0] > 0) + # add ignore_mask + extend_gt_bboxes_3d = gt_bboxes_3d.enlarged_box(self.enlarge_width) + points_mask, _ = self._assign_targets_by_points_inside( + extend_gt_bboxes_3d, points) + negative_mask = (points_mask.max(1)[0] == 0) + + point_targets = points[..., 0:3] + return (bbox_targets, mask_targets, positive_mask, negative_mask, + point_targets) + + def get_bboxes(self, + points, + bbox_preds, + cls_preds, + input_metas, + rescale=False): + """Generate bboxes from RPN head predictions. + + Args: + points (torch.Tensor): Input points. + bbox_preds (dict): Regression predictions from PointRCNN head. + cls_preds (dict): Class scores predictions from PointRCNN head. + input_metas (list[dict]): Point cloud and image's meta info. + rescale (bool, optional): Whether to rescale bboxes. + Defaults to False. + + Returns: + list[tuple[torch.Tensor]]: Bounding boxes, scores and labels. + """ + sem_scores = cls_preds.sigmoid() + obj_scores = sem_scores.max(-1)[0] + object_class = sem_scores.argmax(dim=-1) + + batch_size = sem_scores.shape[0] + results = list() + for b in range(batch_size): + bbox3d = self.bbox_coder.decode(bbox_preds[b], points[b, ..., :3], + object_class[b]) + bbox_selected, score_selected, labels, cls_preds_selected = \ + self.class_agnostic_nms(obj_scores[b], sem_scores[b], bbox3d, + points[b, ..., :3], input_metas[b]) + bbox = input_metas[b]['box_type_3d']( + bbox_selected.clone(), + box_dim=bbox_selected.shape[-1], + with_yaw=True) + results.append((bbox, score_selected, labels, cls_preds_selected)) + return results + + def class_agnostic_nms(self, obj_scores, sem_scores, bbox, points, + input_meta): + """Class agnostic nms. + + Args: + obj_scores (torch.Tensor): Objectness score of bounding boxes. + sem_scores (torch.Tensor): Semantic class score of bounding boxes. + bbox (torch.Tensor): Predicted bounding boxes. + + Returns: + tuple[torch.Tensor]: Bounding boxes, scores and labels. + """ + nms_cfg = self.test_cfg.nms_cfg if not self.training \ + else self.train_cfg.nms_cfg + if nms_cfg.use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + + num_bbox = bbox.shape[0] + bbox = input_meta['box_type_3d']( + bbox.clone(), + box_dim=bbox.shape[-1], + with_yaw=True, + origin=(0.5, 0.5, 0.5)) + + if isinstance(bbox, LiDARInstance3DBoxes): + box_idx = bbox.points_in_boxes(points) + box_indices = box_idx.new_zeros([num_bbox + 1]) + box_idx[box_idx == -1] = num_bbox + box_indices.scatter_add_(0, box_idx.long(), + box_idx.new_ones(box_idx.shape)) + box_indices = box_indices[:-1] + nonempty_box_mask = box_indices >= 0 + elif isinstance(bbox, DepthInstance3DBoxes): + box_indices = bbox.points_in_boxes(points) + nonempty_box_mask = box_indices.T.sum(1) >= 0 + else: + raise NotImplementedError('Unsupported bbox type!') + + bbox = bbox[nonempty_box_mask] + + if self.test_cfg.score_thr is not None: + score_thr = self.test_cfg.score_thr + keep = (obj_scores >= score_thr) + obj_scores = obj_scores[keep] + sem_scores = sem_scores[keep] + bbox = bbox.tensor[keep] + + if obj_scores.shape[0] > 0: + topk = min(nms_cfg.nms_pre, obj_scores.shape[0]) + obj_scores_nms, indices = torch.topk(obj_scores, k=topk) + bbox_for_nms = xywhr2xyxyr(bbox[indices].bev) + sem_scores_nms = sem_scores[indices] + + keep = nms_func(bbox_for_nms, obj_scores_nms, nms_cfg.iou_thr) + keep = keep[:nms_cfg.nms_post] + + bbox_selected = bbox.tensor[indices][keep] + score_selected = obj_scores_nms[keep] + cls_preds = sem_scores_nms[keep] + labels = torch.argmax(cls_preds, -1) + else: + bbox_selected = bbox.tensor + score_selected = obj_scores.new_zeros([0]) + labels = obj_scores.new_zeros([0]) + cls_preds = obj_scores.new_zeros([0, sem_scores.shape[-1]]) + + return bbox_selected, score_selected, labels, cls_preds + + def _assign_targets_by_points_inside(self, bboxes_3d, points): + """Compute assignment by checking whether point is inside bbox. + + Args: + bboxes_3d (:obj:`BaseInstance3DBoxes`): Instance of bounding boxes. + points (torch.Tensor): Points of a batch. + + Returns: + tuple[torch.Tensor]: Flags indicating whether each point is + inside bbox and the index of box where each point are in. + """ + # TODO: align points_in_boxes function in each box_structures + num_bbox = bboxes_3d.tensor.shape[0] + if isinstance(bboxes_3d, LiDARInstance3DBoxes): + assignment = bboxes_3d.points_in_boxes(points[:, 0:3]).long() + points_mask = assignment.new_zeros( + [assignment.shape[0], num_bbox + 1]) + assignment[assignment == -1] = num_bbox + points_mask.scatter_(1, assignment.unsqueeze(1), 1) + points_mask = points_mask[:, :-1] + assignment[assignment == num_bbox] = num_bbox - 1 + elif isinstance(bboxes_3d, DepthInstance3DBoxes): + points_mask = bboxes_3d.points_in_boxes(points) + assignment = points_mask.argmax(dim=-1) + else: + raise NotImplementedError('Unsupported bbox type!') + + return points_mask, assignment diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/shape_aware_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/shape_aware_head.py new file mode 100644 index 000000000..6c5557187 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/shape_aware_head.py @@ -0,0 +1,515 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numpy as np +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch import nn as nn + +from mmdet3d.core import box3d_multiclass_nms, limit_period, xywhr2xyxyr +from mmdet.core import multi_apply +from ..builder import HEADS, build_head +from .anchor3d_head import Anchor3DHead + + +@HEADS.register_module() +class BaseShapeHead(BaseModule): + """Base Shape-aware Head in Shape Signature Network. + + Note: + This base shape-aware grouping head uses default settings for small + objects. For large and huge objects, it is recommended to use + heavier heads, like (64, 64, 64) and (128, 128, 64, 64, 64) in + shared conv channels, (2, 1, 1) and (2, 1, 2, 1, 1) in shared + conv strides. For tiny objects, we can use smaller heads, like + (32, 32) channels and (1, 1) strides. + + Args: + num_cls (int): Number of classes. + num_base_anchors (int): Number of anchors per location. + box_code_size (int): The dimension of boxes to be encoded. + in_channels (int): Input channels for convolutional layers. + shared_conv_channels (tuple, optional): Channels for shared + convolutional layers. Default: (64, 64). + shared_conv_strides (tuple, optional): Strides for shared + convolutional layers. Default: (1, 1). + use_direction_classifier (bool, optional): Whether to use direction + classifier. Default: True. + conv_cfg (dict, optional): Config of conv layer. + Default: dict(type='Conv2d') + norm_cfg (dict, optional): Config of norm layer. + Default: dict(type='BN2d'). + bias (bool | str, optional): Type of bias. Default: False. + """ + + def __init__(self, + num_cls, + num_base_anchors, + box_code_size, + in_channels, + shared_conv_channels=(64, 64), + shared_conv_strides=(1, 1), + use_direction_classifier=True, + conv_cfg=dict(type='Conv2d'), + norm_cfg=dict(type='BN2d'), + bias=False, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.num_cls = num_cls + self.num_base_anchors = num_base_anchors + self.use_direction_classifier = use_direction_classifier + self.box_code_size = box_code_size + + assert len(shared_conv_channels) == len(shared_conv_strides), \ + 'Lengths of channels and strides list should be equal.' + + self.shared_conv_channels = [in_channels] + list(shared_conv_channels) + self.shared_conv_strides = list(shared_conv_strides) + + shared_conv = [] + for i in range(len(self.shared_conv_strides)): + shared_conv.append( + ConvModule( + self.shared_conv_channels[i], + self.shared_conv_channels[i + 1], + kernel_size=3, + stride=self.shared_conv_strides[i], + padding=1, + conv_cfg=conv_cfg, + bias=bias, + norm_cfg=norm_cfg)) + + self.shared_conv = nn.Sequential(*shared_conv) + + out_channels = self.shared_conv_channels[-1] + self.conv_cls = nn.Conv2d(out_channels, num_base_anchors * num_cls, 1) + self.conv_reg = nn.Conv2d(out_channels, + num_base_anchors * box_code_size, 1) + + if use_direction_classifier: + self.conv_dir_cls = nn.Conv2d(out_channels, num_base_anchors * 2, + 1) + if init_cfg is None: + if use_direction_classifier: + self.init_cfg = dict( + type='Kaiming', + layer='Conv2d', + override=[ + dict(type='Normal', name='conv_reg', std=0.01), + dict( + type='Normal', + name='conv_cls', + std=0.01, + bias_prob=0.01), + dict( + type='Normal', + name='conv_dir_cls', + std=0.01, + bias_prob=0.01) + ]) + else: + self.init_cfg = dict( + type='Kaiming', + layer='Conv2d', + override=[ + dict(type='Normal', name='conv_reg', std=0.01), + dict( + type='Normal', + name='conv_cls', + std=0.01, + bias_prob=0.01) + ]) + + def forward(self, x): + """Forward function for SmallHead. + + Args: + x (torch.Tensor): Input feature map with the shape of + [B, C, H, W]. + + Returns: + dict[torch.Tensor]: Contain score of each class, bbox + regression and direction classification predictions. + Note that all the returned tensors are reshaped as + [bs*num_base_anchors*H*W, num_cls/box_code_size/dir_bins]. + It is more convenient to concat anchors for different + classes even though they have different feature map sizes. + """ + x = self.shared_conv(x) + cls_score = self.conv_cls(x) + bbox_pred = self.conv_reg(x) + featmap_size = bbox_pred.shape[-2:] + H, W = featmap_size + B = bbox_pred.shape[0] + cls_score = cls_score.view(-1, self.num_base_anchors, self.num_cls, H, + W).permute(0, 1, 3, 4, + 2).reshape(B, -1, self.num_cls) + bbox_pred = bbox_pred.view(-1, self.num_base_anchors, + self.box_code_size, H, W).permute( + 0, 1, 3, 4, + 2).reshape(B, -1, self.box_code_size) + + dir_cls_preds = None + if self.use_direction_classifier: + dir_cls_preds = self.conv_dir_cls(x) + dir_cls_preds = dir_cls_preds.view(-1, self.num_base_anchors, 2, H, + W).permute(0, 1, 3, 4, + 2).reshape(B, -1, 2) + ret = dict( + cls_score=cls_score, + bbox_pred=bbox_pred, + dir_cls_preds=dir_cls_preds, + featmap_size=featmap_size) + return ret + + +@HEADS.register_module() +class ShapeAwareHead(Anchor3DHead): + """Shape-aware grouping head for SSN. + + Args: + tasks (dict): Shape-aware groups of multi-class objects. + assign_per_class (bool, optional): Whether to do assignment for each + class. Default: True. + kwargs (dict): Other arguments are the same as those in + :class:`Anchor3DHead`. + """ + + def __init__(self, tasks, assign_per_class=True, init_cfg=None, **kwargs): + self.tasks = tasks + self.featmap_sizes = [] + super().__init__( + assign_per_class=assign_per_class, init_cfg=init_cfg, **kwargs) + + def init_weights(self): + if not self._is_init: + for m in self.heads: + if hasattr(m, 'init_weights'): + m.init_weights() + self._is_init = True + else: + warnings.warn(f'init_weights of {self.__class__.__name__} has ' + f'been called more than once.') + + def _init_layers(self): + """Initialize neural network layers of the head.""" + self.heads = nn.ModuleList() + cls_ptr = 0 + for task in self.tasks: + sizes = self.anchor_generator.sizes[cls_ptr:cls_ptr + + task['num_class']] + num_size = torch.tensor(sizes).reshape(-1, 3).size(0) + num_rot = len(self.anchor_generator.rotations) + num_base_anchors = num_rot * num_size + branch = dict( + type='BaseShapeHead', + num_cls=self.num_classes, + num_base_anchors=num_base_anchors, + box_code_size=self.box_code_size, + in_channels=self.in_channels, + shared_conv_channels=task['shared_conv_channels'], + shared_conv_strides=task['shared_conv_strides']) + self.heads.append(build_head(branch)) + cls_ptr += task['num_class'] + + def forward_single(self, x): + """Forward function on a single-scale feature map. + + Args: + x (torch.Tensor): Input features. + Returns: + tuple[torch.Tensor]: Contain score of each class, bbox + regression and direction classification predictions. + """ + results = [] + + for head in self.heads: + results.append(head(x)) + + cls_score = torch.cat([result['cls_score'] for result in results], + dim=1) + bbox_pred = torch.cat([result['bbox_pred'] for result in results], + dim=1) + dir_cls_preds = None + if self.use_direction_classifier: + dir_cls_preds = torch.cat( + [result['dir_cls_preds'] for result in results], dim=1) + + self.featmap_sizes = [] + for i, task in enumerate(self.tasks): + for _ in range(task['num_class']): + self.featmap_sizes.append(results[i]['featmap_size']) + assert len(self.featmap_sizes) == len(self.anchor_generator.ranges), \ + 'Length of feature map sizes must be equal to length of ' + \ + 'different ranges of anchor generator.' + + return cls_score, bbox_pred, dir_cls_preds + + def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels, + label_weights, bbox_targets, bbox_weights, dir_targets, + dir_weights, num_total_samples): + """Calculate loss of Single-level results. + + Args: + cls_score (torch.Tensor): Class score in single-level. + bbox_pred (torch.Tensor): Bbox prediction in single-level. + dir_cls_preds (torch.Tensor): Predictions of direction class + in single-level. + labels (torch.Tensor): Labels of class. + label_weights (torch.Tensor): Weights of class loss. + bbox_targets (torch.Tensor): Targets of bbox predictions. + bbox_weights (torch.Tensor): Weights of bbox loss. + dir_targets (torch.Tensor): Targets of direction predictions. + dir_weights (torch.Tensor): Weights of direction loss. + num_total_samples (int): The number of valid samples. + + Returns: + tuple[torch.Tensor]: Losses of class, bbox + and direction, respectively. + """ + # classification loss + if num_total_samples is None: + num_total_samples = int(cls_score.shape[0]) + labels = labels.reshape(-1) + label_weights = label_weights.reshape(-1) + cls_score = cls_score.reshape(-1, self.num_classes) + loss_cls = self.loss_cls( + cls_score, labels, label_weights, avg_factor=num_total_samples) + + # regression loss + bbox_targets = bbox_targets.reshape(-1, self.box_code_size) + bbox_weights = bbox_weights.reshape(-1, self.box_code_size) + code_weight = self.train_cfg.get('code_weight', None) + + if code_weight: + bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight) + bbox_pred = bbox_pred.reshape(-1, self.box_code_size) + if self.diff_rad_by_sin: + bbox_pred, bbox_targets = self.add_sin_difference( + bbox_pred, bbox_targets) + loss_bbox = self.loss_bbox( + bbox_pred, + bbox_targets, + bbox_weights, + avg_factor=num_total_samples) + + # direction classification loss + loss_dir = None + if self.use_direction_classifier: + dir_cls_preds = dir_cls_preds.reshape(-1, 2) + dir_targets = dir_targets.reshape(-1) + dir_weights = dir_weights.reshape(-1) + loss_dir = self.loss_dir( + dir_cls_preds, + dir_targets, + dir_weights, + avg_factor=num_total_samples) + + return loss_cls, loss_bbox, loss_dir + + def loss(self, + cls_scores, + bbox_preds, + dir_cls_preds, + gt_bboxes, + gt_labels, + input_metas, + gt_bboxes_ignore=None): + """Calculate losses. + + Args: + cls_scores (list[torch.Tensor]): Multi-level class scores. + bbox_preds (list[torch.Tensor]): Multi-level bbox predictions. + dir_cls_preds (list[torch.Tensor]): Multi-level direction + class predictions. + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes + of each sample. + gt_labels (list[torch.Tensor]): Gt labels of each sample. + input_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict[str, list[torch.Tensor]]: Classification, bbox, and + direction losses of each level. + + - loss_cls (list[torch.Tensor]): Classification losses. + - loss_bbox (list[torch.Tensor]): Box regression losses. + - loss_dir (list[torch.Tensor]): Direction classification + losses. + """ + device = cls_scores[0].device + anchor_list = self.get_anchors( + self.featmap_sizes, input_metas, device=device) + cls_reg_targets = self.anchor_target_3d( + anchor_list, + gt_bboxes, + input_metas, + gt_bboxes_ignore_list=gt_bboxes_ignore, + gt_labels_list=gt_labels, + num_classes=self.num_classes, + sampling=self.sampling) + + if cls_reg_targets is None: + return None + (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, + dir_targets_list, dir_weights_list, num_total_pos, + num_total_neg) = cls_reg_targets + num_total_samples = ( + num_total_pos + num_total_neg if self.sampling else num_total_pos) + + # num_total_samples = None + losses_cls, losses_bbox, losses_dir = multi_apply( + self.loss_single, + cls_scores, + bbox_preds, + dir_cls_preds, + labels_list, + label_weights_list, + bbox_targets_list, + bbox_weights_list, + dir_targets_list, + dir_weights_list, + num_total_samples=num_total_samples) + return dict( + loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir) + + def get_bboxes(self, + cls_scores, + bbox_preds, + dir_cls_preds, + input_metas, + cfg=None, + rescale=False): + """Get bboxes of anchor head. + + Args: + cls_scores (list[torch.Tensor]): Multi-level class scores. + bbox_preds (list[torch.Tensor]): Multi-level bbox predictions. + dir_cls_preds (list[torch.Tensor]): Multi-level direction + class predictions. + input_metas (list[dict]): Contain pcd and img's meta info. + cfg (:obj:`ConfigDict`, optional): Training or testing config. + Default: None. + rescale (list[torch.Tensor], optional): Whether to rescale bbox. + Default: False. + + Returns: + list[tuple]: Prediction resultes of batches. + """ + assert len(cls_scores) == len(bbox_preds) + assert len(cls_scores) == len(dir_cls_preds) + num_levels = len(cls_scores) + assert num_levels == 1, 'Only support single level inference.' + device = cls_scores[0].device + mlvl_anchors = self.anchor_generator.grid_anchors( + self.featmap_sizes, device=device) + # `anchor` is a list of anchors for different classes + mlvl_anchors = [torch.cat(anchor, dim=0) for anchor in mlvl_anchors] + + result_list = [] + for img_id in range(len(input_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + dir_cls_pred_list = [ + dir_cls_preds[i][img_id].detach() for i in range(num_levels) + ] + + input_meta = input_metas[img_id] + proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list, + dir_cls_pred_list, mlvl_anchors, + input_meta, cfg, rescale) + result_list.append(proposals) + return result_list + + def get_bboxes_single(self, + cls_scores, + bbox_preds, + dir_cls_preds, + mlvl_anchors, + input_meta, + cfg=None, + rescale=False): + """Get bboxes of single branch. + + Args: + cls_scores (torch.Tensor): Class score in single batch. + bbox_preds (torch.Tensor): Bbox prediction in single batch. + dir_cls_preds (torch.Tensor): Predictions of direction class + in single batch. + mlvl_anchors (List[torch.Tensor]): Multi-level anchors + in single batch. + input_meta (list[dict]): Contain pcd and img's meta info. + cfg (:obj:`ConfigDict`): Training or testing config. + rescale (list[torch.Tensor], optional): whether to rescale bbox. + Default: False. + + Returns: + tuple: Contain predictions of single batch. + + - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes. + - scores (torch.Tensor): Class score of each bbox. + - labels (torch.Tensor): Label of each bbox. + """ + cfg = self.test_cfg if cfg is None else cfg + assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) + mlvl_bboxes = [] + mlvl_scores = [] + mlvl_dir_scores = [] + for cls_score, bbox_pred, dir_cls_pred, anchors in zip( + cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors): + assert cls_score.size()[-2] == bbox_pred.size()[-2] + assert cls_score.size()[-2] == dir_cls_pred.size()[-2] + dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] + + if self.use_sigmoid_cls: + scores = cls_score.sigmoid() + else: + scores = cls_score.softmax(-1) + + nms_pre = cfg.get('nms_pre', -1) + if nms_pre > 0 and scores.shape[0] > nms_pre: + if self.use_sigmoid_cls: + max_scores, _ = scores.max(dim=1) + else: + max_scores, _ = scores[:, :-1].max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + anchors = anchors[topk_inds, :] + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + dir_cls_score = dir_cls_score[topk_inds] + + bboxes = self.bbox_coder.decode(anchors, bbox_pred) + mlvl_bboxes.append(bboxes) + mlvl_scores.append(scores) + mlvl_dir_scores.append(dir_cls_score) + + mlvl_bboxes = torch.cat(mlvl_bboxes) + mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + mlvl_bboxes, box_dim=self.box_code_size).bev) + mlvl_scores = torch.cat(mlvl_scores) + mlvl_dir_scores = torch.cat(mlvl_dir_scores) + + if self.use_sigmoid_cls: + # Add a dummy background class to the front when using sigmoid + padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) + mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) + + score_thr = cfg.get('score_thr', 0) + results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms, + mlvl_scores, score_thr, cfg.max_num, + cfg, mlvl_dir_scores) + bboxes, scores, labels, dir_scores = results + if bboxes.shape[0] > 0: + dir_rot = limit_period(bboxes[..., 6] - self.dir_offset, + self.dir_limit_offset, np.pi) + bboxes[..., 6] = ( + dir_rot + self.dir_offset + + np.pi * dir_scores.to(bboxes.dtype)) + bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size) + return bboxes, scores, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/smoke_mono3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/smoke_mono3d_head.py new file mode 100644 index 000000000..3459e092a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/smoke_mono3d_head.py @@ -0,0 +1,516 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch.nn import functional as F + +from mmdet.core import multi_apply +from mmdet.core.bbox.builder import build_bbox_coder +from mmdet.models.utils import gaussian_radius, gen_gaussian_target +from mmdet.models.utils.gaussian_target import (get_local_maximum, + get_topk_from_heatmap, + transpose_and_gather_feat) +from ..builder import HEADS +from .anchor_free_mono3d_head import AnchorFreeMono3DHead + + +@HEADS.register_module() +class SMOKEMono3DHead(AnchorFreeMono3DHead): + r"""Anchor-free head used in `SMOKE `_ + + .. code-block:: none + + /-----> 3*3 conv -----> 1*1 conv -----> cls + feature + \-----> 3*3 conv -----> 1*1 conv -----> reg + + Args: + num_classes (int): Number of categories excluding the background + category. + in_channels (int): Number of channels in the input feature map. + dim_channel (list[int]): indices of dimension offset preds in + regression heatmap channels. + ori_channel (list[int]): indices of orientation offset pred in + regression heatmap channels. + bbox_coder (:obj:`CameraInstance3DBoxes`): Bbox coder + for encoding and decoding boxes. + loss_cls (dict, optional): Config of classification loss. + Default: loss_cls=dict(type='GaussionFocalLoss', loss_weight=1.0). + loss_bbox (dict, optional): Config of localization loss. + Default: loss_bbox=dict(type='L1Loss', loss_weight=10.0). + loss_dir (dict, optional): Config of direction classification loss. + In SMOKE, Default: None. + loss_attr (dict, optional): Config of attribute classification loss. + In SMOKE, Default: None. + loss_centerness (dict): Config of centerness loss. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). + init_cfg (dict): Initialization config dict. Default: None. + """ # noqa: E501 + + def __init__(self, + num_classes, + in_channels, + dim_channel, + ori_channel, + bbox_coder, + loss_cls=dict(type='GaussionFocalLoss', loss_weight=1.0), + loss_bbox=dict(type='L1Loss', loss_weight=0.1), + loss_dir=None, + loss_attr=None, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + init_cfg=None, + **kwargs): + super().__init__( + num_classes, + in_channels, + loss_cls=loss_cls, + loss_bbox=loss_bbox, + loss_dir=loss_dir, + loss_attr=loss_attr, + norm_cfg=norm_cfg, + init_cfg=init_cfg, + **kwargs) + self.dim_channel = dim_channel + self.ori_channel = ori_channel + self.bbox_coder = build_bbox_coder(bbox_coder) + + def forward(self, feats): + """Forward features from the upstream network. + + Args: + feats (tuple[Tensor]): Features from the upstream network, each is + a 4D-tensor. + + Returns: + tuple: + cls_scores (list[Tensor]): Box scores for each scale level, + each is a 4D-tensor, the channel number is + num_points * num_classes. + bbox_preds (list[Tensor]): Box energies / deltas for each scale + level, each is a 4D-tensor, the channel number is + num_points * bbox_code_size. + """ + return multi_apply(self.forward_single, feats) + + def forward_single(self, x): + """Forward features of a single scale level. + + Args: + x (Tensor): Input feature map. + + Returns: + tuple: Scores for each class, bbox of input feature maps. + """ + cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, reg_feat = \ + super().forward_single(x) + cls_score = cls_score.sigmoid() # turn to 0-1 + cls_score = cls_score.clamp(min=1e-4, max=1 - 1e-4) + # (N, C, H, W) + offset_dims = bbox_pred[:, self.dim_channel, ...] + bbox_pred[:, self.dim_channel, ...] = offset_dims.sigmoid() - 0.5 + # (N, C, H, W) + vector_ori = bbox_pred[:, self.ori_channel, ...] + bbox_pred[:, self.ori_channel, ...] = F.normalize(vector_ori) + return cls_score, bbox_pred + + def get_bboxes(self, cls_scores, bbox_preds, img_metas, rescale=None): + """Generate bboxes from bbox head predictions. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level. + bbox_preds (list[Tensor]): Box regression for each scale. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + rescale (bool): If True, return boxes in original image space. + + Returns: + list[tuple[:obj:`CameraInstance3DBoxes`, Tensor, Tensor, None]]: + Each item in result_list is 4-tuple. + """ + assert len(cls_scores) == len(bbox_preds) == 1 + cam2imgs = torch.stack([ + cls_scores[0].new_tensor(img_meta['cam2img']) + for img_meta in img_metas + ]) + trans_mats = torch.stack([ + cls_scores[0].new_tensor(img_meta['trans_mat']) + for img_meta in img_metas + ]) + batch_bboxes, batch_scores, batch_topk_labels = self.decode_heatmap( + cls_scores[0], + bbox_preds[0], + img_metas, + cam2imgs=cam2imgs, + trans_mats=trans_mats, + topk=100, + kernel=3) + + result_list = [] + for img_id in range(len(img_metas)): + + bboxes = batch_bboxes[img_id] + scores = batch_scores[img_id] + labels = batch_topk_labels[img_id] + + keep_idx = scores > 0.25 + bboxes = bboxes[keep_idx] + scores = scores[keep_idx] + labels = labels[keep_idx] + + bboxes = img_metas[img_id]['box_type_3d']( + bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5)) + attrs = None + result_list.append((bboxes, scores, labels, attrs)) + + return result_list + + def decode_heatmap(self, + cls_score, + reg_pred, + img_metas, + cam2imgs, + trans_mats, + topk=100, + kernel=3): + """Transform outputs into detections raw bbox predictions. + + Args: + class_score (Tensor): Center predict heatmap, + shape (B, num_classes, H, W). + reg_pred (Tensor): Box regression map. + shape (B, channel, H , W). + img_metas (List[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + cam2imgs (Tensor): Camera intrinsic matrixs. + shape (B, 4, 4) + trans_mats (Tensor): Transformation matrix from original image + to feature map. + shape: (batch, 3, 3) + topk (int): Get top k center keypoints from heatmap. Default 100. + kernel (int): Max pooling kernel for extract local maximum pixels. + Default 3. + + Returns: + tuple[torch.Tensor]: Decoded output of SMOKEHead, containing + the following Tensors: + - batch_bboxes (Tensor): Coords of each 3D box. + shape (B, k, 7) + - batch_scores (Tensor): Scores of each 3D box. + shape (B, k) + - batch_topk_labels (Tensor): Categories of each 3D box. + shape (B, k) + """ + img_h, img_w = img_metas[0]['pad_shape'][:2] + bs, _, feat_h, feat_w = cls_score.shape + + center_heatmap_pred = get_local_maximum(cls_score, kernel=kernel) + + *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap( + center_heatmap_pred, k=topk) + batch_scores, batch_index, batch_topk_labels = batch_dets + + regression = transpose_and_gather_feat(reg_pred, batch_index) + regression = regression.view(-1, 8) + + points = torch.cat([topk_xs.view(-1, 1), + topk_ys.view(-1, 1).float()], + dim=1) + locations, dimensions, orientations = self.bbox_coder.decode( + regression, points, batch_topk_labels, cam2imgs, trans_mats) + + batch_bboxes = torch.cat((locations, dimensions, orientations), dim=1) + batch_bboxes = batch_bboxes.view(bs, -1, self.bbox_code_size) + return batch_bboxes, batch_scores, batch_topk_labels + + def get_predictions(self, labels3d, centers2d, gt_locations, gt_dimensions, + gt_orientations, indices, img_metas, pred_reg): + """Prepare predictions for computing loss. + + Args: + labels3d (Tensor): Labels of each 3D box. + shape (B, max_objs, ) + centers2d (Tensor): Coords of each projected 3D box + center on image. shape (B * max_objs, 2) + gt_locations (Tensor): Coords of each 3D box's location. + shape (B * max_objs, 3) + gt_dimensions (Tensor): Dimensions of each 3D box. + shape (N, 3) + gt_orientations (Tensor): Orientation(yaw) of each 3D box. + shape (N, 1) + indices (Tensor): Indices of the existence of the 3D box. + shape (B * max_objs, ) + img_metas (list[dict]): Meta information of each image, + e.g., image size, scaling factor, etc. + pre_reg (Tensor): Box regression map. + shape (B, channel, H , W). + + Returns: + dict: the dict has components below: + - bbox3d_yaws (:obj:`CameraInstance3DBoxes`): + bbox calculated using pred orientations. + - bbox3d_dims (:obj:`CameraInstance3DBoxes`): + bbox calculated using pred dimensions. + - bbox3d_locs (:obj:`CameraInstance3DBoxes`): + bbox calculated using pred locations. + """ + batch, channel = pred_reg.shape[0], pred_reg.shape[1] + w = pred_reg.shape[3] + cam2imgs = torch.stack([ + gt_locations.new_tensor(img_meta['cam2img']) + for img_meta in img_metas + ]) + trans_mats = torch.stack([ + gt_locations.new_tensor(img_meta['trans_mat']) + for img_meta in img_metas + ]) + centers2d_inds = centers2d[:, 1] * w + centers2d[:, 0] + centers2d_inds = centers2d_inds.view(batch, -1) + pred_regression = transpose_and_gather_feat(pred_reg, centers2d_inds) + pred_regression_pois = pred_regression.view(-1, channel) + locations, dimensions, orientations = self.bbox_coder.decode( + pred_regression_pois, centers2d, labels3d, cam2imgs, trans_mats, + gt_locations) + + locations, dimensions, orientations = locations[indices], dimensions[ + indices], orientations[indices] + + locations[:, 1] += dimensions[:, 1] / 2 + + gt_locations = gt_locations[indices] + + assert len(locations) == len(gt_locations) + assert len(dimensions) == len(gt_dimensions) + assert len(orientations) == len(gt_orientations) + bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, + orientations, img_metas) + bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, + gt_orientations, img_metas) + bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, + gt_orientations, img_metas) + + pred_bboxes = dict(ori=bbox3d_yaws, dim=bbox3d_dims, loc=bbox3d_locs) + + return pred_bboxes + + def get_targets(self, gt_bboxes, gt_labels, gt_bboxes_3d, gt_labels_3d, + centers2d, feat_shape, img_shape, img_metas): + """Get training targets for batch images. + + Args: + gt_bboxes (list[Tensor]): Ground truth bboxes of each image, + shape (num_gt, 4). + gt_labels (list[Tensor]): Ground truth labels of each box, + shape (num_gt,). + gt_bboxes_3d (list[:obj:`CameraInstance3DBoxes`]): 3D Ground + truth bboxes of each image, + shape (num_gt, bbox_code_size). + gt_labels_3d (list[Tensor]): 3D Ground truth labels of each + box, shape (num_gt,). + centers2d (list[Tensor]): Projected 3D centers onto 2D image, + shape (num_gt, 2). + feat_shape (tuple[int]): Feature map shape with value, + shape (B, _, H, W). + img_shape (tuple[int]): Image shape in [h, w] format. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple[Tensor, dict]: The Tensor value is the targets of + center heatmap, the dict has components below: + - gt_centers2d (Tensor): Coords of each projected 3D box + center on image. shape (B * max_objs, 2) + - gt_labels3d (Tensor): Labels of each 3D box. + shape (B, max_objs, ) + - indices (Tensor): Indices of the existence of the 3D box. + shape (B * max_objs, ) + - affine_indices (Tensor): Indices of the affine of the 3D box. + shape (N, ) + - gt_locs (Tensor): Coords of each 3D box's location. + shape (N, 3) + - gt_dims (Tensor): Dimensions of each 3D box. + shape (N, 3) + - gt_yaws (Tensor): Orientation(yaw) of each 3D box. + shape (N, 1) + - gt_cors (Tensor): Coords of the corners of each 3D box. + shape (N, 8, 3) + """ + + reg_mask = torch.stack([ + gt_bboxes[0].new_tensor( + not img_meta['affine_aug'], dtype=torch.bool) + for img_meta in img_metas + ]) + + img_h, img_w = img_shape[:2] + bs, _, feat_h, feat_w = feat_shape + + width_ratio = float(feat_w / img_w) # 1/4 + height_ratio = float(feat_h / img_h) # 1/4 + + assert width_ratio == height_ratio + + center_heatmap_target = gt_bboxes[-1].new_zeros( + [bs, self.num_classes, feat_h, feat_w]) + + gt_centers2d = centers2d.copy() + + for batch_id in range(bs): + gt_bbox = gt_bboxes[batch_id] + gt_label = gt_labels[batch_id] + # project centers2d from input image to feat map + gt_center2d = gt_centers2d[batch_id] * width_ratio + + for j, center in enumerate(gt_center2d): + center_x_int, center_y_int = center.int() + scale_box_h = (gt_bbox[j][3] - gt_bbox[j][1]) * height_ratio + scale_box_w = (gt_bbox[j][2] - gt_bbox[j][0]) * width_ratio + radius = gaussian_radius([scale_box_h, scale_box_w], + min_overlap=0.7) + radius = max(0, int(radius)) + ind = gt_label[j] + gen_gaussian_target(center_heatmap_target[batch_id, ind], + [center_x_int, center_y_int], radius) + + avg_factor = max(1, center_heatmap_target.eq(1).sum()) + num_ctrs = [center2d.shape[0] for center2d in centers2d] + max_objs = max(num_ctrs) + + reg_inds = torch.cat( + [reg_mask[i].repeat(num_ctrs[i]) for i in range(bs)]) + + inds = torch.zeros((bs, max_objs), + dtype=torch.bool).to(centers2d[0].device) + + # put gt 3d bboxes to gpu + gt_bboxes_3d = [ + gt_bbox_3d.to(centers2d[0].device) for gt_bbox_3d in gt_bboxes_3d + ] + + batch_centers2d = centers2d[0].new_zeros((bs, max_objs, 2)) + batch_labels_3d = gt_labels_3d[0].new_zeros((bs, max_objs)) + batch_gt_locations = \ + gt_bboxes_3d[0].tensor.new_zeros((bs, max_objs, 3)) + for i in range(bs): + inds[i, :num_ctrs[i]] = 1 + batch_centers2d[i, :num_ctrs[i]] = centers2d[i] + batch_labels_3d[i, :num_ctrs[i]] = gt_labels_3d[i] + batch_gt_locations[i, :num_ctrs[i]] = \ + gt_bboxes_3d[i].tensor[:, :3] + + inds = inds.flatten() + batch_centers2d = batch_centers2d.view(-1, 2) * width_ratio + batch_gt_locations = batch_gt_locations.view(-1, 3) + + # filter the empty image, without gt_bboxes_3d + gt_bboxes_3d = [ + gt_bbox_3d for gt_bbox_3d in gt_bboxes_3d + if gt_bbox_3d.tensor.shape[0] > 0 + ] + + gt_dimensions = torch.cat( + [gt_bbox_3d.tensor[:, 3:6] for gt_bbox_3d in gt_bboxes_3d]) + gt_orientations = torch.cat([ + gt_bbox_3d.tensor[:, 6].unsqueeze(-1) + for gt_bbox_3d in gt_bboxes_3d + ]) + gt_corners = torch.cat( + [gt_bbox_3d.corners for gt_bbox_3d in gt_bboxes_3d]) + + target_labels = dict( + gt_centers2d=batch_centers2d.long(), + gt_labels3d=batch_labels_3d, + indices=inds, + reg_indices=reg_inds, + gt_locs=batch_gt_locations, + gt_dims=gt_dimensions, + gt_yaws=gt_orientations, + gt_cors=gt_corners) + + return center_heatmap_target, avg_factor, target_labels + + def loss(self, + cls_scores, + bbox_preds, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels, + img_metas, + gt_bboxes_ignore=None): + """Compute loss of the head. + + Args: + cls_scores (list[Tensor]): Box scores for each scale level. + shape (num_gt, 4). + bbox_preds (list[Tensor]): Box dims is a 4D-tensor, the channel + number is bbox_code_size. + shape (B, 7, H, W). + gt_bboxes (list[Tensor]): Ground truth bboxes for each image. + shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box. + shape (num_gts, ). + gt_bboxes_3d (list[:obj:`CameraInstance3DBoxes`]): 3D boxes ground + truth. it is the flipped gt_bboxes + gt_labels_3d (list[Tensor]): Same as gt_labels. + centers2d (list[Tensor]): 2D centers on the image. + shape (num_gts, 2). + depths (list[Tensor]): Depth ground truth. + shape (num_gts, ). + attr_labels (list[Tensor]): Attributes indices of each box. + In kitti it's None. + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + gt_bboxes_ignore (None | list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + Default: None. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + assert len(cls_scores) == len(bbox_preds) == 1 + assert attr_labels is None + assert gt_bboxes_ignore is None + center2d_heatmap = cls_scores[0] + pred_reg = bbox_preds[0] + + center2d_heatmap_target, avg_factor, target_labels = \ + self.get_targets(gt_bboxes, gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, + center2d_heatmap.shape, + img_metas[0]['pad_shape'], + img_metas) + + pred_bboxes = self.get_predictions( + labels3d=target_labels['gt_labels3d'], + centers2d=target_labels['gt_centers2d'], + gt_locations=target_labels['gt_locs'], + gt_dimensions=target_labels['gt_dims'], + gt_orientations=target_labels['gt_yaws'], + indices=target_labels['indices'], + img_metas=img_metas, + pred_reg=pred_reg) + + loss_cls = self.loss_cls( + center2d_heatmap, center2d_heatmap_target, avg_factor=avg_factor) + + reg_inds = target_labels['reg_indices'] + + loss_bbox_oris = self.loss_bbox( + pred_bboxes['ori'].corners[reg_inds, ...], + target_labels['gt_cors'][reg_inds, ...]) + + loss_bbox_dims = self.loss_bbox( + pred_bboxes['dim'].corners[reg_inds, ...], + target_labels['gt_cors'][reg_inds, ...]) + + loss_bbox_locs = self.loss_bbox( + pred_bboxes['loc'].corners[reg_inds, ...], + target_labels['gt_cors'][reg_inds, ...]) + + loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris + + loss_dict = dict(loss_cls=loss_cls, loss_bbox=loss_bbox) + + return loss_dict diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/ssd_3d_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/ssd_3d_head.py new file mode 100644 index 000000000..c20c4b120 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/ssd_3d_head.py @@ -0,0 +1,557 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops.nms import batched_nms +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from mmdet3d.core.bbox.structures import (DepthInstance3DBoxes, + LiDARInstance3DBoxes, + rotation_3d_in_axis) +from mmdet.core import multi_apply +from ..builder import HEADS, build_loss +from .vote_head import VoteHead + + +@HEADS.register_module() +class SSD3DHead(VoteHead): + r"""Bbox head of `3DSSD `_. + + Args: + num_classes (int): The number of class. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and + decoding boxes. + in_channels (int): The number of input feature channel. + train_cfg (dict): Config for training. + test_cfg (dict): Config for testing. + vote_module_cfg (dict): Config of VoteModule for point-wise votes. + vote_aggregation_cfg (dict): Config of vote aggregation layer. + pred_layer_cfg (dict): Config of classfication and regression + prediction layers. + conv_cfg (dict): Config of convolution in prediction layer. + norm_cfg (dict): Config of BN in prediction layer. + act_cfg (dict): Config of activation in prediction layer. + objectness_loss (dict): Config of objectness loss. + center_loss (dict): Config of center loss. + dir_class_loss (dict): Config of direction classification loss. + dir_res_loss (dict): Config of direction residual regression loss. + size_res_loss (dict): Config of size residual regression loss. + corner_loss (dict): Config of bbox corners regression loss. + vote_loss (dict): Config of candidate points regression loss. + """ + + def __init__(self, + num_classes, + bbox_coder, + in_channels=256, + train_cfg=None, + test_cfg=None, + vote_module_cfg=None, + vote_aggregation_cfg=None, + pred_layer_cfg=None, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + objectness_loss=None, + center_loss=None, + dir_class_loss=None, + dir_res_loss=None, + size_res_loss=None, + corner_loss=None, + vote_loss=None, + init_cfg=None): + super(SSD3DHead, self).__init__( + num_classes, + bbox_coder, + train_cfg=train_cfg, + test_cfg=test_cfg, + vote_module_cfg=vote_module_cfg, + vote_aggregation_cfg=vote_aggregation_cfg, + pred_layer_cfg=pred_layer_cfg, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + objectness_loss=objectness_loss, + center_loss=center_loss, + dir_class_loss=dir_class_loss, + dir_res_loss=dir_res_loss, + size_class_loss=None, + size_res_loss=size_res_loss, + semantic_loss=None, + init_cfg=init_cfg) + + self.corner_loss = build_loss(corner_loss) + self.vote_loss = build_loss(vote_loss) + self.num_candidates = vote_module_cfg['num_points'] + + def _get_cls_out_channels(self): + """Return the channel number of classification outputs.""" + # Class numbers (k) + objectness (1) + return self.num_classes + + def _get_reg_out_channels(self): + """Return the channel number of regression outputs.""" + # Bbox classification and regression + # (center residual (3), size regression (3) + # heading class+residual (num_dir_bins*2)), + return 3 + 3 + self.num_dir_bins * 2 + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Coordinates of input points. + torch.Tensor: Features of input points. + torch.Tensor: Indices of input points. + """ + seed_points = feat_dict['sa_xyz'][-1] + seed_features = feat_dict['sa_features'][-1] + seed_indices = feat_dict['sa_indices'][-1] + + return seed_points, seed_features, seed_indices + + @force_fp32(apply_to=('bbox_preds', )) + def loss(self, + bbox_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + img_metas=None, + gt_bboxes_ignore=None): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of SSD3DHead. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + img_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict: Losses of 3DSSD. + """ + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + bbox_preds) + (vote_targets, center_targets, size_res_targets, dir_class_targets, + dir_res_targets, mask_targets, centerness_targets, corner3d_targets, + vote_mask, positive_mask, negative_mask, centerness_weights, + box_loss_weights, heading_res_loss_weight) = targets + + # calculate centerness loss + centerness_loss = self.objectness_loss( + bbox_preds['obj_scores'].transpose(2, 1), + centerness_targets, + weight=centerness_weights) + + # calculate center loss + center_loss = self.center_loss( + bbox_preds['center_offset'], + center_targets, + weight=box_loss_weights.unsqueeze(-1)) + + # calculate direction class loss + dir_class_loss = self.dir_class_loss( + bbox_preds['dir_class'].transpose(1, 2), + dir_class_targets, + weight=box_loss_weights) + + # calculate direction residual loss + dir_res_loss = self.dir_res_loss( + bbox_preds['dir_res_norm'], + dir_res_targets.unsqueeze(-1).repeat(1, 1, self.num_dir_bins), + weight=heading_res_loss_weight) + + # calculate size residual loss + size_loss = self.size_res_loss( + bbox_preds['size'], + size_res_targets, + weight=box_loss_weights.unsqueeze(-1)) + + # calculate corner loss + one_hot_dir_class_targets = dir_class_targets.new_zeros( + bbox_preds['dir_class'].shape) + one_hot_dir_class_targets.scatter_(2, dir_class_targets.unsqueeze(-1), + 1) + pred_bbox3d = self.bbox_coder.decode( + dict( + center=bbox_preds['center'], + dir_res=bbox_preds['dir_res'], + dir_class=one_hot_dir_class_targets, + size=bbox_preds['size'])) + pred_bbox3d = pred_bbox3d.reshape(-1, pred_bbox3d.shape[-1]) + pred_bbox3d = img_metas[0]['box_type_3d']( + pred_bbox3d.clone(), + box_dim=pred_bbox3d.shape[-1], + with_yaw=self.bbox_coder.with_rot, + origin=(0.5, 0.5, 0.5)) + pred_corners3d = pred_bbox3d.corners.reshape(-1, 8, 3) + corner_loss = self.corner_loss( + pred_corners3d, + corner3d_targets.reshape(-1, 8, 3), + weight=box_loss_weights.view(-1, 1, 1)) + + # calculate vote loss + vote_loss = self.vote_loss( + bbox_preds['vote_offset'].transpose(1, 2), + vote_targets, + weight=vote_mask.unsqueeze(-1)) + + losses = dict( + centerness_loss=centerness_loss, + center_loss=center_loss, + dir_class_loss=dir_class_loss, + dir_res_loss=dir_res_loss, + size_res_loss=size_loss, + corner_loss=corner_loss, + vote_loss=vote_loss) + + return losses + + def get_targets(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + bbox_preds=None): + """Generate targets of ssd3d head. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + pts_semantic_mask (list[torch.Tensor]): Point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): Point-wise instance + label of each batch. + bbox_preds (torch.Tensor): Bounding box predictions of ssd3d head. + + Returns: + tuple[torch.Tensor]: Targets of ssd3d head. + """ + # find empty example + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + + if pts_semantic_mask is None: + pts_semantic_mask = [None for i in range(len(gt_labels_3d))] + pts_instance_mask = [None for i in range(len(gt_labels_3d))] + + aggregated_points = [ + bbox_preds['aggregated_points'][i] + for i in range(len(gt_labels_3d)) + ] + + seed_points = [ + bbox_preds['seed_points'][i, :self.num_candidates].detach() + for i in range(len(gt_labels_3d)) + ] + + (vote_targets, center_targets, size_res_targets, dir_class_targets, + dir_res_targets, mask_targets, centerness_targets, corner3d_targets, + vote_mask, positive_mask, negative_mask) = multi_apply( + self.get_targets_single, points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, aggregated_points, + seed_points) + + center_targets = torch.stack(center_targets) + positive_mask = torch.stack(positive_mask) + negative_mask = torch.stack(negative_mask) + dir_class_targets = torch.stack(dir_class_targets) + dir_res_targets = torch.stack(dir_res_targets) + size_res_targets = torch.stack(size_res_targets) + mask_targets = torch.stack(mask_targets) + centerness_targets = torch.stack(centerness_targets).detach() + corner3d_targets = torch.stack(corner3d_targets) + vote_targets = torch.stack(vote_targets) + vote_mask = torch.stack(vote_mask) + + center_targets -= bbox_preds['aggregated_points'] + + centerness_weights = (positive_mask + + negative_mask).unsqueeze(-1).repeat( + 1, 1, self.num_classes).float() + centerness_weights = centerness_weights / \ + (centerness_weights.sum() + 1e-6) + vote_mask = vote_mask / (vote_mask.sum() + 1e-6) + + box_loss_weights = positive_mask / (positive_mask.sum() + 1e-6) + + batch_size, proposal_num = dir_class_targets.shape[:2] + heading_label_one_hot = dir_class_targets.new_zeros( + (batch_size, proposal_num, self.num_dir_bins)) + heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1) + heading_res_loss_weight = heading_label_one_hot * \ + box_loss_weights.unsqueeze(-1) + + return (vote_targets, center_targets, size_res_targets, + dir_class_targets, dir_res_targets, mask_targets, + centerness_targets, corner3d_targets, vote_mask, positive_mask, + negative_mask, centerness_weights, box_loss_weights, + heading_res_loss_weight) + + def get_targets_single(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + aggregated_points=None, + seed_points=None): + """Generate targets of ssd3d head for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + pts_semantic_mask (torch.Tensor): Point-wise semantic + label of each batch. + pts_instance_mask (torch.Tensor): Point-wise instance + label of each batch. + aggregated_points (torch.Tensor): Aggregated points from + candidate points layer. + seed_points (torch.Tensor): Seed points of candidate points. + + Returns: + tuple[torch.Tensor]: Targets of ssd3d head. + """ + assert self.bbox_coder.with_rot or pts_semantic_mask is not None + gt_bboxes_3d = gt_bboxes_3d.to(points.device) + valid_gt = gt_labels_3d != -1 + gt_bboxes_3d = gt_bboxes_3d[valid_gt] + gt_labels_3d = gt_labels_3d[valid_gt] + + # Generate fake GT for empty scene + if valid_gt.sum() == 0: + vote_targets = points.new_zeros(self.num_candidates, 3) + center_targets = points.new_zeros(self.num_candidates, 3) + size_res_targets = points.new_zeros(self.num_candidates, 3) + dir_class_targets = points.new_zeros( + self.num_candidates, dtype=torch.int64) + dir_res_targets = points.new_zeros(self.num_candidates) + mask_targets = points.new_zeros( + self.num_candidates, dtype=torch.int64) + centerness_targets = points.new_zeros(self.num_candidates, + self.num_classes) + corner3d_targets = points.new_zeros(self.num_candidates, 8, 3) + vote_mask = points.new_zeros(self.num_candidates, dtype=torch.bool) + positive_mask = points.new_zeros( + self.num_candidates, dtype=torch.bool) + negative_mask = points.new_ones( + self.num_candidates, dtype=torch.bool) + return (vote_targets, center_targets, size_res_targets, + dir_class_targets, dir_res_targets, mask_targets, + centerness_targets, corner3d_targets, vote_mask, + positive_mask, negative_mask) + + gt_corner3d = gt_bboxes_3d.corners + + (center_targets, size_targets, dir_class_targets, + dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d) + + points_mask, assignment = self._assign_targets_by_points_inside( + gt_bboxes_3d, aggregated_points) + + center_targets = center_targets[assignment] + size_res_targets = size_targets[assignment] + mask_targets = gt_labels_3d[assignment] + dir_class_targets = dir_class_targets[assignment] + dir_res_targets = dir_res_targets[assignment] + corner3d_targets = gt_corner3d[assignment] + + top_center_targets = center_targets.clone() + top_center_targets[:, 2] += size_res_targets[:, 2] + dist = torch.norm(aggregated_points - top_center_targets, dim=1) + dist_mask = dist < self.train_cfg.pos_distance_thr + positive_mask = (points_mask.max(1)[0] > 0) * dist_mask + negative_mask = (points_mask.max(1)[0] == 0) + + # Centerness loss targets + canonical_xyz = aggregated_points - center_targets + if self.bbox_coder.with_rot: + # TODO: Align points rotation implementation of + # LiDARInstance3DBoxes and DepthInstance3DBoxes + canonical_xyz = rotation_3d_in_axis( + canonical_xyz.unsqueeze(0).transpose(0, 1), + -gt_bboxes_3d.yaw[assignment], + axis=2).squeeze(1) + distance_front = torch.clamp( + size_res_targets[:, 0] - canonical_xyz[:, 0], min=0) + distance_back = torch.clamp( + size_res_targets[:, 0] + canonical_xyz[:, 0], min=0) + distance_left = torch.clamp( + size_res_targets[:, 1] - canonical_xyz[:, 1], min=0) + distance_right = torch.clamp( + size_res_targets[:, 1] + canonical_xyz[:, 1], min=0) + distance_top = torch.clamp( + size_res_targets[:, 2] - canonical_xyz[:, 2], min=0) + distance_bottom = torch.clamp( + size_res_targets[:, 2] + canonical_xyz[:, 2], min=0) + + centerness_l = torch.min(distance_front, distance_back) / torch.max( + distance_front, distance_back) + centerness_w = torch.min(distance_left, distance_right) / torch.max( + distance_left, distance_right) + centerness_h = torch.min(distance_bottom, distance_top) / torch.max( + distance_bottom, distance_top) + centerness_targets = torch.clamp( + centerness_l * centerness_w * centerness_h, min=0) + centerness_targets = centerness_targets.pow(1 / 3.0) + centerness_targets = torch.clamp(centerness_targets, min=0, max=1) + + proposal_num = centerness_targets.shape[0] + one_hot_centerness_targets = centerness_targets.new_zeros( + (proposal_num, self.num_classes)) + one_hot_centerness_targets.scatter_(1, mask_targets.unsqueeze(-1), 1) + centerness_targets = centerness_targets.unsqueeze( + 1) * one_hot_centerness_targets + + # Vote loss targets + enlarged_gt_bboxes_3d = gt_bboxes_3d.enlarged_box( + self.train_cfg.expand_dims_length) + enlarged_gt_bboxes_3d.tensor[:, 2] -= self.train_cfg.expand_dims_length + vote_mask, vote_assignment = self._assign_targets_by_points_inside( + enlarged_gt_bboxes_3d, seed_points) + + vote_targets = gt_bboxes_3d.gravity_center + vote_targets = vote_targets[vote_assignment] - seed_points + vote_mask = vote_mask.max(1)[0] > 0 + + return (vote_targets, center_targets, size_res_targets, + dir_class_targets, dir_res_targets, mask_targets, + centerness_targets, corner3d_targets, vote_mask, positive_mask, + negative_mask) + + def get_bboxes(self, points, bbox_preds, input_metas, rescale=False): + """Generate bboxes from 3DSSD head predictions. + + Args: + points (torch.Tensor): Input points. + bbox_preds (dict): Predictions from sdd3d head. + input_metas (list[dict]): Point cloud and image's meta info. + rescale (bool): Whether to rescale bboxes. + + Returns: + list[tuple[torch.Tensor]]: Bounding boxes, scores and labels. + """ + # decode boxes + sem_scores = F.sigmoid(bbox_preds['obj_scores']).transpose(1, 2) + obj_scores = sem_scores.max(-1)[0] + bbox3d = self.bbox_coder.decode(bbox_preds) + + batch_size = bbox3d.shape[0] + results = list() + + for b in range(batch_size): + bbox_selected, score_selected, labels = self.multiclass_nms_single( + obj_scores[b], sem_scores[b], bbox3d[b], points[b, ..., :3], + input_metas[b]) + + bbox = input_metas[b]['box_type_3d']( + bbox_selected.clone(), + box_dim=bbox_selected.shape[-1], + with_yaw=self.bbox_coder.with_rot) + results.append((bbox, score_selected, labels)) + + return results + + def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points, + input_meta): + """Multi-class nms in single batch. + + Args: + obj_scores (torch.Tensor): Objectness score of bounding boxes. + sem_scores (torch.Tensor): Semantic class score of bounding boxes. + bbox (torch.Tensor): Predicted bounding boxes. + points (torch.Tensor): Input points. + input_meta (dict): Point cloud and image's meta info. + + Returns: + tuple[torch.Tensor]: Bounding boxes, scores and labels. + """ + bbox = input_meta['box_type_3d']( + bbox.clone(), + box_dim=bbox.shape[-1], + with_yaw=self.bbox_coder.with_rot, + origin=(0.5, 0.5, 0.5)) + + if isinstance(bbox, (LiDARInstance3DBoxes, DepthInstance3DBoxes)): + box_indices = bbox.points_in_boxes_all(points) + nonempty_box_mask = box_indices.T.sum(1) >= 0 + else: + raise NotImplementedError('Unsupported bbox type!') + + corner3d = bbox.corners + minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6))) + minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0] + minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0] + + bbox_classes = torch.argmax(sem_scores, -1) + nms_keep = batched_nms( + minmax_box3d[nonempty_box_mask][:, [0, 1, 3, 4]], + obj_scores[nonempty_box_mask], bbox_classes[nonempty_box_mask], + self.test_cfg.nms_cfg)[1] + + if nms_keep.shape[0] > self.test_cfg.max_output_num: + nms_keep = nms_keep[:self.test_cfg.max_output_num] + + # filter empty boxes and boxes with low score + scores_mask = (obj_scores >= self.test_cfg.score_thr) + nonempty_box_inds = torch.nonzero( + nonempty_box_mask, as_tuple=False).flatten() + nonempty_mask = torch.zeros_like(bbox_classes).scatter( + 0, nonempty_box_inds[nms_keep], 1) + selected = (nonempty_mask.bool() & scores_mask.bool()) + + if self.test_cfg.per_class_proposal: + bbox_selected, score_selected, labels = [], [], [] + for k in range(sem_scores.shape[-1]): + bbox_selected.append(bbox[selected].tensor) + score_selected.append(obj_scores[selected]) + labels.append( + torch.zeros_like(bbox_classes[selected]).fill_(k)) + bbox_selected = torch.cat(bbox_selected, 0) + score_selected = torch.cat(score_selected, 0) + labels = torch.cat(labels, 0) + else: + bbox_selected = bbox[selected].tensor + score_selected = obj_scores[selected] + labels = bbox_classes[selected] + + return bbox_selected, score_selected, labels + + def _assign_targets_by_points_inside(self, bboxes_3d, points): + """Compute assignment by checking whether point is inside bbox. + + Args: + bboxes_3d (BaseInstance3DBoxes): Instance of bounding boxes. + points (torch.Tensor): Points of a batch. + + Returns: + tuple[torch.Tensor]: Flags indicating whether each point is + inside bbox and the index of box where each point are in. + """ + if isinstance(bboxes_3d, (LiDARInstance3DBoxes, DepthInstance3DBoxes)): + points_mask = bboxes_3d.points_in_boxes_all(points) + assignment = points_mask.argmax(dim=-1) + else: + raise NotImplementedError('Unsupported bbox type!') + + return points_mask, assignment diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/train_mixins.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/train_mixins.py new file mode 100644 index 000000000..90c9cbbfd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/train_mixins.py @@ -0,0 +1,349 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + +from mmdet3d.core import limit_period +from mmdet.core import images_to_levels, multi_apply + + +class AnchorTrainMixin(object): + """Mixin class for target assigning of dense heads.""" + + def anchor_target_3d(self, + anchor_list, + gt_bboxes_list, + input_metas, + gt_bboxes_ignore_list=None, + gt_labels_list=None, + label_channels=1, + num_classes=1, + sampling=True): + """Compute regression and classification targets for anchors. + + Args: + anchor_list (list[list]): Multi level anchors of each image. + gt_bboxes_list (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each image. + input_metas (list[dict]): Meta info of each image. + gt_bboxes_ignore_list (list): Ignore list of gt bboxes. + gt_labels_list (list[torch.Tensor]): Gt labels of batches. + label_channels (int): The channel of labels. + num_classes (int): The number of classes. + sampling (bool): Whether to sample anchors. + + Returns: + tuple (list, list, list, list, list, list, int, int): + Anchor targets, including labels, label weights, + bbox targets, bbox weights, direction targets, + direction weights, number of positive anchors and + number of negative anchors. + """ + num_imgs = len(input_metas) + assert len(anchor_list) == num_imgs + + if isinstance(anchor_list[0][0], list): + # sizes of anchors are different + # anchor number of a single level + num_level_anchors = [ + sum([anchor.size(0) for anchor in anchors]) + for anchors in anchor_list[0] + ] + for i in range(num_imgs): + anchor_list[i] = anchor_list[i][0] + else: + # anchor number of multi levels + num_level_anchors = [ + anchors.view(-1, self.box_code_size).size(0) + for anchors in anchor_list[0] + ] + # concat all level anchors and flags to a single tensor + for i in range(num_imgs): + anchor_list[i] = torch.cat(anchor_list[i]) + + # compute targets for each image + if gt_bboxes_ignore_list is None: + gt_bboxes_ignore_list = [None for _ in range(num_imgs)] + if gt_labels_list is None: + gt_labels_list = [None for _ in range(num_imgs)] + + (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, + all_dir_targets, all_dir_weights, pos_inds_list, + neg_inds_list) = multi_apply( + self.anchor_target_3d_single, + anchor_list, + gt_bboxes_list, + gt_bboxes_ignore_list, + gt_labels_list, + input_metas, + label_channels=label_channels, + num_classes=num_classes, + sampling=sampling) + + # no valid anchors + if any([labels is None for labels in all_labels]): + return None + # sampled anchors of all images + num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) + num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) + # split targets to a list w.r.t. multiple levels + labels_list = images_to_levels(all_labels, num_level_anchors) + label_weights_list = images_to_levels(all_label_weights, + num_level_anchors) + bbox_targets_list = images_to_levels(all_bbox_targets, + num_level_anchors) + bbox_weights_list = images_to_levels(all_bbox_weights, + num_level_anchors) + dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors) + dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors) + return (labels_list, label_weights_list, bbox_targets_list, + bbox_weights_list, dir_targets_list, dir_weights_list, + num_total_pos, num_total_neg) + + def anchor_target_3d_single(self, + anchors, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + input_meta, + label_channels=1, + num_classes=1, + sampling=True): + """Compute targets of anchors in single batch. + + Args: + anchors (torch.Tensor): Concatenated multi-level anchor. + gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes. + gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes. + gt_labels (torch.Tensor): Gt class labels. + input_meta (dict): Meta info of each image. + label_channels (int): The channel of labels. + num_classes (int): The number of classes. + sampling (bool): Whether to sample anchors. + + Returns: + tuple[torch.Tensor]: Anchor targets. + """ + if isinstance(self.bbox_assigner, + list) and (not isinstance(anchors, list)): + feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2) + rot_angles = anchors.size(-2) + assert len(self.bbox_assigner) == anchors.size(-3) + (total_labels, total_label_weights, total_bbox_targets, + total_bbox_weights, total_dir_targets, total_dir_weights, + total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], [] + current_anchor_num = 0 + for i, assigner in enumerate(self.bbox_assigner): + current_anchors = anchors[..., i, :, :].reshape( + -1, self.box_code_size) + current_anchor_num += current_anchors.size(0) + if self.assign_per_class: + gt_per_cls = (gt_labels == i) + anchor_targets = self.anchor_target_single_assigner( + assigner, current_anchors, gt_bboxes[gt_per_cls, :], + gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta, + num_classes, sampling) + else: + anchor_targets = self.anchor_target_single_assigner( + assigner, current_anchors, gt_bboxes, gt_bboxes_ignore, + gt_labels, input_meta, num_classes, sampling) + + (labels, label_weights, bbox_targets, bbox_weights, + dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets + total_labels.append(labels.reshape(feat_size, 1, rot_angles)) + total_label_weights.append( + label_weights.reshape(feat_size, 1, rot_angles)) + total_bbox_targets.append( + bbox_targets.reshape(feat_size, 1, rot_angles, + anchors.size(-1))) + total_bbox_weights.append( + bbox_weights.reshape(feat_size, 1, rot_angles, + anchors.size(-1))) + total_dir_targets.append( + dir_targets.reshape(feat_size, 1, rot_angles)) + total_dir_weights.append( + dir_weights.reshape(feat_size, 1, rot_angles)) + total_pos_inds.append(pos_inds) + total_neg_inds.append(neg_inds) + + total_labels = torch.cat(total_labels, dim=-2).reshape(-1) + total_label_weights = torch.cat( + total_label_weights, dim=-2).reshape(-1) + total_bbox_targets = torch.cat( + total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1)) + total_bbox_weights = torch.cat( + total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1)) + total_dir_targets = torch.cat( + total_dir_targets, dim=-2).reshape(-1) + total_dir_weights = torch.cat( + total_dir_weights, dim=-2).reshape(-1) + total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1) + total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1) + return (total_labels, total_label_weights, total_bbox_targets, + total_bbox_weights, total_dir_targets, total_dir_weights, + total_pos_inds, total_neg_inds) + elif isinstance(self.bbox_assigner, list) and isinstance( + anchors, list): + # class-aware anchors with different feature map sizes + assert len(self.bbox_assigner) == len(anchors), \ + 'The number of bbox assigners and anchors should be the same.' + (total_labels, total_label_weights, total_bbox_targets, + total_bbox_weights, total_dir_targets, total_dir_weights, + total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], [] + current_anchor_num = 0 + for i, assigner in enumerate(self.bbox_assigner): + current_anchors = anchors[i] + current_anchor_num += current_anchors.size(0) + if self.assign_per_class: + gt_per_cls = (gt_labels == i) + anchor_targets = self.anchor_target_single_assigner( + assigner, current_anchors, gt_bboxes[gt_per_cls, :], + gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta, + num_classes, sampling) + else: + anchor_targets = self.anchor_target_single_assigner( + assigner, current_anchors, gt_bboxes, gt_bboxes_ignore, + gt_labels, input_meta, num_classes, sampling) + + (labels, label_weights, bbox_targets, bbox_weights, + dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets + total_labels.append(labels) + total_label_weights.append(label_weights) + total_bbox_targets.append( + bbox_targets.reshape(-1, anchors[i].size(-1))) + total_bbox_weights.append( + bbox_weights.reshape(-1, anchors[i].size(-1))) + total_dir_targets.append(dir_targets) + total_dir_weights.append(dir_weights) + total_pos_inds.append(pos_inds) + total_neg_inds.append(neg_inds) + + total_labels = torch.cat(total_labels, dim=0) + total_label_weights = torch.cat(total_label_weights, dim=0) + total_bbox_targets = torch.cat(total_bbox_targets, dim=0) + total_bbox_weights = torch.cat(total_bbox_weights, dim=0) + total_dir_targets = torch.cat(total_dir_targets, dim=0) + total_dir_weights = torch.cat(total_dir_weights, dim=0) + total_pos_inds = torch.cat(total_pos_inds, dim=0) + total_neg_inds = torch.cat(total_neg_inds, dim=0) + return (total_labels, total_label_weights, total_bbox_targets, + total_bbox_weights, total_dir_targets, total_dir_weights, + total_pos_inds, total_neg_inds) + else: + return self.anchor_target_single_assigner(self.bbox_assigner, + anchors, gt_bboxes, + gt_bboxes_ignore, + gt_labels, input_meta, + num_classes, sampling) + + def anchor_target_single_assigner(self, + bbox_assigner, + anchors, + gt_bboxes, + gt_bboxes_ignore, + gt_labels, + input_meta, + num_classes=1, + sampling=True): + """Assign anchors and encode positive anchors. + + Args: + bbox_assigner (BaseAssigner): assign positive and negative boxes. + anchors (torch.Tensor): Concatenated multi-level anchor. + gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes. + gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes. + gt_labels (torch.Tensor): Gt class labels. + input_meta (dict): Meta info of each image. + num_classes (int): The number of classes. + sampling (bool): Whether to sample anchors. + + Returns: + tuple[torch.Tensor]: Anchor targets. + """ + anchors = anchors.reshape(-1, anchors.size(-1)) + num_valid_anchors = anchors.shape[0] + bbox_targets = torch.zeros_like(anchors) + bbox_weights = torch.zeros_like(anchors) + dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long) + dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float) + labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long) + label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) + if len(gt_bboxes) > 0: + if not isinstance(gt_bboxes, torch.Tensor): + gt_bboxes = gt_bboxes.tensor.to(anchors.device) + assign_result = bbox_assigner.assign(anchors, gt_bboxes, + gt_bboxes_ignore, gt_labels) + sampling_result = self.bbox_sampler.sample(assign_result, anchors, + gt_bboxes) + pos_inds = sampling_result.pos_inds + neg_inds = sampling_result.neg_inds + else: + pos_inds = torch.nonzero( + anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0, + as_tuple=False).squeeze(-1).unique() + neg_inds = torch.nonzero( + anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) == 0, + as_tuple=False).squeeze(-1).unique() + + if gt_labels is not None: + labels += num_classes + if len(pos_inds) > 0: + pos_bbox_targets = self.bbox_coder.encode( + sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) + pos_dir_targets = get_direction_target( + sampling_result.pos_bboxes, + pos_bbox_targets, + self.dir_offset, + self.dir_limit_offset, + one_hot=False) + bbox_targets[pos_inds, :] = pos_bbox_targets + bbox_weights[pos_inds, :] = 1.0 + dir_targets[pos_inds] = pos_dir_targets + dir_weights[pos_inds] = 1.0 + + if gt_labels is None: + labels[pos_inds] = 1 + else: + labels[pos_inds] = gt_labels[ + sampling_result.pos_assigned_gt_inds] + if self.train_cfg.pos_weight <= 0: + label_weights[pos_inds] = 1.0 + else: + label_weights[pos_inds] = self.train_cfg.pos_weight + + if len(neg_inds) > 0: + label_weights[neg_inds] = 1.0 + return (labels, label_weights, bbox_targets, bbox_weights, dir_targets, + dir_weights, pos_inds, neg_inds) + + +def get_direction_target(anchors, + reg_targets, + dir_offset=0, + dir_limit_offset=0, + num_bins=2, + one_hot=True): + """Encode direction to 0 ~ num_bins-1. + + Args: + anchors (torch.Tensor): Concatenated multi-level anchor. + reg_targets (torch.Tensor): Bbox regression targets. + dir_offset (int): Direction offset. + num_bins (int): Number of bins to divide 2*PI. + one_hot (bool): Whether to encode as one hot. + + Returns: + torch.Tensor: Encoded direction targets. + """ + rot_gt = reg_targets[..., 6] + anchors[..., 6] + offset_rot = limit_period(rot_gt - dir_offset, dir_limit_offset, 2 * np.pi) + dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long() + dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1) + if one_hot: + dir_targets = torch.zeros( + *list(dir_cls_targets.shape), + num_bins, + dtype=anchors.dtype, + device=dir_cls_targets.device) + dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0) + dir_cls_targets = dir_targets + return dir_cls_targets diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/vote_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/vote_head.py new file mode 100644 index 000000000..53b1154f0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/dense_heads/vote_head.py @@ -0,0 +1,663 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.ops import furthest_point_sample +from mmcv.runner import BaseModule, force_fp32 +from torch.nn import functional as F + +from mmdet3d.core.post_processing import aligned_3d_nms +from mmdet3d.models.losses import chamfer_distance +from mmdet3d.models.model_utils import VoteModule +from mmdet3d.ops import build_sa_module +from mmdet.core import build_bbox_coder, multi_apply +from ..builder import HEADS, build_loss +from .base_conv_bbox_head import BaseConvBboxHead + + +@HEADS.register_module() +class VoteHead(BaseModule): + r"""Bbox head of `Votenet `_. + + Args: + num_classes (int): The number of class. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and + decoding boxes. + train_cfg (dict): Config for training. + test_cfg (dict): Config for testing. + vote_module_cfg (dict): Config of VoteModule for point-wise votes. + vote_aggregation_cfg (dict): Config of vote aggregation layer. + pred_layer_cfg (dict): Config of classfication and regression + prediction layers. + conv_cfg (dict): Config of convolution in prediction layer. + norm_cfg (dict): Config of BN in prediction layer. + objectness_loss (dict): Config of objectness loss. + center_loss (dict): Config of center loss. + dir_class_loss (dict): Config of direction classification loss. + dir_res_loss (dict): Config of direction residual regression loss. + size_class_loss (dict): Config of size classification loss. + size_res_loss (dict): Config of size residual regression loss. + semantic_loss (dict): Config of point-wise semantic segmentation loss. + """ + + def __init__(self, + num_classes, + bbox_coder, + train_cfg=None, + test_cfg=None, + vote_module_cfg=None, + vote_aggregation_cfg=None, + pred_layer_cfg=None, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=None, + center_loss=None, + dir_class_loss=None, + dir_res_loss=None, + size_class_loss=None, + size_res_loss=None, + semantic_loss=None, + iou_loss=None, + init_cfg=None): + super(VoteHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.gt_per_seed = vote_module_cfg['gt_per_seed'] + self.num_proposal = vote_aggregation_cfg['num_point'] + + self.objectness_loss = build_loss(objectness_loss) + self.center_loss = build_loss(center_loss) + self.dir_res_loss = build_loss(dir_res_loss) + self.dir_class_loss = build_loss(dir_class_loss) + self.size_res_loss = build_loss(size_res_loss) + if size_class_loss is not None: + self.size_class_loss = build_loss(size_class_loss) + if semantic_loss is not None: + self.semantic_loss = build_loss(semantic_loss) + if iou_loss is not None: + self.iou_loss = build_loss(iou_loss) + else: + self.iou_loss = None + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.num_sizes = self.bbox_coder.num_sizes + self.num_dir_bins = self.bbox_coder.num_dir_bins + + self.vote_module = VoteModule(**vote_module_cfg) + self.vote_aggregation = build_sa_module(vote_aggregation_cfg) + self.fp16_enabled = False + + # Bbox classification and regression + self.conv_pred = BaseConvBboxHead( + **pred_layer_cfg, + num_cls_out_channels=self._get_cls_out_channels(), + num_reg_out_channels=self._get_reg_out_channels()) + + def _get_cls_out_channels(self): + """Return the channel number of classification outputs.""" + # Class numbers (k) + objectness (2) + return self.num_classes + 2 + + def _get_reg_out_channels(self): + """Return the channel number of regression outputs.""" + # Objectness scores (2), center residual (3), + # heading class+residual (num_dir_bins*2), + # size class+residual(num_sizes*4) + return 3 + self.num_dir_bins * 2 + self.num_sizes * 4 + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + torch.Tensor: Coordinates of input points. + torch.Tensor: Features of input points. + torch.Tensor: Indices of input points. + """ + + # for imvotenet + if 'seed_points' in feat_dict and \ + 'seed_features' in feat_dict and \ + 'seed_indices' in feat_dict: + seed_points = feat_dict['seed_points'] + seed_features = feat_dict['seed_features'] + seed_indices = feat_dict['seed_indices'] + # for votenet + else: + seed_points = feat_dict['fp_xyz'][-1] + seed_features = feat_dict['fp_features'][-1] + seed_indices = feat_dict['fp_indices'][-1] + + return seed_points, seed_features, seed_indices + + def forward(self, feat_dict, sample_mod): + """Forward pass. + + Note: + The forward of VoteHead is divided into 4 steps: + + 1. Generate vote_points from seed_points. + 2. Aggregate vote_points. + 3. Predict bbox and score. + 4. Decode predictions. + + Args: + feat_dict (dict): Feature dict from backbone. + sample_mod (str): Sample mode for vote aggregation layer. + valid modes are "vote", "seed", "random" and "spec". + + Returns: + dict: Predictions of vote head. + """ + assert sample_mod in ['vote', 'seed', 'random', 'spec'] + + seed_points, seed_features, seed_indices = self._extract_input( + feat_dict) + + # 1. generate vote_points from seed_points + vote_points, vote_features, vote_offset = self.vote_module( + seed_points, seed_features) + results = dict( + seed_points=seed_points, + seed_indices=seed_indices, + vote_points=vote_points, + vote_features=vote_features, + vote_offset=vote_offset) + + # 2. aggregate vote_points + if sample_mod == 'vote': + # use fps in vote_aggregation + aggregation_inputs = dict( + points_xyz=vote_points, features=vote_features) + elif sample_mod == 'seed': + # FPS on seed and choose the votes corresponding to the seeds + sample_indices = furthest_point_sample(seed_points, + self.num_proposal) + aggregation_inputs = dict( + points_xyz=vote_points, + features=vote_features, + indices=sample_indices) + elif sample_mod == 'random': + # Random sampling from the votes + batch_size, num_seed = seed_points.shape[:2] + sample_indices = seed_points.new_tensor( + torch.randint(0, num_seed, (batch_size, self.num_proposal)), + dtype=torch.int32) + aggregation_inputs = dict( + points_xyz=vote_points, + features=vote_features, + indices=sample_indices) + elif sample_mod == 'spec': + # Specify the new center in vote_aggregation + aggregation_inputs = dict( + points_xyz=seed_points, + features=seed_features, + target_xyz=vote_points) + else: + raise NotImplementedError( + f'Sample mode {sample_mod} is not supported!') + + vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs) + aggregated_points, features, aggregated_indices = vote_aggregation_ret + + results['aggregated_points'] = aggregated_points + results['aggregated_features'] = features + results['aggregated_indices'] = aggregated_indices + + # 3. predict bbox and score + cls_predictions, reg_predictions = self.conv_pred(features) + + # 4. decode predictions + decode_res = self.bbox_coder.split_pred(cls_predictions, + reg_predictions, + aggregated_points) + + results.update(decode_res) + + return results + + @force_fp32(apply_to=('bbox_preds', )) + def loss(self, + bbox_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + img_metas=None, + gt_bboxes_ignore=None, + ret_target=False): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of vote head. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + img_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + ret_target (Bool): Return targets or not. + + Returns: + dict: Losses of Votenet. + """ + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + bbox_preds) + (vote_targets, vote_target_masks, size_class_targets, size_res_targets, + dir_class_targets, dir_res_targets, center_targets, + assigned_center_targets, mask_targets, valid_gt_masks, + objectness_targets, objectness_weights, box_loss_weights, + valid_gt_weights) = targets + + # calculate vote loss + vote_loss = self.vote_module.get_loss(bbox_preds['seed_points'], + bbox_preds['vote_points'], + bbox_preds['seed_indices'], + vote_target_masks, vote_targets) + + # calculate objectness loss + objectness_loss = self.objectness_loss( + bbox_preds['obj_scores'].transpose(2, 1), + objectness_targets, + weight=objectness_weights) + + # calculate center loss + source2target_loss, target2source_loss = self.center_loss( + bbox_preds['center'], + center_targets, + src_weight=box_loss_weights, + dst_weight=valid_gt_weights) + center_loss = source2target_loss + target2source_loss + + # calculate direction class loss + dir_class_loss = self.dir_class_loss( + bbox_preds['dir_class'].transpose(2, 1), + dir_class_targets, + weight=box_loss_weights) + + # calculate direction residual loss + batch_size, proposal_num = size_class_targets.shape[:2] + heading_label_one_hot = vote_targets.new_zeros( + (batch_size, proposal_num, self.num_dir_bins)) + heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1) + dir_res_norm = torch.sum( + bbox_preds['dir_res_norm'] * heading_label_one_hot, -1) + dir_res_loss = self.dir_res_loss( + dir_res_norm, dir_res_targets, weight=box_loss_weights) + + # calculate size class loss + size_class_loss = self.size_class_loss( + bbox_preds['size_class'].transpose(2, 1), + size_class_targets, + weight=box_loss_weights) + + # calculate size residual loss + one_hot_size_targets = vote_targets.new_zeros( + (batch_size, proposal_num, self.num_sizes)) + one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1) + one_hot_size_targets_expand = one_hot_size_targets.unsqueeze( + -1).repeat(1, 1, 1, 3).contiguous() + size_residual_norm = torch.sum( + bbox_preds['size_res_norm'] * one_hot_size_targets_expand, 2) + box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat( + 1, 1, 3) + size_res_loss = self.size_res_loss( + size_residual_norm, + size_res_targets, + weight=box_loss_weights_expand) + + # calculate semantic loss + semantic_loss = self.semantic_loss( + bbox_preds['sem_scores'].transpose(2, 1), + mask_targets, + weight=box_loss_weights) + + losses = dict( + vote_loss=vote_loss, + objectness_loss=objectness_loss, + semantic_loss=semantic_loss, + center_loss=center_loss, + dir_class_loss=dir_class_loss, + dir_res_loss=dir_res_loss, + size_class_loss=size_class_loss, + size_res_loss=size_res_loss) + + if self.iou_loss: + corners_pred = self.bbox_coder.decode_corners( + bbox_preds['center'], size_residual_norm, + one_hot_size_targets_expand) + corners_target = self.bbox_coder.decode_corners( + assigned_center_targets, size_res_targets, + one_hot_size_targets_expand) + iou_loss = self.iou_loss( + corners_pred, corners_target, weight=box_loss_weights) + losses['iou_loss'] = iou_loss + + if ret_target: + losses['targets'] = targets + + return losses + + def get_targets(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + bbox_preds=None): + """Generate targets of vote head. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + pts_semantic_mask (list[torch.Tensor]): Point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): Point-wise instance + label of each batch. + bbox_preds (torch.Tensor): Bounding box predictions of vote head. + + Returns: + tuple[torch.Tensor]: Targets of vote head. + """ + # find empty example + valid_gt_masks = list() + gt_num = list() + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + valid_gt_masks.append(gt_labels_3d[index].new_zeros(1)) + gt_num.append(1) + else: + valid_gt_masks.append(gt_labels_3d[index].new_ones( + gt_labels_3d[index].shape)) + gt_num.append(gt_labels_3d[index].shape[0]) + max_gt_num = max(gt_num) + + if pts_semantic_mask is None: + pts_semantic_mask = [None for i in range(len(gt_labels_3d))] + pts_instance_mask = [None for i in range(len(gt_labels_3d))] + + aggregated_points = [ + bbox_preds['aggregated_points'][i] + for i in range(len(gt_labels_3d)) + ] + + (vote_targets, vote_target_masks, size_class_targets, size_res_targets, + dir_class_targets, dir_res_targets, center_targets, + assigned_center_targets, mask_targets, objectness_targets, + objectness_masks) = multi_apply(self.get_targets_single, points, + gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + aggregated_points) + + # pad targets as original code of votenet. + for index in range(len(gt_labels_3d)): + pad_num = max_gt_num - gt_labels_3d[index].shape[0] + center_targets[index] = F.pad(center_targets[index], + (0, 0, 0, pad_num)) + valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num)) + + vote_targets = torch.stack(vote_targets) + vote_target_masks = torch.stack(vote_target_masks) + center_targets = torch.stack(center_targets) + valid_gt_masks = torch.stack(valid_gt_masks) + + assigned_center_targets = torch.stack(assigned_center_targets) + objectness_targets = torch.stack(objectness_targets) + objectness_weights = torch.stack(objectness_masks) + objectness_weights /= (torch.sum(objectness_weights) + 1e-6) + box_loss_weights = objectness_targets.float() / ( + torch.sum(objectness_targets).float() + 1e-6) + valid_gt_weights = valid_gt_masks.float() / ( + torch.sum(valid_gt_masks.float()) + 1e-6) + dir_class_targets = torch.stack(dir_class_targets) + dir_res_targets = torch.stack(dir_res_targets) + size_class_targets = torch.stack(size_class_targets) + size_res_targets = torch.stack(size_res_targets) + mask_targets = torch.stack(mask_targets) + + return (vote_targets, vote_target_masks, size_class_targets, + size_res_targets, dir_class_targets, dir_res_targets, + center_targets, assigned_center_targets, mask_targets, + valid_gt_masks, objectness_targets, objectness_weights, + box_loss_weights, valid_gt_weights) + + def get_targets_single(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + aggregated_points=None): + """Generate targets of vote head for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + pts_semantic_mask (torch.Tensor): Point-wise semantic + label of each batch. + pts_instance_mask (torch.Tensor): Point-wise instance + label of each batch. + aggregated_points (torch.Tensor): Aggregated points from + vote aggregation layer. + + Returns: + tuple[torch.Tensor]: Targets of vote head. + """ + assert self.bbox_coder.with_rot or pts_semantic_mask is not None + + gt_bboxes_3d = gt_bboxes_3d.to(points.device) + + # generate votes target + num_points = points.shape[0] + if self.bbox_coder.with_rot: + vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed]) + vote_target_masks = points.new_zeros([num_points], + dtype=torch.long) + vote_target_idx = points.new_zeros([num_points], dtype=torch.long) + box_indices_all = gt_bboxes_3d.points_in_boxes_all(points) + for i in range(gt_labels_3d.shape[0]): + box_indices = box_indices_all[:, i] + indices = torch.nonzero( + box_indices, as_tuple=False).squeeze(-1) + selected_points = points[indices] + vote_target_masks[indices] = 1 + vote_targets_tmp = vote_targets[indices] + votes = gt_bboxes_3d.gravity_center[i].unsqueeze( + 0) - selected_points[:, :3] + + for j in range(self.gt_per_seed): + column_indices = torch.nonzero( + vote_target_idx[indices] == j, + as_tuple=False).squeeze(-1) + vote_targets_tmp[column_indices, + int(j * 3):int(j * 3 + + 3)] = votes[column_indices] + if j == 0: + vote_targets_tmp[column_indices] = votes[ + column_indices].repeat(1, self.gt_per_seed) + + vote_targets[indices] = vote_targets_tmp + vote_target_idx[indices] = torch.clamp( + vote_target_idx[indices] + 1, max=2) + elif pts_semantic_mask is not None: + vote_targets = points.new_zeros([num_points, 3]) + vote_target_masks = points.new_zeros([num_points], + dtype=torch.long) + + for i in torch.unique(pts_instance_mask): + indices = torch.nonzero( + pts_instance_mask == i, as_tuple=False).squeeze(-1) + if pts_semantic_mask[indices[0]] < self.num_classes: + selected_points = points[indices, :3] + center = 0.5 * ( + selected_points.min(0)[0] + selected_points.max(0)[0]) + vote_targets[indices, :] = center - selected_points + vote_target_masks[indices] = 1 + vote_targets = vote_targets.repeat((1, self.gt_per_seed)) + else: + raise NotImplementedError + + (center_targets, size_class_targets, size_res_targets, + dir_class_targets, + dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d) + + proposal_num = aggregated_points.shape[0] + distance1, _, assignment, _ = chamfer_distance( + aggregated_points.unsqueeze(0), + center_targets.unsqueeze(0), + reduction='none') + assignment = assignment.squeeze(0) + euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6) + + objectness_targets = points.new_zeros((proposal_num), dtype=torch.long) + objectness_targets[ + euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1 + + objectness_masks = points.new_zeros((proposal_num)) + objectness_masks[ + euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0 + objectness_masks[ + euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0 + + dir_class_targets = dir_class_targets[assignment] + dir_res_targets = dir_res_targets[assignment] + dir_res_targets /= (np.pi / self.num_dir_bins) + size_class_targets = size_class_targets[assignment] + size_res_targets = size_res_targets[assignment] + + one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros( + (proposal_num, self.num_sizes)) + one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1) + one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat( + 1, 1, 3) + mean_sizes = size_res_targets.new_tensor( + self.bbox_coder.mean_sizes).unsqueeze(0) + pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1) + size_res_targets /= pos_mean_sizes + + mask_targets = gt_labels_3d[assignment] + assigned_center_targets = center_targets[assignment] + + return (vote_targets, vote_target_masks, size_class_targets, + size_res_targets, dir_class_targets, + dir_res_targets, center_targets, assigned_center_targets, + mask_targets.long(), objectness_targets, objectness_masks) + + def get_bboxes(self, + points, + bbox_preds, + input_metas, + rescale=False, + use_nms=True): + """Generate bboxes from vote head predictions. + + Args: + points (torch.Tensor): Input points. + bbox_preds (dict): Predictions from vote head. + input_metas (list[dict]): Point cloud and image's meta info. + rescale (bool): Whether to rescale bboxes. + use_nms (bool): Whether to apply NMS, skip nms postprocessing + while using vote head in rpn stage. + + Returns: + list[tuple[torch.Tensor]]: Bounding boxes, scores and labels. + """ + # decode boxes + obj_scores = F.softmax(bbox_preds['obj_scores'], dim=-1)[..., -1] + sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1) + bbox3d = self.bbox_coder.decode(bbox_preds) + + if use_nms: + batch_size = bbox3d.shape[0] + results = list() + for b in range(batch_size): + bbox_selected, score_selected, labels = \ + self.multiclass_nms_single(obj_scores[b], sem_scores[b], + bbox3d[b], points[b, ..., :3], + input_metas[b]) + bbox = input_metas[b]['box_type_3d']( + bbox_selected, + box_dim=bbox_selected.shape[-1], + with_yaw=self.bbox_coder.with_rot) + results.append((bbox, score_selected, labels)) + + return results + else: + return bbox3d + + def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points, + input_meta): + """Multi-class nms in single batch. + + Args: + obj_scores (torch.Tensor): Objectness score of bounding boxes. + sem_scores (torch.Tensor): semantic class score of bounding boxes. + bbox (torch.Tensor): Predicted bounding boxes. + points (torch.Tensor): Input points. + input_meta (dict): Point cloud and image's meta info. + + Returns: + tuple[torch.Tensor]: Bounding boxes, scores and labels. + """ + bbox = input_meta['box_type_3d']( + bbox, + box_dim=bbox.shape[-1], + with_yaw=self.bbox_coder.with_rot, + origin=(0.5, 0.5, 0.5)) + box_indices = bbox.points_in_boxes_all(points) + + corner3d = bbox.corners + minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6))) + minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0] + minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0] + + nonempty_box_mask = box_indices.T.sum(1) > 5 + + bbox_classes = torch.argmax(sem_scores, -1) + nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask], + obj_scores[nonempty_box_mask], + bbox_classes[nonempty_box_mask], + self.test_cfg.nms_thr) + + # filter empty boxes and boxes with low score + scores_mask = (obj_scores > self.test_cfg.score_thr) + nonempty_box_inds = torch.nonzero( + nonempty_box_mask, as_tuple=False).flatten() + nonempty_mask = torch.zeros_like(bbox_classes).scatter( + 0, nonempty_box_inds[nms_selected], 1) + selected = (nonempty_mask.bool() & scores_mask.bool()) + + if self.test_cfg.per_class_proposal: + bbox_selected, score_selected, labels = [], [], [] + for k in range(sem_scores.shape[-1]): + bbox_selected.append(bbox[selected].tensor) + score_selected.append(obj_scores[selected] * + sem_scores[selected][:, k]) + labels.append( + torch.zeros_like(bbox_classes[selected]).fill_(k)) + bbox_selected = torch.cat(bbox_selected, 0) + score_selected = torch.cat(score_selected, 0) + labels = torch.cat(labels, 0) + else: + bbox_selected = bbox[selected].tensor + score_selected = obj_scores[selected] + labels = bbox_classes[selected] + + return bbox_selected, score_selected, labels diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/__init__.py new file mode 100644 index 000000000..1924b1232 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/__init__.py @@ -0,0 +1,27 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base import Base3DDetector +from .centerpoint import CenterPoint +from .dynamic_voxelnet import DynamicVoxelNet +from .fcos_mono3d import FCOSMono3D +from .groupfree3dnet import GroupFree3DNet +from .h3dnet import H3DNet +from .imvotenet import ImVoteNet +from .imvoxelnet import ImVoxelNet +from .mvx_faster_rcnn import DynamicMVXFasterRCNN, MVXFasterRCNN +from .mvx_two_stage import MVXTwoStageDetector +from .parta2 import PartA2 +from .point_rcnn import PointRCNN +from .sassd import SASSD +from .single_stage_mono3d import SingleStageMono3DDetector +from .smoke_mono3d import SMOKEMono3D +from .ssd3dnet import SSD3DNet +from .votenet import VoteNet +from .voxelnet import VoxelNet + +__all__ = [ + 'Base3DDetector', 'VoxelNet', 'DynamicVoxelNet', 'MVXTwoStageDetector', + 'DynamicMVXFasterRCNN', 'MVXFasterRCNN', 'PartA2', 'VoteNet', 'H3DNet', + 'CenterPoint', 'SSD3DNet', 'ImVoteNet', 'SingleStageMono3DDetector', + 'FCOSMono3D', 'ImVoxelNet', 'GroupFree3DNet', 'PointRCNN', 'SMOKEMono3D', + 'SASSD' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/base.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/base.py new file mode 100644 index 000000000..4985c1dc6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/base.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import mmcv +import torch +from mmcv.parallel import DataContainer as DC +from mmcv.runner import auto_fp16 + +from mmdet3d.core import Box3DMode, Coord3DMode, show_result +from mmdet.models.detectors import BaseDetector + + +class Base3DDetector(BaseDetector): + """Base class for detectors.""" + + def forward_test(self, points, img_metas, img=None, **kwargs): + """ + Args: + points (list[torch.Tensor]): the outer list indicates test-time + augmentations and inner torch.Tensor should have a shape NxC, + which contains all points in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch + img (list[torch.Tensor], optional): the outer + list indicates test-time augmentations and inner + torch.Tensor should have a shape NxCxHxW, which contains + all images in the batch. Defaults to None. + """ + for var, name in [(points, 'points'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError('{} must be a list, but got {}'.format( + name, type(var))) + + num_augs = len(points) + if num_augs != len(img_metas): + raise ValueError( + 'num of augmentations ({}) != num of image meta ({})'.format( + len(points), len(img_metas))) + + if num_augs == 1: + img = [img] if img is None else img + return self.simple_test(points[0], img_metas[0], img[0], **kwargs) + else: + return self.aug_test(points, img_metas, img, **kwargs) + + @auto_fp16(apply_to=('img', 'points')) + def forward(self, return_loss=True, **kwargs): + """Calls either forward_train or forward_test depending on whether + return_loss=True. + + Note this setting will change the expected inputs. When + `return_loss=True`, img and img_metas are single-nested (i.e. + torch.Tensor and list[dict]), and when `resturn_loss=False`, img and + img_metas should be double nested (i.e. list[torch.Tensor], + list[list[dict]]), with the outer list indicating test time + augmentations. + """ + if return_loss: + return self.forward_train(**kwargs) + else: + return self.forward_test(**kwargs) + + def show_results(self, data, result, out_dir, show=False, score_thr=None): + """Results visualization. + + Args: + data (list[dict]): Input points and the information of the sample. + result (list[dict]): Prediction results. + out_dir (str): Output directory of visualization result. + show (bool, optional): Determines whether you are + going to show result by open3d. + Defaults to False. + score_thr (float, optional): Score threshold of bounding boxes. + Default to None. + """ + for batch_id in range(len(result)): + if isinstance(data['points'][0], DC): + points = data['points'][0]._data[0][batch_id].numpy() + elif mmcv.is_list_of(data['points'][0], torch.Tensor): + points = data['points'][0][batch_id] + else: + ValueError(f"Unsupported data type {type(data['points'][0])} " + f'for visualization!') + if isinstance(data['img_metas'][0], DC): + pts_filename = data['img_metas'][0]._data[0][batch_id][ + 'pts_filename'] + box_mode_3d = data['img_metas'][0]._data[0][batch_id][ + 'box_mode_3d'] + elif mmcv.is_list_of(data['img_metas'][0], dict): + pts_filename = data['img_metas'][0][batch_id]['pts_filename'] + box_mode_3d = data['img_metas'][0][batch_id]['box_mode_3d'] + else: + ValueError( + f"Unsupported data type {type(data['img_metas'][0])} " + f'for visualization!') + file_name = osp.split(pts_filename)[-1].split('.')[0] + + assert out_dir is not None, 'Expect out_dir, got none.' + + pred_bboxes = result[batch_id]['boxes_3d'] + pred_labels = result[batch_id]['labels_3d'] + + if score_thr is not None: + mask = result[batch_id]['scores_3d'] > score_thr + pred_bboxes = pred_bboxes[mask] + pred_labels = pred_labels[mask] + + # for now we convert points and bbox into depth mode + if (box_mode_3d == Box3DMode.CAM) or (box_mode_3d + == Box3DMode.LIDAR): + points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d, + Box3DMode.DEPTH) + elif box_mode_3d != Box3DMode.DEPTH: + ValueError( + f'Unsupported box_mode_3d {box_mode_3d} for conversion!') + pred_bboxes = pred_bboxes.tensor.cpu().numpy() + show_result( + points, + None, + pred_bboxes, + out_dir, + file_name, + show=show, + pred_labels=pred_labels) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/centerpoint.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/centerpoint.py new file mode 100644 index 000000000..290af5bed --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/centerpoint.py @@ -0,0 +1,196 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from ..builder import DETECTORS +from .mvx_two_stage import MVXTwoStageDetector + + +@DETECTORS.register_module() +class CenterPoint(MVXTwoStageDetector): + """Base class of Multi-modality VoxelNet.""" + + def __init__(self, + pts_voxel_layer=None, + pts_voxel_encoder=None, + pts_middle_encoder=None, + pts_fusion_layer=None, + img_backbone=None, + pts_backbone=None, + img_neck=None, + pts_neck=None, + pts_bbox_head=None, + img_roi_head=None, + img_rpn_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(CenterPoint, + self).__init__(pts_voxel_layer, pts_voxel_encoder, + pts_middle_encoder, pts_fusion_layer, + img_backbone, pts_backbone, img_neck, pts_neck, + pts_bbox_head, img_roi_head, img_rpn_head, + train_cfg, test_cfg, pretrained, init_cfg) + + def extract_pts_feat(self, pts, img_feats, img_metas): + """Extract features of points.""" + if not self.with_pts_bbox: + return None + voxels, num_points, coors = self.voxelize(pts) + + voxel_features = self.pts_voxel_encoder(voxels, num_points, coors) + batch_size = coors[-1, 0] + 1 + x = self.pts_middle_encoder(voxel_features, coors, batch_size) + x = self.pts_backbone(x) + if self.with_pts_neck: + x = self.pts_neck(x) + return x + + def forward_pts_train(self, + pts_feats, + gt_bboxes_3d, + gt_labels_3d, + img_metas, + gt_bboxes_ignore=None): + """Forward function for point cloud branch. + + Args: + pts_feats (list[torch.Tensor]): Features of point cloud branch + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + gt_labels_3d (list[torch.Tensor]): Ground truth labels for + boxes of each sampole + img_metas (list[dict]): Meta information of samples. + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + + Returns: + dict: Losses of each branch. + """ + outs = self.pts_bbox_head(pts_feats) + loss_inputs = [gt_bboxes_3d, gt_labels_3d, outs] + losses = self.pts_bbox_head.loss(*loss_inputs) + return losses + + def simple_test_pts(self, x, img_metas, rescale=False): + """Test function of point cloud branch.""" + outs = self.pts_bbox_head(x) + bbox_list = self.pts_bbox_head.get_bboxes( + outs, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test_pts(self, feats, img_metas, rescale=False): + """Test function of point cloud branch with augmentaiton. + + The function implementation process is as follows: + + - step 1: map features back for double-flip augmentation. + - step 2: merge all features and generate boxes. + - step 3: map boxes back for scale augmentation. + - step 4: merge results. + + Args: + feats (list[torch.Tensor]): Feature of point cloud. + img_metas (list[dict]): Meta information of samples. + rescale (bool, optional): Whether to rescale bboxes. + Default: False. + + Returns: + dict: Returned bboxes consists of the following keys: + + - boxes_3d (:obj:`LiDARInstance3DBoxes`): Predicted bboxes. + - scores_3d (torch.Tensor): Scores of predicted boxes. + - labels_3d (torch.Tensor): Labels of predicted boxes. + """ + # only support aug_test for one sample + outs_list = [] + for x, img_meta in zip(feats, img_metas): + outs = self.pts_bbox_head(x) + # merge augmented outputs before decoding bboxes + for task_id, out in enumerate(outs): + for key in out[0].keys(): + if img_meta[0]['pcd_horizontal_flip']: + outs[task_id][0][key] = torch.flip( + outs[task_id][0][key], dims=[2]) + if key == 'reg': + outs[task_id][0][key][:, 1, ...] = 1 - outs[ + task_id][0][key][:, 1, ...] + elif key == 'rot': + outs[task_id][0][ + key][:, 0, + ...] = -outs[task_id][0][key][:, 0, ...] + elif key == 'vel': + outs[task_id][0][ + key][:, 1, + ...] = -outs[task_id][0][key][:, 1, ...] + if img_meta[0]['pcd_vertical_flip']: + outs[task_id][0][key] = torch.flip( + outs[task_id][0][key], dims=[3]) + if key == 'reg': + outs[task_id][0][key][:, 0, ...] = 1 - outs[ + task_id][0][key][:, 0, ...] + elif key == 'rot': + outs[task_id][0][ + key][:, 1, + ...] = -outs[task_id][0][key][:, 1, ...] + elif key == 'vel': + outs[task_id][0][ + key][:, 0, + ...] = -outs[task_id][0][key][:, 0, ...] + + outs_list.append(outs) + + preds_dicts = dict() + scale_img_metas = [] + + # concat outputs sharing the same pcd_scale_factor + for i, (img_meta, outs) in enumerate(zip(img_metas, outs_list)): + pcd_scale_factor = img_meta[0]['pcd_scale_factor'] + if pcd_scale_factor not in preds_dicts.keys(): + preds_dicts[pcd_scale_factor] = outs + scale_img_metas.append(img_meta) + else: + for task_id, out in enumerate(outs): + for key in out[0].keys(): + preds_dicts[pcd_scale_factor][task_id][0][key] += out[ + 0][key] + + aug_bboxes = [] + + for pcd_scale_factor, preds_dict in preds_dicts.items(): + for task_id, pred_dict in enumerate(preds_dict): + # merge outputs with different flips before decoding bboxes + for key in pred_dict[0].keys(): + preds_dict[task_id][0][key] /= len(outs_list) / len( + preds_dicts.keys()) + bbox_list = self.pts_bbox_head.get_bboxes( + preds_dict, img_metas[0], rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + if len(preds_dicts.keys()) > 1: + # merge outputs with different scales after decoding bboxes + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, scale_img_metas, + self.pts_bbox_head.test_cfg) + return merged_bboxes + else: + for key in bbox_list[0].keys(): + bbox_list[0][key] = bbox_list[0][key].to('cpu') + return bbox_list[0] + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test function with augmentaiton.""" + img_feats, pts_feats = self.extract_feats(points, img_metas, imgs) + bbox_list = dict() + if pts_feats and self.with_pts_bbox: + pts_bbox = self.aug_test_pts(pts_feats, img_metas, rescale) + bbox_list.update(pts_bbox=pts_bbox) + return [bbox_list] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/dynamic_voxelnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/dynamic_voxelnet.py new file mode 100644 index 000000000..c4226ecdc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/dynamic_voxelnet.py @@ -0,0 +1,71 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from ..builder import DETECTORS +from .voxelnet import VoxelNet + + +@DETECTORS.register_module() +class DynamicVoxelNet(VoxelNet): + r"""VoxelNet using `dynamic voxelization `_. + """ + + def __init__(self, + voxel_layer, + voxel_encoder, + middle_encoder, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(DynamicVoxelNet, self).__init__( + voxel_layer=voxel_layer, + voxel_encoder=voxel_encoder, + middle_encoder=middle_encoder, + backbone=backbone, + neck=neck, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def extract_feat(self, points, img_metas): + """Extract features from points.""" + voxels, coors = self.voxelize(points) + voxel_features, feature_coors = self.voxel_encoder(voxels, coors) + batch_size = coors[-1, 0].item() + 1 + x = self.middle_encoder(voxel_features, feature_coors, batch_size) + x = self.backbone(x) + if self.with_neck: + x = self.neck(x) + return x + + @torch.no_grad() + @force_fp32() + def voxelize(self, points): + """Apply dynamic voxelization to points. + + Args: + points (list[torch.Tensor]): Points of each sample. + + Returns: + tuple[torch.Tensor]: Concatenated points and coordinates. + """ + coors = [] + # dynamic voxelization only provide a coors mapping + for res in points: + res_coors = self.voxel_layer(res) + coors.append(res_coors) + points = torch.cat(points, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + return points, coors_batch diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/fcos_mono3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/fcos_mono3d.py new file mode 100644 index 000000000..5baed7b81 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/fcos_mono3d.py @@ -0,0 +1,22 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage_mono3d import SingleStageMono3DDetector + + +@DETECTORS.register_module() +class FCOSMono3D(SingleStageMono3DDetector): + r"""`FCOS3D `_ for monocular 3D object detection. + + Currently please refer to our entry on the + `leaderboard `_. + """ # noqa: E501 + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(FCOSMono3D, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/groupfree3dnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/groupfree3dnet.py new file mode 100644 index 000000000..71bd002fc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/groupfree3dnet.py @@ -0,0 +1,105 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from ..builder import DETECTORS +from .single_stage import SingleStage3DDetector + + +@DETECTORS.register_module() +class GroupFree3DNet(SingleStage3DDetector): + """`Group-Free 3D `_.""" + + def __init__(self, + backbone, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(GroupFree3DNet, self).__init__( + backbone=backbone, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained) + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + gt_bboxes_ignore=None): + """Forward of training. + + Args: + points (list[torch.Tensor]): Points of each batch. + img_metas (list): Image metas. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): gt class labels of each batch. + pts_semantic_mask (list[torch.Tensor]): point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): point-wise instance + label of each batch. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict[str: torch.Tensor]: Losses. + """ + # TODO: refactor votenet series to reduce redundant codes. + points_cat = torch.stack(points) + + x = self.extract_feat(points_cat) + bbox_preds = self.bbox_head(x, self.train_cfg.sample_mod) + loss_inputs = (points, gt_bboxes_3d, gt_labels_3d, pts_semantic_mask, + pts_instance_mask, img_metas) + losses = self.bbox_head.loss( + bbox_preds, *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Forward of testing. + + Args: + points (list[torch.Tensor]): Points of each sample. + img_metas (list): Image metas. + rescale (bool): Whether to rescale results. + Returns: + list: Predicted 3d boxes. + """ + points_cat = torch.stack(points) + + x = self.extract_feat(points_cat) + bbox_preds = self.bbox_head(x, self.test_cfg.sample_mod) + bbox_list = self.bbox_head.get_bboxes( + points_cat, bbox_preds, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test with augmentation.""" + points_cat = [torch.stack(pts) for pts in points] + feats = self.extract_feats(points_cat, img_metas) + + # only support aug_test for one sample + aug_bboxes = [] + for x, pts_cat, img_meta in zip(feats, points_cat, img_metas): + bbox_preds = self.bbox_head(x, self.test_cfg.sample_mod) + bbox_list = self.bbox_head.get_bboxes( + pts_cat, bbox_preds, img_meta, rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/h3dnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/h3dnet.py new file mode 100644 index 000000000..033a9a1ac --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/h3dnet.py @@ -0,0 +1,176 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core import merge_aug_bboxes_3d +from ..builder import DETECTORS +from .two_stage import TwoStage3DDetector + + +@DETECTORS.register_module() +class H3DNet(TwoStage3DDetector): + r"""H3DNet model. + + Please refer to the `paper `_ + """ + + def __init__(self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(H3DNet, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + gt_bboxes_ignore=None): + """Forward of training. + + Args: + points (list[torch.Tensor]): Points of each batch. + img_metas (list): Image metas. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): gt class labels of each batch. + pts_semantic_mask (list[torch.Tensor]): point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): point-wise instance + label of each batch. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict: Losses. + """ + points_cat = torch.stack(points) + + feats_dict = self.extract_feat(points_cat) + feats_dict['fp_xyz'] = [feats_dict['fp_xyz_net0'][-1]] + feats_dict['fp_features'] = [feats_dict['hd_feature']] + feats_dict['fp_indices'] = [feats_dict['fp_indices_net0'][-1]] + + losses = dict() + if self.with_rpn: + rpn_outs = self.rpn_head(feats_dict, self.train_cfg.rpn.sample_mod) + feats_dict.update(rpn_outs) + + rpn_loss_inputs = (points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, img_metas) + rpn_losses = self.rpn_head.loss( + rpn_outs, + *rpn_loss_inputs, + gt_bboxes_ignore=gt_bboxes_ignore, + ret_target=True) + feats_dict['targets'] = rpn_losses.pop('targets') + losses.update(rpn_losses) + + # Generate rpn proposals + proposal_cfg = self.train_cfg.get('rpn_proposal', + self.test_cfg.rpn) + proposal_inputs = (points, rpn_outs, img_metas) + proposal_list = self.rpn_head.get_bboxes( + *proposal_inputs, use_nms=proposal_cfg.use_nms) + feats_dict['proposal_list'] = proposal_list + else: + raise NotImplementedError + + roi_losses = self.roi_head.forward_train(feats_dict, img_metas, points, + gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, + pts_instance_mask, + gt_bboxes_ignore) + losses.update(roi_losses) + + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Forward of testing. + + Args: + points (list[torch.Tensor]): Points of each sample. + img_metas (list): Image metas. + rescale (bool): Whether to rescale results. + + Returns: + list: Predicted 3d boxes. + """ + points_cat = torch.stack(points) + + feats_dict = self.extract_feat(points_cat) + feats_dict['fp_xyz'] = [feats_dict['fp_xyz_net0'][-1]] + feats_dict['fp_features'] = [feats_dict['hd_feature']] + feats_dict['fp_indices'] = [feats_dict['fp_indices_net0'][-1]] + + if self.with_rpn: + proposal_cfg = self.test_cfg.rpn + rpn_outs = self.rpn_head(feats_dict, proposal_cfg.sample_mod) + feats_dict.update(rpn_outs) + # Generate rpn proposals + proposal_list = self.rpn_head.get_bboxes( + points, rpn_outs, img_metas, use_nms=proposal_cfg.use_nms) + feats_dict['proposal_list'] = proposal_list + else: + raise NotImplementedError + + return self.roi_head.simple_test( + feats_dict, img_metas, points_cat, rescale=rescale) + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test with augmentation.""" + points_cat = [torch.stack(pts) for pts in points] + feats_dict = self.extract_feats(points_cat, img_metas) + for feat_dict in feats_dict: + feat_dict['fp_xyz'] = [feat_dict['fp_xyz_net0'][-1]] + feat_dict['fp_features'] = [feat_dict['hd_feature']] + feat_dict['fp_indices'] = [feat_dict['fp_indices_net0'][-1]] + + # only support aug_test for one sample + aug_bboxes = [] + for feat_dict, pts_cat, img_meta in zip(feats_dict, points_cat, + img_metas): + if self.with_rpn: + proposal_cfg = self.test_cfg.rpn + rpn_outs = self.rpn_head(feat_dict, proposal_cfg.sample_mod) + feat_dict.update(rpn_outs) + # Generate rpn proposals + proposal_list = self.rpn_head.get_bboxes( + points, rpn_outs, img_metas, use_nms=proposal_cfg.use_nms) + feat_dict['proposal_list'] = proposal_list + else: + raise NotImplementedError + + bbox_results = self.roi_head.simple_test( + feat_dict, + self.test_cfg.rcnn.sample_mod, + img_meta, + pts_cat, + rescale=rescale) + aug_bboxes.append(bbox_results) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] + + def extract_feats(self, points, img_metas): + """Extract features of multiple samples.""" + return [ + self.extract_feat(pts, img_meta) + for pts, img_meta in zip(points, img_metas) + ] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvotenet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvotenet.py new file mode 100644 index 000000000..9f48b8176 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvotenet.py @@ -0,0 +1,819 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import numpy as np +import torch + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from mmdet3d.models.utils import MLP +from .. import builder +from ..builder import DETECTORS +from .base import Base3DDetector + + +def sample_valid_seeds(mask, num_sampled_seed=1024): + r"""Randomly sample seeds from all imvotes. + + Modified from ``_ + + Args: + mask (torch.Tensor): Bool tensor in shape ( + seed_num*max_imvote_per_pixel), indicates + whether this imvote corresponds to a 2D bbox. + num_sampled_seed (int): How many to sample from all imvotes. + + Returns: + torch.Tensor: Indices with shape (num_sampled_seed). + """ # noqa: E501 + device = mask.device + batch_size = mask.shape[0] + sample_inds = mask.new_zeros((batch_size, num_sampled_seed), + dtype=torch.int64) + for bidx in range(batch_size): + # return index of non zero elements + valid_inds = torch.nonzero(mask[bidx, :]).squeeze(-1) + if len(valid_inds) < num_sampled_seed: + # compute set t1 - t2 + t1 = torch.arange(num_sampled_seed, device=device) + t2 = valid_inds % num_sampled_seed + combined = torch.cat((t1, t2)) + uniques, counts = combined.unique(return_counts=True) + difference = uniques[counts == 1] + + rand_inds = torch.randperm( + len(difference), + device=device)[:num_sampled_seed - len(valid_inds)] + cur_sample_inds = difference[rand_inds] + cur_sample_inds = torch.cat((valid_inds, cur_sample_inds)) + else: + rand_inds = torch.randperm( + len(valid_inds), device=device)[:num_sampled_seed] + cur_sample_inds = valid_inds[rand_inds] + sample_inds[bidx, :] = cur_sample_inds + return sample_inds + + +@DETECTORS.register_module() +class ImVoteNet(Base3DDetector): + r"""`ImVoteNet `_ for 3D detection.""" + + def __init__(self, + pts_backbone=None, + pts_bbox_heads=None, + pts_neck=None, + img_backbone=None, + img_neck=None, + img_roi_head=None, + img_rpn_head=None, + img_mlp=None, + freeze_img_branch=False, + fusion_layer=None, + num_sampled_seed=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + + super(ImVoteNet, self).__init__(init_cfg=init_cfg) + + # point branch + if pts_backbone is not None: + self.pts_backbone = builder.build_backbone(pts_backbone) + if pts_neck is not None: + self.pts_neck = builder.build_neck(pts_neck) + if pts_bbox_heads is not None: + pts_bbox_head_common = pts_bbox_heads.common + pts_bbox_head_common.update( + train_cfg=train_cfg.pts if train_cfg is not None else None) + pts_bbox_head_common.update(test_cfg=test_cfg.pts) + pts_bbox_head_joint = pts_bbox_head_common.copy() + pts_bbox_head_joint.update(pts_bbox_heads.joint) + pts_bbox_head_pts = pts_bbox_head_common.copy() + pts_bbox_head_pts.update(pts_bbox_heads.pts) + pts_bbox_head_img = pts_bbox_head_common.copy() + pts_bbox_head_img.update(pts_bbox_heads.img) + + self.pts_bbox_head_joint = builder.build_head(pts_bbox_head_joint) + self.pts_bbox_head_pts = builder.build_head(pts_bbox_head_pts) + self.pts_bbox_head_img = builder.build_head(pts_bbox_head_img) + self.pts_bbox_heads = [ + self.pts_bbox_head_joint, self.pts_bbox_head_pts, + self.pts_bbox_head_img + ] + self.loss_weights = pts_bbox_heads.loss_weights + + # image branch + if img_backbone: + self.img_backbone = builder.build_backbone(img_backbone) + if img_neck is not None: + self.img_neck = builder.build_neck(img_neck) + if img_rpn_head is not None: + rpn_train_cfg = train_cfg.img_rpn if train_cfg \ + is not None else None + img_rpn_head_ = img_rpn_head.copy() + img_rpn_head_.update( + train_cfg=rpn_train_cfg, test_cfg=test_cfg.img_rpn) + self.img_rpn_head = builder.build_head(img_rpn_head_) + if img_roi_head is not None: + rcnn_train_cfg = train_cfg.img_rcnn if train_cfg \ + is not None else None + img_roi_head.update( + train_cfg=rcnn_train_cfg, test_cfg=test_cfg.img_rcnn) + self.img_roi_head = builder.build_head(img_roi_head) + + # fusion + if fusion_layer is not None: + self.fusion_layer = builder.build_fusion_layer(fusion_layer) + self.max_imvote_per_pixel = fusion_layer.max_imvote_per_pixel + + self.freeze_img_branch = freeze_img_branch + if freeze_img_branch: + self.freeze_img_branch_params() + + if img_mlp is not None: + self.img_mlp = MLP(**img_mlp) + + self.num_sampled_seed = num_sampled_seed + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if pretrained is None: + img_pretrained = None + pts_pretrained = None + elif isinstance(pretrained, dict): + img_pretrained = pretrained.get('img', None) + pts_pretrained = pretrained.get('pts', None) + else: + raise ValueError( + f'pretrained should be a dict, got {type(pretrained)}') + + if self.with_img_backbone: + if img_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg.') + self.img_backbone.init_cfg = dict( + type='Pretrained', checkpoint=img_pretrained) + if self.with_img_roi_head: + if img_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg.') + self.img_roi_head.init_cfg = dict( + type='Pretrained', checkpoint=img_pretrained) + + if self.with_pts_backbone: + if img_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg.') + self.pts_backbone.init_cfg = dict( + type='Pretrained', checkpoint=pts_pretrained) + + def freeze_img_branch_params(self): + """Freeze all image branch parameters.""" + if self.with_img_bbox_head: + for param in self.img_bbox_head.parameters(): + param.requires_grad = False + if self.with_img_backbone: + for param in self.img_backbone.parameters(): + param.requires_grad = False + if self.with_img_neck: + for param in self.img_neck.parameters(): + param.requires_grad = False + if self.with_img_rpn: + for param in self.img_rpn_head.parameters(): + param.requires_grad = False + if self.with_img_roi_head: + for param in self.img_roi_head.parameters(): + param.requires_grad = False + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + """Overload in order to load img network ckpts into img branch.""" + module_names = ['backbone', 'neck', 'roi_head', 'rpn_head'] + for key in list(state_dict): + for module_name in module_names: + if key.startswith(module_name) and ('img_' + + key) not in state_dict: + state_dict['img_' + key] = state_dict.pop(key) + + super()._load_from_state_dict(state_dict, prefix, local_metadata, + strict, missing_keys, unexpected_keys, + error_msgs) + + def train(self, mode=True): + """Overload in order to keep image branch modules in eval mode.""" + super(ImVoteNet, self).train(mode) + if self.freeze_img_branch: + if self.with_img_bbox_head: + self.img_bbox_head.eval() + if self.with_img_backbone: + self.img_backbone.eval() + if self.with_img_neck: + self.img_neck.eval() + if self.with_img_rpn: + self.img_rpn_head.eval() + if self.with_img_roi_head: + self.img_roi_head.eval() + + @property + def with_img_bbox(self): + """bool: Whether the detector has a 2D image box head.""" + return ((hasattr(self, 'img_roi_head') and self.img_roi_head.with_bbox) + or (hasattr(self, 'img_bbox_head') + and self.img_bbox_head is not None)) + + @property + def with_img_bbox_head(self): + """bool: Whether the detector has a 2D image box head (not roi).""" + return hasattr(self, + 'img_bbox_head') and self.img_bbox_head is not None + + @property + def with_img_backbone(self): + """bool: Whether the detector has a 2D image backbone.""" + return hasattr(self, 'img_backbone') and self.img_backbone is not None + + @property + def with_img_neck(self): + """bool: Whether the detector has a neck in image branch.""" + return hasattr(self, 'img_neck') and self.img_neck is not None + + @property + def with_img_rpn(self): + """bool: Whether the detector has a 2D RPN in image detector branch.""" + return hasattr(self, 'img_rpn_head') and self.img_rpn_head is not None + + @property + def with_img_roi_head(self): + """bool: Whether the detector has a RoI Head in image branch.""" + return hasattr(self, 'img_roi_head') and self.img_roi_head is not None + + @property + def with_pts_bbox(self): + """bool: Whether the detector has a 3D box head.""" + return hasattr(self, + 'pts_bbox_head') and self.pts_bbox_head is not None + + @property + def with_pts_backbone(self): + """bool: Whether the detector has a 3D backbone.""" + return hasattr(self, 'pts_backbone') and self.pts_backbone is not None + + @property + def with_pts_neck(self): + """bool: Whether the detector has a neck in 3D detector branch.""" + return hasattr(self, 'pts_neck') and self.pts_neck is not None + + def extract_feat(self, imgs): + """Just to inherit from abstract method.""" + pass + + def extract_img_feat(self, img): + """Directly extract features from the img backbone+neck.""" + x = self.img_backbone(img) + if self.with_img_neck: + x = self.img_neck(x) + return x + + def extract_img_feats(self, imgs): + """Extract features from multiple images. + + Args: + imgs (list[torch.Tensor]): A list of images. The images are + augmented from the same image but in different ways. + + Returns: + list[torch.Tensor]: Features of different images + """ + + assert isinstance(imgs, list) + return [self.extract_img_feat(img) for img in imgs] + + def extract_pts_feat(self, pts): + """Extract features of points.""" + x = self.pts_backbone(pts) + if self.with_pts_neck: + x = self.pts_neck(x) + + seed_points = x['fp_xyz'][-1] + seed_features = x['fp_features'][-1] + seed_indices = x['fp_indices'][-1] + + return (seed_points, seed_features, seed_indices) + + def extract_pts_feats(self, pts): + """Extract features of points from multiple samples.""" + assert isinstance(pts, list) + return [self.extract_pts_feat(pt) for pt in pts] + + @torch.no_grad() + def extract_bboxes_2d(self, + img, + img_metas, + train=True, + bboxes_2d=None, + **kwargs): + """Extract bounding boxes from 2d detector. + + Args: + img (torch.Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): Image meta info. + train (bool): train-time or not. + bboxes_2d (list[torch.Tensor]): provided 2d bboxes, + not supported yet. + + Return: + list[torch.Tensor]: a list of processed 2d bounding boxes. + """ + if bboxes_2d is None: + x = self.extract_img_feat(img) + proposal_list = self.img_rpn_head.simple_test_rpn(x, img_metas) + rets = self.img_roi_head.simple_test( + x, proposal_list, img_metas, rescale=False) + + rets_processed = [] + for ret in rets: + tmp = np.concatenate(ret, axis=0) + sem_class = img.new_zeros((len(tmp))) + start = 0 + for i, bboxes in enumerate(ret): + sem_class[start:start + len(bboxes)] = i + start += len(bboxes) + ret = img.new_tensor(tmp) + + # append class index + ret = torch.cat([ret, sem_class[:, None]], dim=-1) + inds = torch.argsort(ret[:, 4], descending=True) + ret = ret.index_select(0, inds) + + # drop half bboxes during training for better generalization + if train: + rand_drop = torch.randperm(len(ret))[:(len(ret) + 1) // 2] + rand_drop = torch.sort(rand_drop)[0] + ret = ret[rand_drop] + + rets_processed.append(ret.float()) + return rets_processed + else: + rets_processed = [] + for ret in bboxes_2d: + if len(ret) > 0 and train: + rand_drop = torch.randperm(len(ret))[:(len(ret) + 1) // 2] + rand_drop = torch.sort(rand_drop)[0] + ret = ret[rand_drop] + rets_processed.append(ret.float()) + return rets_processed + + def forward_train(self, + points=None, + img=None, + img_metas=None, + gt_bboxes=None, + gt_labels=None, + gt_bboxes_ignore=None, + gt_masks=None, + proposals=None, + bboxes_2d=None, + gt_bboxes_3d=None, + gt_labels_3d=None, + pts_semantic_mask=None, + pts_instance_mask=None, + **kwargs): + """Forwarding of train for image branch pretrain or stage 2 train. + + Args: + points (list[torch.Tensor]): Points of each batch. + img (torch.Tensor): of shape (N, C, H, W) encoding input images. + Typically these should be mean centered and std scaled. + img_metas (list[dict]): list of image and point cloud meta info + dict. For example, keys include 'ori_shape', 'img_norm_cfg', + and 'transformation_3d_flow'. For details on the values of + the keys see `mmdet/datasets/pipelines/formatting.py:Collect`. + gt_bboxes (list[torch.Tensor]): Ground truth bboxes for each image + with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[torch.Tensor]): class indices for each + 2d bounding box. + gt_bboxes_ignore (list[torch.Tensor]): specify which + 2d bounding boxes can be ignored when computing the loss. + gt_masks (torch.Tensor): true segmentation masks for each + 2d bbox, used if the architecture supports a segmentation task. + proposals: override rpn proposals (2d) with custom proposals. + Use when `with_rpn` is False. + bboxes_2d (list[torch.Tensor]): provided 2d bboxes, + not supported yet. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): 3d gt bboxes. + gt_labels_3d (list[torch.Tensor]): gt class labels for 3d bboxes. + pts_semantic_mask (list[torch.Tensor]): point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): point-wise instance + label of each batch. + + Returns: + dict[str, torch.Tensor]: a dictionary of loss components. + """ + if points is None: + x = self.extract_img_feat(img) + losses = dict() + + # RPN forward and loss + if self.with_img_rpn: + proposal_cfg = self.train_cfg.get('img_rpn_proposal', + self.test_cfg.img_rpn) + rpn_losses, proposal_list = self.img_rpn_head.forward_train( + x, + img_metas, + gt_bboxes, + gt_labels=None, + gt_bboxes_ignore=gt_bboxes_ignore, + proposal_cfg=proposal_cfg) + losses.update(rpn_losses) + else: + proposal_list = proposals + + roi_losses = self.img_roi_head.forward_train( + x, img_metas, proposal_list, gt_bboxes, gt_labels, + gt_bboxes_ignore, gt_masks, **kwargs) + losses.update(roi_losses) + return losses + else: + bboxes_2d = self.extract_bboxes_2d( + img, img_metas, bboxes_2d=bboxes_2d, **kwargs) + + points = torch.stack(points) + seeds_3d, seed_3d_features, seed_indices = \ + self.extract_pts_feat(points) + + img_features, masks = self.fusion_layer(img, bboxes_2d, seeds_3d, + img_metas) + + inds = sample_valid_seeds(masks, self.num_sampled_seed) + batch_size, img_feat_size = img_features.shape[:2] + pts_feat_size = seed_3d_features.shape[1] + inds_img = inds.view(batch_size, 1, + -1).expand(-1, img_feat_size, -1) + img_features = img_features.gather(-1, inds_img) + inds = inds % inds.shape[1] + inds_seed_xyz = inds.view(batch_size, -1, 1).expand(-1, -1, 3) + seeds_3d = seeds_3d.gather(1, inds_seed_xyz) + inds_seed_feats = inds.view(batch_size, 1, + -1).expand(-1, pts_feat_size, -1) + seed_3d_features = seed_3d_features.gather(-1, inds_seed_feats) + seed_indices = seed_indices.gather(1, inds) + + img_features = self.img_mlp(img_features) + fused_features = torch.cat([seed_3d_features, img_features], dim=1) + + feat_dict_joint = dict( + seed_points=seeds_3d, + seed_features=fused_features, + seed_indices=seed_indices) + feat_dict_pts = dict( + seed_points=seeds_3d, + seed_features=seed_3d_features, + seed_indices=seed_indices) + feat_dict_img = dict( + seed_points=seeds_3d, + seed_features=img_features, + seed_indices=seed_indices) + + loss_inputs = (points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, img_metas) + bbox_preds_joints = self.pts_bbox_head_joint( + feat_dict_joint, self.train_cfg.pts.sample_mod) + bbox_preds_pts = self.pts_bbox_head_pts( + feat_dict_pts, self.train_cfg.pts.sample_mod) + bbox_preds_img = self.pts_bbox_head_img( + feat_dict_img, self.train_cfg.pts.sample_mod) + losses_towers = [] + losses_joint = self.pts_bbox_head_joint.loss( + bbox_preds_joints, + *loss_inputs, + gt_bboxes_ignore=gt_bboxes_ignore) + losses_pts = self.pts_bbox_head_pts.loss( + bbox_preds_pts, + *loss_inputs, + gt_bboxes_ignore=gt_bboxes_ignore) + losses_img = self.pts_bbox_head_img.loss( + bbox_preds_img, + *loss_inputs, + gt_bboxes_ignore=gt_bboxes_ignore) + losses_towers.append(losses_joint) + losses_towers.append(losses_pts) + losses_towers.append(losses_img) + combined_losses = dict() + for loss_term in losses_joint: + if 'loss' in loss_term: + combined_losses[loss_term] = 0 + for i in range(len(losses_towers)): + combined_losses[loss_term] += \ + losses_towers[i][loss_term] * \ + self.loss_weights[i] + else: + # only save the metric of the joint head + # if it is not a loss + combined_losses[loss_term] = \ + losses_towers[0][loss_term] + + return combined_losses + + def forward_test(self, + points=None, + img_metas=None, + img=None, + bboxes_2d=None, + **kwargs): + """Forwarding of test for image branch pretrain or stage 2 train. + + Args: + points (list[list[torch.Tensor]], optional): the outer + list indicates test-time augmentations and the inner + list contains all points in the batch, where each Tensor + should have a shape NxC. Defaults to None. + img_metas (list[list[dict]], optional): the outer list + indicates test-time augs (multiscale, flip, etc.) + and the inner list indicates images in a batch. + Defaults to None. + img (list[list[torch.Tensor]], optional): the outer + list indicates test-time augmentations and inner Tensor + should have a shape NxCxHxW, which contains all images + in the batch. Defaults to None. Defaults to None. + bboxes_2d (list[list[torch.Tensor]], optional): + Provided 2d bboxes, not supported yet. Defaults to None. + + Returns: + list[list[torch.Tensor]]|list[dict]: Predicted 2d or 3d boxes. + """ + if points is None: + for var, name in [(img, 'img'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError( + f'{name} must be a list, but got {type(var)}') + + num_augs = len(img) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(img)}) ' + f'!= num of image meta ({len(img_metas)})') + + if num_augs == 1: + # proposals (List[List[Tensor]]): the outer list indicates + # test-time augs (multiscale, flip, etc.) and the inner list + # indicates images in a batch. + # The Tensor should have a shape Px4, where P is the number of + # proposals. + if 'proposals' in kwargs: + kwargs['proposals'] = kwargs['proposals'][0] + return self.simple_test_img_only( + img=img[0], img_metas=img_metas[0], **kwargs) + else: + assert img[0].size(0) == 1, 'aug test does not support ' \ + 'inference with batch size ' \ + f'{img[0].size(0)}' + # TODO: support test augmentation for predefined proposals + assert 'proposals' not in kwargs + return self.aug_test_img_only( + img=img, img_metas=img_metas, **kwargs) + + else: + for var, name in [(points, 'points'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError('{} must be a list, but got {}'.format( + name, type(var))) + + num_augs = len(points) + if num_augs != len(img_metas): + raise ValueError( + 'num of augmentations ({}) != num of image meta ({})'. + format(len(points), len(img_metas))) + + if num_augs == 1: + return self.simple_test( + points[0], + img_metas[0], + img[0], + bboxes_2d=bboxes_2d[0] if bboxes_2d is not None else None, + **kwargs) + else: + return self.aug_test(points, img_metas, img, bboxes_2d, + **kwargs) + + def simple_test_img_only(self, + img, + img_metas, + proposals=None, + rescale=False): + r"""Test without augmentation, image network pretrain. May refer to + ``_. + + Args: + img (torch.Tensor): Should have a shape NxCxHxW, which contains + all images in the batch. + img_metas (list[dict]): + proposals (list[Tensor], optional): override rpn proposals + with custom proposals. Defaults to None. + rescale (bool, optional): Whether or not rescale bboxes to the + original shape of input image. Defaults to False. + + Returns: + list[list[torch.Tensor]]: Predicted 2d boxes. + """ # noqa: E501 + assert self.with_img_bbox, 'Img bbox head must be implemented.' + assert self.with_img_backbone, 'Img backbone must be implemented.' + assert self.with_img_rpn, 'Img rpn must be implemented.' + assert self.with_img_roi_head, 'Img roi head must be implemented.' + + x = self.extract_img_feat(img) + + if proposals is None: + proposal_list = self.img_rpn_head.simple_test_rpn(x, img_metas) + else: + proposal_list = proposals + + ret = self.img_roi_head.simple_test( + x, proposal_list, img_metas, rescale=rescale) + + return ret + + def simple_test(self, + points=None, + img_metas=None, + img=None, + bboxes_2d=None, + rescale=False, + **kwargs): + """Test without augmentation, stage 2. + + Args: + points (list[torch.Tensor], optional): Elements in the list + should have a shape NxC, the list indicates all point-clouds + in the batch. Defaults to None. + img_metas (list[dict], optional): List indicates + images in a batch. Defaults to None. + img (torch.Tensor, optional): Should have a shape NxCxHxW, + which contains all images in the batch. Defaults to None. + bboxes_2d (list[torch.Tensor], optional): + Provided 2d bboxes, not supported yet. Defaults to None. + rescale (bool, optional): Whether or not rescale bboxes. + Defaults to False. + + Returns: + list[dict]: Predicted 3d boxes. + """ + bboxes_2d = self.extract_bboxes_2d( + img, img_metas, train=False, bboxes_2d=bboxes_2d, **kwargs) + + points = torch.stack(points) + seeds_3d, seed_3d_features, seed_indices = \ + self.extract_pts_feat(points) + + img_features, masks = self.fusion_layer(img, bboxes_2d, seeds_3d, + img_metas) + + inds = sample_valid_seeds(masks, self.num_sampled_seed) + batch_size, img_feat_size = img_features.shape[:2] + pts_feat_size = seed_3d_features.shape[1] + inds_img = inds.view(batch_size, 1, -1).expand(-1, img_feat_size, -1) + img_features = img_features.gather(-1, inds_img) + inds = inds % inds.shape[1] + inds_seed_xyz = inds.view(batch_size, -1, 1).expand(-1, -1, 3) + seeds_3d = seeds_3d.gather(1, inds_seed_xyz) + inds_seed_feats = inds.view(batch_size, 1, + -1).expand(-1, pts_feat_size, -1) + seed_3d_features = seed_3d_features.gather(-1, inds_seed_feats) + seed_indices = seed_indices.gather(1, inds) + + img_features = self.img_mlp(img_features) + + fused_features = torch.cat([seed_3d_features, img_features], dim=1) + + feat_dict = dict( + seed_points=seeds_3d, + seed_features=fused_features, + seed_indices=seed_indices) + bbox_preds = self.pts_bbox_head_joint(feat_dict, + self.test_cfg.pts.sample_mod) + bbox_list = self.pts_bbox_head_joint.get_bboxes( + points, bbox_preds, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test_img_only(self, img, img_metas, rescale=False): + r"""Test function with augmentation, image network pretrain. May refer + to ``_. + + Args: + img (list[list[torch.Tensor]], optional): the outer + list indicates test-time augmentations and inner Tensor + should have a shape NxCxHxW, which contains all images + in the batch. Defaults to None. Defaults to None. + img_metas (list[list[dict]], optional): the outer list + indicates test-time augs (multiscale, flip, etc.) + and the inner list indicates images in a batch. + Defaults to None. + rescale (bool, optional): Whether or not rescale bboxes to the + original shape of input image. If rescale is False, then + returned bboxes and masks will fit the scale of imgs[0]. + Defaults to None. + + Returns: + list[list[torch.Tensor]]: Predicted 2d boxes. + """ # noqa: E501 + assert self.with_img_bbox, 'Img bbox head must be implemented.' + assert self.with_img_backbone, 'Img backbone must be implemented.' + assert self.with_img_rpn, 'Img rpn must be implemented.' + assert self.with_img_roi_head, 'Img roi head must be implemented.' + + x = self.extract_img_feats(img) + proposal_list = self.img_rpn_head.aug_test_rpn(x, img_metas) + + return self.img_roi_head.aug_test( + x, proposal_list, img_metas, rescale=rescale) + + def aug_test(self, + points=None, + img_metas=None, + imgs=None, + bboxes_2d=None, + rescale=False, + **kwargs): + """Test function with augmentation, stage 2. + + Args: + points (list[list[torch.Tensor]], optional): the outer + list indicates test-time augmentations and the inner + list contains all points in the batch, where each Tensor + should have a shape NxC. Defaults to None. + img_metas (list[list[dict]], optional): the outer list + indicates test-time augs (multiscale, flip, etc.) + and the inner list indicates images in a batch. + Defaults to None. + imgs (list[list[torch.Tensor]], optional): the outer + list indicates test-time augmentations and inner Tensor + should have a shape NxCxHxW, which contains all images + in the batch. Defaults to None. Defaults to None. + bboxes_2d (list[list[torch.Tensor]], optional): + Provided 2d bboxes, not supported yet. Defaults to None. + rescale (bool, optional): Whether or not rescale bboxes. + Defaults to False. + + Returns: + list[dict]: Predicted 3d boxes. + """ + points_cat = [torch.stack(pts) for pts in points] + feats = self.extract_pts_feats(points_cat, img_metas) + + # only support aug_test for one sample + aug_bboxes = [] + for x, pts_cat, img_meta, bbox_2d, img in zip(feats, points_cat, + img_metas, bboxes_2d, + imgs): + + bbox_2d = self.extract_bboxes_2d( + img, img_metas, train=False, bboxes_2d=bbox_2d, **kwargs) + + seeds_3d, seed_3d_features, seed_indices = x + + img_features, masks = self.fusion_layer(img, bbox_2d, seeds_3d, + img_metas) + + inds = sample_valid_seeds(masks, self.num_sampled_seed) + batch_size, img_feat_size = img_features.shape[:2] + pts_feat_size = seed_3d_features.shape[1] + inds_img = inds.view(batch_size, 1, + -1).expand(-1, img_feat_size, -1) + img_features = img_features.gather(-1, inds_img) + inds = inds % inds.shape[1] + inds_seed_xyz = inds.view(batch_size, -1, 1).expand(-1, -1, 3) + seeds_3d = seeds_3d.gather(1, inds_seed_xyz) + inds_seed_feats = inds.view(batch_size, 1, + -1).expand(-1, pts_feat_size, -1) + seed_3d_features = seed_3d_features.gather(-1, inds_seed_feats) + seed_indices = seed_indices.gather(1, inds) + + img_features = self.img_mlp(img_features) + + fused_features = torch.cat([seed_3d_features, img_features], dim=1) + + feat_dict = dict( + seed_points=seeds_3d, + seed_features=fused_features, + seed_indices=seed_indices) + bbox_preds = self.pts_bbox_head_joint(feat_dict, + self.test_cfg.pts.sample_mod) + bbox_list = self.pts_bbox_head_joint.get_bboxes( + pts_cat, bbox_preds, img_metas, rescale=rescale) + + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvoxelnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvoxelnet.py new file mode 100644 index 000000000..ca65b337f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/imvoxelnet.py @@ -0,0 +1,138 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core import bbox3d2result, build_prior_generator +from mmdet3d.models.fusion_layers.point_fusion import point_sample +from mmdet.models.detectors import BaseDetector +from ..builder import DETECTORS, build_backbone, build_head, build_neck + + +@DETECTORS.register_module() +class ImVoxelNet(BaseDetector): + r"""`ImVoxelNet `_.""" + + def __init__(self, + backbone, + neck, + neck_3d, + bbox_head, + n_voxels, + anchor_generator, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.backbone = build_backbone(backbone) + self.neck = build_neck(neck) + self.neck_3d = build_neck(neck_3d) + bbox_head.update(train_cfg=train_cfg) + bbox_head.update(test_cfg=test_cfg) + self.bbox_head = build_head(bbox_head) + self.n_voxels = n_voxels + self.anchor_generator = build_prior_generator(anchor_generator) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def extract_feat(self, img, img_metas): + """Extract 3d features from the backbone -> fpn -> 3d projection. + + Args: + img (torch.Tensor): Input images of shape (N, C_in, H, W). + img_metas (list): Image metas. + + Returns: + torch.Tensor: of shape (N, C_out, N_x, N_y, N_z) + """ + x = self.backbone(img) + x = self.neck(x)[0] + points = self.anchor_generator.grid_anchors( + [self.n_voxels[::-1]], device=img.device)[0][:, :3] + volumes = [] + for feature, img_meta in zip(x, img_metas): + img_scale_factor = ( + points.new_tensor(img_meta['scale_factor'][:2]) + if 'scale_factor' in img_meta.keys() else 1) + img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False + img_crop_offset = ( + points.new_tensor(img_meta['img_crop_offset']) + if 'img_crop_offset' in img_meta.keys() else 0) + volume = point_sample( + img_meta, + img_features=feature[None, ...], + points=points, + proj_mat=points.new_tensor(img_meta['lidar2img']), + coord_type='LIDAR', + img_scale_factor=img_scale_factor, + img_crop_offset=img_crop_offset, + img_flip=img_flip, + img_pad_shape=img.shape[-2:], + img_shape=img_meta['img_shape'][:2], + aligned=False) + volumes.append( + volume.reshape(self.n_voxels[::-1] + [-1]).permute(3, 2, 1, 0)) + x = torch.stack(volumes) + x = self.neck_3d(x) + return x + + def forward_train(self, img, img_metas, gt_bboxes_3d, gt_labels_3d, + **kwargs): + """Forward of training. + + Args: + img (torch.Tensor): Input images of shape (N, C_in, H, W). + img_metas (list): Image metas. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): gt class labels of each batch. + + Returns: + dict[str, torch.Tensor]: A dictionary of loss components. + """ + x = self.extract_feat(img, img_metas) + x = self.bbox_head(x) + losses = self.bbox_head.loss(*x, gt_bboxes_3d, gt_labels_3d, img_metas) + return losses + + def forward_test(self, img, img_metas, **kwargs): + """Forward of testing. + + Args: + img (torch.Tensor): Input images of shape (N, C_in, H, W). + img_metas (list): Image metas. + + Returns: + list[dict]: Predicted 3d boxes. + """ + # not supporting aug_test for now + return self.simple_test(img, img_metas) + + def simple_test(self, img, img_metas): + """Test without augmentations. + + Args: + img (torch.Tensor): Input images of shape (N, C_in, H, W). + img_metas (list): Image metas. + + Returns: + list[dict]: Predicted 3d boxes. + """ + x = self.extract_feat(img, img_metas) + x = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes(*x, img_metas) + bbox_results = [ + bbox3d2result(det_bboxes, det_scores, det_labels) + for det_bboxes, det_scores, det_labels in bbox_list + ] + return bbox_results + + def aug_test(self, imgs, img_metas, **kwargs): + """Test with augmentations. + + Args: + imgs (list[torch.Tensor]): Input images of shape (N, C_in, H, W). + img_metas (list): Image metas. + + Returns: + list[dict]: Predicted 3d boxes. + """ + raise NotImplementedError diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_faster_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_faster_rcnn.py new file mode 100644 index 000000000..07efad6aa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_faster_rcnn.py @@ -0,0 +1,61 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from ..builder import DETECTORS +from .mvx_two_stage import MVXTwoStageDetector + + +@DETECTORS.register_module() +class MVXFasterRCNN(MVXTwoStageDetector): + """Multi-modality VoxelNet using Faster R-CNN.""" + + def __init__(self, **kwargs): + super(MVXFasterRCNN, self).__init__(**kwargs) + + +@DETECTORS.register_module() +class DynamicMVXFasterRCNN(MVXTwoStageDetector): + """Multi-modality VoxelNet using Faster R-CNN and dynamic voxelization.""" + + def __init__(self, **kwargs): + super(DynamicMVXFasterRCNN, self).__init__(**kwargs) + + @torch.no_grad() + @force_fp32() + def voxelize(self, points): + """Apply dynamic voxelization to points. + + Args: + points (list[torch.Tensor]): Points of each sample. + + Returns: + tuple[torch.Tensor]: Concatenated points and coordinates. + """ + coors = [] + # dynamic voxelization only provide a coors mapping + for res in points: + res_coors = self.pts_voxel_layer(res) + coors.append(res_coors) + points = torch.cat(points, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + return points, coors_batch + + def extract_pts_feat(self, points, img_feats, img_metas): + """Extract point features.""" + if not self.with_pts_bbox: + return None + voxels, coors = self.voxelize(points) + voxel_features, feature_coors = self.pts_voxel_encoder( + voxels, coors, points, img_feats, img_metas) + batch_size = coors[-1, 0] + 1 + x = self.pts_middle_encoder(voxel_features, feature_coors, batch_size) + x = self.pts_backbone(x) + if self.with_pts_neck: + x = self.pts_neck(x) + return x diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_two_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_two_stage.py new file mode 100644 index 000000000..1eba10df6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/mvx_two_stage.py @@ -0,0 +1,503 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from os import path as osp + +import mmcv +import torch +from mmcv.ops import Voxelization +from mmcv.parallel import DataContainer as DC +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from mmdet3d.core import (Box3DMode, Coord3DMode, bbox3d2result, + merge_aug_bboxes_3d, show_result) +from mmdet.core import multi_apply +from .. import builder +from ..builder import DETECTORS +from .base import Base3DDetector + + +@DETECTORS.register_module() +class MVXTwoStageDetector(Base3DDetector): + """Base class of Multi-modality VoxelNet.""" + + def __init__(self, + pts_voxel_layer=None, + pts_voxel_encoder=None, + pts_middle_encoder=None, + pts_fusion_layer=None, + img_backbone=None, + pts_backbone=None, + img_neck=None, + pts_neck=None, + pts_bbox_head=None, + img_roi_head=None, + img_rpn_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(MVXTwoStageDetector, self).__init__(init_cfg=init_cfg) + + if pts_voxel_layer: + self.pts_voxel_layer = Voxelization(**pts_voxel_layer) + if pts_voxel_encoder: + self.pts_voxel_encoder = builder.build_voxel_encoder( + pts_voxel_encoder) + if pts_middle_encoder: + self.pts_middle_encoder = builder.build_middle_encoder( + pts_middle_encoder) + if pts_backbone: + self.pts_backbone = builder.build_backbone(pts_backbone) + if pts_fusion_layer: + self.pts_fusion_layer = builder.build_fusion_layer( + pts_fusion_layer) + if pts_neck is not None: + self.pts_neck = builder.build_neck(pts_neck) + if pts_bbox_head: + pts_train_cfg = train_cfg.pts if train_cfg else None + pts_bbox_head.update(train_cfg=pts_train_cfg) + pts_test_cfg = test_cfg.pts if test_cfg else None + pts_bbox_head.update(test_cfg=pts_test_cfg) + self.pts_bbox_head = builder.build_head(pts_bbox_head) + + if img_backbone: + self.img_backbone = builder.build_backbone(img_backbone) + if img_neck is not None: + self.img_neck = builder.build_neck(img_neck) + if img_rpn_head is not None: + self.img_rpn_head = builder.build_head(img_rpn_head) + if img_roi_head is not None: + self.img_roi_head = builder.build_head(img_roi_head) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if pretrained is None: + img_pretrained = None + pts_pretrained = None + elif isinstance(pretrained, dict): + img_pretrained = pretrained.get('img', None) + pts_pretrained = pretrained.get('pts', None) + else: + raise ValueError( + f'pretrained should be a dict, got {type(pretrained)}') + + if self.with_img_backbone: + if img_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg.') + self.img_backbone.init_cfg = dict( + type='Pretrained', checkpoint=img_pretrained) + if self.with_img_roi_head: + if img_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg.') + self.img_roi_head.init_cfg = dict( + type='Pretrained', checkpoint=img_pretrained) + if self.with_pts_backbone: + if pts_pretrained is not None: + warnings.warn('DeprecationWarning: pretrained is a deprecated ' + 'key, please consider using init_cfg') + self.pts_backbone.init_cfg = dict( + type='Pretrained', checkpoint=pts_pretrained) + + @property + def with_img_shared_head(self): + """bool: Whether the detector has a shared head in image branch.""" + return hasattr(self, + 'img_shared_head') and self.img_shared_head is not None + + @property + def with_pts_bbox(self): + """bool: Whether the detector has a 3D box head.""" + return hasattr(self, + 'pts_bbox_head') and self.pts_bbox_head is not None + + @property + def with_img_bbox(self): + """bool: Whether the detector has a 2D image box head.""" + return hasattr(self, + 'img_bbox_head') and self.img_bbox_head is not None + + @property + def with_img_backbone(self): + """bool: Whether the detector has a 2D image backbone.""" + return hasattr(self, 'img_backbone') and self.img_backbone is not None + + @property + def with_pts_backbone(self): + """bool: Whether the detector has a 3D backbone.""" + return hasattr(self, 'pts_backbone') and self.pts_backbone is not None + + @property + def with_fusion(self): + """bool: Whether the detector has a fusion layer.""" + return hasattr(self, + 'pts_fusion_layer') and self.fusion_layer is not None + + @property + def with_img_neck(self): + """bool: Whether the detector has a neck in image branch.""" + return hasattr(self, 'img_neck') and self.img_neck is not None + + @property + def with_pts_neck(self): + """bool: Whether the detector has a neck in 3D detector branch.""" + return hasattr(self, 'pts_neck') and self.pts_neck is not None + + @property + def with_img_rpn(self): + """bool: Whether the detector has a 2D RPN in image detector branch.""" + return hasattr(self, 'img_rpn_head') and self.img_rpn_head is not None + + @property + def with_img_roi_head(self): + """bool: Whether the detector has a RoI Head in image branch.""" + return hasattr(self, 'img_roi_head') and self.img_roi_head is not None + + @property + def with_voxel_encoder(self): + """bool: Whether the detector has a voxel encoder.""" + return hasattr(self, + 'voxel_encoder') and self.voxel_encoder is not None + + @property + def with_middle_encoder(self): + """bool: Whether the detector has a middle encoder.""" + return hasattr(self, + 'middle_encoder') and self.middle_encoder is not None + + def extract_img_feat(self, img, img_metas): + """Extract features of images.""" + if self.with_img_backbone and img is not None: + input_shape = img.shape[-2:] + # update real input shape of each single img + for img_meta in img_metas: + img_meta.update(input_shape=input_shape) + + if img.dim() == 5 and img.size(0) == 1: + img.squeeze_() + elif img.dim() == 5 and img.size(0) > 1: + B, N, C, H, W = img.size() + img = img.view(B * N, C, H, W) + img_feats = self.img_backbone(img) + else: + return None + if self.with_img_neck: + img_feats = self.img_neck(img_feats) + return img_feats + + def extract_pts_feat(self, pts, img_feats, img_metas): + """Extract features of points.""" + if not self.with_pts_bbox: + return None + voxels, num_points, coors = self.voxelize(pts) + voxel_features = self.pts_voxel_encoder(voxels, num_points, coors, + img_feats, img_metas) + batch_size = coors[-1, 0] + 1 + x = self.pts_middle_encoder(voxel_features, coors, batch_size) + x = self.pts_backbone(x) + if self.with_pts_neck: + x = self.pts_neck(x) + return x + + def extract_feat(self, points, img, img_metas): + """Extract features from images and points.""" + img_feats = self.extract_img_feat(img, img_metas) + pts_feats = self.extract_pts_feat(points, img_feats, img_metas) + return (img_feats, pts_feats) + + @torch.no_grad() + @force_fp32() + def voxelize(self, points): + """Apply dynamic voxelization to points. + + Args: + points (list[torch.Tensor]): Points of each sample. + + Returns: + tuple[torch.Tensor]: Concatenated points, number of points + per voxel, and coordinates. + """ + voxels, coors, num_points = [], [], [] + for res in points: + res_voxels, res_coors, res_num_points = self.pts_voxel_layer(res) + voxels.append(res_voxels) + coors.append(res_coors) + num_points.append(res_num_points) + voxels = torch.cat(voxels, dim=0) + num_points = torch.cat(num_points, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + return voxels, num_points, coors_batch + + def forward_train(self, + points=None, + img_metas=None, + gt_bboxes_3d=None, + gt_labels_3d=None, + gt_labels=None, + gt_bboxes=None, + img=None, + proposals=None, + gt_bboxes_ignore=None): + """Forward training function. + + Args: + points (list[torch.Tensor], optional): Points of each sample. + Defaults to None. + img_metas (list[dict], optional): Meta information of each sample. + Defaults to None. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`], optional): + Ground truth 3D boxes. Defaults to None. + gt_labels_3d (list[torch.Tensor], optional): Ground truth labels + of 3D boxes. Defaults to None. + gt_labels (list[torch.Tensor], optional): Ground truth labels + of 2D boxes in images. Defaults to None. + gt_bboxes (list[torch.Tensor], optional): Ground truth 2D boxes in + images. Defaults to None. + img (torch.Tensor, optional): Images of each sample with shape + (N, C, H, W). Defaults to None. + proposals ([list[torch.Tensor], optional): Predicted proposals + used for training Fast RCNN. Defaults to None. + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + 2D boxes in images to be ignored. Defaults to None. + + Returns: + dict: Losses of different branches. + """ + img_feats, pts_feats = self.extract_feat( + points, img=img, img_metas=img_metas) + losses = dict() + if pts_feats: + losses_pts = self.forward_pts_train(pts_feats, gt_bboxes_3d, + gt_labels_3d, img_metas, + gt_bboxes_ignore) + losses.update(losses_pts) + if img_feats: + losses_img = self.forward_img_train( + img_feats, + img_metas=img_metas, + gt_bboxes=gt_bboxes, + gt_labels=gt_labels, + gt_bboxes_ignore=gt_bboxes_ignore, + proposals=proposals) + losses.update(losses_img) + return losses + + def forward_pts_train(self, + pts_feats, + gt_bboxes_3d, + gt_labels_3d, + img_metas, + gt_bboxes_ignore=None): + """Forward function for point cloud branch. + + Args: + pts_feats (list[torch.Tensor]): Features of point cloud branch + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + gt_labels_3d (list[torch.Tensor]): Ground truth labels for + boxes of each sampole + img_metas (list[dict]): Meta information of samples. + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + + Returns: + dict: Losses of each branch. + """ + outs = self.pts_bbox_head(pts_feats) + loss_inputs = outs + (gt_bboxes_3d, gt_labels_3d, img_metas) + losses = self.pts_bbox_head.loss( + *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + return losses + + def forward_img_train(self, + x, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + proposals=None, + **kwargs): + """Forward function for image branch. + + This function works similar to the forward function of Faster R-CNN. + + Args: + x (list[torch.Tensor]): Image features of shape (B, C, H, W) + of multiple levels. + img_metas (list[dict]): Meta information of images. + gt_bboxes (list[torch.Tensor]): Ground truth boxes of each image + sample. + gt_labels (list[torch.Tensor]): Ground truth labels of boxes. + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + proposals (list[torch.Tensor], optional): Proposals of each sample. + Defaults to None. + + Returns: + dict: Losses of each branch. + """ + losses = dict() + # RPN forward and loss + if self.with_img_rpn: + rpn_outs = self.img_rpn_head(x) + rpn_loss_inputs = rpn_outs + (gt_bboxes, img_metas, + self.train_cfg.img_rpn) + rpn_losses = self.img_rpn_head.loss( + *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + losses.update(rpn_losses) + + proposal_cfg = self.train_cfg.get('img_rpn_proposal', + self.test_cfg.img_rpn) + proposal_inputs = rpn_outs + (img_metas, proposal_cfg) + proposal_list = self.img_rpn_head.get_bboxes(*proposal_inputs) + else: + proposal_list = proposals + + # bbox head forward and loss + if self.with_img_bbox: + # bbox head forward and loss + img_roi_losses = self.img_roi_head.forward_train( + x, img_metas, proposal_list, gt_bboxes, gt_labels, + gt_bboxes_ignore, **kwargs) + losses.update(img_roi_losses) + + return losses + + def simple_test_img(self, x, img_metas, proposals=None, rescale=False): + """Test without augmentation.""" + if proposals is None: + proposal_list = self.simple_test_rpn(x, img_metas, + self.test_cfg.img_rpn) + else: + proposal_list = proposals + + return self.img_roi_head.simple_test( + x, proposal_list, img_metas, rescale=rescale) + + def simple_test_rpn(self, x, img_metas, rpn_test_cfg): + """RPN test function.""" + rpn_outs = self.img_rpn_head(x) + proposal_inputs = rpn_outs + (img_metas, rpn_test_cfg) + proposal_list = self.img_rpn_head.get_bboxes(*proposal_inputs) + return proposal_list + + def simple_test_pts(self, x, img_metas, rescale=False): + """Test function of point cloud branch.""" + outs = self.pts_bbox_head(x) + bbox_list = self.pts_bbox_head.get_bboxes( + *outs, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def simple_test(self, points, img_metas, img=None, rescale=False): + """Test function without augmentaiton.""" + img_feats, pts_feats = self.extract_feat( + points, img=img, img_metas=img_metas) + + bbox_list = [dict() for i in range(len(img_metas))] + if pts_feats and self.with_pts_bbox: + bbox_pts = self.simple_test_pts( + pts_feats, img_metas, rescale=rescale) + for result_dict, pts_bbox in zip(bbox_list, bbox_pts): + result_dict['pts_bbox'] = pts_bbox + if img_feats and self.with_img_bbox: + bbox_img = self.simple_test_img( + img_feats, img_metas, rescale=rescale) + for result_dict, img_bbox in zip(bbox_list, bbox_img): + result_dict['img_bbox'] = img_bbox + return bbox_list + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test function with augmentaiton.""" + img_feats, pts_feats = self.extract_feats(points, img_metas, imgs) + + bbox_list = dict() + if pts_feats and self.with_pts_bbox: + bbox_pts = self.aug_test_pts(pts_feats, img_metas, rescale) + bbox_list.update(pts_bbox=bbox_pts) + return [bbox_list] + + def extract_feats(self, points, img_metas, imgs=None): + """Extract point and image features of multiple samples.""" + if imgs is None: + imgs = [None] * len(img_metas) + img_feats, pts_feats = multi_apply(self.extract_feat, points, imgs, + img_metas) + return img_feats, pts_feats + + def aug_test_pts(self, feats, img_metas, rescale=False): + """Test function of point cloud branch with augmentaiton.""" + # only support aug_test for one sample + aug_bboxes = [] + for x, img_meta in zip(feats, img_metas): + outs = self.pts_bbox_head(x) + bbox_list = self.pts_bbox_head.get_bboxes( + *outs, img_meta, rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.pts_bbox_head.test_cfg) + return merged_bboxes + + def show_results(self, data, result, out_dir): + """Results visualization. + + Args: + data (dict): Input points and the information of the sample. + result (dict): Prediction results. + out_dir (str): Output directory of visualization result. + """ + for batch_id in range(len(result)): + if isinstance(data['points'][0], DC): + points = data['points'][0]._data[0][batch_id].numpy() + elif mmcv.is_list_of(data['points'][0], torch.Tensor): + points = data['points'][0][batch_id] + else: + ValueError(f"Unsupported data type {type(data['points'][0])} " + f'for visualization!') + if isinstance(data['img_metas'][0], DC): + pts_filename = data['img_metas'][0]._data[0][batch_id][ + 'pts_filename'] + box_mode_3d = data['img_metas'][0]._data[0][batch_id][ + 'box_mode_3d'] + elif mmcv.is_list_of(data['img_metas'][0], dict): + pts_filename = data['img_metas'][0][batch_id]['pts_filename'] + box_mode_3d = data['img_metas'][0][batch_id]['box_mode_3d'] + else: + ValueError( + f"Unsupported data type {type(data['img_metas'][0])} " + f'for visualization!') + file_name = osp.split(pts_filename)[-1].split('.')[0] + + assert out_dir is not None, 'Expect out_dir, got none.' + inds = result[batch_id]['pts_bbox']['scores_3d'] > 0.1 + pred_bboxes = result[batch_id]['pts_bbox']['boxes_3d'][inds] + + # for now we convert points and bbox into depth mode + if (box_mode_3d == Box3DMode.CAM) or (box_mode_3d + == Box3DMode.LIDAR): + points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d, + Box3DMode.DEPTH) + elif box_mode_3d != Box3DMode.DEPTH: + ValueError( + f'Unsupported box_mode_3d {box_mode_3d} for conversion!') + + pred_bboxes = pred_bboxes.tensor.cpu().numpy() + show_result(points, None, pred_bboxes, out_dir, file_name) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/parta2.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/parta2.py new file mode 100644 index 000000000..459a9158a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/parta2.py @@ -0,0 +1,151 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import Voxelization +from torch.nn import functional as F + +from .. import builder +from ..builder import DETECTORS +from .two_stage import TwoStage3DDetector + + +@DETECTORS.register_module() +class PartA2(TwoStage3DDetector): + r"""Part-A2 detector. + + Please refer to the `paper `_ + """ + + def __init__(self, + voxel_layer, + voxel_encoder, + middle_encoder, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(PartA2, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + self.voxel_layer = Voxelization(**voxel_layer) + self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder) + self.middle_encoder = builder.build_middle_encoder(middle_encoder) + + def extract_feat(self, points, img_metas): + """Extract features from points.""" + voxel_dict = self.voxelize(points) + voxel_features = self.voxel_encoder(voxel_dict['voxels'], + voxel_dict['num_points'], + voxel_dict['coors']) + batch_size = voxel_dict['coors'][-1, 0].item() + 1 + feats_dict = self.middle_encoder(voxel_features, voxel_dict['coors'], + batch_size) + x = self.backbone(feats_dict['spatial_features']) + if self.with_neck: + neck_feats = self.neck(x) + feats_dict.update({'neck_feats': neck_feats}) + return feats_dict, voxel_dict + + @torch.no_grad() + def voxelize(self, points): + """Apply hard voxelization to points.""" + voxels, coors, num_points, voxel_centers = [], [], [], [] + for res in points: + res_voxels, res_coors, res_num_points = self.voxel_layer(res) + res_voxel_centers = ( + res_coors[:, [2, 1, 0]] + 0.5) * res_voxels.new_tensor( + self.voxel_layer.voxel_size) + res_voxels.new_tensor( + self.voxel_layer.point_cloud_range[0:3]) + voxels.append(res_voxels) + coors.append(res_coors) + num_points.append(res_num_points) + voxel_centers.append(res_voxel_centers) + + voxels = torch.cat(voxels, dim=0) + num_points = torch.cat(num_points, dim=0) + voxel_centers = torch.cat(voxel_centers, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + + voxel_dict = dict( + voxels=voxels, + num_points=num_points, + coors=coors_batch, + voxel_centers=voxel_centers) + return voxel_dict + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + gt_bboxes_ignore=None, + proposals=None): + """Training forward function. + + Args: + points (list[torch.Tensor]): Point cloud of each sample. + img_metas (list[dict]): Meta information of each sample + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + gt_labels_3d (list[torch.Tensor]): Ground truth labels for + boxes of each sampole + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + + Returns: + dict: Losses of each branch. + """ + feats_dict, voxels_dict = self.extract_feat(points, img_metas) + + losses = dict() + + if self.with_rpn: + rpn_outs = self.rpn_head(feats_dict['neck_feats']) + rpn_loss_inputs = rpn_outs + (gt_bboxes_3d, gt_labels_3d, + img_metas) + rpn_losses = self.rpn_head.loss( + *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + losses.update(rpn_losses) + + proposal_cfg = self.train_cfg.get('rpn_proposal', + self.test_cfg.rpn) + proposal_inputs = rpn_outs + (img_metas, proposal_cfg) + proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) + else: + proposal_list = proposals + + roi_losses = self.roi_head.forward_train(feats_dict, voxels_dict, + img_metas, proposal_list, + gt_bboxes_3d, gt_labels_3d) + + losses.update(roi_losses) + + return losses + + def simple_test(self, points, img_metas, proposals=None, rescale=False): + """Test function without augmentaiton.""" + feats_dict, voxels_dict = self.extract_feat(points, img_metas) + + if self.with_rpn: + rpn_outs = self.rpn_head(feats_dict['neck_feats']) + proposal_cfg = self.test_cfg.rpn + bbox_inputs = rpn_outs + (img_metas, proposal_cfg) + proposal_list = self.rpn_head.get_bboxes(*bbox_inputs) + else: + proposal_list = proposals + + return self.roi_head.simple_test(feats_dict, voxels_dict, img_metas, + proposal_list) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/point_rcnn.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/point_rcnn.py new file mode 100644 index 000000000..31c86938a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/point_rcnn.py @@ -0,0 +1,148 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import DETECTORS +from .two_stage import TwoStage3DDetector + + +@DETECTORS.register_module() +class PointRCNN(TwoStage3DDetector): + r"""PointRCNN detector. + + Please refer to the `PointRCNN `_ + + Args: + backbone (dict): Config dict of detector's backbone. + neck (dict, optional): Config dict of neck. Defaults to None. + rpn_head (dict, optional): Config of RPN head. Defaults to None. + roi_head (dict, optional): Config of ROI head. Defaults to None. + train_cfg (dict, optional): Train configs. Defaults to None. + test_cfg (dict, optional): Test configs. Defaults to None. + pretrained (str, optional): Model pretrained path. Defaults to None. + init_cfg (dict, optional): Config of initialization. Defaults to None. + """ + + def __init__(self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(PointRCNN, self).__init__( + backbone=backbone, + neck=neck, + rpn_head=rpn_head, + roi_head=roi_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def extract_feat(self, points): + """Directly extract features from the backbone+neck. + + Args: + points (torch.Tensor): Input points. + + Returns: + dict: Features from the backbone+neck + """ + x = self.backbone(points) + + if self.with_neck: + x = self.neck(x) + return x + + def forward_train(self, points, img_metas, gt_bboxes_3d, gt_labels_3d): + """Forward of training. + + Args: + points (list[torch.Tensor]): Points of each batch. + img_metas (list[dict]): Meta information of each sample. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): gt class labels of each batch. + + Returns: + dict: Losses. + """ + losses = dict() + points_cat = torch.stack(points) + x = self.extract_feat(points_cat) + + # features for rcnn + backbone_feats = x['fp_features'].clone() + backbone_xyz = x['fp_xyz'].clone() + rcnn_feats = {'features': backbone_feats, 'points': backbone_xyz} + + bbox_preds, cls_preds = self.rpn_head(x) + + rpn_loss = self.rpn_head.loss( + bbox_preds=bbox_preds, + cls_preds=cls_preds, + points=points, + gt_bboxes_3d=gt_bboxes_3d, + gt_labels_3d=gt_labels_3d, + img_metas=img_metas) + losses.update(rpn_loss) + + bbox_list = self.rpn_head.get_bboxes(points_cat, bbox_preds, cls_preds, + img_metas) + proposal_list = [ + dict( + boxes_3d=bboxes, + scores_3d=scores, + labels_3d=labels, + cls_preds=preds_cls) + for bboxes, scores, labels, preds_cls in bbox_list + ] + rcnn_feats.update({'points_cls_preds': cls_preds}) + + roi_losses = self.roi_head.forward_train(rcnn_feats, img_metas, + proposal_list, gt_bboxes_3d, + gt_labels_3d) + losses.update(roi_losses) + + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Forward of testing. + + Args: + points (list[torch.Tensor]): Points of each sample. + img_metas (list[dict]): Image metas. + imgs (list[torch.Tensor], optional): Images of each sample. + Defaults to None. + rescale (bool, optional): Whether to rescale results. + Defaults to False. + + Returns: + list: Predicted 3d boxes. + """ + points_cat = torch.stack(points) + + x = self.extract_feat(points_cat) + # features for rcnn + backbone_feats = x['fp_features'].clone() + backbone_xyz = x['fp_xyz'].clone() + rcnn_feats = {'features': backbone_feats, 'points': backbone_xyz} + bbox_preds, cls_preds = self.rpn_head(x) + rcnn_feats.update({'points_cls_preds': cls_preds}) + + bbox_list = self.rpn_head.get_bboxes( + points_cat, bbox_preds, cls_preds, img_metas, rescale=rescale) + + proposal_list = [ + dict( + boxes_3d=bboxes, + scores_3d=scores, + labels_3d=labels, + cls_preds=preds_cls) + for bboxes, scores, labels, preds_cls in bbox_list + ] + bbox_results = self.roi_head.simple_test(rcnn_feats, img_metas, + proposal_list) + + return bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/sassd.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/sassd.py new file mode 100644 index 000000000..2151c4e0c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/sassd.py @@ -0,0 +1,136 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import Voxelization +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from mmdet.models.builder import DETECTORS +from .. import builder +from .single_stage import SingleStage3DDetector + + +@DETECTORS.register_module() +class SASSD(SingleStage3DDetector): + r"""`SASSD ` _ for 3D detection.""" + + def __init__(self, + voxel_layer, + voxel_encoder, + middle_encoder, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super(SASSD, self).__init__( + backbone=backbone, + neck=neck, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg, + pretrained=pretrained) + + self.voxel_layer = Voxelization(**voxel_layer) + self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder) + self.middle_encoder = builder.build_middle_encoder(middle_encoder) + + def extract_feat(self, points, img_metas=None, test_mode=False): + """Extract features from points.""" + voxels, num_points, coors = self.voxelize(points) + voxel_features = self.voxel_encoder(voxels, num_points, coors) + batch_size = coors[-1, 0].item() + 1 + x, point_misc = self.middle_encoder(voxel_features, coors, batch_size, + test_mode) + x = self.backbone(x) + if self.with_neck: + x = self.neck(x) + return x, point_misc + + @torch.no_grad() + @force_fp32() + def voxelize(self, points): + """Apply hard voxelization to points.""" + voxels, coors, num_points = [], [], [] + for res in points: + res_voxels, res_coors, res_num_points = self.voxel_layer(res) + voxels.append(res_voxels) + coors.append(res_coors) + num_points.append(res_num_points) + voxels = torch.cat(voxels, dim=0) + num_points = torch.cat(num_points, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + return voxels, num_points, coors_batch + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + gt_bboxes_ignore=None): + """Training forward function. + + Args: + points (list[torch.Tensor]): Point cloud of each sample. + img_metas (list[dict]): Meta information of each sample + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + gt_labels_3d (list[torch.Tensor]): Ground truth labels for + boxes of each sampole + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + + Returns: + dict: Losses of each branch. + """ + + x, point_misc = self.extract_feat(points, img_metas, test_mode=False) + aux_loss = self.middle_encoder.aux_loss(*point_misc, gt_bboxes_3d) + + outs = self.bbox_head(x) + loss_inputs = outs + (gt_bboxes_3d, gt_labels_3d, img_metas) + losses = self.bbox_head.loss( + *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + losses.update(aux_loss) + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Test function without augmentaiton.""" + x, _ = self.extract_feat(points, img_metas, test_mode=True) + outs = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes( + *outs, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test function with augmentaiton.""" + feats = self.extract_feats(points, img_metas, test_mode=True) + + # only support aug_test for one sample + aug_bboxes = [] + for x, img_meta in zip(feats, img_metas): + outs = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes( + *outs, img_meta, rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage.py new file mode 100644 index 000000000..11f847995 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage.py @@ -0,0 +1,71 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import Base3DDetector + + +@DETECTORS.register_module() +class SingleStage3DDetector(Base3DDetector): + """SingleStage3DDetector. + + This class serves as a base class for single-stage 3D detectors. + + Args: + backbone (dict): Config dict of detector's backbone. + neck (dict, optional): Config dict of neck. Defaults to None. + bbox_head (dict, optional): Config dict of box head. Defaults to None. + train_cfg (dict, optional): Config dict of training hyper-parameters. + Defaults to None. + test_cfg (dict, optional): Config dict of test hyper-parameters. + Defaults to None. + pretrained (str, optional): Path of pretrained models. + Defaults to None. + """ + + def __init__(self, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super(SingleStage3DDetector, self).__init__(init_cfg) + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + bbox_head.update(train_cfg=train_cfg) + bbox_head.update(test_cfg=test_cfg) + self.bbox_head = build_head(bbox_head) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def forward_dummy(self, points): + """Used for computing network flops. + + See `mmdetection/tools/analysis_tools/get_flops.py` + """ + x = self.extract_feat(points) + try: + sample_mod = self.train_cfg.sample_mod + outs = self.bbox_head(x, sample_mod) + except AttributeError: + outs = self.bbox_head(x) + return outs + + def extract_feat(self, points, img_metas=None): + """Directly extract features from the backbone+neck. + + Args: + points (torch.Tensor): Input points. + """ + x = self.backbone(points) + if self.with_neck: + x = self.neck(x) + return x + + def extract_feats(self, points, img_metas): + """Extract features of multiple samples.""" + return [ + self.extract_feat(pts, img_meta) + for pts, img_meta in zip(points, img_metas) + ] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage_mono3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage_mono3d.py new file mode 100644 index 000000000..464fab04f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/single_stage_mono3d.py @@ -0,0 +1,250 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.parallel import DataContainer as DC + +from mmdet3d.core import (CameraInstance3DBoxes, bbox3d2result, + show_multi_modality_result) +from mmdet.models.detectors import SingleStageDetector +from ..builder import DETECTORS, build_backbone, build_head, build_neck + + +@DETECTORS.register_module() +class SingleStageMono3DDetector(SingleStageDetector): + """Base class for monocular 3D single-stage detectors. + + Single-stage detectors directly and densely predict bounding boxes on the + output features of the backbone+neck. + """ + + def __init__(self, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(SingleStageDetector, self).__init__(init_cfg) + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + bbox_head.update(train_cfg=train_cfg) + bbox_head.update(test_cfg=test_cfg) + self.bbox_head = build_head(bbox_head) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + def extract_feats(self, imgs): + """Directly extract features from the backbone+neck.""" + assert isinstance(imgs, list) + return [self.extract_feat(img) for img in imgs] + + def forward_train(self, + img, + img_metas, + gt_bboxes, + gt_labels, + gt_bboxes_3d, + gt_labels_3d, + centers2d, + depths, + attr_labels=None, + gt_bboxes_ignore=None): + """ + Args: + img (Tensor): Input images of shape (N, C, H, W). + Typically these should be mean centered and std scaled. + img_metas (list[dict]): A List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + :class:`mmdet.datasets.pipelines.Collect`. + gt_bboxes (list[Tensor]): Each item are the truth boxes for each + image in [tl_x, tl_y, br_x, br_y] format. + gt_labels (list[Tensor]): Class indices corresponding to each box + gt_bboxes_3d (list[Tensor]): Each item are the 3D truth boxes for + each image in [x, y, z, x_size, y_size, z_size, yaw, vx, vy] + format. + gt_labels_3d (list[Tensor]): 3D class indices corresponding to + each box. + centers2d (list[Tensor]): Projected 3D centers onto 2D images. + depths (list[Tensor]): Depth of projected centers on 2D images. + attr_labels (list[Tensor], optional): Attribute indices + corresponding to each box + gt_bboxes_ignore (list[Tensor]): Specify which bounding + boxes can be ignored when computing the loss. + + Returns: + dict[str, Tensor]: A dictionary of loss components. + """ + x = self.extract_feat(img) + losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes, + gt_labels, gt_bboxes_3d, + gt_labels_3d, centers2d, depths, + attr_labels, gt_bboxes_ignore) + return losses + + def simple_test(self, img, img_metas, rescale=False): + """Test function without test time augmentation. + + Args: + imgs (list[torch.Tensor]): List of multiple images + img_metas (list[dict]): List of image information. + rescale (bool, optional): Whether to rescale the results. + Defaults to False. + + Returns: + list[list[np.ndarray]]: BBox results of each image and classes. + The outer list corresponds to each image. The inner list + corresponds to each class. + """ + x = self.extract_feat(img) + outs = self.bbox_head(x) + bbox_outputs = self.bbox_head.get_bboxes( + *outs, img_metas, rescale=rescale) + + if self.bbox_head.pred_bbox2d: + from mmdet.core import bbox2result + bbox2d_img = [ + bbox2result(bboxes2d, labels, self.bbox_head.num_classes) + for bboxes, scores, labels, attrs, bboxes2d in bbox_outputs + ] + bbox_outputs = [bbox_outputs[0][:-1]] + + bbox_img = [ + bbox3d2result(bboxes, scores, labels, attrs) + for bboxes, scores, labels, attrs in bbox_outputs + ] + + bbox_list = [dict() for i in range(len(img_metas))] + for result_dict, img_bbox in zip(bbox_list, bbox_img): + result_dict['img_bbox'] = img_bbox + if self.bbox_head.pred_bbox2d: + for result_dict, img_bbox2d in zip(bbox_list, bbox2d_img): + result_dict['img_bbox2d'] = img_bbox2d + return bbox_list + + def aug_test(self, imgs, img_metas, rescale=False): + """Test function with test time augmentation.""" + feats = self.extract_feats(imgs) + + # only support aug_test for one sample + outs_list = [self.bbox_head(x) for x in feats] + for i, img_meta in enumerate(img_metas): + if img_meta[0]['pcd_horizontal_flip']: + for j in range(len(outs_list[i])): # for each prediction + if outs_list[i][j][0] is None: + continue + for k in range(len(outs_list[i][j])): + # every stride of featmap + outs_list[i][j][k] = torch.flip( + outs_list[i][j][k], dims=[3]) + reg = outs_list[i][1] + for reg_feat in reg: + # offset_x + reg_feat[:, 0, :, :] = 1 - reg_feat[:, 0, :, :] + # velo_x + if self.bbox_head.pred_velo: + reg_feat[:, 7, :, :] = -reg_feat[:, 7, :, :] + # rotation + reg_feat[:, 6, :, :] = -reg_feat[:, 6, :, :] + np.pi + + merged_outs = [] + for i in range(len(outs_list[0])): # for each prediction + merged_feats = [] + for j in range(len(outs_list[0][i])): + if outs_list[0][i][0] is None: + merged_feats.append(None) + continue + # for each stride of featmap + avg_feats = torch.mean( + torch.cat([x[i][j] for x in outs_list]), + dim=0, + keepdim=True) + if i == 1: # regression predictions + # rot/velo/2d det keeps the original + avg_feats[:, 6:, :, :] = \ + outs_list[0][i][j][:, 6:, :, :] + if i == 2: + # dir_cls keeps the original + avg_feats = outs_list[0][i][j] + merged_feats.append(avg_feats) + merged_outs.append(merged_feats) + merged_outs = tuple(merged_outs) + + bbox_outputs = self.bbox_head.get_bboxes( + *merged_outs, img_metas[0], rescale=rescale) + if self.bbox_head.pred_bbox2d: + from mmdet.core import bbox2result + bbox2d_img = [ + bbox2result(bboxes2d, labels, self.bbox_head.num_classes) + for bboxes, scores, labels, attrs, bboxes2d in bbox_outputs + ] + bbox_outputs = [bbox_outputs[0][:-1]] + + bbox_img = [ + bbox3d2result(bboxes, scores, labels, attrs) + for bboxes, scores, labels, attrs in bbox_outputs + ] + + bbox_list = dict() + bbox_list.update(img_bbox=bbox_img[0]) + if self.bbox_head.pred_bbox2d: + bbox_list.update(img_bbox2d=bbox2d_img[0]) + + return [bbox_list] + + def show_results(self, data, result, out_dir, show=False, score_thr=None): + """Results visualization. + + Args: + data (list[dict]): Input images and the information of the sample. + result (list[dict]): Prediction results. + out_dir (str): Output directory of visualization result. + show (bool, optional): Determines whether you are + going to show result by open3d. + Defaults to False. + TODO: implement score_thr of single_stage_mono3d. + score_thr (float, optional): Score threshold of bounding boxes. + Default to None. + Not implemented yet, but it is here for unification. + """ + for batch_id in range(len(result)): + if isinstance(data['img_metas'][0], DC): + img_filename = data['img_metas'][0]._data[0][batch_id][ + 'filename'] + cam2img = data['img_metas'][0]._data[0][batch_id]['cam2img'] + elif mmcv.is_list_of(data['img_metas'][0], dict): + img_filename = data['img_metas'][0][batch_id]['filename'] + cam2img = data['img_metas'][0][batch_id]['cam2img'] + else: + ValueError( + f"Unsupported data type {type(data['img_metas'][0])} " + f'for visualization!') + img = mmcv.imread(img_filename) + file_name = osp.split(img_filename)[-1].split('.')[0] + + assert out_dir is not None, 'Expect out_dir, got none.' + + pred_bboxes = result[batch_id]['img_bbox']['boxes_3d'] + assert isinstance(pred_bboxes, CameraInstance3DBoxes), \ + f'unsupported predicted bbox type {type(pred_bboxes)}' + + show_multi_modality_result( + img, + None, + pred_bboxes, + cam2img, + out_dir, + file_name, + 'camera', + show=show) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/smoke_mono3d.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/smoke_mono3d.py new file mode 100644 index 000000000..241187fa2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/smoke_mono3d.py @@ -0,0 +1,21 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .single_stage_mono3d import SingleStageMono3DDetector + + +@DETECTORS.register_module() +class SMOKEMono3D(SingleStageMono3DDetector): + r"""SMOKE `_ for monocular 3D object + detection. + + """ + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(SMOKEMono3D, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/ssd3dnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/ssd3dnet.py new file mode 100644 index 000000000..fd5e310c9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/ssd3dnet.py @@ -0,0 +1,26 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from ..builder import DETECTORS +from .votenet import VoteNet + + +@DETECTORS.register_module() +class SSD3DNet(VoteNet): + """3DSSDNet model. + + https://arxiv.org/abs/2002.10187.pdf + """ + + def __init__(self, + backbone, + bbox_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super(SSD3DNet, self).__init__( + backbone=backbone, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg, + pretrained=pretrained) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/two_stage.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/two_stage.py new file mode 100644 index 000000000..707f706d5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/two_stage.py @@ -0,0 +1,51 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmdet.models import TwoStageDetector +from ..builder import DETECTORS, build_backbone, build_head, build_neck +from .base import Base3DDetector + + +@DETECTORS.register_module() +class TwoStage3DDetector(Base3DDetector, TwoStageDetector): + """Base class of two-stage 3D detector. + + It inherits original ``:class:TwoStageDetector`` and + ``:class:Base3DDetector``. This class could serve as a base class for all + two-stage 3D detectors. + """ + + def __init__(self, + backbone, + neck=None, + rpn_head=None, + roi_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(TwoStageDetector, self).__init__(init_cfg) + if pretrained: + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + backbone.pretrained = pretrained + self.backbone = build_backbone(backbone) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + if neck is not None: + self.neck = build_neck(neck) + + if rpn_head is not None: + rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None + rpn_head_ = rpn_head.copy() + rpn_head_.update(train_cfg=rpn_train_cfg, test_cfg=test_cfg.rpn) + self.rpn_head = build_head(rpn_head_) + + if roi_head is not None: + # update train and test cfg here for now + # TODO: refactor assigner & sampler + rcnn_train_cfg = train_cfg.rcnn if train_cfg is not None else None + roi_head.update(train_cfg=rcnn_train_cfg) + roi_head.update(test_cfg=test_cfg.rcnn) + roi_head.pretrained = pretrained + self.roi_head = build_head(roi_head) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/votenet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/votenet.py new file mode 100644 index 000000000..41e41449c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/votenet.py @@ -0,0 +1,107 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from ..builder import DETECTORS +from .single_stage import SingleStage3DDetector + + +@DETECTORS.register_module() +class VoteNet(SingleStage3DDetector): + r"""`VoteNet `_ for 3D detection.""" + + def __init__(self, + backbone, + bbox_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super(VoteNet, self).__init__( + backbone=backbone, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=None, + pretrained=pretrained) + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + gt_bboxes_ignore=None): + """Forward of training. + + Args: + points (list[torch.Tensor]): Points of each batch. + img_metas (list): Image metas. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): gt class labels of each batch. + pts_semantic_mask (list[torch.Tensor]): point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): point-wise instance + label of each batch. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict: Losses. + """ + points_cat = torch.stack(points) + + x = self.extract_feat(points_cat) + bbox_preds = self.bbox_head(x, self.train_cfg.sample_mod) + loss_inputs = (points, gt_bboxes_3d, gt_labels_3d, pts_semantic_mask, + pts_instance_mask, img_metas) + losses = self.bbox_head.loss( + bbox_preds, *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Forward of testing. + + Args: + points (list[torch.Tensor]): Points of each sample. + img_metas (list): Image metas. + rescale (bool): Whether to rescale results. + + Returns: + list: Predicted 3d boxes. + """ + points_cat = torch.stack(points) + + x = self.extract_feat(points_cat) + bbox_preds = self.bbox_head(x, self.test_cfg.sample_mod) + bbox_list = self.bbox_head.get_bboxes( + points_cat, bbox_preds, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test with augmentation.""" + points_cat = [torch.stack(pts) for pts in points] + feats = self.extract_feats(points_cat, img_metas) + + # only support aug_test for one sample + aug_bboxes = [] + for x, pts_cat, img_meta in zip(feats, points_cat, img_metas): + bbox_preds = self.bbox_head(x, self.test_cfg.sample_mod) + bbox_list = self.bbox_head.get_bboxes( + pts_cat, bbox_preds, img_meta, rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/voxelnet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/voxelnet.py new file mode 100644 index 000000000..9276b7d88 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/detectors/voxelnet.py @@ -0,0 +1,130 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import Voxelization +from mmcv.runner import force_fp32 +from torch.nn import functional as F + +from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d +from .. import builder +from ..builder import DETECTORS +from .single_stage import SingleStage3DDetector + + +@DETECTORS.register_module() +class VoxelNet(SingleStage3DDetector): + r"""`VoxelNet `_ for 3D detection.""" + + def __init__(self, + voxel_layer, + voxel_encoder, + middle_encoder, + backbone, + neck=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + init_cfg=None, + pretrained=None): + super(VoxelNet, self).__init__( + backbone=backbone, + neck=neck, + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg, + pretrained=pretrained) + self.voxel_layer = Voxelization(**voxel_layer) + self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder) + self.middle_encoder = builder.build_middle_encoder(middle_encoder) + + def extract_feat(self, points, img_metas=None): + """Extract features from points.""" + voxels, num_points, coors = self.voxelize(points) + voxel_features = self.voxel_encoder(voxels, num_points, coors) + batch_size = coors[-1, 0].item() + 1 + x = self.middle_encoder(voxel_features, coors, batch_size) + x = self.backbone(x) + if self.with_neck: + x = self.neck(x) + return x + + @torch.no_grad() + @force_fp32() + def voxelize(self, points): + """Apply hard voxelization to points.""" + voxels, coors, num_points = [], [], [] + for res in points: + res_voxels, res_coors, res_num_points = self.voxel_layer(res) + voxels.append(res_voxels) + coors.append(res_coors) + num_points.append(res_num_points) + voxels = torch.cat(voxels, dim=0) + num_points = torch.cat(num_points, dim=0) + coors_batch = [] + for i, coor in enumerate(coors): + coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) + coors_batch.append(coor_pad) + coors_batch = torch.cat(coors_batch, dim=0) + return voxels, num_points, coors_batch + + def forward_train(self, + points, + img_metas, + gt_bboxes_3d, + gt_labels_3d, + gt_bboxes_ignore=None): + """Training forward function. + + Args: + points (list[torch.Tensor]): Point cloud of each sample. + img_metas (list[dict]): Meta information of each sample + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + gt_labels_3d (list[torch.Tensor]): Ground truth labels for + boxes of each sampole + gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth + boxes to be ignored. Defaults to None. + + Returns: + dict: Losses of each branch. + """ + x = self.extract_feat(points, img_metas) + outs = self.bbox_head(x) + loss_inputs = outs + (gt_bboxes_3d, gt_labels_3d, img_metas) + losses = self.bbox_head.loss( + *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) + return losses + + def simple_test(self, points, img_metas, imgs=None, rescale=False): + """Test function without augmentaiton.""" + x = self.extract_feat(points, img_metas) + outs = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes( + *outs, img_metas, rescale=rescale) + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def aug_test(self, points, img_metas, imgs=None, rescale=False): + """Test function with augmentaiton.""" + feats = self.extract_feats(points, img_metas) + + # only support aug_test for one sample + aug_bboxes = [] + for x, img_meta in zip(feats, img_metas): + outs = self.bbox_head(x) + bbox_list = self.bbox_head.get_bboxes( + *outs, img_meta, rescale=rescale) + bbox_list = [ + dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels) + for bboxes, scores, labels in bbox_list + ] + aug_bboxes.append(bbox_list[0]) + + # after merging, bboxes will be rescaled to the original image size + merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas, + self.bbox_head.test_cfg) + + return [merged_bboxes] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/__init__.py new file mode 100644 index 000000000..6df4741d7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .coord_transform import (apply_3d_transformation, bbox_2d_transform, + coord_2d_transform) +from .point_fusion import PointFusion +from .vote_fusion import VoteFusion + +__all__ = [ + 'PointFusion', 'VoteFusion', 'apply_3d_transformation', + 'bbox_2d_transform', 'coord_2d_transform' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/coord_transform.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/coord_transform.py new file mode 100644 index 000000000..9c6929b05 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/coord_transform.py @@ -0,0 +1,222 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from functools import partial + +import torch + +from mmdet3d.core.points import get_points_type + + +def apply_3d_transformation(pcd, coord_type, img_meta, reverse=False): + """Apply transformation to input point cloud. + + Args: + pcd (torch.Tensor): The point cloud to be transformed. + coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. + img_meta(dict): Meta info regarding data transformation. + reverse (bool): Reversed transformation or not. + + Note: + The elements in img_meta['transformation_3d_flow']: + "T" stands for translation; + "S" stands for scale; + "R" stands for rotation; + "HF" stands for horizontal flip; + "VF" stands for vertical flip. + + Returns: + torch.Tensor: The transformed point cloud. + """ + + dtype = pcd.dtype + device = pcd.device + + pcd_rotate_mat = ( + torch.tensor(img_meta['pcd_rotation'], dtype=dtype, device=device) + if 'pcd_rotation' in img_meta else torch.eye( + 3, dtype=dtype, device=device)) + + pcd_scale_factor = ( + img_meta['pcd_scale_factor'] if 'pcd_scale_factor' in img_meta else 1.) + + pcd_trans_factor = ( + torch.tensor(img_meta['pcd_trans'], dtype=dtype, device=device) + if 'pcd_trans' in img_meta else torch.zeros( + (3), dtype=dtype, device=device)) + + pcd_horizontal_flip = img_meta[ + 'pcd_horizontal_flip'] if 'pcd_horizontal_flip' in \ + img_meta else False + + pcd_vertical_flip = img_meta[ + 'pcd_vertical_flip'] if 'pcd_vertical_flip' in \ + img_meta else False + + flow = img_meta['transformation_3d_flow'] \ + if 'transformation_3d_flow' in img_meta else [] + + pcd = pcd.clone() # prevent inplace modification + pcd = get_points_type(coord_type)(pcd) + + horizontal_flip_func = partial(pcd.flip, bev_direction='horizontal') \ + if pcd_horizontal_flip else lambda: None + vertical_flip_func = partial(pcd.flip, bev_direction='vertical') \ + if pcd_vertical_flip else lambda: None + if reverse: + scale_func = partial(pcd.scale, scale_factor=1.0 / pcd_scale_factor) + translate_func = partial(pcd.translate, trans_vector=-pcd_trans_factor) + # pcd_rotate_mat @ pcd_rotate_mat.inverse() is not + # exactly an identity matrix + # use angle to create the inverse rot matrix neither. + # rotate_func = partial(pcd.rotate, rotation=pcd_rotate_mat.inverse()) + + device = pcd_rotate_mat.device + rotation_ = pcd_rotate_mat.cpu().inverse().to(device) + rotate_func = partial(pcd.rotate, rotation=rotation_) + + # reverse the pipeline + flow = flow[::-1] + else: + scale_func = partial(pcd.scale, scale_factor=pcd_scale_factor) + translate_func = partial(pcd.translate, trans_vector=pcd_trans_factor) + rotate_func = partial(pcd.rotate, rotation=pcd_rotate_mat) + + flow_mapping = { + 'T': translate_func, + 'S': scale_func, + 'R': rotate_func, + 'HF': horizontal_flip_func, + 'VF': vertical_flip_func + } + for op in flow: + assert op in flow_mapping, f'This 3D data '\ + f'transformation op ({op}) is not supported' + func = flow_mapping[op] + func() + + return pcd.coord + + +def extract_2d_info(img_meta, tensor): + """Extract image augmentation information from img_meta. + + Args: + img_meta(dict): Meta info regarding data transformation. + tensor(torch.Tensor): Input tensor used to create new ones. + + Returns: + (int, int, int, int, torch.Tensor, bool, torch.Tensor): + The extracted information. + """ + img_shape = img_meta['img_shape'] + ori_shape = img_meta['ori_shape'] + img_h, img_w, _ = img_shape + ori_h, ori_w, _ = ori_shape + + img_scale_factor = ( + tensor.new_tensor(img_meta['scale_factor'][:2]) + if 'scale_factor' in img_meta else tensor.new_tensor([1.0, 1.0])) + img_flip = img_meta['flip'] if 'flip' in img_meta else False + img_crop_offset = ( + tensor.new_tensor(img_meta['img_crop_offset']) + if 'img_crop_offset' in img_meta else tensor.new_tensor([0.0, 0.0])) + + return (img_h, img_w, ori_h, ori_w, img_scale_factor, img_flip, + img_crop_offset) + + +def bbox_2d_transform(img_meta, bbox_2d, ori2new): + """Transform 2d bbox according to img_meta. + + Args: + img_meta(dict): Meta info regarding data transformation. + bbox_2d (torch.Tensor): Shape (..., >4) + The input 2d bboxes to transform. + ori2new (bool): Origin img coord system to new or not. + + Returns: + torch.Tensor: The transformed 2d bboxes. + """ + + img_h, img_w, ori_h, ori_w, img_scale_factor, img_flip, \ + img_crop_offset = extract_2d_info(img_meta, bbox_2d) + + bbox_2d_new = bbox_2d.clone() + + if ori2new: + bbox_2d_new[:, 0] = bbox_2d_new[:, 0] * img_scale_factor[0] + bbox_2d_new[:, 2] = bbox_2d_new[:, 2] * img_scale_factor[0] + bbox_2d_new[:, 1] = bbox_2d_new[:, 1] * img_scale_factor[1] + bbox_2d_new[:, 3] = bbox_2d_new[:, 3] * img_scale_factor[1] + + bbox_2d_new[:, 0] = bbox_2d_new[:, 0] + img_crop_offset[0] + bbox_2d_new[:, 2] = bbox_2d_new[:, 2] + img_crop_offset[0] + bbox_2d_new[:, 1] = bbox_2d_new[:, 1] + img_crop_offset[1] + bbox_2d_new[:, 3] = bbox_2d_new[:, 3] + img_crop_offset[1] + + if img_flip: + bbox_2d_r = img_w - bbox_2d_new[:, 0] + bbox_2d_l = img_w - bbox_2d_new[:, 2] + bbox_2d_new[:, 0] = bbox_2d_l + bbox_2d_new[:, 2] = bbox_2d_r + else: + if img_flip: + bbox_2d_r = img_w - bbox_2d_new[:, 0] + bbox_2d_l = img_w - bbox_2d_new[:, 2] + bbox_2d_new[:, 0] = bbox_2d_l + bbox_2d_new[:, 2] = bbox_2d_r + + bbox_2d_new[:, 0] = bbox_2d_new[:, 0] - img_crop_offset[0] + bbox_2d_new[:, 2] = bbox_2d_new[:, 2] - img_crop_offset[0] + bbox_2d_new[:, 1] = bbox_2d_new[:, 1] - img_crop_offset[1] + bbox_2d_new[:, 3] = bbox_2d_new[:, 3] - img_crop_offset[1] + + bbox_2d_new[:, 0] = bbox_2d_new[:, 0] / img_scale_factor[0] + bbox_2d_new[:, 2] = bbox_2d_new[:, 2] / img_scale_factor[0] + bbox_2d_new[:, 1] = bbox_2d_new[:, 1] / img_scale_factor[1] + bbox_2d_new[:, 3] = bbox_2d_new[:, 3] / img_scale_factor[1] + + return bbox_2d_new + + +def coord_2d_transform(img_meta, coord_2d, ori2new): + """Transform 2d pixel coordinates according to img_meta. + + Args: + img_meta(dict): Meta info regarding data transformation. + coord_2d (torch.Tensor): Shape (..., 2) + The input 2d coords to transform. + ori2new (bool): Origin img coord system to new or not. + + Returns: + torch.Tensor: The transformed 2d coordinates. + """ + + img_h, img_w, ori_h, ori_w, img_scale_factor, img_flip, \ + img_crop_offset = extract_2d_info(img_meta, coord_2d) + + coord_2d_new = coord_2d.clone() + + if ori2new: + # TODO here we assume this order of transformation + coord_2d_new[..., 0] = coord_2d_new[..., 0] * img_scale_factor[0] + coord_2d_new[..., 1] = coord_2d_new[..., 1] * img_scale_factor[1] + + coord_2d_new[..., 0] += img_crop_offset[0] + coord_2d_new[..., 1] += img_crop_offset[1] + + # flip uv coordinates and bbox + if img_flip: + coord_2d_new[..., 0] = img_w - coord_2d_new[..., 0] + else: + if img_flip: + coord_2d_new[..., 0] = img_w - coord_2d_new[..., 0] + + coord_2d_new[..., 0] -= img_crop_offset[0] + coord_2d_new[..., 1] -= img_crop_offset[1] + + coord_2d_new[..., 0] = coord_2d_new[..., 0] / img_scale_factor[0] + coord_2d_new[..., 1] = coord_2d_new[..., 1] / img_scale_factor[1] + + return coord_2d_new diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/point_fusion.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/point_fusion.py new file mode 100644 index 000000000..97b417776 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/point_fusion.py @@ -0,0 +1,306 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.core.bbox.structures import (get_proj_mat_by_coord_type, + points_cam2img) +from ..builder import FUSION_LAYERS +from . import apply_3d_transformation + + +def point_sample(img_meta, + img_features, + points, + proj_mat, + coord_type, + img_scale_factor, + img_crop_offset, + img_flip, + img_pad_shape, + img_shape, + aligned=True, + padding_mode='zeros', + align_corners=True): + """Obtain image features using points. + + Args: + img_meta (dict): Meta info. + img_features (torch.Tensor): 1 x C x H x W image features. + points (torch.Tensor): Nx3 point cloud in LiDAR coordinates. + proj_mat (torch.Tensor): 4x4 transformation matrix. + coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. + img_scale_factor (torch.Tensor): Scale factor with shape of + (w_scale, h_scale). + img_crop_offset (torch.Tensor): Crop offset used to crop + image during data augmentation with shape of (w_offset, h_offset). + img_flip (bool): Whether the image is flipped. + img_pad_shape (tuple[int]): int tuple indicates the h & w after + padding, this is necessary to obtain features in feature map. + img_shape (tuple[int]): int tuple indicates the h & w before padding + after scaling, this is necessary for flipping coordinates. + aligned (bool, optional): Whether use bilinear interpolation when + sampling image features for each point. Defaults to True. + padding_mode (str, optional): Padding mode when padding values for + features of out-of-image points. Defaults to 'zeros'. + align_corners (bool, optional): Whether to align corners when + sampling image features for each point. Defaults to True. + + Returns: + torch.Tensor: NxC image features sampled by point coordinates. + """ + + # apply transformation based on info in img_meta + points = apply_3d_transformation( + points, coord_type, img_meta, reverse=True) + + # project points to camera coordinate + pts_2d = points_cam2img(points, proj_mat) + + # img transformation: scale -> crop -> flip + # the image is resized by img_scale_factor + img_coors = pts_2d[:, 0:2] * img_scale_factor # Nx2 + img_coors -= img_crop_offset + + # grid sample, the valid grid range should be in [-1,1] + coor_x, coor_y = torch.split(img_coors, 1, dim=1) # each is Nx1 + + if img_flip: + # by default we take it as horizontal flip + # use img_shape before padding for flip + orig_h, orig_w = img_shape + coor_x = orig_w - coor_x + + h, w = img_pad_shape + coor_y = coor_y / h * 2 - 1 + coor_x = coor_x / w * 2 - 1 + grid = torch.cat([coor_x, coor_y], + dim=1).unsqueeze(0).unsqueeze(0) # Nx2 -> 1x1xNx2 + + # align_corner=True provides higher performance + mode = 'bilinear' if aligned else 'nearest' + point_features = F.grid_sample( + img_features, + grid, + mode=mode, + padding_mode=padding_mode, + align_corners=align_corners) # 1xCx1xN feats + + return point_features.squeeze().t() + + +@FUSION_LAYERS.register_module() +class PointFusion(BaseModule): + """Fuse image features from multi-scale features. + + Args: + img_channels (list[int] | int): Channels of image features. + It could be a list if the input is multi-scale image features. + pts_channels (int): Channels of point features + mid_channels (int): Channels of middle layers + out_channels (int): Channels of output fused features + img_levels (int, optional): Number of image levels. Defaults to 3. + coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. + Defaults to 'LIDAR'. + conv_cfg (dict, optional): Dict config of conv layers of middle + layers. Defaults to None. + norm_cfg (dict, optional): Dict config of norm layers of middle + layers. Defaults to None. + act_cfg (dict, optional): Dict config of activatation layers. + Defaults to None. + activate_out (bool, optional): Whether to apply relu activation + to output features. Defaults to True. + fuse_out (bool, optional): Whether apply conv layer to the fused + features. Defaults to False. + dropout_ratio (int, float, optional): Dropout ratio of image + features to prevent overfitting. Defaults to 0. + aligned (bool, optional): Whether apply aligned feature fusion. + Defaults to True. + align_corners (bool, optional): Whether to align corner when + sampling features according to points. Defaults to True. + padding_mode (str, optional): Mode used to pad the features of + points that do not have corresponding image features. + Defaults to 'zeros'. + lateral_conv (bool, optional): Whether to apply lateral convs + to image features. Defaults to True. + """ + + def __init__(self, + img_channels, + pts_channels, + mid_channels, + out_channels, + img_levels=3, + coord_type='LIDAR', + conv_cfg=None, + norm_cfg=None, + act_cfg=None, + init_cfg=None, + activate_out=True, + fuse_out=False, + dropout_ratio=0, + aligned=True, + align_corners=True, + padding_mode='zeros', + lateral_conv=True): + super(PointFusion, self).__init__(init_cfg=init_cfg) + if isinstance(img_levels, int): + img_levels = [img_levels] + if isinstance(img_channels, int): + img_channels = [img_channels] * len(img_levels) + assert isinstance(img_levels, list) + assert isinstance(img_channels, list) + assert len(img_channels) == len(img_levels) + + self.img_levels = img_levels + self.coord_type = coord_type + self.act_cfg = act_cfg + self.activate_out = activate_out + self.fuse_out = fuse_out + self.dropout_ratio = dropout_ratio + self.img_channels = img_channels + self.aligned = aligned + self.align_corners = align_corners + self.padding_mode = padding_mode + + self.lateral_convs = None + if lateral_conv: + self.lateral_convs = nn.ModuleList() + for i in range(len(img_channels)): + l_conv = ConvModule( + img_channels[i], + mid_channels, + 3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=self.act_cfg, + inplace=False) + self.lateral_convs.append(l_conv) + self.img_transform = nn.Sequential( + nn.Linear(mid_channels * len(img_channels), out_channels), + nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), + ) + else: + self.img_transform = nn.Sequential( + nn.Linear(sum(img_channels), out_channels), + nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), + ) + self.pts_transform = nn.Sequential( + nn.Linear(pts_channels, out_channels), + nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), + ) + + if self.fuse_out: + self.fuse_conv = nn.Sequential( + nn.Linear(mid_channels, out_channels), + # For pts the BN is initialized differently by default + # TODO: check whether this is necessary + nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), + nn.ReLU(inplace=False)) + + if init_cfg is None: + self.init_cfg = [ + dict(type='Xavier', layer='Conv2d', distribution='uniform'), + dict(type='Xavier', layer='Linear', distribution='uniform') + ] + + def forward(self, img_feats, pts, pts_feats, img_metas): + """Forward function. + + Args: + img_feats (list[torch.Tensor]): Image features. + pts: [list[torch.Tensor]]: A batch of points with shape N x 3. + pts_feats (torch.Tensor): A tensor consist of point features of the + total batch. + img_metas (list[dict]): Meta information of images. + + Returns: + torch.Tensor: Fused features of each point. + """ + img_pts = self.obtain_mlvl_feats(img_feats, pts, img_metas) + img_pre_fuse = self.img_transform(img_pts) + if self.training and self.dropout_ratio > 0: + img_pre_fuse = F.dropout(img_pre_fuse, self.dropout_ratio) + pts_pre_fuse = self.pts_transform(pts_feats) + + fuse_out = img_pre_fuse + pts_pre_fuse + if self.activate_out: + fuse_out = F.relu(fuse_out) + if self.fuse_out: + fuse_out = self.fuse_conv(fuse_out) + + return fuse_out + + def obtain_mlvl_feats(self, img_feats, pts, img_metas): + """Obtain multi-level features for each point. + + Args: + img_feats (list(torch.Tensor)): Multi-scale image features produced + by image backbone in shape (N, C, H, W). + pts (list[torch.Tensor]): Points of each sample. + img_metas (list[dict]): Meta information for each sample. + + Returns: + torch.Tensor: Corresponding image features of each point. + """ + if self.lateral_convs is not None: + img_ins = [ + lateral_conv(img_feats[i]) + for i, lateral_conv in zip(self.img_levels, self.lateral_convs) + ] + else: + img_ins = img_feats + img_feats_per_point = [] + # Sample multi-level features + for i in range(len(img_metas)): + mlvl_img_feats = [] + for level in range(len(self.img_levels)): + mlvl_img_feats.append( + self.sample_single(img_ins[level][i:i + 1], pts[i][:, :3], + img_metas[i])) + mlvl_img_feats = torch.cat(mlvl_img_feats, dim=-1) + img_feats_per_point.append(mlvl_img_feats) + + img_pts = torch.cat(img_feats_per_point, dim=0) + return img_pts + + def sample_single(self, img_feats, pts, img_meta): + """Sample features from single level image feature map. + + Args: + img_feats (torch.Tensor): Image feature map in shape + (1, C, H, W). + pts (torch.Tensor): Points of a single sample. + img_meta (dict): Meta information of the single sample. + + Returns: + torch.Tensor: Single level image features of each point. + """ + # TODO: image transformation also extracted + img_scale_factor = ( + pts.new_tensor(img_meta['scale_factor'][:2]) + if 'scale_factor' in img_meta.keys() else 1) + img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False + img_crop_offset = ( + pts.new_tensor(img_meta['img_crop_offset']) + if 'img_crop_offset' in img_meta.keys() else 0) + proj_mat = get_proj_mat_by_coord_type(img_meta, self.coord_type) + img_pts = point_sample( + img_meta=img_meta, + img_features=img_feats, + points=pts, + proj_mat=pts.new_tensor(proj_mat), + coord_type=self.coord_type, + img_scale_factor=img_scale_factor, + img_crop_offset=img_crop_offset, + img_flip=img_flip, + img_pad_shape=img_meta['input_shape'][:2], + img_shape=img_meta['img_shape'][:2], + aligned=self.aligned, + padding_mode=self.padding_mode, + align_corners=self.align_corners, + ) + return img_pts diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/vote_fusion.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/vote_fusion.py new file mode 100644 index 000000000..3633e4d20 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/fusion_layers/vote_fusion.py @@ -0,0 +1,200 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn + +from mmdet3d.core.bbox import points_cam2img +from ..builder import FUSION_LAYERS +from . import apply_3d_transformation, bbox_2d_transform, coord_2d_transform + +EPS = 1e-6 + + +@FUSION_LAYERS.register_module() +class VoteFusion(nn.Module): + """Fuse 2d features from 3d seeds. + + Args: + num_classes (int): number of classes. + max_imvote_per_pixel (int): max number of imvotes. + """ + + def __init__(self, num_classes=10, max_imvote_per_pixel=3): + super(VoteFusion, self).__init__() + self.num_classes = num_classes + self.max_imvote_per_pixel = max_imvote_per_pixel + + def forward(self, imgs, bboxes_2d_rescaled, seeds_3d_depth, img_metas): + """Forward function. + + Args: + imgs (list[torch.Tensor]): Image features. + bboxes_2d_rescaled (list[torch.Tensor]): 2D bboxes. + seeds_3d_depth (torch.Tensor): 3D seeds. + img_metas (list[dict]): Meta information of images. + + Returns: + torch.Tensor: Concatenated cues of each point. + torch.Tensor: Validity mask of each feature. + """ + img_features = [] + masks = [] + for i, data in enumerate( + zip(imgs, bboxes_2d_rescaled, seeds_3d_depth, img_metas)): + img, bbox_2d_rescaled, seed_3d_depth, img_meta = data + bbox_num = bbox_2d_rescaled.shape[0] + seed_num = seed_3d_depth.shape[0] + + img_shape = img_meta['img_shape'] + img_h, img_w, _ = img_shape + + # first reverse the data transformations + xyz_depth = apply_3d_transformation( + seed_3d_depth, 'DEPTH', img_meta, reverse=True) + + # project points from depth to image + depth2img = xyz_depth.new_tensor(img_meta['depth2img']) + uvz_origin = points_cam2img(xyz_depth, depth2img, True) + z_cam = uvz_origin[..., 2] + uv_origin = (uvz_origin[..., :2] - 1).round() + + # rescale 2d coordinates and bboxes + uv_rescaled = coord_2d_transform(img_meta, uv_origin, True) + bbox_2d_origin = bbox_2d_transform(img_meta, bbox_2d_rescaled, + False) + + if bbox_num == 0: + imvote_num = seed_num * self.max_imvote_per_pixel + + # use zero features + two_cues = torch.zeros((15, imvote_num), + device=seed_3d_depth.device) + mask_zero = torch.zeros( + imvote_num - seed_num, device=seed_3d_depth.device).bool() + mask_one = torch.ones( + seed_num, device=seed_3d_depth.device).bool() + mask = torch.cat([mask_one, mask_zero], dim=0) + else: + # expand bboxes and seeds + bbox_expanded = bbox_2d_origin.view(1, bbox_num, -1).expand( + seed_num, -1, -1) + seed_2d_expanded = uv_origin.view(seed_num, 1, + -1).expand(-1, bbox_num, -1) + seed_2d_expanded_x, seed_2d_expanded_y = \ + seed_2d_expanded.split(1, dim=-1) + + bbox_expanded_l, bbox_expanded_t, bbox_expanded_r, \ + bbox_expanded_b, bbox_expanded_conf, bbox_expanded_cls = \ + bbox_expanded.split(1, dim=-1) + bbox_expanded_midx = (bbox_expanded_l + bbox_expanded_r) / 2 + bbox_expanded_midy = (bbox_expanded_t + bbox_expanded_b) / 2 + + seed_2d_in_bbox_x = (seed_2d_expanded_x > bbox_expanded_l) * \ + (seed_2d_expanded_x < bbox_expanded_r) + seed_2d_in_bbox_y = (seed_2d_expanded_y > bbox_expanded_t) * \ + (seed_2d_expanded_y < bbox_expanded_b) + seed_2d_in_bbox = seed_2d_in_bbox_x * seed_2d_in_bbox_y + + # semantic cues, dim=class_num + sem_cue = torch.zeros_like(bbox_expanded_conf).expand( + -1, -1, self.num_classes) + sem_cue = sem_cue.scatter(-1, bbox_expanded_cls.long(), + bbox_expanded_conf) + + # bbox center - uv + delta_u = bbox_expanded_midx - seed_2d_expanded_x + delta_v = bbox_expanded_midy - seed_2d_expanded_y + + seed_3d_expanded = seed_3d_depth.view(seed_num, 1, -1).expand( + -1, bbox_num, -1) + + z_cam = z_cam.view(seed_num, 1, 1).expand(-1, bbox_num, -1) + imvote = torch.cat( + [delta_u, delta_v, + torch.zeros_like(delta_v)], dim=-1).view(-1, 3) + imvote = imvote * z_cam.reshape(-1, 1) + imvote = imvote @ torch.inverse(depth2img.t()) + + # apply transformation to lifted imvotes + imvote = apply_3d_transformation( + imvote, 'DEPTH', img_meta, reverse=False) + + seed_3d_expanded = seed_3d_expanded.reshape(imvote.shape) + + # ray angle + ray_angle = seed_3d_expanded + imvote + ray_angle /= torch.sqrt(torch.sum(ray_angle**2, -1) + + EPS).unsqueeze(-1) + + # imvote lifted to 3d + xz = ray_angle[:, [0, 2]] / (ray_angle[:, [1]] + EPS) \ + * seed_3d_expanded[:, [1]] - seed_3d_expanded[:, [0, 2]] + + # geometric cues, dim=5 + geo_cue = torch.cat([xz, ray_angle], + dim=-1).view(seed_num, -1, 5) + + two_cues = torch.cat([geo_cue, sem_cue], dim=-1) + # mask to 0 if seed not in bbox + two_cues = two_cues * seed_2d_in_bbox.float() + + feature_size = two_cues.shape[-1] + # if bbox number is too small, append zeros + if bbox_num < self.max_imvote_per_pixel: + append_num = self.max_imvote_per_pixel - bbox_num + append_zeros = torch.zeros( + (seed_num, append_num, 1), + device=seed_2d_in_bbox.device).bool() + seed_2d_in_bbox = torch.cat( + [seed_2d_in_bbox, append_zeros], dim=1) + append_zeros = torch.zeros( + (seed_num, append_num, feature_size), + device=two_cues.device) + two_cues = torch.cat([two_cues, append_zeros], dim=1) + append_zeros = torch.zeros((seed_num, append_num, 1), + device=two_cues.device) + bbox_expanded_conf = torch.cat( + [bbox_expanded_conf, append_zeros], dim=1) + + # sort the valid seed-bbox pair according to confidence + pair_score = seed_2d_in_bbox.float() + bbox_expanded_conf + # and find the largests + mask, indices = pair_score.topk( + self.max_imvote_per_pixel, + dim=1, + largest=True, + sorted=True) + + indices_img = indices.expand(-1, -1, feature_size) + two_cues = two_cues.gather(dim=1, index=indices_img) + two_cues = two_cues.transpose(1, 0) + two_cues = two_cues.reshape(-1, feature_size).transpose( + 1, 0).contiguous() + + # since conf is ~ (0, 1), floor gives us validity + mask = mask.floor().int() + mask = mask.transpose(1, 0).reshape(-1).bool() + + # clear the padding + img = img[:, :img_shape[0], :img_shape[1]] + img_flatten = img.reshape(3, -1).float() + img_flatten /= 255. + + # take the normalized pixel value as texture cue + uv_rescaled[:, 0] = torch.clamp(uv_rescaled[:, 0].round(), 0, + img_shape[1] - 1) + uv_rescaled[:, 1] = torch.clamp(uv_rescaled[:, 1].round(), 0, + img_shape[0] - 1) + uv_flatten = uv_rescaled[:, 1].round() * \ + img_shape[1] + uv_rescaled[:, 0].round() + uv_expanded = uv_flatten.unsqueeze(0).expand(3, -1).long() + txt_cue = torch.gather(img_flatten, dim=-1, index=uv_expanded) + txt_cue = txt_cue.unsqueeze(1).expand(-1, + self.max_imvote_per_pixel, + -1).reshape(3, -1) + + # append texture cue + img_feature = torch.cat([two_cues, txt_cue], dim=0) + img_features.append(img_feature) + masks.append(mask) + + return torch.stack(img_features, 0), torch.stack(masks, 0) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/__init__.py new file mode 100644 index 000000000..dcdc69ab6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.losses import FocalLoss, SmoothL1Loss, binary_cross_entropy +from .axis_aligned_iou_loss import AxisAlignedIoULoss, axis_aligned_iou_loss +from .chamfer_distance import ChamferDistance, chamfer_distance +from .multibin_loss import MultiBinLoss +from .paconv_regularization_loss import PAConvRegularizationLoss +from .uncertain_smooth_l1_loss import UncertainL1Loss, UncertainSmoothL1Loss + +__all__ = [ + 'FocalLoss', 'SmoothL1Loss', 'binary_cross_entropy', 'ChamferDistance', + 'chamfer_distance', 'axis_aligned_iou_loss', 'AxisAlignedIoULoss', + 'PAConvRegularizationLoss', 'UncertainL1Loss', 'UncertainSmoothL1Loss', + 'MultiBinLoss' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/axis_aligned_iou_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/axis_aligned_iou_loss.py new file mode 100644 index 000000000..428d7bb86 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/axis_aligned_iou_loss.py @@ -0,0 +1,79 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn + +from mmdet.models.losses.utils import weighted_loss +from ...core.bbox import AxisAlignedBboxOverlaps3D +from ..builder import LOSSES + + +@weighted_loss +def axis_aligned_iou_loss(pred, target): + """Calculate the IoU loss (1-IoU) of two set of axis aligned bounding + boxes. Note that predictions and targets are one-to-one corresponded. + + Args: + pred (torch.Tensor): Bbox predictions with shape [..., 3]. + target (torch.Tensor): Bbox targets (gt) with shape [..., 3]. + + Returns: + torch.Tensor: IoU loss between predictions and targets. + """ + + axis_aligned_iou = AxisAlignedBboxOverlaps3D()( + pred, target, is_aligned=True) + iou_loss = 1 - axis_aligned_iou + return iou_loss + + +@LOSSES.register_module() +class AxisAlignedIoULoss(nn.Module): + """Calculate the IoU loss (1-IoU) of axis aligned bounding boxes. + + Args: + reduction (str): Method to reduce losses. + The valid reduction method are none, sum or mean. + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + """ + + def __init__(self, reduction='mean', loss_weight=1.0): + super(AxisAlignedIoULoss, self).__init__() + assert reduction in ['none', 'sum', 'mean'] + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function of loss calculation. + + Args: + pred (torch.Tensor): Bbox predictions with shape [..., 3]. + target (torch.Tensor): Bbox targets (gt) with shape [..., 3]. + weight (torch.Tensor | float, optional): Weight of loss. + Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): Method to reduce losses. + The valid reduction method are 'none', 'sum' or 'mean'. + Defaults to None. + + Returns: + torch.Tensor: IoU loss between predictions and targets. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if (weight is not None) and (not torch.any(weight > 0)) and ( + reduction != 'none'): + return (pred * weight).sum() + return axis_aligned_iou_loss( + pred, + target, + weight=weight, + avg_factor=avg_factor, + reduction=reduction) * self.loss_weight diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/chamfer_distance.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/chamfer_distance.py new file mode 100644 index 000000000..8ad109d7a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/chamfer_distance.py @@ -0,0 +1,147 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn +from torch.nn.functional import l1_loss, mse_loss, smooth_l1_loss + +from ..builder import LOSSES + + +def chamfer_distance(src, + dst, + src_weight=1.0, + dst_weight=1.0, + criterion_mode='l2', + reduction='mean'): + """Calculate Chamfer Distance of two sets. + + Args: + src (torch.Tensor): Source set with shape [B, N, C] to + calculate Chamfer Distance. + dst (torch.Tensor): Destination set with shape [B, M, C] to + calculate Chamfer Distance. + src_weight (torch.Tensor or float): Weight of source loss. + dst_weight (torch.Tensor or float): Weight of destination loss. + criterion_mode (str): Criterion mode to calculate distance. + The valid modes are smooth_l1, l1 or l2. + reduction (str): Method to reduce losses. + The valid reduction method are 'none', 'sum' or 'mean'. + + Returns: + tuple: Source and Destination loss with the corresponding indices. + + - loss_src (torch.Tensor): The min distance + from source to destination. + - loss_dst (torch.Tensor): The min distance + from destination to source. + - indices1 (torch.Tensor): Index the min distance point + for each point in source to destination. + - indices2 (torch.Tensor): Index the min distance point + for each point in destination to source. + """ + + if criterion_mode == 'smooth_l1': + criterion = smooth_l1_loss + elif criterion_mode == 'l1': + criterion = l1_loss + elif criterion_mode == 'l2': + criterion = mse_loss + else: + raise NotImplementedError + + src_expand = src.unsqueeze(2).repeat(1, 1, dst.shape[1], 1) + dst_expand = dst.unsqueeze(1).repeat(1, src.shape[1], 1, 1) + + distance = criterion(src_expand, dst_expand, reduction='none').sum(-1) + src2dst_distance, indices1 = torch.min(distance, dim=2) # (B,N) + dst2src_distance, indices2 = torch.min(distance, dim=1) # (B,M) + + loss_src = (src2dst_distance * src_weight) + loss_dst = (dst2src_distance * dst_weight) + + if reduction == 'sum': + loss_src = torch.sum(loss_src) + loss_dst = torch.sum(loss_dst) + elif reduction == 'mean': + loss_src = torch.mean(loss_src) + loss_dst = torch.mean(loss_dst) + elif reduction == 'none': + pass + else: + raise NotImplementedError + + return loss_src, loss_dst, indices1, indices2 + + +@LOSSES.register_module() +class ChamferDistance(nn.Module): + """Calculate Chamfer Distance of two sets. + + Args: + mode (str): Criterion mode to calculate distance. + The valid modes are smooth_l1, l1 or l2. + reduction (str): Method to reduce losses. + The valid reduction method are none, sum or mean. + loss_src_weight (float): Weight of loss_source. + loss_dst_weight (float): Weight of loss_target. + """ + + def __init__(self, + mode='l2', + reduction='mean', + loss_src_weight=1.0, + loss_dst_weight=1.0): + super(ChamferDistance, self).__init__() + + assert mode in ['smooth_l1', 'l1', 'l2'] + assert reduction in ['none', 'sum', 'mean'] + self.mode = mode + self.reduction = reduction + self.loss_src_weight = loss_src_weight + self.loss_dst_weight = loss_dst_weight + + def forward(self, + source, + target, + src_weight=1.0, + dst_weight=1.0, + reduction_override=None, + return_indices=False, + **kwargs): + """Forward function of loss calculation. + + Args: + source (torch.Tensor): Source set with shape [B, N, C] to + calculate Chamfer Distance. + target (torch.Tensor): Destination set with shape [B, M, C] to + calculate Chamfer Distance. + src_weight (torch.Tensor | float, optional): + Weight of source loss. Defaults to 1.0. + dst_weight (torch.Tensor | float, optional): + Weight of destination loss. Defaults to 1.0. + reduction_override (str, optional): Method to reduce losses. + The valid reduction method are 'none', 'sum' or 'mean'. + Defaults to None. + return_indices (bool, optional): Whether to return indices. + Defaults to False. + + Returns: + tuple[torch.Tensor]: If ``return_indices=True``, return losses of + source and target with their corresponding indices in the + order of ``(loss_source, loss_target, indices1, indices2)``. + If ``return_indices=False``, return + ``(loss_source, loss_target)``. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + + loss_source, loss_target, indices1, indices2 = chamfer_distance( + source, target, src_weight, dst_weight, self.mode, reduction) + + loss_source *= self.loss_src_weight + loss_target *= self.loss_dst_weight + + if return_indices: + return loss_source, loss_target, indices1, indices2 + else: + return loss_source, loss_target diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/multibin_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/multibin_loss.py new file mode 100644 index 000000000..461a19cfb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/multibin_loss.py @@ -0,0 +1,93 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn +from torch.nn import functional as F + +from mmdet.models.losses.utils import weighted_loss +from ..builder import LOSSES + + +@weighted_loss +def multibin_loss(pred_orientations, gt_orientations, num_dir_bins=4): + """Multi-Bin Loss. + + Args: + pred_orientations(torch.Tensor): Predicted local vector + orientation in [axis_cls, head_cls, sin, cos] format. + shape (N, num_dir_bins * 4) + gt_orientations(torch.Tensor): Corresponding gt bboxes, + shape (N, num_dir_bins * 2). + num_dir_bins(int, optional): Number of bins to encode + direction angle. + Defaults: 4. + + Return: + torch.Tensor: Loss tensor. + """ + cls_losses = 0 + reg_losses = 0 + reg_cnt = 0 + for i in range(num_dir_bins): + # bin cls loss + cls_ce_loss = F.cross_entropy( + pred_orientations[:, (i * 2):(i * 2 + 2)], + gt_orientations[:, i].long(), + reduction='mean') + # regression loss + valid_mask_i = (gt_orientations[:, i] == 1) + cls_losses += cls_ce_loss + if valid_mask_i.sum() > 0: + start = num_dir_bins * 2 + i * 2 + end = start + 2 + pred_offset = F.normalize(pred_orientations[valid_mask_i, + start:end]) + gt_offset_sin = torch.sin(gt_orientations[valid_mask_i, + num_dir_bins + i]) + gt_offset_cos = torch.cos(gt_orientations[valid_mask_i, + num_dir_bins + i]) + reg_loss = \ + F.l1_loss(pred_offset[:, 0], gt_offset_sin, + reduction='none') + \ + F.l1_loss(pred_offset[:, 1], gt_offset_cos, + reduction='none') + + reg_losses += reg_loss.sum() + reg_cnt += valid_mask_i.sum() + + return cls_losses / num_dir_bins + reg_losses / reg_cnt + + +@LOSSES.register_module() +class MultiBinLoss(nn.Module): + """Multi-Bin Loss for orientation. + + Args: + reduction (str, optional): The method to reduce the loss. + Options are 'none', 'mean' and 'sum'. Defaults to 'none'. + loss_weight (float, optional): The weight of loss. Defaults + to 1.0. + """ + + def __init__(self, reduction='none', loss_weight=1.0): + super(MultiBinLoss, self).__init__() + assert reduction in ['none', 'sum', 'mean'] + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, pred, target, num_dir_bins, reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + num_dir_bins (int): Number of bins to encode direction angle. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss = self.loss_weight * multibin_loss( + pred, target, num_dir_bins=num_dir_bins, reduction=reduction) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/paconv_regularization_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/paconv_regularization_loss.py new file mode 100644 index 000000000..20017909c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/paconv_regularization_loss.py @@ -0,0 +1,108 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn + +from mmdet3d.ops import PAConv, PAConvCUDA +from mmdet.models.losses.utils import weight_reduce_loss +from ..builder import LOSSES + + +def weight_correlation(conv): + """Calculate correlations between kernel weights in Conv's weight bank as + regularization loss. The cosine similarity is used as metrics. + + Args: + conv (nn.Module): A Conv modules to be regularized. + Currently we only support `PAConv` and `PAConvCUDA`. + + Returns: + torch.Tensor: Correlations between each kernel weights in weight bank. + """ + assert isinstance(conv, (PAConv, PAConvCUDA)), \ + f'unsupported module type {type(conv)}' + kernels = conv.weight_bank # [C_in, num_kernels * C_out] + in_channels = conv.in_channels + out_channels = conv.out_channels + num_kernels = conv.num_kernels + + # [num_kernels, Cin * Cout] + flatten_kernels = kernels.view(in_channels, num_kernels, out_channels).\ + permute(1, 0, 2).reshape(num_kernels, -1) + # [num_kernels, num_kernels] + inner_product = torch.matmul(flatten_kernels, flatten_kernels.T) + # [num_kernels, 1] + kernel_norms = torch.sum(flatten_kernels**2, dim=-1, keepdim=True)**0.5 + # [num_kernels, num_kernels] + kernel_norms = torch.matmul(kernel_norms, kernel_norms.T) + cosine_sims = inner_product / kernel_norms + # take upper triangular part excluding diagonal since we only compute + # correlation between different kernels once + # the square is to ensure positive loss, refer to: + # https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/tool/train.py#L208 + corr = torch.sum(torch.triu(cosine_sims, diagonal=1)**2) + + return corr + + +def paconv_regularization_loss(modules, reduction): + """Computes correlation loss of PAConv weight kernels as regularization. + + Args: + modules (List[nn.Module] | :obj:`generator`): + A list or a python generator of torch.nn.Modules. + reduction (str): Method to reduce losses among PAConv modules. + The valid reduction method are none, sum or mean. + + Returns: + torch.Tensor: Correlation loss of kernel weights. + """ + corr_loss = [] + for module in modules: + if isinstance(module, (PAConv, PAConvCUDA)): + corr_loss.append(weight_correlation(module)) + corr_loss = torch.stack(corr_loss) + + # perform reduction + corr_loss = weight_reduce_loss(corr_loss, reduction=reduction) + + return corr_loss + + +@LOSSES.register_module() +class PAConvRegularizationLoss(nn.Module): + """Calculate correlation loss of kernel weights in PAConv's weight bank. + + This is used as a regularization term in PAConv model training. + + Args: + reduction (str): Method to reduce losses. The reduction is performed + among all PAConv modules instead of prediction tensors. + The valid reduction method are none, sum or mean. + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + """ + + def __init__(self, reduction='mean', loss_weight=1.0): + super(PAConvRegularizationLoss, self).__init__() + assert reduction in ['none', 'sum', 'mean'] + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, modules, reduction_override=None, **kwargs): + """Forward function of loss calculation. + + Args: + modules (List[nn.Module] | :obj:`generator`): + A list or a python generator of torch.nn.Modules. + reduction_override (str, optional): Method to reduce losses. + The valid reduction method are 'none', 'sum' or 'mean'. + Defaults to None. + + Returns: + torch.Tensor: Correlation loss of kernel weights. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + + return self.loss_weight * paconv_regularization_loss( + modules, reduction=reduction) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/uncertain_smooth_l1_loss.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/uncertain_smooth_l1_loss.py new file mode 100644 index 000000000..e80c08f1a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/losses/uncertain_smooth_l1_loss.py @@ -0,0 +1,176 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn + +from mmdet.models.losses.utils import weighted_loss +from ..builder import LOSSES + + +@weighted_loss +def uncertain_smooth_l1_loss(pred, target, sigma, alpha=1.0, beta=1.0): + """Smooth L1 loss with uncertainty. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + sigma (torch.Tensor): The sigma for uncertainty. + alpha (float, optional): The coefficient of log(sigma). + Defaults to 1.0. + beta (float, optional): The threshold in the piecewise function. + Defaults to 1.0. + + Returns: + torch.Tensor: Calculated loss + """ + assert beta > 0 + assert target.numel() > 0 + assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \ + f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \ + 'are inconsistent.' + diff = torch.abs(pred - target) + loss = torch.where(diff < beta, 0.5 * diff * diff / beta, + diff - 0.5 * beta) + loss = torch.exp(-sigma) * loss + alpha * sigma + + return loss + + +@weighted_loss +def uncertain_l1_loss(pred, target, sigma, alpha=1.0): + """L1 loss with uncertainty. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + sigma (torch.Tensor): The sigma for uncertainty. + alpha (float, optional): The coefficient of log(sigma). + Defaults to 1.0. + + Returns: + torch.Tensor: Calculated loss + """ + assert target.numel() > 0 + assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \ + f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \ + 'are inconsistent.' + loss = torch.abs(pred - target) + loss = torch.exp(-sigma) * loss + alpha * sigma + return loss + + +@LOSSES.register_module() +class UncertainSmoothL1Loss(nn.Module): + r"""Smooth L1 loss with uncertainty. + + Please refer to `PGD `_ and + `Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry + and Semantics `_ for more details. + + Args: + alpha (float, optional): The coefficient of log(sigma). + Defaults to 1.0. + beta (float, optional): The threshold in the piecewise function. + Defaults to 1.0. + reduction (str, optional): The method to reduce the loss. + Options are 'none', 'mean' and 'sum'. Defaults to 'mean'. + loss_weight (float, optional): The weight of loss. Defaults to 1.0 + """ + + def __init__(self, alpha=1.0, beta=1.0, reduction='mean', loss_weight=1.0): + super(UncertainSmoothL1Loss, self).__init__() + assert reduction in ['none', 'sum', 'mean'] + self.alpha = alpha + self.beta = beta + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + sigma, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + sigma (torch.Tensor): The sigma for uncertainty. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_bbox = self.loss_weight * uncertain_smooth_l1_loss( + pred, + target, + weight, + sigma=sigma, + alpha=self.alpha, + beta=self.beta, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss_bbox + + +@LOSSES.register_module() +class UncertainL1Loss(nn.Module): + """L1 loss with uncertainty. + + Args: + alpha (float, optional): The coefficient of log(sigma). + Defaults to 1.0. + reduction (str, optional): The method to reduce the loss. + Options are 'none', 'mean' and 'sum'. Defaults to 'mean'. + loss_weight (float, optional): The weight of loss. Defaults to 1.0. + """ + + def __init__(self, alpha=1.0, reduction='mean', loss_weight=1.0): + super(UncertainL1Loss, self).__init__() + assert reduction in ['none', 'sum', 'mean'] + self.alpha = alpha + self.reduction = reduction + self.loss_weight = loss_weight + + def forward(self, + pred, + target, + sigma, + weight=None, + avg_factor=None, + reduction_override=None): + """Forward function. + + Args: + pred (torch.Tensor): The prediction. + target (torch.Tensor): The learning target of the prediction. + sigma (torch.Tensor): The sigma for uncertainty. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + reduction_override (str, optional): The reduction method used to + override the original reduction method of the loss. + Defaults to None. + """ + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + loss_bbox = self.loss_weight * uncertain_l1_loss( + pred, + target, + weight, + sigma=sigma, + alpha=self.alpha, + reduction=reduction, + avg_factor=avg_factor) + return loss_bbox diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/__init__.py new file mode 100644 index 000000000..1e7bb6381 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from .pillar_scatter import PointPillarsScatter +# from .sparse_encoder import SparseEncoder, SparseEncoderSASSD +# from .sparse_unet import SparseUNet + +__all__ = [ + 'PointPillarsScatter' +] + +# __all__ = [ +# 'PointPillarsScatter', 'SparseEncoder', 'SparseEncoderSASSD', 'SparseUNet' +# ] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/pillar_scatter.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/pillar_scatter.py new file mode 100644 index 000000000..725ce290f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/pillar_scatter.py @@ -0,0 +1,102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import auto_fp16 +from torch import nn + +from ..builder import MIDDLE_ENCODERS + + +@MIDDLE_ENCODERS.register_module() +class PointPillarsScatter(nn.Module): + """Point Pillar's Scatter. + + Converts learned features from dense tensor to sparse pseudo image. + + Args: + in_channels (int): Channels of input features. + output_shape (list[int]): Required output shape of features. + """ + + def __init__(self, in_channels, output_shape): + super().__init__() + self.output_shape = output_shape + self.ny = output_shape[0] + self.nx = output_shape[1] + self.in_channels = in_channels + self.fp16_enabled = False + + @auto_fp16(apply_to=('voxel_features', )) + def forward(self, voxel_features, coors, batch_size=None): + """Foraward function to scatter features.""" + # TODO: rewrite the function in a batch manner + # no need to deal with different batch cases + if batch_size is not None: + return self.forward_batch(voxel_features, coors, batch_size) + else: + return self.forward_single(voxel_features, coors) + + def forward_single(self, voxel_features, coors): + """Scatter features of single sample. + + Args: + voxel_features (torch.Tensor): Voxel features in shape (N, M, C). + coors (torch.Tensor): Coordinates of each voxel. + The first column indicates the sample ID. + """ + # Create the canvas for this sample + canvas = torch.zeros( + self.in_channels, + self.nx * self.ny, + dtype=voxel_features.dtype, + device=voxel_features.device) + + indices = coors[:, 2] * self.nx + coors[:, 3] + indices = indices.long() + voxels = voxel_features.t() + # Now scatter the blob back to the canvas. + canvas[:, indices] = voxels + # Undo the column stacking to final 4-dim tensor + canvas = canvas.view(1, self.in_channels, self.ny, self.nx) + return canvas + + def forward_batch(self, voxel_features, coors, batch_size): + """Scatter features of single sample. + + Args: + voxel_features (torch.Tensor): Voxel features in shape (N, M, C). + coors (torch.Tensor): Coordinates of each voxel in shape (N, 4). + The first column indicates the sample ID. + batch_size (int): Number of samples in the current batch. + """ + # batch_canvas will be the final output. + batch_canvas = [] + for batch_itt in range(batch_size): + # Create the canvas for this sample + canvas = torch.zeros( + self.in_channels, + self.nx * self.ny, + dtype=voxel_features.dtype, + device=voxel_features.device) + + # Only include non-empty pillars + batch_mask = coors[:, 0] == batch_itt + this_coors = coors[batch_mask, :] + indices = this_coors[:, 2] * self.nx + this_coors[:, 3] + indices = indices.type(torch.long) + voxels = voxel_features[batch_mask, :] + voxels = voxels.t() + + # Now scatter the blob back to the canvas. + canvas[:, indices] = voxels + + # Append to a list for later stacking. + batch_canvas.append(canvas) + + # Stack to 3-dim tensor (batch-size, in_channels, nrows*ncols) + batch_canvas = torch.stack(batch_canvas, 0) + + # Undo the column stacking to final 4-dim tensor + batch_canvas = batch_canvas.view(batch_size, self.in_channels, self.ny, + self.nx) + + return batch_canvas diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_encoder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_encoder.py new file mode 100644 index 000000000..83a7a3012 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_encoder.py @@ -0,0 +1,491 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.ops import points_in_boxes_all, three_interpolate, three_nn +from mmcv.runner import auto_fp16 +from torch import nn as nn + +from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule +from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE +from mmdet.models.losses import sigmoid_focal_loss, smooth_l1_loss +from ..builder import MIDDLE_ENCODERS + +if IS_SPCONV2_AVAILABLE: + from spconv.pytorch import SparseConvTensor, SparseSequential +else: + from mmcv.ops import SparseConvTensor, SparseSequential + + +@MIDDLE_ENCODERS.register_module() +class SparseEncoder(nn.Module): + r"""Sparse encoder for SECOND and Part-A2. + + Args: + in_channels (int): The number of input channels. + sparse_shape (list[int]): The sparse shape of input tensor. + order (list[str], optional): Order of conv module. + Defaults to ('conv', 'norm', 'act'). + norm_cfg (dict, optional): Config of normalization layer. Defaults to + dict(type='BN1d', eps=1e-3, momentum=0.01). + base_channels (int, optional): Out channels for conv_input layer. + Defaults to 16. + output_channels (int, optional): Out channels for conv_out layer. + Defaults to 128. + encoder_channels (tuple[tuple[int]], optional): + Convolutional channels of each encode block. + Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)). + encoder_paddings (tuple[tuple[int]], optional): + Paddings of each encode block. + Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)). + block_type (str, optional): Type of the block to use. + Defaults to 'conv_module'. + """ + + def __init__(self, + in_channels, + sparse_shape, + order=('conv', 'norm', 'act'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + base_channels=16, + output_channels=128, + encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64, + 64)), + encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, + 1)), + block_type='conv_module'): + super().__init__() + assert block_type in ['conv_module', 'basicblock'] + self.sparse_shape = sparse_shape + self.in_channels = in_channels + self.order = order + self.base_channels = base_channels + self.output_channels = output_channels + self.encoder_channels = encoder_channels + self.encoder_paddings = encoder_paddings + self.stage_num = len(self.encoder_channels) + self.fp16_enabled = False + # Spconv init all weight on its own + + assert isinstance(order, tuple) and len(order) == 3 + assert set(order) == {'conv', 'norm', 'act'} + + if self.order[0] != 'conv': # pre activate + self.conv_input = make_sparse_convmodule( + in_channels, + self.base_channels, + 3, + norm_cfg=norm_cfg, + padding=1, + indice_key='subm1', + conv_type='SubMConv3d', + order=('conv', )) + else: # post activate + self.conv_input = make_sparse_convmodule( + in_channels, + self.base_channels, + 3, + norm_cfg=norm_cfg, + padding=1, + indice_key='subm1', + conv_type='SubMConv3d') + + encoder_out_channels = self.make_encoder_layers( + make_sparse_convmodule, + norm_cfg, + self.base_channels, + block_type=block_type) + + self.conv_out = make_sparse_convmodule( + encoder_out_channels, + self.output_channels, + kernel_size=(3, 1, 1), + stride=(2, 1, 1), + norm_cfg=norm_cfg, + padding=0, + indice_key='spconv_down2', + conv_type='SparseConv3d') + + @auto_fp16(apply_to=('voxel_features', )) + def forward(self, voxel_features, coors, batch_size): + """Forward of SparseEncoder. + + Args: + voxel_features (torch.Tensor): Voxel features in shape (N, C). + coors (torch.Tensor): Coordinates in shape (N, 4), + the columns in the order of (batch_idx, z_idx, y_idx, x_idx). + batch_size (int): Batch size. + + Returns: + dict: Backbone features. + """ + coors = coors.int() + input_sp_tensor = SparseConvTensor(voxel_features, coors, + self.sparse_shape, batch_size) + x = self.conv_input(input_sp_tensor) + + encode_features = [] + for encoder_layer in self.encoder_layers: + x = encoder_layer(x) + encode_features.append(x) + + # for detection head + # [200, 176, 5] -> [200, 176, 2] + out = self.conv_out(encode_features[-1]) + spatial_features = out.dense() + + N, C, D, H, W = spatial_features.shape + spatial_features = spatial_features.view(N, C * D, H, W) + + return spatial_features + + def make_encoder_layers(self, + make_block, + norm_cfg, + in_channels, + block_type='conv_module', + conv_cfg=dict(type='SubMConv3d')): + """make encoder layers using sparse convs. + + Args: + make_block (method): A bounded function to build blocks. + norm_cfg (dict[str]): Config of normalization layer. + in_channels (int): The number of encoder input channels. + block_type (str, optional): Type of the block to use. + Defaults to 'conv_module'. + conv_cfg (dict, optional): Config of conv layer. Defaults to + dict(type='SubMConv3d'). + + Returns: + int: The number of encoder output channels. + """ + assert block_type in ['conv_module', 'basicblock'] + self.encoder_layers = SparseSequential() + + for i, blocks in enumerate(self.encoder_channels): + blocks_list = [] + for j, out_channels in enumerate(tuple(blocks)): + padding = tuple(self.encoder_paddings[i])[j] + # each stage started with a spconv layer + # except the first stage + if i != 0 and j == 0 and block_type == 'conv_module': + blocks_list.append( + make_block( + in_channels, + out_channels, + 3, + norm_cfg=norm_cfg, + stride=2, + padding=padding, + indice_key=f'spconv{i + 1}', + conv_type='SparseConv3d')) + elif block_type == 'basicblock': + if j == len(blocks) - 1 and i != len( + self.encoder_channels) - 1: + blocks_list.append( + make_block( + in_channels, + out_channels, + 3, + norm_cfg=norm_cfg, + stride=2, + padding=padding, + indice_key=f'spconv{i + 1}', + conv_type='SparseConv3d')) + else: + blocks_list.append( + SparseBasicBlock( + out_channels, + out_channels, + norm_cfg=norm_cfg, + conv_cfg=conv_cfg)) + else: + blocks_list.append( + make_block( + in_channels, + out_channels, + 3, + norm_cfg=norm_cfg, + padding=padding, + indice_key=f'subm{i + 1}', + conv_type='SubMConv3d')) + in_channels = out_channels + stage_name = f'encoder_layer{i + 1}' + stage_layers = SparseSequential(*blocks_list) + self.encoder_layers.add_module(stage_name, stage_layers) + return out_channels + + +@MIDDLE_ENCODERS.register_module() +class SparseEncoderSASSD(SparseEncoder): + r"""Sparse encoder for `SASSD `_ + + Args: + in_channels (int): The number of input channels. + sparse_shape (list[int]): The sparse shape of input tensor. + order (list[str], optional): Order of conv module. + Defaults to ('conv', 'norm', 'act'). + norm_cfg (dict, optional): Config of normalization layer. Defaults to + dict(type='BN1d', eps=1e-3, momentum=0.01). + base_channels (int, optional): Out channels for conv_input layer. + Defaults to 16. + output_channels (int, optional): Out channels for conv_out layer. + Defaults to 128. + encoder_channels (tuple[tuple[int]], optional): + Convolutional channels of each encode block. + Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)). + encoder_paddings (tuple[tuple[int]], optional): + Paddings of each encode block. + Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)). + block_type (str, optional): Type of the block to use. + Defaults to 'conv_module'. + """ + + def __init__(self, + in_channels, + sparse_shape, + order=('conv', 'norm', 'act'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + base_channels=16, + output_channels=128, + encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64, + 64)), + encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, + 1)), + block_type='conv_module'): + super(SparseEncoderSASSD, self).__init__( + in_channels=in_channels, + sparse_shape=sparse_shape, + order=order, + norm_cfg=norm_cfg, + base_channels=base_channels, + output_channels=output_channels, + encoder_channels=encoder_channels, + encoder_paddings=encoder_paddings, + block_type=block_type) + + self.point_fc = nn.Linear(112, 64, bias=False) + self.point_cls = nn.Linear(64, 1, bias=False) + self.point_reg = nn.Linear(64, 3, bias=False) + + @auto_fp16(apply_to=('voxel_features', )) + def forward(self, voxel_features, coors, batch_size, test_mode=False): + """Forward of SparseEncoder. + + Args: + voxel_features (torch.Tensor): Voxel features in shape (N, C). + coors (torch.Tensor): Coordinates in shape (N, 4), + the columns in the order of (batch_idx, z_idx, y_idx, x_idx). + batch_size (int): Batch size. + test_mode (bool, optional): Whether in test mode. + Defaults to False. + + Returns: + dict: Backbone features. + tuple[torch.Tensor]: Mean feature value of the points, + Classificaion result of the points, + Regression offsets of the points. + """ + coors = coors.int() + input_sp_tensor = SparseConvTensor(voxel_features, coors, + self.sparse_shape, batch_size) + x = self.conv_input(input_sp_tensor) + + encode_features = [] + for encoder_layer in self.encoder_layers: + x = encoder_layer(x) + encode_features.append(x) + + # for detection head + # [200, 176, 5] -> [200, 176, 2] + out = self.conv_out(encode_features[-1]) + spatial_features = out.dense() + + N, C, D, H, W = spatial_features.shape + spatial_features = spatial_features.view(N, C * D, H, W) + + if test_mode: + return spatial_features, None + + points_mean = torch.zeros_like(voxel_features) + points_mean[:, 0] = coors[:, 0] + points_mean[:, 1:] = voxel_features[:, :3] + + # auxiliary network + p0 = self.make_auxiliary_points( + encode_features[0], + points_mean, + offset=(0, -40., -3.), + voxel_size=(.1, .1, .2)) + + p1 = self.make_auxiliary_points( + encode_features[1], + points_mean, + offset=(0, -40., -3.), + voxel_size=(.2, .2, .4)) + + p2 = self.make_auxiliary_points( + encode_features[2], + points_mean, + offset=(0, -40., -3.), + voxel_size=(.4, .4, .8)) + + pointwise = torch.cat([p0, p1, p2], dim=-1) + pointwise = self.point_fc(pointwise) + point_cls = self.point_cls(pointwise) + point_reg = self.point_reg(pointwise) + point_misc = (points_mean, point_cls, point_reg) + + return spatial_features, point_misc + + def get_auxiliary_targets(self, nxyz, gt_boxes3d, enlarge=1.0): + """Get auxiliary target. + + Args: + nxyz (torch.Tensor): Mean features of the points. + gt_boxes3d (torch.Tensor): Coordinates in shape (N, 4), + the columns in the order of (batch_idx, z_idx, y_idx, x_idx). + enlarge (int, optional): Enlaged scale. Defaults to 1.0. + + Returns: + tuple[torch.Tensor]: Label of the points and + center offsets of the points. + """ + center_offsets = list() + pts_labels = list() + for i in range(len(gt_boxes3d)): + boxes3d = gt_boxes3d[i].tensor.cpu() + idx = torch.nonzero(nxyz[:, 0] == i).view(-1) + new_xyz = nxyz[idx, 1:].cpu() + + boxes3d[:, 3:6] *= enlarge + + pts_in_flag, center_offset = self.calculate_pts_offsets( + new_xyz, boxes3d) + pts_label = pts_in_flag.max(0)[0].byte() + pts_labels.append(pts_label) + center_offsets.append(center_offset) + + center_offsets = torch.cat(center_offsets).cuda() + pts_labels = torch.cat(pts_labels).to(center_offsets.device) + + return pts_labels, center_offsets + + def calculate_pts_offsets(self, points, boxes): + """Find all boxes in which each point is, as well as the offsets from + the box centers. + + Args: + points (torch.Tensor): [M, 3], [x, y, z] in LiDAR/DEPTH coordinate + boxes (torch.Tensor): [T, 7], + num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz], + (x, y, z) is the bottom center. + + Returns: + tuple[torch.Tensor]: Point indices of boxes with the shape of + (T, M). Default background = 0. + And offsets from the box centers of points, + if it belows to the box, with the shape of (M, 3). + Default background = 0. + """ + boxes_num = len(boxes) + pts_num = len(points) + points = points.cuda() + boxes = boxes.to(points.device) + + box_idxs_of_pts = points_in_boxes_all(points[None, ...], boxes[None, + ...]) + + pts_indices = box_idxs_of_pts.squeeze(0).transpose(0, 1) + + center_offsets = torch.zeros_like(points).to(points.device) + + for i in range(boxes_num): + for j in range(pts_num): + if pts_indices[i][j] == 1: + center_offsets[j][0] = points[j][0] - boxes[i][0] + center_offsets[j][1] = points[j][1] - boxes[i][1] + center_offsets[j][2] = ( + points[j][2] - (boxes[i][2] + boxes[i][2] / 2.0)) + return pts_indices.cpu(), center_offsets.cpu() + + def aux_loss(self, points, point_cls, point_reg, gt_bboxes): + """Calculate auxiliary loss. + + Args: + points (torch.Tensor): Mean feature value of the points. + point_cls (torch.Tensor): Classificaion result of the points. + point_reg (torch.Tensor): Regression offsets of the points. + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes for each sample. + + Returns: + dict: Backbone features. + """ + num_boxes = len(gt_bboxes) + + pts_labels, center_targets = self.get_auxiliary_targets( + points, gt_bboxes) + + rpn_cls_target = pts_labels.long() + pos = (pts_labels > 0).float() + neg = (pts_labels == 0).float() + + pos_normalizer = pos.sum().clamp(min=1.0) + + cls_weights = pos + neg + reg_weights = pos + reg_weights = reg_weights / pos_normalizer + + aux_loss_cls = sigmoid_focal_loss( + point_cls, + rpn_cls_target, + weight=cls_weights, + avg_factor=pos_normalizer) + + aux_loss_cls /= num_boxes + + weight = reg_weights[..., None] + aux_loss_reg = smooth_l1_loss(point_reg, center_targets, beta=1 / 9.) + aux_loss_reg = torch.sum(aux_loss_reg * weight)[None] + aux_loss_reg /= num_boxes + + aux_loss_cls, aux_loss_reg = [aux_loss_cls], [aux_loss_reg] + + return dict(aux_loss_cls=aux_loss_cls, aux_loss_reg=aux_loss_reg) + + def make_auxiliary_points(self, + source_tensor, + target, + offset=(0., -40., -3.), + voxel_size=(.05, .05, .1)): + """Make auxiliary points for loss computation. + + Args: + source_tensor (torch.Tensor): (M, C) features to be propigated. + target (torch.Tensor): (N, 4) bxyz positions of the + target features. + offset (tuple[float], optional): Voxelization offset. + Defaults to (0., -40., -3.) + voxel_size (tuple[float], optional): Voxelization size. + Defaults to (.05, .05, .1) + + Returns: + torch.Tensor: (N, C) tensor of the features of the target features. + """ + # Tansfer tensor to points + source = source_tensor.indices.float() + offset = torch.Tensor(offset).to(source.device) + voxel_size = torch.Tensor(voxel_size).to(source.device) + source[:, 1:] = ( + source[:, [3, 2, 1]] * voxel_size + offset + .5 * voxel_size) + + source_feats = source_tensor.features[None, ...].transpose(1, 2) + + # Interplate auxiliary points + dist, idx = three_nn(target[None, ...], source[None, ...]) + dist_recip = 1.0 / (dist + 1e-8) + norm = torch.sum(dist_recip, dim=2, keepdim=True) + weight = dist_recip / norm + new_features = three_interpolate(source_feats.contiguous(), idx, + weight) + + return new_features.squeeze(0).transpose(0, 1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_unet.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_unet.py new file mode 100644 index 000000000..005e34ebe --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/middle_encoders/sparse_unet.py @@ -0,0 +1,300 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE + +if IS_SPCONV2_AVAILABLE: + from spconv.pytorch import SparseConvTensor, SparseSequential +else: + from mmcv.ops import SparseConvTensor, SparseSequential + +from mmcv.runner import BaseModule, auto_fp16 + +from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule +from mmdet3d.ops.sparse_block import replace_feature +from ..builder import MIDDLE_ENCODERS + + +@MIDDLE_ENCODERS.register_module() +class SparseUNet(BaseModule): + r"""SparseUNet for PartA^2. + + See the `paper `_ for more details. + + Args: + in_channels (int): The number of input channels. + sparse_shape (list[int]): The sparse shape of input tensor. + norm_cfg (dict): Config of normalization layer. + base_channels (int): Out channels for conv_input layer. + output_channels (int): Out channels for conv_out layer. + encoder_channels (tuple[tuple[int]]): + Convolutional channels of each encode block. + encoder_paddings (tuple[tuple[int]]): Paddings of each encode block. + decoder_channels (tuple[tuple[int]]): + Convolutional channels of each decode block. + decoder_paddings (tuple[tuple[int]]): Paddings of each decode block. + """ + + def __init__(self, + in_channels, + sparse_shape, + order=('conv', 'norm', 'act'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + base_channels=16, + output_channels=128, + encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64, + 64)), + encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, + 1)), + decoder_channels=((64, 64, 64), (64, 64, 32), (32, 32, 16), + (16, 16, 16)), + decoder_paddings=((1, 0), (1, 0), (0, 0), (0, 1)), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.sparse_shape = sparse_shape + self.in_channels = in_channels + self.order = order + self.base_channels = base_channels + self.output_channels = output_channels + self.encoder_channels = encoder_channels + self.encoder_paddings = encoder_paddings + self.decoder_channels = decoder_channels + self.decoder_paddings = decoder_paddings + self.stage_num = len(self.encoder_channels) + self.fp16_enabled = False + # Spconv init all weight on its own + + assert isinstance(order, tuple) and len(order) == 3 + assert set(order) == {'conv', 'norm', 'act'} + + if self.order[0] != 'conv': # pre activate + self.conv_input = make_sparse_convmodule( + in_channels, + self.base_channels, + 3, + norm_cfg=norm_cfg, + padding=1, + indice_key='subm1', + conv_type='SubMConv3d', + order=('conv', )) + else: # post activate + self.conv_input = make_sparse_convmodule( + in_channels, + self.base_channels, + 3, + norm_cfg=norm_cfg, + padding=1, + indice_key='subm1', + conv_type='SubMConv3d') + + encoder_out_channels = self.make_encoder_layers( + make_sparse_convmodule, norm_cfg, self.base_channels) + self.make_decoder_layers(make_sparse_convmodule, norm_cfg, + encoder_out_channels) + + self.conv_out = make_sparse_convmodule( + encoder_out_channels, + self.output_channels, + kernel_size=(3, 1, 1), + stride=(2, 1, 1), + norm_cfg=norm_cfg, + padding=0, + indice_key='spconv_down2', + conv_type='SparseConv3d') + + @auto_fp16(apply_to=('voxel_features', )) + def forward(self, voxel_features, coors, batch_size): + """Forward of SparseUNet. + + Args: + voxel_features (torch.float32): Voxel features in shape [N, C]. + coors (torch.int32): Coordinates in shape [N, 4], + the columns in the order of (batch_idx, z_idx, y_idx, x_idx). + batch_size (int): Batch size. + + Returns: + dict[str, torch.Tensor]: Backbone features. + """ + coors = coors.int() + input_sp_tensor = SparseConvTensor(voxel_features, coors, + self.sparse_shape, batch_size) + x = self.conv_input(input_sp_tensor) + + encode_features = [] + for encoder_layer in self.encoder_layers: + x = encoder_layer(x) + encode_features.append(x) + + # for detection head + # [200, 176, 5] -> [200, 176, 2] + out = self.conv_out(encode_features[-1]) + spatial_features = out.dense() + + N, C, D, H, W = spatial_features.shape + spatial_features = spatial_features.view(N, C * D, H, W) + + # for segmentation head, with output shape: + # [400, 352, 11] <- [200, 176, 5] + # [800, 704, 21] <- [400, 352, 11] + # [1600, 1408, 41] <- [800, 704, 21] + # [1600, 1408, 41] <- [1600, 1408, 41] + decode_features = [] + x = encode_features[-1] + for i in range(self.stage_num, 0, -1): + x = self.decoder_layer_forward(encode_features[i - 1], x, + getattr(self, f'lateral_layer{i}'), + getattr(self, f'merge_layer{i}'), + getattr(self, f'upsample_layer{i}')) + decode_features.append(x) + + seg_features = decode_features[-1].features + + ret = dict( + spatial_features=spatial_features, seg_features=seg_features) + + return ret + + def decoder_layer_forward(self, x_lateral, x_bottom, lateral_layer, + merge_layer, upsample_layer): + """Forward of upsample and residual block. + + Args: + x_lateral (:obj:`SparseConvTensor`): Lateral tensor. + x_bottom (:obj:`SparseConvTensor`): Feature from bottom layer. + lateral_layer (SparseBasicBlock): Convolution for lateral tensor. + merge_layer (SparseSequential): Convolution for merging features. + upsample_layer (SparseSequential): Convolution for upsampling. + + Returns: + :obj:`SparseConvTensor`: Upsampled feature. + """ + x = lateral_layer(x_lateral) + x = replace_feature(x, torch.cat((x_bottom.features, x.features), + dim=1)) + x_merge = merge_layer(x) + x = self.reduce_channel(x, x_merge.features.shape[1]) + x = replace_feature(x, x_merge.features + x.features) + x = upsample_layer(x) + return x + + @staticmethod + def reduce_channel(x, out_channels): + """reduce channel for element-wise addition. + + Args: + x (:obj:`SparseConvTensor`): Sparse tensor, ``x.features`` + are in shape (N, C1). + out_channels (int): The number of channel after reduction. + + Returns: + :obj:`SparseConvTensor`: Channel reduced feature. + """ + features = x.features + n, in_channels = features.shape + assert (in_channels % out_channels + == 0) and (in_channels >= out_channels) + x = replace_feature(x, features.view(n, out_channels, -1).sum(dim=2)) + return x + + def make_encoder_layers(self, make_block, norm_cfg, in_channels): + """make encoder layers using sparse convs. + + Args: + make_block (method): A bounded function to build blocks. + norm_cfg (dict[str]): Config of normalization layer. + in_channels (int): The number of encoder input channels. + + Returns: + int: The number of encoder output channels. + """ + self.encoder_layers = SparseSequential() + + for i, blocks in enumerate(self.encoder_channels): + blocks_list = [] + for j, out_channels in enumerate(tuple(blocks)): + padding = tuple(self.encoder_paddings[i])[j] + # each stage started with a spconv layer + # except the first stage + if i != 0 and j == 0: + blocks_list.append( + make_block( + in_channels, + out_channels, + 3, + norm_cfg=norm_cfg, + stride=2, + padding=padding, + indice_key=f'spconv{i + 1}', + conv_type='SparseConv3d')) + else: + blocks_list.append( + make_block( + in_channels, + out_channels, + 3, + norm_cfg=norm_cfg, + padding=padding, + indice_key=f'subm{i + 1}', + conv_type='SubMConv3d')) + in_channels = out_channels + stage_name = f'encoder_layer{i + 1}' + stage_layers = SparseSequential(*blocks_list) + self.encoder_layers.add_module(stage_name, stage_layers) + return out_channels + + def make_decoder_layers(self, make_block, norm_cfg, in_channels): + """make decoder layers using sparse convs. + + Args: + make_block (method): A bounded function to build blocks. + norm_cfg (dict[str]): Config of normalization layer. + in_channels (int): The number of encoder input channels. + + Returns: + int: The number of encoder output channels. + """ + block_num = len(self.decoder_channels) + for i, block_channels in enumerate(self.decoder_channels): + paddings = self.decoder_paddings[i] + setattr( + self, f'lateral_layer{block_num - i}', + SparseBasicBlock( + in_channels, + block_channels[0], + conv_cfg=dict( + type='SubMConv3d', indice_key=f'subm{block_num - i}'), + norm_cfg=norm_cfg)) + setattr( + self, f'merge_layer{block_num - i}', + make_block( + in_channels * 2, + block_channels[1], + 3, + norm_cfg=norm_cfg, + padding=paddings[0], + indice_key=f'subm{block_num - i}', + conv_type='SubMConv3d')) + if block_num - i != 1: + setattr( + self, f'upsample_layer{block_num - i}', + make_block( + in_channels, + block_channels[2], + 3, + norm_cfg=norm_cfg, + indice_key=f'spconv{block_num - i}', + conv_type='SparseInverseConv3d')) + else: + # use submanifold conv instead of inverse conv + # in the last block + setattr( + self, f'upsample_layer{block_num - i}', + make_block( + in_channels, + block_channels[2], + 3, + norm_cfg=norm_cfg, + padding=paddings[1], + indice_key='subm1', + conv_type='SubMConv3d')) + in_channels = block_channels[2] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/__init__.py new file mode 100644 index 000000000..34df79a22 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .edge_fusion_module import EdgeFusionModule +from .transformer import GroupFree3DMHA +from .vote_module import VoteModule + +__all__ = ['VoteModule', 'GroupFree3DMHA', 'EdgeFusionModule'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/edge_fusion_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/edge_fusion_module.py new file mode 100644 index 000000000..2d9e09ee2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/edge_fusion_module.py @@ -0,0 +1,78 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch import nn as nn +from torch.nn import functional as F + + +class EdgeFusionModule(BaseModule): + """Edge Fusion Module for feature map. + + Args: + out_channels (int): The number of output channels. + feat_channels (int): The number of channels in feature map + during edge feature fusion. + kernel_size (int, optional): Kernel size of convolution. + Default: 3. + act_cfg (dict, optional): Config of activation. + Default: dict(type='ReLU'). + norm_cfg (dict, optional): Config of normalization. + Default: dict(type='BN1d')). + """ + + def __init__(self, + out_channels, + feat_channels, + kernel_size=3, + act_cfg=dict(type='ReLU'), + norm_cfg=dict(type='BN1d')): + super().__init__() + self.edge_convs = nn.Sequential( + ConvModule( + feat_channels, + feat_channels, + kernel_size=kernel_size, + padding=kernel_size // 2, + conv_cfg=dict(type='Conv1d'), + norm_cfg=norm_cfg, + act_cfg=act_cfg), + nn.Conv1d(feat_channels, out_channels, kernel_size=1)) + self.feat_channels = feat_channels + + def forward(self, features, fused_features, edge_indices, edge_lens, + output_h, output_w): + """Forward pass. + + Args: + features (torch.Tensor): Different representative features + for fusion. + fused_features (torch.Tensor): Different representative + features to be fused. + edge_indices (torch.Tensor): Batch image edge indices. + edge_lens (list[int]): List of edge length of each image. + output_h (int): Height of output feature map. + output_w (int): Width of output feature map. + + Returns: + torch.Tensor: Fused feature maps. + """ + batch_size = features.shape[0] + # normalize + grid_edge_indices = edge_indices.view(batch_size, -1, 1, 2).float() + grid_edge_indices[..., 0] = \ + grid_edge_indices[..., 0] / (output_w - 1) * 2 - 1 + grid_edge_indices[..., 1] = \ + grid_edge_indices[..., 1] / (output_h - 1) * 2 - 1 + + # apply edge fusion + edge_features = F.grid_sample( + features, grid_edge_indices, align_corners=True).squeeze(-1) + edge_output = self.edge_convs(edge_features) + + for k in range(batch_size): + edge_indice_k = edge_indices[k, :edge_lens[k]] + fused_features[k, :, edge_indice_k[:, 1], + edge_indice_k[:, 0]] += edge_output[ + k, :, :edge_lens[k]] + + return fused_features diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/transformer.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/transformer.py new file mode 100644 index 000000000..4f9a833e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/transformer.py @@ -0,0 +1,139 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn.bricks.registry import ATTENTION +from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING, MultiheadAttention +from torch import nn as nn + + +@ATTENTION.register_module() +class GroupFree3DMHA(MultiheadAttention): + """A warpper for torch.nn.MultiheadAttention for GroupFree3D. + + This module implements MultiheadAttention with identity connection, + and positional encoding used in DETR is also passed as input. + + Args: + embed_dims (int): The embedding dimension. + num_heads (int): Parallel attention heads. Same as + `nn.MultiheadAttention`. + attn_drop (float, optional): A Dropout layer on attn_output_weights. + Defaults to 0.0. + proj_drop (float, optional): A Dropout layer. Defaults to 0.0. + dropout_layer (obj:`ConfigDict`, optional): The dropout_layer used + when adding the shortcut. + init_cfg (obj:`mmcv.ConfigDict`, optional): The Config for + initialization. Default: None. + batch_first (bool, optional): Key, Query and Value are shape of + (batch, n, embed_dim) + or (n, batch, embed_dim). Defaults to False. + """ + + def __init__(self, + embed_dims, + num_heads, + attn_drop=0., + proj_drop=0., + dropout_layer=dict(type='DropOut', drop_prob=0.), + init_cfg=None, + batch_first=False, + **kwargs): + super().__init__(embed_dims, num_heads, attn_drop, proj_drop, + dropout_layer, init_cfg, batch_first, **kwargs) + + def forward(self, + query, + key, + value, + identity, + query_pos=None, + key_pos=None, + attn_mask=None, + key_padding_mask=None, + **kwargs): + """Forward function for `GroupFree3DMHA`. + + **kwargs allow passing a more general data flow when combining + with other operations in `transformerlayer`. + + Args: + query (Tensor): The input query with shape [num_queries, bs, + embed_dims]. Same in `nn.MultiheadAttention.forward`. + key (Tensor): The key tensor with shape [num_keys, bs, + embed_dims]. Same in `nn.MultiheadAttention.forward`. + If None, the ``query`` will be used. + value (Tensor): The value tensor with same shape as `key`. + Same in `nn.MultiheadAttention.forward`. + If None, the `key` will be used. + identity (Tensor): This tensor, with the same shape as x, + will be used for the identity link. If None, `x` will be used. + query_pos (Tensor, optional): The positional encoding for query, + with the same shape as `x`. Defaults to None. + If not None, it will be added to `x` before forward function. + key_pos (Tensor, optional): The positional encoding for `key`, + with the same shape as `key`. Defaults to None. If not None, + it will be added to `key` before forward function. If None, + and `query_pos` has the same shape as `key`, then `query_pos` + will be used for `key_pos`. Defaults to None. + attn_mask (Tensor, optional): ByteTensor mask with shape + [num_queries, num_keys]. + Same in `nn.MultiheadAttention.forward`. Defaults to None. + key_padding_mask (Tensor, optional): ByteTensor with shape + [bs, num_keys]. Same in `nn.MultiheadAttention.forward`. + Defaults to None. + + Returns: + Tensor: forwarded results with shape [num_queries, bs, embed_dims]. + """ + + if hasattr(self, 'operation_name'): + if self.operation_name == 'self_attn': + value = value + query_pos + elif self.operation_name == 'cross_attn': + value = value + key_pos + else: + raise NotImplementedError( + f'{self.__class__.name} ' + f"can't be used as {self.operation_name}") + else: + value = value + query_pos + + return super(GroupFree3DMHA, self).forward( + query=query, + key=key, + value=value, + identity=identity, + query_pos=query_pos, + key_pos=key_pos, + attn_mask=attn_mask, + key_padding_mask=key_padding_mask, + **kwargs) + + +@POSITIONAL_ENCODING.register_module() +class ConvBNPositionalEncoding(nn.Module): + """Absolute position embedding with Conv learning. + + Args: + input_channel (int): input features dim. + num_pos_feats (int, optional): output position features dim. + Defaults to 288 to be consistent with seed features dim. + """ + + def __init__(self, input_channel, num_pos_feats=288): + super().__init__() + self.position_embedding_head = nn.Sequential( + nn.Conv1d(input_channel, num_pos_feats, kernel_size=1), + nn.BatchNorm1d(num_pos_feats), nn.ReLU(inplace=True), + nn.Conv1d(num_pos_feats, num_pos_feats, kernel_size=1)) + + def forward(self, xyz): + """Forward pass. + + Args: + xyz (Tensor): (B, N, 3) the coordinates to embed. + + Returns: + Tensor: (B, num_pos_feats, N) the embedded position features. + """ + xyz = xyz.permute(0, 2, 1) + position_embedding = self.position_embedding_head(xyz) + return position_embedding diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/vote_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/vote_module.py new file mode 100644 index 000000000..5cc52ad9d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/model_utils/vote_module.py @@ -0,0 +1,184 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv import is_tuple_of +from mmcv.cnn import ConvModule +from torch import nn as nn + +from mmdet3d.models.builder import build_loss + + +class VoteModule(nn.Module): + """Vote module. + + Generate votes from seed point features. + + Args: + in_channels (int): Number of channels of seed point features. + vote_per_seed (int, optional): Number of votes generated from + each seed point. Default: 1. + gt_per_seed (int, optional): Number of ground truth votes generated + from each seed point. Default: 3. + num_points (int, optional): Number of points to be used for voting. + Default: 1. + conv_channels (tuple[int], optional): Out channels of vote + generating convolution. Default: (16, 16). + conv_cfg (dict, optional): Config of convolution. + Default: dict(type='Conv1d'). + norm_cfg (dict, optional): Config of normalization. + Default: dict(type='BN1d'). + norm_feats (bool, optional): Whether to normalize features. + Default: True. + with_res_feat (bool, optional): Whether to predict residual features. + Default: True. + vote_xyz_range (list[float], optional): + The range of points translation. Default: None. + vote_loss (dict, optional): Config of vote loss. Default: None. + """ + + def __init__(self, + in_channels, + vote_per_seed=1, + gt_per_seed=3, + num_points=-1, + conv_channels=(16, 16), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + norm_feats=True, + with_res_feat=True, + vote_xyz_range=None, + vote_loss=None): + super().__init__() + self.in_channels = in_channels + self.vote_per_seed = vote_per_seed + self.gt_per_seed = gt_per_seed + self.num_points = num_points + self.norm_feats = norm_feats + self.with_res_feat = with_res_feat + + assert vote_xyz_range is None or is_tuple_of(vote_xyz_range, float) + self.vote_xyz_range = vote_xyz_range + + if vote_loss is not None: + self.vote_loss = build_loss(vote_loss) + + prev_channels = in_channels + vote_conv_list = list() + for k in range(len(conv_channels)): + vote_conv_list.append( + ConvModule( + prev_channels, + conv_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=True, + inplace=True)) + prev_channels = conv_channels[k] + self.vote_conv = nn.Sequential(*vote_conv_list) + + # conv_out predicts coordinate and residual features + if with_res_feat: + out_channel = (3 + in_channels) * self.vote_per_seed + else: + out_channel = 3 * self.vote_per_seed + self.conv_out = nn.Conv1d(prev_channels, out_channel, 1) + + def forward(self, seed_points, seed_feats): + """forward. + + Args: + seed_points (torch.Tensor): Coordinate of the seed + points in shape (B, N, 3). + seed_feats (torch.Tensor): Features of the seed points in shape + (B, C, N). + + Returns: + tuple[torch.Tensor]: + + - vote_points: Voted xyz based on the seed points + with shape (B, M, 3), ``M=num_seed*vote_per_seed``. + - vote_features: Voted features based on the seed points with + shape (B, C, M) where ``M=num_seed*vote_per_seed``, + ``C=vote_feature_dim``. + """ + if self.num_points != -1: + assert self.num_points < seed_points.shape[1], \ + f'Number of vote points ({self.num_points}) should be '\ + f'smaller than seed points size ({seed_points.shape[1]})' + seed_points = seed_points[:, :self.num_points] + seed_feats = seed_feats[..., :self.num_points] + + batch_size, feat_channels, num_seed = seed_feats.shape + num_vote = num_seed * self.vote_per_seed + x = self.vote_conv(seed_feats) + # (batch_size, (3+out_dim)*vote_per_seed, num_seed) + votes = self.conv_out(x) + + votes = votes.transpose(2, 1).view(batch_size, num_seed, + self.vote_per_seed, -1) + + offset = votes[:, :, :, 0:3] + if self.vote_xyz_range is not None: + limited_offset_list = [] + for axis in range(len(self.vote_xyz_range)): + limited_offset_list.append(offset[..., axis].clamp( + min=-self.vote_xyz_range[axis], + max=self.vote_xyz_range[axis])) + limited_offset = torch.stack(limited_offset_list, -1) + vote_points = (seed_points.unsqueeze(2) + + limited_offset).contiguous() + else: + vote_points = (seed_points.unsqueeze(2) + offset).contiguous() + vote_points = vote_points.view(batch_size, num_vote, 3) + offset = offset.reshape(batch_size, num_vote, 3).transpose(2, 1) + + if self.with_res_feat: + res_feats = votes[:, :, :, 3:] + vote_feats = (seed_feats.transpose(2, 1).unsqueeze(2) + + res_feats).contiguous() + vote_feats = vote_feats.view(batch_size, + num_vote, feat_channels).transpose( + 2, 1).contiguous() + + if self.norm_feats: + features_norm = torch.norm(vote_feats, p=2, dim=1) + vote_feats = vote_feats.div(features_norm.unsqueeze(1)) + else: + vote_feats = seed_feats + return vote_points, vote_feats, offset + + def get_loss(self, seed_points, vote_points, seed_indices, + vote_targets_mask, vote_targets): + """Calculate loss of voting module. + + Args: + seed_points (torch.Tensor): Coordinate of the seed points. + vote_points (torch.Tensor): Coordinate of the vote points. + seed_indices (torch.Tensor): Indices of seed points in raw points. + vote_targets_mask (torch.Tensor): Mask of valid vote targets. + vote_targets (torch.Tensor): Targets of votes. + + Returns: + torch.Tensor: Weighted vote loss. + """ + batch_size, num_seed = seed_points.shape[:2] + + seed_gt_votes_mask = torch.gather(vote_targets_mask, 1, + seed_indices).float() + + seed_indices_expand = seed_indices.unsqueeze(-1).repeat( + 1, 1, 3 * self.gt_per_seed) + seed_gt_votes = torch.gather(vote_targets, 1, seed_indices_expand) + seed_gt_votes += seed_points.repeat(1, 1, self.gt_per_seed) + + weight = seed_gt_votes_mask / (torch.sum(seed_gt_votes_mask) + 1e-6) + distance = self.vote_loss( + vote_points.view(batch_size * num_seed, -1, 3), + seed_gt_votes.view(batch_size * num_seed, -1, 3), + dst_weight=weight.view(batch_size * num_seed, 1))[1] + vote_loss = torch.sum(torch.min(distance, dim=1)[0]) + + return vote_loss diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/__init__.py new file mode 100644 index 000000000..5443d357d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.necks.fpn import FPN +from .dla_neck import DLANeck +from .imvoxel_neck import OutdoorImVoxelNeck +from .pointnet2_fp_neck import PointNetFPNeck +from .second_fpn import SECONDFPN + +__all__ = [ + 'FPN', 'SECONDFPN', 'OutdoorImVoxelNeck', 'PointNetFPNeck', 'DLANeck' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/dla_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/dla_neck.py new file mode 100644 index 000000000..c32e8bb85 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/dla_neck.py @@ -0,0 +1,233 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import numpy as np +from mmcv.cnn import ConvModule, build_conv_layer +from mmcv.runner import BaseModule +from torch import nn as nn + +from ..builder import NECKS + + +def fill_up_weights(up): + """Simulated bilinear upsampling kernel. + + Args: + up (nn.Module): ConvTranspose2d module. + """ + w = up.weight.data + f = math.ceil(w.size(2) / 2) + c = (2 * f - 1 - f % 2) / (2. * f) + for i in range(w.size(2)): + for j in range(w.size(3)): + w[0, 0, i, j] = \ + (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) + for c in range(1, w.size(0)): + w[c, 0, :, :] = w[0, 0, :, :] + + +class IDAUpsample(BaseModule): + """Iterative Deep Aggregation (IDA) Upsampling module to upsample features + of different scales to a similar scale. + + Args: + out_channels (int): Number of output channels for DeformConv. + in_channels (List[int]): List of input channels of multi-scale + feature maps. + kernel_sizes (List[int]): List of size of the convolving + kernel of different scales. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + use_dcn (bool, optional): If True, use DCNv2. Default: True. + """ + + def __init__( + self, + out_channels, + in_channels, + kernel_sizes, + norm_cfg=None, + use_dcn=True, + init_cfg=None, + ): + super(IDAUpsample, self).__init__(init_cfg) + self.use_dcn = use_dcn + self.projs = nn.ModuleList() + self.ups = nn.ModuleList() + self.nodes = nn.ModuleList() + + for i in range(1, len(in_channels)): + in_channel = in_channels[i] + up_kernel_size = int(kernel_sizes[i]) + proj = ConvModule( + in_channel, + out_channels, + 3, + padding=1, + bias=True, + conv_cfg=dict(type='DCNv2') if self.use_dcn else None, + norm_cfg=norm_cfg) + node = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + bias=True, + conv_cfg=dict(type='DCNv2') if self.use_dcn else None, + norm_cfg=norm_cfg) + up = build_conv_layer( + dict(type='deconv'), + out_channels, + out_channels, + up_kernel_size * 2, + stride=up_kernel_size, + padding=up_kernel_size // 2, + output_padding=0, + groups=out_channels, + bias=False) + + self.projs.append(proj) + self.ups.append(up) + self.nodes.append(node) + + def forward(self, mlvl_features, start_level, end_level): + """Forward function. + + Args: + mlvl_features (list[torch.Tensor]): Features from multiple layers. + start_level (int): Start layer for feature upsampling. + end_level (int): End layer for feature upsampling. + """ + for i in range(start_level, end_level - 1): + upsample = self.ups[i - start_level] + project = self.projs[i - start_level] + mlvl_features[i + 1] = upsample(project(mlvl_features[i + 1])) + node = self.nodes[i - start_level] + mlvl_features[i + 1] = node(mlvl_features[i + 1] + + mlvl_features[i]) + + +class DLAUpsample(BaseModule): + """Deep Layer Aggregation (DLA) Upsampling module for different scales + feature extraction, upsampling and fusion, It consists of groups of + IDAupsample modules. + + Args: + start_level (int): The start layer. + channels (List[int]): List of input channels of multi-scale + feature maps. + scales(List[int]): List of scale of different layers' feature. + in_channels (NoneType, optional): List of input channels of + different scales. Default: None. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + use_dcn (bool, optional): Whether to use dcn in IDAup module. + Default: True. + """ + + def __init__(self, + start_level, + channels, + scales, + in_channels=None, + norm_cfg=None, + use_dcn=True, + init_cfg=None): + super(DLAUpsample, self).__init__(init_cfg) + self.start_level = start_level + if in_channels is None: + in_channels = channels + self.channels = channels + channels = list(channels) + scales = np.array(scales, dtype=int) + for i in range(len(channels) - 1): + j = -i - 2 + setattr( + self, 'ida_{}'.format(i), + IDAUpsample(channels[j], in_channels[j:], + scales[j:] // scales[j], norm_cfg, use_dcn)) + scales[j + 1:] = scales[j] + in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]] + + def forward(self, mlvl_features): + """Forward function. + + Args: + mlvl_features(list[torch.Tensor]): Features from multi-scale + layers. + + Returns: + tuple[torch.Tensor]: Up-sampled features of different layers. + """ + outs = [mlvl_features[-1]] + for i in range(len(mlvl_features) - self.start_level - 1): + ida = getattr(self, 'ida_{}'.format(i)) + ida(mlvl_features, len(mlvl_features) - i - 2, len(mlvl_features)) + outs.insert(0, mlvl_features[-1]) + return outs + + +@NECKS.register_module() +class DLANeck(BaseModule): + """DLA Neck. + + Args: + in_channels (list[int], optional): List of input channels + of multi-scale feature map. + start_level (int, optional): The scale level where upsampling + starts. Default: 2. + end_level (int, optional): The scale level where upsampling + ends. Default: 5. + norm_cfg (dict, optional): Config dict for normalization + layer. Default: None. + use_dcn (bool, optional): Whether to use dcn in IDAup module. + Default: True. + """ + + def __init__(self, + in_channels=[16, 32, 64, 128, 256, 512], + start_level=2, + end_level=5, + norm_cfg=None, + use_dcn=True, + init_cfg=None): + super(DLANeck, self).__init__(init_cfg) + self.start_level = start_level + self.end_level = end_level + scales = [2**i for i in range(len(in_channels[self.start_level:]))] + self.dla_up = DLAUpsample( + start_level=self.start_level, + channels=in_channels[self.start_level:], + scales=scales, + norm_cfg=norm_cfg, + use_dcn=use_dcn) + self.ida_up = IDAUpsample( + in_channels[self.start_level], + in_channels[self.start_level:self.end_level], + [2**i for i in range(self.end_level - self.start_level)], norm_cfg, + use_dcn) + + def forward(self, x): + mlvl_features = [x[i] for i in range(len(x))] + mlvl_features = self.dla_up(mlvl_features) + outs = [] + for i in range(self.end_level - self.start_level): + outs.append(mlvl_features[i].clone()) + self.ida_up(outs, 0, len(outs)) + return [outs[-1]] + + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.ConvTranspose2d): + # In order to be consistent with the source code, + # reset the ConvTranspose2d initialization parameters + m.reset_parameters() + # Simulated bilinear upsampling kernel + fill_up_weights(m) + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + # In order to be consistent with the source code, + # reset the Conv2d initialization parameters + m.reset_parameters() diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/imvoxel_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/imvoxel_neck.py new file mode 100644 index 000000000..88814916c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/imvoxel_neck.py @@ -0,0 +1,110 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from torch import nn + +from ..builder import NECKS + + +@NECKS.register_module() +class OutdoorImVoxelNeck(nn.Module): + """Neck for ImVoxelNet outdoor scenario. + + Args: + in_channels (int): Input channels of multi-scale feature map. + out_channels (int): Output channels of multi-scale feature map. + """ + + def __init__(self, in_channels, out_channels): + super().__init__() + self.model = nn.Sequential( + ResModule(in_channels), + ConvModule( + in_channels=in_channels, + out_channels=in_channels * 2, + kernel_size=3, + stride=(1, 1, 2), + padding=1, + conv_cfg=dict(type='Conv3d'), + norm_cfg=dict(type='BN3d'), + act_cfg=dict(type='ReLU', inplace=True)), + ResModule(in_channels * 2), + ConvModule( + in_channels=in_channels * 2, + out_channels=in_channels * 4, + kernel_size=3, + stride=(1, 1, 2), + padding=1, + conv_cfg=dict(type='Conv3d'), + norm_cfg=dict(type='BN3d'), + act_cfg=dict(type='ReLU', inplace=True)), + ResModule(in_channels * 4), + ConvModule( + in_channels=in_channels * 4, + out_channels=out_channels, + kernel_size=3, + padding=(1, 1, 0), + conv_cfg=dict(type='Conv3d'), + norm_cfg=dict(type='BN3d'), + act_cfg=dict(type='ReLU', inplace=True))) + + def forward(self, x): + """Forward function. + + Args: + x (torch.Tensor): of shape (N, C_in, N_x, N_y, N_z). + + Returns: + list[torch.Tensor]: of shape (N, C_out, N_y, N_x). + """ + x = self.model.forward(x) + assert x.shape[-1] == 1 + # Anchor3DHead axis order is (y, x). + return [x[..., 0].transpose(-1, -2)] + + def init_weights(self): + """Initialize weights of neck.""" + pass + + +class ResModule(nn.Module): + """3d residual block for ImVoxelNeck. + + Args: + n_channels (int): Input channels of a feature map. + """ + + def __init__(self, n_channels): + super().__init__() + self.conv0 = ConvModule( + in_channels=n_channels, + out_channels=n_channels, + kernel_size=3, + padding=1, + conv_cfg=dict(type='Conv3d'), + norm_cfg=dict(type='BN3d'), + act_cfg=dict(type='ReLU', inplace=True)) + self.conv1 = ConvModule( + in_channels=n_channels, + out_channels=n_channels, + kernel_size=3, + padding=1, + conv_cfg=dict(type='Conv3d'), + norm_cfg=dict(type='BN3d'), + act_cfg=None) + self.activation = nn.ReLU(inplace=True) + + def forward(self, x): + """Forward function. + + Args: + x (torch.Tensor): of shape (N, C, N_x, N_y, N_z). + + Returns: + torch.Tensor: 5d feature map. + """ + identity = x + x = self.conv0(x) + x = self.conv1(x) + x = identity + x + x = self.activation(x) + return x diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/pointnet2_fp_neck.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/pointnet2_fp_neck.py new file mode 100644 index 000000000..62db0c105 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/pointnet2_fp_neck.py @@ -0,0 +1,89 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.runner import BaseModule +from torch import nn as nn + +from mmdet3d.ops import PointFPModule +from ..builder import NECKS + + +@NECKS.register_module() +class PointNetFPNeck(BaseModule): + r"""PointNet FP Module used in PointRCNN. + + Refer to the `official code `_. + + .. code-block:: none + + sa_n ---------------------------------------- + | + ... --------------------------------- | + | | + sa_1 ------------- | | + | | | + sa_0 -> fp_0 -> fp_module ->fp_1 -> ... -> fp_module -> fp_n + + sa_n including sa_xyz (torch.Tensor) and sa_features (torch.Tensor) + fp_n including fp_xyz (torch.Tensor) and fp_features (torch.Tensor) + + Args: + fp_channels (tuple[tuple[int]]): Tuple of mlp channels in FP modules. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, fp_channels, init_cfg=None): + super(PointNetFPNeck, self).__init__(init_cfg=init_cfg) + + self.num_fp = len(fp_channels) + self.FP_modules = nn.ModuleList() + for cur_fp_mlps in fp_channels: + self.FP_modules.append(PointFPModule(mlp_channels=cur_fp_mlps)) + + def _extract_input(self, feat_dict): + """Extract inputs from features dictionary. + + Args: + feat_dict (dict): Feature dict from backbone, which may contain + the following keys and values: + + - sa_xyz (list[torch.Tensor]): Points of each sa module + in shape (N, 3). + - sa_features (list[torch.Tensor]): Output features of + each sa module in shape (N, M). + + Returns: + list[torch.Tensor]: Coordinates of multiple levels of points. + list[torch.Tensor]: Features of multiple levels of points. + """ + sa_xyz = feat_dict['sa_xyz'] + sa_features = feat_dict['sa_features'] + assert len(sa_xyz) == len(sa_features) + + return sa_xyz, sa_features + + def forward(self, feat_dict): + """Forward pass. + + Args: + feat_dict (dict): Feature dict from backbone. + + Returns: + dict[str, torch.Tensor]: Outputs of the Neck. + + - fp_xyz (torch.Tensor): The coordinates of fp features. + - fp_features (torch.Tensor): The features from the last + feature propagation layers. + """ + sa_xyz, sa_features = self._extract_input(feat_dict) + + fp_feature = sa_features[-1] + fp_xyz = sa_xyz[-1] + + for i in range(self.num_fp): + # consume the points in a bottom-up manner + fp_feature = self.FP_modules[i](sa_xyz[-(i + 2)], sa_xyz[-(i + 1)], + sa_features[-(i + 2)], fp_feature) + fp_xyz = sa_xyz[-(i + 2)] + + ret = dict(fp_xyz=fp_xyz, fp_features=fp_feature) + return ret diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/second_fpn.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/second_fpn.py new file mode 100644 index 000000000..ef1b3de67 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/necks/second_fpn.py @@ -0,0 +1,91 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.cnn import build_conv_layer, build_norm_layer, build_upsample_layer +from mmcv.runner import BaseModule, auto_fp16 +from torch import nn as nn + +from ..builder import NECKS + + +@NECKS.register_module() +class SECONDFPN(BaseModule): + """FPN used in SECOND/PointPillars/PartA2/MVXNet. + + Args: + in_channels (list[int]): Input channels of multi-scale feature maps. + out_channels (list[int]): Output channels of feature maps. + upsample_strides (list[int]): Strides used to upsample the + feature maps. + norm_cfg (dict): Config dict of normalization layers. + upsample_cfg (dict): Config dict of upsample layers. + conv_cfg (dict): Config dict of conv layers. + use_conv_for_no_stride (bool): Whether to use conv when stride is 1. + """ + + def __init__(self, + in_channels=[128, 128, 256], + out_channels=[256, 256, 256], + upsample_strides=[1, 2, 4], + norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), + upsample_cfg=dict(type='deconv', bias=False), + conv_cfg=dict(type='Conv2d', bias=False), + use_conv_for_no_stride=False, + init_cfg=None): + # if for GroupNorm, + # cfg is dict(type='GN', num_groups=num_groups, eps=1e-3, affine=True) + super(SECONDFPN, self).__init__(init_cfg=init_cfg) + assert len(out_channels) == len(upsample_strides) == len(in_channels) + self.in_channels = in_channels + self.out_channels = out_channels + self.fp16_enabled = False + + deblocks = [] + for i, out_channel in enumerate(out_channels): + stride = upsample_strides[i] + if stride > 1 or (stride == 1 and not use_conv_for_no_stride): + upsample_layer = build_upsample_layer( + upsample_cfg, + in_channels=in_channels[i], + out_channels=out_channel, + kernel_size=upsample_strides[i], + stride=upsample_strides[i]) + else: + stride = np.round(1 / stride).astype(np.int64) + upsample_layer = build_conv_layer( + conv_cfg, + in_channels=in_channels[i], + out_channels=out_channel, + kernel_size=stride, + stride=stride) + + deblock = nn.Sequential(upsample_layer, + build_norm_layer(norm_cfg, out_channel)[1], + nn.ReLU(inplace=True)) + deblocks.append(deblock) + self.deblocks = nn.ModuleList(deblocks) + + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='ConvTranspose2d'), + dict(type='Constant', layer='NaiveSyncBatchNorm2d', val=1.0) + ] + + @auto_fp16() + def forward(self, x): + """Forward function. + + Args: + x (torch.Tensor): 4D Tensor in (N, C, H, W) shape. + + Returns: + list[torch.Tensor]: Multi-level feature maps. + """ + assert len(x) == len(self.in_channels) + ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)] + + if len(ups) > 1: + out = torch.cat(ups, dim=1) + else: + out = ups[0] + return [out] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/__init__.py new file mode 100644 index 000000000..1cc4dc6e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/__init__.py @@ -0,0 +1,22 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from .base_3droi_head import Base3DRoIHead +# from .bbox_heads import PartA2BboxHead +from .h3d_roi_head import H3DRoIHead +from .mask_heads import PointwiseSemanticHead, PrimitiveHead +from .part_aggregation_roi_head import PartAggregationROIHead +from .point_rcnn_roi_head import PointRCNNRoIHead +from .roi_extractors import Single3DRoIAwareExtractor, SingleRoIExtractor + +__all__ = [ + 'Base3DRoIHead', 'PartAggregationROIHead', 'PointwiseSemanticHead', + 'Single3DRoIAwareExtractor', 'SingleRoIExtractor', + 'H3DRoIHead', 'PrimitiveHead', 'PointRCNNRoIHead' +] + +# __all__ = [ +# 'Base3DRoIHead', 'PartAggregationROIHead', 'PointwiseSemanticHead', +# 'Single3DRoIAwareExtractor', 'PartA2BboxHead', 'SingleRoIExtractor', +# 'H3DRoIHead', 'PrimitiveHead', 'PointRCNNRoIHead' +# ] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/base_3droi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/base_3droi_head.py new file mode 100644 index 000000000..e1816ff6b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/base_3droi_head.py @@ -0,0 +1,98 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from mmcv.runner import BaseModule + + +class Base3DRoIHead(BaseModule, metaclass=ABCMeta): + """Base class for 3d RoIHeads.""" + + def __init__(self, + bbox_head=None, + mask_roi_extractor=None, + mask_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(Base3DRoIHead, self).__init__(init_cfg=init_cfg) + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if bbox_head is not None: + self.init_bbox_head(bbox_head) + + if mask_head is not None: + self.init_mask_head(mask_roi_extractor, mask_head) + + self.init_assigner_sampler() + + @property + def with_bbox(self): + """bool: whether the RoIHead has box head""" + return hasattr(self, 'bbox_head') and self.bbox_head is not None + + @property + def with_mask(self): + """bool: whether the RoIHead has mask head""" + return hasattr(self, 'mask_head') and self.mask_head is not None + + @abstractmethod + def init_bbox_head(self): + """Initialize the box head.""" + pass + + @abstractmethod + def init_mask_head(self): + """Initialize maek head.""" + pass + + @abstractmethod + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + pass + + @abstractmethod + def forward_train(self, + x, + img_metas, + proposal_list, + gt_bboxes, + gt_labels, + gt_bboxes_ignore=None, + **kwargs): + """Forward function during training. + + Args: + x (dict): Contains features from the first stage. + img_metas (list[dict]): Meta info of each image. + proposal_list (list[dict]): Proposal information from rpn. + gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): + GT bboxes of each sample. The bboxes are encapsulated + by 3D box structures. + gt_labels (list[torch.LongTensor]): GT labels of each sample. + gt_bboxes_ignore (list[torch.Tensor], optional): + Ground truth boxes to be ignored. + + Returns: + dict[str, torch.Tensor]: Losses from each head. + """ + pass + + def simple_test(self, + x, + proposal_list, + img_metas, + proposals=None, + rescale=False, + **kwargs): + """Test without augmentation.""" + pass + + def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): + """Test with augmentations. + + If rescale is False, then returned bboxes and masks will fit the scale + of imgs[0]. + """ + pass diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/__init__.py new file mode 100644 index 000000000..fd7a6b04a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.roi_heads.bbox_heads import (BBoxHead, ConvFCBBoxHead, + DoubleConvFCBBoxHead, + Shared2FCBBoxHead, + Shared4Conv1FCBBoxHead) +from .h3d_bbox_head import H3DBboxHead +from .parta2_bbox_head import PartA2BboxHead +from .point_rcnn_bbox_head import PointRCNNBboxHead + +__all__ = [ + 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead', + 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'PartA2BboxHead', + 'H3DBboxHead', 'PointRCNNBboxHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py new file mode 100644 index 000000000..a8bd11a2d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py @@ -0,0 +1,925 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.core.bbox import DepthInstance3DBoxes +from mmdet3d.core.post_processing import aligned_3d_nms +from mmdet3d.models.builder import HEADS, build_loss +from mmdet3d.models.losses import chamfer_distance +from mmdet3d.ops import build_sa_module +from mmdet.core import build_bbox_coder, multi_apply + + +@HEADS.register_module() +class H3DBboxHead(BaseModule): + r"""Bbox head of `H3DNet `_. + + Args: + num_classes (int): The number of classes. + surface_matching_cfg (dict): Config for surface primitive matching. + line_matching_cfg (dict): Config for line primitive matching. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and + decoding boxes. + train_cfg (dict): Config for training. + test_cfg (dict): Config for testing. + gt_per_seed (int): Number of ground truth votes generated + from each seed point. + num_proposal (int): Number of proposal votes generated. + feat_channels (tuple[int]): Convolution channels of + prediction layer. + primitive_feat_refine_streams (int): The number of mlps to + refine primitive feature. + primitive_refine_channels (tuple[int]): Convolution channels of + prediction layer. + upper_thresh (float): Threshold for line matching. + surface_thresh (float): Threshold for surface matching. + line_thresh (float): Threshold for line matching. + conv_cfg (dict): Config of convolution in prediction layer. + norm_cfg (dict): Config of BN in prediction layer. + objectness_loss (dict): Config of objectness loss. + center_loss (dict): Config of center loss. + dir_class_loss (dict): Config of direction classification loss. + dir_res_loss (dict): Config of direction residual regression loss. + size_class_loss (dict): Config of size classification loss. + size_res_loss (dict): Config of size residual regression loss. + semantic_loss (dict): Config of point-wise semantic segmentation loss. + cues_objectness_loss (dict): Config of cues objectness loss. + cues_semantic_loss (dict): Config of cues semantic loss. + proposal_objectness_loss (dict): Config of proposal objectness + loss. + primitive_center_loss (dict): Config of primitive center regression + loss. + """ + + def __init__(self, + num_classes, + suface_matching_cfg, + line_matching_cfg, + bbox_coder, + train_cfg=None, + test_cfg=None, + gt_per_seed=1, + num_proposal=256, + feat_channels=(128, 128), + primitive_feat_refine_streams=2, + primitive_refine_channels=[128, 128, 128], + upper_thresh=100.0, + surface_thresh=0.5, + line_thresh=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=None, + center_loss=None, + dir_class_loss=None, + dir_res_loss=None, + size_class_loss=None, + size_res_loss=None, + semantic_loss=None, + cues_objectness_loss=None, + cues_semantic_loss=None, + proposal_objectness_loss=None, + primitive_center_loss=None, + init_cfg=None): + super(H3DBboxHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.gt_per_seed = gt_per_seed + self.num_proposal = num_proposal + self.with_angle = bbox_coder['with_rot'] + self.upper_thresh = upper_thresh + self.surface_thresh = surface_thresh + self.line_thresh = line_thresh + + self.objectness_loss = build_loss(objectness_loss) + self.center_loss = build_loss(center_loss) + self.dir_class_loss = build_loss(dir_class_loss) + self.dir_res_loss = build_loss(dir_res_loss) + self.size_class_loss = build_loss(size_class_loss) + self.size_res_loss = build_loss(size_res_loss) + self.semantic_loss = build_loss(semantic_loss) + + self.bbox_coder = build_bbox_coder(bbox_coder) + self.num_sizes = self.bbox_coder.num_sizes + self.num_dir_bins = self.bbox_coder.num_dir_bins + + self.cues_objectness_loss = build_loss(cues_objectness_loss) + self.cues_semantic_loss = build_loss(cues_semantic_loss) + self.proposal_objectness_loss = build_loss(proposal_objectness_loss) + self.primitive_center_loss = build_loss(primitive_center_loss) + + assert suface_matching_cfg['mlp_channels'][-1] == \ + line_matching_cfg['mlp_channels'][-1] + + # surface center matching + self.surface_center_matcher = build_sa_module(suface_matching_cfg) + # line center matching + self.line_center_matcher = build_sa_module(line_matching_cfg) + + # Compute the matching scores + matching_feat_dims = suface_matching_cfg['mlp_channels'][-1] + self.matching_conv = ConvModule( + matching_feat_dims, + matching_feat_dims, + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True) + self.matching_pred = nn.Conv1d(matching_feat_dims, 2, 1) + + # Compute the semantic matching scores + self.semantic_matching_conv = ConvModule( + matching_feat_dims, + matching_feat_dims, + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True) + self.semantic_matching_pred = nn.Conv1d(matching_feat_dims, 2, 1) + + # Surface feature aggregation + self.surface_feats_aggregation = list() + for k in range(primitive_feat_refine_streams): + self.surface_feats_aggregation.append( + ConvModule( + matching_feat_dims, + matching_feat_dims, + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True)) + self.surface_feats_aggregation = nn.Sequential( + *self.surface_feats_aggregation) + + # Line feature aggregation + self.line_feats_aggregation = list() + for k in range(primitive_feat_refine_streams): + self.line_feats_aggregation.append( + ConvModule( + matching_feat_dims, + matching_feat_dims, + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True)) + self.line_feats_aggregation = nn.Sequential( + *self.line_feats_aggregation) + + # surface center(6) + line center(12) + prev_channel = 18 * matching_feat_dims + self.bbox_pred = nn.ModuleList() + for k in range(len(primitive_refine_channels)): + self.bbox_pred.append( + ConvModule( + prev_channel, + primitive_refine_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=False)) + prev_channel = primitive_refine_channels[k] + + # Final object detection + # Objectness scores (2), center residual (3), + # heading class+residual (num_heading_bin*2), size class + + # residual(num_size_cluster*4) + conv_out_channel = (2 + 3 + bbox_coder['num_dir_bins'] * 2 + + bbox_coder['num_sizes'] * 4 + self.num_classes) + self.bbox_pred.append(nn.Conv1d(prev_channel, conv_out_channel, 1)) + + def forward(self, feats_dict, sample_mod): + """Forward pass. + + Args: + feats_dict (dict): Feature dict from backbone. + sample_mod (str): Sample mode for vote aggregation layer. + valid modes are "vote", "seed" and "random". + + Returns: + dict: Predictions of vote head. + """ + ret_dict = {} + aggregated_points = feats_dict['aggregated_points'] + original_feature = feats_dict['aggregated_features'] + batch_size = original_feature.shape[0] + object_proposal = original_feature.shape[2] + + # Extract surface center, features and semantic predictions + z_center = feats_dict['pred_z_center'] + xy_center = feats_dict['pred_xy_center'] + z_semantic = feats_dict['sem_cls_scores_z'] + xy_semantic = feats_dict['sem_cls_scores_xy'] + z_feature = feats_dict['aggregated_features_z'] + xy_feature = feats_dict['aggregated_features_xy'] + # Extract line points and features + line_center = feats_dict['pred_line_center'] + line_feature = feats_dict['aggregated_features_line'] + + surface_center_pred = torch.cat((z_center, xy_center), dim=1) + ret_dict['surface_center_pred'] = surface_center_pred + ret_dict['surface_sem_pred'] = torch.cat((z_semantic, xy_semantic), + dim=1) + + # Extract the surface and line centers of rpn proposals + rpn_proposals = feats_dict['proposal_list'] + rpn_proposals_bbox = DepthInstance3DBoxes( + rpn_proposals.reshape(-1, 7).clone(), + box_dim=rpn_proposals.shape[-1], + with_yaw=self.with_angle, + origin=(0.5, 0.5, 0.5)) + + obj_surface_center, obj_line_center = \ + rpn_proposals_bbox.get_surface_line_center() + obj_surface_center = obj_surface_center.reshape( + batch_size, -1, 6, 3).transpose(1, 2).reshape(batch_size, -1, 3) + obj_line_center = obj_line_center.reshape(batch_size, -1, 12, + 3).transpose(1, 2).reshape( + batch_size, -1, 3) + ret_dict['surface_center_object'] = obj_surface_center + ret_dict['line_center_object'] = obj_line_center + + # aggregate primitive z and xy features to rpn proposals + surface_center_feature_pred = torch.cat((z_feature, xy_feature), dim=2) + surface_center_feature_pred = torch.cat( + (surface_center_feature_pred.new_zeros( + (batch_size, 6, surface_center_feature_pred.shape[2])), + surface_center_feature_pred), + dim=1) + + surface_xyz, surface_features, _ = self.surface_center_matcher( + surface_center_pred, + surface_center_feature_pred, + target_xyz=obj_surface_center) + + # aggregate primitive line features to rpn proposals + line_feature = torch.cat((line_feature.new_zeros( + (batch_size, 12, line_feature.shape[2])), line_feature), + dim=1) + line_xyz, line_features, _ = self.line_center_matcher( + line_center, line_feature, target_xyz=obj_line_center) + + # combine the surface and line features + combine_features = torch.cat((surface_features, line_features), dim=2) + + matching_features = self.matching_conv(combine_features) + matching_score = self.matching_pred(matching_features) + ret_dict['matching_score'] = matching_score.transpose(2, 1) + + semantic_matching_features = self.semantic_matching_conv( + combine_features) + semantic_matching_score = self.semantic_matching_pred( + semantic_matching_features) + ret_dict['semantic_matching_score'] = \ + semantic_matching_score.transpose(2, 1) + + surface_features = self.surface_feats_aggregation(surface_features) + line_features = self.line_feats_aggregation(line_features) + + # Combine all surface and line features + surface_features = surface_features.view(batch_size, -1, + object_proposal) + line_features = line_features.view(batch_size, -1, object_proposal) + + combine_feature = torch.cat((surface_features, line_features), dim=1) + + # Final bbox predictions + bbox_predictions = self.bbox_pred[0](combine_feature) + bbox_predictions += original_feature + for conv_module in self.bbox_pred[1:]: + bbox_predictions = conv_module(bbox_predictions) + + refine_decode_res = self.bbox_coder.split_pred( + bbox_predictions[:, :self.num_classes + 2], + bbox_predictions[:, self.num_classes + 2:], aggregated_points) + for key in refine_decode_res.keys(): + ret_dict[key + '_optimized'] = refine_decode_res[key] + return ret_dict + + def loss(self, + bbox_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + img_metas=None, + rpn_targets=None, + gt_bboxes_ignore=None): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of h3d bbox head. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + img_metas (list[dict]): Contain pcd and img's meta info. + rpn_targets (Tuple) : Targets generated by rpn head. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict: Losses of H3dnet. + """ + (vote_targets, vote_target_masks, size_class_targets, size_res_targets, + dir_class_targets, dir_res_targets, center_targets, _, mask_targets, + valid_gt_masks, objectness_targets, objectness_weights, + box_loss_weights, valid_gt_weights) = rpn_targets + + losses = {} + + # calculate refined proposal loss + refined_proposal_loss = self.get_proposal_stage_loss( + bbox_preds, + size_class_targets, + size_res_targets, + dir_class_targets, + dir_res_targets, + center_targets, + mask_targets, + objectness_targets, + objectness_weights, + box_loss_weights, + valid_gt_weights, + suffix='_optimized') + for key in refined_proposal_loss.keys(): + losses[key + '_optimized'] = refined_proposal_loss[key] + + bbox3d_optimized = self.bbox_coder.decode( + bbox_preds, suffix='_optimized') + + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + bbox_preds) + + (cues_objectness_label, cues_sem_label, proposal_objectness_label, + cues_mask, cues_match_mask, proposal_objectness_mask, + cues_matching_label, obj_surface_line_center) = targets + + # match scores for each geometric primitive + objectness_scores = bbox_preds['matching_score'] + # match scores for the semantics of primitives + objectness_scores_sem = bbox_preds['semantic_matching_score'] + + primitive_objectness_loss = self.cues_objectness_loss( + objectness_scores.transpose(2, 1), + cues_objectness_label, + weight=cues_mask, + avg_factor=cues_mask.sum() + 1e-6) + + primitive_sem_loss = self.cues_semantic_loss( + objectness_scores_sem.transpose(2, 1), + cues_sem_label, + weight=cues_mask, + avg_factor=cues_mask.sum() + 1e-6) + + objectness_scores = bbox_preds['obj_scores_optimized'] + objectness_loss_refine = self.proposal_objectness_loss( + objectness_scores.transpose(2, 1), proposal_objectness_label) + primitive_matching_loss = (objectness_loss_refine * + cues_match_mask).sum() / ( + cues_match_mask.sum() + 1e-6) * 0.5 + primitive_sem_matching_loss = ( + objectness_loss_refine * proposal_objectness_mask).sum() / ( + proposal_objectness_mask.sum() + 1e-6) * 0.5 + + # Get the object surface center here + batch_size, object_proposal = bbox3d_optimized.shape[:2] + refined_bbox = DepthInstance3DBoxes( + bbox3d_optimized.reshape(-1, 7).clone(), + box_dim=bbox3d_optimized.shape[-1], + with_yaw=self.with_angle, + origin=(0.5, 0.5, 0.5)) + + pred_obj_surface_center, pred_obj_line_center = \ + refined_bbox.get_surface_line_center() + pred_obj_surface_center = pred_obj_surface_center.reshape( + batch_size, -1, 6, 3).transpose(1, 2).reshape(batch_size, -1, 3) + pred_obj_line_center = pred_obj_line_center.reshape( + batch_size, -1, 12, 3).transpose(1, 2).reshape(batch_size, -1, 3) + pred_surface_line_center = torch.cat( + (pred_obj_surface_center, pred_obj_line_center), 1) + + square_dist = self.primitive_center_loss(pred_surface_line_center, + obj_surface_line_center) + + match_dist = torch.sqrt(square_dist.sum(dim=-1) + 1e-6) + primitive_centroid_reg_loss = torch.sum( + match_dist * cues_matching_label) / ( + cues_matching_label.sum() + 1e-6) + + refined_loss = dict( + primitive_objectness_loss=primitive_objectness_loss, + primitive_sem_loss=primitive_sem_loss, + primitive_matching_loss=primitive_matching_loss, + primitive_sem_matching_loss=primitive_sem_matching_loss, + primitive_centroid_reg_loss=primitive_centroid_reg_loss) + + losses.update(refined_loss) + + return losses + + def get_bboxes(self, + points, + bbox_preds, + input_metas, + rescale=False, + suffix=''): + """Generate bboxes from vote head predictions. + + Args: + points (torch.Tensor): Input points. + bbox_preds (dict): Predictions from vote head. + input_metas (list[dict]): Point cloud and image's meta info. + rescale (bool): Whether to rescale bboxes. + + Returns: + list[tuple[torch.Tensor]]: Bounding boxes, scores and labels. + """ + # decode boxes + obj_scores = F.softmax( + bbox_preds['obj_scores' + suffix], dim=-1)[..., -1] + + sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1) + + prediction_collection = {} + prediction_collection['center'] = bbox_preds['center' + suffix] + prediction_collection['dir_class'] = bbox_preds['dir_class'] + prediction_collection['dir_res'] = bbox_preds['dir_res' + suffix] + prediction_collection['size_class'] = bbox_preds['size_class'] + prediction_collection['size_res'] = bbox_preds['size_res' + suffix] + + bbox3d = self.bbox_coder.decode(prediction_collection) + + batch_size = bbox3d.shape[0] + results = list() + for b in range(batch_size): + bbox_selected, score_selected, labels = self.multiclass_nms_single( + obj_scores[b], sem_scores[b], bbox3d[b], points[b, ..., :3], + input_metas[b]) + bbox = input_metas[b]['box_type_3d']( + bbox_selected, + box_dim=bbox_selected.shape[-1], + with_yaw=self.bbox_coder.with_rot) + results.append((bbox, score_selected, labels)) + + return results + + def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points, + input_meta): + """Multi-class nms in single batch. + + Args: + obj_scores (torch.Tensor): Objectness score of bounding boxes. + sem_scores (torch.Tensor): semantic class score of bounding boxes. + bbox (torch.Tensor): Predicted bounding boxes. + points (torch.Tensor): Input points. + input_meta (dict): Point cloud and image's meta info. + + Returns: + tuple[torch.Tensor]: Bounding boxes, scores and labels. + """ + bbox = input_meta['box_type_3d']( + bbox, + box_dim=bbox.shape[-1], + with_yaw=self.bbox_coder.with_rot, + origin=(0.5, 0.5, 0.5)) + box_indices = bbox.points_in_boxes_all(points) + + corner3d = bbox.corners + minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6))) + minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0] + minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0] + + nonempty_box_mask = box_indices.T.sum(1) > 5 + + bbox_classes = torch.argmax(sem_scores, -1) + nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask], + obj_scores[nonempty_box_mask], + bbox_classes[nonempty_box_mask], + self.test_cfg.nms_thr) + + # filter empty boxes and boxes with low score + scores_mask = (obj_scores > self.test_cfg.score_thr) + nonempty_box_inds = torch.nonzero( + nonempty_box_mask, as_tuple=False).flatten() + nonempty_mask = torch.zeros_like(bbox_classes).scatter( + 0, nonempty_box_inds[nms_selected], 1) + selected = (nonempty_mask.bool() & scores_mask.bool()) + + if self.test_cfg.per_class_proposal: + bbox_selected, score_selected, labels = [], [], [] + for k in range(sem_scores.shape[-1]): + bbox_selected.append(bbox[selected].tensor) + score_selected.append(obj_scores[selected] * + sem_scores[selected][:, k]) + labels.append( + torch.zeros_like(bbox_classes[selected]).fill_(k)) + bbox_selected = torch.cat(bbox_selected, 0) + score_selected = torch.cat(score_selected, 0) + labels = torch.cat(labels, 0) + else: + bbox_selected = bbox[selected].tensor + score_selected = obj_scores[selected] + labels = bbox_classes[selected] + + return bbox_selected, score_selected, labels + + def get_proposal_stage_loss(self, + bbox_preds, + size_class_targets, + size_res_targets, + dir_class_targets, + dir_res_targets, + center_targets, + mask_targets, + objectness_targets, + objectness_weights, + box_loss_weights, + valid_gt_weights, + suffix=''): + """Compute loss for the aggregation module. + + Args: + bbox_preds (dict): Predictions from forward of vote head. + size_class_targets (torch.Tensor): Ground truth + size class of each prediction bounding box. + size_res_targets (torch.Tensor): Ground truth + size residual of each prediction bounding box. + dir_class_targets (torch.Tensor): Ground truth + direction class of each prediction bounding box. + dir_res_targets (torch.Tensor): Ground truth + direction residual of each prediction bounding box. + center_targets (torch.Tensor): Ground truth center + of each prediction bounding box. + mask_targets (torch.Tensor): Validation of each + prediction bounding box. + objectness_targets (torch.Tensor): Ground truth + objectness label of each prediction bounding box. + objectness_weights (torch.Tensor): Weights of objectness + loss for each prediction bounding box. + box_loss_weights (torch.Tensor): Weights of regression + loss for each prediction bounding box. + valid_gt_weights (torch.Tensor): Validation of each + ground truth bounding box. + + Returns: + dict: Losses of aggregation module. + """ + # calculate objectness loss + objectness_loss = self.objectness_loss( + bbox_preds['obj_scores' + suffix].transpose(2, 1), + objectness_targets, + weight=objectness_weights) + + # calculate center loss + source2target_loss, target2source_loss = self.center_loss( + bbox_preds['center' + suffix], + center_targets, + src_weight=box_loss_weights, + dst_weight=valid_gt_weights) + center_loss = source2target_loss + target2source_loss + + # calculate direction class loss + dir_class_loss = self.dir_class_loss( + bbox_preds['dir_class' + suffix].transpose(2, 1), + dir_class_targets, + weight=box_loss_weights) + + # calculate direction residual loss + batch_size, proposal_num = size_class_targets.shape[:2] + heading_label_one_hot = dir_class_targets.new_zeros( + (batch_size, proposal_num, self.num_dir_bins)) + heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1) + dir_res_norm = (bbox_preds['dir_res_norm' + suffix] * + heading_label_one_hot).sum(dim=-1) + dir_res_loss = self.dir_res_loss( + dir_res_norm, dir_res_targets, weight=box_loss_weights) + + # calculate size class loss + size_class_loss = self.size_class_loss( + bbox_preds['size_class' + suffix].transpose(2, 1), + size_class_targets, + weight=box_loss_weights) + + # calculate size residual loss + one_hot_size_targets = box_loss_weights.new_zeros( + (batch_size, proposal_num, self.num_sizes)) + one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1) + one_hot_size_targets_expand = one_hot_size_targets.unsqueeze( + -1).repeat(1, 1, 1, 3) + size_residual_norm = (bbox_preds['size_res_norm' + suffix] * + one_hot_size_targets_expand).sum(dim=2) + box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat( + 1, 1, 3) + size_res_loss = self.size_res_loss( + size_residual_norm, + size_res_targets, + weight=box_loss_weights_expand) + + # calculate semantic loss + semantic_loss = self.semantic_loss( + bbox_preds['sem_scores' + suffix].transpose(2, 1), + mask_targets, + weight=box_loss_weights) + + losses = dict( + objectness_loss=objectness_loss, + semantic_loss=semantic_loss, + center_loss=center_loss, + dir_class_loss=dir_class_loss, + dir_res_loss=dir_res_loss, + size_class_loss=size_class_loss, + size_res_loss=size_res_loss) + + return losses + + def get_targets(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + bbox_preds=None): + """Generate targets of proposal module. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + pts_semantic_mask (list[torch.Tensor]): Point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): Point-wise instance + label of each batch. + bbox_preds (torch.Tensor): Bounding box predictions of vote head. + + Returns: + tuple[torch.Tensor]: Targets of proposal module. + """ + # find empty example + valid_gt_masks = list() + gt_num = list() + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + valid_gt_masks.append(gt_labels_3d[index].new_zeros(1)) + gt_num.append(1) + else: + valid_gt_masks.append(gt_labels_3d[index].new_ones( + gt_labels_3d[index].shape)) + gt_num.append(gt_labels_3d[index].shape[0]) + + if pts_semantic_mask is None: + pts_semantic_mask = [None for i in range(len(gt_labels_3d))] + pts_instance_mask = [None for i in range(len(gt_labels_3d))] + + aggregated_points = [ + bbox_preds['aggregated_points'][i] + for i in range(len(gt_labels_3d)) + ] + + surface_center_pred = [ + bbox_preds['surface_center_pred'][i] + for i in range(len(gt_labels_3d)) + ] + + line_center_pred = [ + bbox_preds['pred_line_center'][i] + for i in range(len(gt_labels_3d)) + ] + + surface_center_object = [ + bbox_preds['surface_center_object'][i] + for i in range(len(gt_labels_3d)) + ] + + line_center_object = [ + bbox_preds['line_center_object'][i] + for i in range(len(gt_labels_3d)) + ] + + surface_sem_pred = [ + bbox_preds['surface_sem_pred'][i] + for i in range(len(gt_labels_3d)) + ] + + line_sem_pred = [ + bbox_preds['sem_cls_scores_line'][i] + for i in range(len(gt_labels_3d)) + ] + + (cues_objectness_label, cues_sem_label, proposal_objectness_label, + cues_mask, cues_match_mask, proposal_objectness_mask, + cues_matching_label, obj_surface_line_center) = multi_apply( + self.get_targets_single, points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, aggregated_points, + surface_center_pred, line_center_pred, surface_center_object, + line_center_object, surface_sem_pred, line_sem_pred) + + cues_objectness_label = torch.stack(cues_objectness_label) + cues_sem_label = torch.stack(cues_sem_label) + proposal_objectness_label = torch.stack(proposal_objectness_label) + cues_mask = torch.stack(cues_mask) + cues_match_mask = torch.stack(cues_match_mask) + proposal_objectness_mask = torch.stack(proposal_objectness_mask) + cues_matching_label = torch.stack(cues_matching_label) + obj_surface_line_center = torch.stack(obj_surface_line_center) + + return (cues_objectness_label, cues_sem_label, + proposal_objectness_label, cues_mask, cues_match_mask, + proposal_objectness_mask, cues_matching_label, + obj_surface_line_center) + + def get_targets_single(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + aggregated_points=None, + pred_surface_center=None, + pred_line_center=None, + pred_obj_surface_center=None, + pred_obj_line_center=None, + pred_surface_sem=None, + pred_line_sem=None): + """Generate targets for primitive cues for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + pts_semantic_mask (torch.Tensor): Point-wise semantic + label of each batch. + pts_instance_mask (torch.Tensor): Point-wise instance + label of each batch. + aggregated_points (torch.Tensor): Aggregated points from + vote aggregation layer. + pred_surface_center (torch.Tensor): Prediction of surface center. + pred_line_center (torch.Tensor): Prediction of line center. + pred_obj_surface_center (torch.Tensor): Objectness prediction + of surface center. + pred_obj_line_center (torch.Tensor): Objectness prediction of + line center. + pred_surface_sem (torch.Tensor): Semantic prediction of + surface center. + pred_line_sem (torch.Tensor): Semantic prediction of line center. + Returns: + tuple[torch.Tensor]: Targets for primitive cues. + """ + device = points.device + gt_bboxes_3d = gt_bboxes_3d.to(device) + num_proposals = aggregated_points.shape[0] + gt_center = gt_bboxes_3d.gravity_center + + dist1, dist2, ind1, _ = chamfer_distance( + aggregated_points.unsqueeze(0), + gt_center.unsqueeze(0), + reduction='none') + # Set assignment + object_assignment = ind1.squeeze(0) + + # Generate objectness label and mask + # objectness_label: 1 if pred object center is within + # self.train_cfg['near_threshold'] of any GT object + # objectness_mask: 0 if pred object center is in gray + # zone (DONOTCARE), 1 otherwise + euclidean_dist1 = torch.sqrt(dist1.squeeze(0) + 1e-6) + proposal_objectness_label = euclidean_dist1.new_zeros( + num_proposals, dtype=torch.long) + proposal_objectness_mask = euclidean_dist1.new_zeros(num_proposals) + + gt_sem = gt_labels_3d[object_assignment] + + obj_surface_center, obj_line_center = \ + gt_bboxes_3d.get_surface_line_center() + obj_surface_center = obj_surface_center.reshape(-1, 6, + 3).transpose(0, 1) + obj_line_center = obj_line_center.reshape(-1, 12, 3).transpose(0, 1) + obj_surface_center = obj_surface_center[:, object_assignment].reshape( + 1, -1, 3) + obj_line_center = obj_line_center[:, + object_assignment].reshape(1, -1, 3) + + surface_sem = torch.argmax(pred_surface_sem, dim=1).float() + line_sem = torch.argmax(pred_line_sem, dim=1).float() + + dist_surface, _, surface_ind, _ = chamfer_distance( + obj_surface_center, + pred_surface_center.unsqueeze(0), + reduction='none') + dist_line, _, line_ind, _ = chamfer_distance( + obj_line_center, pred_line_center.unsqueeze(0), reduction='none') + + surface_sel = pred_surface_center[surface_ind.squeeze(0)] + line_sel = pred_line_center[line_ind.squeeze(0)] + surface_sel_sem = surface_sem[surface_ind.squeeze(0)] + line_sel_sem = line_sem[line_ind.squeeze(0)] + + surface_sel_sem_gt = gt_sem.repeat(6).float() + line_sel_sem_gt = gt_sem.repeat(12).float() + + euclidean_dist_surface = torch.sqrt(dist_surface.squeeze(0) + 1e-6) + euclidean_dist_line = torch.sqrt(dist_line.squeeze(0) + 1e-6) + objectness_label_surface = euclidean_dist_line.new_zeros( + num_proposals * 6, dtype=torch.long) + objectness_mask_surface = euclidean_dist_line.new_zeros(num_proposals * + 6) + objectness_label_line = euclidean_dist_line.new_zeros( + num_proposals * 12, dtype=torch.long) + objectness_mask_line = euclidean_dist_line.new_zeros(num_proposals * + 12) + objectness_label_surface_sem = euclidean_dist_line.new_zeros( + num_proposals * 6, dtype=torch.long) + objectness_label_line_sem = euclidean_dist_line.new_zeros( + num_proposals * 12, dtype=torch.long) + + euclidean_dist_obj_surface = torch.sqrt(( + (pred_obj_surface_center - surface_sel)**2).sum(dim=-1) + 1e-6) + euclidean_dist_obj_line = torch.sqrt( + torch.sum((pred_obj_line_center - line_sel)**2, dim=-1) + 1e-6) + + # Objectness score just with centers + proposal_objectness_label[ + euclidean_dist1 < self.train_cfg['near_threshold']] = 1 + proposal_objectness_mask[ + euclidean_dist1 < self.train_cfg['near_threshold']] = 1 + proposal_objectness_mask[ + euclidean_dist1 > self.train_cfg['far_threshold']] = 1 + + objectness_label_surface[ + (euclidean_dist_obj_surface < + self.train_cfg['label_surface_threshold']) * + (euclidean_dist_surface < + self.train_cfg['mask_surface_threshold'])] = 1 + objectness_label_surface_sem[ + (euclidean_dist_obj_surface < + self.train_cfg['label_surface_threshold']) * + (euclidean_dist_surface < self.train_cfg['mask_surface_threshold']) + * (surface_sel_sem == surface_sel_sem_gt)] = 1 + + objectness_label_line[ + (euclidean_dist_obj_line < self.train_cfg['label_line_threshold']) + * + (euclidean_dist_line < self.train_cfg['mask_line_threshold'])] = 1 + objectness_label_line_sem[ + (euclidean_dist_obj_line < self.train_cfg['label_line_threshold']) + * (euclidean_dist_line < self.train_cfg['mask_line_threshold']) * + (line_sel_sem == line_sel_sem_gt)] = 1 + + objectness_label_surface_obj = proposal_objectness_label.repeat(6) + objectness_mask_surface_obj = proposal_objectness_mask.repeat(6) + objectness_label_line_obj = proposal_objectness_label.repeat(12) + objectness_mask_line_obj = proposal_objectness_mask.repeat(12) + + objectness_mask_surface = objectness_mask_surface_obj + objectness_mask_line = objectness_mask_line_obj + + cues_objectness_label = torch.cat( + (objectness_label_surface, objectness_label_line), 0) + cues_sem_label = torch.cat( + (objectness_label_surface_sem, objectness_label_line_sem), 0) + cues_mask = torch.cat((objectness_mask_surface, objectness_mask_line), + 0) + + objectness_label_surface *= objectness_label_surface_obj + objectness_label_line *= objectness_label_line_obj + cues_matching_label = torch.cat( + (objectness_label_surface, objectness_label_line), 0) + + objectness_label_surface_sem *= objectness_label_surface_obj + objectness_label_line_sem *= objectness_label_line_obj + + cues_match_mask = (torch.sum( + cues_objectness_label.view(18, num_proposals), dim=0) >= + 1).float() + + obj_surface_line_center = torch.cat( + (obj_surface_center, obj_line_center), 1).squeeze(0) + + return (cues_objectness_label, cues_sem_label, + proposal_objectness_label, cues_mask, cues_match_mask, + proposal_objectness_mask, cues_matching_label, + obj_surface_line_center) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py new file mode 100644 index 000000000..6f5ea722b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py @@ -0,0 +1,629 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.cnn import ConvModule, normal_init + +from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE + +if IS_SPCONV2_AVAILABLE: + from spconv.pytorch import (SparseConvTensor, SparseMaxPool3d, + SparseSequential) +else: + from mmcv.ops import SparseConvTensor, SparseMaxPool3d, SparseSequential + +from mmcv.runner import BaseModule +from torch import nn as nn + +from mmdet3d.core.bbox.structures import (LiDARInstance3DBoxes, + rotation_3d_in_axis, xywhr2xyxyr) +from mmdet3d.core.post_processing import nms_bev, nms_normal_bev +from mmdet3d.models.builder import HEADS, build_loss +from mmdet3d.ops import make_sparse_convmodule +from mmdet.core import build_bbox_coder, multi_apply + + +@HEADS.register_module() +class PartA2BboxHead(BaseModule): + """PartA2 RoI head. + + Args: + num_classes (int): The number of classes to prediction. + seg_in_channels (int): Input channels of segmentation + convolution layer. + part_in_channels (int): Input channels of part convolution layer. + seg_conv_channels (list(int)): Out channels of each + segmentation convolution layer. + part_conv_channels (list(int)): Out channels of each + part convolution layer. + merge_conv_channels (list(int)): Out channels of each + feature merged convolution layer. + down_conv_channels (list(int)): Out channels of each + downsampled convolution layer. + shared_fc_channels (list(int)): Out channels of each shared fc layer. + cls_channels (list(int)): Out channels of each classification layer. + reg_channels (list(int)): Out channels of each regression layer. + dropout_ratio (float): Dropout ratio of classification and + regression layers. + roi_feat_size (int): The size of pooled roi features. + with_corner_loss (bool): Whether to use corner loss or not. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for box head. + conv_cfg (dict): Config dict of convolutional layers + norm_cfg (dict): Config dict of normalization layers + loss_bbox (dict): Config dict of box regression loss. + loss_cls (dict): Config dict of classifacation loss. + """ + + def __init__(self, + num_classes, + seg_in_channels, + part_in_channels, + seg_conv_channels=None, + part_conv_channels=None, + merge_conv_channels=None, + down_conv_channels=None, + shared_fc_channels=None, + cls_channels=None, + reg_channels=None, + dropout_ratio=0.1, + roi_feat_size=14, + with_corner_loss=True, + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + loss_bbox=dict( + type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='none', + loss_weight=1.0), + init_cfg=None): + super(PartA2BboxHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.with_corner_loss = with_corner_loss + self.bbox_coder = build_bbox_coder(bbox_coder) + self.loss_bbox = build_loss(loss_bbox) + self.loss_cls = build_loss(loss_cls) + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + + assert down_conv_channels[-1] == shared_fc_channels[0] + + # init layers + part_channel_last = part_in_channels + part_conv = [] + for i, channel in enumerate(part_conv_channels): + part_conv.append( + make_sparse_convmodule( + part_channel_last, + channel, + 3, + padding=1, + norm_cfg=norm_cfg, + indice_key=f'rcnn_part{i}', + conv_type='SubMConv3d')) + part_channel_last = channel + self.part_conv = SparseSequential(*part_conv) + + seg_channel_last = seg_in_channels + seg_conv = [] + for i, channel in enumerate(seg_conv_channels): + seg_conv.append( + make_sparse_convmodule( + seg_channel_last, + channel, + 3, + padding=1, + norm_cfg=norm_cfg, + indice_key=f'rcnn_seg{i}', + conv_type='SubMConv3d')) + seg_channel_last = channel + self.seg_conv = SparseSequential(*seg_conv) + + self.conv_down = SparseSequential() + + merge_conv_channel_last = part_channel_last + seg_channel_last + merge_conv = [] + for i, channel in enumerate(merge_conv_channels): + merge_conv.append( + make_sparse_convmodule( + merge_conv_channel_last, + channel, + 3, + padding=1, + norm_cfg=norm_cfg, + indice_key='rcnn_down0')) + merge_conv_channel_last = channel + + down_conv_channel_last = merge_conv_channel_last + conv_down = [] + for i, channel in enumerate(down_conv_channels): + conv_down.append( + make_sparse_convmodule( + down_conv_channel_last, + channel, + 3, + padding=1, + norm_cfg=norm_cfg, + indice_key='rcnn_down1')) + down_conv_channel_last = channel + + self.conv_down.add_module('merge_conv', SparseSequential(*merge_conv)) + self.conv_down.add_module('max_pool3d', + SparseMaxPool3d(kernel_size=2, stride=2)) + self.conv_down.add_module('down_conv', SparseSequential(*conv_down)) + + shared_fc_list = [] + pool_size = roi_feat_size // 2 + pre_channel = shared_fc_channels[0] * pool_size**3 + for k in range(1, len(shared_fc_channels)): + shared_fc_list.append( + ConvModule( + pre_channel, + shared_fc_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + inplace=True)) + pre_channel = shared_fc_channels[k] + + if k != len(shared_fc_channels) - 1 and dropout_ratio > 0: + shared_fc_list.append(nn.Dropout(dropout_ratio)) + + self.shared_fc = nn.Sequential(*shared_fc_list) + + # Classification layer + channel_in = shared_fc_channels[-1] + cls_channel = 1 + cls_layers = [] + pre_channel = channel_in + for k in range(0, len(cls_channels)): + cls_layers.append( + ConvModule( + pre_channel, + cls_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + inplace=True)) + pre_channel = cls_channels[k] + cls_layers.append( + ConvModule( + pre_channel, + cls_channel, + 1, + padding=0, + conv_cfg=conv_cfg, + act_cfg=None)) + if dropout_ratio >= 0: + cls_layers.insert(1, nn.Dropout(dropout_ratio)) + + self.conv_cls = nn.Sequential(*cls_layers) + + # Regression layer + reg_layers = [] + pre_channel = channel_in + for k in range(0, len(reg_channels)): + reg_layers.append( + ConvModule( + pre_channel, + reg_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + inplace=True)) + pre_channel = reg_channels[k] + reg_layers.append( + ConvModule( + pre_channel, + self.bbox_coder.code_size, + 1, + padding=0, + conv_cfg=conv_cfg, + act_cfg=None)) + if dropout_ratio >= 0: + reg_layers.insert(1, nn.Dropout(dropout_ratio)) + + self.conv_reg = nn.Sequential(*reg_layers) + + if init_cfg is None: + self.init_cfg = dict( + type='Xavier', + layer=['Conv2d', 'Conv1d'], + distribution='uniform') + + def init_weights(self): + super().init_weights() + normal_init(self.conv_reg[-1].conv, mean=0, std=0.001) + + def forward(self, seg_feats, part_feats): + """Forward pass. + + Args: + seg_feats (torch.Tensor): Point-wise semantic features. + part_feats (torch.Tensor): Point-wise part prediction features. + + Returns: + tuple[torch.Tensor]: Score of class and bbox predictions. + """ + # (B * N, out_x, out_y, out_z, 4) + rcnn_batch_size = part_feats.shape[0] + + # transform to sparse tensors + sparse_shape = part_feats.shape[1:4] + # (non_empty_num, 4) ==> [bs_idx, x_idx, y_idx, z_idx] + sparse_idx = part_feats.sum(dim=-1).nonzero(as_tuple=False) + + part_features = part_feats[sparse_idx[:, 0], sparse_idx[:, 1], + sparse_idx[:, 2], sparse_idx[:, 3]] + seg_features = seg_feats[sparse_idx[:, 0], sparse_idx[:, 1], + sparse_idx[:, 2], sparse_idx[:, 3]] + coords = sparse_idx.int().contiguous() + part_features = SparseConvTensor(part_features, coords, sparse_shape, + rcnn_batch_size) + seg_features = SparseConvTensor(seg_features, coords, sparse_shape, + rcnn_batch_size) + + # forward rcnn network + x_part = self.part_conv(part_features) + x_rpn = self.seg_conv(seg_features) + + merged_feature = torch.cat((x_rpn.features, x_part.features), + dim=1) # (N, C) + shared_feature = SparseConvTensor(merged_feature, coords, sparse_shape, + rcnn_batch_size) + + x = self.conv_down(shared_feature) + + shared_feature = x.dense().view(rcnn_batch_size, -1, 1) + + shared_feature = self.shared_fc(shared_feature) + + cls_score = self.conv_cls(shared_feature).transpose( + 1, 2).contiguous().squeeze(dim=1) # (B, 1) + bbox_pred = self.conv_reg(shared_feature).transpose( + 1, 2).contiguous().squeeze(dim=1) # (B, C) + + return cls_score, bbox_pred + + def loss(self, cls_score, bbox_pred, rois, labels, bbox_targets, + pos_gt_bboxes, reg_mask, label_weights, bbox_weights): + """Computing losses. + + Args: + cls_score (torch.Tensor): Scores of each roi. + bbox_pred (torch.Tensor): Predictions of bboxes. + rois (torch.Tensor): Roi bboxes. + labels (torch.Tensor): Labels of class. + bbox_targets (torch.Tensor): Target of positive bboxes. + pos_gt_bboxes (torch.Tensor): Ground truths of positive bboxes. + reg_mask (torch.Tensor): Mask for positive bboxes. + label_weights (torch.Tensor): Weights of class loss. + bbox_weights (torch.Tensor): Weights of bbox loss. + + Returns: + dict: Computed losses. + + - loss_cls (torch.Tensor): Loss of classes. + - loss_bbox (torch.Tensor): Loss of bboxes. + - loss_corner (torch.Tensor): Loss of corners. + """ + losses = dict() + rcnn_batch_size = cls_score.shape[0] + + # calculate class loss + cls_flat = cls_score.view(-1) + loss_cls = self.loss_cls(cls_flat, labels, label_weights) + losses['loss_cls'] = loss_cls + + # calculate regression loss + code_size = self.bbox_coder.code_size + pos_inds = (reg_mask > 0) + if pos_inds.any() == 0: + # fake a part loss + losses['loss_bbox'] = loss_cls.new_tensor(0) + if self.with_corner_loss: + losses['loss_corner'] = loss_cls.new_tensor(0) + else: + pos_bbox_pred = bbox_pred.view(rcnn_batch_size, -1)[pos_inds] + bbox_weights_flat = bbox_weights[pos_inds].view(-1, 1).repeat( + 1, pos_bbox_pred.shape[-1]) + loss_bbox = self.loss_bbox( + pos_bbox_pred.unsqueeze(dim=0), bbox_targets.unsqueeze(dim=0), + bbox_weights_flat.unsqueeze(dim=0)) + losses['loss_bbox'] = loss_bbox + + if self.with_corner_loss: + pos_roi_boxes3d = rois[..., 1:].view(-1, code_size)[pos_inds] + pos_roi_boxes3d = pos_roi_boxes3d.view(-1, code_size) + batch_anchors = pos_roi_boxes3d.clone().detach() + pos_rois_rotation = pos_roi_boxes3d[..., 6].view(-1) + roi_xyz = pos_roi_boxes3d[..., 0:3].view(-1, 3) + batch_anchors[..., 0:3] = 0 + # decode boxes + pred_boxes3d = self.bbox_coder.decode( + batch_anchors, + pos_bbox_pred.view(-1, code_size)).view(-1, code_size) + + pred_boxes3d[..., 0:3] = rotation_3d_in_axis( + pred_boxes3d[..., 0:3].unsqueeze(1), + pos_rois_rotation, + axis=2).squeeze(1) + + pred_boxes3d[:, 0:3] += roi_xyz + + # calculate corner loss + loss_corner = self.get_corner_loss_lidar( + pred_boxes3d, pos_gt_bboxes) + losses['loss_corner'] = loss_corner + + return losses + + def get_targets(self, sampling_results, rcnn_train_cfg, concat=True): + """Generate targets. + + Args: + sampling_results (list[:obj:`SamplingResult`]): + Sampled results from rois. + rcnn_train_cfg (:obj:`ConfigDict`): Training config of rcnn. + concat (bool): Whether to concatenate targets between batches. + + Returns: + tuple[torch.Tensor]: Targets of boxes and class prediction. + """ + pos_bboxes_list = [res.pos_bboxes for res in sampling_results] + pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] + iou_list = [res.iou for res in sampling_results] + targets = multi_apply( + self._get_target_single, + pos_bboxes_list, + pos_gt_bboxes_list, + iou_list, + cfg=rcnn_train_cfg) + + (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) = targets + + if concat: + label = torch.cat(label, 0) + bbox_targets = torch.cat(bbox_targets, 0) + pos_gt_bboxes = torch.cat(pos_gt_bboxes, 0) + reg_mask = torch.cat(reg_mask, 0) + + label_weights = torch.cat(label_weights, 0) + label_weights /= torch.clamp(label_weights.sum(), min=1.0) + + bbox_weights = torch.cat(bbox_weights, 0) + bbox_weights /= torch.clamp(bbox_weights.sum(), min=1.0) + + return (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + + def _get_target_single(self, pos_bboxes, pos_gt_bboxes, ious, cfg): + """Generate training targets for a single sample. + + Args: + pos_bboxes (torch.Tensor): Positive boxes with shape + (N, 7). + pos_gt_bboxes (torch.Tensor): Ground truth boxes with shape + (M, 7). + ious (torch.Tensor): IoU between `pos_bboxes` and `pos_gt_bboxes` + in shape (N, M). + cfg (dict): Training configs. + + Returns: + tuple[torch.Tensor]: Target for positive boxes. + (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + """ + cls_pos_mask = ious > cfg.cls_pos_thr + cls_neg_mask = ious < cfg.cls_neg_thr + interval_mask = (cls_pos_mask == 0) & (cls_neg_mask == 0) + + # iou regression target + label = (cls_pos_mask > 0).float() + label[interval_mask] = ious[interval_mask] * 2 - 0.5 + # label weights + label_weights = (label >= 0).float() + + # box regression target + reg_mask = pos_bboxes.new_zeros(ious.size(0)).long() + reg_mask[0:pos_gt_bboxes.size(0)] = 1 + bbox_weights = (reg_mask > 0).float() + if reg_mask.bool().any(): + pos_gt_bboxes_ct = pos_gt_bboxes.clone().detach() + roi_center = pos_bboxes[..., 0:3] + roi_ry = pos_bboxes[..., 6] % (2 * np.pi) + + # canonical transformation + pos_gt_bboxes_ct[..., 0:3] -= roi_center + pos_gt_bboxes_ct[..., 6] -= roi_ry + pos_gt_bboxes_ct[..., 0:3] = rotation_3d_in_axis( + pos_gt_bboxes_ct[..., 0:3].unsqueeze(1), -roi_ry, + axis=2).squeeze(1) + + # flip orientation if rois have opposite orientation + ry_label = pos_gt_bboxes_ct[..., 6] % (2 * np.pi) # 0 ~ 2pi + opposite_flag = (ry_label > np.pi * 0.5) & (ry_label < np.pi * 1.5) + ry_label[opposite_flag] = (ry_label[opposite_flag] + np.pi) % ( + 2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) + flag = ry_label > np.pi + ry_label[flag] = ry_label[flag] - np.pi * 2 # (-pi/2, pi/2) + ry_label = torch.clamp(ry_label, min=-np.pi / 2, max=np.pi / 2) + pos_gt_bboxes_ct[..., 6] = ry_label + + rois_anchor = pos_bboxes.clone().detach() + rois_anchor[:, 0:3] = 0 + rois_anchor[:, 6] = 0 + bbox_targets = self.bbox_coder.encode(rois_anchor, + pos_gt_bboxes_ct) + else: + # no fg bbox + bbox_targets = pos_gt_bboxes.new_empty((0, 7)) + + return (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + + def get_corner_loss_lidar(self, pred_bbox3d, gt_bbox3d, delta=1.0): + """Calculate corner loss of given boxes. + + Args: + pred_bbox3d (torch.FloatTensor): Predicted boxes in shape (N, 7). + gt_bbox3d (torch.FloatTensor): Ground truth boxes in shape (N, 7). + delta (float, optional): huber loss threshold. Defaults to 1.0 + + Returns: + torch.FloatTensor: Calculated corner loss in shape (N). + """ + assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] + + # This is a little bit hack here because we assume the box for + # Part-A2 is in LiDAR coordinates + gt_boxes_structure = LiDARInstance3DBoxes(gt_bbox3d) + pred_box_corners = LiDARInstance3DBoxes(pred_bbox3d).corners + gt_box_corners = gt_boxes_structure.corners + + # This flip only changes the heading direction of GT boxes + gt_bbox3d_flip = gt_boxes_structure.clone() + gt_bbox3d_flip.tensor[:, 6] += np.pi + gt_box_corners_flip = gt_bbox3d_flip.corners + + corner_dist = torch.min( + torch.norm(pred_box_corners - gt_box_corners, dim=2), + torch.norm(pred_box_corners - gt_box_corners_flip, + dim=2)) # (N, 8) + # huber loss + abs_error = corner_dist.abs() + quadratic = abs_error.clamp(max=delta) + linear = (abs_error - quadratic) + corner_loss = 0.5 * quadratic**2 + delta * linear + + return corner_loss.mean(dim=1) + + def get_bboxes(self, + rois, + cls_score, + bbox_pred, + class_labels, + class_pred, + img_metas, + cfg=None): + """Generate bboxes from bbox head predictions. + + Args: + rois (torch.Tensor): Roi bounding boxes. + cls_score (torch.Tensor): Scores of bounding boxes. + bbox_pred (torch.Tensor): Bounding boxes predictions + class_labels (torch.Tensor): Label of classes + class_pred (torch.Tensor): Score for nms. + img_metas (list[dict]): Point cloud and image's meta info. + cfg (:obj:`ConfigDict`): Testing config. + + Returns: + list[tuple]: Decoded bbox, scores and labels after nms. + """ + roi_batch_id = rois[..., 0] + roi_boxes = rois[..., 1:] # boxes without batch id + batch_size = int(roi_batch_id.max().item() + 1) + + # decode boxes + roi_ry = roi_boxes[..., 6].view(-1) + roi_xyz = roi_boxes[..., 0:3].view(-1, 3) + local_roi_boxes = roi_boxes.clone().detach() + local_roi_boxes[..., 0:3] = 0 + rcnn_boxes3d = self.bbox_coder.decode(local_roi_boxes, bbox_pred) + rcnn_boxes3d[..., 0:3] = rotation_3d_in_axis( + rcnn_boxes3d[..., 0:3].unsqueeze(1), roi_ry, axis=2).squeeze(1) + rcnn_boxes3d[:, 0:3] += roi_xyz + + # post processing + result_list = [] + for batch_id in range(batch_size): + cur_class_labels = class_labels[batch_id] + cur_cls_score = cls_score[roi_batch_id == batch_id].view(-1) + + cur_box_prob = class_pred[batch_id] + cur_rcnn_boxes3d = rcnn_boxes3d[roi_batch_id == batch_id] + keep = self.multi_class_nms(cur_box_prob, cur_rcnn_boxes3d, + cfg.score_thr, cfg.nms_thr, + img_metas[batch_id], + cfg.use_rotate_nms) + selected_bboxes = cur_rcnn_boxes3d[keep] + selected_label_preds = cur_class_labels[keep] + selected_scores = cur_cls_score[keep] + + result_list.append( + (img_metas[batch_id]['box_type_3d'](selected_bboxes, + self.bbox_coder.code_size), + selected_scores, selected_label_preds)) + return result_list + + def multi_class_nms(self, + box_probs, + box_preds, + score_thr, + nms_thr, + input_meta, + use_rotate_nms=True): + """Multi-class NMS for box head. + + Note: + This function has large overlap with the `box3d_multiclass_nms` + implemented in `mmdet3d.core.post_processing`. We are considering + merging these two functions in the future. + + Args: + box_probs (torch.Tensor): Predicted boxes probabitilies in + shape (N,). + box_preds (torch.Tensor): Predicted boxes in shape (N, 7+C). + score_thr (float): Threshold of scores. + nms_thr (float): Threshold for NMS. + input_meta (dict): Meta information of the current sample. + use_rotate_nms (bool, optional): Whether to use rotated nms. + Defaults to True. + + Returns: + torch.Tensor: Selected indices. + """ + if use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + + assert box_probs.shape[ + 1] == self.num_classes, f'box_probs shape: {str(box_probs.shape)}' + selected_list = [] + selected_labels = [] + boxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + box_preds, self.bbox_coder.code_size).bev) + + score_thresh = score_thr if isinstance( + score_thr, list) else [score_thr for x in range(self.num_classes)] + nms_thresh = nms_thr if isinstance( + nms_thr, list) else [nms_thr for x in range(self.num_classes)] + for k in range(0, self.num_classes): + class_scores_keep = box_probs[:, k] >= score_thresh[k] + + if class_scores_keep.int().sum() > 0: + original_idxs = class_scores_keep.nonzero( + as_tuple=False).view(-1) + cur_boxes_for_nms = boxes_for_nms[class_scores_keep] + cur_rank_scores = box_probs[class_scores_keep, k] + + cur_selected = nms_func(cur_boxes_for_nms, cur_rank_scores, + nms_thresh[k]) + + if cur_selected.shape[0] == 0: + continue + selected_list.append(original_idxs[cur_selected]) + selected_labels.append( + torch.full([cur_selected.shape[0]], + k + 1, + dtype=torch.int64, + device=box_preds.device)) + + keep = torch.cat( + selected_list, dim=0) if len(selected_list) > 0 else [] + return keep diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/point_rcnn_bbox_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/point_rcnn_bbox_head.py new file mode 100644 index 000000000..df469215d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/bbox_heads/point_rcnn_bbox_head.py @@ -0,0 +1,575 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from mmcv.cnn import ConvModule, normal_init +from mmcv.cnn.bricks import build_conv_layer +from mmcv.runner import BaseModule +from torch import nn as nn + +from mmdet3d.core.bbox.structures import (LiDARInstance3DBoxes, + rotation_3d_in_axis, xywhr2xyxyr) +from mmdet3d.core.post_processing import nms_bev, nms_normal_bev +from mmdet3d.models.builder import HEADS, build_loss +from mmdet3d.ops import build_sa_module +from mmdet.core import build_bbox_coder, multi_apply + + +@HEADS.register_module() +class PointRCNNBboxHead(BaseModule): + """PointRCNN RoI Bbox head. + + Args: + num_classes (int): The number of classes to prediction. + in_channels (int): Input channels of point features. + mlp_channels (list[int]): the number of mlp channels + pred_layer_cfg (dict, optional): Config of classfication and + regression prediction layers. Defaults to None. + num_points (tuple, optional): The number of points which each SA + module samples. Defaults to (128, 32, -1). + radius (tuple, optional): Sampling radius of each SA module. + Defaults to (0.2, 0.4, 100). + num_samples (tuple, optional): The number of samples for ball query + in each SA module. Defaults to (64, 64, 64). + sa_channels (tuple, optional): Out channels of each mlp in SA module. + Defaults to ((128, 128, 128), (128, 128, 256), (256, 256, 512)). + bbox_coder (dict, optional): Config dict of box coders. + Defaults to dict(type='DeltaXYZWLHRBBoxCoder'). + sa_cfg (dict, optional): Config of set abstraction module, which may + contain the following keys and values: + + - pool_mod (str): Pool method ('max' or 'avg') for SA modules. + - use_xyz (bool): Whether to use xyz as a part of features. + - normalize_xyz (bool): Whether to normalize xyz with radii in + each SA module. + Defaults to dict(type='PointSAModule', pool_mod='max', + use_xyz=True). + conv_cfg (dict, optional): Config dict of convolutional layers. + Defaults to dict(type='Conv1d'). + norm_cfg (dict, optional): Config dict of normalization layers. + Defaults to dict(type='BN1d'). + act_cfg (dict, optional): Config dict of activation layers. + Defaults to dict(type='ReLU'). + bias (str, optional): Type of bias. Defaults to 'auto'. + loss_bbox (dict, optional): Config of regression loss function. + Defaults to dict(type='SmoothL1Loss', beta=1.0 / 9.0, + reduction='sum', loss_weight=1.0). + loss_cls (dict, optional): Config of classification loss function. + Defaults to dict(type='CrossEntropyLoss', use_sigmoid=True, + reduction='sum', loss_weight=1.0). + with_corner_loss (bool, optional): Whether using corner loss. + Defaults to True. + init_cfg (dict, optional): Config of initialization. Defaults to None. + """ + + def __init__( + self, + num_classes, + in_channels, + mlp_channels, + pred_layer_cfg=None, + num_points=(128, 32, -1), + radius=(0.2, 0.4, 100), + num_samples=(64, 64, 64), + sa_channels=((128, 128, 128), (128, 128, 256), (256, 256, 512)), + bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), + sa_cfg=dict(type='PointSAModule', pool_mod='max', use_xyz=True), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + bias='auto', + loss_bbox=dict( + type='SmoothL1Loss', + beta=1.0 / 9.0, + reduction='sum', + loss_weight=1.0), + loss_cls=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + reduction='sum', + loss_weight=1.0), + with_corner_loss=True, + init_cfg=None): + super(PointRCNNBboxHead, self).__init__(init_cfg=init_cfg) + self.num_classes = num_classes + self.num_sa = len(sa_channels) + self.with_corner_loss = with_corner_loss + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.bias = bias + + self.loss_bbox = build_loss(loss_bbox) + self.loss_cls = build_loss(loss_cls) + self.bbox_coder = build_bbox_coder(bbox_coder) + self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) + + self.in_channels = in_channels + mlp_channels = [self.in_channels] + mlp_channels + shared_mlps = nn.Sequential() + for i in range(len(mlp_channels) - 1): + shared_mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + inplace=False, + conv_cfg=dict(type='Conv2d'))) + self.xyz_up_layer = nn.Sequential(*shared_mlps) + + c_out = mlp_channels[-1] + self.merge_down_layer = ConvModule( + c_out * 2, + c_out, + kernel_size=(1, 1), + stride=(1, 1), + inplace=False, + conv_cfg=dict(type='Conv2d')) + + pre_channels = c_out + + self.SA_modules = nn.ModuleList() + sa_in_channel = pre_channels + + for sa_index in range(self.num_sa): + cur_sa_mlps = list(sa_channels[sa_index]) + cur_sa_mlps = [sa_in_channel] + cur_sa_mlps + sa_out_channel = cur_sa_mlps[-1] + + cur_num_points = num_points[sa_index] + if cur_num_points <= 0: + cur_num_points = None + self.SA_modules.append( + build_sa_module( + num_point=cur_num_points, + radius=radius[sa_index], + num_sample=num_samples[sa_index], + mlp_channels=cur_sa_mlps, + cfg=sa_cfg)) + sa_in_channel = sa_out_channel + self.cls_convs = self._add_conv_branch( + pred_layer_cfg.in_channels, pred_layer_cfg.cls_conv_channels) + self.reg_convs = self._add_conv_branch( + pred_layer_cfg.in_channels, pred_layer_cfg.reg_conv_channels) + + prev_channel = pred_layer_cfg.cls_conv_channels[-1] + self.conv_cls = build_conv_layer( + self.conv_cfg, + in_channels=prev_channel, + out_channels=self.num_classes, + kernel_size=1) + prev_channel = pred_layer_cfg.reg_conv_channels[-1] + self.conv_reg = build_conv_layer( + self.conv_cfg, + in_channels=prev_channel, + out_channels=self.bbox_coder.code_size * self.num_classes, + kernel_size=1) + + if init_cfg is None: + self.init_cfg = dict(type='Xavier', layer=['Conv2d', 'Conv1d']) + + def _add_conv_branch(self, in_channels, conv_channels): + """Add shared or separable branch. + + Args: + in_channels (int): Input feature channel. + conv_channels (tuple): Middle feature channels. + """ + conv_spec = [in_channels] + list(conv_channels) + # add branch specific conv layers + conv_layers = nn.Sequential() + for i in range(len(conv_spec) - 1): + conv_layers.add_module( + f'layer{i}', + ConvModule( + conv_spec[i], + conv_spec[i + 1], + kernel_size=1, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + bias=self.bias, + inplace=True)) + return conv_layers + + def init_weights(self): + """Initialize weights of the head.""" + super().init_weights() + for m in self.modules(): + if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): + if m.bias is not None: + nn.init.constant_(m.bias, 0) + normal_init(self.conv_reg.weight, mean=0, std=0.001) + + def forward(self, feats): + """Forward pass. + + Args: + feats (torch.Torch): Features from RCNN modules. + + Returns: + tuple[torch.Tensor]: Score of class and bbox predictions. + """ + input_data = feats.clone().detach() + xyz_input = input_data[..., 0:self.in_channels].transpose( + 1, 2).unsqueeze(dim=3).contiguous().clone().detach() + xyz_features = self.xyz_up_layer(xyz_input) + rpn_features = input_data[..., self.in_channels:].transpose( + 1, 2).unsqueeze(dim=3) + merged_features = torch.cat((xyz_features, rpn_features), dim=1) + merged_features = self.merge_down_layer(merged_features) + l_xyz, l_features = [input_data[..., 0:3].contiguous()], \ + [merged_features.squeeze(dim=3)] + for i in range(len(self.SA_modules)): + li_xyz, li_features, cur_indices = \ + self.SA_modules[i](l_xyz[i], l_features[i]) + l_xyz.append(li_xyz) + l_features.append(li_features) + + shared_features = l_features[-1] + x_cls = shared_features + x_reg = shared_features + x_cls = self.cls_convs(x_cls) + rcnn_cls = self.conv_cls(x_cls) + x_reg = self.reg_convs(x_reg) + rcnn_reg = self.conv_reg(x_reg) + rcnn_cls = rcnn_cls.transpose(1, 2).contiguous().squeeze(dim=1) + rcnn_reg = rcnn_reg.transpose(1, 2).contiguous().squeeze(dim=1) + return rcnn_cls, rcnn_reg + + def loss(self, cls_score, bbox_pred, rois, labels, bbox_targets, + pos_gt_bboxes, reg_mask, label_weights, bbox_weights): + """Computing losses. + + Args: + cls_score (torch.Tensor): Scores of each RoI. + bbox_pred (torch.Tensor): Predictions of bboxes. + rois (torch.Tensor): RoI bboxes. + labels (torch.Tensor): Labels of class. + bbox_targets (torch.Tensor): Target of positive bboxes. + pos_gt_bboxes (torch.Tensor): Ground truths of positive bboxes. + reg_mask (torch.Tensor): Mask for positive bboxes. + label_weights (torch.Tensor): Weights of class loss. + bbox_weights (torch.Tensor): Weights of bbox loss. + + Returns: + dict: Computed losses. + + - loss_cls (torch.Tensor): Loss of classes. + - loss_bbox (torch.Tensor): Loss of bboxes. + - loss_corner (torch.Tensor): Loss of corners. + """ + losses = dict() + rcnn_batch_size = cls_score.shape[0] + # calculate class loss + cls_flat = cls_score.view(-1) + loss_cls = self.loss_cls(cls_flat, labels, label_weights) + losses['loss_cls'] = loss_cls + + # calculate regression loss + code_size = self.bbox_coder.code_size + pos_inds = (reg_mask > 0) + + pos_bbox_pred = bbox_pred.view(rcnn_batch_size, -1)[pos_inds].clone() + bbox_weights_flat = bbox_weights[pos_inds].view(-1, 1).repeat( + 1, pos_bbox_pred.shape[-1]) + loss_bbox = self.loss_bbox( + pos_bbox_pred.unsqueeze(dim=0), + bbox_targets.unsqueeze(dim=0).detach(), + bbox_weights_flat.unsqueeze(dim=0)) + losses['loss_bbox'] = loss_bbox + + if pos_inds.any() != 0 and self.with_corner_loss: + rois = rois.detach() + pos_roi_boxes3d = rois[..., 1:].view(-1, code_size)[pos_inds] + pos_roi_boxes3d = pos_roi_boxes3d.view(-1, code_size) + batch_anchors = pos_roi_boxes3d.clone().detach() + pos_rois_rotation = pos_roi_boxes3d[..., 6].view(-1) + roi_xyz = pos_roi_boxes3d[..., 0:3].view(-1, 3) + batch_anchors[..., 0:3] = 0 + # decode boxes + pred_boxes3d = self.bbox_coder.decode( + batch_anchors, + pos_bbox_pred.view(-1, code_size)).view(-1, code_size) + + pred_boxes3d[..., 0:3] = rotation_3d_in_axis( + pred_boxes3d[..., 0:3].unsqueeze(1), (pos_rois_rotation), + axis=2).squeeze(1) + + pred_boxes3d[:, 0:3] += roi_xyz + + # calculate corner loss + loss_corner = self.get_corner_loss_lidar(pred_boxes3d, + pos_gt_bboxes) + + losses['loss_corner'] = loss_corner + else: + losses['loss_corner'] = loss_cls.new_tensor(0) + + return losses + + def get_corner_loss_lidar(self, pred_bbox3d, gt_bbox3d, delta=1.0): + """Calculate corner loss of given boxes. + + Args: + pred_bbox3d (torch.FloatTensor): Predicted boxes in shape (N, 7). + gt_bbox3d (torch.FloatTensor): Ground truth boxes in shape (N, 7). + delta (float, optional): huber loss threshold. Defaults to 1.0 + + Returns: + torch.FloatTensor: Calculated corner loss in shape (N). + """ + assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] + + # This is a little bit hack here because we assume the box for + # PointRCNN is in LiDAR coordinates + + gt_boxes_structure = LiDARInstance3DBoxes(gt_bbox3d) + pred_box_corners = LiDARInstance3DBoxes(pred_bbox3d).corners + gt_box_corners = gt_boxes_structure.corners + + # This flip only changes the heading direction of GT boxes + gt_bbox3d_flip = gt_boxes_structure.clone() + gt_bbox3d_flip.tensor[:, 6] += np.pi + gt_box_corners_flip = gt_bbox3d_flip.corners + + corner_dist = torch.min( + torch.norm(pred_box_corners - gt_box_corners, dim=2), + torch.norm(pred_box_corners - gt_box_corners_flip, dim=2)) + # huber loss + abs_error = corner_dist.abs() + quadratic = abs_error.clamp(max=delta) + linear = (abs_error - quadratic) + corner_loss = 0.5 * quadratic**2 + delta * linear + return corner_loss.mean(dim=1) + + def get_targets(self, sampling_results, rcnn_train_cfg, concat=True): + """Generate targets. + + Args: + sampling_results (list[:obj:`SamplingResult`]): + Sampled results from rois. + rcnn_train_cfg (:obj:`ConfigDict`): Training config of rcnn. + concat (bool, optional): Whether to concatenate targets between + batches. Defaults to True. + + Returns: + tuple[torch.Tensor]: Targets of boxes and class prediction. + """ + pos_bboxes_list = [res.pos_bboxes for res in sampling_results] + pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] + iou_list = [res.iou for res in sampling_results] + targets = multi_apply( + self._get_target_single, + pos_bboxes_list, + pos_gt_bboxes_list, + iou_list, + cfg=rcnn_train_cfg) + (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) = targets + + if concat: + label = torch.cat(label, 0) + bbox_targets = torch.cat(bbox_targets, 0) + pos_gt_bboxes = torch.cat(pos_gt_bboxes, 0) + reg_mask = torch.cat(reg_mask, 0) + + label_weights = torch.cat(label_weights, 0) + label_weights /= torch.clamp(label_weights.sum(), min=1.0) + + bbox_weights = torch.cat(bbox_weights, 0) + bbox_weights /= torch.clamp(bbox_weights.sum(), min=1.0) + + return (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + + def _get_target_single(self, pos_bboxes, pos_gt_bboxes, ious, cfg): + """Generate training targets for a single sample. + + Args: + pos_bboxes (torch.Tensor): Positive boxes with shape + (N, 7). + pos_gt_bboxes (torch.Tensor): Ground truth boxes with shape + (M, 7). + ious (torch.Tensor): IoU between `pos_bboxes` and `pos_gt_bboxes` + in shape (N, M). + cfg (dict): Training configs. + + Returns: + tuple[torch.Tensor]: Target for positive boxes. + (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + """ + cls_pos_mask = ious > cfg.cls_pos_thr + cls_neg_mask = ious < cfg.cls_neg_thr + interval_mask = (cls_pos_mask == 0) & (cls_neg_mask == 0) + # iou regression target + label = (cls_pos_mask > 0).float() + label[interval_mask] = (ious[interval_mask] - cfg.cls_neg_thr) / \ + (cfg.cls_pos_thr - cfg.cls_neg_thr) + # label weights + label_weights = (label >= 0).float() + # box regression target + reg_mask = pos_bboxes.new_zeros(ious.size(0)).long() + reg_mask[0:pos_gt_bboxes.size(0)] = 1 + bbox_weights = (reg_mask > 0).float() + if reg_mask.bool().any(): + pos_gt_bboxes_ct = pos_gt_bboxes.clone().detach() + roi_center = pos_bboxes[..., 0:3] + roi_ry = pos_bboxes[..., 6] % (2 * np.pi) + + # canonical transformation + pos_gt_bboxes_ct[..., 0:3] -= roi_center + pos_gt_bboxes_ct[..., 6] -= roi_ry + pos_gt_bboxes_ct[..., 0:3] = rotation_3d_in_axis( + pos_gt_bboxes_ct[..., 0:3].unsqueeze(1), -(roi_ry), + axis=2).squeeze(1) + + # flip orientation if gt have opposite orientation + ry_label = pos_gt_bboxes_ct[..., 6] % (2 * np.pi) # 0 ~ 2pi + is_opposite = (ry_label > np.pi * 0.5) & (ry_label < np.pi * 1.5) + ry_label[is_opposite] = (ry_label[is_opposite] + np.pi) % ( + 2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) + flag = ry_label > np.pi + ry_label[flag] = ry_label[flag] - np.pi * 2 # (-pi/2, pi/2) + ry_label = torch.clamp(ry_label, min=-np.pi / 2, max=np.pi / 2) + pos_gt_bboxes_ct[..., 6] = ry_label + + rois_anchor = pos_bboxes.clone().detach() + rois_anchor[:, 0:3] = 0 + rois_anchor[:, 6] = 0 + bbox_targets = self.bbox_coder.encode(rois_anchor, + pos_gt_bboxes_ct) + else: + # no fg bbox + bbox_targets = pos_gt_bboxes.new_empty((0, 7)) + + return (label, bbox_targets, pos_gt_bboxes, reg_mask, label_weights, + bbox_weights) + + def get_bboxes(self, + rois, + cls_score, + bbox_pred, + class_labels, + img_metas, + cfg=None): + """Generate bboxes from bbox head predictions. + + Args: + rois (torch.Tensor): RoI bounding boxes. + cls_score (torch.Tensor): Scores of bounding boxes. + bbox_pred (torch.Tensor): Bounding boxes predictions + class_labels (torch.Tensor): Label of classes + img_metas (list[dict]): Point cloud and image's meta info. + cfg (:obj:`ConfigDict`, optional): Testing config. + Defaults to None. + + Returns: + list[tuple]: Decoded bbox, scores and labels after nms. + """ + roi_batch_id = rois[..., 0] + roi_boxes = rois[..., 1:] # boxes without batch id + batch_size = int(roi_batch_id.max().item() + 1) + + # decode boxes + roi_ry = roi_boxes[..., 6].view(-1) + roi_xyz = roi_boxes[..., 0:3].view(-1, 3) + local_roi_boxes = roi_boxes.clone().detach() + local_roi_boxes[..., 0:3] = 0 + rcnn_boxes3d = self.bbox_coder.decode(local_roi_boxes, bbox_pred) + rcnn_boxes3d[..., 0:3] = rotation_3d_in_axis( + rcnn_boxes3d[..., 0:3].unsqueeze(1), roi_ry, axis=2).squeeze(1) + rcnn_boxes3d[:, 0:3] += roi_xyz + + # post processing + result_list = [] + for batch_id in range(batch_size): + cur_class_labels = class_labels[batch_id] + cur_cls_score = cls_score[roi_batch_id == batch_id].view(-1) + + cur_box_prob = cur_cls_score.unsqueeze(1) + cur_rcnn_boxes3d = rcnn_boxes3d[roi_batch_id == batch_id] + keep = self.multi_class_nms(cur_box_prob, cur_rcnn_boxes3d, + cfg.score_thr, cfg.nms_thr, + img_metas[batch_id], + cfg.use_rotate_nms) + selected_bboxes = cur_rcnn_boxes3d[keep] + selected_label_preds = cur_class_labels[keep] + selected_scores = cur_cls_score[keep] + + result_list.append( + (img_metas[batch_id]['box_type_3d'](selected_bboxes, + self.bbox_coder.code_size), + selected_scores, selected_label_preds)) + return result_list + + def multi_class_nms(self, + box_probs, + box_preds, + score_thr, + nms_thr, + input_meta, + use_rotate_nms=True): + """Multi-class NMS for box head. + + Note: + This function has large overlap with the `box3d_multiclass_nms` + implemented in `mmdet3d.core.post_processing`. We are considering + merging these two functions in the future. + + Args: + box_probs (torch.Tensor): Predicted boxes probabilities in + shape (N,). + box_preds (torch.Tensor): Predicted boxes in shape (N, 7+C). + score_thr (float): Threshold of scores. + nms_thr (float): Threshold for NMS. + input_meta (dict): Meta information of the current sample. + use_rotate_nms (bool, optional): Whether to use rotated nms. + Defaults to True. + + Returns: + torch.Tensor: Selected indices. + """ + if use_rotate_nms: + nms_func = nms_bev + else: + nms_func = nms_normal_bev + + assert box_probs.shape[ + 1] == self.num_classes, f'box_probs shape: {str(box_probs.shape)}' + selected_list = [] + selected_labels = [] + boxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( + box_preds, self.bbox_coder.code_size).bev) + + score_thresh = score_thr if isinstance( + score_thr, list) else [score_thr for x in range(self.num_classes)] + nms_thresh = nms_thr if isinstance( + nms_thr, list) else [nms_thr for x in range(self.num_classes)] + for k in range(0, self.num_classes): + class_scores_keep = box_probs[:, k] >= score_thresh[k] + + if class_scores_keep.int().sum() > 0: + original_idxs = class_scores_keep.nonzero( + as_tuple=False).view(-1) + cur_boxes_for_nms = boxes_for_nms[class_scores_keep] + cur_rank_scores = box_probs[class_scores_keep, k] + + cur_selected = nms_func(cur_boxes_for_nms, cur_rank_scores, + nms_thresh[k]) + + if cur_selected.shape[0] == 0: + continue + selected_list.append(original_idxs[cur_selected]) + selected_labels.append( + torch.full([cur_selected.shape[0]], + k + 1, + dtype=torch.int64, + device=box_preds.device)) + + keep = torch.cat( + selected_list, dim=0) if len(selected_list) > 0 else [] + return keep diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/h3d_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/h3d_roi_head.py new file mode 100644 index 000000000..b6b95972a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/h3d_roi_head.py @@ -0,0 +1,159 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet3d.core.bbox import bbox3d2result +from ..builder import HEADS, build_head +from .base_3droi_head import Base3DRoIHead + + +@HEADS.register_module() +class H3DRoIHead(Base3DRoIHead): + """H3D roi head for H3DNet. + + Args: + primitive_list (List): Configs of primitive heads. + bbox_head (ConfigDict): Config of bbox_head. + train_cfg (ConfigDict): Training config. + test_cfg (ConfigDict): Testing config. + """ + + def __init__(self, + primitive_list, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(H3DRoIHead, self).__init__( + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + # Primitive module + assert len(primitive_list) == 3 + self.primitive_z = build_head(primitive_list[0]) + self.primitive_xy = build_head(primitive_list[1]) + self.primitive_line = build_head(primitive_list[2]) + + def init_mask_head(self): + """Initialize mask head, skip since ``H3DROIHead`` does not have + one.""" + pass + + def init_bbox_head(self, bbox_head): + """Initialize box head.""" + bbox_head['train_cfg'] = self.train_cfg + bbox_head['test_cfg'] = self.test_cfg + self.bbox_head = build_head(bbox_head) + + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + pass + + def forward_train(self, + feats_dict, + img_metas, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask, + pts_instance_mask, + gt_bboxes_ignore=None): + """Training forward function of PartAggregationROIHead. + + Args: + feats_dict (dict): Contains features from the first stage. + img_metas (list[dict]): Contain pcd and img's meta info. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding boxes to ignore. + + Returns: + dict: losses from each head. + """ + losses = dict() + + sample_mod = self.train_cfg.sample_mod + assert sample_mod in ['vote', 'seed', 'random'] + result_z = self.primitive_z(feats_dict, sample_mod) + feats_dict.update(result_z) + + result_xy = self.primitive_xy(feats_dict, sample_mod) + feats_dict.update(result_xy) + + result_line = self.primitive_line(feats_dict, sample_mod) + feats_dict.update(result_line) + + primitive_loss_inputs = (feats_dict, points, gt_bboxes_3d, + gt_labels_3d, pts_semantic_mask, + pts_instance_mask, img_metas, + gt_bboxes_ignore) + + loss_z = self.primitive_z.loss(*primitive_loss_inputs) + losses.update(loss_z) + + loss_xy = self.primitive_xy.loss(*primitive_loss_inputs) + losses.update(loss_xy) + + loss_line = self.primitive_line.loss(*primitive_loss_inputs) + losses.update(loss_line) + + targets = feats_dict.pop('targets') + + bbox_results = self.bbox_head(feats_dict, sample_mod) + + feats_dict.update(bbox_results) + bbox_loss = self.bbox_head.loss(feats_dict, points, gt_bboxes_3d, + gt_labels_3d, pts_semantic_mask, + pts_instance_mask, img_metas, targets, + gt_bboxes_ignore) + losses.update(bbox_loss) + + return losses + + def simple_test(self, feats_dict, img_metas, points, rescale=False): + """Simple testing forward function of PartAggregationROIHead. + + Note: + This function assumes that the batch size is 1 + + Args: + feats_dict (dict): Contains features from the first stage. + img_metas (list[dict]): Contain pcd and img's meta info. + points (torch.Tensor): Input points. + rescale (bool): Whether to rescale results. + + Returns: + dict: Bbox results of one frame. + """ + sample_mod = self.test_cfg.sample_mod + assert sample_mod in ['vote', 'seed', 'random'] + + result_z = self.primitive_z(feats_dict, sample_mod) + feats_dict.update(result_z) + + result_xy = self.primitive_xy(feats_dict, sample_mod) + feats_dict.update(result_xy) + + result_line = self.primitive_line(feats_dict, sample_mod) + feats_dict.update(result_line) + + bbox_preds = self.bbox_head(feats_dict, sample_mod) + feats_dict.update(bbox_preds) + bbox_list = self.bbox_head.get_bboxes( + points, + feats_dict, + img_metas, + rescale=rescale, + suffix='_optimized') + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/__init__.py new file mode 100644 index 000000000..0aa11569a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .pointwise_semantic_head import PointwiseSemanticHead +from .primitive_head import PrimitiveHead + +__all__ = ['PointwiseSemanticHead', 'PrimitiveHead'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/pointwise_semantic_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/pointwise_semantic_head.py new file mode 100644 index 000000000..fc0bcf5b6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/pointwise_semantic_head.py @@ -0,0 +1,202 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.runner import BaseModule +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.core.bbox.structures import rotation_3d_in_axis +from mmdet3d.models.builder import HEADS, build_loss +from mmdet.core import multi_apply + + +@HEADS.register_module() +class PointwiseSemanticHead(BaseModule): + """Semantic segmentation head for point-wise segmentation. + + Predict point-wise segmentation and part regression results for PartA2. + See `paper `_ for more details. + + Args: + in_channels (int): The number of input channel. + num_classes (int): The number of class. + extra_width (float): Boxes enlarge width. + loss_seg (dict): Config of segmentation loss. + loss_part (dict): Config of part prediction loss. + """ + + def __init__(self, + in_channels, + num_classes=3, + extra_width=0.2, + seg_score_thr=0.3, + init_cfg=None, + loss_seg=dict( + type='FocalLoss', + use_sigmoid=True, + reduction='sum', + gamma=2.0, + alpha=0.25, + loss_weight=1.0), + loss_part=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=1.0)): + super(PointwiseSemanticHead, self).__init__(init_cfg=init_cfg) + self.extra_width = extra_width + self.num_classes = num_classes + self.seg_score_thr = seg_score_thr + self.seg_cls_layer = nn.Linear(in_channels, 1, bias=True) + self.seg_reg_layer = nn.Linear(in_channels, 3, bias=True) + + self.loss_seg = build_loss(loss_seg) + self.loss_part = build_loss(loss_part) + + def forward(self, x): + """Forward pass. + + Args: + x (torch.Tensor): Features from the first stage. + + Returns: + dict: Part features, segmentation and part predictions. + + - seg_preds (torch.Tensor): Segment predictions. + - part_preds (torch.Tensor): Part predictions. + - part_feats (torch.Tensor): Feature predictions. + """ + seg_preds = self.seg_cls_layer(x) # (N, 1) + part_preds = self.seg_reg_layer(x) # (N, 3) + + seg_scores = torch.sigmoid(seg_preds).detach() + seg_mask = (seg_scores > self.seg_score_thr) + + part_offsets = torch.sigmoid(part_preds).clone().detach() + part_offsets[seg_mask.view(-1) == 0] = 0 + part_feats = torch.cat((part_offsets, seg_scores), + dim=-1) # shape (npoints, 4) + return dict( + seg_preds=seg_preds, part_preds=part_preds, part_feats=part_feats) + + def get_targets_single(self, voxel_centers, gt_bboxes_3d, gt_labels_3d): + """generate segmentation and part prediction targets for a single + sample. + + Args: + voxel_centers (torch.Tensor): The center of voxels in shape + (voxel_num, 3). + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth boxes in + shape (box_num, 7). + gt_labels_3d (torch.Tensor): Class labels of ground truths in + shape (box_num). + + Returns: + tuple[torch.Tensor]: Segmentation targets with shape [voxel_num] + part prediction targets with shape [voxel_num, 3] + """ + gt_bboxes_3d = gt_bboxes_3d.to(voxel_centers.device) + enlarged_gt_boxes = gt_bboxes_3d.enlarged_box(self.extra_width) + + part_targets = voxel_centers.new_zeros((voxel_centers.shape[0], 3), + dtype=torch.float32) + box_idx = gt_bboxes_3d.points_in_boxes_part(voxel_centers) + enlarge_box_idx = enlarged_gt_boxes.points_in_boxes_part( + voxel_centers).long() + + gt_labels_pad = F.pad( + gt_labels_3d, (1, 0), mode='constant', value=self.num_classes) + seg_targets = gt_labels_pad[(box_idx.long() + 1)] + fg_pt_flag = box_idx > -1 + ignore_flag = fg_pt_flag ^ (enlarge_box_idx > -1) + seg_targets[ignore_flag] = -1 + + for k in range(len(gt_bboxes_3d)): + k_box_flag = box_idx == k + # no point in current box (caused by velodyne reduce) + if not k_box_flag.any(): + continue + fg_voxels = voxel_centers[k_box_flag] + transformed_voxels = fg_voxels - gt_bboxes_3d.bottom_center[k] + transformed_voxels = rotation_3d_in_axis( + transformed_voxels.unsqueeze(0), + -gt_bboxes_3d.yaw[k].view(1), + axis=2) + part_targets[k_box_flag] = transformed_voxels / gt_bboxes_3d.dims[ + k] + voxel_centers.new_tensor([0.5, 0.5, 0]) + + part_targets = torch.clamp(part_targets, min=0) + return seg_targets, part_targets + + def get_targets(self, voxels_dict, gt_bboxes_3d, gt_labels_3d): + """generate segmentation and part prediction targets. + + Args: + voxel_centers (torch.Tensor): The center of voxels in shape + (voxel_num, 3). + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth boxes in + shape (box_num, 7). + gt_labels_3d (torch.Tensor): Class labels of ground truths in + shape (box_num). + + Returns: + dict: Prediction targets + + - seg_targets (torch.Tensor): Segmentation targets + with shape [voxel_num]. + - part_targets (torch.Tensor): Part prediction targets + with shape [voxel_num, 3]. + """ + batch_size = len(gt_labels_3d) + voxel_center_list = [] + for idx in range(batch_size): + coords_idx = voxels_dict['coors'][:, 0] == idx + voxel_center_list.append(voxels_dict['voxel_centers'][coords_idx]) + + seg_targets, part_targets = multi_apply(self.get_targets_single, + voxel_center_list, + gt_bboxes_3d, gt_labels_3d) + seg_targets = torch.cat(seg_targets, dim=0) + part_targets = torch.cat(part_targets, dim=0) + return dict(seg_targets=seg_targets, part_targets=part_targets) + + def loss(self, semantic_results, semantic_targets): + """Calculate point-wise segmentation and part prediction losses. + + Args: + semantic_results (dict): Results from semantic head. + + - seg_preds: Segmentation predictions. + - part_preds: Part predictions. + + semantic_targets (dict): Targets of semantic results. + + - seg_preds: Segmentation targets. + - part_preds: Part targets. + + Returns: + dict: Loss of segmentation and part prediction. + + - loss_seg (torch.Tensor): Segmentation prediction loss. + - loss_part (torch.Tensor): Part prediction loss. + """ + seg_preds = semantic_results['seg_preds'] + part_preds = semantic_results['part_preds'] + seg_targets = semantic_targets['seg_targets'] + part_targets = semantic_targets['part_targets'] + + pos_mask = (seg_targets > -1) & (seg_targets < self.num_classes) + binary_seg_target = pos_mask.long() + pos = pos_mask.float() + neg = (seg_targets == self.num_classes).float() + seg_weights = pos + neg + pos_normalizer = pos.sum() + seg_weights = seg_weights / torch.clamp(pos_normalizer, min=1.0) + loss_seg = self.loss_seg(seg_preds, binary_seg_target, seg_weights) + + if pos_normalizer > 0: + loss_part = self.loss_part(part_preds[pos_mask], + part_targets[pos_mask]) + else: + # fake a part loss + loss_part = loss_seg.new_tensor(0) + + return dict(loss_seg=loss_seg, loss_part=loss_part) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/primitive_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/primitive_head.py new file mode 100644 index 000000000..4c9c28b39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/mask_heads/primitive_head.py @@ -0,0 +1,966 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.ops import furthest_point_sample +from mmcv.runner import BaseModule +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.models.builder import HEADS, build_loss +from mmdet3d.models.model_utils import VoteModule +from mmdet3d.ops import build_sa_module +from mmdet.core import multi_apply + + +@HEADS.register_module() +class PrimitiveHead(BaseModule): + r"""Primitive head of `H3DNet `_. + + Args: + num_dims (int): The dimension of primitive semantic information. + num_classes (int): The number of class. + primitive_mode (str): The mode of primitive module, + available mode ['z', 'xy', 'line']. + bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and + decoding boxes. + train_cfg (dict): Config for training. + test_cfg (dict): Config for testing. + vote_module_cfg (dict): Config of VoteModule for point-wise votes. + vote_aggregation_cfg (dict): Config of vote aggregation layer. + feat_channels (tuple[int]): Convolution channels of + prediction layer. + upper_thresh (float): Threshold for line matching. + surface_thresh (float): Threshold for surface matching. + conv_cfg (dict): Config of convolution in prediction layer. + norm_cfg (dict): Config of BN in prediction layer. + objectness_loss (dict): Config of objectness loss. + center_loss (dict): Config of center loss. + semantic_loss (dict): Config of point-wise semantic segmentation loss. + """ + + def __init__(self, + num_dims, + num_classes, + primitive_mode, + train_cfg=None, + test_cfg=None, + vote_module_cfg=None, + vote_aggregation_cfg=None, + feat_channels=(128, 128), + upper_thresh=100.0, + surface_thresh=0.5, + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + objectness_loss=None, + center_loss=None, + semantic_reg_loss=None, + semantic_cls_loss=None, + init_cfg=None): + super(PrimitiveHead, self).__init__(init_cfg=init_cfg) + assert primitive_mode in ['z', 'xy', 'line'] + # The dimension of primitive semantic information. + self.num_dims = num_dims + self.num_classes = num_classes + self.primitive_mode = primitive_mode + self.train_cfg = train_cfg + self.test_cfg = test_cfg + self.gt_per_seed = vote_module_cfg['gt_per_seed'] + self.num_proposal = vote_aggregation_cfg['num_point'] + self.upper_thresh = upper_thresh + self.surface_thresh = surface_thresh + + self.objectness_loss = build_loss(objectness_loss) + self.center_loss = build_loss(center_loss) + self.semantic_reg_loss = build_loss(semantic_reg_loss) + self.semantic_cls_loss = build_loss(semantic_cls_loss) + + assert vote_aggregation_cfg['mlp_channels'][0] == vote_module_cfg[ + 'in_channels'] + + # Primitive existence flag prediction + self.flag_conv = ConvModule( + vote_module_cfg['conv_channels'][-1], + vote_module_cfg['conv_channels'][-1] // 2, + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True) + self.flag_pred = torch.nn.Conv1d( + vote_module_cfg['conv_channels'][-1] // 2, 2, 1) + + self.vote_module = VoteModule(**vote_module_cfg) + self.vote_aggregation = build_sa_module(vote_aggregation_cfg) + + prev_channel = vote_aggregation_cfg['mlp_channels'][-1] + conv_pred_list = list() + for k in range(len(feat_channels)): + conv_pred_list.append( + ConvModule( + prev_channel, + feat_channels[k], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + bias=True, + inplace=True)) + prev_channel = feat_channels[k] + self.conv_pred = nn.Sequential(*conv_pred_list) + + conv_out_channel = 3 + num_dims + num_classes + self.conv_pred.add_module('conv_out', + nn.Conv1d(prev_channel, conv_out_channel, 1)) + + def forward(self, feats_dict, sample_mod): + """Forward pass. + + Args: + feats_dict (dict): Feature dict from backbone. + sample_mod (str): Sample mode for vote aggregation layer. + valid modes are "vote", "seed" and "random". + + Returns: + dict: Predictions of primitive head. + """ + assert sample_mod in ['vote', 'seed', 'random'] + + seed_points = feats_dict['fp_xyz_net0'][-1] + seed_features = feats_dict['hd_feature'] + results = {} + + primitive_flag = self.flag_conv(seed_features) + primitive_flag = self.flag_pred(primitive_flag) + + results['pred_flag_' + self.primitive_mode] = primitive_flag + + # 1. generate vote_points from seed_points + vote_points, vote_features, _ = self.vote_module( + seed_points, seed_features) + results['vote_' + self.primitive_mode] = vote_points + results['vote_features_' + self.primitive_mode] = vote_features + + # 2. aggregate vote_points + if sample_mod == 'vote': + # use fps in vote_aggregation + sample_indices = None + elif sample_mod == 'seed': + # FPS on seed and choose the votes corresponding to the seeds + sample_indices = furthest_point_sample(seed_points, + self.num_proposal) + elif sample_mod == 'random': + # Random sampling from the votes + batch_size, num_seed = seed_points.shape[:2] + sample_indices = torch.randint( + 0, + num_seed, (batch_size, self.num_proposal), + dtype=torch.int32, + device=seed_points.device) + else: + raise NotImplementedError('Unsupported sample mod!') + + vote_aggregation_ret = self.vote_aggregation(vote_points, + vote_features, + sample_indices) + aggregated_points, features, aggregated_indices = vote_aggregation_ret + results['aggregated_points_' + self.primitive_mode] = aggregated_points + results['aggregated_features_' + self.primitive_mode] = features + results['aggregated_indices_' + + self.primitive_mode] = aggregated_indices + + # 3. predict primitive offsets and semantic information + predictions = self.conv_pred(features) + + # 4. decode predictions + decode_ret = self.primitive_decode_scores(predictions, + aggregated_points) + results.update(decode_ret) + + center, pred_ind = self.get_primitive_center( + primitive_flag, decode_ret['center_' + self.primitive_mode]) + + results['pred_' + self.primitive_mode + '_ind'] = pred_ind + results['pred_' + self.primitive_mode + '_center'] = center + return results + + def loss(self, + bbox_preds, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + img_metas=None, + gt_bboxes_ignore=None): + """Compute loss. + + Args: + bbox_preds (dict): Predictions from forward of primitive head. + points (list[torch.Tensor]): Input points. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each sample. + gt_labels_3d (list[torch.Tensor]): Labels of each sample. + pts_semantic_mask (list[torch.Tensor]): Point-wise + semantic mask. + pts_instance_mask (list[torch.Tensor]): Point-wise + instance mask. + img_metas (list[dict]): Contain pcd and img's meta info. + gt_bboxes_ignore (list[torch.Tensor]): Specify + which bounding. + + Returns: + dict: Losses of Primitive Head. + """ + targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask, + bbox_preds) + + (point_mask, point_offset, gt_primitive_center, gt_primitive_semantic, + gt_sem_cls_label, gt_primitive_mask) = targets + + losses = {} + # Compute the loss of primitive existence flag + pred_flag = bbox_preds['pred_flag_' + self.primitive_mode] + flag_loss = self.objectness_loss(pred_flag, gt_primitive_mask.long()) + losses['flag_loss_' + self.primitive_mode] = flag_loss + + # calculate vote loss + vote_loss = self.vote_module.get_loss( + bbox_preds['seed_points'], + bbox_preds['vote_' + self.primitive_mode], + bbox_preds['seed_indices'], point_mask, point_offset) + losses['vote_loss_' + self.primitive_mode] = vote_loss + + num_proposal = bbox_preds['aggregated_points_' + + self.primitive_mode].shape[1] + primitive_center = bbox_preds['center_' + self.primitive_mode] + if self.primitive_mode != 'line': + primitive_semantic = bbox_preds['size_residuals_' + + self.primitive_mode].contiguous() + else: + primitive_semantic = None + semancitc_scores = bbox_preds['sem_cls_scores_' + + self.primitive_mode].transpose(2, 1) + + gt_primitive_mask = gt_primitive_mask / \ + (gt_primitive_mask.sum() + 1e-6) + center_loss, size_loss, sem_cls_loss = self.compute_primitive_loss( + primitive_center, primitive_semantic, semancitc_scores, + num_proposal, gt_primitive_center, gt_primitive_semantic, + gt_sem_cls_label, gt_primitive_mask) + losses['center_loss_' + self.primitive_mode] = center_loss + losses['size_loss_' + self.primitive_mode] = size_loss + losses['sem_loss_' + self.primitive_mode] = sem_cls_loss + + return losses + + def get_targets(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None, + bbox_preds=None): + """Generate targets of primitive head. + + Args: + points (list[torch.Tensor]): Points of each batch. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + bboxes of each batch. + gt_labels_3d (list[torch.Tensor]): Labels of each batch. + pts_semantic_mask (list[torch.Tensor]): Point-wise semantic + label of each batch. + pts_instance_mask (list[torch.Tensor]): Point-wise instance + label of each batch. + bbox_preds (dict): Predictions from forward of primitive head. + + Returns: + tuple[torch.Tensor]: Targets of primitive head. + """ + for index in range(len(gt_labels_3d)): + if len(gt_labels_3d[index]) == 0: + fake_box = gt_bboxes_3d[index].tensor.new_zeros( + 1, gt_bboxes_3d[index].tensor.shape[-1]) + gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box) + gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1) + + if pts_semantic_mask is None: + pts_semantic_mask = [None for i in range(len(gt_labels_3d))] + pts_instance_mask = [None for i in range(len(gt_labels_3d))] + + (point_mask, point_sem, + point_offset) = multi_apply(self.get_targets_single, points, + gt_bboxes_3d, gt_labels_3d, + pts_semantic_mask, pts_instance_mask) + + point_mask = torch.stack(point_mask) + point_sem = torch.stack(point_sem) + point_offset = torch.stack(point_offset) + + batch_size = point_mask.shape[0] + num_proposal = bbox_preds['aggregated_points_' + + self.primitive_mode].shape[1] + num_seed = bbox_preds['seed_points'].shape[1] + seed_inds = bbox_preds['seed_indices'].long() + seed_inds_expand = seed_inds.view(batch_size, num_seed, + 1).repeat(1, 1, 3) + seed_gt_votes = torch.gather(point_offset, 1, seed_inds_expand) + seed_gt_votes += bbox_preds['seed_points'] + gt_primitive_center = seed_gt_votes.view(batch_size * num_proposal, 1, + 3) + + seed_inds_expand_sem = seed_inds.view(batch_size, num_seed, 1).repeat( + 1, 1, 4 + self.num_dims) + seed_gt_sem = torch.gather(point_sem, 1, seed_inds_expand_sem) + gt_primitive_semantic = seed_gt_sem[:, :, 3:3 + self.num_dims].view( + batch_size * num_proposal, 1, self.num_dims).contiguous() + + gt_sem_cls_label = seed_gt_sem[:, :, -1].long() + + gt_votes_mask = torch.gather(point_mask, 1, seed_inds) + + return (point_mask, point_offset, gt_primitive_center, + gt_primitive_semantic, gt_sem_cls_label, gt_votes_mask) + + def get_targets_single(self, + points, + gt_bboxes_3d, + gt_labels_3d, + pts_semantic_mask=None, + pts_instance_mask=None): + """Generate targets of primitive head for single batch. + + Args: + points (torch.Tensor): Points of each batch. + gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth + boxes of each batch. + gt_labels_3d (torch.Tensor): Labels of each batch. + pts_semantic_mask (torch.Tensor): Point-wise semantic + label of each batch. + pts_instance_mask (torch.Tensor): Point-wise instance + label of each batch. + + Returns: + tuple[torch.Tensor]: Targets of primitive head. + """ + gt_bboxes_3d = gt_bboxes_3d.to(points.device) + num_points = points.shape[0] + + point_mask = points.new_zeros(num_points) + # Offset to the primitive center + point_offset = points.new_zeros([num_points, 3]) + # Semantic information of primitive center + point_sem = points.new_zeros([num_points, 3 + self.num_dims + 1]) + + # Generate pts_semantic_mask and pts_instance_mask when they are None + if pts_semantic_mask is None or pts_instance_mask is None: + points2box_mask = gt_bboxes_3d.points_in_boxes_all(points) + assignment = points2box_mask.argmax(1) + background_mask = points2box_mask.max(1)[0] == 0 + + if pts_semantic_mask is None: + pts_semantic_mask = gt_labels_3d[assignment] + pts_semantic_mask[background_mask] = self.num_classes + + if pts_instance_mask is None: + pts_instance_mask = assignment + pts_instance_mask[background_mask] = gt_labels_3d.shape[0] + + instance_flag = torch.nonzero( + pts_semantic_mask != self.num_classes, as_tuple=False).squeeze(1) + instance_labels = pts_instance_mask[instance_flag].unique() + + with_yaw = gt_bboxes_3d.with_yaw + for i, i_instance in enumerate(instance_labels): + indices = instance_flag[pts_instance_mask[instance_flag] == + i_instance] + coords = points[indices, :3] + cur_cls_label = pts_semantic_mask[indices][0] + + # Bbox Corners + cur_corners = gt_bboxes_3d.corners[i] + + plane_lower_temp = points.new_tensor( + [0, 0, 1, -cur_corners[7, -1]]) + upper_points = cur_corners[[1, 2, 5, 6]] + refined_distance = (upper_points * plane_lower_temp[:3]).sum(dim=1) + + if self.check_horizon(upper_points) and \ + plane_lower_temp[0] + plane_lower_temp[1] < \ + self.train_cfg['lower_thresh']: + plane_lower = points.new_tensor( + [0, 0, 1, plane_lower_temp[-1]]) + plane_upper = points.new_tensor( + [0, 0, 1, -torch.mean(refined_distance)]) + else: + raise NotImplementedError('Only horizontal plane is support!') + + if self.check_dist(plane_upper, upper_points) is False: + raise NotImplementedError( + 'Mean distance to plane should be lower than thresh!') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_lower, coords) + + # Get bottom four lines + if self.primitive_mode == 'line': + point2line_matching = self.match_point2line( + coords[selected], cur_corners, with_yaw, mode='bottom') + + point_mask, point_offset, point_sem = \ + self._assign_primitive_line_targets(point_mask, + point_offset, + point_sem, + coords[selected], + indices[selected], + cur_cls_label, + point2line_matching, + cur_corners, + [1, 1, 0, 0], + with_yaw, + mode='bottom') + + # Set the surface labels here + if self.primitive_mode == 'z' and \ + selected.sum() > self.train_cfg['num_point'] and \ + point2plane_dist[selected].var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets(point_mask, + point_offset, + point_sem, + coords[selected], + indices[selected], + cur_cls_label, + cur_corners, + with_yaw, + mode='bottom') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_upper, coords) + + # Get top four lines + if self.primitive_mode == 'line': + point2line_matching = self.match_point2line( + coords[selected], cur_corners, with_yaw, mode='top') + + point_mask, point_offset, point_sem = \ + self._assign_primitive_line_targets(point_mask, + point_offset, + point_sem, + coords[selected], + indices[selected], + cur_cls_label, + point2line_matching, + cur_corners, + [1, 1, 0, 0], + with_yaw, + mode='top') + + if self.primitive_mode == 'z' and \ + selected.sum() > self.train_cfg['num_point'] and \ + point2plane_dist[selected].var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets(point_mask, + point_offset, + point_sem, + coords[selected], + indices[selected], + cur_cls_label, + cur_corners, + with_yaw, + mode='top') + + # Get left two lines + plane_left_temp = self._get_plane_fomulation( + cur_corners[2] - cur_corners[3], + cur_corners[3] - cur_corners[0], cur_corners[0]) + + right_points = cur_corners[[4, 5, 7, 6]] + plane_left_temp /= torch.norm(plane_left_temp[:3]) + refined_distance = (right_points * plane_left_temp[:3]).sum(dim=1) + + if plane_left_temp[2] < self.train_cfg['lower_thresh']: + plane_left = plane_left_temp + plane_right = points.new_tensor([ + plane_left_temp[0], plane_left_temp[1], plane_left_temp[2], + -refined_distance.mean() + ]) + else: + raise NotImplementedError( + 'Normal vector of the plane should be horizontal!') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_left, coords) + + # Get left four lines + if self.primitive_mode == 'line': + point2line_matching = self.match_point2line( + coords[selected], cur_corners, with_yaw, mode='left') + point_mask, point_offset, point_sem = \ + self._assign_primitive_line_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + point2line_matching[2:], cur_corners, [2, 2], + with_yaw, mode='left') + + if self.primitive_mode == 'xy' and \ + selected.sum() > self.train_cfg['num_point'] and \ + point2plane_dist[selected].var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + cur_corners, with_yaw, mode='left') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_right, coords) + + # Get right four lines + if self.primitive_mode == 'line': + point2line_matching = self.match_point2line( + coords[selected], cur_corners, with_yaw, mode='right') + + point_mask, point_offset, point_sem = \ + self._assign_primitive_line_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + point2line_matching[2:], cur_corners, [2, 2], + with_yaw, mode='right') + + if self.primitive_mode == 'xy' and \ + selected.sum() > self.train_cfg['num_point'] and \ + point2plane_dist[selected].var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + cur_corners, with_yaw, mode='right') + + plane_front_temp = self._get_plane_fomulation( + cur_corners[0] - cur_corners[4], + cur_corners[4] - cur_corners[5], cur_corners[5]) + + back_points = cur_corners[[3, 2, 7, 6]] + plane_front_temp /= torch.norm(plane_front_temp[:3]) + refined_distance = (back_points * plane_front_temp[:3]).sum(dim=1) + + if plane_front_temp[2] < self.train_cfg['lower_thresh']: + plane_front = plane_front_temp + plane_back = points.new_tensor([ + plane_front_temp[0], plane_front_temp[1], + plane_front_temp[2], -torch.mean(refined_distance) + ]) + else: + raise NotImplementedError( + 'Normal vector of the plane should be horizontal!') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_front, coords) + + if self.primitive_mode == 'xy' and \ + selected.sum() > self.train_cfg['num_point'] and \ + (point2plane_dist[selected]).var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + cur_corners, with_yaw, mode='front') + + # Get the boundary points here + point2plane_dist, selected = self.match_point2plane( + plane_back, coords) + + if self.primitive_mode == 'xy' and \ + selected.sum() > self.train_cfg['num_point'] and \ + point2plane_dist[selected].var() < \ + self.train_cfg['var_thresh']: + + point_mask, point_offset, point_sem = \ + self._assign_primitive_surface_targets( + point_mask, point_offset, point_sem, + coords[selected], indices[selected], cur_cls_label, + cur_corners, with_yaw, mode='back') + + return (point_mask, point_sem, point_offset) + + def primitive_decode_scores(self, predictions, aggregated_points): + """Decode predicted parts to primitive head. + + Args: + predictions (torch.Tensor): primitive pridictions of each batch. + aggregated_points (torch.Tensor): The aggregated points + of vote stage. + + Returns: + Dict: Predictions of primitive head, including center, + semantic size and semantic scores. + """ + + ret_dict = {} + pred_transposed = predictions.transpose(2, 1) + + center = aggregated_points + pred_transposed[:, :, 0:3] + ret_dict['center_' + self.primitive_mode] = center + + if self.primitive_mode in ['z', 'xy']: + ret_dict['size_residuals_' + self.primitive_mode] = \ + pred_transposed[:, :, 3:3 + self.num_dims] + + ret_dict['sem_cls_scores_' + self.primitive_mode] = \ + pred_transposed[:, :, 3 + self.num_dims:] + + return ret_dict + + def check_horizon(self, points): + """Check whether is a horizontal plane. + + Args: + points (torch.Tensor): Points of input. + + Returns: + Bool: Flag of result. + """ + return (points[0][-1] == points[1][-1]) and \ + (points[1][-1] == points[2][-1]) and \ + (points[2][-1] == points[3][-1]) + + def check_dist(self, plane_equ, points): + """Whether the mean of points to plane distance is lower than thresh. + + Args: + plane_equ (torch.Tensor): Plane to be checked. + points (torch.Tensor): Points to be checked. + + Returns: + Tuple: Flag of result. + """ + return (points[:, 2] + + plane_equ[-1]).sum() / 4.0 < self.train_cfg['lower_thresh'] + + def point2line_dist(self, points, pts_a, pts_b): + """Calculate the distance from point to line. + + Args: + points (torch.Tensor): Points of input. + pts_a (torch.Tensor): Point on the specific line. + pts_b (torch.Tensor): Point on the specific line. + + Returns: + torch.Tensor: Distance between each point to line. + """ + line_a2b = pts_b - pts_a + line_a2pts = points - pts_a + length = (line_a2pts * line_a2b.view(1, 3)).sum(1) / \ + line_a2b.norm() + dist = (line_a2pts.norm(dim=1)**2 - length**2).sqrt() + + return dist + + def match_point2line(self, points, corners, with_yaw, mode='bottom'): + """Match points to corresponding line. + + Args: + points (torch.Tensor): Points of input. + corners (torch.Tensor): Eight corners of a bounding box. + with_yaw (Bool): Whether the boundind box is with rotation. + mode (str, optional): Specify which line should be matched, + available mode are ('bottom', 'top', 'left', 'right'). + Defaults to 'bottom'. + + Returns: + Tuple: Flag of matching correspondence. + """ + if with_yaw: + corners_pair = { + 'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]], + 'top': [[1, 2], [5, 6], [1, 5], [2, 6]], + 'left': [[0, 1], [3, 2], [0, 1], [3, 2]], + 'right': [[4, 5], [7, 6], [4, 5], [7, 6]] + } + selected_list = [] + for pair_index in corners_pair[mode]: + selected = self.point2line_dist( + points, corners[pair_index[0]], corners[pair_index[1]]) \ + < self.train_cfg['line_thresh'] + selected_list.append(selected) + else: + xmin, ymin, _ = corners.min(0)[0] + xmax, ymax, _ = corners.max(0)[0] + sel1 = torch.abs(points[:, 0] - + xmin) < self.train_cfg['line_thresh'] + sel2 = torch.abs(points[:, 0] - + xmax) < self.train_cfg['line_thresh'] + sel3 = torch.abs(points[:, 1] - + ymin) < self.train_cfg['line_thresh'] + sel4 = torch.abs(points[:, 1] - + ymax) < self.train_cfg['line_thresh'] + selected_list = [sel1, sel2, sel3, sel4] + return selected_list + + def match_point2plane(self, plane, points): + """Match points to plane. + + Args: + plane (torch.Tensor): Equation of the plane. + points (torch.Tensor): Points of input. + + Returns: + Tuple: Distance of each point to the plane and + flag of matching correspondence. + """ + point2plane_dist = torch.abs((points * plane[:3]).sum(dim=1) + + plane[-1]) + min_dist = point2plane_dist.min() + selected = torch.abs(point2plane_dist - + min_dist) < self.train_cfg['dist_thresh'] + return point2plane_dist, selected + + def compute_primitive_loss(self, primitive_center, primitive_semantic, + semantic_scores, num_proposal, + gt_primitive_center, gt_primitive_semantic, + gt_sem_cls_label, gt_primitive_mask): + """Compute loss of primitive module. + + Args: + primitive_center (torch.Tensor): Pridictions of primitive center. + primitive_semantic (torch.Tensor): Pridictions of primitive + semantic. + semantic_scores (torch.Tensor): Pridictions of primitive + semantic scores. + num_proposal (int): The number of primitive proposal. + gt_primitive_center (torch.Tensor): Ground truth of + primitive center. + gt_votes_sem (torch.Tensor): Ground truth of primitive semantic. + gt_sem_cls_label (torch.Tensor): Ground truth of primitive + semantic class. + gt_primitive_mask (torch.Tensor): Ground truth of primitive mask. + + Returns: + Tuple: Loss of primitive module. + """ + batch_size = primitive_center.shape[0] + vote_xyz_reshape = primitive_center.view(batch_size * num_proposal, -1, + 3) + + center_loss = self.center_loss( + vote_xyz_reshape, + gt_primitive_center, + dst_weight=gt_primitive_mask.view(batch_size * num_proposal, 1))[1] + + if self.primitive_mode != 'line': + size_xyz_reshape = primitive_semantic.view( + batch_size * num_proposal, -1, self.num_dims).contiguous() + size_loss = self.semantic_reg_loss( + size_xyz_reshape, + gt_primitive_semantic, + dst_weight=gt_primitive_mask.view(batch_size * num_proposal, + 1))[1] + else: + size_loss = center_loss.new_tensor(0.0) + + # Semantic cls loss + sem_cls_loss = self.semantic_cls_loss( + semantic_scores, gt_sem_cls_label, weight=gt_primitive_mask) + + return center_loss, size_loss, sem_cls_loss + + def get_primitive_center(self, pred_flag, center): + """Generate primitive center from predictions. + + Args: + pred_flag (torch.Tensor): Scores of primitive center. + center (torch.Tensor): Pridictions of primitive center. + + Returns: + Tuple: Primitive center and the prediction indices. + """ + ind_normal = F.softmax(pred_flag, dim=1) + pred_indices = (ind_normal[:, 1, :] > + self.surface_thresh).detach().float() + selected = (ind_normal[:, 1, :] <= + self.surface_thresh).detach().float() + offset = torch.ones_like(center) * self.upper_thresh + center = center + offset * selected.unsqueeze(-1) + return center, pred_indices + + def _assign_primitive_line_targets(self, + point_mask, + point_offset, + point_sem, + coords, + indices, + cls_label, + point2line_matching, + corners, + center_axises, + with_yaw, + mode='bottom'): + """Generate targets of line primitive. + + Args: + point_mask (torch.Tensor): Tensor to store the ground + truth of mask. + point_offset (torch.Tensor): Tensor to store the ground + truth of offset. + point_sem (torch.Tensor): Tensor to store the ground + truth of semantic. + coords (torch.Tensor): The selected points. + indices (torch.Tensor): Indices of the selected points. + cls_label (int): Class label of the ground truth bounding box. + point2line_matching (torch.Tensor): Flag indicate that + matching line of each point. + corners (torch.Tensor): Corners of the ground truth bounding box. + center_axises (list[int]): Indicate in which axis the line center + should be refined. + with_yaw (Bool): Whether the boundind box is with rotation. + mode (str, optional): Specify which line should be matched, + available mode are ('bottom', 'top', 'left', 'right'). + Defaults to 'bottom'. + + Returns: + Tuple: Targets of the line primitive. + """ + corners_pair = { + 'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]], + 'top': [[1, 2], [5, 6], [1, 5], [2, 6]], + 'left': [[0, 1], [3, 2]], + 'right': [[4, 5], [7, 6]] + } + corners_pair = corners_pair[mode] + assert len(corners_pair) == len(point2line_matching) == len( + center_axises) + for line_select, center_axis, pair_index in zip( + point2line_matching, center_axises, corners_pair): + if line_select.sum() > self.train_cfg['num_point_line']: + point_mask[indices[line_select]] = 1.0 + + if with_yaw: + line_center = (corners[pair_index[0]] + + corners[pair_index[1]]) / 2 + else: + line_center = coords[line_select].mean(dim=0) + line_center[center_axis] = corners[:, center_axis].mean() + + point_offset[indices[line_select]] = \ + line_center - coords[line_select] + point_sem[indices[line_select]] = \ + point_sem.new_tensor([line_center[0], line_center[1], + line_center[2], cls_label]) + return point_mask, point_offset, point_sem + + def _assign_primitive_surface_targets(self, + point_mask, + point_offset, + point_sem, + coords, + indices, + cls_label, + corners, + with_yaw, + mode='bottom'): + """Generate targets for primitive z and primitive xy. + + Args: + point_mask (torch.Tensor): Tensor to store the ground + truth of mask. + point_offset (torch.Tensor): Tensor to store the ground + truth of offset. + point_sem (torch.Tensor): Tensor to store the ground + truth of semantic. + coords (torch.Tensor): The selected points. + indices (torch.Tensor): Indices of the selected points. + cls_label (int): Class label of the ground truth bounding box. + corners (torch.Tensor): Corners of the ground truth bounding box. + with_yaw (Bool): Whether the boundind box is with rotation. + mode (str, optional): Specify which line should be matched, + available mode are ('bottom', 'top', 'left', 'right', + 'front', 'back'). + Defaults to 'bottom'. + + Returns: + Tuple: Targets of the center primitive. + """ + point_mask[indices] = 1.0 + corners_pair = { + 'bottom': [0, 7], + 'top': [1, 6], + 'left': [0, 1], + 'right': [4, 5], + 'front': [0, 1], + 'back': [3, 2] + } + pair_index = corners_pair[mode] + if self.primitive_mode == 'z': + if with_yaw: + center = (corners[pair_index[0]] + + corners[pair_index[1]]) / 2.0 + center[2] = coords[:, 2].mean() + point_sem[indices] = point_sem.new_tensor([ + center[0], center[1], + center[2], (corners[4] - corners[0]).norm(), + (corners[3] - corners[0]).norm(), cls_label + ]) + else: + center = point_mask.new_tensor([ + corners[:, 0].mean(), corners[:, 1].mean(), + coords[:, 2].mean() + ]) + point_sem[indices] = point_sem.new_tensor([ + center[0], center[1], center[2], + corners[:, 0].max() - corners[:, 0].min(), + corners[:, 1].max() - corners[:, 1].min(), cls_label + ]) + elif self.primitive_mode == 'xy': + if with_yaw: + center = coords.mean(0) + center[2] = (corners[pair_index[0], 2] + + corners[pair_index[1], 2]) / 2.0 + point_sem[indices] = point_sem.new_tensor([ + center[0], center[1], center[2], + corners[pair_index[1], 2] - corners[pair_index[0], 2], + cls_label + ]) + else: + center = point_mask.new_tensor([ + coords[:, 0].mean(), coords[:, 1].mean(), + corners[:, 2].mean() + ]) + point_sem[indices] = point_sem.new_tensor([ + center[0], center[1], center[2], + corners[:, 2].max() - corners[:, 2].min(), cls_label + ]) + point_offset[indices] = center - coords + return point_mask, point_offset, point_sem + + def _get_plane_fomulation(self, vector1, vector2, point): + """Compute the equation of the plane. + + Args: + vector1 (torch.Tensor): Parallel vector of the plane. + vector2 (torch.Tensor): Parallel vector of the plane. + point (torch.Tensor): Point on the plane. + + Returns: + torch.Tensor: Equation of the plane. + """ + surface_norm = torch.cross(vector1, vector2) + surface_dis = -torch.dot(surface_norm, point) + plane = point.new_tensor( + [surface_norm[0], surface_norm[1], surface_norm[2], surface_dis]) + return plane diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/part_aggregation_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/part_aggregation_roi_head.py new file mode 100644 index 000000000..a3e49eae1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/part_aggregation_roi_head.py @@ -0,0 +1,325 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from torch.nn import functional as F + +from mmdet3d.core import AssignResult +from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi +from mmdet.core import build_assigner, build_sampler +from ..builder import HEADS, build_head, build_roi_extractor +from .base_3droi_head import Base3DRoIHead + + +@HEADS.register_module() +class PartAggregationROIHead(Base3DRoIHead): + """Part aggregation roi head for PartA2. + + Args: + semantic_head (ConfigDict): Config of semantic head. + num_classes (int): The number of classes. + seg_roi_extractor (ConfigDict): Config of seg_roi_extractor. + part_roi_extractor (ConfigDict): Config of part_roi_extractor. + bbox_head (ConfigDict): Config of bbox_head. + train_cfg (ConfigDict): Training config. + test_cfg (ConfigDict): Testing config. + """ + + def __init__(self, + semantic_head, + num_classes=3, + seg_roi_extractor=None, + part_roi_extractor=None, + bbox_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(PartAggregationROIHead, self).__init__( + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + init_cfg=init_cfg) + self.num_classes = num_classes + assert semantic_head is not None + self.semantic_head = build_head(semantic_head) + + if seg_roi_extractor is not None: + self.seg_roi_extractor = build_roi_extractor(seg_roi_extractor) + if part_roi_extractor is not None: + self.part_roi_extractor = build_roi_extractor(part_roi_extractor) + + self.init_assigner_sampler() + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + + def init_mask_head(self): + """Initialize mask head, skip since ``PartAggregationROIHead`` does not + have one.""" + pass + + def init_bbox_head(self, bbox_head): + """Initialize box head.""" + self.bbox_head = build_head(bbox_head) + + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + self.bbox_assigner = None + self.bbox_sampler = None + if self.train_cfg: + if isinstance(self.train_cfg.assigner, dict): + self.bbox_assigner = build_assigner(self.train_cfg.assigner) + elif isinstance(self.train_cfg.assigner, list): + self.bbox_assigner = [ + build_assigner(res) for res in self.train_cfg.assigner + ] + self.bbox_sampler = build_sampler(self.train_cfg.sampler) + + @property + def with_semantic(self): + """bool: whether the head has semantic branch""" + return hasattr(self, + 'semantic_head') and self.semantic_head is not None + + def forward_train(self, feats_dict, voxels_dict, img_metas, proposal_list, + gt_bboxes_3d, gt_labels_3d): + """Training forward function of PartAggregationROIHead. + + Args: + feats_dict (dict): Contains features from the first stage. + voxels_dict (dict): Contains information of voxels. + img_metas (list[dict]): Meta info of each image. + proposal_list (list[dict]): Proposal information from rpn. + The dictionary should contain the following keys: + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Proposal bboxes + - labels_3d (torch.Tensor): Labels of proposals + - cls_preds (torch.Tensor): Original scores of proposals + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): + GT bboxes of each sample. The bboxes are encapsulated + by 3D box structures. + gt_labels_3d (list[LongTensor]): GT labels of each sample. + + Returns: + dict: losses from each head. + + - loss_semantic (torch.Tensor): loss of semantic head + - loss_bbox (torch.Tensor): loss of bboxes + """ + losses = dict() + if self.with_semantic: + semantic_results = self._semantic_forward_train( + feats_dict['seg_features'], voxels_dict, gt_bboxes_3d, + gt_labels_3d) + losses.update(semantic_results['loss_semantic']) + + sample_results = self._assign_and_sample(proposal_list, gt_bboxes_3d, + gt_labels_3d) + if self.with_bbox: + bbox_results = self._bbox_forward_train( + feats_dict['seg_features'], semantic_results['part_feats'], + voxels_dict, sample_results) + losses.update(bbox_results['loss_bbox']) + + return losses + + def simple_test(self, feats_dict, voxels_dict, img_metas, proposal_list, + **kwargs): + """Simple testing forward function of PartAggregationROIHead. + + Note: + This function assumes that the batch size is 1 + + Args: + feats_dict (dict): Contains features from the first stage. + voxels_dict (dict): Contains information of voxels. + img_metas (list[dict]): Meta info of each image. + proposal_list (list[dict]): Proposal information from rpn. + + Returns: + dict: Bbox results of one frame. + """ + assert self.with_bbox, 'Bbox head must be implemented.' + assert self.with_semantic + + semantic_results = self.semantic_head(feats_dict['seg_features']) + + rois = bbox3d2roi([res['boxes_3d'].tensor for res in proposal_list]) + labels_3d = [res['labels_3d'] for res in proposal_list] + cls_preds = [res['cls_preds'] for res in proposal_list] + bbox_results = self._bbox_forward(feats_dict['seg_features'], + semantic_results['part_feats'], + voxels_dict, rois) + + bbox_list = self.bbox_head.get_bboxes( + rois, + bbox_results['cls_score'], + bbox_results['bbox_pred'], + labels_3d, + cls_preds, + img_metas, + cfg=self.test_cfg) + + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def _bbox_forward_train(self, seg_feats, part_feats, voxels_dict, + sampling_results): + """Forward training function of roi_extractor and bbox_head. + + Args: + seg_feats (torch.Tensor): Point-wise semantic features. + part_feats (torch.Tensor): Point-wise part prediction features. + voxels_dict (dict): Contains information of voxels. + sampling_results (:obj:`SamplingResult`): Sampled results used + for training. + + Returns: + dict: Forward results including losses and predictions. + """ + rois = bbox3d2roi([res.bboxes for res in sampling_results]) + bbox_results = self._bbox_forward(seg_feats, part_feats, voxels_dict, + rois) + + bbox_targets = self.bbox_head.get_targets(sampling_results, + self.train_cfg) + loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update(loss_bbox=loss_bbox) + return bbox_results + + def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois): + """Forward function of roi_extractor and bbox_head used in both + training and testing. + + Args: + seg_feats (torch.Tensor): Point-wise semantic features. + part_feats (torch.Tensor): Point-wise part prediction features. + voxels_dict (dict): Contains information of voxels. + rois (Tensor): Roi boxes. + + Returns: + dict: Contains predictions of bbox_head and + features of roi_extractor. + """ + pooled_seg_feats = self.seg_roi_extractor(seg_feats, + voxels_dict['voxel_centers'], + voxels_dict['coors'][..., 0], + rois) + pooled_part_feats = self.part_roi_extractor( + part_feats, voxels_dict['voxel_centers'], + voxels_dict['coors'][..., 0], rois) + cls_score, bbox_pred = self.bbox_head(pooled_seg_feats, + pooled_part_feats) + + bbox_results = dict( + cls_score=cls_score, + bbox_pred=bbox_pred, + pooled_seg_feats=pooled_seg_feats, + pooled_part_feats=pooled_part_feats) + return bbox_results + + def _assign_and_sample(self, proposal_list, gt_bboxes_3d, gt_labels_3d): + """Assign and sample proposals for training. + + Args: + proposal_list (list[dict]): Proposals produced by RPN. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes. + gt_labels_3d (list[torch.Tensor]): Ground truth labels + + Returns: + list[:obj:`SamplingResult`]: Sampled results of each training + sample. + """ + sampling_results = [] + # bbox assign + for batch_idx in range(len(proposal_list)): + cur_proposal_list = proposal_list[batch_idx] + cur_boxes = cur_proposal_list['boxes_3d'] + cur_labels_3d = cur_proposal_list['labels_3d'] + cur_gt_bboxes = gt_bboxes_3d[batch_idx].to(cur_boxes.device) + cur_gt_labels = gt_labels_3d[batch_idx] + + batch_num_gts = 0 + # 0 is bg + batch_gt_indis = cur_gt_labels.new_full((len(cur_boxes), ), 0) + batch_max_overlaps = cur_boxes.tensor.new_zeros(len(cur_boxes)) + # -1 is bg + batch_gt_labels = cur_gt_labels.new_full((len(cur_boxes), ), -1) + + # each class may have its own assigner + if isinstance(self.bbox_assigner, list): + for i, assigner in enumerate(self.bbox_assigner): + gt_per_cls = (cur_gt_labels == i) + pred_per_cls = (cur_labels_3d == i) + cur_assign_res = assigner.assign( + cur_boxes.tensor[pred_per_cls], + cur_gt_bboxes.tensor[gt_per_cls], + gt_labels=cur_gt_labels[gt_per_cls]) + # gather assign_results in different class into one result + batch_num_gts += cur_assign_res.num_gts + # gt inds (1-based) + gt_inds_arange_pad = gt_per_cls.nonzero( + as_tuple=False).view(-1) + 1 + # pad 0 for indice unassigned + gt_inds_arange_pad = F.pad( + gt_inds_arange_pad, (1, 0), mode='constant', value=0) + # pad -1 for indice ignore + gt_inds_arange_pad = F.pad( + gt_inds_arange_pad, (1, 0), mode='constant', value=-1) + # convert to 0~gt_num+2 for indices + gt_inds_arange_pad += 1 + # now 0 is bg, >1 is fg in batch_gt_indis + batch_gt_indis[pred_per_cls] = gt_inds_arange_pad[ + cur_assign_res.gt_inds + 1] - 1 + batch_max_overlaps[ + pred_per_cls] = cur_assign_res.max_overlaps + batch_gt_labels[pred_per_cls] = cur_assign_res.labels + + assign_result = AssignResult(batch_num_gts, batch_gt_indis, + batch_max_overlaps, + batch_gt_labels) + else: # for single class + assign_result = self.bbox_assigner.assign( + cur_boxes.tensor, + cur_gt_bboxes.tensor, + gt_labels=cur_gt_labels) + # sample boxes + sampling_result = self.bbox_sampler.sample(assign_result, + cur_boxes.tensor, + cur_gt_bboxes.tensor, + cur_gt_labels) + sampling_results.append(sampling_result) + return sampling_results + + def _semantic_forward_train(self, x, voxels_dict, gt_bboxes_3d, + gt_labels_3d): + """Train semantic head. + + Args: + x (torch.Tensor): Point-wise semantic features for segmentation + voxels_dict (dict): Contains information of voxels. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes. + gt_labels_3d (list[torch.Tensor]): Ground truth labels + + Returns: + dict: Segmentation results including losses + """ + semantic_results = self.semantic_head(x) + semantic_targets = self.semantic_head.get_targets( + voxels_dict, gt_bboxes_3d, gt_labels_3d) + loss_semantic = self.semantic_head.loss(semantic_results, + semantic_targets) + semantic_results.update(loss_semantic=loss_semantic) + return semantic_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/point_rcnn_roi_head.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/point_rcnn_roi_head.py new file mode 100644 index 000000000..acf7c16d0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/point_rcnn_roi_head.py @@ -0,0 +1,286 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch.nn import functional as F + +from mmdet3d.core import AssignResult +from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi +from mmdet.core import build_assigner, build_sampler +from ..builder import HEADS, build_head, build_roi_extractor +from .base_3droi_head import Base3DRoIHead + + +@HEADS.register_module() +class PointRCNNRoIHead(Base3DRoIHead): + """RoI head for PointRCNN. + + Args: + bbox_head (dict): Config of bbox_head. + point_roi_extractor (dict): Config of RoI extractor. + train_cfg (dict): Train configs. + test_cfg (dict): Test configs. + depth_normalizer (float, optional): Normalize depth feature. + Defaults to 70.0. + init_cfg (dict, optional): Config of initialization. Defaults to None. + """ + + def __init__(self, + bbox_head, + point_roi_extractor, + train_cfg, + test_cfg, + depth_normalizer=70.0, + pretrained=None, + init_cfg=None): + super(PointRCNNRoIHead, self).__init__( + bbox_head=bbox_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + self.depth_normalizer = depth_normalizer + + if point_roi_extractor is not None: + self.point_roi_extractor = build_roi_extractor(point_roi_extractor) + + self.init_assigner_sampler() + + def init_bbox_head(self, bbox_head): + """Initialize box head. + + Args: + bbox_head (dict): Config dict of RoI Head. + """ + self.bbox_head = build_head(bbox_head) + + def init_mask_head(self): + """Initialize maek head.""" + pass + + def init_assigner_sampler(self): + """Initialize assigner and sampler.""" + self.bbox_assigner = None + self.bbox_sampler = None + if self.train_cfg: + if isinstance(self.train_cfg.assigner, dict): + self.bbox_assigner = build_assigner(self.train_cfg.assigner) + elif isinstance(self.train_cfg.assigner, list): + self.bbox_assigner = [ + build_assigner(res) for res in self.train_cfg.assigner + ] + self.bbox_sampler = build_sampler(self.train_cfg.sampler) + + def forward_train(self, feats_dict, input_metas, proposal_list, + gt_bboxes_3d, gt_labels_3d): + """Training forward function of PointRCNNRoIHead. + + Args: + feats_dict (dict): Contains features from the first stage. + imput_metas (list[dict]): Meta info of each input. + proposal_list (list[dict]): Proposal information from rpn. + The dictionary should contain the following keys: + + - boxes_3d (:obj:`BaseInstance3DBoxes`): Proposal bboxes + - labels_3d (torch.Tensor): Labels of proposals + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): + GT bboxes of each sample. The bboxes are encapsulated + by 3D box structures. + gt_labels_3d (list[LongTensor]): GT labels of each sample. + + Returns: + dict: Losses from RoI RCNN head. + - loss_bbox (torch.Tensor): Loss of bboxes + """ + features = feats_dict['features'] + points = feats_dict['points'] + point_cls_preds = feats_dict['points_cls_preds'] + sem_scores = point_cls_preds.sigmoid() + point_scores = sem_scores.max(-1)[0] + + sample_results = self._assign_and_sample(proposal_list, gt_bboxes_3d, + gt_labels_3d) + + # concat the depth, semantic features and backbone features + features = features.transpose(1, 2).contiguous() + point_depths = points.norm(dim=2) / self.depth_normalizer - 0.5 + features_list = [ + point_scores.unsqueeze(2), + point_depths.unsqueeze(2), features + ] + features = torch.cat(features_list, dim=2) + + bbox_results = self._bbox_forward_train(features, points, + sample_results) + losses = dict() + losses.update(bbox_results['loss_bbox']) + + return losses + + def simple_test(self, feats_dict, img_metas, proposal_list, **kwargs): + """Simple testing forward function of PointRCNNRoIHead. + + Note: + This function assumes that the batch size is 1 + + Args: + feats_dict (dict): Contains features from the first stage. + img_metas (list[dict]): Meta info of each image. + proposal_list (list[dict]): Proposal information from rpn. + + Returns: + dict: Bbox results of one frame. + """ + rois = bbox3d2roi([res['boxes_3d'].tensor for res in proposal_list]) + labels_3d = [res['labels_3d'] for res in proposal_list] + + features = feats_dict['features'] + points = feats_dict['points'] + point_cls_preds = feats_dict['points_cls_preds'] + sem_scores = point_cls_preds.sigmoid() + point_scores = sem_scores.max(-1)[0] + + features = features.transpose(1, 2).contiguous() + point_depths = points.norm(dim=2) / self.depth_normalizer - 0.5 + features_list = [ + point_scores.unsqueeze(2), + point_depths.unsqueeze(2), features + ] + + features = torch.cat(features_list, dim=2) + batch_size = features.shape[0] + bbox_results = self._bbox_forward(features, points, batch_size, rois) + object_score = bbox_results['cls_score'].sigmoid() + bbox_list = self.bbox_head.get_bboxes( + rois, + object_score, + bbox_results['bbox_pred'], + labels_3d, + img_metas, + cfg=self.test_cfg) + + bbox_results = [ + bbox3d2result(bboxes, scores, labels) + for bboxes, scores, labels in bbox_list + ] + return bbox_results + + def _bbox_forward_train(self, features, points, sampling_results): + """Forward training function of roi_extractor and bbox_head. + + Args: + features (torch.Tensor): Backbone features with depth and \ + semantic features. + points (torch.Tensor): Pointcloud. + sampling_results (:obj:`SamplingResult`): Sampled results used + for training. + + Returns: + dict: Forward results including losses and predictions. + """ + rois = bbox3d2roi([res.bboxes for res in sampling_results]) + batch_size = features.shape[0] + bbox_results = self._bbox_forward(features, points, batch_size, rois) + bbox_targets = self.bbox_head.get_targets(sampling_results, + self.train_cfg) + + loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], + bbox_results['bbox_pred'], rois, + *bbox_targets) + + bbox_results.update(loss_bbox=loss_bbox) + return bbox_results + + def _bbox_forward(self, features, points, batch_size, rois): + """Forward function of roi_extractor and bbox_head used in both + training and testing. + + Args: + features (torch.Tensor): Backbone features with depth and + semantic features. + points (torch.Tensor): Pointcloud. + batch_size (int): Batch size. + rois (torch.Tensor): RoI boxes. + + Returns: + dict: Contains predictions of bbox_head and + features of roi_extractor. + """ + pooled_point_feats = self.point_roi_extractor(features, points, + batch_size, rois) + + cls_score, bbox_pred = self.bbox_head(pooled_point_feats) + bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred) + return bbox_results + + def _assign_and_sample(self, proposal_list, gt_bboxes_3d, gt_labels_3d): + """Assign and sample proposals for training. + + Args: + proposal_list (list[dict]): Proposals produced by RPN. + gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth + boxes. + gt_labels_3d (list[torch.Tensor]): Ground truth labels + + Returns: + list[:obj:`SamplingResult`]: Sampled results of each training + sample. + """ + sampling_results = [] + # bbox assign + for batch_idx in range(len(proposal_list)): + cur_proposal_list = proposal_list[batch_idx] + cur_boxes = cur_proposal_list['boxes_3d'] + cur_labels_3d = cur_proposal_list['labels_3d'] + cur_gt_bboxes = gt_bboxes_3d[batch_idx].to(cur_boxes.device) + cur_gt_labels = gt_labels_3d[batch_idx] + batch_num_gts = 0 + # 0 is bg + batch_gt_indis = cur_gt_labels.new_full((len(cur_boxes), ), 0) + batch_max_overlaps = cur_boxes.tensor.new_zeros(len(cur_boxes)) + # -1 is bg + batch_gt_labels = cur_gt_labels.new_full((len(cur_boxes), ), -1) + + # each class may have its own assigner + if isinstance(self.bbox_assigner, list): + for i, assigner in enumerate(self.bbox_assigner): + gt_per_cls = (cur_gt_labels == i) + pred_per_cls = (cur_labels_3d == i) + cur_assign_res = assigner.assign( + cur_boxes.tensor[pred_per_cls], + cur_gt_bboxes.tensor[gt_per_cls], + gt_labels=cur_gt_labels[gt_per_cls]) + # gather assign_results in different class into one result + batch_num_gts += cur_assign_res.num_gts + # gt inds (1-based) + gt_inds_arange_pad = gt_per_cls.nonzero( + as_tuple=False).view(-1) + 1 + # pad 0 for indice unassigned + gt_inds_arange_pad = F.pad( + gt_inds_arange_pad, (1, 0), mode='constant', value=0) + # pad -1 for indice ignore + gt_inds_arange_pad = F.pad( + gt_inds_arange_pad, (1, 0), mode='constant', value=-1) + # convert to 0~gt_num+2 for indices + gt_inds_arange_pad += 1 + # now 0 is bg, >1 is fg in batch_gt_indis + batch_gt_indis[pred_per_cls] = gt_inds_arange_pad[ + cur_assign_res.gt_inds + 1] - 1 + batch_max_overlaps[ + pred_per_cls] = cur_assign_res.max_overlaps + batch_gt_labels[pred_per_cls] = cur_assign_res.labels + + assign_result = AssignResult(batch_num_gts, batch_gt_indis, + batch_max_overlaps, + batch_gt_labels) + else: # for single class + assign_result = self.bbox_assigner.assign( + cur_boxes.tensor, + cur_gt_bboxes.tensor, + gt_labels=cur_gt_labels) + + # sample boxes + sampling_result = self.bbox_sampler.sample(assign_result, + cur_boxes.tensor, + cur_gt_bboxes.tensor, + cur_gt_labels) + sampling_results.append(sampling_result) + return sampling_results diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/__init__.py new file mode 100644 index 000000000..70c28812b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmdet.models.roi_heads.roi_extractors import SingleRoIExtractor +from .single_roiaware_extractor import Single3DRoIAwareExtractor +from .single_roipoint_extractor import Single3DRoIPointExtractor + +__all__ = [ + 'SingleRoIExtractor', 'Single3DRoIAwareExtractor', + 'Single3DRoIPointExtractor' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roiaware_extractor.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roiaware_extractor.py new file mode 100644 index 000000000..c27a0047a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roiaware_extractor.py @@ -0,0 +1,54 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv import ops +from mmcv.runner import BaseModule + +from mmdet3d.models.builder import ROI_EXTRACTORS + + +@ROI_EXTRACTORS.register_module() +class Single3DRoIAwareExtractor(BaseModule): + """Point-wise roi-aware Extractor. + + Extract Point-wise roi features. + + Args: + roi_layer (dict): The config of roi layer. + """ + + def __init__(self, roi_layer=None, init_cfg=None): + super(Single3DRoIAwareExtractor, self).__init__(init_cfg=init_cfg) + self.roi_layer = self.build_roi_layers(roi_layer) + + def build_roi_layers(self, layer_cfg): + """Build roi layers using `layer_cfg`""" + cfg = layer_cfg.copy() + layer_type = cfg.pop('type') + assert hasattr(ops, layer_type) + layer_cls = getattr(ops, layer_type) + roi_layers = layer_cls(**cfg) + return roi_layers + + def forward(self, feats, coordinate, batch_inds, rois): + """Extract point-wise roi features. + + Args: + feats (torch.FloatTensor): Point-wise features with + shape (batch, npoints, channels) for pooling. + coordinate (torch.FloatTensor): Coordinate of each point. + batch_inds (torch.LongTensor): Indicate the batch of each point. + rois (torch.FloatTensor): Roi boxes with batch indices. + + Returns: + torch.FloatTensor: Pooled features + """ + pooled_roi_feats = [] + for batch_idx in range(int(batch_inds.max()) + 1): + roi_inds = (rois[..., 0].int() == batch_idx) + coors_inds = (batch_inds.int() == batch_idx) + pooled_roi_feat = self.roi_layer(rois[..., 1:][roi_inds], + coordinate[coors_inds], + feats[coors_inds]) + pooled_roi_feats.append(pooled_roi_feat) + pooled_roi_feats = torch.cat(pooled_roi_feats, 0) + return pooled_roi_feats diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roipoint_extractor.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roipoint_extractor.py new file mode 100644 index 000000000..4983a01e0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/roi_heads/roi_extractors/single_roipoint_extractor.py @@ -0,0 +1,64 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv import ops +from torch import nn as nn + +from mmdet3d.core.bbox.structures import rotation_3d_in_axis +from mmdet3d.models.builder import ROI_EXTRACTORS + + +@ROI_EXTRACTORS.register_module() +class Single3DRoIPointExtractor(nn.Module): + """Point-wise roi-aware Extractor. + + Extract Point-wise roi features. + + Args: + roi_layer (dict): The config of roi layer. + """ + + def __init__(self, roi_layer=None): + super(Single3DRoIPointExtractor, self).__init__() + self.roi_layer = self.build_roi_layers(roi_layer) + + def build_roi_layers(self, layer_cfg): + """Build roi layers using `layer_cfg`""" + cfg = layer_cfg.copy() + layer_type = cfg.pop('type') + assert hasattr(ops, layer_type) + layer_cls = getattr(ops, layer_type) + roi_layers = layer_cls(**cfg) + return roi_layers + + def forward(self, feats, coordinate, batch_inds, rois): + """Extract point-wise roi features. + + Args: + feats (torch.FloatTensor): Point-wise features with + shape (batch, npoints, channels) for pooling. + coordinate (torch.FloatTensor): Coordinate of each point. + batch_inds (torch.LongTensor): Indicate the batch of each point. + rois (torch.FloatTensor): Roi boxes with batch indices. + + Returns: + torch.FloatTensor: Pooled features + """ + rois = rois[..., 1:] + rois = rois.view(batch_inds, -1, rois.shape[-1]) + with torch.no_grad(): + pooled_roi_feat, pooled_empty_flag = self.roi_layer( + coordinate, feats, rois) + + # canonical transformation + roi_center = rois[:, :, 0:3] + pooled_roi_feat[:, :, :, 0:3] -= roi_center.unsqueeze(dim=2) + pooled_roi_feat = pooled_roi_feat.view(-1, + pooled_roi_feat.shape[-2], + pooled_roi_feat.shape[-1]) + pooled_roi_feat[:, :, 0:3] = rotation_3d_in_axis( + pooled_roi_feat[:, :, 0:3], + -(rois.view(-1, rois.shape[-1])[:, 6]), + axis=2) + pooled_roi_feat[pooled_empty_flag.view(-1) > 0] = 0 + + return pooled_roi_feat diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/__init__.py new file mode 100644 index 000000000..29fbc33e6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base import Base3DSegmentor +from .encoder_decoder import EncoderDecoder3D + +__all__ = ['Base3DSegmentor', 'EncoderDecoder3D'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/base.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/base.py new file mode 100644 index 000000000..991369833 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/base.py @@ -0,0 +1,136 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from os import path as osp + +import mmcv +import numpy as np +import torch +from mmcv.parallel import DataContainer as DC +from mmcv.runner import auto_fp16 + +from mmdet3d.core import show_seg_result +from mmseg.models.segmentors import BaseSegmentor + + +class Base3DSegmentor(BaseSegmentor): + """Base class for 3D segmentors. + + The main difference with `BaseSegmentor` is that we modify the keys in + data_dict and use a 3D seg specific visualization function. + """ + + @property + def with_regularization_loss(self): + """bool: whether the segmentor has regularization loss for weight""" + return hasattr(self, 'loss_regularization') and \ + self.loss_regularization is not None + + def forward_test(self, points, img_metas, **kwargs): + """Calls either simple_test or aug_test depending on the length of + outer list of points. If len(points) == 1, call simple_test. Otherwise + call aug_test to aggregate the test results by e.g. voting. + + Args: + points (list[list[torch.Tensor]]): the outer list indicates + test-time augmentations and inner torch.Tensor should have a + shape BXNxC, which contains all points in the batch. + img_metas (list[list[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. + """ + for var, name in [(points, 'points'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError(f'{name} must be a list, but got {type(var)}') + + num_augs = len(points) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(points)}) != ' + f'num of image meta ({len(img_metas)})') + + if num_augs == 1: + return self.simple_test(points[0], img_metas[0], **kwargs) + else: + return self.aug_test(points, img_metas, **kwargs) + + @auto_fp16(apply_to=('points')) + def forward(self, return_loss=True, **kwargs): + """Calls either forward_train or forward_test depending on whether + return_loss=True. + + Note this setting will change the expected inputs. When + `return_loss=True`, point and img_metas are single-nested (i.e. + torch.Tensor and list[dict]), and when `resturn_loss=False`, point and + img_metas should be double nested (i.e. list[torch.Tensor], + list[list[dict]]), with the outer list indicating test time + augmentations. + """ + if return_loss: + return self.forward_train(**kwargs) + else: + return self.forward_test(**kwargs) + + def show_results(self, + data, + result, + palette=None, + out_dir=None, + ignore_index=None, + show=False, + score_thr=None): + """Results visualization. + + Args: + data (list[dict]): Input points and the information of the sample. + result (list[dict]): Prediction results. + palette (list[list[int]]] | np.ndarray): The palette of + segmentation map. If None is given, random palette will be + generated. Default: None + out_dir (str): Output directory of visualization result. + ignore_index (int, optional): The label index to be ignored, e.g. + unannotated points. If None is given, set to len(self.CLASSES). + Defaults to None. + show (bool, optional): Determines whether you are + going to show result by open3d. + Defaults to False. + TODO: implement score_thr of Base3DSegmentor. + score_thr (float, optional): Score threshold of bounding boxes. + Default to None. + Not implemented yet, but it is here for unification. + """ + assert out_dir is not None, 'Expect out_dir, got none.' + if palette is None: + if self.PALETTE is None: + palette = np.random.randint( + 0, 255, size=(len(self.CLASSES), 3)) + else: + palette = self.PALETTE + palette = np.array(palette) + for batch_id in range(len(result)): + if isinstance(data['points'][0], DC): + points = data['points'][0]._data[0][batch_id].numpy() + elif mmcv.is_list_of(data['points'][0], torch.Tensor): + points = data['points'][0][batch_id] + else: + ValueError(f"Unsupported data type {type(data['points'][0])} " + f'for visualization!') + if isinstance(data['img_metas'][0], DC): + pts_filename = data['img_metas'][0]._data[0][batch_id][ + 'pts_filename'] + elif mmcv.is_list_of(data['img_metas'][0], dict): + pts_filename = data['img_metas'][0][batch_id]['pts_filename'] + else: + ValueError( + f"Unsupported data type {type(data['img_metas'][0])} " + f'for visualization!') + file_name = osp.split(pts_filename)[-1].split('.')[0] + + pred_sem_mask = result[batch_id]['semantic_mask'].cpu().numpy() + + show_seg_result( + points, + None, + pred_sem_mask, + out_dir, + file_name, + palette, + ignore_index, + show=show) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/encoder_decoder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/encoder_decoder.py new file mode 100644 index 000000000..1a4fee935 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/segmentors/encoder_decoder.py @@ -0,0 +1,454 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch +from torch import nn as nn +from torch.nn import functional as F + +from mmseg.core import add_prefix +from ..builder import (SEGMENTORS, build_backbone, build_head, build_loss, + build_neck) +from .base import Base3DSegmentor + + +@SEGMENTORS.register_module() +class EncoderDecoder3D(Base3DSegmentor): + """3D Encoder Decoder segmentors. + + EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. + Note that auxiliary_head is only used for deep supervision during training, + which could be thrown during inference. + """ + + def __init__(self, + backbone, + decode_head, + neck=None, + auxiliary_head=None, + loss_regularization=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(EncoderDecoder3D, self).__init__(init_cfg=init_cfg) + self.backbone = build_backbone(backbone) + if neck is not None: + self.neck = build_neck(neck) + self._init_decode_head(decode_head) + self._init_auxiliary_head(auxiliary_head) + self._init_loss_regularization(loss_regularization) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + assert self.with_decode_head, \ + '3D EncoderDecoder Segmentor should have a decode_head' + + def _init_decode_head(self, decode_head): + """Initialize ``decode_head``""" + self.decode_head = build_head(decode_head) + self.num_classes = self.decode_head.num_classes + + def _init_auxiliary_head(self, auxiliary_head): + """Initialize ``auxiliary_head``""" + if auxiliary_head is not None: + if isinstance(auxiliary_head, list): + self.auxiliary_head = nn.ModuleList() + for head_cfg in auxiliary_head: + self.auxiliary_head.append(build_head(head_cfg)) + else: + self.auxiliary_head = build_head(auxiliary_head) + + def _init_loss_regularization(self, loss_regularization): + """Initialize ``loss_regularization``""" + if loss_regularization is not None: + if isinstance(loss_regularization, list): + self.loss_regularization = nn.ModuleList() + for loss_cfg in loss_regularization: + self.loss_regularization.append(build_loss(loss_cfg)) + else: + self.loss_regularization = build_loss(loss_regularization) + + def extract_feat(self, points): + """Extract features from points.""" + x = self.backbone(points) + if self.with_neck: + x = self.neck(x) + return x + + def encode_decode(self, points, img_metas): + """Encode points with backbone and decode into a semantic segmentation + map of the same size as input. + + Args: + points (torch.Tensor): Input points of shape [B, N, 3+C]. + img_metas (list[dict]): Meta information of each sample. + + Returns: + torch.Tensor: Segmentation logits of shape [B, num_classes, N]. + """ + x = self.extract_feat(points) + out = self._decode_head_forward_test(x, img_metas) + return out + + def _decode_head_forward_train(self, x, img_metas, pts_semantic_mask): + """Run forward function and calculate loss for decode head in + training.""" + losses = dict() + loss_decode = self.decode_head.forward_train(x, img_metas, + pts_semantic_mask, + self.train_cfg) + + losses.update(add_prefix(loss_decode, 'decode')) + return losses + + def _decode_head_forward_test(self, x, img_metas): + """Run forward function and calculate loss for decode head in + inference.""" + seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) + return seg_logits + + def _auxiliary_head_forward_train(self, x, img_metas, pts_semantic_mask): + """Run forward function and calculate loss for auxiliary head in + training.""" + losses = dict() + if isinstance(self.auxiliary_head, nn.ModuleList): + for idx, aux_head in enumerate(self.auxiliary_head): + loss_aux = aux_head.forward_train(x, img_metas, + pts_semantic_mask, + self.train_cfg) + losses.update(add_prefix(loss_aux, f'aux_{idx}')) + else: + loss_aux = self.auxiliary_head.forward_train( + x, img_metas, pts_semantic_mask, self.train_cfg) + losses.update(add_prefix(loss_aux, 'aux')) + + return losses + + def _loss_regularization_forward_train(self): + """Calculate regularization loss for model weight in training.""" + losses = dict() + if isinstance(self.loss_regularization, nn.ModuleList): + for idx, regularize_loss in enumerate(self.loss_regularization): + loss_regularize = dict( + loss_regularize=regularize_loss(self.modules())) + losses.update(add_prefix(loss_regularize, f'regularize_{idx}')) + else: + loss_regularize = dict( + loss_regularize=self.loss_regularization(self.modules())) + losses.update(add_prefix(loss_regularize, 'regularize')) + + return losses + + def forward_dummy(self, points): + """Dummy forward function.""" + seg_logit = self.encode_decode(points, None) + + return seg_logit + + def forward_train(self, points, img_metas, pts_semantic_mask): + """Forward function for training. + + Args: + points (list[torch.Tensor]): List of points of shape [N, C]. + img_metas (list): Image metas. + pts_semantic_mask (list[torch.Tensor]): List of point-wise semantic + labels of shape [N]. + + Returns: + dict[str, Tensor]: Losses. + """ + points_cat = torch.stack(points) + pts_semantic_mask_cat = torch.stack(pts_semantic_mask) + + # extract features using backbone + x = self.extract_feat(points_cat) + + losses = dict() + + loss_decode = self._decode_head_forward_train(x, img_metas, + pts_semantic_mask_cat) + losses.update(loss_decode) + + if self.with_auxiliary_head: + loss_aux = self._auxiliary_head_forward_train( + x, img_metas, pts_semantic_mask_cat) + losses.update(loss_aux) + + if self.with_regularization_loss: + loss_regularize = self._loss_regularization_forward_train() + losses.update(loss_regularize) + + return losses + + @staticmethod + def _input_generation(coords, + patch_center, + coord_max, + feats, + use_normalized_coord=False): + """Generating model input. + + Generate input by subtracting patch center and adding additional + features. Currently support colors and normalized xyz as features. + + Args: + coords (torch.Tensor): Sampled 3D point coordinate of shape [S, 3]. + patch_center (torch.Tensor): Center coordinate of the patch. + coord_max (torch.Tensor): Max coordinate of all 3D points. + feats (torch.Tensor): Features of sampled points of shape [S, C]. + use_normalized_coord (bool, optional): Whether to use normalized + xyz as additional features. Defaults to False. + + Returns: + torch.Tensor: The generated input data of shape [S, 3+C']. + """ + # subtract patch center, the z dimension is not centered + centered_coords = coords.clone() + centered_coords[:, 0] -= patch_center[0] + centered_coords[:, 1] -= patch_center[1] + + # normalized coordinates as extra features + if use_normalized_coord: + normalized_coord = coords / coord_max + feats = torch.cat([feats, normalized_coord], dim=1) + + points = torch.cat([centered_coords, feats], dim=1) + + return points + + def _sliding_patch_generation(self, + points, + num_points, + block_size, + sample_rate=0.5, + use_normalized_coord=False, + eps=1e-3): + """Sampling points in a sliding window fashion. + + First sample patches to cover all the input points. + Then sample points in each patch to batch points of a certain number. + + Args: + points (torch.Tensor): Input points of shape [N, 3+C]. + num_points (int): Number of points to be sampled in each patch. + block_size (float, optional): Size of a patch to sample. + sample_rate (float, optional): Stride used in sliding patch. + Defaults to 0.5. + use_normalized_coord (bool, optional): Whether to use normalized + xyz as additional features. Defaults to False. + eps (float, optional): A value added to patch boundary to guarantee + points coverage. Defaults to 1e-3. + + Returns: + np.ndarray | np.ndarray: + + - patch_points (torch.Tensor): Points of different patches of + shape [K, N, 3+C]. + - patch_idxs (torch.Tensor): Index of each point in + `patch_points`, of shape [K, N]. + """ + device = points.device + # we assume the first three dims are points' 3D coordinates + # and the rest dims are their per-point features + coords = points[:, :3] + feats = points[:, 3:] + + coord_max = coords.max(0)[0] + coord_min = coords.min(0)[0] + stride = block_size * sample_rate + num_grid_x = int( + torch.ceil((coord_max[0] - coord_min[0] - block_size) / + stride).item() + 1) + num_grid_y = int( + torch.ceil((coord_max[1] - coord_min[1] - block_size) / + stride).item() + 1) + + patch_points, patch_idxs = [], [] + for idx_y in range(num_grid_y): + s_y = coord_min[1] + idx_y * stride + e_y = torch.min(s_y + block_size, coord_max[1]) + s_y = e_y - block_size + for idx_x in range(num_grid_x): + s_x = coord_min[0] + idx_x * stride + e_x = torch.min(s_x + block_size, coord_max[0]) + s_x = e_x - block_size + + # extract points within this patch + cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device) + cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device) + cur_choice = ((coords >= cur_min - eps) & + (coords <= cur_max + eps)).all(dim=1) + + if not cur_choice.any(): # no points in this patch + continue + + # sample points in this patch to multiple batches + cur_center = cur_min + block_size / 2.0 + point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0] + num_batch = int(np.ceil(point_idxs.shape[0] / num_points)) + point_size = int(num_batch * num_points) + replace = point_size > 2 * point_idxs.shape[0] + num_repeat = point_size - point_idxs.shape[0] + if replace: # duplicate + point_idxs_repeat = point_idxs[torch.randint( + 0, point_idxs.shape[0], + size=(num_repeat, )).to(device)] + else: + point_idxs_repeat = point_idxs[torch.randperm( + point_idxs.shape[0])[:num_repeat]] + + choices = torch.cat([point_idxs, point_idxs_repeat], dim=0) + choices = choices[torch.randperm(choices.shape[0])] + + # construct model input + point_batches = self._input_generation( + coords[choices], + cur_center, + coord_max, + feats[choices], + use_normalized_coord=use_normalized_coord) + + patch_points.append(point_batches) + patch_idxs.append(choices) + + patch_points = torch.cat(patch_points, dim=0) + patch_idxs = torch.cat(patch_idxs, dim=0) + + # make sure all points are sampled at least once + assert torch.unique(patch_idxs).shape[0] == points.shape[0], \ + 'some points are not sampled in sliding inference' + + return patch_points, patch_idxs + + def slide_inference(self, point, img_meta, rescale): + """Inference by sliding-window with overlap. + + Args: + point (torch.Tensor): Input points of shape [N, 3+C]. + img_meta (dict): Meta information of input sample. + rescale (bool): Whether transform to original number of points. + Will be used for voxelization based segmentors. + + Returns: + Tensor: The output segmentation map of shape [num_classes, N]. + """ + num_points = self.test_cfg.num_points + block_size = self.test_cfg.block_size + sample_rate = self.test_cfg.sample_rate + use_normalized_coord = self.test_cfg.use_normalized_coord + batch_size = self.test_cfg.batch_size * num_points + + # patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N] + patch_points, patch_idxs = self._sliding_patch_generation( + point, num_points, block_size, sample_rate, use_normalized_coord) + feats_dim = patch_points.shape[1] + seg_logits = [] # save patch predictions + + for batch_idx in range(0, patch_points.shape[0], batch_size): + batch_points = patch_points[batch_idx:batch_idx + batch_size] + batch_points = batch_points.view(-1, num_points, feats_dim) + # batch_seg_logit is of shape [B, num_classes, N] + batch_seg_logit = self.encode_decode(batch_points, img_meta) + batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous() + seg_logits.append(batch_seg_logit.view(-1, self.num_classes)) + + # aggregate per-point logits by indexing sum and dividing count + seg_logits = torch.cat(seg_logits, dim=0) # [K*N, num_classes] + expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes) + preds = point.new_zeros((point.shape[0], self.num_classes)).\ + scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits) + count_mat = torch.bincount(patch_idxs) + preds = preds / count_mat[:, None] + + # TODO: if rescale and voxelization segmentor + + return preds.transpose(0, 1) # to [num_classes, K*N] + + def whole_inference(self, points, img_metas, rescale): + """Inference with full scene (one forward pass without sliding).""" + seg_logit = self.encode_decode(points, img_metas) + # TODO: if rescale and voxelization segmentor + return seg_logit + + def inference(self, points, img_metas, rescale): + """Inference with slide/whole style. + + Args: + points (torch.Tensor): Input points of shape [B, N, 3+C]. + img_metas (list[dict]): Meta information of each sample. + rescale (bool): Whether transform to original number of points. + Will be used for voxelization based segmentors. + + Returns: + Tensor: The output segmentation map. + """ + assert self.test_cfg.mode in ['slide', 'whole'] + if self.test_cfg.mode == 'slide': + seg_logit = torch.stack([ + self.slide_inference(point, img_meta, rescale) + for point, img_meta in zip(points, img_metas) + ], 0) + else: + seg_logit = self.whole_inference(points, img_metas, rescale) + output = F.softmax(seg_logit, dim=1) + return output + + def simple_test(self, points, img_metas, rescale=True): + """Simple test with single scene. + + Args: + points (list[torch.Tensor]): List of points of shape [N, 3+C]. + img_metas (list[dict]): Meta information of each sample. + rescale (bool): Whether transform to original number of points. + Will be used for voxelization based segmentors. + Defaults to True. + + Returns: + list[dict]: The output prediction result with following keys: + + - semantic_mask (Tensor): Segmentation mask of shape [N]. + """ + # 3D segmentation requires per-point prediction, so it's impossible + # to use down-sampling to get a batch of scenes with same num_points + # therefore, we only support testing one scene every time + seg_pred = [] + for point, img_meta in zip(points, img_metas): + seg_prob = self.inference(point.unsqueeze(0), [img_meta], + rescale)[0] + seg_map = seg_prob.argmax(0) # [N] + # to cpu tensor for consistency with det3d + seg_map = seg_map.cpu() + seg_pred.append(seg_map) + # warp in dict + seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] + return seg_pred + + def aug_test(self, points, img_metas, rescale=True): + """Test with augmentations. + + Args: + points (list[torch.Tensor]): List of points of shape [B, N, 3+C]. + img_metas (list[list[dict]]): Meta information of each sample. + Outer list are different samples while inner is different augs. + rescale (bool): Whether transform to original number of points. + Will be used for voxelization based segmentors. + Defaults to True. + + Returns: + list[dict]: The output prediction result with following keys: + + - semantic_mask (Tensor): Segmentation mask of shape [N]. + """ + # in aug_test, one scene going through different augmentations could + # have the same number of points and are stacked as a batch + # to save memory, we get augmented seg logit inplace + seg_pred = [] + for point, img_meta in zip(points, img_metas): + seg_prob = self.inference(point, img_meta, rescale) + seg_prob = seg_prob.mean(0) # [num_classes, N] + seg_map = seg_prob.argmax(0) # [N] + # to cpu tensor for consistency with det3d + seg_map = seg_map.cpu() + seg_pred.append(seg_map) + # warp in dict + seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] + return seg_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/__init__.py new file mode 100644 index 000000000..92a0499a8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .clip_sigmoid import clip_sigmoid +from .edge_indices import get_edge_indices +from .gen_keypoints import get_keypoints +from .handle_objs import filter_outside_objs, handle_proj_objs +from .mlp import MLP + +__all__ = [ + 'clip_sigmoid', 'MLP', 'get_edge_indices', 'filter_outside_objs', + 'handle_proj_objs', 'get_keypoints' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/clip_sigmoid.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/clip_sigmoid.py new file mode 100644 index 000000000..3afd4edbe --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/clip_sigmoid.py @@ -0,0 +1,17 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def clip_sigmoid(x, eps=1e-4): + """Sigmoid function for input feature. + + Args: + x (torch.Tensor): Input feature map with the shape of [B, N, H, W]. + eps (float, optional): Lower bound of the range to be clamped to. + Defaults to 1e-4. + + Returns: + torch.Tensor: Feature map after sigmoid. + """ + y = torch.clamp(x.sigmoid_(), min=eps, max=1 - eps) + return y diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/edge_indices.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/edge_indices.py new file mode 100644 index 000000000..5dcb71fea --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/edge_indices.py @@ -0,0 +1,88 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch + + +def get_edge_indices(img_metas, + downsample_ratio, + step=1, + pad_mode='default', + dtype=np.float32, + device='cpu'): + """Function to filter the objects label outside the image. + The edge_indices are generated using numpy on cpu rather + than on CUDA due to the latency issue. When batch size = 8, + this function with numpy array is ~8 times faster than that + with CUDA tensor (0.09s and 0.72s in 100 runs). + + Args: + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + downsample_ratio (int): Downsample ratio of output feature, + step (int, optional): Step size used for generateing + edge indices. Default: 1. + pad_mode (str, optional): Padding mode during data pipeline. + Default: 'default'. + dtype (torch.dtype, optional): Dtype of edge indices tensor. + Default: np.float32. + device (str, optional): Device of edge indices tensor. + Default: 'cpu'. + + Returns: + list[Tensor]: Edge indices for each image in batch data. + """ + edge_indices_list = [] + for i in range(len(img_metas)): + img_shape = img_metas[i]['img_shape'] + pad_shape = img_metas[i]['pad_shape'] + h, w = img_shape[:2] + pad_h, pad_w = pad_shape + edge_indices = [] + + if pad_mode == 'default': + x_min = 0 + y_min = 0 + x_max = (w - 1) // downsample_ratio + y_max = (h - 1) // downsample_ratio + elif pad_mode == 'center': + x_min = np.ceil((pad_w - w) / 2 * downsample_ratio) + y_min = np.ceil((pad_h - h) / 2 * downsample_ratio) + x_max = x_min + w // downsample_ratio + y_max = y_min + h // downsample_ratio + else: + raise NotImplementedError + + # left + y = np.arange(y_min, y_max, step, dtype=dtype) + x = np.ones(len(y)) * x_min + + edge_indices_edge = np.stack((x, y), axis=1) + edge_indices.append(edge_indices_edge) + + # bottom + x = np.arange(x_min, x_max, step, dtype=dtype) + y = np.ones(len(x)) * y_max + + edge_indices_edge = np.stack((x, y), axis=1) + edge_indices.append(edge_indices_edge) + + # right + y = np.arange(y_max, y_min, -step, dtype=dtype) + x = np.ones(len(y)) * x_max + + edge_indices_edge = np.stack((x, y), axis=1) + edge_indices.append(edge_indices_edge) + + # top + x = np.arange(x_max, x_min, -step, dtype=dtype) + y = np.ones(len(x)) * y_min + + edge_indices_edge = np.stack((x, y), axis=1) + edge_indices.append(edge_indices_edge) + + edge_indices = \ + np.concatenate([index for index in edge_indices], axis=0) + edge_indices = torch.from_numpy(edge_indices).to(device).long() + edge_indices_list.append(edge_indices) + + return edge_indices_list diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/gen_keypoints.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/gen_keypoints.py new file mode 100644 index 000000000..8c7909b89 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/gen_keypoints.py @@ -0,0 +1,80 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from mmdet3d.core.bbox import points_cam2img + + +def get_keypoints(gt_bboxes_3d_list, + centers2d_list, + img_metas, + use_local_coords=True): + """Function to filter the objects label outside the image. + + Args: + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + shape (num_gt, 4). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + shape (num_gt, 2). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + use_local_coords (bool, optional): Wheher to use local coordinates + for keypoints. Default: True. + + Returns: + tuple[list[Tensor]]: It contains two elements, the first is the + keypoints for each projected 2D bbox in batch data. The second is + the visible mask of depth calculated by keypoints. + """ + + assert len(gt_bboxes_3d_list) == len(centers2d_list) + bs = len(gt_bboxes_3d_list) + keypoints2d_list = [] + keypoints_depth_mask_list = [] + + for i in range(bs): + gt_bboxes_3d = gt_bboxes_3d_list[i] + centers2d = centers2d_list[i] + img_shape = img_metas[i]['img_shape'] + cam2img = img_metas[i]['cam2img'] + h, w = img_shape[:2] + # (N, 8, 3) + corners3d = gt_bboxes_3d.corners + top_centers3d = torch.mean(corners3d[:, [0, 1, 4, 5], :], dim=1) + bot_centers3d = torch.mean(corners3d[:, [2, 3, 6, 7], :], dim=1) + # (N, 2, 3) + top_bot_centers3d = torch.stack((top_centers3d, bot_centers3d), dim=1) + keypoints3d = torch.cat((corners3d, top_bot_centers3d), dim=1) + # (N, 10, 2) + keypoints2d = points_cam2img(keypoints3d, cam2img) + + # keypoints mask: keypoints must be inside + # the image and in front of the camera + keypoints_x_visible = (keypoints2d[..., 0] >= 0) & ( + keypoints2d[..., 0] <= w - 1) + keypoints_y_visible = (keypoints2d[..., 1] >= 0) & ( + keypoints2d[..., 1] <= h - 1) + keypoints_z_visible = (keypoints3d[..., -1] > 0) + + # (N, 1O) + keypoints_visible = keypoints_x_visible & \ + keypoints_y_visible & keypoints_z_visible + # center, diag-02, diag-13 + keypoints_depth_valid = torch.stack( + (keypoints_visible[:, [8, 9]].all(dim=1), + keypoints_visible[:, [0, 3, 5, 6]].all(dim=1), + keypoints_visible[:, [1, 2, 4, 7]].all(dim=1)), + dim=1) + keypoints_visible = keypoints_visible.float() + + if use_local_coords: + keypoints2d = torch.cat((keypoints2d - centers2d.unsqueeze(1), + keypoints_visible.unsqueeze(-1)), + dim=2) + else: + keypoints2d = torch.cat( + (keypoints2d, keypoints_visible.unsqueeze(-1)), dim=2) + + keypoints2d_list.append(keypoints2d) + keypoints_depth_mask_list.append(keypoints_depth_valid) + + return (keypoints2d_list, keypoints_depth_mask_list) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/handle_objs.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/handle_objs.py new file mode 100644 index 000000000..25fd793a3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/handle_objs.py @@ -0,0 +1,135 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def filter_outside_objs(gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list, + gt_labels_3d_list, centers2d_list, img_metas): + """Function to filter the objects label outside the image. + + Args: + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + each has shape (num_gt, 4). + gt_labels_list (list[Tensor]): Ground truth labels of each box, + each has shape (num_gt,). + gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each + image, each has shape (num_gt, bbox_code_size). + gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each + box, each has shape (num_gt,). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + each has shape (num_gt, 2). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + """ + bs = len(centers2d_list) + + for i in range(bs): + centers2d = centers2d_list[i].clone() + img_shape = img_metas[i]['img_shape'] + keep_inds = (centers2d[:, 0] > 0) & \ + (centers2d[:, 0] < img_shape[1]) & \ + (centers2d[:, 1] > 0) & \ + (centers2d[:, 1] < img_shape[0]) + centers2d_list[i] = centers2d[keep_inds] + gt_labels_list[i] = gt_labels_list[i][keep_inds] + gt_bboxes_list[i] = gt_bboxes_list[i][keep_inds] + gt_bboxes_3d_list[i].tensor = gt_bboxes_3d_list[i].tensor[keep_inds] + gt_labels_3d_list[i] = gt_labels_3d_list[i][keep_inds] + + +def get_centers2d_target(centers2d, centers, img_shape): + """Function to get target centers2d. + + Args: + centers2d (Tensor): Projected 3D centers onto 2D images. + centers (Tensor): Centers of 2d gt bboxes. + img_shape (tuple): Resized image shape. + + Returns: + torch.Tensor: Projected 3D centers (centers2D) target. + """ + N = centers2d.shape[0] + h, w = img_shape[:2] + valid_intersects = centers2d.new_zeros((N, 2)) + a = (centers[:, 1] - centers2d[:, 1]) / (centers[:, 0] - centers2d[:, 0]) + b = centers[:, 1] - a * centers[:, 0] + left_y = b + right_y = (w - 1) * a + b + top_x = -b / a + bottom_x = (h - 1 - b) / a + + left_coors = torch.stack((left_y.new_zeros(N, ), left_y), dim=1) + right_coors = torch.stack((right_y.new_full((N, ), w - 1), right_y), dim=1) + top_coors = torch.stack((top_x, top_x.new_zeros(N, )), dim=1) + bottom_coors = torch.stack((bottom_x, bottom_x.new_full((N, ), h - 1)), + dim=1) + + intersects = torch.stack( + [left_coors, right_coors, top_coors, bottom_coors], dim=1) + intersects_x = intersects[:, :, 0] + intersects_y = intersects[:, :, 1] + inds = (intersects_x >= 0) & (intersects_x <= + w - 1) & (intersects_y >= 0) & ( + intersects_y <= h - 1) + valid_intersects = intersects[inds].reshape(N, 2, 2) + dist = torch.norm(valid_intersects - centers2d.unsqueeze(1), dim=2) + min_idx = torch.argmin(dist, dim=1) + + min_idx = min_idx.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 2) + centers2d_target = valid_intersects.gather(dim=1, index=min_idx).squeeze(1) + + return centers2d_target + + +def handle_proj_objs(centers2d_list, gt_bboxes_list, img_metas): + """Function to handle projected object centers2d, generate target + centers2d. + + Args: + gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, + shape (num_gt, 4). + centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, + shape (num_gt, 2). + img_metas (list[dict]): Meta information of each image, e.g., + image size, scaling factor, etc. + + Returns: + tuple[list[Tensor]]: It contains three elements. The first is the + target centers2d after handling the truncated objects. The second + is the offsets between target centers2d and round int dtype + centers2d,and the last is the truncation mask for each object in + batch data. + """ + bs = len(centers2d_list) + centers2d_target_list = [] + trunc_mask_list = [] + offsets2d_list = [] + # for now, only pad mode that img is padded by right and + # bottom side is supported. + for i in range(bs): + centers2d = centers2d_list[i] + gt_bbox = gt_bboxes_list[i] + img_shape = img_metas[i]['img_shape'] + centers2d_target = centers2d.clone() + inside_inds = (centers2d[:, 0] > 0) & \ + (centers2d[:, 0] < img_shape[1]) & \ + (centers2d[:, 1] > 0) & \ + (centers2d[:, 1] < img_shape[0]) + outside_inds = ~inside_inds + + # if there are outside objects + if outside_inds.any(): + centers = (gt_bbox[:, :2] + gt_bbox[:, 2:]) / 2 + outside_centers2d = centers2d[outside_inds] + match_centers = centers[outside_inds] + target_outside_centers2d = get_centers2d_target( + outside_centers2d, match_centers, img_shape) + centers2d_target[outside_inds] = target_outside_centers2d + + offsets2d = centers2d - centers2d_target.round().int() + trunc_mask = outside_inds + + centers2d_target_list.append(centers2d_target) + trunc_mask_list.append(trunc_mask) + offsets2d_list.append(offsets2d) + + return (centers2d_target_list, offsets2d_list, trunc_mask_list) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/mlp.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/mlp.py new file mode 100644 index 000000000..0b499bb46 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/utils/mlp.py @@ -0,0 +1,51 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch import nn as nn + + +class MLP(BaseModule): + """A simple MLP module. + + Pass features (B, C, N) through an MLP. + + Args: + in_channels (int, optional): Number of channels of input features. + Default: 18. + conv_channels (tuple[int], optional): Out channels of the convolution. + Default: (256, 256). + conv_cfg (dict, optional): Config of convolution. + Default: dict(type='Conv1d'). + norm_cfg (dict, optional): Config of normalization. + Default: dict(type='BN1d'). + act_cfg (dict, optional): Config of activation. + Default: dict(type='ReLU'). + """ + + def __init__(self, + in_channel=18, + conv_channels=(256, 256), + conv_cfg=dict(type='Conv1d'), + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.mlp = nn.Sequential() + prev_channels = in_channel + for i, conv_channel in enumerate(conv_channels): + self.mlp.add_module( + f'layer{i}', + ConvModule( + prev_channels, + conv_channels[i], + 1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=True, + inplace=True)) + prev_channels = conv_channels[i] + + def forward(self, img_features): + return self.mlp(img_features) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/__init__.py new file mode 100644 index 000000000..2926a8342 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/__init__.py @@ -0,0 +1,8 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .pillar_encoder import DynamicPillarFeatureNet, PillarFeatureNet +from .voxel_encoder import DynamicSimpleVFE, DynamicVFE, HardSimpleVFE, HardVFE + +__all__ = [ + 'PillarFeatureNet', 'DynamicPillarFeatureNet', 'HardVFE', 'DynamicVFE', + 'HardSimpleVFE', 'DynamicSimpleVFE' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/pillar_encoder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/pillar_encoder.py new file mode 100644 index 000000000..39bdc728a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/pillar_encoder.py @@ -0,0 +1,323 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import build_norm_layer +from mmcv.ops import DynamicScatter +from mmcv.runner import force_fp32 +from torch import nn + +from ..builder import VOXEL_ENCODERS +from .utils import PFNLayer, get_paddings_indicator + + +@VOXEL_ENCODERS.register_module() +class PillarFeatureNet(nn.Module): + """Pillar Feature Net. + + The network prepares the pillar features and performs forward pass + through PFNLayers. + + Args: + in_channels (int, optional): Number of input features, + either x, y, z or x, y, z, r. Defaults to 4. + feat_channels (tuple, optional): Number of features in each of the + N PFNLayers. Defaults to (64, ). + with_distance (bool, optional): Whether to include Euclidean distance + to points. Defaults to False. + with_cluster_center (bool, optional): [description]. Defaults to True. + with_voxel_center (bool, optional): [description]. Defaults to True. + voxel_size (tuple[float], optional): Size of voxels, only utilize x + and y size. Defaults to (0.2, 0.2, 4). + point_cloud_range (tuple[float], optional): Point cloud range, only + utilizes x and y min. Defaults to (0, -40, -3, 70.4, 40, 1). + norm_cfg ([type], optional): [description]. + Defaults to dict(type='BN1d', eps=1e-3, momentum=0.01). + mode (str, optional): The mode to gather point features. Options are + 'max' or 'avg'. Defaults to 'max'. + legacy (bool, optional): Whether to use the new behavior or + the original behavior. Defaults to True. + """ + + def __init__(self, + in_channels=4, + feat_channels=(64, ), + with_distance=False, + with_cluster_center=True, + with_voxel_center=True, + voxel_size=(0.2, 0.2, 4), + point_cloud_range=(0, -40, -3, 70.4, 40, 1), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + mode='max', + legacy=True): + super(PillarFeatureNet, self).__init__() + assert len(feat_channels) > 0 + self.legacy = legacy + if with_cluster_center: + in_channels += 3 + if with_voxel_center: + in_channels += 3 + if with_distance: + in_channels += 1 + self._with_distance = with_distance + self._with_cluster_center = with_cluster_center + self._with_voxel_center = with_voxel_center + self.fp16_enabled = False + # Create PillarFeatureNet layers + self.in_channels = in_channels + feat_channels = [in_channels] + list(feat_channels) + pfn_layers = [] + for i in range(len(feat_channels) - 1): + in_filters = feat_channels[i] + out_filters = feat_channels[i + 1] + if i < len(feat_channels) - 2: + last_layer = False + else: + last_layer = True + pfn_layers.append( + PFNLayer( + in_filters, + out_filters, + norm_cfg=norm_cfg, + last_layer=last_layer, + mode=mode)) + self.pfn_layers = nn.ModuleList(pfn_layers) + + # Need pillar (voxel) size and x/y offset in order to calculate offset + self.vx = voxel_size[0] + self.vy = voxel_size[1] + self.vz = voxel_size[2] + self.x_offset = self.vx / 2 + point_cloud_range[0] + self.y_offset = self.vy / 2 + point_cloud_range[1] + self.z_offset = self.vz / 2 + point_cloud_range[2] + self.point_cloud_range = point_cloud_range + + @force_fp32(out_fp16=True) + def forward(self, features, num_points, coors): + """Forward function. + + Args: + features (torch.Tensor): Point features or raw points in shape + (N, M, C). + num_points (torch.Tensor): Number of points in each pillar. + coors (torch.Tensor): Coordinates of each voxel. + + Returns: + torch.Tensor: Features of pillars. + """ + features_ls = [features] + # Find distance of x, y, and z from cluster center + if self._with_cluster_center: + points_mean = features[:, :, :3].sum( + dim=1, keepdim=True) / num_points.type_as(features).view( + -1, 1, 1) + f_cluster = features[:, :, :3] - points_mean + features_ls.append(f_cluster) + + # Find distance of x, y, and z from pillar center + dtype = features.dtype + if self._with_voxel_center: + if not self.legacy: + f_center = torch.zeros_like(features[:, :, :3]) + f_center[:, :, 0] = features[:, :, 0] - ( + coors[:, 3].to(dtype).unsqueeze(1) * self.vx + + self.x_offset) + f_center[:, :, 1] = features[:, :, 1] - ( + coors[:, 2].to(dtype).unsqueeze(1) * self.vy + + self.y_offset) + f_center[:, :, 2] = features[:, :, 2] - ( + coors[:, 1].to(dtype).unsqueeze(1) * self.vz + + self.z_offset) + else: + f_center = features[:, :, :3] + f_center[:, :, 0] = f_center[:, :, 0] - ( + coors[:, 3].type_as(features).unsqueeze(1) * self.vx + + self.x_offset) + f_center[:, :, 1] = f_center[:, :, 1] - ( + coors[:, 2].type_as(features).unsqueeze(1) * self.vy + + self.y_offset) + f_center[:, :, 2] = f_center[:, :, 2] - ( + coors[:, 1].type_as(features).unsqueeze(1) * self.vz + + self.z_offset) + features_ls.append(f_center) + + if self._with_distance: + points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True) + features_ls.append(points_dist) + + # Combine together feature decorations + features = torch.cat(features_ls, dim=-1) + # The feature decorations were calculated without regard to whether + # pillar was empty. Need to ensure that + # empty pillars remain set to zeros. + voxel_count = features.shape[1] + mask = get_paddings_indicator(num_points, voxel_count, axis=0) + mask = torch.unsqueeze(mask, -1).type_as(features) + features *= mask + + for pfn in self.pfn_layers: + features = pfn(features, num_points) + + return features.squeeze(1) + + +@VOXEL_ENCODERS.register_module() +class DynamicPillarFeatureNet(PillarFeatureNet): + """Pillar Feature Net using dynamic voxelization. + + The network prepares the pillar features and performs forward pass + through PFNLayers. The main difference is that it is used for + dynamic voxels, which contains different number of points inside a voxel + without limits. + + Args: + in_channels (int, optional): Number of input features, + either x, y, z or x, y, z, r. Defaults to 4. + feat_channels (tuple, optional): Number of features in each of the + N PFNLayers. Defaults to (64, ). + with_distance (bool, optional): Whether to include Euclidean distance + to points. Defaults to False. + with_cluster_center (bool, optional): [description]. Defaults to True. + with_voxel_center (bool, optional): [description]. Defaults to True. + voxel_size (tuple[float], optional): Size of voxels, only utilize x + and y size. Defaults to (0.2, 0.2, 4). + point_cloud_range (tuple[float], optional): Point cloud range, only + utilizes x and y min. Defaults to (0, -40, -3, 70.4, 40, 1). + norm_cfg ([type], optional): [description]. + Defaults to dict(type='BN1d', eps=1e-3, momentum=0.01). + mode (str, optional): The mode to gather point features. Options are + 'max' or 'avg'. Defaults to 'max'. + legacy (bool, optional): Whether to use the new behavior or + the original behavior. Defaults to True. + """ + + def __init__(self, + in_channels=4, + feat_channels=(64, ), + with_distance=False, + with_cluster_center=True, + with_voxel_center=True, + voxel_size=(0.2, 0.2, 4), + point_cloud_range=(0, -40, -3, 70.4, 40, 1), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + mode='max', + legacy=True): + super(DynamicPillarFeatureNet, self).__init__( + in_channels, + feat_channels, + with_distance, + with_cluster_center=with_cluster_center, + with_voxel_center=with_voxel_center, + voxel_size=voxel_size, + point_cloud_range=point_cloud_range, + norm_cfg=norm_cfg, + mode=mode, + legacy=legacy) + self.fp16_enabled = False + feat_channels = [self.in_channels] + list(feat_channels) + pfn_layers = [] + # TODO: currently only support one PFNLayer + + for i in range(len(feat_channels) - 1): + in_filters = feat_channels[i] + out_filters = feat_channels[i + 1] + if i > 0: + in_filters *= 2 + norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters) + pfn_layers.append( + nn.Sequential( + nn.Linear(in_filters, out_filters, bias=False), norm_layer, + nn.ReLU(inplace=True))) + self.num_pfn = len(pfn_layers) + self.pfn_layers = nn.ModuleList(pfn_layers) + self.pfn_scatter = DynamicScatter(voxel_size, point_cloud_range, + (mode != 'max')) + self.cluster_scatter = DynamicScatter( + voxel_size, point_cloud_range, average_points=True) + + def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors): + """Map the centers of voxels to its corresponding points. + + Args: + pts_coors (torch.Tensor): The coordinates of each points, shape + (M, 3), where M is the number of points. + voxel_mean (torch.Tensor): The mean or aggregated features of a + voxel, shape (N, C), where N is the number of voxels. + voxel_coors (torch.Tensor): The coordinates of each voxel. + + Returns: + torch.Tensor: Corresponding voxel centers of each points, shape + (M, C), where M is the number of points. + """ + # Step 1: scatter voxel into canvas + # Calculate necessary things for canvas creation + canvas_y = int( + (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy) + canvas_x = int( + (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx) + canvas_channel = voxel_mean.size(1) + batch_size = pts_coors[-1, 0] + 1 + canvas_len = canvas_y * canvas_x * batch_size + # Create the canvas for this sample + canvas = voxel_mean.new_zeros(canvas_channel, canvas_len) + # Only include non-empty pillars + indices = ( + voxel_coors[:, 0] * canvas_y * canvas_x + + voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3]) + # Scatter the blob back to the canvas + canvas[:, indices.long()] = voxel_mean.t() + + # Step 2: get voxel mean for each point + voxel_index = ( + pts_coors[:, 0] * canvas_y * canvas_x + + pts_coors[:, 2] * canvas_x + pts_coors[:, 3]) + center_per_point = canvas[:, voxel_index.long()].t() + return center_per_point + + @force_fp32(out_fp16=True) + def forward(self, features, coors): + """Forward function. + + Args: + features (torch.Tensor): Point features or raw points in shape + (N, M, C). + coors (torch.Tensor): Coordinates of each voxel + + Returns: + torch.Tensor: Features of pillars. + """ + features_ls = [features] + # Find distance of x, y, and z from cluster center + if self._with_cluster_center: + voxel_mean, mean_coors = self.cluster_scatter(features, coors) + points_mean = self.map_voxel_center_to_point( + coors, voxel_mean, mean_coors) + # TODO: maybe also do cluster for reflectivity + f_cluster = features[:, :3] - points_mean[:, :3] + features_ls.append(f_cluster) + + # Find distance of x, y, and z from pillar center + if self._with_voxel_center: + f_center = features.new_zeros(size=(features.size(0), 3)) + f_center[:, 0] = features[:, 0] - ( + coors[:, 3].type_as(features) * self.vx + self.x_offset) + f_center[:, 1] = features[:, 1] - ( + coors[:, 2].type_as(features) * self.vy + self.y_offset) + f_center[:, 2] = features[:, 2] - ( + coors[:, 1].type_as(features) * self.vz + self.z_offset) + features_ls.append(f_center) + + if self._with_distance: + points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True) + features_ls.append(points_dist) + + # Combine together feature decorations + features = torch.cat(features_ls, dim=-1) + for i, pfn in enumerate(self.pfn_layers): + point_feats = pfn(features) + voxel_feats, voxel_coors = self.pfn_scatter(point_feats, coors) + if i != len(self.pfn_layers) - 1: + # need to concat voxel feats if it is not the last pfn + feat_per_point = self.map_voxel_center_to_point( + coors, voxel_feats, voxel_coors) + features = torch.cat([point_feats, feat_per_point], dim=1) + + return voxel_feats, voxel_coors diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/utils.py new file mode 100644 index 000000000..8c54fc2d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/utils.py @@ -0,0 +1,182 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import build_norm_layer +from mmcv.runner import auto_fp16 +from torch import nn +from torch.nn import functional as F + + +def get_paddings_indicator(actual_num, max_num, axis=0): + """Create boolean mask by actually number of a padded tensor. + + Args: + actual_num (torch.Tensor): Actual number of points in each voxel. + max_num (int): Max number of points in each voxel + + Returns: + torch.Tensor: Mask indicates which points are valid inside a voxel. + """ + actual_num = torch.unsqueeze(actual_num, axis + 1) + # tiled_actual_num: [N, M, 1] + max_num_shape = [1] * len(actual_num.shape) + max_num_shape[axis + 1] = -1 + max_num = torch.arange( + max_num, dtype=torch.int, device=actual_num.device).view(max_num_shape) + # tiled_actual_num: [[3,3,3,3,3], [4,4,4,4,4], [2,2,2,2,2]] + # tiled_max_num: [[0,1,2,3,4], [0,1,2,3,4], [0,1,2,3,4]] + paddings_indicator = actual_num.int() > max_num + # paddings_indicator shape: [batch_size, max_num] + return paddings_indicator + + +class VFELayer(nn.Module): + """Voxel Feature Encoder layer. + + The voxel encoder is composed of a series of these layers. + This module do not support average pooling and only support to use + max pooling to gather features inside a VFE. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + norm_cfg (dict): Config dict of normalization layers + max_out (bool): Whether aggregate the features of points inside + each voxel and only return voxel features. + cat_max (bool): Whether concatenate the aggregated features + and pointwise features. + """ + + def __init__(self, + in_channels, + out_channels, + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + max_out=True, + cat_max=True): + super(VFELayer, self).__init__() + self.fp16_enabled = False + self.cat_max = cat_max + self.max_out = max_out + # self.units = int(out_channels / 2) + + self.norm = build_norm_layer(norm_cfg, out_channels)[1] + self.linear = nn.Linear(in_channels, out_channels, bias=False) + + @auto_fp16(apply_to=('inputs'), out_fp32=True) + def forward(self, inputs): + """Forward function. + + Args: + inputs (torch.Tensor): Voxels features of shape (N, M, C). + N is the number of voxels, M is the number of points in + voxels, C is the number of channels of point features. + + Returns: + torch.Tensor: Voxel features. There are three mode under which the + features have different meaning. + - `max_out=False`: Return point-wise features in + shape (N, M, C). + - `max_out=True` and `cat_max=False`: Return aggregated + voxel features in shape (N, C) + - `max_out=True` and `cat_max=True`: Return concatenated + point-wise features in shape (N, M, C). + """ + # [K, T, 7] tensordot [7, units] = [K, T, units] + voxel_count = inputs.shape[1] + + x = self.linear(inputs) + x = self.norm(x.permute(0, 2, 1).contiguous()).permute(0, 2, + 1).contiguous() + pointwise = F.relu(x) + # [K, T, units] + if self.max_out: + aggregated = torch.max(pointwise, dim=1, keepdim=True)[0] + else: + # this is for fusion layer + return pointwise + + if not self.cat_max: + return aggregated.squeeze(1) + else: + # [K, 1, units] + repeated = aggregated.repeat(1, voxel_count, 1) + concatenated = torch.cat([pointwise, repeated], dim=2) + # [K, T, 2 * units] + return concatenated + + +class PFNLayer(nn.Module): + """Pillar Feature Net Layer. + + The Pillar Feature Net is composed of a series of these layers, but the + PointPillars paper results only used a single PFNLayer. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + norm_cfg (dict, optional): Config dict of normalization layers. + Defaults to dict(type='BN1d', eps=1e-3, momentum=0.01). + last_layer (bool, optional): If last_layer, there is no + concatenation of features. Defaults to False. + mode (str, optional): Pooling model to gather features inside voxels. + Defaults to 'max'. + """ + + def __init__(self, + in_channels, + out_channels, + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + last_layer=False, + mode='max'): + + super().__init__() + self.fp16_enabled = False + self.name = 'PFNLayer' + self.last_vfe = last_layer + if not self.last_vfe: + out_channels = out_channels // 2 + self.units = out_channels + + self.norm = build_norm_layer(norm_cfg, self.units)[1] + self.linear = nn.Linear(in_channels, self.units, bias=False) + + assert mode in ['max', 'avg'] + self.mode = mode + + @auto_fp16(apply_to=('inputs'), out_fp32=True) + def forward(self, inputs, num_voxels=None, aligned_distance=None): + """Forward function. + + Args: + inputs (torch.Tensor): Pillar/Voxel inputs with shape (N, M, C). + N is the number of voxels, M is the number of points in + voxels, C is the number of channels of point features. + num_voxels (torch.Tensor, optional): Number of points in each + voxel. Defaults to None. + aligned_distance (torch.Tensor, optional): The distance of + each points to the voxel center. Defaults to None. + + Returns: + torch.Tensor: Features of Pillars. + """ + x = self.linear(inputs) + x = self.norm(x.permute(0, 2, 1).contiguous()).permute(0, 2, + 1).contiguous() + x = F.relu(x) + + if self.mode == 'max': + if aligned_distance is not None: + x = x.mul(aligned_distance.unsqueeze(-1)) + x_max = torch.max(x, dim=1, keepdim=True)[0] + elif self.mode == 'avg': + if aligned_distance is not None: + x = x.mul(aligned_distance.unsqueeze(-1)) + x_max = x.sum( + dim=1, keepdim=True) / num_voxels.type_as(inputs).view( + -1, 1, 1) + + if self.last_vfe: + return x_max + else: + x_repeat = x_max.repeat(1, inputs.shape[1], 1) + x_concatenated = torch.cat([x, x_repeat], dim=2) + return x_concatenated diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/voxel_encoder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/voxel_encoder.py new file mode 100644 index 000000000..9f3cf53d1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/models/voxel_encoders/voxel_encoder.py @@ -0,0 +1,489 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import build_norm_layer +from mmcv.ops import DynamicScatter +from mmcv.runner import force_fp32 +from torch import nn + +from .. import builder +from ..builder import VOXEL_ENCODERS +from .utils import VFELayer, get_paddings_indicator + + +@VOXEL_ENCODERS.register_module() +class HardSimpleVFE(nn.Module): + """Simple voxel feature encoder used in SECOND. + + It simply averages the values of points in a voxel. + + Args: + num_features (int, optional): Number of features to use. Default: 4. + """ + + def __init__(self, num_features=4): + super(HardSimpleVFE, self).__init__() + self.num_features = num_features + self.fp16_enabled = False + + @force_fp32(out_fp16=True) + def forward(self, features, num_points, coors): + """Forward function. + + Args: + features (torch.Tensor): Point features in shape + (N, M, 3(4)). N is the number of voxels and M is the maximum + number of points inside a single voxel. + num_points (torch.Tensor): Number of points in each voxel, + shape (N, ). + coors (torch.Tensor): Coordinates of voxels. + + Returns: + torch.Tensor: Mean of points inside each voxel in shape (N, 3(4)) + """ + points_mean = features[:, :, :self.num_features].sum( + dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1) + return points_mean.contiguous() + + +@VOXEL_ENCODERS.register_module() +class DynamicSimpleVFE(nn.Module): + """Simple dynamic voxel feature encoder used in DV-SECOND. + + It simply averages the values of points in a voxel. + But the number of points in a voxel is dynamic and varies. + + Args: + voxel_size (tupe[float]): Size of a single voxel + point_cloud_range (tuple[float]): Range of the point cloud and voxels + """ + + def __init__(self, + voxel_size=(0.2, 0.2, 4), + point_cloud_range=(0, -40, -3, 70.4, 40, 1)): + super(DynamicSimpleVFE, self).__init__() + self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) + self.fp16_enabled = False + + @torch.no_grad() + @force_fp32(out_fp16=True) + def forward(self, features, coors): + """Forward function. + + Args: + features (torch.Tensor): Point features in shape + (N, 3(4)). N is the number of points. + coors (torch.Tensor): Coordinates of voxels. + + Returns: + torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)). + M is the number of voxels. + """ + # This function is used from the start of the voxelnet + # num_points: [concated_num_points] + features, features_coors = self.scatter(features, coors) + return features, features_coors + + +@VOXEL_ENCODERS.register_module() +class DynamicVFE(nn.Module): + """Dynamic Voxel feature encoder used in DV-SECOND. + + It encodes features of voxels and their points. It could also fuse + image feature into voxel features in a point-wise manner. + The number of points inside the voxel varies. + + Args: + in_channels (int, optional): Input channels of VFE. Defaults to 4. + feat_channels (list(int), optional): Channels of features in VFE. + with_distance (bool, optional): Whether to use the L2 distance of + points to the origin point. Defaults to False. + with_cluster_center (bool, optional): Whether to use the distance + to cluster center of points inside a voxel. Defaults to False. + with_voxel_center (bool, optional): Whether to use the distance + to center of voxel for each points inside a voxel. + Defaults to False. + voxel_size (tuple[float], optional): Size of a single voxel. + Defaults to (0.2, 0.2, 4). + point_cloud_range (tuple[float], optional): The range of points + or voxels. Defaults to (0, -40, -3, 70.4, 40, 1). + norm_cfg (dict, optional): Config dict of normalization layers. + mode (str, optional): The mode when pooling features of points + inside a voxel. Available options include 'max' and 'avg'. + Defaults to 'max'. + fusion_layer (dict, optional): The config dict of fusion + layer used in multi-modal detectors. Defaults to None. + return_point_feats (bool, optional): Whether to return the features + of each points. Defaults to False. + """ + + def __init__(self, + in_channels=4, + feat_channels=[], + with_distance=False, + with_cluster_center=False, + with_voxel_center=False, + voxel_size=(0.2, 0.2, 4), + point_cloud_range=(0, -40, -3, 70.4, 40, 1), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + mode='max', + fusion_layer=None, + return_point_feats=False): + super(DynamicVFE, self).__init__() + assert mode in ['avg', 'max'] + assert len(feat_channels) > 0 + if with_cluster_center: + in_channels += 3 + if with_voxel_center: + in_channels += 3 + if with_distance: + in_channels += 1 + self.in_channels = in_channels + self._with_distance = with_distance + self._with_cluster_center = with_cluster_center + self._with_voxel_center = with_voxel_center + self.return_point_feats = return_point_feats + self.fp16_enabled = False + + # Need pillar (voxel) size and x/y offset in order to calculate offset + self.vx = voxel_size[0] + self.vy = voxel_size[1] + self.vz = voxel_size[2] + self.x_offset = self.vx / 2 + point_cloud_range[0] + self.y_offset = self.vy / 2 + point_cloud_range[1] + self.z_offset = self.vz / 2 + point_cloud_range[2] + self.point_cloud_range = point_cloud_range + self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) + + feat_channels = [self.in_channels] + list(feat_channels) + vfe_layers = [] + for i in range(len(feat_channels) - 1): + in_filters = feat_channels[i] + out_filters = feat_channels[i + 1] + if i > 0: + in_filters *= 2 + norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters) + vfe_layers.append( + nn.Sequential( + nn.Linear(in_filters, out_filters, bias=False), norm_layer, + nn.ReLU(inplace=True))) + self.vfe_layers = nn.ModuleList(vfe_layers) + self.num_vfe = len(vfe_layers) + self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range, + (mode != 'max')) + self.cluster_scatter = DynamicScatter( + voxel_size, point_cloud_range, average_points=True) + self.fusion_layer = None + if fusion_layer is not None: + self.fusion_layer = builder.build_fusion_layer(fusion_layer) + + def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors): + """Map voxel features to its corresponding points. + + Args: + pts_coors (torch.Tensor): Voxel coordinate of each point. + voxel_mean (torch.Tensor): Voxel features to be mapped. + voxel_coors (torch.Tensor): Coordinates of valid voxels + + Returns: + torch.Tensor: Features or centers of each point. + """ + # Step 1: scatter voxel into canvas + # Calculate necessary things for canvas creation + canvas_z = int( + (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz) + canvas_y = int( + (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy) + canvas_x = int( + (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx) + # canvas_channel = voxel_mean.size(1) + batch_size = pts_coors[-1, 0] + 1 + canvas_len = canvas_z * canvas_y * canvas_x * batch_size + # Create the canvas for this sample + canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long) + # Only include non-empty pillars + indices = ( + voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x + + voxel_coors[:, 1] * canvas_y * canvas_x + + voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3]) + # Scatter the blob back to the canvas + canvas[indices.long()] = torch.arange( + start=0, end=voxel_mean.size(0), device=voxel_mean.device) + + # Step 2: get voxel mean for each point + voxel_index = ( + pts_coors[:, 0] * canvas_z * canvas_y * canvas_x + + pts_coors[:, 1] * canvas_y * canvas_x + + pts_coors[:, 2] * canvas_x + pts_coors[:, 3]) + voxel_inds = canvas[voxel_index.long()] + center_per_point = voxel_mean[voxel_inds, ...] + return center_per_point + + @force_fp32(out_fp16=True) + def forward(self, + features, + coors, + points=None, + img_feats=None, + img_metas=None): + """Forward functions. + + Args: + features (torch.Tensor): Features of voxels, shape is NxC. + coors (torch.Tensor): Coordinates of voxels, shape is Nx(1+NDim). + points (list[torch.Tensor], optional): Raw points used to guide the + multi-modality fusion. Defaults to None. + img_feats (list[torch.Tensor], optional): Image features used for + multi-modality fusion. Defaults to None. + img_metas (dict, optional): [description]. Defaults to None. + + Returns: + tuple: If `return_point_feats` is False, returns voxel features and + its coordinates. If `return_point_feats` is True, returns + feature of each points inside voxels. + """ + features_ls = [features] + # Find distance of x, y, and z from cluster center + if self._with_cluster_center: + voxel_mean, mean_coors = self.cluster_scatter(features, coors) + points_mean = self.map_voxel_center_to_point( + coors, voxel_mean, mean_coors) + # TODO: maybe also do cluster for reflectivity + f_cluster = features[:, :3] - points_mean[:, :3] + features_ls.append(f_cluster) + + # Find distance of x, y, and z from pillar center + if self._with_voxel_center: + f_center = features.new_zeros(size=(features.size(0), 3)) + f_center[:, 0] = features[:, 0] - ( + coors[:, 3].type_as(features) * self.vx + self.x_offset) + f_center[:, 1] = features[:, 1] - ( + coors[:, 2].type_as(features) * self.vy + self.y_offset) + f_center[:, 2] = features[:, 2] - ( + coors[:, 1].type_as(features) * self.vz + self.z_offset) + features_ls.append(f_center) + + if self._with_distance: + points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True) + features_ls.append(points_dist) + + # Combine together feature decorations + features = torch.cat(features_ls, dim=-1) + for i, vfe in enumerate(self.vfe_layers): + point_feats = vfe(features) + if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None + and img_feats is not None): + point_feats = self.fusion_layer(img_feats, points, point_feats, + img_metas) + voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors) + if i != len(self.vfe_layers) - 1: + # need to concat voxel feats if it is not the last vfe + feat_per_point = self.map_voxel_center_to_point( + coors, voxel_feats, voxel_coors) + features = torch.cat([point_feats, feat_per_point], dim=1) + + if self.return_point_feats: + return point_feats + return voxel_feats, voxel_coors + + +@VOXEL_ENCODERS.register_module() +class HardVFE(nn.Module): + """Voxel feature encoder used in DV-SECOND. + + It encodes features of voxels and their points. It could also fuse + image feature into voxel features in a point-wise manner. + + Args: + in_channels (int, optional): Input channels of VFE. Defaults to 4. + feat_channels (list(int), optional): Channels of features in VFE. + with_distance (bool, optional): Whether to use the L2 distance + of points to the origin point. Defaults to False. + with_cluster_center (bool, optional): Whether to use the distance + to cluster center of points inside a voxel. Defaults to False. + with_voxel_center (bool, optional): Whether to use the distance to + center of voxel for each points inside a voxel. Defaults to False. + voxel_size (tuple[float], optional): Size of a single voxel. + Defaults to (0.2, 0.2, 4). + point_cloud_range (tuple[float], optional): The range of points + or voxels. Defaults to (0, -40, -3, 70.4, 40, 1). + norm_cfg (dict, optional): Config dict of normalization layers. + mode (str, optional): The mode when pooling features of points inside a + voxel. Available options include 'max' and 'avg'. + Defaults to 'max'. + fusion_layer (dict, optional): The config dict of fusion layer + used in multi-modal detectors. Defaults to None. + return_point_feats (bool, optional): Whether to return the + features of each points. Defaults to False. + """ + + def __init__(self, + in_channels=4, + feat_channels=[], + with_distance=False, + with_cluster_center=False, + with_voxel_center=False, + voxel_size=(0.2, 0.2, 4), + point_cloud_range=(0, -40, -3, 70.4, 40, 1), + norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), + mode='max', + fusion_layer=None, + return_point_feats=False): + super(HardVFE, self).__init__() + assert len(feat_channels) > 0 + if with_cluster_center: + in_channels += 3 + if with_voxel_center: + in_channels += 3 + if with_distance: + in_channels += 1 + self.in_channels = in_channels + self._with_distance = with_distance + self._with_cluster_center = with_cluster_center + self._with_voxel_center = with_voxel_center + self.return_point_feats = return_point_feats + self.fp16_enabled = False + + # Need pillar (voxel) size and x/y offset to calculate pillar offset + self.vx = voxel_size[0] + self.vy = voxel_size[1] + self.vz = voxel_size[2] + self.x_offset = self.vx / 2 + point_cloud_range[0] + self.y_offset = self.vy / 2 + point_cloud_range[1] + self.z_offset = self.vz / 2 + point_cloud_range[2] + self.point_cloud_range = point_cloud_range + self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) + + feat_channels = [self.in_channels] + list(feat_channels) + vfe_layers = [] + for i in range(len(feat_channels) - 1): + in_filters = feat_channels[i] + out_filters = feat_channels[i + 1] + if i > 0: + in_filters *= 2 + # TODO: pass norm_cfg to VFE + # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters) + if i == (len(feat_channels) - 2): + cat_max = False + max_out = True + if fusion_layer: + max_out = False + else: + max_out = True + cat_max = True + vfe_layers.append( + VFELayer( + in_filters, + out_filters, + norm_cfg=norm_cfg, + max_out=max_out, + cat_max=cat_max)) + self.vfe_layers = nn.ModuleList(vfe_layers) + self.num_vfe = len(vfe_layers) + + self.fusion_layer = None + if fusion_layer is not None: + self.fusion_layer = builder.build_fusion_layer(fusion_layer) + + @force_fp32(out_fp16=True) + def forward(self, + features, + num_points, + coors, + img_feats=None, + img_metas=None): + """Forward functions. + + Args: + features (torch.Tensor): Features of voxels, shape is MxNxC. + num_points (torch.Tensor): Number of points in each voxel. + coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim). + img_feats (list[torch.Tensor], optional): Image features used for + multi-modality fusion. Defaults to None. + img_metas (dict, optional): [description]. Defaults to None. + + Returns: + tuple: If `return_point_feats` is False, returns voxel features and + its coordinates. If `return_point_feats` is True, returns + feature of each points inside voxels. + """ + features_ls = [features] + # Find distance of x, y, and z from cluster center + if self._with_cluster_center: + points_mean = ( + features[:, :, :3].sum(dim=1, keepdim=True) / + num_points.type_as(features).view(-1, 1, 1)) + # TODO: maybe also do cluster for reflectivity + f_cluster = features[:, :, :3] - points_mean + features_ls.append(f_cluster) + + # Find distance of x, y, and z from pillar center + if self._with_voxel_center: + f_center = features.new_zeros( + size=(features.size(0), features.size(1), 3)) + f_center[:, :, 0] = features[:, :, 0] - ( + coors[:, 3].type_as(features).unsqueeze(1) * self.vx + + self.x_offset) + f_center[:, :, 1] = features[:, :, 1] - ( + coors[:, 2].type_as(features).unsqueeze(1) * self.vy + + self.y_offset) + f_center[:, :, 2] = features[:, :, 2] - ( + coors[:, 1].type_as(features).unsqueeze(1) * self.vz + + self.z_offset) + features_ls.append(f_center) + + if self._with_distance: + points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True) + features_ls.append(points_dist) + + # Combine together feature decorations + voxel_feats = torch.cat(features_ls, dim=-1) + # The feature decorations were calculated without regard to whether + # pillar was empty. + # Need to ensure that empty voxels remain set to zeros. + voxel_count = voxel_feats.shape[1] + mask = get_paddings_indicator(num_points, voxel_count, axis=0) + voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats) + + for i, vfe in enumerate(self.vfe_layers): + voxel_feats = vfe(voxel_feats) + + if (self.fusion_layer is not None and img_feats is not None): + voxel_feats = self.fusion_with_mask(features, mask, voxel_feats, + coors, img_feats, img_metas) + + return voxel_feats + + def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats, + img_metas): + """Fuse image and point features with mask. + + Args: + features (torch.Tensor): Features of voxel, usually it is the + values of points in voxels. + mask (torch.Tensor): Mask indicates valid features in each voxel. + voxel_feats (torch.Tensor): Features of voxels. + coors (torch.Tensor): Coordinates of each single voxel. + img_feats (list[torch.Tensor]): Multi-scale feature maps of image. + img_metas (list(dict)): Meta information of image and points. + + Returns: + torch.Tensor: Fused features of each voxel. + """ + # the features is consist of a batch of points + batch_size = coors[-1, 0] + 1 + points = [] + for i in range(batch_size): + single_mask = (coors[:, 0] == i) + points.append(features[single_mask][mask[single_mask]]) + + point_feats = voxel_feats[mask] + point_feats = self.fusion_layer(img_feats, points, point_feats, + img_metas) + + voxel_canvas = voxel_feats.new_zeros( + size=(voxel_feats.size(0), voxel_feats.size(1), + point_feats.size(-1))) + voxel_canvas[mask] = point_feats + out = torch.max(voxel_canvas, dim=1)[0] + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/__init__.py new file mode 100644 index 000000000..c96e954ad --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/__init__.py @@ -0,0 +1,50 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from mmcv.ops import (RoIAlign, SigmoidFocalLoss, get_compiler_version, + get_compiling_cuda_version, nms, roi_align, + sigmoid_focal_loss) +from mmcv.ops.assign_score_withk import assign_score_withk +from mmcv.ops.ball_query import ball_query +from mmcv.ops.furthest_point_sample import (furthest_point_sample, + furthest_point_sample_with_dist) +from mmcv.ops.gather_points import gather_points +from mmcv.ops.group_points import GroupAll, QueryAndGroup, grouping_operation +from mmcv.ops.knn import knn +from mmcv.ops.points_in_boxes import (points_in_boxes_all, points_in_boxes_cpu, + points_in_boxes_part) +from mmcv.ops.points_sampler import PointsSampler as Points_Sampler +from mmcv.ops.roiaware_pool3d import RoIAwarePool3d +from mmcv.ops.roipoint_pool3d import RoIPointPool3d +from mmcv.ops.scatter_points import DynamicScatter, dynamic_scatter +from mmcv.ops.three_interpolate import three_interpolate +from mmcv.ops.three_nn import three_nn +from mmcv.ops.voxelize import Voxelization, voxelization + +from .dgcnn_modules import DGCNNFAModule, DGCNNFPModule, DGCNNGFModule +from .norm import NaiveSyncBatchNorm1d, NaiveSyncBatchNorm2d +from .paconv import PAConv, PAConvCUDA +from .pointnet_modules import (PAConvCUDASAModule, PAConvCUDASAModuleMSG, + PAConvSAModule, PAConvSAModuleMSG, + PointFPModule, PointSAModule, PointSAModuleMSG, + build_sa_module) +# from .sparse_block import (SparseBasicBlock, SparseBottleneck, +# make_sparse_convmodule) + +__all__ = [ + 'nms', 'soft_nms', 'RoIAlign', 'roi_align', 'get_compiler_version', + 'get_compiling_cuda_version', 'NaiveSyncBatchNorm1d', + 'NaiveSyncBatchNorm2d', 'batched_nms', 'Voxelization', 'voxelization', + 'dynamic_scatter', 'DynamicScatter', 'sigmoid_focal_loss', + 'SigmoidFocalLoss', 'SparseBasicBlock', 'SparseBottleneck', + 'RoIAwarePool3d', 'points_in_boxes_part', 'points_in_boxes_cpu', + 'make_sparse_convmodule', 'ball_query', 'knn', 'furthest_point_sample', + 'furthest_point_sample_with_dist', 'three_interpolate', 'three_nn', + 'gather_points', 'grouping_operation', 'GroupAll', 'QueryAndGroup', + 'PointSAModule', 'PointSAModuleMSG', 'PointFPModule', 'DGCNNFPModule', + 'DGCNNGFModule', 'DGCNNFAModule', 'points_in_boxes_all', + 'get_compiler_version', 'assign_score_withk', 'get_compiling_cuda_version', + 'Points_Sampler', 'build_sa_module', 'PAConv', 'PAConvCUDA', + 'PAConvSAModuleMSG', 'PAConvSAModule', 'PAConvCUDASAModule', + 'PAConvCUDASAModuleMSG', 'RoIPointPool3d' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/__init__.py new file mode 100644 index 000000000..67beb0907 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .dgcnn_fa_module import DGCNNFAModule +from .dgcnn_fp_module import DGCNNFPModule +from .dgcnn_gf_module import DGCNNGFModule + +__all__ = ['DGCNNFAModule', 'DGCNNFPModule', 'DGCNNGFModule'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fa_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fa_module.py new file mode 100644 index 000000000..b0975e691 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fa_module.py @@ -0,0 +1,68 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn + + +class DGCNNFAModule(BaseModule): + """Point feature aggregation module used in DGCNN. + + Aggregate all the features of points. + + Args: + mlp_channels (list[int]): List of mlp channels. + norm_cfg (dict, optional): Type of normalization method. + Defaults to dict(type='BN1d'). + act_cfg (dict, optional): Type of activation method. + Defaults to dict(type='ReLU'). + init_cfg (dict, optional): Initialization config. Defaults to None. + """ + + def __init__(self, + mlp_channels, + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.fp16_enabled = False + self.mlps = nn.Sequential() + for i in range(len(mlp_channels) - 1): + self.mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, ), + stride=(1, ), + conv_cfg=dict(type='Conv1d'), + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + @force_fp32() + def forward(self, points): + """forward. + + Args: + points (List[Tensor]): tensor of the features to be aggregated. + + Returns: + Tensor: (B, N, M) M = mlp[-1], tensor of the output points. + """ + + if len(points) > 1: + new_points = torch.cat(points[1:], dim=-1) + new_points = new_points.transpose(1, 2).contiguous() # (B, C, N) + new_points_copy = new_points + + new_points = self.mlps(new_points) + + new_fa_points = new_points.max(dim=-1, keepdim=True)[0] + new_fa_points = new_fa_points.repeat(1, 1, new_points.shape[-1]) + + new_points = torch.cat([new_fa_points, new_points_copy], dim=1) + new_points = new_points.transpose(1, 2).contiguous() + else: + new_points = points + + return new_points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fp_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fp_module.py new file mode 100644 index 000000000..c871721bc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_fp_module.py @@ -0,0 +1,59 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn + + +class DGCNNFPModule(BaseModule): + """Point feature propagation module used in DGCNN. + + Propagate the features from one set to another. + + Args: + mlp_channels (list[int]): List of mlp channels. + norm_cfg (dict, optional): Type of activation method. + Defaults to dict(type='BN1d'). + act_cfg (dict, optional): Type of activation method. + Defaults to dict(type='ReLU'). + init_cfg (dict, optional): Initialization config. Defaults to None. + """ + + def __init__(self, + mlp_channels, + norm_cfg=dict(type='BN1d'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.fp16_enabled = False + self.mlps = nn.Sequential() + for i in range(len(mlp_channels) - 1): + self.mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, ), + stride=(1, ), + conv_cfg=dict(type='Conv1d'), + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + @force_fp32() + def forward(self, points): + """forward. + + Args: + points (Tensor): (B, N, C) tensor of the input points. + + Returns: + Tensor: (B, N, M) M = mlp[-1], tensor of the new points. + """ + + if points is not None: + new_points = points.transpose(1, 2).contiguous() # (B, C, N) + new_points = self.mlps(new_points) + new_points = new_points.transpose(1, 2).contiguous() + else: + new_points = points + + return new_points diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_gf_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_gf_module.py new file mode 100644 index 000000000..96785e7e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/dgcnn_modules/dgcnn_gf_module.py @@ -0,0 +1,221 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.ops.group_points import GroupAll, QueryAndGroup, grouping_operation +from torch import nn as nn +from torch.nn import functional as F + + +class BaseDGCNNGFModule(nn.Module): + """Base module for point graph feature module used in DGCNN. + + Args: + radii (list[float]): List of radius in each knn or ball query. + sample_nums (list[int]): Number of samples in each knn or ball query. + mlp_channels (list[list[int]]): Specify of the dgcnn before + the global pooling for each graph feature module. + knn_modes (list[str], optional): Type of KNN method, valid mode + ['F-KNN', 'D-KNN'], Defaults to ['F-KNN']. + dilated_group (bool, optional): Whether to use dilated ball query. + Defaults to False. + use_xyz (bool, optional): Whether to use xyz as point features. + Defaults to True. + pool_mode (str, optional): Type of pooling method. Defaults to 'max'. + normalize_xyz (bool, optional): If ball query, whether to normalize + local XYZ with radius. Defaults to False. + grouper_return_grouped_xyz (bool, optional): Whether to return grouped + xyz in `QueryAndGroup`. Defaults to False. + grouper_return_grouped_idx (bool, optional): Whether to return grouped + idx in `QueryAndGroup`. Defaults to False. + """ + + def __init__(self, + radii, + sample_nums, + mlp_channels, + knn_modes=['F-KNN'], + dilated_group=False, + use_xyz=True, + pool_mode='max', + normalize_xyz=False, + grouper_return_grouped_xyz=False, + grouper_return_grouped_idx=False): + super(BaseDGCNNGFModule, self).__init__() + + assert len(sample_nums) == len( + mlp_channels + ), 'Num_samples and mlp_channels should have the same length.' + assert pool_mode in ['max', 'avg' + ], "Pool_mode should be one of ['max', 'avg']." + assert isinstance(knn_modes, list) or isinstance( + knn_modes, tuple), 'The type of knn_modes should be list or tuple.' + + if isinstance(mlp_channels, tuple): + mlp_channels = list(map(list, mlp_channels)) + self.mlp_channels = mlp_channels + + self.pool_mode = pool_mode + self.groupers = nn.ModuleList() + self.mlps = nn.ModuleList() + self.knn_modes = knn_modes + + for i in range(len(sample_nums)): + sample_num = sample_nums[i] + if sample_num is not None: + if self.knn_modes[i] == 'D-KNN': + grouper = QueryAndGroup( + radii[i], + sample_num, + use_xyz=use_xyz, + normalize_xyz=normalize_xyz, + return_grouped_xyz=grouper_return_grouped_xyz, + return_grouped_idx=True) + else: + grouper = QueryAndGroup( + radii[i], + sample_num, + use_xyz=use_xyz, + normalize_xyz=normalize_xyz, + return_grouped_xyz=grouper_return_grouped_xyz, + return_grouped_idx=grouper_return_grouped_idx) + else: + grouper = GroupAll(use_xyz) + self.groupers.append(grouper) + + def _pool_features(self, features): + """Perform feature aggregation using pooling operation. + + Args: + features (torch.Tensor): (B, C, N, K) + Features of locally grouped points before pooling. + + Returns: + torch.Tensor: (B, C, N) + Pooled features aggregating local information. + """ + if self.pool_mode == 'max': + # (B, C, N, 1) + new_features = F.max_pool2d( + features, kernel_size=[1, features.size(3)]) + elif self.pool_mode == 'avg': + # (B, C, N, 1) + new_features = F.avg_pool2d( + features, kernel_size=[1, features.size(3)]) + else: + raise NotImplementedError + + return new_features.squeeze(-1).contiguous() + + def forward(self, points): + """forward. + + Args: + points (Tensor): (B, N, C) input points. + + Returns: + List[Tensor]: (B, N, C1) new points generated from each graph + feature module. + """ + new_points_list = [points] + + for i in range(len(self.groupers)): + + new_points = new_points_list[i] + new_points_trans = new_points.transpose( + 1, 2).contiguous() # (B, C, N) + + if self.knn_modes[i] == 'D-KNN': + # (B, N, C) -> (B, N, K) + idx = self.groupers[i](new_points[..., -3:].contiguous(), + new_points[..., -3:].contiguous())[-1] + + grouped_results = grouping_operation( + new_points_trans, idx) # (B, C, N) -> (B, C, N, K) + grouped_results -= new_points_trans.unsqueeze(-1) + else: + grouped_results = self.groupers[i]( + new_points, new_points) # (B, N, C) -> (B, C, N, K) + + new_points = new_points_trans.unsqueeze(-1).repeat( + 1, 1, 1, grouped_results.shape[-1]) + new_points = torch.cat([grouped_results, new_points], dim=1) + + # (B, mlp[-1], N, K) + new_points = self.mlps[i](new_points) + + # (B, mlp[-1], N) + new_points = self._pool_features(new_points) + new_points = new_points.transpose(1, 2).contiguous() + new_points_list.append(new_points) + + return new_points + + +class DGCNNGFModule(BaseDGCNNGFModule): + """Point graph feature module used in DGCNN. + + Args: + mlp_channels (list[int]): Specify of the dgcnn before + the global pooling for each graph feature module. + num_sample (int, optional): Number of samples in each knn or ball + query. Defaults to None. + knn_mode (str, optional): Type of KNN method, valid mode + ['F-KNN', 'D-KNN']. Defaults to 'F-KNN'. + radius (float, optional): Radius to group with. + Defaults to None. + dilated_group (bool, optional): Whether to use dilated ball query. + Defaults to False. + norm_cfg (dict, optional): Type of normalization method. + Defaults to dict(type='BN2d'). + act_cfg (dict, optional): Type of activation method. + Defaults to dict(type='ReLU'). + use_xyz (bool, optional): Whether to use xyz as point features. + Defaults to True. + pool_mode (str, optional): Type of pooling method. + Defaults to 'max'. + normalize_xyz (bool, optional): If ball query, whether to normalize + local XYZ with radius. Defaults to False. + bias (bool | str, optional): If specified as `auto`, it will be decided + by the norm_cfg. Bias will be set as True if `norm_cfg` is None, + otherwise False. Defaults to 'auto'. + """ + + def __init__(self, + mlp_channels, + num_sample=None, + knn_mode='F-KNN', + radius=None, + dilated_group=False, + norm_cfg=dict(type='BN2d'), + act_cfg=dict(type='ReLU'), + use_xyz=True, + pool_mode='max', + normalize_xyz=False, + bias='auto'): + super(DGCNNGFModule, self).__init__( + mlp_channels=[mlp_channels], + sample_nums=[num_sample], + knn_modes=[knn_mode], + radii=[radius], + use_xyz=use_xyz, + pool_mode=pool_mode, + normalize_xyz=normalize_xyz, + dilated_group=dilated_group) + + for i in range(len(self.mlp_channels)): + mlp_channel = self.mlp_channels[i] + + mlp = nn.Sequential() + for i in range(len(mlp_channel) - 1): + mlp.add_module( + f'layer{i}', + ConvModule( + mlp_channel[i], + mlp_channel[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + conv_cfg=dict(type='Conv2d'), + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=bias)) + self.mlps.append(mlp) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/norm.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/norm.py new file mode 100644 index 000000000..98ec7f117 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/norm.py @@ -0,0 +1,163 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import NORM_LAYERS +from mmcv.runner import force_fp32 +from torch import distributed as dist +from torch import nn as nn +from torch.autograd.function import Function + + +class AllReduce(Function): + + @staticmethod + def forward(ctx, input): + input_list = [ + torch.zeros_like(input) for k in range(dist.get_world_size()) + ] + # Use allgather instead of allreduce in-place operations is unreliable + dist.all_gather(input_list, input, async_op=False) + inputs = torch.stack(input_list, dim=0) + return torch.sum(inputs, dim=0) + + @staticmethod + def backward(ctx, grad_output): + dist.all_reduce(grad_output, async_op=False) + return grad_output + + +@NORM_LAYERS.register_module('naiveSyncBN1d') +class NaiveSyncBatchNorm1d(nn.BatchNorm1d): + """Synchronized Batch Normalization for 3D Tensors. + + Note: + This implementation is modified from + https://github.com/facebookresearch/detectron2/ + + `torch.nn.SyncBatchNorm` has known unknown bugs. + It produces significantly worse AP (and sometimes goes NaN) + when the batch size on each worker is quite different + (e.g., when scale augmentation is used). + In 3D detection, different workers has points of different shapes, + which also cause instability. + + Use this implementation before `nn.SyncBatchNorm` is fixed. + It is slower than `nn.SyncBatchNorm`. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.fp16_enabled = False + + # customized normalization layer still needs this decorator + # to force the input to be fp32 and the output to be fp16 + # TODO: make mmcv fp16 utils handle customized norm layers + @force_fp32(out_fp16=True) + def forward(self, input): + """ + Args: + input (tensor): Has shape (N, C) or (N, C, L), where N is + the batch size, C is the number of features or + channels, and L is the sequence length + + Returns: + tensor: Has shape (N, C) or (N, C, L), has same shape + as input. + """ + assert input.dtype == torch.float32, \ + f'input should be in float32 type, got {input.dtype}' + using_dist = dist.is_available() and dist.is_initialized() + if (not using_dist) or dist.get_world_size() == 1 \ + or not self.training: + return super().forward(input) + assert input.shape[0] > 0, 'SyncBN does not support empty inputs' + is_two_dim = input.dim() == 2 + if is_two_dim: + input = input.unsqueeze(2) + + C = input.shape[1] + mean = torch.mean(input, dim=[0, 2]) + meansqr = torch.mean(input * input, dim=[0, 2]) + + vec = torch.cat([mean, meansqr], dim=0) + vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) + + mean, meansqr = torch.split(vec, C) + var = meansqr - mean * mean + self.running_mean += self.momentum * ( + mean.detach() - self.running_mean) + self.running_var += self.momentum * (var.detach() - self.running_var) + + invstd = torch.rsqrt(var + self.eps) + scale = self.weight * invstd + bias = self.bias - mean * scale + scale = scale.reshape(1, -1, 1) + bias = bias.reshape(1, -1, 1) + output = input * scale + bias + if is_two_dim: + output = output.squeeze(2) + return output + + +@NORM_LAYERS.register_module('naiveSyncBN2d') +class NaiveSyncBatchNorm2d(nn.BatchNorm2d): + """Synchronized Batch Normalization for 4D Tensors. + + Note: + This implementation is modified from + https://github.com/facebookresearch/detectron2/ + + `torch.nn.SyncBatchNorm` has known unknown bugs. + It produces significantly worse AP (and sometimes goes NaN) + when the batch size on each worker is quite different + (e.g., when scale augmentation is used). + This phenomenon also occurs when the multi-modality feature fusion + modules of multi-modality detectors use SyncBN. + + Use this implementation before `nn.SyncBatchNorm` is fixed. + It is slower than `nn.SyncBatchNorm`. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.fp16_enabled = False + + # customized normalization layer still needs this decorator + # to force the input to be fp32 and the output to be fp16 + # TODO: make mmcv fp16 utils handle customized norm layers + @force_fp32(out_fp16=True) + def forward(self, input): + """ + Args: + Input (tensor): Feature has shape (N, C, H, W). + + Returns: + tensor: Has shape (N, C, H, W), same shape as input. + """ + assert input.dtype == torch.float32, \ + f'input should be in float32 type, got {input.dtype}' + using_dist = dist.is_available() and dist.is_initialized() + if (not using_dist) or \ + dist.get_world_size() == 1 or \ + not self.training: + return super().forward(input) + + assert input.shape[0] > 0, 'SyncBN does not support empty inputs' + C = input.shape[1] + mean = torch.mean(input, dim=[0, 2, 3]) + meansqr = torch.mean(input * input, dim=[0, 2, 3]) + + vec = torch.cat([mean, meansqr], dim=0) + vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) + + mean, meansqr = torch.split(vec, C) + var = meansqr - mean * mean + self.running_mean += self.momentum * ( + mean.detach() - self.running_mean) + self.running_var += self.momentum * (var.detach() - self.running_var) + + invstd = torch.rsqrt(var + self.eps) + scale = self.weight * invstd + bias = self.bias - mean * scale + scale = scale.reshape(1, -1, 1, 1) + bias = bias.reshape(1, -1, 1, 1) + return input * scale + bias diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/__init__.py new file mode 100644 index 000000000..d71c7660f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .paconv import PAConv, PAConvCUDA + +__all__ = ['PAConv', 'PAConvCUDA'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/paconv.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/paconv.py new file mode 100644 index 000000000..bda8bfe3a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/paconv.py @@ -0,0 +1,392 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy + +import torch +from mmcv.cnn import (ConvModule, build_activation_layer, build_norm_layer, + constant_init) +from mmcv.ops import assign_score_withk as assign_score_cuda +from torch import nn as nn +from torch.nn import functional as F + +from .utils import assign_kernel_withoutk, assign_score, calc_euclidian_dist + + +class ScoreNet(nn.Module): + r"""ScoreNet that outputs coefficient scores to assemble kernel weights in + the weight bank according to the relative position of point pairs. + + Args: + mlp_channels (List[int]): Hidden unit sizes of SharedMLP layers. + last_bn (bool, optional): Whether to use BN on the last output of mlps. + Defaults to False. + score_norm (str, optional): Normalization function of output scores. + Can be 'softmax', 'sigmoid' or 'identity'. Defaults to 'softmax'. + temp_factor (float, optional): Temperature factor to scale the output + scores before softmax. Defaults to 1.0. + norm_cfg (dict, optional): Type of normalization method. + Defaults to dict(type='BN2d'). + bias (bool | str, optional): If specified as `auto`, it will be decided + by the norm_cfg. Bias will be set as True if `norm_cfg` is None, + otherwise False. Defaults to 'auto'. + + Note: + The official code applies xavier_init to all Conv layers in ScoreNet, + see `PAConv `_. However in our experiments, we + did not find much difference in applying such xavier initialization + or not. So we neglect this initialization in our implementation. + """ + + def __init__(self, + mlp_channels, + last_bn=False, + score_norm='softmax', + temp_factor=1.0, + norm_cfg=dict(type='BN2d'), + bias='auto'): + super(ScoreNet, self).__init__() + + assert score_norm in ['softmax', 'sigmoid', 'identity'], \ + f'unsupported score_norm function {score_norm}' + + self.score_norm = score_norm + self.temp_factor = temp_factor + + self.mlps = nn.Sequential() + for i in range(len(mlp_channels) - 2): + self.mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + conv_cfg=dict(type='Conv2d'), + norm_cfg=norm_cfg, + bias=bias)) + + # for the last mlp that outputs scores, no relu and possibly no bn + i = len(mlp_channels) - 2 + self.mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + conv_cfg=dict(type='Conv2d'), + norm_cfg=norm_cfg if last_bn else None, + act_cfg=None, + bias=bias)) + + def forward(self, xyz_features): + """Forward. + + Args: + xyz_features (torch.Tensor): (B, C, N, K), features constructed + from xyz coordinates of point pairs. May contain relative + positions, Euclidean distance, etc. + + Returns: + torch.Tensor: (B, N, K, M), predicted scores for `M` kernels. + """ + scores = self.mlps(xyz_features) # (B, M, N, K) + + # perform score normalization + if self.score_norm == 'softmax': + scores = F.softmax(scores / self.temp_factor, dim=1) + elif self.score_norm == 'sigmoid': + scores = torch.sigmoid(scores / self.temp_factor) + else: # 'identity' + scores = scores + + scores = scores.permute(0, 2, 3, 1) # (B, N, K, M) + + return scores + + +class PAConv(nn.Module): + """Non-CUDA version of PAConv. + + PAConv stores a trainable weight bank containing several kernel weights. + Given input points and features, it computes coefficient scores to assemble + those kernels to form conv kernels, and then runs convolution on the input. + + Args: + in_channels (int): Input channels of point features. + out_channels (int): Output channels of point features. + num_kernels (int): Number of kernel weights in the weight bank. + norm_cfg (dict, optional): Type of normalization method. + Defaults to dict(type='BN2d', momentum=0.1). + act_cfg (dict, optional): Type of activation method. + Defaults to dict(type='ReLU', inplace=True). + scorenet_input (str, optional): Type of input to ScoreNet. + Can be 'identity', 'w_neighbor' or 'w_neighbor_dist'. + Defaults to 'w_neighbor_dist'. + weight_bank_init (str, optional): Init method of weight bank kernels. + Can be 'kaiming' or 'xavier'. Defaults to 'kaiming'. + kernel_input (str, optional): Input features to be multiplied with + kernel weights. Can be 'identity' or 'w_neighbor'. + Defaults to 'w_neighbor'. + scorenet_cfg (dict, optional): Config of the ScoreNet module, which + may contain the following keys and values: + + - mlp_channels (List[int]): Hidden units of MLPs. + - score_norm (str): Normalization function of output scores. + Can be 'softmax', 'sigmoid' or 'identity'. + - temp_factor (float): Temperature factor to scale the output + scores before softmax. + - last_bn (bool): Whether to use BN on the last output of mlps. + """ + + def __init__(self, + in_channels, + out_channels, + num_kernels, + norm_cfg=dict(type='BN2d', momentum=0.1), + act_cfg=dict(type='ReLU', inplace=True), + scorenet_input='w_neighbor_dist', + weight_bank_init='kaiming', + kernel_input='w_neighbor', + scorenet_cfg=dict( + mlp_channels=[16, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConv, self).__init__() + + # determine weight kernel size according to used features + if kernel_input == 'identity': + # only use grouped_features + kernel_mul = 1 + elif kernel_input == 'w_neighbor': + # concat of (grouped_features - center_features, grouped_features) + kernel_mul = 2 + else: + raise NotImplementedError( + f'unsupported kernel_input {kernel_input}') + self.kernel_input = kernel_input + in_channels = kernel_mul * in_channels + + # determine mlp channels in ScoreNet according to used xyz features + if scorenet_input == 'identity': + # only use relative position (grouped_xyz - center_xyz) + self.scorenet_in_channels = 3 + elif scorenet_input == 'w_neighbor': + # (grouped_xyz - center_xyz, grouped_xyz) + self.scorenet_in_channels = 6 + elif scorenet_input == 'w_neighbor_dist': + # (center_xyz, grouped_xyz - center_xyz, Euclidean distance) + self.scorenet_in_channels = 7 + else: + raise NotImplementedError( + f'unsupported scorenet_input {scorenet_input}') + self.scorenet_input = scorenet_input + + # construct kernel weights in weight bank + # self.weight_bank is of shape [C, num_kernels * out_c] + # where C can be in_c or (2 * in_c) + if weight_bank_init == 'kaiming': + weight_init = nn.init.kaiming_normal_ + elif weight_bank_init == 'xavier': + weight_init = nn.init.xavier_normal_ + else: + raise NotImplementedError( + f'unsupported weight bank init method {weight_bank_init}') + + self.num_kernels = num_kernels # the parameter `m` in the paper + weight_bank = weight_init( + torch.empty(self.num_kernels, in_channels, out_channels)) + weight_bank = weight_bank.permute(1, 0, 2).reshape( + in_channels, self.num_kernels * out_channels).contiguous() + self.weight_bank = nn.Parameter(weight_bank, requires_grad=True) + + # construct ScoreNet + scorenet_cfg_ = copy.deepcopy(scorenet_cfg) + scorenet_cfg_['mlp_channels'].insert(0, self.scorenet_in_channels) + scorenet_cfg_['mlp_channels'].append(self.num_kernels) + self.scorenet = ScoreNet(**scorenet_cfg_) + + self.bn = build_norm_layer(norm_cfg, out_channels)[1] if \ + norm_cfg is not None else None + self.activate = build_activation_layer(act_cfg) if \ + act_cfg is not None else None + + # set some basic attributes of Conv layers + self.in_channels = in_channels + self.out_channels = out_channels + + self.init_weights() + + def init_weights(self): + """Initialize weights of shared MLP layers and BN layers.""" + if self.bn is not None: + constant_init(self.bn, val=1, bias=0) + + def _prepare_scorenet_input(self, points_xyz): + """Prepare input point pairs features for self.ScoreNet. + + Args: + points_xyz (torch.Tensor): (B, 3, npoint, K) + Coordinates of the grouped points. + + Returns: + torch.Tensor: (B, C, npoint, K) + The generated features per point pair. + """ + B, _, npoint, K = points_xyz.size() + center_xyz = points_xyz[..., :1].repeat(1, 1, 1, K) + xyz_diff = points_xyz - center_xyz # [B, 3, npoint, K] + if self.scorenet_input == 'identity': + xyz_features = xyz_diff + elif self.scorenet_input == 'w_neighbor': + xyz_features = torch.cat((xyz_diff, points_xyz), dim=1) + else: # w_neighbor_dist + euclidian_dist = calc_euclidian_dist( + center_xyz.permute(0, 2, 3, 1).reshape(B * npoint * K, 3), + points_xyz.permute(0, 2, 3, 1).reshape(B * npoint * K, 3)).\ + reshape(B, 1, npoint, K) + xyz_features = torch.cat((center_xyz, xyz_diff, euclidian_dist), + dim=1) + return xyz_features + + def forward(self, inputs): + """Forward. + + Args: + inputs (tuple(torch.Tensor)): + + - features (torch.Tensor): (B, in_c, npoint, K) + Features of the queried points. + - points_xyz (torch.Tensor): (B, 3, npoint, K) + Coordinates of the grouped points. + + Returns: + Tuple[torch.Tensor]: + + - new_features: (B, out_c, npoint, K), features after PAConv. + - points_xyz: same as input. + """ + features, points_xyz = inputs + B, _, npoint, K = features.size() + + if self.kernel_input == 'w_neighbor': + center_features = features[..., :1].repeat(1, 1, 1, K) + features_diff = features - center_features + # to (B, 2 * in_c, npoint, K) + features = torch.cat((features_diff, features), dim=1) + + # prepare features for between each point and its grouping center + xyz_features = self._prepare_scorenet_input(points_xyz) + + # scores to assemble kernel weights + scores = self.scorenet(xyz_features) # [B, npoint, K, m] + + # first compute out features over all kernels + # features is [B, C, npoint, K], weight_bank is [C, m * out_c] + new_features = torch.matmul( + features.permute(0, 2, 3, 1), + self.weight_bank).view(B, npoint, K, self.num_kernels, + -1) # [B, npoint, K, m, out_c] + + # then aggregate using scores + new_features = assign_score(scores, new_features) + # to [B, out_c, npoint, K] + new_features = new_features.permute(0, 3, 1, 2).contiguous() + + if self.bn is not None: + new_features = self.bn(new_features) + if self.activate is not None: + new_features = self.activate(new_features) + + # in order to keep input output consistency + # so that we can wrap PAConv in Sequential + return (new_features, points_xyz) + + +class PAConvCUDA(PAConv): + """CUDA version of PAConv that implements a cuda op to efficiently perform + kernel assembling. + + Different from vanilla PAConv, the input features of this function is not + grouped by centers. Instead, they will be queried on-the-fly by the + additional input `points_idx`. This avoids the large intermediate matrix. + See the `paper `_ appendix Sec. D for + more detailed descriptions. + """ + + def __init__(self, + in_channels, + out_channels, + num_kernels, + norm_cfg=dict(type='BN2d', momentum=0.1), + act_cfg=dict(type='ReLU', inplace=True), + scorenet_input='w_neighbor_dist', + weight_bank_init='kaiming', + kernel_input='w_neighbor', + scorenet_cfg=dict( + mlp_channels=[8, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConvCUDA, self).__init__( + in_channels=in_channels, + out_channels=out_channels, + num_kernels=num_kernels, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + scorenet_input=scorenet_input, + weight_bank_init=weight_bank_init, + kernel_input=kernel_input, + scorenet_cfg=scorenet_cfg) + + assert self.kernel_input == 'w_neighbor', \ + 'CUDA implemented PAConv only supports w_neighbor kernel_input' + + def forward(self, inputs): + """Forward. + + Args: + inputs (tuple(torch.Tensor)): + + - features (torch.Tensor): (B, in_c, N) + Features of all points in the current point cloud. + Different from non-CUDA version PAConv, here the features + are not grouped by each center to form a K dim. + - points_xyz (torch.Tensor): (B, 3, npoint, K) + Coordinates of the grouped points. + - points_idx (torch.Tensor): (B, npoint, K) + Index of the grouped points. + + Returns: + Tuple[torch.Tensor]: + + - new_features: (B, out_c, npoint, K), features after PAConv. + - points_xyz: same as input. + - points_idx: same as input. + """ + features, points_xyz, points_idx = inputs + + # prepare features for between each point and its grouping center + xyz_features = self._prepare_scorenet_input(points_xyz) + + # scores to assemble kernel weights + scores = self.scorenet(xyz_features) # [B, npoint, K, m] + + # pre-compute features for points and centers separately + # features is [B, in_c, N], weight_bank is [C, m * out_dim] + point_feat, center_feat = assign_kernel_withoutk( + features, self.weight_bank, self.num_kernels) + + # aggregate features using custom cuda op + new_features = assign_score_cuda( + scores, point_feat, center_feat, points_idx, + 'sum').contiguous() # [B, out_c, npoint, K] + + if self.bn is not None: + new_features = self.bn(new_features) + if self.activate is not None: + new_features = self.activate(new_features) + + # in order to keep input output consistency + return (new_features, points_xyz, points_idx) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/utils.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/utils.py new file mode 100644 index 000000000..68e71d51d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/paconv/utils.py @@ -0,0 +1,87 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + + +def calc_euclidian_dist(xyz1, xyz2): + """Calculate the Euclidean distance between two sets of points. + + Args: + xyz1 (torch.Tensor): (N, 3), the first set of points. + xyz2 (torch.Tensor): (N, 3), the second set of points. + + Returns: + torch.Tensor: (N, ), the Euclidean distance between each point pair. + """ + assert xyz1.shape[0] == xyz2.shape[0], 'number of points are not the same' + assert xyz1.shape[1] == xyz2.shape[1] == 3, \ + 'points coordinates dimension is not 3' + return torch.norm(xyz1 - xyz2, dim=-1) + + +def assign_score(scores, point_features): + """Perform weighted sum to aggregate output features according to scores. + This function is used in non-CUDA version of PAConv. + + Compared to the cuda op assigh_score_withk, this pytorch implementation + pre-computes output features for the neighbors of all centers, and then + performs aggregation. It consumes more GPU memories. + + Args: + scores (torch.Tensor): (B, npoint, K, M), predicted scores to + aggregate weight matrices in the weight bank. + `npoint` is the number of sampled centers. + `K` is the number of queried neighbors. + `M` is the number of weight matrices in the weight bank. + point_features (torch.Tensor): (B, npoint, K, M, out_dim) + Pre-computed point features to be aggregated. + + Returns: + torch.Tensor: (B, npoint, K, out_dim), the aggregated features. + """ + B, npoint, K, M = scores.size() + scores = scores.view(B, npoint, K, 1, M) + output = torch.matmul(scores, point_features).view(B, npoint, K, -1) + return output + + +def assign_kernel_withoutk(features, kernels, M): + """Pre-compute features with weight matrices in weight bank. This function + is used before cuda op assign_score_withk in CUDA version PAConv. + + Args: + features (torch.Tensor): (B, in_dim, N), input features of all points. + `N` is the number of points in current point cloud. + kernels (torch.Tensor): (2 * in_dim, M * out_dim), weight matrices in + the weight bank, transformed from (M, 2 * in_dim, out_dim). + `2 * in_dim` is because the input features are concatenation of + (point_features - center_features, point_features). + M (int): Number of weight matrices in the weight bank. + + Returns: + Tuple[torch.Tensor]: both of shape (B, N, M, out_dim): + + - point_features: Pre-computed features for points. + - center_features: Pre-computed features for centers. + """ + B, in_dim, N = features.size() + feat_trans = features.permute(0, 2, 1) # [B, N, in_dim] + out_feat_half1 = torch.matmul(feat_trans, kernels[:in_dim]).view( + B, N, M, -1) # [B, N, M, out_dim] + out_feat_half2 = torch.matmul(feat_trans, kernels[in_dim:]).view( + B, N, M, -1) # [B, N, M, out_dim] + + # TODO: why this hard-coded if condition? + # when the network input is only xyz without additional features + # xyz will be used as features, so that features.size(1) == 3 % 2 != 0 + # we need to compensate center_features because otherwise + # `point_features - center_features` will result in all zeros? + if features.size(1) % 2 != 0: + out_feat_half_coord = torch.matmul( + feat_trans[:, :, :3], # [B, N, 3] + kernels[in_dim:in_dim + 3]).view(B, N, M, -1) # [B, N, M, out_dim] + else: + out_feat_half_coord = torch.zeros_like(out_feat_half2) + + point_features = out_feat_half1 + out_feat_half2 + center_features = out_feat_half1 + out_feat_half_coord + return point_features, center_features diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/__init__.py new file mode 100644 index 000000000..99b08eb88 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/__init__.py @@ -0,0 +1,12 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import build_sa_module +from .paconv_sa_module import (PAConvCUDASAModule, PAConvCUDASAModuleMSG, + PAConvSAModule, PAConvSAModuleMSG) +from .point_fp_module import PointFPModule +from .point_sa_module import PointSAModule, PointSAModuleMSG + +__all__ = [ + 'build_sa_module', 'PointSAModuleMSG', 'PointSAModule', 'PointFPModule', + 'PAConvSAModule', 'PAConvSAModuleMSG', 'PAConvCUDASAModule', + 'PAConvCUDASAModuleMSG' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/builder.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/builder.py new file mode 100644 index 000000000..6631cb424 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/builder.py @@ -0,0 +1,39 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry + +SA_MODULES = Registry('point_sa_module') + + +def build_sa_module(cfg, *args, **kwargs): + """Build PointNet2 set abstraction (SA) module. + + Args: + cfg (None or dict): The SA module config, which should contain: + - type (str): Module type. + - module args: Args needed to instantiate an SA module. + args (argument list): Arguments passed to the `__init__` + method of the corresponding module. + kwargs (keyword arguments): Keyword arguments passed to the `__init__` + method of the corresponding SA module . + + Returns: + nn.Module: Created SA module. + """ + if cfg is None: + cfg_ = dict(type='PointSAModule') + else: + if not isinstance(cfg, dict): + raise TypeError('cfg must be a dict') + if 'type' not in cfg: + raise KeyError('the cfg dict must contain the key "type"') + cfg_ = cfg.copy() + + module_type = cfg_.pop('type') + if module_type not in SA_MODULES: + raise KeyError(f'Unrecognized module type {module_type}') + else: + sa_module = SA_MODULES.get(module_type) + + module = sa_module(*args, **kwargs, **cfg_) + + return module diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/paconv_sa_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/paconv_sa_module.py new file mode 100644 index 000000000..361ecbb21 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/paconv_sa_module.py @@ -0,0 +1,342 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn as nn + +from mmdet3d.ops import PAConv, PAConvCUDA +from .builder import SA_MODULES +from .point_sa_module import BasePointSAModule + + +@SA_MODULES.register_module() +class PAConvSAModuleMSG(BasePointSAModule): + r"""Point set abstraction module with multi-scale grouping (MSG) used in + PAConv networks. + + Replace the MLPs in `PointSAModuleMSG` with PAConv layers. + See the `paper `_ for more details. + + Args: + paconv_num_kernels (list[list[int]]): Number of kernel weights in the + weight banks of each layer's PAConv. + paconv_kernel_input (str, optional): Input features to be multiplied + with kernel weights. Can be 'identity' or 'w_neighbor'. + Defaults to 'w_neighbor'. + scorenet_input (str, optional): Type of the input to ScoreNet. + Defaults to 'w_neighbor_dist'. Can be the following values: + + - 'identity': Use xyz coordinates as input. + - 'w_neighbor': Use xyz coordinates and the difference with center + points as input. + - 'w_neighbor_dist': Use xyz coordinates, the difference with + center points and the Euclidean distance as input. + + scorenet_cfg (dict, optional): Config of the ScoreNet module, which + may contain the following keys and values: + + - mlp_channels (List[int]): Hidden units of MLPs. + - score_norm (str): Normalization function of output scores. + Can be 'softmax', 'sigmoid' or 'identity'. + - temp_factor (float): Temperature factor to scale the output + scores before softmax. + - last_bn (bool): Whether to use BN on the last output of mlps. + """ + + def __init__(self, + num_point, + radii, + sample_nums, + mlp_channels, + paconv_num_kernels, + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + dilated_group=False, + norm_cfg=dict(type='BN2d', momentum=0.1), + use_xyz=True, + pool_mod='max', + normalize_xyz=False, + bias='auto', + paconv_kernel_input='w_neighbor', + scorenet_input='w_neighbor_dist', + scorenet_cfg=dict( + mlp_channels=[16, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConvSAModuleMSG, self).__init__( + num_point=num_point, + radii=radii, + sample_nums=sample_nums, + mlp_channels=mlp_channels, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + dilated_group=dilated_group, + use_xyz=use_xyz, + pool_mod=pool_mod, + normalize_xyz=normalize_xyz, + grouper_return_grouped_xyz=True) + + assert len(paconv_num_kernels) == len(mlp_channels) + for i in range(len(mlp_channels)): + assert len(paconv_num_kernels[i]) == len(mlp_channels[i]) - 1, \ + 'PAConv number of kernel weights wrong' + + # in PAConv, bias only exists in ScoreNet + scorenet_cfg['bias'] = bias + + for i in range(len(self.mlp_channels)): + mlp_channel = self.mlp_channels[i] + if use_xyz: + mlp_channel[0] += 3 + + num_kernels = paconv_num_kernels[i] + + mlp = nn.Sequential() + for i in range(len(mlp_channel) - 1): + mlp.add_module( + f'layer{i}', + PAConv( + mlp_channel[i], + mlp_channel[i + 1], + num_kernels[i], + norm_cfg=norm_cfg, + kernel_input=paconv_kernel_input, + scorenet_input=scorenet_input, + scorenet_cfg=scorenet_cfg)) + self.mlps.append(mlp) + + +@SA_MODULES.register_module() +class PAConvSAModule(PAConvSAModuleMSG): + r"""Point set abstraction module with single-scale grouping (SSG) used in + PAConv networks. + + Replace the MLPs in `PointSAModule` with PAConv layers. See the `paper + `_ for more details. + """ + + def __init__(self, + mlp_channels, + paconv_num_kernels, + num_point=None, + radius=None, + num_sample=None, + norm_cfg=dict(type='BN2d', momentum=0.1), + use_xyz=True, + pool_mod='max', + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + normalize_xyz=False, + paconv_kernel_input='w_neighbor', + scorenet_input='w_neighbor_dist', + scorenet_cfg=dict( + mlp_channels=[16, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConvSAModule, self).__init__( + mlp_channels=[mlp_channels], + paconv_num_kernels=[paconv_num_kernels], + num_point=num_point, + radii=[radius], + sample_nums=[num_sample], + norm_cfg=norm_cfg, + use_xyz=use_xyz, + pool_mod=pool_mod, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + normalize_xyz=normalize_xyz, + paconv_kernel_input=paconv_kernel_input, + scorenet_input=scorenet_input, + scorenet_cfg=scorenet_cfg) + + +@SA_MODULES.register_module() +class PAConvCUDASAModuleMSG(BasePointSAModule): + r"""Point set abstraction module with multi-scale grouping (MSG) used in + PAConv networks. + + Replace the non CUDA version PAConv with CUDA implemented PAConv for + efficient computation. See the `paper `_ + for more details. + """ + + def __init__(self, + num_point, + radii, + sample_nums, + mlp_channels, + paconv_num_kernels, + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + dilated_group=False, + norm_cfg=dict(type='BN2d', momentum=0.1), + use_xyz=True, + pool_mod='max', + normalize_xyz=False, + bias='auto', + paconv_kernel_input='w_neighbor', + scorenet_input='w_neighbor_dist', + scorenet_cfg=dict( + mlp_channels=[8, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConvCUDASAModuleMSG, self).__init__( + num_point=num_point, + radii=radii, + sample_nums=sample_nums, + mlp_channels=mlp_channels, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + dilated_group=dilated_group, + use_xyz=use_xyz, + pool_mod=pool_mod, + normalize_xyz=normalize_xyz, + grouper_return_grouped_xyz=True, + grouper_return_grouped_idx=True) + + assert len(paconv_num_kernels) == len(mlp_channels) + for i in range(len(mlp_channels)): + assert len(paconv_num_kernels[i]) == len(mlp_channels[i]) - 1, \ + 'PAConv number of kernel weights wrong' + + # in PAConv, bias only exists in ScoreNet + scorenet_cfg['bias'] = bias + + # we need to manually concat xyz for CUDA implemented PAConv + self.use_xyz = use_xyz + + for i in range(len(self.mlp_channels)): + mlp_channel = self.mlp_channels[i] + if use_xyz: + mlp_channel[0] += 3 + + num_kernels = paconv_num_kernels[i] + + # can't use `nn.Sequential` for PAConvCUDA because its input and + # output have different shapes + mlp = nn.ModuleList() + for i in range(len(mlp_channel) - 1): + mlp.append( + PAConvCUDA( + mlp_channel[i], + mlp_channel[i + 1], + num_kernels[i], + norm_cfg=norm_cfg, + kernel_input=paconv_kernel_input, + scorenet_input=scorenet_input, + scorenet_cfg=scorenet_cfg)) + self.mlps.append(mlp) + + def forward( + self, + points_xyz, + features=None, + indices=None, + target_xyz=None, + ): + """forward. + + Args: + points_xyz (Tensor): (B, N, 3) xyz coordinates of the features. + features (Tensor, optional): (B, C, N) features of each point. + Default: None. + indices (Tensor, optional): (B, num_point) Index of the features. + Default: None. + target_xyz (Tensor, optional): (B, M, 3) new coords of the outputs. + Default: None. + + Returns: + Tensor: (B, M, 3) where M is the number of points. + New features xyz. + Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number + of points. New feature descriptors. + Tensor: (B, M) where M is the number of points. + Index of the features. + """ + new_features_list = [] + + # sample points, (B, num_point, 3), (B, num_point) + new_xyz, indices = self._sample_points(points_xyz, features, indices, + target_xyz) + + for i in range(len(self.groupers)): + xyz = points_xyz + new_features = features + for j in range(len(self.mlps[i])): + # we don't use grouped_features here to avoid large GPU memory + # _, (B, 3, num_point, nsample), (B, num_point, nsample) + _, grouped_xyz, grouped_idx = self.groupers[i](xyz, new_xyz, + new_features) + + # concat xyz as additional features + if self.use_xyz and j == 0: + # (B, C+3, N) + new_features = torch.cat( + (points_xyz.permute(0, 2, 1), new_features), dim=1) + + # (B, out_c, num_point, nsample) + grouped_new_features = self.mlps[i][j]( + (new_features, grouped_xyz, grouped_idx.long()))[0] + + # different from PointNet++ and non CUDA version of PAConv + # CUDA version of PAConv needs to aggregate local features + # every time after it passes through a Conv layer + # in order to transform to valid input shape + # (B, out_c, num_point) + new_features = self._pool_features(grouped_new_features) + + # constrain the points to be grouped for next PAConv layer + # because new_features only contains sampled centers now + # (B, num_point, 3) + xyz = new_xyz + + new_features_list.append(new_features) + + return new_xyz, torch.cat(new_features_list, dim=1), indices + + +@SA_MODULES.register_module() +class PAConvCUDASAModule(PAConvCUDASAModuleMSG): + r"""Point set abstraction module with single-scale grouping (SSG) used in + PAConv networks. + + Replace the non CUDA version PAConv with CUDA implemented PAConv for + efficient computation. See the `paper `_ + for more details. + """ + + def __init__(self, + mlp_channels, + paconv_num_kernels, + num_point=None, + radius=None, + num_sample=None, + norm_cfg=dict(type='BN2d', momentum=0.1), + use_xyz=True, + pool_mod='max', + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + normalize_xyz=False, + paconv_kernel_input='w_neighbor', + scorenet_input='w_neighbor_dist', + scorenet_cfg=dict( + mlp_channels=[8, 16, 16], + score_norm='softmax', + temp_factor=1.0, + last_bn=False)): + super(PAConvCUDASAModule, self).__init__( + mlp_channels=[mlp_channels], + paconv_num_kernels=[paconv_num_kernels], + num_point=num_point, + radii=[radius], + sample_nums=[num_sample], + norm_cfg=norm_cfg, + use_xyz=use_xyz, + pool_mod=pool_mod, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + normalize_xyz=normalize_xyz, + paconv_kernel_input=paconv_kernel_input, + scorenet_input=scorenet_input, + scorenet_cfg=scorenet_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_fp_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_fp_module.py new file mode 100644 index 000000000..1bc833e0e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_fp_module.py @@ -0,0 +1,79 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from typing import List + +import torch +from mmcv.cnn import ConvModule +from mmcv.ops import three_interpolate, three_nn +from mmcv.runner import BaseModule, force_fp32 +from torch import nn as nn + + +class PointFPModule(BaseModule): + """Point feature propagation module used in PointNets. + + Propagate the features from one set to another. + + Args: + mlp_channels (list[int]): List of mlp channels. + norm_cfg (dict, optional): Type of normalization method. + Default: dict(type='BN2d'). + """ + + def __init__(self, + mlp_channels: List[int], + norm_cfg: dict = dict(type='BN2d'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.fp16_enabled = False + self.mlps = nn.Sequential() + for i in range(len(mlp_channels) - 1): + self.mlps.add_module( + f'layer{i}', + ConvModule( + mlp_channels[i], + mlp_channels[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + conv_cfg=dict(type='Conv2d'), + norm_cfg=norm_cfg)) + + @force_fp32() + def forward(self, target: torch.Tensor, source: torch.Tensor, + target_feats: torch.Tensor, + source_feats: torch.Tensor) -> torch.Tensor: + """forward. + + Args: + target (Tensor): (B, n, 3) tensor of the xyz positions of + the target features. + source (Tensor): (B, m, 3) tensor of the xyz positions of + the source features. + target_feats (Tensor): (B, C1, n) tensor of the features to be + propagated to. + source_feats (Tensor): (B, C2, m) tensor of features + to be propagated. + + Return: + Tensor: (B, M, N) M = mlp[-1], tensor of the target features. + """ + if source is not None: + dist, idx = three_nn(target, source) + dist_reciprocal = 1.0 / (dist + 1e-8) + norm = torch.sum(dist_reciprocal, dim=2, keepdim=True) + weight = dist_reciprocal / norm + + interpolated_feats = three_interpolate(source_feats, idx, weight) + else: + interpolated_feats = source_feats.expand(*source_feats.size()[0:2], + target.size(1)) + + if target_feats is not None: + new_features = torch.cat([interpolated_feats, target_feats], + dim=1) # (B, C2 + C1, n) + else: + new_features = interpolated_feats + + new_features = new_features.unsqueeze(-1) + new_features = self.mlps(new_features) + + return new_features.squeeze(-1) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_sa_module.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_sa_module.py new file mode 100644 index 000000000..e33377fc6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/pointnet_modules/point_sa_module.py @@ -0,0 +1,352 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule +from mmcv.ops import GroupAll +from mmcv.ops import PointsSampler as Points_Sampler +from mmcv.ops import QueryAndGroup, gather_points +from torch import nn as nn +from torch.nn import functional as F + +from mmdet3d.ops import PAConv +from .builder import SA_MODULES + + +class BasePointSAModule(nn.Module): + """Base module for point set abstraction module used in PointNets. + + Args: + num_point (int): Number of points. + radii (list[float]): List of radius in each ball query. + sample_nums (list[int]): Number of samples in each ball query. + mlp_channels (list[list[int]]): Specify of the pointnet before + the global pooling for each scale. + fps_mod (list[str], optional): Type of FPS method, valid mod + ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS']. + F-FPS: using feature distances for FPS. + D-FPS: using Euclidean distances of points for FPS. + FS: using F-FPS and D-FPS simultaneously. + fps_sample_range_list (list[int], optional): + Range of points to apply FPS. Default: [-1]. + dilated_group (bool, optional): Whether to use dilated ball query. + Default: False. + use_xyz (bool, optional): Whether to use xyz. + Default: True. + pool_mod (str, optional): Type of pooling method. + Default: 'max_pool'. + normalize_xyz (bool, optional): Whether to normalize local XYZ + with radius. Default: False. + grouper_return_grouped_xyz (bool, optional): Whether to return + grouped xyz in `QueryAndGroup`. Defaults to False. + grouper_return_grouped_idx (bool, optional): Whether to return + grouped idx in `QueryAndGroup`. Defaults to False. + """ + + def __init__(self, + num_point, + radii, + sample_nums, + mlp_channels, + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + dilated_group=False, + use_xyz=True, + pool_mod='max', + normalize_xyz=False, + grouper_return_grouped_xyz=False, + grouper_return_grouped_idx=False): + super(BasePointSAModule, self).__init__() + + assert len(radii) == len(sample_nums) == len(mlp_channels) + assert pool_mod in ['max', 'avg'] + assert isinstance(fps_mod, list) or isinstance(fps_mod, tuple) + assert isinstance(fps_sample_range_list, list) or isinstance( + fps_sample_range_list, tuple) + assert len(fps_mod) == len(fps_sample_range_list) + + if isinstance(mlp_channels, tuple): + mlp_channels = list(map(list, mlp_channels)) + self.mlp_channels = mlp_channels + + if isinstance(num_point, int): + self.num_point = [num_point] + elif isinstance(num_point, list) or isinstance(num_point, tuple): + self.num_point = num_point + elif num_point is None: + self.num_point = None + else: + raise NotImplementedError('Error type of num_point!') + + self.pool_mod = pool_mod + self.groupers = nn.ModuleList() + self.mlps = nn.ModuleList() + self.fps_mod_list = fps_mod + self.fps_sample_range_list = fps_sample_range_list + + if self.num_point is not None: + self.points_sampler = Points_Sampler(self.num_point, + self.fps_mod_list, + self.fps_sample_range_list) + else: + self.points_sampler = None + + for i in range(len(radii)): + radius = radii[i] + sample_num = sample_nums[i] + if num_point is not None: + if dilated_group and i != 0: + min_radius = radii[i - 1] + else: + min_radius = 0 + grouper = QueryAndGroup( + radius, + sample_num, + min_radius=min_radius, + use_xyz=use_xyz, + normalize_xyz=normalize_xyz, + return_grouped_xyz=grouper_return_grouped_xyz, + return_grouped_idx=grouper_return_grouped_idx) + else: + grouper = GroupAll(use_xyz) + self.groupers.append(grouper) + + def _sample_points(self, points_xyz, features, indices, target_xyz): + """Perform point sampling based on inputs. + + If `indices` is specified, directly sample corresponding points. + Else if `target_xyz` is specified, use is as sampled points. + Otherwise sample points using `self.points_sampler`. + + Args: + points_xyz (Tensor): (B, N, 3) xyz coordinates of the features. + features (Tensor): (B, C, N) features of each point. + indices (Tensor): (B, num_point) Index of the features. + target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs. + + Returns: + Tensor: (B, num_point, 3) sampled xyz coordinates of points. + Tensor: (B, num_point) sampled points' index. + """ + xyz_flipped = points_xyz.transpose(1, 2).contiguous() + if indices is not None: + assert (indices.shape[1] == self.num_point[0]) + new_xyz = gather_points(xyz_flipped, indices).transpose( + 1, 2).contiguous() if self.num_point is not None else None + elif target_xyz is not None: + new_xyz = target_xyz.contiguous() + else: + if self.num_point is not None: + indices = self.points_sampler(points_xyz, features) + new_xyz = gather_points(xyz_flipped, + indices).transpose(1, 2).contiguous() + else: + new_xyz = None + + return new_xyz, indices + + def _pool_features(self, features): + """Perform feature aggregation using pooling operation. + + Args: + features (torch.Tensor): (B, C, N, K) + Features of locally grouped points before pooling. + + Returns: + torch.Tensor: (B, C, N) + Pooled features aggregating local information. + """ + if self.pool_mod == 'max': + # (B, C, N, 1) + new_features = F.max_pool2d( + features, kernel_size=[1, features.size(3)]) + elif self.pool_mod == 'avg': + # (B, C, N, 1) + new_features = F.avg_pool2d( + features, kernel_size=[1, features.size(3)]) + else: + raise NotImplementedError + + return new_features.squeeze(-1).contiguous() + + def forward( + self, + points_xyz, + features=None, + indices=None, + target_xyz=None, + ): + """forward. + + Args: + points_xyz (Tensor): (B, N, 3) xyz coordinates of the features. + features (Tensor, optional): (B, C, N) features of each point. + Default: None. + indices (Tensor, optional): (B, num_point) Index of the features. + Default: None. + target_xyz (Tensor, optional): (B, M, 3) new coords of the outputs. + Default: None. + + Returns: + Tensor: (B, M, 3) where M is the number of points. + New features xyz. + Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number + of points. New feature descriptors. + Tensor: (B, M) where M is the number of points. + Index of the features. + """ + new_features_list = [] + + # sample points, (B, num_point, 3), (B, num_point) + new_xyz, indices = self._sample_points(points_xyz, features, indices, + target_xyz) + + for i in range(len(self.groupers)): + # grouped_results may contain: + # - grouped_features: (B, C, num_point, nsample) + # - grouped_xyz: (B, 3, num_point, nsample) + # - grouped_idx: (B, num_point, nsample) + grouped_results = self.groupers[i](points_xyz, new_xyz, features) + + # (B, mlp[-1], num_point, nsample) + new_features = self.mlps[i](grouped_results) + + # this is a bit hack because PAConv outputs two values + # we take the first one as feature + if isinstance(self.mlps[i][0], PAConv): + assert isinstance(new_features, tuple) + new_features = new_features[0] + + # (B, mlp[-1], num_point) + new_features = self._pool_features(new_features) + new_features_list.append(new_features) + + return new_xyz, torch.cat(new_features_list, dim=1), indices + + +@SA_MODULES.register_module() +class PointSAModuleMSG(BasePointSAModule): + """Point set abstraction module with multi-scale grouping (MSG) used in + PointNets. + + Args: + num_point (int): Number of points. + radii (list[float]): List of radius in each ball query. + sample_nums (list[int]): Number of samples in each ball query. + mlp_channels (list[list[int]]): Specify of the pointnet before + the global pooling for each scale. + fps_mod (list[str], optional): Type of FPS method, valid mod + ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS']. + F-FPS: using feature distances for FPS. + D-FPS: using Euclidean distances of points for FPS. + FS: using F-FPS and D-FPS simultaneously. + fps_sample_range_list (list[int], optional): Range of points to + apply FPS. Default: [-1]. + dilated_group (bool, optional): Whether to use dilated ball query. + Default: False. + norm_cfg (dict, optional): Type of normalization method. + Default: dict(type='BN2d'). + use_xyz (bool, optional): Whether to use xyz. + Default: True. + pool_mod (str, optional): Type of pooling method. + Default: 'max_pool'. + normalize_xyz (bool, optional): Whether to normalize local XYZ + with radius. Default: False. + bias (bool | str, optional): If specified as `auto`, it will be + decided by `norm_cfg`. `bias` will be set as True if + `norm_cfg` is None, otherwise False. Default: 'auto'. + """ + + def __init__(self, + num_point, + radii, + sample_nums, + mlp_channels, + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + dilated_group=False, + norm_cfg=dict(type='BN2d'), + use_xyz=True, + pool_mod='max', + normalize_xyz=False, + bias='auto'): + super(PointSAModuleMSG, self).__init__( + num_point=num_point, + radii=radii, + sample_nums=sample_nums, + mlp_channels=mlp_channels, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + dilated_group=dilated_group, + use_xyz=use_xyz, + pool_mod=pool_mod, + normalize_xyz=normalize_xyz) + + for i in range(len(self.mlp_channels)): + mlp_channel = self.mlp_channels[i] + if use_xyz: + mlp_channel[0] += 3 + + mlp = nn.Sequential() + for i in range(len(mlp_channel) - 1): + mlp.add_module( + f'layer{i}', + ConvModule( + mlp_channel[i], + mlp_channel[i + 1], + kernel_size=(1, 1), + stride=(1, 1), + conv_cfg=dict(type='Conv2d'), + norm_cfg=norm_cfg, + bias=bias)) + self.mlps.append(mlp) + + +@SA_MODULES.register_module() +class PointSAModule(PointSAModuleMSG): + """Point set abstraction module with single-scale grouping (SSG) used in + PointNets. + + Args: + mlp_channels (list[int]): Specify of the pointnet before + the global pooling for each scale. + num_point (int, optional): Number of points. + Default: None. + radius (float, optional): Radius to group with. + Default: None. + num_sample (int, optional): Number of samples in each ball query. + Default: None. + norm_cfg (dict, optional): Type of normalization method. + Default: dict(type='BN2d'). + use_xyz (bool, optional): Whether to use xyz. + Default: True. + pool_mod (str, optional): Type of pooling method. + Default: 'max_pool'. + fps_mod (list[str], optional): Type of FPS method, valid mod + ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS']. + fps_sample_range_list (list[int], optional): Range of points + to apply FPS. Default: [-1]. + normalize_xyz (bool, optional): Whether to normalize local XYZ + with radius. Default: False. + """ + + def __init__(self, + mlp_channels, + num_point=None, + radius=None, + num_sample=None, + norm_cfg=dict(type='BN2d'), + use_xyz=True, + pool_mod='max', + fps_mod=['D-FPS'], + fps_sample_range_list=[-1], + normalize_xyz=False): + super(PointSAModule, self).__init__( + mlp_channels=[mlp_channels], + num_point=num_point, + radii=[radius], + sample_nums=[num_sample], + norm_cfg=norm_cfg, + use_xyz=use_xyz, + pool_mod=pool_mod, + fps_mod=fps_mod, + fps_sample_range_list=fps_sample_range_list, + normalize_xyz=normalize_xyz) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/sparse_block.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/sparse_block.py new file mode 100644 index 000000000..03b18e2e9 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/sparse_block.py @@ -0,0 +1,199 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import build_conv_layer, build_norm_layer +from torch import nn + +from mmdet.models.backbones.resnet import BasicBlock, Bottleneck +from .spconv import IS_SPCONV2_AVAILABLE + +if IS_SPCONV2_AVAILABLE: + from spconv.pytorch import SparseModule, SparseSequential +else: + from mmcv.ops import SparseModule, SparseSequential + + +def replace_feature(out, new_features): + if 'replace_feature' in out.__dir__(): + # spconv 2.x behaviour + return out.replace_feature(new_features) + else: + out.features = new_features + return out + + +class SparseBottleneck(Bottleneck, SparseModule): + """Sparse bottleneck block for PartA^2. + + Bottleneck block implemented with submanifold sparse convolution. + + Args: + inplanes (int): inplanes of block. + planes (int): planes of block. + stride (int, optional): stride of the first block. Default: 1. + downsample (Module, optional): down sample module for block. + conv_cfg (dict, optional): dictionary to construct and config conv + layer. Default: None. + norm_cfg (dict, optional): dictionary to construct and config norm + layer. Default: dict(type='BN'). + """ + + expansion = 4 + + def __init__(self, + inplanes, + planes, + stride=1, + downsample=None, + conv_cfg=None, + norm_cfg=None): + + SparseModule.__init__(self) + Bottleneck.__init__( + self, + inplanes, + planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg) + + def forward(self, x): + identity = x.features + + out = self.conv1(x) + out = replace_feature(out, self.bn1(out.features)) + out = replace_feature(out, self.relu(out.features)) + + out = self.conv2(out) + out = replace_feature(out, self.bn2(out.features)) + out = replace_feature(out, self.relu(out.features)) + + out = self.conv3(out) + out = replace_feature(out, self.bn3(out.features)) + + if self.downsample is not None: + identity = self.downsample(x) + + out = replace_feature(out, out.features + identity) + out = replace_feature(out, self.relu(out.features)) + + return out + + +class SparseBasicBlock(BasicBlock, SparseModule): + """Sparse basic block for PartA^2. + + Sparse basic block implemented with submanifold sparse convolution. + + Args: + inplanes (int): inplanes of block. + planes (int): planes of block. + stride (int, optional): stride of the first block. Default: 1. + downsample (Module, optional): down sample module for block. + conv_cfg (dict, optional): dictionary to construct and config conv + layer. Default: None. + norm_cfg (dict, optional): dictionary to construct and config norm + layer. Default: dict(type='BN'). + """ + + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + downsample=None, + conv_cfg=None, + norm_cfg=None): + SparseModule.__init__(self) + BasicBlock.__init__( + self, + inplanes, + planes, + stride=stride, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg) + + def forward(self, x): + identity = x.features + + assert x.features.dim() == 2, f'x.features.dim()={x.features.dim()}' + out = self.conv1(x) + out = replace_feature(out, self.norm1(out.features)) + out = replace_feature(out, self.relu(out.features)) + + out = self.conv2(out) + out = replace_feature(out, self.norm2(out.features)) + + if self.downsample is not None: + identity = self.downsample(x) + + out = replace_feature(out, out.features + identity) + out = replace_feature(out, self.relu(out.features)) + + return out + + +def make_sparse_convmodule(in_channels, + out_channels, + kernel_size, + indice_key, + stride=1, + padding=0, + conv_type='SubMConv3d', + norm_cfg=None, + order=('conv', 'norm', 'act')): + """Make sparse convolution module. + + Args: + in_channels (int): the number of input channels + out_channels (int): the number of out channels + kernel_size (int|tuple(int)): kernel size of convolution + indice_key (str): the indice key used for sparse tensor + stride (int|tuple(int)): the stride of convolution + padding (int or list[int]): the padding number of input + conv_type (str): sparse conv type in spconv + norm_cfg (dict[str]): config of normalization layer + order (tuple[str]): The order of conv/norm/activation layers. It is a + sequence of "conv", "norm" and "act". Common examples are + ("conv", "norm", "act") and ("act", "conv", "norm"). + + Returns: + spconv.SparseSequential: sparse convolution module. + """ + assert isinstance(order, tuple) and len(order) <= 3 + assert set(order) | {'conv', 'norm', 'act'} == {'conv', 'norm', 'act'} + + conv_cfg = dict(type=conv_type, indice_key=indice_key) + + layers = list() + for layer in order: + if layer == 'conv': + if conv_type not in [ + 'SparseInverseConv3d', 'SparseInverseConv2d', + 'SparseInverseConv1d' + ]: + layers.append( + build_conv_layer( + conv_cfg, + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=padding, + bias=False)) + else: + layers.append( + build_conv_layer( + conv_cfg, + in_channels, + out_channels, + kernel_size, + bias=False)) + elif layer == 'norm': + layers.append(build_norm_layer(norm_cfg, out_channels)[1]) + elif layer == 'act': + layers.append(nn.ReLU(inplace=True)) + + layers = SparseSequential(*layers) + return layers diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/__init__.py new file mode 100644 index 000000000..561e50244 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .overwrite_spconv.write_spconv2 import register_spconv2 + +try: + import spconv +except ImportError: + IS_SPCONV2_AVAILABLE = False +else: + if hasattr(spconv, '__version__') and spconv.__version__ >= '2.0.0': + IS_SPCONV2_AVAILABLE = register_spconv2() + else: + IS_SPCONV2_AVAILABLE = False + +__all__ = ['IS_SPCONV2_AVAILABLE'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/__init__.py new file mode 100644 index 000000000..2e93d9cab --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .write_spconv2 import register_spconv2 + +__all__ = ['register_spconv2'] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/write_spconv2.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/write_spconv2.py new file mode 100644 index 000000000..237051ebc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/ops/spconv/overwrite_spconv/write_spconv2.py @@ -0,0 +1,118 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import itertools + +from mmcv.cnn.bricks.registry import CONV_LAYERS +from torch.nn.parameter import Parameter + + +def register_spconv2(): + """This func registers spconv2.0 spconv ops to overwrite the default mmcv + spconv ops.""" + try: + from spconv.pytorch import (SparseConv2d, SparseConv3d, SparseConv4d, + SparseConvTranspose2d, + SparseConvTranspose3d, SparseInverseConv2d, + SparseInverseConv3d, SparseModule, + SubMConv2d, SubMConv3d, SubMConv4d) + except ImportError: + return False + else: + CONV_LAYERS._register_module(SparseConv2d, 'SparseConv2d', force=True) + CONV_LAYERS._register_module(SparseConv3d, 'SparseConv3d', force=True) + CONV_LAYERS._register_module(SparseConv4d, 'SparseConv4d', force=True) + + CONV_LAYERS._register_module( + SparseConvTranspose2d, 'SparseConvTranspose2d', force=True) + CONV_LAYERS._register_module( + SparseConvTranspose3d, 'SparseConvTranspose3d', force=True) + + CONV_LAYERS._register_module( + SparseInverseConv2d, 'SparseInverseConv2d', force=True) + CONV_LAYERS._register_module( + SparseInverseConv3d, 'SparseInverseConv3d', force=True) + + CONV_LAYERS._register_module(SubMConv2d, 'SubMConv2d', force=True) + CONV_LAYERS._register_module(SubMConv3d, 'SubMConv3d', force=True) + CONV_LAYERS._register_module(SubMConv4d, 'SubMConv4d', force=True) + SparseModule._load_from_state_dict = _load_from_state_dict + SparseModule._save_to_state_dict = _save_to_state_dict + return True + + +def _save_to_state_dict(self, destination, prefix, keep_vars): + """Rewrite this func to compat the convolutional kernel weights between + spconv 1.x in MMCV and 2.x in spconv2.x. + + Kernel weights in MMCV spconv has shape in (D,H,W,in_channel,out_channel) , + while those in spcon2.x is in (out_channel,D,H,W,in_channel). + """ + for name, param in self._parameters.items(): + if param is not None: + param = param if keep_vars else param.detach() + if name == 'weight': + dims = list(range(1, len(param.shape))) + [0] + param = param.permute(*dims) + destination[prefix + name] = param + for name, buf in self._buffers.items(): + if buf is not None and name not in self._non_persistent_buffers_set: + destination[prefix + name] = buf if keep_vars else buf.detach() + + +def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + """Rewrite this func to compat the convolutional kernel weights between + spconv 1.x in MMCV and 2.x in spconv2.x. + + Kernel weights in MMCV spconv has shape in (D,H,W,in_channel,out_channel) , + while those in spcon2.x is in (out_channel,D,H,W,in_channel). + """ + for hook in self._load_state_dict_pre_hooks.values(): + hook(state_dict, prefix, local_metadata, strict, missing_keys, + unexpected_keys, error_msgs) + + local_name_params = itertools.chain(self._parameters.items(), + self._buffers.items()) + local_state = {k: v.data for k, v in local_name_params if v is not None} + + for name, param in local_state.items(): + key = prefix + name + if key in state_dict: + input_param = state_dict[key] + + # Backward compatibility: loading 1-dim tensor from + # 0.3.* to version 0.4+ + if len(param.shape) == 0 and len(input_param.shape) == 1: + input_param = input_param[0] + dims = [len(input_param.shape) - 1] + list( + range(len(input_param.shape) - 1)) + input_param = input_param.permute(*dims) + if input_param.shape != param.shape: + # local shape should match the one in checkpoint + error_msgs.append( + f'size mismatch for {key}: copying a param with ' + f'shape {key, input_param.shape} from checkpoint,' + f'the shape in current model is {param.shape}.') + continue + + if isinstance(input_param, Parameter): + # backwards compatibility for serialized parameters + input_param = input_param.data + try: + param.copy_(input_param) + except Exception: + error_msgs.append( + f'While copying the parameter named "{key}", whose ' + f'dimensions in the model are {param.size()} and whose ' + f'dimensions in the checkpoint are {input_param.size()}.') + elif strict: + missing_keys.append(key) + + if strict: + for key, input_param in state_dict.items(): + if key.startswith(prefix): + input_name = key[len(prefix):] + input_name = input_name.split( + '.', 1)[0] # get the name of param/buffer/child + if input_name not in self._modules \ + and input_name not in local_state: + unexpected_keys.append(key) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/__init__.py new file mode 100644 index 000000000..ad5996187 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/__init__.py @@ -0,0 +1,14 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry, build_from_cfg, print_log + +from .collect_env import collect_env +from .compat_cfg import compat_cfg +from .logger import get_root_logger +from .misc import find_latest_checkpoint +from .setup_env import setup_multi_processes + +__all__ = [ + 'Registry', 'build_from_cfg', 'get_root_logger', 'collect_env', + 'print_log', 'setup_multi_processes', 'find_latest_checkpoint', + 'compat_cfg' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/collect_env.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/collect_env.py new file mode 100644 index 000000000..c10d01a06 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/collect_env.py @@ -0,0 +1,25 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +from mmcv.utils import collect_env as collect_base_env +from mmcv.utils import get_git_hash + +import mmdet +import mmdet3d +import mmseg +# from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE + + +def collect_env(): + """Collect the information of the running environments.""" + env_info = collect_base_env() + env_info['MMDetection'] = mmdet.__version__ + env_info['MMSegmentation'] = mmseg.__version__ + env_info['MMDetection3D'] = mmdet3d.__version__ + '+' + get_git_hash()[:7] + # env_info['spconv2.0'] = IS_SPCONV2_AVAILABLE + return env_info + + +if __name__ == '__main__': + for name, val in collect_env().items(): + print(f'{name}: {val}') diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/compat_cfg.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/compat_cfg.py new file mode 100644 index 000000000..05aa37dcd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/compat_cfg.py @@ -0,0 +1,139 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import warnings + +from mmcv import ConfigDict + + +def compat_cfg(cfg): + """This function would modify some filed to keep the compatibility of + config. + + For example, it will move some args which will be deprecated to the correct + fields. + """ + cfg = copy.deepcopy(cfg) + cfg = compat_imgs_per_gpu(cfg) + cfg = compat_loader_args(cfg) + cfg = compat_runner_args(cfg) + return cfg + + +def compat_runner_args(cfg): + if 'runner' not in cfg: + cfg.runner = ConfigDict({ + 'type': 'EpochBasedRunner', + 'max_epochs': cfg.total_epochs + }) + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + else: + if 'total_epochs' in cfg: + assert cfg.total_epochs == cfg.runner.max_epochs + return cfg + + +def compat_imgs_per_gpu(cfg): + cfg = copy.deepcopy(cfg) + if 'imgs_per_gpu' in cfg.data: + warnings.warn('"imgs_per_gpu" is deprecated in MMDet V2.0. ' + 'Please use "samples_per_gpu" instead') + if 'samples_per_gpu' in cfg.data: + warnings.warn( + f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' + f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' + f'={cfg.data.imgs_per_gpu} is used in this experiments') + else: + warnings.warn('Automatically set "samples_per_gpu"="imgs_per_gpu"=' + f'{cfg.data.imgs_per_gpu} in this experiments') + cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu + return cfg + + +def compat_loader_args(cfg): + """Deprecated sample_per_gpu in cfg.data.""" + + cfg = copy.deepcopy(cfg) + if 'train_dataloader' not in cfg.data: + cfg.data['train_dataloader'] = ConfigDict() + if 'val_dataloader' not in cfg.data: + cfg.data['val_dataloader'] = ConfigDict() + if 'test_dataloader' not in cfg.data: + cfg.data['test_dataloader'] = ConfigDict() + + # special process for train_dataloader + if 'samples_per_gpu' in cfg.data: + + samples_per_gpu = cfg.data.pop('samples_per_gpu') + assert 'samples_per_gpu' not in \ + cfg.data.train_dataloader, ('`samples_per_gpu` are set ' + 'in `data` field and ` ' + 'data.train_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.train_dataloader`. ') + cfg.data.train_dataloader['samples_per_gpu'] = samples_per_gpu + + if 'persistent_workers' in cfg.data: + + persistent_workers = cfg.data.pop('persistent_workers') + assert 'persistent_workers' not in \ + cfg.data.train_dataloader, ('`persistent_workers` are set ' + 'in `data` field and ` ' + 'data.train_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.train_dataloader`. ') + cfg.data.train_dataloader['persistent_workers'] = persistent_workers + + if 'workers_per_gpu' in cfg.data: + + workers_per_gpu = cfg.data.pop('workers_per_gpu') + cfg.data.train_dataloader['workers_per_gpu'] = workers_per_gpu + cfg.data.val_dataloader['workers_per_gpu'] = workers_per_gpu + cfg.data.test_dataloader['workers_per_gpu'] = workers_per_gpu + + # special process for val_dataloader + if 'samples_per_gpu' in cfg.data.val: + # keep default value of `sample_per_gpu` is 1 + assert 'samples_per_gpu' not in \ + cfg.data.val_dataloader, ('`samples_per_gpu` are set ' + 'in `data.val` field and ` ' + 'data.val_dataloader` at ' + 'the same time. ' + 'Please only set it in ' + '`data.val_dataloader`. ') + cfg.data.val_dataloader['samples_per_gpu'] = \ + cfg.data.val.pop('samples_per_gpu') + # special process for val_dataloader + + # in case the test dataset is concatenated + if isinstance(cfg.data.test, dict): + if 'samples_per_gpu' in cfg.data.test: + assert 'samples_per_gpu' not in \ + cfg.data.test_dataloader, ('`samples_per_gpu` are set ' + 'in `data.test` field and ` ' + 'data.test_dataloader` ' + 'at the same time. ' + 'Please only set it in ' + '`data.test_dataloader`. ') + + cfg.data.test_dataloader['samples_per_gpu'] = \ + cfg.data.test.pop('samples_per_gpu') + + elif isinstance(cfg.data.test, list): + for ds_cfg in cfg.data.test: + if 'samples_per_gpu' in ds_cfg: + assert 'samples_per_gpu' not in \ + cfg.data.test_dataloader, ('`samples_per_gpu` are set ' + 'in `data.test` field and ` ' + 'data.test_dataloader` at' + ' the same time. ' + 'Please only set it in ' + '`data.test_dataloader`. ') + samples_per_gpu = max( + [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) + cfg.data.test_dataloader['samples_per_gpu'] = samples_per_gpu + + return cfg diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/logger.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/logger.py new file mode 100644 index 000000000..14295d1a1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/logger.py @@ -0,0 +1,31 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import logging + +from mmcv.utils import get_logger + + +def get_root_logger(log_file=None, log_level=logging.INFO, name='mmdet3d'): + """Get root logger and add a keyword filter to it. + + The logger will be initialized if it has not been initialized. By default a + StreamHandler will be added. If `log_file` is specified, a FileHandler will + also be added. The name of the root logger is the top-level package name, + e.g., "mmdet3d". + + Args: + log_file (str, optional): File path of log. Defaults to None. + log_level (int, optional): The level of logger. + Defaults to logging.INFO. + name (str, optional): The name of the root logger, also used as a + filter keyword. Defaults to 'mmdet3d'. + + Returns: + :obj:`logging.Logger`: The obtained logger + """ + logger = get_logger(name=name, log_file=log_file, log_level=log_level) + + # add a logging filter + logging_filter = logging.Filter(name) + logging_filter.filter = lambda record: record.find(name) != -1 + + return logger diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/misc.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/misc.py new file mode 100644 index 000000000..08af0484a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/misc.py @@ -0,0 +1,39 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import glob +import os.path as osp +import warnings + + +def find_latest_checkpoint(path, suffix='pth'): + """Find the latest checkpoint from the working directory. This function is + copied from mmdetection. + + Args: + path(str): The path to find checkpoints. + suffix(str): File extension. + Defaults to pth. + + Returns: + latest_path(str | None): File path of the latest checkpoint. + References: + .. [1] https://github.com/microsoft/SoftTeacher + /blob/main/ssod/utils/patch.py + """ + if not osp.exists(path): + warnings.warn('The path of checkpoints does not exist.') + return None + if osp.exists(osp.join(path, f'latest.{suffix}')): + return osp.join(path, f'latest.{suffix}') + + checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) + if len(checkpoints) == 0: + warnings.warn('There are no checkpoints in the path.') + return None + latest = -1 + latest_path = None + for checkpoint in checkpoints: + count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) + if count > latest: + latest = count + latest_path = checkpoint + return latest_path diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/setup_env.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/setup_env.py new file mode 100644 index 000000000..8812cb715 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/utils/setup_env.py @@ -0,0 +1,53 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import platform +import warnings + +import cv2 +from torch import multiprocessing as mp + + +def setup_multi_processes(cfg): + """Setup multi-processing environment variables.""" + # set multi-process start method as `fork` to speed up the training + if platform.system() != 'Windows': + mp_start_method = cfg.get('mp_start_method', 'fork') + current_method = mp.get_start_method(allow_none=True) + if current_method is not None and current_method != mp_start_method: + warnings.warn( + f'Multi-processing start method `{mp_start_method}` is ' + f'different from the previous setting `{current_method}`.' + f'It will be force set to `{mp_start_method}`. You can change ' + f'this behavior by changing `mp_start_method` in your config.') + mp.set_start_method(mp_start_method, force=True) + + # disable opencv multithreading to avoid system being overloaded + opencv_num_threads = cfg.get('opencv_num_threads', 0) + cv2.setNumThreads(opencv_num_threads) + + # setup OMP threads + # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa + workers_per_gpu = cfg.data.get('workers_per_gpu', 1) + if 'train_dataloader' in cfg.data: + workers_per_gpu = \ + max(cfg.data.train_dataloader.get('workers_per_gpu', 1), + workers_per_gpu) + + if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: + omp_num_threads = 1 + warnings.warn( + f'Setting OMP_NUM_THREADS environment variable for each process ' + f'to be {omp_num_threads} in default, to avoid your system being ' + f'overloaded, please further tune the variable for optimal ' + f'performance in your application as needed.') + os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) + + # setup MKL threads + if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: + mkl_num_threads = 1 + warnings.warn( + f'Setting MKL_NUM_THREADS environment variable for each process ' + f'to be {mkl_num_threads} in default, to avoid your system being ' + f'overloaded, please further tune the variable for optimal ' + f'performance in your application as needed.') + os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) diff --git a/cv/3d_detection/PAConv/pytorch/mmdet3d/version.py b/cv/3d_detection/PAConv/pytorch/mmdet3d/version.py new file mode 100644 index 000000000..c95fbedd2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmdet3d/version.py @@ -0,0 +1,19 @@ +# Copyright (c) Open-MMLab. All rights reserved. + +__version__ = '1.0.0rc3' +short_version = __version__ + + +def parse_version_info(version_str): + version_info = [] + for x in version_str.split('.'): + if x.isdigit(): + version_info.append(int(x)) + elif x.find('rc') != -1: + patch_version = x.split('rc') + version_info.append(int(patch_version[0])) + version_info.append(f'rc{patch_version[1]}') + return tuple(version_info) + + +version_info = parse_version_info(__version__) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/__init__.py new file mode 100644 index 000000000..eb0a5f4e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/__init__.py @@ -0,0 +1,62 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv +from packaging.version import parse + +from .version import __version__, version_info + +MMCV_MIN = '1.3.13' +MMCV_MAX = '1.6.0' + + +def digit_version(version_str: str, length: int = 4): + """Convert a version string into a tuple of integers. + + This method is usually used for comparing two versions. For pre-release + versions: alpha < beta < rc. + + Args: + version_str (str): The version string. + length (int): The maximum number of version levels. Default: 4. + + Returns: + tuple[int]: The version info in digits (integers). + """ + version = parse(version_str) + assert version.release, f'failed to parse version {version_str}' + release = list(version.release) + release = release[:length] + if len(release) < length: + release = release + [0] * (length - len(release)) + if version.is_prerelease: + mapping = {'a': -3, 'b': -2, 'rc': -1} + val = -4 + # version.pre can be None + if version.pre: + if version.pre[0] not in mapping: + warnings.warn(f'unknown prerelease version {version.pre[0]}, ' + 'version checking may go wrong') + else: + val = mapping[version.pre[0]] + release.extend([val, version.pre[-1]]) + else: + release.extend([val, 0]) + + elif version.is_postrelease: + release.extend([1, version.post]) + else: + release.extend([0, 0]) + return tuple(release) + + +mmcv_min_version = digit_version(MMCV_MIN) +mmcv_max_version = digit_version(MMCV_MAX) +mmcv_version = digit_version(mmcv.__version__) + + +# assert (mmcv_min_version <= mmcv_version <= mmcv_max_version), \ +# f'MMCV=={mmcv.__version__} is used but incompatible. ' \ +# f'Please install mmcv>={mmcv_min_version}, <={mmcv_max_version}.' + +__all__ = ['__version__', 'version_info', 'digit_version'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/apis/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/apis/__init__.py new file mode 100644 index 000000000..c68818053 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/apis/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .inference import inference_segmentor, init_segmentor, show_result_pyplot +from .test import multi_gpu_test, single_gpu_test +from .train import (get_root_logger, init_random_seed, set_random_seed, + train_segmentor) + +__all__ = [ + 'get_root_logger', 'set_random_seed', 'train_segmentor', 'init_segmentor', + 'inference_segmentor', 'multi_gpu_test', 'single_gpu_test', + 'show_result_pyplot', 'init_random_seed' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/apis/inference.py b/cv/3d_detection/PAConv/pytorch/mmseg/apis/inference.py new file mode 100644 index 000000000..906943804 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/apis/inference.py @@ -0,0 +1,136 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import matplotlib.pyplot as plt +import mmcv +import torch +from mmcv.parallel import collate, scatter +from mmcv.runner import load_checkpoint + +from mmseg.datasets.pipelines import Compose +from mmseg.models import build_segmentor + + +def init_segmentor(config, checkpoint=None, device='cuda:0'): + """Initialize a segmentor from config file. + + Args: + config (str or :obj:`mmcv.Config`): Config file path or the config + object. + checkpoint (str, optional): Checkpoint path. If left as None, the model + will not load any weights. + device (str, optional) CPU/CUDA device option. Default 'cuda:0'. + Use 'cpu' for loading model on CPU. + Returns: + nn.Module: The constructed segmentor. + """ + if isinstance(config, str): + config = mmcv.Config.fromfile(config) + elif not isinstance(config, mmcv.Config): + raise TypeError('config must be a filename or Config object, ' + 'but got {}'.format(type(config))) + config.model.pretrained = None + config.model.train_cfg = None + model = build_segmentor(config.model, test_cfg=config.get('test_cfg')) + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') + model.CLASSES = checkpoint['meta']['CLASSES'] + model.PALETTE = checkpoint['meta']['PALETTE'] + model.cfg = config # save the config in the model for convenience + model.to(device) + model.eval() + return model + + +class LoadImage: + """A simple pipeline to load image.""" + + def __call__(self, results): + """Call function to load images into results. + + Args: + results (dict): A result dict contains the file name + of the image to be read. + + Returns: + dict: ``results`` will be returned containing loaded image. + """ + + if isinstance(results['img'], str): + results['filename'] = results['img'] + results['ori_filename'] = results['img'] + else: + results['filename'] = None + results['ori_filename'] = None + img = mmcv.imread(results['img']) + results['img'] = img + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + return results + + +def inference_segmentor(model, img): + """Inference image(s) with the segmentor. + + Args: + model (nn.Module): The loaded segmentor. + imgs (str/ndarray or list[str/ndarray]): Either image files or loaded + images. + + Returns: + (list[Tensor]): The segmentation result. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + # build the data pipeline + test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:] + test_pipeline = Compose(test_pipeline) + # prepare data + data = dict(img=img) + data = test_pipeline(data) + data = collate([data], samples_per_gpu=1) + if next(model.parameters()).is_cuda: + # scatter to specified GPU + data = scatter(data, [device])[0] + else: + data['img_metas'] = [i.data[0] for i in data['img_metas']] + + # forward the model + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + return result + + +def show_result_pyplot(model, + img, + result, + palette=None, + fig_size=(15, 10), + opacity=0.5, + title='', + block=True): + """Visualize the segmentation results on the image. + + Args: + model (nn.Module): The loaded segmentor. + img (str or np.ndarray): Image filename or loaded image. + result (list): The segmentation result. + palette (list[list[int]]] | None): The palette of segmentation + map. If None is given, random palette will be generated. + Default: None + fig_size (tuple): Figure size of the pyplot figure. + opacity(float): Opacity of painted segmentation map. + Default 0.5. + Must be in (0, 1] range. + title (str): The title of pyplot figure. + Default is ''. + block (bool): Whether to block the pyplot figure. + Default is True. + """ + if hasattr(model, 'module'): + model = model.module + img = model.show_result( + img, result, palette=palette, show=False, opacity=opacity) + plt.figure(figsize=fig_size) + plt.imshow(mmcv.bgr2rgb(img)) + plt.title(title) + plt.tight_layout() + plt.show(block=block) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/apis/test.py b/cv/3d_detection/PAConv/pytorch/mmseg/apis/test.py new file mode 100644 index 000000000..cc4fcc979 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/apis/test.py @@ -0,0 +1,233 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import tempfile +import warnings + +import mmcv +import numpy as np +import torch +from mmcv.engine import collect_results_cpu, collect_results_gpu +from mmcv.image import tensor2imgs +from mmcv.runner import get_dist_info + + +def np2tmp(array, temp_file_name=None, tmpdir=None): + """Save ndarray to local numpy file. + + Args: + array (ndarray): Ndarray to save. + temp_file_name (str): Numpy file name. If 'temp_file_name=None', this + function will generate a file name with tempfile.NamedTemporaryFile + to save ndarray. Default: None. + tmpdir (str): Temporary directory to save Ndarray files. Default: None. + Returns: + str: The numpy file name. + """ + + if temp_file_name is None: + temp_file_name = tempfile.NamedTemporaryFile( + suffix='.npy', delete=False, dir=tmpdir).name + np.save(temp_file_name, array) + return temp_file_name + + +def single_gpu_test(model, + data_loader, + show=False, + out_dir=None, + efficient_test=False, + opacity=0.5, + pre_eval=False, + format_only=False, + format_args={}): + """Test with single GPU by progressive mode. + + Args: + model (nn.Module): Model to be tested. + data_loader (utils.data.Dataloader): Pytorch data loader. + show (bool): Whether show results during inference. Default: False. + out_dir (str, optional): If specified, the results will be dumped into + the directory to save output results. + efficient_test (bool): Whether save the results as local numpy files to + save CPU memory during evaluation. Mutually exclusive with + pre_eval and format_results. Default: False. + opacity(float): Opacity of painted segmentation map. + Default 0.5. + Must be in (0, 1] range. + pre_eval (bool): Use dataset.pre_eval() function to generate + pre_results for metric evaluation. Mutually exclusive with + efficient_test and format_results. Default: False. + format_only (bool): Only format result for results commit. + Mutually exclusive with pre_eval and efficient_test. + Default: False. + format_args (dict): The args for format_results. Default: {}. + Returns: + list: list of evaluation pre-results or list of save file names. + """ + if efficient_test: + warnings.warn( + 'DeprecationWarning: ``efficient_test`` will be deprecated, the ' + 'evaluation is CPU memory friendly with pre_eval=True') + mmcv.mkdir_or_exist('.efficient_test') + # when none of them is set true, return segmentation results as + # a list of np.array. + assert [efficient_test, pre_eval, format_only].count(True) <= 1, \ + '``efficient_test``, ``pre_eval`` and ``format_only`` are mutually ' \ + 'exclusive, only one of them could be true .' + + model.eval() + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + # The pipeline about how the data_loader retrieval samples from dataset: + # sampler -> batch_sampler -> indices + # The indices are passed to dataset_fetcher to get data from dataset. + # data_fetcher -> collate_fn(dataset[index]) -> data_sample + # we use batch_sampler to get correct data idx + loader_indices = data_loader.batch_sampler + + for batch_indices, data in zip(loader_indices, data_loader): + with torch.no_grad(): + result = model(return_loss=False, **data) + + if show or out_dir: + img_tensor = data['img'][0] + img_metas = data['img_metas'][0].data[0] + imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) + assert len(imgs) == len(img_metas) + + for img, img_meta in zip(imgs, img_metas): + h, w, _ = img_meta['img_shape'] + img_show = img[:h, :w, :] + + ori_h, ori_w = img_meta['ori_shape'][:-1] + img_show = mmcv.imresize(img_show, (ori_w, ori_h)) + + if out_dir: + out_file = osp.join(out_dir, img_meta['ori_filename']) + else: + out_file = None + + model.module.show_result( + img_show, + result, + palette=dataset.PALETTE, + show=show, + out_file=out_file, + opacity=opacity) + + if efficient_test: + result = [np2tmp(_, tmpdir='.efficient_test') for _ in result] + + if format_only: + result = dataset.format_results( + result, indices=batch_indices, **format_args) + if pre_eval: + # TODO: adapt samples_per_gpu > 1. + # only samples_per_gpu=1 valid now + result = dataset.pre_eval(result, indices=batch_indices) + results.extend(result) + else: + results.extend(result) + + batch_size = len(result) + for _ in range(batch_size): + prog_bar.update() + + return results + + +def multi_gpu_test(model, + data_loader, + tmpdir=None, + gpu_collect=False, + efficient_test=False, + pre_eval=False, + format_only=False, + format_args={}): + """Test model with multiple gpus by progressive mode. + + This method tests model with multiple gpus and collects the results + under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' + it encodes results to gpu tensors and use gpu communication for results + collection. On cpu mode it saves the results on different gpus to 'tmpdir' + and collects them by the rank 0 worker. + + Args: + model (nn.Module): Model to be tested. + data_loader (utils.data.Dataloader): Pytorch data loader. + tmpdir (str): Path of directory to save the temporary results from + different gpus under cpu mode. The same path is used for efficient + test. Default: None. + gpu_collect (bool): Option to use either gpu or cpu to collect results. + Default: False. + efficient_test (bool): Whether save the results as local numpy files to + save CPU memory during evaluation. Mutually exclusive with + pre_eval and format_results. Default: False. + pre_eval (bool): Use dataset.pre_eval() function to generate + pre_results for metric evaluation. Mutually exclusive with + efficient_test and format_results. Default: False. + format_only (bool): Only format result for results commit. + Mutually exclusive with pre_eval and efficient_test. + Default: False. + format_args (dict): The args for format_results. Default: {}. + + Returns: + list: list of evaluation pre-results or list of save file names. + """ + if efficient_test: + warnings.warn( + 'DeprecationWarning: ``efficient_test`` will be deprecated, the ' + 'evaluation is CPU memory friendly with pre_eval=True') + mmcv.mkdir_or_exist('.efficient_test') + # when none of them is set true, return segmentation results as + # a list of np.array. + assert [efficient_test, pre_eval, format_only].count(True) <= 1, \ + '``efficient_test``, ``pre_eval`` and ``format_only`` are mutually ' \ + 'exclusive, only one of them could be true .' + + model.eval() + results = [] + dataset = data_loader.dataset + # The pipeline about how the data_loader retrieval samples from dataset: + # sampler -> batch_sampler -> indices + # The indices are passed to dataset_fetcher to get data from dataset. + # data_fetcher -> collate_fn(dataset[index]) -> data_sample + # we use batch_sampler to get correct data idx + + # batch_sampler based on DistributedSampler, the indices only point to data + # samples of related machine. + loader_indices = data_loader.batch_sampler + + rank, world_size = get_dist_info() + if rank == 0: + prog_bar = mmcv.ProgressBar(len(dataset)) + + for batch_indices, data in zip(loader_indices, data_loader): + with torch.no_grad(): + result = model(return_loss=False, rescale=True, **data) + + if efficient_test: + result = [np2tmp(_, tmpdir='.efficient_test') for _ in result] + + if format_only: + result = dataset.format_results( + result, indices=batch_indices, **format_args) + if pre_eval: + # TODO: adapt samples_per_gpu > 1. + # only samples_per_gpu=1 valid now + result = dataset.pre_eval(result, indices=batch_indices) + + results.extend(result) + + if rank == 0: + batch_size = len(result) * world_size + for _ in range(batch_size): + prog_bar.update() + + # collect results from all ranks + if gpu_collect: + results = collect_results_gpu(results, len(dataset)) + else: + results = collect_results_cpu(results, len(dataset), tmpdir) + return results diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/apis/train.py b/cv/3d_detection/PAConv/pytorch/mmseg/apis/train.py new file mode 100644 index 000000000..7e1096bce --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/apis/train.py @@ -0,0 +1,167 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import random +import warnings + +import numpy as np +import torch +import torch.distributed as dist +from mmcv.parallel import MMDataParallel, MMDistributedDataParallel +from mmcv.runner import HOOKS, build_optimizer, build_runner, get_dist_info +from mmcv.utils import build_from_cfg + +from mmseg.core import DistEvalHook, EvalHook +from mmseg.datasets import build_dataloader, build_dataset +from mmseg.utils import get_root_logger + + +def init_random_seed(seed=None, device='cuda'): + """Initialize random seed. + + If the seed is not set, the seed will be automatically randomized, + and then broadcast to all processes to prevent some potential bugs. + Args: + seed (int, Optional): The seed. Default to None. + device (str): The device where the seed will be put on. + Default to 'cuda'. + Returns: + int: Seed to be used. + """ + if seed is not None: + return seed + + # Make sure all ranks share the same random seed to prevent + # some potential bugs. Please refer to + # https://github.com/open-mmlab/mmdetection/issues/6339 + rank, world_size = get_dist_info() + seed = np.random.randint(2**31) + if world_size == 1: + return seed + + if rank == 0: + random_num = torch.tensor(seed, dtype=torch.int32, device=device) + else: + random_num = torch.tensor(0, dtype=torch.int32, device=device) + dist.broadcast(random_num, src=0) + return random_num.item() + + +def set_random_seed(seed, deterministic=False): + """Set random seed. + + Args: + seed (int): Seed to be used. + deterministic (bool): Whether to set the deterministic option for + CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` + to True and `torch.backends.cudnn.benchmark` to False. + Default: False. + """ + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + if deterministic: + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +def train_segmentor(model, + dataset, + cfg, + distributed=False, + validate=False, + timestamp=None, + meta=None): + """Launch segmentor training.""" + logger = get_root_logger(cfg.log_level) + + # prepare data loaders + dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] + data_loaders = [ + build_dataloader( + ds, + cfg.data.samples_per_gpu, + cfg.data.workers_per_gpu, + # cfg.gpus will be ignored if distributed + len(cfg.gpu_ids), + dist=distributed, + seed=cfg.seed, + drop_last=True) for ds in dataset + ] + + # put model on gpus + if distributed: + find_unused_parameters = cfg.get('find_unused_parameters', False) + # Sets the `find_unused_parameters` parameter in + # torch.nn.parallel.DistributedDataParallel + model = MMDistributedDataParallel( + model.cuda(), + device_ids=[torch.cuda.current_device()], + broadcast_buffers=False, + find_unused_parameters=find_unused_parameters) + else: + model = MMDataParallel( + model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) + + # build runner + optimizer = build_optimizer(model, cfg.optimizer) + + if cfg.get('runner') is None: + cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + + runner = build_runner( + cfg.runner, + default_args=dict( + model=model, + batch_processor=None, + optimizer=optimizer, + work_dir=cfg.work_dir, + logger=logger, + meta=meta)) + + # register hooks + runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, + cfg.checkpoint_config, cfg.log_config, + cfg.get('momentum_config', None)) + + # an ugly walkaround to make the .log and .log.json filenames the same + runner.timestamp = timestamp + + # register eval hooks + if validate: + val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) + val_dataloader = build_dataloader( + val_dataset, + samples_per_gpu=1, + workers_per_gpu=cfg.data.workers_per_gpu, + dist=distributed, + shuffle=False) + eval_cfg = cfg.get('evaluation', {}) + eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' + eval_hook = DistEvalHook if distributed else EvalHook + # In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the + # priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'. + runner.register_hook( + eval_hook(val_dataloader, **eval_cfg), priority='LOW') + + # user-defined hooks + if cfg.get('custom_hooks', None): + custom_hooks = cfg.custom_hooks + assert isinstance(custom_hooks, list), \ + f'custom_hooks expect list type, but got {type(custom_hooks)}' + for hook_cfg in cfg.custom_hooks: + assert isinstance(hook_cfg, dict), \ + 'Each item in custom_hooks expects dict type, but got ' \ + f'{type(hook_cfg)}' + hook_cfg = hook_cfg.copy() + priority = hook_cfg.pop('priority', 'NORMAL') + hook = build_from_cfg(hook_cfg, HOOKS) + runner.register_hook(hook, priority=priority) + + if cfg.resume_from: + runner.resume(cfg.resume_from) + elif cfg.load_from: + runner.load_checkpoint(cfg.load_from) + runner.run(data_loaders, cfg.workflow) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/__init__.py new file mode 100644 index 000000000..402278618 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .evaluation import * # noqa: F401, F403 +from .seg import * # noqa: F401, F403 +from .utils import * # noqa: F401, F403 diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/__init__.py new file mode 100644 index 000000000..3d16d17e5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .class_names import get_classes, get_palette +from .eval_hooks import DistEvalHook, EvalHook +from .metrics import (eval_metrics, intersect_and_union, mean_dice, + mean_fscore, mean_iou, pre_eval_to_metrics) + +__all__ = [ + 'EvalHook', 'DistEvalHook', 'mean_dice', 'mean_iou', 'mean_fscore', + 'eval_metrics', 'get_classes', 'get_palette', 'pre_eval_to_metrics', + 'intersect_and_union' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/class_names.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/class_names.py new file mode 100644 index 000000000..4527fbaf1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/class_names.py @@ -0,0 +1,153 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv + + +def cityscapes_classes(): + """Cityscapes class names for external use.""" + return [ + 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', + 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', + 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', + 'bicycle' + ] + + +def ade_classes(): + """ADE20K class names for external use.""" + return [ + 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', + 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', + 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', + 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', + 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', + 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', + 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', + 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', + 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', + 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', + 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', + 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', + 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', + 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', + 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', + 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', + 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', + 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', + 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', + 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', + 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', + 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', + 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', + 'clock', 'flag' + ] + + +def voc_classes(): + """Pascal VOC class names for external use.""" + return [ + 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', + 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', + 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', + 'tvmonitor' + ] + + +def cityscapes_palette(): + """Cityscapes palette for external use.""" + return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], + [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], + [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], + [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], + [0, 0, 230], [119, 11, 32]] + + +def ade_palette(): + """ADE20K palette for external use.""" + return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], + [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], + [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], + [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], + [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], + [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], + [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], + [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], + [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], + [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], + [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], + [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], + [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], + [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], + [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], + [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], + [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], + [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], + [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], + [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], + [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], + [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], + [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], + [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], + [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], + [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], + [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], + [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], + [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], + [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], + [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], + [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], + [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], + [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], + [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], + [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], + [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], + [102, 255, 0], [92, 0, 255]] + + +def voc_palette(): + """Pascal VOC palette for external use.""" + return [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], + [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], + [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], + [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], + [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] + + +dataset_aliases = { + 'cityscapes': ['cityscapes'], + 'ade': ['ade', 'ade20k'], + 'voc': ['voc', 'pascal_voc', 'voc12', 'voc12aug'] +} + + +def get_classes(dataset): + """Get class names of a dataset.""" + alias2name = {} + for name, aliases in dataset_aliases.items(): + for alias in aliases: + alias2name[alias] = name + + if mmcv.is_str(dataset): + if dataset in alias2name: + labels = eval(alias2name[dataset] + '_classes()') + else: + raise ValueError(f'Unrecognized dataset: {dataset}') + else: + raise TypeError(f'dataset must a str, but got {type(dataset)}') + return labels + + +def get_palette(dataset): + """Get class palette (RGB) of a dataset.""" + alias2name = {} + for name, aliases in dataset_aliases.items(): + for alias in aliases: + alias2name[alias] = name + + if mmcv.is_str(dataset): + if dataset in alias2name: + labels = eval(alias2name[dataset] + '_palette()') + else: + raise ValueError(f'Unrecognized dataset: {dataset}') + else: + raise TypeError(f'dataset must a str, but got {type(dataset)}') + return labels diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/eval_hooks.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/eval_hooks.py new file mode 100644 index 000000000..952db3b0b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/eval_hooks.py @@ -0,0 +1,128 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import warnings + +import torch.distributed as dist +from mmcv.runner import DistEvalHook as _DistEvalHook +from mmcv.runner import EvalHook as _EvalHook +from torch.nn.modules.batchnorm import _BatchNorm + + +class EvalHook(_EvalHook): + """Single GPU EvalHook, with efficient test support. + + Args: + by_epoch (bool): Determine perform evaluation by epoch or by iteration. + If set to True, it will perform by epoch. Otherwise, by iteration. + Default: False. + efficient_test (bool): Whether save the results as local numpy files to + save CPU memory during evaluation. Default: False. + pre_eval (bool): Whether to use progressive mode to evaluate model. + Default: False. + Returns: + list: The prediction results. + """ + + greater_keys = ['mIoU', 'mAcc', 'aAcc'] + + def __init__(self, + *args, + by_epoch=False, + efficient_test=False, + pre_eval=False, + **kwargs): + super().__init__(*args, by_epoch=by_epoch, **kwargs) + self.pre_eval = pre_eval + if efficient_test: + warnings.warn( + 'DeprecationWarning: ``efficient_test`` for evaluation hook ' + 'is deprecated, the evaluation hook is CPU memory friendly ' + 'with ``pre_eval=True`` as argument for ``single_gpu_test()`` ' + 'function') + + def _do_evaluate(self, runner): + """perform evaluation and save ckpt.""" + if not self._should_evaluate(runner): + return + + from mmseg.apis import single_gpu_test + results = single_gpu_test( + runner.model, self.dataloader, show=False, pre_eval=self.pre_eval) + runner.log_buffer.clear() + runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) + key_score = self.evaluate(runner, results) + if self.save_best: + self._save_ckpt(runner, key_score) + + +class DistEvalHook(_DistEvalHook): + """Distributed EvalHook, with efficient test support. + + Args: + by_epoch (bool): Determine perform evaluation by epoch or by iteration. + If set to True, it will perform by epoch. Otherwise, by iteration. + Default: False. + efficient_test (bool): Whether save the results as local numpy files to + save CPU memory during evaluation. Default: False. + pre_eval (bool): Whether to use progressive mode to evaluate model. + Default: False. + Returns: + list: The prediction results. + """ + + greater_keys = ['mIoU', 'mAcc', 'aAcc'] + + def __init__(self, + *args, + by_epoch=False, + efficient_test=False, + pre_eval=False, + **kwargs): + super().__init__(*args, by_epoch=by_epoch, **kwargs) + self.pre_eval = pre_eval + if efficient_test: + warnings.warn( + 'DeprecationWarning: ``efficient_test`` for evaluation hook ' + 'is deprecated, the evaluation hook is CPU memory friendly ' + 'with ``pre_eval=True`` as argument for ``multi_gpu_test()`` ' + 'function') + + def _do_evaluate(self, runner): + """perform evaluation and save ckpt.""" + # Synchronization of BatchNorm's buffer (running_mean + # and running_var) is not supported in the DDP of pytorch, + # which may cause the inconsistent performance of models in + # different ranks, so we broadcast BatchNorm's buffers + # of rank 0 to other ranks to avoid this. + if self.broadcast_bn_buffer: + model = runner.model + for name, module in model.named_modules(): + if isinstance(module, + _BatchNorm) and module.track_running_stats: + dist.broadcast(module.running_var, 0) + dist.broadcast(module.running_mean, 0) + + if not self._should_evaluate(runner): + return + + tmpdir = self.tmpdir + if tmpdir is None: + tmpdir = osp.join(runner.work_dir, '.eval_hook') + + from mmseg.apis import multi_gpu_test + results = multi_gpu_test( + runner.model, + self.dataloader, + tmpdir=tmpdir, + gpu_collect=self.gpu_collect, + pre_eval=self.pre_eval) + + runner.log_buffer.clear() + + if runner.rank == 0: + print('\n') + runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) + key_score = self.evaluate(runner, results) + + if self.save_best: + self._save_ckpt(runner, key_score) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/metrics.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/metrics.py new file mode 100644 index 000000000..a1c0908e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/evaluation/metrics.py @@ -0,0 +1,395 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict + +import mmcv +import numpy as np +import torch + + +def f_score(precision, recall, beta=1): + """calculate the f-score value. + + Args: + precision (float | torch.Tensor): The precision value. + recall (float | torch.Tensor): The recall value. + beta (int): Determines the weight of recall in the combined score. + Default: False. + + Returns: + [torch.tensor]: The f-score value. + """ + score = (1 + beta**2) * (precision * recall) / ( + (beta**2 * precision) + recall) + return score + + +def intersect_and_union(pred_label, + label, + num_classes, + ignore_index, + label_map=dict(), + reduce_zero_label=False): + """Calculate intersection and Union. + + Args: + pred_label (ndarray | str): Prediction segmentation map + or predict result filename. + label (ndarray | str): Ground truth segmentation map + or label filename. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + label_map (dict): Mapping old labels to new labels. The parameter will + work only when label is str. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. The parameter will + work only when label is str. Default: False. + + Returns: + torch.Tensor: The intersection of prediction and ground truth + histogram on all classes. + torch.Tensor: The union of prediction and ground truth histogram on + all classes. + torch.Tensor: The prediction histogram on all classes. + torch.Tensor: The ground truth histogram on all classes. + """ + + if isinstance(pred_label, str): + pred_label = torch.from_numpy(np.load(pred_label)) + else: + pred_label = torch.from_numpy((pred_label)) + + if isinstance(label, str): + label = torch.from_numpy( + mmcv.imread(label, flag='unchanged', backend='pillow')) + else: + label = torch.from_numpy(label) + + if label_map is not None: + for old_id, new_id in label_map.items(): + label[label == old_id] = new_id + if reduce_zero_label: + label[label == 0] = 255 + label = label - 1 + label[label == 254] = 255 + + mask = (label != ignore_index) + pred_label = pred_label[mask] + label = label[mask] + + intersect = pred_label[pred_label == label] + area_intersect = torch.histc( + intersect.float(), bins=(num_classes), min=0, max=num_classes - 1) + area_pred_label = torch.histc( + pred_label.float(), bins=(num_classes), min=0, max=num_classes - 1) + area_label = torch.histc( + label.float(), bins=(num_classes), min=0, max=num_classes - 1) + area_union = area_pred_label + area_label - area_intersect + return area_intersect, area_union, area_pred_label, area_label + + +def total_intersect_and_union(results, + gt_seg_maps, + num_classes, + ignore_index, + label_map=dict(), + reduce_zero_label=False): + """Calculate Total Intersection and Union. + + Args: + results (list[ndarray] | list[str]): List of prediction segmentation + maps or list of prediction result filenames. + gt_seg_maps (list[ndarray] | list[str] | Iterables): list of ground + truth segmentation maps or list of label filenames. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + label_map (dict): Mapping old labels to new labels. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. Default: False. + + Returns: + ndarray: The intersection of prediction and ground truth histogram + on all classes. + ndarray: The union of prediction and ground truth histogram on all + classes. + ndarray: The prediction histogram on all classes. + ndarray: The ground truth histogram on all classes. + """ + total_area_intersect = torch.zeros((num_classes, ), dtype=torch.float64) + total_area_union = torch.zeros((num_classes, ), dtype=torch.float64) + total_area_pred_label = torch.zeros((num_classes, ), dtype=torch.float64) + total_area_label = torch.zeros((num_classes, ), dtype=torch.float64) + for result, gt_seg_map in zip(results, gt_seg_maps): + area_intersect, area_union, area_pred_label, area_label = \ + intersect_and_union( + result, gt_seg_map, num_classes, ignore_index, + label_map, reduce_zero_label) + total_area_intersect += area_intersect + total_area_union += area_union + total_area_pred_label += area_pred_label + total_area_label += area_label + return total_area_intersect, total_area_union, total_area_pred_label, \ + total_area_label + + +def mean_iou(results, + gt_seg_maps, + num_classes, + ignore_index, + nan_to_num=None, + label_map=dict(), + reduce_zero_label=False): + """Calculate Mean Intersection and Union (mIoU) + + Args: + results (list[ndarray] | list[str]): List of prediction segmentation + maps or list of prediction result filenames. + gt_seg_maps (list[ndarray] | list[str]): list of ground truth + segmentation maps or list of label filenames. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + label_map (dict): Mapping old labels to new labels. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. Default: False. + + Returns: + dict[str, float | ndarray]: + float: Overall accuracy on all images. + ndarray: Per category accuracy, shape (num_classes, ). + ndarray: Per category IoU, shape (num_classes, ). + """ + iou_result = eval_metrics( + results=results, + gt_seg_maps=gt_seg_maps, + num_classes=num_classes, + ignore_index=ignore_index, + metrics=['mIoU'], + nan_to_num=nan_to_num, + label_map=label_map, + reduce_zero_label=reduce_zero_label) + return iou_result + + +def mean_dice(results, + gt_seg_maps, + num_classes, + ignore_index, + nan_to_num=None, + label_map=dict(), + reduce_zero_label=False): + """Calculate Mean Dice (mDice) + + Args: + results (list[ndarray] | list[str]): List of prediction segmentation + maps or list of prediction result filenames. + gt_seg_maps (list[ndarray] | list[str]): list of ground truth + segmentation maps or list of label filenames. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + label_map (dict): Mapping old labels to new labels. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. Default: False. + + Returns: + dict[str, float | ndarray]: Default metrics. + float: Overall accuracy on all images. + ndarray: Per category accuracy, shape (num_classes, ). + ndarray: Per category dice, shape (num_classes, ). + """ + + dice_result = eval_metrics( + results=results, + gt_seg_maps=gt_seg_maps, + num_classes=num_classes, + ignore_index=ignore_index, + metrics=['mDice'], + nan_to_num=nan_to_num, + label_map=label_map, + reduce_zero_label=reduce_zero_label) + return dice_result + + +def mean_fscore(results, + gt_seg_maps, + num_classes, + ignore_index, + nan_to_num=None, + label_map=dict(), + reduce_zero_label=False, + beta=1): + """Calculate Mean Intersection and Union (mIoU) + + Args: + results (list[ndarray] | list[str]): List of prediction segmentation + maps or list of prediction result filenames. + gt_seg_maps (list[ndarray] | list[str]): list of ground truth + segmentation maps or list of label filenames. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + label_map (dict): Mapping old labels to new labels. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. Default: False. + beta (int): Determines the weight of recall in the combined score. + Default: False. + + + Returns: + dict[str, float | ndarray]: Default metrics. + float: Overall accuracy on all images. + ndarray: Per category recall, shape (num_classes, ). + ndarray: Per category precision, shape (num_classes, ). + ndarray: Per category f-score, shape (num_classes, ). + """ + fscore_result = eval_metrics( + results=results, + gt_seg_maps=gt_seg_maps, + num_classes=num_classes, + ignore_index=ignore_index, + metrics=['mFscore'], + nan_to_num=nan_to_num, + label_map=label_map, + reduce_zero_label=reduce_zero_label, + beta=beta) + return fscore_result + + +def eval_metrics(results, + gt_seg_maps, + num_classes, + ignore_index, + metrics=['mIoU'], + nan_to_num=None, + label_map=dict(), + reduce_zero_label=False, + beta=1): + """Calculate evaluation metrics + Args: + results (list[ndarray] | list[str]): List of prediction segmentation + maps or list of prediction result filenames. + gt_seg_maps (list[ndarray] | list[str] | Iterables): list of ground + truth segmentation maps or list of label filenames. + num_classes (int): Number of categories. + ignore_index (int): Index that will be ignored in evaluation. + metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + label_map (dict): Mapping old labels to new labels. Default: dict(). + reduce_zero_label (bool): Whether ignore zero label. Default: False. + Returns: + float: Overall accuracy on all images. + ndarray: Per category accuracy, shape (num_classes, ). + ndarray: Per category evaluation metrics, shape (num_classes, ). + """ + + total_area_intersect, total_area_union, total_area_pred_label, \ + total_area_label = total_intersect_and_union( + results, gt_seg_maps, num_classes, ignore_index, label_map, + reduce_zero_label) + ret_metrics = total_area_to_metrics(total_area_intersect, total_area_union, + total_area_pred_label, + total_area_label, metrics, nan_to_num, + beta) + + return ret_metrics + + +def pre_eval_to_metrics(pre_eval_results, + metrics=['mIoU'], + nan_to_num=None, + beta=1): + """Convert pre-eval results to metrics. + + Args: + pre_eval_results (list[tuple[torch.Tensor]]): per image eval results + for computing evaluation metric + metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + Returns: + float: Overall accuracy on all images. + ndarray: Per category accuracy, shape (num_classes, ). + ndarray: Per category evaluation metrics, shape (num_classes, ). + """ + + # convert list of tuples to tuple of lists, e.g. + # [(A_1, B_1, C_1, D_1), ..., (A_n, B_n, C_n, D_n)] to + # ([A_1, ..., A_n], ..., [D_1, ..., D_n]) + pre_eval_results = tuple(zip(*pre_eval_results)) + assert len(pre_eval_results) == 4 + + total_area_intersect = sum(pre_eval_results[0]) + total_area_union = sum(pre_eval_results[1]) + total_area_pred_label = sum(pre_eval_results[2]) + total_area_label = sum(pre_eval_results[3]) + + ret_metrics = total_area_to_metrics(total_area_intersect, total_area_union, + total_area_pred_label, + total_area_label, metrics, nan_to_num, + beta) + + return ret_metrics + + +def total_area_to_metrics(total_area_intersect, + total_area_union, + total_area_pred_label, + total_area_label, + metrics=['mIoU'], + nan_to_num=None, + beta=1): + """Calculate evaluation metrics + Args: + total_area_intersect (ndarray): The intersection of prediction and + ground truth histogram on all classes. + total_area_union (ndarray): The union of prediction and ground truth + histogram on all classes. + total_area_pred_label (ndarray): The prediction histogram on all + classes. + total_area_label (ndarray): The ground truth histogram on all classes. + metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. + nan_to_num (int, optional): If specified, NaN values will be replaced + by the numbers defined by the user. Default: None. + Returns: + float: Overall accuracy on all images. + ndarray: Per category accuracy, shape (num_classes, ). + ndarray: Per category evaluation metrics, shape (num_classes, ). + """ + if isinstance(metrics, str): + metrics = [metrics] + allowed_metrics = ['mIoU', 'mDice', 'mFscore'] + if not set(metrics).issubset(set(allowed_metrics)): + raise KeyError('metrics {} is not supported'.format(metrics)) + + all_acc = total_area_intersect.sum() / total_area_label.sum() + ret_metrics = OrderedDict({'aAcc': all_acc}) + for metric in metrics: + if metric == 'mIoU': + iou = total_area_intersect / total_area_union + acc = total_area_intersect / total_area_label + ret_metrics['IoU'] = iou + ret_metrics['Acc'] = acc + elif metric == 'mDice': + dice = 2 * total_area_intersect / ( + total_area_pred_label + total_area_label) + acc = total_area_intersect / total_area_label + ret_metrics['Dice'] = dice + ret_metrics['Acc'] = acc + elif metric == 'mFscore': + precision = total_area_intersect / total_area_pred_label + recall = total_area_intersect / total_area_label + f_value = torch.tensor( + [f_score(x[0], x[1], beta) for x in zip(precision, recall)]) + ret_metrics['Fscore'] = f_value + ret_metrics['Precision'] = precision + ret_metrics['Recall'] = recall + + ret_metrics = { + metric: value.numpy() + for metric, value in ret_metrics.items() + } + if nan_to_num is not None: + ret_metrics = OrderedDict({ + metric: np.nan_to_num(metric_value, nan=nan_to_num) + for metric, metric_value in ret_metrics.items() + }) + return ret_metrics diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/__init__.py new file mode 100644 index 000000000..5206b96be --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .builder import build_pixel_sampler +from .sampler import BasePixelSampler, OHEMPixelSampler + +__all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/builder.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/builder.py new file mode 100644 index 000000000..1cecd347b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/builder.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import Registry, build_from_cfg + +PIXEL_SAMPLERS = Registry('pixel sampler') + + +def build_pixel_sampler(cfg, **default_args): + """Build pixel sampler for segmentation map.""" + return build_from_cfg(cfg, PIXEL_SAMPLERS, default_args) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/__init__.py new file mode 100644 index 000000000..5a7648564 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base_pixel_sampler import BasePixelSampler +from .ohem_pixel_sampler import OHEMPixelSampler + +__all__ = ['BasePixelSampler', 'OHEMPixelSampler'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/base_pixel_sampler.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/base_pixel_sampler.py new file mode 100644 index 000000000..03672cd47 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/base_pixel_sampler.py @@ -0,0 +1,13 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + + +class BasePixelSampler(metaclass=ABCMeta): + """Base class of pixel sampler.""" + + def __init__(self, **kwargs): + pass + + @abstractmethod + def sample(self, seg_logit, seg_label): + """Placeholder for sample function.""" diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/ohem_pixel_sampler.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/ohem_pixel_sampler.py new file mode 100644 index 000000000..833a28768 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/seg/sampler/ohem_pixel_sampler.py @@ -0,0 +1,85 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import PIXEL_SAMPLERS +from .base_pixel_sampler import BasePixelSampler + + +@PIXEL_SAMPLERS.register_module() +class OHEMPixelSampler(BasePixelSampler): + """Online Hard Example Mining Sampler for segmentation. + + Args: + context (nn.Module): The context of sampler, subclass of + :obj:`BaseDecodeHead`. + thresh (float, optional): The threshold for hard example selection. + Below which, are prediction with low confidence. If not + specified, the hard examples will be pixels of top ``min_kept`` + loss. Default: None. + min_kept (int, optional): The minimum number of predictions to keep. + Default: 100000. + """ + + def __init__(self, context, thresh=None, min_kept=100000): + super(OHEMPixelSampler, self).__init__() + self.context = context + assert min_kept > 1 + self.thresh = thresh + self.min_kept = min_kept + + def sample(self, seg_logit, seg_label): + """Sample pixels that have high loss or with low prediction confidence. + + Args: + seg_logit (torch.Tensor): segmentation logits, shape (N, C, H, W) + seg_label (torch.Tensor): segmentation label, shape (N, 1, H, W) + + Returns: + torch.Tensor: segmentation weight, shape (N, H, W) + """ + with torch.no_grad(): + assert seg_logit.shape[2:] == seg_label.shape[2:] + assert seg_label.shape[1] == 1 + seg_label = seg_label.squeeze(1).long() + batch_kept = self.min_kept * seg_label.size(0) + valid_mask = seg_label != self.context.ignore_index + seg_weight = seg_logit.new_zeros(size=seg_label.size()) + valid_seg_weight = seg_weight[valid_mask] + if self.thresh is not None: + seg_prob = F.softmax(seg_logit, dim=1) + + tmp_seg_label = seg_label.clone().unsqueeze(1) + tmp_seg_label[tmp_seg_label == self.context.ignore_index] = 0 + seg_prob = seg_prob.gather(1, tmp_seg_label).squeeze(1) + sort_prob, sort_indices = seg_prob[valid_mask].sort() + + if sort_prob.numel() > 0: + min_threshold = sort_prob[min(batch_kept, + sort_prob.numel() - 1)] + else: + min_threshold = 0.0 + threshold = max(min_threshold, self.thresh) + valid_seg_weight[seg_prob[valid_mask] < threshold] = 1. + else: + if not isinstance(self.context.loss_decode, nn.ModuleList): + losses_decode = [self.context.loss_decode] + else: + losses_decode = self.context.loss_decode + losses = 0.0 + for loss_module in losses_decode: + losses += loss_module( + seg_logit, + seg_label, + weight=None, + ignore_index=self.context.ignore_index, + reduction_override='none') + + # faster than topk according to https://github.com/pytorch/pytorch/issues/22812 # noqa + _, sort_indices = losses[valid_mask].sort(descending=True) + valid_seg_weight[sort_indices[:batch_kept]] = 1. + + seg_weight[valid_mask] = valid_seg_weight + + return seg_weight diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/__init__.py new file mode 100644 index 000000000..be9de558d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/__init__.py @@ -0,0 +1,4 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .misc import add_prefix + +__all__ = ['add_prefix'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/misc.py b/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/misc.py new file mode 100644 index 000000000..282bb8d96 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/core/utils/misc.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +def add_prefix(inputs, prefix): + """Add prefix for dict. + + Args: + inputs (dict): The input dict with str keys. + prefix (str): The prefix to add. + + Returns: + + dict: The dict with keys updated with ``prefix``. + """ + + outputs = dict() + for name, value in inputs.items(): + outputs[f'{prefix}.{name}'] = value + + return outputs diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/__init__.py new file mode 100644 index 000000000..c115ab796 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/__init__.py @@ -0,0 +1,25 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .ade import ADE20KDataset +from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset +from .chase_db1 import ChaseDB1Dataset +from .cityscapes import CityscapesDataset +from .coco_stuff import COCOStuffDataset +from .custom import CustomDataset +from .dark_zurich import DarkZurichDataset +from .dataset_wrappers import ConcatDataset, RepeatDataset +from .drive import DRIVEDataset +from .hrf import HRFDataset +from .loveda import LoveDADataset +from .night_driving import NightDrivingDataset +from .pascal_context import PascalContextDataset, PascalContextDataset59 +from .stare import STAREDataset +from .voc import PascalVOCDataset + +__all__ = [ + 'CustomDataset', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', + 'DATASETS', 'build_dataset', 'PIPELINES', 'CityscapesDataset', + 'PascalVOCDataset', 'ADE20KDataset', 'PascalContextDataset', + 'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset', + 'STAREDataset', 'DarkZurichDataset', 'NightDrivingDataset', + 'COCOStuffDataset', 'LoveDADataset' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/ade.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/ade.py new file mode 100644 index 000000000..db94cebd3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/ade.py @@ -0,0 +1,167 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +import mmcv +import numpy as np +from PIL import Image + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class ADE20KDataset(CustomDataset): + """ADE20K dataset. + + In segmentation map annotation for ADE20K, 0 stands for background, which + is not included in 150 categories. ``reduce_zero_label`` is fixed to True. + The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to + '.png'. + """ + CLASSES = ( + 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', + 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', + 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', + 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', + 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', + 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', + 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', + 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', + 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', + 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', + 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', + 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', + 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', + 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', + 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', + 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', + 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', + 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', + 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', + 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', + 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', + 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', + 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', + 'clock', 'flag') + + PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], + [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], + [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], + [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], + [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], + [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], + [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], + [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], + [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], + [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], + [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], + [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], + [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], + [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], + [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], + [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], + [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], + [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], + [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], + [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], + [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], + [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], + [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], + [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], + [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], + [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], + [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], + [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], + [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], + [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], + [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], + [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], + [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], + [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], + [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], + [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], + [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], + [102, 255, 0], [92, 0, 255]] + + def __init__(self, **kwargs): + super(ADE20KDataset, self).__init__( + img_suffix='.jpg', + seg_map_suffix='.png', + reduce_zero_label=True, + **kwargs) + + def results2img(self, results, imgfile_prefix, to_label_id, indices=None): + """Write the segmentation results to images. + + Args: + results (list[ndarray]): Testing results of the + dataset. + imgfile_prefix (str): The filename prefix of the png files. + If the prefix is "somepath/xxx", + the png files will be named "somepath/xxx.png". + to_label_id (bool): whether convert output to label_id for + submission. + indices (list[int], optional): Indices of input results, if not + set, all the indices of the dataset will be used. + Default: None. + + Returns: + list[str: str]: result txt files which contains corresponding + semantic segmentation images. + """ + if indices is None: + indices = list(range(len(self))) + + mmcv.mkdir_or_exist(imgfile_prefix) + result_files = [] + for result, idx in zip(results, indices): + + filename = self.img_infos[idx]['filename'] + basename = osp.splitext(osp.basename(filename))[0] + + png_filename = osp.join(imgfile_prefix, f'{basename}.png') + + # The index range of official requirement is from 0 to 150. + # But the index range of output is from 0 to 149. + # That is because we set reduce_zero_label=True. + result = result + 1 + + output = Image.fromarray(result.astype(np.uint8)) + output.save(png_filename) + result_files.append(png_filename) + + return result_files + + def format_results(self, + results, + imgfile_prefix, + to_label_id=True, + indices=None): + """Format the results into dir (standard format for ade20k evaluation). + + Args: + results (list): Testing results of the dataset. + imgfile_prefix (str | None): The prefix of images files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". + to_label_id (bool): whether convert output to label_id for + submission. Default: False + indices (list[int], optional): Indices of input results, if not + set, all the indices of the dataset will be used. + Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a list containing + the image paths, tmp_dir is the temporal directory created + for saving json/png files when img_prefix is not specified. + """ + + if indices is None: + indices = list(range(len(self))) + + assert isinstance(results, list), 'results must be a list.' + assert isinstance(indices, list), 'indices must be a list.' + + result_files = self.results2img(results, imgfile_prefix, to_label_id, + indices) + return result_files diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/builder.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/builder.py new file mode 100644 index 000000000..7ab645958 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/builder.py @@ -0,0 +1,182 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import platform +import random +from functools import partial + +import numpy as np +import torch +from mmcv.parallel import collate +from mmcv.runner import get_dist_info +from mmcv.utils import Registry, build_from_cfg, digit_version +from torch.utils.data import DataLoader, DistributedSampler + +if platform.system() != 'Windows': + # https://github.com/pytorch/pytorch/issues/973 + import resource + rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) + base_soft_limit = rlimit[0] + hard_limit = rlimit[1] + soft_limit = min(max(4096, base_soft_limit), hard_limit) + resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) + +DATASETS = Registry('dataset') +PIPELINES = Registry('pipeline') + + +def _concat_dataset(cfg, default_args=None): + """Build :obj:`ConcatDataset by.""" + from .dataset_wrappers import ConcatDataset + img_dir = cfg['img_dir'] + ann_dir = cfg.get('ann_dir', None) + split = cfg.get('split', None) + # pop 'separate_eval' since it is not a valid key for common datasets. + separate_eval = cfg.pop('separate_eval', True) + num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 + if ann_dir is not None: + num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 + else: + num_ann_dir = 0 + if split is not None: + num_split = len(split) if isinstance(split, (list, tuple)) else 1 + else: + num_split = 0 + if num_img_dir > 1: + assert num_img_dir == num_ann_dir or num_ann_dir == 0 + assert num_img_dir == num_split or num_split == 0 + else: + assert num_split == num_ann_dir or num_ann_dir <= 1 + num_dset = max(num_split, num_img_dir) + + datasets = [] + for i in range(num_dset): + data_cfg = copy.deepcopy(cfg) + if isinstance(img_dir, (list, tuple)): + data_cfg['img_dir'] = img_dir[i] + if isinstance(ann_dir, (list, tuple)): + data_cfg['ann_dir'] = ann_dir[i] + if isinstance(split, (list, tuple)): + data_cfg['split'] = split[i] + datasets.append(build_dataset(data_cfg, default_args)) + + return ConcatDataset(datasets, separate_eval) + + +def build_dataset(cfg, default_args=None): + """Build datasets.""" + from .dataset_wrappers import ConcatDataset, RepeatDataset + if isinstance(cfg, (list, tuple)): + dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) + elif cfg['type'] == 'RepeatDataset': + dataset = RepeatDataset( + build_dataset(cfg['dataset'], default_args), cfg['times']) + elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( + cfg.get('split', None), (list, tuple)): + dataset = _concat_dataset(cfg, default_args) + else: + dataset = build_from_cfg(cfg, DATASETS, default_args) + + return dataset + + +def build_dataloader(dataset, + samples_per_gpu, + workers_per_gpu, + num_gpus=1, + dist=True, + shuffle=True, + seed=None, + drop_last=False, + pin_memory=True, + persistent_workers=True, + **kwargs): + """Build PyTorch DataLoader. + + In distributed training, each GPU/process has a dataloader. + In non-distributed training, there is only one dataloader for all GPUs. + + Args: + dataset (Dataset): A PyTorch dataset. + samples_per_gpu (int): Number of training samples on each GPU, i.e., + batch size of each GPU. + workers_per_gpu (int): How many subprocesses to use for data loading + for each GPU. + num_gpus (int): Number of GPUs. Only used in non-distributed training. + dist (bool): Distributed training/test or not. Default: True. + shuffle (bool): Whether to shuffle the data at every epoch. + Default: True. + seed (int | None): Seed to be used. Default: None. + drop_last (bool): Whether to drop the last incomplete batch in epoch. + Default: False + pin_memory (bool): Whether to use pin_memory in DataLoader. + Default: True + persistent_workers (bool): If True, the data loader will not shutdown + the worker processes after a dataset has been consumed once. + This allows to maintain the workers Dataset instances alive. + The argument also has effect in PyTorch>=1.7.0. + Default: True + kwargs: any keyword argument to be used to initialize DataLoader + + Returns: + DataLoader: A PyTorch dataloader. + """ + rank, world_size = get_dist_info() + if dist: + sampler = DistributedSampler( + dataset, world_size, rank, shuffle=shuffle) + shuffle = False + batch_size = samples_per_gpu + num_workers = workers_per_gpu + else: + sampler = None + batch_size = num_gpus * samples_per_gpu + num_workers = num_gpus * workers_per_gpu + + init_fn = partial( + worker_init_fn, num_workers=num_workers, rank=rank, + seed=seed) if seed is not None else None + + if digit_version(torch.__version__) >= digit_version('1.8.0'): + data_loader = DataLoader( + dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=num_workers, + collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), + pin_memory=pin_memory, + shuffle=shuffle, + worker_init_fn=init_fn, + drop_last=drop_last, + persistent_workers=persistent_workers, + **kwargs) + else: + data_loader = DataLoader( + dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=num_workers, + collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), + pin_memory=pin_memory, + shuffle=shuffle, + worker_init_fn=init_fn, + drop_last=drop_last, + **kwargs) + + return data_loader + + +def worker_init_fn(worker_id, num_workers, rank, seed): + """Worker init func for dataloader. + + The seed of each worker equals to num_worker * rank + worker_id + user_seed + + Args: + worker_id (int): Worker id. + num_workers (int): Number of workers. + rank (int): The rank of current process. + seed (int): The random seed to use. + """ + + worker_seed = num_workers * rank + worker_id + seed + np.random.seed(worker_seed) + random.seed(worker_seed) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/chase_db1.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/chase_db1.py new file mode 100644 index 000000000..7f14b2da0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/chase_db1.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class ChaseDB1Dataset(CustomDataset): + """Chase_db1 dataset. + + In segmentation map annotation for Chase_db1, 0 stands for background, + which is included in 2 categories. ``reduce_zero_label`` is fixed to False. + The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to + '_1stHO.png'. + """ + + CLASSES = ('background', 'vessel') + + PALETTE = [[120, 120, 120], [6, 230, 230]] + + def __init__(self, **kwargs): + super(ChaseDB1Dataset, self).__init__( + img_suffix='.png', + seg_map_suffix='_1stHO.png', + reduce_zero_label=False, + **kwargs) + assert osp.exists(self.img_dir) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/cityscapes.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/cityscapes.py new file mode 100644 index 000000000..ed633d00d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/cityscapes.py @@ -0,0 +1,214 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +import mmcv +import numpy as np +from mmcv.utils import print_log +from PIL import Image + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class CityscapesDataset(CustomDataset): + """Cityscapes dataset. + + The ``img_suffix`` is fixed to '_leftImg8bit.png' and ``seg_map_suffix`` is + fixed to '_gtFine_labelTrainIds.png' for Cityscapes dataset. + """ + + CLASSES = ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole', + 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', + 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', + 'bicycle') + + PALETTE = [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], + [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], + [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], + [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], + [0, 80, 100], [0, 0, 230], [119, 11, 32]] + + def __init__(self, + img_suffix='_leftImg8bit.png', + seg_map_suffix='_gtFine_labelTrainIds.png', + **kwargs): + super(CityscapesDataset, self).__init__( + img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs) + + @staticmethod + def _convert_to_label_id(result): + """Convert trainId to id for cityscapes.""" + if isinstance(result, str): + result = np.load(result) + import cityscapesscripts.helpers.labels as CSLabels + result_copy = result.copy() + for trainId, label in CSLabels.trainId2label.items(): + result_copy[result == trainId] = label.id + + return result_copy + + def results2img(self, results, imgfile_prefix, to_label_id, indices=None): + """Write the segmentation results to images. + + Args: + results (list[ndarray]): Testing results of the + dataset. + imgfile_prefix (str): The filename prefix of the png files. + If the prefix is "somepath/xxx", + the png files will be named "somepath/xxx.png". + to_label_id (bool): whether convert output to label_id for + submission. + indices (list[int], optional): Indices of input results, + if not set, all the indices of the dataset will be used. + Default: None. + + Returns: + list[str: str]: result txt files which contains corresponding + semantic segmentation images. + """ + if indices is None: + indices = list(range(len(self))) + + mmcv.mkdir_or_exist(imgfile_prefix) + result_files = [] + for result, idx in zip(results, indices): + if to_label_id: + result = self._convert_to_label_id(result) + filename = self.img_infos[idx]['filename'] + basename = osp.splitext(osp.basename(filename))[0] + + png_filename = osp.join(imgfile_prefix, f'{basename}.png') + + output = Image.fromarray(result.astype(np.uint8)).convert('P') + import cityscapesscripts.helpers.labels as CSLabels + palette = np.zeros((len(CSLabels.id2label), 3), dtype=np.uint8) + for label_id, label in CSLabels.id2label.items(): + palette[label_id] = label.color + + output.putpalette(palette) + output.save(png_filename) + result_files.append(png_filename) + + return result_files + + def format_results(self, + results, + imgfile_prefix, + to_label_id=True, + indices=None): + """Format the results into dir (standard format for Cityscapes + evaluation). + + Args: + results (list): Testing results of the dataset. + imgfile_prefix (str): The prefix of images files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". + to_label_id (bool): whether convert output to label_id for + submission. Default: False + indices (list[int], optional): Indices of input results, + if not set, all the indices of the dataset will be used. + Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a list containing + the image paths, tmp_dir is the temporal directory created + for saving json/png files when img_prefix is not specified. + """ + if indices is None: + indices = list(range(len(self))) + + assert isinstance(results, list), 'results must be a list.' + assert isinstance(indices, list), 'indices must be a list.' + + result_files = self.results2img(results, imgfile_prefix, to_label_id, + indices) + + return result_files + + def evaluate(self, + results, + metric='mIoU', + logger=None, + imgfile_prefix=None): + """Evaluation in Cityscapes/default protocol. + + Args: + results (list): Testing results of the dataset. + metric (str | list[str]): Metrics to be evaluated. + logger (logging.Logger | None | str): Logger used for printing + related information during evaluation. Default: None. + imgfile_prefix (str | None): The prefix of output image file, + for cityscapes evaluation only. It includes the file path and + the prefix of filename, e.g., "a/b/prefix". + If results are evaluated with cityscapes protocol, it would be + the prefix of output png files. The output files would be + png images under folder "a/b/prefix/xxx.png", where "xxx" is + the image name of cityscapes. If not specified, a temp file + will be created for evaluation. + Default: None. + + Returns: + dict[str, float]: Cityscapes/default metrics. + """ + + eval_results = dict() + metrics = metric.copy() if isinstance(metric, list) else [metric] + if 'cityscapes' in metrics: + eval_results.update( + self._evaluate_cityscapes(results, logger, imgfile_prefix)) + metrics.remove('cityscapes') + if len(metrics) > 0: + eval_results.update( + super(CityscapesDataset, + self).evaluate(results, metrics, logger)) + + return eval_results + + def _evaluate_cityscapes(self, results, logger, imgfile_prefix): + """Evaluation in Cityscapes protocol. + + Args: + results (list): Testing results of the dataset. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + imgfile_prefix (str | None): The prefix of output image file + + Returns: + dict[str: float]: Cityscapes evaluation results. + """ + try: + import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as CSEval # noqa + except ImportError: + raise ImportError('Please run "pip install cityscapesscripts" to ' + 'install cityscapesscripts first.') + msg = 'Evaluating in Cityscapes style' + if logger is None: + msg = '\n' + msg + print_log(msg, logger=logger) + + result_dir = imgfile_prefix + + eval_results = dict() + print_log(f'Evaluating results under {result_dir} ...', logger=logger) + + CSEval.args.evalInstLevelScore = True + CSEval.args.predictionPath = osp.abspath(result_dir) + CSEval.args.evalPixelAccuracy = True + CSEval.args.JSONOutput = False + + seg_map_list = [] + pred_list = [] + + # when evaluating with official cityscapesscripts, + # **_gtFine_labelIds.png is used + for seg_map in mmcv.scandir( + self.ann_dir, 'gtFine_labelIds.png', recursive=True): + seg_map_list.append(osp.join(self.ann_dir, seg_map)) + pred_list.append(CSEval.getPrediction(CSEval.args, seg_map)) + + eval_results.update( + CSEval.evaluateImgLists(pred_list, seg_map_list, CSEval.args)) + + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/coco_stuff.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/coco_stuff.py new file mode 100644 index 000000000..546a01428 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/coco_stuff.py @@ -0,0 +1,93 @@ +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class COCOStuffDataset(CustomDataset): + """COCO-Stuff dataset. + + In segmentation map annotation for COCO-Stuff, Train-IDs of the 10k version + are from 1 to 171, where 0 is the ignore index, and Train-ID of COCO Stuff + 164k is from 0 to 170, where 255 is the ignore index. So, they are all 171 + semantic categories. ``reduce_zero_label`` is set to True and False for the + 10k and 164k versions, respectively. The ``img_suffix`` is fixed to '.jpg', + and ``seg_map_suffix`` is fixed to '.png'. + """ + CLASSES = ( + 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', + 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', + 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', + 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', + 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', + 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', + 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', + 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', + 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', + 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', + 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', + 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', + 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', + 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', + 'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', + 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', + 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', + 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', + 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', + 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', + 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', + 'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', + 'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', + 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', + 'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', + 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', + 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel', + 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', + 'window-blind', 'window-other', 'wood') + + PALETTE = [[0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], + [0, 64, 64], [0, 192, 224], [0, 192, 192], [128, 192, 64], + [0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], + [0, 0, 64], [0, 160, 192], [128, 0, 96], [128, 0, 192], + [0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192], + [128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], + [64, 128, 32], [0, 160, 0], [0, 0, 0], [192, 128, 160], + [0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], + [0, 128, 0], [192, 128, 32], [128, 96, 128], [0, 0, 128], + [64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], + [0, 96, 128], [128, 128, 128], [64, 0, 160], [128, 224, 128], + [128, 128, 64], [192, 0, 32], [128, 96, 0], [128, 0, 192], + [0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], + [64, 96, 0], [0, 128, 192], [0, 128, 160], [192, 224, 0], + [0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192], + [0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], + [64, 32, 128], [128, 192, 192], [0, 0, 160], [192, 160, 128], + [128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], + [64, 128, 96], [64, 160, 0], [0, 64, 0], [192, 128, 224], + [64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0], + [0, 192, 0], [192, 128, 96], [192, 96, 128], [0, 64, 128], + [64, 0, 96], [64, 224, 128], [128, 64, 0], [192, 0, 224], + [64, 96, 128], [128, 192, 128], [64, 0, 224], [192, 224, 128], + [128, 192, 64], [192, 0, 96], [192, 96, 0], [128, 64, 192], + [0, 128, 96], [0, 224, 0], [64, 64, 64], [128, 128, 224], + [0, 96, 0], [64, 192, 192], [0, 128, 224], [128, 224, 0], + [64, 192, 64], [128, 128, 96], [128, 32, 128], [64, 0, 192], + [0, 64, 96], [0, 160, 128], [192, 0, 64], [128, 64, 224], + [0, 32, 128], [192, 128, 192], [0, 64, 224], [128, 160, 128], + [192, 128, 0], [128, 64, 32], [128, 32, 64], [192, 0, 128], + [64, 192, 32], [0, 160, 64], [64, 0, 0], [192, 192, 160], + [0, 32, 64], [64, 128, 128], [64, 192, 160], [128, 160, 64], + [64, 128, 0], [192, 192, 32], [128, 96, 192], [64, 0, 128], + [64, 64, 32], [0, 224, 192], [192, 0, 0], [192, 64, 160], + [0, 96, 192], [192, 128, 128], [64, 64, 160], [128, 224, 192], + [192, 128, 64], [192, 64, 32], [128, 96, 64], [192, 0, 192], + [0, 192, 32], [64, 224, 64], [64, 0, 64], [128, 192, 160], + [64, 96, 64], [64, 128, 192], [0, 192, 160], [192, 224, 64], + [64, 128, 64], [128, 192, 32], [192, 32, 192], [64, 64, 192], + [0, 64, 32], [64, 160, 192], [192, 64, 64], [128, 64, 160], + [64, 32, 192], [192, 192, 192], [0, 64, 160], [192, 160, 192], + [192, 192, 0], [128, 64, 96], [192, 32, 64], [192, 64, 128], + [64, 192, 96], [64, 160, 64], [64, 64, 0]] + + def __init__(self, **kwargs): + super(COCOStuffDataset, self).__init__( + img_suffix='.jpg', seg_map_suffix='_labelTrainIds.png', **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/custom.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/custom.py new file mode 100644 index 000000000..872b2b844 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/custom.py @@ -0,0 +1,457 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import warnings +from collections import OrderedDict + +import mmcv +import numpy as np +from mmcv.utils import print_log +from prettytable import PrettyTable +from torch.utils.data import Dataset + +from mmseg.core import eval_metrics, intersect_and_union, pre_eval_to_metrics +from mmseg.utils import get_root_logger +from .builder import DATASETS +from .pipelines import Compose, LoadAnnotations + + +@DATASETS.register_module() +class CustomDataset(Dataset): + """Custom dataset for semantic segmentation. An example of file structure + is as followed. + + .. code-block:: none + + ├── data + │ ├── my_dataset + │ │ ├── img_dir + │ │ │ ├── train + │ │ │ │ ├── xxx{img_suffix} + │ │ │ │ ├── yyy{img_suffix} + │ │ │ │ ├── zzz{img_suffix} + │ │ │ ├── val + │ │ ├── ann_dir + │ │ │ ├── train + │ │ │ │ ├── xxx{seg_map_suffix} + │ │ │ │ ├── yyy{seg_map_suffix} + │ │ │ │ ├── zzz{seg_map_suffix} + │ │ │ ├── val + + The img/gt_semantic_seg pair of CustomDataset should be of the same + except suffix. A valid img/gt_semantic_seg filename pair should be like + ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included + in the suffix). If split is given, then ``xxx`` is specified in txt file. + Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. + Please refer to ``docs/tutorials/new_dataset.md`` for more details. + + + Args: + pipeline (list[dict]): Processing pipeline + img_dir (str): Path to image directory + img_suffix (str): Suffix of images. Default: '.jpg' + ann_dir (str, optional): Path to annotation directory. Default: None + seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' + split (str, optional): Split txt file. If split is specified, only + file with suffix in the splits will be loaded. Otherwise, all + images in img_dir/ann_dir will be loaded. Default: None + data_root (str, optional): Data root for img_dir/ann_dir. Default: + None. + test_mode (bool): If test_mode=True, gt wouldn't be loaded. + ignore_index (int): The label index to be ignored. Default: 255 + reduce_zero_label (bool): Whether to mark label zero as ignored. + Default: False + classes (str | Sequence[str], optional): Specify classes to load. + If is None, ``cls.CLASSES`` will be used. Default: None. + palette (Sequence[Sequence[int]]] | np.ndarray | None): + The palette of segmentation map. If None is given, and + self.PALETTE is None, random palette will be generated. + Default: None + gt_seg_map_loader_cfg (dict, optional): build LoadAnnotations to + load gt for evaluation, load from disk by default. Default: None. + """ + + CLASSES = None + + PALETTE = None + + def __init__(self, + pipeline, + img_dir, + img_suffix='.jpg', + ann_dir=None, + seg_map_suffix='.png', + split=None, + data_root=None, + test_mode=False, + ignore_index=255, + reduce_zero_label=False, + classes=None, + palette=None, + gt_seg_map_loader_cfg=None): + self.pipeline = Compose(pipeline) + self.img_dir = img_dir + self.img_suffix = img_suffix + self.ann_dir = ann_dir + self.seg_map_suffix = seg_map_suffix + self.split = split + self.data_root = data_root + self.test_mode = test_mode + self.ignore_index = ignore_index + self.reduce_zero_label = reduce_zero_label + self.label_map = None + self.CLASSES, self.PALETTE = self.get_classes_and_palette( + classes, palette) + self.gt_seg_map_loader = LoadAnnotations( + ) if gt_seg_map_loader_cfg is None else LoadAnnotations( + **gt_seg_map_loader_cfg) + + if test_mode: + assert self.CLASSES is not None, \ + '`cls.CLASSES` or `classes` should be specified when testing' + + # join paths if data_root is specified + if self.data_root is not None: + if not osp.isabs(self.img_dir): + self.img_dir = osp.join(self.data_root, self.img_dir) + if not (self.ann_dir is None or osp.isabs(self.ann_dir)): + self.ann_dir = osp.join(self.data_root, self.ann_dir) + if not (self.split is None or osp.isabs(self.split)): + self.split = osp.join(self.data_root, self.split) + + # load annotations + self.img_infos = self.load_annotations(self.img_dir, self.img_suffix, + self.ann_dir, + self.seg_map_suffix, self.split) + + def __len__(self): + """Total number of samples of data.""" + return len(self.img_infos) + + def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix, + split): + """Load annotation from directory. + + Args: + img_dir (str): Path to image directory + img_suffix (str): Suffix of images. + ann_dir (str|None): Path to annotation directory. + seg_map_suffix (str|None): Suffix of segmentation maps. + split (str|None): Split txt file. If split is specified, only file + with suffix in the splits will be loaded. Otherwise, all images + in img_dir/ann_dir will be loaded. Default: None + + Returns: + list[dict]: All image info of dataset. + """ + + img_infos = [] + if split is not None: + with open(split) as f: + for line in f: + img_name = line.strip() + img_info = dict(filename=img_name + img_suffix) + if ann_dir is not None: + seg_map = img_name + seg_map_suffix + img_info['ann'] = dict(seg_map=seg_map) + img_infos.append(img_info) + else: + for img in mmcv.scandir(img_dir, img_suffix, recursive=True): + img_info = dict(filename=img) + if ann_dir is not None: + seg_map = img.replace(img_suffix, seg_map_suffix) + img_info['ann'] = dict(seg_map=seg_map) + img_infos.append(img_info) + img_infos = sorted(img_infos, key=lambda x: x['filename']) + + print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger()) + return img_infos + + def get_ann_info(self, idx): + """Get annotation by index. + + Args: + idx (int): Index of data. + + Returns: + dict: Annotation info of specified index. + """ + + return self.img_infos[idx]['ann'] + + def pre_pipeline(self, results): + """Prepare results dict for pipeline.""" + results['seg_fields'] = [] + results['img_prefix'] = self.img_dir + results['seg_prefix'] = self.ann_dir + if self.custom_classes: + results['label_map'] = self.label_map + + def __getitem__(self, idx): + """Get training/test data after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Training/test data (with annotation if `test_mode` is set + False). + """ + + if self.test_mode: + return self.prepare_test_img(idx) + else: + return self.prepare_train_img(idx) + + def prepare_train_img(self, idx): + """Get training data and annotations after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Training data and annotation after pipeline with new keys + introduced by pipeline. + """ + + img_info = self.img_infos[idx] + ann_info = self.get_ann_info(idx) + results = dict(img_info=img_info, ann_info=ann_info) + self.pre_pipeline(results) + return self.pipeline(results) + + def prepare_test_img(self, idx): + """Get testing data after pipeline. + + Args: + idx (int): Index of data. + + Returns: + dict: Testing data after pipeline with new keys introduced by + pipeline. + """ + + img_info = self.img_infos[idx] + results = dict(img_info=img_info) + self.pre_pipeline(results) + return self.pipeline(results) + + def format_results(self, results, imgfile_prefix, indices=None, **kwargs): + """Place holder to format result to dataset specific output.""" + raise NotImplementedError + + def get_gt_seg_map_by_idx(self, index): + """Get one ground truth segmentation map for evaluation.""" + ann_info = self.get_ann_info(index) + results = dict(ann_info=ann_info) + self.pre_pipeline(results) + self.gt_seg_map_loader(results) + return results['gt_semantic_seg'] + + def get_gt_seg_maps(self, efficient_test=None): + """Get ground truth segmentation maps for evaluation.""" + if efficient_test is not None: + warnings.warn( + 'DeprecationWarning: ``efficient_test`` has been deprecated ' + 'since MMSeg v0.16, the ``get_gt_seg_maps()`` is CPU memory ' + 'friendly by default. ') + + for idx in range(len(self)): + ann_info = self.get_ann_info(idx) + results = dict(ann_info=ann_info) + self.pre_pipeline(results) + self.gt_seg_map_loader(results) + yield results['gt_semantic_seg'] + + def pre_eval(self, preds, indices): + """Collect eval result from each iteration. + + Args: + preds (list[torch.Tensor] | torch.Tensor): the segmentation logit + after argmax, shape (N, H, W). + indices (list[int] | int): the prediction related ground truth + indices. + + Returns: + list[torch.Tensor]: (area_intersect, area_union, area_prediction, + area_ground_truth). + """ + # In order to compat with batch inference + if not isinstance(indices, list): + indices = [indices] + if not isinstance(preds, list): + preds = [preds] + + pre_eval_results = [] + + for pred, index in zip(preds, indices): + seg_map = self.get_gt_seg_map_by_idx(index) + pre_eval_results.append( + intersect_and_union(pred, seg_map, len(self.CLASSES), + self.ignore_index, self.label_map, + self.reduce_zero_label)) + + return pre_eval_results + + def get_classes_and_palette(self, classes=None, palette=None): + """Get class names of current dataset. + + Args: + classes (Sequence[str] | str | None): If classes is None, use + default CLASSES defined by builtin dataset. If classes is a + string, take it as a file name. The file contains the name of + classes where each line contains one class name. If classes is + a tuple or list, override the CLASSES defined by the dataset. + palette (Sequence[Sequence[int]]] | np.ndarray | None): + The palette of segmentation map. If None is given, random + palette will be generated. Default: None + """ + if classes is None: + self.custom_classes = False + return self.CLASSES, self.PALETTE + + self.custom_classes = True + if isinstance(classes, str): + # take it as a file path + class_names = mmcv.list_from_file(classes) + elif isinstance(classes, (tuple, list)): + class_names = classes + else: + raise ValueError(f'Unsupported type {type(classes)} of classes.') + + if self.CLASSES: + if not set(class_names).issubset(self.CLASSES): + raise ValueError('classes is not a subset of CLASSES.') + + # dictionary, its keys are the old label ids and its values + # are the new label ids. + # used for changing pixel labels in load_annotations. + self.label_map = {} + for i, c in enumerate(self.CLASSES): + if c not in class_names: + self.label_map[i] = -1 + else: + self.label_map[i] = class_names.index(c) + + palette = self.get_palette_for_custom_classes(class_names, palette) + + return class_names, palette + + def get_palette_for_custom_classes(self, class_names, palette=None): + + if self.label_map is not None: + # return subset of palette + palette = [] + for old_id, new_id in sorted( + self.label_map.items(), key=lambda x: x[1]): + if new_id != -1: + palette.append(self.PALETTE[old_id]) + palette = type(self.PALETTE)(palette) + + elif palette is None: + if self.PALETTE is None: + palette = np.random.randint(0, 255, size=(len(class_names), 3)) + else: + palette = self.PALETTE + + return palette + + def evaluate(self, + results, + metric='mIoU', + logger=None, + gt_seg_maps=None, + **kwargs): + """Evaluate the dataset. + + Args: + results (list[tuple[torch.Tensor]] | list[str]): per image pre_eval + results or predict segmentation map for computing evaluation + metric. + metric (str | list[str]): Metrics to be evaluated. 'mIoU', + 'mDice' and 'mFscore' are supported. + logger (logging.Logger | None | str): Logger used for printing + related information during evaluation. Default: None. + gt_seg_maps (generator[ndarray]): Custom gt seg maps as input, + used in ConcatDataset + + Returns: + dict[str, float]: Default metrics. + """ + if isinstance(metric, str): + metric = [metric] + allowed_metrics = ['mIoU', 'mDice', 'mFscore'] + if not set(metric).issubset(set(allowed_metrics)): + raise KeyError('metric {} is not supported'.format(metric)) + + eval_results = {} + # test a list of files + if mmcv.is_list_of(results, np.ndarray) or mmcv.is_list_of( + results, str): + if gt_seg_maps is None: + gt_seg_maps = self.get_gt_seg_maps() + num_classes = len(self.CLASSES) + ret_metrics = eval_metrics( + results, + gt_seg_maps, + num_classes, + self.ignore_index, + metric, + label_map=self.label_map, + reduce_zero_label=self.reduce_zero_label) + # test a list of pre_eval_results + else: + ret_metrics = pre_eval_to_metrics(results, metric) + + # Because dataset.CLASSES is required for per-eval. + if self.CLASSES is None: + class_names = tuple(range(num_classes)) + else: + class_names = self.CLASSES + + # summary table + ret_metrics_summary = OrderedDict({ + ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2) + for ret_metric, ret_metric_value in ret_metrics.items() + }) + + # each class table + ret_metrics.pop('aAcc', None) + ret_metrics_class = OrderedDict({ + ret_metric: np.round(ret_metric_value * 100, 2) + for ret_metric, ret_metric_value in ret_metrics.items() + }) + ret_metrics_class.update({'Class': class_names}) + ret_metrics_class.move_to_end('Class', last=False) + + # for logger + class_table_data = PrettyTable() + for key, val in ret_metrics_class.items(): + class_table_data.add_column(key, val) + + summary_table_data = PrettyTable() + for key, val in ret_metrics_summary.items(): + if key == 'aAcc': + summary_table_data.add_column(key, [val]) + else: + summary_table_data.add_column('m' + key, [val]) + + print_log('per class results:', logger) + print_log('\n' + class_table_data.get_string(), logger=logger) + print_log('Summary:', logger) + print_log('\n' + summary_table_data.get_string(), logger=logger) + + # each metric dict + for key, value in ret_metrics_summary.items(): + if key == 'aAcc': + eval_results[key] = value / 100.0 + else: + eval_results['m' + key] = value / 100.0 + + ret_metrics_class.pop('Class', None) + for key, value in ret_metrics_class.items(): + eval_results.update({ + key + '.' + str(name): value[idx] / 100.0 + for idx, name in enumerate(class_names) + }) + + return eval_results diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dark_zurich.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dark_zurich.py new file mode 100644 index 000000000..efc088f31 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dark_zurich.py @@ -0,0 +1,13 @@ +from .builder import DATASETS +from .cityscapes import CityscapesDataset + + +@DATASETS.register_module() +class DarkZurichDataset(CityscapesDataset): + """DarkZurichDataset dataset.""" + + def __init__(self, **kwargs): + super().__init__( + img_suffix='_rgb_anon.png', + seg_map_suffix='_gt_labelTrainIds.png', + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dataset_wrappers.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dataset_wrappers.py new file mode 100644 index 000000000..0349332ee --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/dataset_wrappers.py @@ -0,0 +1,190 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import bisect +from itertools import chain + +import mmcv +import numpy as np +from mmcv.utils import print_log +from torch.utils.data.dataset import ConcatDataset as _ConcatDataset + +from .builder import DATASETS +from .cityscapes import CityscapesDataset + + +@DATASETS.register_module() +class ConcatDataset(_ConcatDataset): + """A wrapper of concatenated dataset. + + Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but + support evaluation and formatting results + + Args: + datasets (list[:obj:`Dataset`]): A list of datasets. + separate_eval (bool): Whether to evaluate the concatenated + dataset results separately, Defaults to True. + """ + + def __init__(self, datasets, separate_eval=True): + super(ConcatDataset, self).__init__(datasets) + self.CLASSES = datasets[0].CLASSES + self.PALETTE = datasets[0].PALETTE + self.separate_eval = separate_eval + assert separate_eval in [True, False], \ + f'separate_eval can only be True or False,' \ + f'but get {separate_eval}' + if any([isinstance(ds, CityscapesDataset) for ds in datasets]): + raise NotImplementedError( + 'Evaluating ConcatDataset containing CityscapesDataset' + 'is not supported!') + + def evaluate(self, results, logger=None, **kwargs): + """Evaluate the results. + + Args: + results (list[tuple[torch.Tensor]] | list[str]]): per image + pre_eval results or predict segmentation map for + computing evaluation metric. + logger (logging.Logger | str | None): Logger used for printing + related information during evaluation. Default: None. + + Returns: + dict[str: float]: evaluate results of the total dataset + or each separate + dataset if `self.separate_eval=True`. + """ + assert len(results) == self.cumulative_sizes[-1], \ + ('Dataset and results have different sizes: ' + f'{self.cumulative_sizes[-1]} v.s. {len(results)}') + + # Check whether all the datasets support evaluation + for dataset in self.datasets: + assert hasattr(dataset, 'evaluate'), \ + f'{type(dataset)} does not implement evaluate function' + + if self.separate_eval: + dataset_idx = -1 + total_eval_results = dict() + for size, dataset in zip(self.cumulative_sizes, self.datasets): + start_idx = 0 if dataset_idx == -1 else \ + self.cumulative_sizes[dataset_idx] + end_idx = self.cumulative_sizes[dataset_idx + 1] + + results_per_dataset = results[start_idx:end_idx] + print_log( + f'\nEvaluateing {dataset.img_dir} with ' + f'{len(results_per_dataset)} images now', + logger=logger) + + eval_results_per_dataset = dataset.evaluate( + results_per_dataset, logger=logger, **kwargs) + dataset_idx += 1 + for k, v in eval_results_per_dataset.items(): + total_eval_results.update({f'{dataset_idx}_{k}': v}) + + return total_eval_results + + if len(set([type(ds) for ds in self.datasets])) != 1: + raise NotImplementedError( + 'All the datasets should have same types when ' + 'self.separate_eval=False') + else: + if mmcv.is_list_of(results, np.ndarray) or mmcv.is_list_of( + results, str): + # merge the generators of gt_seg_maps + gt_seg_maps = chain( + *[dataset.get_gt_seg_maps() for dataset in self.datasets]) + else: + # if the results are `pre_eval` results, + # we do not need gt_seg_maps to evaluate + gt_seg_maps = None + eval_results = self.datasets[0].evaluate( + results, gt_seg_maps=gt_seg_maps, logger=logger, **kwargs) + return eval_results + + def get_dataset_idx_and_sample_idx(self, indice): + """Return dataset and sample index when given an indice of + ConcatDataset. + + Args: + indice (int): indice of sample in ConcatDataset + + Returns: + int: the index of sub dataset the sample belong to + int: the index of sample in its corresponding subset + """ + if indice < 0: + if -indice > len(self): + raise ValueError( + 'absolute value of index should not exceed dataset length') + indice = len(self) + indice + dataset_idx = bisect.bisect_right(self.cumulative_sizes, indice) + if dataset_idx == 0: + sample_idx = indice + else: + sample_idx = indice - self.cumulative_sizes[dataset_idx - 1] + return dataset_idx, sample_idx + + def format_results(self, results, imgfile_prefix, indices=None, **kwargs): + """format result for every sample of ConcatDataset.""" + if indices is None: + indices = list(range(len(self))) + + assert isinstance(results, list), 'results must be a list.' + assert isinstance(indices, list), 'indices must be a list.' + + ret_res = [] + for i, indice in enumerate(indices): + dataset_idx, sample_idx = self.get_dataset_idx_and_sample_idx( + indice) + res = self.datasets[dataset_idx].format_results( + [results[i]], + imgfile_prefix + f'/{dataset_idx}', + indices=[sample_idx], + **kwargs) + ret_res.append(res) + return sum(ret_res, []) + + def pre_eval(self, preds, indices): + """do pre eval for every sample of ConcatDataset.""" + # In order to compat with batch inference + if not isinstance(indices, list): + indices = [indices] + if not isinstance(preds, list): + preds = [preds] + ret_res = [] + for i, indice in enumerate(indices): + dataset_idx, sample_idx = self.get_dataset_idx_and_sample_idx( + indice) + res = self.datasets[dataset_idx].pre_eval(preds[i], sample_idx) + ret_res.append(res) + return sum(ret_res, []) + + +@DATASETS.register_module() +class RepeatDataset(object): + """A wrapper of repeated dataset. + + The length of repeated dataset will be `times` larger than the original + dataset. This is useful when the data loading time is long but the dataset + is small. Using RepeatDataset can reduce the data loading time between + epochs. + + Args: + dataset (:obj:`Dataset`): The dataset to be repeated. + times (int): Repeat times. + """ + + def __init__(self, dataset, times): + self.dataset = dataset + self.times = times + self.CLASSES = dataset.CLASSES + self.PALETTE = dataset.PALETTE + self._ori_len = len(self.dataset) + + def __getitem__(self, idx): + """Get item from original dataset.""" + return self.dataset[idx % self._ori_len] + + def __len__(self): + """The length is multiplied by ``times``""" + return self.times * self._ori_len diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/drive.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/drive.py new file mode 100644 index 000000000..650991147 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/drive.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class DRIVEDataset(CustomDataset): + """DRIVE dataset. + + In segmentation map annotation for DRIVE, 0 stands for background, which is + included in 2 categories. ``reduce_zero_label`` is fixed to False. The + ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to + '_manual1.png'. + """ + + CLASSES = ('background', 'vessel') + + PALETTE = [[120, 120, 120], [6, 230, 230]] + + def __init__(self, **kwargs): + super(DRIVEDataset, self).__init__( + img_suffix='.png', + seg_map_suffix='_manual1.png', + reduce_zero_label=False, + **kwargs) + assert osp.exists(self.img_dir) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/hrf.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/hrf.py new file mode 100644 index 000000000..e4e10aeaf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/hrf.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class HRFDataset(CustomDataset): + """HRF dataset. + + In segmentation map annotation for HRF, 0 stands for background, which is + included in 2 categories. ``reduce_zero_label`` is fixed to False. The + ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to + '.png'. + """ + + CLASSES = ('background', 'vessel') + + PALETTE = [[120, 120, 120], [6, 230, 230]] + + def __init__(self, **kwargs): + super(HRFDataset, self).__init__( + img_suffix='.png', + seg_map_suffix='.png', + reduce_zero_label=False, + **kwargs) + assert osp.exists(self.img_dir) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/loveda.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/loveda.py new file mode 100644 index 000000000..90d654f62 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/loveda.py @@ -0,0 +1,92 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +import mmcv +import numpy as np +from PIL import Image + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class LoveDADataset(CustomDataset): + """LoveDA dataset. + + In segmentation map annotation for LoveDA, 0 is the ignore index. + ``reduce_zero_label`` should be set to True. The ``img_suffix`` and + ``seg_map_suffix`` are both fixed to '.png'. + """ + CLASSES = ('background', 'building', 'road', 'water', 'barren', 'forest', + 'agricultural') + + PALETTE = [[255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 0, 255], + [159, 129, 183], [0, 255, 0], [255, 195, 128]] + + def __init__(self, **kwargs): + super(LoveDADataset, self).__init__( + img_suffix='.png', + seg_map_suffix='.png', + reduce_zero_label=True, + **kwargs) + + def results2img(self, results, imgfile_prefix, indices=None): + """Write the segmentation results to images. + + Args: + results (list[ndarray]): Testing results of the + dataset. + imgfile_prefix (str): The filename prefix of the png files. + If the prefix is "somepath/xxx", + the png files will be named "somepath/xxx.png". + indices (list[int], optional): Indices of input results, if not + set, all the indices of the dataset will be used. + Default: None. + + Returns: + list[str: str]: result txt files which contains corresponding + semantic segmentation images. + """ + + mmcv.mkdir_or_exist(imgfile_prefix) + result_files = [] + for result, idx in zip(results, indices): + + filename = self.img_infos[idx]['filename'] + basename = osp.splitext(osp.basename(filename))[0] + + png_filename = osp.join(imgfile_prefix, f'{basename}.png') + + # The index range of official requirement is from 0 to 6. + output = Image.fromarray(result.astype(np.uint8)) + output.save(png_filename) + result_files.append(png_filename) + + return result_files + + def format_results(self, results, imgfile_prefix, indices=None): + """Format the results into dir (standard format for LoveDA evaluation). + + Args: + results (list): Testing results of the dataset. + imgfile_prefix (str): The prefix of images files. It + includes the file path and the prefix of filename, e.g., + "a/b/prefix". + indices (list[int], optional): Indices of input results, + if not set, all the indices of the dataset will be used. + Default: None. + + Returns: + tuple: (result_files, tmp_dir), result_files is a list containing + the image paths, tmp_dir is the temporal directory created + for saving json/png files when img_prefix is not specified. + """ + if indices is None: + indices = list(range(len(self))) + + assert isinstance(results, list), 'results must be a list.' + assert isinstance(indices, list), 'indices must be a list.' + + result_files = self.results2img(results, imgfile_prefix, indices) + + return result_files diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/night_driving.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/night_driving.py new file mode 100644 index 000000000..a9289a27a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/night_driving.py @@ -0,0 +1,13 @@ +from .builder import DATASETS +from .cityscapes import CityscapesDataset + + +@DATASETS.register_module() +class NightDrivingDataset(CityscapesDataset): + """NightDrivingDataset dataset.""" + + def __init__(self, **kwargs): + super().__init__( + img_suffix='_leftImg8bit.png', + seg_map_suffix='_gtCoarse_labelTrainIds.png', + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pascal_context.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pascal_context.py new file mode 100644 index 000000000..1e7a09d72 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pascal_context.py @@ -0,0 +1,104 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class PascalContextDataset(CustomDataset): + """PascalContext dataset. + + In segmentation map annotation for PascalContext, 0 stands for background, + which is included in 60 categories. ``reduce_zero_label`` is fixed to + False. The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is + fixed to '.png'. + + Args: + split (str): Split txt file for PascalContext. + """ + + CLASSES = ('background', 'aeroplane', 'bag', 'bed', 'bedclothes', 'bench', + 'bicycle', 'bird', 'boat', 'book', 'bottle', 'building', 'bus', + 'cabinet', 'car', 'cat', 'ceiling', 'chair', 'cloth', + 'computer', 'cow', 'cup', 'curtain', 'dog', 'door', 'fence', + 'floor', 'flower', 'food', 'grass', 'ground', 'horse', + 'keyboard', 'light', 'motorbike', 'mountain', 'mouse', 'person', + 'plate', 'platform', 'pottedplant', 'road', 'rock', 'sheep', + 'shelves', 'sidewalk', 'sign', 'sky', 'snow', 'sofa', 'table', + 'track', 'train', 'tree', 'truck', 'tvmonitor', 'wall', 'water', + 'window', 'wood') + + PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], + [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], + [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], + [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], + [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], + [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], + [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], + [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], + [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], + [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], + [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], + [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], + [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], + [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], + [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]] + + def __init__(self, split, **kwargs): + super(PascalContextDataset, self).__init__( + img_suffix='.jpg', + seg_map_suffix='.png', + split=split, + reduce_zero_label=False, + **kwargs) + assert osp.exists(self.img_dir) and self.split is not None + + +@DATASETS.register_module() +class PascalContextDataset59(CustomDataset): + """PascalContext dataset. + + In segmentation map annotation for PascalContext, 0 stands for background, + which is included in 60 categories. ``reduce_zero_label`` is fixed to + False. The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is + fixed to '.png'. + + Args: + split (str): Split txt file for PascalContext. + """ + + CLASSES = ('aeroplane', 'bag', 'bed', 'bedclothes', 'bench', 'bicycle', + 'bird', 'boat', 'book', 'bottle', 'building', 'bus', 'cabinet', + 'car', 'cat', 'ceiling', 'chair', 'cloth', 'computer', 'cow', + 'cup', 'curtain', 'dog', 'door', 'fence', 'floor', 'flower', + 'food', 'grass', 'ground', 'horse', 'keyboard', 'light', + 'motorbike', 'mountain', 'mouse', 'person', 'plate', 'platform', + 'pottedplant', 'road', 'rock', 'sheep', 'shelves', 'sidewalk', + 'sign', 'sky', 'snow', 'sofa', 'table', 'track', 'train', + 'tree', 'truck', 'tvmonitor', 'wall', 'water', 'window', 'wood') + + PALETTE = [[180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], + [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], + [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], + [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], + [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], + [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], + [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], + [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], + [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], + [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], + [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], + [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], + [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], + [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], + [0, 235, 255], [0, 173, 255], [31, 0, 255]] + + def __init__(self, split, **kwargs): + super(PascalContextDataset59, self).__init__( + img_suffix='.jpg', + seg_map_suffix='.png', + split=split, + reduce_zero_label=True, + **kwargs) + assert osp.exists(self.img_dir) and self.split is not None diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/__init__.py new file mode 100644 index 000000000..91d9e4749 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/__init__.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .compose import Compose +from .formatting import (Collect, ImageToTensor, ToDataContainer, ToTensor, + Transpose, to_tensor) +from .loading import LoadAnnotations, LoadImageFromFile +from .test_time_aug import MultiScaleFlipAug +from .transforms import (CLAHE, AdjustGamma, Normalize, Pad, + PhotoMetricDistortion, RandomCrop, RandomCutOut, + RandomFlip, RandomRotate, Rerange, Resize, RGB2Gray, + SegRescale) + +__all__ = [ + 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', + 'Transpose', 'Collect', 'LoadAnnotations', 'LoadImageFromFile', + 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', + 'Normalize', 'SegRescale', 'PhotoMetricDistortion', 'RandomRotate', + 'AdjustGamma', 'CLAHE', 'Rerange', 'RGB2Gray', 'RandomCutOut' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/compose.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/compose.py new file mode 100644 index 000000000..30280c133 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/compose.py @@ -0,0 +1,52 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import collections + +from mmcv.utils import build_from_cfg + +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class Compose(object): + """Compose multiple transforms sequentially. + + Args: + transforms (Sequence[dict | callable]): Sequence of transform object or + config dict to be composed. + """ + + def __init__(self, transforms): + assert isinstance(transforms, collections.abc.Sequence) + self.transforms = [] + for transform in transforms: + if isinstance(transform, dict): + transform = build_from_cfg(transform, PIPELINES) + self.transforms.append(transform) + elif callable(transform): + self.transforms.append(transform) + else: + raise TypeError('transform must be callable or a dict') + + def __call__(self, data): + """Call function to apply transforms sequentially. + + Args: + data (dict): A result dict contains the data to transform. + + Returns: + dict: Transformed data. + """ + + for t in self.transforms: + data = t(data) + if data is None: + return None + return data + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += f' {t}' + format_string += '\n)' + return format_string diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formating.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formating.py new file mode 100644 index 000000000..f6e53bfeb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formating.py @@ -0,0 +1,9 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# flake8: noqa +import warnings + +from .formatting import * + +warnings.warn('DeprecationWarning: mmseg.datasets.pipelines.formating will be ' + 'deprecated in 2021, please replace it with ' + 'mmseg.datasets.pipelines.formatting.') diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formatting.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formatting.py new file mode 100644 index 000000000..4e057c1b8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/formatting.py @@ -0,0 +1,289 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections.abc import Sequence + +import mmcv +import numpy as np +import torch +from mmcv.parallel import DataContainer as DC + +from ..builder import PIPELINES + + +def to_tensor(data): + """Convert objects of various python types to :obj:`torch.Tensor`. + + Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, + :class:`Sequence`, :class:`int` and :class:`float`. + + Args: + data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to + be converted. + """ + + if isinstance(data, torch.Tensor): + return data + elif isinstance(data, np.ndarray): + return torch.from_numpy(data) + elif isinstance(data, Sequence) and not mmcv.is_str(data): + return torch.tensor(data) + elif isinstance(data, int): + return torch.LongTensor([data]) + elif isinstance(data, float): + return torch.FloatTensor([data]) + else: + raise TypeError(f'type {type(data)} cannot be converted to tensor.') + + +@PIPELINES.register_module() +class ToTensor(object): + """Convert some results to :obj:`torch.Tensor` by given keys. + + Args: + keys (Sequence[str]): Keys that need to be converted to Tensor. + """ + + def __init__(self, keys): + self.keys = keys + + def __call__(self, results): + """Call function to convert data in results to :obj:`torch.Tensor`. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data converted + to :obj:`torch.Tensor`. + """ + + for key in self.keys: + results[key] = to_tensor(results[key]) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(keys={self.keys})' + + +@PIPELINES.register_module() +class ImageToTensor(object): + """Convert image to :obj:`torch.Tensor` by given keys. + + The dimension order of input image is (H, W, C). The pipeline will convert + it to (C, H, W). If only 2 dimension (H, W) is given, the output would be + (1, H, W). + + Args: + keys (Sequence[str]): Key of images to be converted to Tensor. + """ + + def __init__(self, keys): + self.keys = keys + + def __call__(self, results): + """Call function to convert image in results to :obj:`torch.Tensor` and + transpose the channel order. + + Args: + results (dict): Result dict contains the image data to convert. + + Returns: + dict: The result dict contains the image converted + to :obj:`torch.Tensor` and transposed to (C, H, W) order. + """ + + for key in self.keys: + img = results[key] + if len(img.shape) < 3: + img = np.expand_dims(img, -1) + results[key] = to_tensor(img.transpose(2, 0, 1)) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(keys={self.keys})' + + +@PIPELINES.register_module() +class Transpose(object): + """Transpose some results by given keys. + + Args: + keys (Sequence[str]): Keys of results to be transposed. + order (Sequence[int]): Order of transpose. + """ + + def __init__(self, keys, order): + self.keys = keys + self.order = order + + def __call__(self, results): + """Call function to convert image in results to :obj:`torch.Tensor` and + transpose the channel order. + + Args: + results (dict): Result dict contains the image data to convert. + + Returns: + dict: The result dict contains the image converted + to :obj:`torch.Tensor` and transposed to (C, H, W) order. + """ + + for key in self.keys: + results[key] = results[key].transpose(self.order) + return results + + def __repr__(self): + return self.__class__.__name__ + \ + f'(keys={self.keys}, order={self.order})' + + +@PIPELINES.register_module() +class ToDataContainer(object): + """Convert results to :obj:`mmcv.DataContainer` by given fields. + + Args: + fields (Sequence[dict]): Each field is a dict like + ``dict(key='xxx', **kwargs)``. The ``key`` in result will + be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. + Default: ``(dict(key='img', stack=True), + dict(key='gt_semantic_seg'))``. + """ + + def __init__(self, + fields=(dict(key='img', + stack=True), dict(key='gt_semantic_seg'))): + self.fields = fields + + def __call__(self, results): + """Call function to convert data in results to + :obj:`mmcv.DataContainer`. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data converted to + :obj:`mmcv.DataContainer`. + """ + + for field in self.fields: + field = field.copy() + key = field.pop('key') + results[key] = DC(results[key], **field) + return results + + def __repr__(self): + return self.__class__.__name__ + f'(fields={self.fields})' + + +@PIPELINES.register_module() +class DefaultFormatBundle(object): + """Default formatting bundle. + + It simplifies the pipeline of formatting common fields, including "img" + and "gt_semantic_seg". These fields are formatted as follows. + + - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) + - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, + (3)to DataContainer (stack=True) + """ + + def __call__(self, results): + """Call function to transform and format common fields in results. + + Args: + results (dict): Result dict contains the data to convert. + + Returns: + dict: The result dict contains the data that is formatted with + default bundle. + """ + + if 'img' in results: + img = results['img'] + if len(img.shape) < 3: + img = np.expand_dims(img, -1) + img = np.ascontiguousarray(img.transpose(2, 0, 1)) + results['img'] = DC(to_tensor(img), stack=True) + if 'gt_semantic_seg' in results: + # convert to long + results['gt_semantic_seg'] = DC( + to_tensor(results['gt_semantic_seg'][None, + ...].astype(np.int64)), + stack=True) + return results + + def __repr__(self): + return self.__class__.__name__ + + +@PIPELINES.register_module() +class Collect(object): + """Collect data from the loader relevant to the specific task. + + This is usually the last stage of the data loader pipeline. Typically keys + is set to some subset of "img", "gt_semantic_seg". + + The "img_meta" item is always populated. The contents of the "img_meta" + dictionary depends on "meta_keys". By default this includes: + + - "img_shape": shape of the image input to the network as a tuple + (h, w, c). Note that images may be zero padded on the bottom/right + if the batch tensor is larger than this shape. + + - "scale_factor": a float indicating the preprocessing scale + + - "flip": a boolean indicating if image flip transform was used + + - "filename": path to the image file + + - "ori_shape": original shape of the image as a tuple (h, w, c) + + - "pad_shape": image shape after padding + + - "img_norm_cfg": a dict of normalization information: + - mean - per channel mean subtraction + - std - per channel std divisor + - to_rgb - bool indicating if bgr was converted to rgb + + Args: + keys (Sequence[str]): Keys of results to be collected in ``data``. + meta_keys (Sequence[str], optional): Meta keys to be converted to + ``mmcv.DataContainer`` and collected in ``data[img_metas]``. + Default: (``filename``, ``ori_filename``, ``ori_shape``, + ``img_shape``, ``pad_shape``, ``scale_factor``, ``flip``, + ``flip_direction``, ``img_norm_cfg``) + """ + + def __init__(self, + keys, + meta_keys=('filename', 'ori_filename', 'ori_shape', + 'img_shape', 'pad_shape', 'scale_factor', 'flip', + 'flip_direction', 'img_norm_cfg')): + self.keys = keys + self.meta_keys = meta_keys + + def __call__(self, results): + """Call function to collect keys in results. The keys in ``meta_keys`` + will be converted to :obj:mmcv.DataContainer. + + Args: + results (dict): Result dict contains the data to collect. + + Returns: + dict: The result dict contains the following keys + - keys in``self.keys`` + - ``img_metas`` + """ + + data = {} + img_meta = {} + for key in self.meta_keys: + img_meta[key] = results[key] + data['img_metas'] = DC(img_meta, cpu_only=True) + for key in self.keys: + data[key] = results[key] + return data + + def __repr__(self): + return self.__class__.__name__ + \ + f'(keys={self.keys}, meta_keys={self.meta_keys})' diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/loading.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/loading.py new file mode 100644 index 000000000..e1c82bd39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/loading.py @@ -0,0 +1,154 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +import mmcv +import numpy as np + +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class LoadImageFromFile(object): + """Load an image from file. + + Required keys are "img_prefix" and "img_info" (a dict that must contain the + key "filename"). Added or updated keys are "filename", "img", "img_shape", + "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), + "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). + + Args: + to_float32 (bool): Whether to convert the loaded image to a float32 + numpy array. If set to False, the loaded image is an uint8 array. + Defaults to False. + color_type (str): The flag argument for :func:`mmcv.imfrombytes`. + Defaults to 'color'. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: + 'cv2' + """ + + def __init__(self, + to_float32=False, + color_type='color', + file_client_args=dict(backend='disk'), + imdecode_backend='cv2'): + self.to_float32 = to_float32 + self.color_type = color_type + self.file_client_args = file_client_args.copy() + self.file_client = None + self.imdecode_backend = imdecode_backend + + def __call__(self, results): + """Call functions to load image and get image meta information. + + Args: + results (dict): Result dict from :obj:`mmseg.CustomDataset`. + + Returns: + dict: The dict contains loaded image and meta information. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + if results.get('img_prefix') is not None: + filename = osp.join(results['img_prefix'], + results['img_info']['filename']) + else: + filename = results['img_info']['filename'] + img_bytes = self.file_client.get(filename) + img = mmcv.imfrombytes( + img_bytes, flag=self.color_type, backend=self.imdecode_backend) + if self.to_float32: + img = img.astype(np.float32) + + results['filename'] = filename + results['ori_filename'] = results['img_info']['filename'] + results['img'] = img + results['img_shape'] = img.shape + results['ori_shape'] = img.shape + # Set initial values for default meta_keys + results['pad_shape'] = img.shape + results['scale_factor'] = 1.0 + num_channels = 1 if len(img.shape) < 3 else img.shape[2] + results['img_norm_cfg'] = dict( + mean=np.zeros(num_channels, dtype=np.float32), + std=np.ones(num_channels, dtype=np.float32), + to_rgb=False) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(to_float32={self.to_float32},' + repr_str += f"color_type='{self.color_type}'," + repr_str += f"imdecode_backend='{self.imdecode_backend}')" + return repr_str + + +@PIPELINES.register_module() +class LoadAnnotations(object): + """Load annotations for semantic segmentation. + + Args: + reduce_zero_label (bool): Whether reduce all label value by 1. + Usually used for datasets where 0 is background label. + Default: False. + file_client_args (dict): Arguments to instantiate a FileClient. + See :class:`mmcv.fileio.FileClient` for details. + Defaults to ``dict(backend='disk')``. + imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: + 'pillow' + """ + + def __init__(self, + reduce_zero_label=False, + file_client_args=dict(backend='disk'), + imdecode_backend='pillow'): + self.reduce_zero_label = reduce_zero_label + self.file_client_args = file_client_args.copy() + self.file_client = None + self.imdecode_backend = imdecode_backend + + def __call__(self, results): + """Call function to load multiple types annotations. + + Args: + results (dict): Result dict from :obj:`mmseg.CustomDataset`. + + Returns: + dict: The dict contains loaded semantic segmentation annotations. + """ + + if self.file_client is None: + self.file_client = mmcv.FileClient(**self.file_client_args) + + if results.get('seg_prefix', None) is not None: + filename = osp.join(results['seg_prefix'], + results['ann_info']['seg_map']) + else: + filename = results['ann_info']['seg_map'] + img_bytes = self.file_client.get(filename) + gt_semantic_seg = mmcv.imfrombytes( + img_bytes, flag='unchanged', + backend=self.imdecode_backend).squeeze().astype(np.uint8) + # modify if custom classes + if results.get('label_map', None) is not None: + for old_id, new_id in results['label_map'].items(): + gt_semantic_seg[gt_semantic_seg == old_id] = new_id + # reduce zero_label + if self.reduce_zero_label: + # avoid using underflow conversion + gt_semantic_seg[gt_semantic_seg == 0] = 255 + gt_semantic_seg = gt_semantic_seg - 1 + gt_semantic_seg[gt_semantic_seg == 254] = 255 + results['gt_semantic_seg'] = gt_semantic_seg + results['seg_fields'].append('gt_semantic_seg') + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(reduce_zero_label={self.reduce_zero_label},' + repr_str += f"imdecode_backend='{self.imdecode_backend}')" + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/test_time_aug.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/test_time_aug.py new file mode 100644 index 000000000..5c17cbbba --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/test_time_aug.py @@ -0,0 +1,134 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv + +from ..builder import PIPELINES +from .compose import Compose + + +@PIPELINES.register_module() +class MultiScaleFlipAug(object): + """Test-time augmentation with multiple scales and flipping. + + An example configuration is as followed: + + .. code-block:: + + img_scale=(2048, 1024), + img_ratios=[0.5, 1.0], + flip=True, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ] + + After MultiScaleFLipAug with above configuration, the results are wrapped + into lists of the same length as followed: + + .. code-block:: + + dict( + img=[...], + img_shape=[...], + scale=[(1024, 512), (1024, 512), (2048, 1024), (2048, 1024)] + flip=[False, True, False, True] + ... + ) + + Args: + transforms (list[dict]): Transforms to apply in each augmentation. + img_scale (None | tuple | list[tuple]): Images scales for resizing. + img_ratios (float | list[float]): Image ratios for resizing + flip (bool): Whether apply flip augmentation. Default: False. + flip_direction (str | list[str]): Flip augmentation directions, + options are "horizontal" and "vertical". If flip_direction is list, + multiple flip augmentations will be applied. + It has no effect when flip == False. Default: "horizontal". + """ + + def __init__(self, + transforms, + img_scale, + img_ratios=None, + flip=False, + flip_direction='horizontal'): + self.transforms = Compose(transforms) + if img_ratios is not None: + img_ratios = img_ratios if isinstance(img_ratios, + list) else [img_ratios] + assert mmcv.is_list_of(img_ratios, float) + if img_scale is None: + # mode 1: given img_scale=None and a range of image ratio + self.img_scale = None + assert mmcv.is_list_of(img_ratios, float) + elif isinstance(img_scale, tuple) and mmcv.is_list_of( + img_ratios, float): + assert len(img_scale) == 2 + # mode 2: given a scale and a range of image ratio + self.img_scale = [(int(img_scale[0] * ratio), + int(img_scale[1] * ratio)) + for ratio in img_ratios] + else: + # mode 3: given multiple scales + self.img_scale = img_scale if isinstance(img_scale, + list) else [img_scale] + assert mmcv.is_list_of(self.img_scale, tuple) or self.img_scale is None + self.flip = flip + self.img_ratios = img_ratios + self.flip_direction = flip_direction if isinstance( + flip_direction, list) else [flip_direction] + assert mmcv.is_list_of(self.flip_direction, str) + if not self.flip and self.flip_direction != ['horizontal']: + warnings.warn( + 'flip_direction has no effect when flip is set to False') + if (self.flip + and not any([t['type'] == 'RandomFlip' for t in transforms])): + warnings.warn( + 'flip has no effect when RandomFlip is not in transforms') + + def __call__(self, results): + """Call function to apply test time augment transforms on results. + + Args: + results (dict): Result dict contains the data to transform. + + Returns: + dict[str: list]: The augmented data, where each value is wrapped + into a list. + """ + + aug_data = [] + if self.img_scale is None and mmcv.is_list_of(self.img_ratios, float): + h, w = results['img'].shape[:2] + img_scale = [(int(w * ratio), int(h * ratio)) + for ratio in self.img_ratios] + else: + img_scale = self.img_scale + flip_aug = [False, True] if self.flip else [False] + for scale in img_scale: + for flip in flip_aug: + for direction in self.flip_direction: + _results = results.copy() + _results['scale'] = scale + _results['flip'] = flip + _results['flip_direction'] = direction + data = self.transforms(_results) + aug_data.append(data) + # list of dict to dict of list + aug_data_dict = {key: [] for key in aug_data[0]} + for data in aug_data: + for key, val in data.items(): + aug_data_dict[key].append(val) + return aug_data_dict + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(transforms={self.transforms}, ' + repr_str += f'img_scale={self.img_scale}, flip={self.flip})' + repr_str += f'flip_direction={self.flip_direction}' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/transforms.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/transforms.py new file mode 100644 index 000000000..567c960a1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/pipelines/transforms.py @@ -0,0 +1,1042 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import numpy as np +from mmcv.utils import deprecated_api_warning, is_tuple_of +from numpy import random + +from ..builder import PIPELINES + + +@PIPELINES.register_module() +class ResizeToMultiple(object): + """Resize images & seg to multiple of divisor. + + Args: + size_divisor (int): images and gt seg maps need to resize to multiple + of size_divisor. Default: 32. + interpolation (str, optional): The interpolation mode of image resize. + Default: None + """ + + def __init__(self, size_divisor=32, interpolation=None): + self.size_divisor = size_divisor + self.interpolation = interpolation + + def __call__(self, results): + """Call function to resize images, semantic segmentation map to + multiple of size divisor. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Resized results, 'img_shape', 'pad_shape' keys are updated. + """ + # Align image to multiple of size divisor. + img = results['img'] + img = mmcv.imresize_to_multiple( + img, + self.size_divisor, + scale_factor=1, + interpolation=self.interpolation + if self.interpolation else 'bilinear') + + results['img'] = img + results['img_shape'] = img.shape + results['pad_shape'] = img.shape + + # Align segmentation map to multiple of size divisor. + for key in results.get('seg_fields', []): + gt_seg = results[key] + gt_seg = mmcv.imresize_to_multiple( + gt_seg, + self.size_divisor, + scale_factor=1, + interpolation='nearest') + results[key] = gt_seg + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += (f'(size_divisor={self.size_divisor}, ' + f'interpolation={self.interpolation})') + return repr_str + + +@PIPELINES.register_module() +class Resize(object): + """Resize images & seg. + + This transform resizes the input image to some scale. If the input dict + contains the key "scale", then the scale in the input dict is used, + otherwise the specified scale in the init method is used. + + ``img_scale`` can be None, a tuple (single-scale) or a list of tuple + (multi-scale). There are 4 multiscale modes: + + - ``ratio_range is not None``: + 1. When img_scale is None, img_scale is the shape of image in results + (img_scale = results['img'].shape[:2]) and the image is resized based + on the original size. (mode 1) + 2. When img_scale is a tuple (single-scale), randomly sample a ratio from + the ratio range and multiply it with the image scale. (mode 2) + + - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a + scale from the a range. (mode 3) + + - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a + scale from multiple scales. (mode 4) + + Args: + img_scale (tuple or list[tuple]): Images scales for resizing. + Default:None. + multiscale_mode (str): Either "range" or "value". + Default: 'range' + ratio_range (tuple[float]): (min_ratio, max_ratio). + Default: None + keep_ratio (bool): Whether to keep the aspect ratio when resizing the + image. Default: True + """ + + def __init__(self, + img_scale=None, + multiscale_mode='range', + ratio_range=None, + keep_ratio=True): + if img_scale is None: + self.img_scale = None + else: + if isinstance(img_scale, list): + self.img_scale = img_scale + else: + self.img_scale = [img_scale] + assert mmcv.is_list_of(self.img_scale, tuple) + + if ratio_range is not None: + # mode 1: given img_scale=None and a range of image ratio + # mode 2: given a scale and a range of image ratio + assert self.img_scale is None or len(self.img_scale) == 1 + else: + # mode 3 and 4: given multiple scales or a range of scales + assert multiscale_mode in ['value', 'range'] + + self.multiscale_mode = multiscale_mode + self.ratio_range = ratio_range + self.keep_ratio = keep_ratio + + @staticmethod + def random_select(img_scales): + """Randomly select an img_scale from given candidates. + + Args: + img_scales (list[tuple]): Images scales for selection. + + Returns: + (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, + where ``img_scale`` is the selected image scale and + ``scale_idx`` is the selected index in the given candidates. + """ + + assert mmcv.is_list_of(img_scales, tuple) + scale_idx = np.random.randint(len(img_scales)) + img_scale = img_scales[scale_idx] + return img_scale, scale_idx + + @staticmethod + def random_sample(img_scales): + """Randomly sample an img_scale when ``multiscale_mode=='range'``. + + Args: + img_scales (list[tuple]): Images scale range for sampling. + There must be two tuples in img_scales, which specify the lower + and upper bound of image scales. + + Returns: + (tuple, None): Returns a tuple ``(img_scale, None)``, where + ``img_scale`` is sampled scale and None is just a placeholder + to be consistent with :func:`random_select`. + """ + + assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 + img_scale_long = [max(s) for s in img_scales] + img_scale_short = [min(s) for s in img_scales] + long_edge = np.random.randint( + min(img_scale_long), + max(img_scale_long) + 1) + short_edge = np.random.randint( + min(img_scale_short), + max(img_scale_short) + 1) + img_scale = (long_edge, short_edge) + return img_scale, None + + @staticmethod + def random_sample_ratio(img_scale, ratio_range): + """Randomly sample an img_scale when ``ratio_range`` is specified. + + A ratio will be randomly sampled from the range specified by + ``ratio_range``. Then it would be multiplied with ``img_scale`` to + generate sampled scale. + + Args: + img_scale (tuple): Images scale base to multiply with ratio. + ratio_range (tuple[float]): The minimum and maximum ratio to scale + the ``img_scale``. + + Returns: + (tuple, None): Returns a tuple ``(scale, None)``, where + ``scale`` is sampled ratio multiplied with ``img_scale`` and + None is just a placeholder to be consistent with + :func:`random_select`. + """ + + assert isinstance(img_scale, tuple) and len(img_scale) == 2 + min_ratio, max_ratio = ratio_range + assert min_ratio <= max_ratio + ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio + scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) + return scale, None + + def _random_scale(self, results): + """Randomly sample an img_scale according to ``ratio_range`` and + ``multiscale_mode``. + + If ``ratio_range`` is specified, a ratio will be sampled and be + multiplied with ``img_scale``. + If multiple scales are specified by ``img_scale``, a scale will be + sampled according to ``multiscale_mode``. + Otherwise, single scale will be used. + + Args: + results (dict): Result dict from :obj:`dataset`. + + Returns: + dict: Two new keys 'scale` and 'scale_idx` are added into + ``results``, which would be used by subsequent pipelines. + """ + + if self.ratio_range is not None: + if self.img_scale is None: + h, w = results['img'].shape[:2] + scale, scale_idx = self.random_sample_ratio((w, h), + self.ratio_range) + else: + scale, scale_idx = self.random_sample_ratio( + self.img_scale[0], self.ratio_range) + elif len(self.img_scale) == 1: + scale, scale_idx = self.img_scale[0], 0 + elif self.multiscale_mode == 'range': + scale, scale_idx = self.random_sample(self.img_scale) + elif self.multiscale_mode == 'value': + scale, scale_idx = self.random_select(self.img_scale) + else: + raise NotImplementedError + + results['scale'] = scale + results['scale_idx'] = scale_idx + + def _resize_img(self, results): + """Resize images with ``results['scale']``.""" + if self.keep_ratio: + img, scale_factor = mmcv.imrescale( + results['img'], results['scale'], return_scale=True) + # the w_scale and h_scale has minor difference + # a real fix should be done in the mmcv.imrescale in the future + new_h, new_w = img.shape[:2] + h, w = results['img'].shape[:2] + w_scale = new_w / w + h_scale = new_h / h + else: + img, w_scale, h_scale = mmcv.imresize( + results['img'], results['scale'], return_scale=True) + scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], + dtype=np.float32) + results['img'] = img + results['img_shape'] = img.shape + results['pad_shape'] = img.shape # in case that there is no padding + results['scale_factor'] = scale_factor + results['keep_ratio'] = self.keep_ratio + + def _resize_seg(self, results): + """Resize semantic segmentation map with ``results['scale']``.""" + for key in results.get('seg_fields', []): + if self.keep_ratio: + gt_seg = mmcv.imrescale( + results[key], results['scale'], interpolation='nearest') + else: + gt_seg = mmcv.imresize( + results[key], results['scale'], interpolation='nearest') + results[key] = gt_seg + + def __call__(self, results): + """Call function to resize images, bounding boxes, masks, semantic + segmentation map. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', + 'keep_ratio' keys are added into result dict. + """ + + if 'scale' not in results: + self._random_scale(results) + self._resize_img(results) + self._resize_seg(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += (f'(img_scale={self.img_scale}, ' + f'multiscale_mode={self.multiscale_mode}, ' + f'ratio_range={self.ratio_range}, ' + f'keep_ratio={self.keep_ratio})') + return repr_str + + +@PIPELINES.register_module() +class RandomFlip(object): + """Flip the image & seg. + + If the input dict contains the key "flip", then the flag will be used, + otherwise it will be randomly decided by a ratio specified in the init + method. + + Args: + prob (float, optional): The flipping probability. Default: None. + direction(str, optional): The flipping direction. Options are + 'horizontal' and 'vertical'. Default: 'horizontal'. + """ + + @deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') + def __init__(self, prob=None, direction='horizontal'): + self.prob = prob + self.direction = direction + if prob is not None: + assert prob >= 0 and prob <= 1 + assert direction in ['horizontal', 'vertical'] + + def __call__(self, results): + """Call function to flip bounding boxes, masks, semantic segmentation + maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Flipped results, 'flip', 'flip_direction' keys are added into + result dict. + """ + + if 'flip' not in results: + flip = True if np.random.rand() < self.prob else False + results['flip'] = flip + if 'flip_direction' not in results: + results['flip_direction'] = self.direction + if results['flip']: + # flip image + results['img'] = mmcv.imflip( + results['img'], direction=results['flip_direction']) + + # flip segs + for key in results.get('seg_fields', []): + # use copy() to make numpy stride positive + results[key] = mmcv.imflip( + results[key], direction=results['flip_direction']).copy() + return results + + def __repr__(self): + return self.__class__.__name__ + f'(prob={self.prob})' + + +@PIPELINES.register_module() +class Pad(object): + """Pad the image & mask. + + There are two padding modes: (1) pad to a fixed size and (2) pad to the + minimum size that is divisible by some number. + Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", + + Args: + size (tuple, optional): Fixed padding size. + size_divisor (int, optional): The divisor of padded size. + pad_val (float, optional): Padding value. Default: 0. + seg_pad_val (float, optional): Padding value of segmentation map. + Default: 255. + """ + + def __init__(self, + size=None, + size_divisor=None, + pad_val=0, + seg_pad_val=255): + self.size = size + self.size_divisor = size_divisor + self.pad_val = pad_val + self.seg_pad_val = seg_pad_val + # only one of size and size_divisor should be valid + assert size is not None or size_divisor is not None + assert size is None or size_divisor is None + + def _pad_img(self, results): + """Pad images according to ``self.size``.""" + if self.size is not None: + padded_img = mmcv.impad( + results['img'], shape=self.size, pad_val=self.pad_val) + elif self.size_divisor is not None: + padded_img = mmcv.impad_to_multiple( + results['img'], self.size_divisor, pad_val=self.pad_val) + results['img'] = padded_img + results['pad_shape'] = padded_img.shape + results['pad_fixed_size'] = self.size + results['pad_size_divisor'] = self.size_divisor + + def _pad_seg(self, results): + """Pad masks according to ``results['pad_shape']``.""" + for key in results.get('seg_fields', []): + results[key] = mmcv.impad( + results[key], + shape=results['pad_shape'][:2], + pad_val=self.seg_pad_val) + + def __call__(self, results): + """Call function to pad images, masks, semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Updated result dict. + """ + + self._pad_img(results) + self._pad_seg(results) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ + f'pad_val={self.pad_val})' + return repr_str + + +@PIPELINES.register_module() +class Normalize(object): + """Normalize the image. + + Added key is "img_norm_cfg". + + Args: + mean (sequence): Mean values of 3 channels. + std (sequence): Std values of 3 channels. + to_rgb (bool): Whether to convert the image from BGR to RGB, + default is true. + """ + + def __init__(self, mean, std, to_rgb=True): + self.mean = np.array(mean, dtype=np.float32) + self.std = np.array(std, dtype=np.float32) + self.to_rgb = to_rgb + + def __call__(self, results): + """Call function to normalize images. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Normalized results, 'img_norm_cfg' key is added into + result dict. + """ + + results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, + self.to_rgb) + results['img_norm_cfg'] = dict( + mean=self.mean, std=self.std, to_rgb=self.to_rgb) + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ + f'{self.to_rgb})' + return repr_str + + +@PIPELINES.register_module() +class Rerange(object): + """Rerange the image pixel value. + + Args: + min_value (float or int): Minimum value of the reranged image. + Default: 0. + max_value (float or int): Maximum value of the reranged image. + Default: 255. + """ + + def __init__(self, min_value=0, max_value=255): + assert isinstance(min_value, float) or isinstance(min_value, int) + assert isinstance(max_value, float) or isinstance(max_value, int) + assert min_value < max_value + self.min_value = min_value + self.max_value = max_value + + def __call__(self, results): + """Call function to rerange images. + + Args: + results (dict): Result dict from loading pipeline. + Returns: + dict: Reranged results. + """ + + img = results['img'] + img_min_value = np.min(img) + img_max_value = np.max(img) + + assert img_min_value < img_max_value + # rerange to [0, 1] + img = (img - img_min_value) / (img_max_value - img_min_value) + # rerange to [min_value, max_value] + img = img * (self.max_value - self.min_value) + self.min_value + results['img'] = img + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' + return repr_str + + +@PIPELINES.register_module() +class CLAHE(object): + """Use CLAHE method to process the image. + + See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. + Graphics Gems, 1994:474-485.` for more information. + + Args: + clip_limit (float): Threshold for contrast limiting. Default: 40.0. + tile_grid_size (tuple[int]): Size of grid for histogram equalization. + Input image will be divided into equally sized rectangular tiles. + It defines the number of tiles in row and column. Default: (8, 8). + """ + + def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): + assert isinstance(clip_limit, (float, int)) + self.clip_limit = clip_limit + assert is_tuple_of(tile_grid_size, int) + assert len(tile_grid_size) == 2 + self.tile_grid_size = tile_grid_size + + def __call__(self, results): + """Call function to Use CLAHE method process images. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Processed results. + """ + + for i in range(results['img'].shape[2]): + results['img'][:, :, i] = mmcv.clahe( + np.array(results['img'][:, :, i], dtype=np.uint8), + self.clip_limit, self.tile_grid_size) + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(clip_limit={self.clip_limit}, '\ + f'tile_grid_size={self.tile_grid_size})' + return repr_str + + +@PIPELINES.register_module() +class RandomCrop(object): + """Random crop the image & seg. + + Args: + crop_size (tuple): Expected size after cropping, (h, w). + cat_max_ratio (float): The maximum ratio that single category could + occupy. + """ + + def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): + assert crop_size[0] > 0 and crop_size[1] > 0 + self.crop_size = crop_size + self.cat_max_ratio = cat_max_ratio + self.ignore_index = ignore_index + + def get_crop_bbox(self, img): + """Randomly get a crop bounding box.""" + margin_h = max(img.shape[0] - self.crop_size[0], 0) + margin_w = max(img.shape[1] - self.crop_size[1], 0) + offset_h = np.random.randint(0, margin_h + 1) + offset_w = np.random.randint(0, margin_w + 1) + crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] + crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] + + return crop_y1, crop_y2, crop_x1, crop_x2 + + def crop(self, img, crop_bbox): + """Crop from ``img``""" + crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox + img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] + return img + + def __call__(self, results): + """Call function to randomly crop images, semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Randomly cropped results, 'img_shape' key in result dict is + updated according to crop size. + """ + + img = results['img'] + crop_bbox = self.get_crop_bbox(img) + if self.cat_max_ratio < 1.: + # Repeat 10 times + for _ in range(10): + seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) + labels, cnt = np.unique(seg_temp, return_counts=True) + cnt = cnt[labels != self.ignore_index] + if len(cnt) > 1 and np.max(cnt) / np.sum( + cnt) < self.cat_max_ratio: + break + crop_bbox = self.get_crop_bbox(img) + + # crop the image + img = self.crop(img, crop_bbox) + img_shape = img.shape + results['img'] = img + results['img_shape'] = img_shape + + # crop semantic seg + for key in results.get('seg_fields', []): + results[key] = self.crop(results[key], crop_bbox) + + return results + + def __repr__(self): + return self.__class__.__name__ + f'(crop_size={self.crop_size})' + + +@PIPELINES.register_module() +class RandomRotate(object): + """Rotate the image & seg. + + Args: + prob (float): The rotation probability. + degree (float, tuple[float]): Range of degrees to select from. If + degree is a number instead of tuple like (min, max), + the range of degree will be (``-degree``, ``+degree``) + pad_val (float, optional): Padding value of image. Default: 0. + seg_pad_val (float, optional): Padding value of segmentation map. + Default: 255. + center (tuple[float], optional): Center point (w, h) of the rotation in + the source image. If not specified, the center of the image will be + used. Default: None. + auto_bound (bool): Whether to adjust the image size to cover the whole + rotated image. Default: False + """ + + def __init__(self, + prob, + degree, + pad_val=0, + seg_pad_val=255, + center=None, + auto_bound=False): + self.prob = prob + assert prob >= 0 and prob <= 1 + if isinstance(degree, (float, int)): + assert degree > 0, f'degree {degree} should be positive' + self.degree = (-degree, degree) + else: + self.degree = degree + assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ + f'tuple of (min, max)' + self.pal_val = pad_val + self.seg_pad_val = seg_pad_val + self.center = center + self.auto_bound = auto_bound + + def __call__(self, results): + """Call function to rotate image, semantic segmentation maps. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Rotated results. + """ + + rotate = True if np.random.rand() < self.prob else False + degree = np.random.uniform(min(*self.degree), max(*self.degree)) + if rotate: + # rotate image + results['img'] = mmcv.imrotate( + results['img'], + angle=degree, + border_value=self.pal_val, + center=self.center, + auto_bound=self.auto_bound) + + # rotate segs + for key in results.get('seg_fields', []): + results[key] = mmcv.imrotate( + results[key], + angle=degree, + border_value=self.seg_pad_val, + center=self.center, + auto_bound=self.auto_bound, + interpolation='nearest') + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(prob={self.prob}, ' \ + f'degree={self.degree}, ' \ + f'pad_val={self.pal_val}, ' \ + f'seg_pad_val={self.seg_pad_val}, ' \ + f'center={self.center}, ' \ + f'auto_bound={self.auto_bound})' + return repr_str + + +@PIPELINES.register_module() +class RGB2Gray(object): + """Convert RGB image to grayscale image. + + This transform calculate the weighted mean of input image channels with + ``weights`` and then expand the channels to ``out_channels``. When + ``out_channels`` is None, the number of output channels is the same as + input channels. + + Args: + out_channels (int): Expected number of output channels after + transforming. Default: None. + weights (tuple[float]): The weights to calculate the weighted mean. + Default: (0.299, 0.587, 0.114). + """ + + def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): + assert out_channels is None or out_channels > 0 + self.out_channels = out_channels + assert isinstance(weights, tuple) + for item in weights: + assert isinstance(item, (float, int)) + self.weights = weights + + def __call__(self, results): + """Call function to convert RGB image to grayscale image. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with grayscale image. + """ + img = results['img'] + assert len(img.shape) == 3 + assert img.shape[2] == len(self.weights) + weights = np.array(self.weights).reshape((1, 1, -1)) + img = (img * weights).sum(2, keepdims=True) + if self.out_channels is None: + img = img.repeat(weights.shape[2], axis=2) + else: + img = img.repeat(self.out_channels, axis=2) + + results['img'] = img + results['img_shape'] = img.shape + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(out_channels={self.out_channels}, ' \ + f'weights={self.weights})' + return repr_str + + +@PIPELINES.register_module() +class AdjustGamma(object): + """Using gamma correction to process the image. + + Args: + gamma (float or int): Gamma value used in gamma correction. + Default: 1.0. + """ + + def __init__(self, gamma=1.0): + assert isinstance(gamma, float) or isinstance(gamma, int) + assert gamma > 0 + self.gamma = gamma + inv_gamma = 1.0 / gamma + self.table = np.array([(i / 255.0)**inv_gamma * 255 + for i in np.arange(256)]).astype('uint8') + + def __call__(self, results): + """Call function to process the image with gamma correction. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Processed results. + """ + + results['img'] = mmcv.lut_transform( + np.array(results['img'], dtype=np.uint8), self.table) + + return results + + def __repr__(self): + return self.__class__.__name__ + f'(gamma={self.gamma})' + + +@PIPELINES.register_module() +class SegRescale(object): + """Rescale semantic segmentation maps. + + Args: + scale_factor (float): The scale factor of the final output. + """ + + def __init__(self, scale_factor=1): + self.scale_factor = scale_factor + + def __call__(self, results): + """Call function to scale the semantic segmentation map. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with semantic segmentation map scaled. + """ + for key in results.get('seg_fields', []): + if self.scale_factor != 1: + results[key] = mmcv.imrescale( + results[key], self.scale_factor, interpolation='nearest') + return results + + def __repr__(self): + return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' + + +@PIPELINES.register_module() +class PhotoMetricDistortion(object): + """Apply photometric distortion to image sequentially, every transformation + is applied with a probability of 0.5. The position of random contrast is in + second or second to last. + + 1. random brightness + 2. random contrast (mode 0) + 3. convert color from BGR to HSV + 4. random saturation + 5. random hue + 6. convert color from HSV to BGR + 7. random contrast (mode 1) + + Args: + brightness_delta (int): delta of brightness. + contrast_range (tuple): range of contrast. + saturation_range (tuple): range of saturation. + hue_delta (int): delta of hue. + """ + + def __init__(self, + brightness_delta=32, + contrast_range=(0.5, 1.5), + saturation_range=(0.5, 1.5), + hue_delta=18): + self.brightness_delta = brightness_delta + self.contrast_lower, self.contrast_upper = contrast_range + self.saturation_lower, self.saturation_upper = saturation_range + self.hue_delta = hue_delta + + def convert(self, img, alpha=1, beta=0): + """Multiple with alpha and add beat with clip.""" + img = img.astype(np.float32) * alpha + beta + img = np.clip(img, 0, 255) + return img.astype(np.uint8) + + def brightness(self, img): + """Brightness distortion.""" + if random.randint(2): + return self.convert( + img, + beta=random.uniform(-self.brightness_delta, + self.brightness_delta)) + return img + + def contrast(self, img): + """Contrast distortion.""" + if random.randint(2): + return self.convert( + img, + alpha=random.uniform(self.contrast_lower, self.contrast_upper)) + return img + + def saturation(self, img): + """Saturation distortion.""" + if random.randint(2): + img = mmcv.bgr2hsv(img) + img[:, :, 1] = self.convert( + img[:, :, 1], + alpha=random.uniform(self.saturation_lower, + self.saturation_upper)) + img = mmcv.hsv2bgr(img) + return img + + def hue(self, img): + """Hue distortion.""" + if random.randint(2): + img = mmcv.bgr2hsv(img) + img[:, :, + 0] = (img[:, :, 0].astype(int) + + random.randint(-self.hue_delta, self.hue_delta)) % 180 + img = mmcv.hsv2bgr(img) + return img + + def __call__(self, results): + """Call function to perform photometric distortion on images. + + Args: + results (dict): Result dict from loading pipeline. + + Returns: + dict: Result dict with images distorted. + """ + + img = results['img'] + # random brightness + img = self.brightness(img) + + # mode == 0 --> do random contrast first + # mode == 1 --> do random contrast last + mode = random.randint(2) + if mode == 1: + img = self.contrast(img) + + # random saturation + img = self.saturation(img) + + # random hue + img = self.hue(img) + + # random contrast + if mode == 0: + img = self.contrast(img) + + results['img'] = img + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += (f'(brightness_delta={self.brightness_delta}, ' + f'contrast_range=({self.contrast_lower}, ' + f'{self.contrast_upper}), ' + f'saturation_range=({self.saturation_lower}, ' + f'{self.saturation_upper}), ' + f'hue_delta={self.hue_delta})') + return repr_str + + +@PIPELINES.register_module() +class RandomCutOut(object): + """CutOut operation. + + Randomly drop some regions of image used in + `Cutout `_. + Args: + prob (float): cutout probability. + n_holes (int | tuple[int, int]): Number of regions to be dropped. + If it is given as a list, number of holes will be randomly + selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. + cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate + shape of dropped regions. It can be `tuple[int, int]` to use a + fixed cutout shape, or `list[tuple[int, int]]` to randomly choose + shape from the list. + cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The + candidate ratio of dropped regions. It can be `tuple[float, float]` + to use a fixed ratio or `list[tuple[float, float]]` to randomly + choose ratio from the list. Please note that `cutout_shape` + and `cutout_ratio` cannot be both given at the same time. + fill_in (tuple[float, float, float] | tuple[int, int, int]): The value + of pixel to fill in the dropped regions. Default: (0, 0, 0). + seg_fill_in (int): The labels of pixel to fill in the dropped regions. + If seg_fill_in is None, skip. Default: None. + """ + + def __init__(self, + prob, + n_holes, + cutout_shape=None, + cutout_ratio=None, + fill_in=(0, 0, 0), + seg_fill_in=None): + + assert 0 <= prob and prob <= 1 + assert (cutout_shape is None) ^ (cutout_ratio is None), \ + 'Either cutout_shape or cutout_ratio should be specified.' + assert (isinstance(cutout_shape, (list, tuple)) + or isinstance(cutout_ratio, (list, tuple))) + if isinstance(n_holes, tuple): + assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] + else: + n_holes = (n_holes, n_holes) + if seg_fill_in is not None: + assert (isinstance(seg_fill_in, int) and 0 <= seg_fill_in + and seg_fill_in <= 255) + self.prob = prob + self.n_holes = n_holes + self.fill_in = fill_in + self.seg_fill_in = seg_fill_in + self.with_ratio = cutout_ratio is not None + self.candidates = cutout_ratio if self.with_ratio else cutout_shape + if not isinstance(self.candidates, list): + self.candidates = [self.candidates] + + def __call__(self, results): + """Call function to drop some regions of image.""" + cutout = True if np.random.rand() < self.prob else False + if cutout: + h, w, c = results['img'].shape + n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) + for _ in range(n_holes): + x1 = np.random.randint(0, w) + y1 = np.random.randint(0, h) + index = np.random.randint(0, len(self.candidates)) + if not self.with_ratio: + cutout_w, cutout_h = self.candidates[index] + else: + cutout_w = int(self.candidates[index][0] * w) + cutout_h = int(self.candidates[index][1] * h) + + x2 = np.clip(x1 + cutout_w, 0, w) + y2 = np.clip(y1 + cutout_h, 0, h) + results['img'][y1:y2, x1:x2, :] = self.fill_in + + if self.seg_fill_in is not None: + for key in results.get('seg_fields', []): + results[key][y1:y2, x1:x2] = self.seg_fill_in + + return results + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(prob={self.prob}, ' + repr_str += f'n_holes={self.n_holes}, ' + repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio + else f'cutout_shape={self.candidates}, ') + repr_str += f'fill_in={self.fill_in}, ' + repr_str += f'seg_fill_in={self.seg_fill_in})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/stare.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/stare.py new file mode 100644 index 000000000..a24d1d957 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/stare.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class STAREDataset(CustomDataset): + """STARE dataset. + + In segmentation map annotation for STARE, 0 stands for background, which is + included in 2 categories. ``reduce_zero_label`` is fixed to False. The + ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to + '.ah.png'. + """ + + CLASSES = ('background', 'vessel') + + PALETTE = [[120, 120, 120], [6, 230, 230]] + + def __init__(self, **kwargs): + super(STAREDataset, self).__init__( + img_suffix='.png', + seg_map_suffix='.ah.png', + reduce_zero_label=False, + **kwargs) + assert osp.exists(self.img_dir) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/datasets/voc.py b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/voc.py new file mode 100644 index 000000000..3cec9e350 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/datasets/voc.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from .builder import DATASETS +from .custom import CustomDataset + + +@DATASETS.register_module() +class PascalVOCDataset(CustomDataset): + """Pascal VOC dataset. + + Args: + split (str): Split txt file for Pascal VOC. + """ + + CLASSES = ('background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', + 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', + 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', + 'train', 'tvmonitor') + + PALETTE = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], + [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], + [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], + [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], + [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] + + def __init__(self, split, **kwargs): + super(PascalVOCDataset, self).__init__( + img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs) + assert osp.exists(self.img_dir) and self.split is not None diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/__init__.py new file mode 100644 index 000000000..87d8108e3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .backbones import * # noqa: F401,F403 +from .builder import (BACKBONES, HEADS, LOSSES, SEGMENTORS, build_backbone, + build_head, build_loss, build_segmentor) +from .decode_heads import * # noqa: F401,F403 +from .losses import * # noqa: F401,F403 +from .necks import * # noqa: F401,F403 +from .segmentors import * # noqa: F401,F403 + +__all__ = [ + 'BACKBONES', 'HEADS', 'LOSSES', 'SEGMENTORS', 'build_backbone', + 'build_head', 'build_loss', 'build_segmentor' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/__init__.py new file mode 100644 index 000000000..434378e99 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/__init__.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .bisenetv1 import BiSeNetV1 +from .bisenetv2 import BiSeNetV2 +from .cgnet import CGNet +from .erfnet import ERFNet +from .fast_scnn import FastSCNN +from .hrnet import HRNet +from .icnet import ICNet +from .mit import MixVisionTransformer +from .mobilenet_v2 import MobileNetV2 +from .mobilenet_v3 import MobileNetV3 +from .resnest import ResNeSt +from .resnet import ResNet, ResNetV1c, ResNetV1d +from .resnext import ResNeXt +from .stdc import STDCContextPathNet, STDCNet +from .swin import SwinTransformer +from .timm_backbone import TIMMBackbone +from .twins import PCPVT, SVT +from .unet import UNet +from .vit import VisionTransformer + +__all__ = [ + 'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN', + 'ResNeSt', 'MobileNetV2', 'UNet', 'CGNet', 'MobileNetV3', + 'VisionTransformer', 'SwinTransformer', 'MixVisionTransformer', + 'BiSeNetV1', 'BiSeNetV2', 'ICNet', 'TIMMBackbone', 'ERFNet', 'PCPVT', + 'SVT', 'STDCNet', 'STDCContextPathNet' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv1.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv1.py new file mode 100644 index 000000000..4beb7b394 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv1.py @@ -0,0 +1,332 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import BACKBONES, build_backbone + + +class SpatialPath(BaseModule): + """Spatial Path to preserve the spatial size of the original input image + and encode affluent spatial information. + + Args: + in_channels(int): The number of channels of input + image. Default: 3. + num_channels (Tuple[int]): The number of channels of + each layers in Spatial Path. + Default: (64, 64, 64, 128). + Returns: + x (torch.Tensor): Feature map for Feature Fusion Module. + """ + + def __init__(self, + in_channels=3, + num_channels=(64, 64, 64, 128), + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(SpatialPath, self).__init__(init_cfg=init_cfg) + assert len(num_channels) == 4, 'Length of input channels \ + of Spatial Path must be 4!' + + self.layers = [] + for i in range(len(num_channels)): + layer_name = f'layer{i + 1}' + self.layers.append(layer_name) + if i == 0: + self.add_module( + layer_name, + ConvModule( + in_channels=in_channels, + out_channels=num_channels[i], + kernel_size=7, + stride=2, + padding=3, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + elif i == len(num_channels) - 1: + self.add_module( + layer_name, + ConvModule( + in_channels=num_channels[i - 1], + out_channels=num_channels[i], + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + else: + self.add_module( + layer_name, + ConvModule( + in_channels=num_channels[i - 1], + out_channels=num_channels[i], + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, x): + for i, layer_name in enumerate(self.layers): + layer_stage = getattr(self, layer_name) + x = layer_stage(x) + return x + + +class AttentionRefinementModule(BaseModule): + """Attention Refinement Module (ARM) to refine the features of each stage. + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + Returns: + x_out (torch.Tensor): Feature map of Attention Refinement Module. + """ + + def __init__(self, + in_channels, + out_channel, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(AttentionRefinementModule, self).__init__(init_cfg=init_cfg) + self.conv_layer = ConvModule( + in_channels=in_channels, + out_channels=out_channel, + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.atten_conv_layer = nn.Sequential( + nn.AdaptiveAvgPool2d((1, 1)), + ConvModule( + in_channels=out_channel, + out_channels=out_channel, + kernel_size=1, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None), nn.Sigmoid()) + + def forward(self, x): + x = self.conv_layer(x) + x_atten = self.atten_conv_layer(x) + x_out = x * x_atten + return x_out + + +class ContextPath(BaseModule): + """Context Path to provide sufficient receptive field. + + Args: + backbone_cfg:(dict): Config of backbone of + Context Path. + context_channels (Tuple[int]): The number of channel numbers + of various modules in Context Path. + Default: (128, 256, 512). + align_corners (bool, optional): The align_corners argument of + resize operation. Default: False. + Returns: + x_16_up, x_32_up (torch.Tensor, torch.Tensor): Two feature maps + undergoing upsampling from 1/16 and 1/32 downsampling + feature maps. These two feature maps are used for Feature + Fusion Module and Auxiliary Head. + """ + + def __init__(self, + backbone_cfg, + context_channels=(128, 256, 512), + align_corners=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(ContextPath, self).__init__(init_cfg=init_cfg) + assert len(context_channels) == 3, 'Length of input channels \ + of Context Path must be 3!' + + self.backbone = build_backbone(backbone_cfg) + + self.align_corners = align_corners + self.arm16 = AttentionRefinementModule(context_channels[1], + context_channels[0]) + self.arm32 = AttentionRefinementModule(context_channels[2], + context_channels[0]) + self.conv_head32 = ConvModule( + in_channels=context_channels[0], + out_channels=context_channels[0], + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.conv_head16 = ConvModule( + in_channels=context_channels[0], + out_channels=context_channels[0], + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.gap_conv = nn.Sequential( + nn.AdaptiveAvgPool2d((1, 1)), + ConvModule( + in_channels=context_channels[2], + out_channels=context_channels[0], + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, x): + x_4, x_8, x_16, x_32 = self.backbone(x) + x_gap = self.gap_conv(x_32) + + x_32_arm = self.arm32(x_32) + x_32_sum = x_32_arm + x_gap + x_32_up = resize(input=x_32_sum, size=x_16.shape[2:], mode='nearest') + x_32_up = self.conv_head32(x_32_up) + + x_16_arm = self.arm16(x_16) + x_16_sum = x_16_arm + x_32_up + x_16_up = resize(input=x_16_sum, size=x_8.shape[2:], mode='nearest') + x_16_up = self.conv_head16(x_16_up) + + return x_16_up, x_32_up + + +class FeatureFusionModule(BaseModule): + """Feature Fusion Module to fuse low level output feature of Spatial Path + and high level output feature of Context Path. + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + Returns: + x_out (torch.Tensor): Feature map of Feature Fusion Module. + """ + + def __init__(self, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(FeatureFusionModule, self).__init__(init_cfg=init_cfg) + self.conv1 = ConvModule( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.gap = nn.AdaptiveAvgPool2d((1, 1)) + self.conv_atten = nn.Sequential( + ConvModule( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=1, + stride=1, + padding=0, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), nn.Sigmoid()) + + def forward(self, x_sp, x_cp): + x_concat = torch.cat([x_sp, x_cp], dim=1) + x_fuse = self.conv1(x_concat) + x_atten = self.gap(x_fuse) + # Note: No BN and more 1x1 conv in paper. + x_atten = self.conv_atten(x_atten) + x_atten = x_fuse * x_atten + x_out = x_atten + x_fuse + return x_out + + +@BACKBONES.register_module() +class BiSeNetV1(BaseModule): + """BiSeNetV1 backbone. + + This backbone is the implementation of `BiSeNet: Bilateral + Segmentation Network for Real-time Semantic + Segmentation `_. + + Args: + backbone_cfg:(dict): Config of backbone of + Context Path. + in_channels (int): The number of channels of input + image. Default: 3. + spatial_channels (Tuple[int]): Size of channel numbers of + various layers in Spatial Path. + Default: (64, 64, 64, 128). + context_channels (Tuple[int]): Size of channel numbers of + various modules in Context Path. + Default: (128, 256, 512). + out_indices (Tuple[int] | int, optional): Output from which stages. + Default: (0, 1, 2). + align_corners (bool, optional): The align_corners argument of + resize operation in Bilateral Guided Aggregation Layer. + Default: False. + out_channels(int): The number of channels of output. + It must be the same with `in_channels` of decode_head. + Default: 256. + """ + + def __init__(self, + backbone_cfg, + in_channels=3, + spatial_channels=(64, 64, 64, 128), + context_channels=(128, 256, 512), + out_indices=(0, 1, 2), + align_corners=False, + out_channels=256, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='ReLU'), + init_cfg=None): + + super(BiSeNetV1, self).__init__(init_cfg=init_cfg) + assert len(spatial_channels) == 4, 'Length of input channels \ + of Spatial Path must be 4!' + + assert len(context_channels) == 3, 'Length of input channels \ + of Context Path must be 3!' + + self.out_indices = out_indices + self.align_corners = align_corners + self.context_path = ContextPath(backbone_cfg, context_channels, + self.align_corners) + self.spatial_path = SpatialPath(in_channels, spatial_channels) + self.ffm = FeatureFusionModule(context_channels[1], out_channels) + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + def forward(self, x): + # stole refactoring code from Coin Cheung, thanks + x_context8, x_context16 = self.context_path(x) + x_spatial = self.spatial_path(x) + x_fuse = self.ffm(x_spatial, x_context8) + + outs = [x_fuse, x_context8, x_context16] + outs = [outs[i] for i in self.out_indices] + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv2.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv2.py new file mode 100644 index 000000000..d908b321c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/bisenetv2.py @@ -0,0 +1,622 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, + build_activation_layer, build_norm_layer) +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import BACKBONES + + +class DetailBranch(BaseModule): + """Detail Branch with wide channels and shallow layers to capture low-level + details and generate high-resolution feature representation. + + Args: + detail_channels (Tuple[int]): Size of channel numbers of each stage + in Detail Branch, in paper it has 3 stages. + Default: (64, 64, 128). + in_channels (int): Number of channels of input image. Default: 3. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + x (torch.Tensor): Feature map of Detail Branch. + """ + + def __init__(self, + detail_channels=(64, 64, 128), + in_channels=3, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(DetailBranch, self).__init__(init_cfg=init_cfg) + detail_branch = [] + for i in range(len(detail_channels)): + if i == 0: + detail_branch.append( + nn.Sequential( + ConvModule( + in_channels=in_channels, + out_channels=detail_channels[i], + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ConvModule( + in_channels=detail_channels[i], + out_channels=detail_channels[i], + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg))) + else: + detail_branch.append( + nn.Sequential( + ConvModule( + in_channels=detail_channels[i - 1], + out_channels=detail_channels[i], + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ConvModule( + in_channels=detail_channels[i], + out_channels=detail_channels[i], + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ConvModule( + in_channels=detail_channels[i], + out_channels=detail_channels[i], + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg))) + self.detail_branch = nn.ModuleList(detail_branch) + + def forward(self, x): + for stage in self.detail_branch: + x = stage(x) + return x + + +class StemBlock(BaseModule): + """Stem Block at the beginning of Semantic Branch. + + Args: + in_channels (int): Number of input channels. + Default: 3. + out_channels (int): Number of output channels. + Default: 16. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + x (torch.Tensor): First feature map in Semantic Branch. + """ + + def __init__(self, + in_channels=3, + out_channels=16, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(StemBlock, self).__init__(init_cfg=init_cfg) + + self.conv_first = ConvModule( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.convs = nn.Sequential( + ConvModule( + in_channels=out_channels, + out_channels=out_channels // 2, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ConvModule( + in_channels=out_channels // 2, + out_channels=out_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.pool = nn.MaxPool2d( + kernel_size=3, stride=2, padding=1, ceil_mode=False) + self.fuse_last = ConvModule( + in_channels=out_channels * 2, + out_channels=out_channels, + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x): + x = self.conv_first(x) + x_left = self.convs(x) + x_right = self.pool(x) + x = self.fuse_last(torch.cat([x_left, x_right], dim=1)) + return x + + +class GELayer(BaseModule): + """Gather-and-Expansion Layer. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + exp_ratio (int): Expansion ratio for middle channels. + Default: 6. + stride (int): Stride of GELayer. Default: 1 + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + x (torch.Tensor): Intermediate feature map in + Semantic Branch. + """ + + def __init__(self, + in_channels, + out_channels, + exp_ratio=6, + stride=1, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(GELayer, self).__init__(init_cfg=init_cfg) + mid_channel = in_channels * exp_ratio + self.conv1 = ConvModule( + in_channels=in_channels, + out_channels=in_channels, + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + if stride == 1: + self.dwconv = nn.Sequential( + # ReLU in ConvModule not shown in paper + ConvModule( + in_channels=in_channels, + out_channels=mid_channel, + kernel_size=3, + stride=stride, + padding=1, + groups=in_channels, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.shortcut = None + else: + self.dwconv = nn.Sequential( + ConvModule( + in_channels=in_channels, + out_channels=mid_channel, + kernel_size=3, + stride=stride, + padding=1, + groups=in_channels, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None), + # ReLU in ConvModule not shown in paper + ConvModule( + in_channels=mid_channel, + out_channels=mid_channel, + kernel_size=3, + stride=1, + padding=1, + groups=mid_channel, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ) + self.shortcut = nn.Sequential( + DepthwiseSeparableConvModule( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=3, + stride=stride, + padding=1, + dw_norm_cfg=norm_cfg, + dw_act_cfg=None, + pw_norm_cfg=norm_cfg, + pw_act_cfg=None, + )) + + self.conv2 = nn.Sequential( + ConvModule( + in_channels=mid_channel, + out_channels=out_channels, + kernel_size=1, + stride=1, + padding=0, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None, + )) + + self.act = build_activation_layer(act_cfg) + + def forward(self, x): + identity = x + x = self.conv1(x) + x = self.dwconv(x) + x = self.conv2(x) + if self.shortcut is not None: + shortcut = self.shortcut(identity) + x = x + shortcut + else: + x = x + identity + x = self.act(x) + return x + + +class CEBlock(BaseModule): + """Context Embedding Block for large receptive filed in Semantic Branch. + + Args: + in_channels (int): Number of input channels. + Default: 3. + out_channels (int): Number of output channels. + Default: 16. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + x (torch.Tensor): Last feature map in Semantic Branch. + """ + + def __init__(self, + in_channels=3, + out_channels=16, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(CEBlock, self).__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + self.gap = nn.Sequential( + nn.AdaptiveAvgPool2d((1, 1)), + build_norm_layer(norm_cfg, self.in_channels)[1]) + self.conv_gap = ConvModule( + in_channels=self.in_channels, + out_channels=self.out_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + # Note: in paper here is naive conv2d, no bn-relu + self.conv_last = ConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x): + identity = x + x = self.gap(x) + x = self.conv_gap(x) + x = identity + x + x = self.conv_last(x) + return x + + +class SemanticBranch(BaseModule): + """Semantic Branch which is lightweight with narrow channels and deep + layers to obtain high-level semantic context. + + Args: + semantic_channels(Tuple[int]): Size of channel numbers of + various stages in Semantic Branch. + Default: (16, 32, 64, 128). + in_channels (int): Number of channels of input image. Default: 3. + exp_ratio (int): Expansion ratio for middle channels. + Default: 6. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + semantic_outs (List[torch.Tensor]): List of several feature maps + for auxiliary heads (Booster) and Bilateral + Guided Aggregation Layer. + """ + + def __init__(self, + semantic_channels=(16, 32, 64, 128), + in_channels=3, + exp_ratio=6, + init_cfg=None): + super(SemanticBranch, self).__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.semantic_channels = semantic_channels + self.semantic_stages = [] + for i in range(len(semantic_channels)): + stage_name = f'stage{i + 1}' + self.semantic_stages.append(stage_name) + if i == 0: + self.add_module( + stage_name, + StemBlock(self.in_channels, semantic_channels[i])) + elif i == (len(semantic_channels) - 1): + self.add_module( + stage_name, + nn.Sequential( + GELayer(semantic_channels[i - 1], semantic_channels[i], + exp_ratio, 2), + GELayer(semantic_channels[i], semantic_channels[i], + exp_ratio, 1), + GELayer(semantic_channels[i], semantic_channels[i], + exp_ratio, 1), + GELayer(semantic_channels[i], semantic_channels[i], + exp_ratio, 1))) + else: + self.add_module( + stage_name, + nn.Sequential( + GELayer(semantic_channels[i - 1], semantic_channels[i], + exp_ratio, 2), + GELayer(semantic_channels[i], semantic_channels[i], + exp_ratio, 1))) + + self.add_module(f'stage{len(semantic_channels)}_CEBlock', + CEBlock(semantic_channels[-1], semantic_channels[-1])) + self.semantic_stages.append(f'stage{len(semantic_channels)}_CEBlock') + + def forward(self, x): + semantic_outs = [] + for stage_name in self.semantic_stages: + semantic_stage = getattr(self, stage_name) + x = semantic_stage(x) + semantic_outs.append(x) + return semantic_outs + + +class BGALayer(BaseModule): + """Bilateral Guided Aggregation Layer to fuse the complementary information + from both Detail Branch and Semantic Branch. + + Args: + out_channels (int): Number of output channels. + Default: 128. + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + Returns: + output (torch.Tensor): Output feature map for Segment heads. + """ + + def __init__(self, + out_channels=128, + align_corners=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(BGALayer, self).__init__(init_cfg=init_cfg) + self.out_channels = out_channels + self.align_corners = align_corners + self.detail_dwconv = nn.Sequential( + DepthwiseSeparableConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + padding=1, + dw_norm_cfg=norm_cfg, + dw_act_cfg=None, + pw_norm_cfg=None, + pw_act_cfg=None, + )) + self.detail_down = nn.Sequential( + ConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=2, + padding=1, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None), + nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)) + self.semantic_conv = nn.Sequential( + ConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + padding=1, + bias=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None)) + self.semantic_dwconv = nn.Sequential( + DepthwiseSeparableConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + padding=1, + dw_norm_cfg=norm_cfg, + dw_act_cfg=None, + pw_norm_cfg=None, + pw_act_cfg=None, + )) + self.conv = ConvModule( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + padding=1, + inplace=True, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + ) + + def forward(self, x_d, x_s): + detail_dwconv = self.detail_dwconv(x_d) + detail_down = self.detail_down(x_d) + semantic_conv = self.semantic_conv(x_s) + semantic_dwconv = self.semantic_dwconv(x_s) + semantic_conv = resize( + input=semantic_conv, + size=detail_dwconv.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + fuse_1 = detail_dwconv * torch.sigmoid(semantic_conv) + fuse_2 = detail_down * torch.sigmoid(semantic_dwconv) + fuse_2 = resize( + input=fuse_2, + size=fuse_1.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + output = self.conv(fuse_1 + fuse_2) + return output + + +@BACKBONES.register_module() +class BiSeNetV2(BaseModule): + """BiSeNetV2: Bilateral Network with Guided Aggregation for + Real-time Semantic Segmentation. + + This backbone is the implementation of + `BiSeNetV2 `_. + + Args: + in_channels (int): Number of channel of input image. Default: 3. + detail_channels (Tuple[int], optional): Channels of each stage + in Detail Branch. Default: (64, 64, 128). + semantic_channels (Tuple[int], optional): Channels of each stage + in Semantic Branch. Default: (16, 32, 64, 128). + See Table 1 and Figure 3 of paper for more details. + semantic_expansion_ratio (int, optional): The expansion factor + expanding channel number of middle channels in Semantic Branch. + Default: 6. + bga_channels (int, optional): Number of middle channels in + Bilateral Guided Aggregation Layer. Default: 128. + out_indices (Tuple[int] | int, optional): Output from which stages. + Default: (0, 1, 2, 3, 4). + align_corners (bool, optional): The align_corners argument of + resize operation in Bilateral Guided Aggregation Layer. + Default: False. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels=3, + detail_channels=(64, 64, 128), + semantic_channels=(16, 32, 64, 128), + semantic_expansion_ratio=6, + bga_channels=128, + out_indices=(0, 1, 2, 3, 4), + align_corners=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + if init_cfg is None: + init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) + ] + super(BiSeNetV2, self).__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.out_indices = out_indices + self.detail_channels = detail_channels + self.semantic_channels = semantic_channels + self.semantic_expansion_ratio = semantic_expansion_ratio + self.bga_channels = bga_channels + self.align_corners = align_corners + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.detail = DetailBranch(self.detail_channels, self.in_channels) + self.semantic = SemanticBranch(self.semantic_channels, + self.in_channels, + self.semantic_expansion_ratio) + self.bga = BGALayer(self.bga_channels, self.align_corners) + + def forward(self, x): + # stole refactoring code from Coin Cheung, thanks + x_detail = self.detail(x) + x_semantic_lst = self.semantic(x) + x_head = self.bga(x_detail, x_semantic_lst[-1]) + outs = [x_head] + x_semantic_lst[:-1] + outs = [outs[i] for i in self.out_indices] + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/cgnet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/cgnet.py new file mode 100644 index 000000000..168194c10 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/cgnet.py @@ -0,0 +1,372 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import ConvModule, build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule +from mmcv.utils.parrots_wrapper import _BatchNorm + +from ..builder import BACKBONES + + +class GlobalContextExtractor(nn.Module): + """Global Context Extractor for CGNet. + + This class is employed to refine the joint feature of both local feature + and surrounding context. + + Args: + channel (int): Number of input feature channels. + reduction (int): Reductions for global context extractor. Default: 16. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + """ + + def __init__(self, channel, reduction=16, with_cp=False): + super(GlobalContextExtractor, self).__init__() + self.channel = channel + self.reduction = reduction + assert reduction >= 1 and channel >= reduction + self.with_cp = with_cp + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel), nn.Sigmoid()) + + def forward(self, x): + + def _inner_forward(x): + num_batch, num_channel = x.size()[:2] + y = self.avg_pool(x).view(num_batch, num_channel) + y = self.fc(y).view(num_batch, num_channel, 1, 1) + return x * y + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out + + +class ContextGuidedBlock(nn.Module): + """Context Guided Block for CGNet. + + This class consists of four components: local feature extractor, + surrounding feature extractor, joint feature extractor and global + context extractor. + + Args: + in_channels (int): Number of input feature channels. + out_channels (int): Number of output feature channels. + dilation (int): Dilation rate for surrounding context extractor. + Default: 2. + reduction (int): Reduction for global context extractor. Default: 16. + skip_connect (bool): Add input to output or not. Default: True. + downsample (bool): Downsample the input to 1/2 or not. Default: False. + conv_cfg (dict): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN', requires_grad=True). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='PReLU'). + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + """ + + def __init__(self, + in_channels, + out_channels, + dilation=2, + reduction=16, + skip_connect=True, + downsample=False, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='PReLU'), + with_cp=False): + super(ContextGuidedBlock, self).__init__() + self.with_cp = with_cp + self.downsample = downsample + + channels = out_channels if downsample else out_channels // 2 + if 'type' in act_cfg and act_cfg['type'] == 'PReLU': + act_cfg['num_parameters'] = channels + kernel_size = 3 if downsample else 1 + stride = 2 if downsample else 1 + padding = (kernel_size - 1) // 2 + + self.conv1x1 = ConvModule( + in_channels, + channels, + kernel_size, + stride, + padding, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + self.f_loc = build_conv_layer( + conv_cfg, + channels, + channels, + kernel_size=3, + padding=1, + groups=channels, + bias=False) + self.f_sur = build_conv_layer( + conv_cfg, + channels, + channels, + kernel_size=3, + padding=dilation, + groups=channels, + dilation=dilation, + bias=False) + + self.bn = build_norm_layer(norm_cfg, 2 * channels)[1] + self.activate = nn.PReLU(2 * channels) + + if downsample: + self.bottleneck = build_conv_layer( + conv_cfg, + 2 * channels, + out_channels, + kernel_size=1, + bias=False) + + self.skip_connect = skip_connect and not downsample + self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp) + + def forward(self, x): + + def _inner_forward(x): + out = self.conv1x1(x) + loc = self.f_loc(out) + sur = self.f_sur(out) + + joi_feat = torch.cat([loc, sur], 1) # the joint feature + joi_feat = self.bn(joi_feat) + joi_feat = self.activate(joi_feat) + if self.downsample: + joi_feat = self.bottleneck(joi_feat) # channel = out_channels + # f_glo is employed to refine the joint feature + out = self.f_glo(joi_feat) + + if self.skip_connect: + return x + out + else: + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out + + +class InputInjection(nn.Module): + """Downsampling module for CGNet.""" + + def __init__(self, num_downsampling): + super(InputInjection, self).__init__() + self.pool = nn.ModuleList() + for i in range(num_downsampling): + self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) + + def forward(self, x): + for pool in self.pool: + x = pool(x) + return x + + +@BACKBONES.register_module() +class CGNet(BaseModule): + """CGNet backbone. + + This backbone is the implementation of `A Light-weight Context Guided + Network for Semantic Segmentation `_. + + Args: + in_channels (int): Number of input image channels. Normally 3. + num_channels (tuple[int]): Numbers of feature channels at each stages. + Default: (32, 64, 128). + num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2. + Default: (3, 21). + dilations (tuple[int]): Dilation rate for surrounding context + extractors at stage 1 and stage 2. Default: (2, 4). + reductions (tuple[int]): Reductions for global context extractors at + stage 1 and stage 2. Default: (8, 16). + conv_cfg (dict): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN', requires_grad=True). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='PReLU'). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels=3, + num_channels=(32, 64, 128), + num_blocks=(3, 21), + dilations=(2, 4), + reductions=(8, 16), + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='PReLU'), + norm_eval=False, + with_cp=False, + pretrained=None, + init_cfg=None): + + super(CGNet, self).__init__(init_cfg) + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer=['Conv2d', 'Linear']), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']), + dict(type='Constant', val=0, layer='PReLU') + ] + else: + raise TypeError('pretrained must be a str or None') + + self.in_channels = in_channels + self.num_channels = num_channels + assert isinstance(self.num_channels, tuple) and len( + self.num_channels) == 3 + self.num_blocks = num_blocks + assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2 + self.dilations = dilations + assert isinstance(self.dilations, tuple) and len(self.dilations) == 2 + self.reductions = reductions + assert isinstance(self.reductions, tuple) and len(self.reductions) == 2 + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU': + self.act_cfg['num_parameters'] = num_channels[0] + self.norm_eval = norm_eval + self.with_cp = with_cp + + cur_channels = in_channels + self.stem = nn.ModuleList() + for i in range(3): + self.stem.append( + ConvModule( + cur_channels, + num_channels[0], + 3, + 2 if i == 0 else 1, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + cur_channels = num_channels[0] + + self.inject_2x = InputInjection(1) # down-sample for Input, factor=2 + self.inject_4x = InputInjection(2) # down-sample for Input, factor=4 + + cur_channels += in_channels + self.norm_prelu_0 = nn.Sequential( + build_norm_layer(norm_cfg, cur_channels)[1], + nn.PReLU(cur_channels)) + + # stage 1 + self.level1 = nn.ModuleList() + for i in range(num_blocks[0]): + self.level1.append( + ContextGuidedBlock( + cur_channels if i == 0 else num_channels[1], + num_channels[1], + dilations[0], + reductions[0], + downsample=(i == 0), + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + with_cp=with_cp)) # CG block + + cur_channels = 2 * num_channels[1] + in_channels + self.norm_prelu_1 = nn.Sequential( + build_norm_layer(norm_cfg, cur_channels)[1], + nn.PReLU(cur_channels)) + + # stage 2 + self.level2 = nn.ModuleList() + for i in range(num_blocks[1]): + self.level2.append( + ContextGuidedBlock( + cur_channels if i == 0 else num_channels[2], + num_channels[2], + dilations[1], + reductions[1], + downsample=(i == 0), + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + with_cp=with_cp)) # CG block + + cur_channels = 2 * num_channels[2] + self.norm_prelu_2 = nn.Sequential( + build_norm_layer(norm_cfg, cur_channels)[1], + nn.PReLU(cur_channels)) + + def forward(self, x): + output = [] + + # stage 0 + inp_2x = self.inject_2x(x) + inp_4x = self.inject_4x(x) + for layer in self.stem: + x = layer(x) + x = self.norm_prelu_0(torch.cat([x, inp_2x], 1)) + output.append(x) + + # stage 1 + for i, layer in enumerate(self.level1): + x = layer(x) + if i == 0: + down1 = x + x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1)) + output.append(x) + + # stage 2 + for i, layer in enumerate(self.level2): + x = layer(x) + if i == 0: + down2 = x + x = self.norm_prelu_2(torch.cat([down2, x], 1)) + output.append(x) + + return output + + def train(self, mode=True): + """Convert the model into training mode will keeping the normalization + layer freezed.""" + super(CGNet, self).train(mode) + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/erfnet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/erfnet.py new file mode 100644 index 000000000..8921c18f3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/erfnet.py @@ -0,0 +1,329 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import BACKBONES + + +class DownsamplerBlock(BaseModule): + """Downsampler block of ERFNet. + + This module is a little different from basical ConvModule. + The features from Conv and MaxPool layers are + concatenated before BatchNorm. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN', eps=1e-3), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(DownsamplerBlock, self).__init__(init_cfg=init_cfg) + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.conv = build_conv_layer( + self.conv_cfg, + in_channels, + out_channels - in_channels, + kernel_size=3, + stride=2, + padding=1) + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) + self.bn = build_norm_layer(self.norm_cfg, out_channels)[1] + self.act = build_activation_layer(self.act_cfg) + + def forward(self, input): + conv_out = self.conv(input) + pool_out = self.pool(input) + pool_out = resize( + input=pool_out, + size=conv_out.size()[2:], + mode='bilinear', + align_corners=False) + output = torch.cat([conv_out, pool_out], 1) + output = self.bn(output) + output = self.act(output) + return output + + +class NonBottleneck1d(BaseModule): + """Non-bottleneck block of ERFNet. + + Args: + channels (int): Number of channels in Non-bottleneck block. + drop_rate (float): Probability of an element to be zeroed. + Default 0. + dilation (int): Dilation rate for last two conv layers. + Default 1. + num_conv_layer (int): Number of 3x1 and 1x3 convolution layers. + Default 2. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + channels, + drop_rate=0, + dilation=1, + num_conv_layer=2, + conv_cfg=None, + norm_cfg=dict(type='BN', eps=1e-3), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(NonBottleneck1d, self).__init__(init_cfg=init_cfg) + + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.act = build_activation_layer(self.act_cfg) + + self.convs_layers = nn.ModuleList() + for conv_layer in range(num_conv_layer): + first_conv_padding = (1, 0) if conv_layer == 0 else (dilation, 0) + first_conv_dilation = 1 if conv_layer == 0 else (dilation, 1) + second_conv_padding = (0, 1) if conv_layer == 0 else (0, dilation) + second_conv_dilation = 1 if conv_layer == 0 else (1, dilation) + + self.convs_layers.append( + build_conv_layer( + self.conv_cfg, + channels, + channels, + kernel_size=(3, 1), + stride=1, + padding=first_conv_padding, + bias=True, + dilation=first_conv_dilation)) + self.convs_layers.append(self.act) + self.convs_layers.append( + build_conv_layer( + self.conv_cfg, + channels, + channels, + kernel_size=(1, 3), + stride=1, + padding=second_conv_padding, + bias=True, + dilation=second_conv_dilation)) + self.convs_layers.append( + build_norm_layer(self.norm_cfg, channels)[1]) + if conv_layer == 0: + self.convs_layers.append(self.act) + else: + self.convs_layers.append(nn.Dropout(p=drop_rate)) + + def forward(self, input): + output = input + for conv in self.convs_layers: + output = conv(output) + output = self.act(output + input) + return output + + +class UpsamplerBlock(BaseModule): + """Upsampler block of ERFNet. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN', eps=1e-3), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(UpsamplerBlock, self).__init__(init_cfg=init_cfg) + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.conv = nn.ConvTranspose2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=3, + stride=2, + padding=1, + output_padding=1, + bias=True) + self.bn = build_norm_layer(self.norm_cfg, out_channels)[1] + self.act = build_activation_layer(self.act_cfg) + + def forward(self, input): + output = self.conv(input) + output = self.bn(output) + output = self.act(output) + return output + + +@BACKBONES.register_module() +class ERFNet(BaseModule): + """ERFNet backbone. + + This backbone is the implementation of `ERFNet: Efficient Residual + Factorized ConvNet for Real-time SemanticSegmentation + `_. + + Args: + in_channels (int): The number of channels of input + image. Default: 3. + enc_downsample_channels (Tuple[int]): Size of channel + numbers of various Downsampler block in encoder. + Default: (16, 64, 128). + enc_stage_non_bottlenecks (Tuple[int]): Number of stages of + Non-bottleneck block in encoder. + Default: (5, 8). + enc_non_bottleneck_dilations (Tuple[int]): Dilation rate of each + stage of Non-bottleneck block of encoder. + Default: (2, 4, 8, 16). + enc_non_bottleneck_channels (Tuple[int]): Size of channel + numbers of various Non-bottleneck block in encoder. + Default: (64, 128). + dec_upsample_channels (Tuple[int]): Size of channel numbers of + various Deconvolution block in decoder. + Default: (64, 16). + dec_stages_non_bottleneck (Tuple[int]): Number of stages of + Non-bottleneck block in decoder. + Default: (2, 2). + dec_non_bottleneck_channels (Tuple[int]): Size of channel + numbers of various Non-bottleneck block in decoder. + Default: (64, 16). + drop_rate (float): Probability of an element to be zeroed. + Default 0.1. + """ + + def __init__(self, + in_channels=3, + enc_downsample_channels=(16, 64, 128), + enc_stage_non_bottlenecks=(5, 8), + enc_non_bottleneck_dilations=(2, 4, 8, 16), + enc_non_bottleneck_channels=(64, 128), + dec_upsample_channels=(64, 16), + dec_stages_non_bottleneck=(2, 2), + dec_non_bottleneck_channels=(64, 16), + dropout_ratio=0.1, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='ReLU'), + init_cfg=None): + + super(ERFNet, self).__init__(init_cfg=init_cfg) + assert len(enc_downsample_channels) \ + == len(dec_upsample_channels)+1, 'Number of downsample\ + block of encoder does not \ + match number of upsample block of decoder!' + assert len(enc_downsample_channels) \ + == len(enc_stage_non_bottlenecks)+1, 'Number of \ + downsample block of encoder does not match \ + number of Non-bottleneck block of encoder!' + assert len(enc_downsample_channels) \ + == len(enc_non_bottleneck_channels)+1, 'Number of \ + downsample block of encoder does not match \ + number of channels of Non-bottleneck block of encoder!' + assert enc_stage_non_bottlenecks[-1] \ + % len(enc_non_bottleneck_dilations) == 0, 'Number of \ + Non-bottleneck block of encoder does not match \ + number of Non-bottleneck block of encoder!' + assert len(dec_upsample_channels) \ + == len(dec_stages_non_bottleneck), 'Number of \ + upsample block of decoder does not match \ + number of Non-bottleneck block of decoder!' + assert len(dec_stages_non_bottleneck) \ + == len(dec_non_bottleneck_channels), 'Number of \ + Non-bottleneck block of decoder does not match \ + number of channels of Non-bottleneck block of decoder!' + + self.in_channels = in_channels + self.enc_downsample_channels = enc_downsample_channels + self.enc_stage_non_bottlenecks = enc_stage_non_bottlenecks + self.enc_non_bottleneck_dilations = enc_non_bottleneck_dilations + self.enc_non_bottleneck_channels = enc_non_bottleneck_channels + self.dec_upsample_channels = dec_upsample_channels + self.dec_stages_non_bottleneck = dec_stages_non_bottleneck + self.dec_non_bottleneck_channels = dec_non_bottleneck_channels + self.dropout_ratio = dropout_ratio + + self.encoder = nn.ModuleList() + self.decoder = nn.ModuleList() + + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + + self.encoder.append( + DownsamplerBlock(self.in_channels, enc_downsample_channels[0])) + + for i in range(len(enc_downsample_channels) - 1): + self.encoder.append( + DownsamplerBlock(enc_downsample_channels[i], + enc_downsample_channels[i + 1])) + # Last part of encoder is some dilated NonBottleneck1d blocks. + if i == len(enc_downsample_channels) - 2: + iteration_times = int(enc_stage_non_bottlenecks[-1] / + len(enc_non_bottleneck_dilations)) + for j in range(iteration_times): + for k in range(len(enc_non_bottleneck_dilations)): + self.encoder.append( + NonBottleneck1d(enc_downsample_channels[-1], + self.dropout_ratio, + enc_non_bottleneck_dilations[k])) + else: + for j in range(enc_stage_non_bottlenecks[i]): + self.encoder.append( + NonBottleneck1d(enc_downsample_channels[i + 1], + self.dropout_ratio)) + + for i in range(len(dec_upsample_channels)): + if i == 0: + self.decoder.append( + UpsamplerBlock(enc_downsample_channels[-1], + dec_non_bottleneck_channels[i])) + else: + self.decoder.append( + UpsamplerBlock(dec_non_bottleneck_channels[i - 1], + dec_non_bottleneck_channels[i])) + for j in range(dec_stages_non_bottleneck[i]): + self.decoder.append( + NonBottleneck1d(dec_non_bottleneck_channels[i])) + + def forward(self, x): + for enc in self.encoder: + x = enc(x) + for dec in self.decoder: + x = dec(x) + return [x] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/fast_scnn.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/fast_scnn.py new file mode 100644 index 000000000..cbfbcaf4f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/fast_scnn.py @@ -0,0 +1,409 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule + +from mmseg.models.decode_heads.psp_head import PPM +from mmseg.ops import resize +from ..builder import BACKBONES +from ..utils import InvertedResidual + + +class LearningToDownsample(nn.Module): + """Learning to downsample module. + + Args: + in_channels (int): Number of input channels. + dw_channels (tuple[int]): Number of output channels of the first and + the second depthwise conv (dwconv) layers. + out_channels (int): Number of output channels of the whole + 'learning to downsample' module. + conv_cfg (dict | None): Config of conv layers. Default: None + norm_cfg (dict | None): Config of norm layers. Default: + dict(type='BN') + act_cfg (dict): Config of activation layers. Default: + dict(type='ReLU') + dw_act_cfg (dict): In DepthwiseSeparableConvModule, activation config + of depthwise ConvModule. If it is 'default', it will be the same + as `act_cfg`. Default: None. + """ + + def __init__(self, + in_channels, + dw_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + dw_act_cfg=None): + super(LearningToDownsample, self).__init__() + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.dw_act_cfg = dw_act_cfg + dw_channels1 = dw_channels[0] + dw_channels2 = dw_channels[1] + + self.conv = ConvModule( + in_channels, + dw_channels1, + 3, + stride=2, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.dsconv1 = DepthwiseSeparableConvModule( + dw_channels1, + dw_channels2, + kernel_size=3, + stride=2, + padding=1, + norm_cfg=self.norm_cfg, + dw_act_cfg=self.dw_act_cfg) + + self.dsconv2 = DepthwiseSeparableConvModule( + dw_channels2, + out_channels, + kernel_size=3, + stride=2, + padding=1, + norm_cfg=self.norm_cfg, + dw_act_cfg=self.dw_act_cfg) + + def forward(self, x): + x = self.conv(x) + x = self.dsconv1(x) + x = self.dsconv2(x) + return x + + +class GlobalFeatureExtractor(nn.Module): + """Global feature extractor module. + + Args: + in_channels (int): Number of input channels of the GFE module. + Default: 64 + block_channels (tuple[int]): Tuple of ints. Each int specifies the + number of output channels of each Inverted Residual module. + Default: (64, 96, 128) + out_channels(int): Number of output channels of the GFE module. + Default: 128 + expand_ratio (int): Adjusts number of channels of the hidden layer + in InvertedResidual by this amount. + Default: 6 + num_blocks (tuple[int]): Tuple of ints. Each int specifies the + number of times each Inverted Residual module is repeated. + The repeated Inverted Residual modules are called a 'group'. + Default: (3, 3, 3) + strides (tuple[int]): Tuple of ints. Each int specifies + the downsampling factor of each 'group'. + Default: (2, 2, 1) + pool_scales (tuple[int]): Tuple of ints. Each int specifies + the parameter required in 'global average pooling' within PPM. + Default: (1, 2, 3, 6) + conv_cfg (dict | None): Config of conv layers. Default: None + norm_cfg (dict | None): Config of norm layers. Default: + dict(type='BN') + act_cfg (dict): Config of activation layers. Default: + dict(type='ReLU') + align_corners (bool): align_corners argument of F.interpolate. + Default: False + """ + + def __init__(self, + in_channels=64, + block_channels=(64, 96, 128), + out_channels=128, + expand_ratio=6, + num_blocks=(3, 3, 3), + strides=(2, 2, 1), + pool_scales=(1, 2, 3, 6), + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + align_corners=False): + super(GlobalFeatureExtractor, self).__init__() + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + assert len(block_channels) == len(num_blocks) == 3 + self.bottleneck1 = self._make_layer(in_channels, block_channels[0], + num_blocks[0], strides[0], + expand_ratio) + self.bottleneck2 = self._make_layer(block_channels[0], + block_channels[1], num_blocks[1], + strides[1], expand_ratio) + self.bottleneck3 = self._make_layer(block_channels[1], + block_channels[2], num_blocks[2], + strides[2], expand_ratio) + self.ppm = PPM( + pool_scales, + block_channels[2], + block_channels[2] // 4, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=align_corners) + + self.out = ConvModule( + block_channels[2] * 2, + out_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def _make_layer(self, + in_channels, + out_channels, + blocks, + stride=1, + expand_ratio=6): + layers = [ + InvertedResidual( + in_channels, + out_channels, + stride, + expand_ratio, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + ] + for i in range(1, blocks): + layers.append( + InvertedResidual( + out_channels, + out_channels, + 1, + expand_ratio, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + return nn.Sequential(*layers) + + def forward(self, x): + x = self.bottleneck1(x) + x = self.bottleneck2(x) + x = self.bottleneck3(x) + x = torch.cat([x, *self.ppm(x)], dim=1) + x = self.out(x) + return x + + +class FeatureFusionModule(nn.Module): + """Feature fusion module. + + Args: + higher_in_channels (int): Number of input channels of the + higher-resolution branch. + lower_in_channels (int): Number of input channels of the + lower-resolution branch. + out_channels (int): Number of output channels. + conv_cfg (dict | None): Config of conv layers. Default: None + norm_cfg (dict | None): Config of norm layers. Default: + dict(type='BN') + dwconv_act_cfg (dict): Config of activation layers in 3x3 conv. + Default: dict(type='ReLU'). + conv_act_cfg (dict): Config of activation layers in the two 1x1 conv. + Default: None. + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + """ + + def __init__(self, + higher_in_channels, + lower_in_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dwconv_act_cfg=dict(type='ReLU'), + conv_act_cfg=None, + align_corners=False): + super(FeatureFusionModule, self).__init__() + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.dwconv_act_cfg = dwconv_act_cfg + self.conv_act_cfg = conv_act_cfg + self.align_corners = align_corners + self.dwconv = ConvModule( + lower_in_channels, + out_channels, + 3, + padding=1, + groups=out_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.dwconv_act_cfg) + self.conv_lower_res = ConvModule( + out_channels, + out_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.conv_act_cfg) + + self.conv_higher_res = ConvModule( + higher_in_channels, + out_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.conv_act_cfg) + + self.relu = nn.ReLU(True) + + def forward(self, higher_res_feature, lower_res_feature): + lower_res_feature = resize( + lower_res_feature, + size=higher_res_feature.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + lower_res_feature = self.dwconv(lower_res_feature) + lower_res_feature = self.conv_lower_res(lower_res_feature) + + higher_res_feature = self.conv_higher_res(higher_res_feature) + out = higher_res_feature + lower_res_feature + return self.relu(out) + + +@BACKBONES.register_module() +class FastSCNN(BaseModule): + """Fast-SCNN Backbone. + + This backbone is the implementation of `Fast-SCNN: Fast Semantic + Segmentation Network `_. + + Args: + in_channels (int): Number of input image channels. Default: 3. + downsample_dw_channels (tuple[int]): Number of output channels after + the first conv layer & the second conv layer in + Learning-To-Downsample (LTD) module. + Default: (32, 48). + global_in_channels (int): Number of input channels of + Global Feature Extractor(GFE). + Equal to number of output channels of LTD. + Default: 64. + global_block_channels (tuple[int]): Tuple of integers that describe + the output channels for each of the MobileNet-v2 bottleneck + residual blocks in GFE. + Default: (64, 96, 128). + global_block_strides (tuple[int]): Tuple of integers + that describe the strides (downsampling factors) for each of the + MobileNet-v2 bottleneck residual blocks in GFE. + Default: (2, 2, 1). + global_out_channels (int): Number of output channels of GFE. + Default: 128. + higher_in_channels (int): Number of input channels of the higher + resolution branch in FFM. + Equal to global_in_channels. + Default: 64. + lower_in_channels (int): Number of input channels of the lower + resolution branch in FFM. + Equal to global_out_channels. + Default: 128. + fusion_out_channels (int): Number of output channels of FFM. + Default: 128. + out_indices (tuple): Tuple of indices of list + [higher_res_features, lower_res_features, fusion_output]. + Often set to (0,1,2) to enable aux. heads. + Default: (0, 1, 2). + conv_cfg (dict | None): Config of conv layers. Default: None + norm_cfg (dict | None): Config of norm layers. Default: + dict(type='BN') + act_cfg (dict): Config of activation layers. Default: + dict(type='ReLU') + align_corners (bool): align_corners argument of F.interpolate. + Default: False + dw_act_cfg (dict): In DepthwiseSeparableConvModule, activation config + of depthwise ConvModule. If it is 'default', it will be the same + as `act_cfg`. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + def __init__(self, + in_channels=3, + downsample_dw_channels=(32, 48), + global_in_channels=64, + global_block_channels=(64, 96, 128), + global_block_strides=(2, 2, 1), + global_out_channels=128, + higher_in_channels=64, + lower_in_channels=128, + fusion_out_channels=128, + out_indices=(0, 1, 2), + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + align_corners=False, + dw_act_cfg=None, + init_cfg=None): + + super(FastSCNN, self).__init__(init_cfg) + + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) + ] + + if global_in_channels != higher_in_channels: + raise AssertionError('Global Input Channels must be the same \ + with Higher Input Channels!') + elif global_out_channels != lower_in_channels: + raise AssertionError('Global Output Channels must be the same \ + with Lower Input Channels!') + + self.in_channels = in_channels + self.downsample_dw_channels1 = downsample_dw_channels[0] + self.downsample_dw_channels2 = downsample_dw_channels[1] + self.global_in_channels = global_in_channels + self.global_block_channels = global_block_channels + self.global_block_strides = global_block_strides + self.global_out_channels = global_out_channels + self.higher_in_channels = higher_in_channels + self.lower_in_channels = lower_in_channels + self.fusion_out_channels = fusion_out_channels + self.out_indices = out_indices + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.align_corners = align_corners + self.learning_to_downsample = LearningToDownsample( + in_channels, + downsample_dw_channels, + global_in_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + dw_act_cfg=dw_act_cfg) + self.global_feature_extractor = GlobalFeatureExtractor( + global_in_channels, + global_block_channels, + global_out_channels, + strides=self.global_block_strides, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=self.align_corners) + self.feature_fusion = FeatureFusionModule( + higher_in_channels, + lower_in_channels, + fusion_out_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dwconv_act_cfg=self.act_cfg, + align_corners=self.align_corners) + + def forward(self, x): + higher_res_features = self.learning_to_downsample(x) + lower_res_features = self.global_feature_extractor(higher_res_features) + fusion_output = self.feature_fusion(higher_res_features, + lower_res_features) + + outs = [higher_res_features, lower_res_features, fusion_output] + outs = [outs[i] for i in self.out_indices] + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/hrnet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/hrnet.py new file mode 100644 index 000000000..90feadcf6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/hrnet.py @@ -0,0 +1,642 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import BaseModule, ModuleList, Sequential +from mmcv.utils.parrots_wrapper import _BatchNorm + +from mmseg.ops import Upsample, resize +from ..builder import BACKBONES +from .resnet import BasicBlock, Bottleneck + + +class HRModule(BaseModule): + """High-Resolution Module for HRNet. + + In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange + is in this module. + """ + + def __init__(self, + num_branches, + blocks, + num_blocks, + in_channels, + num_channels, + multiscale_output=True, + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + block_init_cfg=None, + init_cfg=None): + super(HRModule, self).__init__(init_cfg) + self.block_init_cfg = block_init_cfg + self._check_branches(num_branches, num_blocks, in_channels, + num_channels) + + self.in_channels = in_channels + self.num_branches = num_branches + + self.multiscale_output = multiscale_output + self.norm_cfg = norm_cfg + self.conv_cfg = conv_cfg + self.with_cp = with_cp + self.branches = self._make_branches(num_branches, blocks, num_blocks, + num_channels) + self.fuse_layers = self._make_fuse_layers() + self.relu = nn.ReLU(inplace=False) + + def _check_branches(self, num_branches, num_blocks, in_channels, + num_channels): + """Check branches configuration.""" + if num_branches != len(num_blocks): + error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_BLOCKS(' \ + f'{len(num_blocks)})' + raise ValueError(error_msg) + + if num_branches != len(num_channels): + error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_CHANNELS(' \ + f'{len(num_channels)})' + raise ValueError(error_msg) + + if num_branches != len(in_channels): + error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_INCHANNELS(' \ + f'{len(in_channels)})' + raise ValueError(error_msg) + + def _make_one_branch(self, + branch_index, + block, + num_blocks, + num_channels, + stride=1): + """Build one branch.""" + downsample = None + if stride != 1 or \ + self.in_channels[branch_index] != \ + num_channels[branch_index] * block.expansion: + downsample = nn.Sequential( + build_conv_layer( + self.conv_cfg, + self.in_channels[branch_index], + num_channels[branch_index] * block.expansion, + kernel_size=1, + stride=stride, + bias=False), + build_norm_layer(self.norm_cfg, num_channels[branch_index] * + block.expansion)[1]) + + layers = [] + layers.append( + block( + self.in_channels[branch_index], + num_channels[branch_index], + stride, + downsample=downsample, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=self.block_init_cfg)) + self.in_channels[branch_index] = \ + num_channels[branch_index] * block.expansion + for i in range(1, num_blocks[branch_index]): + layers.append( + block( + self.in_channels[branch_index], + num_channels[branch_index], + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=self.block_init_cfg)) + + return Sequential(*layers) + + def _make_branches(self, num_branches, block, num_blocks, num_channels): + """Build multiple branch.""" + branches = [] + + for i in range(num_branches): + branches.append( + self._make_one_branch(i, block, num_blocks, num_channels)) + + return ModuleList(branches) + + def _make_fuse_layers(self): + """Build fuse layer.""" + if self.num_branches == 1: + return None + + num_branches = self.num_branches + in_channels = self.in_channels + fuse_layers = [] + num_out_branches = num_branches if self.multiscale_output else 1 + for i in range(num_out_branches): + fuse_layer = [] + for j in range(num_branches): + if j > i: + fuse_layer.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[i], + kernel_size=1, + stride=1, + padding=0, + bias=False), + build_norm_layer(self.norm_cfg, in_channels[i])[1], + # we set align_corners=False for HRNet + Upsample( + scale_factor=2**(j - i), + mode='bilinear', + align_corners=False))) + elif j == i: + fuse_layer.append(None) + else: + conv_downsamples = [] + for k in range(i - j): + if k == i - j - 1: + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[i], + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + in_channels[i])[1])) + else: + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels[j], + in_channels[j], + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + in_channels[j])[1], + nn.ReLU(inplace=False))) + fuse_layer.append(nn.Sequential(*conv_downsamples)) + fuse_layers.append(nn.ModuleList(fuse_layer)) + + return nn.ModuleList(fuse_layers) + + def forward(self, x): + """Forward function.""" + if self.num_branches == 1: + return [self.branches[0](x[0])] + + for i in range(self.num_branches): + x[i] = self.branches[i](x[i]) + + x_fuse = [] + for i in range(len(self.fuse_layers)): + y = 0 + for j in range(self.num_branches): + if i == j: + y += x[j] + elif j > i: + y = y + resize( + self.fuse_layers[i][j](x[j]), + size=x[i].shape[2:], + mode='bilinear', + align_corners=False) + else: + y += self.fuse_layers[i][j](x[j]) + x_fuse.append(self.relu(y)) + return x_fuse + + +@BACKBONES.register_module() +class HRNet(BaseModule): + """HRNet backbone. + + This backbone is the implementation of `High-Resolution Representations + for Labeling Pixels and Regions `_. + + Args: + extra (dict): Detailed configuration for each stage of HRNet. + There must be 4 stages, the configuration for each stage must have + 5 keys: + + - num_modules (int): The number of HRModule in this stage. + - num_branches (int): The number of branches in the HRModule. + - block (str): The type of convolution block. + - num_blocks (tuple): The number of blocks in each branch. + The length must be equal to num_branches. + - num_channels (tuple): The number of channels in each branch. + The length must be equal to num_branches. + in_channels (int): Number of input image channels. Normally 3. + conv_cfg (dict): Dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Use `BN` by default. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. Default: -1. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. Default: False. + multiscale_output (bool): Whether to output multi-level features + produced by multiple branches. If False, only the first level + feature will be output. Default: True. + pretrained (str, optional): Model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Example: + >>> from mmseg.models import HRNet + >>> import torch + >>> extra = dict( + >>> stage1=dict( + >>> num_modules=1, + >>> num_branches=1, + >>> block='BOTTLENECK', + >>> num_blocks=(4, ), + >>> num_channels=(64, )), + >>> stage2=dict( + >>> num_modules=1, + >>> num_branches=2, + >>> block='BASIC', + >>> num_blocks=(4, 4), + >>> num_channels=(32, 64)), + >>> stage3=dict( + >>> num_modules=4, + >>> num_branches=3, + >>> block='BASIC', + >>> num_blocks=(4, 4, 4), + >>> num_channels=(32, 64, 128)), + >>> stage4=dict( + >>> num_modules=3, + >>> num_branches=4, + >>> block='BASIC', + >>> num_blocks=(4, 4, 4, 4), + >>> num_channels=(32, 64, 128, 256))) + >>> self = HRNet(extra, in_channels=1) + >>> self.eval() + >>> inputs = torch.rand(1, 1, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 32, 8, 8) + (1, 64, 4, 4) + (1, 128, 2, 2) + (1, 256, 1, 1) + """ + + blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} + + def __init__(self, + extra, + in_channels=3, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=False, + with_cp=False, + frozen_stages=-1, + zero_init_residual=False, + multiscale_output=True, + pretrained=None, + init_cfg=None): + super(HRNet, self).__init__(init_cfg) + + self.pretrained = pretrained + self.zero_init_residual = zero_init_residual + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + # Assert configurations of 4 stages are in extra + assert 'stage1' in extra and 'stage2' in extra \ + and 'stage3' in extra and 'stage4' in extra + # Assert whether the length of `num_blocks` and `num_channels` are + # equal to `num_branches` + for i in range(4): + cfg = extra[f'stage{i + 1}'] + assert len(cfg['num_blocks']) == cfg['num_branches'] and \ + len(cfg['num_channels']) == cfg['num_branches'] + + self.extra = extra + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.norm_eval = norm_eval + self.with_cp = with_cp + self.frozen_stages = frozen_stages + + # stem net + self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) + self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) + + self.conv1 = build_conv_layer( + self.conv_cfg, + in_channels, + 64, + kernel_size=3, + stride=2, + padding=1, + bias=False) + + self.add_module(self.norm1_name, norm1) + self.conv2 = build_conv_layer( + self.conv_cfg, + 64, + 64, + kernel_size=3, + stride=2, + padding=1, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.relu = nn.ReLU(inplace=True) + + # stage 1 + self.stage1_cfg = self.extra['stage1'] + num_channels = self.stage1_cfg['num_channels'][0] + block_type = self.stage1_cfg['block'] + num_blocks = self.stage1_cfg['num_blocks'][0] + + block = self.blocks_dict[block_type] + stage1_out_channels = num_channels * block.expansion + self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) + + # stage 2 + self.stage2_cfg = self.extra['stage2'] + num_channels = self.stage2_cfg['num_channels'] + block_type = self.stage2_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition1 = self._make_transition_layer([stage1_out_channels], + num_channels) + self.stage2, pre_stage_channels = self._make_stage( + self.stage2_cfg, num_channels) + + # stage 3 + self.stage3_cfg = self.extra['stage3'] + num_channels = self.stage3_cfg['num_channels'] + block_type = self.stage3_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition2 = self._make_transition_layer(pre_stage_channels, + num_channels) + self.stage3, pre_stage_channels = self._make_stage( + self.stage3_cfg, num_channels) + + # stage 4 + self.stage4_cfg = self.extra['stage4'] + num_channels = self.stage4_cfg['num_channels'] + block_type = self.stage4_cfg['block'] + + block = self.blocks_dict[block_type] + num_channels = [channel * block.expansion for channel in num_channels] + self.transition3 = self._make_transition_layer(pre_stage_channels, + num_channels) + self.stage4, pre_stage_channels = self._make_stage( + self.stage4_cfg, num_channels, multiscale_output=multiscale_output) + + self._freeze_stages() + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: the normalization layer named "norm2" """ + return getattr(self, self.norm2_name) + + def _make_transition_layer(self, num_channels_pre_layer, + num_channels_cur_layer): + """Make transition layer.""" + num_branches_cur = len(num_channels_cur_layer) + num_branches_pre = len(num_channels_pre_layer) + + transition_layers = [] + for i in range(num_branches_cur): + if i < num_branches_pre: + if num_channels_cur_layer[i] != num_channels_pre_layer[i]: + transition_layers.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + num_channels_pre_layer[i], + num_channels_cur_layer[i], + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, + num_channels_cur_layer[i])[1], + nn.ReLU(inplace=True))) + else: + transition_layers.append(None) + else: + conv_downsamples = [] + for j in range(i + 1 - num_branches_pre): + in_channels = num_channels_pre_layer[-1] + out_channels = num_channels_cur_layer[i] \ + if j == i - num_branches_pre else in_channels + conv_downsamples.append( + nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels, + out_channels, + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, out_channels)[1], + nn.ReLU(inplace=True))) + transition_layers.append(nn.Sequential(*conv_downsamples)) + + return nn.ModuleList(transition_layers) + + def _make_layer(self, block, inplanes, planes, blocks, stride=1): + """Make each layer.""" + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = nn.Sequential( + build_conv_layer( + self.conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias=False), + build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) + + layers = [] + block_init_cfg = None + if self.pretrained is None and not hasattr( + self, 'init_cfg') and self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm3')) + + layers.append( + block( + inplanes, + planes, + stride, + downsample=downsample, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=block_init_cfg)) + inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append( + block( + inplanes, + planes, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + init_cfg=block_init_cfg)) + + return Sequential(*layers) + + def _make_stage(self, layer_config, in_channels, multiscale_output=True): + """Make each stage.""" + num_modules = layer_config['num_modules'] + num_branches = layer_config['num_branches'] + num_blocks = layer_config['num_blocks'] + num_channels = layer_config['num_channels'] + block = self.blocks_dict[layer_config['block']] + + hr_modules = [] + block_init_cfg = None + if self.pretrained is None and not hasattr( + self, 'init_cfg') and self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', val=0, override=dict(name='norm3')) + + for i in range(num_modules): + # multi_scale_output is only used for the last module + if not multiscale_output and i == num_modules - 1: + reset_multiscale_output = False + else: + reset_multiscale_output = True + + hr_modules.append( + HRModule( + num_branches, + block, + num_blocks, + in_channels, + num_channels, + reset_multiscale_output, + with_cp=self.with_cp, + norm_cfg=self.norm_cfg, + conv_cfg=self.conv_cfg, + block_init_cfg=block_init_cfg)) + + return Sequential(*hr_modules), in_channels + + def _freeze_stages(self): + """Freeze stages param and norm stats.""" + if self.frozen_stages >= 0: + + self.norm1.eval() + self.norm2.eval() + for m in [self.conv1, self.norm1, self.conv2, self.norm2]: + for param in m.parameters(): + param.requires_grad = False + + for i in range(1, self.frozen_stages + 1): + if i == 1: + m = getattr(self, f'layer{i}') + t = getattr(self, f'transition{i}') + elif i == 4: + m = getattr(self, f'stage{i}') + else: + m = getattr(self, f'stage{i}') + t = getattr(self, f'transition{i}') + m.eval() + for param in m.parameters(): + param.requires_grad = False + t.eval() + for param in t.parameters(): + param.requires_grad = False + + def forward(self, x): + """Forward function.""" + + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.relu(x) + x = self.layer1(x) + + x_list = [] + for i in range(self.stage2_cfg['num_branches']): + if self.transition1[i] is not None: + x_list.append(self.transition1[i](x)) + else: + x_list.append(x) + y_list = self.stage2(x_list) + + x_list = [] + for i in range(self.stage3_cfg['num_branches']): + if self.transition2[i] is not None: + x_list.append(self.transition2[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage3(x_list) + + x_list = [] + for i in range(self.stage4_cfg['num_branches']): + if self.transition3[i] is not None: + x_list.append(self.transition3[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage4(x_list) + + return y_list + + def train(self, mode=True): + """Convert the model into training mode will keeping the normalization + layer freezed.""" + super(HRNet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/icnet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/icnet.py new file mode 100644 index 000000000..10e542785 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/icnet.py @@ -0,0 +1,165 @@ +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import BACKBONES, build_backbone +from ..decode_heads.psp_head import PPM + + +@BACKBONES.register_module() +class ICNet(BaseModule): + """ICNet for Real-Time Semantic Segmentation on High-Resolution Images. + + This backbone is the implementation of + `ICNet `_. + + Args: + backbone_cfg (dict): Config dict to build backbone. Usually it is + ResNet but it can also be other backbones. + in_channels (int): The number of input image channels. Default: 3. + layer_channels (Sequence[int]): The numbers of feature channels at + layer 2 and layer 4 in ResNet. It can also be other backbones. + Default: (512, 2048). + light_branch_middle_channels (int): The number of channels of the + middle layer in light branch. Default: 32. + psp_out_channels (int): The number of channels of the output of PSP + module. Default: 512. + out_channels (Sequence[int]): The numbers of output feature channels + at each branches. Default: (64, 256, 256). + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. Default: (1, 2, 3, 6). + conv_cfg (dict): Dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN'). + act_cfg (dict): Dictionary to construct and config act layer. + Default: dict(type='ReLU'). + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + backbone_cfg, + in_channels=3, + layer_channels=(512, 2048), + light_branch_middle_channels=32, + psp_out_channels=512, + out_channels=(64, 256, 256), + pool_scales=(1, 2, 3, 6), + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + act_cfg=dict(type='ReLU'), + align_corners=False, + init_cfg=None): + if backbone_cfg is None: + raise TypeError('backbone_cfg must be passed from config file!') + if init_cfg is None: + init_cfg = [ + dict(type='Kaiming', mode='fan_out', layer='Conv2d'), + dict(type='Constant', val=1, layer='_BatchNorm'), + dict(type='Normal', mean=0.01, layer='Linear') + ] + super(ICNet, self).__init__(init_cfg=init_cfg) + self.align_corners = align_corners + self.backbone = build_backbone(backbone_cfg) + + # Note: Default `ceil_mode` is false in nn.MaxPool2d, set + # `ceil_mode=True` to keep information in the corner of feature map. + self.backbone.maxpool = nn.MaxPool2d( + kernel_size=3, stride=2, padding=1, ceil_mode=True) + + self.psp_modules = PPM( + pool_scales=pool_scales, + in_channels=layer_channels[1], + channels=psp_out_channels, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + align_corners=align_corners) + + self.psp_bottleneck = ConvModule( + layer_channels[1] + len(pool_scales) * psp_out_channels, + psp_out_channels, + 3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + self.conv_sub1 = nn.Sequential( + ConvModule( + in_channels=in_channels, + out_channels=light_branch_middle_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg), + ConvModule( + in_channels=light_branch_middle_channels, + out_channels=light_branch_middle_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg), + ConvModule( + in_channels=light_branch_middle_channels, + out_channels=out_channels[0], + kernel_size=3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg)) + + self.conv_sub2 = ConvModule( + layer_channels[0], + out_channels[1], + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg) + + self.conv_sub4 = ConvModule( + psp_out_channels, + out_channels[2], + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg) + + def forward(self, x): + output = [] + + # sub 1 + output.append(self.conv_sub1(x)) + + # sub 2 + x = resize( + x, + scale_factor=0.5, + mode='bilinear', + align_corners=self.align_corners) + x = self.backbone.stem(x) + x = self.backbone.maxpool(x) + x = self.backbone.layer1(x) + x = self.backbone.layer2(x) + output.append(self.conv_sub2(x)) + + # sub 4 + x = resize( + x, + scale_factor=0.5, + mode='bilinear', + align_corners=self.align_corners) + x = self.backbone.layer3(x) + x = self.backbone.layer4(x) + psp_outs = self.psp_modules(x) + [x] + psp_outs = torch.cat(psp_outs, dim=1) + x = self.psp_bottleneck(psp_outs) + + output.append(self.conv_sub4(x)) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mit.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mit.py new file mode 100644 index 000000000..c97213a4a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mit.py @@ -0,0 +1,431 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +import warnings + +import torch +import torch.nn as nn +from mmcv.cnn import Conv2d, build_activation_layer, build_norm_layer +from mmcv.cnn.bricks.drop import build_dropout +from mmcv.cnn.bricks.transformer import MultiheadAttention +from mmcv.cnn.utils.weight_init import (constant_init, normal_init, + trunc_normal_init) +from mmcv.runner import BaseModule, ModuleList, Sequential + +from ..builder import BACKBONES +from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw + + +class MixFFN(BaseModule): + """An implementation of MixFFN of Segformer. + + The differences between MixFFN & FFN: + 1. Use 1X1 Conv to replace Linear layer. + 2. Introduce 3X3 Conv to encode positional information. + Args: + embed_dims (int): The feature dimension. Same as + `MultiheadAttention`. Defaults: 256. + feedforward_channels (int): The hidden dimension of FFNs. + Defaults: 1024. + act_cfg (dict, optional): The activation config for FFNs. + Default: dict(type='ReLU') + ffn_drop (float, optional): Probability of an element to be + zeroed in FFN. Default 0.0. + dropout_layer (obj:`ConfigDict`): The dropout_layer used + when adding the shortcut. + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + feedforward_channels, + act_cfg=dict(type='GELU'), + ffn_drop=0., + dropout_layer=None, + init_cfg=None): + super(MixFFN, self).__init__(init_cfg) + + self.embed_dims = embed_dims + self.feedforward_channels = feedforward_channels + self.act_cfg = act_cfg + self.activate = build_activation_layer(act_cfg) + + in_channels = embed_dims + fc1 = Conv2d( + in_channels=in_channels, + out_channels=feedforward_channels, + kernel_size=1, + stride=1, + bias=True) + # 3x3 depth wise conv to provide positional encode information + pe_conv = Conv2d( + in_channels=feedforward_channels, + out_channels=feedforward_channels, + kernel_size=3, + stride=1, + padding=(3 - 1) // 2, + bias=True, + groups=feedforward_channels) + fc2 = Conv2d( + in_channels=feedforward_channels, + out_channels=in_channels, + kernel_size=1, + stride=1, + bias=True) + drop = nn.Dropout(ffn_drop) + layers = [fc1, pe_conv, self.activate, drop, fc2, drop] + self.layers = Sequential(*layers) + self.dropout_layer = build_dropout( + dropout_layer) if dropout_layer else torch.nn.Identity() + + def forward(self, x, hw_shape, identity=None): + out = nlc_to_nchw(x, hw_shape) + out = self.layers(out) + out = nchw_to_nlc(out) + if identity is None: + identity = x + return identity + self.dropout_layer(out) + + +class EfficientMultiheadAttention(MultiheadAttention): + """An implementation of Efficient Multi-head Attention of Segformer. + + This module is modified from MultiheadAttention which is a module from + mmcv.cnn.bricks.transformer. + Args: + embed_dims (int): The embedding dimension. + num_heads (int): Parallel attention heads. + attn_drop (float): A Dropout layer on attn_output_weights. + Default: 0.0. + proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. + Default: 0.0. + dropout_layer (obj:`ConfigDict`): The dropout_layer used + when adding the shortcut. Default: None. + init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. + Default: None. + batch_first (bool): Key, Query and Value are shape of + (batch, n, embed_dim) + or (n, batch, embed_dim). Default: False. + qkv_bias (bool): enable bias for qkv if True. Default True. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head + Attention of Segformer. Default: 1. + """ + + def __init__(self, + embed_dims, + num_heads, + attn_drop=0., + proj_drop=0., + dropout_layer=None, + init_cfg=None, + batch_first=True, + qkv_bias=False, + norm_cfg=dict(type='LN'), + sr_ratio=1): + super().__init__( + embed_dims, + num_heads, + attn_drop, + proj_drop, + dropout_layer=dropout_layer, + init_cfg=init_cfg, + batch_first=batch_first, + bias=qkv_bias) + + self.sr_ratio = sr_ratio + if sr_ratio > 1: + self.sr = Conv2d( + in_channels=embed_dims, + out_channels=embed_dims, + kernel_size=sr_ratio, + stride=sr_ratio) + # The ret[0] of build_norm_layer is norm name. + self.norm = build_norm_layer(norm_cfg, embed_dims)[1] + + # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa + from mmseg import digit_version, mmcv_version + if mmcv_version < digit_version('1.3.17'): + warnings.warn('The legacy version of forward function in' + 'EfficientMultiheadAttention is deprecated in' + 'mmcv>=1.3.17 and will no longer support in the' + 'future. Please upgrade your mmcv.') + self.forward = self.legacy_forward + + def forward(self, x, hw_shape, identity=None): + + x_q = x + if self.sr_ratio > 1: + x_kv = nlc_to_nchw(x, hw_shape) + x_kv = self.sr(x_kv) + x_kv = nchw_to_nlc(x_kv) + x_kv = self.norm(x_kv) + else: + x_kv = x + + if identity is None: + identity = x_q + + # Because the dataflow('key', 'query', 'value') of + # ``torch.nn.MultiheadAttention`` is (num_query, batch, + # embed_dims), We should adjust the shape of dataflow from + # batch_first (batch, num_query, embed_dims) to num_query_first + # (num_query ,batch, embed_dims), and recover ``attn_output`` + # from num_query_first to batch_first. + if self.batch_first: + x_q = x_q.transpose(0, 1) + x_kv = x_kv.transpose(0, 1) + + out = self.attn(query=x_q, key=x_kv, value=x_kv)[0] + + if self.batch_first: + out = out.transpose(0, 1) + + return identity + self.dropout_layer(self.proj_drop(out)) + + def legacy_forward(self, x, hw_shape, identity=None): + """multi head attention forward in mmcv version < 1.3.17.""" + + x_q = x + if self.sr_ratio > 1: + x_kv = nlc_to_nchw(x, hw_shape) + x_kv = self.sr(x_kv) + x_kv = nchw_to_nlc(x_kv) + x_kv = self.norm(x_kv) + else: + x_kv = x + + if identity is None: + identity = x_q + + # `need_weights=True` will let nn.MultiHeadAttention + # `return attn_output, attn_output_weights.sum(dim=1) / num_heads` + # The `attn_output_weights.sum(dim=1)` may cause cuda error. So, we set + # `need_weights=False` to ignore `attn_output_weights.sum(dim=1)`. + # This issue - `https://github.com/pytorch/pytorch/issues/37583` report + # the error that large scale tensor sum operation may cause cuda error. + out = self.attn(query=x_q, key=x_kv, value=x_kv, need_weights=False)[0] + + return identity + self.dropout_layer(self.proj_drop(out)) + + +class TransformerEncoderLayer(BaseModule): + """Implements one encoder layer in Segformer. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + drop_rate (float): Probability of an element to be zeroed. + after the feed forward layer. Default 0.0. + attn_drop_rate (float): The drop out rate for attention layer. + Default 0.0. + drop_path_rate (float): stochastic depth rate. Default 0.0. + qkv_bias (bool): enable bias for qkv if True. + Default: True. + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + batch_first (bool): Key, Query and Value are shape of + (batch, n, embed_dim) + or (n, batch, embed_dim). Default: False. + init_cfg (dict, optional): Initialization config dict. + Default:None. + sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head + Attention of Segformer. Default: 1. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + qkv_bias=True, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + batch_first=True, + sr_ratio=1): + super(TransformerEncoderLayer, self).__init__() + + # The ret[0] of build_norm_layer is norm name. + self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] + + self.attn = EfficientMultiheadAttention( + embed_dims=embed_dims, + num_heads=num_heads, + attn_drop=attn_drop_rate, + proj_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + batch_first=batch_first, + qkv_bias=qkv_bias, + norm_cfg=norm_cfg, + sr_ratio=sr_ratio) + + # The ret[0] of build_norm_layer is norm name. + self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] + + self.ffn = MixFFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg) + + def forward(self, x, hw_shape): + x = self.attn(self.norm1(x), hw_shape, identity=x) + x = self.ffn(self.norm2(x), hw_shape, identity=x) + return x + + +@BACKBONES.register_module() +class MixVisionTransformer(BaseModule): + """The backbone of Segformer. + + This backbone is the implementation of `SegFormer: Simple and + Efficient Design for Semantic Segmentation with + Transformers `_. + Args: + in_channels (int): Number of input channels. Default: 3. + embed_dims (int): Embedding dimension. Default: 768. + num_stags (int): The num of stages. Default: 4. + num_layers (Sequence[int]): The layer number of each transformer encode + layer. Default: [3, 4, 6, 3]. + num_heads (Sequence[int]): The attention heads of each transformer + encode layer. Default: [1, 2, 4, 8]. + patch_sizes (Sequence[int]): The patch_size of each overlapped patch + embedding. Default: [7, 3, 3, 3]. + strides (Sequence[int]): The stride of each overlapped patch embedding. + Default: [4, 2, 2, 2]. + sr_ratios (Sequence[int]): The spatial reduction rate of each + transformer encode layer. Default: [8, 4, 2, 1]. + out_indices (Sequence[int] | int): Output from which stages. + Default: (0, 1, 2, 3). + mlp_ratio (int): ratio of mlp hidden dim to embedding dim. + Default: 4. + qkv_bias (bool): Enable bias for qkv if True. Default: True. + drop_rate (float): Probability of an element to be zeroed. + Default 0.0 + attn_drop_rate (float): The drop out rate for attention layer. + Default 0.0 + drop_path_rate (float): stochastic depth rate. Default 0.0 + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN') + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + pretrained (str, optional): model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels=3, + embed_dims=64, + num_stages=4, + num_layers=[3, 4, 6, 3], + num_heads=[1, 2, 4, 8], + patch_sizes=[7, 3, 3, 3], + strides=[4, 2, 2, 2], + sr_ratios=[8, 4, 2, 1], + out_indices=(0, 1, 2, 3), + mlp_ratio=4, + qkv_bias=True, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN', eps=1e-6), + pretrained=None, + init_cfg=None): + super(MixVisionTransformer, self).__init__(init_cfg=init_cfg) + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be set at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is not None: + raise TypeError('pretrained must be a str or None') + + self.embed_dims = embed_dims + self.num_stages = num_stages + self.num_layers = num_layers + self.num_heads = num_heads + self.patch_sizes = patch_sizes + self.strides = strides + self.sr_ratios = sr_ratios + assert num_stages == len(num_layers) == len(num_heads) \ + == len(patch_sizes) == len(strides) == len(sr_ratios) + + self.out_indices = out_indices + assert max(out_indices) < self.num_stages + + # transformer encoder + dpr = [ + x.item() + for x in torch.linspace(0, drop_path_rate, sum(num_layers)) + ] # stochastic num_layer decay rule + + cur = 0 + self.layers = ModuleList() + for i, num_layer in enumerate(num_layers): + embed_dims_i = embed_dims * num_heads[i] + patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims_i, + kernel_size=patch_sizes[i], + stride=strides[i], + padding=patch_sizes[i] // 2, + norm_cfg=norm_cfg) + layer = ModuleList([ + TransformerEncoderLayer( + embed_dims=embed_dims_i, + num_heads=num_heads[i], + feedforward_channels=mlp_ratio * embed_dims_i, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[cur + idx], + qkv_bias=qkv_bias, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + sr_ratio=sr_ratios[i]) for idx in range(num_layer) + ]) + in_channels = embed_dims_i + # The ret[0] of build_norm_layer is norm name. + norm = build_norm_layer(norm_cfg, embed_dims_i)[1] + self.layers.append(ModuleList([patch_embed, layer, norm])) + cur += num_layer + + def init_weights(self): + if self.init_cfg is None: + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, nn.LayerNorm): + constant_init(m, val=1.0, bias=0.) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[ + 1] * m.out_channels + fan_out //= m.groups + normal_init( + m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) + else: + super(MixVisionTransformer, self).init_weights() + + def forward(self, x): + outs = [] + + for i, layer in enumerate(self.layers): + x, hw_shape = layer[0](x) + for block in layer[1]: + x = block(x, hw_shape) + x = layer[2](x) + x = nlc_to_nchw(x, hw_shape) + if i in self.out_indices: + outs.append(x) + + return outs diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v2.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v2.py new file mode 100644 index 000000000..cbb9c6cd0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v2.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from ..utils import InvertedResidual, make_divisible + + +@BACKBONES.register_module() +class MobileNetV2(BaseModule): + """MobileNetV2 backbone. + + This backbone is the implementation of + `MobileNetV2: Inverted Residuals and Linear Bottlenecks + `_. + + Args: + widen_factor (float): Width multiplier, multiply number of + channels in each layer by this amount. Default: 1.0. + strides (Sequence[int], optional): Strides of the first block of each + layer. If not specified, default config in ``arch_setting`` will + be used. + dilations (Sequence[int]): Dilation of each layer. + out_indices (None or Sequence[int]): Output from which stages. + Default: (7, ). + frozen_stages (int): Stages to be frozen (all param fixed). + Default: -1, which means not freezing any parameters. + conv_cfg (dict): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU6'). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + + # Parameters to build layers. 3 parameters are needed to construct a + # layer, from left to right: expand_ratio, channel, num_blocks. + arch_settings = [[1, 16, 1], [6, 24, 2], [6, 32, 3], [6, 64, 4], + [6, 96, 3], [6, 160, 3], [6, 320, 1]] + + def __init__(self, + widen_factor=1., + strides=(1, 2, 2, 2, 1, 2, 1), + dilations=(1, 1, 1, 1, 1, 1, 1), + out_indices=(1, 2, 4, 6), + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU6'), + norm_eval=False, + with_cp=False, + pretrained=None, + init_cfg=None): + super(MobileNetV2, self).__init__(init_cfg) + + self.pretrained = pretrained + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + self.widen_factor = widen_factor + self.strides = strides + self.dilations = dilations + assert len(strides) == len(dilations) == len(self.arch_settings) + self.out_indices = out_indices + for index in out_indices: + if index not in range(0, 7): + raise ValueError('the item in out_indices must in ' + f'range(0, 7). But received {index}') + + if frozen_stages not in range(-1, 7): + raise ValueError('frozen_stages must be in range(-1, 7). ' + f'But received {frozen_stages}') + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.norm_eval = norm_eval + self.with_cp = with_cp + + self.in_channels = make_divisible(32 * widen_factor, 8) + + self.conv1 = ConvModule( + in_channels=3, + out_channels=self.in_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.layers = [] + + for i, layer_cfg in enumerate(self.arch_settings): + expand_ratio, channel, num_blocks = layer_cfg + stride = self.strides[i] + dilation = self.dilations[i] + out_channels = make_divisible(channel * widen_factor, 8) + inverted_res_layer = self.make_layer( + out_channels=out_channels, + num_blocks=num_blocks, + stride=stride, + dilation=dilation, + expand_ratio=expand_ratio) + layer_name = f'layer{i + 1}' + self.add_module(layer_name, inverted_res_layer) + self.layers.append(layer_name) + + def make_layer(self, out_channels, num_blocks, stride, dilation, + expand_ratio): + """Stack InvertedResidual blocks to build a layer for MobileNetV2. + + Args: + out_channels (int): out_channels of block. + num_blocks (int): Number of blocks. + stride (int): Stride of the first block. + dilation (int): Dilation of the first block. + expand_ratio (int): Expand the number of channels of the + hidden layer in InvertedResidual by this ratio. + """ + layers = [] + for i in range(num_blocks): + layers.append( + InvertedResidual( + self.in_channels, + out_channels, + stride if i == 0 else 1, + expand_ratio=expand_ratio, + dilation=dilation if i == 0 else 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + with_cp=self.with_cp)) + self.in_channels = out_channels + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + + outs = [] + for i, layer_name in enumerate(self.layers): + layer = getattr(self, layer_name) + x = layer(x) + if i in self.out_indices: + outs.append(x) + + if len(outs) == 1: + return outs[0] + else: + return tuple(outs) + + def _freeze_stages(self): + if self.frozen_stages >= 0: + for param in self.conv1.parameters(): + param.requires_grad = False + for i in range(1, self.frozen_stages + 1): + layer = getattr(self, f'layer{i}') + layer.eval() + for param in layer.parameters(): + param.requires_grad = False + + def train(self, mode=True): + super(MobileNetV2, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v3.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v3.py new file mode 100644 index 000000000..dd3d6eb17 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/mobilenet_v3.py @@ -0,0 +1,267 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import mmcv +from mmcv.cnn import ConvModule +from mmcv.cnn.bricks import Conv2dAdaptivePadding +from mmcv.runner import BaseModule +from torch.nn.modules.batchnorm import _BatchNorm + +from ..builder import BACKBONES +from ..utils import InvertedResidualV3 as InvertedResidual + + +@BACKBONES.register_module() +class MobileNetV3(BaseModule): + """MobileNetV3 backbone. + + This backbone is the improved implementation of `Searching for MobileNetV3 + `_. + + Args: + arch (str): Architecture of mobilnetv3, from {'small', 'large'}. + Default: 'small'. + conv_cfg (dict): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + out_indices (tuple[int]): Output from which layer. + Default: (0, 1, 12). + frozen_stages (int): Stages to be frozen (all param fixed). + Default: -1, which means not freezing any parameters. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save + some memory while slowing down the training speed. + Default: False. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + """ + # Parameters to build each block: + # [kernel size, mid channels, out channels, with_se, act type, stride] + arch_settings = { + 'small': [[3, 16, 16, True, 'ReLU', 2], # block0 layer1 os=4 + [3, 72, 24, False, 'ReLU', 2], # block1 layer2 os=8 + [3, 88, 24, False, 'ReLU', 1], + [5, 96, 40, True, 'HSwish', 2], # block2 layer4 os=16 + [5, 240, 40, True, 'HSwish', 1], + [5, 240, 40, True, 'HSwish', 1], + [5, 120, 48, True, 'HSwish', 1], # block3 layer7 os=16 + [5, 144, 48, True, 'HSwish', 1], + [5, 288, 96, True, 'HSwish', 2], # block4 layer9 os=32 + [5, 576, 96, True, 'HSwish', 1], + [5, 576, 96, True, 'HSwish', 1]], + 'large': [[3, 16, 16, False, 'ReLU', 1], # block0 layer1 os=2 + [3, 64, 24, False, 'ReLU', 2], # block1 layer2 os=4 + [3, 72, 24, False, 'ReLU', 1], + [5, 72, 40, True, 'ReLU', 2], # block2 layer4 os=8 + [5, 120, 40, True, 'ReLU', 1], + [5, 120, 40, True, 'ReLU', 1], + [3, 240, 80, False, 'HSwish', 2], # block3 layer7 os=16 + [3, 200, 80, False, 'HSwish', 1], + [3, 184, 80, False, 'HSwish', 1], + [3, 184, 80, False, 'HSwish', 1], + [3, 480, 112, True, 'HSwish', 1], # block4 layer11 os=16 + [3, 672, 112, True, 'HSwish', 1], + [5, 672, 160, True, 'HSwish', 2], # block5 layer13 os=32 + [5, 960, 160, True, 'HSwish', 1], + [5, 960, 160, True, 'HSwish', 1]] + } # yapf: disable + + def __init__(self, + arch='small', + conv_cfg=None, + norm_cfg=dict(type='BN'), + out_indices=(0, 1, 12), + frozen_stages=-1, + reduction_factor=1, + norm_eval=False, + with_cp=False, + pretrained=None, + init_cfg=None): + super(MobileNetV3, self).__init__(init_cfg) + + self.pretrained = pretrained + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + assert arch in self.arch_settings + assert isinstance(reduction_factor, int) and reduction_factor > 0 + assert mmcv.is_tuple_of(out_indices, int) + for index in out_indices: + if index not in range(0, len(self.arch_settings[arch]) + 2): + raise ValueError( + 'the item in out_indices must in ' + f'range(0, {len(self.arch_settings[arch])+2}). ' + f'But received {index}') + + if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2): + raise ValueError('frozen_stages must be in range(-1, ' + f'{len(self.arch_settings[arch])+2}). ' + f'But received {frozen_stages}') + self.arch = arch + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.reduction_factor = reduction_factor + self.norm_eval = norm_eval + self.with_cp = with_cp + self.layers = self._make_layer() + + def _make_layer(self): + layers = [] + + # build the first layer (layer0) + in_channels = 16 + layer = ConvModule( + in_channels=3, + out_channels=in_channels, + kernel_size=3, + stride=2, + padding=1, + conv_cfg=dict(type='Conv2dAdaptivePadding'), + norm_cfg=self.norm_cfg, + act_cfg=dict(type='HSwish')) + self.add_module('layer0', layer) + layers.append('layer0') + + layer_setting = self.arch_settings[self.arch] + for i, params in enumerate(layer_setting): + (kernel_size, mid_channels, out_channels, with_se, act, + stride) = params + + if self.arch == 'large' and i >= 12 or self.arch == 'small' and \ + i >= 8: + mid_channels = mid_channels // self.reduction_factor + out_channels = out_channels // self.reduction_factor + + if with_se: + se_cfg = dict( + channels=mid_channels, + ratio=4, + act_cfg=(dict(type='ReLU'), + dict(type='HSigmoid', bias=3.0, divisor=6.0))) + else: + se_cfg = None + + layer = InvertedResidual( + in_channels=in_channels, + out_channels=out_channels, + mid_channels=mid_channels, + kernel_size=kernel_size, + stride=stride, + se_cfg=se_cfg, + with_expand_conv=(in_channels != mid_channels), + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=dict(type=act), + with_cp=self.with_cp) + in_channels = out_channels + layer_name = 'layer{}'.format(i + 1) + self.add_module(layer_name, layer) + layers.append(layer_name) + + # build the last layer + # block5 layer12 os=32 for small model + # block6 layer16 os=32 for large model + layer = ConvModule( + in_channels=in_channels, + out_channels=576 if self.arch == 'small' else 960, + kernel_size=1, + stride=1, + dilation=4, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=dict(type='HSwish')) + layer_name = 'layer{}'.format(len(layer_setting) + 1) + self.add_module(layer_name, layer) + layers.append(layer_name) + + # next, convert backbone MobileNetV3 to a semantic segmentation version + if self.arch == 'small': + self.layer4.depthwise_conv.conv.stride = (1, 1) + self.layer9.depthwise_conv.conv.stride = (1, 1) + for i in range(4, len(layers)): + layer = getattr(self, layers[i]) + if isinstance(layer, InvertedResidual): + modified_module = layer.depthwise_conv.conv + else: + modified_module = layer.conv + + if i < 9: + modified_module.dilation = (2, 2) + pad = 2 + else: + modified_module.dilation = (4, 4) + pad = 4 + + if not isinstance(modified_module, Conv2dAdaptivePadding): + # Adjust padding + pad *= (modified_module.kernel_size[0] - 1) // 2 + modified_module.padding = (pad, pad) + else: + self.layer7.depthwise_conv.conv.stride = (1, 1) + self.layer13.depthwise_conv.conv.stride = (1, 1) + for i in range(7, len(layers)): + layer = getattr(self, layers[i]) + if isinstance(layer, InvertedResidual): + modified_module = layer.depthwise_conv.conv + else: + modified_module = layer.conv + + if i < 13: + modified_module.dilation = (2, 2) + pad = 2 + else: + modified_module.dilation = (4, 4) + pad = 4 + + if not isinstance(modified_module, Conv2dAdaptivePadding): + # Adjust padding + pad *= (modified_module.kernel_size[0] - 1) // 2 + modified_module.padding = (pad, pad) + + return layers + + def forward(self, x): + outs = [] + for i, layer_name in enumerate(self.layers): + layer = getattr(self, layer_name) + x = layer(x) + if i in self.out_indices: + outs.append(x) + return outs + + def _freeze_stages(self): + for i in range(self.frozen_stages + 1): + layer = getattr(self, f'layer{i}') + layer.eval() + for param in layer.parameters(): + param.requires_grad = False + + def train(self, mode=True): + super(MobileNetV3, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, _BatchNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnest.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnest.py new file mode 100644 index 000000000..91952c2ca --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnest.py @@ -0,0 +1,318 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer + +from ..builder import BACKBONES +from ..utils import ResLayer +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNetV1d + + +class RSoftmax(nn.Module): + """Radix Softmax module in ``SplitAttentionConv2d``. + + Args: + radix (int): Radix of input. + groups (int): Groups of input. + """ + + def __init__(self, radix, groups): + super().__init__() + self.radix = radix + self.groups = groups + + def forward(self, x): + batch = x.size(0) + if self.radix > 1: + x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) + x = F.softmax(x, dim=1) + x = x.reshape(batch, -1) + else: + x = torch.sigmoid(x) + return x + + +class SplitAttentionConv2d(nn.Module): + """Split-Attention Conv2d in ResNeSt. + + Args: + in_channels (int): Same as nn.Conv2d. + out_channels (int): Same as nn.Conv2d. + kernel_size (int | tuple[int]): Same as nn.Conv2d. + stride (int | tuple[int]): Same as nn.Conv2d. + padding (int | tuple[int]): Same as nn.Conv2d. + dilation (int | tuple[int]): Same as nn.Conv2d. + groups (int): Same as nn.Conv2d. + radix (int): Radix of SpltAtConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels. Default: 4. + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. Default: None. + dcn (dict): Config dict for DCN. Default: None. + """ + + def __init__(self, + in_channels, + channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + radix=2, + reduction_factor=4, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None): + super(SplitAttentionConv2d, self).__init__() + inter_channels = max(in_channels * radix // reduction_factor, 32) + self.radix = radix + self.groups = groups + self.channels = channels + self.with_dcn = dcn is not None + self.dcn = dcn + fallback_on_stride = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if self.with_dcn and not fallback_on_stride: + assert conv_cfg is None, 'conv_cfg must be None for DCN' + conv_cfg = dcn + self.conv = build_conv_layer( + conv_cfg, + in_channels, + channels * radix, + kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups * radix, + bias=False) + self.norm0_name, norm0 = build_norm_layer( + norm_cfg, channels * radix, postfix=0) + self.add_module(self.norm0_name, norm0) + self.relu = nn.ReLU(inplace=True) + self.fc1 = build_conv_layer( + None, channels, inter_channels, 1, groups=self.groups) + self.norm1_name, norm1 = build_norm_layer( + norm_cfg, inter_channels, postfix=1) + self.add_module(self.norm1_name, norm1) + self.fc2 = build_conv_layer( + None, inter_channels, channels * radix, 1, groups=self.groups) + self.rsoftmax = RSoftmax(radix, groups) + + @property + def norm0(self): + """nn.Module: the normalization layer named "norm0" """ + return getattr(self, self.norm0_name) + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + def forward(self, x): + x = self.conv(x) + x = self.norm0(x) + x = self.relu(x) + + batch, rchannel = x.shape[:2] + batch = x.size(0) + if self.radix > 1: + splits = x.view(batch, self.radix, -1, *x.shape[2:]) + gap = splits.sum(dim=1) + else: + gap = x + gap = F.adaptive_avg_pool2d(gap, 1) + gap = self.fc1(gap) + + gap = self.norm1(gap) + gap = self.relu(gap) + + atten = self.fc2(gap) + atten = self.rsoftmax(atten).view(batch, -1, 1, 1) + + if self.radix > 1: + attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) + out = torch.sum(attens * splits, dim=1) + else: + out = atten * x + return out.contiguous() + + +class Bottleneck(_Bottleneck): + """Bottleneck block for ResNeSt. + + Args: + inplane (int): Input planes of this block. + planes (int): Middle planes of this block. + groups (int): Groups of conv2. + width_per_group (int): Width per group of conv2. 64x4d indicates + ``groups=64, width_per_group=4`` and 32x8d indicates + ``groups=32, width_per_group=8``. + radix (int): Radix of SpltAtConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels in + SplitAttentionConv2d. Default: 4. + avg_down_stride (bool): Whether to use average pool for stride in + Bottleneck. Default: True. + kwargs (dict): Key word arguments for base class. + """ + expansion = 4 + + def __init__(self, + inplanes, + planes, + groups=1, + base_width=4, + base_channels=64, + radix=2, + reduction_factor=4, + avg_down_stride=True, + **kwargs): + """Bottleneck block for ResNeSt.""" + super(Bottleneck, self).__init__(inplanes, planes, **kwargs) + + if groups == 1: + width = self.planes + else: + width = math.floor(self.planes * + (base_width / base_channels)) * groups + + self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width, postfix=1) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + self.with_modulated_dcn = False + self.conv2 = SplitAttentionConv2d( + width, + width, + kernel_size=3, + stride=1 if self.avg_down_stride else self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + radix=radix, + reduction_factor=reduction_factor, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + dcn=self.dcn) + delattr(self, self.norm2_name) + + if self.avg_down_stride: + self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) + + self.conv3 = build_conv_layer( + self.conv_cfg, + width, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + def forward(self, x): + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + out = self.conv2(out) + + if self.avg_down_stride: + out = self.avd_layer(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +@BACKBONES.register_module() +class ResNeSt(ResNetV1d): + """ResNeSt backbone. + + This backbone is the implementation of `ResNeSt: + Split-Attention Networks `_. + + Args: + groups (int): Number of groups of Bottleneck. Default: 1 + base_width (int): Base width of Bottleneck. Default: 4 + radix (int): Radix of SpltAtConv2d. Default: 2 + reduction_factor (int): Reduction factor of inter_channels in + SplitAttentionConv2d. Default: 4. + avg_down_stride (bool): Whether to use average pool for stride in + Bottleneck. Default: True. + kwargs (dict): Keyword arguments for ResNet. + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)), + 200: (Bottleneck, (3, 24, 36, 3)) + } + + def __init__(self, + groups=1, + base_width=4, + radix=2, + reduction_factor=4, + avg_down_stride=True, + **kwargs): + self.groups = groups + self.base_width = base_width + self.radix = radix + self.reduction_factor = reduction_factor + self.avg_down_stride = avg_down_stride + super(ResNeSt, self).__init__(**kwargs) + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``.""" + return ResLayer( + groups=self.groups, + base_width=self.base_width, + base_channels=self.base_channels, + radix=self.radix, + reduction_factor=self.reduction_factor, + avg_down_stride=self.avg_down_stride, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnet.py new file mode 100644 index 000000000..e8b961d5f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnet.py @@ -0,0 +1,714 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer +from mmcv.runner import BaseModule +from mmcv.utils.parrots_wrapper import _BatchNorm + +from ..builder import BACKBONES +from ..utils import ResLayer + + +class BasicBlock(BaseModule): + """Basic block for ResNet.""" + + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + dilation=1, + downsample=None, + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + init_cfg=None): + super(BasicBlock, self).__init__(init_cfg) + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + + self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) + self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) + + self.conv1 = build_conv_layer( + conv_cfg, + inplanes, + planes, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + bias=False) + self.add_module(self.norm1_name, norm1) + self.conv2 = build_conv_layer( + conv_cfg, planes, planes, 3, padding=1, bias=False) + self.add_module(self.norm2_name, norm2) + + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.with_cp = with_cp + + @property + def norm1(self): + """nn.Module: normalization layer after the first convolution layer""" + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: normalization layer after the second convolution layer""" + return getattr(self, self.norm2_name) + + def forward(self, x): + """Forward function.""" + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.norm2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +class Bottleneck(BaseModule): + """Bottleneck block for ResNet. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is + "caffe", the stride-two layer is the first 1x1 conv layer. + """ + + expansion = 4 + + def __init__(self, + inplanes, + planes, + stride=1, + dilation=1, + downsample=None, + style='pytorch', + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + dcn=None, + plugins=None, + init_cfg=None): + super(Bottleneck, self).__init__(init_cfg) + assert style in ['pytorch', 'caffe'] + assert dcn is None or isinstance(dcn, dict) + assert plugins is None or isinstance(plugins, list) + if plugins is not None: + allowed_position = ['after_conv1', 'after_conv2', 'after_conv3'] + assert all(p['position'] in allowed_position for p in plugins) + + self.inplanes = inplanes + self.planes = planes + self.stride = stride + self.dilation = dilation + self.style = style + self.with_cp = with_cp + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.dcn = dcn + self.with_dcn = dcn is not None + self.plugins = plugins + self.with_plugins = plugins is not None + + if self.with_plugins: + # collect plugins for conv1/conv2/conv3 + self.after_conv1_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv1' + ] + self.after_conv2_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv2' + ] + self.after_conv3_plugins = [ + plugin['cfg'] for plugin in plugins + if plugin['position'] == 'after_conv3' + ] + + if self.style == 'pytorch': + self.conv1_stride = 1 + self.conv2_stride = stride + else: + self.conv1_stride = stride + self.conv2_stride = 1 + + self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) + self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) + self.norm3_name, norm3 = build_norm_layer( + norm_cfg, planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + conv_cfg, + inplanes, + planes, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + fallback_on_stride = False + if self.with_dcn: + fallback_on_stride = dcn.pop('fallback_on_stride', False) + if not self.with_dcn or fallback_on_stride: + self.conv2 = build_conv_layer( + conv_cfg, + planes, + planes, + kernel_size=3, + stride=self.conv2_stride, + padding=dilation, + dilation=dilation, + bias=False) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + self.conv2 = build_conv_layer( + dcn, + planes, + planes, + kernel_size=3, + stride=self.conv2_stride, + padding=dilation, + dilation=dilation, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.conv3 = build_conv_layer( + conv_cfg, + planes, + planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + + if self.with_plugins: + self.after_conv1_plugin_names = self.make_block_plugins( + planes, self.after_conv1_plugins) + self.after_conv2_plugin_names = self.make_block_plugins( + planes, self.after_conv2_plugins) + self.after_conv3_plugin_names = self.make_block_plugins( + planes * self.expansion, self.after_conv3_plugins) + + def make_block_plugins(self, in_channels, plugins): + """make plugins for block. + + Args: + in_channels (int): Input channels of plugin. + plugins (list[dict]): List of plugins cfg to build. + + Returns: + list[str]: List of the names of plugin. + """ + assert isinstance(plugins, list) + plugin_names = [] + for plugin in plugins: + plugin = plugin.copy() + name, layer = build_plugin_layer( + plugin, + in_channels=in_channels, + postfix=plugin.pop('postfix', '')) + assert not hasattr(self, name), f'duplicate plugin {name}' + self.add_module(name, layer) + plugin_names.append(name) + return plugin_names + + def forward_plugin(self, x, plugin_names): + """Forward function for plugins.""" + out = x + for name in plugin_names: + out = getattr(self, name)(x) + return out + + @property + def norm1(self): + """nn.Module: normalization layer after the first convolution layer""" + return getattr(self, self.norm1_name) + + @property + def norm2(self): + """nn.Module: normalization layer after the second convolution layer""" + return getattr(self, self.norm2_name) + + @property + def norm3(self): + """nn.Module: normalization layer after the third convolution layer""" + return getattr(self, self.norm3_name) + + def forward(self, x): + """Forward function.""" + + def _inner_forward(x): + identity = x + + out = self.conv1(x) + out = self.norm1(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv1_plugin_names) + + out = self.conv2(out) + out = self.norm2(out) + out = self.relu(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv2_plugin_names) + + out = self.conv3(out) + out = self.norm3(out) + + if self.with_plugins: + out = self.forward_plugin(out, self.after_conv3_plugin_names) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + out = self.relu(out) + + return out + + +@BACKBONES.register_module() +class ResNet(BaseModule): + """ResNet backbone. + + This backbone is the improved implementation of `Deep Residual Learning + for Image Recognition `_. + + Args: + depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. + in_channels (int): Number of input image channels. Default: 3. + stem_channels (int): Number of stem channels. Default: 64. + base_channels (int): Number of base channels of res layer. Default: 64. + num_stages (int): Resnet stages, normally 4. Default: 4. + strides (Sequence[int]): Strides of the first block of each stage. + Default: (1, 2, 2, 2). + dilations (Sequence[int]): Dilation of each stage. + Default: (1, 1, 1, 1). + out_indices (Sequence[int]): Output from which stages. + Default: (0, 1, 2, 3). + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. Default: 'pytorch'. + deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. + Default: False. + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottleneck. Default: False. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. Default: -1. + conv_cfg (dict | None): Dictionary to construct and config conv layer. + When conv_cfg is None, cfg will be set to dict(type='Conv2d'). + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + dcn (dict | None): Dictionary to construct and config DCN conv layer. + When dcn is not None, conv_cfg must be None. Default: None. + stage_with_dcn (Sequence[bool]): Whether to set DCN conv for each + stage. The length of stage_with_dcn is equal to num_stages. + Default: (False, False, False, False). + plugins (list[dict]): List of plugins for stages, each dict contains: + + - cfg (dict, required): Cfg dict to build plugin. + + - position (str, required): Position inside block to insert plugin, + options: 'after_conv1', 'after_conv2', 'after_conv3'. + + - stages (tuple[bool], optional): Stages to apply plugin, length + should be same as 'num_stages'. + Default: None. + multi_grid (Sequence[int]|None): Multi grid dilation rates of last + stage. Default: None. + contract_dilation (bool): Whether contract first dilation of each layer + Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + zero_init_residual (bool): Whether to use zero init for last norm layer + in resblocks to let them behave as identity. Default: True. + pretrained (str, optional): model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Example: + >>> from mmseg.models import ResNet + >>> import torch + >>> self = ResNet(depth=18) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 64, 8, 8) + (1, 128, 4, 4) + (1, 256, 2, 2) + (1, 512, 1, 1) + """ + + arch_settings = { + 18: (BasicBlock, (2, 2, 2, 2)), + 34: (BasicBlock, (3, 4, 6, 3)), + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, + depth, + in_channels=3, + stem_channels=64, + base_channels=64, + num_stages=4, + strides=(1, 2, 2, 2), + dilations=(1, 1, 1, 1), + out_indices=(0, 1, 2, 3), + style='pytorch', + deep_stem=False, + avg_down=False, + frozen_stages=-1, + conv_cfg=None, + norm_cfg=dict(type='BN', requires_grad=True), + norm_eval=False, + dcn=None, + stage_with_dcn=(False, False, False, False), + plugins=None, + multi_grid=None, + contract_dilation=False, + with_cp=False, + zero_init_residual=True, + pretrained=None, + init_cfg=None): + super(ResNet, self).__init__(init_cfg) + if depth not in self.arch_settings: + raise KeyError(f'invalid depth {depth} for resnet') + + self.pretrained = pretrained + self.zero_init_residual = zero_init_residual + block_init_cfg = None + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + block = self.arch_settings[depth][0] + if self.zero_init_residual: + if block is BasicBlock: + block_init_cfg = dict( + type='Constant', + val=0, + override=dict(name='norm2')) + elif block is Bottleneck: + block_init_cfg = dict( + type='Constant', + val=0, + override=dict(name='norm3')) + else: + raise TypeError('pretrained must be a str or None') + + self.depth = depth + self.stem_channels = stem_channels + self.base_channels = base_channels + self.num_stages = num_stages + assert num_stages >= 1 and num_stages <= 4 + self.strides = strides + self.dilations = dilations + assert len(strides) == len(dilations) == num_stages + self.out_indices = out_indices + assert max(out_indices) < num_stages + self.style = style + self.deep_stem = deep_stem + self.avg_down = avg_down + self.frozen_stages = frozen_stages + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.with_cp = with_cp + self.norm_eval = norm_eval + self.dcn = dcn + self.stage_with_dcn = stage_with_dcn + if dcn is not None: + assert len(stage_with_dcn) == num_stages + self.plugins = plugins + self.multi_grid = multi_grid + self.contract_dilation = contract_dilation + self.block, stage_blocks = self.arch_settings[depth] + self.stage_blocks = stage_blocks[:num_stages] + self.inplanes = stem_channels + + self._make_stem_layer(in_channels, stem_channels) + + self.res_layers = [] + for i, num_blocks in enumerate(self.stage_blocks): + stride = strides[i] + dilation = dilations[i] + dcn = self.dcn if self.stage_with_dcn[i] else None + if plugins is not None: + stage_plugins = self.make_stage_plugins(plugins, i) + else: + stage_plugins = None + # multi grid is applied to last layer only + stage_multi_grid = multi_grid if i == len( + self.stage_blocks) - 1 else None + planes = base_channels * 2**i + res_layer = self.make_res_layer( + block=self.block, + inplanes=self.inplanes, + planes=planes, + num_blocks=num_blocks, + stride=stride, + dilation=dilation, + style=self.style, + avg_down=self.avg_down, + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + dcn=dcn, + plugins=stage_plugins, + multi_grid=stage_multi_grid, + contract_dilation=contract_dilation, + init_cfg=block_init_cfg) + self.inplanes = planes * self.block.expansion + layer_name = f'layer{i+1}' + self.add_module(layer_name, res_layer) + self.res_layers.append(layer_name) + + self._freeze_stages() + + self.feat_dim = self.block.expansion * base_channels * 2**( + len(self.stage_blocks) - 1) + + def make_stage_plugins(self, plugins, stage_idx): + """make plugins for ResNet 'stage_idx'th stage . + + Currently we support to insert 'context_block', + 'empirical_attention_block', 'nonlocal_block' into the backbone like + ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of + Bottleneck. + + An example of plugins format could be : + >>> plugins=[ + ... dict(cfg=dict(type='xxx', arg1='xxx'), + ... stages=(False, True, True, True), + ... position='after_conv2'), + ... dict(cfg=dict(type='yyy'), + ... stages=(True, True, True, True), + ... position='after_conv3'), + ... dict(cfg=dict(type='zzz', postfix='1'), + ... stages=(True, True, True, True), + ... position='after_conv3'), + ... dict(cfg=dict(type='zzz', postfix='2'), + ... stages=(True, True, True, True), + ... position='after_conv3') + ... ] + >>> self = ResNet(depth=18) + >>> stage_plugins = self.make_stage_plugins(plugins, 0) + >>> assert len(stage_plugins) == 3 + + Suppose 'stage_idx=0', the structure of blocks in the stage would be: + conv1-> conv2->conv3->yyy->zzz1->zzz2 + Suppose 'stage_idx=1', the structure of blocks in the stage would be: + conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2 + + If stages is missing, the plugin would be applied to all stages. + + Args: + plugins (list[dict]): List of plugins cfg to build. The postfix is + required if multiple same type plugins are inserted. + stage_idx (int): Index of stage to build + + Returns: + list[dict]: Plugins for current stage + """ + stage_plugins = [] + for plugin in plugins: + plugin = plugin.copy() + stages = plugin.pop('stages', None) + assert stages is None or len(stages) == self.num_stages + # whether to insert plugin into current stage + if stages is None or stages[stage_idx]: + stage_plugins.append(plugin) + + return stage_plugins + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``.""" + return ResLayer(**kwargs) + + @property + def norm1(self): + """nn.Module: the normalization layer named "norm1" """ + return getattr(self, self.norm1_name) + + def _make_stem_layer(self, in_channels, stem_channels): + """Make stem layer for ResNet.""" + if self.deep_stem: + self.stem = nn.Sequential( + build_conv_layer( + self.conv_cfg, + in_channels, + stem_channels // 2, + kernel_size=3, + stride=2, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels // 2)[1], + nn.ReLU(inplace=True), + build_conv_layer( + self.conv_cfg, + stem_channels // 2, + stem_channels // 2, + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels // 2)[1], + nn.ReLU(inplace=True), + build_conv_layer( + self.conv_cfg, + stem_channels // 2, + stem_channels, + kernel_size=3, + stride=1, + padding=1, + bias=False), + build_norm_layer(self.norm_cfg, stem_channels)[1], + nn.ReLU(inplace=True)) + else: + self.conv1 = build_conv_layer( + self.conv_cfg, + in_channels, + stem_channels, + kernel_size=7, + stride=2, + padding=3, + bias=False) + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, stem_channels, postfix=1) + self.add_module(self.norm1_name, norm1) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + def _freeze_stages(self): + """Freeze stages param and norm stats.""" + if self.frozen_stages >= 0: + if self.deep_stem: + self.stem.eval() + for param in self.stem.parameters(): + param.requires_grad = False + else: + self.norm1.eval() + for m in [self.conv1, self.norm1]: + for param in m.parameters(): + param.requires_grad = False + + for i in range(1, self.frozen_stages + 1): + m = getattr(self, f'layer{i}') + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def forward(self, x): + """Forward function.""" + if self.deep_stem: + x = self.stem(x) + else: + x = self.conv1(x) + x = self.norm1(x) + x = self.relu(x) + x = self.maxpool(x) + outs = [] + for i, layer_name in enumerate(self.res_layers): + res_layer = getattr(self, layer_name) + x = res_layer(x) + if i in self.out_indices: + outs.append(x) + return tuple(outs) + + def train(self, mode=True): + """Convert the model into training mode while keep normalization layer + freezed.""" + super(ResNet, self).train(mode) + self._freeze_stages() + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() + + +@BACKBONES.register_module() +class ResNetV1c(ResNet): + """ResNetV1c variant described in [1]_. + + Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv in + the input stem with three 3x3 convs. For more details please refer to `Bag + of Tricks for Image Classification with Convolutional Neural Networks + `_. + """ + + def __init__(self, **kwargs): + super(ResNetV1c, self).__init__( + deep_stem=True, avg_down=False, **kwargs) + + +@BACKBONES.register_module() +class ResNetV1d(ResNet): + """ResNetV1d variant described in [1]_. + + Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in + the input stem with three 3x3 convs. And in the downsampling block, a 2x2 + avg_pool with stride 2 is added before conv, whose stride is changed to 1. + """ + + def __init__(self, **kwargs): + super(ResNetV1d, self).__init__( + deep_stem=True, avg_down=True, **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnext.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnext.py new file mode 100644 index 000000000..805c27bf3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/resnext.py @@ -0,0 +1,150 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +from mmcv.cnn import build_conv_layer, build_norm_layer + +from ..builder import BACKBONES +from ..utils import ResLayer +from .resnet import Bottleneck as _Bottleneck +from .resnet import ResNet + + +class Bottleneck(_Bottleneck): + """Bottleneck block for ResNeXt. + + If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is + "caffe", the stride-two layer is the first 1x1 conv layer. + """ + + def __init__(self, + inplanes, + planes, + groups=1, + base_width=4, + base_channels=64, + **kwargs): + super(Bottleneck, self).__init__(inplanes, planes, **kwargs) + + if groups == 1: + width = self.planes + else: + width = math.floor(self.planes * + (base_width / base_channels)) * groups + + self.norm1_name, norm1 = build_norm_layer( + self.norm_cfg, width, postfix=1) + self.norm2_name, norm2 = build_norm_layer( + self.norm_cfg, width, postfix=2) + self.norm3_name, norm3 = build_norm_layer( + self.norm_cfg, self.planes * self.expansion, postfix=3) + + self.conv1 = build_conv_layer( + self.conv_cfg, + self.inplanes, + width, + kernel_size=1, + stride=self.conv1_stride, + bias=False) + self.add_module(self.norm1_name, norm1) + fallback_on_stride = False + self.with_modulated_dcn = False + if self.with_dcn: + fallback_on_stride = self.dcn.pop('fallback_on_stride', False) + if not self.with_dcn or fallback_on_stride: + self.conv2 = build_conv_layer( + self.conv_cfg, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + else: + assert self.conv_cfg is None, 'conv_cfg must be None for DCN' + self.conv2 = build_conv_layer( + self.dcn, + width, + width, + kernel_size=3, + stride=self.conv2_stride, + padding=self.dilation, + dilation=self.dilation, + groups=groups, + bias=False) + + self.add_module(self.norm2_name, norm2) + self.conv3 = build_conv_layer( + self.conv_cfg, + width, + self.planes * self.expansion, + kernel_size=1, + bias=False) + self.add_module(self.norm3_name, norm3) + + +@BACKBONES.register_module() +class ResNeXt(ResNet): + """ResNeXt backbone. + + This backbone is the implementation of `Aggregated + Residual Transformations for Deep Neural + Networks `_. + + Args: + depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. + in_channels (int): Number of input image channels. Normally 3. + num_stages (int): Resnet stages, normally 4. + groups (int): Group of resnext. + base_width (int): Base width of resnext. + strides (Sequence[int]): Strides of the first block of each stage. + dilations (Sequence[int]): Dilation of each stage. + out_indices (Sequence[int]): Output from which stages. + style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two + layer is the 3x3 conv layer, otherwise the stride-two layer is + the first 1x1 conv layer. + frozen_stages (int): Stages to be frozen (all param fixed). -1 means + not freezing any parameters. + norm_cfg (dict): dictionary to construct and config norm layer. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. + zero_init_residual (bool): whether to use zero init for last norm layer + in resblocks to let them behave as identity. + + Example: + >>> from mmseg.models import ResNeXt + >>> import torch + >>> self = ResNeXt(depth=50) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 256, 8, 8) + (1, 512, 4, 4) + (1, 1024, 2, 2) + (1, 2048, 1, 1) + """ + + arch_settings = { + 50: (Bottleneck, (3, 4, 6, 3)), + 101: (Bottleneck, (3, 4, 23, 3)), + 152: (Bottleneck, (3, 8, 36, 3)) + } + + def __init__(self, groups=1, base_width=4, **kwargs): + self.groups = groups + self.base_width = base_width + super(ResNeXt, self).__init__(**kwargs) + + def make_res_layer(self, **kwargs): + """Pack all blocks in a stage into a ``ResLayer``""" + return ResLayer( + groups=self.groups, + base_width=self.base_width, + base_channels=self.base_channels, + **kwargs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/stdc.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/stdc.py new file mode 100644 index 000000000..04f2f7a2a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/stdc.py @@ -0,0 +1,422 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""Modified from https://github.com/MichaelFan01/STDC-Seg.""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner.base_module import BaseModule, ModuleList, Sequential + +from mmseg.ops import resize +from ..builder import BACKBONES, build_backbone +from .bisenetv1 import AttentionRefinementModule + + +class STDCModule(BaseModule): + """STDCModule. + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels before scaling. + stride (int): The number of stride for the first conv layer. + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (dict): The activation config for conv layers. + num_convs (int): Numbers of conv layers. + fusion_type (str): Type of fusion operation. Default: 'add'. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + stride, + norm_cfg=None, + act_cfg=None, + num_convs=4, + fusion_type='add', + init_cfg=None): + super(STDCModule, self).__init__(init_cfg=init_cfg) + assert num_convs > 1 + assert fusion_type in ['add', 'cat'] + self.stride = stride + self.with_downsample = True if self.stride == 2 else False + self.fusion_type = fusion_type + + self.layers = ModuleList() + conv_0 = ConvModule( + in_channels, out_channels // 2, kernel_size=1, norm_cfg=norm_cfg) + + if self.with_downsample: + self.downsample = ConvModule( + out_channels // 2, + out_channels // 2, + kernel_size=3, + stride=2, + padding=1, + groups=out_channels // 2, + norm_cfg=norm_cfg, + act_cfg=None) + + if self.fusion_type == 'add': + self.layers.append(nn.Sequential(conv_0, self.downsample)) + self.skip = Sequential( + ConvModule( + in_channels, + in_channels, + kernel_size=3, + stride=2, + padding=1, + groups=in_channels, + norm_cfg=norm_cfg, + act_cfg=None), + ConvModule( + in_channels, + out_channels, + 1, + norm_cfg=norm_cfg, + act_cfg=None)) + else: + self.layers.append(conv_0) + self.skip = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) + else: + self.layers.append(conv_0) + + for i in range(1, num_convs): + out_factor = 2**(i + 1) if i != num_convs - 1 else 2**i + self.layers.append( + ConvModule( + out_channels // 2**i, + out_channels // out_factor, + kernel_size=3, + stride=1, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, inputs): + if self.fusion_type == 'add': + out = self.forward_add(inputs) + else: + out = self.forward_cat(inputs) + return out + + def forward_add(self, inputs): + layer_outputs = [] + x = inputs.clone() + for layer in self.layers: + x = layer(x) + layer_outputs.append(x) + if self.with_downsample: + inputs = self.skip(inputs) + + return torch.cat(layer_outputs, dim=1) + inputs + + def forward_cat(self, inputs): + x0 = self.layers[0](inputs) + layer_outputs = [x0] + for i, layer in enumerate(self.layers[1:]): + if i == 0: + if self.with_downsample: + x = layer(self.downsample(x0)) + else: + x = layer(x0) + else: + x = layer(x) + layer_outputs.append(x) + if self.with_downsample: + layer_outputs[0] = self.skip(x0) + return torch.cat(layer_outputs, dim=1) + + +class FeatureFusionModule(BaseModule): + """Feature Fusion Module. This module is different from FeatureFusionModule + in BiSeNetV1. It uses two ConvModules in `self.attention` whose inter + channel number is calculated by given `scale_factor`, while + FeatureFusionModule in BiSeNetV1 only uses one ConvModule in + `self.conv_atten`. + + Args: + in_channels (int): The number of input channels. + out_channels (int): The number of output channels. + scale_factor (int): The number of channel scale factor. + Default: 4. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): The activation config for conv layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + scale_factor=4, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(FeatureFusionModule, self).__init__(init_cfg=init_cfg) + channels = out_channels // scale_factor + self.conv0 = ConvModule( + in_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg) + self.attention = nn.Sequential( + nn.AdaptiveAvgPool2d((1, 1)), + ConvModule( + out_channels, + channels, + 1, + norm_cfg=None, + bias=False, + act_cfg=act_cfg), + ConvModule( + channels, + out_channels, + 1, + norm_cfg=None, + bias=False, + act_cfg=None), nn.Sigmoid()) + + def forward(self, spatial_inputs, context_inputs): + inputs = torch.cat([spatial_inputs, context_inputs], dim=1) + x = self.conv0(inputs) + attn = self.attention(x) + x_attn = x * attn + return x_attn + x + + +@BACKBONES.register_module() +class STDCNet(BaseModule): + """This backbone is the implementation of `Rethinking BiSeNet For Real-time + Semantic Segmentation `_. + + Args: + stdc_type (int): The type of backbone structure, + `STDCNet1` and`STDCNet2` denotes two main backbones in paper, + whose FLOPs is 813M and 1446M, respectively. + in_channels (int): The num of input_channels. + channels (tuple[int]): The output channels for each stage. + bottleneck_type (str): The type of STDC Module type, the value must + be 'add' or 'cat'. + norm_cfg (dict): Config dict for normalization layer. + act_cfg (dict): The activation config for conv layers. + num_convs (int): Numbers of conv layer at each STDC Module. + Default: 4. + with_final_conv (bool): Whether add a conv layer at the Module output. + Default: True. + pretrained (str, optional): Model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Example: + >>> import torch + >>> stdc_type = 'STDCNet1' + >>> in_channels = 3 + >>> channels = (32, 64, 256, 512, 1024) + >>> bottleneck_type = 'cat' + >>> inputs = torch.rand(1, 3, 1024, 2048) + >>> self = STDCNet(stdc_type, in_channels, + ... channels, bottleneck_type).eval() + >>> outputs = self.forward(inputs) + >>> for i in range(len(outputs)): + ... print(f'outputs[{i}].shape = {outputs[i].shape}') + outputs[0].shape = torch.Size([1, 256, 128, 256]) + outputs[1].shape = torch.Size([1, 512, 64, 128]) + outputs[2].shape = torch.Size([1, 1024, 32, 64]) + """ + + arch_settings = { + 'STDCNet1': [(2, 1), (2, 1), (2, 1)], + 'STDCNet2': [(2, 1, 1, 1), (2, 1, 1, 1, 1), (2, 1, 1)] + } + + def __init__(self, + stdc_type, + in_channels, + channels, + bottleneck_type, + norm_cfg, + act_cfg, + num_convs=4, + with_final_conv=False, + pretrained=None, + init_cfg=None): + super(STDCNet, self).__init__(init_cfg=init_cfg) + assert stdc_type in self.arch_settings, \ + f'invalid structure {stdc_type} for STDCNet.' + assert bottleneck_type in ['add', 'cat'],\ + f'bottleneck_type must be `add` or `cat`, got {bottleneck_type}' + + assert len(channels) == 5,\ + f'invalid channels length {len(channels)} for STDCNet.' + + self.in_channels = in_channels + self.channels = channels + self.stage_strides = self.arch_settings[stdc_type] + self.prtrained = pretrained + self.num_convs = num_convs + self.with_final_conv = with_final_conv + + self.stages = ModuleList([ + ConvModule( + self.in_channels, + self.channels[0], + kernel_size=3, + stride=2, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg), + ConvModule( + self.channels[0], + self.channels[1], + kernel_size=3, + stride=2, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + ]) + # `self.num_shallow_features` is the number of shallow modules in + # `STDCNet`, which is noted as `Stage1` and `Stage2` in original paper. + # They are both not used for following modules like Attention + # Refinement Module and Feature Fusion Module. + # Thus they would be cut from `outs`. Please refer to Figure 4 + # of original paper for more details. + self.num_shallow_features = len(self.stages) + + for strides in self.stage_strides: + idx = len(self.stages) - 1 + self.stages.append( + self._make_stage(self.channels[idx], self.channels[idx + 1], + strides, norm_cfg, act_cfg, bottleneck_type)) + # After appending, `self.stages` is a ModuleList including several + # shallow modules and STDCModules. + # (len(self.stages) == + # self.num_shallow_features + len(self.stage_strides)) + if self.with_final_conv: + self.final_conv = ConvModule( + self.channels[-1], + max(1024, self.channels[-1]), + 1, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def _make_stage(self, in_channels, out_channels, strides, norm_cfg, + act_cfg, bottleneck_type): + layers = [] + for i, stride in enumerate(strides): + layers.append( + STDCModule( + in_channels if i == 0 else out_channels, + out_channels, + stride, + norm_cfg, + act_cfg, + num_convs=self.num_convs, + fusion_type=bottleneck_type)) + return Sequential(*layers) + + def forward(self, x): + outs = [] + for stage in self.stages: + x = stage(x) + outs.append(x) + if self.with_final_conv: + outs[-1] = self.final_conv(outs[-1]) + outs = outs[self.num_shallow_features:] + return tuple(outs) + + +@BACKBONES.register_module() +class STDCContextPathNet(BaseModule): + """STDCNet with Context Path. The `outs` below is a list of three feature + maps from deep to shallow, whose height and width is from small to big, + respectively. The biggest feature map of `outs` is outputted for + `STDCHead`, where Detail Loss would be calculated by Detail Ground-truth. + The other two feature maps are used for Attention Refinement Module, + respectively. Besides, the biggest feature map of `outs` and the last + output of Attention Refinement Module are concatenated for Feature Fusion + Module. Then, this fusion feature map `feat_fuse` would be outputted for + `decode_head`. More details please refer to Figure 4 of original paper. + + Args: + backbone_cfg (dict): Config dict for stdc backbone. + last_in_channels (tuple(int)), The number of channels of last + two feature maps from stdc backbone. Default: (1024, 512). + out_channels (int): The channels of output feature maps. + Default: 128. + ffm_cfg (dict): Config dict for Feature Fusion Module. Default: + `dict(in_channels=512, out_channels=256, scale_factor=4)`. + upsample_mode (str): Algorithm used for upsampling: + ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | + ``'trilinear'``. Default: ``'nearest'``. + align_corners (str): align_corners argument of F.interpolate. It + must be `None` if upsample_mode is ``'nearest'``. Default: None. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Return: + outputs (tuple): The tuple of list of output feature map for + auxiliary heads and decoder head. + """ + + def __init__(self, + backbone_cfg, + last_in_channels=(1024, 512), + out_channels=128, + ffm_cfg=dict( + in_channels=512, out_channels=256, scale_factor=4), + upsample_mode='nearest', + align_corners=None, + norm_cfg=dict(type='BN'), + init_cfg=None): + super(STDCContextPathNet, self).__init__(init_cfg=init_cfg) + self.backbone = build_backbone(backbone_cfg) + self.arms = ModuleList() + self.convs = ModuleList() + for channels in last_in_channels: + self.arms.append(AttentionRefinementModule(channels, out_channels)) + self.convs.append( + ConvModule( + out_channels, + out_channels, + 3, + padding=1, + norm_cfg=norm_cfg)) + self.conv_avg = ConvModule( + last_in_channels[0], out_channels, 1, norm_cfg=norm_cfg) + + self.ffm = FeatureFusionModule(**ffm_cfg) + + self.upsample_mode = upsample_mode + self.align_corners = align_corners + + def forward(self, x): + outs = list(self.backbone(x)) + avg = F.adaptive_avg_pool2d(outs[-1], 1) + avg_feat = self.conv_avg(avg) + + feature_up = resize( + avg_feat, + size=outs[-1].shape[2:], + mode=self.upsample_mode, + align_corners=self.align_corners) + arms_out = [] + for i in range(len(self.arms)): + x_arm = self.arms[i](outs[len(outs) - 1 - i]) + feature_up + feature_up = resize( + x_arm, + size=outs[len(outs) - 1 - i - 1].shape[2:], + mode=self.upsample_mode, + align_corners=self.align_corners) + feature_up = self.convs[i](feature_up) + arms_out.append(feature_up) + + feat_fuse = self.ffm(outs[0], arms_out[1]) + + # The `outputs` has four feature maps. + # `outs[0]` is outputted for `STDCHead` auxiliary head. + # Two feature maps of `arms_out` are outputted for auxiliary head. + # `feat_fuse` is outputted for decoder head. + outputs = [outs[0]] + list(arms_out) + [feat_fuse] + return tuple(outputs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/swin.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/swin.py new file mode 100644 index 000000000..a360ab018 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/swin.py @@ -0,0 +1,755 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from collections import OrderedDict +from copy import deepcopy + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from mmcv.cnn import build_norm_layer +from mmcv.cnn.bricks.transformer import FFN, build_dropout +from mmcv.cnn.utils.weight_init import (constant_init, trunc_normal_, + trunc_normal_init) +from mmcv.runner import BaseModule, ModuleList, _load_checkpoint +from mmcv.utils import to_2tuple + +from ...utils import get_root_logger +from ..builder import BACKBONES +from ..utils.embed import PatchEmbed, PatchMerging + + +class WindowMSA(BaseModule): + """Window based multi-head self-attention (W-MSA) module with relative + position bias. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (tuple[int]): The height and width of the window. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Default: 0.0 + proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. + init_cfg (dict | None, optional): The Config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0., + proj_drop_rate=0., + init_cfg=None): + + super().__init__(init_cfg=init_cfg) + self.embed_dims = embed_dims + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_embed_dims = embed_dims // num_heads + self.scale = qk_scale or head_embed_dims**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), + num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # About 2x faster than original impl + Wh, Ww = self.window_size + rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww) + rel_position_index = rel_index_coords + rel_index_coords.T + rel_position_index = rel_position_index.flip(1).contiguous() + self.register_buffer('relative_position_index', rel_position_index) + + self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop_rate) + self.proj = nn.Linear(embed_dims, embed_dims) + self.proj_drop = nn.Dropout(proj_drop_rate) + + self.softmax = nn.Softmax(dim=-1) + + def init_weights(self): + trunc_normal_(self.relative_position_bias_table, std=0.02) + + def forward(self, x, mask=None): + """ + Args: + + x (tensor): input features with shape of (num_windows*B, N, C) + mask (tensor | None, Optional): mask with shape of (num_windows, + Wh*Ww, Wh*Ww), value should be between (-inf, 0]. + """ + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, + C // self.num_heads).permute(2, 0, 3, 1, 4) + # make torchscript happy (cannot use tensor as tuple) + q, k, v = qkv[0], qkv[1], qkv[2] + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B // nW, nW, self.num_heads, N, + N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @staticmethod + def double_step_seq(step1, len1, step2, len2): + seq1 = torch.arange(0, step1 * len1, step1) + seq2 = torch.arange(0, step2 * len2, step2) + return (seq1[:, None] + seq2[None, :]).reshape(1, -1) + + +class ShiftWindowMSA(BaseModule): + """Shifted Window Multihead Self-Attention Module. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): The height and width of the window. + shift_size (int, optional): The shift step of each window towards + right-bottom. If zero, act as regular window-msa. Defaults to 0. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Defaults: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Defaults: 0. + proj_drop_rate (float, optional): Dropout ratio of output. + Defaults: 0. + dropout_layer (dict, optional): The dropout_layer used before output. + Defaults: dict(type='DropPath', drop_prob=0.). + init_cfg (dict, optional): The extra config for initialization. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + shift_size=0, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0, + proj_drop_rate=0, + dropout_layer=dict(type='DropPath', drop_prob=0.), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + + self.window_size = window_size + self.shift_size = shift_size + assert 0 <= self.shift_size < self.window_size + + self.w_msa = WindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=to_2tuple(window_size), + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=proj_drop_rate, + init_cfg=None) + + self.drop = build_dropout(dropout_layer) + + def forward(self, query, hw_shape): + B, L, C = query.shape + H, W = hw_shape + assert L == H * W, 'input feature has wrong size' + query = query.view(B, H, W, C) + + # pad feature maps to multiples of window size + pad_r = (self.window_size - W % self.window_size) % self.window_size + pad_b = (self.window_size - H % self.window_size) % self.window_size + query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b)) + H_pad, W_pad = query.shape[1], query.shape[2] + + # cyclic shift + if self.shift_size > 0: + shifted_query = torch.roll( + query, + shifts=(-self.shift_size, -self.shift_size), + dims=(1, 2)) + + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device) + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + # nW, window_size, window_size, 1 + mask_windows = self.window_partition(img_mask) + mask_windows = mask_windows.view( + -1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, + float(-100.0)).masked_fill( + attn_mask == 0, float(0.0)) + else: + shifted_query = query + attn_mask = None + + # nW*B, window_size, window_size, C + query_windows = self.window_partition(shifted_query) + # nW*B, window_size*window_size, C + query_windows = query_windows.view(-1, self.window_size**2, C) + + # W-MSA/SW-MSA (nW*B, window_size*window_size, C) + attn_windows = self.w_msa(query_windows, mask=attn_mask) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, + self.window_size, C) + + # B H' W' C + shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, + shifts=(self.shift_size, self.shift_size), + dims=(1, 2)) + else: + x = shifted_x + + if pad_r > 0 or pad_b: + x = x[:, :H, :W, :].contiguous() + + x = x.view(B, H * W, C) + + x = self.drop(x) + return x + + def window_reverse(self, windows, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + window_size = self.window_size + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, + window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + def window_partition(self, x): + """ + Args: + x: (B, H, W, C) + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + window_size = self.window_size + x = x.view(B, H // window_size, window_size, W // window_size, + window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() + windows = windows.view(-1, window_size, window_size, C) + return windows + + +class SwinBlock(BaseModule): + """" + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + window_size (int, optional): The local window scale. Default: 7. + shift (bool, optional): whether to shift window or not. Default False. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float, optional): Stochastic depth rate. Default: 0. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + init_cfg (dict | list | None, optional): The init config. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + window_size=7, + shift=False, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + init_cfg=None): + + super(SwinBlock, self).__init__(init_cfg=init_cfg) + + self.with_cp = with_cp + + self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] + self.attn = ShiftWindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=window_size, + shift_size=window_size // 2 if shift else 0, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + init_cfg=None) + + self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=2, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg, + add_identity=True, + init_cfg=None) + + def forward(self, x, hw_shape): + + def _inner_forward(x): + identity = x + x = self.norm1(x) + x = self.attn(x, hw_shape) + + x = x + identity + + identity = x + x = self.norm2(x) + x = self.ffn(x, identity=identity) + + return x + + if self.with_cp and x.requires_grad: + x = cp.checkpoint(_inner_forward, x) + else: + x = _inner_forward(x) + + return x + + +class SwinBlockSequence(BaseModule): + """Implements one stage in Swin Transformer. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + depth (int): The number of blocks in this stage. + window_size (int, optional): The local window scale. Default: 7. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float | list[float], optional): Stochastic depth + rate. Default: 0. + downsample (BaseModule | None, optional): The downsample operation + module. Default: None. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + init_cfg (dict | list | None, optional): The init config. + Default: None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + depth, + window_size=7, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + downsample=None, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + init_cfg=None): + super().__init__(init_cfg=init_cfg) + + if isinstance(drop_path_rate, list): + drop_path_rates = drop_path_rate + assert len(drop_path_rates) == depth + else: + drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)] + + self.blocks = ModuleList() + for i in range(depth): + block = SwinBlock( + embed_dims=embed_dims, + num_heads=num_heads, + feedforward_channels=feedforward_channels, + window_size=window_size, + shift=False if i % 2 == 0 else True, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=drop_path_rates[i], + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp, + init_cfg=None) + self.blocks.append(block) + + self.downsample = downsample + + def forward(self, x, hw_shape): + for block in self.blocks: + x = block(x, hw_shape) + + if self.downsample: + x_down, down_hw_shape = self.downsample(x, hw_shape) + return x_down, down_hw_shape, x, hw_shape + else: + return x, hw_shape, x, hw_shape + + +@BACKBONES.register_module() +class SwinTransformer(BaseModule): + """Swin Transformer backbone. + + This backbone is the implementation of `Swin Transformer: + Hierarchical Vision Transformer using Shifted + Windows `_. + Inspiration from https://github.com/microsoft/Swin-Transformer. + + Args: + pretrain_img_size (int | tuple[int]): The size of input image when + pretrain. Defaults: 224. + in_channels (int): The num of input channels. + Defaults: 3. + embed_dims (int): The feature dimension. Default: 96. + patch_size (int | tuple[int]): Patch size. Default: 4. + window_size (int): Window size. Default: 7. + mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. + Default: 4. + depths (tuple[int]): Depths of each Swin Transformer stage. + Default: (2, 2, 6, 2). + num_heads (tuple[int]): Parallel attention heads of each Swin + Transformer stage. Default: (3, 6, 12, 24). + strides (tuple[int]): The patch merging or patch embedding stride of + each Swin Transformer stage. (In swin, we set kernel size equal to + stride.) Default: (4, 2, 2, 2). + out_indices (tuple[int]): Output from which stages. + Default: (0, 1, 2, 3). + qkv_bias (bool, optional): If True, add a learnable bias to query, key, + value. Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + patch_norm (bool): If add a norm layer for patch embed and patch + merging. Default: True. + drop_rate (float): Dropout rate. Defaults: 0. + attn_drop_rate (float): Attention dropout rate. Default: 0. + drop_path_rate (float): Stochastic depth rate. Defaults: 0.1. + use_abs_pos_embed (bool): If True, add absolute position embedding to + the patch embedding. Defaults: False. + act_cfg (dict): Config dict for activation layer. + Default: dict(type='LN'). + norm_cfg (dict): Config dict for normalization layer at + output of backone. Defaults: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + pretrained (str, optional): model pretrained path. Default: None. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + pretrain_img_size=224, + in_channels=3, + embed_dims=96, + patch_size=4, + window_size=7, + mlp_ratio=4, + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + strides=(4, 2, 2, 2), + out_indices=(0, 1, 2, 3), + qkv_bias=True, + qk_scale=None, + patch_norm=True, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0.1, + use_abs_pos_embed=False, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False, + pretrained=None, + frozen_stages=-1, + init_cfg=None): + self.frozen_stages = frozen_stages + + if isinstance(pretrain_img_size, int): + pretrain_img_size = to_2tuple(pretrain_img_size) + elif isinstance(pretrain_img_size, tuple): + if len(pretrain_img_size) == 1: + pretrain_img_size = to_2tuple(pretrain_img_size[0]) + assert len(pretrain_img_size) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(pretrain_img_size)}' + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be specified at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + init_cfg = init_cfg + else: + raise TypeError('pretrained must be a str or None') + + super(SwinTransformer, self).__init__(init_cfg=init_cfg) + + num_layers = len(depths) + self.out_indices = out_indices + self.use_abs_pos_embed = use_abs_pos_embed + + assert strides[0] == patch_size, 'Use non-overlapping patch embed.' + + self.patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims, + conv_type='Conv2d', + kernel_size=patch_size, + stride=strides[0], + padding='corner', + norm_cfg=norm_cfg if patch_norm else None, + init_cfg=None) + + if self.use_abs_pos_embed: + patch_row = pretrain_img_size[0] // patch_size + patch_col = pretrain_img_size[1] // patch_size + num_patches = patch_row * patch_col + self.absolute_pos_embed = nn.Parameter( + torch.zeros((1, num_patches, embed_dims))) + + self.drop_after_pos = nn.Dropout(p=drop_rate) + + # set stochastic depth decay rule + total_depth = sum(depths) + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, total_depth) + ] + + self.stages = ModuleList() + in_channels = embed_dims + for i in range(num_layers): + if i < num_layers - 1: + downsample = PatchMerging( + in_channels=in_channels, + out_channels=2 * in_channels, + stride=strides[i + 1], + norm_cfg=norm_cfg if patch_norm else None, + init_cfg=None) + else: + downsample = None + + stage = SwinBlockSequence( + embed_dims=in_channels, + num_heads=num_heads[i], + feedforward_channels=mlp_ratio * in_channels, + depth=depths[i], + window_size=window_size, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])], + downsample=downsample, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp, + init_cfg=None) + self.stages.append(stage) + if downsample: + in_channels = downsample.out_channels + + self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)] + # Add a norm layer for each output + for i in out_indices: + layer = build_norm_layer(norm_cfg, self.num_features[i])[1] + layer_name = f'norm{i}' + self.add_module(layer_name, layer) + + def train(self, mode=True): + """Convert the model into training mode while keep layers freezed.""" + super(SwinTransformer, self).train(mode) + self._freeze_stages() + + def _freeze_stages(self): + if self.frozen_stages >= 0: + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + if self.use_abs_pos_embed: + self.absolute_pos_embed.requires_grad = False + self.drop_after_pos.eval() + + for i in range(1, self.frozen_stages + 1): + + if (i - 1) in self.out_indices: + norm_layer = getattr(self, f'norm{i-1}') + norm_layer.eval() + for param in norm_layer.parameters(): + param.requires_grad = False + + m = self.stages[i - 1] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def init_weights(self): + logger = get_root_logger() + if self.init_cfg is None: + logger.warn(f'No pre-trained weights for ' + f'{self.__class__.__name__}, ' + f'training start from scratch') + if self.use_abs_pos_embed: + trunc_normal_(self.absolute_pos_embed, std=0.02) + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, nn.LayerNorm): + constant_init(m, val=1.0, bias=0.) + else: + assert 'checkpoint' in self.init_cfg, f'Only support ' \ + f'specify `Pretrained` in ' \ + f'`init_cfg` in ' \ + f'{self.__class__.__name__} ' + ckpt = _load_checkpoint( + self.init_cfg['checkpoint'], logger=logger, map_location='cpu') + if 'state_dict' in ckpt: + _state_dict = ckpt['state_dict'] + elif 'model' in ckpt: + _state_dict = ckpt['model'] + else: + _state_dict = ckpt + + state_dict = OrderedDict() + for k, v in _state_dict.items(): + if k.startswith('backbone.'): + state_dict[k[9:]] = v + else: + state_dict[k] = v + + # strip prefix of state_dict + if list(state_dict.keys())[0].startswith('module.'): + state_dict = {k[7:]: v for k, v in state_dict.items()} + + # reshape absolute position embedding + if state_dict.get('absolute_pos_embed') is not None: + absolute_pos_embed = state_dict['absolute_pos_embed'] + N1, L, C1 = absolute_pos_embed.size() + N2, C2, H, W = self.absolute_pos_embed.size() + if N1 != N2 or C1 != C2 or L != H * W: + logger.warning('Error in loading absolute_pos_embed, pass') + else: + state_dict['absolute_pos_embed'] = absolute_pos_embed.view( + N2, H, W, C2).permute(0, 3, 1, 2).contiguous() + + # interpolate position bias table if needed + relative_position_bias_table_keys = [ + k for k in state_dict.keys() + if 'relative_position_bias_table' in k + ] + for table_key in relative_position_bias_table_keys: + table_pretrained = state_dict[table_key] + table_current = self.state_dict()[table_key] + L1, nH1 = table_pretrained.size() + L2, nH2 = table_current.size() + if nH1 != nH2: + logger.warning(f'Error in loading {table_key}, pass') + elif L1 != L2: + S1 = int(L1**0.5) + S2 = int(L2**0.5) + table_pretrained_resized = F.interpolate( + table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1), + size=(S2, S2), + mode='bicubic') + state_dict[table_key] = table_pretrained_resized.view( + nH2, L2).permute(1, 0).contiguous() + + # load state_dict + self.load_state_dict(state_dict, False) + + def forward(self, x): + x, hw_shape = self.patch_embed(x) + + if self.use_abs_pos_embed: + x = x + self.absolute_pos_embed + x = self.drop_after_pos(x) + + outs = [] + for i, stage in enumerate(self.stages): + x, hw_shape, out, out_hw_shape = stage(x, hw_shape) + if i in self.out_indices: + norm_layer = getattr(self, f'norm{i}') + out = norm_layer(out) + out = out.view(-1, *out_hw_shape, + self.num_features[i]).permute(0, 3, 1, + 2).contiguous() + outs.append(out) + + return outs diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/timm_backbone.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/timm_backbone.py new file mode 100644 index 000000000..01b29fc5e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/timm_backbone.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +try: + import timm +except ImportError: + timm = None + +from mmcv.cnn.bricks.registry import NORM_LAYERS +from mmcv.runner import BaseModule + +from ..builder import BACKBONES + + +@BACKBONES.register_module() +class TIMMBackbone(BaseModule): + """Wrapper to use backbones from timm library. More details can be found in + `timm `_ . + + Args: + model_name (str): Name of timm model to instantiate. + pretrained (bool): Load pretrained weights if True. + checkpoint_path (str): Path of checkpoint to load after + model is initialized. + in_channels (int): Number of input image channels. Default: 3. + init_cfg (dict, optional): Initialization config dict + **kwargs: Other timm & model specific arguments. + """ + + def __init__( + self, + model_name, + features_only=True, + pretrained=True, + checkpoint_path='', + in_channels=3, + init_cfg=None, + **kwargs, + ): + if timm is None: + raise RuntimeError('timm is not installed') + super(TIMMBackbone, self).__init__(init_cfg) + if 'norm_layer' in kwargs: + kwargs['norm_layer'] = NORM_LAYERS.get(kwargs['norm_layer']) + self.timm_model = timm.create_model( + model_name=model_name, + features_only=features_only, + pretrained=pretrained, + in_chans=in_channels, + checkpoint_path=checkpoint_path, + **kwargs, + ) + + # Make unused parameters None + self.timm_model.global_pool = None + self.timm_model.fc = None + self.timm_model.classifier = None + + # Hack to use pretrained weights from timm + if pretrained or checkpoint_path: + self._is_init = True + + def forward(self, x): + features = self.timm_model(x) + return features diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/twins.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/twins.py new file mode 100644 index 000000000..b41325b88 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/twins.py @@ -0,0 +1,587 @@ +import math +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import build_norm_layer +from mmcv.cnn.bricks.drop import build_dropout +from mmcv.cnn.bricks.transformer import FFN +from mmcv.cnn.utils.weight_init import (constant_init, normal_init, + trunc_normal_init) +from mmcv.runner import BaseModule, ModuleList +from torch.nn.modules.batchnorm import _BatchNorm + +from mmseg.models.backbones.mit import EfficientMultiheadAttention +from mmseg.models.builder import BACKBONES +from ..utils.embed import PatchEmbed + + +class GlobalSubsampledAttention(EfficientMultiheadAttention): + """Global Sub-sampled Attention (Spatial Reduction Attention) + + This module is modified from EfficientMultiheadAttention, + which is a module from mmseg.models.backbones.mit.py. + Specifically, there is no difference between + `GlobalSubsampledAttention` and `EfficientMultiheadAttention`, + `GlobalSubsampledAttention` is built as a brand new class + because it is renamed as `Global sub-sampled attention (GSA)` + in paper. + + + Args: + embed_dims (int): The embedding dimension. + num_heads (int): Parallel attention heads. + attn_drop (float): A Dropout layer on attn_output_weights. + Default: 0.0. + proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. + Default: 0.0. + dropout_layer (obj:`ConfigDict`): The dropout_layer used + when adding the shortcut. Default: None. + batch_first (bool): Key, Query and Value are shape of + (batch, n, embed_dims) + or (n, batch, embed_dims). Default: False. + qkv_bias (bool): enable bias for qkv if True. Default: True. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + sr_ratio (int): The ratio of spatial reduction of GSA of PCPVT. + Default: 1. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + embed_dims, + num_heads, + attn_drop=0., + proj_drop=0., + dropout_layer=None, + batch_first=True, + qkv_bias=True, + norm_cfg=dict(type='LN'), + sr_ratio=1, + init_cfg=None): + super(GlobalSubsampledAttention, self).__init__( + embed_dims, + num_heads, + attn_drop=attn_drop, + proj_drop=proj_drop, + dropout_layer=dropout_layer, + batch_first=batch_first, + qkv_bias=qkv_bias, + norm_cfg=norm_cfg, + sr_ratio=sr_ratio, + init_cfg=init_cfg) + + +class GSAEncoderLayer(BaseModule): + """Implements one encoder layer with GSA. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + drop_rate (float): Probability of an element to be zeroed + after the feed forward layer. Default: 0.0. + attn_drop_rate (float): The drop out rate for attention layer. + Default: 0.0. + drop_path_rate (float): Stochastic depth rate. Default 0.0. + num_fcs (int): The number of fully-connected layers for FFNs. + Default: 2. + qkv_bias (bool): Enable bias for qkv if True. Default: True + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + sr_ratio (float): Kernel_size of conv in Attention modules. Default: 1. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + num_fcs=2, + qkv_bias=True, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + sr_ratio=1., + init_cfg=None): + super(GSAEncoderLayer, self).__init__(init_cfg=init_cfg) + + self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] + self.attn = GlobalSubsampledAttention( + embed_dims=embed_dims, + num_heads=num_heads, + attn_drop=attn_drop_rate, + proj_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + qkv_bias=qkv_bias, + norm_cfg=norm_cfg, + sr_ratio=sr_ratio) + + self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=num_fcs, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg, + add_identity=False) + + self.drop_path = build_dropout( + dict(type='DropPath', drop_prob=drop_path_rate) + ) if drop_path_rate > 0. else nn.Identity() + + def forward(self, x, hw_shape): + x = x + self.drop_path(self.attn(self.norm1(x), hw_shape, identity=0.)) + x = x + self.drop_path(self.ffn(self.norm2(x))) + return x + + +class LocallyGroupedSelfAttention(BaseModule): + """Locally-grouped Self Attention (LSA) module. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. Default: 8 + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: False. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Default: 0.0 + proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. + window_size(int): Window size of LSA. Default: 1. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + embed_dims, + num_heads=8, + qkv_bias=False, + qk_scale=None, + attn_drop_rate=0., + proj_drop_rate=0., + window_size=1, + init_cfg=None): + super(LocallyGroupedSelfAttention, self).__init__(init_cfg=init_cfg) + + assert embed_dims % num_heads == 0, f'dim {embed_dims} should be ' \ + f'divided by num_heads ' \ + f'{num_heads}.' + self.embed_dims = embed_dims + self.num_heads = num_heads + head_dim = embed_dims // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop_rate) + self.proj = nn.Linear(embed_dims, embed_dims) + self.proj_drop = nn.Dropout(proj_drop_rate) + self.window_size = window_size + + def forward(self, x, hw_shape): + b, n, c = x.shape + h, w = hw_shape + x = x.view(b, h, w, c) + + # pad feature maps to multiples of Local-groups + pad_l = pad_t = 0 + pad_r = (self.window_size - w % self.window_size) % self.window_size + pad_b = (self.window_size - h % self.window_size) % self.window_size + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + + # calculate attention mask for LSA + Hp, Wp = x.shape[1:-1] + _h, _w = Hp // self.window_size, Wp // self.window_size + mask = torch.zeros((1, Hp, Wp), device=x.device) + mask[:, -pad_b:, :].fill_(1) + mask[:, :, -pad_r:].fill_(1) + + # [B, _h, _w, window_size, window_size, C] + x = x.reshape(b, _h, self.window_size, _w, self.window_size, + c).transpose(2, 3) + mask = mask.reshape(1, _h, self.window_size, _w, + self.window_size).transpose(2, 3).reshape( + 1, _h * _w, + self.window_size * self.window_size) + # [1, _h*_w, window_size*window_size, window_size*window_size] + attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) + attn_mask = attn_mask.masked_fill(attn_mask != 0, + float(-1000.0)).masked_fill( + attn_mask == 0, float(0.0)) + + # [3, B, _w*_h, nhead, window_size*window_size, dim] + qkv = self.qkv(x).reshape(b, _h * _w, + self.window_size * self.window_size, 3, + self.num_heads, c // self.num_heads).permute( + 3, 0, 1, 4, 2, 5) + q, k, v = qkv[0], qkv[1], qkv[2] + # [B, _h*_w, n_head, window_size*window_size, window_size*window_size] + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn + attn_mask.unsqueeze(2) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + attn = (attn @ v).transpose(2, 3).reshape(b, _h, _w, self.window_size, + self.window_size, c) + x = attn.transpose(2, 3).reshape(b, _h * self.window_size, + _w * self.window_size, c) + if pad_r > 0 or pad_b > 0: + x = x[:, :h, :w, :].contiguous() + + x = x.reshape(b, n, c) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class LSAEncoderLayer(BaseModule): + """Implements one encoder layer in Twins-SVT. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + drop_rate (float): Probability of an element to be zeroed + after the feed forward layer. Default: 0.0. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Default: 0.0 + drop_path_rate (float): Stochastic depth rate. Default 0.0. + num_fcs (int): The number of fully-connected layers for FFNs. + Default: 2. + qkv_bias (bool): Enable bias for qkv if True. Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + window_size (int): Window size of LSA. Default: 1. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + num_fcs=2, + qkv_bias=True, + qk_scale=None, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + window_size=1, + init_cfg=None): + + super(LSAEncoderLayer, self).__init__(init_cfg=init_cfg) + + self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] + self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads, + qkv_bias, qk_scale, + attn_drop_rate, drop_rate, + window_size) + + self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=num_fcs, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg, + add_identity=False) + + self.drop_path = build_dropout( + dict(type='DropPath', drop_prob=drop_path_rate) + ) if drop_path_rate > 0. else nn.Identity() + + def forward(self, x, hw_shape): + x = x + self.drop_path(self.attn(self.norm1(x), hw_shape)) + x = x + self.drop_path(self.ffn(self.norm2(x))) + return x + + +class ConditionalPositionEncoding(BaseModule): + """The Conditional Position Encoding (CPE) module. + + The CPE is the implementation of 'Conditional Positional Encodings + for Vision Transformers '_. + + Args: + in_channels (int): Number of input channels. + embed_dims (int): The feature dimension. Default: 768. + stride (int): Stride of conv layer. Default: 1. + """ + + def __init__(self, in_channels, embed_dims=768, stride=1, init_cfg=None): + super(ConditionalPositionEncoding, self).__init__(init_cfg=init_cfg) + self.proj = nn.Conv2d( + in_channels, + embed_dims, + kernel_size=3, + stride=stride, + padding=1, + bias=True, + groups=embed_dims) + self.stride = stride + + def forward(self, x, hw_shape): + b, n, c = x.shape + h, w = hw_shape + feat_token = x + cnn_feat = feat_token.transpose(1, 2).view(b, c, h, w) + if self.stride == 1: + x = self.proj(cnn_feat) + cnn_feat + else: + x = self.proj(cnn_feat) + x = x.flatten(2).transpose(1, 2) + return x + + +@BACKBONES.register_module() +class PCPVT(BaseModule): + """The backbone of Twins-PCPVT. + + This backbone is the implementation of `Twins: Revisiting the Design + of Spatial Attention in Vision Transformers + `_. + + Args: + in_channels (int): Number of input channels. Default: 3. + embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. + patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. + strides (list): The strides. Default: [4, 2, 2, 2]. + num_heads (int): Number of attention heads. Default: [1, 2, 4, 8]. + mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. + Default: [4, 4, 4, 4]. + out_indices (tuple[int]): Output from which stages. + Default: (0, 1, 2, 3). + qkv_bias (bool): Enable bias for qkv if True. Default: False. + drop_rate (float): Probability of an element to be zeroed. + Default 0. + attn_drop_rate (float): The drop out rate for attention layer. + Default 0.0 + drop_path_rate (float): Stochastic depth rate. Default 0.0 + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN') + depths (list): Depths of each stage. Default [3, 4, 6, 3] + sr_ratios (list): Kernel_size of conv in each Attn module in + Transformer encoder layer. Default: [8, 4, 2, 1]. + norm_after_stage(bool): Add extra norm. Default False. + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + in_channels=3, + embed_dims=[64, 128, 256, 512], + patch_sizes=[4, 2, 2, 2], + strides=[4, 2, 2, 2], + num_heads=[1, 2, 4, 8], + mlp_ratios=[4, 4, 4, 4], + out_indices=(0, 1, 2, 3), + qkv_bias=False, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_cfg=dict(type='LN'), + depths=[3, 4, 6, 3], + sr_ratios=[8, 4, 2, 1], + norm_after_stage=False, + pretrained=None, + init_cfg=None): + super(PCPVT, self).__init__(init_cfg=init_cfg) + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be set at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is not None: + raise TypeError('pretrained must be a str or None') + self.depths = depths + + # patch_embed + self.patch_embeds = ModuleList() + self.position_encoding_drops = ModuleList() + self.layers = ModuleList() + + for i in range(len(depths)): + self.patch_embeds.append( + PatchEmbed( + in_channels=in_channels if i == 0 else embed_dims[i - 1], + embed_dims=embed_dims[i], + conv_type='Conv2d', + kernel_size=patch_sizes[i], + stride=strides[i], + padding='corner', + norm_cfg=norm_cfg)) + + self.position_encoding_drops.append(nn.Dropout(p=drop_rate)) + + self.position_encodings = ModuleList([ + ConditionalPositionEncoding(embed_dim, embed_dim) + for embed_dim in embed_dims + ]) + + # transformer encoder + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + cur = 0 + + for k in range(len(depths)): + _block = ModuleList([ + GSAEncoderLayer( + embed_dims=embed_dims[k], + num_heads=num_heads[k], + feedforward_channels=mlp_ratios[k] * embed_dims[k], + attn_drop_rate=attn_drop_rate, + drop_rate=drop_rate, + drop_path_rate=dpr[cur + i], + num_fcs=2, + qkv_bias=qkv_bias, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + sr_ratio=sr_ratios[k]) for i in range(depths[k]) + ]) + self.layers.append(_block) + cur += depths[k] + + self.norm_name, norm = build_norm_layer( + norm_cfg, embed_dims[-1], postfix=1) + + self.out_indices = out_indices + self.norm_after_stage = norm_after_stage + if self.norm_after_stage: + self.norm_list = ModuleList() + for dim in embed_dims: + self.norm_list.append(build_norm_layer(norm_cfg, dim)[1]) + + def init_weights(self): + if self.init_cfg is not None: + super(PCPVT, self).init_weights() + else: + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): + constant_init(m, val=1.0, bias=0.) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[ + 1] * m.out_channels + fan_out //= m.groups + normal_init( + m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) + + def forward(self, x): + outputs = list() + + b = x.shape[0] + + for i in range(len(self.depths)): + x, hw_shape = self.patch_embeds[i](x) + h, w = hw_shape + x = self.position_encoding_drops[i](x) + for j, blk in enumerate(self.layers[i]): + x = blk(x, hw_shape) + if j == 0: + x = self.position_encodings[i](x, hw_shape) + if self.norm_after_stage: + x = self.norm_list[i](x) + x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous() + + if i in self.out_indices: + outputs.append(x) + + return tuple(outputs) + + +@BACKBONES.register_module() +class SVT(PCPVT): + """The backbone of Twins-SVT. + + This backbone is the implementation of `Twins: Revisiting the Design + of Spatial Attention in Vision Transformers + `_. + + Args: + in_channels (int): Number of input channels. Default: 3. + embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. + patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. + strides (list): The strides. Default: [4, 2, 2, 2]. + num_heads (int): Number of attention heads. Default: [1, 2, 4]. + mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. + Default: [4, 4, 4]. + out_indices (tuple[int]): Output from which stages. + Default: (0, 1, 2, 3). + qkv_bias (bool): Enable bias for qkv if True. Default: False. + drop_rate (float): Dropout rate. Default 0. + attn_drop_rate (float): Dropout ratio of attention weight. + Default 0.0 + drop_path_rate (float): Stochastic depth rate. Default 0.2. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN') + depths (list): Depths of each stage. Default [4, 4, 4]. + sr_ratios (list): Kernel_size of conv in each Attn module in + Transformer encoder layer. Default: [4, 2, 1]. + windiow_sizes (list): Window size of LSA. Default: [7, 7, 7], + input_features_slice(bool): Input features need slice. Default: False. + norm_after_stage(bool): Add extra norm. Default False. + strides (list): Strides in patch-Embedding modules. Default: (2, 2, 2) + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, + in_channels=3, + embed_dims=[64, 128, 256], + patch_sizes=[4, 2, 2, 2], + strides=[4, 2, 2, 2], + num_heads=[1, 2, 4], + mlp_ratios=[4, 4, 4], + out_indices=(0, 1, 2, 3), + qkv_bias=False, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0.2, + norm_cfg=dict(type='LN'), + depths=[4, 4, 4], + sr_ratios=[4, 2, 1], + windiow_sizes=[7, 7, 7], + norm_after_stage=True, + pretrained=None, + init_cfg=None): + super(SVT, self).__init__(in_channels, embed_dims, patch_sizes, + strides, num_heads, mlp_ratios, out_indices, + qkv_bias, drop_rate, attn_drop_rate, + drop_path_rate, norm_cfg, depths, sr_ratios, + norm_after_stage, pretrained, init_cfg) + # transformer encoder + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + + for k in range(len(depths)): + for i in range(depths[k]): + if i % 2 == 0: + self.layers[k][i] = \ + LSAEncoderLayer( + embed_dims=embed_dims[k], + num_heads=num_heads[k], + feedforward_channels=mlp_ratios[k] * embed_dims[k], + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[sum(depths[:k])+i], + qkv_bias=qkv_bias, + window_size=windiow_sizes[k]) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/unet.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/unet.py new file mode 100644 index 000000000..c2d33667f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/unet.py @@ -0,0 +1,438 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +import torch.utils.checkpoint as cp +from mmcv.cnn import (UPSAMPLE_LAYERS, ConvModule, build_activation_layer, + build_norm_layer) +from mmcv.runner import BaseModule +from mmcv.utils.parrots_wrapper import _BatchNorm + +from mmseg.ops import Upsample +from ..builder import BACKBONES +from ..utils import UpConvBlock + + +class BasicConvBlock(nn.Module): + """Basic convolutional block for UNet. + + This module consists of several plain convolutional layers. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + num_convs (int): Number of convolutional layers. Default: 2. + stride (int): Whether use stride convolution to downsample + the input feature map. If stride=2, it only uses stride convolution + in the first convolutional layer to downsample the input feature + map. Options are 1 or 2. Default: 1. + dilation (int): Whether use dilated convolution to expand the + receptive field. Set dilation rate of each convolutional layer and + the dilation rate of the first convolutional layer is always 1. + Default: 1. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + conv_cfg (dict | None): Config dict for convolution layer. + Default: None. + norm_cfg (dict | None): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict | None): Config dict for activation layer in ConvModule. + Default: dict(type='ReLU'). + dcn (bool): Use deformable convolution in convolutional layer or not. + Default: None. + plugins (dict): plugins for convolutional layers. Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + num_convs=2, + stride=1, + dilation=1, + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + dcn=None, + plugins=None): + super(BasicConvBlock, self).__init__() + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + + self.with_cp = with_cp + convs = [] + for i in range(num_convs): + convs.append( + ConvModule( + in_channels=in_channels if i == 0 else out_channels, + out_channels=out_channels, + kernel_size=3, + stride=stride if i == 0 else 1, + dilation=1 if i == 0 else dilation, + padding=1 if i == 0 else dilation, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + self.convs = nn.Sequential(*convs) + + def forward(self, x): + """Forward function.""" + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(self.convs, x) + else: + out = self.convs(x) + return out + + +@UPSAMPLE_LAYERS.register_module() +class DeconvModule(nn.Module): + """Deconvolution upsample module in decoder for UNet (2X upsample). + + This module uses deconvolution to upsample feature map in the decoder + of UNet. + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + norm_cfg (dict | None): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict | None): Config dict for activation layer in ConvModule. + Default: dict(type='ReLU'). + kernel_size (int): Kernel size of the convolutional layer. Default: 4. + """ + + def __init__(self, + in_channels, + out_channels, + with_cp=False, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + *, + kernel_size=4, + scale_factor=2): + super(DeconvModule, self).__init__() + + assert (kernel_size - scale_factor >= 0) and\ + (kernel_size - scale_factor) % 2 == 0,\ + f'kernel_size should be greater than or equal to scale_factor '\ + f'and (kernel_size - scale_factor) should be even numbers, '\ + f'while the kernel size is {kernel_size} and scale_factor is '\ + f'{scale_factor}.' + + stride = scale_factor + padding = (kernel_size - scale_factor) // 2 + self.with_cp = with_cp + deconv = nn.ConvTranspose2d( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding) + + norm_name, norm = build_norm_layer(norm_cfg, out_channels) + activate = build_activation_layer(act_cfg) + self.deconv_upsamping = nn.Sequential(deconv, norm, activate) + + def forward(self, x): + """Forward function.""" + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(self.deconv_upsamping, x) + else: + out = self.deconv_upsamping(x) + return out + + +@UPSAMPLE_LAYERS.register_module() +class InterpConv(nn.Module): + """Interpolation upsample module in decoder for UNet. + + This module uses interpolation to upsample feature map in the decoder + of UNet. It consists of one interpolation upsample layer and one + convolutional layer. It can be one interpolation upsample layer followed + by one convolutional layer (conv_first=False) or one convolutional layer + followed by one interpolation upsample layer (conv_first=True). + + Args: + in_channels (int): Number of input channels. + out_channels (int): Number of output channels. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + norm_cfg (dict | None): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict | None): Config dict for activation layer in ConvModule. + Default: dict(type='ReLU'). + conv_cfg (dict | None): Config dict for convolution layer. + Default: None. + conv_first (bool): Whether convolutional layer or interpolation + upsample layer first. Default: False. It means interpolation + upsample layer followed by one convolutional layer. + kernel_size (int): Kernel size of the convolutional layer. Default: 1. + stride (int): Stride of the convolutional layer. Default: 1. + padding (int): Padding of the convolutional layer. Default: 1. + upsample_cfg (dict): Interpolation config of the upsample layer. + Default: dict( + scale_factor=2, mode='bilinear', align_corners=False). + """ + + def __init__(self, + in_channels, + out_channels, + with_cp=False, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + *, + conv_cfg=None, + conv_first=False, + kernel_size=1, + stride=1, + padding=0, + upsample_cfg=dict( + scale_factor=2, mode='bilinear', align_corners=False)): + super(InterpConv, self).__init__() + + self.with_cp = with_cp + conv = ConvModule( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + upsample = Upsample(**upsample_cfg) + if conv_first: + self.interp_upsample = nn.Sequential(conv, upsample) + else: + self.interp_upsample = nn.Sequential(upsample, conv) + + def forward(self, x): + """Forward function.""" + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(self.interp_upsample, x) + else: + out = self.interp_upsample(x) + return out + + +@BACKBONES.register_module() +class UNet(BaseModule): + """UNet backbone. + + This backbone is the implementation of `U-Net: Convolutional Networks + for Biomedical Image Segmentation `_. + + Args: + in_channels (int): Number of input image channels. Default" 3. + base_channels (int): Number of base channels of each stage. + The output channels of the first stage. Default: 64. + num_stages (int): Number of stages in encoder, normally 5. Default: 5. + strides (Sequence[int 1 | 2]): Strides of each stage in encoder. + len(strides) is equal to num_stages. Normally the stride of the + first stage in encoder is 1. If strides[i]=2, it uses stride + convolution to downsample in the correspondence encoder stage. + Default: (1, 1, 1, 1, 1). + enc_num_convs (Sequence[int]): Number of convolutional layers in the + convolution block of the correspondence encoder stage. + Default: (2, 2, 2, 2, 2). + dec_num_convs (Sequence[int]): Number of convolutional layers in the + convolution block of the correspondence decoder stage. + Default: (2, 2, 2, 2). + downsamples (Sequence[int]): Whether use MaxPool to downsample the + feature map after the first stage of encoder + (stages: [1, num_stages)). If the correspondence encoder stage use + stride convolution (strides[i]=2), it will never use MaxPool to + downsample, even downsamples[i-1]=True. + Default: (True, True, True, True). + enc_dilations (Sequence[int]): Dilation rate of each stage in encoder. + Default: (1, 1, 1, 1, 1). + dec_dilations (Sequence[int]): Dilation rate of each stage in decoder. + Default: (1, 1, 1, 1). + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + conv_cfg (dict | None): Config dict for convolution layer. + Default: None. + norm_cfg (dict | None): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict | None): Config dict for activation layer in ConvModule. + Default: dict(type='ReLU'). + upsample_cfg (dict): The upsample config of the upsample module in + decoder. Default: dict(type='InterpConv'). + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + dcn (bool): Use deformable convolution in convolutional layer or not. + Default: None. + plugins (dict): plugins for convolutional layers. Default: None. + pretrained (str, optional): model pretrained path. Default: None + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None + + Notice: + The input image size should be divisible by the whole downsample rate + of the encoder. More detail of the whole downsample rate can be found + in UNet._check_input_divisible. + """ + + def __init__(self, + in_channels=3, + base_channels=64, + num_stages=5, + strides=(1, 1, 1, 1, 1), + enc_num_convs=(2, 2, 2, 2, 2), + dec_num_convs=(2, 2, 2, 2), + downsamples=(True, True, True, True), + enc_dilations=(1, 1, 1, 1, 1), + dec_dilations=(1, 1, 1, 1), + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + upsample_cfg=dict(type='InterpConv'), + norm_eval=False, + dcn=None, + plugins=None, + pretrained=None, + init_cfg=None): + super(UNet, self).__init__(init_cfg) + + self.pretrained = pretrained + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be setting at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is a deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is None: + if init_cfg is None: + self.init_cfg = [ + dict(type='Kaiming', layer='Conv2d'), + dict( + type='Constant', + val=1, + layer=['_BatchNorm', 'GroupNorm']) + ] + else: + raise TypeError('pretrained must be a str or None') + + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + assert len(strides) == num_stages, \ + 'The length of strides should be equal to num_stages, '\ + f'while the strides is {strides}, the length of '\ + f'strides is {len(strides)}, and the num_stages is '\ + f'{num_stages}.' + assert len(enc_num_convs) == num_stages, \ + 'The length of enc_num_convs should be equal to num_stages, '\ + f'while the enc_num_convs is {enc_num_convs}, the length of '\ + f'enc_num_convs is {len(enc_num_convs)}, and the num_stages is '\ + f'{num_stages}.' + assert len(dec_num_convs) == (num_stages-1), \ + 'The length of dec_num_convs should be equal to (num_stages-1), '\ + f'while the dec_num_convs is {dec_num_convs}, the length of '\ + f'dec_num_convs is {len(dec_num_convs)}, and the num_stages is '\ + f'{num_stages}.' + assert len(downsamples) == (num_stages-1), \ + 'The length of downsamples should be equal to (num_stages-1), '\ + f'while the downsamples is {downsamples}, the length of '\ + f'downsamples is {len(downsamples)}, and the num_stages is '\ + f'{num_stages}.' + assert len(enc_dilations) == num_stages, \ + 'The length of enc_dilations should be equal to num_stages, '\ + f'while the enc_dilations is {enc_dilations}, the length of '\ + f'enc_dilations is {len(enc_dilations)}, and the num_stages is '\ + f'{num_stages}.' + assert len(dec_dilations) == (num_stages-1), \ + 'The length of dec_dilations should be equal to (num_stages-1), '\ + f'while the dec_dilations is {dec_dilations}, the length of '\ + f'dec_dilations is {len(dec_dilations)}, and the num_stages is '\ + f'{num_stages}.' + self.num_stages = num_stages + self.strides = strides + self.downsamples = downsamples + self.norm_eval = norm_eval + self.base_channels = base_channels + + self.encoder = nn.ModuleList() + self.decoder = nn.ModuleList() + + for i in range(num_stages): + enc_conv_block = [] + if i != 0: + if strides[i] == 1 and downsamples[i - 1]: + enc_conv_block.append(nn.MaxPool2d(kernel_size=2)) + upsample = (strides[i] != 1 or downsamples[i - 1]) + self.decoder.append( + UpConvBlock( + conv_block=BasicConvBlock, + in_channels=base_channels * 2**i, + skip_channels=base_channels * 2**(i - 1), + out_channels=base_channels * 2**(i - 1), + num_convs=dec_num_convs[i - 1], + stride=1, + dilation=dec_dilations[i - 1], + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + upsample_cfg=upsample_cfg if upsample else None, + dcn=None, + plugins=None)) + + enc_conv_block.append( + BasicConvBlock( + in_channels=in_channels, + out_channels=base_channels * 2**i, + num_convs=enc_num_convs[i], + stride=strides[i], + dilation=enc_dilations[i], + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + dcn=None, + plugins=None)) + self.encoder.append((nn.Sequential(*enc_conv_block))) + in_channels = base_channels * 2**i + + def forward(self, x): + self._check_input_divisible(x) + enc_outs = [] + for enc in self.encoder: + x = enc(x) + enc_outs.append(x) + dec_outs = [x] + for i in reversed(range(len(self.decoder))): + x = self.decoder[i](enc_outs[i], x) + dec_outs.append(x) + + return dec_outs + + def train(self, mode=True): + """Convert the model into training mode while keep normalization layer + freezed.""" + super(UNet, self).train(mode) + if mode and self.norm_eval: + for m in self.modules(): + # trick: eval have effect on BatchNorm only + if isinstance(m, _BatchNorm): + m.eval() + + def _check_input_divisible(self, x): + h, w = x.shape[-2:] + whole_downsample_rate = 1 + for i in range(1, self.num_stages): + if self.strides[i] == 2 or self.downsamples[i - 1]: + whole_downsample_rate *= 2 + assert (h % whole_downsample_rate == 0) \ + and (w % whole_downsample_rate == 0),\ + f'The input image size {(h, w)} should be divisible by the whole '\ + f'downsample rate {whole_downsample_rate}, when num_stages is '\ + f'{self.num_stages}, strides is {self.strides}, and downsamples '\ + f'is {self.downsamples}.' diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/vit.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/vit.py new file mode 100644 index 000000000..965652503 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/backbones/vit.py @@ -0,0 +1,412 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +import warnings + +import torch +import torch.nn as nn +from mmcv.cnn import build_norm_layer +from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention +from mmcv.cnn.utils.weight_init import (constant_init, kaiming_init, + trunc_normal_) +from mmcv.runner import BaseModule, ModuleList, _load_checkpoint +from torch.nn.modules.batchnorm import _BatchNorm +from torch.nn.modules.utils import _pair as to_2tuple + +from mmseg.ops import resize +from mmseg.utils import get_root_logger +from ..builder import BACKBONES +from ..utils import PatchEmbed + + +class TransformerEncoderLayer(BaseModule): + """Implements one encoder layer in Vision Transformer. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + drop_rate (float): Probability of an element to be zeroed + after the feed forward layer. Default: 0.0. + attn_drop_rate (float): The drop out rate for attention layer. + Default: 0.0. + drop_path_rate (float): stochastic depth rate. Default 0.0. + num_fcs (int): The number of fully-connected layers for FFNs. + Default: 2. + qkv_bias (bool): enable bias for qkv if True. Default: True + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN'). + batch_first (bool): Key, Query and Value are shape of + (batch, n, embed_dim) + or (n, batch, embed_dim). Default: True. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + num_fcs=2, + qkv_bias=True, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + batch_first=True): + super(TransformerEncoderLayer, self).__init__() + + self.norm1_name, norm1 = build_norm_layer( + norm_cfg, embed_dims, postfix=1) + self.add_module(self.norm1_name, norm1) + + self.attn = MultiheadAttention( + embed_dims=embed_dims, + num_heads=num_heads, + attn_drop=attn_drop_rate, + proj_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + batch_first=batch_first, + bias=qkv_bias) + + self.norm2_name, norm2 = build_norm_layer( + norm_cfg, embed_dims, postfix=2) + self.add_module(self.norm2_name, norm2) + + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=num_fcs, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg) + + @property + def norm1(self): + return getattr(self, self.norm1_name) + + @property + def norm2(self): + return getattr(self, self.norm2_name) + + def forward(self, x): + x = self.attn(self.norm1(x), identity=x) + x = self.ffn(self.norm2(x), identity=x) + return x + + +@BACKBONES.register_module() +class VisionTransformer(BaseModule): + """Vision Transformer. + + This backbone is the implementation of `An Image is Worth 16x16 Words: + Transformers for Image Recognition at + Scale `_. + + Args: + img_size (int | tuple): Input image size. Default: 224. + patch_size (int): The patch size. Default: 16. + in_channels (int): Number of input channels. Default: 3. + embed_dims (int): embedding dimension. Default: 768. + num_layers (int): depth of transformer. Default: 12. + num_heads (int): number of attention heads. Default: 12. + mlp_ratio (int): ratio of mlp hidden dim to embedding dim. + Default: 4. + out_indices (list | tuple | int): Output from which stages. + Default: -1. + qkv_bias (bool): enable bias for qkv if True. Default: True. + drop_rate (float): Probability of an element to be zeroed. + Default 0.0 + attn_drop_rate (float): The drop out rate for attention layer. + Default 0.0 + drop_path_rate (float): stochastic depth rate. Default 0.0 + with_cls_token (bool): Whether concatenating class token into image + tokens as transformer input. Default: True. + output_cls_token (bool): Whether output the cls_token. If set True, + `with_cls_token` must be True. Default: False. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='LN') + act_cfg (dict): The activation config for FFNs. + Default: dict(type='GELU'). + patch_norm (bool): Whether to add a norm in PatchEmbed Block. + Default: False. + final_norm (bool): Whether to add a additional layer to normalize + final feature map. Default: False. + interpolate_mode (str): Select the interpolate mode for position + embeding vector resize. Default: bicubic. + num_fcs (int): The number of fully-connected layers for FFNs. + Default: 2. + norm_eval (bool): Whether to set norm layers to eval mode, namely, + freeze running stats (mean and var). Note: Effect on Batch Norm + and its variants only. Default: False. + with_cp (bool): Use checkpoint or not. Using checkpoint will save + some memory while slowing down the training speed. Default: False. + pretrained (str, optional): model pretrained path. Default: None. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + img_size=224, + patch_size=16, + in_channels=3, + embed_dims=768, + num_layers=12, + num_heads=12, + mlp_ratio=4, + out_indices=-1, + qkv_bias=True, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + with_cls_token=True, + output_cls_token=False, + norm_cfg=dict(type='LN'), + act_cfg=dict(type='GELU'), + patch_norm=False, + final_norm=False, + interpolate_mode='bicubic', + num_fcs=2, + norm_eval=False, + with_cp=False, + pretrained=None, + init_cfg=None): + super(VisionTransformer, self).__init__(init_cfg=init_cfg) + + if isinstance(img_size, int): + img_size = to_2tuple(img_size) + elif isinstance(img_size, tuple): + if len(img_size) == 1: + img_size = to_2tuple(img_size[0]) + assert len(img_size) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(img_size)}' + + if output_cls_token: + assert with_cls_token is True, f'with_cls_token must be True if' \ + f'set output_cls_token to True, but got {with_cls_token}' + + assert not (init_cfg and pretrained), \ + 'init_cfg and pretrained cannot be set at the same time' + if isinstance(pretrained, str): + warnings.warn('DeprecationWarning: pretrained is deprecated, ' + 'please use "init_cfg" instead') + self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) + elif pretrained is not None: + raise TypeError('pretrained must be a str or None') + + self.img_size = img_size + self.patch_size = patch_size + self.interpolate_mode = interpolate_mode + self.norm_eval = norm_eval + self.with_cp = with_cp + self.pretrained = pretrained + + self.patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims, + conv_type='Conv2d', + kernel_size=patch_size, + stride=patch_size, + padding='corner', + norm_cfg=norm_cfg if patch_norm else None, + init_cfg=None, + ) + + num_patches = (img_size[0] // patch_size) * \ + (img_size[1] // patch_size) + + self.with_cls_token = with_cls_token + self.output_cls_token = output_cls_token + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims)) + self.pos_embed = nn.Parameter( + torch.zeros(1, num_patches + 1, embed_dims)) + self.drop_after_pos = nn.Dropout(p=drop_rate) + + if isinstance(out_indices, int): + if out_indices == -1: + out_indices = num_layers - 1 + self.out_indices = [out_indices] + elif isinstance(out_indices, list) or isinstance(out_indices, tuple): + self.out_indices = out_indices + else: + raise TypeError('out_indices must be type of int, list or tuple') + + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, num_layers) + ] # stochastic depth decay rule + + self.layers = ModuleList() + for i in range(num_layers): + self.layers.append( + TransformerEncoderLayer( + embed_dims=embed_dims, + num_heads=num_heads, + feedforward_channels=mlp_ratio * embed_dims, + attn_drop_rate=attn_drop_rate, + drop_rate=drop_rate, + drop_path_rate=dpr[i], + num_fcs=num_fcs, + qkv_bias=qkv_bias, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + batch_first=True)) + + self.final_norm = final_norm + if final_norm: + self.norm1_name, norm1 = build_norm_layer( + norm_cfg, embed_dims, postfix=1) + self.add_module(self.norm1_name, norm1) + + @property + def norm1(self): + return getattr(self, self.norm1_name) + + def init_weights(self): + if (isinstance(self.init_cfg, dict) + and self.init_cfg.get('type') == 'Pretrained'): + logger = get_root_logger() + checkpoint = _load_checkpoint( + self.init_cfg['checkpoint'], logger=logger, map_location='cpu') + + if 'state_dict' in checkpoint: + state_dict = checkpoint['state_dict'] + else: + state_dict = checkpoint + + if 'pos_embed' in state_dict.keys(): + if self.pos_embed.shape != state_dict['pos_embed'].shape: + logger.info(msg=f'Resize the pos_embed shape from ' + f'{state_dict["pos_embed"].shape} to ' + f'{self.pos_embed.shape}') + h, w = self.img_size + pos_size = int( + math.sqrt(state_dict['pos_embed'].shape[1] - 1)) + state_dict['pos_embed'] = self.resize_pos_embed( + state_dict['pos_embed'], + (h // self.patch_size, w // self.patch_size), + (pos_size, pos_size), self.interpolate_mode) + + self.load_state_dict(state_dict, False) + elif self.init_cfg is not None: + super(VisionTransformer, self).init_weights() + else: + # We only implement the 'jax_impl' initialization implemented at + # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + for n, m in self.named_modules(): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + if 'ffn' in n: + nn.init.normal_(m.bias, mean=0., std=1e-6) + else: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + kaiming_init(m, mode='fan_in', bias=0.) + elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): + constant_init(m, val=1.0, bias=0.) + + def _pos_embeding(self, patched_img, hw_shape, pos_embed): + """Positiong embeding method. + + Resize the pos_embed, if the input image size doesn't match + the training size. + Args: + patched_img (torch.Tensor): The patched image, it should be + shape of [B, L1, C]. + hw_shape (tuple): The downsampled image resolution. + pos_embed (torch.Tensor): The pos_embed weighs, it should be + shape of [B, L2, c]. + Return: + torch.Tensor: The pos encoded image feature. + """ + assert patched_img.ndim == 3 and pos_embed.ndim == 3, \ + 'the shapes of patched_img and pos_embed must be [B, L, C]' + x_len, pos_len = patched_img.shape[1], pos_embed.shape[1] + if x_len != pos_len: + if pos_len == (self.img_size[0] // self.patch_size) * ( + self.img_size[1] // self.patch_size) + 1: + pos_h = self.img_size[0] // self.patch_size + pos_w = self.img_size[1] // self.patch_size + else: + raise ValueError( + 'Unexpected shape of pos_embed, got {}.'.format( + pos_embed.shape)) + pos_embed = self.resize_pos_embed(pos_embed, hw_shape, + (pos_h, pos_w), + self.interpolate_mode) + return self.drop_after_pos(patched_img + pos_embed) + + @staticmethod + def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode): + """Resize pos_embed weights. + + Resize pos_embed using bicubic interpolate method. + Args: + pos_embed (torch.Tensor): Position embedding weights. + input_shpae (tuple): Tuple for (downsampled input image height, + downsampled input image width). + pos_shape (tuple): The resolution of downsampled origin training + image. + mode (str): Algorithm used for upsampling: + ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | + ``'trilinear'``. Default: ``'nearest'`` + Return: + torch.Tensor: The resized pos_embed of shape [B, L_new, C] + """ + assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' + pos_h, pos_w = pos_shape + cls_token_weight = pos_embed[:, 0] + pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] + pos_embed_weight = pos_embed_weight.reshape( + 1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) + pos_embed_weight = resize( + pos_embed_weight, size=input_shpae, align_corners=False, mode=mode) + cls_token_weight = cls_token_weight.unsqueeze(1) + pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) + pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) + return pos_embed + + def forward(self, inputs): + B = inputs.shape[0] + + x, hw_shape = self.patch_embed(inputs) + + # stole cls_tokens impl from Phil Wang, thanks + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + x = self._pos_embeding(x, hw_shape, self.pos_embed) + + if not self.with_cls_token: + # Remove class token for transformer encoder input + x = x[:, 1:] + + outs = [] + for i, layer in enumerate(self.layers): + x = layer(x) + if i == len(self.layers) - 1: + if self.final_norm: + x = self.norm1(x) + if i in self.out_indices: + if self.with_cls_token: + # Remove class token and reshape token for decoder head + out = x[:, 1:] + else: + out = x + B, _, C = out.shape + out = out.reshape(B, hw_shape[0], hw_shape[1], + C).permute(0, 3, 1, 2).contiguous() + if self.output_cls_token: + out = [out, x[:, 0]] + outs.append(out) + + return tuple(outs) + + def train(self, mode=True): + super(VisionTransformer, self).train(mode) + if mode and self.norm_eval: + for m in self.modules(): + if isinstance(m, nn.LayerNorm): + m.eval() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/builder.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/builder.py new file mode 100644 index 000000000..5e18e4e64 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/builder.py @@ -0,0 +1,49 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv.cnn import MODELS as MMCV_MODELS +from mmcv.cnn.bricks.registry import ATTENTION as MMCV_ATTENTION +from mmcv.utils import Registry + +MODELS = Registry('models', parent=MMCV_MODELS) +ATTENTION = Registry('attention', parent=MMCV_ATTENTION) + +BACKBONES = MODELS +NECKS = MODELS +HEADS = MODELS +LOSSES = MODELS +SEGMENTORS = MODELS + + +def build_backbone(cfg): + """Build backbone.""" + return BACKBONES.build(cfg) + + +def build_neck(cfg): + """Build neck.""" + return NECKS.build(cfg) + + +def build_head(cfg): + """Build head.""" + return HEADS.build(cfg) + + +def build_loss(cfg): + """Build loss.""" + return LOSSES.build(cfg) + + +def build_segmentor(cfg, train_cfg=None, test_cfg=None): + """Build segmentor.""" + if train_cfg is not None or test_cfg is not None: + warnings.warn( + 'train_cfg and test_cfg is deprecated, ' + 'please specify them in model', UserWarning) + assert cfg.get('train_cfg') is None or train_cfg is None, \ + 'train_cfg specified in both outer field and model field ' + assert cfg.get('test_cfg') is None or test_cfg is None, \ + 'test_cfg specified in both outer field and model field ' + return SEGMENTORS.build( + cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/__init__.py new file mode 100644 index 000000000..b5375a1f5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/__init__.py @@ -0,0 +1,37 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .ann_head import ANNHead +from .apc_head import APCHead +from .aspp_head import ASPPHead +from .cc_head import CCHead +from .da_head import DAHead +from .dm_head import DMHead +from .dnl_head import DNLHead +from .dpt_head import DPTHead +from .ema_head import EMAHead +from .enc_head import EncHead +from .fcn_head import FCNHead +from .fpn_head import FPNHead +from .gc_head import GCHead +from .isa_head import ISAHead +from .lraspp_head import LRASPPHead +from .nl_head import NLHead +from .ocr_head import OCRHead +from .point_head import PointHead +from .psa_head import PSAHead +from .psp_head import PSPHead +from .segformer_head import SegformerHead +from .sep_aspp_head import DepthwiseSeparableASPPHead +from .sep_fcn_head import DepthwiseSeparableFCNHead +from .setr_mla_head import SETRMLAHead +from .setr_up_head import SETRUPHead +from .stdc_head import STDCHead +from .uper_head import UPerHead + +__all__ = [ + 'FCNHead', 'PSPHead', 'ASPPHead', 'PSAHead', 'NLHead', 'GCHead', 'CCHead', + 'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead', + 'EncHead', 'DepthwiseSeparableFCNHead', 'FPNHead', 'EMAHead', 'DNLHead', + 'PointHead', 'APCHead', 'DMHead', 'LRASPPHead', 'SETRUPHead', + 'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegformerHead', 'ISAHead', + 'STDCHead' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ann_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ann_head.py new file mode 100644 index 000000000..c8d882e31 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ann_head.py @@ -0,0 +1,246 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from ..builder import HEADS +from ..utils import SelfAttentionBlock as _SelfAttentionBlock +from .decode_head import BaseDecodeHead + + +class PPMConcat(nn.ModuleList): + """Pyramid Pooling Module that only concat the features of each layer. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. + """ + + def __init__(self, pool_scales=(1, 3, 6, 8)): + super(PPMConcat, self).__init__( + [nn.AdaptiveAvgPool2d(pool_scale) for pool_scale in pool_scales]) + + def forward(self, feats): + """Forward function.""" + ppm_outs = [] + for ppm in self: + ppm_out = ppm(feats) + ppm_outs.append(ppm_out.view(*feats.shape[:2], -1)) + concat_outs = torch.cat(ppm_outs, dim=2) + return concat_outs + + +class SelfAttentionBlock(_SelfAttentionBlock): + """Make a ANN used SelfAttentionBlock. + + Args: + low_in_channels (int): Input channels of lower level feature, + which is the key feature for self-attention. + high_in_channels (int): Input channels of higher level feature, + which is the query feature for self-attention. + channels (int): Output channels of key/query transform. + out_channels (int): Output channels. + share_key_query (bool): Whether share projection weight between key + and query projection. + query_scale (int): The scale of query feature map. + key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module of key feature. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict|None): Config of activation layers. + """ + + def __init__(self, low_in_channels, high_in_channels, channels, + out_channels, share_key_query, query_scale, key_pool_scales, + conv_cfg, norm_cfg, act_cfg): + key_psp = PPMConcat(key_pool_scales) + if query_scale > 1: + query_downsample = nn.MaxPool2d(kernel_size=query_scale) + else: + query_downsample = None + super(SelfAttentionBlock, self).__init__( + key_in_channels=low_in_channels, + query_in_channels=high_in_channels, + channels=channels, + out_channels=out_channels, + share_key_query=share_key_query, + query_downsample=query_downsample, + key_downsample=key_psp, + key_query_num_convs=1, + key_query_norm=True, + value_out_num_convs=1, + value_out_norm=False, + matmul_norm=True, + with_out=True, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + +class AFNB(nn.Module): + """Asymmetric Fusion Non-local Block(AFNB) + + Args: + low_in_channels (int): Input channels of lower level feature, + which is the key feature for self-attention. + high_in_channels (int): Input channels of higher level feature, + which is the query feature for self-attention. + channels (int): Output channels of key/query transform. + out_channels (int): Output channels. + and query projection. + query_scales (tuple[int]): The scales of query feature map. + Default: (1,) + key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module of key feature. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict|None): Config of activation layers. + """ + + def __init__(self, low_in_channels, high_in_channels, channels, + out_channels, query_scales, key_pool_scales, conv_cfg, + norm_cfg, act_cfg): + super(AFNB, self).__init__() + self.stages = nn.ModuleList() + for query_scale in query_scales: + self.stages.append( + SelfAttentionBlock( + low_in_channels=low_in_channels, + high_in_channels=high_in_channels, + channels=channels, + out_channels=out_channels, + share_key_query=False, + query_scale=query_scale, + key_pool_scales=key_pool_scales, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.bottleneck = ConvModule( + out_channels + high_in_channels, + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + def forward(self, low_feats, high_feats): + """Forward function.""" + priors = [stage(high_feats, low_feats) for stage in self.stages] + context = torch.stack(priors, dim=0).sum(dim=0) + output = self.bottleneck(torch.cat([context, high_feats], 1)) + return output + + +class APNB(nn.Module): + """Asymmetric Pyramid Non-local Block (APNB) + + Args: + in_channels (int): Input channels of key/query feature, + which is the key feature for self-attention. + channels (int): Output channels of key/query transform. + out_channels (int): Output channels. + query_scales (tuple[int]): The scales of query feature map. + Default: (1,) + key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module of key feature. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict|None): Config of activation layers. + """ + + def __init__(self, in_channels, channels, out_channels, query_scales, + key_pool_scales, conv_cfg, norm_cfg, act_cfg): + super(APNB, self).__init__() + self.stages = nn.ModuleList() + for query_scale in query_scales: + self.stages.append( + SelfAttentionBlock( + low_in_channels=in_channels, + high_in_channels=in_channels, + channels=channels, + out_channels=out_channels, + share_key_query=True, + query_scale=query_scale, + key_pool_scales=key_pool_scales, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.bottleneck = ConvModule( + 2 * in_channels, + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, feats): + """Forward function.""" + priors = [stage(feats, feats) for stage in self.stages] + context = torch.stack(priors, dim=0).sum(dim=0) + output = self.bottleneck(torch.cat([context, feats], 1)) + return output + + +@HEADS.register_module() +class ANNHead(BaseDecodeHead): + """Asymmetric Non-local Neural Networks for Semantic Segmentation. + + This head is the implementation of `ANNNet + `_. + + Args: + project_channels (int): Projection channels for Nonlocal. + query_scales (tuple[int]): The scales of query feature map. + Default: (1,) + key_pool_scales (tuple[int]): The pooling scales of key feature map. + Default: (1, 3, 6, 8). + """ + + def __init__(self, + project_channels, + query_scales=(1, ), + key_pool_scales=(1, 3, 6, 8), + **kwargs): + super(ANNHead, self).__init__( + input_transform='multiple_select', **kwargs) + assert len(self.in_channels) == 2 + low_in_channels, high_in_channels = self.in_channels + self.project_channels = project_channels + self.fusion = AFNB( + low_in_channels=low_in_channels, + high_in_channels=high_in_channels, + out_channels=high_in_channels, + channels=project_channels, + query_scales=query_scales, + key_pool_scales=key_pool_scales, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.bottleneck = ConvModule( + high_in_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.context = APNB( + in_channels=self.channels, + out_channels=self.channels, + channels=project_channels, + query_scales=query_scales, + key_pool_scales=key_pool_scales, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + low_feats, high_feats = self._transform_inputs(inputs) + output = self.fusion(low_feats, high_feats) + output = self.dropout(output) + output = self.bottleneck(output) + output = self.context(output) + output = self.cls_seg(output) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/apc_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/apc_head.py new file mode 100644 index 000000000..3198fd188 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/apc_head.py @@ -0,0 +1,159 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class ACM(nn.Module): + """Adaptive Context Module used in APCNet. + + Args: + pool_scale (int): Pooling scale used in Adaptive Context + Module to extract region features. + fusion (bool): Add one conv to fuse residual feature. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + conv_cfg (dict | None): Config of conv layers. + norm_cfg (dict | None): Config of norm layers. + act_cfg (dict): Config of activation layers. + """ + + def __init__(self, pool_scale, fusion, in_channels, channels, conv_cfg, + norm_cfg, act_cfg): + super(ACM, self).__init__() + self.pool_scale = pool_scale + self.fusion = fusion + self.in_channels = in_channels + self.channels = channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.pooled_redu_conv = ConvModule( + self.in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.input_redu_conv = ConvModule( + self.in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.global_info = ConvModule( + self.channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + self.gla = nn.Conv2d(self.channels, self.pool_scale**2, 1, 1, 0) + + self.residual_conv = ConvModule( + self.channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + if self.fusion: + self.fusion_conv = ConvModule( + self.channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, x): + """Forward function.""" + pooled_x = F.adaptive_avg_pool2d(x, self.pool_scale) + # [batch_size, channels, h, w] + x = self.input_redu_conv(x) + # [batch_size, channels, pool_scale, pool_scale] + pooled_x = self.pooled_redu_conv(pooled_x) + batch_size = x.size(0) + # [batch_size, pool_scale * pool_scale, channels] + pooled_x = pooled_x.view(batch_size, self.channels, + -1).permute(0, 2, 1).contiguous() + # [batch_size, h * w, pool_scale * pool_scale] + affinity_matrix = self.gla(x + resize( + self.global_info(F.adaptive_avg_pool2d(x, 1)), size=x.shape[2:]) + ).permute(0, 2, 3, 1).reshape( + batch_size, -1, self.pool_scale**2) + affinity_matrix = F.sigmoid(affinity_matrix) + # [batch_size, h * w, channels] + z_out = torch.matmul(affinity_matrix, pooled_x) + # [batch_size, channels, h * w] + z_out = z_out.permute(0, 2, 1).contiguous() + # [batch_size, channels, h, w] + z_out = z_out.view(batch_size, self.channels, x.size(2), x.size(3)) + z_out = self.residual_conv(z_out) + z_out = F.relu(z_out + x) + if self.fusion: + z_out = self.fusion_conv(z_out) + + return z_out + + +@HEADS.register_module() +class APCHead(BaseDecodeHead): + """Adaptive Pyramid Context Network for Semantic Segmentation. + + This head is the implementation of + `APCNet `_. + + Args: + pool_scales (tuple[int]): Pooling scales used in Adaptive Context + Module. Default: (1, 2, 3, 6). + fusion (bool): Add one conv to fuse residual feature. + """ + + def __init__(self, pool_scales=(1, 2, 3, 6), fusion=True, **kwargs): + super(APCHead, self).__init__(**kwargs) + assert isinstance(pool_scales, (list, tuple)) + self.pool_scales = pool_scales + self.fusion = fusion + acm_modules = [] + for pool_scale in self.pool_scales: + acm_modules.append( + ACM(pool_scale, + self.fusion, + self.in_channels, + self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + self.acm_modules = nn.ModuleList(acm_modules) + self.bottleneck = ConvModule( + self.in_channels + len(pool_scales) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + acm_outs = [x] + for acm_module in self.acm_modules: + acm_outs.append(acm_module(x)) + acm_outs = torch.cat(acm_outs, dim=1) + output = self.bottleneck(acm_outs) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/aspp_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/aspp_head.py new file mode 100644 index 000000000..1fbd1bc88 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/aspp_head.py @@ -0,0 +1,108 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class ASPPModule(nn.ModuleList): + """Atrous Spatial Pyramid Pooling (ASPP) Module. + + Args: + dilations (tuple[int]): Dilation rate of each layer. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict): Config of activation layers. + """ + + def __init__(self, dilations, in_channels, channels, conv_cfg, norm_cfg, + act_cfg): + super(ASPPModule, self).__init__() + self.dilations = dilations + self.in_channels = in_channels + self.channels = channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + for dilation in dilations: + self.append( + ConvModule( + self.in_channels, + self.channels, + 1 if dilation == 1 else 3, + dilation=dilation, + padding=0 if dilation == 1 else dilation, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + + def forward(self, x): + """Forward function.""" + aspp_outs = [] + for aspp_module in self: + aspp_outs.append(aspp_module(x)) + + return aspp_outs + + +@HEADS.register_module() +class ASPPHead(BaseDecodeHead): + """Rethinking Atrous Convolution for Semantic Image Segmentation. + + This head is the implementation of `DeepLabV3 + `_. + + Args: + dilations (tuple[int]): Dilation rates for ASPP module. + Default: (1, 6, 12, 18). + """ + + def __init__(self, dilations=(1, 6, 12, 18), **kwargs): + super(ASPPHead, self).__init__(**kwargs) + assert isinstance(dilations, (list, tuple)) + self.dilations = dilations + self.image_pool = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + ConvModule( + self.in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + self.aspp_modules = ASPPModule( + dilations, + self.in_channels, + self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.bottleneck = ConvModule( + (len(dilations) + 1) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + aspp_outs = [ + resize( + self.image_pool(x), + size=x.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + ] + aspp_outs.extend(self.aspp_modules(x)) + aspp_outs = torch.cat(aspp_outs, dim=1) + output = self.bottleneck(aspp_outs) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cascade_decode_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cascade_decode_head.py new file mode 100644 index 000000000..f7c3da0d6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cascade_decode_head.py @@ -0,0 +1,58 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +from .decode_head import BaseDecodeHead + + +class BaseCascadeDecodeHead(BaseDecodeHead, metaclass=ABCMeta): + """Base class for cascade decode head used in + :class:`CascadeEncoderDecoder.""" + + def __init__(self, *args, **kwargs): + super(BaseCascadeDecodeHead, self).__init__(*args, **kwargs) + + @abstractmethod + def forward(self, inputs, prev_output): + """Placeholder of forward function.""" + pass + + def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg, + train_cfg): + """Forward function for training. + Args: + inputs (list[Tensor]): List of multi-level img features. + prev_output (Tensor): The output of previous decode head. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + gt_semantic_seg (Tensor): Semantic segmentation masks + used if the architecture supports semantic segmentation task. + train_cfg (dict): The training config. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + seg_logits = self.forward(inputs, prev_output) + losses = self.losses(seg_logits, gt_semantic_seg) + + return losses + + def forward_test(self, inputs, prev_output, img_metas, test_cfg): + """Forward function for testing. + + Args: + inputs (list[Tensor]): List of multi-level img features. + prev_output (Tensor): The output of previous decode head. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + test_cfg (dict): The testing config. + + Returns: + Tensor: Output segmentation map. + """ + return self.forward(inputs, prev_output) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cc_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cc_head.py new file mode 100644 index 000000000..ed19eb46d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/cc_head.py @@ -0,0 +1,43 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch + +from ..builder import HEADS +from .fcn_head import FCNHead + +try: + from mmcv.ops import CrissCrossAttention +except ModuleNotFoundError: + CrissCrossAttention = None + + +@HEADS.register_module() +class CCHead(FCNHead): + """CCNet: Criss-Cross Attention for Semantic Segmentation. + + This head is the implementation of `CCNet + `_. + + Args: + recurrence (int): Number of recurrence of Criss Cross Attention + module. Default: 2. + """ + + def __init__(self, recurrence=2, **kwargs): + if CrissCrossAttention is None: + raise RuntimeError('Please install mmcv-full for ' + 'CrissCrossAttention ops') + super(CCHead, self).__init__(num_convs=2, **kwargs) + self.recurrence = recurrence + self.cca = CrissCrossAttention(self.channels) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + output = self.convs[0](x) + for _ in range(self.recurrence): + output = self.cca(output) + output = self.convs[1](output) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/da_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/da_head.py new file mode 100644 index 000000000..77fd6639c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/da_head.py @@ -0,0 +1,179 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn.functional as F +from mmcv.cnn import ConvModule, Scale +from torch import nn + +from mmseg.core import add_prefix +from ..builder import HEADS +from ..utils import SelfAttentionBlock as _SelfAttentionBlock +from .decode_head import BaseDecodeHead + + +class PAM(_SelfAttentionBlock): + """Position Attention Module (PAM) + + Args: + in_channels (int): Input channels of key/query feature. + channels (int): Output channels of key/query transform. + """ + + def __init__(self, in_channels, channels): + super(PAM, self).__init__( + key_in_channels=in_channels, + query_in_channels=in_channels, + channels=channels, + out_channels=in_channels, + share_key_query=False, + query_downsample=None, + key_downsample=None, + key_query_num_convs=1, + key_query_norm=False, + value_out_num_convs=1, + value_out_norm=False, + matmul_norm=False, + with_out=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=None) + + self.gamma = Scale(0) + + def forward(self, x): + """Forward function.""" + out = super(PAM, self).forward(x, x) + + out = self.gamma(out) + x + return out + + +class CAM(nn.Module): + """Channel Attention Module (CAM)""" + + def __init__(self): + super(CAM, self).__init__() + self.gamma = Scale(0) + + def forward(self, x): + """Forward function.""" + batch_size, channels, height, width = x.size() + proj_query = x.view(batch_size, channels, -1) + proj_key = x.view(batch_size, channels, -1).permute(0, 2, 1) + energy = torch.bmm(proj_query, proj_key) + energy_new = torch.max( + energy, -1, keepdim=True)[0].expand_as(energy) - energy + attention = F.softmax(energy_new, dim=-1) + proj_value = x.view(batch_size, channels, -1) + + out = torch.bmm(attention, proj_value) + out = out.view(batch_size, channels, height, width) + + out = self.gamma(out) + x + return out + + +@HEADS.register_module() +class DAHead(BaseDecodeHead): + """Dual Attention Network for Scene Segmentation. + + This head is the implementation of `DANet + `_. + + Args: + pam_channels (int): The channels of Position Attention Module(PAM). + """ + + def __init__(self, pam_channels, **kwargs): + super(DAHead, self).__init__(**kwargs) + self.pam_channels = pam_channels + self.pam_in_conv = ConvModule( + self.in_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.pam = PAM(self.channels, pam_channels) + self.pam_out_conv = ConvModule( + self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.pam_conv_seg = nn.Conv2d( + self.channels, self.num_classes, kernel_size=1) + + self.cam_in_conv = ConvModule( + self.in_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.cam = CAM() + self.cam_out_conv = ConvModule( + self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.cam_conv_seg = nn.Conv2d( + self.channels, self.num_classes, kernel_size=1) + + def pam_cls_seg(self, feat): + """PAM feature classification.""" + if self.dropout is not None: + feat = self.dropout(feat) + output = self.pam_conv_seg(feat) + return output + + def cam_cls_seg(self, feat): + """CAM feature classification.""" + if self.dropout is not None: + feat = self.dropout(feat) + output = self.cam_conv_seg(feat) + return output + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + pam_feat = self.pam_in_conv(x) + pam_feat = self.pam(pam_feat) + pam_feat = self.pam_out_conv(pam_feat) + pam_out = self.pam_cls_seg(pam_feat) + + cam_feat = self.cam_in_conv(x) + cam_feat = self.cam(cam_feat) + cam_feat = self.cam_out_conv(cam_feat) + cam_out = self.cam_cls_seg(cam_feat) + + feat_sum = pam_feat + cam_feat + pam_cam_out = self.cls_seg(feat_sum) + + return pam_cam_out, pam_out, cam_out + + def forward_test(self, inputs, img_metas, test_cfg): + """Forward function for testing, only ``pam_cam`` is used.""" + return self.forward(inputs)[0] + + def losses(self, seg_logit, seg_label): + """Compute ``pam_cam``, ``pam``, ``cam`` loss.""" + pam_cam_seg_logit, pam_seg_logit, cam_seg_logit = seg_logit + loss = dict() + loss.update( + add_prefix( + super(DAHead, self).losses(pam_cam_seg_logit, seg_label), + 'pam_cam')) + loss.update( + add_prefix( + super(DAHead, self).losses(pam_seg_logit, seg_label), 'pam')) + loss.update( + add_prefix( + super(DAHead, self).losses(cam_seg_logit, seg_label), 'cam')) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/decode_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/decode_head.py new file mode 100644 index 000000000..1443a81da --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/decode_head.py @@ -0,0 +1,265 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from abc import ABCMeta, abstractmethod + +import torch +import torch.nn as nn +from mmcv.runner import BaseModule, auto_fp16, force_fp32 + +from mmseg.core import build_pixel_sampler +from mmseg.ops import resize +from ..builder import build_loss +from ..losses import accuracy + + +class BaseDecodeHead(BaseModule, metaclass=ABCMeta): + """Base class for BaseDecodeHead. + + Args: + in_channels (int|Sequence[int]): Input channels. + channels (int): Channels after modules, before conv_seg. + num_classes (int): Number of classes. + dropout_ratio (float): Ratio of dropout layer. Default: 0.1. + conv_cfg (dict|None): Config of conv layers. Default: None. + norm_cfg (dict|None): Config of norm layers. Default: None. + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU') + in_index (int|Sequence[int]): Input feature index. Default: -1 + input_transform (str|None): Transformation type of input features. + Options: 'resize_concat', 'multiple_select', None. + 'resize_concat': Multiple feature maps will be resize to the + same size as first one and than concat together. + Usually used in FCN head of HRNet. + 'multiple_select': Multiple feature maps will be bundle into + a list and passed into decode head. + None: Only one select feature map is allowed. + Default: None. + loss_decode (dict | Sequence[dict]): Config of decode loss. + The `loss_name` is property of corresponding loss function which + could be shown in training log. If you want this loss + item to be included into the backward graph, `loss_` must be the + prefix of the name. Defaults to 'loss_ce'. + e.g. dict(type='CrossEntropyLoss'), + [dict(type='CrossEntropyLoss', loss_name='loss_ce'), + dict(type='DiceLoss', loss_name='loss_dice')] + Default: dict(type='CrossEntropyLoss'). + ignore_index (int | None): The label index to be ignored. When using + masked BCE loss, ignore_index should be set to None. Default: 255. + sampler (dict|None): The config of segmentation map sampler. + Default: None. + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + """ + + def __init__(self, + in_channels, + channels, + *, + num_classes, + dropout_ratio=0.1, + conv_cfg=None, + norm_cfg=None, + act_cfg=dict(type='ReLU'), + in_index=-1, + input_transform=None, + loss_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=False, + loss_weight=1.0), + ignore_index=255, + sampler=None, + align_corners=False, + init_cfg=dict( + type='Normal', std=0.01, override=dict(name='conv_seg'))): + super(BaseDecodeHead, self).__init__(init_cfg) + self._init_inputs(in_channels, in_index, input_transform) + self.channels = channels + self.num_classes = num_classes + self.dropout_ratio = dropout_ratio + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.in_index = in_index + + self.ignore_index = ignore_index + self.align_corners = align_corners + + if isinstance(loss_decode, dict): + self.loss_decode = build_loss(loss_decode) + elif isinstance(loss_decode, (list, tuple)): + self.loss_decode = nn.ModuleList() + for loss in loss_decode: + self.loss_decode.append(build_loss(loss)) + else: + raise TypeError(f'loss_decode must be a dict or sequence of dict,\ + but got {type(loss_decode)}') + + if sampler is not None: + self.sampler = build_pixel_sampler(sampler, context=self) + else: + self.sampler = None + + self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1) + if dropout_ratio > 0: + self.dropout = nn.Dropout2d(dropout_ratio) + else: + self.dropout = None + self.fp16_enabled = False + + def extra_repr(self): + """Extra repr.""" + s = f'input_transform={self.input_transform}, ' \ + f'ignore_index={self.ignore_index}, ' \ + f'align_corners={self.align_corners}' + return s + + def _init_inputs(self, in_channels, in_index, input_transform): + """Check and initialize input transforms. + + The in_channels, in_index and input_transform must match. + Specifically, when input_transform is None, only single feature map + will be selected. So in_channels and in_index must be of type int. + When input_transform + + Args: + in_channels (int|Sequence[int]): Input channels. + in_index (int|Sequence[int]): Input feature index. + input_transform (str|None): Transformation type of input features. + Options: 'resize_concat', 'multiple_select', None. + 'resize_concat': Multiple feature maps will be resize to the + same size as first one and than concat together. + Usually used in FCN head of HRNet. + 'multiple_select': Multiple feature maps will be bundle into + a list and passed into decode head. + None: Only one select feature map is allowed. + """ + + if input_transform is not None: + assert input_transform in ['resize_concat', 'multiple_select'] + self.input_transform = input_transform + self.in_index = in_index + if input_transform is not None: + assert isinstance(in_channels, (list, tuple)) + assert isinstance(in_index, (list, tuple)) + assert len(in_channels) == len(in_index) + if input_transform == 'resize_concat': + self.in_channels = sum(in_channels) + else: + self.in_channels = in_channels + else: + assert isinstance(in_channels, int) + assert isinstance(in_index, int) + self.in_channels = in_channels + + def _transform_inputs(self, inputs): + """Transform inputs for decoder. + + Args: + inputs (list[Tensor]): List of multi-level img features. + + Returns: + Tensor: The transformed inputs + """ + + if self.input_transform == 'resize_concat': + inputs = [inputs[i] for i in self.in_index] + upsampled_inputs = [ + resize( + input=x, + size=inputs[0].shape[2:], + mode='bilinear', + align_corners=self.align_corners) for x in inputs + ] + inputs = torch.cat(upsampled_inputs, dim=1) + elif self.input_transform == 'multiple_select': + inputs = [inputs[i] for i in self.in_index] + else: + inputs = inputs[self.in_index] + + return inputs + + @auto_fp16() + @abstractmethod + def forward(self, inputs): + """Placeholder of forward function.""" + pass + + def forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg): + """Forward function for training. + Args: + inputs (list[Tensor]): List of multi-level img features. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + gt_semantic_seg (Tensor): Semantic segmentation masks + used if the architecture supports semantic segmentation task. + train_cfg (dict): The training config. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + seg_logits = self.forward(inputs) + losses = self.losses(seg_logits, gt_semantic_seg) + return losses + + def forward_test(self, inputs, img_metas, test_cfg): + """Forward function for testing. + + Args: + inputs (list[Tensor]): List of multi-level img features. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + test_cfg (dict): The testing config. + + Returns: + Tensor: Output segmentation map. + """ + return self.forward(inputs) + + def cls_seg(self, feat): + """Classify each pixel.""" + if self.dropout is not None: + feat = self.dropout(feat) + output = self.conv_seg(feat) + return output + + @force_fp32(apply_to=('seg_logit', )) + def losses(self, seg_logit, seg_label): + """Compute segmentation loss.""" + loss = dict() + seg_logit = resize( + input=seg_logit, + size=seg_label.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + if self.sampler is not None: + seg_weight = self.sampler.sample(seg_logit, seg_label) + else: + seg_weight = None + seg_label = seg_label.squeeze(1) + + if not isinstance(self.loss_decode, nn.ModuleList): + losses_decode = [self.loss_decode] + else: + losses_decode = self.loss_decode + for loss_decode in losses_decode: + if loss_decode.loss_name not in loss: + loss[loss_decode.loss_name] = loss_decode( + seg_logit, + seg_label, + weight=seg_weight, + ignore_index=self.ignore_index) + else: + loss[loss_decode.loss_name] += loss_decode( + seg_logit, + seg_label, + weight=seg_weight, + ignore_index=self.ignore_index) + + loss['acc_seg'] = accuracy(seg_logit, seg_label) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dm_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dm_head.py new file mode 100644 index 000000000..ffaa870ab --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dm_head.py @@ -0,0 +1,141 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer + +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class DCM(nn.Module): + """Dynamic Convolutional Module used in DMNet. + + Args: + filter_size (int): The filter size of generated convolution kernel + used in Dynamic Convolutional Module. + fusion (bool): Add one conv to fuse DCM output feature. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + conv_cfg (dict | None): Config of conv layers. + norm_cfg (dict | None): Config of norm layers. + act_cfg (dict): Config of activation layers. + """ + + def __init__(self, filter_size, fusion, in_channels, channels, conv_cfg, + norm_cfg, act_cfg): + super(DCM, self).__init__() + self.filter_size = filter_size + self.fusion = fusion + self.in_channels = in_channels + self.channels = channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.filter_gen_conv = nn.Conv2d(self.in_channels, self.channels, 1, 1, + 0) + + self.input_redu_conv = ConvModule( + self.in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + if self.norm_cfg is not None: + self.norm = build_norm_layer(self.norm_cfg, self.channels)[1] + else: + self.norm = None + self.activate = build_activation_layer(self.act_cfg) + + if self.fusion: + self.fusion_conv = ConvModule( + self.channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, x): + """Forward function.""" + generated_filter = self.filter_gen_conv( + F.adaptive_avg_pool2d(x, self.filter_size)) + x = self.input_redu_conv(x) + b, c, h, w = x.shape + # [1, b * c, h, w], c = self.channels + x = x.view(1, b * c, h, w) + # [b * c, 1, filter_size, filter_size] + generated_filter = generated_filter.view(b * c, 1, self.filter_size, + self.filter_size) + pad = (self.filter_size - 1) // 2 + if (self.filter_size - 1) % 2 == 0: + p2d = (pad, pad, pad, pad) + else: + p2d = (pad + 1, pad, pad + 1, pad) + x = F.pad(input=x, pad=p2d, mode='constant', value=0) + # [1, b * c, h, w] + output = F.conv2d(input=x, weight=generated_filter, groups=b * c) + # [b, c, h, w] + output = output.view(b, c, h, w) + if self.norm is not None: + output = self.norm(output) + output = self.activate(output) + + if self.fusion: + output = self.fusion_conv(output) + + return output + + +@HEADS.register_module() +class DMHead(BaseDecodeHead): + """Dynamic Multi-scale Filters for Semantic Segmentation. + + This head is the implementation of + `DMNet `_. + + Args: + filter_sizes (tuple[int]): The size of generated convolutional filters + used in Dynamic Convolutional Module. Default: (1, 3, 5, 7). + fusion (bool): Add one conv to fuse DCM output feature. + """ + + def __init__(self, filter_sizes=(1, 3, 5, 7), fusion=False, **kwargs): + super(DMHead, self).__init__(**kwargs) + assert isinstance(filter_sizes, (list, tuple)) + self.filter_sizes = filter_sizes + self.fusion = fusion + dcm_modules = [] + for filter_size in self.filter_sizes: + dcm_modules.append( + DCM(filter_size, + self.fusion, + self.in_channels, + self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + self.dcm_modules = nn.ModuleList(dcm_modules) + self.bottleneck = ConvModule( + self.in_channels + len(filter_sizes) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + dcm_outs = [x] + for dcm_module in self.dcm_modules: + dcm_outs.append(dcm_module(x)) + dcm_outs = torch.cat(dcm_outs, dim=1) + output = self.bottleneck(dcm_outs) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dnl_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dnl_head.py new file mode 100644 index 000000000..ab53d9a24 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dnl_head.py @@ -0,0 +1,132 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import NonLocal2d +from torch import nn + +from ..builder import HEADS +from .fcn_head import FCNHead + + +class DisentangledNonLocal2d(NonLocal2d): + """Disentangled Non-Local Blocks. + + Args: + temperature (float): Temperature to adjust attention. Default: 0.05 + """ + + def __init__(self, *arg, temperature, **kwargs): + super().__init__(*arg, **kwargs) + self.temperature = temperature + self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1) + + def embedded_gaussian(self, theta_x, phi_x): + """Embedded gaussian with temperature.""" + + # NonLocal2d pairwise_weight: [N, HxW, HxW] + pairwise_weight = torch.matmul(theta_x, phi_x) + if self.use_scale: + # theta_x.shape[-1] is `self.inter_channels` + pairwise_weight /= theta_x.shape[-1]**0.5 + pairwise_weight /= self.temperature + pairwise_weight = pairwise_weight.softmax(dim=-1) + return pairwise_weight + + def forward(self, x): + # x: [N, C, H, W] + n = x.size(0) + + # g_x: [N, HxW, C] + g_x = self.g(x).view(n, self.inter_channels, -1) + g_x = g_x.permute(0, 2, 1) + + # theta_x: [N, HxW, C], phi_x: [N, C, HxW] + if self.mode == 'gaussian': + theta_x = x.view(n, self.in_channels, -1) + theta_x = theta_x.permute(0, 2, 1) + if self.sub_sample: + phi_x = self.phi(x).view(n, self.in_channels, -1) + else: + phi_x = x.view(n, self.in_channels, -1) + elif self.mode == 'concatenation': + theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) + phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) + else: + theta_x = self.theta(x).view(n, self.inter_channels, -1) + theta_x = theta_x.permute(0, 2, 1) + phi_x = self.phi(x).view(n, self.inter_channels, -1) + + # subtract mean + theta_x -= theta_x.mean(dim=-2, keepdim=True) + phi_x -= phi_x.mean(dim=-1, keepdim=True) + + pairwise_func = getattr(self, self.mode) + # pairwise_weight: [N, HxW, HxW] + pairwise_weight = pairwise_func(theta_x, phi_x) + + # y: [N, HxW, C] + y = torch.matmul(pairwise_weight, g_x) + # y: [N, C, H, W] + y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, + *x.size()[2:]) + + # unary_mask: [N, 1, HxW] + unary_mask = self.conv_mask(x) + unary_mask = unary_mask.view(n, 1, -1) + unary_mask = unary_mask.softmax(dim=-1) + # unary_x: [N, 1, C] + unary_x = torch.matmul(unary_mask, g_x) + # unary_x: [N, C, 1, 1] + unary_x = unary_x.permute(0, 2, 1).contiguous().reshape( + n, self.inter_channels, 1, 1) + + output = x + self.conv_out(y + unary_x) + + return output + + +@HEADS.register_module() +class DNLHead(FCNHead): + """Disentangled Non-Local Neural Networks. + + This head is the implementation of `DNLNet + `_. + + Args: + reduction (int): Reduction factor of projection transform. Default: 2. + use_scale (bool): Whether to scale pairwise_weight by + sqrt(1/inter_channels). Default: False. + mode (str): The nonlocal mode. Options are 'embedded_gaussian', + 'dot_product'. Default: 'embedded_gaussian.'. + temperature (float): Temperature to adjust attention. Default: 0.05 + """ + + def __init__(self, + reduction=2, + use_scale=True, + mode='embedded_gaussian', + temperature=0.05, + **kwargs): + super(DNLHead, self).__init__(num_convs=2, **kwargs) + self.reduction = reduction + self.use_scale = use_scale + self.mode = mode + self.temperature = temperature + self.dnl_block = DisentangledNonLocal2d( + in_channels=self.channels, + reduction=self.reduction, + use_scale=self.use_scale, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + mode=self.mode, + temperature=self.temperature) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + output = self.convs[0](x) + output = self.dnl_block(output) + output = self.convs[1](output) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dpt_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dpt_head.py new file mode 100644 index 000000000..a63f9d297 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/dpt_head.py @@ -0,0 +1,293 @@ +import math + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, Linear, build_activation_layer +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class ReassembleBlocks(BaseModule): + """ViTPostProcessBlock, process cls_token in ViT backbone output and + rearrange the feature vector to feature map. + + Args: + in_channels (int): ViT feature channels. Default: 768. + out_channels (List): output channels of each stage. + Default: [96, 192, 384, 768]. + readout_type (str): Type of readout operation. Default: 'ignore'. + patch_size (int): The patch size. Default: 16. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels=768, + out_channels=[96, 192, 384, 768], + readout_type='ignore', + patch_size=16, + init_cfg=None): + super(ReassembleBlocks, self).__init__(init_cfg) + + assert readout_type in ['ignore', 'add', 'project'] + self.readout_type = readout_type + self.patch_size = patch_size + + self.projects = nn.ModuleList([ + ConvModule( + in_channels=in_channels, + out_channels=out_channel, + kernel_size=1, + act_cfg=None, + ) for out_channel in out_channels + ]) + + self.resize_layers = nn.ModuleList([ + nn.ConvTranspose2d( + in_channels=out_channels[0], + out_channels=out_channels[0], + kernel_size=4, + stride=4, + padding=0), + nn.ConvTranspose2d( + in_channels=out_channels[1], + out_channels=out_channels[1], + kernel_size=2, + stride=2, + padding=0), + nn.Identity(), + nn.Conv2d( + in_channels=out_channels[3], + out_channels=out_channels[3], + kernel_size=3, + stride=2, + padding=1) + ]) + if self.readout_type == 'project': + self.readout_projects = nn.ModuleList() + for _ in range(len(self.projects)): + self.readout_projects.append( + nn.Sequential( + Linear(2 * in_channels, in_channels), + build_activation_layer(dict(type='GELU')))) + + def forward(self, inputs): + assert isinstance(inputs, list) + out = [] + for i, x in enumerate(inputs): + assert len(x) == 2 + x, cls_token = x[0], x[1] + feature_shape = x.shape + if self.readout_type == 'project': + x = x.flatten(2).permute((0, 2, 1)) + readout = cls_token.unsqueeze(1).expand_as(x) + x = self.readout_projects[i](torch.cat((x, readout), -1)) + x = x.permute(0, 2, 1).reshape(feature_shape) + elif self.readout_type == 'add': + x = x.flatten(2) + cls_token.unsqueeze(-1) + x = x.reshape(feature_shape) + else: + pass + x = self.projects[i](x) + x = self.resize_layers[i](x) + out.append(x) + return out + + +class PreActResidualConvUnit(BaseModule): + """ResidualConvUnit, pre-activate residual unit. + + Args: + in_channels (int): number of channels in the input feature map. + act_cfg (dict): dictionary to construct and config activation layer. + norm_cfg (dict): dictionary to construct and config norm layer. + stride (int): stride of the first block. Default: 1 + dilation (int): dilation rate for convs layers. Default: 1. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels, + act_cfg, + norm_cfg, + stride=1, + dilation=1, + init_cfg=None): + super(PreActResidualConvUnit, self).__init__(init_cfg) + + self.conv1 = ConvModule( + in_channels, + in_channels, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=False, + order=('act', 'conv', 'norm')) + + self.conv2 = ConvModule( + in_channels, + in_channels, + 3, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=False, + order=('act', 'conv', 'norm')) + + def forward(self, inputs): + inputs_ = inputs.clone() + x = self.conv1(inputs) + x = self.conv2(x) + return x + inputs_ + + +class FeatureFusionBlock(BaseModule): + """FeatureFusionBlock, merge feature map from different stages. + + Args: + in_channels (int): Input channels. + act_cfg (dict): The activation config for ResidualConvUnit. + norm_cfg (dict): Config dict for normalization layer. + expand (bool): Whether expand the channels in post process block. + Default: False. + align_corners (bool): align_corner setting for bilinear upsample. + Default: True. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels, + act_cfg, + norm_cfg, + expand=False, + align_corners=True, + init_cfg=None): + super(FeatureFusionBlock, self).__init__(init_cfg) + + self.in_channels = in_channels + self.expand = expand + self.align_corners = align_corners + + self.out_channels = in_channels + if self.expand: + self.out_channels = in_channels // 2 + + self.project = ConvModule( + self.in_channels, + self.out_channels, + kernel_size=1, + act_cfg=None, + bias=True) + + self.res_conv_unit1 = PreActResidualConvUnit( + in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) + self.res_conv_unit2 = PreActResidualConvUnit( + in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) + + def forward(self, *inputs): + x = inputs[0] + if len(inputs) == 2: + if x.shape != inputs[1].shape: + res = resize( + inputs[1], + size=(x.shape[2], x.shape[3]), + mode='bilinear', + align_corners=False) + else: + res = inputs[1] + x = x + self.res_conv_unit1(res) + x = self.res_conv_unit2(x) + x = resize( + x, + scale_factor=2, + mode='bilinear', + align_corners=self.align_corners) + x = self.project(x) + return x + + +@HEADS.register_module() +class DPTHead(BaseDecodeHead): + """Vision Transformers for Dense Prediction. + + This head is implemented of `DPT `_. + + Args: + embed_dims (int): The embed dimension of the ViT backbone. + Default: 768. + post_process_channels (List): Out channels of post process conv + layers. Default: [96, 192, 384, 768]. + readout_type (str): Type of readout operation. Default: 'ignore'. + patch_size (int): The patch size. Default: 16. + expand_channels (bool): Whether expand the channels in post process + block. Default: False. + act_cfg (dict): The activation config for residual conv unit. + Default dict(type='ReLU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + """ + + def __init__(self, + embed_dims=768, + post_process_channels=[96, 192, 384, 768], + readout_type='ignore', + patch_size=16, + expand_channels=False, + act_cfg=dict(type='ReLU'), + norm_cfg=dict(type='BN'), + **kwargs): + super(DPTHead, self).__init__(**kwargs) + + self.in_channels = self.in_channels + self.expand_channels = expand_channels + self.reassemble_blocks = ReassembleBlocks(embed_dims, + post_process_channels, + readout_type, patch_size) + + self.post_process_channels = [ + channel * math.pow(2, i) if expand_channels else channel + for i, channel in enumerate(post_process_channels) + ] + self.convs = nn.ModuleList() + for channel in self.post_process_channels: + self.convs.append( + ConvModule( + channel, + self.channels, + kernel_size=3, + padding=1, + act_cfg=None, + bias=False)) + self.fusion_blocks = nn.ModuleList() + for _ in range(len(self.convs)): + self.fusion_blocks.append( + FeatureFusionBlock(self.channels, act_cfg, norm_cfg)) + self.fusion_blocks[0].res_conv_unit1 = None + self.project = ConvModule( + self.channels, + self.channels, + kernel_size=3, + padding=1, + norm_cfg=norm_cfg) + self.num_fusion_blocks = len(self.fusion_blocks) + self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers) + self.num_post_process_channels = len(self.post_process_channels) + assert self.num_fusion_blocks == self.num_reassemble_blocks + assert self.num_reassemble_blocks == self.num_post_process_channels + + def forward(self, inputs): + assert len(inputs) == self.num_reassemble_blocks + x = self._transform_inputs(inputs) + x = self.reassemble_blocks(x) + x = [self.convs[i](feature) for i, feature in enumerate(x)] + out = self.fusion_blocks[0](x[-1]) + for i in range(1, len(self.fusion_blocks)): + out = self.fusion_blocks[i](out, x[-(i + 1)]) + out = self.project(out) + out = self.cls_seg(out) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ema_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ema_head.py new file mode 100644 index 000000000..f6de16711 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ema_head.py @@ -0,0 +1,169 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +import torch.distributed as dist +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +def reduce_mean(tensor): + """Reduce mean when distributed training.""" + if not (dist.is_available() and dist.is_initialized()): + return tensor + tensor = tensor.clone() + dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) + return tensor + + +class EMAModule(nn.Module): + """Expectation Maximization Attention Module used in EMANet. + + Args: + channels (int): Channels of the whole module. + num_bases (int): Number of bases. + num_stages (int): Number of the EM iterations. + """ + + def __init__(self, channels, num_bases, num_stages, momentum): + super(EMAModule, self).__init__() + assert num_stages >= 1, 'num_stages must be at least 1!' + self.num_bases = num_bases + self.num_stages = num_stages + self.momentum = momentum + + bases = torch.zeros(1, channels, self.num_bases) + bases.normal_(0, math.sqrt(2. / self.num_bases)) + # [1, channels, num_bases] + bases = F.normalize(bases, dim=1, p=2) + self.register_buffer('bases', bases) + + def forward(self, feats): + """Forward function.""" + batch_size, channels, height, width = feats.size() + # [batch_size, channels, height*width] + feats = feats.view(batch_size, channels, height * width) + # [batch_size, channels, num_bases] + bases = self.bases.repeat(batch_size, 1, 1) + + with torch.no_grad(): + for i in range(self.num_stages): + # [batch_size, height*width, num_bases] + attention = torch.einsum('bcn,bck->bnk', feats, bases) + attention = F.softmax(attention, dim=2) + # l1 norm + attention_normed = F.normalize(attention, dim=1, p=1) + # [batch_size, channels, num_bases] + bases = torch.einsum('bcn,bnk->bck', feats, attention_normed) + # l2 norm + bases = F.normalize(bases, dim=1, p=2) + + feats_recon = torch.einsum('bck,bnk->bcn', bases, attention) + feats_recon = feats_recon.view(batch_size, channels, height, width) + + if self.training: + bases = bases.mean(dim=0, keepdim=True) + bases = reduce_mean(bases) + # l2 norm + bases = F.normalize(bases, dim=1, p=2) + self.bases = (1 - + self.momentum) * self.bases + self.momentum * bases + + return feats_recon + + +@HEADS.register_module() +class EMAHead(BaseDecodeHead): + """Expectation Maximization Attention Networks for Semantic Segmentation. + + This head is the implementation of `EMANet + `_. + + Args: + ema_channels (int): EMA module channels + num_bases (int): Number of bases. + num_stages (int): Number of the EM iterations. + concat_input (bool): Whether concat the input and output of convs + before classification layer. Default: True + momentum (float): Momentum to update the base. Default: 0.1. + """ + + def __init__(self, + ema_channels, + num_bases, + num_stages, + concat_input=True, + momentum=0.1, + **kwargs): + super(EMAHead, self).__init__(**kwargs) + self.ema_channels = ema_channels + self.num_bases = num_bases + self.num_stages = num_stages + self.concat_input = concat_input + self.momentum = momentum + self.ema_module = EMAModule(self.ema_channels, self.num_bases, + self.num_stages, self.momentum) + + self.ema_in_conv = ConvModule( + self.in_channels, + self.ema_channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + # project (0, inf) -> (-inf, inf) + self.ema_mid_conv = ConvModule( + self.ema_channels, + self.ema_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=None, + act_cfg=None) + for param in self.ema_mid_conv.parameters(): + param.requires_grad = False + + self.ema_out_conv = ConvModule( + self.ema_channels, + self.ema_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=None) + self.bottleneck = ConvModule( + self.ema_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + if self.concat_input: + self.conv_cat = ConvModule( + self.in_channels + self.channels, + self.channels, + kernel_size=3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + feats = self.ema_in_conv(x) + identity = feats + feats = self.ema_mid_conv(feats) + recon = self.ema_module(feats) + recon = F.relu(recon, inplace=True) + recon = self.ema_out_conv(recon) + output = F.relu(identity + recon, inplace=True) + output = self.bottleneck(output) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/enc_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/enc_head.py new file mode 100644 index 000000000..648c8906b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/enc_head.py @@ -0,0 +1,188 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule, build_norm_layer + +from mmseg.ops import Encoding, resize +from ..builder import HEADS, build_loss +from .decode_head import BaseDecodeHead + + +class EncModule(nn.Module): + """Encoding Module used in EncNet. + + Args: + in_channels (int): Input channels. + num_codes (int): Number of code words. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict): Config of activation layers. + """ + + def __init__(self, in_channels, num_codes, conv_cfg, norm_cfg, act_cfg): + super(EncModule, self).__init__() + self.encoding_project = ConvModule( + in_channels, + in_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + # TODO: resolve this hack + # change to 1d + if norm_cfg is not None: + encoding_norm_cfg = norm_cfg.copy() + if encoding_norm_cfg['type'] in ['BN', 'IN']: + encoding_norm_cfg['type'] += '1d' + else: + encoding_norm_cfg['type'] = encoding_norm_cfg['type'].replace( + '2d', '1d') + else: + # fallback to BN1d + encoding_norm_cfg = dict(type='BN1d') + self.encoding = nn.Sequential( + Encoding(channels=in_channels, num_codes=num_codes), + build_norm_layer(encoding_norm_cfg, num_codes)[1], + nn.ReLU(inplace=True)) + self.fc = nn.Sequential( + nn.Linear(in_channels, in_channels), nn.Sigmoid()) + + def forward(self, x): + """Forward function.""" + encoding_projection = self.encoding_project(x) + encoding_feat = self.encoding(encoding_projection).mean(dim=1) + batch_size, channels, _, _ = x.size() + gamma = self.fc(encoding_feat) + y = gamma.view(batch_size, channels, 1, 1) + output = F.relu_(x + x * y) + return encoding_feat, output + + +@HEADS.register_module() +class EncHead(BaseDecodeHead): + """Context Encoding for Semantic Segmentation. + + This head is the implementation of `EncNet + `_. + + Args: + num_codes (int): Number of code words. Default: 32. + use_se_loss (bool): Whether use Semantic Encoding Loss (SE-loss) to + regularize the training. Default: True. + add_lateral (bool): Whether use lateral connection to fuse features. + Default: False. + loss_se_decode (dict): Config of decode loss. + Default: dict(type='CrossEntropyLoss', use_sigmoid=True). + """ + + def __init__(self, + num_codes=32, + use_se_loss=True, + add_lateral=False, + loss_se_decode=dict( + type='CrossEntropyLoss', + use_sigmoid=True, + loss_weight=0.2), + **kwargs): + super(EncHead, self).__init__( + input_transform='multiple_select', **kwargs) + self.use_se_loss = use_se_loss + self.add_lateral = add_lateral + self.num_codes = num_codes + self.bottleneck = ConvModule( + self.in_channels[-1], + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + if add_lateral: + self.lateral_convs = nn.ModuleList() + for in_channels in self.in_channels[:-1]: # skip the last one + self.lateral_convs.append( + ConvModule( + in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + self.fusion = ConvModule( + len(self.in_channels) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.enc_module = EncModule( + self.channels, + num_codes=num_codes, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + if self.use_se_loss: + self.loss_se_decode = build_loss(loss_se_decode) + self.se_layer = nn.Linear(self.channels, self.num_classes) + + def forward(self, inputs): + """Forward function.""" + inputs = self._transform_inputs(inputs) + feat = self.bottleneck(inputs[-1]) + if self.add_lateral: + laterals = [ + resize( + lateral_conv(inputs[i]), + size=feat.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + feat = self.fusion(torch.cat([feat, *laterals], 1)) + encode_feat, output = self.enc_module(feat) + output = self.cls_seg(output) + if self.use_se_loss: + se_output = self.se_layer(encode_feat) + return output, se_output + else: + return output + + def forward_test(self, inputs, img_metas, test_cfg): + """Forward function for testing, ignore se_loss.""" + if self.use_se_loss: + return self.forward(inputs)[0] + else: + return self.forward(inputs) + + @staticmethod + def _convert_to_onehot_labels(seg_label, num_classes): + """Convert segmentation label to onehot. + + Args: + seg_label (Tensor): Segmentation label of shape (N, H, W). + num_classes (int): Number of classes. + + Returns: + Tensor: Onehot labels of shape (N, num_classes). + """ + + batch_size = seg_label.size(0) + onehot_labels = seg_label.new_zeros((batch_size, num_classes)) + for i in range(batch_size): + hist = seg_label[i].float().histc( + bins=num_classes, min=0, max=num_classes - 1) + onehot_labels[i] = hist > 0 + return onehot_labels + + def losses(self, seg_logit, seg_label): + """Compute segmentation and semantic encoding loss.""" + seg_logit, se_seg_logit = seg_logit + loss = dict() + loss.update(super(EncHead, self).losses(seg_logit, seg_label)) + se_loss = self.loss_se_decode( + se_seg_logit, + self._convert_to_onehot_labels(seg_label, self.num_classes)) + loss['loss_se'] = se_loss + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fcn_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fcn_head.py new file mode 100644 index 000000000..3c8de51f6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fcn_head.py @@ -0,0 +1,82 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +@HEADS.register_module() +class FCNHead(BaseDecodeHead): + """Fully Convolution Networks for Semantic Segmentation. + + This head is implemented of `FCNNet `_. + + Args: + num_convs (int): Number of convs in the head. Default: 2. + kernel_size (int): The kernel size for convs in the head. Default: 3. + concat_input (bool): Whether concat the input and output of convs + before classification layer. + dilation (int): The dilation rate for convs in the head. Default: 1. + """ + + def __init__(self, + num_convs=2, + kernel_size=3, + concat_input=True, + dilation=1, + **kwargs): + assert num_convs >= 0 and dilation > 0 and isinstance(dilation, int) + self.num_convs = num_convs + self.concat_input = concat_input + self.kernel_size = kernel_size + super(FCNHead, self).__init__(**kwargs) + if num_convs == 0: + assert self.in_channels == self.channels + + conv_padding = (kernel_size // 2) * dilation + convs = [] + convs.append( + ConvModule( + self.in_channels, + self.channels, + kernel_size=kernel_size, + padding=conv_padding, + dilation=dilation, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + for i in range(num_convs - 1): + convs.append( + ConvModule( + self.channels, + self.channels, + kernel_size=kernel_size, + padding=conv_padding, + dilation=dilation, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + if num_convs == 0: + self.convs = nn.Identity() + else: + self.convs = nn.Sequential(*convs) + if self.concat_input: + self.conv_cat = ConvModule( + self.in_channels + self.channels, + self.channels, + kernel_size=kernel_size, + padding=kernel_size // 2, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + output = self.convs(x) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fpn_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fpn_head.py new file mode 100644 index 000000000..e41f324cc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/fpn_head.py @@ -0,0 +1,69 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.ops import Upsample, resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +@HEADS.register_module() +class FPNHead(BaseDecodeHead): + """Panoptic Feature Pyramid Networks. + + This head is the implementation of `Semantic FPN + `_. + + Args: + feature_strides (tuple[int]): The strides for input feature maps. + stack_lateral. All strides suppose to be power of 2. The first + one is of largest resolution. + """ + + def __init__(self, feature_strides, **kwargs): + super(FPNHead, self).__init__( + input_transform='multiple_select', **kwargs) + assert len(feature_strides) == len(self.in_channels) + assert min(feature_strides) == feature_strides[0] + self.feature_strides = feature_strides + + self.scale_heads = nn.ModuleList() + for i in range(len(feature_strides)): + head_length = max( + 1, + int(np.log2(feature_strides[i]) - np.log2(feature_strides[0]))) + scale_head = [] + for k in range(head_length): + scale_head.append( + ConvModule( + self.in_channels[i] if k == 0 else self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + if feature_strides[i] != feature_strides[0]: + scale_head.append( + Upsample( + scale_factor=2, + mode='bilinear', + align_corners=self.align_corners)) + self.scale_heads.append(nn.Sequential(*scale_head)) + + def forward(self, inputs): + + x = self._transform_inputs(inputs) + + output = self.scale_heads[0](x[0]) + for i in range(1, len(self.feature_strides)): + # non inplace + output = output + resize( + self.scale_heads[i](x[i]), + size=output.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/gc_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/gc_head.py new file mode 100644 index 000000000..eed507425 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/gc_head.py @@ -0,0 +1,48 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ContextBlock + +from ..builder import HEADS +from .fcn_head import FCNHead + + +@HEADS.register_module() +class GCHead(FCNHead): + """GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. + + This head is the implementation of `GCNet + `_. + + Args: + ratio (float): Multiplier of channels ratio. Default: 1/4. + pooling_type (str): The pooling type of context aggregation. + Options are 'att', 'avg'. Default: 'avg'. + fusion_types (tuple[str]): The fusion type for feature fusion. + Options are 'channel_add', 'channel_mul'. Default: ('channel_add',) + """ + + def __init__(self, + ratio=1 / 4., + pooling_type='att', + fusion_types=('channel_add', ), + **kwargs): + super(GCHead, self).__init__(num_convs=2, **kwargs) + self.ratio = ratio + self.pooling_type = pooling_type + self.fusion_types = fusion_types + self.gc_block = ContextBlock( + in_channels=self.channels, + ratio=self.ratio, + pooling_type=self.pooling_type, + fusion_types=self.fusion_types) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + output = self.convs[0](x) + output = self.gc_block(output) + output = self.convs[1](output) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/isa_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/isa_head.py new file mode 100644 index 000000000..c9224b610 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/isa_head.py @@ -0,0 +1,142 @@ +import math + +import torch +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from ..builder import HEADS +from ..utils import SelfAttentionBlock as _SelfAttentionBlock +from .decode_head import BaseDecodeHead + + +class SelfAttentionBlock(_SelfAttentionBlock): + """Self-Attention Module. + + Args: + in_channels (int): Input channels of key/query feature. + channels (int): Output channels of key/query transform. + conv_cfg (dict | None): Config of conv layers. + norm_cfg (dict | None): Config of norm layers. + act_cfg (dict | None): Config of activation layers. + """ + + def __init__(self, in_channels, channels, conv_cfg, norm_cfg, act_cfg): + super(SelfAttentionBlock, self).__init__( + key_in_channels=in_channels, + query_in_channels=in_channels, + channels=channels, + out_channels=in_channels, + share_key_query=False, + query_downsample=None, + key_downsample=None, + key_query_num_convs=2, + key_query_norm=True, + value_out_num_convs=1, + value_out_norm=False, + matmul_norm=True, + with_out=False, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + self.output_project = self.build_project( + in_channels, + in_channels, + num_convs=1, + use_conv_module=True, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x): + """Forward function.""" + context = super(SelfAttentionBlock, self).forward(x, x) + return self.output_project(context) + + +@HEADS.register_module() +class ISAHead(BaseDecodeHead): + """Interlaced Sparse Self-Attention for Semantic Segmentation. + + This head is the implementation of `ISA + `_. + + Args: + isa_channels (int): The channels of ISA Module. + down_factor (tuple[int]): The local group size of ISA. + """ + + def __init__(self, isa_channels, down_factor=(8, 8), **kwargs): + super(ISAHead, self).__init__(**kwargs) + self.down_factor = down_factor + + self.in_conv = ConvModule( + self.in_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.global_relation = SelfAttentionBlock( + self.channels, + isa_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.local_relation = SelfAttentionBlock( + self.channels, + isa_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.out_conv = ConvModule( + self.channels * 2, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x_ = self._transform_inputs(inputs) + x = self.in_conv(x_) + residual = x + + n, c, h, w = x.size() + loc_h, loc_w = self.down_factor # size of local group in H- and W-axes + glb_h, glb_w = math.ceil(h / loc_h), math.ceil(w / loc_w) + pad_h, pad_w = glb_h * loc_h - h, glb_w * loc_w - w + if pad_h > 0 or pad_w > 0: # pad if the size is not divisible + padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, + pad_h - pad_h // 2) + x = F.pad(x, padding) + + # global relation + x = x.view(n, c, glb_h, loc_h, glb_w, loc_w) + # do permutation to gather global group + x = x.permute(0, 3, 5, 1, 2, 4) # (n, loc_h, loc_w, c, glb_h, glb_w) + x = x.reshape(-1, c, glb_h, glb_w) + # apply attention within each global group + x = self.global_relation(x) # (n * loc_h * loc_w, c, glb_h, glb_w) + + # local relation + x = x.view(n, loc_h, loc_w, c, glb_h, glb_w) + # do permutation to gather local group + x = x.permute(0, 4, 5, 3, 1, 2) # (n, glb_h, glb_w, c, loc_h, loc_w) + x = x.reshape(-1, c, loc_h, loc_w) + # apply attention within each local group + x = self.local_relation(x) # (n * glb_h * glb_w, c, loc_h, loc_w) + + # permute each pixel back to its original position + x = x.view(n, glb_h, glb_w, c, loc_h, loc_w) + x = x.permute(0, 3, 1, 4, 2, 5) # (n, c, glb_h, loc_h, glb_w, loc_w) + x = x.reshape(n, c, glb_h * loc_h, glb_w * loc_w) + if pad_h > 0 or pad_w > 0: # remove padding + x = x[:, :, pad_h // 2:pad_h // 2 + h, pad_w // 2:pad_w // 2 + w] + + x = self.out_conv(torch.cat([x, residual], dim=1)) + out = self.cls_seg(x) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/lraspp_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/lraspp_head.py new file mode 100644 index 000000000..c10ff0d82 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/lraspp_head.py @@ -0,0 +1,91 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv import is_tuple_of +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +@HEADS.register_module() +class LRASPPHead(BaseDecodeHead): + """Lite R-ASPP (LRASPP) head is proposed in Searching for MobileNetV3. + + This head is the improved implementation of `Searching for MobileNetV3 + `_. + + Args: + branch_channels (tuple[int]): The number of output channels in every + each branch. Default: (32, 64). + """ + + def __init__(self, branch_channels=(32, 64), **kwargs): + super(LRASPPHead, self).__init__(**kwargs) + if self.input_transform != 'multiple_select': + raise ValueError('in Lite R-ASPP (LRASPP) head, input_transform ' + f'must be \'multiple_select\'. But received ' + f'\'{self.input_transform}\'') + assert is_tuple_of(branch_channels, int) + assert len(branch_channels) == len(self.in_channels) - 1 + self.branch_channels = branch_channels + + self.convs = nn.Sequential() + self.conv_ups = nn.Sequential() + for i in range(len(branch_channels)): + self.convs.add_module( + f'conv{i}', + nn.Conv2d( + self.in_channels[i], branch_channels[i], 1, bias=False)) + self.conv_ups.add_module( + f'conv_up{i}', + ConvModule( + self.channels + branch_channels[i], + self.channels, + 1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + bias=False)) + + self.conv_up_input = nn.Conv2d(self.channels, self.channels, 1) + + self.aspp_conv = ConvModule( + self.in_channels[-1], + self.channels, + 1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + bias=False) + self.image_pool = nn.Sequential( + nn.AvgPool2d(kernel_size=49, stride=(16, 20)), + ConvModule( + self.in_channels[2], + self.channels, + 1, + act_cfg=dict(type='Sigmoid'), + bias=False)) + + def forward(self, inputs): + """Forward function.""" + inputs = self._transform_inputs(inputs) + + x = inputs[-1] + + x = self.aspp_conv(x) * resize( + self.image_pool(x), + size=x.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + x = self.conv_up_input(x) + + for i in range(len(self.branch_channels) - 1, -1, -1): + x = resize( + x, + size=inputs[i].size()[2:], + mode='bilinear', + align_corners=self.align_corners) + x = torch.cat([x, self.convs[i](inputs[i])], 1) + x = self.conv_ups[i](x) + + return self.cls_seg(x) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/nl_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/nl_head.py new file mode 100644 index 000000000..637517e7a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/nl_head.py @@ -0,0 +1,50 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import NonLocal2d + +from ..builder import HEADS +from .fcn_head import FCNHead + + +@HEADS.register_module() +class NLHead(FCNHead): + """Non-local Neural Networks. + + This head is the implementation of `NLNet + `_. + + Args: + reduction (int): Reduction factor of projection transform. Default: 2. + use_scale (bool): Whether to scale pairwise_weight by + sqrt(1/inter_channels). Default: True. + mode (str): The nonlocal mode. Options are 'embedded_gaussian', + 'dot_product'. Default: 'embedded_gaussian.'. + """ + + def __init__(self, + reduction=2, + use_scale=True, + mode='embedded_gaussian', + **kwargs): + super(NLHead, self).__init__(num_convs=2, **kwargs) + self.reduction = reduction + self.use_scale = use_scale + self.mode = mode + self.nl_block = NonLocal2d( + in_channels=self.channels, + reduction=self.reduction, + use_scale=self.use_scale, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + mode=self.mode) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + output = self.convs[0](x) + output = self.nl_block(output) + output = self.convs[1](output) + if self.concat_input: + output = self.conv_cat(torch.cat([x, output], dim=1)) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ocr_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ocr_head.py new file mode 100644 index 000000000..09eadfb1a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/ocr_head.py @@ -0,0 +1,128 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from ..utils import SelfAttentionBlock as _SelfAttentionBlock +from .cascade_decode_head import BaseCascadeDecodeHead + + +class SpatialGatherModule(nn.Module): + """Aggregate the context features according to the initial predicted + probability distribution. + + Employ the soft-weighted method to aggregate the context. + """ + + def __init__(self, scale): + super(SpatialGatherModule, self).__init__() + self.scale = scale + + def forward(self, feats, probs): + """Forward function.""" + batch_size, num_classes, height, width = probs.size() + channels = feats.size(1) + probs = probs.view(batch_size, num_classes, -1) + feats = feats.view(batch_size, channels, -1) + # [batch_size, height*width, num_classes] + feats = feats.permute(0, 2, 1) + # [batch_size, channels, height*width] + probs = F.softmax(self.scale * probs, dim=2) + # [batch_size, channels, num_classes] + ocr_context = torch.matmul(probs, feats) + ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) + return ocr_context + + +class ObjectAttentionBlock(_SelfAttentionBlock): + """Make a OCR used SelfAttentionBlock.""" + + def __init__(self, in_channels, channels, scale, conv_cfg, norm_cfg, + act_cfg): + if scale > 1: + query_downsample = nn.MaxPool2d(kernel_size=scale) + else: + query_downsample = None + super(ObjectAttentionBlock, self).__init__( + key_in_channels=in_channels, + query_in_channels=in_channels, + channels=channels, + out_channels=in_channels, + share_key_query=False, + query_downsample=query_downsample, + key_downsample=None, + key_query_num_convs=2, + key_query_norm=True, + value_out_num_convs=1, + value_out_norm=True, + matmul_norm=True, + with_out=True, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.bottleneck = ConvModule( + in_channels * 2, + in_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, query_feats, key_feats): + """Forward function.""" + context = super(ObjectAttentionBlock, + self).forward(query_feats, key_feats) + output = self.bottleneck(torch.cat([context, query_feats], dim=1)) + if self.query_downsample is not None: + output = resize(query_feats) + + return output + + +@HEADS.register_module() +class OCRHead(BaseCascadeDecodeHead): + """Object-Contextual Representations for Semantic Segmentation. + + This head is the implementation of `OCRNet + `_. + + Args: + ocr_channels (int): The intermediate channels of OCR block. + scale (int): The scale of probability map in SpatialGatherModule in + Default: 1. + """ + + def __init__(self, ocr_channels, scale=1, **kwargs): + super(OCRHead, self).__init__(**kwargs) + self.ocr_channels = ocr_channels + self.scale = scale + self.object_context_block = ObjectAttentionBlock( + self.channels, + self.ocr_channels, + self.scale, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.spatial_gather_module = SpatialGatherModule(self.scale) + + self.bottleneck = ConvModule( + self.in_channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs, prev_output): + """Forward function.""" + x = self._transform_inputs(inputs) + feats = self.bottleneck(x) + context = self.spatial_gather_module(feats, prev_output) + object_context = self.object_context_block(feats, context) + output = self.cls_seg(object_context) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/point_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/point_head.py new file mode 100644 index 000000000..727621805 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/point_head.py @@ -0,0 +1,356 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py # noqa + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule +from mmcv.ops import point_sample + +from mmseg.models.builder import HEADS +from mmseg.ops import resize +from ..losses import accuracy +from .cascade_decode_head import BaseCascadeDecodeHead + + +def calculate_uncertainty(seg_logits): + """Estimate uncertainty based on seg logits. + + For each location of the prediction ``seg_logits`` we estimate + uncertainty as the difference between top first and top second + predicted logits. + + Args: + seg_logits (Tensor): Semantic segmentation logits, + shape (batch_size, num_classes, height, width). + + Returns: + scores (Tensor): T uncertainty scores with the most uncertain + locations having the highest uncertainty score, shape ( + batch_size, 1, height, width) + """ + top2_scores = torch.topk(seg_logits, k=2, dim=1)[0] + return (top2_scores[:, 1] - top2_scores[:, 0]).unsqueeze(1) + + +@HEADS.register_module() +class PointHead(BaseCascadeDecodeHead): + """A mask point head use in PointRend. + + This head is implemented of `PointRend: Image Segmentation as + Rendering `_. + ``PointHead`` use shared multi-layer perceptron (equivalent to + nn.Conv1d) to predict the logit of input points. The fine-grained feature + and coarse feature will be concatenate together for predication. + + Args: + num_fcs (int): Number of fc layers in the head. Default: 3. + in_channels (int): Number of input channels. Default: 256. + fc_channels (int): Number of fc channels. Default: 256. + num_classes (int): Number of classes for logits. Default: 80. + class_agnostic (bool): Whether use class agnostic classification. + If so, the output channels of logits will be 1. Default: False. + coarse_pred_each_layer (bool): Whether concatenate coarse feature with + the output of each fc layer. Default: True. + conv_cfg (dict|None): Dictionary to construct and config conv layer. + Default: dict(type='Conv1d')) + norm_cfg (dict|None): Dictionary to construct and config norm layer. + Default: None. + loss_point (dict): Dictionary to construct and config loss layer of + point head. Default: dict(type='CrossEntropyLoss', use_mask=True, + loss_weight=1.0). + """ + + def __init__(self, + num_fcs=3, + coarse_pred_each_layer=True, + conv_cfg=dict(type='Conv1d'), + norm_cfg=None, + act_cfg=dict(type='ReLU', inplace=False), + **kwargs): + super(PointHead, self).__init__( + input_transform='multiple_select', + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + init_cfg=dict( + type='Normal', std=0.01, override=dict(name='fc_seg')), + **kwargs) + + self.num_fcs = num_fcs + self.coarse_pred_each_layer = coarse_pred_each_layer + + fc_in_channels = sum(self.in_channels) + self.num_classes + fc_channels = self.channels + self.fcs = nn.ModuleList() + for k in range(num_fcs): + fc = ConvModule( + fc_in_channels, + fc_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.fcs.append(fc) + fc_in_channels = fc_channels + fc_in_channels += self.num_classes if self.coarse_pred_each_layer \ + else 0 + self.fc_seg = nn.Conv1d( + fc_in_channels, + self.num_classes, + kernel_size=1, + stride=1, + padding=0) + if self.dropout_ratio > 0: + self.dropout = nn.Dropout(self.dropout_ratio) + delattr(self, 'conv_seg') + + def cls_seg(self, feat): + """Classify each pixel with fc.""" + if self.dropout is not None: + feat = self.dropout(feat) + output = self.fc_seg(feat) + return output + + def forward(self, fine_grained_point_feats, coarse_point_feats): + x = torch.cat([fine_grained_point_feats, coarse_point_feats], dim=1) + for fc in self.fcs: + x = fc(x) + if self.coarse_pred_each_layer: + x = torch.cat((x, coarse_point_feats), dim=1) + return self.cls_seg(x) + + def _get_fine_grained_point_feats(self, x, points): + """Sample from fine grained features. + + Args: + x (list[Tensor]): Feature pyramid from by neck or backbone. + points (Tensor): Point coordinates, shape (batch_size, + num_points, 2). + + Returns: + fine_grained_feats (Tensor): Sampled fine grained feature, + shape (batch_size, sum(channels of x), num_points). + """ + + fine_grained_feats_list = [ + point_sample(_, points, align_corners=self.align_corners) + for _ in x + ] + if len(fine_grained_feats_list) > 1: + fine_grained_feats = torch.cat(fine_grained_feats_list, dim=1) + else: + fine_grained_feats = fine_grained_feats_list[0] + + return fine_grained_feats + + def _get_coarse_point_feats(self, prev_output, points): + """Sample from fine grained features. + + Args: + prev_output (list[Tensor]): Prediction of previous decode head. + points (Tensor): Point coordinates, shape (batch_size, + num_points, 2). + + Returns: + coarse_feats (Tensor): Sampled coarse feature, shape (batch_size, + num_classes, num_points). + """ + + coarse_feats = point_sample( + prev_output, points, align_corners=self.align_corners) + + return coarse_feats + + def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg, + train_cfg): + """Forward function for training. + Args: + inputs (list[Tensor]): List of multi-level img features. + prev_output (Tensor): The output of previous decode head. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + gt_semantic_seg (Tensor): Semantic segmentation masks + used if the architecture supports semantic segmentation task. + train_cfg (dict): The training config. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + x = self._transform_inputs(inputs) + with torch.no_grad(): + points = self.get_points_train( + prev_output, calculate_uncertainty, cfg=train_cfg) + fine_grained_point_feats = self._get_fine_grained_point_feats( + x, points) + coarse_point_feats = self._get_coarse_point_feats(prev_output, points) + point_logits = self.forward(fine_grained_point_feats, + coarse_point_feats) + point_label = point_sample( + gt_semantic_seg.float(), + points, + mode='nearest', + align_corners=self.align_corners) + point_label = point_label.squeeze(1).long() + + losses = self.losses(point_logits, point_label) + + return losses + + def forward_test(self, inputs, prev_output, img_metas, test_cfg): + """Forward function for testing. + + Args: + inputs (list[Tensor]): List of multi-level img features. + prev_output (Tensor): The output of previous decode head. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + test_cfg (dict): The testing config. + + Returns: + Tensor: Output segmentation map. + """ + + x = self._transform_inputs(inputs) + refined_seg_logits = prev_output.clone() + for _ in range(test_cfg.subdivision_steps): + refined_seg_logits = resize( + refined_seg_logits, + scale_factor=test_cfg.scale_factor, + mode='bilinear', + align_corners=self.align_corners) + batch_size, channels, height, width = refined_seg_logits.shape + point_indices, points = self.get_points_test( + refined_seg_logits, calculate_uncertainty, cfg=test_cfg) + fine_grained_point_feats = self._get_fine_grained_point_feats( + x, points) + coarse_point_feats = self._get_coarse_point_feats( + prev_output, points) + point_logits = self.forward(fine_grained_point_feats, + coarse_point_feats) + + point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) + refined_seg_logits = refined_seg_logits.reshape( + batch_size, channels, height * width) + refined_seg_logits = refined_seg_logits.scatter_( + 2, point_indices, point_logits) + refined_seg_logits = refined_seg_logits.view( + batch_size, channels, height, width) + + return refined_seg_logits + + def losses(self, point_logits, point_label): + """Compute segmentation loss.""" + loss = dict() + if not isinstance(self.loss_decode, nn.ModuleList): + losses_decode = [self.loss_decode] + else: + losses_decode = self.loss_decode + for loss_module in losses_decode: + loss['point' + loss_module.loss_name] = loss_module( + point_logits, point_label, ignore_index=self.ignore_index) + + loss['acc_point'] = accuracy(point_logits, point_label) + return loss + + def get_points_train(self, seg_logits, uncertainty_func, cfg): + """Sample points for training. + + Sample points in [0, 1] x [0, 1] coordinate space based on their + uncertainty. The uncertainties are calculated for each point using + 'uncertainty_func' function that takes point's logit prediction as + input. + + Args: + seg_logits (Tensor): Semantic segmentation logits, shape ( + batch_size, num_classes, height, width). + uncertainty_func (func): uncertainty calculation function. + cfg (dict): Training config of point head. + + Returns: + point_coords (Tensor): A tensor of shape (batch_size, num_points, + 2) that contains the coordinates of ``num_points`` sampled + points. + """ + num_points = cfg.num_points + oversample_ratio = cfg.oversample_ratio + importance_sample_ratio = cfg.importance_sample_ratio + assert oversample_ratio >= 1 + assert 0 <= importance_sample_ratio <= 1 + batch_size = seg_logits.shape[0] + num_sampled = int(num_points * oversample_ratio) + point_coords = torch.rand( + batch_size, num_sampled, 2, device=seg_logits.device) + point_logits = point_sample(seg_logits, point_coords) + # It is crucial to calculate uncertainty based on the sampled + # prediction value for the points. Calculating uncertainties of the + # coarse predictions first and sampling them for points leads to + # incorrect results. To illustrate this: assume uncertainty func( + # logits)=-abs(logits), a sampled point between two coarse + # predictions with -1 and 1 logits has 0 logits, and therefore 0 + # uncertainty value. However, if we calculate uncertainties for the + # coarse predictions first, both will have -1 uncertainty, + # and sampled point will get -1 uncertainty. + point_uncertainties = uncertainty_func(point_logits) + num_uncertain_points = int(importance_sample_ratio * num_points) + num_random_points = num_points - num_uncertain_points + idx = torch.topk( + point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] + shift = num_sampled * torch.arange( + batch_size, dtype=torch.long, device=seg_logits.device) + idx += shift[:, None] + point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( + batch_size, num_uncertain_points, 2) + if num_random_points > 0: + rand_point_coords = torch.rand( + batch_size, num_random_points, 2, device=seg_logits.device) + point_coords = torch.cat((point_coords, rand_point_coords), dim=1) + return point_coords + + def get_points_test(self, seg_logits, uncertainty_func, cfg): + """Sample points for testing. + + Find ``num_points`` most uncertain points from ``uncertainty_map``. + + Args: + seg_logits (Tensor): A tensor of shape (batch_size, num_classes, + height, width) for class-specific or class-agnostic prediction. + uncertainty_func (func): uncertainty calculation function. + cfg (dict): Testing config of point head. + + Returns: + point_indices (Tensor): A tensor of shape (batch_size, num_points) + that contains indices from [0, height x width) of the most + uncertain points. + point_coords (Tensor): A tensor of shape (batch_size, num_points, + 2) that contains [0, 1] x [0, 1] normalized coordinates of the + most uncertain points from the ``height x width`` grid . + """ + + num_points = cfg.subdivision_num_points + uncertainty_map = uncertainty_func(seg_logits) + batch_size, _, height, width = uncertainty_map.shape + h_step = 1.0 / height + w_step = 1.0 / width + + uncertainty_map = uncertainty_map.view(batch_size, height * width) + num_points = min(height * width, num_points) + point_indices = uncertainty_map.topk(num_points, dim=1)[1] + point_coords = torch.zeros( + batch_size, + num_points, + 2, + dtype=torch.float, + device=seg_logits.device) + point_coords[:, :, 0] = w_step / 2.0 + (point_indices % + width).float() * w_step + point_coords[:, :, 1] = h_step / 2.0 + (point_indices // + width).float() * h_step + return point_indices, point_coords diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psa_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psa_head.py new file mode 100644 index 000000000..df7593cbc --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psa_head.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + +try: + from mmcv.ops import PSAMask +except ModuleNotFoundError: + PSAMask = None + + +@HEADS.register_module() +class PSAHead(BaseDecodeHead): + """Point-wise Spatial Attention Network for Scene Parsing. + + This head is the implementation of `PSANet + `_. + + Args: + mask_size (tuple[int]): The PSA mask size. It usually equals input + size. + psa_type (str): The type of psa module. Options are 'collect', + 'distribute', 'bi-direction'. Default: 'bi-direction' + compact (bool): Whether use compact map for 'collect' mode. + Default: True. + shrink_factor (int): The downsample factors of psa mask. Default: 2. + normalization_factor (float): The normalize factor of attention. + psa_softmax (bool): Whether use softmax for attention. + """ + + def __init__(self, + mask_size, + psa_type='bi-direction', + compact=False, + shrink_factor=2, + normalization_factor=1.0, + psa_softmax=True, + **kwargs): + if PSAMask is None: + raise RuntimeError('Please install mmcv-full for PSAMask ops') + super(PSAHead, self).__init__(**kwargs) + assert psa_type in ['collect', 'distribute', 'bi-direction'] + self.psa_type = psa_type + self.compact = compact + self.shrink_factor = shrink_factor + self.mask_size = mask_size + mask_h, mask_w = mask_size + self.psa_softmax = psa_softmax + if normalization_factor is None: + normalization_factor = mask_h * mask_w + self.normalization_factor = normalization_factor + + self.reduce = ConvModule( + self.in_channels, + self.channels, + kernel_size=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.attention = nn.Sequential( + ConvModule( + self.channels, + self.channels, + kernel_size=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + nn.Conv2d( + self.channels, mask_h * mask_w, kernel_size=1, bias=False)) + if psa_type == 'bi-direction': + self.reduce_p = ConvModule( + self.in_channels, + self.channels, + kernel_size=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.attention_p = nn.Sequential( + ConvModule( + self.channels, + self.channels, + kernel_size=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + nn.Conv2d( + self.channels, mask_h * mask_w, kernel_size=1, bias=False)) + self.psamask_collect = PSAMask('collect', mask_size) + self.psamask_distribute = PSAMask('distribute', mask_size) + else: + self.psamask = PSAMask(psa_type, mask_size) + self.proj = ConvModule( + self.channels * (2 if psa_type == 'bi-direction' else 1), + self.in_channels, + kernel_size=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + self.bottleneck = ConvModule( + self.in_channels * 2, + self.channels, + kernel_size=3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + identity = x + align_corners = self.align_corners + if self.psa_type in ['collect', 'distribute']: + out = self.reduce(x) + n, c, h, w = out.size() + if self.shrink_factor != 1: + if h % self.shrink_factor and w % self.shrink_factor: + h = (h - 1) // self.shrink_factor + 1 + w = (w - 1) // self.shrink_factor + 1 + align_corners = True + else: + h = h // self.shrink_factor + w = w // self.shrink_factor + align_corners = False + out = resize( + out, + size=(h, w), + mode='bilinear', + align_corners=align_corners) + y = self.attention(out) + if self.compact: + if self.psa_type == 'collect': + y = y.view(n, h * w, + h * w).transpose(1, 2).view(n, h * w, h, w) + else: + y = self.psamask(y) + if self.psa_softmax: + y = F.softmax(y, dim=1) + out = torch.bmm( + out.view(n, c, h * w), y.view(n, h * w, h * w)).view( + n, c, h, w) * (1.0 / self.normalization_factor) + else: + x_col = self.reduce(x) + x_dis = self.reduce_p(x) + n, c, h, w = x_col.size() + if self.shrink_factor != 1: + if h % self.shrink_factor and w % self.shrink_factor: + h = (h - 1) // self.shrink_factor + 1 + w = (w - 1) // self.shrink_factor + 1 + align_corners = True + else: + h = h // self.shrink_factor + w = w // self.shrink_factor + align_corners = False + x_col = resize( + x_col, + size=(h, w), + mode='bilinear', + align_corners=align_corners) + x_dis = resize( + x_dis, + size=(h, w), + mode='bilinear', + align_corners=align_corners) + y_col = self.attention(x_col) + y_dis = self.attention_p(x_dis) + if self.compact: + y_dis = y_dis.view(n, h * w, + h * w).transpose(1, 2).view(n, h * w, h, w) + else: + y_col = self.psamask_collect(y_col) + y_dis = self.psamask_distribute(y_dis) + if self.psa_softmax: + y_col = F.softmax(y_col, dim=1) + y_dis = F.softmax(y_dis, dim=1) + x_col = torch.bmm( + x_col.view(n, c, h * w), y_col.view(n, h * w, h * w)).view( + n, c, h, w) * (1.0 / self.normalization_factor) + x_dis = torch.bmm( + x_dis.view(n, c, h * w), y_dis.view(n, h * w, h * w)).view( + n, c, h, w) * (1.0 / self.normalization_factor) + out = torch.cat([x_col, x_dis], 1) + out = self.proj(out) + out = resize( + out, + size=identity.shape[2:], + mode='bilinear', + align_corners=align_corners) + out = self.bottleneck(torch.cat((identity, out), dim=1)) + out = self.cls_seg(out) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psp_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psp_head.py new file mode 100644 index 000000000..a27ae4bd0 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/psp_head.py @@ -0,0 +1,103 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class PPM(nn.ModuleList): + """Pooling Pyramid Module used in PSPNet. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict): Config of activation layers. + align_corners (bool): align_corners argument of F.interpolate. + """ + + def __init__(self, pool_scales, in_channels, channels, conv_cfg, norm_cfg, + act_cfg, align_corners, **kwargs): + super(PPM, self).__init__() + self.pool_scales = pool_scales + self.align_corners = align_corners + self.in_channels = in_channels + self.channels = channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + for pool_scale in pool_scales: + self.append( + nn.Sequential( + nn.AdaptiveAvgPool2d(pool_scale), + ConvModule( + self.in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + **kwargs))) + + def forward(self, x): + """Forward function.""" + ppm_outs = [] + for ppm in self: + ppm_out = ppm(x) + upsampled_ppm_out = resize( + ppm_out, + size=x.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + ppm_outs.append(upsampled_ppm_out) + return ppm_outs + + +@HEADS.register_module() +class PSPHead(BaseDecodeHead): + """Pyramid Scene Parsing Network. + + This head is the implementation of + `PSPNet `_. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. Default: (1, 2, 3, 6). + """ + + def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs): + super(PSPHead, self).__init__(**kwargs) + assert isinstance(pool_scales, (list, tuple)) + self.pool_scales = pool_scales + self.psp_modules = PPM( + self.pool_scales, + self.in_channels, + self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=self.align_corners) + self.bottleneck = ConvModule( + self.in_channels + len(pool_scales) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = torch.cat(psp_outs, dim=1) + output = self.bottleneck(psp_outs) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/segformer_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/segformer_head.py new file mode 100644 index 000000000..2e75d5069 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/segformer_head.py @@ -0,0 +1,66 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.models.builder import HEADS +from mmseg.models.decode_heads.decode_head import BaseDecodeHead +from mmseg.ops import resize + + +@HEADS.register_module() +class SegformerHead(BaseDecodeHead): + """The all mlp Head of segformer. + + This head is the implementation of + `Segformer ` _. + + Args: + interpolate_mode: The interpolate mode of MLP head upsample operation. + Default: 'bilinear'. + """ + + def __init__(self, interpolate_mode='bilinear', **kwargs): + super().__init__(input_transform='multiple_select', **kwargs) + + self.interpolate_mode = interpolate_mode + num_inputs = len(self.in_channels) + + assert num_inputs == len(self.in_index) + + self.convs = nn.ModuleList() + for i in range(num_inputs): + self.convs.append( + ConvModule( + in_channels=self.in_channels[i], + out_channels=self.channels, + kernel_size=1, + stride=1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + + self.fusion_conv = ConvModule( + in_channels=self.channels * num_inputs, + out_channels=self.channels, + kernel_size=1, + norm_cfg=self.norm_cfg) + + def forward(self, inputs): + # Receive 4 stage backbone feature map: 1/4, 1/8, 1/16, 1/32 + inputs = self._transform_inputs(inputs) + outs = [] + for idx in range(len(inputs)): + x = inputs[idx] + conv = self.convs[idx] + outs.append( + resize( + input=conv(x), + size=inputs[0].shape[2:], + mode=self.interpolate_mode, + align_corners=self.align_corners)) + + out = self.fusion_conv(torch.cat(outs, dim=1)) + + out = self.cls_seg(out) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_aspp_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_aspp_head.py new file mode 100644 index 000000000..4e894e28e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_aspp_head.py @@ -0,0 +1,102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .aspp_head import ASPPHead, ASPPModule + + +class DepthwiseSeparableASPPModule(ASPPModule): + """Atrous Spatial Pyramid Pooling (ASPP) Module with depthwise separable + conv.""" + + def __init__(self, **kwargs): + super(DepthwiseSeparableASPPModule, self).__init__(**kwargs) + for i, dilation in enumerate(self.dilations): + if dilation > 1: + self[i] = DepthwiseSeparableConvModule( + self.in_channels, + self.channels, + 3, + dilation=dilation, + padding=dilation, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + +@HEADS.register_module() +class DepthwiseSeparableASPPHead(ASPPHead): + """Encoder-Decoder with Atrous Separable Convolution for Semantic Image + Segmentation. + + This head is the implementation of `DeepLabV3+ + `_. + + Args: + c1_in_channels (int): The input channels of c1 decoder. If is 0, + the no decoder will be used. + c1_channels (int): The intermediate channels of c1 decoder. + """ + + def __init__(self, c1_in_channels, c1_channels, **kwargs): + super(DepthwiseSeparableASPPHead, self).__init__(**kwargs) + assert c1_in_channels >= 0 + self.aspp_modules = DepthwiseSeparableASPPModule( + dilations=self.dilations, + in_channels=self.in_channels, + channels=self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + if c1_in_channels > 0: + self.c1_bottleneck = ConvModule( + c1_in_channels, + c1_channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + else: + self.c1_bottleneck = None + self.sep_bottleneck = nn.Sequential( + DepthwiseSeparableConvModule( + self.channels + c1_channels, + self.channels, + 3, + padding=1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + DepthwiseSeparableConvModule( + self.channels, + self.channels, + 3, + padding=1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg)) + + def forward(self, inputs): + """Forward function.""" + x = self._transform_inputs(inputs) + aspp_outs = [ + resize( + self.image_pool(x), + size=x.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + ] + aspp_outs.extend(self.aspp_modules(x)) + aspp_outs = torch.cat(aspp_outs, dim=1) + output = self.bottleneck(aspp_outs) + if self.c1_bottleneck is not None: + c1_output = self.c1_bottleneck(inputs[0]) + output = resize( + input=output, + size=c1_output.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + output = torch.cat([output, c1_output], dim=1) + output = self.sep_bottleneck(output) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_fcn_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_fcn_head.py new file mode 100644 index 000000000..7f9658e08 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/sep_fcn_head.py @@ -0,0 +1,60 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import DepthwiseSeparableConvModule + +from ..builder import HEADS +from .fcn_head import FCNHead + + +@HEADS.register_module() +class DepthwiseSeparableFCNHead(FCNHead): + """Depthwise-Separable Fully Convolutional Network for Semantic + Segmentation. + + This head is implemented according to `Fast-SCNN: Fast Semantic + Segmentation Network `_. + + Args: + in_channels(int): Number of output channels of FFM. + channels(int): Number of middle-stage channels in the decode head. + concat_input(bool): Whether to concatenate original decode input into + the result of several consecutive convolution layers. + Default: True. + num_classes(int): Used to determine the dimension of + final prediction tensor. + in_index(int): Correspond with 'out_indices' in FastSCNN backbone. + norm_cfg (dict | None): Config of norm layers. + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + loss_decode(dict): Config of loss type and some + relevant additional options. + dw_act_cfg (dict):Activation config of depthwise ConvModule. If it is + 'default', it will be the same as `act_cfg`. Default: None. + """ + + def __init__(self, dw_act_cfg=None, **kwargs): + super(DepthwiseSeparableFCNHead, self).__init__(**kwargs) + self.convs[0] = DepthwiseSeparableConvModule( + self.in_channels, + self.channels, + kernel_size=self.kernel_size, + padding=self.kernel_size // 2, + norm_cfg=self.norm_cfg, + dw_act_cfg=dw_act_cfg) + + for i in range(1, self.num_convs): + self.convs[i] = DepthwiseSeparableConvModule( + self.channels, + self.channels, + kernel_size=self.kernel_size, + padding=self.kernel_size // 2, + norm_cfg=self.norm_cfg, + dw_act_cfg=dw_act_cfg) + + if self.concat_input: + self.conv_cat = DepthwiseSeparableConvModule( + self.in_channels + self.channels, + self.channels, + kernel_size=self.kernel_size, + padding=self.kernel_size // 2, + norm_cfg=self.norm_cfg, + dw_act_cfg=dw_act_cfg) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_mla_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_mla_head.py new file mode 100644 index 000000000..6bb94ae33 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_mla_head.py @@ -0,0 +1,63 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.ops import Upsample +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +@HEADS.register_module() +class SETRMLAHead(BaseDecodeHead): + """Multi level feature aggretation head of SETR. + + MLA head of `SETR `_. + + Args: + mlahead_channels (int): Channels of conv-conv-4x of multi-level feature + aggregation. Default: 128. + up_scale (int): The scale factor of interpolate. Default:4. + """ + + def __init__(self, mla_channels=128, up_scale=4, **kwargs): + super(SETRMLAHead, self).__init__( + input_transform='multiple_select', **kwargs) + self.mla_channels = mla_channels + + num_inputs = len(self.in_channels) + + # Refer to self.cls_seg settings of BaseDecodeHead + assert self.channels == num_inputs * mla_channels + + self.up_convs = nn.ModuleList() + for i in range(num_inputs): + self.up_convs.append( + nn.Sequential( + ConvModule( + in_channels=self.in_channels[i], + out_channels=mla_channels, + kernel_size=3, + padding=1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + ConvModule( + in_channels=mla_channels, + out_channels=mla_channels, + kernel_size=3, + padding=1, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + Upsample( + scale_factor=up_scale, + mode='bilinear', + align_corners=self.align_corners))) + + def forward(self, inputs): + inputs = self._transform_inputs(inputs) + outs = [] + for x, up_conv in zip(inputs, self.up_convs): + outs.append(up_conv(x)) + out = torch.cat(outs, dim=1) + out = self.cls_seg(out) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_up_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_up_head.py new file mode 100644 index 000000000..87e7ea7fa --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/setr_up_head.py @@ -0,0 +1,81 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, build_norm_layer + +from mmseg.ops import Upsample +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +@HEADS.register_module() +class SETRUPHead(BaseDecodeHead): + """Naive upsampling head and Progressive upsampling head of SETR. + + Naive or PUP head of `SETR `_. + + Args: + norm_layer (dict): Config dict for input normalization. + Default: norm_layer=dict(type='LN', eps=1e-6, requires_grad=True). + num_convs (int): Number of decoder convolutions. Default: 1. + up_scale (int): The scale factor of interpolate. Default:4. + kernel_size (int): The kernel size of convolution when decoding + feature information from backbone. Default: 3. + init_cfg (dict | list[dict] | None): Initialization config dict. + Default: dict( + type='Constant', val=1.0, bias=0, layer='LayerNorm'). + """ + + def __init__(self, + norm_layer=dict(type='LN', eps=1e-6, requires_grad=True), + num_convs=1, + up_scale=4, + kernel_size=3, + init_cfg=[ + dict(type='Constant', val=1.0, bias=0, layer='LayerNorm'), + dict( + type='Normal', + std=0.01, + override=dict(name='conv_seg')) + ], + **kwargs): + + assert kernel_size in [1, 3], 'kernel_size must be 1 or 3.' + + super(SETRUPHead, self).__init__(init_cfg=init_cfg, **kwargs) + + assert isinstance(self.in_channels, int) + + _, self.norm = build_norm_layer(norm_layer, self.in_channels) + + self.up_convs = nn.ModuleList() + in_channels = self.in_channels + out_channels = self.channels + for _ in range(num_convs): + self.up_convs.append( + nn.Sequential( + ConvModule( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=1, + padding=int(kernel_size - 1) // 2, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg), + Upsample( + scale_factor=up_scale, + mode='bilinear', + align_corners=self.align_corners))) + in_channels = out_channels + + def forward(self, x): + x = self._transform_inputs(x) + + n, c, h, w = x.shape + x = x.reshape(n, c, h * w).transpose(2, 1).contiguous() + x = self.norm(x) + x = x.transpose(1, 2).reshape(n, c, h, w).contiguous() + + for up_conv in self.up_convs: + x = up_conv(x) + out = self.cls_seg(x) + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/stdc_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/stdc_head.py new file mode 100644 index 000000000..716001639 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/stdc_head.py @@ -0,0 +1,90 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn.functional as F + +from ..builder import HEADS +from .fcn_head import FCNHead + + +@HEADS.register_module() +class STDCHead(FCNHead): + """This head is the implementation of `Rethinking BiSeNet For Real-time + Semantic Segmentation `_. + + Args: + boundary_threshold (float): The threshold of calculating boundary. + Default: 0.1. + """ + + def __init__(self, boundary_threshold=0.1, **kwargs): + super(STDCHead, self).__init__(**kwargs) + self.boundary_threshold = boundary_threshold + # Using register buffer to make laplacian kernel on the same + # device of `seg_label`. + self.register_buffer( + 'laplacian_kernel', + torch.tensor([-1, -1, -1, -1, 8, -1, -1, -1, -1], + dtype=torch.float32, + requires_grad=False).reshape((1, 1, 3, 3))) + self.fusion_kernel = torch.nn.Parameter( + torch.tensor([[6. / 10], [3. / 10], [1. / 10]], + dtype=torch.float32).reshape(1, 3, 1, 1), + requires_grad=False) + + def losses(self, seg_logit, seg_label): + """Compute Detail Aggregation Loss.""" + # Note: The paper claims `fusion_kernel` is a trainable 1x1 conv + # parameters. However, it is a constant in original repo and other + # codebase because it would not be added into computation graph + # after threshold operation. + seg_label = seg_label.float() + boundary_targets = F.conv2d( + seg_label, self.laplacian_kernel, padding=1) + boundary_targets = boundary_targets.clamp(min=0) + boundary_targets[boundary_targets > self.boundary_threshold] = 1 + boundary_targets[boundary_targets <= self.boundary_threshold] = 0 + + boundary_targets_x2 = F.conv2d( + seg_label, self.laplacian_kernel, stride=2, padding=1) + boundary_targets_x2 = boundary_targets_x2.clamp(min=0) + + boundary_targets_x4 = F.conv2d( + seg_label, self.laplacian_kernel, stride=4, padding=1) + boundary_targets_x4 = boundary_targets_x4.clamp(min=0) + + boundary_targets_x4_up = F.interpolate( + boundary_targets_x4, boundary_targets.shape[2:], mode='nearest') + boundary_targets_x2_up = F.interpolate( + boundary_targets_x2, boundary_targets.shape[2:], mode='nearest') + + boundary_targets_x2_up[ + boundary_targets_x2_up > self.boundary_threshold] = 1 + boundary_targets_x2_up[ + boundary_targets_x2_up <= self.boundary_threshold] = 0 + + boundary_targets_x4_up[ + boundary_targets_x4_up > self.boundary_threshold] = 1 + boundary_targets_x4_up[ + boundary_targets_x4_up <= self.boundary_threshold] = 0 + + boudary_targets_pyramids = torch.stack( + (boundary_targets, boundary_targets_x2_up, boundary_targets_x4_up), + dim=1) + + boudary_targets_pyramids = boudary_targets_pyramids.squeeze(2) + boudary_targets_pyramid = F.conv2d(boudary_targets_pyramids, + self.fusion_kernel) + + boudary_targets_pyramid[ + boudary_targets_pyramid > self.boundary_threshold] = 1 + boudary_targets_pyramid[ + boudary_targets_pyramid <= self.boundary_threshold] = 0 + + seg_logit = F.interpolate( + seg_logit, + boundary_targets.shape[2:], + mode='bilinear', + align_corners=True) + loss = super(STDCHead, self).losses(seg_logit, + boudary_targets_pyramid.long()) + return loss diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/uper_head.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/uper_head.py new file mode 100644 index 000000000..57d80be1e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/decode_heads/uper_head.py @@ -0,0 +1,127 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead +from .psp_head import PPM + + +@HEADS.register_module() +class UPerHead(BaseDecodeHead): + """Unified Perceptual Parsing for Scene Understanding. + + This head is the implementation of `UPerNet + `_. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module applied on the last feature. Default: (1, 2, 3, 6). + """ + + def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs): + super(UPerHead, self).__init__( + input_transform='multiple_select', **kwargs) + # PSP Module + self.psp_modules = PPM( + pool_scales, + self.in_channels[-1], + self.channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=self.align_corners) + self.bottleneck = ConvModule( + self.in_channels[-1] + len(pool_scales) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + # FPN Module + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + for in_channels in self.in_channels[:-1]: # skip the top layer + l_conv = ConvModule( + in_channels, + self.channels, + 1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + inplace=False) + fpn_conv = ConvModule( + self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + inplace=False) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + self.fpn_bottleneck = ConvModule( + len(self.in_channels) * self.channels, + self.channels, + 3, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg) + + def psp_forward(self, inputs): + """Forward function of PSP module.""" + x = inputs[-1] + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = torch.cat(psp_outs, dim=1) + output = self.bottleneck(psp_outs) + + return output + + def forward(self, inputs): + """Forward function.""" + + inputs = self._transform_inputs(inputs) + + # build laterals + laterals = [ + lateral_conv(inputs[i]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + + laterals.append(self.psp_forward(inputs)) + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + resize( + laterals[i], + size=prev_shape, + mode='bilinear', + align_corners=self.align_corners) + + # build outputs + fpn_outs = [ + self.fpn_convs[i](laterals[i]) + for i in range(used_backbone_levels - 1) + ] + # append psp feature + fpn_outs.append(laterals[-1]) + + for i in range(used_backbone_levels - 1, 0, -1): + fpn_outs[i] = resize( + fpn_outs[i], + size=fpn_outs[0].shape[2:], + mode='bilinear', + align_corners=self.align_corners) + fpn_outs = torch.cat(fpn_outs, dim=1) + output = self.fpn_bottleneck(fpn_outs) + output = self.cls_seg(output) + return output diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/__init__.py new file mode 100644 index 000000000..fbc5b2d1b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .accuracy import Accuracy, accuracy +from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, + cross_entropy, mask_cross_entropy) +from .dice_loss import DiceLoss +from .focal_loss import FocalLoss +from .lovasz_loss import LovaszLoss +from .utils import reduce_loss, weight_reduce_loss, weighted_loss + +__all__ = [ + 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', + 'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss', + 'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss', + 'FocalLoss' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/accuracy.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/accuracy.py new file mode 100644 index 000000000..f2cd16b7f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/accuracy.py @@ -0,0 +1,79 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn + + +def accuracy(pred, target, topk=1, thresh=None): + """Calculate accuracy according to the prediction and target. + + Args: + pred (torch.Tensor): The model prediction, shape (N, num_class, ...) + target (torch.Tensor): The target of each prediction, shape (N, , ...) + topk (int | tuple[int], optional): If the predictions in ``topk`` + matches the target, the predictions will be regarded as + correct ones. Defaults to 1. + thresh (float, optional): If not None, predictions with scores under + this threshold are considered incorrect. Default to None. + + Returns: + float | tuple[float]: If the input ``topk`` is a single integer, + the function will return a single float as accuracy. If + ``topk`` is a tuple containing multiple integers, the + function will return a tuple containing accuracies of + each ``topk`` number. + """ + assert isinstance(topk, (int, tuple)) + if isinstance(topk, int): + topk = (topk, ) + return_single = True + else: + return_single = False + + maxk = max(topk) + if pred.size(0) == 0: + accu = [pred.new_tensor(0.) for i in range(len(topk))] + return accu[0] if return_single else accu + assert pred.ndim == target.ndim + 1 + assert pred.size(0) == target.size(0) + assert maxk <= pred.size(1), \ + f'maxk {maxk} exceeds pred dimension {pred.size(1)}' + pred_value, pred_label = pred.topk(maxk, dim=1) + # transpose to shape (maxk, N, ...) + pred_label = pred_label.transpose(0, 1) + correct = pred_label.eq(target.unsqueeze(0).expand_as(pred_label)) + if thresh is not None: + # Only prediction values larger than thresh are counted as correct + correct = correct & (pred_value > thresh).t() + res = [] + for k in topk: + correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / target.numel())) + return res[0] if return_single else res + + +class Accuracy(nn.Module): + """Accuracy calculation module.""" + + def __init__(self, topk=(1, ), thresh=None): + """Module to calculate the accuracy. + + Args: + topk (tuple, optional): The criterion used to calculate the + accuracy. Defaults to (1,). + thresh (float, optional): If not None, predictions with scores + under this threshold are considered incorrect. Default to None. + """ + super().__init__() + self.topk = topk + self.thresh = thresh + + def forward(self, pred, target): + """Forward function to calculate accuracy. + + Args: + pred (torch.Tensor): Prediction of models. + target (torch.Tensor): Target for each prediction. + + Returns: + tuple[float]: The accuracies under different topk criterions. + """ + return accuracy(pred, target, self.topk, self.thresh) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/cross_entropy_loss.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/cross_entropy_loss.py new file mode 100644 index 000000000..ee489a888 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/cross_entropy_loss.py @@ -0,0 +1,218 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import get_class_weight, weight_reduce_loss + + +def cross_entropy(pred, + label, + weight=None, + class_weight=None, + reduction='mean', + avg_factor=None, + ignore_index=-100): + """The wrapper function for :func:`F.cross_entropy`""" + # class_weight is a manual rescaling weight given to each class. + # If given, has to be a Tensor of size C element-wise losses + loss = F.cross_entropy( + pred, + label, + weight=class_weight, + reduction='none', + ignore_index=ignore_index) + + # apply weights and do the reduction + if weight is not None: + weight = weight.float() + loss = weight_reduce_loss( + loss, weight=weight, reduction=reduction, avg_factor=avg_factor) + + return loss + + +def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): + """Expand onehot labels to match the size of prediction.""" + bin_labels = labels.new_zeros(target_shape) + valid_mask = (labels >= 0) & (labels != ignore_index) + inds = torch.nonzero(valid_mask, as_tuple=True) + + if inds[0].numel() > 0: + if labels.dim() == 3: + bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 + else: + bin_labels[inds[0], labels[valid_mask]] = 1 + + valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() + if label_weights is None: + bin_label_weights = valid_mask + else: + bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) + bin_label_weights *= valid_mask + + return bin_labels, bin_label_weights + + +def binary_cross_entropy(pred, + label, + weight=None, + reduction='mean', + avg_factor=None, + class_weight=None, + ignore_index=255): + """Calculate the binary CrossEntropy loss. + + Args: + pred (torch.Tensor): The prediction with shape (N, 1). + label (torch.Tensor): The learning label of the prediction. + weight (torch.Tensor, optional): Sample-wise loss weight. + reduction (str, optional): The method used to reduce the loss. + Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + class_weight (list[float], optional): The weight for each class. + ignore_index (int | None): The label index to be ignored. Default: 255 + + Returns: + torch.Tensor: The calculated loss + """ + if pred.dim() != label.dim(): + assert (pred.dim() == 2 and label.dim() == 1) or ( + pred.dim() == 4 and label.dim() == 3), \ + 'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ + 'H, W], label shape [N, H, W] are supported' + label, weight = _expand_onehot_labels(label, weight, pred.shape, + ignore_index) + + # weighted element-wise losses + if weight is not None: + weight = weight.float() + loss = F.binary_cross_entropy_with_logits( + pred, label.float(), pos_weight=class_weight, reduction='none') + # do the reduction for the weighted loss + loss = weight_reduce_loss( + loss, weight, reduction=reduction, avg_factor=avg_factor) + + return loss + + +def mask_cross_entropy(pred, + target, + label, + reduction='mean', + avg_factor=None, + class_weight=None, + ignore_index=None): + """Calculate the CrossEntropy loss for masks. + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the number + of classes. + target (torch.Tensor): The learning label of the prediction. + label (torch.Tensor): ``label`` indicates the class label of the mask' + corresponding object. This will be used to select the mask in the + of the class which the object belongs to when the mask prediction + if not class-agnostic. + reduction (str, optional): The method used to reduce the loss. + Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + class_weight (list[float], optional): The weight for each class. + ignore_index (None): Placeholder, to be consistent with other loss. + Default: None. + + Returns: + torch.Tensor: The calculated loss + """ + assert ignore_index is None, 'BCE loss does not support ignore_index' + # TODO: handle these two reserved arguments + assert reduction == 'mean' and avg_factor is None + num_rois = pred.size()[0] + inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) + pred_slice = pred[inds, label].squeeze(1) + return F.binary_cross_entropy_with_logits( + pred_slice, target, weight=class_weight, reduction='mean')[None] + + +@LOSSES.register_module() +class CrossEntropyLoss(nn.Module): + """CrossEntropyLoss. + + Args: + use_sigmoid (bool, optional): Whether the prediction uses sigmoid + of softmax. Defaults to False. + use_mask (bool, optional): Whether to use mask cross entropy loss. + Defaults to False. + reduction (str, optional): . Defaults to 'mean'. + Options are "none", "mean" and "sum". + class_weight (list[float] | str, optional): Weight of each class. If in + str format, read them from a file. Defaults to None. + loss_weight (float, optional): Weight of the loss. Defaults to 1.0. + loss_name (str, optional): Name of the loss item. If you want this loss + item to be included into the backward graph, `loss_` must be the + prefix of the name. Defaults to 'loss_ce'. + """ + + def __init__(self, + use_sigmoid=False, + use_mask=False, + reduction='mean', + class_weight=None, + loss_weight=1.0, + loss_name='loss_ce'): + super(CrossEntropyLoss, self).__init__() + assert (use_sigmoid is False) or (use_mask is False) + self.use_sigmoid = use_sigmoid + self.use_mask = use_mask + self.reduction = reduction + self.loss_weight = loss_weight + self.class_weight = get_class_weight(class_weight) + + if self.use_sigmoid: + self.cls_criterion = binary_cross_entropy + elif self.use_mask: + self.cls_criterion = mask_cross_entropy + else: + self.cls_criterion = cross_entropy + self._loss_name = loss_name + + def forward(self, + cls_score, + label, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function.""" + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.class_weight is not None: + class_weight = cls_score.new_tensor(self.class_weight) + else: + class_weight = None + loss_cls = self.loss_weight * self.cls_criterion( + cls_score, + label, + weight, + class_weight=class_weight, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss_cls + + @property + def loss_name(self): + """Loss Name. + + This function must be implemented and will return the name of this + loss function. This name will be used to combine different loss items + by simple sum operation. In addition, if you want this loss item to be + included into the backward graph, `loss_` must be the prefix of the + name. + Returns: + str: The name of this loss item. + """ + return self._loss_name diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/dice_loss.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/dice_loss.py new file mode 100644 index 000000000..79a3abfc2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/dice_loss.py @@ -0,0 +1,137 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""Modified from https://github.com/LikeLy-Journey/SegmenTron/blob/master/ +segmentron/solver/loss.py (Apache-2.0 License)""" +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import get_class_weight, weighted_loss + + +@weighted_loss +def dice_loss(pred, + target, + valid_mask, + smooth=1, + exponent=2, + class_weight=None, + ignore_index=255): + assert pred.shape[0] == target.shape[0] + total_loss = 0 + num_classes = pred.shape[1] + for i in range(num_classes): + if i != ignore_index: + dice_loss = binary_dice_loss( + pred[:, i], + target[..., i], + valid_mask=valid_mask, + smooth=smooth, + exponent=exponent) + if class_weight is not None: + dice_loss *= class_weight[i] + total_loss += dice_loss + return total_loss / num_classes + + +@weighted_loss +def binary_dice_loss(pred, target, valid_mask, smooth=1, exponent=2, **kwards): + assert pred.shape[0] == target.shape[0] + pred = pred.reshape(pred.shape[0], -1) + target = target.reshape(target.shape[0], -1) + valid_mask = valid_mask.reshape(valid_mask.shape[0], -1) + + num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth + den = torch.sum(pred.pow(exponent) + target.pow(exponent), dim=1) + smooth + + return 1 - num / den + + +@LOSSES.register_module() +class DiceLoss(nn.Module): + """DiceLoss. + + This loss is proposed in `V-Net: Fully Convolutional Neural Networks for + Volumetric Medical Image Segmentation `_. + + Args: + smooth (float): A float number to smooth loss, and avoid NaN error. + Default: 1 + exponent (float): An float number to calculate denominator + value: \\sum{x^exponent} + \\sum{y^exponent}. Default: 2. + reduction (str, optional): The method used to reduce the loss. Options + are "none", "mean" and "sum". This parameter only works when + per_image is True. Default: 'mean'. + class_weight (list[float] | str, optional): Weight of each class. If in + str format, read them from a file. Defaults to None. + loss_weight (float, optional): Weight of the loss. Default to 1.0. + ignore_index (int | None): The label index to be ignored. Default: 255. + loss_name (str, optional): Name of the loss item. If you want this loss + item to be included into the backward graph, `loss_` must be the + prefix of the name. Defaults to 'loss_dice'. + """ + + def __init__(self, + smooth=1, + exponent=2, + reduction='mean', + class_weight=None, + loss_weight=1.0, + ignore_index=255, + loss_name='loss_dice', + **kwards): + super(DiceLoss, self).__init__() + self.smooth = smooth + self.exponent = exponent + self.reduction = reduction + self.class_weight = get_class_weight(class_weight) + self.loss_weight = loss_weight + self.ignore_index = ignore_index + self._loss_name = loss_name + + def forward(self, + pred, + target, + avg_factor=None, + reduction_override=None, + **kwards): + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.class_weight is not None: + class_weight = pred.new_tensor(self.class_weight) + else: + class_weight = None + + pred = F.softmax(pred, dim=1) + num_classes = pred.shape[1] + one_hot_target = F.one_hot( + torch.clamp(target.long(), 0, num_classes - 1), + num_classes=num_classes) + valid_mask = (target != self.ignore_index).long() + + loss = self.loss_weight * dice_loss( + pred, + one_hot_target, + valid_mask=valid_mask, + reduction=reduction, + avg_factor=avg_factor, + smooth=self.smooth, + exponent=self.exponent, + class_weight=class_weight, + ignore_index=self.ignore_index) + return loss + + @property + def loss_name(self): + """Loss Name. + + This function must be implemented and will return the name of this + loss function. This name will be used to combine different loss items + by simple sum operation. In addition, if you want this loss item to be + included into the backward graph, `loss_` must be the prefix of the + name. + Returns: + str: The name of this loss item. + """ + return self._loss_name diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/focal_loss.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/focal_loss.py new file mode 100644 index 000000000..af1c711df --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/focal_loss.py @@ -0,0 +1,327 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# Modified from https://github.com/open-mmlab/mmdetection +import torch +import torch.nn as nn +import torch.nn.functional as F +from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss + +from ..builder import LOSSES +from .utils import weight_reduce_loss + + +# This method is used when cuda is not available +def py_sigmoid_focal_loss(pred, + target, + one_hot_target=None, + weight=None, + gamma=2.0, + alpha=0.5, + class_weight=None, + valid_mask=None, + reduction='mean', + avg_factor=None): + """PyTorch version of `Focal Loss `_. + + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the + number of classes + target (torch.Tensor): The learning label of the prediction with + shape (N, C) + one_hot_target (None): Placeholder. It should be None. + weight (torch.Tensor, optional): Sample-wise loss weight. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float | list[float], optional): A balanced form for Focal Loss. + Defaults to 0.5. + class_weight (list[float], optional): Weight of each class. + Defaults to None. + valid_mask (torch.Tensor, optional): A mask uses 1 to mark the valid + samples and uses 0 to mark the ignored samples. Default: None. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + if isinstance(alpha, list): + alpha = pred.new_tensor(alpha) + pred_sigmoid = pred.sigmoid() + target = target.type_as(pred) + one_minus_pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target) + focal_weight = (alpha * target + (1 - alpha) * + (1 - target)) * one_minus_pt.pow(gamma) + + loss = F.binary_cross_entropy_with_logits( + pred, target, reduction='none') * focal_weight + final_weight = torch.ones(1, pred.size(1)).type_as(loss) + if weight is not None: + if weight.shape != loss.shape and weight.size(0) == loss.size(0): + # For most cases, weight is of shape (N, ), + # which means it does not have the second axis num_class + weight = weight.view(-1, 1) + assert weight.dim() == loss.dim() + final_weight = final_weight * weight + if class_weight is not None: + final_weight = final_weight * pred.new_tensor(class_weight) + if valid_mask is not None: + final_weight = final_weight * valid_mask + loss = weight_reduce_loss(loss, final_weight, reduction, avg_factor) + return loss + + +def sigmoid_focal_loss(pred, + target, + one_hot_target, + weight=None, + gamma=2.0, + alpha=0.5, + class_weight=None, + valid_mask=None, + reduction='mean', + avg_factor=None): + r"""A warpper of cuda version `Focal Loss + `_. + Args: + pred (torch.Tensor): The prediction with shape (N, C), C is the number + of classes. + target (torch.Tensor): The learning label of the prediction. It's shape + should be (N, ) + one_hot_target (torch.Tensor): The learning label with shape (N, C) + weight (torch.Tensor, optional): Sample-wise loss weight. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float | list[float], optional): A balanced form for Focal Loss. + Defaults to 0.5. + class_weight (list[float], optional): Weight of each class. + Defaults to None. + valid_mask (torch.Tensor, optional): A mask uses 1 to mark the valid + samples and uses 0 to mark the ignored samples. Default: None. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". + avg_factor (int, optional): Average factor that is used to average + the loss. Defaults to None. + """ + # Function.apply does not accept keyword arguments, so the decorator + # "weighted_loss" is not applicable + final_weight = torch.ones(1, pred.size(1)).type_as(pred) + if isinstance(alpha, list): + # _sigmoid_focal_loss doesn't accept alpha of list type. Therefore, if + # a list is given, we set the input alpha as 0.5. This means setting + # equal weight for foreground class and background class. By + # multiplying the loss by 2, the effect of setting alpha as 0.5 is + # undone. The alpha of type list is used to regulate the loss in the + # post-processing process. + loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(), + gamma, 0.5, None, 'none') * 2 + alpha = pred.new_tensor(alpha) + final_weight = final_weight * ( + alpha * one_hot_target + (1 - alpha) * (1 - one_hot_target)) + else: + loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(), + gamma, alpha, None, 'none') + if weight is not None: + if weight.shape != loss.shape and weight.size(0) == loss.size(0): + # For most cases, weight is of shape (N, ), + # which means it does not have the second axis num_class + weight = weight.view(-1, 1) + assert weight.dim() == loss.dim() + final_weight = final_weight * weight + if class_weight is not None: + final_weight = final_weight * pred.new_tensor(class_weight) + if valid_mask is not None: + final_weight = final_weight * valid_mask + loss = weight_reduce_loss(loss, final_weight, reduction, avg_factor) + return loss + + +@LOSSES.register_module() +class FocalLoss(nn.Module): + + def __init__(self, + use_sigmoid=True, + gamma=2.0, + alpha=0.5, + reduction='mean', + class_weight=None, + loss_weight=1.0, + loss_name='loss_focal'): + """`Focal Loss `_ + Args: + use_sigmoid (bool, optional): Whether to the prediction is + used for sigmoid or softmax. Defaults to True. + gamma (float, optional): The gamma for calculating the modulating + factor. Defaults to 2.0. + alpha (float | list[float], optional): A balanced form for Focal + Loss. Defaults to 0.5. When a list is provided, the length + of the list should be equal to the number of classes. + Please be careful that this parameter is not the + class-wise weight but the weight of a binary classification + problem. This binary classification problem regards the + pixels which belong to one class as the foreground + and the other pixels as the background, each element in + the list is the weight of the corresponding foreground class. + The value of alpha or each element of alpha should be a float + in the interval [0, 1]. If you want to specify the class-wise + weight, please use `class_weight` parameter. + reduction (str, optional): The method used to reduce the loss into + a scalar. Defaults to 'mean'. Options are "none", "mean" and + "sum". + class_weight (list[float], optional): Weight of each class. + Defaults to None. + loss_weight (float, optional): Weight of loss. Defaults to 1.0. + loss_name (str, optional): Name of the loss item. If you want this + loss item to be included into the backward graph, `loss_` must + be the prefix of the name. Defaults to 'loss_focal'. + """ + super(FocalLoss, self).__init__() + assert use_sigmoid is True, \ + 'AssertionError: Only sigmoid focal loss supported now.' + assert reduction in ('none', 'mean', 'sum'), \ + "AssertionError: reduction should be 'none', 'mean' or " \ + "'sum'" + assert isinstance(alpha, (float, list)), \ + 'AssertionError: alpha should be of type float' + assert isinstance(gamma, float), \ + 'AssertionError: gamma should be of type float' + assert isinstance(loss_weight, float), \ + 'AssertionError: loss_weight should be of type float' + assert isinstance(loss_name, str), \ + 'AssertionError: loss_name should be of type str' + assert isinstance(class_weight, list) or class_weight is None, \ + 'AssertionError: class_weight must be None or of type list' + self.use_sigmoid = use_sigmoid + self.gamma = gamma + self.alpha = alpha + self.reduction = reduction + self.class_weight = class_weight + self.loss_weight = loss_weight + self._loss_name = loss_name + + def forward(self, + pred, + target, + weight=None, + avg_factor=None, + reduction_override=None, + ignore_index=255, + **kwargs): + """Forward function. + + Args: + pred (torch.Tensor): The prediction with shape + (N, C) where C = number of classes, or + (N, C, d_1, d_2, ..., d_K) with K≥1 in the + case of K-dimensional loss. + target (torch.Tensor): The ground truth. If containing class + indices, shape (N) where each value is 0≤targets[i]≤C−1, + or (N, d_1, d_2, ..., d_K) with K≥1 in the case of + K-dimensional loss. If containing class probabilities, + same shape as the input. + weight (torch.Tensor, optional): The weight of loss for each + prediction. Defaults to None. + avg_factor (int, optional): Average factor that is used to + average the loss. Defaults to None. + reduction_override (str, optional): The reduction method used + to override the original reduction method of the loss. + Options are "none", "mean" and "sum". + ignore_index (int, optional): The label index to be ignored. + Default: 255 + Returns: + torch.Tensor: The calculated loss + """ + assert isinstance(ignore_index, int), \ + 'ignore_index must be of type int' + assert reduction_override in (None, 'none', 'mean', 'sum'), \ + "AssertionError: reduction should be 'none', 'mean' or " \ + "'sum'" + assert pred.shape == target.shape or \ + (pred.size(0) == target.size(0) and + pred.shape[2:] == target.shape[1:]), \ + "The shape of pred doesn't match the shape of target" + + original_shape = pred.shape + + # [B, C, d_1, d_2, ..., d_k] -> [C, B, d_1, d_2, ..., d_k] + pred = pred.transpose(0, 1) + # [C, B, d_1, d_2, ..., d_k] -> [C, N] + pred = pred.reshape(pred.size(0), -1) + # [C, N] -> [N, C] + pred = pred.transpose(0, 1).contiguous() + + if original_shape == target.shape: + # target with shape [B, C, d_1, d_2, ...] + # transform it's shape into [N, C] + # [B, C, d_1, d_2, ...] -> [C, B, d_1, d_2, ..., d_k] + target = target.transpose(0, 1) + # [C, B, d_1, d_2, ..., d_k] -> [C, N] + target = target.reshape(target.size(0), -1) + # [C, N] -> [N, C] + target = target.transpose(0, 1).contiguous() + else: + # target with shape [B, d_1, d_2, ...] + # transform it's shape into [N, ] + target = target.view(-1).contiguous() + valid_mask = (target != ignore_index).view(-1, 1) + # avoid raising error when using F.one_hot() + target = torch.where(target == ignore_index, target.new_tensor(0), + target) + + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.use_sigmoid: + num_classes = pred.size(1) + if torch.cuda.is_available() and pred.is_cuda: + if target.dim() == 1: + one_hot_target = F.one_hot(target, num_classes=num_classes) + else: + one_hot_target = target + target = target.argmax(dim=1) + valid_mask = (target != ignore_index).view(-1, 1) + calculate_loss_func = sigmoid_focal_loss + else: + one_hot_target = None + if target.dim() == 1: + target = F.one_hot(target, num_classes=num_classes) + else: + valid_mask = (target.argmax(dim=1) != ignore_index).view( + -1, 1) + calculate_loss_func = py_sigmoid_focal_loss + + loss_cls = self.loss_weight * calculate_loss_func( + pred, + target, + one_hot_target, + weight, + gamma=self.gamma, + alpha=self.alpha, + class_weight=self.class_weight, + valid_mask=valid_mask, + reduction=reduction, + avg_factor=avg_factor) + + if reduction == 'none': + # [N, C] -> [C, N] + loss_cls = loss_cls.transpose(0, 1) + # [C, N] -> [C, B, d1, d2, ...] + # original_shape: [B, C, d1, d2, ...] + loss_cls = loss_cls.reshape(original_shape[1], + original_shape[0], + *original_shape[2:]) + # [C, B, d1, d2, ...] -> [B, C, d1, d2, ...] + loss_cls = loss_cls.transpose(0, 1).contiguous() + else: + raise NotImplementedError + return loss_cls + + @property + def loss_name(self): + """Loss Name. + + This function must be implemented and will return the name of this + loss function. This name will be used to combine different loss items + by simple sum operation. In addition, if you want this loss item to be + included into the backward graph, `loss_` must be the prefix of the + name. + Returns: + str: The name of this loss item. + """ + return self._loss_name diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/lovasz_loss.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/lovasz_loss.py new file mode 100644 index 000000000..2bb0fad39 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/lovasz_loss.py @@ -0,0 +1,323 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""Modified from https://github.com/bermanmaxim/LovaszSoftmax/blob/master/pytor +ch/lovasz_losses.py Lovasz-Softmax and Jaccard hinge loss in PyTorch Maxim +Berman 2018 ESAT-PSI KU Leuven (MIT License)""" + +import mmcv +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import get_class_weight, weight_reduce_loss + + +def lovasz_grad(gt_sorted): + """Computes gradient of the Lovasz extension w.r.t sorted errors. + + See Alg. 1 in paper. + """ + p = len(gt_sorted) + gts = gt_sorted.sum() + intersection = gts - gt_sorted.float().cumsum(0) + union = gts + (1 - gt_sorted).float().cumsum(0) + jaccard = 1. - intersection / union + if p > 1: # cover 1-pixel case + jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] + return jaccard + + +def flatten_binary_logits(logits, labels, ignore_index=None): + """Flattens predictions in the batch (binary case) Remove labels equal to + 'ignore_index'.""" + logits = logits.view(-1) + labels = labels.view(-1) + if ignore_index is None: + return logits, labels + valid = (labels != ignore_index) + vlogits = logits[valid] + vlabels = labels[valid] + return vlogits, vlabels + + +def flatten_probs(probs, labels, ignore_index=None): + """Flattens predictions in the batch.""" + if probs.dim() == 3: + # assumes output of a sigmoid layer + B, H, W = probs.size() + probs = probs.view(B, 1, H, W) + B, C, H, W = probs.size() + probs = probs.permute(0, 2, 3, 1).contiguous().view(-1, C) # B*H*W, C=P,C + labels = labels.view(-1) + if ignore_index is None: + return probs, labels + valid = (labels != ignore_index) + vprobs = probs[valid.nonzero().squeeze()] + vlabels = labels[valid] + return vprobs, vlabels + + +def lovasz_hinge_flat(logits, labels): + """Binary Lovasz hinge loss. + + Args: + logits (torch.Tensor): [P], logits at each prediction + (between -infty and +infty). + labels (torch.Tensor): [P], binary ground truth labels (0 or 1). + + Returns: + torch.Tensor: The calculated loss. + """ + if len(labels) == 0: + # only void pixels, the gradients should be 0 + return logits.sum() * 0. + signs = 2. * labels.float() - 1. + errors = (1. - logits * signs) + errors_sorted, perm = torch.sort(errors, dim=0, descending=True) + perm = perm.data + gt_sorted = labels[perm] + grad = lovasz_grad(gt_sorted) + loss = torch.dot(F.relu(errors_sorted), grad) + return loss + + +def lovasz_hinge(logits, + labels, + classes='present', + per_image=False, + class_weight=None, + reduction='mean', + avg_factor=None, + ignore_index=255): + """Binary Lovasz hinge loss. + + Args: + logits (torch.Tensor): [B, H, W], logits at each pixel + (between -infty and +infty). + labels (torch.Tensor): [B, H, W], binary ground truth masks (0 or 1). + classes (str | list[int], optional): Placeholder, to be consistent with + other loss. Default: None. + per_image (bool, optional): If per_image is True, compute the loss per + image instead of per batch. Default: False. + class_weight (list[float], optional): Placeholder, to be consistent + with other loss. Default: None. + reduction (str, optional): The method used to reduce the loss. Options + are "none", "mean" and "sum". This parameter only works when + per_image is True. Default: 'mean'. + avg_factor (int, optional): Average factor that is used to average + the loss. This parameter only works when per_image is True. + Default: None. + ignore_index (int | None): The label index to be ignored. Default: 255. + + Returns: + torch.Tensor: The calculated loss. + """ + if per_image: + loss = [ + lovasz_hinge_flat(*flatten_binary_logits( + logit.unsqueeze(0), label.unsqueeze(0), ignore_index)) + for logit, label in zip(logits, labels) + ] + loss = weight_reduce_loss( + torch.stack(loss), None, reduction, avg_factor) + else: + loss = lovasz_hinge_flat( + *flatten_binary_logits(logits, labels, ignore_index)) + return loss + + +def lovasz_softmax_flat(probs, labels, classes='present', class_weight=None): + """Multi-class Lovasz-Softmax loss. + + Args: + probs (torch.Tensor): [P, C], class probabilities at each prediction + (between 0 and 1). + labels (torch.Tensor): [P], ground truth labels (between 0 and C - 1). + classes (str | list[int], optional): Classes chosen to calculate loss. + 'all' for all classes, 'present' for classes present in labels, or + a list of classes to average. Default: 'present'. + class_weight (list[float], optional): The weight for each class. + Default: None. + + Returns: + torch.Tensor: The calculated loss. + """ + if probs.numel() == 0: + # only void pixels, the gradients should be 0 + return probs * 0. + C = probs.size(1) + losses = [] + class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes + for c in class_to_sum: + fg = (labels == c).float() # foreground for class c + if (classes == 'present' and fg.sum() == 0): + continue + if C == 1: + if len(classes) > 1: + raise ValueError('Sigmoid output possible only with 1 class') + class_pred = probs[:, 0] + else: + class_pred = probs[:, c] + errors = (fg - class_pred).abs() + errors_sorted, perm = torch.sort(errors, 0, descending=True) + perm = perm.data + fg_sorted = fg[perm] + loss = torch.dot(errors_sorted, lovasz_grad(fg_sorted)) + if class_weight is not None: + loss *= class_weight[c] + losses.append(loss) + return torch.stack(losses).mean() + + +def lovasz_softmax(probs, + labels, + classes='present', + per_image=False, + class_weight=None, + reduction='mean', + avg_factor=None, + ignore_index=255): + """Multi-class Lovasz-Softmax loss. + + Args: + probs (torch.Tensor): [B, C, H, W], class probabilities at each + prediction (between 0 and 1). + labels (torch.Tensor): [B, H, W], ground truth labels (between 0 and + C - 1). + classes (str | list[int], optional): Classes chosen to calculate loss. + 'all' for all classes, 'present' for classes present in labels, or + a list of classes to average. Default: 'present'. + per_image (bool, optional): If per_image is True, compute the loss per + image instead of per batch. Default: False. + class_weight (list[float], optional): The weight for each class. + Default: None. + reduction (str, optional): The method used to reduce the loss. Options + are "none", "mean" and "sum". This parameter only works when + per_image is True. Default: 'mean'. + avg_factor (int, optional): Average factor that is used to average + the loss. This parameter only works when per_image is True. + Default: None. + ignore_index (int | None): The label index to be ignored. Default: 255. + + Returns: + torch.Tensor: The calculated loss. + """ + + if per_image: + loss = [ + lovasz_softmax_flat( + *flatten_probs( + prob.unsqueeze(0), label.unsqueeze(0), ignore_index), + classes=classes, + class_weight=class_weight) + for prob, label in zip(probs, labels) + ] + loss = weight_reduce_loss( + torch.stack(loss), None, reduction, avg_factor) + else: + loss = lovasz_softmax_flat( + *flatten_probs(probs, labels, ignore_index), + classes=classes, + class_weight=class_weight) + return loss + + +@LOSSES.register_module() +class LovaszLoss(nn.Module): + """LovaszLoss. + + This loss is proposed in `The Lovasz-Softmax loss: A tractable surrogate + for the optimization of the intersection-over-union measure in neural + networks `_. + + Args: + loss_type (str, optional): Binary or multi-class loss. + Default: 'multi_class'. Options are "binary" and "multi_class". + classes (str | list[int], optional): Classes chosen to calculate loss. + 'all' for all classes, 'present' for classes present in labels, or + a list of classes to average. Default: 'present'. + per_image (bool, optional): If per_image is True, compute the loss per + image instead of per batch. Default: False. + reduction (str, optional): The method used to reduce the loss. Options + are "none", "mean" and "sum". This parameter only works when + per_image is True. Default: 'mean'. + class_weight (list[float] | str, optional): Weight of each class. If in + str format, read them from a file. Defaults to None. + loss_weight (float, optional): Weight of the loss. Defaults to 1.0. + loss_name (str, optional): Name of the loss item. If you want this loss + item to be included into the backward graph, `loss_` must be the + prefix of the name. Defaults to 'loss_lovasz'. + """ + + def __init__(self, + loss_type='multi_class', + classes='present', + per_image=False, + reduction='mean', + class_weight=None, + loss_weight=1.0, + loss_name='loss_lovasz'): + super(LovaszLoss, self).__init__() + assert loss_type in ('binary', 'multi_class'), "loss_type should be \ + 'binary' or 'multi_class'." + + if loss_type == 'binary': + self.cls_criterion = lovasz_hinge + else: + self.cls_criterion = lovasz_softmax + assert classes in ('all', 'present') or mmcv.is_list_of(classes, int) + if not per_image: + assert reduction == 'none', "reduction should be 'none' when \ + per_image is False." + + self.classes = classes + self.per_image = per_image + self.reduction = reduction + self.loss_weight = loss_weight + self.class_weight = get_class_weight(class_weight) + self._loss_name = loss_name + + def forward(self, + cls_score, + label, + weight=None, + avg_factor=None, + reduction_override=None, + **kwargs): + """Forward function.""" + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.class_weight is not None: + class_weight = cls_score.new_tensor(self.class_weight) + else: + class_weight = None + + # if multi-class loss, transform logits to probs + if self.cls_criterion == lovasz_softmax: + cls_score = F.softmax(cls_score, dim=1) + + loss_cls = self.loss_weight * self.cls_criterion( + cls_score, + label, + self.classes, + self.per_image, + class_weight=class_weight, + reduction=reduction, + avg_factor=avg_factor, + **kwargs) + return loss_cls + + @property + def loss_name(self): + """Loss Name. + + This function must be implemented and will return the name of this + loss function. This name will be used to combine different loss items + by simple sum operation. In addition, if you want this loss item to be + included into the backward graph, `loss_` must be the prefix of the + name. + Returns: + str: The name of this loss item. + """ + return self._loss_name diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/utils.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/utils.py new file mode 100644 index 000000000..c37875fad --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/losses/utils.py @@ -0,0 +1,122 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import functools + +import mmcv +import numpy as np +import torch.nn.functional as F + + +def get_class_weight(class_weight): + """Get class weight for loss function. + + Args: + class_weight (list[float] | str | None): If class_weight is a str, + take it as a file name and read from it. + """ + if isinstance(class_weight, str): + # take it as a file path + if class_weight.endswith('.npy'): + class_weight = np.load(class_weight) + else: + # pkl, json or yaml + class_weight = mmcv.load(class_weight) + + return class_weight + + +def reduce_loss(loss, reduction): + """Reduce loss as specified. + + Args: + loss (Tensor): Elementwise loss tensor. + reduction (str): Options are "none", "mean" and "sum". + + Return: + Tensor: Reduced loss tensor. + """ + reduction_enum = F._Reduction.get_enum(reduction) + # none: 0, elementwise_mean:1, sum: 2 + if reduction_enum == 0: + return loss + elif reduction_enum == 1: + return loss.mean() + elif reduction_enum == 2: + return loss.sum() + + +def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): + """Apply element-wise weight and reduce loss. + + Args: + loss (Tensor): Element-wise loss. + weight (Tensor): Element-wise weights. + reduction (str): Same as built-in losses of PyTorch. + avg_factor (float): Average factor when computing the mean of losses. + + Returns: + Tensor: Processed loss values. + """ + # if weight is specified, apply element-wise weight + if weight is not None: + assert weight.dim() == loss.dim() + if weight.dim() > 1: + assert weight.size(1) == 1 or weight.size(1) == loss.size(1) + loss = loss * weight + + # if avg_factor is not specified, just reduce the loss + if avg_factor is None: + loss = reduce_loss(loss, reduction) + else: + # if reduction is mean, then average the loss by avg_factor + if reduction == 'mean': + loss = loss.sum() / avg_factor + # if reduction is 'none', then do nothing, otherwise raise an error + elif reduction != 'none': + raise ValueError('avg_factor can not be used with reduction="sum"') + return loss + + +def weighted_loss(loss_func): + """Create a weighted version of a given loss function. + + To use this decorator, the loss function must have the signature like + `loss_func(pred, target, **kwargs)`. The function only needs to compute + element-wise loss without any reduction. This decorator will add weight + and reduction arguments to the function. The decorated function will have + the signature like `loss_func(pred, target, weight=None, reduction='mean', + avg_factor=None, **kwargs)`. + + :Example: + + >>> import torch + >>> @weighted_loss + >>> def l1_loss(pred, target): + >>> return (pred - target).abs() + + >>> pred = torch.Tensor([0, 2, 3]) + >>> target = torch.Tensor([1, 1, 1]) + >>> weight = torch.Tensor([1, 0, 1]) + + >>> l1_loss(pred, target) + tensor(1.3333) + >>> l1_loss(pred, target, weight) + tensor(1.) + >>> l1_loss(pred, target, reduction='none') + tensor([1., 1., 2.]) + >>> l1_loss(pred, target, weight, avg_factor=2) + tensor(1.5000) + """ + + @functools.wraps(loss_func) + def wrapper(pred, + target, + weight=None, + reduction='mean', + avg_factor=None, + **kwargs): + # get element-wise loss + loss = loss_func(pred, target, **kwargs) + loss = weight_reduce_loss(loss, weight, reduction, avg_factor) + return loss + + return wrapper diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/__init__.py new file mode 100644 index 000000000..aba73f165 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/__init__.py @@ -0,0 +1,8 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .fpn import FPN +from .ic_neck import ICNeck +from .jpu import JPU +from .mla_neck import MLANeck +from .multilevel_neck import MultiLevelNeck + +__all__ = ['FPN', 'MultiLevelNeck', 'MLANeck', 'ICNeck', 'JPU'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/fpn.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/fpn.py new file mode 100644 index 000000000..975a48e8b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/fpn.py @@ -0,0 +1,213 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule, auto_fp16 + +from mmseg.ops import resize +from ..builder import NECKS + + +@NECKS.register_module() +class FPN(BaseModule): + """Feature Pyramid Network. + + This neck is the implementation of `Feature Pyramid Networks for Object + Detection `_. + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale) + num_outs (int): Number of output scales. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + add_extra_convs (bool | str): If bool, it decides whether to add conv + layers on top of the original feature maps. Default to False. + If True, its actual mode is specified by `extra_convs_on_inputs`. + If str, it specifies the source feature map of the extra convs. + Only the following options are allowed + + - 'on_input': Last feat map of neck inputs (i.e. backbone feature). + - 'on_lateral': Last feature map after lateral convs. + - 'on_output': The last output feature map after fpn convs. + extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs + on the original feature from the backbone. If True, + it is equivalent to `add_extra_convs='on_input'`. If False, it is + equivalent to set `add_extra_convs='on_output'`. Default to True. + relu_before_extra_convs (bool): Whether to apply relu before the extra + conv. Default: False. + no_norm_on_lateral (bool): Whether to apply norm on lateral. + Default: False. + conv_cfg (dict): Config dict for convolution layer. Default: None. + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (str): Config dict for activation layer in ConvModule. + Default: None. + upsample_cfg (dict): Config dict for interpolate layer. + Default: `dict(mode='nearest')` + init_cfg (dict or list[dict], optional): Initialization config dict. + + Example: + >>> import torch + >>> in_channels = [2, 3, 5, 7] + >>> scales = [340, 170, 84, 43] + >>> inputs = [torch.rand(1, c, s, s) + ... for c, s in zip(in_channels, scales)] + >>> self = FPN(in_channels, 11, len(in_channels)).eval() + >>> outputs = self.forward(inputs) + >>> for i in range(len(outputs)): + ... print(f'outputs[{i}].shape = {outputs[i].shape}') + outputs[0].shape = torch.Size([1, 11, 340, 340]) + outputs[1].shape = torch.Size([1, 11, 170, 170]) + outputs[2].shape = torch.Size([1, 11, 84, 84]) + outputs[3].shape = torch.Size([1, 11, 43, 43]) + """ + + def __init__(self, + in_channels, + out_channels, + num_outs, + start_level=0, + end_level=-1, + add_extra_convs=False, + extra_convs_on_inputs=False, + relu_before_extra_convs=False, + no_norm_on_lateral=False, + conv_cfg=None, + norm_cfg=None, + act_cfg=None, + upsample_cfg=dict(mode='nearest'), + init_cfg=dict( + type='Xavier', layer='Conv2d', distribution='uniform')): + super(FPN, self).__init__(init_cfg) + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.num_ins = len(in_channels) + self.num_outs = num_outs + self.relu_before_extra_convs = relu_before_extra_convs + self.no_norm_on_lateral = no_norm_on_lateral + self.fp16_enabled = False + self.upsample_cfg = upsample_cfg.copy() + + if end_level == -1: + self.backbone_end_level = self.num_ins + assert num_outs >= self.num_ins - start_level + else: + # if end_level < inputs, no extra level is allowed + self.backbone_end_level = end_level + assert end_level <= len(in_channels) + assert num_outs == end_level - start_level + self.start_level = start_level + self.end_level = end_level + self.add_extra_convs = add_extra_convs + assert isinstance(add_extra_convs, (str, bool)) + if isinstance(add_extra_convs, str): + # Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' + assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') + elif add_extra_convs: # True + if extra_convs_on_inputs: + # For compatibility with previous release + # TODO: deprecate `extra_convs_on_inputs` + self.add_extra_convs = 'on_input' + else: + self.add_extra_convs = 'on_output' + + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + + for i in range(self.start_level, self.backbone_end_level): + l_conv = ConvModule( + in_channels[i], + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, + act_cfg=act_cfg, + inplace=False) + fpn_conv = ConvModule( + out_channels, + out_channels, + 3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + # add extra conv layers (e.g., RetinaNet) + extra_levels = num_outs - self.backbone_end_level + self.start_level + if self.add_extra_convs and extra_levels >= 1: + for i in range(extra_levels): + if i == 0 and self.add_extra_convs == 'on_input': + in_channels = self.in_channels[self.backbone_end_level - 1] + else: + in_channels = out_channels + extra_fpn_conv = ConvModule( + in_channels, + out_channels, + 3, + stride=2, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + inplace=False) + self.fpn_convs.append(extra_fpn_conv) + + @auto_fp16() + def forward(self, inputs): + assert len(inputs) == len(self.in_channels) + + # build laterals + laterals = [ + lateral_conv(inputs[i + self.start_level]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + # In some cases, fixing `scale factor` (e.g. 2) is preferred, but + # it cannot co-exist with `size` in `F.interpolate`. + if 'scale_factor' in self.upsample_cfg: + laterals[i - 1] = laterals[i - 1] + resize( + laterals[i], **self.upsample_cfg) + else: + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + resize( + laterals[i], size=prev_shape, **self.upsample_cfg) + + # build outputs + # part 1: from original levels + outs = [ + self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) + ] + # part 2: add extra levels + if self.num_outs > len(outs): + # use max pool to get more levels on top of outputs + # (e.g., Faster R-CNN, Mask R-CNN) + if not self.add_extra_convs: + for i in range(self.num_outs - used_backbone_levels): + outs.append(F.max_pool2d(outs[-1], 1, stride=2)) + # add conv layers on top of original feature maps (RetinaNet) + else: + if self.add_extra_convs == 'on_input': + extra_source = inputs[self.backbone_end_level - 1] + elif self.add_extra_convs == 'on_lateral': + extra_source = laterals[-1] + elif self.add_extra_convs == 'on_output': + extra_source = outs[-1] + else: + raise NotImplementedError + outs.append(self.fpn_convs[used_backbone_levels](extra_source)) + for i in range(used_backbone_levels + 1, self.num_outs): + if self.relu_before_extra_convs: + outs.append(self.fpn_convs[i](F.relu(outs[-1]))) + else: + outs.append(self.fpn_convs[i](outs[-1])) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/ic_neck.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/ic_neck.py new file mode 100644 index 000000000..d836a6b9c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/ic_neck.py @@ -0,0 +1,147 @@ +import torch.nn.functional as F +from mmcv.cnn import ConvModule +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import NECKS + + +class CascadeFeatureFusion(BaseModule): + """Cascade Feature Fusion Unit in ICNet. + + Args: + low_channels (int): The number of input channels for + low resolution feature map. + high_channels (int): The number of input channels for + high resolution feature map. + out_channels (int): The number of output channels. + conv_cfg (dict): Dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN'). + act_cfg (dict): Dictionary to construct and config act layer. + Default: dict(type='ReLU'). + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + + Returns: + x (Tensor): The output tensor of shape (N, out_channels, H, W). + x_low (Tensor): The output tensor of shape (N, out_channels, H, W) + for Cascade Label Guidance in auxiliary heads. + """ + + def __init__(self, + low_channels, + high_channels, + out_channels, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + align_corners=False, + init_cfg=None): + super(CascadeFeatureFusion, self).__init__(init_cfg=init_cfg) + self.align_corners = align_corners + self.conv_low = ConvModule( + low_channels, + out_channels, + 3, + padding=2, + dilation=2, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.conv_high = ConvModule( + high_channels, + out_channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, x_low, x_high): + x_low = resize( + x_low, + size=x_high.size()[2:], + mode='bilinear', + align_corners=self.align_corners) + # Note: Different from original paper, `x_low` is underwent + # `self.conv_low` rather than another 1x1 conv classifier + # before being used for auxiliary head. + x_low = self.conv_low(x_low) + x_high = self.conv_high(x_high) + x = x_low + x_high + x = F.relu(x, inplace=True) + return x, x_low + + +@NECKS.register_module() +class ICNeck(BaseModule): + """ICNet for Real-Time Semantic Segmentation on High-Resolution Images. + + This head is the implementation of `ICHead + `_. + + Args: + in_channels (int): The number of input image channels. Default: 3. + out_channels (int): The numbers of output feature channels. + Default: 128. + conv_cfg (dict): Dictionary to construct and config conv layer. + Default: None. + norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN'). + act_cfg (dict): Dictionary to construct and config act layer. + Default: dict(type='ReLU'). + align_corners (bool): align_corners argument of F.interpolate. + Default: False. + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels=(64, 256, 256), + out_channels=128, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + align_corners=False, + init_cfg=None): + super(ICNeck, self).__init__(init_cfg=init_cfg) + assert len(in_channels) == 3, 'Length of input channels \ + must be 3!' + + self.in_channels = in_channels + self.out_channels = out_channels + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.align_corners = align_corners + self.cff_24 = CascadeFeatureFusion( + self.in_channels[2], + self.in_channels[1], + self.out_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=self.align_corners) + + self.cff_12 = CascadeFeatureFusion( + self.out_channels, + self.in_channels[0], + self.out_channels, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + act_cfg=self.act_cfg, + align_corners=self.align_corners) + + def forward(self, inputs): + assert len(inputs) == 3, 'Length of input feature \ + maps must be 3!' + + x_sub1, x_sub2, x_sub4 = inputs + x_cff_24, x_24 = self.cff_24(x_sub4, x_sub2) + x_cff_12, x_12 = self.cff_12(x_cff_24, x_sub1) + # Note: `x_cff_12` is used for decode_head, + # `x_24` and `x_12` are used for auxiliary head. + return x_24, x_12, x_cff_12 diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/jpu.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/jpu.py new file mode 100644 index 000000000..3cc6b9f42 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/jpu.py @@ -0,0 +1,131 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import NECKS + + +@NECKS.register_module() +class JPU(BaseModule): + """FastFCN: Rethinking Dilated Convolution in the Backbone + for Semantic Segmentation. + + This Joint Pyramid Upsampling (JPU) neck is the implementation of + `FastFCN `_. + + Args: + in_channels (Tuple[int], optional): The number of input channels + for each convolution operations before upsampling. + Default: (512, 1024, 2048). + mid_channels (int): The number of output channels of JPU. + Default: 512. + start_level (int): Index of the start input backbone level used to + build the feature pyramid. Default: 0. + end_level (int): Index of the end input backbone level (exclusive) to + build the feature pyramid. Default: -1, which means the last level. + dilations (tuple[int]): Dilation rate of each Depthwise + Separable ConvModule. Default: (1, 2, 4, 8). + align_corners (bool, optional): The align_corners argument of + resize operation. Default: False. + conv_cfg (dict | None): Config of conv layers. + Default: None. + norm_cfg (dict | None): Config of norm layers. + Default: dict(type='BN'). + act_cfg (dict): Config of activation layers. + Default: dict(type='ReLU'). + init_cfg (dict or list[dict], optional): Initialization config dict. + Default: None. + """ + + def __init__(self, + in_channels=(512, 1024, 2048), + mid_channels=512, + start_level=0, + end_level=-1, + dilations=(1, 2, 4, 8), + align_corners=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + init_cfg=None): + super(JPU, self).__init__(init_cfg=init_cfg) + assert isinstance(in_channels, tuple) + assert isinstance(dilations, tuple) + self.in_channels = in_channels + self.mid_channels = mid_channels + self.start_level = start_level + self.num_ins = len(in_channels) + if end_level == -1: + self.backbone_end_level = self.num_ins + else: + self.backbone_end_level = end_level + assert end_level <= len(in_channels) + + self.dilations = dilations + self.align_corners = align_corners + + self.conv_layers = nn.ModuleList() + self.dilation_layers = nn.ModuleList() + for i in range(self.start_level, self.backbone_end_level): + conv_layer = nn.Sequential( + ConvModule( + self.in_channels[i], + self.mid_channels, + kernel_size=3, + padding=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.conv_layers.append(conv_layer) + for i in range(len(dilations)): + dilation_layer = nn.Sequential( + DepthwiseSeparableConvModule( + in_channels=(self.backbone_end_level - self.start_level) * + self.mid_channels, + out_channels=self.mid_channels, + kernel_size=3, + stride=1, + padding=dilations[i], + dilation=dilations[i], + dw_norm_cfg=norm_cfg, + dw_act_cfg=None, + pw_norm_cfg=norm_cfg, + pw_act_cfg=act_cfg)) + self.dilation_layers.append(dilation_layer) + + def forward(self, inputs): + """Forward function.""" + assert len(inputs) == len(self.in_channels), 'Length of inputs must \ + be the same with self.in_channels!' + + feats = [ + self.conv_layers[i - self.start_level](inputs[i]) + for i in range(self.start_level, self.backbone_end_level) + ] + + h, w = feats[0].shape[2:] + for i in range(1, len(feats)): + feats[i] = resize( + feats[i], + size=(h, w), + mode='bilinear', + align_corners=self.align_corners) + + feat = torch.cat(feats, dim=1) + concat_feat = torch.cat([ + self.dilation_layers[i](feat) for i in range(len(self.dilations)) + ], + dim=1) + + outs = [] + + # Default: outs[2] is the output of JPU for decoder head, outs[1] is + # the feature map from backbone for auxiliary head. Additionally, + # outs[0] can also be used for auxiliary head. + for i in range(self.start_level, self.backbone_end_level - 1): + outs.append(inputs[i]) + outs.append(concat_feat) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/mla_neck.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/mla_neck.py new file mode 100644 index 000000000..1513e296d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/mla_neck.py @@ -0,0 +1,118 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, build_norm_layer + +from ..builder import NECKS + + +class MLAModule(nn.Module): + + def __init__(self, + in_channels=[1024, 1024, 1024, 1024], + out_channels=256, + norm_cfg=None, + act_cfg=None): + super(MLAModule, self).__init__() + self.channel_proj = nn.ModuleList() + for i in range(len(in_channels)): + self.channel_proj.append( + ConvModule( + in_channels=in_channels[i], + out_channels=out_channels, + kernel_size=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + self.feat_extract = nn.ModuleList() + for i in range(len(in_channels)): + self.feat_extract.append( + ConvModule( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=3, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + def forward(self, inputs): + + # feat_list -> [p2, p3, p4, p5] + feat_list = [] + for x, conv in zip(inputs, self.channel_proj): + feat_list.append(conv(x)) + + # feat_list -> [p5, p4, p3, p2] + # mid_list -> [m5, m4, m3, m2] + feat_list = feat_list[::-1] + mid_list = [] + for feat in feat_list: + if len(mid_list) == 0: + mid_list.append(feat) + else: + mid_list.append(mid_list[-1] + feat) + + # mid_list -> [m5, m4, m3, m2] + # out_list -> [o2, o3, o4, o5] + out_list = [] + for mid, conv in zip(mid_list, self.feat_extract): + out_list.append(conv(mid)) + + return tuple(out_list) + + +@NECKS.register_module() +class MLANeck(nn.Module): + """Multi-level Feature Aggregation. + + This neck is `The Multi-level Feature Aggregation construction of + SETR `_. + + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale). + norm_layer (dict): Config dict for input normalization. + Default: norm_layer=dict(type='LN', eps=1e-6, requires_grad=True). + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (dict): Config dict for activation layer in ConvModule. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + norm_layer=dict(type='LN', eps=1e-6, requires_grad=True), + norm_cfg=None, + act_cfg=None): + super(MLANeck, self).__init__() + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + + # In order to build general vision transformer backbone, we have to + # move MLA to neck. + self.norm = nn.ModuleList([ + build_norm_layer(norm_layer, in_channels[i])[1] + for i in range(len(in_channels)) + ]) + + self.mla = MLAModule( + in_channels=in_channels, + out_channels=out_channels, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, inputs): + assert len(inputs) == len(self.in_channels) + + # Convert from nchw to nlc + outs = [] + for i in range(len(inputs)): + x = inputs[i] + n, c, h, w = x.shape + x = x.reshape(n, c, h * w).transpose(2, 1).contiguous() + x = self.norm[i](x) + x = x.transpose(1, 2).reshape(n, c, h, w).contiguous() + outs.append(x) + + outs = self.mla(outs) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/multilevel_neck.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/multilevel_neck.py new file mode 100644 index 000000000..5151f8762 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/necks/multilevel_neck.py @@ -0,0 +1,78 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch.nn as nn +from mmcv.cnn import ConvModule, xavier_init + +from mmseg.ops import resize +from ..builder import NECKS + + +@NECKS.register_module() +class MultiLevelNeck(nn.Module): + """MultiLevelNeck. + + A neck structure connect vit backbone and decoder_heads. + + Args: + in_channels (List[int]): Number of input channels per scale. + out_channels (int): Number of output channels (used at each scale). + scales (List[float]): Scale factors for each input feature map. + Default: [0.5, 1, 2, 4] + norm_cfg (dict): Config dict for normalization layer. Default: None. + act_cfg (dict): Config dict for activation layer in ConvModule. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + scales=[0.5, 1, 2, 4], + norm_cfg=None, + act_cfg=None): + super(MultiLevelNeck, self).__init__() + assert isinstance(in_channels, list) + self.in_channels = in_channels + self.out_channels = out_channels + self.scales = scales + self.num_outs = len(scales) + self.lateral_convs = nn.ModuleList() + self.convs = nn.ModuleList() + for in_channel in in_channels: + self.lateral_convs.append( + ConvModule( + in_channel, + out_channels, + kernel_size=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + for _ in range(self.num_outs): + self.convs.append( + ConvModule( + out_channels, + out_channels, + kernel_size=3, + padding=1, + stride=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + + # default init_weights for conv(msra) and norm in ConvModule + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + xavier_init(m, distribution='uniform') + + def forward(self, inputs): + assert len(inputs) == len(self.in_channels) + inputs = [ + lateral_conv(inputs[i]) + for i, lateral_conv in enumerate(self.lateral_convs) + ] + # for len(inputs) not equal to self.num_outs + if len(inputs) == 1: + inputs = [inputs[0] for _ in range(self.num_outs)] + outs = [] + for i in range(self.num_outs): + x_resize = resize( + inputs[i], scale_factor=self.scales[i], mode='bilinear') + outs.append(self.convs[i](x_resize)) + return tuple(outs) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/__init__.py new file mode 100644 index 000000000..387c858bd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .base import BaseSegmentor +from .cascade_encoder_decoder import CascadeEncoderDecoder +from .encoder_decoder import EncoderDecoder + +__all__ = ['BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/base.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/base.py new file mode 100644 index 000000000..f0f320ffb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/base.py @@ -0,0 +1,277 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from abc import ABCMeta, abstractmethod +from collections import OrderedDict + +import mmcv +import numpy as np +import torch +import torch.distributed as dist +from mmcv.runner import BaseModule, auto_fp16 + + +class BaseSegmentor(BaseModule, metaclass=ABCMeta): + """Base class for segmentors.""" + + def __init__(self, init_cfg=None): + super(BaseSegmentor, self).__init__(init_cfg) + self.fp16_enabled = False + + @property + def with_neck(self): + """bool: whether the segmentor has neck""" + return hasattr(self, 'neck') and self.neck is not None + + @property + def with_auxiliary_head(self): + """bool: whether the segmentor has auxiliary head""" + return hasattr(self, + 'auxiliary_head') and self.auxiliary_head is not None + + @property + def with_decode_head(self): + """bool: whether the segmentor has decode head""" + return hasattr(self, 'decode_head') and self.decode_head is not None + + @abstractmethod + def extract_feat(self, imgs): + """Placeholder for extract features from images.""" + pass + + @abstractmethod + def encode_decode(self, img, img_metas): + """Placeholder for encode images with backbone and decode into a + semantic segmentation map of the same size as input.""" + pass + + @abstractmethod + def forward_train(self, imgs, img_metas, **kwargs): + """Placeholder for Forward function for training.""" + pass + + @abstractmethod + def simple_test(self, img, img_meta, **kwargs): + """Placeholder for single image test.""" + pass + + @abstractmethod + def aug_test(self, imgs, img_metas, **kwargs): + """Placeholder for augmentation test.""" + pass + + def forward_test(self, imgs, img_metas, **kwargs): + """ + Args: + imgs (List[Tensor]): the outer list indicates test-time + augmentations and inner Tensor should have a shape NxCxHxW, + which contains all images in the batch. + img_metas (List[List[dict]]): the outer list indicates test-time + augs (multiscale, flip, etc.) and the inner list indicates + images in a batch. + """ + for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: + if not isinstance(var, list): + raise TypeError(f'{name} must be a list, but got ' + f'{type(var)}') + + num_augs = len(imgs) + if num_augs != len(img_metas): + raise ValueError(f'num of augmentations ({len(imgs)}) != ' + f'num of image meta ({len(img_metas)})') + # all images in the same aug batch all of the same ori_shape and pad + # shape + for img_meta in img_metas: + ori_shapes = [_['ori_shape'] for _ in img_meta] + assert all(shape == ori_shapes[0] for shape in ori_shapes) + img_shapes = [_['img_shape'] for _ in img_meta] + assert all(shape == img_shapes[0] for shape in img_shapes) + pad_shapes = [_['pad_shape'] for _ in img_meta] + assert all(shape == pad_shapes[0] for shape in pad_shapes) + + if num_augs == 1: + return self.simple_test(imgs[0], img_metas[0], **kwargs) + else: + return self.aug_test(imgs, img_metas, **kwargs) + + @auto_fp16(apply_to=('img', )) + def forward(self, img, img_metas, return_loss=True, **kwargs): + """Calls either :func:`forward_train` or :func:`forward_test` depending + on whether ``return_loss`` is ``True``. + + Note this setting will change the expected inputs. When + ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor + and List[dict]), and when ``resturn_loss=False``, img and img_meta + should be double nested (i.e. List[Tensor], List[List[dict]]), with + the outer list indicating test time augmentations. + """ + if return_loss: + return self.forward_train(img, img_metas, **kwargs) + else: + return self.forward_test(img, img_metas, **kwargs) + + def train_step(self, data_batch, optimizer, **kwargs): + """The iteration step during training. + + This method defines an iteration step during training, except for the + back propagation and optimizer updating, which are done in an optimizer + hook. Note that in some complicated cases or models, the whole process + including back propagation and optimizer updating is also defined in + this method, such as GAN. + + Args: + data (dict): The output of dataloader. + optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of + runner is passed to ``train_step()``. This argument is unused + and reserved. + + Returns: + dict: It should contain at least 3 keys: ``loss``, ``log_vars``, + ``num_samples``. + ``loss`` is a tensor for back propagation, which can be a + weighted sum of multiple losses. + ``log_vars`` contains all the variables to be sent to the + logger. + ``num_samples`` indicates the batch size (when the model is + DDP, it means the batch size on each GPU), which is used for + averaging the logs. + """ + losses = self(**data_batch) + loss, log_vars = self._parse_losses(losses) + + outputs = dict( + loss=loss, + log_vars=log_vars, + num_samples=len(data_batch['img_metas'])) + + return outputs + + def val_step(self, data_batch, optimizer=None, **kwargs): + """The iteration step during validation. + + This method shares the same signature as :func:`train_step`, but used + during val epochs. Note that the evaluation after training epochs is + not implemented with this method, but an evaluation hook. + """ + losses = self(**data_batch) + loss, log_vars = self._parse_losses(losses) + + outputs = dict( + loss=loss, + log_vars=log_vars, + num_samples=len(data_batch['img_metas'])) + + return outputs + + @staticmethod + def _parse_losses(losses): + """Parse the raw outputs (losses) of the network. + + Args: + losses (dict): Raw output of the network, which usually contain + losses and other necessary information. + + Returns: + tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor + which may be a weighted sum of all losses, log_vars contains + all the variables to be sent to the logger. + """ + log_vars = OrderedDict() + for loss_name, loss_value in losses.items(): + if isinstance(loss_value, torch.Tensor): + log_vars[loss_name] = loss_value.mean() + elif isinstance(loss_value, list): + log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) + else: + raise TypeError( + f'{loss_name} is not a tensor or list of tensors') + + loss = sum(_value for _key, _value in log_vars.items() + if 'loss' in _key) + + # If the loss_vars has different length, raise assertion error + # to prevent GPUs from infinite waiting. + if dist.is_available() and dist.is_initialized(): + log_var_length = torch.tensor(len(log_vars), device=loss.device) + dist.all_reduce(log_var_length) + message = (f'rank {dist.get_rank()}' + + f' len(log_vars): {len(log_vars)}' + ' keys: ' + + ','.join(log_vars.keys()) + '\n') + assert log_var_length == len(log_vars) * dist.get_world_size(), \ + 'loss log variables are different across GPUs!\n' + message + + log_vars['loss'] = loss + for loss_name, loss_value in log_vars.items(): + # reduce loss when distributed training + if dist.is_available() and dist.is_initialized(): + loss_value = loss_value.data.clone() + dist.all_reduce(loss_value.div_(dist.get_world_size())) + log_vars[loss_name] = loss_value.item() + + return loss, log_vars + + def show_result(self, + img, + result, + palette=None, + win_name='', + show=False, + wait_time=0, + out_file=None, + opacity=0.5): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (Tensor): The semantic segmentation results to draw over + `img`. + palette (list[list[int]]] | np.ndarray | None): The palette of + segmentation map. If None is given, random palette will be + generated. Default: None + win_name (str): The window name. + wait_time (int): Value of waitKey param. + Default: 0. + show (bool): Whether to show the image. + Default: False. + out_file (str or None): The filename to write the image. + Default: None. + opacity(float): Opacity of painted segmentation map. + Default 0.5. + Must be in (0, 1] range. + Returns: + img (Tensor): Only if not `show` or `out_file` + """ + img = mmcv.imread(img) + img = img.copy() + seg = result[0] + if palette is None: + if self.PALETTE is None: + palette = np.random.randint( + 0, 255, size=(len(self.CLASSES), 3)) + else: + palette = self.PALETTE + palette = np.array(palette) + assert palette.shape[0] == len(self.CLASSES) + assert palette.shape[1] == 3 + assert len(palette.shape) == 2 + assert 0 < opacity <= 1.0 + color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) + for label, color in enumerate(palette): + color_seg[seg == label, :] = color + # convert to BGR + color_seg = color_seg[..., ::-1] + + img = img * (1 - opacity) + color_seg * opacity + img = img.astype(np.uint8) + # if out_file specified, do not show image in window + if out_file is not None: + show = False + + if show: + mmcv.imshow(img, win_name, wait_time) + if out_file is not None: + mmcv.imwrite(img, out_file) + + if not (show or out_file): + warnings.warn('show==False and out_file is not specified, only ' + 'result image will be returned') + return img diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/cascade_encoder_decoder.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/cascade_encoder_decoder.py new file mode 100644 index 000000000..7f9f9006c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/cascade_encoder_decoder.py @@ -0,0 +1,84 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from torch import nn + +from mmseg.core import add_prefix +from mmseg.ops import resize +from .. import builder +from ..builder import SEGMENTORS +from .encoder_decoder import EncoderDecoder + + +@SEGMENTORS.register_module() +class CascadeEncoderDecoder(EncoderDecoder): + """Cascade Encoder Decoder segmentors. + + CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of + CascadeEncoderDecoder are cascaded. The output of previous decoder_head + will be the input of next decoder_head. + """ + + def __init__(self, + num_stages, + backbone, + decode_head, + neck=None, + auxiliary_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + self.num_stages = num_stages + super(CascadeEncoderDecoder, self).__init__( + backbone=backbone, + decode_head=decode_head, + neck=neck, + auxiliary_head=auxiliary_head, + train_cfg=train_cfg, + test_cfg=test_cfg, + pretrained=pretrained, + init_cfg=init_cfg) + + def _init_decode_head(self, decode_head): + """Initialize ``decode_head``""" + assert isinstance(decode_head, list) + assert len(decode_head) == self.num_stages + self.decode_head = nn.ModuleList() + for i in range(self.num_stages): + self.decode_head.append(builder.build_head(decode_head[i])) + self.align_corners = self.decode_head[-1].align_corners + self.num_classes = self.decode_head[-1].num_classes + + def encode_decode(self, img, img_metas): + """Encode images with backbone and decode into a semantic segmentation + map of the same size as input.""" + x = self.extract_feat(img) + out = self.decode_head[0].forward_test(x, img_metas, self.test_cfg) + for i in range(1, self.num_stages): + out = self.decode_head[i].forward_test(x, out, img_metas, + self.test_cfg) + out = resize( + input=out, + size=img.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + return out + + def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): + """Run forward function and calculate loss for decode head in + training.""" + losses = dict() + + loss_decode = self.decode_head[0].forward_train( + x, img_metas, gt_semantic_seg, self.train_cfg) + + losses.update(add_prefix(loss_decode, 'decode_0')) + + for i in range(1, self.num_stages): + # forward test again, maybe unnecessary for most methods. + prev_outputs = self.decode_head[i - 1].forward_test( + x, img_metas, self.test_cfg) + loss_decode = self.decode_head[i].forward_train( + x, prev_outputs, img_metas, gt_semantic_seg, self.train_cfg) + losses.update(add_prefix(loss_decode, f'decode_{i}')) + + return losses diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/encoder_decoder.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/encoder_decoder.py new file mode 100644 index 000000000..72467b469 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/segmentors/encoder_decoder.py @@ -0,0 +1,284 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +import torch.nn.functional as F + +from mmseg.core import add_prefix +from mmseg.ops import resize +from .. import builder +from ..builder import SEGMENTORS +from .base import BaseSegmentor + + +@SEGMENTORS.register_module() +class EncoderDecoder(BaseSegmentor): + """Encoder Decoder segmentors. + + EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. + Note that auxiliary_head is only used for deep supervision during training, + which could be dumped during inference. + """ + + def __init__(self, + backbone, + decode_head, + neck=None, + auxiliary_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + init_cfg=None): + super(EncoderDecoder, self).__init__(init_cfg) + if pretrained is not None: + assert backbone.get('pretrained') is None, \ + 'both backbone and segmentor set pretrained weight' + backbone.pretrained = pretrained + self.backbone = builder.build_backbone(backbone) + if neck is not None: + self.neck = builder.build_neck(neck) + self._init_decode_head(decode_head) + self._init_auxiliary_head(auxiliary_head) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + assert self.with_decode_head + + def _init_decode_head(self, decode_head): + """Initialize ``decode_head``""" + self.decode_head = builder.build_head(decode_head) + self.align_corners = self.decode_head.align_corners + self.num_classes = self.decode_head.num_classes + + def _init_auxiliary_head(self, auxiliary_head): + """Initialize ``auxiliary_head``""" + if auxiliary_head is not None: + if isinstance(auxiliary_head, list): + self.auxiliary_head = nn.ModuleList() + for head_cfg in auxiliary_head: + self.auxiliary_head.append(builder.build_head(head_cfg)) + else: + self.auxiliary_head = builder.build_head(auxiliary_head) + + def extract_feat(self, img): + """Extract features from images.""" + x = self.backbone(img) + if self.with_neck: + x = self.neck(x) + return x + + def encode_decode(self, img, img_metas): + """Encode images with backbone and decode into a semantic segmentation + map of the same size as input.""" + x = self.extract_feat(img) + out = self._decode_head_forward_test(x, img_metas) + out = resize( + input=out, + size=img.shape[2:], + mode='bilinear', + align_corners=self.align_corners) + return out + + def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): + """Run forward function and calculate loss for decode head in + training.""" + losses = dict() + loss_decode = self.decode_head.forward_train(x, img_metas, + gt_semantic_seg, + self.train_cfg) + + losses.update(add_prefix(loss_decode, 'decode')) + return losses + + def _decode_head_forward_test(self, x, img_metas): + """Run forward function and calculate loss for decode head in + inference.""" + seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) + return seg_logits + + def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): + """Run forward function and calculate loss for auxiliary head in + training.""" + losses = dict() + if isinstance(self.auxiliary_head, nn.ModuleList): + for idx, aux_head in enumerate(self.auxiliary_head): + loss_aux = aux_head.forward_train(x, img_metas, + gt_semantic_seg, + self.train_cfg) + losses.update(add_prefix(loss_aux, f'aux_{idx}')) + else: + loss_aux = self.auxiliary_head.forward_train( + x, img_metas, gt_semantic_seg, self.train_cfg) + losses.update(add_prefix(loss_aux, 'aux')) + + return losses + + def forward_dummy(self, img): + """Dummy forward function.""" + seg_logit = self.encode_decode(img, None) + + return seg_logit + + def forward_train(self, img, img_metas, gt_semantic_seg): + """Forward function for training. + + Args: + img (Tensor): Input images. + img_metas (list[dict]): List of image info dict where each dict + has: 'img_shape', 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + gt_semantic_seg (Tensor): Semantic segmentation masks + used if the architecture supports semantic segmentation task. + + Returns: + dict[str, Tensor]: a dictionary of loss components + """ + + x = self.extract_feat(img) + + losses = dict() + + loss_decode = self._decode_head_forward_train(x, img_metas, + gt_semantic_seg) + losses.update(loss_decode) + + if self.with_auxiliary_head: + loss_aux = self._auxiliary_head_forward_train( + x, img_metas, gt_semantic_seg) + losses.update(loss_aux) + + return losses + + # TODO refactor + def slide_inference(self, img, img_meta, rescale): + """Inference by sliding-window with overlap. + + If h_crop > h_img or w_crop > w_img, the small patch will be used to + decode without padding. + """ + + h_stride, w_stride = self.test_cfg.stride + h_crop, w_crop = self.test_cfg.crop_size + batch_size, _, h_img, w_img = img.size() + num_classes = self.num_classes + h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 + w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 + preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) + count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) + for h_idx in range(h_grids): + for w_idx in range(w_grids): + y1 = h_idx * h_stride + x1 = w_idx * w_stride + y2 = min(y1 + h_crop, h_img) + x2 = min(x1 + w_crop, w_img) + y1 = max(y2 - h_crop, 0) + x1 = max(x2 - w_crop, 0) + crop_img = img[:, :, y1:y2, x1:x2] + crop_seg_logit = self.encode_decode(crop_img, img_meta) + preds += F.pad(crop_seg_logit, + (int(x1), int(preds.shape[3] - x2), int(y1), + int(preds.shape[2] - y2))) + + count_mat[:, :, y1:y2, x1:x2] += 1 + assert (count_mat == 0).sum() == 0 + if torch.onnx.is_in_onnx_export(): + # cast count_mat to constant while exporting to ONNX + count_mat = torch.from_numpy( + count_mat.cpu().detach().numpy()).to(device=img.device) + preds = preds / count_mat + if rescale: + preds = resize( + preds, + size=img_meta[0]['ori_shape'][:2], + mode='bilinear', + align_corners=self.align_corners, + warning=False) + return preds + + def whole_inference(self, img, img_meta, rescale): + """Inference with full image.""" + + seg_logit = self.encode_decode(img, img_meta) + if rescale: + # support dynamic shape for onnx + if torch.onnx.is_in_onnx_export(): + size = img.shape[2:] + else: + size = img_meta[0]['ori_shape'][:2] + seg_logit = resize( + seg_logit, + size=size, + mode='bilinear', + align_corners=self.align_corners, + warning=False) + + return seg_logit + + def inference(self, img, img_meta, rescale): + """Inference with slide/whole style. + + Args: + img (Tensor): The input image of shape (N, 3, H, W). + img_meta (dict): Image info dict where each dict has: 'img_shape', + 'scale_factor', 'flip', and may also contain + 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. + For details on the values of these keys see + `mmseg/datasets/pipelines/formatting.py:Collect`. + rescale (bool): Whether rescale back to original shape. + + Returns: + Tensor: The output segmentation map. + """ + + assert self.test_cfg.mode in ['slide', 'whole'] + ori_shape = img_meta[0]['ori_shape'] + assert all(_['ori_shape'] == ori_shape for _ in img_meta) + if self.test_cfg.mode == 'slide': + seg_logit = self.slide_inference(img, img_meta, rescale) + else: + seg_logit = self.whole_inference(img, img_meta, rescale) + output = F.softmax(seg_logit, dim=1) + flip = img_meta[0]['flip'] + if flip: + flip_direction = img_meta[0]['flip_direction'] + assert flip_direction in ['horizontal', 'vertical'] + if flip_direction == 'horizontal': + output = output.flip(dims=(3, )) + elif flip_direction == 'vertical': + output = output.flip(dims=(2, )) + + return output + + def simple_test(self, img, img_meta, rescale=True): + """Simple test with single image.""" + seg_logit = self.inference(img, img_meta, rescale) + seg_pred = seg_logit.argmax(dim=1) + if torch.onnx.is_in_onnx_export(): + # our inference backend only support 4D output + seg_pred = seg_pred.unsqueeze(0) + return seg_pred + seg_pred = seg_pred.cpu().numpy() + # unravel batch dim + seg_pred = list(seg_pred) + return seg_pred + + def aug_test(self, imgs, img_metas, rescale=True): + """Test with augmentations. + + Only rescale=True is supported. + """ + # aug_test rescale all imgs back to ori_shape for now + assert rescale + # to save memory, we get augmented seg logit inplace + seg_logit = self.inference(imgs[0], img_metas[0], rescale) + for i in range(1, len(imgs)): + cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) + seg_logit += cur_seg_logit + seg_logit /= len(imgs) + seg_pred = seg_logit.argmax(dim=1) + seg_pred = seg_pred.cpu().numpy() + # unravel batch dim + seg_pred = list(seg_pred) + return seg_pred diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/__init__.py new file mode 100644 index 000000000..2417c5183 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/__init__.py @@ -0,0 +1,14 @@ +from .embed import PatchEmbed +from .inverted_residual import InvertedResidual, InvertedResidualV3 +from .make_divisible import make_divisible +from .res_layer import ResLayer +from .se_layer import SELayer +from .self_attention_block import SelfAttentionBlock +from .shape_convert import nchw_to_nlc, nlc_to_nchw +from .up_conv_block import UpConvBlock + +__all__ = [ + 'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual', + 'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'PatchEmbed', + 'nchw_to_nlc', 'nlc_to_nchw' +] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/embed.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/embed.py new file mode 100644 index 000000000..1515675e1 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/embed.py @@ -0,0 +1,330 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math +from typing import Sequence + +import torch.nn as nn +import torch.nn.functional as F +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner.base_module import BaseModule +from mmcv.utils import to_2tuple + + +class AdaptivePadding(nn.Module): + """Applies padding to input (if needed) so that input can get fully covered + by filter you specified. It support two modes "same" and "corner". The + "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around + input. The "corner" mode would pad zero to bottom right. + + Args: + kernel_size (int | tuple): Size of the kernel: + stride (int | tuple): Stride of the filter. Default: 1: + dilation (int | tuple): Spacing between kernel elements. + Default: 1. + padding (str): Support "same" and "corner", "corner" mode + would pad zero to bottom right, and "same" mode would + pad zero around input. Default: "corner". + Example: + >>> kernel_size = 16 + >>> stride = 16 + >>> dilation = 1 + >>> input = torch.rand(1, 1, 15, 17) + >>> adap_pad = AdaptivePadding( + >>> kernel_size=kernel_size, + >>> stride=stride, + >>> dilation=dilation, + >>> padding="corner") + >>> out = adap_pad(input) + >>> assert (out.shape[2], out.shape[3]) == (16, 32) + >>> input = torch.rand(1, 1, 16, 17) + >>> out = adap_pad(input) + >>> assert (out.shape[2], out.shape[3]) == (16, 32) + """ + + def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): + + super(AdaptivePadding, self).__init__() + + assert padding in ('same', 'corner') + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + + self.padding = padding + self.kernel_size = kernel_size + self.stride = stride + self.dilation = dilation + + def get_pad_shape(self, input_shape): + input_h, input_w = input_shape + kernel_h, kernel_w = self.kernel_size + stride_h, stride_w = self.stride + output_h = math.ceil(input_h / stride_h) + output_w = math.ceil(input_w / stride_w) + pad_h = max((output_h - 1) * stride_h + + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) + pad_w = max((output_w - 1) * stride_w + + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) + return pad_h, pad_w + + def forward(self, x): + pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) + if pad_h > 0 or pad_w > 0: + if self.padding == 'corner': + x = F.pad(x, [0, pad_w, 0, pad_h]) + elif self.padding == 'same': + x = F.pad(x, [ + pad_w // 2, pad_w - pad_w // 2, pad_h // 2, + pad_h - pad_h // 2 + ]) + return x + + +class PatchEmbed(BaseModule): + """Image to Patch Embedding. + + We use a conv layer to implement PatchEmbed. + + Args: + in_channels (int): The num of input channels. Default: 3 + embed_dims (int): The dimensions of embedding. Default: 768 + conv_type (str): The config dict for embedding + conv layer type selection. Default: "Conv2d". + kernel_size (int): The kernel_size of embedding conv. Default: 16. + stride (int, optional): The slide stride of embedding conv. + Default: None (Would be set as `kernel_size`). + padding (int | tuple | string ): The padding length of + embedding conv. When it is a string, it means the mode + of adaptive padding, support "same" and "corner" now. + Default: "corner". + dilation (int): The dilation rate of embedding conv. Default: 1. + bias (bool): Bias of embed conv. Default: True. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: None. + input_size (int | tuple | None): The size of input, which will be + used to calculate the out size. Only work when `dynamic_size` + is False. Default: None. + init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. + Default: None. + """ + + def __init__(self, + in_channels=3, + embed_dims=768, + conv_type='Conv2d', + kernel_size=16, + stride=None, + padding='corner', + dilation=1, + bias=True, + norm_cfg=None, + input_size=None, + init_cfg=None): + super(PatchEmbed, self).__init__(init_cfg=init_cfg) + + self.embed_dims = embed_dims + if stride is None: + stride = kernel_size + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + + if isinstance(padding, str): + self.adap_padding = AdaptivePadding( + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=padding) + # disable the padding of conv + padding = 0 + else: + self.adap_padding = None + padding = to_2tuple(padding) + + self.projection = build_conv_layer( + dict(type=conv_type), + in_channels=in_channels, + out_channels=embed_dims, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=bias) + + if norm_cfg is not None: + self.norm = build_norm_layer(norm_cfg, embed_dims)[1] + else: + self.norm = None + + if input_size: + input_size = to_2tuple(input_size) + # `init_out_size` would be used outside to + # calculate the num_patches + # when `use_abs_pos_embed` outside + self.init_input_size = input_size + if self.adap_padding: + pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) + input_h, input_w = input_size + input_h = input_h + pad_h + input_w = input_w + pad_w + input_size = (input_h, input_w) + + # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html + h_out = (input_size[0] + 2 * padding[0] - dilation[0] * + (kernel_size[0] - 1) - 1) // stride[0] + 1 + w_out = (input_size[1] + 2 * padding[1] - dilation[1] * + (kernel_size[1] - 1) - 1) // stride[1] + 1 + self.init_out_size = (h_out, w_out) + else: + self.init_input_size = None + self.init_out_size = None + + def forward(self, x): + """ + Args: + x (Tensor): Has shape (B, C, H, W). In most case, C is 3. + + Returns: + tuple: Contains merged results and its spatial shape. + + - x (Tensor): Has shape (B, out_h * out_w, embed_dims) + - out_size (tuple[int]): Spatial shape of x, arrange as + (out_h, out_w). + """ + + if self.adap_padding: + x = self.adap_padding(x) + + x = self.projection(x) + out_size = (x.shape[2], x.shape[3]) + x = x.flatten(2).transpose(1, 2) + if self.norm is not None: + x = self.norm(x) + return x, out_size + + +class PatchMerging(BaseModule): + """Merge patch feature map. + + This layer groups feature map by kernel_size, and applies norm and linear + layers to the grouped feature map. Our implementation uses `nn.Unfold` to + merge patch, which is about 25% faster than original implementation. + Instead, we need to modify pretrained models for compatibility. + + Args: + in_channels (int): The num of input channels. + out_channels (int): The num of output channels. + kernel_size (int | tuple, optional): the kernel size in the unfold + layer. Defaults to 2. + stride (int | tuple, optional): the stride of the sliding blocks in the + unfold layer. Default: None. (Would be set as `kernel_size`) + padding (int | tuple | string ): The padding length of + embedding conv. When it is a string, it means the mode + of adaptive padding, support "same" and "corner" now. + Default: "corner". + dilation (int | tuple, optional): dilation parameter in the unfold + layer. Default: 1. + bias (bool, optional): Whether to add bias in linear layer or not. + Defaults: False. + norm_cfg (dict, optional): Config dict for normalization layer. + Default: dict(type='LN'). + init_cfg (dict, optional): The extra config for initialization. + Default: None. + """ + + def __init__(self, + in_channels, + out_channels, + kernel_size=2, + stride=None, + padding='corner', + dilation=1, + bias=False, + norm_cfg=dict(type='LN'), + init_cfg=None): + super().__init__(init_cfg=init_cfg) + self.in_channels = in_channels + self.out_channels = out_channels + if stride: + stride = stride + else: + stride = kernel_size + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + + if isinstance(padding, str): + self.adap_padding = AdaptivePadding( + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=padding) + # disable the padding of unfold + padding = 0 + else: + self.adap_padding = None + + padding = to_2tuple(padding) + self.sampler = nn.Unfold( + kernel_size=kernel_size, + dilation=dilation, + padding=padding, + stride=stride) + + sample_dim = kernel_size[0] * kernel_size[1] * in_channels + + if norm_cfg is not None: + self.norm = build_norm_layer(norm_cfg, sample_dim)[1] + else: + self.norm = None + + self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) + + def forward(self, x, input_size): + """ + Args: + x (Tensor): Has shape (B, H*W, C_in). + input_size (tuple[int]): The spatial shape of x, arrange as (H, W). + Default: None. + + Returns: + tuple: Contains merged results and its spatial shape. + + - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) + - out_size (tuple[int]): Spatial shape of x, arrange as + (Merged_H, Merged_W). + """ + B, L, C = x.shape + assert isinstance(input_size, Sequence), f'Expect ' \ + f'input_size is ' \ + f'`Sequence` ' \ + f'but get {input_size}' + + H, W = input_size + assert L == H * W, 'input feature has wrong size' + + x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W + # Use nn.Unfold to merge patch. About 25% faster than original method, + # but need to modify pretrained model for compatibility + + if self.adap_padding: + x = self.adap_padding(x) + H, W = x.shape[-2:] + + x = self.sampler(x) + # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) + + out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * + (self.sampler.kernel_size[0] - 1) - + 1) // self.sampler.stride[0] + 1 + out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * + (self.sampler.kernel_size[1] - 1) - + 1) // self.sampler.stride[1] + 1 + + output_size = (out_h, out_w) + x = x.transpose(1, 2) # B, H/2*W/2, 4*C + x = self.norm(x) if self.norm else x + x = self.reduction(x) + return x, output_size diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/inverted_residual.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/inverted_residual.py new file mode 100644 index 000000000..c9cda7682 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/inverted_residual.py @@ -0,0 +1,213 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import ConvModule +from torch import nn +from torch.utils import checkpoint as cp + +from .se_layer import SELayer + + +class InvertedResidual(nn.Module): + """InvertedResidual block for MobileNetV2. + + Args: + in_channels (int): The input channels of the InvertedResidual block. + out_channels (int): The output channels of the InvertedResidual block. + stride (int): Stride of the middle (first) 3x3 convolution. + expand_ratio (int): Adjusts number of channels of the hidden layer + in InvertedResidual by this amount. + dilation (int): Dilation rate of depthwise conv. Default: 1 + conv_cfg (dict): Config dict for convolution layer. + Default: None, which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU6'). + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + + Returns: + Tensor: The output tensor. + """ + + def __init__(self, + in_channels, + out_channels, + stride, + expand_ratio, + dilation=1, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU6'), + with_cp=False, + **kwargs): + super(InvertedResidual, self).__init__() + self.stride = stride + assert stride in [1, 2], f'stride must in [1, 2]. ' \ + f'But received {stride}.' + self.with_cp = with_cp + self.use_res_connect = self.stride == 1 and in_channels == out_channels + hidden_dim = int(round(in_channels * expand_ratio)) + + layers = [] + if expand_ratio != 1: + layers.append( + ConvModule( + in_channels=in_channels, + out_channels=hidden_dim, + kernel_size=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + **kwargs)) + layers.extend([ + ConvModule( + in_channels=hidden_dim, + out_channels=hidden_dim, + kernel_size=3, + stride=stride, + padding=dilation, + dilation=dilation, + groups=hidden_dim, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + **kwargs), + ConvModule( + in_channels=hidden_dim, + out_channels=out_channels, + kernel_size=1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None, + **kwargs) + ]) + self.conv = nn.Sequential(*layers) + + def forward(self, x): + + def _inner_forward(x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out + + +class InvertedResidualV3(nn.Module): + """Inverted Residual Block for MobileNetV3. + + Args: + in_channels (int): The input channels of this Module. + out_channels (int): The output channels of this Module. + mid_channels (int): The input channels of the depthwise convolution. + kernel_size (int): The kernel size of the depthwise convolution. + Default: 3. + stride (int): The stride of the depthwise convolution. Default: 1. + se_cfg (dict): Config dict for se layer. Default: None, which means no + se layer. + with_expand_conv (bool): Use expand conv or not. If set False, + mid_channels must be the same with in_channels. Default: True. + conv_cfg (dict): Config dict for convolution layer. Default: None, + which means using conv2d. + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict): Config dict for activation layer. + Default: dict(type='ReLU'). + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + + Returns: + Tensor: The output tensor. + """ + + def __init__(self, + in_channels, + out_channels, + mid_channels, + kernel_size=3, + stride=1, + se_cfg=None, + with_expand_conv=True, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + with_cp=False): + super(InvertedResidualV3, self).__init__() + self.with_res_shortcut = (stride == 1 and in_channels == out_channels) + assert stride in [1, 2] + self.with_cp = with_cp + self.with_se = se_cfg is not None + self.with_expand_conv = with_expand_conv + + if self.with_se: + assert isinstance(se_cfg, dict) + if not self.with_expand_conv: + assert mid_channels == in_channels + + if self.with_expand_conv: + self.expand_conv = ConvModule( + in_channels=in_channels, + out_channels=mid_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.depthwise_conv = ConvModule( + in_channels=mid_channels, + out_channels=mid_channels, + kernel_size=kernel_size, + stride=stride, + padding=kernel_size // 2, + groups=mid_channels, + conv_cfg=dict( + type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + if self.with_se: + self.se = SELayer(**se_cfg) + + self.linear_conv = ConvModule( + in_channels=mid_channels, + out_channels=out_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=None) + + def forward(self, x): + + def _inner_forward(x): + out = x + + if self.with_expand_conv: + out = self.expand_conv(out) + + out = self.depthwise_conv(out) + + if self.with_se: + out = self.se(out) + + out = self.linear_conv(out) + + if self.with_res_shortcut: + return x + out + else: + return out + + if self.with_cp and x.requires_grad: + out = cp.checkpoint(_inner_forward, x) + else: + out = _inner_forward(x) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/make_divisible.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/make_divisible.py new file mode 100644 index 000000000..ed42c2eee --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/make_divisible.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +def make_divisible(value, divisor, min_value=None, min_ratio=0.9): + """Make divisible function. + + This function rounds the channel number to the nearest value that can be + divisible by the divisor. It is taken from the original tf repo. It ensures + that all layers have a channel number that is divisible by divisor. It can + be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa + + Args: + value (int): The original channel number. + divisor (int): The divisor to fully divide the channel number. + min_value (int): The minimum value of the output channel. + Default: None, means that the minimum value equal to the divisor. + min_ratio (float): The minimum ratio of the rounded channel number to + the original channel number. Default: 0.9. + + Returns: + int: The modified output channel number. + """ + + if min_value is None: + min_value = divisor + new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than (1-min_ratio). + if new_value < min_ratio * value: + new_value += divisor + return new_value diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/res_layer.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/res_layer.py new file mode 100644 index 000000000..190a0c5d5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/res_layer.py @@ -0,0 +1,96 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.cnn import build_conv_layer, build_norm_layer +from mmcv.runner import Sequential +from torch import nn as nn + + +class ResLayer(Sequential): + """ResLayer to build ResNet style backbone. + + Args: + block (nn.Module): block used to build ResLayer. + inplanes (int): inplanes of block. + planes (int): planes of block. + num_blocks (int): number of blocks. + stride (int): stride of the first block. Default: 1 + avg_down (bool): Use AvgPool instead of stride conv when + downsampling in the bottleneck. Default: False + conv_cfg (dict): dictionary to construct and config conv layer. + Default: None + norm_cfg (dict): dictionary to construct and config norm layer. + Default: dict(type='BN') + multi_grid (int | None): Multi grid dilation rates of last + stage. Default: None + contract_dilation (bool): Whether contract first dilation of each layer + Default: False + """ + + def __init__(self, + block, + inplanes, + planes, + num_blocks, + stride=1, + dilation=1, + avg_down=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + multi_grid=None, + contract_dilation=False, + **kwargs): + self.block = block + + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = [] + conv_stride = stride + if avg_down: + conv_stride = 1 + downsample.append( + nn.AvgPool2d( + kernel_size=stride, + stride=stride, + ceil_mode=True, + count_include_pad=False)) + downsample.extend([ + build_conv_layer( + conv_cfg, + inplanes, + planes * block.expansion, + kernel_size=1, + stride=conv_stride, + bias=False), + build_norm_layer(norm_cfg, planes * block.expansion)[1] + ]) + downsample = nn.Sequential(*downsample) + + layers = [] + if multi_grid is None: + if dilation > 1 and contract_dilation: + first_dilation = dilation // 2 + else: + first_dilation = dilation + else: + first_dilation = multi_grid[0] + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=stride, + dilation=first_dilation, + downsample=downsample, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + inplanes = planes * block.expansion + for i in range(1, num_blocks): + layers.append( + block( + inplanes=inplanes, + planes=planes, + stride=1, + dilation=dilation if multi_grid is None else multi_grid[i], + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + **kwargs)) + super(ResLayer, self).__init__(*layers) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/se_layer.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/se_layer.py new file mode 100644 index 000000000..16f52aa5c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/se_layer.py @@ -0,0 +1,58 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import mmcv +import torch.nn as nn +from mmcv.cnn import ConvModule + +from .make_divisible import make_divisible + + +class SELayer(nn.Module): + """Squeeze-and-Excitation Module. + + Args: + channels (int): The input (and output) channels of the SE layer. + ratio (int): Squeeze ratio in SELayer, the intermediate channel will be + ``int(channels/ratio)``. Default: 16. + conv_cfg (None or dict): Config dict for convolution layer. + Default: None, which means using conv2d. + act_cfg (dict or Sequence[dict]): Config dict for activation layer. + If act_cfg is a dict, two activation layers will be configured + by this dict. If act_cfg is a sequence of dicts, the first + activation layer will be configured by the first dict and the + second activation layer will be configured by the second dict. + Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, + divisor=6.0)). + """ + + def __init__(self, + channels, + ratio=16, + conv_cfg=None, + act_cfg=(dict(type='ReLU'), + dict(type='HSigmoid', bias=3.0, divisor=6.0))): + super(SELayer, self).__init__() + if isinstance(act_cfg, dict): + act_cfg = (act_cfg, act_cfg) + assert len(act_cfg) == 2 + assert mmcv.is_tuple_of(act_cfg, dict) + self.global_avgpool = nn.AdaptiveAvgPool2d(1) + self.conv1 = ConvModule( + in_channels=channels, + out_channels=make_divisible(channels // ratio, 8), + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[0]) + self.conv2 = ConvModule( + in_channels=make_divisible(channels // ratio, 8), + out_channels=channels, + kernel_size=1, + stride=1, + conv_cfg=conv_cfg, + act_cfg=act_cfg[1]) + + def forward(self, x): + out = self.global_avgpool(x) + out = self.conv1(out) + out = self.conv2(out) + return x * out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/self_attention_block.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/self_attention_block.py new file mode 100644 index 000000000..c945fa716 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/self_attention_block.py @@ -0,0 +1,160 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmcv.cnn import ConvModule, constant_init +from torch import nn as nn +from torch.nn import functional as F + + +class SelfAttentionBlock(nn.Module): + """General self-attention block/non-local block. + + Please refer to https://arxiv.org/abs/1706.03762 for details about key, + query and value. + + Args: + key_in_channels (int): Input channels of key feature. + query_in_channels (int): Input channels of query feature. + channels (int): Output channels of key/query transform. + out_channels (int): Output channels. + share_key_query (bool): Whether share projection weight between key + and query projection. + query_downsample (nn.Module): Query downsample module. + key_downsample (nn.Module): Key downsample module. + key_query_num_convs (int): Number of convs for key/query projection. + value_num_convs (int): Number of convs for value projection. + matmul_norm (bool): Whether normalize attention map with sqrt of + channels + with_out (bool): Whether use out projection. + conv_cfg (dict|None): Config of conv layers. + norm_cfg (dict|None): Config of norm layers. + act_cfg (dict|None): Config of activation layers. + """ + + def __init__(self, key_in_channels, query_in_channels, channels, + out_channels, share_key_query, query_downsample, + key_downsample, key_query_num_convs, value_out_num_convs, + key_query_norm, value_out_norm, matmul_norm, with_out, + conv_cfg, norm_cfg, act_cfg): + super(SelfAttentionBlock, self).__init__() + if share_key_query: + assert key_in_channels == query_in_channels + self.key_in_channels = key_in_channels + self.query_in_channels = query_in_channels + self.out_channels = out_channels + self.channels = channels + self.share_key_query = share_key_query + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self.act_cfg = act_cfg + self.key_project = self.build_project( + key_in_channels, + channels, + num_convs=key_query_num_convs, + use_conv_module=key_query_norm, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + if share_key_query: + self.query_project = self.key_project + else: + self.query_project = self.build_project( + query_in_channels, + channels, + num_convs=key_query_num_convs, + use_conv_module=key_query_norm, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + self.value_project = self.build_project( + key_in_channels, + channels if with_out else out_channels, + num_convs=value_out_num_convs, + use_conv_module=value_out_norm, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + if with_out: + self.out_project = self.build_project( + channels, + out_channels, + num_convs=value_out_num_convs, + use_conv_module=value_out_norm, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + else: + self.out_project = None + + self.query_downsample = query_downsample + self.key_downsample = key_downsample + self.matmul_norm = matmul_norm + + self.init_weights() + + def init_weights(self): + """Initialize weight of later layer.""" + if self.out_project is not None: + if not isinstance(self.out_project, ConvModule): + constant_init(self.out_project, 0) + + def build_project(self, in_channels, channels, num_convs, use_conv_module, + conv_cfg, norm_cfg, act_cfg): + """Build projection layer for key/query/value/out.""" + if use_conv_module: + convs = [ + ConvModule( + in_channels, + channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + ] + for _ in range(num_convs - 1): + convs.append( + ConvModule( + channels, + channels, + 1, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg)) + else: + convs = [nn.Conv2d(in_channels, channels, 1)] + for _ in range(num_convs - 1): + convs.append(nn.Conv2d(channels, channels, 1)) + if len(convs) > 1: + convs = nn.Sequential(*convs) + else: + convs = convs[0] + return convs + + def forward(self, query_feats, key_feats): + """Forward function.""" + batch_size = query_feats.size(0) + query = self.query_project(query_feats) + if self.query_downsample is not None: + query = self.query_downsample(query) + query = query.reshape(*query.shape[:2], -1) + query = query.permute(0, 2, 1).contiguous() + + key = self.key_project(key_feats) + value = self.value_project(key_feats) + if self.key_downsample is not None: + key = self.key_downsample(key) + value = self.key_downsample(value) + key = key.reshape(*key.shape[:2], -1) + value = value.reshape(*value.shape[:2], -1) + value = value.permute(0, 2, 1).contiguous() + + sim_map = torch.matmul(query, key) + if self.matmul_norm: + sim_map = (self.channels**-.5) * sim_map + sim_map = F.softmax(sim_map, dim=-1) + + context = torch.matmul(sim_map, value) + context = context.permute(0, 2, 1).contiguous() + context = context.reshape(batch_size, -1, *query_feats.shape[2:]) + if self.out_project is not None: + context = self.out_project(context) + return context diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/shape_convert.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/shape_convert.py new file mode 100644 index 000000000..0677348c8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/shape_convert.py @@ -0,0 +1,29 @@ +# Copyright (c) OpenMMLab. All rights reserved. +def nlc_to_nchw(x, hw_shape): + """Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. + + Args: + x (Tensor): The input tensor of shape [N, L, C] before conversion. + hw_shape (Sequence[int]): The height and width of output feature map. + + Returns: + Tensor: The output tensor of shape [N, C, H, W] after conversion. + """ + H, W = hw_shape + assert len(x.shape) == 3 + B, L, C = x.shape + assert L == H * W, 'The seq_len doesn\'t match H, W' + return x.transpose(1, 2).reshape(B, C, H, W) + + +def nchw_to_nlc(x): + """Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. + + Args: + x (Tensor): The input tensor of shape [N, C, H, W] before conversion. + + Returns: + Tensor: The output tensor of shape [N, L, C] after conversion. + """ + assert len(x.shape) == 4 + return x.flatten(2).transpose(1, 2).contiguous() diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/up_conv_block.py b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/up_conv_block.py new file mode 100644 index 000000000..d8396d9c2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/models/utils/up_conv_block.py @@ -0,0 +1,102 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, build_upsample_layer + + +class UpConvBlock(nn.Module): + """Upsample convolution block in decoder for UNet. + + This upsample convolution block consists of one upsample module + followed by one convolution block. The upsample module expands the + high-level low-resolution feature map and the convolution block fuses + the upsampled high-level low-resolution feature map and the low-level + high-resolution feature map from encoder. + + Args: + conv_block (nn.Sequential): Sequential of convolutional layers. + in_channels (int): Number of input channels of the high-level + skip_channels (int): Number of input channels of the low-level + high-resolution feature map from encoder. + out_channels (int): Number of output channels. + num_convs (int): Number of convolutional layers in the conv_block. + Default: 2. + stride (int): Stride of convolutional layer in conv_block. Default: 1. + dilation (int): Dilation rate of convolutional layer in conv_block. + Default: 1. + with_cp (bool): Use checkpoint or not. Using checkpoint will save some + memory while slowing down the training speed. Default: False. + conv_cfg (dict | None): Config dict for convolution layer. + Default: None. + norm_cfg (dict | None): Config dict for normalization layer. + Default: dict(type='BN'). + act_cfg (dict | None): Config dict for activation layer in ConvModule. + Default: dict(type='ReLU'). + upsample_cfg (dict): The upsample config of the upsample module in + decoder. Default: dict(type='InterpConv'). If the size of + high-level feature map is the same as that of skip feature map + (low-level feature map from encoder), it does not need upsample the + high-level feature map and the upsample_cfg is None. + dcn (bool): Use deformable convolution in convolutional layer or not. + Default: None. + plugins (dict): plugins for convolutional layers. Default: None. + """ + + def __init__(self, + conv_block, + in_channels, + skip_channels, + out_channels, + num_convs=2, + stride=1, + dilation=1, + with_cp=False, + conv_cfg=None, + norm_cfg=dict(type='BN'), + act_cfg=dict(type='ReLU'), + upsample_cfg=dict(type='InterpConv'), + dcn=None, + plugins=None): + super(UpConvBlock, self).__init__() + assert dcn is None, 'Not implemented yet.' + assert plugins is None, 'Not implemented yet.' + + self.conv_block = conv_block( + in_channels=2 * skip_channels, + out_channels=out_channels, + num_convs=num_convs, + stride=stride, + dilation=dilation, + with_cp=with_cp, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + dcn=None, + plugins=None) + if upsample_cfg is not None: + self.upsample = build_upsample_layer( + cfg=upsample_cfg, + in_channels=in_channels, + out_channels=skip_channels, + with_cp=with_cp, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + else: + self.upsample = ConvModule( + in_channels, + skip_channels, + kernel_size=1, + stride=1, + padding=0, + conv_cfg=conv_cfg, + norm_cfg=norm_cfg, + act_cfg=act_cfg) + + def forward(self, skip, x): + """Forward function.""" + + x = self.upsample(x) + out = torch.cat([skip, x], dim=1) + out = self.conv_block(out) + + return out diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/ops/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/ops/__init__.py new file mode 100644 index 000000000..bc075cd4e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/ops/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .encoding import Encoding +from .wrappers import Upsample, resize + +__all__ = ['Upsample', 'resize', 'Encoding'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/ops/encoding.py b/cv/3d_detection/PAConv/pytorch/mmseg/ops/encoding.py new file mode 100644 index 000000000..f397cc54e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/ops/encoding.py @@ -0,0 +1,75 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from torch import nn +from torch.nn import functional as F + + +class Encoding(nn.Module): + """Encoding Layer: a learnable residual encoder. + + Input is of shape (batch_size, channels, height, width). + Output is of shape (batch_size, num_codes, channels). + + Args: + channels: dimension of the features or feature channels + num_codes: number of code words + """ + + def __init__(self, channels, num_codes): + super(Encoding, self).__init__() + # init codewords and smoothing factor + self.channels, self.num_codes = channels, num_codes + std = 1. / ((num_codes * channels)**0.5) + # [num_codes, channels] + self.codewords = nn.Parameter( + torch.empty(num_codes, channels, + dtype=torch.float).uniform_(-std, std), + requires_grad=True) + # [num_codes] + self.scale = nn.Parameter( + torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), + requires_grad=True) + + @staticmethod + def scaled_l2(x, codewords, scale): + num_codes, channels = codewords.size() + batch_size = x.size(0) + reshaped_scale = scale.view((1, 1, num_codes)) + expanded_x = x.unsqueeze(2).expand( + (batch_size, x.size(1), num_codes, channels)) + reshaped_codewords = codewords.view((1, 1, num_codes, channels)) + + scaled_l2_norm = reshaped_scale * ( + expanded_x - reshaped_codewords).pow(2).sum(dim=3) + return scaled_l2_norm + + @staticmethod + def aggregate(assignment_weights, x, codewords): + num_codes, channels = codewords.size() + reshaped_codewords = codewords.view((1, 1, num_codes, channels)) + batch_size = x.size(0) + + expanded_x = x.unsqueeze(2).expand( + (batch_size, x.size(1), num_codes, channels)) + encoded_feat = (assignment_weights.unsqueeze(3) * + (expanded_x - reshaped_codewords)).sum(dim=1) + return encoded_feat + + def forward(self, x): + assert x.dim() == 4 and x.size(1) == self.channels + # [batch_size, channels, height, width] + batch_size = x.size(0) + # [batch_size, height x width, channels] + x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous() + # assignment_weights: [batch_size, channels, num_codes] + assignment_weights = F.softmax( + self.scaled_l2(x, self.codewords, self.scale), dim=2) + # aggregate + encoded_feat = self.aggregate(assignment_weights, x, self.codewords) + return encoded_feat + + def __repr__(self): + repr_str = self.__class__.__name__ + repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \ + f'x{self.channels})' + return repr_str diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/ops/wrappers.py b/cv/3d_detection/PAConv/pytorch/mmseg/ops/wrappers.py new file mode 100644 index 000000000..ce67e4beb --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/ops/wrappers.py @@ -0,0 +1,51 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +import torch.nn as nn +import torch.nn.functional as F + + +def resize(input, + size=None, + scale_factor=None, + mode='nearest', + align_corners=None, + warning=True): + if warning: + if size is not None and align_corners: + input_h, input_w = tuple(int(x) for x in input.shape[2:]) + output_h, output_w = tuple(int(x) for x in size) + if output_h > input_h or output_w > output_h: + if ((output_h > 1 and output_w > 1 and input_h > 1 + and input_w > 1) and (output_h - 1) % (input_h - 1) + and (output_w - 1) % (input_w - 1)): + warnings.warn( + f'When align_corners={align_corners}, ' + 'the output would more aligned if ' + f'input size {(input_h, input_w)} is `x+1` and ' + f'out size {(output_h, output_w)} is `nx+1`') + return F.interpolate(input, size, scale_factor, mode, align_corners) + + +class Upsample(nn.Module): + + def __init__(self, + size=None, + scale_factor=None, + mode='nearest', + align_corners=None): + super(Upsample, self).__init__() + self.size = size + if isinstance(scale_factor, tuple): + self.scale_factor = tuple(float(factor) for factor in scale_factor) + else: + self.scale_factor = float(scale_factor) if scale_factor else None + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + if not self.size: + size = [int(t * self.scale_factor) for t in x.shape[-2:]] + else: + size = self.size + return resize(x, size, None, self.mode, self.align_corners) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/utils/__init__.py b/cv/3d_detection/PAConv/pytorch/mmseg/utils/__init__.py new file mode 100644 index 000000000..3f1558052 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .collect_env import collect_env +from .logger import get_root_logger + +__all__ = ['get_root_logger', 'collect_env'] diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/utils/collect_env.py b/cv/3d_detection/PAConv/pytorch/mmseg/utils/collect_env.py new file mode 100644 index 000000000..3379ecb06 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/utils/collect_env.py @@ -0,0 +1,18 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmcv.utils import collect_env as collect_base_env +from mmcv.utils import get_git_hash + +import mmseg + + +def collect_env(): + """Collect the information of the running environments.""" + env_info = collect_base_env() + env_info['MMSegmentation'] = f'{mmseg.__version__}+{get_git_hash()[:7]}' + + return env_info + + +if __name__ == '__main__': + for name, val in collect_env().items(): + print('{}: {}'.format(name, val)) diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/utils/logger.py b/cv/3d_detection/PAConv/pytorch/mmseg/utils/logger.py new file mode 100644 index 000000000..0cb3c78d6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/utils/logger.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import logging + +from mmcv.utils import get_logger + + +def get_root_logger(log_file=None, log_level=logging.INFO): + """Get the root logger. + + The logger will be initialized if it has not been initialized. By default a + StreamHandler will be added. If `log_file` is specified, a FileHandler will + also be added. The name of the root logger is the top-level package name, + e.g., "mmseg". + + Args: + log_file (str | None): The log filename. If specified, a FileHandler + will be added to the root logger. + log_level (int): The root logger level. Note that only the process of + rank 0 is affected, while other processes will set the level to + "Error" and be silent most of the time. + + Returns: + logging.Logger: The root logger. + """ + + logger = get_logger(name='mmseg', log_file=log_file, log_level=log_level) + + return logger diff --git a/cv/3d_detection/PAConv/pytorch/mmseg/version.py b/cv/3d_detection/PAConv/pytorch/mmseg/version.py new file mode 100644 index 000000000..ffa55d38a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/mmseg/version.py @@ -0,0 +1,18 @@ +# Copyright (c) Open-MMLab. All rights reserved. + +__version__ = '0.20.0' + + +def parse_version_info(version_str): + version_info = [] + for x in version_str.split('.'): + if x.isdigit(): + version_info.append(int(x)) + elif x.find('rc') != -1: + patch_version = x.split('rc') + version_info.append(int(patch_version[0])) + version_info.append(f'rc{patch_version[1]}') + return tuple(version_info) + + +version_info = parse_version_info(__version__) diff --git a/cv/3d_detection/PAConv/pytorch/requirements.txt b/cv/3d_detection/PAConv/pytorch/requirements.txt new file mode 100644 index 000000000..6981bd723 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements.txt @@ -0,0 +1,4 @@ +-r requirements/build.txt +-r requirements/optional.txt +-r requirements/runtime.txt +-r requirements/tests.txt diff --git a/cv/3d_detection/PAConv/pytorch/requirements/build.txt b/cv/3d_detection/PAConv/pytorch/requirements/build.txt new file mode 100644 index 000000000..e69de29bb diff --git a/cv/3d_detection/PAConv/pytorch/requirements/docs.txt b/cv/3d_detection/PAConv/pytorch/requirements/docs.txt new file mode 100644 index 000000000..a31b7716b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/docs.txt @@ -0,0 +1,8 @@ +docutils==0.16.0 +m2r +mistune==0.8.4 +myst-parser +-e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme +sphinx==4.0.2 +sphinx-copybutton +sphinx_markdown_tables diff --git a/cv/3d_detection/PAConv/pytorch/requirements/mminstall.txt b/cv/3d_detection/PAConv/pytorch/requirements/mminstall.txt new file mode 100644 index 000000000..16a8d8b79 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/mminstall.txt @@ -0,0 +1,3 @@ +mmcv-full>=1.4.8,<=1.6.0 +mmdet>=2.24.0,<=3.0.0 +mmsegmentation>=0.20.0,<=1.0.0 diff --git a/cv/3d_detection/PAConv/pytorch/requirements/optional.txt b/cv/3d_detection/PAConv/pytorch/requirements/optional.txt new file mode 100644 index 000000000..84cbfa89f --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/optional.txt @@ -0,0 +1,3 @@ +open3d +spconv +waymo-open-dataset-tf-2-1-0==1.2.0 diff --git a/cv/3d_detection/PAConv/pytorch/requirements/readthedocs.txt b/cv/3d_detection/PAConv/pytorch/requirements/readthedocs.txt new file mode 100644 index 000000000..3ffe9e47c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/readthedocs.txt @@ -0,0 +1,5 @@ +mmcv>=1.4.8 +mmdet>=2.24.0 +mmsegmentation>=0.20.1 +torch +torchvision diff --git a/cv/3d_detection/PAConv/pytorch/requirements/runtime.txt b/cv/3d_detection/PAConv/pytorch/requirements/runtime.txt new file mode 100644 index 000000000..789b822ba --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/runtime.txt @@ -0,0 +1,15 @@ +lyft_dataset_sdk +networkx>=2.2,<2.3 +numba==0.53.0 +numpy==1.21 +nuscenes-devkit +plyfile +scikit-image +# by default we also use tensorboard to log results +tensorboard +trimesh>=2.35.39,<2.35.40 +addict +yapf==0.40.1 +terminaltables +prettytable +opencv-python diff --git a/cv/3d_detection/PAConv/pytorch/requirements/tests.txt b/cv/3d_detection/PAConv/pytorch/requirements/tests.txt new file mode 100644 index 000000000..303cc37d6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/requirements/tests.txt @@ -0,0 +1,13 @@ +asynctest +codecov +flake8 +interrogate +isort +# Note: used for kwarray.group_items, this may be ported to mmcv in the future. +kwarray +pytest +pytest-cov +pytest-runner +ubelt +xdoctest >= 0.10.0 +yapf diff --git a/cv/3d_detection/PAConv/pytorch/setup.cfg b/cv/3d_detection/PAConv/pytorch/setup.cfg new file mode 100644 index 000000000..f61734328 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/setup.cfg @@ -0,0 +1,16 @@ +[yapf] +BASED_ON_STYLE = pep8 +BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true +SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true + +[isort] +line_length = 79 +multi_line_output = 0 +extra_standard_library = setuptools +known_first_party = mmdet,mmseg,mmdet3d +known_third_party = cv2,imageio,indoor3d_util,load_scannet_data,lyft_dataset_sdk,m2r,matplotlib,mmcv,nuimages,numba,numpy,nuscenes,pandas,plyfile,pycocotools,pyquaternion,pytest,pytorch_sphinx_theme,recommonmark,requests,scannet_utils,scipy,seaborn,shapely,skimage,sphinx,tensorflow,terminaltables,torch,trimesh,ts,waymo_open_dataset +no_lines_before = STDLIB,LOCALFOLDER +default_section = THIRDPARTY + +[codespell] +ignore-words-list = ans,refridgerator,crate,hist,formating,dout,wan,nd,fo,avod,AVOD diff --git a/cv/3d_detection/PAConv/pytorch/setup.py b/cv/3d_detection/PAConv/pytorch/setup.py new file mode 100755 index 000000000..28af491bf --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/setup.py @@ -0,0 +1,429 @@ +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +import glob +import os +import platform +import re +import warnings +from pkg_resources import DistributionNotFound, get_distribution +from setuptools import find_packages, setup + +EXT_TYPE = '' +try: + import torch + if torch.__version__ == 'parrots': + from parrots.utils.build_extension import BuildExtension + EXT_TYPE = 'parrots' + elif (hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()) or \ + os.getenv('FORCE_MLU', '0') == '1': + from torch_mlu.utils.cpp_extension import BuildExtension + EXT_TYPE = 'pytorch' + else: + from torch.utils.cpp_extension import BuildExtension + EXT_TYPE = 'pytorch' + cmd_class = {'build_ext': BuildExtension} +except ModuleNotFoundError: + cmd_class = {} + print('Skip building ext ops due to the absence of torch.') + + +def choose_requirement(primary, secondary): + """If some version of primary requirement installed, return primary, else + return secondary.""" + try: + name = re.split(r'[!<>=]', primary)[0] + get_distribution(name) + except DistributionNotFound: + return secondary + + return str(primary) + + +def get_version(): + version_file = 'mmcv/version.py' + with open(version_file, 'r', encoding='utf-8') as f: + exec(compile(f.read(), version_file, 'exec')) + version = locals()['__version__'] + local_version_identifier = os.environ.get('MMCV_LOCAL_VERSION_IDENTIFIER', '') + if local_version_identifier != '': + version += '+' + local_version_identifier + return version + + +def parse_requirements(fname='requirements/runtime.txt', with_version=True): + """Parse the package dependencies listed in a requirements file but strips + specific versioning information. + + Args: + fname (str): path to requirements file + with_version (bool, default=False): if True include version specs + + Returns: + List[str]: list of requirements items + + CommandLine: + python -c "import setup; print(setup.parse_requirements())" + """ + import sys + from os.path import exists + require_fpath = fname + + def parse_line(line): + """Parse information from a line in a requirements text file.""" + if line.startswith('-r '): + # Allow specifying requirements in other files + target = line.split(' ')[1] + for info in parse_require_file(target): + yield info + else: + info = {'line': line} + if line.startswith('-e '): + info['package'] = line.split('#egg=')[1] + else: + # Remove versioning from the package + pat = '(' + '|'.join(['>=', '==', '>']) + ')' + parts = re.split(pat, line, maxsplit=1) + parts = [p.strip() for p in parts] + + info['package'] = parts[0] + if len(parts) > 1: + op, rest = parts[1:] + if ';' in rest: + # Handle platform specific dependencies + # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies + version, platform_deps = map(str.strip, + rest.split(';')) + info['platform_deps'] = platform_deps + else: + version = rest # NOQA + info['version'] = (op, version) + yield info + + def parse_require_file(fpath): + with open(fpath) as f: + for line in f.readlines(): + line = line.strip() + if line and not line.startswith('#'): + yield from parse_line(line) + + def gen_packages_items(): + if exists(require_fpath): + for info in parse_require_file(require_fpath): + parts = [info['package']] + if with_version and 'version' in info: + parts.extend(info['version']) + if not sys.version.startswith('3.4'): + # apparently package_deps are broken in 3.4 + platform_deps = info.get('platform_deps') + if platform_deps is not None: + parts.append(';' + platform_deps) + item = ''.join(parts) + yield item + + packages = list(gen_packages_items()) + return packages + + +install_requires = parse_requirements() + +try: + # OpenCV installed via conda. + import cv2 # NOQA: F401 + major, minor, *rest = cv2.__version__.split('.') + if int(major) < 3: + raise RuntimeError( + f'OpenCV >=3 is required but {cv2.__version__} is installed') +except ImportError: + # If first not installed install second package + CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3', + 'opencv-python>=3')] + for main, secondary in CHOOSE_INSTALL_REQUIRES: + install_requires.append(choose_requirement(main, secondary)) + + +def get_extensions(): + extensions = [] + + if os.getenv('MMCV_WITH_TRT', '0') != '0': + + # Following strings of text style are from colorama package + bright_style, reset_style = '\x1b[1m', '\x1b[0m' + red_text, blue_text = '\x1b[31m', '\x1b[34m' + white_background = '\x1b[107m' + + msg = white_background + bright_style + red_text + msg += 'DeprecationWarning: ' + \ + 'Custom TensorRT Ops will be deprecated in future. ' + msg += blue_text + \ + 'Welcome to use the unified model deployment toolbox ' + msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' + msg += reset_style + warnings.warn(msg) + + ext_name = 'mmcv._ext_trt' + from torch.utils.cpp_extension import include_paths, library_paths + library_dirs = [] + libraries = [] + include_dirs = [] + tensorrt_path = os.getenv('TENSORRT_DIR', '0') + tensorrt_lib_path = glob.glob( + os.path.join(tensorrt_path, 'targets', '*', 'lib'))[0] + library_dirs += [tensorrt_lib_path] + libraries += ['nvinfer', 'nvparsers', 'nvinfer_plugin'] + libraries += ['cudart'] + define_macros = [] + extra_compile_args = {'cxx': []} + + include_path = os.path.abspath('./mmcv/ops/csrc/common/cuda') + include_trt_path = os.path.abspath('./mmcv/ops/csrc/tensorrt') + include_dirs.append(include_path) + include_dirs.append(include_trt_path) + include_dirs.append(os.path.join(tensorrt_path, 'include')) + include_dirs += include_paths(cuda=True) + + op_files = glob.glob('./mmcv/ops/csrc/tensorrt/plugins/*') + define_macros += [('MMCV_WITH_CUDA', None)] + define_macros += [('MMCV_WITH_TRT', None)] + cuda_args = os.getenv('MMCV_CUDA_ARGS') + extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] + # prevent cub/thrust conflict with other python library + # More context See issues #1454 + extra_compile_args['nvcc'] += ['-Xcompiler=-fno-gnu-unique'] + library_dirs += library_paths(cuda=True) + + from setuptools import Extension + ext_ops = Extension( + name=ext_name, + sources=op_files, + include_dirs=include_dirs, + define_macros=define_macros, + extra_compile_args=extra_compile_args, + language='c++', + library_dirs=library_dirs, + libraries=libraries) + extensions.append(ext_ops) + + if os.getenv('MMCV_WITH_OPS', '0') == '0': + return extensions + + if EXT_TYPE == 'parrots': + ext_name = 'mmcv._ext' + from parrots.utils.build_extension import Extension + + # new parrots op impl do not use MMCV_USE_PARROTS + # define_macros = [('MMCV_USE_PARROTS', None)] + define_macros = [] + include_dirs = [] + op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\ + glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') +\ + glob.glob('./mmcv/ops/csrc/parrots/*.cpp') + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) + cuda_args = os.getenv('MMCV_CUDA_ARGS') + extra_compile_args = { + 'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'], + 'cxx': ['-std=c++14'], + } + if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1': + define_macros += [('MMCV_WITH_CUDA', None)] + extra_compile_args['nvcc'] += [ + '-D__CUDA_NO_HALF_OPERATORS__', + '-D__CUDA_NO_HALF_CONVERSIONS__', + '-D__CUDA_NO_HALF2_OPERATORS__', + ] + ext_ops = Extension( + name=ext_name, + sources=op_files, + include_dirs=include_dirs, + define_macros=define_macros, + extra_compile_args=extra_compile_args, + cuda=True, + pytorch=True) + extensions.append(ext_ops) + elif EXT_TYPE == 'pytorch': + ext_name = 'mmcv._ext' + from torch.utils.cpp_extension import CppExtension, CUDAExtension + + # prevent ninja from using too many resources + try: + import psutil + num_cpu = len(psutil.Process().cpu_affinity()) + cpu_use = max(4, num_cpu - 1) + except (ModuleNotFoundError, AttributeError): + cpu_use = 4 + + os.environ.setdefault('MAX_JOBS', str(cpu_use)) + define_macros = [] + + # Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a + # required key passed to PyTorch. Even if there is no flag passed + # to cxx, users also need to pass an empty list to PyTorch. + # Since PyTorch1.8.0, it has a default value so users do not need + # to pass an empty list anymore. + # More details at https://github.com/pytorch/pytorch/pull/45956 + extra_compile_args = {'cxx': []} + + # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses + # c++14 features, the argument ['std=c++14'] must be added here. + # However, in the windows environment, some standard libraries + # will depend on c++17 or higher. In fact, for the windows + # environment, the compiler will choose the appropriate compiler + # to compile those cpp files, so there is no need to add the + # argument + if platform.system() != 'Windows': + extra_compile_args['cxx'] = ['-std=c++14'] + + include_dirs = [] + + is_rocm_pytorch = False + try: + from torch.utils.cpp_extension import ROCM_HOME + is_rocm_pytorch = True if ((torch.version.hip is not None) and + (ROCM_HOME is not None)) else False + except ImportError: + pass + + if is_rocm_pytorch or torch.cuda.is_available() or os.getenv( + 'FORCE_CUDA', '0') == '1': + if is_rocm_pytorch: + define_macros += [('HIP_DIFF', None)] + define_macros += [('MMCV_WITH_CUDA', None)] + cuda_args = os.getenv('MMCV_CUDA_ARGS') + extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] + op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \ + glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp') + extension = CUDAExtension + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) + elif (hasattr(torch, 'is_mlu_available') and + torch.is_mlu_available()) or \ + os.getenv('FORCE_MLU', '0') == '1': + from torch_mlu.utils.cpp_extension import MLUExtension + define_macros += [('MMCV_WITH_MLU', None)] + mlu_args = os.getenv('MMCV_MLU_ARGS') + extra_compile_args['cncc'] = [mlu_args] if mlu_args else [] + op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/pytorch/mlu/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/common/mlu/*.mlu') + extension = MLUExtension + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mlu')) + else: + print(f'Compiling {ext_name} only with CPU') + op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ + glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + extension = CppExtension + include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) + + # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses + # c++14 features, the argument ['std=c++14'] must be added here. + # However, in the windows environment, some standard libraries + # will depend on c++17 or higher. In fact, for the windows + # environment, the compiler will choose the appropriate compiler + # to compile those cpp files, so there is no need to add the + # argument + if 'nvcc' in extra_compile_args and platform.system() != 'Windows': + extra_compile_args['nvcc'] += ['-std=c++14'] + + ext_ops = extension( + name=ext_name, + sources=op_files, + include_dirs=include_dirs, + define_macros=define_macros, + extra_compile_args=extra_compile_args) + extensions.append(ext_ops) + + if EXT_TYPE == 'pytorch' and os.getenv('MMCV_WITH_ORT', '0') != '0': + + # Following strings of text style are from colorama package + bright_style, reset_style = '\x1b[1m', '\x1b[0m' + red_text, blue_text = '\x1b[31m', '\x1b[34m' + white_background = '\x1b[107m' + + msg = white_background + bright_style + red_text + msg += 'DeprecationWarning: ' + \ + 'Custom ONNXRuntime Ops will be deprecated in future. ' + msg += blue_text + \ + 'Welcome to use the unified model deployment toolbox ' + msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' + msg += reset_style + warnings.warn(msg) + ext_name = 'mmcv._ext_ort' + import onnxruntime + from torch.utils.cpp_extension import include_paths, library_paths + library_dirs = [] + libraries = [] + include_dirs = [] + ort_path = os.getenv('ONNXRUNTIME_DIR', '0') + library_dirs += [os.path.join(ort_path, 'lib')] + libraries.append('onnxruntime') + define_macros = [] + extra_compile_args = {'cxx': []} + + include_path = os.path.abspath('./mmcv/ops/csrc/onnxruntime') + include_dirs.append(include_path) + include_dirs.append(os.path.join(ort_path, 'include')) + + op_files = glob.glob('./mmcv/ops/csrc/onnxruntime/cpu/*') + if onnxruntime.get_device() == 'GPU' or os.getenv('FORCE_CUDA', + '0') == '1': + define_macros += [('MMCV_WITH_CUDA', None)] + cuda_args = os.getenv('MMCV_CUDA_ARGS') + extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] + op_files += glob.glob('./mmcv/ops/csrc/onnxruntime/gpu/*') + include_dirs += include_paths(cuda=True) + library_dirs += library_paths(cuda=True) + else: + include_dirs += include_paths(cuda=False) + library_dirs += library_paths(cuda=False) + + from setuptools import Extension + ext_ops = Extension( + name=ext_name, + sources=op_files, + include_dirs=include_dirs, + define_macros=define_macros, + extra_compile_args=extra_compile_args, + language='c++', + library_dirs=library_dirs, + libraries=libraries) + extensions.append(ext_ops) + + return extensions + + +setup( + name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' else 'mmcv-full', + version=get_version(), + description='OpenMMLab Computer Vision Foundation', + keywords='computer vision', + packages=find_packages(), + include_package_data=True, + classifiers=[ + 'Development Status :: 4 - Beta', + 'License :: OSI Approved :: Apache Software License', + 'Operating System :: OS Independent', + 'Programming Language :: Python :: 3', + 'Programming Language :: Python :: 3.6', + 'Programming Language :: Python :: 3.7', + 'Programming Language :: Python :: 3.8', + 'Programming Language :: Python :: 3.9', + 'Programming Language :: Python :: 3.10', + 'Topic :: Utilities', + ], + url='https://github.com/open-mmlab/mmcv', + author='MMCV Contributors', + author_email='openmmlab@gmail.com', + install_requires=install_requires, + extras_require={ + 'all': parse_requirements('requirements.txt'), + 'tests': parse_requirements('requirements/test.txt'), + 'build': parse_requirements('requirements/build.txt'), + 'optional': parse_requirements('requirements/optional.txt'), + }, + ext_modules=get_extensions(), + cmdclass=cmd_class, + zip_safe=False) diff --git a/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/analyze_logs.py b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/analyze_logs.py new file mode 100644 index 000000000..18858466e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/analyze_logs.py @@ -0,0 +1,202 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import json +from collections import defaultdict + +import numpy as np +import seaborn as sns +from matplotlib import pyplot as plt + + +def cal_train_time(log_dicts, args): + for i, log_dict in enumerate(log_dicts): + print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}') + all_times = [] + for epoch in log_dict.keys(): + if args.include_outliers: + all_times.append(log_dict[epoch]['time']) + else: + all_times.append(log_dict[epoch]['time'][1:]) + all_times = np.array(all_times) + epoch_ave_time = all_times.mean(-1) + slowest_epoch = epoch_ave_time.argmax() + fastest_epoch = epoch_ave_time.argmin() + std_over_epoch = epoch_ave_time.std() + print(f'slowest epoch {slowest_epoch + 1}, ' + f'average time is {epoch_ave_time[slowest_epoch]:.4f}') + print(f'fastest epoch {fastest_epoch + 1}, ' + f'average time is {epoch_ave_time[fastest_epoch]:.4f}') + print(f'time std over epochs is {std_over_epoch:.4f}') + print(f'average iter time: {np.mean(all_times):.4f} s/iter') + print() + + +def plot_curve(log_dicts, args): + if args.backend is not None: + plt.switch_backend(args.backend) + sns.set_style(args.style) + # if legend is None, use {filename}_{key} as legend + legend = args.legend + if legend is None: + legend = [] + for json_log in args.json_logs: + for metric in args.keys: + legend.append(f'{json_log}_{metric}') + assert len(legend) == (len(args.json_logs) * len(args.keys)) + metrics = args.keys + + num_metrics = len(metrics) + for i, log_dict in enumerate(log_dicts): + epochs = list(log_dict.keys()) + for j, metric in enumerate(metrics): + print(f'plot curve of {args.json_logs[i]}, metric is {metric}') + if metric not in log_dict[epochs[args.interval - 1]]: + raise KeyError( + f'{args.json_logs[i]} does not contain metric {metric}') + + if args.mode == 'eval': + if min(epochs) == args.interval: + x0 = args.interval + else: + # if current training is resumed from previous checkpoint + # we lost information in early epochs + # `xs` should start according to `min(epochs)` + if min(epochs) % args.interval == 0: + x0 = min(epochs) + else: + # find the first epoch that do eval + x0 = min(epochs) + args.interval - \ + min(epochs) % args.interval + xs = np.arange(x0, max(epochs) + 1, args.interval) + ys = [] + for epoch in epochs[args.interval - 1::args.interval]: + ys += log_dict[epoch][metric] + + # if training is aborted before eval of the last epoch + # `xs` and `ys` will have different length and cause an error + # check if `ys[-1]` is empty here + if not log_dict[epoch][metric]: + xs = xs[:-1] + + ax = plt.gca() + ax.set_xticks(xs) + plt.xlabel('epoch') + plt.plot(xs, ys, label=legend[i * num_metrics + j], marker='o') + else: + xs = [] + ys = [] + num_iters_per_epoch = \ + log_dict[epochs[args.interval-1]]['iter'][-1] + for epoch in epochs[args.interval - 1::args.interval]: + iters = log_dict[epoch]['iter'] + if log_dict[epoch]['mode'][-1] == 'val': + iters = iters[:-1] + xs.append( + np.array(iters) + (epoch - 1) * num_iters_per_epoch) + ys.append(np.array(log_dict[epoch][metric][:len(iters)])) + xs = np.concatenate(xs) + ys = np.concatenate(ys) + plt.xlabel('iter') + plt.plot( + xs, ys, label=legend[i * num_metrics + j], linewidth=0.5) + plt.legend() + if args.title is not None: + plt.title(args.title) + if args.out is None: + plt.show() + else: + print(f'save curve to: {args.out}') + plt.savefig(args.out) + plt.cla() + + +def add_plot_parser(subparsers): + parser_plt = subparsers.add_parser( + 'plot_curve', help='parser for plotting curves') + parser_plt.add_argument( + 'json_logs', + type=str, + nargs='+', + help='path of train log in json format') + parser_plt.add_argument( + '--keys', + type=str, + nargs='+', + default=['mAP_0.25'], + help='the metric that you want to plot') + parser_plt.add_argument('--title', type=str, help='title of figure') + parser_plt.add_argument( + '--legend', + type=str, + nargs='+', + default=None, + help='legend of each plot') + parser_plt.add_argument( + '--backend', type=str, default=None, help='backend of plt') + parser_plt.add_argument( + '--style', type=str, default='dark', help='style of plt') + parser_plt.add_argument('--out', type=str, default=None) + parser_plt.add_argument('--mode', type=str, default='train') + parser_plt.add_argument('--interval', type=int, default=1) + + +def add_time_parser(subparsers): + parser_time = subparsers.add_parser( + 'cal_train_time', + help='parser for computing the average time per training iteration') + parser_time.add_argument( + 'json_logs', + type=str, + nargs='+', + help='path of train log in json format') + parser_time.add_argument( + '--include-outliers', + action='store_true', + help='include the first value of every epoch when computing ' + 'the average time') + + +def parse_args(): + parser = argparse.ArgumentParser(description='Analyze Json Log') + # currently only support plot curve and calculate average train time + subparsers = parser.add_subparsers(dest='task', help='task parser') + add_plot_parser(subparsers) + add_time_parser(subparsers) + args = parser.parse_args() + return args + + +def load_json_logs(json_logs): + # load and convert json_logs to log_dict, key is epoch, value is a sub dict + # keys of sub dict is different metrics, e.g. memory, bbox_mAP + # value of sub dict is a list of corresponding values of all iterations + log_dicts = [dict() for _ in json_logs] + for json_log, log_dict in zip(json_logs, log_dicts): + with open(json_log, 'r') as log_file: + for line in log_file: + log = json.loads(line.strip()) + # skip lines without `epoch` field + if 'epoch' not in log: + continue + epoch = log.pop('epoch') + if epoch not in log_dict: + log_dict[epoch] = defaultdict(list) + for k, v in log.items(): + log_dict[epoch][k].append(v) + return log_dicts + + +def main(): + args = parse_args() + + json_logs = args.json_logs + for json_log in json_logs: + assert json_log.endswith('.json') + + log_dicts = load_json_logs(json_logs) + + eval(args.task)(log_dicts, args) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/benchmark.py b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/benchmark.py new file mode 100644 index 000000000..b31c9f095 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/benchmark.py @@ -0,0 +1,96 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import time + +import torch +from mmcv import Config +from mmcv.parallel import MMDataParallel +from mmcv.runner import load_checkpoint, wrap_fp16_model + +from mmdet3d.datasets import build_dataloader, build_dataset +from mmdet3d.models import build_detector +from tools.misc.fuse_conv_bn import fuse_module + + +def parse_args(): + parser = argparse.ArgumentParser(description='MMDet benchmark a model') + parser.add_argument('config', help='test config file path') + parser.add_argument('checkpoint', help='checkpoint file') + parser.add_argument('--samples', default=2000, help='samples to benchmark') + parser.add_argument( + '--log-interval', default=50, help='interval of logging') + parser.add_argument( + '--fuse-conv-bn', + action='store_true', + help='Whether to fuse conv and bn, this will slightly increase' + 'the inference speed') + args = parser.parse_args() + return args + + +def main(): + args = parse_args() + + cfg = Config.fromfile(args.config) + # set cudnn_benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + cfg.model.pretrained = None + cfg.data.test.test_mode = True + + # build the dataloader + # TODO: support multiple images per gpu (only minor changes are needed) + dataset = build_dataset(cfg.data.test) + data_loader = build_dataloader( + dataset, + samples_per_gpu=1, + workers_per_gpu=cfg.data.workers_per_gpu, + dist=False, + shuffle=False) + + # build the model and load checkpoint + cfg.model.train_cfg = None + model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + wrap_fp16_model(model) + load_checkpoint(model, args.checkpoint, map_location='cpu') + if args.fuse_conv_bn: + model = fuse_module(model) + + model = MMDataParallel(model, device_ids=[0]) + + model.eval() + + # the first several iterations may be very slow so skip them + num_warmup = 5 + pure_inf_time = 0 + + # benchmark with several samples and take the average + for i, data in enumerate(data_loader): + + torch.cuda.synchronize() + start_time = time.perf_counter() + + with torch.no_grad(): + model(return_loss=False, rescale=True, **data) + + torch.cuda.synchronize() + elapsed = time.perf_counter() - start_time + + if i >= num_warmup: + pure_inf_time += elapsed + if (i + 1) % args.log_interval == 0: + fps = (i + 1 - num_warmup) / pure_inf_time + print(f'Done image [{i + 1:<3}/ {args.samples}], ' + f'fps: {fps:.1f} img / s') + + if (i + 1) == args.samples: + pure_inf_time += elapsed + fps = (i + 1 - num_warmup) / pure_inf_time + print(f'Overall fps: {fps:.1f} img / s') + break + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/get_flops.py b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/get_flops.py new file mode 100644 index 000000000..f45ed80f8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/analysis_tools/get_flops.py @@ -0,0 +1,92 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +import torch +from mmcv import Config, DictAction + +from mmdet3d.models import build_model + +try: + from mmcv.cnn import get_model_complexity_info +except ImportError: + raise ImportError('Please upgrade mmcv to >0.6.2') + + +def parse_args(): + parser = argparse.ArgumentParser(description='Train a detector') + parser.add_argument('config', help='train config file path') + parser.add_argument( + '--shape', + type=int, + nargs='+', + default=[40000, 4], + help='input point cloud size') + parser.add_argument( + '--modality', + type=str, + default='point', + choices=['point', 'image', 'multi'], + help='input data modality') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. If the value to ' + 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' + 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' + 'Note that the quotation marks are necessary and that no white space ' + 'is allowed.') + args = parser.parse_args() + return args + + +def main(): + + args = parse_args() + + if args.modality == 'point': + assert len(args.shape) == 2, 'invalid input shape' + input_shape = tuple(args.shape) + elif args.modality == 'image': + if len(args.shape) == 1: + input_shape = (3, args.shape[0], args.shape[0]) + elif len(args.shape) == 2: + input_shape = (3, ) + tuple(args.shape) + else: + raise ValueError('invalid input shape') + elif args.modality == 'multi': + raise NotImplementedError( + 'FLOPs counter is currently not supported for models with ' + 'multi-modality input') + + cfg = Config.fromfile(args.config) + if args.cfg_options is not None: + cfg.merge_from_dict(args.cfg_options) + + model = build_model( + cfg.model, + train_cfg=cfg.get('train_cfg'), + test_cfg=cfg.get('test_cfg')) + if torch.cuda.is_available(): + model.cuda() + model.eval() + + if hasattr(model, 'forward_dummy'): + model.forward = model.forward_dummy + else: + raise NotImplementedError( + 'FLOPs counter is currently not supported for {}'.format( + model.__class__.__name__)) + + flops, params = get_model_complexity_info(model, input_shape) + split_line = '=' * 30 + print(f'{split_line}\nInput shape: {input_shape}\n' + f'Flops: {flops}\nParams: {params}\n{split_line}') + print('!!!Please be cautious if you use the results in papers. ' + 'You may need to check if all ops are supported and verify that the ' + 'flops computation is correct.') + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/create_data.py b/cv/3d_detection/PAConv/pytorch/tools/create_data.py new file mode 100644 index 000000000..6d619125c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/create_data.py @@ -0,0 +1,303 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +from os import path as osp + +from tools.data_converter import indoor_converter as indoor +from tools.data_converter import kitti_converter as kitti +from tools.data_converter import lyft_converter as lyft_converter +from tools.data_converter import nuscenes_converter as nuscenes_converter +from tools.data_converter.create_gt_database import ( + GTDatabaseCreater, create_groundtruth_database) + + +def kitti_data_prep(root_path, + info_prefix, + version, + out_dir, + with_plane=False): + """Prepare data related to Kitti dataset. + + Related data consists of '.pkl' files recording basic infos, + 2D annotations and groundtruth database. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + version (str): Dataset version. + out_dir (str): Output directory of the groundtruth database info. + with_plane (bool, optional): Whether to use plane information. + Default: False. + """ + kitti.create_kitti_info_file(root_path, info_prefix, with_plane) + kitti.create_reduced_point_cloud(root_path, info_prefix) + + info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl') + info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl') + info_trainval_path = osp.join(root_path, + f'{info_prefix}_infos_trainval.pkl') + info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl') + kitti.export_2d_annotation(root_path, info_train_path) + kitti.export_2d_annotation(root_path, info_val_path) + kitti.export_2d_annotation(root_path, info_trainval_path) + kitti.export_2d_annotation(root_path, info_test_path) + + create_groundtruth_database( + 'KittiDataset', + root_path, + info_prefix, + f'{out_dir}/{info_prefix}_infos_train.pkl', + relative_path=False, + mask_anno_path='instances_train.json', + with_mask=(version == 'mask')) + + +def nuscenes_data_prep(root_path, + info_prefix, + version, + dataset_name, + out_dir, + max_sweeps=10): + """Prepare data related to nuScenes dataset. + + Related data consists of '.pkl' files recording basic infos, + 2D annotations and groundtruth database. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + version (str): Dataset version. + dataset_name (str): The dataset class name. + out_dir (str): Output directory of the groundtruth database info. + max_sweeps (int, optional): Number of input consecutive frames. + Default: 10 + """ + nuscenes_converter.create_nuscenes_infos( + root_path, info_prefix, version=version, max_sweeps=max_sweeps) + + if version == 'v1.0-test': + info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl') + nuscenes_converter.export_2d_annotation( + root_path, info_test_path, version=version) + return + + info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl') + info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl') + nuscenes_converter.export_2d_annotation( + root_path, info_train_path, version=version) + nuscenes_converter.export_2d_annotation( + root_path, info_val_path, version=version) + create_groundtruth_database(dataset_name, root_path, info_prefix, + f'{out_dir}/{info_prefix}_infos_train.pkl') + + +def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10): + """Prepare data related to Lyft dataset. + + Related data consists of '.pkl' files recording basic infos. + Although the ground truth database and 2D annotations are not used in + Lyft, it can also be generated like nuScenes. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + version (str): Dataset version. + max_sweeps (int, optional): Number of input consecutive frames. + Defaults to 10. + """ + lyft_converter.create_lyft_infos( + root_path, info_prefix, version=version, max_sweeps=max_sweeps) + + +def scannet_data_prep(root_path, info_prefix, out_dir, workers): + """Prepare the info file for scannet dataset. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + out_dir (str): Output directory of the generated info file. + workers (int): Number of threads to be used. + """ + indoor.create_indoor_info_file( + root_path, info_prefix, out_dir, workers=workers) + + +def s3dis_data_prep(root_path, info_prefix, out_dir, workers): + """Prepare the info file for s3dis dataset. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + out_dir (str): Output directory of the generated info file. + workers (int): Number of threads to be used. + """ + indoor.create_indoor_info_file( + root_path, info_prefix, out_dir, workers=workers) + + +def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers): + """Prepare the info file for sunrgbd dataset. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + out_dir (str): Output directory of the generated info file. + workers (int): Number of threads to be used. + """ + indoor.create_indoor_info_file( + root_path, info_prefix, out_dir, workers=workers) + + +def waymo_data_prep(root_path, + info_prefix, + version, + out_dir, + workers, + max_sweeps=5): + """Prepare the info file for waymo dataset. + + Args: + root_path (str): Path of dataset root. + info_prefix (str): The prefix of info filenames. + out_dir (str): Output directory of the generated info file. + workers (int): Number of threads to be used. + max_sweeps (int, optional): Number of input consecutive frames. + Default: 5. Here we store pose information of these frames + for later use. + """ + from tools.data_converter import waymo_converter as waymo + + splits = ['training', 'validation', 'testing'] + for i, split in enumerate(splits): + load_dir = osp.join(root_path, 'waymo_format', split) + if split == 'validation': + save_dir = osp.join(out_dir, 'kitti_format', 'training') + else: + save_dir = osp.join(out_dir, 'kitti_format', split) + converter = waymo.Waymo2KITTI( + load_dir, + save_dir, + prefix=str(i), + workers=workers, + test_mode=(split == 'testing')) + converter.convert() + # Generate waymo infos + out_dir = osp.join(out_dir, 'kitti_format') + kitti.create_waymo_info_file( + out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers) + GTDatabaseCreater( + 'WaymoDataset', + out_dir, + info_prefix, + f'{out_dir}/{info_prefix}_infos_train.pkl', + relative_path=False, + with_mask=False, + num_worker=workers).create() + + +parser = argparse.ArgumentParser(description='Data converter arg parser') +parser.add_argument('dataset', metavar='kitti', help='name of the dataset') +parser.add_argument( + '--root-path', + type=str, + default='./data/kitti', + help='specify the root path of dataset') +parser.add_argument( + '--version', + type=str, + default='v1.0', + required=False, + help='specify the dataset version, no need for kitti') +parser.add_argument( + '--max-sweeps', + type=int, + default=10, + required=False, + help='specify sweeps of lidar per example') +parser.add_argument( + '--with-plane', + action='store_true', + help='Whether to use plane information for kitti.') +parser.add_argument( + '--out-dir', + type=str, + default='./data/kitti', + required=False, + help='name of info pkl') +parser.add_argument('--extra-tag', type=str, default='kitti') +parser.add_argument( + '--workers', type=int, default=4, help='number of threads to be used') +args = parser.parse_args() + +if __name__ == '__main__': + if args.dataset == 'kitti': + kitti_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=args.version, + out_dir=args.out_dir, + with_plane=args.with_plane) + elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini': + train_version = f'{args.version}-trainval' + nuscenes_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=train_version, + dataset_name='NuScenesDataset', + out_dir=args.out_dir, + max_sweeps=args.max_sweeps) + test_version = f'{args.version}-test' + nuscenes_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=test_version, + dataset_name='NuScenesDataset', + out_dir=args.out_dir, + max_sweeps=args.max_sweeps) + elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini': + train_version = f'{args.version}' + nuscenes_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=train_version, + dataset_name='NuScenesDataset', + out_dir=args.out_dir, + max_sweeps=args.max_sweeps) + elif args.dataset == 'lyft': + train_version = f'{args.version}-train' + lyft_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=train_version, + max_sweeps=args.max_sweeps) + test_version = f'{args.version}-test' + lyft_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=test_version, + max_sweeps=args.max_sweeps) + elif args.dataset == 'waymo': + waymo_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + version=args.version, + out_dir=args.out_dir, + workers=args.workers, + max_sweeps=args.max_sweeps) + elif args.dataset == 'scannet': + scannet_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + out_dir=args.out_dir, + workers=args.workers) + elif args.dataset == 's3dis': + s3dis_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + out_dir=args.out_dir, + workers=args.workers) + elif args.dataset == 'sunrgbd': + sunrgbd_data_prep( + root_path=args.root_path, + info_prefix=args.extra_tag, + out_dir=args.out_dir, + workers=args.workers) diff --git a/cv/3d_detection/PAConv/pytorch/tools/create_data.sh b/cv/3d_detection/PAConv/pytorch/tools/create_data.sh new file mode 100755 index 000000000..9a57852f7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/create_data.sh @@ -0,0 +1,24 @@ +#!/usr/bin/env bash + +set -x +export PYTHONPATH=`pwd`:$PYTHONPATH + +PARTITION=$1 +JOB_NAME=$2 +DATASET=$3 +GPUS=${GPUS:-1} +GPUS_PER_NODE=${GPUS_PER_NODE:-1} +SRUN_ARGS=${SRUN_ARGS:-""} +JOB_NAME=create_data + +srun -p ${PARTITION} \ + --job-name=${JOB_NAME} \ + --gres=gpu:${GPUS_PER_NODE} \ + --ntasks=${GPUS} \ + --ntasks-per-node=${GPUS_PER_NODE} \ + --kill-on-bad-exit=1 \ + ${SRUN_ARGS} \ + python -u tools/create_data.py ${DATASET} \ + --root-path ./data/${DATASET} \ + --out-dir ./data/${DATASET} \ + --extra-tag ${DATASET} diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/__init__.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/__init__.py new file mode 100644 index 000000000..ef101fec6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/__init__.py @@ -0,0 +1 @@ +# Copyright (c) OpenMMLab. All rights reserved. diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/create_gt_database.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/create_gt_database.py new file mode 100644 index 000000000..210f0e88b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/create_gt_database.py @@ -0,0 +1,624 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import pickle +from os import path as osp + +import mmcv +import numpy as np +from mmcv import track_iter_progress +from mmcv.ops import roi_align +from pycocotools import mask as maskUtils +from pycocotools.coco import COCO + +from mmdet3d.core.bbox import box_np_ops as box_np_ops +from mmdet3d.datasets import build_dataset +from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps + + +def _poly2mask(mask_ann, img_h, img_w): + if isinstance(mask_ann, list): + # polygon -- a single object might consist of multiple parts + # we merge all parts into one mask rle code + rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) + rle = maskUtils.merge(rles) + elif isinstance(mask_ann['counts'], list): + # uncompressed RLE + rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) + else: + # rle + rle = mask_ann + mask = maskUtils.decode(rle) + return mask + + +def _parse_coco_ann_info(ann_info): + gt_bboxes = [] + gt_labels = [] + gt_bboxes_ignore = [] + gt_masks_ann = [] + + for i, ann in enumerate(ann_info): + if ann.get('ignore', False): + continue + x1, y1, w, h = ann['bbox'] + if ann['area'] <= 0: + continue + bbox = [x1, y1, x1 + w, y1 + h] + if ann.get('iscrowd', False): + gt_bboxes_ignore.append(bbox) + else: + gt_bboxes.append(bbox) + gt_masks_ann.append(ann['segmentation']) + + if gt_bboxes: + gt_bboxes = np.array(gt_bboxes, dtype=np.float32) + gt_labels = np.array(gt_labels, dtype=np.int64) + else: + gt_bboxes = np.zeros((0, 4), dtype=np.float32) + gt_labels = np.array([], dtype=np.int64) + + if gt_bboxes_ignore: + gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) + else: + gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) + + ann = dict( + bboxes=gt_bboxes, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann) + + return ann + + +def crop_image_patch_v2(pos_proposals, pos_assigned_gt_inds, gt_masks): + import torch + from torch.nn.modules.utils import _pair + device = pos_proposals.device + num_pos = pos_proposals.size(0) + fake_inds = ( + torch.arange(num_pos, + device=device).to(dtype=pos_proposals.dtype)[:, None]) + rois = torch.cat([fake_inds, pos_proposals], dim=1) # Nx5 + mask_size = _pair(28) + rois = rois.to(device=device) + gt_masks_th = ( + torch.from_numpy(gt_masks).to(device).index_select( + 0, pos_assigned_gt_inds).to(dtype=rois.dtype)) + # Use RoIAlign could apparently accelerate the training (~0.1s/iter) + targets = ( + roi_align(gt_masks_th, rois, mask_size[::-1], 1.0, 0, True).squeeze(1)) + return targets + + +def crop_image_patch(pos_proposals, gt_masks, pos_assigned_gt_inds, org_img): + num_pos = pos_proposals.shape[0] + masks = [] + img_patches = [] + for i in range(num_pos): + gt_mask = gt_masks[pos_assigned_gt_inds[i]] + bbox = pos_proposals[i, :].astype(np.int32) + x1, y1, x2, y2 = bbox + w = np.maximum(x2 - x1 + 1, 1) + h = np.maximum(y2 - y1 + 1, 1) + + mask_patch = gt_mask[y1:y1 + h, x1:x1 + w] + masked_img = gt_mask[..., None] * org_img + img_patch = masked_img[y1:y1 + h, x1:x1 + w] + + img_patches.append(img_patch) + masks.append(mask_patch) + return img_patches, masks + + +def create_groundtruth_database(dataset_class_name, + data_path, + info_prefix, + info_path=None, + mask_anno_path=None, + used_classes=None, + database_save_path=None, + db_info_save_path=None, + relative_path=True, + add_rgb=False, + lidar_only=False, + bev_only=False, + coors_range=None, + with_mask=False): + """Given the raw data, generate the ground truth database. + + Args: + dataset_class_name (str): Name of the input dataset. + data_path (str): Path of the data. + info_prefix (str): Prefix of the info file. + info_path (str, optional): Path of the info file. + Default: None. + mask_anno_path (str, optional): Path of the mask_anno. + Default: None. + used_classes (list[str], optional): Classes have been used. + Default: None. + database_save_path (str, optional): Path to save database. + Default: None. + db_info_save_path (str, optional): Path to save db_info. + Default: None. + relative_path (bool, optional): Whether to use relative path. + Default: True. + with_mask (bool, optional): Whether to use mask. + Default: False. + """ + print(f'Create GT Database of {dataset_class_name}') + dataset_cfg = dict( + type=dataset_class_name, data_root=data_path, ann_file=info_path) + if dataset_class_name == 'KittiDataset': + file_client_args = dict(backend='disk') + dataset_cfg.update( + test_mode=False, + split='training', + modality=dict( + use_lidar=True, + use_depth=False, + use_lidar_intensity=True, + use_camera=with_mask, + ), + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args) + ]) + + elif dataset_class_name == 'NuScenesDataset': + dataset_cfg.update( + use_valid_flag=True, + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + use_dim=[0, 1, 2, 3, 4], + pad_empty_sweeps=True, + remove_close=True), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True) + ]) + + elif dataset_class_name == 'WaymoDataset': + file_client_args = dict(backend='disk') + dataset_cfg.update( + test_mode=False, + split='training', + modality=dict( + use_lidar=True, + use_depth=False, + use_lidar_intensity=True, + use_camera=False, + ), + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=6, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args) + ]) + + dataset = build_dataset(dataset_cfg) + + if database_save_path is None: + database_save_path = osp.join(data_path, f'{info_prefix}_gt_database') + if db_info_save_path is None: + db_info_save_path = osp.join(data_path, + f'{info_prefix}_dbinfos_train.pkl') + mmcv.mkdir_or_exist(database_save_path) + all_db_infos = dict() + if with_mask: + coco = COCO(osp.join(data_path, mask_anno_path)) + imgIds = coco.getImgIds() + file2id = dict() + for i in imgIds: + info = coco.loadImgs([i])[0] + file2id.update({info['file_name']: i}) + + group_counter = 0 + for j in track_iter_progress(list(range(len(dataset)))): + input_dict = dataset.get_data_info(j) + dataset.pre_pipeline(input_dict) + example = dataset.pipeline(input_dict) + annos = example['ann_info'] + image_idx = example['sample_idx'] + points = example['points'].tensor.numpy() + gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy() + names = annos['gt_names'] + group_dict = dict() + if 'group_ids' in annos: + group_ids = annos['group_ids'] + else: + group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64) + difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32) + if 'difficulty' in annos: + difficulty = annos['difficulty'] + + num_obj = gt_boxes_3d.shape[0] + point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d) + + if with_mask: + # prepare masks + gt_boxes = annos['gt_bboxes'] + img_path = osp.split(example['img_info']['filename'])[-1] + if img_path not in file2id.keys(): + print(f'skip image {img_path} for empty mask') + continue + img_id = file2id[img_path] + kins_annIds = coco.getAnnIds(imgIds=img_id) + kins_raw_info = coco.loadAnns(kins_annIds) + kins_ann_info = _parse_coco_ann_info(kins_raw_info) + h, w = annos['img_shape'][:2] + gt_masks = [ + _poly2mask(mask, h, w) for mask in kins_ann_info['masks'] + ] + # get mask inds based on iou mapping + bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes) + mask_inds = bbox_iou.argmax(axis=0) + valid_inds = (bbox_iou.max(axis=0) > 0.5) + + # mask the image + # use more precise crop when it is ready + # object_img_patches = np.ascontiguousarray( + # np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2)) + # crop image patches using roi_align + # object_img_patches = crop_image_patch_v2( + # torch.Tensor(gt_boxes), + # torch.Tensor(mask_inds).long(), object_img_patches) + object_img_patches, object_masks = crop_image_patch( + gt_boxes, gt_masks, mask_inds, annos['img']) + + for i in range(num_obj): + filename = f'{image_idx}_{names[i]}_{i}.bin' + abs_filepath = osp.join(database_save_path, filename) + rel_filepath = osp.join(f'{info_prefix}_gt_database', filename) + + # save point clouds and image patches for each object + gt_points = points[point_indices[:, i]] + gt_points[:, :3] -= gt_boxes_3d[i, :3] + + if with_mask: + if object_masks[i].sum() == 0 or not valid_inds[i]: + # Skip object for empty or invalid mask + continue + img_patch_path = abs_filepath + '.png' + mask_patch_path = abs_filepath + '.mask.png' + mmcv.imwrite(object_img_patches[i], img_patch_path) + mmcv.imwrite(object_masks[i], mask_patch_path) + + with open(abs_filepath, 'w') as f: + gt_points.tofile(f) + + if (used_classes is None) or names[i] in used_classes: + db_info = { + 'name': names[i], + 'path': rel_filepath, + 'image_idx': image_idx, + 'gt_idx': i, + 'box3d_lidar': gt_boxes_3d[i], + 'num_points_in_gt': gt_points.shape[0], + 'difficulty': difficulty[i], + } + local_group_id = group_ids[i] + # if local_group_id >= 0: + if local_group_id not in group_dict: + group_dict[local_group_id] = group_counter + group_counter += 1 + db_info['group_id'] = group_dict[local_group_id] + if 'score' in annos: + db_info['score'] = annos['score'][i] + if with_mask: + db_info.update({'box2d_camera': gt_boxes[i]}) + if names[i] in all_db_infos: + all_db_infos[names[i]].append(db_info) + else: + all_db_infos[names[i]] = [db_info] + + for k, v in all_db_infos.items(): + print(f'load {len(v)} {k} database infos') + + with open(db_info_save_path, 'wb') as f: + pickle.dump(all_db_infos, f) + + +class GTDatabaseCreater: + """Given the raw data, generate the ground truth database. This is the + parallel version. For serialized version, please refer to + `create_groundtruth_database` + + Args: + dataset_class_name (str): Name of the input dataset. + data_path (str): Path of the data. + info_prefix (str): Prefix of the info file. + info_path (str, optional): Path of the info file. + Default: None. + mask_anno_path (str, optional): Path of the mask_anno. + Default: None. + used_classes (list[str], optional): Classes have been used. + Default: None. + database_save_path (str, optional): Path to save database. + Default: None. + db_info_save_path (str, optional): Path to save db_info. + Default: None. + relative_path (bool, optional): Whether to use relative path. + Default: True. + with_mask (bool, optional): Whether to use mask. + Default: False. + num_worker (int, optional): the number of parallel workers to use. + Default: 8. + """ + + def __init__(self, + dataset_class_name, + data_path, + info_prefix, + info_path=None, + mask_anno_path=None, + used_classes=None, + database_save_path=None, + db_info_save_path=None, + relative_path=True, + add_rgb=False, + lidar_only=False, + bev_only=False, + coors_range=None, + with_mask=False, + num_worker=8) -> None: + self.dataset_class_name = dataset_class_name + self.data_path = data_path + self.info_prefix = info_prefix + self.info_path = info_path + self.mask_anno_path = mask_anno_path + self.used_classes = used_classes + self.database_save_path = database_save_path + self.db_info_save_path = db_info_save_path + self.relative_path = relative_path + self.add_rgb = add_rgb + self.lidar_only = lidar_only + self.bev_only = bev_only + self.coors_range = coors_range + self.with_mask = with_mask + self.num_worker = num_worker + self.pipeline = None + + def create_single(self, input_dict): + group_counter = 0 + single_db_infos = dict() + example = self.pipeline(input_dict) + annos = example['ann_info'] + image_idx = example['sample_idx'] + points = example['points'].tensor.numpy() + gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy() + names = annos['gt_names'] + group_dict = dict() + if 'group_ids' in annos: + group_ids = annos['group_ids'] + else: + group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64) + difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32) + if 'difficulty' in annos: + difficulty = annos['difficulty'] + + num_obj = gt_boxes_3d.shape[0] + point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d) + + if self.with_mask: + # prepare masks + gt_boxes = annos['gt_bboxes'] + img_path = osp.split(example['img_info']['filename'])[-1] + if img_path not in self.file2id.keys(): + print(f'skip image {img_path} for empty mask') + return single_db_infos + img_id = self.file2id[img_path] + kins_annIds = self.coco.getAnnIds(imgIds=img_id) + kins_raw_info = self.coco.loadAnns(kins_annIds) + kins_ann_info = _parse_coco_ann_info(kins_raw_info) + h, w = annos['img_shape'][:2] + gt_masks = [ + _poly2mask(mask, h, w) for mask in kins_ann_info['masks'] + ] + # get mask inds based on iou mapping + bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes) + mask_inds = bbox_iou.argmax(axis=0) + valid_inds = (bbox_iou.max(axis=0) > 0.5) + + # mask the image + # use more precise crop when it is ready + # object_img_patches = np.ascontiguousarray( + # np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2)) + # crop image patches using roi_align + # object_img_patches = crop_image_patch_v2( + # torch.Tensor(gt_boxes), + # torch.Tensor(mask_inds).long(), object_img_patches) + object_img_patches, object_masks = crop_image_patch( + gt_boxes, gt_masks, mask_inds, annos['img']) + + for i in range(num_obj): + filename = f'{image_idx}_{names[i]}_{i}.bin' + abs_filepath = osp.join(self.database_save_path, filename) + rel_filepath = osp.join(f'{self.info_prefix}_gt_database', + filename) + + # save point clouds and image patches for each object + gt_points = points[point_indices[:, i]] + gt_points[:, :3] -= gt_boxes_3d[i, :3] + + if self.with_mask: + if object_masks[i].sum() == 0 or not valid_inds[i]: + # Skip object for empty or invalid mask + continue + img_patch_path = abs_filepath + '.png' + mask_patch_path = abs_filepath + '.mask.png' + mmcv.imwrite(object_img_patches[i], img_patch_path) + mmcv.imwrite(object_masks[i], mask_patch_path) + + with open(abs_filepath, 'w') as f: + gt_points.tofile(f) + + if (self.used_classes is None) or names[i] in self.used_classes: + db_info = { + 'name': names[i], + 'path': rel_filepath, + 'image_idx': image_idx, + 'gt_idx': i, + 'box3d_lidar': gt_boxes_3d[i], + 'num_points_in_gt': gt_points.shape[0], + 'difficulty': difficulty[i], + } + local_group_id = group_ids[i] + # if local_group_id >= 0: + if local_group_id not in group_dict: + group_dict[local_group_id] = group_counter + group_counter += 1 + db_info['group_id'] = group_dict[local_group_id] + if 'score' in annos: + db_info['score'] = annos['score'][i] + if self.with_mask: + db_info.update({'box2d_camera': gt_boxes[i]}) + if names[i] in single_db_infos: + single_db_infos[names[i]].append(db_info) + else: + single_db_infos[names[i]] = [db_info] + + return single_db_infos + + def create(self): + print(f'Create GT Database of {self.dataset_class_name}') + dataset_cfg = dict( + type=self.dataset_class_name, + data_root=self.data_path, + ann_file=self.info_path) + if self.dataset_class_name == 'KittiDataset': + file_client_args = dict(backend='disk') + dataset_cfg.update( + test_mode=False, + split='training', + modality=dict( + use_lidar=True, + use_depth=False, + use_lidar_intensity=True, + use_camera=self.with_mask, + ), + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=4, + use_dim=4, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args) + ]) + + elif self.dataset_class_name == 'NuScenesDataset': + dataset_cfg.update( + use_valid_flag=True, + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=5, + use_dim=5), + dict( + type='LoadPointsFromMultiSweeps', + sweeps_num=10, + use_dim=[0, 1, 2, 3, 4], + pad_empty_sweeps=True, + remove_close=True), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True) + ]) + + elif self.dataset_class_name == 'WaymoDataset': + file_client_args = dict(backend='disk') + dataset_cfg.update( + test_mode=False, + split='training', + modality=dict( + use_lidar=True, + use_depth=False, + use_lidar_intensity=True, + use_camera=False, + ), + pipeline=[ + dict( + type='LoadPointsFromFile', + coord_type='LIDAR', + load_dim=6, + use_dim=6, + file_client_args=file_client_args), + dict( + type='LoadAnnotations3D', + with_bbox_3d=True, + with_label_3d=True, + file_client_args=file_client_args) + ]) + + dataset = build_dataset(dataset_cfg) + self.pipeline = dataset.pipeline + if self.database_save_path is None: + self.database_save_path = osp.join( + self.data_path, f'{self.info_prefix}_gt_database') + if self.db_info_save_path is None: + self.db_info_save_path = osp.join( + self.data_path, f'{self.info_prefix}_dbinfos_train.pkl') + mmcv.mkdir_or_exist(self.database_save_path) + if self.with_mask: + self.coco = COCO(osp.join(self.data_path, self.mask_anno_path)) + imgIds = self.coco.getImgIds() + self.file2id = dict() + for i in imgIds: + info = self.coco.loadImgs([i])[0] + self.file2id.update({info['file_name']: i}) + + def loop_dataset(i): + input_dict = dataset.get_data_info(i) + dataset.pre_pipeline(input_dict) + return input_dict + + multi_db_infos = mmcv.track_parallel_progress( + self.create_single, ((loop_dataset(i) + for i in range(len(dataset))), len(dataset)), + self.num_worker) + print('Make global unique group id') + group_counter_offset = 0 + all_db_infos = dict() + for single_db_infos in track_iter_progress(multi_db_infos): + group_id = -1 + for name, name_db_infos in single_db_infos.items(): + for db_info in name_db_infos: + group_id = max(group_id, db_info['group_id']) + db_info['group_id'] += group_counter_offset + if name not in all_db_infos: + all_db_infos[name] = [] + all_db_infos[name].extend(name_db_infos) + group_counter_offset += (group_id + 1) + + for k, v in all_db_infos.items(): + print(f'load {len(v)} {k} database infos') + + with open(self.db_info_save_path, 'wb') as f: + pickle.dump(all_db_infos, f) diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/indoor_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/indoor_converter.py new file mode 100644 index 000000000..d3be36764 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/indoor_converter.py @@ -0,0 +1,110 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os + +import mmcv +import numpy as np + +from tools.data_converter.s3dis_data_utils import S3DISData, S3DISSegData +from tools.data_converter.scannet_data_utils import ScanNetData, ScanNetSegData +from tools.data_converter.sunrgbd_data_utils import SUNRGBDData + + +def create_indoor_info_file(data_path, + pkl_prefix='sunrgbd', + save_path=None, + use_v1=False, + workers=4): + """Create indoor information file. + + Get information of the raw data and save it to the pkl file. + + Args: + data_path (str): Path of the data. + pkl_prefix (str, optional): Prefix of the pkl to be saved. + Default: 'sunrgbd'. + save_path (str, optional): Path of the pkl to be saved. Default: None. + use_v1 (bool, optional): Whether to use v1. Default: False. + workers (int, optional): Number of threads to be used. Default: 4. + """ + assert os.path.exists(data_path) + assert pkl_prefix in ['sunrgbd', 'scannet', 's3dis'], \ + f'unsupported indoor dataset {pkl_prefix}' + save_path = data_path if save_path is None else save_path + assert os.path.exists(save_path) + + # generate infos for both detection and segmentation task + if pkl_prefix in ['sunrgbd', 'scannet']: + train_filename = os.path.join(save_path, + f'{pkl_prefix}_infos_train.pkl') + val_filename = os.path.join(save_path, f'{pkl_prefix}_infos_val.pkl') + if pkl_prefix == 'sunrgbd': + # SUN RGB-D has a train-val split + train_dataset = SUNRGBDData( + root_path=data_path, split='train', use_v1=use_v1) + val_dataset = SUNRGBDData( + root_path=data_path, split='val', use_v1=use_v1) + else: + # ScanNet has a train-val-test split + train_dataset = ScanNetData(root_path=data_path, split='train') + val_dataset = ScanNetData(root_path=data_path, split='val') + test_dataset = ScanNetData(root_path=data_path, split='test') + test_filename = os.path.join(save_path, + f'{pkl_prefix}_infos_test.pkl') + + infos_train = train_dataset.get_infos( + num_workers=workers, has_label=True) + mmcv.dump(infos_train, train_filename, 'pkl') + print(f'{pkl_prefix} info train file is saved to {train_filename}') + + infos_val = val_dataset.get_infos(num_workers=workers, has_label=True) + mmcv.dump(infos_val, val_filename, 'pkl') + print(f'{pkl_prefix} info val file is saved to {val_filename}') + + if pkl_prefix == 'scannet': + infos_test = test_dataset.get_infos( + num_workers=workers, has_label=False) + mmcv.dump(infos_test, test_filename, 'pkl') + print(f'{pkl_prefix} info test file is saved to {test_filename}') + + # generate infos for the semantic segmentation task + # e.g. re-sampled scene indexes and label weights + # scene indexes are used to re-sample rooms with different number of points + # label weights are used to balance classes with different number of points + if pkl_prefix == 'scannet': + # label weight computation function is adopted from + # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24 + train_dataset = ScanNetSegData( + data_root=data_path, + ann_file=train_filename, + split='train', + num_points=8192, + label_weight_func=lambda x: 1.0 / np.log(1.2 + x)) + # TODO: do we need to generate on val set? + val_dataset = ScanNetSegData( + data_root=data_path, + ann_file=val_filename, + split='val', + num_points=8192, + label_weight_func=lambda x: 1.0 / np.log(1.2 + x)) + # no need to generate for test set + train_dataset.get_seg_infos() + val_dataset.get_seg_infos() + elif pkl_prefix == 's3dis': + # S3DIS doesn't have a fixed train-val split + # it has 6 areas instead, so we generate info file for each of them + # in training, we will use dataset to wrap different areas + splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]] + for split in splits: + dataset = S3DISData(root_path=data_path, split=split) + info = dataset.get_infos(num_workers=workers, has_label=True) + filename = os.path.join(save_path, + f'{pkl_prefix}_infos_{split}.pkl') + mmcv.dump(info, filename, 'pkl') + print(f'{pkl_prefix} info {split} file is saved to {filename}') + seg_dataset = S3DISSegData( + data_root=data_path, + ann_file=filename, + split=split, + num_points=4096, + label_weight_func=lambda x: 1.0 / np.log(1.2 + x)) + seg_dataset.get_seg_infos() diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_converter.py new file mode 100644 index 000000000..2db461d4d --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_converter.py @@ -0,0 +1,624 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict +from pathlib import Path + +import mmcv +import numpy as np +from nuscenes.utils.geometry_utils import view_points + +from mmdet3d.core.bbox import box_np_ops, points_cam2img +from .kitti_data_utils import WaymoInfoGatherer, get_kitti_image_info +from .nuscenes_converter import post_process_coords + +kitti_categories = ('Pedestrian', 'Cyclist', 'Car') + + +def convert_to_kitti_info_version2(info): + """convert kitti info v1 to v2 if possible. + + Args: + info (dict): Info of the input kitti data. + - image (dict): image info + - calib (dict): calibration info + - point_cloud (dict): point cloud info + """ + if 'image' not in info or 'calib' not in info or 'point_cloud' not in info: + info['image'] = { + 'image_shape': info['img_shape'], + 'image_idx': info['image_idx'], + 'image_path': info['img_path'], + } + info['calib'] = { + 'R0_rect': info['calib/R0_rect'], + 'Tr_velo_to_cam': info['calib/Tr_velo_to_cam'], + 'P2': info['calib/P2'], + } + info['point_cloud'] = { + 'velodyne_path': info['velodyne_path'], + } + + +def _read_imageset_file(path): + with open(path, 'r') as f: + lines = f.readlines() + return [int(line) for line in lines] + + +class _NumPointsInGTCalculater: + """Calculate the number of points inside the ground truth box. This is the + parallel version. For the serialized version, please refer to + `_calculate_num_points_in_gt`. + + Args: + data_path (str): Path of the data. + relative_path (bool): Whether to use relative path. + remove_outside (bool, optional): Whether to remove points which are + outside of image. Default: True. + num_features (int, optional): Number of features per point. + Default: False. + num_worker (int, optional): the number of parallel workers to use. + Default: 8. + """ + + def __init__(self, + data_path, + relative_path, + remove_outside=True, + num_features=4, + num_worker=8) -> None: + self.data_path = data_path + self.relative_path = relative_path + self.remove_outside = remove_outside + self.num_features = num_features + self.num_worker = num_worker + + def calculate_single(self, info): + pc_info = info['point_cloud'] + image_info = info['image'] + calib = info['calib'] + if self.relative_path: + v_path = str(Path(self.data_path) / pc_info['velodyne_path']) + else: + v_path = pc_info['velodyne_path'] + points_v = np.fromfile( + v_path, dtype=np.float32, + count=-1).reshape([-1, self.num_features]) + rect = calib['R0_rect'] + Trv2c = calib['Tr_velo_to_cam'] + P2 = calib['P2'] + if self.remove_outside: + points_v = box_np_ops.remove_outside_points( + points_v, rect, Trv2c, P2, image_info['image_shape']) + annos = info['annos'] + num_obj = len([n for n in annos['name'] if n != 'DontCare']) + dims = annos['dimensions'][:num_obj] + loc = annos['location'][:num_obj] + rots = annos['rotation_y'][:num_obj] + gt_boxes_camera = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + gt_boxes_lidar = box_np_ops.box_camera_to_lidar( + gt_boxes_camera, rect, Trv2c) + indices = box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar) + num_points_in_gt = indices.sum(0) + num_ignored = len(annos['dimensions']) - num_obj + num_points_in_gt = np.concatenate( + [num_points_in_gt, -np.ones([num_ignored])]) + annos['num_points_in_gt'] = num_points_in_gt.astype(np.int32) + return info + + def calculate(self, infos): + ret_infos = mmcv.track_parallel_progress(self.calculate_single, infos, + self.num_worker) + for i, ret_info in enumerate(ret_infos): + infos[i] = ret_info + + +def _calculate_num_points_in_gt(data_path, + infos, + relative_path, + remove_outside=True, + num_features=4): + for info in mmcv.track_iter_progress(infos): + pc_info = info['point_cloud'] + image_info = info['image'] + calib = info['calib'] + if relative_path: + v_path = str(Path(data_path) / pc_info['velodyne_path']) + else: + v_path = pc_info['velodyne_path'] + points_v = np.fromfile( + v_path, dtype=np.float32, count=-1).reshape([-1, num_features]) + rect = calib['R0_rect'] + Trv2c = calib['Tr_velo_to_cam'] + P2 = calib['P2'] + if remove_outside: + points_v = box_np_ops.remove_outside_points( + points_v, rect, Trv2c, P2, image_info['image_shape']) + + # points_v = points_v[points_v[:, 0] > 0] + annos = info['annos'] + num_obj = len([n for n in annos['name'] if n != 'DontCare']) + # annos = kitti.filter_kitti_anno(annos, ['DontCare']) + dims = annos['dimensions'][:num_obj] + loc = annos['location'][:num_obj] + rots = annos['rotation_y'][:num_obj] + gt_boxes_camera = np.concatenate([loc, dims, rots[..., np.newaxis]], + axis=1) + gt_boxes_lidar = box_np_ops.box_camera_to_lidar( + gt_boxes_camera, rect, Trv2c) + indices = box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar) + num_points_in_gt = indices.sum(0) + num_ignored = len(annos['dimensions']) - num_obj + num_points_in_gt = np.concatenate( + [num_points_in_gt, -np.ones([num_ignored])]) + annos['num_points_in_gt'] = num_points_in_gt.astype(np.int32) + + +def create_kitti_info_file(data_path, + pkl_prefix='kitti', + with_plane=False, + save_path=None, + relative_path=True): + """Create info file of KITTI dataset. + + Given the raw data, generate its related info file in pkl format. + + Args: + data_path (str): Path of the data root. + pkl_prefix (str, optional): Prefix of the info file to be generated. + Default: 'kitti'. + with_plane (bool, optional): Whether to use plane information. + Default: False. + save_path (str, optional): Path to save the info file. + Default: None. + relative_path (bool, optional): Whether to use relative path. + Default: True. + """ + imageset_folder = Path(data_path) / 'ImageSets' + train_img_ids = _read_imageset_file(str(imageset_folder / 'train.txt')) + val_img_ids = _read_imageset_file(str(imageset_folder / 'val.txt')) + test_img_ids = _read_imageset_file(str(imageset_folder / 'test.txt')) + + print('Generate info. this may take several minutes.') + if save_path is None: + save_path = Path(data_path) + else: + save_path = Path(save_path) + kitti_infos_train = get_kitti_image_info( + data_path, + training=True, + velodyne=True, + calib=True, + with_plane=with_plane, + image_ids=train_img_ids, + relative_path=relative_path) + _calculate_num_points_in_gt(data_path, kitti_infos_train, relative_path) + filename = save_path / f'{pkl_prefix}_infos_train.pkl' + print(f'Kitti info train file is saved to {filename}') + mmcv.dump(kitti_infos_train, filename) + kitti_infos_val = get_kitti_image_info( + data_path, + training=True, + velodyne=True, + calib=True, + with_plane=with_plane, + image_ids=val_img_ids, + relative_path=relative_path) + _calculate_num_points_in_gt(data_path, kitti_infos_val, relative_path) + filename = save_path / f'{pkl_prefix}_infos_val.pkl' + print(f'Kitti info val file is saved to {filename}') + mmcv.dump(kitti_infos_val, filename) + filename = save_path / f'{pkl_prefix}_infos_trainval.pkl' + print(f'Kitti info trainval file is saved to {filename}') + mmcv.dump(kitti_infos_train + kitti_infos_val, filename) + + kitti_infos_test = get_kitti_image_info( + data_path, + training=False, + label_info=False, + velodyne=True, + calib=True, + with_plane=False, + image_ids=test_img_ids, + relative_path=relative_path) + filename = save_path / f'{pkl_prefix}_infos_test.pkl' + print(f'Kitti info test file is saved to {filename}') + mmcv.dump(kitti_infos_test, filename) + + +def create_waymo_info_file(data_path, + pkl_prefix='waymo', + save_path=None, + relative_path=True, + max_sweeps=5, + workers=8): + """Create info file of waymo dataset. + + Given the raw data, generate its related info file in pkl format. + + Args: + data_path (str): Path of the data root. + pkl_prefix (str, optional): Prefix of the info file to be generated. + Default: 'waymo'. + save_path (str, optional): Path to save the info file. + Default: None. + relative_path (bool, optional): Whether to use relative path. + Default: True. + max_sweeps (int, optional): Max sweeps before the detection frame + to be used. Default: 5. + """ + imageset_folder = Path(data_path) / 'ImageSets' + train_img_ids = _read_imageset_file(str(imageset_folder / 'train.txt')) + val_img_ids = _read_imageset_file(str(imageset_folder / 'val.txt')) + test_img_ids = _read_imageset_file(str(imageset_folder / 'test.txt')) + + print('Generate info. this may take several minutes.') + if save_path is None: + save_path = Path(data_path) + else: + save_path = Path(save_path) + waymo_infos_gatherer_trainval = WaymoInfoGatherer( + data_path, + training=True, + velodyne=True, + calib=True, + pose=True, + relative_path=relative_path, + max_sweeps=max_sweeps, + num_worker=workers) + waymo_infos_gatherer_test = WaymoInfoGatherer( + data_path, + training=False, + label_info=False, + velodyne=True, + calib=True, + pose=True, + relative_path=relative_path, + max_sweeps=max_sweeps, + num_worker=workers) + num_points_in_gt_calculater = _NumPointsInGTCalculater( + data_path, + relative_path, + num_features=6, + remove_outside=False, + num_worker=workers) + + waymo_infos_train = waymo_infos_gatherer_trainval.gather(train_img_ids) + num_points_in_gt_calculater.calculate(waymo_infos_train) + filename = save_path / f'{pkl_prefix}_infos_train.pkl' + print(f'Waymo info train file is saved to {filename}') + mmcv.dump(waymo_infos_train, filename) + waymo_infos_val = waymo_infos_gatherer_trainval.gather(val_img_ids) + num_points_in_gt_calculater.calculate(waymo_infos_val) + filename = save_path / f'{pkl_prefix}_infos_val.pkl' + print(f'Waymo info val file is saved to {filename}') + mmcv.dump(waymo_infos_val, filename) + filename = save_path / f'{pkl_prefix}_infos_trainval.pkl' + print(f'Waymo info trainval file is saved to {filename}') + mmcv.dump(waymo_infos_train + waymo_infos_val, filename) + waymo_infos_test = waymo_infos_gatherer_test.gather(test_img_ids) + filename = save_path / f'{pkl_prefix}_infos_test.pkl' + print(f'Waymo info test file is saved to {filename}') + mmcv.dump(waymo_infos_test, filename) + + +def _create_reduced_point_cloud(data_path, + info_path, + save_path=None, + back=False, + num_features=4, + front_camera_id=2): + """Create reduced point clouds for given info. + + Args: + data_path (str): Path of original data. + info_path (str): Path of data info. + save_path (str, optional): Path to save reduced point cloud + data. Default: None. + back (bool, optional): Whether to flip the points to back. + Default: False. + num_features (int, optional): Number of point features. Default: 4. + front_camera_id (int, optional): The referenced/front camera ID. + Default: 2. + """ + kitti_infos = mmcv.load(info_path) + + for info in mmcv.track_iter_progress(kitti_infos): + pc_info = info['point_cloud'] + image_info = info['image'] + calib = info['calib'] + + v_path = pc_info['velodyne_path'] + v_path = Path(data_path) / v_path + points_v = np.fromfile( + str(v_path), dtype=np.float32, + count=-1).reshape([-1, num_features]) + rect = calib['R0_rect'] + if front_camera_id == 2: + P2 = calib['P2'] + else: + P2 = calib[f'P{str(front_camera_id)}'] + Trv2c = calib['Tr_velo_to_cam'] + # first remove z < 0 points + # keep = points_v[:, -1] > 0 + # points_v = points_v[keep] + # then remove outside. + if back: + points_v[:, 0] = -points_v[:, 0] + points_v = box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2, + image_info['image_shape']) + if save_path is None: + save_dir = v_path.parent.parent / (v_path.parent.stem + '_reduced') + if not save_dir.exists(): + save_dir.mkdir() + save_filename = save_dir / v_path.name + # save_filename = str(v_path) + '_reduced' + if back: + save_filename += '_back' + else: + save_filename = str(Path(save_path) / v_path.name) + if back: + save_filename += '_back' + with open(save_filename, 'w') as f: + points_v.tofile(f) + + +def create_reduced_point_cloud(data_path, + pkl_prefix, + train_info_path=None, + val_info_path=None, + test_info_path=None, + save_path=None, + with_back=False): + """Create reduced point clouds for training/validation/testing. + + Args: + data_path (str): Path of original data. + pkl_prefix (str): Prefix of info files. + train_info_path (str, optional): Path of training set info. + Default: None. + val_info_path (str, optional): Path of validation set info. + Default: None. + test_info_path (str, optional): Path of test set info. + Default: None. + save_path (str, optional): Path to save reduced point cloud data. + Default: None. + with_back (bool, optional): Whether to flip the points to back. + Default: False. + """ + if train_info_path is None: + train_info_path = Path(data_path) / f'{pkl_prefix}_infos_train.pkl' + if val_info_path is None: + val_info_path = Path(data_path) / f'{pkl_prefix}_infos_val.pkl' + if test_info_path is None: + test_info_path = Path(data_path) / f'{pkl_prefix}_infos_test.pkl' + + print('create reduced point cloud for training set') + _create_reduced_point_cloud(data_path, train_info_path, save_path) + print('create reduced point cloud for validation set') + _create_reduced_point_cloud(data_path, val_info_path, save_path) + print('create reduced point cloud for testing set') + _create_reduced_point_cloud(data_path, test_info_path, save_path) + if with_back: + _create_reduced_point_cloud( + data_path, train_info_path, save_path, back=True) + _create_reduced_point_cloud( + data_path, val_info_path, save_path, back=True) + _create_reduced_point_cloud( + data_path, test_info_path, save_path, back=True) + + +def export_2d_annotation(root_path, info_path, mono3d=True): + """Export 2d annotation from the info file and raw data. + + Args: + root_path (str): Root path of the raw data. + info_path (str): Path of the info file. + mono3d (bool, optional): Whether to export mono3d annotation. + Default: True. + """ + # get bbox annotations for camera + kitti_infos = mmcv.load(info_path) + cat2Ids = [ + dict(id=kitti_categories.index(cat_name), name=cat_name) + for cat_name in kitti_categories + ] + coco_ann_id = 0 + coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids) + from os import path as osp + for info in mmcv.track_iter_progress(kitti_infos): + coco_infos = get_2d_boxes(info, occluded=[0, 1, 2, 3], mono3d=mono3d) + (height, width, + _) = mmcv.imread(osp.join(root_path, + info['image']['image_path'])).shape + coco_2d_dict['images'].append( + dict( + file_name=info['image']['image_path'], + id=info['image']['image_idx'], + Tri2v=info['calib']['Tr_imu_to_velo'], + Trv2c=info['calib']['Tr_velo_to_cam'], + rect=info['calib']['R0_rect'], + cam_intrinsic=info['calib']['P2'], + width=width, + height=height)) + for coco_info in coco_infos: + if coco_info is None: + continue + # add an empty key for coco format + coco_info['segmentation'] = [] + coco_info['id'] = coco_ann_id + coco_2d_dict['annotations'].append(coco_info) + coco_ann_id += 1 + if mono3d: + json_prefix = f'{info_path[:-4]}_mono3d' + else: + json_prefix = f'{info_path[:-4]}' + mmcv.dump(coco_2d_dict, f'{json_prefix}.coco.json') + + +def get_2d_boxes(info, occluded, mono3d=True): + """Get the 2D annotation records for a given info. + + Args: + info: Information of the given sample data. + occluded: Integer (0, 1, 2, 3) indicating occlusion state: + 0 = fully visible, 1 = partly occluded, 2 = largely occluded, + 3 = unknown, -1 = DontCare + mono3d (bool): Whether to get boxes with mono3d annotation. + + Return: + list[dict]: List of 2D annotation record that belongs to the input + `sample_data_token`. + """ + # Get calibration information + P2 = info['calib']['P2'] + + repro_recs = [] + # if no annotations in info (test dataset), then return + if 'annos' not in info: + return repro_recs + + # Get all the annotation with the specified visibilties. + ann_dicts = info['annos'] + mask = [(ocld in occluded) for ocld in ann_dicts['occluded']] + for k in ann_dicts.keys(): + ann_dicts[k] = ann_dicts[k][mask] + + # convert dict of list to list of dict + ann_recs = [] + for i in range(len(ann_dicts['occluded'])): + ann_rec = {} + for k in ann_dicts.keys(): + ann_rec[k] = ann_dicts[k][i] + ann_recs.append(ann_rec) + + for ann_idx, ann_rec in enumerate(ann_recs): + # Augment sample_annotation with token information. + ann_rec['sample_annotation_token'] = \ + f"{info['image']['image_idx']}.{ann_idx}" + ann_rec['sample_data_token'] = info['image']['image_idx'] + sample_data_token = info['image']['image_idx'] + + loc = ann_rec['location'][np.newaxis, :] + dim = ann_rec['dimensions'][np.newaxis, :] + rot = ann_rec['rotation_y'][np.newaxis, np.newaxis] + # transform the center from [0.5, 1.0, 0.5] to [0.5, 0.5, 0.5] + dst = np.array([0.5, 0.5, 0.5]) + src = np.array([0.5, 1.0, 0.5]) + loc = loc + dim * (dst - src) + offset = (info['calib']['P2'][0, 3] - info['calib']['P0'][0, 3]) \ + / info['calib']['P2'][0, 0] + loc_3d = np.copy(loc) + loc_3d[0, 0] += offset + gt_bbox_3d = np.concatenate([loc, dim, rot], axis=1).astype(np.float32) + + # Filter out the corners that are not in front of the calibrated + # sensor. + corners_3d = box_np_ops.center_to_corner_box3d( + gt_bbox_3d[:, :3], + gt_bbox_3d[:, 3:6], + gt_bbox_3d[:, 6], [0.5, 0.5, 0.5], + axis=1) + corners_3d = corners_3d[0].T # (1, 8, 3) -> (3, 8) + in_front = np.argwhere(corners_3d[2, :] > 0).flatten() + corners_3d = corners_3d[:, in_front] + + # Project 3d box to 2d. + camera_intrinsic = P2 + corner_coords = view_points(corners_3d, camera_intrinsic, + True).T[:, :2].tolist() + + # Keep only corners that fall within the image. + final_coords = post_process_coords(corner_coords) + + # Skip if the convex hull of the re-projected corners + # does not intersect the image canvas. + if final_coords is None: + continue + else: + min_x, min_y, max_x, max_y = final_coords + + # Generate dictionary record to be included in the .json file. + repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y, + sample_data_token, + info['image']['image_path']) + + # If mono3d=True, add 3D annotations in camera coordinates + if mono3d and (repro_rec is not None): + repro_rec['bbox_cam3d'] = np.concatenate( + [loc_3d, dim, rot], + axis=1).astype(np.float32).squeeze().tolist() + repro_rec['velo_cam3d'] = -1 # no velocity in KITTI + + center3d = np.array(loc).reshape([1, 3]) + center2d = points_cam2img( + center3d, camera_intrinsic, with_depth=True) + repro_rec['center2d'] = center2d.squeeze().tolist() + # normalized center2D + depth + # samples with depth < 0 will be removed + if repro_rec['center2d'][2] <= 0: + continue + + repro_rec['attribute_name'] = -1 # no attribute in KITTI + repro_rec['attribute_id'] = -1 + + repro_recs.append(repro_rec) + + return repro_recs + + +def generate_record(ann_rec, x1, y1, x2, y2, sample_data_token, filename): + """Generate one 2D annotation record given various information on top of + the 2D bounding box coordinates. + + Args: + ann_rec (dict): Original 3d annotation record. + x1 (float): Minimum value of the x coordinate. + y1 (float): Minimum value of the y coordinate. + x2 (float): Maximum value of the x coordinate. + y2 (float): Maximum value of the y coordinate. + sample_data_token (str): Sample data token. + filename (str):The corresponding image file where the annotation + is present. + + Returns: + dict: A sample 2D annotation record. + - file_name (str): file name + - image_id (str): sample data token + - area (float): 2d box area + - category_name (str): category name + - category_id (int): category id + - bbox (list[float]): left x, top y, x_size, y_size of 2d box + - iscrowd (int): whether the area is crowd + """ + repro_rec = OrderedDict() + repro_rec['sample_data_token'] = sample_data_token + coco_rec = dict() + + key_mapping = { + 'name': 'category_name', + 'num_points_in_gt': 'num_lidar_pts', + 'sample_annotation_token': 'sample_annotation_token', + 'sample_data_token': 'sample_data_token', + } + + for key, value in ann_rec.items(): + if key in key_mapping.keys(): + repro_rec[key_mapping[key]] = value + + repro_rec['bbox_corners'] = [x1, y1, x2, y2] + repro_rec['filename'] = filename + + coco_rec['file_name'] = filename + coco_rec['image_id'] = sample_data_token + coco_rec['area'] = (y2 - y1) * (x2 - x1) + + if repro_rec['category_name'] not in kitti_categories: + return None + cat_name = repro_rec['category_name'] + coco_rec['category_name'] = cat_name + coco_rec['category_id'] = kitti_categories.index(cat_name) + coco_rec['bbox'] = [x1, y1, x2 - x1, y2 - y1] + coco_rec['iscrowd'] = 0 + + return coco_rec diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_data_utils.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_data_utils.py new file mode 100644 index 000000000..cae84cc6e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/kitti_data_utils.py @@ -0,0 +1,619 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict +from concurrent import futures as futures +from os import path as osp +from pathlib import Path + +import mmcv +import numpy as np +from PIL import Image +from skimage import io + + +def get_image_index_str(img_idx, use_prefix_id=False): + if use_prefix_id: + return '{:07d}'.format(img_idx) + else: + return '{:06d}'.format(img_idx) + + +def get_kitti_info_path(idx, + prefix, + info_type='image_2', + file_tail='.png', + training=True, + relative_path=True, + exist_check=True, + use_prefix_id=False): + img_idx_str = get_image_index_str(idx, use_prefix_id) + img_idx_str += file_tail + prefix = Path(prefix) + if training: + file_path = Path('training') / info_type / img_idx_str + else: + file_path = Path('testing') / info_type / img_idx_str + if exist_check and not (prefix / file_path).exists(): + raise ValueError('file not exist: {}'.format(file_path)) + if relative_path: + return str(file_path) + else: + return str(prefix / file_path) + + +def get_image_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + info_type='image_2', + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, info_type, '.png', training, + relative_path, exist_check, use_prefix_id) + + +def get_label_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + info_type='label_2', + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, info_type, '.txt', training, + relative_path, exist_check, use_prefix_id) + + +def get_plane_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + info_type='planes', + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, info_type, '.txt', training, + relative_path, exist_check, use_prefix_id) + + +def get_velodyne_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, 'velodyne', '.bin', training, + relative_path, exist_check, use_prefix_id) + + +def get_calib_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, 'calib', '.txt', training, + relative_path, exist_check, use_prefix_id) + + +def get_pose_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, 'pose', '.txt', training, + relative_path, exist_check, use_prefix_id) + + +def get_timestamp_path(idx, + prefix, + training=True, + relative_path=True, + exist_check=True, + use_prefix_id=False): + return get_kitti_info_path(idx, prefix, 'timestamp', '.txt', training, + relative_path, exist_check, use_prefix_id) + + +def get_label_anno(label_path): + annotations = {} + annotations.update({ + 'name': [], + 'truncated': [], + 'occluded': [], + 'alpha': [], + 'bbox': [], + 'dimensions': [], + 'location': [], + 'rotation_y': [] + }) + with open(label_path, 'r') as f: + lines = f.readlines() + # if len(lines) == 0 or len(lines[0]) < 15: + # content = [] + # else: + content = [line.strip().split(' ') for line in lines] + num_objects = len([x[0] for x in content if x[0] != 'DontCare']) + annotations['name'] = np.array([x[0] for x in content]) + num_gt = len(annotations['name']) + annotations['truncated'] = np.array([float(x[1]) for x in content]) + annotations['occluded'] = np.array([int(x[2]) for x in content]) + annotations['alpha'] = np.array([float(x[3]) for x in content]) + annotations['bbox'] = np.array([[float(info) for info in x[4:8]] + for x in content]).reshape(-1, 4) + # dimensions will convert hwl format to standard lhw(camera) format. + annotations['dimensions'] = np.array([[float(info) for info in x[8:11]] + for x in content + ]).reshape(-1, 3)[:, [2, 0, 1]] + annotations['location'] = np.array([[float(info) for info in x[11:14]] + for x in content]).reshape(-1, 3) + annotations['rotation_y'] = np.array([float(x[14]) + for x in content]).reshape(-1) + if len(content) != 0 and len(content[0]) == 16: # have score + annotations['score'] = np.array([float(x[15]) for x in content]) + else: + annotations['score'] = np.zeros((annotations['bbox'].shape[0], )) + index = list(range(num_objects)) + [-1] * (num_gt - num_objects) + annotations['index'] = np.array(index, dtype=np.int32) + annotations['group_ids'] = np.arange(num_gt, dtype=np.int32) + return annotations + + +def _extend_matrix(mat): + mat = np.concatenate([mat, np.array([[0., 0., 0., 1.]])], axis=0) + return mat + + +def get_kitti_image_info(path, + training=True, + label_info=True, + velodyne=False, + calib=False, + with_plane=False, + image_ids=7481, + extend_matrix=True, + num_worker=8, + relative_path=True, + with_imageshape=True): + """ + KITTI annotation format version 2: + { + [optional]points: [N, 3+] point cloud + [optional, for kitti]image: { + image_idx: ... + image_path: ... + image_shape: ... + } + point_cloud: { + num_features: 4 + velodyne_path: ... + } + [optional, for kitti]calib: { + R0_rect: ... + Tr_velo_to_cam: ... + P2: ... + } + annos: { + location: [num_gt, 3] array + dimensions: [num_gt, 3] array + rotation_y: [num_gt] angle array + name: [num_gt] ground truth name array + [optional]difficulty: kitti difficulty + [optional]group_ids: used for multi-part object + } + } + """ + root_path = Path(path) + if not isinstance(image_ids, list): + image_ids = list(range(image_ids)) + + def map_func(idx): + info = {} + pc_info = {'num_features': 4} + calib_info = {} + + image_info = {'image_idx': idx} + annotations = None + if velodyne: + pc_info['velodyne_path'] = get_velodyne_path( + idx, path, training, relative_path) + image_info['image_path'] = get_image_path(idx, path, training, + relative_path) + if with_imageshape: + img_path = image_info['image_path'] + if relative_path: + img_path = str(root_path / img_path) + image_info['image_shape'] = np.array( + io.imread(img_path).shape[:2], dtype=np.int32) + if label_info: + label_path = get_label_path(idx, path, training, relative_path) + if relative_path: + label_path = str(root_path / label_path) + annotations = get_label_anno(label_path) + info['image'] = image_info + info['point_cloud'] = pc_info + if calib: + calib_path = get_calib_path( + idx, path, training, relative_path=False) + with open(calib_path, 'r') as f: + lines = f.readlines() + P0 = np.array([float(info) for info in lines[0].split(' ')[1:13] + ]).reshape([3, 4]) + P1 = np.array([float(info) for info in lines[1].split(' ')[1:13] + ]).reshape([3, 4]) + P2 = np.array([float(info) for info in lines[2].split(' ')[1:13] + ]).reshape([3, 4]) + P3 = np.array([float(info) for info in lines[3].split(' ')[1:13] + ]).reshape([3, 4]) + if extend_matrix: + P0 = _extend_matrix(P0) + P1 = _extend_matrix(P1) + P2 = _extend_matrix(P2) + P3 = _extend_matrix(P3) + R0_rect = np.array([ + float(info) for info in lines[4].split(' ')[1:10] + ]).reshape([3, 3]) + if extend_matrix: + rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype) + rect_4x4[3, 3] = 1. + rect_4x4[:3, :3] = R0_rect + else: + rect_4x4 = R0_rect + + Tr_velo_to_cam = np.array([ + float(info) for info in lines[5].split(' ')[1:13] + ]).reshape([3, 4]) + Tr_imu_to_velo = np.array([ + float(info) for info in lines[6].split(' ')[1:13] + ]).reshape([3, 4]) + if extend_matrix: + Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam) + Tr_imu_to_velo = _extend_matrix(Tr_imu_to_velo) + calib_info['P0'] = P0 + calib_info['P1'] = P1 + calib_info['P2'] = P2 + calib_info['P3'] = P3 + calib_info['R0_rect'] = rect_4x4 + calib_info['Tr_velo_to_cam'] = Tr_velo_to_cam + calib_info['Tr_imu_to_velo'] = Tr_imu_to_velo + info['calib'] = calib_info + + if with_plane: + plane_path = get_plane_path(idx, path, training, relative_path) + if relative_path: + plane_path = str(root_path / plane_path) + lines = mmcv.list_from_file(plane_path) + info['plane'] = np.array([float(i) for i in lines[3].split()]) + + if annotations is not None: + info['annos'] = annotations + add_difficulty_to_annos(info) + return info + + with futures.ThreadPoolExecutor(num_worker) as executor: + image_infos = executor.map(map_func, image_ids) + + return list(image_infos) + + +class WaymoInfoGatherer: + """ + Parallel version of waymo dataset information gathering. + Waymo annotation format version like KITTI: + { + [optional]points: [N, 3+] point cloud + [optional, for kitti]image: { + image_idx: ... + image_path: ... + image_shape: ... + } + point_cloud: { + num_features: 6 + velodyne_path: ... + } + [optional, for kitti]calib: { + R0_rect: ... + Tr_velo_to_cam0: ... + P0: ... + } + annos: { + location: [num_gt, 3] array + dimensions: [num_gt, 3] array + rotation_y: [num_gt] angle array + name: [num_gt] ground truth name array + [optional]difficulty: kitti difficulty + [optional]group_ids: used for multi-part object + } + } + """ + + def __init__(self, + path, + training=True, + label_info=True, + velodyne=False, + calib=False, + pose=False, + extend_matrix=True, + num_worker=8, + relative_path=True, + with_imageshape=True, + max_sweeps=5) -> None: + self.path = path + self.training = training + self.label_info = label_info + self.velodyne = velodyne + self.calib = calib + self.pose = pose + self.extend_matrix = extend_matrix + self.num_worker = num_worker + self.relative_path = relative_path + self.with_imageshape = with_imageshape + self.max_sweeps = max_sweeps + + def gather_single(self, idx): + root_path = Path(self.path) + info = {} + pc_info = {'num_features': 6} + calib_info = {} + + image_info = {'image_idx': idx} + annotations = None + if self.velodyne: + pc_info['velodyne_path'] = get_velodyne_path( + idx, + self.path, + self.training, + self.relative_path, + use_prefix_id=True) + with open( + get_timestamp_path( + idx, + self.path, + self.training, + relative_path=False, + use_prefix_id=True)) as f: + info['timestamp'] = np.int64(f.read()) + image_info['image_path'] = get_image_path( + idx, + self.path, + self.training, + self.relative_path, + info_type='image_0', + use_prefix_id=True) + if self.with_imageshape: + img_path = image_info['image_path'] + if self.relative_path: + img_path = str(root_path / img_path) + # io using PIL is significantly faster than skimage + w, h = Image.open(img_path).size + image_info['image_shape'] = np.array((h, w), dtype=np.int32) + if self.label_info: + label_path = get_label_path( + idx, + self.path, + self.training, + self.relative_path, + info_type='label_all', + use_prefix_id=True) + if self.relative_path: + label_path = str(root_path / label_path) + annotations = get_label_anno(label_path) + info['image'] = image_info + info['point_cloud'] = pc_info + if self.calib: + calib_path = get_calib_path( + idx, + self.path, + self.training, + relative_path=False, + use_prefix_id=True) + with open(calib_path, 'r') as f: + lines = f.readlines() + P0 = np.array([float(info) for info in lines[0].split(' ')[1:13] + ]).reshape([3, 4]) + P1 = np.array([float(info) for info in lines[1].split(' ')[1:13] + ]).reshape([3, 4]) + P2 = np.array([float(info) for info in lines[2].split(' ')[1:13] + ]).reshape([3, 4]) + P3 = np.array([float(info) for info in lines[3].split(' ')[1:13] + ]).reshape([3, 4]) + P4 = np.array([float(info) for info in lines[4].split(' ')[1:13] + ]).reshape([3, 4]) + if self.extend_matrix: + P0 = _extend_matrix(P0) + P1 = _extend_matrix(P1) + P2 = _extend_matrix(P2) + P3 = _extend_matrix(P3) + P4 = _extend_matrix(P4) + R0_rect = np.array([ + float(info) for info in lines[5].split(' ')[1:10] + ]).reshape([3, 3]) + if self.extend_matrix: + rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype) + rect_4x4[3, 3] = 1. + rect_4x4[:3, :3] = R0_rect + else: + rect_4x4 = R0_rect + + Tr_velo_to_cam = np.array([ + float(info) for info in lines[6].split(' ')[1:13] + ]).reshape([3, 4]) + if self.extend_matrix: + Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam) + calib_info['P0'] = P0 + calib_info['P1'] = P1 + calib_info['P2'] = P2 + calib_info['P3'] = P3 + calib_info['P4'] = P4 + calib_info['R0_rect'] = rect_4x4 + calib_info['Tr_velo_to_cam'] = Tr_velo_to_cam + info['calib'] = calib_info + if self.pose: + pose_path = get_pose_path( + idx, + self.path, + self.training, + relative_path=False, + use_prefix_id=True) + info['pose'] = np.loadtxt(pose_path) + + if annotations is not None: + info['annos'] = annotations + info['annos']['camera_id'] = info['annos'].pop('score') + add_difficulty_to_annos(info) + + sweeps = [] + prev_idx = idx + while len(sweeps) < self.max_sweeps: + prev_info = {} + prev_idx -= 1 + prev_info['velodyne_path'] = get_velodyne_path( + prev_idx, + self.path, + self.training, + self.relative_path, + exist_check=False, + use_prefix_id=True) + if_prev_exists = osp.exists( + Path(self.path) / prev_info['velodyne_path']) + if if_prev_exists: + with open( + get_timestamp_path( + prev_idx, + self.path, + self.training, + relative_path=False, + use_prefix_id=True)) as f: + prev_info['timestamp'] = np.int64(f.read()) + prev_pose_path = get_pose_path( + prev_idx, + self.path, + self.training, + relative_path=False, + use_prefix_id=True) + prev_info['pose'] = np.loadtxt(prev_pose_path) + sweeps.append(prev_info) + else: + break + info['sweeps'] = sweeps + + return info + + def gather(self, image_ids): + if not isinstance(image_ids, list): + image_ids = list(range(image_ids)) + image_infos = mmcv.track_parallel_progress(self.gather_single, + image_ids, self.num_worker) + return list(image_infos) + + +def kitti_anno_to_label_file(annos, folder): + folder = Path(folder) + for anno in annos: + image_idx = anno['metadata']['image_idx'] + label_lines = [] + for j in range(anno['bbox'].shape[0]): + label_dict = { + 'name': anno['name'][j], + 'alpha': anno['alpha'][j], + 'bbox': anno['bbox'][j], + 'location': anno['location'][j], + 'dimensions': anno['dimensions'][j], + 'rotation_y': anno['rotation_y'][j], + 'score': anno['score'][j], + } + label_line = kitti_result_line(label_dict) + label_lines.append(label_line) + label_file = folder / f'{get_image_index_str(image_idx)}.txt' + label_str = '\n'.join(label_lines) + with open(label_file, 'w') as f: + f.write(label_str) + + +def add_difficulty_to_annos(info): + min_height = [40, 25, + 25] # minimum height for evaluated groundtruth/detections + max_occlusion = [ + 0, 1, 2 + ] # maximum occlusion level of the groundtruth used for evaluation + max_trunc = [ + 0.15, 0.3, 0.5 + ] # maximum truncation level of the groundtruth used for evaluation + annos = info['annos'] + dims = annos['dimensions'] # lhw format + bbox = annos['bbox'] + height = bbox[:, 3] - bbox[:, 1] + occlusion = annos['occluded'] + truncation = annos['truncated'] + diff = [] + easy_mask = np.ones((len(dims), ), dtype=np.bool) + moderate_mask = np.ones((len(dims), ), dtype=np.bool) + hard_mask = np.ones((len(dims), ), dtype=np.bool) + i = 0 + for h, o, t in zip(height, occlusion, truncation): + if o > max_occlusion[0] or h <= min_height[0] or t > max_trunc[0]: + easy_mask[i] = False + if o > max_occlusion[1] or h <= min_height[1] or t > max_trunc[1]: + moderate_mask[i] = False + if o > max_occlusion[2] or h <= min_height[2] or t > max_trunc[2]: + hard_mask[i] = False + i += 1 + is_easy = easy_mask + is_moderate = np.logical_xor(easy_mask, moderate_mask) + is_hard = np.logical_xor(hard_mask, moderate_mask) + + for i in range(len(dims)): + if is_easy[i]: + diff.append(0) + elif is_moderate[i]: + diff.append(1) + elif is_hard[i]: + diff.append(2) + else: + diff.append(-1) + annos['difficulty'] = np.array(diff, np.int32) + return diff + + +def kitti_result_line(result_dict, precision=4): + prec_float = '{' + ':.{}f'.format(precision) + '}' + res_line = [] + all_field_default = OrderedDict([ + ('name', None), + ('truncated', -1), + ('occluded', -1), + ('alpha', -10), + ('bbox', None), + ('dimensions', [-1, -1, -1]), + ('location', [-1000, -1000, -1000]), + ('rotation_y', -10), + ('score', 0.0), + ]) + res_dict = [(key, None) for key, val in all_field_default.items()] + res_dict = OrderedDict(res_dict) + for key, val in result_dict.items(): + if all_field_default[key] is None and val is None: + raise ValueError('you must specify a value for {}'.format(key)) + res_dict[key] = val + + for key, val in res_dict.items(): + if key == 'name': + res_line.append(val) + elif key in ['truncated', 'alpha', 'rotation_y', 'score']: + if val is None: + res_line.append(str(all_field_default[key])) + else: + res_line.append(prec_float.format(val)) + elif key == 'occluded': + if val is None: + res_line.append(str(all_field_default[key])) + else: + res_line.append('{}'.format(val)) + elif key in ['bbox', 'dimensions', 'location']: + if val is None: + res_line += [str(v) for v in all_field_default[key]] + else: + res_line += [prec_float.format(v) for v in val] + else: + raise ValueError('unknown key. supported key:{}'.format( + res_dict.keys())) + return ' '.join(res_line) diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_converter.py new file mode 100644 index 000000000..c6a89d0d2 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_converter.py @@ -0,0 +1,271 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +from logging import warning +from os import path as osp + +import mmcv +import numpy as np +from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft +from pyquaternion import Quaternion + +from mmdet3d.datasets import LyftDataset +from .nuscenes_converter import (get_2d_boxes, get_available_scenes, + obtain_sensor2top) + +lyft_categories = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', + 'motorcycle', 'bicycle', 'pedestrian', 'animal') + + +def create_lyft_infos(root_path, + info_prefix, + version='v1.01-train', + max_sweeps=10): + """Create info file of lyft dataset. + + Given the raw data, generate its related info file in pkl format. + + Args: + root_path (str): Path of the data root. + info_prefix (str): Prefix of the info file to be generated. + version (str, optional): Version of the data. + Default: 'v1.01-train'. + max_sweeps (int, optional): Max number of sweeps. + Default: 10. + """ + lyft = Lyft( + data_path=osp.join(root_path, version), + json_path=osp.join(root_path, version, version), + verbose=True) + available_vers = ['v1.01-train', 'v1.01-test'] + assert version in available_vers + if version == 'v1.01-train': + train_scenes = mmcv.list_from_file('data/lyft/train.txt') + val_scenes = mmcv.list_from_file('data/lyft/val.txt') + elif version == 'v1.01-test': + train_scenes = mmcv.list_from_file('data/lyft/test.txt') + val_scenes = [] + else: + raise ValueError('unknown') + + # filter existing scenes. + available_scenes = get_available_scenes(lyft) + available_scene_names = [s['name'] for s in available_scenes] + train_scenes = list( + filter(lambda x: x in available_scene_names, train_scenes)) + val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes)) + train_scenes = set([ + available_scenes[available_scene_names.index(s)]['token'] + for s in train_scenes + ]) + val_scenes = set([ + available_scenes[available_scene_names.index(s)]['token'] + for s in val_scenes + ]) + + test = 'test' in version + if test: + print(f'test scene: {len(train_scenes)}') + else: + print(f'train scene: {len(train_scenes)}, \ + val scene: {len(val_scenes)}') + train_lyft_infos, val_lyft_infos = _fill_trainval_infos( + lyft, train_scenes, val_scenes, test, max_sweeps=max_sweeps) + + metadata = dict(version=version) + if test: + print(f'test sample: {len(train_lyft_infos)}') + data = dict(infos=train_lyft_infos, metadata=metadata) + info_name = f'{info_prefix}_infos_test' + info_path = osp.join(root_path, f'{info_name}.pkl') + mmcv.dump(data, info_path) + else: + print(f'train sample: {len(train_lyft_infos)}, \ + val sample: {len(val_lyft_infos)}') + data = dict(infos=train_lyft_infos, metadata=metadata) + train_info_name = f'{info_prefix}_infos_train' + info_path = osp.join(root_path, f'{train_info_name}.pkl') + mmcv.dump(data, info_path) + data['infos'] = val_lyft_infos + val_info_name = f'{info_prefix}_infos_val' + info_val_path = osp.join(root_path, f'{val_info_name}.pkl') + mmcv.dump(data, info_val_path) + + +def _fill_trainval_infos(lyft, + train_scenes, + val_scenes, + test=False, + max_sweeps=10): + """Generate the train/val infos from the raw data. + + Args: + lyft (:obj:`LyftDataset`): Dataset class in the Lyft dataset. + train_scenes (list[str]): Basic information of training scenes. + val_scenes (list[str]): Basic information of validation scenes. + test (bool, optional): Whether use the test mode. In the test mode, no + annotations can be accessed. Default: False. + max_sweeps (int, optional): Max number of sweeps. Default: 10. + + Returns: + tuple[list[dict]]: Information of training set and + validation set that will be saved to the info file. + """ + train_lyft_infos = [] + val_lyft_infos = [] + + for sample in mmcv.track_iter_progress(lyft.sample): + lidar_token = sample['data']['LIDAR_TOP'] + sd_rec = lyft.get('sample_data', sample['data']['LIDAR_TOP']) + cs_record = lyft.get('calibrated_sensor', + sd_rec['calibrated_sensor_token']) + pose_record = lyft.get('ego_pose', sd_rec['ego_pose_token']) + abs_lidar_path, boxes, _ = lyft.get_sample_data(lidar_token) + # nuScenes devkit returns more convenient relative paths while + # lyft devkit returns absolute paths + abs_lidar_path = str(abs_lidar_path) # absolute path + lidar_path = abs_lidar_path.split(f'{os.getcwd()}/')[-1] + # relative path + + mmcv.check_file_exist(lidar_path) + + info = { + 'lidar_path': lidar_path, + 'token': sample['token'], + 'sweeps': [], + 'cams': dict(), + 'lidar2ego_translation': cs_record['translation'], + 'lidar2ego_rotation': cs_record['rotation'], + 'ego2global_translation': pose_record['translation'], + 'ego2global_rotation': pose_record['rotation'], + 'timestamp': sample['timestamp'], + } + + l2e_r = info['lidar2ego_rotation'] + l2e_t = info['lidar2ego_translation'] + e2g_r = info['ego2global_rotation'] + e2g_t = info['ego2global_translation'] + l2e_r_mat = Quaternion(l2e_r).rotation_matrix + e2g_r_mat = Quaternion(e2g_r).rotation_matrix + + # obtain 6 image's information per frame + camera_types = [ + 'CAM_FRONT', + 'CAM_FRONT_RIGHT', + 'CAM_FRONT_LEFT', + 'CAM_BACK', + 'CAM_BACK_LEFT', + 'CAM_BACK_RIGHT', + ] + for cam in camera_types: + cam_token = sample['data'][cam] + cam_path, _, cam_intrinsic = lyft.get_sample_data(cam_token) + cam_info = obtain_sensor2top(lyft, cam_token, l2e_t, l2e_r_mat, + e2g_t, e2g_r_mat, cam) + cam_info.update(cam_intrinsic=cam_intrinsic) + info['cams'].update({cam: cam_info}) + + # obtain sweeps for a single key-frame + sd_rec = lyft.get('sample_data', sample['data']['LIDAR_TOP']) + sweeps = [] + while len(sweeps) < max_sweeps: + if not sd_rec['prev'] == '': + sweep = obtain_sensor2top(lyft, sd_rec['prev'], l2e_t, + l2e_r_mat, e2g_t, e2g_r_mat, 'lidar') + sweeps.append(sweep) + sd_rec = lyft.get('sample_data', sd_rec['prev']) + else: + break + info['sweeps'] = sweeps + # obtain annotation + if not test: + annotations = [ + lyft.get('sample_annotation', token) + for token in sample['anns'] + ] + locs = np.array([b.center for b in boxes]).reshape(-1, 3) + dims = np.array([b.wlh for b in boxes]).reshape(-1, 3) + rots = np.array([b.orientation.yaw_pitch_roll[0] + for b in boxes]).reshape(-1, 1) + + names = [b.name for b in boxes] + for i in range(len(names)): + if names[i] in LyftDataset.NameMapping: + names[i] = LyftDataset.NameMapping[names[i]] + names = np.array(names) + + # we need to convert box size to + # the format of our lidar coordinate system + # which is x_size, y_size, z_size (corresponding to l, w, h) + gt_boxes = np.concatenate([locs, dims[:, [1, 0, 2]], rots], axis=1) + assert len(gt_boxes) == len( + annotations), f'{len(gt_boxes)}, {len(annotations)}' + info['gt_boxes'] = gt_boxes + info['gt_names'] = names + info['num_lidar_pts'] = np.array( + [a['num_lidar_pts'] for a in annotations]) + info['num_radar_pts'] = np.array( + [a['num_radar_pts'] for a in annotations]) + + if sample['scene_token'] in train_scenes: + train_lyft_infos.append(info) + else: + val_lyft_infos.append(info) + + return train_lyft_infos, val_lyft_infos + + +def export_2d_annotation(root_path, info_path, version): + """Export 2d annotation from the info file and raw data. + + Args: + root_path (str): Root path of the raw data. + info_path (str): Path of the info file. + version (str): Dataset version. + """ + warning.warn('DeprecationWarning: 2D annotations are not used on the ' + 'Lyft dataset. The function export_2d_annotation will be ' + 'deprecated.') + # get bbox annotations for camera + camera_types = [ + 'CAM_FRONT', + 'CAM_FRONT_RIGHT', + 'CAM_FRONT_LEFT', + 'CAM_BACK', + 'CAM_BACK_LEFT', + 'CAM_BACK_RIGHT', + ] + lyft_infos = mmcv.load(info_path)['infos'] + lyft = Lyft( + data_path=osp.join(root_path, version), + json_path=osp.join(root_path, version, version), + verbose=True) + # info_2d_list = [] + cat2Ids = [ + dict(id=lyft_categories.index(cat_name), name=cat_name) + for cat_name in lyft_categories + ] + coco_ann_id = 0 + coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids) + for info in mmcv.track_iter_progress(lyft_infos): + for cam in camera_types: + cam_info = info['cams'][cam] + coco_infos = get_2d_boxes( + lyft, + cam_info['sample_data_token'], + visibilities=['', '1', '2', '3', '4']) + (height, width, _) = mmcv.imread(cam_info['data_path']).shape + coco_2d_dict['images'].append( + dict( + file_name=cam_info['data_path'], + id=cam_info['sample_data_token'], + width=width, + height=height)) + for coco_info in coco_infos: + if coco_info is None: + continue + # add an empty key for coco format + coco_info['segmentation'] = [] + coco_info['id'] = coco_ann_id + coco_2d_dict['annotations'].append(coco_info) + coco_ann_id += 1 + mmcv.dump(coco_2d_dict, f'{info_path[:-4]}.coco.json') diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_data_fixer.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_data_fixer.py new file mode 100644 index 000000000..55103515a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/lyft_data_fixer.py @@ -0,0 +1,39 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import os + +import numpy as np + + +def fix_lyft(root_folder='./data/lyft', version='v1.01'): + # refer to https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000 # noqa + lidar_path = 'lidar/host-a011_lidar1_1233090652702363606.bin' + root_folder = os.path.join(root_folder, f'{version}-train') + lidar_path = os.path.join(root_folder, lidar_path) + assert os.path.isfile(lidar_path), f'Please download the complete Lyft ' \ + f'dataset and make sure {lidar_path} is present.' + points = np.fromfile(lidar_path, dtype=np.float32, count=-1) + try: + points.reshape([-1, 5]) + print(f'This fix is not required for version {version}.') + except ValueError: + new_points = np.array(list(points) + [100.0, 1.0], dtype='float32') + new_points.tofile(lidar_path) + print(f'Appended 100.0 and 1.0 to the end of {lidar_path}.') + + +parser = argparse.ArgumentParser(description='Lyft dataset fixer arg parser') +parser.add_argument( + '--root-folder', + type=str, + default='./data/lyft', + help='specify the root path of Lyft dataset') +parser.add_argument( + '--version', + type=str, + default='v1.01', + help='specify Lyft dataset version') +args = parser.parse_args() + +if __name__ == '__main__': + fix_lyft(root_folder=args.root_folder, version=args.version) diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuimage_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuimage_converter.py new file mode 100644 index 000000000..a46015a1a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuimage_converter.py @@ -0,0 +1,226 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import base64 +from os import path as osp + +import mmcv +import numpy as np +from nuimages import NuImages +from nuimages.utils.utils import mask_decode, name_to_index_mapping + +nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', + 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', + 'barrier') + +NAME_MAPPING = { + 'movable_object.barrier': 'barrier', + 'vehicle.bicycle': 'bicycle', + 'vehicle.bus.bendy': 'bus', + 'vehicle.bus.rigid': 'bus', + 'vehicle.car': 'car', + 'vehicle.construction': 'construction_vehicle', + 'vehicle.motorcycle': 'motorcycle', + 'human.pedestrian.adult': 'pedestrian', + 'human.pedestrian.child': 'pedestrian', + 'human.pedestrian.construction_worker': 'pedestrian', + 'human.pedestrian.police_officer': 'pedestrian', + 'movable_object.trafficcone': 'traffic_cone', + 'vehicle.trailer': 'trailer', + 'vehicle.truck': 'truck', +} + + +def parse_args(): + parser = argparse.ArgumentParser(description='Data converter arg parser') + parser.add_argument( + '--data-root', + type=str, + default='./data/nuimages', + help='specify the root path of dataset') + parser.add_argument( + '--version', + type=str, + nargs='+', + default=['v1.0-mini'], + required=False, + help='specify the dataset version') + parser.add_argument( + '--out-dir', + type=str, + default='./data/nuimages/annotations/', + required=False, + help='path to save the exported json') + parser.add_argument( + '--nproc', + type=int, + default=4, + required=False, + help='workers to process semantic masks') + parser.add_argument('--extra-tag', type=str, default='nuimages') + args = parser.parse_args() + return args + + +def get_img_annos(nuim, img_info, cat2id, out_dir, data_root, seg_root): + """Get semantic segmentation map for an image. + + Args: + nuim (obj:`NuImages`): NuImages dataset object + img_info (dict): Meta information of img + + Returns: + np.ndarray: Semantic segmentation map of the image + """ + sd_token = img_info['token'] + image_id = img_info['id'] + name_to_index = name_to_index_mapping(nuim.category) + + # Get image data. + width, height = img_info['width'], img_info['height'] + semseg_mask = np.zeros((height, width)).astype('uint8') + + # Load stuff / surface regions. + surface_anns = [ + o for o in nuim.surface_ann if o['sample_data_token'] == sd_token + ] + + # Draw stuff / surface regions. + for ann in surface_anns: + # Get color and mask. + category_token = ann['category_token'] + category_name = nuim.get('category', category_token)['name'] + if ann['mask'] is None: + continue + mask = mask_decode(ann['mask']) + + # Draw mask for semantic segmentation. + semseg_mask[mask == 1] = name_to_index[category_name] + + # Load object instances. + object_anns = [ + o for o in nuim.object_ann if o['sample_data_token'] == sd_token + ] + + # Sort by token to ensure that objects always appear in the + # instance mask in the same order. + object_anns = sorted(object_anns, key=lambda k: k['token']) + + # Draw object instances. + # The 0 index is reserved for background; thus, the instances + # should start from index 1. + annotations = [] + for i, ann in enumerate(object_anns, start=1): + # Get color, box, mask and name. + category_token = ann['category_token'] + category_name = nuim.get('category', category_token)['name'] + if ann['mask'] is None: + continue + mask = mask_decode(ann['mask']) + + # Draw masks for semantic segmentation and instance segmentation. + semseg_mask[mask == 1] = name_to_index[category_name] + + if category_name in NAME_MAPPING: + cat_name = NAME_MAPPING[category_name] + cat_id = cat2id[cat_name] + + x_min, y_min, x_max, y_max = ann['bbox'] + # encode calibrated instance mask + mask_anno = dict() + mask_anno['counts'] = base64.b64decode( + ann['mask']['counts']).decode() + mask_anno['size'] = ann['mask']['size'] + + data_anno = dict( + image_id=image_id, + category_id=cat_id, + bbox=[x_min, y_min, x_max - x_min, y_max - y_min], + area=(x_max - x_min) * (y_max - y_min), + segmentation=mask_anno, + iscrowd=0) + annotations.append(data_anno) + + # after process, save semantic masks + img_filename = img_info['file_name'] + seg_filename = img_filename.replace('jpg', 'png') + seg_filename = osp.join(seg_root, seg_filename) + mmcv.imwrite(semseg_mask, seg_filename) + return annotations, np.max(semseg_mask) + + +def export_nuim_to_coco(nuim, data_root, out_dir, extra_tag, version, nproc): + print('Process category information') + categories = [] + categories = [ + dict(id=nus_categories.index(cat_name), name=cat_name) + for cat_name in nus_categories + ] + cat2id = {k_v['name']: k_v['id'] for k_v in categories} + + images = [] + print('Process image meta information...') + for sample_info in mmcv.track_iter_progress(nuim.sample_data): + if sample_info['is_key_frame']: + img_idx = len(images) + images.append( + dict( + id=img_idx, + token=sample_info['token'], + file_name=sample_info['filename'], + width=sample_info['width'], + height=sample_info['height'])) + + seg_root = f'{out_dir}semantic_masks' + mmcv.mkdir_or_exist(seg_root) + mmcv.mkdir_or_exist(osp.join(data_root, 'calibrated')) + + global process_img_anno + + def process_img_anno(img_info): + single_img_annos, max_cls_id = get_img_annos(nuim, img_info, cat2id, + out_dir, data_root, + seg_root) + return single_img_annos, max_cls_id + + print('Process img annotations...') + if nproc > 1: + outputs = mmcv.track_parallel_progress( + process_img_anno, images, nproc=nproc) + else: + outputs = [] + for img_info in mmcv.track_iter_progress(images): + outputs.append(process_img_anno(img_info)) + + # Determine the index of object annotation + print('Process annotation information...') + annotations = [] + max_cls_ids = [] + for single_img_annos, max_cls_id in outputs: + max_cls_ids.append(max_cls_id) + for img_anno in single_img_annos: + img_anno.update(id=len(annotations)) + annotations.append(img_anno) + + max_cls_id = max(max_cls_ids) + print(f'Max ID of class in the semantic map: {max_cls_id}') + + coco_format_json = dict( + images=images, annotations=annotations, categories=categories) + + mmcv.mkdir_or_exist(out_dir) + out_file = osp.join(out_dir, f'{extra_tag}_{version}.json') + print(f'Annotation dumped to {out_file}') + mmcv.dump(coco_format_json, out_file) + + +def main(): + args = parse_args() + for version in args.version: + nuim = NuImages( + dataroot=args.data_root, version=version, verbose=True, lazy=True) + export_nuim_to_coco(nuim, args.data_root, args.out_dir, args.extra_tag, + version, args.nproc) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuscenes_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuscenes_converter.py new file mode 100644 index 000000000..c6140fcc3 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/nuscenes_converter.py @@ -0,0 +1,628 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +from collections import OrderedDict +from os import path as osp +from typing import List, Tuple, Union + +import mmcv +import numpy as np +from nuscenes.nuscenes import NuScenes +from nuscenes.utils.geometry_utils import view_points +from pyquaternion import Quaternion +from shapely.geometry import MultiPoint, box + +from mmdet3d.core.bbox import points_cam2img +from mmdet3d.datasets import NuScenesDataset + +nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', + 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', + 'barrier') + +nus_attributes = ('cycle.with_rider', 'cycle.without_rider', + 'pedestrian.moving', 'pedestrian.standing', + 'pedestrian.sitting_lying_down', 'vehicle.moving', + 'vehicle.parked', 'vehicle.stopped', 'None') + + +def create_nuscenes_infos(root_path, + info_prefix, + version='v1.0-trainval', + max_sweeps=10): + """Create info file of nuscene dataset. + + Given the raw data, generate its related info file in pkl format. + + Args: + root_path (str): Path of the data root. + info_prefix (str): Prefix of the info file to be generated. + version (str, optional): Version of the data. + Default: 'v1.0-trainval'. + max_sweeps (int, optional): Max number of sweeps. + Default: 10. + """ + from nuscenes.nuscenes import NuScenes + nusc = NuScenes(version=version, dataroot=root_path, verbose=True) + from nuscenes.utils import splits + available_vers = ['v1.0-trainval', 'v1.0-test', 'v1.0-mini'] + assert version in available_vers + if version == 'v1.0-trainval': + train_scenes = splits.train + val_scenes = splits.val + elif version == 'v1.0-test': + train_scenes = splits.test + val_scenes = [] + elif version == 'v1.0-mini': + train_scenes = splits.mini_train + val_scenes = splits.mini_val + else: + raise ValueError('unknown') + + # filter existing scenes. + available_scenes = get_available_scenes(nusc) + available_scene_names = [s['name'] for s in available_scenes] + train_scenes = list( + filter(lambda x: x in available_scene_names, train_scenes)) + val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes)) + train_scenes = set([ + available_scenes[available_scene_names.index(s)]['token'] + for s in train_scenes + ]) + val_scenes = set([ + available_scenes[available_scene_names.index(s)]['token'] + for s in val_scenes + ]) + + test = 'test' in version + if test: + print('test scene: {}'.format(len(train_scenes))) + else: + print('train scene: {}, val scene: {}'.format( + len(train_scenes), len(val_scenes))) + train_nusc_infos, val_nusc_infos = _fill_trainval_infos( + nusc, train_scenes, val_scenes, test, max_sweeps=max_sweeps) + + metadata = dict(version=version) + if test: + print('test sample: {}'.format(len(train_nusc_infos))) + data = dict(infos=train_nusc_infos, metadata=metadata) + info_path = osp.join(root_path, + '{}_infos_test.pkl'.format(info_prefix)) + mmcv.dump(data, info_path) + else: + print('train sample: {}, val sample: {}'.format( + len(train_nusc_infos), len(val_nusc_infos))) + data = dict(infos=train_nusc_infos, metadata=metadata) + info_path = osp.join(root_path, + '{}_infos_train.pkl'.format(info_prefix)) + mmcv.dump(data, info_path) + data['infos'] = val_nusc_infos + info_val_path = osp.join(root_path, + '{}_infos_val.pkl'.format(info_prefix)) + mmcv.dump(data, info_val_path) + + +def get_available_scenes(nusc): + """Get available scenes from the input nuscenes class. + + Given the raw data, get the information of available scenes for + further info generation. + + Args: + nusc (class): Dataset class in the nuScenes dataset. + + Returns: + available_scenes (list[dict]): List of basic information for the + available scenes. + """ + available_scenes = [] + print('total scene num: {}'.format(len(nusc.scene))) + for scene in nusc.scene: + scene_token = scene['token'] + scene_rec = nusc.get('scene', scene_token) + sample_rec = nusc.get('sample', scene_rec['first_sample_token']) + sd_rec = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP']) + has_more_frames = True + scene_not_exist = False + while has_more_frames: + lidar_path, boxes, _ = nusc.get_sample_data(sd_rec['token']) + lidar_path = str(lidar_path) + if os.getcwd() in lidar_path: + # path from lyftdataset is absolute path + lidar_path = lidar_path.split(f'{os.getcwd()}/')[-1] + # relative path + if not mmcv.is_filepath(lidar_path): + scene_not_exist = True + break + else: + break + if scene_not_exist: + continue + available_scenes.append(scene) + print('exist scene num: {}'.format(len(available_scenes))) + return available_scenes + + +def _fill_trainval_infos(nusc, + train_scenes, + val_scenes, + test=False, + max_sweeps=10): + """Generate the train/val infos from the raw data. + + Args: + nusc (:obj:`NuScenes`): Dataset class in the nuScenes dataset. + train_scenes (list[str]): Basic information of training scenes. + val_scenes (list[str]): Basic information of validation scenes. + test (bool, optional): Whether use the test mode. In test mode, no + annotations can be accessed. Default: False. + max_sweeps (int, optional): Max number of sweeps. Default: 10. + + Returns: + tuple[list[dict]]: Information of training set and validation set + that will be saved to the info file. + """ + train_nusc_infos = [] + val_nusc_infos = [] + + for sample in mmcv.track_iter_progress(nusc.sample): + lidar_token = sample['data']['LIDAR_TOP'] + sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP']) + cs_record = nusc.get('calibrated_sensor', + sd_rec['calibrated_sensor_token']) + pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token']) + lidar_path, boxes, _ = nusc.get_sample_data(lidar_token) + + mmcv.check_file_exist(lidar_path) + + info = { + 'lidar_path': lidar_path, + 'token': sample['token'], + 'sweeps': [], + 'cams': dict(), + 'lidar2ego_translation': cs_record['translation'], + 'lidar2ego_rotation': cs_record['rotation'], + 'ego2global_translation': pose_record['translation'], + 'ego2global_rotation': pose_record['rotation'], + 'timestamp': sample['timestamp'], + } + + l2e_r = info['lidar2ego_rotation'] + l2e_t = info['lidar2ego_translation'] + e2g_r = info['ego2global_rotation'] + e2g_t = info['ego2global_translation'] + l2e_r_mat = Quaternion(l2e_r).rotation_matrix + e2g_r_mat = Quaternion(e2g_r).rotation_matrix + + # obtain 6 image's information per frame + camera_types = [ + 'CAM_FRONT', + 'CAM_FRONT_RIGHT', + 'CAM_FRONT_LEFT', + 'CAM_BACK', + 'CAM_BACK_LEFT', + 'CAM_BACK_RIGHT', + ] + for cam in camera_types: + cam_token = sample['data'][cam] + cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token) + cam_info = obtain_sensor2top(nusc, cam_token, l2e_t, l2e_r_mat, + e2g_t, e2g_r_mat, cam) + cam_info.update(cam_intrinsic=cam_intrinsic) + info['cams'].update({cam: cam_info}) + + # obtain sweeps for a single key-frame + sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP']) + sweeps = [] + while len(sweeps) < max_sweeps: + if not sd_rec['prev'] == '': + sweep = obtain_sensor2top(nusc, sd_rec['prev'], l2e_t, + l2e_r_mat, e2g_t, e2g_r_mat, 'lidar') + sweeps.append(sweep) + sd_rec = nusc.get('sample_data', sd_rec['prev']) + else: + break + info['sweeps'] = sweeps + # obtain annotation + if not test: + annotations = [ + nusc.get('sample_annotation', token) + for token in sample['anns'] + ] + locs = np.array([b.center for b in boxes]).reshape(-1, 3) + dims = np.array([b.wlh for b in boxes]).reshape(-1, 3) + rots = np.array([b.orientation.yaw_pitch_roll[0] + for b in boxes]).reshape(-1, 1) + velocity = np.array( + [nusc.box_velocity(token)[:2] for token in sample['anns']]) + valid_flag = np.array( + [(anno['num_lidar_pts'] + anno['num_radar_pts']) > 0 + for anno in annotations], + dtype=bool).reshape(-1) + # convert velo from global to lidar + for i in range(len(boxes)): + velo = np.array([*velocity[i], 0.0]) + velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv( + l2e_r_mat).T + velocity[i] = velo[:2] + + names = [b.name for b in boxes] + for i in range(len(names)): + if names[i] in NuScenesDataset.NameMapping: + names[i] = NuScenesDataset.NameMapping[names[i]] + names = np.array(names) + # we need to convert box size to + # the format of our lidar coordinate system + # which is x_size, y_size, z_size (corresponding to l, w, h) + gt_boxes = np.concatenate([locs, dims[:, [1, 0, 2]], rots], axis=1) + assert len(gt_boxes) == len( + annotations), f'{len(gt_boxes)}, {len(annotations)}' + info['gt_boxes'] = gt_boxes + info['gt_names'] = names + info['gt_velocity'] = velocity.reshape(-1, 2) + info['num_lidar_pts'] = np.array( + [a['num_lidar_pts'] for a in annotations]) + info['num_radar_pts'] = np.array( + [a['num_radar_pts'] for a in annotations]) + info['valid_flag'] = valid_flag + + if sample['scene_token'] in train_scenes: + train_nusc_infos.append(info) + else: + val_nusc_infos.append(info) + + return train_nusc_infos, val_nusc_infos + + +def obtain_sensor2top(nusc, + sensor_token, + l2e_t, + l2e_r_mat, + e2g_t, + e2g_r_mat, + sensor_type='lidar'): + """Obtain the info with RT matric from general sensor to Top LiDAR. + + Args: + nusc (class): Dataset class in the nuScenes dataset. + sensor_token (str): Sample data token corresponding to the + specific sensor type. + l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3). + l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego + in shape (3, 3). + e2g_t (np.ndarray): Translation from ego to global in shape (1, 3). + e2g_r_mat (np.ndarray): Rotation matrix from ego to global + in shape (3, 3). + sensor_type (str, optional): Sensor to calibrate. Default: 'lidar'. + + Returns: + sweep (dict): Sweep information after transformation. + """ + sd_rec = nusc.get('sample_data', sensor_token) + cs_record = nusc.get('calibrated_sensor', + sd_rec['calibrated_sensor_token']) + pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token']) + data_path = str(nusc.get_sample_data_path(sd_rec['token'])) + if os.getcwd() in data_path: # path from lyftdataset is absolute path + data_path = data_path.split(f'{os.getcwd()}/')[-1] # relative path + sweep = { + 'data_path': data_path, + 'type': sensor_type, + 'sample_data_token': sd_rec['token'], + 'sensor2ego_translation': cs_record['translation'], + 'sensor2ego_rotation': cs_record['rotation'], + 'ego2global_translation': pose_record['translation'], + 'ego2global_rotation': pose_record['rotation'], + 'timestamp': sd_rec['timestamp'] + } + l2e_r_s = sweep['sensor2ego_rotation'] + l2e_t_s = sweep['sensor2ego_translation'] + e2g_r_s = sweep['ego2global_rotation'] + e2g_t_s = sweep['ego2global_translation'] + + # obtain the RT from sensor to Top LiDAR + # sweep->ego->global->ego'->lidar + l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix + e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix + R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ ( + np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T) + T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ ( + np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T) + T -= e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T + ) + l2e_t @ np.linalg.inv(l2e_r_mat).T + sweep['sensor2lidar_rotation'] = R.T # points @ R.T + T + sweep['sensor2lidar_translation'] = T + return sweep + + +def export_2d_annotation(root_path, info_path, version, mono3d=True): + """Export 2d annotation from the info file and raw data. + + Args: + root_path (str): Root path of the raw data. + info_path (str): Path of the info file. + version (str): Dataset version. + mono3d (bool, optional): Whether to export mono3d annotation. + Default: True. + """ + # get bbox annotations for camera + camera_types = [ + 'CAM_FRONT', + 'CAM_FRONT_RIGHT', + 'CAM_FRONT_LEFT', + 'CAM_BACK', + 'CAM_BACK_LEFT', + 'CAM_BACK_RIGHT', + ] + nusc_infos = mmcv.load(info_path)['infos'] + nusc = NuScenes(version=version, dataroot=root_path, verbose=True) + # info_2d_list = [] + cat2Ids = [ + dict(id=nus_categories.index(cat_name), name=cat_name) + for cat_name in nus_categories + ] + coco_ann_id = 0 + coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids) + for info in mmcv.track_iter_progress(nusc_infos): + for cam in camera_types: + cam_info = info['cams'][cam] + coco_infos = get_2d_boxes( + nusc, + cam_info['sample_data_token'], + visibilities=['', '1', '2', '3', '4'], + mono3d=mono3d) + (height, width, _) = mmcv.imread(cam_info['data_path']).shape + coco_2d_dict['images'].append( + dict( + file_name=cam_info['data_path'].split('data/nuscenes/') + [-1], + id=cam_info['sample_data_token'], + token=info['token'], + cam2ego_rotation=cam_info['sensor2ego_rotation'], + cam2ego_translation=cam_info['sensor2ego_translation'], + ego2global_rotation=info['ego2global_rotation'], + ego2global_translation=info['ego2global_translation'], + cam_intrinsic=cam_info['cam_intrinsic'], + width=width, + height=height)) + for coco_info in coco_infos: + if coco_info is None: + continue + # add an empty key for coco format + coco_info['segmentation'] = [] + coco_info['id'] = coco_ann_id + coco_2d_dict['annotations'].append(coco_info) + coco_ann_id += 1 + if mono3d: + json_prefix = f'{info_path[:-4]}_mono3d' + else: + json_prefix = f'{info_path[:-4]}' + mmcv.dump(coco_2d_dict, f'{json_prefix}.coco.json') + + +def get_2d_boxes(nusc, + sample_data_token: str, + visibilities: List[str], + mono3d=True): + """Get the 2D annotation records for a given `sample_data_token`. + + Args: + sample_data_token (str): Sample data token belonging to a camera + keyframe. + visibilities (list[str]): Visibility filter. + mono3d (bool): Whether to get boxes with mono3d annotation. + + Return: + list[dict]: List of 2D annotation record that belongs to the input + `sample_data_token`. + """ + + # Get the sample data and the sample corresponding to that sample data. + sd_rec = nusc.get('sample_data', sample_data_token) + + assert sd_rec[ + 'sensor_modality'] == 'camera', 'Error: get_2d_boxes only works' \ + ' for camera sample_data!' + if not sd_rec['is_key_frame']: + raise ValueError( + 'The 2D re-projections are available only for keyframes.') + + s_rec = nusc.get('sample', sd_rec['sample_token']) + + # Get the calibrated sensor and ego pose + # record to get the transformation matrices. + cs_rec = nusc.get('calibrated_sensor', sd_rec['calibrated_sensor_token']) + pose_rec = nusc.get('ego_pose', sd_rec['ego_pose_token']) + camera_intrinsic = np.array(cs_rec['camera_intrinsic']) + + # Get all the annotation with the specified visibilties. + ann_recs = [ + nusc.get('sample_annotation', token) for token in s_rec['anns'] + ] + ann_recs = [ + ann_rec for ann_rec in ann_recs + if (ann_rec['visibility_token'] in visibilities) + ] + + repro_recs = [] + + for ann_rec in ann_recs: + # Augment sample_annotation with token information. + ann_rec['sample_annotation_token'] = ann_rec['token'] + ann_rec['sample_data_token'] = sample_data_token + + # Get the box in global coordinates. + box = nusc.get_box(ann_rec['token']) + + # Move them to the ego-pose frame. + box.translate(-np.array(pose_rec['translation'])) + box.rotate(Quaternion(pose_rec['rotation']).inverse) + + # Move them to the calibrated sensor frame. + box.translate(-np.array(cs_rec['translation'])) + box.rotate(Quaternion(cs_rec['rotation']).inverse) + + # Filter out the corners that are not in front of the calibrated + # sensor. + corners_3d = box.corners() + in_front = np.argwhere(corners_3d[2, :] > 0).flatten() + corners_3d = corners_3d[:, in_front] + + # Project 3d box to 2d. + corner_coords = view_points(corners_3d, camera_intrinsic, + True).T[:, :2].tolist() + + # Keep only corners that fall within the image. + final_coords = post_process_coords(corner_coords) + + # Skip if the convex hull of the re-projected corners + # does not intersect the image canvas. + if final_coords is None: + continue + else: + min_x, min_y, max_x, max_y = final_coords + + # Generate dictionary record to be included in the .json file. + repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y, + sample_data_token, sd_rec['filename']) + + # If mono3d=True, add 3D annotations in camera coordinates + if mono3d and (repro_rec is not None): + loc = box.center.tolist() + + dim = box.wlh + dim[[0, 1, 2]] = dim[[1, 2, 0]] # convert wlh to our lhw + dim = dim.tolist() + + rot = box.orientation.yaw_pitch_roll[0] + rot = [-rot] # convert the rot to our cam coordinate + + global_velo2d = nusc.box_velocity(box.token)[:2] + global_velo3d = np.array([*global_velo2d, 0.0]) + e2g_r_mat = Quaternion(pose_rec['rotation']).rotation_matrix + c2e_r_mat = Quaternion(cs_rec['rotation']).rotation_matrix + cam_velo3d = global_velo3d @ np.linalg.inv( + e2g_r_mat).T @ np.linalg.inv(c2e_r_mat).T + velo = cam_velo3d[0::2].tolist() + + repro_rec['bbox_cam3d'] = loc + dim + rot + repro_rec['velo_cam3d'] = velo + + center3d = np.array(loc).reshape([1, 3]) + center2d = points_cam2img( + center3d, camera_intrinsic, with_depth=True) + repro_rec['center2d'] = center2d.squeeze().tolist() + # normalized center2D + depth + # if samples with depth < 0 will be removed + if repro_rec['center2d'][2] <= 0: + continue + + ann_token = nusc.get('sample_annotation', + box.token)['attribute_tokens'] + if len(ann_token) == 0: + attr_name = 'None' + else: + attr_name = nusc.get('attribute', ann_token[0])['name'] + attr_id = nus_attributes.index(attr_name) + repro_rec['attribute_name'] = attr_name + repro_rec['attribute_id'] = attr_id + + repro_recs.append(repro_rec) + + return repro_recs + + +def post_process_coords( + corner_coords: List, imsize: Tuple[int, int] = (1600, 900) +) -> Union[Tuple[float, float, float, float], None]: + """Get the intersection of the convex hull of the reprojected bbox corners + and the image canvas, return None if no intersection. + + Args: + corner_coords (list[int]): Corner coordinates of reprojected + bounding box. + imsize (tuple[int]): Size of the image canvas. + + Return: + tuple [float]: Intersection of the convex hull of the 2D box + corners and the image canvas. + """ + polygon_from_2d_box = MultiPoint(corner_coords).convex_hull + img_canvas = box(0, 0, imsize[0], imsize[1]) + + if polygon_from_2d_box.intersects(img_canvas): + img_intersection = polygon_from_2d_box.intersection(img_canvas) + intersection_coords = np.array( + [coord for coord in img_intersection.exterior.coords]) + + min_x = min(intersection_coords[:, 0]) + min_y = min(intersection_coords[:, 1]) + max_x = max(intersection_coords[:, 0]) + max_y = max(intersection_coords[:, 1]) + + return min_x, min_y, max_x, max_y + else: + return None + + +def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float, + sample_data_token: str, filename: str) -> OrderedDict: + """Generate one 2D annotation record given various information on top of + the 2D bounding box coordinates. + + Args: + ann_rec (dict): Original 3d annotation record. + x1 (float): Minimum value of the x coordinate. + y1 (float): Minimum value of the y coordinate. + x2 (float): Maximum value of the x coordinate. + y2 (float): Maximum value of the y coordinate. + sample_data_token (str): Sample data token. + filename (str):The corresponding image file where the annotation + is present. + + Returns: + dict: A sample 2D annotation record. + - file_name (str): file name + - image_id (str): sample data token + - area (float): 2d box area + - category_name (str): category name + - category_id (int): category id + - bbox (list[float]): left x, top y, dx, dy of 2d box + - iscrowd (int): whether the area is crowd + """ + repro_rec = OrderedDict() + repro_rec['sample_data_token'] = sample_data_token + coco_rec = dict() + + relevant_keys = [ + 'attribute_tokens', + 'category_name', + 'instance_token', + 'next', + 'num_lidar_pts', + 'num_radar_pts', + 'prev', + 'sample_annotation_token', + 'sample_data_token', + 'visibility_token', + ] + + for key, value in ann_rec.items(): + if key in relevant_keys: + repro_rec[key] = value + + repro_rec['bbox_corners'] = [x1, y1, x2, y2] + repro_rec['filename'] = filename + + coco_rec['file_name'] = filename + coco_rec['image_id'] = sample_data_token + coco_rec['area'] = (y2 - y1) * (x2 - x1) + + if repro_rec['category_name'] not in NuScenesDataset.NameMapping: + return None + cat_name = NuScenesDataset.NameMapping[repro_rec['category_name']] + coco_rec['category_name'] = cat_name + coco_rec['category_id'] = nus_categories.index(cat_name) + coco_rec['bbox'] = [x1, y1, x2 - x1, y2 - y1] + coco_rec['iscrowd'] = 0 + + return coco_rec diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/s3dis_data_utils.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/s3dis_data_utils.py new file mode 100644 index 000000000..751688f7a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/s3dis_data_utils.py @@ -0,0 +1,245 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +from concurrent import futures as futures +from os import path as osp + +import mmcv +import numpy as np + + +class S3DISData(object): + """S3DIS data. + + Generate s3dis infos for s3dis_converter. + + Args: + root_path (str): Root path of the raw data. + split (str, optional): Set split type of the data. Default: 'Area_1'. + """ + + def __init__(self, root_path, split='Area_1'): + self.root_dir = root_path + self.split = split + self.data_dir = osp.join(root_path, + 'Stanford3dDataset_v1.2_Aligned_Version') + + # Following `GSDN `_, use 5 furniture + # classes for detection: table, chair, sofa, bookcase, board. + self.cat_ids = np.array([7, 8, 9, 10, 11]) + self.cat_ids2class = { + cat_id: i + for i, cat_id in enumerate(list(self.cat_ids)) + } + + assert split in [ + 'Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_5', 'Area_6' + ] + self.sample_id_list = os.listdir(osp.join(self.data_dir, + split)) # conferenceRoom_1 + for sample_id in self.sample_id_list: + if os.path.isfile(osp.join(self.data_dir, split, sample_id)): + self.sample_id_list.remove(sample_id) + + def __len__(self): + return len(self.sample_id_list) + + def get_infos(self, num_workers=4, has_label=True, sample_id_list=None): + """Get data infos. + + This method gets information from the raw data. + + Args: + num_workers (int, optional): Number of threads to be used. + Default: 4. + has_label (bool, optional): Whether the data has label. + Default: True. + sample_id_list (list[int], optional): Index list of the sample. + Default: None. + + Returns: + infos (list[dict]): Information of the raw data. + """ + + def process_single_scene(sample_idx): + print(f'{self.split} sample_idx: {sample_idx}') + info = dict() + pc_info = { + 'num_features': 6, + 'lidar_idx': f'{self.split}_{sample_idx}' + } + info['point_cloud'] = pc_info + pts_filename = osp.join(self.root_dir, 's3dis_data', + f'{self.split}_{sample_idx}_point.npy') + pts_instance_mask_path = osp.join( + self.root_dir, 's3dis_data', + f'{self.split}_{sample_idx}_ins_label.npy') + pts_semantic_mask_path = osp.join( + self.root_dir, 's3dis_data', + f'{self.split}_{sample_idx}_sem_label.npy') + + points = np.load(pts_filename).astype(np.float32) + pts_instance_mask = np.load(pts_instance_mask_path).astype(np.int) + pts_semantic_mask = np.load(pts_semantic_mask_path).astype(np.int) + + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points')) + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask')) + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask')) + + points.tofile( + osp.join(self.root_dir, 'points', + f'{self.split}_{sample_idx}.bin')) + pts_instance_mask.tofile( + osp.join(self.root_dir, 'instance_mask', + f'{self.split}_{sample_idx}.bin')) + pts_semantic_mask.tofile( + osp.join(self.root_dir, 'semantic_mask', + f'{self.split}_{sample_idx}.bin')) + + info['pts_path'] = osp.join('points', + f'{self.split}_{sample_idx}.bin') + info['pts_instance_mask_path'] = osp.join( + 'instance_mask', f'{self.split}_{sample_idx}.bin') + info['pts_semantic_mask_path'] = osp.join( + 'semantic_mask', f'{self.split}_{sample_idx}.bin') + info['annos'] = self.get_bboxes(points, pts_instance_mask, + pts_semantic_mask) + + return info + + sample_id_list = sample_id_list if sample_id_list is not None \ + else self.sample_id_list + with futures.ThreadPoolExecutor(num_workers) as executor: + infos = executor.map(process_single_scene, sample_id_list) + return list(infos) + + def get_bboxes(self, points, pts_instance_mask, pts_semantic_mask): + """Convert instance masks to axis-aligned bounding boxes. + + Args: + points (np.array): Scene points of shape (n, 6). + pts_instance_mask (np.ndarray): Instance labels of shape (n,). + pts_semantic_mask (np.ndarray): Semantic labels of shape (n,). + + Returns: + dict: A dict containing detection infos with following keys: + + - gt_boxes_upright_depth (np.ndarray): Bounding boxes + of shape (n, 6) + - class (np.ndarray): Box labels of shape (n,) + - gt_num (int): Number of boxes. + """ + bboxes, labels = [], [] + for i in range(1, pts_instance_mask.max()): + ids = pts_instance_mask == i + # check if all instance points have same semantic label + assert pts_semantic_mask[ids].min() == pts_semantic_mask[ids].max() + label = pts_semantic_mask[ids][0] + # keep only furniture objects + if label in self.cat_ids2class: + labels.append(self.cat_ids2class[pts_semantic_mask[ids][0]]) + pts = points[:, :3][ids] + min_pts = pts.min(axis=0) + max_pts = pts.max(axis=0) + locations = (min_pts + max_pts) / 2 + dimensions = max_pts - min_pts + bboxes.append(np.concatenate((locations, dimensions))) + annotation = dict() + # follow ScanNet and SUN RGB-D keys + annotation['gt_boxes_upright_depth'] = np.array(bboxes) + annotation['class'] = np.array(labels) + annotation['gt_num'] = len(labels) + return annotation + + +class S3DISSegData(object): + """S3DIS dataset used to generate infos for semantic segmentation task. + + Args: + data_root (str): Root path of the raw data. + ann_file (str): The generated scannet infos. + split (str, optional): Set split type of the data. Default: 'train'. + num_points (int, optional): Number of points in each data input. + Default: 8192. + label_weight_func (function, optional): Function to compute the + label weight. Default: None. + """ + + def __init__(self, + data_root, + ann_file, + split='Area_1', + num_points=4096, + label_weight_func=None): + self.data_root = data_root + self.data_infos = mmcv.load(ann_file) + self.split = split + self.num_points = num_points + + self.all_ids = np.arange(13) # all possible ids + self.cat_ids = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, + 12]) # used for seg task + self.ignore_index = len(self.cat_ids) + + self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \ + self.ignore_index + for i, cat_id in enumerate(self.cat_ids): + self.cat_id2class[cat_id] = i + + # label weighting function is taken from + # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24 + self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \ + label_weight_func is None else label_weight_func + + def get_seg_infos(self): + scene_idxs, label_weight = self.get_scene_idxs_and_label_weight() + save_folder = osp.join(self.data_root, 'seg_info') + mmcv.mkdir_or_exist(save_folder) + np.save( + osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'), + scene_idxs) + np.save( + osp.join(save_folder, f'{self.split}_label_weight.npy'), + label_weight) + print(f'{self.split} resampled scene index and label weight saved') + + def _convert_to_label(self, mask): + """Convert class_id in loaded segmentation mask to label.""" + if isinstance(mask, str): + if mask.endswith('npy'): + mask = np.load(mask) + else: + mask = np.fromfile(mask, dtype=np.int64) + label = self.cat_id2class[mask] + return label + + def get_scene_idxs_and_label_weight(self): + """Compute scene_idxs for data sampling and label weight for loss + calculation. + + We sample more times for scenes with more points. Label_weight is + inversely proportional to number of class points. + """ + num_classes = len(self.cat_ids) + num_point_all = [] + label_weight = np.zeros((num_classes + 1, )) # ignore_index + for data_info in self.data_infos: + label = self._convert_to_label( + osp.join(self.data_root, data_info['pts_semantic_mask_path'])) + num_point_all.append(label.shape[0]) + class_count, _ = np.histogram(label, range(num_classes + 2)) + label_weight += class_count + + # repeat scene_idx for num_scene_point // num_sample_point times + sample_prob = np.array(num_point_all) / float(np.sum(num_point_all)) + num_iter = int(np.sum(num_point_all) / float(self.num_points)) + scene_idxs = [] + for idx in range(len(self.data_infos)): + scene_idxs.extend([idx] * int(round(sample_prob[idx] * num_iter))) + scene_idxs = np.array(scene_idxs).astype(np.int32) + + # calculate label weight, adopted from PointNet++ + label_weight = label_weight[:-1].astype(np.float32) + label_weight = label_weight / label_weight.sum() + label_weight = self.label_weight_func(label_weight).astype(np.float32) + + return scene_idxs, label_weight diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/scannet_data_utils.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/scannet_data_utils.py new file mode 100644 index 000000000..085d401c8 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/scannet_data_utils.py @@ -0,0 +1,297 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +from concurrent import futures as futures +from os import path as osp + +import mmcv +import numpy as np + + +class ScanNetData(object): + """ScanNet data. + + Generate scannet infos for scannet_converter. + + Args: + root_path (str): Root path of the raw data. + split (str, optional): Set split type of the data. Default: 'train'. + """ + + def __init__(self, root_path, split='train'): + self.root_dir = root_path + self.split = split + self.split_dir = osp.join(root_path) + self.classes = [ + 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', + 'bookshelf', 'picture', 'counter', 'desk', 'curtain', + 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', + 'garbagebin' + ] + self.cat2label = {cat: self.classes.index(cat) for cat in self.classes} + self.label2cat = {self.cat2label[t]: t for t in self.cat2label} + self.cat_ids = np.array( + [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) + self.cat_ids2class = { + nyu40id: i + for i, nyu40id in enumerate(list(self.cat_ids)) + } + assert split in ['train', 'val', 'test'] + split_file = osp.join(self.root_dir, 'meta_data', + f'scannetv2_{split}.txt') + mmcv.check_file_exist(split_file) + self.sample_id_list = mmcv.list_from_file(split_file) + self.test_mode = (split == 'test') + + def __len__(self): + return len(self.sample_id_list) + + def get_aligned_box_label(self, idx): + box_file = osp.join(self.root_dir, 'scannet_instance_data', + f'{idx}_aligned_bbox.npy') + mmcv.check_file_exist(box_file) + return np.load(box_file) + + def get_unaligned_box_label(self, idx): + box_file = osp.join(self.root_dir, 'scannet_instance_data', + f'{idx}_unaligned_bbox.npy') + mmcv.check_file_exist(box_file) + return np.load(box_file) + + def get_axis_align_matrix(self, idx): + matrix_file = osp.join(self.root_dir, 'scannet_instance_data', + f'{idx}_axis_align_matrix.npy') + mmcv.check_file_exist(matrix_file) + return np.load(matrix_file) + + def get_images(self, idx): + paths = [] + path = osp.join(self.root_dir, 'posed_images', idx) + for file in sorted(os.listdir(path)): + if file.endswith('.jpg'): + paths.append(osp.join('posed_images', idx, file)) + return paths + + def get_extrinsics(self, idx): + extrinsics = [] + path = osp.join(self.root_dir, 'posed_images', idx) + for file in sorted(os.listdir(path)): + if file.endswith('.txt') and not file == 'intrinsic.txt': + extrinsics.append(np.loadtxt(osp.join(path, file))) + return extrinsics + + def get_intrinsics(self, idx): + matrix_file = osp.join(self.root_dir, 'posed_images', idx, + 'intrinsic.txt') + mmcv.check_file_exist(matrix_file) + return np.loadtxt(matrix_file) + + def get_infos(self, num_workers=4, has_label=True, sample_id_list=None): + """Get data infos. + + This method gets information from the raw data. + + Args: + num_workers (int, optional): Number of threads to be used. + Default: 4. + has_label (bool, optional): Whether the data has label. + Default: True. + sample_id_list (list[int], optional): Index list of the sample. + Default: None. + + Returns: + infos (list[dict]): Information of the raw data. + """ + + def process_single_scene(sample_idx): + print(f'{self.split} sample_idx: {sample_idx}') + info = dict() + pc_info = {'num_features': 6, 'lidar_idx': sample_idx} + info['point_cloud'] = pc_info + pts_filename = osp.join(self.root_dir, 'scannet_instance_data', + f'{sample_idx}_vert.npy') + points = np.load(pts_filename) + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points')) + points.tofile( + osp.join(self.root_dir, 'points', f'{sample_idx}.bin')) + info['pts_path'] = osp.join('points', f'{sample_idx}.bin') + + # update with RGB image paths if exist + if os.path.exists(osp.join(self.root_dir, 'posed_images')): + info['intrinsics'] = self.get_intrinsics(sample_idx) + all_extrinsics = self.get_extrinsics(sample_idx) + all_img_paths = self.get_images(sample_idx) + # some poses in ScanNet are invalid + extrinsics, img_paths = [], [] + for extrinsic, img_path in zip(all_extrinsics, all_img_paths): + if np.all(np.isfinite(extrinsic)): + img_paths.append(img_path) + extrinsics.append(extrinsic) + info['extrinsics'] = extrinsics + info['img_paths'] = img_paths + + if not self.test_mode: + pts_instance_mask_path = osp.join( + self.root_dir, 'scannet_instance_data', + f'{sample_idx}_ins_label.npy') + pts_semantic_mask_path = osp.join( + self.root_dir, 'scannet_instance_data', + f'{sample_idx}_sem_label.npy') + + pts_instance_mask = np.load(pts_instance_mask_path).astype( + np.int64) + pts_semantic_mask = np.load(pts_semantic_mask_path).astype( + np.int64) + + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask')) + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask')) + + pts_instance_mask.tofile( + osp.join(self.root_dir, 'instance_mask', + f'{sample_idx}.bin')) + pts_semantic_mask.tofile( + osp.join(self.root_dir, 'semantic_mask', + f'{sample_idx}.bin')) + + info['pts_instance_mask_path'] = osp.join( + 'instance_mask', f'{sample_idx}.bin') + info['pts_semantic_mask_path'] = osp.join( + 'semantic_mask', f'{sample_idx}.bin') + + if has_label: + annotations = {} + # box is of shape [k, 6 + class] + aligned_box_label = self.get_aligned_box_label(sample_idx) + unaligned_box_label = self.get_unaligned_box_label(sample_idx) + annotations['gt_num'] = aligned_box_label.shape[0] + if annotations['gt_num'] != 0: + aligned_box = aligned_box_label[:, :-1] # k, 6 + unaligned_box = unaligned_box_label[:, :-1] + classes = aligned_box_label[:, -1] # k + annotations['name'] = np.array([ + self.label2cat[self.cat_ids2class[classes[i]]] + for i in range(annotations['gt_num']) + ]) + # default names are given to aligned bbox for compatibility + # we also save unaligned bbox info with marked names + annotations['location'] = aligned_box[:, :3] + annotations['dimensions'] = aligned_box[:, 3:6] + annotations['gt_boxes_upright_depth'] = aligned_box + annotations['unaligned_location'] = unaligned_box[:, :3] + annotations['unaligned_dimensions'] = unaligned_box[:, 3:6] + annotations[ + 'unaligned_gt_boxes_upright_depth'] = unaligned_box + annotations['index'] = np.arange( + annotations['gt_num'], dtype=np.int32) + annotations['class'] = np.array([ + self.cat_ids2class[classes[i]] + for i in range(annotations['gt_num']) + ]) + axis_align_matrix = self.get_axis_align_matrix(sample_idx) + annotations['axis_align_matrix'] = axis_align_matrix # 4x4 + info['annos'] = annotations + return info + + sample_id_list = sample_id_list if sample_id_list is not None \ + else self.sample_id_list + with futures.ThreadPoolExecutor(num_workers) as executor: + infos = executor.map(process_single_scene, sample_id_list) + return list(infos) + + +class ScanNetSegData(object): + """ScanNet dataset used to generate infos for semantic segmentation task. + + Args: + data_root (str): Root path of the raw data. + ann_file (str): The generated scannet infos. + split (str, optional): Set split type of the data. Default: 'train'. + num_points (int, optional): Number of points in each data input. + Default: 8192. + label_weight_func (function, optional): Function to compute the + label weight. Default: None. + """ + + def __init__(self, + data_root, + ann_file, + split='train', + num_points=8192, + label_weight_func=None): + self.data_root = data_root + self.data_infos = mmcv.load(ann_file) + self.split = split + assert split in ['train', 'val', 'test'] + self.num_points = num_points + + self.all_ids = np.arange(41) # all possible ids + self.cat_ids = np.array([ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, + 39 + ]) # used for seg task + self.ignore_index = len(self.cat_ids) + + self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \ + self.ignore_index + for i, cat_id in enumerate(self.cat_ids): + self.cat_id2class[cat_id] = i + + # label weighting function is taken from + # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24 + self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \ + label_weight_func is None else label_weight_func + + def get_seg_infos(self): + if self.split == 'test': + return + scene_idxs, label_weight = self.get_scene_idxs_and_label_weight() + save_folder = osp.join(self.data_root, 'seg_info') + mmcv.mkdir_or_exist(save_folder) + np.save( + osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'), + scene_idxs) + np.save( + osp.join(save_folder, f'{self.split}_label_weight.npy'), + label_weight) + print(f'{self.split} resampled scene index and label weight saved') + + def _convert_to_label(self, mask): + """Convert class_id in loaded segmentation mask to label.""" + if isinstance(mask, str): + if mask.endswith('npy'): + mask = np.load(mask) + else: + mask = np.fromfile(mask, dtype=np.int64) + label = self.cat_id2class[mask] + return label + + def get_scene_idxs_and_label_weight(self): + """Compute scene_idxs for data sampling and label weight for loss + calculation. + + We sample more times for scenes with more points. Label_weight is + inversely proportional to number of class points. + """ + num_classes = len(self.cat_ids) + num_point_all = [] + label_weight = np.zeros((num_classes + 1, )) # ignore_index + for data_info in self.data_infos: + label = self._convert_to_label( + osp.join(self.data_root, data_info['pts_semantic_mask_path'])) + num_point_all.append(label.shape[0]) + class_count, _ = np.histogram(label, range(num_classes + 2)) + label_weight += class_count + + # repeat scene_idx for num_scene_point // num_sample_point times + sample_prob = np.array(num_point_all) / float(np.sum(num_point_all)) + num_iter = int(np.sum(num_point_all) / float(self.num_points)) + scene_idxs = [] + for idx in range(len(self.data_infos)): + scene_idxs.extend([idx] * int(round(sample_prob[idx] * num_iter))) + scene_idxs = np.array(scene_idxs).astype(np.int32) + + # calculate label weight, adopted from PointNet++ + label_weight = label_weight[:-1].astype(np.float32) + label_weight = label_weight / label_weight.sum() + label_weight = self.label_weight_func(label_weight).astype(np.float32) + + return scene_idxs, label_weight diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/sunrgbd_data_utils.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/sunrgbd_data_utils.py new file mode 100644 index 000000000..152ea42f4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/sunrgbd_data_utils.py @@ -0,0 +1,226 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from concurrent import futures as futures +from os import path as osp + +import mmcv +import numpy as np +from scipy import io as sio + + +def random_sampling(points, num_points, replace=None, return_choices=False): + """Random sampling. + + Sampling point cloud to a certain number of points. + + Args: + points (ndarray): Point cloud. + num_points (int): The number of samples. + replace (bool): Whether the sample is with or without replacement. + return_choices (bool): Whether to return choices. + + Returns: + points (ndarray): Point cloud after sampling. + """ + + if replace is None: + replace = (points.shape[0] < num_points) + choices = np.random.choice(points.shape[0], num_points, replace=replace) + if return_choices: + return points[choices], choices + else: + return points[choices] + + +class SUNRGBDInstance(object): + + def __init__(self, line): + data = line.split(' ') + data[1:] = [float(x) for x in data[1:]] + self.classname = data[0] + self.xmin = data[1] + self.ymin = data[2] + self.xmax = data[1] + data[3] + self.ymax = data[2] + data[4] + self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax]) + self.centroid = np.array([data[5], data[6], data[7]]) + self.width = data[8] + self.length = data[9] + self.height = data[10] + # data[9] is x_size (length), data[8] is y_size (width), data[10] is + # z_size (height) in our depth coordinate system, + # l corresponds to the size along the x axis + self.size = np.array([data[9], data[8], data[10]]) * 2 + self.orientation = np.zeros((3, )) + self.orientation[0] = data[11] + self.orientation[1] = data[12] + self.heading_angle = np.arctan2(self.orientation[1], + self.orientation[0]) + self.box3d = np.concatenate( + [self.centroid, self.size, self.heading_angle[None]]) + + +class SUNRGBDData(object): + """SUNRGBD data. + + Generate scannet infos for sunrgbd_converter. + + Args: + root_path (str): Root path of the raw data. + split (str, optional): Set split type of the data. Default: 'train'. + use_v1 (bool, optional): Whether to use v1. Default: False. + """ + + def __init__(self, root_path, split='train', use_v1=False): + self.root_dir = root_path + self.split = split + self.split_dir = osp.join(root_path, 'sunrgbd_trainval') + self.classes = [ + 'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', + 'night_stand', 'bookshelf', 'bathtub' + ] + self.cat2label = {cat: self.classes.index(cat) for cat in self.classes} + self.label2cat = { + label: self.classes[label] + for label in range(len(self.classes)) + } + assert split in ['train', 'val', 'test'] + split_file = osp.join(self.split_dir, f'{split}_data_idx.txt') + mmcv.check_file_exist(split_file) + self.sample_id_list = map(int, mmcv.list_from_file(split_file)) + self.image_dir = osp.join(self.split_dir, 'image') + self.calib_dir = osp.join(self.split_dir, 'calib') + self.depth_dir = osp.join(self.split_dir, 'depth') + if use_v1: + self.label_dir = osp.join(self.split_dir, 'label_v1') + else: + self.label_dir = osp.join(self.split_dir, 'label') + + def __len__(self): + return len(self.sample_id_list) + + def get_image(self, idx): + img_filename = osp.join(self.image_dir, f'{idx:06d}.jpg') + return mmcv.imread(img_filename) + + def get_image_shape(self, idx): + image = self.get_image(idx) + return np.array(image.shape[:2], dtype=np.int32) + + def get_depth(self, idx): + depth_filename = osp.join(self.depth_dir, f'{idx:06d}.mat') + depth = sio.loadmat(depth_filename)['instance'] + return depth + + def get_calibration(self, idx): + calib_filepath = osp.join(self.calib_dir, f'{idx:06d}.txt') + lines = [line.rstrip() for line in open(calib_filepath)] + Rt = np.array([float(x) for x in lines[0].split(' ')]) + Rt = np.reshape(Rt, (3, 3), order='F').astype(np.float32) + K = np.array([float(x) for x in lines[1].split(' ')]) + K = np.reshape(K, (3, 3), order='F').astype(np.float32) + return K, Rt + + def get_label_objects(self, idx): + label_filename = osp.join(self.label_dir, f'{idx:06d}.txt') + lines = [line.rstrip() for line in open(label_filename)] + objects = [SUNRGBDInstance(line) for line in lines] + return objects + + def get_infos(self, num_workers=4, has_label=True, sample_id_list=None): + """Get data infos. + + This method gets information from the raw data. + + Args: + num_workers (int, optional): Number of threads to be used. + Default: 4. + has_label (bool, optional): Whether the data has label. + Default: True. + sample_id_list (list[int], optional): Index list of the sample. + Default: None. + + Returns: + infos (list[dict]): Information of the raw data. + """ + + def process_single_scene(sample_idx): + print(f'{self.split} sample_idx: {sample_idx}') + # convert depth to points + SAMPLE_NUM = 50000 + # TODO: Check whether can move the point + # sampling process during training. + pc_upright_depth = self.get_depth(sample_idx) + pc_upright_depth_subsampled = random_sampling( + pc_upright_depth, SAMPLE_NUM) + + info = dict() + pc_info = {'num_features': 6, 'lidar_idx': sample_idx} + info['point_cloud'] = pc_info + + mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points')) + pc_upright_depth_subsampled.tofile( + osp.join(self.root_dir, 'points', f'{sample_idx:06d}.bin')) + + info['pts_path'] = osp.join('points', f'{sample_idx:06d}.bin') + img_path = osp.join('image', f'{sample_idx:06d}.jpg') + image_info = { + 'image_idx': sample_idx, + 'image_shape': self.get_image_shape(sample_idx), + 'image_path': img_path + } + info['image'] = image_info + + K, Rt = self.get_calibration(sample_idx) + calib_info = {'K': K, 'Rt': Rt} + info['calib'] = calib_info + + if has_label: + obj_list = self.get_label_objects(sample_idx) + annotations = {} + annotations['gt_num'] = len([ + obj.classname for obj in obj_list + if obj.classname in self.cat2label.keys() + ]) + if annotations['gt_num'] != 0: + annotations['name'] = np.array([ + obj.classname for obj in obj_list + if obj.classname in self.cat2label.keys() + ]) + annotations['bbox'] = np.concatenate([ + obj.box2d.reshape(1, 4) for obj in obj_list + if obj.classname in self.cat2label.keys() + ], + axis=0) + annotations['location'] = np.concatenate([ + obj.centroid.reshape(1, 3) for obj in obj_list + if obj.classname in self.cat2label.keys() + ], + axis=0) + annotations['dimensions'] = 2 * np.array([ + [obj.length, obj.width, obj.height] for obj in obj_list + if obj.classname in self.cat2label.keys() + ]) # lwh (depth) format + annotations['rotation_y'] = np.array([ + obj.heading_angle for obj in obj_list + if obj.classname in self.cat2label.keys() + ]) + annotations['index'] = np.arange( + len(obj_list), dtype=np.int32) + annotations['class'] = np.array([ + self.cat2label[obj.classname] for obj in obj_list + if obj.classname in self.cat2label.keys() + ]) + annotations['gt_boxes_upright_depth'] = np.stack( + [ + obj.box3d for obj in obj_list + if obj.classname in self.cat2label.keys() + ], + axis=0) # (K,8) + info['annos'] = annotations + return info + + sample_id_list = sample_id_list if \ + sample_id_list is not None else self.sample_id_list + with futures.ThreadPoolExecutor(num_workers) as executor: + infos = executor.map(process_single_scene, sample_id_list) + return list(infos) diff --git a/cv/3d_detection/PAConv/pytorch/tools/data_converter/waymo_converter.py b/cv/3d_detection/PAConv/pytorch/tools/data_converter/waymo_converter.py new file mode 100644 index 000000000..f991514bd --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/data_converter/waymo_converter.py @@ -0,0 +1,556 @@ +# Copyright (c) OpenMMLab. All rights reserved. +r"""Adapted from `Waymo to KITTI converter + `_. +""" + +try: + from waymo_open_dataset import dataset_pb2 +except ImportError: + raise ImportError( + 'Please run "pip install waymo-open-dataset-tf-2-1-0==1.2.0" ' + 'to install the official devkit first.') + +from glob import glob +from os.path import join + +import mmcv +import numpy as np +import tensorflow as tf +from waymo_open_dataset.utils import range_image_utils, transform_utils +from waymo_open_dataset.utils.frame_utils import \ + parse_range_image_and_camera_projection + + +class Waymo2KITTI(object): + """Waymo to KITTI converter. + + This class serves as the converter to change the waymo raw data to KITTI + format. + + Args: + load_dir (str): Directory to load waymo raw data. + save_dir (str): Directory to save data in KITTI format. + prefix (str): Prefix of filename. In general, 0 for training, 1 for + validation and 2 for testing. + workers (int, optional): Number of workers for the parallel process. + test_mode (bool, optional): Whether in the test_mode. Default: False. + """ + + def __init__(self, + load_dir, + save_dir, + prefix, + workers=64, + test_mode=False): + self.filter_empty_3dboxes = True + self.filter_no_label_zone_points = True + + self.selected_waymo_classes = ['VEHICLE', 'PEDESTRIAN', 'CYCLIST'] + + # Only data collected in specific locations will be converted + # If set None, this filter is disabled + # Available options: location_sf (main dataset) + self.selected_waymo_locations = None + self.save_track_id = False + + # turn on eager execution for older tensorflow versions + if int(tf.__version__.split('.')[0]) < 2: + tf.enable_eager_execution() + + self.lidar_list = [ + '_FRONT', '_FRONT_RIGHT', '_FRONT_LEFT', '_SIDE_RIGHT', + '_SIDE_LEFT' + ] + self.type_list = [ + 'UNKNOWN', 'VEHICLE', 'PEDESTRIAN', 'SIGN', 'CYCLIST' + ] + self.waymo_to_kitti_class_map = { + 'UNKNOWN': 'DontCare', + 'PEDESTRIAN': 'Pedestrian', + 'VEHICLE': 'Car', + 'CYCLIST': 'Cyclist', + 'SIGN': 'Sign' # not in kitti + } + + self.load_dir = load_dir + self.save_dir = save_dir + self.prefix = prefix + self.workers = int(workers) + self.test_mode = test_mode + + self.tfrecord_pathnames = sorted( + glob(join(self.load_dir, '*.tfrecord'))) + + self.label_save_dir = f'{self.save_dir}/label_' + self.label_all_save_dir = f'{self.save_dir}/label_all' + self.image_save_dir = f'{self.save_dir}/image_' + self.calib_save_dir = f'{self.save_dir}/calib' + self.point_cloud_save_dir = f'{self.save_dir}/velodyne' + self.pose_save_dir = f'{self.save_dir}/pose' + self.timestamp_save_dir = f'{self.save_dir}/timestamp' + + self.create_folder() + + def convert(self): + """Convert action.""" + print('Start converting ...') + mmcv.track_parallel_progress(self.convert_one, range(len(self)), + self.workers) + print('\nFinished ...') + + def convert_one(self, file_idx): + """Convert action for single file. + + Args: + file_idx (int): Index of the file to be converted. + """ + pathname = self.tfrecord_pathnames[file_idx] + dataset = tf.data.TFRecordDataset(pathname, compression_type='') + + for frame_idx, data in enumerate(dataset): + + frame = dataset_pb2.Frame() + frame.ParseFromString(bytearray(data.numpy())) + if (self.selected_waymo_locations is not None + and frame.context.stats.location + not in self.selected_waymo_locations): + continue + + self.save_image(frame, file_idx, frame_idx) + self.save_calib(frame, file_idx, frame_idx) + self.save_lidar(frame, file_idx, frame_idx) + self.save_pose(frame, file_idx, frame_idx) + self.save_timestamp(frame, file_idx, frame_idx) + + if not self.test_mode: + self.save_label(frame, file_idx, frame_idx) + + def __len__(self): + """Length of the filename list.""" + return len(self.tfrecord_pathnames) + + def save_image(self, frame, file_idx, frame_idx): + """Parse and save the images in png format. + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + for img in frame.images: + img_path = f'{self.image_save_dir}{str(img.name - 1)}/' + \ + f'{self.prefix}{str(file_idx).zfill(3)}' + \ + f'{str(frame_idx).zfill(3)}.png' + img = mmcv.imfrombytes(img.image) + mmcv.imwrite(img, img_path) + + def save_calib(self, frame, file_idx, frame_idx): + """Parse and save the calibration data. + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + # waymo front camera to kitti reference camera + T_front_cam_to_ref = np.array([[0.0, -1.0, 0.0], [0.0, 0.0, -1.0], + [1.0, 0.0, 0.0]]) + camera_calibs = [] + R0_rect = [f'{i:e}' for i in np.eye(3).flatten()] + Tr_velo_to_cams = [] + calib_context = '' + + for camera in frame.context.camera_calibrations: + # extrinsic parameters + T_cam_to_vehicle = np.array(camera.extrinsic.transform).reshape( + 4, 4) + T_vehicle_to_cam = np.linalg.inv(T_cam_to_vehicle) + Tr_velo_to_cam = \ + self.cart_to_homo(T_front_cam_to_ref) @ T_vehicle_to_cam + if camera.name == 1: # FRONT = 1, see dataset.proto for details + self.T_velo_to_front_cam = Tr_velo_to_cam.copy() + Tr_velo_to_cam = Tr_velo_to_cam[:3, :].reshape((12, )) + Tr_velo_to_cams.append([f'{i:e}' for i in Tr_velo_to_cam]) + + # intrinsic parameters + camera_calib = np.zeros((3, 4)) + camera_calib[0, 0] = camera.intrinsic[0] + camera_calib[1, 1] = camera.intrinsic[1] + camera_calib[0, 2] = camera.intrinsic[2] + camera_calib[1, 2] = camera.intrinsic[3] + camera_calib[2, 2] = 1 + camera_calib = list(camera_calib.reshape(12)) + camera_calib = [f'{i:e}' for i in camera_calib] + camera_calibs.append(camera_calib) + + # all camera ids are saved as id-1 in the result because + # camera 0 is unknown in the proto + for i in range(5): + calib_context += 'P' + str(i) + ': ' + \ + ' '.join(camera_calibs[i]) + '\n' + calib_context += 'R0_rect' + ': ' + ' '.join(R0_rect) + '\n' + for i in range(5): + calib_context += 'Tr_velo_to_cam_' + str(i) + ': ' + \ + ' '.join(Tr_velo_to_cams[i]) + '\n' + + with open( + f'{self.calib_save_dir}/{self.prefix}' + + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt', + 'w+') as fp_calib: + fp_calib.write(calib_context) + fp_calib.close() + + def save_lidar(self, frame, file_idx, frame_idx): + """Parse and save the lidar data in psd format. + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + range_images, camera_projections, range_image_top_pose = \ + parse_range_image_and_camera_projection(frame) + + # First return + points_0, cp_points_0, intensity_0, elongation_0, mask_indices_0 = \ + self.convert_range_image_to_point_cloud( + frame, + range_images, + camera_projections, + range_image_top_pose, + ri_index=0 + ) + points_0 = np.concatenate(points_0, axis=0) + intensity_0 = np.concatenate(intensity_0, axis=0) + elongation_0 = np.concatenate(elongation_0, axis=0) + mask_indices_0 = np.concatenate(mask_indices_0, axis=0) + + # Second return + points_1, cp_points_1, intensity_1, elongation_1, mask_indices_1 = \ + self.convert_range_image_to_point_cloud( + frame, + range_images, + camera_projections, + range_image_top_pose, + ri_index=1 + ) + points_1 = np.concatenate(points_1, axis=0) + intensity_1 = np.concatenate(intensity_1, axis=0) + elongation_1 = np.concatenate(elongation_1, axis=0) + mask_indices_1 = np.concatenate(mask_indices_1, axis=0) + + points = np.concatenate([points_0, points_1], axis=0) + intensity = np.concatenate([intensity_0, intensity_1], axis=0) + elongation = np.concatenate([elongation_0, elongation_1], axis=0) + mask_indices = np.concatenate([mask_indices_0, mask_indices_1], axis=0) + + # timestamp = frame.timestamp_micros * np.ones_like(intensity) + + # concatenate x,y,z, intensity, elongation, timestamp (6-dim) + point_cloud = np.column_stack( + (points, intensity, elongation, mask_indices)) + + pc_path = f'{self.point_cloud_save_dir}/{self.prefix}' + \ + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.bin' + point_cloud.astype(np.float32).tofile(pc_path) + + def save_label(self, frame, file_idx, frame_idx): + """Parse and save the label data in txt format. + The relation between waymo and kitti coordinates is noteworthy: + 1. x, y, z correspond to l, w, h (waymo) -> l, h, w (kitti) + 2. x-y-z: front-left-up (waymo) -> right-down-front(kitti) + 3. bbox origin at volumetric center (waymo) -> bottom center (kitti) + 4. rotation: +x around y-axis (kitti) -> +x around z-axis (waymo) + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + fp_label_all = open( + f'{self.label_all_save_dir}/{self.prefix}' + + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt', 'w+') + id_to_bbox = dict() + id_to_name = dict() + for labels in frame.projected_lidar_labels: + name = labels.name + for label in labels.labels: + # TODO: need a workaround as bbox may not belong to front cam + bbox = [ + label.box.center_x - label.box.length / 2, + label.box.center_y - label.box.width / 2, + label.box.center_x + label.box.length / 2, + label.box.center_y + label.box.width / 2 + ] + id_to_bbox[label.id] = bbox + id_to_name[label.id] = name - 1 + + for obj in frame.laser_labels: + bounding_box = None + name = None + id = obj.id + for lidar in self.lidar_list: + if id + lidar in id_to_bbox: + bounding_box = id_to_bbox.get(id + lidar) + name = str(id_to_name.get(id + lidar)) + break + + if bounding_box is None or name is None: + name = '0' + bounding_box = (0, 0, 0, 0) + + my_type = self.type_list[obj.type] + + if my_type not in self.selected_waymo_classes: + continue + + if self.filter_empty_3dboxes and obj.num_lidar_points_in_box < 1: + continue + + my_type = self.waymo_to_kitti_class_map[my_type] + + height = obj.box.height + width = obj.box.width + length = obj.box.length + + x = obj.box.center_x + y = obj.box.center_y + z = obj.box.center_z - height / 2 + + # project bounding box to the virtual reference frame + pt_ref = self.T_velo_to_front_cam @ \ + np.array([x, y, z, 1]).reshape((4, 1)) + x, y, z, _ = pt_ref.flatten().tolist() + + rotation_y = -obj.box.heading - np.pi / 2 + track_id = obj.id + + # not available + truncated = 0 + occluded = 0 + alpha = -10 + + line = my_type + \ + ' {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n'.format( + round(truncated, 2), occluded, round(alpha, 2), + round(bounding_box[0], 2), round(bounding_box[1], 2), + round(bounding_box[2], 2), round(bounding_box[3], 2), + round(height, 2), round(width, 2), round(length, 2), + round(x, 2), round(y, 2), round(z, 2), + round(rotation_y, 2)) + + if self.save_track_id: + line_all = line[:-1] + ' ' + name + ' ' + track_id + '\n' + else: + line_all = line[:-1] + ' ' + name + '\n' + + fp_label = open( + f'{self.label_save_dir}{name}/{self.prefix}' + + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt', 'a') + fp_label.write(line) + fp_label.close() + + fp_label_all.write(line_all) + + fp_label_all.close() + + def save_pose(self, frame, file_idx, frame_idx): + """Parse and save the pose data. + + Note that SDC's own pose is not included in the regular training + of KITTI dataset. KITTI raw dataset contains ego motion files + but are not often used. Pose is important for algorithms that + take advantage of the temporal information. + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + pose = np.array(frame.pose.transform).reshape(4, 4) + np.savetxt( + join(f'{self.pose_save_dir}/{self.prefix}' + + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt'), + pose) + + def save_timestamp(self, frame, file_idx, frame_idx): + """Save the timestamp data in a separate file instead of the + pointcloud. + + Note that SDC's own pose is not included in the regular training + of KITTI dataset. KITTI raw dataset contains ego motion files + but are not often used. Pose is important for algorithms that + take advantage of the temporal information. + + Args: + frame (:obj:`Frame`): Open dataset frame proto. + file_idx (int): Current file index. + frame_idx (int): Current frame index. + """ + with open( + join(f'{self.timestamp_save_dir}/{self.prefix}' + + f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt'), + 'w') as f: + f.write(str(frame.timestamp_micros)) + + def create_folder(self): + """Create folder for data preprocessing.""" + if not self.test_mode: + dir_list1 = [ + self.label_all_save_dir, self.calib_save_dir, + self.point_cloud_save_dir, self.pose_save_dir, + self.timestamp_save_dir + ] + dir_list2 = [self.label_save_dir, self.image_save_dir] + else: + dir_list1 = [ + self.calib_save_dir, self.point_cloud_save_dir, + self.pose_save_dir, self.timestamp_save_dir + ] + dir_list2 = [self.image_save_dir] + for d in dir_list1: + mmcv.mkdir_or_exist(d) + for d in dir_list2: + for i in range(5): + mmcv.mkdir_or_exist(f'{d}{str(i)}') + + def convert_range_image_to_point_cloud(self, + frame, + range_images, + camera_projections, + range_image_top_pose, + ri_index=0): + """Convert range images to point cloud. + + Args: + frame (:obj:`Frame`): Open dataset frame. + range_images (dict): Mapping from laser_name to list of two + range images corresponding with two returns. + camera_projections (dict): Mapping from laser_name to list of two + camera projections corresponding with two returns. + range_image_top_pose (:obj:`Transform`): Range image pixel pose for + top lidar. + ri_index (int, optional): 0 for the first return, + 1 for the second return. Default: 0. + + Returns: + tuple[list[np.ndarray]]: (List of points with shape [N, 3], + camera projections of points with shape [N, 6], intensity + with shape [N, 1], elongation with shape [N, 1], points' + position in the depth map (element offset if points come from + the main lidar otherwise -1) with shape[N, 1]). All the + lists have the length of lidar numbers (5). + """ + calibrations = sorted( + frame.context.laser_calibrations, key=lambda c: c.name) + points = [] + cp_points = [] + intensity = [] + elongation = [] + mask_indices = [] + + frame_pose = tf.convert_to_tensor( + value=np.reshape(np.array(frame.pose.transform), [4, 4])) + # [H, W, 6] + range_image_top_pose_tensor = tf.reshape( + tf.convert_to_tensor(value=range_image_top_pose.data), + range_image_top_pose.shape.dims) + # [H, W, 3, 3] + range_image_top_pose_tensor_rotation = \ + transform_utils.get_rotation_matrix( + range_image_top_pose_tensor[..., 0], + range_image_top_pose_tensor[..., 1], + range_image_top_pose_tensor[..., 2]) + range_image_top_pose_tensor_translation = \ + range_image_top_pose_tensor[..., 3:] + range_image_top_pose_tensor = transform_utils.get_transform( + range_image_top_pose_tensor_rotation, + range_image_top_pose_tensor_translation) + for c in calibrations: + range_image = range_images[c.name][ri_index] + if len(c.beam_inclinations) == 0: + beam_inclinations = range_image_utils.compute_inclination( + tf.constant( + [c.beam_inclination_min, c.beam_inclination_max]), + height=range_image.shape.dims[0]) + else: + beam_inclinations = tf.constant(c.beam_inclinations) + + beam_inclinations = tf.reverse(beam_inclinations, axis=[-1]) + extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4]) + + range_image_tensor = tf.reshape( + tf.convert_to_tensor(value=range_image.data), + range_image.shape.dims) + pixel_pose_local = None + frame_pose_local = None + if c.name == dataset_pb2.LaserName.TOP: + pixel_pose_local = range_image_top_pose_tensor + pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0) + frame_pose_local = tf.expand_dims(frame_pose, axis=0) + range_image_mask = range_image_tensor[..., 0] > 0 + + if self.filter_no_label_zone_points: + nlz_mask = range_image_tensor[..., 3] != 1.0 # 1.0: in NLZ + range_image_mask = range_image_mask & nlz_mask + + range_image_cartesian = \ + range_image_utils.extract_point_cloud_from_range_image( + tf.expand_dims(range_image_tensor[..., 0], axis=0), + tf.expand_dims(extrinsic, axis=0), + tf.expand_dims(tf.convert_to_tensor( + value=beam_inclinations), axis=0), + pixel_pose=pixel_pose_local, + frame_pose=frame_pose_local) + + mask_index = tf.where(range_image_mask) + + range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0) + points_tensor = tf.gather_nd(range_image_cartesian, mask_index) + + cp = camera_projections[c.name][ri_index] + cp_tensor = tf.reshape( + tf.convert_to_tensor(value=cp.data), cp.shape.dims) + cp_points_tensor = tf.gather_nd(cp_tensor, mask_index) + points.append(points_tensor.numpy()) + cp_points.append(cp_points_tensor.numpy()) + + intensity_tensor = tf.gather_nd(range_image_tensor[..., 1], + mask_index) + intensity.append(intensity_tensor.numpy()) + + elongation_tensor = tf.gather_nd(range_image_tensor[..., 2], + mask_index) + elongation.append(elongation_tensor.numpy()) + if c.name == 1: + mask_index = (ri_index * range_image_mask.shape[0] + + mask_index[:, 0] + ) * range_image_mask.shape[1] + mask_index[:, 1] + mask_index = mask_index.numpy().astype(elongation[-1].dtype) + else: + mask_index = np.full_like(elongation[-1], -1) + + mask_indices.append(mask_index) + + return points, cp_points, intensity, elongation, mask_indices + + def cart_to_homo(self, mat): + """Convert transformation matrix in Cartesian coordinates to + homogeneous format. + + Args: + mat (np.ndarray): Transformation matrix in Cartesian. + The input matrix shape is 3x3 or 3x4. + + Returns: + np.ndarray: Transformation matrix in homogeneous format. + The matrix shape is 4x4. + """ + ret = np.eye(4) + if mat.shape == (3, 3): + ret[:3, :3] = mat + elif mat.shape == (3, 4): + ret[:3, :] = mat + else: + raise ValueError(mat.shape) + return ret diff --git a/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d2torchserve.py b/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d2torchserve.py new file mode 100644 index 000000000..df7e6084a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d2torchserve.py @@ -0,0 +1,111 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from argparse import ArgumentParser, Namespace +from pathlib import Path +from tempfile import TemporaryDirectory + +import mmcv + +try: + from model_archiver.model_packaging import package_model + from model_archiver.model_packaging_utils import ModelExportUtils +except ImportError: + package_model = None + + +def mmdet3d2torchserve( + config_file: str, + checkpoint_file: str, + output_folder: str, + model_name: str, + model_version: str = '1.0', + force: bool = False, +): + """Converts MMDetection3D model (config + checkpoint) to TorchServe `.mar`. + + Args: + config_file (str): + In MMDetection3D config format. + The contents vary for each task repository. + checkpoint_file (str): + In MMDetection3D checkpoint format. + The contents vary for each task repository. + output_folder (str): + Folder where `{model_name}.mar` will be created. + The file created will be in TorchServe archive format. + model_name (str): + If not None, used for naming the `{model_name}.mar` file + that will be created under `output_folder`. + If None, `{Path(checkpoint_file).stem}` will be used. + model_version (str, optional): + Model's version. Default: '1.0'. + force (bool, optional): + If True, if there is an existing `{model_name}.mar` + file under `output_folder` it will be overwritten. + Default: False. + """ + mmcv.mkdir_or_exist(output_folder) + + config = mmcv.Config.fromfile(config_file) + + with TemporaryDirectory() as tmpdir: + config.dump(f'{tmpdir}/config.py') + + args = Namespace( + **{ + 'model_file': f'{tmpdir}/config.py', + 'serialized_file': checkpoint_file, + 'handler': f'{Path(__file__).parent}/mmdet3d_handler.py', + 'model_name': model_name or Path(checkpoint_file).stem, + 'version': model_version, + 'export_path': output_folder, + 'force': force, + 'requirements_file': None, + 'extra_files': None, + 'runtime': 'python', + 'archive_format': 'default' + }) + manifest = ModelExportUtils.generate_manifest_json(args) + package_model(args, manifest) + + +def parse_args(): + parser = ArgumentParser( + description='Convert MMDetection models to TorchServe `.mar` format.') + parser.add_argument('config', type=str, help='config file path') + parser.add_argument('checkpoint', type=str, help='checkpoint file path') + parser.add_argument( + '--output-folder', + type=str, + required=True, + help='Folder where `{model_name}.mar` will be created.') + parser.add_argument( + '--model-name', + type=str, + default=None, + help='If not None, used for naming the `{model_name}.mar`' + 'file that will be created under `output_folder`.' + 'If None, `{Path(checkpoint_file).stem}` will be used.') + parser.add_argument( + '--model-version', + type=str, + default='1.0', + help='Number used for versioning.') + parser.add_argument( + '-f', + '--force', + action='store_true', + help='overwrite the existing `{model_name}.mar`') + args = parser.parse_args() + + return args + + +if __name__ == '__main__': + args = parse_args() + + if package_model is None: + raise ImportError('`torch-model-archiver` is required.' + 'Try: pip install torch-model-archiver') + + mmdet3d2torchserve(args.config, args.checkpoint, args.output_folder, + args.model_name, args.model_version, args.force) diff --git a/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d_handler.py b/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d_handler.py new file mode 100644 index 000000000..8b526cdf5 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/deployment/mmdet3d_handler.py @@ -0,0 +1,120 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import base64 +import os + +import numpy as np +import torch +from ts.torch_handler.base_handler import BaseHandler + +from mmdet3d.apis import inference_detector, init_model +from mmdet3d.core.points import get_points_type + + +class MMdet3dHandler(BaseHandler): + """MMDetection3D Handler used in TorchServe. + + Handler to load models in MMDetection3D, and it will process data to get + predicted results. For now, it only supports SECOND. + """ + threshold = 0.5 + load_dim = 4 + use_dim = [0, 1, 2, 3] + coord_type = 'LIDAR' + attribute_dims = None + + def initialize(self, context): + """Initialize function loads the model in MMDetection3D. + + Args: + context (context): It is a JSON Object containing information + pertaining to the model artifacts parameters. + """ + properties = context.system_properties + self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' + self.device = torch.device(self.map_location + ':' + + str(properties.get('gpu_id')) if torch.cuda. + is_available() else self.map_location) + self.manifest = context.manifest + + model_dir = properties.get('model_dir') + serialized_file = self.manifest['model']['serializedFile'] + checkpoint = os.path.join(model_dir, serialized_file) + self.config_file = os.path.join(model_dir, 'config.py') + self.model = init_model(self.config_file, checkpoint, self.device) + self.initialized = True + + def preprocess(self, data): + """Preprocess function converts data into LiDARPoints class. + + Args: + data (List): Input data from the request. + + Returns: + `LiDARPoints` : The preprocess function returns the input + point cloud data as LiDARPoints class. + """ + for row in data: + # Compat layer: normally the envelope should just return the data + # directly, but older versions of Torchserve didn't have envelope. + pts = row.get('data') or row.get('body') + if isinstance(pts, str): + pts = base64.b64decode(pts) + + points = np.frombuffer(pts, dtype=np.float32) + points = points.reshape(-1, self.load_dim) + points = points[:, self.use_dim] + points_class = get_points_type(self.coord_type) + points = points_class( + points, + points_dim=points.shape[-1], + attribute_dims=self.attribute_dims) + + return points + + def inference(self, data): + """Inference Function. + + This function is used to make a prediction call on the + given input request. + + Args: + data (`LiDARPoints`): LiDARPoints class passed to make + the inference request. + + Returns: + List(dict) : The predicted result is returned in this function. + """ + results, _ = inference_detector(self.model, data) + return results + + def postprocess(self, data): + """Postprocess function. + + This function makes use of the output from the inference and + converts it into a torchserve supported response output. + + Args: + data (List[dict]): The data received from the prediction + output of the model. + + Returns: + List: The post process function returns a list of the predicted + output. + """ + output = [] + for pts_index, result in enumerate(data): + output.append([]) + if 'pts_bbox' in result.keys(): + pred_bboxes = result['pts_bbox']['boxes_3d'].tensor.numpy() + pred_scores = result['pts_bbox']['scores_3d'].numpy() + else: + pred_bboxes = result['boxes_3d'].tensor.numpy() + pred_scores = result['scores_3d'].numpy() + + index = pred_scores > self.threshold + bbox_coords = pred_bboxes[index].tolist() + score = pred_scores[index].tolist() + + output[pts_index].append({'3dbbox': bbox_coords, 'score': score}) + + return output diff --git a/cv/3d_detection/PAConv/pytorch/tools/deployment/test_torchserver.py b/cv/3d_detection/PAConv/pytorch/tools/deployment/test_torchserver.py new file mode 100644 index 000000000..613f9e4f7 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/deployment/test_torchserver.py @@ -0,0 +1,56 @@ +from argparse import ArgumentParser + +import numpy as np +import requests + +from mmdet3d.apis import inference_detector, init_model + + +def parse_args(): + parser = ArgumentParser() + parser.add_argument('pcd', help='Point cloud file') + parser.add_argument('config', help='Config file') + parser.add_argument('checkpoint', help='Checkpoint file') + parser.add_argument('model_name', help='The model name in the server') + parser.add_argument( + '--inference-addr', + default='127.0.0.1:8080', + help='Address and port of the inference server') + parser.add_argument( + '--device', default='cuda:0', help='Device used for inference') + parser.add_argument( + '--score-thr', type=float, default=0.5, help='3d bbox score threshold') + args = parser.parse_args() + return args + + +def parse_result(input): + bbox = input[0]['3dbbox'] + result = np.array(bbox) + return result + + +def main(args): + # build the model from a config file and a checkpoint file + model = init_model(args.config, args.checkpoint, device=args.device) + # test a single point cloud file + model_result, _ = inference_detector(model, args.pcd) + # filter the 3d bboxes whose scores > 0.5 + if 'pts_bbox' in model_result[0].keys(): + pred_bboxes = model_result[0]['pts_bbox']['boxes_3d'].tensor.numpy() + pred_scores = model_result[0]['pts_bbox']['scores_3d'].numpy() + else: + pred_bboxes = model_result[0]['boxes_3d'].tensor.numpy() + pred_scores = model_result[0]['scores_3d'].numpy() + model_result = pred_bboxes[pred_scores > 0.5] + + url = 'http://' + args.inference_addr + '/predictions/' + args.model_name + with open(args.pcd, 'rb') as points: + response = requests.post(url, points) + server_result = parse_result(response.json()) + assert np.allclose(model_result, server_result) + + +if __name__ == '__main__': + args = parse_args() + main(args) diff --git a/cv/3d_detection/PAConv/pytorch/tools/dist_test.sh b/cv/3d_detection/PAConv/pytorch/tools/dist_test.sh new file mode 100755 index 000000000..dea131b43 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/dist_test.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +CONFIG=$1 +CHECKPOINT=$2 +GPUS=$3 +NNODES=${NNODES:-1} +NODE_RANK=${NODE_RANK:-0} +PORT=${PORT:-29500} +MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"} + +PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ +python -m torch.distributed.launch \ + --nnodes=$NNODES \ + --node_rank=$NODE_RANK \ + --master_addr=$MASTER_ADDR \ + --nproc_per_node=$GPUS \ + --master_port=$PORT \ + $(dirname "$0")/test.py \ + $CONFIG \ + $CHECKPOINT \ + --launcher pytorch \ + ${@:4} diff --git a/cv/3d_detection/PAConv/pytorch/tools/misc/browse_dataset.py b/cv/3d_detection/PAConv/pytorch/tools/misc/browse_dataset.py new file mode 100644 index 000000000..e4451b124 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/misc/browse_dataset.py @@ -0,0 +1,232 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import warnings +from os import path as osp +from pathlib import Path + +import mmcv +import numpy as np +from mmcv import Config, DictAction, mkdir_or_exist + +from mmdet3d.core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode, + DepthInstance3DBoxes, LiDARInstance3DBoxes) +from mmdet3d.core.visualizer import (show_multi_modality_result, show_result, + show_seg_result) +from mmdet3d.datasets import build_dataset + + +def parse_args(): + parser = argparse.ArgumentParser(description='Browse a dataset') + parser.add_argument('config', help='train config file path') + parser.add_argument( + '--skip-type', + type=str, + nargs='+', + default=['Normalize'], + help='skip some useless pipeline') + parser.add_argument( + '--output-dir', + default=None, + type=str, + help='If there is no display interface, you can save it') + parser.add_argument( + '--task', + type=str, + choices=['det', 'seg', 'multi_modality-det', 'mono-det'], + help='Determine the visualization method depending on the task.') + parser.add_argument( + '--aug', + action='store_true', + help='Whether to visualize augmented datasets or original dataset.') + parser.add_argument( + '--online', + action='store_true', + help='Whether to perform online visualization. Note that you often ' + 'need a monitor to do so.') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. If the value to ' + 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' + 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' + 'Note that the quotation marks are necessary and that no white space ' + 'is allowed.') + args = parser.parse_args() + return args + + +def build_data_cfg(config_path, skip_type, aug, cfg_options): + """Build data config for loading visualization data.""" + + cfg = Config.fromfile(config_path) + if cfg_options is not None: + cfg.merge_from_dict(cfg_options) + # extract inner dataset of `RepeatDataset` as `cfg.data.train` + # so we don't need to worry about it later + if cfg.data.train['type'] == 'RepeatDataset': + cfg.data.train = cfg.data.train.dataset + # use only first dataset for `ConcatDataset` + if cfg.data.train['type'] == 'ConcatDataset': + cfg.data.train = cfg.data.train.datasets[0] + train_data_cfg = cfg.data.train + + if aug: + show_pipeline = cfg.train_pipeline + else: + show_pipeline = cfg.eval_pipeline + for i in range(len(cfg.train_pipeline)): + if cfg.train_pipeline[i]['type'] == 'LoadAnnotations3D': + show_pipeline.insert(i, cfg.train_pipeline[i]) + # Collect points as well as labels + if cfg.train_pipeline[i]['type'] == 'Collect3D': + if show_pipeline[-1]['type'] == 'Collect3D': + show_pipeline[-1] = cfg.train_pipeline[i] + else: + show_pipeline.append(cfg.train_pipeline[i]) + + train_data_cfg['pipeline'] = [ + x for x in show_pipeline if x['type'] not in skip_type + ] + + return cfg + + +def to_depth_mode(points, bboxes): + """Convert points and bboxes to Depth Coord and Depth Box mode.""" + if points is not None: + points = Coord3DMode.convert_point(points.copy(), Coord3DMode.LIDAR, + Coord3DMode.DEPTH) + if bboxes is not None: + bboxes = Box3DMode.convert(bboxes.clone(), Box3DMode.LIDAR, + Box3DMode.DEPTH) + return points, bboxes + + +def show_det_data(input, out_dir, show=False): + """Visualize 3D point cloud and 3D bboxes.""" + img_metas = input['img_metas']._data + points = input['points']._data.numpy() + gt_bboxes = input['gt_bboxes_3d']._data.tensor + if img_metas['box_mode_3d'] != Box3DMode.DEPTH: + points, gt_bboxes = to_depth_mode(points, gt_bboxes) + filename = osp.splitext(osp.basename(img_metas['pts_filename']))[0] + show_result( + points, + gt_bboxes.clone(), + None, + out_dir, + filename, + show=show, + snapshot=True) + + +def show_seg_data(input, out_dir, show=False): + """Visualize 3D point cloud and segmentation mask.""" + img_metas = input['img_metas']._data + points = input['points']._data.numpy() + gt_seg = input['pts_semantic_mask']._data.numpy() + filename = osp.splitext(osp.basename(img_metas['pts_filename']))[0] + show_seg_result( + points, + gt_seg.copy(), + None, + out_dir, + filename, + np.array(img_metas['PALETTE']), + img_metas['ignore_index'], + show=show, + snapshot=True) + + +def show_proj_bbox_img(input, out_dir, show=False, is_nus_mono=False): + """Visualize 3D bboxes on 2D image by projection.""" + gt_bboxes = input['gt_bboxes_3d']._data + img_metas = input['img_metas']._data + img = input['img']._data.numpy() + # need to transpose channel to first dim + img = img.transpose(1, 2, 0) + # no 3D gt bboxes, just show img + if gt_bboxes.tensor.shape[0] == 0: + gt_bboxes = None + filename = Path(img_metas['filename']).name + if isinstance(gt_bboxes, DepthInstance3DBoxes): + show_multi_modality_result( + img, + gt_bboxes, + None, + None, + out_dir, + filename, + box_mode='depth', + img_metas=img_metas, + show=show) + elif isinstance(gt_bboxes, LiDARInstance3DBoxes): + show_multi_modality_result( + img, + gt_bboxes, + None, + img_metas['lidar2img'], + out_dir, + filename, + box_mode='lidar', + img_metas=img_metas, + show=show) + elif isinstance(gt_bboxes, CameraInstance3DBoxes): + show_multi_modality_result( + img, + gt_bboxes, + None, + img_metas['cam2img'], + out_dir, + filename, + box_mode='camera', + img_metas=img_metas, + show=show) + else: + # can't project, just show img + warnings.warn( + f'unrecognized gt box type {type(gt_bboxes)}, only show image') + show_multi_modality_result( + img, None, None, None, out_dir, filename, show=show) + + +def main(): + args = parse_args() + + if args.output_dir is not None: + mkdir_or_exist(args.output_dir) + + cfg = build_data_cfg(args.config, args.skip_type, args.aug, + args.cfg_options) + try: + dataset = build_dataset( + cfg.data.train, default_args=dict(filter_empty_gt=False)) + except TypeError: # seg dataset doesn't have `filter_empty_gt` key + dataset = build_dataset(cfg.data.train) + + dataset_type = cfg.dataset_type + # configure visualization mode + vis_task = args.task # 'det', 'seg', 'multi_modality-det', 'mono-det' + progress_bar = mmcv.ProgressBar(len(dataset)) + + for input in dataset: + if vis_task in ['det', 'multi_modality-det']: + # show 3D bboxes on 3D point clouds + show_det_data(input, args.output_dir, show=args.online) + if vis_task in ['multi_modality-det', 'mono-det']: + # project 3D bboxes to 2D image + show_proj_bbox_img( + input, + args.output_dir, + show=args.online, + is_nus_mono=(dataset_type == 'NuScenesMonoDataset')) + elif vis_task in ['seg']: + # show 3D segmentation mask on 3D point clouds + show_seg_data(input, args.output_dir, show=args.online) + progress_bar.update() + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/misc/fuse_conv_bn.py b/cv/3d_detection/PAConv/pytorch/tools/misc/fuse_conv_bn.py new file mode 100644 index 000000000..9aff40294 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/misc/fuse_conv_bn.py @@ -0,0 +1,68 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +import torch +from mmcv.runner import save_checkpoint +from torch import nn as nn + +from mmdet3d.apis import init_model + + +def fuse_conv_bn(conv, bn): + """During inference, the functionary of batch norm layers is turned off but + only the mean and var alone channels are used, which exposes the chance to + fuse it with the preceding conv layers to save computations and simplify + network structures.""" + conv_w = conv.weight + conv_b = conv.bias if conv.bias is not None else torch.zeros_like( + bn.running_mean) + + factor = bn.weight / torch.sqrt(bn.running_var + bn.eps) + conv.weight = nn.Parameter(conv_w * + factor.reshape([conv.out_channels, 1, 1, 1])) + conv.bias = nn.Parameter((conv_b - bn.running_mean) * factor + bn.bias) + return conv + + +def fuse_module(m): + last_conv = None + last_conv_name = None + + for name, child in m.named_children(): + if isinstance(child, (nn.BatchNorm2d, nn.SyncBatchNorm)): + if last_conv is None: # only fuse BN that is after Conv + continue + fused_conv = fuse_conv_bn(last_conv, child) + m._modules[last_conv_name] = fused_conv + # To reduce changes, set BN as Identity instead of deleting it. + m._modules[name] = nn.Identity() + last_conv = None + elif isinstance(child, nn.Conv2d): + last_conv = child + last_conv_name = name + else: + fuse_module(child) + return m + + +def parse_args(): + parser = argparse.ArgumentParser( + description='fuse Conv and BN layers in a model') + parser.add_argument('config', help='config file path') + parser.add_argument('checkpoint', help='checkpoint file path') + parser.add_argument('out', help='output path of the converted model') + args = parser.parse_args() + return args + + +def main(): + args = parse_args() + # build the model from a config file and a checkpoint file + model = init_model(args.config, args.checkpoint) + # fuse conv and bn layers of the model + fused_model = fuse_module(model) + save_checkpoint(fused_model, args.out) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/misc/print_config.py b/cv/3d_detection/PAConv/pytorch/tools/misc/print_config.py new file mode 100644 index 000000000..c3538ef56 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/misc/print_config.py @@ -0,0 +1,27 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +from mmcv import Config, DictAction + + +def parse_args(): + parser = argparse.ArgumentParser(description='Print the whole config') + parser.add_argument('config', help='config file path') + parser.add_argument( + '--options', nargs='+', action=DictAction, help='arguments in dict') + args = parser.parse_args() + + return args + + +def main(): + args = parse_args() + + cfg = Config.fromfile(args.config) + if args.options is not None: + cfg.merge_from_dict(args.options) + print(f'Config:\n{cfg.pretty_text}') + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/misc/visualize_results.py b/cv/3d_detection/PAConv/pytorch/tools/misc/visualize_results.py new file mode 100644 index 000000000..c59445f6e --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/misc/visualize_results.py @@ -0,0 +1,50 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +import mmcv +from mmcv import Config + +from mmdet3d.datasets import build_dataset + + +def parse_args(): + parser = argparse.ArgumentParser( + description='MMDet3D visualize the results') + parser.add_argument('config', help='test config file path') + parser.add_argument('--result', help='results file in pickle format') + parser.add_argument( + '--show-dir', help='directory where visualize results will be saved') + args = parser.parse_args() + + return args + + +def main(): + args = parse_args() + + if args.result is not None and \ + not args.result.endswith(('.pkl', '.pickle')): + raise ValueError('The results file must be a pkl file.') + + cfg = Config.fromfile(args.config) + cfg.data.test.test_mode = True + + # build the dataset + dataset = build_dataset(cfg.data.test) + results = mmcv.load(args.result) + + if getattr(dataset, 'show', None) is not None: + # data loading pipeline for showing + eval_pipeline = cfg.get('eval_pipeline', {}) + if eval_pipeline: + dataset.show(results, args.show_dir, pipeline=eval_pipeline) + else: + dataset.show(results, args.show_dir) # use default pipeline + else: + raise NotImplementedError( + 'Show is not implemented for dataset {}!'.format( + type(dataset).__name__)) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_h3dnet_checkpoints.py b/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_h3dnet_checkpoints.py new file mode 100644 index 000000000..2ede340ae --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_h3dnet_checkpoints.py @@ -0,0 +1,177 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import tempfile + +import torch +from mmcv import Config +from mmcv.runner import load_state_dict + +from mmdet3d.models import build_detector + + +def parse_args(): + parser = argparse.ArgumentParser( + description='MMDet3D upgrade model version(before v0.6.0) of H3DNet') + parser.add_argument('checkpoint', help='checkpoint file') + parser.add_argument('--out', help='path of the output checkpoint file') + args = parser.parse_args() + return args + + +def parse_config(config_strings): + """Parse config from strings. + + Args: + config_strings (string): strings of model config. + + Returns: + Config: model config + """ + temp_file = tempfile.NamedTemporaryFile() + config_path = f'{temp_file.name}.py' + with open(config_path, 'w') as f: + f.write(config_strings) + + config = Config.fromfile(config_path) + + # Update backbone config + if 'pool_mod' in config.model.backbone.backbones: + config.model.backbone.backbones.pop('pool_mod') + + if 'sa_cfg' not in config.model.backbone: + config.model.backbone['sa_cfg'] = dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True) + + if 'type' not in config.model.rpn_head.vote_aggregation_cfg: + config.model.rpn_head.vote_aggregation_cfg['type'] = 'PointSAModule' + + # Update rpn_head config + if 'pred_layer_cfg' not in config.model.rpn_head: + config.model.rpn_head['pred_layer_cfg'] = dict( + in_channels=128, shared_conv_channels=(128, 128), bias=True) + + if 'feat_channels' in config.model.rpn_head: + config.model.rpn_head.pop('feat_channels') + + if 'vote_moudule_cfg' in config.model.rpn_head: + config.model.rpn_head['vote_module_cfg'] = config.model.rpn_head.pop( + 'vote_moudule_cfg') + + if config.model.rpn_head.vote_aggregation_cfg.use_xyz: + config.model.rpn_head.vote_aggregation_cfg.mlp_channels[0] -= 3 + + for cfg in config.model.roi_head.primitive_list: + cfg['vote_module_cfg'] = cfg.pop('vote_moudule_cfg') + cfg.vote_aggregation_cfg.mlp_channels[0] -= 3 + if 'type' not in cfg.vote_aggregation_cfg: + cfg.vote_aggregation_cfg['type'] = 'PointSAModule' + + if 'type' not in config.model.roi_head.bbox_head.suface_matching_cfg: + config.model.roi_head.bbox_head.suface_matching_cfg[ + 'type'] = 'PointSAModule' + + if config.model.roi_head.bbox_head.suface_matching_cfg.use_xyz: + config.model.roi_head.bbox_head.suface_matching_cfg.mlp_channels[ + 0] -= 3 + + if 'type' not in config.model.roi_head.bbox_head.line_matching_cfg: + config.model.roi_head.bbox_head.line_matching_cfg[ + 'type'] = 'PointSAModule' + + if config.model.roi_head.bbox_head.line_matching_cfg.use_xyz: + config.model.roi_head.bbox_head.line_matching_cfg.mlp_channels[0] -= 3 + + if 'proposal_module_cfg' in config.model.roi_head.bbox_head: + config.model.roi_head.bbox_head.pop('proposal_module_cfg') + + temp_file.close() + + return config + + +def main(): + """Convert keys in checkpoints for VoteNet. + + There can be some breaking changes during the development of mmdetection3d, + and this tool is used for upgrading checkpoints trained with old versions + (before v0.6.0) to the latest one. + """ + args = parse_args() + checkpoint = torch.load(args.checkpoint) + cfg = parse_config(checkpoint['meta']['config']) + # Build the model and load checkpoint + model = build_detector( + cfg.model, + train_cfg=cfg.get('train_cfg'), + test_cfg=cfg.get('test_cfg')) + orig_ckpt = checkpoint['state_dict'] + converted_ckpt = orig_ckpt.copy() + + if cfg['dataset_type'] == 'ScanNetDataset': + NUM_CLASSES = 18 + elif cfg['dataset_type'] == 'SUNRGBDDataset': + NUM_CLASSES = 10 + else: + raise NotImplementedError + + RENAME_PREFIX = { + 'rpn_head.conv_pred.0': 'rpn_head.conv_pred.shared_convs.layer0', + 'rpn_head.conv_pred.1': 'rpn_head.conv_pred.shared_convs.layer1' + } + + DEL_KEYS = [ + 'rpn_head.conv_pred.0.bn.num_batches_tracked', + 'rpn_head.conv_pred.1.bn.num_batches_tracked' + ] + + EXTRACT_KEYS = { + 'rpn_head.conv_pred.conv_cls.weight': + ('rpn_head.conv_pred.conv_out.weight', [(0, 2), (-NUM_CLASSES, -1)]), + 'rpn_head.conv_pred.conv_cls.bias': + ('rpn_head.conv_pred.conv_out.bias', [(0, 2), (-NUM_CLASSES, -1)]), + 'rpn_head.conv_pred.conv_reg.weight': + ('rpn_head.conv_pred.conv_out.weight', [(2, -NUM_CLASSES)]), + 'rpn_head.conv_pred.conv_reg.bias': + ('rpn_head.conv_pred.conv_out.bias', [(2, -NUM_CLASSES)]) + } + + # Delete some useless keys + for key in DEL_KEYS: + converted_ckpt.pop(key) + + # Rename keys with specific prefix + RENAME_KEYS = dict() + for old_key in converted_ckpt.keys(): + for rename_prefix in RENAME_PREFIX.keys(): + if rename_prefix in old_key: + new_key = old_key.replace(rename_prefix, + RENAME_PREFIX[rename_prefix]) + RENAME_KEYS[new_key] = old_key + for new_key, old_key in RENAME_KEYS.items(): + converted_ckpt[new_key] = converted_ckpt.pop(old_key) + + # Extract weights and rename the keys + for new_key, (old_key, indices) in EXTRACT_KEYS.items(): + cur_layers = orig_ckpt[old_key] + converted_layers = [] + for (start, end) in indices: + if end != -1: + converted_layers.append(cur_layers[start:end]) + else: + converted_layers.append(cur_layers[start:]) + converted_layers = torch.cat(converted_layers, 0) + converted_ckpt[new_key] = converted_layers + if old_key in converted_ckpt.keys(): + converted_ckpt.pop(old_key) + + # Check the converted checkpoint by loading to the model + load_state_dict(model, converted_ckpt, strict=True) + checkpoint['state_dict'] = converted_ckpt + torch.save(checkpoint, args.out) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_votenet_checkpoints.py b/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_votenet_checkpoints.py new file mode 100644 index 000000000..7264e319b --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/model_converters/convert_votenet_checkpoints.py @@ -0,0 +1,153 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import tempfile + +import torch +from mmcv import Config +from mmcv.runner import load_state_dict + +from mmdet3d.models import build_detector + + +def parse_args(): + parser = argparse.ArgumentParser( + description='MMDet3D upgrade model version(before v0.6.0) of VoteNet') + parser.add_argument('checkpoint', help='checkpoint file') + parser.add_argument('--out', help='path of the output checkpoint file') + args = parser.parse_args() + return args + + +def parse_config(config_strings): + """Parse config from strings. + + Args: + config_strings (string): strings of model config. + + Returns: + Config: model config + """ + temp_file = tempfile.NamedTemporaryFile() + config_path = f'{temp_file.name}.py' + with open(config_path, 'w') as f: + f.write(config_strings) + + config = Config.fromfile(config_path) + + # Update backbone config + if 'pool_mod' in config.model.backbone: + config.model.backbone.pop('pool_mod') + + if 'sa_cfg' not in config.model.backbone: + config.model.backbone['sa_cfg'] = dict( + type='PointSAModule', + pool_mod='max', + use_xyz=True, + normalize_xyz=True) + + if 'type' not in config.model.bbox_head.vote_aggregation_cfg: + config.model.bbox_head.vote_aggregation_cfg['type'] = 'PointSAModule' + + # Update bbox_head config + if 'pred_layer_cfg' not in config.model.bbox_head: + config.model.bbox_head['pred_layer_cfg'] = dict( + in_channels=128, shared_conv_channels=(128, 128), bias=True) + + if 'feat_channels' in config.model.bbox_head: + config.model.bbox_head.pop('feat_channels') + + if 'vote_moudule_cfg' in config.model.bbox_head: + config.model.bbox_head['vote_module_cfg'] = config.model.bbox_head.pop( + 'vote_moudule_cfg') + + if config.model.bbox_head.vote_aggregation_cfg.use_xyz: + config.model.bbox_head.vote_aggregation_cfg.mlp_channels[0] -= 3 + + temp_file.close() + + return config + + +def main(): + """Convert keys in checkpoints for VoteNet. + + There can be some breaking changes during the development of mmdetection3d, + and this tool is used for upgrading checkpoints trained with old versions + (before v0.6.0) to the latest one. + """ + args = parse_args() + checkpoint = torch.load(args.checkpoint) + cfg = parse_config(checkpoint['meta']['config']) + # Build the model and load checkpoint + model = build_detector( + cfg.model, + train_cfg=cfg.get('train_cfg'), + test_cfg=cfg.get('test_cfg')) + orig_ckpt = checkpoint['state_dict'] + converted_ckpt = orig_ckpt.copy() + + if cfg['dataset_type'] == 'ScanNetDataset': + NUM_CLASSES = 18 + elif cfg['dataset_type'] == 'SUNRGBDDataset': + NUM_CLASSES = 10 + else: + raise NotImplementedError + + RENAME_PREFIX = { + 'bbox_head.conv_pred.0': 'bbox_head.conv_pred.shared_convs.layer0', + 'bbox_head.conv_pred.1': 'bbox_head.conv_pred.shared_convs.layer1' + } + + DEL_KEYS = [ + 'bbox_head.conv_pred.0.bn.num_batches_tracked', + 'bbox_head.conv_pred.1.bn.num_batches_tracked' + ] + + EXTRACT_KEYS = { + 'bbox_head.conv_pred.conv_cls.weight': + ('bbox_head.conv_pred.conv_out.weight', [(0, 2), (-NUM_CLASSES, -1)]), + 'bbox_head.conv_pred.conv_cls.bias': + ('bbox_head.conv_pred.conv_out.bias', [(0, 2), (-NUM_CLASSES, -1)]), + 'bbox_head.conv_pred.conv_reg.weight': + ('bbox_head.conv_pred.conv_out.weight', [(2, -NUM_CLASSES)]), + 'bbox_head.conv_pred.conv_reg.bias': + ('bbox_head.conv_pred.conv_out.bias', [(2, -NUM_CLASSES)]) + } + + # Delete some useless keys + for key in DEL_KEYS: + converted_ckpt.pop(key) + + # Rename keys with specific prefix + RENAME_KEYS = dict() + for old_key in converted_ckpt.keys(): + for rename_prefix in RENAME_PREFIX.keys(): + if rename_prefix in old_key: + new_key = old_key.replace(rename_prefix, + RENAME_PREFIX[rename_prefix]) + RENAME_KEYS[new_key] = old_key + for new_key, old_key in RENAME_KEYS.items(): + converted_ckpt[new_key] = converted_ckpt.pop(old_key) + + # Extract weights and rename the keys + for new_key, (old_key, indices) in EXTRACT_KEYS.items(): + cur_layers = orig_ckpt[old_key] + converted_layers = [] + for (start, end) in indices: + if end != -1: + converted_layers.append(cur_layers[start:end]) + else: + converted_layers.append(cur_layers[start:]) + converted_layers = torch.cat(converted_layers, 0) + converted_ckpt[new_key] = converted_layers + if old_key in converted_ckpt.keys(): + converted_ckpt.pop(old_key) + + # Check the converted checkpoint by loading to the model + load_state_dict(model, converted_ckpt, strict=True) + checkpoint['state_dict'] = converted_ckpt + torch.save(checkpoint, args.out) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/model_converters/publish_model.py b/cv/3d_detection/PAConv/pytorch/tools/model_converters/publish_model.py new file mode 100644 index 000000000..e2660578a --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/model_converters/publish_model.py @@ -0,0 +1,36 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import subprocess + +import torch + + +def parse_args(): + parser = argparse.ArgumentParser( + description='Process a checkpoint to be published') + parser.add_argument('in_file', help='input checkpoint filename') + parser.add_argument('out_file', help='output checkpoint filename') + args = parser.parse_args() + return args + + +def process_checkpoint(in_file, out_file): + checkpoint = torch.load(in_file, map_location='cpu') + # remove optimizer for smaller file size + if 'optimizer' in checkpoint: + del checkpoint['optimizer'] + # if it is necessary to remove some sensitive data in checkpoint['meta'], + # add the code here. + torch.save(checkpoint, out_file) + sha = subprocess.check_output(['sha256sum', out_file]).decode() + final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8]) + subprocess.Popen(['mv', out_file, final_file]) + + +def main(): + args = parse_args() + process_checkpoint(args.in_file, args.out_file) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/model_converters/regnet2mmdet.py b/cv/3d_detection/PAConv/pytorch/tools/model_converters/regnet2mmdet.py new file mode 100644 index 000000000..fbf8c8f33 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/model_converters/regnet2mmdet.py @@ -0,0 +1,90 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +from collections import OrderedDict + +import torch + + +def convert_stem(model_key, model_weight, state_dict, converted_names): + new_key = model_key.replace('stem.conv', 'conv1') + new_key = new_key.replace('stem.bn', 'bn1') + state_dict[new_key] = model_weight + converted_names.add(model_key) + print(f'Convert {model_key} to {new_key}') + + +def convert_head(model_key, model_weight, state_dict, converted_names): + new_key = model_key.replace('head.fc', 'fc') + state_dict[new_key] = model_weight + converted_names.add(model_key) + print(f'Convert {model_key} to {new_key}') + + +def convert_reslayer(model_key, model_weight, state_dict, converted_names): + split_keys = model_key.split('.') + layer, block, module = split_keys[:3] + block_id = int(block[1:]) + layer_name = f'layer{int(layer[1:])}' + block_name = f'{block_id - 1}' + + if block_id == 1 and module == 'bn': + new_key = f'{layer_name}.{block_name}.downsample.1.{split_keys[-1]}' + elif block_id == 1 and module == 'proj': + new_key = f'{layer_name}.{block_name}.downsample.0.{split_keys[-1]}' + elif module == 'f': + if split_keys[3] == 'a_bn': + module_name = 'bn1' + elif split_keys[3] == 'b_bn': + module_name = 'bn2' + elif split_keys[3] == 'c_bn': + module_name = 'bn3' + elif split_keys[3] == 'a': + module_name = 'conv1' + elif split_keys[3] == 'b': + module_name = 'conv2' + elif split_keys[3] == 'c': + module_name = 'conv3' + new_key = f'{layer_name}.{block_name}.{module_name}.{split_keys[-1]}' + else: + raise ValueError(f'Unsupported conversion of key {model_key}') + print(f'Convert {model_key} to {new_key}') + state_dict[new_key] = model_weight + converted_names.add(model_key) + + +def convert(src, dst): + """Convert keys in pycls pretrained RegNet models to mmdet style.""" + # load caffe model + regnet_model = torch.load(src) + blobs = regnet_model['model_state'] + # convert to pytorch style + state_dict = OrderedDict() + converted_names = set() + for key, weight in blobs.items(): + if 'stem' in key: + convert_stem(key, weight, state_dict, converted_names) + elif 'head' in key: + convert_head(key, weight, state_dict, converted_names) + elif key.startswith('s'): + convert_reslayer(key, weight, state_dict, converted_names) + + # check if all layers are converted + for key in blobs: + if key not in converted_names: + print(f'not converted: {key}') + # save checkpoint + checkpoint = dict() + checkpoint['state_dict'] = state_dict + torch.save(checkpoint, dst) + + +def main(): + parser = argparse.ArgumentParser(description='Convert model keys') + parser.add_argument('src', help='src detectron model path') + parser.add_argument('dst', help='save path') + args = parser.parse_args() + convert(args.src, args.dst) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/slurm_test.sh b/cv/3d_detection/PAConv/pytorch/tools/slurm_test.sh new file mode 100755 index 000000000..6dd67e574 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/slurm_test.sh @@ -0,0 +1,24 @@ +#!/usr/bin/env bash + +set -x + +PARTITION=$1 +JOB_NAME=$2 +CONFIG=$3 +CHECKPOINT=$4 +GPUS=${GPUS:-8} +GPUS_PER_NODE=${GPUS_PER_NODE:-8} +CPUS_PER_TASK=${CPUS_PER_TASK:-5} +PY_ARGS=${@:5} +SRUN_ARGS=${SRUN_ARGS:-""} + +PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ +srun -p ${PARTITION} \ + --job-name=${JOB_NAME} \ + --gres=gpu:${GPUS_PER_NODE} \ + --ntasks=${GPUS} \ + --ntasks-per-node=${GPUS_PER_NODE} \ + --cpus-per-task=${CPUS_PER_TASK} \ + --kill-on-bad-exit=1 \ + ${SRUN_ARGS} \ + python -u tools/test.py ${CONFIG} ${CHECKPOINT} --launcher="slurm" ${PY_ARGS} diff --git a/cv/3d_detection/PAConv/pytorch/tools/slurm_train.sh b/cv/3d_detection/PAConv/pytorch/tools/slurm_train.sh new file mode 100755 index 000000000..b3feb3d9c --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/slurm_train.sh @@ -0,0 +1,24 @@ +#!/usr/bin/env bash + +set -x + +PARTITION=$1 +JOB_NAME=$2 +CONFIG=$3 +WORK_DIR=$4 +GPUS=${GPUS:-8} +GPUS_PER_NODE=${GPUS_PER_NODE:-8} +CPUS_PER_TASK=${CPUS_PER_TASK:-5} +SRUN_ARGS=${SRUN_ARGS:-""} +PY_ARGS=${@:5} + +PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ +srun -p ${PARTITION} \ + --job-name=${JOB_NAME} \ + --gres=gpu:${GPUS_PER_NODE} \ + --ntasks=${GPUS} \ + --ntasks-per-node=${GPUS_PER_NODE} \ + --cpus-per-task=${CPUS_PER_TASK} \ + --kill-on-bad-exit=1 \ + ${SRUN_ARGS} \ + python -u tools/train.py ${CONFIG} --work-dir=${WORK_DIR} --launcher="slurm" ${PY_ARGS} diff --git a/cv/3d_detection/PAConv/pytorch/tools/test.py b/cv/3d_detection/PAConv/pytorch/tools/test.py new file mode 100644 index 000000000..bd9d95f40 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/test.py @@ -0,0 +1,260 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import os +import warnings + +import mmcv +import torch +from mmcv import Config, DictAction +from mmcv.cnn import fuse_conv_bn +from mmcv.parallel import MMDataParallel, MMDistributedDataParallel +from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, + wrap_fp16_model) + +import mmdet +from mmdet3d.apis import single_gpu_test +from mmdet3d.datasets import build_dataloader, build_dataset +from mmdet3d.models import build_model +from mmdet.apis import multi_gpu_test, set_random_seed +from mmdet.datasets import replace_ImageToTensor + +if mmdet.__version__ > '2.23.0': + # If mmdet version > 2.23.0, setup_multi_processes would be imported and + # used from mmdet instead of mmdet3d. + from mmdet.utils import setup_multi_processes +else: + from mmdet3d.utils import setup_multi_processes + +try: + # If mmdet version > 2.23.0, compat_cfg would be imported and + # used from mmdet instead of mmdet3d. + from mmdet.utils import compat_cfg +except ImportError: + from mmdet3d.utils import compat_cfg + + +def parse_args(): + parser = argparse.ArgumentParser( + description='MMDet test (and eval) a model') + parser.add_argument('config', help='test config file path') + parser.add_argument('checkpoint', help='checkpoint file') + parser.add_argument('--out', help='output result file in pickle format') + parser.add_argument( + '--fuse-conv-bn', + action='store_true', + help='Whether to fuse conv and bn, this will slightly increase' + 'the inference speed') + parser.add_argument( + '--gpu-ids', + type=int, + nargs='+', + help='(Deprecated, please use --gpu-id) ids of gpus to use ' + '(only applicable to non-distributed training)') + parser.add_argument( + '--gpu-id', + type=int, + default=0, + help='id of gpu to use ' + '(only applicable to non-distributed testing)') + parser.add_argument( + '--format-only', + action='store_true', + help='Format the output results without perform evaluation. It is' + 'useful when you want to format the result to a specific format and ' + 'submit it to the test server') + parser.add_argument( + '--eval', + type=str, + nargs='+', + help='evaluation metrics, which depends on the dataset, e.g., "bbox",' + ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') + parser.add_argument('--show', action='store_true', help='show results') + parser.add_argument( + '--show-dir', help='directory where results will be saved') + parser.add_argument( + '--gpu-collect', + action='store_true', + help='whether to use gpu to collect results.') + parser.add_argument( + '--tmpdir', + help='tmp directory used for collecting results from multiple ' + 'workers, available when gpu-collect is not specified') + parser.add_argument('--seed', type=int, default=0, help='random seed') + parser.add_argument( + '--deterministic', + action='store_true', + help='whether to set deterministic options for CUDNN backend.') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. If the value to ' + 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' + 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' + 'Note that the quotation marks are necessary and that no white space ' + 'is allowed.') + parser.add_argument( + '--options', + nargs='+', + action=DictAction, + help='custom options for evaluation, the key-value pair in xxx=yyy ' + 'format will be kwargs for dataset.evaluate() function (deprecate), ' + 'change to --eval-options instead.') + parser.add_argument( + '--eval-options', + nargs='+', + action=DictAction, + help='custom options for evaluation, the key-value pair in xxx=yyy ' + 'format will be kwargs for dataset.evaluate() function') + parser.add_argument( + '--launcher', + choices=['none', 'pytorch', 'slurm', 'mpi'], + default='none', + help='job launcher') + parser.add_argument('--local_rank', type=int, default=0) + args = parser.parse_args() + if 'LOCAL_RANK' not in os.environ: + os.environ['LOCAL_RANK'] = str(args.local_rank) + + if args.options and args.eval_options: + raise ValueError( + '--options and --eval-options cannot be both specified, ' + '--options is deprecated in favor of --eval-options') + if args.options: + warnings.warn('--options is deprecated in favor of --eval-options') + args.eval_options = args.options + return args + + +def main(): + args = parse_args() + + assert args.out or args.eval or args.format_only or args.show \ + or args.show_dir, \ + ('Please specify at least one operation (save/eval/format/show the ' + 'results / save the results) with the argument "--out", "--eval"' + ', "--format-only", "--show" or "--show-dir"') + + if args.eval and args.format_only: + raise ValueError('--eval and --format_only cannot be both specified') + + if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): + raise ValueError('The output file must be a pkl file.') + + cfg = Config.fromfile(args.config) + if args.cfg_options is not None: + cfg.merge_from_dict(args.cfg_options) + + cfg = compat_cfg(cfg) + + # set multi-process settings + setup_multi_processes(cfg) + + # set cudnn_benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + + cfg.model.pretrained = None + + if args.gpu_ids is not None: + cfg.gpu_ids = args.gpu_ids[0:1] + warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' + 'Because we only support single GPU mode in ' + 'non-distributed testing. Use the first GPU ' + 'in `gpu_ids` now.') + else: + cfg.gpu_ids = [args.gpu_id] + + # init distributed env first, since logger depends on the dist info. + if args.launcher == 'none': + distributed = False + else: + distributed = True + init_dist(args.launcher, **cfg.dist_params) + + test_dataloader_default_args = dict( + samples_per_gpu=1, workers_per_gpu=2, dist=distributed, shuffle=False) + + # in case the test dataset is concatenated + if isinstance(cfg.data.test, dict): + cfg.data.test.test_mode = True + if cfg.data.test_dataloader.get('samples_per_gpu', 1) > 1: + # Replace 'ImageToTensor' to 'DefaultFormatBundle' + cfg.data.test.pipeline = replace_ImageToTensor( + cfg.data.test.pipeline) + elif isinstance(cfg.data.test, list): + for ds_cfg in cfg.data.test: + ds_cfg.test_mode = True + if cfg.data.test_dataloader.get('samples_per_gpu', 1) > 1: + for ds_cfg in cfg.data.test: + ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) + + test_loader_cfg = { + **test_dataloader_default_args, + **cfg.data.get('test_dataloader', {}) + } + + # set random seeds + if args.seed is not None: + set_random_seed(args.seed, deterministic=args.deterministic) + + # build the dataloader + dataset = build_dataset(cfg.data.test) + data_loader = build_dataloader(dataset, **test_loader_cfg) + + # build the model and load checkpoint + cfg.model.train_cfg = None + model = build_model(cfg.model, test_cfg=cfg.get('test_cfg')) + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + wrap_fp16_model(model) + checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') + if args.fuse_conv_bn: + model = fuse_conv_bn(model) + # old versions did not save class info in checkpoints, this walkaround is + # for backward compatibility + if 'CLASSES' in checkpoint.get('meta', {}): + model.CLASSES = checkpoint['meta']['CLASSES'] + else: + model.CLASSES = dataset.CLASSES + # palette for visualization in segmentation tasks + if 'PALETTE' in checkpoint.get('meta', {}): + model.PALETTE = checkpoint['meta']['PALETTE'] + elif hasattr(dataset, 'PALETTE'): + # segmentation dataset has `PALETTE` attribute + model.PALETTE = dataset.PALETTE + + if not distributed: + model = MMDataParallel(model, device_ids=cfg.gpu_ids) + outputs = single_gpu_test(model, data_loader, args.show, args.show_dir) + else: + model = MMDistributedDataParallel( + model.cuda(), + device_ids=[torch.cuda.current_device()], + broadcast_buffers=False) + outputs = multi_gpu_test(model, data_loader, args.tmpdir, + args.gpu_collect) + + rank, _ = get_dist_info() + if rank == 0: + if args.out: + print(f'\nwriting results to {args.out}') + mmcv.dump(outputs, args.out) + kwargs = {} if args.eval_options is None else args.eval_options + if args.format_only: + dataset.format_results(outputs, **kwargs) + if args.eval: + eval_kwargs = cfg.get('evaluation', {}).copy() + # hard-code way to remove EvalHook args + for key in [ + 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', + 'rule' + ]: + eval_kwargs.pop(key, None) + eval_kwargs.update(dict(metric=args.eval, **kwargs)) + print(dataset.evaluate(outputs, **eval_kwargs)) + + +if __name__ == '__main__': + main() diff --git a/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.py b/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.py new file mode 100644 index 000000000..94728bcc6 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.py @@ -0,0 +1,168 @@ +import argparse +import time +from os import path as osp + +import mmcv +import numpy as np + +from mmdet3d.core.bbox import limit_period + + +def update_sunrgbd_infos(root_dir, out_dir, pkl_files): + print(f'{pkl_files} will be modified because ' + f'of the refactor of the Depth coordinate system.') + if root_dir == out_dir: + print(f'Warning, you are overwriting ' + f'the original data under {root_dir}.') + time.sleep(3) + for pkl_file in pkl_files: + in_path = osp.join(root_dir, pkl_file) + print(f'Reading from input file: {in_path}.') + a = mmcv.load(in_path) + print('Start updating:') + for item in mmcv.track_iter_progress(a): + if 'rotation_y' in item['annos']: + item['annos']['rotation_y'] = -item['annos']['rotation_y'] + item['annos']['gt_boxes_upright_depth'][:, -1:] = \ + -item['annos']['gt_boxes_upright_depth'][:, -1:] + + out_path = osp.join(out_dir, pkl_file) + print(f'Writing to output file: {out_path}.') + mmcv.dump(a, out_path, 'pkl') + + +def update_outdoor_dbinfos(root_dir, out_dir, pkl_files): + print(f'{pkl_files} will be modified because ' + f'of the refactor of the LIDAR coordinate system.') + if root_dir == out_dir: + print(f'Warning, you are overwriting ' + f'the original data under {root_dir}.') + time.sleep(3) + for pkl_file in pkl_files: + in_path = osp.join(root_dir, pkl_file) + print(f'Reading from input file: {in_path}.') + a = mmcv.load(in_path) + print('Start updating:') + for k in a.keys(): + print(f'Updating samples of class {k}:') + for item in mmcv.track_iter_progress(a[k]): + boxes = item['box3d_lidar'].copy() + # swap l, w (or dx, dy) + item['box3d_lidar'][3] = boxes[4] + item['box3d_lidar'][4] = boxes[3] + # change yaw + item['box3d_lidar'][6] = -boxes[6] - np.pi / 2 + item['box3d_lidar'][6] = limit_period( + item['box3d_lidar'][6], period=np.pi * 2) + + out_path = osp.join(out_dir, pkl_file) + print(f'Writing to output file: {out_path}.') + mmcv.dump(a, out_path, 'pkl') + + +def update_nuscenes_or_lyft_infos(root_dir, out_dir, pkl_files): + + print(f'{pkl_files} will be modified because ' + f'of the refactor of the LIDAR coordinate system.') + if root_dir == out_dir: + print(f'Warning, you are overwriting ' + f'the original data under {root_dir}.') + time.sleep(3) + for pkl_file in pkl_files: + in_path = osp.join(root_dir, pkl_file) + print(f'Reading from input file: {in_path}.') + a = mmcv.load(in_path) + print('Start updating:') + for item in mmcv.track_iter_progress(a['infos']): + boxes = item['gt_boxes'].copy() + # swap l, w (or dx, dy) + item['gt_boxes'][:, 3] = boxes[:, 4] + item['gt_boxes'][:, 4] = boxes[:, 3] + # change yaw + item['gt_boxes'][:, 6] = -boxes[:, 6] - np.pi / 2 + item['gt_boxes'][:, 6] = limit_period( + item['gt_boxes'][:, 6], period=np.pi * 2) + + out_path = osp.join(out_dir, pkl_file) + print(f'Writing to output file: {out_path}.') + mmcv.dump(a, out_path, 'pkl') + + +parser = argparse.ArgumentParser(description='Arg parser for data coords ' + 'update due to coords sys refactor.') +parser.add_argument('dataset', metavar='kitti', help='name of the dataset') +parser.add_argument( + '--root-dir', + type=str, + default='./data/kitti', + help='specify the root dir of dataset') +parser.add_argument( + '--version', + type=str, + default='v1.0', + required=False, + help='specify the dataset version, no need for kitti') +parser.add_argument( + '--out-dir', + type=str, + default=None, + required=False, + help='name of info pkl') +args = parser.parse_args() + +if __name__ == '__main__': + if args.out_dir is None: + args.out_dir = args.root_dir + if args.dataset == 'kitti': + # KITTI infos is in CAM coord sys (unchanged) + # KITTI dbinfos is in LIDAR coord sys (changed) + # so we only update dbinfos + pkl_files = ['kitti_dbinfos_train.pkl'] + update_outdoor_dbinfos( + root_dir=args.root_dir, out_dir=args.out_dir, pkl_files=pkl_files) + elif args.dataset == 'nuscenes': + # nuScenes infos is in LIDAR coord sys (changed) + # nuScenes dbinfos is in LIDAR coord sys (changed) + # so we update both infos and dbinfos + pkl_files = ['nuscenes_infos_val.pkl'] + if args.version != 'v1.0-mini': + pkl_files.append('nuscenes_infos_train.pkl') + else: + pkl_files.append('nuscenes_infos_train_tiny.pkl') + update_nuscenes_or_lyft_infos( + root_dir=args.root_dir, out_dir=args.out_dir, pkl_files=pkl_files) + if args.version != 'v1.0-mini': + pkl_files = ['nuscenes_dbinfos_train.pkl'] + update_outdoor_dbinfos( + root_dir=args.root_dir, + out_dir=args.out_dir, + pkl_files=pkl_files) + elif args.dataset == 'lyft': + # Lyft infos is in LIDAR coord sys (changed) + # Lyft has no dbinfos + # so we update infos + pkl_files = ['lyft_infos_train.pkl', 'lyft_infos_val.pkl'] + update_nuscenes_or_lyft_infos( + root_dir=args.root_dir, out_dir=args.out_dir, pkl_files=pkl_files) + elif args.dataset == 'waymo': + # Waymo infos is in CAM coord sys (unchanged) + # Waymo dbinfos is in LIDAR coord sys (changed) + # so we only update dbinfos + pkl_files = ['waymo_dbinfos_train.pkl'] + update_outdoor_dbinfos( + root_dir=args.root_dir, out_dir=args.out_dir, pkl_files=pkl_files) + elif args.dataset == 'scannet': + # ScanNet infos is in DEPTH coord sys (changed) + # but bbox is without yaw + # so ScanNet is unaffected + pass + elif args.dataset == 's3dis': + # Segmentation datasets are not affected + pass + elif args.dataset == 'sunrgbd': + # SUNRGBD infos is in DEPTH coord sys (changed) + # and bbox is with yaw + # so we update infos + pkl_files = ['sunrgbd_infos_train.pkl', 'sunrgbd_infos_val.pkl'] + update_sunrgbd_infos( + root_dir=args.root_dir, out_dir=args.out_dir, pkl_files=pkl_files) diff --git a/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.sh b/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.sh new file mode 100644 index 000000000..bd8db6283 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/tools/update_data_coords.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +set -x +export PYTHONPATH=`pwd`:$PYTHONPATH + +PARTITION=$1 +DATASET=$2 +GPUS=${GPUS:-1} +GPUS_PER_NODE=${GPUS_PER_NODE:-1} +SRUN_ARGS=${SRUN_ARGS:-""} +JOB_NAME=update_data_coords + +srun -p ${PARTITION} \ + --job-name=${JOB_NAME} \ + --gres=gpu:${GPUS_PER_NODE} \ + --ntasks=${GPUS} \ + --ntasks-per-node=${GPUS_PER_NODE} \ + --kill-on-bad-exit=1 \ + ${SRUN_ARGS} \ + python -u tools/update_data_coords.py ${DATASET} \ + --root-dir ./data/${DATASET} \ + --out-dir ./data/${DATASET} diff --git a/cv/3d_detection/PAConv/pytorch/train.py b/cv/3d_detection/PAConv/pytorch/train.py new file mode 100644 index 000000000..ed9c2a6b4 --- /dev/null +++ b/cv/3d_detection/PAConv/pytorch/train.py @@ -0,0 +1,263 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from __future__ import division +import argparse +import copy +import os +import time +import warnings +from os import path as osp + +import mmcv +import torch +import torch.distributed as dist +from mmcv import Config, DictAction +from mmcv.runner import get_dist_info, init_dist + +from mmdet import __version__ as mmdet_version +from mmdet3d import __version__ as mmdet3d_version +from mmdet3d.apis import init_random_seed, train_model +from mmdet3d.datasets import build_dataset +from mmdet3d.models import build_model +from mmdet3d.utils import collect_env, get_root_logger +from mmdet.apis import set_random_seed +from mmseg import __version__ as mmseg_version + +try: + # If mmdet version > 2.20.0, setup_multi_processes would be imported and + # used from mmdet instead of mmdet3d. + from mmdet.utils import setup_multi_processes +except ImportError: + from mmdet3d.utils import setup_multi_processes + + +def parse_args(): + parser = argparse.ArgumentParser(description='Train a detector') + parser.add_argument('config', help='train config file path') + parser.add_argument('--work-dir', help='the dir to save logs and models') + parser.add_argument( + '--resume-from', help='the checkpoint file to resume from') + parser.add_argument( + '--auto-resume', + action='store_true', + help='resume from the latest checkpoint automatically') + parser.add_argument( + '--no-validate', + action='store_true', + help='whether not to evaluate the checkpoint during training') + group_gpus = parser.add_mutually_exclusive_group() + group_gpus.add_argument( + '--gpus', + type=int, + help='(Deprecated, please use --gpu-id) number of gpus to use ' + '(only applicable to non-distributed training)') + group_gpus.add_argument( + '--gpu-ids', + type=int, + nargs='+', + help='(Deprecated, please use --gpu-id) ids of gpus to use ' + '(only applicable to non-distributed training)') + group_gpus.add_argument( + '--gpu-id', + type=int, + default=0, + help='number of gpus to use ' + '(only applicable to non-distributed training)') + parser.add_argument('--seed', type=int, default=0, help='random seed') + parser.add_argument( + '--diff-seed', + action='store_true', + help='Whether or not set different seeds for different ranks') + parser.add_argument( + '--deterministic', + action='store_true', + help='whether to set deterministic options for CUDNN backend.') + parser.add_argument( + '--options', + nargs='+', + action=DictAction, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file (deprecate), ' + 'change to --cfg-options instead.') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. If the value to ' + 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' + 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' + 'Note that the quotation marks are necessary and that no white space ' + 'is allowed.') + parser.add_argument( + '--launcher', + choices=['none', 'pytorch', 'slurm', 'mpi'], + default='none', + help='job launcher') + parser.add_argument('--local_rank', type=int, default=0) + parser.add_argument( + '--autoscale-lr', + action='store_true', + help='automatically scale lr with the number of gpus') + args = parser.parse_args() + if 'LOCAL_RANK' not in os.environ: + os.environ['LOCAL_RANK'] = str(args.local_rank) + + if args.options and args.cfg_options: + raise ValueError( + '--options and --cfg-options cannot be both specified, ' + '--options is deprecated in favor of --cfg-options') + if args.options: + warnings.warn('--options is deprecated in favor of --cfg-options') + args.cfg_options = args.options + + return args + + +def main(): + args = parse_args() + + cfg = Config.fromfile(args.config) + if args.cfg_options is not None: + cfg.merge_from_dict(args.cfg_options) + + # set multi-process settings + setup_multi_processes(cfg) + + # set cudnn_benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + + # work_dir is determined in this priority: CLI > segment in file > filename + if args.work_dir is not None: + # update configs according to CLI args if args.work_dir is not None + cfg.work_dir = args.work_dir + elif cfg.get('work_dir', None) is None: + # use config filename as default work_dir if cfg.work_dir is None + cfg.work_dir = osp.join('./work_dirs', + osp.splitext(osp.basename(args.config))[0]) + if args.resume_from is not None: + cfg.resume_from = args.resume_from + + if args.auto_resume: + cfg.auto_resume = args.auto_resume + warnings.warn('`--auto-resume` is only supported when mmdet' + 'version >= 2.20.0 for 3D detection model or' + 'mmsegmentation verision >= 0.21.0 for 3D' + 'segmentation model') + + if args.gpus is not None: + cfg.gpu_ids = range(1) + warnings.warn('`--gpus` is deprecated because we only support ' + 'single GPU mode in non-distributed training. ' + 'Use `gpus=1` now.') + if args.gpu_ids is not None: + cfg.gpu_ids = args.gpu_ids[0:1] + warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' + 'Because we only support single GPU mode in ' + 'non-distributed training. Use the first GPU ' + 'in `gpu_ids` now.') + if args.gpus is None and args.gpu_ids is None: + cfg.gpu_ids = [args.gpu_id] + + if args.autoscale_lr: + # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) + cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 + + # init distributed env first, since logger depends on the dist info. + if args.launcher == 'none': + distributed = False + else: + distributed = True + init_dist(args.launcher, **cfg.dist_params) + # re-set gpu_ids with distributed training mode + _, world_size = get_dist_info() + cfg.gpu_ids = range(world_size) + + # create work_dir + mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) + # dump config + cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) + # init the logger before other steps + timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) + log_file = osp.join(cfg.work_dir, f'{timestamp}.log') + # specify logger name, if we still use 'mmdet', the output info will be + # filtered and won't be saved in the log_file + # TODO: ugly workaround to judge whether we are training det or seg model + if cfg.model.type in ['EncoderDecoder3D']: + logger_name = 'mmseg' + else: + logger_name = 'mmdet' + logger = get_root_logger( + log_file=log_file, log_level=cfg.log_level, name=logger_name) + + # init the meta dict to record some important information such as + # environment info and seed, which will be logged + meta = dict() + # log env info + env_info_dict = collect_env() + env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) + dash_line = '-' * 60 + '\n' + logger.info('Environment info:\n' + dash_line + env_info + '\n' + + dash_line) + meta['env_info'] = env_info + meta['config'] = cfg.pretty_text + + # log some basic info + logger.info(f'Distributed training: {distributed}') + logger.info(f'Config:\n{cfg.pretty_text}') + + # set random seeds + seed = init_random_seed(args.seed) + seed = seed + dist.get_rank() if args.diff_seed else seed + logger.info(f'Set random seed to {seed}, ' + f'deterministic: {args.deterministic}') + set_random_seed(seed, deterministic=args.deterministic) + cfg.seed = seed + meta['seed'] = seed + meta['exp_name'] = osp.basename(args.config) + + model = build_model( + cfg.model, + train_cfg=cfg.get('train_cfg'), + test_cfg=cfg.get('test_cfg')) + model.init_weights() + + logger.info(f'Model:\n{model}') + datasets = [build_dataset(cfg.data.train)] + if len(cfg.workflow) == 2: + val_dataset = copy.deepcopy(cfg.data.val) + # in case we use a dataset wrapper + if 'dataset' in cfg.data.train: + val_dataset.pipeline = cfg.data.train.dataset.pipeline + else: + val_dataset.pipeline = cfg.data.train.pipeline + # set test_mode=False here in deep copied config + # which do not affect AP/AR calculation later + # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow # noqa + val_dataset.test_mode = False + datasets.append(build_dataset(val_dataset)) + if cfg.checkpoint_config is not None: + # save mmdet version, config file content and class names in + # checkpoints as meta data + cfg.checkpoint_config.meta = dict( + mmdet_version=mmdet_version, + mmseg_version=mmseg_version, + mmdet3d_version=mmdet3d_version, + config=cfg.pretty_text, + CLASSES=datasets[0].CLASSES, + PALETTE=datasets[0].PALETTE # for segmentors + if hasattr(datasets[0], 'PALETTE') else None) + # add an attribute for visualization convenience + model.CLASSES = datasets[0].CLASSES + train_model( + model, + datasets, + cfg, + distributed=distributed, + validate=(not args.no_validate), + timestamp=timestamp, + meta=meta) + + +if __name__ == '__main__': + main() diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.circleci/config.yml b/toolbox/MMDetection/patch/mmcv/v1.7.1/.circleci/config.yml new file mode 100644 index 000000000..8fbf916c0 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.circleci/config.yml @@ -0,0 +1,173 @@ +version: 2.1 +jobs: + lint: + docker: + - image: cimg/python:3.7.4 + steps: + - checkout + - run: + name: Install pre-commit hook + command: | + pip install pre-commit + pre-commit install + - run: + name: Linting + command: pre-commit run --all-files + + build_cpu: + parameters: + # The python version must match available image tags in + # https://circleci.com/developer/images/image/cimg/python + python: + type: string + default: "3.7.0" + torch: + type: string + torchvision: + type: string + machine: + image: ubuntu-2004:202010-01 + resource_class: large + steps: + - checkout + - run: + name: Install system dependencies + command: | + sudo apt-get update + sudo apt-get install -y ffmpeg libturbojpeg ninja-build + ffmpeg -version + - run: + # https://github.com/pytorch/vision/issues/2921 + name: Install dependency of torchvision when using pyenv + command: sudo apt-get install -y liblzma-dev + - run: + # python3.7 should be re-installed due to the issue https://github.com/pytorch/vision/issues/2921 + name: Select Python + command: | + pyenv uninstall -f << parameters.python >> + pyenv install << parameters.python >> + pyenv global << parameters.python >> + - run: + name: Upgrade pip + command: | + python -m pip install pip --upgrade + - run: + name: Install PyTorch + command: python -m pip install torch==<< parameters.torch >>+cpu torchvision==<< parameters.torchvision >>+cpu -f https://download.pytorch.org/whl/torch_stable.html + - run: + name: Install psutil + command: python -m pip install psutil + - run: + name: Build and install + command: | + rm -rf .eggs + python setup.py check -m -s + python -m pip install -e . + no_output_timeout: 20m + environment: + MMCV_WITH_OPS: 1 + - run: + name: Install dependencies of unit test + command: | + python -m pip install -r requirements/test.txt + - run: + name: Run unittests and generate coverage report + command: | + python -m coverage run --branch --source mmcv -m pytest tests/ + python -m coverage xml + python -m coverage report -m + + build_cu102: + machine: + image: ubuntu-1604-cuda-10.1:201909-23 # the actual version of cuda is 10.2 + resource_class: gpu.nvidia.small + steps: + - checkout + - run: + name: Set CUDA environment + command: | + echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> $BASH_ENV + echo 'export PATH=/usr/local/cuda/bin:$PATH' >> $BASH_ENV + echo 'export CUDA_HOME=/usr/local/cuda' >> $BASH_ENV + source $BASH_ENV + nvidia-smi + nvcc --version + gcc --version + - run: + name: Install system dependencies + command: | + sudo apt-get update + sudo apt-get install -y libturbojpeg ninja-build + # the default version of ffmpeg is 2.8.7, which should be upgraded to 4+ + sudo add-apt-repository -y ppa:jonathonf/ffmpeg-4 + sudo apt-get update + sudo apt-get install -y ffmpeg + ffmpeg -version + sudo add-apt-repository --remove ppa:jonathonf/ffmpeg-4 -y + - run: + # https://github.com/pytorch/vision/issues/2921 + name: Install dependency of torchvision when using pyenv + command: sudo apt-get install -y liblzma-dev + - run: + # python3.7 should be re-installed due to the issue https://github.com/pytorch/vision/issues/2921 + name: Select python3.7 + command: | + pyenv uninstall -f 3.7.0 + pyenv install 3.7.0 + pyenv global 3.7.0 + - run: + name: Upgrade pip + command: | + python -m pip install pip --upgrade + - run: + name: Install PyTorch + command: python -m pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html + - run: + name: Install psutil + command: python -m pip install psutil + - run: + name: Download onnxruntime library and install onnxruntime + command: | + wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz + tar -zxvf onnxruntime-linux-x64-1.8.1.tgz + echo 'export ONNXRUNTIME_DIR=$(pwd)/onnxruntime-linux-x64-1.8.1' >> $BASH_ENV + echo 'export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH' >> $BASH_ENV + source $BASH_ENV + python -m pip install onnxruntime==1.8.1 + - run: + name: Build and install + command: | + rm -rf .eggs + python setup.py check -m -s + python -m pip install -e . + environment: + MMCV_WITH_OPS: 1 + MMCV_WITH_ORT: 1 + - run: + name: Install dependencies for unit test + command: | + python -m pip install -r requirements/test.txt + - run: + name: Run unittests and generate coverage report + command: | + python -m coverage run --branch --source mmcv -m pytest tests/ + python -m coverage xml + python -m coverage report -m +workflows: + unit_tests: + jobs: + - lint + - build_cpu: + name: build_py3.8_pt1.9_cpu + torch: 1.9.0 + torchvision: 0.10.0 + python: "3.8.0" + requires: + - lint + - hold: + type: approval # <<< This key-value pair will set your workflow to a status of "On Hold" + requires: + - build_py3.8_pt1.9_cpu + - build_cu102: + requires: + - hold diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/check_installation.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/check_installation.py new file mode 100644 index 000000000..4b771acc5 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/check_installation.py @@ -0,0 +1,44 @@ +import numpy as np +import torch + +from mmcv.ops import box_iou_rotated +from mmcv.utils import collect_env + + +def check_installation(): + """Check whether mmcv-full has been installed successfully.""" + np_boxes1 = np.asarray( + [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6], + [7.0, 7.0, 8.0, 8.0, 0.4]], + dtype=np.float32) + np_boxes2 = np.asarray( + [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5], + [5.0, 5.0, 6.0, 7.0, 0.4]], + dtype=np.float32) + boxes1 = torch.from_numpy(np_boxes1) + boxes2 = torch.from_numpy(np_boxes2) + + # test mmcv-full with CPU ops + box_iou_rotated(boxes1, boxes2) + print('CPU ops were compiled successfully.') + + # test mmcv-full with both CPU and CUDA ops + if torch.cuda.is_available(): + boxes1 = boxes1.cuda() + boxes2 = boxes2.cuda() + box_iou_rotated(boxes1, boxes2) + print('CUDA ops were compiled successfully.') + else: + print('No CUDA runtime is found, skipping the checking of CUDA ops.') + + +if __name__ == '__main__': + print('Start checking the installation of mmcv-full ...') + check_installation() + print('mmcv-full has been installed successfully.\n') + + env_info_dict = collect_env() + env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) + dash_line = '-' * 60 + '\n' + print('Environment information:') + print(dash_line + env_info + '\n' + dash_line) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/visualize_lr.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/visualize_lr.py new file mode 100644 index 000000000..5ca9aaa11 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dev_scripts/visualize_lr.py @@ -0,0 +1,230 @@ +import argparse +import json +import os +import os.path as osp +import time +import warnings +from collections import OrderedDict +from unittest.mock import patch + +import matplotlib.pyplot as plt +import numpy as np +import torch.nn as nn +from torch.optim import SGD +from torch.utils.data import DataLoader + +import mmcv +from mmcv.runner import build_runner +from mmcv.utils import get_logger + + +def parse_args(): + parser = argparse.ArgumentParser(description='Visualize the given config' + 'of learning rate and momentum, and this' + 'script will overwrite the log_config') + parser.add_argument('config', help='train config file path') + parser.add_argument( + '--work-dir', default='./', help='the dir to save logs and models') + parser.add_argument( + '--num-iters', default=300, help='The number of iters per epoch') + parser.add_argument( + '--num-epochs', default=300, help='Only used in EpochBasedRunner') + parser.add_argument( + '--window-size', + default='12*14', + help='Size of the window to display images, in format of "$W*$H".') + parser.add_argument( + '--log-interval', default=10, help='The interval of TextLoggerHook') + args = parser.parse_args() + return args + + +class SimpleModel(nn.Module): + + def __init__(self): + super().__init__() + self.conv = nn.Conv2d(1, 1, 1) + + def train_step(self, *args, **kwargs): + return dict() + + def val_step(self, *args, **kwargs): + return dict() + + +def iter_train(self, data_loader, **kwargs): + self.mode = 'train' + self.data_loader = data_loader + self.call_hook('before_train_iter') + self.call_hook('after_train_iter') + self._inner_iter += 1 + self._iter += 1 + + +def epoch_train(self, data_loader, **kwargs): + self.model.train() + self.mode = 'train' + self.data_loader = data_loader + self._max_iters = self._max_epochs * len(self.data_loader) + self.call_hook('before_train_epoch') + for i, data_batch in enumerate(self.data_loader): + self._inner_iter = i + self.call_hook('before_train_iter') + self.call_hook('after_train_iter') + self._iter += 1 + self.call_hook('after_train_epoch') + self._epoch += 1 + + +def log(self, runner): + cur_iter = self.get_iter(runner, inner_iter=True) + + log_dict = OrderedDict( + mode=self.get_mode(runner), + epoch=self.get_epoch(runner), + iter=cur_iter) + + # only record lr of the first param group + cur_lr = runner.current_lr() + if isinstance(cur_lr, list): + log_dict['lr'] = cur_lr[0] + else: + assert isinstance(cur_lr, dict) + log_dict['lr'] = {} + for k, lr_ in cur_lr.items(): + assert isinstance(lr_, list) + log_dict['lr'].update({k: lr_[0]}) + + cur_momentum = runner.current_momentum() + if isinstance(cur_momentum, list): + log_dict['momentum'] = cur_momentum[0] + else: + assert isinstance(cur_momentum, dict) + log_dict['momentum'] = {} + for k, lr_ in cur_momentum.items(): + assert isinstance(lr_, list) + log_dict['momentum'].update({k: lr_[0]}) + log_dict = dict(log_dict, **runner.log_buffer.output) + self._log_info(log_dict, runner) + self._dump_log(log_dict, runner) + return log_dict + + +@patch('torch.cuda.is_available', lambda: False) +@patch('mmcv.runner.EpochBasedRunner.train', epoch_train) +@patch('mmcv.runner.IterBasedRunner.train', iter_train) +@patch('mmcv.runner.hooks.TextLoggerHook.log', log) +def run(cfg, logger): + momentum_config = cfg.get('momentum_config') + lr_config = cfg.get('lr_config') + + model = SimpleModel() + optimizer = SGD(model.parameters(), 0.1, momentum=0.8) + cfg.work_dir = cfg.get('work_dir', './') + workflow = [('train', 1)] + + if cfg.get('runner') is None: + cfg.runner = { + 'type': 'EpochBasedRunner', + 'max_epochs': cfg.get('total_epochs', cfg.num_epochs) + } + warnings.warn( + 'config is now expected to have a `runner` section, ' + 'please set `runner` in your config.', UserWarning) + batch_size = 1 + data = cfg.get('data') + if data: + batch_size = data.get('samples_per_gpu') + fake_dataloader = DataLoader( + list(range(cfg.num_iters)), batch_size=batch_size) + runner = build_runner( + cfg.runner, + default_args=dict( + model=model, + batch_processor=None, + optimizer=optimizer, + work_dir=cfg.work_dir, + logger=logger, + meta=None)) + log_config = dict( + interval=cfg.log_interval, hooks=[ + dict(type='TextLoggerHook'), + ]) + + runner.register_training_hooks(lr_config, log_config=log_config) + runner.register_momentum_hook(momentum_config) + runner.run([fake_dataloader], workflow) + + +def plot_lr_curve(json_file, cfg): + data_dict = dict(LearningRate=[], Momentum=[]) + assert os.path.isfile(json_file) + with open(json_file) as f: + for line in f: + log = json.loads(line.strip()) + data_dict['LearningRate'].append(log['lr']) + data_dict['Momentum'].append(log['momentum']) + + wind_w, wind_h = (int(size) for size in cfg.window_size.split('*')) + # if legend is None, use {filename}_{key} as legend + fig, axes = plt.subplots(2, 1, figsize=(wind_w, wind_h)) + plt.subplots_adjust(hspace=0.5) + font_size = 20 + for index, (updater_type, data_list) in enumerate(data_dict.items()): + ax = axes[index] + if cfg.runner.type == 'EpochBasedRunner': + ax.plot(data_list, linewidth=1) + ax.xaxis.tick_top() + ax.set_xlabel('Iters', fontsize=font_size) + ax.xaxis.set_label_position('top') + sec_ax = ax.secondary_xaxis( + 'bottom', + functions=(lambda x: x / cfg.num_iters * cfg.log_interval, + lambda y: y * cfg.num_iters / cfg.log_interval)) + sec_ax.tick_params(labelsize=font_size) + sec_ax.set_xlabel('Epochs', fontsize=font_size) + else: + # plt.subplot(2, 1, index + 1) + x_list = np.arange(len(data_list)) * cfg.log_interval + ax.plot(x_list, data_list) + ax.set_xlabel('Iters', fontsize=font_size) + ax.set_ylabel(updater_type, fontsize=font_size) + if updater_type == 'LearningRate': + if cfg.get('lr_config'): + title = cfg.lr_config.type + else: + title = 'No learning rate scheduler' + else: + if cfg.get('momentum_config'): + title = cfg.momentum_config.type + else: + title = 'No momentum scheduler' + ax.set_title(title, fontsize=font_size) + ax.grid() + # set tick font size + ax.tick_params(labelsize=font_size) + save_path = osp.join(cfg.work_dir, 'visualization-result') + plt.savefig(save_path) + print(f'The learning rate graph is saved at {save_path}.png') + plt.show() + + +def main(): + args = parse_args() + timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) + cfg = mmcv.Config.fromfile(args.config) + cfg['num_iters'] = args.num_iters + cfg['num_epochs'] = args.num_epochs + cfg['log_interval'] = args.log_interval + cfg['window_size'] = args.window_size + + log_path = osp.join(cfg.get('work_dir', './'), f'{timestamp}.log') + json_path = log_path + '.json' + logger = get_logger('mmcv', log_path) + + run(cfg, logger) + plot_lr_curve(json_path, cfg) + + +if __name__ == '__main__': + main() diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.dockerignore b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dockerignore new file mode 100644 index 000000000..8c22f226d --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.dockerignore @@ -0,0 +1,6 @@ +.git +.gitignore +*.egg-info +.eggs/ +.mypy-cache +pip-wheel-metadata diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.gitignore b/toolbox/MMDetection/patch/mmcv/v1.7.1/.gitignore new file mode 100644 index 000000000..6a22c8fca --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.gitignore @@ -0,0 +1,122 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# PyTorch checkpoint +*.pth + +# Distribution / packaging +.Python +build/ +build_pip/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/en/_build/ +docs/zh_cn/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + +# editors and IDEs +.idea/ +.vscode/ + +# custom +.DS_Store + +# datasets and logs and checkpoints +data/ +work_dir/ + +src/ diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.owners.yml b/toolbox/MMDetection/patch/mmcv/v1.7.1/.owners.yml new file mode 100644 index 000000000..8f7057cb3 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.owners.yml @@ -0,0 +1,14 @@ +assign: + strategy: + # random + daily-shift-based + scedule: + '*/1 * * * *' + assignees: + - zhouzaida + - ice-tong + - HAOCHENYE + - zhouzaida + - ice-tong + - HAOCHENYE + - zhouzaida diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config-zh-cn.yaml b/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config-zh-cn.yaml new file mode 100644 index 000000000..0efb30ef7 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config-zh-cn.yaml @@ -0,0 +1,72 @@ +exclude: ^tests/data/ +repos: + - repo: https://gitee.com/openmmlab/mirrors-flake8 + rev: 5.0.4 + hooks: + - id: flake8 + - repo: https://gitee.com/openmmlab/mirrors-isort + rev: 5.10.1 + hooks: + - id: isort + - repo: https://gitee.com/openmmlab/mirrors-yapf + rev: v0.32.0 + hooks: + - id: yapf + - repo: https://gitee.com/openmmlab/mirrors-pre-commit-hooks + rev: v4.3.0 + hooks: + - id: trailing-whitespace + - id: check-yaml + - id: end-of-file-fixer + - id: requirements-txt-fixer + - id: double-quote-string-fixer + - id: check-merge-conflict + - id: fix-encoding-pragma + args: ["--remove"] + - id: mixed-line-ending + args: ["--fix=lf"] + - repo: https://gitee.com/openmmlab/mirrors-codespell + rev: v2.2.1 + hooks: + - id: codespell + - repo: https://gitee.com/openmmlab/mirrors-mdformat + rev: 0.7.9 + hooks: + - id: mdformat + args: ["--number"] + additional_dependencies: + - mdformat-openmmlab + - mdformat_frontmatter + - linkify-it-py + - repo: https://gitee.com/openmmlab/mirrors-docformatter + rev: v1.3.1 + hooks: + - id: docformatter + args: ["--in-place", "--wrap-descriptions", "79"] + - repo: https://gitee.com/openmmlab/mirrors-pyupgrade + rev: v3.0.0 + hooks: + - id: pyupgrade + args: ["--py36-plus"] + - repo: https://gitee.com/openmmlab/pre-commit-hooks + rev: v0.2.0 # Use the ref you want to point at + hooks: + - id: check-copyright + args: ["mmcv", "tests", "--excludes", "mmcv/ops"] + - repo: https://gitee.com/openmmlab/mirrors-mypy + rev: v0.812 + hooks: + - id: mypy + exclude: |- + (?x)( + ^test + | ^docs + ) + # - repo: local + # hooks: + # - id: clang-format + # name: clang-format + # description: Format files with ClangFormat + # entry: clang-format -style=google -i + # language: system + # files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$ diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config.yaml b/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config.yaml new file mode 100644 index 000000000..2f7fdf013 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.pre-commit-config.yaml @@ -0,0 +1,72 @@ +exclude: ^tests/data/ +repos: + - repo: https://github.com/PyCQA/flake8 + rev: 5.0.4 + hooks: + - id: flake8 + - repo: https://github.com/PyCQA/isort + rev: 5.10.1 + hooks: + - id: isort + - repo: https://github.com/pre-commit/mirrors-yapf + rev: v0.32.0 + hooks: + - id: yapf + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.3.0 + hooks: + - id: trailing-whitespace + - id: check-yaml + - id: end-of-file-fixer + - id: requirements-txt-fixer + - id: double-quote-string-fixer + - id: check-merge-conflict + - id: fix-encoding-pragma + args: ["--remove"] + - id: mixed-line-ending + args: ["--fix=lf"] + - repo: https://github.com/codespell-project/codespell + rev: v2.2.1 + hooks: + - id: codespell + - repo: https://github.com/executablebooks/mdformat + rev: 0.7.9 + hooks: + - id: mdformat + args: ["--number"] + additional_dependencies: + - mdformat-openmmlab + - mdformat_frontmatter + - linkify-it-py + - repo: https://github.com/myint/docformatter + rev: v1.3.1 + hooks: + - id: docformatter + args: ["--in-place", "--wrap-descriptions", "79"] + - repo: https://github.com/asottile/pyupgrade + rev: v3.0.0 + hooks: + - id: pyupgrade + args: ["--py36-plus"] + - repo: https://github.com/open-mmlab/pre-commit-hooks + rev: v0.2.0 # Use the ref you want to point at + hooks: + - id: check-copyright + args: ["mmcv", "tests", "--excludes", "mmcv/ops"] + - repo: https://github.com/pre-commit/mirrors-mypy + rev: v0.812 + hooks: + - id: mypy + exclude: |- + (?x)( + ^test + | ^docs + ) + # - repo: local + # hooks: + # - id: clang-format + # name: clang-format + # description: Format files with ClangFormat + # entry: clang-format -style=google -i + # language: system + # files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$ diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/.readthedocs.yml b/toolbox/MMDetection/patch/mmcv/v1.7.1/.readthedocs.yml new file mode 100644 index 000000000..7d5f1c206 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/.readthedocs.yml @@ -0,0 +1,9 @@ +version: 2 + +formats: all + +python: + version: 3.7 + install: + - requirements: requirements/runtime.txt + - requirements: requirements/docs.txt diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/CITATION.cff b/toolbox/MMDetection/patch/mmcv/v1.7.1/CITATION.cff new file mode 100644 index 000000000..786117aac --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/CITATION.cff @@ -0,0 +1,8 @@ +cff-version: 1.2.0 +message: "If you use this software, please cite it as below." +authors: + - name: "MMCV Contributors" +title: "OpenMMLab Computer Vision Foundation" +date-released: 2018-08-22 +url: "https://github.com/open-mmlab/mmcv" +license: Apache-2.0 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING.md new file mode 100644 index 000000000..f9b4430e9 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING.md @@ -0,0 +1,258 @@ +## Contributing to OpenMMLab + +Welcome to the MMCV community, we are committed to building a cutting-edge computer vision foundational library and all kinds of contributions are welcomed, including but not limited to + +**Fix bug** + +You can directly post a Pull Request to fix typo in code or documents + +The steps to fix the bug of code implementation are as follows. + +1. If the modification involve significant changes, you should create an issue first and describe the error information and how to trigger the bug. Other developers will discuss with you and propose an proper solution. + +2. Posting a pull request after fixing the bug and adding corresponding unit test. + +**New Feature or Enhancement** + +1. If the modification involve significant changes, you should create an issue to discuss with our developers to propose an proper design. +2. Post a Pull Request after implementing the new feature or enhancement and add corresponding unit test. + +**Document** + +You can directly post a pull request to fix documents. If you want to add a document, you should first create an issue to check if it is reasonable. + +### Pull Request Workflow + +If you're not familiar with Pull Request, don't worry! The following guidance will tell you how to create a Pull Request step by step. If you want to dive into the develop mode of Pull Request, you can refer to the [official documents](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests) + +#### 1. Fork and clone + +If you are posting a pull request for the first time, you should fork the OpenMMLab repositories by clicking the **Fork** button in the top right corner of the GitHub page, and the forked repositories will appear under your GitHub profile. + + + +Then, you can clone the repositories to local: + +```shell +git clone git@github.com:{username}/mmcv.git +``` + +After that, you should add official repository as the upstream repository + +```bash +git remote add upstream git@github.com:open-mmlab/mmcv +``` + +Check whether remote repository has been added successfully by `git remote -v` + +```bash +origin git@github.com:{username}/mmcv.git (fetch) +origin git@github.com:{username}/mmcv.git (push) +upstream git@github.com:open-mmlab/mmcv (fetch) +upstream git@github.com:open-mmlab/mmcv (push) +``` + +> Here's a brief introduction to origin and upstream. When we use "git clone", we create an "origin" remote by default, which points to the repository cloned from. As for "upstream", we add it ourselves to point to the target repository. Of course, if you don't like the name "upstream", you could name it as you wish. Usually, we'll push the code to "origin". If the pushed code conflicts with the latest code in official("upstream"), we should pull the latest code from upstream to resolve the conflicts, and then push to "origin" again. The posted Pull Request will be updated automatically. + +#### 2. Configure pre-commit + +You should configure [pre-commit](https://pre-commit.com/#intro) in the local development environment to make sure the code style matches that of OpenMMLab. **Note**: The following code should be executed under the MMCV directory. + +```shell +pip install -U pre-commit +pre-commit install +``` + +Check that pre-commit is configured successfully, and install the hooks defined in `.pre-commit-config.yaml`. + +```shell +pre-commit run --all-files +``` + + + + + +If the installation process is interrupted, you can repeatedly run `pre-commit run ... ` to continue the installation. + +If the code does not conform to the code style specification, pre-commit will raise a warning and fixes some of the errors automatically. + + + +If we want to commit our code bypassing the pre-commit hook, we can use the `--no-verify` option(**only for temporarily commit**). + +```shell +git commit -m "xxx" --no-verify +``` + +#### 3. Create a development branch + +After configuring the pre-commit, we should create a branch based on the master branch to develop the new feature or fix the bug. The proposed branch name is `username/pr_name` + +```shell +git checkout -b yhc/refactor_contributing_doc +``` + +In subsequent development, if the master branch of the local repository is behind the master branch of "upstream", we need to pull the upstream for synchronization, and then execute the above command: + +```shell +git pull upstream master +``` + +#### 4. Commit the code and pass the unit test + +- MMCV introduces mypy to do static type checking to increase the robustness of the code. Therefore, we need to add Type Hints to our code and pass the mypy check. If you are not familiar with Type Hints, you can refer to [this tutorial](https://docs.python.org/3/library/typing.html). + +- The committed code should pass through the unit test + + ```shell + # Pass all unit tests + pytest tests + + # Pass the unit test of runner + pytest tests/test_runner/test_runner.py + ``` + + If the unit test fails for lack of dependencies, you can install the dependencies referring to the [guidance](#unit-test) + +- If the documents are modified/added, we should check the rendering result referring to [guidance](#document-rendering) + +#### 5. Push the code to remote + +We could push the local commits to remote after passing through the check of unit test and pre-commit. You can associate the local branch with remote branch by adding `-u` option. + +```shell +git push -u origin {branch_name} +``` + +This will allow you to use the `git push` command to push code directly next time, without having to specify a branch or the remote repository. + +#### 6. Create a Pull Request + +(1) Create a pull request in GitHub's Pull request interface + + + +(2) Modify the PR description according to the guidelines so that other developers can better understand your changes + + + +Find more details about Pull Request description in [pull request guidelines](#pr-specs). + +**note** + +(a) The Pull Request description should contain the reason for the change, the content of the change, and the impact of the change, and be associated with the relevant Issue (see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue) + +(b) If it is your first contribution, please sign the CLA + + + +(c) Check whether the Pull Request pass through the CI + + + +MMCV will run unit test for the posted Pull Request on different platforms (Linux, Window, Mac), based on different versions of Python, PyTorch, CUDA to make sure the code is correct. We can see the specific test information by clicking `Details` in the above image so that we can modify the code. + +(3) If the Pull Request passes the CI, then you can wait for the review from other developers. You'll modify the code based on the reviewer's comments, and repeat the steps [4](#4-commit-the-code-and-pass-the-unit-test)-[5](#5-push-the-code-to-remote) until all reviewers approve it. Then, we will merge it ASAP. + + + +#### 7. Resolve conflicts + +If your local branch conflicts with the latest master branch of "upstream", you'll need to resolove them. There are two ways to do this: + +```shell +git fetch --all --prune +git rebase upstream/master +``` + +or + +```shell +git fetch --all --prune +git merge upstream/master +``` + +If you are very good at handling conflicts, then you can use rebase to resolve conflicts, as this will keep your commit logs tidy. If you are not familiar with `rebase`, then you can use `merge` to resolve conflicts. + +### Guidance + +#### Unit test + +If you cannot run the unit test of some modules for lacking of some dependencies, such as [video](https://github.com/open-mmlab/mmcv/tree/master/mmcv/video) module, you can try to install the following dependencies: + +```shell +# Linux +sudo apt-get update -y +sudo apt-get install -y libturbojpeg +sudo apt-get install -y ffmpeg + +# Windows +conda install ffmpeg +``` + +We should also make sure the committed code will not decrease the coverage of unit test, we could run the following command to check the coverage of unit test: + +```shell +python -m coverage run -m pytest /path/to/test_file +python -m coverage html +# check file in htmlcov/index.html +``` + +#### Document rendering + +If the documents are modified/added, we should check the rendering result. We could install the dependencies and run the following command to render the documents and check the results: + +```shell +pip install -r requirements/docs.txt +cd docs/zh_cn/ +# or docs/en +make html +# check file in ./docs/zh_cn/_build/html/index.html +``` + +### Code style + +#### Python + +We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style. + +We use the following tools for linting and formatting: + +- [flake8](https://github.com/PyCQA/flake8): A wrapper around some linter tools. +- [isort](https://github.com/timothycrosley/isort): A Python utility to sort imports. +- [yapf](https://github.com/google/yapf): A formatter for Python files. +- [codespell](https://github.com/codespell-project/codespell): A Python utility to fix common misspellings in text files. +- [mdformat](https://github.com/executablebooks/mdformat): Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files. +- [docformatter](https://github.com/myint/docformatter): A formatter to format docstring. + +Style configurations of yapf and isort can be found in [setup.cfg](./setup.cfg). + +We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`, `markdown files`, +fixes `end-of-files`, `double-quoted-strings`, `python-encoding-pragma`, `mixed-line-ending`, sorts `requirments.txt` automatically on every commit. +The config for a pre-commit hook is stored in [.pre-commit-config](./.pre-commit-config.yaml). + +#### C++ and CUDA + +We follow the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html). + +### PR Specs + +1. Use [pre-commit](https://pre-commit.com) hook to avoid issues of code style + +2. One short-time branch should be matched with only one PR + +3. Accomplish a detailed change in one PR. Avoid large PR + + - Bad: Support Faster R-CNN + - Acceptable: Add a box head to Faster R-CNN + - Good: Add a parameter to box head to support custom conv-layer number + +4. Provide clear and significant commit message + +5. Provide clear and meaningful PR description + + - Task name should be clarified in title. The general format is: \[Prefix\] Short description of the PR (Suffix) + - Prefix: add new feature \[Feature\], fix bug \[Fix\], related to documents \[Docs\], in developing \[WIP\] (which will not be reviewed temporarily) + - Introduce main changes, results and influences on other modules in short description + - Associate related issues and pull requests with a milestone diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING_zh-CN.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING_zh-CN.md new file mode 100644 index 000000000..00622031d --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/CONTRIBUTING_zh-CN.md @@ -0,0 +1,274 @@ +## 贡献代码 + +欢迎加入 MMCV 社区,我们致力于打造最前沿的计算机视觉基础库,我们欢迎任何类型的贡献,包括但不限于 + +**修复错误** + +修复代码实现错误的步骤如下: + +1. 如果提交的代码改动较大,建议先提交 issue,并正确描述 issue 的现象、原因和复现方式,讨论后确认修复方案。 +2. 修复错误并补充相应的单元测试,提交拉取请求。 + +**新增功能或组件** + +1. 如果新功能或模块涉及较大的代码改动,建议先提交 issue,确认功能的必要性。 +2. 实现新增功能并添单元测试,提交拉取请求。 + +**文档补充** + +修复文档可以直接提交拉取请求 + +添加文档或将文档翻译成其他语言步骤如下 + +1. 提交 issue,确认添加文档的必要性。 +2. 添加文档,提交拉取请求。 + +### 拉取请求工作流 + +如果你对拉取请求不了解,没关系,接下来的内容将会从零开始,一步一步地指引你如何创建一个拉取请求。如果你想深入了解拉取请求的开发模式,可以参考 github [官方文档](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests) + +#### 1. 复刻仓库 + +当你第一次提交拉取请求时,先复刻 OpenMMLab 原代码库,点击 GitHub 页面右上角的 **Fork** 按钮,复刻后的代码库将会出现在你的 GitHub 个人主页下。 + + + +将代码克隆到本地 + +```shell +git clone git@github.com:{username}/mmcv.git +``` + +添加原代码库为上游代码库 + +```bash +git remote add upstream git@github.com:open-mmlab/mmcv +``` + +检查 remote 是否添加成功,在终端输入 `git remote -v` + +```bash +origin git@github.com:{username}/mmcv.git (fetch) +origin git@github.com:{username}/mmcv.git (push) +upstream git@github.com:open-mmlab/mmcv (fetch) +upstream git@github.com:open-mmlab/mmcv (push) +``` + +> 这里对 origin 和 upstream 进行一个简单的介绍,当我们使用 git clone 来克隆代码时,会默认创建一个 origin 的 remote,它指向我们克隆的代码库地址,而 upstream 则是我们自己添加的,用来指向原始代码库地址。当然如果你不喜欢他叫 upstream,也可以自己修改,比如叫 open-mmlab。我们通常向 origin 提交代码(即 fork 下来的远程仓库),然后向 upstream 提交一个 pull request。如果提交的代码和最新的代码发生冲突,再从 upstream 拉取最新的代码,和本地分支解决冲突,再提交到 origin。 + +#### 2. 配置 pre-commit + +在本地开发环境中,我们使用 [pre-commit](https://pre-commit.com/#intro) 来检查代码风格,以确保代码风格的统一。在提交代码,需要先安装 pre-commit(需要在 MMCV 目录下执行): + +```shell +pip install -U pre-commit +pre-commit install +``` + +检查 pre-commit 是否配置成功,并安装 `.pre-commit-config.yaml` 中的钩子: + +```shell +pre-commit run --all-files +``` + + + + + +> 如果你是中国用户,由于网络原因,可能会出现安装失败的情况,这时可以使用国内源 + +> pre-commit install -c .pre-commit-config-zh-cn.yaml + +> pre-commit run --all-files -c .pre-commit-config-zh-cn.yaml + +如果安装过程被中断,可以重复执行 `pre-commit run ...` 继续安装。 + +如果提交的代码不符合代码风格规范,pre-commit 会发出警告,并自动修复部分错误。 + + + +如果我们想临时绕开 pre-commit 的检查提交一次代码,可以在 `git commit` 时加上 `--no-verify`(需要保证最后推送至远程仓库的代码能够通过 pre-commit 检查)。 + +```shell +git commit -m "xxx" --no-verify +``` + +#### 3. 创建开发分支 + +安装完 pre-commit 之后,我们需要基于 master 创建开发分支,建议的分支命名规则为 `username/pr_name`。 + +```shell +git checkout -b yhc/refactor_contributing_doc +``` + +在后续的开发中,如果本地仓库的 master 分支落后于 upstream 的 master 分支,我们需要先拉取 upstream 的代码进行同步,再执行上面的命令 + +```shell +git pull upstream master +``` + +#### 4. 提交代码并在本地通过单元测试 + +- MMCV 引入了 mypy 来做静态类型检查,以增加代码的鲁棒性。因此我们在提交代码时,需要补充 Type Hints。具体规则可以参考[教程](https://zhuanlan.zhihu.com/p/519335398)。 + +- 提交的代码同样需要通过单元测试 + + ```shell + # 通过全量单元测试 + pytest tests + + # 我们需要保证提交的代码能够通过修改模块的单元测试,以 runner 为例 + pytest tests/test_runner/test_runner.py + ``` + + 如果你由于缺少依赖无法运行修改模块的单元测试,可以参考[指引-单元测试](#单元测试) + +- 如果修改/添加了文档,参考[指引](#文档渲染)确认文档渲染正常。 + +#### 5. 推送代码到远程 + +代码通过单元测试和 pre-commit 检查后,将代码推送到远程仓库,如果是第一次推送,可以在 `git push` 后加上 `-u` 参数以关联远程分支 + +```shell +git push -u origin {branch_name} +``` + +这样下次就可以直接使用 `git push` 命令推送代码了,而无需指定分支和远程仓库。 + +#### 6. 提交拉取请求(PR) + +(1) 在 GitHub 的 Pull request 界面创建拉取请求 + + +(2) 根据指引修改 PR 描述,以便于其他开发者更好地理解你的修改 + + + +描述规范详见[拉取请求规范](#拉取请求规范) + +  + +**注意事项** + +(a) PR 描述应该包含修改理由、修改内容以及修改后带来的影响,并关联相关 Issue(具体方式见[文档](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue)) + +(b) 如果是第一次为 OpenMMLab 做贡献,需要签署 CLA + + + +(c) 检查提交的 PR 是否通过 CI(集成测试) + + + +MMCV 会在不同的平台(Linux、Window、Mac),基于不同版本的 Python、PyTorch、CUDA 对提交的代码进行单元测试,以保证代码的正确性,如果有任何一个没有通过,我们可点击上图中的 `Details` 来查看具体的测试信息,以便于我们修改代码。 + +(3) 如果 PR 通过了 CI,那么就可以等待其他开发者的 review,并根据 reviewer 的意见,修改代码,并重复 [4](#4-提交代码并本地通过单元测试)-[5](#5-推送代码到远程) 步骤,直到 reviewer 同意合入 PR。 + + + +所有 reviewer 同意合入 PR 后,我们会尽快将 PR 合并到主分支。 + +#### 7. 解决冲突 + +随着时间的推移,我们的代码库会不断更新,这时候,如果你的 PR 与主分支存在冲突,你需要解决冲突,解决冲突的方式有两种: + +```shell +git fetch --all --prune +git rebase upstream/master +``` + +或者 + +```shell +git fetch --all --prune +git merge upstream/master +``` + +如果你非常善于处理冲突,那么可以使用 rebase 的方式来解决冲突,因为这能够保证你的 commit log 的整洁。如果你不太熟悉 `rebase` 的使用,那么可以使用 `merge` 的方式来解决冲突。 + +### 指引 + +#### 单元测试 + +如果你无法正常执行部分模块的单元测试,例如 [video](https://github.com/open-mmlab/mmcv/tree/master/mmcv/video) 模块,可能是你的当前环境没有安装以下依赖 + +```shell +# Linux +sudo apt-get update -y +sudo apt-get install -y libturbojpeg +sudo apt-get install -y ffmpeg + +# Windows +conda install ffmpeg +``` + +在提交修复代码错误或新增特性的拉取请求时,我们应该尽可能的让单元测试覆盖所有提交的代码,计算单元测试覆盖率的方法如下 + +```shell +python -m coverage run -m pytest /path/to/test_file +python -m coverage html +# check file in htmlcov/index.html +``` + +#### 文档渲染 + +在提交修复代码错误或新增特性的拉取请求时,可能会需要修改/新增模块的 docstring。我们需要确认渲染后的文档样式是正确的。 +本地生成渲染后的文档的方法如下 + +```shell +pip install -r requirements/docs.txt +cd docs/zh_cn/ +# or docs/en +make html +# check file in ./docs/zh_cn/_build/html/index.html +``` + +### 代码风格 + +#### Python + +[PEP8](https://www.python.org/dev/peps/pep-0008/) 作为 OpenMMLab 算法库首选的代码规范,我们使用以下工具检查和格式化代码 + +- [flake8](https://github.com/PyCQA/flake8): Python 官方发布的代码规范检查工具,是多个检查工具的封装 +- [isort](https://github.com/timothycrosley/isort): 自动调整模块导入顺序的工具 +- [yapf](https://github.com/google/yapf): Google 发布的代码规范检查工具 +- [codespell](https://github.com/codespell-project/codespell): 检查单词拼写是否有误 +- [mdformat](https://github.com/executablebooks/mdformat): 检查 markdown 文件的工具 +- [docformatter](https://github.com/myint/docformatter): 格式化 docstring 的工具 + +yapf 和 isort 的配置可以在 [setup.cfg](./setup.cfg) 找到 + +通过配置 [pre-commit hook](https://pre-commit.com/) ,我们可以在提交代码时自动检查和格式化 `flake8`、`yapf`、`isort`、`trailing whitespaces`、`markdown files`, +修复 `end-of-files`、`double-quoted-strings`、`python-encoding-pragma`、`mixed-line-ending`,调整 `requirments.txt` 的包顺序。 +pre-commit 钩子的配置可以在 [.pre-commit-config](./.pre-commit-config.yaml) 找到。 + +pre-commit 具体的安装使用方式见[拉取请求](#2-配置-pre-commit)。 + +更具体的规范请参考 [OpenMMLab 代码规范](code_style.md)。 + +#### C++ and CUDA + +C++ 和 CUDA 的代码规范遵从 [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html) + +### 拉取请求规范 + +1. 使用 [pre-commit hook](https://pre-commit.com),尽量减少代码风格相关问题 + +2. 一个`拉取请求`对应一个短期分支 + +3. 粒度要细,一个`拉取请求`只做一件事情,避免超大的`拉取请求` + + - Bad:实现 Faster R-CNN + - Acceptable:给 Faster R-CNN 添加一个 box head + - Good:给 box head 增加一个参数来支持自定义的 conv 层数 + +4. 每次 Commit 时需要提供清晰且有意义 commit 信息 + +5. 提供清晰且有意义的`拉取请求`描述 + + - 标题写明白任务名称,一般格式:\[Prefix\] Short description of the pull request (Suffix) + - prefix: 新增功能 \[Feature\], 修 bug \[Fix\], 文档相关 \[Docs\], 开发中 \[WIP\] (暂时不会被review) + - 描述里介绍`拉取请求`的主要修改内容,结果,以及对其他部分的影响, 参考`拉取请求`模板 + - 关联相关的`议题` (issue) 和其他`拉取请求` + +6. 如果引入了其他三方库,或借鉴了三方库的代码,请确认他们的许可证和 mmcv 兼容,并在借鉴的代码上补充 `This code is inspired from http://` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/Jenkinsfile b/toolbox/MMDetection/patch/mmcv/v1.7.1/Jenkinsfile new file mode 100644 index 000000000..f0c19d9f3 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/Jenkinsfile @@ -0,0 +1,56 @@ +def docker_images = ["registry.cn-hangzhou.aliyuncs.com/sensetime/openmmlab:cuda10.1-cudnn7-devel-ubuntu18.04-py37-pt1.3", + "registry.cn-hangzhou.aliyuncs.com/sensetime/openmmlab:cuda10.2-cudnn7-devel-ubuntu18.04-py37-pt1.5"] +def torch_versions = ["1.3.0", "1.5.0"] +def torchvision_versions = ["0.4.2", "0.6.0"] + + +def get_stages(docker_image, folder) { + def pip_mirror = "-i https://mirrors.aliyun.com/pypi/simple" + stages = { + docker.image(docker_image).inside('-u root --gpus all --net host') { + sh "rm -rf ${env.WORKSPACE}-${folder} ${env.WORKSPACE}-${folder}@tmp" + sh "cp -r ${env.WORKSPACE} ${env.WORKSPACE}-${folder}" + try { + dir("${env.WORKSPACE}-${folder}") { + stage("before_install") { + sh "apt-get update && apt-get install -y ninja-build" + } + stage("dependencies") { + // torch and torchvision are pre-installed in dockers + sh "pip list | grep torch" + sh "apt-get install -y ffmpeg libturbojpeg" + sh "pip install pytest coverage lmdb PyTurboJPEG Cython ${pip_mirror}" + } + stage("build") { + sh "MMCV_WITH_OPS=1 pip install -e . ${pip_mirror}" + } + stage("test") { + sh "coverage run --branch --source=mmcv -m pytest tests/" + sh "coverage xml" + sh "coverage report -m" + } + } + } finally { + sh "rm -rf ${env.WORKSPACE}-${folder} ${env.WORKSPACE}-${folder}@tmp" + } + } + } + return stages +} + + +node('master') { + // fetch latest change from SCM (Source Control Management) + checkout scm + + def stages = [:] + for (int i = 0; i < docker_images.size(); i++) { + def docker_image = docker_images[i] + def torch = torch_versions[i] + def torchvision = torchvision_versions[i] + def tag = docker_image + '_' + torch + '_' + torchvision + def folder = "${i}" + stages[tag] = get_stages(docker_image, folder) + } + parallel stages +} diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSE b/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSE new file mode 100644 index 000000000..f02314255 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSE @@ -0,0 +1,203 @@ +Copyright (c) OpenMMLab. All rights reserved + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2018-2020 Open-MMLab. All rights reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSES.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSES.md new file mode 100644 index 000000000..5de835833 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/LICENSES.md @@ -0,0 +1,8 @@ +# Licenses for special operations + +In this file, we list the operations with other licenses instead of Apache 2.0. Users should be careful about adopting these operations in any commercial matters. + +| Operation | Files | License | +| :--------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------: | +| upfirdn2d | [mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu) | NVIDIA License | +| fused_leaky_relu | [mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu) | NVIDIA License | diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/MANIFEST.in b/toolbox/MMDetection/patch/mmcv/v1.7.1/MANIFEST.in new file mode 100644 index 000000000..5de8494b5 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/MANIFEST.in @@ -0,0 +1,7 @@ +include requirements/runtime.txt +include mmcv/model_zoo/open_mmlab.json mmcv/model_zoo/deprecated.json mmcv/model_zoo/mmcls.json mmcv/model_zoo/torchvision_0.12.json +include mmcv/ops/csrc/common/cuda/*.cuh mmcv/ops/csrc/common/cuda/*.hpp mmcv/ops/csrc/common/*.hpp +include mmcv/ops/csrc/pytorch/*.cpp mmcv/ops/csrc/pytorch/cuda/*.cu mmcv/ops/csrc/pytorch/cuda/*.cpp mmcv/ops/csrc/pytorch/cpu/*.cpp +include mmcv/ops/csrc/parrots/*.h mmcv/ops/csrc/parrots/*.cpp +include mmcv/ops/csrc/pytorch/mps/*.mm mmcv/ops/csrc/common/mps/*.h mmcv/ops/csrc/common/mps/*.mm +recursive-include mmcv/ops/csrc/ *.h *.hpp *.cpp *.cuh *.cu *.mm diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/README.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/README.md new file mode 100644 index 000000000..458ce7340 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/README.md @@ -0,0 +1,177 @@ +
+ +
 
+
+ OpenMMLab website + + + HOT + + +      + OpenMMLab platform + + + TRY IT OUT + + +
+
 
+
+ +[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmcv.readthedocs.io/en/latest/) +[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) +[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/) +[![pytorch](https://img.shields.io/badge/pytorch-1.5~1.13-orange)](https://pytorch.org/get-started/previous-versions/) +[![cuda](https://img.shields.io/badge/cuda-9.2~11.7-green)](https://developer.nvidia.com/cuda-downloads) +[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv) +[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions) +[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv) +[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE) + +English | [简体中文](README_zh-CN.md) + +## Highlights + +The OpenMMLab team released a new generation of training engine [MMEngine](https://github.com/open-mmlab/mmengine) at the World Artificial Intelligence Conference on September 1, 2022. It is a foundational library for training deep learning models. Compared with MMCV, it provides a universal and powerful runner, an open architecture with a more unified interface, and a more customizable training process. + +At the same time, MMCV released [2.x](https://github.com/open-mmlab/mmcv/tree/2.x) release candidate version and will release 2.x official version on January 1, 2023. + +In version 2.x, it removed components related to the training process and added a data transformation module. Also, starting from 2.x, it renamed the package names **mmcv** to **mmcv-lite** and **mmcv-full** to **mmcv**. For details, see [Compatibility Documentation](docs/en/compatibility.md). + +MMCV will maintain both `1.x` and `2.x` versions. For details, see [Branch Maintenance Plan](README.md#branch-maintenance-plan). + +## Introduction + +MMCV is a foundational library for computer vision research and it provides the following functionalities: + +- [Universal IO APIs](https://mmcv.readthedocs.io/en/latest/understand_mmcv/io.html) +- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html) +- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html) +- [Useful utilities (progress bar, timer, ...)](https://mmcv.readthedocs.io/en/latest/understand_mmcv/utils.html) +- [PyTorch runner with hooking mechanism](https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html) +- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html) +- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html) + +It supports the following systems: + +- Linux +- Windows +- macOS + +See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage. + +Note: MMCV requires Python 3.6+. + +## Installation + +There are two versions of MMCV: + +- **mmcv-full**: comprehensive, with full features and various CPU and CUDA ops out of the box. It takes longer time to build. +- **mmcv**: lite, without CPU and CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops. + +**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`. + +### Install mmcv-full + +Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). + +The command to install mmcv-full: + +```bash +pip install -U openmim +mim install mmcv-full +``` + +If you need to specify the version of mmcv-full, you can use the following command: + +```bash +mim install mmcv-full==1.7.0 +``` + +If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv-full version, in which case you can [build mmcv-full from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html). + +
+Installation log using pre-built packages + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full
+Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl + +
+ +
+Installation log using source packages + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full==1.6.0
+Downloading mmcv-full-1.6.0.tar.gz + +
+ +For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). + +### Install mmcv + +If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). + +```bash +pip install -U openmim +mim install mmcv +``` + +## Branch Maintenance Plan + +MMCV currently has two branches, the master and 2.x branches, which go through the following three phases. + +| Phase | Time | Branch | description | +| -------------------- | --------------------- | --------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | +| RC Period | 2022/9/1 - 2022.12.31 | Release candidate code (2.x version) will be released on 2.x branch. Default master branch is still 1.x version | Master and 2.x branches iterate normally | +| Compatibility Period | 2023/1/1 - 2023.12.31 | **Default master branch will be switched to 2.x branch**, and 1.x branch will correspond to 1.x version | We still maintain the old version 1.x, respond to user needs, but try not to introduce changes that break compatibility; master branch iterates normally | +| Maintenance Period | From 2024/1/1 | Default master branch corresponds to 2.x version and 1.x branch is 1.x version | 1.x branch is in maintenance phase, no more new feature support; master branch is iterating normally | + +## Supported projects + +- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. +- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. +- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. +- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. +- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. +- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. +- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. +- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. +- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. +- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark. +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. +- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark. +- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. +- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. +- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. +- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. +- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework. + +## FAQ + +If you face installation problems or runtime issues, you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html) to see if there is a solution. If the problem is still not solved, feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues). + +## Citation + +If you find this project useful in your research, please consider cite: + +```latex +@misc{mmcv, + title={{MMCV: OpenMMLab} Computer Vision Foundation}, + author={MMCV Contributors}, + howpublished = {\url{https://github.com/open-mmlab/mmcv}}, + year={2018} +} +``` + +## Contributing + +We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline. + +## License + +MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/README_zh-CN.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/README_zh-CN.md new file mode 100644 index 000000000..08f54b3c5 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/README_zh-CN.md @@ -0,0 +1,181 @@ +
+ +
 
+
+ OpenMMLab 官网 + + + HOT + + +      + OpenMMLab 开放平台 + + + TRY IT OUT + + +
+
 
+
+ +[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmcv.readthedocs.io/zh_CN/latest/) +[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/zh_CN/latest/get_started/installation.html) +[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/) +[![pytorch](https://img.shields.io/badge/pytorch-1.5~1.13-orange)](https://pytorch.org/get-started/previous-versions/) +[![cuda](https://img.shields.io/badge/cuda-9.2~11.7-green)](https://developer.nvidia.com/cuda-downloads) +[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv) +[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions) +[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv) +[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE) + +[English](README.md) | 简体中文 + +## Highlights + +OpenMMLab 团队于 2022 年 9 月 1 日在世界人工智能大会发布了新一代训练引擎 [MMEngine](https://github.com/open-mmlab/mmengine),它是一个用于训练深度学习模型的基础库。相比于 MMCV,它提供了更高级且通用的训练器、接口更加统一的开放架构以及可定制化程度更高的训练流程。 + +与此同时,MMCV 发布了 [2.x](https://github.com/open-mmlab/mmcv/tree/2.x) 预发布版本,并将于 2023 年 1 月 1 日发布 2.x 正式版本。在 2.x 版本中,它删除了和训练流程相关的组件,并新增了数据变换模块。另外,从 2.x 版本开始,重命名包名 **mmcv** 为 **mmcv-lite** 以及 **mmcv-full** 为 **mmcv**。详情见[兼容性文档](docs/zh_cn/compatibility.md)。 + +MMCV 会同时维护 1.x 和 2.x 版本,详情见[分支维护计划](README_zh-CN.md#分支维护计划)。 + +## 简介 + +MMCV 是一个面向计算机视觉的基础库,它提供了以下功能: + +- [通用的 IO 接口](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/io.html) +- [图像和视频处理](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/data_process.html) +- [图像和标注结果可视化](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/visualization.html) +- [常用小工具(进度条,计时器等)](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/utils.html) +- [基于 PyTorch 的通用训练框架](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/runner.html) +- [多种 CNN 网络结构](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/cnn.html) +- [高质量实现的 CPU 和 CUDA 算子](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/ops.html) + +MMCV 支持多种平台,包括: + +- Linux +- Windows +- macOS + +如想了解更多特性和用法,请参考[文档](http://mmcv.readthedocs.io/zh_CN/latest)。 + +提示: MMCV 需要 Python 3.6 以上版本。 + +## 安装 + +MMCV 有两个版本: + +- **mmcv-full**: 完整版,包含所有的特性以及丰富的开箱即用的 CPU 和 CUDA 算子。 +- **mmcv**: 精简版,不包含 CPU 和 CUDA 算子但包含其余所有特性和功能,类似 MMCV 1.0 之前的版本。如果你不需要使用算子的话,精简版可以作为一个考虑选项。 + +**注意**: 请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。`如果 CUDA 可用,强烈推荐安装 mmcv-full`。 + +### 安装 mmcv-full + +在安装 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://github.com/pytorch/pytorch#installation)。 + +安装 mmcv-full 的命令如下: + +```bash +pip install -U openmim +mim install mmcv-full +``` + +如果需要指定 mmcv-full 的版本,可以使用以下命令 + +```bash +mim install mmcv-full==1.7.0 +``` + +如果发现上述的安装命令没有使用预编译包(以 `.whl` 结尾)而是使用源码包(以 `.tar.gz` 结尾)安装,则有可能是我们没有提供和当前环境的 PyTorch 版本、CUDA 版本相匹配的 mmcv-full 预编译包,此时,你可以[源码安装 mmcv-full](https://mmcv.readthedocs.io/zh_CN/latest/get_started/build.html)。 + +
+使用预编译包的安装日志 + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full
+Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl + +
+ +
+使用源码包的安装日志 + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full==1.6.0
+Downloading mmcv-full-1.6.0.tar.gz + +
+ +更多安装方式请参考[安装文档](https://mmcv.readthedocs.io/zh_CN/latest/get_started/installation.html)。 + +### 安装 mmcv + +如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://github.com/pytorch/pytorch#installation)。 + +```bash +pip install -U openmim +mim install mmcv +``` + +## 分支维护计划 + +MMCV 目前有两个分支,分别是 master 和 2.x 分支,它们会经历以下三个阶段: + +| 阶段 | 时间 | 分支 | 说明 | +| ------ | --------------------- | ------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------- | +| 公测期 | 2022/9/1 - 2022.12.31 | 公测版代码发布在 2.x 分支;默认主分支 master 仍对应 1.x 版本 | master 和 2.x 分支正常进行迭代 | +| 兼容期 | 2023/1/1 - 2023.12.31 | **切换默认主分支 master 为 2.x 版本**;1.x 分支对应 1.x 版本 | 保持对旧版本 1.x 的维护和开发,响应用户需求,但尽量不引进破坏旧版本兼容性的改动;master 分支正常进行迭代 | +| 维护期 | 2024/1/1 - 待定 | 默认主分支 master 为 2.x 版本;1.x 分支对应 1.x 版本 | 1.x 分支进入维护阶段,不再进行新功能支持;master 分支正常进行迭代 | + +## 支持的开源项目 + +- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口 +- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱 +- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 +- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 +- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 +- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱 +- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱 +- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱 +- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准 +- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准 +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准 +- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准 +- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱 +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台 +- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准 +- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱 +- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱 +- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架 + +## FAQ + +如果你遇到了安装问题或者运行时问题,请查看[问题解决页面](https://mmcv.readthedocs.io/zh_CN/latest/faq.html)是否已有解决方案。如果问题仍然没有解决,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)。 + +## 贡献指南 + +我们感谢所有的贡献者为改进和提升 MMCV 所作出的努力。请参考[贡献指南](CONTRIBUTING.md)来了解参与项目贡献的相关指引。 + +## 许可证 + +`MMCV` 目前以 Apache 2.0 的许可证发布,但是其中有一部分功能并不是使用的 Apache2.0 许可证,我们在[许可证](LICENSES.md)中详细地列出了这些功能以及他们对应的许可证,如果您正在从事盈利性活动,请谨慎参考此文档。 + +## 欢迎加入 OpenMMLab 社区 + +扫描下方的二维码可关注 OpenMMLab 团队的[知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的[官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU),或添加微信小助手”OpenMMLabwx“加入官方交流微信群。 + +
+ +
+ +我们会在 OpenMMLab 社区为大家 + +- 📢 分享 AI 框架的前沿核心技术 +- 💻 解读 PyTorch 常用模块源码 +- 📰 发布 OpenMMLab 的相关新闻 +- 🚀 介绍 OpenMMLab 开发的前沿算法 +- 🏃 获取更高效的问题答疑和意见反馈 +- 🔥 提供与各行各业开发者充分交流的平台 + +干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/TERMINOLOGY.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/TERMINOLOGY.md new file mode 100644 index 000000000..07411b777 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/TERMINOLOGY.md @@ -0,0 +1,30 @@ +# English-Chinese terminology comparison (英汉术语对照) + +This document is used as a reference for English-Chinese terminology translation. + +该文档用作中英文翻译对照参考。 + +| English | 中文 | +| :---------------: | :----------: | +| annotation | 标注 | +| backbone | 主干网络 | +| benchmark | 基准测试 | +| checkpoint | 模型权重文件 | +| classifier | 分类器 | +| cls_head | 分类头 | +| decoder | 解码器 | +| detector | 检测器 | +| encoder | 编码器 | +| finetune | 微调 | +| ground truth | 真实标签 | +| hook | 钩子 | +| localizer | 定位器 | +| neck | 模型颈部 | +| pipeline | 流水线 | +| recognizer | 识别器 | +| register | 注册器 | +| schedule | 调整 | +| scheduler | 调度器 | +| segmentor | 分割器 | +| tensor | 张量 | +| training schedule | 训练策略 | diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/build_mmcv.sh b/toolbox/MMDetection/patch/mmcv/v1.7.1/build_mmcv.sh new file mode 100644 index 000000000..04dfa710e --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/build_mmcv.sh @@ -0,0 +1,22 @@ +#!/bin/bash + +COREX_VERSION=${COREX_VERSION:-latest} +MAX_JOBS=${MAX_JOBS:-$(nproc --all)} +PYTHON_PATH=$(which python3) +${PYTHON_PATH} -m pip list | grep "^torch .*+corex" || { + echo "ERROR: building mmcv requries the corex torch has been installed." + exit 1 +} + +export MAX_JOBS=${MAX_JOBS} + +FORCE_CUDA=1 MMCV_WITH_OPS=1 ${PYTHON_PATH} setup.py build 2>&1 | tee compile.log; [[ ${PIPESTATUS[0]} == 0 ]] || exit + +if [[ "${COREX_VERSION}" == "latest" ]]; then + COREX_VERSION=`date --utc +%Y%m%d%H%M%S` +fi +export MMCV_LOCAL_VERSION_IDENTIFIER="corex.${COREX_VERSION}" +FORCE_CUDA=1 MMCV_WITH_OPS=1 ${PYTHON_PATH} setup.py bdist_wheel -d build_pip || exit + +# Return 0 status if all finished +exit 0 \ No newline at end of file diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/clean_mmcv.sh b/toolbox/MMDetection/patch/mmcv/v1.7.1/clean_mmcv.sh new file mode 100644 index 000000000..feda20c48 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/clean_mmcv.sh @@ -0,0 +1,10 @@ +#!/bin/bash + +PYTHON_PATH=$(which python3) + +rm -rf build +${PYTHON_PATH} setup.py clean || true +rm -rf build_pip + +# Return 0 status if all finished +exit 0 \ No newline at end of file diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/README.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/README.md new file mode 100644 index 000000000..e9985b4ca --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/README.md @@ -0,0 +1,70 @@ +# Docker images + +There are two `Dockerfile` files to build docker images, one to build an image with the mmcv-full pre-built package and the other with the mmcv development environment. + +```text +. +|-- README.md +|-- dev # build with mmcv development environment +| `-- Dockerfile +`-- release # build with mmcv pre-built package + `-- Dockerfile +``` + +## Build docker images + +### Build with mmcv pre-built package + +Build with local repository + +```bash +git clone https://github.com/open-mmlab/mmcv.git && cd mmcv +docker build -t mmcv -f docker/release/Dockerfile . +``` + +Or build with remote repository + +```bash +docker build -t mmcv https://github.com/open-mmlab/mmcv.git#master:docker/release +``` + +The [Dockerfile](release/Dockerfile) installs latest released version of mmcv-full by default, but you can specify mmcv versions to install expected versions. + +```bash +docker image build -t mmcv -f docker/release/Dockerfile --build-arg MMCV=1.5.0 . +``` + +If you also want to use other versions of PyTorch and CUDA, you can also pass them when building docker images. + +An example to build an image with PyTorch 1.11 and CUDA 11.3. + +```bash +docker build -t mmcv -f docker/release/Dockerfile \ + --build-arg PYTORCH=1.9.0 \ + --build-arg CUDA=11.1 \ + --build-arg CUDNN=8 \ + --build-arg MMCV=1.5.0 . +``` + +More available versions of PyTorch and CUDA can be found at [dockerhub/pytorch](https://hub.docker.com/r/pytorch/pytorch/tags). + +### Build with mmcv development environment + +If you want to build an docker image with the mmcv development environment, you can use the following command + +```bash +git clone https://github.com/open-mmlab/mmcv.git && cd mmcv +docker build -t mmcv -f docker/dev/Dockerfile --build-arg CUDA_ARCH=7.5 . +``` + +Note that `CUDA_ARCH` is the cumpute capability of your GPU and you can find it at [Compute Capability](https://developer.nvidia.com/cuda-gpus#compute). + +The building process may take 10 minutes or more. + +## Run images + +```bash +docker run --gpus all --shm-size=8g -it mmcv +``` + +See [docker run](https://docs.docker.com/engine/reference/commandline/run/) for more usages. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/dev/Dockerfile b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/dev/Dockerfile new file mode 100644 index 000000000..0c673e958 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/dev/Dockerfile @@ -0,0 +1,32 @@ +ARG PYTORCH="1.8.1" +ARG CUDA="10.2" +ARG CUDNN="7" + +FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel + +# To fix GPG key error when running apt-get update +RUN rm /etc/apt/sources.list.d/cuda.list \ + && rm /etc/apt/sources.list.d/nvidia-ml.list \ + && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub \ + && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub + +# Install git and system dependencies for opencv-python +RUN apt-get update && apt-get install -y git \ + && apt-get update && apt-get install -y libgl1 libglib2.0-0 + +# Install system dependencies for unit tests +RUN apt-get install -y ffmpeg libturbojpeg \ + && apt-get clean \ + && rm -rf /var/lib/apt/lists/* + +# build mmcv-full from source with develop mode +ARG HTTPS_PROXY="" +ENV https_proxy=${HTTPS_PROXY} +ENV FORCE_CUDA="1" +ENV MMCV_WITH_OPS="1" +ARG CUDA_ARCH="" +ENV TORCH_CUDA_ARCH_LIST=${CUDA_ARCH} +RUN git clone https://github.com/open-mmlab/mmcv.git /mmcv +WORKDIR /mmcv +RUN git rev-parse --short HEAD +RUN pip install --no-cache-dir -e .[all] -v && pip install pre-commit && pre-commit install diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/release/Dockerfile b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/release/Dockerfile new file mode 100644 index 000000000..1f10acc2b --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docker/release/Dockerfile @@ -0,0 +1,23 @@ +ARG PYTORCH="1.8.1" +ARG CUDA="10.2" +ARG CUDNN="7" + +FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel + +# To fix GPG key error when running apt-get update +RUN rm /etc/apt/sources.list.d/cuda.list \ + && rm /etc/apt/sources.list.d/nvidia-ml.list \ + && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub \ + && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub + +# Install system dependencies for opencv-python +RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 \ + && apt-get clean \ + && rm -rf /var/lib/apt/lists/* + +# Install mmcv-full +ARG MMCV="" +RUN if [ "${MMCV}" = "" ]; then pip install -U openmim && mim install mmcv-full; else pip install -U openmim && mim install mmcv-full==${MMCV}; fi + +# Verify the installation +RUN python -c 'import mmcv;print(mmcv.__version__)' diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/Makefile b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/Makefile new file mode 100644 index 000000000..51285967a --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/Makefile @@ -0,0 +1,19 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = sphinx-build +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/1.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/1.png new file mode 100644 index 0000000000000000000000000000000000000000..1837fbc8ca1dd46fc169d3c16fd2aef73645af92 GIT binary patch literal 84328 zcmeFZc{tR4+dp2p)OA@~EJdiRMG;d8Sx2cPvMx>~4Dn%s}X2w3&vCdd$ zrbvn`VGM?m#7vkO+swomz8}~9eV*U%ci;E%JlAvl{(b&)I2iBcb)M(ze4VeiCsr0F z;v#Y)+qP{JH@$kvX4^KA&~4kcr~kea_>Ni6CTiQZL)%O*U9gMXK0ls_ma->qZt@++ z7WlLU0gC{4bV<{^)oO2brfN3x-9ZQQHzBvA?aXgoI;~okht;X|ZPhe8egBUykG7|s zyWdon+QVMNE}lah+9J!EOW|&u$d!CplWMju-AR)?z}BIoHzqbWMprvP8$60Sd$A1C z4EbT86-@eNzdl8Z#l1{Yl=u6wp$GGu-+(_HRov9LlX`&-P$I!|J}Bo zr|)n7+h5-7cn4lRjhTsZw-98@&J6Z0x?2z|a%#h@0v`;d|4%>d^!>Pxa)!FF|S8i zFy1-d;<~WAf9-cPP8@1R{Vi5&VL+lz=zp9t?zC@<>p9d{LOa(1F+7atbw9Pu7Iv@# zp+-$&e>R4^d#5%gLzM`77$L_>U=h(&@06GRbOV!x9EtzTcp5qI-^NuLs0%!aro>O3 z*EOcU2_5`<3mK#We;qA^6mj%q>l78%de6xmIh`{?)*&cpYkvN|zJ9y}m=?m%q zdth~4*0}UT;7e826LA^EAJr2_T@x!tdH6oGzkCd7w#!$S#6KV45BRrIhDWzMCJJ+a6hRQ}>v#I5bjI~)Ie&=2hU*iPx4)qdmm&+h8&?Cfga z`;XncAZ{Nw9=?TPow=8>LXFqT5&w^~{x6H`V22S&JXA5Z-@Am{>2yM~l%{Kszbjlx ztBrmWG5`&~H#&81Xbm&QX|%Gb98?8vC@xf-foh$A^x1kfLEkqT3I0~mDn`e}9AHGR zR4a>2pVU}h8*IjCy6z7Kpc33xzHg>{!n8~HWmEeW4~W~i_byRabG?bBv*w`?_$8bF zx6bS))rce-s%89U0CUZL=&tVedc_*wL3nz?6=+eg?a&bM(^q00XzTNb&U{ORPz-i4 zM|GLkocsSCVStIRlo`>109|nUT=cf=OZRb zQ;3*hF%G}enEm?s^6!5G$H3*QX!e12AZ^(wnY%}`Sak4sNI;RXC=i^A!n(U8Mzsc} z%U6DLk5VuF$1%tG9q1z@zxtn!5z4_YD8aDM$W)suuS!L2OMuH zm^r+c97m8&xV#UX!y#WdK_Q)&n{NXo=U$AEykE;(KC{o=e|Ui~#^%ZYG z$u#2+5>wCqNOYwTOl+uk^t#zuS_R@~{(FKL=Wx2O{~uvf;na-3le3(CMz+Z~`FyAM z#_*J7Q`j6asmu2G#^|z!+f!}{V$RyYv*?Z+F9vI%Ih9cag~S%)33A173tcJ@57MTk(qC z^I3>s>%W3yyO@+#&Y?m{X9+68vVO$j;rRVH=RrXPo|}vCM#pTL#_Kk+PmIyBMF++I z0mlE5Qogt>#8-+eZod6pll26H3J;-ohXBQAe3o36pNN|Ks{;ASq~z}L^cgY2z^HaF z2EZc1$H+&#a-VYF_XLiwipn%N)zTZbP$ku4XEb2Af>N9;K(q_%2sUufgO4j@L6lWP z9!RhM`RVE9&bZ54Seg^RR~#~-K_8-un=&^p@EwY6Jxy=_3S;RF)t{l2i2e<{9V*+I zASTbkW(DW-83UGMPq}1igSzA)vQ`Z&nsdU@Y^Sbt=8ADehDfN&C8yHcTNSW*<>`~J zRgA)P@rlYi1LgS9{;@Uh_g;TbHS#u|Umj%R5vE`)uCK zinc_m*j9K>67$dQ!VPK9*-reO3qQ6Ke^CF!b>gxGk6b$aM88fATKnqkxw#s(1B{lK zrR$9-9W!BF>AWx3rqbjYcEz>XhkTBtB;690WnO`KKqA|KY-ojwb8q84-GP)_(`V}1 z9vC#kblUkkHLy=q3VbWPhA^nV6BpOSv!i-e{d@9y$A!9N8l0(yf%Qih8UjY5wdcxu z#}3f5AmR4tjp zu#_w4NT2SBW%p9f^>IUvdVLdNyxVnT#@}U$*c>^TeMvDj{YzMg!>K3u3PfE^VY+B& zGAa5Znx>N^tgHDN<{;PbN>NwZs@rDd4~M!9VQp3VAJgyTwi5o5_z9yD6NlMTB};)5 z*2K8-I)mw)?*Aq$8-JA88fk|ISdrnlRTI9%ZukOIVGVN^M1ETT(TH{+Cd*@?bY44l<%KBbc5^m%Xy ze@??w`NsSBCX{Tc4V8A6uP~kit?&J^YE|0O(!2U#yV$u-Bb)7=1)W)TQ4Q>G2d{M= zrM}<$Ux&0{{9VCGZO6TiPt)yFkOBhj{KmR(;*NA*sTn`399zB**~$w*T-r9rfb5`@ zi;gHDdhg8aSYCgYAtGJ-ZO+M*fKezPcE`AmdwU`0{F^x85hIVv#^Mqce`8Ulrw@h;$=NQM)il~aUFOxSauM1RSlkPN|C2_k*aeHi&GplU)bG0Te4zuo`<0qx|x!%2HsMp^NZj& z%9m5;3&hTU_!lYUsK=o%C%ZEZI+#_<{=%E;#k{&_$eR8=uKmZQLS38vU8U|^hfyo= z1dU!Duq<}va2J`$^ap?$G4(2n^*ughtU*p`^dl#U-lTIT&Vp&{d9M%#Eis~-DD_sJ z=qph?Q#^Yaoum_^eE$2Jkbum@UkQLf}xVjvn$>z%KF5>)LQM2`vnFq@K= zHYnXCvuUu`ZFyeDhS9hK?^Ncca8UIbwwqW?R+&*5QW10G+95JLKnjz6%UXh^dARC=pXJ+Y3disM+2W#vqytXUdnXyeAw6%K`EjO7fK&&4xz`*mW*+3V1HfzgJUc>mlRj9<25%jfXI}-mqrOl;eS)Giq&q2j>w^XJ%co3v zpE2m^x7YK{=QZ9g|5@pd3=x%ywh5<7jC)2lz*a`oEAUZw*C5NC1D*Lw#mUf|!Cw3x;OU}HnrIq`lqVY@e_2r1P+O`Tl!kc!@xUwEN zZ`oZ+v}ak=eb;-H;On2i2&~5-+s=taAG4KFfA(C=K}@kGL_MeIG@X$;W$bg!jkHql z7~GY703LLgI#!Q(wG5oDc}>sFAm`t7MJI05-G+yl*G1d|kX$&yx_@0Or8Qe5bR)Pe zPI}Yrda3^N7WP7io1fcfL{>UtvXEr&64B0OPt+>4;FNYCyAjv-!xsyq&;f&HIRSGH zZ+(A>>LIwRvT6~}D*7GL6ceG21{ANA3sirI1K(n^t9Ei00XvAT)5o1chv(FOrR>;& zE`E}Q*66utZIBxRG#j~`dS__t?w(l=C5(SA&$hCmy{fv^i_#$4; z*_3;&=#aS_{!VtJq+{BY}Fyd zG-5>i2Veb+d)QdJ(olIPh@qJF9)_PnTU2E1hWn^M^0nu$4yD-n+BIhluQZ&$!554I z!*2z5AGq+IwuMZ}F4z~*-*o3Fikt?ws_Ubo|JwA$-939N@jCd&<9wA3`SPJf+hc7w zZ8L>ckAW7a&M`)?MP{(=S0k_ec)t(5Dz^D^xr%(>w?_03P*3rRKBtsU^Wdyy*;7@N zguGrfdeLTf>&~sd_3zR}N6x-|)q%CbT+9(U{So(aN66%ERt$fuGM+eppdRHm&}6AE zFvsf07<5Yy_7SIskQ)?w@SI=E&ve#LuZ>rHr@4)wv13tl%!qe~E#mB&5eAOE&bxI zoPy6q4dUg`p3+q$T?dm^@p{OMZ$$jv!l&({I&wVgp6jujlmnV$l!oFiR>(qNm(d)Y zxK8EKTjfj=cP*=NYRMB9LaqlTq8+K}F^HLHqxVK!v7^#CD^NZEbx-S@kTPb%N@Kz= z&!^p~DwapsdQTNnVnHp|1Drvyg(0(?!FxBcxtJ1IZAfAZxTVN_j4w2u8&GE-!j;4Z zpOe10xrE8%JCGF~4ZXs>I*vUH<6cO;-dI`#P!_0nm|3;Lb&?Dptp7L+}Rtsx3VOQ zN-*iJF+6^$iYGppF`9T>f&_ua)T8n zEU@i)y_7424;m^fQmaRiHm)ohVICBRBX5rO`zO+)0cMHcx-~msf&~-D#c-o!f4G8G zyq60)2R`wWgOht{=&uk4@t2tmP%>*);$w!!zDv9mX6 zT&`;+aBA4Yv53`muy3(8BT1dmT0*}n{_-Ft1h;YcA}PczGU&<*++wpJCoBeM9l#z7 z>bM6P0OJ@D#oS!JurMULm!^^kN}W-`Kq7h(SAG!cIpM}3>{ZWmj>uJLHo#hkJ=d2+ zz88x%fqzlEDw~>%#vNCbV%K4rWe9Rx6G?f%g*qU3>T1y|X}DfoY+l*2c2fyNEGLT3 zHj-ly#J7#6!z{jT^GDQQQc8I*+8JDfi4ZmOjpV zHbenOma45tCa#&-xT3$ufL9Ur0PSMzlY@1|q8#85!$ltqcbO_mk3Th+J*bmE@!msy zKgCOM_uL*uJ+RkYtrYVD{GZ2~MrHChHf4urg_2DDj+Al6Iy=%YA=$Cta^H%EtSK7V zE2?EA)jC2(?vpOC27+ZO1+R5x*x9WQuVuW9l|Q{Y6FIXCfGw@!B z{EvaPn^z#_j3ilvY3;H<{1UVjWG!`qd=|z?ib9xHBFr;`Ls({eHi-$t-09jli%lX? z-wu>MyS6qv=l@AqhC?Ju@#fMsC@*I5ex(n~uvt>#_1G5$6-o%F#sMs$<3~MI2uY0g zk*p{KHGO{|662~Da4AQ_k%&P*Nw^5!cx1aYI!t2ESs%WiYGI(!n?bW(Xiql?&GF0w z<#arIPBeFbkGv~)8Q~-uP%>Oip6RMrilrW(*iR^;L=1aV#_&GSuG`b!3=A2!4!Les zWpc7I5_Uz3F{W1J$OxwDlq{WFBjyh-j==F3<1C=Y+yB%P2-vZ`u1V6|+Em!hWNIbr zz?xJzm`dqPJ4=zY4+{Biw!bb-5*thj z>k3gTL98SY@e7=~k($CXo-g?3I!3Hh1E2gLRsSrevV&7KOR?2yVJUpVTTT z*9vqx(Ra5#7qN!8XZSs*ZA=opeoOWu9ru3@T%vzfB*bEIw%|xnrYmd|V;^ z;rC?BD9nj?JAVAK8~>N!#8n?<;p}yIIM(f}{l^B=87V7V7nP1X*gS3_*E^N$SV`d1 z#_~Fx?-3e|FxY)^dvbW5dHuVT5nx?1ph-1Syt@2f~N4iYIu z3u;v=Ha0v~BrWmq`Q{evWsy8;mg)4ADCCy(Z4>q=DE z&EAxE-05b<(-7lW{+n@woX5M3_l2Xnmbc}}tY+FAZmIg1bwuavuWg>WtDW5N`W6I^ zf0t8wNpS*S89sV9SFlR?f8xzHHb;$HrF>HcR(Fcb5Sg<-n>Ol3mfIo(d~$*^Cee;{d$SIA&#}#Q+(e;Oe@)g`o{ozp zWH&0PyKu1Y9=KY@IW<3n&D5|H<1ErBLwiHjz$h zddts>_fq1Jy-|E*UYV-C^iJp5Jq)|v+wNAX*ju8qYO^7rf~i$5bvh`C7uB7xT~$1& zB%`K*%c$K)zYRZE%b_vog{{}mlD~f46LA9JHXwMW7OTeDJ6aRxOiBsffy{7?vPTDh zBxa zQZj-MP2b0`1Esltb9O)H%oB;ObVE)U*G?oN%gonIR7w7Yln1AOb3FBXgkP8&!1{o3Zf=e!I%=U zULzB=?&Bc0mJbe5^UI4FmY+0o&Tge_w&s$3j}%2CWkzMUjANt{V1C+no4WE9i1B&cB37Su>35**>x^Y?MLz|r?Mn~%X@%-0${Jx~b2eRSIIMZnmx zjA;Tr!!{+K7%h_G^T}otg)GBdjyI4#WiKheVIa>Kgl}*HS#UkFVJlBWkPX2*`Io&n zzD*&^Uc*0MiN{P7iHFL_?;Qt0?$L^kyvAOH%$_9IznndTeHMO|_k`ktu74J0RUEMw zY8$g26AFDywalel6V^?=*L9IU!|A7-nSHEVTE8V@>{1NBBgN4F^%!gyDlU=&0#dtg zjxC{b#PotD!~}q7T}KYxuzVUm<#1jtTdLTmHyUqZu9p9-~FFynU-xGAxk1=zAlA z<0Hdu0Omwt2J_&|NAEMIyBseW>#BYmrlFMn9DvhYWM%+3yZ1i!Nik7^x1RhZn?SZh zYn`}ZMmV~MAqM}ErnI`nDb^mn#X69Y3DFBWM&wVoOk4H}|Et{3IcmE32}QAMwo`%K(vR zswqW+6I$+Ty8nj5ReN;qU;;pqT6brUV=iJQHBH!MJCoHu8u+{Q+K_)6xEf=RXoL7Ta;YY7keQq!3aE#|qVm5f{;hE40B z|J~5;Ufp&+FV}~M{Ge4j9zme^PJ5W;v1WR*9MAPN`dn{@$4;M(@S-NNX4~0KPyW#N zhw|SM>hrq2sUpwT6m{AfI~{t?IP9DCyY$A^Q@QUg(Agd{#?Jj|Bk=*Ip6XC_5%R*j z*jg{NNs>6yxY^%Li6bs7uoEE?Yo6<4yA;U-uVX6)T?{lzmBmOY3ub2WKjhE)@rIeB zG!0yI2_k__HKG%Eg2r!a_+6%()9wuw3trCnD(!+mC#n`+)%xxF^3+@LYWWqa3blw{-QVH7x-M~fqN6|9QeOdl3h7ES1W7aMrpxeZ%#FyN zUE*SQy0+B)MMv|;JCIp^czaq{c|RAB698>lO4p4ahrJ<*96%#_)a5wCGxZ~WaTdZV zD=8wAgoiL`F=at&64;`DVR$E!RnC{Y*#@D3oFu|Jya}Ltm z%3~TmEYIsioN@;h&YtO4#KhnS#-iACLM8m5Uc2C74={G9Px|q;pJ)eBb-;dcF6tv- z)SUBC86w&vhr>NBHXq;aDvIr^No7|MhhV0E_N@+Bf=BYE;{(IQ=z<_W8eimu_oHpG z(PYJD2$+iHL3-0*YRpQ2A7HoTqZ0+?MO+fmA9*xe}T3XfznDF{z zAekM2{G)quY;}(;W3Z77%tZo}ny&o1g`CJR+%;;Nt3wsVq&w~=TTBXKbSOKRAobrc zXIDLJ`qWu$v9*?OU1g0un&9}jo}06-l-`9kEbRbPvSF7Z><(?iUWVh(>~fronyybB z(r=mh+2Y8qXjk<3=$5S)ljh8k=34OIJ(M&dDI=P_u}w7>%qrw%8Lv&r&6WFvk5+7l zs)`NCh=$T&d?bGV*AT?a3e|Cy++2jTljM#)sVxT@noPxVfL`)izS~$W$@6abx4A>D$sj_N~=us@UC_k6h7SI(_wL ztiy0{7`z!C;hEJO^jSY*u~o-^taU^ajD?(~0Q04zqv1f2?sO=h=Mt`s=Dy_6Ktjm0 zbJ@@jR}3jt3)2>JLkLH$4=@E|nFrExw_T01AR&S~JYdQby#2gVgKfZ}jbEI?bU+6+zgSxBa;$FE~quGqd10R4Wg z_SO8pCau5&F{W~b`o;7`>BxY64rcJ^z(xOCqp z7nc>#od2zFIIS*Z@ATJ=n!pM76e_K@9ax*&8=y4|uVyqdbDKtXAoDHtHMu;RhovDh zB764w*P*mnMG0^V&{XG7ONG{?UQ`S}5kVrt+$Awb0q;=yy@?o`-#;fjjn-+kLNOOz zE*#TyjUwX^vlq7;#+R>Dr>I-_W z*KLRXllrtxNbvQ(fNzfLK>uIVkDOIrb%~Y4)|sb0`UBx4e?a9_xPF;qrMhaL&i{LW z3X*F@c)}MI0UOe7Pss^YjDnmi8<3`4n!{aJjy)zuKZZvR$0%x948;s(#7tX=#1^@3 zlnblcDalBTQN6SA<_pXvg(j&t~Qha6kQ+`_u!03%XqlMk!_n zKo&R8Q!`78nhoGN^c}EH~kM|8TVe-7`@48hI$+GZoV6-)pNaf zvaeO71_h{82t{{L!0aA#s+HxPaGT1Q80zF$LUNtOtGJ$rlHg96BeVAEtn;l)qldfM z@Nc;-P{uBD3JgSrf4Cr=(xv3pcooNj?EUUnjZNH^tSUM5}#~`+lpa}9HvcIH6L1_Q{S;AdEHL5tKTdrI80)$ z0@I_2D_vCRqqv?1j{(i=lsMy*gJgPUDS{dXunm_R!yqLfA~weyw&D6X=UO&8TuoMP zo?k`yy0LJF#NL;Th3joJZdkWj7#ht@)I;|qmTkW}OQK8T&@b$H;g-iLf&a6?gi*P3KH?fK^iNEf;EsvU=U_sq z@^xo_$i_|j>}qZ1l)ADxqicv^>za~ z&X?rYrhq4?#DuFHx`V?G zq*foJ?I`gX&Eg0QNEst+?d&jAk|@049SHeFQu-d=KEL!1FctL6C@XVr-f%H^zg z=RosM(}iW9gCd`o{uuUAOPO#S5<(XGe;ZUyyZCA&@?1a>pvXVL&vT>TaCk{u3Iak( z!6B;>E#o!kxy%r~qd2Y1J2@I+J|AUtXD(Bd-j3cd9+AnEf>|?;AAChq@&FJQc<*Om ztj|8qy;A;d60`gZkS>9wCK=LxJbp>aM+6QZTqN84l`wN`sy(XMBdEQ;I^0url?Lic zjA+KBNeDY#CO#cJuba4cxL#dI$$?d)--Qw^$bF?QA44lK^W^&E5utxR&cwl)k92uJN*N?-ag*vZB2g z_$xm5oDMS^m~{`HG)#ThG}PO2wEdII(keix^XN#dOXW&H7(N=1KJT!4^+${F(20N< zdZSPXmepZ*3INs1E5%he_$B$REr*9RzpMe8>IloB!aHL2@-i|Fs{T_^*GnBT?@-5M zwXs2R-x1xJE>R-SvmF4g;O3%NV7~>zXjc0HX<=Pa#7~>jMY%;HY@p=MYyhCYALkUJ zA3Pw9-Wzx&YZ1Q~y}u`M=A3?WtQxE9y$!Q`cRqyF2db~_;d}VM^#LqKhF{oiTnFn? zzYPHl@K4>~c-n$eW6(h%;&1602AnS;!ChKs`*Z}Ab8tNoU<$E3ZKlyza@e`8W)&SV z5rTF(K+Z1(bd0DHBd@(sCkve$36hHYuXY$!Z0|Hq-VdyicQRl5eeh_*(9$o&xsV*& z3)KxM;jEK=B`6_;^P}a4KvNwaZWd=l?PuT7E9qDYRNA1oCuIy@-X|XFh8P!*qN?+D z37-dwu@WF#sULJR^mhjIW+(Nr845`IL*X=M*FO2ar+^4@bCQre;dpcT^qAC6U3>L- z-!|0u@5z?A|Up~*nXhLSAKyxPbMD99*TE?VF>B4Qv(0bvwz=8=F99dpDDM9*|I)lrN&MWWa$ zuz_amX4N==y&+H?7?~7alOH1`5}Gj6w%o(={USUyKZ7J}B&JKA|M7S@82{i8XJvg$ z`tn|m1>v6!xJI$(awNLe3s5S)f4KX&QmNCTAgt1p!jZWl%FCJO=hGWb=YouH=CY(V-6LzW_3AK21CmnXB5pGDnpYTDgy)5AwQ0*z0LX*I46e}WVW*#9Z9bHq0am& zzTE*knKV;RRR`{E_DJ~ETADLZMFl^yR765!^ue25HMgIW8NB)S0d#izjMMKJEntEK zx{KJxZaEWg9O$EsI5V9=9^>_u@cjBhHiabBBG0m`2Cx=!y5iUAYQwo>9AfNvj}kEA z8zYwe5$X?26B}ul$+iVMwub{+8cg24_mbSrWfq*>t7hA4gsE^$tFTgFh$| zBTk4F_(tWr;p>>E`+f>pO~y>b(8pWG3(x$30Tf;QZb?p)Qoq3TS6^Q<>=%Vc+kE%w z4eTT!vQ4D8N7ey7UOcRnKbfc$++0f-j3*pXS(xsU>#@JGIjTvqOg3;Fd|1GuIF!4* zl}+ztj_JtaqZ$vZ2V5fHPChO@ZJE2RAUUY{aNF%JM*YC2sAH4Ikw@4q%P8BF@c5#J zaBPtqQ05hUhAAlt5AmrxEH(&%Cw_oP>ndI!oWHuzD$o}RIDn)Q^}WA9$8S*4v5S{k z6@^{tjRJ}DM|riVgJEA70PoQT>iICg!Vkn>^TqIE1jcVSyt^#itG-Ayx&fqtZ*AE? z?68JR%zA>e{rFV+P@Ef&@Y=_DdP|BJ+Zx@@_Gg$bL!hrA>Kw+s36KnwNFaFBITwdt}7M)09 zGr=l}>A<&u!d@vkGqSpV$+=JFpVM&P?9O?sxizZI-nIgYN0!sQUHtm`D`_1Ge+V`P z#H3~PSjs4vu85VoE1|#p*NiIf7X{takzNt2-!yL9$a4DPTv^5? z()f`p9OmjJ$j3FFX65m|5=2Rd7)b%4(+HS>rWGC%Pk)v5h&dp>%<8%U!~oYFPP02< zLqM$|e6ciJ&V(${&)pKmkq9jn(<(neG45WKb$hLf?mQ5)Nd5%;e5G!6STTL5IsM79 z4AvudC?lLGe(p;lq8D6=QzH+FyeL*4Y(QNB5m!VoToTapA-I(wO&luO;M|X{j%-Pb z{lzpRwe8n965#+7Y{*Y`Rl=6w)O=2+j7I=N@c9@~gLZ1J+L|Rvo{p4d?4TozNh{bfj0cs&n__z~B}{E=O(^ zhMO$fGTMn;O?YpwcPA=$>IB9u9RzXDI?h!p8_Xgi{eZcTzMk})8qrEel;GA?EjxPG zz^%R`KnMvu`-nrRiX7t0w)PbQjj}u-KrZCZJAdsnTATMuInr|F5fyu^uO!62%`!1H zL8{)fFGOImklJ$@5hI#$k`wY54{>CmM_bow!|i3@-Brfe#5wO@1=nT`^g)JekuiR* zpBgTH0Y>mB+XkAXk|GxUBg(#1{1uEe>gzVP0bXZ#SeEs=7*wfzQN+sb)YUv_)9@@N z-Bw-(M^fU%$9cOU%H*`(z06@!HbgR#MDl z2+WUa*{L^jLI5#>_3CoSR&4YzjrmQ%U-ei+c*!w(88J+C)RBJWcU6atauVe%pjsW~ zn9N+1gy*f&MRYtX;s(tw7uu?gD=CMq1CFfXjMKt8h^yC^cPT~>KX3kVHey&QIVj)K zu)9Ro7!l{0@pU(Y8;MhpzcV2FoJZq%VGb3fBf~d^qUNZlM=xi%y@Xpr)Ju2mXF3`r z(0K2R8+q#+W#XZwCSL&sQ?1?rVH(LFY|g%@Bp2*P2wp>+h&~^f1P$)E!3O%D->jq7 zH>BT?154KWuY1-K-jw>2oiP=gfL_57P6453P54`OCu{zwqMhKZ_by#~3B;L_$z2_8 z(cV&5xw$q3jGMWiLi+ML@XTOl)`;4td4)>zop{*@C6A`B-L|1}Q(R-~BmAkm6u60F zb1(=bh94{mSm$VPk>NGon~d10>#o+0?P7y_bM%+Tmh*wh-JW)?^=CNlbq5RclBW<( zibql5^*%z#NigR`vCPicLFWeX(R(B((a>4Lc8e{cZ78L)VxoPc`Y)-Yb$2?xaKh7l zysTajSd;tGG&SH0T+jd0`01n4J01KiLt&N%er9{ikQk4>8I(!ZguzYJyL8XZc zXr!rElse!KK7~$rQ_r4jglVks`&>xQZJzT=)^;ZWJrdh{c2f8GTH}odQ>J$cb0I&O zY0IiowiiB=TAUGB>^?q~5O$W%j97X$VwKIRoi8|@>z7FFI|I|pRD%5|zW4TKvcZ_i zO)zz;9++$?i+x}7}=o9MAT5DlEs$76d^Wy zhGG#9qdGe7RdeH1+HfKIvh2Ce}6=V_WS8?l4zaud-wF>{@x7jAdId{uMt2C^bQjxeL{VtxPZVV0a5;Z@=TRBFbT5On$4 zN3{S5^Xc<`m)VAzr5K=;*yoy!raMS620znD&puy#Sd8huhG_s{2F|AgmH_-j5T&@| zu+kw_EyqI^lOG#kBliX_ctTAsST+-3;?)H3M<#@nvpz@Osf)8zC?o#Hp+3!;6Sd&{ zxYxCXe=cqS3vbY#$aJdlldGYnU+mxLhJupYof(G0eoq>nYb%cGS-|284rRE#G z8qYv^sr8jCB^(xyukd?wonRXt5kZ%@+%-q*q?9S_bQSe>5~L=;9PBFB<-+y+YvOtW z_j{?u(p`C%4AM(XbT~HNT{%2^3CPawP3}@zRI~NFfrM*2B}YaOi|rXvT?`&>$UbYt zs945^y%5fKuQD;%Im#pJA(3{5!p(LuN?h`p5z}0Gss}0oI&^w4+$N`krQA(-SBM52 zoQ*Z{go09n)bF*^_6Vx!;X?$7FX7R9O(aF7Y}R$sBmQ>VXQ1auAeT{>WxRczXQjrt z(~bd&xnbZRFkq@#kLHdkM(+pgPGB{q4WYR41OWT=gdKTWU&?QVMJkk<FB5Ka?dIw#NGO(VG`|U2HB5yyoXmwUCZtyfmTXpe{MKT|YGz zX-6cUrb}-AVZ>H_=Ra3|BgYoK+4}SC&)DZ1*j)S|JE*ZH6&oMU&-LUtQ`9l^ZvQ{^ z6=Sd)A(CMx{`IbV~vdOTpcrgyzRtO&Yh8oSRD#(z#jfn~bo3GBNg6DH`GS6iO7 z!BZT^@@zF}MmCIB_f!a}yI6Dj&MJ!k>~X@=TG>azD6eB=)Rn4>ZTe-rR}EE}l21;C z0^CO)wfiA{+;H~o0QV7t;<&#rwptF0InCJeUvp%pGAJ$t2UO_nTWd+Z4UW8j%Q5zY zT(|uK`0UAZW8uGQcf3q7SPk`8AYqBa*&7*N%S6BrfP&5FG)`;&z{MJ5mvvkr5qw~9 za)wFx?=X^DH>bTDaI8KZuTNlbyAs?7tDd#T49UKT(bJs?bV8gd*0ph6oj&K7k|(EP z3&~lfkh@AJQ%gy|ZBfn;j1cq%vQ_ zuqZQFMNbbCBo^u;PsSI{4)Y%K$Cg35zBlPlB*AmhHF1i}0ko)YfE~IpIi6=W@z~a6 z@TDdYnoEzZJFdj_jGL!4hc}ZAf#{sv=x<>E-gPS$&-23pRd5pDe-dD7WHXmH#vO&< zl4q5(QGoTgWiEEi>f@wt&{o@Y@re5^4SxlG=7ZCCSLr&Dwih?uI&voc+D!RW|4&t8 zTA@l(79vm;D{1Zv%ycN}Hm@=kIL(q>=hVvH-HpuFmEhQ|k{w0)gZ1g0Hd!j7kfSfA z4ZJq%luAgjQxd5tm1sK+2-2rdJ%L&GV$v*tNvUF6UmCt-ceVnH%2pOzv&eD&Qg>U31-04}$SOx?T}idyk2hQLiISiBYsH+FC93I`5IJ8h15=0K zTPCfhxwWN+8C28lHj!E|Q5@?wH($4A&2K0d1 ztSV?%h+)USLjN=%8UZf^+65y;>XqIQjv)#bFyUZM;E~IzB>&FmZ$(4h^j1F>)hkN^ zxChvN?4e}%@IEzG)bQMeBbGA4*V<4j-#hp7GLsu$daBh`);*LKdHvjQaj-bz z^bT4+c`u+7z7C2rAt3-NK`8S)(^s-)E%|2JTu#@Z+*0785}J44bpL&_;LUhC>yM=C zB0E)nOe>QsT_L?;;M%+0a-^&88;5Xh?LMx;gzr0YgXF)0U-|*0&yc^lke@OolLFhx z@g&TweXc(IHt=%%gI3xnfmVMe;EX)&Qbe2n-kLI5U9v$|#TX>toSTl9U50Op@m719 zR}I<$mXPN8;Xj|e(&aQ4gA-w$QD9Z%0Qvg|MK3j~_jFjIm^|vQ6f6=(17tAGtGVtJ z<`W0TYJQ5rWa-b`s++%$Qnr*86^qZ5+OuO#$zb32PkpG5I4YZk=x}6-$yFuBmx}?- zX@e%Y!1SJaYh*^lEbHst=jZ-wUuZL^yF~CWLn!~51_MkhA<0GT7x3p4;Zel)ZY93wzHwIS*u51@0!VO;UvFL zp93r_y-(cKdmY{&F5KIC|2YJ*IT!|bC_b_rsn%8|ZLx`M0||r!5)-}?Cl1NVezCs# zD?f!!8Kg!;nwts^CZx7b^~Xq^w@nERa`#fGd~o@Qq>esb!nY!0t2qfL&1wcNSKybs z_jgOvo|nnSr^$faUe%XxUg%iq%TH;BY~Hn+Z^9jfyEw_MW`eJDlT+ah0j^5x1jfd**Z}y5z1}ddmF`}d2zZxiUaJiY1>#Y2XmNDp z+S_5@%+BKbzUTGvY9>0A2MxQkH-a>=+Rm;W9LwLrl{Oj)LqFwyLU_wJXU7AK2|p8Z z-6kB?1Ub1BK~2!|&7QIbrsgbeA(NicI6OvkEcTy2x0pG{9~>A?`bfQ;N8dn)0;0{8 zw|(F}37dy<)6Tt)%Kdt+lYs66WU?ny$8jW<^Y_^pRts<0VI<LVSpOiaHO=lQ*?yW<_=5o447-u!p2ErH4M z&4J-6DM6xM&7aL?8hzOf1kcgZ=^e-^5PCP&7^5ziS~Pah^}N)hQ|EprDaM~lLY#D- zGcADnDv`OJKf6$OEA!kH?x@|^lb(WhX3x-TR4Y5hDNG?`kinNbjm$qn@u;p-@O(eP zfb-VF%=M%8sExph-1`|jK!9Waqj%)@g3&|Ine%mXiq^d^MBbkGR`)ZVnvT#Hxo|Qx zbZvyL6YmNIrBDB+D_AV8H|IPn3cNPFFAq{Q=(2ry>$%MH##`9~FFwV$TE*k@wd}wB zNSRW9vg2|1{;`XIyWU<_q~xbNL=vq!U+Q6xw1<~ZYSk{)!qy!?`D+L5yaf~+&}arM zIt@aVcRR-U^Pz}mnP9qaS9$076}1jGmSJX?4u^{kY<@uC%Drr#`WjU}Sr{h%6?e%% z)aS(Vwa%N2o4aKhE7UaY#w{6JrD-RhGc{v6*o?K#Pu4r53zA}~O8F;KNp5AF7L~ej z2ZVuo-_I0#bRl`??5gvTE59hIZ+w4~9PeeUVYpa2`?&c^Z?C@Tc~AM__y6XB!nvGV zrLEbWnept!Wf*8JYplTXE=G~j0()<+eQ!ZRZNNbd81+?V_)@TQ`(_7UL~$SWSKZTH ze0p7ONAT?UKwfT(?;nvqu88dwyD|8;A70~ri;Vr<;RaYA5*uVurXKxxptsFkYe2>E z82?z`TVnpT(Iijr%Dd+l_<}3C@h5hD5St!jOj&QK*(F1Wkcs!JCydj6)AiNtSbGCF z_GyQB1-}~Xmy6qfugMXIW|FN~Yyf{Sf`C}X-It^2)M6QyaZ2++6 z^LkEsVol6$HI`|2l9OJ2hpzYg=F#Fj1T{Zy*H1CdTsx}&ncBc zQb`nwO14y@jAh80H4%j&$sP(rj3r6dNZA=<$uYxg=?DK;#>RkdGvFUwx2pK3X* zKg)jBZ>ZJyjXCBjWy0GcIc2jdf!*^fZE$J-2LK#^`o_rA01lkIzciT`6VoY3SMI_! zS?Tk9(+;>_J{UZ~nSL^f~qD3k!^ z|H-ZXngQ|{Gei#xy|P5U@nmd82J1A6%9u<$ar*OTETzF&D%_RAb?CX?*_UiEms%$3 z%v#i>9L+WA(eE*w{ZU3t5P(i0MxkiYL!Cg)6@l5aKBT>#^4QE?6Allef+G+HA9Y!YImM7y9A7=7u~09R5zHm9L5{feP0ibROpQ-sHf-x1^AmOO0_(v^0e zc+*}byRN0@DTLgB`T9Pl##u|j(Pcopf4M>j@|6wS-I>UTXPt1E z@qQd5vY8veD)H$;+}KS@HuWmYMdwTXTx5x_|1Q3XAJh$W`Xz4d1PGG^h{H;iQe^3H z>(NF*oHL+{FwQ+bs;7(L-Z1z#0oHF)->Z)}*!dcQ>*>*0oJbM+&U~heW2%>63A14V zAhou@+aU6-KA?sVOW#CGDj$$Kbp$b5)DZ9L{X@Sc`&rv(6)ZjSMBX6N+9$yAAKAtG zYZ)+(10X0x1%AmWZ&;WX_V3+k|9)ZuD8X>c=XcgExT+6so`U|&aPuiNDk~I#p_`WMOp+_p`iS3oOBck3K1SkZmATlwefd^&sQdIT$Mgd!G_f+$z@;8o{KCNiEk}T!? zzP+b>bxc zmzk4)MT`N5^eAH*0NYp!MB%5j-Qx$!t7J`bwW{>8E)^KsRxAp}FFL zB`)1ei{XDvTGIfyEjC(r0gS^JUu>mllk|6_r9YE}cj-Stn@-kxe6=8qmTV!H(`-w$ zx~5`149A^tR%WC6dZ>u&T;=eVp{z zxx5uoLh_0Fht)dcKf?cvv4G%QuzsnGe`%?e>LND=Afb4Cu^w|SSq5fzUZqXs(IF&y zMeQyC?Nj>`&Wu!I^hIA__}71mWc=y=#@8#NuWx$?z_{G> z$QUv$Y>rQ~yf#oJ2}$UBM63&JnyAA~Z69DWLu&Rurez&_^G1umVd&XSPsYxg?@IB7 z{x9V$FaI%KTH>Ot_?&2|!eB>vpZnHv2=SPa)DZet0HQKR*pCs|_ra@!04N@{lMT9A zhxA-jTMC^43#Wk30sv3`mE6CwdqKTILHhc~^pE|2`0YVHU;{*g^nKa?nt1*zedla} zAjQb_rN&3E@k2|`{`>WntAU8@LjRpYzQ3mX|1#bi6bJlRx9(Rh1$+5b-K~D5zrw74 z3eVrZ+s_Knf7tVV;n#oD!he0u-@2%uV)eh5|KHC4PwfAv^MB@X{>3W&&*1(4*xGLo zVW#~^=uI!5^$oAhBYEv>+~V2o5%EQ70^+76(E>##HS&rkHKpMKWam-P-h&D+_>c`5 zMagPMQPAGIt2hSu*51Z$Xp{Wj#tdce8GV%zxJ_7|69n(hH@C-tp|!Q`2K;d3SavpW z!tj4Ev;U2R{vCu{@i6Llx_N&SO#O>!11|J`Al&~yL?G{Z^gRz@(Qb-BMMIq-?S&b>>+5(6b`DWGy;{_9HgE7R7X;BvBJoC zXv}9*JL(~r$~#C>?_s3Pj6IU{#oVI(rVa#8>O&z(eIEQSR_Y|jKwKjHJ4k8k8`N(N zO-c)BB0bpNJ|UI#&t8BK5{f)HMN6;kf?7Qz+#fr6jp$kq+kk(^owB z#nI0pf#?CK9{hA;-j2883lHO6Bp9-QT1j07q4#>ByJS&}|BNA$M3jcbkZDb*ULFA` zztxpzkektDTrd1Y7P;^#zhDy&zc(W%8%Fvbl$wQFMsKTOXasm8G#^z5kY2vC6Y5}v zvw!Q!5B8&=q(EP3XJuNUI1t)9kZOlQZsn{~!|@d-GPFLu#x>v9giqFrrHP&}MJZ zz;%8wbbYju$gFBwuby7t%HDx0K2Ie1k=pVlVpG|oJt3Uaiy-@^c@$EvsHSlWK}H#j zW1)gg&hz?xu%mqQpoBoOuh&-7z_q0pu;}d)QrhZkQWE%P;hAxgUtq$}?)_b)Bc>h+ zLq={F2!KY5R}^LCEOw#uxv=HSc}((y>MD>$PcskzNLm zmQuQW2&0Bt)%LA!S?5Y7S}84kRhI1&GWx%&?xi3|W8B(N6UM)`dT>T37+$WlAAZ-c z0DH3oGagNEIaHsnxL3p2+}%%2yar9iw)eTNSL`cC3%HYiJ{mKWf8OxcVCk6>o9Y7E z4h&}>MUW(I%t07sE$*dT3>nj;`$5KADS=Z^oE&nib!GsjSihS{+QbFo6G-DbdnJLp z6^>XX+zEZMIk-9v?N8sxAt^0+8}1aQbDNFqR-s>29@!SlNL!@ED~nin82_3Zj__wR zojEg+CJPkZ|0Qw!!|X1@k$rnk(6BU)*zsvAE!d*(OR#&Utl%qvjy<(f+VXawMc;1f z{8UVH0L-O-YwFijb;Z+6=&}Ow;Try(!$~0pK~#;sJI(b0lJA z!|lqE*8)u>COOr;5Thx0D@r^sx(2pQu&BKu^=Z>Xah|^EA(#EVs5$srJI;Uej-f$T z9rP&Cr8K?qrYDZ)EHBL=8AidoJIO=5A&qFIfGOAEQ%!>J*hHP=&OD}B4?4&-A$D#q zaX_OdD{menVn+_0bGf_*&~Wz|QbFl#@wprhzoUC?%y&O#f+36~VRze}5JJ zh$(us1pT1SNPUs7*?rDWW|j*ylIZ7xt4`~_y8c93KF>qS1KUkG<-*U!oLL$qb4{D0 zF}_gR)~W~Xa-lyH0gc|kdtE64h!$Nqa@aH1cvX)Y8N@vQN9Zd3SYHZ z<^W)}arT0zIa-jJNSXQSK3T`pKO6|ldAaJDoep8^iRoc)OiXVf=ei8C&JSj1mX2U^ z_xUBB#e>l182OKN)mzMp#;$w`XN+1)vgS;Ww5HmEVN5E76UWEVR+2fNJ@XacaF+J1 zz{jMiy+V-;xW z7Lz4Ho;Ajp|%nJ0cH6^4(I`9Qk^^4V+74m2cI%A3y@f*pRw z;InKXO;kV_$-=&*A4LX`_B=tgz7eljVGii-xTby!(i;KOqP%02f=Q?q^e7bPe#bZ= zzxYFM3|%VlNSPPT&(ICtuv=_okVU*$l}#@C7M~D9B-Mpxzq18m2lW*p%?i8P=su;W z+X;raB7F+#5-7nz%bUYvZ^!^iEpRmaR6%XLDV)lugr3`?_=dg&LlIL9B|rIzXh97{ zzUUodg%BqZY69Sbo)_D5Nu;OCBLdG>6?B%S%ekC0gXW+Ae*a1!``eTgg!x3hmI0X~ zH@9ZMPJhi<{Jkoa(y6Rz@22%^Iltj*o-fDnu_1V$lGbQw1J6O?BLL@|#~lv{gqKlV769lqB?^%YM{SjyFFQbw_= z3)^*1EWXKE15hdfOi?}%+JlMkP;J?=9pf0YfO ze&s0f-|?xtYTwr%_#6_W_x6pc2#+f3>HTkI`Zt+Y5XQzF{7snYXOw+=pa%}mPXz6* z#-OZp4tv_|Jl5MJ1{{C(#d-Na3^Nz~TfEbM&maDoV7$DRVLh6s@2ME-aw4Q12xTUq zIG-HS#th6|`bpl^cUeKbyavUb4=Ge<%)r1BXm^)^sy-ald-6=0mF^KxXXQ)mo(TU(SBA%-Teg5vI{+2s3DW zUt=o}J(U{XDuy*XBIoL%^H08MTc0BxJQX+tvhw*#W8aD)Op^WRU;eh#DA!$d>ww4H zK*kx)<;OgKy{z2IM@VtEM&>oGcyNY8-bAtS@~}VYQ^s2fe1q5XTXh?3PhRZrkb2u{ z`22jwRLE=DOuhf&J-paGt)9D|JVN4SN+GFa({Ge_GtJ5$P80m*C+ zWoP^{`>22OGt5Bs)q$(0_08H3yClz4TU0eet^A(4U4?xE*GF?tU+@w*0URJCpT2ZO zh!-99{Ve{Ep89{p|I+{hO#$LfP#h2ci349idD9e708y(+w-&fE=5ATg%4#+&c-%(w zeuHaS8h?=f)k{YTPs>gT|D{u{e_HQ;1c#?y>b!3NV;YHP?6+VLa2@1#IAG)X2)uQU zz)Zs@5|C*nKaf98czW;H&L+>9_TIO@H&yXRZ>4O+_h3DQ1W4{l77}V_t@ZXJy@x#W z)ed`?Wc#I^w664zLw9__t1beYq46ao>CB1$%97lO4a$kMVEBY;sC)wQTP+EeH$j)K zD_fRaob*OBfXF=X12A`u-WY3*4p$Zt(R!S;(e_#D;D5EoN!fnd4;RCv3j0zHi*_FB z|H~oN!edOuT$4tS{u_(Ef|i}r3IRldXPdxw*5&QUSO1kA0XDz?m;I4SR$yH!6n}it zdGM+rUVDFUd=!>|V!WBGo0OXiZ|$}9C3L@N@mTX%`~B{wf9~tQDMW@0yQd!fSjcCT z0j?eDhf8?C$}U(k6YTXg%WHd86XU;@-iW8(x4+VRRlvYl;m7Th++6Rt+9Fk1Sk#Yl8|rhZ*QvOw z%_r2KVZKB=FqMcA)1(fea^Z^WMdhf9LR9?}&38n+{JKzjSk#Mlqw#n|z&;gwhpRJp zneSACV6~yYo__h)KS2%B8QIJ>O-^HL4Vr3Au(2(h8Kl&v?767`OSR*IX4R;;?ceYJA!tKfwYVy+c1`g9`gcrb zi7gA7c#jJh18FaPb@l-lSBNrI!F9gX4AkM9MJwb z{QdE^dbRktgu)Mb`URbx+V{Qb#ZDvwL8dQnRdZu%YIi4?vm-`OG7b^3GUasm%VTLP zIxTWTbUO}#Xa>I~38F}cvJRn%$L+xz^3zpmz#)jv`8@Z=gP*LjUTyr^h(n=(|7rH~8uG(?z3nd)4mNIH%eWQ5 z{wO`!{?9j@0AU}7%j3gZ9~v4KI60AwZHy|MC`FjgMhT?&KzbZCLaVc(7m@PIKz$8aZz^c<+%WO^1EMDpab~U?y*H zQ*>K(W%9Q7_Dj|Z_3q@;KXka|y!y)$VD1L0ul0p~GS5Kyqbr4J9kTgI=}*}A%faSH z%GIVA&UD*ITEb{`fbgUa;}g7LmfOZ*%0uKP0h^#MVSPm2_6+^1pWd-E8`-mvME@R< zIn5&^{Mt<3@teDv_gK70QpTPb4J_wu-VdYXZSLLk;NA22f?=+fnX|!Hj8^kp%P`O1 z!QSiI9`h6;uyg0@eva*n0bl)P|DSyBo@IZ)l^cDrrn|Vfusr?FMZtSK?X(u3=e^Rm zBOl$4{Q6Zx-ppP}2s#@R;h{*s4~`N%yr}685z7lGEF3)U`8CwS-r4Ji(MG{JCAPhH zq1)Z^2?yv@uivYXKMF_-}5O z$Zg}N1K2w%_>3-z=}<(o!2z1-M(8&47e`6BU|16~sVc!1OB+jD&BS$`BdGQB^69F; z*%mg0Uj3Q60vDb2C#YVw~u<3-*CqO%n0Qzu*=<$QI&T@5%?!TjKpQkF&%|20Iq z*6nsZ_r?|{AXXzQZqoogp}2^QipFdssHcX)G(0w6o3RpUHMpLfs`KY&<7E)~>q}O- z1#4<@%EV{RysZhDL95Xm!Tqd~+W?c~Bqd8s;(8+@I{W<(?uJznYfNBNAAn6YmnSzr z?HJFFTIIL41zI2eG9l3TX6q6QJg8~!?_9d1h`UJG-hh9mCN0V5Piqn;8~4u0_%7dq z;`gf#zukW@WG$UGwcUT|+z?A_ABUZr-FFKeHAPU7h2o8hW?uvIWQ3sIDYv2;Y+SWY zA(jn&3EvILxYQ(r^$q;=%<;?CP-aAU$@96jWB1of9Qg?m9L4qAqG4m)5LO|hqetES;(>AQ|X^+U{&F4)g|Bu;2 zoWmvstvP`<;UF8fDRzaJWONg=DuddhE*L8G-IGm4{cMWkqYnJnPp3~`E?T-9=tT+G z+UXk5q?XIB_!M=!8ckSvXM6&)j*Q;C<=11=qKUUX8xeF3$z^rqKWV;yOptJUjCu3x z>S+A{Db0+#p6ur;fAHM?*d=FpFH2inM-_h{aF~Hs-I$7bIGs7G^MZ!tVjVKL=(=&| z-Y?ZJazVa?Gb^dJR!6pX+Wj@GcV1yR)xZJmW?kW3=xm|s<)c4eg~Tk$FcR`Wg(O)A z^xpV1?_u+Ro&6j^*B$MH)emh-rcH%r$}K(q9_HL?)%+i1U3u@ZGT6b+atqUN9r0z+ zh-&qqPG#B|!g74=XsWcLpf#3bXljvcCF&FEc*6Y4sIwctNRP|3dB;wDyEU_5;|G@P zlF}E=|MV~jCLXh1T8NONk(-yh{Q&Z#w^Az>Cw4WqTcaT`-(|N)sH?itD^c?QNmZhuu7stDz&(@ULPwdk=hXEa##AXp+$O|U*U$_wAgUk)?#b} z>Kd|?mxb`pKi;$h(-|J$Xzc+^`;X1K2a$~fmv+x%#1$L;YXrlP7Wu~$0}a{)QMc9k zdP8!#i8Zf!t)67&M%wLO zNtZdwf3|?Au9pG*lQ`yZa3i|=`Myn^ z{qIVS*v@WD$Sz7`v6N4)U8#AcZ{#Ps=kvkw+^hLi+2FXmsG)+Z0y}OB$2`9p+vpUj zc5i;~kImdTGpe&^F4ZmS@gJoAt^_;bP*0nCqlJhw_KEU8gh)|0GY;dIg!k<#sOd@B@z>W#|vPBCT# zkB|iKZGT>MGoJk#Xd0fnYozY&a#T<1b%u20r$$y#h4+P9)4PgxtRNd=S1Ch|1@6|c zyg23QKOzHlqP^)cVG-jG(Pm+DmvHOQ5wRfXVQyRb z)=>Jlc}!gU8D<7tT2EHbf^jMR)L5i$=2|x)%}h%@u6L>tO>K)ZSltksv@7^ns_cYWdpMia-2wO+ zKa6g*pD>|&R^yn8{Z)LdLM2RcJTA97 ztkAg|8SN?snV1x~Z=YITA--_NT=*dk3=!lr6DpKFgh@c^tuc{^$16$le`tKaf%h|2 zJlsyhxZIiQi0kTX%mp&d z>n8?2eOP7vfxk=|{<%Q}x(ZgLf;U11Bxa8l=57S3!iouL#AY_*<(_MqI~+k76`ZUf z2Exhc1h~W`rmx^GM(=XfRIq(w(P4yf5v1LG-J8I~z|Bp=hJbOMxcY+JzI+^oPtRbkncO z^3a04&Os+A#e9L-X{w(uKXog|au_h|Tc^o#F%oFr_oqW)THJ#Nq-`%6Gs`{O zj?Q2X_~zy=t3pHo<2@U0T1F;A25 z(*rI=c?iVWYhTY3isj4&Yu}oJk>!h;%>3y=gQX9}K|H5S3n&U+-_X5#9(%vi00$@; zcuvT`d%Ee?Sg~u;gF^J)3sZjHJVeYbr|08~hML%S(2rXgMl-k9IOA&yx9sBz+!X!# zS0c|^(FYGZ;~dX`xO<-jNWo?Rc%JpWLQ@@yQ_%5qOX-6qG(xdEtcxcAN6C`7%~LKS~H)RfX=fpLlKn?i>^x3>60 zdzuk=JwxyYk9&Z6+^0t!?&fhB2U1mx3b42^`2CS8;`f>C(faBuoApgFi3xcS`MT`_ zH@fMeAP{zR-Qll+PyN`O-lgspQg()#3Uvauwk*e+{9W+(Fc(hN0Y_&K*v zSsSBF)zx!aOddY;LCt33b678wzlcV-M$`O0iW`L~7_l$Vb(YkO>xj-a9+6~cv0mdG zNEZ;=dX0B>N;`Hf7B=nRkc+bGA*ViPY$V(-!W2F~VP)#pn^XWm^=0z$o!LLUe#L!O zExe^>W3%MVn}eZ2$rV#&X!H54g&ECI(Ap8&d0j9!%;mxL!f6h$VY@eQ;Q3mAh(VCK zxHp{D2j1LoQ^Uv!_Rr zIJAH$Dj1qFmWoNuPq?yW%rEDw8~zKH#O=8gX?4qM`*q@Bl7*gL2{3t6lp?bQsd_Z? zxXPZQG%_(kG*?RG1#H_xXevY~x`rTOV z?RD=J=d0kzyCZH<4U5LD?_94T91U7uw(EPpt!EuoW4BLuE*SYsX-Ugg*VQvBd12dX z{iJFN?cwR;D%sOju)`qrV$r#UQ`^b(5IiQqbZdg<+(+@#frYAe`}7GLJh8<(`-2sV zEW%%opEO9pWW)qsTT2pCl!{JZP4d?Bh_HalNpqjio;H*1TC(91?=lah>!{Zjx0N62 zGK*jDDJ@o#dga#id;}lT7uo)#I>%+#VJ!A!Y(1+V6rCLL<9^LtV#F6Vc&eIC~m(>>}_-=O?T(K$;)Os1Ly&&R%dnnM1*>R@&; zLR@vgPV?$#s)$QOh9S|XCmDEzp}v%lQmsGNIbZeKbtiFLo&OnTEs%0t zX+0aMOkL&b!#-x=x)??{_f3{~@9W9ST97i^Bg(-RA6O&T_mjj+>%Od}Rw4H$;vBtr zMM>NXt_<{kujHcA`i`OKYMu)t{_jIqRXPtzW(%$e1M#)}oe1 zf0cDkIl%(2qYf-(c{rWFkIwd_-&et>F{Wz9;Wdv8^U;#|oZaemew$om+?R3oQ(=KG(uos{Bu9|7 zj{%Wc0@OXepuN|~f=|i}Qr0xSR!J~|kIN1DZI*a9QFAjqx<*~l`|eesS(WM%6yX%tQlC(Qwn&mMy=5r?7L=GU)te~ z<}(*ghd$XMZVGdFsdn7DrvHZ}zq@`v6OGMunD?;!xY!N&=`W>$_cVzIxn%%gTyM3r zoEeQ-T981hOZ1^R9q{gr1%|y*{*4)0f#~Lnm$d&VXA_s_qL-f2u1DdeyV{bL<;IPm z=kF<79W%oGQDmlXjeX*x)PwoUd2%ZK_&tVan8w zB%mIvJ`L~rnwuc7wZEoGxqrN3(<{c_0F3X7amc&6UNCbMd@f+-TWq#dOKuMlmFfze z_fel2@|rAQRj)GO`a&o=VM+B5tfPu+(sl(hrFXl3iLYG+8_y0lndD8US{zf!d&X?8 z6^-8FCx_1aU5bX?!*o@P65?PP24M4qma^{8ku^JW+UT8@6-5{sDnWWUT3&2W zSDLi7dng(_4$~|Cq4nzFGt1FWU>6s&mIx?4?e43WynSYeZZ&sMc_E2p>B!J$%Yg zdUV()BK?WDTg?ae$h}I!oxvHZzW8{dIVM&s?YLZ@&fSHJFW+m0?rrK8DjN&EF&Pmd zN8}r1J&$Hym6=6^(I>emldtq~R=klln9+hcdsHdvx!65K+ru6 zsax4c?^l|UJ5LQ?x3rwg?~457)$+v-R!>|*9laQP6pGfjJ>%*D@qYW3F50lG(F^))$DS`Sy%6BtnzE7a-9I1i+q)uW>>OUBiR#Io41=!x8? zBV=x_0r7|;^Zo*|HgmFBx-d7h3&~3T$Z0t{>Y~{w+)7lk)z*yi83#h?;?67ApI%bI zgTc@T9BGybUc24Si8kTJVq98{YDm;_pXS-Bc8FDWFI6X}w7mDDL4a*HwRwj&rxX8_ zdS%v3x=$hDat4YMM4MH{#5$x3`3Bn9mhdUmPkLD96p!`OUrR%#bp;V~QbY*4=u1WK z70$gv?0GUIkZ@hF`_La2L{3Kkx|1P?@Hl69ql#7KUbrg;P9B6Ja**c3$!{CKs3OV* zZ@7(Bw(a(qEn`Lz71Z?>LS~D`txm1FPyzqRD>cye-Z($eq5iQaE;l92?Yup`6a@z` z=N;`YI5k4e*X~*%q`T^3%&`-a*!a961?=cT4uMb68});v&}pBEkX8JMm~Zf5vUdF<9*RQz&RQnx^A%9k+bFj-ym zVm*0+;cc^k${DV9C#sDP2Uz-bz6y!#S*~o~VtA{k^va^_FR9q;=tP3NSJG&%4o`Kl zF`up*y|#Ercsp6#dMV};%cGxJC-$?>kxPWQfVym#PJ8db9VNy`BsN!+pm0B-F!p&O zW2+cbx53qPo$2=uiri#Gsv%vp3dxJtd-4L`RS65}`GcPilm_O3ZDtvTjw>^)LAYHp|yY+>D1$J zEnPfmy+o$qRimeQy4!ZHociU9*bryfd*)$~?HRj@G@tFy-Pc1Qyz`JwTPYdc$@&%n;X2e+n?&|iS6e^f>3cXD8mK-dhH;)qxHhmkp1T&>BI&K@ zu=N@!nRQH22hv1KmxR!jw@6l-ACWf;t{3R*=hWJ`bh{?U0u!(Nzn2Vi`J}#ki z6Afx8JASTAR1GxI!;aTq!X{%&d?`A+U{@s(Qros9@^O2Ksef_beaKf`^>d{z)7Ryo z=Du~ZaEd-|S8drhJOxMFNZW}y6UA$D@DD4tJ25}?#md7uTdp(FkK_K6DbyCZF|9QjEZ zlW5#I?LWQ0FsqqY_e-TsLgJiti{`jj)sFYno-)p-?_8+M()0&|7-P!;jVk{ogZoey zZ5)ti!f2ZjBcfyiooQaU*;ki!PH(@^@D02#4Mj`OImF59l$g4~JXu98g3#?*;Nx41 zt48+odff#fS%Y?`oi9tM;A_J_xV)*ROy*by+Mtf_S+CuC+UlS)wld$6dEOBjk>uw;}B2q;t}J_~p@)IT~*Rrsy5+iW6SQK|f}!YA7ex zMs(MLC4B{xap(}%Rs+13C68rLdCuG%r&%IExSBLm4PZlqf~Uv4Y^OpMu61{*5%80@ zk?Gxmo_${NwcGUx$BLKANNhlOO6pfqAADL`Bm(WJ_60(W)x}m!o|rd_=jJvL+eL3( z#@Y2lU8nE_)cXiG-fKj;)HWc(>lzk$4xqKf5=Z3`kvr@Hwa*l z)vc$drkFA3QOV=ntJPaok5)Ck{8zg+ed~6Vx7$MR&#qA(I?JJ)Jw{3GPdXJe`o|+# z;6RBeH|+fd_bfSU%XZSy8#%+`&s}b=T-^QOkZeis_9#+R^VbwZ?LLYtcg_5sEiiCF zFV%fJ?|}Z7EVVW1t`~*+8Gz)~BXFEo`bVNtALUPUQ6 zP2s*P_{piDS4vV#NoA#DK0|ihl`)(FLsjM}YA=UoKL!O0xDN;VjY)f@U$MzuySqgw zLpl%MW~qo$^3puWy;{&q)mBe)Jd!i-Tj}qJk^FeorFcuIA#`%_1-;s)ClLMmfF)Tg zPF#_G9B!2LsLo2Lv)}f@tO*Qu=vA*o<$lY_j%vaL&w_ZoY$NkMx$YASTq=eV!49MB zj~R<{9Q7p9od>PB0*QX5#(q(Bu#f^nEV~bWne6*Dt)wpworHP51z~_D-UmF9M~^4; z{d7K$wX-1F7kWoWO=^lhDMbnn*od1;9P*ch&WHF7e74}4Lbh6a<0Ev^zNSYqU-FWh8 z7Ey%3-Y35{?Jd4GMu(2t^lan;LVe!y_O@oVR5+h2GoHtCC8AffnlCkF*~?amN9rNb z;WqQpksiSS&wOEUqTpn}x!r#5ge2+bZH)UL3$9gC4*jg}#4Uhs=RNg6w&}c&NV@Xv zar|{x!-Wllv;m<;wR_30p(q#cR<)t(#IWn|{JYpV$+8~jc$;wzOFU3v2_A#GNyCfC zvA9>g1>#Q2Xp-~QA#aP=<3s8PhiOm5Jw2kL;a*2blODuVZBFta?$}aCgJ|`41=PlS zH4X-+Wx9YQKV>2Ktd5#l1!9FY`f-aSkk490>ii&L64V~vAUD-b_~-@DCh>`WYjvvq zn@gR`dk@x*dv;dUW}6eMFFGN|z5OMqAG>OeYODsJlg&^4r*unG`)Q%kSR|s>lkU5> z+ThYz5Vy;Q&vlVHpHs|JlQCW_+|KCJdi#r*vs$7vDJ)mbA>JAOeJ%c8fSaSUHaMp^ zs;OGj>?{~0-PbMshf$j6-@K0C+)bBJ3v;b=&0U^cH`KcwBaU{@d1mR0?;}Xx`89ty zRyNool~-jb>XT@emd`Co!>j6^A43jROp(j$3E8%EpYeMSYP`RHKfl$$%C7XF_5pdS z!r+dNk?!VT(Fro>_(eBrHNTglqk&Qv_GAEhZ)Trn^5Ig0`>8c6cPYJFckc{~;taxH z=WYoXoB|R2xQdYg4(T0#pN-N!oxN_~9omDRg&q|U7ASp|wOf3(d~LLn7=!V|WPnGMyZqfwm z_sY5J7Y+S73r9%BVV{4Nm$IaY3S_L9c;5r1r^6mLWZzj>rQ48Fjl7c4*MXD1cd)Zv z>984F+DulPNo8Mp6!aY`gf5)hx8b>or=RY6a8}N@yIUWo;L%&}g{u?nHU+XAhrm$} zUrZxszV!Y3qFxOw@Z*yG>yXC=+Yix}uIEkP)vb%4z5&m=8S5+^vi!J(;v1YsL1q~3%BfQ?Ff84{RnT^Q+9I}spK-qYO-}#|1kY4z zKk2ET0_t&<2JQ!63RK!@S-%Nf_v-O|hqG|!&{5FqB;U!>`Xv+Sk5tv5#96$!>9|+h z8?{s3O^ZENgv(T7>mBVZ--vI<%q;AwJ&Swyh{*JczMm&UoA>VZ`z%f86B0@MQOOOq zuqdD|a2O=`?C|@+@XE;(ioijD>Pt`R#}7xfCTGE=k_|Xn8vaW~7k_n6Solg<==jq+ z%cm-m&AaLkz%9)iNxR7fto^zwDNoP1E=JyUW)@BqPnEk=IjTkj8i>n*n9J99b>jQH zEU=F!M1`+;JXv^LFi7y#(A6#(3 zl`6^Ud;MQdUw`w5HG+NyFW{0q6cdFiZ>Spzjp<_SP~>;gF6IqBTc**~gNHStf@-%i z1ZACP1`EoO-{5BX1qag0A;8Gq`Zw@6lv7}Z`PO$X!NugY0oRrAyGDtL#%i)CMJ}Es zANOLaTGIF44}B=Xdno@$`1)x98Q&T5@i`j+(`6J=BUCdujrxN1Vf!r7G>#@mLN%47$hlXle6KVuaR^B*C2x zbkUa}h}_F|p}aA7WxT!2m+yhQJb%ia_WHnh%0tMDAR6)vxcED8R-EKGWp3*+ITZE< zsAG+V4UDEFLMZ{1DGap9^x=IM>GM&^d-+0CVOu@=6K5|)Hx*2s<$kk%M<)NOM-_C* z`|AifBz|!StTnHz7;v1!R1lVPT|bmlu%ov8g4mDJD>}O#AI5x^Mh>H)PsF`FaP`>u zT^SjftarMcd1v4d^R1K=Z_PVuNRa`AO0# zPo;N&Hx0?1^6}e?GzS5@&!sEC~`KGe;hTjYyf2X?N;eJ@*2QjkFA!NkDYo0 zJfa1;fimnkwN%crwO_hxxa5ODp|~Z;T0I5o1}9&v_0S~v`RSWp&`=BrC{Rn1X{U9X z4zgX|S)TOm6aIOiFE2b$IY+T=*Xd6V=cu4C$J`>l96e$TDm%`->TSbrtG=QrOwFFw z#PKwhOy@{h?lzzFWU8OzKA(@-u!Xr&ttmhR)Y$`)p6{4I zmrafQqwoIJF5}u$@M(A-jtjb|+AWI7+UyGnJNH3vJmNuL_D9mqr@96A3=Nkq+eG9a z12D;r^a5jh8J;3iPp{=Yb3P)bsUUxe42sYHoFYB`bMm7#vHN)L5=oIB|2$fO%OOR|s9$toL30~p1R@t2-g0hG>n}0 zNi+q#5``w5@u&~tW@-ya@0ih?ApV&XBMxFpnyuX@u$#?p}m-> z+iale=@+9B?n#n7fCDJssacdULJe|D%A`6}O?Wvz3~9-W3UKuMPOsv)!{rGQ_GBKu z(k7TRH;S_v@0@bhVT72YUKas*m@l)kvtmgdizA<)ZTp|HX&L*&t~}-GpT`Ehw6kx- z2!5CRRP0@LP;b)3QjeL2g%21<&9SMs`a#0GAu_n*UZ zM7nUPgnd#5e@{3>1X4HsL=iG^+b~-?CdAR4jbH7xZ91lX(Ih`K`d08D;X3Y41t6)&014|NedQ4;~dIg>AxJ7+O7JDL`^_Cj_V$YYXM1(z~VTGowpatIxop!R#`l8sOZ)v_~^;GhT1M5nE_y#h^kHGZM zyI(z1Gi?!mb_k5@MSuJb=koPgX-~_3D3aoFBM_u$Xy$|+l%>W3hPpO;IieO-Q88q3 z%88azMc?QgTgKH)$GQa^E6Y=xAF;Xo>Tani3>JEPCjW}a()V_Rv9x_-_9eaal;c&@ zlH`iU?)mvNEYR{e9edK=Y8S%2#BN}E@8qlAbk>_Y#Kp&4+O29v%hjY8rou-$^#0ik zkUy0%z|zx@ezwWxsY^7_6~okd-MdK7cV}~{ zn7I&^;jxMQ{tEoi)NV^fC?18GUb{~^`>IzR>7qHgu%jeQ@H_$n8XA_9&L|obF%I(7 zY`v{g0vf^|X1 zPborDH>cboO!u9hnuna(>g?yRZ=DTaK21h$O$<*ufjZK`J2!^3UlSvl3U$OjY1~LE#EWY*`6*c(gNe^wr zjXgO-u8-Gzw_6Xxj@lv{vpihKQ9W0L2k4WAmAWc<^Ig^XYrXAVlJBna5l<^6yBjgb$bWM}QQ=9+8HXU^x@r98`YM6qhm)hUV_<@jpUU_q6w zbK)IO;qy`rSP_lP#4*p0bFmRNeNJ+tX$?``L-2UYdpore8Jbz-#Z}H-PgB|^-Il@g zQWUa>`Kq^Q>z_>x0xeP7cmg7$(&wjGlXCw`M`azWpV6#FnU}i!QbENQ9r=g83OPGc zs4Bp|5EUy`H0u0`$#1u=9D(^Yr+udBDfMz$7r|fFys&BpgxH5lYHQ_jSdzooSQ=J? z-FDSANpi^?CG0lnRE8);Ru)r=R?9wGAa(e6SiA1Ds+ps|s4<1{rp6eCv)%Ji=PW&n zbJBnB* zZkS$7xh3WlV*#Wfb&Bhkwr<>OQkUIy&NcTU7l=2Y>S#R-M!b2$?2`NZT%NmuFS>HIK@=BRW~!KMdRnSSnXotw_|&Z-6KAgnd4)H8>2~i#e>l=T#v9 zM}JuQxtM!=Sk*mwoie!;_jS+1tsDs!$Xx#b&IygPzz?QdPq`gE_9?P)-j-=9uNd9E zY=MvMliU=UEY&2Vjwtk0?1voy8D%crttDr5%#GVA;ymaUNT{7$lGdO1f%O87h^aB< z$>Q#%{0Z-!hLq-4#&D&w6l)dEUxvSMkjUQ!#XAtC98L$-Kjc8qS4D||+gULQ6P*>X zPsRojA4?k-&+W|eU0rhnDg!JF>YIU-mu>~YWmqh$ePO~J(>`J1JHf7HGBkHq4%Mv% zDyQ9w-%!1|;-N}h0SuhMT@@-yCS0Na=yd7EApQ9b>M`jlRH1DR$ z8MIxCI@<#0Yjv*WVXyX$uH6+{%orW<5&4!iT!8EOZF%?vo0V)nN)+p39x@SP#sYQ@ zE`|y9d^3^AUh3LklDfXg>OE~=xi{5Fz25VPYnhH=v6&obE^bM2+{(Bdm~i5b-1a$7 z|1qjFuu}f9;0scHlrS7LXaFqo@HNuo7@48;c1{-s+6zLo2AzJb7mOpC_<|bDTBdiG zX=Qb{7Gxc^uc0_61_pjy1GOxt>JX5AxSI8_S7_|W_wUw;v0jXKNZ*Q#0Du*8v)(Ne zAOQ4uN>YK3&v?RYdqH6ZZ|zKv%L@%{xMfmWs`tgPTkp*t`^|w0yh7i7r&;(Ogam($ zKZB5UPSSnC70cn-l2=yfS(OrH?$pND7oRayRDw%Y=ubL4%^R2DzTSMBf{i^R?pY|O z{<^pVZd0(p*?agr`*P!4R4HYIvmXwHql}VJ@0Gi>3k!Zb9)vW-`921k+WpHqG0g-f zdAP^}d-Lo)uO;ffZSrOx3o4_NU3JV_6Xq;6Ts$e2t=bMdNYzADd$>S?cSGEOsI~1c zqgKD)U`8&Wtv0$uUg;&z(%~e7He7Ml|1c@%zHT%CIs#c2i?!y2i6|_WI3xgD$YClf^p4OA$K`&3hz+p(~&4)HW`+v0U9(Kv3XybYvoaNzm z?7F@Oy-Y*un$eh3=LOF-xND+RyjS1q!v!g&lw@q(9z&5(3RxPZ)rzZJEkAxTCcS=l z+&oaL_PXzlnj8Wh=aphwe@ZwhNOLpW&Rh~#it6=X#d)=ofIgTmYy4dkUEQKv!ewcu zVS_$fdV3sGkIrb6b9v44Yrn<_hE>2@6ml>DMCx%RprA?vXu zR{&mu3TMspW*};icPOXV<2ja^ASc0_@tJzqBSS?Y)lZ0U(Xr*=}W=t=dhR zw=mUyWllpyN1sp&K-$)Bfj4Q&g7!>`WFKh4cJr3p=x7kni*RekC^xr3x&%NIYbb5u zsj1gcnqx;=Od@dbFGi}BE=07Hu+vXqV-EMZFUZ?>FfBn#373`g@O2Cxs#U7|H{Wj; z8p5EjbFt}^lfCt{M}v1ZfWLSsihwZXXoRBP@B*f_r-g;(dnw{aeEquW8I>|OoI9?h z$?$Ehe&qy15OO}|0f19zwQM{!VR!RV9wcW}Jp(rdFWdz1c!y$1EsM^I(%x#}r(Qyc zsuB@>F#tdJZ~Zx7{!5)_QU*_uCOkv;YoFR<0tl6-4DpQFgj4=acabnd5R1Pm652jQ-+FZvKVuXqujc^~GRt&5Xn5U@2vWMV5x{ zyT=A;2mXp@aweM{zc^cH0dcR29w$xxs=rgsyCBV#2%gnDA3o|HWD-yz`S)w?E`Ry5 z`~8uJX3JOzp3y|R?ABKN82Y=gzEQs|5@4O#3s>Qt179x|!3%)+U~=Wr5kXC^`Y3dl z3-F!UTmh6iW7{Xar$oN}k~+MDd2m~oh0|8}e9qw+SOkNhK70N9J)A62r&RwU=8f9W zUQ#SjA;rOSWH*zNO4}T{7(0{E{R~Fu6xfS}J5q&_^z`ve4xE+D*O}ufYtvZdbO4BQ zOxyn3)i%fJTiUzFg;GLXUZd5LT1vT5FH+(xjG7A4D*Vo?)H<`APAe(>M%nnXu#)vGWi{?2MoN}OH9>9MOCkdLkkPm z>jk^tXbCwjqCp=4`Ki~Yp@gp~B5URE?oMqkAV1`ek51ugWBfg5b3O-`eEjv2}B0@1RaC(GE+2I+QGoV^Q~-LwbFBc5A1P{k(60Qh%Lq znL8MN+`V{#mZ>yXwovim^YCFsI{Vfcz?hBQBit*CeZH?*5rZ}CozTGZI|r34MV;W% z%Kc2bwC6`shiu>th@8Z7chm}iGE^>gfE`mN*{S@<+wDK97COH6ut{>XAkCJ(A4tVz z46%B8?fTjWltIF;O*G;FGv^VEm2Fx}T3SuvP#ukb4keVnjoeXZ2DgmQUhzPh)`}J# zT3Fxq<<&TO2~JgHn(`K5T4!%9Btq8m0c1i#wGg6Ta8GkQB^Ez1&05axX zfH2=m7vYN>;{*DBG4~_XaSD4~k2kEp|xXPOG`K314rTPJ28=F=i8};pQ*!85DM? zCGhG#I0?h(2nUDecVI;s1kGJWqEt@6_4)S)z(Nz3!+hqpRp5Fm0KK` z5ro8c+EbaYagJZj1WOrUe9AP^pA#82&-(3ogLwIakb3fP$~ZAWJ6=*Nzr(1zdqfPS z2i}Uz@7efuYCUe=-Bd-CPtGI#p$Ivn=h|K6KS$W0#|Rr?5fc}KZ)5mtg?rTIx%s8u>7hqfz`A*oYii~- z_jKE-^ECF#Lp9a3(%i;JoswgVJW}2#vwt$XDAnh6(X*I>uvXh3Co<$&TPD4RB5ZSrRaXZtn#Gh+I`<`-e)P#J>_$d+ z&UMrIJ22z)*k2?+czkyTxK`u&xV(D@GSDyV4Si-eYTua2ChhI_#7qVuzgpGosLC$^ zxrBc};{4A1LDQ<2Apo)UE3K_Bb|1}8dkqe>&5zj)<ft3FxNqF}smPymzbKY<%UX4_voh z{VHgO@ynxj1>NmiofYe~4VD&wcjZGDM7$d|w~#|kya4i_vE4T3&D?SN@(+qsI~9Df zbWpk3{5FK2pHGbj!fZO7-Oe5L+$FM~uoj}3#`)e+zo};2du%g-4(PP)>Kl-Ck<5On zD(OR=W{%_2NdwU7U`d{hYJ=}ib)f0JWnHS4nVpdEhUjT~LG2%HmEE#qQ3yZ@C~w08=&ZycmO$RGGpq9Kt$N zX+k`quhYGo^K}6tMZz=x&H=jxhRfKBY3Sj*GM6~7DGSr338=Z{AnxZc2p^Gie`?kM zn;8k@hi0L!_g>D|x<$ZmYX(R^7UiKi_sCe+aRlZxiWv*o9(N@MR+(OUl7MOS3^CVK zylj`|b0=21uOxQi!-j@8xIIDCvk|tvudm6^L=3E3AUWZ&_Q) zSvm(Q8u>31D0?grUe{AhSmZjk1t)GqlsKX{Gzt9Z7QNHwrtB*-lHTe0_r4y3A1G%r zOSo2;y8!L)JV){FlWCy^y`->w-80(GWDYsIehvja+XW^SA9KSjx|9b(<(4|Wg92#Q z^rRIj4|JWXSPj7_xFVn;E$-$D+3aOOwkhphT`2V>Kf4bcTF@(23B&H_#EpbR3)sxK zgZWsJSOZvkA%x9S`D}d2giGy$S4fktt!=#na`5qyo_Te6U%K=8FT6`F80;C?tjn#* zy7ct-jh_Mr*S#@d)N>!D#ToC#gSe7mu4XwgrE8Emes3d4huRno5b`uP;eL!3lUs3> zKi3&xDFK(T0G|BCOr4@dGDlHnr8-*WXvK$f0McZED;dCIQ9kr|8E=4Fa{VPa7!h+9 zo$xRd)v_P{e*HV1;6@DG|44L_w?EX{o1B)Fg>69ime(Q`M?xax5U&l{pos1pLb@MT zJc}uY`LxpGxYL2XQ=oW}?w9vGyzl2MBW3ayor`tR(c-2X)Dr3Xj4_f4I-2d;_9;4N z-JLhnpIf%;x)c}dn?_gVm#CP02yMIN3pZAd<}`s(7BrR;V&Zga9x*grl`Al?WN|cL zC%rG3RQkAr;7gZabt8rR5`-ktWDcoqb7eJ37>*Sl!6%FN)^_aUDMc{@G-6!rz8)e= zfFqKsh(C-J^Atz5VgyyB&$jDmA}q?}66=9YmXr?0GP77CJKx4=uA~^t4c!ew4pYK} z?PjUB54|PKD=?OkyiN~ueyAfPAamPlNsDp*ket7g@d&(iOrOjAs(?_2T7CaON7Gtm z>|PQI3yDts1f2$YLYsMfoCku&mvQ1)Lai5#;SFi+tn1fP*0AR%ODWlIoywQd-6`Zi zzctWHHK3rnQGt-%xtyCSj29pLI! zAe0{Ko14d#H_%?zV?SAD(x9oICI>6`cj3DNa4DQkOK8UqA9F&;)P+y+^%h*qq5(kN ze*yB4wAse)Z($ zf@ZZJ%7RlHba4kTt>rIe`m=A-^T)TB^!(QpGVhL+0nrOZCBjogO`vX~CArpjUVlJ<&f8WCHY^ z!p+aXjuiTN8uy(-);oey8?3Agg8Kk0O}q4A1_aTEXLAB2w!+w^4-OZdq*)S<1}QzAC=fIb`S__1$_op1Hpie3&|p zgx|2Rgt>tkW7AX{_=rC!?CY&&pzh%PD~o_ z60TcMwBYo0-xL*8BGb{@z^C4^QR7yVb28Gtcsb=9dRZ?l1v?6^#c%#oFPU-F1OTS2f*Z(A$X4AiIEvYmi;_7h!^018OeA8eR_pgdQCnCOm!<9-u1@k zu$Kt;6RojWcP$l?sEU-Hqx#dPO@cj83c_8s5gf?L>r;qys%~vAH0L0eFhi9SIFG>BPMBZ=x>0l2?h|F>Twr1G2|_ zcI<7LV?RvWWJWA5pUa!1k?M0A&sD#j&_zA1a?DA#KgQskqEyXZ23DupY&0=UCUcv} z!yQwa*YG2wrqP~fkW=&O00nn+bO3bStKHD!Ru-x&edMKcrL#puVutRPl8kp{r`L+f zxabStBq_Zgf^=f&cXI%>*Q92v=Ov*$HgT)%Hh60ZF6h~8tz;zD{8k2fUa00 z7k-`obj~t(3vn+Gn=AOnR3e$&+I{)J0(-paE@6KQ5ZXJRK{*OSg@gC6^UN^>hXYXp z-2aEayw+C>cl4ft8yV*cY_{FSk2xpS))_})vsL_H8M^yo9VvNiaW-Ap^K--N%`UAV zx>3|i!pR8-bD&cqJSIS>%2WG85RywJQoB=Cb0V0#6PR3+rjh3##ys<#R8sf{QbLOn zEYG!V#aIK0SOAS4I1t(h3zBoPVwgg7#)q>Ub9d#2OsHGV{!IW?AB;y@@p7XhMS3%_5_wJwUNl4?(- zredAo@RMCpyF2QHjVuhdEpb?wQWmpsGv=JN4*SGoJ@s`oty}=i#4G zwzj=~Wy()!9dw#>pFRD@j9Q!u6IxV3sa!+U+hpeyx6;N&+^duxfaXRI)8B=UuWGX8 z5AFHG{*D^&I7O#+BB2(5At%a%{cLTTF@>>O3+kL>3Pe)6b~XC8;@NtUScuQbAt)|JIj3szy(B8B}edIuAjG;Vd^}L z%>KI@@Ypkmul>Q5kYDLK?$o5y&x198JwIfJtY&vp)zg$zHcMjz%`CZW{=x4jndzh+ zp<4_G7T8|raqvpX!`Xfw9mxbCTcw6cNW;5k)2VxmK&upU%^GDN4P)EBYt;VDKP}Jz zN@CnMfTgfoY<#(xT8B&iW6;Oc{5yHu{;zGRrOk^)80wfW{vpzlNi2Bl&g(i*qqh*^ zvST98g_ZHfHa6HqK)H+4fna?({A@zT(4^ZDX&M;egMOw#=&px%=0eepAmr52Q@q$- z)m7wokfe2_Lcg&)LQYhrm*tI!N+ib|<)6A|ActrQ2HNVA2+OSaFEaDqH$=&A;+eOb zMlq+tKGlxkX%b}D=DlUj$+293H1+7{kY;jh5vT7IE8%^Ci~-U{XXlTPhg<6 z?F=AKW{^{W*rkGKE$wY**__B!+I!8w{*If6|1ym6kY>6gV6)*GXiygP9%};BciJ(G z6YQT5fr&4s+mCc+Hb938rG~z~L}$xRs@e zR5!dRrMMdJa)@%7Mb34J&Bgp_6E&bzPcvOS3{8Y{uho4z(mPB#nUEm@A-fE3Dp1t9%tCm6 z?y-?FUo?O20fekdv^TZAO|g=$b1f8Uo$AwFlu{AxJduYpRR@)Rd+3e$24;m|?yFDd z_h8Hli`{;ua;8nlV@{vdRV@6WKNq;wPeVu`^5UNs!#}@bI}Jz~@ydF3)7~B)9^Lel zYJoGd0>Px%l@Y2N~<6|FYhZ*xYaidL0%-~-)r_hKp&ljw4+Sv zaQ*=3EXU52DdM^wqh~wu=yy?`5a_ZwWu#iH2n=v4J4uN+t|c$s^4=vtaWe#FB#LJI3mK21*XpPZ|~+-Ecn{!x-S>c#2k>l zHKC1VpJSdb0kUOMj1XRN`&3o4Lnk%L(Rw$UJ&o^tXGx?s(7bPlA3)DIy?J+!>nseQ zsK(bWh6FC%9r9)j(oB8uOvpAU%Ktx_EV9T=c4XWFeZsxW?Rg$f^bL`XBj{Ap+&l|M z)lY^8`>+v!5t-#8aAszo!ygd9(%7c~#b|%TOK$4IXy}1~Y!P zhYEuD(@~dsUGXSA$L@#p&mAd`HH=cOc+Ap0294%WZ=l3cdSEm%w9w_5 z9&M)X4XO0f(jPu_s9OVxeMfXmX_}Zs6~g1+UcjYN*6*(DK&yaGOivAPM&qW^Wn!u%0HC|_?z=N z0G(cEg%uXmDZ%7)Z6lnc&Skat+!>)?B0=y()Cq($ORDnaQY0J+xp4(yOo=#H)&4a zk+;ujlKoW-?pM*geD_QiOU1vymwx|KKbh$nc;j)DMqk%M*iwyUVn{zHmzD{QG!`kA zk6;O}eNs#o8D(C&mZ?W_n;viSnmuG z(T_p*7`lI+J@fDFvZL*lqvxHVk^}e4t51F2u$Jh8B5%un{m6n%x4AjM<>MD4ue9*o z6OlQvb$OO!YX|lUw3-es0YPJC6dD5_%6;V=1A@&_JkUkpO7PZqoP741N}_y#iQK4s zc}?s9byam?dpzjVXvMMaBy{$+AOGI=)H!*sAY}iORi4OU!8A6PkKo1Y|7Q8aLr#X> z<1{S+TfrUMEPPi#NEzs4MPG}R4wn0z$6_7Q{P}))#Lev;wOh!+I4*r-pStR%dIq;} zt#2w%HTS$PlPJjpjE5n(Yzvi~I(jdLZmr{HnqyxSUrVs3!cYNbkQ;Enp04FespWD4 z+ZFkx%b@bJumRf*snH7Jjaw)$=)ZnP$+HoWSSZab`z z>GU;jxpVClp@LV^ALnnJJJjBE4JoriR$AQ@gcN4CF$8vmU<%p!`>4`G(}N})Kju2_ zH=fx#tsl?piiQ^K7sV6+9rgM-vW@w3$3u~7rn}%dq~37&?k}_Zzjr{Kiw@776uyV$ z(`&oL3f;`2G{&>f)3NoN`pc5I{ZC%XV*grICj6KZ@H9s)PTKZ>;;PnkXu7q=&WP9u zBN0}@7TV|EWzrTF$XN8yyn5+64kt?;qp!Pl{?`0*08yggfRprDwuN{*F0|o20E!`ri z{~D6{7p|t?@LH&|Wf866Q5@%`2#{-B_^^J6z$Gl7jXcP>Cg5!#GBmtJ<{r=2=EV?6 z>EZXEaZjsSz|b6a zR@P6C+wWx5tah{x<|)&&`6{@TSnRUWOS*E~gX!hDG;i9!`0>=YJnp~ODQ*>c@vy7 zrwgp2AFt~Uh>OErAUPKA8I}Vxf|X zu-GA6-g-ag$s60|LhoG80g5sM=FIxDhYVOCOqlJ4>cw&p-Q*Z4rSP&7Rf+ETbxGgm z`p(F-{W-zxpJws5A76jHzt;4qs{~d?E>}G~a4DJlRxrowJ5$s@dEYb`aqgVVwP!9` z7xMYE3ff&rNCrc$bBAR>7-Xo#tBS8UN8_>e<~?Koi&Hl=PwYOS{x5CwbKmEJtGwb) zRjOv&{Azj(&_mz&+U+uZ|DXE2I__^b-C`Kit+E;}0f+HJ-E82PE~0HAlHXgef}z8l zi;ck4*ZYAjIvM5dy}9Ciea_O$0}aUkos)bOm}NE7{tJ*ygoO7omC+iKD^(AFSiZNe z1eAU|(%Euo$4C#ARH=%_8?Ng64`X-{PZPp5m&t|4q7~N~K!gfEYW;OV4)qen(!k4$TU2GM5*z>_qQ3XG||i zin6stG)70U6=pSvn;z95K?Ic|vz+P$|63h#$KeJqX}FJ9+@?4j2rkC4ZTcPy55UY$ zOrVuuGp)n;Uw8+{GuUJE--BbCNRi<3%xLT?@kwDgq)AChHKuU9ol8Gw?R9u5(WoQ634I+Jw)GK^p$1

87NTm_%<@@{P9V$DK%nAG8QW{80TiYMT0eVU%>}daYe|7AOwm9@>=W=<)v&|C4 za6r5vY_#~bVtXd7A%dXHtfpO#w3L`7Y!C*NMV*l?dOHlh4 zLFXHPdS+^_M9T8Ez*fLf`dI^rCbQ4O+xZ&9bq!YA1qB(kw$0Sse#NhhEDX8c z{n&AJrXsvEBX|}<%2!((+!eg2rkEX$IPJDJ5%WmIV2kQ+3*v-vKScV zDhR)Re)ap;8(I8Yn?YeEk1O6e6xTjBAHIyA=H?z5EuIaUDm8AJ8gG#d)vR+_g;0@d zY%HKK3UalJYikqGp>8)ihg2~@x0I#1zh8eJ?Mkiq#ko{i;3RRK`3X~+r8dwfQuq0< zn%Pg*nUe3<*V+QH+2?lpTV>-Ou--`)GMfp>jTU^82d3KJUy+&Xs>SiVZ?dDK#f!rLVRE-x>;y}jIE*p&_0cfGom-z{6RX@l`Y zNd$z9j(TPAwD#`Y5q3R)S(bNJ+elHSj7LQB;po!a@vc|7#mq1FU%#@_gA=(=+CGgQ z5&q^eIUlpdzei{ojQ%yi z)pR(2aei#lQax-&%^gOxMUJ2LNi`oV!wy2l^t}2EGt^{tm#L z!$Zvckphgn7+c%R!f)n}VX@x4aZlwl7Jc{23otJlY0&2aRGGqV=LBrVe@*ZaH9{u-ly5^`NdaK}$<~Q@= z)uqE%Eru*s{z`{%GLJ@VELxJ#VBzo1%OmUy^yOBgv9@kUGu|rtvb_DVg#ty>mFyADVdO%Md|2A$8J{aF-F0UJUl^0{Rn9gydqKo;K5O;?tGd0O)%QB@i?a2K!wyn3 zo%>^%4h@fR=D@#EOog8Br=cEIrB443jo#he?dI)gIZHC9R5x*XEIzl+-JLA-v{0E; zj#n$+NWQLVXY1mOt1GT^>6^;jy6nMe!VCJNzogjZG?fY|6LBoMAYM0s2Gs{^0!}{e zj`-I(f%Ps2{0w?U4&g#V({;`VD_bjiRwnw^khxoVd@L9#5Klot$?>E6e5%DkL~hak zi0R{nR2aY|;;R5W>vkfaUozQ3(cS219Ej?*PE1S;4winY ze0IO7eZmV8cTk=yXW-Iy4rtwQC#R}*qGq(|b8~R0C~3JUmuma7gcondb#l`;x*b#4 z_A)9#WBQBe^pCL{e>CK+tvloAyf-(^kv_f5!9r8FGBI zA?tGXbFI~>YzuWqp8^rjLykWpS2NR_<`&o`U%q^pi&BB>eI$Xa#>P2z$b+0l7;Qv`Gz%yIeopU9G5RNPRoD9f2tZRo_@w}edtwHHPY7ES&?&e zA*INoRV^d&;K2l-ik8!O78Vx64RMNvM8oOb4fklMj&Z3xrfQLWwTk+`KyCrD#J?2C z7#qkTXyl9QdNa4q^Xy(4w}}^nw26tyC3wgZn*fLK+w32239=_qk0>PZspSk-Raa}B zZmvCV5C!{TL*U)Jqr;x$!Otd~U2zVp;DRC=^jVgELPn_rY(kljOq|rVYWu006_#C# zL0^A8Rhgc??O~f58Hw|i?RDF?Ho}B7YHmv%qI;kFP1Bw@^3&_-Yjtlm{{9uX&{3_H zD|elQ6Tr)(mmXTiWmr%vTLn0-LIS(9$+PEGHY~KXv^qj{fL7MpZ)WHCODU!m70-MQ zNnmr--QUty>bEa1zjV71nsJ@F(%^b#zgQXQoN3R;&yVfd|F#kgU@NWjRP9NcUfnu3 zPPc*Y2Xo9hz44?t_0>*XM_mot+9c&1lq~jbd0hP7l;*n`4&*{%1cGkhJb>pHty`y4 zp+7hf@#*8-y0&)L*%<~Ei*Ml_a2XR-4eb|Hm48pEXJus}iBgJRpvKwSB=b2m4Mg}V z^eS}47VqvC7#Uhbzgt`xXcP64b6eYAomMJIq8jPe{L1k7L%O$j3mlkF6LPPI4-lJT zr>3_3Gj(#OYO1;Ue6Xs8VX1hSNO_KXji$1C>0G-U;NIn)T^8DJ+GR~UodV|YGP9q}k8C&} zgXotci`oyA^iN-ZQF-rv2ylHqAI(Vag(+SWT<%|W_I zwUZqsmBbWo&GxzP-Gz=YOf+;MdtRON=l37r9jr_{^aOp?lySqx<@XS#5HB0y>9M9La7a-@NO6<3@I0s_|n2&?5*0DD{>Le~8vb z(-cMA1vsYGdi^ltrftP$z(Xd+1a1>#3dxSvdZz=UsrbmI^sZPI%n3YF!#9@t#>V(n z^hQ=gELqAY^KD%qTUC7@CGgwY7iyFNB3u1_E5N#MvL>^}b+#)cIz6Fug8*cn zO8)WT+U{jbM|z9Y_IRCP=UktulGDR2B5#^Odr#Oks%Y2 z%|Y~6dzqOZI(eDh;Hl}>mRBPxCSiZEVlne*(d77KZz8u!Olzv^E!6G=^?akk>3;S& zx0>YGRCeR`?*N|NLs~xHoUGWpfq#NQw!b=<14g78V8z4vqovu3>LpHvIsX2$zdajI ze(u=8PKN-v46n_5{YI@`$Hr!C09rOSNmc!eH6K)eaW1a!dT?vBP&4Q2S3OISUy#89 z0DClzG)vs(7+y+Bw4m+U=NJcaRRFRdzs4~%*ZG~18%V5=xmXni{T$x#cUhI;Y`i<6hkcYulz;bwSr#y{YU6 zFHF~V7jiPFD!ip7CEGnHTMi{RnYNWJrCtwJ2gny{aNiQ~)f%Z*$%i1$u<1dw2VY3Z z4?$;P*VD(g6GN%c<>=Av+!r|`ZCz@;$%5O$@84CVx@uIsO;^s1NH;!MyK#2pnvhIF zh_?svmOPcbhqu)~tp5F2>FuB4u!;Q|`5u+`{(d)-`1#Ssgicf0c>p_ZZ5{vF`*otU zcQkw_Dqwc;m`{8YrjyB1u5*mOS8j9g^G*5%>KQAh#;;22Olqm{;yb#!6$%#Z@r|$Y zV;{l3jirGkC34x~QKU%a-0sd!X$1vI$fv?JGc!|E?8}&^QbHj%yL+9cBqANC5JMwt zi*fD>Y9qFIdMsBy9}Yhiy{f5lo7ULW;L;>5DeG4}h|;}wk|8(NYNlSmV5PCSSMtZDhr}JNxxR9q6!O^8U z8OPC@n$bwyoaMgcb9OEZIQ3zhqc~RiD9MOz@2MR#>o z-F1lVs&pAwP%wW|LsK!0vq2VG3p*dN1>M7W^ZNBeG>uvVlK`drIX%e&ratZ$PIj4x ztq|>Fa8VgMZ~Wbf+g?+ncAfjx>U>0w!g7akd7~D2!T& zVA!B>eEOjI#a+WbdL48OO~=1Kno?>qK{)wi5Wc=oD?yWyF`of4uflB5RPV~|XiK=# zkvZ44<1jj>PXp(HMo-<(kv=# z_|#A;>_c>v4IuK3j-|3PcD6Sj04V6TxI-zaoioM)^~ca_E5cEnNqDl zvyKXa)m%{6QLCc8sp<0EHyFS?=o2j|k-R5#fm&`kZ1ZKd5yH(!ZEYRf!Mo&q)e4&v zgLI0|WM$Jh3=b3Wx*)I&XVR_#p01jhyWnidys0SC(LO(y0%_03$4ACzKfk!jiDYX8 z3AwXHS{BoJOMnL|&(tSz+G@c0!G7EvKP=K(o1SXZ;iVCLX8~uYpkK1N^w}rsL?5w~?6{82+v<)i6>$q33bvt!KRSBl_c4mKc zAxB|5aGbo%Y<>4d4lX8n=uBBp^VIw)SjiumU@}b($$J2rv!dM*x?iD|{`?0@`TI6g z0nN#DH*d(=;4pU6+iCU~bG3Fnfm8>%hb%1huFGy6hZe&|Mk27;q{7l_9rx^ic{xI$ zHFyG-_&%H3#Z}2I{2iqflUa|eBildSgq<`A(q1UHN1}#&%O_)FiSGN)Z*6UPqB!JK z*4)37^-I}wNW0{dXcQu0g-3p@3)7pab~u9j$+lFHQnMIpbJ-&Cl+vet-K`DF~e7Hwry6-qW)ojOhEC8YH)yG zD3QPiy{kOwkA4u-Hq+36%V3GjPGm|a6onJgbbsZ!E~k5+3TvL_W-+U}9$jE{Jz!nw zuhGrH+)R9I{%$^6k&~krgX|Zp-P(R_ZS9-8%V|Q+_AaIq<)P~k@jCeBeRQ-syfEc^ z*RWk)tNiU{>}JjU!a{o}5zffL0}BB;GT}ofRr>AszuI&)x#t>nEq0s zN%0AeZ;m58^|jL)-dS(vq!9_&9H+XTHJqO&NiRs9xm@nAmO34*JRrs`eb@O-eQ+R1 zFqIuwxdTGJ+?4v48Ev*kau7|Q7i8>&rV6L?`NjATb*gPv=b<I-_3Wu7-}vy9m1~Wc02NDXgvcGRH8Y|w!Dh#PY&zPwi5Uq2O=}A zSaqw6cD?xQlU$n@zsum^YF3!DzxxpYp!}Hm2%!4Y(NR<1982{x+v^Yhh(>3yaU!T{ zubQMF%US!I-c}2i;8(YWk>=*+zy(Pj^AUrMFF3G{W^)5e>Cbru?V6b__(Mp!&LF3>xQK9z8RlCk(T~AbM{-JEKjA^C|R??dM{rV zpE)Q#A~7~u%XaDuPLD>}`e;putz9a30otkx3QlXShbc7&YcpkTb#c&&=(8~P7ssRN zj#<}Yx4P=B+FD3#c%;qCDnM@x9vE=vb=gcR(U_E!L3saW(kLK@CC0O!^29Lk&;4e_ zlBm=wg3|`!qnX6-+S<`X1N0iVv3%^P z+x0tyLlcZ2y;8l(S|)c~xjd0o6TIqv5&q=;)rfYnO3|yi^QMp`M8cJ z>(7z!rOWT0iiyWoF28p)a}E8p>r%_i58AC;Zn0>TluI5kq{f=L5=+SmL<3wiZ1$Fc(K#x6gzod#swy?pG7N3#RF!*o3m?d< zsGNJnD67Z^#}%=m8@B#xs@8w~=8fI@uvN!MXyDS%I=7V_kWV88THHo1Yaf}_aJ%Aa zoDMWfvqMcsYMn<@T{U?MxIU9SF@KpQgGW4+FJRDp?0sghTW4RU)*#w~idAd3KH}+Z z#j9Pyo$u=8WD4hC(VsB_lA}DB-IKy4NJsZ)MY97cxawC-b{ko=4>2xveN2f+6nek& z2^O>@Mgm1d2K9BZ+l`cx-toaf-;87-TO%=3B3aDUx%3-nJeFg>^R4Phg-wE5aNd-T zb8r@ujDbn<$6|MPSFqadj=vox3IRp3kgHK^ytP<>2nCzLScKof`sU=-=>Q&c=7xRg zcIx6E2hUVdR#v{gM)EX- zk35yP#AbZJup?aU%ky-oxB_Bk=4`?(xJ|i8Ykc*Evh=TGX_M0I99o)~@w%fj;Bi2j zABl9@!qucjhg)OZn>OkuWd2`A|F$)>e3UxY>05AV>{f3zd++JNq06%N+J4X$z*2Bx!Q!euQP=X;Iwi>PSs81%kjMjZU+YyM#C>lje0t9JA7Nx zJ6{-U)yL!#OM1txV{FU{xK0!#I?NudWMW~F3H{7ak781L;xIQqML4)6ExpC_cC2t} z3L{?)P+|S{jT56D5_A+v4D!=+TRQ}U*nK?b#4__b)03#m<4Ur+Gbt%4R&8D$I=a|^ zpx|IgsdVE!QZ+E}JqKAd&Cg>o6_6147K#LQ%%15DPN>ieUB3P~w5poKMS$LyntIu~ zP^OR~H0bapUY0U%bxUXf8$bSFS}b#0`WOU`22X`Gvf=ajp?jBqi8Cl9!+d= z{Lw<$ob&Tq>*#EVHApMPbeaqn8yge)xy+sLLnK_KhX^T8n(xE$%CfEt00}OSAtWW_yu(Re@ZB52yy(QBajm$GL;XrCf7Z_)usWCh(dL>cx3uQllc@kV(?ScM z7`M)3J*=<(d@WEToXmau0!s9hyJRK2rpti9ZvC}MFqjjP^!N<`8`2+{8(cS1w4IL% zA-!RynKsSku!@=~&pd&{Bp3Ik3Mr@Cd_w86z2$V}yVW2#^f~Hw+WFPee6qxBDbemD zlPWa-^3;2`F!7OIF_n_U3lW z)nK~eqx;vA^?A6tg15wFIsaO%)(rGbwPo!solw6x2W$pM3GfDe9JGnZ- zNXp^h4m3^RO(|lisWTtT^08(2 z4{`tS0*#s`bB?@l9{nzRj6QP7ar^D!2^?KQa`-g%NYAg<03IY;# zp+fmRx^Usc9|bpMiHBU-ndz5p{tTyIII}p}S;PqD!9z)(xR|eakR_FGn#@)^x+Dh& zJR#fOca)XHSdGIbuXuNonCPJ5emR~qbG1@hldtBwd=ZX#zxm5)^UvnZ6JPC#3Y}`x zi*Ck+`m5b#(lg9n1@Z>di;?9t*J_QAKXqLWHp$7{7xS&$zPw6zN$%ovJgv2+z6Dh< zzL+X!srC@-cKw9xk*R1Go~>h73Zr%_>>DRHpBkx@O&0nncT;!?H2gB{f2q=zMlDv- zare)cFANAj{lz8x)~e)dh538$WPV;t`7b2dC6_3as=t9IGY2Ql9r4-+e6j+0@MZ%8k+wQAPCQQTD<)+l(`J55ZoH1We zQ1J63(}{~)4(G`F9;4XUCb!W!j<>wn?#YE(u@19lxtzINh$R8t)2Z4e`{k&R#L-Tvm)>gzDC$04N?j7%@PhG3seSHpmDPl_RwU0hLVQ248H3(N9 z1jP2j&HdwNnshX(JI5Ds#ahx2)1ILOXXhHJj2;veB>(FLiTAWby-?!)rc-Rk0&J23 zlf)QFeSK@W5OK7&?IYh7Cpo#toH8(x<*r(rEaf(tZu642)kXedb1N$hMqn6>Z`zl3 z-oN9|qTTzxO3Oa!BcXjwC?Rb;U%|TX&6~Gx-X%5>uL zh$qAe!sg?#JUy?M!DFtTwv->_f4|A@eEQPZ934j`@0HRwEilg8t85|BtI}~2bW~g0 z={G-V7=oJhL_e>$FLigf{#~LirFd1yEpdE)sYgMu9>RVbg4Hq6(Jx92Zc4>y^L&<8 z3VK4OSdt?r=29|hR`yCRFHofN5eX(fgb|7jY?OlBjeJ@ zmu+1Ct{Us4ZI?)q^|C%BVf%1gt3F8Xw1ae;?m0LTDBk_-{ZIk`(_dUEMvv|H-c7Bd zR|sH7EL3msrc|PD`{=R7r`VQ?88{Y?8kcE2?&(HY2f+&f-6y6mrCek}!YGRjb3gNskg(yKxz)En{b>z7wJR7^~F zJSJ1{NlD+7yaJB4nyOSP5%XoJk&lZK2|z;?*D3B;vbm?^=H@wUG~7*u5FceV)`2?j zFfIfYPz;i(In(95)F08_pJP01ZI!s2e*eJ(qvfeDkX1FiU7=A(7Y#j^Ysu0mv%tPy zku1r95fMS{l9Fko(zk!0+A`h)Jhfugtgl~x;B4;PcYZniy5tp7y&d!Dl1;*W+PyUu zqavL`CfV3-1OW-ApWE?jjvX;iUkcx&pE!kR>1ftVYh}RJWv2Hc5flL|#yb5EHNLmt z-0|J8*Ax}i*U}=vLDDn&r{2^GG)mvJOyrLi(W~UW4G%IfqS9(erA+{*e!C1 z^`OZ(-rV!SMxeL+=<9N*N)D3l>|zDOM>W4~`>xNyyO%FxG6H}+ReOK)=xEg+J}|Oh zuFf^q!Q( z_&YW-4*IbR(lna^iT$~4d_usC<8}*{@TI}=rx|cB&vvEAtFLAjq38--ENhbEW_6E2 z70=05=;RTb?YPe|3#mqjgh2fGHkMpGe~s2SN7YtsjoHi1sq&Ab%bMS8>L}8`WD}`G zlR56xgK;)gX1G3zNoF$esfd%?FTh3U>MvK4lfycsZbhfq8t#SFwY8=4#+90NaNh~c z%IEPBqpX>hl%T$KFb&l~5^R?Z4GmxY49xUTed20AdMWN_`BFY_DqVihs^Mz&N6C@M z{?3h~x`E0|2jTPYhTH3;ll3-&>+KM#@Wa}8Dp9%M0OGAd-tlIe(eV8@74!I0C%&q| zPgUfPtpd>WjAAILJQ9@P3^5=eqOIK$C>}^u&pHt(I0#8bBUBMuM5i1Ivi0qALds_{ zk|;Q6t+dZ&u%(Tr+PeWG42~;g%m1U);xE}D0o9|Kkk}});5he7WW5;RB{tl~Tz5Pv}8m;E{mDR!W6} z=nT=-GkOY*ae=dHXCQF|Jffo+=cojAnFnGU<3|&|ck$`Nhqx0*Zfm8`NqClW5A8eFo zEKel@uqC3@(F{=G$}cDs@Y}y(VbjpwpzsJF=)OmBj*l#I{WfF~cpK0Ynk17@`cQZv z8AMsydTA&GE+wSHH$n?cm$H82-acZjgTzl9^Lz!8n${W~(LR;;}~ zUdPON|0(75#ZqXZD6q^pl-F~eq6?tmw4?@V{u>ftGg4@jXnMc}XjG`z>_LGY*XSg9UZ`sbx5maOSX3vb(j|T=cAl zU)%5-;!(!qpx?Z4=`n4|`T3=M_H$nI{_oEjUUMhGfH==?h~__~rh;mmzZMSK+9jap zE(O7z6PL@4fbrz-sM2#xQ^rWIqb>>}x(g4<>Kp?d z`;tg}6udH0On;-2-*E&K=Y*(e?!-5Igj*1EX>Eu(#sB)sPbp}}0q)~r6FKgJ@7}k`ugP< z{1bn&$~aksk1_}aSx+>HRzy7X(xZw8KF0Zf_Yth_c&l?DC{ebK74<}jl+lMkc6Zz2B}fxnB%T;@Wz8-x6RwX5B&BUJ3pJD2Cw0FFY9;c zDsI|L>M#XAJ524W`FM#M<^G=p>spdgP&fpFA*q>%VEdq68lxCY)RtQj2dtXa$g&a;=+O~y*6@IPWx0EPU1kiV_TECTd zqjDi^mgj$db-r5tPrlQi&&|pkmCzM!q6?NQ>i%c7cP zL-i6&;4%0X>L-!G)2@}zv4erfP9Gp8%?%>|>p5{R;oVPCc@Z-mr2B8zK2YJB!-q;m zfJjj@1??UgFitx$4TF>L9r%7vp)FnvVP7xC{Ws0>?H+>>GVM%y|U%YXVp1rMkDAzGJO zk@T|wtI6s&yamj3z9ISSn>@M?OP5CFz*Wz1`l2vGORG7=FKY@cH&?ulVvhP>{K3Va6AiIJ8QHxe5e z0TRL+i6coaIF_Z)c3D34alLrl)6N%{mJExP5vTIp5>l`qC- ztEyVww+xwgdGHj@yUj&)XK*kGxmVk;>r z?biAR!yQVL?Ccg31rW=#-`XHN%BEQ#KzJwkVk3CP(3)Uq2r)FOsE1A1*M74y3dqwI zwwJ??-TR}!SKFK{H}ZoKNk>q4PV&O2uPK0|EMr6`nnjSHR+QLdT4l2YRjjUsHR2hg zG&Uj@-2)zeZH{HdNPM@O413NnRjk>w}^kQ-@1#-fOPd)+A(05B{ci4q*T)oUl0j{Ubt0TId^oH)0^dSwiJCL;~( zAuhvq_bE1-$N#-fZ}j!&enS>X2uW&`)*gWTADLB#9)||}7dyf7Qbj4>i^OhbLx%w& z^w?xs{x8{ zbL0Dc=X|qf=07uMoxR@mTI{`_-xK$9$8}#9AAHUkS%(q!%}-D%y_j-8WN|Ey&%s0c z`!D}`2PQ&iqTIo>vvSjZEnhfSrQCoyrk$LW7vt04C;xQishN3TxLrLs(S5;2OiDf? z48~bzUj$JqA8bHO={DXv9)rFkoz58MEH##g1CL%Ifs4+EJR^M{5k$mqeQ>wo#r+5E zS1CO8@Gr1yu{*Bz9@5{rM7(|(bq}B25oBYDub)Dt6_zk16gC+0?XkxL`#^9Ylc_{T z&Tij7vd>Qm#i4NNJ6BtU@eNhF2hp`@W-2l;Gj*^xuLg?r0<9q{15)3|`Lmk=cwCx8 zzw&9+^bers04D)1J<+#UTk-0hNPnjsiHJ}ADo&6Vy)Q^aONK z=ITe#cf^1K<|68n7v^l=K;S)ULqcMf+R}5dTT)ofnAyYte3_(5lQ%;7nVBrZVJf7-0k2_=+-RGAP%Wfagu$1Z%zN#B^laSmk1362FgtTP{I2&Hl^4NZ@7kJj=M_>N0tu| zTQLxp*gRBb>dewdBY(?^zjJyH@#srKL?qk8J6>+Yx!n=W#tVI|4<_vw$E(h&xVb9v zyfg|&9)(=v6>ZqubyqJOfqC{yJayy_X-&}w$G32i#*!_ry29pV3Yxb72w8cIB1`3r zj%U1Yk&mFImMxkr6N?-s)7BQafRwqP>rpyUZK2;1Krrud7V0sd_VhqRDOZ|_F>cJ zuJZH8{YE$Iq;I-^`lwJkY(%7~pVArmK1VDH`Yj{Hs4M!8?vzaqR=;^<$YViGBJQRNQivCT) zpdqB}JJHm)3*^PgQ%$=GbPA(0K2sA07T z3J2nF#gg%=Bc4|i$d}j`iABMCV4Y+-BCB7Te zDMX4`vL9O9Rb~=@c@@T76*sb>S_MoZv7A=Tjrqw2GPx4`|M4^5yses2Y^zlZ6&YhX zxpTc=D`d%$fMCK=Lt6POx?h84ZmxVggvf)tO9hT(Y7ObwI>xgBnbu2fB{+X9CFNu*|;Y@&`@*ue9ci)%9 z|9*wR0NVK0akcN;EaqoH>aAXVZ}PMYbrw*#vOboz@NCO?5C`hr6r$~XP?ca|c^>NpFqBqgn(@p+&e z*gMhnn--WKCkYce>$UEL`6gMek9~>)DFlpbphf1KASo;B*YB$atC7(C~7a4O_>K{Fuy{{(OQc-VI2# zYQ0STM)$n=oo?OJ-!iWTbxJDV+oe!RcIEj7M@k>r!wo6qYEa_jAx#D!USKCeb`uQ} zb?J<{Y2vtqgb8rz=TiS4C)ywo*ukf4N z53iLdmv2O@*7T)FozG}?16xgZeCG@0q61?kF4fF|^4&!i&k)ts;cF~i6-ARrH$787!J*Lnf@w*pwYsG}o77jC;P z{{|@CVe-EyoLrnNaB6|BaGxKLyy(k3{mIcXdAU%z3DN&(ocw7zg_`~Z6aGEZp`v{; zAtAt~M9}J%7)@j;hJXcr`_Sy-XX=wmYh|W&^Mx>_KyDS4wepY4=H(2x&rc5m3PuB~ zPbcziCO&LA9gg*;3veV%mRgUK--Mzl-}RHL!f_zavDnK@f84%YwM{Ze>Rf;2c>@Mp z;W+O*uCqFlKFf8O63gzSvl zhxSw9z$cey?R4$oRI}EVkoNy1@nqzBmG0)nrt_K9SKA%*K!6my#x)=9de3w2_(z+e zdTXrku4)d8>GTY1M5gXx4y1wmpDV?L(>x6M?1Mp!3@wCKOJhz4U-r&(3GGjhD(N`o zb>Cichf&LFxAL6r?QT@(isQ44O#8rvwsA9A@bhLWKSi4Df`hI?*~Vuaa-V^~`l;9)MN(F3j4$F}|GY9|UeA=xfd z<5&*2RHX_nwI|eHQ6JNYi#>PQA9-2X$^1<%;m)HrmxE(02Q?0id*07T$$@QS|CG=r zn#(ltXj*h8T&Gd$Nrp#Cm!O&b0giiJmeTfT%75?*Wxz%;8m`$5(-ALSAG2HXe~Qkv$6Kq)r9wNnVufci(dPfz zT2FHe>)%*_JwVGD4Hv|e7+pWQB1;$=xl}{H;?KqY3*3BcUib*mSzgrUNO8vtEQwC&PxPYPv#UDQ)AG*2FXY ztIWe$;iy=22GOaKxj;8B8_Vd@Q`p@XV9iP{A<@f}Ep>kKzS2^g7x!dfz0#0t=Xdqt zcR+9`zl;K$(;)~J$91v}rVEThjX#dvBH9(=!2yTmCdlG%FO8ZyaK={}^t~35aK3a$ z7kL}oZpHO1Q)E^MK!@$K+hQ^Fm2jS*$OO!tia%eJYz*y-t*4=lAFb`uaaif0{)F!& zaN3)mtK1j?m=PRZvXU}~-&#NjN`e*G2^?~(&>LkILKXJGiqf9m~&-H{1!N;z>H&Zpxx zrw4>+Ui|1|Hfn)^M#b}uUD8?0||IV7Z?TaKh`kJ_vsL;kwp_U#*wA$dLx7SP_jKiW!hm@WGI z{&Ih{P_e;aVWE7sqMCw?t^EE9K`z9FCX>#G)!mz>e|~5XO-<(MD?{g%rY1CMOdNLF zOon`05XS`+?y_=uIcz7J#rY_)??5yIMx^_Vd{&lRssXgn81S5@XuKw-oEw_H_8w%-SwEPlWbJQkCiZl4I=v-5nsbb=lurAp@zo~c}w{F&BwX}aB!aDUQW zU7rup7~cG6`c8#b-rT$Z(sy^uG_^d4Abodu>u1IPQCPzNd+dfE&*_>UG`@k8X3+EJ zk?=hbr{3~Mmvjte*I0vD$}?$L;2LGAJsuc+^{Q!qwdQDK)jLO5R}!1ie9fa3;Ds`> zy?r=^r-#c{o7GeRrnB2TM}OQAXLYbve(V=sRbx81W``P|{k{@ZS|EEuMSCEI&%uy| zNB)Wp;AJ)Ex0IMoqazY(?bp5R3eyN#ZI8BkN_D}z= zp)P-zjzAo?0>zMzHP#yY($gQ{U^6;P=WdM0+a?Xf9-~%TuSCj}|M`*s zKp5@Gnt4-Kd}*G3h|txd102U{_0RS(d-vHA1HYYv*TeJZV%qj1%kdtW=;B7TntQAS!Jj zYjUq^`*32Y)@FX?CG^-Q3!_~@x&!f@9F~)gp%0}Dy4RqcL4}rr?*%Kc4qtvt1dx-# z*w#E7YQzuncWDR4lRVo!fP?%)E*{DB0oV>cXDcze%yuTTn9fV!b7WjjY1oX*Ccj?| zKfQrR zw>51g`Z@g`hia z|KfC`pXsja;HvR($!tgZyLj6wx!enPRok3^!PU{i!(ukZwBxgy?R5R#w3PTx*307v zwH#-wbdpfj^IOa&Z)?qxy@*hLSBNVgY`QpgW$BlfZ(t_3_~SFD)VJ@CSg!pkwF#t1 zuywqc`4C1egUzf>gh}Q5tD|ZJcqVUa33IA?M@HK26eNli?g3F{22V-9?=XC1)Fk7*9c>}i}{-D{iQ4JjX zN{hp~HOC8;V4{HY>e3q=oP$$BA#_4^mu-eunAHxJoo!viC0d8yE~~tyquK;uO<%qM69h3fJei@dX+&>ohSV3a~@7JO$hnq zX_YNuoaj6!+A~8zv+sHV{9f#s3fC06^L}S3-e68_C^HQP+82Cw+wtbk1efjpq+<(- zc+O(8)e;u;HRUQJ&+g6DiPYZF&8owFmdPBY{Js}xRH=ijQ2-BiT$*}I$qG-e;eKoE zeRA_om?7`dSmJn4X~6l`tfYmG#1mF+ZPB*zY^AD#kJ|+RoMmJDPGGmX-d%HK(CJGy zE8V-wxw{AG^1RD^mX$uc?+|R`NZ*HaP|U;meU^Khqn9T@{Q!^(dN!w%CCrA)twt>% zlUw@1&Rb`W`~KN08N~T2`)J6mnFzGtsjdLo?tIA=&yJ(%B=MKG08P`Y=}!C zdt*9SQB3SVh)xjC{(;1`Z%^MJmkA)pjwgGHvqE>#J^5i$HQf&@@@P$n*hAK`w%M-y3uFKq=2ttsM_?>hxj_GpDzrW$8?~`DfdZLltU&Iyf>Xb z^2_!|sQzGd>^q781M|Ue0Ww)p;=V&A7J(W|;N~y>o_^ZY)RgRnZak3j9?+i41LZ&p z3%kq?ds~3OgGPfDSB+Sc><3)|G^_7({(nyi>TS5aqD{+GOCSJLZCu5n()r4c ztl_}zByR%yy48I!92&< zS_lPz%kUizt7Y3C6LO!(X=wEPN_2-QZ5EH_G+SGG^lWg#Moko0XDzun&CE~!`uZZt zZx!TadrK$J^E7(H6?=Q#K21f6g!EE~Q>x{xb(EtL*iRuP`aB?XVlZwaZPFeoH$04( zbY!uf%PZ1n)RlMx^hdjopR?Os@I#gc+sn~vf8^8oNs-|=wGnory86)%GucdX*-UA& z+HdL&3)v2(rv82w=Z-5^^n%={XQ(9f79*i%57JOxrK=sL0ytcSJh21z3P9fA!qgwi zl0BKb4bwVVmxwo*9bKy@GT#;^goZ@ts_TR#6|IhC+XUuZC6{``jpLmbmZ4+U zmTTfcf+K@&^Io_y2N0<~&v(>>&}neek;AaLZ@`!X*uV<_?|bD8042iNFk?WC1?TQg z7<5NHBe!a5dr4rrJrvXceMcwf=sXk9`nEK>`TRYrY5mNHVgkD#AOU~|NH8Ieqy-wK zlL6%xCcpW*iMZ(R^zI0Zi`N+Q6}uxg8x_#r6d4(r!{v~xT2o{`-zG>(mYKoev=CeH zp`Gc+r8)E+59X+F1AMrgy?bwMqA7(keVLJ3PK+sYr3J)kb>R+y?6TwSV*u@ z>1afbLORNaUvtF>xV<`e4SCFVP)7A`$eLGv7J2n|Nu+6w>NJdB2F} zq4yo>s<)zvWtF$?dU%uxxFYkTY)JS$wy{Zj{mE;lsF6HGgrR1@{^G^?5&G%MaTnWQ zzq5m>^UEcOs??h+9{*xhwG-kJZVkz8V=P^q~;a$r0Pw8jRzHlrq! z)iL4GJ5%-DPu(fjPBl(FzW#>3J>;X~#rZ|k;fnR&HCz++bbJ^c3xAf%QqqYZa21a% z9W{m?DTFC;5tHuqHv6BSJDTtAK(t(JGk7qEQ%H^+c)Zkr{+Lb~S~uN=1A)x<>@2Hk z(o`jenQphfdw9~hcez&*_r?v`YrIfBX9yn?Dxf%BYR7Ip&oU0I}QgM9N_u8+36>dLY^D^r!$0FZP3%3 zsBVo{3~hT+g_EYEm{?Epp>GgK!O}>ZvlUCtewNYWpgv|kUh8#svPX4eq%{*-m80o1 z*w3G(xUZRn-LgJXz1VS#`i5cgbJE^!vT#V6m#Io61N{db=%R+_2?l*4L?eS6BRhAx zTEavU<=R9c4;%4K#7wY`<;qdNFkxRL>&q;S^OI~PC#hU(LJg8!FdK#zzOM)4mjLCMTz8JUTt@ij14c<8!Btt2vq9?&Ub#m|vKWW3|(fS{Spy zqRUpPF8QrcWYcoU7e;L|T;Wuol={F;c$Z;#7!?aJ*bkXsdLXd1U{|lwa)r}$Wyz;m zH@m$OWP-bnL`%xjQQD|)@5fMM9pch{e`UnD1pJ?_1ddAnCSTsh_OcpxXrvl1eAkj| zWIejKR0elB0gstzaEh6hFkp9^8Y!BD#9hwjmOnKJ2hVB=`N#dPRZGYnacTWZ?7nA* z>U_RFcmrqop7(A{4p*(-KoM9hxy=2>^xi0oUavr04o0#>XlnkRl=L}K!$P-{)A~%t zOusc{yB>&8rlrjCrKTaqrDb?j474H`9)t&LlHww^d+i|*RaqW?e+Rrm&t!jm8~7m{ zfOBcQC=tiubk}D}Ge2^Z$M)!`wHF*N_PDN;vL)4XZx8Xfu^B%dbOIf)iR|3W1-c2J zo`pZpQq5K}QQg@4QD&!~&dtpYa!PN8*O`f=DIfmTH^BpTUX?w2Cupt^?M!t;OxQ~{ zW0zsLHfcT(luGM&jTxQ9yN_9w0P3=HRUHD!ZZ_Co$it*tcNsnslX$VRFt$$)+8q7n ztF7+BVKtiDX;OqRRRcd$t@Iv-PjFwAeh5S}^K%Q#(C5~|ak#U)i>00Ns+m+Q{snE_ zBpm}YF$rgp==`@1&o_JQ<3BJ3EX;RL?&6kMPCLd&NXFjB#ba|?4S0V$KS(K?g2Wu3 z!)~QxXo?J62zYnuw8N|dzC|kkGd-q8lwUa04>eQX+8POOE^^{> ztIY8C95&{6lEj+FE36zkPyExVZZpTwFfh~8GgH5Kp}w%T2Tae1pPr}@_h*yr${pJe zM|0lS(mRcW&h-s5KA7E~n9$!{;5lPEUA?zX7Tm@Jl=yO;(QZUT#wB0#d~m@7PM5|( z_FT;s-xrd%!eqk@UWnZv!-^Km$CEZix7%#olY@!yA?52RcBkhUo7t( z$jKTV4@73SLj)kr(bM(b;W2HbJR7A?+v`8sqov83_pOb_vv&Jbs~lgFG8wfu?}Iq( zWky4UY^Kaj8q9R-VmvdFs>qY;Zl5&m5b}8uw4$waS^67c@SQm5zZi7Yb%PuNNvfJ3x)85tqS7S zVLXb4`#VC*=uh7kC~F)apU?t5<7oI@gW{EgI0s-!iHnHOkTbN6THEf`ohA1&QmHI( zRIh`?CNO>iZBCx%e)Kp;3H8GryiyZ7l_Jt-Pq}Ec_`=%wl7-M7yuw7-;*>f8|M~DR zX76{U=iysRL%+X@z=mft+mTVR^dJ?LGW*=%b+5*G)~o(4HnSB2W`|ndYuX5#%@I49 zEsyx|N_{R)jC$qG_i5JIN1?Ev?pvwad)Y2-jIXkoysx!;mpsrB6;@z5EE*-o3^a4V zZJPs@4^#_+NwZZ7FHXf*yW@G(zN%pWuLP__vd!gD*%Hvc%ckQq<*5;V*5iMz7xwMj za_@IhL6{bv^SxeRiv%875#H^dAUG3+I;1y|k*jRCHGlcgL+lE%k3c1J_GpPo@p5H0 zP};d(FUAMf8AE2@ zyy=8p)4EN6;p_}^7Q?KcwA)AfK0jj~tJ7y`tLK3q<6=CFq~SY_Iol-kYqZX~m#z;L z>n-m9Cm9g3Do@P4-yet^_l_sQ~Aka}0A3nxS(tPkh zE7{rZWN#|*smL~cau~k|2bdEFFXh2+>Q5NS@2G= zZuseRR#oo%peR_X6xWEn59_Qr$X&BwVtYlR_}?(l8bqVVWo7pto*zh#Q7Y25MN$3 zna2<6$)K2GAd&pN{OWf(%YYXtGN$}@_nSHcONUyAyws?NyT z<(ma1B*mhJi{C6hR%3c2CPKr6TgdPS=9a=A{T|vDArG77(AQ7Eh@n(u8P)ZU#lG=( z>{ykvyElz;(Ukj2zvfJc>BLFC@*pil+&2VCX6%L`Q&d2B9*m7u4FWljG6#)SYYisr z8*~ak?0A@wH8sJu>gi2;UuC{um)KA!9URZ)f{FP63x|1qv`dX6_F8v4sMJ*JG&C!= zewKqPkd~O99IikjtFEe%VuOK9WnBYXZE44%galJdqd)RbYK+Er{NNHy7rD(&mkSw= z=ZYofQgU8jLQ=ccUf4J0*;^UmO6=7x)>?--m$9(RMwM z$JZx7KC}O`nN$>N#66ro$+Z1gR@x%F9JvOAWD>W+)GPvG(TF}X0uoX zX%3#J#^IDAK&|`OkIk0fhv-gc3={A>sz9W87&DmG9b;NJs!L9GwsX{Kqg>h~Br#c` zwFn{(gSm={hkvdkFt-_UCa0z$xHTO7-XEIx8XbMVh>G}djLv zSn`21rPAUsZK~&~5OUzh6`bagMSu2A96pKVV$A|meJDj@Yrg;mR8x5hw3guK&8s^ z_(DJ!d}7DrmBHe-25TNq$Ny;_LfnWiX9}q*J0hlIy8RXd_iGN$tjv#!}q{ zaPwH5msq6bj%*GUw@iPuUK!#hX0wto2$op1I$0YAb{!9icw1l_gv~%WQtL3EQOu*O z+Z`WObX>U(HaUueV!y6lfKeyyGVi<+`~$2xJd%dA#}T0iYaB1g4NfxUYfX-wSN~*n zVC6bLVWHCA+e&=U97uK>F+FyS3Y}A*BboPM&FHs3dmo&?;9{>aSr5E*cd1mr{jfzc zZlb_s|I6?)9Duh;%gn*xY(`jm--}m^jV#ymm0V0fww|JB<>wIk$T@2F=qa4#`~J* z*RLIHjJhnGHD%dZT-}*pG*;I3X8r_wMCy6+fASIJC2b-l1(^$zjkPFIPjmj)ODu8h zLZ03x7tW{4jJmqy6jfcVBJuPN7h`Oa@!VWC)0!%MmUG%XXL+YUGy*sA6NxmHuFc^} zo~MRVh2#m{q9TslJFENh(m!d58O)RZ_KWJVvv z%{_0uF~X%WHYA_x?EgkovEt)J{JHnW_^G~*d6m#C5~Au$rQ`kyob+z70G614-Ji}i zSNEr~^Y$xM=Zj)I7U>xf31_RYUiSj0Kd$`aHq>+=^NY)1zE?yQvN~{KJM}w=F?fdO zGzCUxXz0ABktU&rgh^63l0~Cbnh+H`1nNRJ{KC!f@mQ>jT4f$Siou3(8kEz$c|g6W zac*G_f@PaONBIOwG$cC=Ih%DF1O(Bcjb#vy(W(>}E&uH3)$NYsve7vBGKUK26>S=o zT7zNWSH4HU9{iAyk=<7FvZk7&=rWjC;O6q~V^F{Chzn_>fBg7S=G44K;yVIPN85$9 z^3Su)5`I3kgxIY5{9EV_2RRDWCX0tLCgU}`4e?Gm7Sg6;CuYrAY^(CQWmczM2XQk>Q_anl&6GE}JIdgk{U`&A2?F(#i>QuKyyQ|o;%xK;q!F>MYU;~81SU!yG zMYRH>%kqPF(x#K;E$zpq?9MOY^uUFrO{2P!xV^Q%FJ;IiV%C#xu@HdEU1a|DHw22n zPja8|!T!piJaw2o@8rad8#n4h(!O_!hH0KZcIJOcs;#%2^B;u_m+YHHfV z-+Ec9#TgCLuSLFafHqgZ<`a6O*ZTUcYkOayTD7{bD#EBUUgI=4*e#zex4%4`+z_#j z44fHdm4_Rq<26sI9iux<-o!DQj)aPUbSCgVWI`OC7VxCRvDSDtd=uL|!R16ma7gBz zNUNKtUz%i0M!&&lO2eLD@WG#jwRQ8Hk}?~xx3nT$QG9*B&~J;tahsiYyqu_pazU|i zOAhp)8gg+~?Vq^1x(@x=0$1Y+kDVy-;%a|39szE_W*u>IKBeuR5AoAx$PAoqw-93C zqPYtP_@l&}e25uvqa-20z<3+fTBJE|5RzW@ev}!)+uZlXGOLMq;|QQI^h_ivsNp71 zTh^vY?$0=ua~Q-KBHUWOtPCYOfsV9{ zkz0?9hwD3XalPJ(`3CP{`r9HpeyJc;<3`l@N;sC?;-W8#(bH2XIsb=ZFL{v0yN<_( zmX3e?BIq(@GUh(AYbBFhzvkGxprcx0FWYS9WPgCo`fan|QKl99_!QE4$>xX?+z@?p zjfu(40od$iaEpBQ(dtl;VFGFn9Ff~flE%M^wu+*Fj3+`^5b>4tHlpA$4V%Tq&zx*! zge!e`D8nuoEQvIWE!T?%@4MFQ_(AlydAMxfRvXA>b~4-YP6EU4Qxc5ZNvvG#2Q8yE z88>AImaC&#jQ^C%9|FVQcirb7S)ag7ok~t|baXU@w*|tEzao!3cYDtr&ub=Y3iI+l zcKn#8kc^9}RnLF-5%i_lUb58>4jzKw$?aA~cISSLw#IDpsbaryMOwWY2J|LBfX0*8&d{UdCR%*TQvk7!9zymoxIbkvxQt$XR9g(B*COW8% zRU)mwSxDG++0tTBw@J`LpNq@oe1Fg*6v%3SVY3)*)or}590PWDa_(}8^*~{NY}^Re z1|w$q+ZlUnO@2+N3u@)o*?GTNiEYKwhdFh|K<~nhCr6giOlW0)l_gUyn<&``v__;s~{yd8y;#)3+AS^x-FWy!tS=@>3`u9{t3%#_On@YX?p zgfTh+TZ#Jg{eW5SA5vUw#6lnMr0ehg6cBK9atb8ia6VqypF6_ldx(jNfZpeL)~ChJ z;}z-9X8T&uCr@{>zJGNf`+Yvlh~e)%OaLNo>~yj)#~90vR6&G)Uj*b$)&|oCqb#s; zCac&!%-GJA33%UAt2VO`;*WiYfk974X9I!xc76{{49ojG+u`N#wujHMq}uit@nP7yfh?F=>X+`8%X;rJ=FkNsy*9bW#`V9a=&>y zU&@WLO?#{p;5;C5gu~pgS(5U-8#MuU=3S1;!cQ`2Maq76I-BRC=bpIbj@xg{Jo+W2 z47@H#{}?%LEkUI>SD~2M>7WC|S#@Ysy-+?OUEI#^dGt&Mv^r;4!m<{>Xg19R2Y=a9G)Sc;Cq8a!j{x0v-q28t z)puPEstZ2>Jxm|qH2htBD>4Z5JR=!RYbbrcoh!DCG{;e&)GLG$#QeRc@i=b10tZuACJX;uYGnuhPg!y-2nvPEcpwXG>?yx z14)z0ek`AuPoUwPrLI}yVNg8;rjD<1aUhwFOlx0VBbTj|x**MmFs-K0LQ_Gh)6Bn} z^rP3Hu5*3!?q`$0Fqe)}W6Gqkhz47EJmG8!etd=^DQ_b(nN8Fj1%U z8$gdLi^;`CeM174ZYNxdJ}9(43Lveapn#2ytyelK3#FB5(qI|tN0?EaI$@$sX0Z(> z-R<3nJ3BKfbLMPiC~kVC%KZj+5%AB&N)6bB3eWK=-ciq8u{6~5F7NH`&f2L4llnC! z0mC~^+1$bc;#)!jofbakC)8`KH*_T=a)gq5R;v*ht~)z-d`PQRH!ayYnF#*ApXkm- zjWa`3he2rwX}SzGAfgj{6tV`ATLK8#tj!NPNa^V4nz2KP3ly@KaZssm$(}4V;DQ+7 z>3nNQDk@``XlldsulDxct>3nGc9_HhlrLkRSbKN9@%EXLmX=PEp|*<`M)qq`di!>2 zc{zR1LF7KM+prPU3+z2eq`#pM@j!X?9US7|x;oy>{tW4KdLu-l&jpMMVWf&0o{ews@>Saq*P&|2!_W|9jU31JTfnjovMXcQAH)IcNtp? zx=?~i!$fcJ3TXum8yy@TM(lDT5%C7KHewqT$8Uv?!&dh!#C1ouwAHDnT0 z&yRd`$5V{_0WvWQi)6N(ArrL-NCY<%k6s^0`r_ZyHBpTh z${v74%oF>|K|(3tHEK|di{=R>2Ik85nf>ff?va3Sw4gRa6cg^uUN8^6ex7u zNtJGH&60bj^+P5jRw4}sZ)Z=U`Kew#UjdBzON0FjcW={+BQ5a41m$k3;NNpFQLUM1 z_p=CUpZ8G!N)MXHYHDgQOF`Q7F|gmYI)Ke2PQqX4x+$@GQ2OhKf}7?OTj9OSMGDW^ zSm`}P``V3wohSsh5Fkm7Ok-p;IAUOph6>B)H zO6Y-#`n%CD4M%F;8}eabPItvs7XD!%N%Lkl7^>4LTwIvfFIHmfZr5gD>*k0JsH$@G z(<3e;=GRw6|)CkG(Ufg+5)6Jp2I5td8Vh5z-QOVhvqna9_NN}hq znN}L=SM!3aZ^h{B{es4tEZrvOK6sc$vwtH=Kg9$}2OijJ|udc2u_HHaw z(@mKE@aQ);FsrI9zYs&^tKY!lPLf3CCm!*Kue{$O1R+#OBc5R;U$i^w1-ff4K}2(s zCR;b05f2t01m<5GJ!MBQ@d}!7QJ}Kx1CPs#Y)Sz67XDfU@<~#~_;$lT^8163~GQyq(60mW;c;N~Wh6)CzGkD29D5jX0BtJKOP$poUMDTG~ zg2-4T*AU1=(6~y1Omsx|cVvIZdNssa0bX86i2ofj_(3R}(8PcB{Z~(m)AFi`%+{b7 z0#VuYez;_=p7HAcv~b^SJ;p>rT*J5;IXn~s+U%dgyWm%-UBKVL6xjOtU?4E2X{fKe zqVT%|Ie~r4b=z5+1qD};~Foe0P=@CG~oU; z*{`_!z^%pcPgzj!@>qe@D2tlS-r??3m@%mItI25NvgoAnr(Scrgj4s=Q%?Myn5!xI z`(4v_0YLy8f%l)i1*?4x!T+y$JGu@J^6xeI*ET|61bvy+N$oVA%n?7g-~UPvtNVAB zuig(I1ZyjJHS~XNE7)8j!P>=2fLLMrrnU*77-9qx(KSr?MpzO)96{LjS6fEK2L+x` z#RuU!MRWBLuvPx9A#8ux=SPIltcu#OarvgFas@gFKjbjpX-IvJjj+>`*}CW6lOj!Rr+V}9IoN@%LzrIJ zyKuZ|eNZlY;P7Bzj$KIn{q+9{Gs=P$&<_Mr1D|UzBx8_G4Wp*Ch)eeUKe=Qm3MvqJL6Zass@pr zv_(3RYw1J?{Y_eA_52}ZsXqOeQws-&UV_M*#MfRte$;NKnk+?J#fJ>+7tu1JH@bJX zc)S5bMF-8dm%b<%^_^F*^@I+SQludM#246T!^6X1%%+kCR}Dc{1;&iLHQ>O|T<3{+ z{y2un_x~O9Ik2;lEPf!seN@$;&XgW18Xr-g;Er&8Ex2_HEy&ep>e7|?J_hDlf(8!a zGs?wh>?A?tOOC6#t!=;{Bl&0nuhYP(ywT63p8Ogwuz{fAN?xgHbhJ{ZGy2NQMmD8; zqJ;uaRy-2x_8(rh0J8dX>hRqvp=5qrcX)=YZ@&}2I4#NR@kiQ1Du^o2k?0znWlt2y zyzElRcQrIz2PzsA6wCx3m+AS`-9CE~k~5pv_FKD8(b2`$HETqpU@LBGl!90V~HC`O@7WrH60 zCsZVb=gfQ$|M$hHv!~{KSRaER$?^M!3aJR(0&^e6j{PF6*G3o_sp2Erdu|}EO047d zhag8#0A)%v90sqgo8@q%w-`(y9}39n&A#-fR|Y2$6>3{rWq?rZH)H`S*nEHy-rxh1 z%qwWl$6Lq1D+tCI>;VSmH`J|rp-ryxA zd4655SP@co@*t<-4^_xHH=kg^g+IYx^?O@x1?uk{r@6r`OTv$ZAi_eZe*v2U{}GcA zeMLri_`nuefY*U({Xd%voW1{XjsI^VsaMEfG*qL`&Opc%A_S3OK|wmzs-j`zFn2fb zeGooLTW3vg>X)-r$_s?DYd$XT0Q>g?&8K!a2{93iv$Ibl+L3sh^SRHx?>%AoW)Rj! zKtM3xe(OFG39f(hq_e|1=*_`T%?|yR(gH~NNQLYh3wL^jn)u7Yvesgbj-aNBOvsmeggf8&bQ9W#{s#1wxyng+X%zUsY&tAt2lgiCJA-U7dX= z5ezvONou*QIt*jxm~j&pTtA4Kq%&k}HYUUqBG~jDKLWD;rGeEacu&ac=AwL8i}L;D z?cOwq^AU*3ah=jp|K_ANzAzbZV_DY@0NdHFUCkgWItfBr~+{$c($buicB zj(;=oIf5Py)K<&kb&mIOXk9Q^I-My>>~M4P76^l5xwu>cM}0(er`ziZRrY2K2!IWW z*>3y?*2o*BPC@4RqMg5xC*0~pZuNT7RF62j8#riHD>x~*1d@Avf>{~a5|zR-08du2 zT)FvyQw_=_Wj|0<0V7ffigix-EiaGH3ZdSwQoBDJ&vhC+qh-B5;jlmApK^pPDJhAV z`k=CT;STW@k&oBUpTEC;RXTrwRU@T<m@=ev+;5@#z43h`+VO;=h{NH6UrNesS4TYLfhICv3QJ1Xt9Iv$W8LId?P3Lv zB2$NxHM@6aW|hpwnj{TfvDIJMDa4bvF>Vk;$+Q98fHWmVA{ygtZP*V|*k-X=zqB)s zd%Q)qd!YCWeqRn~F!LM9=%?E?uQ5rYXH$L#6v)dA`8N`Aj2dH+Y6Lur`3C+fv~*0k zJUPcw(kf`P3L{k=knv%Q< z$jgg@VsiDml)k!FAT>dR0xQfCC5GPuPUJv_Y&*O(^I31~{Ld}_|H_S4NnvR$YYas< z=v$ghTm00}a_#yxY8e!?z%SzBB7M-!Gy4F#rJl&7YsxrEH^<79$D#-N#&BxjBNt4g|e|wQiAgbHjnG%o?hQKJ^)(PT=xc39v9B8H500T7q5?y-e?PCp8ze# z;Gko^)%aC)ywc8qt3@ob$d*qiMvg{WC-n_!lkh7dEkxaJ0iS^I!TNZnVT1&5<#(%; zu^Ot{AJ^6WIPx%%%@D)qIru%DtdA1~+RyJnDHif~1q^>mjmE=^wTI)MD1+!}<5ztU z5Z$F(r12%WM%EqsPC+}Cg~F<{;x42Jhs%w3Gb3sx?%n0F)|=dZKoKS?3uT!Blc7CO zO7n>P<+F5@_xmfT!|7zL)Cl~%FR7|Ab&@EuIHuAn$bRNP>n~RFsrf2fK3tgte zNo)evhiM5T#rp5_H9b4BnxJFxl{U{rc`x*xM-w_R*%>H&s?W33&;cY5*=>x(FJH8( z0YJ#+s8?xioWSK2Uan^*Z6p>EU(KW6_j|ItTc?lVP8XVuL)$R}In*>XT=r+$pmf(g94JHmVI&KuH+lA_KpLm>&R)mx z?rnNZHzL6%vU^K|xuWx;J!ZG5K5s(`C@_JW%XucWM`3SjTELT^-eqI$SENT?Ix!EA zz2(MPQ)3xrS}$Ohn5^e~1cUyTl-i!0=51EMQdMQSNUOqWd8DWJOOSW&0|T_{0rn2{F>ShB z_DWpk;Xtm^#`1D2_EQqo=KT#G?Y&@u1xsrRdqz1Xn*kvSqu zhWH~)FIR;#B>Ug#q^^&b%WkGt+Mh1~@&7`{>+oj}eSYm0e1hY>`uBL>g7l2Vfr_S) zrHH=BuOgp0k0B67Sy;rfT%Ir-PReR%36KZa-8a)ssFiMv6xxipeaLlo;4+$vocAlF zmcMuZ)$P~OY`P{5C;JsP>jj2~6SEW&bc&JNd&9fa$?hyU@8g(FFK!X`E&a~v1Yi`v z(Ic3jk#SO+*e`{)NG3qzBo(tk1rdr={_X202iel8(qfL%qMB85tC%<;TV~nOpsma0 zxVHqYu#COB!j0q};&)q}_m-d&8*s7`-i*|=^tOAyp0-Fr&Mn}{OBE7LpHE0gV7DqQ z7FCU8Sdm1772c|s0jM#0AJ4&hlN}QD2n;~t{bSPE|1s%gnDvB2NyA3gcjo>_e{}RI zBpn2gGXE=#)azhUl&)h%zw6hpDV3gS0=GVlqT0ba2A{neP8Ffk(e(Gtk`lw-6?gOu zZ!frY*vq6-eeqbFCev(eKI<*!j6=QQ0snWoTqPP#ONNkEjIR-9FzYy6<_b`7iRW@+ zHm(0TO!ZkG2NhqU1ps5F=eDOkvlPAj=0|giU zEo^?owfKm;`0NF0395h$X1AR?iYnB7Fq`yA-9$%DRrO*>>ghc~F6-r;{(VC^ZEf1K zZ$kSQP7dp%E_#dcT&r@lr~9RY0>b`^H7_#F!-%9pT~neg763Gvds_M)Tn(GExpXo` z9LWSOLS}Z`-jRMroo@Zn3ahw4!|xxocNnfPwp%~SmZ8|sV`qLblL|EhINZ(Td#j_1 z?klns61P`-GZ(Qsqe)4-jV?co0!oBcSCw2KoXy5s(1?Gi@9Wx{Ftj>L`1o70$Mu*& zjR`$iP#3OoP^f61-`OlNL5<^F9_fs+*%2>Le`z*hCU3?-yfq#=NF zrhZNxw9A0*e`iADDsCi$sGf$T!r^cN+HG#|Q4(Sg0frI|_v)bOS)L6KLN-&W7?uOq zAL^WMZrvl~s|)1L0@0f8N!8jK>vf^r`0<@xRA#4AE8a<bPU?yW!^S-s~U{o)$Tiv#Uc~`fxLN;NKN4s%k&Ku8ZE=T*N8|dww3DvlKNCn+b8-Dypzxl{< zCz&IgF>qGSfJ~ZDeQ>z5{2{4;d}rk}o5Fv@e#NZ6(0KOwZ5$E->#1ql&`3^;-pP@U z1R#zaLF^5s;J4_HEXIbxA%sR8O4z&0J=f8cvQ-C4WOAS1egK*KpPY+%`aG{rl>-3f zivLTl_yj5^mqo&-uP6b{ox>MChiym!zS#Gm2&4jhrKTNK4Je{c!HA6ZcQpl#=})rY z8d&P57UI7?Ao#Dj9{XaidlvCOTq}KTMRI|{vrac!ST^ScO9LjZ7m2+ejkxuj53Hg7 zG!fhl7vA2-44%Oy`tJYw2loxUj9?np&`W5t_$2mMI=9#oub_$JbBFSROiZbaMp8}cZM77tuP)DT%lRFPiVpqsKtY4Fwri2koKd%y!Pfb z>kTv-af9Fs6n~wt%isqEq|)03<0w z7|n<2_eCaxAUo7tHtBF7L~6u0@o*`r0NFdwq%WYAp?T7Xqx}H-jd%obA266AXyAvQ zBOU~Pb@b6&GKtlEZc{BKq$8RY_64GSEky!fnEaDrpz%(x!8#_RLerPc`!LT*e7p9p zuqP(QXYo{pbv~Rm3W^9!Ph27Z4K9Skw`c-%64RgNB89N8Kl+oKtiF)w-eePgat=&r z0uBbhrg=b3N%a&1ErN#C7jbsHuu{4O^&(XOp+3Cy!a3lpFL@3-p8w<@*K>X~Hsdck{ZF9svUr638lpmP zEGpdlXlLaRTmQazMBUW8XYknkF@?F}N%4MLmyS(w+i$Mi!(M)mgN2J;vuN8gYb}fK zl<08n;>Bypp8nTLN$_Z?;@cYt<(p;!Dg){LcQmO&HH4SY{OZmZ!yBOntI6FYp$M?> zzH=vcEaIVKR{N=L(E};s0gv^C=J$6?_>0I0vWmtV$vMBsUx#}*C842mMBFBL-{chQ zCwh7950@%p-f-O#Zr>mCA1Gip_dkQU;|o-A?a1{1nT7vI5*1EOofCQ3&m&S}@IX5F zTA#DyXzAW$?W`$R`N?OT%o5YS_Xa&FNfAG`xZ6LHw zs&XvVL(Oea`_Xj7J+fL^$FMW?tM7QJl56i>My_4v{8=gp$v(%lGJfz-JINZt@Uvoh zKc1~SIExd@0|PweI3%cn&s!nnYXWWVA4qN$o18>Z$#0Y-Ja#S7mx+`icHb4Ri(P~> z=Z5?4X5VbqBmLTY=_!Wp{oiZ+`mz``D_QBxy5Bq;ND}biN%82E7_caQdFYgS%?l9F z$z1_zDnEH{`$H&1zw9|KaP{73%Gjz1zJ;DA(j)Ug5wpT>{!|8mSQ^O&7J(1qoLlfO zP|v>*T-d+C#LV+qhQg`GO3f7=g`G0ym5HMyRd!Q0ak{JGn3z7eaogiT_!kx{_r?XC z*F*xlUDhZ*zE+TZ3l)*Yj~B1{yo;r2GiXs;u4Hj>5!h{<;+=PQ?2Kx4CPOxu`Zq1w z9^&7)j!hu+BkV$SYxb8+#-_lMx;Bc#&1K6@?eB8A_96UNZbU!SOjhjiy<5Ce;kct_ zCK*bs_)u)V2}Z9ULB`MY7Garf@}8QS8riNroF`QfncjIT089ev>-kl`nYAzIUQ)`P zh@(Ebk{!=ET&V9L>dPxJ=Z`Ai#i!SJq4-`bY=*bQwA2-qHd<=^JYo@)eA?rCfs8*| zwjBReHuhoEL&Z;$8J=j@ZO@c-=6VJI;lmMl8X}49m~MryIY{i_5A54ETSh*<=tiw^wDk3-z!o3$)GApW-#c{O z^Ef&wUkeK(936NceqlW|YamynT)=2}9~}RREQhu`DzBt>YMTrsZ**3VKX%w?N$Gmp zZ#Ei5J#vLHj%%=L>u&nPnL5|f=Deco^o}^?v&gWm*?>x$J;AQp z%RabQJ8zQSxX}$bP z-;;$zPu48|%pAK9ZA zLscZQ!q*=v^D~@8j(b--(>hhx zjjI#=st}+fb4j%rQ}D#aUaJb(W0NkAiFcc5s9fD|(T1Sde2Cj9bOrnh%g#pXK6DL{ zH`a%db$cu>h49!Im`-FaHkg;o$@i4mzT`9=k0>mh2Z?jbRSmathhdw^b+5HhU!!YV zjup2=Z&V%k?Bwo}we1SN8w=kxJ|ko0$$z@Hst@9$F8hNSUz+^8>#y;2cUL3a8^WW= zbixriYOGXzEB#|f^Gw>NT_2@Cazgp%d|KSl`?30rT|A=CgtFo%7S*4rp&CK+jC zh>cW@iY3aWq)P8ul;>vPP{F)_z|deSNzN>$csPE8{ocJ1RE9BY*U&ReslMsyBp=_w zix(N7Z)?xd?O>}x?b5|ji_Ugl2khFn2yF|&X;}?dVaK$4GPhO*_OoBsT-+l&-W}_@ zRfn-F?QuG)7gbkRcQZ2Lwn#wBhoPArU_KZsaBzx&Us^_V&PjKL zV8RnqC~2WU9Cz&9^s`6e4NtNz=RPY=S2IwJ2>x|G3#9ijw8H#UBMoC?H;AdMA14UB zuM;v8!aXKzYI=2q-$!6juk8i8;O^%_@xcg?g0BlZcg^rj@4Q((?$9)A?IoM1vDi%; z2xb9P7k_|11mavxd|e;852dy9fBrhr_KEdy!QboIxl1SRyxP)~NSi4XJ6%0qwYLTO zJ0B^+8sqPA8BO7AP3M9~gahs+d$Bn2h_6c5r)ZJ5ltYOo;q4JLg78diACKL2rx(z^7vV$o&QjkP+g+=2Khdx?lHs#YP)1zV49j`o?IYn0Q8G{E?% zvS@z*^WtF)vx8))Szu9wD2j#pT998zLwnoWvuwe&FXB2XCwLk!|K|Lhw* zm0pcA7zGTiZNUS$P%+-7Cm|qa@bM(S#1ySAtEm3=_L}$r=nos1xsfVoaCj7?REqPuh#$*PO z@8(^FATw}CKi}zk7RP_gSb3{P8UCw1|60PTWtjH4=Kpcuf4n$s%l1I$a$Jf&)Hc!p zt59t{(7+{AB#O2f^Urs&wVd2>jN$xmtBZ%>CmniCm{%}XiHxkdpwfcv8mQm@$9Hrh z`kzjqPd%0AO345BM~G0mOEn(*4CznLv2bJrO;(?fV*ruxpH){tBmU1-M;3OsEuVp% zUF)eZJgoFrDlfm`UUbL$u3;gf2*YuFn?s5kac+pRKcWN5@;)Bq7%{52te{d#A&5RU zfewQ$h&4!ROedbN#^@6rBj|HJ;9L?B=>Ht>jqf!Kt!(TwoWj3tAG=-idxLSEav!sFyr-1IiuJ*w1&7cp(KI_}?sa^U%@kN^P z@NheCreY56tprWQzDT2vJI5^Ab4{2?47?cd9Y~6qYJ|N51M}=Ma-S6x*FD$IboN=3 z_-wQki%b+Buz;h1<85{{I;!K_gv@wadPvyRYkQ0WfTe1xlH0$dZJEet^GRgpaHzoW z&FUJcgs)Lxtb}qz(x_$=)JlM%K|X&URXnYDZS^JgOEBq6Hm>UkUi`CGPGmM5M|Gn9 zYZH7^C*=JGcU}L-to6gpKVboVV7KY7rixOVowdGt3aq=u5H_2n4r;IpBt4>JrDve| zX@dRZA-;%HR1AJ1eVYNBQ>8#|XKV1hw2^`1_ZkW`K8fdYw;3PUpyN%oM?}cui-h<$ z8Q_A@51gu!5%@%SH-4nwmq`-1-ieRQYYOdEzz{O$5|IV}BZ8Zt0+4TJU&e-o5&q6B ztO=h0SI0}+cO?71$%~KgV@WeI1iidKM_@`dqK1O1mi@x3lr+^#7ipSfq7p5*;`zyP zyIww%@JOWR!1saLg^0nm0u=+~u4Bd3fPnC+DT1Km`>V~Ls2k%rz7)7GcZ{-j6`3j( zG$9vG$^P}mP~poN;-e!)O}UN(mJ#7;#-QvT5L+WDG%2%k&*z7S?}geVn3ZRYU%k-( z?4d_V(|?PGoIG7~I#m?~#>;?ci3hwt6yAp_MAy2co4>hptoCa+A3=b1qbtom$UC zC4V7T&aKd0?)bi+jx6Azrq+LUmZ)BJ{FstemaBQOV?JpYmB=Z9&#ql<Sae^#CD#EIMn31Abg<k-?JVc^ei2v?`6`8fUm- z4aC_%+4CVARr0Xd``B}vr`YpI;Mm_kmfxa8HUetqdkB)sv&p^0G2UBOk-p^Tz6pPP zG5*?Xn~feZtxL9mq-?64Axt zwwm05QhP3{-_IZ$oqHnr@#4Xjd%@a^FlqB7TH5T1`~r{84s{3j$cILu&PAq7YNf?0 zpI(zIGIatG$EaaGXt?+#$r%SF)9GSk-vi6>4ZDFG*?d}SQK)j>63ZgT`Z6xY_}`tk zj_Rl1D?W%Sf3^4k&kptL0n8wtt!O)w0Xa5eYU;X9&5FYnRXs=q!V>r*8BL=CXC*vb z)}N(wwGWsLYZbnz*))7kjCHZB8eF>n)hU{bD-0Qo`RLDP=v7h7}gxe*?M}(udY_;;k$=*6jD8CgjlaRl{oqgI4-{6?B@u< ztP=|}9sTJ3{`qa`50AH?L0O40&U@%S(N!JT`(FD9Vq&0AT~12AiTBrr@$m0ry?%TV zQcmNBx2OE%{Gk(hE;7QxY0~CuiQF~<3>+y9V(%j&B1%w)WfDhRUP@WG9Co|MAO(Gg zS#2L=K~;*ZT#l5a_Q>`vw%?wHO;1OE9p-k`$t?|1`W@14$ntiGL772)sk_fK2khTp zlj9i^N8eY1u4sAs-QKqFsp|0xcKzul*ib<#u=%K(|M-jC!4kRR@$7(lqjZ9}V^r^F z{rK|g6AN4_F1q!;V7Q2v6_8l@N3>S^&xmdJ%WsnW$L}a$1#q6z| zt*XjJn6W8lzVIb#luiW0_l(YTv%#_gV{aLyoQdu-)jC%vy?JI$%~GNBRu+TKsG^#C zja=YQM1?r2I8CVuId*U zbxI3kP^NW!DAMie?@W`i=>9^tW}%F zseLjVf_?(u^U&DV!m z@v5WAJwH;lN0Bttc;;gVc5-sh;|W6cNKYxLsUbGlbir|bgk13S3!90`8D_EH|6v#J zppYxaDxdak;?z+kMdyO4=Ntd^Ye@Hqb+f|{Z)SXPT=%)%m!q|1?jk@x{4OgiPeddN z@qv3RMGM8dM~=@d_j0CKGqzTUx|W?jQ|*&vGi_GCa+U@wJ7(`saZ-j7 zcbMhY>*x#S?93+)w@ZT{jxtv%>91?t0Fn~3Qp%)nHkeq|*0H}yO-&ux|I+>W`#yy! zu*ruU_Wf>T$7hcfR=%8iJu4B-L5Oba0gi2sk5ak2r6O2=nbbTyPp4F)XsC}lLO7*{ zJSNwn(yVVSdIdu*SNp6;YwWS&1Leb0KYi`BG4=VGxb)71&QrnSIjOsSr{B|9Dkwxj zdud%(qhom~@fGig+OSYH`xp}h_*L+eAM%q{O8#I7^2)}cV|V8QFDAD8*q zc(QTiIDfeZtB0(lWZ?*k$L_FgX;wl(%5*HJ$Me)JlpGQJAtK_D%qq25m=p=`@T{#= z%;W5r;kBB)cHgaM(;-m(s#RqG5<*Z8XHd-FKiG;kQ8@dee^jjLyv_Q&AwTtbB9w|< zc5%|A5_MRf3IB=kR~eo7$&gb2m3=APxSn@aa9y8*x(+3;012a|lwuJ?HJqjj%s&Y} zoPs=JyjxQ5R{~-a-s6+7&WH$X4B0H_z7=u zvFN|gN`El&bi%=81SA|>(mS+%sT@&AM5*;<#YoaoRRqS~7U9`G39Cl9;_Ct7Vs)jv zYBn#@h`hf3D%(4HRR$y5-Gqr1`P=n6EWKIsTU|5Uiha)s9$KRgbHiqmVkFbFEk>7y zKkY2qL_-jjfUsP_K_p(gew|S(g#wa$7LUcuFKywB@mvN{ye?ClAtMfGvdPbCZq{GZ zKHKRB&|Ju@rZXW&tuOP~dD&h#O>(y79R#OtMSGqyvNWIbEV7qCHSEU}c_Oc71WjL# zsv=iBv(`a|Xy0=`5AH-bQ*pLtZ@>O4{rDGf);jtAiA_b<8 zW%Y@GUBg#UA=zHweN{UM_PRViHE2(8-5#3>D?~BKB+=QfbuW5ehEmeI?2`Nz=>2pJhNDr}aH!PnE>pdx<--oAkKD;5?`db>6HYXI9L3}J){zTAId6TicUO&Bjk3y5m!8?)Rwawa;Obr z6m{8Nv>-DM;th?OV6MEbA(!e*(7)l8zyOZHnW4!eZ!q+Jk6x&~w2Q-~y zF-ZF|4IxZ#VEGc_E8eD|X>Mv05V0!fr;9Y;ibdPUuSf01&@`KIu@)rXkDzgK6Yyps z48d49<@(oI2pSeD5E;>_768hUMv1f2#05}mUDnKgew*^; zaf&hM7iR2OwHK3?=ctw4w@e%ikVguO%`bH4jrp_AT)*=G&c8mAp#tdAb_2f?=rzt$ z`K?}JSz`Bc)*gQ}EQr~kKOwjE`<3Zu}_3>(WH9T zFNRZ`qkt*KlIW0}SbG1j$%zj+9uG;zT`qG0kdg7T&$jod+?!eI3nXAP<9H4tDa=ZR zubw>lvB*B}VvAC!Q0bD?)up)k+Bbxd^gXQvDvmR)Bj!C1Te8p_>)F<*MRuL_!@h@N zA@R78?9QOG0ph9pC5gZsV3bW(iQmcE4?FeqQcNc!*%p^ z=X^?P`pzQaW#1-kI3C`4s$}AgA9QbR#BnL9T)-2r%oded$25n#o&8mHTMf~ zIQU>6-XQ$Icyxu@51SM;ZSu&&)+P!@W;SeB$8837v+3={s=boj*9H5HI&a!EHne?s zJY>N2$h5D6SVy(Y5&D@WtmlGPM>C$r)pdaiu0~$z9aq+)<{lqlV?)Q;&};9`54;nZ zA_ZWS5R$})`cbo%CPj9(KJ}Sg=EEoq&0$Eq@>eb8?=QTTtB)VQd@^w^aQ(7duPOZ! zaqr3R5(F8S>CkSx=E&#dWPi**P)sH1-$Z8rKpOvd@XJT}__UEcpTTd~46ybnW*H0b zu7$0GoKxFuh31=K7Igl4GP}J@$SGN%GSSF6b&l?d=a+wAJ!NI{<2+fCz z`9Aej@G~CwO@&u4UbPeV(KN$8<6{JN>{$vKLZdU>LsUkcQP^$Oqu*oc8MfgN5qu^s z&Eve{2<;)Sy}fCh_jRjWEyCu1FS4r^804v4f>cBTpBafeJw5vn^mLh2zC8(;7I71p z1)5D>sUDkAsBI}5FoHD76zC&|gem^dmi@2Aaqu_&-vTWyL3GcUSj;v@FaIBH&^iQZ z;cGP97(sLvLJBGt?`N?7(JtvUAkJ-&DJ~KQNBg7U!dkDrj;;spsufRsJoH$!sA>@} ziGh}aXWX_5WOP&xX?m--ig`YC%GMJ+uKWM8FjH0!!TU-+IMf{fUNmdR~1%WA|Ub>0N_DvV0)*7!A>-Y=R1^^NNI_IGfNvD-wSb={+7hI>%`KcQo>^^S$iR`o9Mt z|2?R@uM9xVMXz;fT~9QyDAoou<2^8{bw1g0I1l z4(NNXYwN;mCK|9jVGn|$&2a#f8JV5_eU0T`L*x~&p%9@(^^*7!7;i<;;NhLh=qM>D z?oVZZ>r8(Zk#awf;wHwWQy0LDYQBEStkL;Xe85CII;hYp05tscp>PW8t;wx}U{Pwk zDMpq8+*(uzE)7lORk#JPxCXB^@d$rRk4;BDIxs<6#}IZ5xNwnOi=yK7kKnTj4k>y3 zdIPp88F=xDt3a+e8~EWGu@rR9N7BHn*TA$eSQ!_~S=EQo&bhfaUY`Ky0l zfng)``RcyEiJw_cJ zr>vb-eTIllZ*mBE z6Dudk97*nUey#uArkcLn2yzo8mJH3jOV64ALIc+5dKf|AOU-y#>|#%}YOYSm0vk0n|Qg3_P^+ zks-vQ(ql1|bVrLJLPuhFqvJhus!5MAh@`lHK-!n{M;LGrVx#N*xz=CTz+*>vBv#oT zWUgxRzIkIvMTK-vOcb!MeFtgnZ6=Lpihqsg&o&BNxYjK^wB1`mlego5-um5ONG~E7 znDp(tg8lz|-fdW5B)xEX_pjp8pYH^Ba}yooNjelCY<7=9{MRkh1VY9aik#GS=0$4g z0Ri&q(e#>2k;6rVk`#g*uG@oc;o(maq(7O#^cx)!!r5O)JwaaXbX1&XEE^tPWZD

( znqOYjbc{J$j#Mx`V3X5VQWSZMR*8JKlj#qx;a&B?`ZltaJ`6xGc!|CxIuMB zsnX;<49I+Ebcx$Y|M{ni9*Zm9z6c-cj>UBiS~qg_hCVEJl@|Jb-LaVMnptH;<~v#^!l;@40tn^q9Qy`(TbmF z{yx)NaJRTq+TSuw(C%W1D)v=q?LiAm;BBVvGDVvLGdf)MwUO$xpBd~ni1^i4DMhP; zPGEoY<{CZ)<&UplmOz!^+MNe659u&GGw;_@pur){AtfPYXS+P~=<#DQXbRZTwoox} zI*7PDvC8`$RL(JW1jHp|5LTPEz_|CtArc09QEb4+j7%27DKWH5ahaI9Xn4mloM;Hm zasd#^CyjrEj)5_KdCuwjoqKe&opAyOQ#0RhXgZsXeWPPz1O2ksM8a)orp$!FqEHnS zl2_El-My$mpV6nHxtCtJIA~Zu{idsn2Ns+c5kwQ%G-xj~uR%6K zb$lJ(?nQ)tel(u_M7!|yK_&|()kRD+JOz=4|~P>yl@rJWdRZ;lHfIdQl}1!N!txS{Wc$9dxy4= z5DC`)z*5{eahz5Nn676tymsm1gKJlB)_VSlaP&L}aoTEi;82D->lw!<)3EWZXy(w4 zaJS>%#t;HRcTIhp5Fr}w56`p=bSg?TC49hT(6%o^(1y6k?hk&|imn*mcsjm=4wE3c zI01eHzvj2Ddh6g$(Mt8KPI$1q9Q4;5DOSmjf^qBx(Q*Cqen&5KJW~GM&wa!y#ggL4 zmzmFnKSrZ{$z0lUx`IWfdjey}rdViy+ z_Y}yyr+0kdBn}QC?muGD7Qn6PMA@$$F2#cgT>V^&-R|fCI6LAq%I$By&$@y`uKTKe zsqcC8gN)1;ucs4Z->rIX;{N(*k)Tm(otl#3TDqK-l9EEw)fKWdaQU0l^6up1oR zj#p(LV1zPNszx{D)8jZTw%bdNmiluH3x>!L?yi&T;i0JE4}5Ni-Lpx-qIHd&nE+3% z0Y5v;_3UYg2{|~49l+?oF&W~IiE!B+4ZA0E;fqqy^MicDL^?j+!x<|y&oK{k2)pi~Htq<~93p03UL9tGdJ4*7q0g)AKlO77{_@gXvI( zI7*FtkCf%RY9w8Ncz}?9KVzI>#|Nj8&;-cfnaHZ2p z9FzvA%HVPPG|Ou;DT4(Y6i)k#nWhQTXUiC{c?KVcU4IY%mxwsZVJEj#MSk9-0e!a-QxY$IqSN5Cb zMZNPxcQRpIPYw=qOIAnChrZ^eZFFdA&jvQDf`+@4zEsZ*Qh^9&?ZiQi(oizqjy5=m z_YV%4!N1r-rFymG2xq*^26!DAd*TVl2b-(MOLwId&m6a($-aZU+|Oqa*_Pq;FE)>L9qSd=?91 zd*k=WSOFn1_ocV6cWh$CZGT-h>I(x{yt0cou->9m&QX}!n;;hj*on-ACEasAHHv`1Q8Ha6;UHi9_MS?IXKe{A2{zvI1Is0`=0w%3A z9Ewdp%e)S54-CEZc-<&`P>IsF8m-?-n&=;aRnJZiKMWoH&g>r zM>r%aT}4|56486EC~vMT5yEzU%UTra_JF^nK_|gLS4}W!*k`>K2y7mk<%b z=KS-m?&rqV{8GWO$KcAyr1t$)(43TMf5t?z@l2WBGCBr2XtkU42RE}DdALK1rQpd? z8u%sbBvuB^d#t|Vrjt4Ps_$3a+)OX#alEmm%5GNtg0g8DI&_>NG{wOJSyrf6UGl@a zgYk6!2CC|CPJPHMk=uPcST(79j0k&qK)u>n;=tOl+|C3bHP4?$osVr%s<{>kqj{xO zG1d1y#w)VbxYQwN3o%gyl~Zo;W&ZKwV_Y8sT>DHvy}k^shkT~1cRG_0Ydr>hsuk-ScW>y4}l>$MxaP3+oOANXbgTmBB^Wd2dAt zAW-@q1lZU`*1RO-w~+HI&Q_EfJDtsm?V)=pkm_(INIFsy(j2SboUb_382UiAA|^BQ z^}-(Fl<={&WKfzE1A)`bocWAs7)!jAyiteA=r_UHz}p1|0T(Cj%awDqT&AW|S*iU* zkfAGssbUIqZJLjZU~Y(ca_a1EXJijMEDe;W_skB%C9OV-t_+n-EbmCga`&fy(UF$2 z3noH1jV|EvSR2SlNSSu$o1cyIvyT#idb3uk0VO+_<*?ZFk5+1wpFhXOO3FXU~ zvOX^_FADCJ(B>ZGfV%xpoOt!c((i@b*;5RkCYq(sjddB@U;TPk3C^Z$7G#qT}Ut za)d?31)v-W*n7nBJGjq>qFUZDjpf*!@793+qfNfzRx4WOFq|H2x&2V`%*%4+k4@}IYGeYv}>kO zo-TB(^eDb(z5{z@B;7GDdHdq4wHj|QymnJawayO9f~RNHF~0?^&_}7dIv`C7s@-o-j}MG`=k*mBq#=Gz`{Yc#knkYzpwE=1U28i zC7A(%Bz}Ep*_$Ba{`J{({$_n(j%rD`KNwRK7>R&ogetCp=Ge>VRUMGI#>Yd{_=E(x;Y}A-EwH!N#yz+rK0Fi zvLma_!q|c|8AiF3$uF$8+>d6$z`skY%ynnwU`zc`PCSdT$=sJVPJztF_TBG{Z{0fv z2X6@1)bq^pfV!txKTpbIFXXpt4)yl>V6bF0Xur7wCs#prOo`E6H2Sggj8eJEg#}+CaP2anq5s9k8axxrSxZ{l#5Qu4TPTAN)7>bWdHyo0~&>dvC!3$?u`t z{F>P}jO@BhqRj#HydoZ4FC z;{o@o)5bbK&Bw)ijul%3Ok`XJFE;c>P$sjMm>PJ8 z-+5&p8a?lH#P@ite{%ez=K`&!N}m10nJ| zW_4!}2E!q*w_6;vSny{Jy5mZQhi7%J0xoYvGFad;GnWnd9@LnOI<;e1T~=37>JF}@ z;E0z5)qfVTc>XI$67=&(8#&uw2Q z%jVAN(Pa~D3O;bujgo|*4tDD5gf9Xtfr*tdm+ip-u#2QkA57Qtmub4w6nm-`M^8}ct|b?1JsFy9_=nC zc=dZ4v(NuT1X!w6k53yu+;cmjWw-YzFsffF;w`Z#RJ(KmcdCF#n@_^A_~q#+P-NnY zUlzD+9m2WVZ#f$AEx7pS}i8B_|lf&P&d#Z0FI z#I??w;L2b+Tx664kb>}hll|VQH#jXY#622#$pI-H#8qa46`abFwp(dZ;44|^x={_o>Z@RK_IyYzX2imv8d+%Y&KGN`F}TWG0Q<%@2F=XhHFXFefIL&|BXc`c z22()&@?zp@FnkqraIZ9K*=OxBY7YqtO5$~CI1EuI?$1@v6wXV5j(>cY*5;G|6 zZp+TxQ_NQQ1e}pDGX6vk^SL%-Fcc}<*-3O`Pm|<;BDc4oq9R045I!g|s=Z^-GMIix zRJ!%ke!17nD^wHGSEc=)3n!e&iwCab@9@jVR=HhHYs1OiRq`i;E+pMZf{nC_FE7J* zvHH}RS|)K&7tD(iS-6aBLs7gAdL|`>8qCQanMnjFZLo{_ zRub(huj8v0A1konVN|V%XS0jCX&G=E#@C zac0`R9EdsrjN@0O%vs&h9=ghJz&PH~D_Xxe6R;OEDNsT|nYY?;sD(i_Ia47MBCM3D zrx>>xUQkd`)f%wjg=c04c0O|5{{HLjTj)7EabE5R)t+d^M9UIh3~VB;?=J*%2V9mr z#t7Quu$Cs2F)y4$9yoskd5p&;XKE#dJ^8hGn$9wKAB!&1r{uf^;s0MPstt>MgA3{} zd@idRphJT8Kw+{D+?oXfgO+=<=Ziy@t7EFyOSha>2UVo>6%|4G!(pR)7Tl%g0|O3F zdlLY9aD7#^+UifZ%uFI|U!WCW zuS}%(p0HB?lM5j9W-~E3I9&f8)`{&eP+=%u-Oq0jQ;a1NR(z=ZKq=){mA42!@^9`D^6TlXJ^KBz5MRFGrYvPjO>i54VKlv z2RaM99#s{f9jyA@;2_z_2INgu08%MvMt`BA@~m+e6(Z`LW_SNJ9Ve`n5V-;VCaR zKhTDjN=F65a;C}olm4&Gagq_@)K@?4>EvRnpygc;loJm0+#V0ty6B@N;%q60E^?4} z`i0}V-j$0!ac|$gZEpM1S2^L*b{uU~z|1vZMLv48LelT1{r#2h`nqg^k)(Q=Uf<6= z%h@{`V0s?d@?K6cXm)bSQi)mnW_L(%Yyo?kbUzhUgVb|!j*k-^n&qEACm(JvNec&! zYqd-&Ynkvk)J(_rqzzJ;vm@KHw5zqs`*YEsmMIo7sFrQUb@IA4J@JJ6*m3vx00Qw~ zh-^R*!J#*oIaQeGRHswy?09q8(31HTLFr?AC!2=C?IRFKIr`iPSDdIad#Bju$tTI>l170M8}-O+{DbjQqvtagEUrT#P~>&%ls-1 z2F`*DsMJ|j^B%6I6~!Sh{b(Z#yXST&DT4Q2P9AZv5|o~3)_>eg7nyFjGJcvPB1^!a zW&L=0#YX0lhexLv_|kG<&BR+)B?*}B?zZ1uk(EXBXVLGk$WqQ_(qfs{vzLy3%eb}*+RN2@tL4D_8z|n%A`rm~l*^S)FiJ9(rok6!)BLtDUB5zmef}c&amc&7 zpR#xIal)Yw250r$B+8qc4PZNMdf3Zzoj{`Qi&pj$P=0@XUA&d8?Ns`7KIh@Mss{9x zTx)H4%xkd!#of)td^q3kWa&Nod|Q@gmQwn_2$7t0YmBDCZ?o>-0bz&}*PVP?Uk>N( z#fje=jpGZwUPKH$^VS_rtTVh0FFok*rGK0>dGqsUP;|Z@4w2)r!CWzlH%mDy^X_JE zMvo=)2X?607$sSpTDKA?Z*KLZcYa6|*eIE~Cvf~yTlA17DDy#}9--)cLc&M%mFDsN zIHL}ozqfFCOG^O7OP$$ixWgC*w+&3MYDAmzF}J0`_iwJ(Bs( zq&0q>^3D&gUYHtqc);N1HvNRJikDb5>k5yic2n5&g-;=`G2HREe% zI&ippL{66i+*@Y@rT$V*&;uK(_yh^${v~$*7^1Y1r!2TSQD9xnZt(;v!H*1Hxqf|$ zDMWY)1i;@~a3`Z!Vl9A+ao-O*XoIpdO-e>E4FS1NZ`JRiQcx5j1mFc6hw-q`MX^Xz z?qaccf)>DP<)QiTH)LzS`N3sn_U?P7W2>a)0*MN7 z#&IRN$6;@z6joi#yTlEcN5C(c{8UFIfA7NnO3+CdVwjtUzWJ?O(fy~Q!O~JvL~P&A zn!!Rg)O8v4W-BOA18hz;xE-SS*)|JKj@C+-Ey5b*6%=~c!~JAFG->3!)(0EI*1E>$ zR6A&tXmJ`Ah5$)Xm(xYiw+HgZvcP z#oMaHq{;Vcp$P&BPK*7fjmTJ|4uc}&v6i=3bH~TW;_~cl-S>u3yWoddHJ+nchk=tb z_H7YXzX1Ql3j3>teOBtV>b=CB_+r=1#XBQhx!P4G?e#%-=G#7;q8!AGIuc6smys-x z29BfXbCgRuetDfdG8=cEs;y`J>}!<3%j?V_^(4|1;|briL8;`KBbzsIcf~rD`zHS4N_|i zAB<%C@GL{j_nYdn)hoCAzl&cw+{sCbLK1>N^59mN*cxiQz`UnS$VhhHf*;1K>TJBc z8sThK`_35hP82{CX9ATRQayGj;eOTMgydu;i4&A>a!u3ZKb=Yg-yGg9$zi z(r8=lFX&9O%X*;vd@SEw%)&w|URk}!sdB5kerv6Ke)V&s`{vP!6q!fx1;Oo^&g$)z z9*;J4>g1K(U{#wWr^5_T1}b(;ZU4HsD3#=BHqxPaRDJCHdz~_&%vQU^L^Xt%(|LRK zY=0&Mw8To~2UdZV{za|m0f4PkUnV|IIVo>ySqvqc&WC0VWFuhC0FgE*NCNPwO|=oO z_YYH8O;2*(OpSuXW?rT}hSP4-N81CDXE(AdVq>IA%^`y4tLr0F z1EN+{`?Xu09G1mkU3iWRlsO8Hzki5&YzrysdMl&WFKlW;tYBAD*ZBTy;zzCqV-4-v z53n3}+3v)f{stSW+gIjmA5WG5R(^FixyT&`K1`+y8zX3Z3mGG6; zT%6PO8JV7RNwoE$`6F_dLRlf#<78S1cA12Le6fxs_APjcWZYx7!Ia&i_oKwTG)dHZyJGcDfweVYtLa&nkhwvyPzacE z;&g;P>EmjCj}9;blarTEa$0JJ)3IuF^Nl{@q}TG-H<`1%d#sdN1K9ld#O%6qu)qcS zzl2lLvR~pptjim+nYWxM6MwG%>sPp}>~1N0`W@{pWI}TpICs9G!bI;er@&qJR_)<=M!Z$1eO@Yo_2_4F%)2D*kM{$q>5y~VwtjWc*9Y#*JtqNEN^;#jXye&3?f;S(A3v}YBAr{^uk;8D?cm@bGQB-U!0C=(NtDz{~SghQ0W z(zw)_St8;H4qkGC^6{T~IJ9S`E%^@kdzDU&}XhFExyeGZ|tC9XcxH ziu>6KGY*+r@yjZUCK<$;Yr~4unuUgPo}LIAglkX5DrT)qZ{51pVPII~oM8wFd%98E zaH(BneKLc)%Mdv7+-XbTF*=>b*;~z)tt1Y|JiG)TNI+mHMmPltx9#t2))_719qY#3 zTszdbY0qIF_+nLoU1I9W2VHLrv*9xHIDS_jiF?HzXKXKu25YVhtma!x--*y zYmyRMSG>WebF6%=$MB)@JzCniIW6#)J^u9+XB+Hfnb)2RxsLV;8Nppvb!QraG~k44 z;YW~@7yj86NVV&>xmZYKQ=Fr%UZi%rWQ2b@JMYb#H(0%yvicog7n!0VeZcdjBn@4N zggpcF&Z^AsUIoUK{mN+3tJ7l?Z!s;c;>!b*@?G;0+qL0?*4!H%s^3^(z7k@pDA-Mn z#@@Oo<8qjBPrcZY6@l;=ZW~&>)p+}k_FZmU#~l;J39avFlOC$2NYLOK@w>5f_VaUy zUoatR@5uYpq}$#oyIl*gU(vSu&3U0U2+G@r=><(>h790nJcn$12_$b5#Y z%txrwZAMdIa?Om7RNkYaN^XqTOnpc0u{rcwL?TlmLt(*Ini#QLb7ge`XxNZFgPyxn z(YF_}?-JH5>>nq9s9`Ig-Q1KP8Mp01(|1;CaMTt!aXsS=nkVvI8S!}aSri)*mhjks zFW(2*4SuR094H$}$!LGuPXM1_`=xy~tL7rugP9W%M)jGTuu~@I$y7FB+pt+K>i zx!h6S5JFTh$7XY%kc3zFc|2D(nd#^=93qF#dOwGp7zbwlH&#(lT!f+N+JYRvW5Ay9ahcu$t+>d2ULc<*A|wS zIc-~l7`u++6d6F~wrUJ%o|mtsqGC5^l-+Gyb5Z{dK14)V*FFUH*@ zm&#YblDzEi7qDMd$qk1#ZaAcMb$wxo6xA|arcp!RU1kX5k z@zJ+-IbEC~1z=PJ-`HE6n6O>$ZEJ1K9x5ncAT&;}Kh$~LG-RfFrASMJY5Xb$@ggU- zB|SDamJlCbB~O_j^z8vqD`tQ~Z%lE_lzQ3*0p-^8oSg3!H*?bn2?*YMHdj?S$Jy?Y zyUoXk9)r$s;bV+9l3(KmU)q!<|P|6U95Yu45?`p5o$&z_R6`h=% z?Ca~Bo0|(3%`KlMnHXg(3DD=b`t#?{F2IvzQaAQW=uH(=*IF$Gr=OmlUW$Ny01VSl zK8^oHfiVDfgm_`ZU54ud0{8~e@I1~3P3D21AU!|h zv$D}`dgGp+9!5LDDb0q<_rY<1N&jV;)M@Qh@aU-h+90qrEo5Zg%6*vc&yu~zq9-FK zm#dx=s)+Bq;+Gng5|x-}hSb{0xo&qf7fHgM&)&?of0v#UbeIFO1KB%rg&jc3JU>4V zfWD7nfByWLoZJaItfE-cii*x00h>>E1Vo)KumJL5q^l+pp5yR{3jcg%y~?(_XrxeS zUQSJIQovqC)t-?5#ykC%Xnctgg%pwbhfMiEVlhlHSw;{^J5cTe?r`om!(2Qp4ksPl zLj|fELm5e23xJvwpaTq$TDVKB2X$Ao zqM;YZ178^L77jzD0?bE>E*#E%(-|B=WW~scrcvIcFYiUpUA#F})sRpCbdvj)R-{`K zo09UP!ip?dia*MpN2Ca|tgAyn+Zy@VL#xhwq&9|06)c5yYd%1BEdFU`vC}z*SzQ^Q zmYzQ6^AG2%i=$ZukA^EFV`Bh{JjhqowK@W#dO%IRS-lq;5CA=A#J}^(*jR7x)J&y# z>EOg{B>(2j90kiO^}=}NvL{%KujG3cWn!4}^M@ASIt!&Tspf+qHo&l$CoVbEC>R@S zJ^a0KHk7*VL(ximQlA&7_r5HFK;MfuP>62s#SAMH#D#}9c0nHi^`!^jV;w3^Te1^C z;12uxO6uY)8ZCp~i|wilsDYW8ce)_Q`w5&UH*W%Wqeu8C&z{fAP5Oy{VZSi7DOty40?Yp0KRF-)3L4EjQae1Xw<{9GF!a4`HYN= z_#IZg;-j}#R$yg7V14afU3UTld6G7i9UMTFHi6W;l|vXNT6|WvY1ao*Sj5O07V&+G zHJCT7Rm?O`G?O&+wV+(~I3U02pt_~A`LZB?Y=cLf*cjHdvitK3R8`f6%=lKk^o)Qq zi8up<4-*t)LHtoDVSrxb{w=Ss5NjgHoo0JJOi6u0amWlC1pk&-GXzQnVY~5=n9|D^ zLYYP7>&@|y7K19DR;&y2U%w#-rOLvWq(m(mT>ihv-NMb!3+~6oP3i5eWdNUd;i}E*dn5ajY^^kbXN2loI=fm;pq#9sG#0 z%$?>mK1|4alyK!c)Ua8BhqONL6*Hs3Y5k1xJxp1K3Jnq)iGnH()$z}wp|U2!zAFyV zXCqaHqEP$V5TRhg#3Um%p(tM0Tp*BeWmK4CWESjB(Ss}+FW>Nfm^cb3M+pcZ)^CTP z(4bu!{W@Jg3C5;4dBTuxwJ`?ztLKHQpve94T?qDruMIGCMl33PU-a~qGGhvnUER}f zHaJ4o6k6+JD!ejdI-Y%AR_bo$01Zuea2@{$bCBBKmG-Z*}iSeNXzIg28~ii1>^g7 zN>kw*qyM0QNCP2s;e8Z^=zC?MiAhpYM@J}w7A3}XkLeYRdy+XDa&x5zEQ*otNZmDc z+BjSw9LC45w&^c@fC$^=3?P|YzKR+$ip1DAD1964uctU-7z>mG#LFlr!|3a^QjQBf zZYne-;heuE3E=n=0&Q(AP%2ofSMTx&Rx_@pf4iOQ1LG(B-@H0?EmT!&CZ8}gV^Z_! zk|z;<%4d?xzA9!6Vt8~Q%b2kqpX|y?`h0+EC|$-l{;~!Z0bAI?AGgr*9U|$+ zqV{gzpJx7#9Hia6@47ElA1OJI7R}o^gW|w^!g#qWxS=sv5yq`opnEYG9!^P({eT*L zzTy22QZ~pHl3;U#de^0n%4gn?OdR%=2u#f1?w?URh*UI?qicxi%W99@*&1B)f5xcT`Y=l6&9 z{%6C}rZY2|Ug4Fh{Bs+=m%w~^5+A+0UGeliER4sZu?sBNcwz&|eUM*LFT&??ol}y+ z1;=NAezh)pnE?@;?48R~j)Nw0IVW~eja(fnnq@w?N_Ae6X&O4_YrEk%otJO6 z8FSv-AaXv|*(><+rFADT$*}>o-aT#AA*%}94p5dSAJ>*Gm79O(dV40w@&3a})rK%I z)*W%hA)YLg_4mU8G_RQVFPF|HDLlHm!g#HI%vI%#ycvyfq)h|Cm=WZ>xnt%~yMUud zclL$|+;sjHPPy61gvl9>ajJmu=iVf^oAb>TAYvE4>nX`~I6B&XlY{CHLP3=>Nm*H9yQ&RVn^DPR9tXV>&W*cG&}UKkH8t~>4AqA#;$QAp!++1cer zx3R&Qa_seUbi~{o7hanH2^#sj(W;Bai23olu}I&_Nci@XGaj`98A-NDkND9w=E+)H zg@Su&JwmoTEObk$f&=oY{AYVx36IiD%eR7y)7)we-upV8ll@!I3H2`({e$&lrOAN5 zD(qxeY(+*Yat`s*X8=y*QG!V+aAF)q&$$HMuQd>Tdf{_gdoobmwp?H5wv@>p9E*^b zleYdQsau_VCeyh*xj6^-5S*$wBTcHW1I63e1(Om9TAm*HFjCjNQW?Y!naIUsOU1(^(M6e%p zxv(xVKFAln^0+Sd))g%86mVtX=U{Pq0>8srS0tyTD6Ur14og$l2Mk5#>iG_7|JnE6B&gm8&2IwxWmQ zdK_SbW&fG41+cE+kvgBgFN$n$;JlZwFjJbFzyB!J^p;nEwfX;UIVME!F62Gb9YJBM zG(Iq^@9&o#jRSX_tn3BAvopM{!ff6?m62#t)S4X2H$#6fo>SHX-*YKYlSjly>il}R zdnyCIwyzQfd@aB|LRcZBld!VK)q+@Q|v9$`{b3eVqo(h5uWF=BkX{_EObE-b(MiuPzs|2TOK%`BHz&04}S5E6DME}|VthZ)1i--uQq1Y-2 ztXDjhnxzA2*^0L3ALHZWG48QsXR8fGyme(#FR}wM9Cr35a?>_AA@mjtyazat zLFo*?Z|jwu@(=zm)vr!g91!9aG<0z}(sKv-wfN|02H$I(14!vpKX@=bS#LW!jzJqQ z=Kb2NwF~5Ntu)GNm74v!*5B5Ebjs|}nWN=29w})7boS7R>v@?eZZ$Y#y>(LOe#ZY= zEEtwyJUd+7eE7DdRlwtH25X+TpCTn zdvV_+pJF`ri;n8gajmQ8=gcAPXE<~Mp%pZA*o2jWib}L9@|QA6wLyu7_$Ng+q7NV@ zfQkP5M!hWkM+^3U2nXQOUFrWaAAU1dVjE{g6r;>+3>sVh@Hqmo^;5v-el^=h0jkP0 zf7yW$pFG)^iL>_CRcw>?>PW8**}lEs!(UDYaMxWJjBI%bU(+ z9DX4r1I3QL{^Yfuqd`NiNA6#{6hQO~Aa~1_djQ@~Y4u23)qZRt@I)PhPA;)StRVIg zNHg^3vd<3}X_!fqgYuo0;5dyADxcf6+v@`Wo(lqFd}7P2I&MpO^!`}HMyd$P-`4-W z`v2!Ju;?>J&}Gyg%ys8rE7f8|kM zE*v=HkX;&Ier*9*1d+q}-go-j2M(6hmgT)yCyV#a8rG){LZoD44>yMP`dYD=RdNAW z78dD_T8x?Mg@-2yhLP|%IhnNFy3d%;S#hGV=0( z%O;bGp9oXqA)!fx`NnC;Jytyd&)Jt|W*zyjWV5^DH}+1KdJ}8_u4=|0Lyg6~M)pW= z&!o5VXsYHBq3p<}yPnz3SJs9LW1`lsaYKQ$Kt#9pDn(>ad^B? z9!IA{aT@dwPKQ#w0lp^ok(ZsgN3K$)QRN&F=M(=wqEVwgc6E=i?tpz;rdNC)#I&H$XOJ0)e7`4O40!`vpBHn54bk*@CFy*z4;+>CHL zKCG;WLvse6NdgwDLN%mW4Noz-kln&E++*~!!{XqFQN3cvresi*V~kBMVs^0WDB!rk zZn^vIDTU?tNI}pn3p5#|@Hh{YmLnJSdk3C|MJ6;8aSI27>d$Kc_CH^KZPV9OEe3$H znk}IN{ok4!GYVa`j?-&E*vBt4H#%{w#spxx{XoY&kM^(5Ha0fGXNS|}rp-^!L`KV&Gg5`C3GngP$LdTr z3qQz?f{$3&#|!+6NM&PL)+S0Ma~e`o3?KC{j(XZ>lZV1$CW?tX(Ne6jKcG^ z=$?1~8q1R~GFm7n+rlE{xW0py6nN?~^u|uRwKY1Puc>iA4%mi!0eR95O#A<>K?pT8 z#+&P8Z3z1OWWvT|%-{8>ZfrG6T03)k%hP1EqrT4d{@D(_loGk;xss_gXngMr3a^3B zf^=DF2@^e=`&p6(z-S9BfG6|qLHN6i2bSfNt|I4ioy8WoT1Q21ChSMZ^e<;J+(9l< zQ%h?yh~Nd@{Ct|zc?tg>p~G4~BMj4WYIpPdtONk~XxiQb(E6%V(*x}Lr^aWXTTCCo zzgP?}1Wqd?Yaor?0aj1faY|D|gAZ_dP@D7tTmk@>Y5@RE2e&x@zZfC&wWlU8yB(hz zl9jl-)M?hJbz6>4KS+15gx`GKbN>Dj+^OCwWsK&p^Y9<6#>!X99sI$ub?0+sfJc|h z&VAbCjH3E#sw0MpgA=QyH*{zI7enxF#XzZMyy%B3^w7kV}*9CR&+~BCi$T z{kICJ42A9AHkAfwASz-?>c=#ic+${*tiUw}ambG>16))uDoyBPFC(5z1EdD56?2k} z$O5UcP2cY6MJ+8uM-7SW)WD~rB?VDsj7?qAyQZSjqOPsQQ;$%0kFrISQwp8T0mh^*VNU)to(+yLOhS_ z>#I}(JUqHyogX>cIa%gBLL;@$-YUN*SSvqt%D4cai1sd8+L2+asi~4lW>6(7g|k8_ za5}(RT;Z{@3=d1|5a4ywFU~6?#3K8V@$zjc3>9pM|Fw(y=W7s&d{md;j6n!a6)RGG zGWRdP9p*-HZ|(Keeo4W5sd0ymm9bBjt+f?xm=r{70mOo@mewrcn&oEhT6F^XW(G_2 zX--@SD@%xShc3ltfnL_`yXNWoZHv9;>5FX;dfSvMz@W?$f1e%3+Yw*kWZjUO$H*uS zlgnHl#h4cHrgJKnGG+n0SN4+@W_Q$5`T z?7vEzM65N=Zl!`Amw;CVpn~JzZVtO2obNut3JkXYKqQLXN=k98ZK%*o(E?HV^Mm7d zlO*0}0bu}0PtT$7#_gysdLdKfjl(7Q4$jriia7$#QmK`z5q%41g4gCW`5qWLx5I6y`&nb8_>{wbpkJ zrpeAu)Lo5?0H?8ZQMl9gcR&Dewt^gHRh36b13STr_-_MYHe}cmMDJ&>a8Ze_aE;I3 zL9?}60kM)7q}B5__~;F+@tF0SGDimtHvl@r<_nmlnv6JNB>rLloFl*?v^{c7j^^Do zb9v(_w)@`2afA;z2(M3*8)#804WPHizgZmCDIl$V?u{CIAJ+h(k{8)+yr;M4;r>g% zjPAJw4=LyT7G;3PRVris7__{Y#8=LN^17XH=t2Y@?KdP;CUJV*f0DR&@~bx;PsZMh>d@B@S1??V6?Unc^6|&!1(9_S;> z|0_HAFJlr!lR(R(Yg6bqyOr@1A`tsn(r4HoU~S0BrU6ah0~P(QZ;#($rzWG*Bp7GL z{g;i4Eamz6lU5I+4Q}CHV~K(lRSAG`>aA7`Zo#$k=;(#WNOPMK&|^M_)UOY0Vg%_3 z9la_WW}e1F{a9r@T+SPc_$}eLh<-;+eAzI4K(_-xOxyJ^i-sDaT$;}WDn%3m!nURm z7$DIOCIyl()Q4_gwvGeuf?`5UKRYVlbm$~oBW3#Jmgi@Ky6O|o&>HNzNK+rBVA1JH#~63zHr5EGBjb|l9dsq#7^~IFk|Cf5y*e}*?sRelrGu0`Xe|vWgQaBJulHL* zAOmb$Ayr^Li;$I$?i(mu+(6(;6ffMvB;~Ju6}+rnd;B#riy0ILMa65p1BBBN%70i_ zQc9T3`hG3cz_W-7Cz>v7zdP;W2)en!amau4njs@8gVTxp{&*#Px@(zs6++oxb{*eK zb+2x}8+Jp{H@qt{i}KwXU;z}DY1fxxxc>w|2`C>+`f;J5Ln5=N@!42)OF&(Z2fW^{ z#6X%FPn^gPg<71r-EHn$;QKeM?yj@7(n;One%HSf?F~qzj+c_Q09W(XleQ56l^Ut* z_0k>Zp{M({R&8W$U@!}qeV>F8sR7tfdm%#*6&5O$oD8s6kBy7#adC04fiJE{>z8kX z?}3i+wWgiJ3z?F|y~SD&foGqSHT24_-G~W(eyQwfnwOt{90rS+-nvIKe>97pF3=9mdUpk0Ay+GgDsW!lOy;Pj2nf?gc7Y{GsJ6tO*C*s4Lm2H+tmo*E7 zUbN8mO)`guzCevxgOH#KWWQgMg%T7DiyW<&h4Glp96F_EtW#XfM}g8KVLQbuv!Q$f zSD})U63S{dYQDg-Yt5L=u%pTJ zSyhegQC%l8by=T_#9Xo1D#VFe{!`&G~? zdwP+NfPesyv1_oznL7+B>80TyB^S15IU1(74o;amI&tFEk1wP`NV%1@GHyk*8+R}> z)mk}fI!irkJ`J5;A9wutec7@<6J1ideW9te6!`GDnFf?FG+0>M(fZ`tfeRddwls_w zCwDbU<#w39yikpJ?Q?oS!t+|}T$d*aQCP?TAik`{gId&m8Z1ec!(Z~|9WvB-lAO;>e{P>}^geJaW-t4Dt5% zejp=69{hxwJj|cwGB9A_Eq~Yuyx6Kl*;@-OvfZvH-ug$FxA!zJRp5gcQmS1Wm8c#R z9vQV9b9*jiZSS>cVw5q+orR*>Kakk?XSrK$B-v89IQ7kkVczGkYk#4T{UYxfP8al+ zPs!_j-@Bm=mOmODr(Lhwb5gB_N*AZ<&WfsccggSRZ0|?DO5%9~FqMmo1c1opuyPXc zJoB{D;01=Z*%5KP{y6V&!&=8>tdKv={ZI-3apwXh8!3oHjR!X;UFqdh$10WD`!>c$ zis5h090g_C!rTuIcvD?3Pv}CD?u)oN9sg+Zik44YJ#co_8_aOtGv1?cw&*hi5PUw< z!2m(6a*L`ZI$_>oVi)^?-_@Syd^yIhU&PV1GrNk!3x zbaY_j5OaODZ42Ea_xO^}B(8n*kW@@s47QX?FZ=Htdg!K@8ChvT$ZBu`%UDLGE{mFtok z{^C1bF^N-^q6R@dt;%1lYr}8i&t~>F#vN;GmyjURaj-gYb#B`;thIGK>tAvdx;n8F z4-k+ochNyRKsh=9ct4oyEQk}XnENmwPbOew4QL?V^3U@XCEcE+lUW@`oJ~3khFVR_ zQ@S2*3ZG=&y*(+UzZZ+Z5iS4x_~P_7HkrWQ{=n&By~jvVT6S;ZiyZm*g~P3S3f`sE zR$45Iv%U1kywhCnOY3#F57QhEH9?d$LExgPr|xk6VmX9XXAeV*rZYX}KK=b-<%FQfi=b*(|@!XhKm&lSY* z7v_SCYL+@~8w(w89D)i;iz-laB%dOH-LRn+*NKZ8Cp*pI^fSiu)G*k%8+2lsER`zT zYPj0@iqW$+UCatG-*6Okm~h|vX{B4Erly+pB9E{;i9Ry$(X>U4`SIr{1pyG>TnUu? zy1bV?Fa*eF^NV_-;o)p=hlf)zDgVbSL{wVuG*P-?tl%bZANKbY!%_GDUku5!LQ z>N9X7OObXRH+orJjfaz+Ydpp#KYLt&O5>BCo0CtcxF?7TqQ^XE8h`HGJ=zep9?iO! z=Genufz`0L5G41{NgN(gp_c|+gA#w_vHa5KC`ufA!r}yf&C-C4(5dj}R zew_J^8`fs}+{UH^Nq8kGi5DnIXR=1hY9WIkq#(x+4R7r9BjE=?zjapHYz+NzP zdh6~&1njZ%t8dE(e4##n?(%a*&CwrC75Dk9t@{T}$ppZ*{IzshfvI=d^+GmQ)Fgxq z{2vsCVAt3#%t>LCjTYjWs`PI!au?T~RUCoDpTK@k#Kq~p$o&3``m4(}paF!7^8t?N zX6;$gI5RVIPIn^b(kAXBZ6uptXhu$NVhz}M?MES;!xN5IgQPCH+RDltHvQ3gN7Ey< znq{g$83qHfu1_ayMsoWqa7g=0B>V|j3$+>y29h-gKxVNaGt(e#t@z?sRPU1L?(tq{ zYJ$K_;X&nJSO7yckkWD0wO!1-ZJca9v7>&u(l0m6$8xbavPR*tU(%j+7uDlxkQnC< z+tO6TgC`+XmfMd~1RdOV7KhT@E=S!BpW@URE-dt;16H-ks|OICn!q z2F;>-?TwCOcT7f`!g_z6VMBeLDgR;png4`~EJsW-pXq8c@jxQCu-R;Si+?9zd9>XA z?%MjH>S&V(p~a$gE+-U0#OtEMlVn?^L&|IEu{xRs*pDc<_75egcaFWCi;LVdss(J@ zTZD_M5B=H*g$9wbZB=^|j4aqkYvU$h50i~mfZyev6xfeVvJ%=Dd{MkPRAcwG(y+!6 zd`?3aw>f0ec(R=0et{ejs{h4$cDPB(YdjcM@IIy{g7ansQo0upfOWEb95d znj+*pcbpUVFt}wdW3yT~Rl3mmB7~XsYQ9Ore{~Rjq*(hXkG2ym=1me2yN(ZvfLimsz_?ov)M=9%=W5xs&3?9llQ2JxXpg+^!t3U!{(T(fI*ji z-5IOLT!|`cF$*gzE19VAR{ceSMY;QUIT~W|`Xrd*wA#ySy_xrgj>&qTot`?#8YrfISxl)t~ za?2mkZ(lGl9J}9*rmo1B!l%3$?R6oEXa zuXmHS6*JKyFu0s-uSB-$kD8jp9=V;IEEYHHEJeOzHjz)#5jc6*zhg)m8x673aaqid zEB7d~1VWXmQWLs5UwWjyRqg(|A?fxABewa5OwNnepRal!dhGWq)b1>eBecsaml6wl zM3)Pjnm22IeHA_5DNTh4S>0}YB;f}i-kZbd5#){P1~hRt-w{4|?SrL@ojK7{%ath& zbw^G8%WCq8Y(>3Z?;a)c-c{;*{YA4ZJM2+>Tqm)23<1Fl}h zk=3Z2@nHOpBW8mo5IIZ3ex#_5b$$D*wmA8!)u2vNp4V*4pKfxJ$DbcmADB|aOiCh*!)<8I*xTh&W`A{a|ORs+?l)De}A>)*~=Cu?5s43LFdd3LL+lZ)u^7=OJO zpo<$WhQp)Z>Qrxey&KVWe-+1~yGbt0LoS=_^ws8u)%tj?Gbdzt>`l2PsoF0*Io(I(oPB^~)s4cU|mCK~}C}+c!!SeG8Y-iKOUEqQg>Kx3iau@feaBozL zT%>9oOJ_2H>rDl5K%A2@w(O^eMaqMwk9fq)yf$!Uj6enqG8SP*!< z2Mhe(iJQ8fO%>9iH?=NB(B4hI)u+vl@3fFp;cDEK!tLOoS_*?=w9JtLF?rfu4lKC! z06{-bq}2s5({Eu{Mu@4ZX1bp_9IOtu6R$b!@84c-o!i;T*!qN=m!$`F@}_O~ZTB-U z(&Ci`n&uA>S_gA}-AP*{Jp045juY-}8(1V<(%F$KDhKWKY1=asCs?Fhl~tb84VN1i z{=gKKWschvwYL8LS&+5<*H@4(4Iy{V>9h$B=**hF7(Xk}b9r?-_>8>5b@SXGxObt| z=Es&5VMGE>iom3g%(LT&5h&Ll0j0Ud90><&ybs+sPk=dgaeP;Shsl%+TzCl!-U5!RJNhIuoN1-^3<2M?=1D>85lz3Wb>XQjmw2x@9SI7<36|y~swso;r_BI(6S~UoI|mwm*+| zy|jB?jBdCoy!K(>a7&c$?S3UcXST@Uw~Kj)e&_Weirxn z=RRQIj-C_&+=tA}+IwSTAxS)!%De@te^M}A?zOMQ8be=28NaO;I z(Y&05$no* z+i)@rU+(fe4&i29db{-LDY@$|tHN_n{r;AF2OxkPx#*8G?a&qgEb?J=f4GzL0V911 zmuqXZKe@;Hyn<-WLOO=%`L8Gk%ke3|7V~-hY4Y3M!20y`3J?S6JFz{Y;A8Wc%LMm# zMPZ>u@02^nl8Dn;fD&*K!h~7t8FW+X*EahcF)0$I>8!|H&PGj=r;04c)#2KLZ@+Dr zB)hCeuW%l1PC6a}IKKPZMrxdn&`j%8RUs}dOlO>OJ+rV)d<3<|5&X!Kme4 z_ig_a!L!4LR|mn&iCk7+to!Dg7Z-(D_&ggwHUYnhg<0?%To|^-Le{esEXM;wBY-y6 zZav;L%&h+>5jad^Mh?gU#Gp6W^`YBtp2TgO5OVH0;AI1$@tZ8&@O0g31_yH2D`8g6 z3M-#!IM>M~Isk}R0czejy|+7If}So%bw{8jVGd{`x58;6%H_Hg2QR+fZ!0fk3aBGo zTc>ypS2J(i#tvmpv76#IQCCqpKi}J|!s)5pS$a$+X!m-evQM_Skbf(=48&j(uD*W- zM~BH=WncP!?v-u zuH=LP60X;j*PH)&u?X*eb$NRF?r2u$+2qf&j4;u=fE*@q<876+)oAHKkx~ZSb5RO0 zv^cU);XVg zZTEKq#*>a(eok5X=aZGDvc0k{wFf;llQj;+q7GjIhzv*G{A8O;?c1u~Sv~G=UruxF zX}PCcX}`wHJH_>@_)Q%-CYr`tcg0lw)@5F^Kc>J+=G`-_`(GToJ3*rsSBI6|I6cja zU*}bEy3QM=Cifb4TD2)Wc2@{IYxjqcZ^*~%#=i^to7mo3cz5IWCJFcHr%_H)uGb%< zQ9ni}UTtRtO1_-<<=Vfp|3mO;(Dw&8-7G2RUIB6}bvU3E+0y{0hsFp-7MAkiIo?7f zI649LXT!OjHiU#1%l}-45%~CW*|x2|J|6h^=k@5%?!SYos7XzR&L5qjInzig>Jjfa z3y02sBz%^&&>SYxPHYR*N^B^FrcZ;XTR(RKWPius8-$@(WLb-`{hKdN53TyrPf~?l zQ(YWPITC~x7ozY2za5O|mf4OdfQN^*&Iw;yH&rbsGb+Ln+7+u=ak?xyj>YC-{MkN8 zLa*V~Vo%ow0o^+1&e+|c4!sdQcZ(w{*Q1TI-GX9ppNb=NlXxtrK(HiBm^HNRu57Gu z#m4x?WVJ)p5L%ED6A;6<~ z9Q3_>0|ZX1YriiG&H`Q?_BdS^8;%4WK&Tvx&=#~`|G9j+HbLGCY<%_lZE9b2xQ$dr zk*?%Il!B=1tL_5(pkPFh`~mj1`|fsUIxI(HYj2Vr#u!KC4h!tpBHIV! z0MXV|mB~?UTtpS3HBfW3`Gz5%DsdyfXV zP37xDtx z&3$R^my10qHAQuY`N%h5&%&=9&TZPV2l8Gh@Mp;`hk|xAE)Ju%Af8}8U9U@nS9O@r zY}t0Jw2@QI7l2hJz861-L?D)+DZ*ug2=>P0&OP+=NR_9;|5|6da5|9>*Ygzz~StgM`vVtt7M0 zex$g0v*C?6-qY-${P=O3o980uPkx8*1VS+ysK64ud@KpQf`X1a2!lSx|I=%@ejq>NjCB?)g#ZW2l+_@7a1rczf1y%6a*xVb~)^ z#*)_Ri79~=sw^}l6zm|2o_{)XXQrtrk00St=ROvPpi&>-eD)6J4F01`nM?Kk!DYzI zG)xlf4jMO_Ga8!bQ!zy!U#N5d_#MVZzvoGJ1CImg?{7J{ZubU|prLtvyoHVn%Jk}Q%M)yo&^@mL(KK}tOQsiLH!4<)6y zCnY2GF&spEvGAzDm$_2n5TM5EF&A)QKuX?1>9-!^K7ND;0fmRGKw@UF>yJ?*slCC& z8^8}-j{uQIMOBpCCIz<&nCta3XwWFlz$X~qUJx|!VWt=~2)^&dvDCPRbyN=>sQ!@G%bK{Ffhr|HTSEuh8l3(tLQZS!Yz zk?rauh5Yj$I6-Qp#^r$7B-zFoTq$$yc69;qS(sTp-hF>3x-nrv3?Mo9XN1)1H zF@NXS{WxT|BVgQS!s;pGs}Hof(RjFqm=FY)m>~k9Wv=amA28gZA*&q7koC6JYf$S3 z+wh%_$ns328U%qvJZ1{$XEMQ*MsP#GkIOKk4r`%&87{xY=rue>B%#QNkbK(;`5}YC zHjHX*YWd7OL@ZjlRRbCwpxi+uA;w7Sg^cx5yW_=vi<$+2C?Qm#mSHr+L{XLa2ENOD zvytcqZrt@~)LM*&4zQbo%W9e5{Gl~YlIhKW`0o>sjs0Wd;3ay9Z-@=S+QHx8Q5qP34*41pQiAr!U=Rd8 z#PAU$ZkQ&7+pF>m4|w<=6Qq@4WN(FCzgMf+w=5urpa8WFB3Z>iWtk7`XkU~eACM3o zEp1s@W-xPYpWml2J(p<)_V6E0cI{G$sEIZD|48{t3(Zw#q~_~`n$uF zVEUwnP_ry48WW(8KW8%B-+xEa{8~?v(aQXWkk?rdB6F0=FLb7bC}1Wfe!h50GQ@^Z z1|^w5cEA6UZOCu=T+4h2_Sei&t*gFtX9QeN;fsn4(2G{2Of&=gpZdC1GLRLe7PH}B zGgmgpYSj31=D)R^M=4W~%ub0M24g~j;iq3nAZBi99*+83hN@T*$?TB7gb~Fx43#vu zETsAbCf-VfDiaMYME({PJIuz^@{bn+pXd7p{5fwz)c?}`?-_8k;;G042C(1qQX}~Y zB!xf%;vldBh|Qld;by7y5W%#VA+6WzFLqe#divbbH({=i(&!_#ZCLzm~+yLX?ll?5r#Tuy2Mbfo@+F(&qhEme^|qP!>?D zcE8r2Do#g&74fHBl@l|w{*WK_4;i3&rmPt09wLYqBX}tY*dBij3FiHKD_-xa&%<~> zw0yXRA#?p;w_Sh!fjv-CD6aG7`K1NV?Z;er!a5$6&y#onUO+V_#&Wz|R$V=~-#)lm z1|6ISS^cBQe-}ERv6cd<Niq^v~X5gM2svSR%Y}Oz56(gLrD^5n$7akG!@7E?*0!b|z4#_0Bs`_wltW zvWc+~$_7aD;pg@kMdg8P$zxB-RB5BP{AnX=d(IE~a=Ce6+cjT8B@JUS{k`c-@Y*w# zneZ{QmGkVf$L0^w&ZQz=3z@vVq)uy_&kK@7AV2AQNeV^4DDm%rpqUZVq60r@Z%VG9 zW>Vm;_a>tEUSR86y5*xYU74rzHYnmvVmx3--_Au}pLa$~F)}&ARtk-9{E(J1@ZP=4 z4ikMEAH;ra(ZhnHFd=is8 zXU&k*-GYaXP_4YFJVkz=VB!U}&ga zWh~2{0Tw`uH>%UKd_Z_o8xz5Rz`AuqMump(fhPU^4kOz@BV}f?JGUb9jKEWOoV=x^ zRQoh~;>DCA#y3=?42KgH*`zth6|N;IqpqIQ&j_A+3$?^aD5@JDv~W-3#S2-KWBG*> z5UC+VCB{JX-PkrzrQe4ClRjmtoT~bNd+$P^L7S@d625o(jS8I_)I~^UpumBZYgtYJ zSrUesa1a-dEblp`m&7A^W{!d*Uq390zH{4WREH;3y7~*YzxR$&X?6A3yu&>Lf|i#% z$?QNq<2L!!>`?J0NV~>E78wG6?-e_H4iLRA5^JOgqc5$}iKy_)VIs*uHtCB=N*S`l zT4ojLlAhB-i zl{B=;QUO|SS80o4j2mv5)qj{;*rVb)NuJhwFQlaqd6`ZfH=iFQ86(Yr|E0Bc4*WP! zPu4)5-Iz_4w}gS|-E@&)#7|r^rlaO1y2Ilu=Mzt-|n`r%Gm=3rM(mClHc!rqRT=S(t_fPiemU&D8kxQoey6w zyFbsaW8Mk%UAo4@)b>|k1+{I2J~0HZ-2er8SFYx}pI=lYPZPzmf$#5A;#4aTwc{cr zB?4FFlIiqnkTzFW<;s@~l4wdU>2uOyRHeT!bG>KBY?41tgJZ?E_1ImcVmvSC8^l)} z1-0b093{}VK-9BrWfp`)lbBG%cOzSo;)?Ifh#<)jWRur)mM(as$d*rvEOD|lQ8Fvm zU{PfCCzyqe-^DyGpe{*nKM8gNMCf>dBFEqQ@7}eBL<;X{I1p zc2C_z-q4VACg^~p@A?b?M;~PzXQ0v7#kXIZ#5iJrddMs2XIO(;<`Q(uzpF1e==5nM zi?PknoMZN76ofZ0+#WE%o(7D+Jc@g-o9G!)(d-5=}ZRq_Q+f zHE?9a$YtdhOj@ab{QmpB@d-|ZLSGOBK8D@7CEfZG9Ty!e$`v_|l(%pH4{L7$RrRy3 z0aM~eX+cW5rQL+mARwWXNJ~n0BQ2mHAzhLZ(x5bKV1pn?mvn5pTROkldd@xnbI(2J z-fw*$%f&+2zxmC)GxN?H&%Dn-hx6aD0JZ&aO}TkqgS!AVZra$md@l+ zxEu6%+?q4$sbx+}vp8K`QSU2ZDy9CN(h#Zg+7$SY6&KHfOdjK>4~a5N*g-_~TeHFa zm#Ol(fKRVM5EQHW7n4yO<9=bLZTsH2x4$qU9ZP8#(P{mMg~(W8ZaiS0XG5d{!DVH1 ztmx>Q%b+Z2B+;8-zc1N~sDX@(c-;YuZ(b|Qqi8Ci$YY^cvA(8}P~8{z&sIfi(nkCJ z`#%pN{V0?XLO)eBzj*v$2v#&5KEdzbG05I0fXMpe6QD6j)6g-<%2UbypI^)XQTey8 zY101FQY1}&EXtR7lvwck-#uG=gCUoLf$}RO7KH{&QVN0`P9)8rjyDMd?D?OrG2$Wn zl6aE3zslc3_}wTgDp(qXZ~Pb_1hoH6tp9zyf9V;1JaQ#Q-vn+qXzf3~1-bl?;y`5q zZwFHPvu^*0X&?L=Os_%+iWGYqJML-RUtk6&2}@xeuN>(B+(7JIpexY#v-$vl^gpE} zm4AQj>PtUJlO+y9`>Vxul0aq*txW;AhHI9b*hz;uWE=km#DvU@g0JiQ3QU9@^UC6^ zZ~q10i2tUuAaBy)!Y7?3A`sHaMh{LNhkGE;g8aJB(0ULhdlz)zUt_9C_X~_{+lhD2 zcPV~nRyH1T{&@&I6&1#;`u&q15>E-VF~8YA9LImr0w?uU?GC$$ciF+Sz5y8^Tmg|I zXudXPkjA(sLw+OoM{D*)2jAdf8REMLKkzMGLRD&43{wt*;eRcRoG%a)z83qgeFCS= zl-gBdPm*N_eT@2lQ9*xR4woRL^Y@hz-{qpELBogNW>8U(+C@A=nZJIFfpI;AkAI;- zfRB_0XQD1H8onMP0pJav4(=LqEV+(m2&Yjr;WkHT-f z$e~sjtRCb@;B;8x01sSyEP8ejd*{Qib8os^aKo_E)gi8;%G3{!&H^IDHpUk&lp0UY z#!6BFNt#u$GzW-MARn%jVn|hlUk{jpOiXm&3Ti9_8MTNaBDlbmQ)oP%V@?&Kn$D9z zR{+r^5Ux^?QVwOXd=EZ>Auis;)i|Sh50}cxS;)8u8Lqkr`5m$l1N1o?xgc0)GgEJ| z5zn!!R8)z=Z#^-X`MUh=J8z};mNE8UrfS>^|!S}GFzW5BqAB$bY z`Vr>DY7UYYR?-=SxmYY6)o^V&NR(%N)FgyU{Og|lj{u@(U%%ukYfpob3l+C%SFdAE z?R-4ZQ$UQE>U*>n7xkmi3Q>CzecRgyPB?&6tX<^&^09=`BM)A@6meJ&aGT-(GOiLX zw^&2~LA~JxO1IZPA(<9E`8+?r8$|7U74)muW48GQ`k9`abMi>0)O&pHHZYuGpv5W} zP#9IUh*?wlJvV>M0Zcc8VbQR5)E8tt#e{;|1{x!z*pmBL0ux!%O_*L?b z2yy~nUE7M*o|OZQ5I>T8q$c(*Di$Q{tG-udu`Vry=*Aun~ZEG0>WFi2YK&qFGOs*<60^5jfteyjC6$ zO81&6Z@(ce%7w+47u7=siDfAc^h03?tIU(`bwNR6d4;^@HWkupOg03U+hMUhBQ z1))@97BqqZdGLu!RbL;=wMS-Y6OGR{j>S%kB&O>qg(`wF-l4P&4*J{clKU}A8E{yk zDAR?eX}Rhib28tX+*&i~%PlOl+d@!?_iCa5_#vhNmT{OmA4X-_qlFq?&{q}~mWSY; zLRM(n+3rH$WQC=c$_siz+#vFwh1G7?J_)XIyhU)k>t>LiSGX1x=@ny3hSK@#|9jQ^ zKc~B9eWeK(I}=7WPYlhX`rO)W(7V{~r)ih@N3wCk@`{Qs;zkjI$KB8S9{s9NyWil@ z1+a7_pk)6uasjk23m{GFbMjShT5wv>&42dFqMWN?6)#G&=vnCU)?}rMd{mfJCRd4% zcYB18r@q^ZF4Jf5YX`G)SDW1Klu>wJCFMlbmBZ*Z$7I!L@pCV)>Rzgd+y{hOa0@HW zLy{`5?zQhx9t27^Bk5hEp9{ZG;S(f)>h3o#AYx{A<6zp0Y z)DzIDGM90jJfalayvTPcyjualh$Gu1Go0j&;X-gtJiy0yDC^^_fE0c>W1}{lC!xm`ltuu!V1SFNaG3<8 z>Jt@~ub-Y*5x;l=7~o!SJo6UT+ZnN$^qpzQebKc{8DYEQSlfx4P>QILwis?uU`|kH z)6*?qXs15cb8`X5KqI1dBQa~zW@7(Ys{Kj(OR?cXjbm^i#SQ}QUtPF^!lj4Hw5{8; z;2fwqjz%MH3_qW12Lde8FYR>z;FN@o$(_bg&W4TLX|pufGI*Zs`w4JE<0-$6o(kD} z8Ks9+I-rGuLMW&XB;=k~^m-^u(AB&&_H1oM1YwOJz(sQH)^Ds#`|8y%wi?4O*9JrJ zG}MSrz1k8*&T%8F>ND4CY*XdQ`FU%nMw6@5Vl}GlMn8kuRah~e`an-7wljX-pQTh` zGrhl`CNguqT3#SqS_IS6}aPSn#Yy{8I+tZ~FZ;t#wV}xr<6NT)Tby#JIh0+HI7L_Qmh_;FkVhcnaU{~ zIbI#HaA+-XD8+SgaL}r?z2mo?Dm0~}fT&yLVv%Ltoyzs)iCrHk3EuIrX4EfPpWjoWzwl{Hz>Rkte zB`tGlpAC2pnfaC*v}RnPlwLdNOiz?DAnF#@47Z1if0gl3C=hXd9<_j$v0r++3~jt* zkOSqe8_2FK0EaBvMHiJA*-))_a%=WRRs98)@jGf!43TT8 zB6LbS^&Xddx}VcO%JO|_ph;h=<~LS&hE0J>67Ozm@Z}P z<2P}iz(rgneSDgiZGPtS zleXzv{AZMp2<$w8>wKvip;1D*YRP>sOz`etzD>JpaS~a?!_;28yPT}*-9s(bburOr z6M1vzc$5v!j9(qUHw7xZr<|x@dD&?;{t;*4+q*PDr){rq-)H5Cjry1?EXIpezx$Pv zTqx&DqClAuiezKV&V5&T8v=H?>!V$(mM5-zWygq*fEc^lr%_ZQ?*66_De*+5afa{d zPJB_GI-_P*)X}Ec&qB`x&aKHGA(B#nEN!y#d=&H0QvX@qwjuv9?$!ghD4p<4jX%SrdCEeq{_NE0ZxwbaS-PhK^ zbc@P%?Q$$_y)0|p=cBNMt7a)hMDit9VZ^d!4XpuU`O#v9n^ua7gNKU(%p7=A z5{jRNN$!Vj;fs^dmRwl!Q>j?5jiYJ=*KHR4DxDQvX2o<7uLG$devXot@aFE)2+G>m z=Ujj;7pH*8{r<9UdfH2l_|0$~S7%Ga^28y9#afb!rMgmWa>0N(QyAHtbEgzWocy5x z6NY#7tEHr|8ZJ?sV{Vw3titiZf&IXm=-GwUPBfzo_V#g)8vz&_ebB*9|L33W-l=kezUtMMis+Etd9d2{IDGS$|FhexTg z2Vq4mPn4eC6L5U8D5_6g`oTsARNwh*W_p)Po&92AeBlXRDe3C<<$fjVQdgDb3!Z=z-`?Rqt+8i4Rg@19tW@2eK0j=V>J#%ZTkCYe z3{dF$9IkL4@8|@L#wUzo6guAmWrLG>ON=tE-w&A?FAz!!Rwn=Iaod6OEuH5Sf*L2| zpG~0BhJbeJC>7=G5c2hv4&u`MC^0I)E;sx03{1>OR?KwFx{9Ks8v3A&-+ElsOBoRh z%Ll<*&rw{h_)R=B??qkZSz`YK3-^?&7YzvXP2rb#J;M!;ujdT0_w2$eqX<6Q)qFT0WmH_&O z3hKB!N$mspr^Lf8CD=x7_+cF#!C47Bg12@26WPhHmg?(8hQ+y@#cngM5>qR#s89nk;h7lm($(Jt9u?85CIMVXY~ zYhJakl|z{#Nc?S?5PL`W9o9EbjhU6;B1-@>Y{#KpHos+Y$E+t+!183)vN?#DgvyGE@y zC$p@^ANX_|m=YRI_Wn3H=vHaLBqEvsrL?Q?j2CCNpe{qrZpN){)Po^Ho0?RRp_Dzux+p`00b_?D2-3rtV!bgZk5}?tzw@TsjT3 z)?-be?v`$&hxZ&_mzbAX!T2<#AI+Kj(P%iuPa8xXI6lNoUcFKzh0X&2j6Uay;rfQL z*tw%ma(quigZzaDcjuyMkyh4v(%8vbOdFM$i)r7R7V3IF#<}?=>gw$ahKpxG&zb1* z)C%A{blMeQk2^UyiN4^zjv!Eeh-%HVRs~eaM_t^G@gvd z&3!86E@jx;RsOmLhDEC!h?-p7#M)&VLvVi>K?Ti%5X@=Oo3`B!e#0L6B6k=Z$lvS| zB?7~WtOG*z3Ww);x{IQ+PeT**6zkRN6U}VXdPdtlFIMM-+^!2)eNV`+Tg{H^3I;)Rmv|-Tg84h4$B7X|-ZPBA0{KbGv5_E-orW zccrWZY&g`rvz%b+RTuupqG=*t_J~Q={CMk)*+vm3o2nZKuC9(AwgsK_pW{x3k8gqv zxRN>QwlgR?WOQjiGQ~rW+1}a~cgQwfAidyuOzkCno?QL;=|e*A%rN~m`8P`%B?w{L zMf`A?a`*A|nNKh2k14@`tDkk5YQ+~ZvWhIPeer|N9<+-#2`f|YhH-BN*c7@9?ogxq#Q z;r8Rh!`u$KWB%W}rk*hcNR+b3fA{m#DA3SqG+hAF-tiS2Eqt{%pOz-2mTzPrW4gR0 zln;nU)tYc&Ez+ez&IheuV|eVICD~st7fUOs*NfQ97jeN;dHLBhyps4RsHb$+szw1|Hv>X*iw@eI42sLB+GOabvgu!-9|e zZLQ;X6uLV5wa(VBhV4qJr-%Jfy8?({xVy+v-(ME=V8zXDhjBhc{@MHJw;}MIfA!Q31+{z zVOVrThE4JMv(BAhk6+(LrO8wCW$tG0Dr50CLmuj%pDKJ%EOda9?flkjfn!=!=GmK7;X3`J6)24@YX3P5+a>1mot1s_@a631_n7PCt~-0rNYg%uJxuJ zZK{gJo+u`9FVDvnt}JjmgH3WeLa9(y=?zog=}UpSd|NFuk>`5Z&^+1>vngCg!BF}6 zH6|#6%Gd5JJDZ{d!KruFECenjrXH_8(=o}2z0K{cCyXQcC{W|9}Q3e)&Svq zmt>!h4-6}Uf`S;{cR%d{<|wFKZL_6OurmQefVR!56#>ulbeXqV5BUqw?G1Zi649Ks z=6m1F#5~%HiuSM@FE|884%}tMHlES*q)F6mXZqTHB%$TzA@EO*#h-o zGm_^6Rt>Pv?HYMzOv`O%stUDYF!PV8?uq!U#~hp86Ll;Cd%cqwO}%K67o4Qw4BjMP z3(Tr}<2N^ph1^C9FXe%Y@P4!e&S&BuG|nEpZ+%MLdzR_cUIqA;F2K}JpW}w(P)t;) zcx%No$}#BHmw|nmHZ5qT#h&bQb{ak^laphXqEti5pADa$)2y@f))IrSzhHZ^Ei${c z1!%k$l;DYo&(blS#OS^srbzCoaW$Tn08xO$-g=y1Jm;}hO!8#!H2ec7PPh=D zweSQ7uYk1XsNDuLwFDH&*YDO*11>|e!9!Bw=>~# zL!*SIYkxkc(Ci(Ytac}(<5iKyMx261Nj!^6QHuUraNI_F1XZKOMqhNKcD1=9-`YDE zEZ?1{&yIwHatdB8Lys#%Nj)aOyXLX~j$_j7DV1IM64!~(xF?jUFXdOy;;76E2uro& zWqfy7cYoxE+X+Q^S`8l=-Z$LDJzk%weLgu-mWe;N^21vo+Rkm`=eF*}+uI3*2=}ew z9Xj=J(x18Rd-KRjI~DYfJ5j55z;sqFFM=v7m&L4i`0XZN(DuU}Z(QT(xT;|l{LGYV z$y>eSVg+~PyfT`v%*M(J@;zGeUw;t*bF+mzAGZ1Jn*>H?exN#^O||G2KHS1%4kIJD zLy=&==a_Zo!pW!ySn;-lcAoOVVCeXgUT5Fy3BQNpY~DE=>Wg~odOjBQc>D9r^+n;0 z9mVv6mVH2^hcS|`b?Nnu5m>xa_4R?F3As;6?|9E2%%BH}d6;QWy;a!Yw>e+D6zEG+ z;)W&P$B5M+dbghbj?5ngjkEyH@s39Oi*?W3Y7D3=_q5T4`4H4hvfH_Zy0pNhXSDor zxR6SSfSzrCbuK`t%6w5d5pw-ZP6w5ci;{G{FWjaKpa?*&7a;WFrR0^Kx{GU`>$(xtmu>vh zj4xKXtZa9^my^+W9ATT<8OwQjxj&449(d*+H$_leDz#^HxbYJ$0J1XAmGX#0%uyB& z0||nQwH1|?n;iPEuR001jWdkZTN6&ASDDEJl?p*sz|^CB$-OIvac!_kBwyz3F-$PYDOxO}8p6 z{kzc`2oD5QU|ZShB^(uR;;xk5%=&OoNUI>$O|Jyt=Brj(7uz_5n3PCU?f0Uq6Ew8M5HDfATa*(oqFcdRc&&c+x5HYOT9KM= zsq=&?Oi&b9^5sD{QKRu!?r>gQbcqH%=TCk{jMk}N=jhTM+zd{Xw_5Q_FFlXaMLlQQ zVcCj>TNC-I-=n?x);y{ex5#8`lj|J1aII|9d>_F@KfO#)gU(L%^o1 zyUg7)ZgsLeS%!Y=#KdkVgV(k2?^uBCmq5;E975aEF#YZ!;2`6}2Xj79303YG5J9VL z$15ya&R*A61rKj{)i(f_8orjB-trDdv(BTXY337f?O{h$KfW#>tPwaeAL?DaRbUJu z5hC<1GkWV6sc55xdS}x5RP5@&X|U%Np4;(NLmdg%_TEC3KJY+!l6!zQ@Hao_^0b{+ zR3Ty%p)Yhg9|5-gdy(`n3keM#4ZVxYcXexx7BF1|Y%Wh__H6<}8+BHWKsZ4r{o&!p zCwk*2xIzwRPg!@OC1uU}+9SwCgOlK=oSAlgC7>e_aC=s0*ZjsprD=r`BQhC)jJ=-fqF>MfqoX4 zrc~p;|8#TJFrY*aUb`|HU@U_@Q${~HIaz2DgQ=)ROP6=WN{VgHusF%GMmSyfu3nh? z@nN-;)E)_Es<4YTJufzs-<}YLtoAcdiJ|kvgDtF`$LUkc+IlAaMTBJTbCt1-p?Qbs zK*E_kO`Mq=S`1*>iv@w2XukfLENU3{htuuFIJ{S89#>ka$vv$buUDB?ozZju9GtX= zW<=9vG;C2Rll5ko!W5sDo^5hAbJVi(LA*|f~^;bkAaNHNJi4JNkUB36B%j6-Gj+OGG!(4 z=V(oTg!t1*MFyf|a0h4nke4u=1HL+l35Ah8k}4g&O}iV+fB^|auwZk?&}gZnfM?#I zq7k*72HpmN>-CYGmeg2S)H!Z1cDm1=su8d;XelROKC2^e*=%j!Q5@ZH={Ari0NuKQ zEk}p}6pioZ&m>olWF~~-`)~ztmLRV%BmB|L0~OOHkBp1=f-3GS4=T58M?QR)|QLGzNZwi&QQ-CGH1|I50-^Qn@H1R zNgKY^ipKB@d)ieUnowmk+`YIAf+EYG&^`2F4p4e}tDj%q+=7P4O8TLIT61NRQqeTv z^^xpsC=7BxLcU>#GrW4sC=v3lEYqBq5ELvW1xH~NLogXO6P>gnt*puktsI1o0ig(@ ztIt97t-0QDI>N4=|9%sk9eNeYfPpTh{OSgV97Ic<6mDor+o~kwGa##KF8f4UB@kaR zmkx{2Us=kKn=Kmu)?<94x5TF53@ATB=&(MqVAG+!l19yl!hix7uEpqUmBsj?{Xs{? zL72sz_FEF*_Cp|ze9d||P~K;92c zZWQ?5l_`0#iJ+}2$_OpH zCczb@DgK*KWddPT=*rT#uC6XGIhN9QWbxJlUj~J$!*6j`;8a<^toSDBDH}A>ZrnSg z)CDQgY>rNS$&;bmLHK=-9h_|6V=X!cEck3?(5Ygg;%w|41}ynb&_RjV3o0N|6jMxb zDNuU48#n| z<2hsPTB`dM4Fmw707dir1wahQ;Y$PtA>V?O0vH3j!SCXMND%}B#UWiIYpr|nUEzJS zj82Z@TcEwses^jY0uA0pKxAv2Z-`gkmq6C_4B>`S(E@@yG|m4KP<&0gK`OxBr@Z z^dDuf0%k4vfke?U{2&DhR8XPR-n@m}+qbp^Q^Cd`hLmIvt=+?IUn(3ODldc332<>$ zJf~>Ti-3dbz5h0pngA5BB;>-Rh()TEhVFtyoe2L;@U9(82zy|Y9mE$318S?aGLW&lbCPl(H z{gF{!t_mR{eu{$=%6Bbq?%mF$-9Wdt&I6DG#hG5|+U!rq6 z`AE!_c;76%sZlbkU(# zKqjTMrfs3DL(y47mQ!Jv!fi%9!?MwOr2+Ces`+WebPfhV2W>PZldY$xs<8(*z#{Sh z7m9V2%>|OfK%@tIafRez3Q`d8)>|nLe6%8Vgr^&NRx9Kj}Tw&gu6m~(bTOdEv zG?Gp)(!D&w@v;7LZY6cH+HxvmJ6y*N*#9$GR_%%9E4R0fzI?jWPrtfq{YnoK9O=#? zwIE(DW;?9~Gp!_l;ZGt{bWbqDP1~a_HTEY#z&VFr9eE(gEu{+H@jMvIp9?sjsd){P zYw>8zssH3L&f`?YXEv=QGR;Q2E^?92QoYzS9noT1H_*Ui}z4_$2z~#_O1Gzu{ z^`-CKW$e@<#OE|34W2>#)jOZ51YPUGN{=sZk_{KC6=>HQ{d_+(l2RXuTUovt5LC3 zq3Zy$81##-;^~UR-f1weXKA7oZtG7sv%eZXpSd)@$eV*5Z3@(qwY+S5Rd_Zad7ePwbI2XA;yk9Ik)$-UxQI&GoV%mQl!48Ig9i1d3Oyaq(%z_qFLit#eSwiVDs% z9X7b$H`x}G6?5S)$@l^|-sisyPw-l?%c1#_fn2>f_A9L-!Qv5fUi_;YTIz{p;Or(b-#CFVO=J z2$pYC_ZnFeQ%rKGUIZO(&`@;h)|}ypC2vUP;^Ol1;_{k{pj*u3*XL%9`gLciYj+B7 zXjHw@0cB<@wQYEm@Mr^j;_Z4mi2a3yyFrg^t98nX1yg&?ohvoVC~Kgi6&tEia(H{oi{&i4c~-U9@w@*w$#NL1SvtZD6qWz$>53eehwUq} zJs#4#AvC^HQr~(o2$e5?{bN_ZC+!Y?FLS-TO7d>^w10z^;erimo$LmGdkRp4fJ+U~ zzln*784bTP`Y!C@wlkkO3I(NvRfz6q0z%YJ5Mb9)J^pjz#c-GNF}s~_Uvhe+PS34Q zea^`Z5(0k*ITf0}YT`V#`*G{1Q6>zn2IegO7X$=Y0(WG^5BplgeSF@uuqHo~5xxO6 z`jF}Cba4CeiP!2OKH(L4?oj@KIXLDmy1lqKL^wEFT3U4LVyhW2(pdj_YyWP&Hp-;6 z-9Yo7TKDTwpN$3i++b!SZh9v2%j7J5(r+t|OM@aoDRU@+M9vvVH?v4exsUv_!}ohv ztjNR@PzM-(g6uz$VwieL^F}PFxf_MFfaK;Is&CZ)L7aJNTqK}_i4Qm)2^P2YnEU-! zyVP1TlGyLw(fyz%h_Z*i!MLJqvr8nlk|>EW$ z6H@Hk(vf0xbaSR?Si)oh&A|!{!X`VLH$$X%jA$g3MeqW@6?rv`-;i=wPuzO@_Qsx(g}ye+_iF_%OaY43<|wE4_SnIFgNkAd?4gEUbCsI|R} zE)yKAo-(<;CC*D@{%%QPs}1>9&O~IXUeso`^_i5{LrxauAE%QPwrQ(W)?fC{-xkV$ z;giIH`J>hs!A?($`S>xxVnncPO_Dg8QWFZ4OSti=zS71V94Tvk}tKA=VqVEchX#S#%aY|1| zXv-AYbcg%o)7$n@Z?fu%mg&caH+=npVej|t*3}RL;VmL=EV?A(iw0J8nEj9>e%d3M z=Y8u=6VIUL2houz|6#=d_xKKhS^){52K}p&|DSgT2DXp++@6bmTk(qIX|R z?^QZ2sCy=g5J@*b$I85$vr)k{nU~!R6+x73EJtPKuQVBO6R>t;;0HHj-(^7h&wG#k zXwYaR)HtXTqt9n0eBz}rBGH%t)eIT@2@U3*;N}w?)G#`X`zGvHDlHC$oYq_hCXU4t zFSNYlpIRFU< z*yj#7wdlArE-JGrevxqC;H+uF6*=5uD3Hejpwazn0Puf4510*hAK#8BJ%3vnBk!k=69=o+$CtQ#u&sCe8Pnkm-pPsoNL)K~>w?0=De}s{}^wn$}LBKbM3rBUT&9!q)!!72Zg*RR}c82h^pDkxQ zz^Md1_7Akg#1QNXN3nZZ&VrN#jMK6+4Lh^D&6k6N4_vpV5#>6$r=jtfn6Yq=EswrP zMJc1T0+(mx!#h7qUc8_G{@Wpz`M(@#NG0s;f?sb} z5AJi6kWcSdQKu>>g*AG*Iu1P7()7rXHF=I)f_gleyz&pslLfhW!t2n=hG zaH|)zHs}WBQRg`uPur}heU8ALvW3vs9>BRM_-$4H7gFHQ{(ll5g&*+gANC-#fnO3_ zsL|DS$`Y?UD3iqQm1-)|!Tx=wU!^DD0(!$NJL;T`mp&aBESKGuzEiLT0K? zJI{)tUdKJF6&FRHnrW>#cZ5HB*sAtOm{I9E57&eh5el+eD$0>WRIh&!_7HGAKMZiG zFE}U~bG7)U_uw-L#?Z#y;gOf!x7z?j;7fR&d_=O&r4>$KkcnY zx9&W+Ra`jP(_OXVO;zq}0gG5^WA6i(M?N+VSgpkB)E>J?77`2&R_!ELv{9FC!xEEt zGv(c4Motzg8;UR2&q)=YitN8|zf>`KD!OsU4X#>mbiV&gG(v0nGtWW(n9s?~@%F@^ zfa}FYYr{#ZKxU)O>Cs$l;>m#(eStH=ZR6zYPbUH!F>R;UW|n%|;e>J3`eI`>YT?Zi z$U#rpyC{9^p$q=KQjn%w2PhfVDS*RCB}+r}D8bdjZXfGL7&ARkF68Bt&-nfr0+H$Z zv-U`2hf;G`V%A^G)j%5_V$kG05+`;?Y~PhhPP=M<-k0oR+jFsA1Sfp7(k&k#vtw{tE>oJoofx!r*_6%4Zh2Wk zGm+-Jy5&I+sHsHCo9Z&BpNt>Xa~Z{R*@!vWb~`4|pJc8r>IpF;IvYywXovS-^fP%~ z7vBk;7Z^RfrPsfo3adRP^`b3IGFv$GH7na}%jSIm?Op_?buV+R*S9y7zwZPuKO;_X(2g&r{a-gV z5$eR2h~$pPz7H}>SAhA8Nqn7nn|#-QSB<#aN1rcQy>~jHId|u~lE}VG6@A36TG;2b z;gyPH)BaUPT2zB3Q#SifWMJ`2 zXeBdWOh#@(%ZdT$>sm0+E+TI=1{;Z^4=Qi;*y)i=qgr0u>A82j-d~wqbt9H-D9r9^BVFacI3eGlP1tR4aTEezL;I>EVkr}0N)RHwZ!{35`)@AkznCE6ktiq0 z%R|kiZoAJ@WmeQuC_8y8CY)TNuVUKnFj0Nt$cS-{PSuzb*Q`O3t_VBchy8F zY;Ey2*=X6VvgGq&Pw3eO^q8x}8o7pG{LGY^WBXenR6YZ4#(dd^@p!qdGC6JQfg{cP zX5o6r{jl(<FcuP#Kuew_VW@G_F9#Z2(D=D92 zJaru7-t(%`?m?_hoM7M4&Af6Yw&V7DMBODjAgc7rJ5f4>$8kz}9 zGjmxafGD+_uWNZL!YnYu^#}?7gHIPI7HMJvko*mGE=Sz3l@*eUgI`?59|bV4ov8ng z1=zc(hXs#;tP! z1nXbo-nVbyE(+~EL?g8yeN5<12=Y(D-$3F}R)vTbBMlvy{Y0kdey0&64qqYtk6kyA z>Iqzti(djT?^4}o@(O+Uk^tcVDbW06oivC{Iwr*Z5B{UCo7dJ<%`lZIp0vuYnm1d8 zXV%CpI7{BwQRq}^ifay2fdeULQ6zEP{M$y5S^MXgwyQ7r>YEdnNU9lErmXa<<~n}5 za~bb7OT08oyJ(CytKBO-NcTC|h{<>8n)G%STA7(Y=>bPx73<{euS653Vk;}S2gMz? z^k?vbJLJq=>3nHp-PK1IPF7@znodn;Y_NsFJ1e}Y^(?;)741~R6)N2`LD!yWS88wK z@+qW^JhR&1)LA@rF8FB}Vj-8j`y+XPfTZe-T%p^JhrZ7+wB}23nOSWo)e;@2b?Uf# zy@cbbsG-y2baL%%Qmv0OSthc`_y=`|+LM~{)jY1;yctb{-ezc&{bXh^tBnENf$)_c-_3Ev45|H&3c znrKBc2&0N&d=3JXX0`pci1O>*B{mJ_50n<%q$u1?A(GO-tGxNozWRx8J2rmFO#8-U zEXCb6>I%GUC0HcvHo+Xi=uiGPa0R43A%5V{Gw1CF^j`RYVs{gnfC4}YVrc?NkaM~= zGDR*bsX%6sGydk3!E%eZnHov@hNR#_{_uqXOZXmIKQ~+-ZZXtnlo7fQ(`+qXH@uZG%6fmyBBSx=?geH|2-&aZ!d*!B5&L0q2uq=&{E!Z^nx z*h!BFx=uvtKwq9qt;MrTcGI>bw}ie6ivTNlmH-pv4}bl01TgU0?N$H;>c&RBZ8$Oy z$EWcd-2SrsxXgH~F!P!8AmoAzfLOup4fTA&#VwGqdCjkLa+5m9^){&`GU;H5bRt<(z)iewVrQ=o3h8&mWY5<(P7%HWrPfIg#>dsm$6w|S zeS&}`euZ3zAo21C1wbV%dp=+I+W1L0Ha0d0TK@(K2)_d#i7*6<&={%UNdK<+AQ27^ zQ{&k~VdF1Lk&U5)R5LPeL}iEqngc#802KU5_ycldW%FvC@?vlsMY|Xi1$jZ>Q*fsJ zVEBg9iVxJ`Tg~h&&3%8dH^^k`-&$Z%HLr&AxB%qmT6q#RmINLTR9wpa$DF+;`?zU2 zOfmN{62O4mA;0c=xqRI<*=C|VZD4={ROmgktnljDIRi#+-w)V69ITNMH@bLv*|lK+5md; zbo{Xc!-sAy#WE9A$b$^Sei$6C3D^cr!z zx9lUBd;Tb5xOPXdl>QQ7S2BCcjP3kE4qa){kBk9ye1`j)Nr?OYegnDj?&A+vV((hK zeb>BHmie*yNbYTp?tOmKVS)@oB$HGPN63o#-nGYjfvQ3|@^53}!s$#TUVqigx{)QR zu4!?2OTlkf=apg7mjMaUtA4U8MhKTcT+lulR2R z?I!d1dshnC!?R-CP`|ed@x>oLkP$v`Z>#9&)>T$MIn&uuyeD?F^zKl|WjigA6fpx& z#YaOyrcjWX7$nj5Z}5$nF<2yjkT|H^zm)K(8?Qz@2MX0aJYQ2i@?dBAq7SYc{Iq~B z_a#rSF1-UA3<<>vhFt%Bo&Fu@^PBB+8h)Ljfj|Y%^V^MJfVMBfkdZ$CV+hly0nas| z%@fH* z5>f+N>PC2Znk;Xgs<6fXEYP|WhYStUeS?P3!5bWNG}4<|4;{89DgpinIl4f3Al(x( zbb~fuIskn6ErNOZkW6bt?W8%c&sZhcBZLHUtnXKkjuA?Uye_>(KR!PrUq~ky*o(<6 zD|f1MSpy)HV2Bt!ooO3X3gdShV2l4j?|@!iCB^P{zb$p$5_xE-rs-l=dQ&V%uO`LX z#AFGv%y&}=R>)dyG-5}7hf2HDmXglDU|of1N>)Z$;N+C4-*^Kr>K_?j|S1mSIGb?-cIB@4x)jPNhdD?vE9C4TAe$ zPzXSTH9FD&LJMNIs9^|&yYX1%xKbxs1X;z8v!r*z1T1mLKcO~>%e~L3m;4G%-epUS z^1?;ETD{}{gM}0upFB_P#h=vC;u6Wai(pKL?8zuAwnSpRKBrKJs^1NW{oq2sa(Mas zbL)8_iJTP7E?tb!hk3zmnUjNum$n;_n@K4s&)ohBnf3aFo z9N=-tRZKs$8+F~xBN(sp*@ThsOu@T%4TaWj5_`g`<{dBdZ9mrs?UecF$u%0h^BA4huwy z%_wK8iy#No?A0qyt*ZHc68$RMVaHcenk|?(xW0Q!dv|h+io+W`UF`->hznW)=QyKI z_0H3)BY7O^^rl8{Vd1IJ(9k>lwv7(I)GyBt{n5~^ZEQH=2Pt8$zL%h?{EVKr=W)^Y zLQIWCD1Pk6kIS>G+$?$5RjDvey*l0Lb|Gt7mL{la-}(OPo`Bvl9uC=9MjE0Hhr-VH zy82_K*W;TvCO`H_WwY#e4i{efWA-JHy2Yh`b*-1D)q+V0wB z+N1ik0CdBuC`c8gGU9(tg@H{df$OJT)(vn81o#Dy0 zww&lU58NCaW)ds3N}ySq(M?Tq+tk=970-3 z6p#>x8oIkX1qtaGx?_l;+waWtysq!J*1OjCTkD&@X5H(KbD#U1efHUVU)ObVn0GO> z!0_7f{d@PL^+vZXerxNk^25XO@-Pm#@Oc#!dmeQLN@aI=*N?DoUhuouEEMcE3VSU^ z$HuPJ;Kxb@2F;u;?6mxCuznQyQ6KW1AKHttMk=y$mK#~zTU1Tc#cc`K0g_6Y16pb` zU3uy4#&&kX#_K6}CAFxUO4c`qyWh125KG)re~4g~mXWgmpY~#pH;>a+%iS}op`gL! z&Sn7vewZ!HjYS#0g?FS;<2SKx;K!ZJ*$o={0;b~byE6xtHDe1Nz2I+<8Ps>Sf* zua_CQ+W%%GIGdDTALJ&@LHF#-=8_yYCjfy`h!D4*A5L@UaVv*ZT5hU`|XE( zIcp|g!d?Q zo05{l!}|h4V`DhUYYFFu#D^7^oWR@1`K* z7Gj4qXhn6tZWIwUn$G?x+7Kuirg*)ITvbRg6Y23dTu1Le#Xs0T$nrRR1;28t3ub|s`ShB&4F)qTegP)AWl}~9ziGK%H4ie64g0DoKdb(okhJ#+zqhZMt**Ng3a*@pz<+U zW`1~D%*vaUk-`49^l$>L+Lyo=|H2jp7Hq}uJPn{qUC^zDf+AjqYH@2Mr>|Fn^g)%V zt)BRaEnF!{ROci^2!FLNsmc(Y!)uPLfO_sPZ*aiHPAwLzN3EB}m~3puYt?%Sc0KCr z(=^$M?oc^wpC4)SdCmde5$h)Cs-mOE<;iqZ=k(jB8)3PU;3V*+p+0bxx9>*6N!v@=%_p<5ze%(Un;#G|VbXmQzs#FA zpB{9#@)#lfo?I@FZ&OpUyPMbluMVbKZf*buq&R&^-=Jvyj%RW135CR|g_vCv+X=yg zn7g%+J=ogHD4ZlWi5M>Vuy(`25)MngQ?O8Ta?)~}d01I#_iko`4iJ7Z)s_F*U0Zj0 z;fiCaGt5T0$t!lJ;lbkg4p4_`?U1Xhd|Fdmeed4m)phw?AuWIYr!251 zT3lSb^vbg36tI~nux1k0K~7azgN_3Z@7(#0^Ei#C@wmsi6zq2+Hm!El2l{aQ0>DIU%O6;)XINg83iE0P9cUB#xzl=ym6BEfe z<6vt+b*XJqHgd9WlZ(-d89)CP$JJ0%W7Daz>S;&Y?r=O{Qi{;8NV5b>PDC<5qsp(R z%x5a-I}}$Ht!a+i@GqIGyw`B4*zaU34 z4g(&$+9-q{@y*<4Qg7@TC|=FXuZ5nr6?6ODO7gp5HtVoGUmlv*cU-9=n|&=`S}Y&u z^rV$maiM>wAghWvl>N4(rPu)uiV4+gWW#~7iL*DCNSrDV~*?!K9r z=slx>MxU$mdsO$+1}%a?g^kXx)8^EfA4ywVxi&iqpiyZY&q;8sumWZ!fLID~H1C6L zV1#ZJs zT0D3(Wq9Xg%~a4#?J?oH7_=uHc&(Utsk{U>Zos*#TVI^$)25Us7Qcw2!owqCnaITv z8?@wKl4He8PCr3}E9<9=TbA1n%w^_2f7Qpp-;NCq$@+}3GRm6j0KANF+2 z4tl7;cTBItD5@N{GJ(P}VB$*mf;3(FwjPFsL68Cw@aG*S&pGtDid3tTu>H;>@Q8$g z9`}6e0y6S`di2%pz`{_i;X>$^LPC{fSNmx88xWG4sdMp0uKHIy-8tErGiZ1}2~Iz{ zy3AC9A9C>(82p;|KdoR*)5w^rOLY|zK)}+th24HJ{ zVdq`9w6H-^$Jm4X8Tv_CMm9dypx9Vp`iqZ`sD9EtV&%i-9F;dl*4AX=Tn8OL=lBAjisc#8)04O8=Pmo8MGCVWw z2Ty^U#ctmSt0;-X%A;3LW4alxMD@>7}Pb>1Q)lTkEiln1i zi+bUFo;~I9U5aq8lWhT@y)J0t+71_X(JatC-x0RM{-To9*eL8EIkp4b0Flscb!qhK^5K!oZ-%n zA~BEUiOTd_=8w#8it07+3-NpX>?GjlAJc=~lBX8S%q-e%{#Cp!6I|3Vk9JoJ>M0!w^0Ak+v#6z7Ea}ualBg(0$6&d#dJuQo!JuWfx-eAhAu^} zc==xYJ!c|7TcqnXt4 zY4OkMU{xA(bM{1mtm0z((@)%p*RKz^N2B5ch=J&P6_564t~#%+Uh7xRh)#*3&Bt6% zp8r+tGO$xq<0f`>SiEA*UVFGcT>S>&@J{O5{$$6;FDOe9Byca6H)r*E8M4S?qx~bu zb@DXAzml}!sdX$Q6t`9C<9HYp2(F{?8 z)vhh|z=Y%8#`zpV4mL{hUyApjGQqv2U|!-Jn7M2X4@?d}ZhSGohju1FsrpSEUwsm9a&2>#POJ-<;cgB^MfD2 zs~+>g^QJadd)t%neT&W0yR>XF_>*$5&!VwhK-xsSf-46uZ{z?&Gp(mMF$Ip_4RP#m zxmN#xg9MtSi-xD-!cGOGaYp~N!t($=MZ{NQAA?KTJ&fi)8c z=NKP_Wa9VIYt8JVq1oZ+?+2ru?YmgkdUq6s6!R>+9p=Js7O!W|*`2EkttT$Ik&Gg3up*eQ=0l zEdsFwi09bIz#^gLhkL}3rRe?$l`^P^;mNwe@XzqS^{Q~PoUY4@3ug4_7;1ugAv4y^*Ig!zD8T$6nX&|P@T z#yOe;anUf*&^WG^Q9U>~U{a!XS?h;y3!jYSs0u?Eu4Y_jX}Cpt4Y{PdHH-9UDMd?@ z3}({O(t?Oo=eG9xfmk&d#&WT*3v?esJbTiM>HGjd2du&%9A~&UpS_aL{KXav>yECB z#4ELA;O;+TGma)EeblhIoWuK$NnTNxw$ACI-|-R0XyL}ip(T0=mCsH!u9PIyHZ|oA z9BGLA?PH>Q-ds%)N6#&jZ&eL((_b;*Bpzsq9D$qs;Pue7j0>TH|LX9k5$^x=pIAHXcF$J*> zTB>c7?zVPMxaF|9Rzg1C0A7h}iwGyD5`F7HdUUsDp`G-UsPTI9xfdtN;1Si_#!+po z)wmj|+x5`OHtbl5@_~L^SLmmdTz66&fk={(|GOeriLkQ(U;391%zTJ_awY%e(b~L9 zz~N1aQ$M_B8T0X>jD?g;h({s>jejpX`fU#@sc_kyCSQu~HRAaQQMylIzAad(KCnwV}dHxiO(+>Vx(mfG%8uZ)cNUcYv65h&2m(boR{Jw{(&e`j+uGB$a4 zbCK;S;6HG4bKg8V&qtwJTj^Z{G#m7jlfHh9N?0?rTiaYThC;(-L!v9UmV7Mk25UjMmoOm#65ZurT?u$Zk{r>mPE-r3rk2AsjtQk6BU{{H?^;8%Oaz~NB_%JYkh zHl>yQeSLBYa>EcWJDH8me02D6!Et+cfj6$=pvL_%KZ zphbRm_KzPwdVBgSUF_{$oVY2&H#R5$YoInC6R3F?>F??9{qcMZsU^lj4UJ)X>Pv8RTi5SR8isN=GO6jqB^J>rD#ryowauxA9i6+T(#T0b8uYUpjY-1P% zZ;JqJPt=n~=4+rUK^}*Y@EFKzgENwnXmI`Lz$Yj!{xv$Po;NDu5yz+{BqT)oDAv`r z8WiTl#>Upw)S8)?Y!aMXDJlX@C-7Q@wuSC+4zZ^Bg|;AZ1R6Zr-kzBS*zoS7L;G=y z=aGU;!fOs1F~qHXeWQadH-3l3vp#!vOe81o{Ir}n4ZB$*o=!z4c2Fp$sC%pWiO|1|9KCZ-+$3v=um z-;6O$)tnPG;n>_`VejJjE##7gFFfAw;@D;|pIhBGS5}2I{V#@Us!ICcVF-NE-vA^H z9RE9MVEoKoMK_h1(Ag|o?Ki$OOS~4|D~as1IErtd@IFT0{|JH~xe9N-M25}V?j1;8 z8coE#x|!RQp2qZ4yx9cW?#K-?i8TM6Nt6$Xo)pCSOlStzz{em{u4I7KZ+fMyIg;b! z6l7S54cg}Zj5H%^aaF>QG+StBqUxqyreje^u=!YWCao@KEyXc5ig*F2AHPnHLkC} zEN)#xK~M*vEARdD+AQRx7u;k63ttw<1!!>@KBb(q(gA9X5Z~QG`n21B5g$-o>iZBY z=j2iwgAag#>w(lP`az(xlry0jN7qF|^QkbVc$jO6!fbiXa8Lp@>zj(;cIP<6C4QBW z`~FjWD(I1CqeX_Dyi7!fD$M20)ivwWv{KgDYE98-VmYx^pBanU`)`C7lnFp(LN5KE z=WM-AtEWc3E7^Z1($|(io1#iPVu@!>m3_S!_w`$Fk&@9G?&T?ic6q1o+Y#400F@-G z{*Z+CZ_EeCoof$M!SDADX17Lfn?`?Y?YyH6d8vH$O(wXMiJ9eN*`wL*utuY7{oCRo zHC6kkjk_&j=KGHJ7tc80okVk~*?7I+5=%aNr`HHFi!)pi4?`|rEMj1PLjQ%|s$41d z8U}*Sxn^ady9JJa{&TzvbjQEFLJNRUS2)D~whM!8Rk;#v@5KPjF#mJZng)K~2-hGY UYHVGJ!va4UNkxf5aYNt#12M`t82|tP literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/css/readthedocs.css b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/css/readthedocs.css new file mode 100644 index 000000000..3f425fc1e --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/css/readthedocs.css @@ -0,0 +1,6 @@ +.header-logo { + background-image: url("../image/mmcv-logo.png"); + background-size: 85px 40px; + height: 40px; + width: 85px; +} diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_img2toimg1.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_img2toimg1.png new file mode 100644 index 0000000000000000000000000000000000000000..12df0a17ddd3290f5f05072c2bcd38ae79d9f100 GIT binary patch literal 94702 zcmXtAWl$Vlu$^ULaSy?ROCY%W;!c3z7Tn#P#RCLSa1HJdAUL}LJ_x}R+(`&-L4z#& zc=hW2n7T7lQ#Ez#cK11by6;WU)>6jDp~3+G0AE!_K^FkfpKd{ISZGfJ6U_k8(*X97 zQ`N)5!dlsSz4`Qr?Wtny0{{d=|9gQxauQGj06n0pAgdQxaMWkoaoij9;<}f9x4`AN zPe%1i-nS~F6S_UCa>_54s-L+=$&XQvzuK7kR7}*ps8>`o+cXKuuROOqZ`tNXGYXAP z_RNpV4O=AQIBS?PUa5yPweJ+52S*BEXV7D3Y!-wLQ-%0MA(F`Hu_bxV&`M-N*@)0E z8kf=HHrx`PWg7gGv5{>@DO+261A^v5=t7O%cWOVpb@y!2bSW@+b_a4^u~yF&ejxnt zvq>f7J;s4Q$=xOH`tFti7g0X`oP#p?@`2RrmS~nYqK}~m_+!?eU-*!fE1sZTJs-E( zvertG;QmU{vZc}aQzONI>Ek2#Pn%M4d z80CvUJ9nt|v}Og;jhcpqTO)@DmpROq#+fWy_p36B6w{E;H!;Yi;~W@s^5%D8 z=#STyTNYMI-t&fBVrK)A`%c#D1$f$bYO>HzJPcdAA4am5 zpucPEs&=<;IEqRBl&O-m-Jy<*(DL)qRainn?!=SUaW`Q>I~|MyV=>R{KPiz0ISXMp zjpzFv+Nqp0Ttn|DVGj};4?<>G7rpS6hV^6Te);#oq4#Jo+H?vz+ugYA{|XxB&p-Hz zfCq+r5BuB2W?k_oKTrGFL+0y9^)1laZ(sr~gV@$1z4ZbgtgqUcuw$9Y+ii%>Yi>gY zbE8(+|GW0;$OJ|e{cL58_G0PY7PK5xSlN_$(~V*{!{tUtTXxZhSE#_Hp>pst0C{g?;IMw=6CtH zx0ByV_7pOuJQOboR+V0w=)^^Lh(@&r`zOh-h7)_x-OI0fC6!DpTh|B{cR-K*QdEH(~l<7f_S?ONm8?-eXQ z+x(nEnNxJ50;VSo2=#T$7?b#7Lw|Dm)lRXeRo8wb%PZooH$}o>=^tG4MTpU#t;R{( z1)Y*p`dGJ6M?I8~#f2V*7PG_PqZR|$(nj&y3!nL2(Qbpd7xxA^Z@Du8>hE5tPXVjX zvW)HW%i1R6tZ!>zp8f(I#mN86%p?D6QN6~t9LwvlQXfVPo58G!buMtzd+~e0K31I1 z|4X5|#_V7s-f?-%Y6WEkXTFvzU=8^E!`&~cLdC+q;SX?-Tes6Ol=~^M)i(0AXpana z670<$iP3`S1^d7ArtwRSo4I1p(A>B0`Xc!PE05CSDScTUn4GVQf0tmJGHRLVh=;cS z5>JZG4r7kYXxvJND}9kt={?Dcy!bPmBw#K`qo5$5cj!I;QZM;Vy`C4$8?t|~zj-l( z4po@&uzPuiw%E9%>bd*hMmj;RP}CrA{JD*7%G!@`)p}8yqQU0BW@QVRb-q6b4@4xn z(kdO(6QYmk{J;qEtRtHjx(F82w2B+FJj~qc7T)WRfDaR=o&OP*mA?t^l*Rp^t=4*- zt!n+ZIsVdw-0B$xHP${QY$>FGDW)WGD-Tm+A$dz>4hZna7Lycdy+9+eK99!OnT>8>&nrmXz7xg4*)YSTk z{)Qw+YH9Fe=LrMUYeU;A1aWY%PY_7aCBsx`r}8zXaQOlKSv#3$OE^nY)7O;!oc53+ z^?!`=%MBS0fqxxBagM7<>qTD_lktqJ<+65Tv0$2dVw^eF+hf`C#rboRF~jT`!prg2#Bx#$#5@~h65 znEy4Syb>GVO2!TiLxulPLFOC&35!1_&m%KB*Emde$kvAAdD*V17SpAKSH~0XhF>LF zas9{zFHOYy+-sXO{1OlG0i*c71>4g@%C5LkCvXr9^|+x~l{8f8?EOpbb$)35hlwV^ z!YHl}1d-Z4)#klNr!aAQp z$XWB|3t5*MzVTBQI?W%9Cyuf2-kBRO3VS4NXh7&u%2TTs^%OVgV_&F$PXOj@tv5AX zKNj}KT1yG9eu;4P(lRwKJm)l=>eQ$bmOyld# zyGTMbD4g$Y18JpLc2499FYv0?{|}5Bd>;0N}(aV4ykJQGIbnKdI6mxkn_P6wk=b)cCl(21{KcNDEPneAS`oX@+7u@ObMD7I> z{Bfr}ZfK^!DjxxE+9;o~ZsfS^YQF9kJbT?-73W+4;hoZZJi1UWB?{m@Dn)-to64XN8jr$Gbip&i8WO75Liu zI25@kEZ03d3o@y?$bk3%oxBVuTr56+Fhcy1l5e_Gsjt2*uU~7j@5lIVa{ftwHrLp{ z@i_k%Quft3ha32-a&C#%-Y!Z7pg+gM|L;C*>bW6?50WsVa;%Ig7njIS>owko0{&wJ z68et$2%e_sQP5%eMjX4-o1u6wuu;cTfiqEiaF>UO zIGG_zHqe~{ThQ-eEbNLd=O|$$#U}b6XASM~7{LtkplKmjcZlWsYFyH~10ekFJxwH| zJpfTr$Dg^g`MXLw^5Q+2fpYyX_wdX|$-{}M@yBJ`UOdDgwu2pjxVd(+LG=-vIWXLk zn^9O!+W>njW&cpK(mk9(F?)W!u%`uXI9mhW4VzK!SOM>KZIvaTUcF%SY|lV*`lUJ0 zjmtdj&_)el^U0b>?T1kUr-wqo+R0=4p-Ec_<)#+m+Y*e`UI+;Old3_@=8FL?VUeAL zK&f(Dj3+XryB?{9fSvCG)L_dG+!DXiWAUf!&@VpKyMpU?!?F<{)Docv#=Wl-ew>T} zSsC*`Lx$9r&Xp^g&;Rz$Xpxo2q{y5mZem0($j@gBp%wbZ5$=D@j8B z2WAhfvEFtkALB!HQzY(N^GK?Bud8+HnEb)82AYza!l%D~a-)O=Xl|WVvOC%Ga$V4c z3Nmw*PRHJm?dCp8n4VfEL54R642-rJ zthKrDyZ}dK75zvG^?_r};Mh%l#kE}>kitCFW zdm7_vqAB2^m}c;x4(`7*?L@G7d5z_eB2wTq>5Ir;clfYT0iY)16w9i;B0rrn{>gl> zRj{odjp^!wwgRBzWdje<6HeZ}qe0Oa=vtXJG~0$h8Nwk5D!{W#`c@{NT#xXm%YOk~ zLKr&1RGqsn1n_VIV_gaRwot0{z>yV*`G-jN-Hj z{WuwOi&y?&4jZnZGH+zL$kX4%GZ>;s9}5J{j6AAz3Q!JvZQLgePsu`Hq)Y7}4J>DS z*oJ)4Ss`e#4K&SDesN6$fxa!WAsJUI&v41-)}fV`xkm`vz94Ja)S$@Y|?8n27me|78u@#^Vv zHnKbaP&>1<7q?GkWvOLO{Ld=Eu9MG^Jx!x5HtflPEcqf`?ujdI{jKp~#Xj>u;4Ao_ zwx*PxtwYGEYdh$23Xam@@or$|Tm*i0-vr^qr1u3VfkB1;6xX^zyiai+3tUpQZ4TgFHNolzk6uVHd@&lHK5-Zvq9E9Iyh_G+kxFxk>14bLCU zF9N{yT{JU)Idx7zbIv6a3#Auerdkn(U;Ho1)(0B-f0GcrmP^)adElJEL(Cf5y?Kfz zs_QIq;nyeDyswEALU>00t0gHlK{nw zFv!-5Ag~$HdTUv$l+O?BkcLDUr3ewMz2bKSG^|j~5NP()Yr})DwqsPc1*aOSBB?rKVsib>joX z?jG)x!K0W~8nwRVVtp~937TN~1pXH9xZSqTpftw&m;CNi079YSi#_m){=q$MpBd%? zoK2T$)dlplZK4NxocP67Q2^Y|!-$F#>1XpU^K+wvbPBGC<9M)n%#U#S2;bW3cOABX z#s?w?psfqA0-~GnGs$O0w|F0gsS)@OSH%P>?}j#+XaBl9u7#Oc%Bx4X*2*(@F`5tNA<$rJX(%Js|LiAHtm$7{^sFvzsV1xCubX? zAS|nGk(v3N`q6j5=%(3e=}&Pj=S+8-L_Hy6T#(^X;Pc);s#h^>fvYvBEa{UHSLj8DV~uvF`Fp9hRslT1gBgrS(oLV>2P zjJBcEU{Z)y40PV;MXn{8;Er26yf6iJ9vK9Bn59^x)iKQPypHuF=d*U)YId^8W z{V;qF;tk@~zDfoQHpND4A+fO{BhFBlWG>>m0c$Vw5e1I_i8mIKPFHwB$Rui{Uv7+~ zH(0m+l2-3ycz>4mqHuj|+$s4ws-Wjj8hRGs3c zeS!1bSNzmJsZSiG`<<3kX8C#?xi%bEdm3ma=L&y_M0Dm1Lp=M8^RR0evhs+r0E#mg z`EgkF^9B~(=MV(Z%dcbz?2r2-LR`^ZVn1ob*@%ZRE8VDovQ`Vg=GjU=sM*s(B)-eY zCTW%BIQdd_s5+ow0;1vuwAr>liwa8pf|<43lbd<|WN@mtt7Raf@~f>gdrMmlv`daH z%jXkc!v(cy{i|rV{dy^mU$M@_H|mW|SrcpkDcX9iSjW3gf}n zx7TGYuR94#a`!|0_8?!E|+7nY$uF|*ee^^ESFIq&8R3GKZ)g4WU-Q7c3H_mtCfm^W8b zoUhTgoq^d37LvXKd|p$nRw`gk@mrP)f%ef39*pc_O;k4{#?g4|-4X?GW%yEumSxAL z@Yg&an6)3EO=FeCn75)nfzX6J9pfH(4*7?VrMN@+9UX5>sB3U|Ml8kejOSb z`JiUfhGPfFL}IhED5zZ(rp@AOLkp%aT&3m(;=cD|f`Px?Yo9>P?(_NoaX_G=?hpuc z6JPDuEidMsx5-yX&OfyA59T0?$geGo5W5+BZ`Y{r9wPw7E9qT3AO!@yQewGwa5U;Z zcK8XTq2>wjtKZ^@WsH-p*h69@HVg1!TLdrMOaT_{N{nq}w%(3p&Ymk{<@`A~V69RSC^#MZ=^naP~ zVTwf_CPxt9eA-IF$oV&JvfUoMsvoc- z{7_8eB%E9~s=?!pQE!x3!0G8kO+Uu{O0>GghM?Y}FY_$|N+{l--4#aCwNE-^FaeuU zwbP!E^h6CGiWC0ux-p)yrn+NuCA;>c4Y?fFF=Y*$KoMBKh<|S63mt2*prYzO*RC=#?w(cUvdiF%l{N$>Tb-sRO(WVC5Jlff3Z zWgHQlZ9FalC4|v6+Y0l>HrMH`m?D;h8hYIVLGak=^aAO}5w2Z8)G!+JUQ?x~Ra-ks zFUy&szwM-cw9oTbeuUk>CKMUZB$h@5zKu+03kkQ}fBSwQwF}jDnM2>tyCi)YWh9yE zo(%@3atHlVyoY|o^PZjS19UH|Qx!Ba`UKAxcp0RxS%{vQzDfmp8E9Hb#$!T}Kf&+p z#G}=qGTFD}61o~0ZHoEepWBrS&RU1v%GcI$VL#rR#M*sU;|er0uci8?FsU)RkCbWL zpc+{_WSAu{{ZrMG9f92N&!yc_ctb#p^{*YSTRcw@!-5CH9y(!kjmZ%L-XsagwCBa* zO*pmr+Ak*N;=%TeTs}2!u_t$J6uB(}2&E4+$;C(#fXGu4)cn5KZ20sde2N4XaClgZ z9pE!MI{g5F-7IGF1G>2CF9lny1xWu=QeNoc>#7viJp1_{2|6Yp7O?7{nu)%V4N8L{ zZ>~P4lb{IzVFNWmTjb^TU|%|l)ue>53wJ={8$-+VI6mx4Omt=Qc~yoF1yGcOPX&-r z>k5%X9IFS4g4&f#MP+E#r(#Lp1lHvB^y3hS4kPev6~~I0*p%|Sxl7p$5*bM@gjIvonmiy8okKiwUh^lwm10_COvYUAaBr1ohInLm5 z32a_BqW~RnNqQh_e}>VKns2j2*)1L{(rZC>1Qy1e2LTG^EkFPBYi7_7c@ntZjVJ@P z7zXB~k?9tDEP@R;@ehB3g|?^xdp8Q3-~rf58(d;Yll{dkKjBQ$By$5{kTICP?;GAO zdzQJ4z$qfgFbfxZ>ZJ5N>6|^@YAk5_GJe16{xOv=8u_Tt+ds0oQa0D<0)awJAi@Y= za0%BZK7ha{m8gSx1;LD{#DiH5ltK_^dz>Y12x*cYP@2FxN(xw~;StbmE5Bzrc-zB` zORdbxV9y2WXd*=;B9d%jNm~Z?f_jsvfdmW($4{?ZfJIji8%T+H`148OpA~bjB58VI zm4`$hpr@$6IhnATy{eJc2QC>UJ)s7vnK zh7sg~X1_JHN9o_DDog{=Z$`@s`V_9}EA-ObOEOT~sjzG?%5yXwMh}ORu&Yx~{0MX7 z3apGOp6&uO@{lJqJx2XI68RPr`gixPXW175MZGzmu+yr|Ui;?GQNu|IT!>Ez@|zew zT9WNdi;W`0Fy!(k&5;6uhmA^(e8A&JgyZ#w+=vZ}@AXJSD~KW5Dh*^=A*S4hTxO@X z3~r)HON*LI<^_hgS99rIs4b%*P=T#Z{iEAAqhfe~U@a#qxZ27Ghx%c40kpQxk48*@ zSDk!=+tl?OO>Wb(`4wIL*MGDJJe@xWor)9zPFIq_$JC}U9RT2lrVwTnNc}s%kGy#q z3nIGWwfUTrd%!|eT$=E?7StT`oRR{Fe#5*VhPhDql7vJ{p{)lH!h^93%f$3lecZhM z<>pL{Hlv25)ft8$*ahg3%n0`p>kL-}OIu zoi^mz14GgXmD>xSr3a+jXA0LB`KPbCw;h1Xs>z>#3M0pi!cZWeIRsI%g+f1q6Wc7J zM{T5cq#*D42FWK$tge*Vu_JD(sBqeu{xU;x)B?PUuIa&+Mvufg0_~t>#d-*`IoJ zX~~0c+GMtsxa3Xwv@*b6qB9FLd3&kcC_ZQiB2i`w#Ibnu2fwa~A#vst@ zhIg_ZAeeS^v(9!CD&kTf293FS0T{_Foyu&1Q?D2zM9Uu0u@<(fevqTR-`Zbl!GRfi zT+TynRb|*dD7$eu%6}qZcRs|l^w}afHMD@TNptvAZ8;DaLSG;`4>-OrzIt?JrOUGY5VH(KaLIMxL$y>Q z?}pmC{+SKFpqM2^O-0y~J`^5P0bYOYf3ar{U9(ttky!G9>2pFXu!KbUI_bbr#ueR% zxu$B?tLV5x+|W~6=}WZ+z(3@EpyF|7Mq-u@@3n{2En$JZ@ z;JRc#+e|h7M|C@!4APl)%IzspYJ~Ksoc>^T8KbPRN}8|&d?cm4EAT!sU-)nEIkmM< zP0XAFz?d1Z2u42TUDq2_k#~%jaSG~=`AvJDL7^fH3lPg-IYiPa8|q^*PTkrN>e3-x z1Fa1NQ{q#mcLeb4P?|bF8SxWEfetG`@FI~$r;W#|JAhT9jpCtiPY9U)m(`JihkH&J zZk&va*dqgo&X8<+WYQ1A!+al1S|VWR=xrY*s}Y{p_JUIR^Y4O%XKgtAhcI*cG?2zbwq9nYBfGXo(=Hra6d^ zl6Q>$T8N)U?)`_i$(VRqb)U1?F}!oD%8L|&*mPa6UZKtP_zqBH-udIhtP=PcPHMLC z)YfUc+yQ2LRN-o$A==%SqrE#yzPB@0;8}afay{A+Z-3;RJa3?>(n;tjOW6Ddu9EMXz_UmN!u zT=%GT)Bhe>B(JAnXn;jg!z43;(=#&r$(#t-KCo!9J!3H{oj=d8efXSe2}JTei*=75 zJ$Yp-9ZHEqzad2&_cOrR4BrmL>>I!sA(xEI+0rMiPDyZjrb<9O z`VY-OkIP+3AvljUOw8f*UfGG${vY~oS{IH1&$j~{<`~C&z`ZiY%TZW*Z1eZq!FZYK z_3G@pD>S*|nLV$n3xO0u4ry#X8bDMzNVn`U?P#@a%GT6XmL2Qk^r%(-o6>yOlj5mS zPAoUYZ>a4cG_=PPC|Z=ZeyzS?BKen~k2TwRh`-eic9BG(5&@-r0 z#o4m;$=*fc6ws{m=-Z6P!H(K^(WNhV^dN8X3ORedI%&-xpJwoPkt?zk>q}CAeh9h~ zAn4>PWzg|{UFG=GH$vK>$9!3)@l*sa97Q_exzvxD964+oMQkxKI3vMned3|3D`(LqLn&iU`L{V7Y9cl48@(y+PS zTM+MD+jm|uHqWhE4EvZ`-JcjcP+0Bf8mMb1mwy{#p%O`<0*{-_JM! z$$s5*mQ%Jq0;7M8hH_IX)h}dUV}$P9?5m47f-PO54?CQniU#VIrc)ABZWHC_4>=aw z333qDQ}-(j`l(*$s!b&03hCv~zmb<=+UFKw(`UZUpHV5r?PtsIGal#jXc-@QlPi86 zS0dBdppg`Mdw#I=wI5)~LcoHqt#66=N_VeZwnoY$T0|ePvdaU=nt6s|d~l{Qzg9z| zucX%HlKXs{ttPhn3@;nU4zzc*fo{fmf0fmEn1UGl@4%`@H%vc|X^;c3#Dv0NzoS!_ zS}iAcO3T?mSY#gNs;{JypdD^t%QtPFu{swRK^LsM=ot&I86(Z(WVK3`Q!S9+Uxp26 zH(tvH`lktr~RuKnJ)U+_XdD8#9jDypY+$jbX~-YDyPj}daF zsS(QalyF7lK-g3@Ij-NbSJA5G5!yfW^D%~hoY{g;;q!jiC>@Tm<+YlfINOc~^Z*4C2c(^R*VA4D8-9YrbCJM>tzw^*f6x_=ql7W&2i@9#_<4j@JUE*;M(f(ieW+Vgi;)!hri4UfSYz8$x(yr86Z0{rD4@zeXU=0T{Z* zEDh8tkmimy(BT@jImUF3X~WeCQ}|W|AB4aJLg?jiqgE=>4sNv&s=0bf)sY?wt1;2062+X<&YGxU@Mh5(!I~?OOTfQb@x`Fbc z!G43Pz$q*#EJg|ECGNz)z<#*}9SMD@9qD&8mYU-CHLX~)W@z9X@f5^3HxU&5hw|t* zCmgc)Edh8y=INe4uA-?yIQwe0ukwz{L-SrH%7o(UME!w`siUtJx$KeeQH(bO1AR-@gXU6qs~Yn(SFFJ3ckq8L06E8;>h4`&M$Fm~TqgYYHE-j_i(kQRCR4@JTW?QdLsIbCd%&^A>JH{D*C8jaU=aLv zB3&3EgEXi^`|8=D07r5Wor&xiCG%n>d^HRX?*HMd^R1g9R_NM=e&req=LbCq|l|JBwz7Yu|uA&$>Zw)XP! zOhlKduoc2ck8P zWs?cdpfy48PKmo!?!LE4ocj(h*mAomZm&0=_=Xaed-iBZPrwe+i4wezuUV$L&#p7~ z!+nLcD8hh>I^En2bP|HnR+rlt&@DjFpwFo%n5UlXA6~^-#I*4FL3F9g=T;H|08;nVlZ5_b^)qj!?^qN-pJX6j>g()g zf;MZg?E=%D=&il<;@lj&OA9jY$(=1z8c6uBN znqboHhQihvcM_9QDW)kaXJWJP7oaOF*mB#*zw2*@3l$t|gk8zlTVu0g84;{4-To7R z69(Ei*f0{g2=wF)#H+k-YZqk8=Oib1~ehb7?a+CLPnR^65)bl@8@u{#=SWXJD z%VHFKZceuONKE9bIkl2s_xyeN>}xV%#?6m-J;wd_KhX z=*V6@gg@Fup6NZ!uFYr!LXqRbb@!A{jIi}Xh5`GVzj_b=vt@cQ!l}@T`Q9P+^bn2r zdir`M$KS)$sH@@gR; zZ|Vn?0(ryZ7nj#IW?m@!ydpe1&x`CM2%eY7`ueE7GkE_N!^RQ=nuW|)I6|Y3z|;-e&dpCvNBG%+h~|0eqlo?;!OO3gV4E;q z_ix4>#5s$R8x(nFmLq1K201CpV^AZB+>?EGCZ#B_j1x4)>X&pb2Hx7MZv!l-*tN;>(7}qO*Aw+It&yxyJU#Z@IkGvj*W~SWgiO6b z7<)O2HUC8RvH3FM5@+W3$FQ8<;FJ=!#8 zm>YUb@M|qfoMd6|KOB#KPf%J%u#f(IG}NKd%jR16R!e+`L$7TYUvy+> zPZPs&#`Mh&6-R_irrG$f0aiOOqre2y{xF#$g;*i);k^Mj&BoGyh;6kb&vR%!L&#*W z#R%xoQzf@A;N?{&B78M|qSuHKfxOKo%R}Y*gxJvFMz~wwk;89;|LIv`0_(Zoqa@~& zeDfIJF-~c>U ztZ}Nc32+`Ap@ZIwxqx%*QQB4SM}PO#a@Hobmox@Xy-o*+LnV->j z=s-n5;s?_xxp?*dMslzo`NJk9877P_D4LG%2!089OgQuO?S-|~o}29Hej`#uUirrG z7KsJFO3>KfuCXYg|lJ>@r{pZ&pYlZO2@hr zCo~ysUbDlKXzAxvxqe-79xO6e_ixU4pObnfIy+4*9!dVaV^%jpMGd!d37)Bo98`0N zZF#W8k~tq1UL1OejM&_=4LA%ijPgQb6MEO^``prY#i8{kBCI*_8HS+=`Es|V#fXmi zM`;qfQZ+U7VQt=CNzO>J1!Y=rs`3XGgf_O`$xf;C)q=jAz%!bKR&Vi7B)@=boFn4m zM-FME-4H_r<41U0^z_tQa`v-T<5%b7)qgvfD057U`#y9Z`QTaU`_4LXlr*zhl%lCATGo77S7A3eZizVFJNIre;D>MC zPXR{=IE`<%=yQXX-8y-kg2;#;clj+Ss_3RvbmGk+hk?ITKW4_Q0b^_>x?#js`q}$P z;-aFt?dVP6ctf@`v<2Ko`(5qQhZ?g3LMWCwY0M$n0-I-Hj21ma$vM5*SFoFlnm&Rh z-r8Q0t7>3USSsrb7f@0!C%E?5 z%mr!DQ!TLW$o$Pl%Xd1Yz>)qnfz?Qul0nK5(ebz0Tr0O>N1j~j^sp$Pll`snuR16Z z+7aLn>x`o1x{qIlw0ZU;)j}RHS4=^jN5!x1BZ9yFjt9f-Ajw0jKf_p;`h6^s zp9PCI3=G6z>@~ZZEZS~6Ew_*B@+I~Df3?yqoA89^(*% z|0PW%*{ewE#tCU(yqKn@r2~?B5D`n#xXjG5Mve1<1IpaF&6albG1^0cNZaZAzUbOdJtE^TDEXFgpGfgJ)F)03{PJT^vf+5Wc=4|HgrRHkUz z=y?d9M5OvVftcx(M|+h|KeSL^ufJS#^fYuM>M(C*{^?)%k+yt^0e~%Ebe#Xj-qQWO z{gRel}tu9@~8f;f7HjKDkc)la`v9NRsdWY zyl*coDHXba^qaSP25&QD<^RzxU2#B@>n!d|laTiwa;b$xqbOd;a& zp6@m`bt>TS0-)9p5kIkAyXf0`lZUK}P;G!>M855fjF^lBcfvfE;K0Y_Li0G$fw>?= z%s{%wFUoM92fOwYAs^veu@`@>SwW)f&h8TvpUo@ve>jk1IlQ8CmsLfn1KK%Z;m!&$ zZGB*F2`(Fi=wa&%1n4*CI3;@_pwsoOedEy}BvrSGJ{h($KA>2dMWl!KF@zo_LGBf6 zNrX;wbRLIup#5d)k^55%L%0v2tLsI%&tPrGrxnS?>kEEuE@MLV6!uqhja9R$nf_^i zrt>AGQI(HxmLjU5xS8=cz;&Qa$O$MP}4&7{N4ulk@GF<4$?gpGrDbhw*&$d z8QIs*mv@(R98k+178b2#4N8sKZTta_X0Yv)e<^e+kya@GK=E&n6^r!uJoIfZgG86H zs-oR=FlyYcDm>mZ%$KjR{()yqCK&-eTg+rjC`)pKf$0p#YOy7Pbh5y7JM5o5Si4jH5hLcsDGwnL zqDz;f&rEPFAT$tVQ~o$|30dREzpzKHP$MAS(k zptOg{@PQJFwz+v1W6$en;^X%(Af@v!;nmVOxsdMlEh(S)Khs?K&N6q45g$0XoRoe9aCtJ`qgG!lN^MbO(%aXE z#ZaflXNlt_Cbu}VTK5}x=yJJ%ma^P+qpL_y$0#D~qj!j!0MSVbvaA>>A-10+ zea-U`6kUDP8|i5jY_%wZKo*M6z3iGahO_#xtT=5`79QQp}v>|##Ab~Dc6~k_^WnOwN3?1V{%ai zRZBAMK>iFf^sX*)_eYc~7m}duX1)Wjdm)NV-rX--u2_}-AOtgwr`1iRKb$s^?p|Qv zha;D@SwE72%Uj9%!w36MQ>bS|yAPx?43_Q~oDuFFlpY_(78C%~!%C|Lnky|M-2O0} zcNVhveQ1CUHT@%uTSg=PGJiPIXY*4ElCdwo?+FFzV}7@v_LebA0odgo{V~S+N1r1= z+AyTNJA3V+`44M@#bnXCBogj#reBBK3C^=0P#=TaPjO4P4Tv=xbNwr zrPa$gbp%~b6Q}i)vaPc7IHj{K-K@`a3N~RdeDV*~MeU1on}y4ZB9V0TM*77Stn}EwaQ6Q(e*e&3 zIWCc{fRZ^$^fCaK{a=OCCke-sN6Oddk=f}5rx#Fs(0RmWyxjN*nLum*2>TSsPkB6| zI)fMv2df4FoTDI|PB#8oyC-ph*RKGfor|CvTwZ{L9sv;m@cO}d00ICWN*L__KN%J^eeBR5`1S$>?xO;G+0F@B%*8!6XaoK;-aPO;t zLLYtQHkFL*dTw&3qy-@JDj+xnfD+>BKX)xe=r6~0s+zb2buR&OnZw(%XKP@kr`d0#hBAW(#`_6efRR$0>06BXNtliQ_KepLYV7UZSy>1tIfPH@c(nrq=O{{5|7C$v z?_OFJcHoY`KsaYJgVX|O=&2QAcVz=$=e`bhW1xDLN$K*1D0Hgw-*|E>~@^awqCj~z{m37Y*o{M(XdIcUwDwx|FK zOR3e_UgqdAm$RG8MoU8ani?I9IV#v%J^&}YoN+qgd4<|v{*Kn1{YID()UKQZvaDFp`} z^v|kRAN7&4=)FO2gDmc>w+3kr&s#0YMemPr0hDkW!5{(zom#?Me%5ZZCG2|MjfCy7 z+C$pYk0I+(G5TSu^z%RA$^5Nv**Fu4PHlYM9SCzf%RvI&B*Hg=;$?~jKk{LD4ODBf zf~3i4l!zrCRy^|5Y5|NW_$R;NyS_Bi3xIQV&X*dgXWm_yA#(u$OzzL4hsos#df|Wn zf`bY>T|j#5zuAT;6lxf|x;l#iNS%ab1PeWKC5(}w4HX+ls5P=KJoYa%tp`ZccN6_+ zypaeHc=x1!Jv^ujMt}g;;9%I4)k7 z7E0JH#2OndIS%Xp`s|z`GQ1&%c;g{l1ajEFhGPHix<b~CByf9!mTb`>qU48$tkvQl0Clw zK*`iWW5&2Joso6&DXryDd##GXSq9BiBQNIxq-)Ug3m&u=kTFPvKuKVPg212#``r;Y z=(3aZL|6rOuo`fqij2&`2oFb;5BTiwBO1*zjYJ0YC|Ox<6y*QiGH$nc<4fjlq}C(2 z&2xr&e@2k+u#olyG4?>sgoqc_mGjuoq?P@{VgDh?kT%}Ata&X~kf|9>XazIq&I1sk*Y$o7Q}9oG1ArQRud#p29l19UK$_xLn#8-Q>;|A5 zr1$7#&i0A4==04r6;$+SsO9Q0CSviTa>()ow!Tc-!xjSxW;U~)e`p#%zs0{UA5 znA)Hdq^Udu7&y0dpS19jsqJdy;sI%v$PIvqJM3Rh2wZjYnjIqQ^co6qqu;_XYsoJ^{c7U!yEh9>I)@6aWG{*l7*HJ^3<%dr|4Lz({)X z6ly9!R`L}P1*p*GgiuOK4X;-_ub~oGD59_OgIWv?LU{sv024Sc5TSfjMf*?g z)CNG1)ZSPLQ)9OWZX9(3Ai&EzAAQ&Ge>?f^dX*ZBbO#LfyCHF}YwSxMs)Ts3;|OnJo>vWX5uLHxk9Bs*~dw`4PGIWE80n0%e&5M^w%4 zzgL?*%@wm$--Pf%`-SSc9q ze`6a+lR!@hNcL}Tfl!tp0u^9D#Q=GsS-$cP0>Hos1pq=(0EFWKAg~Gypc0~TDyKw6 z`iw9@aBvJ=5`bI$a`sW}BnZ;V9m|89e+R(ZKA=w7`^LP(KN~hfhY$*ewr9~3LJ@KL z0wZt73v5=)=YFDjJAk31?~%8t5mM747>C;91KP{BJ>PD9f-;vzB67S;DHh9UbGY-G zsTbd&r|!P^W{{hhXTS@Ag6YPJ*?-*&gmw^e!7l)zl17DY_vEm>JpT5{Z0!#KD4pFi z<>6muU(wp|zcdEqPCMi?Z&NPj%xc#*J=mWN1)XZrE>29>BSPHPErFbpdPa-yO~B)g*RIJ;E?(4x7~-1443|KfRDX_TN2?P}iqZ)I@Ch zbDe~Ayg2hZ%v`;>VT%9$H|$S$4}QSz?r;8ec{5BD`ch-Obfs-HeVx<>urDB zeBV5Rfaj|-qA%0}VgXPEQ2@Zp8OH+vh^svs45+`r!KYkf|3)i!qVoCTka7V4PiHIK z^oXQ)8hv~~#VxUBq&D-hO6f6vnaW)UES#0W)+4CY7rNOra|E10|N+E0V?%V6A(ZpAb{d(wUyI8GHH3hX9mv$+^TVX!$r#$)c3bzcG&hZ z$bDV(u=5ti+`;~-J=HMuy)9uQCr(;?+OTorn=)T(yIWRHJ;TzsavpT6tFAGZcFGUrMeeG>ZzLRjN%9NMq#j=s5)$Fovt1 znz-nT#|LoD{%hQX^hjA#m^|7SmDqx2H-?t%Yi5^CIPlFnRy*1eo;4w_x}KZ!&UV}AN1xqjCr->j+aA^^qa;(js2UAK4p?KppOPKCI@%6 z{D-smPFX+zfBvjf3-HSBwn-I42>=JO=7iA1*NSSMAm;qp?TI8^cG-XX`}%yg0@cC; zy#6k8-U7sBY8^vFitFwgf3cuSh>ru1$i}Q~>0TLktC}!Tthj zX+&9ofCF#^u1uXhtRAu6_^7;i9|J+HHV*5u@a@?E_Xh#HU5^O?aFR?{TLRLr-OK}+bGuAB(!Mcf zlwFwzl4U+9KYn)%9?pJ21%nW{nx&`$oa0#9cCwJ{pMe7xp;Aftfc-+roLb20&({u@ z2yY6)6chT$-rxcTyN{>iH~(-_-Z+2$7s}Lmxmfm(?v_I@{|&U`CNH5GKh!*cGy{zJ zL;x2kw9k)R2h1x7fC*(DTshbgf*b>nl+C-wvoCxrDt3Fqm-x>4{N`!cUvr@O_i4|Ht89t9(Q$X+ zAB_gVEC65(*Jl-acmROw3k0{#yA`Q3s*G*mOf|?c^&>+?X0J;N*HOn#O~BdZ)0uXt z%>xj5${RVvygc5$*lXrD+<*B;6*d3P_wnH$aheKeS09)rL|2Qc0n%(9aN-vrctie1 zMS?O0v60d~Uk)vn_*?7yt60;u^Z33aO=lqX<}Bajt#2e?OS zmp=@mGX{l`oKv_+2LHzFj* zm0u^s?LtQ6+ZNbymgn49fD|rSxP1~}M+b!7A4cLL08I)_%OHpI8PnVB2=y}{O{cm% zEAB4Y|K-I}PdNXY&3u03jb})3j$`4u2?1)B;DuW+_L?UTA+W`#gnKqw?Zw;0L0we1Xtl^JArM+yQgtPF1qC1opB`@m+z&IptHNf4gq1!` zRDgL?C@|^Yj9|S7X4USGarf`M-MrHp;?zb=s-Emx3KEsJ8QAiqMvVOf_`?kM+zkN<&frI{Z7 z7jpPtD7Sl|`z~_v4*wVW94@Ij)5m_v1+VTJ2EoEc4q%7ppI$7l|K4-sB{I2? z{Rx1H`UP6LbYYf2koNqMC;rOnE%bIn1R`86C{8F2;8$J10#7mvXIewqT?8)FssQN4 z#6}G`3y~oL&F^sB(+9Q)Guu%^!W!S7oIz+8ptcHXU+mk6=v@2HZDiGtdibp=B2*fd zTgWU4NEpcey+nT6$R=Axds_u=d4^ECStWq~B6KWqkXOan07C!QYtPI#x-3U1XB565 zR&UGlp9IKX!{jh*yA}xG+9Z4qzvsddWtY;s{GOjpA^^BN`;!^ESIvm+A~GIenogt&PXa@dN;e5(V?OzJXeGP?RXRbB+O&E6(}ZHhv`CX^sH! zqpv~0x4&znfA|CV&{0M6*}fAfY+J4N{Ukd)2t)UUO|EtXDttMzHuR34X0xF31b(($ zpPa*hNmrJcd*K|fOHW{}Vy%H^s%88nfKfk?(M@Bw1nQW(E>cx@hL3F(eF9@3VHVrz zCErGTo0Fj(30p%NK{2U#Yr;eTsXL>NN<>$gHTT67y~1N2TZ z+(9og8k}`9 zK*a#y#Tng~|I2mE|IT}gG{1VSlKiC)gukS=KEo5 zXPX5B1@O0iJSyvWxLvzghE2}ge%u=&&c8XnpC@8xw}kgx>@GKrGjwfQIUwycH||UV zW2p3@U57^q;PUL(toGd}?S)?wuG|sD^$A}eiuD zQIxHsCklwbD+mrSfPpi6)&YRiBaRO^J}M!F-mLRm-_^;D4vs-0FYO@-XQua}P={#R94TfXenij^w>;7y6AD+GB-WHjj!#7#W|5D?Ch#sc`oNj3mH zE$}{MxQ|lm=m4#7Tol+1M-Fb z!nZr$?6?A$4l>OC`^>rCz~B6)&B)EPTctnM3FLiQ%d{l$q1pU@%N(+d-?N zEu=@Q&Qin^U+;EjjKIwab>Ym-)LbjclMNpHV;DBqH(hffEq<}k{=2!kihkf4G~_R0pLmR7j!64 z`C4&m#?X;_IUM7O2o2k;t>I^3*B@ zjWqz|v_7?4ooqXDgP>LcjfNuDW(WpGXfRC4Xp3kZ`=69V!)5<(9Y5L*k%KE)Kc=9} zSf`-qGK$8r^gJMI@uyW^V{-WhVPoRMTQZbHr( z0{j^O%114h0HGPV;pO^OD2$gm0HD;Y^wp#CK{_~$w%$xJZ?jI17JDVcU^;fCyzQvNWLr(=b0~GlKNb5v&$$szxoVfG)erT@U%Yxj(zGBTM?^(bqA>HUS6Qw7et1px@MUP;8fkNFpVuUVeaxT}vZ5@BOt$CAjc z>X+BYX_*GTimuJjovxo{rYm>6k9#0(w7@ouX8*t4Is9+swaawlzt!FE(AK5vNjb9G z?5IT74R+#{L1kdekHI+S|lyS{>FdubI0!W@Ez8tQ&s0=(3X9#zzPg2cN$?+*byw z^E>wh zMe&Qm`Vh&=A+oas4@M!bw-3^ytTyDCc?Yva64Vrr^j}JC1LQ`x^1*Hi>{thS5wJfN z5_>(0ZBy+>$bJ|TGUN-2ir6BsqfW-nqSo1e3stqfW23n+$zKd3vA$;iA9GZe{4~WyPHv2d?~4dbc$&y-&b+{YN=^kTW)C%r{{!u@!_2gXHVl}| z5g@{wM_p+G#K0JeQtkFbOgjQO_78-5H_8K!2WJu> zQX9MN$g4YA>)nKJxE3{tn|4L(6xf#hSAN3zF%50A0RfxGXaDi}$Cy~nXEdUQyJt2Q zVrDC~rT4%)cjOG|*3U?7$fKyN8Biy{U;bPBPzt8*GVK%ZnHeEQE1Z6zV1U4z*MPJ4 zsN0&Ew9gd?cva%H*=ffJ|lVZynr(1OV*VLZw|dG$2V*$tQw6Fghze9_>d$~Ph#-W0Ose1l z=ZpH`)=APy0GnHKp*MMW5!K$b#)^w!qFo`KS&lIY zIt`mP18Fq-Z#w_fgmjb0+TC}&KmXv15C~}m4XwNx92hf9(Z0IIwO08V~YahG->1}^Z(^@i{snyom2uR9#zA6nZ!}hHLH=ol{ zMX*l)n$8M0w($12bm4j!)_tg)X7Iq2Q&3F-Ka&6&B6UFu?^ZpPzIWC2Ag#Dc{}cc# z)#G4lI}oEk zHRisDO6#g&r@dNe9w4GHH^K|sk7ZZ}H&Tr^0rl4FN5ZxL4>|tj3d~O;cLWkBoO6HG zVt^M-ul1gi^}ay=HuD1?c;jhRU;FEHC^hnJR|p7SNy15=+AG~}m}89y0V+XeblmvL zv-$)@z08{H+rtFRHE=HKO0vQ$yxDP0Zn#PCoTKEwMQwXivbVw@ob|eDE>Bk|!AN=g z6opz0PzhA}xjaAXMu4fczsD2!75oZTfH8o9oKpoXr0c()>sV?MK$ml?+$k&Ekv)*M zc)3;9!uo{$69X*2x54TZ(lj1dYC=~403ZNKL_t(WqUH4-&skfJ$Ldb&UN@b8A{);h z_TR3RxuX`?C1L;V4=7mWu?CXgB6YV?K^x$=zugt52YGzl3(ctSh`$A10YR@08DpnnqTsTiw z*U9w>#RZJv-4leK0k~Em0u?9@s00otuoB=XNY4yNYtZZh)KrWuzp23O)7E7{jlUf` z0%)8A(0p0qICtwS*8cj%(8{_MF@@_#M~Y|CpG&v!SE9LrM%z!B=j)agX3dzbft_7) zWT2Nk)a*nyLMi6~?y}L_Cjo$aeDv>sLtRj#L6EGM^$CkT@UeGeY`t%TO0Uy?Oymo6~QhZ&_f=Kp*R8nuHHtU7Qq%$^L{r+ zc_oz*)L45!wb*@-S&;Yhslp3~FuOIhba)qS1_%x=)DAzk@(Bz$zf~o3H)(x(!l6L* zgzAUjfZ({E!5CPHO9jSo(5t$s0ujK~9|`;QdYj1t807^tswuc%syctMn@m}QpH#m7cN$2Z2#w2KGy#unK?%Q4Hb^fWLzFUR!GiLa|32F*zMreezMW>b+ zku6O}nKDQzRy2UE2#uf6zVZa zeatjS^%oEVRDddwz~O|FaJ_<&3YV*>&DKl;DBBfV5X*7XduR$e5wr^S?&OZ3&jHYI zId=#9@BXQRI$xxgv5y`(llXc_U`*OT{SZL-+>f_rHm+r<5C2DhiQN&yC2BDB?w=jh zKWIw~;{DzDn;-FhM%C>dH)8ib2@vt<*H_~Y7DlFW}t6xH|0}iGy&Q_56V9lUI zjdla?xqknhO}E$A7%>DY9HRnGH{`SzYW*t%JGPc95FVoBK^M?wpji?irwF)n^nvXZ zS`;x000=l70@J)E#AW|V!NM_(fb$P=y&_-A+}20lX~JL3~EcpH#wso%2vC9 zy-nWXp!Ug_YvoK&HqOhn9*GqYKvm&zz)^3oW5pWZdhUG1+VGHPfxUU-rScSO1e%R^ zu9afOm6q%tCJ-nW2d|tRjR?f`8rA@Nt=EsIgHVl_F#C-yEP;w|tiORw&VDqAh!0^8S2*pKRv(g5`X$;LE_Ukusndwx9 z>subL@5(5Wkyji=0RY7b0H^}=MwU2)gbVGbB>X@CLLGl=LRwvwe3_(YKMabZb!*XP zSxx@DQaZOK<@(fxvOvWlDzz&s2|Qi#_(3(6Pr&nAfN-sFD4m>4z6?b8@FOaK2n7d8 zN3RDk0xDduD#f(~yXa@(s9G<^ngb+#R^5)gFs@}asrn!E%I{+fCTO)&j7SB!6xCOe{`6 zoJCJ9>8SVTzz?&FhIW$6!NQ{p)fO03>~lXp{t=BC{&(`K#eCa&?r(3c_Syr%%51B; z4(cDws43h8{*Av30KfeIv-d7Nwk+9s*ta5c@2Wb_d+)j3eY@FwHYrkkh=wUjlmJ@P zM6iE=Jup0Svke0_V8f&}FyNU61~l@BZ4W%~$bb#QFa%rFz%nJ+GC+!?K{hFqY_hva zHrcoD<2G*YgIRqpi7YrMTIJg>_uR6yIHCbUZsaCL>|Q>ZKJCv^5Mu3iFw25Le@(1dyo z0`wx(mU-^p8%mbo7e-G5*yrazK%Qod!C}|hFh#!GTu%8-tAXe{$JByS&)JmJdK=l1 ze0^kUlO+=MGl~5tHls1@zyEaPCHQ>1>tO=>AF9kzO2|ej_n_dyahhM~hB!$Vm!0Ee zYAGT8ELpWGnQ~)(Tsfbax(-)rXQ)0T^)pKbk>=C1J(x7AI5jg$X)HmO-WM900|D zm_qR8H9*O8u)aoZ+<+59RrvV3ahcfOP5?6&3an8P)(a>GYb;w_*SKEe#Ts}FW?VeR z&8KLVcvOQmYCscKi5D=Z1vDDS7=NdGf>iisoGMPEojy3It`^Opk2P-OT2tViyHl=m z);m&$&YNg+_MhOZTd!p~$@@RKeE00X>#0(9c{k60N3YPnyOEuxfAH<$J#@$$)ye4) z2WK*`%4&j9{(WgV!zOVN{Ok<1L}3R;DNU*6*K z7L`lEEDS2QXfTsKm~G0<5(GeF+2Y1cAiiqx<_(|$M)eo~-Zr=aZY!*kwPIsUDGE9C z1}A@0X3Thq$W-_~q?3Th-dc(`NGr$OGcu7*zCKleo=i6>PZ?dS{%>Rc?^E02Yg5^O zZ|EotQ2z~tDdA+yx05lh*bldU9v%|&vnRvKoBsvdzFkN6GRJmk1{2mxELI?dX|iYU zxV!|hK7U?%$A;QrnSz|M8w~|GLRT-W^9-Spm*2K(*VZR|9}0Z%=f1I5v4_%(y>vECbqe>eTEF zxCJFA+2F&*d>x~QBgVv%?BB-^oBmFLoJCf=H0rc>DsY6X9yVbA#W9)jYFKArmTXa& z|6r=$e^-{9V(vY5g*&auE#85XdEz8nX#j@YQ!rx_07e_%Wkw8Gqh0_2X*Zp83G#c^ zGHzc2!0I)?IDhUE7xr(vrBvei)6p_Vbl?2gS^bl#z(BjOeoYmi$@;0=d$aw{(i-VG zjp6siNsaohL^_^xRaNOCLj5n2Vf+j%&unqtz5z2d+izr>>jq`3+vwGkr_@aP;4>v?lFV#J?$O2ub=KX?v!A z^AzqKIp488bYgLLpet& zQ&&GSuH`wfPifW!W*i^3d|$`k9xnshokYUnHaGuwCo)onAbFJ8=|{=X8-t=Vi;Ww# zF4zB!oqsS+V=2b$JMGpVwhA1#E8NDfdvRsM?Qvjzn84hT6){%}xj&{VjNvvmu^Zg3 z;v2m;`4S1NdE1Q_c=mt(4uEV{sIVpHfypT&RX+$=R!+`jAt0Z!$g!sI0KWlf@C^@V_1g$$KtqnICYz_I$ST4Z`7JZ~7Jk{bp`EFqR%ueqz>H!06cSKk% zY#lBdyMaKC1)&CRRY*L6(QZsSwcMn6uz&}RSra%Z%nx!W7%>7c;;R`&>9$rOx-uBg zPzR!AR%(O4zp43uB>V5b%CR(wYtVRws`Jz(vSaq&p;7FR{U2`|aF+_ky(=^KF2G0} zi=0Ii8foXeQ3VcPh^7?4A%=3c?K9^+a`rA@Sa`=^f^9v>=NV3sv@-<(ZDi^8#%O%Zg6oInxkeCJFNud6rp$_N9x1p~LYP-LBg9zS-M zMKr+Xm5%3#5dg&Nx2`?=cdH25hZ}1bm#cVS!LN3zLZrM~JleK4$E*p=m|;M+J?mqK zBTV(f`Rqi6kS4B)sSVthcUKNOWdB_ZV?6T+2Cs?r+5ddI(%Vq8>P~YoWP=F+Jx0J& z!$T?Oz2SJ@B`>z|1^2vAD^zhDO{G>;#D`%2>M?FVjXd3@`Clb%7j@Xwh4MfIT{8c} z2bvy70dBtUty!7g@$!{e>H1?J^jGvr361F2O5ms|7+5e>XBVqqM`u09w zAm4(Q%G^^A<=P&4zLVI0p61@!|DL;}eK!Y_)8C@J_ujPaSAdfvCL4l4a(&FaS{#id zf9kzl{PbU7xwco-W9T;`9m3i3j+{jth}OVoM7^FQgy8LC|GJ;qmKbEm1TL!V&a`~u zH1YK>wS%=M)9$L-|7#`27VNT{49#fbF^9&v%kYRszR_rPmvHn*QmlkXn*R5LFzTUhKes{F}Bd8SI5gR z^_H$&rX(?zxpt?y<-04{{~-05X8!MxZ2U7S82`qR^`2z&G>@JA&v>vn#zBC;`Oop> z!X9h3E4xY8`O4Ym*Q?0%Yd7%H)|gMgV&$x1jP|u9i(vuKIN!wK$7d~dh602D1VDpo zfT4vS4go6-GON^yL~hJ#_sW(_CRNO*ZJ_EPNQfyd;<7~A+QhsbrFFEE+889SkXJ2a z8q9XyGbjuT0C@B?Gxj?hzb%w6GKZWPsMoeM+7W%3U0tDR0WM9ND%zalwZv)kcX98w zhV9^sc;w}n@vy;J3($pZ1Yn{j+)3<4)9ZoUD0B&9avudMm^AXFHgotf{ z>~yojQgSka{ST)j!?QH+p8fBswLYLhfUP;{y?1E)5?~K({od;43A$s#0uM(srxHp11F0%hY zX5iWXAO_Wgeq}(Sr%L-DZhmi1U@_iiEBws1|7m!DMV>JQ=e2!Fns@?$L6a@3kGOFq z1fP%9603z>72c3kGYJ?F{z5(=(KifV^gE7qzqf&?`?ddt4x>2e1D7f^m5<{IxVmJ# z3Ry4!yJJAIL4l1dNV6}A$p*_%e(+tv5@2?HjbDkMXrmAz9zkNP>|P;l~(=MG*$ zzXZT0S*3T3-i>P@%@IcBX$krx$^uK+*!JJmv~u<<#_7Sx8t9C+9sAE8^vDEruM^B?RP7-@miCJ#?f6r@C>06yC4HonEB<>Om@z})EEeteEZsDy%4RjA!2#H2*J2I*{W zd)4b^zVxSrao_l?2^=)$2eT!NH>Ew7u=bLQ$ds-NNH|7@Zo^V7ufSh8RLU8m(MJsG7v+I_& zr!9d9&CK_1ba$-LXgVoDc}T(F_K)(=z-e!MWF0x zbN#`^*yg1yx89>Q3LoBY{x8083Hu+<`$wW*;J#?%9u2x1HY&x~mi-ez_{wKW`Ssug zTCAx!xgzhfy*|0h*%(Dt-*Zig<}76~3#SsedvN{&3~T#OKU;yK|Bpy!SmL@8O^V<1 zi$HE8Fqxw{JnvrP$T4b1aFfQ$In0pz>mzt+7X$!nIODgkD7Qs%+NKHrpCZ+cAV*82 zI^k^jq_AE&p5LNgSgl~aN|TWb`1sKSiAqHkYc4iTJStIqNNz5;k{V@oq)C*Wf8+1oxzf5;hO9;Y+w z!9bVhV1m?f+z;81ef7h5S49zLOv5+WEcRUOtKlhaQ8BK!#`QntF(H&4dGby3T2=CnLK`TD1+0Ez zT4qMuf*F;Hs6P-noO}uZSZaIek-{sfV8n$@a+h;h%@M;g*2*~EWRF%BL3O-fI*Zwq z>^G?zkc1?}ouL`bIC~0qGk|4+Z(c@=w?b6WEdK=ImdD?$z_BSkK#IPs#SBzqkDMU6x~! zVLT3BT0$WDMOhOgZitdC_ihh*+YoWLCCYa7e38v4yGE%W@hyg@;LmCRcvc0E6jfZ$ z-Y1?derjQOtKUOF<_c5<7^fEo+-mxk|0;2NX82c*n(M(Xm&2F?GoXPw5O>{%l4)B99QJ3!jF3hh0O-L@qtv6VWY5j;ayP|B*{zYrtiKJ^D!~T1iM`sOhIgg^3Jq(5yq#C0B z1MKQyb~q2S)Z;PNkHF9Vb39w(w!yh+%Ol4T`~PiaeZh@$xN?p_5GsMSvOjhAif)Iz z{|^;7qK{7uC~$grcwU~hn+G!H?B@i=H{86dP>^H4eVbaxImia@}Z-T?t$zX~6U> zF*8d6r2miQ*(9z3OEFK^Y$2>l`xT%Rl7NyUvI~3`;~TG~)c+?D)#u2O7@jbnE4*p| z#Pfj39&%jg_Vx+@-oC|?=TSZQW3Br}kb|QRXY8MaOOF#Z(Y^?g+9sb)x%1VLnjtG; z#_mAbZ^mgOf8v8Lz|705LqI=AE%s?oN`QP~BQ{?e)Gj$|h+Naw{u7dv$`y`t5l99<$ zd9j#}Or&zh%A4dnP{E3O;d;&_a+}>NoBiPZ?@pQRXoHE?HmGXH^Ve3^#N^KeQkM5e z+k3e*wVU!m{>He*jH;&Ua4!>3yAg&;JdR4x69NH$@1J#6&KU4UzXyYnq;SR^W6V<+ zB==Jv`c zBACS_SvbV!&N2zgih;=r*A=>P&C2z|dQheg<5|F-yZEFd4XoASHOt>|R zOz?L!K=?qRMG!3bwNq$&W%o+}$2*Hj`7G%rx9BGTggLb=2E@a{M@~HHPj8e5D~Jm7 z8O)4cW3cb!-;6K3z_&jJRnRR+iG@d{w1ih5z-__)0t!d`J{KrlH@K*5vIqMKY>Xo}LyUPEM^r>#oUt;O)Y$EFe?W*7fRWs86tZS$ zfYuKrR){^AerMuBw*P#z`9ER*J9+223}&OMrI#-bq_8FXr}XMpbU!KbL;MWyq11=a zmmh)*lW>RvcWeW^THvhlQ7jC>RRj%u-}7)g1Wo?}qXE8~+*!<7=m3?7nbcC=%AJXB zM?3cHiM2QhBE0ft@$U5mW+;XxkPha3a;yC?B9%sw^$!w@mqy}M!kXiCD#?|l?!y{u zU?I2ErOw^Z3`c+d6mQl)&mMo zaQc!)`jBW1UVzr|Gk4`$wNbUqI38@=V%_DF&WXm@+=a^Ad8s$A2aRkauwrK-BaAs6 zXUm+R5@b>hreD?vx=YuOPWC^v;GMjMyH6#$1dJ&1IQ^=4sb>|Ydtv{5S#F9wHC_8| z5$C?O4|BU+!ms~)SSV&pt7v{<@dv^WKf@0{0|9>q0Qh#%wUWZ$#Ox+nZ|(u#C5CK9 zj6y;H5tNFSuki-{cNXO~-TMESS--+}CG~Z&t8Su3VF!RDHFB+U6Rt!urw|FIJAX-n zLIB6>3lX&05&;0?%||x)^+$N~3hgxj&=N{vQHMF!=_UYKae^M@A6zPCRIZ>O3ie-l zIfaI{Y5zIn7(sXVE9O28oc%`UwP}`jlGMhjjpz{MB;dGm#`DWGUMcFx+Y8Y;R;QVo ze$wR_81w(8?l27i03ZNKL_t(wpS7j!UpCPlE%ubeM^t5Jl(;hGvl`X1@4NYbuzkxt z75otNjYE)O5)M#c1zdRhxBZ8+RctbFG5s&T619*Y#$S50f31&S#rONjR5%U2vZIxi z7`QObZ=bHL3?Ur&xUq`CD>tRVv)jUha9Oio1<27~BGf{$3EL8vR`>UMgd8hqk_r*0 zjhF+_zfh)k_W9!bU=7w*=P?(e*%SSbKtsP0ftoR6m)M71F(ZPTRW-4$3hIHV@G*&vq?=>7{$L1|WE<)H zQ}Fv27-R$E=>qpU7*O=zSoMs=qX~O$j-dW|VDg6evt610dv^9YaU_K4o}{=(j4JXW zy&i}5jFPX_o|X*5=8^)w_nC`nX55O!UdrtvLAPm6UA7G6Xm`Sf+qJ!VBTV(ux!fnO zgg#>%F5ef(qQg0+pI?^Qf5+8gNS9ENcpGv3f_S~MO+}B{X;kEmV)pA-U8lakq&(0a z=l7<8ZegFE9Cv^{^eV^U1$5ut>7jAiGVZ&U4je>bNgt2ZS;3;<7yp54Ri-u9z6lbp zj}f1a7n{!`7@XHuTt5Ne{d2s#bd8lTRlL6dfR|$Dtvod)g0zCp_xc3@)G-4#@R~^D z)D^R&4*@GiW4wTTjp#z{m;{^5^6%H^G<5y>6OiElebpk&d{Bw8PN+GuV-x#&~sBx?Dy8>!>C5JHan_eT50&+LLhx)hIt zjP4L~SL$$dkN%(p?rI^fopIMo>vsY+18&|A#}mFUp!>BX%Mq;~i}6}vn+|~Wh)OZ; z{vk;M{6K-T^h=fWltb2yCQ**>c3*$i*Yy7M(-?Gh)2mCknlY5}0CoE6`VA(&fgmzUBY;NACJ zSqKEYYno8+Fho|3@oK~6TP$i@85b8Ja#%0b-N-<@wqn@3of^={b^Yagn^dNo4-mQx z6^0im9-O&j9L~3PN;uS(b;jMHPF{iu?0*DC8B3-PLw7`=>;mOiyOE5R8}{GR?nIZe z)O+@lEZm-_F}->Nzo#suH{t$z%R_SBpE(+g#zSs_9&*`B*!(Se@EE^1V{Y$B=zb2f zUZl=<*v)sja#AFnie#L|TgfjR#E86!i15*^6UWKgxo8ifi9_V%2_8WdD-!H>01)yd zkgFJ_dt_<^J9#OQ8^U=ao=a0E_1=3~DSR@FPd@<>SlbbRXOCPQ9StUE^R;Lviy{3^ zE3n=~BvOwLrSp$pQ4|Uda7K3I0gSrEs2;IJRW2IA7uXt67I4A`w!?badj7JEB4<@{e9qW?EQJVF^+`=ZY$@|&39Z6 zhg{iK7tI6!zk_d8M^{bm z2^;n>VIQyJAmOyLCe$S^>rY!T0?;q#7!)7tN=FgO2^QZ8wstO2-yi~MH+z^YWsf!w z_G^YxoRS}QfpyMdpjp{dj-n=BLWSd~APZ0vGOQK+u#KwYk(n7YX7pmTS>`^`u@PAD zbTl{Z3dyf+#{T;SOCoH*{s$jh(eyQj3UsABXonkdy%3{^{r9U(GGzDEznIy6a3B;d z!odl2C`cdHF;vunykK(8mY(Lzh-!S|)4|`tEKn$Fl2^M1)nK4$P%YBPooPxhBV!fv z#FqiWI=v^@`#t2AT+;qg>GBF=ELO>uYJ=UVm~0%FDFG&u-@_QugKt|@70yBufE%4y z`+39M+fPYO51cK)3{`0k+Xi2ZZy?dk*5tCaoX zm<7qYtzt#t(@SJ6O!8``UYJ7OteXD6BLJ7xL=TdC~&}eE5-Fl!wJO0)ES02HxJJsa!l3rBEVc zktN5fkzXFPjb{QtJR_eqfK?3z)Q#vOTyiGlfBE?|of$J`94WG$fb&!8y;?dghYV>E z)7U?i1?x%Smxs*%UF^Te`zL{W76s~cJdl< z4EvE>c;3tk=r)m%j|Mc(&&OY&Vrj)`C1|nLI$ZnM_kLy9`~pWyXU;DovbQ;PqK-?~ z3jK#$5m}OW_aB>RI@P=^BNT}>2sraAell8R zm5MiGb{5?Oc4U4m;NHL788hwxJ)ckS2tWtP9{d_}d-Isxd|BZ3HMHRU$pnCi8T&>mPK)9==NikzTO~$Yp3$78*3%^rV3=`K zgEp2S&`SWG_jlk%;Vl3NFCdcwqAAY#a6AF;y>NUTAh$5+ZR?aMMytVY{eEt-a4YjD zu{9X6_5bmk2^jgC7IkG~as1rnM78xYh^No3N@fQuw5tSmlY{RHRCq^b%$PA5Jx#rx z1CTaMQ$D-#^t9)eK^9V4vL3WEeuv7GpYF@> zpJ&#Myr(=&Oq25{igX}2!n(T0mp11~q|3G)a_vydZeuJ0#3Gn~7RRsZbT{9`vB&HH z(5&Ot_bIsD`!>%^|4m0K$T^=dwCCS3?g2fWmFIUt1>pTkFg8K=ouRIa+5Q6JvS4`=unjQ;gU zc>2O6A=Lm=y4G#ad=^4wiEYXRFfJ9Ix}ga#{~6!62 zC|HB&{flutAWGNDB(cY>tV**AP(A{{X~aB_a)7z9USQ>I(iv0>C}@V}Xsh62YgUAD z@o#pr2)&d$1M5N-t8ACwBs~T$TC6ItTcFc;93{)Me&!h%c&D<8N|X@;ZZff1`DfLF zfMqR=_Y4M>kI}rgPuC<*8eniGmi`0)G%YF{LrnaT>qN0n0v8Rg-JlJ@n*SN77_4zq z;i3UEKGo&=o4?i>Gma58F?D^QNS%qa#Hnh>bS3mCGE6-%=ieS>4yYIksIP!GAknOG|7`-CothAx?eZJcgEe|UadS=arDDuZ8L4zg;-K_w zl$b9ob20&EC6i5B3BuWifk)ac-tPka0THwg+S+&i5~u(|#rUG@q|919OEd45(6#_$ zxv)Zdk08065yhPoyZ(ciCr7}$T#?lFG{^&v#D$=uZ^m`88Zxywi|p97`G8v7e=?T1M0!J zbwc~IBJrO&{-w%$7pCbpLwZquIcNO-_%7UjaERaiozk+M7XNsu@C1}< z>_HTK7bvzKl)2ddzOqa28>-g=>e9wf3_9Vg1`r(96=5N?h1$9P%l6aS&CS~XLI$nF z<^!AyogvwzrsmMNMT-vk1IMQ$`MbNRr1Rr^!6SfxGi4_LpyP$~TF~tpFEtpr6iK~% zj(5)h;QBhMB_q|h{~QGT#dpBk&X8UZ*4i5WBg*cE0$5hGNy_;JnIdp&Gin>_+;4P} zWH==`HeBC?zF9-X>^~Wxm@#9<31GxVV8zq8O`U4~kD^Xr?I|>F-fSEfEZO*0+Qp5%-;mlULF#C{`kT3qiv?R!{|!is;Q4e|vwy_H zGf`eM7+AGYxLu52?C<-@4IV$j>l*<0q37-~5eWFf??nrI{YkU-__;l#gr(#&i0-J4`Uv{9me~p1L1=E_cMT4w%f{ zQKP?y8hEhX)$tbmE+tRixCKXz$9p$;@7gZ8;|;pzpmDb9KPxWcY4m~kk}22PZBNUk z^?x85Ofv{jQ@B^AV{ai*3_(MKv7ewhvi%S04n5%st4hig>SwJ(2m|XC7^oh*h;BZB9l>x9OSiVJ>T7_(j6d@u31TcD z8IcIe0HDaK0e&=K#*7)KgpQ5Cx}ujZY-0YOGI}r&Qd&Dgvj1PnR{HmtWcc4W>3GuY@3d+tYkrgDJ0~t1{~0Pc$pBaqR*bdT1*|x9Kw*P3`M1>}{)-EI z`(ts76YraU3Pt$d@3A4ut>6i_CznZ~Ca^}^V&S*#@jgEQfV1~RU}d$kWs9}gy6kgL z@TbL1-3S0KZlRVTSh;s2i~x|`L}JE_87BjUAqt*Yqo+371yg-D`yaeL3ZXLlm&o_| z^5EXnk(V}zHeBQpRa6M<>fXjlwQ>A0GHipL_c;6Q!uCn`PP6kJQDdiB@SWm+|G8j2 z&j$`aJ{MOBbrrdGsQyPl>6s5$wt%qo+i=GzD}`3f7AS7D8&nI^xp;-iXq650 z`<=OfNFG8|2|ndKf=@wnT3t2;?|FE;}S?E#~ zz`*x?9|-uzjEk+X9ro%uBXbSU;nW0;NQ9sAxInJM3^FMRQ8nEoYzO|{4Pp;JS z8UG(Sy5e6CI~vgOYR#B&2sqf+a<_u*yqJZZfG1@;N_iMcWPFq!BdZVd=KrbeKQVyi z(MG10$kUI4f;2kv)Xerf_xE5w!8^mr)xh2j*e6$GIqq^atk8OhkQdh=0$*6FXILE* z{>m->@Ip*Eb@2_Z{df(KiX=IwbM)3 zt?9(p$VD2=AVw=@U0Wp~9q9mTklT&e%UYZ^Egz!U^Xu~(w+s*}vZFnUtqah03x>>? zu`lGqk6YS|PI9cPSg6$cGs$2-p<^qJ9!xd=6Viq}Phn&BFHiHHuLqM}l)fUD`lwMg zylZ~3$*Z5qaC+a*0O&4?{NQTU;iwCKH^NH;t^XV=onFl+cP6)Z6ph8EM>yAj_e~d; zWd^W_ZfM;;xN@P)erN)lHGcpAN<$^SE5gbiN>^$;hnvRS>XWA;V~R6&5u{<=l(%hz zAwN_OP)AEVQL*a-tq`>Y}RZ&T;)t_+I;x=0a2*5WQmtD8-DoEq%g0h2yFvxTZ zaC)Cm8JXd2#xU;vy*)Yj8ohDm-smrd17@_0*15lbV{PNnE#M6B9&(W%*@Z}lc#c~q z>pJ4-CZ|*u$Q@TQjBR5H0NRd@#t(EPvu{a=n+$+7vRQRiK^gmx4E&DVdwn1+3*!er zWAl<)mZa}?34gY=7uN5u!ump-RZ39XDyMb0zsq$vW$p43V+bbXFO{3%>t^~YHwbXu zLJ=;iD182KXUsSmWPW{{a>|t5Qs33#+ehEoZ~N!&j$|A5KVGE1z%3P|p$X92U~J{w zRd29!V!g8j@4P>}dmZC&w3@?_WCPrR@C}22i_BO+qOnnayRu1kDXr@iJI{n zpLzfO$mCDaftluTGK+y8bxSg1#;zbX0-M4|`%Xuw5TnShNM}s^$3mCs;r%{BS9rh9 zu&ah+V+Dzl^WMl~Qr;Y=(G_fik*s1yf`|I%?DgF+?d1({6Su+dU57aDU)xKHp|mBJ zl0c7a;#xs2wOFy!)@q51#a}PzA|wMpn>v^li`%v@cp%F$2|zJUA-Oq8?`_AWvdx+Ujl%S&cjmo z6i)>X@d@<`wci!ELt1hx--oO5%9RrAlmvfmY@epQIfnHl+=oQe~T_Db#`f(;ASUKHhVa4jY zT3fnbdEQT!_pgAJ1_PHmXaX~4%ovZ|GKFnY%kNdic6RdV2&@0d)TWLec#P~>H|T)3 zH2jl1>ga?vNN$pue=7SQDZ^c2=geuV1ZSJZX4pl&9lH*&SC}^D${hoExr}uK0ulZN zLlJ%hAmHOgnaC#o9)8y_239Rt_^C?=7ywXq5lQc}-ZipnZyfPf*hMV?);NzRIRIE? z`cIdUg~e^TY2Tn0+vuX>ee;TqU6nt}F&YD50MHr?{NM|hyHCFXknSdCjwJP$ms{uI zQ`aH>jl4OI|FSNqE9U(CCUyN^xuJkYyFmcq4m7uXr-b=wK5z_g1U3xnIh&H&2vwx( z(#TwTsKZWJMV}ZY;yxyk+?Y51c5{5c?EeJm+E5MLL6MJg5Mb_Y0POAA{ck@50&0p@ zb|Zv6tqeu}<173>8U*}{SdPRxVfV>u3c7*$n@p=UXWkvinEXw9)#&X0^w6b=(o2%H zXwpt^4k~HIk1s`9L2iVRBO$Rs9Q|kUX#*ggkl%PS;Fje7I{<*haUzf%Q$KzSX&oz9qXXxRB%`9NOt;Q_sY z0oIB2R8Gyc%2Ua)$3<^BI!BrJkHO)Q3Hs8Vv;VZlri}CK0|zk(@IV@d!^W{|m3xw( z;-AO+H|}cO%qAW$5I1V)kdlZ^@u_TA{Z)3eip|xt${vvGFY@C15W}CVtYGAJFHR^s zjca2USqR7eFjT6IB0i00?!wh-K22F7)Dp*$2tWR%az?D}`~=;Kx@It=UIIXK8}yB2 zG=oK!PnJOmlrek-ez(Hq8kZ|n2+lv1n-5SSOa>r@fAsTZX=lusaj@v>afUVm>q@Vq zrQ9U7jmR;Hqn^>;k-UFWf7}(hAVpS76X?E-K*YOCMHpPh&-)U5AbS2D#04YxN z{n;4%czgsmueaB_{~0$G*!&dmBwpRU*lfxW=J+(DzcQpvU0X(@B!su_hbECiK`8r0 zpzM&-2$dn+rPsBqHwgy&BuNGs)P}`?+Slog5_KhR6e(!25^FLpq2mkZ$+!VWoI*R`CXbhMiaS$ZgpHXK;VbWNdana-DT7SpP%-vxnJMhX*hAGF_)9egJ1>H_VLx-0 ze&58BGr;E*nMLFt@jRt$gmpg|0Wg27_-cQHJWvTGoniAoMd6bkn`~xBqCaL{x((@m5}`xa z8iwgOr{2|_)PZ1spXC@LvdaW_f#Vni*xUQ_K-%c>kVgHa!Tih(K00%82%o#QT+moF zK3#^WmLR(7Ej~Tlc)AtqWpk<-H*T5y{H_p2Vvg)YtaX{zlV~$#jmPA=W~b&x08+{U!iGE-{b-0Qi<6`fmDf z7!W`(|IZTuP7iYvn&Uye%Jb8V z$gy@OO=tH+_`R=Nd8{mKE7snjgD}iul!L`kOVI`<6gcu@5p4T$BabhoIj9t%?M}uk zjf(6-Pax~W#nd^>GGj~3^?KUKTAF)9B8ie0l6c{0`r=>Z)HbzeN7gJVg^x>d(#X#E zDU;f}001BWNkl*izK;?OW96Lmvd#Kl?wl zmvaN`un3QwhtD;GfLE|?9-qc5fqs0B4=>zU0YNd|zs>C5#=j+=Je$x_tEXLJd~U&=Ly$Fa_%W5S&vWWjc&ouE-TdHNnM z0l-I}+UdWkf!`cx;aS80P%QvpxkLhDrvoUPc(O0DEvXZ%im$%^7`1}tXc~YS6EHC= z;D7krJ%yPuw zcT7S(BTmBXEft|wcyoid4W3oO@b3o!P5^UrF=K{DX%4{9cRto&Plc<4D5o|$6&^6T z#F58FEQ!z|(geES5xTkgzk3X1%S5K7uz&1N9-jWnjZN^hFi@_$E%OOf@=l6i{9!5% zuHzOI4AS$lVgs}UsEQ06F(!3qwWXbv-!NfFv|0XGoRBgDtO-BHbbrb%SI4q!KMWa+7 z(Apk0uk8x024DLlr(7}Wq!ad~j{Jc@T-aqS^$YS4e7p&&>Lft zu9ZMfUF5YRouk7JxYV)L!(lPt0}|z!u>C_+g6OA~Zvudq6;$PR`PI(DoS@|T`tD%m zlP!^8vtS3pMv8Zf(Y|!LV^1nMKD;3-zMk@qBeC+EXDWJ}h<&ytT^h8`? zt!hIyj7x(LL=oeb(`SF@Yc|U?afk&ylky}n84NtCMP#EPWF;bTlX25Bb9t55RorDo zcz%J)YXJE87LRMxW;{WoWvdCym~l{;$8$D-Y*$niJiY%ZP*N&4-1+HX(qpz6E<5cE z-8l8V30C1Le0?}VcEk88O4xsLUJ->?>bycnqY`Dlz03$;xwymAXu z`uzSL&kW702XU|j!`Zooeh;R^xtH7V$g5K@|D^ zB{+I)^Bk44)+@3eAl`Cen?r^os1{lYo2~{C&Rik|Wx#vvaEXXIi51XlunL!21_)X# z5ajRGk}C_yUVuuZ+~YeMpC>!GQ8OB{t}IES1T=nyQ&BdG|iog3F zY6WO~W{FDd5Nu-qgP$!Gd&Z0r=o-zMalcUI#%vrS%0AI|s59Fkd8Q5{z}cuaeE&KI zA|@OAvtfiu1u4{CNp15Je~XFhY^NG2&)wkA2Lbj|6{p(vrLK4Pic_uR@$ge*2%+SWJ8)Jw~*HRtTF25Y-+ z5;s9wX0Wy$K8Z95_`C0hL7~TIs8m?}vxb`oeBWR9PB1qSCkENF?J&)K;4p=puoH0S z>2x}q!!lYDr`=hPMCfnE-JiA&Q{Jqx`an;+KR&@&u$=wpDafK}sR>M}+2d+Gk4xH} z;696d68zvmu<>(Lgm;`*j{=C@#8VDErMXmVx5+E44nV+CJVeiZFMFlQ$-VhCY-zF8 z0i21tpZzaXw0w<^T(qFWc>z5I6mX_XBb>r4l_)||Ls)n0>{aX?y**uO8da`=B$Pdt z+{BmDe^nRVFZ%od+=3glE6eQLH(-tR8?4?ytx&c2{u=En<@)BdGG%vj0E{Qqzxl$h z{#iSRANx~K%FgAOG2w7R(r=6)ci*o!e#3)4QVC|F9 zF#tWd=x5&b>f&zp4;lOX=ufq#$1B)(fRm}@%?eUE7k?#;;<zhaXMKd((CB3blgPxLBYj)QpOet&KEe#);!#y0tx`(=B`wW$%wXfGqaN)cgd1 zF@wupX$`6hdG3QDX@n88naAo&9qD{|<0bzA&3CN^+?f~9w2U6Y=e`ddSiL=D9YF2_ zK)~k=mG=yiQ4xr7ySBVpF7*DM!sS)x(_~JY%9QAPKlKjke_ny7SR5L$Ye5P(>-Sr1 z7e4YHEcu=@xd}Y~0bu9nbK{rVWB|Bs@V1F23?OFw!S>JA_elY3vlzegx2c?FqBVZ^ zcOt=Zy!#06UPK|B)B}SQsItZ&QlQ#i)|aRr1Hkv47j(ZuJvjDnRVg>$w^mS$b%T|g z3S4)IJ7a5{Op`U^=uqAWtPed+SN9#|Q?gB1Pvo9UV@ZE0mEyhQ2O@f;O0RXS#jy!W zxAiBL*H{;f8Zfw0$H_KTqNa|zjQ1k^QP)9b3ZI|;L4ag3u7?tS^gf&=#WxmlglP;4juRtV*tF0BQ%FJP zF2z%BqXQFbp#$$X^MkcFtH<@0Q0?27sTgO*Yp4q0M%tQiv9#4BlZ7aYB0P2TwTZ-5 zZ472R4$vrk{RRYl(`z6UiIfQWe|#L+zasp}4HgQE3gTVL+Cgbyj#12?SzVyd>p+Vl!ppO+ombS%OijJ{hig4ci7!G4r>tL zu8dnJNR$uKE_j0VJPzd9zh5HLDFX|y4-i`5%_^SdNw{f%j39QQ$H^xj6OgA%M_4b{ zX^Klhh~Whg?Ox3M?SW_iX0xggSr)+2YZ6KkiX~+LSha;$=&Z6#9ik>p4g0?f1qIv^ zYB!yl-4H>`Xhn9+9hJ-ggV%9Y2q&ntapvs6;g7CU#&2}LS_KcN+J*nqkMU@M+ZDck z8N7f9Xe&Dn;21H|18v5P2Mc2~iBLXutHvT6rYUQB0wVj{$(GsMY#smn+Xa- zN66HY_G7RSw0(BB8gOdO=s{B0ZE$xFNL1aay%h(8Nfo&g@BtJhF+1h(3o1{&%BO2KLDc1UwV-UrF{dh{I!|%vncZ^qhAU-c=E~ z_sNd2HRY9D5tyA)p!3$Qo;y*pJF>Av40_@oTvkDMP zHINfBRE1d*^cLKJwHT>X5gsRc4HG_#ge` zPz}zQaj!VJZv2igLbdO0K}RVM{&eC~>ZI4eVq8*vs{c^WFi6b{w@goSAi{mT*TJa7 zcQhcdSM-VBQN8;s@sZc1z+tzzr&G^U%91cq5Ef>&ADvo)&6ZCUaND8+ZnbstCP7=z zGXd7pU58SxpVO4x}jHtirm*n+9*M@eQ#A>WrOW z9+#MLAV}9EPV6iBoT{GFK9rd8c;zA3ho}%U!3Lk!n1T%I1G#!LSY3Vjk~RGFV}t3x z8?-q4Xs7PX3+Mr2?-f#dFAwc09GX1aU}RYg`+wnBX)+DKoSrex00KU~!K2oCct5K; z7qT?eHg`NpepVmgbaL=jD^!BGC84a5PkNuOdXUP1Qf@*s<2t$2(Rpz^J>a?xah3{8 zp+(5`d`#Zz+67Xy0Fe?QQi+nkwgrIm(xwEDmcjGK1o_@XmWW_2{p7V4^S@aUi0uN; zdDiw`g{5*EBr}$A;{V0(pi*{3<=YL;YJ6*rj}~KWgfor_MLm4R9bmV$y_3|szwYVD zm-%i7YoDC_&<(rQrw7GL`>G-KKPHQ$#x{^@S149v82!I1F?NN`be=uo=xQ&;+-ckg z#=JJ|#6oHXPMcb=SU*S9GYOR-T@uth zml^~-IkV+8&~j1)m#e}yzjBFEEuMkKQsb<`PdtNi?nC}H@L~srM6PAzhA$N1VhIKO z-Zh?_*>~v}arDjX{&5H65A#zvSeTZlwAINt%07JBO=P>IDW2xj2E6~zPR7y3$k-XD zqpmi{C9ko;TL#zu@4}es>WXuiqm~CK(*0sz71H}s9@Uvk2kQ=iHQ z=hjzV8rKut2zQrTZ7a&#N{#j1ESS>>#$2(R2b`%}DrWz1YX=!zuUyKj@N~`EK3v+H zj7q|v6V3^>M%99rpek}qN`7q?V$_5G@#n;Ppz-e?{I%|vV8)Cg?A6n0-=0*X3GA^V zR_~`!_C93kOi~^OukG7;ZUeHuNeaC|d4wcnWA?ujbZnhD4R^`U3V97Zq>>o0IdlNVJcP>HE+eo9>{&{_Oq;el>y^TL;&#J zl}(3)wc9`^lNREAtdb)CE?XBM17C_CVSKi=aZI7!>Ts7K^ghIVlRgWnrFc|t0pQ}& zre@TD#;aV%j}Uc2LGQ)_CV>{%HHCGFD(I%@0zuv3fs83Z_h z`aLFMI6gIw_6}Ov+160bt;A4PyMb0)W>I6yXakK6pG}%ucFw zsn9S8s1P|g0U!qH;QS-^&oYep9O9}hk@5UdX+h4G;1vMt#E&-CnE=ILGqo3>SX6Q= z^vg7V?2$eFme{t;9v~WQQEndqgJeEK%TR>>@+UegZN`jK#m))B0Wc1Wq^--ABp87L zMHWPMTU}x(sgZk<=Sor^5g#KS6*Q${tWgoVi#eF)PR##fSz51fM>z;E<%K_XF1rKy z52xwc6vzG$b99v`S%5M)sh3!(0#s{V|7&1DSOCASpnw-_M-uuaFb!-Q+xyLgVC{LV za}#P9YsTf;>Io6uXCaab`hYEzC=n3d=ueFT@R`c)Y)}C|1-w|;(~DO&g0G@0#-&^Q zM;5cuk)GglX&D!9L&3e1y{XSN+bI@RX+m)RyI5kq4v8Cn?<at#Rz}db+}#_ zpw$53-+EzXQzRDncXeyFzcj~ZLYSp1FRLK@WowUT%$RY)P?$*B(^JZVrhwv;?Ki#J z?NCcj*2@tFQ|Jzzri5hdf4^-sof>&6Yyv%_2b)&cp}jVTCeQXLmMBc^rQpcHj*Ko^ zknoi^flK28G)35}0e@~h;N60omvRt5E~8m;0m?myjNbAa zj0*Va25;7=fHx~tgcp@H%qLJz5?{1iF=N;lu&b`C*kPt}N>`hW1CSJ+aJE3xShWX$ zzAf0)d^bV9%x1M81mW_<{!L8l@fACI5pb5pui{T!C54)20MD3l(xBX-W&&lO$kF?x z*y#3s^QZn<(Rs)~gp&KvB#olS^M^ZvtF1!GUgIhd=U=fq{L4Yn9IZQ^T zy3PsEcQIPs2Orpevl#uxcHzMd0-PRGK3yc!oV>~S^?5L# zU+7>~uY_G+1HW^PuQgE$U;iZ7vwh5BKk->dVI!-5whGWsKDL~d{mcQjX;SH@;$LFq zCU2Q8?RRS&a_oonw6LlH>hu@Yk@ZkWYSMIge{IvWQl zKD@XpxjPQIB#fNKZ))MR5miActX+0y-6W<^U2*}?|L(7gvP;|lk+1(VlfnbR+>;zQ zqR)JQvd2VfnBVsx<7D^yqHI9c$3~!`2;C{jkPRmOJ|N$Z9*SQIpSy=X?C$9wT0I|{ zJiCIlVK*9|Fg|YGELA`O>nd8_nRNd<8P1w2|rK0>~3;f4Yh zS%rAFrK=Xt&yHIGm@(sou|tA3`ZM1y&xB!5QXaM}?F2*n7G%8;p@)@D%;HY>{5nSV zzrm%0!C?&o97Bz5gVWXllwf=0jOCV9YbapZKmoOwYb#*`-BwVQj@-m4X~qF^=6vHx zk~{jF-`C#a2bY%a%Q$~{8w8WQ-ySzuwx~F|DuuKbZdgYs6X7>)d9~r+&pt}WJt!+t z)kZ1=#Bs7_fIO?n?wn9jqzTkQ4Y<9G9|whJWE_F)0-#Cau`&>C2~76VbD^mC{!~76 zUzrO9R#5@{Zz;<2Uw=JY!syhSf*CVr1O=dzc5hADsq4aFU@BQ3)F|?qzT0RNo3Z~5 ziB5+chwBBjDf^$A-Ki4C2z&TEA4I(!2K?066|e>##njo8VDopm7I%_eEOO-x)!vvb z$!jf`_tMcvF8;)B04)Xa%eHogqsy=LJch4ia?L+Xd<##o>@&*(vvq0QA!0X%IkA!W1V443hP{jDvK)FTqlc z4a?9S;mf1h{|=berqBA`NZzLG|Ily{g8)ZWW82__b&|;XOCSpSQhE08e?%z-BzK^I z545#v|FD^cTbiXxz!%(7k$%k|dn#hG_h@GT`1Va`tAiI1K>>?cWAQqS+?CcU31Weu z@N?#Waw7l=xO#!B&)^SVhQhL&hMQ2~sx`pV@<2g*|}1{>CDv5BzU_Cgc{DGcwZ{9!zU6V@44V zGFX3eC?eHM|*9|9Lk)?yuCT$LkYl(mIgy5S?1L(~T7jxyz@F;!hyLv%J5R0+8M3$7~{UZ|(AuhG8=zb}| z%~ME1w&P@zDc5l|3H{O@S6LkHZ4lr%t7}V~s!s9`e3*q^#fQ#BLSHEbi4gkRs z;bPvjs9OBa$Ed_0fKO)`b8Z8(SiWCSk~2*J(y=AxzU-{dm6&;KH!I*USmDPmeCf#S zUnWA#?+4z60xM_*RM0h0K`Y?xs-P{{R#rzL7}xp|P!nz%CwR|1rP+ z+U>NaF*r5icvl_K0oL0AinJ5_!@pkOf5wV$4DE)S);itW>kUIOK5%Y1au6W!=D4jh zl+-7q1>;x1iUGMduoxwf_|04Ad;+u@y0QYC0oOXH1ZMj3k1w)`0b<81r#xr{?bHBP zX#G`Bg%zc0fH#~&d=}*f-{IA#SP<50F&h}D*trA6{QHc9-eth+Eb(wH%hvR#9n*QG z>LPa^LuKaxGz0?9#3g`z8w@pbOE!#i8zhB(-Aizmi=0gTarYn4Syp`S1`gdbfw4Y*Y zy?|W&S`uaFi(-Za&VVKGLvcDQ4KS9Kb^bB$+wWZg$kw-Uw^W3>4f6q7o!b7_I_1+v z?oJW=Z_RNH_03Nr9VTf=WKuU8OBF>pyYBl?KKc~jePv1Wxwf`{;}leRO#@I1m%b{b zHl`;^%1f?)q&ULA{uJvLE4CVrsg}o8P>{&^|6IgR%@4mUNbG++W5(8)`>0-{+QoF*`8OKf~b(Mb_afroP2!ABhVUe>s-Ai001BWNklA?NekDfJBy1My{6GP5R!K0>q9P#x}FYLlK=EhoElQ4ja@UO9*^;?*Y z>iqTLmyRh>|E|x*3=#a_x2OpVjdQuLmLCN0QSQU;Yw_A;1vvTUwf8nQ;eT|;$$^EEY7vwEKVSY*w|p~Z%-9qM*zp!uBpwBdk0vP(ou?h# zdJ}zsvXH(^MnvdNa4?0!DWxI()Srhkl^xT7cvA{8I;H*K0Kb@hV(=+%i+ioly_aq} z4p5}+p$N=&c2~<-P$*{ALKD7qhW9BWF{nOnbC8ay0LAoUc0cj8gq(Qp7VV4#p1Vp-1>27ubK{}OANu`#~-FzRv>_st*42J>2RShNf>WWODRf@J2uL ze)H*#xaYemTdVMAIrD(69U6?zfwV7kb(^CUN!;pFon@ImQS*s5!iBzgD9-C}>fihC z{+eYgTpOwO+@F`^155j)Ef{}3gdVu;xoZlMFqe+QF0@}0jk$p0Y>#ch5foYuVwiH%zq2tzD;P-v=?~&UVdeV9O_e)9i4o!z; zmaM?)JnZDllc#Z&NHXE02K_`EfuHATh>v@1jq%6N@^Kf^U&rWAP~X4gt&oGJKXS2E z!!#}Fys}kCf#^vpZ5;7OOqRXcGc-;IKsdGfgQaVZGN7Ui!t#cK6CWU#jNeXGoa#8z z@vWZYI1MgoiV58O!Q@-^e#yKgPXrRRurZhwpC3c7g_*Uhvp;AUXTu)F&vGA!B2P?= z`>JrWdgUG-{%s{O+#8QAeDoZ27uq6;|0LYiUC-_t(dds?7y5AJcj^qZ&*81QCe+Ok zL#m2>v(V^7w&pGUersw2CB9^d)d%FW01uUwI4gW<3bJQH?J%%VtBe^sYl?%h4wu5V zhq%5N79^i?UoB$eoRXQPKz>Jjb5UAX7uWuy%bKKii00u}@Z*_=ZBPHQkBavTt8Pk0 zc@yPTGw5N@>gJy_L4Q6*hhXTfUHB{v&9y;eZ@LliE^$j7qzA`#dl`9+>#pX|fRiMW z6BGh|wp|tX`aA5}>M4n!!05!o);mKLv`Hrrm@q&iTJX(_L_n&wRL=i4p!G)kzyRne zC&;a^sRC6tqDAhu9Z4VmMhD(hw%)26sDEBP= zw^dy*{YwCX{FzYmJD5UrFa@LAAZtO>+hA45b$-6}0p|xUF>3_TfIUf9wA&*1)i+5qRU* zV@E>%-z^pw96v^xGykjMVRSjYs-{wkkzHistmlJS$4b5evlO>Ea^#bz=WPmE4zlS! zp>OSG{g_miPicpfb4w>=A_BmHJAAUf!pRBl5at}2lCgA%#2Cx6V{EEm3$oKfw1WfaqlTh zHJJR}>{Gz-P44e?{;!S+*AvGqi@xyBz`-vUjtQg9<9~`xV^ zF+H5XkW$m%s)(O;*_d!vjcs*eK3#kNC)Z|4`eAu}nQcFwnuttANmZ;Drx_A6=KQ3a zq3p!NQO}01=?l@5sq_!6&NB$}Hn$&NF_DWDn2+F|bS-i%_rXu>Y3FH4mLMia@mGJ} zPK#ibEpp3VL!4`d$>>^2CizTFz?c^NfS6$7GJndJrlz6XpZzNwY3sh4|G;G~fvH;}rKkd-0tS_02fn$sFqO#`BFG*%}xf5c1mJ`~YE zpHY4s!O?fzpLjN$%+Ut1H86X@sK3}1)Ug~pQ}Zf*$`9KOcj2V)4L=rC`0TJS{Ie>R zkusD+ap;&v&l?s%ym7Jdo(az_bJ@%CHZcZ-FZ!?nVl;{T>^JHB=0p_wJ}_mbH&VFO zRNm@uEzVR0U}Z_vE{`VVh%VICrv!_M;;*o4r%7Y_oKp)J^knJAazSo1&gz~yF(Hc~#~~-<*+5$`7C423^QDOkA2DxS87I1l&MZ{*$qdsg z5`fZsR-892Y?zdvU%DqhvsQ>?eN#fOAE`j=5_9zVhtgN7mcu#?JrPO|u-{YovTZ-U z?Jn>2+U#FOQ+54!`aVAS)srE)9)H%18XGz)J7HrZ-&3x$23+p8sm&yfgF`8d_ASfD z)Ga<;ZK+l@h_-NM*gHI5;ZIYK`+AV5q_7hO!xyj%U5fM?uPvke@U3i~{zG?APMa#8 zRGRCv^MQp1pebSVE2}?FvG3MwR#~L6Ok9BD78>E?EP`&!@Hpgq)8p&cG0{^?^kTID zUc`@gBJk$s^(bM(D7qKyPZ3G{h*|xxTQtK4<=kAI=B`9tD8q(9K52ObP|jm-7V>aa ze)$3pxjQ5P9fn(UwG0~9U^!|lwpopDR(FG3%Y#(~HIl}zYN#w%8(kh$9iRUFC>J1_ zD%0JTn*Q3Pw4A2PCaV1K_;q>0V)*bnQ(?Bu%*Vepqnn=bS5Xv!_73N@A&A7H&j;Q? z5XRD@I<@vvktj&sCfPZpr!l4H>Mx10B#}-TPVW3%=37CdpgOF%Z@6*~)xvTH1&{U- z=BZI--9%qi0jlR;9LZFlqc{tJW*?+|cQ*^nH)t16hBauqg2@RGiFhm0iePCk+rytE zcdgG3C4#S>5KIZy)J_}G7uYoRYcPgh%F=8!<8>v2`df13b%GtJ2sTffc|YI*ZZ4N) z>-T00k9+_(lEAK0R{K$U$(7ax60`1nX?gPEuvf!-6EoDY(mO|j=4YHV8@u2YX*}z% zcW+okI04Vu1s^nV=f%stMAK9FdRe-r6gt`W7Pu;CNDT_n9eojG9@+4hn;Dealm#ny zwxFY}sI-;Eh%PpcN=B!(LUwm*c3_LFaLd$m%FppgtTw_r1j{wH`qP?fd3XTjhdFIa z5#Qx0*<|MD*9d4Q_Cd8ff#VUY{7D<+h|X~95)Zy~cn_M##mH$)ZaDxs{{tb%6xI92 zw8Mtiy)(hy>K1(+*C59!T}GVNyMW_&($_R*Z86b^jlNpoRBQH!N#_CgcP@LKmcFL5 zQVC00!pVscE|Wvvo8PG-3b2MjnwvF03}RRebe?Z)^fJ}p^a7J+<5myM=tk;F>MFeE zJ^8#<1_mFcv}N;9^dI|2V$cCF?2HHsx>%26WXg%cai(N5C$H-?FmlbM%~+=F!CHaU zwdGF%V7F>;3V3Z-;(AxidbiV$o8j#IwSxPft!v6~?G@Ao)+z+C{gZZMj89=7l7Ctv z{m=2MvEd1Q5|7t?%n;Nk#qyJBz^LNK+63}G61&O@$-Mm&Gy%8>k31v21 z46xp)rWI3TOabI?ngZJEC#^ooO0%-^maZhR8RMA!7C!%R5vnl_im43=yl*paHBim^ z?Y=DL^i|v2RohR8pOAqMs zc8sS%4t3nCcJ0ut1%_u++8YUMI>wX%seZke>UQT0r1MWh1V)eokc4@@A6uMJSMSVB zu{m4h>RL!m{aq7Ufw^8c%q-GS^PZ^L19`g_0VwX8F6K56dUSl!o)$cg{ypjj&JGc{ zZwaJ(*pS8X-w~A#SnWK#UK)y(1{?Z6c%d-0K)=_6iGQ)Z%bvOdAVWC(H}M%!Z{Rfd z2G->9SWJ)tPq4sdzxl4Q+g&Uu$nL!}_OEq6tSrLZZjAAIrw%+`YgNb(3Ywzdz6%;k z%pHNB_r#_jvEUh1ht@dJMHr3^03l`$RO=Uq1EU%saVK3_Bb zd9UXQB(B4v+4%Qle+odP;wGR(?T>!bl_32!FFD>HFCoCl=n54=Z)N9%R~X9 z&?-w*BwQdS;BrMDut0SN6mb@(wBl(gB^{)ZtvC0C64o|JH0R%8^=dkD%Ktlic>YcD zqWJ|DQ2dxi^{#Pno4$OE&-%&4hLx+NdK*BHw&3K4{ox;;dENBOu@Uc=XE7!cy}pal zom`PM2DntF;D3lP{^6mHsYHjc?|9>pMXj95DqOFZBGXhyys{NU!qwAcb*%k4aY}Wf zI3H~j7p;6$vCY|np;t+i`3$)9ff}0SZug+zWlAh#-@ZQz4T&2e8^@S9H$T$gVLhL& z=Iun_q<*LOhrfDp-7Uod30GTw*mpHh(hZCatfcCC(1ctVxx4QG-QVAac&+Iij`P)g zpRG(5NIO%+>%qw6{;|}gkJL$1VP-8m*TUpk-~u<4-s^9{d=Xaq1UDBvy9~W+LL}D% zI4cVm?kwoRW15R^^AV`Lrk?Ee+kv9_Q9SFyDDHhvInHtSWIFmlCv-1`I9YAgzh44h zxOR|`7S#{ldFqN<*ctK5ws<#Iy}rJX^fW+vY|j>6JY^_44*eDKvv{~!0G|{=akf0r z<;^`MTnI#sQ-|Kt!7x{>L?TnQo)42}d%m~{O^XM)dqk6NjL75wl1w+YRZUF9?~hCX z1n#-hfa~Ja5H8fRK|93qE6p{-t0ePt4wp;T%^+}&z!G7d<7B3(@WvN9(2F1%5A~aB zZ4AeV!nkTVy%F*P`+`w&czo+J54w=QS!TpJb*UIlaWiU8=baBtlfjTj9sAfrVGk!X zi#UeDI5$1{4F85bNM3fPJ*GY#h01;0ZwZNzx{)fZUZiqDLhZ|_t_}*q^MBNf|8zTF zyz*Y?IsA61?$xT0wI`8N{`T^h8|vKjL_l}1Y#n=I!lN2k<&YV+%&T=2tJ^&}b~I-W zY#<+|xlgDh`ruOUFUO3q|8(yJu%(78fnD8^K3$>oM_l_12%068Zezm5j)|+a&bo+c zk}N{Xgj0KL_qENYQy=>1o_%*UIF0kY6iTyeYgD99AMV#ZvB1 zA%Ur7u@biCzuvUmiFMhC%|TDIQP0q_H10*S5l9*YY;I8#(UmXqqokj@izQs-Z$(x- zB*TA_v4g?_%u3I;Bp&Ks>`&fA7-(SI@cNa{#lDjYS?ui22v>jAHb0=pR&(k0ehwi0 zqiHW7rMRWU#ENDM)YP5)OpbS|O)H0Zh>QkrJ;DFhv6yPE82#7&LqHdwxC}<>q6$It zo@zaaIFH0f$$yOYBsYyHNZezS^u+h}5HH7XFuS7J-Q+v4JW@OlXyBoSbphK<^}kBB ziqY{i1O~{jd-*pEa1{eXYk`NV-GebI-+}r9AhTQRkB2*X8S-EgsY@q-)?rV6uNt^M z-(hZ3CHu)xa#prb@IBYZqt&O2>$fLi&=zxQ=a3*eE3Z6-L>EN~wv~3u4qLYVf^yi! zfa;7*$xgKp<5F`&y%frLugk|Zb@&AIwjo(h(9hYM)|CI8?$S*E31vG0H^=N0`c*@M zrmw-m)Z}K}ZvwXGgr1_lJAw+G)_GI)_ubC9iPz!52YX<6XDFsc@EpxJ*TUU;EsoPh zDnX58wx8S>&X~nUGoeBMd}t8k5xG~J>!<__&cfq`B3pQH!JTYr`+ZWPYSA}a`zJLi z9G8;Pe@k*n#a#g~<-3pLX3?e4)~P%T4#_Ch=hQhF3d@lmER4oA_QBE$-okrxgtVxnjwRSEp- z{zH$QPnfKC=3;jy_98OY*M2QJK`r4s`=&4~CU;vuic{BwcOURK-AuOF9@p*S;%Q${ z(T6Q4*co@P7dEhw9@pQTNW+)46JR}3|2|do-+$upAC3Br0cesi-D)N*hi}zx?Hpho zVBdkKYNnsc`ZAXD)HPp6JUH44izZhA_Zx3OE}wV^Cgvq#PNKr*=cuEDYVQUwD))Nl zjCcQtjta)Gqy#{@>EY28=9>V4d-{Y0v#W}l`#l8g1n};h3V%16RLc3TL}8#f_6sh55wL`dwSon7sT&l z|NSLKyZUH#Z1`fsU*fpXUm|ec4FIT*$#{B6cxq84Wnz+nbhof9jTqQ}*#(_QSw88B zZQL`Dqd@BM4wMV|7wu`cTDi4Y428~_*y>)4)1%+0?J~Q zTWbx0=eB^rfIB2a-ajy5-k2v~LAxE^irw>AeTlcO%`hKZ-?5hRx*+olmEYzpOhlyzs9SgrTvTA4&z@VRn=CYMa*l=jxfd7kx{}KUu~1Qvt9m z!2P`Yz^|(r`k5)z?ir!EENo`u96@+#v}nhi2loExm!e z-gAh_xr7+bHA7(u#HTu|{If%!#znO7JmSH0mKnQE$_e>*`kZF-cV$pQ(hLyCo^b$s z9SC5&p@zDvNo*OGGH2XlR(=cJLevqNd%OXt=>FJb*aAP9Ob8|5=dW}wK{BuGj{GQ)n?ul&~ejFSVnJ6&u;!c-c8 zbCm|ehCegCR!inwFLJ>QjUIsy$Q1MsbMfihzgPk5m)pM(kPbd6^d-tNu5LAe`Zf8l zGTYWmr{mVvp58pE?VNEEAy~V?(VFCqW9xcgWw5CNRMop8e$nug^8MfrZ>4xCGg7*SVLxX3C0w(n*j`ZMoPB09X7x(t6B1GwMKSVO0vo!*80oN8OjAiiBT}C<{<4KLxqsVI(j!Tj>NL!ZEZ=1vcxelj& zAXmR{9ax%n5|UB9CQ2THvE(O@RzvS9f6^&rW{x!+7AVwx!wy2m$8v&VF%4Iry#Q7j#-&mC$kT9KI0=k=I^xU6p(N2CP3j8Q3(emfE%k_z}u z{#6wUp3%a*AEE6bz`n*dd-X=}a}-I*FuXPg0Jj_d-30$Ik2u3T1~ZAodj63k|iTZAof8w2w)CC1fkk$s&VKofAfI1Xv zp9%wF{X=z#l>lrh=QArM)$@OG7YwJ#M~E& zw)X!8M;H@5s-~2a8_h>xQuTHu3w`d4y*>OWHQoHi*sA73 zXEbE4L(Z#1;}h_TV=VYinj`DC#pkya&fyCuU6=~-_jsE|=MXBNH>Q%n7bb?B4|g(6 z9EPND!>1h#RwNmx$#|H);h?w**bBmvE_$(^c3OKM`JP93OxE-oDVOT!@RKjBjnm0Ig6#;1zg2+?TMx| z>!U;hrF=GS+A2Q~O(pQJO*vW|1EAdTN1mSW)#OmY{#JBy8{+#**luBCBQVz{nG#1J8nF^sq7>>vN)fV7PI^QjnrX(3#4 zKvOhPkLZG8iSPH=AwA`9dJO%KZv+iK=_l_V$gMt@|M--x;eAm*?t*?*=n|Vq66C_^ z?s8eOB4}3mA=%#pBTL?9c>R_RK%9M@;`o>7BCM{%6?MIswYl#3VUWM|X2q+ZzqU#q z&e#)|c*KWlVQbH~RjbC_v6#YKBCWz{!|RCqX&_;oJ;z|P(kKjO7&a?ltHPKNQx6Ig z1~{28H^C({bECqm6_}l`T=|*$*}o8nj(fn;_qQnh2Rb@OLbRxDNg|$Ww=Sf=lIZD( zWw-DKECg}zn|~J*2)&?}t-k)QHtcf$;YK_(T!C#~6e}+XT3);TiLYr&LAZd|k!;rR zuQ1?UMn+tF0FC^W&-#Orjm1wpDmP4IdRES>)a2O}W&^Xfv;F+JTKYf{m*BL$&~iSh zZ}SiY@_vF+0SvP#IRMlc^*%6uP1gPWzI5-llDAEiq&2dvzXJ&7Md0}XH;&4!O)-2nwaf7@^0ZFSRpyS}Ft z8N(-^91la0to-8653-@UFcOLG``Rxza@&C@b=J|4~J^y=YvA@`11XCF^EF&p2bi2iNE|iQ8D{J?^ z^l2qS<^AM;1dA|svUH7(vO?7^6Xj2Wr!mGJ3WZ53^W+K_Wy4b*Eo?r$p(0=)u9Ox) z2wx)-dD`X}t8GkGM%E6yb4zMtQL*fVilF)8 zG#R{jE<>I}ce&+H?ppR#u+yS+?yM*Kx8Cx!9r*RD-b2GXtyB$mR6Oa=J#KJGY@ogP zRbP5fW6XHX<{~v9v?BC;bN0rcZ6k$vg{KM~;)4k`bKMx{S9XevZ#kbgO@(nvVi(Y@ z`a7Ykp_f1#rrOsUv9|0le4FRX3nB{gB^7G=$K#yemoENG%iYQi9I9}~Tf1$*C8p(6 zq3e?SPzlNZNPI1o#uQJOfhKJ`*(2@C49jy-H_YF(W6S{Mdtt6@vQRG8ToOtX9Y-)= z9#Y6?v~^;=$Pp>~6IZ83x035>QS#*z#!w)3@;B51^|6^CWwncYl1J27^!{dOixlMu=pNp*MZdtSQ;W6I*f_2QC4j)%hAeP_Fp=bpVyngvpc>Zm1 z=!>Ggz@@CqMbGSl0)b}&{Tlz<1<2f5z6C&DUvgvyyhle6_RYzGs^_G8aBPTfDW zDd*OraULhY`}V)tYF|rSz%YqhXo>wey(R2^1iyZ9miRmsAbOF1&2DyOivx5$QsFu~ zS7qukndd1774#hZsx_%#aF34VAqjYBrB3%|#k`Ax7p~fns#F&Es4f5Uwgtd6EOB&! zX#^4u^-HMam2bn9#)H?Kx(qv8J6IE=E_N%u2y>{;gYCLQ?x>+yH;{a6=wtu|Qw}gm z#D3w#NAHoW4!Is5wu%p;XK1dykeb}$bvyfd<`dKM@@LzK|NG}y2-ZY=o=kK<_wi49 zzC0kX3#(bFaMp}?>Y|Zsv5fB0pe%p$y%_NEL!%t+?Xj5LF!Nu({rJ1=$9rmI3A}`i z{tau()`PI|D`D&|QHL6bMB7^G^__a}8(l$;yEq1s>-{;&+l3WxVMbHzx-faR&+j%= ze7|G;0M2)C4m$)IN*ldJB&t9~LyxPxYa#cd{YT&Mf{O-B2QL{MjlEEDy#l&idEf?d z*~Im0{RfmCVtTo3jHYa~TV;yB+gj~iY5=fx9z+U=z*(hPzyGj5chiD?4)MSoR*k)n zPyI87-+P$xBTB0Eu@~WG<4iCz>2Rw2+4hv zgkVI?N{zC@qeWs|LvN`8Nuyr;IZRB5khrr_A*M}P+_GdEXzxKmz-@n44EXo6Ow!MD zNE*kZEK@&sHz#n&G5?yr7|XvM^u8u3vO4LHupIf3r0f~VP=iq4(=5V$1Oyf?hq5j> zn?gj@sbe1Mm#`Z7*@gA;QHECc(;5N%n+0f%webbkJg^VMgTi9#WWl00#}JcJaE6P# zR1?1bEC%3eDT)Z*~mI5doF4gRfrP)duLL#ov7yXW;F!c*oZj z(+qp6Ddy~E^;9liR0g6r`ql$uFZ6FpXateePfz$9?19eQv;ndewVI29Hon-fxI z^Jj#*Xu*}vx|pYrzY73B@2N9E=lmU_f(|VCnLfIFyrTv;u9llBt^jHQfKXI`2mwQ5 zXJQ~flaHBF2~VP-Gg?UY9&3UsVU^+=TCn&4(07e$Wc~|;f9g1PpWd{R(Lo)^&3d~R zM(t{(U*H8;WVydnq%7cFrFf&j!jouiJVT15?z(cIyE`1y`_ikaTkLtr5B78X1D4}y zMQ!s?*YUwVi*;;i5E(@XllQ%<^Me}M8u`!rZPp%CnqOwFv=EzhQ4Q&hK`qwwOHX#R z3ZwAX`_%c~B&d`~A%B9~m$V;i9u+Wq9xldBJGa{z^iTDhuGWmp&cRq%1z8JR8wS9V zMLVpUpsz~_8G{&LXos#Nu7_nx_k7?+qy{fPv{*rr;v#jQsn%n_b#r}Pr5sRT0OnIm zxwdY-_|d)!Y98!BU*?ON*gn?OEM*bIoTPNWu5~I+Y+&St>Oo5?A6G z-5j7ld?q9&A@K|pdRlxVEWlL;IU~^N?42G~?O|{Fi#8T9n4& z>fWGt0*{tGQ>+tkH|$cdbz`!pZ=cts*V;Uz_@6ETA0^C4?Ee@|#4K^F8rEBw1m zO7wKdc=YCIWSqj)8)B2zK+FQ;tq3{&Kfj!$oTt%Ti1AEC!2f><`{#!Ivx|z|19MzN zbOKL_-EZ(~x8sptT#ek>XhxE^Z?$Q|cX8*vzHrw!-#7ap1Gr^aS=@TGB!|RwioVOH$ zq6pm#pq2MKL707W3-29edyzR@m$EcEu>=O4NUQhG7CCp%e z6NLr`r4PPG*U>NP9-Q=nsi3cuMHz|95-I`$9BaofN5Ml&FjcZ>AE9A>z?2J}*gSTV zRgVLOu5NTHx2|9sBry;2cmNRC=&!rn@og5Sfg4%hy(_%&>ln&%kH@GlW2yFdVnX?& z`r&8~aV5S*)I%-j_cLAeXU?U1^W2j1Vh#pCAmcQtDyj!~ycmUDQFmtd2Z>GJW3kcK?^ z(=hY1o$&bjbjG!M4wVmq_1Z?t8zOhY{+E>q$B1(ZN`kq^AKwth96<-x;rLNf|dX;6IXA|8>{TvpoR5a%*Im_l0&~n9&cpw}mUsxic@FZyO7?zOK#K zc1zr4+yC{{00onqu@*d?GF?C|DlZ0p5`oUS+oSw|AR|F?iy2@^G$eT+th-RE8y~{* zsfVQ0qO9*|TpKqA_@uX~#JtCaBq9O5^!lOn zg7+Xr7p0hdbNZX_A5+D5RS1#v_Lopi)HZLvekDLh&`%?-FD9=2@;xd+R@CK`>myDrlt{ExNSB=h8%nzQUMUzG;dYu za#>u|6#_O`YDo{6>J#r5x*Gy4J2W(m<7wiG-$Zk=jXWv#82AT$b*o#p_xxjVpTWQ- zgF|Di;pIi<2GARjz{h*w?6rbopvQdec#xi`L-5G@n z-K?Q+>?ZBF$NSVwTVUw`(j7+&2m|Wo%pt_J)fr3oL3lE_6R2t)&A*mb?k}C6;YH(Q zUFu3Si%Cu~6`lF$H+`(IvcFF%4p)>Gb|(tv{qj9Z10UB&USR++Q6 zN6%jQAFDTzm?N>|W2E{xwbN0|h>=cOa=QCe0qb%RGM$ zyZ}%tKq$Yehc4-J*}Z$#M1jiAn_lLu10 zSH_P~mY6)^w)ppL?=J=nin2jn?p<~b9@xkrN+eYO<>WI=WRj9X%|j4j_tB)U!@4=4 zhq1Wx9dmDkirUZc*J}w$O%iS%(^ji!n)}w5^B7?@y;)Pqx64mElpman-cuYVmZjW9 z()gkjw}~I6Uj?R*NFAMCDz8Sc|nb8~1Z5eDdP!^^5}EQRGOi%1fRv$=6>WZ4O!Eb-AO{!W^@82$mU;+Knapb1!OC zp-&U|pxxoVA*9!muL-3#1s3i)Pt^&gu(GdT<;giGOFQMs5uXE~_KB;~fU3WRD*iHU z8k(m_6EL`B8*4d2;frc*NvRb-iwD%t~;7*UJdvQkww9IYo>K8vrTx~S7uB}r!WlvO8i zXC63xn{E4f8MjH;fl@oVkti+t>pmt)kLEK2woF=>FC7mS6$G6$s2PGNFKUQp=yv?W zA3PSPS>S%I`(#glXo4a{;1_VPFY&hT3;pc0PcR|qc*jRF}9o&-u&k7UF(?aHHV8y~F0sl}~?Vjt>nos#vz%*e{#IL#a zPmu1jA#OObo7wF7LsZCJNE;CbmZylosLJB;-dYSUBJrl)BkPO%`U8R$5MRv|r_4(G zwr_4)j{JvG@}W*XZk*EC1t$~3pCtU|G6nS|JmIG4hPb0= z&Z2zB2qKhW3%Mzs)ORzP{@-@)Cxn1T;`dn#V_n1=28(7DL=UVzJdF$%kA1EY&cf@U z0y(x8peFOB?<3X4t;bj@&=gzoPb54J)hdNsM_3%xvg7t~=Hj1^28Z}6V|Z#M!^;+2 z5gqZ`W>>98sK$rkPlU>+SOFv1MIJ_1Ltja(9t(@(>fnGuT%h_zv!rMLHKcV3$-*mfTqZNi352$5Q8BRjrrKq;y~o=F=~F4=BKNZ5V%;x!+vf8#1}!KO<>|(L*YPr%#6|tHZ?{l+`C%79 zp~eY0QZ`*!Qx;Q#TF!pcw`xdy$=v^DIIChu>?5i?VS2#1nSZ5(f zsyEjQ(1@47jD>oRx(>}}?99|gIQ5E+CE!*STKhQZ;`$@Z%Fa-4EjBKmVOHq&}6h z@0LJomq0{T@LXs=#vVjo%dBLL-19n$#X$YMn$KjU>KbfC{@9Y&Ert&+E z#tB{yX4rpLAh#J*=0d5x(|_Bbz*{tUB}YK;y?IV`#JZv#9rv1VV{K{tUH#V#@0a5SK1+EJByRxA@Mg?jYF0K zy5J(Sdwu5v2+SUZo`3+E(9sGxK__AxU&}=-fwlWLX}!O~X@alwsjgS$J|^1}ddJh( zCf{P45#Xs58*M4T#k)PSg`CrUSN|N}xaE5B_IG$*{&~lUA@-U@4%N(*_hlteHmXbQ zLN4>>Y%!T=DL=$y(h8i8h&Fq2*LY*cI|WLJLCO3%aR$imf#ekjH?e))l&@PGUFGPr z6J9PVkFRQjX1IoGwtSR{WB65@z=A0=2F=30?k4({R=4Wu3>=De{pKq)@YWL}CW)0yASQo3Jx*X3l*eCMjfK=Op?;BpnCp~kyTC1$F%FO?`) zJA&#p4iVLIu_tB}80Kbow6&isD`bU)3Z?6m>WR9Y`_>O#kGj$c6e`7O& z3qudJM}v)+=W>7BNypK#pHJu`P_3f4bpzDUVW09}BP*XmL`w?-z2}K;o&J*Q*X(^RiC?z^`=s;wAs+% z<2g`1n@wK!IY|U8N=8vwqNgdqehH~TA!WmkpCdyLd9KE&R`^skpormCpK2d*4Xc7b zT|edT^FPKTi#}N;!9rP!*5MAl2MH-YbfWuH1X2<)?;ck+inbVg@Lp{#>at`0og&Bl zV&+5{ewGDC)h;s_t>}_=T4e7?_SE0eC}M}Daec^JCqr_S-C5l$vNiv@&G6J~oIW(l znH*SpYI;X_oO~sj2O~sV+Z4hEUa$Sr-XF@iHHEI4vs&Ux9&u#cO9J=4(_?OjTL?8` z5Lk#~r$u*&V8$NhZqYeZCb^uqNG}TDh01;&!>2l3m}{^kY=0R?`pjSLO?WsRhpx%9 zxfjq9Kio?N-33Z4t^6b(XccdQ@McdO)^|8~-`uVA27nRxxf8UF9{KG`f_Unrz(+PS zRy!4Qf@xt&?fp+;?7~TBUXzsi2Bn>`VD4X}11Y4QI#v-zep}9rfR9WUsrugq_hH?C z=C<07qO(C6WNKGtOaPqwf<0Hi8{I0zWMSx>pvv66wsFlLpHgG#&g;e;^X|kHjr?QW z36QTxs_3IH9{BZ(dOa+XZ`YSl5yib${ap_`q^5@Ezq#45C7$QIf@vOgP$(SxlWoZg zuM7!>I0lWw2cH-u8*}GbEMQOMQ4k4XI;Xsb!imptOKcvx`IRzd5tED;5de?~dQ`FD z9Qqb1+Pg%nB>OZqnPmslBdB?qDQByjkm?3gUR zs445S#iy@tnJbJluyrT_6}Be;NKA%A^e(1+zJ66zCDMkoDja&$x0nqq4`F6bCS#0Z z&vxI>CuoJ8m+P55w!uVOnEkL9V0ZO}8(O@(RG8~GXb#5BTAV60Mo%x}T`hVrMDQIO zDuB7zp6+SCkVe9+NXw2?xH zg>dg0Wr0Y`=Tg2XqO%3oZ3i5cvrXd0`9FN6IA3tKkMX0v!FsUAYqEdfHmwtWxPBcQ z&ln0}6;K?*H3TL<2MCB6I-OlpAQ|wCD~55#(0rd3wJ_UM0m@zENq5OtdKk`Iy^s)# zQ5HB;O#mHEInMSYExV$4gfAcW_H2fP*xdQjZ5LO|4&WKaGr8HD&20wG!4-fTuHu-A zz6idQdvuK78;$WVqZHIO$R9u&U$Hk(0bEI-NUEq@izn7*_B9vcC)wf(@||5Cl51&y zUAIHgLbP>|7b~RnV}N*}$%7ppJbT-DBQR`9rG>ugwA0MM}Q$&K53KW0e+ z&mMOEZayTDGH;mtxUitud`WN<(|rJWgjIp)a!7ZkIm%}+)Q6I3&K6t*pIV<|f?TmX z+I=_J14eT^-o~?R^jil0>fkTleTFmo7gU0IhUorWkwdHV^JQk4d*AjCEQT&gVT{r; zX36E6W^s_^vw>(R?3^5cI6~7xAJWTQ#o&jS7*e=^+c%BTXnPW9{M@}kG&_(%LDZ7n z^mtlM0TVhPN2rH4BFw=R;+XRl|Ci9RNl^|3(?)jwjH65Jl~<$h{D`kaIg7RW+u`v^ zz>nI7XC?Y01{6b7e=G4HxD!moSM+idY^8n>mK@s(xc*8HQBY7f?ztiLXM1-g$-qFe zG{A-oeCSRKLm|)1TVf!BVKh!Btt}A4bJ#7O+k`koHFDLw9t%E+^(w3oMn5GKkC~34 za@~^x1)NRz*@Fv8QM zECv^a!H&>*I;zU-Crv4zD;R<1=S08_z5FLOS+9_+fE8BxyK$QzsellRhv6T1M=^AF z>rdVlMqhk^ej8VsoQ^SDsU}3!&Ek{IDXSK5rY~)%YrotKcWJ-Fk(cwtODAyngZ$o> zH=C)=9tRUIwwIf6EcVJ!YxuqTDIqI^ak=|+oeLT8uu9%R-Ue*Fng?{#F!d8GFc5xb zx2=qXtn$YVa(zKAW0Dg1>i2bU-$HL=3F7}$hyY^BtQ%_epR_X%hr3|v7PrS)lJ4xW za}Ij&re_#k$FxWNZGh51U22F-+9PI-CAy<#vngQ0OuNSV;&mNiskB%~Yy;7^BvaRY z`VTjFH#c|+dx|6z$XA&K$=iR1H0?^U`tWTZO7q9olcES;LC#-NafnJl-Ni~Y&ClrY zCy2V++F#+Z{TK;(@e$XPyeSvBueX89xYG;F`=)2xJX;JQZ_YhV z@J0x?&S&YEP3Gl%_;bgTarEFnei!sM5*4(4$cua&@nsPZ3j>6rBwt_f09S+nPG>R8 zI77CJw%hnn&9{8|qQgrw+x$rb@Aj~ZupBsvhu^hj*Wc^}#9P%5d1bwNNrD-E@a=I` zy1Z3^s6q$BTs)`YqqqQpP0y*c{LPp0)Sll2A%q;j86)fW!>WMP77fr?JZdgN!iHzv zFHJSkt45M71P9t-Fn0~ZS*n+sQhX&W+;_RRg~9%%-W^h~k7ay+FwGnL;z;?|9Jle9 zn6+%X)wAF1#iu$x<%oQ5sX6jFIN2d-0rm}Ka*~L-1(>qfKo#|GBGj;O84d1Mk2*a{F&;L z?t1lp#)z&`jlPBJzizx^%*lG`{8o8;5%l$lGgwYOJGO)498FlaOJSe)<|u5?J2*6H zPiud_r;q3u03LZq!SaRA3UA-UgUGLg`SCfLbL;=hXwiM1JW;aV6gor%pGr{q=&fVJ1ldUGj6i zyC_U=_N+gfeNoWwtQ7-a+;s^6JX~jf=ZUuWlau%t-k0x_c4uSQ423NUVY3tzFC>r! zySJ&uhAO#tQE^o$F0=KVKdRhV!mb`Eff5vE#K+U zWZGu&k&OFt@z3&W{J$`a&QW^s~ri;ty@1Nm`F;Zd@M+qOk`HT z4d}pA&pX7z#MSR*8vMnP*xH^ido#(O-Q{1o63XitTO^h2i z7&|I|MdNC@*r!97xt3-PV6(taJ{Ga?N}1FQn)#xs?Vu9OX|1 zV3#nC6r(}19+qC%E*U|J%n#b#t;lF_GBZBtn?Z7}YusD4?kZxEPlP&(=Ph^YG~!^U zSmG`r?804~qwr{LW~$%%VeDF%I`ItRR`mp8>F?z^);m|STBIKo3#?=0}oeliLLiN7>*G7@AMKalK?ZJ3Eg=={^rW-05RxK zkbVCn)hQ_N8sxInqXS&6vPTdk+|TF$9`yUYfZSh~RR_M+6qHT-H9HGwtsqHP1sHq3 zvsyv1MI?#2K$_^VyUGDVH%R$p)c_6?LnHs4n*);ol7lzu%lUyYH=YErfra)@()_PJ z0=e&Scw-eEAV;jt4vnHglwX!%(E$eNcntrJ#?Js~ul#yMo?|K5PE;O}0$WD^nQvW7 z1HXRp-`J+6$hN_;Xq#va8)_Vd>gCaC%wxy)$jyiLeC0+p_x1Sj${zLAdbl60{SCrG zNuV;^7q%+TSy6O9$9L*xf$O zO+On?LoPr=>v5|PxyH6HI*QvM^WIwao+m1W@TAj0@5;Jkpya#PWNWaDqdvtEh#k=sJFZf$O^ z739N%B9$9TIYfz3xExR`<^oPhP%8#1L8wy51Vk2JXVDj0gI5gF zNdQ*`X2#$zEK7k8LAmd60rboJTcE)={~W+4^G05{M~q_TaP_xAt1QUY0Qy)`m{T@) zBj(oq{oPN1H{@JhdDDi*(vBP3q&xe*6ys_B5*~{7d}Rik`$qh=t7uX)yu|bbG$09) zb0`)jYTC@c?&9}33;4$Z-7$l#)s@&r$%NgqOas-(eBITYQrg^xG;QQa8G1qmEDt9%ilC&!Wh0&<6)LN$` zm!ov6|4@>vpn2An0ceR)ATBA~X;ekRWksMr*5V)(gHZGrZs4g;jW39!t8c}$H4<)r8#4^S*WEUkcL?*uVZfzA4cGKJ;AJE(5?{ zcxE@E?17HzDXY2ZfeTQ1J?;R$FAFksOxP5N6H2=g`lrwsQ%yS^55@|(NA$NzcMkSw zR9~O567IVEd}z;-7n*w?{%X48XX>(V{eP$l6@z5PfMl^WP?%)MoH`tZ<)L8F20`j# zfX*l|VkJPj7(o7HBD4a7KMYkL$Ci?Sy>}A?ODiH2I1Q_Tw5Nr_u;|%G*{72jqw(@z zn-zb&BE^y8@*Wa0Ui!F5PF4oHJPvuXDDMh*#tdeB(@)?bq>a(4&c21drN`|^-=r z(%}Fx{>~p61__0?u^6BX->2vg;$9aLqXKDLxd4(txo}!V30wFcq=yKOWJ#?rjtMhf z`gnl#B}tSo_X1*3GT0AZ>>PUe-V#SdgBO47PJp|m4KNQSp}uGLJAB_Ae4hpPA9}vT z*Y@}%qASU0Fk!w zWA6(TuNS49|BNb@4d&juEWoHQmb4LYNWEAF+ZxIW7z>7^6`(MMl3ZDg!xR~ykb_!A z7G};?Nvi|aO(-eTht&J%iwU_uaRZNkN>WtF(YyM{8x*euuw~#}fG#OUnKN-FJW%UE zcPbvSY4&)*&XR%meRoXC)kdvh=tFn#&3o|$n$#^pm-?|P-lAzVa^s+Swrb5B`Y(<0 zts)cv231x%Nhv?=6(}=p^*`SB>$}VgS{aU%w4#=x(IW2B>?F z7N!D%qX0^i0MZ4h?wDSTJnaiwI4++|2*4($oPA2(5y%kv|H@B5+bD{VTPi%F6bi~9 z2`GK%fJs^<>4eg{q2x&5C|9PFC>HE+EQ($I6fp_F#Yq66itwTU?4Ew)!iS?PJz5PI z`fQc+H~i?0u1;zY=beK7qEtDyS#;a1r`HgzJF!+2eTU)=cZ^$l>Y(ZT3c+pVso^PLQ?i=yJ6oor`e+z2N4_6}kWh?=x*K#P>V&9k}FbO}+kTz&AsFBYGQ+0pI=<9$8hTcjG93BFLX zvsU(5ejxxSnlYX+lC6gh&W5R$^j&ag|MEY3GvEJyy2~gOW6WuC4lH2+v;jBmeLnHCsXI^_FJGL110L0yQvUD$I$isSjzD zJR2*WJd;U)!#z6()Z52{sQeh2s7q9EPRnP_|I;6cji_qyOg(L2|Fp@oa1`I5T?=^> z7hxvE!29tX8N^@O;J^GE+&pv>eSkD&fP56;_W$}~01x^j7n*uZAF2eff(@g8O8BtS z3TpNYjaKv`@d6Sry)-d^9b%0^EQ}~G12xJ(E)ZQ7l|SrtfV~>vAlHYJ^oS2cF&}1p z@}^h-;EMFH-g*3s38@tNn`tJ1fp7T9M1o672Ykm4Hcgw0NA6FMk}G=jyh<0UChpiON_X9iWj*hjsL?)tSqz=p-SUp?Z_MRx^Xwgbi%6jd4!Sc={=! zpv~}wNc+9Ha~Vi`k!1g!U5x|Webj9LN+BfmQP?O<*!<7+E}gh{e`SD0O3$``pc=n1 zXzvI_jolKo_y4icjzJwdp!MxhB7u}LF+8SSVB0a4NR;f|)I4WoSj|PD7=;FJ_dsg4 z(g?={5@y_N(y$tEW#V))S4kE?n1w=hm(D?TA7(8vED&9r_@av@U%iFLo(+J$+w{}8 zl!)?Vg^RCMKl0|b;PlAphcAZ9Y)EcQW^=3gpvbCDlx@~X)#)7lz#Y8*ASVQ0I_N*@ z9@eb^*cc9E@qMc1))-O7Wsjz50H{!_&7}7vYh`wai;KAexvX;fplXq3M_|2=t+jzx zkTarKsStyKMauYDsw&zw%$<+UFn>yH_PL#WNa_G&*942>umUvzp>2%BUqL|vhk+3H zn{R9SYYh4_#Te+kKEQHGfL#f|UN;EAqXV6(j2u24y4+!g?hQ{yAAks_?)5-iSD~;L zg095hqV#>mVM)F90+g>)26BOvo2;HIkn}$6Tc4gR=PV~w?<|N++gC!{`pAMcVWe`T!-_`U<>{B~Al@wALpA3pr`I$TGa9aG9|G;g$ z|1IN1*@PbYhs7%ZItr&^?xbijbpZXp`-xb27^IotuzI`97Nu2yg2+Mf%`W zfQIVpN^+7&N->$a&zn1wfrPzCvd_+bBfj-IR;s;U+oa!b1VmmF(0}lUh8vKHy!jtt zuR{eup8u8mxuw9p?H|te-`JJG4)=FrDR2WYfg!eg*T3Nb$s(?ADHboFe-(D8h<})& zGI~y~=}OeD22>`axT%^+|4#>Psq{Ab+AUmv)|9&XR@}d7fPR4c zLuJ6dqWwMPqwzA`koJSzex%0yAKvL;DSv|T3s8O(%C8~$aCPYh1A^9^tW+FiE&H;u z=m+?=Zs}TY{jTkq^cevEMcDzBU5OM)07N@}?tZXrJ|er!$e7Hwpm3LmV4B-=NOh8& z^=Ln9%i?Q(40rjk{4WQs65Jm_e6ii9iHh8;|4)DA)4vFAN^pNz1Oy5+-YzWCGYSAj zzCh0QZzlxUsR3QDDR@ak*eg;vboeoYioJwBF+|ugVkT2jLD<^PIS~^i3?pK>UrqGB zs)qh)D`ga(fzwrLgJhyG&rdsq9r8rst1>E+#R@F`Mwg|>ZQ%fcYlV_a#7B-tE(>uI zh>7%RqFj}1Rs{mBao_E@=#d-x`&FS{tx%z2|G4dG5@2~oEExr$47_M7Q7Y!Uw9#9`q0D*OWl!)-9f_jlE4I(^FrTrv2TAtU+2V#j`U+hN=K&Jv z?+pKg3P3>7XWP!1dsyqBnzZ-#zYYWg_v5Hg1KbP%H)bUOD>x3yV-wsC>A)i-W`HPA z7@T6j@H1>)9}q}gPozL$h{Py_{Y6&w0a=VhccSVQ8+t~{z#v{HP3%J5DxMtlZs7f# z*IHh`g-4zZN}5RkTQXP}5M3*)D$L{sbqVN4lC3|hs0tm|F-Ta|@)qT)7Vi* z1D)I;$m=a~^B-+5Ag9Jexv-jmuM58_B0e3=VryAfszx$b7Le5gR;q*{+q6uMRT?e_ z(r6(tiq&Ac65t>)3P;5hV%)uLgU%n!9RO^jaGwMFRq(k0GyaPo%kW=l+mwz3N4cAv z1ppKTb5LqBM0QVQq2(@v!P8-!zA>iBlhO~|)>5}Z%f~n&>jE@+SQV+@?NdhokkJ1? zG#_*COlb29GRVPM)YNk7Ob9KL0LR<}io5-&`hW~jaTx%#zwqIpbHWtsoMpU~))`?r zI0DRh`#8hD>5-cUXzac$&h4i`)1hn3MnKenIy9ykcp;>q(Wi?=2mL)FZ>^6ux`_kA z%pWZYko)t*;!vISs}!Zkt8};lb-b1 z1bVhtKLz)1TC2Y^`O6i+{q+~E0OodFdYrR|4*tkGjE8rzd{67eEAc6gDAZkqLiHNT zm23!WR7`x?)Iy8?RX{slzkcbTib>S?$#MWiTs|&J)6xICpTN7H$ZLp`ZsmOL{)UoV zf=Pg3F=hg>w?s3!?DM4e<1c2gK1HrR67i=Cf>Q&3s!Qa4A=}(UggfLbo+XefN5az? z{z2i%0O33U2+0h9QQGwpuP%)k%NYPSFfJJ-*K)qZ;%}MC zcdDG_p8Ap)BgcV!s}v}DcBDM%PtsY&UqTk!@+1H+TVrLZ**;5c?2H@Yvw3?JhRqsS z1KmjfpJS)ZpQGV7<0K2#!});kq1U@^qSb8q8Td|eCs2yBqOjujlK^z@$rF`{WFX-V zWGi~t9ia^PL%yWjj{yDYabO*xqsS2`57rIJm%cp|l++!5knsh|6pkyxTXPDKT@h8w z^*j?ks6p@)7tTf1ta6o7G&y@AO%Do0PtM?jWZ|vE{e8NeYKS!fi}=BwM`eR^BhLI> z?%t?3|EDc(f=bk3S;Kj-Q5|rP z19~2?f9G_-F**0g;TT51tn`y(*8$q1!@YprBdq%p){Bzr0ssyx#$srEIN=a00~COM zpP2l0lK@={&{AL&7{w|#39x;d-MGopc7ablx9kkSIP_21N1`lEn)U7{^Q8qH7KE*bi(FdT z;WM?_LvTC~`$C?ixt)ajjRf&c> zAf^-|=#MZOY68%{^ad-dpx*_^mk)q-6iDy~i7XFUDB-Nl8$_6xGGQe^N>++*Qn*tt z8CA*h;cOWs(b7At@Pi ze3?F9NS^LdOmei*B*5|%)R9*JCJvFIJ72F1%#(IBik3-$n2u^>ERz7+A`))&k?}s& z1fp;{GmyjmgE{~uuKza7dGo(q0KlP;3dCPZ9R@VRsmEh=TZZdNwTwe?6P^lXb1xS_6s^A>G8I%GxBfE2GvaeU1GG>z^rDT%y z;b}U++y>K(NjnFiGD^kV3Q8+hn*V#^@o(4(Rc1&B@5NRG2$)=gyRy(EN)7qi3_yz7 zNfuVk^GMKMVU+b*90piya>GHs58G3IT|GE--H1(rIskSDm;Tsa0)URpt}P67)SF|- ze!xh4$;3wfj{3cd;`ME|B&VGU4+4t|BwGN*JM_!_e}s(bbxW@lGEox_8!89F8zj<& z{Nl1HC3ETNUu5_onr$w#1+ zOL3tjA(7xzJjD>QHgCekwa$B=#!@BmfAwGq0( zj3HnF?`{Hx4~XLru0jMfBT;rsySwarxS>00LR!tqILzoX0I5EZLVp)Uq6r`jggt}6 zS2|=AkQn07U#AA3^FZ3OjoK9oKo9rLQ~=O0*dKBznh$Wl`oR=6Jnk1C_};MR_yp)* zJ!#A02HEErwaYC*!^;)0(xk41{^F?AN@XC|da&(jMh8HWNC*xC_63qXKt}+wI_jY$ zNvtn70F8=KQtP34qt2a@<9_3z5~|Z_34LgVJ7#WzcylAAas(;wNg=UhqG%enWKIp3 zGKv@UKav^@!E_2Eh0Q(FXe})-tdVqi#`)3S`pa_*4oU+0XTA9&a8HR2AQS@%D^gS} zDxY%@BE|V9P*f6ur6W_YN08>|AMFAp|7N^^MBhQNPmcdZ$9rW~0>BoA&w!EPA?FZtn~uogAJn* zmv?^DL~(ThxqG7LZW6V(nt-o)qC(z~CfxB^y=x9A%!W;GNAisyouhm9c6Z13FqU@F zghSgAs#cx;U6eHJUV-U#XCbvD1px=>BV=DrG>9KTTWno`*vpS06Hjs} zA>QpvLZqmHcuUa2BH$>opa#eS$@*X=EM$(kC6FQtL|snP)vUp2l$Fw8vC`|v<|z*m zYgr=EgZsi!0PObzUDg3_k*Y4F+oMT5eU2!Jm&^V7t^>j~xrIBlCFxzN6t& zo+2o#4FwLGf}w0qnhfV2%1g<6eDBbmssnUR2LKr6ufW!cXHK7p5X;Kh0J!oYm`=-# z0MM!$U>j1a3?|0m1mctf&;k((QL|K5!+$y3gz~0J8jJjM(rVF@%i=h&0Nh8oKUEAY zD}JcXr`!_#w_`3^E$Amb7ek-9LT)yzz^jLVKX--lfl9`Zz{=^2lMIQXy9k^)l&VRMe__ zRD2t0@fsoHu^Mvf(!?DA03ZNKL_t(}-&-=(7U;hX@-qPDe&-d|0+rQ+GUs=P=>I5g zYYVht$|hoOSa-uKw%ZF{X>-^f9mV)rCINa1A%36+koe{7_o>zP?1m+kMuCF zp}&f+iR41fr`2ZDvwpY1F`uo3_^;M+>QfLyVjIRVA=rUM?T2v`q9m$_iD(b39SM6j-ti#gomcqCS`~2G$7`}QVAo#`z>mYo@57^fv3k?tezzZJ9~CF*MuENw@(qPD z*c5FUfG?9S9TuG9fOxXv&wL)cM<)cwd`4~oq{tb{k0h#ANlVuJO&N}&_+bgn|B{^? zG5SD(NBM!8z(GnMe$S7O6m+3#Doo&{Un13KMjb`v4_P5g7E+&j6kCjw0F;*jQ1o9s z^7*!gn3ebkblK3-A*q4=v}~CwMr#iJ&-VVZhWqD0hn)oQ)ypriebH>kkECT10D!>0 z%6BWjIG7s^{kuSJxp2fh=RTyeQvHiy;hgvo_E9qxAkcsRFGX~I9>6UHHqImI0)Wg^ zK;LkblG`JQ5@Wx91aB0`pYn@@q05D=O93CGe3C?09kvz2BrKCgDW4@dj8#jmp-f`IMG`Ba^*EY(%F5G<<1)^eUl#=Yi zr?NJyVra^3UdlZ6uXmSGErEA!qv+ zBH(%~cGLjGA;Dz87)2c9rE<>mESxyl{4tXNY`uW`K6#D^+YmL$9UdlABxWTqQeP~H z!nppkeRaEq2XO$thpb({NFOIJ*R|QxO%UNK1pzM$!qc^6L14t6j`zP0?o{}$JI3rBn-a$w#1*<=%S}i7D zEKvy(FO#S|$K@1;RReYd^q=02g)s3X;0)F88nj*XzYsP9WK$|`;{&t1kJM2>^W6z~ z6y1l#`aM#2=Vw_jd>`!*e~YFMxS!Pl8uEYrwn7L4$X}DnZ$tF0a(~%2!~vW(f8840 z$hPaC8qfg*bU-8201LiV=uaN>=LBWBIM`AN{TC5-5KwV>s47GiM<-J87~tdp<5U?? zIy2=Pt&05z&4xY+Fx5(Y68cy3}Bwr!`WKQXiKJJ z3GQBVRMu>O<8CNKqE`blYD3hxqo}P!z(mMmAL~CN1hj+;PIL^b3wiM>nWus+<9P=Z zp93&4N@E5~15QP(C-kGR^j{d-+W^BfWnGi~FJlw5!$`nNhjABZ)9 z^hb&FPi~)3wM=1F0YO+AXVYur4Z9rwWr&~HA+(eGho(mXpx^}*X(r_Rf<$s+y=@D7PlDu;pmdQ{)REQziH6QghShQgWEPJP6`IQmY5|`WF5SFsQ}p zGa^lJcOxlidfso$nMzl1ht3azXw;QaQ=d}a{_2ls9>?x|4XQ2-U}xt42_s}|l_t4fk(=eE9i=q*&X^q? z#l6^_ko)QW#;wHAU#{W}v3_I!rU7cuw0TW{iYEr7;hOz_pnPSW-@ionG479k2!G)z z0SYdcpHGL*;nKrBfA9EwO4lOPV}v4oqA)2yBps zhoM6C=zq31eV(9gCsI|tY~pN1K6W_Vn~w1mq6_3y?R(xym-92?sq; z*dxe=ZG~LP%7D&1{7YJ*%Atw|_wttmIvPD;l}x_Smp;G#<6I5H(!w5RXJp942Lwx-PzopdgM3yT{or$% zW)>QvfpNh=d=5aqGKG<8hXn81^?whO0Q+aS9}2`ypTdQ9M)TAs_tr{;j{1Of@lT!p zlb5k2KoGY4_+pCmT&ECn zM%Y0KXi`WWXXOin0(m@gs@Z0AC@>&ZzGRxE3txTWF^$=-5G=!r~x7Lhs11T({nCBK(N0j zA)E@Zaw1Ge=5MqmD00dG61=V+9G2fs)bUpm%T=)M0ne5^QJI1TM(7|bwkwXSDNneQpt3QQ-a4#SOYlX!e?jyq{9JF2uM;svFfln+m z$f*Gxr~}pp{YQpgl2(5?55PV^eIa7ed?I?kDG(>!^Bb2k$euYYv54F$$hE={+w3I! z?YKY>c9p$)$V(#ag0i}rTdtCoLEIE*)uX@2MWc;cGh-u4Vc`hmv^qFVj^kP~(1qwc zHx5bI=v))c3A%HUNb%4BkJ-d#AwhB=DR~l+lfT9N6C|JQh)IcUUW~NSzFmmHR>{Y+ zNjC#khf3Y}k$ZxvZ>gSCPLVdnncRi8M#*icm;orNXqEIe``Y(&!W(aHFUkGMvyD4D ze;Rc?4>cHe*Y4bgcS7Ef>YRU)jXo8NK56QKHg%wE8I;<|`d{UGfJlB9aJb)^{Lz8e zVE4BZYXFe_frJ+jto_A=twLkMd3XOnW(t0uoBbP41t5q@G0FvU0fYfHw_HUHL^8_& z!YoR1(=u^DgG8MCAa5Js>ak_#qAL0ibwZQm6B{4yoC6sE#>vy7Vz}w2zLn5CXtshm zdQTINb7TT(I2vH7CydG@r83(nD_eln;4s@lt+eSNk$i3{fPByBkGYn66g2-)4d_x9 z4+0~Ua>qv}5YKZcgy-+1bSSZh+bw2qDE8RuGrhTE=n`~cD>V5!kcU+$KzTAddqxF7 zK3D$Sz8AsbShr7|gj`hd`i|^d=_iWAFdOKP3t(+#01zGxMAqi+9Y*?q18==~Q5xeF zo4HL-ufIDhAZPrR?|FSHz*!2T;{xPdL0H|38BPvBv>2HQbBVdSY8g(NL)g>7zmj2& zdYvrL)!f$ma_M*YHx2aYKWa-+H>B;~O&8cvvVIjOPvZO~BLKln1%M3>vbI8tv--jxW4L+FiT*>Cv=SrtSQbdI3d00L~q# zZ--5a$9(ngZl^;;U%*HQVC(|K={ipt{VOVb?H^f0o(*(J)3i`nmc@VLMiSo?gqk$*$qG)UcS&@gEfXH(E_-In#3gJPugI4;? z$}v1#G1U`<*g@fpJn9}nX z(svEM0H1*$fG@zkG9a9PeEG1p|LeR<$bO!U3|4h;%8d(qjYp_KvU+qPnB)envvFcn zn3P(BfkI*~w;WIf80H36JF5%LMQ4|?Z6!9o-0J&hQj z38)Ri6r{(|gtH%Sb$H$JDHNwd8G^bOlu|ek?t}DH@yN@ZvW<#H55D>ao-@r_LLL@x zC5uF*H;*35{LdTSm>JyFDP5R>*x3ByFZ6JcV*aN9^gEdDbpTty?-?2yzWYyhxEBy$ zJ!$I|mE`*rOp(fQ&OirTfG>bMxUgcdh3JvnkE;|sD^e4%UO?o_X>LCd>9C1`V9tYI z;$w?Moj|^r;KQNBu3eulqOv^FfOAj@JtB-xg~)|l8^QXXLNcJXi%7_%N<-%G-IQ%a z4^~Db*8F+O=->bC{2dMNKoD-)P#Iuw7n~jDzvvV&Ts@A9mp!Y%5$I6HjF9Fb#YhrQ zQ#6v1F6dF}*{FD$q5>*jFI+77;?N6Ie8)M=lF=G~Sc$@eOC+R<1x{*}crCOE)m_7p z=K$0bZ4>?PX*`V7I^*-(6WWK^nzFoMyK{K@b|J$ko`<>!yK8qpJsR5z0X<5Npuhcr zvdaTN8v1vNfx42o>@d3QW%Y!}}6&h$Y8iBr?Lx4U(<)RQD)R<`WL6pQqUW_F6 z>2uqA|Fe9Ubs4v+S!=GjF8})1$e;DstQu7{s%BljQ8lV&affX7Q@boSDU`!|#W$t5 zFQi1Ke9w4-xGQ9P5Li6ux2F8+pfJx) zae@Sc{xz_kn!17Zm(g8J-wv&@`PuCP_iZlr@oi@MkIIsN2KVX@&5zae;nC?%PbH5B+f{`FWJdvV3YRH*sIQJ?PY3;qbJ3XNw9zV;t;yB++i#%l{MYD(af!NWEp9+i1nd z^t;u5J8SaXD*Q^TQ2%RXAOGS@_)utm_L%P=H35EZcGVRr3E;A1 z96#HGNdURHQNZWLA|40s6oVjVYsg`v_>+tRnUtB2T?-t7Rvuh4p_-#7w85r?(WQVO z%Q=P$ZcD#!-Uyhk(SPuLkXPRWvj_@)A~b+DG4~vLdn@dMoV9Ax z>p2}=!0`Ucrt}(A+Au2E8j`_p&rM9<@NZ%3I)Jug6X(=Gygg*qEuDO6JwqUyM3>l? zOUp~TsI%?817O}&5Bfh2=?ZaM*73#IiT05Bx(VRY>g75_McwsHfPSLp1)vtq88o zg*-94keUbip{nZ0_(B z=s%}F1&t%dXU=9q!TpSxHZia9tt58(+k6F!=-&Twr5(v_AyhXz9E@U{2YpK9U%VUFLOZVHr<^`#J3deK3=5l!+=~w6gY0ci6@;eqpEM-Wee|>;hO{jK$HDEo`2>hn8 z|6vh>jo8Ei!8j5_1Ey0#56M4Yxih3{RE4T0m4D^l0%Rh9f%r+#Hk4P1v_oA7k7WmV zyZYmn&V2<6ZHx7LyY}Bk|HeRQYK~>uKCp#(#eLcR{vf|r`-g&ixa@I>c3l?0B1#J<=(%*C!6wf z>@F>TAaw?=QGi4L!CWgu;*fxan`MHNGkBzg?LwBsc4Z47Ttq9IA8P^>=T|k?I>237 z8qic5MI`5QU|u4S5?VQ3v8#BUv`@P>Y?|#{Y&vRUOx;qxBjzD0B&z1@OtpK z2)HE=68h(xI{~;IaqBMp=Uan#E0CWEn2d$SH?^8^4r9j|h_EJ2hCm$S5-P(%4)uJp z=fk1OX-OwVIyESdwpdK>#aLL}Gz-M*fJB7|czci=k!Vy&Iq|43UPC8R3tV6lE}?cXFQ6897j8!CjM;?s%v ztr$gYE0W|HWJJAM@8$Y;J|ZAE)bhXD1PC#ykR2#dbX)?FI2nwz@DG-z)d6yw$omH6 z=AX0=AZYpk!lRhQhhN3<=_1F>cB57P(Z}oRwvz&K=&?xy$e#rEq@qe*E`K!z^XEo( z7%1&7@&T%rk*B@nqSdlKKR|aL)X~%0RoAxz&;e2>^uKG*Uz5K>$Q5!~g<75LqNt}P zFJrd2ZUQW$+5um4nGY0#ADEGk#PLvuL)_@!m;mV%_&xy4WS^|c{eD}UM3Y18M>eKO z{^l*DC}~n*uxs`Mr9UZ2OeFtVnWbuhG_|XYM1oRUTYJKhToy&OF;*j&{3v*m)x=YPR__hy7pR>D5j)&H1>N4__Eu{bF>Rv^3thIKaAKP1DnKMslcwT%8|o=bsT@)Lk+PMY_3TgM z9+4U~mXc5aY;)xA+zCAgYBWp$XN98XL_GxUS^P7qy|wAO32^dUegrR8F7{D~ja&a` zb9Q2Qy{b86>mW)|QZKZd078p^nAoV@ai`JPUBzp_T$zP(2flS6CSbmZ$boF~4=Gj# zy9(>0@k`B6BXcgZ1p!?Srcvz{Q94|Z6n{hfH8rg1Z@&mYezPsG=+kM6ppAmSPU!N@ zfxPe!_Ic;H@IQ)cf|TYEeG|pc1Iu&3c@rQeG9tWPq6l5(==1bNj+PU>GU)*6(TC>h zk?KCP=(ZA8h2vy+JT==&yMqWe3+ZoB;%r6@21>Q`XMXowD))-k>tppDfL)*}H~u+v z|BvaP0!%L<)>$ujWNgs=SsK4TCEbY{MREPmfDEih#`J7yzofu) z3Gn5AIAD>IJ37<=G-8D4?qcd~;7&+S=?+{Ia8nbuH^e-dhy~mm3k2~?(x+k?R14xM z@B{^eR}~pU)GOb2KnZNpbfWZ68X@9%1cT9QcmMNc_%!BohH2s7ZYk*9gGry9J`rH^ zV$1x<%D^a9h{>_)XMTF<0>-O0@x~8^Phwvvd5=p|wI z3i5zcP0HII)uW;(IZs&!_4e5NL96yL?@Pesyv4@jo~Hl16{n}Y@0mqkl(EgRNX~ua zIZ)jFqn|TfHvvvdH`r`2R5k%z9RM8MOVfXFf5xe;{Hg3A@YK`^0S8d#LD9vLLD=rA zY0Q3JK+kg)ur{EB!pb1+j*qU94`Jg9kY?ptnn*LWl~&7R%EBF{R%NJEuq=NqamSO& zFN}D~{kJ|G9slTi8DhA_hX2(bbpq{?@vj0qFNDdu-Sly zq63KUf04BEmnJ~Mj-3Fu%+JmJk%J7xchv(Bo3EKCvQKiTnREhvf;7UePvi#0Ml>i6 z0ZU^WZS>C}1&J*3!atagel*j33s_fvYw4HDs@H~f*i2n9tPIwZ*GW!+GpNhre)L6* z4C{}s4iGf%4-j8(j=uo`7{_S#<8B>fOP+~_!DFcSWQvCY-VvTZ^_@5xUBEEaNsl+q zNdWK`SYIP=Ll{S0ufS_Q2>40W6KTlcOK7~5Jt5NDSGCb9Ea|7GLHqaA*!`jd^s%@* zMCN^TKDx{Qb}npFmA{h8uIV2(%3Wxo3yQyD^mC^EqFrPqoVHL~xdTAnCV>42fWi0R zTLdWB&Ih!l2U2DB!@j(mEWl9`5+fydPnWOQ8JDDBCa8s{OWJ8todgO=?tIOENad=e z5WOb;JkJb?+2^9_*cOMl29<#5<2B4d}oZE- z{SmzU&mwDH>Cf=pIzp=6ocrV+M;4v=Px2{AHbZ$$Sz=;rWXi)+ARvsu6a4fCO$iT7 z_Xqt?l>3Nn*kH9$9$B-?D0zCz6y|C##jOrrtkuEenS6AguCO^Jl@817bV(V@$*Ylt ztgBC*{qldaaO=@w@)-6}vJQ3c=bcdfmI}G}J>Ka-wk`a!qODaS>sIU`Ueld^^%J>8 zm`s2+&VB!4nV)|IfUoPD&wCa1fCF*Q3aGIOQ2roOfY1|o*RLA?Nd7Xx@icj|V9ELk zQV9Z_0{~!bIS=JOIokF-Er0Stl>nwJAnl`=HGd;1nYAyi_o!rO6JMS$i|!$T{(wLj zrL_-Vp&v(#V~L&<)G0HYpPWl%;{OAS2qsSwsYszr~?Xcr;c>K+5-KfcvkAT&D>axjw5|R<7pz}xnhaji657x)__!4lFmI&O_ zB=<>wcWUHv=SICf1-^6TJp^53C7iHOatC0L-{i`gKt}(Ny9A(O&CjiXK*AP?&pqm~ z_}eoE&;ye2%%tWpHzOI8d1IP3ul6XY**qN}1h!32PRg!S&M#H`yp$Km^lw-C)nB^eGm<@LtS$@U{b$1c@>bBe4-gPWeD~*i%eW6+-h|RgKLZ3f zmLZS;03ZNKL_t*GD+k%eWXH_@#2@TPVp^lMu%Dv2&DIW0F4^v59`s0}xMs63>9z7| zc>)A{>UYj%c2DTQeQd`s0Vl@_=)b4gUg@0Zs(xH)PvULh@8M$;^fx9z&S!u#bmmL@ z2H$s@_h@v^&J|E)>p;w)%sQwX82GKYm@=<9$YD=!0x(Bh=XD^3S`;@%J9!sFL19RE zA!4P1S!6HV$8jjxY^+eqZVS#I`2}u&?Rzjw|MX*(Re8DOKii2f{4AAIwBTW#6Ef46(TR zW}#wVlr;f<24Erunic#7%Y|{;Ed?^E5k#^Cod_Hs1BlD7TtRfOHN}M=?jvRJlAZhY zAIV`54rAdn!|w^{@Q}lhBNDIl4zdpg_mApBT}YnnZ&Gofsbsk@KMFzq`ku0Uf1}&3y^D{W-gxcJAHud zR_p*^Fl+zj_%8?O1y~OS{oCb#^%-EhnZP6J`Dr5aSiaHALY?SM25uTuQsWME$P<6r z?4Q% z39?TI-g(3Ui7s~0LTw#@?+*mVFFB)s4jS>n!x#eHw_$mL{_xQMtAA7THa9^Fw>_P6a{y{pp`+4t73ryq8JrRbXX4T{RHSm-gf<{1H3f0cY9d>G&`dwJ& zrE{wlia@~QuXaN3BOS4i<*!6n-!6ZA>3s>sFn8Gus3+}h5?<{ga~L+E%czw!$Jf#vMRjsB_LgUKB- z`c4iTT{D>P6?pYjrGN1We9up&EZ7GDAaP+{mFJI}G{M^J@|t~lAHk~>?==vM5=bP% z@0F*u4+C5_`u_r+1<*7y1U6j2EcvU72*9HO@1&}Bd!;}l1OyQUvK6?bAsK7LA#+qB z^AO%&s+1zMCuLG!>X02=iLG+vDL+Se>5Bd*I&L3}I{-b{>!qHxe>vA3lk@_~5%axQ zbn^1LuXwGO-kHL>Y&+3G>;IU&W{VBG0%))w0kFFPd2~^a=9sTN%d0Gcvf+?WEl6w# zh{durs^zIR&UavA9&tvkE!ZuE!lr&964bOP01D;EU?2sJ+b?bRC zUN9d@9l;I-PZXAyQ8L|1HZBZInl9PC={{OdTPT=9asQXE=zpT4_pz<(tKWBjOEDBW z+S#7`yV9;%EQ@l`WcQTkK*c#etx}MSsg1iu`~X131PBb2ixUDil$+GUnRlX_(!y49 zU|RSefHAU$v;#mRh}ro}OUV{ zPXzGiu6F+uouZp<(N^!$!%Ocieu1}}Q&6Mb_js;O_YFawN^dz1b#}wfvK*qw2d&2A zyraL5Pkar&D(wJd9iV&#tnm?mp{&zqY+VpGibaip{s}BaP(GPaOf&U_{s&h40SM73 zC||?xpYg5#X>)&G{LG-FO-%MoY{OeIj5fT^Ra*4R5p6{Q~!=#u&;#QOK=bI!Ecwn*hi_U;Y+5nnsT8P_F$<3Gpa8E=2|fj+JaqYNXj} zkFyR}yiP|$X7_g)eg5Tw@8f5@w%BZ$sZR=ma-cZu{N>yK7@v{~3{Odm#Y+6y0O|dU z41q3bIDHLoy^6O+U@S&HMH67w|N50>(l%G9R?q{c(3gg)tX~MvnPajIY{mVbn0#|Y zr9$wmi>E!FTOqp?A<}WhqgE++%2)Is>2%#}tJ|M^ri}ijf7ov@ZIhdLXBCkcDywoH zRQ@X+lo~INj@y+wThSpJ+wnW#y7U0sO}YhWqoIE}_1oS7AZh=@0JOrun4(TgqWO2C z$>3)M4FC{AbRa~Pqu5pu0!5=BS1YidRt+E~klF!=o>|;BxqS9uZV4i@x}Sch4Gx-@f?2PZMkkh;W%ild$zaG8%N_2eSCyLm)A+;Wp zum8b&{;HhU08mMmmnUxph;zW{h;UXLGAMli=kVGthCmmC{(lx<9^(jLfxcSx&yGT~ z^$@&=8v=kQh)so9V0qgVA8i&~Pf)=m8G>ZUPO5LR=`2#$$iY15!N3}lNhfzeS6Fg= z0RYbt0DSVRwEtbCy@1D2x>-%atza?Kb@2C)luyae&WMB2*C#p-*54F}#&RY3KluZigo!^%lG~=LbZx z4Vxb?$cmvIDKAuVchG-)#rx8P+mwZmfd1U{U%Gh;;QkFAfcX=946=ljcnTVmnm|9) zxFG2NMrC!M%soFlK>z;wc|drYBJh4RQS9*i*v9Tyl6S7r1nIt3$*4BeQ0iPl2O!b= zRARYMK_$eLghv;I{_ixUQ|o-%NwgvY*mXb&ai323@IOoAj@@;^7Sb#lF{2Vcrh{aL+r6iN(ADA1Nvz9_LquQf#Sh1Bu@RO5* z?`Vp*)}Zm~O9fH$DXI1d8=3-&r?vk9i z52?Sz^JoC*iv9tdzOxODL9xC3e>ln8eJqnJ`2H&UV%jH*#c@yAewJnJPK|B;erA=+ z#nVBHdCD$T&duu|4cUkG3d{8OmRaEsxtJiP`+#b zlcz!$%b%hNQ{lYiGSgdw~IpFH(C-I@g4O~gY7!Zo+teR zzWj6ee`+l}6;130q~G!guM(;+%jj%1+5lT(gOci)vPJspJvnVS^OUboC>{ylRm)cy zDVVPKmHv>!$R?Y|I738uG=P9l{thSf-q9I!wz3_n-q%iF{OzIH!j3ya|6Q^E0)@Um z@e|UXipTMzhl=~M>Hd_ohteIOMGe?6WUq{W3|P;wo}U3wI)l(64EpD*`+PG&St1o} zAp?DG5d>c!P|(^!e{gFbs|jSbi3U6y@RTsx*&2+^*8$9LP56QDR;WVe}R(*@j&Q-6QpX&u?E zAI+AfRWKeA2>8Sm{o`EvoBthvPV^sE8c(yb?x?V<<{K)>*8F$ZB^AScq))a;L7XZKn7PdeD20R4@!Y#AV2{B$;@FVsM`51pIpX^Qb zARGh5uUWaF)hyI6MLZQ!Ih_Qhy*_y2EILfSs7T%t(i|{Yi$cmca38rAJHObW`dGco z1;a_KobGvmVwaYsBLDNi=YdA{qA%jjfM+8@U{*buxH86m36+;+9~+)6HWOhWVESwv z;mup8VaErXQ|cOE{0>XI2gyW~jKmUpkYbWy$U>@<0NJOc%zPda2>8A$`o|gdH|I;h ztFQexXl#OPU&&5E4O$ke{BM1(c{<6oNF4|7?6ZnL>19ao9!ArZK za=$0zRE9&D!SWYHLTVHkM4DXF(3=Jf`g3H> z5=O$vjv0VkBBhAsS1TO(mwf+r+~VNt?vg$q#{@0bsvA zqF#pn?Tc_2(qVdW7~Qr{(@aS=52X;Y@ zdLS%(+${y;PX6K)?p?0y~@-#}CIsfjWOYt2V(v(4E?ywH9 zN54Z!j9w*k5}@!;Yq87(sCYt}03}19Z~wxD4EwL+4d6C7-@l5)s=cZJhKk#yP)&bV zhBrs2WpXLaIFrIEqih&S3}?jLoGp7whf)K$#gRJTtC!>nfiQ0I<`!>l@b(68t24SB`U4=)2JcRY ze;fJ5Vn3MVOq~D_+fa75b%63ndg8A+2A&jEQk(mQw;|vFeVN6KBj|`3f~ZrKS{Npk zN^?*8`Iq9mZ$ST0dDM&d?z;ZmCIAd`@#mWWN|K}lTmUijpG(%7_ov>&Hvu3yUG!h0 z#fpLTbWY7yP`EfDWZE`lv*%sR&bDPtV`~KE<{u+K!_eOqo08o>0UvLgmfR~C&_lV8ZkQDQ^{AbP0==_M~5U934LNC+4nWLH!r%ozB|?;1|^BOM%QL0N)4rQ}r8x?gYJ#Hz)L8 zV^FVy(F!e~_KsTbI=z>7LzIHc;f!45KV?VBCHM>`jRN;I87S}9k!LalGfu^kHZir) z|9znyr&70`7n7S*F#%eP{(A~FYw**F;|~EsGdSObVVK~h`FK7%|=-AIj7jBXygV7<(%=BTO)Tq=2(x}id>Mobr+ zD3HLNdSSkDk-u7qZfpVs=sqcMe~^g;wh0i*W7Gk>8-eZwy^g2Av$^Ga;Ty~^=HfR{ z{=C24djSBvo6MDLJlp zZv3O5zjFfEoZQU|^O=&la$#BCdGfL_x9ibLK^Br3>_VixkPs(}3*T1(j_1@TLQA=3|i$aw8R zUwjN?SXqJorS(Z^oTfTEJp~ytIGk1);EG3n#CV4dfe3FSUR!nSncQF9ujmgo$!y=@ ziffJBaNBJicj^mT6JX&a*>q4Ui)*dqs1r$1`Pg;&|6Hf%l@9@nZ}+Bs%(b9)XF83} zc~7w5Wm9eZxFzjX>ncpx^AvsV_6t@l;4(^+o(uXNWyb zLs$Vp%yR(di4KlPYSgoWAog8BLc>NWCq`^;ilju8DZ8QfPkG(bll#&nt{#gJZ z1bo{aGz5Ab?=tj1Ke;a(zG_%vAJ577$H(Zk+0C5Zk%9UbvYoqW67={2U}Jf_bOL+i z-AbiaEzTv8h=j?I0u0Z32YkrTa(H2fppqMP)u65#IH1M{*r(y{`rImC|K+gl8GQ z3Ur2i?AKa(zpH_7g4#v|=NA2lG>cBBqERS%NC5EB_qHUzB&upVdpE?x&FsUv2Y~(&GXTomKcDmkvkofy zfI#yw=wImoU~X4E08s3Fv=xwd{V3SIFFCDg`Cp-YGT>h53EmFCU;qGY^Vi^5E-QBG z08Tp0F;x7k$x@XEMk`QJ1c>jq`AO0GOG?0B{2&fNzxWu)H^nOGZ#MyUpXn6Vk8x#u zwF$r(YM%$rw}Rdk`pg@69Zw*y{Lf^SF3V7%xmQt{fjZxyWp%aUma>}q#SIH}tZ_VD zLWPRI)P4AcFgjNAsvnmgQV-Wfk<*>mK$ZuE3jUXX7tk}g{xtjM!yHTKN@fSj_1Kf< ztazO{-mMOB<^rFyY-d7e{st$S(7$K=qm2H`Z9m*xCQ^o4V12u_K$nQv;4;-$h;!f& zKM70&yG)R40_i-!h%!e`SZkyRn6tS*;4S2Hiy*mUpcw3#(oI&%NPj3Rddvpxt8tZlg{*WvonbTxw15NqVv!drIGMLNW#x zN&xcbfmxeD07m?Y&*SyOs79;MXTHP>_$~n1`RCv3{y=I*ok$Hg)OmvBElr&@72+I< z2mnUUbX&38$0&f8tbYS(FdavJLfA|?WgX*P5zr90rLa}$vx}SeoW8yxy7kX~;^w9n?zlKloh5u~)vtgj0 zTLH0~xY#0chUYu{RV=B63PEgrUak7;4+0=A?2d%+zwthl3w)GekB0ul5Wl$sNI?Iz zh?dGdVf~O!0wn04yM}VOkLs6qD>4y_PGb{fT8>SyCKAkQeJy<*+GqNoKMMd)l7oVO z0KfQh$tJd}?3Q_})~CZfzuKRjw@MqYYyyNJ(nLBE@F&mJ5a=I&sWg(L_?+qR*@ONg zu~v%I`P<~SVbv=&GiheKEMd6jGX-=aYS;p`(Eq9EivATX+yT%VhI@>xJ^H&{{%AxA z9Sog84bDzloWlNDFQZfC%ZUrH@+tLuK!<*Vd#3+@-2u80SAWt*FZt_l0>r5w9Jn)F zpd7B$#6}!DArlan|0y60pb;T0{D&+O0qm>56S^y4Sl+2q#rKU(fXW=LWEEw##Ui!D z$R2GFuQ?SZ?TYY9^pm0lc_}!LB4vs=)lIf0$rO<<^UoA~%9^5@)HBiSPyg~2e9NcP z5jb_7Kh4<3HUbHiYFe}j5M%M0oTNQ7L!cl1Z4mHaTgnpxe$NX}UB#zHb8O4UvsnRJ z=)W=)i5JHLNHT~`0I!PyI-+Wd{5kV%S@yy5B%i>2O*)hD&xz3u*)bewaXDNmLzZ-0}pbZ9o4X9EB z2B90|BfoBXW;uU`$K1hg93<`<(n?4=3e0Z;4JfzgXDHt`?9rP5Y7tFBf8r0ExM$7b zK3e8#YID~CHIk*e!;!(g7sz!`HOLi@R5=e#X}^+x;LT2Oww*Sp-N0?+($d{c0RClw zl)~ist!MLDfFJwq^x|>_Mx{}yDa&51JJ0V+HN+p7L-aVNu-R71$AVen9o7xgql_G4 z+yrZ(wb2T|L&A$M+b!o?p=+H5R@I&cuLgSRWG6L%PuvHkJ=4E)An$|%A9I>M z6FNj~ubO5L=-z>DFr*y-Fsv^w0^&OW+vtz`!zP5Xr*QOu)?dW*G zZl(;t^EW{Jh*tCg(4IGHO~Nvu*LZn1GSceYbt|;eFYJ{p#QwRV8 z9u4;%`s3UIpL&72DF8hS;h}aue<^ipz%^mk3OfF4-6zKrHp0%V)oYy|-Pv*7vYdDK zT#dSm**zqW3$*$NY&X!f&V7Xg_sa1*=e(;fh@i~2!BfAOf?Zdrv6K;+Ea|&714CPOP0a0dmhc^?r9o|JzNex-sCUBmruP^~-9OVw5|IGcA%DG@&LUVQi~yYstLx@+)aUIA!~ zO4i4PZaodlQsxirw?-=h{n?-ebk|zN-4pmu(}8RIAozZ9%#B9>qzr-bm%la{G1dgv z_}=1vc$xqMO~N6rNvHC;vB~bg+y_c!2Ot0;?*ODvfC&emG~KB)W9<4F0I&7~kWTI69qlsINp3m5Ub`PxtsL_TwIkdAAA7tBF>(IC;ktY398=>DV|cykjV za8I=f0EB=)emX;-X!!#Kc`@a~4K{@59yn1N16k#bhk8)6ku)1nsJJ^*DowP~QQaQI z;|g}!a~pQrqHB=w@r9|RaHYElo7OP_S_~!H?f6t=#Te2Th>lGAw5Sud#syi|noy7W zw;->>(TS?v!N`s82%V6&py@jRgFyfM)Gw0VKZn_s!d3r*S?TZF1YkM4@ zz!)(8CcYNs3Lp;pT@#@EJItK{0J2xmOp%frkeP)tpn~ei7>up0Kg@WN!=oKFG_%O& zM-+sZ4Ez@-pkI19wUXQkS##!M%{1g%3zhBHC9MxI;Gg4i8NfP}H5x*lv)mglvKhXE)P!Q5U9d6m7IO0(HloLTe+7jX0asxaO0i~j0Gpsi=aV#p@kGM(ZZ0|0l~73=9qHKt`eb}64l5py zel+^!SH#>FAoc;K$DKP-C4!?T7*5rJrlfK&f!sy=V_)#%9(1gs)Zz(GZm~(NEhMO# z-k{s?ZDKXDpKKPPy&1Sc#;aCcq6^rB+*~^vFv$lEu1pFscVe3@o!x|W#-n$vE3HO* zEox`zzxtri*(27?$kjt8Dhnis5u-t;g1_#9O8?&x#G6VwVF8d!9;t!s`Q3E2@_jUs!AmWBV%JiRD3#W;7#4XqrK<;J#`4|BE%@DtK zSrEwfB+~>eQs?fX1DIHl5oghP_8Fw7t4_2nb|zt5$z6W!Fp1X^sd*lge)*N?2uu|5 z8q*6eO?%N-E(C@0Un$Oo)!hV;n)0_C>$3nq{NM4{|0jDpK^%U+85Byc&M=MPsNMhq zszKFs+-FxGXdwAoziZ`A&6X^?h7D9hjN5nodEBH(Oqh>fm;X-(6!xU$Ujptga%eVg z6`Gq}Fg&w8q>+)$#pP*)?oaJ{;M8EVLH#dcpK=|4?z|rqxa;C8`RDP;--q9u4*|35 z|HZwZKpX4?aRX=O&r6zm2$7G|{qTiys58qEJM~M_1PH)%0$5)B4~gdCuJpUcKP)1| zfTupd>8Sz1l#^1C;$skxvvH?-g1kXraZb1L^Nd{P=%5HXb!a`8&LIB&Y}xH>a%>t9 z#wbcqB~hBduEdHLNctoOBH(G+R>JQ21Hk^--`WXa6{=R~;y;Nw2<6Cc_OxzNk3oCd zxu2RzL5ir@^x8bbYq|4ggzA4ftpLC%v~ zyl z8>g2_tr?f`LizW6XT-*vD`bxTu{(0}&!M{hT}J=t+yS`ltG=+Pma__Sh?-RL_*(KV z6q-6yyP}rWPa`!fErKH2PquZ-mD9|0xLG?(zIG87w&g?As@NkP^ItH*6UjxWD zfdZ%@eu}@~I3-0WkHqSqxdY@HA6R7v;Zxc~fYk6Mm zWloCU{moxR&8Zik6Vb1}f^YgXfGDvLZ^2;U4HLCQh(`%Ps;gKtDJY~QL^GiEHv#_A ze+3b?1HSSGAZ!L~2E6b{@Z4;QN&0rsogoXZnj4(95u{IM3qgzpWlylyiKtn_J#3D6 zDOc6$axqnk;+s?kCdpmsxd$&Omn<0v2PoV=@G{Say~ zhIYw*{lNC;o*Z|QXJ*{rC6RS&qch)KvpWeyzU#RB(DL`EpHBd9%fi1n4IGo>f1~mg z%k$|sO?-CRoE@u(MW>t^o0%C%&)4B2DgYzcT^cnV!2BWa7$n?3D4w#ktz<(R}q?sJ%bPXdr&FNs-XDNdyG^+4omuJpx%wD&3qG%zb3F zrRmAMAu%hlSovz(B5weIZ~g*)Y45M6{rUfd=N@1nYz90SFr@EkZw73<21MLN1@a3o zSx@qr18mhiil&)P@=RSaHW_Xp=#L{xrEK&i%dEImFRQ_QFM1X1OAAMpY>myyu@Wl} zARoP=|79TcoTyg;7|dG00v#YnY&`ZybaU?!$xY{cfUhdTGQp0FS??}HJ~zqFO`dh> z2AeHtD=z$@eDF6J|9GGJLR$V04EhHMq>c`Y*Veej7D6Y)kzPhY?n%B76@c4xHICK+ z7|^d80wo`Nf2eE%>J)EanvN}1D1gJ&0W7Amn7-z&0&e*WhQbR^2459eZ82t%(SyXzsUiZ2il8h~ViT{P5CXpWRs7O-?JU|4 z{>O5|%<~W8N%`#%)qoH%OjrBg2$2=p$@*EixuIt{gji7W3G(cNQi7%ut5yHpLSqVG zp)jqn;YQn&y?O=UC{|i9>0Jc42;-=znRnSIi#C}m{ z3zdrPuWhA`_s8mFb~*Qyxt$#r&0EW6yYmO2hnLW4K|5s{Kx=>JXJ0yWrFEu%Q!IbP z9iT&F`9H8hfq&Z|BuEIkClIN7fg-T6DJF^PYH;C}!pB7P8_yNTOm!*pBL zfPoMwUG48mUoTRK11xeIu}VU!-P~TR`a^-KpV=6PO6Tw)K8NYVUXapDZE0%Sf;f0B z%U#$~93INyxQ^8~_)Uc@Zyn%@C%zYDG!;%seLL;nQ>vD-;z zqa0zlKm270cL0|!qjM-%lHpwX^f}bY0_qX_A+}rROTgGnGr9%+0nGXz5uOCZIWwXY zKHYO*m2&Mte`*v9La#8#Uc;mS{15yAK8+?#z}o#oY7mpZI4 z8;~6q9CL@NGZ8(5Z)r2ps{?pYsoxw(C<79N&FTQTNUDHGrGc5Wsr{;H3~B-PDm6wf z0;@QWncEI&Q@DwN5CZ@%LO5fM=3paf&twl~6qrb!WE|LbA;L(R(D0BenBaHsdnE?s?n>qkT`EW6`2Ua+Awh?(glQe;WLV?2VuY&jt z?#v*5570Lpl-`?I%T=0&43*V(g6{BdU&c55I79!bNaaOjnT&jHi}s7a;ySUEeGH3| zwFS`P6bqLp6DU!uB|%w(2sNghWK^uJIR6PgM}9RV29LenDqC!!Mz&yTISs4>{$Q6TF6X z5^4x=4q#|kI-1N!uAFmt7yHSu{&;YpIyrPz&!)c>CP3v7a0DF_vgbNLvHLg1KMEha zaM=+{%2$d|F(^<9@QYQ>>sKjFuy=j5H`% zF=S);Qe&y{hk!r)Dt^V=1o-}chnr1g8>qBD>Wf zg|kw<_!Yhk_nIyU{bQdGfmtHi19u%>JJHEb3GT#yr8`7+tWR{n7tS)htYP3N^q=tq zUyHBa#w&n?4iM*YZu~Q5^dE#`0Im!W+XR4c)PTPGsODRqI28^mVdIF~ckzUQek4o} zhU|;GhWq8gUxxlI^jA8Mw9}YeHG`j;4&b2wk`05z{Qx@wl7TD%0pIi*ewE#%^r>G52sfJ; zcSx4L(_vqvHXXmE&Cx&WHt}U810?a{2yZ{ZS3Gn|^^6{F@eUg-Tpa)`vAog`5}A~S zlNgAJ;a>{GaeVRYuw+x|6bTICcV4oLrZoWVjb|Q!dy}IUag^UzYxky>+j=7SOVcjwRkPdm)DwN2LQ*<_WvQbGTt&0mC+a z2{=X5f9&G_z(9Y7=6T2fdpY*j!z@t*!mf12h9*PKnDvATrWt<(Fk<{K;s5~D!oSo6 z9K>%`0;tK@(P|vG1{3`{fW4E)v~`Pkls%6f#<@NK!`8q?BFMw~T!w0DRx^?ExWvnN z1p2j?@dtlgHp$9Awrm3OCP3~O zz|EkoXNv;KKKQZOL^1NK3`x9ac(lP==^Czhw1PJk4&V8zKTAWmbY@UQ3$_Bd!?t0O zABj=NGWZZ7c@pzzQ6-USxEX+tJl}C~+Liif8K^rgX$7EX5NuOlt~GfLl$`aDmXP5^J?F@U@SFwN@O@+W_qm-`s? z0PJ^~uQLDv3l)f;X##4-<}Wz{5b))H0Q`W$h}(2ZAR~U{M|J;?`&Tpm$ueZQpd8k1 zwgU1MKn>Up&tIYWm}YaGzHt)Qf$!!lK^yV6vQ9m-r2`m?pf(+|YybLVe0|aZ)Rmw! zqV6K1n^Xj|shYUTOeSJ6ElY+#-}oB7?yCXdW-HMDL>m%EdvmhHItstR2f))?JlN`1 z!GW^sug}J^=WvVXH+YLl9gGeD)-Iq>zG?Cy7uuqKANsRbrkb(V3Q`bcmgUhhc!-i) zPw{G|3csHS@UiEmC|8=LmFlWLnIjBG+kC}m|6$g)SXQac{yXUgSD1Ad>57k6qytsv zq2Ez0{Rh}Qz(!pGB%yV(0vb8=r?k2!H34|PNSs-O06BxZG$JJPg}@F3=6!~uXH1q! z<5N6kz-HbAsIe7bjem$2Cqa3u0|aOufn}@?zvrrUl7aVB_5hiASWFv^|0^2*o^uuMP)h~MJT2Ja+4F+k*Yk+lNbA*4AF zZ!_XXAgcxxG32%wxR&c_u*Gd;(l4b+WE_54(z8JSEA2$}PIx#S%BHMT$NlO50}W9D ULi1oC2><{907*qoM6N<$g3>9UX8-^I literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_raw_images.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/flow_raw_images.png new file mode 100644 index 0000000000000000000000000000000000000000..b60cb9af087ffe69d56f9f124a86e4166c1198fe GIT binary patch literal 1515531 zcmXt92|UyP|NoFOB{or%!cfgua^*-NCR#+xBIVZP&bi!*G)E$<+)B+cS6YbWC?Oe= z5HqVBbHqq2=J>z+Js$tZqett(+CHDp`}6)h&sT!g1=HO-_wR%tX!kiYG!}wj;GcZ2 zVf^3)wZm!vvA z8J~n+N0^z72q?t48e)#f3WzCuJbE@QHC53UZmfbdRZF-RGgskTtLIB7qSRmLFVTo% z)iyP7{p`FNIGq&-uPmJU%i6df9i4R;w>_rc(**6qgql@_QHn_Z7z$;|P>1bpGF$&x z5{pr5^Oxpxl5Qt`iE8r8YGXc`tdpI}psEv&-S~C|#Y5n~F%Z8y;$-`)Z}g$2`Gi zNI{YtPLlCuc7rF>`9AY$(85uz^jBH5Cs^xh@lr}+CZAzyR-qczBMTl%_#E7)*(#63 zpjsu3VIuX{x{YDVuTSx}dt?Q4k6G%| z8i!88km`a4pMTEB>=3-wJoUoYtnNU_?Kc&6xn>HliuhY~l=!U$u3Y^tNbqf1ZflJd z<6oM2HR_B9IE4~3X{c=o>_<4IavO7k{G0_ftbk2l!B}uJ%CsFFbX{|sCi$! zE*tyFTWe1m76U(r+THRwIG4uGY4-;weUuETBT6VVc^CUZ{ACOxP13bHw275uhB=2r zB3N97S;uixQGL5=`a0GNQ8(x!A>TM$s-?Q>E=Z1M?{xoYGGa> z>X9(yvEK-W*CMMI{{Gw1*OPZDdhPcY>D!VB=0WC21IY!C4oJm>aF04??YQZ9Y*?_8 z75VpjbvVH{KVQWiXK_YLni*N9A6|`1w^dt}a*hxZ}_jvmetCYHhay z1E04J*BlcGwy&l3v-6`j|1K3x9&+`XKPtyYJxI4xA!lULvNLIY2#swJf-i<9UqE?` zwU*FTrRs?xVzV<<55eT2aV*iy`sj**pY)7^btNdgm6us&kOwdJcmk2G=t>?YEdPhU+>gS0(Ywh zlH%E?8KY&9p2-(O;Wvcc&g@6A6~6miwYgYGDm=GKC-7JN1!8AXjO0`bkYO5Vn3qI#f)pO%fyV77(*;9Nw_HI=Hwrzb;PQHtuzk@?vAy1I^5 zvCCTvghpQe)|0IbLgSLxzJ2Vp>nxwi;Oe=RFUkqcYs`mpPevmve}x#Vc38^Bcighs zdG`wK+8w*zvbt;b4PQ`Q?zr<|vu?dNW@wRF>gvxHe5t)yU*8Jdk8?D_@k;GWH5GmR zt4yQ66q&H*_pkNqV1`sHW`j=jpQ&Cd+j4WNMf9!{u77D&eW0|kT-mauDfIW>^y`eb zOOI;(n2kwYr}VsQXdC^H{A#I3C&z5Xy0VrSgseBVnoCDDj!J!gYaVl5vVJb4N#?A? z(611huk4RLJp#UTqQ8G-y01vzB6^V>=W58dR{Aw+?<&%v^=N%d&qWYIFU6el*a8b-vnetx2^~!c#ui;QQ zKCjSYgdK&km*QTZdHP}EVOB^~NEOpEyQ}8MXI108dB>dGKk;;nn zEWWo{)t$>7c&Zf7x7to>Dufn%sU7QmbMMP~w=i~jEhi`6`abPG5$3atIaM;Qp8$)m zpXGJc{70T5311uP@niAhG&*%{eA1Kl3I?qGEqdVS;PWDJzKtHEKKTJz)M-M_*FUDs#J7}l9XbhfxH+Pkre=2k!m~rxNS@}G(o*1krk?~1$-?grpn!GtKual`l zyPtK>-`mv{uRUlZ78)G(g+Ak4>$SIZ!>wsWdu!K+!sElS4@y)|?)fU6s`e~96Dla> zi~CsYo#ogR&2evB?2mcL(K=FEEl@F=MWoA-<327U5EG~53Nq(HXtELC=ONV~UVVje zu>(M*=Q3ME2mIbH_E$#rOV@idBHQUm7kng39tpt_kS5NXp~XHW94l}Vu0XIXDW37H z4&ZuZjWkp|r?F2VE@JLx&VF0}Zn?SYw{E$$bbRag@vSe8YbyblM?N%i(%uKu z1&y=T%2{DtW^L)ovdLZOZ=%~E+wOn2{b(dRx8GC3)f$K2o0hW^c_*84_F0+!4L&!1 zVL7x5TG$9OjI-#2ew220N@hQK@}zad9%Yuy?}@`b0+0L>@LJ_-5|>G!**g_(YgV%$ z+R`Z$bq%z4Rw3yN_q1T>)&|!YN7H-N%%^^JHGPZCCD>FB%r2`6Z|HmtZm=tdo>G*M zGxZm6QbGu07~T7O$XCtX$U;(vE;){9KS(A8bR)%Fua#Y&XUU8@ z4$oPVLYc1jt-H1o866rL8XUYl%9D{Th&}i=Vv$ne6%0_5$`oyRxL6*qM?X6t=x zS%n3Zs9@^WuMTRvWu8IQy3|7merV{)PDqEpKpsM5Zoes*zrtgNMLw)fRo5tp4ZA4v zQQB(c%j&DhKLfFXl}$Ac$1N|H!c~cy7Cx6Vq!4{)da)QB4oVGFAs2h1wj-Fi#1VTm z21QXam5VF%HBkUKj33}eGHT=mw2jfYE?q}IEi@@GuTTh)sauqgi8u!^5Q4vO!4rxM zw9Oj;>`?Z05x@Np4*-q1h=yOp1$N&Wp9fH@`yaSM$og=U32yo$-MXJ{1OrP<9ir2* znD1GEcs!cE-8Y0eiRbked zIXU6!$;8$(=r;c#f{G0%{|5nd7>InIhkA6Lnr?R(&9eou4xWd%5c2QNDAvPX;*+Tl3RlI2=y=AK&uO z&v$fa!1fnin3 z+T)a?k*vYshK6YdMZ`?sqG~*UYbJcxlBND;hf1)Nzj>lu_v0hdMgw0hr}2#CNCGcN z%RSty+Ebw3*%cD z&e-Sf*SNUmt;L&{*<_IqkP|=GG;8K}-TAKmft?>2;&4Kg73LM}Uzqkxgwc4Qmgi5a z%yoH+3bwx2x)yS&$L~a`(tzFJy^ywSOx3CA#or!HOv`i3c+HZl)C?AFYfaPQfx(8t zatqI|ad|RU`-^5Gu}~Po70(oQm>5K_m!z^9gE2-QR0|cvs%}BIok#rqhH)lKJ0<%c zsmdZVCY|3#Y_9+A{|}OEt9q$W9d{$;Me{t>s@#3q%bk6+cpRE!I22W}M32`nE`HmW zH1lT!?WBI33cLQI}#i!uFV2@|{9lj|_Oluw6d$ISG1QI zb7z~GIIFLVo=wpU-|yEtguii6Id#M-iTbJSHqo1AS@LzMKkn^ZQTFV8T6zghWpb&$ zqD|B77}6z#8Hr0$85OsOyfk_ ztW953xIbF}ujYK_;WL)@cJE&_=BBAk^m>GuybVS|j!`jt&)G3Zx}DK^#p0h^<^zFf=)A8|r%R(6i7D;_qw_5x*^P?Bq4UFPkhRF!Te;)K*LQqCAWT>)7Q0@u*gUG3kM~-W) z%N;Jd`BhJ4A7cZ$R}_N?g|fF@l9ARUB846S1P%EDvk!D#c8yPw#~PEh!K88LPe=TH znR%?TvXU=0Q?9+nhr8j+ngcrp{@)q&O;1M1RC;W++H0TOzzeARW443AFgbRz2vTfz zCxk(v$P`a_ulUyJ)?cp0_>;{qj<>kw+S?^^M}jljJZ3K541Trwx6eJ_VDne6m*{Ze z&PTu2Quthx^P_(EHFBDksRow@PY9m*P~(GJUi8 zd?@t5qL2kMHa0e{S-#AA6EyKn!_aP^%pPKmL|lP>7WGgfYg#OA+8EfXJh^>cE8C|w z8*ap?K?Vdy<_6{+oZ~ItGg$voYEyaWbXc6ZT3hpnJ9mI+X;%CCEF|E}PB~TT6@RLK zR)$C_5w6DmHUBIT9cOCJKV?T}o=3$y)j@{cJ0XfEo+#-`H^n>QKT5lbBhc3UjU3lx z9FBZStXFe)Br97ANl}8}30E?^@Ia~wQVZ`}l-GohecH6s zPKIdcRqVqq;m->(B5@a``Bd+_?u#3ybfv3mJlp?iHmL>-%Wo8f-Urf{|F zE(*m(j&KACq!z&vwTeJI0v^rn72bxbFl8r17Kd&UPGb9WsKhupK;aCj2QJ9~g5T$0 z_s73uGHN6c8ha3EWwK5xt%zh@O%gMDDi6sb5eaHyX|z(Mm=aHwgmWVFGLpJQIuVWp z`X5lQk%NfyDBq9tE63R0c#0i8Ba;}=Z3L9E(`5?0%llIYvriL_Ku)?aBDa7#kJxNY zDms3=t2b?gNxzmvV<3=wE-FbOW^KuulcdW@E4?j(GC=bPRx%xrWhE+p?eAail3DM) z*SVaKNe17R3Rfe4pflz|^z-v`b01+tXv_y&zf8C09eJganq5T;q z=2Oa3%7yOc`1ts9>4&>0kt|wlrbIA~Ap4K9Ni@TgGZP@hh8fek|KK!~DkP8~^~ey1 z_|_=!QQ*SOn8V1pVGh?|OM`W-n{iaym4pExtd)I#uNUJo-)z19mHfy*9hL?g)2>H$ zxC#DS54#WoE|>sT2Q7}kpG5nLu-{U-#=2OPU3jxj|0|-z?p+^(z9y~)g&WU0oF=CuNuY$xSM+rc} zwz!M`EC(VC(dDgFM=~;<&%+`MB;^sUlIKx!0#@L!0+~#yL}2U;ol$AUrHa25x%jSk zq+^=~{B|Vj$O#R62v^b-_KftNE*H>UM=GG;E^)=)8lqu&4u#c1kZ6yTX`@sOHBR)`zXGkB&d z{Pds7xPq>aS|3lcX<80v@hrDiSR37h&9Gmk2;KPk_KP_D-!m72|2PF6o!J{J<)#nX z8aYM3e@#?al2ZYj>LKtN#YsMr&F80vI?N_H6vHg+^Ly78X}@=;av z*k(gGVSaw)xy^~zw&r$w_D0muK=3gsj9lWJ_h=cr>+QqD-9*`)FJmbBk&ElkEoBJ0 zw*?3`wS_*G-N#eMJJOHvy1HWZY8y9}EBAzDbn)g6XWp|tf%EBm9l2S+38|fD9(G1# z7Mj!L+UD`uMb1<8%N?(-93N4Shn}WN5S=8CJHEZO_Dk1HvQV?+dOLs0`>a=PxoS

8}i;3hwWGPrw&D}jVB$k%qtu8GNjC&)LO1! z3|3`T{na$#lPe>tT(DG8Q865!oak2#s`bnN{+7>L+r-f7UZc7FR!8R(OTU`aayPH1 z%l#gYiVS?Nn}3{5=-HchMAp(X_?l*yOE{Ic-r;UcxYT}=_Y;`3Jlcy^pJAUTJ{o?* zLjjAuMFt1YpQOFn9ryTE<|Awkv&J^BD=SfoD44#r##yhg|1%?m@(?mi?lvcjyDA_p zTj>g^MA?^*gF;?y-p%J_5=NuqDlWgW8{(W4>(=$FW#m*>%z_QlA1n~#EQvwkgu(vA z;nesMINZ|u>XN}`y3DDFzYD$3O&QE6+gT8&AWcb_8l`upl@mm z5^|31jWmej0yg_SR&?fM%0`sZkofRw8Dq|1ZR+_yve~pzL$fjUVT3SmMn+E0C#@>C z=?J&@O17aizI1e)JLuZPvDVPobEjU7x=jHGeVae2<3yo6JqK)UhF05~A#Wp?p_r>C zwUJ|a`9H*&doEd@o&q-L=85f0uIbUNm z?Cmv`WiLOk9bPzOJA)St6ywFS#Kof&cSnPq*!Z979i8A9k31%mNC$Af) znoTRhVn4Ku|fav9L=j4kg66dpmF6C3>ub}$vn+|%c-xgD5Ze+oJAYmBxq<;N!ad8D-j^nGU`0`n*yiE z5G|AwnAa9ZR67g&S!YRj8gV2yGvOm0GQ=^}0EmNpVoZnP342E;0?BtG4l_)oEp2EG-MDTQp4Eb>tQZ>c_PZZnt5 ziu|+EqTORTh=v<&H*ezUHHktBa_nC_Osz5gubm|&r~mvR-KGC(;Y4m7-}2g;$*w#- z#fv=HYR`9JDLBQm;&Ml%`vf3#T=Rq(I^G#$+Db|@lIXojmxumdywJ)_ z_{hB7k>q|!<2=g4f9X#1OlzY1vH6tu4%TQ)6&9QKN%j7!VV5wySDLAIKRxzN2~A!X z$sg5`_RodSMZnbHNpR!^#dgVrSiO|7sd->k)03ynKXV9|$IaNj8gyUn*-_~35gG#KLG zSCQ}MZwUytF7~L&Yix_5mEskSkbrZs4bq^|Ja<5cWs#5=0;xnE_ivV83k0leJ}NLU z))XW!f!#xNot;n|JPw9nHjsYKTj1o8+a6;9xj|F`1O^NZO~R@JALO810WdDQ!Owd| z;9v{Dd+8vN>84Zc&K>=q?UI(s2O)}b%Eh5ndBSn>0)oHP6V=LGA{j{>6bEl-{#Piu zoi6}&phcbs6{RT%0wyJJ8vs z|DDCw;?kW9&DC6Zd5mIe&1xC#IU%*_I|XDfEu@L z$A|9yaA!rk9}5Ux{W(2xURHoj$vs!B5T8?2GS!$J(Ct23fBj8UM$hvPiGkfuC-D-A zPrj0)Y8x8EXG8Y4`8;E5+Z&k6{|x!WAemBgA{?}z^f;up#W!v6 zbUQUBH}-bE- zNch5V1CL!ayD`6CwN_0)}rD{ge5h^KcyYUMx&6265CpP)|o2RVr z6JH0P{?pfZ3uW?o_@pwPIv3S6w7icnul%^vSNiiYfkSI^6BFcZxw$GG>E}1Hx4!4E z4_P*S)IIQK*CT9P95F_jt&9-?HZOBo|%0M-iFkJBmITL zz7Ge}BwdNg#P8#RJIN%;>(v)1)%5NBnSX}KRjNXzj>dh36P|HsG$bKMW5WTs+!DTrr z@9jU+MZ+>nyaR|XL1r}hkq%&)@B8?#uS_m)!?#w0 zTId0CP>ctS<>=^m58mC=BLu?g<*;1rPPyc$^6LkRhY~^#3CR|~`N1nf zXuDzGPeEOGS-OYYWDa#x*U)X!Im0?w+7xLdg8o`_3`jo8fQ2{XGLBF76~K8IBCwlc zm$=*529sIX!Q}JakL~?Hzoc~ZEhnDcO;8Ga&t#GCdRpeY zUQG)$$fV(b%M88EaE09#5}|uzCR$5NEe*DQI!3JjP1;wPSkK2FbCBeX*L5eDxkR|&>4Cx=2=DF>F8C}tz0g(@8z>7xXQRHM-ERG=fLDE&? zF0AMoZ`E&O#AN{OjMlt~5Rw}i88Pnz={3|(4H;00`rX@}AHAaR^?u!+4owSSmk=+Q z0vj8D))ct>ppXCv)y)^aP>_=$WGI4qz{CXn}d4 zhw0us4KtQLppiysU0Gl4H8gNkxJ&@o| z2BA2x)4PNraJQA+z;rN81P}+`?dFRiX6Ra$+^R5AF3j2`w5#g58n(CqzAx~Y1Mu8& z*YSvs>qcl~02iAG+zjN*#j>j>RZsl)-i$t9=4SnJwxaD}%qG$hr3Le+TxZCFNS-f7p#{thA4Z92AmE+2=iODF*bo73$NwtjFT zxHe5ogv|lMW_n*=-<3;qzFJ9F`Ut#Lmy2Kvc^rCwJYu3DE5cw|CVI`EQG>grp}}`q zT>kupX-`^YbzRy=_o7m2X!wAZkCW5uMnQs&yr4q;v@hCiYOQm&3-;~4)NP)1eU6|; zAW;l6m|ywWZ={i$aU#m_DW#`E#UM1QpIt&B<7=G3Dfowlt^Dm+I#Q`3ao6lONz>Be zQf}G4Dv{1U>hZkBsrYMya|O9Q!-v7sesxGG?&X2DcE?iwDEn^Ubd#d^`c8j_Krl~JpJg^-xD+5!L!voCu=OWZRVYqs<37B@AS=u9VG#&OdSJ|d>bth>UzxcDiKdd2Yq0MWlWNdDo0AIiX;AiuVy zUl=^%scS*@xr)4qLnx8qX#&VekhKEadGaNb8_gYz9%~>N{LS=>T6Sw#ICb)9mJLqA z$V4n~AbRt;48@Z%pr-oF>Ba@iZu?~(Ys)IbA$nt(QejgHDlx(KNuO^MV;<#b00R}U z?R`tDo}oxIV{Y>I?}zZcrJ>!KnMr55b>qH?8f#y`UAh{A_nkf2_Kgc%+m9of_di%+ zN?cC}Z{vesyu3Yz^pJK>9ta{?&`%ifZZt&itCig!%;auNOiXxdT~*#oCe4NDS?mFVjZqWKJ>K}YV75N} zc_eGkMF2v^u))DWdu`>ty9j`&fJPfJ1MA7S%nazZE93BdC5vLq<|}saHXPouqPI3E z6p+$;_ht=|;%j`^I1P(FJT1Sr9DZIHKg5K6pZIjjy0yE+Cm7G84IA zcBszf9d;*_Q!zlipfK;yz7uju7WpK`JQ4Sl0(yL(ba}U>5M+||i6{L3dRhPca|mRZ z{D$^}NEbu;NX;=d*hA05NR6fEBr)*DcxN-z>h0-wIw_PH5l=1iwVAcaiHWYx&Qi7O zliv+*f!awp!N`Gj+`zG;s+XlnWAZ)B$n`NuQ z#u1gL6iX!tHaLV-yIN7fcM3*C?W~b91@wyOz$7X1KqAq?azq$X3;|M|SR8I*9<3k^ zwAl|L5k#Oy;u^c;;As-4W1f3p><1rViN(2Hf6PDxy0n^em!5nMg92tH$kjd23gn>R zU`3>yfWA7gV%q(sGXY)C0 zt(`7Cijhe8DnkXM+WfaP(BI^&nNkPfGz$C!U zavqhXj>JfuKL-gwpzin2dH{ZcNPv-`2!FgQ=;DE>8E=I-gC-m=ykwwzhgRy@{V5r; zehb5B378a2G6l%nF5$GyG&3kUX1BQT?Ux`dvBUV=h#y7@gb+e>ZkiGV zRnb8poI8V5--dMA34E7H@(ZDqUodEaXa+&O2=ECYwolIFH6B5t%Ro0X@N)k(6U2K8 zB~J2zwFE+H!BPDm$vKPdN9_ih!S!EAN0b8|Flfvm2tB$qJ%rSo1BXc9HlP@H>yiOS z%S1e-CBYCSo;t-yokv(KM%R7G2o0QkEDqt%B|W5E1^^F=1Sx9#;NVd*>rLkGu2fb` zhsutJ-zwy8v@MrAa~f8zxqhnBOF3s$fX=!5T7W;xpjil9Ie2WGonhP!@iV1TFQolr z?gV@`;ui@^wev8l9s6)DC+_=&pQO$SC7ZdD6^AkHh87K`cIjh1u|X4A3Qj09LD=ky z=H|PO-v=B+xzo?X+uH@(3TmBSW%O6b@SJJPlWdU(DNbS#0?S|UhPh&2YkSa2kI(47 zkc6QGbmk%@V)J)@?dJEbRne`atxW^q2RtX_pMrJ&iS&zQad{nX*g(aC{bQDq3!6V) zq-Etb-105Y%@ne}*jlr@?Kiy7_W+1P@A-4T|LML>NILvF4|VG!IY@q@^#WGc*{fjH|}W2mQ$|;X^hJ>M)))5;K4)Ys(an% znBm-}Z)J`-`DCR#Bo`^J{b-0_XXuUc{MUo_5rLt1y@$bfzkVm+btgEf^)|9mM^BGd zkGEzgFKPN5DO1g+^BNufv{7X4XejT1!D@e-V8ZipBkkmEF;yIcjdcx~_YA+&w>@@6 z{)%`0y}&1ZXoa=)ZeNf7e=Q-pJ{)P~W?fZ*;>4JN$5E2JjUxtstvxNOUSO$4CIaJ< z@;7qrwx;GAOhpf6!DC>;w=W;9{%|X@q3%t+mcBxN=bXrHgRq-noQ2QC56*70spc&1 zliAs!h|q|wsD#B|U9J81mk&Sr!oC#}JjCV`E_#?okI>RP-FWG|hr8g0&g2VA8G}sC zQ756jDfmFM>ylse_i{FRdv^vTEBdT3Z3C1;8yp_EHf3~AQZp6Lw?Y1V%jqS4@9)V( zafYbwSL{db0hdXCW{iUVlN?(tjKpz{5ZC&r)=))>O_6~W+Me&Wx&B74bZO{Ir z+XWhLMXvnnpS_ckysx>#`?mRY>9yIU=b=jre_rf9dj?anSGda3_*8hH9MWPou-gWJ zxBkkQ)yz?_3F*Q@OrKP_IIGvh0_v@>2vzY_gJ>S3XY|@O!wQp3$Sg^` z{G%cIP#I;?E~Z0PBVA6vj+)hTm>zWNrOv5ShTCPzsC)>oa?~S9*OZp$eS&S^Nl}5s zeTvZMj-D^!Z8R?5CW4K=*};iOCmu40d}XWBD{1sRku1Jly)Bj8h2M5`?3k6&hn5NF z?MzN>cU_GSqW7v-vh!q(k5@UcP@TLQxb%<)2ZFtJruo)_Ui7+UG?yE-$&Q+=j9l8gELTr72Iag<;$Xh{FnKbEVny4wSo2`qqK~!8hx0%Ibs7sRxNuxq1XpLu)uO8g9M4K<+RE zPqQl}7AqmuY>l=)1G#OdSfA>f{?W_x zGYGx8HQvn}tJz(BS-eYEk3IgF@((0$eA5*KeE`U_9JLR~JXiDbN13^SZ5i0aIz?pA zE-RA{Bm6N~Oo|YwKkK^VwQ51v!x}SvuZr}AHB+BL9IgR13ZNfRX0uxI1Ort3xEG=EtNSPzSsg}#@0`ZPt{7Y1*63iXS=2T)z`O^GA}wy^ZX^} zS$d(|+#@n?c`FRdeCb1UcuZ!`aZo%jXVC&V;^43?`amOjE~J#wHytFo!<8OTC!SU@ z3zC5&(PON?HboXrc&}r~{jShc0ArG_VALU?8{C!>2!Lp~?GR}9y9xvC3%|HMjr7^N zL$_Z^igay3aRT`$Ezue!ky*A}GOpQn?fgysNd@vlX92M^Y~sk5t9QNzGg~K?_c^|; zd+YE7D{dy>Sxz}>b@9hzS>y&Wv;?@-YB519xDf&vJwd2Tpbv+dZE^L%T6`YatA*YA`g3|*69a1FVg*5%NP z-VRvvza=TtURX|o>c8hJs+(@;?0Sh*AGFO7 zMaJwX2?GtuOPHY8W6?smM+s;Jws0-67{uq0Q*!TBFizp}`SUGzY0zy)f}+KbW8kth zDk62=u}-n(HJHn1T&&Kx$ZC4SNy+3a^vlVrqekU8v|*5XrgcY)>MhRVUZxm|4AZdl z;wz@Sumuz(!3-Uc(3Sz3Jk`Ky0u4#v!zheFF*ry-f|3aBcTFuHpuz5ou zd5hB>?_Bn}qCZRrMfv+{1w{@9_f7wqXVMM}6xR)Wl7oJ}Vcc!y&$unrhIj#q5uuCo z?K1k&OQKDyxxmXBFA&tt#M^)uGQ`Rp`LCBz1Y5U z#!nxfR~>lOSr?+#c*?*)&!8!KE9z#%say-`TIvqW1xE0%dqZwJ>A2aXeLYL6zV(q$ zFqZ>Vh&RgAUq}bmXnQsgZvCw$uv`Ud_A2i-*8aNoYu&SNS?k-CJ?2Vht9*_yqP~$I zn!t6~^-RCfYj2(7@F(T8p4iN0^y?f)CVzeEatx*Drh>LNXKbV>U+JVC*7Mq$2YJzd zVqY^ZoH7UtXbOG< zTmNUb4fk|>erByJJ8;i>OjtFOuQ@k8y`5`$QM2tL{NqdFHAe^e%>IsC+v^QO^C2|n z!6MQCk2$nFF@a~&3)PC8CExDeBQs}fW%0ww! zt?l7miNbf`qFY+pJ;=(P@aWq= zmb}Y;5W%q2UmfSkY+Pq?PZTYO42lN(zs#~2eqgZq`f@QOV8wSK1-~@$^ZR$FDm&?e zWjTRQ#f)_Hubn8*k87)wMXH^JZ%`=;ax z4rRXnG$iR7@0?+NSWW;uZ&Nm`Fo0lG4`l2Cy0SV%5&#DA7U!Px!f5577e4Po(d_cD zWMF8hZpzs7bctV9#q9UJNd9I#^%9N~*P;Ry!OcY&ZjVz3AgKig7xTBKWAc`H(px}u8C0)v|n1Ifnclq_n zYvY~`8vy3rk2^H2{|rW0_hTjejuul4P0+|#Vl^IT67cx5^Y0x;=9EiQq!MF{S`WC1 zzk^%aal88j0e!x8YwKOmu$U5ZK-{bR*&WL|?$^MdU8&Qs4*C$t9el#2> zkLNUSK|`IoYK;q2qUV5^1u`rL=QkHJ3s|0-1|;0_lEpcXqIhO_l_Onz5ouIs^~|q! zAQvz<1{A}qoM`K{eH@!eC~UZ1-nHE!-#%jV*J@FZgMRp80F6U|BPn1Wi+!~A`(p|c zi2xcrXRJ41ag^o2~3v{u_%&3|Ilv+#39!8qrj|ujz zl;0yn{U~Z$>F(=WjmY{9zZVn~Kw4o^-Ftqj9y(O{cxjv4!f4ScvHcoe&U8bVehdMg z-WG>`YM1U-VlzlH_?ynzY~Pxw+|b(^ZQANi7aRpKOdCV;UdTzQc2Hw3B;@Ps=2+f2 zVZ6Un@pJ}L^}!{5vTFVu@ATI%C-r=52lqYUe?fQpHL-l+x!7&j z6Ce6QzSLY&FEez#P(9$dK9qm@%0cBL8b(AlFu;1nx}9`fMdfm5Yb=ke*g3RZqq*5@ z`BoI?5c%iF{O{c_=70Qf4u1n-O(dY2z1C;`B=vv>=MT|jHOM;cp|z}1HKzCB(%Z~a zp$iL}4VT!b;de}&?vQB9^D{FPj_IrUuwUXw&4&rBsNwy!jrDs?4n)A5n^=Cev}wRm z`=X@5*0Kjh=asQrRgGbhtN1!QT(f@Ra+ufoW2p2cH@Yu_3GmHHSG4VQ3g^(lFgLv3 z<)bJA9fu1HJTN}StO9Yx)hm%KpOE&_78+sR)+@W_AjXA*9{>6C=hy>-(Tc&+=g;-H z7i>&T_sy0rEiHZF=H0JO#y&XG=QQW7>pJ`1t&Zut^wL28B<$XKGojR&W7d3W(ql{e z9IsvDC}lSmFUq}n`f&E8pYX`lV=1DO0s*elJC)Q9@JrJgeeMWVFy>4R-6$vSR~hK( z&BlLJdAZzeS?@0yUqMp;5Jh9PUWq+yZmU2}HN)wm5HEp}axum4aPESu~`f3*viE(ckbEy`C!LxID<<74#Zy0kx z7Yv#Yx4Kl>sk{XZfkuzhQVInXvkT`(G%XS*z&M;JBP1*!0O%Wd4xxKo@}8vp*lWc9 zcL7{g$QUqDc3&-Qm(bfq%*kx?C#A99BPvQJ1GXWmF&IU1l{m^HS?w|Qu*D6=UMMFp zc_&moQ1G)s5RJTqk;0mzz!YN%r;YTm>g(vMfkZP@>(J+#OP$3OFt2tNNSLg^!v%9| z_5b()GK`b-_1f~!nYGr=!JejD4Wl7D-I6Z}Sn)#w@0yTL9mO;iGHB;+3R1Q9y%}zm z8{8?8njkIqtiLT=(6rs}bo~~nERChNOa~DRn=ze_OtCtYy>S|CgsR;(0cw8=BfS&+4W2{74BvF}k$9A1><4nh(!BUCb;>H7qnRiOv4eNZcr zJ)o{RFbo<2;JyG$hDH`pRxbmuL#Hj7n67n;lW=rmZDx6>bI`rVu`zUIW?7O7{p&vD z1at$oqNol%h0(7CO0_$f95Of+xy2-mM)Nv=XQ_WGql8Fl)TRAhk%?fB&z}ahe^6#v z#)n5m`IhenZ4XJKj4ph4-A2^bhUnIB*7|`h%z?LoDVe*kBLA@zZISAMoWSxEZ0}_M z?tZ)2;DKRDR}}D2K1l8{k_E*S7?A{cH9Qmh5T@CeFs?o+fNRTnx>GNy*@Qx}!@UhI zakF;vGP=PB>;f?50xBAERm8XYO@G1UUz5I`jEmT9yVn#rV#LTg?s&q#CIJ>R@VU2l zX1-%FK;J7iu-n$_p7T-iSGzML0Hv_N?qA-?i!DumN5|S9Flu}v;0P0#+%1lFc2@`u zhvRH`R?pNsH!$XF4vspd2Ub)Avux6?nkc4IWAdN1gf&*+ELNfOXewFK?aXy86HjR> z5(2{?X~Y{6$XD^c*0=3Sk&=MW-83$_!=GwaQhi7KZ1VwGqE5;=GzAQ=2V&0oCBXhS z?~$f<7El5-^mJSq*_JWn?UMYT;v*#b`!_Hd!4HjMjn>q*8!5bp??+m1PowOlk4M5w z$ks^GwMT|Y#h!rHo$mllVy-?V6R3mBpb?^UMai~(zz)IJdmv~RuvJVbYG;*HsUskb z5`d7{_Xko^r9iZ4Es^2<7$f`cOTci{T*Hy3KY^^j2}Po6w(vAbq1E;E|D)-=w4Z@>(ezU-zsPS{v9c$f%PCG|2OaY$bfte@23h|{|6nm zb_SOmzxb9iBDb?Qn##6*lx_2Dk3w4@s&&uHZDACjz0F*tjmp7R4jfkT$R=R;Lp3BE`z%ewnuNs zNLk{KC8Hav)p(jRwLY4VeS(;qrMpxR*La2hMAR~uE@%sTTyEp*>*I>CZOeKbWrNT4 zuzK58l%l}xxcTekn_#+~SePO<>Rs~lp~J$lrH88u=KF&q-s7$?MjrLP3Z|r!+}yM` zZvQOl^{KbHY<(i2(&iYe5cfkXv;Oiys@T?=W6rmh`?i6C2X7Cz+njsJ%74e7u~lm_ zx==1Ht|Kqbs-H*ec5H+c+pD{>ZpTB%es9J-9lABlBXj+){g{`?w;;i#J*0AJ@$|lG>7Vab| zCmeG((6Wgcd!?>8$6%&pCo6=%tHF6j@^v?IBdU(ueaqIv3W z{updnU+QteNXFV)Ug8qI58aZgzlNIH%~`tYXd(r%V(be2ZJEvF~Z^XDS}16dHiC& zyD(J*kwR>iSLzxMDQ7+$-KZ^Z{qrJX%aLH5k^Tz(A+<{&LBFKtYMG0SFQx8pTzyy} zr`{=6GJ7+@{0BW){Y6(0b8S(;MW$^n#eCF_MTgB&o-OH`f?rW|wB`v$esAF-?wt*Z zT0Rh`8JwKarb*>}N2^gw#IoQmd&Eazbo{ps9x0wfD9b1vtn|Hq)son5-?{VPGi0Ab zc@X&T5Ny9{Z$EAe>P9WSzKnP;3LiCNy8UZ=t35$wr$0i1%&wL+mZ9p)&BH?<1!wiK z3Bgy4hJi1niUC2FQHJ+$sntoUeS_J4=o;md#+={XB(r=1$6ru6dsJ_)1uhA0+LX5g z@GO}PzQfNUq}1hK?KQlzuyBBbC1+eC>6PEs#>N?bGpyJTa|5yVV9K3#Tg}YN$#fC0 z4(NKkb%qk)-3g(rB zrJv0eb~%McyiQ3(-^(GkeN1^W$%cTQTDeWW{GBLby+O52{11?DQvTi&))i-!lyBo~ z&LLJ<0TLm_9IiW$5_LDv(~4Ezo{45y@MdFYnOp1YA+&HNqe)4Up2Rm>9SSci0d?wMTL( z>h|@U17nQQ@bxWC-;uNGx_vet(i0imOLi0{PGOcA@$IsqG*FMwZ5>{=22N0c4tzL= z*;-9*TE5&ONh(y@*~Gi zQOx_3wbnlimfMy>Sb+tj8iUc_ zt%BdDPE9fA=hZ=c-4?69UZRho*TcgFZ65qFt-|SDI5-x&)OYD{?7U^Zmt^76R%)|R zX^FzO34-7e&!L!Mhk0Fvc}+Qhgd4jC>)BC_?;B86KY@_cMe-M7#tA3$h%!;>b_iZy zWc1nr^rAc`=qi3>NFK5Xq27`Z<^k1rySQO(LeW2C?iAm+ zaJtFlfUT=f`gwlO689M~O6W%qD$Tobj`_Fg&umpTckS|8QTMH%E}~*u9}`L>T!^kJ zhf*X29<0HIwYB&{?s;61jXu_}AL2gGPU%m3Xl#EOt4dBv{v>n_;R!0c#o)4>V?$zf zo6KjN;8=8f@?~z5Hb2sn66F$K!n@(F<9SLMa{Nxcv)Yl%s0pt`v;M^d)$q~Lv*9^j zvfbpkF0y>7Ri~36M)Fx$gkK(!6ok&ulW}QeMjC-T11mB$`Ip&t@}b6HpUL zr+5U)I~WxiV5ReBDn}+lHvhV1TlL2!&yCgw`+}$-R~9^IhY9q4YIr97gZDvUU*j8} zEA>R$XM_ICcKrM8h2HgE{Ht#j987v5j@gb5L7__ro!r77J$cunBVTcwK7V7wF%Y6MK`gC^=i)(4kCBI3m)Y+KaEYOeraz|l0yoUcQktQbUEZ~Vy0r4zyH!e z@0$}R+Chsuf9{&XMSXok{?lBGuHSAsv=8w94%2d!eL<-v1Y8;t93x~H9k2Bfb6KJk z4cK=EmCNO|2?A3IU{X$#xC6(%Y4yo2D-^@$_J6{(N-A0e9~5{GL-VnG-k{Ju{qHRq z4nGp{M_^_}gZrD&_07@k%+bwy0JG5==L59gD8EQayHjnC(i^4M`c18W7@84znIaQ! z0K|-ICHy^IL7F=){vSx-DJmGXQ3?tVAdk9t*{E@s%>g8|3Vl+F?_w==}23uK#c%D*bg{vtxsP?SlK_RNW z$RhY;XElT8j);jV9zcF*(EnCS1H0jY*26mF;o~15330%bl~mDZ@Aa0V!LqyOFtovs z%zZ)C>`OO$CZxyFCg_{_&J`|27b9&>=!Y!(Pr+Q;#i-s)iOMOpbK})9h{Ek&iF+k- zc3Pf*B;xl$e&Xx5w{3DfQqH9?}1+EBaM`G&7jmdr5QefGx=Nh#SM#;5Q)< zien{yB8EszW>rZ*sk^XeNq{I)b=VtP{Q$DV;Dd|3Ncs*@rCC0Pw~j&bD(R|1q~HfLM&vm;{v)Bxcb5(f z%aLWZw#FB!j&%;{->{^tFq2SP&=C2ljr1c2cP94 zXv-_zjf~$-zaQgYr$8a;Gg=?9`NQ@w2%neVSkO2B_W=^y{`D$y(~(J|2vZ5fd(H+O z;9O8yH8%h(pGzWUyxt9GzEkA@`VLH(ilN|5G?Er_fuW5N2Cv4s3qhg=zX2jmd>Y^~ZhG~{Y%NW}v?nu8C>zY^cB~77%1rHfZtj10shs&^EC^l8ei?BT zF+G5rqIIU8G4=azkH^p+-&0lI8Q(Z`3d}vR*iJ9PE?rke&SrYpq8(^f#=UAT`YpS~ zbZ?TqRWfFS>%S9H#$a2^!5+m%~= zsKosB93#9muxi+v1@WaqJQvR^jejDH;~h?qW&G-Jd0{MP~>vSxXB)r&kz`jwjmn+pmM;#d~&Oz?idwZBb|<)PeJ zFw|x)m(?xuonR?GO{2{&<3!>J2aqIOLdR=#TcV3^YDvJ&=;~oFzE5h}+|tyaN?mG6 zK<7eyG+8gv-kjHl^iuowU;0K#|8E7g&^v*m#fJmzMMY-EOc9;D^vf?2czIv%4RR(q z{~!q{qIBOkq*+edo;-H8wr;goo0+f{w$;zjw&{9fx`L=ka!7Kye4VtHi%MYBo-TK% zCd`&X3Xgy1MTA_fsf)d%LtXfG)38a_lP1dr+)TG@nJqWv2kIU%A-@CtShrURup8>s z2odvB)-=O&YG<@G)HD(ciwB2Oo)lD4GD*+XsoL9HjIx^WWpYfL#BDYyzi*Y*DetCg z=udK3y;o|x`mgsYVe)0HnuyMy$?0ziN)l>fw`)hVY8G#3q`9@C^$%{?`PT0q`|4Zz zHs9}i)=$lJvhX7|qhDwG_T}2r7~2cYFTjCsA~5j7KCjb{tsutyoU_CC`K6{;>^yX^ z<{^Ff*m^WLw`b(Goiog@ue|K2F15PA-hSd0{(5?W63HuEo13X5YkfhTT2xd->+Ecx z8_!pA(YhvQHkLP^*20lZTlT5Fsu4^lO9&UUxzXkpYDP=Pl#IA>-c^mFV^)kj5nIo>>*yx_b7lX9GQHFHxyRKXQ zA^y;0ydCn6gyJt_Q&#Dq|JL%*+V(%5?WPQg<2q6?c%vMm&=;-?cM+b?I$Ra(NNi4_ z_2*k`pIp4N`fI74K>_O+%ml$gcO$(`oW($7z2Bp?0CVGE+T}M;66d9q4&NEY!}(jy zSJ&KjZ;f;MTz$YyJBhT>D&WZbIG{-|-3Zs~UTaG>?3e}N+>Zpa zQ(}dNFQ8*$|D7k1&Sc9$!LZ%Ay`I6&9=H8XZu37olWh1CZ%^;^ub!!qXtUWJ#N<*; z-~<2eHI&k^V>k+(Q9T`0wLSkzER4>~R&RGbGIH&ts(~__O!dD*Db9&wsl@-1B|h~K z|B=Jzn@l#olx@V1D{$_jI7i23qVs>+mJJU3lo8vm(7j8R=jU$<#y(Mi%M=?(uJG<8 zfuDU$jrApC>rKN}Z%Fj~dH$UAMkce-P+8TudrtWyVJ$P)Nt=bICrorXKs89>uB;8bMyp>| zNtE^p$_()NQHfo?(48GgZ{~?y*kq*VpTkg%Z(j8u@>$nPs<47Ne9f;CzkLeaNI}z^ z7k5buF}BgW-OvsBf1SQ&PlS*9GRv@m(|uQ%w-`o@rKM9VY&V}=@)2=XpWJiBzIk^7 zn?Q9uulPk%o#OW&b)9eNlgm_unw5@r+nekH|-|? zmj+NHL}IGCn^`}vE*2{u(oDiADwbIlT^ZiVcaEv8geTuXJThpYaQk+5J7#A&I?xlL z$`JHz($?dsvh3$2ObjfHJ$3Ql3M<#7Kg~IcLN?ivdwPCP|Ngf=e{HDJdxVX3Da%kA zW63lHE-aZEzye^Eg+3mRA4*+bDvMy+v>sG`Czt0{WrtBJ@4`Jbhk!=Rr$o|Bbg%X# z;V9_PxiAox8j;D958!ADHNotFQ-N91?qndn9NtYr{30ltq88vkI-w6?dquc!Ti^}G zV4!1$bU9SMdDY6(>XYDwijNqBHApxb=3I@LA*l+u2bI!!umFFS4zWpAcIHFKr`$0H8&Ux1a2gN_li=?i9{I~ zcr&g-do2^?3Izsh6aj;UpBcAG^eZ23R6iTKw!RdiohtFN`K*?gaT#d0oXAyn%NNAz=tu6* znSQr7SN0($v8{VJ2P!HiP}Snj4pqB3quShseT>F{B5o^IY#n!=uY%xP*42j=Ewf_z znLsVe%5HdwcwFppPc;A+m%y(fYCyUCRO+KCkYBodv?s@l#Gk;JQ>lee&Tty2OsMgw z6N@ceSsu|0-m7O;ls-8%zWVFtOF!zVc3M$B*M;C@yaaVBJjz*zGqyQ`k-YWK_vC+G zT5|c#^3Tj4)k!U(m1pQdBi31Gu84^0%`egZ))Fh@L;GAzr;z-n~5)XFNzz*Ak6&3J5|!+-weIOt)d5 zjdE?SE#nCB=2Jh^4=2`o2HlJ<6m=2J|43&#=U2C&`(>+?dq%BX!|iDix##6=yH8&atsdbCKT9)z@Gv-z9VXgd&=di<5baJ|oJsQoC*eizMp|8k?};t&7)F zZEpqB35ieiUCjosIpbKQm|fR4iZM(sN2hSu0Iz0KqZIwRuWi>++! z%@f;sbbyE3o<4K~Y+0>+M(^W^LFKIxjf{&o3^3|c$n^TEXeu7OkIw7tTCt8;rn~hx z#Url8l4d#%iX-sSibsFEz(gNC7?@P1su?Y}>8ZUf(7+s_&jk$=7u4MlH-R>kmx7mS zTU}a|gKUcN5y&_3>xz#Hj`6kEl%B2i6R9n|YeyoKrw++K%nn=Vux?m4v-;N{gId)F zBDNIDh45cV7Y-s(z$tBsi;J7HA`gW+8WhqrD8POAXT{+(NT=0Ym3<)~Ab>I-tYAc> z=jVFhyocw4G{Jn|3e^-G?cT$vMc~k$vTBxJ3U>rn{j84{1La>oQb^n%sLh?vVT50$ zgwl~_;1*bZ57y(6;=N51Ph@4wh{T14h0-5Dre2v`oA>%ZFMwy`BtAJQ>1(1;EpAd| zL@-vmk6+>FdxrhsX~a0;E^i;Flkj=;@=VkzHTu2A-}i!BcFx`#xWt`9m^179$QN}8 zKjcW~L4L46*Pt-<%W3TCJUo6gHJ2!SkH;tq4pTiP1nORY7sBS^(sN0^H`hIPWNin?<5#6jj|;h_d++kGg{8-rnbNZ0L(g= zsw^*8fM@`ehsQZI4L1KO1mZ}B5HT;sKpHxEeGE`+VQ?dgfU8B9<8}fbWP6AM#^A~7 z$iHx@N})(zI1o|-9YUQ^GH~O|1|Q-**mMAa_ButV5c53Pm&+pV`BToJhs^TMU+0hTNo& zN4N8c{%ouwsB-MXGdJfUDd5u}U!L;KOC`fus_^VnHNn#b=+ z3cti#MO|L~_Pe|82z=k0$~U~+oM2s6R+T|`o$|+Cr-h&x(E)BF**v}g-4-a?I1(`} z91lLn^Ic+7p{0LHIs(&+XXY)OEuYKvj(6LB5qx#@K)I6fxCo25B1>u-pR(>QB25@E z9*aXt=)g-LU*4#n^zRVz(g2}6fE;SF2h;=B$wz#5SrVj$9tCp(5rT|-oF-w*QNi$v zRc|L8V~hJtY_0xv76J$Q&XRlTug4=kRejd1!y1?=?_hTo71gO<$M--$mGvadmn7L^ zpGLR75euL1N~SahfAmP#p&X9d+oD9_l{PLg>_E3ckE`s>o^LJi0)67Nf0)0uKWJ6z zRA6mdRDb+{{GzuCkWg;Nvh3PFOA8cN$s+u zevsrldqu3PW^QW!yE1=G{EL7BnTtZP=s8f=-)Mj58Vhb%o6YyfUc2^qWO;e{disL= z!`YC(1Q#7_LG6%QD{b~TZtsj`VB=_&gE4T1iULQ@Ml6Y|nKWH^^rFnMe|pl}dawfa z0+5INoj(y5KvM}YauNO}_$Ebh?dz@6tjS}k&XV^kiEhRTpR8TB*NRjJrQM`2^MC6@ z0|~)$w`$v8uksU){j;a|hmx7Ir3~-W7l$K0HvF)WR^XO@*v{^WRcZ~utx)wlk|$9KoOwc~W`*SB^i1}SgWnhdzgf|$A~pYkn9@>14G zjayB?5g*yzox`CM#rau#^_BKUb9Z)<6+TnyR>DL_J-dBX`H)cndCankOOdBH#t4g5 z#)hxW&3FX3y9N%+kM(M=|30S~xjO$_wk;S?T4*k`Y|tY*}c3X zq?(YSF3vlOM%J~PKII)~RKtN>_#s!b?ph)L%#YwN9ZsGp@(VD&7I%TYI4YNI zs{TStVTvl1{&j85YwcIltC6qtH=ik)j*j(r7CnUbQ0+U`I~!LRk<`Byf#iJ>sFy5G z@9i;fd5+TiX@|@AU`B}KFI>>xm{E~yz?NJ5F#>R&*k9}xi)o;EJ`2aLnbLso|R3S?UR?7e@uV!z8Pa7EUG0^zH{o6T6zgnjizP5g= zN^G|&7na{QO=u&4#EW>;bmgkW*3>2=eyS+g+Bfdh%n^2ev(qsEvNjRbUY&j#cOsZ) z*e>gPsAxO#E5P@n+!HZMoO+2poQn^YkdFhB@K6;E26_)7&7e~k)BWyKWo?}St4uU5 zs1m59nfG@8kSgSkgyuM!{#6FKV`;iJ0{TWFMjRq7QG$B8mW6RY6qCy%MYq7!v0 z^n#WZI}R1psA<1@I+!RVVZshAYa!HCB#OGVfqVLKwm7`^a0nD!n90Rs2rpG@U~52V z6MOb>{;l$X8Ww&!O+Sm^H6uYeS$}(NdMH8l#c(}dNXHDVXc{fo!-d&{ z02Tz4GjR-)B<ZYU z)W<{7u<~c8KKUPd4`uEHpV|AozXnqL&Gax-)~I+JX?;v;H9j?sI1o4srXB-q7fI6% zw&Gw*Xg@;bP%xPytHb03qofE+dcef`|bqPHt5|;$j*i{Cf|L4b{+JGGsb#YfNS~$M7?UE~C-AY*trOoefgqdFzJmH2A?cYRz}m{Zc*AbC#~ zuKY9hbB(uGHWGS+9k<)wu$K=x59lU6iY=loMg$yT+Eh8%oc>tI(WI`*-Ro2J)MnZg z`*LVGG+?}*UZtrLc9U^?K;;*~py9j2o0Q3!8e&^~f_ql(>zUmmcUHK+KbTemivNM9 zyOt>X|5T3pGKMRCWb#Y*WqRh@WMwtf6WUI@QVBjP71PnLqJP~uP%qlOY0HTIpS8DZPz6uCK<=&z-9X5S2v zm{v9@Fs9?3U~JcSQLk62a{|zCkaCJpf7qNm%ZrY=SwD1}-em-v%38trid*E-T5nmK zF7MVV3y&(S^4tF1%zVx2F___SE=}^Jt<@dooR^qOxy@lFP}=Vw@8eJX@HzSN+$mZV zk$EQ3Hr{$x`ADf%(S*NyEOXN;f&Y?G!$k#s$7)^=+!CH#y^*I&LH5XV zg04-j2JQRNdP8H)M_}{*j%Xa63kFHN_GP0+S z{V>TM8@^*ygxlD0Yc6|ZAb7jaWOqA-2`7lydKXTQf(~$~7*iwHk{8&lMBb%6;3zN4 zP=Rer>qR45^v&rq@7R}kq&i!Az9cH%)W8X+X!s7Hb3|AA0peWWhZx?<&H3?v^-LbI z+xg2LT6AGtu^!y0a7T&g3cA!t#6l$DaJ!#Yw%nnF%?KU@OfdY(!2TL104mqy^5u1> zu!Zps)yB=!EQ-x?njoO^M6j*emuZvv3oYB%Eqo0{4B_{(F^nlA5HMO1PTX4*D z!8EObK3aFSzOD|wdV6)=X_Ns+3|4w#VLctM{Fh3ru^rO8R${$z4>&0dL*?&-i2OZOR2QN%Sg zG;D=NGOUS24RtNuT^D{0rCotW+11q-wS*s~ctEOq-&bMc+ZcMLF6jhmIH->FaFD=(9Vim>3_aLyXhxY{SYVu)0 zyxeai{Mqr&t?k0(~ zDuTbf3E!099_E zk}>kErlwxYgg>lC0;=P54Lo}_ZSBa=^-1d1f7!nGtg(s-XoYe{RvLW56k7HoEMJy- zDrV&G?f<}`AmMBP>wo-2+F|aJwxeE1!s<4hcP|O22y%m2mwEzzXNB7VsFFzkE9C&n z39se>B+&BcCl@Y1lq)OMX3qQt_F_`AWK?wlp7$;>T?mQR!0@55`bs_ap^RT!^~sIv zTVod(!)--}5b@|eK@w_g@=(}&sU#G-KC@pEi2UnYVLS-d*-`P_SFc{xl)}X?Crh^E z?|T%LwoS@jQv?MZig`actj?kqxaemz#Z&B^FWbh{CyYtv`w`4LpaQ+|IQ2cFA2+BS z`ftIb{IoOC7Rv>*B#v{EZ&G0A<$FG?u{07X2o(X=+gh>wd7V9pd$5T2-q9t>pt0%Q z$m3Ld?6bQqf-Kk4kHfoQ9v{G+h>>jLKzuGOxZM260A2m~fk>3bg3kGIJmT@)yLb6@ zFztRyiV**x*Tb;_zw4T{k(sv<64TBHzoni5iV)aPtgy&`l%pt+J}#ag|AIbvKnekp zi5is?L00G10@M&CR1q?S7Fd)d>U`~8yt67Vg11M~P?&zIHuB$zhJPT-&(1aFddj%G zAtto`hj9_E8lIKs^b^ER{Q8ySO|0~WAl!O`wwhW2aGm_gFrOWEXdK-kc$cfXZI7=F zMb5v7{N1=&whcoadPp}Eo#zat**l|0-Zn>#&8_!@oCTyKdsnLq;_lO@%(&n=U5=l9 zUsZky#`-ZPy99uus};_CI=bFb>Ph^>cK^(>02PD=(1}ARM@Fh^ZBH3K&V4_$Y!QD= zDO=9EsDG{hj@ds-yB|kul9gepExZL+9UVjT%)N(`riJ_blib1REQiYs;QsvS)EqmC z{quRehk723MjKh?NA^D}3oFQ218LK@`+S9DD@#kne!nyJLFF~hlZ&*jAk}*T#)GUD zVsE^hXTHX{r@ICzurbYl=Xl>#BE2Pgndtcgwxv$7xGMxS+1>56e&hB+putC>)>PHJxYU#F`r`{1 zXqt;jLc6_qh5SWUHkVtk4-T*==+jt<%i$*E{pXOibqz$_#fq|U;}(j;RVkMn86aL{ zHiSJh_n02qW@dmWxAnWsrT<2(T-v>8)_h`T5Sos2NgRGDcO0REND};@M!h#?qP@99 zsjtOI?vc)WlADHvl`Y5DD1ck>?k10_7?<12nt9`&>ctraJ?;;g-t~Nnj&Xvo@fuQ8ZMCm4tlXSE#;fDx&;=on7BjO zxMkd%C_T$ueMK#U$v}j9Ux_fw(|xYeS$fhPis@I#_dX$V3fRP-Sfm^6?)mn5PZWZO zE(V=c6_;eX9!L4%E|_fqoKI;aC6`rPA=C{=3iE>vC*6=$>gh4-Rf1Jo7p0e*Z3dN* zLjRd;FPT_lcN^i3=kx!U@kTr4-6$P`cIruJ4Jz;)Cjl^6G0kis60Z#R2c9*KP753% z;CCErJ3xN3e)!{ncLMa`h}GY5#=S<;uz3dtt`XYlL;lr9(g2Hy<%L86(yzQ;7t&G8BMo?DntQ!9Evaei6K zEx?XiU~VrlcQyvBHjO-u?mvL&Gtf^;D}rgRxW$IKY~EW2x^4Qr#Zl)#@I!!#F%zyy zn>JmOv8)It@2KOpE$VT2=X4iTJ4%7;C@hAu#y$(+ew-NqvjE)l*NJ*cp-BU_hcH%4f-S+>9_&WrQ`T0IPR zo^j4R64_(OUOc)w6^)*F1LFVruJO7eON`<1*yiSbRjsvY_GEe^V|A-I4SCMsL7GJp z`1?B4O<;or(g}xPHKp4_*x3_{-cDbb4j!WqzBY(y6%kRnDaY&KJ0(#NkwyGqfD^Vn1BX&&>UkQ1|eluEP{+!cdw`)pxo%dV)zmyZR;0vg=NoroSOE=+!+iIxCf|+q?hR7+&)U#ptIy(j9Uy&}vZ3Ap z7cq;|NB%%)dOn}wd1ZKfuullOT`TOw5E7Y_Z-<;ChA%xm z?Z~&~Wn~ns(LIM*ea;a5>>b4H){0yo>ZJ}c&%xiA;oZX?V3ftgd>IlSYjaX7>dHI@rma^?ES92`fxO4d2-qR9lSP2kzH;H%OUkc zGf=LY?`-8EPMCyIPw?BqRY|wxjIQg?uiy6Z%*kaNc3{8WFewBEFC!5wzaXw=ys*F zdpt=Ug?j~2clodfbq}5PGeA8tXFbk)IzLM=^$ePwC)eU~1rNNwpcuqViD*vJW3#q?qjSUQ07v^JGf~ZQOh4kM&kKsK3VNdV4Z|!^8L{4S< zU*y{0R(<0tJ!0``a%No06PB6Sf8-`7krNl*j(W|Bl@59z5s_g<=v?vW62Rqtvn64w;uY2({9%9;Wx1gm9dCin*=86mqBbWb?O)8EaD;BCn)sb zeN^Yrd(AUHuU-{;x*zy(ALwoprzZDbV}m0sD}7vOUFNo`XOl$gq+h&s{fW{Vp`YTZ z&KN{o3&KxOeHF6qv;E8RbHg>Zx5_I$0^XH7L~0p_c3~%~#R3~WK{T%+X3WZGT_s#s zc3r`mVsDA2vY9377q=WR*eWbLbG6F&i$c0jLe8QxR?abd>sPBlb3~+DgUvui`fI?3pCi(V_U$qf-i&9D!IZd+Gj=d>7pf=pD(anr#M&db=bmX?u~+eX4fHFGyg#!a<}T>iy{Dw4Tq2N^cJ*!jU!23@~q0O;_(La;*z)37%aj6h4+0bCfjEUtdJ@oT%E6-h7 zSpG}vwdNysj;v~Lbw`Gyq{bhG8$4jy4YASA>s=AroE9?s{)>UON>TB`FG482XAGe5 zk2rXHjC^3__ThUeKX2DWZpRGKgKCGotc-w#2D%x90SM)_tutM0=adDo`t3=(G+hCq z*5V|%KFf_X{6cTs)vM_K5?A;L080;gC{XJ3}3@g+%G_Yo-C$6tJ|dj$2dQPzXHb}G(DA*X4TQ2`7C}3DZN;_Hr32%Sn08rd;`AFl>D6r z*rR3*oOjce`y~+SJBwY23|ORCAGW3t^EJ=`QtIKMOPV~e^Ec&C!iJYK?H3=jxVfy2+4G)6;+m#+-v$_|lZw&K`ELBO)YR`9G_~o=`_Vl9ynt;8;*CKWR0C{rJ#-D@b@u37jIe6Qd z@jr%X%uAvS9GxAc%1u$^*_XkN3lvQ%2ndQrSER3}=bQJ1Y8&_N%yqc4L|#0>U-abz zh_fHL(8FO6*ecFAbU(`Ci`><^@b#Is;ofp%?Sgb+Rx}FYh%ov$YT`woFvA8-84DXn z{y8ibh+UrPFA~e7Ux?O4=-7Wud2d?Bsp$p)D6R+QDM9HMn{AlI$-z!QFs2>$ZQa9l3;7%s^oH&6_u2XXbi;r}j2A;s+8gHnsmhzVB4exB@d6n7PFNC(p@t4ICsY z#=CML$#(Fu_oWQ5W#@y zZ9_}?L^TX3(cJs z&Y1z;4&77-7!v1i2E94n^^ll^zG_eCqAn5^U$rN*1j2eIVAn8vtK7hO8yXn2*=#Ma zJ>tk5-I|VEe=#?zT}YIHP-m}vDQ?l}yIs^7Z?PkyrL|;r0T;4fL(Nb1Qtj1W&10b_ zjEC1N4cr$v#?&JIE%cYW$!WpYTb<4ND+-IBkGvg89Hw=aFR}(PDD}(JN%SAEt|nTBH@>UXvwfx2WXqB8noOVC z+JFP?M}`HRonA`m;tssvko~+{6@S?0?taM_4BuU6PALO_y-z3>zDEaBn*Q;&e;6K_ zoeNke2w%p|)_d}7Z-kF(7FT?CJA7MocvYCTPlmac(S6_LX4|m5@WTz)eVDI2%|3R2 zzJ5@?!$Z_?m2{SHkuS04cB&fA%&fnpN39Qr-MoH>ezw2=!QFO8z^g;=XW6~hA7OX- zN3UK5%bLyR`}M&%&dCI@P`tvh@T&>OVMV11_i7xLdWLy?W?l!SYoE}i6<7>>)z9~ zeMfUsl!|`%ZY&KtOuYZkzdm$pVbO38{rBhlj z@l&f{;^yUmkXzg1Q`gR6-i`N`9~N-<(z&_Sx^~6+U6b8)>xG}ga%UsdJZK|6p?B`| zqv;R-K8roY+GcusAJGHO2X5-gP0dV= z(MMdpe?Q#P6pJg1oG(?qCSulm&7pC%BLPmyb=RCa#;=ICI7pSEk42@dou6Jw@C#s! zb00W%eb_Q>Vq<1{qSJaHW|X}lxEqZegX5U=Z4@OjL5_D;iF)-pYZP>!D6*R{EZ4*IFuhAAL|MU4*D0QkR~D~ zMpv~%s%vPVa!W_KnoSMf4Jef3Z>a*?|IQiFlfQhb3=6#&q55CccU=K)@D3K>75to% zaqE+IY;*zY?ayNUe{DT85VxRj^#sd}Hf+vE%XPUu6%2LhkeLfUY;{Q*F#Yw(zznD> zTL-1{r$QTNxMZ$*{BkK##(&_kgj*4Dr^e9bh>}7DIvl3g{kvhD_%7wiy6kQCC`u^i z!vGnl=)(DO_kVEqBuY5GK)6p%TomTrG2~ z3t9ZrPXi9eBZV9m1!6oNMBSVFk!$B!bEf!s{gfbbm{U3vs*^*j>1FYyH)VsSgwh)<4C zED*+a?QBYbc{E7R#YEE2R*AM7i4V{khcWx5Bnl-2WK=Ur?N5VL9BeKC4Y0EV<4cNiV0wzV<;mXtSoy8UYor1f7S5FnmQKRCe zAPz_gMa;Lwe-42)6X6_p(;k*MPnIuMWrMYMXi;FWNO}K*i)4sP3L*8`U~M%pa1Y0x zdj^h3z2Kx|N+|XBi>!uV#?)JH8tN-!lhMGa=ha2d*7zu73A@1RsQ@yo4C+<>GR0&k zyGY-n&^P|bZT-1*M%SDVoVo;tC^7(N#gB}>$ad_y{uJ|j`xK#k065)=61%Wi_un8D z?Eo0n-5{?5DG&UBEsQ2`d-Q-Anj!}%UL4dOR04~U^c}|ug3wZ|>PqYZ|DLKB*4k@J zYwg*Pce{Gh6nUMDh}x&h%Y_2V4ZQgLDX0H-WJUv3A&f!(=d86%IqdSm73DFV&VlV$ zkG^4(^11EFc8BlgTt<2CzZ=fc>`pGE+e)zid3bgQuFp-hUnu+V6FXl-i#ZimfN8di@7FfKHJa^<2F5xdIx6v_dY+tH?S=a;#LoBR% z^z;Tx0u&G)gkw7Th#pJ-OF|rJ)gB&h#eOPW?>J5x$_!n}HvfM#orgcw|NH+BA&F4N zF)~i6sOTUZ4a!kcGIH#Zk(r%6GfyEYvQ8;7I#$skJIRrCBst!)D&vSa*_+>WKDXcZ z4|u<;b9lX;&+B?T?so&tNjSLv4du5hdx&_VkoLq7o%f2Ki+_z$k440L9wr)kKYCDn zO~ao5PW62}vAvW0lgo~mF#wyXf$}V8GOo|yzoEC!AW3Z+)eeiDVnAVk%7AQSh7ZM; zT_WU+bHl>U)9h_(e-ig3=?Enmafu&s`5&9-7g#I#d?1;Xl%}Qi_87h%3SQ&k^wKs4 zQ1|l6>;!A!!0LPuDJ-;lU3a&`8VX)bjk^=vBPCH+zkRBkg}@Wjo>%#$wF=ocqxO$z z$_|3nZ0K}Z|JCFE1r?^}h!CV3HcIrkccN%wvLdaF*t51aGEC$$Y5x^+p!usCwRR$? zpZ>{K>D>ABN95Y!M@(@x5;4uqp!_t`Ha4hD_mGu+CYZ)0lzZm+&8Ez%%~|&<5utbq zom)BwxNq}G2wKi zT3SMcA1)2*SSD+|v%k!q)^AKpqh*C9v5)2ZQuZ1rdy#SK4psEH<%N#bN29@>aUUam zdw8DAPkB=c(mbrU#w&uKwrmF#Ne{2ZrwDRG`v}Ksq;f(t{JvKt$6Z zf_JJPDJ?A{yP59|U!CI7ugdBQsvTL?nEcktgb151vd+3eYjBo(R;27$AZLBvwXQn& z-dCj&VTI3x@&lUQ1`f}=1;*z8J2&(AwWrX=57S@B+S1a$V{xk|=_Md_l$O@`)mzn{ z4H>Plp!Sz+XZbRWel`2U??c{rp&(baa(Z*^Q{WwU|))XC;f%cnO>^G;~Yc?${Dku`@9(lEdngQ_hAsErG*jg<~< z_=idpoW!SXD$$@mn`1-hxngl2zMl5k^A)q&$K81T`OOCrcwl>GVU|NZO1MTYwO!pC z9~E_EW|%=8oFwQ=g4G5JJ2#~F6-vgvru+wL)`8%7r-UPjGvt67Z_41X8CJ9hW)Lw# z>h2ObK9rEA7Nqe^B0ROG;kStQnlwoNIGd9$?zH_`AI#n%D?>mb^ehceWV~f7hj)N? zDg$2^#Ghb-C)(Mt)zsVLG=4ZQMLmVT&Nn8e_|VJH8@qqGcYbm=Y=%l4iO_mh@%U`c zHGN)QKJc`0nYn(=@uh&2#AgoX&W*=W9$m)S4V!XXpR&cPbgu15`%6$DpGxaU_dfR` zw&v33lyB};`z4WfCSD}73!xj|kw;LWqm6-!$H-rDvbw-3pcb+AuWgX#>~-3g@)*~?>8(jj@LsN*TyDw!G*7-(5F8=xAGwjyM2H_>-Tu8wYH)E@UI zyi&Z!*0$F*QCC{XkpYrO`Q}$^Sz-i$cAZ`mS55ocVK|Q~K%A4{)3q}O7?*AziqS>G-j-N`@ zfiJay82Q*oiL644<*Ri!Ijvk~l?^h2zV-E%i&yMK4>AGDO$$)ZeIfu+u+hWGt4k$v z?Y=3XE02V&Om}q@xs_K&5OeNam#7Hb{P}BsudZ0#=D%O|=PyHVi2eGhV(C+2XoH-O7KNN^@0@*a=(p&*|cn8~KWOIcsjVPv%j)Iq4rFvR#HFpQ|S ziSnli!Ml@;qzySK5M-k#>x=T~5{oAP@ zTX$k9)Ud62We_8Q*%NV4*zU`JIT8=UR~h6T+&Mw^(+I;6;C3qNfQ;>(nPvQ!d-7}% zVU3$BRgD*{Z{SGuVB8gbIJmrLgZl;U0pwl(H(DUdSI7w40WH+lMy0+E8cnnUK@T5+ z7?EhO7g|3SA)Y`z^kmE^VC})|vM zPcbW>32W$E3qHgteO^h>sG`*MFR5QTBO&ET!Ke!2KO)n#dEtC0-NM=(`Cxwqv79}? zLldE{g7&%j2BAfPApRSq9m^%g2iV;SDC4=!21u`3EXAU)04QPA3dq$k?8>?3%yZx1 zV2&3>MevKTG{J`rF?qK{P#UYmvR57Z*g%r!^!&Kz{Bl|7A6Pdj-#kFWERz-~Leh7t z2AS{-U2Oh)P>9F~0gAEUO(u1t znVI-rWsb)&8ofDhIPBEE1l4AVonqO4?QT~4+k|N)FDPOd8>bZ%l%2lTM=dQ^r^dB! zwlk#?syb$Jd&ZmNRy8J?0^b_3Ahd9+S+k4XFV2qCFaCTWX%M0FSGLxzwI$+G-t4kW z%g)s8Ndol$4~&q9Jp%))hvt+ljf=f}_c*0|rLvjG5ScNWFrL>3Fv7H|McFfE)eK!? zyZ8;q02WL9NDD4dsF)8`MlcJ=Ax z_}W{d%!;gG*K*&n7GT@P&iajPL=A*!p|o7?W}{FpH&bHsIpU+LeQ%z6gU-_Num53T zT@t>u)ndJ#72cb0yvcCTJt=4TLuG0=X6A8fi`o8YQ*GV@lsyqro)n#eG4KtLKoWF1 z4{7K9$N+h%ewA{&R}p^S&gwLGg4_|whL9*HP7@9x>T%i+(99pta0Yci9Vrq1^B5ky zQ{&)LsCe<=#49?76By4fj%YmD#98})BCNG*6X$}jfy;k2FQg}NOSprE;K&U=Z~nl%bb-IviZ)3>`N5`H!Dj**cK z4)K->{Vf<9JYbL1=ex|=gv0S9E8c7VI_rPVvDsdJJ#F`sT-e0+)l?XX%8VdmmsVy6 z`+|IEbDBEtLMral!;4LgH7+3V;IUOAU$GUm*CJ&hI zT#&I4=^|8Ar}~Wit(=)1ftx8D5FXvo{xd#44yi;rf)e1weMdHtc9#9{8>jWalwVSi zEy7)EW?7ZLlA4dQ><6LLdWhJx3&VwYf^g*(8xQXX3#%ihSOTfHbY^F2Gdw+Ztp^eo zA4)V;S{nA@_(dfIZj#f9#FV#mK#W?K^}iYS>@YjW`DUgD{w}PDPEKX8u4BJsZZ~k_ z`V@8G<#G3)r>l}!Fkt$7{}{pzNG$ORCD1Nm^`e&~$}x&t=|BeQ^Aq45nm)vTEn!Ft zQLL=2OeSB2_rs-7d1h|w_X5z_ts5|-^vy4v+D@k+3l6Y;#ysH-kxvRm*sM(!$g4#EEfg8m1SS4SYf0f9}o z%zQU8^#?R@-Vy7ex?wws%pLb`Hst_+G3cLwe?gj;N z^t>=9Kt(zkXoC=mRIw6(4&M4Vx0l|y_;Z|MFMoM#-re5acsGrTjTguY@3A<#PxsCc~kQPi_9m;wuydsQ=hJ($)`##fwK z3I900_7Z{u0*@y#<~E?!Wk$d*&zp)l4#z)yN&_4{p@#|FC$n@s76hSZQhbymVB~*R zs$*h#0U{poJBk=6!j><*FovI?y;wRE`vA;6NL)S0*Qxr+Wpf0n4;B_4hZOu1m3%MCQH|`$rO8!%)*rkSp(&P`&+mXt<#9!-voLM=20BKj!g=u|KBIR1ouzV!Pqd-dmRVqNa zE=wYF2)$otdGsS#3{Chy3oSIMil{iEo;;yF-T3qLYWRxz=vw<;dVW}(j1KO>m#?$H z*NCokvx8WU!wRrYAQ~pxDJV6e%7P<}h&TemmC}tkBN*u8w>}?lyxU^EP2c@pw&SX{ zO_EEx!o|yp0aq4~Kj+ErY5hzOV#QLn3$IC8Tgz4#Rv6(R^S z9y)RIHkU$Gld@AH-do6^5r9$;Qy1Z9z?ZUFDc0v^S9~Zc%Uvx)r@y0bc`*Ln{x1hF zr=ObK^TnY8eX1$&`fXQbt4>Ll|9}E6Y&tW*cZ?s&;_#UHW6faNO#R|TkA9kyrHLD{GF~` z-Wawq-t%kx>v#U|slwPxxWhF&vqj2x>cc~J@4LCO$8OHeE_?GI*`Ju{*EnE1`LuaY z{L4J{RuK<5xr=IQYStx6p)50n#2h~T<;veVj|lPzNhGnrO~K`mpxwWw;owx?UcW8M zSS#vDMjT(ye<|Po%qUAu>^%-|wa&~MnY?2E!9Ks<)VicS3ZsoawwCM_(gC}FDg;M& zo9UK~7wY}JRXmytOR-1ubNCFdXrAMQXZPA|C2n%Qwsq6qqpEUdLh_HbuIs;LJJ$Msy20h1BV-> zZrFoGYLCba<)+-~wgji3@RozNM|Tn%=huT; zsjUVkx0MdZYe@^4q-f$=9y3dvfaf!soUH#7#)0&;H9cHLhI`9-6IVtsXl^X`D)+Ic z`-FuVv)LjU86JJ0gWl4{Utxm#NqY5oXJ^J!hL|LOUsK@Bx6|s<=#grlR?~0h6$8aY zA{gE}l~*jY;hq@H1A%QUmTHDrTN;QDU(yYmIj6R|s4F&Fg+;G)!XP5OTKA2cIZIq& z;nvC)C>WJ{|GaiH=WoN%{m#keXvuzeVo%)sl@z{}wfj>XrxQ;WFtQU>Fu%^sS+x|4 zCmy{0wzLMPEo9qhR3Dw%xFNOsG%0(`q{%U?NJupSaxb z3-6`S(N&-Jo6P^01?Vh3h4`0R084(jtNR|_BVu=%-Ln5p4iHqqVx}$KF;NcrQw{9A zZb|?I)j693&X*EhE@q2&($HYi8CC2m6*15r*_`#u@_EtaP_&$%^aid>hYh4ZWh`%O z{D3Ut{20$CU?|zkPj7~OH}uqapVZvf_szJ=UUksFHVr5^YfHyRcQVRGF{*b@b`VIO zgP@aRLa{k|7~;-yMiHTevfYq`hT9fqh$y3rwd_YP`qhF#=rWdxC4%qzZ+Xr)NgAV? zQuctw9jw&p<gt)dT__K1Axq&~qT?UwdyVRP6Ku@Q=gjduQ= z;~xB(U4Lu%}){=S^wD<; zA#mhW75l)*ztaM`7tn#Jq{P59fJXQQkC}R_bF>7s>4%hW{>d4eKqAK4m$aC(y>b?= z#z7~-yQmfdh~HO3Lpy@ivbz(}So>2WZ>b0MDW(uk0F5-1BQx%^y8o}>55LC@QUX*x zeYrq(h045f?4b!jKs%gGdfc z`cbbXi0!aPAi`*card{i4qn{})`bmD+jekk{QQ5a3P%Af_T*NtBJLkTk0XwUPmAaA zUym)h@Paqy4!*L$t%-vrc>k}ZrT6q;gwu4pSqCO`F>ACqN&}0ygmpY^3T9x2JJ9Y1 ztXTe64Cy4?+9xUT+W{cbf0h;&)+>x5t(|v50;XxCqW^)eO*x?|^= z>G@m$ISq4-u);Fr)WE>k<#Vu=IKM*PsNtZZJ>NDV70DP!!{m%qP4#_x>M%Odwr9ff z?@RqE<2kCSDOnDo=Nr=Kin5b4hk0M=$)b;!y2x>!s^-x7#TR#jjfeB)_-AZNwW1Dq zxMbkiJwf0_(>gm*w>=(cb-uB8Fye)A*c02XG*Gp@QGsyni@oc(p!7F&macSzY;W zrh9vPdp__}+wMN`5r|GH_jPXs?xqjrxpiqceQ)+of8&nY*5EF+alUCUU8mrdgRBey z`cxGkG9RezBInoDTfq$$#KeO&Z>F2qBY6^KXz$G|pEeiGbm@6JO&he|leZQfe&;5V zS@~xAPa%=_5(jd6Bfz(My4G^$o~ko#u~`qNoi8yPllquoX=O3({vp_tFF_OQ;v%>e zR)14NEnD2gmFcC6%Xhb~Wkua-_)znAv*B$euJ9`|B7cEsVTfQUckiF+ zbMYlvl*NW+-SYEGi?tLp{K~-9osG7x`~af_7aPuo=`hwdsN zUY>x&tflAyhsE0Ct*Ku2ZWQNg(^U*a%gsJE=jLh!c+#1&{w;JB(Sfp!ddr=bQqkq)`=N~4POnWK37ywYNg;K;7)?!R!!_=+f z9}X8^oGLS(Sys9;(gJ&Kq5BT!bK1p4Dc46m`fDxJ6U|pcPxT13V}AU6UiR@vkCVYG zah%N%)t6tXXnDAK?AZ5C3quw|uGADXO|-YC$!6Hd@=;DZG^ODT@TaJMcO5LEU*Bik zPY|g(GUil2$Q;lA)}ALB$JfV}?Q;wj6=Wyx0#TQ!KleoKuvmttwLza1m$+?(9SPsH zbS+_rTx5C$p!%-@<7dL$36H2>MV#T>BP&Dw|A=h@P-%k$=nd%nc;|`%p5$77JCMzCLX`u&x@jE~(DlLy*=?jV1ULXVc6Ec7 zRy8~^abd{V|5l&20a>3nndCcVMtexqk700C(xke&^d4tn?v&-7M^hi|nNRm7)2 zOO8$Al;+RkX^N`GeayzV=tDT@CF?1T%B}Z(5lu$+t(OBT}xSR0q zO%(hsPoQ$=MZYuztgjcyS=Fy?^?BFxo&~w1M2;3(`7uJmhnE-Ei4lpCRJnXUT~}xOLY{g|k_F=a;yWj>793*s=L^d}Y>fQ2og2VN|8BT?qtOo6l@bwT5pM zHEt9=)gSadOf%6Iij{;HsDpzd1v$nkY{&jRC{3ZjAOQ`DL?{S`vNK)tNP+mHcZXTl z|4s@}y#%PXBxFQL&oVknh(s93IVH@4atl6LAW{I_frB{hQW3g7`FB0OU$Em&+v92# zjiCJq2nrB$i1LorO#?z7!s%La5-tv!g2A z%-v00Z$TWx!H<%>xM|ra5?e(R%x(zq4f7jlIr@;Sf`j3Q5f1T9P9j2rJp#dliaa=^ ze(8H3^Jz)7a2*@Im&qOavfNc|SBUf{iK}&HRx&@5B$wymGGYxz+ zJEBkq;Y46+u|dMwhy#GuHpuc5i1%);iK|WdCMNQc`%n2EIsFW?yEByDOS zM&OFbf%U>|j^nc0YzC)Lmv^%b1GL^H>GKG6`A&D~ZzeYHiut3J3d7Zd9poFKa&?-yll_eiw@YscAsSd5h|XY&04M=;On)rvT$#3 zmdQ!}f}XjMadu<9USH7n%CX84b5wDbr%HBe!yuj7eQ~|VFLc0H#QM+tl-S^9mI zPG{zf-S{2GVw{DMq}wIxvJXzXRt>q2$hwLjTg=!eCR%D-)D_mh>SaXo#RVcf5})0W zkuduffrrcRpUpnMs_W86N^9J!hb1#k{aE%w8n8DRze218@_emy9|@(+KOe~PwL!nQ zNw(9QzOJ1yqhC8p?;a&kQ`Ima8|FAgeak_sx!JZ><^kv97uaA}eR_U88Bzi=Q0Lq=C6Kg_z{!iC9a6xxbDtiSYO*e%v( z&3w0abf-XVD>+)}doIsq@mfN~LlbP&YoaYaL7x}S02%nYJi_9+r0ny73wXTuBe;SX z;Ao<}sRU|&M{APUjbn#2wWPVEg~saM0YLODr2EsW3wbi2)pMisZUU2@>uIz1)O?X< zgaqW6crH0s2x&1PtVuAUB_jpk+HFc3^6UtnaYvrxjKW)-Hr}Oq>_n+;7N~73hR@~Z zb7T##0P`X12Ki|l3#=wypJ1`oS{>}--dVf4*pdTc+8S`%-6#0SJgH7NR$*LFu)E|R zCZ0HJH@#U%j3p46g%J16Wnwb!$ACKLkL^44&*|SFaM00T_Tz_I=+@8Ct^VCUuVJLY z#6iLXbouXr!T8XGP{DZ5TYac_}qQ#`aS!!_hp@Nj@nw!!w$BK=LY>)s}g_jw9wEiS4OV|)!Rp=m92J4=qNB5?z zuZFlC*3R%TD`3?3t2u{NwmiygqTWhw(^Tzdo zqy|#@`$YfP|J~4tv3Q^^6iZ!o2MwlgZnVGyLYIbF$+PA&39Vx_rN?`dIaEDf|ASZ3 zU8T9$GTQ_V3ZOH8C)#MmV94n)QN9l#1b7=qno(uNqbEB@HoaZHNRyqu#PF`7f)FKY;Fzsc( zuY!p7#_PSc#UB!p_I`WF&Q2>m^xY~niKCun9N7!ktij?ZzD)Y}u{ zNIhTY^X=?%)~aBcQYiX>zUF5RU!Bk(M_>9*TU77zpPm|5^GSKAGyX6ql%w-YUA>j^ z-jC96wZo6|{Ky^#4`>Fys|kVzJNOKAARxjxyD~@k$dacBb`F<#l6TG=XnxEwDxnAy z26Tn@8=&Su=)iH&4zBS6ybhEqm})%hmzMl%9CGxf$4U&})-@JF|ONMHXGZ!Bls7{0SHd*+Hn zE>T))B8Lc422I6@*neC&smR;US0|gE_abF15j#kmw*!Lb02EYX$chH>AVDKz!G##^sTha zD9c$j41)mbgbPoyo+if#vjl>N$>CTe!H$0@PFE~!d#sgPd|>Yo?PU) z+!&O6>S4n(96` zYMVzSUP&7A=s~_f5wv3y&p5J0OXjl04wo1ozv?<+VcIDr`I}LDmZf!8hs2lMW@n9A$UuGHVg0}wm0N+vspPs~!mB-PE;MRhQ ze5ss#S9oJE&H2?s6{R#Kq<2hA!M_o)PSB*rn}? ze*5<;H_rDkI7>VOLx*v0{6FGX&8=ge2Kx)P&PY#o`Oy-&$9+V56@~lYMg3QJ?-Rmt z7S^_pkDqS+i_12?c>aUGazK3Qp4)E)3?*s6CVg&g(IwC-9=a_u`BZmxbTfXYzie9O z#HR_r#lKxA>D#$`lctI7*IHF{q&!w@osn7jstx|M<2%!iv@&aYsq$tQ(-$kT19GGF z19Sehud=b12W3DOSm`u-_w957fATTKq5;C!2!-Jgcfy2)Dqa880i1HSj#MkbqL7b8 zJIvQ_#d>FTx7n&EmfQ!%0H_fMC(UbXFtX7|mK?D~0Sa=OQj z-g^v*EQIJr3`7gOgyCT=2w#t{uWv|DG#PSbzQE`gYDFJcqU`?)SMc1$j-uHHwIvPh z2XLpkF8zrUL2TFbc>q$xWjGrO#0x1{dnoH>UsU_M2?dF&-7f2$b&s$gMk#jQvH|q! zsoIJ~Wsgz${ZY)B%Nu|vs#q0-*Z(=S@NiN!Ou#bpmv-vn%sJE%5C55i_AG31bbEEW zrjkmOiD!unpT8RZ)`f_Ms|^p=kOW*iLEDRk9P{@EI?c`B+Z&~YCU-fE)vKwh!iAaP z_gy!F8foi#$Vk$jQ9VU6Pfu855}NwI6#TC#CtnrO-zv-zBr3+S1^^urU!! z9A-aCDyi8PorEr>##d&cdx>5y(1{Cy__iWcRKSTQMy0lKOeetM!6&bnnFh3=tFeTC&9h2wc z!h9ZnWF8vF7?k^r!0`(^Zs7?bKwHZ8;}I)D==xGiZN+{ggnSNrG|KaOx~Zv2jOhdR zR4fM~U_9w&+VQLVSvR%@imW(A3Qm0*K%TcMyBH8a->L5nK0eb@N1}3Rba&!Sz>qLW zpe+)(aAouo@V5A2B(0ex#yGrUqgu+SNQ2>y0 zHA}oi{H#|dkEerX80O;;Uc3{09hXteKA@>;#~k^s zr~~RSAYjA00t`L+6ew)gG35g`3kwY2x>e{S2E;=r)1*!xlWpLV1tWM!4IWjy@n?Hr zJx$I^EqvXjVlZA9*Oh@w#T??58M>WnuBXk!LrXY2xfHNW;ueQX{x27_KN~-n!tT$# zYM>O@RtW^c!$COBEQP9(_aW+hm8oEX0ldq~GN2Vb3`cZ&k4g=v=U>D5Or{t(Xc}IB z-Oe&aP@vqzNTw547>Pt)rkBJEkWC=U`~2@j3>z7sN%8Xn&I?8?prEWNeGb8T*l`pQ zNzd@`i&;oy;3~tBiRjI+00@irI+n?nDd)uE*g;;1Xtd?wjTk?v`MMAy~GU!uv(M!`F0o2mGpzms3H&t=Q#KT}qr@SSY6l z^SpnSfX>;vrMBJ=XW;@BWRx@E^2A`}9e4#7IBTN|;ONR2OWx83`xXU8K)s4eYhDTc zS;NDUk&M|3hz-aiiOpud@};=V)GU_yq=z1}PN$T+wUX zMOz`NOoGpn%vTk6(ZLV&U#k~K)4eCXLj#v5yF^gt03d#-m0+4`Cz_Z?ocqWljf{e= z<|(M&v=Iz4yKDCPKT4}`sCL5fbDhx8eyZF+tizx2(MOYqfS?2g5Zz>tl%=Mqt9L|o zlO7#PlTM7!9Wz{LS)W+%n^BVh?cLp44gZrCJ|P%3mt{Goai|iMK8^cdUG}{4 zD#6Q?RHtTP{ldR!{m*c1hkNB;2g1|iORqU{A_R@IX2Vv;bGdaN(K($re#INp<>dUE zq2HCb-(KB&`bYbrXU+t2!_1E_#ahXE8FEDTIgJY~gb!Nny=Rn4t-2lEhTm5>)LZqt zojtIJY3Lk=^)aF1vCx=(@u5jQ+_KBQ)V=Y{8CoyJmqQwBKe#w_dH!de-FWVA6;{z) zj2n^Ml;xtmkKJ)mv%hn?#wewwdGE)4rIfPK#<2ON_}e-YcQdZI>Tv{HpPnol@MaQ- zd*zYIdQagDo7T$`EOMjxP#Riy%p~qd(Dg_8?{vLBqh3xYpL&UAkA5tVXjkNwD8j3c z8z8RAdX$!p5UkmM-mO;o3%Ei-A7a*{5TuU*IKD%uvNJ0bm$M!}a$CT{%~DwlHISg) zo$bx8zLpKA1}nLlQdY!S!>-A}nc2mHZrRZWO^pKa^Yih6xT^lF4p;|oPwm}Zu&-CK zEF-*o<+9S8erq2&Nh9GDKy=hF7!uiIH4d&-eqsfeQd4gk8|#Vu!LDwMx9k!f}^25u6b20JR=^WnNvHCYE6S(gUV&M+g~j_=;-jL%U0F) z)~?QF4@qMbTBUUco5TJSS8U!`8?OLrhjiY|D&1Bs=eB-eaNzpF_TcbWk2np+idpo) zUZ^M%KaW3-tneaSW+#~NYYa0oSW~v>Jt;LV&-Z_Ff=+^Bs$AgKZ1`Gm_&>qXw3<6g zab5_6n)_NDg&Zd?3-IjgK_2-;oaTI(!Y!t@zBa~PziNNxCXC@FBDi0rFv~P$^tk{V z?%@|j9k8U5kp`X=91dql_QGno^fzi9lD;U8y{ z@W%dFj=@hhMpr2n9(K{Be<2suE?ijlO*N?bP_y+^ZT)FJM-qK>oz%Eklq7!9lTGi# z!U}oiZTRvAcr=z30cF`c_Ox_H5B#THbDs6XXTZTqj%oh&Z)<(Aajk;}=ZD6fti}!3 z#ueB2Wq8Iwmvgsv_qQ6f+IVV8D@Iz7Wu>JIXz*TcFl=9Uoh_otP1nrTxL?eUdIf=w z1RU;xI=dwBR-cwJGi=Y`4sdK>Qr)>Lg&b}+JT}5CHLKUGAX5&J&Z<+fuo5i)OxVD{$RJfQYoyP~`U)l}J zswN@FQ@lcs%2_%OS$WGUvmjySrIdZd_J6yO-v6Ry(82T)6354?1T>m#pxx=5ncr*! zYmMVqu-<;qLCk=7KG2Xd-A!iT6&2@fYgC?JnkjvUw|Yo)eNLKiZ zcEIqn(YS>GOSoWb==hSo^!ng&-*oUl^O4}17(Dt4ZHS?SV#G02RaJ>IH7TE<{R*5( z46T^>BpwDahzO5g(4^~YfFF2pQM8}AL8<;(ht4O;l(Rt(pT&Oidjn-VDyt zDz%`M-+vbSyRGU6W;Z*%kI-(sM5sd*QN6iS+DH4^d!9?P8tf}=QJdMJV^5DKiJv7M ziQyRnfVFjf&_oenI%`U6O9#a_M8;Gm2}~b@A@E}RE@0)a=`G{Nt?Q$bJaC;i&`#h5 zD7MD~JRrSc$%Fk2Mseuxk&&=7q!Ad-iRg?TusuS7G13=MP)l~iOn2DPC*$i@;bb&F zl6w|w&-slj#-LqM$F7~c(J|AN23_FbouG=r3ibA&W}ZTs;mg<$Eu9;Uh4i3T9`Y8eY3o%JThHfWPK*b<+lZh&@b*?jhk@n-%QN zRtw&6QC=dxMm)qiU4Mjl*}k@`z{p*Ihm;o~!L0k?qFKn&TF-Io&3}}h%a@X9rl%QL7#jqy9bns1zQJrog^cXwo2e1tMK}?Ej54S6E;I9L6c*J;BDen{Tu zA>}2oOZ-BA{9T#peY)J{#h+O;JQpO|T~^jDD+~8uYFMMRSxwC)f!wvJk>S}e|FFOd z5A2UF*aU_|+ILeZvCcP~7e?eJhl^+D2n48x`7xBVU%csS@BN@tBZ0MN;^k*=F76}O z5}E0eQpngpK^4_Ce~B{On>JMt7e+)Z|9PIG`K4R1sAIOYusCfIltAYGgR@~?-W-`W z=Q*=h%U*<8nMXhQcE;$KC$DQ~$h#@(b#=ZohW&5TqewD%N|eNF&Q8%o*C#DpteF(- zWt|P$Fjr9qld9j<*$kK{^JgS-(6LNywO>S2VIKe_oX(LSNxcrD+!*BwQ-!RV*Up3* z2c>NPrs}|6f~??ThCl4*#wGiLc>wxv;NEcStop-a%@4 z-^7)m#H|;d<}qqPU(uaA4?iD0mlJ~Cjox(ryZOSW1|Sbn$CJK&Pl^k@6KOBx^W*QT zu65neO0(X>8lFt3MI2G0zPy3spR6!VnE$F9dL!X;aqri~GXc?5V@^&Ae*V;B017)EzHrmZ*JC@eai=JJMo?H6y|d1LfKtQ+Fje5-MGH)u}z|fz@p{5?)LZR zo2%Xwa=HPBgb~~BKk;pPQT{_Ixc@9eK=>6B=A)Y0Z4ws(7sjWYfXO*9=ntHnia^VL z{D)z8UN2}c^fKJ0SME(bmTHeT<~jy=j;Hrmj_0~1Q6 z;joJB#@)ZVFV271?QfiSb}Qjl%p!dem7$efcNT6fJc0VEh{K&F-mu5@neRn({;ki> zf1lY+{9pACx+gZs1JH^K9X&2f4YE6pSnB;SaMzFotR`3zMJ!6@*(dzj6hnAZn)&=| zpOdIV4>L5KkXKo>U|js}1mrd)-b+SH-fTX@BSaHDaYuF&ZRxJeVC&tjELNv731g$p z;T{eqB!nRj2XNs_DT>c2L{pJs537cABJz>GEQKE_8Rw4Al!dMVUb5EzrV-9F)}e zfOdH1F$dO&|Cu4pwC|f^Z$okeXuiQT!v9uAc}K6pl`zEsP(uAB{jNZNT(o1nPO%LW z;MxS|v#?#hvo|Gi3<IQlK2s~OVB8T-QB9Pg#N=&# zstRL(M|wRyDdU8CXq!5S#Y#ek5K6W#nOCp|+A!xZI3)xxVCoNNZ9oXq zl{vA%JY+dm3jhZiSopW%f5yrzoJO2s!M;uR6%YIOFPB@aBrV>wKSgDq!a=65DeZ}{ zLdZ=y2vlzLvC(oWM>7|W^vLim?aKq96h4;we8}%+9Ws>vq$iz`q5P4H6)oqZ-wwOC zq95|PhV~kEObF}Sb>gQ(^V;!b%pP^NSFf4&;kCfWfQascqJyPu8jLCMQ-nPci=YE8 z0!VNKR3gP%lPlN@`5vL6`oIeR4%kgN5B@MI&I&9%$&58*#u_-hARA&mR5U6o-J^<% z9@bTin3iLXw^?XkOwfQpEu#p1v-58Pm!!$-Qul9)-#?;^72a^bp^`9rpmwon5k#;$kH0u0b<;Z73P;`L3v@58f0pl~9Gq4Z zo77Rq@}J8K0fj=@v-kCuO>I%A`dak^5@+#gT{R*83kN7y#Dh#wBewB^X-1g#ol0}jL>U9URP}v42{E6&gzaRY&4VYh38LU9rznj+x)RqMa`8Ca?%oa@zJco!aJ_di z&%p4}v;8dW)FDgp(Q~ThR3=lr=HnC5HjRPXE2%F#)1dvRd6Yc#{WN~Sy^4X@udOo~ zsvRszqyDfFegI>?t&ZWzji&8Qfqhuh7`t(=rIF)3H5n!S1&aeN>Do3@G#)gIS{7-u zYdxoAu0-I-RG=_t9^dg3adns9xJe9=LdxOZ7=khO8|n&=DpMe z^`%sY4&W?Shm&(#~q+(3_OtQYdeYi*d zsAww~6~duKFpyqw;+WyXNaYlD4yKo^njI*%(@%sEI87cq=rx~%5q9y+56BHaV3$si zKG4i_*^`Yva)Cq@NM(?9?DcUT!vIY|%e(f%v(QWQ5<(Lf!->!b56L|hQN)*E@i<;R z_7qN}2I!sUPJ)FH7O1D3rmpO!zH=r9D$m5#ll-XfM>dCT)~v&6{`Aqt-IJp`fsS8{ zeSaVQK@|`^A~XiHSRuj4w*C zbM&>$wj==Y73&Cr1H>T3gNjWPhfJF1zW3-7?JAEg>tn9<$c zrLtvZ+S0{DE!07UbF`bfx*(4*^sTo#Ld2`UY|{15?+q92j0AJpe&WXNR(!bFW^+~e zN>*!8#vYT?f{Uf-af5dJTQf@QyS)*}T+#@D0hkdEAT*3O%`&KI00iC~gJu;}t*UC4 zI0h5u&wyACBfxSRxV#U^pS|jS+?})(oDM?f&-(3;hF>%-XnLfld_(4jutGoWx-_+V z*!_3}-mJf5)vs|Fmaplzq?r*IM_6tN_6_BK9Vm(p~;6Gdv zIEWE6JR7iI3MVl5)4{T8rnk=|CBgSLS7u~K;ObiLUeMZ2-K%$(@hH(WqybPGu7lIu zdl7{*s)hiLj)=AS0wMyq`4N0Dj&MnZq%xzD;nc;2P!T=Ah}2v5laW``4GiR^^Q1w^ zS1z3g5)D)ink^bK@JJcQBk00ktfv@C2#x==2Y!y%q z;S!u-3im~596Z6_xJ3;4@QYB}&;ZKT%zVRgnIaiD3mcL^wq3$7aOk2}?Lxx6mRn%E zP#5Sw)oS=*NS<9eIs^as6zt5=S6Ek+Ir~WA_vmxV4Ld#0d!Nc6`P>FKw!AlC2tCuR z2+Hu{(wQ*iW`lUFjp$W}7o*;k3&AUYo$5CxtT!H|FmjDx`Le=kfZ+QfxW5!2cmNn6 zA-jdsbujD(Q#E`n=|Y?sS~{%pauAVD{{vaQf+fF~C?r!8(b7_IzA25B8uog*;L=_5wbDgsw-CV%m>_17}`Bo zs&B;r=YxZ32GO{cxL^KZH2;es3q6WgaI6t6E|{#YViJ_M=cz%Y^P&fI_!}0V(@i2p zuzD)y@)V3F9{tRK(-fM@2YY}hDuo@QuS%zS?nkU_ukHL@h||q(2$}bjVeP@^F#qBL z<^d-nV1L9<0r=MrGxNCq8+Qua9eEBGjHI*Gou6{(kUU|&Z@*nW|e=8*X_8C39bj7LF`ClPa2$BvzGk#Fq(G;G^I=<)#I z+ChEGerUo+={!dr+eUgX>fdi5tb70UC$SM%7jxVGJ(QZiJLB={GS>F?79Ne?uWDPZwiV8mD#}L&# z(Zb+Iw{(1KIR-omE#77y2TxFsOxXw&gU=n5B2duCJSzc&A11)CDfxR97R< ziQV>B6)yYVr1fssy4aabygCE*kU%d#w2)@zf0o>9gZR#w`!07caTe4(S$V_X`b%rH zhXp>^8t~nQF>(T(9|CrkI=fp&CR!AZgx%n6ZD*9$zC=4Y@`?TAD!@Cxbt5hy_YoP+ zKVYz9SI>y6lclB z(t5!AeWLEL^JR;`-N{!0K0D3_4xEdBy}jL;H&RH&Df+y`3o~B8s|)_Pbs}Lqu*#Kk zSTKVn)ZM0Ng=kz>6X+9CR~;ZNeDhuV{cBE*2JD?>{6XzvY*&5nUMkO3m~1zUzxI66 z-_v(xO7XQ*%@a(7CnG{dKeVvvH&ETj6ziAUBeS|PhAjDdjt*L966<>>KD(wzvdv%C zPG0)--Y#DPK7%F#)G*OrNfEviC6x zaMHTM4z4NrZhwHDotZd^yk)c`$x05`C)@Iy${!@6%N~aU$_yhykV!xu2%g&HEhvIx zh(-rf8jjT+Awl!VwK4|dPs?)vi9NYHwaVcnia;F(HK1TPayhu6lH^Zob%$r9wjTI{ zkk;Ep5)FZ?ksz=P-lYW3+Xqi&=!uf#0efK!lo6+y?tv$qmtWSxPb{UF1(5(mUa>S@ zV4?PN=A{~AY<1KC6ipv&Vy@TO#<~;zX*e&w8+}$qF2h`XBLA_4EVL-?D((Fp?XQ6u z>_o_xTTlQAjtJ#k$xNS;Jf;H0Vlfu7u#hpf zJ>}@dgiw1Dg=OLhVqW~PwVSnLadGutzQakl5SMlYH-rFrnc0%$4Xv}IW`ip=K^hJn zlZz9;Y$hZvtbX`rKwG<5cJAtMfP)UDx;Tg7he)YG<_e%~4N61}K>JiC;Xs}EUsOHuBOIhdTz z?XpXq;gK}Z*F?XLj>_SzOFq6ODoa5iPTcwLeRlC7B93BcDw&+XV2fHHkJflD4GHrr zR{OYJb~}{h3Uk_zsZwh@!F<-t^Vj>OBl6*xXEl|o%Uljat1dXRjJk4Lb2350-Px7$!ibGL3NH0tym+WXziCkgfr} zl}p-sgI<6>{$~JEE&6!@_)q|fqK6HksQHN$P2bnY>R{im$iVCN`@s)dCFn~%Vf6ht z3c;=-pbt&HHvqeqA}X}}n~WI*@wKNF@%?>;9oP-saX?UX59x)))AZMpxQ&PDlk=3xhG!)Z0ca=L$*MN&|Jh&gL z6VBW9z9Za`{kB18!_wcu`rY}LxYi6 zF6Nld@7lZKHA6p5YDVT(w-luYy}E&OED=bh0Cx3wE7`i#gOHHlNn9HXHC%wQOFpAm~JXhAMhj?5T554QHPbThpN|_ zi=Y0fR2Q;lgP~59aeWrZk77K@pgZ77V%Gsj+85v}!@vUmRz2#LfP&fzA6*8*KyfH_iy5>Vs`+JF|zwIiXIfCQ?J9KQ2$k281(>$2|`&K(8(2q{g3o|zHW5~ zNA)LdX9b;#r~;%iV+P> z#Pno8F0UwJd<HuExj>6bt>b|lj^E!a{PpmhTLrBosL%<<2K~( z#|5Gi>VsRm-IJ3o^9$Q^TkaaLQU!?X71jyYN_kdb?0NRQ)EXpZbSE=7*W@~xOvQ?+ zttVKIO2akikDceuU5{feA5~IYQ+%oy5NiHz5SBx zQXe{sDSIhrWw%O$wAsS8kB%+ylJpA+tF>!9YiZS^^WOith_&95FHNvwVm_p{d-(IO z`173ezgYGQVxoAN?jmHcUzsg=tqx}2i#jfh@veS#x+ic|zuf6ARVKK9OSfi80rP{T zdQ|dYD$yND=s50)40zi`di;&kN+!;0v}gIQZhlaXR>|t1*_bA))`N#1IGz^pJwJ47(GtjN|4BVc7dqd>P5l`krNwsTj-{MAF2C52Xt@`wFCy1fZ;XMLz z6YJfD+%*pO4K!&xlDEG+EFatXBdqiYf4RP(wn(%$UGa@)4@tY@&ZW+pwM>yA%u6|& zid^H%FQ;e5lg@@v{{|d%!HsJPXlP)gKGl5oT^w(Dd*hkG!Gj4Nslptk+Bs3jmfQdS z9U54fnohkNW}Kcan#j4Cu-A~adzO2n=iqJH=`l-9`@s}djehB_E%KkG)t#-id2$>^ zmNGMJkM5T~;wdYq_{y{XhXt+mQIWBPVI)=i>EiZww#$t0?Mx#l3i`WOQ8bh6n%VRk ze%Y?hW=h0=C~m8MnZzL){#TT;Hy^Us6tXzWq-7=dIqm4vh$BgVvLm4*s=SS zg`QX?BrxIFSMHSsFZ{~%bj`GPgC-y|9uncy&+mYd!jIBJ3l;tpKrtPF;ss0@{t&>n zkgcohT6mHp<}8KPSQR^H2uBf6XXZMbCPH+|)|&YyhkMmsC{v(#P`U%U(mD5vZd-Ca zXBX!5>MfSFX)Oo{^3zF( zI)ZZI=xpnXK!;04^14S`)?I1S#Uk1e%1DYk9*R}z9B=&IUS!Hig6mbYiCfUC7@Iz& zb)`KrD#Da%7;MhW3X?i&7<&0;BujxXX^4)>&UfRS6=&vWR zNQLYjZ1^e8{pC8&v#0Alf)EW6zrG3L=#BjCYG`fd{71u`9y2?rV?f}f1UQvFiD#&z4B zK`krPboA;~lW8jc)`KgU>kOhf3PGC>Yeoq(jg5~SIXEt~2e`4$MF!*dB@Veh^XLiL zyuEkm=H~gaz0N|CYHVS}N)M)tWxYerp3q?o*{xXMW46}2jZ}afVaKXel9@w!M{dtfM z>El`sw3e0-?8;5@9S6Pg^71H@6yxx=KdAcR*b>;|#iR&ZD9Ue4JzU!y_rGr!+0AD%u%kPyN89Ajv!@!-d^TaCSn~9B3TN- z|9F+Q&!_h*^g?Ok6{RZ43NnhoN^HLX2QBQ`KviH|zza3Wg^-jI$V~!JBoqW*d9t9? zAXTBz3sPxi;0@KS!LP~Tgk%N51!^0Nh?ngqnr#TlCm!xzI~&{YarEaFV$x z2G`KGfR7~sab$nnSUGw5eX#g3+i>Sg>0BKQo*PURps)(TODYPg#4ES4@TXCRHUg?= zSpgs*@e}#c^qOKErpDEGcYHF>B4}l)g?fht6_d@_c;v#;bpxCV6QYk--3_Ue!^3LMY zs2qE?aM7sMCRQ|2>9;qFHbt#^m=l=kK&0=E|L$h82_iaw>4`{ZaSQ5tYx0!xzgbe2UZ3rWLtj~jhsGJoqLW# zk!w!a+DV`k6wLPdyW7|07wL35-)*2th_7uWWH$J(KoV8HVPSNlsi}Uy3Ol7=A?#w-s)NGd%<4*3Y zMPN`byBk;UGcs9UKG;eeW@HH$Jj;IfyEfJ7f>2iwzGk@$7A;4Z4>!N56gg~Pr$$p8 zIG@jbN6x7DjccRqeXcJ|(Fw=9cvb^a?Tkv6eqKZWyuCAEYx%y=AkmlFp31iz%$F@< zDi#0MrkvD+d6(Ggcc8szyzjTc*`xhG*p8p1njQD__gfmq1=pFsH!vg?IK+4#r5>V%~Q!%G@q=1`J#q#(4c9dR)($Y*uCN@8JQ{TnZA zwOGoEf(q}k@OZ5BEh-L*<%y|OczE?oi{y-0_=ovaP~V1?pBXroG5pac=|8re7{feh zkh`%x6L{w^=G6piX$HhobMs8I`QoCL&T7T`23$PY9-o^2;5|ynq6G8$2!F^{dsyp) zf|uXvuaf@;Z8HnApUsoUoCohayPR(@p(IrAcxASZuGq#-cs11UU6G!eo+iJV*xCx- z9gpc1ZM{7f;?pPQ$#Id(RlN`Ckg2Yrhbvy%Z;7YG6yDO67Re>_P`3GZ^Y&VV?tJv_ znZch?yLLxFz?vg^>TV+HN(EsiD)rqT-w!51Tc-Sm$;Y1u<6#1um+-T}W;)DgO!ov% zz)AlBU#nOL@N9`lcyG~73NEJhKm1fRJYy$71uwxE_2bBnLN9e?IH1A2L=XJOxenNO z`MF8@16%1)`pG;^(oyPgWwR<0&W88F*xu;goMG@riqh_SQ;^bTwXO}dFwq0wT2cJt z7r_klvPcNtS1raz!JT*dhrnZioJCqr6Bi!@XhkqEM=`%n$`;~IPKriImIbqXQw&ebF(ikO?tUEN%Nk#{?bkr%-3Pomf{IqwkVZyMHLgcuRY0|Qp2skyHS z#u~Bi0K~8srFixbzy1FG##$*Ph4edB$aK($RD&r5Ptar;?4lO3Xmz`3-6FS zIgX;MDPR9_;{cB+bW-8s#*jo`T|@;AydQK@p{GnBGw&dym0~z3ajVxN%i>{^NCzUJ zOaS$0R}Ozn2p1 zP&4}21_vD#I9$S&+o_1qv;3amWp-v<^0tfyTFxG8FaX@H>iLM>e}85>OUwgTwgQCpDRB(fs}=HW^Bn? z4WFK9RnmB!{k!T#YD;38o(9VJ1l)&MrOrII)*CoVPbYxflnY5L2tE0(x&U<7K(9Au z3C}kE@>AeLL^XAkeLT1!i(>47Rx2tWh|9g+%&r1Cu(TmlI2<5p)Vm#$x6%72UA@abjwum-6qS^L^}q8ed-$KtBc?L&>zSy$Sb|kEX>BQPmFLlDtIEGq6*UBI}NB`JCef2lX2X|yS9z>!09KB6?^49~&) zU^Bm@)*Eq%Kv*h2jK0ZuT{ZOO=VB+TA1j7x9ylC)rrA8jXbMv9>Q(hG_bcu7WkFxE z86U|Wpd)#iRk5od+P?}{h9hLzM(YXb)ebm!nOIfzm@xSYCX^y!Ju4&W zfse&pE)%S-Y$oD42QqX24oupLZqy089q;oRoLdbzYb3!PSBB}%Qrt305FO(ys#v3z zzk4WmtHy74S>kHI>iEVDH)s(2jf`n=Ol_Kc@HS)3Fsc9A$W{OK55-QGi4rG2K-_>> zAC{Wu5G`jmTU^rGhg_a+Y#NyQ)ky&cU*O{E+g7)Roy+KV>hJRtb&X11 z@(2Bch~}~jt{d}&-Qy*%;Je}xx&HtsJl7}q^ImnSkyve^&ZTg`1i(A~kFJL35VD`7 zZ8q5U+Qg#=MjB1}(Z|vq(t&V`sl6-RX=^%oNh&W97QDF$*zmCrWK)iXm!3UA4K(in zs_%gK`;xt^kR|)9kll?2aHShecHsug%Cn!RY4*8C9hmF0)3%LvIH`AfYKRoa@-pep z6GZHrz(N`WROMSxp`*;!etRa?!W!hT~*&F-K+jG)7!T~m_bb^9X{M)F|>BU9&xj@jv z#9}67Z()1^rxBQ@ONZq@@b@1U=cZqLtBk~~+A5ZWa?j=@K^ZN(mpvjDduZ8S%t zbQf*{c(m{^i*N_%13HI5nDRS-;Gl0;F)#<hjF|Pb8 zTKzxb_OqboYn&)Q?aF{{NlYy(D>E!HZ$ZL$tI(0Fpsk(?1BrV7)$JI2VWo}jfuZ8# zI{O7Kmf9fheZjxQ96;z_`jhBcQOt;FN^QD3{^9;iu4AO!ktea`g0s97qt`BkId88I z#;)8Kq|TusDhFA7+bKQ}J}NU51(q3I&_w_LgDIp9;H;>L_HA15FSW6MDw1<{e}pAF zhjl?wZ3!MhL=IKE^Bn>wSUSZRY7JIl;Y34{X=J|8Ipr0Sp;tGy*)5zs76Vo)-9fJ| zJ{Ue2Iqfe<`fp7UbODjg1T(-GZw@{3^(ZMr4_JNeUcY zx3?)uA+%AS;GMzX7R(C#M}cg3xTFE$06KU#u)s3{Sm3d7gcC# ze!%o!r5VKoeC#N8k(?yYc+8Y(7oQ3OVI5m;fEzM~6tSJRGk6>{`%)*D{MUvk7CW>3 zy%Hs>rRq^>WJv;x0NsRrM;~ldUzuKZhXu5bZT<;cBl~%LHkPtJ3L@=tc#mMNpG~L8 z{jtK&)hx2@EwGJ+to@Z_6=cGixLt-*F)1@MljQYEH}P(+-+QOMcHu02vOn!o9xu!= zTt>vXV(>Xo9ZB?zk0QF$Uyi5hCsdhXP6W5B_MsMTiy#n#weuZEoo7ewLu7aG@*tQw z5Lg@&ds>tST0J_-DAQ$Sb7Mw}muVrIX1a^lAb!Esw5!g5Bhjr5VZ zS@yObdwV};u7g0tltHX}!x+d};@_69_ADyeaoqt?6k>r?WN_ZfNZhnF9&*IsvVrrH zbOgf}lk@1_h3wOor|rltXhoWfN&!D);=>z9Va4M9}u zcpoSE9z9b+@^XRcP-m{0xUL4_%9Ah7PnpYoojCu_R@3j66SN@ei)TuK5;+ea`bug~ z1dkc($;^2~>%}imG@W_&2VZqnNwa_Z&+jnY=*4VnU0l5-o;}O_uKC(le_2e0OA7Ub z{3=c_T3}(fy0Ffr?k#@)v=}L7zY&)5@YZsYc(G5)*6%;tKjqf`)vX0hs-%KsOrk_0 z&~~KSq3}v8CuMQ;#%)nrwF4jV5QiQ|cQ{E=UQw=2;ou+O(mSMw`}R0Qd3HTzHElMjVUQnA!}2xn7f#*pGR@gP<*&TwJ2SIV93%Ic7P8t;AsH2ivy_s1l za{Ll0C)_8i97OfxuC>bnSfbkD<5$_+qMz>%cROCXJ=z<*yIhi0=kFIB?BQq5Y=uX6 zCU*NMZ7z(quHhRkrxTN^O>8GqxKo5FhRyW?G?gATp+b8??Ii)Gs^Zydm-G%9mvYw; z;@6KwRZT;*#{;?=mIO!?&Im*!>` zcu>N{`_PnzPLmbo<>lr4fHw6POV3D?!gJhW0*IkxN6uxQA}#)kK7 zl9ZHU_a05~1YYZ?>mFJDS(;=QN7{_{P=(8=xc&%}eM`*xUU~SagmBB ztKIpt$QH8RR5)6nf4Tc{+S*o-?dZ@(LFIuvx*B)R7Sdzz*M1?-s2hN{Ef{6Lh}JYkhy(A4=Ftf$Iqjo;~-)5dVU*bXA%m4iVGl zUspeDMxV}2Pq)ccj=H|`L~EdeZ+JK4_wqKi2?Z zMo)A?VQu1JSZvKAoL4Gc3JETzt;j>=%?}?ucpVM@ZF!dJKPq0oIlj!lx2&|a{&#Eb zSw(Uq=sEfL2gpxk%W;PxRA_g%$Y5DvEeOsuf0h=0H%)pBNq1*Ez{k3-2IH3lI{JVs zURIb)f@_xM%}}xQYYw+O(bdMq5J1gF>cSPO-^;A#F8ukp;8PG(21Gf%XmbmTo@IFU zU1_-k36Qcy+$n1qGRn%!n~JAA<8RoHXyPnh8|AiW*xneFP}&(Ef}tAV=k%W@h&(m1 z;<(lf3m5P*XxXsxoI~l0pkHgn(x%GeDPHc9D>djuyt9U5jzy5r?$VIkYYPk6fi>KPqDXqgOK2ZWzd%V+@6WxH;b9 z31_RE_s&BPppv)`9Vz2v|Hey1>We^;FG}QfKPLc}V)DbQoeS5-0;ug_0X`K@b`|yW zTf2oN^(OqzQ*waUu5ih7NT&eclf6H#+p%uQIdx-Y=&vj2^~QEHNC|{ozhlplUtv1s z4>D}0A`CsU289i{96pVIp|G<7(thL4OX1nj=J-2l7<>E^r9jO-{zW)uvRIFosE zI0vkv(th0!SZF^;Qw*YwPP}az_Plis78o}9Nhmc2fkIgIL^E$63|Uw^t>Ak{gD1Dt z#vvVYAHFo7(RxUHs4YpycC9Z)@(*~;UEl@704@JKa7{sf&FKqAMQJWz8pfmvMyIn~8pJ>Z zcz-NL$0l7x9W?GWk*1WNvbQnBr2oFHpp#+m1%te2`w)Ljlb55~Lht{mVtJY@pvk~) z%_{mU4kb8MVxGAgv}f9|!He;}(b|g6*{NTHr)0$+=#n-1`#t<{`L$g0&c;UFK;x@! zlE_Kxq)+#~Ntay$JpBAT{B}3T6XOcg)kZIquAnXw{{^{mD)M$r&j0o6T&2;6#1E`oeF!vg=`#6nn!#Zq!HP3%nMX-w@)WE;i+qOz?Tv+~Q1dF<7V% z-q?hkJP*%&UMYWsTnc*9{it=S=FOf^pJ{a%Zi?Es-I`!kCXzDVT3hm2OZHr`PU##V znEBE;8s#H}GOq@B`_wsJC}X)_5nmpjZprFdP9_zqGB~C1dR>qGor@OLIw5dPJYig6 zj?kgnb?5AnruofuhQf-{;>(>UL~@NH+^@>Xr8Tv^EbKU;+|G)+V`XcpGc@)hhwQLo9pwh9?M3e7?YRF zeUhbiekz9Sb_2{Gj!X7U-=0bR`R`)AkMH^`HYM4g?={heW^Cc4>K$275PQi8|62)8 zCnkZK6w_I4=6j%*&ssY6>+8jZ=NIaYKUt<@h~L-T`Lrf$9O_evAkrYG*RY+AUdt=#-E#GzEiBAck~;*a z*e~c%%|?9NesBN5nc?O<4&6tntE!;xol@J4RNCI!8`xV{+VDPa!@_Xv%`pU$5ygqs zxzrWahEQjL8n5in)7vv8yB(3Y$DGnN4kN8o{gAoHGjHQZcLxen-0GGqIB`sryI?*r z;rKxVOikA^pXxa$V3U05BJpBbEmi)w^J$`c04Fb*2b#THS+~oDV0D%%Lv=64`DLB} z0!$A%;JVe6>@#dLb4&|kIjbH>iIlebp6!miZBMb$PK{N~de;}Tv5{=zu3eGy3kvqm z(dEh{biDmtxRZ%DY)oVnZAKp9kTQUruNgYWkqbV{RhxCA1qJR{on;ij>O)k@H%xTw zT@oc#HEBn3dtD-UDP+4*Nmk+Ny5`u{laQ5?J!1C94BHpuNGq*^SUq2N4@M1)u$?Ov zVsHcEW4Z&JF{r4}5-L6?zjkF+Ugqv-a}wON(s=ed8&+rl5(3kZ*f5YJg(wQotYiDw z$-Ya|jgF;!5G5NAJY~)K{C{mov~57(!=Rv@@qwpn=AkoC#myGYdB+Jm*!wkV&F*~G zu|0AE^eENpR-LFn=y#eV^B*qI6-3Cmz9%<)nu(ZUCy8 zV7`{UqzxBS4ooU4F_h6Wszg2rHQcdXB<^gi`E z7TCyd2?%8yj~*9Owx$Hn3bF%-g(3M06*w*Y5pVb@_+?JJ&Ro|(WL|~KvuDqShIZID z-Jz|w^VgoPZgs2ob@wji)j(%=bYY?Y2}N-zvnSkV#f0A(aCvFfMwGmh$&FJZ=8C1^ zL#L$0MQJ>jsRMR8AX)LXFS80m#~hmiCA9S*2#oKQ8hvu9q1GgpyJjpecd`RI{^A=; zxFHUW9^=5da35BApF!Lj1~t>N0tG()i@o8L!6NuB2@%?+kFzbhMAYhUj*SvaWcX5Q z`L(d{aM-y*qj5(6urz=+-u*~Ka_C^wb4$rN*&yX+7Hswl=d}R@V{BRMxg2&7ISgbQ zOS{Y|h5{Ekx(WUd{TJ>yy86+8Ok`{)O`Kf|y6Kl5iL@SE)6=S&Zke2)wOZS5x!Lw4 z?kOgk*|ez(b@AD?6K)7)*tUHq#oZ?z<0m(){pqWdZ@qCN(&@k~@%O)#NrfjBE)4hR zaP0wzc*5ja4g#Fe93pSwmv4t`_FHVv`vfoS&@lP%oL3c}kfqBZ>5c~;NgzakN(*aq zqy>563q<<7%u;l%+AZ;$4*F_NE=M^y3=2;%~c40QvyiMPwkGy_pCIhUNdV;7^P>)>BS!T@N zvK0HQ;MGYGv{pgrQJsN)=8O)7Q%u_hgz`mT%aHew@FUn zfwcZuOYQ`!LvFc9mjwZMv!~2bl`b(+5E13%5UOqL0^T)?V3JW{5?%@fP}kZ6_@PKb ztE;kn`iLT}%3x~TDt`%wQ zOA%@9#iYYdfi?MbfX47fbun~3J?Kj<$zJ%pMBLFBqOIj5RTpRYU&CUq_jTEm-neDmL)-y*Gey;;q($8DWzhJVf2%-d=_N9r;$W5#uL_pc9Op z`F|=Y`33pAdoOKzsSjN$FRaBxv>Q2uP16a2=N0@ zD!BVnjLK)XirG{_qdxfklJKF4hkHGv6$MtYP4%5}@`jkiBC2b8L-204aZx04t)`ew zucwMX;%vHRnkI_$w%cRi`;C!(ZrvNyWxsf9kw1a_sxtosPgoezA?0(01W3f2l6I(N z>3@5szI@0%mOgCVPPKdf`1Oi+9V2aUq=@r_I?122TeR(qi|LdlzO}{iX=nlqb8YbI zZPUZnyje9Ea^_->AHXuX~V?$w`an9d=blm%Q3BQ=BRbUQTs~ z3jnDdxH2FU2OO9tzs!c+DYXWgBU4Z5^#R?F?_&2e%iL(CDeNdm5%H?(YlE%vA50#I zFaPZ{+}hdosHAP~R#SPt5y)~sYWJphe>WcB@TnPXan*OK7Ncw({l;kMNwUP>zHLrA z!26%J-kWguX^&f|ug)sWYKIw47qLwt*CxKdCsE(Z^Q8W$ECh@P%QxvGypQqqyW7j8 z^ts08YZusiF|)@m<*x+qy;{@kFloMcGS^m5wOv>u>+Q^_ z{EbkSZ1%&i_ZOSrhNlYu-dtAwm3EwB0V786%teN5E|@3S=&PWhw8tJQLQwGE{uK#e zfg3kW8O0I_Fx^Ei$;QXDj6>Sqxy+pJlnX=Kh9gS>f#3(lYA-WG4FI{V;$G-pB+FfH zmSla!ELj%yPFKuRDPAyq#s5em#gFU?m4hptf>Q|{vOUl*(;cb6CV9eC;2+uKqqeEB zlPa?zcS^(7R>Ru#?-%^rzYabQjq0gdu__=S7RD#b>c{rA_4RS&<1NgSbZZMWjsf>S z9FPDW?onW`^&PU;V8pr$xU$i2#x)Y_9 z6}V-(#((u9@m=Dzo9wafNnfAsE$(Fy&2cfI7@}c?L%QWO65WiB)njf%PMGcdY7DC| zoA)*Z{s3(&^Hp7KEglegg9k@I^#bp*>SF7c1CGhi-(+pNSEMLwBm<%SzguL}LITv` zD@QQ&LZw+b5wiNLsx z8zH>9z~y4b8wRp&9w&#&5p6*&LGAt|w+HR-Yp&J?E>F!mm-Fu9wzae7Krmk@%RQFH z^TP z?G$(s@H2DV#nU&1k0 zQWF@l%mWvvw*61(wTr!e*u>8M9HWlyN_Ts34Xdf1A7i}s`vp{k{x$YBUQIMPixA94 zT7!??t!TeB%oQ)~68Ba@_WE83-`1E~@s?_V72Q!bKq7=Q3*;oF=9com?A&;9<5}VG z^T*Iivz#Inyz=avOoR=`EaZhKb!_0wme3upD1txN6Jt)*Ka~^;-D=)h)~Wy9i0!`q z34JweG7jRKI(vsWME*OX4@qr@k(u8+@?+b?JmDLWE_zRsI;tJg^#@MA0HLRDG?Z$L zlhWvmG8}!;Si43{tp^cjP7?C1XAhi0_*&60sra9mo5z~Yf1iXCvDu)pQ(6@?e^i=t z9a80T{?y5k-%Pvmh34d|i>u{$*Ut~v)ATgps1d>UI!R2uL#d^^po- zj+UFWAaThE(AbM{_3*%PN=i!9$Z3TO^%DAUp0_wsheq>7?ZAdIE*V>5-cVm#yPeXo zV$m$iH%r?$?u}%4?QoLw^ky)*=h^Df^o}hom4enkTx3EqfddZL+Iuzh&0c#9 zg)&%(YjCNlawm;mw83Fe~gSdR|X+H#TAm>`A%p|acUaP zOB{{AH9uBYlRq*rV5{L!H>&+4GO2ekW2M5-PV+~%{U2v8Z(_y$Wof^!#Y<&=ny>3U zxNOZwbUV(4yH+XDR#(@KzAxbneZ=tPSi#KFLYu5lomr(!?LJF(R)9vy^l-=cSKaQE z`y_=_9d?l!ETkxHl$Jky@WIFTA!Uis(D$7rf4@#n_AXma80g zjl9~75ud5xsP^%NC;y!Rab>@a7H;>G!p~hItOBJhnA7h3*V5ARpib^S^=-wFg>+4@ zqV{o&x~Kz-<*eS*&YhqYyK*w>#}L__^Yie5k#h3ja>a7b&l*ok-^9U?)sztL#i`Lo z=RPk_QyEsrSiha6<@kT5O3U4@-U6gmz0*D;4gr&Ac^~U`1n%8)+xzTFAqVJt5tvvp zE|H5XEt8_!f_a>+gn|^|wZ4%`3G)ZhP}BRj{tID*Z$#!6!-%@udT+iv18hbWtFM{% zH_D#7o3a!cvMmfx|GnH%rF$N%q1Xs@tU9<`G53$4e@0z-2Y`4y@JNLAiPzm{bUD-4XKdzbrZ+eI7B#+7l*`2oC>1gPdR|_V=${-T3FEw!fY0 z1S$rYtLtO(6z54eBzz4B2$(z%#2O(#YLtlf#H$y22w9M&$|}qQ{e2d8^=4*fI2S$K zfMXdjuFd4LJgi>A@xSUW5zWWXm&gDQX7C5C!&DUJz=$uhx6B5gMqzSkk!T{`uWnRe zoSpHcCRR@r`wv#f-@Up44WU3(#x{K(85t>4zc)R;RP8uZR~Hsj=>}2i-I)ottibKY z7m3#?v8DR(?2?begiB`mfEx4NLw|o0Ix?U0sFf!$<{rYa0mt-^DV1Hp>Sm^RJ07eG#tu! ztzzHn`i%@|_wZcv337{Fagk~MID7;Yl^cU0d!s2dQidR>9lU6W2P8TI0EG}yW_A~? zDjq>Ow@sq&9W5(HeSC81h0cKV5toUVX3Oh4H9+80Ggw{p2XSUal@P5v?pZtn{T+5IV4-P19R;Y(er_Qlb!2wv-NOjoW#BTYs=@^_ z1Ihr-IFk+1$R?QBbwN26UK2vPo=p!y1XVLy45feVk*Cbh<1heVNRGl6g4Y;wnf@TN z!dy2H%dz32$6B#T6G@))=`;7-LNHD>#o!3kJOrz*4CHZ+0o;gm+*&3swd&^`2KM%^ zUAjN~_eFd&688;u->Bo?{xd+WY~p+>GRZ2#tj5#_`v6vu8tdTLi+QuYhM$FA-1_v; zL=A0J?#d6J1IJSU?tNp#>~^ROc+TltN9W2Bc-Fm3I?BdI@7D&=0>%PXe;?#m2)eJ# zz|3K02GLmHcGn4`IBo4Xo&pjfs*OkU0OuDI)6r<54AUk_ExlvUInUV@Q@M09ay@|A z4Ydm^v2QC3C!5gea&;NYNp49-we`@jd)Kj6Q!xspLCAv=>s+P=ox#4>`% z-g6&Enw%#GhyFF)FlpKhTjtfk&4rz?9U+d_uK}7V4>2KN6V`D*ABDh;D*xU;FsH-j zBkjR!$CR9%{CgBRJe~SLe#??O(fFZ~>RjM<_E9Scs_X{a!ujI~oQ2!k$f# zdO@>;G2EmOa=2oFUUfU$lNr5PA*H9T+g&F9IwI+>=^Fa=f*r|JorDZ~hq!mBsPVHy4Hu3b$^hN8cAzf$;^wQ7bJ<1qiBO)`53k+Xd82^-+j9L89fUCP>I26U}Lj zl_m}2r8wkF(*SURm*PpSJO!IDqPspF;CK$47w`x#H9~x`E8}T}5Qt~aS$H$8$i^EZ zUE%wv0c)k`C`1hCdOdrT;mU%18x{M8P4Kk{!WWXt^VLL?!vs2xWvb4nCs`K@0Db&t zS^zz`M5rE_+r%KPjRxdyklrOJb8@`Gj2fP-P4=vK300pnCLg=#TtwE z{~ZV`DU`pRmHbAjMs{y}g*t~!_XB_J=|`^jEmgw1(mQK2M&%Ss@fpK!zsf#AN{JNA zxK4vsr#%1&oup&B>>SGbxor1OZ8%q?dgZ6*3RFpZxx{gQ>6Ubk&}oxiR_hWX8tK+z zSRdgtJcd_CCOv=(^QtB<@HX8c6D@<1><358U#J><~$ z-QZo4zVxWTx2DO=b5Akp#wj{Q?q9x{jQ#Mxnw2qpJMkjJNl~Fw{HGLyHotFF7iG+~ z;G*6AeE(2RiE;fp^`ULR4t9&HtE2v9qe^lnr%&H4F{~MNC3g>34`=jpnHB0Tah~|$ zpJfab9A7{04fwg9w4zN_g58-PWM!!XRT7Zjx?t(d(Ud3^8#A24}-nx(yXxkd4a*@Y0;lMV$_ku8*4PB zs*trCV_UAsiV6Z!;Uu-lsV>c%x)#p{!pMEsMem1dF#{gc`;Mc1YwE3d+V}4F4%I}` z^_(SQ!s}_!E#0p7t<%PsoYb2a4e|Ha!n%#s#|bLd2JHQvXzetXnfDj3D&(cQOjmN- z)27ViGrI5234MHQaeHxPWoB*n7u)XqGWQvT!I1Xj?VJfzBp;&V=0!L`-Z5O)6c>vgdcaACOZ zP;Z&~e@J=SRgjK7FRw`YI5NiyJL#AfR*tn*u9%HlnopBtydW*&QBs71h#LDPd-B}n zm=<%ht)@EFiwU0MAhDs-UJ&UPTlNj+I9zNW>eMOzz}=ykNivj}IQpDPm$h5EvVwMx zt4!d_{-`j6B}e%_Osjoqc^K$IVtcB--o%O}!Y6+<0|D{ahT%@AD^g!P&9ju;@_27+ zZ;`h5drRr6oZ>Dmm?8tI6H9ap+;?8(Iv@{F__)hS^!p)vHn1|nlxe{G`1qe9x0(1h z__xXxOM204rxg{h)~S*NkO%e)bZ#6BS?2bGR~e^Q=s30(V{8cP^hoyi<(4OhE0XWB zcm4kTTQ)vujGvDWhO=64sMT}cHRdI3@$qRJaHgsmCCvfm(p?LE2})mA6@Ch%=vfF; zUTeTT(8+epg2JvNTnMJ$oBl0bm}E;N*1h8p^V9npwpW1}xXFn~FFu$36)rrY%NzI? zqT}8&;;S#UP4}97>OD6$V=Q)ZvS_uH@lme}W{O=VkeiaSlxj$ed6(IRgk(hlg;NU= z8sYlTthEbL!%0@{-wa<Kr4DV;8+NN?a43{}*%s}G z=skzA6US=^v|S|Hh0}cx`?;6=S zIble!1Xw&_uNb+2_|*NLnRfzv7Ocrm7dV)sLC#%vLaG(SO;27#31rt<2BL-RFX!h) zb`}@09X$#&s7KI=tUTP$L_7vWLxSiXT{;aq8i+j%Z9Gn{vN2KbeXGp(riFWz_O@46 z?9Q{Q{a}w`eskiHz7<-H?pMwykO!U|XW{3c587@72gCfBBJk8q9+@}zt!>1lV5M8& zXjgrAel4iMtVD&`=0SSyhO_&=BXz!uR+XdM!zJ4n5dsD9_@u_!PHhC5Yj}7~)b+w1 zNk2Kwvq!t%2%c12kD}5m4j@#y-~@#sX0u!KZT_lts6CVYKWzjO+m)8*z=*(|c#fBn zGIhc|Pdjf9SsePI8zn0AlzHE=VL>gou~&70E34fbwyC;ym_Pa_k{Cjnqts8}lJ|4| z5E1=D+B(Qa3x?BaSeT*{J3{O+Sim*WUS+;1KZlw-6K*hm<3tl)odTnF3-qB708A||CO)kTmSx80{eCUa=i{l)7Z0WkckYX**x{>~*l4226PVS= zQ`)Np5rjpW34Hgykw`>2Ju_7cvd$R}Aa&)X#PKKPqzhLl2kAas z)%^|G>E}JQZ|k3UH}S7)9{t263;+W?^tMH!OP48_(qlP>!lY0-mL+c6KEbZEgTpDF z+-N(hG$jR+G5@a5%^@`O5A!P}Cg21wqyCr?6aj%)b4KztkvX8e+h)V^u)%Ee+h6MK zVC=p>guc0{!Ex}L%98Qu$WpC;p7-qG!%ABAT#d3tjr`b+@CYuX@$$9J&WU6@sFOo=(haU?J$@)7Gis6+d3JpzJ3dNQAwrzDnIH*gNQkJAnc_teTl$o6vWMk%UIOa zegMpPRW5OgqG*2Jlv*s)DcEM*`=0ROja8__QdCvH#aU+q?aW;HTHg&n^3*YiqD(&% zU~uIuy+?)DvhVh8&p^f!pRD-RAF*ZS+O(8UwiW2aiz>?fD~+QL)kh8Z7gzksGCZVq zB7235$mq^YwKPf)x$5svh3obgB(Ub~D$?$jlj(3X+v*t6yX22>j$2+VH0y=Ah(XWJ zd@yX#RnC!)@tPT7um9^ycC|3Odqd*IWz@t9k6l}BP_4?w!ty)k;FY|fze5|m@86V) za^J&ZIX~RB0D7UQ=+SoGSa}`MPg&cW>V%nfM)3T4+}6m=X(zOR0u6$s#Im)IqiV5` zm@{$a+{@P1g^8if;H}O&-IvN?ERmRb?~x-J-^rrkGgC$~S*n3a`g?{Ab|a@;$fL1>KzOyoSMsOS2`DL+<|HEi~?co%r#yf#mviXAjY{Ax48 zx|DY#tS817ed#pn9fa63!rC8)<>ugpte_dAxmF~KYxmx zO}n0J{?%gCR?r|1h{g3;5qx!jjK$5D!?Prq2pgIgmnP<_#U*`={8bP}7$ha^J@%?} zJQ>FP8{3z4H^Bn9VzE8uDs4CLj7B=G4Qkq04@PY@MhsQwVx^-jgv|8RmAu~@S2z=9 z98D$yFtA55FL$fyLhcWu(ce+x^B6#1XbA zF3U(sHa#ij#CQEJ29^jtdBhw{4SX1EFM$Ae0(0Hh40_0Ka zbN|=EbB}*<1`aBK83unx@eCpX7DO{%`w$YN3C~gQo&DcdFbLNw47-$#bYRblDI(j* zhJI|Pq=cZz0AZb{(q8 z>zua)7J+@RBcQD>lG~8hW9}F&`DqHf{jaGI!b-sHJEf~0@*H*N8cZwD@EL#^7UPcL z5ThRC5c|EG$++mhzPi=Vh;&Wa15+&d7yVB=|`eLH>)$xN>4w$ zcQ8eBjTOgzQ*HC7QY<|PxNpJ1mBDWnZ@{})p0ONQUt2|V*q)x;4Z0qrRGz#zm@Il? zh)I%S*`JK8EHNXdZ=g^CTV!-Ret#R?J6SzwejS_?vBRI+fhZ9wh~OUz+d6>wY8n!T zf5wl{Ycj6!A0O%F%?etbe)43~cMp2BAOY}@r*o%kWpZTYSXz$#5D)~)E5t{b4(~=Z z!s6(ENYi#H5K%%(JIyl&&oWpNskUW=*Ko5Jk$p~&JGu72@59Umu~d2gd^ zC?6m2@Z`Yy*{`s%vC(feODLnr;S7{vt_HCtQ$`=)bAV72O1MHME2PrMh-hNhS7cD5LG z$UX&s)Tqa7t#%^e1UBjU{*wkh>_q7Sz0r(I+MvvF9JDzrncVIdRO>K?laJN7es-5< z8J&$!cA6sYq4LY3F4(WCzG8RcsQY!}bxB)mBkN!<-(3Aqwju3U1EECQ(udTTMz{CB zvS8LYzp${-)Ycj9{wuvR345dw7_~beUY}h5Bf@o9nir4Xb0Xfe{?I49lz-V;*JR7_ zolo18W*9S@KP&13-TaEeJgA1BUu$*E*e<>hlIh(n?ziAi>NtC6DvozW$hqhI*2F!_ zJsUF=lSBINDSLh^ffIDltc2!0`^%l0NFY5DvAJYhQV?MDC^Ez&{u~R?8t5BTH?Yzu z`=izF6S06Gu>+no(ergu1_dPXoqEMmgVaOs?y_wJ`T2Wwh2Pp^-VJWE2i(71Dh@T5 zrk;mtbl&4GQokiB_1XgYT3T4p)Mq7+YWH8!mIu0@`F4kgrle%x(x;}leoxkJ2pUH8 zeD(X{+6gtkIbG@Z&puxDf2$qUZ56$TE*BD&n~j|X7yANAUCqh{mb4!ZbVvb?!fw*7 zjz4}es!(R2HX`Y3{FMi%Efm#4-8|j<&d(^qGq*eLXiI{;&=Z@fT{=OFvol^l)clt6 zGiAWywpF1HVPlJ%qE2~keQ}q*8#?1tzubAht7Si*7>e`M6JW2q=*_h}kzSgg`2 zGK1!nxC8rFzk+YDe99I$JLZbP8!K(@71hDpE_eWWojd9(tfhzm;SUOdQNRts4*Xyg z(8-?QVN?q}AXN{GZ8y^?aHt@3Tx%)iKdWMKwuZFsev&=sjj&uu0;=(CI(d=kK@o<4 z-t9&2`sx9fpyl5Bi~C*>Bk{OhiI|b~^`HJSD1;`ax3H}|6^q4&YH`9wPkEfx*eH*e zyFeyVuDvD(_PEmffd(5w1diks9xqUz%`F9}HS^1h+YsBm!5h3JI_S@ss9&22-s&D) z6$ZKeDHzyMEP=RO3ldExpoSI)EG$a2I6b>zQvZ?e+*u%t<1EF8@v^Q3nKQAa(`LFlu3-#E4#7Tl>rki-qwfs}ex=SqgJG zic-+flDwO1XaLwaQ~OQEd3?&X>ykYKXY6oDk-P%ghl|Fe{T5J>EG3WEuU}ISes4y# zBV}`M7CTn8sz|)0!3Pjd_FpWXibk`R6D<9d#Q)Gj#ZxPS*R0zep!3%rtz+!_7NF)$ z9VH~U-H(nhiU4d=#3}f5L?UcE6tK<^ArPO+_7RGKSEc|9ydf#hhK$*qo&MvYVDY0h zD$P=O%-q!fP~KbkVX3YQ@%1Jf?}J0W)^C24Zm;v;l-#d-NUQ_~d!F)fpFHZ_zzS$T zrE}z|E((Rly{xpQ)Rxs}e`=h0m}8wsYnaP%nL!In4O;_*kUKVItX6pp)@Zf*wI0Ob%v}~RDzBk=Mo%jfh{TNg?nPBR+t%_@G)q#?btN;{!0M= z)v&=)(PMm%pF=RyKIFk+7rvKQCv7{ntklvwQu;0!VX>`;fj3!uONsJK?f?-yqx>P4 zBAkXhnA^9w9}^=rsE4h;C>Op%?~2)pU|f{jkqr1^ zHNW)<08llDx8)WHZtRw^s9B$0+l!2lgc;2lL4Wbkpy~*;iJe!qxj{vEcsQjG9M#Q| z|31n5)1;SE#P9=rNS1_Pw59r|a&lz~jKGb1A)_MaP@*SDBnuE=mAJYS!_hTD*pS^H z&(@(_0g*-m+3uji)#P-8bdq*Vc~v6L7C=rFUqOsf-$xO49^F^T*WEPww@JwLZfzi) zSG-J27dOiSc3U<~lk$XXnBlvx5LIFgfG_f9sz+daVWR6v*4kuN_8}=r3D?u(ho7;Q=`3K> zK}1R=U?Zpp|Cec{f#n~(Yo;DN|F>*hMzK0m0CTG$?GT5ep#Wkj3lSo9$eN#(C&Ed{ zY20jj(aZ>5n4Zk&w%#G)$`*pV@j)yb1=d1%2Eg?Z571BeU~SF)4;<};1J#A z&-n6h8*^NsfcO{60UCItDr;&Ehc)=$3sO%KvC0%uy?|ssPeVg?7+^jSzol+s5Pa4)w^8~aKfg7xv2{g# z3(N~Z0R1OK&dV)E4lOvCgMLAf?Rb=goa6Y%-_hqyLgoHjn`;?9r=1ze+*+-zzW&yv zL@N@VC(}95M6hZpbD5RutV}r+qHBJj>wW(buZ|5yzxaD@;oJh=15vkiouhrX{#BwM z`i%=?Jt7EEM9Oje)sXhSgGDu-Hhk}$>BSjnoO&1^PJQP)YHuPspF2Uk`Hl|zu}cep zal@Y6eT5kpOYjym)|qXVe6i;xC>r>4>jo*$?aER|^vSyPj*b3eHdQrMho26do8vN> zU|JKU3N2O%Acrp=vU$|ucVvBXbxsc(r7`xde;>dJ#q)Ak!rOMb?HN`I(?dY6;QYee zXO%(2nRgj89b*FruZ%T;yuf$O_=3gDLWSx}I?8Hls&}N*T1Af>rP5E_cro(HqNTW) zV`+MNy1CQh{mfnL`HTv|@9_$ua^p!+f>I^=dPx4T{<)QzJ`kfi)OLJ&&~d8LrI0W@ zIp1=nGxLUZe#S|RuGKTv&{fcIm$|bd2!v=R3`a<27R%-|yIb@IMn=<}^w*7*CsBqG z1`%CGJjb8P@}(6nJ9LNZerYk><96}-u>ASrKf;Hs)dJU-9(0XK(#-uUr!2tY>Z_5ggDvtM%AF3`tF|4$ zZ~pX7htNHuAs6!1V~O`R+%MndOCg?}&*29lK+<&%{nbXhn{~@_gU7%AG=*6fL_Z4p z`&)^AUA9YAmn+eBZou4Pj0{ejN)nq=5v<0lUcJ;_xI13UN-EK@Yg4{QP~ zH+C=}3d1t=OCP`q(f9}E_gk(@CMU4H1VD)*W!meID@p3wP}4x&%Z*0x{RK?r1+T19 z|I5_BRa|8Bm||2iP;>5{*Cxf}g6=U+uf-J>`%E^rTb3J2f`JVp5hC0C0({_Zz(qh| z52=~+x>6DVf{EbNVEc%GF8GzEl(a_3m`B;V#rE$(l2X_ca8&T>^(uVg9o)z09sITDL);Gl1mMMgO^~}I? zSDW|3O|TXKA0Z>7!&Z(F2t3@m-wiv)&7^#Vca7>R&D<^o)k&^>aY+eV0hrC#0CF$v zHLT>N3*&BoYjk?yUl!Fn5`ns%SVo)mx_}gi>1TNO$3|R?y?;@e!DT zqQweyUC}z#>VU1k9o2;$YYzA1vjOgFYMb;4&lv*UYW7d2^=&kWMl%Zah4(cZ(??M{ z2~QCrvV#|Y`Y&zu-&7A+=(wq_e9`PXRq_h5va0GY=+Nu{NiiA#!0htDg1=2o0&*2) z#^B3YuVci;#zM6Vew7SdR1*qrG(hKW%F63Dw>#5K9AOhWy4-X2jUiX|!DcnebS;T^ zIT0CyyUgJc+sOCDYUa?C`Im@P?e{K@hN>6TuOOzR#t#dlb{d`kAJU10wZ(WQ5l93@ zDPbHcyIlkq0sLl!d?F-OLu41rrr?heKw@h|Fjv1pGkG_*3n4oW`iE4YLVppl<`ZxYQL;PQU%$QDvf&*US8Z(S zub9=T?!RRv90seKXk}Fh9VY-Zs=x-KF3z~LkG22nX9O`Dp6t#FS}0{g<|Sy2VZ7aH z^m|t}JImT2{MzFv00lucT3PI99ZggL8z~hF`5rL+uChF{2IFvBKr9g0Ugm#1gL+5V zfsosw0e}#0B3WVl7xSVVy*01MI;FUzSLSa0MfGZ7tNr4~+4-?MZvjNPGKYwHNer#3 zn5f$#vr3qU=&3iySsaHCpzH@JBmUXq5Jh-<#dUjY_@>%EaiY)*c!H7h&wwWF%%140kDJeU&Y2JaB@E{TOF93KiQdC6TCfOHGmKj zh;VOJJ^=NfE(nNOja$5{@;Jz2uvkipr7)}>uVX-y;*@qG#}Ga$h9iWa9C{B_74TcT zfY*dE6u4y_4YPXElnDlY$#)B~OOU=W$Dbbv=d+3)=p7B?l8eFbLS;Mq272KAOgq z@O3HomXp8)F-l+yfha3r5&`w(Mt3Mz@dE1khtQx8rAPcwe}5_$a%+K+Ea(@l10u&u z{HOj>bXupDTb0$*JM>_ql z=$2(K^WK->jytL3yKugi>vI6rx0$gKWNkZ8lgdnT>A>p$$G*qS`sM3=94FYl zhvz52*#qz)r60` z&VV+&^Qv}vyYuQ zr~59-VV-b$$1Y?`I%W56o0x-n53A{Q12a{{%If}Z=NvC^Oi90q$UCMan{O|?G5mpk zgs1WCkt^@TC2fnt%Nukj?Ra zsz-s%C8`#nG`h4f+Q!Od1mPJ=o9?z1qd0IX=S>2C3cjWkymR6xfx6crm^Tj$dk!8) z4RJ*V4ykXp)o(R#j|5*-x7em{|4t5C6RN+4L2*mxBs2#3ySvX*4!JG`-o%*q_DB)a zt|5^-cZHa|xovwJ@ulGBZ{w!s)iFBb6uS|d7V*I)wT<-puMZzWlfKUc`Ju9(C}m<- z)_Pf+6OOSo?i;ov9TUOVapB-~6dB?eb{JmLwy_fG+ z2QxEZX^Rd7jh0D=yN=qQAueu^VIYEqG#n6;_D82~)Me#P`W)s1^at#E-ZIs43>`hG z0%OK>scea=y4t|yzspVvQD~{ha!K0t0q)BSf5~#6rSvOBck`KN6yc4uI=;fh1W*PXY`WG^yu-SN`_;j3-@}wl&pvj|u0Uj?#5us;ueQ1iL6I+T7)#6j zBsH9($=MY?JfDAR>cwb_Lk#|no?{23UPU#S9D-rTy%$I9dG(~cyVsYSj49|b~VNb%^!00yb#V$hNs?I|U^ z&!e=mzt%6%-0=v-o@{bn7jQuyGaCbUpzf+>m5RgDc3FY9uWjX6tml+FpE(#0ijM~* zZ46K-V9P!{oncbwRw)-7ND|Oa?Yr~Xe~ia?JMl}qRvO}E)T7kuVjNXm1an<75!Po= zB;YwUKqEoEjmjrO)8EyEKp3cx5DxM;a2r(hPeUHe-^sS*#yfX*Ch*1Uv1x#_pi2z3 z_tz!Mr|%xnnFGO7^ug7+>FLl=tiUZ0f2`i68VkgrD*>I(h}&At@E$-utz+cLhw;%0 zUzj*bs-}17{8zn66T27`ur}ftr~Nr3H{o#)9}YM_3XioR)Rjj)=WS8avEI@Pu(gX%Z0 zY*W>zZFOZi5a~0Sc)>-g$%VsV6X`uxG1=#h_#+w)mn&KT{_D3Y|Ecz~K6IbsWoj4L z&cO-;y7nd^pXRR+%cudeP6ahFtJD*-8zL$}8^8;`@$z6QUK3SFOePuPWbOo-+5FVA%MmYn;dr$gLHGVTx( ztzp)U$n#to=YE@@pVA|Ipz->d%G~Ncvulz(ANTuA5%y9(%*?L-8^sPXc}0ti+WNBh zmClPjjoW>rwVd8jXk^4CYg%$GvA=w`HU8~)_rB2nF|TUnmr<`jy;4`f z?42%BakX7cBqv3MOuP;k8eE@9k17|>wiIy`cw5Y6=IRx^kUY4Z5xib6y7+K??$)jk zeMil@$550MlSt&-u)_zjiLH?uOdUxu$`=x_+rv{Lo`S4q!tM-70& z+A#Tdu~W@|?)RhfH?VZCu&|%y%LB*$x*rB}n9n!?)&HM8WXuJsdzlMabAww+UH1k0 zM9dR1P1$HM6b~|Go(4HNVV%a5RP8r5mjSIr-tzg?IgXpUdfL?SHE)sIMDyUL#a2a} z+WN#3*MN(02b8M`9fe%uR?@Lr9s>dMO+w-ywq)O&%gD&MVCRqsIHdEs;rS>JrNhx^ z@zCz&|DxS>v`C->#=N8{hwmCWotTRJXyS-qLv$Hd?l2hbaM@7brZUum$+bQ{TcX?k z+jCuOdwL&LzC8a?Pd|`3fxWAC z38mQdjuVszU!L+6y@qWcTy^vrn99U956`**T=(xr5Lu;w?A6bW#7TmNP&ALQxaGqw zZrHUM}uaoS*ig2~j(%o)T(-LgBs)&SE2yhx_H9v@avWRsJQ+a$dXi$D%At_AxlxWbxi_Wb24+C7rw^`>W;^i1%i67&MV#Ma*kDT6I zMs@*dyLicaN)3_kqB#(E@)XbB7!00@smL-@Gb_1i)ZbzihxG$OuK|6m3#Wx~yNItR-09tW(WME0w!%-Vob6B3j?WQuT}eU)F};=;OL z>*UhXBV3p<@;t@s@J2!;449J_A1W`F&0(P=4TUQ<=|&CrQn=_`GNgiUqwBrWqs12zh~WVKtqp5?_bNc z{~whEmHh^DJTkn|GWZ8iqijrSD(~jppPuDKJEM|f7mvgrUYO5jI<4)h*K31zGVrjA z7k;h(GzvF1-xw~GY-iVY-|4X&#BJ*r3@f=P9736tfL286W;g7#V2J{@x!!`myg_sG ziuLo$SsSz7oS*%(^i>Y?KxZr|!FJCU0tG^UR~7FS&zDk$%%|1_!}B>dq@A~rXo?t$ z?^7*dF(s0<>f=FXPwWwRa&k|VLm$|yUQPBe1Lq$goe$E3EN)QcWim? zE+_*|klz_#bh}Si;y>|3EYkZ+C?CYN{x9neC?~8;$!__!(QhUfxU~SwS;K^BKNNgm zaUjBa0hVC~I^aO?q@v}19f zx^O&r#beP#sYoxtUR2fAlB5C$dBa~b)hIvY_aR`at29n2wX;nuxdVApSNS#ZXc23O z0)3Vnk%|OTh2`8pTdheUEUy4SZb*h485>sa`TqFx6qCZoh_C&ro!|sXi>(fnyq|VL z!YSRj_xkC`ATULJT*nPtK*2EX-{EVkOV$D6aZY@{mFJAan%L}8pX@oM=}**7*Chr7FX7an-; zQcbroADrgdTwfZ2e(T4KS60ya@a{Z2-9y}n-aP_E$B>c)R?J^9P_2YDiaq>1K4Evt z8XaDdimp&c|CpFi2s{> zDxc6)&qw%{M$pdQ>D|i^bW`gLLT)JKiEp}&U9gk-os#RNhI@e1DYKejjx>nx)S$SdKm_hxDfFHJ7msjs!%Jo5C#s6%B+R>#lXXw6os%8TZY<(ybE zt$+|q5m$w*i-BFIW3jcK`M*3nUX)zil~|yzpqno-;}uSjdWNQUCZ8S;RF6UIkFhV} z4dZ@}a^`Kc>&)Wq7S>b>cB|sD?D7%&uR>9BS+`pjH^`K^Yr$*Kip8{qeNeyAlg&Po zfcjG{1T^)`FWx0Nd9a84b=paO@buczJRoX9I@ISM)aoYr`%^VB{XH{d76A>3?S%2&8@POv-CSIg8FNo{S5 z#d~s&3taj+y+EUkW-EZv+&*zx$HWWIa7UYuBI)Hb zRXoUMcS4wD1>G26jz_|*mxibijFnWlQ%*g2tL8gb2&B^FOMTQ2b!-JJEw8w|xQgq( zKJ~2^!E0;XGQnFyK|@`yuVCbLeHGG?VseF2i0h5e99l;M1-g={CLgo6jz(mzLq2Z< zqz5n2NWG3-X}HT>|H~C@d+B{u0AV;3i(m`6RBLeUM&)73zedsE74?5qb=Fj16L>cD z%cr+itQbk4$>T!ghoBNZQIy3vv@HA=lJ?%Z z(NS*t%z=5IU$b%Ip~i9iQ7w74@6PUJjL7OV$)3sS1_s4+vd`kWnwmSj1EbhYB zB%3W!*$Gohv89e#s=n_`NEn;)i4h*qLkVg1dgia#;tu_++^d#1*||LuM>A*cRo|F7 zA#8UF1KEH0L_Cp8&T-WJu=hp`vAB1t$qH!=1m7Eyz6|Y9yaTCi?T?!hflvf@bBq7Y z5V&p1D^Pz323SqGtj-Ph2Weq^I+C+@=?{q_nyeB4PF*1GnrVSF4^t!&b=7TUX~_@~ z?q1dJT+0-c%=s_JWQw#HNbIz5-CDnr75wjojC$~jhwux02pVFNgS1ny0vg&JE!_4Z zz^YUGon0~)(8~9FDUHztH|F2(f z5{k&?PSI$hiB1b_(CPBJBr@cO2ow|l!X8WP>+(!T(M)uiwfg6BSXZ!zlxG+-ZY2u1 zdTsRfDmFJZguA`FyTj^?gu*^{C+`b@EVBNU0vg9U^;zCcD^E>~M;z8+Oe@&N7UC=2 zb@p(qyMIyM@e#H~psTft#z0_KEfb62OgFCRpH8iG^Q3nC^c`e2zhZWE{G=W{L;$V= z#87r~fQHbAu}>WFjQxoqR^ChX26(CJ2LWT{_@9J@xoc)!z~;i}Oo|8h8DahVhDTr? zC{ZYt4GV)ZH9V(Vt&f|R@BHtE$#W{!(&geJLb+y;u2m{}RMm&i8dv~g&K0H_B=Rm% zU_J8%ZLN(rR1dB$TSTFEjU#@$DP8Xdeqc$0K9*bA(V0a|mKP`D#Yp=_1I6F&Omh_b6>uK9&Yo>^G&Hc*M;cw-=4~iU~%fT5}>~bB?37 zj-q%P?}0fXj1Pa60rHvsU50;qmS?*=>sSA@*=-E#6~4niZn_{g=M5T!uY4#IO~ff_ z8qDR;!rT{C)dLwBC)>1p71*BEGGQ8b1v5V5q_Cr@aYz;nmcVV;g-nM^1x8f^d~6zL zB`6PIV+7x}i6fN7EXxLRexOiF4$LMW0qTX&bIkGo-vR(1f|r$pITEgTN(3|nEy7w< z&`Ll!3jnfVe(;7>nAqr1lEQL9~ujgF%Yd_T&a6U9~Nm|jt@^Sa}Cc3s|( z6^zwCHycxOF)fR*Iq^a?=->QF#dLbPGbD4s>k;wA^a{p#uDY-{uW)&C(!TqB_3+Tx z*qB$@Uh$fZl?&O+@K>fu{%&4>2|EPGK83&%i##S7XRY2YWd8PS&i8U>MT;8-UgBf= zvBMuOOqmtw_Npx| zFmU6ie{hgTuEcIF5)%MO>mJY8&?O7FK64QLFx zN>e(GrBZ>-J3q`l)elT?p-AsNzKi{o;)6C7cxCRJSrT6nlNm?tK_VuCUyEGy~ zj|e+*KbI_;__sVWJ6Z_NaNEU|uF)s=he>P)!-l=IUUtzfgrG2S?68{$*qqKrNK1YGu?i&6?E&@e z`k>X8!Sc4G$7N`dDQ5Ge5;x7H;P1WyJR3_(ftNisfCNiUHdFf2f8E}7i*gKA--Wq9 zk0fg9>Rjlzu?AA8^L`g}Uy!}hJV-s&cN_&sa3n{V8)7XV&;>!{1iIu*W}P#H`APIE zAC2=(Ds*yB9}E_6g}|NY>m0q zr@jr520?3#?N*nvi#)Y*3i73U+|$AmB5`9rswP(mYr92*RV|9GqN!o}FT{I!!|l@? zNK`PaYq<^hk9}%KbD$QAu~^6o#>@!_V9#qn=UFf(KdKe1x-`7K86Ld)q7!C9YX9Pb zHYx@J7tvP_<{iZo_6p8D3_Ry}tT5JIL%vIqrmqtrO_OSrA2S3ZKDmJe@yga@hv@@UvA znxE2P{Q`J2gkR{VQ9!*$5)u-^`zRfTlh-R;i>e&zhQnEtjIfL+xZ>|B;OppfQrJ|Y znLOe~#uT)VFT%ixuB^zgT}VvBtu%ODNy z?YEZSmADg(g5K zagDMghF|q`{sWmiVDY|~m`WXpH#~s?mhL%LWKs%%`=kZ;4o@Gk&QEwO1}p6QV^Ctw zSg8rc_c(Z}E*Xq|o*P|E-d-OT-5lwLZ1FX}?wjl<5;4HDMLlnYlY__=!sVvQ<8T#g z{PZLD<|`azJU$M&{3ZWg{J*i+i>`Isv@4AI&53^xX`w1HyGH-~`D9}1xDx^Fg4?>$ zMxfA6(^mm9Ysa|OU=-1t2cc7}_Tl&I(xtzn*w*ebuM6BeP}K27FNLhm>KU(K)mg{H zKC5`0{v$lV6ABfBdl2xpL7naRALVC|ISJr6gWEU*=K`RbT=0~D2`qA+4e&q1N@Jgz zgIr@=f8GOA8*6o-@r8Zlm#J$#fT?v7{cd9JM85lOLN8xtiZJk}@(gv{sYnxy4b7yC z6TvCsLCyK3SWyBoNV43@b~|+nez~m3l(<;j9i*XN*(1?8hTq;0*{@^pyO7#l!q%iS z=MxjGW#eRI&dN}!No{pb9Rcl*5Kb#b3KbQTSNhIlRRvZ-ksGSW3RoYmb`qs#J z{YC~OVB@t3?$8Cc*$t!y;(>5%d#jm)Ks*sl^FT~DJKMkq-@ijOqpDd1)n95=gArTHFya-A8qH)kh`k>ELhho(UnraRdZU6^o z0}Drhnj*z%Wj983dV>+Xy}_tsS`IRYQ*{0-eBtS&ndSj;W6yAz6gH%cXl53nSo+fu z+Y{MDSzWF7v6b)gamDz^tHb>*EiE4C3fhfs$VMw@4@sZdYJ=f$U5)ShKdcU@NCfIM ziIL1D#_uCq-VV^h5BRudlx+cF zO87&Vg03grlJk{2RdVQI96lONrsdirG*0^i*ZD(T-3dEK5~%t1clp)2q+Nz?-(Do% zM2BsYg^|#Vrld3u0fXu?z&?ml2w`h|FlxfYW`v;q8T7yL{^Z-B!VpKnNTC<#Uhq~V z=o4i@4RlTdaTWOVw@=#9erlZC{OKC#! zRI9ACRkfKk1lP#V#BL6`rN{`v!Sz3RukI_lecG-F zFZ{93>9S2>2-rVmcT7GpK#1F*tONvV0#+xYV4S?U&_|CGt(%{dH)&elA0jrT zcVBVjIr)}8wp5|LS|;lvuAx_Q*+Q9+MaY!CP5qtVNJ?GQbDUiK&b%o3P?!EA1Yhbr zHg#Y@yw^i%sd=VudB~~st=VI;c=;!f>*o)+gb(%D;=F=X5+H6&C2suW)LEt3a3h(! zP8$x^MK4nw?;q{{-mZdR*B%FN(q8e;3eU?50IIhzY;@D&q3(sK`38?QTHj>5|JeHP zKbP*5J49glx}J5}Ytqtt6+2yct!kuDM3k9Xrn#Emm;0*I3S`7BJpX)}yJXu<2IDXb^F2k@DAk9rpFq9gV$+oH2V9o?$djSzVn` z<#IUBQvHpISug1Zt;AKqB4BMv$>tq}jC>j>S!SI6tUP=e`0Xj1LBUE#6S)r>Jk2$9 zc2Wr6x{?*N)iRz{u~@m^k0BV^`KGjw`42rqL&+E{aVN+LYy>$u&HSaP#-4Gi#+x7+Mcz zKTp_|8G~4N5Hw8(LSX-C9bE=HipC)~FE3h$2@;6zX}RfiQ^Xt;-mp1N&uvl8OSoI( zgXY;}JuG9*tQn1ZFgPgt2Qyg<>!=W*bxslfgMFr64{Xtb=Y@jnfXp*Rjw87z!7er+ zZnop++0c)$+>GBNp5kASWKwtxw2@+iw`#P2xkkuMXnVGnXQ8?QaHn8sf`ezFdm#tU zoh~cCW-o0&T_yM-j4w?Ah^@wsfe)h5jVXA}OS$&@*{rYM02V6PZcm|%7grr!i*L{p zAK^J#3jY1RS>LNHcS9K~`1O-CN|&?yE1Y3hU)iU9l46G`x-icMNUBX+I7s zK%IgCBpj?L*wF7hHEy=ZuPIA`M+anmd!P~dyKxk8$Gxmi9uSQ7b{WJm!(4lv93Jmn zGsk_U9m;to1A)x`QIG#HGewrRi7L9?HO^Mit?w^PYbnZ6XB8^8|8{OqJC2VJZc)O& ztSvq4f8S+lhk(xiqu#^2*b>)buj&lYV*^H^@gltPI}pHnaXX6S4bMQ^Dl=w7P9dDU z)4`%AmctQA5!MF$Oo4={qxSKfks_lW*wXRs^()3P$fNKp1RY*()jkM{iqG5>N0?||P_*OM2%LflRj>EXPhus!_W$dtPa#KK9)A)1|;*)uR=3So)H0Yr{&Iw^Jt9zN)IqNOS+zL@4W9Zo1)i)`~1F%X0}Z?=1_Ju2r$97yfIn41aL zs0Py}*4%)1@v6RWJ6v;0`X-H0yKSi+6M7p-aWAUGe@Qtp{;OyvyQ1}6dI!cvX9wyz z$Z(M@_EI^|9*dQm8wn`%D$-|ygu~Dh*bcH&Tw`G&UC1ciQV0E>J8jVrcS3emK!Uy2 z4m^~jtrGY3)YLEfKJ*P*n|p}PGS*}-rQN6;aPb~afN&jpIf<+TRLB<#q45binV@Z6wSRMs_SXXkZ{7#aQCpJ(1UP(xJe1}-j}`+zx4NK* z?vsSBR`PAfy64w!VUY!7m2r>`U`9YyJ~Hygp4F7Y*Q4LM;uf&AFjgj$sUEoXM=2V_ z3y<`6VqyM|L`+;{+ljcwiFn!sqpD+%DSd5GyFrzlvDebWN-p4v z0B-X9z`Ucgv4v0z`2L<{St-3@HGU%qdsx532?T zQZ{kzE=d5HAxHa}5J`M2&IlyIxExHM<7S+X_;n;%+d;2j4n&eiIG*)mSmEplVN;Z= zn4IGvR;)dyiJ_!;bp9%(0WlkND*QlV28z+Z0r-goqe3ePuR%!wD-AGJoP+bWh3~hU zRwou;uV2Ho(KRaxS|9BuEEc7LrM0qBqAMy2cjyWEw!x(?!n#(y`i*e+!?zwPTkQ0p zgu;q-%_`?j^Q+*%4VCeKbJLfO(@m!Kd`(eZ`7e>=?^|7n=?^IFa}u%ZZPS+3*i}*j zm!|1E>YXgE*RQ1XJ`A`h%2-$wNTGI#rWfygnLAZnQPG)s@kQ&DZw04if4QCWIA^Df zXx+xpZUlR%1_zfO7hlfM>fbRxf8pndCyXkpsUI`rq!;=^-TH#;bo2A(f~8HR*#r48 zQQFfc3GbX5|C+h^iRr0&jNhhqzp z3Us83u&mV&Z?ovuM7Mh@<${<3H7qyXBb9O-MN#62*S{sekYsM*F7!{w3N!1`+i?|9WO8#n3jY z^8A1b>b>qEzAlp}ym+Ya=8<^6JZAund6$C!mkZcI&)95iIqunF;nRO=9xfHlQ(u3f zz7bWwHs9B`UJ<<58@!S(YVvKyvW-g@&jZ^eJj$zVSA^af1mC66Xq#GQb_z}q9#j0$ z=7zrCKUZn#jQEO|UtX>bZW(PW7s~6t=FAG5e^`6Bn$OkMRYpd}ktCrzupz&aoSfVh zt`%%}X_x#iM^be^xW+^ApKAME6m?%P;b_Qv-V7Wy1YEzVxqDy$4~&=c8QJU2{-{sc z-Vo?ZoPg(_y}JKw@3-=ql-4J^dC!WfpQA{RmzkVK-RS1ec1+vF<;twiO*dumgf|Xu z%~@ZcWQ_?-uQa?s8#>NH*P@JzzV%;!Eddv-liF* zTzx+%+QWxKuZ$>Rt6sigvc$#SOL&Q# zxyoy+KMie;*22$x{|aCx12?N1J?mJ;A!_LQmQb z4qFPUmx1&_WNBItj6sw47RG!_(2wZy7tN596u|5eN5iy4r=TUgujs@#6n98j-?S`` zq=YvKLW=;TY{qGMxEb_L)u*vf@o*bpxWxV_trHd@9f}(dPlil_J}b4FRKT-&w&}Uf z(aqymfnyV>&ht|KiK^eCd)Xa=ZkO5|hmFfME#w z#AnI%m;bp8R;^Js{ds49sj1xE|5)F_-`RTtM&xIcA=TT1bLcIjmTBS$*oH*r)-a4A zsIXa`+sYuEh)IjD3{lW|waeydn*8H@vpQru%0fx9*SEtb{2!{PU?Dwq^SzcMUzLUH$3LPz@Nq+uN=e31Yug zWlBE3A+|?ew?_X1k=PbB0}_fSC8~ZkgAA>!%FVgryIg~{feVRO zToZ(W?RD99Ht94;U{C08>sDyW_lV2l=;c?Y5@~6vpqV{!ncO!E46(J708L%{TLc@G zx#R@kTH!yEQ2{$a*sR_6UHEI+7&MXwVk- zcpr_Zy|D);L*>MVj+Z*Q#mcC9H!8UViY!4iJXSdPOSe$Rcr zx8I-LDu-?F*XwzBJnoN$NuzgI@P4pQ6j1Q_H_m?w}-dv}}{`Gu! zHu4GGTpIc2OGJkF7-M;%U>C5Hf~NjEQ4>JyVCB*UzK+hQMUo{;?ep#(nOzx8x~!_V zIDG*Q&!@ZJA$~N*?t%n{DO$>i&%jrj+;R4@+joAL+Q`Dn5#DFZR1FrYxW;>kF_{wQ z6B433waqf!s85r5-GaeHC@Q!ZS^sn#6RW@Csv@xCjJ@087ly;AZ9`e{&zl!?Nne^P zF8$4hY@#3ROp3jy*+sy;D$89HO-ajk@@!T#z+CkRWEHMqr8h%;ZfM~Wb`0=wGSFs{uc z+TJVB-_fLU9 zxsycK;)S{So`TL|$Bg9d%vXXsI=WwMn$mdQZ&Q_DMtT2x+rbQDUR$NT4q(=hg~r%K z5v2lsdjqToi9E%<>u7=7EMXRt9xG91SeFHM>QubCG3b+w8YuUDM~{PCakB5A!bayY z+#nbCs)BwNdFo%P8IYC2(8%=MGXmQk&5y$qVN28q=dRsE<^J$ZfbkV?lJ3z5m4*ut zUxmXe>BRALbr+e_0n|5WeD`_GwYY+O_fYL&$^%k5Qc}YT%s{7voLfJ0GfyndWkMGC z%0TU!R}F8fGI)@qqQ$owx|o(+x<$JE4WxlFDWPkSZQTA$eYVkmx3j2jx-tYpKjIh6 zuSpLmhSc9-x;7ec3J#Mai1iKk z3xb4JSh=v?v0mY6`z6hHJR>k8YL{wF*l8z6P-{?EXK_W0bcjqzjx>Np@X`R{$OdXd4)O7h& zP%s$wa=0%w5fX{-216*Y|i7>R9*E)bX<%Jsq9ZS zL|o!?9(=dS%PF$ItBIlwK{TIT!qnLT3N);^_gGVG>=xNmejX(@nC#T|n%i2d#%zp! zY3cUd!{Tl{t zt%^$nMIry(^LZd_p$(ovLhB8{jlw66C+^gWxT2)RdDN>2o_%zT`nLMdr5>G{I1KnB z&v$By*2B1EwA7=7Mbft4a1qp&S6r~7@(rkXb$}SAAC*L^YasZ1ZT_Veqd>hime=OF zzI?;Cw1*sLg436OVTi>1eGKu5atKAodtWRUI-ZEtEG+b$Zfe1q3magrjEWlqvaqw1 z#+??C$|EmFuaAZDmb+`G@_tljt^mg>AQrVxs@hJae%L%Ay8h=PW9IR|`X*%VkIvMz ziHcH|JB`0Dl6HQ}f-((A80B`-&S^amqacwKGIQZs$n;##?Bk*f!RI3H38dnoRw2Da z2O{!IhyK2UTHVUd!q5tQRAVax&&8nOmMM`&#$h7G z@o|8hP9>@{Iv(O)!5n2bEb+U1%7qXda61rzMgTjEJ%CHN2{BDHi2iuNtx;pci-S=> zBoe6-euvpNXxAXSauXV7$KQ5Qd_A7RP-QCu%7X+24Pe1y5udr$zMgP`hXIh<99BCH z)7`ivO0mgB93Si@2U6Z&6k^{_q(B4-+?cTGB8&4)B^pHM|D}Qg@Cs@f64)S?KV9g| z5yD|?KsxylQodd;*Q__HhD`sAmR(t^<#A}NE!kj|{P2$po!Hc>Gdp3mYkhu@=aq-i zw$<_o9=d+Apin-z>awitQ$-2o=1VXcvLTM%hX5XL87M$t+IbdZ1F+b~>w%n%aQb#kEh~$Gzm)!5lH?9@*ug?0syzkG~hE zJgNdXJ!0!Cv+cEIcV@44_}4!VU7q{hX4}*TM) z7K*S}xp4mc$BZ_|+Q|S6b;!RTm1m@Rk7$e7Byb=`ZdYY6obDNcmfBKygC}e*3+$B_5k~8_(>MIIra?vpVXv zvh4FZELlh(42h(qNtEp(~ z#D`V|DO0z54!@#%TZSuKiE3cyvGrDegjWV|YP{JEHXG{Pv~RS-a#9rnN!d@2*dQ@R zeUk$ZcOViwsxu?V^39b$IcYmXhq`kmTnHP$h3`HvLOw7oK z@Z$~;D4X3?_b>%M!@wUGdJbx+1IP!u@)+8=b7vNDE=;~R-5dvAJUD1>GUtchx9)Of z4{7U$uElZ(?iSG}`aO4nJ!o|;j5KSMS8|L2;&?#(<&X^87c65AYn*oaT7J zwf&b9h7{4ShUpWa8|a6Zo1Z~H^flJRybEj5U4lpb$|3tO1j8h11QF^7u`}RAo;w}7 z91bW#u-)&hou3%wjds_Hq@DWv(qsoRtJ6kV5l!$oLo_^#RsUx(`M&Z?Y>wT&7l|ny z=ewr{`lIQu48%=_Lb;i1P4YqpW4(0q@6r@(iDTC!mOs8A90H;us(Sib`vxpsQNHhwfD-(#{NhJ|EF7q#BaFA z7^vWLR%D1kn1pP}?K!6(?(IKO9!ZL&AEpADz9ygMd){eaDxlb(PAe}fTU-pU{VywI z^=|E#OZZDZ=Ly%?v*o@_MKD&>e*^>~Oo!}u8IJKTgLA>7FG~C^%OPkQ>M3~pu(z~j zB!2h+>|X2fF2rZ1G(xcs_bRppD2q9XB*0A$az8YcdN{`sz*=|~ODgM|uom^!NZ$C*%usny)2J z(vemoVcftEF_cp(>5-K{!pgRcygK@ZrbLy{d3=v_PPD#l<% zL8(S zn*&aV?LS~mZ1TRv>~UwbV&|rtWI6uFH_4m3!N5&Duio)9A-KG6@1DU!CSd@fjf5+L z9@jtVj~!*T4fT6+*`W)r#uIMRVE|E`a0WODBrJ;Zb-3oZ*{*z0tDE6cDb`^I2S3cV zt&RL{3_)!qYI1pGgucH0CnHD!K*=&BPGD|B*$W+c$jWHFt(F%EOGi>J=t2CL zOz?F&@?tB7eIj0$Aq*5k9V>3|`tYX|hrsoTgQvGJfp7@V57q*HnZlBom&0~xG<88U zpH0|{4fhd0D8*62YE8qG4WQHZWtxi)@GOo90_3wqAPfk>N$DdQK=j>!fRuq4ctLNB z&@EUa6#Hw4tOg-O^L6%jPd(27UU6}3yF*n-u>Z3ou8$~}wCj(;g9rB-P>`^7_O`XN zi)~u6)!v+8%g(PXoAO6BFu})yXW@u{_2t?SzlBv0GsH)GB@CgQ_ePyMSpa51c^e|! z%9^IDH$Upscyrf^R>oC*V_IdLzjL_7p65X~6PdULmQTO~KSMlh2b4vT7L*faQ}Y!OI7(k^z`}roXQx#ZUSvP}Xwtx4h;m2(Y#gSf zZ&HMfat`JDtjB=RwId0fwq#$HO{}m6tOb?eiHC2C$87}>9pdu^XLwzK{u<-MB)u$> zat3sA4!K!}!-c?fR_|Te?4lw!+S3ve%J9ml9S(QK;S@Hw4V41B!bp8AQ074agfqt& zVI&RZEYQimo5Cn9k}mXoTuK}8wVlpWC5->plSoh^`E`y^PD4LfoEa$|0+5wF|J1G@ zd2Y3X>L&ef)z7q!6zA10J_+Svn_29q4AL=E#x^q zeq9}swvRnJVj6CFQ(MNRc-+?E?)vcP;Q~L*8Hs;gUtgvAZM)_>*3NTepT73?n3>M% zm@@b58CZTCkNeQu>>e(7C(TDBX-n9+i$`DUL(hSXwq5xd2Gem%O)L`8o4zMMNriX!w!;PLsyO<<*+2ul>M_>mPtXoHGhPRB?wu7*pcp1&7|W zJRZ?3g+R(OOvO@AA3-T6+GHi{8#CUHnn4vMOwUuLb9cP)FB7rlLTLAPHd9o8Ymvu&SFIG zJ+TmV@vy0PM{`2+so|ph4)T(}Y^pR-c`oo`yD6<<&$5zet5h zGpN4#$q05z3HK>mpYaVsfk;m>U7O#52nyINjb^fE>Vyux zY(UK}H^zF)czrKRDkJF&%QqeYf|aRGZVl8C%dB@bBT74*Wgw|`0G!I!w@2+p?3mLr z>gRW-q{Y9$`-sZ3?ZR|{JIz`BuwHhFIW19mEpG1TH>4dSFrak<~bBRGl9t1^+VB_O{o z>+{`AI9rahk3HFn9));5*qr7ADUb#HcL@lo9P!^_XojPvrOUIwKiq&+f9Z%StqfN; zKF(X59?Es2_?8~QC}b1jUelDR7HK|8JzZNBgO-O=#6o6anHxmAn40WRqqq+5Yu$Td|t?fhS(o-tXQ>M?CnuvQkB#SPFUu znw#w%fY4Ee@jzZzNu!f@*_*!j0b5(z!-qL)$@zuO;_w~pDGnJ#`9@gH(-T+_&A{bR z0HQ%WnJ_dx{n{7iU+^1%#~mo%xs(17)YRr8@=YpM1mBuN2!*Y#P$X_oM7lpUf z0t!9&u-Dw4ej{65YOL&@VJuWyxku_a^&B04m4Ui<3(oY^Q*WcHxMsNSQsy@?-9@=& z^~-0eZ)fTGE|KXZeu$vgyFN!)B*f?fz=@0}=kBM7Oa<~=^_u?dFE``U1uU3JIt9u? z===Ish9=Na)6RR!)bbWPjz5$=88mdyvXC6Owz9NK_44GlyUyR2$503?_#b`uM(;(& zmojw><{|Y<>)|M;X7&;mkAv$*UMLvEGUOQbBgF+E*wfr-wv1CrB8k7wSE7>n2nGIs zUl_R1DTF|SX5)W&1ire?#g88f1&;ypVueeQ)L8-{72jF{(L~zpIDZ}XBwg=h?d^rw z$L$Wa&vMOBPD+QYagT_kmt;%a>noUz<^K)$e%=k?4U?1ayq?Mo+R0)z60X7M{16(W z0AopgY-|@2v9h|p7J3_&DY+eaWWzc15zbDG!ja{%v6nf2>NQ1A^$}{9R9Bv6F>Rnfw1)uB^+k`pxyXjQ&6HpoeM4^ zLzC|}Nr%bMzT}`+b_Uoo7A^Yv%!lST|1k( z-rw)&^a!ezIAO&wgm4x@^ZmtcCfk>7r{!f?&=pv1+^`f>bLkKs2deJg(v!NnI~6-M zy;VA*N2&_!8`Zs4Yzk^*%|8KKGmZY7t(clTUZYZrm)AAG=zn zCwga&UYhUURb@X==3Ubhv^c%vYL%}~Wqv+rZe*IKJ65$kzgPSoXB0lX((yjTmZ`e! z@nhG#JYHKAsa2BdHBeEaeVNnbI4HZK-S+V)eJ^8!M2&aQ)yHQ^jv|+nw!NAgQakr^ zY)tqlrA9ZvlILilm~TR;R8}9kehpM2Z<+&NiFExWvB_fNQ;db|k!*{)! z=bL$J;@WJP)o(>RXXkxFf`Z~~HqW^G2??2+D^oigRL`ph%BK8Rut!iH+KzJ^-V8`+S#57Fv50Rw>rM0d2r z=$|~8r5njUnrNi;9qcWCE-MxtE*nH39OO=I3mMNoopWTPvUX-k?lS?Pr#5V-nHM)> z3Z9b_f88G2ZDnnCrSRr9jPzuL&IR?z+Yq5M#or{QTboDPF&Cmgxf;eR%>L&=B)XfY zwQGT%Nx#(C$}4wq_F(4fSp7r)`j?v5R4jL63QJ61T^jm$of9m4&-Y>k|KT|#{8BT~ zNx+3pIjpW;CkX=Gjo+E$P)jT=PTMLPDGP>)3x-4db*=WwZUMc5{+zuP%`@Pm+ z!|N~i%_9qD=|9ISu|*LP|2 zL)5G$iUoTK`k%Q`di-R@-HCC0X98H z0czVv-L4lJ z@~;BZ=%X~%0uyOK#=nP-34z`30kSurY!VrdCBNVV@Qgau?jMts-ja2n!zp~i2^o6o z5Xb?|r0u%|mLk<>XIY%?t=V$OrnKe9F$Ph|ppSxn7&4p${yM$><^{9JigW>e+$%bf z`W00ArM-O50r`t|0&Id|5>NfBCMsfvIl5qe+^djA(dd-e7QH7)zK(JyBdVv+NRWBt z31RhSSyh!Ct=ndzh65W8bxVk^z`e>($54AqO)&!RAzA8EnVrg~vB{83jf0~edWz0@ zWkPJ$xvZGcx!~+R0VGVTP?oDh&%QnJYX_$jYm!aq8=ue7Vs5(jt6{wSCp!KB3ofZ(CapHgaD?leX_0ZFU=q zC$$1VNEl&wo^m7+FQ}h*>X006H*ikD#edA|&~I-UUd^r~)X4 zMe5(902Tm)r4%sFp>+qHq7ceZk&1E_zbNJL=TPp-%2G@1;@BrBWR??!Qb}a;h&1Bk z(Xs>RPEC{$ac(!)Yp^ze$8ayVIgEG@P!sfhMH~j|M!9MjAv4pVZW2J0Z+cG>&Vm39qZmQEqEXI?wPwC{ zLEEM~HL6bGpskL}Gec~H%nR1PFf4ExC2xmlr)utkG*TV%W$8ptHEihN)k8U-gM`uj z=$QWiwF;4u(Sv@gu6J7I7D`Roq~`K+dW2 zkcmd@v&@bGR3@AV#x%cfzX2Y|7$7j3ErTG^e3`IG^2o@gD}e=tZKu)*8ZY<<$)LgT zO`zJnDuj9ybQMqw@@u%cqfi`y5c`!x%?qHKOK!p*g82pbJd%B@?t{q20M<|Z?JX#a zSDy|p5g|kOqYl+gI@){uQ7qYU=J)SncId3v>K>kbK0_x}d~zd5T5$6fjZV4d3j%<7NpjwjKHP z=Vo~-`M6cBZsj-L^w@$&`<-`v&tGb9i%IFYP8#o(-yZHny;v!qih0z%>v8Dxte7t| zmTvSj*Wbfjr-9e>?oB2jc1dQ}9G*T?3QL2q`KzfUO}~=y(OG_;_j9tG_M>Dxx-Okc zPw%g~v$8a+y4KEF-(uhgF#&Y9zGf`vNrj+UG$uEV9h{^1;>sr|JSz=?0`!znVtW1X2DUKk((dguiIqN zz18h3mi?qfBB~TppINLhUvV7(s9b+4;37^IeW_`J8wyi+`s`Uv%?Uqdm!Grgi23-b z@408Jj!HyH?3O4n6H@i(#jb|52C2vEt&C-h>8?tA6j4HAVN1Fnc@gJk>)p&-eP$+) zR=gU4k14$x_X+G?no8j|wkf#gIw2FR%|(^z>VSco^&e9&JOs+~4{2<8d0Szaf4Mwa zWumfa*38FPCH8k_es7PsA#({}2neMd#kiO1Bk!&7A+TsV&Z%;y#XD|KYQBW*nS_oc zKfi*m!FcNdAO5>8mc}3}(y@PVEh865NukTX^P03+sjp)j1rh$yKSP(I*B6JG)yD&- zuG1#cZHu}YXw+?F74OSD`T{DC0tAn+nZ01s zAR1DAnc3$la~e|R6JO&n?^ToT!yM%mWFKzU8EJs11QX1)8oS_;Hm!T-1RM=6&h>>( zdMSo6I(VGw)k$vc0;`@^KsQ%3{`vE!w%&1D**$=0?YRrQ)w1{QC2(g!n7pL@hA{h3 zeJpy2VxF-r`V`Ks+)nBJ{~?*`KWh~G(#bw|?f`q%ggWsr6^bZ{*;Ma2*rr}sj-de^ zaMW9-zmV@H2yU}EY?U=kVYi7Q+b?LDb}M;o{MplaVg1*^&^4>t)s_ISJ+`Mr8f~&m z=(OYIek}w7Q>OtUI$SOnL2~&PdA^Dv1FRgMt|J}cbi8>6vxf#Bke3y7VlU8)%&25g z2^@gA>PX$`)2B1OYHsbD1m7&2eXng>fzSPgySnz7NGr&n8MvS>o}_THpuniRqB#Oq zAFFDOsDLLle6yurUt3;-9&fBuZ>i&-%oBH~$AfH9;*!?kB#f)0C2oX5hHbM*eCe*f zty{pbk7S07l@IsaU2K|kaFxK4srkeoadSSa@gQi;*5(P#Y?Q+;qrpBqM*7f@{Eq08PhsTk%~ak z%Em+ugtGZ^sl_klP7DxPw~Q8rN3>2{1kv%l)-pTc8cGJ zrnW(#V&Kq+ey`Bk-H0q`SxI~W-`5h*EjFP_iec`JxCj+>n+{(y1j{(8Q{0gD`49VE z$R2cI*|fW8SV_^2f`$pIV<*$2;LcE{zGcCLzx7-$&GK?D)WIQBav1plWUyF@ zZJct_(qe+*# zOW=Q#KEk|0hwTPYjGiEIJd0tZd9uVWf@)Gg4!jh8fMh~sad;q2_*?=)2_R5cDvxKB zNJ59pEz_ApH`31JKgah%ZNxukt~s1Y?!$$mE#;-z5HiFAOA>M)HV=L^3}0 zHJ^cY0c#SKZvJyMq_%I8Z&?W)@>&__n2ynZ^B>ncjZxumGjR$WpUbwPyxMP5Vn&Es zp|C| zESAPk7zcq{{O-dXe3GLyz$_xq7P=R}DGWIyXPf2s`rGQ68Y7>NXXJW}8i%^EG<$nq z$)>o{THUL!KR$f@#Gw7csvOm9DYWN)v8#Rig#H+j<{C7}-OYWMr$PL$Q1Q{VmIURu zodN+V`RBhp{UNc{>b=7$zYPS5@1M0SybUC^B(zK=HJ?|;>`&A@@N9ce^0hOM5^g0h z-*VTY0)lc&zPUzA*!|@-PR%rastTEB?)kW}ND2%`7t~FkpEVHP^~6*w{;^f1H|5c6 zS5P_0Zm(`o8AQc2J?U94vo7kN^!<3|Sq-UPoB^p+jp7G5w0*XO)CGdUgY>@ANYt)k zYo%*3AMS>7yF>TjYZiy$GbxXu?hRdfYkipP?R-w1kr1t8SjhC)H2YwI=MXKW}wXg)RmtNdC?`r)`QL)v>QP9m}`XGd=MR|#adc-#Fpr|&^uVkzz`S)=Wj|1M7RP!(Q#ajFy5~)zx2|vb zCK0TVl;rmNUsx~#^JV3TC#5IBD8OcYA64 zm9NCMgXNxB^adqr9P{-p`)Csaq06tU)C2R%r~4e{n)f~`zr6(kQ1;hd4kt7j-zx*W zG7cE>bwNoZH??7US3;i%)Xm&yhyl?ORt_o$ryq7O6`fh*an?U&u6zot)&(cwMDOxA zUpOASJ`o&wGwAzm4rj1-P_xaa8ruBR6Y;DJ@VXRqjsIHeEUI1#{Q34WouNj(#P2BG zMEJ3jcqNb^+0raARB>Z=p)Y+#mpZrdJEejya7X4epi?FTK(0)FU_xB2U2hayYYLq& zVr#5V2GlG>*REGG0fcN7;T(7VcVnU3xDq?99OPrPzZq!i(PB_rFkg0k1)rLW=T2Y4 z>d9>ZoT`~0^H$~p`|H+!$gbLQK=v6}{-3cGQ`CNUo_r)EUK2g+p@ve&in~Ye4SUo= z1)>{Ji@C7q@c`qiDjK>VQF%>M=itWHddNlCVR#!dUP>VA9=+Z9>LwTfM3U%`;lw#5 z+@C6Lw}em_i5C-OP5yVywJHGQXr{-wH`>p`mlHA}33+SU1#`E#2s1~B^# zTp)@PaE_1#=oDv7w>&i%;KBRV7+b?}E$->)NMc#w=@Y%(U62_J>ApbRVFy3;Ige2< zCc&lqqzzn>XMe`BRUvXnDauaU{_^B_Z|2kfFBvK-^j?3}`>~BTss|dhC%H5e?}6TEXqc06pON)K-kc%|DAJQ!epz4E~sAYNh6(oL^V z{sBL8etNsKV7c$ajbgh9@3G2l2<%ne%;OFY_V!!t`Rgu?;v>D?1QeglM*bp!mz^16 zTREHvonA^|M>{qfi4%mKV<27iJyn7#8cRkSX*1Fcg)paE8vAYYige3(&Ha_{m=7P% zMy1!@o;e}evuDB2zOtD}bB@ztKbM7#yFiv(27MxAdhMTDZsq!qfv2{LcKnJowY8Oj zn!EwTL#&V|pF-%fLD-zc)B)~epfew^y%_1(=p~2%=f`j& zfA1avJ`jl@jU3seL8P7GIa2lpFAc9cgv>0}t5#r0SCCBgPg~36`N9Gi@*9T_7gmIF zSEioMwgr}0tI|qHm%#KKD*;l@TylkX{>1XQPr&5die;J;7!fk8`6*`|+Q*5bupu2P zIqvG}6*NCD^McDlX(Tw~jIb1qAx*hN*1r*IP%70Q{h8~QD1mlopGnUH%?5YYVP$1k z=3M=LG*nP4+ZCxWtPwKse1A5MMCFSYM2L}jO;5CHmwOAurk=^l+HTcRKrZ+hVdby6 zJhB5K)<-BHz)LCj0v<+bm{df1fnZV>st0&5WuoM%u!O-VJm$ko;5QLZDmg}#IAz#C z#>c$|@RK-fE-AjPC*UVL4iVC@+ktte1xR0;)c+n8f-T5#wkQUgC8$X{z?EZK^PyE< z2v!2fB%g57+)r$B(8q#7(>k$w;2kZi0KU0LdFplMp?h?Gu_}o;M|KzjCYnt#mH4O+Rd_B)jRQ~-;ph>M)6TS@Nu%%__r?3s&hjFR8eKmxwmrQzLuvefaH0`vCQT@d27`#>+4k z%iW$+2#a$i71cHXcxl?+#syA5(PkPpJ z76$HWHZR*q?SUbA@|SO7#f?ER7u{|R42JR!qj;0qO|K?I3z~WDnJ3OFy3|mdNYBL$ z6T;<_$d<9z=3VmpN9+y>v)U~SMmk1a_3o~RXRhDyy`@=HmGgskQLvz5+YpLz@2wA^ z*h}pBux`VCqa1OxNRy*X)N{HrKCra+P{J{zF#W>Zk^J)DkQUZj`}&G%P0;eyV?_F4 zX;<1|%)a01snHH6YJzI)Rk~+gz-E($v%gzl8du(5a=M9qI**<8(Mlxerk-hinlFp> z?G80=FYkH2lEp0_pD0ESMtY*JKZN(IPAWF1ife}x-oZWt)p%D|;Kq5;-sgjpZx2{m zWr-%gZTt%VtY8T|7e8}t_w!`r5|3TT8G{(!ux2#RiW{;K9?wc;+u zzpLZnR_EIjq#blzCm2?#E$PvYiq`s|v&S5bO!K9~BK0fWwpL8-?6a7HE~T8p660&w z2;rb>IwO3XGmB>HXTRHY;I85g2z5dJ=7r#p)V~uVt_Q9b5+++tEnJv1JKkrrT?Z>dr0BUp0jc^s)CI!vp%Svjk>e zMC%dJQ=--w=yZLU`s1{s;H~6~0}RoyaoN=m+y|ty_ggRhcv8DI&RJvD22adk_ceL* zQ>oIV3f{8R&s$#s+7`q#J$MPvd>sH7+FVYhk?}URNCUo~oWh>f5s3MyX*#>K(vo)p z+^YPQXank^lnaX$H}q|9Mg7mPmv31{WgdMYq6`$3M#{3}as~sKZ7?bacAgn__Io$n^(k{}3Z|>@n9DZ}TD89tczI|6b|Ee_I z@gMj+TmY`osX58L`z1eL3AE!kR8_^NSv}B7`*zs0kD3m0MLvPOD|k?unx?Z$_qg6k z8(N;5w#>f}?MI)0VDhYzok%L!9_d8HZEruFgrUIKly=wR+#?zM0e)Juf2FB>jLFF- zy!^deg6Dd&^>`m14&GhQmfxwbfF-51oVAOAmArUT(LM3}mVV1HdMY~Ni2q@E3xYz} z)k3@oZUI-rn=A_D_B(_Qt-BsG%P9h( zjSXu_Nnb&P0|81$5XQAanp%2nNkV#_n<315aId;%UM?&w&ARGPE9jfms4(%se}Ws| z@8ofrZM^!k1HA0)eVhV1v0l^7)bFISf{sHwdzKFqbcQ+g@VFABUGc4%gs#{|r$5Hn zKfFi9nzKD=GsUr!fFn3`>Kx-=tR^D|)mu8b;9+hx>k@@mavfZ0-fj0qa{>2CTyXoI zJ$tAY5d0D4Xoe%iTjB2Xo$G{lr9@8#kGnU!pcXPcyrimk=T?cA#)fb*K1xmgC3*YV zoygHc=tCb{gY|sQ#OCVS6iq$zs##uE4)A>1{v-yuEjk=A+4oG~$xX_sn)xpK)g25oR2jHI|b}CjF4e}5`G|~J7KI!as7WQLWV>Y&?!#JV=H3aZ0 zZyD$FB*n-g$a#8Qc7`<|wOvc6glmf!VXXVHdI z=BM2!tGhDNbYM9;V$3{|;H-3?q_;Z31sn)X!dLhn^{d~ceHXVH?+*ROFYT?sdR$$2 zS0gnv{1yVr*>Ec(KAb%S!vdUClRCUhPyk=V=~!74i~o8KuFq9F1TA(nJ?`6+ywkt{ zCYT}ump5ENi0_B{6?B(?dQ{gC*xu|?eS0Fl`*P^yho^mc17q->ZGz}h!X2=S%x^`A zCy}@FxmOlz3RsDxpnAf2qA8Y2u7UoaByZZ;&gl`zIq z6G_;J^n!eOG!^`O8BusXv9sD2FqH=&hQ{|iMge3mh?n_F5o)3vkcTbLqH*dl3kgd{ zf^{+i@g9n0MT#$9auM4sj@&TCn;4F7it$( z*Lz}P5APE|%WV)AP?D2qlZ!j_Q87X>bc1!GeiBmw^Tkly+3AWP?!lS&;%ec7`iKqx zUH%H%z|rBAm7wZNd!JJN)&0! zmuPpnrK-|W)rPeR=!L=r$l$o9`^~P)J#SA zz`JaEP860-98rMd-eTu5Mi#kqsBL#q=*Z$#50fN8G>GW&W|&R#FLKj&TudnUutlQQMw6AW84 z0z8Qzn}&kW88$7a^_GDQSu;=b+OsEf7!D?og_Hz$@2w!Bzm$4(`&m`$UMq`2Sl0Jf zx`wg`7n!mvQ-cM{=H2s}3~!lx7EGOU81@S??iD;&QqB}#b>kxv&coz9@6W0ov|`^0 zd+2?|CD9A@CXk^gyV}(r^4CglqOxN{=+M(5TK8GGR?$w)wu0rW#de2xwdzp!-;V*= zo9zZUl7#c0yw_w z`sRk?Ev>jGj%kLi&gTdxmF1GrFqlMMBpzYF@vklOsO1{&3?`gpRY?Oq7PO=9YdDW5 zx;)>V!Xi6tq9J>E6p(W+F3$FYT!11vr&SfjnzT|mcMT6m;9m6waBg$JLBaLUI3Tn$ z2_7&u^t^zNzO=c{@!jf&+O^qt0BV_Z;Ei__dMX{P^LRJ-j;7Ao{g5<~O=VpL!Br~R zD2K!Img$}-0meh8-yQ@YC<9r;lzQzE3N zom9oeUjp$t17$E)LC?>JFd*?tdW+8PZ1BDp+t3g{dWv0v19lE|kal##a{d%!=0+v& zQ@bAMB}12bh7O)F0Ye(}az=|82d>2-lY(eBnRmMV88(}QR50f|KNq>iUV1ZYip(Ky zubo|(7`($SsGVjO^&dY8i##2wgp)>Q7h#`pD+MnC#RHU#3%qJyh%;~p44msj)4 z(FAAAwSiVV4#e@zI$rN=oo}e9{_igHfPRa=lR9Rjx^os~9w$HYB0j$Wzz9)q`|TSO z3pH5U6X(*L^lrtDd;z9eb(Ijf5RpjGu;=fNCMV;Y`^^x+-2(4pcc~t0I#}vi%JUcg z?Grkdn?uoJxI4ead-PqltGY7EuwwR}h(A5MwDh|JcuK8ozS|=J#0akm1nA8asTsMS z>=0LEmLEq=|8nn+`kL@F{DN-i`p^Xxe-9UAmbl@04C9OdBl&?QObnn4HIM5!Ui@-3 z@UmW6D0_f5TihnHU(8%BB!O{xvUDLM0AQVbzi6(T`#4a=QfGq)*JtX*Lf5&WoU6s> z9nl`mTaog#R6JGU+FQ8Ow*pB3d&}}M-X|gXY}`d+0Xcu77q!C&bOK*(>W|j>Z182_ zUXwsa0!Bano6ijf9C9-L*KYLoEwQ9dNU*zv#Q{{J)K4$<2sa@Xzd~hcz-z=r2ZP zIft~wk)CQA2sPih6ayd2lVt%D1O2uKpJcZM#w&sVVI+#A#>V4ziYJ|R2@7eeO$wqW+dse&-X!c~d{sdL0*)cVd1F~axkijDir{gxNH2Le~S zzzqLg@e|zhi4us0Ix1Oh4iazSBYArtFsk{Czycg*80mdH2v*>4kT4p7&K@d&9Y~Gc&R7vN zzt2a3s|sFJ1vH2!BVbD53MLAo2Sy=6A4YMw>4DwgHD%gXY`Pw205ux0{ouo+B^vI_ zyz50#cp(8VY%wXvf{cepz=;Xp5Q)SRa0b_~!#54X z9eO0JbnVV!8Rl1dxEoN_aMvpB*eE9^f*IXKmgvUg(eh%=(n`ZbpNq8Rxw zbevgQDqc7dKipu1_^BWye*4vQDV;b0P&;mSp~v{+xQhdQBUR~ElAFK(t2=OLS7J(c zhIsUIUxuK5+KhIBh;`OihAF10fpt6KgDnBie!9F+IjF6Be5;huCo4(8n|i+wC7va{ zzGOPEQyg@!%eiYme!6Drh1}x(S-I+4VY3HxRST#3N{6)nWefdue#Yce`B=ltG<)tl!OB7R31Pl;vNmX~@Nyw7z+5&@Gg1>Hq_A|o`rpgo z;bm0l4(nny7d}iBJ(dVv=*+wscd(`L#jB$))OI`LaUXrQqWpQmtV@R<4WAqRWpcbA zx|BE5(j?!|bK_pK-Jafd*^@iN8eZLW8qLm56|`$*dsVI3kUB?3Vp|IO8{TmKF*@L? z^6JLU(~3q|!?a5?H6G~#XPyq!%%(cmRg;ZI=G_C9qtbBnn`@pw&L$rn;MJ*Z-6x=Fy0uuEvf+y2=53YV=M(X9(-6$Z zD_GS`XzA*;n16q(+-vhwt?2JZ|N6g|t#Y(kmg;*hD} z7#4&nRw@e$)V|4M>=VRs@|SP#7$^x)4D4p$nyd> z0m7u0iszs2UQT`^H{9CVgE|eSBZn4iY_8kl^uy4q>Z;|1ceTN{ZVgv+nqF~uu?2A3 z0g=VC&%Z)l^pvn8Dr#4IB^W3IYPr>%;Q4qfPQT6tZyaWRh)Y-mlN7u1v8BD^NocPw>$5@#`Rbq`yERM?|wy971{2sd_kM$)>v!s ze1nlIusS0O<6E9vVu?Gv(^vc=Zc;2-J&Nqp&E*dco0ltCtm^5}CyZ{Xjj76_>x&RC z<%k0T-S)?I=||rW@+Jp^Cg!bbXU13WOz!^&uO1o&N+K=BV}6rE1@kKTzGcYoyT8LiH? zOMCE9Yo2ENE>0ctkXv;k5Fc$OMj(Iq_fjXI^j^_+4U6e5HfB2n&jD5fYLFW)rbcMP zvi{44JJ~Xc*J-t z+N^ttA*3}X^37YtkYBV9%@=>ODuBVq)Y)PP>+1*-Zh}4$h7 zI+l?p4#{?kTD|l>&v#56S_$_V3=0IqMtr*bXu<&YfgLs^@-;figArAU3Ykwost>*w zuk)-`$Qp5%lv3?mnE5;}f1!La{}_Y|!Y}#*hRxMC+$MC&&X7$^Q>eC^Kkb=`JU9W_XEkjuLhjOnnr%V8NqL zf;7faN}eM&`I@;bZ8Y!6$ZDVKyYpIplT8>?40Bh(DXnwrU49;g8^Uhyi%S7po&)aF zAz8TY0T209YcObEEt8$18aET5tNNzw^lKd@n3q~iA|W3wPitzjYI9V zLA~64v5Ch(1SkcUEKHkil!tsF2VlUeAM`3w_@lm9L(51`{5iSkD= z5#k{$owb3JCEaxr0&{=F+F?fmf@X!S>ax%1YdYnQuR#R8%&-C|#c{RQrZ;$bu*j)V|G zh(b(h8fbWrXxu}Yx*lwDxI3%t6$D9y9d&N0KEr5)eh$3vKT18)t+6=F%?-$MNrS$-Ys^FgSQg7AY6rr&K-2 z$%M!q{`R#pbZ)iHB^)#nf$HgomYjh0*LMJi7%ug1cXF3 z%ZsdR-KlSEW^^RUSOO`uQG{&r6D%Ab@9(#hd;GFwC#E%vEWOs?K_>dLy4%kqrZyiWDtKJZ zo;_ZlQMT};DJ9eerasK(p+ zGLFr)wh%B%OraU*+a;# zY!gDV8xfJl7Q(StLbj2Fn2@X)8riqu|DJPy|NA)iKF;HI&v~4yna}t0eZOC?=hM+E z$mdq!(-p5jKdx}ceP0zz`c~dpM2p7(9AJ|#z1zs;R$804!;sXZo9t}8-`2n6AC@IX zMYsA4tTb>EM+vd3HHC*gB#pl{OL;h@A8WzcdQwCU_Js;y8pQ?g>G{^U-82^1&+%os zbSUf!J-!|wx3#sP?HZ3a7md#!^uG&a!TfxilC9b9vA|{9z>NmR?+ng3%&rI+k zI|ZI(tO$7JC2(S2C9Ci?##^C69Jua8y&;p~Ah-u|l)$w{{yq-|MV{VaQwFoIs$*gG z{BUK6OXy40@RDI18D2JSC*nE`QQ*iU?}l7&EID_ps) z0BBQ0oJUOlb;8njWz5t6vIgs;d6i9jvTM9r)&3J zyZRE>hBkFZVj*7a?EP-oQJPZaW;GK|k^o-tqa}21Z};#1`oGH^dGQ~sFJMpIUF(x~ z@uSlNRw?U~j_#-I+^$wSrRiF}$GwWoFRa*}opr?JzqU99&}+ci_eeq*xjEUD&mG!@ zC){CH4F(KXCu#ncl9aB6{g42}OK}vUz zY=Vt|a&j&o=FWdm6Uq$5s`$w^}D|-85~N!G|apVNb!b`3c89E(?3A znce?1VT{zHdT>~Y&Af(5C{J1yWUGx={zWAXti7Ejo ze(JkEnC9CvBX!5DG;Vm9?oy(7dzAw(7ux4Glh95}Oi5pbCl)XUbt&E@x8W)Ke5})N z_`wkJ<23nV2r3AU`3q^irZNwPEToM)Y&(t4-Lu;ZRj$y;>sigrx7vU zNahEVRt+t-qlLB}yI&zn?0GXgfv3K))I_+;=JZZl!$BnqXJ%@e5Lfv1=o9y?8Ha;6 z659s{t5+y#q}zBR5j9w0N}2o!wcwdS?}j=b2#-qsnfam^5U`$|vGZ%HVXL?4WxFUY zA^s5S6zS!CZ0NIO!ytq}^KG|+^vgz+8+|l`Kj|Y1Lj{vkk6wKY7sw@NnAhIauycTj z2TY`Z3g5C=X53+-3!#RFwV%Nw4_Aje?VCx3%X!=q|G)?f5gr~`4V!0HUtM5E>+l4^lz@f~H&4Zs<4kmgL0>WR_ z7IdE_-NYAUl$!=t4f+3FYaKhI{W>{*MK#$S6w&XQkGA_KLr^UCE@r;V!?aa;Mg~Yn z+!42A05Ps_2HZnY0ZdH&+QMjKc-nKl9Bx)%Rhx+wmJfX~cCcMkt-qy{AOY!b7y^F;%@ zw(|iIB!fmGZlcvirr<>(aI=5d@BR+OvQJnP8|DxiO61HWa?J^j2LRVc->mC=Xsg6{#a=2;vTq%Siy^Sn3}| zL=Zn7W9?T9LS5ixQ9{^U<;8z{g+Le>WawZcFFt-6m>TU$FVcc36x1&Au0ElW|^TNDwueuE}8xjR)ptIB|RS- zgEh2pg8PXp=qvArU+Ow3zH>TDM2P1*Dp zU*Al2hh*U`BN|`N_XFk%{;7Ml0s5Ml-_azvv0nRWzPngqz`3%$$)`-t;)Ctsq){U% z-GfqQ#a=GMAfd)1z&_myORex`q^Qo{uS)Ojw8yzqI%jg< z_;UzOy&G^W@M2zcC8m-Aj&~#GrKb|dXYpt^Z=P`FOvm%ZMK9`-!#)^Kr5a*-R421& zHdps31a7S>?i}9vbv|%G4}dReaWA=*Sx^?pf3H5~fX?29GdJ-nrv0eQ-lHz#q;e=k z*-)NL2;J0RQDf;=1BpA==dx<=<#J!xH}i)DKuZ)oGtdFOyl$hzyol+|VL5ihtDCU& z63Ef)iM3i7u4Kf*1-HCUOAnjFrlIjW!FLtPKc^8lkFo^q6Nk*3cN zkOo)N%oT@3NqR7SP zMRb-g=v@NvwK|%6yK9o`6;#CC+8V!W^(_4w0E7`6Cr6WH4mKe!7j%U$k8gC^GunbT zp>5ykIGJYTAQ6=fTtf1vSMg8e8kU#664SJVcPF%~*6)Om7_@PXP5XDk%q|;yLuZ%Y z&cT2wdAi?_aEd{+9@N>!WH)R8R_au^EE|o1)Z{oo5G=!VBi!NB3)foD>DLubn=eg^ zp-PAR=vD>VKj6WR$-;x(!g7*1fKT(O7;@Gd9df>w_tZ;nQC15o<%UktP+9yhtcJVM zAKyG9bXcX@FQDqSXuPY^!Utc)8lUZP`p$|=Z|Y>(pvZ1cJU+NuS`&Jt{@HF7WHK58 zfk2DpM%*i$TC|S(`|B5G%8x#ro@=*4Z7-sQwEHPcnZUICUZLqZ*sF&!&vTgIb4hra zwm@mzE)}j5B23DRdyzQ!7XV)I_jLv!8}rE%mVMt&pbXki0&j+b*6W(A@m!nz8yQpo zZ~++3>!W8fN-{lpflh-HLMbC{JSn65m4#ExO`KSuP-~ZM7r5MEoL$a)YRulolXGOF zEg1TZon-{~)w|xMa**g9O#OIMsoJ0Fkq+JbcYXdNGElVy;1-;SB0~RUl~>0@h>N3D zu77Jp|ASp|k)aQI-1oM_%-ZS| zi+JKE$j_morYvwIE4rk|)61iZIz%uXJF=qS>+{;ysK>v|A??P`>QtMCk&~7bCIh=K z0V;WAs{wp1WU_v*oR^#1A(iCj65$9KlQg62R<)>yy2ZJ$IlcA?@bq|+LRg-hYzB#G z0Z5t6eAn(JH|IyTR~NYhDcJ%IEmK=7%~3}kZsP5DLif8aGt(EQL$iD6WkyqA!`6#3 z?VqdpfbQYW;jixJ{}D)Qb=dPxq|lnwHASPPt=AHoXfztLNvrPGBk9o_o!wAf%_--> zK;knp%(th&vjF2Hrt%eh=oJuoZCUD$+1VJszrK>@0*_K1 zx`3q)w}&b9u@Br>LyC`qt8!Xgliu^j4vIZc$Sdi@11kS!oEVMuhja73vn*p>($ zsiz^CcmGTdw+d4YgAx=$h~D#dQHY>Ck+>bjh@Hvg30U@S?7J0nyn8!J!V~kPJo|^j@}Pn>xa_WDVOF z*WLK8?REsv@|7i+5j7su=0Dho5I`WCTOo^h0@Yp$a!^>Rt7w97NmqmOt;sptcDNN% z51L={-A>})nr>=0V2l@*2Wf`6umrs-AQLt4M6ODXCu(?o9u&)af!pmde}+I@=u)>m z7`$Fk8iEV8TLSFqE=2RqkyXGaLuU)(OAx2iCDdQRuOyC=%0Oqsv`*m(`wWa6Kn8UN z1Nt*2A`|waj=(6wxG}>&%;qLQZkm&`gpq$YHkgnZ7(kG6VPtB@NuD8{#K4Hc&;bQB zE#^h!8LSDqIxxD4);ipNXFw(f9*qvULx47!;!>&vxC3AI`SwGAwIdK9g_x4E-yO_a z>F!MJ1bl{p6Y-CwWHTZNf|6(zNdCd#L4dY&D}vc{l?)>i;v%R{r&CeJe z9ep_|j1hT5_nk7);l{Q0cK!i)?)GL^!^3k*N_npkN}Pxgjr)<}`B@@j5h2BB#Gbbt?cV+m zAO3q=bg)`h&hQ0^Pwa3wfl%^tqQJ>?FV^6$I=9ksALIMh&eH9W z8`I&kv(#z@qjOPZb6a1e7B#K+P&e&7d z+p0xScYWRG3alqZ5qBf1J(syeH~BW|S2zFOD>16jGE97Z=8URNRIm$eVgAlD_fuJ} zOW5bgzWhNcAp;)qE1F+c8=La^Fc>rQ+QEWi?i{nuE00NHRToYt>o;uH(HV<7zsR{tFI^&0YtFID#$qQ1i5}y6$#e^f3bO_2#a<5Za?$lM?z$Wyuym#&gShEJ? zSm4o*4KEcP@mtU*q#XIfM8wL0g$>s{n8nQ7CLbZ{ClDdPO9IzBerfEXr>CdCKjW#3 zU-sKv+C_ruX#)J?sM_F}Vwuy-W#RhTSd190nDJExbj&vm05I6hLrEm^S=H7LFxwKC z3tBH})g*Vre#aqkt-LBSdA4z2Ao8_#2EgImSU=VCxBL{`g_?NP>9+@B+38oWiwYZl zXn~L8h+{HdFmfEaN;j-x;}tf>v#X0>@!+T6Lah+y)J2B@G!V**6kEfB0}U(7E&?S2 zFUvLYyndKQvj08t?KIUpW<#N z$_rVnmEmx1z}_^NoV&&^19IeR>>j2EdpHnakAcjbhv~jAA3i869>6ufSwwUBrJ;lCG}Z#$&paLsc7#)gAKoPq--dZRevy;~Jub-FvH z^i7&bORO%r{X)o>n1GVol4ZQ8>jnVg77n?|tqMa{Jq^t7MDm3)+$3;vj$LKuuha~o zrPx+FyOCZt0r-Nb_KB}ZKn(?uB1(O{%Ng@6ii}A9t+g{50aeGd#M-m&#|pgxZO_k! zE0y??W8sXVGmT1WnYa+X*WSG$q#2tNWxR<7g`4T-JH{hEJB2-}bw-j}m#roX0IP!p z2xUOS$T5hIG#de3IUGrnlCvf7JoA=6iGk3TRu8wz+rBojFY$3@p`iGMj~Hb8hVF7km%Brv7|{ zC6gXqKLU}m`=O?k!-ATd0ZJI-Z*7wcHj6VGHdJkeeHfNfBKpcu0Kb)J6rmM8=Hj=R zl<0B!0hRRF9@tCXZ|$j`4I?8zesoY%$}5B;P8kvyvT(3p%-Ncq$UomzyuEZ@VXgJB z`5%AopJ<5Iv0ULG8{#iy5)l^=pTwW2*-bCqU+;U~La$xlc+S3Rn@|?!mk1W&4#~Ov z$bI;`Ei2LF75@f66U1nf+~weHivd1_?Jb#M#mmXp6r0h{)ikm=;8pm7W4PTZsI-R> z*FoUO5mZSmC?^oIN3(?Sy@MaYi)v{@SRP*W?^3H2l|Yr08(K1Z2q2=~+EK=Xe(9Df zlYEq5RWAfYud?rRHTh}FWruCM%wOz(e&(FMl=>}#K46uP)Q&OoFpCvF^z=&DRsLo8 zzK(=ys}8{i%7nV`kOikw2x)QA_I%({Hvdq~>U;F_(j|X$S>t{WBFrIeV0`bNtirJx z9Sxa!&Ny&010VAlQib{3aMKdc*MggJM7mKv_!683tMWB?Rs`!WDQ^Cr>guDO+lNG9 z4y731zef1Ww9Vl$nPh|tmlmO6Wqw%R1uO$T`nH)LslqEL?=ayGwMc`=o?wW0^q6zyKhLs+ZOV?oZE3Iq^3N<1 zF|a61&wWD{AppN~O!knDVPfAP?4&A>wSX&2hrp62dfiHsIrJZmhR+HnPLCBR2s+&D z6QywK&Tc9+--Fk%__#a_SXdCrpV8R};yq^ZfLR{W)4<;aW;FP5Kos}SGomK^2cVw1 zI>1*s59q8<<|P1uujpfi`^&KMClb$R7!9=oJ@yx{Zr8>Xx7j0ecdKP`X8J2~TWj4_ z`ASRc4E!6jV7Vm& z4Jm{0cB86yqH}O8xR?8k0q=TZE^V&qxBc>;;QoD5?2FckTTK&9u~}WMuV*93_V#2E zeu!oVF8-zE+uS|exo)2M@~u8N>;w%p|^+keZL28J`JMRIo{mUxYtIb<##FgOK<#M zTU#4tT+=dC%@E)B@=sryQ>90aX~Co(mqJLu0`7GYy|}n2*P=Gi&F{g3yM?=ZKi<|A zj+$#8o&B}&bA0WCLyQVXk_>IJ^N&qkRaLz-9(T1nB=68xtK**n(-FtIQyxOHwlkhf zqZ{^O7%fw2YmW#2`pkV`R2S)SVK>IctgJLC12E-M)rluq?`u(Ip(sTR&Q+w9XMx5~ zI?cJPS+uP813uo#?#EVRhTqmy;NPT?^@bfsbPL&u=W`4Gp1xoUTNYao$366sSap=p z?k!GW(sH{|Sb)D)2J-p1g2xd5>EL3@jodVYbgO^0_5f>tC!l|B|08l~`R}tTm0Tkl zUReh{Obv<<-0E`hCIlA~1)|!aJCiV{lwC~dHwU?z-06)YEI^(?VvbHlWZf>VY!nCk z`&B|=Ik;7V?QdY!H9$6ZCBuEY%4_5)?$Dz{VMy+K(8#|~q=}s<0<=B|V6xt&YiRgc&!(C?*&ABvUN%e8bw(ohovw z&&d8ES#suCu3d*v5;3@eEXxYSFPIm?r##sZ?^)C7+@HfeQ(BUk4|2D(v@`?T^Cud% zje7Jsx!qWUT={B%d2J#a{z8#M{zi z;>U|q8yIuu8+|hM3TF#LT8%b;ZOu+kPY>7mk~JXAxVX4D;WohZV=08y)AwpY=wNbj z-N#)E-#&2&tPY4wGHn@liWN>Y&liv&hD58I&1AuSclWZPRbq0P4GPb=z;&8SJs{w-d#>32D;!Y}t9!@c)NgSv|B)8-eyXt(^^d3gsd>m^ z!6y6{DW$v|q+>rkOru=?7Y}$I1AOpK*=X=o{HbRR`Tjt~M<8syUu@ zaVj+z+x}mU5SJ@TBNx;Z0dn`EtSlU~C`2C7!?|VvB6207*KJ@4#VMZFslOo3g<$>E z=~sT7VcXSpzS1~@`#X{2jW}>e>gZq{77JrcLaBoBy7=-uBVc+p)k-g+y~$GAf$*{h z#^uRJp5Wha!h0Jam>%>jO|%>EZ_S^9f4`Qg(RmUV6r+s)&tk5=8^JAL`xN&$PvTvw zls5lR;7LNw5Uq)UK-7A*d9$Q zzWi{tPzC|hYNQI3U|kBu+7G2LD|dH^9DmTK37sOaPsmGyz}OuTlTb~#gyZH$$0-!r!vFvE`5WO90R z@YRrN-HiRodxRjAwd}b%kYp=EGv$_QzRQ9imv2TBRFQaY)qho)LNmoHB9xSCtAAi; z`Mm!``mLNEZoC>?x677>;RK-&Sat3%XZ*!sY04&uF0 zMoKRFP?5oE&ys0coefU4KT3Stnign`byo(S@WBd~65D~-af z_yb)9Y;Uuqvk{o7C}MMR5e?epEw0>f1A*vE5OJL%sRc(2^Y8NIwpCOvT7`&u@*ubtWK7)8Qe0X8H;32_r6 zq>Q|Y50!^m*t`UEhTtv$zvcJYby$@4f-{6gNlEEFx-kfI|7=T$;>pZPqHwT1IOW;6 zlHC*IS-u_Jg%E6x=V4*1|A^o;mowtMmLJ^fSar`fe_*zCES&JWK#Dywp*)c9sromsovsdF3Un+N~!r@yn#`Al=2$K2IIpRt_- z;jDOccxB?*TVGy|#GvJ=fW^c-}y(x5DFa9r;{awWw&-Atjl#&K7e& zmcAG8ua1MtA@M_Q2k;q+n+wny$P)gO@q+Y2UMTBT7C8W2Gc>%~XgLh3`y#4KjsNG? z>pmXtWh1i&y<5xd2U|1AaS_Vo?*cvR&gnN}4#u>TQ}BL?k!i~Vy`gvKyf#Z{sb9H? z?27}ICI1?_WYqceYALW-=zLpj>RqlL@e~+9!)%qkozNp0%OZI~)X2ukR?5wSY-n1Z z=mDf&Rh@HFnXCbP{(xhxh*(_}f=Z(r**;3=GxKhk zKs*!{@1)(~T3Ve{Re0mykw#dDL zMto5=8h3T-$6*i-%xtZXFytH7SB$j>J)H}+4B>bh z8Yd~+)tS*fAuE4{gD9&dm|tCuYYwp!;dDR%GWUjd%<3j%`s9UYu8vRngMn~JXo^2@ zNa=zmnyaO9bRfs_*I zkS|Zip1%e<=v2cKxFM?&9^XaWRNq~eafo%RZe$0PN*m*&483+Xk<@H!k%(Ut?MaYx z!sbBAhVBVe)adAF*d=nq`)DbQ_J%hroCbIy0~Z1}m!B}+ocs@J0zkt<;>~Ml%c!1d zD-hFnYs<)_CA%L|#j`}<`kWTm{#p_KQ$hT|d;>Vy_q>_j-u)L0w2bv9Vs_xUu=UfI z`Tp;_vli=KaNXCj3fZj0dlYQg9RSE&%o&ezqTV9ZyyV}s81d2q;W9k?S}L5KMwOOq z$`a#cY6@-S6y(U{tfF?32f8{dPbC?jS=8>jgiyI_xrE(|D!3I6O^Y&4psl(|r$KcQ z6jByUs^YmMM4O{-1ZIXL)-J-vpMChIm5E{$&S8ME(zvv~SjIp%qj}T-cuXKHZ=O4C zUWM5cgWH}gX0(+SZ8G*qN{lhRpvA>En7B`a!~N7b&%VA-CjB09CPp$`jpJjTK7pQf z+v5X~bjJKxhJvpGUZ(;hfO|6oyzy%Yzm1+mo>~P=4!Dc-ixg=4J#`(E(+;{ z8`%veE)ARg8Qf*Pz02j~I3eF~2;cypGdw?d!0|LTaD5`l+;3xm&IoT{tPQ_>1QTdZ z=86OZ3lnej9{%U$j!qU_69vp$`RXulZxK~H+hs}u|A3%=?|Uk2x(yxniZ_2=2F z6}0S7Cn$3xmJYzy3Kc3Y_};!dV6M(<#FzFvcyrZ8D>M&QXsrM`1?Te>yv9S?YyQ9u zkQALbaiYtn%z~uCAp$KXojh7~K|aY{6Xcyu1^#oRC$HS(-i?V+gIA*G?k8G?UvJ42 zl;=nRpoGt>##HmM<28P1>d^W`?|S}qexZHvMuYeQJjWeHj1slQPO96~g zUwZA|`QaxLYyu*NgcL2_y@o_0!I@c6g3*%oB-~U$1-mN<9_zF^NNnkUgDVwtmY*qa zZFtcbqW*~Y;#~dx{igkI$W_mEMcSDu3U+q(|20$oYzCAKjFTd>?o*CfL2wN&kbpY} zVzLlD8wXcx0uKgk?z*}J%=~Z*j5Wq&!;o#I@A_EbsD3O^=_2p*C^fR&OBk(@$YidNGlSaG40+Yk|I z>Z$~mXYgNXGp)a%&e2CGBLuDy<*aTDpJf$C>=H)ox*e35={)rJcQ>pk^7mQ&{M*Rh z@VC?4>{h3kK?2p)FThn{Bl%Q#azxf01GKFkF|-7p!la3;`_{O$^Z6BqE;3`X0SkY% z8R81HJ3l|Pmbg3jNp}`J#ciNpTO_YA+@!B%ewBl9M%c}pU*fcT04e7)lIVj(Zn-zA1wI4-O{>j?ATAM5bcvmI$yu`&G2IKc>&dZ`bi05eDdrajW(;l zlgv*)Y8=Zp{^cI_qkz{WY05SU%nTwgXfOB+=p4)$kqPXsV!>3^UmZ~)$ffkX0m^#y8b(Q}xhu)Q`m*4RiU zM|=bqgaFl*&z}n;4%umo$$EZN3H1*X00s$!O=`nJD2TwX-U+^1d(0!13w${rk6b zWh4&nkJUx1{$AeRdo@&b1fYP+>CFd1+$fx2NU5mm-AZasJapHujYw*Z93)o{%@NfQ zHAU1vzJyLzazt2*tKY)7I;1zKqDk!~bT>-hUq@-HN%UARBu=HzMsTV%ECz0?+pSdw zFbvLKJ$&FB^Z=ADOCUGLuyA_nk5q$$}uITxJ`HOhzn{+G3S z;5L>eybrX?msu~#%b&gO)efDJjtbH1O#CGPf6idwh!KmhEH}!DU)j8jJZgnMgevTJ zkUkd?f`Q3=e`;WjgN$g}6nPU5te5l*AW*Od83$eLBVajr|znnNuVq$mR zniW$Aw&v&GLTLhQ^Z2_@kA!`Y8w2Tig7py!f`LI2#^-^Lu1sfsdt~YToU_%=l{6nu9)r%q=g*s&4Qr}jxJNN0h`DOm zDK1$X8imX)FOO_&^q)}l3z9p)=)0ikb3YIex)3#nSxJAAOptDWf_wD9Z9PQE!O`B{ ziF{g`?Gy|LrnC7OAHDu> zcXlkFGfkA}V4EWC>6yFdn~OZWg%yYhtR4 zva)&O(dX~+ag%HaH}+@Cyhy~o2*>+oNiMM9_`gZPI}fWP?$J=u2PwDQRF-hE7^b?k zzN%_{1h(2^@OV`y zizJgDE=+eH(>_tRJW2Dg7PLk@l}oVx{hHfKU%eTvBi8;^ZmKQ@0^3XrH2eaoi~?Gk zRdTAkjg4X`*eYPlMN~8Gr^tbt{}^%gasIDhj|K z{#;8u!V!;CnAdVZgu%JO>_`$+Pc`R}iE6+UD;0fhceKT|RGp&E<18=M{Nu8io4&34OlUrG9gWzWsr|GYpuoS3m1qs27`)E%RnL;)~QPaIeVEzR+!Qh6JWUs zU|cXUVNKO%FH<%Ao;_hdEZII0ms0o28J(7kL+nm#uKFsD<9LH51u6KhSkAIvyGO{P zKNGk*BFSS|M$es?x##hK|MN4kv>xA{UV=q>Mst#Rfb^ff@O(L=Mzx%h9FN?h_u}~V z@x`w5D>bEg{Kqpc>M>7n&*3oFt?B16VHUS3Q^krtw|P~0SyTwSyQj;@Jw~bi}WpYxnx%J4+|X$+|ygE8=(k@!I_uYtl_=kZsta0FLAQ&bYa4(14>L zYd8C;Y_i)~Yw0{g=OeZQM^&4RsMI8b)=}A`Olc}WvO-MmZFbhIj7=xvW zffn{lL24RVLGE&@OeeVHZ&({jm!*)aKmLg00t>Ahhq7LM?>mAHx7;<1Tk{JNX?FE8 zCT=t~P9iLY8B_;L0P@+e@?B;Mp_9D8BMzTjP@#noF_1KX2TMqbc62oIZ|^{RJ}t5* zJG%)mrC3|M{_eoDlgP(07Jct5MPh z9i%dD)zP|x%p!K|hIoRtU2N9DZa58I)NQWFD}*`o;h&|8wOwpE#afAHQzLxsNC4w9 zkyA&RTg_$S>k$XTy@c*nlycGeu4?BUKnkS65>5%jM30l4 zw+X5m>I9gh=B1*PEK_?|Ty{2!86P+4=ThSYV>UafE|)sx4(b`vLDC3weHe+_abmK_ z*qm-{Rh^C`cEsBOM?|LBK496e_@B?jsN7TGxc9JZK;Hx2)Z0o=Wg$NnQN4y@36IdI z=Rw4Giv#eQiTt~?^nhjdMTRqG=q*+CIZ&Yeq z8-bvsucfi~g7CQbdaekJCxGb+OW;WuNZ8H5QW6+`ypiyG4jNE+?>{%x-HrN3TC0rI z#c>y%TTg!!8N_2O z_ebQu;Sa-dt13elOeyLJBGl#oSX`dY2#0t4X<3Zo1Cemcfq&3ndp_ z4M;mcNQN?45C5m+Wp5`I9a1+ikP*~$k~c5pJ#3KFj7F$9sQ$Gt%ZRJ>^SHc*#_v{x zP!*+W$Yz&7S;dK(BG(mzfWL=%2_D`nmV6hdI{vnH_bxAIUn>?ncu=}uX2`iAx$6v_ zz{9~$dNC>b;dN5+If{!XzyJ0`IADRt&S%Uuv#F5*WhM$*(;1Y`6F~k7U|QKvrSubw zt18WWm!1N)XYp@#V=tGxpSL%oSaD6g?BcLjIx*H_iZAo1)kZy7VCBp^s7D^b^kZS6 zw<&NtWBbg(gEQWCHSpA8A};jit#yE(>?sW_z~N17Zbz7<8kzGRT#;0(hUn5Y&faeq z1Vt?Ly7UPk4?z5kdV+J7J_ZX*xg0!`=O+sCdTMnM3Ks&yq2S=)EMd@=N`@uFSKk-I z+KCl9eLak4PW-7s60IwvLDtu!dw;g@KhI(WrwR<20X`+A(ZqWi%Bs9&0Mml*>ECSd zHA`tF2!$a}ouBw0D&@r0TH zMVGW*%imlH)_W1eqAi5R5?UwIlfEV&S-RX#+iHiWxs@T!t0p?8zUGs-T4MuUu38+Q11vuy6q0 z>wnf6^aA`T+Qam);y*wk%@Z-cMW}zStJ@nN2P-F$|3noW%mL=AZ(s{RAAvx`3_*rl z07P8_`xLB}A@by-+1gm#qN8+L*A!7U+6+%7m-gkt@B#X>66?1#;PL|abtsH6p&qbX z)YTAVlg<_9gjfuk`7M$-1_EfoQ&T2}iGpl!T*2eH{VJionrYtF_`S5G51&V{PG5#V z!@TVtem6>L7W9g<$-s27HO4J^j@13%$N;n#ig^Y9?2TKr#L>f_6`YjBwL4RH#&%{h zOoo0SkjTeb0zU*1O3DQ5tIycToI#)QY+f)m;9$kVA3rck2!Y)~`rQ9Eg@C8ZCQ<%X zh!<$W_=H%$h~dA<$L@Y6WDN-uRi#hDDAay=l%S3co4QZrPZ#k_8)anhDPh40EbBi+ zC6*w>UIfd51Ge}F5AMIc-4RiJ(WHo+)0I@! zA*lVL>pUFy?L!bGv=zRou2XtspmuFtL~|Rah+0OONwPGqueXao-F>802XDFbAtt}+ z$EFURY!mQc>FwXe^sXXQUX8#%V`p^EU4KE;ytXVcyvH#vnhU{&RzvozMI zq4ah)SkJlnZ7zZ>R!8E#fubMW-Bd zIKZ3lO*n$L)KTLqJs#fv(p-Dj?KzuB=L+5C+}0^{|KY<&$L}a8nsi(=wo|qI_S?q4 zbf8XFf$G#!IqdW9yD>Dj+S?b~+xOimG9?%exp?`OHEmlS!1y;@9&z-#a&VCQRr^p8 zMwFvmNk9Y# zf(u(H#p%`xWu8~x*4K9jKbYe~8M>+OMHT8OaTsv?SGPgjEH&wVRitUf|M6Xe(T_S` z+p1KFMQ1b~kJZy~r2rw67xh#ZV_BZkRa5k)+4Zv={rCxy3%D~@B;AO8!a1>b0YGiD zSXXyBUInkmp@FqB(RiY)f#v#HC)140`A^)c0btL3@>e$Ecl{e!g6;;ztG>KpFs;+Z zRK|?QF52gn0`$r$A8pi(+Qeb1%^vu`OZB57NgPHp#V0@693rQB>Rza)q_ax zZG&j5`BsP*rJ1_q+oYcU{2`{Mn(X|e*1Kvbw}S`@Ly21D$FiCyP&5sPQ~&ZxM5>|w z#bAVglJq#`riPrSqPA%b841=WnDnt_r+c?9FSq;YcM6qE zCZcqTG<%fro12^Po>SI)3M$=J9pai}vKU~070@=8Y5lJczb48$48mKglvaY+ zR#&)EX68KQ4=Ch(qf9zc?X48$>ev4G@(0kb@%wLW_;FwXo`ord3?rUxchNnqj;K5~ z!7w*Z@0U-nd^HRb&`xV-OccDjXVRoZsZup&wDs3-t#tNw5-MlND^F8gD*&}|#oE;3 zdr^N1h$}INK9EkLw0gctJ}n`~U(o8=?$$y+B0tvsDqhg4zytR=}RZfp4|1)gU7^b(gGyM?7o|r(qql5^_%@W>mxhb^&3s+ zZ_nv+4!1-`mbJDZU)S|MD&Y)C_Kpy2PIlib81!{FTgW@99?9bwFV5x+4)`q$SG5_X zg|?Vx{Chj+DGoxjh?~GcL<0F@%0%OLb&(zDx`38eW^yhq7xirDdn5-U49U3*U{jS#+&{+qg7*xZqLrbyxm9; zeoiLioWUj^9H6Jn`O1k_`DeH;aCI_xvvRVmTKZOq#Nk4ZdAXc#-=NP!=(Q{nZw^6P zYJf%(EtCST1vB9HO zwSe4aWktxjN9ka#qm<7vg_K}aPtCcy#tvz@x&}-pk}BNxnHHJ&zCox% z>RGn=G*7thu=U>H9~Mqa3X}2P@$}tP;L%@I!Rq+MW8-7Ae30$_9Hlu5cWci9+ikB z_9dn~iiJAd8*Z?8z0Qlra1c5A0i1;d4@m@vxw4MNKRQp;9ojQTIc1cFizs(zqoPQbdKHOz!zu;Ode6y2C?#4151w;n&&xy`}(RRhv0d2*wL%69H`X$RuKe3RT zgaq8_5I{`I$*~}E^gH&d8N)miF#8E*{Wr9=)7=Sr$L1ijVA%>0#S#y ziBFIsp(XPB>|BBIxg@O~@EJa}%5cB>lQ|LKoS&UlF{VBM2{p)?T+Cj)*h=47qxm{@ z4qT_;ysbLYeOG6yqxJY+n{mo$No91oM-d2fo;C4b-Ky|-o0Z|1F{l#F41SQBBHcd{ z_6Sj)%jo5VCF47SM#9I)rpGCp^~EqUfv4ux__G}l`_q7_r$~+)We`xr-K$m{qfLuR zd20BZde(eF`XB=;yP6ZPmeSMS3C}VH#h2d?9&78KY;$UMNQ-kAR>dZuyXL&pjo2;2 zI2WdAgv~~kjF?C!04*)(>j5ds%!Ydm|5mv9))FJFonUahVCBnqq&uOv%#d9uTj$V6 zXFki%h_|=JSP(jPg;$c3QxGWwM)~h}k?;0!YWIM60j{o- zB&sn04;K_7;)k5kxjGJ}8ahUm@af*}zSd=S$@_2VK{;+zjxq-T@9+;?J#E0y*S1P+ z{!({L=77PzXu(hFuWrMMUIM2-q}@EO(oEW>8^vdN%c^jvb4rJ2Z^$%W>oTw3Sz6!Z zR~*@o-4zc^TMCGge&ID(Zi*V>Gw)M$P+~TnS^4}U4U9^K)jy5$mCpRf$GKnB`!U!@ z*7|0D+5o0s1z%L;rmpb@JqEsPN}^N0+UR1>SpRwRt;N7C^P!Q9Ik8kI(Ay<%NkWgd zaM`)i!M1F|@lE=T{*C&slmt&gkCP`Axv2d@@jPo0xu3S|RweqFX}P?PZTFsvx-6&A zXS9n5bHY#k8ccPQB<@5P}RC&-TPmN_<9u)Q%y^e>NVcbFJE}qP)cHl`l zqn&Y_pPx=Yu3tU|w6*3~GOapD*l9ijgQ*)TqBfUnS!-DrXq13-K*yo3!RUK625hdc z?b_s?!=~1fTA_heE+1GfHsf#b^IzGT$hU|HWj=2@f{06c_qB$F=jqRCbqdNieIvtH z{|q;{OJ?-OKIibIrx;={d-GdCh7es=+gDKt{C6SHRUYTh2or}62RCbWexU@9$lE?n z@t2s;4=wRyl0LP!fOG^D#676;KG*@kfB?b-Ha3v`g``dgLZCkiMh^kR(oWvi_7pAmKG9 zY5+Yrx5qcpMr4$V3*WHB9K9_@LCUd4G}mzxKOCVuSR;50pEiNqQ*^c zdL`pNnBa$f=?s{VdRpywKM-JY?y%r#P=&YE4jgFMtl1g+y`Ixo!Eq9K64Kj(S>jn7 z2!~JrLb9?c0-`ZKRF$px36b^GO=2E+pagaWAu+6F{}CN809W!*2+l)f_q(|ftjJmmNno{DP@Bhnl&wKl#yD z($D*CFP0fPln)qFHiu4!--%L}`!ucSy@Ip3rO_lVn5FZRRB|;zcZ+-VV9cK%zWL(Z z%2t}a-$cFnHleXr)KA^4{4?hP@ieYDch6>#9L98vHl@!(lHzH44NsKK=xXGKc$;+6 zYoX2F;o+z9GPdnGCA_ikTO_$MF0JQ*BZ3i(vA-NmD~Wk;_%JnBcD=F5GEh3dJPUIb zb>z6-33oqNPv9;T7#F2_T0Gr_x|0%CFFhz&G`Mm{p}$$lT91o{BbhsEYf}(E=jZR& zCpX2zr3l{i6E|aiOyv&elz43P&=p|p%gE9Z4jBgV=9_u(Srv}| z-j)GzT~K~Q4y|hhjGYsg9=1z)+%V~vVwRWHgj}SL<##?kCX+lMcZOq3*1nKMU<&qr zIVv3R9-g2J@yA0bfOxgdoE1{diH~3S+rlrFbRF|cwAqjipx$R3#7w)}b3{<&Ey@C#{a+RvFY;^fBR z(!f}0vgtY4BN+5mP)J#a7)3_Nmh4GGOtjdG znk*rstm#@qL&cE22$AJVMogBnOiZ#HyZ@Q{{r?`1`?$C6LsQqC`MlrfoY#3iU0&1m zSnWp5B2Pu7&^RaiRscBGzow&M*~uw|QI;b^pL}rP#JGCwmhe7#6B8nZEXrMiPgVZqX+~6ot$-mIV z?q7^6@Sg*nrKMd2X7P=6Gi*Y5Jvnm3#nMd^fkC?_I(K=*cZ->Hc@uLcN|+Zq;8VeL*F7yL>iZ>v5s)O5{d_ab0LKmo3 z>d?f55-AGANvs$|Eotp;>$0NFeYx& z!iBng~c!<(%~$C@m+5cMNEL?7BoV|!0JAI`K#QpG4(4b5wbx&#zDc@PK498eL0J_c*t zRjj8d@_+;sWHVE5AD;jpA3$1$JqzD}`0?J;L1KBPLtz3Kdj9=x0D-v6+ZH2No9HSi zV4tkstP`UEv%*Q15pc;b9gH`w;5Mr)qa23#H9jLlg8`}c;axlg!3kyJte`nXBNZ_TmkxqiA#6bT0^)lyz05h{ zOEdm?dxQBA*jG&b`;aH`xdWnd*mRqHxGSdS=ArD1UY91$>-Xg<&@FQ8h%Flo0*YFfZRYC5!)?+STzEX zZR|T@xTyLC6?V-)GUpuF9A#yh>MK9D0W@v>@7h{`KEP#bYgdmYdll9H^R>Khy>ES` zdiAH|x@#{J3jIlw&qxiDJPtuX2fIZa#PYTkw^$&c9tlD~s~C3Js7S~e$U8R@6E0z6 zWG|vbrH*Q#G1w|01l)s~q4YN<2%kW2x-Z(UM@)zo#`3=-371l(qMzW)nh_z}{A zA>!~doB1ziW=S+AVvmVPVIzn*L9?KM>6)NPU7?Fe={MKh!0Fy)YO2C^_V&K>rli`k zDAG-4BZ7QVJJT3V$;lft+19UiS$5vs_tEk)^?h%?e;9L2;#Wti->tizfYRDd5oYem z`*+1_w(p~6-#^%vO+0dg6!BZBiGbOU@{*>t+^_v}_w*~%H zh}vIi3ft5XJjaNxDt1~;e#W_Q3f5w!u!G9{AM8(of1FClxSj|gQB5G10U2YPq#6oM zC(DQ<^xPcJTZ8zEMtfSO3r5psTqvkY52Psow9cUk_=SMQgt`U!Q7o4D;-PVL5!1Be zvfE>%vCU(=OeSK0yOtd|RVTO7EVur(P1RgL18qj!vMPvhn1n^*eG2BLrtmpA=%Ins zv6#_K<#*;Gsi_8dT-6$*c7r*+IHq4be~CEJu+xo zTVo7Hnm|p;b zltbSU^Qq19|xszlv;dgLNbpP?*mArq?MmSK zIms8~hn~bHURRhmi_WCwdSOZS_Rbf>sL``i-8iJH8^F~jWDR%QG$4t4ztyXBSS-ca zE`05(URo@1|Et8{lxOt9+s--lFjO#u0WL|6(a zTr%y;*G4ASnaQ$$`0TUZ(W)nCsZFdsF;{!@)-6b7ngelcr`D_7rfWScR%{Kt8wZum z;C>K=$3k+5h`Xei+QysxqAdza%xR?Xx-{CaxXn!7IGeOxw{qkLC};dgSKehjSva3 zJnAMQ{8YYjTlqgFmKJb9P3pbr^>(eX&|H0C$|zuV>WG@w(9shM`d-4AmlySb$`}T6 zFCi?M{=(bFVf5$tgVg08E^5m;B~P}_*9YA3@tZ%=zZC2`f)jGqeVOHI?ZkIgVmW-S zzO&a)%{(Z(z_#k%(ogmEBkRMJwUs^pDqes&45=BKV_B}21zk0cR}fAr#nXR2O-G2g$+96Xyd^ zF}%ToiHLc$o?H3o?Tg9^-^jH9dCJPkI;yr+Urj~L*S~Bl{s7QX@7GX25TvjgX*5VI z=Ek2@obkcCDZIoV1}ZG5ovjr$Sxlx`y%~3MD8l^ar6XhOqt4J;d>(m)=R*X>pAS#QqX?>|QOonc}@N1w1k zkWrj@knagzNOCi;%R$H(PQ*JG_Puo!%-qsheC4m4n^o*TK)gza;~`GLS3T?{B_E=M z=UZc_(HjtBWpLbm1^*=on|bXKhh~s~;o47v4O){RtAp$Owh!SbOASl-X&G@vxGVCg zhod&pBAwBwqrsbl#*yHx^oB4?!x{hdcQo9_)qG? z&g+LX-a67xzC3-ldZ8B#bnh=mVS_Rf#Dg9q5rm6^Kexd1LJ)xtRuWrVN4vt{PYQTR zAxf78A^ZL_kw>ipKt(kIamB&;&I54jp*9pWo_zmM`er0r55k2YY((ed`O~n$N3k_f zU?6~-2;cur#)OwA5GVNI7gK3U?@w48Bluq;w$7W^$IthyeZ1b;!XQ2T=GV9H&jdiQ z-O3+yzH_s3D54gTdr!7>WE-ii{eEnA8B>=dmx=Hqx4<^@@!i|@pSi~JiLU^BI(w#7 zg{{4`(ESDVH7&`);q@s?6RXa`e1V|CnJ-bceqWniyjkDKoMaPXXuHv%@*gH=PNz3M zJw3fRp{1;~+frChRt~<5yLz1=U!UH~fH)kKyG*951H2H%3KwgK3Lo*{NVM7d6u@VzelaN4ZJ@lo!u9V_lY8{3&IINL* z5yKZG1#DUQ!p_5B{sYNpvd$+l6V>A?70U~B+oiF#-ZQ6fnt9yTc1Gfkl5g0U)?-0W zB++0eMk1Ps0R5B9DmGDn-NgY5QG{zE47~`5m!r-+MIoIsauiGI^5#_w7fhbKpj!7{ zr^ARDy!R0*E-`5|dE#SH(eF1-nVQCt7S{wr<;eKr|P$T7Iyc6qBD;pKBxT%@1A&j8|v4$9%q+)7>B+MhN^gS$Tp zzPQ&MV~;j&l1j7IoF8LP<|9xqc- z1q?s0o?dKQZBE(yh~7cWAj=GC3BT~0{btEADK56Zo9_MtN`bDE&}iO{Bb>JR30kJf zQQ>I*AlF$C6JUnR@^9B(1QtCpCjeA&QIhJX>VK3`_99l4#T{OE)QfEpGkB5%P-)Mk zFX8HIwf*az1^(klQ zBKvKAQob8s5E6k5TCPe3l#Yq%PMJekTpT=DKS1>X$TW$Ee1K!~jiUA~vr0S!KKPWI z>OxU)Zz3sc^pP>Hn1}3un^>* zXeeOl^Jbh^Ws~Kx@@c1>#j<8vdP

^JrtY_l9-6b|W3j%89M4)y~oX$;X5$&vwJ6g%%PNv0B7N%ktZULf4L~&HBTxgp#3Mwl_wR#A$U{-|!NT9RC8 zu1wmfai=0>Z7y|f!-HKfKN`LItjtM%TRh$8!DP|C`c;AXi_OlKTx;R3H>xi^N)5P` z$^&SWTZtNm$x?ggH zXU!{pd?D@IW$x0@pKWU`sb}xZzVX}{9HA|#^(v)wy9MnO_Hx%;oijP&-c3$1O^|T^ zg9zv(1P|s!xU-mI4=iyG1~}Xu(HD$;3hbH(+fpl(7Y7;(fjhPf3*dvG1U?P$bNo6g zC5Q}}23qn3A-!*VukGCTccOB6;iuKMzx(&ok)NWpp9JgeK<{v+A2Nvd8&MRJbU2tM zMghsY3Gv`dnhdURs4Rc1_$|}fPJKhBXp9+gIQj7_*F?y)C~iT}o+30bRO&k+^v;)X z;a|w6UXy5WO@z}-KPEs7b%Cg#pv3E+!L;(3HRvM=mp~$|Goby3nb?Fe_>7A%*>#vt zz9-tN)s>vkz5JdvZXdzC4k)Fqh+ikMxg1My8{jfMC0NDeL?Jlp;Sb=Y<8~HQ9M4Gh z5pd*U<)5T8%i!i{=lnjc2(Np9M=c=Y5W<-A7;*_Kd~SFd$S~ZsRu2gY3DhLG<(0pi zB-%%0Y>_#;b;@?FZ+&Swa5m7##!BO*z=CN5N7d_yPn_Het08{*y6jy5MmHxvVAuEsEyd2l%dTUkF6v z5K?w%O$6W7kfYGaxfv;lLI(wf9y*YQ7}$A7J0CDxr3ZK25%}3};d8;%^a9I=+*>?; zz3RIa-MO&)XCHu~!RbJBJDb`OZ^p_ExG$s-P#oePGa$uTflmO%vgD^ zVMkDCc^UY{3cJt8Ue8Me92wK)NH$hJwJqGy=?ALDS*%^m=~8u{Wlj3@%{XAxZpL_u)0 z2A>u}+Cq!kp;-Sk(m0Os^q--H*4kxtZe5%Id~d@ArxMo5m?sI#p4d##yCfDF;$W~V z=1@gSW0ujcBQ%0LIyze1^B9M}njn{Y(iC@`!sV%!OI+@>2Tp-�#rZ#2;4rOio^RCw4Uk<(3D@wY^$DG zpa)1K=M~%xKK2V_-gpplDL~XrKLi~w9`kTKnuOIZ@Ac_sFwNLWTmCsE9CtEJ+GRwG zkW14eNb{_rWI9N|pwV3qiczW_KsYCUl!ZoDFVj6>v|s(BnEv(IApwK10ET5zp}Uxu zy&>-DSKo8Dg|Pu^z2|OjL2uZE0Ioh_TWz$%o`)Z!_|Sj*E2rY*)_<_~s~;RXVVE!9 z`W?V>rSD$@th}sh;`ZR1UU!!nCq7(F>v!cvvH#5Dd^|`r~ zQ6e-_lQk+P*sB$`h%7mf358QEzK9tFMOD0oTV?6@>u!J#TJcz)E_fEXT3)?2*P7Gw z`$VLk86isy@shKLZ5@%2!0Let>7Oo3fe*mQ8LF(NaG0>zZOIpATvTE$uYq$aA9sjo z{sV(g;3CpUW%+p=OSfLGKT;F76K?suM9?PKqu>P^$khtK6-?-UbP)!QJKDSJEUh4! zG}_4Ny|?=NXYKDJPB*SDO`U5CSZEKIR9|#d%J}HJ-A<6ulqn6NYAuAuE0N1g{MYxAPl235brUO+a7vywvHZ)p;ug?N*GFm#9VVnV*A0&>tk}ob_n6vr zp+5W`tSb(jURkKz_QG#+Y6e5xuAg%rFD3jgBibQCM4E)G^Nq@g#Cwm=KQBC2GT&Dk z$mxjsTkXw#7PJOwm2GP)sx3G8YT7q)WE>*Ah0x0ZzFt0tJ;$H}0)hB*+^564x1+N~vSQg-H1~YU{Wj|{{q#74 zLwg)V?dX>_tr-+lhdnj;1;H7SdQ19A>^(^zZML;eNIisE_iaoqz3kTDIjaU8i?P+u zIB+HkE3tZgq@Q#C-s3EzOlEO$?Jimuq^Trj3>F7E3eDi{x*l8ls(m?i%OzLt-Q+r! zUY6a(?8$vmpKP*KSnx8wFe=@1Zesl>S2o}M*-UZ%KH59hYZRnrkEz7jTW1!boeBzM zuT*%iOdH63y04?0`II84OV6RFv*H8m4TlP6P4?e9of5& zeGUS2d?8gDEW}%RN1qhCxmj2rcQ6fm(Sowf9NldjILcVQEt8$pw6!n02ERKq0&`=G zh&#sr*kIC_5P`>ne~4Q}t7*2hI5@S6GHAsdmW6Sj@ITIt)*5@giu14g-t+1+yzYw# zr95GpQPUWQwD&OH35z>C_KcuDB|UE65d)pJqF#6NJky?VNErp_~91O?f_i!YlHn-=xF!uU>2F@+)&dnqpgXj{E-n9&BG|SG!7uf}i

*@i8-!abXpw6vv*GS{Z6j@BO#!$+K7sUmy(z1iTOcLg)=`PB=IXtuI_j?IyV2*$?nLbRz$Hg{&!##b9xGJA?eBy^qfmxeu0o+fq zpG{fUoZ{LwE|W&AkLBocSlKRdW(1mpee^%v1cQixh>xaQuAda@=c+ zIt6jj>s@^RoyER_m0!00!=b*~U5`W=z}0`hd^D(IIL2$so&y?z+=-QJ z*mbyr;Jq2|ATkIUFr<5e&x-eN>RUc>Z~MY=kJY~uD-7F}x>P^TaXLoZ8Ar!EsApV4OfCFT4w1@~`sFB( zhSq9g*68v+h0QM8l~vDLG>Sf_!rA;}6@J_PnUPv0sUM0G?ToK|yx)EB?!F^$ygOee-0 z?vcHg7zU3h&T|h*xb4h)tTmfgUE8yfsTHOn=)ECnZtT}P`d(O<)`uRbl9H0C>Auv| z=QJ1X+vo*E>dTutnc{@x z^M{p`%vs}RZi#Kq7dn&yAh=0wpD210?#bYH#Vz2Fe9c%r@%O^v*kLaVh*69VMycz< zLIteo6qy0R{fqK^UZ=1|{M6L&g-7>xlgL(d+~(&`iL|+UDPa=Fop&L$tT~{U z(T0M`CY!cjZN=Es6y9iRr%!MHAa;iReM{}|J>K%Iy3Osv;m6wq6uKa181LC8?Zq4l z;MOT!F%7#&6gx{X17gz2C&3%a^G%rFydCIMeFbKDMb9^94vX_EcZjj_vZS1Z~1LHr4{xB z@>5`2AF#*#t+j{u^hYq#2IsD zUAB{bO0shv_$A|{#}|f;w2V1L{jB0?7@NhkJnD2>Qhi}zs$BAn-)v(CO?)fN4nzz6^_Zb1r4>vDmaQeGTaB?P6tYda6G4#;BrMk-_;NHU8r8SdAg8*IY7G~*?L zz;#sD3?WsJHmw%-?`;6D3ll&ASvkAHLrG&JBO^;oWv+>EnzuR^dP;b>yFavh!#s5% zo%W6iOW$_Ci+H1&cT67R5G)g7wathVPY!^R?F*km_I*%B>GHbm*e!^h&pzdqS9&YB zeZH`^v`&Y!oc7h5WyNMwPb?U#8eCiYxE{6M;jzYCpKEbt?P|o{7kt0*;C(Fe1MjGY zqa}zs`P_a%0v?dq8a5J*7(&dW_=0$KKS3}cLSlf=&k*x@f9?JQ@U@STD>xy<_V3#K zC_$+^Pkw3;1}Jc>!z*Foda&Wefinn%%0(i+koqB*`XM!%e`B-t_RR=>>HEz=2;rAx zkj?^ku5k*#NzUrFVv6D69hvw?uNbF@d-G&C`_H@&EV@j4stma^a#nbHW?`fe&+e@Bpgw(HiFs~K4aTeRB9q$T$$fTjPW--H8Y3_OVPA5o(8yDxw z>;nG`Mvy)?9_tkBRoO>g!kkcLYlKi-85XTs!aTclc8N!5O;Ydt^vJyuRt&(hosI!G zFZr#YG)}T5>&VP-My|=M>ty*qyX7@*Q78^a(^Fc3;|Hh5{SUZIeH-+BEqqvRu6$Oj ziifZIf)vp_b~L(aTi^PC(t5jkRhb2O>F<1sZ*l$$n=3D&u-m<`1HQ>rJ>EsASp;$G z1EioK7IHKb@c|}m+QU4w#3BOnqePsYsC15_^Spz^IoqHV3iCQ*;6upG3FZ_)?x#CE z0!zs^w!#oMMAn>>oItbRg^-r=Rq3+>ZnqRAzC_9l!C=N{b*@vnHsf# zl`%jA7Q0toX^8$7Y<7vLiE9?|&47>f=VpdNa|E^dHDjbQ8Fm>nB92?c-&LA5H3eta z`H?i*b=E1ig!We=U^6S$|CR%kFWh#uX?KCSQf%W52`wUS2=p9awE@tbE@;EV(jcsg z!ab1P%mr#lUvusVI02ERv>KIgTAF?|2{BPwC}hm*Oa+5R%!Fv?3`Is3%|4>`#QUc6 z)~hi6SR6C2dS~6L2_!tt6Nv~f^lx3EOK}~c!?S-kzd9B$#n?TmvcWf`jqhVH^_tFI zxuxV8_rhNHhp8|sh3)G(S5^j1hTYoM_UpI76L3))6VLk2-zZ_>KYNwV;`@HQrhf&_ zH$C^dSUEHXEa^e7L~)spvZkiJ)&&*Zp0eZ_=dJ_xXx&fE5W_otTI*Ax72A>{=5K16 z0nk!t4wqjc>*tA4kb{z|;p%?FYvX}~yVt^kZ=jOfy%kJ|HU;L*uQ#1a+9Ght^rY(^ zH~L}tFrCM#u$QVla<8kUwjCy`x+)(*KgOSCS486>_7Pw#xYf!4n_?K?e!y)E z$~0CnyhntBvRu7d0g`x#4t7}3qQ)CQoX(i%gro^Us7#_RH$gk0Y9{B~)*D&fQj0bkJqx@VzMOhgU*IVZ8Rtc_TNJ4gb=M0gWhU@0+ z-%=raoLFq{tX`kx3SOp4U>pNNdlnGX17PEb3D4tv3C|0VC}I}pXI2rNi4p*HC(DjDIdOBn2_wUb=)T>BMHyhJVNBPJ2ClA2j1I{mrhS=C0nW8ee9Qc%8 zv9?w=3CC|!FSp#HCZCj>AL$&EOi|j}wfiXhM|*qC_M%S(Kgu~G#h@FABL*L1jf0%- z-n}2^d;Z}V>!J3ay_*|hrkD7V#-GvEJ2~a@JaD%1cJ=yNt?BM~s`$GTo5J-B+upvU zO5H?iB8r$7I?i8TW*Ts-SC$NH?~MNS>Ur}j>c!dRz_o!CpW+jiTWr*Ak0n^Z78pFy zuNQLUH{;T&Wpi6X|4IT6d}8IAojwuQw~W&2^5${mp6oJk8&`e;vml>VfYh2>uq95M zcuxCz&PZ*UJ>e%7x~t>R%}qGN5feM&q3d)5!>#Rnexq~d?*+G$m>PDNA3I`-Q=ARM zA~X_;6u!M@&A}`EUB1HiFd3rD@V)(0T%LS@-@5O$+TD9IlT*Wk;f%IW1DR$PM$F1J z6ihinj`U*+k04sZYRS!MPKixdWuN1^r?h5mQOKr^Igcef$Oc)n;Ns}h6Gp0DZ3%1* zdih!A9b8S!+#rTVrIBdu^`|c`O^?PFR4q1{_uV@x+E^1Nf*be*qefT?bTT6b!#-U0 z`;9fg(zzfcQ9nD`K6tx-d2-A-PX4G9>Md`h2vz{@|9AB8o`7g$BKX&L1?!vim-})y z7yJmk>GN98IaU`H{$W4>;Tn>apR7QQCvL@z!-dZi=myY`#(Y(2==C{@ka}t$?kAfm zB@=_akC1RM#EA{YD*$%W_@J&wgo3WPc~@*M{cuZBaTCr!xae)JW8d?v7{HX zj-$7fA4lU0eazgBViBM!x9RE_rBS`8mYmU|Eg))kfNbx7wr>a-@+T)JFQ5Q!-?ar3 z@@WH_lbh1Ub~$n`&O51Pgr^W&8TcpwJCU$L6*2f~TUN&?G^^Z8cJJQZ^cxmFc|@Y$ zWwMz=@OmT33Ee8$jIEeEz~X^ z0M-5=09Cq5kiZ$~Oqkr)0Pi{mi=EsJV($-p`*{a+FmIw?!zKuBMeXF(M)21FpTvJZ zKo2Lwwa6Z12nZCM6o@-g9|T`9z)W}G$kpJpU`-T!?|s^Q4**HCJeji3XPUk*-tbyp zd1f4j$iBcyR<%5q-QlX5!!Uy@JiJX4ioEH0qV>rXVKnqN@BbT>F5h#+gKWy!ap{!P z;bTOT=>vKRiYD~e{E014f_+li?eJ&0*U>UHC0XVZr_=fDt(a6um&up(NXU&yABy`m zHa0X5xXG5{y%pTu=51PG-o4jd_#PwZUv=~3pBxDvp1Sc5LpP|!M^&VcX-c#!VTqfc zBy&s%z+**gnv`#U(0dleCrwAW9_zDR)zc$;3r0{EhV@iZzxb5Q;Iz=#`wwVM17{K6 zn=oOL=Ng?(C5hAHRX#aJpf6!UT%McDRj+tKLez~MM*@2c5GEXC^7u5w&HqztgLNFn zfTbCX{FJ>9gDGM7E4H?qwLZH>&0l20;rhS)`shnwOE3LyKeuOeukHF{R9-lP6jlydSB0kM%(wav+l=0&_-g?Pj?O4OoA8XdRM(iR0bW37Q0{I8qZH z9mB6!59@f+p-^2SCtRbGDNg&aebzP=tC0nJb%KtOBIp-KZPXv4_^w)Zg*th9<>u`w zIxZ5p?6JBJ`T`JK4@W{k6r5*Le2D!YGz~*D7wnqbZLheCevn(OQ3@Ct_mIBded8Wy z_C~pthf=R|VNP<=`NK)$r#{7ipUc}u!3CX@3*od&AXkhUyxbK@JyZU^Nu|7OY&k&W zF;`<=&noj9>;g0UN^kp0oVyB2TT@-PEuoJFHt3-qezaBdU3%aVxLmN#uw87*EBK@+ zot>1G_`PYH19B7U(c7869ma*`oe(~L3h9mMKGnRKOrOpS^7Fz3QWzQ__&RR;w0Mft zO11>zW^g_y;_Zcw4pXn$&~2W~1sb-st7^hojGyy5o&7HsPx z>^zWJBgsJgFoVZkmUHX#E^}O6*^4vxeC9It-o~idSmiy|%ZP9Qcemq6Y`T+`_~)N% zi=!FEUq(LxsV0-Q)LziVsk@<;bODL4e^mtaO$5f3zLSX5B%GF%^;nWTvogf3UVU)H zJn0xIev|PH04P)wj5PqsBrOTSiN&=X^uV z%;&&L`4xddK-TEV;9O^qZvhQVID5;D0u~+wP6G0-z<3*1UIrS72I#NC!C4)y=j|%5u;Xd%c{b})*+$UKDs0%T zWR+@S7g^Nf9{n0G6hy=&$I2&CNsZQ03!0i`6tCH@l~!#)vm8GE~z?_;z}Q;qPB;P0%}lg@GbUN66d?N_hQ$NKs4l9GK6)?cfXHpF54Bm24QWn6g4nQOime4!BK}gDmxhL=p z7oe|!RB=I&h@A{roP|$7{Q^jWp_+XADp!VmMnoI8foBlpg~5_%IU#3G>?e+UNqq8}+DsoIy|-$K(B zdYoQ}jl4$vUp{yhDXgfjAVA)npVcI2B2XFwDuS<$Hy@7WDHT%MvI`rF+;d$!ipghF z<#x}EPWfpe2}PFl!?BG9+pYvX4Uh5^dz5daCY@O?p`X_*k%^4vs*PkY4yV!hg_YSf zdGHj$)zJHk6!kl^bFbW)__plwc3Y2A=}{V=OT{ki8MubedmRq(?Y~u%FC|yYSfN7& z^JZ>@OGI&pkbiPzTofD5Bfg9};uFL}+aJ+{)1Lq_bfSLk_t1B-onA|S3fs!^eTUAZ}(U=+in=DZ$-*VDC$+_ty_HNhdUAC zr2rII{6UOe2>S>)s!fQQ0$`uY=ZuvxEe~w^8>~g(7esVFc*h$5dc_&$=Wm%Zp$O>X z+2Qm0?hVEPdp@u}*Iuu?%uW$AJm8=-ixIpisMTx@#}^o|iNrl%ZF}hT_mvg^VRt54SUYVtKz#GKH8k?(;=uOWWe5 zcia~VFw4;!Ewf{JU+935oyIP>7yGkWfwKzga}1^ah5J&-!F!cY@Gd~PRp-idL_tUEX1&(iok%DA4Sq~xPyhtG+6I0@n&ZCaY0QM?K)U$WuOX=w#? z%P=alj054HhGv4}Ym!LUb0f(g)qy@f_rqQYd=rlR=q^?s6IXnJY%wr9FF@MUe`i*JFZ?q8#C5<{QFjr?iYpU`F)WqWrxZrCrEX4#s>8Xs}Idy4}z$jU~Q ziKToh2r$s5nxRjT}}-46X2hximZbO^gz- z44bxWXs4ZWjKJYk**>iO2zy!o>gB(Zt6*318_%v@Gp&nxuNaq?Se$dDEngOz9Vw6T z!mv4q3!7cdfA@qsR%S-z)96st#W@#SGROwV%!9zs*b@Z(EF#X*jW^XxgKs#%RYAmV z57EWUOK_}swa&jJ1N9ipS9*E5xp2>qXfI4}D6KmHn(S-njqYEZ zOrNOYPHjx}+qL-`TO`KF*!6&K^Zyp5UN zi}UA>F{jJ6VkYys`}z--dhiE)oCx#?-@L(!;z;kWkHKNx>kg}?JayZK=~U1{({VK0D4;L+=M5Cgs-0 zn4F|u_l*dD^*s(W5)W4fF#{Wg8L!eCESR3pCsSq?lM`SVXs*Pu6XT8Z;o5?#>81nC zl-S4`FV0D%N2%ZQTkM{bfl}N3=s803kI34&j-&KBKb0h=_kp`+syMs1@tEA$LWTb2 zewSuWrGg-t=)Z;wE5Mz5`HOYQx0(QTKY&eI(V zY??h$D~$SbNQ^%mo_F8ORzK~&60m&K!*4FUK$hK+yr8PSGMT#elk5D&A>Fi^v+K)& zzSwt{kIBlVlFI`o`7U;vcG5j=Oa)GOtZv-lq9{uDM#5#k4#1wg2kc>CN-JQ5y zp3+@-ntcOSrD>!Wbfs$UgKf7R62I-ZAV$gUIep}@%4Ii7ST1eQb%vQIhdU-65(cwZ z8#kv0<$2Z%k<3ee5>d~OG-RJ6EKN^O$405;bCyz&$Kgy9A&*g->sB;-|l~YT3 zL6%5LE6l`9h}x5Wh*vN;{?sgWBVrTgQ@l@lbyau3Wcv{qR@~~^#=i%>r~wZsOE>I& z0Z6d%kQ*0?aZhQajFuwu-+qNN0*;aQ862q@LOQ`1P3>uWi~>qkb={}>3o1*M~xWt0pcVaE)n6)JnZF4 z4?VlfSvGk-z7&jQFs&?w1d3UkIP9m0IS}>tg`na~0Y6p9++zVO@Cdx632_tO;n+=5 z4^i=Ua+}$ep9qd8Te21Cb3Wz!9@?EsvT)PM;GBm40C=XJx*&k??~nQ@w<|n1*Q?d0 zD-<HG1c0vu<7GahS^^{45szi-1@ z2tTZf=A1|WE}yDihS`f`1vgr6)3uoUZJV}#-oN92hwzFxMB_sQ;4Fo{I|8M-uz3>x z3H@&vgHw3DbLi|M)pZF2ZFUQrp>ZyPt>J?S_(~pJ;%oWR?pG)Om!1cb3eFS=N+e-v zEn4#i^kd}Ki$SGureieu`f3Fr{s&h8(fJoU?<1vx?z0s?*pFnzE;dfR%V&*dsGYWq zwm0Ot%6Csxy@@ws7iP9+(8geq)5rf2)zk#{^|?}4p7--Zs_DeWUUvt*3yH;|;$?P5 zZsou>zUlYw&RnN?)W|vO3?tmLGeS}PVVJF}269y|FNzJ^D}T}IT$~$OjLEk9)0K3A zPxIhGnM^S{W~co#(d=;)7P6LbviDHY-BEL+30#9npYa@o|> z@GY!s>^mSW@854*z=TKY=jKdWqa*hIpfZFNl-W>MO93(fZkebUQj-J>j^MItig;tu zOCvpmO(CI1FiJze^Q(6X*Er*vJZKVObc^LJk}u3FRrv%|yq59x_Ac!8A?`&tie!pv zoT@J(hf}9MM9as0QE3~Q`DcPe>~;1H2rwkno;V@xq!_bbTdV<|e95p4#uub@zp|!Y zZ2TB6cOeX2LkR)wX-LN!?f0KH5B$kCnbfn7Aoa*NY?Rcd9(>8z9=tfEuVA(7Qt9Ww z>5_F>c<-R0nN|Z*&1eW@ze0+-J)iAICgMwFgMq| zzmmZkSHzW=ixU(xe6*u7f^UMt?*(Kp9&8Jk1AhOo6?^qfdz{5F=fd2_YOl?bQ0b>W zK~~`w^u%paDNJS&Iq&3nXWUNo2IR30ebt;KcZp`ob-DUiG#OZ)H4dS!h`|Rq4MMPS zBzt`TSn~3^ItSS|B4EnR^XW8r-bk$X4J^C@1vh@&F^!=aQZ>OYY;2sGZggpLXYREf zI+tn_z+RTDT5ccA>ogO0iO|P=q`W^z0Ic@`?4I<;$QXnt0E|Q7BPi1F?0U5;}#{Bbd;xjf--y7Z)<6W z9TH=0W5f3pfA6jjsq3WW=4QMgcC47=UhbAFeEHeThCQ`wD%d^RVYpZ`o31&3Nr$T= zyRTFP-nvEO)xa>Q0^A3PhW0hQC9`0ZQ35L_|9!78Ace(*bo&{1%>ie*f(wVT+GmyL z$sjcJ@=Rm&&9THBY)XvsyTI;Vwz&}`1LO!zn%GQTohkC?pP@TF@3%kfs1r0uK6zXi zE{1y@%IriiVwo<5;)nzG>PtyUdxc~&&nI3#odOEwxnh>c;?LOd{^h}mz@yG}84mzl%92Erk^1?*L zI65RQgH2xBP~P@k*|OOBV7I;4&YJJrRI)5o@n&uwSGP&U=g)!BbtSz+1c?<(1k zfEJEELGx0i-#c!&w*D7DWUfM+wT^I0YRr%BJ zWCgv4NKtVI`R6pPj`O*>TAI#R=w?Mn-t0Xcc`$@|GRdaj+XjirOncFRO%rvcKc*(^ z3?qdlbX>vZ48ckUp!<_rU^IK{v`%m(RMG+(VBN7Mdg{88FgmbTCzZyugbDmSFG2_A zJcLGDFl=7I_5c#ms)D%s5Eyt++W_b5KB>u39zLUhspi1=CYjACn!pQvteI`aVa4zc9vfK#n%g2HaM>L0#3Zpt z|CIZ(pFnYKYh-CRwlo#E`e>c)u~xh8@Ky1?2tp6YcGCB;(r_o)I!S4c*vKoCrLdFP zVr%^9j{?dd^_9Z@?*LzvKn(n^{|#RPE%53H-chddPyoVhI+GH$wpv?Z!ibrkQQ{b5<2FOXC!DMc{0WB?qWlX`Au~l}_mq_Er;=)ZcPcIV%P6dqC$|Tu zL7Ev_aw_IXF-HI@K zNKFI2gj=ncH0mvz-45S+c;Ezr@|TJAwUWMtnmqNnSdacvU+%A8U{vv)h&!1niW*zK z0_zEFc|GzJiL(lyaW+=-4_sJG8Jet2|M6;z>I7 zeHn%rWo^dFJM*VkMm+CjXLZdH;@Df#N!J)ItS`@Ht@hNk}xa zDOREb$E1QzN+ELxBt&2#f;gf$AG(eCGPn4G2fbI3zU^mUWm{p>+S(fQc~)DC4K&P%AA9mi3F?#p(25nJe>I%O*@8Gkd%-BpqTTO{1UR#YxBIc$>kXx)%p_kvh}4TKt=tm#0)D( zaPnR2hr$s?n_lrF#Iti%-ra1{4jjI^&M)W3Ms^G@Ri^(@E7J!I`5Z=3%|)3-n~{r~@uC`oK3w_I0pNipPB?pq}HEK%;a zBFVknleF9ta-B%I%`FKYwZ1gJui=2nWs@l zi1qne`Le!_4qb0~u|J9T=+j+-Wh4YT-!NTwTE+zgm$XxN2oKb2v`(o<(nlP^S2`w# z>r5(XBwsTj16sCwI%YJq3vG>KK zCnv0U*$cp7Rvywj;tS@qo??xkMp|7?kx1+<0MBTl5H996Pdh{+-0)&X zM|2XkpaIEha7uPlZXtpgHZT?4Vy z3AOzQdj(3Gn+>l$HrB};4=k5O40P&kwtM7&l^q$`Om8T?F>U@F47j=RpMQ3jQvLvVdW*KaN0(;}Bp)@Bx7No;eVnzJ*Wb%1@DH=2*+h+$sSD zp`roS3Xirt!24cZ(4|Ej!FqWB$7+s@AHoqu-~qz1y#{P?mGy)wlnq! zthYOQAN;9tSK1>KqWT4}-^%NTP4+|~G`M!0{Yx_~_7{_#+=FYC{Z;O+VwfIvj;4J9 z$dOZ#TU*^jJDp4V}H&sy|7rKd&CDD3f$E0lc8`_ zHh2_t71e51?USv`?gWgu2ABRYu!E$dA(G*&SA~SRxTGGI-P}pEak5HudqUM=eM!~+T%UkT z-c$Ono!&!y4~hQFzU?W=C645I3{sn9jJ%GOaE;xlvlXPX`aGAEHr2&DmyqNfkWbsD1U0G1Fu$0vWu%bQZ)9*%uKm7=V2JO7~q5GT+JbI{ro54 z^{;zj%E6=N=Tq;3(sC=fX(1Pwx;_bGH@3GnE5#}T)z5Z8h$ogyLT(AN;F)OCSj94C zuOXYPOrbkD%lJs3UAutI?!6M(m_h+11mTyj@GWENV9G0Tnc}oJ$(YlJ55is^sppgn zx1ArA(Y&w}yxs3382#A$dE5ef@)?<1DTH5LgbUph?HN_i=Q;l^Z}o1U`h!5sa+DCh z^MhILB^^og+tMd#p(qT0GJ;Llp6ow)RDLwegwDI`OerH2J=Up*eRS&PYuk#~^-OdO zvZD7P;O-pQkDY0(KDg%H>-KOqsEj0+PYM_2;pSdiUY1Jj_%RO_E4!(&A_xUO*o%w1 zbcGCuZ4DL|^N4QDHZP8p8LZ={W0VW4pNk$?i})uY?4S`q{gs({Q@Hnzz%DGYs|Y;i z@fL9eKfOEXn6#AT@pr!K^~v8SR(LQ{BN@VT`fR zk<43is6vp#kzjL@3};H2Cx_N#Ij7+lWxJgxj)Huw=TZJ3I?y_j9Vl(X1O7}p!Mn~pK zjub|2JF5Ytv$726(&^qXGEuKHb5imA{BMNIEm={VFmkY>#07 zAyL#DxE{Z(tzi?q7}g^s9Q&BFMPPr8t=C@9nc=ea8hP@{DU?n089cYkea_2M(L8tj zE2kT0J#+p4K<-#5n8&HaoXx00gR3j%^p7Y3WX%J#>vZZ5`sl9Q&gn|~;v?s7k( z=Yj%o`0_E-0e<4q=uUNmTQ&HFA5wYEn`JybK+1(YR-Irtg=V0DLn(d!h8=47B&+{E zbA82Qod>PuM^re0N*v`!V?zeSdLo0&aJXiF8DZ3t!Ok;7UKpJsb*Z|C*o~AK1 zD37x4Nf*AjAXjNmmPO}uA7PYu+N8takD>Sq(;L8=LZE$1F98Kqd^}6OTxWr_)d2w6 zTa!p3jP(cYz5zQspDV*tSv`Coq~E2kt#$J+<)F{TEMv2*M|1hx*LsMZ|2&UDT^n|9 z$SjujR^9L!-Hwl3k&09)mBq0j4(njet#EiYBrIpZIRxqpgzJ901%+G$8{-kME9m+z zsK|)R2G4(TgK(YnmKy|R%p%TwAX3n1ab`gW+bt5O*={sR79oDBP-iX;Mtzd(Oo=QQ z(ZG)sK*=)4qi%^{*~9_pfahjDz3WE@ee8}B5`y(4$+H5F*W<-g2XFRxvRSbabZj8z z@7OIU{|KabJ|gN5Vv2oCPU-%kL#!OgC>9;Wu4k%wkfhvzzSQJ5KDF|l(l^%RRbHDR z4>rcLr6e5D^vHr|%1?zCc2q%BJ4V7;Gk2mZ$GelWsbr{0zpcadC$TI}VaYpTJ~cEi zYZ)>qIu%WWi zLA3MUVX0tV26`N@vh#rOApAQK1T=Jq(QxU4rEm>o6up%LF2y44AOon?n@NXm6R>Ii zkmbr)7kI*IjhiOdA4lZx16Kfrqn!D&MjJz3RS}HfX8+aCx2U1c%=|nCX>w#gG@qpqO{b>HwL?hi zB&07nyF=IkR9|Z z+;kstfoAYSP8_xpY|LOgmV9YWFYf`Md{ST=f<`ko!?aW>C9;OJi^l22#rmVP%@1Xe zBriZ!zh6DAO1athCQf~+Qkpxd%5-wi>&=Z52=ka?Ui<-O?rnK(z8;n$;C=-8T*U(# zONA1mv&BkTdwc!0<_j8~GNLn#?qXQLmn{^s@Wv?Q3eo$^#@%Z`ns0mYfF!yKbg6F$0s5Nuhm)u9V?!bhckAm7${4g7|iRAXjc)Pmj+M7!WMreNzemYF5^{?zO3 z)nOmf5^k3$0?N8r*xxbL(QrDMr$@zZ=WSP{4)(nO9*00f zQI|#CBarr4e0XkO)e)l1h6o?fNm^Ka!DuHv>Y7}jTXTD~Y#kh3Pr5e@25+hkr!*bb z%n9$qRPN+9F;Jh>t<#+}a)+MB5Lr-IQ1el5Y5|4x*jdCK5*w>|w1B$X*rng=L5+gz zOjn>T~Q)|z&v=fiRb@J2+6lnCt-)oC><~#>10VJjn=rQtk8jpI8nDl~y z-tSWITlXFYve9CQUHbU^r$S%?V!}r=++INow#@lC$PQK!YASy|JrBRpB&3V~1U(#9 z@~U+rhQj~HQANG{t@WSRFHVKNwy#R>G~pY}V>mPhdDqxM{N0<3t#|y_SX#&0?}ytM z7oYP$BCG<9zrEX79b2fUt!szAxaC1Qm4Bc{N?Op+Wzr}#w7 z_EnMper};9Jd9Xb>xo>WwfB&(D;2*yb<#jFwIfCnfvoKxjVAoxi*{%SH%4F z+0Ka!P$>KTp{FQ*@M^ltrQ;bSAw91F`c*R<4|L3_3NwlMrVY{fcLa5+U_I&u#qDlCln5keM?brLpk>2j`~ z8a`fl7~S6}_x;iwWl8_y%12zp@{=Bi$o0)&?X|1D+?c)I+Cdm0G3;{^I;sRMg!q2= zZAY0X!=!nmkl#LZ@oWZ zTa(TPxUyZ0O0&P#h1UO@|kSQxY`jm!e{d_vE`);9n&#PwWvF zro>S4e1?{_H)mQ}Q%weL?L&ZZQ!U74pc+ACfI|q_Lr_8h`&HA@xG~-zU+*)bmTBfE z#1f#G6>#^tQaH5Q5 zS_<8}YO@pDO5{kW1=?g%^j?XVd$4ISHg}$ImGabOc1r>2RS9L|1vUD87pdH)!v^k= zP#6Csv>sth4K|hw$o7H~USG03h|;>$+dEuS)NP*v6u^PUAGp(_4$~?4vo$@*9CYmOyNWtKaqO;%E#sh$B!@NxvITxBZtn#m?05dGl^cOwX6uG_C6S=i8y1f}W`?)2;sC2Lr8s09}@X>*q5aU-~cbm6I zHcuudrfcL{KdrRu2gX9Wa@@ zZU7_qe`7TMt1cF5(MpchfhGim+yw>fVs;)VRFvZ`)S@7~5!e{{k0PkYBG@ij{>ujN z6-1_Ba6miS?SP}i^PRgdfC&ILDKo1ag#sPCLR%Nfv;2TN?3W%ST=q*!B3?(oNY58T zvq(q1J(ncDTl~%Z>t{~~Djn3dw1_=LFggd?^+@$@ZXUuveERrr%c`d(wJ5b{*3|5L z|5``b(yw0uuP$+VczN5gVSzQ-vJHLlHR9%`_C_lZe-Gebuq=+hGMeZ;YU4FxI`HDd zOojSM&0Mph{vq=1Lm)MbIN!6x2i~Kb#iQHB+rOTeY3(fV>alAKTz}^^Q2EepDw_{M z@x|&B+%0F z%QBK6B1%hnF5r=fF}e{Hq?Kz*UJlSbQRFnW<}0jThM}-Cpw`6`BortFXIDPFe&*W5 z+W44H_-rRk!K!*3o#TGJOX0$~%i-DudU(798y*H|vAdP@^4i67g*E4u_**Vc)_XS( zl_z4TU`@UG?{{BWpk0O=@TD;!4$nxi5&*Mc%b$DTwZwWLEe@L%_kJf5p8D#*!Uy^Z zsa_*yG@>~k{5V=PT)Nbf5O3m4dK0Q0j%WBZtxhnu{xBjI=nmR9|4z+>xh0@28`f#Hw`KfsM4U-*3yy+ci=t zhX%K2v{yrcWeIG0l59SqgajKUjsV!cvz=zQ$lZhSKwWR~{~#lY{gc$>Vc+O*Z@ zWqo|y7i{qeh7@C|{V4U5C%uNDaCSWX+jJcg9uf(514>GdO^EH8899M~P*|onFV0GjE$oPn3ml`+I1P~Oj_e#9$)jc4b>S#rjaX%+_ zs_o0wbbT?wsT!$CpN*g7Jo09X!Lq2k1q(b?T|evhDxf=-$VMqDp&wu->4~fe4aHj=~`v@d4=v(l{zth8J7x`PqwR_$%lKXibQH>c?2Xp&f1 z$TlQvO|0jA8|5Yw)D*c=1lc6+?*MTJ_VDxXNfT_sKAORcs!eMjyyQp2=GWZlo15cH zVw=<2O@51~rRlxBH5iJgZK)rOWkEHxM~@!eXY!L5UWNp~dE2w`ylv?d!4}#*NK29Ab_q<<%s)jQr|Rfek!JG4Hqb~*$wpJuDm|`AlEvn<&7VdLEP3wKkEx}n3UxGZ zcX(*84Gx10aj=7QFWOFO|n1JGo z<*`5tXYE1cr@(%u@%UuIdR`>rr=b7M3 zUER~N^I$^D^YTL(To*0Cl|^tCBD_H-j+Fpi z7UmoGB$xAeNM_>44}yhStwmoo!#M%EFy^ZLig2l?O+RyivuqE(hsI#ck?RkEyo)rN zJqIYd@`2+7-|K>KtQl+*fQ)+MBmMgj3E<~UGQv_{O$TryK<m!~Kfh9=SBR{gbhMTRY3@ zVF3cM?^Iz)9203TI0+x;xc)H5VuaQXSgbQ!qqj-S;as9X5&B*@+?msMj0a>4I~m+U zp^#1ncoq)8Hy-VSI{z}?j712cV|C*+Y)_zsHz7VD5CvOjnNQA~3m z&lw;Qu&aR0bE&M-K{2(Xu+;}T9a;$MB_ny-3cEv`#EB@G<9#g7al63P0vkw~NPAsf z0y4j6+!beJaPDUjtUKSlImZ=+2t8r1q1EJ1cmJVpv0|gi42RRs>Y7*&Z6f8=S>MS~ z^_h?pi`lvF%k;;H(Na3Ni?rU=j@%xPpLedwlt3);pD2J9Ptb;9kR*ue(n z+)r!!n>fT;6F+LGy5G+T%;fI`18~Zs6J(V|cpVPG% z_OuhB3^DB+*XjMoTxJxo?tBjjRYwe&aUvNishQE+E(e0kbQ;rSPk- z(9j~}8ZP7<|N8D~lbttEet2Tnd>w;aOz$i>US`bw4f7EL6ipcYR*6~9KXkd@C2;*< zhjhi{YQklC0i!Ecj-s)HVQU+G^nptIqeBh*D9<~v9Xl0Y4X!Jswx zwbs6G@{C4qH;!&mYMyE@ajZGx4Kes6GJs8mJpj+ z+&fL9J*rh+BG+Q0D4(A~nPi$u=K3QX6Tqu6%d~h*&DIMLM49eM|H(^Ko8Yx3YtvSR z%-n`bFm8L5_E`aheVm`Z1copEcFQ))zk)Cx4IEKOsqXY%egezO)V$_J$Pi)(@+Pvv z(yRpTCKoK*BMZFZPS{pe40w&PA~-G&Uyc3*1RllQ?q$9O{z?bMn=4BL_D!!#q+0CA zVWlO%Gyke3wKP7Lqj$6k^s1O7JmC1_dr~h9 zB#$l4??3x*<;U$NIv@YUI+(x+I%i+XG;OQ|)ehlhbF(&A>)_xZWL3=B2UC0@7zq!H zaea>V_Pd74+!jGreYV3O0Ida$!N*@jFx#RI0+GaRB5kY=#Mzw3T|r|}Zd&gxUmnK? zWq_k%T2;hOK|v-=V!EvAwd-yw)wF&%seB}7_73vB&ge3an08%%dK1yKc>F2!MKnte zC)ig^;CsUZ7@y=L7eD1NHhy<_4&UFMjL^Y33)fsvz*Gyks2y?H&5OrljeP81t$wp+ zyk7ZGG3i5|yJTUqy=rE^-O@vATHA;xo@?}0JZqEg`b@6Vcg8wrwqtNrz<*r7#-65T zyKymcnW6Tc%?J>btJN1uJpXIP80%_WOx=ebHm4iRzYAa`>;K_$#0K^5)Q5(Whi<*) z^ue}9#j}3Y-IKnJ;j0r1^7dMDJLM5kn4KuQIk2miMFrZ`+gIiKO8`+4=h}3EtM%F7 z)uB2UoU+x5&d#JIo@@#7`uwKY_Ro=Jt+kDS+7mnRzQfCg>5>xYd|+kiwW%GpDwVr5 zlt&{k{2Xuq?5Tfo@ad!eMdTsG?y0{U9UUF1?*f`4Z+uJ8eEAbZ@=w;KCVzzwFVkKw zhG^yiEA4lz7DX-B^tSxRuR%ArLYo)+o~*tQyX!|b>C9$s@j>>@=YMuJw8Kt5a>=+hCjqNI{>O5i(*Ym4 z#?*?^lG8pWRWpWkl@I!9U0`cXk;^KW!&%szrCnfXIv^wqz3a!{_kRx1sO_f+Bx2x& zfe=i%H#}ayN|QLKLnGhC!{Owwg;i+1BLu9 z(vJ$RZlX*-=luKk2(PR8!9gQRPD#}c2JlT)+R8LzgUUD+Jnlz*p!?1VZFp!?PlW=*!h!?&R% z-Z-4YyPwB{uP%;lTT&9Ib7xPspar`w_Vu#5hYrMY=we-nu(TIP#ETPPOD{Bmbxgn= z=n~#Dc}_?-nd>rS>!7^6_wnJq2sVnhSpY$Ajz#PWU3k*kx=Nc_nTsOurLH;pFwV+1 zca`54J7v{J^fzw3y^AMe_0Mptnkj!TBW&`deA7ySE|wipO|zlz_wQB4Syd0~G$wAZz_-?ICVJtjcW7P&C7XQ0YqROKMzSvukBaIkl8 z#lSF+){5gR8U&b~0XuR%lmxqru?-~iCVdik5^X5^Hj34VWOR}wdlGh{K;kC-CIX%f z+=HlE)7=AQvjJKQG|q*Ob*%~s)lvn|OX3T}72&<*ln`KT5=X>dNb_gyFj%j#zDAy_ z9ccPV_Q|GPu(sO&{Ky{Zni)jY%r9cc164lMUKSbS-<-*mw#l+uf2x2#qt^_)G+))% z4=C?d+EcPj6F8)Up+w8s`$N}|Joxr#Dtzx z1Q6dvpb=s|KFYK1js;@rS%4$?e*${)BUK}W1Rk)f{DdyZ8OnJG7^JAdhuh+pp9JlA@J~CZ+uJ;310B6*3!B}Rm zOSWk-eRg7`o~A;KWSndkF}z)zc_@la8IQk%OsH9pS64dNwi+g?H?|qNa-|&Fw z`18!Y3N&BGldDN!!7Yq@a4MzXt>;ZY<(x8CdfaMQ(DdI=EzW+*Cq~!)=9Vf!+$E@8 zC6a7XNIM-u7{$G%q{{TO_(dAHF-?-=#08PlL+KFXQ+||%9kD-J@rnN%F1OvJk98PI zpJ$+-pQUv#z{|bkH;3z<-hj8g&b!?gD0Uh04t4!B&=CpMT#y5yxPgoD=rR~F_>~TpxpLg;-;!dF^vphO0cm8ETV^W5>p4aD1TzUb zc|YGm)a^5O{g>KVmqqQHRySVAsU-ra?h3n0l~NDj_$>b!+24`c@$_q!=_KL8&J0Vv zHi-#vz?q{N``l}~yB>4WhW8-8TpMb?Zx*Yj0rov2b)DN&qwB#* zeEXpS*uM$@RVD8ok{{gg%!FZzBZpIDq;{cl(iy+sjX{JbnR5Vo|5oHn6+{5;7QVP-Z^!O)rscw6gPhr=8nZv8zkkf%l8+}5$*X_Xw|gBnE=L5swyQ!_`)K%# zY|+q@uZPOPxC3uR%j{m-SlXi+G4`jE&vnWcA>A1=`~u9~xng{0z)4Ph!fN20!W#^W zVO;fWtn|y-&x1vwbHA<%9AdyyE{gC`2r2}?%*+TUgkOrB5gS5J`fg~ieB|`mV33PX zUG^DP>FoZDu+JP&5;r0WD&tOLQ60W3wQ2iod@67*?GXg^n~ceYRp)B)=*RT+$9Ubt z_4i|x+-zczu}+uQVbXwuj|;rlkkS6vY6gk9xhRwp=w!=CqZW9WRCegtq(g01 z$vJ>Sx$r{#olQDvXjW~KDKkrR+l}~N-wmWBpvTqrvqsHuwI*9Szac8gycBWa0`8oz zMB%@=`P2c2$j!owst)0c_zvG18xc|A3tr&96Mzw0Q%;zckDObJTpiuGeFiVXc}WMy z1ihJu8&pp#=FS_B!@^$tYfCZLDM@B6=5UB2kYqXd=LXoAle12+<6T&l;{hXQ;_z%+ zN3c6!LPiicnI8fAMxj|b!fyQ$N6(0(PvJ;LZ2$f5o)X!DTif#R`Ag=vpX4ehz0}7N zGX42bKBxZw6m8^wm|gPlft~CslsDXH)_9UT%k%e9q^kgkyDw2Dh%Dl}54y1NV)yKi zx|5~kie)pm6fekR3*tqv@B%^RyJMtY{v96ROoz`?;!S#AcsE{<`}os9EOPEsyV%{g z2VLyL7snY9%Z*)J1uipEi%hN%`tx$QpdNJY1A!u_5@+EM>=-$ZcOe*}F-|gGFAq-U z@!=j5)F;i?d?FTd?q+aTfC{N!-8us=+&euD{UHR!tn@yHs&G3PAb14SQJ3f~%rMU!8YjCBEZBdE8&T0LsV)I2lW#OKAqsMzFdi6Q(cW~}ql!Fq z@lnvIjfchlRIpweEY{losbr=(e_6o5JfVQ~eHZiwN$O?5O~zXFsl%46eoztkz%r7D zj}=~34L9l-z$f^=qJj7-Ri+SvP8Dk0>iW4`^GP~IX$2%;!;x&4toESPU4RXlIfy*u zJP-)3E%b(lN}l@@g=xYC{#4t>k!x@f-7Bf|@|uOe^+HR#Som_|C|Ru;lQagQA$WIg z32EL*XixV@=sZX(z?{ZIi|1lom^S-S$^YIwY)RHz1;7;b=pxWP z0_#ae5*kLpU1*0OQcdz0L%wNY#0ThcX0ZK9aySn7Qm zT>ppA8(gq{2G6Jh%LG_ha>zzeG>#w?(i0{09`c?e@YoT72dl)B`$)~Dv0LSiE>bUn zRU^k3f1(YAlFXpfz1$%xvi~OHLWRnv+S9ZKC!`Kd;w+Ya?c%^93@bl={FreR)pI=U zl5oPcLZsaSj{{VG(Whx^s9h{#MYUHhbJR`og&}^o@o*>BJRL7WOfxj%#cTOJp3mNks#eC z(L$Lkc0y%U)lm-srj(PO)I!&BqC13qq@d3e=lZ%H%76d-U(Zj=o1Z#t3|Cvtu5JHq zy+67+MWy>RuXm8ypY2fOya1|6b4fGFJ2@TtgXtcvTRTdvqLo@44h-c zjq4#{|Gp+F37+3>QH7MX;=FPZvtjpITZx>(jqh9InvBi)j(gDe4TACfwR8A~%MprM zSL?mdmJg7uuu{QLZkkbd{BZAO0pcz#^uK?eOxZT9S+;BfM9cwodXR8C|_4=-1TH06}E^L(G-CWq=gL5ZeWE zR`=A{bWEEOJt1?_E zHI_7CKwoU2t8S{<+mC3gsa>ZGP#YV7lu*;4LV<(Y-R~xO?cKT> z0Yq}YO|$H}A{7s5+i?^DbHL66x$+{{=BvVgypp>1NK8z`mLBo1cOc^L+R1hvyZjQv zGp~>js=ftih{XO0skN80epTX8WBV;~?FV3lo z{#_ibMcfp#h>sq{{aOsE!1dDujU^6kPbCJIb(AZbaJANr8uPffaq9rW`tjw6R>auG z{K6sWd(b8#KtxgYnjrpDf$KS(?;n>h){oJF?Bf3F5`-XS4i}ZuZT(H-#J<^W{p${n znEz2RoUx}v@~Ijn8Z=|hI*NstEhH6F{J0NY3HkN!`&oId&3F7-%iqr3x8cQC3{ixd zdwpQ(AbY1gs_1V-$V%jPM;@)InaxGMiodq3q0*}i1cBU62^eSyy@VC-%&z%tQwNG^ zV6mI>Es5>}v_NvW*D}35O&Yvy61?W72|H#W%sa&p*<@*Ro z)I9>xANJ8)5(-MFmPcS6gMauD5#^?-nXNrP)h#6!`D^9!5%j>oz?hosM_0uknlfkb zgD;bTc}~gnuj@Bu+LidHOC&f6uzyhxz7gh1z&*drEs@WvSf~lbS7Q=^z=MV6XkA79 z&R{Uh=@MR|_`15I=4lWK0ru-9902<6D~y%_RERu2WKDaH;f)1=7+RRPAb@%LL(uy^ zf^UIw4$!BKUco#KcV3`~lC4)6$=RI|K3qpt2RstY%fKwAycR=2M%StoegW7JoR2Jx zdX=fKI$Ra=%<#30P!vetu*zIJfZ($nA#4EpqlcD$REZd^Hp@84x_-DJV-og1h~NSX z->nX_h>gXn$juG|F&W7_zNggH`G7u>eWiErm|9!p-^eXUVC~?M@@Bt`-@}~Q|A-5~ zP(5;c7n{}-(#u_Wx~^EOV zZfi2fd?w2c%KwZ6`jig1bT{mZ6d7R>;Q>Dv`6RNF?T96k4bJKj7k9*ao8%5;MhYTo zZ;>47oq$vdE+z|qKvW!h5OK%S#_kW3ev|Udr9oM_)?eSe3NA06C}~#d!lw}=6lV2Hgh5up9nlDE3;BWxykI>wW~*ad*+;(=BL1s z#l=9d$xLfpuA;4uhr)G)yOV{tU^hPlX>{gXDYZKh5WSu2k8#yO$-rpd0DBh5vKsOg z_6NFJDAMU=#)f4Q;n zH@;_^w%lZb)fYIRK9R30&L#B*E@#f;s|qphhG1}JN1_DqsI z0otDp$^q6J%aAWs;^%Vn_GZmOs?YY4&q*JO#00TpNC392Z3?-jIYqFNN;716P+lt$ z6Ig$Oq9gO{i4m5cM-%b~4kVJ2Fn7|dFxp6`yXN>~2hn~r4V8P;fkF|3{0*bsQ>QNV z+i4Az@;;+$KRffZHM3(BxLtlz6tvY0ORqLM)eK5oFi-NDg}d+T1y{s2Hn&e>tsZ7U zcmF{&Vkazqn2)Efu$@c5tTX_hO_8GTL|4%`9rg67n&Lv@!a|Pf@ri{i0y`(axhe{- zSEfa?VJPE2L!NsibgMhq*&Vo5DaI~AxmtdLLU>=qIDY*2@48nnUowR+O2zDFoC8rw+cz>avstMCgaBVkteOdI<1u9_^R@t4odbv@k}i zmg|@-TB!X20es?Y@dv0{*7&){CcQC8%LMhwZudZ7CMqYAuATRS+{ssI z`}81JB@tqj51|Di0b(}b17Yhs!svnT;es@PRIBQ80AT{&RsIwt!x|s)@bF-^%&K`k zV5)rE@&j~1z%+n54IoS+rY~tBa5&ntBa18E&}bSY*sc?USC8P%%1|;FLuO$i7BL0J zIK#%GAyY+F;P=;jiDrMPIh;;4Pixty8zF9*J*~i1iuGCv&>A?^^lxVJ$ip6A;dQ5k z>8UB{1LVl<2pKo9$8^!of?crlL~rlHJ7*`sL<}D9-SFedu(i+D-_5+{(ejN@R-%%FC%3>Is5w)NXgqlr zbB2oXTB1?il~4k8ts{*YkY(DX5Re?Zy~Y!<{bOMa&hB(XBjoFZsN|sDfK~kKWlE;g z6wx34G=*tRVyHmjwMF-_?7<#dgvW`r5RIdS<>$-lN{8x>v4S*!;!D=J0?M|~IP+ll zUX{X^sfBYi_ZnD_E5w#Re%F`s-YW1A>-#Uk5N8-;i^um`l^R+!g-5OqU1Yr8qVCH3 z)})=b@7$kO!mnQ};;eWa@_=07uYJ90#I9laQwv|Lo95nj%Ac~kD0;X1=@rt46DE7P z%HD+t?9`Q1p{_WD-Jsv!`q#dY8edj+l(G3tgyY}bcZ7~AP{J?zkX>k3tD4u~fYRK0 zMw$Qh>-}?Is&~Uy@5zkL#aI*s%)b@Dxhm$!pFf*siGRpv<6T!T59_3`_1;c8oSroZ zaTXn_dSNud6%x_legUN~j1Prr0*9n`OBZOwo^kUb=0*H@U|`ylB(%{8D{$We8y;V(LQB$r2~Rkj-#tvWrdJjS{RtQF zeNV3;QC2WV+B#UT6aT3lQNC;Ix~W9akD6lgH7fCTD93~k+4Sf2xkYK6S84`6Q4 znb1cWi4&6EVCH$$Guc1%EI0%l!;P6RI>sN|9(jSX3KI)A##<#vc_&!B?*tBNmOe;) z*5m2cFveFKh(=5oW|*HH@TQuYCH|oI`6=e@4L7!lSb37S#j`!Ot#Rcd?v{wvR|__A zD93%Qd4R2hFGq_ez~6}4cY@LX#|3!P{B{j?;NNa*Ldk_1tjlD%IXZ5hm=k1DoSC&6 zzJi1w``Wro0FGBtXe6OqfG|IV|c!ndrh(rpj%Oxz^XU zz<=A1f+yQ)g=donzZ3#f8ejntTlfRZuJ;M~9EW70_r-apfE}+67R<^L{yelysIf%s zK?+F%`JS1agOYHDh~ps;Q=Gx$EF>_xriWx6ia#?zIE1YhY6Z9mC1Qa2e{*YfvS~HZ z$GF&A;Pj+0TG2o0Kkx!v5hp3WFZwB&cH_IR3sCZ!w-)l6SL+A@3RIgKOAYu|l#62DNlYs)S<4?67CMld7;2=Px$Ooi!OQ16(O5hj!75$-e)#U}Io-##_FMizbW=S>(S~pK$uc9<7B9=j!($aM9;zg9XwA*!O#N2Z0-f*D+Le z%cAE|G?s|ZF0whs#~cYYP=c{wor{q5GrGyuB6ON5j9}v4GKD3~mjaY_h*d9K^wZ5e z>e1iX7x_FQhMdaDs@M{~hu$4k_ey3~_bsnpU2eu*jcoIBLOY@mv31bkHUxR6Evcptg2P zN_(s39k~)KQ-dtRKNpK5`F_FZR8tJBbLmabsnwmH+-FVnW$^^YZLy$dBpv zqb`0BhAq){Q1#jiP??Pcs2psc-`ZRUtNC28nItM*w&;Ugca!4Y&Q4Hp!PNKj&t|8) zMoyP|S6Fy>;(MT>D*{JA783&oDhXh#Bwr{jlA9ob^z2pcoqhoY-@LDq4gqSza1XVA z3>*m|FVTQXS#;&SwYd@PV5|g0uU{EXCs1-F6lzHOK80z4k3y~OJw68@ZF+ng_gtWy z6tkxtYHgMD{t+QmJSW09`wEp+ zd@-rsmMyD6;@d?zSVZ(LYeOQsR6XOE>Ttwil`*w_(FERypd?bDAWI}p|4jR=b~q!bOL$tdL+8iK?+PNk4qaO}>6B8)K@+bklzl<0ak!XiJi{g=9hNRri|yz~{e@o%;z ziWoQldz(7C@!@Qb*6L-uti=$wiq13Fv^J8JUJhP;3l0mttvf1@Y!7R1dDK^?vtJ<( zp2sUCktG4>;DrrzHbjSzN*%TA|*_8mBE0gG;6pF4x#7A)|=y=e?kMrQ6va%Q<3R(jX| zNCofgA(~qA%F=R^OM;1dv6V^=$V3)t?FwxI139K_K?G^=&S0jO440CG$ABK+5i*&; z9);Z1hnA_Yxx(y-K|E{9MB4fF3|-)zMWH!UNUSinpzQwqRwt^v~UPi7)I#F-+aNwz@Gr41JWI|CB$ z5wDjKF9xp~$zZ=Io4__J6=DF>EP)3Ixe!pb*(QmGrZT0!)snjHneo$kJvV#6+Zq;- z38W;Mcn%q5lT=HgSly^tr}qW%?|$}KJFG%D<@(p|gNV=G^-@yphCwxhR^BHlU%c-| zZkTONH?M5nAFi`hKt%IM=d(s}w(I~-KWE-2O&DfZ_QE*)pWqk(0~txC`AY&Q!hvqa z#O~q12Uc4;EF}M{m|!Rh^mrhwAyD|*w4Y=%8OXmRaLkm-Lfr(98%Hzdmwr^~&I$HK zha&RxZfRm;BJaavVW!@i6=+zVF#Ge(DqT=F6tUMe$_UP&I;Q-D)064+nf-Aict3G8vxC8k~FW)?$S5qU?ftYv5 zLi_5iWKb!1Of5$&2S1A3T2%m2|CeY24h8H3SdSOM3!j*p5~qBtn++jv{p+8F{$_J& zwvptSD22wE$6BpEy-cJB3+>(28`FD`5kp+;wSlm?{{ip?5Sr#m) z1WeO&&Zi^-ub$%(SW|=Z+E-1`$;KI;|Bty3Vy}HqYWY@f^@SWQDKIA}vay$8Sbs(QQOI*9|&t1-eY20sDZ6fIN8nhioX zYdl^#o^a@N+qD|pmyh0JH&-5eh&E^Wg)veuwgsu=6k5T3#bNW1!0oXx_{mrEBq#e8 zEpl-gWplWUG8+BZ~O`yJV zf-9lxwY`rS)s!KBJQ57BH@gnqk65m6azAtI_I#{B5xzGtx3-C~zR)|CntI5ccCB8< zRq<4ou^xx@z(D8tXTaEKL-4P=e60r5;iIw%tjk_?yZie_OaLp-rOUI{k6K%6-3LWG zLAS2d6`bRtF2(&~=EWc!mw>L?z^ezGwefQugsa5H*S5caR`57&ePHAu1Z{^q6 z{VzN1Z~Xmvwny84VaB!QLdpqvV`t@$A3sk&hVGuI8Lq!pm_{i18ze+@t9 zGgi_?f$52iCO|Hk4dZ-SAB^E*qBj{CorSQ_gA8-T<(iS>eDSMc)UNzO@UpGU^;e&) zr283r51)rlo20?j3W#L^{~+P?c;O9(iy>|O%rHPv z&eXT*nK#KI+AIH-hVy8m>|7dH@KE@~ia9O*Fhxv5UGA|@g}UY`wUg=^ncb>6$0vAe zz-vwhBp5E*UG7Q`h~TRmq?jcT{UZ2gVEClxLMNoTF?u`A7)}F zhTr<%H4mR=mtlRsMTGzYhi!I|L><=ZX3lzL%iq<>N2TOMjA^z8MJ)k#t1|AczzWfs ztPw1TPG9sqnIrNGO?eq1Y}8+LrCb8xRM1`5O#8>~~-xWhJ9 zc13R0Y>(aF9-mnWsJ>u)B-M$dEGCQVvce}dYUtHtr#}_s@VNuj+n8)+}7q% z7QgNQ;8Is>YimmtSjH^|ay+ItSbq5N!)bsgV}RZq22Rnd6Y^E*IhiV0WGHS|udc485(~SFM=$in)+ILHIW*0WZnti`4b|yzA~=C+%BBPLn1sXs7=Sqx znw_^kmN=-#D5uj99s#6sqLR`fG}Kx|3G*YG*uaPa{%MdO05L@Z?Kx23Kmjfw&X-e7>Hx7(1^atN1+orAUS%GTLKDa3I{?4i+Dr+ zj~t_TlX0#~Utn}|{G|5gbPolixUc2_u(sR}ACt^|^r-3I=d&i~z8FDUxFH}J1Vg;r zE(_)kHxVOKIPUrIfAdp6zE64Y4h4T0tM@+ngOEtsCthI4#{vz{zBjF^Jq}?%{ChMP z0>E*Kl6k2Q5e2O6yH4iEPErMcas28^Hn2nbkozqjfFOtP3JkUn6<{dw@$mu+A>>N( zh)f{>?;p6632z>e6l-d)COjbCooZLUJnceBwj|6QbG!} zI|!_uLeT$?ZcjI_4mfQ7wsr`ce`oo@y+#HOQ!pDEuG=f~4}3LWB*AIyapWjkpNslR z`7~p5WIdzUpqS(U$8*cxD{Q-OS-S+^@Wim7a#aHJ>eN zy_lwUtz3c;8%0grkHTe__tqTW7of37^BI7}Aei^q4GhmNh16QTlZdg5gPrG4U6K<> zc@v(JOnPrHa$(tpsR6sQwWd7NV((#A@Ov!$53grZ>d(qhU)>%A?P!`MQ__tR1h-yc zQBioq`0nYr){M{`F8SPjDfk)GOPhlio5PlGo3&r^Ye_!GfpNpczV-(`Jrnt74Q=B? zG%(3w07MzOH`;UyO(y8lO_P#*9_5`{eXkzV4JCy^mFg?^&K*C~%g2rfQZaRQxE{AS zH}?#3mus$shJ}@r0Mo&6F_+MqfWp_3hRz3yoo0sxLE1il4J{4t;iZt9>;-psDWOW~ z*$J=0=}Dv|ec%_G%oZCMB&QI{2k6XhP4N6fuGYoHS_zOs0uvrMvfWqveHujoDBRE7 zoj@0m;0uyDR~0bMp~5J_OvTa@mS>ELwWAJ5-36w``j*r(zoW2V(0lCvqv=fGp>Er^ z|09*$s+p1~g^3sugJe`lqmU(PDuZN+>>(j*)*;!mOOd6ql{E@w%{G#ZP$bJF)!6sp zJ*VgWKOfKisrxR=EZ21|$MHQbsb1DPuvJri?Dy@f7n6zGo@-mjRok@i93o<~n{3Sr z9daS>wATShS^(vOiPJ|JZrYnccj;DQB^VlEW3Z%L>*iF|e|L*e6W>KDCOdB|?LiV* z$eJJmiO`)n`BHux$rtLTfA8%&y)kXCgrn8WPDuMM_hjfr?$V2jRM*n(=L^)PCC9oX zxcE6AQcKaxf!W!axerZ#E2itY+)bxQ#!?IzfxAA@g~#Cns3&g^CM2`n{Jl1LxB5mg z(M=(l)Q;R)`}J$hZzjYkw}AJO0oQHv7f&a5PGQH&-5G~eRzB{qnQS>rxN=3O@&1S4su%@9GvF`iZGiq0cx`ysAB?^8sa`Zy}teVvv zdVo5N5;|Vp;GbkJiM#!qx;w|zWARn7&tx$DiTCgM+s)cj3-`GVMTQks%$l2Z!oy#9 z3oof`W^GO_GHZ&SAd?T-M6p8pV_3hQFQ5DYq? zpT($yK{n%uYn<=hJ6(LtsCS`Vx~_nb*=B!^6PpcK4#~aUr|P^J5S4qW7x0IWbO>f& zFM>j|yiOM6Mo->_{Q!{VVbN`SuK-kA=Ne&ar*Z@{3J=y#pTZy{`d%}L53GQr9!$Pc z9v@peCZH}fq1~)xI?i*Bb8d2MZ2sp>r5BVo!=5E3Y%~EJ^ewIkm(X5)i~;LUiZ_1!tv{-Zo@gZqN&NU!noLPeg+*X#p+* zza0U=55vo@5KNyJvEW@_7|OT3dWk6hN&XQog#2YS-aumoj$Uh(wMiEDs>N{#7327( z_Vw!z>JTq5KsnglS-qC)w|v2GmMN$wcH${arS*v-U-X4NRR7oE{xfWCm~iaoL|~49 zg{?EJE;XSUW}#LvnUEY8!Ad-#q_}QFtU&08YYswznLf#&1me)b@<6Briug}m|IoL8 zCl7-Z5A*9VoYL!Xux{62wLW2B^=4CDx~aExb2r-TUt4Xq8$H4XXc&0Bk39u zEL<_Tr(C?6lr}QdS)$u4BG|{%!ji}?x-5_=Xr57U1fkeV(J}1d;N_#h?n0Dk#Y?~p z*h7wBf2t15Ot@LK4;c|c-;yGKka#KfR6>L^#dUlo-*mlxZX4nBcgK_h`FxSc0B( z@jxp#jN5sh;TmyPR*rTjRg`8+vkE45Z%~JCRgeMl$Fk1(ldD6?V7;K^Q36<){tV%* zOdUdFo!V`EtzD)4zb86FBX{k3d!j>ID4T~aAeWe?#tB3Pe#^M60J|ci(f{S)&J()2 zx_th?Kf=W6_MDwC_bQ~c@%6Yh%uKd^Yd__;TD&p-Q1A2#BpZ9*mlqTNtr+~?NDR}V zK<8t{7Rc)y!H{k$rPCbF5de$`bY%gxX&Srg_-|@&?><lD#Z<*rjaT-}S-pXqQ+NNTn*0S= zTy6p`q)f&*;lDNo7JxDvC-f zr#xrFE}YJB@}B8G*fKXaI+`=ve3izJ7#>f|7^*HcE`oH=wjqE!>%w+TUF0|S5oF%S z&%@((A(Xs-)@~4@u|Xf@J3)!b+Gw04)&!D^9N#S5FEQt0>{w&^NdBLd4Zi zc*@ha#Eio+$G_x4?eO;YPJux7ZODyuhs5;F~7sqbM#N2@67w$rJ^@x$WcvCZMKgQSgr8a=Tr%* zyx@{f9WQ@AGud+3cVqH`smJU{i=#2;yY$}W(9JFt_oDkhM_N#x5nKME6s@)NHDe77 zC3zhNiz@TYYL*!r?}yJkIYAppo2xnHel35WT*i|pfV*`5B#$vT0R%M`8`mO&8hs*y zaITTD`Lk<_Ockjd@sA(7=dD9<8#k{zb7y^iH0ml9f@^s|YY`3Vq?3i9JPIOfC%NjH zff%#2{{c<`Xqy(`sSg zTgeiJ?gm`=`NHwUC!XuaOg%;(!s2EUZ1Ja=+$bCdZN#;q<)$}+!+V7EKb}Fpcjegvz}Z-f?dc)b9!uyV zfn?}Cw*EUTb$@6ncF&pFu~D7D=A>jpm&vtS+h6w-+resNK5USJh>&qC(G8`|9vwrz z8Tx{St`g6|5XRDuWy=KIa)no-OloKDUONZuttw-!NKohSa&YL1=Eh$+kzfqk$XW^o z%4r4q*QFW?c(p1DhjFl?aC0js6>4D}24zceRX$Qkl+W#aEY3y^>U?p)}zy^5nK(oSl8*MeVm{Ff(dx3je;@Cn5V|SUMNDYH0N! z0I8#Ig@R&$zapNMDvb!8f`5X96S(UrbT*IpO{@O1gn>QqTh&Hx7^15Y;DQ$s!I0tC zu*VD{|4*Y|5|{^%5KPU@0Dh}VKsaGH4oExS2U~r^Q1F@Hw;MY{y2zY>Z9fkZg_lR* z>OX~fz4aXu4N9%=rsu$T_CSgUh2En|IIrQaDsJ@Q9ebUS8vCuu2pVK8gEYob{jO=_=AT>-Eu;Lsyc|2Dq;hfJe)=oLFZ=d?Jc-u-^YT6ud@f$NCn=pUj zXm)(C-*lkg!u#!lpBF@$$>bo?6GVp#E!$FB8t3FaD!mKVqT8F@hdk-!eM4o`TQMJ! zIpPh1QbfU?fuJA3NCIK666b3DqNgGCe_DWuaJ3HjS@6~viS|7Rq-4NsoGc^vcUsr7 zx$AbJMMNsNdOaCpahiraRQ!izF#J^dpCz-Q&^+w^8oX!s@Sxch>)h7YUAw-%aor{v z*7R63=5O^b2)DzX$B4JbUX}>Q0Pt*TVJG@=(MQs;M-W1o4CJ=VJn~Q5DsPZ9Se2>| zFSX~lu=Ews4RIp4|DX(m-mjn>(n-|N00C2O&WlDl*Cy@h7G#c84pgY~AmCxt!rJ{| zg`5Gc%}xrMVFN9@Gu#as>#Z55nH_XUD^Q2`BAAC^+A6LNE3MRusp`x!SoT1Ms6~%_ z{=FkcVUGKl5Lg;BN>A&AMxN;&RAanBouJjl}}a|Q7G0Ko~z3@&qjwhMs#-_?P)E8Q?3*jlI#OjK)>c-;}K9ATY{VCmj9Zy|`(A|29CQ_@-6VXYTAHlQmWULs8m zx-+DTk27Vo>8_t9y2pPN0=o6*0w^v1hDIGvRF#k;fSaH94%H^xMHfHE3m7T3cU~F% z71hq1!l3fdKoq7@nVLJ1B1ft&sC#(zhLtiuZ*H$+CLYV(wY10sX%A&=QwgAX8(I_O z%X(}OC8(l{JtQD-g&6#9Zsn~5l%>tjul7OHh01by!;4k_vAW@wcb&5m!F)e} zJd;}){-Y;KFkEABCj?fDEm-=!@?H0U3XH+XjZf&yFPh?g2roj?6zi=L(uJi!VCpFhfuKdE(F|5{UO z&G-gG2+91_7N@t&PA4C~dmeXOJQ~w32$D5W8qX{v@e5f?%7-Nvl~=wq_bag`2c2L zTwSq0W;CmTMPyhQAMac;^;ughu2}#Z*^O@nm$m+UbXxTfhr`xCn$6`ruReikRrp0Z z-5UZxwvJOR}3`rEiEl+=4XnVM_@AJ z@2@Y<aT>ds2RU8y@DSjcMmNZy8F! zd&KUWTZ2_8=93{GC;!vCx(>qH)}7u;FQ$}Qo5s{xd z6&JUc?Lf%0yoWk{PPA`~%^s(XQYYUxHd-RbV%1BKEf6{?j-Xn};y`OTHBCPYxuN1l ztlL_Z0Mqae$cRV2w&ELhVPxfirt+7}DYsW2bg&IZ_|Zt*(Q(iVz?@nX{41KkY6oo{ z1b=MvM+MLhux@5cpaZh*XE?IaY#R5V+wj#Se82W#7xFz4j$rs$=Q_VE3R$K?{|VPe z!smjE9~wU7W{_#U)cG&wXiGxV2TVOC=mX|u;IuXT#c0?iU=W_*6U~TfL<~PLbp>47 zV#VSnZdQEM0^ExgIKNoo6r1JW7R%V_*>MZWRBk-d{LmXyNxU|pY!_e(sSW!*Ss)6jLgF2*xI7Qgkd}(kqy(?PfO>tGy(9-Z~32c!zqk8WWf9kt2hX9 z!c$%klU;S$K=}9X)|W%j5@zTJQfjEjXElN@-Pri?pS4)%+QTX`@*)#@o|7j}a@>S0 z9NWT2u5dF-hMV(+wC6wkR1I6#>bp_J#RHD7YioI9D3p-*yBnsPqaI!OUl}`JaF1Fosmsa`Pq zt<(CX538^nN$uK&Z|b#uEO(Fjapw@ph%e=@6r~BB_XDzWHzGM<8Yjesws|hK%#9v_ z-)d|_BWfJT7`IV96i5iGl6#KQf1oW98tX#!|8!+xa&o4ywAALZ7XzZQMe(faOFEog zznuA+R0*%=$h5Ezq{_NFQ@vk-fe-*|#dD8}&8AJ2AN!9WQ0-iiq~bl_n&C?ygmR*< zcGgZ>;zM$Sy}`pV8#ydI3*K7K?m8+t{32{F6{AaEhUao??47~I0YlUy5wqK(&6+0c?cFnzldat~Z>&>VhF6-e=`H2-P*QZo zaF&<%UAoTK0y*JV``n;*VfOa+zJLD!+}IMK!Vw?9`l6L z{GB!&j2g?ER-cm0U;DURzkNDQ2PgJJn`}+5d~m16R?yTG;@A2>%m_}$Gw7zI zTcYYcq}=zATNm6MTPl~JGKP8w?wxx`){4_O`pJwF17ZrW8dRH@sH`s6F}?igHx0rx z^m#nRf>jBSXv1O(gqkUyK3$Mv^~JE`C~kRb+$CbZ=9=k#qpLmYk!)y-S*;f(w&Xl< z`=1K#yO*9YznZXb^M9x(xU1pimtj}x37t6LdA!G;Ow|dk6|ANKg{u{R%pzS%Exdhv zVRm(O`p)M1d_gkx>Yr&)kNYw%IK5q6d=pjFr)^bZ<5a!#X)8vHAKv9}w;zA##2{yn*2emgNgb==Zmf5qGC8(g1wa}|>n)b&9MPhoT0EBjL|4%3pY`(g}8toDKcwKkUD0s_a%Cr?G%KQzasJ~Mz5G_^CNOrl*DL~U?c zy6#bE7MCT%du$2RD{xdb^OeKKT>rj63o{U2+qLYUNyh^Cj+6*t{6$8b=b!U{shhyz zj;I>Oxk7f@)PhpbC6-SV!i01TO-xOP>-_v`ZbXe<2f?gOVY;iAmlqIv_(D3ZAln#F za9n8TQyt#0wuD?FL##T1iYM3)Dg=FpY*X7pA2=9-_o#iqAIXI8U+o9#lWnOlbD=Mz z+I`8+bnSpvZS{R`k2_Dxf3>_%Xi{v{8T8xSuEJc~oKmr+aP1SyM4TQ7Wdc|QX0vO`9WjU6d@m%xePQax%egf{yi zKFv`=7NS#*7b+m%0fL3iP7;0S|Iu5aKeh96gziBdiJ+%tw=^-CVLb2u4AM82QSkx(zYocqi4mGJSjIH$6k? z%$cJ0J?On)A8!TJ52V@l!=wk2anoVFkpuipmfSNg({JgU`;G+}?tm*iO$`@VZeiFW z|Eh*rH{W1y3OTxw4_;5K1T?TtfJh$?=_#U^*04$g7$7TW7}-f5cLLSn_nKmg8i4+N z=6^!5FC26sN*d^?saCcT{4Ft@hfjmu_x^o|h|RHy+_n3$0c{|DPs`7=gOL0q)^h;O zA~}}i^-Z}!l<7HM#AAA^x*dODQ&}d(dSAe*;MUzBElSn z8JN`u$JRuN+X{6-9mX-dfW^<@ty9@kb@+vEyaRr_MB; zvTh*+ohk`D1=B6S48UloBLZ?_PQhj-Vwx}^Wfwu?LZ`cOy<{lFeL5_7=*i(jdPmE< z2l%!kL%T^Y;xqWxlg^@?`7T(Iae*IMPU6e28ye1C8yFq6D0Bl)X$0=ZpF5KC3XZkzKwQFwIlyu2SVih{ zJHs7lkQZHDTNu6v{isyy1wc`t;VLQuX(YXtaq$`~)gFz0k$(hFBrv{>*a|2T<4Fdx zTJ$va5?Ts~CP=WM|CPRQpE*6!V5Q_r4es6>gEBF87+U{6%DTHZ#P;Vqa$FG(5&>#G z8$GRCBAZ7|8;jQ0=K({w>L-j#si9oyzz$qRYVU}BeMhIaGo7~bCoXVQz2+Ka7$RtH zJf@;_a(9aNN;&;n;nq;`*xX`KhMS1fQ(jpfje=K?<8bXa_k)1eR?yko00$FPrK%si z^bl@6@EVNqesPMepcX|35`Lo+j$bQ6d0Z(n8 zng+x`$v99XJxYhPVU)x2z6@5>ynRb(1a$2FJVvoZsdDx5MW;DFen_e@_nRf zR40o1Ao?m<(n3I;fO{oE|Jvi;)kQDO@;rinOoYK}^Cur_CVA+35;F{2AiEBDJW7=k9Y zFu|^H0pj*h;8ztiF*X(u6i7=u+{6d*=R>udKi7(x>%AvcUJsPvj|zS&VQ3zV>F7{> z{dlV(aJ{M@w>e+!PXzZ{xpdv~?EWVv+Q;aUFnn{R`n(}^MFpjf{==D(sgl zvKXPSip1bv5vQMCmEmS#V^ea>hMBp3bH#6`Kc}PC$Hzs5L8ch*2_vX_9&^KMtN~g} zIx66VW4TS}J5cX0PYyC_XQ<36H^Hs(pM=kY0|ct$e`gP1h?A1ZWwiC=fvTRsNjdkf zziAm?t6ZnLM~}%~HB9ACb9ES;5csxN)cIbcjtQpSsJ^Qb#@&E`>WOhA(4I|| zQ#f!L*OF#1#%f-Zbu6^WA26)N4#?HM$nVUAf_fqdR-Uv0(o|Z03QI3V7&A5`65-_I zL;_(P23THFp_@vXy8iD!osV!r+Jtk1=$L=74nkv?>z=|BsQZji=#N{#*H&}G-6YXK zNk!$%sZ+vh^J?Yx0QS* zfohFK(*y(Dm56Sy47SGxwSuUa&~cZQQNhjSV{kF;SKhSOGV}EDba9CV zN1$Y?%eQ+br`AWnhPb&9RcF{I8oRF*!+!~G%CkJD-@_oBb%!2Jc(08-`V3HwrD+aFb*`fdZ2hcHTrL2rqak?Z%>jhlt zHieh9Si&_1*W-K`4_Y@C+t-Xp??BZ!XFjp@`xCo%@O;Rofi=@c)eAP z5OxF!Ld6?Y+#!fWUr#ux95#bHSKur=%iRKo!a<@KLuhnGNya;#leeQ{{XSDwpt z(T#XQ2eKi{0A@B|aET|lyxFElTLO)RKcb5bPJ2@%2g}a|+lB56f@e0@=WyAzOBS4M z*AbbbD_U;fjy8V~GBTSdO~K4i3bX^j4e5$L$EgJ`-B08np(C?1Vs&c_pDYI>mz}ZO zS{r17q7@waqMlJGpMKn}5MPQ4{_3~l?k8>Cir<1{BL3$G!0)h+tnnO;3k2=OyQ{jG z0HHd6qvxoYm?XTMzvWKj-g_61jHLw%F75XMPKGNGz2e&NdmjjHgKV|Xc=HJ!ez5<+ zoWy`<98_m=4ij@#;4-{(yxjm>-fv%af)KCfm=m`K$h-~r&2gvN^=#>{Z%*29B`7*b z5cD;uRcYCh-|S`2##a}>yRsnuz&1fORE*o38DA)B?@-I9ASz>DLUN%q7_-rXhYH== zV756(uPmdnUJJk5Y=5>$WotsIWp2f;iM1(YyD8ApWG;LvuDXJz?7ciw{l`I{3yCRF z?_K;BnsIuy6=dZrf0-9fTA(5%Teov0K#&uSB+Mnej7sXiZ365!5W=y?xc2RQ%1Jn) z$ww0XbY&~s6A0VA?{a62_DYNC zYm&*_4Km5vFsWRt6~oZeFh?+ObilzewLl^iNR`n#z_^Arw0kh!qo<;S#ex7GoGCXa zfIk7TdPNo;oR$w|UAUDOm>zNwf;XJr`V)0+M9c)wTQ+rs9pO}QUAlU!_u36_;az7Q zpfVM7?K%V0^2%=%_nGuH@u5Y7o|bP#bVp`qW0QS4&SeVLEKWrEE&gq2C!&sKbK>ZY z?4ybpGHccs6YL#6s;E@Rbc&QWk171$I&>{vkYQTjySaNa_?Q^I(s9ejYLhVX zry%j>*RKv*bb!iBDg9_<{=?ACZ+=X#N0&j^$D*2+)YTQEV3H4Yxf1#;7|+URoxtTp zpc?t!5WRXR4^&- z11;};>sLwic%Fcz8$tjU5T2~53Cxr{C!n(Oa}-i9T)g?reeafgPfzw9Q~{pCwPBCx z$y5OzpQQ2R+(U!Pt>8Os$9qn7=gxT*| z!VQu`Q8XpHhfW(a?sc0J+k1a}pUHX%8efsPYE9^>6-Wflv2O92@0{H; zlZw<6ncAuRv9@b$`XZv3FVL`B9o{bJD%;E*xSLYO-VLw0nyACY3c|01?87*% z`_(*POLVGa3v2kwP7ue~_}%cET(R!bi;P@aT6HF~x8d2K1s$9ZD=neOq$H)5T-Q#i z|JB*);_0~q1%1u=~_5X#w-!BEpTTtbg4uw+D-i!3tBqP~o89HcW}ul8t$RX9vQA=D8eUiUPf-IE=7rRc{7SWyRUs0TP$iPQgF zc+SUBz&=$Zk^u06($yl%>iXTJ#ob+9W!=890}ZxmXE z4ff#Y3Cj^=Xph_Wvc6(nBYVbK!g48rLphM_pO)+lt@uAe3yQeyEU&N#+j${2;eQD; z@UQnoAL4;HC1EzSFoEr+$hQ7AjDG|uz+#16iHX5(sxa6cf*iIx9v;SgQlPy>T&dJA zD5w&2Na&WbFRAMjeZHeZmopyXj*g(-{+1~P@O*oTWkTPL&3--K*}ZlTQS8_wn22{m z^)G`F+yDGU&n$edF{-4t)x)r{$*#BtE_8-%p#?Q>AL~U3Uh)UY>Kw==S-FQAh6yl# z5W2z>OrH0VhHDoP_OR*&o*O&DfYS>Vg9_usK87H_lHbtjxn8Ab>$w$gfeTi=tt>~n0T&4iy1d6Qm(Y5V zDGs(mD}?GcS*tzVaXw6H-h zZxpBIXkvvkaXCeHV2Fbns?}@vyYkY~m9dcvf?d`f?z`kmaQ1}fR}Jbh_GOw@UXvxlJ*mP zyXaLNZj147c+35ff+^m+&PbOr;BcEw;u zVDE0BtJA}Ib9jk1uy9{0`QfL|+)@gq$SJ{VZ9AB34TkTLrbb6cr>3S-duOMo0pLvB z$5sukvyWSiJXLD~&@Sig9d(Q7Ug*thu1m%nq;}>^ZOh(?aQn0f2{+^>o^+~R znz3Vi^_!klCu4$e=eH)EMOsP!)f>S^8|GRucOg_yeeAv)JRqtBXFGwM@~!?W?`P5> zm?m<`dTY&m#~-KliDRQ5*L**QXk9By-G`M+rk;J#ej#e0!j0+)y#y#FTr1SX~9sMd=MQOAeZevXXiEakcNBMAG&Hf2xbX@qbj?93M@M<(yi zR?Uspe*3KBR!TB8kzEsXsmGV&uiweH>%&_MT{3!(jzLuzv%^=*#UEiiIl39h+8AiZ1$ z9ND(zkWj@)HnjUw69wr}m$jgJ6vkVZorvn2a$^3perkWYQ~p8pywA0G9YdwU6ZH7d zkz^z5-0gFpE>ZD8FDD0@%+U~72Yh}EF>lf*E%M=2kxl;l!NKKIW1EemeaU8>z{hU}~F8R&E*T*dr2H*W+s znVcT%@}krF`0#6Y7u0%^fke2ua)zBnad9!4;BvtG=Nd%T08%_{wbs;0=`*Q+0>Vkx zNAjI&T{lN*u9h?sY*X=|!+{;2r4`{b$;eKfHI1;cDl8|*pZ}(Gr5oVN?BcBJUar%+AOhv`pR!>Yj+9rS-{aLY6WZ# z3WYE0U+aHaiw%+U0{oCp&+WowJpD9BS4XX&ffi_e&ffZZ)$rTbuj@ZAsN9Fn(bW5| zXUto}VW8@9!A!9CImuz5=+MTp(J*)ump0vHU$8yW*mhIoOT82j=EUnjllJZu>wJU+ z5&yjJJ3x4TmH@tB2yuqqJR6QdI4Gdf>%iL;CPTZ8a7G*a6Q)7Qu{Wk%!3p=z%2r;% z@S+=Yp2apn<~eurr*Cr8f*OH>dd< z3I#^9wgMf(99G*bvw0*S$LT1>j>}3o6Qq*}tP+4VJs}k&wZbje0Pd5tFdqIx=7)hd z!K0QW4;9-1pv&N(Rw5^{eda|pw((vOc^W&NaQ>~U?`+kZN@|yGicMiWh*2&B6o|hC zfuC}}`bdpfX0KI`n+fMxyE88?7P>(?cG)*zGi6I+vr|(SR5l<~X!~yEaI`^4P7bJp zPv{;5wV5(rQBgddsI^bs%>5|HjCi1S8}ed59-av~2fS8OTxS8GV_Dcs3I#`Fv}^6# zx9cOj{g&7F-+1db#fyM_anFMYaad46B%srFsLZmRf8V!|M<8aA4!bDw6`rm9h4HcT zgz1eRKYk=zKSBGOaekArWV51Gu-***WQ%E|?(F~?yI|*VCK>0d&qEu~sf2YNwzI>R z4{#ik?V*A-o0S^_3`P3kZ)K^DGF&@kBAm;IxB+){0$WxXzWV)i$?BWU-r+4m1fCd} z2JHor6?9e{prZH;OBDZgE_iiXg&abgiLe9}57MIF;jdlKD!(d@KdQ0_6OGC)DuuG= z1O6zosC=Ix7l>>2%5Yu8V$Ag)!+!-99T>P`aUrU0CGuAnd<6F%!N@4lhgQGS!RL`* z$878So1VT$-D3Xzkhg*j@=gVvE=Sal&(3cTPu_t>Ld;%Q*B%Eo4W$t*oaP`uc%rZu zUFFJf)Uqk<7Z4Db|Mv2+0VHp_Qdw!0N~398kjkv`ZSSK5ed{}j#H}h5X%Grc$bSq| z3KbZ(+d4TF7l9M&_2m%EoT*b;U9{T-#$M4Fw*+WHSzbbCvluG+Ab@kt59!gpQdH5^nSAUUlX^GojwHraL7Vuf_Ch1&37q%( zwI&%-DW!omITV*jvw6w>YI8e~vb0~s3=9ts8+C+z5a)7!TUDiref8b^)k_+$dW;2T zD|KJJOwj!I?gdb$F*BHR3~z5|skV^##Qbu%TkIS{R>#v>C-PFQNpUR0I@@bxa?q6d zpY)AE`9;xlD}9Z-G$vn5#s6F6)@h z3>ihQf%VgS1HGlY=GJNMD-}b%g$bloQNxlJn#bwj%lrwd5)TCKsJ`DJCakKze(1`$ zI8W1ij=TUa9#@1%Tl7kdYEp{x+YjwuEQ~5hvA3jZyqQvr*}*4&YCYG=Q$0Sg^*s)4 zjT*g8w$>4itz90tXzDfhpUp4Mpk&@sb$yu)CnKOFBYvb1WfBfxRWsZbtfXPFf&>>&}C~HYMAXTt{C{#Qms&TUDu+Pl6*Y-Ip z{mLoFi??jrK7Gk_81x-%O7m|OdfFJivSQS?-@y*;GT#Gl`+*h72}%E_b9u`8~dte*5MQou2D*xQq z_QzaVy4`#}F2C*joYmmw_fVC!hRt7fM#p&#<0$MBU}~0K4|(U*JIswHCZ!ez(;NVltEsw&S9-{`J zGHA_z#LF>sF5jWDX#n;GpzL5yV+C$#5U#`|vvDk5+4qE%o??ySNAB)c{ay)`0XU(- z9LJ8-UxtRApGOsqUc9>-AuHxT4Zy$$3I_EhluU6<{gaJt68~)OD1?G=`G@D_aY3M^ zKPB@v5s+*$b28e>>PVh3&WjSlpes)qa(@BYLOdkHCihYcO<8?fRB>RAm|F ztti@~?d9y6O5k=0}jgs|otd zcSrfnL)|9?oG}@eH2TCi3m1gH04*ih>4R6mCAcX^fcLV`kb^Yr$(3+Z7ZN#4ufv!c-5{O1VjFwT0IDbw5tiMA>$t$MIQ zH@!dJ+i$;(0IgoorK^!_>V#56H38h``Ye_@1~RBExT*W_bYKzd-nwkmo?xtHGylr5 z4dT^z2^-%v(dG|g>rY7FKKP?VQr%LZ1vCXBL3hU6_E~86xxpYODdz=LkzYqfg!8Wu z-C##A1EBFYPCHGORszM;j8B}9bvl01Ix!KjFm_y-4dd*LuWujdVc~h+;4QsC00=zo zOm_k0>FX_Cl-F_4F+gzu@%0#q{LGilvhJx45w$Pc-&8u8;_)xiL^CB>^id{MKj3$e z#pVO5iA+xSfhzr11xb?ErmF-PVadc^uM81Jyqnv`*bgtrc{M5qTK2)>13Cvr=@NHkJ(qt3T#=(!|T6pbyI zTJufGfxx^c=_+Pc7?4>&VvVYX^P9;MF19`0=6I)+qpSYp?b{#Pq(C-VFYrGLcM6Ng ziidGhB1S!4OhSX7D`|=(*86nFMsVka9$5XlQ9$t;e5V z?Onqq+PL7}@x|^*3y!0iIfeIlGBDXTT$VfKLd};ysabyuqAZL(2aFC-*A)JcZ(!K)S{NG2{7`5JXEB&NQ`;90SX6bHUx2qik9wK7z+iM(0@(Xda-?s~G&F z7)c~PzJ&!xNeUU9fuTjx;TX;J-}CFIRNgqXTj5noA_Cy>H`X_5cQd)DTgAwzb9T6T zfMyBGfeOLxb`C7Bz1h!viqdJtq|O89xrAZ1d~==+y}#6xNGx)!|G1a@{AZfi-Fqwj zD~nyVn*crjZaoN*zd3173M%Xc_Wl;yi*O=r5rMle?+^Jq@i?%!cBZYbcD?zO>HRs6 z{>TQ%_R;;3mY<5Dci4+D9Ei#HVFfj(l6L5Zp&K)2u!8uIqm*)`w>!6WEh(7H`!HB{ z&~IvYt?!g2?$J5J1f8D7c%P0q!3j4Lo_l;b@p}+?oxNF%mXTTWLoU0LRo2Je@Ah5Y zxR7yXwqBzE0}2ZaAiknquM+=1l}!$bzlDwcFXY;jx|ycF8@3noQ!aoPwf?)qnX@!^jAdXiD!2{t9VWEK>1sjfo>70N-KR-=^JiSns;cYQr^yL=(0 zK_L~}TwV0WR~x$$J^O^*n8fyubS##)JsFq7So`xa6s4+3sPJj&z=q+DiiF`L0<6w9 z#_y38#vF_*z2Y$Uqs9vdd`=lr!3Z2yRP74{={)B|a_$hys=wYfIk{CD0~ee^^S?L) z>(YK(w-_i=l%U(n150-jKMNWH_xedM*jH0*7g-T(g*&|fj%*AU;sFbR5H8LC4a+wJTkR*D`!&w?C3E+)wUrq z5qa6JPBkmdf9Q@{+Cysv%jxcQOFw7!64(*;n}OQAXmt@7FxfvkA@UR^^>}MFi-?6G zIPd__*-bhI&o9P6?b{YsM4N}!&OHAE$3Na7d-8?Ef0EZ}Zz?FV3)BO(+|OOl#Bpp} z{H?AaYWf`rr46}OEKqxw@wd?K8hwt&d+Q|kxk_w%Z2#Xp+X!4xw1EqR;()vVD2gCi z(2jR!Hsh^zUJVpX*=~sWE#_wUEP9&s1w*rhsB%AcC5xvd^~;W@<=X6t`IVew6Ao8# znOnbn=ll0A${9ef^IPn) zTvlKkMF6i3sQzXd9m4k-#+oh>qPDaM`X#Q8zpDYmU`}W(_G3=nA_hlaOV#OMM>OB@ z1?JHP?kOM16zGxR#={$`^>wf9iO3_EqhYV(nn+U-XJEc?afu0us7^>2^Lwwlq|Q*Y+jKelSH(z-?EDcBpFk<&H7d_% z5uW*y7EWHOE%*gcQjlyshqPaK0E94|FC;J8IrO>VnoA(L>Lq9yy|p#Kf1z2)d^xnJ zcl_$`%7`9g^Vj?P8v6SF@)thZhux8W5zhJjvbG-XGL=7i)#j_C*V&sAWV5fvSAs3R zS2#f0hZl2TW+c<{5YWUHPFij4yLCdxY*v`w$kBW$fh>W zzxt3xdo`D^anV&g9X5%SBDR^?-#qA@&XWRikO%*KN(l}i*kOZt*`?~OGm~aj+A7f^ zCWZ?F@(|qZ6OfQh8vwSh6)&1mbE{9jb7g!h8d$QZ`m764IW`jQF07=dvxFXbpeq&i zO+mof=x77Qwz)M|MDsHD%3Nrag2h+lg>!<5t}s1G^z0{8?2?7a606JwR30Oh^2~>>0AAMzsQyzlb{QrmmOUh6OZF=Sws__7ikd> zi3zHaVP6EWzoIk&!9#2s!w#&)NL1jpUf9eUby)4hjE|idk8TuO8S7q&@|)?-@S(5m z?yBJTnC|Jf4YuS7`^Xs}#{)RUAk^xgqmd0W1sk)e(wlz=0b;ZtLPV#yCf@cJgqVqQ zoiaT<_FTB}IX|*{cjRWG-#qjj-PY=F-kz?@n>xUmUve|ZMy$~$g?q-FhI|+-uA42F zu8p)&>r@|+9PHM^O_bcdHL|Yg{~Wj6zb*r2m(hx;Rh+h_%EtN(Y%tb`wrAXLD#)bd zy*vlHsji=wUj}+nBrsI`HdW59Z?9Ju?W9f5kgn3w(=*QLN4u$;RF*b_X- zxU8kE5TpuP@L?TAbynnQAJ#D9d&*hRlM?Q%$Que$QZLQSI`g zkpv8_g*jRc2^wa=TaLi73(1|jwyQ^eXCUBc-!63+C)}b|C6~9anD;oKovZpP3UMGH zfi4vR*b>bCV1}yz5myi*nh2~CsI^$Q381*Dn?>mN{<(Jw0!pBh3leEgs+Yxpx*8{% zoP#|!k#;UT!*_MkMcIp}r4YJ(yPL_v=*@P_wn=cGt1!PanEU-a?%s($5yrXa z`z{ow!HEnlEOaSm50%0WBf$LxeGiCYB#$Lg@Fpyx?$0E~znU0BsGakq|{} zbxKH;Smn$ODP?LVi7>wvK7Z8QifE>aXn?lgg-Q^CH8a%u=4BN!&3O}$Pl{QVg4sBk zlNDa9>(&`3x$Ai+Qk zNFzOlyE_Rq4&5ngVIX$9@|ZPI2-6?}_ePztghIO<#fW}2vrvCN1@Wbv?@3-BcT@@D z0pzFr2oHz{xt|KLKYbUuhZF7#Glk_(HIRVn;f^<=xta7f-FtJW<&|W6j*Sb|q>q(1 zLLu>}8z$iCD7CBQ9k<>ytxg3)9M(}&o~H4p)zsnj9BlZ%`_;-Ki7atVMh*yQ0A(S6 zAQ>eRP5Ow$E5uuzN&Wl>)x@>LFv2-Wy|TdOqybq6c9E2j~L+u1c!Cf8H@=8p^K zBBQs)UqMTz9>N#^+8gbha+I}Mf;R=E`~XInCAq6EIucD0Kc_Lcu+lf|DYuGTKV4;P zNRO8Zz5D70+pIY*kZ(7y>)W-jQXX1&cC!k{5)q8KEK8)WKg*iA!)uufz(d#VE^DpY zJ%?+ZmXbq}OpRAd3i+8E*uTE$TFLvTz`+jo18NHV`fQ~*KY^O7F{ICDh0+ds$qA}t{eRixIt@nD^;2cV{=e$|@&~wO00L84?ECImD z09$KsXlO{Ali~JF^Oq4jdlcSocCRJdGsTmtB-&tvYzFdRzF*ZhBzMJ*iF9(*8d+(X95ic-?s7LkyNUgBBKLY5(fER7^&C(95TON`xj&+~oXIi2Uc=Q;0r>z&5`|G%&Mx_(!5xyw+s*S9;< zBfiU%(EjZo5DNP#hW(`AtRl-Cg{*ZXAiCMY#AgM95FKD4|ugwDVr-A5)(>2%@gO0|P zz~GhNr38H#HtwasvYt-xXb^)uT07MP7r3?N76WlM_#6NnS_+W;y0E?c;eC#`I2v0P zq57$Jz*EzgJTF>4e(7rFk3>%7vydtD*$CuPBDM=qo^^iK;>8CCE8PO6UCxd}TGYa< zfV%8^HK%W%)nKb{XxO%<6uC7`jU1?)vXKmZ!MSqStWolT*OvymY z499t*RorRQdEjstM_P$&@ZZtmn&rvj;FbB%l{MEH!Uc$z;8y15U`B*$XlZJIn;W=H zk45j1%*@C**Z@9K`gm?!$Ie!RPL!Y5M}_w>itCosX1bD~amcB2M?C+d;QgcWy9Dxx zE(}E%h_frl4S1D;s*T!<%&P4A@Hu6~%}(!egXBpFDPNm+WTMo`-caLGl_eVmZ!P?a zRN9>u4O(2Bxp&mMJxb?RMv0{X_ACZwDa3;HQ!!1#iz>gZq+W}i*4x07p*-=mrOvnW zL35_jnJ0ihGDeVf=@ILl7Q8@TK9|9(LSH-y0{Y805OaMGOAh(r{jlnJHZO z*-;c6UgF@4hUyDYp_mY0M-KkMb>_Mp4PpvG?k_yfH8iEvoY2#B9MWc8X_zJ#w_d>} zuFd@lAkP<%R4+D`4-Y#^Gbf(OMVeXW+*Ji~`}xcO3HCrRFGpuxWd=pn3x5MbNBVNq z6sWO}aRUy#ZOq%*eslsLUI`v-mZc`XG}L>i+txRL`)*xmYX|)%j0y>}Ua*d%;qqjd zZie-7w98MKLUM$l_rsl{3`?OKLFkA$#SMs-S_E%C>1BFDlRkg`eA6+r-qL7DEj!Bx z%ns0Y%6CVD6%|dI&MYMIG5vX1LS$xB2m{D3@Jm!spkn((A(St|VjOLa7ohplQsu(g z5&OUW*aN>az;B<3zl1Rmg8-?&(xXVY%@WNhh4%5mn7G)s50*HmuWao!00m2Z%ha}LYY1)12_eheb-drpUA7~$g5+! zYRDih922l5|M%Z9DgTFtyQ$0R#bK$z85GU@9~YJ(w6`8Y&b`dLXZF0u1gG_11c#kH zD_c_TTu@ZVO=O9{@iLo(0{g@!ZkIa;EY8auJHMQA1e1>e>5hzZqc@6znVR~XB1UmLJ z+PaPTBIuTR_h8m^_yT4*Xqr83l?*mO0nDd2fQ1*T+zVaks1#Gy6@Ivq*;*net#0*R zoPo^%5uc*MbTH(dP$)7F^EitS*0DbB)d7=}Tr@@R{G#i(6MOoR=WvBlu&7Oh_drSl zJ%~Ict)<_SWYMyhKHI%Jr80`x+XnOQA^QH-qjie#P(yewyG$d3%rH@C2Bq4zI%6Vq9>*W(9Qs z$^*C|wE*q_#`BX!gm7Dg+Jx>F7W7q$KvvTk6Kuu>_0PE2RDJ-9D(y@HPP2Bms&=!g zx5#4e=-#+fTKq@i5pcP@AsRQD9LQ4F{b8Hx@kfIfd_Tkf7Cq_%WvowA^`W)9{W&Rf zd#z))8y@~;P8BAKeoHn#oo9)BqhHHrbBs88EJf0OPxKtP1G{bSoufDwME^gCZeh&F z<`8&1Zrm6XMva*td7r$cDDhFv!LS`nHy4%WcPV08YV+{pcUGROMuFt5i$P&PR`6Jc{$*#lv_)kFE zOEbasraN7&cND$#JWjjgl$q(yUoPI=-;3(Jd^QHSYY%bz@5kRg9|fh%oQM>BYI+X% zS4MMa(&-{^#W?r-_M20PMMskgV+w#H7BSt;W?-dX>N-?nUevp>a z)kW%13TEtuG6@8M`h@d344r!)0t&%&ImDY1USH7a;=>r{^TS&OarN1M#i)5iRUEjw z-vD_}la);O9Dq<7scRW#az@RKlP2J;o`{135$Ke6)A}4E0N_v7z~G$HBjCI;>zyPp zT3{BJmX4rww6y`S$vCx}<9NaS1#(2a$g#bSb6x|R6Oo<8x6&2A7+5JR?%#=p$+2WKpn18{rc(Ne>>siTiQjS1@kk_np)jXL_Y>i2J7`!{OGkZ=e znw)bNUiE{aNqVHBaJdZRilDCJdT(5cJ zv!BVf`}i6*mZnOAcA9W-$9)%LEFm6HGAvAu?!$#X2s!){GRbYe?D~`Y??*c+U4q7H zD`{I}1Rwf_nbP{l<4ts>ojH4W@GW*I`M8#)TItnCx8d{<(l0-Ry#ej_5I?Ylw_R;J zYnFTN(*hP(WXvlL_$rvTGl-*hT7bHz4@a_F6_Dn3#+23*4(k|_8ZOLsXM2cTD{3PO z4f>G}K`Ge5)G{Zw@3g?lc~P=^T#3flaoHOQ-V~;9b#+-qt(McR^${6)!~Ryz170b= zau4eS@3eIUZADuQ@2;s}TK)MnVH&bK7N2-Tl4_5PUqyU6LQ)Cc8Z5nF;Ws}yAX9YY z*LYXgwWNal{xaeKht*Z_yZvr_kEkwiSQ)Uvo(P*gtT2i9Nbfu82IwZ#Mm!^Q@U zt$MY$F-xGJ6e?~~6OWwG=y7b?`Q`raOP89J9u6xuemmXndL!CpA##|gn#F_m4pn9y z_M|c=>7gE+ExUyF*v{U}9s6K9?WD+aW@B9ZC}h#E0J|Is?DC)b-RRR>2avjtnUwYI z0Hki$fVisi3-@Rr`DaTnAaJ`@OmW;qL9GCb8)_{U6{z(m5JOT2$uN&z3?q{t}!KYaI$bR8E|sEIKqO1 zA~I$q4y(%ypI*T;70wsB|F)HgCF8APuyPza(r@`rOWbZ2Y>l-(K#V;IVoLJf z`E-|>8Y7BIJRbH{5tevC_AZB*#o@RH4%M|e(q8b~>hz&s8|!O+NijgPJ!Hb~LqH2? zP2lY6{B5n<^uXP|+|1y$vEqQM01-LIYIo%`f%FEf7!1nmL;>Ohm8^kPH&FfWwTa5U z39B-rh&P6M?(@JfP|kyWfc}>CL}`D67iIPpZIg2 zoHpb?=HLs4vl9;}SjfIQ4KUzWfSOHds-dAOh(hXrhx4swVl+Q0$m?V7M_Dd;n$d@R zc6av9IqGtd`r2X8US1!RJ7663J=6hEJ>!J1+|P1`oO>`iqZuCRGXQ)S;?r*p#Xl?Y zC=%EYuc0gGOc%jrjQb zrokaJ@W&q}P7I7}o5$>&sHJxcyIo#ev1^--%36}c?n}GVY!dxn154AJL<3KrW`^?& zy#F9v=t(r?jpp*!?#k?})IPIjE|T6BW6kt9*Es*p{$a_3v*Q6hqhu;APbg$mvSe?b zoP7)9$KN`J@5?ELuuw*|U5ba@6uQprxr+5O`ZEvBmQC^SQ8L5t5i(Hja(cD;Erl3d*5h!q~QgP<-pe{eStiyUt+7WqWYAL|a^PyF%<~ zhAD|5ym&CW*$B&0TH~_tj-Mi^vmm0fls{Xdk?~L4z}Od;pme#)C*b`|Qci)xb?|@) z9Ct@Y@JBl0)5|^xl*h&O*T)Xvx}>7RCjH2qC<8v2qEeO}rRC)mW-3Jlkt&n>&mnKx z`1c)zVKgCg>sJHs?p9bA>50y@hY^;1Kj5W$Bt9?dYV5BDv?|b#YTQ2ttgNSlO1yOf z?&#%>Zojgv*Sjmc5F${!-P5)%j8!_M-~B_Y3k)=?4Pp-(J`SyV>K1jJ+WxAv)+7@| zyO18;mGC+Y1cege)OA4e)BHim?e)~cg2CV1{1h**=&@*Uwsp5dux+EO8LBi_-`(Td z8*OdJlRK<2B7MM4WIq(L{T<@^b9n^qkY7KaSSFHQ5QLs!LizCw+ z0G(JXU0q1q`kK&C96VX51dRnQW|ti_Z&zB~lKFH7LxjEFe3{NOEn}ZowY!IR&fhN2 zDS+*;5Nqz*FKg-}*Q-V0BFaAL`~QsRsLKyj_wdI@u|3@aJrEq{iOJ=Eydv4BDA+tT4U8 z3&PecnRk04kTE&2C3rq?b-l^a_$^NSJdOa-(B(Fq=Dvr~S$OfNoW5UodJH0N>Y;&h z9_g5Sw{<_G^b?xJHVcfBZE?7E1@)IDoCHp zR=+!r_wrojK@?}tacWcNCOYS?rd)^Ja&@ni7TZI7e_8g)`zaN|_pILKAQJDgL!C4D zyWl3bIm7$U>3sqyaT4B##>AI>26Oi?c*(%_1UCa0AL{LOKt@9AX~u;>xH6-=H+J^& z)+{~(F2wA?AF%KMIER@o%u;rW%V0LxqIi!0?B(k&Fu1q^_j}!R+slT4T1l||GJYvb zMPJnp#Vh{>sV zn8WpsVWrwxTlh@s^Lw?;!4KOvrf}b?Onj=ol7kcl}a&oCTGgTv-JFw!5IzGYDXH9`06 zSuD$0+GT{S;hRJ}TOwi)YK2?n+hre3aO_>HGkV4zIvU8f_?CFjzyp`;Y4#ev*$~P{ zCG1BZZOtxNbSwYEX;ptd z2`zo&OZIaUkz(2dL4=Oy%4;*!!?-%MnnPNSiXQ52eyiNxv@sxhWeE_VxdbcR_T8in z&v*{Kq4~F6!4{N8eQuX)W;l-p&w@={Lq~h}ug>n@Kg*&oOv%X}B2iY-=_?SsLp)75 zrmhRO6({u5=adL<*6h8OTmn@m`^P~BQUV`Cx5jbc^Nf+4Y|t0YRlB@#0Zg0=^(&5L zW`#L!?DC4S;^1g<6KLI7X!4l;y*sV6rL*T69UOU&L9+?r0C~n%gY?F6HHG^r_RK%P zUj{uRPv|WI!H>{mHQ>8u%r7tfA*{9CQx|;&m6}r*r$3Yk`;_z!SYct>jjJ=O>BNm+ z*Xe%-EA*4IO9ws8V%&x)rj}7z;HQJ1Y!5SO%*>|JhUIjnk`ML%UMDk7BbmnPjJI|q z4I2Xwv*aFkvs*+>=r^Km1MW=RE+yhUZ{;f)=xsPHsNFST4SS;Bl_HJoi1~oB*F@md z6ZJI3BeDcwN^q3MnnFOoN3I#vxJD$ju!=m#{_s3;t02`i(Q&*A8{J`~^ZDYW^sJo3EMD>F~_ zzM26tolLvsl9WH^UOMDV`}5+Icbr6mO$xu7F!#<^E?bjmAp*7_) zv0?E1gB?@^6AGaBn>8cpqQ!uVLFC=ZI6Bo)>yx5)NkPGJKno1Y3Yi`16I)x=CpN;u zCdU@9;W%=2GA9Yo+x}q`Y;;O#!8?IrYP#L)$@VZ64oe%@Lc(k(qXp9b2;FIbNTdg) zontKL1EDfoDqBkYzOjL^(Y{O=NiJKIi+id%&T-l@A+_C(L#5Ps8w>P3-5r?-S_yDf32y=zB^Sz%*HgbIx`1#Fem-b<$%A-n{nVEJ4{o$bW-mK zQ@ldVWo9NIo(do)+Qk{mfv|F|F^g*7rJj5X*k^FnY}9)!Z-)i10yupO6SZvY!%Y>Vs#47BVl zudmA?OltwE)Q8ABEg93*KuH*F+S2+&2<3 z12^iXjv@z1Q?^B^Av=IhcoYaB#3<=Dys@BKUGOHVT0y_^kDjhVzF{1#OJB`120Q53vuW zaD?N9x#8SLbz0P){Ml*293t_tzB42Jyi4%>B-O<xdkpH`c*yU^W&KVN>km5(l%K#{6}+f*ni;n1kGtgzaY-H`f1m|A z23y0X`EkfOJ!f%P9^_N7h^y5^KRTeOrK_xx8l#KSojg;JC2Vsrmmqr@0|sh5 zfQ??AIA_f+blR#t6i+x}e>TgRr@y8ucsGb`tYf>sJWNt;fCDtb5s-ySTPdDnsk!5)>jVE^<;2;XrWD<6W1@vAy(A?~fv7B^$OW0NQ5 z3E+kD1Q2<7Y%jsnnPp*h^MB2Dca*WrEE1Sh&OPW(1YYd9Eq8$$HhzxKZ~<|w1^o}} z6F_L8-tr-gFfDV%==@JO9NWs%P6!xfO6s)B?+CQ@G$ zaB6xK?kBpc(AB;MlRkC`V%Xp(lty6RgaguUi4({04?NdP>#)Owf+v(O3ZV)AkML|S zuY!s04L1}6|1`edQM)jB-P@T)qurL^mj&h$R5`+O6sby)b34^6{wFUBb^?+ezlrnG zfg>KbW``WhemYmetbt|6ajT9I&PsTiHKNI9k)RGErj~uXq{d~NWRn4Kzc@_g!6hL$ zZFq9B1isybWE{a7gMo!u1ky@-TsDaAuk`WbN1w^=;zvjp_<5*&0qgS|uxeS!y;!+NeVHWl9BFv6Fvk~6m!iUX+Sn!M*&ts!mFgx(DLD4~5#)=XYD zZ}y1GNOf#23)o5-6@0|jml$T{wd+I%Wq9|D-kp~E{do)5p?d}p3yjtyVSb{-^3TJ> zfcfdQM+4=*vu*&g?AswT&1($DNr2DC-R|O`Zt#YtLzJl-C z^fvGIjLYr@3?$2yk_L&V)DIm_uH%+6B;eTx4!)8m0ei|;7ta>bgg*Ry6TW`~LGrQj zY(!$eqckIq;*nfZ^h@?~(1wj?#p-YejPhw6ROn>P=%9M)XD31p4T@n%0Gn04SJj@7 z?d|Q#A|_?5RZJ5aTU}kv)9hAZY8SG+y!<^Cj7q_K+fMQ=q_0ei#%DDK3XXGuD1N+^7m*Nm&?6A zN=4wGrPg}RZp8B?Dz>LZ73{H4)(l}LrWpe&aAo-U@}3(<(f<$;-<+k5LEnR2k9L2y2U)(o~o)mCgs`xW6F2>toc9>1h* zN~zD9jj0WIYjxqTLOmRymdOX2o{8rOL?J^}ls^+Z2Fmigqwr~Vis@ff*=FabG>wz< zqpx#qk=j;fh-T-x6T*qNaMyg(BF+q!{VNuZJht5LpqSdxG~e@#04_5NrME<(L*sCX zG@(_|IgjyaIW5Nc0uMWLnOCmu1rCavThWJMnL87vp%g%~&&{Vq@I}E!I}w*8{8or5 zO7+P6rsAPMT(UZ9HErX5dFJLuy2W;PuZ7&DK^gUxy}@fBfe%}sXnh@~h8r$RFA+}n z%VC@KO3=I4J5a-matqv;1LvJ+5LG7F?3V$wPw(UButkJ)b#)Ow5{W=FgNrcBvHUi) zSh3Jx34b8y@95ZOrefZ)wh{v8qs$!soR+HZ&)n(~CW1US{>Z!VcH~#O_Vj;o6Ca2c z+&6l!R45-{%PcySyukv`!3WEQV;zoA= z)^T-+NYAH~6jdb`{DXjr5TOd<@_Sy{W_7bu?QPy8e%rmnzAN4GGITDIUylK<+i5^b zd;5o^B(e!jrr*oo-KyQ8nUWCy=(h{rk8L@wpKJ>X`&YX#mR=oa7W~Ni6K|Kf4qP{y zH0%tuw~1Zu6@=auM|1CaWGY$QEsgN1h8A5plk>N3s3Ul*t~qnif6)FE31b!8GM6U= zoL3JK&?DsRX=HI$b*7M1bxFBPChfJ`O<)e$9t^l;KUEd?Li|piCavL{&V$C|P$%(z zX|*w7o6DIH6X*?=GV4o9{&q3@_|fjR#wIj9O&}_jLVJMhs;vMdHaQ*|gCX6k%c=4h zyx0}xMP>oZnRoGMk3qieP0kwXQaw=wx_sy+fQ5V#V;!t=R&7)GhM@NS*_E- zv`wY8;++AdK?@4v8kQ|S)h!ZE(imu~L_^dJ3fvg_XFPEVVoM;3Ucnx4rLHc^wK$q9 z1-e%bo7T84drf^T|LHxP`09A`DNqp9X-ZpL>*+F4#3Ru1)jJDK-(TAyOQ#+R$E&cRMgpW9k`pnETGkVCOgc}>YYg+h7p!U>_w z6kwU*0iR8!nhk=F^y@i$mV{WqHTVmE`~`a3b58cXcQD}Wgi{oWnwvfZ);}=oi(-r$ zL8gW+EG&{wGYKihg^}m@XOW2%z4KW@9FKbhKkFg2%xUwz@jiAZBBE{R$_DCi<=PKO?~l zqn5n~u`CYmH*CPEO5o-|#E3so=R_ENhbK@W)j4Quu|rg}7sIS6;$wFUM?s+q4*;G)63%?U{H!TNFY^h@)0c01==DaGN^$QMGq7Igk;qifj zpEka1!SGLDn%v@?1=&CYu~;`hKmYjq`g85wVx^te#e=?+YZGZ6+6YyFVs?4#O|TFh zI}?o;ibT3oUbbR-QUtFUR9c-(vfT$}udcs+_L)N;-Ihm3`AB~Q42r}HCEfPb87_-p?{#oC;ksKF|opj82oTF>JJ{jKTl{Lf*y=gpIBmjW?eyO zNESQ;K7a=C>dp|S#8W7zHOE%dH~rg6*n0r%0Y3mfv+L;{O1laVkEwUk16#Wah;0&R z>zwx4vg?o2bDp&aZ;)yJPe<0ez3J)1xBuKLtLvaXd2iI~$zw(FJ>Ik)@P{B+%<+iW zWa&!zYA5+YK+dAz)_-F`MrNkWR~``HiIx2YF#Sdb0VNB}Dveg}(QxWSk;&vNc0jUu zTgAxPLl@uOH2n1Ff>`*ccDFSAm#6caL8T_BPOA!7^J7`QC{}$8`1^P3Ja3TSZf9Sk z*UkM7judfiwXuV!eNQn^hJIWMk`s1zXO5s~(O%QJDUSsXT%cN#hAo68;zWZdDTWq7 z>v!aO?;08GFrHFpRoLFPV=lNG)nsf3jv`g?3IiM%ykYhS5)a@*W>+{O!?sUT3Em=2R~=NxJSZUCE3>_#4Z!9G zNDHrKQJwxHs~PYU$xt|7Lisa0ztOC^O<=|G2o*Tu-WwU+KT3rQWPgL0Ku;QA1_6cb3PphfWK+}uz%>utKEeF*2%KQd6|Ha^kg(b0_V=n#!`BP?OTaQ~=& z&k6jO4J#Ly4k)U`udTI^4l7k`&V)59Z7g(c#=THyQqz7|KHzl2v06nJD}}`zIa&@W zI#N!WVPj!Jg9~}PzjwrEo#N4J*S5X8%)31bXt`a)6M0z$A);StC8D$8^*_vW5j8`H z#Nlaj_xPi(<@1}n6pPL07b5c%(!ZX8E?jkP>2xig^L)apzP`S4H(t|&s^&Lp_9ShS zAHl;WU4tuKX?-ltiL`(lO5B4fG6Zx_i>!4F>4RMG#>RmT^3tyZwm6?zYzdx)YDE#B zDx; zEc@qN*kj0tF)$+w9Zk6lJ`d3_Iny7sn(g1kixqRP*s*+E zDmxMK*x({$`rve%HYmm}sMS6fXsPD8+euQ|8IDuhm|K=sY0s*)DLe~{C*m>nhj{U( z#Al__;jn(V(eozd;8;tR-}Z%$+MQDQ^BQ~2dLcm0HE!_3`K2sIFO~Z#!>l?{@g$jK!r474U#=lO`H#@aE9dMj z)$NMf^iU50!g;${T<(6kQ`JnR4sFl=s0{^vzv1VRy zTRpl>i6Bo7zAT(QVpL>gypzhHt=CKHuW(+mE;PNoMYix3Bhba z0@SLivDI!|7!d}r74|cuZzlDOpH_}?4GL;u2DkQ|o8W8yCj|1{ zDAYGTOqkHqKj<@0WAfPU6j~--OM5VooP_bOhl5Q4^a5@m!^i z>4Y|buhDz_fZ%gFs}xGhqIg zVDtiUzhNTBSk%rl{I5fhE1rWZ8}8#MsF@ETwsHc4S6sX6&3}4uHJ#G8;y0AYi2?bV z4->F&&qEI6!<#7BYTSI7wC6EIk5`@)*Iv$)!RbQ0!*ghOXGbT;5oDm&R)Vn zy{Ji5pCi1I2$Ee=o!UGa)EG9j^%oN=+^#H7zk^w~^nR~(%r<4nA0Sf;4duh@e#Xgg zO+6B4MJ&Yv4W<|pc0y70@U8$4gBL~I1NImh9;~GTp*H*Y0~Xif@uu>ZDE0aCtaY;R ztz$u)Efqo2z=Lr6j(8KF6$M)AsDmHWne_1tH3$`i70h;JtWvxKw#b`p?=;iCKCbAw-7&s318HAzZDJ*e`al5HmM?d{>`kSd1c%c-bOZr96)Q~rEZ!u7*{uC- z(Q(}xZ#uZqHYY@PS6zl>6&HZeP(UP{WnLVm|uk1 z&7IK&pnl^1jZ%FCFZ&pfH`3R6kSek|`n{gRn;>>j0+leo#Mq5xCmo-Nvqhb0$|&9T z=M79|I_QgHngmOBdXc&cZF{lvlxB6$+~Q9ULYlEBbrQZSnM(3NjW=k#U>uHzGtgJ5RIxdzyErHLPRUpdf7}Gk8Z%Qgn(m>L_U; zkWyu#usy7!Buw?kaD+zlFnJ!cgWHWS_eWt3#5J_UI?Uu>$S{ta+_VX>TH;BUT z)CBYOk8UX~wO*)qASysS+O$vSG>VBodayRwg4Dj6{5*YZuhQmpGjGsRW1p?kJr456 zkFLX~eN`Yp%=a|$h!A_=Z7$2=LnD5(-7eKTNw*`Tx79P$XDb!uYOd^;{)rwJTM=*i z&WRcd-m=)47qi%}sdOV%g=I-90{Qfd5y%DY0qy~XUJJ!r6qj3vRN00%Q}jpZh=rE( zyrNTIttt$YNM9;MqTHsX^Ghp!Rio)MTpcy^@yzYNv`tkJS>ci$HC(>pbT#Md)4_wps$xX zH8Y^Ip4=%6vMLJ{|E7}Z$~G}~2fRv6Jk?<9LCj+3zX7C%6A=_NNydUhU4>QcqC9zU zXKOg@%Nf>US^H)|=kfu!7*8BWxXhvFq68jeW-P&rA|m2`Y`nnx5ua>{W=gK?q|{17 zvuVGF(qSM6^j?;x^S7nUyLG@QeMoTM(MkZ41mc6FQbg0dm zKCk}q2uz?D<+CXM`_=SgNabe>l_!J$cE!aNoeW-{E#@BOfn`T@7O1HU>X#c8Vi#d{ z?+jkv8~m}Bz|V~}Kw-mAMx*6&+XtL1aF&YcZ-o%-jHCusX=q@1njs;Vu{_DWC z`}W8E7fn6})9c8abnT)HFyz%L5H2Q(LniNIsQbp;Rv&B^qobkvqQr~T$KGHQ<0cZ* zbtWqcVe>?sInB%9V(vcWNJUD1*1QJu&*ClE`lD2pyt>2`eZAfXOF<=`z;&8h-;ZHV z2S=H|xgC_?ofiB3cMwQrrqFVSgXaACu$3j=QO2eA0YR)aweaGxC!uWl;#Y9$qx-?L zCoTY0Z$xZ3%4ksk+P)SJ096Y?nH)-i29X$J0X4r4` z2~rh@1IyBR6n7L3XeRXoA`l1+Al!w;_+#NRiSyw(lm}H#E!3tOa#$ zA~EWkh=>SwiFfz)u78c}$Dk#`1s)W?3BV=I7l(U13qN&9y~-<{AfLwo&rp&?Wd6o! z%}$*zLOwzUtu^oh8y3f4L zJQR)OwF6`IryL3bmnK@W1V^@~ih)G|iL<7xBJz98k?}K_cGC{3Lo_UaYr)F$LID0c z`7r_4K&`=X1~Db!T_Z`;hZqk5P=&@0Z6#nwqlErJ>~M#NKtvi;!!PZEXA#QedI0w* zW?t7uEI^gKFr8lQiG{cOH4?FC_Pa?{f7w6~Uy1tIxa{_*&d$VC>3HqJpYrtjJqLQM z@>-FmH(-77W`gY9WUgx)+$eYd-?tkVNJR2S2WVot*$QtFLH0khBR$8`jutpj2FoLL-56*Dy#n?lO}J?RU@H3TChb`R4T zuGVGGO)^0Kh5;*2cIa)8(k4Q7T~)ApWw4#;f1#U8L<}yTol0y;Loy@8mb-Fw zW&vi;U{^p$QmQG>s#8k&gPf9*ygVGJY3Hy7vl~lG?m*XL1pfNVY^UI?_z%;vI^_=w ztM84C>Nu#mfN(#I{$M=<6l;bDPy_Se$2o>HJ@~UMaOCtatM@NU!U-xbX_s1fRK=Pg zRtMZ2drL%0#IVIaoGOn*;6jVNefq&?K(^L)!(_R&T1VNq-AWeaIobBJBOjBiBBiuD z_%&gCHgE*G&Rxm|Zpt#Dn+_q4bqB;GL<#=>Jv|+QkFbQUHl@wAF7V-vd4rG~)|@Mx zVx;SPL;RfdaQuFAraM!DQ)N!kSpo-?E;Rh#fL}$c_M7czy0ohS9XK>tP~Vbj+YYm< z`RUx7=36nS-z}KqjP^+WYIn4mU%LS+bVhdX?>>u1HwQ_l|7*95R5fM+FXjiQ6Z+Ck zQp?7gGo+3`F1MaX`(Cz?8us}xR-L{xT{Y5t?;Klf%zLTT@!{bYp`0x}qwgwwmK$$( zoIJ^MYVK&K)C2hX+M4-Wz|*;NTtf$O2aMC6PQpM!0{tlc>!D82*(67=v{r;*nN!rCa;PUg)c>8DD%5j%&rzf-7biYw>>b);MeJpx+lD0$U4RZA^Q_u$Sc8YNH{CytozdZ-ldg&n5 zmkZ3(w)AU*HXV%p3etVOvz;DK?}Y7@qxvakezkjZvo|TqQThTi*7|hAIH~)v(%J+W zARCUQC#}nRFc?T~6_ozh{YmA4+ zE|HqzPc+B#_|i`5#l+)RiQjbwT01*CE!orwO93^J^<3%EDc?Iw$9XO`xpg@+*@zEZ zXnTf7fGOh=71r6kp3#k=sa0M#L9y*TPBo<%yZ;@AKvdlLH2FN_;^!)ztA={yu~J$I z#3P+Q%eA^#?sK(~iO#1oixn$&WnXc7l!+K!CsrC4R~3-Y8@zZ3tDk1s_CpZf7ygtlx`2fH>ZD|w&SrI z6WQKn6PEdPiV^v5IX3IGIWa@3UF6-dZ|*&0z?5heBMhepLhG*kE0}8*#ugS_OHJgc zuIHPsVqq@_et!qhG15|-r7pR@+Ar{N*tAGQhG2~%-j;EJMr42M)IRy6s=i)9J2TsR zAA1->z^+*rr^|%e2Su^U86L0`xGESoo+nf*7P}9H9ox^$7s8BGo*A2-z5}g4*EK7H z#Xxb35O2EVVmjSCv%J^Bw8(Hf#m=+h538y&%Q2%LXHmAC66YT05Hb$*^mAxvTsfN` zb-JM)+vFqj}w3>Q1_-563n zr$IO3855=?IWb#ctBM9Lh|FD9^)mumEwdPc?lu(8JOm5!-~CUC`|CyXh)fWm1tu&93Z5XK z7C=Hh84ro?)vgphkX^xc1c){u)oS(tBJn`;vMpWyE zr&iBAjn?b=FZ>Zy--WjimIdl2E!*X=4V8VZAFg!j6*^!{h)9v`vDLq58+#YcN`kiI zlpLY79DazFKN-&>f^lQ>k9X~6{|OgqEo*o-4Z#r22E|>I>`b4;*fF8G2G7d+)cqO&mm+T)Z(-D0C#Syr#I8H`5|J2EoV;R&;HHOFo>0hvWBJO;< zfOtdv?-PR0j1Li#1>8UQPC)k%HA8G!W60ikSdpDsqBJdIKPXlc|=k2^d@TE;~Rn9kYb|O*rveAYiihyGP zri&Yo@sd~7*(@kYW^C%&J{So%-Ti0%@ci!|#M1BJWh0 zbhOqVhXm|2Y@Mst2d~XI-s|0Mve=G&bL#Oif62$|t!2<_^Vr%r;?*pp5mhO0<3Ytw zLmbAWxEJ$X>WSM6Job(7_1heygC9)ztzzE81Hfs2zQxi1_X0p=V@2SmGzNU8MR3%+ z?keN-HN|u9##kr>Vc9&*bhDSWOXy|}z!SnN z)AJzTC&DIw_5(k^BBIj>a7+r{+9SknG|Z6f&o}q#O=;NM4}7L)5_E(q$GW5*O7Jn? zQ_}tvlBW@Qy}c{?e8D0lM*J_yQ$XK>CzxYR+ck$wyzrNb3O=Mo)*&5k4+->w8 z@hvnfModDUn@b&)`yMp33~(udhR)l(I64}F2g;**g+SD(@CBO)``JJKO55*Dga^F- z4okdS_Ru z^(8?g&N?RQ!TXbnmAh->do2co1A3l_LkF)1Mer=J(@^oS6b2uB?%nSv@2Fs{ZwL@d zKNv=q*SOElx>WmZuk}xQEiX7;%yA4mfB)Chd}4_rQYEJI#9d`O92EM0w;)KO{*lay;UL*Da0P)HO`WzJ}!F04)^OmY?v=$QaJ@F_NxL!}J+nbCH95>4r z)RTn^9)oYFC$jrq_Y*aHY6NzEgEE6BBQWW~(v-j;k68A8QZ;bUpkIz`AEx_>Y5Wkn9iKs{Z*h z-WS1tni@Bb>>-fGWiM(4f}zpJr3l%G&X7EOO5qGMR{+Hq1iOn9@Mq>=ibuw)sGpht zoQTElQ#arS45D3<t1GLUx^S3*|Lz4>r=!l}(jT-wYw1<^=6I%oHIh)C}X2DX- z&F%f&@?0*e6Ys1LdfXrhO78p~A(gN0(@mv{+S)i9QEF=KmW)IMd@O%E&O(k4Otexv)3xKW(SP@;<)yZ(mw@ih^n z8scyjiw4I(rxz^rSLt-zMd}TCxOe!OH6qwUf$)Qx^mdww02^i0q95!d$ znVY+z9BDZ!3`paR8GAYVlHJ4luBS>iGfqZq6PAa921wN%RYO|z-M3D8d4By831E|MBV({j){40Gmeaa#!s6a+$(T?gWy5X9Ia#`URYm7V&*-xK{x3h;cN*_E9?I993retd6))wjyh$8OV^)yXE zW?NG{>Wd$_Iz~K1VdLtXqhWgecgZFeSS8G3@up3;pUy$Q?< zg!-S*-}1FgvMI?nHFS3hn(421T&8zftiP`mODOrmga2}j6_xw-^V3dERGk?6@Zla4 z`$CUc?2ofg;Ek1d9X~F+8t4+EV(`4bj5D72wy;!iibw>^#bB9}S#Nvw5YW{JM@C$r zKKO@}mT@xFo}pO*LMfEZ5L@M-rQ?nr$UV!5@wu2LfSQ4%7wB zlMOX5ChSW*`$o#S9Ka&(D+~KF^Wy6B+j;{;}q}a!s(w$II*36<$@SRD`xw z0A|&GlnP`}k<2 zB{F_JfYQ$I_vocmlXz_W<+PFQFr^<~3zlE=XFrKjJjKJa_K80xyuN0$|G9ZzaoaWh z(^ezScn5aNOBoUkWf0oG^jHoc+oe}ntZ$gXC*RTn^f6<;2q{)t^F#d8AGvYbwYwU; z)ys=vhyP?2ZHVVoJC{?EGzWxvJXmd>B&sI2oAq8yDm>sxUms9f=^wh?d#H%_&&gB5 z`|U$@@;;E%?>hE+2B9m(+;t&gzuP;qIYxFb!7G}#%AMCX;kGW7^y1kpJDJmU&3dtT zYtjY!V{y6a16c#kYHZjEHJ`1u_egGQO$gAwy>*XlUUch%-c-O);Dg=80p5TmN+f;Y zY0|$QQJ7~iNWnn}q95beHNnM0h?f{Av$w9!Gk-D$ENV9Elg7gcW5cgCxC+Y?nx1k; z)Nz2ZDU3svFH18&FgGXr+@q)urH}NQ1dea{)F`CiIOi$%RnEEJN%yDa0uBcf3xjT# z-`$G-2f-j)KPBBbm%!Lm^_XByUt~i3DLET&T5wA+yTvA}6hHQGEV5wAKe&N2E;z7kuOL2Xj-4~xR{*0}%Bfd0mR&4Hz+;<8h%7`UVBqlC!Y00V9 zW^=ZAy_5eeKh6zx7jq!88-*pSQ(pEg-rO8rTKbBb2SjL^b8(eFJty~Jl?OO@b#hFr z`cgWaDhAf(8Ur$BC&y>xw`iTPQ#ha9W#fJtjnFKf1~`#cw5Zx0%gOPzXHQGslgXzA zv~UHf7`^}>I^20>nIL*9y3mC(D(^sh7|}KrR+!#&SqFO)3yG`CA1*eqlk?fyp+FJV zA0M9yei1PDrS$TcrYRe|cW+Td0T@(MjRFaTDi(ARz$A}Cm+f%~A7+SJK(Q`J zzNc^y3IOLPhzUUStL!Vh$-yAuc#&V|gbKy@{T$=qnj^0nwDbw0?})-rG(1H|MtFha zj@_G)TNi2~yR#2tFju@MI#u75Hym}6Yqui=VSCiNrlwruA$rEQ3FQw|g@a~aJQ!j~ zM3TCHG>NlHqg3_X`H~pH`=Rhmx{yN}UFQ9fHsq1>DOAO5`4}r$7&?vsL6@j+p*(3- z3OnO2t>~mmxU8+Ud9Ahed^~YH$MilC%`GYVKmz6XEukulq$hwm(;?;f1@H?TO4Sx^ zIW5HknA3xo+Bbh*)GdCu5o&RMaCd%XRp1e_1bt@|-YCi&mZ9&V8-i2m3$})R@DjAD zO2B?`&%H7w+nz5e)Q$C#)uFN0{Pnvh={J3REb)N-blvS3KQoTXAucW4F9BRU2cqBb#y`$}X&IY(CjaU4YUOht z+t8K@XW;8<Onj+vgb0A;Lcy4$&(zQ;_$wGY?<4-g! zhF3>!&$kQ|ZcC2Ri>1gNseco0{{HrYg)A4sRV|~^fnZ39JoR*&qsEGIp1HtH;tR@! z{d%F_=@m7(jUmt?`T3`r&aKst!T+iZCw!nI3{^m+LovOxEoR(%X8L8F&%}rBv_nJw z49~g_CwQ6R&G4ZQ9)qW$^_~jr@-$08TYed9Pi$mE`Ue(0)U0KxcrMm{FqvjeJsY_J zqXv0-=|eAcG}+{rR@wF|7RVQMI3*M9ly`o}oDJM-32D`!@>H@Z!Ca!&i%18iwm!qN zfsMC-)ll_peHnvs^^4z0VGcuSZs}8EzLP0Ano{#XN2_*@yknq=6(ug?mXCIcNwUm5 z3isf(0>(#^bGz;}P1kfzXt^CN*^QXf7QEB9J54DT-S%pr5*|!nIA(`Dw?fAstmgF% z=|*<f zuz6)_xedFQrSjqP{m}PXeZ6Ylzt>;Wl5f>sX;bK|IJ?=avi`<>tx#2B8fli4m<1O?ms;Yc&lG^ z9s=Kg{YkTS-I%<(T2jCVhxTn2k&Y=4<>rpg>_8Qqw~x0J^x1v)pfji$!R%R);U&(q z|JJV*ge&K$-zuw$MJg76C9XV`8{uf&B!R{rDtOjI@^KFPYXz_RJEo`fEX!+UBPWqn z(|Sq$s7yi9v|)bLmQm3=cV1l`v=kSl5mKnnQ|c^?{A>e40fcjbQ)aTuQlbOC+%V=8 zCjkZe-Z|MK(Kmz&K*k~wmrOvc{ozwWT9)S<^0rn zol_o+6?-YGrmw<@hc6Un32P^FyPJ@TS*vAxo>}~8&kbJh&3IV9RS`1yz#FcXJ%hBa zVOV1&9pB3;y8p_P&(|tUx}=z9`LZuz?0URnrv!{n$JwR@M_a6{yW>n#Gc!(CFQ}Sj)8LE3;}gxyhC?=a5C(`gbNmD9m+Gj} zHlj+0+A)&($gN0;%P+6aSBWTE;!!cHxk0g?7}k-s0v({ z#E~+2h}S)4Bf%TX%#7(Y_~kxy!5H%W63B*>uj@2>uhzQkid*kFn+PSD__X;cS{k(c zCz_f;%>esn_gI(PIfRh;(E`g@fgPU+RRk_xa|HkDwo~YmkXYHse}SFc84?kFPpS@} z!O0y7ipXC{UVHN_0P9(VpOQ$H5tX@XK=>Sss8AJrguZ5|$Thkj-1k7FgYy&jjs|k~ z&6q6+UfH`z2s!vmckXjy(%5Qe(eeuLMsM}iMdqah6A^C(t81#5IphU3n2`S3#|*%=A+>?g#VrdtA!Wb7xwIB}#Ub(>jeK}(r06|+1I2Dri;I0W z@I3*)!~Ikc!OFnKF9GGnh&3TqgaEVwaSZQQl7%SeTz-GMy|L}%Ni5m861r8K4S_Dw z?OqCh;?yJHkr?o-nO|;D?lk*7Vr3K~fX&s0xD=DFR6*8!MIBPP=-@MenSs3mxNvVJ?0@5f{(Fy~z z7;*O+A1Edf(h~8{Z{ZuVO&MM5nngVJ&~ls&7zvzzCkqU7&~i%kn|u20pnQc?M_u)?Uj zA?SF&Z|v(HN1p`JrJeeCygjO}?6es3O1~eZ+baF(T;Xgx-k6^-518~Up}*oOAu8u<%cRIfrF6)*Jq02hr_kEZHd<8FTRT?{%>rvBnVe?Hd%e^-$%9c^|7XEr zJx2pH;q^r6tGJiI!UNow{7%x|%7DbS>Tb-o_m^HPI*}#;NJmE8Wky)F`Vt z(bKjPv7e{QLzXA+16)R`rgPraqiNyqu9dDRu}rlzbd8Oz0C!$w5^fxRoAB}H3kSs< zrVvgE5dwP=pP$NI&;|u%{~^1Qf)8&B=e( zM!+7xvn&==Lk*)&^A4{L+~}hb)&qgx*rNt!m4=#Tk+yIM^mAmOQ*Yzqwt?_uk2*}J zA57`k*l0@p{yqP!NzaVQLC3ikCa&^EYkn``_!8|kCDR(L(3bb)rSi)K11_as4W6R6 zI8@hZvh7iWomAPzk}i7R)2Pq+6u(s7@)NEbBE#!HOWCX; zo!a;D+LKZte1_I&=J;8{83b}GCWtk=Ki|zIVex>`&6H+oqis{xy% zL5?J6JQ#H+q}Ek;(z$hw2ihY)RA!ruct$rhu0|DYR$N^wDIOVz^_2oxNHh~@GlK5% z7Ed6I0=qqr(*05N>(cio2L3t>1y(k*b2NUf=le?uDO$eQ{%>a-<|eJ>x~0_b6Mp|D z(@yJadK{o|V^?9?b%d`hyM@F4r4Ot^fR(w-bX>4s;CN1{Vy9M7kyx~n$G(Sl4eP@P zy&A(zL z`ut_Tz^M<+A|~C&aO;-7kmF+O`C*GCa9!;64XYR&-+TUP8s@^GC*CvBvdTMysv>eX zYnzuoVEeTIxB>NQl{Te%@ucgq0MNlqP`0+%c*HA~bmUh|WV0GJ+eCo-(rU&?lB_~E zaG>7=K13rHn&oBk`fNDzVdXW0SPb#zM<&>GOCcb6MVt zwddX@TRKb{m5dF(@Pg+o^jBHlGgy5b798l)bb^Sl?N_es!vx;D5ikCrt_(W!+v3MA zL1*maJ@=|TkUM^##}~x=)17r-4VI@Miovv_s`}uuN;^R|hCBzOG&;X>AZ)RUr68M!kzvb;As~E@F7>E41N z3@%;kzP6ocJ;C_Aw`2}YT(>(|o3#Q_j@;Z_CdJlT!=z%!QzP31e{|>*GxLh|O$V-< z@KtXY;xx0>xWXX&a&I8(B-+i{;*_cD!tmLF%DssAF#(F?&05LfTl4&8I;-EVuAB>N zL9V_i;dJ~SIryD&vv!!0b9F6ebAvTIyZ5<3UY2PQ+7k96O{>EqyHb`l6J#R`UH?~X zcWZ96rINf50?UUgu=hZO6e=?N{c@m9X=7am!7G?#A>>*h8m{|NwNPrCBk7ZZWBdi9 zcPRayf>&~i*b2*7=mb@a)pI}D_KAI(Zmp>QYpeTz=$&-rV+@~lWgl6NODRgo6B#7@uCfCy-WW&9nt#Ar~sqV#p$@RY0yJoT`A*d zWt24CG!j>>VEfEoPe?Am(yX5QAB8yW!C*t{sr{r${lDQF4^ag7wIxSh^YjZaavd?s z&l8g21kjxbrAOh43_uz?MnVvV6FW-{ z8QH^WbpZ+ddvMp6Bz34{Q%~{BNao2iWuyS3>sSm zCoY`fI&!abxy+A)st)l9PG1u=Vd3N>RTJ{zBV(QZEBUCAB4`3Q^W%^;vCM#f=Vr7) zi#T9`<4H2S$4T$ug!}O4`>uz#CkI>}_GM8%qs1Huk*QH+ESQ$D>Sv@u0ss`YULCZz zAwE+*p!3qUpOj48i6oRAw1P}H*fG*6=B`b=Y6%h>|$0MrL8k1p-6&Zf%dbjQFl>N5c=7>>Ti2b~Vw3g=LKxBjKMh)#V- z8_QE*FHV|Zi>WWm_5fJ-hzsEq?_Jd#^@@)1E{*10cbk2D8!jnl0)D3r?im&mCOtP8 zN4MT${ptI6=oQcLzjC8yqTtj71Kidt$sfT>7$Yzv$~6n`Cl}(kDg+r2sRv57BQXbY z$~kg*qGt%4W;R=iDB|Qq#?>bObvHpI0s>s&hC@&eA8|tHG-rptJRHiX9tj$&7cXl5 z!&)=8vMx#O+nsb&wg`vo@-3_4GtK(qfYHcU5FgWo1AG-0CYft)RX{@acZRaq`Z94O z0l*?4;D4>WOz@`z_fXbDY%#bj>OlZ7glJ28S(*EA zhgN`X#-+*^G2c_7500$21bH?5qvt#CvT$xg$uTpDM+CJ_i^X8X+#KVpeSWoTwO2N!R4R3P1$K|HPIhOoLj+_Y zF*I9uxIm3;{H)5PCsLF%$xKkvEL&BtTP8~D^!1HX;Q1W<;%iw3W46!D5jO4pwBVb* znZ(1LyOH%kAHQ^w^u8m%y;U_n6gHjC*8a8^`>QNr{|RN3X;m0Pl?{eyeepszszKyW zK7S&2@sn?b(h>ur+y;bej>cm5B4y*-`Gd5C_$S7HbvK0RTEiLB=Nmc|M{owlzc`w*J#;7LuO#mj_`TkUJN zklR70W!+QNA4@vc1QM!WXJ`c$xbwv(xBJYMUR{_H0tvK`uB zsu}hn-hZ#IRc-$4-IW_9VR$OuPI1Q_5!st`T&lR-kM8aV^-lMR^b0!-_$H$h_pwhe zjc$wq;jH_|5|vFB2>u)X`75}*J<|5Or8aE*I@j~rz!Ye5sQOU%_!niyiXM!8$QsD8 z%}_XQ7i(|^@j#ceW3Gqwr~ResoUEp@$Kz+mwMK$B*AqA9_yILH9xU_<00B~0EChZw z+$BYdIWC00SH#0)^{(XVtreHhzwJ#MRsC$HxRT&4?)AWs(9mOyY#!O?LPM`+*2C6o zHtP3$Yz!ByW*mMSNxERG=d6ZJT$e##EVnD&zHxtZiRpH(Rh2{nn!F#Y#|$zdl`ngy zDzl6St8E|V6r?6B?!sFY39lk^ z|B>QyTP?8%_9(>YpD`;|h;=$xu=O)^o$7~{M0>^WksVDDk3dhuCjF0e-4yum5{Ry} z6TY^1d^V@$0vKd>WPorsD0$CbJ0}W0#3nsA1@$db%ShbJ?2Xa@oiEOf!~V*KxFbAn zRn}#KE_#fRf1N6gH>YhDN=cWPE1^>N9xHbyIoRhMsq>1ip02cn8zkYZdlwCS?^wi) zv=qt_1nygbfi~deKV!Zf_?pIwuv2_1xkb#ylzb}wa}0>lJb9XJo>Fiv*I2+?Y}J(p z)#QFhktUzCW2(^bD!%@t7O)b^H>R(yOgAs}O0RzY>eXhS*+sxxRe5wi3O1Pjx7gB} z(mdZ8w%KNNQ6TNVL-z7pLPkV9T;iuzLn}OX*jx3ss*Y2DOILQa@fU@0Lme_qLg5JR za0L8k{AlHUsqN$>o~cc|q0-|fHdiLSdzr2K1v z-7!dma8hNT)&a*I$S7|T20U>SgT48O+J`h7Ru=(H*tmrPQv&;@?{e=rNc z0wt292U!VabjPYFH+Y5O@@~?h704R;R&c4%*T7j|Ia{Oi;93hOnSP}CXtF4pTNd%& zMH3m(4V2oh%K!w?)O-#;QP8teEzv(hj1{fjxnuyb=T?|Fb{{vFH;eCgamU!taUscCZKyLN{&u5Vc|Qs6oHw-1SX~VQcAuA5bCz1g zRHy(Kvh%YE|QFF2s@~{ncsQk`~(1D8|5)1Io5>FOWdS z8dzL{{H9H5^kX6&_A0aVT@TBDeb!>G!#)tyDnXdui{9Go`Rx1m=l6ikIfl-9%GHqB z--q~WD|d%;Ng}m;?1!FYUGmVAV$Qo-Tp}8}@FBSlj*+HSEJ)nFj~#u&M1%yms5$AF)0?t3WemL+R}Adg+keZ{;6lE`9zg(v~cipoK9f8A6VP2Z=t?hjxH{ zQ}Bn9UZXt+k7MFb2>DG+&QF%;Y^2?N7kpvY?BBKDaUW04f5G2({Tax6IL>gS=B{+~ z;}R$iw=#m-M$Kc#?ws@6Zp;7l4%@c>HtS%DHKQ5>>_aO$@R@nA(V{C&v&A{c`;JCM@EVs!Z*%h|VYpO^*UxxZ}B2k5**yvROn zuwW^~0-w(wMY^sHt(47nY8LB^I1c}5RkG&#A1OtVygt{e8yr$a|7-VMKd_b#xp zx{q)V^XDwvEc6!Z`@ux|z09-HQQ~M}M@Y!F#0kj8zW+H^P*;}In?CxhW$j-^Zu30t z-!%XHz(z}X$aMWk==^NxLf?+n)o2?lRHHgoAr|#{^zKVSy-j&WN!ifa*AkVr=&+5C zbfYmS`bJ-yY+^yBRU%sKw5FzJrb!`Z*JB}plR;0%{aX$U>09v%U9FFE@6W#}j5Pl& z`m1iy0`bb1Z-4MIz2f7ySA(7!ezrV7z#s!9EOdeUQ}tfSlfau)3O}2;udDEWRiEVL z9qAGA6)A*JfA3*W4NP0!vp$boo5Od*<{NbanZvExW#y(8v6#*{^wHh^#$tg4++Ru zy)0{FGiEQ~NKX|6&#MXXJeSEMoyWhU*-TTZnp;Yry6)C({P&$P612y5AWA~4LLQbV zw*3!$ioJ4c>y`#DHpNTjOPA!KPJgY;@!JCH+uj53K2>`VEIyD(XbYpGCMlL5-r&Ae z&khd{w{&;^{qbYC(Tqaux}k)g?gcq9PvJmH%mIh+$I~m`%AHvOl}G(-<$eTKoov)( z)tM^dC882#S3WJ;a$n=y35!gYN;)HDVzEDLHCtt9{RcGpSD0GW*FG(AQ_o%&RkwBb zh3H>EO#5se7$ZoZ)w+i2RrWZ_!+yuvhwf`wf|~bQr)xl5m0uR(+^>WCgjyd- zz|(c?nwR&j=hv?chwFj8yY}7AbFp|X_V2Gb>%ksB?bo{92u1tAV+uM zOtfZOQnumITzb5PZU4#OrB|-IEf2trXS;0HUg)8L<{{MzxM_As^B}&-rh)sqYyWe7#R?!sp$BRIPK2)5D|ueTog^Y(2YBz44&eP}fA!`)kDKB}#Q*ne z3g>zV9WrteUr?3MagN|<4CnVwnCe1CplLkOaikiQERM1&z6}W*f>M2`(Vls`m+;W| z0L&XkFvDPhy-;NeS~KoQ-mldQibu1%R+?)1b{8PKqrWHP2T|C2&?U_D3YotAbm8B0 zzl9<~we5dy9U?a(A1=c1I0q%2(=&|3#Y=KMdY%QYLmT%~|H9TgH&?qmrbZog0vmW! zwJ=!3cxHpN15GiCQZRdhTZVg^=$n=nJN%BIp2m(!&tHnkGbW3|BJ86r(b7%j0_7l| zJl81C_F;IH+cmnSRrhI@)O&VndDXZ#+@3`tUHM@aBEw(sz6T%P$`j5V2_pYrEihKV zdEO!n(;hlj01IfGOZjP*B!Snr3?oUgZ=iEaCh}2LQxN<2{70R$;g~H50sCjM5Fe~~ z0`j0Y>fXDJ?}4=|8v)Hhs<~_RS65>itvyIkOD{HAsoi|Zt0wMlYvXdL)vGs>Od+Hq ztfJWYAbJ6f&U-w^Tgt;i3SRj!xGq;#+d>BaW^gb(1yOv=EAigy*|H$P*!GuRI0VuI z_%{J`XX`~F_6*3wrus%@pPzM<=(ApZ$QM~i*toM!<~c-QI?m>5FDRK4x`dBe<9*heN=iykGZ22A%pqeiuwh0eCa zD_Ixzyub9~mhtAff4SOr#^RlX3O9|*%x}R>h&TWIk0z}9H^OoVyrU@{I9~m?BKerM zb_8O0_1&L8lWS`W3lbI}TckSIUODXD4izg~(44Q%5Ud!XSbzgBgac`>^gffKo{2zx z98|wHo^<}QJms1&_4DV?A3q!#?M7ZLrxq(MVgUXz1|@M_Y{a$Op)Uq*q!!kd{f}x6 zkAGUQwsbq@T|-R``%k-cZcfe)dtc_~bx%Bw-^1@3zBQc# zb5qT4Ifb;BqTQOlm^0Gc2pIvHf7%eUMqS=nt$OCr@*67+yO2Kv8J<@e*=E+Yn`0L@ zCtC6SMOSJa!n{lci3w39_bakJ&*3`SyTsT1{T6fA);=~aeKYy4wpdCmEOST0`0d!h zwjodW+y+bJzzxFvok+BRtU|$s?Af0^d%_leLl@!F7wkuj)kw`#46fWdS~R{V>Tyh- zO7mYmj}8T~2QQTwo;}qb7JWeKf)0vea9BYV87pG%nKSwG%>gl0Ubh-jf9?k17@bwMt7{ zyDW7rEq9$feRdlN_slCJY-qOKRZ@WFL3|h#eKYJksAdwoFMLpTZM0FOiG5dOQ-?ab z(7!l+LTLW@v#QXZeIIL?-(p%D<@Fz=8Vu}K?r)t0ZdygmB*H+6jgpLv?b3RrUja2ppj?}DrMxR+b!TJ_f zIc0T0ZWk={XgA>WSAzBpOCyjb3@judr@wt>5r^B~T8B; z04~(BX!}VmnO#|h7QObU11UCmsFyoIv`!yVT?mnOJm32g-k?@husT4c&=LZef5Q#8 zD;OT478OpfwR=QHRv%^3)a&WG4o2LUB;Nh{@v^wnyFO?vZP(TMptw`f_A=|1BQxYrD%4szDjQ8`!Wi5GpS#10-YhCFR2awdx|E?g7BE z|0p^WrDbDVmel<=Jc+z3E}t?#;pPVn$igcbc!fCs`0TDT6=D_J_GMb`YM0Onyt&yj z@Jo6_WpliFNhNHysA*0-c||h;mb6b}Q!RBSLrJz8&-{lr*QT3aT(V=p1LNeYO@s5K z*FsWx;l+2jWbP0t6`5RE>TYht9i_D$X!9+RMFOrOBBb|0DrkCb=DiLl2W#GE3uSu) z9aPY_M)z_dsJB_Yks{a3?my(lsbiTuh^0{}OrC5WDYa#S!l6P!8;PVLzKeEz7Z7w_ zT=oiR{^He>upDe;%zozLmUFO9hlX3yb-uuBgqz`fL8NdJp^$2DkHq(c9}#XqNI$>$ z`P9C%%x}KOJhJY= zpl~ zA{(tOS`Ug*jvmw+c#Sj-;fBM@9)u9cU)>GtvWZOH7~A+8Od zW;ovO3{KsjE}ZH7L3VklWkdV*Qo(4%&(=D<(_MqwF|#LZRY%0xDt$k8nhS7KM5uIn zExho0k+hw&FW`cARTQaBAl$r0a1w-WHVirQ0YX?O~ zr~dp~_B9gfaTUMgNZ{4Q#lQv%uKrM*CT20hhT#3cjcS|H^SweUDk`T1=9kz042a{L zd=RSHX6*BRjdsk;Hi>rGKvuS4qg}a`5tJYtAwRoN0<=#cRy->HAbN-0W{T7FCdwlKFx9U>v0%Z=B=(RD9lnW_M6E~<*Th_yg zdP^NUD0Tv#ElWSlLVi#F6HmOkF}Kkl`p3n~?y^+Z^bq0XLde|FJlPcTOzDLZZ>hwD z1ZaqZ>g6Ae((UqSKpzYRH>q*jH`-90)GXrzPzPseoepnax6_fSRXYyQZiHRqIi&X% zCbFX@#QBvew<>M~Yu#77Br)NyCwsgj1* zYZP+K(=vC+Id>o5rFT8+K-*Wfu7Ty@cb+vKzaT^5uxp2g#gRJbk?+tNOp!oh^g&3d z*E)GD>qr-MR2OWKA&jcHsV^1MEBhjB=Nw}lF6;ovn%X2rzoV_C#>1UJb<+(=mTp?@ zt{GnWez)S#O<8As^P_w2eQihLNu-$be*KG>Hu%`rIi`;9>T!NP&Q%Kb97YWVo4XFH(>T+*sqGKo4+!+$2t8`&bAqN zd_gL(X>qt@Sg7<6US3kB5D}mJjuZCPd-rUY&avJ2p1U#7Rj(30@A`AQnx7oDU5M0o zKB{AGkXYk+wK?62(nW|0fS_BWU52w3xyx!;TzDUJPz;s!Ln7fxQ{AiJ$-et}3KAr# z#M22{5yej1o&Wuu`L*iRycs>R5*M(Ka^Fa?Be3Q_y(nXcEL>8&kg=|%X>v>Q*`VJm zfB$7XTwg8^p6XE<$uU*pg$k) zVSdXz4%AfXz5j8KU)>lS30@xPxzoM+hIYQngK;)7_ZF+&J06oY;P688WNjPGqyK7| zI%_0osZV5Nxtm|)aCL}U5g(Lg!V^=i0@zAg(1m=LT+5?*jljHORIK>3m+1w>rlplC zecSZHS9{0Ypm6jx;eyF-#3xLY=$F4!4xu*uop%kCI^kQg<*NVsZx~EzatMmDDZa`p zK;MFLrP+V;``sZ=e#HE8GRfbT*_a558`9c1px%~a)D@Mo zszYAi&{4hXPF_|8jMS7acxoO)+|(Aem=jimx9crOSS!C!A}3$f?{dyM6wrep* z*Mc#pPh(uE2PPT@ZoEBTL7H;#PQ?eniC;6l`rzb_rkQ){!uhiDcg=Sy#!#~c)}zh# zov_~Q99eBm$*yT$Ja<(^>dA}p5~vyKZ->94!XD;7q3Q~zScMfw)E99ZO-GCFV`H%{{EhEMpsyv(|S zT)`wq7kZ|jCALSP1TWqkJwec)t+svorfRHb*0Yh}4_!=0ve`qgE-Ay2=tC#;scpwz zwX@T{z4prEGE)i*ChGyudWqh6=t+jyrhYt>5bz4qgb=iNAqlRC?e-sqp?CoDh)~V_ zkqN6y&PhFr>Udq@NWiJ_o9GiEVJe4V1d|Wc4e10g$@7{T(yk?rDsrnLB8yOuimx$RbC`+$ zi#q(CKij$NfGOAW_6dv!eH6lv24-C7K`yCG*)>0^pmZw_0$@yA5b(#qJ>gkGq2Iti z1wOpqjUyytmLvB@nBX-4Y z*>|Pv0_oM2!>dgit^6YU;>X|v`2Gbc)!CH*3$$a$j!~guzzQnL5453TeO_ET5x8(2 zb#K{sr=G%xQOY!fvq}FlysDP)&uW6uU;M_uU;9{dAZs|k1`g~Xos~zOO7E?WUrS|@ z(GK(h8ibGmH8j5uk@OmQ+=)v(s@HQ*1qz*QM0c#u#vdha48Tpzy+6S;A%juUd3$QJ z=jxi$>EG>|LPOmS5{~&{|KAH>-T!Z_-DT*L8R0(rn`ZzuFgTb-lTF1%>LUZ{d)+2D zn?gTZk=7(jIKLGOP(%*3oa13Ao`&tqtbZJ28v!zlpw`)xLWbY8NW;r6@qc|mT{ryw zLg8xN(Gep#$%EgY2hP0ez3qP{OBo&v@L$dPLybM+7Es91FB!89Y?a0ZONezwcDbDt zYR&ws>O16r(ahyiYU%sNie7~aQG(r>3Wi5gOc))R$QxQ-3d}tfTE*Jz84stgv+A$a z%3Z)YHCxDCm&OgS~qk+7yv-iU7i^}YV1boW;Prt+Lu``f1oOeo>Ir~ z_Z7JicaZg-@wWXt=owMD=kaq(-=;c>bZ)cZpgVa|Oa0KM}J3Nr`Ka+1p)Eb zja#-f4|-CFt|+*B4f=m8RoN)noXODn_jlW@=h(@s&ECMz=*PhE{mSK1dV%B42kxEw zRofr$NAJ?3y>yTE3T1Xl4+Sl)om0vF)7!g6)yYu#24Vd9!g*@&uZdk!2DWKEh0rJI z-&+kmcvn37vOT6@D&K{R6d2RA(`js@v8A=IJvnk7P!b-i!ZF|W`KaIWtzP*Jkf8bF zUQI!pNb{rduB3r2BD!vy`|eCifi2jeKyVFK>l)h2Ybt9C%!l=U`P0WbmKO#MN7z)Y zNwv$gM)vNb#HH2E*|4xN`Z+@fdhA;OkiY{ciu_LVNvbF1p?bu|utsPxdfQ`P`h--p zW+1D+tlq}so;_l6$TOhfmRr3w*WYC~BJ0n)McFzfg74 zT6KAt!K%g_E;`0bW9u zbr7(xXB5Yq(xk+GA<_a$x4Sj`pg{=0dKBW3Z36GasK>l<0Z9&lz2PIRbtQR{jWHmlvz5dw?kg zhY*sJ)JQnNc`RmG)2(q0F7Q|+Trkw;RXvSHjNVNZgI}@rKKT^X((B@9!33KG?)c## z1Ux^z>5>AHPk*`CZ7$s3qtRx6ji9B=iz&?>xO>(tlr^#zvF#lS`yeGX=V0fZN9Z4- zoiC4IWoo8vm{&emGG>1yA;Y-@9tkCo9~c-%7;e@7B7Tkz`yWA2;oATNpHled?#rh{ z`g`B$#ru~vJU#pCmz|W*q_2KMH`LE5+S=NZ2Lc-tFc)As!%$ltew=Er>z@TIQ=&9u=-*u31B#%tn4N*P+d5kqL;1KL}ycdjM|T zB}o*h#B#HR?rFx_+x8>AvKyh>@_a81MEP*oA&A1qbqj)xKvnM_vWs?$!K1h$lW*|#_rDy(FD_^6&?=tKtU3TtIJp<9)+L@X%qP8 zFffXpXYiQo@*q}FC@7uR1ez8N-a*iu5_#!b=1@@TD9}P9arNRp2WyA@xz?0vYkMV- z)sqROcs*>0!Zk{7{ycPb?M>WA?fT5~>B;kv!fbiLrzTWIH1O9fd$-8lA482jzjF9) zfCt0w$`zniQ(?Kd>z#kSi6X>{kyESMZEK?~JcK6iu``SS(Bo+EO^deIgp_D3;9s$q z%hd(db3fw!s_KqZ81^8*wPn?-CX5i(d#{E4;d|`A2GF(Y?Z5et1&Qoyp6|~0YF@rO zUt+8NAy!v8*;vBxWIi>)5HOeU);%C=F&o(M(C6IHvut5T9QNq9s}flIeDLAsj9KvH zb|o}P>LKNw+t42{oHBvAVSZM``9hvL{2sJkRt&(R-028}21E~}7#hWpA=nRNpcm%@@T#GK7r|X0#6AprtFQG`YBm4= z#z{2-vbL`7@37nt%>;(+ak4SunpC?-y&Rg;3x_~XP};p4h)iK5=xyl}{`L4B2UegC zV_=zZdp5X7m^*{9Gl%^U*)1>U(4P=A@b`(3_>bxNVxtp{)z=ADowxmJk7;Y$(G$aO zR#~&hUS*nO)+)LAC=c}212Qg(4E@pBw%MsVfxds3Ky&=QtfVwE`0x|%Xxq2;2gc-w zVh?N?aRyI6EI(0{Omz9Tr@U!tD&t|$?^oRax7PvcaF!(y~ZuVs(29JXSo15Ezz2KRs$9{e*oBKKNci{XP>r*^e5-d8#cFbHf(_t zg86+{yM*LXUoDs>tCV?1QHe?pCv;{Byo(ra^qYl=W%CXEAs0W-C$~TLGBY(TyRe6~ z{^>sSR}-h(>So`p{ghra+nl4ClunOy{C(!+oI@qLb@j z4)DK(`A@LUTP+{~-dNuw?53~J4nrAGXCV$JW=ESO+##h{-zBxG-r#KQGjF5vsQ$Jt z|LfiwNetp>S8XrKscy$|sK0u9)2P)UK#oy`d$jc4z2xitew-DlA2jXoM9AM$CI9#I zS@Y)NDs$RjVvA3>TaXr%F;cVi_L&t;bOz++q&6v@-W?>zyWqh{z;NkaTYSjuakV&V z?OQGoin`}5wY?>1L=DP{Vf2-1HM%Z3;Uqts@A6Z>k4bhkzwFUx zeAsYt=9l5=@xjMkju+1J`RW50Xw<*Q?uzZhhY!m%W*g_bbT*2bhwd-$8Cg1m-|5)= z-<`|KJNdo{H#!}!zjE@{+|S(2xRKh;QF}|PE%G4G=|`Tt8zvHCoJz*`!ub&-!Vf1B zWS`NX42N?}?lg*nQ`5- z6Eg)+n1To7+}o3VCFM=K9p%rUcduCBBWwliYxZvZOl+>T_PU?+eu4t5fTPY2a5#D` zmHNJ3E#BFxgY9%AM_JK;y{5J6}if9T~BYJIJ+1}5Y;>UBL@VY?l32a6tCJIP5 z0{+8lF*)IGuyh;XMqk7AT>FB=JD=Kbo;AZkAUp8hOkjh5KSn?pUI`ylgn1Mih!coM zoRFde=TiyxJa`?@@@P(#uqu`>GVwbX;wKkcxK)>*c7u@cs!XuULa57FLc$p7A@Z6g zkc-ws=!y@C^CIAk!QbbH5*J^{OXH<(v1S$1c;F3(fdF~xZE7;;?#=}Gd-(Z;dwj2; zR1OknB>CiMdxP6*9rFX@?~VtsPHakD7Ls*J^CX4nBq;u_lWludYs016?@6TFYKT4% z;p*5~QR}u*aCM~sB>BQC{Z(Wr$S<32V8gcxezGAbv+skhraOas>MaeC1TKCiGy}n@ z+~)_8w0jXi?uZg02|OJRI=`nKL)f2}*#otRt3SI_%$on45!jD#+JQ|;)#vS|5DDo- z!rPb1jm(prZ!AZu*sWSIkK-#7Fy0t~GjU=3%Jy&+r?Qwx_g3kwp0zX@)BF(uxd=38 zn)Yg5Uv#TF6IrJ~en8Uuo-zN<$&#N*GLVNp3C3()S^cXS(f>J0LpNM>5(6IAmhzJf zcu4|b+gq+iL!~FIGR!2U{-37N&AFiOgYrS1aI$P36&(S^-rgT2kTFuo38~Wp2?}jo zNY=O8zoU)^bW%07wGVebXWU?T!Xb0dUO}(Qt{e`%&GFuht7|`8w2$U~aYeBYq-;H| z+@7Zk+QxY?Kazt_AGeM71=0)?yGel4=1b>4fkd##YQmpwV1h;R??fwlr=bx@tnm zuV`!h$AjOeuWn`?`sSlOt3Lg$v}vO^*Uq@47|{M<&PC#rY(ZNt7B?*|@Z#Z|4$m7i*Jw5uvVpGy6@%eMdVxVO}5lTP!iy0B31 z>cOV@@A*($v+=I_oI@)rF3$ji{!!+^6)yU9S#|;fYs|*{H(IRG#i=TlhK&z)IUbJFd2q6q&S}*NG9p4Yz+x#%x&2+7vRDae9`fFlMIAcgDFF9qcc^S{}RN(6injw%L4pBPG`|359(z-$V+@ zuzUusuta+6r=f<>kZy^v)#+w)^8-Hc`8b6u>pO&vGqf}sUk4=czV<@b*wL(x8ye#Q zI)O{;0kEKI4B9oVen9b8Ec^snUi^*+sh>3y;H=<5Kne{)6M3*hY#IBLw>(p1xBR2X zuIaWI&0s1FY{`N_523f&lASnyTPg<9w* z3P9*4(u>{pHc&4(W5~v^ss^A82Fq&P2K|I;U0*;1q%}bO;w%_K1re6LM*y2B1lM?k zu2J!x6}Xymz2Ucl2_RR@0$PDyB`5braS>zpns#KgXb)g8){C#KS~E~x~=VYMKFThx=0eZ z)l_$7WbUPt>4^AOc-4Me;z$}9k zizdKN*V4R6bDLZ$rpO_+j`A+@g2?DAfO1#{a zQ%)Cp3ltSDS)~2EWrj;gOuWeN!H6|rR4Y!1u05pQd5RQF&Wa#s$%a49dV1$5{$$R_ zLGWF3Z5N6_#Hfn?-S-@Mpv;t5Gx~K=ZD)-T(9AC z12_BhD6rxqPi;rOOC@&+AwHk7-U4?_OX6zL&m?(N@X#{bgnsg{gtbaFBbsTcyK)6_fjR6$+(10pZN zgCUn^u)F^pqg|YWkR7fOpl(V$BAnp+xU- zvfgN+E8%QAY_xg`Z4MJ2zM5^1D@ohCFvKT+&eXO)WVxvM?*w4xCMyCq=p*Y@lpTl$ zwk$6wApb|xd&g7#|NsBTNRo0+8K=lNsgQM$5k(v&Wjkagj!{|JvKu%?LuBMgN$6Nb zlwINo$5DA9^CT;K@AbW(_wV<4{n16QF41|8$K(FE-*30;4dR;ubW!n4t1v+cPfvyM z#@8?es+AK8GgK2oqobbDdx;`uzakTF?q!s8@C7^Kyt2X_V2h?giE#)aKVfpW+`0zL zqrMicP9=%Ivff461?=_AWYZ9S7mABtk+ z9=`7{gsF}GQ55hG#NU$Vf)ctp5m2gwb`b`maJqFWX@B5VR0u79SH($2=pOce6rSAM z^i{T-PAbl0P*X~^$U*BwWeh^5?kz){A=R3v!Bx@wt4CK_Y=@s}_H6CyARsyZM9ucO zTpG7m)Yg(qsE}}wp@^wugYjj!+Sv*AemJn_oGb0P%@YG;=zo9=^Q0++%q)5Y@06%p z@YLL>*xjkL-TpO}QRy38OgerOC2_+;f~Z(OKqZs!8-}wJ5#BRroi6^dLl^7PEb4*R zl<57kZ7i>2qO-v2OTIV^+(GhO0iX9Fi_>E$1odzrX7S?2ySxuNukhb_$Eg zJtDg9$0;AM-c?LHRab1J%7m^=+OEIjZ`=}d1BMvQ!>_u_cty^>#hu_YRVta zL=Sa$Hy|5Fyi_PeB77=scBrK4^78WJJ_8imLA`!{!t1d2FUf(RmBFTljaH%R#dN^; zZ_b{-Nf2!OI9VxS%JCG>ebq>6KLK&(!_=|6i3WY;%jM?Rx9S%^&GxD76ZAS7&qRIh zduHWl324unn-n$|YBz;;E~LFrwe5BH(>4Ny)pEa~S;TRmdo8*urUq<{6z%@)PqiHw(Lvm+H&{G#<4u5usK?H5 z9mRu>N6frtHt#uD;PUCD<;}(rfXSHw~N!(6}^; z7F$b4e=nc=*EF;oD1~t}(sP2~=5{!Nb-PxrLVUE-Q?JLFkpE%cVV7uAN8d@_-56Y- zFb^FuZ^qQyne#&LM)_p)Gn0?AJAd}pE?ezR4ZPt&h=ntKHDScY!&vn=^N&C9p%C9ydhg8~p(rEEx%Zk-4|yB2Xlbx4 z(%?YGgTEYfGnYA=dhp9HWVJtz^M=zal{BVskwcgOp%u=1kg*M6$>b`}AqrrYIu>JN z6OHNMrzmsV%W~sBQVnxd)k)j)O#i8OHE%Nrd4vlyW3x z{JKpSrx*q%4gV7zR2ZSL+Sn%8B+LR*(nHLEaVeWut8h--oPG7MvL zJp~2878m6AQPA31WC>M6Jd_c?O;`}3S~v~1@Wci8PqCh$qtU(t&y=v1OH^#HOc&IEVL22m75$P*?<-^7HQPPiYW+wP+r;Y;NFTE!1cVV>9fcQwbB| ztZYf5F|`>oe={Za+fG%ai$<%+d3BgRP7xSO(Y!-`^#Y*S+);&+Ey{7)M(?#ysb>yD zq7Dn@WD`7eVXNC*wjs+MNL`$0Bj!*Pc5F%ja(58`jtuuM6jQ_SLXQou9lGK=?njmw z2ks8-OzUt{!@5&%Z0hPBxp!!g51?HkrhKoVfPLG)jSpJK_q5lFuFMVuF82Em9Bv(m z$mDDpS@?I;(<^v-t!H6r&9Ys=sjT1KN^RLEHZ9i zt^`BpDEmrKI5TqwZqC`Pb5M1O%F1sse&n<`Xcw3ff@l%Ae=xN^{=ZJf*)KVq2mUKg zWxB}|)7#b;xV_xv(O>bQ*EPy67oxr{wasj8ZOPPZ1InTt`j~Z#C*L@VXacV&g3L}8 zeA-g%>Yt|ULo0{(Q(j=Z3QexV-{`V&4v@7m#C8O?2`2V}gR63HuPk=&s4-+oi@G z)ep8|5MpqCJxj7>vdbN06JW2gn`$ZMj{mp^kr_^GA2)>>UWAp_q+-r95~*_$@C^5e zswLe6gM)z`FV!kOFaFsAzwz2=kkC10+sB!1N>G(@M@X=QivUcL{KD9)2C5_!x*405 zShY-!aS)P{zGsNk9jfqqOK_d|8=ZFv8X@u<=HibO*)eSW za^L|8j_=_ibOW-bGJb&nnR7h$iXgP%fIxnwA~nyIeopFi)3^a(47 zjO2G)@<(}=T1xTe{Z|w^!WX*J;Os6iGac)MhtGlGM2OS_4T&sPy$VXqul$Dz`4gG9 zB(x99uWD^gq|t*{6E?d%&a>RutSOCX#iH*3-{X?6UC}f(BWxqO*@*Ma1r6MT3DV(L zP+gcO@`qo;chG_#Cq$R!LBvtZ&TWMZMY!0!j7EV{Q+!>ix^?<%fkPw~! zeqpa2`@RFH?nK~?Iz145=9~91QbB#Sem>T~w$^uO4gh;F01QYwK07sa&E=<|Iwz#* z=Js&bZmjNpZI`L;TXmypQYy~YJ_Hidcyxa0&<`jUAW-@t64WOQg((pGefyDr2L`UwS4AG$ zq2sXa1&Uh{)=3?l;m2d&kn>*bTGY$0 z#UNzpX%7%7JqP~V^R?9_%HWvLj2r?Zcy$iMmjVNHHiX?y;1ZbNiizP6j1Xr< zE3cW2&V`UU&EB#Qb@GIR;$l*ELiSQ&;UuyS_!~%I0jaB~SQT_3#4x@#mBrVjtTf({ zZ{O@iC#=@oyv^pC3JL+P|GIeW z2-R-4NlUBZZfG;@5yoXn;j}?ZZfN@35WmJPA;uia!ER)y1x(r<$2qV$^Y1~%7& z9}{7G^8jMBV@B+MuAY-0BgsgcKSZ#X-C;A_ckjeLtE_xAw-(o)uP4TH0e2%|`V!391MOA%0L4CZs zO~qj1B2E*H_+lvo)(|{C+_VF&g=1i>3(T+=$NFYw3ZZXg%u(!Ea3&Xe7a*w2Bwm|r zX;ec9zW^Z5W0f)WjphuST1c3gz@pGY+M-!Me2+oq&ot)39WBlx>7N#00Cb~=LNNy7<;cD1cV_1*E z0Z=tY|TnNH&0#M?WAv1UVaKO z5_k)+>M;^V;3`qjjIoLchWmeWE70=c8>D_~;?@$~!;vTmQ+9m^@Md|q%I@znC7=RH zIdBC!2uX3?7x7GvEJ`?U8XR{s)~T_Zo15*I+gG>Kx#%u!ZM92p)Pt)^4sVufNphUJ z2(ctJ3PgPO9hz39AjKVU-G!6N2QhV4zIZcy2V4}|*kXS_(D=xYhklp2(O2X?LdA#U|Sn_ zl}1+&SsJVc!NJ|Nbo9W|9w`wHpysqbTSeBJ^ zgK$2oCfP0yo2190;y-<(Kq}_%)Rg200r1}c1do?@p<8c``+(_PsZLF;d? z&rd;r!Y4TbW&q-(wV=vI54~yGk3aXjyWDR(klpi4_6Sl)YE#7d0`pV!aWc0yiX}=m zPMnr@J94yx&*Q*$kJUfQS2WqiqRZFFRIlAyQkq^FV&$cF{`|!~O!>{(sd|+iM^Skd z|03rG(kp=;KQ}qsSF=68%_$m#Fy_{Fh{ozN>iY{>R9%`}iPG=^Yt`Q&>zyV=1A!Co zTrS;+rEe@`s9p0(jbKt5U3`Z^m?DTOsEY4*ODzvfZ~Wc*nOrl+qP|j{QCX~1+Ih&R z*B^$40*&DR%D&ZHH%2-E(WQ)qiFyjhy&>zg{%5CYHe{sjW!3VbK-G_vnPLi#sPRTB zX|z4tZ_TEt%J9flsLwc@n~S+o=G-|sPp&nnj8zv+1}dfvI&ipEUc3IE@ARZGVXEf> zDk-*XTGd(4#Gv?Jcf&;glbM=%+H|kKfsj-s@)y|!6<4b0$!mB48}2z=w_aa9H+*@; zdHJ-GM_US>pR%kv_M{OsNCuzA}8dEVuZR=xlZ$;I4B zqBb2$0(;W-zyK{@79!=>#`#s3f6L4c1pQEGo&Wh9#tS6JvuXPl1FNqWm_bn5W z*ru7=_JNcjVPmjqeN!mROGWffp_l}!``qu@3TeLwy>m|2pTBH$*;{$p7~TFRwuMZV z9CVPom3`PT^^Cls8`&6F5o(k47VCrtlv!!#=EBc6mtq^35iyx}B5Y;MMYNIWvonZr z?8#AUJP#(a0D_M>JA1}`juIG+gMDCJMKWV}Ba7$I-Wel1-E!R11WeEi4)rac6$g4Y^DRbI35ezSAiF}ih?S31x>MCoI_|@}S>>3ygpj5yDgOPho zz@H&EgZRub{<4i3;JLvfLV+xSmJtjkjtHSdL%?&=nzVs<4x5gSVfY7=EtTFXtps~U z6KR|M{rwOJUp9>%sX9=*1LA|~_E;G8+8SRbY2r7sZ^bS5D-W~I*6i-s?u_&n?fx`J zX(09>LF3K-1Ictq7zM-87$W&7PFoZK*fjW+@dZNjH^{Ky;QDa)$sb!-v+=B78o3d3 zCcqskDOEf{DL}trlB)8j1& z=R?`7dhBCrg$PFS3ARMn^oAXBkLemT7DSLt@!F;Y0aUn1H#5S+)gsB)hEH3BD*pD{ zH!bMV>$OWJw|rkO@E>4dMk4P2;#bI$ys0Di=Jn8<(=E%*!c4DE9LKy}eO4}c#l?+w z#E6Nga;p=@)~jR?211WswjPq?<9=Gk!lv=K$ubWP@+d5?7W?Nth=+<}aaQ1Phsdfu z;pyqeK&17u%!@{`AFPtd!yNsaFLKJo1`K#bN3TDVFqo z;3#nEDZDl!aRk6WJ_<#HM(D@q^-R(KL6pNjUXC{kOFKKZ;=h{R?&R!z3D3Z|p|4O$goOb!+F1inw8_DM=?R`5(5dV} zzyJj*CvZV1%YldiCn^Skp}Z*YFZ65PKftJ1SrPaVNqRP825|rVJ@B4g`3$yD4#Y>t zI1$6&#y32sWPK_tE5R0>%HLI}>a2K^Wo~DC({{I~D|DkVbl6*__FCXC0BzOG=9k({ zSw!%RC5-#XjhnSlKioR%@rW!ZkI{b-cpO^iD^@U~aqG>#mA}gOM6kco-=n`2YCERz z)0Y|_4+OBQHPghRjuc z!H_$vOKC#EKAS^PIk9-^*+?9`D)ISb62vA+UMaD&p`~7EDHi>KyzdY#&h#VjUx)<) z@wzbi^eM};n@c8LVOv+!jgtmcN-91FOgA{!?w0bMxx{p)^S)T_K>~TyTVv0qFU&Yu z&XBGS-&SgJaxx`l9AftZd!RxAJ8?U&wm>8xC>qcpfo>ba{PIorE}T3|pw7>GVl%Yj zLV7J-%=0?lTzb;{3t$T8U?ck|t~*_)}Uj%YSbgec;uNj~X-NC1Hp!Iu%Tp$ZBz)$73 z*~N`_PD8cR+mFW^^ML6n^Nz!I#Uz|9=mER5>Ag8oUGB1kIKr8CqNg5YyX@T~EpYDc z`^|~iwuCJ7Mbi(RW)UTw%-ze7V=$0AvGI>`K$dMoP%@&BMWG^o-K*TNgDRj2=@FI& zG`^Na?bXpuA=uG3Ge|FsdVVi|L!uAFdomCqm)S0h=1E{I4HK7!pI6TYuXp-adrhXE zDry^(*L*~nsBkZnS65aOu>V)_xbdU@Mqb#iklNy}JQ1K24(FG${fA~ib4~F_G?n{$ z)dw=Rn`O2nJ%3*-Fk=L@{e1Gk`*EB|=6dicuK{}ZJ`s{yFv!XILN*qaYS%lI=;zD- zu@(rMffV?`Q367kF)L&wv;l4u!;ENUjCHep+SELkwoJOt?=Hk9{2Gz;pXm?#eC^0r}0g&4V7_{=jl}5#=%P36=Vt&tQx_H!HoFr+UhAW61e= zWI4)5w@Pd2$%>iH8aFHGYS7Aot*Y`C8eFvU!bzB$LT{NzOI;sGoT z6pU9(As+G1G==_H3DKAF?Ty3Ldk}2a(#d&_s%ig~)T#R}|7kiMB(PUYF&jzIVVfkQ z9GMT=;J$7a_qo(I#D6LKTiUB52q3+Dz%nUsSRjjGbSn0DHla!U2Gg{MP=m` zpjARN6Kcp64cW+|a??MefCZRy>PgJ6W79&&L1j+tTTTe)xOBs8+A@E8cz8i*d$smM zN!Z#q+qKtrQ<`AV4Yo8NQg(X%bm5Xv*aCp1x7v3XS9vZl4Pqhet*((9e8nic{X9ri z8PW)t-zdh>+?0p$8x%?d8DB% ziIF)nJ5zprew6qN{oqiH1cpP5=q`-NlwdynM$-bc3@jRGN{tYnM={Y9FUaC#hG*iv z;b_N$bmVbts%r)*9fJK8f|X6Ego1GXA2ueM_`fP+rTO{kR}vUFZh^qVz%VARs_WPiHi&X(~=-PvXf(hrm7$eiY~d0z-$9C;5*T5kNqp%3v3O z$B^Vrbp>wu>A6VA+YL9uTfmM5RSw3u!wFQCx1Dg@tr%md4kJtMi*WO>wo+fgsnN^f z#uXe45&xG{iT>aGoT55g?M;JYIWEhpy@Cw^BUvXfA2Kt328w}gVC2o@k|Ckx1@+D3f92{X_0o(_$16 zpipHJrL0ZX&ZnvG45`mlgR1?l48=3f(}#A~_UzapXQwg>|16k!^D|)WWi;tw=0-Bs z5kG=+c?YiLIV;xh)PZEOOdGkKnPu0 z4}2C-Y>+3UL^6S93AX$D!q|)4+V$Dw)q^Yg`uZgr?N{UJjpG~v$Z?0P*?NWe)fG|>B7#f&Dva?-;yaIApdC_ZM*^vy&F0bW7&G? z-tLGufMT3nO2 z-H7Jj8}z(HROO+_zBf5F{N6ON08s4?){BE<9$wLKGRb>oz~B_5d4T+)q_phTQH&-? z8KeJIuMWTlWde!qXA1k6!dYd)!lqDPgfPjD1Fa(NF zetcZM3tj70}p zBk*w|Q&PI&W@LW8E;Z`N^dfX4r)H^7-oWhb7*c;WbSpM&aqQq~w%p3AtHa?_zquUo z8Y352IqQ^}QABAOnXwWuv+zb{is3*X^>I3iOnw{%f)XBNV07RZAa`@@pU_p-*RI%$;@q6ch8IMR z*&k0u_)T=|^3&wlQd>_Rj;dYw6gGd;c+~S;oF~E4v;3Nrb4hwfpbam8m^|6FjJT5S_@$zF&H=%V0ND@lLUeGLOe^Tk;!KrI0{y4&ta{6+ zZFVPn9Ghx0THfZG37%`J78D4awT}0GNp%)~s|LCqUM{Eh$)NUUJ{<+hlMVLcq|+gT zq<5zdp>Ng!2=&gLr{32;f$u`Q{i-)@sFT4RIr)$wM#diy*UvFw`d0y% z5b%ZeK=On|ff)qR1li)BlPd~fAW}H_R6b9X5?dCs`zB~PxVEMHnr%QHnQ@;(uO}_f z_;|U6jZvP5JR9a5Mw(9>N96lMeKz-6sOnQm)5Cn<8V-@QVsvA?1#FR!VtUqggWH(; z?%hOvs!7?vk)iw(jz^+G1scbLjgwA5#&rQPVAg!HR3c8?eJLa(0k{~&lKy^vkPn!R zw!bP4ZTx~Wxc(Fa-hTC+>D|e;-G%{6<9~Pp;7Mry#l?oaRzrUl0l& znX-S)!NJhd^Rp>RBHh0xk^k~;?V3FFFu}uG$OvVHy;c;{2P>ii^w))9m4y8a7C~I% zA&)^&*$Lh2xsNb1zpjNc`VTCXQ#kK_I43MVs5?2Qz~S+ zM+Qf3LP7#qx%g0urgq=Zp97b5>8p%gyHjGnIJfpa;NFN)T?_Vv7fa%K5@Esj*^j_D z6XLvSaE3r2F0mm@pA&J=FN2i{PRtVQ2%uL%XB!gI@u&}yS1^AIz!$$(cXll0Fv3mL z4CX;NO`L}$NXzR81BPb*Hbh1h9ussgNGkfVoxy= zGpY>yw^w2uv*+YjLo$q0Iy!{5n}oPR0>?+%xbfepV$ILkKf*$o1kRevjerRCPM3 zF}sbt=pvP=qONXLqzc_HUeum&3vU{*b9aiidpttNufRBnujWPpPkfnM`d7xPzdVqW z$c+V*ZF4k2>XwD_XuZnN;0_b&2mu+-i6-2+0_9~HHEG9N5)Rn#e41Xs{mzu?*Axa@ z*Cg9uqy)5<4xus+#cRWm#1OC1Acd)uVrE4;6{bBSaM*$FK6L&qU*YxYv+4TJM;@$t z(04k6!iIn!-koR8`Ci7gT|p>p3mbFo0fAFv<=?-X16L`9AwKKuh?jwX_Ytmk6|@xl zPvaq{A73_%iJmf05?(Y?1Auh05k}D>W7f$X7v%tV*OES_6SJ`RgYTLx$+?AJ?T%6YvYG!ClU~JzT*;AcN_C zu$Ml+ut?ud9m_7+C(M+?jfp>_{jN@2TeP&3ETOWOIynMIWrAeP->ofcoayr4zZeP_ zR7?!cITk#M7CIN0XfMgg4P@MT8kB9lWe^Z-ts70uFQt{2xh1z;L8LH-TTW#xIK!m= zCdgHQ3R=*rsEdf!l%){a-O!UHmT=(OoRl|g9a`(O^0){5vTw4W&R5WTLng$rdH(Au z6XM-QM$^nL5W_{@W;NH`vCzhE;>YseRi}0}=o?u*?e>XbgNfA%X2Xu^^zCA@{n4K( zJ$yKy@@sczxmNrieMJx1m)2Mx5DNC%P3M{kU0jJ8Ymt7R1u%9Veeuk{3g-W(1#nD4 zzma9ZAmU4&mxyb#T;m;m&gUMoGGZlj&U?CN{<-QZZD)Koq?};Qb&s&nDGWi^SO*?) z7e&g$P_}kb-m4(dB4R3ArJ&VT9%+B&@V-KDS zSHO={ABb*RYw_JI;8HL54m{th?m!{Ed4+!XD;c6~=6O8?r)yV!?Y}!UL1rBUuI|@N zG1BQsq?y|#91Me}r{7ILM<=!pn$CqnQFbYvdOBddt-4h2DPZ&`_=7;^fXcaD7)poS znH{XSvMpQKgZlrD;>cFk@1z?o_n(cXnRD&*jM;9QtFIOb2+{CwXFCn7!(jb2G)kKO z!Szj8q$qQ%ad%ujcw)T`_ZXq^FAn?69*@skK8mO+5qbEaznb5CWoJ5L-ROxV!|(wP z(55;tTnIE)+yXZxE!BGlfJZNye2xu6g)%A>y8I|177qd3e4R1u512J{#etgMX$gv~ z;}E+#hD2S1s?+MO_vGkvD4G8HSKV>(H*To+sM#)fqAyq){ZqxujJ0Z2BE`$F3TDq$ z1>Y&}JEuIM>H4DCvL$?SdE@V2drR}pgz@EX>HJZuz89!HWqFAK0zu3KPW>G3_&5qP zarG@$`7z`rcuIZ(J$v&nd6%w&YMJU!Y|~!V9N%);8AH2qA3$*08@auk@GAA9S-3>m zIsE9jeF77r#60L#oph$+`xkp`kL)d^m4uC92$(`!WdWaI=0X>W;nsXToHPd@OuJ; zcyYwMe@%WLVKtW`j1f5$kJZ6F=FDYW4LsESaaa!Ue#;}+zeR>0z5lD5ESX;lhffWy zNC>R`9<*yiUk78HMhek5Zb0>h-4CkQ*vtd<&7LkBixYcrtis?D=RO1J?c%37p1Pw& zwM;8xxHa{+m1XZ^*b(lznao6t{oj0Y(p3gV{y#J@Hg8uWQBYnWG-T(*nf4elozM^# z)nIx~jX`AQXG-QXXL2yWEvU=UgGI$j;SH9P)%5-f&*?yufF{UF*{Ct^D4e7TroWUi zdn*qDT@hBNLh@}in+tToj#030O}k2o5RU|@=lWnUgC;u09w@OXCbaUoPEadgm~}sc zs34Q9@tsP+xHX{f83EB92OBVZBqJyxD^b)DHuX9yXjq8dci=UIegU8c0Hcid!ilou zxCt4tU~RX!-fdL>aC z^b%VcJEbx^@5zdK51KKV5Iv{Yo=ax`TxSLIS{ddN&?yH=NkCha~k=?4_hm&LKq;FvEI zNxPpEAwxP=r@Z7@5w^A(x~v|}$#^0}%2;OXFY8AKQl@ z!ElIU((X3KJ4G72gGc-?8$9+5#a^z&EAXM6b%tyzMkDIWHL6OI<9hvJgDks%g|&ZI z)VI29XnKQV338{QrIeiiyudwC=B4>g!E%h+wXcjQs zGsQM)oS&oL5E=QH(?IPF^a(!Ukxn8(G8loRm;fsC3a8PLz%%qi@jx}dE3kKr(VN{Y z7PF628Os#=i$?l>xR&4J{(bI`*K(^z$P%UUlMv}T+FbSutvmh#?!t{xL{FMuP&x2zVQP3RbS1~{sCwQNNrAXqXw8nR zh%+NdC2O5mIaQ_2NgiewSp{Wo z{{H@x6=og4aV^lZo2me+nn8|C#y=XJGZ1V8+k0GXdnc{mOvQ*LZCi*N& zTyln|qx4%fKp?!Jht>c4K*XYmsHkd2Tcg6E@KQfxa~K8agocID&lYzAl7LgBdUvp2 zb=82r)*0n*Kx3Jdy@&x@=ZUxVDlzY|k@-dhawQ#yWU6vm@ zEwoGfrrqloB80)5b=DmsSA6WGkl53OmnQM_Rj%3o&GL+$4>G|srEmJ1DE1!!ud?_} z>&A7P>!Dlo5ZfaQT6ER3YLMLnla%=Z%UNC9bQ?**f++P}O65o}7w6?>vNd|L`pJ>V z*Qcw`r6|!Cd#;!jpBetnehSBmG!H=ii@f(e5HR^QSDll$)94l3e6zs;KUXa7lwN;x$RZ)a0)Ou^6RY=Chx9XKaqI51V0xa+ z_Oj5{Oa7?JPK{pal@))#)q^P=&%o$06_tPX)ppeGNZ5mp`sb~`AGMDw_~3sl4GLGBkRF41uZH?m4Z*N8WmN{yTBfN zDr|>Os9!zy#`ouilEU(gpbi~zIH8;bNj6x#qs?2dqfJm zuHgFm`+>68**fxIuj2^NAiE|(Ur)8hKlhdfCLSKY90K-9CWmI=pw!IbJJ3Th_koHy zS%DsUe%c(QbiHMEXk1pl3+^H5+6kwC08fw^Jn?%{$YwTq#r7KR(KiUExm`fdXglcK zDsNz&uJrc8k)A@KN|J)7AMNfe$0Sh$7l);p6FB=TT1m~Bw@;SBPrlLgxlUTfJjRg6 zk^0V~@~M5yU1#U9rc)UXO~4?Bw1Z3;h(fi8)aNyzVycP(y0=*r=piO#aAZ$%_cWO1s zE$6-loBEzCL}m<~4Uzl)9+{PprfwHXs1Jaod>}#bo~ASQ5QwxAM95tgjoI+ zxH&{?ozIKKppd5dZ`79gPs%Ldrs@EBs|tA~7JdFpF#)LFgA z9RCm+C}^rc58j(5e3hSwIfANQrF>45FQJf3@3531Sp^dkpT)pR$^(b#_tK0d#aP#Z z3683YiQG&F_94EiM`aj8mtYU9#jH%ch#ykj%@X7n-ulteH@<-z4V!(-W}wP1(ZXg?Ijjp*c-5m}ICW{M#|a`Fx8U2o8ltRIyB)k&3(Jf>3%f-B>$kK z&C&mkaHMMAv0;be00GlcAmD`;^FYuoES5TO%)$YIO$bc(-&Odu2Ol*7JQsSHJjF6s zBI3S~IY35$ep3=bwp7Gkbcs8`i(+=&bg!|D;P$3<_K?X{tDthWcY+BB^ytANkdsI> z#NF8I4+nkun{gjJdgcQpG0=e~b6iz%j=pvJp)lB25*<^S;;?{NQ_x{wh#q?xGWzb+ z`ORi;x034xX-@2vYohIYyX7eV`RWOiZ%Z-Yf3ApEvS6SI9a(bNY0k?itBJGPHZ%*B zBcE}O7iE7FSl8JAlVUm0L6N(svJy2Ci2;r11ZZ>N97Z$6DhgwB%G|nq#ZO!y zVmC4?s;sv?!j?_}46n!GEI-6q;4MHI6YozM!rl|M2bF@AvJi+dRCoyAv17B;r-AlTm4b=_TQ99;6@#1m-8(ySU1#)6xEsJ0fM=9A zkffvWU(M{|b^W=OCVH=d`~gLVkex8&Ki@ z`SS-({saA$2~ERrwvtPwIsy2!((ZS@*&DJb!9XUt5oYpO{az3 z;o+U}tqexU9X;U67hkNRo5o4a1Y=FyPuwe5zR0&xI_)N1T(z63*SGg)K+xCEkCL%< zR?b@tk+v#`B2#2!s#krDO84z1)GmMWIJc?!{a%x-6~?kvCa1)+z08$}NXt%rOlcda zS&5k4tZE-7orb;Fz`!8E0Rp^0?NChiqP035CiM08PQIy{r==H#E~cw*ZdCH+`F;Nz zY=_d$dUB5lDH@61k3kzf3rEe!)XO3;B$N}&2%Z^L-|f$+{h;*XzvnXKO|G_@yJO$( zw!bdb&5gl1{1zWB==p18Gp%>gcl^ndCzHj$Uu0zP6NtIv6?x`G;0Q%vDb?eU?%e`m zMSdmHF@M42>8Hu=XaRUnaf))fzBkRSS4r>iFAzV$(w5Qt*s~& z>km*Xs|QiKSWMi~ABUZROI$ydy{?N|xa@)NkkNM9nTwKex@4jJRM9N~#$qD;)`3Wf zgM#pg9tA?$IDxkcDHzt=cq8sNKZ&W{j|VpW_VQ5m;~=0%NzZ$dA!O|PLE>w<0^oiO zU;{kupq8|n>~!;<9XN*|itsx_E>NMsv8QA^eHG^)Be!jMN->h1X{Jm-X~5yGln>E>xZu{kh%%1Ned6U&*0+*?%h|G#r9)D3qWHtLYjq?qQ=T4}6J? z@Ic{N@e#*hujyk#;zV(QtT(UR+Xw0t$GtF1sUNQ9f~+*G1McdxeZC%Y()(vgr!*m7 z#Ob1OlVS2s1mAfJ?#JOmv1yOHK`xL5Rl6rQ+TavUoHqET3lpF0qZ z-ru>-YOEWAK6HZ_56a1yS1}w`A!smfPganwI#GT&m6QWv>#2v4_V2GAMhs=&t7EWS z_rPG`=`p9I&Bwm7@O7p(ArTsK3bHPaSw# zv6K-n2rTIGMcf%_=D}DNnCSs~4BD%@x8zcNY@DOD^s5q#q4^Ob{^0_F6YLQjq5HuT zhj4gKl4oonk;q6zWypJn^jxw8yOpCw40{Z-1`PBLyzxHBV+w8f=R|HMR7ngpir5ce zE;flgTn?DMo6uYDeqf?e;=ui=Ta52p#Mi7-*=Aza@Fc zK^8qyyye$j7DRn#z^P0Qq}F@Rp!T1qAzyL(-&|^rdq$g#COhU8F(!-reZ>l)VQkn@ z*qtlEgn-uK>h6$#@YooH$)_m$boO}KK%^fg1{QccGsIDIOi7J-}SI1*(W|@5R zmKq>-o9L>TmJcM~mSVTwilgAUiLxs_tO*u1BaWYzS8!BU63`nNKI2Chp|khxN0HfS zmuXkUyyi>By40xxmU^cW6A^aWAYAQTns)M4POJa1(^0!1AGKM6-uO{AJ+cL&z`b#izlzU1 z{POK-un`(`*j3iHaF!FCnPo%`3C#6Zvc~=@Qx8!#ZUM#H#lggJKm~97ghKsTaN~-<4Cpt0M&pNej{x6U-9(g zHuFZl*oP@h1Oe0MP_;<>SH|z+HXh)#y}zxGO>f9kk1h2nx5@XMoG}~vlg1%0(=laI zMuvF=C`~l1*CeiR$9LR5Q(twvZoXk*S&3fhz5Dsd-@tacH{^p_tjOn3E(^bsV7(eb zm(RU$ccv+gzTVR!a~?SRJA#{k&BGS``P^<-)a+-OHSIL>ZK7K2`TCGl(R!A1yK!}P zn}4^tcB`B(L+TN@jIHp=Ehj+sTIyG784VZ@n=ZXmLx9fk0b^i+ci|mJ)%t{%)-<8M zjO*nGlP;Lr3*#EuzQ5(>{5p`kM%~}W&B{LUNUG`#C5t=QLP4)9D*Ss%cU=B+bX4JZ zq+R)du#tr_Qt#PhpxQ$~_>b6M?>fUD6j~k{@L{XHsCs#&I-z9bY*y8+v!5v^0nc$sL^YhD7CM6d5Bwj=5(d5;c{?pdeq=dwfGi0tJaBa8J zr|ZM9Fa8ViNKtgta?Ky)W)nTOF-0mr%fJ1PD`d6xmW}dKp=6AGxit)?ZdJ}Z$O+jwa?3`c{V)G|~txQwr z^`|WG+bwKogiWWOD(pI;Iwoxn+Wr|q87nJ1IiGx_cvaB;B2F$q_DKJE(sRznoJQ<$ zbu|lqT2ZfAB-#{Ts@}g!Yfy&ahOdpY|6gRxFJG{v$b+fU1p^&nz>kY@Kr^yoQb$-2A@nFDnG85ad-m5ZN1e<-9uwvCtrKl7`C?{Tbro|5i8zT7#;{pS@{&KR zAF)wS>8tP>)@lE7=%!8AWuNL>RjcBW75TVlrJc!p5@J=-(_dyKQdHv-y~~pD%K*mm zkIBp>|Abff{P}_2-k^zhIoiISDtz$}C-7%s;See|^B)2E^U3)Q_QYb25G_YG>ENR1CiCjq{9r@F{DTCU z?NJY*j$A~AnnYj}2D8&6;A?T^)z9Q$oV&7GQg^$RAcu3DA>bRof=d3_pr-3)} z$rFn~-UqlZAx`{+6O0elj;c7rmVS(1^aKWR;cc2hAG+&!StMdl@h5#$ij=IBv^j{e zJ4DH_AB(<%?kPeuoc!X%AvOEdN7znFZB7xt5VZX>PWW*;y5Wf8=f=h;gm?@TW=-s3{XwTXBEBl zomm7s_}A+MLg^qE*TIzn--M=XJji?9*IWhy$85$5N(2ory@3dLUn6NH7nD&ev=qf+ z%G^K;_z;Qsf_`%!W)Wu~QQQ>o2OORZV;EP;x7NetknOplI)RJ1d;A@2RjgOs2 z>(R#<9bY2*;Q)_RH<+xW7=vP>&P|Xuqj6WUkw`_o66+!$A%m?MG*Y)NG3Fe18o^rz zm{ADw(8Mu{kYXt6mq)yS9R{gtI=bSFc6Pl3lxeDCjI%icC1Ou&Lgs={_S`Df#6az? zTV$5VXd&0-9~<`z_A+$f&N}!sr~cItBW{>%gahKN2*ky! zakqMtzN5#8)i;Z;>Q(A%-EkazgvWLgam0^?*A|DMqHLQekw+&>Mbbp0kY1gIlf@H|Yjt3rFKnJqeQj>a zV=G8qJ=F|vx4+F!2XmjS1qkD42}~@IYjTh0H{a)e;rA$^sU8iMK<9Xni?AY|$uqq2 za|dUJNzv^72!uc4VXEgPJX~x%9;b6J_1S4 zG6~I359%@YP$3hXJY3oBbVOj58OhFSOe24uu{00BB?^q4a^8I7iGGo>R`;ZOYusRz zq&?JhiR=3Iuy;m9NVU(!_!rriA)T1(N#TbxMt{f0FaO&Z_qkmF?T6cFm^SI|LlNRS zE&HIA41lm}(#gv=KYsf3$yz!s`vO27a>>!Tvzx%(e>%vo5reEB+%Kdm~%VS23Vxo7C%zv+9q&Y!hfuP_^wG_ps8ORtd6Duhg* zOHlLQ>|E~N`QhrNTjSGST@6!_m3Y~#V#)6L?(Xi11ur#0^O1jZH*5P9$QHN?5$nQA zFr_O&I8SH#rgN-sh8OP%4D8$35h)%!f+kWS7n{q$BG;5BQ@u7_6uPi}s!-5IMXmbU zc3bWI6PEIZ3eWEYR%4|5|23f5?{TN}j8x2Sie!gYuW{{ew3(3()ZH{y9Ru#Z9>v$@ zO6PiTjeAd~7%$(Lqs2xYc4)#Y)l1k1f6lVBzl(l1>^OU&n9Tv$jiFNie_Or*ecDf5NbvDZK7|_F!sS zSIuOpdCg)6pZfgN;k}zdU(zIxmchbo%Z?@lD|5v+Kw7YY-EzDj=Yw(Io zHMx+lW!$yz01z4xX-+mtBUd2c=n8#PCB_Z^XrhAc>EhxdC`t`KFZ4W`M9e|7;A~sA z%2-0l;?u!zdvk0z zB}SH%EJH+M7%`S2l)XY@&ysy9YmKc;$R08XqjC^JCCR?;+y9yG@A_Ytb1rA=WacyP z_p{vh>kiE|e^gna;Qgz@j+@8sTGz`^Sy~CNH8MIbMrv|Pi!=J$0FpWS&7{}6o96ID z-*GXHx4k}I|8#$BD;n{+#34C%7IKYjWEAT@+^sam-KdAL@W}jkvto)x?*UO1G8%ho zh7o6ny+W-0A*a7Kvaa^=wlg0_m06?T!8pPyHNNTVd#{y{{Cx)3L!hN}hB)avg@vE> zL1b@Jcy^K^aTVvYHfI(2JC#5yESiKkkdjY;CkL0zzDwuNwy_8FV zrsi!HWsUre8zb9wQuQEQO6`h!#AWjxbnM^9#s(rYUz3-7iz!1l8}EL9cljwUu-f+d zm)F@PuenOFG(~k_(p8rN&C1tHxz2O8HbBP!S|Q-91Cv$Q06&R_?Itgw<@{K~b9txo zen+)%#~4ZoIG^es62a=*fmQ(ZEnu51m}*Lp6`wXSI5FGcfgg3~U};>6u_%gZc(EZ+QFx zwc*vuk?)R&8wD{s!Wj75wx+pp{3uNU^pp0NViT~ZR+=p6L#z+%I#kwsxL3_rp&?1vrYkD+)wbK$SBH1LMgF=m_^ z7M!?1!M8yYtdu)xv8lWtWBg_Yl&LDmER-%3XyUt|+&_fm4I`^U&|K;4<|~pKYi|+1 zMUB@B)$5&OyNx{l(|-$3pBjlSZvz&M#Eq-XvN90LRqPM(t+lxBOeF&rn2N7~% zeV0Eq@B)MwA*3pZ=!RMisej$Nuy8^q@THnM8}0f0Ow`U=o4`=bZlBApWBAufjsw-_ zEQZgIO;n!B0T3h-MTYHuHeC_-UmU(k(S$RI8cz=N!a-jH5b89b1 zM(H2W){Wz@tbcI=A@6h&L#^3X*^HIiT`1m~SoNPB^Z&QMZut52yphy%fp=KXp5&W( zCaMb3&1Ax80hK0mxbdyMm*k}XuF6iQ+P)w9_Es==8LbCGDpD$gi0F_fViwjKB%t9d` zw`JBB!VXk%uLQ`Dn}%~NSG$xhHSDuHH0e_9=HnMKWysygg2?`|>f7ZhcF5F_^TlPb zNjShcl1+K?vAt0mP3W1VnH>UcCy`W|+Ouq9zSCZ}5yk6NczR#q*3W&S~rIF!n0*_zUG4T&czxe>50BZMP6#=yCwE<`3*O(LW%XXGKf4(S8E`Rf)Dx^&7ts3e~=k9@n zQ{P0r_eYgy6bc+Tr>RO~=KuC1?heQw`k_+saFSjFFXielpVAX*z0XRPVDcrB2aU1~ z*NuIr@FHB_mf8y^GhiqDe|>nm*k{Z2<>4PVa|I_3(aCG|RAx0-&^q=UYQuP^d9ZzNl&>hZi&2Ub~fIndj5)OxH@Zo+lzb$Lp{G= zvs>S$CXUh)#6Eq!E1cXrSt@$7F+K#nA!*uHUVMD#JG*~px<<#g&80J;)}?04zQc!K ziH6pUe|qG$JM%1SJTT&xc~N|aw54zi1F@8 zt8RS#qTVk310ZuYr(%1fR6&mXHQl0U$on2KU))YOQ+Y*0U$vclmtUacREFP*$K{Qm z^_p}pU1PkPPN>W$R>Tlw0dQGc#^=nOAM3wni0_WoQ&vn0H_#FAUxJ)whN<~626Au} z#~d!1G18xU)0Ej5`a1Z)A_`#Sh`JYr}8gxr~d2}wZoT5ns9R!ElK_S7ehjLDk)H=i_b~{z7;aqSGl9FjwP<_iJw1Uy0) z$*iVjGMJBxNT54K2pv;Qqypc===o0U2QdwvFxB z!-zZ2VHn9jasz*IwooX=RZvcB{|$o{U!Iare&oh4O^F140|V0B-CcxgVJQe1kg4wi zT<_hxkpNRZLimt3jGH<1;SCPQLagidaxf-UQv6QPymP*;DsRqoSr$~*>CyshaM-L6>~h$5MO#- zAo{HO+vNplhqvC073*qd-H$GDPIew#(*ExQ#?}ghpO05a>2Pp=v^>!bCv0|Mt@n1m zydPShiG;X0B%oR++gnb*iDvNyA2t0@gdw zovMSFG7u~dXu`oU#7ld=*+N+WI->Urm)f*dLLN()T6_Ph(yc6T5yH5m8y!m}w!Avj z0$|>k6jf0%>N^JRY;NeJ>ea(Tobm}6Mcpvs4KEOa7NVHEbLM4j$7;x)jAeoXZ@Ri|C$BAH` z21cPqxTpRdnUdxJJB1d==}uwf6B!NVsjT@`pRscP-{4#8iWa(Jgm^vCARFeu3F!vX zL>b=0p!z3*2hXWW2;%~IzX#ndV1!#))RzoblKi!i@`78E31OqQpae%Fq%T_Z3jLlQ zD38Db>w?ki_FJK=S0|S*1i}XA1-x#byj{pOtES(K2g(??aOl^6OV;bOi=LK@(fNtg ze6f}bPhZ9yu9s#@DPtEqb(vJS>Ji3ip!1Ox)_|$9L=htD`x1n$u#rL+7pWn|)_48? zT5h*>*3IeagdDD3{X4Mxquh5R=X5cCNc`J+lg4<#{S)=Vtzq4moQLoIrB6h;(YqSe zk)~3B9wV*{JwxI?nSm@#omFvcdwYA_@d}ROIF@@UATSn z6$p4pSPX-I(d&{}n@r$6#&p)CI4wP$hVD3dDM=U7$Q6r0IXFq7K=S}A%86Y2lw4lx zBaB4ky1ERoUvSZ36w2Dihk847u|fXR2zAlertgfR-8J4WWaSCf%u^_P?rZq(CDIC! zE9{f+PPU7Qg-TtW9Q^X0av@~~M)TR@zZ##ZgP(rdqM}?ya7LB{D)Kfe;#wQSI+eGbGW_O)27054`02fk2|EeH z_CY;^(hE7IQ#CGCxerPM;@w|SI=qgmk+H>+*LVKbZO%?5vTo<%vz>O4T~cxr(U#k)7W%S9Oho-{6Dz2P^-(Tpk=nJT*x}{=Ga0_~<2)I4 zHFXMYie|3Zrt)Fmy!7kVx&l9HE{adsX88SraHgfxxB0DsTZB$9Fq8aitH1P0f%Xtw ze)I}GWw*(^y17PUYq}1LyM+{YSYqtzP>Er8rnrEz4{J=CTj+a-4R&R(wNZs3-^s@P zlgdGHA*?ukS>9*xv4b~R2s4`<2edW~;b$L4Yg8_vRlFzvmFg*NPIaFoec#Lsnfto_ zduILsnnxu6CHW?aiZhtI;xet5;XBbp^eh-r?21-mD?KU zABNUYw)4~og(44V>3DB%YNjapCLR{&5m=0?tLyLT@}XA^UNyjDFPgls&*?P45uFJ$ z*OyKMfEoqKhLe0s5K>a1!>7;hp^sYa(9&^~t+r{sVy}YItH_$FN`*>4=@L=u_5)=i2v*Kb+op(EuLJ zwM+yF1Q>4A+vUD4h3@nmVQe1yB!`80dqP`IsdB#8EYuW_fjX1=+lv~4=`jo8Fffy! zZXMm2-Fa%+`EmDK-P#D8sGq!#5q`*>u?$z!ZEilze!bIgQeZb$)HLq?ez;BGx<;t( z)j;S&FAi=hP9^}laIwU}&9Wn4#3i7Qv%%o9j}x!7!s$p6Pey$;^S*aaI_P#mNlP&M5r1QD+*cTb}#_E(!2y$ zy6^BYb;UCQpAy|bEmGQ^-|f)#fLRq0BufTQacQ69DGWA8-{Kf4uWKAUJbOiHiO2?r zQim$W!kZzjq#S8Px>kPp0Fy=xFzY62cu-^JaI(vfITjud78;w1fH3&Pg3_Q>y`k#+ zqyJtG$SoF*jv5>H$f*&X4Q$Tx2#zBArfU*?{(3vKEl{uLyTm3@h4TT(tgkSH!QYCEUl^3Ocmy!dK zJsth%&Hess&5KP7T^ZXC!ckw41pW==CWVrlg@x%f>XT4*oDtUz!LU_7IlhoTwUY+u zhlkwTye)g(jZ-Zp`@Sc-hlN8@@LmK)^;7mY7iPX-32hPD&7N-KUUqPK{;b=+Shw&w zFMYFKU~TBW#RWSu+(@YJFH7UUGbg3WqD-%Z-8p=WfVe|-_Ig~mp0Qgf`kL}V9Uf2k z5J1NbT{$#(C?VWhof<>n2JI~*1i<)w9~X-8{kP_DEX;3Uxd8!2_!s0kZ2#A@p!oO* zU70jPOb)Z00LKDb=Ks)gOBr7CL9+l*_5rGY`-eJ(BNoMCc)Aq#A<}exJs>54-9HUM z8sYDXNOlZj+AZkCVCdqM%osGbdPk`O4cixPZct|m1;TIsaO1rP4<7vQ3Rg%uj6nZJ zGRr`yYMI8T%AyoND4Q@KuasP*hE1tisc(5*oxqEkA1XUp#eO6CF12+B-ks>M*6NYY za)@{SH;_AP$ShCm*SFvkMp^xZskqpmYzpE|xM}e*0vihJ2GmI^FIUqt>6!ofY5xXO zNeGXZls+=N$)jv1r+dYALY?)E=$SHSbftS0R3k+Iv5Woz8o@w4bsUF1(@g7+8MFyGA1klFJQaKg0j9@|7}2-b{LY+h9l$pYg}Lr5W{EU-w!we;==k1KNp?BQD<^;5Krl2jn^_P$tlkl&@XoF2;1Z4nAJ; zU8Dan-wFoC9slOTer(zG-MOMOn3CGW4k9>wvnY_P1$TM*%#Y3fTb?r+=5pAe#E?7a zVDw4EA5Iv^a9s|H2`x2-A+q=4-QCgzmH9Vg89oaWT(^wtHd5*ah_@w79Jk}&v0!ug z)7&)hd@I+6-BZpTt=(L?<-cvWJ3;CkE;`N&BwKraYaL)Y7;*}_DrT??kzppz{Ut8b z?Yir}fboYHEQ@x)sD1X?&FSNnl~c*a!n_|Viw+DrxQivPTxp`3u;=Ei()kFfLbEkm z7*eIjYl?U_1PVTFSO=FaRqBv1uyhj=4$T%~AwBaZUgR{axo`m-Ue23p)SaDMjOQlZzDir%nyt$?K)zI0};tgGM@t3gxAG*NmAGKQ2My^)HE^GfifU{?)hJ447`)T4~11MXEd_Gxtv-g z6F)Ol+t}k+KG^5AO5Y##?scU-vphwScGL8jniendMHM#R`9$aO#sbMPC#UcO+E)Y& z+HFT86T+6gI@&48IQ++FVhkfJCvDn`5MJ?Uk!Tu^`CT*YD37=|{qL@PM!puk?*pHa z+$c62KFnUkRo=$0z!ybRo@MS({?c6-rs zJHmhGOx?VK--e6X)2{EG6Q^<>ln!y{v>l)u=eLD*7w`1Dq^Da3zz{$d_#Oul6jp)D zFj=NFSTcw%_+Onj7)P%f@Y1sP;DnzjZILNz@imoil5^qrnp-NrriDYi9hmm{JTNF3 z_%rVS0%xGl`CJ2k$Sz4&mx(i4wWLHy-8_D@BSnFy4I-jEsw@<)f6!zB@Z4+Y0ZCv{ z8#;67bh6+fgrK#`2F&)lsBZ8YVGt~xFB@b7nLm;-4eiui4|+~quDy=f8w^rsA6z?l zTV|s*!-uNSb24e{1qYpmpsJv54A(Bp$p%ff`>af;vng?VKx3uGnh8G`>@Tc9CH-m- zA)G84Kw%D0x|8|mv?9MCA>?~4j1`KULop?E+&-oxlj;R{y$08q0% z#gN%u`4sn!vvCM=o9>1ePF~3QQlN*>{_;S~pgu z;%QVxaUJ>BjJ%SO7gu=JTBqI{C6;JmzZxzCv2teFntJJ5{l(i?t{fD)J|z2V-gPIa z)3;1Q;^>93lDq9OEdA>Rg=bV-h4MK2%OEf%@TGXT<3Yp3C+Gu7XnX)0dn0Ge-AHfT z4SvQXerVH4!Cie<%5U8SQ1&~^$I5fB?J>=B~M5?0`>C}f&m3Y zMjvJh0LWZ`bPV;<;gQAOV&4tIYVBNw-eBb;*((C41b!PKg`)4%(XqL2MA>943VVa^ zCg*ha z*%4UMAg>PstT6|H!|FLgI}B+CPsoXVW*4s+(iIQ*Ob)IN`R&e|)Ghzq?sEJ2E&hcF zo8LEn{J8^bXqLo?`x;h-L8;c^cgaaiH&)a*yU}h65j3>TH_m6yz5NCyyYqD$v(-xr zhkE)Gb7y@f2X;5uea3@qYi?O~PZvyXQr_A)TICBrs=4JkI5RYu0QjS4Rv+9ad*;7_ z=su~FPNz`B+hlV7lRFGV-2a8`h=E|~fklFW*LV|8VX1nr_w4*fPLJ7%3GtjI2&6&1 zF@H2di=ey##dJ#LbS0gW8ZkLyr(ve%3UsYTUnTZ^?m6V2;8j-&RUCWYQizb?X77CBW;`WZEdL~qv z8q)h0b_Oq=`b%w&+9>k=)ilssWXW@5n0@5@z6?OF@j%{(?I-WmnbGV3>%MRT$jGT` zDmm=erD}I(ye<95wwvut)X4`w@NC5ye9ja*@Cp+xen@BKC`MXPt#bAEp$xx~?%r8t z|7}|9_~=ZV|5`WJO5vL3v`k>DVlR7IJu@qhrW=ZP(<(VP?%U}2GyhGO?f)W7eMi<> z%tmy=+9|Np=yq@_OjF};2A24%SF^74wo#wt+&;(4j*=!Rmb;&49TcUAZgxMUAKd+7 zYM97e;#g^Md2VZdYm~>?RG3+Wg(!#ft)upoISsUPi{-R+^R3_vbu_H3uMb!V5FArz zP-h*5of|edn%c0QyW2l7y#Cb1XY(nw%_^p?^(<`u)M=^mcg0h(;?Ok5@V%BKUtfa!E6`BbZ;dS)c(wx2IbI+@Ef|l5XZqyRnOF9nupWzJCDkx?EeGP#U!a;E{ZZovjtq5zw3O{*4d_?gBIZ;Q3Ez!_Q((aY1D3aE)<~lxbp>vZA8mg$pvY zPyg`u`MnWll4G{|Nx4k3Spp#~nniC;>+ql5e!xyfG_7>YA(<14_OrQ&3F++ z%k9tDJU_m|Qi4KooN?96gVJp~m0hWxs$b2!+y3mr>tgYEtk*F6Mg4u*i;HcVdYyiw z3I4t{$HD>cwf~;#>x16ete~-bJ(tJu2dkoPT!t@I6nf{9lAsaX@CZR8xZz=zfRPD? z4YPRyK&1g8@T0f2qz_>zRFxA9kw!!XN1azLcbi3w?Yc%weHWb?max&F*CkCN-SSAw4G_|}Qc{G_2gD2Fxg7_UOWW4eTSeYINu7}ha5S?M`$ilU(&Aih zh!<#VTIWOF_FbMyyXbj6{tzZP*S^%u9YzHbYhcwMIS(#eSScjnZFNywH@O(Frf_=~ zHopsG?1|&YgOIs?K&t_i?6!-AsU-JR z!<#@Wv-zTQ9$w@xdmtAOq<()=6HVC<%EQkkCgT6xfFqiyd^8%V24X%CDE5~~FdZ<` z1{nNn#7otW;U7Z-1lgW%%_Y>%UKOZX{r%My<<@_UW|6X zm!Ang7d%0+CL%;I#HIb1%uqbuw5?0-1wM>yN~P@7S?++s+4tV=@+MfR_a2z|W(rC7 zX=ne3P*ViC0rDLsl^S$b*EF6Ob>sKl1L~|6y-ccIa)!DICZyhWF6je5FT=JOhYK(` zukc_*dYwNOL(Zl+vGLdrRxbh&f3t3D#AH@!Hw)lkVrzZXAqUc<*$@=7xa$=y5Y`&S zz4-0kD4P(-Ev~0vw>|yG>}2l&r5Z*6iEhSt#(1D#9agyXBywWX5f~uBr`yalhQ%!dje0qF}z{!78l!mhcyMrcNzL{ zkE-J+uAHOMsZ=*fnidZG*9uL6db3iJaS0OGKyn3)L`)5sg4+eue&~O_f z66I6U0IF!@o}A0?Gai~?S-G9HOJlEWIG?-R)Ko1|yQGwHXggV7I2+0FPVBRI&hyKi z^iCe{#r4hMM_=TZ7dusE9kCgmH3H@Ti`1)G?cq`!^Xj=ivi4`*5QU{ZoIMboWa%|7 zGP@1sE0&Lt$P2F?Iv7SH-QE3)3K^a74|4{c%ljM)s6*b$f|;--le-2`?!Ku%{iU2f zz3$uR+sE86Zos)M1-3H)91Y{nq255OcQ=u0*gcj}=kDWVddsu47EG7L8$yPP#KCJv z`xDkBesXvI}JhmkcG|BfCj@2~t`2pQrT^aQHO?MF?BqhGta7SSj9oQY?(;^UlE zJV_Pik;(`JQ#vE|mJrkJ?6dkScKFfcw2RW(9W7H%)Hz5F)%=96rpQnOp18(^d&dYp z<8e0MTxy=Jd9>TaQsDd|bdM3)bCcjMz6!;`A_2M9ls3j8AZcOMEt?3i+;ZiB{eB=eYg z)dQ#Fr=ng9oAsW9a3tfGkMwz5e)zt!7GxnxvK=FASn&{2OT$KDNw~kie>3Z&-c4R0 zIgv{sX(C2&RWqiP~!QXsfj`?cu` znoFp5tD$gqbLzCp;$KpE@mV{kasKO8j{OxJMRbKOIebxN|4NG3PL#^#YDU$jxM{N% zpiUPE!>d{aF(OS3yr=S#^@!bi+kgD;8SoMNipsj=M$zgzHful{?KO+m9IBT4xkvFSNGc%j1G zw=eF}^`ozA{%yG5FvO3bLqv5R(CxJl0c_W-;<;xBAJs})bhRTyY5$tF1+&ggP80vp z?32S^39mnVbQppA2KmS&Ec8 zyU}eP%BKKzgP5FKI}0$B#!08uKTBViNAK%b<|gg^2^l-LdA`L_IgVb|X~jN6T7RQ4 zzBu`@Zfni3PX@G*;@=o7&u>1 zsI~?!4gIpSWTMKS)a~=@XagNh%|m0Udh-(#pSb~lU)o<_l5(uvnOj2$<0zODM>r_- zJ(E)(IkoAB&UI2zy1iPrbgXVU-*V@(-fo@>;gHVPgtC}8Ns}`&{7+L0jZG3JA*9n& z<>6M~7X%i=3<@@IyK{i-%jf_4b*W4(aKFPO9fVnwP{7Gw*~* z)1_GiLOV3%Em*Kcsxg5j`jc$_F1f>1e%~EEqVzh`Z{H41q%t#~3~+$N z2YjFsvr$L;B@ziR+*aiSqp5fl60eVfI^+P7aac1jF|hpR#63oG1u(wi5UT7y5$x6r zxKHh`pS!_&p5yjyz4J zW`NXgpab-mxo?UY*;ZgAOD!rY3bxWx^v?LZ$jekzehYCYH>;_{`SY|#J_V%I6f@2y z=klwj>Z}y79G(L)ya-?OS8oAXK?IZNN4MU1soJH6$>KpN2EB~2#pN-{56gE~(N+Ct zu8l*yghX^4yy}cf3i40kdw3I`yIF%L3qwOU-{*%0Be~-*jCGT8TY>Y+Sbrlpli098 zD#CnYLd>9kozP-#EqA`Xn?AeqBTPY$^7)a#roE2ZfiLJV8)4g^AFCGh`#o|PnQO77 zQ{T;tjQ!W1S(3P~5*ulP|K?qX;)^8HbO1K`=?|gbqfvUpkB_Po*=J_hdk(bfC{FVa z{T(S4XFt5nIg5^CA2X4DVk>b_cBRpyDngN$AX!w_LW_HG=FF^;=}F#P z`-LG{w=OyD5`ohK>Py<7vk+>Xw^nSL3#(fTt6RTixg9OAvD0hmpJsHZjRD*d4OJWy z?c}60sai!~|BFAOeb#}_3z4Uw=^%qA?hPbOF)$BvC-mW}CTl&ur)QDcOJnukrP10Rye;NQSgQ)Ma@1Rq;uT92Tv&47VBR6vFS`Sol)+ zV5~yQ@7Ezu%StyVtQ4E94QU$Y$~+^W&?2 z*EG_VN3QHI8lV_Mdsw;xoww6~c7O~bX?^1N!qRV7j(^mt+)K3Yafjg- zx)Xl6QSnoL{&Gp-K)=t_Xae5|ZE$64>Oone!13c16h82MsIelXQ#u$!DTZH#C*b#H z{fnj%%_zE5@rGDhp@&P&;?IFuB`?=^Grn4;2*ErS1Xep7C1;1a)7Z|p2k|GB&!l=~ zVS0AsQ?rWSY!JBJ>(+lZ7T0X2X}=VpWo3~j^YNzKLM#Xw+6Op1rPu9~$#;Es{?zSs z?#7ZzNmqNz4kKRH#|gvq^fqsqt!bp6j*zo_N`vW@O26%7EU}ketZm(4^OpbIIZ?i@ z_xmFBPUs(!FA`0BR6bx8*~{lS)^k8x*-WC)3RfVm5T17GoCXwKR2_Py31<^*3l~Dc z6&=W#h0QG@>DyxPX}PV>e7s5@J@8oe225?rY;Cc5da=AIE*g1$OqY$K6QHQs%DXC@ z5I^LzJUYACkf*#mzj-<=`KHKdYPX`@!K%S&g8t&gc^ayDjitqIlEGru{H01^!Itv-~5_o5p05OpZn8nkOgi#|I_$$7dt$? zL0t@UQF*uqBksE8p^%1ju^dyuKSHKER7=W?zG)|4nIK@v$HG_A+pbNR@1d8l#g7GPT21>NS*uv!9ytW}5&PTSh1sJm7Y{K9`?sMD+ zHaR#U-aC=t(>=Q_4IZPMxSq-7?rtuWDJi+{+ZpAGn=Z}gb?Z6V5O>k2JU_utpBDxP z6r9_2bl_a|gPsS7dIQrSJN`tWd=OQGi2xFO(TEru;>_j=lmH|Q7v3u84%46mb7I!x zBFV|3_w|kUg~QWm=}+Se3o&E^phRX$q?8Cr{!G_f9P&*uE^2?MTY_b=4_NKH@MZ5!Tj z)rr|Vhd2Tx5ka)6o#} zWkY^MOvMa0@2W= zvmQodBcIuaD@((*2B9GUxA7f5iUOX$Rg^Z@S^%dJ1cu!_unJCo-XPqN&-PC9%%Jc3 zOqfs*lAy!e!l}{P^C#QzedkExrEtuCF8NPF zdEczB!V!Xk2MmirhB|T{q^<@apb`o!b2=PNq1#>cdHxI>Ibe_U9@IVmv!+BIubd_{A08N-EDY$B45+uYV z_+_dl3OiG2#Wtk(PV|iRKH|P9+W*S5X(oi$zDo#%#*IH#iP!ZqcD8q?GluHC7x(-B zvvli0M!Vb6lT<@q3p^`e{lt*R9%{7W>(7-T~n=cU_Ad4-hzNsDnA0YH3-ZC zuy5PQulKWnnKOW#{nJo9^$;kyf?o@=wCeJ0e@N^dUR>|=-%Y4}==)BqtA(}Y!??$w z$8;(o(6sBd1FVA}6elzjsm;ihL4D;14a6j1RAARKIPF2cTX?3eghGK^(wtLccop7o zSixmZ=p{IeW>7T@V-#{cnOJ${4Z^;Zj9^I&L`|FtYR-)e9wzI zktQ)Auw$~TQ?IzeL_N~@e$bs6P;$PZVq;e5>qQn-m6epx-)sLMgVLk8Xyg7JVHtk4 z$`9wO9xa|i(w+l6EG5?pY7)6??UzzIAThHOj9|>s0-6y27&-FrzMmNErsBzo>(IP; z&eWo-I~DWA5tsb7)*#c0aq1BY0aSRFK<@LfFyYi-{WTxkWrd!)JWvKq#~Bbg!^iin zIXx;WzVW=0veKa^1K8U$8)9}P8itjF&L%erjwr&Ab2-Ab`mTz{SP+R?Hrq2W=*7PU zvjxipTLAsCA@Vz%&<-SpRM=Zcnb`6V%z32aGGjCN`Zgd1V*9@McHpyLM ziE+c-z!iMvD>&>uawieos482E{MR+XjZaClzAO+~nv-=BH6IDW^ zT8wm5ga#?9E8(nhN+nJkMTJYL^%>ox6aEgk7| z{M-Dhh=kz_e$3YEe$56U2&OE2w;vkEi4X>97pgB)OYEYF79C6bInwR1`pcJ|6A+dYoLDdhho?L0bBbukb*d4u8y1<=uN!3aa|3+Qnb7&^&I;eSL(Whk}U+;9PLFCgzHP1nL|( zY&4)QL}xK_Q2S#aj@Dv-DIl_!@3p>Vz%e_GE+D()jHU${-TJ9KIaYP!GI z23CDPzj~V^_)vhj_y|UKp_!~gpU^d{wx(XQVVRJ*!>@w}F}=2i9R7T-_`XXQ zZn<2^K+3)>EuaMbk`8KZ{=AT1UMx^r8g2AKKB%?t_u3z`@QP!(aU7ZSfeTZk*-sER zI7NEYY3T*8Nq+8rZ@!33y`pJZN*|6)+{F*Xn_b;R6L*CoG z=cwo-u$&dd{5UF-nOite_989<3#PZV5QQPt{~&C5d}-=;{j;b}DXHox?{6AdTe5IqyxSAeDIcF94cgFed&4r+_bc-{l-OHgX)t7@?9T*B$<|3fH0 z+5hReTYMbTNAw;+#WSc+iAh*Hd`FS!pO0XOhC4bo3h^9|2#5w1`(-)dPMjl~5FZK8 zaU6j-0k$-lp?lA^mDrSFX(bYdI^cEe*#qU&kaxz4533c&m zquWg*UO|jTiO9^x_(rKB#7kmb{yGh0{>l{XL*vPcg}o$1Vn=^XDg+z$O_$-!?+3!g4 zOnLnFdZ*vSNOA3-&zN92-Jwd#y>8AdkjxpqU=7g{ZbGBpN$LmR$l3Oqv^7?DlW+(ypNcvMY$98(y$5_3U=sx(SANdYPEKww47dC1WCXiyhk`+O20M#k9^~QYKfFw z#oH1QIVBQ2VL_!miVCEOM;4{m294-u9%bNK6x9J9?L_eS)bAf?^_FR$vOdRLdk94u zGw(Fxg5kCd?Yv3!uR-V2n311#TNmrLuhuQRsAEvlS`~(jw82Rei7lfxaXu}D3ojN_ znjQVYtl}h`VZH9_^S9bVw2lBX4$p;x7+KzsB>XwBis3k8G#T^&hS9HuafQR13xCdr zh~VG~iZ~F5phjaxOuzZ~nDY5C z+Je4ieIcyeC5=DA_nBkKUq8O8jvhUT36?n226u6ItvzvQ(~lo!(~J!a3P+(F?0V=r zvXLuLdH;j^_LW4RgR$BCYB#z^Mvh{1#M+6n);|b;kqx8W`{H79OT-!cOe=*c?cgR? z+TN4kdy?;wB(|kRx%f{0nyp)2F0Wm`t`O94?yjyWK8C854lDgsO6UZ-8tBPdVmX4C zw|NIYG*kNZ2;A>_Xf^j+#ORX_*y7znf$d-G)uRnW73CfJ!0rnB?$3@`kvGggt>1lj zQW#iv7+9X{@Bk+$GE*1_IuEc5eOBDGf(%sS?scE*IE!8-za=X?9&jmObc9_JxB_iq z#+&Ab$G@SFlBFTscMzzAKxSyI0J{`GZ4e)uZ+lPw`zH$B))66u>hP*w`XwPEMx4H^3o^efY2(#wbM5Sy`=cNIdVW)-Bu&kcvWqGgZU0tzTH5@zPp)1CeV}|w zpJNX|adD(KORPGl6HuqYUMv^&3EIdCMFz11udAbzac!cE{q zbqXOPLFDkKKWS4+d9?->>k%e1msWqc)$LC2uiNe}51b-a-I9m|O;e9BL`9hzRy|4D zmScoF)cI_b?}lYmV8MqQiv4&3_KF}Nq68!wPIwNUfX{Fcw9d|nG~@|oi|wxivvG?R zF=^HqxofwYT6u!r*iD1DtlNkB#(DU>;l~6eD zM2ZEyDY_ccb!^pgF6ndVxRQp4hStx|sgMH%wJsAZla$386ssM{q zY)OyON2Z=hwGH;!-1wSO{KId)0!*PEvw!|%&om{`d%j&ljR%b6MP~XVo$YKYXpyU76jpKwMJ_95?;>IDchcY*% z_Z#E3IIY7cm(8F7es>eLO!(=lB8qs6V$S2|Qo zq10<@?f#&Ad4_j=B?i|w?cr|0t?_Qa**aXkS2LR0@z+{*=g00c$$xISe0Rft?I?aU zxBlXo8Y_%Qi8U53o_0Kw-Cm0k<#or^jbYgcwAKd3nwmLKMI97#hWNEG2ER+yxKDjA z-zHt96B0 zA0cmgx0k(()0#sc{P16tT5zAj!vo0&d0$XIcZ^*{m=>20ZKhIT9mz~aAejRwn71ds zJf?(d(UX#xRN0X*P-THG4R!XI#trQNE#SqVte(a&X`^n+y?F_!GJfP9%#(j7V4&h= zT*t$q+?d&kjK0f(!rKbtxwOG?1xht5;&*lZ%U?ffc{9eBC}IjE5uVC_o+N?E-Sbr# zqu87nn=OH%B)auHMKXtmHk_!JJ=iI&+}I90Fx$UzROa@62N!rRiD2c>s`pljY)o;f zR!%twhuz`*Ag#c-Zf`8t9;<>JSIEa4lzspKr27PCx4*OZa0yl>#K0^6H+8QJLjxd) ziH!(_WfaWfKWKh#7yYesY}*JqOUjSdQd^7U(S`3w`amUxg5DY(eT2tj zwDFoMrjk7a9nJ%u7Q=Gabl!k&rKBf0Qz8_T?^q>7gU{YB*e;*-7I&+xWT`kDa!wA8 zHd;J^vJFD2#n=J469p@LSB@+<$%n%cnwYf~Ja#ouUZh zp6%da-(GhiDApAtv(6NfkprWyk2cnTq1qD>+d*t>A31--&moy8pAy0es(Am=25G(w-zWTxHSX&@n?a0fzL(`Q6fN&8JV}mHg-Gvxja7PUkR+bQi&Scc=Y*NYmZ7l~j1y!|^Rcx27 z))&TOc_Mj+7cDYM6P@b0olH#zEIi%a-65PubQ;-$LLsae-`^eIpXV_x5s{p&ovo&Cpe53usiVcp;=pP2qC{)!F$=j)l%q|6^}t@F zn$>CTl-!V5WO34bLAv+sk7bKaZ~E+3yxpds;_8RUxK2&L_*9w|CRI%KR~FT*!sp6q z01(x~wY~$2U;u;E(SryG(Dv5*q&QY00XqSFcS1tj$OtSBzrHxr?gNpeplr)GX&!ke z03Mr?9)N@1uQ0z|<+nWd`Kwo#g-2tJX6JROl-Hp&9X99FV?S2?O6?Cec2OQKj`CPm z`!#L)RhR?AuWsr0;JQyya*7AFi|M0{Oy+S?*emuSZx%2%YcDiMrKhGA3uF`y`Ohu2 z_Gxr&B2O{{2uw%0>HHcPG2U436TyUB7D?D=S?Rk?&G1@=cD3@+htrO`&vv)Vo8ozR z60*L6%aV;r>pF^avXYJyv-{$RsNFp6zcstNG3>i|wET2VtKu<&58KFmV)$c$JO2sM z{wbtLj@|4XLD!T*#4IpP^XYZIyCY$eM#~Z*+5EJT`}{uooUyHrrDi&jFCO>09FIt~ z%HH1gWdvuPACQY!t(~mguGvG-jrjq>N$Ewv1lh=l9m-RDLpf_cyxC+OttJ<#@pH{_ zeP&glcKO%S^19uJN`cCM+wgm`5!n}8*kV-WnpjO!Wra3wnXK;o9#dHy?eyPRbg4Gx zk!Mp6{^2nQ1@XX2#>4SZFC+QFx}`M|AT3h)El!V78m1ZXE_Hp5{1-`KZObJ;#Q6hX z1Rj=k-D ziu-l3SGpa;wS^D}=A$USShwpJ+ik+F{`>artM$UT-jA9}72o-u2$JSz)>oSf2Ngdr zpV>d=1-$){Apj1KXr`TqT&^DO)q|2ZU_XZfb^fOJBFvYMM>V_avo}ho{|B5YK@6_C z`X=q)z%^=JU1xY$lk#K4$NBkpQIAN<8O`XByC5EYP5G>t;AY%i=7cYmXe*jzx>I|T zt?|ohI=MtAy!I{qnblltBrQr$QmX1z7%D>K$yf;(n7*QhY984ddl za_hXN(39#tG0ckg!I`g9&pQ1wavyXyaxXO#vethQ+X}-X_`kT{z4-M%_d&prorstW z5l0iMS1|^hd;eTYi->T;UV$iu6UxFeo-;ovnptsOqh3wzrutk^Kn(1gO_=nk(5~Cw z@4uw7EwH;E9PxSx!#BbWyE@grN$G5?IY0oev)exh7E;^%ijcf1n~owqUK5|LFm#`uhnUQ}6W z>XaqugnYc@=dqPH>$~=+kLuAChLCMWpFJiIRAAWkuhdt~F4qI^+E~~cV|ULy3Zi|n zv`uADDFM4xLmy3mn%2HqCRCW9%i8K)9ICFBa_yKk{bgoiNhm8g<{*6Y&2ym5NyJbx z`J?n^TE32PN_9$R#LK% zOn}#e!lwqn`-?F`G=?kp&)E=l0Yp$Mg>oO%M$ z#on<+AUM8k_xK2C5t60oOLaD%Vod6Q62Oa6cs$qDD-^&qIx;zExG z2LK}gFC>Z)IVF%wXilli?_p%wV`U_^Ep~p`{qf^RA*rBz`3I#Dn@{Te6dIb4;80p0 zK%1RyM{Y{MWLksZS|Bb!Uy-QK`XpBT`inn?6@fX4rzd8Z|zmXHGCwI+y$1f7AoNFXc<<}3o{XyO`Z{{FWI z3j%+DC?oH|uwE05WAfZ{vv5gGQ9%Jp>%yYt4bo1lya4R)8zS_w!cs;q2~I{zwgNo7=XBU} zQmdK$Y4AWi*T;i(2JQ!;1eLmyC=skXYbez(+=6rJu=l;~pH>?q!u@Hg)_Z>_bxljp zg33fKO_LuNK`KbK*nDlbsTvVcZE>D#llBXil&5ZsHTt+T9 zz^(GGO#Fow$bzi#ll+%St=yIn820{GP}&$Ui~x^qZRMS``QfJ!FW4FGuC14Kd5v;h zlCss%a9QRW$Fq4mJN^(zc)%(7Ev>Ix??7~1F-`H3sf=QgZM&#$xwc443Io%12H3wT zhYCkx-&Lgq{oLH0QC#ahV^!Y}e19pzwPCOK3R`%h@w~lcDxDv&U-~ThV`3}j?zK2V zc!@W1??cm0sr$djw{f;z_liiju1X&n>I zu>?`av}gYY>#7!SlGF7%JAsdEV3=zyy)&_!D>E&~o*<rl)8L{+wGrggIsdj@WB$gz7s(ttlOaWkZruh>XlkV4x}E z@gpC7sfXt~%Q)gd@eG!H7{)lc=yMF2$qex%7?ce$DtFIWS9Hs9+Xm`9`nS8hZ1>De z;Pp8o79qLL_1{(2yrL5RZu^Wgd8vBbatw#C$h{w*3zrYL~6~@VcdWft9H?;~9af{`I1_nr`d zNB+jqKt);QmQat@69y){RNQS17;ti`AAgPhetj}70{m1*y@v*?(i(NQASM> z@Yod!N4}sv>+$1JmIj9| zqxkn)YoZMVOv6XF*;{nia=6=B%$F*l6!g9FTn=28_ap#g_HTM+!&Va5E@CY9y;`cP zmashoQTaE|F~0_xUOROdA%qGsGch7?CW%~lWvQ2|Uk-~0P50q4$XGhy~2 zC|kFg6~j7gG0cJEZL?81lHu)39+!4zbGQ1kEZ6>^aD@Uzvx;tO=>6Hd` z%VEN|d$m(jkL?&gA`Ns#+F*V#2?o8!?M^4Tt6U~9>s;6hGLh~1>?@#Vzz~wiF07@E zm|zvRpVX@l@P3=(u`oTi3?m5^kQ9CvNR0Vn@1W`FSHXj1m}lkAHZzoqMF070D0V^co2I93NyCX1KHW{y4zfm@x$_@(XzY)dXT=0!}NkFx=5Fsrh;hX7dg2PnaQW%cjzI z0C3XN>Gw86{BYKP1G^qb@PubTjTh^F0AUTu(suTA&m*j_&=44i2tyiZ>p)Xs?^Fzm z03M_lQeSJ2^-nA#R0hD{L(IbT>!j$!Q^tG!M=-S?kF^V${#*j$`A%N;W(QfegcK(2 z5m=WxG`MR${aR(e&Dh3Ypx38xGK1XjO-j#v?c&b;%6gu(EanW5>Qm}{$vkC4N3h6# zTS*mtoOCnhk&fbi+;?XgoNZ-n1I>k;pLkw;nBwo`a`}Y3P3*avzYT1Qfh(Eb65A$8 z=ZEGmBs`wEFMZ7NrdYOO;HC6yK!YezZeF&vB`~}PO`;=t$jlr+Se`IhGEb}+F0q`i zZ6t}tiD4kTPB+0FwDYO|)Au%3SGUVqH3f|UR#APN4QxDMuPbq~mjUYdS=8;E+7cTg zaNkcKMSK>Mo2gv*UE7Pv?ROlInYUMKjpo{do+?H>*;12N`k)nuIv!7|o%@(?`D|!G zm!wCjdEn`a0hGE?k-fr+zS9F66jokwabvX^b)mfX-CGgH^|Ycc4g5Up8_Pi^|>B{*9sAwJf)o2u9N_hh!;)aH+z zmAT;U;2_zuIt43ZJg2Irh@dF8%s@Z6^N40Bjccs|qyqxmo8voQGoA8I#yJ1w`G2SG)wL^^Y`&dabFBq3+^Z)JHPf-cqCeM$HpaKTcgHpc(+#;2^e?CC)Wd~o zCQ2-ap$reHD841;(C%;X?LUPtYoW1pNy~pTwKhMDDx~d0=oB1PV#WH|FRE_N{wSv{ zDs3zt6i|}0jQo<^N_Z)E$KY*pG`29!UE>yl#~O!&G?$~dwY3Zi`NkW9)_1zW^l=8&A2_)K^=~WJKkp^v!^ShUdm`1$bAG z*w*#cxdD0$G`S4PV$Z4mD2djull^YK6pND1T8=!$u8y+HH%m4X+b>~07bk*;yHeU` z^8U0k+jPRG2Hxpd8*62AE?egdX<;dd3t=Im;kTr-l#LKiMHt_^HAG_VlOPBOw5vRm z)hAr0GH&n?v259jx2J*45ADsdpY@?RfG{^9Z(Rcr-@?`|-K5II;IqEEj5IJcvNOE| zKqdEpzkgQ$eA!zR2wZ8}iQe0A-N|fnU${Tc#*cb6k>Jn-NMq$M_?l)fy zVqRsf{c))e4DbgdRz5YTImxy1d<<#tt~U8|Tur1SnPh*x?J4v17L#kHa0hj`4Q6Cy zUC=EGYc|3s*k0F8)9f%Q8)AocjW6@<xGMKAidwxhxLZHb$28qU8(oT9-;b` zj!}c28^NdyS}Xvva6Cq+A4P%jAvq6Nwqjc4OGi+7iQp3=VuvKLj$bJL;3H~=9nPR# zxt1vdGlEGHfjstqzP^#$p>R1icgxKrhO%JF7(ogTvnD}N`okZ-cjS^}H4g)oiUFNX z^grhu1CyaTQ)MFL@u@4jCkmmM%1>(nWojtnB%+X6YWg)(pJ{mFLnPrnHmcoO1~MMS z)0e9$qFwAJ>G^Y86rO|}I_`G`y5NC1AB7Uq-AkEhRqa=h*|Xv(Z9Uy%Uw(JU_e_{z zPX3#hDF*L`Ua?>#uw4S12u`(P-4y-6~TRiXgjJu;4wZX zcdzU1%?W(3_iYf39C7~W{Nz3ItR}0-)Wz&`zx6Maw4v9#x(+j3XeDS8YN!#FG}oq` z-iqVH1qpHz-VIi+E&)m~#4Mld1~jN4P$8_T6TEv3B$73Bx; z-vqJZ;^a0kXf$~x5d4&0CjPF~z`?ZVHqQYZK&=$Wathxa0BjzWgULabvk!R|GZT0| z!tG_~;A}aZCne|bUH)6dIenBCJs9%nQ(;fGI{i>G*2+|g4Rhs`5j zrkq3=+R2gH(}w#L^7y!FJ-6V90zw5yw9-Fs`se_z6gc7B1jBvKv>n!@zy zgfd6&uO9mZHnZs`;^e=_8_udYm?Al%xcpZp zCfz*mxIFNCunAZ|b$v0e!}$NuT;>BJgw=V^-kSN^#4i%72_0cbpn{=39Ff|$GH@k^ zev=7>O{fXx++J!;ffO(hp7$3n*50cyTjqjP2}t7Ug>+?WqW_gEAt?v<;FN+JCDHD7 z@qg&oMnx~E!}Dv9XLs@9{Z`W5fqU??AXdjm0W$lddC44$5`rg|Wk#k|YE00A z)fQROna4vi)ewJ&s1<)hyW8Yi0rJLQ3hgpXjX-8?K(MVA`#mtYx!m%5eti4int4@! zZ9;k8+m?z?XB`~Q@Ny_~yii{M)iW%TpGm|_t5 zss0_*RW0I;%bn3hTY=?rN=oXLxg(GQmp$6gbatU~{r_nJGNW=RG;>eO<2Iu~6B$;) zKSr-s-TUX_@8xD@@)Qe~Av6RJ6i(>PtaR8~r{X=!N2GNVY%a;kjgZq%T3^G?D5MiB zQ+%c2(;WA-B>N-iLYGc@FbO@H(r^vJ8$ekgc9o$=jyCot$vx}bG`av1WVr~Y0goaa z99(b`TFPNIi?$l8OS9`Z;;A!1TVU8sj z5PEAKST-(wT-XTMJ!rKT2zhr*Wk3&Jw7UFld^|g;BvLL6Z3e!oLC;r_fFj~^|IErb zlKN5ZMvN$eAmXj4;OhrCs!wbAS0oX!2CBB0*csrUqP9Z}@Z6KjCiptQ+%`C)1tnk? zAqn|$zh4qwtBLODsF>QD}WGlR2TtI}NJ4raE zFruv(M99eH2|>zwjhT|X+?aE%7(zLxFf0vH&Y1teO!uNgWR7r@D!zdRD{b{Kh+jvk z;2_Z)@%-E;a4y#FL%_*jR?;oMv`?6s_!9HToW-0FNq8lZUX#Tg;(^MEnou+r+m+_DMWa zA*_K8#kwMP{r8w5>wCP(dv9=939|gST+-|Z);=MJ(sjww>Gzqr-8bH__0i+fh%-d<+K8dX>S)gkNy|QbHbSxV>|sI*lkMTp5OlVrW>K09 zw>h`EO1KSC>p8IIOHy`G4szs6vnR z@m$IK(XNMB)e4K=z7@hC*bl(2v)u%;W+NmLhX!-qf*(kj>p(VZP{YlmpvV(`?eF#X zYulR&0P(2`N2=oYqyHdLjK^U%>28PR*RxK}UvX{N+ELo=^;YupP-xaEk+fxwmI@=N ztty76w3wN5dlIp29PS1^psFGgURO`4MaGL8N1r|1^8{%;<4~@ZX-ym6+Y}$K4?3H7 zi}~6KrRu;p)j{vPJ*EUBkb$dMv43oF9*%Wj96V0MUWwQOAFY@*ob)fV`c(8)tLrUL zaRPoQhWWN1(RtFD*Ipb`>D8l-yQZ}!L7xs3MfkD#i88tg24-ShD;s>A^b`Dx)g|*8E2M=J*%kro6CJVuFrX<`4{!2VOCxlL zMel1L(vQZ%MoLYG;(wqbyukATZKy&#VEV@1_ZdpH`%dQwX(M`XMPN<4t2_ymmqQC_ zh8DN^P3JQnaLV6HYYqACKeMnmLEYILJL^6!i>R%tGB&gWE2yETLiVG(Cj!Q4#Mz9x z`g&G$EL>roF}>%5X7n0=oQ~@7ajmfkPlTw^Ffb>}sOvv@`M{LO7x-_G+r$8z9)NKK zqH7KtW$U#8M+;rh=6fj>G{%z7#JSod%IB~lhWHDqI(`C`8o8bRea>4#)S$f|vJ}6) zI_kK5qhoFC0f7;NUfwW$nrjSaoV?Hau%w`y5&5LDDt z5$|aqc=pAAPG-}S-5VO;qD>pSvi!7_OzoQy0qrI4>$6ck_9x>zKg#L2JM3;)ZPye< zNVWSmrYQRVd+h?@@4J)_6v|Dqw@V%GU9U@SUWC_{kh;9 zy*S<{g&x=NDk6DI-Ee=Z<3dy15A;la3HsSP2q8nGWAas`M*?F_+%{tK8=+_VR85T& zo-`*~gJkbDDW@>}qNdI;8@FqtN1N=kblrU+q?CmG*^y%y9=(~ZatJ^&U>O=sD8GTY zsC2nQF6K8R$#NW+`ELCdZex-v^B9cu&`_)6@x3)2wu}fglYQk-R(7@&G$*_-O*Q?R4X5cZ2;L>H*-d`cwchih%(&qpN7(Nq&-;pdaoKzlV@u{{zG6 z*&|X#^cEjpaKin0PmdL$uQ(^%wQ=Fu1Bp*y4BlZYeQX$!!;6gLU|6j%w%Q)a-s0_O z6poy_vof(f09`%>0zOLkafmqeFx2Zwd0E%``!oN@u1yUVmdI2g7DV`c*GrIYxiq_U zSKkE3WTXT6(=+jt8QrgjYN9=fbkn`x1&74pKUQaGmD01%z$`<~mpUGLs!Pf_&>$4Dr)K0b|Kf8uV#59*+`fvNkV8F8WJF*m zlPkE&So?EDF-G_cnNR0yWr%+*M2n?bXWbo%Xh~A4Hi@%xeRX!`_FwRE1j*rRr3VGQ`o-wPPv zzoFj?AOr_lb0TwinIst;bmI-t$GyPn%?Dv2#2}vVcX{#dM(QY){-C9y`#LbE$hxua z!2H3?2oI7=jA{r{RVQ*OqXJf$5Gn-e81$<`ty7b5ku}s-_^v|-1B)<2r=xTyme6hs zZU3;+^4~65*WOmUC6TMnvX_s)%TMWT6`h?#s*>j8Eq?^M5{op}Vo$x;O$grh-`a`- z2I_LPOe;#|ss4qwl+*{8GNXigl$i+M*fI%%SVVJ*KUHacVr!+Lr9a6j|2`$+c2`@; zJfxkRH!iXt`|m?U3d0j-H|sACOf8zcraC{|oO8Z#Y^(ZIh)+$urik1O^1*-?7%q9k z8A4Lz!eR|N`&v!=Hm{ zv|)bu9uy!AeRRw3AS*&758`dj!>{D_yVby5?pjytVVgl#575Uj(?Ws^I2BrVdOe>s zR|A?XPW2Dn@UUZzB!Kwu%~3Z4yutqnPSE_rMF7R>4jKp!GkhS^%&h3PWtKkJ{-dDj z-&ASfR9Ds0BST$>+v-#L>RyZ;i)kzG@TsvN-R(7nOm3CR)|A+v)-rk`=bl})0W(~g z7;XASkK}qUJGXj;iI{!4=>Q1nSU*ix@j@^mRagf?kIpThGeoy0+bP zCoTsXV3Llpk6Qlw$JyeU+VJj2tBo32%DRvg8+y9&vj6Ij8O5E=OmkUnW9Qlv_>32G zwiZU7#0P`#&J^^y5lE8ReGo4ZvFsBt)0+u9T7ZiI6Bc%N=`%i2$SVUPzXF1Sf&f|$ z5J1#}UhK+bTTBs2TckKWoS;e&$*V0Hp7+$Rh6uab5(q;du7ou|NY)4l$mo;=j`e;) z@JT<_IEk~(uPsqyZsj=*GQRmWKbdrX{+n~P_n2WlF!Q~o<+1zuJZT?S;)2W$X~n^^ z>TiGB*NVXLBZ%wKzxzGn17^2^2)E6u<&CFZ8+S=m7;pC!HVW969|9+j4Y7RWHPs)V zajgJK3CT*~-`4ImL@Wkl{wxs)FuVWcp(*wkP*ALK+*Em7rmd}lR}bNhw!^PsRSxv9 z8%T%$?hO2Qv?_Re#Wm>1jZ#a10@51S{&`b&Cfo)}hN9i=h;L0Tk2%Ce`B~`B$7#9^ zK_W3ALFI>!>_!6@rGh~hR-QQFuJ~e==8W88QDhP_hX%6axvdkpx)<==NgK(K9vg1j zSRjj2qFK0~>6(7sifVDI!5N-9^~q>z?f7sBwJ!yT5GWAcbZ5BR+v9=#9rnIkqze{8 z&H1LGurzFlA^ir-p-x*uhK=khwqsyr&>Qxyp$FRp6crjxyt{Pum?8xasdJ*FYz@^p zk%=56l38i5;>ze)Y2e&pE5DUNV=BcfOpWjLD-Lwn!zx3aA7$^AHb1%UwCyc5)dkUx zvJZe2@#00E%36wCTlgr5Rf;PL-JmXN+D;PxUR^c=st#y{sexR=k=Cw_ZQ+Y!O;*Df zFkY0XziwktgY2%3Z3)Ptz0qdog4QYrR1Ah7NsC;j92ToUkR(B*lW~QgBw=Vgv zRMfdP{{497X0_?F#r1Wb_H{7`Cwx2lsOw9?pTKeH9!F`n-j?UWKNgcVy1eh*Nrrr! z@biG%{{(C>dRhXWpr%^H4?`W8~))tffI=yEgVbWjVGNd5fA;Xh@a&ofd`0rZq zZAvn=ex^`;^rf36mYfBK;HLQBj8xVl1+xKlbIP0qYQ6s9WA)T89)*`$UmxUI;8exE9S)I>b>=j^2sjGqX`+=;y1LHX3#l|uSDrSbvXAYp2EZvj@n(M zLII#jppAv|jeZ6`f&?Q*rbK!|9q4i~cY2=?LJV=5s|7(nos>2o_py$J^9y8K)bD-R zp(zHuah7RdD}0k=Bbl6^yP5Zl3Zu8co%tp`9HCuP*>Qyb#G;k_ck@3z^LK4CRrcF5 z>Pr$?#y-(<(nPrAAn^ESw`=yH{>XOzte?vvO+C*8+rzr}=ztn8z;-c+8*P zwYk`gZq;NN`s*VNtp%)3uv5h;K9EH4K0+B6d5Zu8{X$awg|ojhvNJO-2W#J__-VI*~bU5KGARr+B^tkHrG}4O)%6D*ytv$~LW05Zy5B2XN!k8nOi$#-! zHH#;VA2*k3hrQx8i!e;hZ1#HE_e&~ZW$B22lfO^CzgZN`c^IQ^!7YelQNJdPH25Wq zIi%k*tH%7~=pR9d21GxiO1xxeE@R@_|DIX+J%Z^y;@Csx*4#^Z$_O*3T&dy<(D^zm zz8%tzob>aUpZ3&J;Ei^3vLp*GO?;$>w(9#6dGA(MIShPLG}Duj?CwojF6quDX4&{fucr*2HL z91CF(+Q|^*!DBQ3b9^r;SjhI>5QswAQNroP%@_Gi{l&r z7Iroc_fe`J?7X~FnF?t_#M9+vC65GhR=NhK-6}q75+u@}LIIIAliNQ#Emg%Z5z40c zZivg*2+zs#JZIUK(bQ{W_2^_j9dVwBwQsm7KLa8`s6kA zFB=+wV-Uo8BK(7Yu$PzpyFoM8DzaGD?`7dUL&#!i=J~6jhlPI6+=-2iO%A|oHbj^! zGS!ycFoUIxi=p+LrH@Z7@*my8A8LQ4 zcdx%H5&Pyk^FwARO&Ae}KKqMfk*Y~^=EFzEx4VnR_geZcd#}KJ_^)x(ra%AWR7+Zk zBg_CpI4blXpCggJRDMncpuwMrHi6)E+V1?`@6p#^n{hrZ)2Tyg#3#LXiqKs@Aupw! zh%P2Cc<~%auoDPejl+G&*}%xkdystQfRFSs z`tn3uM7NXYBs1X6ARsE1U~3#%??UeJyHIk4!WKBLS1?d^LL@I`l2hPI%iWd52%1vB z{mmbr2Cg_fBU3hF6JPM;3R$BJV03$1eZt=guTI##Z?>05-S|Um-0e)y4ib?Sg+<)y z^6u{!0!^nqQ%lJ|c1Qj-ZMQVZHw6{Bmk39OhVD!Ll@W?Fjq|5&HR8j#CN+P=1Z_mz z8@rhCRAcA!kxwCqo(P{lfUxrzaE@ra05)oK^P$YP(uTD~vVc;pNmU>fiIp`vu4)Iu z_(OempFfCv+&-_fp*6`DRL$J8)xU#waA(vB4?!;Em zL?R6BlV>{Z3GE-KdL-lQno6aT+7i#+QlsOtOsc894r)BOW`mntkB2~)E4vC6uox`y zD>0Jk#6L;>!j;8f(~iG2PSbu>>4JJtH^!xoP47X%H+Lb_8XX2Gm&p#;=*GcD_hu=% zav@V7W`4sqO(-+#T>KaELvC_q3@Xw7X*W>}@;HTz*MAp70K}zar1dNtZ8~-E!C`k)cIuWA=S+AGEkT$H4ww+z`;3%TDWFO-3H(CP$$$-kA zP5L+y0SL5uvA=hv(}ZsO=LsvnoUaTd+u0W7=rFzHv`{f~8BXufz>S{&?tA}V1$goV z_Gb2`l-A9Ios5R>%^pg5*We8`z!|;8?}62K%w~KWZdSQmr4LTwa)z#IsWhG+BFnzT z@vooHUt~_T zPi^hi(y}bYm+JiXw|`qVLMZQcQ8Tt}uXfTA>Q_ zMY;!xnc#%@n@5CRIYwdz@k`v%D_ZQQu%R!JYLRBQ3Hm%G!jCbGtgOlics&YXWR1O} z&J-!JDa=ZE&T-5J0SU5&q^Jj%kA=VJE{8N9Q{3jl>7%g|RpfJ+^Uto%SR~uY-uwOy zE^}l*xCPjr9!WKIa*2v}b1L74lwiKp zU?FG_FJh#+ai=@FFYupd z-q)7DWpkHs_~^Ui70^KA43q7sk7y@Qsl0L4kcV-0> zN|OxWsi~}rgOTFt9H0Wye<~rx%l06GUH~AjYoqDx7)dAidtuo~_>H&EkATt;UMk6F zmn_TnjptQxq8MND3#s5-F620#3as0R0_S#2;6_BLK=%bHl%k@NWwDWIa!*0RgauJw zc6+QuN%W?-?Z<2oPWHt>^qt4-kUceqg!s~a^zo31iBFxwMy&L@&cFrerFsNvMVbi zJ@FX!?2aQK1;ef<=Ft>eQ-I7;Tmevn7M?*)m&f;OELcJ??PY)dEKiQu{@PqD2>yMx z%5~hCoc!)iGIx;szb^~v{^eShMgtosP|Yv;q^@djwHwzqF7F^d`et#fzli1yhs0I- znmfH`dSc=hxS?UgFr*D`u_x^bXY^#!dw|%JZSZ^RM2Na=os0U*`C5fO7#LZ&qRvFVDA}q(Tfdrxf3zGLeQaOTak}yRi{}_MrkIQ0vg7J?0Npe`JH8RYW>cF zydL-bkniot3>-VAwH>F-k}4O@q#R%Et(KhHP3mjBzv5onuwG+)Q{j^0ZiA9Pl?-b& z#n-atI8K{-3kydl&6&08G{XxB^IU*EW>_f%udGwIx0{qY6Va;_*`6UD=#b$xmma?v1U9wowC9=h{s&iUsiI_!jCT_IAIZu9^8f7a z*cFG%HuLpH8mPNMkA<4ihYmf$Ahg)!PCr#-)xnMavK7fIl;9^`DQ)nXFBeymFD`2s z5z6D><(lugLd)h#Naa2x*1i1qZ&|n7^_Ri}DNmjJ%aoM9k=fAIjSwFp{2#(J&fBs8 z4B3NruM&ZF0UFuV%Qe0?>c{U@4W%jcG3+;h=>;9(Z+3t&WXf%>K_L7Ck5szuyCD}c zCZ|HCOA;mBYB>3}`P)0tb>D-9tFx{VA3vXFRy>c3z zbNt)tl zo%M0^qf}ZF>Mcq(Kb(DZR`|X;5{z;GYjJk@a9~gRpGS)RRXL2G1NH3#KRg19EAHDK zD1If@HR8-Dm?~-J#D3dW(AM61<3sS|!N%1F*Uc9LsX^ zMeSY>cFw|{D1K_{H*BQ!va*VeAlKZ0{lMqK>t~DJy*h|CG0yjXULefoF~-z*@4q4R8sDi1%@&F%~3FuiG5gN-D-Ll@~L z+f9-vO5f7271(9HKrrywNQ>C$=yMbn-jRXTh$^$o0NW?QN006Yc`Yw3C$K5jmRDO~ z1)sC4!21J74dze?VM3dze=-S=&Ac{Wd;0wc+CrsMt&I9LK~OkgKC&_jVoZ|<;hX|V zC%x_q8E;{YJ1RAKgc)r;5k~0FfL;~%wUEIChoGw^aRw|<6X0G}z~}0;a8QZe4&lQAhG$8U^in3LNkm}D+Q6H zVZ-6BioyvQ(tnMg`-bs~tDk;Q0)iX4x9>mj)6ftfKDSR0!N|OQ6(%Z^l1&iDG*ml( zsrZgedXgvp8F1W2E1VMaPhpIX=W(!W>JVQmV^tw)gTRc6)<<8=V-;mbA^l*Fthl$) zckoEB98^`{+4Q!o8g&*oCa+blWfL%reEL3$=?dOk(`)l*uo^Rbh}cTZEL}&3xNa*a z`ZI++%1E?%HuHwrS$b!la?y`_v$0CXVVcJj_qu}bQ-eQbu0fX7DDvLD-;e+TAcAkV6&nZ`vCXxJx?#Yz1D zxv-g5sL~dBs^#Ru5ss{E*vs476=2~lzJSRGVzh`l4#Q&uc?NOV)2+hrkv)8QmQa}Z z#Vkq_CIu#8-f({)`+;p{KaFJkKdvxBqI~EW;^Ha9XS3rrjuCPg%))zm9SuJ(77`}H zQW-)B?1E8(bOtfv^AV}zxhZm0t#_vy`YImI9?4%D-+m&HZD?n0%;}p<=DCa!&8w#g zL(P=Lty}jaC4e>48*zPF{oXk#WA&g@IPW~+$Xd9=8Gzi=%^sKnUgVT+6YhZ3hblyU zkjO&AV>a(KD`l?Wv-H00{(X;~-i9{Uz^&ZU;Q6tEDbW|F@}ge98`5SuB*YXG89>As z*gy6@pVtf(!dLAu8>04g%YHBBpo*JLPLei{C;i^?4YxR(?R<;bnJqjPF(LH0AZD@A zZ^bWlZX+PgVS2Q`LU%yuVSnN8x&x;Fi!?=WG4x8h??=o=N+S65O}67cm)UVjjqkZJk|buWX^nTZAlW; zV@!Z1{s00Dm|(l=Iq91DLQl4AE6Jd$%rxET(miN|*7)hc!bN!G zAGNHvIQP2Zk%_ITwn*PfjxYy1g4O{4*Ub7(9oyb)A0=>U)q3DRP??CR=Sfj7BaZ45 z^-E$Sv6wT+^Q>bRNBwsO!PVMYkX7gVcWHHdcyH#_yX8s%)!`Sa&-><@{Z{mwFK zc1id~fq?NWrD_^m&>XkxVvO`#W^cu`w1n<^TImFCJ)}T z-kh=8y3sw~Jw#qGLOQHyc~InxlPlaC;-v+qvV#|*i;ZX`xPVWYK9puv6S$40HCi`mRcQ35s} zf!07EHQ#p};|#x^>`Mr8H4NBG&)%gBTWxfA^$n{JRW8_UF$+;Aggy+~%^tPF$$3Wwb^kSw{Dy3IyI( z-T`H4fU6gk(m-n8|6%J}_0livwE}8@&)#ZT%tRmuYCm)P=rn;R_aI2Rb2uKS25M9M zAq~YO&jiD8ZGO7~5{##l9Aem}%kNlD`I5cTTZ29JesJM$4mZ-w=ogdIxqWxkj@^!T z*xH}@rw7xPn4)>u20uNTRxqRYMDvM0?({%HhwZE%PT}G=DLavSv$c?Ac%4PnCKi)>MCyHrsf_GsRdZ+m(;l0?uHz{JTy;!iI;K$PvqZ zfpGj0s`Jy?=92Nt}2h{B~ngc9^;>cx9o*Pl`1wRUH{}YPqm8tHyUS>Df)6rHPy4AXWN?xpIB<^E)wz@&}e*pFeMx zydE3C!Y9Ze{JGFLU3c|F($Dvuq_bvDhR2u=Qj@y|AyQ8~8G@4ILkJQG284c`T_=xL zM_VDX0(O@`YCWC%_VA}ox1$Dzny1Ut3^gCjZr+=X_z;1F9z4YcW|$=GKIdw>6TcdqxyJG|MHChSF_|iRc#Sdb(j}Ow*K;6$XE&bY$mk=;SuL? z_J*TvOTU&!%w3zdmdE_bl}Azbf|xvsQ&0N$#cHyvV34S%=)M(L@^1v(w3P|_9B6%C z(TBS4j3(bjEghojBe6S%F=qzeN;p@}FXS(ah}tnJevn59Y7&GY!B4g9sEv*YDpFOI z9pZ^VXPOufg4abu(BS~H$Wr@IqQ-UbqnbIvz&b>efIY>*$bS1;H*;*t<6J=mBq3s~ zo@gP3-U=eFYGT6$5ljT3_xB$o34*7pA2GKIuOC6#Ups_kVB%1*E_4SD61&Y;Gx?bm zbQdei#s3PzG~b4Zh~@cbp9@CP;Wdv-4MA=>QkLAO;1XcKo#nLFfvG8|_shj#KE8|& zA@o4Nn_G=gj(OF+3k#?7UM8yIa?6pHWS}-q-6eZj4y-}@W;pCz{9^Lc4tI9&Ljor1 z@Qe8ahSJ9e(P3*|$8BEEUxJA~Bg7d|FP~8XQxPy8ekM%-OA0dXOA{q!4)^bskFWQ@ z8=Ac{lAT2q#p#GJQEzBt{w~&0C0BqB-znDTb`sND<3;|jS0tx7K7JJr7>DvyeS=>> zj1aIUDyI=bBpy2w`^`>1VKmg{&5gza*diK>m;iwBF&iW{?0F&v^B8J6Rr;vxkr)P+ z0Wc>Rg0hB=gL=u26M~Te9MixeQ4d3^H}j}v!vKd0dJ%Bu{BKHN%Yd*CroGew5HH`8VR#+L0n_qgfr&faMGu--dW4HH@Oe<$`wb`v#nbA&e=UCGI* zT{#E9+qoLZ23hR;Ny25Y%;Z)_$G)zhw5<7Ma^?-e`_$FdHBpb%5Q?7nbCoe>3LMYO zQu+`5O~K|lIG|C>6mLrhNq+!^P&^dhx3TH%%^s&_+`RXNQ^lZGtV`@{hCAj^2`omU z%2w&v&wU{VosK;ax?BB7ltuj6RiQEs&eXuo^^O3G7w`4>Y#4O98~;2vB1i75|Hyy=n#ngllwWX7Rd+J^7Rr6y2CR z4vN_^`2$ck4^BgWCmcEFG3uE~%aR`SysW6eWX~H81c-Mob!ImsHObzS%j>Yng{0-8 zL6DOnZ7gH56cuTVGokY4t~Q$3){?m=j*{uqc)53$1Jd0VW`Rz@f43LX(_mRqZU*lA zTo3&udaMQ!tNrRq%n7-f)04ayjVB5H1m)i_j3}0(mW9E>oieO=hrO+6S7d^Wx%l_G%Cr zt4dHj^zp}s2L_utYkOOzd*vWyE0%TP-q%+!Fi|gf+$LNiMBt`^V!iLXf{IF`!v(b^ z70|!3$6;I7ER*dzO;Cr>NPT?{%GTgr(_v42!(KTiZIOo(h}SYsLW5`40bN{00paCN z0a;PO@-;4A@FfC!%KlpH^?22Irl8r^gJA)I!P`)+1W(t@gFRX?`&tIID*YxhQ56xi zm}>4HaZqse3^iaid#_>d$NImO*o$4=wvzp3t}@4At#+=n-pNeK12ZQc@FO~S{$QhY z=Ne~TBJ8(y${@}-ss()1TcAu`cB~z}m#x@PzxQjKw)d+zVkYY4pNW(4st8*nZFI-P zWg%QK@}Ww|QHcoj@3W`b*z3JLOYZUW2mQMtp3!{;e{J~bQ~UCfyA=(zUvpzuW)ebk z5wVEk!JHJ73a8M=LTXXAC2 zPDr8Y`P2bN>0`C0TY;icE_M`UqjNcnQJMMnTN8vbQC}#@E_Fsu>ZG+khp7?Zuzh&K z;r_D$20Yy;7PR!iESIkbSth@! z^%stRa#Ya$hzfZ~kj9)AKytD;zT`Q%__7)Co|)orppD~E2|-~&jUX=`g2)b@tN{&X zYdUy>len|wDdXlA3O$KsW`Ng8JQjVrGi}x;{v{{y6-Ng0?<99kN%bk%lt0ouoA>VR zJY2Q`9)ACz&I;acrEV_@1T8oOExK~q4Y|nMl`$6U1^=i*SBV|?ub4D zv0qVTou9rC6~ru+vZL1bPGUf!fMJv;Fz*Rq2;i7#oxIdnKHH#bM?8J2T2%U*;Kro(3cWI2t}v^6A8^;Z0k!f;sXqy$Q*Ef>bt%dKk(^4^N1zaLF3x$wz$ zX@*%dllreJ4%p+gL|XWZVdDrU0~Ykf8CA_fLwycl`Q|{5#@D*rHD*?Ger+Oe2|~B* zF`X;%1l9XK>TyGxvlC0;$1o$)cC39%;*|C8iJipF_*3hn6j^V#L3WOvDXjbfm@&5?yS|XB%bF{a`QFq`lInZx*7$bBad!L|M zh+q)R3ljpP0^Og7h5R?-plT?|CWvtmMo51C*NF}z_G zeQY*At7grG&~5G>GRu40T~^kfKL9;j|I0{BI(T|JnDl?wa(%eX1GQgByGb6*(-lvl zUXirJKoGR-K=HX8@DW=Mhm@r9HATdn*AlseEtKq4jGNn%@iPXfR8BDR4nY)S?ykVBDP3irY9YV*wJO~qgo<&%EES<@tO(fnWub03b(see4y> z0{y^$pa<}R_d)f4js6cdFrLiAM`V-@NZSAThruA=*aso(ek?MYPWLbccQmWTGr;46RbR)oIac% zNom{3r`2o^U-G`ejWazg`L)-RfBUKGq2lkHhBnjYgYkw@=So`#oKByT6Az zrD6w0MZE*$7xCZk2beyevMGE^a#T!S4cPtNHBofh%4f{?+>wiwN|kc8-ZTbYr2`Fc zLZ@_q0n-BC%maZ!fz|!-x5|g^LU->Vqb+tD1|iK!fbnjGr3quOVrN?sQ$6Z4Xb%l% zM@L`HUEo%PDvT{A=HjWvz~6rPB}8C2j)ICG_pz+ZJ_=lkw-_kq_{8w3Ew^IFO*}Wt zbK&f4C;9A(FFDVoFn3FbBoAnIe>`17UG0-x`+AbHb-$YbzDmlINRkfbO@fBI@2z6Z z_;n93bJLY=cnwPk+4+~fFepSF3Haw1w9&gQN*Nr6&z`#LU1GS=A&`NfADq&T)Z)3X z_SW5f#bwJ?H=h|qrz zg5SL6kHByM49hZTEV<9B%5%bXXC5nyTH4xDbW?34Pxck?37*hz6WA%<9q0bK-5`w1 zay_5In+wRQCkb7dU0=!rD@{*%b@B@aPPOcA+(}i}UVRG!Lvi(twzi)8#Sv0wPSF|L z4VkM1zl!TaL2f&sZ0QYSziJUG@-`kb%9HsDgQ46fXri5*0Z{z51YS>6*U8&FkAJ;z zy0ns*F7LaxVQ_cUIw){rQl!~~w$sf{ReCjJp7==c^BV#1V+j8}>!^;mB!8XX_^2=T z^hEwaBtc{7e9G`aO4|yE8IBXG&DMV}E5hCY6jaYzwWfS)Et`0-nW^q#Sv`)oAQXuE zb61yvfw6EX6o;IkQFb1Dek=JFFBV+lrS|zsDk`u}DDKyB;^$y*__nquLuO9*nqBi@ z%3OOx_Z4!)f@D$^>avt3TcPt{yq$T{;H7S=-%7FB&5?6Af3H*-e-(LC^;S^DbgQec zW=Ah*LUzQLHb@gZ%@r(N$2bKEFiqq`9LRxmtq&Z>PBN2)7}=~1ACyc#;!dv(n3|5x zY}lS?2$>VTlv(lZg$(Ex_H|{|X^W}#c(ph6ulM(NKbva-lI6*x94X|-PYX_8Yp=eP zW3|~^S^M|Y?mv}n1(l#rwSwjn!mqyz271u`Yy*`n&0ATnlP-krMvx2yc?g*}DD-|t zaM%YE7XdEl9nR{XXsGQqT1lUc8sOj`t6pcy>$zpx(R>U8iv?|A3x+DS44VV*YnFdm zZI0EF5}=~(kQE%N-d$Dkqqz;raT{u5Ab4oY$6O_7uD9*IVr`Wi_h`}EB8-nrV zjk(O6VnY?S0Bn|UYo?m}A_mrr1t?#t1refBqQWcn4mc08)#scdi)kJ%Y<95aoc;12 zb3CL4&}fti5?g9-Tbr=YA^lz+Lj$=31+*u7*z2zVm6CGb2|UcDy#&+jk`8CW$^nE? zR2`Da4YhFBjyj#mcoTmod#>n(j%G6tGb;l6`6D3mMcG1%jzynX7V%`3UEZ09*~LjY zNXn1^1+oIQX18l<>iC{Ru_e7c051BUi`~rW(YMkwlAQ#|IDPP!PtB0{YoV;RfO`3Y2|C|ePj zD}Z_p88*;LjBvh-GG=IZVH>=K9x_@#U`kg-a6-nxsc}M|;X-CdBk|uc;aVXg z$I1Vlz{hf5a~h&;JIK6fKhY9)sW}PaACJJb4LUQ3$tp2)lsN*_E*#MT8%=~#+omF5 z^IEq|@EworgSYcvy2o9=(d~VgHPBW04Uy5gSmUxrEWg0KSeBZdle_Z@z$Z@n6`R^w zo<0n*NU=gvz~Gg?^p^e&i-f+Cxqa~gC%l~eg@n8>=%uoqbrbH$CcW(+CIIK<{F;FJ z#ij9gvULJHFD91v>&-0e%1h1{pQj_dIg{%ZFbB0TCoxQij9fdQT(}-@h#B(+CAX?y500)ct%@dd`PPp75dB-qfii2KyeI~4I7DjWw7r$00N#einOyDTo)tf z6@Gcq&>m7BF#T6m4j3e9z>05U z(PRBj8TD6?f9c)(H$`ljg!TdLO}p!$53};k;?uA<1`!5GRII1t51C&~P=zWY_HDtw zOow}cQsVQU1VA3RrJ!LTqNSX@=C<^8VM4F=ZHlnoZl5w)BG;LCtUd&;DM zDWa!U>0Ac9vWKF9Hm_}}drZ1AZ?qvj_gRi27B=kLjS%z8dhe^vN7_ zCm*c7zp`mw-fx*bk{uwr{ zg1=BpGdA13kWmXUcvllsSRFiuJ)Bw3h9as&#*>K90V(MZ4*A8Oug=c*PgKiV28_AC zuk!Km-^#6BRbcOwV7~2JeuSly958q?lUetixF|mVoG?*p8p_#DKI-GHQ?1)n3FOq-gF1zXCkvvl`0haaZyppxykyU?6Z@^XBM;UB>EJ5?gZN(zH zwo;oLnwm972OmippM2%|h|!4or>giEc7p45^)GwP<>^!|w=@y-c8r3{U4ME zZm;D`)I^5V*I}Q>zb9%vFEYz-?gqxU^I%0mh81_^Z-4((L&p~bCOxy`Me%WN zcV3+EdPn~ks%do|fq{RN6ew;TuzgvBWjdXKDS?aErEy*)+j%3%w#Ny_RGRR&~Ci5SdEWHou(exMYEE~T@L z5cJrMWM1%!CD$Lud_IhR5H2qC8PE+nC-774oF9GI*e=Upu@^Ye?HhYWb_3G=r;eWq zuku@5oJ;|^X>{N4e9@Zx>x*KKz7efmN>{eR(kt(IEKE)=ImofrA7sgd2rmW9;xN`s ztjTX}Sb?IGkX%h8vJyXL?IZ2eSvWDBY8&;~72e$hV-ZiOT!&uzG+rM0Qhq6{Lke?M zGqc_r;*u-O&U|F`Gg%MTiM#ULFamnT{~mbk2ak}aMHs5NA@;o*zqp-R2Kq(YtsSiq)=?Bo2tk^EsAByG46f91P=HzpN}L6v9eooKu$fFE*+hW@FhOfLZy=@Y zt`GI#M>c%7alJg+pr_v9O>m)Jxt{4h2AA`>${PCp$x*WxAZX~Q6lz+8Jl~(J)#vFv z*vtc|NW`du1EP$YOc1uo5==Oi1p(BNQiUm_z2)bI|BI*0ql{4$3*h{%Z4*Pf`O+7!4`QAE0RO9wjtO-TtzUE z(M!Xa9t>fm(HId9_&4>fn$Ey!qxV(j3LjGm3eUdN{F}xg)`lnv03gjcG34b_x zfJJcQTNq661NI_Ncwak3fwMzdMTI*SSP2Lb?nC&Dfbk2g%rLo~tMHoFc;kEnSeAPr zO(0yVU@+SKZn^o@6VJL_T_1tumbytI8P3DRcxvhv=w-d{-7B0KP|oUdz24LAKV;Bz zIx}x0{@}HglJF-l?t7OukRzu~H1jA@qc4qYFYixjTS>}r54_NSMNC)pnB9fiDs$)F zXM{Th`$TSeN=UWoRLH|Khxb1lPxAKidOj!T(tXrha4S<~YojuzvsX%aH1619!IG#VFH~6RoNO=6-6^2f;;e3g+CbkkNNX`?CGQ zMBBEgTkExQ%8GwrObix7yeG(u0#cfQ%7ds%NOZi+%6ZSfHLth*&+hl0mDU+s%nP=h zfRXp-=Ri7ELp?4EAl{O>m8RvAGU`w{?H_v$@C`26M+o#QP*kss(7p_lZ6Mk{4Km84 zWU!d?Sn5zhoXucq{Ze$p5GAc*2Wo-hrO}PC9Xmxg`}I`tay;9fNV;Raz2F%bI72hAFPs5KV_nm=*UgSK>!vL{~ z6IYSMZDH;e7aYeMrY(|anD>QHj4qrJ`c+f7`+Y_52>Vfvc6oM94pikzZ?)BC?auJ- zno|(1<3^4`aW?637SxaxHJA2!X>^fU7x%^PLGY`?-T^YjdE=>YfP+)J{cxo2;ZJTK zCTb^)Ms~`noAdcOPrU4(Iqk)2YD+nyv7D`sM^Jz*|r8g>a zXDxAODQG!ycc7LgxbyjreOv`AbMU`a;9+d%SBlzG0>m{I{R8{+`>c^yL{K zNbn7~BM8}~#e6coD5yzDWhnzN)KQlqP(jt!{QM{%Nqi@cc9``hOi)xjHp?k@-sv-NJQ7g?S!OaPW-tBL+#mOV&f0WDe)}5%Mo0c4YjR;TR9XU z12ww2A)9nim?oAzjI&s*_l1FZ#zU5Xs}8S7QksZ00giaeuUB_xFLJ24)|-G3pj`*Y zx0GNQmn^TBumTI{_YW%{l6-UHZ3qD)iH0N+V>US93s;1hj#<7R@S_2Ur(=7iZ9m?% zqbI}wkH>`)p&8W#+cpP@XYf}}mxIR&d>RTYoJa#??O05l`xB{-#K_`e&@l+unxE~1 z7~qcb{vAteZ{=D=-@iWPrn%rBAX+krV3-VU5CcaJa29NWx4*8E1ZC z)*O8vCBt_KQo->0ds+c73x}2!!p?M*03dZTo3kASr5^o%1H~Qv_e69ZCj*~4+8SxG zX3-eiC+xr2yX2$j)d7I{b^pM7<>!Ml=k|i55!5cn6G5(PQRX|_+`b($6#pG6!FI2f z2{bR_IJL*mK0-=#4^!|@PbseHoik*V}i=2{caYwm4D$I2>mEGJj4M} z_ciMSU`tw_>Uzb1B^-F-)*&3a?tk|SF$$NWn?sVna#=osz5${r0h#!5gMoz!gkL+i z@}h6=7k!4N^E-X0^!HaPCzM!q{08xNwFwpiv|&~N+Xn;%QV&`Ui3DRuW;6)ns%TIb ze7Z#dG!k^2xW*eGOrT%=P!?O?fCr1TFN45xgOJS{`h=)>>P8KvB>ozN0x>$*TPSy zvtCV1Id<>=RZd&{)9|e9kBYo}_4Sri_lp?oy+}yCD((yCdw79D5ERx=rf;KI(Hb~B z?cli)xF6(ywY5mBKst8Lp116t4-8nAK$fqS@w4W2V2r&hJd)=a?{>^Z`Q}5 z?00+5{wsBkiHV^kayv*44n8_Xw9m;Q99H9bqIv6oc`xoAfFFhpZLs@YIX(eCKBi8K zK6wgw#X5ZD`0iUJoDyRXQ^x|=b5J*GX>?Q-4%wS02YzQ_A7HRj|FGsaA)N(XRpO+3yJLF{yQ=+ z9nQk|fHIt{=)LlLt-I`My5hB-?V%yiD8r;C+m}|q2PacZ?-8jLPZ&Tj%+hm6)>#a` zw?BUt%31|pTKLbf*X-Nc=K+6n3i<~wa0B7q{do3`T2KhZ`F_U@F`{+n9r$m5Lx zmgRp#9d-{{9*bk@P^u~(+pg#H5NmsT8-hijlrU7S-7*Q@nO#JpTL(O;o)+E~-sMSq zzB$M}k$Ma)ANf`1dBctrp2&4k?ly_tuH5&-<)@5Cg0@0m8mV&VV{K5_Z;Z&bN$sgm zF)2AN0)c&H0rQ(R6A5z)nKO1@*lZ=_DPtdemnZ*=_h0zua3OhnXk=sDYJ18`scO~3 z+kOF9yyscof5#>Y_7Hx%|CTP}@i1Y6 zEH+LC>x$x(i0xr0=-VsVYu9_XH*@SCb4lisi1BCHG#kt}lG-mcDzR=xMsS0YYju0aizE0Vc8ZFj(vVK0*Pb&4`Ts4E< z-qkx5*pzm+J^*k)#bLNl{;G-g?ZLz7&dyHWB^Z$DE@Fx*D>tF(sDE{_@rMRZM_xcc z;PJP-=WVO^hh(BLFpluf;>1Jh5gbAQol(P4l^%VNt390+T5&;1>D(jmwG!yht?`WE z)!>-35?K7@2mO@Pd^^gohP~`Hu(Ye)DCu()Og*M=B#9Q&P-k_06y6Hw-&MSUEWGkrsFeN51QYC;fNXV`EYQEJPm<38C?r7rCSesf}z)uXXR*zpMWP9jEWg?*6itbm%)HbfVa# zc6}qorP^I8Ju%PJL(0mz*9o@=k&%?d)SW>jg%HXAorfRJpdYy0f)d~cfn{VLM9DHF z-IL=3J_)rtIdoLF=omG;XCInDU92f0V3+nk+;^NkQ+C-%`R=SNwQ6m8(4zM=^Fg-` z9aPd9&CAMXshs^+RjeDVIk?rVMX)QN^qvHy2~HhOBAg`HtK$Df__1T28@e6FUeSP< zB6ID_$7umECP^QYl3qAmJ)UJ80bl%+`{2De)trYdh2%KM8KxU$7^X$CpOyUF}RyO)GJZR9&^cUMmW5-f2W_F^9S*aLr=mqg#Ms z0a4-b=Y@7hMLqJ7Z74g1-dXkV63A-z4M4i^yM;W^Nl?`II# z4hW)nM}o(N;RoE=?_p^H$2bHw!u<`G85D}b{aj6_LcfqZ<2o`-IFcEj(fHIX@WbWEt9mr@k94nN%0`|N76Vwo_gh~t zS^4a=1dU&63DNwhdRUeD+_|lwz!ix0{Bx`7oJ-etBjvJO2X5h}6zsN|RKIHnt) zH0Zbehg$@a_&#W(iCQcsP+W06Aa2A1g66SF)X$q!JQo#hXDan-x1hVV-m)C{-q{r-xom z#aFa94=zczT3f?mseXDs)?UQ;Vn_{{-m=0 zrG3K7x8Hd6&!0d3_juK`3NJM-`4EY)BY|SII5{icxa6+pO4F@7m0b?jk0<5UF5_iW z&S51IbI;B-kv2C{AgX+0FekFzZ77^k`ford&(kmD2rd{j5A4s#`eilp(tnym!k_Bx zKWG$I*~h*%TVZ*YV)H23D868h&^_isUF-;n+#QwJwr}YS^eOL`T!C??-G#JH%7XZs zJU>6bZzsh*hoQ|~HfHxx`cC-jxXj)2jjA|-fb?#+az4EiEq!eCbPl!_4u+ktAbZQ- zD>~vcu@Gjzl6Ng0sT0YG|H4c-dmJ#Psp>eP91>x)n!SEc@a5jP+|f1f6B3F6ThKt? zpZ%?W#pZJbZ=T6aN9Ls~O~W6lh6^F?1rnwa;nM?QnL{&m-E2P@vnuD*r1EFG{W#S5`akOFgj&qI!hX z^NeTBDt=Y8are%s7F!mz#)9@*TEfU~%5JyBZpg^`!0^t`pYMbb2Gx#an6&d_g<|0f zyd`3w-l#iIj^fLS=lrn=K4=fb`Y|z^6nZ{g!uG+9J{Fa~k2-_aup{g9-GX<-1ygAN zpE&>QqS#V>!)BUA?VqG-p+}?{+rgagx7N4c*KVZmOzn;(?tGS*@AMjIZ{CMg$o{EX zZI>NUuKW~Lp0vCU+8nb7yudzu2zLT>2My^q1d=0RF(-+4OAPuP7=6;uyhkQ=U!EKhud=9q?%wuScS-pbY$iWnA3JQMsdi!z3W;2`VlxT1(=3KX zhxRbi-VNp{h^SlJST9e;wsN4~h9}X6nd;mmj1%VRIv2?`3&Dhj|#|K1os z1;#1E2oi**zI*FK4gW$8mTamS@*v#@0vw1oX9jv4-S6L1t_6N;$Jvf>2T2}ZYNhg2 zD!OYpB$$=p_!zRBV7P+(6=)gu_1f1<3lL-0Z9f1}5*kF-Qey<&^n(od3q&oToUfo_ zQMdMkT^fcz_%S`9Jw-$aK=@z0f|QR5gZRnp?|y8^3&8N=xr}5av3Spp1Vf@Km$q01 z%&SFiWbeDdcJUyp4q+XOI3mf2Ce~S_$f|gBA#pN~B^c2eMg36aVy#2&4*#qT*jzJ` zy<5}(c)OL~U&wNy%ExO<%+6};dyxI}5z4KjLmu}efKB*=y40~un-}iaBsH%Ui!;Fp z`dUgUb1|u4uWlxwGM^T_vV{W_w2y(SxmM6CY!9VxmZ$s8WW_vm6l*0T!Le8M^lI07 zRQ}D|*V=num@zW(yL8~h08L5$M25Ibu2(nBx4RUwzYJTYG^yLJa!fc19|+|khLB?l zwn3zb%1Q-Lr5fU?)$UJF$>sD>C!}k#AYk7JX1xKZ17ke!1z?mwr^Lat4Di~I%t)yQ zZc!QEL_^0yIahaJ*!~90>JjUpeUM<7+;teM0FxMK^ROa&RUKw|`9tSc%%j`lEfu%j@gwJ~H`^K`R@p1%s(+X&lA0Ksi1y=ed3h z;S7C~*Cd@1s-MX0<}lEWKv;2LIMMJ&Ui|mcGuWJ(D`E%38nSQ0yF~s#67RfQcwH#N z;-Y>JiPSsi*)0Prt)QUV+b>`V0CPKtCYo6CIiK6F#{iE|K4Aj3aE-rF>9c#3U zZ8I~s@vyD3J)Jd~AAd;rec!#V=HeQwM&n2KYs_eKL>(YvRACneb>}a9GW>3|*=?e{ zHs0Ub>T%(C9T*&T$3jY-jl_Uo7(ZU^GWgTeVnIFXo;1HjrB|?HfFNKFe5BhoX#y{I zGT(1?xjwA#m9k(IJ z7hMOYu=jM@NAeeTy|<35UP!&&hTZEpZn%*O_Vr~hHoJT3MVCTE$eu^yjlCuE+${b=HG zx76^ZE%oQR4EwEi44t3YZqa+nC!MT{z9_AZzTYhabqR3& zBl#>9SUbFjvfupudIjuc_A34FDGg&kK@b|3zns=c?p}Js%l7owpf^Y|ecUKRzz0}a zbnDNrG<{(Nqj>aL)m z&@lEixz$gI5!>clV?LE?lAA!n=ns~*yL#NaC*=tEO#7G1bJSn$oN>Y8L@lwI@vSZI zz)f#UzlD;U=dKl+$1zBvu?p7ETtMr9HR2dzL{5aI{f$VrWWa`Gh+_zvlSLxfhEpu0 zeGWLgV9et>P}z91E<$4YcfFmT>^-5|gyfC0l=<9mQKAi9cJ?lbI)D)Q==Z@zNWcLe z9+^9-?m3C}E9Z9_Bmx(Lwx()VBZGEEE@iLYH!=xnCk1S`!?2z*Y*R98d)ASX7+K@Y zaPS}sV%r`NUE6|!RsNqh96qZl-j)H|SI-|ZYGp=Pqw5R!1*#Tf2W4Yoh)dQk ziToKy(DlzTLK*66xSk9WG**P??#;V`iH6_qK?apq$Leu9=qO+$#q@2i0rqfrO(f>9 zntsWt?tYI_g%gZ;*7|epPtgTJ7h4}PoqU>~^l)X~Lbb7`Gb=vzjh3{A$TOSrzd8c? zn@Rn`uZ>PU*(3EP9)yi~tXSz{(&1M6c;k@TTmPqLq`!#Mcc60>X*wq$W5DcvA4wZG zyw_l%VkZJ4$A$}?N5z(*blqCzxi8C8erUk;!C_#r_k=XI} zDNe-#WfF5Jmh%{fxe{0dp)3SV9E^N4u<-Lb89|UnNuD#3lu?tRE8h$y^-sNk8GXA> z-4|6HD-Wl82TO*=e-{t#Ffqb|%)x*#oJ2Dmfz;(ApoRN+ZC;w=m)wP4LqjjG=I8~D zhCnl!qpOtCKC2%NF)1-phsK(k`h64+w?i1okx1m`+mt2OMlHJ!mM+(FvoQCmRqQ6l z2}FoX(OOcLlchDt=$U^MRPxH@7>{w?l(JJAIoHlf zNjL-?IT%4Hc!( z31^T|$&I$%_MpU2xI^F-L)YCd0%S`(9?*YDree$hd4>HG{g*0ED->G!8?b_x(!?GR zh8W4;hl4Lr{%>Uhx73~eWcazmjqgCuGa#@~jbKZH{bcjl(fZ+y;4k$JTy}o!jL0$J zjE6p#61)Yt+;@InO4}S0-1^n-w5iL*$D4#Wbnx<$=O-rtmAK?1UhYHn&QTcNj5j1- z#@o&sY1`*;!}t<}{yynfOugsy%a8WO9FA-&?(UxPFvR0Wyc_PHw6>Tp*2bSJq{7Ij zW_?=WeQm(EK`STU_haWTci^`h(2E+`1Mp z!@x#5Q&Mxqsj0bp)e&NVG!}O{>xU3<;I_UHP5!gvj7%J_L9_x=6dC3!p+?o0CMWOE34 zyFs!h*qF;|{`R<3Ev@-ii)9=a#c`g4#1Z&>A-^Ndd5!B81Z2nlS+6Z|r}>So?M?HY z{hbf%`&pNrhMBSG9vh|f&TwF{DQM#J`%QF}_^w9Zxo(nZFB;jx9<(&FA-i_Mv*`n5 z6ZDmkIw&i^f9_e`T6QbEF82@yyrfx(TKDqyrnwbHNDWo{QQd|D7XB!y3?wh`l{!~C znt(PkdOu>#Dpkt05}jGit+M!Ic9|@nLkh_jIKaYm6647aVY;B2!h>SW{4AXfy+B^; zvD25GTa8PVE&iDUDGU?s1PPKW?)=dUocB{%T`rboZ^EJwh*jP%QJMjHcHihRx`o^SVI_;IfZe6)OL{h6=gtdfI7(qLEo9+Po=mQ#;r&T8<*YnXhZI`= zVcf=cb^qR&0u}dyD zp&y%~aE-yijwYONtK#vE1*}Og#C~#VFbh=~e&b}|LgCLjoyP*tt~A94vHG{8xBHWQ zySP(%yM7`Q(%tXh^S!^pbmm~n?7*KuZLz~+qd5~}{Y_hc=a*xwf>tDUD7ygco&nl8Di-_i8V~}o*q<0i zyedKgv*ZuY_F(@eG&Y6t5Q-rKEs2qqLlhK~cD}@HkG?8k38~Kv%kdsA-)(tc<6Cq6 zSW$8oXEjZKdHB!YHEfxs|5$^=1%dOP7RNBfWi%pv&%gXUIl&N4Uf9ghdnE!)1>o#e zZ-IRXb1>*Y;<|iL{zHjL6?fhoU}F`{Tq?<&^Lz`=A*&vG=gs?#HJ^xqfOzC-vZP<^ z0Y=0u;&~i$GV7!b?6S2li*X%uKbyq+j61f5s?jJ9N#()BxD5!=fLT0v&>4%}&xZdM zOV(z+DamsnOdX*^#vDL{6%2ucam2Tb2p2Q7nglvGhQ#Q&px)}lTc%YkuR=s zGWH!DWj52CXB9vb1BQUhtxmK^pOl#E9I54qo^O2AgTeEX~Mb3`?dIUYIr~3uC&u zgxnzHz*>!Cx4!k}WO428WQSK5wdgn_p@i9VhB&1!(+gcs4 zzCbFls;${fd)bgb*8(k&L$R6n!hp_Z>5YQvXI(t>4Z((T7>e{Y=7g=L;fE==e#)D!8e8S#f z!_o2a@l&<5Ch8VBCw(23MYb~7n{R%W;U@j@+GC?eRxs$zjx^C0v*>$-f}2K-6&Q~q z7#OF*0%I!m-UWVaF)0FO8fXrA3ZjZ{*TMg9s)2htY)b&M0aQUyQHmYM+7hrKXNGJD zu=>C@&_H_%?tdXb0cUu3kRg7X6DNbkeGH0t3*!L#+CGDq5fR6HNJj5Lqe$*QnE0&M zC$9)@PnHGPTo72$&4KdHsSm%p8_R4jl{ief`7@oe?m~4NE)Hm$pCs}XWPH++uGU({ zh(;W(^qlx~jq|APHw**g5AHJqo0d5c5XO1&Zp2|$!;i%1&+i813MWe0W`AVh!slG& zQpcV)^w&@o<|=m*DKp8(u#%*a&Tv+7$CP2S!BtoR;XM5PwSxJMAv!0xFpl}qHpBF= z58!(}{ui*Iw%Y(!)xcrja{_0sc0MjuNELk2Vw!}rY-6rb6BbWs(1Pf(!MI_tWpl=egI8P2-JPf`G!r@mpc`m3pb^O>XfcR)H-ZXY;`R9 z0;n# z-<-SZySW#{=@sAqGj>0}HN44LKKHp|L1pmHABk%N74deJ14nE%Ge1w89@#)WB)X1R zRC;X9UXe&u^oKn|b^l|Oc^a6^FyDKn;k-Bw$v>t=zn#QvQA4}B38{CPCLdtg>)V!w$*0DJ@rENb+PdsMbZ zb{&*NoaY^j1s(%2Ry{q`06w=lA4>*ICsHeShBsBV6B2{A6KhP5$V7m*#V+4@HeZTx zJ_RHSHO}E$PLTa;rzhs==2dz<&qOz9u6VEDubs)QthOc}|57vehwF9)2YsnwuQ?8d zEq^sKiOI=CJ#;5Po@eUSX88C9j2zW~AwQr6zdM!~`c1Sl6#?@*Pj+I4^U(ek7_9qS z$ws4`H$A9!zAGKu&>T{CW;Q%Zx|;uEymXoTCYT}k7>4o6fd?VnYui|#6`Q|Y_m zCTYIQ{JN|uuCUOS^L@5q{i5mfYu(@|2aCDCvS_~7S2$id zA5;@=P?8S{gXxD)Kp_6ve-7==m2&bHrw;=$``RVg; z-@disR+&|jqdL1x4EO=YR;z~-l<2TX^bGD-6p zcRRl0~ClV?tMWh_i^xMKVAP>IydLzZWIb&dAy+b6_| z2r;6^(h#X);;6uUIEdf_qrf9IAI|!xRRFo3i=`|pn(WhPyqzfngdsH)#e7_q$<9Oj zKVGZdS(BQblD^~2(i`2C?8=|+ZHAF>Jl*q2 zCKN#(qkdG^!zCB`ra9@-P2-R!19Y@I`8@;D#YHUWiBTZgsA}4q_R_Z9%FRz7rUO3Y zE`kT)ZT#0F8|C!pnZF2{Vz=_oY3~Upx*mYgGge_q_d|;}7u8=W;h2%(O?pxq%v)fF zJG^<5=ZB^CWiJ~Hrt%UK`E(s55=EyU%b?>+6NvwW-^5qZ%wl^7b1k=o|xA1s?+XtWkC`Mth_3jgXw~5^7836oVA6^W{s@EfCih{4X1O6 zX>Rnr=C?B*mYm6Lry-a$uFlQAI+pdVjOe?;KlLG(yp?zUPENjosOv99c_-bT$w&WS zckc6Ca@XyaL^5np)PRU6;wu@UY$c>l31g@&(370=B?sTk%gC0(9TmIHTEWG|>8NFt(&Zi3xK^=Y>-a<8F zrhO1EN92JsnqmJ_S8edg741c~MEqosDD|;bhZ`D!QAbr%a&=k%*c95P^S3)%k?Mo^@$F}{Sbl?CYA*} z{&XIbV>zlKJ%jm$=R*0Xzg~b>hjW`x4D> z&6h^D8g`W*+7Qs;QZNX=ov&d?XCG>bWtC{+(87(-r#j^)7)ohE_Miv>ssnHYW^p2+ zEpdkX&^INr8u@zCh?2$N*W9_WNI@Aaz{2UP0Om8rRRUSLURD`gf}KZ+>E0Q1g-bxfh&(RV;HJlxYWozV{#V5w8YGot6p3 z&dQr7+m-|b06+1J!+Fiu40&(g`uVj&71ncqR)?+P=W|269>!IOV|7FKt zcP$yZ?$k2T_4bR4c~Fqy6V9cezhyz#wmYn?^4%o|*%!P6S4TW~&|_V#A$JFlkM(yM zq*3OYJ|A)S@!_!rM6T0nbdnZ1#ZO8RXI7l%zi z)80`|sJuORjVjeJROua=@#+4mBOWwG_oY)9kwXls5ldqYVf0)>JLx^KH+f(~eEM+j zKtls;2-u#mCAb6Om$A*OQlk;|kQOMN{8znf=x!%JKZilL%;lfp)b@5BWDmr9w^da8 zRV-m15-i@!Wfze}Z~cdCkD}|mhu*ka1ua}D%zY-pG|Qs*cC+B}=Vp0yt4^trY|83= zrFWXQOhK2WV4qq-j$#$g9`pus-pT~EdV6fI_n*519bv!2EOFPZ_o8j1V44O+(#vZR z-^4!o$oOrSBwB5bV-sUyhAVb<1Z$QWmg?8N2A#`pXueHh5kVW=#$I$S_;J-lqvnFb z?ar$^E4!0a{!VS3VY9hvP%ePWmM6RW9ZbNSM#>=UAjb$}^Q3tyw`Y21do!iIlzXc- zXi@!TObnZZmqppTxrWSg#seYjV$v--bEguYq}BQxsJ$;a9Q&FIO2%aF;my)~jW=|j z5~=u3fETEm&Pr$=Kk}?%ZE|w*-xjkQ8#32JnyXmw!X8k5t!yFN=MuDL?^3d58&%WNMQ{i9;TIfQ7s`X_}CBzE#|k)0$0w@*n_FE=?olNRJU9`c5>il%9rLJ_)Y z1j70%n$^zs?nZK=rG>06>lj>!ZACm2UOjo|=Rm#eBPY1=By6LC8+-3;*__NPwgSJDp89Z85LBa;E?hHA#mJQUz< z!{Pknt6AIW;mz!K=N_nO*V|uH30ioUz8#+U-ts~suW)F_Nv)X$f)8zN;ovc+M{2JH ziC_Gv%inK34(-$xHJ#77^*piPL8iiwHayd6W1jE^AMfMiBX>4i`7crK2v>}N;@@H5 z%P9vAZ0!^|E&5hMsw#8jiSk%RuT(0{1y)`v{n^o&5q9N>K#z@?lrRmmWx_eyd+5Tg(B2+abK8(!uIx9ZO+vi z+I5(1F4p&75*!KGtY+`*Jr{d87R6%Ac|utc!YUVLS2``6=JK(Q7hWFLc<>hPuML3z zYIl??c9!(QEz==S_(MZ=nMD#Ykh=+#MNQkNB2BR-vZuvJZIB9(+`gM(vB0ZC7aq}V zeirNAVdfNtzP!&>^d5PI53SBx%?>nhwZYPT`cCO2jpc_@=9=_L#a3>9P^qjV}Ih5Mf3z(*FX(fQ<}%t~w=%x0Bf3=c7cyOS0pnuhb%Uaol*2Kgee05Lb9P%t!eB0PC8SOX+d$v^NX@Y;S4`nyu9$US_*upc4t@9(Z?_TgH$sjm_{Tb=eDz9ToBH0*djdsS}#@!lPgQ1qQ@ zqNKO2@P$?ubkPep)91d_M`%tuj^?i&MEa82OwQ7I-}LBnoJbY`|1wIz#drvvr};?g zF%cM%@De}vN@+qiMwbAHLbQ~c$sa^9xOhWDIy`}i&iVsEq&n-Ty+~0Q2s6=_0Udye zAP&IFSQxv3Ayx`2hFkFUrt`Vb!5z&6#lk{4D5%4K5{k+9h#^#IsA_sjEwAW2YYn}qK>3(m<+@M`52*7X{So1a6~ti7bm^cb z*}nli%fEEL8tgO2L*7|DPenoZ8^TKKH!tO;VqIES4sCb--Q248`3|gVp($kP!GGz#Ez>v53bc8wLSY%h1QjS^!W#ul#zcWaB)R; z$_|zkMQ99Fu5<-0wvAMHt*Y@oE|_Cn@hVZf3hf~c4!e%&mCVdzA{E}Wv-7^7Ndad? zCP_RZ!)dV9&hY=ybnfv?|L^}FsZ?T1t9@Z;aUl{FcIG9p4~d3` zS2*M5s*X%7d)Ey9Y7_;04+L1wI1%%j&9+Qk)bh`%C@KIbNgsSp1bWMBJ#IMHQd`#l zp#Am@TE2~qD$ZpblGDHKvo0IigCjR&uCT*@uOL1pl?7)!UCY%)0%y9D?Nb}Dksue< zOgNWR((%Fg{))U8F$i-Z8ZUN)bLe(f?Z&UE6YXWqKDE>vAfXorE&AvBxHvHN*5P@n z82B=^fbg&n@nC%I*el%!t3-RU--Ef#^iPVlUKJciZp_%w*Gac*#;4>U4kxE z8@OA1@auU_W6or=Pvf!JY4taj=&-7S=gLcamvqgpr6o-+56Jd-n!&j+t>z0kzE5)p z$Ros4;aVp>^SCd`ww1yu@BQIU(M!J-&0Gf5`xgLI4SGPY87*hrOCI~Y4i$99`?Q|k zu%w6#nd4FMv`3H{yz$Cd1ljk$rHQ1}|Z;rC(ay3;a&#eCqvTkK1>Xw9y&i~f}Som(S zg~n=RDF!OY$!pK8i!yZ7+{vVAf6Kq>&db2`VlHqs zLaw1zJn@CyyUYv9(*vHF*ku7)?x3{=Cn-U5|Bayn5qXb?GK_VZhP}HJmg1?3Cih%N z_8$(n4*6ccvKfo#4U_N6Y(G(;N=5pl}4r4gK}o^T>~P zROJvE`ZM98-YVaLIezi*cl6Kiz7}4?PAHx577EgG*{ zUl`xsn717AREexHbye70%84V7a9Go$d=xV>g?EZnSP)7`?3enW!*)y*gwjR|E48Z6 zhWrDz^6_6@b|;Y@Cl7MiTH$Qg8M7yD(AhBj$BVHu)H=ot3fJ2K%jx49RtQzfVpa{M zp>R&xb&EUU)CbWrgEuVZwSHSCpsIJD{lk|vCS1B}DJ2lefVx0~yr0g9D(o>%MkPR* zo#}!2LA{rqm=N^k`jI(Dg9rq*oP_eLEuTm4b1C=@c!r3nK_veU4WaYFw%-<5Z4h6) z{6T(gA2Spoc7N_F(EnF~u=^)v`Y$Lpq09Te#u@f%2po_{!42-SP9@Z#(?O0JXBwcAsFAmEfE%g%*R&l4=Uf}#FjZsE<=+p!XuN-eery4Uy z(IZ~bLy$%zo*%)&O@}jLdvcgw&r%%% z5U@NF^I;XXk~`EUC%5MROydE(O6nqzd6?C#8j*RCf)op%V?Yc$*v-Y4XVfe7u)xMNP zzAV4pT#>p5qFJX?Ri4#3$|)j(q#)^Y3B&s<&X0U{JAX+Hda80)Q=m2FO`h{P0ajym zu%&!YZs2Zlzw)5ser90u%_xl_8{E(#OBmju^n4-FRC9*U3k`C@7Chd>`HU4P8Zq!D z;m^rA`o}kt^fAxiqGL8cAyEo^kP>H|#}u-_C0}eK0U8i_7{T%iA4GjpUS?%z!=M}o zG=(rqS3_^wp3(aVMh_XnnR443#RvbKEqvVcaROmf6p&+D#l09kyVO?X$G#pXZ7gMR z^pGkLbHmluwO9*1qZ1I2qFG0e{%94|R_p!DcCrx`B^;tzeH7^|qFWdSHWZrHmVUP} zjnyvi7j`X*Nck^mdebMQHkUy!&hY}Tln4J0>3a;E%y;Kj^fa~B8(P6B?Ui^7gMxzm zH8&!x+D{S3yvd^>ZSOle$G4g4&&LPr4&4L-dGdZsJ>}9F<(^-(n!y>D&-U3(4n8b1 z#e8`vm2Up|!NzRUYW#167`(oMD~Wl#`2KRP+yu!MWNy94uQMZT-lMLd-| zo1)O=fi)F=q0{rrlSBEl`;->gm$U;1_J8T}?L^J8QNf?Er)^XK%Ps&qDSUnnH|8Q` zoB#yLZ2tGS^yu&o)g~M|1s2|W?Mb_ZajwnrA3akq^%XpAzh`vD#8~B`H`ABl zg^i^L_X{t#gO{XO-5lc8iQi*w+qHMIYPJ@`xuAE_vxDsULFr&O_*x570q$(w4E^tg zC2IC;BJ4NnS60qiJpMh~-l{$xNLoqmqzY|g_Nhbf>r&IyWI_0<$58`P2BmJWPpoC|p?G>{m=!Xi ztn5_ouSyTnc3tsYh0uR5?D3z?iWf&JJ@)@xz_KW1{drVg(dSecPRDdM{ccuf&DMTr zoTBf;Qqx3n2FLL8#}Sz0$MU{0?_7+ho%Ws@X^^hl{n-!ib+uoZgUH7Z>3etcDuOop z3j=a4FL1IjJ@5eV1^E_!k9#Xr`T@5D@C2>(s!^$OkHxP~JuyX#V>laqEXRodo6b16MF{78MbWGN#FdY|@82@l)^xrm z_+KsyM)*uruhW(EPGJSN!`5J&g-6`MZr7<}Z93d5VP6rjJPa5j$phj2&@g{2jz&rt4VCnUEguDe!IGngkQ@eZ@`k{_j675^P=i z%m_)T9+MEvG+MS4$fFYHewcts36)32B(?y}=^GsyUzbwmt*qe{iEG#%K@6&3?H@9P z9C?BcdhPss>E`X6N_|0wg~o7aO;J$>MD(lEq4ddLOq6WEO|y%mBaWDL$zI|vOTK+O zrFeYg<2_pTn&M$x`JF=u%r0Q&m=XM;2V4Q#2qY9T0Z`|20}cd%p!t|5R7SNN0cbNA zs^oDX=~!ra4u?Wd_?W7<)a8K5;lNt{LcEafT%5xG-$E}}A*s8VPOx6JVJTtf)VA| zf5QU0p!gJxQ+o6&!xe2uvAo%6zvVj@G2Otie@Pm`-5W0KpUYcB7(+j}v`;`4#Na={ zSkM{f#pa41G0JaaAZ9Uy=;{eP)o2ubX!fbl83TUwcE(1As`PbpUg+xr*SszIJxPa- zIiwpqCqC$38~qX9K<3ZQ@W9?;0dKx8@k_xi{JGi(=K~zla3!YH|BtILy@Jxg}6=Ctwt$|aHK#)}z;gJ49Kn~(|_vTshd-}GQUUyfE{DRJ%IS(|ylvgd+NlD@zd z@4zaVoux*mEdPxy`>a|J>fmjOk@OgGk7zga5!7rI_;e&O#}?=>{C+u4qXd-X%T)fI zG8SSv4UG1mT%#`HsWqX`OTf2)IbrAoPZQce3z|VN`vEf!Z2=%P;;HpLTou^M|Iq5I zB`|Ob1$j7p3nSks@1 zdhg0>(R__BmF@U1{McL3EnpPN5(cK^Q-jAOP9-3xA1h>b&~STQY%i@_@KJndcH)_^ z+2@SAN3|R$)A~SBt|(FA>|BVvdClbh`2I{EWvp_!t8-LhJ_TVDji-+&|9Xv{ zXA_A^i0&*E0vXHko7j)~HRlH;J1g#e7gtn}soDCyF7Cx1Hoi;z)WyZMRj0%KW@Ip= zx_1I_AkAX77 zY#8GDDyb_Rsg?tkclV>}7%?9*X|)kONp*hTlJN$sA2;x2eqYWHc#L%5;sI$1JT3cV zP@bf*km3CNxiJY#dPj%wZ2pgVbk7{iC-=DPd>1P1U)H%pUJ0^h+vv7ZZ2=HqF)}iu zv0(57CIF7N3k>ya@tc2p`7%ln9Z&qV{DafI6n4h$lI!<=LreMWy=aW+=785p%<*^) z<>1V^b74FV$lHHSpb^kzsz6!s(5-#A@GfLB=U@xG-9O$}w>z!>eoiVBxi?`WTJ$lM zCt2Rh1O_0|MS)9Y;ArVuw@+w%xW9={l}?Z8yV_+6gSe>d6dgj6zF9y14$EPbqs^Dk zW$Jw3K0MbKqV8H7IQi$4?hQspP6c_rAx<48n-vxMy&ss!>CLF(!1WPebxnT`!4tu{ zE=CM+=u6c0CrTg^)8bIrS?W?^Le99H3{aHH4E%Nlu$8Z7sfOv075yLh>@0?G)p)HE zYZLED$BS#q9KO*p6wiH}*Y;QlA9ng}e6d;OW|`vF5a_;UhfbX>{izHpR?i@I(|rY zK0R^vfv)ql(17Yu!G=<{vYT>mKnu9uILBpPzc(1qt){6Lbl!tmLo*al*N|V&-9KCF)d&zvF*LR-_Ev<=++}NM&-||^6808 zkCxARIKDF<-^?6BuoLsKEdEMO-Jgf2zLuIX^Uv==dS?AT%cpju^6Hc5Z8as!lEGo*t z$HjICdm}BWypJi9Hba}xZL9r#Gi94NUhP#pcHbtc2Fr87>939V!usv5EXCVrp0=;( z4Et{n*2-lC^gZ%tS>n0;VlK}SN)RL+YRLn^tyCKB3)9&S21PY2mDYvt^ggP{*t?5`WEHzsb^t^Ksv^V#P7E1e%JBO>m^JA zycfSDJ?nmhs(Y~B##e0Wz4Cnuj02j)riiwwhFU28Nf+k%Dq{Fce6-j<4?AO807O7h zWa6xRFS?uCWNy|knN-=gb{^(hyl|j`lI^ESeiDNFcoenF{4=3KujYt-m})hROof(< z4an!V>$qZ$S09DA-S4Rbt-ha}RQI(s=+hlWI7{S$F#vv`!V^M!4F1U}2{~}_(CHC+ z0q9>$q2?Yv>H?Sb+E;C?iL-MIEtq;|!@mr-vZMo-_a=0Vm~pb02Rv;LBB)0V`T$_~ zLyN#2u`M`>JOUjHQ0dEoSg6+AxsWeW^Cij15w{_bmz4BVOMnYjsQkg5{O$9;A&0Zz z9+%$=&0+LuSrS37#HKK>Hc5Y&35wc6&@q?Y8_LX^+u)(Rbskf){5b$3#I$UEpTCo=EAdhRQzGCQ*=kJV=>RJ zVOd%LM1oBCnKC#coA_+a|J)IX;W+G5A*jWV(b3bOHlP5ddp6I5p^3!nYr%!-n4jdv zqygRs+R#CGnMBaHH=$1hL?Nh6JNVbyWsDQ8<#OW(1!u`GPbarlY?pic&1=2LFD0mB z!FSHOJ1o#Q`+QR2;(#7q1Pu-HHQ{^JeddsE#IazdJk-sk?4*IC10`A%0cOOZzhQn8 z1-C_#A6v12-uNNZsT?+=_3>LkDyM!f<1MRBGIPa(|QpGRntug-nWr4>`-3L%%80K0{FGc(iy6gY3{pv^8l= z=0ZiqPP{G;^YY`x@a`@BR{7<-(jlXr2OfFFALT>t1hWpo5l^DZ> z{<++bV3%@toMv3%@l>#0m1A1f7&{kNeo{)M&`POL#Kio(5ZDKFuE?Loa+jM5lSga4 zNDVoP+ht^35!0Fn4=Z8RG{?wjAC^Q3sJ{2Umu>SYscvaVLigNXYQ0nRJ;9?$Xr&HL zl9fBw({@?ibh`_EO-CX@TNJyQSk^ts7Aw*CdNGqtJC+Zf~qwT4DR| z{;ZSAcZ6oN9y3pZzLo|aIF2(lo>$cZ?;H6q^qvh|%&*&BS-stwGs555@y1X~Gm(c@ zRmgUKt#j_6H*hCTSYdCzVy;mX7692|u(qBR?}l5Z2cJ%!r$deV{T}HS37kuxNS_Gj zb(7~jCn?56)ji@g7+kQ%~lg9f=UTO2Xq) zW5l3u>)#_;SsoE`{b8zXT31$`&sKqmg0GCg$>za_VEuDA{^9asXI!#oiUzoh_WeT! zx4Gxu!mWYOOw{hU&p4~ick4eY7OoX`hN83*S&COJY%AkbY6tVsQQ1FC?2Ri-3lXor ztx_-E)0a8z9&&v68dJ4%Ii>eQP68~Qg7%D}#%Z*9KgQXCRF7#oI& z_n*=+BCX-A(&VxFz^Zv0Eg>f+m>aIDU~U}Q9Q`!5&v)>b(qfSRjdfDPF&8w}deJ2u zCdszZKhqHW(uWaZ9urMG+blh?qQT4>z)!wTAOBlD1$^0_iHgGM@#eX>8cOtmyIS0e zi&PP4Otn^)Y|BR_yFWEBMYPmHlC0lY zOB9h`T^nr6sTgz6hYmS=$Y*)!7H{%!#RW@fT(a6&M;jVKZju=f6mK1DPKUAclbg<& zcBwEi#bSXCUrU_`pluMZ$UFSe`1ox6hd0!bJ;=n|i7*_!N-7mH&^p=pL&{7`lgw&^ ze@h0F&oX&HAr;znLB)QYhyHb+i6hM7W5vYFKt*LhHG4!)snT23n)5x0N23a*LX@-jEvDlplD80h=L^?*=CD5&;HUz~k8 z%i5XOEfp>KZ0VvdmfdzxOIVq^i3h2CpEj&1{>0H}5tmZ5vOAA9Epv<3Um3NM%P}mD zXFA8)*UW2wt@M7X84i>q$#*4wvUpd5-`%l8Ez39$byYn> zJML@(!6C{R+ah+d@x%R{Dfi0z)e1vMus@rWA>d${eLBOi;jC)(?C!2#`A}2Rttv=Xth~8pzU=woh4iB04?RvtE3e1iu9 z_4Mm=JJt*?s_mMXs;IaG;A62LFMm~RaM(nR!d49}0$_Bc3_?qWPADEa2R|%NphnM# z!S69&W8pbGg#UX;uVYrA#W`uz@2b=ZvtFLisXknd+v*VLEDL=Htb!FAz@fH-@UPZ> z+Kqh~QWYB(8gjR6mp0zvS&Kpx4UOb!rjU#b*nWuRO9WeOuE5>C^29{v{u{VN0f|!% z(WsMEMRyC0o=L#L&oS!jy|1{dd$3thzcxhzJkRFl=Q*jTOhHnaH&o~i4aGd@X%NbQ zjdycZP{radQn|&0%VX!WL7IyK1-}nj^)%uZ(14T-m(K$q5!M`FxzQR2AUMc5fi2CG z?ZJq+bsAV^hHmPH5%h}6*w2T#V1JDc0WEDuwky=^!2gCx$qm<4$0gk)znnKfqy&6_~RrR?tIDE^V}5wtXqtX8yohk zT%a%b_>Ok6crT{j{Pb%s6T`~|j@2>;y~X>vi6LRgC$g<6VF^gy=7OnzEB~~x`8@(W zZ=H;j8%1Tfz*}Lv4#+^NdMT-I*p*W{^W8{mYmy`(uvn}k!#s`~1MBzVsh~wus)6lj z_exAQ^y!gbWf;x+;qFqtBLdhxuwr(5KL@tbn3XYIQdw{_Y8` zz`qWPGUJ|RY&jmWcuw<-e91mf*fITH3SHPy7a%dABAiBVIXv+DOs)-FTB3dX`3`0L z@fHl&m!4A=%^%9<1ArqE`cW4XLh116R!IgG?nkOAUG}kSv+4PY8^C<_-fr``y4700 zE+SDlz|B4tfEBm?(*`oPp!F-uz^o4!Ass1*)7YABAG4~3H=8!uc-{6g~F)*CX1?ZGEZnP(M77-1VS36E~Sg) zX?8{xW%KZL&B(*znq?xz;_;quan07)UX(CS$w*W)O?7}r)}A}rZpP=Ld+eVd=87o? zf9=h8pJr{3^u&$wpEx`DLmM}Vrg`t&uVWbgb?fHAw(EW$Ie;AFUXj%*6AQr`cHb66 z&CSiV*qIm^rxP_t*s64|9h7hd?r*g1OWNN92ra=1jfKN5v8M;A%xR;@*qHLdf0x*< zxLxbIyF9vj`e{qG(ig{h8}?rD$I6!6LX|8D{DZz^_9%^Nlbp$nX5UZJ0-Uubj8}aB zzZT%pTEuW%?NSNfeR=l|2m0hv#1AJ8Mep^KuSL@?h>?yVcw-aWuuW-S$7NFHyDmQa zIkoll&GORH2f^>vUSz_*hKB3Czd9J4U>BTUg3Ps;YE1QxyGn}89&nMu85#D9GPJ6z zYe=r`?d?#8D_~o>ZVAAJ>3y={AOMS=oXI%fipwKlSt6g|Z(Yev(&4=rAz&{+*pl-i zQ?w3tz4oVE54a9?CnhY}p)my#zvB_v#zS>BYGcQU;YjF@T6e&J4*ld9%792X9-8(P zEL;)DHq;>mLF_dl``CHemalH~c1!c$=T1O zwGOsp3E!qTBn&h=OaXNsqat30RMunpMu(6k)sZ`4b*~@b9vJY+>Ypnogdsuv0*WES zeo$!3Vw79O)C{kb0Ro81n7-$WnBXwfkrPykMJ0S<&%Um83`_HiEQ3Rc8o<$>pL8)X zf_kn$#{(t}2yQz(E%a0cyOadhHZP;hgLq0E5HAuok2I2~FN_(%!XqkydUqVb%~q;{ z-8%(y@xL9>-`AJo_2ZMoIpUSA)DNu$Fy1o40 zvORq9fRXpV_BsS#@-;XE0f-MPdr-((+M_Xx|69)N5NdI_2)t4FhdgxH4%t%){&XnE zqbRFzBslYd1RHr0aTC6CFo*A^_aMTP;%AT!ClqaQW2Z+&|0FkNco?3xvt+IQ+TEi& z;xiq=7t6?4oW-fQ{#T+$vn|lL>u)E^w*wg?YdNpfY?v%&M!3!qk+9JBTmV__Rxh z=B<;wt$z{tx55M$HV-P9YHrG1HWg&0wdUc-@1+pko!Gd4qCJQz z{nHt#vMt_jo+#y+YR33Q3*oNYbJs`S3eL1h%Dh3c10UHy0`TzjRr#E?%TIL`NJ7QK zp6rRNK-VuavoJL;B_ShoLMGV_w80=yQx=Sm<Lpoq-C~hpk zbui9YvY8$smWw{0!h_+S&KS1pknLAZxsjIlAda0J_;1VJ!fykDd3gOnOmW~swFo&= zJ~&cE+n+tcq1OB=No(U<=uBJB`*;0O|Gfx1n7F-PyO;Mlz(*!_a&XYNdJH5Z;BOdA zy|Hby-Vq`px5*Z|-EP;BZJn;;RbqZnR=oE*?BCko7F=1IEEng(St7;1-W2xqXZqXW zg#0`C>AulRLN=B4YoPUdscewpBs8SlwW4~(b8oR62F$_u!9+-&aHn=tDPH8?tdYU; z4Y}$5u>kVj@xXQJ&)C*VgLRuQ+KFf^fdL8gHz8G&rp?Baow{ooMqsL#nzg^1udr3Z zw}I>YL0R3prHxwNozLcvtXi?VwzF}`^&lj0t=`=C&uph?Q^3-gMRmaU4kogNOI1ax z4rK$E%=~8Y;n41%uKkWSbBQb+ks_jjmgie8^NjH9k@4~BM}92f!V#V}CNUe0;1x8) z<-Y@fwPn=^ZICc`IOQpUH?862NM%EtXjMJt1OhCvePQppDXN>dem+0HYou;#WZ^EC z?;j&G%kgr6k978y2Cgr75p9exrWmeX^e{Tja6?~{M z5$cZunV6^qeUORXW*yl>3oajuwE9?^EA0kJOfBJ;WT#B5PEQH}Z)#>{W}4AOq3COY zz6a`s*a6wIHl_e%F=08(4Bo?JfBM%{p!PE%%#+G<+eHf{Z#hkihTen-a`OZce6lO< z*(CK^Z~dgy?F1fJ9Bi*WHVDtOA+jA#(;=xBvO)02nGK4Sd^ZK&=OSY=M4)z2}9sP3x ztqRPe&^ES`Q1U>fM@5_AgECTqSWfp9PAOw-JPm+DAb2kBz`!!;r)U!-eRL=TwoDH& zqc;YY{hw_9G_XFdo4bm8)R4}KCV(LdoXm+GM)CpYXO)nS_KX`Ea{-^nP^ zf*wr3H=#QjP^yO5e^n7;PG@k!k+k3z@}EGAKqDh;;3JgEpa2y`OYBV0ryhe$*gY9a z>N6b~hX1$m4&N>@Q57r{tKuF&7e{U`(rv zi__HXvJJ5#HZ>ySZ7{0@vtG1Vs~!z5v2A(Q@%LVHZ|^^+%Eckc=*SPxJ!0hukzCfm zc-=v=(b66|#Y*F#6>+QrUNeF4b`B7{v6D{aY^~ju2n6IahixHnE2&~Je>gB&0#g}R zPGG(=qDs8(inSy?OZ}Z?2P{e+WWwT?SPvf3OzqKAn3TSgs3*q#o|7_HNmyHUb+AQ* zNOV7XUYU9klngzHV>@ozKu4047~oOD(4NM9&mLP&PW85UiyL#d&6Xv7A$9<*TZ7@* zPo$N;2XW<3l*sO`h~Jc@YyDD3bb|-c(V?0p9B?3!|Ms`06nDvidr*6q>5c{XMR8OV zz(=^VOmcC#l^QY;uWAK5c7(W7hE%1epAmH6XiA|K{{mB6q7I=E-Mx;(< zK*|R#h*V=k01i@-1=QRO{@Mo{9IUGXM(INixB=b80!r`mAvwrya4jImYogL1zgT`g z9Oi&{V`-Uk5=)cN`=0*w5~HL~xM71ptRuVpj?i2oi9e?bAu^&(;N znE%1=+Uok1_If`zxAhHQFN=WHOs~ajF0JwmCynhtX**+PSWf|_9kFsRq_NFb89TS0hKCV*l>$kA zJY5zX!Qk2e5D|R#Kw?TDE*hm+^yYV0khxi%_fAPm19$?BjRD+c-N)biLm=oY!H6jX z@HvF4J3_Eq0{}on!-8JH(0J9IS+%e)$DTwJXhw=HEXBx-zT+N*9ou$Fyc^9t<21xW1E_9!0Kln5!}}Ggbd1Jc0-7O`ezF8Ro#hCku?->65H#O`TKqbjj;ZX zI})0gazUIK1?yGFY`!Ci#QD_jUvh#WlzDlZ-zxO?UG+Psd&F7n9sqU4wceBOQt&Em z&8(Wr10u(KR~+N?McE6LCZAmE4;mVqe;krL+?SXq^dH71Tx`x7b()7nBT1syF<>fj z%`+ff5)R>K6cA3Ht62D7?d>&j{)nX<9B5E=;FetNjvOdrZ_$xz`7q>K6)^I|!*{x07CX>rFjS+7nw=t#}9B@w&au zh4fEF7IBU)gl8Oms+w3#OUGY!P%NcJTr|9Ji0Z@kJ&!2ccE*MdL2A?27JxmaE9*&k z(}ZyNhv3Yw@*6&V|AkKN6pvda}_Hj`m(5%*XTA9olkmT)TCMsSS#cGNW4Q z5w_fzvDM^Z9xOtI7pp|w$mK-Y@sXq9WnmwVN$8!i!YIN1FF((zoJfcUtULtJ`A@M! zdm5$G32+){TF^gk_a%cT8zB-5Gr>|9n$LoQ*|NL?R_YB~NLpm1M&x7mR)vca9u23e zAXxXIb0D%Cv2MGe!_bq>fBvnwcbBUe<#0&+hr!?RcD*RplHp-y1j|A|Sr*7`wk|O* zw&{SgO4D7MVNZr(6q2Lv%b4(352D#PpWcvIvtlkS;z%&Qr^*p$fHE%bPX~Z2PAU}b z!Aw??x61$7r3*!)O` z5(Gg%6<-q9C>q3%p*0{520g>t7ALdbECVDT*w3fFg%>dw6@O8-L(xgcl`a`?BU3`ZUvs$FkdXf4XjXnCEOQB))hmS86R>mT2>XWuElJ=a`H4$pSlVBDZg8&I9& z6|zL2Ggh`*#ARko=Eyu=B~2cAy!D)`c5THusuS1otEIc66dat9^3N#d3@5EL#PX6> zQf%Bqqi>x({W$-XCLQA8C7i^mr=2(n#T3Pjfx@zC3bAX^`k4hZNq3r}xLk+J&yzE% z{?6`$9OCm^L2mm=@A9#=$q!XEH+ySqw}40PQ~p1LXju{{&Vofshh$>y z%nF=789zm)RVhn$PG?9+kf0Ekt*?1NyrOdm0pZ=y@F^0uaXnyL2l`P(z=7Nt%TF1u z;AriZJ*$jvh1D1iB}>|jCYpMh_76kZ*OZRc!6G|oot4=ehuJCAQS%y}uGPbPeJ9=1Zq z^S6LQ*DJ6K6gz=A6PsQoh%Vyb*ln`6*liQ>n{GSTzrRjC*jL=UT|dsA5d^o6VGv*) zL@j@Z@Zeuv8u9!2{_KnVvT4P=xP6trJJiFUy;ZWM&Gx5cuY0BK*V%_dFjGtcyOy%S zd06~+`snHA=Gnb5?zgV~wYgzmb9h6xb!$xW!(HJQ{)(KOi>_y0e7gTq{?TWyZ;TYC zlr115famssWtZ#=8w?EBkR=Op0BZsWmG(uR(ATbpr{kerCH)5c9>0~J!dOr94Bz!y z444a7+}`#w_o0k!IYl>_U)R@qhKPtpDjh@Uv?|a#jepAD=@F?}>Np!X|I|LqFG+{q zt?pBJY%QgIwLpw9F)xM4WZ^TnIKC4O>!uq9tU(M|Th~By7QkNiR*lYca7yarinTmi z-d$+jUlG|iZPubEyp-MAOO4>E+F$1X{0UA~p|4wF;*?(+i<_Lm7n@Z} z#ZJ0c-ZCU*u&wzkrfRzr!DsujFKMvXFx7*zg`OwFto-bpFfE>qCw3B@LNhT|TULDV zo6Db)KJG{uI?RN?yTCnVg+`XV`<~5@_yV2eG>_r9oN1wL9#P4gA1)()2w}fpMoV?W zPB?_&jO%JK^4>XD7(l7JULKD1*APIVvc)FK6B}Vr_*X)Alyi7YHtiQwR1Gf(g50oM zgqUE3>unYNaLmmw*`t}`49ur&+#S1M>IMvS?VK=3n`Awh~_%^uGk z`;P1j@g>3$JT3XGpE6s39Dg zBHJ=haT&7yl*AO6vReF2`R4XO!C6a;!1{j?1B7`Re}Re7DU|yr4eV0N{O~oGGLGi` zd_k0@`k%DH{1w5So$5`FnlLB zBfycbLE1_*);~hkk?ns=`6Cl6Z~Yu zY#81a8$?fc{1rYLk4Un<5ezrXe7tr+snSQG5@BWj8e2QqVBW6y&rM!dw(^nR%0P_z zjo9ga-8ioL^%=jRza@&-6q1r!-9X20SU{lX(Y}}nPGk(Sq~=~+g|wGxv?lR(dT}77 zdVF(?QomPAHh)Pf_M1&SXdd6b>pz@%&2)E}LOp9k45d?M&oH0QraYx^Dxuui!$4f2 ziH(;D4I;{su=>P79x(~pw@zmuRLpEHx4Je5cu%h1=JWLax3OTcpIiUa^PI#bLMge` zYizR{mYU0ab-I7q{jL!qtotl{8Ay10xv#*DI{m!C$V6I|MFF-5nsfrNZBkBP?sh7f zuZrb(iagGRrGq&Gd=Cq5>75bq5`?E~&MELaDe zBlPH>m7Xw1^et4mH#|<`UR4MI z`bIM{bY1*i*8(P2MFMuCvI4qaG#~8NAM|)K(?!aP`C=kf#^Y3sFyZm4S9JM0`wB$r zSETocZU^p1WwG|(HtRR554Z-D1=(0I#*3YVG)acBm)hFZu>PS3#)R$NZ(}(mMH59^ChC`^6jj-?2 zBMCD%oA2(c)13sNp^DCIL&MQp--DHvpT5G8*)IRG-;=W}YF8UV`p5hzJH@r02QHQD zK5w}5(sVlU*E<-Rc$%%|t8eh4z8S=gZT^9(clm6V|Jq+}Z^7eTMaU1Y7qBb8$K;cm zT`DN)^?P#lTO#%5L?(7LDrL}CoaRwf^H+B$Uf)JxT0WbY?yp#Eoq$5FZz_Z-;{=r- z<~mj*fVnq}f$bMJ_PDqkElC!>q`km(^>Lrc#l7$-9jPuQ&uea$PL3Lff-thE)d}}x zF+PM69n8IGl#HxGjm_jKO@+FF^Rs-eW{N2~+g3XCp1o@TL44m;Wa42pNV%tYCRgOR zh(PjdynuABqC=!3D%hh@G%1#}T4_&dILeh|Crj1Ey(fGxo2wEgjd*4Thr(P{FjD!n zQ30e|yxBk~trTkSbt*T%O!X{pMV~ED)nlQWLb*t-jK zjwh!C+Xd4PGROBq4z}y}e0%n4C$uoibha~9jHr-H?9Wt|oyq;A-g~ z_wg-pQPImyf*~uw#HKRSq2ign)oE0)UK>s-uG>+f*}zS~R*~VY`3lF`AZzN{8l zv3Nc|+SE)~*bZn26mI*!(0Oq8J6u z$Oegp&CALd+K+`3^0I0$X|=`JesO_#$;(<=v$RaA+rEA9C(mq(eY|RQ|B|B59C3$f zJH?d$!UZ*JT8#Jh#zOwffZevcpNJxy5Yq1gQSOElxAB$#J_=E(?b(EiM6eDSYLm^e z8P?Lnf)f|rMMZ`~2?cXkH5quc!R+c?WHz|SlGF3Lg^04yFU38IO{paazxWT_cu(mK zuZzX}t?^*Qwz^SK8md_Edv_UrR5t6-E(hDnFcV;CM7-LQ`J0iN3M)YZ7f^1(h#(br zqL}Zf7`B|TCCoDZfB;Hita3s50`x+e#(<~+vmit?><9_|`5 zG8>I4>bP-9L;4GdfitvhZwa;r?a;e%M7L(#)awA%R3;yUM;O5#QUc-m^W+;umwBxKT!xTZSqFT7t6n z;g&eZORZnSLE2kY1k9cBxJifO1g9`-whK%pTvcMZ*dvfp1o7KnlMD0?czoJJp9Tel zSJ6{2)JME6u)YdYBoN}5nnU8)fN(bwQ^nHWGL+=Th*8;$5Y40Y46mO=MbIcd%Wgs^ z+QJLprT4v^+^~ZorPzS{P)b7bD8l+`x=vaiPw?w=)kWZe7YTA!79=Z!F)u1%x}zhM z5nS9tHDGZeEdrma^GgZOA8Lu1Re9!-oKzMW!G3qt<&%>=iH8g`r3}aK z>$B(Ul&c0gqWx!KIjG+gFgB?X`~_<^%n+zYErv2u60Q?0V{k8x@tB= ze2OZf)0O6hoj};}zL-Wh(Q_jD?DWEDPqSRtW`O<{ed#pZN4-v-4}I2Va-=Qx_nCOt zC#&|H4;JfJJIZujw>#gYA!d$}>wWhe$g}7A)4%HEUBPQS6Ki%C?=7V2HLHr!2G@p` zHHnpi?G^W==gy$=SFd3o@-Q?$cpT8u5js)Z|Gp!G_bJS^J7nV~2bff}G_l|f1vf?6 zy3Z-)f$?#hY2UlWtrY zYYPZrfSg~R)_D8EKYBDP!Yn z+yCy816IR}>sO{T3m)B65#`Ai5|7P!mzJ9L&Pjjr@|V&j&V`}wF_QW2roH0&*F@=} zy+y9whJ&3(u1crm7P@bLVFo#uOJL>}KdCbPWmU7RMm})O;Xv^~ci$#z)Tcb9Psh-3 z@5fb=RKXOyDajZD=BtZT0Ra>Gia;Tc$7#-KdMq!kz$#s!H_41YJ!fwYC)HF}6!~Rw zWyKx+=lAdZ55|h?O*wHKM4mVYSPa>z6N$vI1Qd{c5i>gqxevV`{LMJm>Q-`xJ&Q9d zBV%ne4DZJekPq*Jd0G@lgRS^GLLSFtCWWhJWn*VNaI2F-6y_32ZW_DkLA)4>RePJp z+Rf{gKBlD4R?J1LU-~MM6}VhUdg)UmXl7v4@rFLC+4_!`^!*Wsi*|4M07QO3-t`JR zm}n_^=QIez?7f`EymtdGj|0eM2VBMv*vgy(IFIa^?6>=mcWvCaPhaRr zZRU)-#_2o%26aJF<0QXwDE3vwF|l;yc*4wCBn$s@Oe7uipL5Ez$07pgH4HCFz5bZ1 znb8t4Iq;ITE5n$${c`oCmw)n3-9fvjnLNquqE<7RvT?V5_rLnjSADGo6OH*WJ-8tq zzT54+iF~bQ43Fn2jIk_RWqfB3CMf$$`^&S-WfEfC7_RfO7uRgsZe9XgbX3GQnOFqi zN_{cPhDyB|)tY{*L}x|Hf|o_zqX!>T99Xs3C>v*k9`3IF*-z{ltG1TfXgk%FH=5Fl zWHB{?eF-$w{TKHrWhyb#MnxEj-%?_9fXWgQOueDEm(K{k`*l&--?I&gnd9mf!s5d++_+&*GiaG;|8_v3YVW{9R_F z?yvUn<1zs@y)EL0}ZgC!5- z&{4!=%&|$BrG7bsRLhJsJ0ge)s7X-^>cz24QJ+PmIDfpK+JalUPEhp5-oN6OwL{{H zK9x3kp}TLTC11yi2_q_Fb?vmf^5$stx?w_ZqsYi);?5hpD?B%6n@qi?lJcuuUEQMQ zWfQbjk!JTug#W0|4#B<@Ef<0J|aZi_%`E3Yp*9q!rhsN4(Yt8i<9iBM@Ck(*# z0bl5lMt1aCb9RP4$O3Qe4lq`SeK%&;e#CwR1q_}*@&Qp@TE5C1L;|gY901WRfF?M1 z>Ge4A>1pNYY!43JD>WV>Y8}De+O^~N;|uyDzg@av-O)^Pc64l822!!f4F(8)S#)367*v>N)d@A=9p469CThGpoin8n@PEWoo}Cd%Ed3`D9rZ;BlO#0=mT-S(wPd8z@I1C-gIaIQ4Q?q0lS420j$Kc$UV^I!}sDw=rPsY!$|%)Qego< zjOozSsqSn`+=p2a;Zn0ekWg&wvz#ouxUF8FACmdKRlb{Ri-kEkeVdhi-m62grsebF zxyL(IA4ccd^t=M59`NZ}Jefy>*)pR$Ai$>AyXP_<2-mTCz!d~hZeBc1`(Pz84w{aY`W^w10J;~ShMQ!<#S@C2YqK@ct<%0+@0R`l{b_Vp z_Wuu8A+cX)!P;(id(L#5yDX#9e`cjNQh9Y_Wxi?cj2JCZ zXa_BadEYsU743(K78+GB6Lodng@73aVpat7x)WMK!CaORgGmQ>S7WjDDxO@9^^m+c z1)sIa0gXuASX-y6Lu_oMNm4tnubB*&FU+T@{;Ss2_bWW-Nu5Qw5xAM*wWHhaN$*s> zx`%-RQ-l#?DI>A`V*=8fl!ou zE9-xZwcNKk@XqLBtfWUP=7(hX@)oo?e2`9Sp_IgU(VEP^ZB)Hv z=r=qi?^)RG)B@@y!4a5xQj!xXUo4bB_W8t{J3?7mX?0UzV`Zzouqyshj{56LaJT4q zGs+ds@uo_^sbzt$;eV+}T350-+P}8?4dnD~eT$78Zja{>_^{u+5^`5_^)@H}TrK=% z6nT}?*K9=7Deiii-Y(kjUkNQ1uXRLXN35hqMr-d~LPu@#TeOJUyeurl0_~$; zgV_Agwy+B-H~fM_UT);auMpIc(0VUuU#o25^`1QqMzNxv%pcZVBVgr~l?9wFNHdjj zQ!_JC(e}QyG_v+qh;r$=>1O9P^J_i%l94zErkgV%QNxWl(ZPa)+MXdCtoO|eoAzRV z0p=AkXD>!boCQjbIWs;!j<+JKK6q>y)Q@8qh_e_tKEtPKCNtJu@6zGQFO-~^(&xQ` z4+vi!C!b2kbiEG`?fN(&=al##G>5;-w^v+Zt_IcG0#OufS}bp7-?;Ww5zF@DxufEd zeObW-Ai>HtbUo0kKlGJy$hH*(t_syPnCToGuX z`&H~}pi_|6$^5w82(<-Gqlh<@k9J0cH{T4a*M>~DV*PArVD}@?x48jUd5S(xKQbpR zjr1%?JDkHDD%?iSIaJP#hhD7OuHmL>wM*7O!G3%2LT{laeD=sF!nvq@HRvdi9D%SH zoT^iz*j~TX>n^g37fD|jT)9`+_4>|(gyS;yaBvW@m?9H3JmpuACVM(EAl_VbPgK%7 zN0tHZl{%`PtrQlc`exDV0&KW#7klM_6_n8YftVZioB~lWXt5WfcXE zqI1zLEs2}m7Qm@j!Ha8&J{5%_7@9oq15v2QRIP0MN#dt3H`x(9KJ7tW4;t7Lnn|U` zn1{J9DQ2M`p4mmYTVqIV^?J{ouM;Yl(+{zO7d(`BmljWr77&IIj;`z5!oK^`L4p*4 zbY7j@Os|3vLGb`T?OyML>XMOw84oLV5|28T8tZg>tk?5oL{E3qYQZqz*gWhspoe|z zIpbi=LJNAhpy6twW8h;~bD2|KH}Wq(b}$O`4c{W-{s#uo40^L^uk{7e=)Xx=1*JK-LZBjR)93EecxzXYhCWOEVY1jPj|BTzo@83pNII~+w+*E(*|BiT|) z1k2pZxePptg39?trj@x)G&CE@_$>=;w`{#{+MG?A*;xB)20NWjN%p1Lw#wyR&-L#2 zMyAPZ*0T|hibM+QhlYl(UHpw_$7)K=G#{b=EaJ!H<-IDf>zJsDaoQZ#!CVq;!QH~) za5k!wW%hI%zQ&>iIth#CYh**OH;at;0Nu-WDnux#gqUl=NgDQrZT-x8kzIaX9>fwb z7z~L1rbU4nX~Y`xR^HR>r6-6J zfBxK*k5lyWT3cC|?47d_IA4eZV}Xj*eEq$gdCo4ZD{rm9 zQ2cfE)S6jVI^`**lzdk2@w@nIeUUZJxvSk4|H5TveAaDExBeyMx0EBZgn~eqG`TP~ zcI{&2>`I%jeOaN@#`1Ri_P_2P)2VAuTS5=v;j=I7f;M7`{{)>B-Lam@J-xZnS}|{1 zz1CD}x|kp(DBYG|4laBwA4~3u!|2M@;e^QREi?SUgwROYSczWur6RqCOJ(7X@N9vt8ZxWsZhoUgU=+q6>H(o9S(sf7&L0iR?u^4aNOAF9Gw-KI1Q`G$CMpglgP{q-w&8##l+)K^UA9!{BZX!EL3#f;keja z<|&>Mb@}G;#+wb#j0O#S`?v!!bu5=7Y#2qQMYuHeQpSt=Lwmj)eH;0)Vx|9OvXX^_QS``h-slyU*8X&I{eG0}#z&Y|RU~OF*}Q&>SIHD(;LO``-a0 z%KK7}etslT>y=((;`cK}LTe4)208fW&N`xOZ=EB)qi=$f7X5r|!M)3u4riT;0s_ax zqFj1iP3y>f*Mnh@XrmsVUE#+Z3wa<&Gk{4C5a9z+lQHLM9f|YeoIoWe_Y~PT-9kR1 zIJFEIT$kdJxL|oWN^kEA9M|r@5YYLGLfy;8%1?o$=nwZvz3W8VmM)58qxVG{$y=As zoaOpjuL3JY&D413JcxcbU~FBRxHa_Z^D`mrX|2ct=Q3HNV|~hYtRqY7KcF10yyG zd|1LV2-NJen6*!4c+TWs-d8?|NlWq2x*I;x2XEJq#dHqF^MbW|T6o`DNAcs46xF)^ z<9JT_l4_aL7?@1~1wo?`9y9kjz&!>&v%GrHqLu~9e+V?qqJg%mbfQcTG6z|aeXtmW z{sVNvRwP#Mc3TUL{=W(J5N{_t0{nYmQ^Fodp9V?8)MsxrS>blz|HC(z!X~MP&Zg}M zv?H(~1dL%@qh5!0fOhQCF<2Z?h5FY+L_&|M8Xo zAD-=hGJU>QrN(m5n%9yx`{yJ5r;SWgq}kG2NYOD`EuP&v^vQ=I2(gQ;>wcCbT8zB= zw2MjSGNgkYiQ3%U1jcJ`rz4Q$H9&)1?zW@T1Cu=nGm<$k@R&c0C1k|4 zjzIJ>QU{6zUn2~pKnax$Yrl#$ojg3qt?WPhwYD*#fEU8432I1S@^5aAZje3W)~e=b z88Xu!e(F6FUP=btoh+wB!&nLv^5j-7TXTy@yo z+}8L7wmrO-l>G`CP0e1v7oZiq1c#7?^yX}c^2+ko)c;E2=Xk|;l)*$@U0rppPFK4g z>RI6nOUuZInwD2_l2M2pt-i?2rsm4%(AE=5rEUXW@=1eYPu90AW}%domojxVe`}VA$e(or5EU^eX3W z?yCXWS9%5sE(ON^+neQZ;L96j4zxq6eJ&vf6(s~lGD1Wh9JivJZpKC9p6zS?e|q}X zzU4SntsN-nh+*p=TrmC!ZeO*Pn}wk{Zbi%7elsb*m5o}LxabeNX*tdDyh+YB^xEfT zc|Co77cKqWe70k^{wXhG9sF&&gF!m^tB)g)K_)m~ejFVgEs+l5va7EWBm&pxG*Wsi zw@c1skVRiY5}4JDEV~AtZk!W;2kZp(57$9tn@E)0@LNY&+s`t6TmM@9Cn{s}1ULt% z6Y-ZKGOb1u%qu3_S4CR6^TP>YCI>4u=jw!l^y;+AO06CE`8_feBHp;Udip(l_@TO5 zAfbV-4`wIct(bo+bCx8L)OYXRL6^7e`}HUqy2zfQrkut0OkGegLEcfE=cTwXOaB4| z%V8BU6bDyJsfBb0#^UYM+Uq?Hi(X02$@I(+?{%d3`=+k3A%Eb_H*qVix=8m~3a|-w z>U|V1)NsRDsfIz2e)Y8>^l}GV)k91Bm+j`&IsNO6kI!r5i{Tu!I%{#G~ zM`E`+2&$pX3g1wD+Ivu44xtW-X0%f{Kw0yV1=N3Oh*(w z5j<-K$Z8sq4XF~f2gJ?E`o|J7{~s3sD=8kR{3IaYV=Wz=#uW;dlMzqN0c2ecXg$hy zJgEP>Hd}l~4)MnLM1J3@q5n`UbmLAh*SSw@%?6h1rX($kde7MARy_H14+K4nJ^2;0 z9mgGhS8scsI2iu`FyMNN>Iu0SiQUQ(**1S4NV`WgfAZ!)P|pH`Oa{zov&sftkskOLjHFoit>}V|4qz) zM?+vr6a!vg@A}t!e=9@yS#+xp7lHRw*`)wZVJvdN;^Y&ZDoQc9h04vq zbvp8?gUC}JbKn>7y`E{dly>YzK-Q~NA&L+7GA!x=;jlPizmUfaT0*Xs4)A|^4DlR@ zQ{yVB9q~`k0B;A7V0MuZeH}10;**07T~r)seYJ$xcV^S#k79+7MTNGx7YOe_fLDrS z;YY%?mQpGTE&M3TSc3S)eHU4NS+w-`r&##tyapR3_MTe4{qxb_Z3Cr)e0m!_>0sCyUT5eng z7JErNo3u3LP+5HYJm}Tx>1LS|Wyd@7{=5qHA8^>pC>Y@f%Ng`d0)|Rs+2=s=F&1+q z8&m-$mL%$U;w=KpVfF|b>)et}U9JLzLl{$J7YcE+&?f@XkO{7S7FSrzJMsV7@wl`A z`T@0G0*hu4*(h;I&QSSj23WO^#B(fWCHm%UFAh=&webkS)~+K*U&m>h5BFC(bIJpT zv-3s+2q$S&>eKkI9bT2!MW-$d7d!M-&3~J+)zC2E?2G^~kB2H3Hr6)R4kw;K<#x@? z##ZF=aNd-N7+zRX9VdIC|B3%_3J@bx z&Frv&m9+`?r6cowoBrF5oogx^6V+RtUkc+qr5in#-*Hb@{QFA_yfb0k9-Lb16F!JfG9_R#%kUJ2cR6rs72i8u6;>ei$&-8^;c5l~z<}+qlrzLlyVF zHO)^}P_#K+Xxo`rijs^xOR)W4buKcB9!pEebAw=8h-_(3OiE%9V{>v?)}Bf!fIC3N z1z3}<0?HzULIffwkZ@VjTHLe%uH*>%}h;QMYDML zlVw~_QEd|PBe3|tq$axQbxW&j(8b4VvFlxC-)2q7Oy8!@t(adqF+>2)2)D#2X9CIy zPRN>diglXT$I+^#^qv{N#au&Ezaas?+hpHr=QepDYZwiyw~>*N^g|=Rx3>IRgfY|2JYpWAhmj3_oH}6M(Fw3vtlHXE zV~V@?dg$1rxUl=Py~ScM)~4$%4c~e{V3c3wGXJnZCW%6UyR(d#tBRz^PKl()nDY+e z&dEn#HA?$v=k4(jfq>`ml}`$@ER(JN27AMXv#oirlvfwp8kbX)aHR@0b~Eo~7x{17ni*QELJl}Tq*joAN-_O{wy zR^F&I%CAV<4FSY6>%s;q_#q7nc&!&kV;U<}ynG$LvRbI!P z`^#7@)w){iL7UcX$@iLzOg5?99;;+LhZF4M-F#*QfL@i$1j)>M8CeFl>UbVu%r|Go zJGYw3#kF((b3La1%TpH_j_s06QXw(FGd5?aFgkST`NJ~PE>AFw1hLEVO`3ryNBi`m ztwyL=grzb|zq?lq@&GS6kAj8YiFJq~=J~t2x=NzCv@lB?Eemd^Icmd%2azW-=`k9O zk!)`?73Ji}30FI>FuXiHMTtqyZ~i7)4(mmWKBGkHTu;|L<&?1a#-K-0^YfdkN_-)Pfc;D-z0eK;=Ev0+Rj~RswK25k9f;UV6Rkj{` z9H-6uI{@J#P6*tfbU2fRo!ccNJaYE={Vm<2jW_AJ-fb^!)73cS|dFj>>W6rlETIQp}OzHl)%TDXkzo#!-pU>`%|IX zpgCWT=%t^;Mu}ycM4ger+xrVgZ{Jts^v!z~&;rh)S=6Tp#Aj#Htkv^R2nZXcAP%wZ zM~`Om*`p!nJBsohDj6W)EHxQYg@5h{c)#o@*Sm#WaM%DLfMp5%s<`dD@pVLbb@DDX zb*~ZBxa5@vTA)my$6~^apWW@;yjMKo+#rDFfrgT&(B?tKX))sE^B)UBbI~47qghZm z!DlNAPGb-o_i@u+W!SLwFHGXFp%O)Q@=4d50Rx-y1q;0Y;n_g46O#vHuoI1KoJr20 zTY>}>2yzEYORye5Xo-R{KCu<72QW^WEc-APDLNQ7BhLh!S2cQPS>INF_2O5$xg{ z=z3bPt`%a3=@HmoF^P;Y)YIY$&1{fh(+t3Lj!F#0ScvXI$91W^-^*fq31a-&ULz1u zU>8OX#;E6FFq<(060i;mjhy!T*VdSllx!OJmW@F~H>*&PkNy`mvhMAT@N)GlAm)De zRL!IY>uaG!5dm+YH3+%@IViY1SXdKac-20O4Hd;usbC!dW@}UXAUOxKqi4rWHcW`o zo8I+?a$woVxedtPHNIe*3nav}V@i!s>34o5$EFUk=8rU-jswqug{ls^5mI8s z!Drw&upFo_DfIUpUK0)B^%jph^ZDTle2s`hqroKj0moJt8gYgfunu1~H(<#<{X)m5 z#XM$V=RMGXT?R89#7`ouKLE|qf9VFOI=ISAwgMePp8!p5@lO9|csvbO=<#vSfKm^7 z6bWau;(GZ6M>TvF%Wj6{L7DpOyK~9VQFw^D_f%9=j23GKo(sdI5|S0YUqx5``?kn) z*W)rlK*8goms^3q2m7Ex0VazLyE8z`jxX-Lhv7LQPn|G&za&Dp@nR|zLIgB}Du z0*vV`6_XnGG$!T+)oTW(0>pmKr7O#a2;`54<{SAYp2cR`d^kS&$-RXk#o)GpZ! zdo0;FZDV8tgW4gNbRAvLA;+nv3^aY-;HpF2(p#t^Q=@%&MG@2;Oy`Y$VT9Q7EL+PT5!r<3!3=56^p82ZFB%C zwbDDfT`pjH%iUY)T-Je_IAuk_0DjyKK$<$j`!K~~2XuKvbxkeCnl)_J;uLONJKI4#z9 zD^S^UJJN5ZCNPtS@##B*sD4eElPai(tf4!J1@JxIiD<;%FjeUGpJ+Dh^;$gKC%xV1 zu&q>VcNJIEoR)yObp*61wO+y)80Vfj+bbn0l&t^pU+LW5bg$a*8aIr;#e!Vlca#;& z%&@S5|Luo5Cl((_Lp&2C-QWi;*H;!c0(Bt)b9NS9YtnUcE@&k~C6v6E;9AuOOZm^| zc3y>)$}mT{B>SRQ=gV1x+iJubj^s2k0A%;^@8wpzCzEzbzGTbDe|vjl@Xy@Fs2sAH6g}kigx&6e*u}gC zV~Yn?g?luw<`m9sFicm+ljKdz+&=a`sNhDtAvCq2u=y-@3ApC=;XY;0&P%h zhwov;&a-Fl5w9&l7T1y^UnBKz;{2pOoA!ueQWjIOp>|ldrF$~ z%_fpYmHLx+VRV<-v%X-*nA;PKU9^8>^U$n|3!t*OUoE?pjH|?(L%DMq03?gcMFaJJzlhu5Zc{R9P1%-&Nv>MEE9x z(Ea^D+YK$L$_k=uyYvVdx**9gyB@dpJwlYfA5AtQx99s-9kzP5|D^X^95n7)r>b%y z$fW&^($W-Tty1HBa;~6R5c!7wvv`bPG(}eJq*{T*e%iO*2S228ciN^#(z)J;n@fyY z44`!I!=WHrnyb^XUSAyE3T&LX86(^2Wat3G6ZgODh) zU_1g5ZLaBN?Doq=ueeY@zwMfJX!N>P)xW*u>m?4y+R;G{4#{v(LEs^exhf zU?G+_Lc3(|O{5ZphP2=iW-23zm@G1krlCI*3zvK8-v!h4waiHf09?}ti+p}zQUS9C z7T91SoS^F9pbo|q5thui`~dJGtSu%*qV=1OU|UC=fr*5$j?b_&0^T9~lMdpo6SuU^ ze3#VuALojN&gL=zik;mBhNcK{3qmd|Ljg*#J`LLqVGI_^EeZ`Pc_te|{TDpnY@HEa z1y3cDBJLDV;=rPErwS09&}|gkTtJu84*~t@*9+F@276Pzy$F_|20;2Si630p9J17f z^nTDorKAAAx6w7al-P?P1$EJ@Qit^0KsoWoiU?mSzFYsG(}6CP0%JrS?;l%&3*4x=zOXwcz9jVix6`lLvV-u2oOQ) ze$o*L_sM>17&Rn7_V7yZAD&QVb>Z`bnffMy1&RRC zj1S7C;_0#h=&4vVFJVkCMsRIA>v7?2o#F-YFEbxI)~aR%mTtRJTl6#6!xW3lr#^-| zK4AOLF%_lxH_J{q&G=!|zUN$0c0t>fN~NM_>hlTAv|Bl`NtRRei6cEdCbLzH6dDL_2~7JZg1Q59e^|~a_Ql6D z6m;6(CtN(T52%a;{$O)H4fl&ujl5QcN73*s(^Wm-Hf@_gqTOwc<)D@^?E!~_EsgH= z>)r>Z({u}L2&|{SO1NEm|1s>2ibjm44}o9VaN|&ZjOF_ zC(7JjZ)l_>ZuTm#|5@(a_E0>+;gmz_SeC~&rC%zPOEAnj)nIlV!#pL-5u2;p$oXS0y`%>Af-7)91Y$xxMgCcUt+*l-n60`Jcp{g{T}uf~)E| z*U8iFr}8-pSE6C_-C4D<6x-*w*>bK}ze#psqUrE+-V&tFz^ClZCGMH+?(Nm%7pvEv z3G-cyY;fdjaFkB4TL%rTP!RZb>Qs9z?NeTTS-m#DtrZsxjx%@iVXx=}3F)*hq(ya4 zJ#UIqdCB_h*m{Zr&bvs-+sU!Ci;6=_y#1d9B~G3FsdLK>+jdFq569O8!_%^M+e;M) zTphgzY3et!C_gV<#Du_1sZOFmqN3;aw4&XSqoP+Wt`IKVk8h0?nw8yOtQ%qP zI(1D(_qAi?o$yWTy>A3X-R6skqPMQpWh9iYM{97a54I%9i=NW{+K5&g?VOm(kilx4 zNf&$y)#!mTke08_-0Ws8Uk1RRE{viR=v?!TL^F8V@)mmg(?uX3WyX? z^7^kg@7k;HAKGdQHLAC&HykEHuL)goQ6pTSe9`<{VOf|0*%;xsGK*xE=m(=WtX5DcA&fNkv@{AaOi>bJ|V>Sb}JtD8D=A@k(yxs zp6106d6FO#LDFeDQ#$JHK2znt^!|>Pyb%Jm^S|SAZ;l~&Rf@>q7A8ctIDi(UdroGe zALR= zm?11KcOWPclt)kE*lq{ybYw&w1v8MXm-X+<%ZSR}UUTo3l{RL#0<)<{jSr$bj|JH? zE9O>*mz37I7Ub1@;RElAYy@fduz$p| zQ+BPmAO_OGG2M5eG;6_*iH9ZVgH|S6z|unpzQS_DVp~VuM_mGNPhrR(oo<&D zvA7SsyRDu$FtEA!4}Fl}?Exl|zL-He2VHJ1DWd?!y~ z*z;(?Utq>n#pjPt(^w}Owq5b`pdtcu$X&z9rzM{afpMbbEG|tqF8BFv4}?UvWKxlr zE8__&Y8X7}B+U84gDVf)n%B%>lDa0^pVgl}D$WU&{c+5aDw1LDo-5G&>9=jJeJk7T zF!VAg?e0g$**4#&s$+#-5#x@21$!S8p$6U^r}s!S)I0UE#O}U*y6yT}*(7R){izA5 zsL^TaH#)_hM4y}{rU)P6klJ;Ud!C4%}pKMMYJQd%E3tRA0s37=~%S#NGXE^(#8(F^Qt z0w`1>Fx}AR;D>;y28$WExGKn$|GCTm3I$L9nYg&}0YC;=dw7(p3X6)yS`2}&3<6Uo zkL@Hv_s4{(wu@<=-!VQ7jT_kD(AkzyZ6=%Xij8#A@N`KdowZYhp9S-{FEz|KKySd@ zi4P4jJoM(V|2|3GT5%>($p&nnScpMMIpF92@j`oMakG3_bM#6^WXlN%&TRAl-moyu zA>ijS(@QcG4@x|T4S`&D#KtWe1oVl+T?P%LyA>KZmWhSs!WhJ)TY2o=3STd;4e#pp zaypXezZzTZ>Et4=bMVr>%lvLxt4%5X593e({5k2+l&EV;b`& zUU6`cikQ;?Z;PH{&Alv;`*mE7&|lg8ISgtH2J^9)xtN(L!!k9!80(C_%mEH>=DcEJ zd9Uv5 zcMHA295Qwujn2-_t~7{3dr{s@+KB*;P!OVjAWs>mB>8Y>_kKwETw9;<-_QU^n`8Mz zzI&w{8{)-?9$AW^iiDnm?H+Ld%~da6?33O4JEFAyq*FQYG7zOVOthaOP6e+%s1f4w z?4EMlBpCs7p?jaUJ3Ns8hQL;3YsG?U(pq%jkZc6JQUppbzIB9a9KNJ4_23$WwK3K2 zbzIP2YE)RzH~B%7B{qS^mv&FN+SqrU11!)t z%dJKx<{7~!JL114BA?eYn>m>c=2`8x>B8;dwL>yh{~+sZe57}6@|q4O^L?CDA^5#_ zGQ27$N#j|Ew%7e* ztH0yE#3kDB+^zYDCbulW&Bv^hKYcigGaH30SE&Z%}0bth!h&V8t3DpLFz zdiw6ST5j!n!#hxM_3{_n?9T7bH&waM<9XFpkt(f1SV5jeW7pSC%GZ6xau)LpT@e~t z0bE?2sJ1`H*meYzAD3l?YGH7ooxyTIQ2bk4s1tbhQE(KE2trPx-k}178-8UOx_STU z80%Y;*}l>;Aj{xZT3cE7U#n?vIwz$vNW^0Ing+I3t~OXf>V0^pX^&l}2|1`B=0}m8 z_8#=9hgx6h6wMqHXDsWn^|2%a7efd0#Ke$)w)M|q=J~6UrmBx zN)T}se_0<7iG49I%3(UrV^_+UrAYoahD3bCt!^7(_JpBUmFxo~qO+S^?j zI#c5QTY2N8{%J6qA8qJFUcY|bJ~^@B5NJ`ZiJDC#(_?JnwM41MUaKOr?YiBDDG;sv zw+pfYzWnXvWbz}B{L4Q-RqS=t5(@6mYnL2KM7N=NceUlCZyv<#tAEaSzMM_4+B%7T#yP8Iy8Any+$l~o-Qsylj3Yzd%kOkSt0(Cz@HeJn6LO5{V} zK3`huaY#u?fk4B6rTC1vj4`0(*5)ZIC`cAIlL+K0H;;!e_J@!KV98wCD|byf9DGsI zeihkuO4*S=3P@S~=OpXEW7oO+E>wj(``B?{78uucz6j(E5H=yd5Nl|d9<%!3mENU7 zN4^9U%)I|(9ivaAUx=Vl@kT42rGf4}nXNP$LO-UK-}J4w;kW5#s5 zD`n%{_IN924&#qg1O(^plHSb79(B{O0m2CTRTB3|Kr`M_|1 z{4+Xg4W7nO`^yWei>x7T`ITNviee?y9(y}%Xu(y{FoJ-IvES_10f8#_ncjC+DGDBl z182>036!8;ZCl#8uE(5Oggq7S7MX7U9@+ZQSv8wptW^G5T|`#)_OSV}f09FGx9P8+ z-&&XVUzqOOrkVN=wd9N!O%9hc?Z4euN{RHO(hl785bOH5{v>7NTkGb6j9UUBtYFZl zuq*3MPtkxZvutrk$-%bOcB|zScQ-KCt2ht<23p)?T;jwZ z3ZjadzY!$&8whb{YRrRhF4WX(1Z$$Q8_bG5U7QpKFB9B*#wsI~?;L+1VrSVDM(dbz z^L_a6r>jo(sz)z#yj$);Y)EK=jDxXKd00WgxRCl{8OWNR14S$^VZ_$;Y&su5pM7x; zae_=E>wyg+$-uU9^KU3#KgSpB6-h@_J;u^|K=l48gDuCi{MH50AYkC-A_Bfdn2o~+ z%1ESqpIT_Ricn3FfQ$cnP!KiyXC7(Lki(0@^GGBCGy}@awD$#EoWhF2oe=IQaU`y|P!%>Rey`YDV1n$aU+^a_tR1 z#Gz!cX%ox%Ffz-BLA@0pII;5?3fq2S-=7mODU=^%!|Z-#JALvqr*$&hq@mwptV1H7 zsYz~%g3@-Iw?NhQ*Fe2yJ~kEJW-{l-kEsOH)z9+z6+Q{y+dz>s}DcT3!Ie8wMM)XgPe zxU@?OvAds61$HEr3OsLSs6<&g*lWV_X-7f%NFv)OW~L3?q@01}fU|copPm_cPlbPB zNPypxR;1Gx(_!5>b^;ccK+5ABpfXEb!As`Uilc7!6afzn zTwj@X7t;@^-XMSmJ<%B;Y&E3lDS+04Q5lsb90WG>VS*u9(}i_5goMjyGuNCL0@@ zFf7LVrxE?$P-F4>&TIi9Pr4qk8V>Evv^P=eHE8rFb#To4?Ci5&DCooO^B~n=!Wz-0G>Mu@8S;BDnR;CQE=VST_#NQr{CyLqqq_S7`>M$NHiOA8OYTDq_BPZ zD2|P9avq!(`X+_>SBcso_mik*hE+3!EilIGPs3P`Lv^mf(=$)NC8mEG3?p~kl~=@_ zO)n{@2wDIXf)E5M;dCC={tN~`IQ=Dv0zXv-RC6Baod8EbJak8h=TNM@VG%KH50UM7 z`lL5pZJGfvj1#dSzX$asR9*-rj{}V43#TEt-z}lQL&ZrN5^lGN^gGQ~nB$BfY2ZHm9hmI`1|yHQ7os-6Wip^`4z2 z%fDZ5dqmEqoB?DTZVPOVHv)D0xiLP&hDwW%+gZnpE{ORHmwXyGQrzc-O`nbQpD5;v z4LvmEu+>~$km!yuL#TeJ^yxtQ4G$SUl#QQ#__V zL-(823E+YT3(~PMn_RFIiH6y$KE;Y%-3s^`KfF{1ef=kSvG2X?$k zQTCdRVcJO zYy-go5}JwQ7k?*ajQ#z)L%X~vDrRqnMr;nZ5^lmdkIT2uRt$4M&)dmmkeEx#P2V^B zZC|FzUq=1VR8Mij>({F*qi04oMkmAKdRDc85zI2Phe`~HZLJV~_h<97Le2iOTaA62 zZ5&V+0t+=_6Z~!<*roGJV~9F5!4hf*RrB%a!{+ceRgNR+DJ$b6)oU$Ahd2DU7W*V) zce-roh%*ucRs#$cVRPf-XM+SIT)X|IraGG@Xf{pE6Z2+8ku|7KQYN2P(!(;O? zQZs8?!*f@qtYaIuncEB8$?uEi2ihHDtqR?!w{oSlp!475(NcEkacuRX!^UT;yCpXp zYiju5Ua052mYiXpc+skd`Mk_te)KeVE6c9VN>{97GwYK&lWpwSXW0m%2>#?#%%zv_ zsRj(Dl@9pl{;SibTc`Vv&|<5%hFYt=yk79$I@sXYnI0S{X%{QxGsEQG`{jOLoISwp+6)N6BRY#R4k4Z*={0-^ zI*nS!sI7PEkWzYi=h-|j!mQ}EyGi4{DDeX}UqhN!AwDRh?$6}hYFFTCopI^fk0&$` zA8c-aoLdTSFVeBhoAC44Sa5nj{N+oG>b=XId{24=VQD>W->;tAdS6d!#5|so^%Sjr z8T&{$wJwNqQ#A~Or}*W@TpFfQOUZc*1ic`OM=J2UZfR?2zUQSID?F%xe%#K79$e@> zD8%#sA#gh-6gl9e5@J8%zdlMJso5`7_baUu7RBIj0prDv zfEh5n=z!CbiFS+^@o32_l?MwB(fhn21m=|6bOZ$fcpjumBWsw1m&oK>!l?x?V=BUN zy!z9kK&6i5j+f8$EwBP#aLhB!2MG`umNi~7;a;9p4gjXR36Cm(-M~5sx?#)TSO9bP z|8Vy66;>oTxAiZWbS@@LvC1q7erTz`U$8-T3Vl=S5e(rr@!!)R^YjV$s?xu2976*h zMX+0fAP=Sq{Ki9yYAW?bDj2)nux&04Mv)4;#5p5RC?0DB*)TXefbS>^R^-!gvW|xZ zY2Ewb#7y06Y8tD!c;iNF&XNqMic0=oZrg3qnLIsyUkHTCpJcFarXry+T&?fv95xB1 z7y#IiS{_?TwB4)vS?FYhdE&R)#*yWj6qCET&GaY~FGOoXS3@}W$for5g(Lf}K$sKn zZWf=%5-u4~El&oCp1Klt6Jn?=3XnpBiR%)vdJPggKgkX;WsP&Cd+d~l*^Dj2VEN|> z86SYLyUSo<-erx9z=Y4DeTI4p)exdXN~{c+Nl)=v)&#;8^Szwfob;9*fWE8TL%_f@ z3?E^|B`gkg^I&af)shrgwpnP4W>d=r#CX8o-HdbwQpM&>aU3iS&CZ`g__mS!**K*3zvU+d+23VH$r zMS@BN27xNFT{3)Nbh@xeUP;Nm$BoumG)3y1aVrM~TIXHw3k@a4Vr(jSJuUk0<;{V{ z$VR^s$AK$7MeUNtxsaA=hwY2FFAuStNmE+MQI~#`S+BQzjdPVt=I7(c#7z)pJ^AlA3hNmPfm|l}px>z+frR zn>)pBP4CJ(n2oT;Vo_}(4{L1E_Zi#`xKwK_7c&|^``xHqX*vKoGY$m^)U+HiKGI5_|MJU=h%lo zTLI_Mm+(H>_VZ0wwfE}xWS5P0W51OrSFKK)%RB9%=AE*U%)FZOgr`z3FxzM);zy{U$vAe zM4|ocT{pV`d}$fQY4OacFNT<1BKa86PS$`Lyoq-yK}A&Wv8mH>ATl~KrQ)x`$>hJV z!Eo`PyrE*-@l2uqh~p962XTaFm?E}w`Si{d6@#`o!;YQgaGvaBL78|}yDSdZZpx*E z?fV#!525rbsl67ny&-P9$qvS^6mt68)5FmkD)gO)YrV?5^NPX8-nHMz*f@GucT9v*zOoni#_L8FY`PwfY}3_ zA3lg2{5wfaW)GJtKZ*U^iv2s@x!-4L>Q8HRJ+lJVT~dqNC3kK_Tso(a-^zPsX}>ya zM8DYCKJiLUqX4Je|8#D1io-DozVr7dW;)CO1Fkds2a%q?EX(oihD0p`^uhO9Xm|7N z%3zy?xtJLTsPIudNZ)Tk&GOAax>t{)1Xe;SMnnGeY z*g8%00I#gJ%-vfBKQs6i&?^W?#~>xM%Zzbm1{}G2VyKYf37zS~DG=}ETr4MtH$S;g zEHuwywPITk<^j1xjVYE+tryUK+X)+a0_!pbRF#hB@suk7WD6VyX&M8I02F?ak!RQ@ zpVpGNGBGi+zAl8_&-gH@igjfHnJH!s+;wkxr@3B(S^iEs2a+_3gAHA*-Aun#qAMq7 zF$DPELocmzmD&<==*~*;foc7at-41@CQVaqZiEL|`}dd6 zRF=Sfn+>HDbtz3Ty0CkxlI~PFPRhx75{x42x6IFP|;wO0`N z(xH^GHc3R?ET@w>Q zD_wze`=g_x)Yk`w7;$^OKkOiq1<*ym=_DX7cz&BBoMMO2o7}4)fpj>2JKCp{{*kL( zSv}Y$zuxS!xzzgQ&%*H7{=khzH(xt(sL7f&KrF8+J5fM^d z^_sa>-F-H)$*VjmQv!b_*RU%LvwCanon5god2C@>`8-&c;5C%USYt8wwEpCSZX41J zs0;Zt)-R%~dKV2Ic-UE?VB*)W-PniMOtCVfpBc^$xniLLAc2J*`>R)<5xy)q($mg( zkI;4i8{KM-*V2U*P+wd+_s+h#)Go_$Tu3Qd`WNWLIPE=MlEfhcWo~dVJ?_6|TljrP zddt@elqFxtVXwP*{U>?obopv5OCA2z@L9g?N$I{q+V;b&6gjS- z^GB+D9>&33u2kh>-L=MkC|{J)b9#K%)OLQ0-ZvAFloghJpvV@I2Na5r!C%LMoY%FC zVk^F38x0Q&9q#z}`1uuJ)twX%g7$CP>xLc}?BM<(R1cSDOS$FcUmYFN;TI=*GVSyv z3cDl8UQ}VZ;@yoU-jf;ojdrPBq;?iLNgS<%PY?tvf@XxzI7$jy(Oxmvnn3q%c#!U3 z$V*l>G*R&6onQIfp9c)%;!3yu{EQBy(O0wjsjTI0pZKJ__J$6O@O3{v0}}nzU17Hi zU*Bzu$PfILo3=8C)^>D$cA#E&SH2PHeInDA?@+s|>?>upWs!|v`QDE7kT<8>GsA0? zqs~C|+vV&CGPOCW#Bn&E{k6q^e6giH3$Th^Pa#Pu>4Yk>LZnOa87q6j)*Ap}!0Rm) zn{Ph6C2x(>Ka~-bOy)k1m3alXS1{K6PC5KPxqp`Bch2Y8J^MWOC%2_?qsO7x`Ov8w zcnys}PWyrj+aBp0Dr0Vp`48Q%=+o6b`;F143?6C%zkLOGlZ8aKp69gn01*SI>@KH< zQuA^k%!wM!c2-QLI6>O0o0pg36Pqqipi`g#I3w{|ayQ~$=X%FR^fmD_go0J*Hvw*n@!X8WAtL-i%7 z0YVP0I;57oQhrYm{C><1{TceRXj*wmWi-!__uGIDBLy>JkwnSDR%}JG6|_}OU!&18 zujHIZD;mvnl@;h0l&Y^8%>U>=ty<>kwmXzIQR_3m+%2bbWnSPQjuR=gADh=!I=t20 zGP%lFCDuP@b}ys_od zJ~2imgk=+N&I)~T=eet?$>TeA9@SC-R0ncmm_8@@ZEi!QkQmxKIby6YbDQSu%P&;20ff*Lg~ET`B8$DwZ_N8ggS zJ^h35@$?x;7uY=DadqsisVHzU@wD(y4M<~ra0ajSvcgnh%8rc+P23>lEffE%6<{!E zs}=iWF0|p&bzMnt$!HB0L4v4VA?U1z837Z544>x`XsRmhwBI`OQWM1gmc*q5s;{j>j>Xq7#LNFRgHM7>lt_p{J z7FjK5cK~MnMwdK``SN97dAS+wSnT%07B)odPh7}NZk$^^&XYSh@e~_SE zT|(^)K=ilB2!{pBNY`reb7IYSLdjX%Lm}yHJbA}xn~Q<-Ip;ah5^?}mOet}kXzwSXiD3g64t##)-f+RK4B((M2%_;y3T|1j z?eC6(9h*AD0h9z41Yi(o0{?O!0Z=<-ZP;HGGm1QYkLPlIQ$JH9goxhXN`vR zR0TPBlM)VYAE^BQT7blCMF~UkJ>Z*<{|mdID)W2Fns{ZnO5P+Y-y=b&JD&R!;XHEl zt@+V90mApv?1Rdd^IWD69cB#aFMG>QW#h#%o)YxAft!cB3E>~CykWILp49IXcrh6< z>*sDwH2B%!7H{Q0`#sH%8U6C~s!;C+#cH_}wVK6&+8`o+ZhSOtb5LsC5vP3p)FXc@ zhrSsS^j9s{ozl72Rl&@c?4*Jjm0nctzqaJ4=)1l=hl+hyta}t=1AYcScpcOB)V zO>Ua$uk0_H_9>qMVKj&;p1N-h@_k2w;^a1YxKrQ%*w56LfS|XLvWgzE%Duxi8XF4{ zmT&EVud!kl#Wrwbj}=D6m<_8&Mc92NO?J-t9qK+BO};lj0-gbdkZG@jPkHVM&DVDP zcK#_he_Pff_X<#l;5(jgsA1?!gdI=l+g$#|QeR#!JZ4K*x5fHjpndK<0lBixH@|X= zecVAd&Hq#9@UB0Am7BKw-GRi^SbkKw7zhvkp|UKsx}wC)%cfrb-7}eO&AQ6Ds|RXiM=)Alp2x?P$$R^&$&B~Q z4TW+UKWn@S67C4n6%7YHz}%%eZOw2J=~WM4&rGwu7)7TbT?`6}1t9o`1H1DV@MKqV?;{6Fi0dy#2p0(`D7))L=6h_#!X$)-HXrDlJdb1b{9 z{L(n)i$#;@s6iEiNgg1Ff3!>DFAL~Z`)V!ISbdiWG~djj1hls-88)%l3&rT25(q=_ z^b^nA!KVQor+c`H=1ZfXfa*0U@06l!a`!%UYc_1-4r-@l*|DmZzdTCwUm6>Km!`g9 zTe-F^EpP*~>)(Ye{h3Z>QWh9UaR2sA*Aq@Z4W@pTj@lX(yj_ry%i}Jjmq(E-Blb}^ zaw7^HtWl$X{Wm9j&cnJKS@U^kRLyR-k-rd&1D9(LcWI`)d}(z@;ihK(yZXl89}Ei^ zd_$wrmXW2_np{pvlA#yB3!EDxXa$LjleQq9$B7yCm$0VW9tJizNb0Jm8Q8oEBSd1c z+7@2`CAVqr)&?}T_KT3PF1A)IVqZwbcQ2tWn5RKJG-U4&Y)}l3)ehYlF0S3!XC}Ph z6z05#3&a}O20RhPRulh9q^;tVfPR*I9F`}$P z@>Q!+R$o_Nskfi}Qu48Ak%wG3@ezBox3Xa)L5b{F`?f&kB<$Epnc(>6*bA+7nRY#1 zgERj9@dWEgv}pm7p8)r0A_8q@O@!*(Fv!V(1p&vo4K!mOr#>b=mx&<55o@12r2L?V zvf^h6S(;yHT0F3l;X{K}!W^K100}=H3Wo($TcWX~VQ^qQkx3Fv>f!>!4Z57ar+8WH zxA7q1KXKtBW570B=js6wD3CISXzoIS1Yr_1!CriNmJ4|mLePW%Zx8xuv{u|gX)%Pb zLnz_8-gYeGOh!BF3=$g8gJqfqnv$AOe7{As=GksaE1Di2C_CFe9Q z5{vtpkHoqb12jOah3rRE$6;N z2C`FT0z6ACU6ig~JxIb2oKzV7m(FC_D9XW_qIhq23~n#B3AT+BgEM3yEonLKa~}6R zNpd+juOKoFi)ACi>j#co*ceGX@rNDM?l4YPS+1U+Eb3Oph1-D#5E}u>A3u-2gi9rR z39>KEcVYnv5y#2Y0mNIP)>q+K%`i2^(;@+dfss7pyo0!P8&D+t$}n6}p);OX$E8ul z1)el`?Wj~xOhY{ixPcD2hk;D_5vS3>k!~@q1 zc{9-Kot$|=0vnTE_MXZm05nE|;Fn)PmvhKG zT|DsK^jg&7Ys^RISLjyWlT%aO(1yTQmghaW*cCW4y7|Z6dzeQXpKE#Ad;PhRWvTDK zW=3Y`@8w3eN1x+)Jy|C3hAQLU&pNkg-oZE)t5|ofu9Y#`*5If}Eh{T4DdFLkIZu*0 zI!~!VLsL8_n`0kE>&MWQnB=(8mbAPp|G1|bQO6xQ5bCY_tHWCmns{!aITu2-%)P=6 zj!Pog)4c>hhe$61GJ(_Wr*pAIm!Wv<(9mJi+*0X6;ZO|C@h`hgadJ3eyZ>rSzL!+d znodg#bw%hLIEjpf@~{sf&*nt%&0+@rJ+pkVuE8zS6bafM-$ir>uhnZvWd7dK(SfQZ zx1_a<7CSTc#Z1>`+$}9D;~btoK1%=f=8-dayFEnw^f19-atrS zkYVvjk=M$1?Md1?^o5i!`dCeDuJUbMN}&;WCyLC44r(?0+wHi@*opuk93~d}qvm74 z#&YFq%Vu+N#m3C)dgONNNXm#*#qtAk8T8|T_$xUv+emy5EDb610hL!frj}dZM6_y} z|AkM_IO(KvuJ)E9>X&kaf?0{dZlXv>T-P5aPWY5 zDu`OlgvO(*5Qe{ZzHq*A+~aZHMBe$9W~sp0A>)k!i1vkSR)xfVlUk-n5sYf#U|41#KrfRjYpf~ftk)D1r7dA zNk2bHjGi^sHfSenNeo%{><;mIz zpp9=UMnh?BPf=>iC|P;Q7nQ}qtt*3HPR%kG<0_j-)@}AKxCZ7~QOb58sc6Yhy{Hy4 zTR7dv%ZTb}hh^e+hy|B~>rsp~*z3@*K?-1tY@DC_crap*3oArbo>7xmnnx_ee;_Qa zu`iy$a1>Y^K1s+g^%XUeDU#Xpb$))n`z-`bd@`~I+Op=?UG<3VCc}!{F>X$(sd-l# z1rC>tTBrGM-1VnCacYbAsbD-eGvQUbQm^D96tY4rEbVn9oy+GLQZ}Mrpv(JI(Ox@= z$A&+DkeB%iAs?R@(8H@l^Xl@_1hnoZiPw$I-1#tccCSf?J)H8j{0DjCv^0sr)@QS?6;1I;urZp5;d{ykHSsh|o`82$j7gnGEh`2v z+HF}o`aUcgG*LR9870jdlD&JCa!a8142n)=*9ky)1T5XQ7j1}e1OpncahDF~Hwd}~ z(LclhIS~)??`0T*5C!pq@J%fADWT*%ULph7bC}j+XCn(HRe@pv5R?<$jP<&#FPf?x z*Txh)xnK%PwXqqo(D6^yeOfn1ZVA}u!k7k0ITj02BS3GJ4BI>{B4vbra$rk+b4~fa zD?Cq;6M7q`#glER7h_I zfL zGcW6d1x@U2Zjam*SLrGkZj8t&xJ~Ni^QJPTx+ZT4n06QhV`#!(Iy#<6g9M4G6r-~dVI94~no zzE$$KAjIom)qv4d61f%LeaaQMBLys`reR`qKac}iS2rzXbWqP7iaYFvj8Xu_Iosmf z4M8{r9ykWv+Ayt*X#{9McxLVo%m9A@`@088?o9}|q)|dGh&;dn?uI5b=lDW{F!-@o7q(+JQqZNlL``@= zVLot6gXwcJba5Km1uL4a zTB=t15c9N(hGJdAO-lWrNj{@#?6$!Fm_>xf{^g9o`RU@y2QrBfydm+fzOGC28uKQ% zzw>bK1HTtr`Q-i_bA5VdkyFOqW`LMLpn<|O_dt(Fn_6H0%v{Tx?DePii|G(wzFnRO zq4LbGkHg#?5=i#f;BUQmDr4x4cH|{{@3}#3jmW`$fXH;n>}mB-g_9B15x8g=OYB6^ z5vi;RX#i4J#dY6|GJ_5`&I8`6myI z-wETq_$QPf>|!x{%gR+R49i@cSvy$l@-{930___cXpDN9$`a)k@7|@gH*Y#}ZxrL- zGJUtgc*p%0?^bX~!*_M?QQGPCg}HgBw46k$#X*>HJ3!Yb(5fKKS&|rU#+ah`Dpk%k zAA|zPrmL2|?5@C}V)ej350dL*z$|TjoIvvLo+^3|<71~-?b6`XT;MWuol?2N+@ufr z#Mi3}`OVetUt_DE2e5007<%rjrpm&+g{fP3_=$Eisrt?QKL)8+Zk!}mz2q!*eTK&5 zKc(=%h+l1blXw9-UztNApj{+lx$#HOgm-)@Br8TY)0 zdW*8-sdCRdf9QeQW1l!>1R|~_xLiie_k8gB$V~4T+dKcRWT6?`!xtvW7O;WZ5$JN zil&pguWcn+5 zH_IK)o3+(CGgEa^lASw_k0EZG3!P7DPmcatccb?0Jm;zXO!Y0lb>u5lu^>JVG&TFE zCrRd%b->PxrrJ3i34${6VwwEnS*{8mFw8{OWO5Qq;>|dMFbOd#xMy6)U%j`byzaEW z7XEm`OQ7%ojI6A$3Za_#WrC*lTa9`S)EI>KP{Q*{l&Pg3wjPF4Uw~7`dj7#!;H1mu zAK0(X_$@C3<17-mT6-+|6NaNqr~n5*;nMw0+ok+n&t+D^^AIy4bNG~o!XU@$$=b`FZ`Qa z2{YI}ca3dnIhbDI)z9QXTdPy_j3 zY>uRxIq*P?o9Pw>u;SoDxlli`v4j{Z*9B@6f8_i=EYV2f;Zr?{$;C3}8mPYjz69)n zo*75x;rkj7axHCW;R426X4H|0Dy2-ZhjGAn%N3Fxi*KOvVwpnt8n;wa4+)v8Gv6yoC%~O<-!>cL7YIhPJRJxVM&R!96nM;RtHihqJ|(K3-uza zA&5HU0sMnAddKikH8nlLBPN;-B5!3_o1q8p#dLrMulF~bN|7*gFDL{B$FCJ3RyEn! z$c6Da&}VJ=Zfg--8D)gvnu56mF6fJo9a+^-p`i|+c4poy?vrrWx{ao>eomi@@g{Z|uk6#-8WaqC??Kpal= zrjDhFiR@%~_!hK8w?)KkKLa-#YjhC+Af7yy7ZZ{lFg?k9nUbQL1!4z4IN-enLkMKE zOy5ufJq*OHB&Yy(&wUJJOsXIRb0OzwQlKMr9V);fG(`rUWi)e47rz*kNX_Fy zIb(G8!gb4o1Pds<%;+!vn&ttHVvl(s(KDIghU(ei zj<(g7cp5=IpT9|5K&2b-Bf`cFgE@}y1Iq(}a)-zqud+*n#Y)xQcgR-E*Cppy&P@=@ z>3rv|2)Kzq#i)dV^cz$lW-xz2foAQ2YAQ)m8KDkBa5;y#7w5jRxsgei&zl>38tmB? ztyeA;tiEC}m0qB`@={&jQ(l6oC6`sT`BzrgRDn zIV$Q0=XaPv5(xP{bFHzlaoX#DNJMS=1-o*(2DRr*Wsm>dg121iLrp59nKwZ&W`D$% z1ld(*>UED_i*%)ThW9@HcC$;j==zb9HZv{quN0a1 ztsb~O)-3{&Y4t66oz+NCI$9ZR>VEN-mg${c5UA%1FQ!MhRV8UO835Z{Qh(o*m9C9e zjo_c6CBgYo&is4t0UU6`Mubzru#4r-6O5I7={IM!VY@jFH&)A+XZD;jY!e-HE^hP| zO&8D1v;*BEE#5ke%y_f9h_))q-u z+CKF&QPMdmaest%mnRyxnLSP{6iZ+6s{p0a2fG`%iKK?{af#ra)sX1gxqtuFW5*X~DomFT47o_r2c}a{r9b@ul0!mEg z+yZ2o8;fb|rQ~IY7k5lBH>qE7$*ee_|;wUb(~PvStnF7q$> z!wVf~GW-vYOiy75h3GvqdOFd-KG!dZ-1L@%_u}5(2(bI+e#0ck)vGIaoh*D4`>#mg zCICiV8^uQMk|yljT1*zCoB<6LE&uH@{kKmOP|E?UDs!Qu7OPHKS0 zuHcj^W0yWN+DLkUm#1e%_Y?6QebH;NL#BzNqHIZwho(gaRc!Fats|-ma&4knT|G z0QNv0G%W(qRWP8!&hs-K)|!Mw9zaH#_TfMEIaz(aUqGJ*A`;H@%(n5SAyeRfol)(O zSZJml`5Plq1u_&;;j4hm>jVyhI}SJq*2f(8uqdWaLl~oYDf}2EfP)Ttr~*pbG_YOFFXM&6OpGxHCA6+HwJUbv9y4`=vwS{E;mg)mlnQk z#Xoc(I$^CLOv2BVVbMT>Nv*s2M*KJKfo;U0Yn?(_T@iw=h-A_9(;4g>b!#Gk>z ziQ3u@FY0tXM@+D;o3KLx^kxOEC%q2l!r;oNaFxLA4hA#SuLH8EE9&rPJd{Z1p?4H| zrrBh7ccNg;4{lB(epWzbi)?IOvTWf$qI-fku7N;Suz|s3l&{qt%!fBkFI^R@ z&drHJ*=zmmj>@aTU|ni5z++_U?n0Q1DX`f|09Pa=mi-D2+zwpw1}CB`fxVQwmk(Y^ zc(|-1!K;oBCBumRDp@?*Wv01%QJlTXYA2&4#U%v1%%0C za^f5Zg0V&|Z4es<)0yO?g-7>sPz-Qaaoum=2-?-l0Qno7TwPlD0UlI+30OJY3h-ceIA9OM z;CKJ(WZ?7+gKGC*X~Rdl-b}$r+UkS#8Uc`=INR$^hiTQ#G}(#Px9K$I{Pw z5(`vEPXVEI|x)KIz;gXrQtl!EwUt3@h?hh~&sl!VZ?-(CNQF`ULJW9UTo%tTvzY zm-Xz|maod2OcKcce$BC*!9AO4XP-Ox!g_6?_1$Kl6uZM}HD~C=O~~Qw5t`I#1Wdokga*`za740p+swc^Kt5E=_dZDBdg+gP4I z7P!u4MQqyw`G?wtaRkTYltSH09X~%Awv{ANb?O|TbMFK$_-0?I+OdfI(gkv9s6vc4VzJ&?I4HnBRsleKkku*hHn;JdvWV7uDM6vC8_&}A;CamHv}FWOoEo{ zxz-by1$N2we6>zXP_^`nCS|gN@M`y4-+Mm$vD-RE_s6p@@_%lrHMpV_%}F@*!07!8 zEe}$igYy_UFI)QrR_0k^I5=)4GBWLOh0yB&1OdY+yHrhj%Ug^Vdc24q)&xje2UCT^ z5velFwSt7JtZ6T5<4t615O4Rufy2^rhq#ZZ^8}-eYgcb#A}0uL&Hq<}A2y=3hrWM- zWxH(r30xTHW9WdwBw%3}>TTBsySuM#2^vW9mKgf%VCB2Gp%n0kalPxq3wIF z@KPW>k7p!YNB5(1cv7@XnHqp*a!l4*FCWOEwg#b+3((i6gM|u&XhNYFh_*!i3W(;O zL50)zNZ4*BfM|SRPJ-M`sAjrNR0eS_2!0>L8<Sd zZdbPMO`N4*koVBha7Tj|0s%A@;wPV2 z&TDMTd$23EXuH@+V(f*k8i7P>UmypzU~M9Gk67EpylZI*Shp3~1Y?`Ix%0orMfYqu z;wE?LNjMg3VEWxn-Fs;9suh*Q9KNrRW{i!&2J--2o54>xpoK_pl{EVyt>5Rebgsd| z-ny-of|-BXA|(m0*2?eN-@koM{s#=&G>a`Ar81gsy%idKw06K-mpzj=@R)25?7mkM z3L&Gf5DE={!MGMAWW>QA2Nx{w&TR(ZAG}Q1!QELDo`}7UFU#Yak9&|@4?X(RhuSy%2ycBL^n+dx#NmO%Wg@K&?kHoOHN$f!Qk*-sfQ} zNKpm3K3Qg!19h^`#=~U;(%WDshI<_LQbj1_un@1Hh1c-eMz?5Qu^MRbKtb zBL^n}{MPL;a1}7M`72=12H`iaVPfL0S>y-!Sz$$Asp5m(n^Ok@xv62IgiAZIO=rJ+ z2??f#56^Y@vH<_j7kOl%k^Q>lwZ!gFu1pM$dN%8NE&d;6MJGZB6nBC5e77v9CTJhx zwD5eErGc#Gapp$l=0a_(t=OP(AWKbSWs$_?+D18-SITS4SGnA%!Jb|_Rv+V6S)nHZ zDP{Ezh9SdFbjf}5isD(Nk)?66QHSfn2QYsvFE4MT@u9%fuJ-BW<@<^^q`$`Mq`8nL zzm0cJ(+%6AY`SMyZP(Fc42K3bf*iFaxmepLb#g?xq(CuoiX8eVx(Y!$=1gi|lL{2T zY=^F&@u?nb^^kp__Z4AYwkWK;P2P9N~(qV^*T`jy&8Qj!|JUQ1K8 z+DQf+A3C!qW_O>8Z4~!@b`p|15OI08WH1fM|vQCF!xQL@lkS$dh!*Lh|bT$}=QcJc?~pBiZF3 zr+ns&LacelKK8<|ArZfYZdTy>xDL25)O}-;n$Na!{9Tr5rePI2CR=XLChJ7Fl(U+B zt-SB~oc8_wMWR%xKtgOb{=ve5!xhu2kvbk2-66-BzHPczH+i>UPovAXTn#{sd zL37KOB2uF)=e!L@G{gNkg1%T)rhfXySaA4;uoae}q^a~1h2e=JiZJ#*L<6159 z#nin`lw-fHsB6=f2~E}TXFozhpUoJhzg5k0dv0Os<*hoe(qCM!@R{jy)A#C!uu)gd zD0C5gK)(5vruiCz4S#)OXdi)7_U53hg<5Lm>er_Id1eqN{J}Tl(0)AUke$Va48}7GzQOsl8KEw>LV$BmL*U)XCA&$d{atbY~7( zJ13p*#XnAhJrUNM*6iUF2!u>56-vB*h5#3(vR*ZQIW#YXY`^-TmZiUB!U;=9A9a4;d*Q)PmHuY~JT zc2(blN>{+78O=a-%G3esnYmpo;W~T@2fi^lM7ga;Qs^m#C5!%*{me-yd2(mP{ny}! zR%#=#j3byRAScJaK|eKUdj68sm)mX$fLK}Hunl&b7kYSjUS}ksE=g;wY(zA)D$SJy zNbY?I$+$@jfNV?3i#O<%1YW{HO>k($l0)N?GgaWDUI@f$mn(!-oU4JZxzad-!<`W* zaW-n>Mu4t8EVtGw%}by567VIyY#E(C+ZIk14*zy>V&kR~Qjl1h}(FIf#&}e zJEy*sq)U=YUA0Ktf~vMRd)Cs!rX}YAX;)%4}2tNAe?0egOniaG_MM)OC6_RgDA@sJ*E+(y(hTjg0nb z*2qSNE%&dNS4NA4p%?|2JyE(Ey{+v?v5o{D!t|&RM-XiOXhX|$$X1I&7j<4NTMoS} z8sKLIRdDH0umn~f^x_qbK}CNWHpE}L(LF^9fPGLWfl3hKNB~nEu-4G9B?MrNwA^~A z8jN7L{(~`XD{@ya?MqrvVg2XU8M({D8%6%BYa_}$EbjA(Kmu8$K&k^_$9h-gVh%`TXhMhi z=!TUyn5xe6Iu;q|ryORPe2 z6DV)=#y8k&VB0o~j8TD`CXC|wwmoR(2oSfRcVq`t+K!~mkB^UA7hLRc6*|Y`-_K9vsH~5C?9SE zZtX)Q=W;tBRW>T7)#NR(X+{~M%hQviR_tDVjYW!7OIfYRMuUh|-lIzfv}Ez$2||Xc zB(}O71g2C#X*W-n_v+Y?)h4BKX}*71uac3eDUrc&9-W~@?gGR_=6npa=!Csy`a)jN z{JeYA`1pKIblU04O+Qbsp{0)^wuOq~l6O*y^<@qMIqhjsx!|r*epjo~;)%%xiPANB zL%>|Joa$UJ|9x?Yipec#g`X1DmHon0?acK!0{**?yTX&j;bBL0=F(dEZol<`IVv}ua9j9dV1y%vi*l9hbHaOtsfV#!mm&EEYx-}{TJu+12+01q$=;faXJ|5 zR;J9Xf1T(#zw)7f=8xkXU%+Pc#xlLX+>`Y%K*%H8zdza}TqcYkR3)Fg9kq0oTH*uI zJSb57QzFaBj!KhIDud79N8lDi6FKGK3ojm8O9iXc73iM+zeD~Jv>P}(3CyPdWU0$SDAeQzdKhJ=d}-ZH(C1q%1eC6uYJ34Qp0=QZ?fc2 zCOF&UBJEr(o<>*5-b#(GeZ$(x2~V+?Jx`v~YpSgUa)U5|#>W2{o0EIh z&e!HFl+$^lt@}f{`L?yBWt(1io6RF#5i!W53j3{9){Q@wZrSz)_&NU ze4CPBze{HHwAIVZxE~g#lb5}y4CNOmv}A-%?u#gL5 zN99iLdRag%aAF0YQA3hY@$MWJ!1X<_kb|jL-f$=gLOan9rH~eQOsEXWLxyb-2G#+~ zTdhF2D8Td}Q{qPc#$?lrU_1ce4(lGJ(=I9OmS}p4yPm|TfsPmSK&5v(?z1_WAzgS^ zThv|qRRX6NmntW?zNHJH$b&;P6S=t|Azyf_-^#+m(B#$#da1Zj3dtLyoTU6r7*K+l zvQckFpw{|=&7P~3e+C&hJcSOa`@!D;Uq=x0MLv?K$XosAwrhY- z(Y2Eh!@(hXK1ybHt95~NA;25~0a4qO@~j}brqc|(&^D1Y1A$CCSvhqa4lX95u&*nj zC<}~ixEG9eKD>qj+H)cn?zJy7xuIq>0+pA-!Tu*f`En?pDi*X`uS3yysAuE@T zu?c+xj^`q$jft)bx5>Juz-4;ng^7{Hs~b&LKEE^ef1%hVovFTc`!D zJiHP9^X=}|fH98ulV!iVWkc_Ida6tw|p?N6=Xjw?bYm}|$#S3yv$t&y{pPt>a=IP8 zR@Px>vTGZj_HrPC)?8gp&4y^|zcke?ZwU8QlYW*Y#CA#C`QT}_@T;&xjp@H&>r&~y z+4@}eU7UWdPrI>pCbpOSO&Cc;OU|;w7gqJ9da1rc`Ysh^jK%(d(fV5NDVAo5`O94< zXH+c6-`bhU#-7xWCdI908ve^x8;t%Ef7kQk^V;$50UPVUEbImGJ_b$m1yQ*@p>NuY zVh>T}56Ci)j>S&~ZcLN3l=xsuTdTm6(WpYb+t1>@uiCg-*Wx$b^RI;!B)T%fZjF^0 z;fv@_k*AruEi+q=9!0+7@*lKd$kFwggCQ{CR6Rqxd ze`R+3j=>YNqnZepHTVrU`9h|LF{3fpk{AwPTl@ax! zW$n|hS#cb(p9rflmh2KyzyF6Jvc5bm@_Ey*TtR1tE6_iGvSgE+;QNF~2Yb_jAc>3` znG))i?c6a_OSR+sttwd~IUo^IhhGt&fguE4sWxh@2=>|HG5< zdw%irg|7H{$=LlIpJJ~c!{rh5uDNM z;P(SEh*#XBU<1;ud5XhuY(>`rDxwq17EyDew;_QNLlZ!(`s?cC4fb^4~302v;7KcG_6 z*4CDyl^k0dImClZpx#q_m`4ylzj^yP9>gnXo6(Fj;;fwYB*S@C-Lud?SEMiSM>Hq5 zkXG&k-6+kVZ}^~XcuhP=?~d;V4J#O&mASV>(DMF!`!+jDz~=l`S*w#hmF&sN=14w~ zGyW{VFO~+n}&Zg#oSbJ(O~uDxCG4f)sBw`RHlZV!R@|eYAgZVvRy9NYN5rC zkZafmurBnrg_2h*>JR^o((m;zxE6|m^Upexc*Wu94srq^DKjfhD~%J{8^jMiC(J_2 zgkTUzwZ~?{L~*a`B4KldaV3@x^|E5t5LpkY)R|^bc>+a}fE5EuZ;{^xh&aH@ZxR7k zhaA-(G315nPxNURq$sQoQY_GGBTu2ER0Vdh(tnVI;6#TnVZZC8Z*2b}f1_Yoc7QGsiP`wbieZgB*Hsgkr@ zmZwnttuc_`8R4O8j#I7;E86|;CYtpLDQsI2(9~6zK)wr##2++~gC4+mwbBB2=M zRh+D0EPJmQZk_)TCfg?vgfk?nWxLjQiKAG-`ae^D+zPv=S-x_lAi}UFpOD}sTF?)g z5JaMJUqM+71cFB$AY8*4dNb=V4|ExhMU)9>A>=-h=F9Gr0%L$h%1d(#_0480ztJ9w zgA?7EL^b>8)!{*itOC?4(Y?ZV^x=s;a>a#$a%rilzrkd7rHPLgX13YazbO)-0=q5v zrgk9^t%-)=BIzJhBZA!?LgFFBU;r&UO$;Yz!()c(GO&kAsi=~H3xQi7tk?jE0GEL# zbGJhF9B|#RNx|a=_AL}K2Mr)F zrvx;xRbPU47tCt}RNAmiE$^Al{}Gdf+P{Nf#AgEol6^u2c5=vr#SQ9{tP)yAdHkde zO~9s?y(8gZNj4X9NKh#8{fXD_;_#vHT_@7>eCHvxm`Qa3s~Kru;gUz`a%cXAJ*1#W zXgzl=jv7u2WcR`BQNK?6w2zeEcAE%cuzoS_9xS*)LrS+$^QI)-<4X2{YtQ8Zn_<>NYlewoFtB6 zcGsUim?;w^wXYE10W&9JL@X@RV5*3EiFt9O+#V~*(V$GT3%bdjz2l zQlFb!(lpYVi1<%txheM`dY-{#nWC1Jj>|hSDq1D}qa!OT-u+B;K9i=(h!nF+ywNW$ z1D0pU;kz0rk3Q5J_$QJeIfCFb$AWlqgSyqy_kpxc-Dk1hbHinQA->ONlCr&$VcNJ9w^7aCT4{C;)`$LX% z`TpY+sq&Si3)dy%fw>&%E6UCJe>7bQIF$X@9!sc%DHUZMMO3mylPpD%ELkQ+me5$T zWZ#!kOo)mw45Ek;k|;abGe|;qB_`{TWiXiU%=^E-dM{Vkn;6gY%R0f2~_R1Kt9sul$G0msxrQYvU@v7 zwX*Neoxmn0vV>>e6-{HcC)%x<9UFa5XVKaI@-2i{dgENBU(Z1~g_x8Di~h9qbcVa{ z$nJO3=Vj1!bpl84pP2xF5}%!LBmd zt(B&Pccf88XVI0O-0THd zQt=@mm(l8!N0J7Ic479zlT2o(H7|xS@goS&a02z*JWp=wcEAC4tG@jh&FDrjvQEoD zhCEH8fG+Cy9g4 zM5teeZR%2(HmpPum$cbokb_gOS3~2(WfV zB@hrWXPe>c_b5OuXRzFu<0~7US7h_z9%?gbU|B_azrv(1d0b8XKMO42&wFZ}lQHde zCosYvaQ}hgV$7j?I-L0;ihnq!GzuWT5%BjUQJ1(Dgp3+U>bGY>qK!(q3Z9j?i9%tp z=houRSey70u}3xb0OIqI>)7F!#7hWPpBh5-&R~8~Z2$!d_@MY%J+?Y`0n!B!L6_dh zV?%JwEO`8J1=4zM7IYE_hHIi5SRW*~3oxCSdW0iZjIHK(1PDMH!rlGeM_WD&&Fe_U zwhEARe{_%pFE<%Oj3rVG=4Pno0BNjq3d6AcSs5gjP(K+ToB6hJAloASIq^tc zYr!?+!D~jKSy*K|^lZxV|NT>_%%~HP3&Gfji=qTXZLDDuS7I1yZUhx-A=F&~QwL7l zeOPUT;THL~Vnm@ELgalWR@`9qg!!H$*4pgAfdiw#zr=+Mo$$+T39-eN{&p(446qkiNb5}h z`ST_L1}P&Q5D6%hzyRa!Jd|h)2(b$&m)PYICnmm?6#!}_!ztSgBLZ*$ofVH_YKNUO z3aH%DrZg!hnbgt-nPe&X{EHk<>gwMlPIs>MoEZ)DPi&Ckl+2dX1EyD9oUoc@QNQS; zB+CHD^4n8{YmyBzI5UpjNMk!TzKG0Zm&kvB4Oef6bMO3Pr>OY_U`QG`rwn3gEas!` zIE-1x)UQBtsN~z|h1DcWzt!wiH~0?nb99h2ts0-62-9sZS$2FU@pdn=Tdp)C1$M%H zd114!<3{O4^nCj7wWi&~!oDQEo?Idx9yQ3Z@a_mwRVqn%kuUgpLP0OTSL)HTp^yAC z8Cy-2$>w`9%+g739X+UJE*D)YNA_Eb(+1AeE`2YURSTg6Ba+V?w&;h|8{~Y&=D7?9 zdza#Ku0o*8NRwBk@FkAJ_7eSP3iF1}#m>%KYNARiSiY6yuX3vfERx;mi!IcQ)ywE( zo}w%wT6Qdu8Bj3sameM8wuS!Tx6v82&7_)t~c z7|DPhNuLbO=QVH}p7}HpQaiF5=&5pxboo>xukEO7zuupr!xCegFRea1EQfgZdhcto z-m?%gJJoS(NF{hD=G=)lGy`e+TqV%n)acRq^FrsEhGQpApcc5SA=qb+R_P6ejGU{( zMmp-?xr7CWTi_iwpX|6es0bcw}MOWfT9Aw{suPp@1|8;Pz_3 z2vr4Hv;I38EF9-ymom+7r^-;*4yzZ#<&A zzRG^oGxI7b?0C*6NOB&d=pR}hQYsSr{YK6taBFL0S)$7qr0OG+lTwpYo%81H{wz6_ zAvEV|OKLC9D2ha|RW(odf=N*vIrOx_=O_5g-t+En<-Mf-ihz3PE$Jg!aRiO{Rw(Sd zEwdsfC)?vuJ~t?U*NxIP#K4yJ0UsC7!EeJ)TAwj?bQT{Q`6gctBBNSe)m(g(MQ$|O z)THI;SrHqUZ^-!o?`eI$uJ#Klwv%L?0yY|2F|uMT$!Eym&StP< zi>;!!z4jdorH6A1%{8|nnqrV62kZ3@MJri`u7a(srSw!~$7b7W_Tn~lDVxxx{m&JZ zEL^#8+8ARlAd3ynmx1d%qj-Tw5g0jeJOC$>L=^z%d2xD2Rn0fUyXSr6A|J zla;Vv5VTs}QgUG8y`Q0Gvevq9$B^lWvO>{>I3-jLkyisug(B{ZcY$(CUOpws2nSZ} zfD&skMmIpR739%I7$~LgaO87}YDU3=6aohyf=N}SLC^c4d6>{}xhhezu#e4^f}mVw z5EQ{-4p5;i^aPOh0Sp$L?36g5vX6L-h7e)Gcz)zr+3Dw%J&dRhc)ccP!F>ZT_|h8( zJ$-Ww^1eP`Oom9tSP1FN&-s`jB=Zn*d-sL?NT4a7m!leeWtfsd=oW11PFU9pXINRd zDps21r{teU@O?WM3kyp=HWn``;cwH>r<(N*2uz>MF6p@oM4~_H47W@qM1VQ5u>&S? zQFA>3ULcgNlv@Q-MsNO_w1*@=(-4t1y7wG9Z|E1@iKS6D$Ec|mp|CZ&eR*x-*i7p& zlq=}NfJ}YJ@4ro`CR zl+qLJdgFM-)O|n+^QpeLlCe415BoZhf#EnnWfd*EHUwejtbealQIaG**%r`~jXDP`>g!XCUI7NZ=5R`*mKw0D~J!wsjOL~yYl zVuAGW{U3sQz?O$|z zAzDrOA`Ee0VtgJgAf%z)aWNK#|M|vWV4KCL!=dC6?lJnG?hwL>EAj=U=f@csyKKn;d28!jZyWuF zbIo;UM#?v``z?beN=*~r9;R;@?5u3~@HJ;~wNDBNUi$s>V~@hFN5JZioxqmt&I_cE zdXbu1CO(U0 z7cWvoh?c3(Y#jstq;}`=r;yESZll%yAO3zB@bI7CEI*i`gGMVK|I!gKa!P-vo(V+xK8-{H9M78!t}Eaqg!0+;+Hu>SOH!i`w$tWQa5mORz`**8pmxqT z!`7J(tr}Fe*;DIBvkIckYjySaO6G97X7ftEuJm-iG#;Mt@I*3R=iqZ~PKQ`dghM(@ zjo-vpv|G(Td2rR48W0!;5Pv+`sATYVubJQmY#_{nRdl5|9Q5Lo(eAKdbouVspDy$F z=Uedz0h`v6GQrL1nVFfntv4>qX{n!VIu-XESM15-g*O=HboQLDGR8vsaQozb1e^j_ z!MZn1`VLx1<)dffh*9J)YEbpUXDI*7^1Gf?UBN2Th(K9t+7zDR*uO?>OfHS zfUbC6o8)6?B#V#5NNO5V3b-ct;+zV`g`R1?!Jl0&oAnKpX%l5*Wp%K*?d3mEy1a2g zPVPl`aect@)@XYXAw6RyxF{@NuU7bLxK^BCIi;moS2i-W-|du#PeEl(=;F$f9ZvS~ z&o@6lx(t<~_oEQ|=OaP@U0e&t@qNxL57ds~z~|i?WKBRT@apugz8{Oz5R_m|^(~q7 zz#Co4$%`dQ8QDO@xe?3$CKEy!pWqgU+9bj{jGgWJs`1p#eAmcgX32>Bj?IlpB6DM7 zCliMThd$qKTaFmsC-`q8Xg2x14-g_AGV)W8IG(V)`aD~-{WO&9Sya8*t(6h9@~cJ7 zkKRBYa`D!}mG-qd8`)b>|BWa^N>yt4?zhX6%9J2C)eK0HVsNp@=Tc9n@N$GZFr29n z^FFEbJ||%-K=5=*O<+!m1Wqr|rX`OfM6!5{3J!wH2%K{e28hcwgQ^Iy9e7xEk~aAn z0I^o%RU)vo8HSg#@<0%0Aj4yP=Rv@3T8$jE8-1kL6&~k&A^7VsA z%qj~)l^Fr6Lp$t+J)+QGgAFH)t3dT)R*#V-gAjs&VnZPYv=vk?AP$3VJb<4tjWZ%Z zK-eNHkBya;6J_K9yB`BK5$2^4fUIDif;pSr%*_KoG>@%G0a40kA(o3B8xn@YvT5O9 zv&|#?DjLU+!z&Y0qma+1-?rAnh8}UfNr$mJPp*u*Rq!LGuClo$H~bNqf}3j`}< zL0~iVtVXQd%&GV&gPxDVn`YjpjPWy|wVDs99)cygKVOc8n)4@`)E7u6+XqF9r@KRk z-?Nj1Lr6$OH@%CNwJcCF$WRq-_6W0XaHVH3Qg)77(f_$t`mZnk@~x$fSZy^~ZH*3% z)zZF4OM-X$JxE^+TB&CT)97;l!=Mv9$h zU=v{E_JswmxeBa`ak428D;D@)5{}OwEdVg!UV@+=0V8pt7AZz6#E!8@U{qRPSWrMb zmaqL3FeU*1{`I^P43EFq!(3CJhGX#5Ea3W)24C~p0vLnGgKHTR_c)|(A>yF#T5R3T zJuDbT>ejS4`FWEm?7Z^B%Ka5F+vG97k=_W$#yZ_%$BG)^k0$!Xjz>Ux47Ts^d>BGi z7id|b8|@mattgzn^NjNELYH~Xht0wHx!?db`3c413CVPK!a3{I-{-iB3r>{9sB3S9 z@z9y~UuNd#J%$@+XZ>>H)a7Jr$^FH0@@&H@y{g`nU>}QnMWr=6H5B6o+LZFxAML4% zON*o7hB|Gg;4cQ|QEJUKPN_V@ZQZ{-RF#J_&d1TGpamH9B6z+Feox4L(=@r!MW5?( z65?={bE=}sPBl68Qj6mn?BvkrexA(cG3@sa9<#dL0l=tb!1T)y++kCB)K{BUeNLuV z!i=2+L}h_;&r`{*dhP4A(OXCQ^g1HhjpM?w=tQ0`lO^qU_+kz8XL3HIC4ca|!xzE# znrf*@BpUVdd~s0N57xelsd__Y7|hGl7({Z+6$UJiXyn7Jt}j}HgMrB!l?vckn>(;v z@t4k;b3 zg!tU4#z&)pnnn#qI-LW$Tsg0k(kqt+uYIyCUmgxB*^H-*TD)~WexTcq4qzl+*Y0Ff znd_C;-MzgS$;&!5ep};eTh!3tKixV|=Nn``rzL!MP&j|#!n@fc>iAn8h8TH)2r!Hk z`@Nc~lo-6#EF7%Nbg-95_0NP_9YX`H2{<&*;Jd(#YMG+!?`s0uy30;y08_uay= zis|aEt5wu&-jS=41^xF#2xt0HS;x_2xLVgFHKcGLOs=B3D66J+)Y3*r+(1cDzu{aQ z8|Ex>g3S(hDhHKirlX5Hbg9Fdy{9{Frw%%h0RTNc)2^y??|6llTjHm?r`x($#=#zX z@8%eogiE~B>Y3>2_&}-f7G^)YJGSHg1$=7?cO_yZIbc^35;_tKjmUG~OSu3`scXRw@3_V!&n18Uo9p=A2{NUK-z@Ox?| z-r4AD_Q!+aU!U1@4uszuDm!tzv+zaA-Vi<%Dz?Q|leOt>CCgRV6z6jD>kpJ_Ic$~xMj6&QGc#q6DF zT!zX3=kwbWsb#JwcUWbYzwL`|aw;Ab3B0QyA1On;bfC(fnN7Y;!+EBnzzOl}HfTQ3 zWFv(~@72;wUix-kjg?%R^WQ6YpfVw9`K4&S6kJ}1Fb8qwR}R)3yL9>SRmnaY3uTIu z&3|v-EKsuOIM(Xp+&hfpT@O z?pFmPXXxL@d}CE>=zps#ebuU{xxz0*B@rpf{F#Calv+3eimL8cx;V8>k8a1o(>O~! zXpA+`H2ddup>TE(eb{qKu#`b_Jx}IDh<*mQ5p~QH0pRyiM@d!Gve(2AiDvNqhnh(6 z6lJAULq*xFiIaVJLOzg^=7|C?zz9J|&-nHTJUPKz{Cg}u&#BX&k4^p<3Mr|K`^jp+ zNZ`8P2|mtfvdJ+pKOxN#G&JG3H{^@B=mXp{7@iBK=Yj-~`4}dw;RfSFBd)M`cmgv+kV?+iuLANc`+LD6oxmWUpYd z1))yK=M$rX;SrV2PEKY_^C{DZ7<9NNV1_F)IgnY;Q{^rFvVH{Q%i}n0kW@un@gJNwS&0t~ifYt?*u6*=$?#k`uiICah6^ zZ*)EZAw(~yLpurNdL5ihxYj@|@ES!CbEI-#aX4}4rk}fN*vkiUw7YHSXqdtCSFz={ zqj3C%irew_Ny|+-2c7q3CfGy~zj9sHj8@QljCgJ6>EWl49-|{kT^KRji!`_@WHM)s_U;bP$Dm zO2ZHdx8E8I{|9VUM6+%Y*~5nkOEP^~X{5JL$bDjN;-s7big`gziikL@gL{MDYY6Y|`} zo&rWXbqYtG?i*hi0jjWr)GJ$qbO+dq*9TU`~mUC3#2n3cm}av@P>Z^=Wzq^ z1LVKpLKD~EQT}dlYJ9woBtHKaGM$M>Y*}+4`Y&b>oI~4aBdCF}yRouvt=gnWQY4T|=R+t*N_|nu&s%9c_=gl(QP3 zk}}t!wB6J6ufC@w^8|7iS24KaSF?oK41T_D<2&I;DKNEEO^#vtmFw7_I$2GlN(A<_ z+1X?rCMVHoH17kjfq0fX8&OhHV&Wl4Jlbzy8)J~Js&|j95PEP`-t_vpw4l>qW2*)nvp39GOjuC^2JpA?aN@V*>>=7YU+#PiL6 zcT2o>*KsVpbvT+f>Q!RPPhA4C!H0Y550VO*wx~we|pRjxO$T-D+-Um zw1XP*p;iJV1*ZipRzBW5{rWF>w{7e}s!aG@n5u(G<;`q=N_+j1q19Yh&2m!cW&yV_ z!2*a)uef*pBx%X})^KQ=LDB(#SRS560a&CVuw?e<{mnXw~EoG7gp_Pft|1A^~+ z`AsyhfH_+F-YgJ5E3T_usN7oLnn?{^`c=|&{^02>jtE@3dwyJY!kk*Y zwh-bCFJ`Hcs58of!0(DU>?%mFOD)T|_Ok#&#=^%i)OdUj@m z{uWJ+j^0ZiURo;ltg_CG7$r{Z4W)~^k(nSTqB#xgzN-tWjuMH;l{{c*VT$9xmU72F zL#RLIb6RsTR(?}=Uxt`kfkII(jY_rgkNWRS*~v{;oPD2q=Ekx&b+N6)`*0e!#V7p7 z-lwk{ru}}jto$8l>a93n=TmPg%}N$DRh97^dkauMcV2Gt2^1SS7@$iiVh-Y2(+;QP zm;@gK1tQnqMo%n<{zpbtLR7%wnaoO+O z2ptxcKKJj-2*qiP0D6u=jQ@-qY^GV~m;)S&OU!AFVQLpOoz)plZv^no!BvuAi~;C#Jz-2T8wA~x zgeSR9N6EvC^T-5V33C|ajx@gbMDUzg`n>xkoYkpPC z2{GjsM=TuZC>tVl0+QKAd*o?64AzsbFDb@{#Q8JNNyo8dz$^c5XE_lx+d#^m5;Vn3 zGTMj(NRL)hy+8Ct07C%14c7Om{HXKf#snO!*%1h2{dG-~MxVt4VHqgMAcGk*EX$hB z96)v=T(L%m@1rC_#O4JGmCN?()#u|mdD{K^P(~lVzO@-EQcRVedMEy3x3im^it2@P z!x{SGuPgST?IDoZvlCi{yFQ(}H0`cnrE`F}cahPjl{I>`b9RuB`6-^UX)q?A%wCa9 ze0RBt^BQVr-+NcYF5+YARTGWII0YzPP*0~j5yl%`ibL~4j-;SvOa+YJR1 zygt!nM!1zO1`03y!6lNhz6LQrXt@4YT}f~|PQk7P?h#|Rd@EY=9n#88}?150DiJdyw41duNr^YJWNn zx%XWVic`saz!q0j`|n>;&DLe+{F51*^&kBje-wl)SkZ>;_S5t@?#SU0<@x#fOLk5G ztbGs6Fuv_p(G<|LYN#n5$gU?3uHJqDJ~cNBgw<3+7soG3Zyu&p`-T)VAy`BZEbGc@ zv>vt9c&mV&wdr4$EJq}~bHk~BFsr|}vM7Oe|7!k?irHB7y9|N%H%R!NUU{7ZN*F!K zY$6fLD1@=X9#2>Rd=YM>cF1tXKt$rsPKX7NJVCuQuh*Q~A#T4k>T6-z?`;Uq{2W!j zUc+~3i%aqLCAV~&&>o$u7UXIz5A4(cGB=@WtS=*YesWL@As{FS->IZTVmW^xNY#F- z+ri7vj{_mw3}-Y-?iiUsRKz%>HtPzj`KQz$UI|^R_O0EhrV6K79Td6L-;((!`I@K) z3eQ9E#3e*e5iY+e)EIhn*o{!LF}Peb>c22I^LvP*HWQ^Ch5M^yY2Zj9}Tkwk>8`E^^;E9^R-)xakbkE zk=$L<X&8hWHe-78rXFlXMMZJE?|Cr+|#XUtHG^$Yon{CSjpvhc6FPj(n`Lo z3zofSd$J;0hu##rJhrhk`fD}yg)?78FLs1GO-%Do^|lxVP&`Ci(QrAaaJRY$F-M-g zA!a#Yvl9s4a~&gjyD}_Ps?BObDc#}A?Qcz^JD%AjCg@o7V=rmqVsJo0-JN+!lkG${ zU*=v*P8^2`bKQw=`JddXw!cQ787+68w<{t(^j!d#+k&GSH&2;Xf6EA^js#F%b-nnJ z9QLU$;?AOXiK*$^_^JEfNkv!*E%y3iPienTkj~oKnMQRPvaIxRk;9ABV@rkNT4ZzJ z3`{Ztm0g8&wn_h4c~eX;HMPwSh0^OeM~)}}Pxh4uxFe=dhuR?Tx0cowLiOF5rkvQ6 zX!qxP+S(iOqlH(>AV-orIL4dfC3o;)rC|HHO>k>wG%Z(h_{5?xbDO_DO6BY&s+7I?#p(pAWhpy}+OFBk2W?3*UFId-V6_ zMM|mrjsQu{QOkRB_o)`u=D)a>9>a^Qn$|`bWAPTmF)Zu7oYOu(QXf>j3N^H zgFlUWNgljJ#xXfmk8&1UTZ=Z2ZxR%PnZhYz%wUItb+b$ViPloqeT0MCtfYYQuqK^C zwa(oZiFCNmzBy^NNyAK1MuHbdM=FI!1AjExMMOBfKtBJb9~)~Kx{-Z2qqg@)Z&Qgx zEj6&#w13r3ZV4l@mY!zc-{+0N)DYqH94xy_`BumC5%;iE?`%qpin7LHp+_eK88wGo zfB(WG(I)FpvBz2eQ--&jQVMQfIqvhv>Ufevl#Ad@MIkW?v^@xM$>TiU01!a=F4NGA<@a%Tn}9-*I9vZo%6l@t6U@-#TrhDh zAaXrBp%7j9Tg}d>&LG`oK=CkMCpvIsx|oAgzpq6#p6vv#2p?aBnlFVnvFg@&wU_E{?Z>Kom4?k-;@!hAXJHA ze8U*;7=&XEARNOe2jN!ODMt6e18E01#(rbl4Q2P0%hd0djndop;CCHl5hq%PbECV zzjpqR=}$8T#!~xY>0@*nx2u{jxw#u!g?6;xnJJngr1Nr9O?CxMuQ z=~cagEv!0>Ja9dWK3BWrR+2UM?JbblnGx$nGT>H5lmm4DigC>rx&9lIA*Tb-m%A+h z$N&$4moXy4Q7s z2}PlQ=hqp4l-h|Y9uShc-6_M##%HV0z-KF))`1=A%yk8qL$P9C;>_*j1xn=gTIvpP zyfgHg#ju4^Zc_1Wf7-3Kminzi@wz(0Udsbk^sTtznh>K1uHH579MMOr%~?}~lf?Gb zuW0*-lKc(73v3A4H2t@F@@54$u6_+?=f=Y6iuH8&#v27Jj(6LXmeUvA4^RFY*pJ|O zmG?_{>-!k(sM=DK`P;~zGMi_^MfRpi02&;PYtd5~byn2t@dK4|D_TiULs?b=iPwMY z4T6hVka72V2hR_d=I5V;<_J4FHdZuy1OYxIkWcf52rN%tq=$g*T!g}iax2z!d$E2y zGPo0~NYrw~q3x}9k#FC~BN(J&5ZhbaK{-BLm}b4;pn!yIP>fv&SZO8kjT9VJf~fhE zutvA&Kik29;N?Vct*zDDm7CpttvWyxR@<4X6b`;m?+(yzd}jnW)Lpp2Lnt2(-4ib^ zBY0+|ZYvLl&NijOo=?X@DRi^L&7yEq^sub+V3g)e+3w5*V=wH)5+4FoH^Mz5+@myV z$Rwra{&K?ZHfz2J2oX3Bu1L?phM%XnAa!xKsSffvSSpHEs!qApQh!b4@9Gz07J8a; z9WB3Gpm}0CsC=$}d3&&S>EE(`wAklhnj#7WAVxs5hpdBQc!yh*$~MEk`^eMS*x0B& z=V}L>(^XX)PRCai7Fnrb9yJA(S{8+iaqW1Nm(v!vx@wnyMRE&`g|4#(%Wz?@NIAR` z0Thpf4oAtO+CIBy1g`dWg-$&cre%JztnyUhW|0lM9wU3L4Sj$)a_SQuOwPNNYN^A~ zT`ZYca9?bY`9rW+>@07yd*K-?E3BVlwVrCVwZ&akV%f>0u5$xJ4(>#MzOI7~^l=Y4 zTS@&p7Y-`(nw!#*r>@8z7avAlN9`A*R0BUsof#py3we*?-d;}doL332@>^a{>$eKp zSs9-y)nH&n?M+dwq75)fy(V-WDmi6gXspPCW&4(}NB#!sQ&9#%u{2wVpNng)n)_9m zr7JK3c;C1ZUxzo85hdcMol2P*3SermfhOw1%~K}5f!v5uS`7up>mNYj#bA102UJ@| zbHI8fH3uIs|qW<76O^Qz;43Rlna(c7o`k;8w+f6~++iOV+C z%qnj8@pvXKIatAY<7dU*#dT5VIl<^FI)DOf0=%tdQAJ0N{l~I`wH%j8mRE_%I+6la z4>x#t3=z*c!WwxHCI|U{>~Uc-L$+{2hbpCTIs3#LqeP3^1;xBve!24KeEv#n-QcfL zBDlJhV3Mx6b?i@3$x9f_o-3@HjoL(=Klr@0%+_(0&{c`rf1T!Tqm|U97OHR+SRvR) z-(_NbZKQLb%Ve$PHJLITLhCRMf7_P3Em6B|-XOzcXdL&f&9oH%z-*{Yl$A_?p~mmR z8U_GKLx2K%Ohj3)5S^?{3%FzIH0B~yfyE1kkvA}y{?l2=`?=MJWR2LgI57@Cbo7mm z`J0|~>HQ%_zPih1CbHu_zv9|%cWJ*aoU=Ibm6=JsF3$kkLppi4)P8Uh$>xOt31%Q7 zGcuP!?IMxTT2Olc1_VAD_;^gD@x5jM%K;Ry!(~Ol4i&KPujqWK^9-sf(ge!WeL$$K zFKGf8T7MwlX^d*ozptT=)Ct~Z@TDM=Qhn9>|hlz-DF`c7&x2eDg*zUuoh+fS*h?mGm*&jP#Db6si?2 zxz}Vbi|d0F9Pdj;>gdIRJL=uv-8R9qT*Ez6D*KOs#OtM<`j5NQ@!59BVw5?WobUoJ zLWx)w&n1ig!aZ1VBe+g)iJEn!2y5VdB_ zYo&pklCDyD9dpbcOT4bbgup!2P!jqS7%z*st&CPZH!NQ=5EM+^X_#~}))B26AD5?8 zZM;0Q;~jUdae)${JzKVe^JaB18(k+mfI!g?iEY^jN&-_L-bU zUYyh*?P5&x_yIKZbdVE+@n)K3#OiX?S%M+`*5?Kaol{w63a6g1hc z782y~qiO3qTc zXJYwmgIZz$Wny}jQg7zcHOjB`YYN@MOvf$sy8*&>g}NvD7vA`^&Zi?7qy z5$fOBh=1LzjD-oQXZi=m)yLnTGOB_&2ftKQE;ruct0;snp}xOC=FNq7hdec_yk~Dn zdB~cpgecPfcK5h#H?hOg^eR)#<~eQY%Mg4fmkjdCsVwFQoZh1Mq-B-+W^=ypXwdXy zC^Z3;iRjB}H`|CuQVt=xa{_V65$U_RuzQ zd@j+mFyV){g=ABpnv7ZSgrSv@pq|j}xY~KG9zHQ1MVH68SAAvkJ9gll z7_mCDw%XHG6Ce>5`!>GY!32Ymyjymgkd}tWgNgOHpK1m~+vg-C`-h%i#oQgQ_=&8O z@k&Z6f!q|VLX>RIofAaaW*WEfSYXh`VPVzvPAy?8Qljd|#xR>!>xf%X_$PK((al0( zDdRH1WY)vdW{8^w%;d9lj;)x`o|wXL;4 zXuws>o!LBufb`qKgsd(q`=O5U)ENyt$!xBx{f8K4o|C+M$GmzOxN+56U+Oyk`*TfOMYTuo#khr`^$fF-w+~V>$terRNN0o7S6)3 zLh$S_v^c7m=2_@u4zmD&kfO~$;jL2GKMPyXSB0}iI*bgmpr9C>CNJ^)KL7I3AhP+` zb_ab!DdPhAz*I>)|0YjLnarAojUC(VQ{=0V)wDEPG_{w>3T+CB!(>a0 z?A6+txVS6xxvoQf$bzKh=1Q{LuoH2dAMebznm~jjL_{<&&#CFH9Yu<)*D;pJR^`HQS?`f&@d*aG%sfmoa>^o$ zbGH{iPvC$oJ5zDU81;{X!L+8}RRWnyzfPRl8L{Gv8=_H#YG~bBzG@-go8IhEKZceU zI{?nGH9P-65L$lLHMMDL=3XuJOpMH$Nvch=kTs7ncZZ)}EKX09-%xjP-%H zb3~@F;>U1h80i6mVM2g$77R7`oW_)t@W?z-KbUTNDZ~OjJD2VJL!( z=v!cd0Z!8-yA~3H7s;fJ*~N*3VoC5s+r!s_>6hmrOvz+l@bTug{fL4nt1VMlRqwCA zAuZVygY&isq=1^UL+p^o%X3@O>zT4JLAm4Syz7w zQ=KN<1MtfJ32H3nuz8;6LrdluFx0fe4lC`oe0 zFiT?YQsC-bKIWGFqD=D>@blOIOgC*u+6xcUK3loPeB<<#d~{Q@j#K^epX|fw>@Tag zA*a9*n$C^-77$aaMCT=6T?~4!w3Am9G~J}^tC-)^w2_V9UO!wD7Ms-WpHVR$WZvtr z$R4`L-ZfSe?BVg@cF_|K4%-;i6oKU|NZjr!ZJE;l)|z@%*kTz&D`T&tjB~~=Nle5;jA#xd0%|$38x1!Z0+Ii#$YLmHg$BTS z?m2@z*GjT(+1Y~-d3YKMHatEsQ2SHvYGLX*5%*gHtuQa)j$Pct_(Hi-bK`G$@9gcx zanx`>#aU}LLE(R*-H52;ARi{zZl0`NkGI-kcFv6A0C>)i9l;rbcw^XpEL~wWo}C){Poie) z%luLI>d|+mdOeCR=ASyAMdMc+-rp>WI1%;hx09lf9(a_5w}4r&{|B=I5S044qXSpg zzauzRA0XnZ*${-iVULt6j^71G?}f*qH2aXv7FBvfQT6?HolEhCN2SvVd2QWGrLb_` z6eJS>%Lmz{ElmDk+=}7211~lhGNpmL1BKqAA5C^2I#2%11>_0HNxlZRK-7lhan_up zGTPg>_%@fMn1{7}R`6K-1gs++ttE=N#fxfJE=0x55IruW>l1S<-`xO)Vz1H6Hv&O` z!Q?Ex71v@5&thR>>MB;UTvt4vNK}*s7q6{}l6(N>7`Z{Is-lMave_n@@MiVe`=nm? z@-eaVKGJ@$Rq+3B`85)oJdO#c)cMY~Fa@I;Zr$-j~HRJbR{1Fve1WF6-cyqTyD%_QHOyf=d^;gqwFj?4RF6 zESz2Pa_i-$jE1gvz=D0W#h}yv+OZ;{_dycpM?cE*a8K#x%!G%H=0qLb13?#mCC+e( zBfUEXNpAG<)FOiJR=pS4MmL7wyhlE~y_0{&pb#5g)W_I6-^I%FNBmJ?&$<^GcqUCi z`Q&obBurz{AN7nsOc4$?`uCx7edY&OjiNjSQpCBDWyy#-_rDdcB?F|XByWp+oyjWC zLT#hoio(>Kyp-m%`*80L?X3-O#odg0a}y_k2%5h)w%$RX|CDY)>MFuE*QDs~vF_jZ zAdMR0<8NqkrRVwHUXN1A%hyLB2E8|SZDxB3u7ysRI4X~_c4flQxc_DTg_g{G0kzPH zM3%kv>|G5qB(kT1-)zCBWU&62TVG*)mSJI`q7u0FcW(Gu)bC$j0p!K|=UvGon>M8~ zmt0#ig$`zSU~iI4+cz+sZT=nypNkfNu@+y+&*&9GbkUEla+Cc2p^*hK%@H%vDhV*g^K_C(31m{LxpAG+R&#v1!W5=Fi@!=jlL4vSB0s5+=k=F0+yU zMq6!uA*(KTHbllj_5yt&l8Q|&3OVNk{N7D4EuFNwc{!7xVWw)YLn+6;c! zpJZ@eiLPTc`hPBfJya8l3X13?{TNq81zDP02|Z5gT=c+&Yuw>G&g88m-;K2*VkI$& zX!+JYpu&EMBvaOMAWl!leNN;J&u(+;HyqNxjyyT~OuO*Xe&rJ$GPu+*l;{DyXBTZe z9~$b0`CX77v4G#DZeyF$^hv_<1#Y+M_~#^wmL^v5&kJ~wc~ZH^ZoBUvU1qV+Z@~Hs z;=-Q0y|N0RNgAYd1=^?J0=S4$Iwa?t8w?lN=$u*`t91_;KmWv6|W zNsQ*DT`c@kuNvFp?a8&j(ENmaX?mxbd8hPdQKZ#oXMYWK zBxC!xc@ahbD63w>PwrWrFCOKiLqkJjW0V{1s{t@3&2EDE4g8c7=OA^K1p(+bh-HWi zAwfa7qYK^^EqqT-WGBGvz8dfphmEMqKP^AOr!Os?q`@!P1&iXazn|}@a;>C=I8choYYTTCx!HCPB z`s;O|M0?NVS7V*yk=G5Mg^#Epb%NcnTBfm{o%u~p-v0Q?_Rv|Sou_H%x>_?(0b zZ(omW9CouD$|!3!!5l=Tr>9#MCZd29i+Go4VbQN?(qBph!B`n^v3feQqmJ)GDRAZ` zWD&dc4f1&yyS|xDh(QbrptB2)?kvp*+P9x|KmOnq-|h0ymHJ!pM;Gsb@u{Z;X^g_l~W1g;M{%Ji0t0hF}g$h?sO@ znwof)(&nW)cJ}0}iSEun{h^bGk5c{3@v{}P;_;3;yX$9f7F1f!Oa;AEUH{XW5fVh} zY^upk39rp6lJ25TFe61g3C~V)GPif+0qc^Tq6h=bJNesA!Gz{xUF=^JEV<7Mzxo_TunSLjy8 z4tb1LO(%W{Nc-N?l#SMZyUd(ipIjazxo={lDJ$)huG|#zc{AZq8mdnJC^wb671Rzj zkb$$e&iOk@9KN0GY5TWbKH~GUO0HLO!s>Lh6ChK;rucKf>WsNt4ccoPVkt=%iEV%W z1o_juji069a=bqWc)gd;Gv<#!WPNdW#GPURAvOOpvw~;C0Ja`O#aE)TDpPL_Xb+Ii zXiRJNTA{Z$lNo-F&|piJ)zt~DPj)i;%R#m;UfV##?#EyTwopiD80T65o4 zG4=Fe5W@W%m@enf{j$`%?Ji)@)sMTb71Ns1o_xpax?k*gdG$!y9>~DN<0}qgBm^Sr zIgNB|r3U0sVl3|Jni^mxisWHC1fr~p!rpyIv0o7Y|2=16XI_>XFQN}x4G#^0BlS)s zypgE&J%wOUC6|;y6w$pu=|C@l6Kd;ww5+vGL!{cybEjBYX5&6)eaXqp*$!PBo+py_ z2r1W*4=1t5k9#9Zi%+1>Wjguz!cNjRY2Pv4LJhBn;(bPs)xQ{i3*(cRSGXaneeBA0 z>r4bAv<{n`a%S=ic6|s1BvW#rjCSr|E)@-8n45Ugw)^8ur?P~lo?R;i4HXr;2#h#1K{ zC&}Z@tt6NML8t`T^D@j~00-C+XU_vPDH#XV@}*nue;JFv4*^))S)TCF9Q+HkC0`nW z*&+$FO1VI{6N4>19-Uk%UxI&`&=FGx=@MXDp6+?o(Tg1g7T=CX_K)%)p)hIM^Mbi~ z?hu=s$V(%S&IK+AxMUP8$>XP`j~1KxTvLcMtPB03BY7$l_UWgxlV@aBEET}49duK5 znvL+8&=b8rJ<6W=NF)r4;SS$S=sR=GV;J?XJK z_Gr^Spbj9$&6?e}n)_=NU1rM)fK>}7m^ZyL#zOt53)@+)H-19E5d zcrd<$NI+e4!BPh#I^Z=At8wry_4FOuBMSbou$uUuSeZ|BVWhevA(src-CzKiT<#1` zwX!AfH_pt`56mdwX6a3D>L=V89M$*;NT$TgOu&{f4^K}2n*m`OxtwlJ*?9_$5KkyHx*c^)P{tR5z}*W);+tAv3*)&5^KWoKBa zcBi-BD%i14(_~kFb#y)nxYU_lAsluuZwe0eK7w-vg?JJh?EzJ^| zFnj%;u4R9+JRDYRuH+qj|GmHw!n-g}27Xwx8DiTf28gUR|ztaJ?}Z`oMf5#{bs)R-p~CkV4{ji z)KRImjJ4le97{;R-sjKv!!n&YE@YUt46HGy2hz5I>q~uwCr>h71?Ss8LHl4chrOSI zb8wg$AAdwN($VXNi4U-Jq178)h`;#1MB=|jIt~9mRm$(HCZVT(z2hKWHsLb$u;2N}1(V6s_6G zH^z4B3qMWueYe{gvU}v!?YubaKn|9AerW78b=vBP5AdKGyd104%&WNW4tcy3}_J3sr?r)D+7eub! z?Q?L=I;yE-jzKXLa6{@rQy{*8Wmgg5AzFGnZdA(kOZ~6}dd8OjI(4h0a=9~Wb>KZW zuCaa9!G!&<^=E&v1Ipcw-(~VDr{=%+3YlLNQ^x-x{UH9Kb?haA*bLp1?M%?N6+lgn-I*#Y=)$eLqDGs+YS^HWl3x6@RWm96r|GT&`36b|#eT!4o! z;vh0H>v|pDi5Tx1MQe$c#5aytj(I+O3qIZBhubxICa(5;R`wd@*>dCel3BHjWNZ|( z(9a?jxgF;JromDGYgo=lvPFh`nzN}RTg?H>!E?VSvNI@qI|)DW5*3LZ^*NLL^hdXb zUBE-{_(L7O{*Y+~S>`cD%X!%3f@fz=YuNqv0n%*W%|YFGk%7K@eBYaoNqB;k~)Ity*J z3rXh2&=SXi1{>}wEh(`F`N##hMI1Lr4?~vi(Rgq|$vqD!D43i4cWP5S4k2hUx5Hpo z5_MP@*DQ`V=}9z%cPva)h)@UyCqo9%lW*k6Gzfm68L52^pyAK3$lYW;!=Vn7o8SNn z#X(z&yGqf*CgX8H)`1Stt{)V~tpJCkV?Y2LTA5_XCOVU5D1*Mj8BaQh#g^!yW8XR1 z(yTB)kSb@=qR%z+s7nM zJn#tJ2O6$1gz4fo?~7n3UoMB&8YihdkB_t5?WOs)VwL*m*Z6@1p- zRi3tEc|n92Uj*6mv3SMaURabs$j{3+-6%mF?3qc9sL@f^e4B5-C|HB5i5; z<0>1YVIZlgDDb%s-n1;+HTd-`M|Zq~FiN+cc4us22w;*4)z`BV$8FE3KJrL>M-)2m zeoy>P4g`2aiNj_6uY~UNem;wWXY|(y3S%Z0=8rgZBXF1Cix@%)QpL2=57n2(GY9h7 zF|1}Nq^!({1GqAD9)7}oj+;*mvBy4u+308G9bSMhLiK45@rY5H-x=e90=C)K(6^&} zPo%sTBx_eAswtbDo$POZ=-oSQ-~e3W=6e=y_g=%be4j7!hV#wnJ;pr7r1mj^y?6U# zA>bo3aeB!stXGf#aC!?ZDbOrvA_X*R>i`0PZ5OGq6Uo_bl>Ew!?Ov1MU6cJC z<@=Pht`yr6MAyr1u!|&iarl*(r-QZJt5>H41Qhg6qd+7acj_`-D72)YeeT z8@5Zy%6T(em47>EOotb^T~sRd&iBc*z6GC7A}uPqTb2w09nJUAJ$Gbo{z^2gy3DaxZRJ&@I&X{N*UnCT@UU-z_!8sU!ae2M0pvZ1^d-_b z1}n9pu0M^1e61XCYuo^{d6r+Qtx~l1+5f{VVD(_GM_L4};W;449bZbq_IM4ZmKNR~ zIMx-g&5Q~E0y$3 zuQ%^yZ?=cbnc&E~E01`hJlKR}(8+NPH+tl>6|LA*cP3YlsBG>GPb4g2#2OW2PbY&{ zptKi^%CQJ6)>c}OF?3DwoFWISt)BP9*KbL~6`NCKZlB`GTCAVYlo;vhnmE1U#Vv=V z+&I-*gN{$vm5A2`(P3#CEQUSF%_ecah1N=gL_N$snRL20>&}ST%6JgVh-Owq>vjKo zXE6Phq9<5lY2R7gHq_CHCeqpPxA53wvG7&`%=W{4r1q)HemlGSd)pz)V4=BYQkWn4 z>6DRtoDZM=Jofn)TaE0jmlmy?}NZM|7&2}VAg8_pwX z{Onzr(rNMN{h^%jcjMPR8CM?L2M>zO#oESffZwVx%+vBaOkkHMnM9#vJIsi5bq*Dg zoG?|Meu^1-{Qo>`<|%Gy0#L`(*T3A3HC&DT;aO1rl2YW#w-sX%q3mSKzI@piNo)?x`(5h z_LV^WYNDwONu*~QEKdm7I_tg6<&!5*UiRPEXem>v-rsmHV0hDETK2D=5y#exce@H; zf%CP!Pq(Ey{Xtt$-@5&LagNesLZxI<`#-kxkrc&5J9b5HdsTJ{2`_lz;`>Rb`IiaP z;xM`iqCUgOA*hk~RW0JtyEjMC6{pcM%=p7x7;Ox)D94Fa49r)qb%Q+_$2TafwlPFa zFj&6B0HYevvP92f6EFw;{d_@VT^B{f-LfvVJe%d@j!`ZeyrDB>QD z6V%`U&`B9F{nAm#Mx7Iyv6R=nUi$R?UH%r!ALJp}_QpTLaAUZ}|FKO0VKI&?8o_O^ z2a!Ag3!~;Lr~`AGGwY{@%GZHQgklv!yn#*v`AsKyWwNa+Xxl=v#;+vj0;a0U^paBb z#-C2GY&i8kFY~>i_u9rNpX%xh$(rA|6BXYfKWTR)WNP{_L(o+7(_Be@3;l%ByLAv{ zQDB_g(4c{uZ+>_Kj&tdy?V2-8p{1luxBbD9t&>c?c(|p2Pt!Q~08aa8K{Oedxk9{3 zk~of=gU0H6M60Rra1kHH;j6#_CC!UwTcZ1)B`omzsinX~Y9s?F3-?$aU^)))CEGxQ zGdEnot2C!lASOVK#$9EE4G3IM_#{xs$x2Cv2sNJQR*Gwb$LUCUdX4TN~5^6Gl+&RLF>(xV(CyEFsghJI;I)Z-gZAmIv1 zJKtwBIs~ROEBvin$VS}$tiTR_{{!hA9X$y0X>urB_e=g2)4Iomz~$p1LI+hJZ2cOp z4uHbw@BdvXw886%T6jWRqXMnny!FCVNA%z+`&*D&Z)A(}Vgqqea$P45EX~BYffxd2Q!_gozb9z9cS4L(452&|V4&DCq-*Y8v)J72wmUjd z+^_G|>4KQfOmv$S)kZtcB&4^h*awce-ybe*kMUBd^k3s4c1lPXemiH&bKpQ)2Mm!8 zP1jj$9psP3yIoG^J(QKWL|0^v3P& z)^1r8R_{E@x~0P!uX%?jGOgGZD+DflhTj!qsWp|A7C`sD(bT=#UR)fby7|lg6*JUrN z3L4!m5Hae6b5(vSU0{63fj5S-wNnq-cZ*sABb$rEmyeG9`{BH@l)7kB71vtYYQIR& zllQKg*8WQ+_pA0hl?$x`#_lN`$kAX7GyIy|?mc*Fahcbob{AUKvSroulZ)4miKkZ1 zc-(+i0nz{S=V=uB!$8PtU-0HrlfsPjOC3sKd??Ghbys9Xyf$Hagu?vDYl+|9~p`4-`P5(wG8%p%7xY5iX7L$w8Oct zfS5q^c->_8`%l|ILwB)Uvwp|n=!e9pH;3LlzPX}U<@b5N_mGK$T$vt)ENsI z)mar4wQ=k@Pukrs``Qy^Q#>dp#*#`1Qffow0=OF6z*fV5<<)x;D7_@p~Xc8S5#`HzafyueKW=yogM8xgm&B zGj>O}n>QEX@ivc(3IHHd%TIi(SsQG9NpUy{&FXfQ z|=d>VR`CQpnLm>$}TBfkk0u zu=b{s9NLE;+v33=DH|Ka8}sPkhm zE7*mQ_BK~A05k&43l6rh2e3?rR3y76012xB5vmo8i$L-ePRzdtJp*`5{3m)9g5-_I z7N|!S{~g7Uj?8n~<(L8n96&*M3`nCIOt%1B1F_iwlO_*HHMyP=mDcRR7)pD~(IXUO zi|s0I>Udn}&UztELxJyHMX5I?J~zLD0eU!IjzLOWw7in=iyP)8;8v1#OUYtjuc0Af zZYh4+4jO8t-)W#tBWiAfIfv}XtPyR>`VUvP>o@Fqz9a(vBL8qBeu*Cho+wb#)m#~Z zzw9$%@<_Ay2t#p>{Kfypfn0gy&hn5S-ucn3$YkEKp`Mu3;|jXw{O)1ekQ9Ag6m&&C zQHjkp0z;G`?2AXpo1GOLEFuZlj=ify3!)>Cc4u4jNJ_cHyW*sj=AENcN~h_kLkU$8 zpd_MIpMN3>$Ee(>9&W^3oH;Pv$xT8Zy2G#UG>>cr+B$@)wqFl0(hP6u$OPgxQ6g{W`C@gk8~h|JZ7S#0j=_5Qf=5GIIat-<6e>@o`k9 zx3_mA87H67IarGASnwHHcgDjO%45A?ftJZ(rhLH-aBK3=dUa)Xo`xvg>sM(R8REuE zf!VZsWCOWCv(&!ZRbTn2CP&r_s7rpL4%yk$Dvk@%*|JX-YMd9~WNPBkoLpJ?XE^|9 z^TuF?8m*2iwY*)hU3A^ovvgyUI-$BdJHc$w^&FfJ(_9ZlP>uo5{+W)nNFM3nC$h*| z$pi)1h)aBu)f;mTcxpxgcSC<+FGNYBT0SadH1S;52lGSVVT^XS962)69kQ*kuM^@y zdhkRV^_Hd@DRm9-@c35hW5XK>usX0vpH6(PtW-_y__6f6xHx2Ge{XiHLt)E zu3Y9F+@p`m&b98VnRxL0>EM&JQtHpAKje{@3(WeLY>4iGVOSZ5{K?o^dzW;dyv}|r zh+hlC>}_Hp-q-5s=a;ssT_Cw=u-{R;vtZ&oJy=K=RDD}{^o~qh!#UJK!NPMDMWy{2 z$k}Yk7z+Be82+9bIZR=#ay)@DTq|{r5miKmRyu#h=`?Dz4akPykT%f;is95!pSAzY zbbCoCBfM5p^>7f&+M=aJ4qUHqXmLm?QwcyitYSMgt4U$Gjwgr%&jM$yFArAxf9$@6 z{n@MBokM&f3w!~$%Lp~AzRbjm0?FeuK6xOCPPt}L2BE=Z7ua^-iet3mI=uO{I6LhP z%jyjK4s$e-&Oa_w*_y@gQ%APnsqS=xCEt==PsTds*`a5jmVVTEb-o|Y@5=>WG*ds> z7Z-g+5A$XnJGDeD)0=P-&1~BIqVuZMhvm^R?Xy867COp$#Xn{Bu-27(kBI4Mmy6S` zEVNUe{PF220Sc=~-aqyDmr*Z*IY1fpy;o01wD;JxTg*lVVA!N31?NRZ zv+eBG8iCyg$@A}(aQ-^h_-Nw88^+^H~{*#oCX$-RLVZzw+l?y}~VftE1Og z#2AHs;X}rhX)spCrQP3A8J7b6zdzNCL3^FpF3o4%{aQbqT3EaFb?rFo*ZMJPXVp^F z3ljYsZlho4EXm26p5>slmBV&SgF_KtQoE06R+FbOnlJK``8uCf9})DfXq3<+A~?q+ z0^>p+fLgCk8+J9onc)>|i^CMYSNDc8T2VkJ2#~=vjFzWN&4Wy z3X<)0q#3;=GXejiL%0gPJ$k^7NrV~LYUu96YUu89?Nj!5a0oS{K~E_K?FX_xYLaFl zUrNExa{MYwC_!Jlph*Ev{U}+Ko##?~wDeC~tFNp(uHFO6N0wEjUpbo(&TOl{)!UtXL91_ z`YDybp|y8rj`MzjpVz5L!{z^!1*~mI9o{^$H+saa=I`Lxn9zayxt~AN1f?;nhafm* z8qn(h%u6T~tAlp9Acd^NELRJYC4b$JrTe?-F86RXOtgJ4Tv)(DH17;OmWJrkRw&2d zHv(Wk%+d6;Q5h}_RAkyeVTAw*2S+TRJA-x#HBNxU?ghhdbTqY?W_TWG251(uF;O9*i zolMiXQ+CH@R-3Hk5KGJ1K1qkTHguAR{Kl1xs8>70QUCJj(Rc{XJ&dj0Lb_NNxl}70o-qXioGD_NcIwaOh6YawOc7Cqg$Q*fZqQ z;N($WhQEQmf{n7B-QN54OX@J}R$+985}(5(c%jboa`4}cZ|@vLiqapmq+}=7Rq^?Y z3=JH_9h=SVE9ewSXpf2cfp5IQ_9GtvmK6Q$hj&#ntZ(1uZf}tKRAdJ+C%3^L2GTA) zS}DmdHOhmQzk!AE+)_YX#jVHwIt&PitS1n$J<)A?*8$i_nwj;xzc+mRcEI*ig_pT& zQ5k_LX$Hq*Y|JIdi4<}*7q|oM&YBZk4ObWX3W7Fircb_0U-$Az zq-$1{TlMuy_0TPD`$5racl~+L@WY;J>8Kp8Sgi8M zR!Dxyy2{L@r1jf9K65}-ZPzuZY`L89`>74zqGGg^e5^Ph=L#M2xDX-yMIc69U3=&( znfb=Y(}^r>H+9w2&xH!s$JUn-i+-XnU%uSEK3`G0)*J9ZVkWJ6-8?4yRn`~GuWdO{ zTJ+z5>~NJA62|QX>8JQl<|nnUy=1hTHq^=Yk%36f$I>~*SO!b%;b4!N+3jFFK7%;2 z^{y;rsc&!4f1u^ZwB_+#?IlJ%dumCqHei2w62{aIp{!rtpS*7N_k3MXSbF-LE*lOg zt~HC>rBAy{uRr}{HNV~SZ=uDs8Q*;%{cny+&FoCJ9hEccDXiL@b{Py>r!0#lwNrM( zs&~WUmM>QYE#H=F6n3>#sgQL{sML8Z=ILLvHT!p|Ci(q`a#>LfJxBdOv{y;mbqOcq zRQU*DSv?2pU9kzp6yAo)f}>v?NRHA>H+mF2^VKaM$L?NqV311Bq*PZYezz;RbosKg zVV`XJG`)?fIK?VFE1|&EB2pUC4W+O8;K%2UdkC$72S>f>y~x&}_|klgo#V4c_{S?i zdxfz#ir(45O9as?`;;ghPWXP+26g<6Bs7fR*su#Pc~FdQjV36^_=rw3Cd$Z5Gd1rG z?@U?rsjjbxs}GN)QmQt`o5nvSN&{7DqW|bkNV%5+{RGd-y-0KCg2D9(r^`?5+ca0D z*p=dr<-X|(I#ueFUzN${E+gQaqj|U8>0~4wA`DEXZaMovd@7E^V;!8lTX;ae%lI($ z!b8n)pyh^wp-C8`m0KG4Ep=zAj@j#qHt}e%2;Mh3s%|rlRLnesD%GS)>*$C!U&Z(x zl7jf@W**H(O8pf=+J|1J+eCE&n?uPLF7-QEQn9BIw9;XMW&Oc8;4Ttz^dPN09C$f+TN_Vkr8Q6%1Qm!T1oK4G2Zih1}> ze~#CnTt>#QprOq`p{{(smtUSt1UvH%evEq|DeK@{;ml;tC)&wZ4wRAf37l-P;!x?& z$-2-%4pHwxxj{%Mk3V{vG1fJklzE$v3R6GaIoM z&_O=;XI2lWgUTbpKPe2qVPI7oQgy*Ja!4HJo6fgnDjxF*rqQ=D$ zxDw}|phkxa1KT_Nk;eYWol z;{vA)s>*AXMJ~_{3p@V2#xnM2@*0R##nhMHFKq8^jGe}h5If>xV}~G3aoER-aA^)# z&bI4cWt!G8vr3^*dYta!m;<(RgDJ9l`D^3jZ?Bz<_;<#$!W3!~b(3_zG6${n*=^F$ z`Pj;JEoRZP^3LIfCzqDU4#rLyEj>+dlW&&?HVOguI5#)vUp+i90FLCjCF~7IMNqXR z?uj`+{)-VdIsu8e#2#Hk_q=`%0xcoMsehr^AWgRJcOqOxB&HeVcn zwY{OMx9CjZ^2Q{XP50feS{dAQO7~(PFD^JN z#O0-Ulp`QI#k$7#TGh+9Gy@ZEd#-q}$m~upSeRZ_0=cJREG$d(y4f1)q!oq2U+cF| z%`YyxTuc}1?EEQQnh>i|VY+4=vRzrb4OsT-*pjB|iAP`Ll8{7xb2JC=Hw2I0o#yd7 zG1tS_wIAJQy*1P^<6xz81()C(av$&D5T$wQ(nYgBo4+^bRd;i1eJ6VQ*4d8`VUzy6 z1^o6UU~y`rbg?4OoN?{m@NR_l&VYqU;l~##F+{AmNJ|{v*LSe=1+sQ`I7(pn!Jpym zBQ0=V()>|BDiq)uR9%|^rhU@avv&w_b9Nbq6LJB?CBo>c6E zRx5?4ML8wGe|~4zu3V^HnXUhQsB2_)`*(fA#Q3X@vyr|sd@VP7yi~=wFQD#dG97#) zL$c%cSo`%IWYXrx7XaZlykgbYAwqdu%MwkfVxJhkQ_+{TJNM`7)XV{KgU+t=j)>QP z!|n%q41QV;T%b%nYv^>do)4>BPqVTc93U>8TFg#lglz8ZcN0$&q>pE_5Y+6r^l!^1 zG^B6cRb@X5`3XLRn;nrdKhoN&V;nhCdDO97*b@5E`4Xp7Uin#P1G+!4YZ$sN%UZgKfixjIlk9GrRr1SR<@KQ8^Cw?)@Au}vsSnB+EjUSUMbiqoH# zI$BPOVTt}>P8?vxjH`(rw7u~m^4Z%HhE8m3?mx5aPNNNVsFQ#yAQdB^dDY zOOq4*Et03Oe7iNpw;gonfQ}<4&c< z18VuOLPSswh`fNrY7qO*9D`Pfyx$ zc*TzJPd)i&GC_Tk$NpI(8AJct)q)+>D0&w5lz@FB9}#}NbRnAM^WOO<;xNQOa{#d# zIKOAY>-Z7&4lIfUS1`H2i)cNGXUgP~IU*$0KqIU^>+y>rOrrVEK09{7__fqOYPwfY zhr-u*5nv)Mhze^+3xCIm09k(kY(WVh?mgv%0gyP5VH>IZLWXqFhWegFQ+m0?5US2I zU3-4(Q2dAUp+K*Ss(bzx=v8%O2+)oP65EHK=pYR&#R~JBkt6yhtW%xyL8tLlnaIl| z@i;7XEW&oUt6VVwMsXb8QW zlr)Q!Ey(X7EM#0fAhI;Dq4fh;h^i7={zzO%+5WYJMVvS@e6D-u_x>A5T388J2 zqRgJ;2j!NarIA@pUa;P5-yghC=Jw@6J^e$PXFA+NqAjkIerC#P<7w^g$bNlatz5bs zrx8mV+#kl*B$Vgo%9JoHeHH(f7z@iJR~|LR(itlv&|zqfqEPa&ubo!~QFvyXJ+4v$ ziv@g)b z$XR?#e}4VCfsv4qc-bB!lDlHEpF1+@>+25Wq^@o0^&kO;CLV)VX#lI^{SpmVNJopT zH_)nEL6WtK>|q29EC1y0wxi$|Cqi-g+m_CJKV%&SIhCzn-P;0`8s}$k55A7(`|fRo z^|3>!(*ps^mIv`Z@zEI$I%3~orr*ST=0ei?aNurF*NES%YZS+e=@Lop&)yPvHWnAh zQFWH9~X4MrN~sV-jqyE zui4tR-d^6D9vL3FoUA`1V$jLGfb}p~wK{v?HL1ZaD7XeWPRe3r(v>pyev+HSKAj`< zHYV7o#*{s*)HT77<(l1ijdjtS{?EmdB`>Wge1>UHFOxIaniIozn!*W-lMnKKDvAU|W_2#jPz<;|ZRdQ1&NpcXp2$n2t*b0ouzk6YlP`56o(Ke z3Kq@wEDx2Wydbog&K?J)vg}OOxhr-bO6U(r#m8W9QkZZAjF4dY$fbbz?94`H!^xxZ zhGks@?I#>+`Enm=jBUz)f!Eq}s`-MI7hELdu@Y6BqHe>ib zqD-NUY8Wuej!*)&I3Jx29U4fQv=SoN)J&lj5s?4Tx#O`Vc2o%z^4S97UgkcJ3V>8RGj6%LP*2yV(++gg<+2tYzBH4Eznd@z_|%`V9fSi7kRO9LJ`ul;I}`UC<|UF3tnv5`v&KA zBTtv4zG`{U%wI}N#&G%mY#WT#RF%2$c7?*)&7h20Pw#t?aiDA&gI3&ss_Dl^MG1X_ z5x?HwrQKY&A^)5g|KrTs!siM1;u>e9zS!1_Z%{`(!QNG<`qGbbUZN#G{ja| zx^QIRb(;AM?f(8RQw#n^lxhN73+U4>V70c1hOGru<9^U}g47pAW_Ly#cNis6|8(7RELCSA+u-(fu^eOKUil^T1nDpQ zp_Oi+cu0_YNdxnIDINDa=3r>KPQ~A&n%3|E>f6 z5?i(Var>+L(_-Coi3Heh&%dmUX&oD;-jVs1|Gb!}^lC*M-4MwLx&asPdIy);O(Vq6 z$&oO^M@@`hB*OPJ%7I?(3m@a}u4GMNzo3oLwv4T4fvwg3Kaxw!dec@;hO;RziS0K$ zPm$TwdR*%I*HPaap#U<;#M*Z^KArP+!pTAQiDrTwB%FKi@9l#6pPwr5XX2x|nAw-T zv2Sxto4+SSpqCcw5ng@3ltVXKV_j};V|npnaw+BCLWXX)qj-E4>LE*mRImA9sa!4s zZSPTf&gas_iz!_*kas6qx{%0WRQvz906pW2Z4)#P>=*r$c0g6yYJgfaERu05L%eu1 zIp#~dl=|meUguKd-x+HX8gmv>8fz4uDo8AcjCo1cu9SBL?dGf21b9l{3h)k8$6Wcq zS`=+tftFjdOYu4!zUl3|-zj3kj^ED=p=MZRq<@+BuRahZpXDZ>Z!eFwbC`y`2nSe% z=l0Bx?J}Ral&bslnn`nDh2?&)$wy$3XDFdHn-}l{~HeDLx5J{yrA1_^_*(5Fe$j5z|*@+V&5FKDdehN zAFWYZ7C8CXEa?u-@FYRCM)}(Amb#i~BY+i`*dg-ntGE1ePwnnlbz#s1<$j3wOkjyI z7B!!8P95`>bU+wYM`*kvD9~HolV&*njQp)MKS{>%%M9SK9!s;Uk`%wauTzb(vGzKy zKZWs^tu1d&Bs7h~vyqODN$dId{WHV!8b@r3sM%NCZVy!Ytbuq>g-wHRq9av-vfGv* zLIwWWb-)(~>dA65=FaoulcROU;07x1{=`G_jCev z*4+RzT0lDMJTmkA#as8sT#alG#E!#=?$ks^anUP7NYUcMWJp}byr0LMLBR=LUT(e(ay?vx__r_C& zPlBvY&$QCD!4mP3sCVu9j>(y48OKl0H2iB)&AFe{T3fWhIWcK7UbT#ufG zQHS9fk9M6PsCz@NfZC;;?S^wH=AH&-%W~*sXAWz3TcC`qW+SMXU2LzH*(DHILTTC= z7^|>Yy7x$h#Q*}Kp5YK2;ZO%ki~|lJSX%(s244rl*XCqeru_$}$F4p6NN8>H9SnfHnna5x%m|pji z;LdkR6(_iW4=J7C--;$OS@KlOw`R-f;wl?y@YmY>8wm53zkzvd;=Bm46Lm)5@=62&9}sPWln;p}OC z>eA6~_?p%9BHtO?1#7&sq>b|oF`FQ(g@`>iaai)_6F&pVC8R61S ziO7(_144oG75Ta101Q`vT*3Z>W&%QY0}J$N!1!sU6~Jd39KMAcIu-aoSE3n9J*`E7 zXlY71KM=p*(#aHC9zrwRgEWwNU=!ECOIxkg*fcrUk1 zqFzPMT-(6!YU{o0`}2W=V%*1#=MSJElH0HT@1X2c z0?$W@J%OE>kRa*FnL_KI13#-x^PKa$uO%4z{h9r}*<@E!rV5?X5BJ?1fvs^+a+ykS z<6db0{rmSvAWx(Rzew>(rwRk=<*hA?k*$XNHQSSRZ9*xuZ3&qi?OAZ(ID6K4)Ezfm z&*4yaws_5OO4HYlg|6zo`TQj7K@O)@7T07Qvse!LC}{qq;p2Jf z=2F+|qHGq0NsL3E{ihxh6H`)E;Q zyjjrK3!xrj_HFK+CCLw-6ipvy;y8nODKGcM<^y5!(hWj+VpCIVU1qhL{M_G};vX3L zBWL6I&YJYh6QntrQM}G(62`~dUz|4_MMk$0&BC=u`92=zkoLiGAEYu$i6$yFoXdJ< z*R2=R%X2zD8~F~YWS7{N;XkoBzEimzvN6_@VVUQXclPSd3yYT=Q{U|ldVkG<%?%k~n|5&N91 z0^Bc|m%%)rjO~oq^5kxuBbD^7{cEu%6u0Y7E=RU0#+LLV)jP~dYrAS7voTUje#MD$ zn06v%a_3Kq@q@z)g(6=?BE2xL{wIv^h){`ULV03g(5X{rL2*VnhF!sYc}R@@-`}un zNF#Xi-i;xQPKKY0W}suaN!vVl>+!+S%pt_gsuj(t?k|k-=o5swgz@=PfSi#Whn$LR zEkQ59$w2|D2{ONZTB(%|D*}DN63$+#zJ*2xP)ed(<*PU`^kz9hBXJWv>i2*ysv~MI zPS*VbGmxIH&_@D|H3gsuEQ9(}bcKNo54+Z!5^#pCf&2i#2f=+qG&9RlodqOLs4wJ- zDQb`G5&MFs9=il#*QCKn(ashniiO?_x2=VdiqiH>hj$F@crHCZ<(7D3Czru0Vb~k z3I+yKmrn`^H0*rOybkl9iMVvL?{~l{X-=~5)6;ojB>(}Ofbl~k@r%u?A5h@`BAsa_ zq)_n)h=0*OF|fIXc^~L^f7lQl9(c%%l*puK={Sgjjqs~#GKhlBs6B<2_trpb2&NCKe^F|x+C{h6A5+U z4g^NTLrT!Vk(lD{Hv;=P8Jpc9)R|ym%o`KJ6KFqhg31UTC-A5tfoq?h8Qw1|zKB;fL+G zIi^RcQuupikv;tW?&jE3ZePazK{rZa_AiL7NbZm`E+^w3M%x1LP0T;v>eX3tPN7(Jud}6gz2$z$#$1C7G9KAj^11S& zEBF{RQRr^TJ?qLYK8Ha%7N@o!c#`)==kU9a{1q@3GuQTinRVpBh`V?1h1#nZ6e91ayt-kjTf>zFbZD1WJ>*|>9nEpv9sfVwkZxHsroUK8k@^K_~0x4qn}#U-)p zdy{*Vsfy*6@0nTC&x><}yxSg%Ea=u9s_dRAynQVG&17-$s#c2ug6s9gl<+fRzmo4{ zFQl|8Cs4Ou5-!r-1 z*8lXCne<$*--SG9>~Rj1?R1?w|Io=hCDR@;8Y$#y&h8tlQfwu?!dVjUxxzw8eNXKM z$W9WZd7IO|bti$|VV3t*_7|0!MtmWbbqB}RsZ_X)<#p<79owVsbyn$pBR3mHUXtj` zU6b<7A?o5VhGV1()4Z24SmW?eDW(VS(nwTPvVCl*5O|DZG-HDxlgIO!o}%ItVbIB^X~Q(_5?uya^l-v zf75(_lqg@x#UETseQCv&M?DI7BY((}F2+tc_3+u69-dHiT0#VFoqWZRAk_qMJvGfthdxt(6CbmY0w;DnA01QTL;LN3rjv)Yt>H1B@BtwuZ z{R{o)=YWxQ(pRbfF>Y}Au!w+S062Ivs64pg=K&9g-hF*u7$tob%}_@M^cLGA^Mv%3 z|5l7P*Bc%_jz=8*9b%cVTYQ{v_|>U|)Pp!A^vRWvc9&o_hImHYv<2z0ILFO3^9$iL z#*g!{&+uFGd)Qz;%_+HP^dz3(oeL{evL#SvKSlsk=q=AX5{<`OOnNCUljH#IijPG( z08plxV}6>Vnx_+^FNX`Fz*Q_93CWclJ>nEn$zyFAGY-onh!T|65SNJPNZH5b|p~JGUqBV(xC! zyj^_`pQr0vet!PIwOs3J?>R#qSoP47bD)XX<_n0r+W;?={jI|NtHu{fD&X0W4T0JQ z0Pir&oDs^179(0%GCLxW_RL_+M*zEBg9X|axPWJA3D^Ij0gi_($ZU0F7{>wR1q1`M zT(rRx6i76p6oyOvMh}dKsK?SW#g#CNfqIi!=zptM1egNApMLi&hcu|cbW&*et>E3v zBIE{kBzPbE2QbYpSEeKDGKL(;uw_=Wa9gCJWY`*-z@NLx2|v8USG!X<;y=cu#Y$yI zuRWc2$3sT;hu>jQalvaQ`|T~+xpSW)V1I#^Gs0$N!<)-*&PFwS6nY)talwNKrQ>-> z0Kj{R7g{X@mAwvRW<$R(!|s(4$x*}XT3+cwyJes5;!;{f;tU`Vct1w6+K=){m=%mr zb4oaslWh&8?}RZ#AOY})I9(JoIwi|?n&%Oa$BcA*$kg*>(M%8iZ6Se-G?-22pSd^z z8KR^&4NZ(fP8VN0KC$1you=aa^6vVTz5J5D!!v34&qlamavnJ^CpWhuw}Qlc_|pL~ z7giTmF&DFgOb3+2q!_vbz|S$i?*sq$@oGa#qf_}=v6q)rQu&ZZYrZC(FNgX`A(_ZhZ> zY!LZm$lPz^@YcM-pJ0xNnUIge<0TVjZ=bF^XnLp^>tg!&l>%}PWwdfnIqGbyZI*V(CmhD_}PoI z74Tvj1)IUGR8ep;i@OWR*N{0gSzu+zKYb-yx@AAPr1vmi-id@McHpwX|lsZ*0m;tJi^R~WK3d!&z(VUvmJ_V9tf z%GE5$FjbE5SgP3y+L;((dExBK1+nP?I}bL*1i;-JRhnQd}nFW%Cl;xX=qHCgA9)`m}7yM^qf-%f>quWAYflo zKw+rOdWFxw=g&iDkC0Vb^_`if12MZlTbKKQhW!DE*9&OX=0_qnx234J!on0*$}IrM zkaDOT_PGNkm41tJGafc+l1CX1u+|%cei_eC_byn4Z`>Hub9Z*{mUzdbVR{9U+{dWo zvmjJW6XrSO>yHBW2ozSG!^#kH9? z0}qP36E4ks+ymKXy(Um43X9dflw3VWKUen|y0(JvT|a4q~o*)Vb*71d{ZFw2MbnOBzS!sBjnpv_25kq*U_~JuRBvk{UwxwxT!!t zpFsbj>rp7P*sH06t+Dv1TQULfZz5N20FyO)(XFRK`gk%^enNJJfuzheS2J0Rxz<$n z9QNWDD`KyMAnHc3bWxp~qM?E$`;|P8rjnyUW{Z7O>-IkMuU8-QIw=*WFJp;^ny!{Q za>sv@K+x4>1m+t9uUvR6q>Xr)bo^taeOvlbJ{WL)I3|iQl2*9Ya`W1v{(fndZaiPQ z?#N*2e(f8h+3Q=&onhO{h3{47%c_?lJaq3Z zRgL3HZE|`kctOM$0qf{2r40Y>jT^}KzK2vMuDA;OnytRJ{g`il1X`&QZ0_DZljdhO z=fMIb@7Mn2M}xfespKn#9`k-nfNM%GHs=zHN%JOqo;r09&BwyBW>wD`*zT5V_(EdB*lXc4z{IE>+4YIf9#wsz!wNxj`bx6l0}j@Q z=9gag)Z&?EGPt$*#Gws}yl%$HdtFy>62%Wg<&xaX(#nQ>P8<;N4!xb9A)k&e<^Tej z;H2*e+hCYoM(K7p!S@-)#qcbL4jN{jzl`!BYY6@9ZDM`W;yWzkU#wojw4Qf&+wI=P z&S?;8nUEoa3To5K=K*fhCBsL#PwKopqpM#$N zgv6KJi5amOw}MJ;Mg|`(^jYuRL2-*GD^ARz>rOoyL<&hE6C>mZ%LIC#>8b=U} zJ%w)wg4to3pUFS6#RlBBqe`(~E}D&;4SxwBGP6b6c3Bv$Oe&!@udsTs#Cv!}B+O@N zgo_fo(%KNjWlRXn?^W@kP1m^=e!erYe)wjc(l{25 zyL@n&5%MfJRX_3nrW*qN0s}`?R_wNBb_SL^$JWw?_wM$*d`%6hA@*d|v1sek&T`@Q zpLtLS=X89hhQPaM@=k=eKyLY1QM(tVGojR# znS+mgj!e+NC!J0j&c+m>>(8iM);B9m@E^SGB1rRIIMyAkY0T@`z5l{kDD{nJ_4eY@ zXX>A-Ze-Hlmvc$9I=miH*8AqP3E|#z_`0~iG~X)EDF}sgnf_}Ta+v~Zx`Cj|(C+ZK%7 zHx$bO4=m3CQWptoQQ`@0@r2eJ$fO+_b?458;I zh8G(i9MVm1)w?;(U5_O?asrOTH|EceA1_@}0i8#MAPskR6IbPL-)82LBuLJDWFK#T z^B&)>W%BQ7nh1Ry9&!1qV<9DIJ{A@L?Kwnp57VmU$lxQq(){Spa|^r8Xss=}T+MH{ zgrC8K$_fU9xBo&=B@0(fLsx80N8iL4y>MrU?y6c~twE7AHM5ZwC?0t0k{XdCmDhgf z_HCt1qpyML(c|Eo3f;annk5REESO?8v0af@4@Ng)kY~_qp4CCrj7l!etR)6g490{FjoEhRj)hSm3lPpREtoj5K zA`PaC8y$HfJ%>LjtkEG=TWgRn4g=sPd5#8b@e89IpkhFN^89HtF0qjs>Ti*)2Vv`V zEFvSHyx+K@h3DjND4#*wYF@X7;T`y7ukFFO`rPB)%5{Bil%i6^5?|E~q;i{os+LmY_I?FjJpKDc`a z#DS=q>tOb)^xz*{`O`qd-`bh$`a_;4_Nqw6-wE~qQ^mq%L2s)4E6oB6r@Cenk_^`a zP*P^oSa`dAsw%7t!{50Mx^$QDLX+I)<84~_&QIvlUKSVf)%KCgW)|}f&(`OjpH$fE zXT{~p8u9dVf8(2CwD;7l!1+z@1SYH>m5d1q^e_0`8ho(Sg#V|v4EFjN6{e@mV2XWI zYgD?&0wj;V+)$NNaJyGy30&U!a~EX8UuHGk-MF#2l0V^`2@;uUg&5AYiU$qf{P}lB z>-Kd-y-SP_AF0Z?ZDpAkIO3*q0r<>&;W=G2#^J8vO?Bw!mqnM{B0CC6e0XP-mfEAD zJ_Fq&+CxpZJ=PGh za_q3n`#tAa>tJBWqrig5miHa})9khn0YW6U1U>|rUD1>~C|{X-xBXsUFN;qwUd%m+ zn`vfBzaSBQPD8x@zKLExPy7cR6y~`wG8pC}(la7W7%BrczZ|#?L0t1xc#xgf z={=D*9=K8vApq0E_q|xmiZiH7bx^}s^c0F=WDWitupn(BWAf3!tg7l|KZi=O^hc!J ziY)1|k z19srLUcB%_q;I}5Z2VvouW%6to3-UVT_Ej-b~%?J1p{XcL$wV3Fk_p^4`v#~#|et4 z^aTKwS8uP5t3uqFnEj3vK<>5WUusc33MsH~F`m1!r&CDmVsJCO%v*cspWxC6^4s zKB76WCP)Y<@(kidOe6`)S)?xOWz+{KwKp^fjEjM1Y^MDppbsuF1^X^zEYC0kkzyGC zy`6+($km168b(BZaKe#49fQ#lL(K_koPq zK0WXGdE-x2#GBN&Di%k4?ro@HaGt46BYkQ6V@&u^Z}oHCC+$_}^(Pr}reyQBDF73X z9lFqwoR-?=_T6aELr^6sB1kN}T|O0-ra2RzY}4gBj6x~S+jGQ*DwRgb3*wH`?bt53 zIbbfr#2pVJxdAtSDrKY{!>6q)jki>O-9zs>GDgYs=4-ohVREicjHTS#6Om?E**Gw3 z`&2G$d>N3<3f3t2&NY!jwC0TR57a(CX~A&sC^(f{Hwji|^Te?azNfuDp7rHEy{h%+ zmZRX`>%rsx|Zuk}T_9ZF{?rKHZ2>8y>6lr$2hoJ5RI%4N!6$ z*|8{vG#wPgQbDxcqG{3jGK04LyOq+Wu#o#*(C(DcIYSSuvZhK2E(f4TfoZ zNU!5wd!b9n-STPesoAp;)~=Fw04mR`onnx!aB(y7P=fI@@a}Zm(Z8SUJiDBDYxI2* zVbsI0q8+pRd*yZ&W&ER1Tfb79LQrE;m|mM>ky?Ld&F_^AI0&qK-jCRB%=ys8qO!@zy zZ@0ZqEm*DnEo6(Ezn{U6ek4>awMtqW@K7&39MvIOCf0X#1+zVtw{Y9Gfep*m_ z7g@*W2yOJFwyszF@s0(FZ=`r^1a!!!EjuYM& z2nL2D*b#zvD<6I#iSptix{}T@T=LL%ImSrK$MaoPSX8}9y7^H{gy8e|zz=T6gm4Fp z&0~NP1x`J;fEd%VvCR%DMXTj-Q@Z7k0(np*6Wf1yX{#nMNrUH)A@=VPP^1Bjx>L?q$)IJyKGjAJUVX%yS?3e-zL^7x#SpK zFYHT>-ovK=<8%b;cSx_yPQ()ZYScB(?h}*u1=-K;6KGeWwZcl4CdRNEaY9GBd@V$a z10U%a#P`z{QYngsz6fQoxLA2 zpV%2d=*AHpR`H(&LJycZ;UMr&eDqlNnLWmj1tcz&5NHmDP*5&2bTufm2~K!PNDV%O zB7q1Djbvd=wlHXV#@IkMd`z5(VTim6;s5xfZUCT%9Wjll^+ycxMv<&Xz=+JS6?HJ? zKd2t1_8W>k@u#Qr;U)?=yFwW)b?;V!fhA058NjF}Zf#&izz#Q?07WJ%v3dz_nU`kC z?||WnQs6BI9}Vk0iO0IE=ly~3Z0#B{5v#gcy)$P~b9(wHcC2#ecjZ#ZN|zLuR{74k z{aLp-J}vi*x5-s|O>8Q+qZO4GojJvp*z2!3Y@6QXyl7<|h%; ztAGFcz={Dt&bt{$4OU=}EyB(k-d*Z>e=z4Xa3aiz!e+4w3~3ufEd=ako^dutH^~Ac z;z&{fjmLaW2z2W0(<;M_ih1qCj`H+W@7_QLDAb4+nwW+)SW^gXHIbvvkxA z3Vd9MTP*enLL=^>^)~Tf8F;esNdjF1RpE6C1WQ5I_oH17|RdK z{BZ&q^%nvfhD|r8vt1By2Z_Qfa=$tmwM<|GQWCwI@djWW8Iu{F;ezgog^%=6yIs`g~(JMth zhf(XKxH>;NoD6?T8!bzbN{A|dGI7EHGcAg!Pn1wfFfxm3EV)>ZG#0K|Uuo~u44Pky zo!F3=dSzGG$D82ka<)=!?1n6gYLu*N=&jaY(u3Xu3V5FpE$BrXa|)_fhJ}50iyADn zsLLIU?(V*%(4^6+IYEI8=R^pKf@ejdNrlf8G-eh}Xp);y^YZetgHT#F-e?9+yz_oL z#IUWJ?a?KA-5=r+F=kmmzw)o@CvPdNIL}X^T_Zmd)!HtxECwq+F{Iw|{?pp}vvEk3 zb0%m3J-7aAVZo6&UMl?emc36b$KC=F;oI)WHK)Gtw7$5K-uEb87_VDIXH9JvZhd(o z(&6m6)jE&R*Toqhec!yD>+E5OK|T`|8u$ger%~$B!)ksB>BRsB;YB*R%IIVQYxWhL zPFI?}NN)c|oe-_>_E6N%CtEkYNB0=MdXV&b50RTE(RG)vTV*ccMW)?t8$E>*fX`IU zmf#K9H$EJtjGfK6P~lAF`O#w7 z?e#Jp8J~7&_`zF=D0O)@w4pW-s=7!8~mxiqs+IT0)N(d_2;hAKK#(SVt?cB{TZ^y17{QiSj8T3B3KSLhZbGe<%o!|NRLXf$Rl3|XO`YooZJQd0)}frh5j*7`yx9P zYm|6j%~Uj8GItJa<&R{d%0zx+)UvxRyl=RpSTC^IJ94Mo zmuJi2#;b=vHF+GSSBm%|m?q37A?_k|g+Km718IeMH^6MKn$_N6Id|(mek1O#TaL?N zOs{Mnr0t;YGy@Qu$e<%YX~L7ia12evRVLT~7Nhf^6EtHa5ug?*^z`YoL-Fo!>2w2CcQ2g5$Y0u>@-k3GXEpvQq=z~+0B&i z6M%bMy%cpqGu|KIhQN6QA=7|DoKybu7WgN9>1tCwg$INRhKKi>GCXP|93o8hIuzsH zJYeMCLWrjwEw|=xLh%Ob$Gk)E@*-8Un);j0MJc51x7I&YcvKixMcsu}>)J!iyXb$) z#$IM`{LCv{GOSI2s^Q{{{Rkx`-`^4~C z<}jrdClEI|Ap!!ZQmouOzEC{DBlQ$UyTBa5GYUKissP>T&oC+d>qHU#oKSs6cELQ9 zQEnLg2uPj%%?tyF|6R(;2{!TiI8a7&@0Lem3Q~80E9*R{rYZ73+wj7v?S5&@wp-K( zv)3N8&5U3I-4k5=1|Tka;ryL2gFM*){`_$xY_C1yxCKJoyVx@0?CHvonRTs=M!V1c z!6M;vSpKoifcoqvGhcJPgx*=lpjJg0&x2(3Z1 z1-Mr>aa+A^lvteMW8Rc#fI=B|N42!RS%!$5 zk+Pa)iWK#zb%Cl=?!2KENBL4SAO++(+T-d6q?_b3jD}8SiK-UZZfwoi25w{t7#kaf z(snj%T%_6@-Z??&yx|aazN(=L0<=whH_h>lE6R9HU;_$p~N^1{3T6wwsc+(xVv18+n*oJ#1iP7B& zodE8q+ilg4Z@USqWF>kFJ*@8qa$4f-ZD7H^C4dYNVZu()%rMgL5oySulUe2xU{zEpj^$QkHX1dhyN9iYB4)*@aH)c{b^Y^&zDA<&!N-!oSMy$!ca=N zRkOufyIYv1!2L*hw_;0x%M*Vl?<5xn{gQMq#(4=k&e29oO5H203rZ!6H|pwk)%y8u z>^=g({YIaxiV|?T9 z>kN%QEUWYuq zpuf$3hbm1wb|Yjb0;^saR(5JpS7tIpvAvOaWy6WM>ZML&k$m&Eew82=T0}9u9b>9z zc}f6r&F^#uY*hx_;6Uv+PlIQ3k1Toi_8bKu!=Tjv@#^w?<7tnF(`jQ{kd-YGx?#WM z<$3x+7pB~D|Ab?|%>24nfJ>Zi{ahZg-T7k~j@#t4l`TLL0;bo9Z{8d;m&=0K4cqrg zi*GBf*Y1f~Er{O^o|=2R_^4e{(MGEumuK`2)8^povop>WHcN!C(XAoRnvinznvRF_ z@>F2)(Fj;H=M=c#zw)$k$fQX*oHxCn! zHRwI%J)6KfDrf*Aos66U=soj?R15c%R<%wx#Wqw`A#QamAvip|QtV_-ML2x&35J9m zZH#|8?8VOVgtlZ z*NCpRGH=*_s5ySvR1cGsXO@Ky&f||&NVOb$(jXtBV_B$*Fu}U!>twbi^{%R2Qx$i> zsHzmB^Aqn2E1UWSk;WHp)El4>!!094I`SCF`yf36C!-m$mt76Q01=PC*?^IZsHhV% zKn#;dc3~nbiyQDv4^ZJPQT9#odr*@OC)pD|aNj#FpTPYfL;6bMxq4|-RJ!&tZE*!= zPO&K6K^GByD_|Z-HYdT;S7%c6GSi;R;wFZWzH|{KYDzw5@FV~@dJVo=eQ1b{ zgNy|S+(Y0t{|{F5Pu{C94LenFUTynn^hu~5wG7Wx2MNy3gi6;_5R9}Rt}>7-@HR36 z{}x3>E{6wPz-t0qPf>9RfJYFlvMMx8y{L@I8#MDX)l;;WF;5rj1?_84dBGj)o{FnuITQnD*HQZ_lQw#vN-$Z{?SbRxB?p z3TV=TkGy5`7HS5S3ciyRBbwHZ5q#9vrZ1c2J~Uebu%U&OczhSp)#4g_FaUvo9bY&% zOl0+?F>rv9d<|;12yVw1hRsMq9LzT;xQwp(Flk;9MwCoY`T^_&jVqXJVDkwAEGSR) zd{8o#1+zvcNpV<`GlhNqBdC71j)d~S5ax`mN+%x4nw`}ME739xn-|!g9Po)_K*<=1VWVi6p zt{)V}HrItkBTnl{B-H<1_Tp{XtLdYcn#(fBxg#8InWh_}%PO9yb`aLu8tt~a3P(?C9`1|w{|-!24)vMV8>O~| zBWK~Wls;||ZFpKE6B{912_V z+`7G(ygVxrF3<4*|1iJB%QnB6s#!sUuD5!F(kw9l{w|}?5eeAUW&)P=)#a;Z$CZfF z&wOtr@sFI%ZZfPCd{N`Ote;6E6_*v1YD@nf-+obPCzB-p`nX)*$;XS?y*SO!B00s? z*M7cK_KXK}xlTbd%d*9b@{QsAd8ZmcU|gcndX!W+K+;3fM&-J?=BF~&PPA&N*LfC& ziu&D3PO?^%YU@)@dSVioQy0QkEkYSb=hZw5j}mtcP?!=4mO9u?hch;|1rhh2ox4N) zukXp4sUDLhRA#@h`QH4hRwb@u$fGY_$f&q_{B%5f_-Go@&=FiaS%BE$qI3>YI@*t* zS(Ib2dF>wtROGc-LH)RWHdAn2BzmZpuGWT;+nbQpRv*1_x6|t7zQ= zb#A47o{!qUfkiQ#b()x{$dUHmQsSrqS6b;2th$}7p0xWADZ5)@A!}{kuwysd5zB%L zM5cG>hy6V>#ZZwREH6hxnqF1aSsrs)+H&q&)@`FC;=<-`;rn2ZRHA0iDdvv-B-a2SUA>mBpXIAQg1!4E`b<{ke}V zl;rZfN*v6Nf;xII{)AW-ghc2?F;X*+;F((PoMe4~%_pUs{1x^WJfx8>{qYL-u0yY2 ztAR)vA=#T>2=^xu4<3KyW&i3#9UB^}9Lrnx0XywMFgtLO%)YBA>gww{d&E`03E4{> zhtBCmMZ)MArkd?CO(`bgV3u)&$E*fs?_HQ;LxBNp=>Z-DSdXrwJ{;o>xPOq4* z-yEc4AZtAq&OLkv`KEeO`e(EP!}S`TvP_A*KksBo*UpSt#3 zcw7MpWR^|d3#v}a?dm(dp7h?D4Zg71A3yFISkQlW1O?+cqW)hCAQA?}G(u#|EiTernCR%%Ks#@FtSEaj>6$$+Sb(!460Fx+ftBbh=36t4(btudPvZK zoixaa{GprFy6OsjCfCvjhTJuyEJSzt3<~z0Ddm;zu#tuF1w(6$;=c|-zC8Ed zgQD5{BFgU(!#8}y;UY?i84=&jako=X8YKZrFMMZ;`ak*zN)jy1Y_Mtn^aa#%?Hu+z z_$J6v^iF-`BGl1Atyy2*`O3BZO@M80zG3$jZe&UVpH^t#-=UgSuA^twtz-q9a_g^} zWt{6&Lsp(W1~#sKED>EQ4CkpA4iK;CDw~}Q1LR}kxaJs4iu!g~BrB5X)}xt!b7ZhB z{e?OAySZe?AGune|7_;%^vcnXTuM704Yskm7XI#QUzHL~uBaK{X(pIl*%g4-2D$&6Gd@vks^N2Xz8UL``1G<+aYXD$;`P2F^E;AUX% z{!?ER^rIk=x@}{T_Z%(8B#w+J=WMvr^M24HEZ3q;KV;0ajMm^VLuqiRsZz5m9jOvn zs{Z?(zFeG8SWPFkx(MdzPu?2pwSMyCi9p`Xj)23ytZdT}(a2vbc{^)zQfr7OB=Pg% zBi?EYyU>LeloQAE(5ye>1a&&_r;38NeidC^mJ0hb)2zBAW8S8C6JeoxsXR%c&%cY? z4d=gk%rj&SSy+Sq`vV$e3NxrA4}m(d(o^LKB4jKxGZT&%Ju1X^EH3CE`{^|oL+zDlI+wPaOQ0y zv>Tg6kWVnLTsyJ0ptU}gX{B6Gf*~Q%0Kuwg6ms<9ZY|BBD%xm+R@jV&@hQ#+r@fhL zW5Cq!l7E-aJ7(8829)MPJ6=7KRWwG>YiBLLvwHh0WKDi!^j(IcDHQg1|OAFyzREvts* z8IA-Ny?ErE`n7R`^Xhl(pC1!kWykfOUT2%mBmbuoB|)LmmKWC=1?;Zpt6VXHr%21F5c|EW9A%qdvkruF^D?78n)3K>KGQf z_Tx=N$f;(FLTfjwQ>&`SXq@{oaqQaqpKfE#fG_-m{t8A}iK!KP7p`izt3OE~n42Ps zT;f#ItRaSqk$?C;sm<>eLPN`1@EX~SOul^)MHEEJ9n72Z!TW;C`5_!!b0?r8U>_dw z9#1G?BPP%5?{pLN*Z)}hBQEKi`J66vPHr-hqocnd+ zF)#}sP&k8}d0Ph79BanLJ_i)LcV}6*wYDZyiwu=cJteuN>OJkxRx)&gI+S>BA^Tlw zdsS~L1UsSU9fX(^_Wf1!vq?7jii{G|{R*Q^6u)J5kwE;!#6*jUFcuLh+8_@N;?2}- zZxV6PVJyv(wUvJ&Mee||m@zv}C!fgQss2RgQ1ey5QMV#+1c<+UO@?Gx(V82R6wzg8 z@PL|{;TZNG3YO7ufUvj!GDG_Sr7va}q@Tri^`+5yE=RwBy?=*P5nv`6T$3}DhZusXe$<)tX~w= zDN)u-2ic!Voa@hkrY=esb&Z(FBnpCH@b>s-U{?=YGJd0U-}bp1@`tl+qvH`5=ZNN} zvZPlouXUjthB^SHi!l(JU)c3A{Xa!Op_RgMe{40_aR2 zer50_pfE!N*yK%WU=?j*eK}tN>j7@2@Lj(dTS=US{axbB!{Of`ie|7L9jSjF&#&p~3S&+T*yf7id2Ta|Y3k_wnPyTtO$N z3!)pvKftqLI(>GI>;#ijBv2!upvxnnx6^3lI0yQTdXgA(W~+f2L^y^p8dgTF&N+mf zP)Fu5Hrw`1B&dyyB`nC7t{p%Ifu$mf)jH&ne#f1Tk*LT$Dhc>X7$IjmOt0%hEllZx zsq@|+VV6fTFreu2f{X(=T>ao0iPfx^W_*f9v%NAN6oFe9QiXF43ux%X*)5#HR{;Ij&l(394}x5hIPE zl@Jd&=U4R*jek#vT9y`UjkDvhotq$fSJ43tO!IGd+U zxNTE#TI-u-TI-YsR|X5Y@Vyw6-()va#i1JtYUgW}8SRgtJFWfY~wKY6a zsV}`q4Z;mq;+{m3Wc>08w$|3++~H37ew8CN%N?qr^QvJQ;a~WD3Wn%LBWiDRCv$R~ zFXSE8=8FVxrW6~=x>z%GYo)Q0nkrfGU%b|7bzwbW;zGn>E5&8Mq2oz!8t0l;^PU)q zyh*ZH8oifWv05(lX!fV$(3jtH`c&Ib-cCV*iX0Iozt)@rg8hA{4};p;Q%4Y!kC!y> zd>C0&Nt+N%8(Dh^Uz(d3M8fm*X6xtxcgMNGDT37!?T`FIo>h0YS(*Kn_6en!Ir7K> zTctj0gan(JzHa;TlYQE(L&fedum(RVLgns5{o!c$F)DBukm6r(+46 zcYS3$Q<6-EM;K;W*B4*aroDyq&HcLdJqW49>0G1kM0n8Vu-5X6p0reO!ertPVKCF2 zI15$A<_ls{8M8@9G&4YH?yh|agwChsJj`$9eV~N`46fqxA%x^T4MbSea0cXs;G7>t zexrUUwu;+0;^E0%X|gY$%@FcEMT2Uums_=0SacZP<8Mw zkMJD;7yCy*gijCyZ>gT-O!A_p=iwbLcEU;`s>PYKfJ7)<2Kf&BnUO6}WB`BUeCATU zQbP>GA!`q*#Q$Ivu#;CP{*4@$D~h~hR`CV=rYPo=O4nRcolx>{E9uAPudX+pA)7=y zx)oFc+x-*giIeGORfMJHttUIJJAY=vwpSamS05|xLHgcj1S$M8+RE?tqBc5q{Tto$ zu>E=#iMaBK08Hq7#%T@yc#tWH1Dfe>xf8IoBUvd*z=cSG)myhOyvNfZm^vnY>#W9E z+R)B;&2q1mXNe))wY$1V*||N|h+}IGB$8JSoYy|Na$hYLWfC{dC)9VQ;O&?yVat0F z3DT~EkbjVfhlPWv7=%$p!VPu98)q%9x=MIhD_X<29RRv|Tu~J%{__wb9^t^FfWvT# zL1N?3(*Qr;V^Lxt7sp(YCH(hAl<%q4P0Tyn1srScwIh#Q)K-YSp+b6iz=YC5&n(bf zglHokT`isT*f75l;_E?HD*e-t&2SaXk@fxD-Te(f>FmBusTdMYm3-XtG{+|FS95CY z_SRxq;aF9fy5@b?{MEV5TPaPsxAdeX2Qo85|Fo;x)`WTf;&Q6-OvRL6FHF)mlPyj( z>GLD@X1nM~M_97D{myo&!0*@v3{$Qwy#wPTKnPko?2ui2IxsR=?tL&Uy;DRxQ4 zlnupB^gr2XXwDhi{tZ!B^tufP!N>UJ>mMU09XPJG)WvW=iww6kYf}fuj_L#K(3hKh zwxQ!4R-U1A%bwM}kKY)zk;Su(GNn;U1~&z>M?&x14lI&7o%kOsVkW(P&a0nCJuPgL zoD7Ij+u!ib{&-!+jGRa4%{|Dg85C^dY9mtt8o&_`JJ+gEdSIU)?Um<{N|sXGn+bgS zvPYROKtiwT<#%wrG+G^}iEKZp+0n3-(Ib#chtBG%Jqk_L4BYzlHUCHmezQ8K6&~W2 z*yH2xS3xqAC1C58dXXIAa(axyKgu;BpP0>K7Rwvgn>W$k<=FKiU31V=4)}%stG@^^ zr;w5|&T;u1G%=TB7j)nPFi$1(42P!EsXAe_HTR$PU$E=HCX9`YJ9V&q^KTT5Ce(Nh zP_-Ty)2?(t97Oi!y=ljE8&6bg#T?Jc9+0W1eQkOwYvrcsy`(@k`x-bM>gcu&C>cgH z?7AFGB-;};!whQJ^x#;{0&hE)6<%vGOf+U?Wg@Z~8O_-K$c@AD+PV&anL%BpBUjHib z@}xzsTuLLEqp1GADe%8x2YBvK~MBOHIVIMLdF7s zLDkftyJUT+xH-n;x|-^t z-gc7FyGj(`iOP4?pbm232wx?Dv`_dC1j~%Kf`Dc|I~`uOr1&eu-SC=AW*O4q-%9fd zy{S_)1a}mpLjEos?7>PW_3xtu*6Ci2&K_MC3dGxPXv00DQu;0d(I+sDtV{99UHIBtReAke9LjChCUGnt!4L4wXNJaMZ*NxX_}EC zoq+@c1iYo04l9ZuWu9jSmy$8f$7AkvkmdkFQLceOh0h4>FoDe$0}u%01TWhuJf8;U z-a2nBlq@MmVU&8%H=jls+rjPhK7T{Rvpv8wM)^+H$bzQ1%8`(QC~krTnlK7H@p}2> z7yG`r4}t9};snWnmEvKJf5F3pAuxa&&n=r=Km-mNXwWEu-;3$2g`A7nYoFF@=PXb5 zNJuLBNIlZH=F2m#pOyGc36rGnfI&Km)uxoE@Lgv`QH*#K?xkoa+^;?O5LR=qdV)9u1ldaPii&=bb9A7M)uyvV0VyTo~Vs-AF3EsT0sBl44#`3*{)B^ z45AZ{Sj4HcNoIW*a6{c`vD|+&O)F?7ZHHV)-^>uOi|_GJv53ZY5EEUhW;r7o)Se60 zlixTM1@lh{K!#qW_vgVEnH2v@h;_Ct_km1HjQ=w!=St6N>bMpSgnM*KnPh_4%#@F` zxL+z~gwCy0!8Z@0(tAYtb@Z9K^~of}q_s-hR2PBPLm#pWo-oa<0N5Y#%^6PVESJ+@57C?Jc@t~tI>&Ew3vh7tF@ZXbLE4PDq z(kAcXiEVp)MPHA2-~=~8W?=X}{E|~? z&P%op^zQO=mdb&Ei%RSd`PeLxoKPVu{R%t94}-uhw*7z+Nm1q>A#EW`)Z=|r2Otmuprua*;TVSqrPT%>9?#JQ?H-rIDrts4 z-g#W~>Ptv~BUXWJWgV$)YST+?#Z-$!rw@f}GnLJX{KC!j00Epgb?3}n^W_S3K4Q05 zXy{QV8L}g5v}C#K7`5S!u1%$FA$h?|4Y)$uC)A_cFjX*!kVf$wYVIPT-nza9GWuS# z%*UJ!YO%-rnC^yyVXyR;dAE|Ve*@)1=4Ptv)m3cgJF9#@84x1sj2WArB9r>}Z#?Vu z7Rt*thx)k9QC@lIF(J1D8nEG6i-;5Sh6mgoyStq|Nr(1}qbk3x)G5B}4zN|6$<4H@ZZ?A9(3f$k-B< z&R7PeqFtqL3O+)g49NtOMx^cwZ054(*4okuHic$E-;N127-=$w%2hDsR0vOeHi(4r zsh9*KV9pQ62r^=fG-3Pb6hk--B?~mV@J3)p03%%plY>eLJSj$5g`FmtT$nQzCY}+X zR|RnvG~1sllOWcIVN8MS;)77Sq9Xyf%qXw&$5>zZGPN_XOi)z|V5a*&&2TL$MWL8A zN;mm1X72_Sn9!+s$V`hmcGpBHymqo%Npo{@Hf#g8U94&wM#P@V;^@{z#r+Ng=;;DX zx^NW*H#yNZW|#W`B;lJ6O|Gul16CfqB}hFlo{yNkyb4GY`#6#`BL!jBTtG9!& z0~9kZkdra8Wwg>D)nYKAta25;hT^t&XYP>3w$f?@nQ!Px)Zf#!|H5%FDZ;UvcWD4}AP{q%`CQYyC-`(%r{>Q#>6 z0&_75RTDBdZ~PNeE=h~sY&z?_@26+i-z}pLbNYQ{Fw=a>tz{0n4^1l`U2E9>;BInh z0WCu;in=_qrlS?JG3iF_sDz3WQaOwENg>WFK=gr!6mcR&V~D(OQ1g7Z~cJ zhl*}=9FT2)UdzeHIi2cQJmlHzEt3U@;{iAGdA}j0%l8R-j~OH#XJcBfozfyX&mwt* zAdD&FKK8qTx&&(|uss@2&_)xzTEkjwd% z1U>A8F7K|6M$Prf*2^6cCdZ_vujpNsr7fC&8Q218ZIFekYFuCCh)UM&#lckp+dHja zZwt~w!Vuq-Go~H0F)D`YS(B8Dced7xB0sNu2W^sjTwKZq0Q6yUZd2G7(Qxl!TwLLa z&+Z3p7s9skYj&DmAuVX%u zNu>)k(z1{5?AqgO+cLB3;w8Dc-qFy5&d!ia+C2H7>kBto`sO!GynGbt5<_bGw>;T4 zJ4>J5yjAYtSv@-EbBmM~74y3P)QsDayNXfZO|R>}Np#&e3mV16I%OUY#XePwn^AA? z4!G!+RC4};XuE)bf;70;x`X^rv0%V`+Twb5QyQeub>p-Iy&Rnik#SGx=jSHdj~Ok4*;L8to4t#yBHWK$~r$ z0%1L$D+E7pw79`irLY`M1n1a24_~sg0`s{XwzcqJ*-m@@6ll!+Y%#&Gd)*6~x2C-B3 zf44E#RMTIy6y}iY>l_J%@*aARL-Z`3zO%6ID5yy#tXOJ4z3J$y;jXGnFX4)m-T&Bn8p~{e~{@6pG3p5YXpl0!f15iK_*2du2%sM4> zOf(MWxG~1U!n?SBet&iHM6u@!5C|i)0g)Ii_Najx(u#s#&MhmAwLPoQMD~$L#~DZ) z`eG>8r*6hjo!aI8+{Dpc25$FoLp07QgkWyLWIVeI(h3dRzHl8&W~?41R8z9m7ml#( zu1A?3M5bH|kWH{Ngy20b;Y%k@pkO9@LcIS~w@ewHe(A+_O5WS%c zrlSB}ae$j{k`;`GIpFm=gmfG#NCPP7=QWp|dyTYvdh`mt3yY5K-BtT0f~ig5K?D-Y z>HURD&0edNt`e9%rQcH-*TSff=OiZ9TOrERw&8F3@y9o_L`%@|$#VZf%0Q4mh1p8U zB5}=p{1$Z>V&_Ko0wEtHNX)0+u)m5(n$7uNdkVf6R6a0Z?!ZtJ>~J<7kN^iriQ{nS z!@{ugawoW(jM&3TPme;qq)x?_5%OYDKqy3@WW}oTk

BJjnsQKf-seu?vMGyoNg)(mrsowYxB}tUV)vOxZf0iYef?Q9dVTh>thKijAsf8;_mRwg7*jjYyf=xPz?qIiIp8DkLUJm7gRxyF-NYVhN=%=88SetL< z6=mCOvT8l;&!qS1^*<%l5A=cR#!$a<*Ig~o!P1t1Fg-v%55=sMqJ-Y| zL1$qIG ze%YvnHrt4~OTY3r%cbjlKVVL}iSbiH0|MSVD5C?*F?#D$|9Zx^XY!%pg#2MuQGaZZ zch(`8j$XgDpDT|0>g`h1pRb(AZ+2Z%dYDN}JM^&YMet<$zVQz`zXU>-i7(MdqsSD* z50~oP!eVo^le?a8{OEmIv~SYuONesuT*ik%_W}y-Ud-cLp_7!=r_}Mqtbm}qr&bx2 z9z)P}R$ftBYeM{ZE1gw(v(>M*vrp69S}}0{1^3Ux!*C%5Fp;Rek|_4h->HtBt;Fpi zz0H?l<0s?D6rXa)fnzNs`}KOAwCuK!J{{_U{W^`o%U|UFggx`^#X|dQ>9)8gqo5^$ z;La9(b774Iv`h^qUhUOPDkM?`ua1x6wsCttzSmxC%h}EU69&sSF?@ZXjeg^n z)%=YcSFTvFNRPaW*4$-3;FeX_A3yoMIbixrdfEt?@=Nuf2wqAy>SfnC!%dyt1qTX$ z&dqfnkNC-3*7$*f@hiDJLH`r^UlsSSX4$C2&(qw#OPeY_H;HRGGV5S&bfYuyh#h{n z7wVWO>%Ge97cpuF$~4Zj6O={Cyf`m%eehY2(5ARa)g(coq;#uC z*Irk0nkZII$^61V_X9cI$=t$pm-642b4k)zf`wt*!d?_;;=BbQ(r~2eSV2F=cEKpV z*Yrf+&1y}!$7Ex(3K=a4++U~ve(6<1APH#bPp&Pt-Np{&z*G}EK(=;g;iJ2CrlOBj z&N$HBZeY0pOP}YbY^}I&pZ1fQQK`;n1Fb3ahI~`bT|$bl(~dtjLKi9SBlacPHGepD zNhH&>+(qzFM8qv+POLupxfeTVZZCtvM)n4)hNg zU%{6Y3r=IAGNLMN6xcU97 z^)}8pUM=clJR3`g5@?hR)3OdD6`PY>gspE|@mzAbdeJyJzW?zV&gj}^eSTFAQT}g* zg^mFbzJ6117wdU`5&4)TahtC&ssS+`_q+BO4#ldto1=kJJs=x`wd%*t8{MEm8U)8m zQJQIHtFJns#(D##Pz!HhItFY5vm01gsm|Ei0FVoGHV8;fkAN972&G_OR!D%dr*;ki zcEF0L9jqH&Y6XEDtomSVD=8&q5?dg06nFwhr16NPemuAJ`WM@Vccacsu25&ooZYQ& z3<2q|rG<&jL3^sR7mZWkm$_NlhxM%@XZm`sgu>;OP{~j#ZRf`{1l=rWy4qAOJlS&= zB7w+`u1pUilt+{X0EUq-iZ{!)M!b=7Ts8ywNF=rtI2WK~t>p3VQ7BoD^lQl! z7)p+HlqHdbwMxbEkb96WeaQXv$c9a9e^6Wf2>ee9-zh|D=BHiZ6$oy2wEPQ*D`i0l1A7_5 z^#s*~@Z7eYX;M6Ts?mBkAF&Amc%wjsxYq}pq}r9i7G=cFN zNa>bz5y2iFGd=N3|3T)%j4K@_q(OH?hE}(gsoFWLDi=~=57y8`?k$0f-~9RTQqk8X ziV2hx&)tqFK7_08 zbGNJ(7l2KPy{=qiG}JwCtW<3$55)xofM$t=^%AwF143O?zowwS*cME{gIV za){)4tWsTqS#&5B<8+5I?z}$Nv-4Xaum0ZBYbN@@;X)Rq4?PsrA#TIF8EtpF^_u3X z2GNme;3tuTDlr9V-QC^offd66j;?*%W!t0qjlmyIVaoivFTFPJav2_Y(dF*jAhrFw z#F;){J-*e7n;3URMG-_t6WSljG{edUc1x8d`4&%{V=b)TfyKo8@_UA_f zK^Zh0iUoM?=M!Wcu_+sMEs)!cmN!tbXpj2`>;4prFVz5%!FoZQ?%bKc6* z1+!a?6F8V(nkw#lN?IIA3|2CY5^>2MQ9hye5Zmi;TZK+ut4&SKK7YP6(5gP{Zl*^q zpec|>Uqf!Qw!K}T83r&mR|ou3{b6KDa@<+drh3!o2D?ZM^|huOmq}vsf_6aC>l_Hk ziWQcUcD5&8Zc@+7&$mu$e}{+TpsTNR!t#k0x0X$%MY=eAX0r!ih&%-yM2}X5Omoff z?U5=e{zFS`#XTDx!wHhrmX}q?q*3nTp=iqk7V;O2u~z~BXjMN!EwLD7ba%>ufYsvn zh`iA5;CE~_;Dsc%^2vG?$iI;DTe`8ktoc9-b*$EZvUN9#G`5;3ol6ZmTb$AQVS!eV zQ1JScri_FEciccqCTTjoKd5B#r5;UKZ)583mc+z%cN14)XHD9#Qbl<&DQTkK@|O$w zTi;izy_{B#AOCra{3emrc=V+Br)S;j{KK7o@MVXee6=uKqt~C!tQ|bX*QEYL(26HU zhX1rGM0ofEjaAb4;KFL1+po~Zi6!7~aTImUWJLZ832UgoG1KC5$)ih4!+cE1w!n;C zb)^?b$9}&oii(ORH48;3%xsB@NqDwN@)g1A|f{$O@uXHi(ns{P^s_%it3n?V#@! zEU~{D1d-|=yrWblD1k9D0v&tb%M-KcWWrvxoIbLS~>3vTAJ{K#zs|R9a3=ET7 zxRW1VH~uVnR@jC6fpJ|a$W1^q>IdL&?iR63rYc7^im9+b$Jy<5f#`Oo8}-aFtkc&t z+S&ZJn8;UxFhP3q^=9lbUZ%tr9xyCNAF{dNjv0A$NwNtIC|dThgMwNJSWR$g0M2AA zp2U^VxyTO00Vt*?%_k{p=in4fYJ>Q+en2!aC#X;sU%Ph)=L}##7TkH!W4Ad5W_o5P zq4k3Qd7=W=lZmyVKY5+khw~Z33mO)z%T*JN8-w>I*1Ks9JL8cKduPl-7g~Y#`{Cc0 z3q6i{TJH!G_vpYzy}$5SWBf{xrwEHb_w%eF%qIt!@glTlVQmf-y?jv=Y0%atAq37- z;9S895Sd~H$lJgo)$3SXwK#LDN+5t~6@FPO*d`O;sfOwfN-E|p$O(i=tTITTNoBDd zz6rZT5=eQN`RUAk?ErZWVGG}8<_l}}N8-H9h_~N-D6U&TQ)Z4I*!~>-xAP7Jy+HkI z;R78oY&_X;K%e-wmn%sQacfi*A*I^BEEFm6JG@J|2V!Iy13N#ww*ry-g!XLzXyOW^ zYHasvQ%_@*v=Nl3qwvozpM@U}5-J4bk;HVyL%>d_t2!**j|0yGB*09>(>ga8a4bM# zBqV%oh9V>DCz%9W2zGU01m{UqAR8Yd)uW@@%V8&brz0%jo!!v!Dswr1tl08{%eH73 zD(nLEbTd)}NL|@NLcljJuAQ1!)zs=7=&C=Z33tXLBsG6L7`i~D)cGcB^v&S@m=2x) z`Lp1gA<@Pp7Rmb2j9fp6Az)7=aYtr?FrB@I#7)x9K-?};|)_Bg`Cls3)q?B;^HiL zwMT;enHjmTp3m@Uu{rTb5Kkj5t)@;I9n6X&wH;PeUwRR@Cy1e&Xni{c-BtNfr_#56 zOlgR>Bs9o(zX3)G6CU%yEI8-Up+hk6AGq5W5GQazcO%t1lm>UMo$YV7+jsQhzrC+@ zN2_2SvWDyICdj{28a(tAT{`OcR<9FhRyCJ=c)vi+~%_fQV)tZmqu*W#l zyTOw*>dYPY@>-797-YziCaBSFIwMM*^TQiAq&fY7*!&HAPH`j zKYN>^pSzt;4EwiAy}!CJQM>cUB=Epr_DWdOY4y332fWR6>vB4Zk`O|1L1GcS(v_Ug zv)f9*m^t$}v2lIms7jFeo8Xb9&Hj_JQ4Q1;%_R2g!G5(QvH6C6M%s0EYq&O^c#0`W z#m~%IJi%EcP{(W2tu(byFVzKAINT&Eo?t)}i8DVmufwiXO4TSMwDI?4u0(0QC;D8S zW0hYA+);c@8jTxEVe10h%j!?AWdMrEdX%Lm=>GeWH%EU%;*c{XNQw1j+Md*+v?_Wo z{`O!S2&&4zl7n8=k!fbnFYirGeK~2&UQ+JXt)kMoc*j40HYN8_;6SeK@LF)Kla!Q- zib@abegF5!wtfK(uQ6js3DRH;`SFR=rb|^Emgjk^DYp}{1UJVTHyBh6GBS{ybb<8y_s8wK`z1v$A*TP!pwfb;h-q3Ni4Z_@k(|7KK*48i5jF#?e>^+a~ zRFlfjQCD20|LlEv9{H_+|E+{Z+0pxY3FY=;GUl&j)Odbi*D`zVuZ`EwPHbA5Vz$zp8fILC@BWgww1Bzrw&UMv<`FqJvpxTd!N z`Rv?mussIMLU(J>1r3(E4Q1aPdQTXkUGLU1sR>*GZCSF>fPeRF(QKdk14Dry=E4Go zQJtAh>gg%z#`v1SI%!U{x#uK>q5kB}{K5XDOA zL+E2hU1sPKTX+wtnhT%d&nOr)l|#I*BW&(vea6IJ%qt_YPyC;V8OqJx#zJRRT3d6^ zbXRy?N@^;p?o$TGA2zUCfE)(-Io=M&WpLV|;<$lj1BW2f_KBS#z^TXF%7I%Nz!74q z`oBLypiK;3+<;|~k45{e{y9`$hmy%N8IuU1_M8ay=MQB3_{{N=iWenD|BF%%?0PY0 zb#}_U@2y~}@eh$~!Iu6DU8?z}gH|S*rl1v-^%<>l=P;EyhzAIq{vpZhDf(xgJJk>J zz2%N+zjE&AxhX?dF@WNIckKF4T@A8P&1}$_;&3hl8G`${r# zd4-Cz4yKufF~(cbN}{|bLgC>VT2Q11K(OQqURLwvnQU)et&o4bjemGYS9p2;PAw1T zhfZowY>nR=CEvP;^tQS)y)mo1Qf%p99~f6P*Y*?FxL)Qx-mv;*MMe3kV=2a_{uF!i zOH{H}6tVve+F!BI)2#TyjraM5&Wx_GSKTuf%x(^hI1p(G7Z5V~1YX^IQXd*kBe~W` znIX)-8esl+mRmhl9D!QN%v3{lfpiSSdCVR(j+wGCeiZl0ffgR`0qM+Tw1*wHtK1{8S)Ux`;&)sH1y*i z5&vgw-#@um#;P&n-BIECixeI`CR*zUr9dPbeiS8PM;htpARCUo6U#KUApVIkY5VBM zl8^<8!xZ%}YBfT)RTyI~y@i6r41A42{c$b4CMR40m@8tK2vC$Cn4f-HEGo~LGbW`Z zUs9r#W)_2g$bVHCDYr-|^uqE)V2E}ZZlYMQ(J+}vD7bs%PG5syq#3SfY}*fhP{QE? zh>Fxk(0GpfGntiA?ANfbYqdWbQerU`1ZkzqAcL)a@&bEq3L!Z|@nOAU$jV#Z6k8`@ z{BzOgP!PDPZ+5ZD`XOcgWy`Oqg?k-`y z_rEiy#U{DzU#z8y@?_OaCxH7<0K?MJs>hcsr1LX}j4G}uVc=SFgE+tw*=Z)z);1)a z>jY#6uAP~$&Ktj;Hf)Vg`llMJ2KK?C*0A5qgX8va&}W;KD_;U=Yq|OB<(4}Sd+OK5 zawYb;&cX}rIOKU!0y#pZC3fQ)wa@0GFO7^}_yXW1wN zamxa89Zqu}5t%G*;IJa|$K!n5Qwn*zU%@GO^?Fa)h{!|tyh5uXWz`!tkdCZ0JXJaWhn8orjen0e{{7Ju9ir!y zyBjOlNXdFF6ZGu8ejo?;mE?uxP zHt<;kc-bV;L!o-;{B78LMag!sLZcnyszZ={f^Y1zK^sCzu5Xf{) zR^Y~iha5^LYSR6Omx6dK6_3Y@`$#={E`12md9B__<#P75{VGBBILkd&_{Z$F*@f4R z*bN(hk4>DcS*)`%<-Q*fAlJ+UG5L4zxmAe?jC)9;(#bYQo)260F``}h9qdo4H2P3$ zJlZp(O@|Xh;>+!;v}V;@(XKPs z#OMvu(QoEwY|K4~^F9%T%hhg27^>#h;*Vr42gtiG4*0fnk;n;Js$3e9HNxR;M?lZ9 z_qogb4WFRbse;M6=~f;5hra?OM8TCV10`_%?mScZ7RBK*i$MW@AFWYhm;y-Pn={}Rt0jSL!w?B?8K673 z6J-+NB5xRF0&u-daeZc34FMQ~U)0UPr?Pr9;Mt$jg%ozw^%+n-ATGl4VT~T5b#aG0 z!64^v7UwfL%U1(6{&|BMLZe}&p4v#0v6YWj9sIhsYT59&!`4X`gJY-vX%cAMO4nn| zgUs(}JO3SQq38iDC~)Dgp%<0e1I|sR6^0GE(s$ya+`zXu%KtyFrN%*I*q6=> zpkSCpv4S`Z@IN*hxWr~k)kGfS=}t@7cDb$7n@TSl!<&)V$S7-APw(gC%9e$#U%xwI zY_A@Kul_MZGg164Vk|Y{p?FdstRW%i6vA5f0(1?(yfe*Ann$qyRs>Q$5@E(JCd6XV zY{;%E^l6y9dmfeaX{)2DuW>_q=P}5Vj#<{fEsxCnbjC2}dne-H3qh^cb{XbVrG~NvLa50 z!`)#BB5(2Rpayp*dOec%f$`rNgnuO)G9?4gZJ{F!_r`)Lht6F5`^zjDnGu5Jndo{@ zHm&P317futgnu|>RE*o3y8JKI4fM604N_yZZf&{rSHF6uAcLkoYZ5mdqis>nAd_)Z(~>2i#Z% zvkC`!(6~fTVS~3;BS$_n?6^VvIF-;TrGxlg;Mx;kS-wY z=)hm_uGwe^_WiYZ{3+jDUHbAqi_3A0HJ5w76iN@I<+#^&7JS&*4#7E>C05ZP+_e^S zOzb_`D`skQbpiH5!1x$n+7yhy!ft*0v-H-_r#6hm#oP6|F0H-2z1YC!&V3~E+%$CN zPruO^k0mtvdH6f!IW=wj&RceWd@oV-B9KsZMZN9oiEOT-Lbr3dRiwDoff>LKJ-^Z& zT(sITw{bV{{^ZQ6LJ_TmAEq~GDf-WG@;zW7L|w&7Ho@|wVdqoi!2F#G-P#WyB-=i9 zjhtkW@!K=LHrhaCu_y=eQCy3AXJ1Q@t*P6{e}(@w-zeaxHw^L|!l@Ke^5j7E<>WO| zwKq8~4iy1QaOIH}_sqJ%xTT{!Q|U-XmPqHD3GeJfy0k^G z2vA^bx3RV5_vPl$z0phf-7PS#iQkISEI1KG2CkW zPK^Eq8s+rP;3)OO#-MhH-V==fF|~6UZF1G#<6E7HA2zq@Np0sZ9IJHGY8RBa4p1wW z?~hxHdn);x*q>dH3NQ6A;J$mcrE^S5|8zUXgCnVkP^;=c8YIgtRIVSDbx2v17jf=4 zeH(rmx4OwmkIF$tOQ;wP__nZRsSRGiX1f%pl9Zpul`dSl$`f8Sy7XN@!<&3X<;f)j z)5j!BMnA2dWC`XH@9Xho_hEGt{8gWqf+^yyvO}2Ny5>x;C~9f#9+uzSj|TSZ)wA7p z=v;BoLOAX2v#|-Orb2YR&A(@N^=_iF3yZ03kvXW;C_$TCei_0kK5IRGFmiCo<@lfc ze1;g9(VBxo(OHB(V$aDfz7-FDlb)+6D8Bb7JBuAinIL8*4qD$>Ll>6ygRrLpgJIu; zNIXnTv;5J=*jLy-Kj>j*vn6Ioe!Ri}y{P^)8PNgWs$9z`UASSb!O{vzP zRkA9@c15v%x4z{f{6Y=@f;VQWE_h}`spxC2a(wT}Bg-Oc2WX?_Dm!%|6g|AA(rhn5 zxYpQA@m2rvrd%tY2iGfE4}KimrHa$|reE%MJ(hUZqnuDHYJD`Apk%BVV=QwL>?qJ$ z!Re1@T1CN!irnMc$@lDX6ZrjKyJzlhx@cN%2hm~(U4(Ot!F_#YWak^KHDsp06wurH zQ{v2+SK0ohGIRWq-~rt`TdUq7vl8A7VYN~@d~e0pr)Q~*_BQ9xrRyqnmm_zmV9D2| zkJa~lSi4I+k*%j20ufWm9+a%orBjDu6$h;P;}L?p{BI*8+pNM?hjz}W*`o61V5J9p zQfS#DjZI@R0?!$$LGg!vjrnc@-;xnK429u@hcAId7UnjUDWoN^{(u=I9OgEAVOj^q z6=uJF9QErcWcxl~27NPUq4|)w0`<^e0N@k^=+dAB0uYGAb|1Ee_;vs-GA%}w8W)&g zhKA26egt_k>G}+o!c1eY{cKxVbhJRcsf6kJ)g({uyYlJ#?76#W-M8JXb?V-55~)QB&!T8k(rZb*pe!B z-r)S0$&Yvkvtd64AcJp^}OehRPNYo?DYwfhw0qkzYchT z!G)KGo7LM*jaB%7t0y#oKW?~-Cap7eb5vlui`uwDhI?LjbYkxH6Mi(o2#}n;;W>{u z2O^~2!ufN8X!%`+c?NQ2Cs%RaPCHXyd+Im8#0_a&IJA(ZxfU4(V&5zywjX}g-d0@y zJ>B^yVSm;6h`5UA(SdgpRO=sU-~OWl!H?djqBr5J(-5}PP)BYEp=E00sz;ZaqNOe5 zagO^0@pujZ4)tBh`A>a!m(?h9u_4*kg>8D)K=n`tVrKd6%2R1OU=IDfv!%Ur;nFDW zrLjnI*ZeL2fE=q+qfU^zCD4R;HhA~`eZInLVyqY9%i}pdOY5vBW!Fd-S`m&6E|hxO zBh*e(bj?n?*H&tsav~bUk{ZI8LR(l{ensO*j-W$0Y(QtMZS12Q6D6i1?guer+5`{{ zfpm&y0)45$J?4^?DX<5MFt9ZvRjgo7UOqkQL~!SO{`0NzV-GTwRx8Tya-$$kXTYf9 z_09P@ui8bI_@|>QIS?Vm91uXOnA||coo&4GMr1isK-z(Fj#HO0-!>TcpWuPe^-rOa z-(1|1WS=Sre)Ur0AFZgcj-L1sI62cb3dtwc*KZYJ`UMT13DO&I@Ww~MjC(BVPDseN zLhg6P6MFZk;@AaMnkMdM$S>Jp8i`HAI!UStktBmvI3N~%+!G(V?VtSyJsHM2<` z)mszRTct#DO>B?b&+dC#iRsQ1M;dfzul`*f(p}zEaIOt{*L&)?x}nD@b#u*AP9(aG z0wS0|a`XlrYbxx#xECpaBm^Fp$6${CF&M#NPLPt>O>^Wf#xn`A>gIg1n(CH;jT5sD z8rkOYU8;O^#yC0VmKY~aZ(K4rM>5@ty9)HerM?QNsT^Ye%1R$V78siyFWh3lk^t$$ zp-P4F3n1`boqp$GErWdSV>H4HeQi?3AaO+iHzHT)@2l z6QmI`D~V#oM-aL)e&Gn5e8gFDyX&1;7KJ@XwsyzotiDL}O>B6^F8%IIK$ksmF{-dQ zanDGN`#<%+$%hIHJ@$E4IFvmh8!&kYNTFR7Ox@G&WR5f|ne*kJW%$1}gHE*bGaTtD z6{!OldBL2nqok;FDe8L;TcU~mF6fHOT$w&;Fuuk2;K|TebtxT(BH$zQxzqie<%Tt) z(CvtAe<#R9nK`0tY(9sDj6k0xgOcQy&iEDQy!Gp`y@uXSt#n!N*y<#0Ja|@OB6ML1 zr`L%V?>5W^u|Pd3KV))MySnt#0t6sY87mVzTeD$**Oo@nKujS22YJ4f=mQp<`&<+Z zcYU3Hw@@b*LCRKyPr9%rq{|Fqy3D|10ai?R*j+Ng>hNcX3wZ;`K^T)gvHG9#2mFM9 z<57o-4Ha-p@qhW{|8vI5vO_Ni0#_8XBpiGp1L7I}kB^y_OZxeC04a7uMLEsEtp1m{ zJ6sWO~=_*E|9f7ecHc}NHM!lKhN zW6oGm0HDzS0USKXBT0&5Qf8m=YQW>~W=|rOFvO#woX&HGXIkGz+!>e`#S4Jo_)I7w zoL|x+TnmBR{|LrhnyUV4^8S!i4*q7WXv7_~_04m=rl`Ca<0SUuh0iV<%CU21w39m^ ziks`5ObiDrk1QnGUPAM`bxyydswm@tp)-r=^lhluY5Y#1MQTH$Meyd0#tHf&+?lEO zB6P#3FsNF4EKOfrC<|L`$tn_w5I!Axe}6XnukS=qApQezgtzbfT9b%NUFgcW?m$Vp zjAVAe-G;r%?eEQg4t8u#(7%Q$CfA8(zy>;4@}4bGc_MU{Q9Tj%XN@jkse+SyA-wAn z<%@o98Zd7V;?7uDI0zf%Z^Y71PhG$(dh;6bdbla0$nn(f`=U2#@LeZr#R5@Ddwx8{wfXak!@btr3a6SfvZq_W+b-52$5%Fm+WLpje zPHN^k=RC1W&^WJlF1*O?)F})}8yIg#(PZkQoyjn|>&`#i_Rx!y30eiO2t#H0lB$Mi zOBLnr>Zc*f052T?M}LqB+8RH9GJYfA9t%H1HQlPj?bfg5kF~1Y=qh-a8mrTo|!` z#8$-Y8DsqQo4t$%Ra{BesaF{#Ya#gx7m9bQ)zd#QDnje3Eb`aC^DZ1R$vmKQ=g;== zNtk#AB+EZMga@kCk53F31cE1aYCDpPbnVLw504tKbbZCTdwL+2(wtAj!mC;AVeoev z!HBixuz6~KAtSU#b0R&W>apy}xB)9PT}`0xifPOxQBSVpESYwF&4&umqgmo@K~McT zk0jMSF_Kf|+GuXm+t|9G5=MpOu=@*4*(#7zQ#0&@CzrA{^nk_#sWjwif&~4!n^ueB z$wLN?LtyYf9q0)u7Z6x-o%ia-P7;T!TD8}3aMFZYYtD-Og!?v@8nUL#D7Frn^c&+A zI)AvFqgCd?twqF>q)7P*AColR(&Qg|Vzlux?GM5~UG2DRBrB&L8-IPzzC&JL6m6Z` zX8YaNwnr-mhdQ-dzm7Nuzl{B>lkJ3_Jr&E1NC5)5XT^DT6D?mB8Qu#i6*0z&ZWT)& zL_Xg?Gc%9UR_|uNS$8OMW1XW2T{0am)xaK)=lTkmmB=ovl+cQfbVA=xAF=449jQ;d zajuRQCGXr7tg~l_VHPwrG*oF(;9PJcL|M*nzG@Wp`~W|f0N(fukG{<{o~vOW_Nme4 zE4wDIfZ_j%H8;k?KM)t&u5Mc)$&XVA*5s3WRD6Ixy6U1i1U1}vLoofK%GWme-fggnP7Zsd5c#CS2Dp4n2O4t-llU#8zhAi4L!inAv*>T`PWNgV196 z4-?0I5ynph9!LP$dX?-$GvzdSoz(o9Y{DvY<`JRb2G8R^c$r<{yh=<04?FKq|0~~F zp`}UU*hk^lH>~lY4UYU&MLau*;JEBD?Ad*JVchUoQHmeMbb{z-Yxh z$br|F4$3dpSwvy&_7Y+OaCLO|N@UDKB_#6!`ruMlbgBn!tcmGJp=1%lyk`PF$N!5~ zK}sF#e1&UIC}Sv$0ce|9>%p{dv~l{6lCZ7EW%rkIvl;rkzNL1wIfbpFr0-2uNQaeB zO~V^kwHxn++@sCzEavCV1`{f#ODos5=~S2lIF*qn+4YA4!LGKjdN;2qIB(i;sc~z1 zC(r%Utcxr#S(*E@eL}L~nZ@EAcp0}R)~0gg+*ikJDv#NuPiZE&UBkY^b3@tu@Nu7E z6z>*7nLXKGR0yY_7>763iZeERKd7ITiHCFgG zWKuD{y*!_|{Yh`@uQQ{h(IHm90{{9ZnnOL$L+-&x-oHg=hRBhQI%@UkvGBqDCg{i9 zA7pp|K#UHg4Q7#2o8jM2fyc1gD_(2o%vImF71;l84s!5)SO z1ZVG@GXW`kmUsu9v7~M;)Qj<_z4lz=Ox(|(*!rjTRQn8QTovV0h$n<%@M%`vc2Np2 zp5G(%K}IFX45rXyQY!z;4l+x99r-8Rt^5Y|YK^vu5DRn!nSa^(8Tb9)f^{w(c4 zjKBDam$+$S_&eeTI}+14Z`iDqnQ0m;d@}sid6@_WM7vDx4R)(9pmV%MWN8On4P3Os zUnwC7FDg0DAIv62UVMFV*C}^@q3jT>e>W=(M`*m zk~6{M{}wcyf+1%0Uxzf~dC$|a^$ueiZjy<0m<= z0r1$JM)s<S1hy*`{niL5pUPJycF_et#J^cc*${BG8fgIPt*gdE29= zQ>7Jh(b)|3_@+DU1yf_mIkOwTJ{72JHfU5dP{|?n^KHI1#-=9d(S9btjvlt2zO&I( z;@TEGw%DCG`R8ww0_2Bbi!0au&1}wWdqF_xs8==dg!v4Gr^6i=J=wKHB$5_J>GMJl zDm=rghU-Yj0Axzr{1VBPIB0J?X1Ox3y+3QYxjO81&&i|y?wXRlsfm#y(*5N7;4sKtvrqS`2Sb1M{L)P5#F(w4trAgP z_R4~~*-O+j({-K7loUcx?Y|IP)7pmMbADNc;419y_UmrawCGbGd}1|{>v*5~(v?~t zh7Q+oy0KxX!X@ugdYR*N8kOw8}tr%dr>g@?2NjFYVDLJ z-&1_&5s!VVhUZOGi=*zDG9g~Rc@F=U7s__N>(PaKDAX|8QRmv)dIdF$)Z&axgPxP4 zD)+Zh&g)}E$|^xC0je?IWcON{oE&Y)t0_wJqcGoMELYPnbYBMX-=0zeu-R6w9AphA zu);N&kY#AXdJW4&P&p;v)+N!^%~wPmho;AjR)X{FJ&*?PzTT`DPP3xWs#kQJo${d7 zh;7&Gj&725Cy_{6dfNB?P89@Jn<^Sb>77Rh{@I*glbii8`tQ}zcbP^fs* z!>3OSlypVs&Yl#QR5zD9hRb?Wd2+C}^0G&6A;#Vx$0I^`GFzJ)Kk49cQwBNX>;4n* zn)Paq0%ApH2*dpSV!6-C-AtE5${l=BDS8I(!3Yx(eZxOmZbT!)>mMVJAo>2VBhF$x ze_ean_e}Th`T&g+(*=};eelX4U=BT&n(+lrl^?e!o5ulfJ7o?$;6$?riOidKlA`UYnX<@hm zAv7t+O+Evs4e}uL%JBE+eR3`D zNW!HAllOxo80&$Y3c?K975j7j@6*Qnf&Pp>Jw{*OwJ@5rqIl0t9xsWZA%7-Z=U6nxb}S;Ay58#XAX6<*5VJhsIzkP{X$RY%2< za=BZ5)4-}BDa5Qp#+$q#GChvM<-JNnB*j03bXK?*Fo8?;g9Omo$bcoG@^T6gVD$}? z)KPZp2H**jv-cRs3ibZ4Y9EAb6EpNigwj}UoX>0bBg37>=h)}q&BZ*~6+vNvFg_QB zho@$kY~u3iAwJ1s53|bcf>(u%*WBY466BUcymGTN!Yd#|P(~_A%Jg!@&&K{-cjjH3flO7lMniP zc$u##wlJPq?*h0*T@$b_e zhRXf5KKX0pG9+>~#rmn$i;rXz%V7%}Kaa<+GGp+hRCZt&jD_UQVia)Ryh3h7^U3cR zAnW#xS-?1U(>e>DNv@YCGxkHb_B>V@`QmQeO!r0np#{GV`D7<0ljHgaBUqIAptJ2X zYc_7>Man%4uv2|edD0fH1@|qCZMo(CNV3SvxF{$VXBNZHW7&&ti7D0}mJF{xImELE zq-2={NTp7*y8JSh{p@!P+cSd85u{wv2uxnb9AktpW!!>sz-o}eaj1^5=h+H^A9JJB zO!N_^rzFIW%__^AD;B%MS3o$dp|F{W#f|Tm{=XJL@JI(cXUxp2Tl$;d3evvs7wl7y z`99`u*pIn>z|6OH^uxca_EulA9tFD-r4lC{Lhc1E*9+)wId8A+?Ei1l!GzMS!gPa| zQ@?a9ZHoz+cn%aK)^DymZxx4mRa4BK5mv@*0{5T0Gj@QV>P!xq_L#U!V-#u7UkVE) z_ir|oj4REbU;Gae_CA5WIQnxgbwVF89g+BY)fC#|~E!JEt#wsIlNBX3kk1K~Jy`u@7ly{hMJ zI@OHOFg?CLoeAk^w>)Xx`!yIMyNuQlPkNE91}Y?LRMV0>z)?$2FFMMgE)7_82NDE& zdh#5c4&5~z<8NB}sd@rJ+_H1B6Geog*1e8_INKwzD?%fSp{WsUwg{>G} zDlPSnz6Ov2wf0~!GTGFNQr*T-eT=Od&7+nm%wB^^Mv#X)~K*hLmT)T3(N_6Dj>nftRjJnED#3D}@d;_l+Id9&c5`;3w4+FBNs)9Y zjZEFm&wb#u<^)m0B*3xm%}M_Atc>BcwYNKi+F=Gl4>DiH#qnO!K9EQa2?(iGRM86! z&>V9;>N@IZcs1F-)U&R>F>`iqt?Eg9msd5}>qPpb=GfR6TxzFohgAPPC4MDkl|0`Y z8E4+Oc4|U;?YUi@U%m905*Q3R`~5c8NAuVFU3D3-4WfHE@64#0iGU0U{OyhwmQHuK z4(e@fRFB^;INIS#9V%YPZWHg;X%iOYBeJ!+x=7o~|IRg$XXeI;@=IiX2f`H3_@qkJ%x&7ml z(FAT%hrda+OSkfrRJ5&A=+^H~P39A>M<+G+zp2Dxg_h=42ULN2e0Pt?6~&v?+SI?M z@{qr~O4&Y_TJS0>e#-Y0&uuY*khz)QL%XbTWuBkfYf%+GX~IW|C(u%l%F$8J;8-uI zWE}}~G~{bbzTx31+2%&*Hg*jNl1I2hBWPa!+G(vd&y4<1b)iKJS6NnAjC`@LqIDcWEbdx zvmF@B+GTBeB!H$VYklOhpFeyc8DGk_zVtB0dUC1Vz|jm{TTFyfr?)jpbs|f#9_Te& zo+(iYTk9IqTQ0YC4&LZEZ<)W{3t}3wUNB8zXDt6hEas>n({Tu=lgDHHQjmmDlWLL! z@p8yevAc(7#$@BB#Lmkndmjv9m`@b*v4Hgfx;i1`3-GXWJj0$l&a8Y^rq~%?XlDkq z@V^D1#{=lU99as~EohUfLE|ht(-=@6l3C=09g_lR_>Tr?padc#UJ+7m69JJ3*Dfn7 zbP7e80D@oWX`u}V!K&OrgJvsJ!hWGEN$el>rjZ7F^z;qi3hGF81rWRS^2k5>aPI#b}8^jKRKno=0H6WNIYM3bHG(dLq*Syr zjCVne5yy>Fh~e0WfXeUmgEd?U!wVfVudc!?uA>%*k)jXqhd!ryqE7`|m~blcpwv(U z{e;wbd>x)UMN1w*aOZVIMEy0qhU8J};xVc@@9AVO82%`nICBGJt1OTDURKVZ;WFaD zcGOqS5cZr2r+C>(s8yTnw@FsFHn2!xX?H(##6?m5(5lRHZWH&5Y%=a-B=Q5OQf?h` z$5svoOLBOQ4!`^gA_9bD;`tOAZ!fO{PC3+)9ZToU2^^4Zq(k(}vSJUB>gr4t)6-z& zcp#B5Qihuy-FDvY$iK5uz{`0ud-v%q+q>*{{PlE6b@V}PD#*PA@|`Aj_vys@Gv{Bz z$AIKxQ(v5QMVFs`%UV%BeXq=cWGgG7_rdnx6m-`{T=kaM7F6`c0)i`?9=9>bWOCia zfg&~J0p0s|mVf-E1nqQdhyDFDurwB^(Z-@oz<@w4Mcp;KaE@r}9Ln%3^30kIt|y27 z`2;flr(Ps`?My37ftMJ6b@dR!kK#q8`gMz3GVfD|Y+c*@5BGijLJtT9W|5Ss-qh{! z33`_^eLzJjVRFe=MeEX^_2tR)vjU?gMBu-7g*rE7qYC=VE<3%SlRG({gABsL1%)q@nx@Ki^I^YwcKQ!*{iW_~cP*V(muh1P zKncJ4x>5luQfmlfQy3~yzCZu2^zK888>4yNEM`p~1yK@hcA}0?yWrRAVmocBh-me_ zeaz;>3!;S|fPOT0#c+p}!UKx?ibCfW?&40lYK68MaVRRzGybm=j4vcKrwK#ccKfQFp@UX%)xoSr61dT_r z;Qe6hoTfP&ht}-7c?y-k}221)cal^-9s=0OYUuIr_Y$kcjLY-}BhHYkE1I{=!1Ix_h}ZqT>-F_;z*k zHeXFi{=O?FvG~k_G{f5&gjC`Q+$?MV>{Wzu)oeuE+Sno=dy9zv^&A9vDY;gmrxTJt zoAxR-9*%#zwdZ7~cp{;z!>kAIJPJi5$|&*%MmJzuZqLH;zZn?U<6#GYFdlts-5 zjE8Y!=EZZp$@uWj5BX>G3dQLX$z^dQjkm`fkDDm`gQHpl zrN`;}8s3y=e?W#j^W(Ucu<~0x36y-6z0%q5?`VQQ?tdjr!-S&NMtZMToNV$U zni6N?c>vX+UI;Mezd{E>jd20O09gib9{ls9WQkiUP98}X&+0BDz42cN zLp4W({FC(Ng#3l1fJ%hR?T9s|a3;G!@pHkJs9p5sn4(uA#*h-?M~Ph1>gVutbL2$X z1h}<#E$?3*Z<=0Sgm?a` z&%Q~*=#a8)E0U|YHy?FJ$p`~}hE`HC$k!+2jQ~JKo+IyBEkjOvhz52a-Zo}b3AdcgT#*vcO@X=%y6nb~H z3k)z3!@t%-yb1EPzX|}nW2kLc6d@P)ukT+hHuN|ii;yZwdRU-covqI>eG4#I`Yv?3 z=^42{z>qip2+@aHYXg8E(Uz=_*tFu2?rIg~Pj*j|B#4QxVlzrn#ZjDV@IBg1-@-V! z&3ZyBArLAjSR6nv2KnN#NB6y!gMg8Wi4OG?kiUK}fIXt=bioU~La8-pjSDp3`M4ZE zh`P~98UK|3g7k6av7uw~fXL+tenh07Ao~#3ld2URLvM|>tpW}srQK_N9mz=j5!en~ zS6tb6aq~vijlJM01LhAOlB&jALTZ}QT;xV$KVZ5>b>Csk{ONTAyu^Qy=O@!Nh+ww2 z_lRRrt2hNJq-Lg&S{qs$x`0-@Mcg1naj zqeZJ1|KTafjx2Gs1trml&GPGIk$z2$fIqZVtGXYI36n3|+IzOP%#BnRU-3M!$etZ$ zI^Fu&Td@fy)rW<@*lPP)kN%OhgfSj-K4>q>2#Am@9vGMw#-v$vY98Lfh;a{HW*13Z z!cpjfHDfkbiZLVL&IS`t$=|$0fuJ=cx6+53iwPk=yy$o==iX>pCHVKXYeop|Sqgw; z2jk6d4^;L~@cCzmO^uC3r~50XV%_C;%nC~h=`a3XtFS^0Oam1)mov^cwZVBF z*iEmm-_-5A^__F3n*Gy%6Jkbu(Pgq>Z-$Aoiopch`(Cq}Xr$(P5x8ZM@B zUm7OuV2?Fiwb)x%G~}TiTuc8|$K?huetR+zU%mADtwJ*)9shN95Eu$SmweNU#&p+P z?&Rpz(XQ8A&6@EB!1b|K#nsEIgJsLW z*X;NP@aO|-<%$vvGHLoNyLL4JJ-yF0@R|Oh>TTh~2*GmCb2hYNNk1~jg_9kc zX4~g|sAhR+aw*$nkmq}015&GR3LZE}RfuptlphkgXPffQWI0r`MC@O?L5#)Zjwt2h zC!`9mb%qe?Dm2|6_?yRPQ`^g|)a^}eEpd+h)El3&t!qp2lP{}DUcV^b7pCHGbfVo& z9buLL=LXEDun2f2Q4h<-lJj_JQ^Fsc?TD)Pd&b^i3CytUqU1FM_IOOoh)(#ZPB{B& zIQxG8#ik}mC}W0=4)PX2lpv8LH4Wz|*w4k0!1e)Vx2CoL@5JD&&#u!J3qxR_hVHr}Loh>w+e{rj zTN&}|P62(zIRaVCY&DIOhJoZq7`=+?ytFCN<`6MaS_ANl_yJ*YX9N@D%PN|0Bw?S4 zM$HvJKuLmNUJls_b~z@JB*2N3)NBcuYo0^i-fEHmph9^J5k6kL6w*Ci)-*ez_cM9J zNMW+eTc#%!dHlAt1%iZ!e&ocOTp3~)8hjqXPXMaUvsW^pM(=nDfV1@k_NjP43iD|M z^0f@W$2kcHMAFLT2!xe6*{*D6EXHCvCl8jP3r=%wLi*J`<}kVj*MbvfRX?*WJB_8d zBg1z72Te#uXcs8iP|x$N^i0vQF!@Udzg%3~S*sKz*Bkv>+e6>{N*4QFWb5zyGU75u zC;iH&-HXoHeC7pcWOAX7Q@)}A=A%>r2NK1C5s7Im)&%qsl)veICw3Lm*cXk{ ztI%&ctk$7aciU==65iuxI*g=JsLoCBOalPt1|6(XYAV@e^d0vzA}8tGH-6WmGyOoS=ZGH zG`z>|G&?aZTCb^oYeF|22KTU-OUKn3{2n<4Q|jcyWl0#t#7fM~zw8$N(ce5CPbZ7% zK{L?TFB|nGezD0T(wQHQZnmwo@z3J&WMiCv)p>8d7vk-9>IQ7QtQ%naV!*-dNC;ys zkMKlKnwI*P>GUl3bk7>@RUgf!#i<}VTqabwImZ`nI$gb5^7BuSzU=7Rw{LY72TkXC zXAa;S8|l>h=YAg zdYo2^i|E2P4wV%Z*}=;#vPZHQ@PNJD6VAHz)88QXD={~G`jgf=$>^~W-C@Oq%cVSF z^`C@0gJ2-v8aTG#O+XydU)x$sApRqVoR;g(_Q#(wRq)dtO2eb-%j^CGW#Nw|v`lJg z-%&AN+d4VG{B%35^TU?mrQoY*&LWiv8qXP;Oeb;BYs`x_TwYi4qvXJsP7TG55vQey zhzQyT{t)W#uTQ(oel9I7jaAeCxtjGSXyZly7lbsM+Ma85TVd+PpVU%Zf0{U*1up7O zl0Rd*01(GG<805MO`r4n_?WExb^QPCu2mYSR2oqLz`2s1usFY?TXXN>>+1-p|H>V%*gtZA^{5+~vY!#IrGr%<4 zob2^tz^kqT`$l_R>*&9MKMNM>;hOZ*J|tB$u{6>WLuUjvT-?$QbBkQytr&gyO@(V~ zlTnW^C#d1dd+q|6kaA@i0 zeI8UQ%{kliW%`T03Z8e&XpdbrrwX!*54|hx^cUa!;2Bp$?kG232gWX4hc(#N%$#`n z^PV~5Lw5d249}OxAFH{7*E;v)0O!hYi(QJph{RhYKDK%ngds#AVf7pjQ+w0}&QoAxe4n7Pe|5nYau%5_f zTvG8PSMAxKgqV?%A=CQ$wrvq(n(k)#-R_+O@-TpoLbthl1HF3*LYIA(zdJ2NhwO-P zzqvftT^TO2cM`oLu5ZnlzSfAF&9G<`^-WYRegSvo@0Y{E!bHTSS)cnY(^m`^qI)UR zVNQ9#VFr=Ht`om&?I!++m?OT3kAXS$i&Iw+4)4WfN)EY*-o4t0AmJ-vB(EB#A|p=6 zhPLEC)&&_hzN(fuRP#!NIAL1#_+AC1Y9N3GJZ?%dGWd1J_m!j+ywzcp$@kiCD3pmL z*noXnc~K6j0TWAg#Qke9IYbiP0wd&`c#n5j!nYFIB!tyN%8S0IFrd@GN=f@1iY)PK zGF8S5ti`;BZ+@>t{qG&1njl{rwsrhHkrZq$QL=}8BB??evqfbM<+N+gEK#^T zXSg71xIAFd7jkr%7vmftkiSM{1gf@lm?TD0+|0C0^HsE@2|*M0RVVPNE~`q|^{IV7d_78dcT$aWK4TvBRa5TC0Ge*-#44|0!HiX2%57HlIRL~1LHQkJA1_KCu# zO~uv>m@8X-+IR@LYqb<1+4rMz@MGG&jVg$nQYCVP%}_dTBOYbG3GmiHA^+_6NY?4ED4 zjK)$4mmY7+M@snU*|J>COq2Bj5%qm8DazWqK;OTqLHbhC&W!=n!@`#tVUzxe8-Lwl>U z{3C~GSXUh$7@eBh=O;- z%)fs7_UG*X80Q@yIx?B-&nJ$C?zk!yG_e#4`dC$Wnyu3M7?{4DmhDt@$bHTZvBr&up2-sq$lKC) zl#y4q={1t%a91{JeKFwtvZ9yGE;aJ5TZ*=t?m1}QEfT#{3hou;g-=g;(DyS8g$wOnO`;=YOkG%&LS4lGKWpMT zj+Ts{XbE1J4NxN$zHs;Z*MS!!P&{VKUU*w(!~ED3JUKivQqeosB5=Y+;X6Vz+woLw z{T+$tel!m91XG&kN}t4%T=9kP?rSzRyqK2Xe>|Iy8BJbNd^ z0ehVoU5iP6;o!vc=h_Dr_k6ZP>v0%vBod>@!uFf9HS^doDl$@fevaLjb>K{coSadJ zXOJNLJzO75uOsbM9cN%EG2q3=bhTSux+J}GFq{|`Rz~55W0?2((lb5o@kb8$Qv!LeO9^vQm@em3GBqhjJHqP^<5QZ*S5#@pDsMlf|l z7rrMuMlZzwOo_?ci4#d(Ga-AaYEw4nAPkRoUbyulN)TVpt<(TuIlT5f^ zU7Y=t$mPm%&G7`|4Q(W?Ls307+f0pcXlf5h>$LmKW%s~boO^GU?VNFaG=M;{drZOT ziNze!H~Vq!)cVKB5ouzLwF!(*547Vw#a3ltXx*t-h{an+*#%39=Y(WwD5>&X#+^&A znp=!ku8@$q`f3Pq)D-cQ{qKtZ=K@GBsUC`VQvot4382)YGbSbwJY+H(W*E@G)(&W( z%-Z_*Ie(!XthAyz6_%e=ypd)_uvU$!NZV|ROoD`@!emm(^;nr=db>yUz)YB89d?6r z-9dr$(eqh(T^!aTgS9vsv6#5L*tNVkAAA(7j7B(4BBdsw(5bQUQ1v(gsf4*T4K&Wh z(-CaCp`hE42@ct^20%ccZ(1HOoU+usSZ{(pUkLUOZ+p%90}&>YzlGtp?3kE;(us~b zUPu2NS!P5CS^o-d*91hTK+>Reg`KDOJ()(Rk|yvAf|87|BoZjvAtNKBEv}$`#UmO- zHhNHz4}iZ2tJ6r;;n=4n-$RHh2%Q29wn5ol8k`JZ5e8r24j5XjgMf~$F>W)$_Q59c zmq@pf{%%H8pwz7wS3hfxb9p&>$BKY_7XNCcDcFrYc>WcrmbS)QP0yK1N-8&Fz8*BQ zv9XDm?OIeIi1eE#iB3(8ys1?ujt7Koc+h8eU{&OXxipOQMWe~oOPi4{VEw?*0@7yR zHUt3Fawy=WH)|s4qdUoSt5qeE-avd~WC00A88EX|M!kg1;|96guXm0pN~*eIBM>P&gr0b;16v+EOt&NwiPgf{Cn`wN~#OUa9wxEFt9ybTkDM%4GKg4c;Ds+X@ah+* zM`h{iI`r!qtPi3ho(?s|J+tHZ6qmash?rBTsNl9%+em)-qeD6RLpx!#s^@A=zs-1- zYJb0w?RPYRa+AiA)U|j*;nqFo35VQafL{lIP=nO%zUe{B2sl9oeetSWS{PSDRTZ)3 zb6E3b5kDhBb#q!jaSGkj=o%56CyDgzG^%#UoqyqM>kJ$no#;aRU~n!L z@Bdu>jJvFCtKGzmxxvD>x3?^EQ}Gu3sg^DS!@j!OVZ*OZyoU~@7Xx>e=cKx0|3__D zSjcK*t!??sUV`oAm0ky&Xko&q;zbtZLUnfQCUS}sePSM4KHfzc5RDl9(oNtysE)BO z*Gvc*ey-NS9%9%AzGW{HuB8(!B%e@2oj)0_rB7T7UQ=afKukr<*=~gq~wa}Agi|ydAH9D+G^FY;;qwapZ zYH=~C+<)_f`Z46cd5Qi9^f=&(UUA0JKobN|9VKW~YKkqxmR@0bJnsfJScY)@?a`fB zRS>>5<)zN&+qzT10rPBkGJe~=k@0blUpJ_Iscwwd7d&V z!Qv87_e$dquk7NQ4^!4?+yUx66=@%9s_hKE%<|=p_`b{x*@EOlf%tfDW=6IYn!8>N zQH^kT#opYR{C3?VeyikbIcX_hsTB#Aq@{r)@ls!7$X0=q%T;=A4#t-HOzOqQ;53$Acia{1Y@NdzU2nQKO7fn`JvbIlA+Kcu@t5!c$TR@%YAV zRirBD;#VL{k+0Rn{1Q{}2v7z(lxgZgIvrXDQ&GDDeUOVpD8~{_E*oz^w2@xL8LFT#!>E+~4!XO}enX%-&?7zA)yv~$K1<99 zPJg(FwZwPa;GBdN_drrdO_ia%nCw~ea8KOpeB+sI2Z|2T3JH|~M;p4iC$R9+GahU> z5rw!$O|iBwWv94^XZ6h>?j+=;eX>ip(Ybc{v-zeGFKeSeFn`;D3}eyh6z`hBaC#f8 zSFO;uE4sp1WuJE*2(?Xh&;0N*J=*p@>FbB+-c^r!7eeY+)a6{bbBA(#N;3}Y zAa9@UREW%Ya25?6NIEp^jc;LRA_((5Q1}Cwwr;kybZM)@@vzhdXWKPZYc#M>E>{F* zK*Nx+a`UFWzm7-IPfEk4;rZvG2I>*Vyan&A3vgxGl?9@yYSGB!49BkIG*@?O)aDw> zh*;i34uXQNa^?U<0UgUOv~yo|sav)%IT;_hKGPQayh_dwqv%=fS~?nRr{STWWA1xv zcDjvd5X>7DKV|;z@cJdRschV%r}=XRwp(_?UJ1p|>ekh6Jl+W* zHab4TFKM!hjx(sPykiiVWt$okL+=i$gCC8J-qfGj#;QX=Ug+)Rj#IPzcJQ2<#_G6y zrLZNN<*!Z=q6Kbf?$9}0*yQ)S;2T~^`)ZfP=1xOH7z}1=1hOKohg!RCXBaEy z@q|vuR&x$8?oGTGynj`Zhku6}z*0r>y`FGoKFbTMT7FLlf*63wzimTg-{N22vuB&N zGwv5+vSnRk)4Bw_V>cIFBCb<&(tiGv7vblSs_g}9$IlN-dpI>UVX58oTB!@;45rKV ze|dFW$cxPCG2_^_jgBmiFa3S}5AOg!z(7gSiRa^8XaB-YdjaqO)F;WLxGwf22 z5*_hl%x67Ey8QP;(_Yce$FSp7b#!c?XZ3N%2FoFV`0tsqrTTp);)}6%u!ED6;my!P zKfH6>brX*7yl1|V2^m^v_-|2K0a<_CBErI$g4dBcc7rPisjbW14Tl=Rl)k-d)uL1a{3c?pxNwa;Dc# zVb58W=}VsA^n3;mNodpIl#qWw+SdyR@i5=Rjd~L|CK9lgYx9J)X_`(&$*_j>wEsFD zYM>;`i3hW?1KfRuu%iSc&oP*ikLZprpWYnCn#sBdGz3(~+DjYW#z7>5kr4t`jmKYZ zH$tlIM!k$n0cR{k?^$f}Z7uQXk1ot692SH%ek9fvgrwld{nPN{HzNM^T96^EbU6I* zxL5^o6v55KqXq<`pkJnTjv%X0-AngP9~cW*pt2UI76$V_(!$5m-gVE9_zLE?R4xfv zB92q2=v{M}&FYBdvC%x?^uxUQQeLRwVWMhri{FBMgwQ7s+E*$$Idek4u-Dfi8Sm}m z{i&nBz4G>3Qz*^VgnN9b|etSasNmHMg%b;q6&xh`^g1|7o@~18#D(-Gtqh9 z%Kl>!{oF}LN_{K4AfdcExcub?BzbZ@0=XLCaw!Eq7slubh`%5hzsY(abV(Xo;0BCFGQ2D7mQvu+utFg zys8JhbhcLjuu?=iyj>GXdh>z#3>6!(*|gk5Qdwa?Le)45cryUf5&r=`uCvw3OGsZy zlh@!k%5IwLT52&A`7GkOQ6q4zaHPqr;+4O}#;$!J^-|w%ziUPNK^i;q^v8yEAsC;xCYn`(p~7YvFjEGP@l88Zhe6(Y#8<1j@eD2q)qiu zR#o=*Np@R^#c}$09jV~lE#S+Jpg-1$PsY194tU`XA*kwz)UO`y-FOo~RhYaDzwZii z4eGu&E`N8wFz7=J%wW}r@P7~7qGm`#3GBcSnf*=?d^oV#ZQY~Vy|t8aw{E%+@Yc&F z%|c95!+`tH@1U&fm6YO9Si1-tZ%xlZ9@N?um{eDE_u9A6VFC}iDMWON0FdJcmq;WI zpC#NfTRXoHuer=-EoK=mEXMP-YtCt@d>@r{y6E(W`hq_a9DzCOno)nfQULtW@tZ`^ z;#jry{to6ibMjnA>tCIi^BaAFYzDnaZef5JcXD~m!S20@_bOP^Irk#?3p1rXt26?K zr(2$s?O&zgt*OW&y`K+V`d(I(| z_scFNYp4oZ{+?rZ2XkLJ>ikeeoAPxPl}ujrAqsjP{7E-aU!W67dDO>l)1YrJdbRA27`A?D6vC=I83P51>#!3OSKdsXnEu>Gg8jyN1_ON$c~og8_ou6lW0?Nz^D*wj%9 zgK5?c2Y`S7m^C~!6#P6SS4okZX^)FLyIvx2HMLN^{RWL`*ckSl$=wKST)0=Wg-q|O zTb_=EZoQ}CDPJV|b74t~veT=B-=$2ioUDbJ=`tGgQ@pm)(A_fo`m;`^pWv)|Y7?XwqXR z%h{+vISR7AfRjO|`8C+69+BJj*FvF?-qLd8JWg8Zys@k>^`MOm&%fVi)v6-b&Xc+A zp(>~rtr95q_T_zb177!>WgIpj4 z<0@7NYDh>~t^V+X$O@Cx&p33qZrW#5estN?+xRVc;R|D8lQHu6uvobU8iyLbb{gJ% zG$i8#p5yM&IqH{-qtdAVy|=~PV^9xaS8!!rBvwj8%GW41{GniQrw!^3OfMzANk@vw z?pn<&>q*jlT*;mdK*k%s;d3DSe>HaRDZJ12QBYj)s_2y{vW7N@FhKzS6H-h1RZW39 zs!eq4=V%be?yM#3tZSS&T8=FM!-IHfa$&Df*s?s`zx=LgnJ0P+6Nog|h3|tpO#--A z_JZuFn7_e!SbZZ)xC@2|t-R&mf=2&a)eOCe*(d!?{0I@(!R`FomdKz%F7`arTy z+9wW#O$PDDoo}P9HP0aX0rUl24f4xo9Cj{&4#R+NIWR*;z}s}0Jd!dke=qmIZa?BdGMKLteR}OZ6QB^nx+;tDj(G+h3EGkWU~cFc zO@K+H0;sG}^c8kjXwzV+n#$d|tOXjMe>mwzpZ#2>dkVDq6*5~r%fCsqsnQWt|}SYr=_gjjX%pF1Bmu;B;5f&^7YDS32YQKbTg6*)E=T3>jQEp zm=?hW2qQG8hvGk4;v8swnl;XeREFBtp4a67W3s;^ExK2GWp z#Sv67uOv#;R!C6PB42DM+<<&s0Ais?l5a~i$Vviz%1Dn$l-V%edXVdYB0{}A;BhA5 zFz7-5YXmmCoJZAlFp9ch6w(<6`V!c6h(rw#P^P#Zjzx5#HkbhKym$LeG^H_wf6rOT z;MV6dRh+z8KEpn6%Ls#ER`*D{_J0pIqB+i6i`=XFj+8EckFQ+nW6k9?EiUx7ggp1H zIoB&|IQMOKysocGy}b+?YF7pOhQ=`M+)md_!-c=-Rl`la&WPq@=BDy^IOxOmvBvK8NStgH1P zQ|Vpe#oq=ur+&lcSCuo)9(+^Qet?lprmbkRrvQ2K5dbmX~eWVo~Rv= zC}*64oqM%!qTK{IMEKnbTUVFiI-(VjSpwT`hMpi2_9ZmyFBsDxBH;klyuE%9ddHEw z9NzVXk);_Crb`7P=}LSBKeg31Qk($!$+jddR6vaJD5mR?PUTl3GikR>RE%&m;Hb|% z?%0!78@lI%=gDkvNaOK8ULP8C8%zlqSSxgOKnx5IVf`uF9*5mKz0<-v{uOZ0J>VKt z7Nk2ULp8B8JSkn{-b1mfkH{m(N#CWcc^{1{ic&KzNd8HEt`O9sb?tJ0Va+~BA#wdvr@0=!czzs;tC!RP8o9wb=x z*|7wfWJ;Z|%8DrF&)9o9_OENXWUUGH5!j{Q#3wD*Bu_-kP|6Bf2(ugA7 zwKvV6!_pe%U}n`v{yHQ&owJ zOdzI!MEm!>r(f+hO4xv5X=FLPTv%MfPoOZ1W4(ZHGXx642Y65pojO?fCcZ%2Dj-!< z)*FH9BjG6tG%S9^LwuRL^cV$%z|9Rn@X{5jHgkQk$TCj)pDN&p$sGqkB!R_xGCIDW zC=uTU_X+t9Q25BuudV{U4+Cpi$Z?7&Uf_QzwQz`zyUF!YMwuvwv#GpyzNO@gkad7i~cJgu--LzZV4zA*ji zN;+$&qGCeKv*gm$KfS}uV)u}xX$4eykNlEvy$^{Wvd!L8C5+W1_+@MFrnO*@*BN7- zx+O91cT8jdCM2LS-rboKGwLpfa!cLmYS(tYS=wBQ+E*_6la4Ii`uxPN?g zYxUdg4#18TFsabs^qVSmz1Y)CU_%Jl65oP#OK5`=o*sgqWjZSte`nFN!j^x3V(isa zltr~yZAxSbmt>2^E#FqR>d>=&UWoXuHS&LEL`<7XUi^~-KZEF^>CwbIOvqAinGMUJ z{-VeH@Aw!&-ZA79{CRlDE7u_G=r!J_qOmW{l!1`!v;n)|&T(zz*#!qvAU>;dI_Js!=Eu7PPAL$mHb=`4#Rm|fix#(MvwR!Dw-A9c= zbHeUdMxN_{x`DFuME;vw^mrnO&aB>RQCZ>54#_nKu4RqFjm|%p(S=rsZIBM7#2TuD zH*aD-6b43zY4!b>fWFY9d9pDl`@E|MFpVKYoKEpM*2whsXBoe7>$cyox3@B#Q^jJg z8si?Fj?_OJ^+Mfx`-)Lry3W|=kW4%DapvrxU&bIFrC!)0n;}6|y60Ry@alY33qP|*J{9M>B$1~v_bZ(u?vh+HP^iFxOPl;+BG)i^ zL4DtY4H_CF9C3b8?D~N}ARD09;Ip>h6=`|tWU&ui-N`{WpGf!T3L9ywPVO&ChQs7X zxz~tMdd98vCw;CO@fl{WdN~O&7&?P?&5g@2{)nX6dH&H((7PJxc0Se3EmraouP)mk zhsTvN2(-gasYi1>sC^v?qw^C!7adu{7})q}E=D&!?J!OrUJH>6+MgO8crh4jPwkPz ztxg%55yz9i(l&zx9Mk8|k7^!{a&<3EruSFM7Q=A=*p9?*_y3W)$9n993lo)`kj5s> zRZ<9J^BaK;gS-l3q&Y4rfEX97t#d73E0z@Z#(vdm<)OPO$mjB=Z_0xl*Q7(V13`JK zZ(?6|6)ML0o4pG8J?Rq8{e8|w)nE2Q>$ejawHBFR$lA}5iJJ-2Jll?69$^Wo5ffda zuSCO;kcj$-83t2n@$c#7A9W(M8a4O3knc=yeb)7M^Pq#f{@QP zi)Wr?uC^|3Q%EJ>@{c4+BOJg%6}T%<4+&!CU{^B zLFs`>Z~;^nq{JnFkcYC;zFG&L8OkXjUF$?j)R9!At-C0Wp^oROhM*2$-{}+%kk{$Cj zwK>bK>+s4%j8w&=5>5!DaRYT6#>IW0 znyssdCzTS&t)u6^g{7jb_O&SB2ems6H{XEm+12yNo3w08uCQYNbb9N2aaSX3#AjKe z5m_<8CC2X92?9v;heM{`FpK%~6KR_7LNYt1+%_Uxg)Ksh+@MVJ;*F)P{CTbH^zQyj z@4NfZ$HEuWjdm8}@z=YxvMYjwqMHr8ThCtxhu^xjqqvoKEYN3k^2^>o4=egbvmUIO ziAtx&n_;&s+6t$;oEoirE82%MrSp5u(w4tyMoeF#i#{b9goj5|4ejJiUT(U$JOA2h zGfnRL`%)icf7|4&fsK;3nMCZPmO2M^h(o2d>ha8e(z(+tL1DX`!V@NoRXlE?WPrx! zihfV{e~aIu88kTk=^qQj(CKrp___?mD_O8885kK>JodG+uhzW#A6b@Tr7*44CQtM` z-c9+l=y8|;hC>XZQX;3jH81>fPo2@~U6Gmx9u5?*aqXt=hx6!=boncw^xSdKe*K9=MdS#PQE zZS2yv+IO-BVb(4Fnr9dNBSr+_aH3Tdz-;q&tZzEUFSE|u5(n(bIIwH<|2saARjCv9DZqf0m9fv{gRz=pf1#DhiG7#$mj1wGgZX0dQTt$48pA_0 z{rU;RBk*W8r9U>BIhL9Q|~Z=LkjJx<X|qPdGmdIYMP;AO2Tk+YSk7goNghJ#IAu=4=nL{Ym!M+56D?u#!29x^X@#DY*a) zX4n7^{j0^w#l#vSk<&efsfTr>=bvD($ARMxw0U-(=N_LP$K^*o?J_(YjsnzwP1>24C(ERVxjA!J8h*b>Adye`he2=g-^TD^HPA*u`$KJgKKj$tjg z@I;KJ8AB1*XR(bJF0e5C;`Fop_|8^^6VN)>()OUipbH|t*tLC>H__yK(@snM5&N}Q z0D_T6qGDldTLp^03rU;6@iGoL!w%GWExS!}@K@Un=R< z9aZo+(^W?y{-RXn5&6AaG<}wHnx=#i-}{%+2QmHUQyeu4r_qJs4*)kI91tex2LVJ7 zL>fnF;&B@kw|Mt%)4&=_$sqy&wROAnfzKv5_rQcQ>@is3{D;{j6!N>ZUprtgKah`l z2=EF4jxtdn?rhlrkhjBw-)H9ttgK^q{8SzQvLZWv02s~HkhGnPR%okA_cTKXI@;h& z(GpMJV!FiMdYG;eA9xyI5aEeMTpO7>6(!>dIxr0!`IjCkUn#&<4%HWctk( zF|b1*+t3oqrT@JWO$t;?m4eeU@P5Kn0H&#yS}=~~hUcCFWejxS^}q0|KFTAHSE-XX z_`2Tt*uf52rECfoexJqAmcZ$=F6#|8h<{>{iJ!XWed&v_XLSvt9^%0KB=)-W60^d4 z1tM)Tr>0Q7|6P&m7nU)DHr@u3D3iI|&?F)*j~OmCb+!aNKT4OF9EK%ZrIP74U?4Tp zk0p${Q0*)4g~Z9r`X~kz_V{^Fb2wwVIc)1hPOWVL-rL(-i$<L<En9)C`?{!qSw|f4aD2j#Ei^h>J8Q^h5!8}A}TVy>W-}MyX-al5UiS} zxb@?7QBb>GUL!xaft$-}To~Y2o}3OXKR-Fh5?LlHVP4W3B4+2W?wRauPrEdHeYP^U zX~;_$!^5Cxj8*>p*WYT0t+fM;nU?P08`~86zS0vFmp;>ZNq@<@*B4pmvRj zyQjG49iPc`#JO&}dgzv5Oh3%LrZUf`pSk2_xVB{nvNU3HVJ;$kIm2bKuxW8i!~`+C zy04DO<5(*hgq$@EM_%92)g8)RQ-#_RmFQ-@(5pqL3`fcrLTw<_Sxx*H#%zNvdy-|p zVB*B?)yjodbuMlkeyw@6O_!ceKRrfPiK_z(wnRZpNN%@rn{&9tU&+o1W;o5R)T2KT z=@$_(Xa{c5oA=$rmIZFTca+x1+kEqxEmfi*8Q6QYRR8e5e^=q8EQaU?hgKKa1g<|%BBcfFaemiU? z40b~#o0hf@lD9S{A5T# zH`+|NPwKP7!vTy#p7-30T$!Vcj*Tox2Gc_b)NN7lk$Z*dqS8WgTPDAAXLK!~{Tm6` zVa^$y*Is)!V<#x~cd%>CucuxDb-CKu37KC=ZUBVos3co$#hDhKL1~wnH_1JM7G3hX zJokY-<#XW9NUcg4M8Qk@4G1unywzJyLDrl2kZ2F0OuTyy=O-Y!5tm2+ESd&FNPVTNFtlzft;+kMin{&j1{7WbJBT0)dH3-L2q< zDjduFiFMqQR8!1;K!O0 zz`_vHw*IZ|uXJJ!4_8?4lozWc;HW%!=YlW%F8nq1NUsGPxUL6hx1j{ zQFnZiBa-nKF1=of0Q?DVJs=bD@k7d0Q&1PL9-6={wMUEze7q~9{-=e=1X~|laKtZ7 zR{nN8rQFotF0g@Ju!#~-`=jDjOLKLRgSL}2tcHzCDgKAZ=*`IV0f)UeNhEuy?PMtH zP#WA$0ZctD)dt9?bd@+X_xul;Po%#(nVJYOfKwR&I*2VIDca*mwR}Q6P;=mUohO;( zBYb^evj!?lAb(;}`A3#(v-uQFfGRNZ-U}ca^NlOM&SIReQ8NZGT~~6L$L??|K#K`J zEMO}KkDboR1|!oouf(0hf7Sxf9UxGWzECeE5&v}^Ttyk6QOOXKU~nns}>LA zb|)x@GhsZgn0q9E59Cf2uzDOo@FAXqiq-bGgN0G?z5tGauS~iomdA>DFjXY*itzb$ z!UQ@5bx=}(Hw>7+1rlK*VDuWlrVXx}(^3z`=nGz%8(Xn(69TTT)v_y?TQ7g=Xubqe z(O5U>yN{EttS8hR+zpg0A~+F{1@w)#+(M_Hygr;6`~L1fvcq8lM`9LdzHE!8ImiDB z$%B+R;N4I=?39zx+LuXtX{hKhxA=3v%c(b`F%}3_9L$u=TU(fSMcmgjW=Kx^S7?pmcT3cKD)yt-I8hl#}m*%=>Zg!{iYB7qPZxj|K%OwWUY2!saND#Zb zr80MUB++m^Bl$)IrsPHwGsCu%>6g8}_(?&%nqymOx3*c!h;JG`?ombx{{LvY5_qQn z|39Tt6jNV1gcgYuH92y1OtL~PbLB`fA@?!4OJ!2zDs!Y1GFM`*xuTK`)k0#9<|y}( zbB_P()9>+rJigx^kB-@ApKb5g>-Bs+4|6BAY>HQ)cs*JiURc$^bfuEIzAuA*l|MBC zhf>;0!dj~Q+)YNtrv83a5nuksFzo3V1KTs&i*-X~LCb$+>Ke3`C)o~KS;LzQpFL|C zGOY657%uX9y|LwDVb4l?v1QQ8Y`elU?WpA7Wfr)sW%RDLPFw2;(LjLP&qO zMeN*T1GDS`ogi=WLZ4xf@`h&`qe*aYmfEVSI$#ZK~^d`J{U(p5W-zwA*t$!=YH@dCN>PF+Y#Ym?eotp)|~wld{})#BGIPKZPBlv6Z)cMMNQhS{?2F!) z+bRLRR&|OOX5RF;>fl7v|Ju>-TrWLEY1)l`?Oo0YoSK~}(?4|=mqgk~z{edEsFTY_ zVlbA#;Os=RcMi#OFI)2|&{c-N58i4n15XdwGi-xlDPB0u9FNu`ZIsd2At%MWjK4@7 zETfaGIxU)V(j0VA995j86ZI^Eq5jIEE3mr9kfoX&HU8|pwg9JZyz021C$X}l=O%e1 z8Keeu^T|g>C&;OT#!cFbe`h3?dpQ!p(@YEe_?>Uw*|X)4g|@CIcM@h34{q>;9Dq}+g4>b#!b-S>+D2C`t^4oRr!{|sakJyIDt zg~ZLu^HWOAgIkJk2t-V_T_Ebb8Y!npQVBnAw$X;irQ_YjT&*h&vX*7mz6Otu=etb& z|Li5P)<2V_9D~=W=nfn*(Oyb-4VWCBZA4rqvV*~eWl*JRYLy%`+c~3QJ~=#0qx)#3 zO54F|W7aSCv(HhJ>Kj{8yO=B1+?F+dB(pt-s>7Rw$kf4YdQzmP_71;1$giMJX9HCS zY&9E15%K~Yy1;Ls@*pw>o|?*rb)tw>=1CZEAeGh(oVTzje|{n2;dBb$F5n+T@X2@W zjX=s5%?wHY17}VMCj#cl&@HcdQyAEgzna>p0H^0+BM7^QmcqbO(2ZflfP=VJ6je$A z|4aY?D$H}w0U2`|{F}^kjk^U<(gge<;-o4Wu8l!dbyueDhx1|10nZ;sS2*P> zO8@=G5Bv7H_l*Pi>KeTx8lHtX0EuMLf5Bsq7aYzJnDh<83$k*01g14P|flKf+qxkzA>98Y(f=+Kso>AIrc0Bw6UvG#|H)s`Ngyx?RK$^*O zxnYI2L$0CY=alb(ELqs)XRow<^r_Nbj$IoIUW44JHJjuSi!qHBL`qk=w#wCEv46Q~ z9Y>vh3@bYeP58F5RM!EP!cp4lTve$~OdI)JH?qgCpFf`4X)>c>)nmaPC2PKYAmAM| zHQoAs*na|0&OP<}>^g2Lt8f8qW+??O{lOOgu&_*N=KQ$nSZq0aR9~gtKU%7X!T2nX>7fb(Jg=%d(D}#ewt9vAX1ZYiWMs(Nh=S-f#-icqW)> zlbCVK1#$%#mUVl+LX~Ot@z#o(A1c(FZ*6Q(4On%gH?WM>mM2!`T-U}YG=k>;xbN-` zT+>tmyUx<~TX|;)BTGic*R)Fgc{2;nDz2NkDC=zQO6Lk4jd=+6;5G?k(vQ zC407ek83>(b4YAsm(z;yuDtuRKnQbHV!5xEAmp^a0&kd@!&NT*Hu?tj% z{-yJj#oCWAQs}SmkPdulb=(k2Z}Vnrv_MO+8C)vyw-$b9jQD?d&}eFX**V_WdK`n= zW7V@cXXJ#C&~2_SS!~e8#apap9DKGmH#j81#P7!fVN<^jRIIibtbB7lr}3%66(_;G z{PH|(_R!2?D|>8qmM#yZF#ad&WP}dxvV5o1q0v(n;I5U@wTGCYyy3A_wqw$6jLV#$ z{PL==>Z3FCMPIFUu&^7M-F-6mzmv@=;K4<}vy?)*bMZ%{!5*R;ICS<;a*TNJ4TVi~ zs8GH8qfe=}?nSAAZ|YIvEM@&Rk`tE&?ry zUAOqRwLL#*Iku&0zEVOvc(&Y(^1Oe!n^oVlNVi@bRMA=pgRg(^TnBitd@TuDG^v_x zt_z#d$Zy-z&~T>S{S{2+Hpcj2kEt8VfR4MM7XJQ;1-+p=(qBK8;|GilatRQg2I_Iq zzhH#-?A)gD$kdms$&dxUA6zd>8Ar|~BF8W)&@7x!8u$UI$Glfb$dZMps4Zthh~uMv zM>?Su&Q5R)vnhb!Ha+yECMW=}82|HI{VxQ{V=rR#20u+*FZ%91Drm{&7j%I}^6(X9 z@-WB~kooKJXt@jB+~zBw2#Zjwy~|%6 zR^Zg8JcQ+)2&}@&U%^zq(55(ENeh&u z1OE~DE5zgOpM@!utaUJ!X@Erz3||)^hJylnNqFCoAP=zr?)$gEgdZ9cSAvjV0m7|M zqXJ8{KOznWE%V1-Du|PH3^;p7+%QIVqKMDTD6X0MidL?!H;-`3&9?K1>fvP3mvX7Z z!gG3En&IXCrLnkdAF-gnp%SYvgD0b`diFXVCx?A#by)+#0kOSjFJLx75IFIoDQluD z@PuLK*j!4zAs7$CVdimS>yW!DC|_F)y1FdL><8iu_PB3Fa3I&C(;IYSF(--czZ8?L ztAgNgo$qA(YWZg;v4IYGbB;myJOgu;CRZc9qQ}zka;3KT*WljE&)B?Y~D z2j96_(bzK33W30V%;!A1Dc!uQyGIAtK9H2{gb>O&Ziz!jhq@AnlG&ELS=Whew@8wg z2yH=?8CybT7Qvvbb9Qir{EYHSVx_Ie#%4lJW_-OIB*|oncdvcxE34y3N zc7DZtQ0g?;S~-XfkB(EP#~Fr0Z}OjMKaFV{nJw<&yKuAlp>xUUA3hAtt@cfp)#ht| zXB39Y*xlXvCY{9gCeRadiRRAu&jK@b?rw3Zn!$^)3RbFbs^zkqXlIu@dKPnoIVHhi za?;uN=#I9|jInrzcF?jaX7EI!S<=}VwfIDSCGh#xYhKYfj&%}M&gZtmoSEm3PBsW5 z6@vb#cJs;eCU~{fDB({rj6A2y*>rQ9th8vQxvPYgrOa287FXbR7})vK$)!}gCgD$N zu>s(5iVsh(8TASdRuy~IU!XrfG-H~X*G_nF_h589N#sDER}^21PQ3%62~^*~^tPCh zo7+wks;#o5n$$ANw(Z~V(SGVSuE^&^*Q23#jzC#WKc*jlJzJ}p)#}nS4{S@GE4jwB z-Gf{<-9)!*O-R5;XF%Y6Z5KY z$fhF+PPx=ug&h}+tt*0#3uF!|w@sZkf>4>0nGT=J8Y2k!nG;}W=3Jcp%^Q+&i^^hl z4^qJnPxgmMod%4Ok@hjC1jAcN@o$q`hKx1!gk|gNZauS)QBhGD>idnR8>1cQ;^T&H zq8Y>j${%sM<^w;cmp_UPTwMO3y;zU*7Wr$FtBPZDDq$>Ntw#`1gSLq% z00>f1f9wyV9dq$ZxOaPI-e}vN*EtNU^WA^5n}SMuZeBJa$XPx$QFARBVY`T;r98po zmkd<+$2nl|2`lRUbZY1%&`Rp zVzI;ruOe1_R9eQe6{bISiDfNqm3PDQ>L6cKa+AG%*NHKVeiMHV7&g$j9 zO%wTTD~7>KEUt-yM7PD-XWgC)vSvaNl*e%}P@&>tjQ$gs8gf_4mWnQ4`wMhkW(v4q zq5{qY-nJG(BaC;*f;#dBgvB)wHKZd2b{^oVEecC8AIl+_h{&6I`D4@$>7jybfUs|Y zpDKAnDZw2FNh(Esd*KfBb*$DowJ9MJs>la9dv;0LTGSf0@EZ|Q27NfAAHI1<&b zpZX?3gLH#5DO;H4ba(;nDn@38w2|^w$8;L_V9l6V2ez6ws)d!&5=~G$!ujOS{jwH@ zo!mn{dCUb|*Ta67l18=l5H*kL1*{N4VSf#wVnVLIQ@JC$@D#I-KW1TrQ~|IyVb2C! zK)9fN?mX+SdX8~DAXv_K_7I z&p>*oYa0}|+jv~jpeUU0Z@}9!kM{OrD+T;P{eiOuSqUg}r`g(<%_531!1~a+Yz4(C zCWMolcZCjJO5#vQB`E)0Cu_qI#UP|mP56_CPM@-bHvSQxCEqT{1_A**l#ADn0Kong zIp*^hu1^E+7MIJmkm5ukVm`E z*X)7fCA!Z@h(89IByaN(FA)*lKT$8y41$d)uVBQ48QlGAh2MFjhM$T0tk;Pi2H=?f zs7AxE%qtD};soj^AwA61yHN3{h~yE6I+x}G3+=LqPqZtc;wKFpKKxy*PhBkuo^fUO zNEos#nhN`4rd70kt4A7F`X-lF#}$(^PdI(Xcxa`9g(PT%hsMYAT8AN`UH#qt5M>>%%x~Hw_Et5<%Czou=dwn`h5@*xTwRn>jLSnV`K+o*^;(yk@{L(R`#{ zA~-;NXeG$H>AriOh!F8t$|ew?<;6Fojm-lCWTk&~^~jJ$iO-2`?VTxSiW-Uib8ZQa z?D>&w_LDyE#QUrQNV&>A-gx>0WL+8lxjuN9 z)u~i1+I%i6hV4cAMDd8eu43}FDA&B7?m{Q=TFH@t)`Ml0<(d_KfkM$^t0&S=m%L)$ zQ{h&!pthy9#Eu}Vh~?jc`EA)m6@#H3Zb{Hu&+_@|;GNATf-Y^@V~YXCAC;aBP2sZ4 zrRD{|??{@V=QQ_m6!W$-$A|0Pd_o}8L7V^tqg`o4!#H9|9$h&}58TbOo0!6vpEkD6 zIhJ&KmuaUMgfaZd!ES*mo-Vo3qxgJqVFnig@4cQIuRqJ|WT=xsjcbwWt~(`Y$S@>GK_(6z3n;T^2m?Bv&Caw z2S8=ci6a`#Gkh;tO>7$f^9$>qbTJSNdSyznQ={ZWb0HPf;c)5UpL`e!>5t#<3DQc< z`f=05vS&SC=t=2Ut>rzVF!*U0g7Zt;AB_}+F3os(v(Gv`^s;Sr0M)1KkF}2Fsw*>c z@ri?l^*Ls>iVq8kuDS69aZO)edgrXPV4YAz-Jj&5oVFCM7`mkXPnh;{!`kxv>Q`;< zP;hCth4;#!+fH-u`7igV^frM@P8)VX(rhZ!nnVx|h1vX=n76csL!jMz1Uk69i1#E$ zw~Nn6)39T3%3BxZByds58aY86;|7W8#^lloga&i`=d}BeL$;5jy5w z9i24ivsFB7<3#MxQEPLr;jKl0b>pv zB|)fs0B|VqHhCdHI0dL;2+#vIpA-dD z45=N^=ezzd)$SoetUxTQAWY&YmY^dA+ZDbBK8TB`x%28A#({*o8BH+HZ?|lBzXZ-% zCizxP;Mp0e2;6i;ffkHA_vcL#X3Vqf8YaG3?Mik}S z_fI1RIkxOEj1s_&Xd5fwvOrQq%?1%bV{4mo4%0ey#-i%Jm?p94u0T;p4?_5(r_$UXXX@qX{=(|qCQR|U_VJL~f1 zkt}2Mf;uLN@=(j5Bq{$&Q?jkVoY^~{bmSlCvjquX^Qz)j(qR9ZszFwlJl=lTW)7MJ>cHLTd(U8BX)X~#~}+sZ#LF8|Fb-&$AmicwdU`jInL z+W9o2FYX)UG2n{IKteM-ET^(Ox%}>daHwf|KC46_)xiLq@9(cfo{CU*Z8l(hNV7ar zwKCoT%~o~{Ks)X`Cyeg)AHWDtf+S$eMlNGvyIbS=j9qk^?c!7JBI9-yT7c|@2{^)Ai&7Vgi9>+U~ z>DrI`d)Czz4rXdE2^tuW47H>Ra@kzhDjQ7j(tK*wkMa7tzYK|rMPEUOS=ZI3I+bTRDviUf zG>QA}g<7D44)8)FHikdOT(Te4#@=u?cTD^!*SdS%Vd#w47n|jk=Z%Rxk`r8c5qI=B z_+4Q4gq?;4!hLjL8}6j{TS=iy;DV9JYW0i0GFMvlQ=b)=1a8fS#*Voo18+x8#CxfV zC4M*t&A6JK5yCbs)>f6rh5gxiP|bcI&Qs*Uv28mNA^z7q;b1&yM9w?2ipy2aJRHri zn?vtCs(ELDBeP9`NI5UtY1yOH zL@JO?7hB>q&H409WGBV8o5P+ZRv9c38jGFvp3`vGjX^SRM!+`?5Tu_H;^-iM@jk!5 zzrT{`8!rOT@FLDbV_V}a%^@+X9Boxmu{x3(xCFsxqCG*ufwvaD5=MP@CTuvVNcqGB z#)Q$jpAcM?l$qa0mSaX&L*5Mgn`8Z7U8NGO&7>JmI3xn2_vd5j0}%X!&0gD_=1;KQ!>U7Q|pDcKGLma|L>9}azc7rIY8 zx;ItWhB->Y6%Mn)FEQbI-n2gzocoz?m{t4U@%Yj zS|*D0bne=3e82}0<J8=Dlz_NfV2091=3!;x2dy+}UL=>FrUACm9!|RrAGumJK zL{Ueaf@Cm2rGT-HOSwv_JoE3I55X2T^T8Y~nTGmy0St3stBYbjgyKM{-HU1=G#gNM zZGs2!Jmmbw!jC0w6hf=nlQ#hdxqMvcQu}e*XC?~9QZaP;4iNYyz8R?C8G#;jyp2H<{Ff$zF(!b>jmyl&N=vN zjE7a}{RyC3`HcOT=dQHjy|D)#@qtgDv7YR{n~58x4a`KH&(tP&uBwic)lX>zxGgPA z)t#}{;tnU(^`{1Mmzx^F5#&gBz~8GsCoVNA659v4CMu~xi-Ct!ExpyUNor5rUw;68 zvsT}qfd&XTQg8fT;Ww3bfsyH|ttqf7x;E~*E&ZYG%9MIkvw;D57=#}awFrqj=<|`T5 zj*dwmuI+Q?#~6ie!AU;k+oQXAbpA>Pie;*c<@9oBK5Wwt+lz9wQ1Ki@VY+qWc+KL%96WWY^xj5js%e;-_5Dg7{#Q|PV#Y{&tNpo zH6l-xM^f2H#x`16pB{JVxFHKh9iw=vCX$rR$ZJ%~FZZEa6ge|)Fnqoq{&}QC|67ip zha;}c`NXxmXJTK!dX*+6ClGn2r`;U%L;M;K>c1TJ5)*9wY_#R1ek{>D+3)@vzR$oW85$rwPp5kE)Ta2S~-cojYl8Wp=!`jBVP?1O5FM$iXY~vd62}6oR6T zTUt(3Elej>b3Y9A1k4A>WqiIc^|zreN-JRP&&$RW%AL330e@M-#a?LwChjgv(3(LFEyVNXTn`ECxo94u^w$fEb* zyvY3zh28Fi{JNgvKOX6i1CpAtlQW2b9#IxjUMofLp{4|r$Kl)!S&u@unl~Yb8hbw< zHgW191)}WUGhxKok3s4ZZifv_bRmF-rNOCEj)Sqr3;l z-$@~zfS*2~mLYB)^C7UPQp7UDDZ7BQ0k&l9Tw^ShUdc94GDMui1IP9v-exev0m=^C zT&fvP@+N62)R7Fo0m&Gw$hJHO5j7JM3({z~esFrhX+-dmn$@!95KXiDPRtz=>L33G z$`^Q!Li{1|RDWaxjd~Ot;*bax&IkQiksb=%f9kH0GA&<(@!#m=DQ8JBO_~E!L5(Pwdz1&!ttygnr!=ccQvyFS-7OwY&(Ac>Pzrrsa`ZJ<;qsrOGas z*y%rS)p~LoOxE;9h2LJiqNT^>HDHAMIf~bb8=tV#oICN#4>^5bu4K7dX#^}y zPF)>noT&1z(hOQFV}V6=*O4bl_&-CbYlE#p4D*cEh6lAD3j|9D z6}vMwOH_Csq4We!*iJ9ZLRMw}R9*ehP>*%xa%^hwo#frMhTSXA2fSvdTgQ9_J`RM& zHhI`^-2A=wrj0qWi?Xjmf}mBEUpJq1^0NwepDL?7(;H=0A&aogoBdU%SYCI#$_RV; z6EJ7$eyMaOIV6fCvFa{ruMH=en1ty@H5)#O2n?1_2k*0LE*Rymb!e}(NN82u5V53} zvL_6b?NLW0v=ZRt)am~aVJ|K%W1A&wOE;JF+PURnMwYNn?(xmJ#*H&Go?j2L6!p)r z=n)^%V3-iE3pe9wQH$NaX=jXQu^Yy`sEHHNsN=ZAnQAQ@X&Am%Fe(xeVp#V>2|VPP z9t<{~<)XZY=v~<77BD+Z1bpFemW6A62?Jop)`}ZHU)?0>d34HC68O*s>MqCWY{##M zJqv$N5Avp=Zu3d;)fy>oRZP9VTG}c6`~uw=r8ZReLME-)>~CO?cSME*<#pQ${g)t8 zLR`qhAr*^K5wI$cF)%QgCasS;INlG7+~--#A4BRRkCn~wzb9Qxx|hQW|i9n~J{I>+tA zi``c2f%v)tZFMzGZEewCi1%e{1|d+5|258c_W!v6r>%!U{-MofSg(FfUH*_CG&|cl zv3jFYZO{3`u{@H}B%gVLuF7M@4JIW85)X)W`)us8T)gFMsl6}M&_57WRn`TT6h=*k zB$DPXM!c1nQEF@Dd<=`h%QGdxT?!_%X0`k$BNCvcjeUwG+6_WvR2E$r-7Byq&QaQa zd^gXo*NH?@NX5tr(vkGXuN-K`DO4SJ>GmYdPvQWh=jk?jP42|M3IACnot4h((LXqOaEjm2+WnOF^5>o|Aq zBW%c|5U`PQ5ECF`^EYwwAt^zJ7u$}MKmgs)yoR!H?rneyhz9K$9D0l<3PlI12;)jF zGArcJ;GlyN$ked%Bx63St*1O!2cGHCLkUpxF%KkB8c_K(_NSR=GgwT(O)2o&6Lok= zxE*MC9+>w|;>MrvLZzX4v80a=DZZdJ9NdOP>)xd{jrwX-`A(%dUx8?X)??rnjFzQ? zR0>n;x=(odGUg$b{g9fJVJ0sE;}Piqh8%@dXLKLD7%9w+j}O)F1}k9Pq9|?(7$`FE zuu3f+R7;D2Fe?RU7r2Y=FC~0Yl8~DMb1VS8)C}M%3Pr;{9p?V7K3*s)C?E=+ z#pSj#fm4qN8uH8U0h$jR^ZUnyF8%WZ;jKZ~9WVp4E8}25{dNO9veup4L0;H|(*nWq z4pJlqZWzggsw9EW)})Rz!XVvYq^R|3_phtr}E&w>@5VA z31IV`#s8tn5a|&KZx4>Q1}Y|ztx3X3VMzvR5FCV=Hbd;U6$|03ejS3v-NiC@p>-~H z74E`jBX}-qlOzn%z|K5{O9(%g`ycpULO_;0=KcZ?8on30sMm#xPtCwYlby2uUl&u$ zK59#X5eUjP>!I~!sDXf3gM1GZkGgjmSWo2Ygua^UDjq!u-Af2%Ql13x&v-NQ`BfR5 zlKy_0aW>U1#-@6$P<#2M^)kC2pniq(UEOCO8@RB#$+?XJ9_ab5+kmLKdfhW4 z@`d&VZ;K`Pd^K;9IjRK7uFWwJM4u6-BvVMp;GyXF%g7AG zbp~3yx)hJjeXNTJdulJT`hl#F=TrYwh1(gprVh~I!t`iPW1Wq4DW**6idowEk)BjkZ`LKFG>1{#Mh|Iw)}yAj&za0sKkF*&oK8%??8&^h<(SB^8``S%m( z7nbr}D{m&w%gWU<^;zIfv-f1%fe63j`%Y*FzUjDG@g4-_+Zb%WGIQ?;${TZ?S6Ac{ zGdjfQE*}PersG?~?{|=UG(nf;*&N|b_ACWC#vR>QLZ^HT?Jeq4R+HNH=>7L?5*&f# znki@?>tKHPOOXw!`KJ&Q%bY4?1VQKwJeMsiP%@vGhRZ7d~& zKv`)A)?rav12g9L+!9Hwe%6njl6r@ar6{(o9ilB(w9<>ra}#w+ERLwz-#sI2R3ktX zdLeOA)xvtSXYS>KtWvuMt0t$KWHXrKO+R1Ed?C=9+h)#GmdPIQ`11jrhOppP7$X$T zFj2t7c)EC;o%}I>y8NcPT}lSR^TK0{oc3mDVb1Bq>;1qV$CBW~M1tT15w_z&R#325 zqtMO>LlnPL^O%x;=ZJHHwU+N2v%{IYG#(I%P0o0;<0`PiC8w?qt}TvKuQgULn;l*H zT3@|C=HoG*-uGr6LS_CynE~PJ_t&WP24vNo`?}s|QZ}}V*)Yx7R7m|k4x1pH)M@Br z-Afs8wvYF3d~RR|Nm~b3R0Zm*%Ha?OMt+8aNW=$-^YyEAA!uo9HmWH+$<>7;EUOLw zri;*4Zkka8uj8{+43eF7JTW1Z3=VZsO1Afb2C zDVGoIEwcnHW2xRHnpFV>D~m1KvX_@5f>#xuM6}M1_01?$uP$b$2Cj^eFCQh^J(yw5 z2LELR&rL1^1G4_}a%S+dZuaai-HB?$9h~d;QPRS)>HW!1ElocEZq-2Sox$*s^5v!O zQzfX2+37oVL(@BIID!H&1MkAms+@WrUTseTe;@~I+3~v{@px1z!)enyc zUO$>=Q4mw>*tIWB$(9tc8;vuvhv@=^L14dLe<)&b$^k>go`hO8w zuKj7y?Ne%)>~M-1&@33+A(0i%YGCREGZM#AQnSZ+kTDOy->3zqngIzw5Mdr7Z`uj) z9R`J5_Ch@jE#N)%Gw1353LG4&aN;M}h+qY4H8T*z@e~e`T7eHF;Bd&p;DQiHF5#ba!iK}^CfH(Y``MgyUZcIo_w9&E^H z)mr_%GT-ex{l=+KGNFcvzQnG5$AlL}gA@SOaggf4kPCbf#X{OK&s;z-%n#K-6$b>A zjEyx@yXw3rYhgFAuW_oUA8dp_90UifX#3xZT68wu66D6 znJ<-r4Jhf~`v)xm^D`6KpKe38dpHPAPfx}|wb_Mjr-FlvtX<-Ls8H)))1k8jlQ>dj z`)iQWgP}N%@(KAYgnwd(pR>oDh9pU7HJVVsct=`?f3{#}dL<(GpcT=%+XM$0vjVKx zfN@Ow_K?a`ec36#<5~gmYHwfex)jL=G;S}BwPts&xX9BLVvm#)4mp@Bjs3ZH>HIE7s$+*Z_nJ3ZHSU)l1jKNZ zRq&%^T0G(B0lWAD3FXG)XiH~u3Ad9q!^+TOO}()w5){|Ck$3>?1Q(V~QnBf?4WT1r zM-t?d<52I7B%Y;K&h%$7f@fDsOiEPFP(>ni4ms?uXHR{h-(uxZK3$&iC>hIq`#Z5d z)9KXBeAoK~-OQD#=kk{AiiJX(_YDQ8jvF1%E>=^~(<{Ai-P09E5Vy9_I#G6`a}J7; zW{*pCHR$XjC8~p`e!u(ELDC#s`lITcUn1BnA^u>c(=h0TbD^3wzSeCtTmN8TdDD4kGO;CGpoPO_Oty4(>Pe z-ZaGg_V?v1>+f)>y4YN9M%a+Ot5#6OXyVx1AV5D0zh+wU^7E78#4WUz1{deUY=gZ6 z4`E!j13kYM8D~Olz(B*tn8k_@g!E&cxbvP&tHs$*egwfZ!8()v8Ub7g#a z`82Lsp(U*E6BC7m-Rw;qeJ`ze_-SLF*>~YH+GU~ZFYlsUE3>e$vM9=ZdsU1Zrv%R4 zb$dM%%u39C%JyZdn-w|iCJTB#C{@*TJ$@@IY~}ae42R3j^b0$l&>Pf3Z*)qWzV7K4 zQ*`@NX=m_SQwh4j;z){{_Y5u7hxYlEep`l~0KV%r$;SJEdYDa1jEcR?NbClb`7=qB zpyIyc7jK)~ePMjT?!;(d!bSYy4_i;Ukx5oZ+BvGUSEPcI?}3zKKyS+e7TC`ZX>H~Q zoZcFoF~nIizI<56m#{Y~3~t13yD9TS`RU(_zX)Ux?$h6d#_1fD2n(!MIfUM~!|D+= zG~rG?X9vkvwzbK|_HbBG&wQX`QbYuQJj4Y|`O3q#hozKwkCNg35JXC`jJTMSj=7W@ zMtoQAQWQNqi`9l~cF&)2B|UQc{B3?kH8PRF%kH`s{+e3qJeB`Yu(=*+NsFwa$vDLPRVxcV#BP@7w*%`K^37|kx}UY-1tG*SAp zoaf>|Ts#H8tG?g@-S4Q(9ATflBms?c=kyjldA-pFv#xg|IbVEw?S=a1V*+RB;ne-7 z!*!t3)@1H=&ulY?hL?cvf%$8e9cv@$p66dhn ziMLFBb7mY2Te-7tKaRd0d2+@&FQ053xH_93w3q}R)G2MQVDQg*j%ZK7S_9y*14Gtb zE>XDm6yj4bjb#h=+!_MvguP7CMAhQ(kTy3dN_+YDuV1IM+p?3KLfS{X@!_z5f#V;w zv)emm%Og&L&Y}L`W$V@UEs?v?4Zcvc;{n)GQK;_uaL#G07t)>tJQoyG zu($$h1hU6cv>hZIYQdyEfgvP@fJp;CD<%rgX3Fb0VYDP(HcJl60F#hUs*&RcxPKTX z8V3tI#J>`>fee4>BLF6VwGv==Pjy9``RAi6?}5kBT72;T`s+_N4J= z;N*#^-Ma-@)E#&OP%u;RJXn-$s`;1Fj+Dam9V8@M1AN7hE&xDKAY39lJ+S3eUJs~j zWizIhL^pu9joCH7ACPINs)%w#5gU>KcGahetd!z+52=T{{_SOxsEqB=LfbFF;u=0! z|09kdlO%*B$)+RNs>K0#H^w1C50R3;7e-dNq-HGI{f_YVO9mFX~d*mR8(}LVruS(U>JLBEQpbB>v|7% zy%GB}i*7)S482=?9_=2;*t%(GdG3m<-jw_(Um8knLxl(}sGviv5fZ|)g;)E3U80^n zaOLpN!dO<`m9~Pait;6J{BKb>;#uPB9k>T;mv{Nrd{c=*OUpa2K>yj%4l)=5U&-zK zE)J$P5#%8C`6Hjv= z%g(_`xkT%Vp9U;1cfaY6bz%CyTvN5z=KTC~7KXVdf)Y7BK?}W2x`H<~%(caR>Rkf; zu6*tZnjUfanyYfiXM~%=|Hyl{E`=i_QBnBmR;zMm_COzr0e(om>=OJ!>S~irr@LHw zz+`vlQ1%BOM&(a&Uaw-c4*3)4-Hk?g2hoV#I;vyy^_^ouuj$|ad|g~>(v31OG_#GY=*%oT{ResL=;`8{7 zhb+}6lIQTJc4h>1!cejooeQlbq|sl9r%YG64`&t>J12R9ubRWo@AI}I|6SWs#A(G|4XIv>2ElDgWFx)vY3+FiXINS3HS+M5$6h^`oUEd91r6XD(m`XBL9Pb@Q2v(gfw40i;F1SL%Dg z$Zm|9_;BHbb22au={FnU(?(IgvqRp###q2&Z=;XW+T6lT37n(wf#mK zUS=AK%e+Wk8*7PNStSQA+Y+_J>PN;7yIbY8%N|dZW_BKl)kVrn2XkB4df3#-Vqn05 zasUlJ4vtz_wzR<-4azqP6u#0h5|GID57bfDz*N^wW?_@^|CVm0_3I#tlbj3zLXNq( zS2TIWLKu8ax03&H?$;euhSd|0_+W^^cx+k`fuDi`i%t@hNT_l<0r*6A(8y>-y6=x1 zi|^pLgy|*4YC8&+Nzxej+e9j$XS}HLO|Z|qLjfOEC4FY;82}~IfD6c14ujwC5~Sq* zL*hEv4sf!2yfp)qkeo?vN$3FL{50k_)fwR%2eDBRhzH+-^vbCE00hplFubj zG92(}31!^H59^82nCehSn%CvM3=1@P7NqLl*!a8+kCSci_*ya378|AQyY@&%(4^5| z^Ih;?PLFeJX2QK1FWr9{kUW@;5Pbw_unlm)`+ythO)i9L3%9fv5bBFW0+?#4VBx=0 zU43S<;2?{Fga4gVz$WaoGOnTkAd&~RfR|<|yk;-B;azasDCgoKlrODnf}KKTr%?Xg zaMXiNsGNCZ%EW6L^ol@Hyue#Ss#7gjM+hTGYXT@W53ktCge2;w1S$z?DD)+8budh` z8*|#$o*q%XRjk=K9=d7?E|9@Z4&#;i!HaM64cIxM>b4omKR#OK7VpLhhE!r zr|pkhssDtsUPU(uy2gx0T-fu+4FlV|PIUT=Y?G(|uuol4HMFC5ODa7zX)kcDd1a1& z)?K+a*~j+pUs#?JWpMVjdrW+-yOn(N2uCrba)R6Y%`3Z+Gd1jXgPS+;vrswSp`xlv zIkQg5@K$$D@jl+dpR4nyMo}Q(Tq1Fp? zCHdt1^~=qU+`-ln&eQ@_F0uN>wZ+UertQJ>ReF@R%jp2`z`*2;og8*Vq1GLvp<6dQ zi|?2v4k;**!$LPcJHO3fe!P3{95>^?k^pYohHPd1Li1b~b{P=e7rqW@-BPNy-gk%Un`!iGD5;Qa)G}E(G*|Rresx4O? z7c|nAn|0ynM`Vd3_A#&>gS(t`?cr^XM(fVqn6D6~Fd7g`xRF$3RpKdro@y%~1J=s# zPZ1;jl#eu+IZ4kzCg;Z7^6{H=2PrAN8Kbvt--|4J+7cUV%nX?~KNUt;bX7_3LtlC} z*yp?BjM`V4xf~>8r%!ZNId^GZ6b{b_QXQApV<}1MId3o7dtt^@?W52hzB8C!AxWVi z$DK#*zHh-cd25Sp_^zZsY;25wcD~d5YTGfvI>i>xo859tPu!I9WqJ3>l?h*B44b_# zqRHt(pDT*Sf@!&0?3vS@0Q+t2_0tfTiJN&&yWQs~qt+fLZ1%>yvr2H^$z@f6_WBW< z-6;;0R!+0#BYke4AartxcxYb&wM|aUu)?pixU(svEwNsYB7JfDdUP4ruQH>!iMwKx z?3k;kx&e4Q_3k&zpQs7xB_$Gv!Bg`ML&HL}q+pvT6=!;`OSbg2V@wg-x7hR#l6ukiA{K3O3}^1C6f1Ltx4%y86-L?H<#EyxaD@c@Aq$md1bN z6AfzELa;W({yq$vrt~-qe)Q4JC~`?GO~3sZWv8^s8_7qT^K&CWgpI(`2d$0nQ+(-TnA*R)V>mG?ZT zT5b^Voac<}x`=%1z%~EWs`=k_){F7M>~~SAL9;6@K@cijRr+&piV$D+k;=91I@dr> zo$kEE$AcXAwMD}queN*@`=sxA0zn#)v~o4|5pFjVP%NeZ>F5^bd>ETHrs@s3? zpwUW-MQ#PW;`NHy)@!69zI|m3TH-EbU$s3N5^dlZhcPdJ#{~0sg9z?DVt!HnkGR0& zR>NM*q;vuO1O6d|(~|a3fTex3AB7>vS)@)ZagKStW8ds2S7sz`2i+Hav?BZ zVA?|fQgrQBAbawoyw;-*Cz!PcZ$U)^{}cYsYGEBe;AbR=I!Bo8VH?mNb`psRII9#=$Vh)n~^)Bn6J!a*}K4X zF?TwSZGz2dm=Nw9v0jJowkYns7?cNiRF~$EfFuxuFyH3`W$%f=$zSpO9_{BHKs%3g zRmS}Sb<9Ii$FsN(UWpk5yrfq6QDyz@ry=hmm!3#tu&%+UGSSnAY=#VuPNxyh(d1RKS!uYs-t z-gltLz!DbTfRjYHBfU34s}5c1I!Q@rRbYmNaTtCUc~cEPstB%{-nP@0??pK}nzr%U zzKsc#WO-r8M_pc9URfJ+yQQXodGx2dSm%$5`QPlgpB(pUMtOyn_{PH@OXBJSdN-l{y!JsDWTh9!pGY@ z-~Jbo|jrRvTr|iab9=YJH2&y zyJ+3kuwdQ%d~-<-Bt}lv2G4h=eqN&8UnkqI-49=L#Fy?~XpPr2K0&6QYFBDl`A2); zQnpQQcZWc>z_35XHlh7RpqWPE<}*y7oXG47a^4$`<4A}qJ^QL>d~5~#__)d)dm5Y zt8-Pci%wR)luT5h7b5``QSO>In|ROAqFW?u?a5t4ve5M?-Rn{2`rhe(Z?i`|u7~ED zJE|P8cG4Hea{g6jMY_s=?ee49666)Wz2s0hlb#R5s-Tu(Ou#|z60C7h1d2urj5?^s>k%kWj2E?a*l6kK<_(i^sw066gx@Jg5f-}I->&yfz z|H8D@@1?F(rFx5*O^)%s&x8wHT4S`L+Vh<&0o8+cj~7KUyA)ef8kw}~IH{v)(Fta* z6h)h!DsrElsDERK&HFA0>XoS68~fZZ%A?DzZFu-iy(YDqFiw z)neAqZa%Espbf1;mVC?6y|MQ(T;k_dGR6ZBT!^khe(QQ}2HP%JLCJj2V*96qRx33f z6ElO?0heOz)h2ZmmQM;X@}J+lHmrObY3b6IE~pC4=#ODt1ip{2o<5AMMR2_Oh>RP5 zAMrT8cn4?e^=Res&%_0E!*Cj55q zuG8(1w8<_0>et__hsQB~6w4_(ovzW20XA3zLd%RzNJ$g)qM~uTn$1myCKH-Q)fu81 zeWK$z8ewZSq8tAf8;!n7T@p*v`ryBw%R3almA#WOJLq|m+zj!4ImCXyGHNYjaJ{Ur z%uzOO^uyq@yc8ifoYFWSI`TPzrDvGP-pR|7aY6%jhA={awe#~}!0u=9AqMCx<45W8 zplOgh$s)(}F}0BWB+kK_a^=8}(Rjv_`Pdci#~K}nVNfW|f(Fp4DgV`jKONsSXlx4d zivf>g08nk(w`r| ze-B2h(-oHo3dq*QjY)b@$~|%!o^YBa`L~J_*TGcOxJ)jWx+&`pK3%3L11mTY)M?C>O## zb{n$B&VK}->|Cn+#vO9dYzNalY~@p~|KVq@J$FyGC;xppw-;xR$c)+H-5`|@ra9k zk!trB9jFPOTK3SW4r2xh@qi&HGOUK5=Z}8dAL%dGhj;-By-KmQqhUW0t%}qu+|F~o zF+?O%RO3fqlLl(gMy?7bp_^+*le2QN9|rHM4PJMsp%qb_H^(|lN(QHCgQ0SUfhsM0 ziN}=$y=s2Bf!X($;(Sbj(X%l6EsC#b$lP6z4QLl(>55%@Le(DDAhp7o2R^$}2FRh! z`5`rAk*IB4b~Ik`hBEre)}!T#zg{TwL@O(~J{lh%_s+h79Yxblm5}oTeP%z+SXDf$ z3s~KtXLhVY>v@n?$l~Zaz$bsV9JtOK&-WH+t%4e@PpsXxTEpbrt{aDAaQ6a>6<24< z=tCPMJMjg<_GdY+W}%!AS?R7*9lG^tkxAFu46m!8mD-eOg)yk0bR)FXE7tkXhKcID zbhgyf7KyEoQ2|lU51%6Dd>>VGFud_a$zV0AD`w{Jolbx8H)bc~8fuBprCccsu6Jg z$4=hEEsMG_%*|_)ul%x_eTN>@&i0p69<5%>mumbd|FzbAz4n$)=Pm`WXChCHy&}?Y z=yxl+Jh0qlkfMD7w%qvj@|s^+#LOq%YWk{?5qv%Uq(EX|xrHy(GeVrnZ7ad2i61+oRvRavJbC^(i+T&rA8`qhx;C%fHN0|Lo5ab!T>y)@>?>wE4jOgVk%< z)yT>ISGba$1BJhq{^7u|GR0o#dY9rJ_>f(al8ErYK13tLkSCuET#_O=V+&`35sT=Q zz0EBmxoH-iKDe*^qXd;Ba`Flek<$64U7)P03~s%eg80aNOi#^gc0KHSrHxXf{c*Fn z(aTgFPPiA|l5QN8R~(5v-y+lQ&D~0{*;9`eiF3@XFov&A+ax>0nmOOe$e7BccFS?g ze>LbY8~!l7ucCi3OF>;lo=BOh{4?dbH95JE7Cjo!s(<$!=ffu^HSTN0E`9m(MRE{} zc76(Q>r`v6X9hS~rg!FStQc)B$%d^=7-_D|9o+irzF`(tlwpeaa#%;~WuP>{a#9AR zIxcjB2vik|kTvN1a1}1MrD8AD#)Xck>R!Wpr(=8gDrc(Tr2p@;4t9v&`&98T3=&&* z!`{UHK!Im530}Civ6E-w7SU}m{|*z)7+#*GYrI>zTf;pKSXcHZ)=`qW6kos?dlQ95 zN96ukx3{-H+`y0``5a=&)Y6^&fS67EE zuFchGF-QDD=T*XI+#g6lMgy~H9DccWt;)Vb-6v1`8m!FSzc{qo)9Byk4q2S@AGS7g zwtA~3+^Dr5K6q;>bBRRRf2-tAtSXdN9e9GTsVN(}EtVgF0g7l+F}fQU&NVQr0`nXiZY+QI|U`q7hL+r?QhL1=T=dq~lv zRTaBhfshhW`*F|z0Xa7GFKX#^um5H#%s`L(tbgW8Sg`1j9H2&zEVM%OOZxAPa+XF1 zm%m+r#R#*IUpD^jb+-Deduh}vdPnqZ*kV0nc0khwokj_K1|olX1^LEgzUeRFQ7mcm zup2I-^D*EMwg}c8!E)FUpZ;(N1~?0=R7?WPn}zXXz`h$T!is%^X?uZW_V&gLki6>X zO3B0Anq3Fcn6FLj6^J;&|7RiqDJKkltJl&K5bx<+2BQl=;K7d6JSz@NZ+*LT?Qmr227sGtr0)|OICO(n}}hW{k?P@RJVYf5kuFH-ogU8mo_ zI7_VyotlTj>%g`1w?Eg%EUJSl#MZ{pJIptX>u4FL;=Va>m%k`VYb0-HNUE*BP_6*3+j-o`uk#V5^Fk z8z{1e2YMkCGHffPY*z@HTQ;Yz>YClF+Te|~z*{1X7N$pl5+Yb0{Fe>6BO{~n>wF7x z2R81M(a1~mRHL4$89}=<>!YHY4-EnW!aTPIsj1|mEQKPi58g$I-(zD<{Was(Afzk*lm3#s|%v!~A!#ex9**WXf7^VnxxW+zoQVaMlLrv=IRVf zY7P{ilT__%5}}F!1_oQY+Wb)eM!eC7##Okl+YH@*-Lja~XuM0-L@Dw|IhTYz=>oUMM{e=q zn;9DIBoJW`_A7XkJ|;;dDtwd}P;9;CMPeVZSA&`ofOv$->V$n)u{bkqp*KXv8%!=! zD1@Ne-tt0K@oW9%dhGZ&Ca56h-!ZwkmVqS*PPp~cp{1JY7R_Y4o|cnsgYaOetT!`1 z^dIsw6hn>tGgNXp*h#ReFyQ_I+FSX>tc%;KlDpTY97{CUn>vlcHdb;rM*O3lHrK;v zht8<0lQj=>nCNfUIXeuu&U5J_hN?y_cZCfh<`rR#m2>>-l;KQdEkRPeaXT9mB;>rM zg1|yr3ZJ7p(`|~!qDVfXjUl!9kJKeva6CyhBEy`B3h7`5AHCj2d5oT z&KZ(lZvzqzTADi~181Vienj?L-~p|m0JB+77r~m^v=(k{(;L?jz-!UmcC&)PSYnfJ zg1|PlOdq@O0hx>t155XhgAjuSmMZ}nF%+r7q?<(p0^P_j14lC`VE_uu>_FHduJ1TG zXAbD>J&0Gl{bgFXuOs9yKyrNy2>YR+V#be1@BsI9wTJ&zIl!;S@Sc=v!9O5Dda1hy{jp-Ut6 zJN+xBOn2$aLC@&hggFJ+O;Xw5hjm+;b{k#)16#|_u;=-2M4PjaDO?7WZs3sf@HoU? z9)F0x1}xuAobOpkSpg~MzJVGL0$n%m&hnPpE{9+_6JNf64tvHjazR%VUm94y;J4ET zT?*J3bvWfOfOEc5!2g&x3(>ZSz+CzLeEkt|QZh)C<@ z(l^$BcpMb2zHHAyglo+CqNi$T)}Kt3<0gEMD|a=IDR*W20|f*mGuT)I@zC3H6RC6A zlr{SO&Y4c^kcDB!wnKY2>*a=pB5SaIhI$Dckzk2UhomL;=k9&o&c1$r0yiX3;F|_T ztmTyTr8aQq1dh<;zvep)gaT>0O94cl1Zm`U2lzAagu{i%@6T}Cx!a;iiBP_p}!8H2WP2dN`BNKGih?R2=7jRt)V;0Q<|BzAF2+x z*pjmO-20a|sr~X7j(C5D)D!x2bLwpE`ld#Ay`msWX=mWUFXIcJf@cS7y*&ec>Gh)F z1UH~N!k6Z<9qlv^E>>%aq*dzO#hdlVs8H7H(O-nxRi<3)`euv4CSh?VE_$+uG4uT@u!A8*e%23qOQpz971cPM`p&uV?NIBrzu^Kkl3VA#r> zeT6LuRVLRwNYppVHdVf!wOC@Zr*q0D{(Pyrz)+HCT)kr3=zA;^R~9(`cM{!N>h9g< z1}rR5I>Jc^R%gFo&X7xNt3}2qCMQ=i>p=7lv{C5nNX<;|0oH3ciZ)s-?Fv2BSe#sL z;M!02{Oy-<`V-tt`<3Z7!C|GeDjbM^y*ba$5QX+C2ojI!u>GALP&DAYD`F7qSkzi& zF_sl=|HxpMD|xWEB?%>CZNFjI{ zH1tVn-PYf^#eA90W%>KAPo^AKPCy`2k{Tb{@7g0JSC(qssH&&Ujpw3$Q+VIwoDoCV zT}q~8q*wMh&vlUsCv>oQB(5_|^cv!Ka*FoNMIU3C3fJb?`VldHa&ZiGm;7@lMASij z`8M0#@?O~mf!{`NnzAVx2!H{toBl3&xPl#7D%#U1H_b~pfG#%6-rMdA zo6$xMk%CZ4h3lR7LC+rHW~#bz)QUn+3ZKppV-$Uuhtl$5M%_DbZMxwY%>ck~iF5*6`byX5fy~#^`7xi4Lw~X7uIWWhUcrVDZq_C%c5xQ9#dY=}CogweP< zRbUssve|fjZNBUnK8y6%xJIajViR0zN$q#j3bxSp#tm63?hE`ia$L@0O+kDkh>1@^w zFT$@^_Ci3+PRpfi{jS?+4_`G8PyfYJ@0RA5&?jl(zGi4fI-p7hE7u!kd3q79%pyCx zWWcv=FDy1PqWK`rSYzCYN4(1!(f8}w+e(5P#nIo5T5eomzfZS}R_LxXbR)~REw-X7 zH0|rhpCx9)5!O+o;$QypcVU}y$*>YDC#LJgaJ za6Z8Isip_w^pH*&xM$-|84fAsvsn()YKnWnXSVoeQN{yRlBXY-mH$xW%02C>@>@>P zBe!u^Px2Uq7FfoOevE+>Wod~O3Y3m0*n9XUzqA9xb#V4Q0^ID zt8MMg)m`~(#I+ZAoUh%Es8{3e>QF}WK2m4 zl&4Q7q0-G&PWTo#U=O+QluEh51iSHU+YDfp<@4$EODY^;lZ~-lD@?L=QJ;5K3l?Ia1lay@cY-{NZh}1*oWNYH z_zJe?dw&_t-@{Muh~T>ihpC{?eK1fN#cpno{!c`56+-I0;cQJ;1*O3kHx+!Z`|ysM zqyHU+4meh*FdUUD!rlx%cGh>5891~XHfV@i#K+yHzQ^Fd)QRiBL_@qcLxQ9>vlUW} zSy3I={?n6Wo#U(zSlL)?XVF(=b@^=`$2LTQn&*KfeE)HerO%8NY;fTGWlbR1d~Gw? z5dJ?c0BBI`A~;ky0jiDcVEt36?gooBOyu^HtO1<myaEpo-UKtD+sd{9CWNgx6-$)O(Y6u zC`EETfg+i~x=QX73omAWjE}b05-D){{eWf1ZlaE|N1P0~k`KOc8w_Z1c8SAa_or-! z_wTuVsC#>X97Yy8Tfp9}`vKH`u=*20X97emNJzow-&wb`Rkqzxi+rm;@J9~dCvRfK z`Wn@=qNp@Je($mJ`!|v~#kc2OiQs#2oPTSZ|G=D<$96%^$bF}Vc^)3*B$O;%e)99V?Q|j}pvvTcW zIu~+SCtGm2#C~d|hH3Q_lKcYC$WW*?i!mUT4oMQLE?q@)yNZ|>bx-t`5^AeM7I76P z@?@&QsQ%-P#~^8nqm|hZBWM@Sq_5A0y>_OkkgVg(?8MHGR zT4CTT5aH>+n-jk3OZ!faAC&JZsa^ZN7N&k!@rk8NS5RrM#z0oKyK+1&Cpb1{YytlF zsbS)NFe7}kcRcr>*7~$#yKQY)NLbL;w1YFfwUsW{eUWj>Q1Ftg0aE`rRLIOMrpn5e zeD|6-7reE!@q2oDy&3EY8$~}y=7ZrFVq~8xu$)?3xgE>-%`JFkdFmKW6|X|hw48c3 zh5AkJZgn6b6QR~7=0SR3E_rrYrCu&%u4AWV75IWBeaAd%eB&nn{z_LK)s^PkhQa6v#C~( z8mTme{hy*ibiFtz-81&`p^{!D=o_yYSI@ugHyXV*B{X7_197Vp6Z0=+uu?ilZIa)s zRe6gvGQ-?)MRc`spg5s)=0@rCz0<2cHA8N^{VA{P{CXdq)r|{!dy*96=(vVqv{`+^*SoTI*33Wgn*Fv0;S&|% zB%o zPrrKLUa?-3nd#)5mjYhnhL`GR&QRY709N)3wp=aQ><{Nl!f+$b03#`PWa0{yRRRZz z#i#%f&i~@phIo4d1WF~r&7lp&9?{}(fnNbMC+FNeCG#P>15RBQcn0O76zb?Lh5KJ* z0iF3D8$>-!ufCNA{~weoNbw08#60`o%qPI>;|RMo1xQd%A7GO+Ffe6H;9xIHNh<8I zJn}LH_Gv-#2kOhAHpDl;Ob9+; z@fsWwK@N|ozAxMaX`~2=`Aa4(x;i>Igzk6lt#DljNz@9P=^Rg3L>&i+s1A#Yx|~K{ z;lyQ)@aQ433Z)%UFCS$sEv@{k@fWQIWqI#JM^Nv07DW5QVim01To6002=zaA8&4wT zlkJ86#65z=rRjdtB$(j&yCT4?fz^W_b|DfUd5-p4ycOtQD;G#YgD*pccRiW_3VR6X zq(b2;Z}ff08(}@6K&b-U4~f1B1`<}85yi3|#GS9D@8S{H72shJAaYa>ENpGC>vBYR zwb@X{vTorNuD~S4eCa}S*SEI9dg!PHR$d_q^gjmRgM>d0t271hK|o18c-EmAc|TN0 zK&CdAaXDN!9H4+AvR(H(>*3MD&@4<1^d`VP?8BQF4*_J>d5$B9e<#;fAT1k0xCM~0 zeDG~D9^ZJ9-ga|`Sl&$#B&Q_Zrx_Y!QlRF+Jc-m}FQol9%gE4B*AU!0HzI*IfNti( z@_NM{`#VHWNffMC;mRbpAK8|2Ty?K*%mY4^cH7N*pdW(iOHNIdOXp1+>o?~|8;e>y zl8+g|nSDdm)t~HEiMDkg7XOr_AYvHRR3ZVJ~Fq z(%78a+1WWcL#O>+UG}9sDGT%L@?}7Vb8!sBKW_@!g;6avLdKc)Z%S-y#P{L&>;o_% z8=ux0r`l{o7}H}@=2OW)rN#@aLYBv2p6DWK`5R?b|AwCqHLJ^G&6ZQW4xw9v6PFo7 zb!)ZduSqi%(G3ozljhtL*ec(e8sR8rQ&UG!8P>Ui57y~#NUl$d{D%U&ZmmQ5CQs|J zzTu7K-k99cv0(6;Q`JeYN70(Wn>chA%oq*Q8okWj#-hHcLg+@X>|l+*yLeFToj8)c9eyt{ezE)L9nZI8all#EQt@{}E;?G znj9ow@F5!uj`h#@X^F_B_GIjh2|F6e-lj?s`ZAPens`6oUG^Va`gde zJm)4K<#+Yz{%rZG<_jt-Hn=X`9`vPt(E3w5^|Yu<_VQ`tr`9q@Me^&r$G`xA>mF}l zkFxil>w71(Z_MX@&sY1?9XF+%v!fDUr4M{pJ=Y*bkj%Iqfz7<&KP#~N^}RnPaD989 zua}_ki;qp=j|NqwE0*vyDL?Y>m1A6j;L7?f$`F&IfrH$=X1kkcS$`jsR!cX1>=Y6L`A&q&v`SFQZw}T$DEH&fM4e*xv9BtngQ^k7%=`M#qBDfY-i{t|xhUhpwy@K`U}+dmP1) z#f&E}{EjK9WiE}|g+o#;slg;VX<=f1Z8ZLH_`(V^c-(O*$ai&(9+O(PoNGtDqfBOw zECgAdiE<)zn<~A8j>;@}Qwge9kyM4F&K@2h^NK;Ejzp^rxS`<~f?he6e&GeIRV1j{ zuXf1;0a<+nMfk3c9D&pisixSQmSQcpl_6FG$9`gjCge+Uj} zZOB}L8S~$E2K>wr!!d{gMT$1R!XVpof8F14&@T5WRs#2`Sq9~WEhs1e;ynWYzK6Bh zg9}Bv1=_2P^mr(gK`k;bf%%GwjKC+{6HTZ96CEPq%b}#x_4>4wEOPNBDK-e?uLj@; z?ROv3Z+|{?b~ujZUvJU<-43G^e;sC6nJ%P8B}F9p%$ZSqRUPqgYw^y9O3+Uyq3=}~ z=d}~z`1v0;Xf}H%q+hQv{SRk96Y*EIe`?GRo!*C$61k*866=?7{^#x9km6B-cn zq_yD%9T|E~%(<8JcCSm+UUPD|&sa_Llr2euSicg+W$9YFf9K&2aE(7&J>7lb;k+l4CD z!{^txrtLO2wX`hVA6e!!gX{UjhX6Pe1!e6t0~avfeY`sr&S;)t`;p(1dfv<>c_&0} z@pk^Q1UIThXG257#KeRgH*Npfv-;8YeY56M4HNSZ@zVwK4Vld*UTx)*YwL_Qb0!MK zo}=0#k3b{s=t;K!URrJkTHAa&6jQ(?u~D60X>NMd%^hVp7r{7vzNY0 zWF||in7bcem_H_38{oalETR|sRzKsRf7<_AfMJFZpi(Js249mIXL^2$G4Mm*iw&x$`IvcyK<@gdlN-D3*dFd8g zq95c|mwfr-i5BrHC>R&~NtD#7Do#O3-4L2=HYaDgR{T>;7xPo;eOLeH>E{U|N zh_o2EQ&2C4!DvG@mVEB<*GYS^XNj&NbTi5kNB!jZBihZvdLcqB95}xF!V+wePVaYU z8_4V1UUWQ?o|JL?AK%?SY6hylZ-{1siJ8pSU(OT!CcL8%9#CwR5R32WljD|hY7@@a zOZwdRt7?E~eoRLsirU?Mkn!|gMpH*e2f;2~SV!jITCDOO@(emo8qCc%E3Gwym+uHg zW&I4QiGtX_bx)x_ZGGyysYT=Goas>+64}|=zDHNBNTl*>K6xpYQ;UK_<`{2VH{K!5 z(AD^@Cat<^;Z0`UqG%%Iwwttw5wI6AX=6PZoZF_o^p5U!5Q+juagv{Si0mI(Ri>) zU6u!V)EN`m7af_Ozden?M8ekPk}cux_a4baYnT1kPCZRJWybQH`-IkHf0e{4h=&q# z$x|ogO&@=hsB-C=p)ghn&E*Ed}+7!$w(`h zzLs&1!v;Q;@k8q?^$byJ@DIkAhc|O=jG@{aAHI?MTm;DS3Ucou#Ghhw(?@wJUp?RW zz5;9Ez#Zji>ZVuliu>mJR);<60{_|c#8}}Gkl5hBudEA6lBNy%EHL()mIaMr+NMX? z5ss*Pa6oGwDFnN~#{@fLQ~8?xNTQNytLnus08ydM#R+F~3iwaf5h&hkxz`jS!3H%r zkAx7WM}?7yJ8+%`UZlZf`6)lj!cP!d$);_LL##YS4C_ZiAFcC;ZU5FcS5`huRaq7V zLtFT-lThvhhbc4?G(%s}SXPUSuIXdW>bw;;aMp?Ave*)Y5daS>B2tWp7^;pf0XqS7 zK-qu<8z;9yQbK|-4K`g#FutHo71m)}maJBC7=&M9E1n}zZ>>+6n(FUgD1gZaEaD4- z1RFpccz}!y{Wc>b&5dCu+?B@%8&==V!ZQ=4E^*`@6nN7w@G421ka9^?)BF5aV%`k% zob-_AxQp*kw*4=h*>&d3uuae;3!U507iVb5uZ=DAX=(vn1EWTlU96A*#xGrj@)2Pq z9sFIus}fAJje{^Al)e2k3kmpPLzg|;n67kk3?4E- z5x-<^!Q{S8JiF%y6vI2BenK-}K?=0r8N0Z$xPd~_U)%m)&L;N_G*|zKcYMvaDEpfb zky~2YQNs_5PH9xWo+(rgwd-bBz-8?X0Sp$bX@^hPhXg$@aEdT#-}OiXEF|Fh#3pF0 z2$c?;bdn?CK#EqL0yNP5q(UE|$UUbF_!g!6kOW<*vCrqa*(R(##DG+k3{I?+M1k20 zGe=r+2d9XKWK`dR~{+F(C)?5x)2ZNmJY358CX zCSAzx;TbOgY_oEuXjCvK+%F`AQ0SxTE^B8%_jujuhrXlSc<;T%p~tN`*0nNu8X9Vv zs(l)P^Eb(LT&YeOU+aDRf?k*?T#_WkQTj8Bn=^CixH6}!Hm6c4spkDNZr!rVnXSxV z=s;n{Fy$)0eeofwYlMf=SEw(g>ecI+9M?0G=tpJZOPf|@#C_Tu*CDzi) zEZ8Gxb9jlhk`XD9jZ-POm^n4oY{{gAk5WL=AF{Bqx=3BwskIt%Wvx*(A?a@$*J&#w={oC)}SQ_M7|0zE1=g?O0)_l(T?z&p^_auj*@`j|UH>objs|LHAT=|hNeJzwP z#*BIOGP3U@6R*lEC{-%)?A0r4v3g8%OX7a_Z+$24VKD$xd6e=XkGqTBKRj#h?-Wau zmP&Y?eC%#~GCwXVi-5sO{!l*D63d>SJGck%YOl7`o2U#sta;FxbNLru;tuN4h>B@@Xp`px+TFhzDt-+{b6W*ST9`=fR&|_r){Shhjr|F4zhz3Bl9Ko1Kq$XXxr~6@Nx}wXwR|3Of{tDe0 z#1FwPk8Qg*Hhv#Rzv_N@D+-Z4fpwXzl$3(-h4YEDiY?;Mj9_L-EmR5RZ2gAVOEW7D zE4|gF0OpCDkfo+khEaSx-wYihifhB?bB#2s!nbPoUUj`1Q>vWgVAgo$s^xM`eL?+O z(dbe7-+xP(!-L_&G}nBBs-wcT=R1&2#7Z(`i@dVz5q9g)gJ%XJzSQAD4zoW-7?A_} zt;%iM*MUt#bZHy2viA#|oRu&bN2w`d8t6m1p{-g00d3ktSg&I!-AQik0X7}eTP%P8 z=Q~2zAzuNiyB}%ANFdS+e?UD8R*G5&pU)LmF@OYAj+sF>qnm}XDKZdd9DFbzq`ykR zNa!L^QKEcEv70+sWvNh$z#<;m|L0DG`Ny)eu`27r#E!F~Q~m*~=?}za(h6HrS`+t{ zsD%7gSUV1&9>8BFlAzWnNl{@V2~S{8P={t$|0Nzo`pLBgT5j}g-FjQiVrRq4<|bn- zq(rhNvREAk!{N^5R`{|xR66SUMN>WJ>-dX%c1k2k2tgSiO9Gi>ak3Sj0}0rU0pDn9 z8VPgU5uy7?HxsN6#)#J}og~-=Sca0OG!pA)YP%SKmvHVWYv?CI;%k&Hs~h#w0puV^ zIAG?&zd*8CMT!LO@d)jXW*l^TNL>A?^#r^ZKrkLXhv|YCObb@{GJIoJLLKTS4#+*i zt|;m7dNC zOI1C#TRWb3K<99Vu&KwTv8ROc!es}$5Kxhi)UEH-G(D<3MIQl2GmXg@ipR@_&v*YJ zKA2^!LrS3OejQVC*Le(a@Z-33kOABn&HrK0^=ZDqBlnp$PJ=N5VPSxuO?uaDRCtD>OY>CT35 z8Pu{aNgX;9_}i8R?v_VAgm&@*eO2pI;YEq*U8KnBJrm8g&dMIJhH7!&UNKsjudi>l z1wHRbFC-xi4GeJfH%(07%Gi#KYl!#(Tc@|!)YO!_&RfyXR57Z{%_CM&Jp$&v)@k>X z8yRi191#QJO!Pc(DZ#$p0gR6O>w=78cUwF65|19(hvs-^U-FmlH=6CK2Tw4IQ!Rq{4K*!0hcY3=OOP@{` z6%5(UR!HwyNN$WbH+!bB`nPE@)sdkr8alVxH1C)^e^#dd z{Q0wW!Jp(WAO+ z%Ws+MTTMgj6sWl=W`-cMxf?EgkQ)zRZY#8 zSeL!eC6dRiNUY_O1ZCX@i_VOK0GJK z$cv|PhHtLc>^~{H)+OlQUZ@{^|K=r|7m70qR-D|o?s|Syym#j+q{BK~J0z-Cr$f=B zjF|bx?oXxoR$MegstJ)!R^5s?Zb4}lV$hyljXFAApvK+l0i~lz`wFk`p_C`*Y3eEW zEK6i%^`8DbX?EiE8agSliU<3ii-5mP%&Wa9jgL6WnXngM&ycN9F~557l2mhTnZ(C; ze?R=67GRgBf5%Hg@AtR;ou$-S$sFf^iKKi*5;8*lDmJFrpW&$%@WrcACXdrp=}`I3 z7a}F?YsLMuZlGmFeztDujq53*I~ZUyHI5pDE-Sk+?&D?5rtm_`JGtB{D83m2MR3y> z`cywMeD|yJO53BOQiJT`u3l)kFFBVkz1GHmb0BGBpWD?1de_uN{qjq*tsdOW4POXn zj);b@RctN~&8(ewY0c*BI|<8*64I&EOFNGqZ>qY9SYAI9k@EN^s4L2j8sJ_Q-rV8U z25DiB@Ic$?VNhaFbz9o47R$3-iGUcESA;^6lgN~!0o-t5DC9mOC(Go?2<%pvSDR+6 zJ2`V=IINCL&Ud`C6Oy-Z!1&xMh2^safAOQt%py)DSRXyPBU#k#Ksbl?Bi9pq4)CQ2 zeZBv%kC<{kHl^M^waNr509oS#hHt9_YnTf$?&0%`#{kWRPvpjH1}*)qK(zt{ znf$h4g(ROKm;cV^1fb(~^F!Iw5EfzbT;tc4n<=@Y;%tnY@K~ z%!mh&6bc3C83of6V|<0~BhKd#y@j~Bg9G+NY~K#G0YrisV*UuuTEw^5vSBMR*tu!* zSG+!bgo_LLiTAa%BTP8f3J>||5Y}UdwtZS6e7y|+HU(XpnRNW1&a%_^?SKFj;F)vN8P;<<-n2-E#X&t(|xNS0{YHS(PQ zaNPCe=Xf8R0zz7PIw1*AA?y+PBw(PkWlKt9@8B~;K!qv| zNJ0rHBi8}g4JnmGr6d?|QU}@Z>Skooy0^W!d|W?PhlBmaWdk*Xy@>2|;U=>hQa%BE zaIVBcJ&G>@%YPODYqTZ-$OQdg!Fz_WaW`ID8v|o|j))h7x^O(um9O#Xi9QVDT`)k) z#30p$oD5La!#`=^Da5oXT+(ZOlk(Fy8?vkc#sY+ecLyM5@Yv&?V)UxioA?qqSm{71 z#&+-0<>#oBp$*DbLwKNfU|uXe=uElZU9h-a#;z`nYl&JBKh5|BdwQD5=)Jx6-E5%d z0cFmy#CGS0Ga^;R16pUaEK5S)RO~}`IA^*&Ntw-lMl`NC#M@pxq|YDo^AJ&GJhQbU zND5y+GS{6vyBs~A&CvXp+6*NKIesywZP|qLn1cnJTXWFDqY<(+z3LBFz%Wlw`8~dM zLz$d=+HLEsW!BrUsa0;JL7NNRwjm_T(2coI-D6XN?zRDc zgx;F$C|f+VK1@9i6$_~+Cxx!w=z5V|Y(7g3|IlUauQKj&0jQskiNViT@(~-wAhO}eIV`4!2@+6Ya4O~dI}j^eHTRw zhoQ=Ab%9QAYWfY~bptYMAc$~i?w%}~&3Q2^>%N>5wpN**onsR_8W0$0gS9y1IvBV# z*j~F~Z3=r|9k>CJD|*%j?5G0+)5~>hqfpQ1-~LR?PF4kmR(_S`Nw1%EOwrB9L#s7I z-!GkcpG{`;93sXKsK(t;B>cWzbE-k(>lh*H*|Us^U(yjCgOh^ULxXV@{QHeIfwq9WmKj-7zcT)R`m*~Bi!`hQ~5O9gq)m69BGn7-{e^AZyD zoQBS-M=I!Gqxu3unQPrK^KY$um>nHK&bfb6Fa@60e;;6VzR7jl3-S0KnBuz^)|;MQ zQ3y_;(4q0H0;fluN>l5$O6d~HIZ@@7GAb7v-_Xh9Mg?lHBCzuVOGc9!gc>@O@?S;t zGeI0o@5rBBaI0AC3n7p*XS^yk)KwF+7!-<(I|8dHUXKV+5e3q1W+JWb_T89cYvT z$ueE9mh`QYXbE1W5f3~}wJA?BY>*|4=<$5t+`2O>m4)=F)aZpXY?W?AkOz+C8FUTDo-AD^vZJWIRs zUb#T1iRtmr%QK2%wwBf6>>};u6Cwj2ZxaywNui)I4vt7~d4&8`Q%Ly#xeW+Ai_>h{ z{4A*faE)yc_yk8Ek2c2Pf^pbK#Y{jJksLTsLXgZZLy0c8_MZQLwCa4M>cI}}mz6M! z%7VeAghF`ih-9%{z<|N(3jzo86{_>V&yCB1-}RAhfN6KuB8-yN)j&`Pnu1~ljN*bw z09Xf1x{Id37~N-3tW_} zMG@k(i{a{3&K7voH=|hN^s_MS8@HA=zrXGQPBD%OUHHuukR2A7VIDTnoV2iX>v{m< z2+jnl31-Y5=O|W`^PWX}H+zMCsUS{8Sk8=l{-jNn&KeCAiG{t1& zwGG3>SRfC56>#V< z_kY3?maHbb+p^wC0bX!pZEz$0443+4d9ZQb1B56DF&N}hd8~&7%9HIspvbO&clqxDH(`peDK+y+U|G9HsLwIf@}LWGHh3sC zw8wY&{oLX-=zqcd*upJVTkqI%0Q%^)S-tOR7Lj2O(vx=~Ky!+`1Q$}L9rkkDUl<;} z>#DLT8x9ePYrNs_oY(2j+lMD7f7dVu)zRpnz_m%x&}S`8|E{)^;pu_C=~^dmEZqA{ zeoVEtF2-DSkc>~hpQ}E#O?>cFv|d2p74 zQb*#P8xYT$yq;-{m$*mZt?B#Gz!c`m%~h4yQ)*q>GhH#4T5(4NapUl$x1yks;GnAV z`zQcG%f2YGbss;RUt04yrfzk`qR2b`_S+Q@K2GOCz_>Y8z8&>gywaz(@`@z;1BWH&a93+yXqy)DcYr?FBq+Yv8hEpW`)zVeB%i%wc`@0S zpj+(Si+}QDk8WCj{&K?y#}5q%E^UeC!o^qLUGbyB_C8@|Z>K(33rN14UKU9e?CD7= zEoE>1v4vl9Ym}&@ zBN1o1s&uE-n?uA*s#_9t89~9psf6Q-=U={=qhH34T{x1Q!rCdvdr1y95T^696RCwU zov!b1t`rT3gZ+nDW<}(RxOl!t@{!0#Fo%;nDj*<@vna4iO*nS;d__}5A6mlNt-Uj8 za)&Ooxx^W~5CgEwZGPW5)#N-Kbf`taFVWI+8QF_kMrHyp(O%i3`q*q2i>$X~Qk2v2 zC{;il!xSm>Gl`hB*GVf4ouK62x zln4(_`aj>v&*gf``LjOGhQ)`H4yTC^)@{thmj?gcvZnut3ErIAoQnTex6yeW@`VC) z8{fV)e8YkcHLd~;UIM6%Sz7E zKCl{ey>HtA3{J*3v0BED{iGQ5`wJzoh640qPIr`r8u*JLOUG^^8Tk)Z4~IBF2~i)w z831KUQFdeJ0=y(fiQ$agyDF8?b1cI6BOec!)k2sywoDb$KUqQefP)zs97g`N(Db1CPl4az6U_491!n_jmHN*5 zH&B8CcM}?*P>*Qvhn;AIt`AYY3p6UQ-VYb2g!`NYh`1Q852jM&=Oz+MGof?WjmHzdja%WVHdHI|3)+JCL?csFPHz+Z>K^*&lVpx0ME3Xq32lsqG=MmDAgU!JUtlW(fN26{`+^b*2%5k( zJ#fjG>6cZ(Kc_s`i^pL9NP^sCnEk?&*NAhFIQCKz?E2Wx5J*U*f)%|R5>XhhCZoK* zNIB~T>pjR@0Azp?57^M%z6&zi-p|+2rq~q6-8}FbgE`_Du)P@xv8yAyy)K=YfAvIO z0w1?Cw7P@enXliWe0ieTe&;$GPURRO)$`}hol{p2Ss2+BUaDY0`qMGYL^RZ=$U&0x zspe+#bm#Q6ow1o3+$w_o_9J`tqs-sn*E){4=U)kWu=kq zkL2Y!g2H7ntq71cv66(~w;n4S+-5?mf$qOPT8Au-OTUx=<$+_e-t*^?C$xD)5Dt@4 zJki1B=F36O_Sy@*y=J^q!y7{lwFivXN1~--$NU#sJ#hRT&>B|xLTCZ!etIy0(95wr zdcDp)kFYBAng=1aurXyPd0-b!@Ti(vU6K4f0h&PR+<>ay$)=UO1OBVCzG_a`G)RuUSSko;Bi+cDfRO5y33@_Bm-~VgZHYxWln4dBgq% z=EL8qm(?#1Tw+yz$jdQv{95yqA3Dc4OHEv+_V54wo69BI$y>HfXVpGd_f)vXd3lJg|-=7r)eEx4mY_t9hz?_8ixP zVj>3;?Jb-2wwzf@_m*L0Y#v&-g6h68MJ}sqeKw$c-l;pf{f1O}+0G(-LmquX; zl`{S(X|v1rzji&KRInA{&X1-LoOKW~@@D)>7#&^LHo5a5>v2ji+XskQ;2^Z@{33WZ zvNFIsJ|`gbfI;P)0;Om2ux=YT3%y=dScFxXE?4*7qm=NkIw8N79euoH6ZFyQ%vD}z z-pEJC;wC&KKSzmC3ev5qn~(;%J+QO6>bt9celjHbn0RYyr;pd^Nc1hfE8*;7x#*M9 zN$J%k(O9VL42$klhD(4Aut=LtdK4lkCirntjZ_0SZum17BQCoFX?Mv)RMX`_OWUKGYl*sKW7Ca#O4HV#r}z${aQb2uC_ zj^F9a7^P>1EYC`*t&hZiQy0qT3;+Dl{GdS#e`%fI3@N z^t`~l(`S15O*6lwzMV_lVJ{7c(^0MTt?z(ZjkL{+JezGsycY z6(H_Kn4xW;Nr3bj*yGBwNK4r_A7yy9lM_;cT9_H3?~wI0d=XUW=UG0X8K;#3z6xLPUIjnsO_G7ioJOVug-|_UlOefWhIHr&xp^7Xn6% z?*0E#S%DQC#oz^laucHZkj)&>l402bHHV&oU>{=e49z9MQ*i~dL~(>Kr$N|=%X19m zK|<7BBib~@Fpgnwzj)Ec{$E2Cmhb{Mq1b2BmZj|6;i41grDtZ0!Ps)^3u`4jPCQb0 zGBWXi!3@(-N+Ni*JBaXt0mSSxAX0J)p~66f4%qS4AnXl5Fap9T;$2Xk0!)jMm&6Q+ zGXq$qrRE`#iVQtze})4BZUscB4GEZn(tHm>6W~^1urCx62-tEH z;Q!!axcXYDhCg9WADQxp2fk|y#BXb^dJS0+McS)1o%WqnJP1*R5GM-?C8)CSI)q|3 zRefPOkFncwU9bQ5@Rd2}Z;3mGv{sq>n z!~QXUFntzJ8i9~PMGDn4k17oxJ@uO7FE4ji(|wXP9=sc0Z|)_@6--rIP}R?w#O^ap z$xHW6_UV+X>LGi2d{ncElG)D_e3r*p)$AQjK+^CfrX{-P#-Lirn}P>B0fY5@GuwZ@ zg}gT{_3V7lA1X#7lgZ1ZePAdVXM*Y3TvoeRCQ^G4(r zZ9XHLyfL!5+}r#>dbY(D=4xj5t8Qi0xe&i#^3J^s3uAFSus6PqOitX_iIV4}r3-*; zGGuEOBoXLa=(7RyBbzksomx%Kn8WSobQQ^JTN~3P`^iIY>Xq%pCZpqcC%^}@ss66U z&%L_O*I8-dvz1MEQ`D^hrcZP8|TrBaO<8sP!LG<+ zkl*hU%JTHDzel->%IfT|W4aOs@mHkcjE;#4=>E6DmH%05-&6ggP5KpSjsnV{nYszh zOJCysATAVh=fT{lTZ;P}dw+XAbh@i@@JV7@nfpGrv!+}RZ5KTFdbQvT!o;ktn|E8iCQ1 z_X#!<4;%2z=V4RZ8%vLp?2Wr!kL#LdiNqdR&yEQou?T`Ld z?{0{E?d!WuaFMtrkGtG6SR0_Ic+S>&8d13 zuhL#%b)YBj*rixaZ>*T{_}}!OWof{*KU{Ro;MyI1GN#Q(7Dy6o(U?Ks!kf;gn^F45 z`SZAuRqf?^NWFmP)RLOIezhRajYakKvF$C*`t{PyiS=ocgLN=HAB+(r>&wzE{f zX3_i@oE;h<{`&`^`V7&cAkcwT7o7a|Xd@jY9B2%zB*-PcgXSKfBS6a<;jw2}v<=7! z+#j5M7XXy=5pk|Xv1Mc$o)PD;}C2fqf4 z)gI2lc84fnO9O`slrRfUK`w)E2s(#wYKF2CB#645K=M3yIV~|-6PYyT2 zLuKZ&gYK|IFj72kYW@TkV zLm}i1wx5tb2kSs?WGILchh7qrFj;&+{tt!h)PK?90GtkGw5<%^_){z(lNr2l#1JnN zJVn&VU-&ZQ#aMzSD@cM?W;c3P=h+^W&ni|~fb*Nv(@9gnq^XT#3 z=+R>Te=Wf1M~jbCkpDXuTL*5D@7D20a4VfR|1ZlWHRAJ%6YH=&pViG**U8LE%GF*D z-oi|oZE{Z~a;Zx9o?MiB&bfbobwp#u9e}5+=tVb=+zq;4W{zv~IdbOA8LJxq2loS4 zi}8ZNTVoXK;O*I3x_IBm@*|M2>pSXSzPSh+1JcCCdQp;P&rP=yUtqc~y9RpK{y0AQ zZeQfYeShyeSmSzz@FcqP21Mr>M!tFJn2H{=dGHBsc3{Z9f(jVJ_7XRE7kv~7vp$r& zzN<8MIw0SUE=!DrL<9xwwc)e?g;z4RKRn?V@9xaj3O zM+y9nUyXUrmoKyLi@5lz(7@_jN_#YYPtmA~W+p_H@odIyj~%{M0E%Htf%k zxPR^WIxkN@zslZ$^C8<^*?CXtoX@u>LKX;fHFT|TN&V=m>;z1H9L8LVK3-@zUeTH7 zNSwMYKS>mWI8=Zx*!+4%!(tW6%e(6=)6>%>`<|y{n}hE-j$jf)Lm)4C`~LC2fAk1~ zCEP>hRfgL)spHNS2rKZH0e<2-@XbLhAbQbP9bPaaM%kX>?YlHf9RL@w5+cydwdKsZ22>> zY^+m2vaG+Ug-0A9#vXL}k9CUGfTIaUnkA(le%n>CO5ekipC&|Ir;y5SmL@;I^H1MS zI($Rdi8i2YRor9cEODtI+pN_rF(E$UZ%KlKLy}O?!k@t{ddOdK^_||tKBwb{t^4o!h@~g< zSZ)t(`KkxbWdw+S5%;ClsHp_a&;0rD;tQwH!Dw>B@R&!CR};*pWLX}C+8JiNo2ED0 zT?|;&qk)u=3+Z|m_u!2MBT^MD_6d2>9Zo-A*rU+)Lpfm_x&Lxakaa>S1VWn7~qIyB|hRul}Wdazo$btH>xIZosTpMS-MWmd=5o zG7r&~BA^$vX(2+6=UF%z{hAI3f$D6uZZ6*ug#v3hu?*ro1&~l)6}(1N5!S)$DxCXwvw>S|I1Qi>B5zXSGPGc3n8Os`K&Eli{udpZgA2Yq)ep%gze z)G6q$KB@qKyf8ATMWnM%jNbQuP_Xr3x_XcAetLT3=;p#qYv<(djlTivL;b+t0}V?rQrI1%_GE*1o? z4FnuqnpM31#L4h;MOc z$HhS2}m@ zNQ6ZBJ|lsT)Y%q~8F^oq<9Jo=4BFWtq%@~SXS!v2kNKQ{U;?$``SS0zZBUsmPD<%r zw|*GeOs_-c3T^*=60!vyH>J68$dGzeU|IP=+fPSGkHvXil6Z{r>;~P(X?j=L33=V) z>}=6F*yI+O=eJA`Ay-d~ip706@yW$iP(7Gf@K`zOVvZmA^7T~Y&HO11#~+3rOb1Vy zaYtlWTho{I_6lpni$1O9$z^_+BmCMH7ilJuLyI_J+&Ij{k}P84Jg(KZ)FOg7B?pP8huAA{CFco#``N~?cP7qERV$YmEeG*CoSX~-(&N0v`HnpsVO#mfTr+e@9_>SZP|K_@y_ zCJGbgeS;_QJLMr;r7vab{JmFvxAW^)Tl1|S*hoqARlt1<-Q`WPdw-W=B9C{WtOBlG z;=fSPlqeRbTsG~LBi?L@JYv~%7J3Rn-OjOhqe{nnvlI9L0EtDLqTPQg+(F5lf~zXG zw%8wkFVP$bbJo+q{`vh{<=m9qW!F23_h4FY?yTpcQ=rR>Z1S0@b|sf$(gf^H1kOGm zwa4*3`6;*WKc48zony8~Dk#MPPn%0h6`SNBfL2eyAiowO7w_Q99j;#w+0M`GSA8&z z4_=h2t?LWgAjd-_2YjNhU*xtTmENrgi-eO+_2H1esSB(-cLc8XGz=qi)>{_6m6SkLwf&)`T zSWT(e|I3kv<_oOd!!$S>VSom@_9*u_-r2n@Z*ds*P|)o&!xkkuueIpkc#IgGQWXFb z$Ydt2RzcZYz(28qJx{-mHlx5n=fSw>!^Qt>wjzwZ;DG)&FC@a5`ni@_Nlgt%+h>{3 zV^-9ovW)Nn07s)Csuhvk+hZLSRN(TpJjnS0b}@kF_a}lD$|fE z3RuXDH4r>N)=8AMJnFAyLjafsY~W#JQ{j0r#+k{yJ2E_n5El{p?r1h7qZgzJ3efZp zDo>7k&cgO<2=pC9;E6y$=s!#QC+eTfy-e@FTcHoi!jSHcUKVoLyHT*n%wrW=tXIfA zkIY`f&=J|-E5>7NV$Aq_d~`Y0rcg=r5~JV_)LTn z#rU4US_g>{(%FodhzmrbbzmgrT;st{i%4v3Yg|of(F8k zkm3V5b`XBRK(8PX4;3pnb{4@DX1z0@4%BqZ9udEOmx16VzbdO*rJ&`hC4ol8G~Fr6 zxTl#9B|GfWE*Ay<#2Vbf%qDqEL3bIXyYBCu#{v4>LAbC-KxV^Ps5vtph4yb>WD=uhrMt{I zdz|+|9t0cl7p){=-KJbeTMJXXJTk&eLbDK>J+% zmODAey}k;*)ju~x{tVe1Lblf(%K~5fe#2S1&yU;t0s`l(Jf%AC&kb9A`JySfyfHG< z^u+CsuC;1_M>TaDU`IO2TYanb>bgyfJ(E^>&?b`5sgY)1_NJ!I8maB9Sm-$NwZJX+ zuw{tqv!tFI*Xxz(Uh0990dwbnrq`>)A9<)cj(QgGDXhK$@?QfnS ziCykMe2kEQ1f~5Yf>Ph~k}NZgBW$Cvz5@?5P+EDy@OyjQ@oCr$?~-72Rmr~ouK)8$&sy&q@7P347z1dj?H zedAch&-G9>@jDtde1dE^XgJ7X%XTG}SK(4^HIJ+vGYiN4tCbB$wW;hyXjZJ2V`c9r zZRUH(iBzwI_g7AvRJoYp@?M(Ry*sPxjXxSe9dX}l+d-1k^)8HFW{4KktFO*d>O(gC^ zVIpMiX)1xh)Xy(@!>9k|brWM{R7HGfnuNMLY4e_-l^CyJ|S&4jcqV-V`Lnd#)0(C zkj?1K%_WD)NsHk;6aJMJ-OjIrn=v82@2zGkmNPfwGqcQn&E6* z57|&$FTk+c0O`LB$-wk@*7P~#kIyH~5;pR{8J!G}j}GNXMwSk1PC{RWBV|9EeZ}A7 zcT9R&0%7&Ce7i}DaBLtc9_OtwgPN; zoXk)>*{;(EPpGSlkjD8~c1oH1@>eJ}8Hu`kdEu&f&F;Mao!nb%<>H!GfLhydS_36X z-TF+c+vbLws^2CpezH_;eX}SARvFFXx=u2WS1q?2RtG>8rCu3uA7(P?b%EY1BM(l^ zk6P1*ePlx)8*6{;s;0U=Rz{)kmd?>DT#UVwuT%#F!f*GAx-e4E6vr!shDYha^gvpOIw{L zG=Z1748HS!SG8BFG4j1(tT#nN?gz0^N{an882uFAPpgO~^3H$Cx-`y3>ywWW8gTD8_!Ao%JGCgejY^ zdEe*Z05ark!$Pf!?*qV>*m9d5Kdr=`W`lIY;oSA&1A%8jUAYlvYjvHu@kk zvXu(f$FnOiZ)OOFAa4Nsm4&7!3;9X*yQK{(84ykYtSZ5Zj?Fj8LQDWT{_F)86fy-E zC??7HMZcFL{S4cza}FBZ*`ag27nMQ97+aFbPdu;3q`i98Aj=|1`K2Lf`|!5dZ85n} zB=>^q4Xv9Z9xNIf{We^Ov8T>dzQ4nJTZ|&m!WZyK_7%+&61Z_EaUV`zN2;t0s|OC6 zM`sW+d^js&{R9#Joco|9Rc01W^#g}s;oFl4b?z4kDwPo%FP_z^&B|=#i{aFQslm{R zTrq9u;wEX+g4@!M^y54jEjBP*8RnHkp@f1$GbWJ5f+G|g%L*)QuucGJbVDg6F*Pyb zM49=i&=aoq*9FzKop(le?yFf}`E2*z)UBs|e1W7m$KtoN*6yOtFqsWw&J25ii6R*NAE^p`w_g>vw@MRJe#?$PO)|s{`NUUQ0Ru zAaGecc$NUR3cBsa?|e@6wKeTmx4eVTay0o6)Ya9mOYCck#q`bkwD;DyEGo?y>L@!P zA1Wh|BD`HtoFm}!GwMnJ$$+ZrX%iv!V3`DMqxhCta%-1c@zaorZ`%{AA+y%lceShd zGkOQ|uaw<&a35Tb=WluMmoY(|S-M}9EPsuoKsn#_NA7XXEeM?93WYHgq)H^BcyK?$X^qr7wzik+leAXJ#{f$lvm#$GJ4G(CDIK*hwNnGn}mb zA^EV^Dj#3g{!ATi4CYgbVvkXZe7lbt=Nr+FX-&iy$0I8UjEVO)$J-gc3D#4w7xaYB zrp~T(uX>+Mjc4=h(ZD1d@FOnOOXbGS*gu2lsszJRi@Z*|&ez=QR+P~0y#KoTM5+nT zQLpS&t_WKV^#rQ_%xXmS%`=Epv%OvK+m7gHh{^ZveWKf0HjS6RhURHM)C!%3KiB?C zl#X+xOM_DOiyB%+x#eqYKDy z-3nV(TbmtRr_a^yII0_KXNdX$AcnNe8N42_)0RocdH3~<>`->*SA*wPLzd<>Ihl@J z7!is_>}5U56pBW0#9}`&?M2Gznz+{`%j37OnRgS48;3zXGiZ`D&Do(&SXLvil^d5l0crXP0eJL5#^X`vff$lUVrAhU; zdPYXNq+T?cT9#JI6K99(g&;`tQ>_&l-j+9tSpJ(=e>mwqJiTuaFD*y(6q-Tv(>*k9%C|KUhQT8#R( z7V})qV#jQ|MN?f28>yAbD0K}C*o-lyV%dqu_|uPZb;zaiiob$(AA-gLJPIJ##G=t4 zu+VZEVFDckTO4#8{^*}EC;(PLC{VnSahwk%y#ZuILK75*yHdP%$9f$n6H#`lc`|w+ z@tmqYqsRx7bg)ap*Pz6<*ff!EfZiy)2ef>-;C6%KJ)-A-DDL0aGd5u`inIq4 zJ(Qn$b9nsiG6t2!?=*v-viB2|>)U7;4dcS%b77|meg;IBxkpYa<9vr7(9@HbAg0Ay|jPHN%CH8U7A*a#*>^9)>CML^!i=X=gGTE^fYs&#k;VXnHcD z4bDoGGtM2hd91_2;KXBp;Qbx*PFegv~<5lx9>f~;f0pFu*|Dfc**1H*_VYDgCwg7?MS7nnILCtM48H5j97 zK_qit!ojC(ha$0fMyU?D$({8$tT-=ur%m>55mxzZ|LjSP#$LX+O2FPtyC3Y|2d`nZ z71TCc1?Ndiuhow6zzUAGyulE-y-BqC*3+rn3#|?@uHBTbj~d0pdzz=nWPiS?@zza# zw|dL`+S?D__Z}>2_xX`iBeY?j|3L8o#&C)bwycVbAbN&diK1er>U#P~`WCp&N*t4B z?edDTM&n~Fw^HRF^qw*Ddfb1nXSCA#BWWv|5J`#`x86q+4O*z&X-WI`N|in~Jn9xg zAIOOA41fK{fm6tOkfWVk@X0|J)Y(;4RqIpDR|}!%M;rbMQ^9+odFiD=v(8EQj@7M_ z{aaxaymRq4SJzi1Zo#XyoQK85twTmx;Tv0hqUuS++?)H>i@EnVE|))w|^dsvX{EgNx@ zX(5aF?Q-?Sw2*2`pRHd>1^&;rd?*tWGc%H>wB>X)7S=s?=VJ9)LodJ$e1#sAyl<;Z zUN$aLBLDszEo{A4IdAVC9EUI7#`UJ0T&_<P{gM@wG?9p2Pmk(znocC%R0NWBMMda}PEJCLQ=AMM_9^TS z$yvH#{TkS`XR|(M$&N=-kLOlMluwlGd!%nPc+-;i2eCTA0;!#4Dk-h&zWA2##kQ;^NVrouK|RD$nqC(ThvC z-6L;F@v+3+wTNq9&+4ASnv45MIw)6djYtL3pDE7u&y-5$y_sq8NY0a(>{sx*(D*ru zN(jnFQV06=?R;c<&ZyQ0!>5OZX~~xJ|Fr;G1usI`bdCbO#^mzS#>TmuDfbo94y7Rm zXMJv!=TJBN>Eol5nKe6|zIEHPZaa-qPz~d+s|75La;iO;_q?R7(a|?yF?W9L@m%2O z!sh(}1t7V&+Q-Hb;|%Tdnub%AF40Qcz<2JpuI(^n|yHjT5*cV`p7gLBZx%JAlx?!)mAl1Htof zECT}NuM+d8%u$*W3IJf-40iQAUkrr!Ae5unz<&UVXw@B}M9Kb9Ewok(Y!wk)nrq5X z55=CN9*Hr2i(G5cVpuGo7ew`M(Z*-VPV%~!&|~TAQOsNo7w4Vqk?y|d40T*6g-#wS zCuxEW>9V|HhvZ7jVFqzh7}<~$%JNk?8mrs#>6`wsTy#W=u8H=^BgjygNQdO=b>3zZ zMjRJ;l=X4yV3(aCFOuVp(2u7a+Gea|q_oCGw~wtS*>%nOx(r4_IoK|X<>qKg92%oU@iQ!2kln-h)ZJb?gbgUERBnUUwRG;NyWry(r&OTf-_=_>kHus|M0EI)qTPCiq7 z*r&dCrsCpk_4>M}H@)MI#3*TH3JBHlWVmtpzCRxXN{{HG=`GU~^SgZcPF4{?^;T|2 z*Cs4D2LcyK4&PoG05rZQ4&#*CGTpTrl$Mr&(JM$JS@qX^{JRG~r=YvI)b2ppa$Wef z5)da&4ICIViD!@ScxQs?l)QdeTmC9!o1{@)y*)kOpUd#YiO1COiC)o7v#mEJuF!{Z zFhp6+D6I{e8(X?vF*h3)BNVj0d8f0(vwQtr+A*sEb4%;`gyU|$O%*~DBpFfKz&Vnw z_wTtuLeS)Zr7WcsKj~0p_EIWSJ-}dUaBFMTes+dN4G0>9yGZ+bN3roGL)7ob<{uv{ zY;H_BWj?-I?ABi&pxR3cuCE)o%)8xeO&?DfTPH7HS9`FwW)|Y(oL9ixK1RM#l*pBP zP%3fE?mf0F_?Ne(xDAgt3e_eZ@wa<@+%#_)G`FOUaWcMco>Vej(%q98GVkZ{0j>3C zbyezHSG!M8?Rk|QT*x+9Jt%{}uBG7swt17k;o4$gg(U5g`ZDF!r`AA)G(1fqq4sUs z=fHt-oZhi`j{jsu_r5m0bAcu0QRE(7d`%GDhvK6oEG%hoUm?08?6~exF%~py4T|HA z25*~>P;RW}>sbzoY`suXhc(tKm1M9}XB^4??DQVpxxYusXH-91qjP-xXogfQzkpb? z^d}Z~zfT+oyZDfYh>ORv{EuEeO6lcTRF1lJvMkDDO3^~=Zah`hX)N6kcw_Xfx+^4? z1GdWeMVzdD@!X|Hwgi&GyEA%vo%f#iGD}?6%V7?G_KQ=R->rLVyCu70QWisemsvA7 zE3F|BtE8fG3xh0B8@N~UMMg(waXsrGETp*s*O!*U+a&x@?BtNAn$##4a@5r7rmFAw z)XY0aK9OC-SZQa^C*$0=}Fww#kC38#7e5 zkWs14$04`y)Z7 zBFvo9?yu3TY+T7CPsL1XZ2-X$(<#T8Uo2kE{uAhZ%E9vE>4S#lu4?UO@tBtRZR%pk zy7fl9;3f5Y_|ZJmqwV@lS`~dic;hoW^i0Hyu%>gasP(CCr{s-UAHzKDx1q_8tBSt5 z;tj@)+Wox_bd4``A!**Y!Dpiw}w|$M>}=NkdgS&n%1*n*}&@=<{q?$;m*|22J4ezd-gl8RI_2P=><6c?^(^Ov3yB zA)~oqY^ic0F$WGe^gom|8fJGUai~U71YG{JQZdZoVxWZ7iOeBTklKvM1jHKOb5vHh zHrkJsEe6G0`hu0K^oSMGxVStofo+H8TTd{RbSjS0Hx^_{&MWBF`Pqcv8lg2m8&i6j zxj80&qsN&$rw!bHL&)cA<^scT^bUcCFE&9`0M2`*5vXsUm@>pPP^kQ_qd-Ci=CTH( z5(r%mFKlsELh(YegGa4W(T1-_#6gP~hZy-vm6DRW(Y_0wAoPzq5*}!bSR|X3mv3A= zS>ev=Nlhl9s}M-=42);KA|72IWkYhg86BrE$A@mG2_^0qpIJY>Gd+zo(1}E_HlLSI zxt)CK2(3vvnHNef>u)74rkrl4;RSY>VnULtc4=%vSi*-w7G~^_1B5M?-tDL&>7M(V z>ZPa4^CI1=Q?BoBhw@QvVIhgfOva=tU2QQ5xH>>y-4S64cE%M2*&vGWxFF`zcSb0- zfeR^?hq+S9RDIW#!l9e{)CR#dc{@=M5NZjA^6>TmBOnf}3kD|`xeExIRgbDvAKK`0xF%zlyjysP zEedmN@4W1&663<)c~BD}faJLVK0uJ=CScsr?EAmwq(YHMXKl=hym&0kNJdLn+sG?i z`K`_i)=(~APH-bOa&qlaT5zHX+NiR{I5}<9Z+{Ef!tbo?4BS@D_!fV+o?1KK-J^HC zBlCQSe~|YrgHpE=6Nh}uo`%_bRm^47xnqAe?7eUlTK><9+3_j6A3l6)E0?&L+-og0 z(G7^z`n6~!iW!$8c=!nJOMufs_wp3m9AG&!ghW$&h z0EF0XFF4_jzQj!g)c-xo{{_=xS)Xw}H7_Oq`BM@t;&z%`?tOp%zL+MGKf%1%)w=(| z0y#;l;>IyJ<#s8VNy^^txRT~`;ZMG0+I#ae=6?{qtDWu3?c=R8n@eLK&2Cy2E7IRY zteEJzW>C-7ug%sk`np*X2LeYsEZo$O_|T;U)gk-ji+KCuadD*e>4~D|g^3A!*?r_< zqw8(EJ?9oot{pO{^Vu1gn(1P=E(my67rL$WbQ1u{wpIZ@>`U*S>LxAs1uCV;H58)BfB}yng*# z%j^Zu5B{E>7#$}4wqJR0@q%}>uOF*{w$b}ZrSvj?C)vlxt!&ZmS3zI!Ra77t(Ce~S<*Vg5?r4&Tcf^p@^AFp=K3{uDB` zVnO5GWgf4EmMeJtP(*uab7o|0>7YG1gPUAznIYmZ#-kj@E6i;3TF>@CG~M;a6DtWW z9Zbb(V*gX-s8A;E2|6inEUMsNK8F6js>O?b=T@V4&D`lRyK%y!ANzg0JyE$4w|hR4Jog%R zJyJ-7D{%YdqN|T*wT6yq`XhGZN)bsPm9)Gq5}y^RW#a46PHCC~owR%ZSdZ}F z>h9kJTVEU%pk>}VQ$7TFT!qV|OT3rLvsaj_KV#&QjpKg%2bELZUKZh+Tl=HLqx@j_ zH~z;_cKW-I7N4@=v6lB7Dt%%o6JttB$IE2--}tjL?XI#j_>22ckL*PtJbB!;Tk`sM z`PY|N3b~lkDc|Q@PI$jlR7|_BP9Iqvpg)13XDg{zTpp7CS5T%N>gK zXF0<5gzRt*&`-go5)kU~o+{4);O))Kd;!5Gu-D3CbLV2ByJl$UkdQ~{=ZmcSJzK`d z$JeLE?s2q5E=g zPXeYp+50r0nZsZ7&#l6R{ik~w$Si-N!KCFpJ{x^?`xf_}f72&MhAIFvU{VPqPKNL^ zmQg66A=~>J&Occ1z-0d{Bj-m`>~SkhyL`BUU&Egn3!=l17C`J?DTCjSG&qic@gjAc z4RMGuJcOfo^R0`+JRhR&I1ITol|~H0UwlRuFscb-UHR306`%+B0sm76B#y-u>U>Dx zMvB42&)oUY3km02vqH=O8je_|P|Z+HRzzJyHujSR8`EQqq#6l%1ST$QgiJ&T`gzpB-ZNbg$$kha)34g!U!;572DG{H#$GXOamtRN zB88019a}ikuXVC|AsTPU$$_gs;s*ZBwMcGTq*1Plkwo0)y^z$wpfPdB$H6x!HrX#Q zUeT&tRCvO;+%Z)_(S@P_B4tE%3DjMnmgS*P?n5u)-xdnJxF;8>RcwexXlaVgYKa|E zOjc1nd+{>NDRU1Z%#s->vN9IdUC_{<4^1{JCKKIngL+pFvRVpLF*5%texjmS*<|*< zjyn+%S|uXJrQv@BR_Sp{W&T4nRNQkdW_Q%1?dx4)Vqz#nxIVMqchT@Awl@$e0V}%% z=#Zsx{CCOmAd0j_>5>zi#6kXCY z9V`&Ha9hoS_)@n+;TePn+o$H)9{H+dc1CX^Iw5zCKAl#aQmn_b2k%PNkpMGQ$b9qR z(MtM8Pkr!e!?{+dypwOUkj5396?;eXoo7YMN~s-_yITinNS2`u>utCJKD}8-q z0@AIs+ZS=;Q}^rVs9X1-+@wT5GiyF_`L_G|(xP~-7LOHinN~}&wsP6P)CEHI*c{7* zD?BxZo~gFEIUGM3)X+TZrNb97yy4_EH*idqDEaPHdisS*%BX&^D}Rt2K?<%t|A$@Dq1X!J#HJgk)p$BQ*97S(CT}$V@wdGT0a7}M z&c)4zISCHR#U^*TQLYvJ}H!gUA$Z(mt&uFEL$|mKgi2_ zG}kKKlIXBFYky$x;`mdSQ`Eh}*bA83&C=_Ib#Li#%85(tcTge`y%>A09za{^`lItG|rONq6b#_~ET&A)?4O z^4f&|Ni}8fJ-&_5$k)!Erpdk1eg3s)0-~{GfOPkod5iO&=t(|*A+HZ5kWc< zljqY&n5l4y$usFvnX1Nrmu~mwacn?%S6W1G)&Uajm6)%tv!SlU`yX0ai@cu9*@JV< z&zKUVU;lYoZOR-`_vL#4Z(_zQn>CdPZ&^YituC?P6%bA=^Zn3_y|2*K)g zHwOck{x}E)u62rA*QGmsBsB_5FOvf1w(fdYZ$^jA5B_;#iID21!<_H0)DC`Ut2p}V z9_I|FVpN%Er3s#;W@ODlgck{1$(@79$}qpne`A!aL>eyWgo>W3n_n&s*`W`rSe)@` z+J2%Q98-wz&~vkf;llc!!JWtIi{c@oif5k^8aB4R&ppYI<<2GH4n}cD_bvo_50D(v zsP-x}Cvdnglgg9){i~fkZ@`_=z+Ij8sCe z587CO*z*`)+&CS!c}-BkH(POAN|9P7RlchWDucn3#e019UM`aD>L|1CB2Mrj<0JqY zqSb9~?5&Vi@YRQ4JZ|?sIpQp8qs~EghZE!iA7$d7vMe%Ua2Tv)^cu8UdrcYIlCKcM z$_s6cBMdPy#sFE2LBu{~lRcG-M#BJ#kI_uP^vn?YK2Xtkt(qSV#b9(&{f0CVenv4c zzO()hXl7At1^?m;AYjA1h!D*{mK7gDgn+GG`qcTxQ;peJVFr~65Z42fl@!sgzEo{(=u#An@WAV*jcjl}&&;K{sT>N! zP&9}vn6W+XXl_jpGRdOe@7=YtHoS0ioyB4-G|CR2vI zJT_=HL+(0z$&^0e`0t0yERny~nLu!XFOWo3!BDg7VuY!*BT|fTqU20GZ71HM8+KHL z3Nj+|sl7Ew6%16+?LZ}6W-Y`6IY!1fgaLh&Mpyz-@AmnV$~=4r=iX{Foe3p_W{VM8 zAp|Mh5(di|ZV>MYtP8ox#8ck~3`q0LS-qM+Wf@TX>Rc6Fypz2zq2pkrnF&8&sj$MQ zuVckbAsXtMMwbeyqj}gccVDTTN$2LFD08Dtpm_bI@b8i)()%ausruEIL}+p(#!xE> zyLo~#OA;Cx+XvEzJ)VR~7^;pq*%=8$-7|^K^-QtT`89JXOhVjE=G-mmjPw*xI6>-+ zLr{g$8VPV{VAwVO(~UFI<~1p%23Y&Ua?)#J>fG%xUM6)4c>zXDVOFvWA6Y^ex>P%4 zcIb*AgYah<4s^nPyaxrsk0mi8;e@ajLTmF|Py7+K^}r_W@au!@8HLSTgVHwpd-y>o zh@(`OFWy9XA9i1$*A@aL!8FsB)%UP1f1t8r`&RC?D`~w$UMJ~2YmC$%aP)xY-&our|(35t}dDCbUOfBrn+(AaLw^850Kh(9b`ysrKyOJ84q`&R438L(m6e*)Zz zdFNJ##F>t=^*Mja`(}H}*#p1)@p30;4Ka89=k85N*UahX5FYs^zZLhXl56nZ zCJvUeC>?w*YF#5<@N>_dXz{M%+&f;}o)Ecc+Lxy@I0|-<&z2mZ?RmesxOFHPgPsjY ztA8r07P#1cShGI#9%efK9k2D*q>1Zn9)fH?|2rD%KK9V)MqD7u)&Lb7fg6?5~ZouI~IzORG0)UAr?OKKO5XTWRND)Q3h?FV$*z)BwU{ zAz9JC1X3o;E=SKu(4xS}PrkXN$u0lnl78)`i@Qa7!~(}OQ0B`FGY z4ZpOI2$>S(yj|TR@4=b4Khhhke4K7*k~1AKKGQXBb6EXnV@> zQpN#?a$?>KY{g4_oyFC4j9yVjJc~_V_^-xIt%*)JrkG#lLpXYQy93qiIwDhYw;yE? z!nHwohu;h^v=Tj^Jhbe4p?xDtT32>a&&b6{8`NFw_ygV2-K! zt)w|WTZn|IXw{gaym_9oM!deRwlJCDnAP_tv?QL8x=~FyTMBz|Lf6*a45No#O7F4k zE}gA8|1UzDk-_6WholZ`QE?r9Gd@S*@ZaD7SMcW2ZnO`{?%e(6>CSHmDp`#WT9*x8 zPYc@JKa{?{GyiRn#C`1!&kYjGC@P7HxXarCvO{P=iZkZFE;u=r)h6LEg?BpCgald& z1UdglPvt2d^1MeGmt=qC|EMc(W8CV$2ZL|!1Ev!Yk~tn9yms`o;X{Cb(Du}U{=pvi zeyq*0y?gLs`_P`cjjzhYNDgKitn)ScKKvTwamT;lxw!C*Ve&sdwGar6v+^XNHupmc8T(HHLh&CB{WK?l2U zx0OJC7>dmd`)v0uXgYhpbtl_>yhXtZH!J!3erxk3&#%&Fo~1x-nTvT_sHHoIL)F-_ zx|Az?@bWn!z}4dmjTwEkmA&$`=;1weP<3F700ORxG3Zwpkv@L%2ItpHOE z{)HEqAWMb-ccAu(F&>0Kt)?j`moUKuJq~e`oS_mxNbofM`xKA(lLC36INAr=C5w$& zQd8%YU}DMdd6wj5Ie>L|D0|1b@XdTS`cgl>dwWot5%jNvb82D2$RRd_3Fuz$e_Fs| zCi2`f-g({!VH#>o2(kOw+N5GXWJ$moKHPj>T#$lld8eG0K>MGz7P6!1r}kAtM0x|H z282X`SX=N1CE@pxpgzRFXGAD;KIMJ#MI~&wYp7i-t!0N<>Yw8`r^kbR`}+4^2e%H_ z{tWz&ZpArwI|qF;pl+G%M%{F$w6C^@!H?9h@6Qd zGrUD@z}rv;$-5ZfZ(uMPklbUc!fOIwnDHC>8Ig_^{6kFFA~dPn6_QPclz9o+x089A z$lu|h!#BC+f*^$$&h)8w)B80f*tNtFg?h_@KPkD7N#Vj69H^=#}s%H z{|O1aveaHpf*TXe42Bp&Ne(4afI${eZxKOV)+$0Lm8suUEHaQIlBNU;!g%0TwxtPs zi2ob!YQAL9Y`lT^Ciu7|^ifyy2j-U(dzWnv0$LCJ+&HamuGON?7zfYQVyQI34=VzI zebD`G)b&lZOQyONH)mO61$Ja9=2y{}kCoo^x4rvAGQzcKok?$W`dd~E%Um&UhlEWm z#%!`$vbw7+#D2PZ|M$VVEEV4ZrjVJ@-n7bQ-)+e18W_;yZdJH}kEM$=_%P=gquYF; zhd!t2>EYJro{6B#-8-);pLXF=d+YK|hJ9idhy>rue6Ggm(a*mPtE(5WzEvMQ5BGr5 zT#w%x{Ze;9?Ln=z+P4hh`&B7-XnZWi(hw;ejYoT*ztv8wJu%uh>O>u{1+NLL^*8Ov9;&K`UF?3?FBw z*8bM?^loY+hfAl&;t8{BJ08vg`tq>?!Nk)_yXf2<+-mFziOOFx2FBVxLwbW@p|34F z8=XrHP8vqXs^VT8j*#VHRP0ieRn;1urE7TJFqN~$r-nz*uv_rXC^Y5iA}iVNR($;t z!N|lJ@QkO4=Q1~yh0145A)n_n9Q;njr#PlCWTL5;g-6~a_SPYVM;hZ|HEdg}RuB<2 zQW(VAb2e1EwBTML^W#U23Un$bex5dXStIq#M3=CAIJ=hjvd#wx>_P=@cm`DyAt9f` zx|C}3iqei-%HK96ZXrxhOEcc4y+zb0mY_uDou$1Qqy9>Rs@nVwLY`NkZT%}%yGfxi z6LF-MlJUP!gK~5N1wVf3S`8gae7KOlZ+lS%(`>%ti%m%q47c^zR>vxu=Z2wPJb7lD zRhP-y>BZhtbpea|CYE~VZbgDOx*AjH7Ui0?7S`rcd;45Dgv@4OR3bD_jv9zFUKHJz z@Zh*Fq)U+7O!Z>u3#?x9!8*AUl<|3|Jf7cBOT7H&!JtzIzbSQ~r|;1bM70L{`UW*z z=wa#zWy(ndFDT_YT>8^4C0SPi8s(9lVjt#gW6xe~%1DSUmxUqucx) zt^DYS8{0TsCCSE}9@$3AAJoPfK;DJ>E!@Zw+Npgjp$>yD9Iuf)e9^iiwM`t?ao*Et z-Dppc<_34*A~U_xn$+`$wIHjoTpME=>^_!0sREs+KdqOSE9Jz|} zhy8xz`v-GD3p;vgHI4D0{ojYI{Hk@>JFf)!R3=Tm zg!sXE0YM%^tk&{!a)JUruyYzmRLnT&3Eod*B1b)5f>X|K4(A9BCUqAC`Ga@_5Y;|f zDUzK9!>$Tj8A1Yn^t=(8IcPK(M&a~>rVGJHBS~&BBrQ^)V|;1!XDsm~`9Bd*quSvM zJ*EV68S1GzsB_@8{7ZDWeKm}S4+SLlB)%!BHpEVh2^@>r`PdVaBA`H!eHg@_ z1)7%$^3`{0o~R_8eEf8}_a!z}U?lWP;V%|C@4+mr0q>Ld3_cAQ=lK!$Z!-nM@brMW zC0yj{33$R9ZXD6dJ7y<_-3XC8%?tG!0RgI53^|W8aKrTviqs)`IXx zoM^Qv0d^A1X!*kowBcMQNBE^eSM4e8AuHlzvdx54hBAeaekuHO)Rn^+ZYh?yF(2_T zWvV_hCmy6$s*xt)t-qH1Ts74*Mj;0(RciTys{*i{Q5@mY-*ACS>U4_HDd~{+H$NC5 zJ`57nJG~fRV4~~?AR*@Q{~uJ3F;fpUF&IszRx_TuBqEV@x45{C`Y9q}oRvwFOp_Yu&|?5k|;TOq68B`Cj2p26AA-OLnr}qNb$J z)BDQHmmjTpE)Q!T50h=psE7a>UP1H8XLez8Mw6h0@);qK)a{Udo&A9HgJ~zSp`h-~ zcH!i_Pw*f@P1yx$kmRI&cDU%_$H>M=F6y!YOQ8)P!tUR@D-Lc9d^M zHhB8@;1x+Xvs9u>5q_zl=eIHrW$&i{-p0WJlkgl1i|)NzS7v*K>z3Pu4|tz0*Q~xHqJO{X_3g*%&acmQ{{ICvfD2~T ztv+C}Pu6W5oNSNwkEpnPjT2d&pmdjII>zTN@2y@|TrZiPeyemeE88vo0%MvNtMXge zGre0VzITR6px*U@{n%1nSj*P0hehK3ISK(Tj4YXF2xid^>aMC~7~#1weJeuerrj0t z;ur$ae%r=IJoWi+puy`aJ8n6l}WvUNEI@0e4eQ8aCgRdYG`pT@)|CVmq>CVSjyzl}AAjS>^%$s%V9aTfB8K>GXN-ZT9Wjn=FN zL#SLFot99!sYrpS*>d@!?4I+%5mh{o(XcCX>7~xT-O<{P=P89&tsCt@E&l2Bel{ zW5tI>#4fzQW_L0&fts?7?D?xI{E$h)2(fAL&gYT0VTF2wny(o6(?mUJqRhzz3GYT9 zbviUyx(xCNE`(q{CcNw|?-{9}V>pXJNIstN8l=Y#t@2_f@dQ*&$uD(IyVk#Ja<#hC z#56*GBy|tyx~6+kG6q(3m`etw zW9_+BYt3Qye@kBB88+9(qTh~m2@h*S)t*`uP?OXZ5I9NT^f3BbXD*sxM7&;5Rf5<_ zFu(Hky+^pi#y#_XLO)?$x?MqEAf8!Op)n|X@!BtTiP!flS+(0!0y!icLUZ7Lx0_rv zAnx1oceKET_E*gGMz&w;_G0Vmg_WmM(@L9zHmu#>1hH16GPP)PP}GVSHMRc&>(P;h zeYoa?>k!hVgTP${C@N|1O@2D}4z=`roRDP9)*B$m@!qn894oAr7*iWo9dJ1+$ z+p>QDI=6DLy1l1(_@{N}#k%fsHt3;y^)35T8(!MC=}XnuXAkkYM?diOZd~eT9NyWo zVi3qtshSix*gP(mU`RU)7~r*r+m5)^%R7#@`1cYdz0dklwV`nb;o$f)io#Bxa>Oi{ zArjsLN`YVUVx$N!MFLTbiG&7_>NPeR!q5R44)Fkma+oFluPo{aL}^l!Dff>OAhcxl z5n$s~J^ZkMhzpbQ>xtn<`1QbAq6cOA0FD-+m8kr^`4bml42Qz$xw*Kxqcz!|gfAnJ z=cH%R=pmn*w9mn238NOwC6S4P*?Og?2k)JQ0fPAOQg6Kz7C!Ly(>4}g1Ao&uI z6(DKmk~nmvI5!#Qt6|Da0sJV%XvsQVW_ulov;pJ}3_#WMQ$mBeNG(=+Vkg{hih#%f zZ#r3GbDc%`*y+zCtD@ALP9w(XUzDKMi^c$<7Z0eXi1Lo%Ly{b2=X)Eiu4KGsdRv%6 zTY-@um7pyck=Dh&82~Ig=Y=FBwO(TYtcZs_5}4EZ4#85Jfl9Odd@7|WNo>C`mz*2Y z?+TB;DEVXZCH<24dE_fqZ?Zs0&}PYKXh^0o@RE`0(Rq>2ER%fGX;p`X#)Oi}j=HPt zPnOqtru@vAETkQ^%2`2Bb|Fz(*t5%)*w0pmn8XoWXNkNf{A74$=*(X_Ko*m``xisD?OfLvG!g|jbH>3 zUWo0Owm8XU#QygCJPRSg+xpsaUb&gBv4RaP9B9s}0q?A@EH3=>aQ#vQqsZW`r9c1X zL9AnYy7HXf#;xwsDVE;zg7R}g^Zot48XD31ho3If4KIQxbQ|JFeXPP6@+iOGf)Ld= z6E7IxX=|{q!~$LP_w4dLm5!^iMU>gBg}GtK+d3I((TY;Y!^Y@~=OZx$&AILdVo#Xd>8mYop7bHufvmc(aO-xLBiG23N4h zUWvX!)8Vi3m6rW%#{rwT&vt|dx2T7D)8;ORFV?x*3gGryxO+SsELF|5OY8;s>?hoP zZxBmpJ0?HA-E0T;&UHnJ8dw^+nKWFPn_^VKJ;Aa6cWLJDlhHa|xtoFLF^u|7DWsS@ z-CEBr$A9&~CTX8@F$`lkznOQ+@JwFuqPEC`TqCw{X|%(T`S7(^K!%rtln<0*OZYK@O_4*=F|Zf;ChGEV=zo>*L$6{32u!eOOuB7wS>p5n>Shyfzp1wx~_D*4#wYHLh|RDG{@lm z)`LnvLb|SRAj?~JOQEL%sYZowWTgxvB5rB^DoY`S^CuOYO@it9v>c>r{)Uq_|45ly z_32VviAMmv~`fe7qF__yNxD7Jqe!#@hctAW? zs~mO==2>2IKR4^STXqw}-D`E7ZVhcW-!Nu>9`Zn_i-3H^AHqPcRikQzd?8x!A+49N zk$b?>s*nL|&IKMXMIa4QgngbUa}n0z05)d>mdGrKRVFh)BA`@WhL6HNJqe16^l2m9 zqIO21 zE;n2L+}>CcN=*T6+6}Dj{J!KXg=L2eMNEsBxL02db=p|%kw~WZEBlg{sk$Y7tkR68 zL{8oRBot;aT$|)jomA7nB73p=m2C!vf%fP{vK=l)VBQT9dVw+fzpceWXNE)uVdO~z zZBM^8O#!QG83B4F=`>JD^5(e^Fe3bjfZcP?r3T>k<|a~1O2Kly2+0%*joIsbg$##_ zA1)u~HewK8IY5{bcZ#X1u#kGV$hv^}ZUB=ycKfnYR@Gt*28NHJ!s==OWgy!zbeYrMNKnOwiV}Upu zJ#a$NuoxBtA{WZyU1kxaz+G)makzmflaZyc1-Eg81dN{G4^t+=!@!0F!Xin9z9S^> z_&qozAD$c7p2eNkLR`K0mxz*yjm&41yzQA_lIV#){8f4MwlaA0VQ--+V~Xk;aj`P_ z>B`~u9U%k%)v2!R8-CrMAAA-~g&gV^yMPYSbQLtzo>KObC+emvQmWlp zPF2Ly;Xq1B6Druub6Z@P_h`Oup1ByVpQGTvwE-oSJ8&nlcX{^tW%1nX99|R2+vZ>7 zhkfwNdm8#SMqi&jVJmJwc%$dCte$k|C5kHrQ5Yui`U^B=s%Q7UeKYL$$1k5> zUiek}Fn;{_{;=O$-86h(o^zTmzB6hTfvdjfvYjfzIQpnR?&tF5@h5lGS`Npjdj|Be z6-Ao0kCO2-h1`CeJundZKKC}2ik=vJ{C80N@Q7Qwuf415W!!Xf$30oSm$t0NXd^DK z(M>BM0sX(f+V}oU@@yaG#csP1EX&glXT3OjE@)hKOk-jGx3jy>kczjxK0)Ltn6PX* z`n8NS9x@y>(FyI@gC+U;>~7Y#X$MvHibjpL^^4Y7Hd)q>ly*zP!Bw>LYxsC)W64f6 zqUxk*_kTe_TAx1GPG@-+yg6m~7r$&O z-kO>;ZiS#~^K$lbh%Lx-$+@{}@Jgd6oZy@0x^e&bXX|>j(x$OZdf}Tm-frs6uDpr` z18w&8ubcO%UK=6LIbzt=$!KBm-qu%2baAHk;qdvYldt*Y1rW9kowlbLm0y!pojm6T zjfm(SnWciTKAFwu=*X8N($-02!t*`t-~W8nzE$hgW4qAUe+q-K5Hq86^|0HHFU);w%O8PvTIA4;yvTp z2;Lt&lDZ|_YjW><&n=wdi}*J7ROh{xNun3KmnGM0D>BNnI@$Eib1B{x(mZL-9P25n zWd$W2)m?cns1X_}LXY)@MpO9b1f!-pDpnd5FZg1Q*6e!nLKFgar&^C+9lx=#W;qoU@xLGrezKjilqn(t>{w8z$if&jXW0%(`|kL^E`xDZ1V!lw@YN7fe|~}*Luz{97daH` z1knQc6w>P9KamfrOwfNSbvPp2vMliz2{>3%RCVcRd&dwexJ~=M`2jBlBX7wUyHQ-| zKVo@ue3Sq2R^J8LxOh8iUE|Cdp(5um_+?-3hCX?}4mcbXb(ljsX4*+{e06YLs#vg4 z17KzEx|Gy~!5?RCX@8!C7Z1OtQwD1EJyDUiqi$u-b|fya-~UTwoS-nBXGDZCSs2E2 zXexC(X@*3$jZp3)@QOmgmzt1**&m`Gks!X>7I`of11NnlRT$wj zXTt*+8IiG)E(tdamWEv4VpQyrJ&i64g+?^5dkkI_8|G2+vZ)p?He!UoYen&e@tA2o zkz}NiYTMElLd}QMgczy)?oR1(&hYAo2P}f3ZEW{MI?TsO-;`~)*%*$bi!U{Ax8^!bGeH+Na=1+zoFhIvXZ+EJ&6Vzyr~uwc#5^xWZx?|q=&%$t`QwAu zM*qi5*VKlpR`e=tut9UP0F14lx7#g?j-Fnhj^1<`KzGv1XxEo-xRd9+mjBJa z#yr>5rU?<=cW#>BYpkf`k%E>rsJ-Gh|rt$rIo4Ysv(0y#et-f_Tptasy6j)E^0Q5*bC_N)> ziaaOS2X9@urT%78R;WI(_~zW|pMS}7`_=d?Kpkw&Jq-2%@1l^edd94Bg4dSo-Eugr z++-(UrmAm~b!X^n1jB&eA=QB1xt&q*gAqc<%Z@PVx>>eY&3e=J=VrwRS=)W34v}h}8q);$qf{6NjDpPp_KnQ3db3 zTJm`3d|r?9rE|?+_X#<}p~5I)4ho6vVl8qGeRrzLIb)DT+(?L6A^E5=8^a}PChI;< zYbYizp8IrXXLERENRsyOgEiM(vCKZ=+S)-aw%!jPoh6m8@ZVhf#E#!__wum2uKZoG z$81F{I$CV!eFkNaco`pNvbVobBQevTlp&*GZHdn)(j~?!r`uCUh)RM_6yMdi=w~4M z!6-jJU(ycwwnVbvL7}dQYbGsU9{c^1vx>g?uk)Km^$2ZKd`$S0f8VLr+b#fnxZr)S zx{xBRaf&c;=v-d+bqUI_bZ?bs-4X%^<4 zeVI^LrEgqD9yO%WB@t_{E%XyfjTGwgDlxm`=xLGjMJ`UaIqYB8?%(#+_O%^^8LMd#AH~9%yVh2$* zybadeTyrFIOnwmujd&rS=E*_o@Oa21eXJ!! zfB3^^Fr}LJfSA^DuzlRFv{NE}uz_D`>R`Zht#$QA+w9F86FV*s?5Fey>HC`?8J{JZ zAgp5^8-8H%7N7}vkmH%^4f%*L+k;<3z3(V^%(XJ^ioKZP)nq6a3EY`HnhTn;+35jw z@A!{?5OFCRX$+;oon zsqxtGj7n)&JNv8DD(;@~I~k3{jScC7A9Z(}5C-bYjjqE!y_P)?i2TosBN94smEai)$rlVt z$Kr7W$z(R@JpeWoV+fmlkarHi^pJd@8sJ3380;Un;l^$PF~Q5v=oYmuaxN>Hq-sI4 z21mDF8k<%w*;fYABDxX89V`(6Bd#peg(Eq2;1rbVh{+#N15!N3khD*sEkpvFB06x} zxbx9nc=y)kkLhPP|IZ6xDRxJTKhvCywWsQTr8*xYoFwmJD3LbWK#PPL-T#QP&GG6*A;^vi&@M@V9(b`aP7;H` zo`9KX&`E^W0Yk3sZ6>oZPARGBb5bYnqo}B;>fJ53(GcYsBMI^!SZM)R5B;Ttc4q-DDVI-&j}ta=;oyrSb8- z!R!I$Q*L6j867LM9q0~v8fzb?a8<=ZV}+`yG1va@sVTb~TSAVQ2eN04|Gi>3!xxgQ z(uwoB>c{<(EQB$DNcTHuz^mW%fC?TpXu=R5zT&)O{L=2e232s!TGEdy_CdcqJQDo# zZW2=DaKWKPIFi0;c;0}@3w`u3nc%-E(=pDIVy`3bXxnSeS|cQ-E^9XK%f*pv8(deV z#(;jS&HQw-98hF#6kr|hFhHH$q6THTsPD0Wup?`jkT z;8FrDU7_>H9U-8|!<0elVhOu_aUdl-2*JF?E@xvUlcc5ER3Yl_bqKVB{Pr=Jg@&bu zv@9te$=mRhB6!1$qBuzE|z0z(Z_up_Lee2$<=r{Mu zQWs}bIH%qdxGLzutwN}C7EVI`c>eskYdt`QfA-x#a5W#Rcw(1ig$m%K*EKL~ zeO=+dmCwoI$4A_6{(XB(uga--w536Bx>ytKUF7CRDCCa1heWbC&Rt#{+I;)=hfh5y zhMXMT#SR?CTo?K8YW-Pf5zp-U_IGCXG1k*Bbz?6(Q?*n&KZUKdd{?$*zrwT@tzI8a z&jmPFTh`p%?A+Y#-2Jg4)jsjSU6D)qG9f>B={h`uEM(n{4i^H?s*KfagbQ)Y5a zKT_Bg?}jDJ_}(!JElep)Vu_yhXlV5GDu3N{Jip)NzrN>_yVmZ)$+j1?y*9I+oXpJI z-*26fD$Ct;6y3TLE$c=o!+fpV{I<$IHESI61&HKncW8JeiovkukE*P5_*&KA!Xt6$tcd&mAeCb3S1A!4WE4%X^igwa#&m{a0}-Ca8$ z6Wn`@a;Qfe42X+(qL>QLdTwCpl&yxVod(^~fPo_NJmPDU%LV6!=)M;+wmyf~&!%5O zD8BlkiyRtBQA;m(VpdQV)^(N;k)}V(c#?+ZD>a1^;+fIwkb7*tgI|YzTv67iw8VY= z{n0P0T+}e#QzYc5cvi>r1uX2)3oLEcy7? z)(nTh$95ji?y`T8?tU#pEA9AMP-f#$PWR1SlhPLzsniQ$=ynC_YPLHxdJL?E-#6tQ zjRw=2BOtdcfLU!H$u!=Ua;G=A_o`76=Hqr$ z2x?Z3(K7>U5BJz!IK@eC&HgN&zg?hgX!(VLD@IsQU`Tj5Z_n&#%EpCdlcjYhv-RKU z<5@zctloh2!B6+YiMYp4AOHJzw8$NB7#rWbIXVAdGv2k%UP<>B800RR2%jl^LXe3) zPbg(67h^F*`CKIot(7gEbtnzrWyR$8`~HtgybBMr=c_sJ5QHYa1DTg)(z3?ram z>%6-}ye3OZ3&EFnKgKfyT<ntY}&A#$HVQGgQ^4NgrMi<0aw{4hlGgzzdW zlEH(7$WbHhnPc(iqULb~V_~KHC|%B5)G+oE5`b-M@I%0Sm9!o}mXHjMUJ``Ls3KsR z%gjjH&i3>}@R~sPfOrHY+UEB;#@}Fj01N?GQ2!|zYLj^^{w%MbIC4TFp#y!F2cji{ zmjVH1-wbUbB$ClcJCSvZ8t4g=Ms5pR}6R(om{_{l&{?1Tz9N#rL>=sf4wlM9L= z;iiGx*oP{MEB`rUcnNhi7rUe%Dm`ewTjn_G!#z7;@o*)uf0y2`<=SH(KOb4FR-I-t zufW|qP5Gx6NT5N_rZMs}a`>;#yYSQ%*5 zB!r^Q_LYnp`_y0>F~on|{qMG|AI@yO`I0cX0t1P=SGrjvA~ji2r|u`tYbbgid*|-{ zcv#u=bY+~-nG{NGEaZSCobmq^Z(Q;--oKSVx34%Ssv6yu=Zg2_*l&r~Wr`#PgYfg| zJ@DWoH+b0J@G@a6JK}uw$>gQI!`SG>Qd^GLwzvx)b%u11XBwP*yx*Z;-7S9tKxe)v zN!1S+OeQ8ZFHk8JjUB|bLADGp1z#O{3^16;Y!cO?j0c4%!!VIUjGokujd05=4EC46 z(%VKW8}W(y0kHz75@ynzA`~&A(-hO1)qhIk=s(ptN5u zeoSfJG$GY*@%R;>6xF0{9Hr%_pFxu7i`!_Emp*1+zI}jX&DK#HuvCZh( zsv9@tv^{{hhxY&eEB?6@j0>N4sVd*fk-;tpjREbwqs~g)EIhmi8+6?N+^=sbcG%_y z*5~Now;3vW?v|iYF~7Sab@Q?Sse9N22SHAjzE$) z>=nY;}_0v2lb=QOAmOD_-b|EF^J@c4J@ zvGMVie$S<1mn#k&Jy-Rf&D^iOZeDH{eX@#vu;TCc2gwo29?#L`=0XBS9(jg$N@`QT zhrM@6UEJK8pFBG&K~CMkL#Y<}jzucOF7JmEHPgix2ufVw81tvXs*Pqd^=p1|a+e}` zLnPfQUY3NvzE?I@a@NY{;d#S!rtj72I`@B;A)x-O9YO)nQkqjBX1OA6Z&#XG! zhMCc3@UuG~qQGL}BO6VvYk=HN@=k5jVY-E2Qu}&E1woB^ji^*47CF0T*i%0XQ&lc; zVBc?XoUO2WF_f6WW|*K>dQDkT?*~7_3Azs%OtiHUlJ7&QJv1Nt*xlBVIC(>xt72Qd z+=}~Ug(OobZ@i8kxs!^(*()r=*uKJh6;n^1ZGKNm;16Yv`7II7p8kfC@}=jmN7q0Q znzsFfb+y3+?_($Sds>h5$9H~Y+U$H2*N(`_SPVRFJ#ue7(wNvu_4N2xG2so|8H@*| zG9po`;qEmSJ}*C%=@6;aVqpY*2oT*Q!W*vyBe-;Y#(1d1`h?3Ge|ddtdU9M~1KDqD z1HmiXKdDM{kH6bo+Num%79sG}3gvK!+BAC4&9D$F@TntbOq;teMKGMs3*%p|zW1u^ z*)5mGE*CAU&>@8_+QAY_1^-{$fz;28T=2eCPTTlc^p)XKqm9v-uJpyA`N|5h7zXm~ zjz3YJ)t+CK4i;p8hHH>=&&9;*=@nt(^to#YmF7*kw3WTivNG=fw<}pUkg)KyAEL8C;g;2=}Vwporh*Ls()bl+0j^L#+=gHt2Gf} z3=yAj7!10L75K4a5>zBv>plt|(oEpB0w#R~cza%cQWw1t()OSr5kUmrNe8?jo;E~6 z@$j!ctUy<$`$`_Jc^x`%-Bc-%oCV@SjT z75+eIgF_Jo-!MrE6O-awo12%1p6LnQ{}3AhB0|Bw0Xa}69?cTf&Z^Eg#^tOly&y%j zp^hra)H*jLbIJa(L58_hCL3c3T4Ex2)q2=Re$MFB0AQV#faJh;iWd;Y4L8PEH@mR) zO2=sZ<4;A_!G|*}!&Vng)Jx806$#A&WHmLfA!S)q-?;o*!F!8JnvrFInQ0jk>JG=p zSfbUbRUZ1hZOihmsP)pM^yBH4J2M#6%Kg$7JK<0+sv3fhY$x0wSgjhd{G2cCq$lM<7PLiGQT1d%Z)DK7$|W zNZby!PVUpto02fT5Y>*Bf0yFS!{=yJvw$iDB#7zbFBfTX`LlpAf$a3mLpqm!ifc#1 zVPzP!q!i;WXvxsHqYBxidRSK_nIm~UVq&S`<561OfWfz7nKw#JHk~*&E#PP zWX=B%ph(o?m&IJ5p}It;N(Up1h@F=PFcxUTJ#a&Pe1?uyR#Uim5qT{XlYz!kO$oN& zIU-CP0r>DAm= z0uIsCp2b_92@S(j#O^xICwvx_!>+^mBadVJ9 z4(0g|oIS8$Tv8kQ+|xi-3YxW`8YPQbo1KHX)ZQ5^z2Z)Xd*I5(<63L+lby5A>@zcL zN8RPDV{ZEjQoxHfk8PKlD=rX}?Cy(g z{b#J?>mRsUUO(=u>XPa&s`b$qUpjqo@L;so)uj+U)MPH2Ei z3>tGR2hL9a=-=Nifu4b@?evOGhaU;k&pSM8Zp^0=AN%h) zcaTiyV*&-AGRN)GlVi55JvyR&UeC@VI%YQCH^)7@8yd?j%W3y9#jv!)saB0yWeG)5 zpEb(Kfp{S-{6&s#|7JS98|OvpOMUz8UcBq9N;d}EVzd~Kf3JDV*^nD{u-Z!4>W@kCs4lWRYl->|Z1VrAs#L4kVNP%@)sN5T9l z(YxWpFB=<4?|Q|UMS(^-ip#!!_o z=pj@qVafi{i02&f^YXnSKet@p63-%-S0M%XP%oUOk_G?Nc&H^(d)r! zW)w`LJAs`30ICNc?h%R@2k70eY$OahoP*G7LK$N)jA0A`04?cej{^{KBusEK@AeN7 z(4)9U89>n*MPa^|{bW~t$Hw@A0XDw-bmTJF5O94!@WYU{3$Pn#pWA8(wLAzuA?chz zv4E5L?*O?DsTUZSbVJF{F?{rDI9PI23J40y0Q#$xcR6p^b)ax~f>Q+MzZcTwA2zQ} zwm)BaI=5dENka2M^mih_sQ^?Zg;0wFR4>p8UCOU@3-aNXNC2n*L7WsW@5h(05nwg+G+77aPPP>+RkQq3t2q8 zR;tF&CwUuzvB25KJWFR&F-O|g#%_%2H^C^QLBIKE;bHF6>Dsm_i*#6h=<&0pdO|b@yYQvTuH7^qq1IU=C<<+2nr)&iQQj0SGNG(UGls zpOMBe?0E+@hxv47yKmzep%)vIM1}vAgvZTLvl?2ZuyMMYM*;xW?1ER zpwP_Z(*&&P-2xf9KSB4GyJl2U@VhoYB{>}rs_sJJk_ zKjY>1riqP_zvu7!FK)y{)Me(_(&&YT5AT0#V!s)%MLX-)KfpJfl2^iB8Dt|}2hJuEVN8$sI+BN98ZyrX-ORT@^LrHYBx36vNbXt}F1c0$% z0Yw`@oiBVcEIRu1fT^}~+G)DAr3JgHc{;Pj8-DJa(>uSPQ}tHdR8kzZw#m)TlCClw z;(ofZ^PC=bFM|^qm-Knmu);#J;<4L2=&F-Sehy?Ry7cn)i%*j9fIHvn# zYMPwX2$geZ4W!CaAkN7(ErXR=x%d=c`fqzO-EaoX&#$8G6nYGj<)S5xly>S4tQaP? zu{X6QvAT1Vd@4G{%&e&zGF(NHV#7%mCpcz(PJQG#LCr(^)@Ef3PjCqgk@PN;lg)3ZhrYFYF-~9YS_iSc>kHvb z>aR<6o~;uvKWV8lvy{%LaMhqocx(IGSIMqi|3Pl7vpYJiaTv4`Qd33;{pJiT5&}v1 z8R@;<=c_c7v`&4AZzBE{EkQ1|H~P@5WlzK9V0R$UR@m3mC$M2OzTt;Ob6K%eBI)8Kk))m&<)?z*9%KLAKmJu^p2M&_JeYUGu3lKy6=oQ63Oq z2KxI`dkZkBlEaoRLS|-W9dg#Lb;ehy!owwRBe~b4B>4%}g7%RCu6zpJtR#j%f2wXB(rzJtKwnF*hVb zNozzu@j1~Z8!GXsmi!+)L%b4*Tr#LmWITBa=l6MwrEF)3OCu}Wh1xji5&6F1BIcje zUz36h4UiKN8JFP^i&Nn_b?rnVb0RjmL5ik0JxRWYA>tg}wHF%aPpP_LggX%qRi~bN+lT?ml6tf?H!`5jIIb3 z*%Y~Qg`{iUtgK`uE3Qi-vPtGOe&>F^kKaEn;oj@M-{*Cn6IeY*~@W zUlO25*5R_J7ZO>ybWjQ2N)Qatf{PY`NeCxSeH~$X%*o3sC{+Y3;W{s8ari|x2Sn9N zarQheD$ac3F%@;N!l=DC`ikdxMD&+TU}t%&3eWKt5DW20#(eVcW{qve{c9U4p(aNk zs}&8-k^C23DZ3lB`vcB|G+em`|G=#!-hmjv)TU8JC4kEV{$2G1vul$OUe)#X-4F>hVhcrK1gLhWP z0_RBG#Y)1s=i>20F~o3&jm4S-JF&dC&fq0@=ET)`gW3q4RCfZ?pIoItOVDEEH5)ACr@zijU2tpUqQU;;6Yl~prr5502>zB ztd%~Tz;_Hst{u}S@E*G&*>K~qn zu)3PL8Kq+ZLO-%M$|F;gDM%_go!sw>C}L+rGHAVb%s+Q6q3`3D7r$xQGWaBpq?{zJ zc{_2j1=3PyIJ;(zIjuB}27qUH~)C8&6bnOj)e8QrHm2ESbQ z?q}%{b&YrfZd3oNg?(!6#RX%fp$)hKMbB0d2VAM%=G34|;9_^i{Ntxi3K4C7?3dRF zJ4d*mI@moPP>ZWc=I7kc%ie>;hG@b4PU-!r?wt;!x|QMffLW~og5yhTj*7DW?fFeH zkcc=P0jE7O%i8MNuSAnmozA5aK{Tkm_iAbh#SKp_f8vRIGrjrnO;z~$`IRa1tg?zR z&9gHvVqyy0ci*Sa-my6mVd)|}s7Er`?^0#21ps*GS@*;7^_mApCB^wxtp)BClyd90 zvqfbS7n9ir1-|6VY6Sdsl>py;-w1S*$+kcm#q&le&4s*g5p4*f{x;Mmj_`NDFi%oP z2<#X-in+X5_82gC!@qVsJP-;q5tc?{7%E?>${q;TA3SP@5HZKY8LwU6R)NbLcf7}^HmxI@##6L6rO zypjQ%EMyL+-q3k?Nk<)kyXB13i!Y1k)VJCO?PC|SJRDDm_>Fi1SezD(En99C5_*)M z$m8ezqh{~>)^zYBXGzVy{m7g7;w_z1=LWq!y+5g|u?SBV;Lp{IpO`rp+qnMMj#wp< zgVdG+gxt}DR36iu;{+%Fjatc>?Wli!|O4{N z9%BMM>`GHk?-U|r$YKF}f8`CRl-^NG>MN{cMvijIz|G|5TQthRVZ*{ygX1&(ZV4a8pXJ1;IQT^%;dG_b!~`Tn5?qb2hyy+^4u#QN z+Cp&X{JGfi4o}@Ny8&nYCSPh`kOJ|r%=LDqOvW$^0gjkFAe)lLW1?k9qM1V*T#DLwpHx8F+pXOPA^X3}e5481^3DI2 zmzM_?NMJ_T+zV%nS)2X!D<=j5l`NL(&Q8rR3ZAEV0bzbi&U4LwUs=;9pc#a;iNRwI z3)Pq*NuIQ7zm#o<eCtOWAr?$AVb`$Nb&SL_uXi>Da>KFq0n}yQ)hz4;MSRxrNU^_}kZZsXJt4I(VHscxyWU z9Ml5GS$_RsopCJto&j;*^2!JDEmqU+XmiG^A|(gVhnWzszxifzu2aqzFht8L8dO;E zXKT`Wui@WXx)iu84W~r#Fil-@yV~A$d-jO-`{x%~^F9k;urzqKFtl{ur20WlRR)@} zBgwe1kLoP5%bKsR^h+vA;X|<4$y8{Do$9We${Gv^V8bgY5W!HNApLlc4zcjIff1$Ul?R5+<5uRwl5 zeeg${dm`<)^Hu`=maLB4lA*RgEINxXiMBGHGSD@ZBzr$&W3Okioh&d6PaeMI(Vj@U zIA~w_`c6 z_ANKTsYCc{LxYx{ZIxp*fcZr7;;b{Ly(@_U7$ivOhEO6x;D`0B)S0JAk`OrRppJg_KJhuR_v>f|~oR z4^soctLPwe7c{j>R}X_DJi)?YKb7W{;G>@hdf91iV_@T?VxFh|3jT^`Koh9QXs2B) zV#lZ<`~6YSf2e?a;~@ZWGxmf5FrL5#I1PdqiB3qm#-Bz-V_`21AH&MVLA}%5nx%ls z^c)<1Kobkg&Q)EwtLsEe{|A}E4H)R*e;GGeg%M(T5PAdd$nPw2A#8H6>LK>{5!B^U zZFQOn+1C(OBX{cTQ>*ovwaK-Ckg94>?*F zisB(sK<$t)1SWW1@T_)S8a)@d`l2Lc`>DmPPrlW&BB>j@>QI*R^X-iyEwv=tlPEh8 zL*oq+1f`QPq!z9VJlo8GTs8;#dU|ShAZg0tatF>WY=hf9!>3<%`WvqC#YD<5HT93i zY*pv5bvhyoH||_fgaZiD0(3h+*bQ|{t6nROxFeW^_0c{(otV|hHt^o(;B~%l1WBQF zu(}?~;Im!Y(0Q{cdx;|sZVvg2K^lftEREMb#@Pc*i*E))jP+oW$w;Py`yHj9N@hv_ zOKylK@S!DcQ*N1f=QY>kN zn)(y@4Uxb46vG(w6_TCPwCOoJE{a|g%ac)waV&B^qJuw8(`0p3*5B5=j7NLWw*z2( zNK%-#JcDA^1)1(tQmQPl7pLX!T%t~5kjCmk5^V|!R{1E<^0+}LSFEfKvxF`6V?6fM ziKu_St3&t4yO*h{TdYw2A*&}83^BcLkfd@0@kp-JN5saASbodCOntj+=raMrE99lx zHTM11TU9=R91Z+-#x<*-$<2XlisybJis_wpL*)Bw{T9+$>cq;*MC8e`U=8Pj zQ;d)2aEF>qGZCUMZO0ti-AGSl7;f;t%Z3a<(gM4AJNjt&x0xYHRKRA>M1H(r&Cd6$ zCBS@^&5<8KpY_ha(}YZsY`X zh-+>IttG7{FJ}3Nom&Rmi&XhS{@mQ0+gR(#4^V{h2|FHnv*NG2gYUzw=43;oc*<^< zUcY5Jj@N~}xScWAj3J)6Tk6`)X70*oFP0Z-kJ%a^vY!<4j$JGntvUSS;XU8;Nq_eq z2xevr*6n<)S$eon%tbSM%}T~ca?Lt&j8*wO?nIb%-UdZ_`h|3y*M`a0{@*9x>-YA_ zcYd&5Yz+&4BSltMF+Br;u;0i_BUOaD;S33j%Z!EOa*NI1eyih;lQ)(!KY3ERdL0A} zdh0tpg4a9i)^6=gpPD{JK8=goXlyYqyg8_#gg_d1-RQq48j&E{=iDprg%u}AbUFvr zTQef@L-GU8lfYoB$QKa@bA%N>T-UtwZKTM2k+2?g?~=F}uK^uLWdqBzRm_=5oi5{_ zEGNb6t2DFo)glvw5b1B2ep_nAM1IU9ayG2~Y|OeEY0k6Y_kf2W`^;Qk%P?N8v{hH= zZ20Fa^}=1IpAfos(U)Kui6o&1`QM2(e;C@j-XuG}eo43R;vc>lKA-Np^TTWgF<#3B z*PMlDls;NYNzk9vzfjO?cD2l^so2;qjz%<#HTT0gyLwi1LY4VtUO$R>yvRpO0bSj^ zBcT^uo!7rfoX+KFEUSVwytI@_1Gz2iMCBPwQH>ShJuoyTKtr1j%Oa6|&i0 zv&G(W#s1RRZff@K)$IFghoA8f-OIZ7SNH$Mj|T5wz$qtLvMwIGfl%)20IdVfW-PeQ zvG*>?p~iX7PlE>sULI~p>6D&*IT?E6Er zTsfIp{Kq8H(8&V^{*~8dSIw?s4VYf*2Wb35!_QGN|8B+deA6d2m8NlF`No=c)pWhg zzm-d=DtYn-rh~opEo7iOtC3PfZF(6UlBZwtP`n#y>wx4SMNwa-$Oi^=IByccv1*g9k7T zrw_(Set}*e5a$2}2?qm&F9xILk-&KGBNH<>72+7Ge;-^O`Aw-b7T?hqL(aEzbs43uN?d zUIzYf0sHq}51u@DZ+#v;cpq=r&pSHK8{9bhps4w#5k=SS;zM;{Nv&MaR5VxtpwS{i z^$Vh$kKPp?n2V4Xj)u*J2pa__3Q{_e+MY65rqmr5<7WZ4TU9EdI)!`=(V_q0!GJ9y zb`S{EIBb*5J{#q3K3$e)sJ8|8GRk*T&T+z5k z9NS%dEU3;FcB6^B!jG!rL}=90>?*+5gEs+KII>Jc0Gp2x9ABgoyIqWMW&(*58v?m^ z5T){SQF)mT9)Be;u`tpnz}#QoF&>(_0J|-G`nNEU!S97Y`kvq0St_#h+k0jaZ>dkt z?3m$8@X7K~lsot=^`aQEu_*e3$jX^!+jEg@9UWh z!g+DL;$h6`g}YPEWkWnWlbiDL%!~ytUQc;-kYT6IR+TeDb~?!EcLhlp-@w@7Ml;O_ z6}mVR1#X$t8;a1egV1KWC)2&^u2jhsNYSx$9i2v*dB1Q@f;d{vg2AWqC7;~U`~cPY5=A0Zb&^=&z;jSe$)Ic>_P=h3!KL4^_mrIMNa48 z@l|x!e2>3@&G#t_lzZA)BJ3SR_Jyfup~W~lx#KxJ$K~j#)yrM0EFdj2MWej@`H}S^ zvh+yVGWf>~aDeGwGez$pw-l)02j+-&$~5oPECzigMQhM32F|=DdVo?8%n{mM9SE!# zpeL?uI&YoQxPGw%$sLJ=!yFdQ=_x7#GT=q>r&X!vI?==fa`6*UX;jQ3BqQzCzRHeN`Q$s1U@}i7OpA91e7zjgJhRfaK&r^j(s=MNxIxRi=x!EgTaS0Y zUIcGPgPC6HS2Mgo(LnLt8XN9EFC4nPB`+8HX8)>QdO6px*6mTdYd+|kz4y}=eT_7}Om9uMczyA^L$k)dRTmy2Uok4Y%SgNSwe(J#w}6$a2cyIEH=38 z`@3aSqw}U6g)wC3luB}087N21)^>i)I@UZ~i%gduRf`E5n7dnNWu?EmzfQUJz}stO ziz1!5CXlWrdM0SOhcoV(DaZzUWQ+=2>|<>To{o<`m21!K_xAqyaG~K$K!zf*$9Xa0 z%JO}sg{$QG7MCDWW-<329}*7l$t>5lF%~49&iOcPp||AI2j>;&MSAi5!BR+{(%-Kx zC6I5fl!Q`FG-;6>>8bGc^E)}&VfA%H{wZ8f;dZgTiDfg&M%IH1QspO-d()Nb6BS-; z^#nR$x}~zxhM-^i)j;#dS;}fmtMy>yMWwFZ<}GyF*65*%mR--MN1qu6|JI-+S!k?% zD7zd-;G)@Zt8k{|PWZY`^si?yoE#{>BBDgjNqpYwim~pME2~aYIrS2m!>9alAyA;2 zt>f)%*~@bioX2#(yuL9V5NDlj8261{vmsXe!r_TnOM}D4_iJbwu3s!Fulr!BeMg>k zMDx+NdU1~pHs@_NYtw1wP>VxNTsQ9>!q#)GTKVU8nf9Knj9b-pc5}TQRoswsnTaXZ zW%kFytox5!Za+SC91ktOWv(18Vcsr2eYRUN#-$VeR7Enm)ae)ga%Y-@6K%)Gl*4i& zGtY@J;aZ_pFVA%zhu=B%n?1$V#2u_FKB7$=uf2_KN)&j zzFvbyhFSmh;r?e1laGWP`Q9)wdp=f8(K;Zf-`r9a8=jn&azoj}f1r6E z7ul=WcF5s!`;T|k7n7@d-t9yDLz+-XX`rwC?OLTz z$xIrS@02&-dNaodf?b|S(c1k*O8P==pUSkWnCzu1JzN&)<14M)9w3%k3Rxbv2>I(^ ze)*INcLLA-3X*Tk-k(3%ACcEw1j<$AOnp(Q({`9uwdoAN4yU~MA+|N4II_~R2%-Eh z&4*IBKbc)EifK_;6{Nk5d5EYd&xEFG;edt&pqHw*6nR9|oC1XknA3$2S-rFW|UTC>JK0$SD!k{~jgmqdQC?ao9~nsNgpm2+yNI z(Ja%QJSzv!>70xlSZxrPOWm?QOkwPZKQypFV*#bqiNJ#PR!RgDHH~EorCXGW9n{!O z#W?{&36tNYhE;vh^bhf;ZMZeQ7t z$KO85;h&8YZ@SkBg6V^w!-(lb>>DvWx?iuY!@IKstBVFg`;KRdh3SE2o^;&tRhNzo zAE`VTr&R-d_TcnF;BN}C30D?kk;dY8vmAgAmn+N*Wts$*x`e>-Oc0AD&e6!l=oTem zQ*IF6o@N8}6FIZwnVgUEPdXZF`zg<&E3%g`Cv$4A{5`JCWc&y#@$x(z$mDuyz;$AR z8gJ$CoxJ z8FMo$vzwcnQ=RGH*UZRgxs6vhFg-qgzsjcN61vbr#JivD&K+q=!YSo>s?bf02ey6yhv%=*B}-^dre6aCIr zR<&CL8ydmh$A&A_RSd;Too^4A5Q7Ww6kC!)bX)YFKaMqI_vk;P?a~Y76U3!D3sxez zIL5Z>I#&0&5SL%$z;Qy%-rpe%UyJ!p{(cLro>^*D%KK!Etw4r4&xgl7CxwjE_x>y{ zaJ%zM-m3Cdl{IwdZ*KmT+g>=fSu`fl58=ciAN1el$tvY5Y21H;bF;7fVYSd2b}@yn z0}LmS7kG}vJU`jylmA4^OmIcNl|D3U_XiS&I$vZhDV9;T9jn|;Lpf-x18brJwg{qicdx(Y-iIT+0-EC`~-4`)SBJ4zVruZs2l3bWzi;d-AZZ z2wv|q65uG`3X;O>)MD1(e;j*SUSdyg5hf7#Zu|Ta<5k% zlDo64KCORk54-Q5grR^V!^QgFnHy{M^8tTFoFmHPV-90!dIP*W*PO3froTAe z;lqm)Lt(Iwa!=4!(N~%lrJQLApiDYtO%>1K#pUvU#40GYcaf*bKb_larSr`0|4I8e ze<2nr-pdtU&vJrjcP&O-B}_{zV#M}fNx(6O_JXCfyYVUY4frjq+5SIOQAlN`7-e2r zG|j=lA;wVqltLUH90?_ytI)vEv3-$ z!`kNQ#QY^GuhW~ub$i?Un=WHrKZ_hO=V|Kas|L$)#kd~I#du6&7Coh4n zw22Kw`whC=}*M)e;47T4V6dsTsJ;`jc;M=iP#?n1ztt zHR<5-wd}pNlIy&hzemaGm)nDTA`E}6II}LNOrP}SXsjH%^SUPZ~9|L(2KWJa6k}2v0g?UCDN=%_! zr{Lhw*^v!5Ia73KNwh9g*lmqTM*P80s;X!*6b6pFsK^28pnZkMOfl-fLNJd&2x4{6 z4B#iAt!IO$w(RkikOtaHUF27lm}^~I@CvpD&$q@6o`Fp!8fKG@UF>gaZV}89s5P3C zH&|qQ>6CU1!0G}pG(Qlszu>8WgqrHKiILFx z2Wq9?$j@rsz(LLuROqk(9TTdFsC3?EmycBD)k|k&2Cu9c?e-_JwhYpmC0 zjPCNNVC5yNkA42hgeEN*AI43*M~x>uPtE(0<072X2!2cvaUHAU>n2#Hj&C2xOLl`k zPn>#QFBzW^yM z9ET=88-*4inXKC7rvtL`#o2q6SuPZzm0Ls)ELNYq;!G6f&kqp0k^fw&QQ2^nupA9s zH=G#kV>#&Ll1->?r71OLS-D~q>UsyuZIQ42dg6E-1_Ar|N_An@2M<@aaU@pDV5j!Z#@-4s+tPngz#VafsVBs9J$)Hs+OM!VYaY+ATaRW z>t5|(JFfZE9+`lzrUcjJ)2Zd-^?y!NYsg}-sXbcC0OuQuGpkT_)K#kRZer4kNKuIp z5?2(CI!Ta?tY@(kjuxKguW$eHX+K=>;ga;IV;I++jC=stH=2{90s<$9W6TDDfxf)F z`R)BzrAKeB?-B(czURG^EYmGlRcuA-yh{D z8J5Patt|(epta_S<{7)8rh5}zMQsbxP_9=|yWXngo)I*)xL||r$k_7E9t++apWTF} zlBLI;6Rq(LI=B6A$dj)s8A`-oTy1k+ncZc)n^r+-`{bwJwRca|ZTey9P_jvvd10-~ zm#JEh>32ucYKAvP17qw&bdR-jtM3o#Y)`hezF1B72)R#b`2{h9V|xwhrAEc-1}E4Z zMclJ$klNSZarerzP87S5&Q0^=A`54O>$(YIUSk`Sn8J*;^%^2+m+jHXrsSp3RNPFb ze@KE!;M!=rShYc z7Vo#=OjR#!>5;@ELE$GqvzoTZBrhCu=6a(|dU5>Tp+4TJY9gP1@?!Zp%Uq}P7SEZU z2c%?HSr>h)NNKTjC^>yhS<&%96TOVSZ1VW*hg)mdM^2%q|9%>CC9PRjAL(!u85xh0 z?M^1G?0h#fijPM!2;*-Q>4Aq%yjwOZxJt~K#NDFx?vdF2SgE(W6W zV!dD9Ytl+GDEyOLV||2R&iirQFFE}z#_yxssn5MMenH$cFkXm)7@F9tr&mzeN_!gh5GLB?$~Z!Fok=6v0I>sWRg!|Uwl_x z>3X#NZoj1YZjbz3w$hvb8f7xFHNss$6hZFk>G^Og)!F#C?VE%n=hF`0)nj|z9jb6h zvltXq$wt9GCmOsw`XIf~8v73K!#iBQaHK{x=pVGl^|pKLZdKIn?g~EKI&-VWclsjw zI7S586=r5P9RZ-PAM9}TCjeKOHXV=x-hXzeVAGqKoz;UIV@C!It2cO^kADL5mjAbb zg3-Z(2!=XsCKy9dWPycMOAA`)(XeyT0gk321S%a^+dw2~r~^Y5{s_d%I8^qAA%T7Uoi<;sD$jE>Y)BmIJ1o4*raHF5Yfn zjIZ5W^N0|dI;Jhts37v$XYV+*Us6_X_wXqZQ~^wFu=JzGVa6W+k5L742Jp9tKPAd+ z5U7CKq5)SX%|lI{b$<9WRfr6BLU5u0ph#6CO-YF$%=$Y)X9d>9ET2&9&MTMRxstjp zleFofLa?M(Qq;O3p(!;SzUPeT{oN#0jV;bw+aoUQiz8~*B@ZMlCu1{QWZgyb*esWoJ#k}nzD3pHHk%uju0G=vOruSt&d)G=Bp{ZPJ||sS1H}IXaN~9aJ7;qBEv03 z>u(6Ly0f#W@YJ{n7(-itH*=fvV%qF&2{o@M%ln~-;|cLm?kql zFRG#|V=mFb;!s$8oQ3QYl?6Xyr~9qKf(z*AMyijg>`Y!I^rs-BOJ`aF(xRMrS^*>^ zFPSB=Q{8J3NI1{r%r?rS^JKdlW!|1f$sUiO=TR-h!-^|pWw1fC?dq)*G(+3ne(nM% z9Z2AKM|hb-7|21RBQIb@nsf|BF^44v^~3>TUF;gvzAZF(Q0_groO&Q~gFOvL{Sm-; zrb& z9y3VH7=x+Dq}x`Uai1+ez{8s4d&UoPBw480Os2!Ig{AXc$J#LobD&iHOPxsOWIN8p zXWD;sp7&-4Ew~8QY`jOUwvpq`RZfO=$F3c%`k}69wZQL$12D*$+rS2MH}!5rp1)qJ(zjG@s$@85V}sZ z`ZD6!j|ID$Zq3)+3|T#M>)Ma(kPX$bozcrm9+}5Bt_qL3R|N3c)NK4(D4TfEoMYfU zG0-^#>g25=jjfi7Ta^LpKl750ST*-|tT*n|Y^bXfeJPGrKNc0)HMYf?bVbeA?o?F< z1X@0Bn7y~O7z4Jg@-a6BZYT+UnrG$aN8EiV%fh6rqTB`{&u~sYwE@4uySwF~vq4S?7aB)-!3? zl6Y8nTD{Uv`rncs0F^q$t!nr4mBDh0bdUsPj4IDnFG5T0fkQU68z!8hsLXdSjRZqR z?zxrynZ~1cXC_X?6wleq88y29sBjD1N=gp-t+8vgc)s$%!}52Es?NPiiwAMdcCR5C ze84VfkooPv>=UG^qosmaWN<0VE(ZtAz3;gl6S2XFiRifQk?o0!% zveg{M-d8XG^4sQhRSa*IHPZOHOSEmm#JPNUpMcvrAt>{ zU-dcl=O+UX_W65;12gAv1y%Lxbi|X0A8YupG9prxnr@$ivGurqhVMG^lG=}Grvhuq zR#rz8qF*mjEU#imB>DPi2hSQEFe=SG8Ai|5Q>4XG&m=*!C==PJ_gfTM-|_QaC$G-i zgFf$t57sY+e(wJnY2_x>#Z`U6?vbkIE2jF}akG{Z-HBy)E}{#+7L3?TJ|}5eS{F5mAyVjczFvnO+Dx7cz4^93 z%+82>xc<($VZvcL*#aoPkUb!`7XZu6Cj}RxVSHpdGg(5)JKw^I2B+HH%tUHJbj^&E3~g5 z?KTMRj4Q{{GYcz2hWh2o|8`NByEvo!)R9efFQ%^W!;ggx`-T0F3Lv*sS!hHw(4)~` zXyEw6hyW!i1Tg#zY3}$h0RbeKFe%mHA=?7gE;pS4Cx&I1zTE}RcT~=w-~G(3Zs8)( ziqiBY9#Fuz17S*>G8D$2zRmJDAat}QX!=y$->U4LQlqipaUI%b9*dY`A`|bW`_q1Z zxKY%=B7%Ko7F*W&B7n^;{5J>AQ~Qa~*W{yeE<`q2+hemCtI7;7`!+mD-4ws7=aBmK z=76QKbJd8IdcXkv3?(aK`s_yQWueyKFB4xNQbL9}tHv$t=P#TVWsFV7mD0&H<7oK1 zpyOH+2T@LLX_yS0rHkXR<(v$QY|GxTopIqpt8G?HwGWf{36Wu|g%+FUCPyJ@Jb=a#>f^Vsv9!Q{c>{KS@Zt!Js^?X7Hk#jtc1GRXQ4| zhY^vlDs(b(@WsxS;m^utU>iiyF$JwW=p=TtngRT>3%nPg3H-PS0HJ8CyLike&$ z!H&(abt9e5=ol(W*7d0h-1eel^6IHpKVRiFx1I|ImHnQ}K5ago)|_$4?SqSTXS-K( z<2ADSF$$e|SH|Bg3?r>OOHkd;B-^98?t(C$ z&4D#mMN}j^ykm95H8<(6dufkNzJ@chf82&B59{Nu6(lKz_TXoB z|L_Ga(*dytv(@Xrehs~7O@6moP!hb@uj()5Pu$-~9~)&`J(PbcsCPYx($M(0u(mE_ zV<0mZec_(B_kci=M&`V! zHi#wl=}%OW7Bsm`Vy&~aA8wCd&I3e;lDeyGwNPxMe4gk}8NieUOi;#bBww;Gj$W0R z|FKYFXlUN7XZ+$vtZDFSXGK?BoKd{dUu8HQ_A%=0m+Ys9>{LnDs&~tw0tPHy=t~CL zo1M`?anWk`NhhQAIh4{n)jEVD%H4L;f^x=BMn#G0_I|aCE)IWI_&F1cqWyA>l||XU ziwAnuj^*8yL>*tZC(j2-;rUEI=z7&?4~DVao1m1!J1BKqdoV(nN%VZVfIrMaALZ|)M3-o`f0c6dpVrca((Mu(Qh zSWU)Q(^ssMxT}UixRD}-ipz8~>GL!{tLb-Wnb4!^o1P7iHgM7DA|el4C=|*hbB(ic zBq;NM7v3e|poP#QTFq~?h4|(|Yr6ctbtaUMvL?OqPd0)YMY&WQ|58O&SYG@My{)IF z-TV5}i8PNn%T;41J{^rvxp!VK%wA%R;!(G8v~H_pZ~kV;)@t2yOa)*CU%7_eiRpXu zb7O)3CU>Bcy`(%nqbwEeo04K$geD*<3W$5KePWrYdluaFH&K?SZ|h5amc7y|e}y(; zJO?iryeV8oCO(*U*elB3{yeR|nqIe3xBp#wFY~Cw<*IqXPY)@ZZ#|AD?N-hXUT){C zY$|_&OO0A^uaFGji^>d(i;ushOpHvthISF3{4Q$v^rNJ6Lx%BTp|{SdZ`?HL<@#vZ zATD~*-+oYuFyJ*}QtwRg20mj~reka;W@&fIW4~)!eLpW*@Y89Lrq3Nl*;#On7rP8! zTv|lHw}E;l!PZi~4hdN87Ds)pi+qXXsf={oOxnqolvN!aQ0$l9+?%+y>tX#I5)7!K zA61}|fCCi#<}=lw-AE(YX9*>b;BKcTC4sBNKfkVP;Ew1eX6BW^0 zr!3Sw*syu9Ku9#<6p>4ZusMhh3`W{>q2S134@vv!Edi(3j*e}%G&iHc7n-Cl3}(Xn zUD>cP0-VdH6Tz!-2ZI3Slh{iGnFnf@bvEfKG+CUlU8s=?)Mo&?UD`=RsK8H6Gz7Y# z3h>Yt_8%Y!5pP(8G9dYX_+H_uAn{5Doz5g<>*Yeq#uBG-kpeRRzgA07C0&5%AVknF z>AJn24z=4!-L>nt`z!7a7bgeJo=cc-l~u5we-ME{$>esVTq@L?LgI22w6(M9V^0cq z_bRu1(;dq(6TH;fT*6=&bhD+0+-n!9D15Qr_GL+Va(wnnuXENV)ws?8%+&iu}| zoiOjGn()!hNQ()kgnVaO%u7qcWR(?ZA&TcXinaHCKtR>d(#ZL|zBh5H7a*iO`ios@ z%5+tlMM5~v>AQ*6F?&~2Q@tT;H+btz>N~%50Y^H~3!$ka+hXF<>FhZr)9s^Rb+px~ zg7makM+ewiW)ZkTFy{CID3F1Wr6*x_u?D>PgK6Oh zgoE|HC0YS$R1YBSq2>j^lE*I^z0q>MkBKyQAUlC47e6o!)|dMKd693Rsfb5E*{hz7 z>GBbWM`?0Eun#y7LNrlW%1>n^5~2Ev4o-X+W-XmZOq}>?aV?z`Iu%;LOG#pVBR3K> zpH{g)UYY$0Lh!3<#I4UOZA1Q}JA2ATBytiMT!=Q3x8R-EDyUKQ>62N%WzikC3u=qW zR~}s`LG@UDRc9BD@a_HWq+a7Y;Y@`8VpVh`=A`WE>>trQNZx6M7W$pp!je(q{@-T5 z`%B}w5Iy8e7Kyyxr%0IzkIyEshRpU`@cos-{odXLBWR|Bg#{UZOM1IJ`ox(~6N$VZ zI2nUR0>qZ|esENc{B7x8RH~ z(<}s@i9}zbV3v)WB1p^cPyCCR9clTZGZbsGv6vg5?ds3*UAapselWXw;Et9-b= z*#_XX?~g@4ib1SbS>2BGe&PPFr5$qit!xRgl-CiuNO|jYlVSG?ZfSoshvUmtevV4+E|;<=5WZ%`oY$4e+vhR(OoHtt!wEbOLdjc0Z} zm?~%~E|z){b%01SK@-~`$!pJeF?uN@#wu6W*xhH`>bh~F#_{KQIt^@Ip0QW-L!&T` zV*b6>2K@zipV`=@9gxfYcu+$4oAp@zEh?Mc3WY$5A!y9i*e5Ncda(Fr+V4Lpr|Sh6 zJYU`CbL>d$_YoKOLAtv zZIA66R9xR1k>2?fJ`!~HL9qAsO1M#Wjk1cmx^+oZqMn|U-bFO4jh?qZ*lJwC*^fE$ z3~E8DROQ-_z@pYcPC|%qU&ESsH1nv?p8>I7$ltb84^)X8AUw{ywbRV5vC}ottwE9A zn~`QdrM>rhqwZV3Ynlp_uv8S2t|>V3O@30Z`=U}5)gO3W>2Pgw?=WtRZ_Vsk=T39(6GB(N^yV1zjmcl zV{c$=CpvpnLroOpZ)DlkCFSS8p1c|mORK4{5tQw-*m~CBMQVXFsT@R;GG!)T(EZ^_{?vOUJN^rtjzdtC){>UGdITy_Bq7M*W+?Ds;Dd#%J&fNez?$oz zRt3OfnpcttkktxDByzlv^AVqcB!(*g>2fz%vmzm2m7MQ%Rt^Gj!72-D4Bek<_muB& z^sl9mPULq?;-N`|2g}_3H9Tn4>^9ik)nilmG8AP__HdWH_=85UqW6WxGJhlpUtZ`Y5gJrEY2*Y7Jr%w zl~?yENTrHglJ;w37N%E91fQq9q3B4bgQ!=^C8e}Z%xiZnug;gdWtRD+-KO8I%%`XE zd{n{fo44^d`7iW-G}XI%X8K*;J!@|J3|s-;rKBlT{!NAt%j@R}Cg)UC3h-ay$6<0` z>aHA{D8Kf%U$O%e%30aj`H2}n4-%52pn6R>&uq|lurqaNB#?Rf|Fr=1i&=Vxrm5d$ zo^CzIA5ju+3;Ykh-J6mPq019lhftW5MN**yy!=HYO$LeU`yQSG>qn6p9H znwYC7wyFzs6epTijHsMb-uGBnUS2uXJ@(0; zFqg&{uP`N)eY}iNXO74q`i|QJ|HhR%XZxTfgg|`HIJ6aExvW>`V@9d2C+KN@! z5LJH5Cw(Gb?<$;~pPz3Y@){&;c#K+pw63$X@O31m7zku^YK;>GgLUi4qzcKTf~9Cj zg$z(%DWyK0+~b~A*;ln;U}#rY!o@X_a* zrBB)ggc|I&V^ZTBk{bqwoNSz~pUBgzwUor1PP488i%i?-KB-FZ!$$ej@x+F3=}` z3Pqe5W&aZ0p_c5*XE%vN(hKKsR3>HIIh%d96`Qz<(cMMDt;1CBMhu6>!@oNkd+SU4 zb#=RIg4=(S#~$pr?^Z?|oHyJaYHUpx7R<~zCLoY$ZS~H)&^GO_;C{AX9J*xR`ue!kGZ^X^It(o~OnGIJ(W2TTmJ?=Q3O{xjO0EZHaR zujcPfjon{;O005S93y(oO=*cv2KSniKUqiNFZLtU*9+z2RMsGr{^0P?kjjV#l37OC z)b{J-cVFMZ*N!(zjOBr|)(b=CgfiuYI;yFvs;Zw_?{`Ljy{@z}{B#bde7^3wHOtu6 z=qYI4uJc;$asfvrhExv95%{7)fCfEy@L-5bGxaN`EEO8e5)FL1^j{axC7Oum6}yPg z@`NVo++4I7REXTJ+ZWusocsjllTVcn%$-nbY%KMbRB)FXXS67FliErAhw=7RG$<~d z+Q}>2f2f5WfI&hYl87w^1?~o_U-V7h=9v!{k^a&++e4Z|v><}|4>UeZ)i6<2E}YM> zAkOvAm)t=NpFQ&f!UD(wG6?-U)bIe|Wy(@ros|^L`wP-Hy!^o#3E*lR1V%uW2n$#l z!&<#|mI2}0+tgy>u$O>&7@j(Q_tQL^EwPKAk|Z$cd#mZ_vtH8@oFpQP*7 z8Hf~sU6-oR!c3LO_#kP1-V}n73tt-XFa`_x`_b46n5^kI;T)4Ex6Xn|7sm4EGjU5k z8#k3o#;Sc|u!sZ|So%TXRj(Z=p6ry?;p#B3v-!YdcOiS{YjW-KKu)2c#`ZlvMb!t4 z6bp6%?NaZ2@lzIuo;B-V6*u+vk9&=uv+I(L$P|!ybuKPkH`bbtQICd6CNZ{{L2jf0 zg;RVg@e4D_BP|uxi7~e@7MQN$>Y+kTt?4V*+u+0dw>ZC1U7`950pbRi%2Bp| zo4lgJChI8j0i5{j@K`O{EITKQo$AG?2)}24H!88j3gn&NPW#WSeDHw~E*~vpgWv)Q z8okLN8qSpUmO3pydEh=lE>5OsMB93hJwyf$AN9;ZGD(R_eUXlT+5czznLtK{Dv00_ z1LjmaW{@YEQIyylq~i%^j!pxrYX}oQ`KoUEkN2owI(K;8_;}sG+7(E+y|tmBMq;mt zfdMofaODC}loOD7yS=YskbR8IvG@zVd`v30L_1@yPT#1Z0IC5X$N$ap*brj#UZf`d zbvjloqWwN)IxBuDgOnojvuD0cH{NDw@*zU^{d9x7RM$}!cR*5jwt3lKR_*m4MiER!gPR3f{F(R~(T_iVS{ zXC_8spadl8gA5%AF%km4U z)F})Cq5b>&cJaORn(IA-zczvPLgnAW;?p*OuEBb_SH_Pn%x+W}<>ckGxbAQ4hR?jb zk=695!E5(T?O9KK>*<0G{Zw5JeBo@jRL}x(Ckw=(B{fY!yC>PKXl+(&o0hZtL@tjG z*pI{7hUKQ4gBB-iJ6(Sl+wzU`z!g?@g&$$1&95vr+wXa$>Y?h;^O?97yYsbA+9<0T zHv(}euhn&P?DYD$!73iVTg4H1Ct@Bksz8%f-@`FjDPLv$+q7D^&cKJXhNWz2q0BVLrK`_JhS<|BCUd7lo( z1kJ!3>#Dm$E{wFeDL$^v<}(E<%h%y`Pw7Y1sd zid70iEz=Wk*35+crSzm|w zW#GjIRlD^t>U=Hj+}1SX<@spdfx5x7%*c6Bdo0?HL7?k5UcACztc4AT>4*;{4JtY7 z2JRRAQmJ+neGxj8dU=FI_lM<{9(bQUAB>1w@Z3`;v1&7FoU#jSGRi4kUUsVvUjA04 zbt*0I8+1Z7cQUVV(&HSw+#CFBYzBLk^ecR~o0!yXHS7tlkxX%^G)TF#ZfvLVEnKT4cj)L%(K*XLP3#e{@zzfdy|0AjbjQIZ@(`A4I#Klhao(f$?mdy=d`X^@E$&Em4fqL@HRJ0-k&Zn9A;?UTj{^ zS}lw(YB4yGT(prut^~SN1F*H#RhM!$3qD@2Uu6S(Qot>OGb_dpUqGCo6zyRCXaiKF z`taSuq+&2E=I+)ZdCzvj@9BL4@&1yEU1av-Cm#gKpS;3ijtiALf(}4x23p}m7Jvr? zt#6mgg*KRTORyP`@-K=dke>Z-_BaZJz!x;cEdxDIXXnb~|1g-Fe4YBV9rfV!0GazJ z*uQ+yD|@XA12Z7BNXGz2Tbn4BK`dgsMNY#Qg4I&icBh_JZ+?pIpyS+V2r=kX^?0rp#{JZIq*_d$C25_t$=h6QTLp@WutCB^T8iEev zz~%QncNKoHB784U+s>CG3mpkHY$wkz8&oq?YS-(rgy_!Himx)Pd);y@l{GgtFOo zN%P(b+37|v=|we|RsP`zDqNb665xzo6^F|g)XUV);FwijoEp5af^j$Xptq`bW33w@YX;y@zhT}b$6iz+f2Zk zaEOG_T#BL22JF5}BNaW*OgDx2qGZtcy+YtP>!)XE8+rA z*-6G>j8VSgHepoGZo&#kBg} zYqxvir3DKeK&BtX*_+~xp2^C_G*xheUeIm^(15T}QB=jn1Ry2~@@k!&c`5B9zp{wO zU`7wdPP4}My(h$NBs%@FwG2uZlQ1*kGrm(IVj|Nm=FaKWSZvmgkDo_?OVv|FQ-c>u z>VVpmRqw2Du!LdlEe3f zH3#{4&M&pgTuD-lbWG%3D~m%w#^vg9JiGoh@6qI(yw7Q^?4v8ipfu{9tu1U%RnF0b zD){dR_b6(uda}%eV!S%;H0F7_wcVL5_H}S*=w?hQykK_5SXAt1kt1HZX!PKqZ}@CM z6bpC6cR&2Xtq>IZZa-Ca-)WXsi(qqSra6M=?L2jFG3(0C8o;w+&RV=TkT3pH4HVfa zr}qc%nx7M=_MIZ{_Iu6N3H}!rP-plya|HFGw{BHw$!csrkOMa8>uvK?MJX2XBqE*c zgU*|#aCtidPbfR51*ur;&X>Fm4rRL zl=1B&N3-v)Hg<))Q~WLprrcMe)h_9Uc3rw9A!NHFPS?q={pb%lz`B$em1Wo!pu&Zr$+#Z{{sUvy`B z%pq71D&bAVpu~V+v|ANk&0Kb?GrW&*?B_-4x%~iX4fB1NVyO!A7I(tfc+djje7*7% z5b|y+9Br`92{avkG2RErN-cIN69*CV5PO%mDh%&?6Lm8si;H_ZllS&3);8DdzClwE zk3PLDUW;hV9f15d+EaYr$ifUpqZz^T9p*+S@9{@Z0^%8};4!ho6{y zkl#t$N#*%%y&2ifW=vZfx01&`K=rtC+7J&H77D&Ze~ke-O`~=ann{f5GMcX?vmyX3 zMiUOlOlXV(fcCK`R8<9y=HpY_eQ>sXz6JwyDB~AESOV0rV6+YTQYV>YWI#;Dg})Gi zRyV##x{9V&ghteX`WbLJ?KeNzeECx-QZtKPlYsyy|Algt5i$jk3}G(h7A}zH*B~Gb zz>h$@CkTJp1>R)p4+kueS>SO+JTb;;T+CF_;+=xD!_LHX2a$S zf{ZWkvj7I33_o}SKqxdxrF82M4onu@PmeqS{sX0_{-GS`pQ7%f|JoHXF*eq<9aKMP z+4TD`=ddZ7wB0TYw#XJx5af4%zkfM`?%6c$-xyO&&O``&G^kK|5j6Agy$F%O9h zRyHCeTim9^PKD%}+YT7g!o`&F`I|)XB3C;!Pge-Uv+-zls{Ez;xg?Y`!eI`t{S-NS=P3G&{3)^r1|S^gG{ z{;1bg@eD8hp0PTu5E_T;n8rZEK2IeleNm=19dGn+V}Bqd^leO-7X45&8s`r111Q_V zcPgTB7tU4?btSW0_A({o$}K)eFu*a^hyt+~FKYi8L$WU^f=llDk6HOjezIswvNClM z6Cxg%Z`7fz)+-EO{8~1S%|@l)sR0o_J#UTUO}>i=Jy57=KQ-=amRLH|WERa;5v~*;)+Lpoa^EG2I?=YG!AXWUCP8-q~^7AAS z8JqdvvK*b-pZuIY;i6qM8eO7se;0%dj%O`&CY%MN`(3)#hE>G^HEP3bbcynll zNa(#o|0uAAy?AEER1hSqC*67Q?pN(`J)PGIY68~-RgirIYPUo6T2nIdQqN4wAs)>8g%geZe>@Ll2AQ<9U8{eoL z%9WG(%W?93sxo+CX=se5mmWP2<|{wm&xD+A=H$Ce-Ua zarSs=4Lte1FWXk~v`~c>L&qNtVymgdms_wXogJ0xN$J4V&IChr>9}*y)_THh;Obt> z>iFPb!r<|rrC+~(`<{0{Xm)LtX*D!Qs^z+|GgvqH9`|&Nh6_k0aLIE-cFc@t#fYY$ zSSZ&w*F@c+;Fk58=$iS+_rOY|)TW=JaqO|x4X#K2h$Tm4Rx|?+jn`~0zeT2T@~A=V+CxbN$0|KBPx>^vm|*H?7XGd#C29*w zeEL;`YMSAl^r%*v{Pu^MD)V)ZKev1ii!HK4ASI9_9YuPOh7`skC%Z^8m+@rS00`%1 z{tzOWe@nXKM)x-qJtdQ}?jK<_-N$S=ortT{=@Os$-hRL|y6TdUxG0i@3PeK7_2H)B zHyo*+X8iYF7tf>V%aQ(49&SoTs)tE6^#05N$WGlczHbl>D!+W$^hcOGB*5z zIY1&G-VGzQihD@vV!#KXmEwMaRYAhT4atP1K7NL%rzSp&sdj;fl9k=Mar0V6lWaGQ z#RDhA)sNWgjlzoY;=T&0u2xYQjlvX47V(d*$Ym0hE~)mXlXmagF_Vt-t|WiWRvY=V z7O-2s8F@~OT!9}1 zWM!5fWBV)5H_rE;n;%DX%Ly0fogN3vQpT>ruV?Cv&vTGh&HqR)Tfz`O4IoCxX51Rf zti<-@r6rHCZ)D$piiZ@ux=wZDHtb55e)2sMGRkz`8nvX9|NabVYsCxc+jyFqV!dYK zdJ2c)wOe;{63%uj&yGO;_IIx{v)Gj_l958QM~4J*f?MYfr4gCJ{0=+D+Xjo2|uwRH>t2La$7NIknquc}(UxETSr39#MQ z3qtK+^geA@T%2UAOMP*)mn<$lP_ouv%>bcSa*P{4b#G zn5kdlP0w(S{wf`BetzmK=kLX-%*05>C}Xh^F9@Cn42X@vza~lBV`1-*Bc5@Bd|&9n zj<;16lznOt=K@M9c$^eTZA=GBI3H+eL8p9i38G?B?%wXb_x`=ZX1#>+zkTm+CX}|D zimf!b=SL9&+Frh}Ne~tuczOgtKu?`w17bs1)z#zi1HAHy&xq7x3wu3}!=_CKMSc=>mFoRJystuQ?LOQat zGTVBY563v$yENBPX-cNbg=JD%F>tQpm-spi%hmTN(fGhNFH*7ICdu$F9q$|H5FUsz zM+VunPFdkCm9DSWlJ^QP=zSs${!soNHZ+F97_Hh?)SRyc3W|jYf;7J?~%s&yE8^*Ywsf^ru0oxYh@L zf&&5$=J||wDLtoX10`o>Cae*6drF3$MSmUbalK!(lnhzQF17`UG?Ex`W}yBpPX5mb z97L6Q0u1^?%T-1j&Y?trkv&_j>NTRK8+XP^OCu%bpvnSKd1YkczOL4LXR?xD zikT>zLdi6{F8Z{b&4z3D@YXx7K3ZQJoC{b#OYiMX$V2;SJ$XVzt)lNPp(qqz+@qxD z6kzXl#c-*-{n>X~Yb-@fMx*U)X6$}*KRWrh5_hpz@e|scASC3;%cCdhcv*V4`}&AU zKnn!yRZYwM{=>GJu~kOh5zs z-QeEbl)@~Vy+Pnk{tb7IZ%m_Q%xC5{l|}_wOuRw7$~G|kNso*^rj^>?%R*D&?K0yH zR?GZcT}3J+{jpfSGIXisXY@DCuJwT_DRnMM<+gfkz~YJ{+hA0Osr?fHd^ai}C_pat z>gv%q2llsr=T%3ojkC|!784?q=K_ek3WrIXvyGmoasKtkqZ4)*-&PLpNAjmXruI>m z#9wQ7$)9~nz2xst1meJYN32<8UW?Dd+vHwL{CGk9RThlzxL&8Qhpd-T-$O`}}hTL_BfxtCB|jJp;OKs=!pXkjQtzOu-TvkOYXO3u-SQA* z5zC>xlw!LFbzkWeCVOV^p+=M3G!pQiOi(dtQKg%p98@{eqU?xa~H{rJG|e zO51V{Ry2 z@?UCTV$1waFG-twO~VwaJkK+z!ujH|QpiiLCnO>iYz`W0v=YLr(rV06)d73IiF4KCghCnFA5J$TY5xAmPx>CZ7zVmMo zkT;i&Rk~uIgYt4wRG6&GtgrFad%i*c)H8v@El6~skf;POK3-Z{8UvQ^jp?Ifg?+KM z?aiRm*>&Jq9IdQc@}3JMws8CT2mX6Il8H`1M~Jn95GunTuI|-l%*v+Y{V060`xwH8 zwO@t}$;d>K9K`$|FMoQ6M)WNjiv|^v70Fm=!ks&J78`^f4iJbFRv(h~0{xDD{W3o{ zKVKM5`n2Eruc))Lvkpy?U1_ko>*u{`5gcs3fLKv=A6$(YXqtQb@IFh7W$8Oj({Z5A zDIM*Z=>u6P09DriI#xt{rtKi@{F>4L&a31uWOm2kV%Q1#&G%qlIsssOpcr`*3;_KG zY$P2QnB74D*K?4|0y%ngi5CoWNiK}6tzZURPwf_6-~QGh;5pnerXJF;%I}?)_VItk z3nd6F6v51O)1#n0yksWo9VH8FEptALaaeC>19%Y{ahr#cH?oZsICX%N;xXJ^01n^9 zA9PT02ki8Hs<3}2z(}H@a?u(8&ur>q0NJQnu8A;EqHYGev1sax{`Nv)1VNGq$F&uz zycGnK-v2k=&8SNUqNeBnJ0Ym3z15@$KSkUJSsbm{w^^Y%s!E z;UVG~EMDQ)QI{y+K!xexq2WbFLhaytqmw11zltG#)f=zX`#?UQj}9drmq5vtj}`Ym z_-iQWm0A#g*O&8ngdWXdO z5)f~x24u+BfxG&KgN*l(A(w82bkc_Gg{R!7OU{lW>Hf>puw?Y(Ijp-WBQ)RX>P?mR z#6NwFNPw7%w`Q_sakmc1kqLuP|1dndgj$m;J!%HJQ|*&}rP@gPd}eSFI+oi|OvSuU1`Cffw7l?W1f#(!e7p=K8N9 zDIaCV9gUw!tPJO%z$2eNeImw4gw#1&#{!coCz%-^T<~vEvSm8h76ZnwEgv5W5`qlq z$El^OP3P3%G-4P#-!WpSD5Fa=(62iAMXxF9poWWWd0l;6IW@9S6R}xNb(rAYt%Xm$ zLkS6zS(cIsp$GF8n`bRp?K}mr^jpp@{>a?@8t(yjbb(W7z>5=STC%)XTZbwjJIQoj zUe2a1txeMQQ%$y|L?V7DPp%c5oc#AUE06ze-=PN@e?km@uN{UfUVEsAcdps@bT6({ z(m}nCJ)p_Ryv$%x+O)+Dr19QI)9eiVx&DzD@n5HW`{Q{In` z*D%FHdGs=`Yg=+=CJR?A%pmu@SfPa82f1{oK16k5=VqYo@O^FtnWF&^1^KP^^zfto zl)50dg8$LV!133`g_N9@oEvntk$>qQoy>;c8Twl{xjE^7+~0%Cd56an2aJe*_GY7) z35WZy)1NR}e!t&^t#?}S%+m$yVc?hDg~s89ztHGP%NSol0|8c2YIt{ZDf)II#0chq zO@an*%_t~Lw>5dYEYqJKOqn13IyE++(;6}>>p59F@bOG+J=mBU($3vm?9uQfhgO)k z1^KKR!J|M@PwVEh2JT+hmgxKaFULnUnXS3*@Bx`fqv8IygY&*H3}Rq#_0igSZLTH# zrpw?TcRv;DH;^th7$5aOB0SZk?voq;;K7w&Xbon7<6vwA#|?LBk5VnUHx0S z{4eXEFZeDcGAM@e3||p%I@Z{%*$;}W)z@m%yXUdIk3FBq=-J^tzfV#Ifwj^jS%tuZ z1ES)|WQ&0`!S<(&cEPrzLLQ7gNlvDXX$NF)n5mq7Y4JzYnVG-)>M+}Uwqk$2)pj%# z?`(3N==DwZHA!;IWk;7;){nZ zmgf0WhB@-EE=nM_zz9a_p6>aE;{XB=(Yc-TM2Y{u#3V+mseJSHd=;KvO{!kzo~>AF zYqrpzI3&B;cbWlMVhm&ai*l{-s8Dv^b{RHHDJz_BOPq+sSZ6`H%U0PF<}I%Br&|mW zMzeHG%`u_jRE#PwF276H`)ia=Lg~W(^je%I*=IwE-j~HeB2*(NaVPJ16S2Hd`B;X` zn#rT@O|4{Ng>N$d)`Y(jeJx7hl;)}1BKh+0H6lTh&o7*WCp@`}$BO=T6%|E@UdI}9 zmyTK(T$;H%3ck zswH7xZC`i|y7989NAM7uCgQk*{tch+VcU++%!5D@h}@b6x)$xoro~zad?8R zmZ~7(gf;kVc6)oc#lS3Zf5zL)=d3Y!`>FYHR@=^VZzryY20=vU(<`^3_}>ee3=`fw zciRU$Xkmqgwm%s^?2GgWC4BneOqcfCW{XRwYC*kEjkyG=54$M}>59Eq@mSDPeX-`H z^WZ>o#&Hl!fG)YVkkH)u*5ce*-gyEz0JH*7n$S_V6#`LQ%o?ve2fE)1O&Jm+&0bfN z9A~}SO@BThREGq_@{)^X?Pa?|?8+ZShKG|i1qJ-dzR3rtD9Ko0hu6wa0^t0hj2s{b zD}gL6LUzUuN?CU@=>-TLt z7YvXgeCS%BOaYr)(Abvf*HZyg%y)Cw3v|SVSeGPU9)gIJp924@=iq4O4dQBLThL-p zbjGfuvP!M~6d6M{E91@Yx#)+WC4w~XqmSm#09K|)YDzK_7F&%j(U&VafFgj_>6QP_ zn|vqCAhSGde-`&f8=f(-S7qZ5+`4;jhHzC+{p+4W)+d?h`<5N(zn5V!JpwgsCdp12Bk*|{hhyC5(dRE`U~yCl7dSnTs^=TX`9Kx4ZOcc z04QiH^?3y4D&!*~@R7!@X^ay)A2_GnWyen_uqtAp?$ZC;046FWqx09jc%-dw5~jLI zHC)V!pJ`;g3}rA@Nodt2lcn;~A;~W?%Qa^(X3ZMI$^mhdh0%^*Ao~=hVyvT~5N{Za zfz*wK5q_mQ)cvk1h^+NbxcyQ8EySu!Dp54NXNIBT-wmq}=nz5($HYbiX|aoiJLwEB=a8KzM?)-+LO zhpx6)j-}CsLvlOCHM0hKa0txHa%PLsrm1yxXemHn%seDmgReD#^Ft{bz79lsj2|wp zA`2CLnqpW;$qm>g$gi<(g1UXRpFb5t?&i~6sOS=($GQqke0bKU^~&#rTxN*%bj7XK z@V?V*s#82r0RT#)5QoAk*(o`nxZ7<%?iIywZOdFzu+T9J_t_{nFy9sl+NV-D zTJcwC@IS6H$0@G~JsAJ+=craWX{K*@=l8skg7Kq?wbt#kW5Qxx%yv=drS1I(a28_sBH(Z~)AV zxgC4UKhw%`-jMKinw5F@aCY4*L0h|nX%bQYa@p2Fde8@Z-X<<3XRCr`88Z|~u_ zLT(ZoTs7yoIC*PyBqTtXd;-@X898&ZNmP#3HH{lzB}hK%g#ScfLJ2>;2iz`g>b%o` zTn=-mCcj#1^xs?5!uODyN?j>zmhbK{6+lF!NonumAQb52!c=9DU;53(wS;`Go|l~U zA#!0&lpcS0=qu%X+{y31X%e!p6aM*&G^MaHw5viZ=?QC7uF~7bQPG8HmT^jWY3-Ap zH%9@!S}KG7UV|DVw4n?*3LCt*NyQX{sl$9ToD8ccE-6NLg*u<+nVPI1d;a|h;KQR7 zrqbcmz2v%KtwJjt3WYFU`|#7FL5bYD9VFEVla;VDa?V4@N&Z{5iR}8CHa?-B)O{S5EBbl4(TY^t>v4=+h4i5xQ zp@y&yB(B@)pTTX{;flGifFaXn<}~j1Mry~>wdfN*L1yzk9QFGzlvR4JfBD9=(1`RYfvRi%RBAu{C|=#yXQyPwsVkP zv)ONcmH{N|Lj?Ct5SQstH&u~!gNw^;%dbdJY|6n4xW9O%ceLQ{XwawM`UvX+@zuQK z5Tm~Xvh}qi>&fTC3TK4i&-%&!{3(~*#FE_u9o-1;zA zZuS4_INujtpb^E<`m4Mx9=RA^L#DtBsG(BaPe)ctgW3<=I1uo%0QBdAi0A`y$d`as z*cAslPx5(i_E=-j{jX)J-f6nUzuuOEV8YR3o0)Ax;7qbc5KN$|Meo%9otz9LnIC=2 zYCC(buzwOWL=cU|5B5r9J+D8?=g1BxTI9b=jdr`uoE&DJHzsvho*nJAN6L-eUJ;WB#9IV4y=OPCtNV?L)>dkY<~-Hbxs z9<$uy4Y^bsMhn-wRoP4K z)M%5I^);(;$-6JztVGfsgdSMMLZlBG(r=QhMF`M}YT;&a(oclP2U5d}Z@<68piJJy zAebeHv->vc0rrhkY{*F@+vB$-`7AzBY>cEmmtIOhFhFup^<+ryVS`n-j@;=#Ggk*q>m8C#6=#@?j#Nzu3VIm+9RX!-THMyS}H6A~S zGUpUh`Ukq&+A*LX0QvTiz`1dwmdgOiREo}=@M__TA_p}TWZbGSDSd~5Otj}vOZt$o z`YA!N%JC^8kqCR2P_X)NQ$9&|R8MrIuCw9#Q^sdS@r!RhiaZfv77GDtcDO`}i8^~v zU+e{kD;mkZor`1&PcO+#rQxS?%T12u)F@rX>Go+0HQT*8^~1J!Ev^JK9&Au?Z+OWf zr2j)*x-*{OJlE_AmO?Yaq;i_N*M9AGldyN`seJT?@_UYWnQGbAPTlR4xl_^%qHOeP zQ$1X&7z7ng7U(NXv3uWEov9D0^1z@O69p2|^HLnN2etA{=qjgM4yV_%B<>`es79h$ zvv&XdIXZaLnm!Qb{7yim(#u}3G5Tz>qafNzGOKR$BmL8uLt$ELO+Y8)Y!Sk zaZ=03NW(N<11usy<4>|Ghcs0SRn>2&_^Sb9S=vnm#87 z#H`-&)M|Glr<6Dj7?|JMn>*Tg>fCntW1uq}%nJ&>ed;a7ng$XF3_uXxd*ZDy(S?niRVnAW z9TD(ai9~mkOUbZroj)mp-CV?1vEmvA72J7XQIQ?{r>}c?8RRixlldrgEJeJrA{=5TT-sSR>tuQ@bv*v_pBFSE7NojW?PRaMHlmMyhTaH>nO~64e_5I# z5kx{%giwVPP!y(0F0qSd&`4a7j%U^0ae9LVE~O}HZsA)FUN#9__T}pVV?u-q``_x+ z=>j<1HBNhh3deq7-%Ti`57p)em|!1T7-Jvyc_kZrNUAGPBu$95EaYr17|G1K{Y9-# zR!~Cx3Q{#ra7my#OLyF`e2KmAtM!Cam~vm^2*(uraXu+RyXWH*%|*nGuVfzuikS2- zYmzx_B~!5(#HJu0S6#Am;j&;0WxMAS!f-f$Z51>PxSNAggl##{ zOZOZob56sw+F!pmU|{zG{^C0945M)B&fPhXRX+#7N>XOQ%jPG;<3ZbmS>MA5+4ln;$SFpxq3QqQP#L|p}}cfslt^o9Z; zZB=0J_q)Y=pqhn%hSILQxfuNu)MpSdK2{6@;{a?h$_C&FfzeeS6m7)}cExguo;TWz zA#z}LS#8S8$LPBlCzb2JQRiMUHYqXeUx^0#Car4nB||;FGPgc|#wPQ8HHN*s}jGHsj*T0m%XsU#?scu@jJCeE~aU zzlg~_kYZ#!%ajML3|QZSAC!9ywgy8NJ?(|L0}Q@ZW{(*-#1`d2H-0r4dBMK`f*MI5 zF|rI~GH=}CT|Ul$Iq#XWC{h*m>>rAm+AA}%&dqx<=BK}|JGV_fuz|9AiU_S#n3K}p zgoj#(J=V>k%!%YtqWo(V^5JsqcL{1n*z;#v9U9b@4;A)jb+?>EdcD#IACx6CSbg|{ z)0~T8_URQ$OvtBx!S4M&Hq+FD=ME(!$u)}2EH#y;UV~Vd?);)c-ZVKGGN4<_SzMP! zlt1bTPqOw9{5l~{!k`<`T_;6=KB*#OQm{m!^;Nr?ZM^7EpV=i+X1qAO3T#c^yju#A zq!Q~P=@N~7t-fycp-veu{<~>mEi7ZI^(l8jQR=Uj2Ux}uoe!DM@w+3EzaNs*4^iX!1 zySyF@6f$Zz>R26+t-~K-O!}zpUwxm3x`EyE$RX(KY{b~1r!Pf#sZBP%g4 z=k`%-Fs(*`g@0>S^%H)S>#s}JNM*R9mU65Sqy&=(lB@WBxOxQIcaynm)}W7}yf*Q1 zMLMDcs>vTG8egi-J<#l}iJfsupr<4BFCTLUdbFBF-2N}zT2`iU?~D6`fUWS&YeaF4 z#O2A31>93g<`U8uz!cu$K)2<^QJi>1r*v>_X)FIy>!oV*LGHX95HPa^JU9)Wt78b+ zlkWO93ObC_pMd6{6`R3FuVxo&)69*$#F+bJ464gSmv)xcn#X{0_(yk-UVCy8s4@&+ zn(dE&YIMd!HXE}%dEdHD%dGf&n=|0|6^`DBq1F*it{y+C-O-$%-^j>4{H8xNmPXJX zq{|K_f*^1I-R@ojA$aS-`E>V6Pwl5M|FGbLt%Z9Jn#q?Wf9>U5x0oAD<39P_;r-|! zKWhk~>Hf))o`9jrM9VdrBuHErrn{cPWJ+5w<@ChGqay}hcQiR8d&_fr{iro?xyYaQ zZGZn|F>9~VU9U2)bK=mI-!|*DhjKo`y37)+aL?M--!?G_$@59>;ML2Oa{DJaQwc-4 zg)l8`DFSO&{jAS!U((Y>X*yj;)&O7_2c{oeoQ;i5i5{ICig&#(roy=Hv@EM&$BVP+ zrEK0lYZ~EJN*7(l4fDc(fByXGUUu=2K3}eE?tHZwxY=T4AIqrk%r)qgo6T^tj5yvp zF=2YTKHa;A>5myw2tE;WZsE!pV`XjB&>X*l-{3xBJ)h6XJ6DG&dEEWsHDFZ@@el}y z6(L2gkP>HQ=}gCKXEWGexNzE)^G$YT*!xKt^LSZ=QP-#sIA{!h((AI&?@HF_i%n^d zoe41^DNIIXo6Mu~A}TO2u)A-pcq~j#=5A`L*vHg0Tz|tP#QSyqrAPUHbng8kwQ~_{ z4|#mg(1NC)M~**J$iT&fea&=yP%#$v0XADR`nkz6Uz4l9-TJ)R1Mt={lvvsh_Xbak;|B-%v)^@yE8)G(toOY`B-ABypQth+RO>^r_6=7q)3Lc6igC)o zeH(LYp+LN-yMlS-1W9t_%%I&nu27S5&mVRSOqYb{vUmrZoP6g~FV}PwCfeV+(v(H& zuR#GzDJW#1m{d^Is&wu!_-t!G=saQW@b80}W?!u1 z6v|$gLn;eS4Zcdhn}i4^>N~TWUW?%MsYf7zPsdC5A{|+Pw`~ zr`v8j+dRAU71SxP;U!h+@^`)M1g1q3EwN<{-}FwqSD8~|p;-28DGIuI3dML5Xk8le4mE&k%yfMOR6dm($VASVEH z&l`*%+~e8N?`+;AWJG5J5HV0JTd zl6Js^0Z=Q++od%SD^}^KKMCgt+Un3je=xxgqWRD%wnw`MgvB5xB{O6HQO{SLPviwv z4@85S!E_s~4hpgbf((Sr zGBR#048cV8~Zb0x70k&RF>8lcD?6@UQG{Q5r3&f=*GggGT!40+T&&3&WY|4jt?^JjEIc|>Fjnd};S$2^-3qhvdT zQc>rz)>o)DSqJGg&hRUaWQvlq#U@_X$QO3yb^`(N*^#c)f!B|?tUi+>Q(@1m1&sK6 z)OhVI6tX%+nmd_G^zAE({t%EPb~?Wi;n@>vJslCq)~D1wSIdQZ65k=ES-<>ZnC*bT zkcL7_a?MmCg-T4Om&MXa= zV)&D$oaz^)C3(%t#+gCx1VTGgj|iZy{`mDEN=0G4<6KEU28LXp!m0D{`hoh(J^{?DSKp>5Y-; zDhMxUm7Z=3o{MOhq0`&_y;bEIs)55X7VAN30*ec$W}I+Pam!4UeSddc(yFbLxIxoi zFMZH`TfgJy&I5FG3V;$$rEt(CzP$FC(*iIww9L9lT@-0mzn-X=%Uh zMp@7M{Mu2(mD%SHQei#ogTCM34-BSA_qTRL2_A$=Im*p20}*E1NiVd1UusNeZ?R4A z_Id)~FdHP$vw|IIZerlx;ivE2Q{GOGj@A~uvLGgHLF-FPI%Z@&6KQ;+$C!>`?ugmav=(!;r85|!~ zuN~KAJzy<$_4DwfB;1&`tY`Dadj}uPr?5KDK6;45`*^v|4jh$ewC(Pn4F(_5pW{uN z#P3vCGET%zF=Qh>Or`RMUflPo998jDPqD@e(wX9S0_cR*BS;WB6mPzbiUr`6Xpo9D zWIzAdy)JrKwe;-LOFL@K*emlqkn5xc#5W{tD3Vb-5yr~{u~RH4^vA@LfcP%t4Vr?C z$0U4)q0EYq2x`uDuEqC1=B@8WvKhrQ8vHN&Dc+D@oo^?SV<9*}G` zuUV1Z7H1@9$WZ6_@5|8yt)mKa##MH^@`C6Q%JdK>-21Z5_$f2e+*Zhw}$dN7K5nca<}}SM?sXVmdv#l>aS(1I7Up6=>y*>8QLMT z1JU8(Z0Q|z7JB~?M}7Qe>#xXZ+sa`ZP7acegLihF1Bg>|ErI*p=Eu8ppFz6vO!A}i z6QX!Z#VP_50iRg+0vjVRoKd%Bi{z6iy6CKuVX5Ezp+y3eiu+1$n)eYbVfG)*g$RyQ zoI+`)cp(;ys}w+pT5{+LP-d#18l3N}T7Ro|p7A|Q@ozi0Y<@b)eKLzRKin~{Y%waH zA$nKLwfL7`8mkeh!*u^5$FO^ak0eSdk4w3*MUmKP;!FOf-9LIte|IxS2 z2=VK|y&3{hV6*<9%LOxZphEfzOtJndOQ81!v8ez*Ed#QO%GXK0gYzXcA{wL*AV6!Y z7_6jY&(8;`p+dC*)V*gy1_=NzjT@501z6rB{Cr{X~1<$IfujeZAmTwj#KRVM3RBT8uUZ8KpsRC(@a zN8{&fXQ#)&$x$aChPn6lp32)i0J;EO_W!)Mh$pW^o@~lPCNc7$>|gY={@{=Rz`D3C zS`f}VMW*Oq7bX9{IGtE|u}8RbKJP@_CN~~aJ3{UJpuVfb|!X?BDR-4pXKQobi7{t09zd2h@%MCsrFfc#-@*H#h z&Kudc5Qd**BnX~J8jX2ci7Twd_~oJ$KNk;`C0d6yrEy+LMorrq*hlNlY3cY=hse6e zv3J=C1Wznn71~XG8Zc<8I2FcT5o({`F0GbPLmPUDmz4Ili6to`(xsagUCRWSr4ata zl>Clwi%y6K=$&ZXHRmg~1L+ALF8?GG*8OYzUbkEOI~Q`BiG-XX7yWr+M-65{Y1IYc zW9SH((T^N1`9jN^EW*h6QyV`L*;CK>L3Ia#A!)bENeGpv6-LAEcUApnBn>fox6d`( zIr8&l>_Q zy`no=F{0#5bsKFn+^Cuj9U&dRvA{ieYoISN+C14J}9DB7) zp8Z}(YVB~Z*K#s#>p&+yAMDPaOL1#8D<7Zo8hdc`5-)Bw88DFgOG6J*Mh@@FovZnqQcQ;MvqvWppYf`C!+IH9+(v^ zKi=QA$vYzk?{@Uhm84VBX}`M*Zo>D1U{1W}n!Ni(W(ny*L3h&w*TR5 zi+0ezZA6+?zxSqm@cLu{lf1lqIfV?NS}Q~{m&H-my~AC2TUU$fPE==uD=P7a6Q+^) zC1z%O8{C-Z0?(ECnop*QR56Fik;Ir78e936-JKXmWTs>7b*^#)#27EqC~hE1;ox95 z4dfOC2x?=a=oK8Nxac-deqn>p=g#X1f#Z^c*Y+_R7S(!c=$qML{G+#SkCw5Rnq+tu zF%{1q8&)h$;#OvUF;o5`ilB+SJcU;MwK{ty#o6jfLK@W z_&+qA2{e@d`~Js1X|hy8S*OS-jK;nT$rfQyk+qSsW#0`7MMTQj6^6#1?0aOXK?os( zk7cqB*_Yw}_WhmzIh|7nnP(i&bHDHVzOL7$A#aew=KX_POtFjJ^sR2B5=MG*6J^IL zg3ql~3G!GB8th?#HmzJ}a$0zmpLo^Iq&u@kz%TxzK(-4c!V~i0g8tp_$Ybv#)Cpkn#<1x+qXFr7A3gZOo?hBKlY9t}Vg*F})Ld>(_urov(TAQ`! zP~;SZmdlX41@ej8DvS;qss&-77b$Z#KE((xM0@DWNIek$>4&q?t>b-+)7MNXaQo9r z>tc%gWXyhkn$0%yH!Y({hKGO9C#S_Y7C|8R*`9RRb}h~30+N0fa> z!;)igb$Z`emCJsC&x?+UHyt{fvDw*_RM$9_5jIDozMyeSSr)6v-Wfqk}IjgWp3H;Wg}u*#V$niwZ^=P zIb-}iO_1v@I}RRD76x|O<8o)xihUh~=RTS0zH|XCcI>(x>M-kgne{k%a?eq9XSEaz zu12ug_yqm`|_R;WL8F;2L&Z#z9IAnB5ni z=&MYNEAI$}9*j?hfT;w=hjcRc#Y8$r^MF|~1e8oLEfxj>DnOhE*pS~Sl#)guWSJYV zE{<94NpPpWU5NmW$Ve<1fKgw}AB?Ujv#v68p(n&0BdR4+B=V%w3g^EgO8I z*|KTvk#sD0BZSZku9jHai+A{67wS={|NSlF3Rrk0(d+z^+E-i7u)2#x{hql>v|+?NF3v-qJAj~J zr!ek(?FAh2=4i6AG)*uQ*_IX)L6cp=!~?zzCCBJbcPVz-Ci0pCq?P{B&2E7RQ#L_A zIW=aFDnzmsv(1x>NyY@EXYnX5*2=f6-L#`ebcptGY&j)BBswsE! ziTT-b{v*TzXXfY_gFhvxdl9gic>6dXUqrS%?6}MEVP%>}&1OFoh)c721}p9?PcGFZ zPi|kQm<6IG&{h*J_2uO>+#NVAB&u8IywGvS=}Qoa66O@Fjk3>BK=ve`$o*TX&x9-Lo!XfN`a%o6*CZyq7{&J1*4EZ5-fGA5HSYg=o%}HP(GY9s#tP+C zVhl%ls1FEUdB}hLy{~nnB~y}8-t}*G-~TNydo@0kaNM{zBEM}X>Rh;T>y*5q3)=er z@`Btg{#WzAf4QJbtCoJ&BtH!Jbj5#nt-F&oD=+DS%OIL$lr2+A_8!lOr_OYOxWdMO zjkUqjNpCcj9JSQ>zITmB}VgN{(Y;MHP!V z=fp!3ZO+fXXST}5?l7Or=y;~*j4sHREPPV*l;eG3>i5YypUPMvRw}8ej=Ffw3|uY> zOgsWm`nra_!|;WF4^0^6EnXwcRk+Rx?sARY+c|2CCmpRuW$h7{&`|PKNBMrH9o2c} zjk)FJg-DoriDgsJoUWy*W8p?ce!jzXcpLJKM)%;mh#X-*w|QmOMD*5U{~85V-!Kpc z;L%hQKpg{^5dMaP)c~PDrirfS@}!+3i-O&0Q<;n_oke!m~=kS z`C_$vQ0Ij4tid9j5Jt9?9xzYMma)Fx;sBAq75kG`QrX&Y$$*1amP7xUIt|%V)c}F6 zP+0bbYKbMBhZe~pF4)De*}h{uTNjM{$47CNFNS*ADYeWpoX4RoL@V_Jw*yiX z-{fjzDx+)#l|H!mA)K{?g~*KJBKp6=($U)BX(L;?*h6DzXu0|j0&29vgS1@ibo7We zpB_Bg{IXwx%{bXWqRkY4-m+*rS?+h#WocBjK@LhRug2m7GmObw?p|`myHfbaWZQ$; z-O;EW{vc{vD3x>aaOvAotHkm5$sLtlHavWM#f)L=1xQ>Xnxu-)N*N43spyu^DwUPI zWpYAUxMeeM%v`|daUcjeAMJOO~1yUNwyCUeD7@ zUaUfYds1=7-wAzF@j z$My&I5y9%ZSKe@Nw$W|;!Ywc@AC%e?RSDc)zGl6LLKiQk0yi-P+AGc`&c=SkGTz$U zNxbO}u1f|5T5$9?7WV1R6mD=v09T>;TM!Pm$_@Xc9s59#6`m~EMm4|QhY&CXfFV)f zb7Y=}WxT-8sYqA^5-Sv)1v+BGYUIUVkT$qDzrVFa#PwiQ5&H7bvxKjlO!rY^;vBamT*dCH0oAI3ocbt42>34WVc?MuOP+(tC)(fFH1n3OIE6G#YP z5dKRqnhinfXVa4f890q^R4C=0_O?2x3u9%YLv>AI6D9Akh22+B+#y}fR*_TVxT`z5 z4L7co&VF;l<>1wyy@k=F+y%_rB*Yn}7=I30tH&4RCf#K1RlAa|b6{A|*Yh@mRnO!k zoei3c?ybIL3!B+pUYCpwQtq?syxLba4lu;QGfzX;D^(9?o@$#{nHc}>@1I*iHf(^q z%}d4&;H@fqfXJS4O_9>9J!Q*vVd7))qDYMZp5gtKp7FRCSD8!v!NA$=-lQ-wKK|f3 zhID{;QVDPm{hJRw^PlECj&lxnCJ&|}s$4XnqK8wh5j_I3B@}+XWij%`jXVD7c;nwM zhU7@0htXXtynLoAem-`o#$&KXR@(}dW)Cl?yVXK-QzB0@#pVe&VB>n)+R3c(clt(l zvQ+$!Nu381567iA*i-!aD&`tmWbBWpsRs#b3+ArPdt(_rWqXUVM~e#q4FN0n&t=RG zln$GVTe(_Ahm}|b5TMQt`kUeK@dHNFRJm^|hZcb>SFaHb zUA+KX#@+J{I@|=&*O!{92giMVK}V;nT^s*xj(!s9+u2^KlR1YeGtpkl9YMirZ$QYcGJV`8WC~|6%!pVO%NsjXU7095q%t)G7pE7 z0s*L7_m222wl)X~o2@ly^p7n?O?1ZLW3T_e_00wD`YAiy3gttFI)}a6jM?DSn1W%W zf1H6P6i2UP%g*z2c#Vd+j7}b_#$p2kI=I?koWEfNynf~sxJO&CQ}U7y;Sgq#>>7b^ z<9|{}qCYKrJ92YyL6i*Rw|ww|`XZ|mOLrbFVmFiI8Mh%%U>3mHRaUNK6JTR}poCI) zRQCV+Hg9(BsD>P#%i7z_kR`1NdRbMEI(JA)R_v&d|HQwHc5vhwd|}I_ivTv#nK$CI z#%MJ3T?)tG>CbJ9=tmtzD;Iw3wUPz`vm6wZgJt4$(Dium;BS0T90d|)>yHaq^(G^zfg=YGv`@x``VJdZ(+tks2H~`WP?{;ccn)jfT zx0PE}u zy5JR0P>$eVrW}eu2jvTVSSjloRc&C-jU5H;Zi9_t?+M6?kSdA-aEdt_5N^4FL3a`e zkmqdamnl>^Vbq3V)d^z=?+W^JQ{BC_qfYCCv5|}oqCRn(_J{=@#reNMG}vH&jTb=$ zQZhU@X@N%j{|c@T*anx`-vWpXh`I|Cc3K|Q7I)G%cY@5|Xe?B*DuUlp5qwtF;g;sM zhRw+&K9AFMNYbO%YGlY;*{vS$wA!?H%Su}(h1aF84<|qDQgnYiA^Q6lZ((zm3t0gm zV%B_Hb*p7l}!n67W%k0I*cuC_}nYbISCe4rJXrvFA{!|qxVrg!O zzs`D65xnkW&;M=kDL&FaZ_g0WpgxA2FDgXl};z$Lc_9#rHMS9 zde>OoKB4^6efoII+({fW>N+R4$$~Z`do9;xZ?OhC1W&|0gW~9UscmKMRQxl6GVSk9 zJk0lSeQnN+s3f2v@IJ%&?}-)u&%wLA#{aJc_;p5q0~x6xK%WsHiL#61kn~*pC6$`^ zvIY~GJ`L@iOMIEW!ww%GA|wsSR2Z4B@xj5!8QKB!dtvVvaf9a{lo9uVnG^Evh62CM zDa;#KClU)mYSPG5++YzhsPr|Jg>tBgyy8;Bay$-W-alm`s?((?`?S9YqR~6!vt++g z$SkCzs$il&7vz1v`b?mzeniX%FwYT|dv#|pNunT*swr1P-U1MVu-o_WxF;_4Ip$x((lbU*%fWhAFqejqYK*{T8Oa59t+d z^sKKh)blGvONx&PGkWAY{I=#{t9`q&-^Qw%YVNnOx-u@&=v6fuv{yKJ#oB62^_2>J zzGHr0iB+wx@PU=**7rHVyzbpxeo~{a+jW08N!5bFM<(yC+}rGag1R6rknF@IWAH%! zU*VR_bGfu0ykxTRymv#8m)gxiA8EJ65w~W-^R0k07QOzB+>v&MeX>{{F@k~uXPUR_ z7xZ=fb0cZ*!OBVMk>X@9rJJm>bIW~o7PK@q$7>%7b=t2?kG*RvNvpQHTB4+=Jf!ml zAjED$nQ^l@)Cje;CxXv6K9w%j#duHdaMxM6v20(ccAZcFDKI|;0ogS-b;6G_JViFf+Ubbf^mV4UkmXSU`yN7oIT)&m?ALUbr!-hm{;-j1O<4^kLU8}vU(n2DF5jz?1g^US{m|-7t32POL zUb_DIWp4GC1y2+?ugS3*gD0&aOrY>NSGT{UXX|O=keKNQQTUS=DH%Hgx5RD2Putuu zfk&j~s^e7@A`!a1Ch$&`TVkK(`ENQ8)vx~Jn1zYq_P;2{c+-DktME0gM7AMY{W<3G z5vPslsmYxQ;Fh5--N{*G@%FSuekUDjWvsZSUDL(%AKZ)aJRqEnM zP(jER|4~HMO0<08Y`WfENUoH@IbeV>mClpWe+veyo+amb@$0ngL*53O#-_G}RM4iK zlhbC3I?&c;av4`3_x9Z}D;z2t?ZA^B@Rj*GlGE}Hvx0%{XETCTRiQ3u?yXzX`iAO( z30VJ{v#_v)>^p`e_K2@kyETQhJ#!ihP#Hfx1YhQz3U`3bNNpzYhJBZFO5nOoq@Tx# z5ugaXE)go2QEG_*MB)z3@(u<&WJ|1+t>U7bvpISE87^BTvc#z|-tKqYo@~g5btv_c z+woV4qbC>ABpk7+qe&fgPe6Rmee_FxEvdX7%v|sl47O^yarGNl@Q!5YwcmuEsbpYHfdXD#}C+58;27_j>!61PK5TriIyPps&tL`opkIxUWm&?h&$G>=wMV>18#N z-~*IirZyOxIxHxTpjQP$=?tz$PZmW`$ibubq@;u8ZAkiwycsmHUqH^@TKLKoWs3JC zj2;42wF5Ltu+F}{;syrUaN2Ce273$yjPAj&0HSh5U-L^e;f_`Z zl0a|@6X4QdzCC?jp1dXersBFLON{cYgVPlzzbL2hi>ZvF1)|X(`8SX?Y|)ZM=7o;= ziFza6F;(FGooyi{Cv|>sFM3Hu!Um_pS+g1r|NST>`L6^4gcWND(qNE8dZ_bx)ETnNHdf*~-cg~EV9TX1uhBQ0 zrfqmUqB*X)yD<*=uQ-6tw=gd%ZD= zl}}Y(9w#*?9YqmQ{Br^4Llg=Z%Fa3xR>Lk zpsF0a*CE#HvA1R;S*R_RZ!(tjueFm^pl;HKsp1|l6=|T6Sh00KI%Ym(*+ADs8x2eQ z;7Ud->&d%yx?Ge6a+OE(Z9a{|a9;{(q0Y7b9#CZLZU!k{*xT(shgrq+^cQV}$&R}e zT(TY-U#Z$UTKkvhtJ-i(Y1(RaR1Hp!P*qm#(OOjvV$5cCUEbJQG9SM;Xc!E2UCd81 z*0BTh;5&mqe|;#lTe{4hUj+XgT4Pz5h;J#y^Gq#sub^RD znb0kcryeZj>ff=gfk`?ZKIrGHT|!wIZhhvd9uJ1LoEhP7X=Usfxtt%e*=BC`?XvWSgeFP663Dfmeqy|8cx zZUFCyVP^MsuejjCAgAOg!q8@cpRK=OkcZ8)TPk*D!Z3>`ZLG+3SA%e#6GYPvWdd+6 zwyHz^T@8kU{Fxb?I1&WH-0G!3ZhtBuoXk11DYA%n*BKz?*AzAHRO*}b`WvGQDy=-r zszYm8yWjcp+{uWA|@=waYJb241uvEjN9v%fnkTkPbnBRvgaF@l~tRf9Fs7cDRad& z#GGyPGS4|^!4tV~8m(-seQtVZ2v?Q=MF8K4vnvA6yDPh`jZw${Ss#vNjHs+HX2_Z? zt&ons$}dHUwbEJiat=zN4bCT2ppSbMDX~<%6M^d~>KdN-=huWYiP4%pZAKuq?~b_& zl6~*z;b7=?UqvF=$pYqnuVe+mPTQ9lYi)!^&47_7bNKU8p*y#>^y4H7_Iyo_F{;YGdW{GV(p9k_=y>5WbXx6;6R z1bWpOh7;=!VUY)LB?}0j0w@PfS$*Vc>yS?_BRQezA-+_-fRzsPwA*w z&;qA>9?dr&6l%xErQvU&*hWu79y9exKK$RFm-pm5Vgo?GdeXmw*)w=UpcPKB?F5Ej zP{+@*ABuIH*7u>oTD8RgX7P#cl026{Wy`z_52R7O1CSgn5L#y@&MumtykN*o2}Zo= z#&IiV`B7gNnwRoDY|6bam25ds_7K$8dbTAt0$aG#t0LJ_o{;UgrNQ%C$)#3`H;YbV zEu5g`CDS~3$@sU9aB|BXbPZveD{ZAlp}MH4q^+O5fk__wtQ97TrRl~$9BgN1zK*E1 z$m3Z0`6JSy_=1FX$tEQ`3Zok)j^EV)k$L_r32THwAEE=>hX~ku*eX z3;Xjg6mL;dAX1&9;-aKLyph-w_v>$=Ihj4b z)3J8EoOKjGd7MTOyAbG@X7G5dDkXSxYI=RoY2=rwa7ziPVgKI`3GlqgX`)1xv-Nun z4~Zj@1}401a&dys32{J2OvF0{%nc<2b=Mt3L)qXyqKo;79C>qdv&S&_-@v<^!Hq57 z=8cjKNmEIkv6A7!q3z+yw3u&j&D_NIILFDYb{5A0tt6OdeCv%QYYfD>nb?Rn=XRV)I_w@#1`sqUzRQma4K<%w6$; zp0U3XtO6YUJV9ET8mZAmxfvfh>+0k!#6$KgvV6k4c_1Pc3jfeO-e+Xamm}B{aEZR{ z4^Q=KBg3E=n+^ss8%9Y@0b2Mj)B}mSA!ck$xqVmo+CAN{SMjZ#7dw!&@*HzMW|6P2 zR)kc@tGYP8E^G|2wn?Ck7GRhSi^fO97|}p^)L2Yu9;#zzp;#OSP9u4p76w-$109us z+8G8B`ZiD4WeY~(H#R)qF@1;!+tu-1t_r za%rw%f}WpdB&%4Z;rQ<*@Y@!DG;3H$IB_@+`Kb8z&KY;4?}z+xmhmpoL;R1M^b!yo z5HE*5E3RyC5+Vu?GGoK_ThD>uF^QG`!FO)d^lV2E(FR?^LprL1MY}DEZ z3QT-3Gni|&Qs^GR7Daj{@)S2A@$9+RR5mDQ!w&OIUBo921pJl_Dif^o%d89s-*Aij zF@Ab-H;tLvpM13Jd$huT$aFj%dIf_viJA&>pOIta*F#vzawf1@cJK95nVNS3o38@X zC`TIM6OA7~d1KG6{BddrF%@LuIgh06dEC;DI@k^;(7N}6<`fKeL3sl6&@svXEigIQ zPfV)<%z|>{=-ZmQ2!bfQjQ<(iHXtcJUhCvAgJ#ovJb_Ed{in zCr}K~ruu1XnyM@MwVsHRQf$GI3y7`2Vm2R+nQxS>aJuM9YVcnflZFF3Z+|_3;L!^_ zMrK3lC@hyfRQ=W2yH+Eh9uxM9DM1GZlc6Jl<|E#{DIh*pP5ed5OP(X;lMV3WPM^nD zZ}kzYX28}I%z!DNZW3Xty+p`w7Sy>A5Uhqv8H)#v_eoKYc4mT1YdbSZaD}vkivr3m zP)Px++IY-S_SlUbR| zic^9YSFdFSZ}hI1TYr>+GbR=3|1ooK+Eo6mrbeo*Q+LPcF4IJPNVc76&>s1!MF(YM zF#akR&e58a8`8+KcBht~skvy8N_XW2$;}*SAcEpVB1KXwIiBUF@|@?Pw|mf4dwM%Vkn1>{=~G zi3U3Q!4ppqTGziw-+eBk$#%(tM$(3h=`YmLo!(=Lxqyb%?r(v=Y08^#DQErJ_B#y= zr(Qo!G&Ut4Fa^0oQ3c`9xb^gVI``X$q+zKq8n4;2BKR09j+VVr|2eDdcpG@zYqrCz zTVcd9T6SF0Guq!>FGgXURcW@~V^U{y@43lTL{%b>haNFCZydrcVN6*2*8|prBGzL%yN~woei; zNp{EEE91+Dovc8G)2d9NdNg$*62^)j$Yv@jV(?TdwTZ(0_kdIn0J8D%S&z!85p4tl z?siYdjjgt+M(biTZw~Pl-Y>1b-l*+}gx>cXD?W;IUI*JNbI zpRAADpO*Ucy7kH$4`e8o_L4VTn!DxGe(wd~==qgHW_kMNSNe-QGeNF3nJKXS2;?K! z$SBIy0hHuH=w5N4>Q+iUv4K?5XTH>FI1(5bBU+QxQI+wsYhlr=+@kD5u6~EhxS4_S z>oifnzVlsg1s}ccAF;A59f5;RfBr`vYtYO@qI<8n_R zk{v5a5xdZ9(rYr@FVZO-H~1!IlM1yNmhm3P)foeZ{%P27Y~4LVxV?MW8D^1M?CIqX z%y**+=Y@9Jz&LsOZ)DyEM=m zjjgo6m^8D5Jc}#`Y3Xm=?vM)OvY~fl{Kq0r>(E92&6Al;&8YIayyL%C^Mo!M4E|?s z9`fbvr`eZ1xQzHSLG2ftU)$9$Bo7XmM z;7Du_fV{ba=lq2rAvhrTp-|{Y7HSFyy~N5YS}3yC-3J zUwp&w=tuLeNpjqK?*|`NY#>bNKJPO>L{7bJg(VLBY!fk~0b){iz^8r#1bMwe`LC1{ zI1o)~G!7u=^NR%skACNhuz^Nq2hi(gru?{LwtvLLf4qOZHJ&Wdyg8h&x-+}G(At{m zne;FBCh?DSadb@!#;0nr`QJO$gV&S$jZ;SSoOLp544ifM&S^AS^w#;TD(MW&k^acb zrb!%6{je5~{7lyZv_v3gppFg;mZY2ECtaU?)XAPQ-Saa5EIsZ7ObI#xiQf#_NjEit zu_k8~;tm^?MC~j7g7ry)wiUQ>Y5vBg$dhrSL|p{@Bf+nA1&D}@6FuWVNt0lcZ)hR@ zmPDy(K*0ogyZ7}BS9rZAxp$h>#eg!Fg>oqNjzx5o9_zF={( zQZDTA9G&9L?m?-9m|krx&6&&+9&zj7>0!sofW1mix9jodkMH{>(+HDqw&OY`#OeE5 zPq)gR!O=uDBZYt5B;us8YG(*<=b_F3exQ#x0OnU-Ng^ z5&x|gX$>gps~A0EGLnWJw869{1#0JWZSw82j6K@Hp@tQMoJpK*SVCMqYtJR0Y#`+~ zIb1?$<>L|fsPX;Yt5<~|-NH}DsWGyJ3!Z04*qDX95E6*^tbQZY-R4?1o(FgLi?d7< z!6kh_?!7S}Q?tg!{WSgdOIG?<%X3k>nHZlNG2i_4OzJLKdGTVd$fGeAI4Wg3xX;^! zKOL(Cv*~i}M82W{%8TAF4l?cdFj1mAf*w4uuqks5A-hl$$#+}(4Fp1+i(OHxZ8h(4 z#qp+U=CY70Z`c94+k8yLDA?2XiT93wYoK(D`;r0|_BdUYL!Vy%w;EX8$LBI1 z^Df@CQ6;`rn;%|3=W)-*UN;eRKZAb9M|2cw_jE#{KjnpF?2OzN>7Zn(p?~Y`j6%D= z)$5tZn3y>at^-%D%;42|yV{_`-9zd)f2L}aoPq*#t9(`4&{y^t8?M19)>YkJw?B33 z9ZRL#_nP-B-DWLIENf}Cfj@6?VF962j_6yOAH6hkdil!|YBVE$b!8vWIix?-1$bF> zfS_(nb%tie0uG;KykrlZ4ys?5{L%xPYMM-0{Op=l?|&}QCoSgU>QJ&Z%zMbYKK%zW z4(!VJk2XKX_gl$7PE|O+R<*?X{u+GDxjrHy!sr_%gmSRM@1nAmQtgxGa#z0jFJJn@ zKMmfq5qfaEKV zieFGj6QAnAVsTCc2Yci3G;jC=UI{{K=p6sizv-d5H+6M!I>rbmTt`ny=~6(sg{k0e zGeg)T%16cgr0{R;TBO+~9z; z({p{nawBt-Ji#-01WIEA@zFu$+~$+MijyPD(PKXtp-Z0Vf0U;q_>Uwf(4- z=fn3SXwRjAjW~DI1p|6{EC>*)VTLlY!HjSPLS{69Ms!GVb{g25uv5JPSlV!9S~}n@ z(&GEMbN~78D?;4DH+EZiljW46P zd2fPp+~G!*!Dj9M$H@|Rhd>bh2qZ%@U&dFY3QsVP9wh`(yZR(gmgVT%Hu7XA;*6Y+ z72rX%6Hi1#n)Hx_Vza`%k5=NzF+R5(5JKd1ZjNu?Fo8QcfuWl{ZlQZWto`Tbiw#2; z->OpIW>Kfd-BkTHr#M5_-H`TXgMHLx!{K+|@Qh3r8CtIqGG|Qh-oU9xN-iWBF`v84 z*fOQO$n5YaHT#Jc59-%#1I@!AmUrnwF<8Wn(If{R-O2o<8>iUk5Oe9L%a#VKo2lEX zN0mTet$G|&?pl#F=dl{0he-KKoZon)`^kwQIM?Zzc1%6qRjnR(F-z%y*`(q>%E0Uq zYkYZA#)E#0dw>7#S6&0_Oi*7TfA}EdZG0!;>3~KBxc@QH1iScXHA67RMVSnx1Ial% z*wBK#_Wu-8^i0453zGPvQ+o6P07E|+#~lbPLz)2IMFB47bnu^mB^C?NkA(zophdzk zW`huSZtQCRIY4m)d_~it^>c7zU3moszpWwj3{N1rLgcA^qW~ra1Z3FGDRaGGBY^Ql z(g5{f=Xlnz8D;Qxr$0~v-YX9j19#5|7W{Xde4=uKRCN-29uZB3sLr`s*Dbt9yX7EM2=pN!qUebx9cfN7b)yEp- zM}aH}5N|T#O(mlGIXYXhcO z-#->DppE>ietSu*ZEwzF%r&+kv!{j6knI(O(O8bvNPOn!mJ+@|EAm5Zj=vn`?c+I( zwr4kTBJNdMwsLhKrDX~lPs3Ec44NUB<)2A5a=@5W1gFJ5xq2UG?91+uX zdUai2pQ>65e)0G3>~EYL5fDFl_*8kVAU zSAR(qTbp!+VERJN?JioxSmpu0s40!;O?NaMdkZ)+XrZmFS{1nj&9bo{k=Kkc1q4n<7T!lnQN?>ms%gRvW8?6CXl^AwL(;m z)|7bZV4vDU)|e#Q+WemG|F37n`mHg@-Hgyd^rlAT$IDKv?oRDijy$|%ax@)CQBhGG zU)diDdRB(BmY07i8RWjxMsNar{ zzs$DQ7qeMH%w#8A&)s}XUJ0n@7)-Vf8P#7^_S;>}U>*H4w0Bc)y<%~8)&hT5(`Uwu z+#8kow|L~C|H`)qOFi?xP5(+Ug>&nR0`vhh_N7fbM~du4CQZ-$JZhBEbsrj113ix&)_(sR#PJuNEV+qzuAoh#dt42F z2jIQSfvk)A1xr{t%YBFWza5oJnqDfKlg-rWdRB0AzKo|+@E)%t@cd0gSkrPxM6L)M ze&P!Dqo`XQBwGg^`IUFcH&c%eyvK)MH~Y+dKbbUV%ze)2!FZc|tGnf8hVR+F{_a^* zfz@Vj?MBSj-b{t)?$Bb3ISSjOiN3~}Q`lW;bVJxf&Biah{AChc_(|;>U^Ih1eu^Zo z$Y9m4P?27|5katWX3?*4*}3wk1&hX#-aZxm7nXLRgJ47MH>9==mIeXrMyd62{_$!b z_3(+mT->?e$;QShi}?H3FJJ?-y{*huye59S9F$P%pRM)p5nK!XHWt^fP6p*zeR+Hh z*Fyh+24#Bp^F3iWS1VKni#1ANX8**2VI*F0Vt0g~J{!nCD++?mURLw_ICV6aMs#rKWYXbX>s_-dxlSwsp_-QFl2l!$re#LA^gInp-6M zl-YUAB2@Y}syxhw9@#|`d-az9mJKFCkK%%Swv0sSU;dPE>QR59&cfNCYr~kpD1Kn?yItGYu)kdV zG-l|Jtk_NZTHEV_!%w=|73FrJfLAh@)S>gGodBoQI;p|fA&lj4eIRXlTPo@S*dfnp zD0E%9O9Maiop6zSAVnRKcU|aF{f-~?0T7cD);mM~I}HruOxo8d_Y8DpFmWoDx&hh$j3Nn*J0+mQn;1Ydr68}Vp)KWV^cq?CnI*y{H@AkpxT0&^4WxwAw0`T^#p7wI4yu)bS~3?iLxI6MPZ};SOcFJLi9Dk{`6$9 zOQ4-nMqSGTdM8jQ$3ThAyFvm}U}@Bt$%_}Ft%!+XyV>XtdEOSE_4%>8L8 zo_BUMpQlVb1QDgix`R?F++j;~r0ogw=KY~2et^|&Co=x!J2E(7SD1inL(xs~_)}82 zu_^t0psKc<1lebPjTe9e233pStM0WV8p0Dp5F9_9$bBMy`ae*{^l=;UF>9c{sjg&8 zpy8}Te6*jT?&86EXXv3P2v!Mvrjpf{6}){9E$vftjR$HhL|d$qj6VAe`|D8OpK@p@Si@0-t7`3B+6i zBz(h0hP__XUGl4qhV?$XkfJtE!&f$V__;UH@*b_`$S6JiHJEYB8vQk%DXg0Nb3N|& z*i)vE8(?h;Ps|XtZ1FkRB?a?ao-4E%LJlSYqU;4vWW+r@=n%x_3+%ZA#1N6tekFre zb9u)b1)_)~wt4AjyzMKJBE{fc11E<$)AfsNd9LJcPqg~4S9d4A!nBZa*n1bJl`ByU zHBV@mxL!TZylrr*#7VtKL)Ll36fb=1$pf~n;Qx$9eq6?SEj#?xt&Y?!y2Q?1_4HaT zOZh`$46Z|gkLU6)tSrvXgH7$txoCBVHk>YtOAitGElHgP0j5B&9ywdKP-2uorD{=>M80R!3juU_?Kk(Kh(?spBIQuePP=!g@rYT|iLK@=dx8e?=-dTQ(qtgG(Oun(Yc{onV7Bght7eibMBf;nuIX@rknSn_x?=AmAyv@e z(Z!U4_4PS&R#fi9w^~%g;eUE7MXLv{JoziGj_sWFtNnE`l9tNOX$sC!h#0=>=E0Mb z;7!ea=h$AYpFH>=->^QPMs<~)+gw{0)~of|D!9E`PctQT1;hAD{{mB?f@a#4=WnF* zpIHzuB&5sc6RZ{uT`iX+UI)v z39LZsjQx12^C;&aU+WR6cTw*{N#XZbPIsX%>R!aNML7QAfMQ$U7=K0tUhdJ=?3I6V zsa;^)MaP8WGR(i;KH@3-w++MFaHR&lPul00y4#X26l!?HbqBI|>3A)J+_<{qYsWuI z`S`8&mgA|r-|(Jbe;H}J7MJ|P-vmuuOSTh(FKsEjp7E*o{$Ok|C>7&RU6-{E+)gR{ z@Dj==z&2xy5CBlyNbW8{zg-Ae5QU!-Pq~dSKHJ8VKzPM1PpJuy*XLV?w4LMb!e(E2 z6X9uug}mTUf3IXfEKB_710aU<@l!Vnxh&4qmObJyD~t`Uu*`miq-8+COKfrp%OIo! zqW^BH#S?4G*a8I~hcMEdXH%nL!%c9y^3EK zk?Wa&9QcOpd>?x17P9<0i@G3D)W;u837kB5VSTvA#pAU*(7aKLugb~M_{Xux zk<|XnKMSve4)$sy2!lW0#>CoA&U)5WrNhqV?X=L9)7A>L0aQEB5I?`aN-?)nZ=kAI8j_6B zwm65zOU;MxLiheImlNK9%sbEU=?T=9M;o|Q#mVW$7d!8w7siIp0Ujc1P#HLG{vS=} z9Z&WDzyEX06Ed@ka3UkKV@Bo?i4qRVCP!q;$UH_I5h>*u8I^U+l6kVX4k{~-*)hs4 zd;gx^pWpYN{%{Ks=ka=6kL$W$z)KFeg@{&A7jU}d8G>rPy0&F-0woPxhlrhayZ_hg zBkC8seH!DrhdP~Jg?N?>&vgyEzTFEk@(kYLx&oAkj+n{+ z77Sp4gFa@~d6^Cg3wHt^;AD`QPQe@Je=_L1X4DB9NPS`qq~*oswGb>zpN3pIM%08I zCv(~4EUuaA)gY6JY?G0KVv7(bC7#Z9mrfOq#3fA7KnhL23Z3KH5A~N}BviRCj`EyO z<{3c*&>ET3h?+>pJMw&?w~b(zsO8g9oRVa!xd*v;PF*mUnZ5!i1gBK=wOBHeOBXPa z=FKn7?C(+B%L|8>jkFI^+ko%Jq-FJ_C%`&~Pk)#7i;WF=`Z79{tq43W#oJ#)Uru}} zp!D3ql|r}qgHpaK3gx&Q&x=TL9<;;{v1ZB%&BHju*Qbu&p6vS{|5=k;u~+`E*F4ki z9t8M(&j;`&k2*)nGHR|3x@|PSWs3VFI~Uphsl?@h0OAR}GY_3N;oj-e{I_!|*s;=b zy#C-jn&6faL;Bblve0TMr&FZ07J|sCKRG@~>>D;9PX(?x__C)|?16HP7+DEZ9~Qgq z^oc$twcC4}e@Bz&c6X!RZcL^xf>xr%xA~<@DugFPJmL%CRu)4O?uhhW&G@B>H`g22 zTj{AK>KrIrM-aVr?9cl+?~y-lEckDxA~ecG_j zVp>1q71barM95QGl?%#>Z%nfD9K7jbuCGmV;nS|hz!2P^8HL%?S?`Hn0*siR6SUSx zd(vOsu-73xX-_9GeC|E{-&wUo z^67Kpq_|$tDskKXmu7ML;#f0Kw)S@`Uun6EDPk}WoYSxju5=}6iDz&VPiR8(#mksq zXP&0&J7iwYhsm_i0$Wty1)d~IY7CU}T#Bn0dHPZ$?16M7cb*ZT?duzP{u&htycKKj zmM~b59F=^xja}ZpWNdL7GN}Rmrw);kOr_u!3}~TbD8fMCl-w{|E;c1~sGJ19z*Y4# zG+egonN5)~5uQ+FE)^t={g#b|tL(KHds z-lybnwZdJ2ISKnc6ZoR~i2_koZr8nf-oHFA;K?BH83cHa20i?b{2O-q){ZvRe!3CJ z?}tv;(b25EA8UZMX&tb-*B|`L;3mn*<6`~R{FSec7t+W2-(cmEXRK0bM5*=IgQPDx z%?_4~5KTtpehMhsm)+o@Q~|_2h6ug8|4K{U`dK2+q(p~~x#i_7`CG89L|;@Fb>#Z` zr|#e%fK^S_$4MP-rWon@lA@-6CY>t~OExWPPkxnp_CM(9Uoy=NROfJW_8 z3cPdD6*ESSS8^FzJ-vgsz-@*j5)0fxK+pz@Bm_8$0VN8E+dz~(bu0ZAJ%t!5Ih|G^ zu&fp0k6<9J1DXcFnHB%-I*S*>82P$NE*efz4yaOKjse7BDs~erv~58U!1ZT=(qVQ? zP)OXUlCXUWcmsg{2bm7l;en;>vA6fXj-s;Ed&R(jWjoLH{?vVCj7xne00-T6`U4;E zRHj4KVY`vlQ=tmL;MAvN3IB2Z5Qezq4Zu+Ub2BkPSf2C)nk0BnWE7u9(DtQMA2ArP zr;90&d?B!Bw~&x!oo`@mZN10_H9VzFfu{x=&>{{b>;E~QK@|-V3lhRes#nQBqz-Ar zK#eZKs}Jhg2kyYJChC`!3dNEdk;|#^f_%jEJE6;SQpc734Z$1NjPI`fa$#H(bkw>;_}a>5CU?{EM`2pEmmgOA zepF5#w@Ab<2ME_ayJDp~Mw;v)6Byp(hz$sohFKi~r9j|X7|@UlY%G+~$pREKw&gF8 zR>ePQ;k1fP8fWk@2CmOIZk+l>PYfl@_9`{^3k;PY01xLTXT)~NT%ym@K-I>2GSV#3 z+LtN4BCF)~M(Pmad<%+zTbdO>d-1UirM4mivqg2uvm}nbW~Jnp20xV~7IC9N1>vw1 z{Tc4b1!o2~`ZWy*SBrDCZ>?cw%{lcUC3h#9Jo9GlHW+2}q@Gx`v`q``Y+wJbF zXq=K|SA6GkSB^#pQp}%NF6iv(OQoa>TJ~@qg(h*R%4;-AG9pBlpXaWo3VLJw$94eu z-EAp@GN~|4q#yl)0{%A7j>|q?G`G$r=ki4Ps3p(4<;ox8q$%_tGa#b_~87&Il% znTO`p55-95zMH9*>nShv^lpxFXOvy&@5_^U?oc4cxp>u}A$FZn24miLv7|HfN%_AV z8q}Z3{aZG>se8-PCcWrtcTS-9ZO{C<=Zc^H{o9izgAjPs^S)xEH_+nQv!Bi0LsVtj zhHW5j8v>r7KTni!%RgEIa0xH?{`B@+(GVeQM&uIsBH z;1M+4?6^>7&>FC|O4~nPlZUqID7~QdFfV!St*UsgrIOO$HpzX4l@2>%Y*$BVVw5Ao zqHjJNlqbs?xRC?>I`CdQZRA#xwDD`DGekb_kJ#FT$XO*I=3I$#zUXkP?4W z;l&eeXX)WL8!)kzs8GMN+R+WCIayzZw*}UwWo2fnUb{{R+!DhbFZZumH~Kyfp6h8J zRe*42)mx`j3C_lief+jN*ZE4rX!K}^pp z)O@_f&@S!BOYfszY)8lZB@!XsOl!%i_2$P}277Q%fUM12H%Ve8eip17{LFP@i3S$$ zjM!eAYCH%#8JG&*s#HiQorHKH55TxxpgJX*S%##g&v6t1Y|+Dlq3ra*=g<3Ya#JTmR(9~`!lTs zFsn<{_5j3t(Y`itb=1OUH@3e7-K)^>_j%UIl3MkBqTbl?Ag8L=Yk4`b`T7e`f&_a4A>#}5*znP~KyOGk31 z+=eI0Z;2W>Fp*VrD|~l;KR#MIS@s9PyjN0<+he19fX^*R!;&k?b~nBfAbUGZ5X?(5 z|K|lT5?ec*252i)UC~$^_S{oE#Y56?P?pb|db`Bi2~40x4xBju%j`%aPGwmDJU*RC z*e+1F2c9$9cr^I|=O`N#?y&srW4YVMt!_0U5cMTL;?^c0dSD*|%rO?r0?@P!>Y#}L z^bvqYU$E%mS6Grrl$%CWcnW?MjsL!u!DCi%hx~6lMbiXqXfw(*(%5X?!(`6RD zq3D77C%akcGyAq=WT`Xp%60=@Bmf_wY#Gk2tsZ|3uMwA={8<;)+?kEpxR}z$4=2ys z;(KKH1Eia~Y;ART7>cD2sW0i!NbB3tTxHf^#R^a?0RCcA6Jtsj`3y}`IE<=Q2&#_s zq|&hki=`_Ds_i&;x zSy))F!C4E{Om+FFojOUbXikdC;lvDXd-8kHqZpiWah=>A2X2coUgxp4mKmHmUA+Y3c= zuJRiKIBw|D%9x6g-u*VVGW3eeM`Ti!n?GsGr4l~B;&)*&V5!#0Kg55nxs_C{rl_iD zt;qMj@gMQ^M0wM z>gOF`**1J63sI{%xvTJ;{O!6=uy;s<>(Zh<&#GGBvQl0$(p!}KL)>0ZJc{4ca@y;B z-b++hYQsO`*89ESppU)ImL;ZAU)C*qj7NN(MJ5!5a!EU?bj^Ice8qU2QQc41vWeh% z*9w3y4w;|Dx15$5?WNd=6=sx4A-5)5X$#Fs!{2FHZVIunV7SQMRrdUM3QHppjtJb- zX=0aBb;D1UgYl9TzmWai@6Xc}fW1_QFGRLzajDac(X_nkMsOu9-Aw|1%>|56!V2|fnjdV@aRQVym&YWrZn z;rp_`e`}+?*oD-vq$j%aPSlYn|F-zk-_x)*hJX6R+tfMkOZeNjZsH(}u%M*qhonBZx&Bc@^fH@(ht$Pu zoh!i!%<7B@*%6j6=r0?8{~oiw3p;d)@m!6kit7 z`yl=Zi}=F)Pps@897A~l`VY!Lg{?vICG4QkunK^F?Yw0drLP0#Q3tgdM<4D6$ea))TVmO9cQx;umvq z5EvQ${2HTai_xZPfmEemRM*o++Q*|%;PoGhmANlT$MhN#Zv~;67j;5~Y|j1(;#1j8 zoH||&tXEaJw!0~8bC8;K)C1Ba{podq3%9bEOc-~Hz}0*sPTRPD>>Kg>=NGUSOUe0d zFPgr0emCN13G|&DHi%~dREOT2^`G(ukK$h?)JunVD;XKLGNj-%sD$;e8>Lk(_3l+T z|CW+}T~I)!@JOcck$+j;0_5pCCYGOlw}Tva;ga%F%>#t)KXEFnK_? zcrZB;`;bQmfnC9b82~WkzLz91Skj7Wkow3{C!67&7-9 z#vvX^+NbwjNR2YYUjc#g^=E)*8~pfaUTPaX2@B@Qu$-x6*8nSL)m3D7Dk3e^JEr+1F06PNDe@!d*s zy769m-4my+_I8~UsgVS-M>a1B7^eh0!7;d;yc%%&r__IWq1jbr6t6!}<-iQL5P&n= zb^4!{Q`R#m8zN7nRv9sXHHBX7BO+&4L0AgeLIe*sRLY8qyMLsP23_ST^-pJf z-a8_Lgpw1`VtyxpUPsDiv5ukEIg7H!P2;SPrOFidDgzNy-Ka~2sk&5g{PEL(m>nzp81TxRc$uaWsJ^FL%Adj@1p#7$+TXKncysG1eGiiTXPAk#Gc zj*2!0R%@#pd&RM@2^a2xLJu1MM(=>1`Gun-a+QXa7QHn_icY=ACLZ zA?ut5Y0Jyw5A9}{hv0aO!ns#P7ze(LUXxAvaZ$YXEtE=o%(YuZ@(sTZDrX6Rx_Y5P zzK?v$#@=w=GC6C%QsnEGV;F8RI#%N$E^R^s{jaY9*Mbou!D;BcZIPJ zKbjYt7QJuPLR*)Zv63H^HGEm=OuVQHT1bz(j|C7?+Y8{`kNnQQ-xz8KkPZsZojH<6 z!*P!b>4>0qxG@^+wJ~jI>rsESc*LZ}%uZ9f%-5F^_bycRc0E~#Z}RJtv<^Ed(@q^> zVY9NgnQB2**Em@Q9y=4Ahd;}qa+AAn$)zVn?dTHxQmEoo0z7!*ffP(F!26obaxdo!xij&={fpm98e79j|yhA$#(U%+{9 zdWNmE#@=2)&Ihe#qqpw$Pj>%CE*cptxS^hcs|Ih!qfX(Y@`(iF zzw7S-1PojVUtNj$=uXIKJeldFHDlD9JYF~%Dm!jH`P-P~%?Gz~&Fp=HkS2Cv(8G+a z5TKyIe%R}d8Ca`Co!3y07h&d?UZg=A#@ruebX|2(T4-2w>!H zpt>LxWHn&{rwceeB2851vZr4nx*$INCUiWuIx-CJnb=sIC0G00+Bdk<=y)Lhbc{~S z-T9+n(|E8LwtF;nK(IO4BS#+P1Z}_epKN%t z^l;7gP8y9}LLH5^c{rQVRgQ?WMeLjkaAwhYCBkV!bh>w2~ zAg)E*bt&Ds$EOnTd4-Ts!9n?L=RF%pduYLYtw@X*=d|DJwu!0Qz_&C(9Dj=~Z&hA( zM}sk1MF#6=8n?`Udcwq8?09`Lt5yMC5BR4*kAPS%jyuCm2f0`WNKpOdU6im0In7yHuzQ)u}Um zRv9?77zCudq?~VCDa0Go3ACBhUusI&o-eC^d^F%ue_VK{!LO$A_x{%4*7LSJ=fypq zmR4DBb}fq$x41kSwl2Gb99yx6F5(>DJ}QUhwbm4$kC>Hh-@B+OYgY=NhQ(*da?(kR zobAdROn;r1fTU0`Z1b^)M0$4f0&e+q+A9uFAk0di$<_p=fY~Yn3^IQ!J#hw;Ui6EV z?Ir{Ph{uc=%2{R#?(t^E%UD2?(X1e_UMP5YG2iR!qK1ergomc4P9VjkcOJ{qGUmIS zJ;&N8-UR=43K zv=uJW!Ic)hKnr7MZlVgfU7unp$8J8|&%%O*K--!iY_NWAfpp=4Ss^xMVlHzfJ>QM{ z;t-MeX{{;k9Wj`>XDsw`K?KGw>O3BsN3D&^QS2~@_Qefhb3U9&rJ%#aUJ1`0xA%vlhX?cX^8vb{ReGW^EUdv2bI-nV z(!Dw36VP@oJPuyHDuNpgRpRqh&bF$v`&)Hp*ZVanJc`6NrNp(nRMvUV>51kp9pK&E zCu)yo{|rBUT{*6!CwXqK29wjjXUlzST>n_C2sWByCt2JiqN2w?pLD11C~mwlV2(`s`*qy(mvhuLR@)b zBw@gwhJHg|*qzcD&FN)|4&R<8B+zUt?|ym)Zjt1#s`uod|Bl`mQLL6GOZ zNfcA!HWLY5d0%Lw_0=oi>Q%yD&xVY=ap!9)N*C)w>nF}t9`LD^SkMWW|GfqCc2>2y z@g`%#uYS~m$gv{cq;`_p|7B;DKvt|%mhrdpC+~0d&i`6oULG2;{&O&Cq%^La(TgVI zAg<9fUq}r2sgvngij8L_I7ReXbVd8?*7pr0B585)`%L>@55qzcN-aL?cvCncC$)D~ zEkHW&aq#2ynHavqJ0}}zp$k{kD#tB6XM5``N=${VvO&8{aDCDm0bwV^3wXO z_`TvB<`)uYM?cAa^xCn%k@U>aXAUMl#*|41m7lZa-*`CyRA?!du{HuG^7gI9%`0YQ z)&`=5Xh_IZ1#=Qxk}|L=n}O~$NPaS1ZJOiP$}SD#qeHXM{o(Gr%yb(ZzEt$M5S(mc zrZKF!Xe<>8k5Ht?V!4-}{ElT2Y#Hyk>tlyrVBStt2W$%`%=-sB_SzFe#3sQU@5{gV zc~AnZ>lw{7$rm#x;?uZAnpnGXqLaTn(hhhh)KOC_Qc}=i(l{?0_wwi7f+6L;L6&W4 zDH)ixz_0}`FRX^@G}S5wAMyMQz048Z#r%$IIz5Xn=h~hcQoD#nO-tL;$f(zt40han zl|TyZOL9b)YhriLL|l2M zNv|)nJ%A2zCRinsevR+KP-f;S+2pT2gq-*`B3LmwEaCQji@Ymjo@eNr$j zFe`cbgY}dd3JL~{G{I;t!V?@i0V4#De+jOum*EOxxnPOi(EN|N2&fr7U?qfu3=fk4 z7E7Q6T&h$om|MG`Ul+#mml5J$&5Mo#Y(|jlMPF7%z5{AFSa(_M=8c|7OLq6IkQ8=y zcC6ySEXFe51^t3Wco&jYee224A4A7%*D6b}P0vY~v+lIH$gK-HN|HJBs8<(tQJ7qJU zRwbP7_F!TIjK}Gcjv-L;!~Op^fR}OHD>XsjpOV^|n40?LF{sk+51St#E~DX^NNtpc z%#9&pg4b`*X;C}q+spd&W5MixcQeS`u55TTdM#|9wX-PeyCq6gR8{3jvg^5RqJVhz z`t#XEx)03JX&$t{F!zwmk6XWO%@#Q5iw~~@d8rQ?*dJxL{mJo zOaf*p@U5{6AfKCuYjipjtl7Q?*CvZ?TPavb8VMSPZVzr4*Foqs%j)NpKB$elt##4f>JM%auZ?QvCBGm%f73?f zFWlb#E{TC~K=N9X^MOo2y{ZqjMM#@@QnDPgMJn6!r*}vq(Y_KwZCGYo3@jTWD}UXMh!|eEsU)vrkqs=V zy%anpnD-EB`FD-Kt2t#lnsOR{W~e^7T1Fx-jWo?t^>VZ^rZKc}@BU2ig?I+c!R%{) z%2HV7zT{I0R(#|A`0?OiB_Z;AzOz1M)Io0*t99G{!;|dToa9fIl4eCi-)96cPD`i( z)3S!m#a9CZ!cGgIYF2ep8KybnVeP+N$XC2OFi;UU)cz?UYj4m3?1XzoJF7?C{*xdH z6Cl;I^}f}j`c9^5u%cVO*dTZxhgeRlETn2^RiJmM{Miea#Rb1SK5%@t6&b@6R|uOc z%*uo6$Bn+Ei|u-tYA-%d+G-zaJ-Telq#AnIF_Ds(Ceoz%nu~l(!6TmhE&tP>Dy2Il z88xLT6Vw-8MI!Z)X#QfiZ3bWOQsz3X(@eYzZs;VWN<5b=E zHLd3Cbz;m?pYo);Z!G^h{B7G%fZpJ;sS6Db4p?7V3s!5RnRY&puJBWR1R(dvz=5rY z?+v`3RSgij+QyP-%Pe0~3}=zQTJZ3VWhv6LUweD|zXPP?y~1h-y*88Gd2A{(B;`rg zf5?d!8@CoKU$tI;_L{A6=a@Eb&Q&Hcrt@pqcH?nHD>-DrNc^U@?F)L^yE~%7!T{xK zD3G4e{!AxfHPb+VD5GoD?dpz~ccgIbVaUc|^1%4K`Hr~Y69w_Av5t<_v}{jU zF+N`3{Bv?Fbv#7M+8_Tr^awzsUlUP+@4R@Z2jzQr8g}YKaiObAHcNF0QMb}?N^`N; z>^!_s5zAs7^{ZMZV~p|ncDK=C;No1$Z`>S(aL%|is9Rj3(tq_RGq0JrSe0aWW&F9O zmBzaw)`~Y2W-Jlcynk3`h_~WLE%DSM7&tTJVW!^AYzm{MpDddEvC_bs)x_Y>43hTd z;hZ(^@z6+aF0KQW%l+rwQ%X7HaX^Sb$%5c2xY_qogs#$ zYyDT+t)6>dU27p+XwRn*M%TI@OvQZynpCq7;S`*5bV>MVbtMZKP zyzB#rK$IPqci&=%8rRyS-& zk55Y_#KBmeGB4Ko`2$8WkaxkfsiFksvg=?Xf@uYI($nUE*n7y+J&_WiF7(*RKu&$( zv&{=oA`(DYjuq+9MXoZcqZ~VlpEy{~fYTQu#c2GkA9%lyfe}dFi{WqSFEvsF^ON?Jp-rsIq~;I6B*Dvk*ajM1wT#wt8hALI};k!PXWrO zvl4Q;?aF{R(yA*no_-nGU<@ZThOe_VXd#as0>F(KY}kPFJofReiEIZKPO_aj+Ad&; z4e+fyF2K)eg77c+n-Gv6;+aqR{K3RX5-G?^%A+fP?|4uM+?IWJLbgj3)}rq@ww8x( zGdQ@Ds;v878|oD(iv1GNALZbXDMCW_l^8nMhm(0?+#9D3!2JljH_2D;bFby6y_H%+1fY zFlv-19O8{@M#{M<*o&juzC2BTblLmDjmtNz1d#kqXD)toGoC`B)FmM4*D?_!;zZrT z_#<^#+>#XY``}2=LS)OmvR4Jj95J=t!J#uw5KbQF~7TCOt zE2aNvz0=ysr{0=S=;q+DTGJfCf4kM>c0Qvd*$ViXSHNslx?(F{a zrIz5G`R6I_<25JE2jJ4|A=4OmbRV!F=G(m2zLPh4tIRp7>qnPCKS9WpnyOmA%Nw`f zfp$*wbHTT5wRD9#uYHj9JKFDit8A7~8oFRHRTuI&U}@I8qFn^c^TSyS4^sg@D+LB} z)g7%Wo<IFYh_evclV0D$iG3y*xcX){Erw41X1vi*;>iRM>8HseH)=AXO@_;di4b z&Lj%0t%2w|$%CMi*f;96viR?zM{M%cUSZ?LYGUZ%PCX@AF`BtFGov{3?Q@4P^7fWf zzS9OiwLe8*_$b+1>~=s^Ae#9054mDU+l<2S%vkjHLJVz8ki(Q*(j7*oswD$G$Bew8 z_I8p-Bg+J-D#UZ&b-7rj&X@${@Dys#y0Q9 zE?-N6ba@(_aP{jM*nUKqHvkRSGxDGG9{GwH< z#+}GI7t+1Mwk4^PLqM%i%xgSMoZ6QPGNh!_!>I)sFZtKl>GSJML~wi7L~^AJ+Hwmyr0G@j?ypEQgfxPu zpP_xmXxWl2v-C?BzGxA>D4oT$MyJ;)Sm1XxLFj6O~@ep z`$0n;5=lX)!4anovm;FS4Qws}>N00}BQOQG5y4Id0n|elD40&C1jPR?tRuJ302c-7 z+?$BwyqFae)KHbgIBFUew6-a;-s70M`3t_vuPpcrC?+P`jAc{5@S9ATd%NP^q!;mP{x z0;{}xA(+;7`I`_Ig!UBPSW5sIC|)oke+p1cubytP*scjE*lE!n2>>^V9k)XD#w%fU z!Dk=lTsW-|vaa>9Kt*-|L@t$&nJ?YDG^n{A{{FL`T*G$t3T%pp<&%ZDtfLVnw?u^mq(o`K82#FQ?X`-9q)fUUK`y|~uL+x0 zC8vlAUpfz$zN6*c4(!F{WKY&`X#waq4AuF}}yfKzS@`y3-DT3RA z=0l4n=#86sO8J7GW^o4x{F*myBT^ITF!=K*t8ogMXM57>>d@7>TH;;7U8<|e#SY$V zuXTMbBz9QP>JTo^0L{?|)@a5Rid8Ozo@fZ)7)OF#8oX1Q6m*h4bu1M+*Vy2DaNn=- zcc4Sl)E8G&j!>1NV9x}UV9T;5YACRm_ zsp8JgQx&o^J<}SfY9r2JFfjY_nS~mIEryW+GSD+tuD=$EF z0QS}TDm55a_C|vTD&mYg@}yFdYvbWwf9+Ux!_iv>>ySA;UMJL$!GJVFR!vZK@~6cZ zx2Y7_ZBaF)HN4nlU7g2$VA={M&%1f61n+u&te%oJnDXe%D79(~@$$NR`Ro16;t{RI zrE6)aEpdSZlDF>WecMWp_b#tiEa0r@Dzj9s3*DMc58LJ~O|x{Zs15itZ(s*%dcNPP zc27(f$n}2gZ8_paDzPt6(7L~+1-~|7S!|jf+7^0=T;O}FV(yn`*dI~59)&V%_6jG? zCE{Pu)~D*T)A9FpND3rxXD!5J$j)PQxa4r)WG-vG#s?K~tJiK6qf&B>4({77g8}U+ z_M8`tGWB}TBGsi89Oyn~nm9~&qM#qFn65-%L<}R9Y%_mI`|-?z=ueC;|A$W#u98&~ z748S$L5JxED9HQqwQQos>nl&+XWo1n0~8j2&0`FJK#$hz{liv9LRSv$9nms+@!vn= zQuB)O?HO2{mW*#xs%C-SO_5r3(8f?oleidfhA-k814d-gcm`u|#bG5=+_#=vfC`5s{b4gJPbdx|7dhgdUN9oQ4B!KZy zhrXr6bpFE`gXiYTZTu}PJP=w|amslrIF!N=3gyQ@6=9M{3fk;!ium<2Z$1n5YEPIi za$QO#Tp581{yzBhM}-sD$$VGGQqWa96yZqy+ZsZeaThn znHeP~o9R>glT2Zr0p5p0WucX6m8*g>Dxraap`i`c{?edjxbIZ-x1oFK!$Ad<$%eJK zLhNZF0TLWx^PN8}c*bhvCKtB@Jgz|0%RE4P1YxRM0P*3d}okVz0==!uwwcv_u3jW{kTT5v7QoQBUlxb zPd&_Qjl2&3#S1y6sE1&VX&_Z(We5@MaDdMbRN%+L(b8G{+JazNyo*w>M}vKF8Q6h@ zr4d8`ewwJqffSBECkqKIf7QGY02BTU7Fz8tf0H2wL%s1xYUn; zWw^3ZJ!LJvK-9Nofr9>^S}g9Ks1Ufz661MUydv>+2f(zr`F>}LK6=t#PJOt%q`7tm5WgrbpBUn<|$C~NEq@IFKEB~|uvhb|bH1$|>0%3p=GS$oo zz6k&FR^-pWyvw*$veK9x8u*x$tH^DSyYHeALE8faAU&(h`I$-1BepRE11^sM0eYqb&1;!AG#Jj@HOjkgv@P$G3j z6Ga!`A3-Byd(R-^+wuxD&wBi-1=^QuItujCYJ9h4@V@l{L&=)-az4j=p38oSe>mYc zmP$a{){{216`~**fuQ1Vns~0xAAMomD|Wea{55Y26%9XstI$=&Y#Jd3GP?5a(B6#3 zxJ3Z$cDNxF$&BHl!AxVIjOWZF90MqLqHeVYK4jW%rV!Di;2L;f)i3@KJ?565EUJsG z)SbPoY3uyM&VJ+Sa{;P*;$N0JLLWLI+RnFNq0$nI`nD84SULNsTHlaVIz&vKHnRyk zk)ci8la|2|!!Fp4gZM}2)r#d(iWnY8 z@xnVrPAI{cj=CE|O_$^c!gi((tJjX!L9v*E1(V(N#~}(A`|wM`I=?1;C%T6oags{E z4oE*g_*$<$0cSV!^@rn^zJ1EjY(o8Aj2_Dh=P_nV65<~eh&h&zkswMrx3 zRjd8&upUqe-L>@yyF0XHbM!le(aXa_s_2b9$!pg9dT5}ZUzKW|x1t9SluhygKb;fK z7ah)9Q8oE!K_@20@%+T~TtRqHP|*FJ_Q3kE#{r&?cYkjJWbVDyf#cx2or`@X7t*&< zHTcSg7mBu|XGd)6_EJYy=QF~Vm`-`ef58yaNFR4Gk4 zNPo8$w#%RX=B3Nb1!3V0zwNLJYGJi3>yfuV8y7Ny))0r2Q_4d~4xL!7B<&?(SH;gelqlX!~zcOQ~g@be#9n zaLG|?+{dLpQz!VR)|D6Za&Wi%ZzYCXXOTOrQ~h{1Qh=}HgMmSLN4(I|=ncNwpKEKx zwqm>EUQpoza<#xPO+C;{sxGyz{nV(y_lBN@EJrF;7PR=(b$w z&csf~7w7aE1?8WqJLDR>5gkURJUh!0T7>d7)hBbHyWwop1kn7s75BI%dx3awO)1 zb5IlnJxIq~+`=RG{-(49`Pu@{nKxJRSg~3PS;I>M0}eiQPl8W+vl=!yr}juTC%-)U z(s)s73JDIrY)M@|c8>Ut|MHz$$D|qp+(0EFH~mxKEhWDJ_K_FneC5oVRBTDFP!ba4 z>QM4X+4Te2Z0%bQU$TY+d@b~WBImnT3wT?XG)B;rE3*jmujpZnqCtwFif$4pWBHpY zsT9X&AP7q+HIH<_Q$hu^@A@=)wLRGTf<1qe6+1*o#)P8yoQ$U9YZ007cjv>;=fR|H z+ZauT5i#Q1dy{ZxwVr7AF<` z0$*4dw*LJrY6`S)j7?5dnyAsf&Fe0@>hsX3?@8KaL|o1p0iYpfRHUMO5MPxD$}G>x zzZYd_glDe}6(f^1O;D^2LBWS#nLNUFg4BN3jjjf7k0b7c9*@|NNXomUwZkEWhV7vz zd~#ACS|ml=y-{D!tnAryO`vUXi$DA-E(e6Jo@KC5510_OrtT^r!0C)*y4giT;{nZtUPafA=9{3DQ7vG@>ExfyAt*lRNZ||mCHf*a&t zUfKv18;n#{|F#j z%a~dGY5C#6V*3-1Z=i0f{w)BUOpr=bl!540h!in5`F>GqElU+{GzZycahkk>lw+?0 z5R*ERSd0e??P@80H6aGH#Dky?3$#4U@ITFV)%p=NKO8R!uQY`SP=P&~?d~(szA9;1 z;|F@H+lZRr!vb~IBQ=%q_05IhCC~{^ggmzL4-P&Au4C~x>HH7(ONY-pusLLSOXdP~ z*&z;FKDUabXqte2diz5@Q~$SVgTGP*7VxS=D22KOSfjvZo67BG z_q7^am@j(!pJt64s4-ym#)9XK|G(naDkrTgdBgF>$NM9V4TvSM(_?j`&SvHt>Gv{V zYVwoE?LhgEe23~jo0(Mb>Hzo^*xAe#=A)!s>aCd^yzjKZOOya)DH~N+L z+)BYE*5G9x6q@JxR0;pa2zPIv*Ap^$whd}+H-A6&%WUxz7yEZrS`TL^^j4E}ry-(- zQ0jAr{=(iEh))3lA)_A9WEY@5gZ31%V^*i3IsLH~>{3864KN>NM@-@Y3f*(b2;o}SoIh45Bv`;EZi9k{pn-5HFW(Jq=$N= z4f5?a@e{|Y#OQWSkq-^DY;_z|gB13(1m*mwb2*E(w+GH?UNv0wSEqv4g!6d5z@gF6 z+t3290SxBS>>ukYXl73^&6dt?QY< zBc0ts58{N=nC8(+#wFdTJSfW`KLhJvgb@q8Yg+#KqaR|6p9pb3o6bt(E+sDY-Y;6a zXbqtkY@%M}=fCri)zU8hz9Ee{4a0&+GlN^=U`x9?@oaHZe*4P*qv<@rss7*pe{6AZ ztg=kpZDV#YvSTU{}RSZ{9t;`+Yw!{0nW=`{$c|Djm};CR%kd``mD^i;ZhVj z+Nq~2s@6GDMM0BdBPV_3Aib~SruNOATlG<4H|$Dl zU*Sy3jMRAYxpDy=1I-puZznBt-|PH+(rHb-->K(xu0U9r!g24M%b&*P;|49bmGN^d z{w7XN`Y8yAO17r|l&E)a)VNe+-@Eyd)_%=g#+K=f%p|lJL_)3&dEi7G9%KlaH%(So zo_2RjDzs?E;DjW&O#T1vi9mA`M?3faE;+F6<;x#`2b8LS)lJYkcrX69e0(w6M6+19b!2K~j%SK(snq)#nzak`c#I<<0)yzL!38mm@qMUvK_+6yOq2E_JnD{2!$-VO^^+^{DtO zLz^s(*&mzO#!~?EprN5reO77Gb>~3lG(W2HrGC0|lSxTlV9(pE zGG~{NgE-aSu01}DvKzlLJjdHJz5f2L)R8+#3OIl8;&fSLw#DzLI;p&V+{G9_=-IVA z?17+wb4mS>0tB1Qo^cbG-h-U?DAYLx=myv`qgThpb&6Yk)P>*GR3!AQeC%d0*Tvi%EUGMTs{R!43}rEXTpGpAQc0wppkTT zrK93wCJ{?)$*zNeB*-{ov2xYB3j0eot*6y!`I4a-8lVV-d*gXs}blfq0rQrGjG;ED^V ziC}e=G$g51ks`^XILISs&l|eRbVvvkyy%Kk=tNy0gzT1KGED4DL2gT5pwo5QuTq%4 z6ZAU=l55nYbIrrzG;z=m`C`%9TG{yF+fIbEDL#VSBn0&|^j{xGzc5L+`6jiL&^dKJ zYLy_VT<_+7DCy*TNv3eJF#D#X-2b4sve^tP-LutrB!9NkaqR095YUSET)$5H{=VZq zR{d~tAQeJip~12S+#21#xeZOpD;!UCn}seW=X0_tS-vinSY=akwkFfo2VeYTQ8K{w zboTtGdy?=?-$VTgh0EiK)>9nbyv}!5f5HMw1%Bl{#pR}bUSm~q-Lu@ z+*bN;HXy_%Ge6yaD>R_?Apq8p3j_H43S@2U*p#cYSHA;| zfj1I-&P)c_%GIRe`og(-)<3Evcf6EPuZ1SfuW{7Z*rs*`VLp11jR2h-vp9L=H{roO zk@(*!zV-5O+9~tyb+ZYOgAfHaQ=!tf62Qp~xQg4DHE@Hxx zhN5pwoRa#_(UG)esg-fJR2(8-g^o>qgW@h;rQ=^GC~ab&Ifp`sF>wUM25njNKZy0o zIf)5@@M0O9$DpP8#A*CUr)$|d08^eh@UxvyFS^NbL43$8NTl;OX}v5d{%k@L z-MV%*{eeYG4~@#0)9VaYq^M|{QvGBMXBcy&_xOO_i<2jRe3IJ*J|UmU%6nX^NaMO= zWAy;iu~+p=Tt>z+P{3D({hdG$Em3$k>Lun7b|1SC4V!09?VheBS~H+XMw5lbU8lbY z3)lnYVLOdW;^@&(;tTz}W$XPv7lZ9h3QyC!n2wI9#}~z4OhtF(Qr>8c^W}$XjRKkP ziASw06$Gq>T({|$o>P#k_wf~5;d@hMDwHCfyA-0ghX7CCf6IOMmucoMm)(XG5RXP> zT0yMM+*?uLUtj*+V+Uf~MJqP(`21mr$RAhZhf6MOeTj{6o~N%c@^cvn9U_T<$@k~f zAA^z98AUS*S+r>Ju?Y{p!ZnONyp^SSgXYN7GtZ@(IqWp*V5GM~#N7LEYW3smy>l8T z-_)YI#4t{eY&$f(wv|Vx&QW5rcxkD z=qkY=BGDK%6cd{Y`=mQ}q(w{TI!H%2sWTKKWYMrwxFOtpH0aaeDiP(nJfG!cTbZ#v zAQ|Ak^{cwM`Pi#`ol@!>$Mu(^MTzVWLMjt;s18QV2Z>lhBj z=&1kpX4=LnhG8V5FO2ZNv8MK(fw++%v7+7kOrG(u((g_pf^%@RwB zD(HbGN9(eL_iOLYm5ZNCM6-45Z7!Yc4?P{I9&haC(Jv(PIaS?XZT(w6cY1z#JxI@$ z&x0v6HUHRm{9q(Ffk~2XI`P*Xbz=I5%5dOTVBi=Uw>|pc*jR~iCa7fJ{FraYphrX( zc};OX<_=t^hIvmsq>YONc&Zt~3f4uu#$a?0lRp%j_PzBvn)|o=G~jTn_2fUJmf5Px zcvQG%Mwd&8KK0$k#>UHauqe|0reo;x*Q#MLV-FYss^%n$fh9!IhveDgCO-)^i8G0O z1f}2k?M_$(9P0}sWmiSF`eC>11ohGAhtYQeNt`7W@B0%+V!S{D`|)PG$VI?UzLDjxT5RN*|z_G9zm8RZ0b zoXTUtJYrS#hnOLL4X|{}(8dW9fV?1BN*^e}S;w1fh(I?E8a5g_t#`+tI%T8_oeI&uLuA;e4&o#`u!3`- z1%~)Wsqer*lZjKk9fDNBg54Q7=txyU1mSxYfr9XF%HVhaIV1RXotEIiQ{Y*;l)t)| zFRCgRFbF_i$O0o3aT_j$`Dx1=vgGi24HdFRpUl&l)gTzwg>AZK>y%on1I@MvwB=tg zbmf!M^=;7yTpL7Y0T+eB%@;p-KKhqTrExtl$YK~`R{24`&u*Aa8uk{Y$W@cb((lPd zNQiVMk)HqJFj{5)QM+SOT)P#KR3@;p1bhP2U+<89Q4|QbBvetSv;#EJHV6qtmelHs zZd*8ncb-7A`!QGN!mEh>|c3hZ&cIgw^6*mdV#uko*7N={N$ zBqY=@`4)vQF<+G(`{T%PPU0NM>v6rx1|JR?_&2-iC+RnF_4Fa^_3kM_oVTk4lQ+b@ zdMlhpFe1uj!$HMs#^d=;x8*DL6h@?fJgb}i&nfwdJJ z;eWc&_vfKLn$?9jOZOnfplPpc$><>M-gWy478i#}{zsq@#Vs`n-A`FvWTJ|+PkKVk!|doA<&e&3qMN*&Tyuc$SLW^v zoE)`P|I|!URAoN9&)IQ)=Eu+hAAIZnS>@0e-{tQc9D^%l|5a~@6}D4qkNzFmif!|K z{ra(zyRnDN(~o(HKN2O9 z4*dYG19z9lAFWiDc(~M<&@488PLS`MF!x>f?>#{BoX(~x_+3^MlR0YW$ax>Hzwg61 z;mkA3Rw{9tMnZG3cwOgz>r{a13hpXptGU+JaV z+4JR0-+f_fY9aH0wNdU3gDA1Q^rSu%y?#=|=;)}z*`mTp`9<2LNp(6USGanju6;&c zVdC#cu0o-ylrlYvbjgY$KX)UFlP*W_zTED#hFkT%8d_zQk)MEsDKn=-8a? zW=2NaMi5jX5KdSZNEz2gdz+dJsVgh;@@6mFx4R=dM*y`5I#j!Pif70`LW#PLLI$eu zA|%MSSn_(#8_6pNp%J{K;#9fwG`wkqT`Go*`UE_$OumPgwYx6&N$_baAO9O~1}*5n zQviqBYCRjj=%k$c*Ck0UY#{~?%wd1(ZrmK83iAibs$ehbWhMug;Fd&iZcL;P7R#cC&I? ztu`tP*p-yO9L3Cj%v(DcYQA14yZ`SZDPR#*o=~KbYGj-96Ti)M4^o(_?DymM`%*$` zD{K@|ypmlw(Z$D!`ws4vTzhr3I@vB#ijZU@BgXPc==1ttB}pA$#^WC{X&vb#ao}W6 z+G)Vt$4B9!wA|MNzmw(o6eGh!cQ1`f{fsRkg?nMyTJ$YRn;jxOJzZ<`d%yNNpbk&h zR5%*E?@5qm5F*;m(*C9N>n3M|W!!^Er{VxFB5crw^v$1XP4Q$423^1nvFKUy9SB?|Z zJ>ah;M;4AQEG$qC$;qS*Amw8g#aC(^)AG3BVW19Tl1g9pulASVeQ4`3c%Xovt)MF- zL{pytLIl91Re$)j$_9K+fCy=bg6|4m`KQ2?7SezBs!WPpsjw*#Jz(ry`@cmRLL~NT z1Pn>O+HbvTPaz;@2mY-!INX;KvcPfmZ(vhep_%6b2LfOO4ugJQMdl_ly$%St+|Trp z3(<8oL;;WnSpNZieBPHShay{AjmHh1UH`?{+-vjr6>;_r5gV{fS>Ae9xVm_^{pO(a zq)4g}r2dg;wM)Q_!a$a6v4_gS&R@M34DiDo@nExmsdW)jzeqbDy{RNg>ByOxSL55dp2eL>IZ1kFx%|MabC^@@f z;_DOP8Pu`5g?8a12Hj(SrfknkmbeZ}6CS6*o;qV$ti@nNUrdtv z4%T{S7r69@Fi6MhXK@W&Bq;-VR(2~s5XEMw^gY3lY!rSr*bpo~LTG`0nb#D?}4aB(_dxOFqQ! zi?eNRDV&}m)YN!7#AoX<;)(Hk{3b@lsA$n#5Z8Jyt@+W zW8vi%t7PmWcE7*xLjTt5_*!G~FaLC~=KcfQec*+5%7F{76e7a=yH^%uUpMsIe5dxQ zr@Iy}?r5Q?&wf3hN5)L!o1YBAR$UhrA*UEf+)7qqv*1CT zdA^yiBfI;(eZgGN)7P_xrE7inaCgKwPryj1x*y{d;Jdqbi>q^>j+*PIN9h+L+Z&3^l#tekz$UShU^#@N6{ZsS>>je&wA6on&U(Mo#b1{$w)VP?caF_ z0t;BdJt}h&hMGd3K`_%%e&O9DO_I`3?RXKO^+q8?G@(8>gudoj`2TB=9)Fh0Ql{L*^1elT~5zifP!FThPx{I;<}uKMA3 zGw}nsW8A&2J7b@=2h;V!mq-aX8-&d3AH5n&hdg+ZHazsKCTbW9+L<3*kaZ9KQKk?n zlDbo=cteAOmtTvNp!%7vs8+Ali=(-dMyHE3ye}XKG&%47KqJ02jmtWQx)D@02K?J< zy(qRj0fyAAzkd_wciBh~U}u7TFQ@4CU3k%t)!Sl~BI*+LEhl>iMhd5V)I0a|C^$WN z2!o+{)cH)!4Dk?nX;(i3aan3q$UM4w97gzt7!FArt$Zz1%|4k<#Yu-HQCR|FP67R- zrAInNcgD{_PFlkO%7h@s`-;Ue!C!MTu3KUki0Khu+>ta@^TZ-qND_*9Y}-Tod&RfA z`oRq~Oi(G^1x7V)lCoO3e*^8deBn$7|F(ZZZuA`RIU$z$YUnFVbThDTb2GE~Otbb|y zailT)V$UY(d5_CzwqtINHvjta)d~CEPH}gc+anQ{kG7LZGrLSFhCJ(Da;rcncrZqc zl8Ny{gQ1n3t}dzj$-hEVZlo=AsnyP2?i|*(97vLdC7EAV4+WR3rJ7Wt!h58ip)v+e zU-IiehToT$uPGfPO1oMJqEn83tU^sgbJ|i~Uyz2%a6JZNX$~1;;PurVTVL7c;|BB6 zHe5w#KbjN?5X4|wJ1AOgS2~7MCI=M={BQu__zK@df=nLh$GHqn;a&`{ zO|*LqGnN^6XmN5O!1%ke4gLUm6{xVFb)194AtsfLV0s%E4j2t7Po&08B7pfe1m-~b z44jU6giWQ?`L+f<^JG&~!t06~qg3E5-4%&+xAQ=>9Fp%%`1Wk`>7WcgJtHGGk(V6u z4ooVJzH-CC_55ROArXOigQ@Od|5sI&?e*=~;a93DWbPZ#{Ap`^frk2zh!|S~>1ge^ zVl!RsraBy7cRapc6J9W`aV5B3RoJVpb@$Q=^2#GM&-UZRm0&ej&9|Da5*}_7$D~na z)5}E+c^lG#M^z_&GGRU#i8{47s~+;*Junh7pH#C<7lh zUt;D77--SXT|_GdoZRI*(PBRbKE+7qFdfpg6RYS#3jV2xz-?iHyT}kx7?3F2*fgB6 z5UH8$FBD9Q5#&pwc4qd^sU4^F?B=O?L?9S_!2}c|Y1+6Izw}XsVl-zEYch;Jd?sBf zI2lPO^3#$OBLX8A`B~^NZelkn#`Q`@>d9kF64Sz$Wos{AmC^5CGLE5i!$*Ja8rp0M_m{u?;KHuymLnVdZja>G!gvG6Hyi(~_PBdA}K%5;M;SUQs0BOm_a~h#0y|So zO9_Vsl8b+#D5EAJrh!4iL}wn8ul~%!5;)g2k}BcuhK{O|^KEbH!Xg77{_wt86zq^1 zTBBpBR2X%t25Qp#AJi0LckGT1+iAxFAuo}{V7UVq`^t1?Zn;Gii~<4-ZRwYW`ueDh4tK^{K-xds@pcxXXRq+vkyk+ z$RM7MAq%YP~TK)+;M+UCJ%O?O68z;=po&&oMwr&06;!P)%G6FDJMb>!jud!bDXHYj?*G)^IPk78 zc}(8v&bD7?KA@+;HF%mrXoIpww~N1BH9y_74I0Hwb0{45+%nI*zkE-9!UK2=N9c9r zGa5YWr`R|+8h`1oZzZ5!{2uGTxy+=Oc55231ESl*J$UzZ^_8Vboezi|lQ#&TH{>+cV7pAoL!HN6~(x6fW$N+L5P~$KK8N(AMrb zMrEd^I-_}si=Rml7P7McmdWtv!hnU_c(Jyz;W9Op(8-cInfoz?%Nb*hj&KeoB*i{{ z(QLxFUzYhWawXAIn6sLbPe}m`R^jX5umkhl}t(*j%t@FTpSCx z9tQ*zZyd?*uiK}I8jT)E85|7Q5mf^Pv2yCn>9QLnNVH!1fauU(@Gh#PrDEuinpg1* zlhjkzr2(hYBO+)dIR5eGeD3&{)1c@57y?naYJoDgNTjo#X(7f<(Q=hP3<6`fZ2KYJ zE}M6qj-WyeBs$*?A%?r9+fZ}57H@Ygl_jLnJ4FT55KSxukV@OZooLou#w9Q=nnebU$OI2x>4EI5%C>oj*hlIC;{hR63D14Qr& z`@i=sE`G1#**UIwy+H0P6*_JzZasc8(IZBCu&b^ zrs@^BIGiwt>k9PiQkIO%20mPAWMB!SC*DSnRexo5>~eAO_I9l@Nf-SL;vL2+J6Ar( z;?Hq9bLV|dms=pFJ{O=psvKEulJg$kE}5{u_7G*mYF}#ZS8rN2VUH>u3$-#9lw1VR zLVb-fZ52-prm+m1r1B`kPC+wzr9*vI0mY%-r}TYz@)T~29fDK=6vG<#C_p~m zhMeJHa5$l6`;?(h|&bUKx_8+iH9%p8|f?loVTD1Dh!5YeLg*Mt(Gue<6U`;$QK;^}R>4SmCw|+2MS2&#- z`jA!)C=nXHS8$F*6MH@l73#W1kmL&zd)l^RK%0$x3dB@!Iq+{pprAjX0V_0DeJ~H) zVdVM@I0OLL5^ajY|0LHl3QYHP0BfoNtf`rsPeTI0iVc|Yp0Tlmme>sg8db=Z-g?!< zj@G-J_1l_zE$41Ps>WT|9HUYI^)NM$_LVDp#(U-*Mz-YChmLG&f*rZIDf>+C3t;lt z`^i&w&(GoXPVAfhUfGZ~(GM?+RB+quhbxc{;z#UoF39Hg60Hg+QUBwcDcTFnQHbIc zm4c07aHPE51|j3m!V(dabBcr_$gzQJtKksWw(J<|yk|oF-$P9IfXP8$Bl{tMbnJrD z5VcW(a+Hn@I}heLTAymwn3J|p5e6fAW!Ddlfm9WxyxF<@kHoe$6+PjX9ALk-;5X+a zHOE}^2<$we4h-ZZ({QDC(sFq966uI&Z}&((gf9IE4B}J|idMgPvjm3{GWBQ+xze^P zV!w+yj@B^r)@bQl^43gROZr&HN@N`Sj>>E{Pnbv_yc2waJ(JanX$zI*{BA${ z_axSi;SB~EdOKyP9v{wR61nvL$BX+B9z-zjK<1vrze>#Ux9&U;qFetF+ij^dQM>Um zJaw1&Gs~r;WUwDT+7-a``RaMDLBlIDIw zcd1yC(pNzU;Yh0>O5!E?1N-FI#lk|pk}PXKO&IgZ-NKIp^Rna0824WW)yXyW!f_e) zM!K=3_KdR<`bdKIhMR^_`@x^r+}Tn^y^>D->rEeZEu!z|KBmfBwlkX${YmAzwn|xW zOo@6U&qb-!Hf(dR*HOOF?{DqJN-MtZ&J6%fCuI1#`1x2f*1~oY_t|F?H~8%7wWt=< zzoG>2K$f;Q~-k3rgL>uTo^BXj??KNsyM4*nYz zYH9O^`y_m2=2HqX3Yl7JTp@Zt&N~)`80%Jc&Pp`TFD`N|Jzd?MkAFzqsAn|^5-3jB zWX2D!Y^btF2L1Ba1<$4@&oTBq_de@v`x!FCTZVdcZCG4Rjx zBZlGcMOba?&WsI;(Lhu3@APz|-sZ)~JKjjXLUE7kTExb9v7W}@@xq2=oA2uU&cDCn z|M*?&;!4#4Y>8gh)-yYXv3{yfs8F(IxoE(e?K5rj-yd$5%K-`zd2R=F-gL?6rYom3uchc(Di|J|mtV)?04 z6cWs<5lXHR%B=NR<4M0`Pj=ajjqOu~vr7C~yTavfdyD3i;e%z@lm_`_MHQ_?s?TeG zyPcZ-R%dZ@7h7{cl6?6mf;X-efiAY0o5PT1{W=6*=A;x!088v&H4 zU$4C0Z8lgnw1hz!K|&HoNWzPJusuv;)~J#Cpi*>V#3jT_m&8VwBpS=IgDv9zq@;_8 z^K!;U+7a5K4POU!kS+ufQao$J5+Vw|kraH>)%!1zc_l?Lk9(AagOdUQy{7w}{LT_V zPB=jfmtMTO;n3aArX#Iqg<0f`^zTra0f)W$0hf)JOFZ}{pZ$vN%hJ|eN!RPQUK=%^ zZ_AK{b%UU`!&yzC8_CjLQp{s06f;0^I}~iNAo)~P3?#aYK@Uj9oup@Jib9cd(a@Bf zO86KVeaFsg(2iWkh`2SAH{}sd-9b!P%PvMpGYVO=%JAD8DdjZrgcd9K; ze$z{G2zec>3kYxHb=nNNpS*Y=^t#OMAE`4ojJfKC$;;k54_z&s-YN>wfRvCO0##Hb zRq*mGeY?zeQWS|R_8PQE*F)r)_9{=*V#0o9Li+wQG1vCY^6`AzD4C;27t5_@3wF5H zixVU1o$W};)M9V%1(rVXqnN8#p!tX1{$tft1OiCxYnPW2eAAEjHZdGAo$Tj}C ztI`G^TBeXG+_H~T(6#wrOUy3__@!DAdPgTr5gB-oCAkpJVT{tzsw zN~@{Vfal|Ef7211u+2vSsyukS%fsGmd50?`FVd?+p$*-&8BySn{F@LVvuYj9!^7j$ zwA*#Hq-3HpKk0)v)g7zZ*pa?+L0_d5IRy6*WKlt`oX<^1O@U+#*c7Yadz+7HGu&{KxJly7`zXM{2_G|0jz2fgahmy^FmOsH_mTa zv)ruSwNvJYw4~@Sl00LhJSGilt^)pu`>P<3Ohl#TX{`L-!Gwj^T0KwRXS*he=ejJU z;ohF66V9f4mLp+P*Nfhz@Kq>NNwpCXSTaFK0P~yT8H7$lX*w_Q?1lAUy>a^l7D29v zh3g`Cd3CjSuy}I8oDca{wZ5awI(z`61Re~tEV@m>*r(bs zr~>dX@}#bhtXj%+Q4q!KPZayJw}=bu=&FAgzu->cf2U~RN{|p0s6^x`LMV;RVpcXX z)WqL3aFnpPoAkLE_ob1HRzTIwWi}$RDD~6QCWCvsOS0DE38ql1De8JBbmj0*XIeBb z_krNMH%wM{zL<)K%=;2U`TH6%`qO}yO`&)#SJQ7gCiS6%oy(&XU#P4dWF0@-yCDQy z=F-O0RMe7m=Wa|TFG?LLi?KR6u^J2{hfj9M!W0=H%0_oZD~O10-+_0UaUx(@q(q5| z5NM}3qO$BMy@vc-`K8Fl6^XU3jD z=_hqNh-xk@mR`tbrCGgZ|KOn*x;z5TJq;t``$eC+8gN}d_#OvG|)DnNIlaf)qNzaiU}A)7j=_Z;$04xm^<)J;Tf1?Sq9q zU(B_Y@zj8~rrrH$_=voxlG$vs)A4L(_j3>;f3m z<@_@jA+*VV@23VkjLK$Z>gMuQW^LbBR@U=~3yE_@uRs3q^?HPd99ZP1{e`usB__seT3SV)gsuT90WcDSGYURP1Q9k!|{`HC}JM zp)3Y9Snp_*9oa6~=c)bOT50g+M|NRNFm6>5|BGguzAfGNw)kn1@YYB6Ol_sf!X3a; zJRRj|9i{fJF@5>4_LZ!|2eW6MF}fM)f*;JBh!gvt`BWBOf5;cHc9`3T!rdL;%8&Ccps;~*Xp-S%b?_l@k#^oXAqwh(Cd}+Rq z&8~IHEZH3$hoV$BpW}s zg+lp6DrJXJJzzqZ1kC*4H&pn}Bce9CAm1j48=+3;+t?&8RTj{7%>~!|SC@M7I;-Ns0@p_Q`)X{Q{DD3 ziy8agd5s-r90ZLsY(%j)yy`(A?9d1|txY6>Gm^>x2{7lubjI2}(LG3F-jX)x5)#6| zc}7S?n#@&*4iZDm6Ocmr#h^^2=4%wY_&WQQ$d_;;(65hCj0vr}dH~To^;)(}?Xx@;_i~vUO*!xXmKQK{V#) zTWiF_5UJE6+EbPrT3O8ZIgg&d@QWr_9Q)ZbK_!$E6u&>L$o-n8J2_gBfHaP*-{2Z) z?~BIm&84Ls%L*w>%=+U5D#s)|$DqR5&LPJ|Yrxr0#E|^S_s^A6&@TtxTj?C3?QJRs zu^Z`b%zAv!{cEHw`k5JuOk7`{#zd#NP%UOdVb1eEj0m$eePlrG6ay717jd*2ZyaU8naf{$;X3Wlc z<-MBBq5}TuRW^`M1d?zK7{ULHL^%?%f*K3Jjfa$w7s^`%@NX8D-z;>m;`II%lY?Dg za9#lIJC;BthxM=YG{lmXLJU#xUN3p`>D4AabiJ*Bhb=39}Gjx+>=Niv~NHH-y zSR#)mi%bm!$RZ}XG{`l>xcdx&DHQuJqNPX}M2zWrtyiR^j0nuNBEns)L56B4PA zA(8mR{{D&C^e`LOlA;fh{ON9{57VlyocdUUhu6AbZJa~~inN>61@GLrAa;e7=~@Xkp(f^~ zLo|=_Mqf4uOyywTrjizQG!)kyWs!2kg?*L6n5=Z?d(dx;FnlHj$IvA=1*Ue8+rSc~H;Wd;*YJm6Ox8-Liv)k;ZvgT#yIZsNbk9+ruEnYv` z+iA~;Ra@LOlN?2$j3bd@TgVzV^?;ASK z9q@(me|5`S@BiqtGPPEB{P$Zohu^Vgt9ZO8@AORah2GOCL6FvsK0b|&N!#q~RbEo}@BgCk z&=13HU1R>RiYwAQ8j3~kebbk8nyK3z$-nZvo*EqrkIl-tK3{!jpA;J#+bGYS%k_}& zxzlC5^il8D(7398uld2d;?t)den*E}lMc@-%nvpX(zPzP%64(=*NM z55H8@oU>rdO2ZAFEHx)Gz zb8f?^FQdq7b72F<#?Efb$KmIVkFuy^43aVH?>&BukV`Aq85~j@y(W$*DO6_sCgOgF zC7i?iPqulev4qpvzo89pws~d7O2&b6U@e79-a@5(_r6ya^;de;;Ai>}T6xgI_u%;Q zr1e;MzG~x_KkjY!s0%_*;K}`%WV2~yRctapBjnkXD?5O=e%nOV71q|VEGmHmtxO2% zO8eU&W?k~MKn5BHB!TLndh<#SH*0%`UL$n4X}f3=+i~Q-(}h33;E>y&(X9RG-{RQV zg4bK`T?o3?HCoDX@#n3A-{R24cr1=fhn3J+0YvhcV&BYzkEpBV8z<) zy#z^)<6PmEw!n@Y&(EY4{DoiIBc%k2es~ZAiwwOeWKepK9l3rV5#^yO)YjiaD}&s{ zGHW4;K{~awB9%y=GP5^F_@}TU2DfZNLbhNE@s}@i&1!9JNRK84)S-2I6pjv|0 zk=p5!NGXdl1i@4owP=?>#4QXt5FSoI2t{Lq7z~jV1)$-Ww;8f#F1H&9sAq_0RT;+iSeUdDyP@>1?xIOvMI#HK`sPnce=Idn5CF z%*l73V>BN-p^j@*OP$5F%WI|{%Mf|o3{qQ<- zUPmA?@L0g-)Tc7z$#hx6fk?(99i74AA{HGrzquRF>7S%$W(?_Afylc_83dt7iq@}| zp^i9>K)W&VkH_vUCjl+{u~gKohi+O5`9+Wy9rwN{vVuBG$jQq2EfgfYJ3_LkP>i%! z0w`PwG<)-uOA%m>%p4*KOl8nEkm9Qv!tQ(nc&rFP4m>myf%s*K2Bppcw24+7Rlsuv zYH&(Q5ur#fB^NQcgO)G1A6*G_uZEW__nxDJ33<6ex;i=f!P3=yIz>q(-A%Ns5rc0z zKb!^_b?wpQ6t}@-p~O${|7e2UfJF)vbcab&P~BZ2F8~n(guDCTBgk1*K&^BD*}LE_ zP$|*>yAK4*TY;OpR>S|VPepXJcJ=Q}R8T>x2(b4Ylu@8V1xdD{MZevOeqlPcw+|;; zPu{P&7r`Nfm2PE2d;*_$vQiDR}2OAG=}UzrCw@>SLlBL+hs` zxpbg+ZEUs%W+k3yOi!jntgcEPlTM^An8u7C4DyGdT8tIDT~q+q*6Tu1JSeDG>4 zQd);CnWc>g4MSR~a?6OqZb_Y`^Y^zw;js1|Edm$<2}xn5O}R$95JVCA;s^g5s(ul~ z9(%to$X}$D)fn{4bc+!^>1BGxOHmom;XK&6%S60HEC`}(+Q%S7#L0@}B+3>su}vCw z6Uw~@hvE)+KJ+oIGZ$N=P$;P}pOY#*Yig&|Rjyd2(J(US^Zq%X%6p zlx3)!$b&{w0_A*1nzo+$1|_*57GDv3kBmqMgPusv!lpPTn22Eh&fcLXljL*t4b+Y1 zay6ShS}jgOf;%t*(E>W+TL+0ze?Q*rQOt!ZYxIUOt%oKPi0Okf5mP^s!kC#951)L= z$9Ag?P^gGSd(|T%vl0)cK4~xSeU5D>if@BfdbTh*I^Md+N%q)mAZ1u^C_}yERuRRb zs1ntiB~!gaXlNn-Lq5N`@(=N@;Rmm4l!1iMp*uLimuu&=Qd2w6d_#})@x#uEr}=ol zz1*ahK}DsL}UD+)gQ^ z@#Ug<$rL)}4j>9oK~R;NZGLw?&)92~O|bbzj*6}@D;4M-QaGMmZf@4up1J(Gy%N0(X3w~z=FZxSVMYT|ry_z|6h`zgj+$8Mk>`sxFWbV7&RefF? zaI*cBV+QQ;{`x-s);`G-QxgMH(%+wWyRZI%1cLom>7~Ez-I>XYrlkBQKi{Si_`ddx zHwfW<@9XbFwOHnPIB%Z3>~gG615~- zeY_2gA^hFmlx-%-jT89Mqa@K#fyPnK=FK-pLR(3ChQ%mo8Q$kz|7^Q&QYh2n_#u?q zsd;~t`o~A@#FPmElHDeKo!7rtas_-EGyS}s*uEJ)7Yc08|Lyf_U^~LKj>os7|>pgt-v$i-}6aKZiQgU{dzfH$~FF`#9Ym9O(VI3Wrl(ALy zthqzg`@&T4SDEm0bxt@ZP|Fz zLk~o18wrf-wMZb*x9hytpI;n;z0*jtNJUE}Y0YW9A6n3E-F9zO!+5M+n;)1z(_H>L z#ryqROKREk*iYBfBVk=P_Ssu1+-h(NIGqkSRXCxkt*xD|L5ZT?w3%^|0xXspi;8P~ z7Ae+j=c8Qqp={cBC*LiB1Q+@ZnC)}{T*d8?$`aeMKN#$Zl9Pf!GO;`Q&QKHaRW|DZ zE=V5X3d9fA9N}P=)j*RH}+ZlVG@uMhtk3567 z4;C|S7TLj)^pg31UxU5n54xqRct>9i!lp$)N^1#Grn=FCB;|#?A+Uo5r#@HvZrMfv zMZnsLbCD>$iSnlc++T_xFd}s;6BFmd-$lO6evI5IDGMjh;4I|sRlYYG|JB`bRGh7t zD=A@d*+=2@Pr#*uztL1PK#|mb^m_n3cr9*GGUs=M!%clm85kP;(8o>t_Q7Wy4wv_G zZ#cLrk*+v01y#LqAHw&ZQbn9ScEdP@8N#7lP;A9i5}pF~oC@p=HyUq;F5CGz`|e$U zB%Omp9UBA%^#sS%<+x;POKZS^&)n&3t^aabl4sZOvD2AMtD#!n8g+rv3#~-c(g#}Y zkRZZqCk!( zS8I+9bc5Y;g3k7NF#arI&Ea$$QG0lJXbmkMqu^XM1!5O!Y|%t-yYUgqaDUml`78WM zbiXNiAQ9Q2JjupbLD>&~uPRa!oHkp}A|=sr6_ z0a}nMIU=0zoXu(8&6)y~F;E~$R)rJwTn9IAUM>C5g0ci2S+kH1rl_FvLj$t~93}CY z5_~PX-WmdI4-j5OQy6^yEEEsPpOzd!M-sz8h@Gf3UXHex)WZ3Df8M|Pq9RcL=Y01E z78e&Me}Y*vW1BQhQID6%=S&;)V+q768wAA-N1c(tzmbBv45H`NRIUcSAW|Njc0lIb zzw{J z8F=w$y4-hJU`S#Au3|(%B7h)^K#3}g0V>uS9n<06%&xJ@CaTUztP`WJ@n!FO$0;}) z_1g=}`A39N5KFgHP$8&5ekpz?@x?Kzon*IY3{Z$ z$w|W9*I-dHF^UuLud#=#=!Ke>d^b*rg+xdL>I_3x!JUC?Shv8*cIX{WtXvNP6gVUR zO%zHBTO=TWiXOl1`=*DDh%zjqVsLUOyZ?9 zG~)T>0~@c{>?3KpEPW`s;5@gu@JPlU0%F1WAlZT-KPsbO@(;Ip==ZtWh@OA>$@mV& z|MONBVNejm16UX(X&)B(J<;u*6blith?XS@G|}JBlYLT^<3DT0G*THE-HI_W4?n)= zII7bLr#3IhI0k1Yo%$%}DUq{f2sTd%hh+Xl{`mCc%|Psd(x6Vl?OSE*@9euQX;z18 zY>)8erLupA4}97yedN1&zR<*=2VY|z!0V?qM> zJS*{+50Yvz)rs@3dtPQV$OFif-kc9!c+2eLEBuVYeTQjJ7kQ_qX_i=?QC|3}ZASxZ z%xZVV?}^rbXNQM_AO~-}`IJYpd=3j8lJ~T^Ux@cTd6J|lF@5^CvT?d{Z8lfa>>)nj zZ?Y4%~G))9QoSvR`?zvWf zq9lq;=IFjh1*xg2Q5$gQ?U=@&yEFZ$9Fp~O_x6-kcvAhl*`g$hpmp!0FH8-L;%a@H z{FhT1@5{*8>tF6}br_lZ#qD-Etc)QB9Fr`F}K>by(By_r^!3gn$f1 zQYn=hNT-wtg1`h3Bpp)HU86?`NO!0pjuH{1VRVckA}u8`X_W5Y!{>K>|KZ|dV|#P4 z?L6n)_j%oVYE}2RMJ@Nab#>95bSMH5zEZk}eN8Yo%md4Q)=EGIHplzIndi0$_6 z@xA!7Xy$*R9?6UM5a%x}X0oEfM17(F6A{4Q8oHryTs3=?Gs{`sycNXIZ1rXbdAC$Hh?yePNrM=dc z@=K?Rvm&3;cZM{gtrQ4UIS6UYhu@9DSSpFgmkA=Ni1Ujnu`n3;BlV3)89xWU$|#7g zFSpQIheS~JLFgsP(#s43W+UiOJs2fMRnB+D$#VjceNQ%Y)luyUx~zI3#aAwUH8biw zUd^wz*x1gig7$c4&$=&m|D^!CQdY||aVu9@HtkI|)|rMN$?I<>Yvg2Q#fFM(yB7Ys z+hehGm*fGrI2OdBT-vRe5tA6WHtQQTk*>>JQzKAMU~6tdv_@kdi5=KUc`*46a>Z}w zc+J{RF|s-hbOG1GE=a`dpS?Ig*caMr++V%3Hgfbx=$G%&(nl%Zj(fEr_(Os?l-Ij0 z9Agb(x|c%*p|(W#$%har)+UfXyH`eS`E+BWT@|9nA#5%jPN|2n^Ksoe_jkEZJ&oSb zOSO}glQIK=JR1r}m>Xau6}V>@q;*or>=CqqsMSN&&! z8qCN*F#;SgsGK}pKnw+ov-d$U1#)UskLlchg>Bs#V1dDylrL;9do2=!h3wCOp>Q|~ z3}e3nz9E*E<1#K`wLb7X+y;b64Eb5YsD^0UA$*R) zu(x2ai<5$;=wTh?^DYj%6<(A*Qh9Y1$bu06xili8CGJu^1#CyKEQ`#jv_Omll@)CH z)`KfGU_yA90&zO6e8Y?&A)+8zwA@}2C)F^gYTaz&V+qFI`X0F6@MKTKz@tHhvn3(< z11!UsSH)&39j3z+0V#nevR1r^u-OZ48=oW3ozseCH78W;B`@XsplPl0*uvUQs*)BO zvAOGCZ6r3_>s_O&9ZGe3DR3zS??U8_gv66Ug*hHw=c8ibBNfI_Go$8NFM$+XNbrT@ z^maH)K17L0SGa(EPBy~YN4Tnd4eRhluD!S`ygVszuE)U8TrVZ@Ry}GCL)}GW`@Mi~ ztU05NnwXo8Ahp``-sbEbM~R$R^qCygoD%cd$fJMH!6plhDx)yi@nteydgJ#$FTg4( zJdB>4u9X^R#aGOo4)k0)b3#jvzO~d0Q+PWyztG@gjp|SDiLL|)1yIOGoCW+8R|X!h zDrJ@Fm50yD)Nv25YiW*%72k>FC8t@>N0O({v!V(J8K|3zYtd@OOc;(-nO;-sVC67A zy}YV0qjs4?h<7V^8l*W`GOoK-Y}<#EnvE?W(LxfECZGGqnXKw6JxM&yVIiFOo;%Z2 zQ77qImE&j_?_4kr-WC~g;~edCp?3rVrB%g4Dj;MJg^5_m6B0LP`vVM5AnYcv2TY12 z&wlhau91Ed&orrvRpihtf%i^o71e1g9G(U3eY*&~IP7{)`)&IBmEP{-&FS_V@$0j- zzI*!{I%6AleqLTbV&ez#-7%dhcgDH|?XDZaWGwOH7JrT{pkTpf2&C*Z?``^hw80CK za=QmOA!huz`p%qvZ1A1WbrL{|bfBlJ=V@R6;F!nRa$bwfb)5(9Mafk>)uBhH!+zbg za$gOP=&~iMsz#*z)U7w{^=h`hMLf1+jFCOmtGftATYbUg2sr~Km-~S!`de64fxTa*!T`X>{YzV3u%1EJ= z8&Mvx+RIzh?XlDzndk4jH9S=z8&L8|S%xv?3zN_NET(neVy zO!xX$V!Qm(_8;+s^ji3?lnp+c-u0>#C8tSUO^|Eg{(b|y-W&9%;qQ->6!M`$q&L-N zPY(CargLa#E@~-XUt6hMlW>}qvL4IE;vdY)?HpdIE+vQr9+Ht|Qm|FEHtPDF*eC)EVX+5p z{0|>aRC!sqC#3f0cP&t;yp8x`LbEpVO3aw{)1AY`nW65yY13*s)j{l2hiclEm!8?%9j^O0#A*VPIc;h%$1+1&K@k@xYkiyzRW`|^aJEl|NiPVp^!0~Oju z@1afXI*K$i1QB!QB#Td?Q@FS|JaBL0g+r;F*%DPd!YNgX)Yi3A(g{eY>5$uC7$upW zNg=|~t4GT>LVf$zm(oRh6}44iY+4M%0}+m&DF>L&KJ9Ku2GZn8EK+lxobCI&92;(7 zMPWh`B=s$UTvjmbYa{xA%%spz`SR*M17b^3k_JLRO8!NW1WVWX{ZVgierIJ>qATvL z93xM-olwexi#F#wh^d+$DwyR#+L$AGLF?q6vuDlecG6VP!Ns{BV1iPadH)6aILwkJ zaN6@=i~WlfgjZeNbnG%lCRd9`Wm%5lNpD6vf%nz`R%)y!V5$Zy%NEc3-Uasz-dh>( z0d&`&nybeJ)(?Fq$}Jqi_UdIMWskQPrnVXn&aLg$!Xhh7&r>Rb_Lc{-f=<;h*0Wmv zy}6TC<0^epHhcWdile28s+^Nr;XZVZ(OQ_6P~~6d-A63S?slmo<8^cPRa%RXc2|;= zJv*sftx9nskvT}nH51_ny+#LX!|#Wa+MAuGnxEetqd5QL{d0OCibtW8hvQoI^SjGC!!Q`PCEmm|KHF`rTz{m#Twk+) zDG``#-8cT-2J_m>+WPkF!Wx4gEL-tlU!FDg@|m1DDf>8>y#mW_W6>*8iK5nyisp~{ zny@G&OeYx?+(CYdIfk~n%yrPyeQf1dL`r^s+apY^nOeq?_?GLrGe?vqQ|Hjn;r{1d z0l6T(xccc#RU~hI!kVc5h@}9R%3_lZ;y=MwBnI^wOqfBLM1y(<6j-p5`<5TrqJ6fQ ziqMVW_xz%P8yX3wvDPs);AVc3=l%rN&%sz6JI*DF&jxZTc)1{R3C)?ei3t!zXc0A7 zX!7**89vv~Q#vQ}SuA}kKus@}{AscYMSYO1r|Q7fLEnR{i=3RCfD6AMe*o&JzM?Q6 zqrq>isYmjb0EG7ap=j3!-EizSBmI1L7+vE5#GMN1hLfpB-UG1(mjW+n-Qn64&pQwh z4GNm)h=`9^YV-eo4scS42zDz37BtK_DG1j)G^Ek3RJy&u4K z{FAoJV5F=*qOqi2`1Q2~$r{JCwbAHIdNNv1?{_BOO|%%zyPa|TVdF_uU6@v4bq*wX zEENK{6MLL7qU6XnMrM>bA|~8{w1PNAmbyf&_Mt@6R~_w8dCrf4@?MzkP$KWtN+AKb zX()N8Iq66u*%Rkd5@r8UC(CL1K!5kzhLiQ`_NtxX$oP2A zeNQL(gSH9FKwt$1B0~zTDC1x$x`0N?#^#GLcGmxFuRiB=-m9eqyEvZwfsxFz%fW{7 zkEP2wa71cP310cv&VIga4t5Ur*3icovMp`e1I5Qw#|4ZF4e@La$LDj-E#>x*EHN6} zTlm|&H@c@E;wjQ-Y2H`dO`G$+yHH%uc3l2RUlYBwydy*j3ijKRf#cIs*UcY=MA1ff z$IjH!)&iR)TU;fNeq}k4uYbGfWY_Zatgm?;aESf*V&?Ah$8O%=$`l)bmuKb+HYhq| zy5r+;Is>suvVKRJ3~NbCMH=WR89?n;60Lo>uu^%@_IXqLR5-<`OZJde>)N7Di>jKYh0- zK8|e=(eP3#L`v$B0HmCi^?tK-US5;m8u$L@h@qL^)_d9$llxXR-vyboaPuF}e@&^| z;MYbhSN}MB4Q8=NHnQITwk3Cry&)9Vm$zGT63-?RGwi7j?-aB5!RP1*;dderwn&tz z*?>K};`kzXo#`7 zD=||nu?5QZN20+aasnLp8|YP60;m+|tJE*X0QO$SscFG-1TUJg>H4b6MeMx=RM~l5 zSF`?erVx)z1Mvab>}mVjScM-u9In!3;)(;udyi7R-ooSo1YDDoP->J*I7a2|?w;X` zpA?lLeU$SM3N@g~L%vG6Z1GgnOw*4h5m)at=$xF!+V1Q@jl&fvBkI=0jL?70tcdG=4%5%qS?`0FexlOnSaGlxTnmWzb{)UsT~E%>6izn}TK=wGEKXM6 z2%2YZmd+UHIjXmNjK_OzDWF8+&Ya!dtr1DRw?O0!DzoU{;t@Z+zTW-Zish%JIW=&2 zlm;#Xl)*xv7oekiEGsqmm$J2^CO#&!v*)nh%xgJ0KRH8CbFQKL>fb_x|)ob|aGww!hjCc=K+Gocy_zC&<>HJ{juPf3Mz`0bN%dUIP?$7@2%Rt(nl zUH03q#Kc({6>`WtA&Y?vXFOD2O6r;5Sa)~)m`^3kk^^VUPSCkR%hB@|w}W|f$=}J3 zFOHTfE;=8P`Bgo$7r^83U~1IA^n=>(5=hD-(I3Q*Kit3ge1h{{JFB#UJ`k$j$ z#X9I32Cx&yLHv!HimpEVayDJtx|n^Z5CUwyK+(-)xeRrMwO?}tzkm511AQ@pFgYw; z4x)c)(*g!3(3CeG@E7Vdov)_cF)X#V47-PT%>QNqYQ^{#jm~yMXX;rZ@V|tqV~+k! zd(Fy8Nl|dt8i}~^ztnoz0RgB+$REO74g~D~{ardk*Fa_G!e<}Ms)T`J4Ee(kBg{7j zLgy}*Xxxgk(-w$Mn3>3t`mGo3Mgys`&x~L-6|Qn&jnvN5M7V-J$yLkv2kyi9Kb?z? zw7}!4F&dkKvMR5F4F{~j*V3o$zTy)lPkeUnc{Df^py(ppEV=1L$jud*+Bo1M40zdm zzE835V?V`GP;LdpKDlYaq^ozGlp8%s%DL=94F^DACE|OxZSEOej^^Ew$}jrMJ>bdd~^! zX*`Iw%po8EQ1h9fEJ5PVX9`CW_9r7h4l*C5Z@i0krnyZNHo|ovhf;q2{x#i=)(1?Y zNOHke^Q=7(g*qh@WRAXn%9L9Pbra&HWJk3kt|jo z__}Bzt0147mm>iWSehL9Tm_@aLT82WFDa`OtO}Rz{C2N0?p}Fa<%Oc7yVGjULafnN zFVvqBbzEPBRw73#MhlYhF-1t)m9w@ncIk=}Jv%LHIj|4fs5sqY&TElh79Hdt-RS^p%O-l|c&|-y#f}PeR$B zddS3aLwI1rIn$pG0)6Ve|1MWa2%26W1>26>+`(rZHZz;ue%hCKv4zhpa&t}zP@&iJmCsqgGvocYbx`E2CJ1xnj1?DfTT)3V)5 z>qqC7cDcwG^^cWjPBi&>rM8m_r|x3+Y%zhlZ6anu)AeU<#f z-6QY#$o20Jx54IP?3>n2nc1`RzYFhmTK@ITZ{jRrgoQixEiJrVmd*vfTcHPXC(7rz zg{1F44fk#EHoP7%$H|BMOCX9ishp6b4|k*&jrL6Pt^X!7OReC25Q(d+FEd;dm)caP zX2~jTNIKkqG>GGwZrGZ2?I3d$FIjWJYHq%27A$N$KJ`eDm6i(d_njQrZ;Fo@asA;5 z%q>}iGl$C(7v|Eo&qkyqrgDz!?dtdc4E-Hy0*_s^8Jq9{wV3nzH)MXtQwjf|BR7O*RyMYuC>nS@A_h};TkhJ<=qxs~n z{p$I-#6?-fpyx*fsTHWpe2~nD>{SFAXPd}}#h*mvE`)IqB1;|>Vpk*?u`p7riax!^ z{8>0k)`##D6KN=GegZX-W_+I&_76;@FWuky6;apT(WyJO-Qm6)rzBp|*Us)U8S5PK zIysVvoNnlYXapUSk^{;z-ZM{en~oEjJ_jNCVyi><8JLVR1gN{rN#|M<2>;dQlZq}T zkH#db)57khM%&;q3zE(Y^m5^UKI-#Xuqv^&lRtSlq4)4pIwqM-PP*P>3!`wlXQnXg z@WOjOJn!gt+Blh&>pF1zK7d&+AFVWQofwV5;YY119kKQ0L^8L9tI*NuZi0AOY9iP- z$2D{Q+i(v-+tOzU9;PKkM^HzqLBiU|TqyK9`G2b_o!uz(ol_yn>Zfz(s%x56USx9^7`I ze`~~fpGQXpWV2oh!x;n)U~W#X18$uJ3UNjhSPg~%AhK}PLGEW&V68St0sKjHhR@aj zwIXi9FFrBjXeaOD^!z+<_Q1pR5kDs}oMf)a@RCxs6+n(rH#4}Ml3m3jQYAsiZyQ_$ zwi7oWT}S^4Ls*X`QM6L2P>8y+2szhm^KC zbF>PJG8Sp*9ly1}Lhe8q)G_TW3F1^_@z4UK#*-&X#au@a@AS*kqZFoRFp$m546)&W z35x_%Ao=B$NcprN{Dq2?3~z%`?$ZY`KApL}Djgv)4Y04`dH@68KjJG=vF7_lMs-)Y zNDIL@{+1q?D7%yCYBM%5*j3zw|9K9b#)ErQsB>ItJn_QyPc#|G%9)6 zQe4omF!{BU#N&?%Aa}eee!wBRhMq}Kb5V&Jmhj2ivUdSx@OzUD^@NewJKlvA^i7X( zf~L)A_|3^{@FbO9l^tD@k7v-4~tm((7PL`hRO^$hZ zc_Zru-!-F!5n%UG#C&+|dj)RL#;?JAtRfPD2Oa?HMRFeNxMBkGFA?0j$ZPyrqBM^= zrP9P|WEjvyD2%w`cj}}sGx>~Z)`7mtc7*mH86@N2?ZYg}!~{GXYF*oN1h${*pIUuI zy8z#!h2>eIb=WO(O##*7T+eg^y2`yS&3Wl};LNFT-rlk&5w!PX>CWnzCG41v?U&y+ z_Dx9|jZHk8oYB3Lvqx#P6{bP%r`v~rhYHV{$OWZjB=={0G;LLSybPtoqlLnWi2R?d#RDYYHueK4%~E zkeiydZDbx^lH}o^374gLVrv{(6Mf>>Ko?@{+_-8O{t8A@^*XUjiF2^&uuXc!vXU>0 zv*M{ET-$5%_pX2Cb#-Y41@_4KLVQKj&MKJA{yJ&e@^@ZYeLVFuvTEXyMEO8`+_jQw zd!Ftrr8nj5Y(=5~|M)nO@a4Xl}Ngwt}IpSI-yapsO<0U|HbHaPk7RiWy%js z;e&quD+}}U%_!EK?8iJwjhbr76JPl01-ID61OezuMxEA_DKB7u`JnmYjQW<tHkN$lK9 zz*sOlJqkLRJ$qEr`HbA+Pt^|OHtfma^t9=}NiCUL6V39qSHhh89%ZcK>Kq}mKlAPQ zuLPj$`N#B)3dxCSxfB^Gp0ZMiJ$fjRfr1tl)>__rm-TmXahLrRER}7Nv0wZcyRekW zc&)~X4~;KOc3~Z{mfi^2=}2{Zd`7owcRy>o&d&_qQ2yxCu5H*5qKcpaFlv-ku-4Fs z#3TZ9(W=(+m`c~vA2AXw03;njkx6NZMyS{oCS$6?i^81MzxD#UVqknj=F+ z_*$t`uVg@xga#^Ae62Glt!#P1!A$qwYwX8Sq%OOC#4<*RCE76OCy!=TLH+eryP34+ zxhAh`5%M^u-#|j3KV1cU#D>tH<^|w-lyO9m5C~3po`NKrlSMQN+EGa)#YatSEUJFn z`gMWHYd&Z>+uwp7+Ji9Cr4mEsk+0K>hwHneWirpAqspHG=S|~*_ArE;Q&Qby+D=d^ zCgUYNB2HxaE~vWV4FBQuS)vw2cZ&hDCZ4B&zj~ri&3#~B8u>n{YIteFH=C-{Dd1o<=eY>dK|I4tBw? zMiqW3)C*j@C13-*WSszriRrzkMFL zbMy$Gv@iZ+VrvO*}yS9ag9L=53+h39)agu1j!1>7s3Ge zs1L$^YQPK}2*U5Fz?u_;e&U+rygK7^wB~=;=Y7egta?2^$mNP&WnCcw!=0uH+zqG3 z%5N>t;Y=)ol6aL{cx9}J+CSEbPpR2eC=nUU`>+sO7Ehi%=JQ`NW{17s@>*QN_q}vg z>8zlf0{Arx@dG834T+4&oB)N4Hu&82qUgH_A3n!vB!w^?5h+wxiz-<6%W?;YH?7E` z?6Sv*!8V&Pl$%so>B9%t;EC?~h#jOd0fJAF6qY_uC73ctY{uh1)^So)WHW* zBYE6Z9*Ym8nM5C8wBAJVGJF+By=?jc&l|O`*3-T|JG!2YX3}RD08)UsMA5rtURb$3 zalBrFdXh4SMi5t7rj?iYM5!z;B+Ep^42ey^h z-Xf%xN|lPZAh8sXw<0jmQF4gSetl(!goKvlqvP4i2XRtr%q4dB-`5jpz|&bc-_0hw z5Z$}YOUC^!`-ksHmc_yL)sgBvG1L>h&CAM=hYHk5p+vb~AL_zy8YodR=&ERHWF4(M zd+t@R#x~tBGJr^G>VGAjfX+nwGGmy`KU3?CqZ0dyP^c==51d~;#8+C8^mG`ur{A4~ zZxyGwXti^2shJ}rbAQzm;FXB2kWa4SbbfsPTTr7*butd(J~Q=OzF6qfb4xPb)U!0} zJ~J&gU-w9=wJrEEvFkE=R10Ka-?uN*z(UXXlW!ZPr>xAdI-H-t=H*j$>84E z@!_F&4Xnxc%(r;TOTj;g&vkDuk=dm%!3Z^z9$65XTpw4_baYJi?X`lWG(AcCr&LAq zx4cOdN}RPmXBoEo@mc53XHU*?=QDe2V{SNFw&_`!@j*+wMwUK=7W+)Yl>5dDiKrpw z>b>tVi*zO}<6k{YPkblE{bXRhp`3nO5?KX&S^>qsT}`|k_xg4ufK_>vB0l~xYpMP3 z^U^zo*fiT7&w9zh2N$@Qu}cAq{g>}{6OgmIQbKz`if(m(BpEGOhJNNh&6=0fy<%;1 zVGfOuejnZNKQBQ1)-Sa=KK@-2_p&>5b-ZSA0kDWlDFX=kKzN(+)4OX<`iV;>a&uOB~fm+bs~>%c3tY5FF;+FI$YhKmN7Pv{3R#71Qp!a z!Vbnacz#@~-$TgC%S_}{7bY9Du5;+#OR^ot6~)La$V(w2UP;L*=oe)-wdR!{m-ubS z2+ca64?_=Li@d6cOEUT-;BztO&Q#*O^Y2`^oINi)ul(tT^=SMjdt;r`$&!kQx#qJC z1@v0IYbj4v)3Yg$^=aR_x|8{PTLGrki;@q6lRpxzPQ9Z$RqE$ikh|F`s~bv~Pb$u+ z*dwYW&KxQlswhp9sV3NF2QnH1w+_xnoKBY&&Q6(I4kvFovFGH(a2iyjY1+;8CaF9a zl%X{SkA|yF$C^$y8$gW2%}0o37uFLCcifc+gIHmGnEv#x90T|m6*(F`$+4aK3aZ5Z zNbd`E5#${d2URhWF*U}AT_6mCN_{flWRIi-xz7_?-JS z5fK;Z_O?U#F)(D~i)VsEWKgkq6Z&^Lb%sWA8LgVVdZiuc-{^=+OsIe|NkYb_rEK+k zR^*rlO7n0c5_|}TTG=_moI_N{+WKKN?;T2zVBm|XiJjbPJ$UG5i?ahw@AAb^?T~uv{o~>;2zsj_!C<8Ape6Ig$w43e`izQ zoPK%lGq>!EGrx-;k&HXol=ya>?{E0jfkM5<3OvbC~tF+nhU7l{(a8_ z4X$NFd<_vtV$QX3a`-g$7ii?3-9%ol&~iIp{9u>a+1B~_)_IB3mb(WW?l;^!kTvMP zcgJjEVxzw1{_xJu4oJMN0^1D*wnYK6RR>vtBTp;sv!ss`MH^bNQfUnb?4uqHUY|=; zqi>N36n+PCHhd&K+YL~s3K?N;IM4_JITQlQ88-q>0-9dS=V&{0qpAwp?t;CL3LrwB zLLrEndth2Tbr~f9YV4)H3j%aNY#+iCC(;8NVnMp}jKB^Ez%olCrU79JSh>cDbbE19 zaHh9^4y(Z8K;fgbE*FClx{!kx@JIZJ`ES$svS@cg-^8K}N|U)PRT#-t7V~rWCTz+BHhJaGR{ICdq|-fQ z^ncP5mP+W3$Xc@2zIl~N$Om2TsnZ?XzS;4UvH|iBNkpup@#OD1gp5v;@J6koT5Q0~ zE`V8Yvw>62P^cVMlV2+4K)!?A^N^T|}PN`XA@hkfty5>fV*f5LNJ>@W~&jh3l zrWG$)H9jn6N4l(&CH_`s^7K?5>wHZZfnzrLx9X3Z`IbgAR6{7qF2;M68`}6tJ^pT5 z)%)S{*IIjrr|a9ROTIM>HVi-Mt?61vgwXZIludZtj33w z9ks$VeD9YC8AL-TJ{t>Nqhc>PW6ph03JFIQ2G2Qy1d3geU7u}{uzHFOM*e=^l;NWC zJ7QNNTq;+xCT_XkyA>=udc%NVZP)8!dG?6xVz^>t;MQZFojpaY*QWgG&we5IHw}LH z`}&f#t{%Rh4~8~qPxhAoowG58v+#$bxoVQtMjOA$_$_rBK3h#t?Gq6Hkoi+?dfF{#7D3oGu|*Yf9*MG((R$Jl=bIPd*?jp7c#59rAGo%OMw4Si$Jz2`+k1NA;S!tZCU4mF)TE6p9)l$V}R zXl#USu(7dE`}oHJE#r4WP5PK zup}i^%sJ?sO2O^)@Xv|D;erT$;=@^##Ef=(+&(7X-lU6VTkOv`B;g_PppZey{&%fG@uI=@@zVO(vmOg2B3W&_8we!Qr z$1M+TNNhD8b@fiH^bWZ^@Rgi;Q@+_PmVEl>Z~NE_Zyd?RE4daA{Na!D7rQCwA0%Y^ zfj-UI?%LG2TW?qPY+gG=G#Vcqu*(-Kmu6R>HO;vQ|9ssLK!5~E@X0v*`o~X935x%v zYyaMF`Y4dD+wJkSo*ew*ga4&vP%+1;kMc2+DMQO4Ma@UbW90F>nd_@%wLeYH4JjH!| zqx-{px4Nz`LIikJ78M}`giy`YUwBc-b=GGBFU5_26lJu@2-8t01=9yBDJro4iU;U8cAx&(}r9-LX0@Qt1cs$*u{$8$2?wwi@`&7w-gRlY-hZQ2hk zU&UW6N(AoYxs(RZr!{--)Zrz=YSxxZ_CinM4XVv5x?KRUXvUBECKAxcM-e=h{DlQN z5Ok4vxZ7*i?&Ro$7csF5uhi5u<5Y>i*OyPcb$c9rjAo1UcX#z&TbN>>sSj{>U-U0s zJ6^6DlfRgd5Hg#*SpL?07SnP#(rOU-uR8BSdAL~xwm zTgF@YI!mBq`q_z_+4;n`nbTw&F>P@L1@3ofbeD_6 zDwUsN+OeF4tU0g;#q~j373Ur=Ws`LB3Gusv86QTjLSwcjL8qP*nY zyuG3Cc)3V{XbT$LFK#n_|8SvL1Gk5I5W-eLI>yWc#D>kR|6Y#7izb&n^B}KP#7z~0 zu=z@UVUpWluUKArr<@pFGeBcW;_2N+Kn>*})z^o_LFg2b1-BBA6rY6J&AG4+fW|58 z*NuU}V%>0RD3LZY(A@fklCfeKNx*&?6oMfD-EGMAFc*x<&pJqYtQ_-gLRYrq84Ut4 zk2mNL7GRW+=On3Hbb)+2$YteLDZQ`S2`XQ!WE=Hjt6&mKgVD%$QNe3`Qgl_|Gwk7R z0UEvMTc*n6c%!7=tgPe7HyKW5#jv7?XV08CjP>rn{Sz7^LK{l|+nNv`t_{yI+Ki-f zoQilz#s6gnrQvX6eY4G{bnFikaSsQ7lf^p&ya9rr zl^UvIY{~HX*20$Yi6;Zn3CFF@Y((aYb7H%YBrC~7-M1Br#G;E=z5q0(%S`)Q>VvPIa9zE0BA6gPqycdIZp7v~hJgzi!#=3=+yT>-sN&zNYn*UD$LoKN0~XIC(}iw9|Nh81S) zG3P7l?8vkE8F~D=su6vOaB;CFak*K`Wnj;NLbFG`@xcSl_E!kDQO^+v(X!Rg5)(O| z4B895y}b?W{@y!B%#-!?K^O9VnVZ;HlRjyLw3(nnR4z!NH{T{u!x(HYg8tC8Q> z*CtH{V;g5D-6fsAqn>ak+;OMfFEH~EbT4pa^&1{Yh^C(Lb1iPVs2jZaslFAkJ)_R9 zF?xsWq(b(B3u#eBo?XGpmZ^j(w`0F4_d;l_ZT`HsPIO~S>uG;gPH&*h3J#YRv-i*3 zseZ!Y3tbiW?UCOlpS?aSEW7%9=HA+~3Tl2)7)vL^?_O`*&cb45Dp z`yd|Z{ZcSp-^ArMxeCXY&^pcP|APZSE1>R@oz|=k-{w zacfB?&k}PuUS~DD8?z0DlnJ>G6)9Rk)uP+vJ~V4k?G|bH4u8;2XcJuh>B8C@^?UN+ zy@t2i#o#XuW&*SXN4t8aycY23^^lb5VG(Q#P8uL&j`U)WuPUmDu)>5L>&kvz4 zN@cKB7Sve6Y@E!VE<0U>nw`uB9jXVN);$-xQt8lDYvKrTxPPO}M?Nnvm-U-tmfPmZ z4Ds-ayL?^?AV5nv&6HNhEu_1ZS6_V+UH3v$%HA=Xm-o{L?G_RZl_L4|fufzJP4&R_ zNS*SW`nlU*dnmaE-iC(iZutrE$X^vN~Q6-tDiUe6Q1J(B!an(RJh5B4N##x{h4+aypIVVLRh~;?zJM7-0nrO zbWnRjvaV{Nh&hND##>2Y&~|E)Oma=q1SByJDIqNQ3i>IFX2*BN?l;WKUEIt@;VgO> zNuxe%N&;58MkY96<@-nF!FJEePX=ntUf--da4g@mtOM5QhKp_Xpf%d&6LpEapn0Lw zUxS~Xk>5k^`TFq}ip5z4av{nfuDI)NQ#IPdOMv;j0p<4F$|i~e8`CvYN?_z_6|G{R zi53QtIb7NcsvX$$x@0f}JJ?icbUVOAe%m?}CRjP2SsY1wakx@(dMI(x>lAQYJ!Teg z6b>AWj}&&h9u1l~%5;mm3@}d9n?RzMG_dAmATEtGzZe3wL#RLmS|c>gjc{42EL;z# zwD3Q@xpm<`QN|9jJ|ep%OGYQ~78bS3fANgjNoUInkHx4bmzZPQ&=4l?;&`k=!R_S_ zaa>(@{NVnZhQ=oWke> zc=V+hYfwFEC!=ypLD2!^FfPerdP|!-<*cw6$1*uX)kemJg{9+aMM5Jav|xm zA5Nd}1nWvUZlE6qcB)J6mRIb}|F>vq!7HuOlD97`8p0G}Jl82MdwhpTltGFo(33&s z&Q}1oyZ>}?4lY9rSVyTh*n*3;vP)S!6<5mCB8UOv`8&3YK6ZVEv_pvsPW5h9aA6PSMD4JdRhH0v3 za2Tm%La0BP9YHXEt1y8d2a$1Es$Q7fTVWUmN%^LjK2uD6Abdi^P5kQC+)b1cF&EUF zlnw<#7QoAan6A~_4h=!Es6bc*AR+Tnmgo;mxcS74q8_zEc48GSMOB9H_mLxvkNQlK zQ6^)-zkjKXmJqTFG{guaRm0{k`t+drH(m2p4n3)`2%C>uaDiTvYOjC36un|HI$k z@7n5D!kX@kWIO3H-9-|Ts5rBk_ouqiTp@}`#83~=VLUaaHY7V%&V#WZ$pr-s+l8@s zH(O(8vgP_F$Znz&51*==h<1nh7J+ry;?3+2F1t+acEk5Mp%-mtXW>EnWwQgFA2J;D z?^nsND|nv_7-}y>vIk0L4d|3-*ZBDXn7~aDIq6^O<&Qg}>*#()+vO0~1#SS8aS40C z>EHWf@tf1&GvRgB%AVAHx(2_lwJIu%5zjc+;9qLn3CCbTp-B{Tw3}O zAI~OxYfCaLX2jXsb^XEN9BxDVm+_|==e4c@*8b^}12(~@9}VNmam)Rk3p=$Gj&w^C z)`M@?9+`F*=sGsgNt~70kIj1Tr3CFoUJSNZsb^(3aF}`T3{bdi`VB0c_dbzWJN8h> z+Hkb0-}xJ`mD$}tV#oT?&+V1P_xZmV$+)SF?;g{h(+rP(*l8i^74il@g3fS|nYk+T ztTGuK-F3n;C(hp&m{knhOVF4#dDvIJkZbfCv~BWq|8e{pe$DO2VB{#BUJS{0&?9f4Q z(7HY~xYNxUeORK=$vMcyroNZk+wOp)i z0jA0wg+1|?EiA*X)z8XKHaulwn@}clQqAXB+p(|hpT%KZnS=O(E5Kt=@3Vu5UD1mj z@?(#z1gY$Th2Gb|7J2FYBBL+YEkrZE=E%s&9j)qIELu;}-AT77<9qvpxmF`9;v0lYG38|CvCYQfnOYW^ ztI&O->ml$5x2+P8MoN7hi{q>s5Zd%$b0!GAXHTmz=T&4rr7MJ=K6pEfK$A}~{3(b( zp=%|gaV8DDW=UB3O2A`RxedvaOj!oy)*MZQ5+lA|xeKP~BVR)@Yg9)YjT{HlEVm29 z-*T>DPJ5kWF7`{T$`p3-fs0_Nsp9j5yU?=x#e4>e81IT(0C75FYt_$8E5@c= z{+ww0C|kv5c_>g58Krkf8ESqSLG_?tT>Tq;-R)Dc1G1GqDM?oCHo|qyQDJw%wd!f7 zwY2#A5<{An!-=sMetY^YI}I%dZz|5j>^+hL|MAYuWXVwABw%AX8ZaW*SB~511zAYt z@T=sytzwUkA9f&`%a$BO>s(ePqJxe0#d( z-%g9{?3PBOH{$zwAey=x< zt{MqmaoJ6qirIJ|($l$j9E&PWCe))p`pw+pz0}79;eTUoY+rp7@^#_T-1GzvVxy?r zy_$D&c6QvhLNee+xMxgQ6DDk|LLu-^fmDWW>}M;4ceE$y&;g-2{n@2+8eAE{E+cR* zo2RwzGv?P2AyL~lV8RXxKTxqLx!Ur8pE>LzZ&Keo+6&d=dFjd0P=SooAdLt7^4wS> z{&vAW=AG|;Jg{+tGj*#lW_#g2*@0+@XC1Mz4;k%9;P8^G1m=IWmPvTkPx1nf!qZ;M zd5L9x&B+=lLSMIXX#5s7Vf{lpn{~awah`=RJ>+>hQRQggZ*x*t2tl#2rZzZye7M~H zW)aUsaNV&IgCQb5qaw*st%U7y7-}_hQuXPsBMR z$Qg^7>hhna!+~yq;U-Q{tX^caO15*H%BRra?wONy?Sk4Xr0QjshaXg1Lw?KFlR8rI z^%N{N8XIfTbo`F&v}`hw!UOOkdGJrIYIafur}kd@4(>Q~#3PmU8_-qZ#R6taZs?O? zvE^FdK;@fyDrj=TZYXy&%|b%K^!cx?n_PvpP(9Y=NI&urpAq*+D99XjO{p&`$8u1ugo+6>(CqguT>KfeN9k(noZ$~~Dpin3oq#a@O zVOsO#SQLH04`>Y9{muH;Sh56j|BCzS{=O0=R8#3LgouXgb7tgiTds2RMB(79keBO* zj?V3Nrmi%cV#EAlT^8;<#`H8gx=T){)n zp`4Y?wBZ~p+DR*a8aSo3kM~Qp6ut_Z1sg%tzLGgJ{>%0B({(`?`)84rKktjxsffyq zXL&fj$`0B*b|XaJ4%ljSFZU#S+N>D|O@rJ@Sv3{+O6O*OzlMVxMwzU&Qk_ z0oH}x(=Llq?c9K6_d26Ivr;yBlg8a&S4RFh?~SukSY7AQpUwPHle+hvs&YrR;0)@#>FBgcsIL+9pSrAlmSy6EaJ-ShJWhueStKFj;fv;TnA3SA&mD`}RdXXdvu zfv>o!xPfch39OQ`Yacpi`*fvHR?bb6WGX@M-5A%-)%WC9{zUD?tQM~>_2BRaQ`31oNf-HxLXnF|w z(<>~x?+E#R>(;bSs2`mF1(-s^i+Ho3lSc}!-v0G0{jO6A@+|;aKJ8TY^Jr$h?#AHy z#)gkeApE;zRl>>5vLJ12I{X#9E7=Zvw{-g#E9`Z4% z(sO@p6)DZ%5e`XU88OZwmW&SsC#7~YEvGP56uaxu-23>zGl}N^qv-ilwnn8^Q zijm^%=V@U6SUlB9ZyG&cz_yw`(cw+vgn>b+DiW^u5*vO6AsaS=5d6oJL)&1GK02pu z==G~Y>fH2p<<##Kb!;JdIV+qNby?Hla~S2&vE5Jf6HUBugpCfS6io$;Ci_PpApJ00 zsB(7z23(L=JbyWokjttA8R;YJXn;ipxb)_-PmfK!5B?YzeBKSejBD;XGQ4W;I^U5J zYjc9ZJJJ;An_k}Z=H1SM9KyvYn=kvzJ=fJ+$VX(fG&FY2?@p=>Ytld5-dw*p;zeCw z`$C=;Y_;*G{C1l4;N`C>-V$qb^OBQ|_$v7lEKA9Pd^{u)fy)GGlMzRLq=nl_18fH9 zM&opgzrh4n;IxL15nxjn2*CXsV+4?VnHjqf1|~!*E$-%$UHE!&>o z-tNMekxvzk>-sz7%U~AF-=}%E=VOLA!@iTH9v?IATw%QR|AR+@p)^pXy|&^W-*S6n zGkRu*Yh^IO>XQ#9*=!yYqyaR)!INuE#lctPz@5?siGUe_LvC6rFTt=Hp3w>t0TEQ~ zhELy4*W`5`PrcKQC2pR7<~AIip_1Z0*L0r|IG*q7Y=+e!gg;mUBVZ)kISEZqzq8bK zzCCo{M`{&h%J;E&3K=5Q0uEKxOFkv7P7x)+aD67snc*H9GLAq-2sM5{4-sxfF$G4p zb1jmEjM@|9zo(3kBfIg@SlG~9pbl|OnJ}TMWt`~}-8{h<3^1^4Z_9&)p{6yNsE&kF zQk7+zK3FdaX89gUlzLC_zHB}rDUpI`F|>p>U7cLnxEt|6*mq?1%W^h9D^JFU#&5&b zc4H&U5~zqBT;5=6go0_8zUqku{{4vfL#RCYURHNKb$3K?W}W+oAW~R}<9|?HMQ7e1 zmuKzJr@Get##*p=ex+)`C^g=r;W)$f-~bzF61!clCh;H@?T) zG6>(PC%wCqDA-0%Sv>tES9Smv4~AOP#v2HK!?Os8(zP62lUS^s<<$+NG(>q48qJvM z$nJYVa?{auwT#wPZX|!WqQ5eGJ?P-S+vumWc>QPbSI_v>e*FB9_@1xBT*$d?A+Io_ z4(~zdfBm*>c$d>}Y6Q?=H?u?C@$?tg6YKetn_&3~dnd1B*$I&YpVhf?=U+YmaDndN z-FWxBU4VFga$w-5Cp(9K#qV*_kIQCTsivPFcu_kq99<(CMJ2L*f9*7< zR*XoUukS5+oaltash;Hdug}(Bl7LN7N8fKM6K;ncouBrW&Ld__q_TJEb8_`P_m>X_ zNp>AH!Ex|$)yiT=+_>lym!HFJp6W*|&%#t#LYAMVH5*E39w+nAGXioNmY?_utPbDp@ISE-$mkNLax~>^_XXINWxF0^*2D7fUeP z$s(4TG-$tOxS?N;cn^tkzx{4uuYYI+r&w26qTk-RPP?5n>~g!FspQnj#7%k?{>gzH zl2^+oOXuQU7rWlz&imW{N!Bx=gDVrq+h6Byf1Z=g-Yjkpyc?ybr3nL|gn()*i+V++ zyG0WN?lfK$Ft95vUP4!SWbf7-^(O>+nv0WcqTnv7A6TWtOZ8-A}I;q{9hA&uM` z-)a)Z6qN{?sxd_Lkb&&J{SZvV*RWo87zPnQJQAN^lLcazy?xL?YW?hqKoqn+f4xEf zd)dk(Er@<2qS~0Q#k3g7!^k=fp{uo4B87`sK}Y~{BluA|BouQ6f(s?p!60)ZBC73y z#GAuZ`0D_JIRN(q41%x9EQiCXhOhLswvfZ>qpNb@P(y7`L;NZJeP{s044V)`*RJ(_ zUXG`TV*xqkSCFG~ShIMZce{Jbhm^ei5oLI`lBV%&V)JQ<%jF3zzqp7915=rx3O^AR z0l?)(7bmY|A1=npcwL9A-iZ;3#rItNRMeuH$CrR&oHrPy-hv2Pcx zDUI`R`J>-@Yzy0Sn?q?*w_szS<6_6b{}Q;Ok!;u;QpYLJ->^XsXOs~;Ysd!vfOw`b zyAe2X?ARNkN(M|UBj8=eAqrs3LP)bvb)zQb@B;^Auw@zK;L%Tn`u>g24p?Umqu)l| z?)sm-^WOkd+@e*iCx`DtTJB%{{a$mmJ?isJBzLrQexz;hvZLdA(%SWd$5Ws*or~AF6dCN0T?wCr|wp4#2G88de!7GO%(D`V1^wY zgnu5CQ~+YkbwYzZ98heLoFLJlI}LUMROAEsCK+*vEnWa}O3x5DELDB~4uBYiG>yvC z=NTs~)BW%D?)^sDVRmHFd9g^sXeS$lymF3_K1=tRT-04_g(lSBRdkulW zg^1cdz_kLrXk|Fye`4GXco~@3_=sex?qDf39arVEwy$K1DcFb@w!xl}o((sp5sL@U zy_pZ?z1&tf3KECEdbZd3r>hMmGT%H3i}bLh4lCGtRPFMi)_wKdM%&^2pbKF^kTfaW z@h2HgKIJ<|5WzB$EU6rvD?mEtIa!}ld4g^R4pjjm*^8Hu9-_1e2*8a%B5+hmD>2A& zd3109EEHS`frRjGh_p(Y8e_k{5@=C}Z(_gCr-T>aIvHW|<1^%2>sLMAkyGtOmszU^pXSct+F?~i@Y)GiLz^G`2Rbl?bK4`vVae)5!>{tK@b;93 z%04VU@#tR0LKZIdD&v%!S**>y3Y`hSw8Z(^5WT8nVjYp*%44%S7c66sS@>JSXTBH5 z@)ga5+gPT-KCpjJDo4nM%yU?)TtnM%gBljXIwZ8@CW2;!wvJZ^7aPRILZ(b6RS+NO zo-(LcC}XOa(`0j`|6&WM8l@X4rPYsmUHmqq$copd?MqzsD{E3BD|E&A$;?HTA8~2K>80dKN3#0W2qwqu{!ZX&@ zCwNdGBn*ndwnU8FuK@&JudIRzi_Hrlb5*ZTv|FE8%wwNB@am~ zTID<^CApYKpZ)wHU^K60zrNnzKDO~bJnwrQM>kzLn)5!6cTvKBX5_Jadc#Ddjnb6s zo2`Pp(T&Eb#PALK7yOi`*QZN0pXSxysT$r~ZLkgN|7$W_YVo_@?e%3=Tx5=THTaSw zX|4!P|9Uo0b!Cj6p00IF|LNOR5jq1=y{DruCD(gVX-=^#XJ>!RB<#Zz(Nqtwc``%B zb{0Cln;!ld(KgIf+iY9^HG8tMvT|{A)oSsEezD6CX7Sya&#ESG`#1UCPjBVL;1>k^ z_}y+Dv-5esHA1Kx0hq>Laz1P6{LKDA@2dQUfu(G_b9JF!xylFc39DyvA=%DR1LunX zhxewSQNQqFaOul+-ffKG#Vnv-NLwrW^6#j$h;LQcIjK_I#nD@em>`cF416$4E$Ym@R_A zTnn79@zbJ>aH#?yLa(tyDgWa`(Y>8(!YQbH*h>G{p4ub~v%>aA#8wDR`CCMo4J42^ zB7Yzn40{52us)4pB6Q>!Bd|Qd>pls9nWzO*M;ir@e|$;c78yZ6w-1BREbq$(-OtCS zV0d|-fpil=BW$C(os&R(N_{@@i5bATE)41&7krEo!5RlzjTwf zbhQKc1$+KGj}0Bz>h-p49sJzfP7dUOhmRP%!*Y^9D94@l^4iNP!I&AI`I7ttoSV4Q zly`rWEcJ4dRZZKlvMr_*idsBL)&K)Y*^rFO&Nx#s!)l@Vmc^63j#CWY(UOUWx&9}m zUH?|;{r3H$57_)y~ zJp)zs2@`M_4bLz#`2>LyIid_&s-lD9ve=EULDeNJqDA0>7`$JJz~Nj}T3bZP7~(hM zu_uFXc-H%{+CUTp^?}4JQ=s}Zl~zUg>R*^6I9N7*&d$zW?sfS)c0$yQA=ZKr^kp_b zWUhz!E|rMCk1d@V$i};h3YojBlAwbNY9oL?f$SeZlNJZtM>D+q`h2)X;>^G!We)1M zJY||?cm@V&8hd}tRkB(GJ?3EA&}#^w9M$iF*aLpk^p_R9jPlIq)ne~X`Yfg?)i~6xJp|dnY zpA(Q?@8#u1w5R#TDH4Yi94giF*Y$ElVECBOyCTU83+Ux6>*iD#NsjIzR!e_rjBSD& z?_`4D;pYv;z=1Nb=knw~vVO%4gY(%x;=!OqmLZF+x%DdW1`{X0ss`n${K_7vn?kn2 zMwD0zN%eT%RTWbp6jlXdS9$(}9ztnb4mt^*K}-u-^Y51xqskCG;8=`_A3^=LkpcmZ z-|UoW!xXPpG&#`1s81}Rq+{5VO2f>Um>RFd1FdK6hljo6P*3nzNVQEF7!xv4$>jNr z4XBk9k}+2XT(Zg_+GL}T#yNw5YB|pM&ms#kQEn$hlm!ziG+fb_u2lz__(9+ zeB3Mdy`?;rxuyeGM z(bDOf>`#S&h|}V`XDn2~FxnuMv$He8Wz7;>XM1@BYNe#);$9mXPg`luR%rVX#FXZQ zEeSm|)Z_PE%j92YRmh?7eKLL}Q_01pt>!H^a{Hexjwk#7JFd?Nf;t{-9I=rV6U3bw z^qXlok2Y7B3QaYQAwkmaYW*SJhQ-)j zHQ!bV{MqTfw-`LQqh&AQU1Wa|PJ+IAZ?tZej(vdBM2B*XEU=Tc{ApV=e5(G}t+Av# zDm~*MRQtW8#EgwD)rN(3wSlpG>VFEdR~?sesC4b?+CP`}LZPY4Ys-H=bi60`M7*yQ zGJ0e}PS&mEDwL&yn23ssa{IC1d-g%RpIiCf{$k%iO4075jdm=nf%?yz8zAjtyG}F> zults6`v64CPH9(oYqb5WoMJU+;2c4d(*O{G_XAE=8G7iq>FuU%!g{P9Ux95YVc&M| zz4zc;j`bSEuvsW`#3Yq0)_m}jv7t%y--gB_o+zd-AuiL zZCbSkWUiaN^zaw*Kl;-H)=nmycEAH?ZGrV7Lv$n4W=QnjWs_aUX^$rvby!)M$`)Jw z$T-hAr_*S8S=2Dlb zB#u)@O(t3vgrOCH;a~(KN*N)V6(Hk+Fp&rZ;9+*d1Y=-=)nR5|F`uND=%dPb@r)~U zZK^q>TO?iti3C8>IhBg770jL8gsk-J#kho+4XT^=ZVvLU7H*IC?hDdq>z{+aM5fzJ z2ympy$I)R}X2yO64(gpCj+i>Ugp5#oCUMaX5J>FVu{k&sP73@kr|(~b8S-AvJ<&;C zb3XmdH>K!0XSA?!oz8EKhfxDXhf(ggYaRXmA-Voe`0uk-X)pQs3I;*@q9Z}`ona!{`G7B&84}l z5!NK3*lX*?>^Bx$#}{X7NN4-H_o5pY$0f<1^`1^|9iPwkJ@-HV4y-=1N<&CJYq1wE zY<afsujCx$d?+nPA8cJh&N@Qev9oxyJ)>Ut=c!=ozuMY6&eU>|f>np*e zvmXE`VC5<9wKBk8Oau@V;EjUrZ9r~so}Bobkc>NNc}J+=soeqK49MN|6gZKZ_L(1zUnQaam^DMp~S*8(pq;6drtCzY3LiWu{11yM)CKrVrn4zHOGE2edzbJ@Uf#B6sz zo!SHt{+K5E8aU8(7`A5m%X`+h*y4{^dg{m& zH>KtzX1XcWbLr~z$u*hU%;^fbZ9F7Anzf)6d!=$xRa}{MEJ)*D6I)^D`udLs8E*6W zt@sdyHex28$>enEly0Iy>$fi|GT;I#GQF!JUV8=~)PnJ8QaYz8Iz;}K;A8Mk9=G-S z;G@in^*#>UuCQb0s{DEp-SfuA{D7Uhcx{AG@A}ireWTCWCV3{&Nr)Ahdsrp3D*>oL zIn5OWW>pznyF%>fW*O2L0NEe{18qma2UOh=Qsw>Fc~+Ql{=Mw~*vCi+^cXC&n5-UQ^AI-R zd~C8Lqfodg*@Emi<|11R)1V+RXhnbgjqpBPJ89dCt1&Rh zG2l6L5pt6oCn;C;oF}U3^z`2Q;P9ea;*iHhW%_eH!-UXCkBc6Ufs_a=R#bM?fLTv4 zrtUqw!@2Uaosg>JxrZnc+{6~%m2wmp9(jA$yUjP)<#lg7e3-ccf(UNTp2YcWd|5IS z+;I^barD^Z-+L;ns;c_H^071nje$hdw*8W*=zOIUy4Y3q#f8p%)A!&1j?fF|KAplD z tzY7dH=Q$en2lkdYOtFQe<<7UvdY6EYCyz-~u5W8SxK1us&hkQy+mAI6Y|Jr!C zCbX^K)cjd~(!6_HI=b0c{OE8~R{g0Z;XC@-Ii-XH0Q5k7%B+LVfV?m?3I$Ut* z^4n7RjM5PX`D{h%x>J)LTH34UW^XBQw4w^fo-SS*Lq9s+H>>4LH-ca>mW5)X0`N&0 z*qIn*n8G}6kKY-39~3WLSQ!2kZzmRR^Y(B3>Gpj`D1@1b14m|NK8u!ao0guQo_4tE zH?jfUx`U9Qi=+4a^9yQ@FkBu&Qo?*KbrW1ZQc4WcP#$ambhZFIDo7zyKX!ZxcPR|q zgJf#MmY=0Y{k+#lDysA3Q)FVrGdNYE5wtcS^ie zUw|}qts3S_{4|P>cp>o=kpfu5Ymm|pYIw)UZ>*SDV^|pE-9)6au27ALSR&bfW1(Xe z))M9FlK~OSfyrd#!Iy`{>MfuDt6aN||HlP(*S(*29)Z-odL(l6Hq?+N2E|x9>$B*( za6Q3qr~^T2#8{gS^AK%6P3DHfe|M0Ga}+~Y-M-)$MJG@!puvW&0CG@~7nlOSeLh-z zY>GsZ7iYV6%;r89asV?H8$;hsbjKwe-mzLfc>9yhAJN#-;(55fA$6+zQ)gyv5c|J^KzTU11;Njc5O{NuB>9@vr?*^7Q(A zKo>o$o98SkBJ#J5yEtA$BVp27v|(Xo#nxeOIg%~c$TafK%*#;N*C)ezCoqQ0m3Bz`%6QA!>1#RD^;eaA7dCuB;1QfU!liF#>#elQ&4~s$yDGBC<{5JA)Ji znduIUw*VYf)d>2$UL5ysSXjZ6N!Wq&#Rvgn0q2Yn3qZM|(v6{ur@8KiU49Et(C!jN zT7y^C5-g@Lr67|b>b{E~KDPg|aI=s1JTE(Yrgso3qkwLGYEnfTra;1er-tDJU13NQ zd3XkO0Fpd`Hw?rw{7$fI;KR*MO^}{-wg}Z;ADqVyD$;Up+d6_L1h2)8g#|6Nx;k}oit`x zH6mbA+i8yBxBaFU_OgvJgvX5I`{ze0-Pkt2Y>7K~sfG*em?+?M|OqKV2dNH9EAuI7};=GcvH9S|DwewC{PHOzq6iuH+5Nai!7Zyyw01 z?PiioKC1q3vPoCSSAp6#b!)Q8s+x{|deNDXgqAkuJJYA1rB~Ndo)Up!q<@iRzPvea zl6m@*`4*(Uh)BGnF%V_{*sHVKR$}*Vi;Ijg#Zh+{Y2v{5a{K$|kU0dDJM3Adx%o)? z6ujObu5>lL#_-+qDG(k&zBXQ#8OK&JS#qy6&bU=S@$Y4>=LO(4FP)vZYq?5h!VZ&E zCF#Oz-&e|{vdVp4|6?SDQM1@N5&p85r(#RKM#7~@CwI{h*iHuJC;B=%MrI4Gnt-+N zMY%Q8uE|V83~fwwJ@3(V2}c!IRp_4*n|D2yw)7GrUMq8xb%$HO2Nr+jy1p@eWKxYB z2c9}T2Vn#M@yhRQtdq$7q*<3nJrQk=ai>;r+&V^!t|}{)vwz%l@v74i@@>|yNi-4@ z*Rh}fQgIR)ev&6PM^7E(TGMf&r`zJc_0WHFG7l^@J$A6y{Anw+=erik=we|vL8Kn4 zRZgcZI#^-@%%Hkc6_ZNNe5p?l4-V?^7ksva7&ut&{UgzV+Rrz+`1y<7?~8Zle%-Zb z-+mf?c%2-SE?{?~*TX2on{QHAG5%hc z=!MTubDYg}-@ICFV?RBy0R6Bsq}Pjs>g*BF&!}^Ex>TD0N^QFHL|Aqle*kGw7S# z^9_JP7`f(dMzr5w%Xb~CcAgwN7_{E(4|Ns#4Xd{<=8ji8uCGbM?WV~^6nEQtJRPE)s~Jp*#>-Cdybn7`tp3Qaex^HD zz3nY6k@tqZQW7Q59hAc{VK7&(eIf#9g_dA41VC^oB4D`W@ep<9GIG&R(XYec92>SU zGir`5Pppn)ZiN?>`Q}z|-lLrm&?vZ|=p>q1?pTPbg=5qOvf@1O?8c%Z!6$|5F+3oP2*lK5r%4FJRfCX|CN;o>l(CC= znaq_4O=#z6u$b%W_2bl11EdK!!tK7xFpQ50$*$S<*vfgf+8f@CtKQ@-o%MRw=b{l^ z`x&YhET+-q_X0CGp7aMML(GME!#-Eb%HkZJ`>9g^hm^uN^ikN1Ys@b6JGwPlBf8FI zs#Th=(KiAdIgS?JeJ2sIiJ>={v7e6`_!lna_uIYeh$%r-Y{vgaV(;o~Q1aq;jo)tz z$rF%cQth&EUMh855PbdZA(b2fzw}q*FR?1C7#rVT&}GchtWn~wQDU=O;3)oW9<%KT z=J#NDiEWmjX@c9YcTXnbrO?R9(bd(>wXo{$Nw4A6zt?~edhz%&+?#1X)VPdaYx=hj z-~Tl9&#aNZZOmV1XLSvx?dH+zmy4H^ZkiMWi28(d^j=>1-w|P8*29z1nf_gzt%=sf zFZv81kEEtFi8mYmm(%3l@PSz5M|{XeHh@0f4LKo5rC}75>6>U&1ah7B{}*Bu3mgK7 zTm!`Xk4=Fc*$i}b&44XRd;^3MA^!ozDu^mW-USDw&qDi#XU1tEvLR9|--cyBf&Mh? zIU@)kWa?EN5*6E61ZhsHr4zs=C2)IN*(hrkU5@AM>Pv8#(+81BCs`qSCYZ-6Fp3W3>h66&k^D@{zJ1 zX#uKn8#tiLITyiDIMEqJobao;92rr@xd%}jK`Mze<XXUjWYnhM5Fl{W zcklTN|J4f_Id#(V2pv;MvN;D6Zy2-)JPm?Vo)|#eqw^2NmlW|)Aq>-K{fDUO5NY=B zw(9%FGfN(%ew3$MG;waASR)X^im+c>{se3MvDdspTKPAB@&rv(LhfD>c^%}5~$E3 zuXUlHbi=9x%Xq^w>^6->T{_$hcCq@BCkUbmWFAr%%~F^LLXCAZ-SCIBQ>azCU&;Ka z9JxNMwORpzBrd48MdT^Lj2?LkG0*XFbunIPZ9akxl+nVC&^z&M1?kbXvz4Rh5_k;l zF_pPuF}+hPZ>qVKU0|}au(Eta;Lz)OpPRYhf zj#sR23Y6t-2!JRU;2BK_OkH}3@q2qiLXCMkd8R575j+zoiv}Y-;;V$;L&KkUzgL6c zTBj4m=TnovBmj|{iT59phGGuGusJd*pE8ylSAFTait379D@+aa81vbh$~l!h|7xby z;kHo)U7frx;u;*3@>v~`1iQ>)LaFJB_nMSi{s_rl1iE)_eY;tF?C^8AA9StS?3z^` zu73EvoX<%Vwbw zBau68in?>8+wd+-cBs>@iH&aNF|OZhh{pS(ETt{*u!Y1BK0Jt(TGIA44};m*d! z#{0dvWAkRbr)P6>6H%}GTzgQPxWWk-TkH&Z6H?QBLY3|2iA7^h5xzf+p&DJ~*%Rsd z>b7kqab=u`v5(_k_|*zK`PJ#r(9=KoK^h$3tGgi4(YzBbHzBydLpxot7fVc>vC~oS zjAPL11}H=v>C;>HA8TKH)N+nZI&V?^wFdm$#EU7_bW886+PEb>8{AF(KO$UxjxUCg zU!1)z0#9FD=DNQ)K2Gb*fEPI#{r^1 z)X7RgRg$oTU&iWWDXb6 zJ0?t?rL2_DgwE$Q^xLY29>09SZA6rl2&Ui^`JEgkU9W)4pM)dA#VaaZu9Ox)gw23K zO@c3gMaA(unPT=4$?HrFeBk9!=;MKwanNYR^9ux%Ykb?{Zt6+zrNkjDrMUe0)|4xI z)|)h#up8^C0t6qY2T2Y|1osB03_f55oyrXif0H!}z%+s2>c(S0N$}&bgN+#CF|erg zU^$83MIUo@Lw4lwQjDrFh?uREu!A6u5i;RV(>@;Hukz-9C4^m&X2rI38rrejs8iU| zdUw(G4qbyq<7t!D(Jr6(u_+2ObOoKSEV%m)Kc_=xC3xfJI&LDg{%KYg}HZuaAD z|I9CCj3D-WPBQYY&%!g-e$(Ilan8GrE@%;U&b#Qp7goS)GaP8&AQ%%<9=h zGZsRFK+)MLLjuhUNXj@2OpJ2y#wn21dk`D3mW=__=Bqp5n(Pdu=CEy5aZYwUf|1FT z$bj!D2=kQJ&hD zV)}wj+s@mLw2ecnWE$z(snX=n5lB7|yfD%boF^>{3N9$?K)r&p56W?4YJ}OKs716o zd=|)6W2Wst^Oo|m`_DPH=4TS`jMG;XWJBV}eg`ZNPFRR^!-FXe>9H~`fclN(Ov{IO zgj0xG0Hs?sB6@0Y`qO!|W6NOA3GKNDZ**vqr2wps3eJGf>|nwyjSqVFK<%?Ikwx+X zEq}oQfR`rgKRn}k_&F{**_gCbY?trTD-S+z-`b439hQ&F^B`XgCIV=eLXHPm+3{Fk zgNQ=91F%&TXV{;9A?Pt9NX2Y;X&Fzg7!uhLOv+r$EGoZ2=ti_xKnO2mx~GBWRf@$P zPtLcFWcdyCg4o8K(oF>`%0&`Y;!sDFF>5donpi)4y=CxFv%%$T-!&PhGMJNs^d&hd zLn1eN9%awKV6+FLS1H9W+wNUhSWCgFh8T14YDv>#gs4=hGrm} z!)SsDVqj#B6Yn^U+cyQ!(9y4G{Blw%M7^bKC9e)KgTassLL|@lA506-Jt6k=Y|^da zG^|Y98XLTx)ne>jvo_q`d7|`&IUp;!HiS{yyhR5k$@fk>Wvy-p&vn4X%@PDsESwNO zp&Wo#L$JVPJd?3*iTnF3cA*g#zD6*`*!|YM5lc+6qhQ2lTeYNEuLq_n#U~!3dpzAO z6dL-^g|a4wY}ZgvMDQp$b6c=QVU*HpuzXCFc+%D7>~KNoMN*pozt?$JR}V;}-25k+ z6!qbYU))bE`Pv+>&(@AUS2dpr4*T~?^W zQtLEHUr*0VT}q}OP4k^3C{LBv{c0W`a|bbQ-|e}g;J&7)D8v^f+REcKqS`8qum-GoAJAK>oc)!PD=6?ta`6Ec09}?@g}HzXNgi z-6P)!#b!q3lhTO;k2>8B$J6Am3?W64OW^&bC>R3yKMn+rfw;A7~3%@_B9xoPb zztkTNG|{7lzJIP(bk#~(J@9CK-(rGo)HnyRoI`t9WGiyKba|1JUGsJ$3Wqb7vdgH-ek7rqS0)n6Nj?Y+@2)k&lovmVanTWvqi&pl|u7*RUO=C6o- z{ddl+ql5Kq=hxY4vO%EBM$PRv|06CwThM?9LRZlG(q&`!eD7*E>UMkJx!}vcLn*&Y z1XIt*zt*V_q0~~Ln%@}6s4xC&Qh`q8U2c!wUf=HcV{nB~=rTvK!iYFzpHtfy6D5C8 zq{ejVtB|@nkh)%px?LHlK@-Qm|KjOA&!R)(r1+18>9cLVr%<^?{m{X9%4$)^Tt?q@ z#}_uXILR9ibuq-EK$efRmrQ0u8Xu9 z{V%;!g_Zfyl^^H=m_m{(pAo!*V<4O$732w=OpyU03K;5U3HT#BUQd`7QzkvIPdJDZ z$ql|Czs3@T29|}qVM##EG>=%vM09LQ^7egL7hrgMsHYPdF$8)0nNfuA4W%qqEd&e6 zQBpAZGpeLgPj%g_5}#kxEU-}x1EiD^cK-?_!XA-eC*$~vN%xlm2ht1q2m_Q=`}+_0 z6)>Rq@i>?}bJ9R+YA_MIfWdhDYLpMQ4(+JDya$)9rsCt{#cO87%c~~Cjzg_g) z@BB2^|EAR<*H3;)-)FmTbkW1Z|4-JeOB}NNq(JwXvvNxPlsBC!PZkE95lf8`CO)QF z2yvz{ej2_JW=3*hBaSQu0|J(SD`4R7=XW`k<2teMPWX0E>Z%v~O89yD`@bdhv&*xx42%$|t%UJev5fXH>!6WLo0W%WVoot@*M@8&H zmT9*wsZ0T65d&=Rd_opRy44mTK~8S`Aeb6|OW|TNslr$u#sUU0&?9DLvU!$-k&lGj zd7L}1{&9JGYeM>X*pu)<3&Sf}6Ct3#BY5fohQtLAGLbh< z+pdzlFEknbKLHPM0dwUs;(+!f4a{y^&;NCfbDU97PX=n!2nG6lDeyX4l%&A?3}k<4 zvIkr7f3AIOQV0BT5+~^x_xl(UrSZdN_1;m0B1DV|w?MmCgW9mg=;TkDm%crEKI}xLz z^D8m=-fEPB?so~qlO2N$KXHymEKMNP_B(mlOY8*WKUIxp=^f#X3IrU04{|?JBbkCl z4ql9><@AO_R|uuM^;#r~S&>iIv>lI3HXcWpl+T1_u7JdNyitC-IySaCf4_w}fD;^L zDQ)Nc9MQ6!M<1wMaZGHRd2knHG-7!L7RHVbXJrW%#x4s%+oOa%?6~BeL+J#Ec$$gP zRya*cIXjnT3@pH02MdS!3719?xkiY&M_e{3(*<;DzIrRfXzRyRv6yD8HFrBv;4>^- zqypxfEh;MHKM4I!cIN)eYa2=t@X5~EanDcPLx)<$LT0(_16+MdFk;oI z++bttQITVlQ1P0bVr@M0*1c*8pNx0{6Il7q*zq56%O-OIvN8hS4Ymi$CBOy#l?DEq zj;Dp0y6$o6LsVi;?D7lQMAF&0d@UXh8FHPMieW;G5zMAD=Z`o&I|PRlAJoHeN!40F zy3Rq@^|>LP_95$|GchN>>-C}VJkOurhjTeukZM|e+L%(Qw(}BF)h8W%2shZ@aMM_J*orWE0>>z0u_My(MP`U@@ zXh6B+WtRb5UB+7%+uPf_BlD@20EwvofHo8G^1G&?_ z+uylW9ddJ?SGpr*jo>U{NWGGvGS2P#QOTRV+izW`{rswdvv9!~X($5}D@NCw$%GG? ztd-tgKyIXN%siI=RgG0cUqkMj%(T0VYRI^ySp^}I+zY~iry(MPlxBbw%q#3lXx7h^ zFsjNsuf7)1SbLe}q|u8IVdDsVp?n{TV!@AS_u!Fq?HR5Lz7|VR_$2g z0c64UU)F6Cn%)r%iE787tj|n3-rLX7->xKSxhSLe06i z5*mvN_L{fueMbmn&U}^@lveK%iHAcmWpFYRunR(2bb@%}iABoPV|wZnj^zIF!2OAR_=gYW%<)V9%P;YjbjeiG!jTfC;4ET>u11 z$Hp~0f_Ve%|B!--YX%(7y@@sDg`gsXn*(%nJQ&C3r-71;BnSK`r?Q=u6yX`OqNU z>@9)rIe3XH3QQ2bV2&padd+|}6c64Ucinq((8dO(AFL+hGct$N~!4D;qgj0yLCFE$$+GJCA@|rXq950X>7)8{lEd9K~AR?&c2v z>gj!!XYxk4~x z;_Sb2Sj9tEomz$9b?!c9@{}s2M$$?~xZZ1vHc91~RT4dN~H!gN(zd`a)#MrL*Q+C8eoC_MQM1eR4VUSJ-qBvTmVQ zoU}W@vRNPA`JerttftK`2RA>5QGcuGRRvE9X4SsFNe5Hre!0kVY&A2vdb{SFF9OJA zqBdML$}uw{bDeu+@faAK3hJhb@1q%Y2F4is$Bq}8?)UNJDp&FwOiw1w(b2u+`>XzD zRwqCrF^GEPvu=%S1G|kB^4GI`29o1GL_!!`6ggt4+S5V`T0&kMk!2%HTMWEqM0 zcvy_`sn-|?5egyL`#cSg@hOXxnzCxHccc6-YpzR441JGc#H0FC+i#PE?Ilh@=KJQ^ zNYXnQ<#0T0oc|hj;&E}?1s?^wS68F@=NhUGuXZhRGh^i49rBog8CWxURkHsbTXWRs zpG#Tq5{k~(J_v;UCH;YBtxx|!86 zylsWi*F4|cKP)nK^?>by@98opj}B?R289ISK|khAQtg{-*OBb z&}2(HRZG@>%+=NH`TdRbRDU$Z7#2?7*{T1uH~v+T;so*OZXSuQ{X*BfxWUv`?kGnI zJ$tGqXlrlYk_6XB@~Nl7Haw!H6QnbGHQ zpR*{Q^=5EtZqjLpaFv$7lp@~TUo6;C*k#fCbBV4)wLwRw9G@vP4A?pkrOrtF&!sM( z-z0rv{N%G|ay%k+hTikv@?N@JtjMZvUZmD8OV=g9BxnCm@B7#5 zC&JY?hFv$Ovt;=U0SXCP-#xFvQJyV=tjh+f9F&ZDXur)CbI{k-P29oPs=t`HdP)yH$N&^=WJE{o90 ziuX5Q=(=Tiwo^mDJ(^xwSDRYVOD$9M`C{9`|5rjdJ@;!vk1q@MzUl&iI|CA#XuW_9 z53KMXJ2mP&eSbb4CwUO5s=RS{7Zf4)8y=Zq8a*}F>uG%I?zhtwqr}uJ4g_Wf#vkIH z2n8iYtr6ly5O>8KUB7={U*o!TyPx~q=X{P08VShIsqLl@)Wti} zCANTO{Yd>6V%fO_+zH$=yukCAS>fN0Cq~QZC6!1PyX&u7Ohu4W0jM{i)(G#1lZNiM41?9$zLO)P=MYk*~iiF=LMH>SyyaIUZQ9JLpI;Z`b2XraS2SExRiG8 zQq4l9*WZumB_h%w?zatmgj?BS%yA{9*2&3-ng6+{k+ULaAyC4uakZUEb(lz<7td%Jm2`cN3)3-qdaK@akDq zSJ0s)oc*`_FU7&&eoeR?n+G)u4wSjD-keu(vK8OrplhdMpR04L&`UmR^M#ymG#fDH-B@bRHMAbAp+hMmhSDhG$ZB&yL`le97tKagklU^>_yVDTVpRX z*Nroz*+{0e5Dc#gzUMD7el2C>Vpx!vE>`D(vbmL!!-nO*E$XMD<5&LuX<;ff_2Mo= z8@9FHxo+1<_LYy%b6Q769rOYi)Ra~Nwx-ht_B)2@C`+GKnkplZmWA}&*0*YJ zWi18ExuoHWKCEwcdkXs4=@c>S)UO_{u6`IvB@Anh%G&@1b4JRj?9x+1ud^j5uE#w_V#mJe{IHgOGicg-cC#lx| z_AbX|$p=fiwSWR|9phpUldA8Iw$YZLN7YYx7mu!`0Qze8!6^;1S3mple=cPH{|?MK z%bN>b_wVKE622+AIptcLmU3@k2qXW z@uAbWR9;pN_Hh(#$Tq)i6vMujuDwERjZ)t}m~nF3Yn9uNi|ZImMU&&j(_#t|hMTt( zp368JcOC~s1?&LOuyfs=N77~73~JRIJN{RN*Ymf4eXsN)$8dL-77-6PkML~=NiA6` zP=f`!#!J@yD@|WUo20~asxRCn)R&~`8FMw70Foe;k~3s^)cm*+2o>N5on`nS1NoPOB0rVXJ|ZVjS~2x_v z^`Hhel%5tr27`1e!y!J9esw0XZ{&351eTZNOhV?!$h2oUh$O=?AMp;H3mG{Z;(0$H z6C=&F=(H&w_<3D?@s_9C#XX6BleQT_&rrzeep}Ch=Q6njn{_rdW#KHPOy;ec76vg| zWu_;XyTYlrC0X?towCUcW{c*!Vi&qL5bAo2>PQ~6I7$El_f@$ zH)=nn*W&VuXdepbjV?L`_zz~>TuyLgM~1;qX1niyKO$uWOdn-TZ`KjpjV*(=7mb@G zFKHhoN~iUSF$lkh=ebNMGJg2H;w=A~Ws(Pbr}uhU5tl?}qWP7(P z_^Fi3?UIJ=N@@FHhr9UFXKSnAAIPax2mF)1t*cWik&J;JApK>uI^rW;6%uVEIivK` zh7c^xDgszqUD!;Qf>sDX6%d%WeAK2GPQw#GBM8meA!(2o#GmH!9dS+i2PtV|A%`DA zZ0@+;%gx8l10&f)O#i^Z{@z}S-!P+(gfA)JassT-#IjzMK9^(v3YeG zGBgqHMp*yK;ej|U5&0=0B)SbSa?!pR;7IHJZ=MJoZ07*2Eio8m!UN1{$|iziCqa9= z3DeNPB+sr*HW`-0(eF!7 z2Z92SOxCwuwjf?TYCZ~U5@P_ndg1z=FJfNP`{)ii2vFn1lME(ji2y_9gF!Q)^hOik zrBE@UJ9>RA?p=)KU!L5zU|sm#e6l%EPkM1Pn7H)%X2&7J^{aFnGmtOiGw_unaefGy zST>}6Mwg!jmc3ES@XR5H+=0$V4+UB4=*@Aoj?IZmT~=KZlSWD0ZX%FB5Dni*dIqAi>Hurfuht`(VI(|*s_1|d6!Sa?W)&6(#GYpw9!v-sB*8tKyyK^giK78mBBDH&1MAoEYb2 z+RurJqkWYl;s(RknvS)WHl1Mi`eV1X{e=KC zD%>}sPJ@S^(r2?;jKfxvvG)hYI*ilyP1R4=Uwal7(x{0r+J1L$T^&&7KyCM&m3)jb z+NXjaDPd-r&N>L((S?_nX!025G}t6Vdre;DLffKcq3YS3Ig!%8T6 z#*41&WT&+|X4Q3*EN`cI$Wd{pe$P*EHtIFMReAq{LUz}-Nzctk#f8>iTYi=XWjyJd zx@G3y+G1OY$T|00;8_x1Sy{8ns>|F_bHIkon8;@8dl%D_7%os2( z_Lr2a^Zie|IAC9?zgzM{>uP373BCb)@pb!@x9_R7Z?L~-`4o`6mCeU|3X5H)OU8}>nN6Qer#doX9+RrevV#eH$4! z1&mE02lZ~CI`_T;c&~Iz)xJwk2=D79&}pcZzbn&%JM%m z*>y}?(|f=pjth;rPbG?#3;jXP2%UU+wTVoukebr{IXRnqlS;$`BKC5D4LsTo71zvo zwdJy=GSdK{hhPMe2y(J$tlT>_!h14RGH!PV(Wg*;+fX^+%=8+5*L_tpnqAG^@v6VS zFKI=eeQv{=xjb@q&bj=zv+lr$vw?lm#uUl_@XPKuqHj9q(3GST zt$X&O?I;4Os!Yhn9&$Av-ixAJcBiK^>|)O;H>ijiMZd$?*7q}SpNkjNX0dLqKw_WtZx9qBN9a-Aqoug-0(HegX!T@!KhtvQL8J{;1<>Z#CO-1~ z=l+OV1+HGI#ncvE*MYu(DQsaQUUj;H~2&H`J z@XXv4lQxR;4#!i>Ak0B~j=^VD3)rAj?SG1>a>sl-%x=2($_;Sbpn9ckp=%GNe(M`V zJo>s>^y~R8m2T>-2TOO>@)SM9`)Z%;G!6Ysm=Bl9%6)~sT!iL{I6DZ)qb(gx(DmAnsd&ta2~CLf-2vnK;9Ocd{^>0{g`sxo6?l!AW3f_Z&Tw;3FLzqq+@^YLPB ze>>y+)1#)etl~QL5R`~n7HM~RK{A|UC7LORQ^iSBnfOSE`9U>Z(pd59-1+&Mkmx!M z>%>o|k*~_5ljf{p{4b&16RxAX3E|;5o|I5o2pKh2nTf5*no3nHIZaluvP;}ufC)jZ zY4Zxv73MN-si{9kX7PQZVT)BF3c9A>le-r%eMnR~0(_?Dl1dYWo{tNH{e1V93M?&4 zZt_~BkMym4C$YcW1TxvR6Zet)O%3(6x>8*J!0Pqs{&<$wjnhcPTdjV4j$M zZ_|d2VA6tFb8A@TI()ojGIUZeIm*cY-Z~Dh-Mp9bE7d^+EBii30Av>hz**ymH!T`|RhS-Ab?+oYhwlBTvT@B^$Sk#;STo+Y=1!WmoG~ zNzKh9()ipQarN|_=lfHKGxtHpqQ|0jrkPfRwEp~r;{qWK2SN3>`Htz&%cs24Ho3~` zJ$-{chFt1w99~%Z&)%imu4fKDTClx+>BXJ4`h365j>`L}2Pntx>QW1{>-~8C%K7a> zfC`+veoXQ%Pk(qNb!RYeO7gN$!|{xY+$EQzl6Ynl!z%cC(_7B|L)!}fzy_xBR2_SJ zj-FxdJCkmux*7p2OWF<-zU#B6c)r%18kaI&-rclK&$KmoDPNzV)@zsF3*R;kJQOCU z*QM4u+>`)erM`3>JzOukSXbKTcqbz>GxJq+^QJ*Je}v{k_4ABupxf`Vv4z5Qe>s2y z24r%g;PRqxz}COOv!lxXa$?l@^Pe%D*WAe&g1fs2WP7@ht|I$;&?95u9XkUU%m%74&!hFowiR-j_35~rof0@7yLUQfkJ!=FN-rU#Y4ydhLeWdUH+*%)vf5> zcL5i#)R>BHU}=*rE(pX&htpDedAE+&(%>iWhha7P7p2OqQ@3v;sA0a z!Q84h=F=ZexmL&c7L1Al0C3L7snJr3R{&vhka_i=?e+{Qm+$1yJ;C?$^Wj;iLuq9V ze_Qy@y0e1kxu$;s-Eenxtl^}#)vrQ2X}B z->3>wixr#2-1eY)3BhwUyLVGJ%4}8>I{6e%4hH8pe3wbxjr+`J+un+?;1bU|A2DE9pgCWf?yTm4sPD0=3^}4!Ju+Ey#fsniidT$;>TC3lmD!x~Oi_`-rGT`9` z3Ua4TjD9lszwi@GfI3Y9)>{(WtQ-7%AwTz)fks9zun7Y~^#T#yp$?fO^iJ|*iAjLt zcH@%>o;m?NlteDi257ASi~Mh3?MBx;K?AXy6#2mb%vA?8AY1o-#v$j35L#OP1#tHu z?qr3`15`?;jt@ zx@8EO2rR~0#MQ5S9Pyz{)BP>2wDaA}>g1%v*vesW~f_#?3<5nAJ9iKx&Cr4SwG&5eEeI)SS;<* zWcU5Po+epfGn4?m;oQh%70S`zmF%AnuS7Q=H9UE`1o$20T?8r2I(lTJ^IjpB^G|n; z@25^CTAW*bM;|w5VG%p+elfQ{twlEQ-k$uaOle+1VbVy5NfUM;@BHFV{#c=r3FH0x ztEqf#z?jx6Z3P8+=Q2wb6q$a`pHBomeXP;bO7gdo>|u~!&Ubi*rexp1l7-={|DxMd(Pe_?j8K1!{- zo}523JwqYb+jH~ief_qKvfFfxKAFWB=gQRlaGY+xT+kZmUNSL@f_i>!SP35IbgORgU*mp7LYfaD+hp7%BB^+XOWIX_r&nT{6s|Ou_C9Zxya(NS@JiD9dgr}>+$HcvFb7Xc_WKsqyzaps zZ|i0&b?g6od|hWiR5@@p&)Dj<&u+p#g}`Xl|9b(ZAg)WFMaOKAIdYMlFn@ z4>$U_^7y3EM1Pj35ra;$#{$2a8!*fz#|pVv+!zxnF0OL<5O*^=y4ZghL%fCzm2o^g zIEjfy=Wf3-8#pCpojfgcx09N<5LoGQ#f8;=n3-3;Mzd(^n8R)AkNLa5bN@CfCk7mK zigR?AinaF-x>q+R#*S=`TfC|Xr{P(_Y^tL%_W)-F#adFszKj4$QxZKE$JE9h;i(j} zo?o=)(zy6QywC}exwSbi_ODjH_OWrrHkh$iXFYsp2UFof;ifS#>l-ySGSAlB-QC4_ zbq%WkidHOKq?UY%*giuU|3}bMwZT*V`2E>o7NN$MfeuSXZ~R=P|Iw|uPWLEvhfvN) zav_FRg4{j;GB%vvY&fM6*d4bWeJY}Hmq!46Us@AO1ykNbRn3f#kB66C37|K(eL1Um z-61uqfmM&K)GqK~MtpJ|*DV{TkpQ|=lihy?I1%TLuL4k zmYxQ+EJB%_K9dDO&d_5K!XJwJg}w9~%ld1ELXsci>P{nJS7>&9_ zUyi+TwTZJ$nVh=|J1b263jvYk#wtT1xvUZ4jLKxM0`za-t{_!RX(2u`q1Kepna3{p zVF{1o4%Ue1cO2_3W1vJTGw^JHG=~W}o5f@VE^*o|snrrIfBy zU|ec0D=*I-nFC4*ow=zEFShAT#NvD{mLsm66TLAsGeqRvkI%xCHtt%ELprJXfLaVb z9B2vfRTv2_PTk#q!{zu0hkvF(tZ06hBZTsfs>|QByCBX&02C6;p-X^s9e$z3|xrIelU3+@()pBGF{jM#G3!UoYRf zJB`o(tqdMI5jYOtTb(XRgC@qfy#jT>=*Y=;OxAx1_FlK(rQI=LMM=%SmIr2rW5sI6 zd^w&%)AZN&N^|R?r{8{mMwLtB!A~=ABev&Q#?doDULEFn$eEV@JUdl7%}OVSfYnou zXsN}Igq+ZM-OK|kXc{NrP+OxLE+ZfQk6{f-mVNXF{8#W@e}0R7tw$Rg?cSY{LRJ%? zZ;Zllz>q^cfvUcfJP_H*`s6w}*h^Z8c_40sGDGzPGccC%;W6iYkhe-8<8)IoBn{Zo zK-jSn%j*IA@;O0uR}1&HmO84gd0|BYVb>H_*}lOv&B9xqc~UflpK6`fPK86>IyEMX{Jj>+sn2a|6Ds|<%ceswaCAg$nmf`4#xH=nG)r3tw zV{i9=nX&WE+`p++`fIDAkx#!f_{2F@<-$jBqN}Nn8icD2iN1H`N|A|7#1AndxZY^oMXB^&*SM=7 zc|-Re+&|g>`-Egn9JBttPccScw4YWGd|UsyXE8D9-IG?n&>U~bNj?y6T6S zBv7V&hu-$ToOQ3S&?^ZF&H-j__}wcVk9m5E;>3;eOnOY=O>BW;Y&Z5as5UM+}y^$ zx$mR7hfmnD2h1B`Gn#o%H>3K*5N(f9=WxCE&pHc)bTjdO^C|YOY@KpS zM^elRCw?>h{p7?l9LDFvbs@)ViS%5$bMER5yUhVzNMh_Ru_B#$Yz7Qqp2{P#)-X&RB7W`Y;UTxmCVY~A?i)U-A{+Nhw zjkgcj*;%{>HqG;owTz}#ccqvY=;JQM^Gi54NRQfdso~b|q+PiIz7aPPqyAevqIvx^ zJyvdRF~8B%+ebb_m>=)wArY=bg^lhdJfD7%Boqhz$Ii48u=*iFKw#cOUv-g7~4m$%47kLGU)DRtaDz2G75SFH)FH$|?8gDPM%~HaDn60M3`I|0Gsx0I& zv^Iey3dL?~i>07!f;?zleF2wYWwW@XIn!MHvdvK$0Zn;ra03oQ=8#if(WzN@)T;#; zyPC?BVqFlg#G#U7R}m!Yvzh`ml^!K|^z4#eQx}=944@V(L+0PH0ww{w7mp|X_Q2valo#Y@6o!g1Po{VCbBhlGhId2ihRZ(OYN>oH!-&0Q>?*(m1uy*); zI0TGW2v|u$wP7;n{}f{c5*WvUCOlov9jQNkG724yI~@8U%JY4J2`g&YPTM**ss0ad-(J zQGs!$6vHNMknzz1G4w_BOsVB3ChLy)FPlv<`Ks*MR7F@g z0V1Zg`bZ=^68HVfphKI_Ynzpe>+igH4Px|hzuvP6q{f%`#xXsWQfs{XleiEQy!ToROL#o(MeFb^hRcDhP|3=<`n37|Gx%*ywL5ZebZYrnaun~pilTwYCUPTM zJ#TwY_{-moW+G#~PenZ`Ca^$>7WtW%X$VO?F9W88Kio$tT>EJHhny44cJ{NdKP)iP;gd(|u}7%-6TG4r7ds!}r3Grbt7 z*=-}s?Tn;dCia3FAK$d}TRj}J^bf8#O_x{XIWkYK7#=^I3-s_pM}K>E#+@Hywi=FI3++Znf}|nP-MZ3&fy{4z zfA{2Yo{`RWg#u`D54}B4S7w$*MfR0~W!U=igM>lq&MW>{mw1z7d2sb-pZ(8b;%s-3 z^sZ;^KSe@~zhDzMZQn|*)Pc9_7mB>Tc)kqK9Lg zP}Otlwt5u5%)Q=rA%~<;L>iBn34LjAXskFnyoyjcFH$sdv2z?3@OAv#-qNzMY=$U} z&_72z^u{-H%a~M|w1*SE>0jBSFU`=yWgjEBo7DxDGQC{a;1vC!E@AKcg?mvuhu#J# z6rl}V{?fE3@||%0A!qJ)GGc`cUp5nNyuYHZ4=~t+7}6r}{M|gWib}V*{>Z|Ueo37h zw6iv64mqRM+d`91YtOQ7$efMd?jeSgES_!FXD#~`NKAPxr@H#Qu^1g4T_t+@OmuiZ zbVmk5NYLP~(aK?zs%+O0DoKz~N=;>TmRp*Uh4WQV&nL7xlT`u4)Z?Eea+v{8#AwRhdx+B9l;%I(ZueASqV$uRLgO5$psznfcG;t=BviN`aR zzWW!)+@_N)WtGz*&YH@bOkomiUD&X;dMJAngbdlF%-ebUEltr&)^FtSPs-&stq-GN zt~F2m;FG9i!ux0l4W7~yITTh}?K-2{>ObE;QMIWMb!WqJLc1cu6f&lo{pzV!Az2t} zbm&a!yjZ-j1Wjx_gb4wz(a(RD_qBHQBHrq~HL|w3*hJ=qX^NiAfWSi$SV#*kwiN>J z3Waq=lHbBqepF`>2nD^s-)f3(Nq8vhd-K%sE?M8=Pm*L>oUNw``4csLToQ6Hp;nHW zI$iQse3rjcAAY(Yd^Fp5%5nCU!no`@NF{CqvV{fScXQ^uO^ioKNXVU{-s{YE6By)> z4`F-TL(4`ni&fuZOjxilk4LJMIv@86**jyP#g2ovh%uns37sD1uD=25@06x9YqEZy z6p+=slrRP$pIp-iNB$K@GvWKBma@}Bfu{x^LRPt~Dkp#Pzu({=+4Y_a&B$fxJS4Y< z%67>@Md8*9xm8?mY3bk^mzTOJ5zrYXmKt`$b(-nx195yebu&vJ6%UUdecL%(Ydiy; z$+``Ai3|z((f83KKDK%cf4_^|JWZ*do|>M{=(_?rYT)bK-f))9(7D@2U{{QtKkQ!p zyAfDn>SM9rEg{fPKIs4)EGhcNIGB3$5Eu&#ShH-v6&JTQ1Lp9Y7r5pUQe?py8mQe%{>_XK z*!D$OGdC7Dlmr4_c)Qop0LP9R?VSuNPp;ql{Y?A)^9xu!>)U9tb4s_mK!?Mc>@ps+ z75t}}hCWW5Ne#R*&>HH!49IEQCBRw%=4^@K3us_kQ#X3`-XM9F_zP+Nu>?vEoYzgj zpN9SgV$q(M7Nun~&=-~d1pvAA{-*$VV$Ks?pdA@p+QrUi{?x}C5aJWFf3o11BL~6Y zaJY3T03SC(**roauYpW;P;kT1-w)Hzx7#^fdS0KW#UcZQ+X*Qqz$A~mi?WO9{p_l~ zaDFMlr5donFlD&!1Tg(OJg(x-+2umTeu1TSS$y|@qvt#P2Ww0w0 z=|xAAH*uFP5mlLPw2?j33%@p^>@L)(_fJ*$t{1K4H+)^%@l}5K!Be+x{+=xVQkP@-J+8&l&B&#is_P$X^)*_nz za-^j6**h$pEGjMY=5fP^_^*CXaQl0Dkp_~z%nUm2QRL2d{QJcP-8Y$hn67uFc?4-F z(ocR(P%l$0EQn@QcBK$+rn^g~5_6UMmS&USwRxy5B^|^NbA?~r+&wbZucUTlH$tYF z(;A}aJO5>9GC#5937O-}sGd<6y|79sY|TAPuD6MpR{(81#hj7cPUOz?1uL}a)N(pI zb(gevmok6Zz~9b8>qV^&mfd2*;@>`X^N(!x&IuCXGy+=RCSo-0wQ z)>u)ICcr@WwMPiA$Q#{_A40=pnM$>Vb}TDWYk_>YLN1Z;hw95SQFKQPLUn1`UTA$W z;qW6U=Y?ke?6XxY$xH1+gF?-O!_S$L+J<1eV^c#q;nq%^ce_C~`a%I8Zvt`{n|g)Z8n{MpOGI_Rmxjj&M_Y4&6h5G2MK^}x{{5zAi`eT%_-5Ium-nQ$7oC7( z%DtFm#P9{#GUm$DAIk)zOjNG)6L5#hqtI-xS; zEK)|}8E_|% zq5_PW8vc%AqH9x#Y{QMaN@q8xN%tBrG=;W*Z17s{FEOi*jb+-$ECn3zgrAD=dn!F~ zE*V<~x0>+!AarJbYF+A=?5$&iSBotiwosU~Cx)NqhY#=~pLa^{#bt6&hy3|-Pw8-` z;yA99nqml(r!AJlCh!&XP{Pwh;$ zo0)GY%@)45xmT9@pi&-Y<605g;d;%qZP^eR$pB7=4SYobv*Pi;z}uh&POV!hc+0+# zv_;~O!w+BOR@DT)DZw_R`X8&)Q8$JC-Vy?#-CJthS;`ftN)$D?YZ9O86crR0`P0+W z-^?E*@SV#>0dRt4*%LIl)KvciDgW$^~2cLNMSiDD<76GPN!pZ1)ewgVq95@QEoZ{1)I6_<&)H6k+X#u0ZF@TEa&{%7zyKSBT( z_Dwh$XhJr)d47t_D|&8*!OSi9f&XBrh3+D1*vvg)++sC_iUk|oRnOhb6V<|_in|Z zUf`tY)2}sVr2Kgc8x3m}^Uh`8Jf0#PdpKNSrB@Z- z;NIYm^sVIonD1!*9_N30AU+~YJ0`5N1{L`fQU0&MUXLRF%1aCe8t(Rpa?itASDHBW z@Jd@IUWb++Rrt=Bu`fT~+7Bz+I_NtulTV<+(OXA>igvx4%OVg78am_KO;`>d>;C+Q z|CwZdFi0JjZ|f=|hch{-h|ut6vyDNu+^gn% zS?TZ8g;;IJxF4t1xf)cMW@MElfi%o$+8EP7Y}WOG{wPH=+WNzJAzi@J@HxGdM)>CW zMWWbCNvwh;!PDB$8O#pu9H$%_|X*IvI1YIGy3PQU)6=z+;x)g6%boO(e zmfhBHEoCX<=GMQUX{M)yH@Qhyxz+rS{&_c4NUyjD2Ok}YlwC(x?0TMVck&G^SH#cN zZFb4SacsH(Gq$sNQ%TX{l!OThoIkQ;UF@%@o~e`HYW~kzI;Rw~&va`eS66W)2Y<(E z@>}qH0Uv=U^pQ`kIkC+f7=S(ff~(9QB?$1N%K4WDcm8htTbvk>-|yXo?a_ps)R!ij zNxSiF@P7W?$9K9yBP__-!I2e2S{r=7JHFZ+m`d53EIIlKcO1Nd_b^gWFhh5qCKQNH zwn@5N8O{&(4^B-nv2~@vL{Wkd$_e*i!mi&$mGOQY&LZ8-8u95Nv@$lRfmn6W&G43i!Ryi!S;&lrcyFF~jTUd}2T@<;4RSdCnlbt*1?M=X|t z=9U9+8gCI2CZyjHnx^dxs6N=ktX~WdN-RKF7{a1&PuB&jUMSv zL1*5VIQf!WY=;~h4x!uxA36Wc+}XUR#sBXGsO)*qu8Vq~|9&Kt>ti+>w+fa%QTeuB zs}RB$I;$$qHzpbn zt0!y%m${~8>il`Q(G}xh>5~rGkq$X%jbr#guEw*JEP1{tDjaWA;PJ1+>refMHi*PX z=PCCtb>{ZZ5C^;u3WfMCTZSi*PUqu7eD|3fkHcNL ziSlQ?Wu&$0qlVMjxQ2Z<()t!r2?Vo^-X)NF_D}Irlr!r`SAc(eZ`!qlRlPk={%tHA0L+lt z^wE3$2h;mKqx8zO_tleY*~~VGXU8Fn(q9vBb@=EuIKcuHbOEelqT@+!Ha!F~S}Txa zK93Le11}dL9b|i*S1(Gi%ED|!A`wVprdLvY?`P*)ISGnCH^z}jYBI1%N*_=G^Huf* zFow^K*O2q^+tCX;q{J{Gr{MU#w`Z-T4)V;QtYA>#QrBf-f#yva4BDvo8_!PbN;C4d z0?<+wV6*OodxQehqnH;aqC ze}us4I;8)6$t8j!XJ7#PbiOMC>o;M$py-;!@I{b!!blkU{B99!U7qCOn0#57_^yIH zT3<^avU9(_vGHuJxJ>loYY*;I@?Jt8gYryMFR>Ko(KFfikQ^_Eh377j-=??a;Pw!S zfQFj`sa>m|^Mj_v1*02w+;1zjRx9Ohp8N&QzQyWk&9OZf=dl7^qz6hm-HGcSlCP8h zCwl=ke_c^%UXe1nSd&=PCCS_;V=z-m`@V~YbBW&=&>j5owB{ZvjCsm%r#mqQLd2T}5JYY>^6=)VKo%q>XS9&=Yc(IFwv^5>8l6Rhj z1^*~rM&#W`hPiS}XS4`w6&6coWS5F9+0Tnm`lx2ks@T8oQr5y(S%YS3!=ST5Pd& zJqqM&K8w&aEjT??7RSE5CM_uTc!u)|Fm`f-CpHD~cLHrZJ;PZF z-$I^mn)ZK+tw61RY17F^G4y#?IYlk{*W-u5o_9x98taef1HK#|(2o0L7{Dj*?Qqv4|V7?_yT4 zFKF+xyZp`lc)a_G?^kouHZu?a?QZ=2zBv)F^Agu_l><4bqmXiY*Rz8Ab4@2r951s| zoUTq@CZy&oo|fNecY%0%oKpm+{j}-CSX43OU>73}l{$5w+*?lb9i5Pz-88oBPV4(o zjaqPIPt7kH{x{VcwS4+~_Itm4hs;HWwB6U$rE#@NiqnB7s|n-8Cue`K*Bke~b378# zB~CXE7=*TVI~m@-t!9+Lz1IH1B>p(G`&p4HE%#8qMPJ&h|C%(_WjcJu9{DJw=~VJi zj~*8+=h1V``Cg9-xVLj?ezS%K4YP^20$miuPJXQ}S&54GNbp_eLMxn{;sipUvT|1N zP9#$61BAgM3$G|{(B}QSmm}bXrt0axf4$A%>#*U)182|`&yg*z#V~8_w)N*b@mbk7 zNjKcJ7n4;RPebgtiDQjb(pii_LJ^07yu~vSdb$tv``WGhY+v1{fay_Q17Tuytel4G zg{$chs@k-aTQCpzrqB&y#HHwL%Bw$$8B^ax+u_JU<)Urqkq*>caM^uv>L&RQ@_XqO z%zn;z-{G-g6N!|F``G014*jdt?gFJRg_c5#$mv97MHyx7C0I+tBxfk2!$IjIHQTS` z32jk}8mNd4Vh=w2F$S zW9;o&v|(J*rIQUoUO@TBU_3xaj#clP(I$~d?pqVmZqb?qkxYBln${M^+ zca1Z{KX`C2?}SUHgi@(#pmI_Xlu!!2n$#ePu?ie+lHU0duOm0YHK)Q zp}k2$y1bJi{}xtP$34INZ5CoaE3rD`IyT-z`mwRR1vwxlBxcwxXx-S-fBQwdtyG3& zUZO`YxDdOS;$Df;mOV6ZpWTczLtB!Q0nUKGqIIW)p0$l^dYye0J(w zzyb(nrx{oz8}6!qqrwo#mCYcN7OL048Mx|655cD2O#PE9Q4|Rb%Uqo>W!mOmE#dP- z(?j+1RPXl9>_$P8)b6)S!R-Wcg~xRnVUK2`_qUE;CuU@Ui>;9w>jug_CN%KZ0metXqueYzxd=9V>YWTkH9B{%9stto#-eP zFd7}zh?RA$I+A&7Vyt!^8wP!}aLkAD^A2X&d2Kb>WE{>W7Pz$4lH9$#F;vH)=LxTY znibvD3d^%5v6`*jLQB8fBv33i?e}1lhey~rB0)oyHtfS6iENz4jc|VZQ2j=lWLiPn zm4Fow)(0ABSt{(G$*68ztZh_Zcf{CGA`QXi4l9Y3y7Fos)2CaeI^;I7~stN4!#=l3Bk!$oL#bvR9)72N>0SYsb?wy$j#R zvqSP&3p*VLCA$B55&io20*IemZJ-~QtG$T!H&sWU_AADfX0*O}B%Q0N@S-6$kR$R= zR4z_AX=qv5MkSSB+o9-6cvN}CPQ)Dqmq)?U6+ZE@5RT%>3g}~#nj0r|hqWlK}2Bjok-1uH7;U zc9u%hxSdnoNGWVZ1p}_m5XP}P6tKT^Bz^WHK`5WHhZ+wA&a86Bo{<8h42iVSB!t4m z);HsVmMcz|>kqlJ6ci3tz813_#r5h5?gh=w&I>oTGjOX*x=!cY2}i%bL;m_b5?m#4 z8r_`-8l#@|$66CIe=~0Tx&)Oz^gdZAS<(W7R!US6*W)iVy~LWf&rgA4{x&$-hQsm$ z8r_H{I@N)zf|S&i&$|}gwmQS^<0J7~i~O_|%iS`&N$;wz)Ar-4y}tL#87Ext_v_yc z8#%~xSGn3plzyRv?H#mu>3_WcO{}&G|5x_5VwLw^X={&2o=4rdPhSjUNcp3njc;OS z8+uBWdy`Y$&rO#ayfg8hfqo{p(xz)H*SNTJ?OylK9)QF1dqJTc{qA-2Ng_Ur4puw7 zw7v3d&|F@@e}B8vEJjWD3yZEU>sNT%fb_)irvJ!Tz~*{8cb(Y4%)#ZyDfz=2o&9S; z>wy{n%$u~t#<1Oaw)n=s+$%k{%oT1&ZQWb_rA1|8rQ@6w_L?%3j!zjF_V%8v$i%f&m!=F1JkdX# zB&ohy>;C=oOWEXN;{3xxf9*d;Edj@k*nu z?Uk?BL*kf-oB45Xz3bTHF~Qo2LNpP6ZcfZj#2rj{(c9Em8AZo<<;KZm=XL>ACYSV?L|a z*VaxEJDBiI0y$RWw?D^Te1A$#14mY>%=*Qx9|&Gr7Y$4Wt5_p3RQx^^G?T$i)X(nm zL|%luh|(j#+fiLhh++x>ljI4mX4gKdE5^l;V?(fDwe$y^79Jknv~YwbgO_D-JaIte zQGu}b6=RAu>kQkE2xU6Nlw^UI4*wlu_XR7cE`@DZQThJpgFb3p!fMa2~0s-yBHm9W%-4bnM%k2J7*cSwy@NT(!q9Fc2^|Cie97 zdb2VWIH_e2uvSKjA?L?cejXBO-C!qCZbkr;6$rEYkAUIT1WloDdMUk=(f0k(6j@?c zR@S?Z_E%o**#;i3Z2D46PTRk=-L0BwkRqXhH8U1Vvz*IGv zOOd?-ug!FLLPL>{QpJ8rz~Hb+fbkKp_+)XNO6snOySw!lhd(qXRunGCd{#A9)gdK6 zkF!!ey$|#4cJu9p8^tF(XQchbh^}A8G$KN|d77k5o4=!@2ZI%LWfk?PEbZ%woqn|( z5ulf?_x}y75!T-gO$rAN7CYOy1NWcT@6M~hWakY~jCkNuR5eV`QU5j;+}hm z(5Qy!3QZx42_}Qla-5%^+wSSn+K}f9%&K@^5~w+cfhN-)pemzpwpJ{Vf!O(Z&N!MP z_zG|~FjfgOPR)-&qtsy`p%3fZ~B$rm%V_y>*}fa!a@oOIA5XYYfOF zVXKmEf#*gx*H~I7w&WQJ0K>rnJc%HqG(fxmHHj_JjD~^Z9JsaAz7}bkYzBY&O1pPC zvua1nGGMvT^5{3|awau=`BEE~6>528KxVhUx-;))Hdb3GPbCRQV?$?`62?aH40!N< zqtr`jkf~RMve(L-i5XFCuJG8D8Ndt;q!BGowi&M);tuE2mEKIRG|3oA9it)1 zlo*hKzDPZFgI8Q8nC(lO8>M8w+jzymPb>$AGKF1N_kp2u$=l!j%&R6{B>!Aud|3;| zkbo&Y@Rtko15ve6Pa$y2PDuT;)9hBuRq=75`mLeQT-E&C5gtK>`h#Ri`WG#Dm$_MA zIn+2?qu@Eky_*kDNwxyfsiiG23}HBlH&?9j#drA4tKeg9k z&)yhJH*v~+Iu~@xeSAIhz{dzT+(YfXHc{odI$U@}JUmW(nPpMy>p6fc`6^x8-11s{ z36Zze+KIDxF(`IB=%{<>@t_mvW@2dndJCJLS)ANeRtP3SW{Qep%Zv9G@ehHzJAO7? z>)H7nb-lX8yRu)KZSZY#|G?a|9=E0J*o#zqn19`aw@=lD>^B7ReE-=MbG=!`+`_uV zq*<>-xRws9MGNIxa|m_lZ;#jNSq9C{f>-#klZp4*_~=htBfT*V^k{a40!drIcVS|G zb6IJBLyvS@q1MYI;L1VOsPvGXUiVkgr-`1oCiD^)hc~x3a(aty=9%uY*bc^#0%@@` zU(>qhtb)9~rD}uD9zXl5tW*0;I>+++tu$ljx`WoF-+JRgYg5zI_f3l*%U6?hy}1>A z{Qb!Q=i~7Aj9>DH&$uKKec(>aX_H8tM6Yk~Y_|~I)2V)ZY<_Q0? zfAP5VzMk%ApvcqWFL{X?1`b1o^3uh#C19LQ_qIsYh60AkPT0xtM)OhO78+bt*^>i? zv@u2g*|EMNVaQgw*nsPAAKqZJ&)eF;JfO*b64Amc+om%S^32<={Yc^A!OG$y;wdFJ z?Jmoa{MOyC?|>}=0U328qhxdU$~V-sqTz+FD&Ns$Q;nhW%;R4nQB*P}1h-(#K8Y`< zcoJ0p8;=a`^iOy#*$+4qH;4VZ%EvgZAfy>mZfx)?gqQbRH-GKve_f{Zd#NqdukUhJ zy*(xk)upm(*Zn1i+*pFqz%<(V2nEk!A6v}?|L{v9rpT_Fe_Z*C5K4!TH+E~kijt9; z#MNRcu}r4H5b;Gk`}qGX*wdmJu>8DtDU_K9 zLoc;J$Z5Eg-?Lvts&k}nbURejW%k87|lW zkq$P#ZD_ajLu6*wq`S%erX7VoMY6?iuzVG;v9Kzd_EKpt zq|(Y?T+179D|mo#x#C61`4& zxbq2BgpUF`8EzPZJz#MLkDoJR!o?^U2B}^(>`f*pS?v*I@v>wR&Hoim7>06FcM_@UwnAJY_}H63k-HYTgs zU$JT%Yoy_49Z(i4;o`0z7D-Mi-QwFFSKT6nm#AFCUWIE3sqrHl32lKZ)ZJBY-+WGL z=k3A382g1-la0U4+?tb^2w_9OGb6d=D2%>b`ApT4#|fFEwQ5i%qi~04f5r$;LH>wS zU6`bzjzy+2DkgDFVC?CIAUQ9qq~bziIxJ5s;?@`hX)U4! zpRb(+Okha}S7&WDwgmU5CiL&0CO`ktHOq!iK=N!r6nHlvy*#`k*;1lc^}SIr3Z{Q_ zG}d?Ucivn<gZTInW*Xg8Yx3fS*qY)W`Fi9bR zfYOWWe~n#gOHyYta4Q&|%xz(vqKNspfCv@#`yDd;ef+rR3`87v3xf)$qazMa`}%6= z*Xn$(#s_+wSxZiE-oGvHEJPJ{k0v#e+2+0B`_$Rt=y}6a(D+xc)sM?j~vk%r1rKBb$GXHiPP*(!JFUojJK)d8tv>c zSCNx_R5Uc-Yav_t+c-Cgfh!{&{HnJ8IysS6w6Aw(v@_TmA}$ zUOPL8oCtEOOLA~K+FhO5=s()y5{c_FD_UKt+4wEYynj4Xsbm2>h%cCiZjINux>uRA zi+?NQ$@i_@CM#uZNfRgXk?sOos#U+fgG?NS{p_ zbo9LmEPebbXSTH2B% zrez1#_U^w*a<@+ikJjEsd2?ra1X%j$qmAIIMTUQg77~dRc5@4tJ0Q~T=IfKXzQ$!D z;fM#_Y7~>@tINg->y&7apNwF9&C1cF=~D1EjQ)j3Oo%{#YRX-{NC|k(6*m*{2L|5K z09$wwVpM=r&F>DkD%J3;toPno|K0O-I78C2b*=8CZGJp3&0zDd#>Yj+x78|e$XJw3 zFf25w?kYW#gFXcl>@tTFYq#bT@S-N0Jm2;47@|?YammyG)bPn*{AE73$}pI28w9w=DMTe86=fx9&8l;BZ%LV0phiMRr%!>P{cSrGX@-9J0oat_=|15{c6jSEVL z!$X!w`9b?fN_!}!+WMhqiYMS0cW?-KpV8@bNf`Z#TGGG<$JdImZRMK`=CPuN1w@vZ z4ZR7l!x-jDd=sQ(PQl6vyMJY;3C#u~+UY_fL-PFprsm~i>9f+az%s6|R1w-{;sGbHoe{*wA-tAR^@FbXs-Uw zrn@&OJ);oxTbwTU0UcV6|9=+bjGN+kJa&-K6U=>Zn102BTjZ`Qjbh{Ba;w!*~16ubK zb1qJE00vlehXs(VL4>J1Wtg}D2a~jO2msEhr~wJyCng&9h@{!;IJmkx+FO5mxV&|c z4sac$D=NQ`-~*XW?-t25mPj@P(mRMIhedY)B_2o1gGOt1nrjK+h6w^CpewF&KHU}v zK90QpwpF2mm?&(15)WJ%U_h)qLnDKeEvpa8#A;8fxP43IDrX3e!8ep$$nTlmL$0}d zX_j&t)5Y@kX>f>33)mtQmcRF(_kt{SxC>@qA$2D=wV&28S`SDO$d#W{!lbMxmcMcnjw?jJcOMtwfe% zb!<5;v?@m8Kjh&$zHx7veO<+CpokAdJP5;oUiJ3&E-`Czjg(84zWb&Nctjrzs})FG z=BXr+N=FbdxF_x8cTR2y=9(4ncXDQM4-7z2;p^g=N$V>JX;vTdnvfzVCKGU zUbp*itJh-O-n2`8Z;k75eW2T*@J0&VjFYWRj9TLGap%Ed(`BWz-A0oC!AvD6$&k%o zT9|R{XNaD$a`v{9t97eXqPJMYgCfea)8@D}rQfWB7=E{awarhN4gck>k+`!IsfcaKP{j0PW`t5HbF-;?jnuQtIL+PCr4-7alAVun>82jKzqeU#kvElHET!z zhCg>b{cMPOT;(QHI4!rwJrP9l=fx=MV78WM-u7~jtLO3^BHe%=(e#UTg{h_A>EWB^ za`w6tqI2;m>A&|{(nYsTlj`=S7)I*gtLvNH>|*948K3vZiE-B==Cklfx`g|9uUVIY zjB=t?R9qIv9tNy{QI(a%YOhxvm+{FHXA8~7IyN7LU%sXW6~dq5kREEe72D?g_6m|k{m&|WGdRcjH?p6sp37H4V!J^WZ)b2eqJw(<#=43#Is!|q=I%zdfTvA>APi2u_+j!zDP!0>acu9^SHzt7>+2-U) zkBQc9nyH*55gG{`juhA9!w5uL`veGMYB$RZB@r+0>OhVNT{O0Xr~}GxEFsZp4-ELI z5wAv^%JBHVL@cR0ztrCId&SmpZ_RO6{k9k(f9Jbm@h8^Trey?ysLsg7fl7M_Wq&+M z3(m_#(c?me>>#}4bITEplvfC06X&_iId(fDI>*h9k5@eNhSRGQNaW?pFaTw5>`src zRu=*c{ZJ;_O^8jD^3s^oKYlXGXCW(jB&#pP@Jg@i`ur5AnRKjbEKs{4P#8p>L!76% zx0A{=2cb-#@;0mmSg-mLVE^=0p!XW4oN_B!%z04W)re2(l;1<3wyZ!r_i&W1ibZ}l z9-4%_t^CNw=kn@Gy8fS$o>D+q(_1^6o;X}RTiy%w{_*$VKhq#Ssf+YTlO2b$DxkR> z9LO@}8pmBbr>0udrxn!#_ux3)FmY%VQ@Utewk!t;m;lAXHdYE?oCf>h)xmF%bovQ- z-Qza-_BgGVM|`)iQs6@C3OpaviL?2j?Yfcsw9}!?Z*SG~v`y?}EbDYJE0as>QVC2QsinWLbIZ$WBU81)B-KH|kB!Mmn0(_odh{cf3f+t`3} zt`$8j^qB@nrTwgTt?ulkfBO1~Os0t5*+OsKUe@t^eMyjunX3j=1-MkuXc6PK<2F0X zlcnT3^C2PF8i|ydk&%^=(W)Qa(c@oD8c}di2ZWIz=t(qQe1IgEAgqr{wBnjg|K91o zVIqRl^;`sg(sjNPZX*DbF-9N~+xGzs+z=L!8%kqC;qg&cT4--CFU6zbp+eS(Y%L)) zTJmiU9(chU;X>D@lppPph(|zcHySD{jhjv>je#M_J01XpXta8`@g;G*4S;>E5!LEe{SS5MLR|VtvbrFi+FCi4i^Q86|f7o3!+;2IZJ{(1M@TV zyC^8e0NExDG%*7RNslnEDx}hO^XpC%#p<>VJBNwxN-1nsxk)(O_iKE)Np)*Rm!M$7 z)CER=)ffl>V1nTCrCNlFU~bBTzduA7r+7eo$kQUZBpd-sn?Za5?i0%hK}9ym3jeWY zA$NMLw7)q&;eWI$z5CdQD`bjZ#tKsNLp+q6UQC%PJBc2` zt6pH`yCMaspjaXCSaEvRTPeux4;N%3vWL=DH3!DYke`+fn03Mw$^*D@%!N@G9_XN> z8X=5kkll140r8ik!Zj6!I@euqg;98f6%VT7Lmp~IU#E+5t8f}hlWXZ9@IGT3v&fKv zMSmSy&dA`z;R351M?KT1`Eb|ftZO_L4Zq$n<osB#H)!GV0)0 z^jSYVHA7Y>zw*0zcBYEfP+5s4@3o0-lY3iV0eVQvZeH-vnD44N>p)9l$X+qW3Ky5k zg~>Wa?)HTAyDeivlwtXu6u8IC4isTPL;d38_Zg+!`fCB%l?=!*!|D-Bk2 za#kzuJ@(bFS&4oH296N2KblkV!4Mh!9@Dtruf(mfK1kX(VH}`@vHAg*^gy^OodB$P zBT3k-mT0DgdoVJ(IJCO7!0%!eJ>Y1#Mhd0m5vFtyA;Sbi$;gZ7ufx- zkSANmGU3cD%`&sfPUd!3=Zh`IgZ3vMC*BCom|k=U@NlcHDE*tJ!?5e+m3kvNo15xt z-Pyu|BT=@sXgM{n%EQ;$u-%%qdYm*KRLR!XI&LGC_Mj6CxwS3T$Wjfoo=q9RE8E*` z{QkxsFkx5bMVL=h4FCQN7ua8JtC5Jg?UCP=Qyj3Um9W^%JqC;mTL(40(~I@5@Ub?d2!%5HJ_VT-LQu$l5)}Up+&u$jF)HwQewFrf3#l0bd!5! z-mtANX86D_(eRmyXsk7>$|R!c^Op#nN9{8t**GDznnYG_Z%>a*1Y+8^;$V9!r?+Oy z*B-;|zu7=DOm#iU(PD@)ySA2S3?|xQBIioWX;Okb*ufU!LhY&>I8@AvAE6pJlwnZF zZSbaGfOn33Cj`N?8IgIXgm4go$>@K{6d5^8Qt&JbHnO%N z`Ens?3OF3};;mYzU_=1BK6^H7D>(3hFzxCQ? z)gPS&tOcER*Pkuy&kU|!wmcy`-+40EvUCilr|HCNsQjccq4_ZeTTtqIudMuq^l}g3 z$A7t+`Oqc!A(^ui_l_tPYl|fGt@7a;^|ip>Y1UCq?-}@h_m_*FkI1BZ$xc8*aB_ zqnM5AAe*9mn|9B-D$X_Rj%@JA;SRxI`?%H*-Tu`C0&j-o0|W-ZJ~ImCBBn_hdi9{^ zI7S_felhyNP*4pN7ST8J@ZnNzEHsgVr!hbQ2mOxj-oeny1T4^W8i4Q&1w2f!%)Q76 z4q57RKBa{ki2bG=FhIlW)zs*BMHQZ&!pp(eM*~+D62&;o0*M4}rSqyKKDYb}kYl0q zHbx2hW{~LGIXOA0Te}+`rD6pMNdbL|iJ}-%WKmKR!7YTG5tyW3>;&kkiG0FU#hxRI zzCIJWhA@JWbUDC>qB_X~h$6r$j%#J*)mGECekPxHA@Jb$zc)ipL5ue-gBAxaKl3iS zOGzQl@52_-w-tN`3p32lV%u6G=ud*gQrn3n6D@Rh+AH9#*(#O@n}z6!!?K zF%J}7WD&i_(3~>bI?lC3we&cNKe&Kf9@@%mfEHY`pbl1>e4B(In{**#jM*tfYet8C zEHXg5v^(S!(%&6;t^KLx+4SFHY4aGz5_O?DZH%s3Zc>Wj*yx?k!qUWU40%6DmwDJ4 zp?CbD(y05iEZ064_&N?PQxv7*?O+S3UH(CDZ+JEN z_nRiiCGpX(gR6ecE&#g2$fnhUv-%KUblW@e`o(ylq|T?^+C~>ZK3C_d_sld=^~$0I z#s8+u%-(d@G&EJW4v(m|LB#%-cL5!i7jfw+BTO^G{w6y;zdfla7yL*GkWX?kQPnWk z)OIh`BG+5)nB)b4CK~+($cB^W6|4%5G0!DbSS^GMF39#aaAA3oOm&T@BiEtO|TrCaDnUaXNfC6Yu)H;&BGC{%kQ<*pxft=KX8IcRR8*%#=%8k2~GU zNF%1sL=ocL@yvb|`w(rEjogExk@BoTuosmFCXET~&Z^(SD0sN`04~a705hqu_ob+4 z)zaQ((_Bh5XntdQAa8V(_(+5$V50cw4L+~h?e4|jk1xh?D^*t42Tjj)-| zT;_cFIwP_4DbC^je&c;^|Bd_O0Ff-KB##G)M}63&a=IaFnOUd7ixRUHOZ@ShiPOa9 zW-zJ+E+3+ik21vGfA6d^;`Dpz=Ku5WBSPBJKw%`sqj~@N(=c3W;QmyYsb!#(RN8G> zML!RZpD8By7O1vu?Q#EUo&GmJf$bIm5#j9#J15WWzh4rL z)11mp8+yy76-h zL!x4ESXpQjACt`!O!o&vI?2ktXs8P?1-x-mof2>|2{2{ySHUGf2uU=KGx zKe@CunFpN@D!{Agrwmkt(F%1zTO~3aOVF%Ok#Y{$Eh`S(xuA5kll6>VjMtm> z9{jdi4X&Vwm(05|v=#q0MW+L+tirEN2Ag!DMnb&FmDMV($mo6k3t@EOVe3c={i7^y zgn>AXpxFM7QF)U$FcFhv$l$Qxf3`d!3`OLxVA8>N6hAyBqagn{H_Xhd4K;C}Q-je9 z@GGw~Pkn(HD??bVw*Ikp`7ni{Zl*lqjrbsfp1rBYSOAH@tKPXfMb>zMBlsbkrVy{1 zu8~YgOT%9qRx9NV1$ql%z7ilpqf#6>uxv~<%eOC6HDAh^EvgSXn_4?bRN7yiI3RY~ z%nMtdL}Th){>9@;O9$?A2T*)0dOr0GW7~-<0y!GYUym0;cc;=ky{8<@Oa@%LqL1nT zC`sCg(R$7m1el1JQuCszec@8<_m-2eE>FoRM5cnG`=0l>|16k?-phNR+Yb|icEFL> zBK79rxzg#u@8Uw7<`-*PLP!cP^73nRSoNKO2559Jo}JN(Qk6mQ&;YNCK~aPv2-!K8 z=2L!YH?DN`M|!Vu-L9Lk6g&j~QF7`}CXQ=syCOY*GBFT$jFf1 z+C6*ye_C-Aj`^4kvaKyd`G`bs#|L`^=WEgg@$RfyeWOS)`z6j1Hajql{#vQGpFQ2OGkwG(*n|A;~%LZt{c>tz$3vuJ4Y~ z;N;%gT3n~Oq!|KWZ8Av&qQ{uWWt-T3Ow3o+A#|zGT;jjhWkEg>Xq$}1VT!%fE5xKY zH7bhns%E2%ikbU|KRjwbErx%B)=KQOBdr(rp;MWCujvP^_lB@Lt3q~5?b!~gCt<38 zF0~=|ECz4c3k1JZioIsK#ir)SAt(^jc&F8)%)H0uy;%>pQm4~VvX}uJ#@g0LK9o#v zEyV>QLfvyFv}R@$YDH{!qF|aMPCvO{zm=UgyNfa^3q++nfLWKA8J9*g)IxDFB@2|< z7`q}q{-z#%TldiCY}M8&q8M87YYutw5_9kJ=o*xTd|}ySl);k}WRv1UCCU6&R6Z+5 z#*#c__nwtI5)|O7CF$9v!y@XGSIs9O#=*^(#48&)nIY5{K4M<+v_MUQStx=(HdMw_gn@F$4-)=8X#XTjod;_!C(!+5GuhjWhW=?Sl8pkiQ|`N z0~4oWr~js33Jic%si~NblKWA_hmC1@28Lp#y(hjN<@Tyy2_knlK7E$JYU6OSvX6FC zFUuzuCIgH`Z7C|vvO~A4bO6LzXD2s%_<@}Y0bAaAXjtYDnKL`w>2{Y8Fa**MB+)s7 z`Pkr#gM}VWNqGf@uZCA5>Q?1p)MT=l#Aw)U5Q3|k2d%`U>JKIC`1Jekd?OiB`T6;p zhJQ*QaYpLsvavnaGI0H=S~0;=yoU@Y|lD`4<%CPlIai~WlItAY8sfIAvo;7tZqqWnzF^1CgtB1f)rDr&>qP>jB72e(7FIa2qqCQHn zWsBtbgi`}1*^zR(a5*($+N~s}`(B`8rK;-#(}zQT4Or%s6C03e_lwI(>9t7(`eBB6n-p&O%P zAw96s7mZz{tUQ0m0ErId8<`?6gx4FJCThKue;Co=wd!)FW$C{Mhz#>tL9YhfgX)j-fVp5jaNjfU=9*$8T$rePuk0my!hMpTumP%4-ekBqWa z11Fn)`!lI(7F1y&l^!yEV~7!urV))Wk%o^W7ccW&Gq>`AFj~2Up=2O5h+rsn48HM| z50!QZ?7H%u99s(Jaq_F#4L`8RyB!n)@mE~-$Up#ymQ}k^Sx7dH>cSUBEE!y85<*TU zZngf{oxwEXvM@gkxl|zaLGY3r*HGH0<|m5OB}MrD_I6O?bvSW4C9PQFzIX6Qtma@) zJ{za}PG@c6W#z*x zpWbDJ@|Mr`et(>zufPAFFE^zRl#U1L@rwgB#^`GZ-W3vo)r+_AbW`kX^V?-72HOgJ z$^~l>SFkXZ^h9R$dPjJn-sa$x{I&t&a}=4_NEhcPf>sK#~@oK(60x$;$*xVMVRR zYQTDD^;Q(+e*K(44bELcM0U_tsdLT2q1{*j$9)LF9DNA|K+RQPAVuB-AgP)3?${`` zPx$JWusdr14T{4(El}>m4olU*jQm>^P^~H{8??2Aem(_ID<*)pL`zat)z$kC0)E**qDY(#~8bv;K*b~V+&tW85Dr*x8eb@li=J7J+`>&a`kd_4MM@YV9 z0-{hkj{vK8)l_5Mu6I&+c-%^Fc`cVtL;hqlsgK4n*|^&ev6^3x;!$J1tCUoJ0r>P` zF3m>axDYiDPICihG5}mDV<#YN$vFDMS*GYA!p3MFd!=oY5JuuTyPcdICx_(^OagnzH}_#z&q-nMe><%X+B zDUq}2B1P+;6ysXljo-g-CMP814U@t0u?Rk%B~4}y-3|vfew7)y z7({~$(4mp`NY3~7=y=UwhS!2iW?Lwrgpc}HuQNfB+Km(`kF*Fb)HGx9C=T%o>t~Uf zHYq)JJcF*xe25TO$dSRdKfF>D5$sV`wW=9mc-TM@55G7$y_+&{y`iAw@lZ+_72=oY zJZO_!J9~82v(dSfxZ^XjleR_5Fm+yCTLm>i88KC?4*$OwASOU0K zGurL25UwxlWw(_x-7kTK>w=!$GSf_@nwq19(>~(My$rIbP<>*{^t3H|Wa@7K<U!_v5tBX)cW#5lAU0q#_4&SF%8*kro zKOeW>aj(?Oo)G6hO-r;1zr?TAY&w)2+i}+g`Io!9^{GGv&WCF7hRx$`|?dsP5`AQigPR$laEcOVtw?UYXkX zL8*z;l}10cN!)o^||gj%MOnLY| zSppth9)p6;K+FjcNqm`Y8nlG=wV0z`r{UUJ?=GkyGqeR>4~sBeNzk}79x%U?bue5U zFx9Sj{WX;nq`6}g7DCSSyrJd^cl%fw#zgX>UZ)XYL+S+MX%Yag?-Vd+Lf}o$Ak?%U zgBzjz@sNLz#*L)r*S>{=)rIDh6o^b4Wl(6u2%&=K@<3ef>sj6Bg)2i@5uo~yH22r$ zUra+V-u`Bo3v*`hb!ED!W~k>{3cN#^D(3kbE;k7*PN}F6VXQ6<9QRxl?yi5bm40gr zLw~gkmiemzaTO1P%_%nAHw!6z?^uLXL(siQQ{m75&9Lgg8J*V2e66^*ha05ob}f%v z&rTUm<0P#CnCfcc~yQQ+GCLfFBoOxd5a~4Bzj)s}PLqX3=s=RnjM?{Oeu7 z7$S*Y9RZz0t{mN8&CV&ll}Yc~Rn)3t0j&r!Qb!Hbeps_Cmmp)0yX-u1Je+l)Axz{x znK+x7I37BCqgeo-KO3n(mR6SzVdGJE6J@?AaG`+LBnm)58i~q|PAb9lRy@LE$hW#5 z7sOTjZf!5+rfMTI8bfr>))VDHv=)%ZH3EEL+#9`C~jW2q6cCv>)0X{uo<;V0qKu4xWhhsH- zAS))6M?mYkn5h|}l-T)##Xd;;L7=f1hKbRt z_?lQ4k*Fwe0{MgtyHd6CuiX<3q_)j86~HzzOFygwS8? zJZrVMHrB8$43!`%4HxBTl2(6+uXp$Nhg-4AVWdE3k!B}Btwpw-fQy+2|GIIRBim#; z`9~bMxTvl;gL9J+jlZKdeuTq8J}0fPQCdCfkzEUjH9$kfOQU4w!Nxm%%a_%m4}bs2 z@_3Bh@^EvWVQtLt3AzAV=uq_Br;qvD@?G;zfyNvs$lV(O6+$J(=-IZbQRE`ctSwe4 zyvhEj#*vMZT-wdzko9r-HE4u*dV_2{Z(Gf{$Fk1b=nI0EAk!IGLOv|kfYMdJRbXj{ z>7h)x_Q<>%?X4*F0SO)zA^kVVhkX()<*T)O!0e?O%y#3Bg>~6r(b}j}sW}qROIs9D zbs8mF7DAKrLfFbh?rlPa^2!5zHfJW+y-;atqM+F#jnAiG(d{Wx^S|X*!$2BTU5TCah6_FV;DyTqU1o2l_G*vY8@Ah0tWZQX>e0WET>0e*L zMj|rYJ$6BB$Wv(kpf8({hrwywg>v)6z8l#}#7N~W!r2hiyF658l1Or^lqT5B9bGLX zpEb2sgt|U!GsLX3WQNz6i(j3MHyENKb&-!Ojm3ug52O(;-C+e`)P%BkSPdts-%vo! zShEe)+H$uU$xut0Q4J&H1%z{9vV3lJF{(5>90aS7FAlmw8tZR?`L7u!4PI%N5abl% zPVi=>qqVc1pd-t()wO`*?_FNLW!2s_M@z&>#7C(Hd)GWI1Ls9=95i#Es__~Q@C%x7Df-AbFEwnou{(>7c4q|~ zftl{Rw@l{P?Hb}ulNVR~+PliHP1iX~tG@Jqem3qn81?$sbvwIZA7{HgP{UPMUG29% zbKE$6zjpUui-bqU4Sa)49Xg0qmMk=l=RR3?Bx*|1n)q6xOP6L=RyO_ICAe!n*Pc07 zA9d!GGAIRpe<|*Fl6#p%5V(|sJ3gIi?B6P#^>g3c|BAalMEt&Zq&Qc5k^%Z0)HkLE zKFN6d`JEQlAA33B?VOI}5t8LvUFDvr2FQsf zj(Lva53da!V#&BQbsb7_*YG!Y~YhVu(3$uB^V8B{ioDU6)GteY<+nA4VLvIK4c{uwV?((MvDi}ZsL0OOtpOC?_g44_ zc&DB_LfZ+L5ANwwIpEuIt0G8i-YVtI1^8P~Fplb~`eh>Y>Q7!Tq42-75C4sxl4eZn zc2A}2cR+)qE4L0^Xs-56Wy)Y0ScC%4UG~FtzctFo2nTgY9CH(u@*PT^2JncUGFfXS z(44VAwGqm2X}G=$lK*Zv2IcwBiVD#X+)j5@A%}+?YtM`LX!VMI5+>-x8bZOt1HyU1 zVZNc{(e`ic6Aftt`JF@*C?$g-4p9;6;;lTa!MqHszjg>kv{#GTc*x)wo>n??c<{e_ zCA@cSF9f#Sibyc9%cHnI1BG_P8^3I%EB(!WOFkyxN5OmJj+oOnDo0)lVKWOyE=9$Y zqoD2j)Ae>G`D*vQuC@B!B12ZZi>qtNxQK0R=3Vqr3U)Zw?QM@NOG~;{Y?keVo5>cV z^ItUpj0t!NBJQAT_e$2V4?=in74vLx!)`(pElF;gAK8CA{05=&xaBk+aP+4BP=4Zg z;;fH5U}|fvZl~=e(EZ>vc|34_=W;~%mA33JjONIl9cE8T;dSUOG8y5NMnUBe0mNcF z_IA4Jm5-E92484u%Cbe?Aj~7~yd@3~=X0NZelbeFyFRnze0=?ktxH{lNaseMqIaJM z-5oG-HdqmOv?Dzso+P*LYLuTn;V4yyv%QJOAF1LON2H!wh_DQG?aa>Z3=jKqxDApO zeAx|pF8@+udJ;Q_)HtlmbB6=XR*?k)T4}rK0CsTI(3)sXDKjI+9Xy6HYtgZ$UW!+I7 zDzM_3%@`Q8ux?y-lYQu?&usA9hOgj)J@lx!U8-Jc%=yeflm9@jgD#D!j0FR{WF~in(wY4^^=%|nhL}dWr~DT=B(olA@MLZNQA@Ek<&ustxVm|4$8(6 z{Jg=e;z>`IcQ92j?d(lCIC6)=Rp*)~-5QjPrY6$CK6#|fzO*r(_0ur_zC+OE_p0b- z8s!cR)79?}q<3Js+pCz4FqZG`)18EYt26NaB){%qP0)V+nmexD_zh_9jrU;~__OoD z4gb)4wYsh^w$PwCr%lsD8Ascar>XsA?Nx)y2wfbv;+3K4jIc0*lU1R&T@j8af_G|( z$(8l+-9SyUJ{s{~K)v}*UMFW~=h{V+G@XLw+AvjG=yx->lx}Fml^SZ8J%ml$0Hzu# z^O+IaW72hcDnfq;Ii`*b-!WeOI${qK=Ldz7Cyn zQN8H&ECdm&4-ceJ4}qvfVKiXMHv+VttiUircJpM|2Fd~`1xkjYj6L|>_eR?;t5}E; zkLm@AUteY2T!P89BNcbUqV}sJ+$*iAP@EC0)O=(@DF1;JWYra8sIgnPy+(#RA)5+T z0F5;KNGtZ;T$9C=Jl2ltV+!59d+WwbnpMXOIcM8Shhd5Rv)9x7hn=d?XX9yNBm$_O zyL{q+8pqz2lNX|(rUlyrgC?2(kEZL6r~3cD_g?E}UNWwcRS8+wOv)x7DI=F8BXpHn z_IB-C$X+3`;@V{IMCO%bhqCwH^Y`+7JbwRnFWz_be!k9mo)M;YXx5-{bF$9W{;9B~ zPA^YIX=zLwy6IVA4(N}+SL^9Eew9(5X=dr`;C7~_oKayg9{<~6;CFfF?~_O}ql(s$ zG%uau!L7+pJ73vq8|@!_{wOiio0Htjv*I#Xk({tTnfxfnC@na;?hmVzs_3`(&-bO>r%kWQx$o@_gKA*m#-0Aq2O%;s{SB=X za}EY&p*9JvcdZPBJ-S-+t6V`gBV88K_jEL~mfDrtHNu|5SXe4e)_r?vCPq@_37qAxN1GQyJ$_v9KzoNh7cKUM{$gij0#m|WM{k9oct-L0!m5ij3* zwY!~aINUwgbo4Le4fQ;~NwUGv_wbWZ%|4%*Py$ooOp z=aIsXDP2ot4Nr?&Ey~0=^grrM`4P$F`78C0B>eZpn)!EhwY>74+gD?IRrKJ3m&02l zFSSP5n#M68Y_6{0sOJdw`>PA3L(gt&RIaAvD?uX7`P<;IUv>j@%wjX7S0U#l;8p9*%)ts3;M|U`&;e>l&>4(@D6N*`DSTXAtH52<{kx8|=SuI%)ahE& zcAUwvLxU6%NunZ=GL~2jk;LQ#qU#8vE1byI z_w$Xh(-X)>Kj?RIiR({(NOeF+=mY}bAGJwE6n08RiK&$Xv*I5vA2)~nJpsLww}yd+ zJhSN_@kQ?Uf_>b!C;J|fhMTLm9 z3IoX#fMae1alrb5Kq|2Rg8VOm8=zs}?Zt3MJATq^2l7EZG#alSRRJA}hg_z93dwvMWwNgHm7Q6Su5a3}5 z_{H3?bbN{B<%|ZY7hrTkNGk;)phN-Ev1t#OXYepDcxGkE%gZ(efJ_rXzc4{sY$jM_ zAtlMZd}-2iVFy$THX5MH=`(S;_{$|Q1iV(vd;@4)PzT`j@=7`&3v3{QPh(wOR8-_UG0wqjX{pV zA91>96>yc8fzz;N0cWEpMhSPG8yOYqb9!lT&`ZvS*s1 z)!?GWYx%=^Jl=Ly{K)lV`ol}S<)%t&&KK3GJt2RMQ~g6Hk(Tl|d0w?^V~VJCmkTKG?+ucs8%MCT}4A~{Wv(Uzq?AM!hnV~kL0j~@$}_j)Vw3eR6t zQ8g}<;936KD8fug^V274K6Z|YyJJc0>%AeBhJ|{Wqw6yRp=1#pp%lvWb|PzQYqb42 z976hQ0ezncIlb%aLShxRb?lO!o}PDa1V8=}Gq58DH}=|UQ~xvX(Yf1`K7X$-xqokO z?`Y5AUUJNJ)Y&QPK~&d)@8)&fn_R`Uy3aD+$4;~SecM1cDCf4jX{q^XQu=Ovd3l}G zWgu{F_RVohrE4tZ4i0aRmnmFn^2u*f>9OB)7iH<&pFaV+tpyO*`asU}aCSA8mB)o| zJLjRS?oAgH&x1Vxt~G^(8g~LBzLU^}OfPH4wCPC|)zVCQ?hILIC{Ga5UjHM* z=I(wn$Hb2mpK7|;?rd`(rlR4vN8S5MVwP*AZP3i#*V0m_c)WMC_V%ohP@m6H0FBj# z@97MOi68*lH_+_Is;6F;ceL4n;>M{WeU9_ZlSlVmK1CeR@WgbsnN>V1R+=La`q1uw z!d#O1X_SnH%STsFS2M!BU&!18rQ*ZI;}fInz$NiqcnBqXr*6M-j9GsM^Yz`4N6j+< zMnVl>*K?hd^_1nGq2oRR-6yp%eMffUQI2R1a>ni6WI@OeCZ^*06B4`jw0rI>PiVJ} zNDJ(TVRaQvRZ_{|p8oXrxeotPF!MyNqLQ)zDD}SjIW~B&)_FB4)d1RT2r5y)%@N#X zFxgpSM>8|yK&x{5BU&Qgth>^Ikj)E0hok0!^}Kw`LRmS^HD;{O`uy*iYtx?LRJH2` zd;3*2v_>E-Og`4xl++r=yp6qsrIcD`?jVBRsD42b-x6$z+{FH6CK1&#d#CYX6lwwP zW}G&(#GLXknDv@Tc;!)l5dI9Cit$Ot(@2S(RmQ3}L3d5Rn38G->wTt9?5ck@Ct zaSrw`*p2uO7K)4p3rk!HG^@mdFFvuSC*r}+g81;}SsbxxWHVBOH~u}{yB(^(FG%S9 zi0?E5;c+@fT?COH@LD`poU-Ftjj53)7nV|q?9Hl~=iq%0hwTR!hiRuP_P(wge>e4; zwy2msa;cc;ch7BaZ#z^xD^*Z7(}MsHCdwbMfepp=2WYhPf?hs)$n1TJJTtLQcV!u^@b%j~3@c5hD| zPA4?cKj|wun@Ek`HY!Yd5{goRKxgp(T#5tJj}&9+=T7)D&gHsDaDg5F926?%f>F!@yw)C8uOm`r@y z?Q9EReQoXm(kC!m!3y=0*kzslA1#1UAx}3Q!H+|}rpKBY62Py+U9zQ@g!4q5tCyF| z!gIS<`;!SeDUQG`BSOxF=m#m6KHD*A)U8_KA3+Lcn{w7@Oc=F z1KO)g?0K&h#3w@(-r=e?!PSaY0x8m^&M1%n(j-K5nJtwRb^ie=HyG%gZ5Ijun7PXq zAnlItzx60mHiHFp<)x?Q3lge}9;{pw$vT)k`DR$$1V%piyJVaT1^CI6SUTYO0inx) zv%w;)Jlesz3IuD_A7B{GE#_0ipn%}L4+6NxK)a(Dn7R&xM^D5Y$8^w`B7B#p9G(U9 z*rs6al_+3(r%uQ8r)u`LjlzghAe17j!E_qhi6o@CFK{{PJ!gpGq9T5doPoSF4TZpr zP3l>!f8}7W=sr;tx~27994y0PKAAQMA6uZ>i0AVET;=lGTQe_GS42r2ZhX!0nut}T zgF&HF#{_2PUBDf|yx0tKqEZUeF6pbIRA$5rz3+>y_SxHp@&}ieUd!wfIxR%=lorPy zJEmyx>`ZvSw$c@fqck%i!G4zKS5qRqE+5@pd9)fb{@};IO-44$=0S$fUzN%N9;PP*_34Z1^XM$W`To%q?R6#14l;L2B}CC zxK%__B9x71M-4-u+U8Sj@yg3q-vmn7@Kdnee&+HRn0Hj3FLw_*>|@ zdo3;HexYKuqmyn(Nwu-#rqQ}W<%;6mL}%OHD@pUbF_*LD?jO!`Y4;lM$TVqH_h)S> z6crH?Li3x&qx)IyK@Y+MfNV9vcsjt8w~j7OPk-xl<7{}(IwdY0?^ENo_R9Vl8PN|N zpWSk@kdTlAyN#(j$K55%2;bACFEo#fmvb=Nwi+v+(;l%foq%a-?|S!Ww=;9&Y}YcE zpQacOh@Jew4AxpZTHlp~rs+hw@v5eihVIbw$%&cf-Q#>=nlle?@2&7+uchtjg3#l` z*{_M+K^fDXoij47G%K$iT}l^^kzQiV5hk^so~2Ju^EZ5c3|{BaM^mMvREG~&26mdZ zvx{|QPunzos;#7C>UN^H&k{Di#D0?XzMIWn@zj4=pXvbvgPY@B!ya^ktenZI)Tjp?n)Qp=_B z7kBM6o~Wl5TXEBwP_=4Fo8Z{fj9)I47Z;BW{wp*bNKLvkW+O@bMHOSAsv?nncs^7=?_aYIsJPh#;0oPiNOs5|~sl>oT zL?$7E4WoO}DNeJNQ^aqP#dTyA7+bM+rM9~MSwSrbeVS z)%h$1vn{+qzl*W~mAusVHnX=LF8@-@Gi0jlz30w^8&86yE@mSxBJ9s)nw+a;nq)nJ z{KB(o;Lh4u_I06jjQBL@@x7ud5!}+O8CjHl!LC2Q2BA8at+D9Q5;}=IJXN66kCxp_SRW`9C_{LffE;rU`X6kHWs>btR z9rP)TkLRZp=-nQeP7%{G8g7j=3j=WMW;D>f=e#Be3)k6oNHaZIV8f<}U1M9l9Iwjt z2bU#r>L7oKX#@y)L6Hp!C-?ut`VAq!)xf~TB4if8?1@*G1eEOpkSMto#rg|+P#Y4H zfML4`rgx6vWk&K+jm~>q;wTtqE+8`I1u{{3Zt*f(@f}^rC5c-*FM-1xveLYw3^C(KiRQ$rP$_2`8M z_&?v=lo)e1J}7$KOuX=y_=5ta5ZjQg;JZMqvJ74zm+M!PnzRi zHpHhqSv9)afg%^+(IJvae9dq0f_v~>w!WDj4T);|l+O7}XGHqxyS%2Bo|&y!WqE34 zHTMx4j{ej6o3l4mJPo>Ly{6{5G-RKr7g(xJJRG3n=Gb!*2 zL9J(z830#_UOn#Cj$c13e?AZ5X`!bS2|YlQyv61*@Tf9JQZ)wCYJ9eu#aWB^X>~~X@mFLgZVKF_XIqz=TqdDK?@HvS2VmSJ zYBuzYW^3J@+#A?y$H*{6x2KARTF_G8(fZvh8j`7!bp!7bOXF+VZEMd@r}?v;oK7~^ z|E&|8%Ia%-q#sHguXZl&c~H@TTp%);yLZjzorlwmirMc=%Z((jt**vK>nGpDGMUu6 zI(rCl$I;Mm$bIa&1-_4F%f~C-`J=CFFadG3MXstdp`oEG&f{S`O3Q#@O+GLY@IGC9 zAQuEb`s<%!^65uoav&}1q}NVw(_za&Mto{&s;B2kjMhQ2Bs1gdMTeBIoE|ra?Zw^` z;YSKt*?n89%e7WKV5(Lf902{3EGXaJI!faBk8AzeBj(J0ochHIhZl z?tqRs_0eIQCkTy}%HMlB3o`1g*6Rjy&ZIcbs~;X6PWFTI+wi2j<+G#DMhz|(aXzmc zf5pUOhx;Teohh)KCw4=^Ci_c$HN7zV)eL9&3;Z zQLemKCqE=*>><(K*nJkWlE0!rRX-fKPfm3JxL;)A5`y&5*I8TqlzKsa)Bf> zKIPHV3eL+wNc&3>E0S24QhnEP7U6%! z%cyDs@zJC7X;y4eQPDO+37$6+o&sp!#GF`l)FfS0ZPA0wez&`Mc>e6KPX%zfMb;3P z%*BB(njy07DYc20!TH&-xQ_pjIdvJVp3_I4W?y z5C6eA@{_LR*zT1~sPvs%-`706!RYsJ?~mL4*T;U|VseozT<_E!aGPV~orr2hae!2L zo7K_2%*Oe0u{Tkc-tN%3@%z@cwzgOIm>rUO0e@lF0ClT)W-FPBzq?SDVQ3$mq6h~n z-@BAbjW2fPPWyawXCbkIVy*E>sB+v071|~b??{b3gF(PLA)6koIeWk!Qkj_Ue{f%n zdwbgAA-bILGSA_XmIbt>4TT|ScmGNv0rbDvkxTJ0h(~_ymjv+VyX!Sj{%i;$>M|zL zbFJdU*$DVv95J6k<`eMMV2bido5BAm+2h5`Ifwh~5pf9f-N^&*z8+_zg%q>|QymnG zgCv5l@FmtpC4-2_O0YK-`E;FE&a&@+!Y$j&8Hy*DzmyL_|97D!;GbIil9(xc2tD90 z{}Uc%{PY5_IjlB)^bIXN1ZfBW^cbEVOy#JPr>6`k4+JHYo;$$f1W-75i0>xw)}jTo z!OX?v2#T3u1}Wv0fe>2}4ytL*=5@%gZpGu@gIRx>wgE_aLQTKIqyAuhym)AbCH%pg?8HOJTeo&C(Znbn_6!CFTJ~_rTFx|U_oF`JAn<;!M9Ho(uI~te1U~xI%r?Z4=30m5ItsL%zyvt@DU!i zt#6-x^JBZ-e#cG~_>5IR5fL}w=Lf&_5NeieU>lzqPmDw7QtFBTX(^zKX7~*ep@-Co zeCk_13QP?+Km@~7dF9m+{_*vr1(M1AHpXkKiJ&cs7I_@%*zeEgjrODD=4~_k%-nAgr_NLwgXx%)yP{;XF4FYgPZ#)A{fk8H^E+>ZDg`p}z6T@Q&)LL^f9&#*$+? zlENX7L7d8L*)i|OlMXP-V9yhjgaiCcsZf;E4i*a$w@|LV^Y<5`y(Qvq3xoJi6l z*dP{qWsHkvacHsDqO%Y57r!VKLMgozPx_qq4|x~M498nw6e%SWp)l^j?*fp8-xOhi z71k$}JCkCL++89}UU0uoC?!HSN-U6*k{58w&mq#h3T$Qm%$JesT3^?wZthJC?$tQf z`&y@YQ*DWun9+x@g%q>}bsaH(h1|UF0gNzfa@fwa^S=*5C2Rb_5>pk8X8K}j%vSGp zJWHDb&njBsy2b4<>p)0mGm7+dU7vTkzgNL@{lUtk;R^Q#i6DK z<4G5*OJI)ctK{MFi5}d4r0+7mE$zO=lt7~?L{07D!gDp!*q%|<$?~GaUIu;Gb>Ds4 z!WC3*?yu49n3dw&GldR5ysp9r>}V1Qw`63jejTixC49(<>7RM9psD#dyq+TZVSQtx zX&Glx)bil)SuT5YVC&e?}aUt-<#bVY-3t)`kVgUZs1@z z*+=r))crr#!c{pgR$Bn``&fSkBdYq(d0eHetNUS{jD6G5Gt?Qd?liH`rR+?b^0aSPXR9VSLrwgy2$&D;p2Nf( zKacK@iTMK7u6mjC+g7xL(^|lR50LE1@$qrr#m0vC04g*=t8~eu;ZyIe=(PYTIkLaw z9A~D3RUs!QT!EtmYB4$Q<5=9WMgCxy`q=pBUZ6|4`@j7tEW63Qn;Re2C*6-1xsG?I zQ|na6e$-pdWbQcPz2;`!8j~H3otA7$pC7dL|7%&BSehHn`xaGl6_2-iRrgm#&G7>l zaS0KSdW?}>b@%d!OYLj4GjDQr(~7V%L4#>cjtK0y8WoiTB51fpX}P$?h&aDvDxVg- zqQHWd3}DoA{E*b*L}XZbQv`ByQs-<0d^-y%x^Yl&5{`|=!_-i%VZCOZUAhq;&yH5( z>V6cnU6b^i^Z;#8lV^WU3APMmMM#Ff>Ew(`DCJ-nb9T8;s(F*$$(Dtb#y%I67pMKu z%psQrK}3oWfg!P<^$Q?3b;HPW{U{51$fKmhDyTU>GxI_^#c5gX5_50P`LzV16tI-M z0{-IJmGt>5(qX1oEJ|SN7{LyD-*=r?t&~KZMIIP(wun(9nu%;g%FQH2MBhTA=RTyr zfyQfd7o_i^s39nle;+?yF>P0TbLiXQKk&3~dslXGYT*bhO)oqSvhC2$=)JoG-2$Js zC@XKu?0+}cgehaS=(qUoBXRODahvr*0DYrp#2x=??w%s_aB#&>t?;yAg7gr{nwlyqT6?>&yLbgM$?WTT>RKLJ?%UF)1MmP;(jFTyCdAg zUtV7imx|U{5R>5#4S$Pb&a)zP64^MkVvNI8OdgRp`g3quss-NoPHiO2 z1?--GI*+#YmY1#GPLQ4MPo1UuZqoSr-kT!L;$^#vb8_`e#wq_YD?Pk@aon`O*q>Qj zR9F#X^}Et}T%0f}07CqgON@(88cm9axw0BJswyjsii?wl+%_I$MhR1(d!+~V_jB;` zDNxXEfN>!(&&TQjJ@h*`7XKcHBE?eUI*>%13j*Ai0aG{Bxij#Plv1bGHz4$%xEW}7 zxrixWLFCE6>=$po9Ibp*BAndbP@>}<-N9!-bsfQezZO`DY1@#{z>z+T7)G)krxw;< z2WtkxRuDlGkh76E>X~Mr2UJk)BIRI5prYI&1%_z4fpX&Lv+f@J$2mq)}|$ zymNHAx%tM@aRzYZV081-nTxl(Z4^3!&mC+_FKxA9D2R@_w55*%comN7?~+0@092-n z0-rpp9RCXfx%y7cARZhsjf&T+!G!cN>Dde7x*eN+Nj1-36VnA?Z6b)}~a%bk}vJ5fH!Y zZXs60)`%E9IlRZzjMUFBEJxE;Nh`~yAb@U6GRQ5nXeHxKH29!-Q_?heAO)^4i(qhB z2H(Pk-gmqb|EPO?<~cc6p4*0sMT7B|Slz)=E^dYwm<2Xm*n#(B74&f@vZuO*F$)eY z=wMO&T6x3dXRe~Q{1vHMS;3<073Ba{28-r7WQJCo8@c2wPm;iqScVZ8j8{B6ryof? zsz-1mlUNMM0w_T-#t!5OZd3Qmr)U|Lps81LehvH$;cw!D9t1*hZ#*G z4H6WeOC+tWHcKO|6A|W~&Mne+H+N!U!W&v0?n(_J8;Ri`q5X~Vn9%|u!DOpOzfR)S zbX7BqWh8yP0`;4pDSULI5E7ySQ?RxYi9~aYm%q<4mSEjzA<_Mu6=+yM45K$9LVvyQ zu)a))xLu@*)P#OfSEp8{gmWwTg<+_)MU=84`24!GU%rQNhI8#zl+SaV9bC*@?7N}X?|yG-D{a@ zLFkVD??;{uMW7!~#_(Xj>Ol|)`8R%)1_w|Vm zEaRLnX{tK=m3oFL^*Eg!pv*1(Z`z@uM>@g?RisM8A$xr0yWRI-$Lj8pKQuqFrKJfn%~d0&_e9H_+kdv~ zpN1C8=8hkyUHm1xf(e8fMCTk4h6ZNDuAKGHpB4@qd-^zddDI*(jyg-+maLrD1QOI^ zLmKcZDpytj#?&_0{cNk(JKBcUib+gkPqUjCK@J<$y>jgFaDKbLSL~Dhb${aEykPx= zc-rjuL4$-iA3of{>42bZR6Kcdo@TqY&iuoWmDS>oABUVzy+oQ(icxTEgYypF{{}Z0 z-VL?&uatauw*W`2JDr=1@^`d*4(;j(44ll|oM-*Qf!v5;Q=`oGq? z%>KpYRT!4eF6>KY&TH}&wnT?zbF4%q|8b>YH$SPji_7`n-l|it^WD+^^c3S|Rs4c~ z(#K0Kl#g2I4zC@RL75lGHw0P9F7IUE9`GNO_ECF@8h&M{mNu3FC|y|1!99rrOA672 z6ZyMYQoFeBibaB@7PGmoV=Y%T7dJ|k_NFNH5b|ShzCOpq$)DD`2cF5E{ z8_Z>#Fk}^R$4|;GZUq&1@FS=Qz!;QJSg$%vzLS>H6bmnaU-?-?^Ah#L@W! z$E&kxAXUNlz}1JWtLZd{ zMcdsLCQtuZ%UzVqH9UXrbJ1{c(d#=?Os^-^zP`|O{v=`H$LCO==eBnCwB`IQC23(V zH1s3^J;4bhO_x_54yk>t{l0%h*BnVfs)M~b8;C4@`f%XA+CYKa+3ul3P07r5z?WOT zXH(~z?2TSOFmBze0%GW(B#`L;^_i6GhTP%2R8t;4Qm2tf8|h z=3(NHbfU}H3Q!{il95Cq&F!>NVCLdsB{p`5DBO)s0F?n-Ep2H|2?0#pHBB5+aA8d#f$wf}4lp#h^k#j){Cdm=bcKC@PWM@uZMHpt1zUBt*8 zftc!cR_j7Mtixcu68PGBQposLs91pH$v>Ar*$`CY0p+lAU>fK)h6b!1RHNsu)5JRN7Ac z$joe&IUzea0X>008)jXI;-RWPI3fYX3f$6`kancCt-4v5b}uBw5lm=MdoOLdkpk@O z04H4gf!4>^@}SkRTcEz}kee+#3+x;dS?B7p`E$q)Z-f5%x7S9U<6=wixENs$OOMaoj! z(YxF)HLIhD$>9&x%{ts3H2RCiD!?AeM^|D@(lzPK$ghcwZ^4INiWF$0DX0>L_Xe{q zP3Y|=ew*1=G|Z@8pW)|*y?$!!+P%`1SZ zDarnut`?`I2q$ekl!Wpx30^&zUJLDa_a#jEGpR9GBxP@hVvh*vcX^#hii!~NQkba| z)En~EP+)j38iz4Vwllw41W^^a*<8)=nYJcoOA&eR=TK(}7C&SO*0z{w&8<+&$y&0Hz3U30Wzy-MG`NXZZ_chg==)Symzcp~zKnTE zDOY_#cU!{fuIzmo(Eh$=XZQF^qtiktg?Z0;`~KF}lGELA>6ElIAPS$9zE|H^zkG6s zB?3s6zqv@T=x0WJl9eEYBsMsD$_#Y6)mJ}FH8JvIGgwyi^!9#@%*;p(&w1dwezq=m zLYN=2@Vt9}Y-)i`aX8>~YtCJ;l(&1Y_8(i*;c~z?M91^zCdnB$em!vAz;%$xd2OFg zPxFhHJidP5J&W(~-WeP=sVlGYtgk)ZPivH7(JWI$7gkK3thAxWvpqv(il^#;czx<@ zvvZW2%}$SX=ctZ@;{tr?w|-658$6$!7{32~n!mTbe*Vu*67BD7 zSM&6_u`%P^?CG}XTuFJ&9F^;ehp%IP$@<~y;bOLDs9i&K{kCGUtXIiX0so&nJ1fQ# z+AbQNJ5+QH_>-5zMnVZPhRFv9uEoLxC4aia8vZVX%%f5#N_Z4>s>GXv+*+)^vrPh> z+2J!`0obWv}IkgYvPKoS!D z^t<_IWNa)^g9k+l5KBIu3!K@zh-m-gdxv}JsYIozI@sz-wo!lHm4Dz;CD|@>;t7sc zE{^&g4@&$hID6k|KoJNi6!ukNo%6pKe%9uE9Rli$Y0`7;W;7?6C>F$ZzqyU8R91h3 zB@qx0u;PSKN0;qtVemMLNO>{d0Aj2a{d;2WSYjf0q>fb>msWg1y9O6I_a9D}=ue{m zXra8Zf8plofsCA?9Aa8QEFkg`tbyrtB@oZFZk76BBpLa*Ec<^BQDDl3)N?Y%r( z>8$CV&;C+FNU_(}ZId-6mzVv{*J#~0((ZdQDncS18KY{KAUHLGbRdNDp?JH-mw^x( z4m;cRFx5;1@Kh5RQ2Vyy@6{GPZc2X7_m~)3anRk9GQ%Qp=%v%`t78dqhO1PL#wr@;|!MsZ@ud!-utaTu?#m?_YV{=|R z5C9MRXdqk_*uYXNZT0h?0b3IcX^zKdOib9KAAzp~bwP!Swum+hBJ z@DQ{IukiT)wE*dU{wPlFZc;2A2+qg_z!NhBo_h&iAv7XdXfIVU8nAiAcR?U$#1L_y z4bJ@5bhbY}vvmgucJS(y;3R`aGbsLK^9qstcNHdu0r1g;!6R>J&%PuK&?(cRQJ}C{lTi z|IkUJ0GOlNQ_4~8o-~}<^om+&Ye6w{PVOF?LXt?GE)ZM^G}Vw_$?LJ?ut^VK|C;hTi#u_}Yt!n867Vmim|y7nrLWw5UI?jv z+qT2k1+%?+Jo&7f6UR-YjQWxovy*+Bg7?4oJ;eWM>u_Y=_ChfS2qvOq6QLHJ8tUq5 z+UA=6zr|zQo<;~P9{)UeG@$lDnZ9S} zD>n)>tIiZ66w&CMf}aP~+VqHbMpf(2L~R<%iFj{2u%1u~=4)4!Qa zicKjUNQua^kaZGRdhWa&1h{}l^PFmgp0FFQ>g-B4hj9IpK^ZBBYu7}sUnx*{ytI2` zXa!UAtRVixbt7S?CQtPZPYA-?;$@IqDDs)500Vm_T?x4+C(a*k0fnjmAt#4MD>7(^ zkb~nOC8gcVKkwy1)DB#p*x!or5dy{kx?w(cIlpbR^EK1)=+OR9i!o~Ih9N$mG7j5P z81}SkkKv&igT5ZGdL$7mg7ZpNX`$m(e9Y3uIZYFgQ1o8xJ59*lZ(Jm5+->i!EAOA4 zrnhMuvs}>kX0#mfw7*uYcl%+bK)39Cj&|!jgL#kibp$CEyA3jiTaI7L` z2fp-GR#gczt#r@f*Ph^_o(^{p&fEC7x$*it4|tz0?KE!CRJw-#a?NAvnz6EY$CSWS z9)477$Fwro($eB|x1sTwI&OT&V0@@+WF#eyAm_QCVyi9nXrKtBSk;NKRyjNRlyX{+ zGT9CrJx{%AZgJM$-afg0zHv4nH!7E+r{ey#!3fBse$O2)wbdZV4GV_5%S4Os*PD>v z8(7-Q7Ji7X^}T5PzIz_R;p5?B^u?57DtN?sI&Aol_t9G4)cClEkIOb0hu6~&Un+0) zzW$1O&%eOb{X59jxUsIT;;1DANS70ssP?HPO%Dew6YLwl?hx{etzQXl2PCWuG3l3H z>5I_3nrwVDuoHR&uI=lpV(s&aN5jSX`X(pK`VXxqJvUBl!;(^;jqlwrwF|do`xQ|4 zK;>WKK?_ZoaL3=xO^8NP&(cyJt@ui(P?7O*~mmtkBqDi5CkhLFQ*Pnb^MF#bHW7TM-=Oj z{@Rth`hX%$rvXqLe1E+btDw4Gi+LU=GrsfIpg?c0%{jlF#T?L8di??! z7Kvzvsz9|=DP=g9sJjRt%FHP*!7Sj|l1R1m(0_hDXI#&&d(iXez`F~zu$p2%pJHCi zWr{(soyc024waRa*Vjq=o`mZ+?jAiTmaX@EQ@!@%s)psJc{+r$nVf-vhvyEb(lJs$ z@L@|{{FknRnLc(NGO=&DwL@$y1pypdc6Xef_41V*op{VR3@ zLL6pDdE-@gER+i6CZzkWfJEST0P!m<+(H|Qv{1R7^Zp-{2w`WC>-Y4}U%0wFF}+B2 z)LkSAiQ28atDUMrxR13%^bJ*tJ?%A}^s^9(I}mc-*zX8bx;(b>1bfVcXz_|V&DGEMelgtrFg+K%Vf^V~BZ>?Oq1DfwjE2Q~ zmyTXuJ?`9ZKale{9zH+z-Tm9|leb#Hmrs6!u<0bp7`5kdKh^fMtLl8)M$){)O_!w= ztSf-UC}-!9WbR6wxueTU2JidA@ZK_klScb-*=&o3C*0;?4cfXFqrOKbmY-9~@uFft zlnXMT9SB+^reRxPg+`EWS0jSlZKe-v>s^Y{m_XbbK6*jw1sT>y-Es zEw&@kH`}PLfpHfQND4ac^w7KmRC?xNK-u?>#T@c|L=FT(6-{%7L_gtc-O76(?e<|%kHd2*J&q$^DjtTBSt8)^y$ZaWfG3uLt? zrszzOq3?O@{x#LQD_r%9YNLS~NWTtb7gBV%xffEvkoInxixN@hM0p(iRmhTXOrwwGk{;K>+#4wCZ~H3U4+tlS8vP!&@m! zn!h7yDcFT7>YG7x7O~7n1u=0f-LbLKErl?Y^uDyE!(=Z{iE)wxA^r+idp=2!O=?U^ zp3~PFl9_Y}AMsP+c&0BY+tafavg0W>cHa`r*b*97tkw8CXM)8d!^-@3utcSbo$@zO zhVo*jTCf5wc{sCHt~R$ymo%$T60!pVeb0*LgfOd-la#5MX|G-X5_=LkcD_67K6Nm& z%oZOd-RC=ft6_=P8iIo)+G8^~U2zS+WyOR*bFsk?&TRV7kEb9VrX&LtQ`XH5~IghsQi z+UOIqb66wtV_WA2xo^BT@?ChdL1_8(a%XobrlGJ`C>ZF0jDG#J#Mq5FYab?jSjVT^ z&6I-{Yv=N+DzUUM@1@7Zgf4A~w=tlsJv_CryY1zGcwOE2IBPP~!UE+JJ#>PnrJJRA zrOhWcj&f()aeXw%U%oQf_@TR&QDU`vX*oat_C~dnk7uRC)Y$QvoZG?X8^`B|fUWhf z*f>EfIk=|^`YlaQJJ_3_Z>LT~NqI+xu2{?ADHs2pfz^@RaesMCo3kLwFOsr()o4Ar zX>(54y>Ej<&U1UIvpNx%zP>!_#bREt;?dA$;&u|}zLe&*y}Gqz#=JS!5-jiQR)2UJ zkm<_KUi0VbZp)cxXnttU(qjUXHf^(|rKKV3z>?Qcpj(68Ct1&Pkfm|&&X`=?or?zF z{dEi3kG+y+kJ}UTL%Yu=*18f4J8gV@4<7W%))))Y(9onhYL`_=25;^z4UBs2tgdEs zpE=!2a!WfADa3caVl!{5C_m~SxMe#&IW?7rp4s!5xN&qi`i`Sdkvb?dbx8wVJoG5- zt&cm3KR?8kMrpiY**INUmp%w{r8Ga~ZLp%cw6(ULa_kdW|ESr`p$C=k++FQG#goJp zgo+t~pCUe04b~Z+ay^l<)E^x;I?0)lB1Zc{Ub)96?1eS(MgoCpJ6NIhUh%N@^>qbu zkw5^@!BfyGw2FW#!#pO+Egcdy7Zoz`b-JLizvppMaT38^Z&4-rm!EznOz{PzOe^=j z|0sm=igck;fuJa_%*NZ$W=f`WgA>Y#Q2QoG zgOP`5KT;+~MEVtQHq+97ghF3(TE6pUs^_!SR)C0dlEFa_htqq|AwZWSf5okNno$8| zDlbotQ-t!AaOVwaT>E+b7KH9<8RFp+;rgnfx0Iv$tR*BPP(~5hH!PPHDAVJ1!8Yrg zX8u2j6RN<-&F7?{-cf4JWu?IPy=`lBbhOR>e1GcboQ&gI!|o!`H|^D~ zcxk^}49DXE_&f2# z@jmKLm~yYnPcS*@0$N=M&6^I|FGPc1eCI5!Lw&SMXH%dYAtKKR%aU%d6smt|I2##O z+$@_1mG2;>E&bt z(zY`ZWYU1Ig*yabJ%ni?!zDTdL(%*)aDo9uHl#CIq~og)cF>|{7|Gs z+~4HUsC1|?XAs^$5QyT10W36=_x*&A<`wfj-?3la*bplR0}dN|9s4Z-0@ki4onQJI zcTzVBhOIa5mkYkp?F91&iiUuyPdMu}$5eT9{HZ3@E-|qg! z%Bl#;Vg(*@cS%1a07kiTC?^FSmjum<1)g%7LI8~$D)f}i!XSqv5WZ}rISUR>%b@b2 z5IvaU7)C2^5Z|7NybiGrb0m27^;|w-;P-2JWdaDVNO4q-Mc?=;Gti%0{O96Za&g1{ za^|Q_v;!v+lu}amR4Zz8s(#0@5?<&klm|AqHzP%^UrnTST&~MCYbYOzLDj64D?<#v zOIvo+eb)-2OMLs#k5c=4I$z`-D6BOxe$w;d@|@!5vEis;H1HmtIP!7JNj;O!6rrH2 zXbNfPw0xR;Voa)R5e5}o5;V7&s^r$8Cy^mDPbcp*5YIxQqh~X6+jpc#ApCS5|E(IK zK5=2-e)m%X_&Xpl?Xr0o) z58FMT(ja0X@3o4$|*HE+@#G20%uY4wFuuyrAgHC zkrohA^5)stuq{qb@fY4T&z|eWSbaqW?C>i;hf(K+FnoP9ERlWt{9x*^@Z#^(Sw!f& z!en~x#={zY$uF7Z16MZ$3p`ysCbOU4(FeY!kC;b_Xo;e6aJBW!;a!;%w(mYel-v!5 zojHyhy^sC{$avOySIN5j)Hjs7mOeEu21`;5Ci1Iud3i-mc|&rvz;N#a%{02LmZ8V! zxRsw4fF?ScKK@mf^!Q8Kr?gw0H0$^2qgGaKDoI)nj7YWr1mUpX`!pYS9wM(t$yWQ) z|AAC{~{e@PfxeMF;14&Ro@vO zA9s7R(0q%lmnrn2p&p?I1d10kbp!FUkH_02+-R*VkBJ7?Xx4hZiAO%~1ex6N;Z|FP zFb};0xsimhqWTJ&^3lP-Mt%H~!^N1He00_7+l%u_vxaBJ731ayd%}%kZ!1lV8jp^K zf!pZ!KDgRUty^~tB?u>HsqShHE)9*@Tt(_#A^JEY+bh4IrwtGE$Iv_q#wp6aD zJT0G|RbbjHQpE-qSvuT0y+bnG4bWyF?htPVCE7_Hke`0#rvQAv|8?Na0qh6{-GB!} zLy_h-!vWXQ8W>gjN&jQ_5Lktfo&V@cp@AkJGvE0i@Bz|tUja&A%; z70w%+y#Ac>bpP>i1}(maS?J8!(=(BJ>P zjhaXdL`q^zkT|GxNR1Q;$(fXZL#4Z6gfi(Akd_dJfQW#MmJ%gIq@=sM`}gMay?*Bp zuOsI=Z1e2!?1|TXi@-j|^2|{|%@_z8z>Ecd9IYDDo;>0%2(Hu*cMsbSqtZFf|COAp zac*I zwu)FjHc|QcW#xF#HG*f&Tqu*cY!QnY^*Nat;`HD59zP!2PrIGvweE0!t^UCI*n8N2 zgTj9&!v16`=gTL6^eC)1>}ticVBUTYpw6r+j)2WFS0JQbb0Mxn^_CKHUho=x?#-DI zz+L@7pL}Ulq_41saM?O~Yqzg&*Qxf^Q_-z)zkP~xZ~>n&R_m?HGM`r76%gx=b(S#b za~-B1Ha+Y&9UB>8OW=5~Isa~#_)-QdlWdD4MOT}&Fmw8!IC?f6W@l%|$HqP`0k9`R zl&365^#@Cf^X>Y>aZ4`DYyfDc3^Yg=ASBi|aq;w^R{e&O6EpyJg03BTSzcL17Kx(T zLSq(r^99INKw~B>)a;>1vBUD<0upi20+QmA0U!#%HF3rg#NdnScX7Er@?YF6Kregp#LlAI08(lb>hvJi_Y^XJfIG=oWH^6pNps0@FWBD zlvoZ<)?dnYZm7^N=k+v=CwNu~p1^JdTpPQ6$rW?B4_8;9eH1_Mm4x8C*Az zi(An+q`1AbB+of|ZZPoCAf1fNdl>5UeUbLPFU$(>>7VMpxnW#lG5!eVO=~fE`E5+0 z$eS@wT69(pDH*qNKs++=)3-@B!D%l?$GucC^_L<7qpjreIo4#PH=HEyVReJ!w>`1U zlY=4O89$S&l1&4xAq%1`=!p;sWv5aMMltvrt2mE2g#`r4fQad^fs&CTM}A5Nrod?@s4fTN4~U0(Uy2 z8+yMO6u9)$Lsxni)mNV6!zT__z$2PM_pGfjY`d}EruU~ z?6<<5JOBQpTDP-%_wMMHgzuwI19>iwcMlF`W)s)g?F?T}7I*(5-YO)pCb-k?>3}%T z+021WY3Lgf(E|741tQkod9URmN1yTODv;{L85$yz<;&w1zZEYtUyrZb*n7I%G8-lD z=QT7VKQ&uj4OX2Gi&nrCxBhUc=IgH0;oj2>Q&ZETfzFS-^T{?P=bVo>_R3zq8>2XM zAK!n{JvZuGeMBG~N(|o9T-j9+|QP^HL`D6}G&J2@O?Cr1? z)U3^bA<(9P(YD9@p0gFx{B=$C!l1>!@ayxvLz9zdugXq#daQ8uhg1J8&%Wwdv?=%W zDJ{a5Ij(%Pl}+s$Iej%u+tPizB>3#lcDHImS)pqdMFhCv@MQbo70#9Wb<}Nj=55`& zu|w&|4C0aGs?VJaouW|X&Ejh{$lQ*O_|WP&(mpc9zhpjy_`hP*&Ce-t`R|hnv7|_y z0s=nTFh>7^RBbm_a}O}!DeLnH{5$~p!&nG1Fge17;0NwK?FrGl+Ye1W)-K!EY#zFg z72A!gt5Tyo2! zYAdue$N#QxGG6>_9(Eb2rze)yd#L@J)m1t7XQjQp7l;J3Sw~@5p88d5x?b5&~ z3yEf5!Nbo)VnG9ndF|jXe)5zX3cB7{loCCd)dCdLM7dF9RMfcd{%VD-a~BHMP*Mun z_^z)pTyc>e0D1Y%7H}%j&qa#12uFPxwS(gE)nGa5etXSBLq#11GO|2x)21TXF)aot zbHds!nL&^N`tL0Gq8!Iwz!}FI4Y*5{!IRuLC;4FjQ8&M<0@*mfizx+ZCH0?Ozi!t$ zOt(gWPbHtH*A)MD5R0$9$$H5uO2Uuwv|_#+3v$2z<(jpPf=8!ULd4W$6NJ?;JVX1Z zQXnV*B0=B0;ZQVx%cv$lw?#OS1g+X3*!lts8S!O4DqeQ#!ai6}VsZbM?{3fTbNF%W zZ0q5eoX_5k_#er}0v11C^5q8S73US@D+OCTv6a*we&Br>E)|&@pGjVb{vIHZ847{J zNe46n1cE)3CP*&{M}NBkxva4%_NPp-7wdeukwZ28wRq{#%c~mvyOuDzXue#|yZK_< zEdR)d6j6y{kv%Z;8L3zXy4W>4Ed6!$IU@})0Ep7jIj&QXm9-g`$Tz>EI&hu!J*y61 zM>Hk+t2im1oId)@{B2;~OTgg%I|=(<=CRqSrkM1dit+b8-?w)mHkf!K6px73tR&JC zdo21G$VtnYe?M?|7cbbFYNVVKmdLQoibZmL_lp+sx<9aVNaae+ha^>{8qjZ7=6p{{ zDHK!y_IzQ#?p5bAQOv$N%%+t$JZR{C`zI!8Q3bQe!sk|5*P?4=R6uIA>3j7 z!*@QcaAJDi>c1mt&!Kbcc7@_>#DGa!W#>nQvz#=E(qaW)ACWwICCosKfN#C3qG*~; zzjBsl^pK6y@dAX$TA-1zUHIR}@aH~@uf0RU4&7>rL|Fx?8b_}xFCV|UF_+Gqo72(y zcSgo#q@;el{k6Ln6eVA@ym3-Ad`uA**4fwR<@&AC<7A=dLt5AVzP#swu9hirf6J+A z#Ko7rsm4}zmmr^Vzjoqe>*q5rQqdZR{i?nePmS3rAAUw-TYv}LOCg5#Om(J6LTk>? zfWlxb|K>=QBS}jLSA-y~j*i7J^HfvFzNznG*Xp&9cQrZB`fQb-#|=#Zdp0kv4uCXm z#KjpjYlz*Lcd4kCRq$Nw-<&t8tz4<}KMLZcGI`sl=rVlsvKrt`CQo%fTn9?P>0jE! zf8nP%@7rU38yhiJcfafSFRscQA18jysNJkebY5yL_CGmrk(r_M8v1DTQ?%_kccW)^ zuk0@E@Qs@N*X}8gYR}L1B}WJEV{5%X+#V<#mbCB8`mxyJ?XEyPpY|%v=PkdKKlNAP zd|M%kk+FB^aOjVreHYUQqy5pvmc#jRuQJ<0oi+c@qo2mTX0_V~jfyF{6?_iN{Cq6L zsq|0OWYWY}-2@AZIkz1=Jz12#dG8l90QvS~D&0i`g^X@zNyAr|ug{n{jE&gXRF@G)g~+rDOw%gCq*xVA0!lpePD+$lqL^T_V4|6$Yo))yun&(Nhed{gy|EL?f@LqJMKiM4Tie z|D!Akl*;2`Unu+@36Lb+*ILhJitpz#YPc!HBSyBFPtN!?xf3DoWw&>q~E#DzB z#UK526Xky6X4e-?PesnH_+1JTiGaK&M`BUxkRPSPw{-p*ELJ3B(r+8x*Xia=OLLX? zo7bs3&p2JJ_g?N#YZX)r6NZ_PjgF5y@4HsAw{C^i@BFH?AD167-5I?>usgD2Zbg9L zoIz8$U)kER--5S02-Ztwcmm{0p<+nO;ZuQYfR1{Q_i|Hw{Q!p5b zTDyf>OV>y7%Rtm&(H|k-WbTPx=7R9$&V09qsBi~^w)5MxjE@EYTj+oV{~AOW4jH;hc@6yP`N0g zBen4;86Qd>;$GN!2LT32gn?VG2T59bk7MP>|ICskp zRM@hkaL*Q69c`BG1W(BDTe)+-;R1J7Sn|vjkfMH#FifxmKB&C#k zQkLay)nc+Bc#*ecFY7l44G-K0ieO8v$I@c5|9r!)Slp)O_H%Jhr4ONKF5%vJC#iam&`onL=TcriSAW}ERx9d2KE z`$*}b=Cz02=e+>m4zA~CL5?V-S`vGEyf#JO>*QcFB6}KBe>&51y~v^{D^0sHB^|~u zpVOS#Tj94ir#&aw0@j7={(CR^pLdA3om$@pUZ(}KURzFula;y6o>yglF6DQsAE^~~ z*bEnawDmsjzo~m`AcfP<;oPi;gPo0yqeF6dwY{&Ur*j%uYx3d_UF^NiC#`4zJ-KAq zCdBsP>%p&>XTm)xVJ%KoH6w1i!ilH6H+;w4f1OQj{akt*mSJl2SDS%;ErjAOe=e>3 z(aPa`6feegdEs}+%vy?LP0bUOfGUTAyytv*Vw6=(y1}1WZ12}qn>(I!a}k`r2b)d3 zzwR#%BP&Gzi^&boeJv_L} zX;NGnb?eWVxsy=F*+Ju5^7gk1`)h^WW3u0Bq`aq{Gc4{e?;iCY(~8<46MsFwy0X!# z2c$ObLlhaZXFt8|<&QghhGtthPbQE1xL4LW1-J>|#*%&I_WL}?Zf;EudwFMTVkKX$ zx+9(E!N%k%1+CpUvCODsq**2Eh5>)wlbb1b>Nfu^TUqgDr1`i3vhXm4B!`?={Dgv^ zN1#-~BWh*I48ySYocJ#+Z*I;03VY7F73RL)!Q0z5Z}l4g04hYy!+S9JH)f`#MHN#S z))F{_T_}+l_Ohp&5BuG3>FCk*`j&98U%5{pbN??+#j&|zKWl$8m{DG1gEfiPlj0`i0V>QP?$@$O?lPpUnU*1D0 zi@6|F3`iKAE)uMoVXQ4wNhCK5fc_nw4?1D~26b+V#>_ub#ngd0e9763DhvZYY#|Zq zZ(VWl1wqu4rmL)3P{ao~y{?auHNxY~kS>|VFqS)zRT)6b3He{m3~1#ACPYT^DX zk0Nxhz;r&4djGDq?4$gI_-BOZXs9zyFJ1o{zNDJQIDNFW1w0rlQ|38mwda$ZC!5FT zL;|l~;S2rO@XdRpS~udf#{s(7`*zJvr@fznvUo=K+drnmpHzcqCMTb16vT^AHMvzA zmpp(}q||{8qUgO+Gb}fFC2T9VL538rh`9%flRE|a&nV~}LGGqHE}lIWC}u%|i(iJD ziyWOkWw6%8enE^-0V7v+^N^N{qIXfwP%uZ(;QkrCXWrHU&UUMT@qM2PNvPc)^FBU4 z#!5t5g!hcz!+LcMjdt3UKLHpu1}&aN`h4o4k-_P){LF8q!w#V6rU$F&?P$HXh&# ze&O^vsqW}R)btE+$Nc8|yjX4j1U5_L7IzO91p=@JjNM7UFIALmO+HymuyuBJ_V=!I zb$%D)_Trfm*7+|K3GV%%a8jLULGbCV@1_c}0dUqVG%PZXX)Gc?6ozT$$yz^&O|h$8 zB)Z*st9>)i)woSJO8T{Rm~^Oe!s+KBo8TRzH_!5yz3Lui7AvB75Qu;)NCqL2+U4rM zw2C)hpf_O^y_aqnMCY!z6?0Zj``qapqVhzG{k>Y8J7dh+R{D75**~HedC*&>QuYcf zD~zsa+&vO{ZYA`<{%~<*!V48orB0Q_%)+Y?yEXyDHxLFqNidurMb4a#XqaqoQ-tDk zcAtRaO=Ey$Al_qc>tbUh%}beWaj}ni$8-1>+XG_=c8O+7u&7|43;D^u!d zwQJp%;bk}6pDKPPs>(qxg>6tVnwq+%*nUcRwGMwqsUpQiLkHOre2;_OcHulO9k+w7 zu(QKp)Sl`9+u4QskU3Wu#)W*qcfD1f`ud0kxTgR@!T40opV7J)`JA&8AHBQbZ*y%z zWaVU4dd>d9UgMCEP*js!3USxQK2iXcFn&f+f5>?rQSa&FTxVkU_i%04zOgqugceXF zn>QwQY?z(HT`^=#;THBnNpqwWfJb4^*}Y6It*S>f`XteQS>tS^u%u&nZfUA!8T{v| z8g%(M&(xH3lRSRJbr?unJ3p4idsaR1+vsU(`Q$a(y(BV$}jHmPrQb5fC|S8C3dwcnT1oK2KN!Dpl28cb7GGzE++Su`jyt}YIr zD=YVVcr(WQcNRALG|W|#9#JQB&K`FAoTZ(f4xRq$RXA>}f0;rOnj72phlxt@=Dw51 zXZP(Fdp*3ISFJhZ*Y@Z78hd(Z6^?97G#zSoM#}8#c9a$ew4-ZVzH(N8!E(#k{95b?WY-DWxS_v7=e?&syka>pyS?>1L<8hggZw!3Bh9o>>cP8PPD z77N~Y5}yf8&Dn6M3|I`&Wb<*#d9ekK*7 z_AxjXj3K3|%7!al{^+ap=|Wz(F&QxG@GoBB!oz+@TmOv**Xpcy#eumRqCs)_AU->s zC;Q-${@>`wRPSZ~Bg@mU^g_HY`1Wm{KmhSZ$rK$hpP27IvY1)~+EPX+)z zA7-vmlvTS&f>q#b$=S{TQ>C5Kd<$pNFn|^VprvpMps*8q_kgolPz@r1Y zhK|com{dg=sF_}NrN#=Ut}9x!(IGHtz+<*{gYv;*k$3d)@S_y(>*3rjuG7 zncsx}!{aFB%(Et*RXP3u-638>OQ&x(CLFB)(`~r^WGk$s{>-aaERKk}garNR4hqFZ3bFV( zEforHPc4&8(BERmP|JYgER!2wVXJD%)`qw_zfv_AiI1NGJ7JL0Y`mBSW5kU_NrXU$ z8b`&Izx3@oO8Bq#Q%r!n{pi6@nUeFr!zH72?$;8ssF5D!Yl+r#A8ybG5#AZfK9Ata zjd!+tpGVU}2L4y~9iM*|uI=kGjV()hX8(qH5+?q8l14B810pwEI{9s~A`}`u8L9t` z{irw$)$!cbk*6g^U?%l;aWP-g>P@jnpWcJxsWM(Kx#Sn&h{otY*y$=h013g^$Y(5@ zL!ob=C`eK)h!_hX;^Q@b3f{6DO1_U3Nkdb;G%Au%9(dR@=UpbxOU-!mg>e(vYm1*` zHne+mE(=62`5@jo5fdX%$>yJdWLmuHml`wgq-GSpZ+WEAZc>cFkQwL}l%{v}eAOj` zWAV{9P&g7WYM{A_u08nN^J2`^I3sUc?k_bOA7cTP< zIJ5M++@Ti!P)uB%+uG6(VrOT6eJuos;tj@`ePcv5PezJFri{th??oZ<@Z|=`4?jBY zDM8f!yfxIPfA>su#xb>f{$B+Wi9cP%T40aq-38sAk6r=$ETE_?m?OgzGT z_yg7H&|@m(W6H`xTlRnLolldrbn&{4Fb&*W+QQB~LXmks3Cy=z`}KqJtaQ2?i10=G zb6)@D`t$Pf-;aG=#cTZLH(tvCf_!ICNQT^YN7|~C&&h^pkp+(Ez_3KO(!gENt6Ps{Y$2C2F&UN&s_6 z7t?0l?!z8WhR~*03D-M%d`;56CHd=leUW)>tx-4jvh{S7{NcgDoG1_rfNN!eRLLvi z-xBXU24-NIZ2Z=k$?Z_xtCKF7k3gMt=`7Qfk)fvS?p`?!`Sdz z@MqcTk)H1Tw_f}3uHV7tUC#8>U@X0Cq_57+DsEw;^u+G^!w;`FCV3S!Zaw@3iZoN8 zyoZZk--`|t**hMz(Exx4ezQ-7oPwNB@C1>w%fpX-Y|b>79DEHb=QgPQN3w^Mk!;N}ts38*v2I zHpkI@`odpfvxEB~-eJ?z)17YKx&kFzEZ=?oX7x}!Q*^x9l$MD~Fbwn?^yqdI*&rn;_FIObmy>H7sGm&mxim^e z_Ac&J$y73hwOEQYUb!!ln?u-Rz|~BzffZLana6{<`Shy8KciOlC%Lz4wh!G)la#6G zkpb`msvARwI0#H1+9Hkq5~xDQx0uU~$!9go)T7doQq(0&P$#8^nL+NDAw^!G=HRfa zaIQc&Vj&=1i<>MVAGXHxA505M!sZ}L*C3pzeTyWs@x$Yr^Z~5u4R83?5;Xq%0%2`{ zUzM70!NY^mT;yNSDrUHeOB6^xQnEl^k)$6z$trwGcpOR<2{r#sDHIr}wXQkFjEm*z zhu<7QimO6lw~%Ky1&ZH79JoCmaH;72{O$U(w~yy~g8xoR{ciR6*N=ueK+_`>_cW37zvk+JA0$Z2vtp0WR3OUD1rOb1+zmGd*0cPi@`3 zyl;0tVtPm}py;G>?ez^TLMroWDjLFIjt+omA$3!SZ{;#9tKGQ#4JeJNU|~DR#V;f9o!#gPSdc=&=(PasX@?x?bwGFN5y+js#SV(u&?HSdY7vZ- zx%k0h(nkoG^+G@w%0OpuGk3?=e|@a>p{cK{zrX3?#ZxO)7Ma)j(-Fwhu1^Uzw7G~4 zfSEw)YdE^cqUbF?5d?y9X`R^XG9yr=3<#lSSI?&^0uIIlOoG!~Bmo>eC9LH#>?`SG zMtzyz=xfyEVMBusXF4CIpZ{SR^Exd`%<~qtw#J+BRdKeis--2cLUf*2j}kKp)&`?? zmE6n3y?6tS6m1H#x=Klfk;);e9t1Te_z{a*HxKC*44kdzUFbtbF>(a%I<*7XHZ;BE ziU7UJ)Sr$V%EZE7gMZ@=Kc(G&@Ad{EMFq(TP14e%Jn|cHQ~DgAwX6&mZq>!Wq5KiX zrmdC)ptfKm=sN1c4M@nOqxc^i-221__7c?D?p2hHA@R-}KB;Tna}>w_BoHlmoSMaq z-Y;NUS#*Mr+!v0Y4F~WTHp*3de+nm)=e~lughS&HW-x=l)Hg&Qfm^u=?y@A92EG9< zWvs%0EQ?}q?NL(sxu$B4(NYqH!je^~5J(b}H}^-j-TKl}?^`fL7)!p$7yRK?P5=C9 zpDX60u>0wRUP`TJndDt#MOH*+HbegRx6HaCZ@Qe-@(arQuHcm*QnJcd7XnC`jCv`n zX2gOCfokfwD+AmHaMmARS8H?lVBZMuVn^ii31kfG$B{6KJPHatwf@gUCaB6lf@95~ z%RjMW_w>F)Dnu*_s;e90#Bq!uf$1JJDfpc;`JW|%(snL2TuI3$ONYe~f3oa&mdxtlOX+c|^iTpXnDp_m@QScD=mI|2@fP^Kx^%lPp2_ zIR(to63bc38C8xJ{a-1{9<#Q|C)zDk$D3npi7tBwlRCA#Q#D0JKVFr+!K=y1%NG;o z;&l8@hT0bou}#dFS7EOFEj}kpPfG^04}izj$H(pQkd~NW8}(PIIK*&n{azJQ?`K(Q zh2<|MH&6RFP2d*|2cxa-d{I!7q$yFR(1KOsZix5vU`A@{RjUloge|99zs(^T8ea#e z%}HKbMuWqpfjZ_-UgxLlrl}>gG?B>IiRHQ|VUBJq&uZVZJ<)beiLkhzZNjY{=Vfj4 ziA<=GVVOZe@9T41{n~;bXmvPOZ(>8InwHWk$Gd#1zJ2@fD{5^Vd?StDrRyItmGDVTeQt!IjVzm3|JyqTPMZB-ju z5FhXK90SkN9g&;2!RDxlcdJrc_8^0Kb->7qpC=%htPjnk-@G_LN&`dkqt=RLxHb7< zweOto1O4`J1#r9n8yRH{-?s)dSkG$rq+G^VAWlI z{}AvH4w9=`Y4oTJnYsQGlKFs#GQc4rg;!8GWw!LmOW0^M96?5nM6WX|UVZzW9DxtA z;J=1Sd8-a#5K@AY1tr>y{Qp}3Bys``6-g!~Q_3{Du3B;rLaK|$Q97D&tL?|co83e} z8?TW4APqowkX~sd)s>BTtEJBkr{as$izbCJ--CjBjnEB%&`3#rmvIQDQ-TFw3MWG; z<^;fhQ~QRXgjti=TLeQ@@$__fQaGhbmV;ve9zyf&H`khjgP~MwS4sbqgN>fUalj1R zJu%;1^EQ=|B__PqmRs%haCOxi*!2+s3r41x_}FCVAk{Fj_+F^`XL!S?fd;rg{W7se z&;UOu<$CYE)9(-@7+=og&(;4~v0T!h5)Up7P9~b7{LX35);se=%T8N%ewljg*Mg2y z$8Y}JV}4b#Zl}flsPoW&WBs&z5%ilqhB)OQWw4cdPi}~ZE+O;{VI!*ST6M;Dl7&4( zT6=^c#oy#QmV4I1NO-hx_~O)3FRlC?X&H;Jz|&K=y?=hDAbW@S{D$q*Fm>I0v(lv3 z2&c*EvNC(WWhN8f-Esn@_UF2FiImRhGK2T+pX{cjA`8}?x*D}qjZI6LMi<6U6Mzf0r z&7ZsOE&AV(DtB-Fe(ic%disE?EtVVDcqXLh^(pV6RWF)Nb{#(OEe){WKW@Zd3{wGS zf2dKM9&*n!^r8&}!xK<$O>MkZHz*IQr# zlNs6BfPNcz;L_L)R_?5i~TTd2i}btg9 zR*{5WocwLyZySr(G@vqY2w3;w_7%YMPeiN3P2LouePa4kvp`n{jvksJtgH zRpYl9fZ~Ni$te0z=?+PXkZ$H9vAxo?OsQ7V+ao&n*6b z=|uiWrRb$uXng6AheCt2OD!G*fiX&G_{&=GnMgxSn*^Qx8o|bZ3dS)DNAg7?xR5Q4 z^3UT_D~Fkt2KFu5xq_#y>?Y5-E_eA!{3<>cI`9A2Bt4&2S2|Zk^uii&^Td4MHuw;) z{)RhDJ++=ovg(Ji9SNy}Pn?tk!*!Yu&B<$lR6^!qjP%^Fn<QUhDH=zXY0Z{`Y|} zcK7<0aI{4;MEtM#6thty8M28IE`)nULT83}M32xF6(0Is!j#~yl^Ph^}s9Sz13D>i@9 z#Wa#)A5kH#ia%_24AND6&54Mjy29K@%02kStV(yojGXO9To7D6!e+D+&j+=fmUY>t8NgF|B@F=Nzx~^DP6pB4c)T#p+C!~n`-lf`CUKhw?BNyq-Ll72BmPmxL*ryU%NYP?!03BwfkIwiob+$ znfSKx@Gk9|<}KCP9rLpwT2uLN74F*yeEp82tmubb?b?V)^x5}OFX7GZ+-0LPrfIRW%r=)YRKVX0iO~*synxnUh=99+%fV7+>=8`<_h2C0cEJ4u6Sy zEFRfbz-brWx?X#l(>*F#w_OyGRHdtz=6t`3hkQ^YwvtmpT3YVue9dCWp$5lzb?KN3 z)AsDQ&79e>vq?ZPmPoi=pdfz-WS0}es#vK5ck?u>>OGGuqP@Ysmo_8Ke{&whA-0de zArhzW>C+iUmsP%_iH`gQY^^-eEs4c*fu_(=obbKT5OZzXuGjB8o3n)&%3vP8Tui;P zM~Janb2b%=FfUIvmGhkL*=(F_4@)fg(Hj@{-S4aWNJUYZ(`SWkEz&xpl1Y!MNA4+| zjV|l0oz}+Vw;yPB2Mh&iYerfo(6-9%c>Z`PmVDUI;vkZt6B#*esc*LOSA`w+H|g08 zr05m!GeuZj^r|^_D`3JV>~j;uh64CBbuoZT1BPeVNMVi@&Pc1??4Z*NUmKP&Fq?hM zu?sL!FESbW`n_V!bhsIFRW)t#YZx7l(bLzrPe#1gYkQ6A$sa13$-^w)G3Ox-q?jP0 z+{!3svtWop`FE;@Ms>O*Su~ENx#PuU4*1}o{^$m|0G!zd=>ujcDTU$S7t){TfUC?w z4DWKdag7`uk?d$82#qCLpPlMwM=->rfrOG9O%J8 zyxlryeU;}^I%hlGN}p0DIOS^gmrc*Cn~%;|!OQ}&|pD>T9 z_Gq<6lJLREdB7Poo!KC(zDcoxMpmewtfHue)C&r2f!8c>8lg}9DP?6J6}&2*R2F8P ztk!RPC))nk(wg;Z=?6K=W8JEZ1viT=dQ;*vJN{2bmN}~Jfo1uVSy>ljCZ)mQ;a}2) zug3SW4<7b`zi7|5nq=HT`4UY@UP;Z!=pD0}G7%LW5*D3jgA9WgILM!C7UGVFE3^Rj z+u()x6+t)5g{o0gA%wDHTWMH8_Tpil@J9Mhk3Rf0I1^C zNe92yt*1F(w0?v?@7z&NKnPo8@4LJOE{&~mogKiu3hDS1|A9b`po@nv^ZS9!P6+<9 z1r~@X)j|h=S73yu0}q$MlH=T{6rRZpiU7$CNCCNb07Q#3u<4jIS(7KRtU@x`MVlfC z@AM7DTbXMfVpev13kg6<+Yd;@`}_N)nc)S;()Yx z!G;DnMis+VA?G2WOLo85oQ5-heGcb>a06E^aKg&W{{^BY4XzJBx4sWZ7ZScLT4~NT z)2Z9d(z|!ddgjLfJ;#0A1Kj*RV!7FS5xcJ}CHFK>ggd?<#Jtb{+Ygh5` zf)-}pI5|>Nrwji(^r~EG`uN>ttm_rM>5@=;@2RA1t;M;xklbSvfGmM{heK zEe!-pbsdeS;{Oc02|pXEKj}}bJFw?4t#&+`TJezZ-rkgZXID#nuXQ7Zn=?JV@^K*| zMF4KYOk6;T(heC-#Q!NuY3n8Q$HGnsw#O*``JbB<>$RPkwEhQ)aYN~JjLUYSIRMOH zUTER^t=|27t+uRe+h}KMYHDR`X)j{>>0K}|C$5v<1moK2%>#$?7v(0mAN&I9*iNRx zXUty*LDt7dXz~4vX`*ySiN5fB;GENbm#YYWt{`J!MYnvgjg*2y#;W#@%uoVh?$>`; zYCRpkNhYsF-1Qx&)t5NURFMy!C1#kWo{W4PW5c9R-tX>GHpXbX`gkDCITd`*woc43 zLkkJiqp+V}LEb>cBa8F1q~DRPR1{lllHrpeX$NBMdjO>G@>`Z`TF z_^w$gT=ChxxE%r0;c=pC?UomzQxmr3vi<1gm-x=ZI2iBPDOs?SxX8GjQf0JJNkq& zM?C+=#XE1bkpQUuFWj&zW)Hf$bd1b6eKDAUV&iL3Z7JH-CcDyMp>#1UZ}EYp$|}U` zC=k*^!G!2uBY|GaB-@1JCA0#lj5XLTf{LL>j1&h=v@}D^fwvb;;??$gkj_noHlvbdqXoyxuU`8Rh#-IoZ}XnlmO=-0PT;sxt*3sOaLiQLfuu} zPpqL=8XB9ON@Itvd>|n`y;CCbD{ebV!SA2-Vf|T#|Cz#R)Vag?#{2Cj;yp6+Xwu=7 z`#x0szlLUKnZOiTVLQ27XgjC)O_phSO1#r8)}>dn93SJ4I$6>1M(O=ddmn&l&u+4Y z*n}a~i~-)v$aiODDC1i}{&=z=v6&Frwc*=SyR zs?~8}QoZ^=-`mO6@|$}!3a|0Z%^lbqGAhk75Sz;|@Q*+#`=1$>u0Wsw5Q`Qjn?gEL zHMhnFTx*AHl2Y*vARE)N4|G&9x!ytg!f(uzF zaH{izuXU`XX5Vb+0OGmN$})p`m>MkjRTMOwSho(9V0Iwj0mB6>Q21Oh_*Wsoa{mfT zG#KdV04*n7(ZK52*iNV9c#ZeI1YIdt>yHjVf8cnd2v`qVgWzxlTAD09ufh!suvl_r ztGY_XbZyD@xO8Q zMYc70lraPqM7uT9xS9c$rR%bF{>!bqSP60}Ei<(ZI1OsyO=>K*UE13XY-g1R61m9C zZ`fRl*&cf+oWR!LVAJ?okNQJu8H*#8`~x^$7YQlK=3Y;{ChJ$rJ%+pD#Al9PV_k_| zHufS#ku*?M2RKJh6Ei`m!JCwpPvZ@%VGJ2con__O8}pKUI|*=~6v%Rwr@@=ag4BSH zYu$%Rg+a+dp1>c1zw_Nw$fn$8UXxwKvrRa%m@}Iaf7NMiz#6_3#G*3E?z2!*yyOMD z;d1Ri63_A5b9uQg%I(shuSs5Uq8ST-kMRqybADh2k=!4))h4aXzHE(>NQ&qz{0&hH z8m*iK7L5%){eSnvJl6SD2-l)XsNQE@isT|JyS_{mRts;_4HEvV>r{EM?PaqtYU!~I zBz*Vy^n_BX|H=V5PU%r-@q;EW%){$<21E9RRQaohgS|+Z8c2IZcI3?#yd-X*6bc~Z zucDiDNO56rc_nTN@w9yo&(djn^W(b*m6Z_tQ5_{+=Gv70@n71PE*>Ktc@E)jWJ(-f zuamcVp1!z&5e*81kdPZhlgNq%K^FsH@FYb`4T8qXvxh-F;rcK(PvgR^c+;6)SGUVbTH0*t_&G37j3UHElLFT8^w}^D4{4>oXd+HF|S0f-B(KlZnwvtfKa> z_7);*#L&*c0^hukm)l+|zHe91 z{;hf0G%Y(0}+z2ov;3RpbQHs(xuq^%aS z*lJmS&1)rsm{l)5=6^WVQueEiP|&kGz3I_Q8!+l8x0@a|r(Mmhe09VMBm}_6Z)11k zTM9mB?JEncRRr7NJA*xA>HI&c!wv&$tRJpARsFlBV>enC<5c&ggWYp%OKit>`deg- z5prtwm9vLOQVw^I=RjvYvfYnXx5vDeH#>(V@kNBYT!uW;Tjq|g z=inARGUqbHMR4KpLTq9dz+;VZd;&twrrQWFVL(EI=zvM~F&DG?GnT40 zV#vg@>3Q7vImLNX(eVEG`9!aIO~MzjlfSMuzJD6+g&nhzSp9wF5wK-~_~FJFpazh- zIkri+MOFa34#U^-As5JpZC7@TI9MYa5AgJW8}hkdvreZw(*U7#u$bXDog&|=zBU&z zZF<(yJznQ}YVE(HbAj=AR2jfbYVU5y4ie6Mf9ZbBOAQhHTFO_j#biT7r(`9G_-poG!T%60SifCQIqQ+7h-myocq7hbsYuzPEezwEwI1~1JcN#`@^{< z4Y_R?{P;YZ3cec4E;`K~l$3mdF6xc^Kbxwd2DBk>y=J?srzgg_IG)~ufew5R(QOR) zqygZJb!8?cK#_xo)TpXp^AuVjSc%5}Y&;_H8>|;%SI~8%V8e{ysepRk6n^2Jb9+Id z0$KTpFww&R9~=SV5rPLE8-NCLdvSO5>OW9x0i4MVyr^WT!-Wi?7BA=FV6{9k(crC+ z(rJj%zjg8Qz|QrjbfO#h*Ki1!+l3Al0@_Y6-c_;0s^rLkBC|0D4uQd+1vpykv5D7u=N(wP)E>+HPHXAzgC@5~?G@o2FqD{ATsAX#9)1IRG z@*;l!2A&if-RpYy=}H(r>MHK*V$Jo)F(OBv3W)st`MvuzgkoSwMtE8CzW)EC>ASyyYV@`Q860kkVb;91VnXIWewDj)gw}K~YzndOb#>wCPRmv6nL}(u)A3!d-buB+y@yM1m<8=3Fv$XV;@r4W1H@^04P0uh7gV*L}H($px@~{IPL0%jaQ&NoUnoEG# z72VSQ-Cd11p@U`;P24cHxA`?lOqCpfw|@-K0A{vSKuiF&5QK`?-BP|>n&E^Srrlz z7bmQV9BGqlc6R#j-DHEi^<4lO7Jn+K9TS8z-sZ$@Rho2;$Uf@tzoe@u>+ceHdQ6^n zS2*cl4A^^1l5cW9#ylEU75rYh+VH}cx&QWaKA_!ymcTmaY~Vdje;lpgw^Ss<9<8P} zJMv@UGl4I=B2nbhn>YKLYrP@qhcl}?F79H}EL9+bLV8T`GvRSfvXW2jEmy3&gpYSK zLgmVzE!KXu`SGe3o#C3v!#-7yL%NNodfsVuG`r|Tz50)Q+{Eq~rXV_!%|8xc06B{&csAIk*)7`_9V%l>So2NKIpcc#5IcTMJNR~t&UD)&1&7RDBbeI~UY zVs+IBwufnWV9^6K7}ykL0pkeS+^T;I!WYlttjuY26hY9H6DCqL2^o~NA+A&xiIE+S| z8_I@}pp3^uXau;asV`&H5+TqqBe|n|0bbTP?5V#>kZ;DtPeM@NeI-M%Xy2Qskz)Q{bBC1adYQn_hGBe{3 z8-Ay+Zzb+Qi`6J%eY%`8?7dzp2vqyyB#d@x*1!BXB+Zlze*7a+F?qe05VF z-6ltjfZtBmQN4J`W6?t-HJ!Gxw(O~syaUC1WgQM)c0Hf;=s5w;84!9`ntG9piry#r zlYFNq?CU!jxuoV|lEhqxBNKk)vK?oa1?(*BXCdF*1xg^O7txF6tmF-3%wGZhGE-3Q zGH()eoq=hLfvFJl1KtA=>#Ed&;HdrtZzrUO4j@o&uoD;q)Gx>|>KUSCk|hGb2#Qky zD3nNkJWVFQoc7tAzlTQiTIn4KV@Stf^O1hKpI-K;2odbs)&s6=YG+;O^&x@ut1}m= zmDENnj6yxuKPC+@NDM~LUIZQOEB`Tg*wf&SSs=h|BjHOrr-zoHR8j-|a%whS>S%A8 zvZNToM>YuPe!~J^s#ZG+1VA@v#C=WXjF(mIC!x2o}X7gO9HcVUz23 ze~YNN9?UC1Wp}sRW$Lq;+_u;^#Ftuva_GO=D~Ypk0<9C;T9Sf8X|%%h8fz?tQo&at zT*}Rnt-(0U!ByR7JH5*Vyup;PuX;j)vXrtkd7z$pf=1=aRi!SfIvi3BMa|UnnWWWc zZ)@~I_)pUdKI_t~h--p9kvI9S?ut1{s5rr)=&yElva*($e2>;S?|&^&+0Mfi&~;b- z&~GFg-kNlIW#4N9>n@xKoyomsE9ftzT4=qX$!uRZpVIAY`8s^0j#HI>g}AB+TZ2WEM6^8{X-a@W`1 z)?OV?dZ2l~U^(F5Qnq!dahT~4I$KNy1y5eIs%x&r**4W^qT!Y262pKQR>q5%eIEK8 z_pE>?B0|p%rINxesU%3-`8LRft&z+?jjWbb)><^e{z-nV0{KjmW8AFJxRhg~nl%R1 z`W62sXH;^XK>=4wCmZ2IvL1$@u8LF0g77y)jz?EXMF(=!8(GXkd$IL&p6jUpbgJc$ z6y9_U4s_P3dQbUekd?XH=Ui)Arl_EJ@taJPDcy4c>?8fxVhs9gQ*}}vI(d)XnoYlb zf0H#ie{a%nclB29yk@`R>-(!}(hh;uiy|UK_u`MYIeT{3rW<_S17dXg{<@NWTS}!# z-~Z(|EF$uuh&SWnX_1<&43w{r^?)iKA)t1Fx8L*L5`S7EI11)Jg_j`5u z*7#7#B@l3w^;|>5FyuqrR@|c7lNgC?``X%CFE?V}Mq7`B_qYFYmA?;TnU{sQi>t?n z4@nAau6&>J`HkWhmASVkvC_$@rl!rcw~bJle7hW~Ya=b|g=GHh0~*n^fYbK;%*$`{ zD=m@I$rmvuW=7yeKd!f&BnuC8SdG2_T_OGbALdadzs(0ZNWGHuBaCE&=_?j3-)z9b zXi;B`(mW+SiqGIWXV`4^GjJT$)i_!x+6}HB>pnOcW=y-@UNAf1s~KdRGoM0^B41x% z9~`rlToP_>Y;3FyJUS)?wuD4>T5EM18eEc?;OfotR9&-3OS#XtF?lQfx4it(UVHv` za8X#ioqxPMa%;Km8tMMWyw`1=ne+R0t182#;B$!x}>k|P{( zC$0$CFp~3pD;M2-T%4O%23Ph9nBCF1*IMVkf}rB~)RR6C>)L;`a+rR4)X&=6pVm^_ zSbJMmR!+{W*k}@)s;`e^j*0y%j@rM;yZOJM^VN9$6j!ldeX`iyDRx^V^*e8p!IE`k zW89V!xL@A^?bO35EH-+DO9;PQ+KaLAn)iPve?9b!N^ji%SK>KU=Sm82^<(~qV&sER z-|SM-?LzS|cQSEb#1hMMsd{jfLK)O>1UDNv4QFK#NYtRc228Vu+aR$G9yQa;(H;U} z;id%c(jdWV{F}Ci-0zYS*(zz|^*|+}eK-O@U)o_J+E4X>79#N7!-5Kc#I zG!;P)_h@84T%#fR!-McD+t|NN{8@U#z>S}jL@7t|7rf_r(A;k)nA_p!?kp9!akTIz zZZHr)JwX)h@Xm`)i=!{kxIm;w|H-1_X_dwC&$rqBHtJZqzq~6rFfgld)?6L|W+zBE0$|g;@(L*ZJ%giX zrQx8r4W?8RnaFk)0w{s*cyY$v_RvAtzz}Vu1O)GJk8LM6U{lT8qsRfsFoa6q7_&>? zEypRpxwp3fg13r9qv_i-N03^YN_H3$x zZndnkvoGm9drkN*L#WJI^V*0z2#0A31o5Oc9M+NmgNIvkgA9BSO#P2@gVunuK< z2wGxQ;Zwe7DugwV4TBW04Y^V0KG119)&pAI?6KFMF^L&~Mp@{)D-v5%z~c&D710mK z1?&Nle1immn}D|yY-ds1?I_54+Oxw!PtM8H4)WB|kO`yaU{_G`fFVnpk@r8XdjoRV zcjtldc6gnR=`;J{ZRVY9YV<2h-1mjWq+M^*TMR78)Kgcf@gEmI6zFeTihr@8WAJ)~ zp|C3WqGKSAFVG-9ydlckUVr8OH^1`mRt!xy;*~Z2GIU;&ezGH%ek=*ibKA;Z%=!(4 zG;_zWYWe!pi}wT<^uH8v>gJoO3#*5HwE_XeW(IW|$T^Mhprp38N5ZSVnsoiROxnNR z|NTi}?9;X=P*U^5*j$*ry8O=~u*W~~1?*d1xs+r~Opu2TX zWDKlCvsCE#_7M5ZC`xK38ER7z**yqlR~wz$yI_y^>H6O8*Rp>UN#EN>!x?gTRqVWllghHlM>A7b^aY>)o9I(Y9YE1}MvXLOvbZ=bq3alemEeRp>^lH=ZOq*z6&xxJ~q;jA$bFV&fg8VC^+T!~p*&A7h) ze$9$;{b3P$qc=Myx||$u`RQrme&=S6xKus)mFX_mQJ?pd8s=4O|(TYC1E*yxaBJ0`!uW}jLI{)RoBptqNpCK8mMeT$zn7_9VFE0n^ z*eSOgq=_zT+Mll|KU|AeIQm6S)8*T+y={&18+K2={nJgK>|Y;93}~2&mtX1s_KcO4 z-zZ^jWBb>@z}VPhsgEL;&TEdQM|OKPnViSXIQl3yWqZzjt&ea5oDf_cUJj16016A2`&8wG+WD~m@Zh!q*ts_bM-ZiQSlCj|q zx2!NN%dHK0+)3+#mE3He_}p7?IV_DHW>#{^ZvRKiZpZXKd&~YSQ9m)mjj^qS>614t zUK^X+n^xXc#*Wge4QwvrXha1iR8O1;>OG?Hjbxypd<_<-V3ngDj|c3fIJhBDvb6-? zq)uY1C=>$f#Yo^)sEp5oVSefaZ)Mf#`fK?cbUrtmzOCTrMf{dc<2mI=Ts3iQjPUtz zKDZ1Lbp1cbwh|M&A(JV6Ie}ls>X{Jtb+E1EoqxaDwPuHb@L3?)S(u3i6kp^Sc+|ZV5;s&pxQV~C8m24kF)C^xbNVf6TiAWH3lzV3om|(S^=A0V zR|baNtSu1FNzj_t*8*mr8iRrCkdUSjN}{RRh{Hr55!6YY?k%5^I zDX$7HE!Je!c9IweW12Xg+Dev-&5qjTzl8`ovoqT5==Q zh7F~9jq!%Ak_w%?3Lg44v`zAY#AQowit9;Cl#zml=;w6mpu|m|EoPu;t$D55!nbeC zx2&p`T;ykXZT-;ykbOGkK|a8SvczVRL%S?_Z(}YUL`9;j2$#VkbANxi^Z1GH8U zkOn8rPIv;c_y^7to@j|l@LK%^fcS$x2SCW!CtA>Vu2?Lo3H%&zrP<>7hExH!mWwfs zOsZ#Gw5A&NgX_zQNBRsbgmH@|G5^!!k-)j8nwMr{j!Q^_E#~H*bD!1@hS2V-VXB6l zy%2Qhx$)8-R{v=u^g_6*T6BE08v@}xzetNm7rndMZQlt@=CmB zu$@WJ`&|6%Nl$01I~CT1|Ni4^>^YYipuK|LB<)MPeI1usIa*<)%o`o11$v+EW#(xV zLujso^@OInw>kq=uUwRdMl$ z@e=K|tY=&*Eia1}84@ejCPMYl0g_56gt8j;$0zfIp-#TAMHaE|K9l4-zDBw=mXZ4e z#}V{)t|*p*Z*OLqhn^aB(@tRs$9fIDgR%-{I^g`;m3rY^P?IYUBs8U!6IN`*J(7O2 zLy|#wdT1TWF~g2~R~gS>_?ZPwUondc78?y>dxVMAFG7&IDk)jMVuI@xL7_!w%TC#e zgJOz;qU`>fiKqi((J%pcp*9v>_SfeHRKuNH+Y*Xd^+&u(7i+hEf&j|AXK!)|4B_nx z#06f5XiZYnCh$%EXczr9C$`XNTBS?;v7dG27aBt-TKfK;QeW6cH!8X&e=uhM-+zB! zq7Td+hCMDWO-@c8hBH<(?phV}6VDrL7fwv4C0?Tb)^2I;xwZ2|SoDbp0qg1eBK2U* zzCzxFj#_n357Qr=jz$mHe(!lC+mHPL=HtPdo7K;Rc-Id(9+Gk!6}0fldNa2lfHHo% zvhbxTpMPR-a=Zbw<}`&Iw-a^KQ&N!?m6_4+RjA(|j+>Mfeo#D~ADr9&*Kv@8|gYtt4bt4+ghRex2mRZ*JR98Wvnx)#Zzu{Wrf~dAu0U7Pt7zM)HPP z8NoqRYkOwHGK|)F?LhgWq8F*jvUhAfE?V($Ata8|mcsnD41T4)v{&DwbS1BJ`nkqP znT4Vwk+`+Lv)ZH?&Dndnv-|5a7Ni67avj_-=`Al*5nLRYjVm(pY(9BUex|AUro%3E zGoO(mzoDTSRERvia(rTwBQzn`(Es2;f*Hx$Saf15ZZNOZ@pmothpn-si@YwGo6Eyi zGpWzMqTuf8>kt*UAEozkTy#EC*1>sOm2+}6MFu8pJH$UoE?aVg0BEffT-z!!Yc`;_xgszvd=pYnFpuFzl5;m58;XLG)+FRpCWJ~41ZwxNhYCO_xhXEr&?UgB5v>sG_6%4n z1YS(#P7oe|2~ux}h)Z+@aVXV(#Rbz!YV)vCw<4BWsl_uOc6n;F1-3!nE*GytpqHRD zGD^y90(Pm&c)Vq~zLxg590g3=7DzQeTObPOhW-ObZR(j?6eeByJ0WGuUYhbJ$y@=rg7 zK&QR=%J68eD++IQ4t*OePG?fdQ-S2p!1Xyt|1I`gWo!AnM;7}DC$H=f2q77v>kWiF znb4T`Q5>q;=`Qws8Zmn3@X+83ET~ubh6kKS{P%ooihcKec$a~p{qqJN7ze2zgIUGx4g6CN0t4;LTTupU_XxSwV?ObpxQ z5_o@-k97k!b9*lX5$uxG9lUb~NB47;At#3cK(o|rz_@z(RzF|L267|@8eeZ4y9lt%DG5j4u+QI+Oh&t*88L5phptR7fi141;I zJSFSt=C-|0*CycFzAvs8c{hE%upxV4S; zv{K{nUI5KPG4%k=(&BDGkO4r4JluoPPy=Ha0P!hbkR3=ko0mz@8G1;T5U<*NN_$un zLggJ00E0?V@X>7XSRHq}eI>dx#|kTW9YVN`q_d}F=Z)2;m`P!02=A*q3mjHsv9`f7 zWztIkc{G8XmIPE>){$!Qw}2R`w?}OGx^tg5DWV`gR{sK!G&@4>3Kl+r2c?1)HD8v# zR$o$5I~A!HyomR)ptvU{N+YDK>GYdp%jqr+sd*|=Smqms4*L52zITIp*v#^6UX3EV z>mF%0-Yi`67q2u%7x2nwlXwV)#vq`()R|jSrF&fmI%ES+=DCvbE8mj`cb)MD=CYHaA;bcUNf-(yZ zC9sFOob}qcX40?QPE7499QpC`;5oyGwBt9-mN`^m*rE=VuB8EdFe4b$v_%a5)uwp5 zZ0dn*(%@nbQv(ta5^t)bI$0i#p&?>wzrt=lp=IO#sLw;3D_1U7f|Vm7*sE5IUP>4W zP|)_}Iu#sa%4_PP?kn8UexqsyiGDRKe)G~gkB){RBZf`r9R>3ZRwst9PIN9^=hR>0 zxpehL5R`Jp$`5Si3aWDT@CwxZp|J*Q$F^N*6{gzhrUjPQuvX)_&EUf6OPl!jD-W(V z{*S-4kd1LqpKAj{RA)95H6;oX9D}zN;`^h+`YeBNF^6;;HR^qf!&M4GF#~yZJ>H(z z-;Ta`C3%45QX^N26sKWN|EreVQ=xAWb#anTs%_%X^5_5)>>- z)48tX#`4ecu<>Qjx_#v{TZcrtbIQfp<0pX3xlBScrBg=^Vvl#YS%4CR7s zJs&~YXYq}dl?fflr}?w-4O{9S6@uzC_iMe&E1%qaRJ3bfjjymI(*E1tmi+Wa0atkc zc+7qWgs^cmAmER3empPP-#%(&p!cpZ&L7(!Xb`oSo=D13(M`YdHg963&`cz6Ftt-R z3S{0E8sTW1?F;Qm3{zgK3nIDcCo4pUSu9F+bfV>S=8e^hpbnJR-0-b*E(KXd#px!O zo!P<8{Ab6#%f8&6r|V-f`cCqxk)7>Jd+TF6!iNe@mp~!dJ+m4#<6$$aE+Z$Ghpgc5 zF(H$0MivdbKUYnjbO11Z!liin1;;KoXE`Zj*H-L3ZY=jdTg zJs%)WJ2hx?dsiXgWZ#;|;eA_P-mog9X|gGGa%g93p{HlGp}sWN;oj$S7kyc&-6Jb3 zN|W;*7yr5*X4rXwqpMKp>A5t6r7PV>+w*_l7J+E?V_;eg@od@r`|H=@s)i0|%JCWN2#-$bX^dLAh#0>|N+GL|Q!AL!SY-oJheeT73kd^N8*pnPl1*D-J**isCP$(YvsN#}Y^5c0igp*)VRS!%C$*vyKZeb-3 zHgn({<^}eNHaeIRR00lBX`?bQepHM<-wKWkZMySnl&X}3bI`E!8W0ve+_^{#0|@kj zJ(XEPqoFVg>!BctVMK_C;W2b^u_lRI!_opOmCE=l#jO|aD#I#yzi=dJltaW#xv9G{ z!YFJq%HdtDFeR<%*pzen_bP`2w=7OW6p!*xCu*7xjjBD%Y;5W1Idu81LegqWUr0S1 z{>{%6fd&_k+|Lfl`k&~DrW4fwEWIUjwmQkcGM;?QD_p)!Y&0$dX}d;6=qrs$9mog{ z2$Nj$&A)FJj>Dq^_7|IU6^_rIj^PBylXcLUusg>3jK8zxFuUbr!OgD?le`jDLU0?U{m-l$pG_9_SGu!1JM)RB ztBOY;E4W?pO4PT$ggges*Y9!05(OXI1Xxqc9>tZcGAbT9`TD*vyd|4o{Fv^Cd$N9= zM|q2RS?`V9A@_S~3N7TB{VgI87)80R?SVL!-sCg#gM1PlaMXW7R^0c#5U+3eJ_2y1 zI%=OX36OuZAW7n-z$AdKIw&HhbXjKym{=S94|i?EpMwBrbWkdYZqO2ZX|0g{ z1}-t;e#P46@0o$DuMVh@fmCShv=aCijh&&~t(<|?2G zoARx(#F~v%Y_X=edbI(gQAFbze+~ZRvf#Bu`{sVFHj(_cj;9X}4oAvXWcv$vm!SF@ z)64cEg0Cz?kPr8DY+!dcG_DEpPWgI;e{ZL&GZxDE&@d&d3u6+Ci;qpLM=mMPeS})6 z70k$w2A#vS0-ZvnQkXWaKu-MD{@8%?pyUolsqOLhJf(Lhhh>;)`IF2St`k}hqVRMp zsWDeQ?y)GDsUsdgfZ#_VTVL;o2wBx>{dgbYV`XHd5sG{+qhg@i@#{x`7$c08Mz6}< zQz7}SXP&8MDeuS2UlT<$VQ3kkt3{{wy7oZ`c~FCi>K)A8Y#usH7D4N>?I1u5vdGAwsJFW)?%pg1kMdW8T49bg9Sz2g`d;mQP;P)=G|Xf$aB5_Z)}yF z-S}lnT8YFjEOnv|Kh%n8J^uN$LT`M1X?#`YY8H|^v{bc)x;V~Cr}vk%+9hH>8r|W8 zzqUM_MLQsdxT4scykYMwNc+c}^9D`;KPi}MshRmNU`aLuKf+$y*h z=OUgw5`vZIxH+=CwY7`!J@}P6k+(mmnXX%1{U6x@s4jed=KlVQDi-dP1d7q#j5xp3 zjk(FxRN?lB@ZLwR8`3FjAZZ9$GCnp|7q~Yw{&sm;q{?4hUF3P7Z&n?-r#;WScf_pw zf|QLh1b0R@8j@lmF8Kc(<%9)j#z3?&cGqqQ;~US}w9MZ?oIRUKVBLR1Ac? zb+{-j|B9;KwEN`1{$g_3be*)rL35yAeWLy9Cm~hUVflcQ?foO;$UFCgqty@OZk08< zI5;+&AEk30e=-`sY=56GjwYP3)z+Y;O6p2<^{*dK%{@(DftbN%&a&V2;_3bAX*F?~ zjQR|DgUW+F{SV0bgUI9CJBJMollHPnItRS><_88Uo9|vq?yqO}Z6C4lUc}s9GCa)> z+>LwY+THp#WKq(PbLj82ocT%H(V=<9-Q8cu^$rsw76A(b*_xXCorB$%-uvzCIdj}U zNYM;wV^;UnIii{MSJX~7pvypwhByJgk^=MKg z2rS+$DQh|HlOq{UG{ET-J7Cw8Ebq<3d7bE-f~;X-Kz$T~gg=qcY=u%83;Tq$HmXu? zLZB3%m84xWl;G49@iUNoT3(7FJv{spobwwum2ydIWhd7(5wAC;MXQ@n@483Mc>KPS;7N`7}l^ z{g&mXwFN1;YZu)vXD!!@z$`|pz5utyN(#HAD$_l|l1D|=4u{Rpu#)FIM( znk@DWG&EPn&VK_#zZ8(ewW-A%@s54az*xa6)BL*JDDcB#cF%W)fx z#o-bS(5_J_p)Eh?KdEUFyWhzSiuu5{xw>e0DPQq;@#N&BZFpIhSYLYBESh^GLA&1P z>2!~w6cF@4zycGjpuzIBDT94=d0A@Ae$+d7qA{)qGuN>nC%7K~Lxo$TgdvfVhTRU^p==Txq z*dcQxViF>P0jWSy>~dz^fdCy9fX9H#U5rgC6oLRKDq#SA66VY>6RKUU4EDpkpIFN+ zv5>?hX-ENhn3+HzAb4JttDb-CuzIK^Dn~Hw7Y-pXf6RKy^&(SMJpKKN6moA+C%KyZ26=tLUIb zUtEHYwspDi5L;nbC8r4JD;uP{CciGHfr`A z8A7teT~&H`0dx29c*}Akagjwz zuNO}O$He!M=F1tIsLBOi?T88uv-Tmnto6(=E)}X9g%&(dZ6g%8VF(1pS3O#M%o~p) zqAnMSL~>rgB>(DeDFqF>oDm23J*C(0a|p8c?u=7Vp;Tj`^Ou#lk6R8sPfMl`!%uAi zI(lnTv+EhA&Z;)Fw>aRpzrNyC{lo~IjjVn#^DKR`f`(dSAEU?~)wwypJ+Es^arBOR zR2et>ERU}i86|9u4HEnDDW8(d8nWjMc3I>#xw1Tcy@Bplh z4~7rE?~1U;F68HT7X9Y$uorAwDM>yQovc%C9}wkIIN3<|$F}}3%2Tyq5*kQxlR|0` zmtP-yNF}DHHEw@T9kbi-h-=?)`fNs@rsz!&+s%4BSX)X?cAn02UjkHFSZQ(n?z(+- zUwuQ9iH}*$r>d%jY%g7-m!?TKjl#)k;fSumkZ?vQ$I466>dJ={);H=*Je>nH`Bv)k zqrMjO%cDaANgVwNFK!`ADW4IC1&ADN%lqEnm!}VUNda>qo>N}O3qaj^^8@e_FKlJU zE!5vh7k!}ncR7B-{al3@?Xvqwt~vTXi{4p%B<&}9EcHwi7y{hoV42h#IVMq=6t6#| zCVCMYrQk(M?ah_Mr(tCUPD_Ef^5H{ z>LKN9LEsxGQOF?ZH!5pH4;Z~P*HpxQa8rrDgHW-ohhF}RvHz>Y$#G6<2Fln9G)iIG zFjUZnaL2ozCwX+s(4cc&L5*!J-0#}pC}arSus&_9k_#u?%0h(-Zllcz#XK4EA@bV7 zu4X{;FuaWKlyMaBWD3|-6h@Z(LgZefgrS8f8^zn z{ea@+rIzAx0THVrcYo?9QXWAHl-{=qA`xL1Xhj5+*oG*s!6RQs2EmHU|=`kMH3?;llw?CoVqr z>xw@N7bmLhWf=CiNS*T3SruyW-}a?ZiV5LM>AMgsCd7eSAzlb zGEm8aYj6Y2a~fK-9+nB;Sdn z8I`uBOaMrBc7zS~O${V9&58;#d6O1F=scK`cyQ5!{zokhmYx88;?LOU>e)sbW;T$& z5P^>Xz8j_rS3vVBJ%rBSBf5H=A|e24&3Q4=0O~>xziS(nnhNGZ{?$t{DR;;kjZ`JM zn-Np2|CTPpP0<&@J)p9g6vtwUcng|U!N2Hm_2s`X{QnxuIiwrO*DbUPY5tRZo3z6Y z0SnnW*+9me;K&nZ@^!_-wC@nRNl&-XiEeT}h zPz&bjW=0Je@~X7OZPn@4t)}n-+3}3&qOS$j(?m9jxUHWa#njw@jwaCB7G%AF&eJl3 z>SZY_s=+J`7*QS%qze&Aa1<0;w05*Vu(6dd=j$tHv@3QQxVdLCU#GN~J z_-PLdH~yaMVAA{aKS?xNSuLsVwG*AvVSqwxF#E5dQOa?4;D`Aji%;D^ta3^I z%nvmYk;<7tHsv%(Ghv5(vyq#uKgn_3_~h?~g>2jmw6aF@_{MvD7rnwFcCQ#Q5hkr3 zk4RC3I7lVO-9xM2;!p~yqJNeh{2b|hXHB(<3;8fq8te*FFaFQni2u@<16pv;L`L-T1hItem5l-pJ1Wl6`%XzXIvCZC}!r)%%^3b`Lv84V|5v zZTO#_{hF3EhiHGI z|EpT_GA?;V-{s+uh7pfPMZ*K)x_NRxtLJ9RwHF2k<{rx#S?k6L{SsO%86mCcE`{rI z9q%`(?)f;rNJ!$k((B<@d(rh8;<0OY=S{*;pv>>X~%5b z7B~@&sOT=Ll9TK_xZvdZYRpLz`^-4CLto0uD z?P0C_8PV222o}&L>4dji4oU*u1H-^hu3}OuX}Wf|t)_WHu4OCah0(5xQ&FkE$M(_s z#^Ao4ce81Y*;1VQy&z+{*qnH)EZ(FZe5C0+?L30U*}eXfH4H-wcrwe7B>JTkiOOmR z^m&ozXP4<}XlrD~-)?3mB_}{nQCG)bh!;srx_Vy6q02{0cWUB`ps-9VR#&jiMHeR36Y{mcrdSqM}l&Z5>6iw8B|G z@j%%GLeImj2UTtW-zo-@{E3aJGO6&3v${MCsE!3`A?O{ti~^QCNGYAUvJEXx1V_i9 zrwWC2SqZiVaeRF|5xaA2wfh6;e;H4v0{s@2z~zHf<0|4WtO1`axw0fW+FI^qRnU;;rb<8}(ywR2a~ITQ}#(*2Igj+amW zw(YQU_;oZBR2Q0DMe<+DbKYuKo+jrLx6S~c$@EE|tz__H!4BwS_c}W>y8DBPk1;h* zK(FrO5qFEThyp2ktqhSO92YD$3%`@mFD8Yyu{jYlUE&Iq6FsLE3 z@oxS_?7ZS~>4Dn=n#9Tlw-@m_h!|jYb`8QCR>fQG0gud8zjF>Vv45z5=@=-E=K<19 zf`0D-`t-AXCmw%>JkMORkpGW7*$G;E+8~~&DG4m{FIuRmH3CtU(luV}x1MS!4xcCh zk`_SEbDxQ0lhoz6ULl5Hl%6FZqMu@caERm&D)wL*z#k)~fqgWLv_2~`00L0tskif}{ta zX{$XC_9Ez~e70kgX^rGxlcWI9>0H(S}1`H~Q&PgxBR_rOOjPwld zJRgc$?yiu-ME?Ui8PcP{9X}9;Mst{#L;Vu4X zjX0)GxCM_PL^;Ebg96_}8`DO|O83dUp$*QB(3(CVP^h(vVP<>Rnke^zp7_)jG#hpAbKTxTMkt%px6Lbcdc3tYiuMG$usQfnM6q^g+W z=7z1FcW_kPUefpV8TThmSZox+R0IW!ZfGl{iwbkS{e63(Gdg-I(47ckBZynWegNdu zxUMY=CH_2a&wu0L(8saC9eE?4Jndg%_az&Mm+Q&gk87RhKICrBZ%|rf-ghDP{rEV4 zv@yp%;;3LoCa)=uaXuQHOciBFhaioVwVS<{?P`qa{5jrgEDtHl`2_4Np`TSxMrO^S zm&Q}l($cSW5Gp@TE{}MSemD2^uFr)tp8o4^c4Bb+UDr3J2G<)9dBLe$BbD$RnYXjF zR^)kUdEuBpn!kMjuR5KVJ^X3#%lq@8O+NE)KUp@VOpYd3A0JF@#kJYoE=ca!|K4B+ zlq)90tJC#|Kig@d(-dV(t>)zY15Tk53?7~yHJ*kx3hBg@RI-ktET0rJJ&$C&GWrma zl9Za#`*oix1`U`=VkNuLZon4EN)$cqZP{27_WV_}KbRkFRMe5({)~}RF|`+HI!h0S z@_R~MIA;Bpq=+}{xCeQ$f8=F}E(7telg?s9&*Z9bEOVwvIvp6e!*{FZf`_+*9aw`A(hs+>?YHPK|qTZkUD|N(z z-u-?i1qU69lBxBz5(^xPQG&kO;g%BMfl%UbIlqEKXK_q7Ahb(C>dBXIj(?DslTjnX*=B$NqIe_sWTrfu3D_pCnm;F_O)vg|*7 zT24Os>$=pF|F<-=sK|%FX-&omNA*&{Bg+RbTyko=&T5K-ol{d0nB}Foehm@CD{=!N z@R}uC;9(?6fR=A<_rJBJOu_@BRDwj{VA@H$Tye*V$IkPruUjY~ZU`qhv!n!qAW)?< zyX;;1fp?f!-JtUvrF4;(HWXp+}XyUBr)Ns^*1>nrSKEstt?Q-Ry(c-gTgh;f(ybi8H9QR&SW0aT2U z1lsjytG#i5l7J+$6QvF$od-tw`f>0_W+)8*I!cL_31%B~y$j#LHu`O_67VBOZ(H_j zPWL?njjKxZ?Clf_`5y>G`NJ(eNsv~*Nk;#pZ#B*PU$**R-yJE5=z>?wXL5PwOOWog z0!bs+AW+6f?)Rn2oz|keh8Nl6s;U5Z!3I**d%pmkjEyo0_p*zc* z1F_XcSLB-H#@9?8^w@|q{igwkLYS^_ah>Iq` zEJZS#!))-+4@tAE$k&2m60K^X`H5{HNvw67f(gVdO?F-?{jbwm)!^mCFW+>1z!*bPT!DxRn8fX-#3h(Erd|kw1gGz^ zM(A7<*=K+kNPZ0BtrGNw?7(jg0rwE_#{6SGgZBDbxh#|(e6z3EL9Nyf>(t5i3!^gg zFl(=%hu^cw7e5QcFVm{6Gl*oc{vw1>WZ495f z>eZUjq2#23rgv62MEwWZnQ3z0 zgO3-={}ya0Yrwl#K-XDHE}{RZmjg z$OvMY&7v*X8D!}{T~m6pen>jWwK(iuoSp5CixX`*ad}#Z3@&@SxUs*VdPpv$O=}WM zN^&i=x)o_QSe+0R^@M0N>C-jlZ9&yyTH4oFpFC39>~;LzC17)X+pD^!L2+__W=&J^ zUu(O6w7H41SvMa3Yb#;D^*a$16a5#rAg|)-vFky23@q|}MsGTVgzE#~ z?-j?BZ}#_N@1sX{#>P1ME@qnk+%ig2?)Lw#o0fvtGOOt}>^QKzEB1)PQ0$5Kk(4 z3DJ|Ob^{Mvid$hOBV}*ry274M&Zlsta#<+c)>+uYFU$9F1mc_@Rve3AIPswwTb4ZTY9}LsiA1V7~O`blQ zJl#F(aFi)lJXjBjzQw5kI@+CYF%Y+&@^BjH%Y0~MiG0qX9~DEVM%}Asa}E2U@+EGO zx#!Fce--jS1qS5nsNS$8vXP9t@EGjez%e9oUP8I2hq)c8GoKTmC7@#Z|7bezc&h*R z|G&<$4jJc^88Rv(nMZb!op~~%kl7(2`(z&@l$GpJ$lK_Uk?fs>98}24UUAHj&F|^+ zyM6nk+@jZUa?a~|Uf1<_+#gy?hZC|UFJ&p)6h@{ew)0q?Ht+pT8Uhltsjtp8(EIXu zbXb`+c?s+;@;1UInU*Xb^`K>1SxObu;SI6Y=S_*XQt}8=J0gIK=nlc`pxY2-XLRIQ zARKF=(q0-lh*NDONKh#S+i5}<&b+jLVCV}UFDj66&{EKTTQzi8k;_J~66IN>*A3d^g-<+*cWu#Tmol z@GY^>%4#W^|I-3^fA{>`Uw^t}dHkfr5oGhGsKLe2cP)li?LL}bU%vLL3_uq~v;=ke zF2FPH3!Y^ffDe@-tOfGIkm2R_SSPwRNUiIh*8LCn0wy!=m+M@qY9-HJ|LP?TBnn5N zT#bJI{=S}`8$Y$HoBt+>9=CEGO#;H<40yS|{@ULB_sL|#@wX@e8Y!9JyE+>)kxW-( zZ5LH^f4|nj|7x+L%SWf$Jr>m3uaf&;m zF*XCwhCUga850$@NlTt`X*xD~i}q1ML!|-0I5asv7J5G#@a6L}4^!#s>7iGnfUEuC zp7>V=#kv#^psQO1J#ljPBVt!n(O9?$C+A$IaZ^X0lgkO2oC zx-7}yLFv%e;NR`-ZE#v`(*C%8ngt15z(X*SV=}h*S{fuZ431m&}$%OR# zOrK?9|5HKCLk_4F&RS-w0haZP~sRt zwHMM*+3g#ksK5PnGK%)g3fyTov255`+35!Sw$Yd7&r^rGuc8xP6=i1hV0_9{T&*H9 zcbwvrEglr7(av1onEMIy#tKl2^I%ss?qxH|+%{}OhlJv|KZjq7cGn`trnS;$&s}e2 z|1VVnZIylwCH~4|dqRbr9s4M{%tpK-85~gmiiru76<&KkpIKinl=t5|RU@tPce?#G zQyKYg6>MKOe>5J>vOeMJL@pB?Gcd*+N30r!#uK9YeL9sNgf?BS*SfIdK|aWT0KRc! z{`){e=uIR{PEqkG|Appis=u$GO~^Ks_MQ?AS+o_t3~u*a(=GVp`^yZ57>b_9roQWg zVgK=>oEX2VU+OMfkl79>@UmFf>7v5sXGS!Y@}ogW2UgDect*0Pk2Iw+_IHB5u9A5^ zUk$A$BE{#f6wBQf{(2sMcbUBJGSA#4VT*M~dFvPW@k zHiLTX19ZbN-Cj4wgG*x&0u;GqZ3yvqi46}wFh?n!x6PC^Y?f9t&W%RECUOy~7|0;i zMunV({QK*Vd6DMku7$^}8sZ+e@Dze%+d(Jmr*rbn`|H)QS@r&&vkv;&nLXYH@l^cw zTv<0CMq6yq-42URGrVRUYSDjBL*q~uI6=M<8*-O=dpAeiZz`S=wfnf%)^Ezn%ig-l z65qd7p(g!BTs{X#@898*gfuji@4YTbiR#v%iW(#sl5EUNhk&kqVsg^*!@U#{%QVrU zV^;L__SQxBr9Tek=0i!7Z;Tcf7ui-awP#%q7h-IDIQrcIfawLxW%u3!o*hzbn4s&> z?jnDiXwa(1?7q#}tl^VE1v z27uFkxr5XvFOrV;=s_jR(`(xuxb^V>cUnvFdYSDn_dePE^&?C#waiKH4nq%)K!k}>IR8_k36c^13jtA zv=6C%*|N?kFhp5j^>WpbZ=%A z;{IlR)RtGFknrAAZrrs#Dk{H}IFT3?P#FcU+EUM`s(SEL5dMPs*Lbgsnb!SY6H;oQ z`Zl;Tm5m(;^%ljnSGB77ZT8eDn|z zDli%)+*9sl)0ss|XKErlxKn-0tEl@X>i*4WS5NK{yG@>2%zCrT!NhwYl;870@pu-o z>@v6zH~veu(p@_VBwH{*c(%0Gn8M}qG*xN)3Ueseg5ffF7!?9Z42#6mGOEB*m6Tw# z7;YFDq@oQb!IWwYWmYLu_`A-!nv~ddhz`@nYK5G(XI0D%hXVwK4gw;hVMPWb7)=>I zX38&eU~ZGuNZ7Sp2nnVJYhFAZHyP2260YPLMgwFNR7I{iZ4|-c!+2U%r5rk?DFo*a zujbRZ!1Z--?wGEy^gql?u>_f9`S$=cxrp%XJ;>zFaacR7^eAB@o3e-$2gQS~jr+{B zL8^<5G>FY(1k89LIa;zvTOuitJb{T;WwF}5mvGTm#1ZIqaqEf)YgtDv6sJc$MV1FM z_Pe{d)490jU7^X7dAZKYqKM{yr6-geIbUS{+RRQaB(IjHyg2L9{c4Lq;}NW(RTlSxJTRbqy2I)Ub4m{mIws0cDk z4+0gkM4L{!o3}@wl!|ZFk)X&~)>)e-r!nuk`T{^-jIjX00Cm$0ryC5D&t_vXq@R}D z69Rk3uK#35QcF)JCQmKAlOm@;yi0`v&C?O)v(EDjZwOlLPmi!-B6&a}bRnK_F}PYw zuucu+nj)akXHk)$ayf)LhgNMcqDBlMhjUqC`E*iFiB4v!U@Qqn+DVIV{Y1VFceqKU zA*oU0^}9c^jz_Z6et`XJM?ARH@W&7DUJ9RCYQli9n5Y_NX{B%74X_bPs%Kl*R1u(* z0fh}Xn$FtbsywiZ{U1B&oBo+S_c)sHSp@82v0wXsQ21#XKkhc_D4!gYf3|8UYS|pv zUktS8^O?p>W{y|CI$*sl07z>DP%-dnDAZFJW)L`m>3}T$tmBRZb~Es-z}JIG%$dgq zgkd%?*%}QRyo~(L3>b)bgO?t9s(>`*DFozQ;9CW3P+)59l|}a(M7F$(sIM@|YCKuc z?rVB>c#zk2tPHr_+_V8)LjgZliX7|EZT~$-@(C+-zBD#Twpclki3SPgkE#@BLoYv5 zSA1t?CMEnLGW)An%(u|sd^j4kW|5fJU@F8lb<+SYkG{cs8IaS&BZFUmd`f=y6GVwP`c0Rto-rjtw_db=7y6ny? zzrw&+>wEnaX#+0hG8h1R7%D8ow=$KXZK{Zn$jb{N4EZiFstws2?-H*X&*ujhSwo;e zb60Y7or5YrUl9voONHRHT0o93X=`4j{*QKR3VPo{UYHlJUQxns&=K3_sjPdBUf}A# zCoBqwG*|Gq4Oe=#hO7nNwy&;+IGYO>-H9TEcs$Z9)_MTMxVeOEdcq%;jY~VU5@ZT3 zWwZvSl!DncQ&!=0hGk^KS_}p@WC->LWy@L|QI8#j24I3$LreL@7`*W_Avx%2M!=U>+S)ye_C;(4SDTCC@c^L$tky`U3kQsc+?X zosTf{;q)Pw!u?{4!gi$X^8I6k#!?pT|$Ds@<{8?0ZSILrt-Y(Ds0-Mrbh3uGDn zfEA$N>n^o^;MVvs^hKl4NVL+I&rQHYXZ?x|R@m@g;>$B73YdBUW;yUj$l9Nu=zJfk z`NIiIE|TZaMZ_}#I#UK)6|0e~=nT+00Q*A;upx%CvUT3+aI?d@$EIoaV3zA9vciY5 z>i;f30X~SYW(lE}Ym{cFDGi-4`175?txho$Tp6`*5|jy;otaL$p0(5P>EVdz4)E+ z9vLlP_EbmPdmlb;WO8#CtY zACOy_yJl0mLS(dP{}5V?3a>UEMyop&$uYE>b(GZn*M!C5w0m;zUg22gpdZ7G@6Yr! zTM0CF?W;A%JC9g8c0#(ryAN(0YGG+W026MlDOipP_E|r4;l64t+-}2>n4Nxm!GB|7 zu~;xU(<`v)+1_54{zU!O?5?7M!tbDy5z^#I($gbwnB|f#o!tA&GFc^Y^t?3iBu2D> zx-hRP8{ckhNOnPrrqhN)?P5Ij_m&1Wsc2fr8LyKx%-HoRn8lSPTYZYBKea{0 z0X0B&u~G5Xt&^_9^~T)^5boGU1RY``vACryj~xh|0NfDJ{%pR7Z#iN2D5{=YsCXsX)TfB*Uuqvo-G5d%d+JIWpBRetksH zU~V%4*f16yC7ukZea`)W5V6F3HXjDsVgLaKyXGiF6!hJ|CK`KVGE3@{1eg}&I{s;wI5o;Qnv`R;$x|ig)PJK zMi2R79DkV06w%!^y8Fq2XC2AW$5$wn7@aD)`1+$qta4sn8Dg0Ri*Nlxdj-xHdR|l4 zHrmS=7WUd2FbOHH@}>+kylwwf2Ins1$+I38PF|ewGdzz1%V+Tl@;<%PG+NuC-D9!X zTo0FBD=yWu_;hgrA-n=T;BUbas55LeTyAA`Q;M?_s;27<9D?UFA6=Hry^9{p`wpj- zQo5@iBTla}u6Oqa#9{}*p9>aBu(r0+bhdsgle=r2{HbEcDcFV?)W{Tf_D&)g+v#rUl5TzL!%RsN5?txjwu( z67;dpxiO(0>qlFP2T{%cG9nVjyA6Y8|3Kos*m{b!>7%3B3XOuIq?(sqx`bCAmuy@} zb#y!by$8_si|Gd)iYH6{wTQP23=DmX zyS@7F^;dxwUfKpFGV8kaYsb8p-KN>RgVn;dz1W@S>+e$eO^zIkm7#(qv*zu8e>XQh ze|}NOw{g3!->V0Z0?8uD9Sm>%cRnoQ_l`KL z?Mp3c1Lhqf+p-!DTkk7!lS8sG4=}XgHe}Ne7zG=@2eqSIj<)Ixer&A7Xp?r9f86I{ zt$&M4FT<5(*rtd5id?_du-^E)#y2k-qJ z*df1l*jcm|x*SZG@;PEUWmyh?$l5<3z64T{VN^V@^2z?=HSi=?D%2A6vM5^MiG>WV zJ<#bCN8jf`^PP)jVAw6Sxam8)v-mLJIH~PPHFqoYNR$IIFy}@DL(dYRMI$Q0_ ztJTfhOVWzD>Pw$Zjg7k=mp|||k?wzywi94!b1|GJ?{DLJz&Z$BQIM09sMzrZGDe45 zbH3T;9o&h=-=s)T8<&#PYK6~;6tlw6S^ws6j{Pg)WdV^^2lRCWN3&1Q^$P(l2o%il zkb<+~X{Y~#Ij}c1l2%Ps0c_M%C28C2B=(OM6`SkppI}EM^T;^o$Lu+>S%FQQ${iYKrooC#A zv$Iz4wvpCdkQM@1`e$k>pf!f6+JO;mHi2NxTIUrs`!y-W^4aE}KZWalSb9L>b?-e3 zeTA66$&vvsksrgEDk+a~%pLF-K<8!T)wpbAtg4Iv7s+D;6$gc?iUgv0TXLY^J#&Zw zf%}@>tD_*L^7&>A^+mG&HII%*AzxeNI$peBxojL z$4y2naNpMEyZbFs0?5NT$75%RDmPa)WCxU_UnDOMN}*Ag7{S=tKc?i2U-Dwkld66Q zd$$6=kNDR*=d-8)8>vPm_LdMzD_a4d!;1tiZay7 zitSYM_$2XlpdKUtxO2#g0p4kaB9&YAYQNZVn!y^nDp{xIHEkK=&vCP&ab_C%b|MT|e z$=u&<1oJ=9JJW>?#5vkHCGoq%jl_iHXf8xb##)gL(3r*;7#P3pv7(ve&hzyDXLfpE z*|fE}xpX{R8n|GX#AHcfU7D9kWKnF`{gGrQT|@u^x6mp==vJ$?tNYeL%$vvcrXOzk zZftNU5TYA3{>fK>;q}i;C|~T=J>6_QB|wh zn%{K|T>WCe)p6?u4Ry!sjQnqHVzKcUI@zn&3Oc~-C`R;pY@Cp#nI81ZP3G+`$2D8_ zj+5!oeU?ezlb^kFD=WZ4B{BBs_PA7BR_1u^A}24B_Tgc@ebHX%uA+JD z4->lkFT}BoymfA?SdQ?Djt=Rk4;5vzCTsmT;ISf>K6`UDTpozjXE^84-ciTS_UA7# zZ!+Hmde%MLnkPM6b$B{tuo7`V}5{Sr(Yk;R9d+L*Wc{OJPcYeSoziJ zgW{PM0V8z9v2j_s26N-V@i@gRN*<2GoRt?ke&X^(mo^WgLoT%I$v=*4{4TalQFW=~ z-SF7RdR>X>Ern5r-jvs1a}+0H>3j5NFO=by)gq~`Dd;pX+HF*?#JqNfqi=D`jrEy| z0!sGP!hliWQ=I)ueQs!@!B2pXT%R~z4ceXbIeub!vN_JcHSXsxWy$=mSSt21vve^MR#cP`0DZo(?_S8f46eew9bozLB_a%*w$bwI{K2C7H|PJ~9dx)(wc3 z8UrULeo|s&eKmBo&o;VePND`z4c*{9A3~)QPo0JwDbpyUKSmR9ht*-NJZlG?Pc)>HVc^* z^B`sHjR)ww113`plo7i9GK&ja`>)=4l&~MjTv_B`k3gEw6N^o;`4|(`l`E-tFKz)r z*~ID68(bh5|F8XiqgPNGxI9uCa4a-=yoL+in%o<;bk&>mU2QM*Cy}yWNA$i@3o}>A zX$^nRL&p8L?BW3Yk`{te8OblyZ$_43ci;cUdqd}X}%$y)| zQ_E?T@ZlQ2fq`eQE)L84@xd<-M;?` z03Mwj01D#B2peiXv!^&wS-#@M*@hCRcEcipPS<(F@Ds%>9T?04jc?sm-cNaEpkjiT zlNj1KPZ(SE4h&<5d3l{)*+iX%y*L9e%3LN;v4Jl1{@ua*^0og%A8bzaVbR8K`p&oy zy&Vjfq;x4-Krk#8YdmbIHb{iNClk)cM~cO#wWdl9gUh`AD9rmg+4(GFrtI8V4Fru+ z-I3Z~XE;?aV2lV*Bm3n2L2x9ZSZv&4_^>u!0LZ+fz zYSYQ*57L%FoBQl0_6d#;hE{H-Q?d)vyNRJKDZD2TY&J?v9KkwCnV}a_lNfIT~E(;Exl?MAoZ9Wr<$Br^oa3!T*iIOaf z9G|Q%v&e)H-k(2bYV|VpJKa@2@wv>q13smBsntyA@p|K{7_F^V?7mf%+0YHb#r$zcChd{}=Rrxkdx$ji%4(_$sh?$E zJ%}E6G!7rGx*$DryHJT-Kr#n%wSwJU8Y*9Z$v3z{%76Ti+gDPc@c*;`Fg+-ot&>Q} zS=XRok9}`eVs?Sb)^L!~0>KSOX?p#UMc5F#+h-$oO|?nN^5bqPB5gw(H>`XbiL)51 zp8pyi`c8jQzJfRrF;E1E!gaj3{+5uRY8jEGHzB!s_^i+#gLzSxtb zUkGqDY)KRBMA1HGVzIYkS!Ond5@K#Xw{jCm*PSL^RL57FD=D`In;wdEh)dFCI&|57 zyPi}Og3k_rT|UhwmPlSP5c4|bxjt9s(buO(3xEB0h@}ksMFEDSO{@Yo6s{P#*n>XQiC1 ze53#VpSHO5@%q#M=mQM~LF;LuBij-BcHj-3O0qwYSlhN7$bg#P_~c`pCNmM)A=yJVi7x#I3h1^=$1`W+JyuJIs$|I-F( z>OKw-9e!$cy^uAfV0Gp6^0|k$!n&pMIj2Jp`nDeaTQw*BvKSn+SSuPEcdlL?zC)QH zkfu6&Ti|@;zSw!2usy^@>Q;XxcuwR~gdqNNm_XVUbUJO8dSpgwG`Xrx>l3gtN3M;<;=pmu*(kMDKN?MCByyRIK?L1;l{%B^ugbmK|hd5 zBHObZAQDv~Z+ZRAv!`++MROzeC4Jb0xZZ`+?I$4Pt$R1T+auAux*z%3z0oz_^oE9p zM*gVRn|Zs(sWD@2;|rB^f?36HS2&5v78aRr*5deP?`o?W8v~=>GtI}|&zu_{URc?i zavk_ZDyiT6jjm`59dtY%e;QQ!Zdfw6gP*@hSHlIAa%Ahldpr3}++0AF~|=ar(WNva)X0rZP}}aVzS3 zK~8j<;~|IF%d>4VzpJO2U(LR>4F179Jbs%7uLN-{n}ogRBe-3af6W8?#vKBuL}FktBzP-ZnTu<< z3)G_G>tI&M7FBxk>=1MzwAKkBn5L8%ii7D&29)T?@ow!LX0%8o#3xoF^VVGe!_gIw zcwRpLsDEC;$m>zR<#0mYdw8b*9pRHvsBR zbUASPqruG_UqV`z(_z_RdJnuyCFZ*6~8p0Tox!_Ayt}ZqV_* z^v7iTIEKlSZFbRyjn6~P{|2iScNRX_m!vIC9!a0Zct53;aQK_~-Vq8>bt)%Ij*1Yw zs)PS_8!s;bDU&0tLSQ2~t~kc;Edp;7=AANn5)wKV8MsavPP-NN-zXl;9?xc=tPQH2 zg}gYO3!Di{p6MS;eq{_ z*q;hzSgwl|KhQfH(t?cIQNv;0&xSfzcp-4nv-K<(Mz8Iix|`<|Kzn+~P0k6})EeXu z^37ozoC<3G&m(`odHa(SXU_{Y0VLvCYYqAHhhel}7_C~jkp!0HI2u?qemcrHzxis3@(px zf|_T;5W66smze1>xeJm23rTWePz!kK;MKs*i!(9C@jLB17)&;~ZJU5>ft{4MV^3yV zC$2|dbi5XZ5V}eSo;9Vr&9tWDC#Fz|=$leELZC37S_0D}TXnJ@cm<>6FVDDp{hA_Rt5JFIb7` zI*NC4otfFHG&VK4iJ1oAe^a@*$d?FYg`9R6J|v}sbTNxsf{|C`EV3h;hH%T1krjyk zVPen1`OJyZQS-jz;#+n>_j>qJSJ^3)SMxB6i48d~+X` zIwYf=Qtf+bY{*RoIoP=&xXdf-I$0kBk107`awA&N zNEB8;t%6!(fKC)EnB*ynYm@b`6!=HRyK}+;& z>$Ubm7qN>uW2V($ozfe0qVe3^e<|y!BtCE<4GQG#gQ{%N0n}O?W9~5LdLZ zz`y>LmFunW#NozlE8=s>$auxPsd05y?bgN#Xy@bN;wF!O92TVP@45bt&R@Uzj1iHm zg>??_kcz$iF&Q)HI2}s0t1`v1cI!#TNnSl}acisRRdidsznhe$-dC>+8^2dG5<&%) zkB@PR>7pjaEoBd4Mu9bz-#9?3Sth_e(Dm6f(t<9^XJZP6N|Gcl|8rHq=IuC|(r3gi z>gQA0Qa*^yVRU=xoMhg&n9@HI80|IWm0NX7;kPJ2zy*MQ1Uqo@=a@@T&d1!C4n5g? ziceG5^*j9M90H&`JHB1S^VhKS+(M&9)=#B4rN*bH0|l=xDge+^&`uJI;_kn;{q|+| zS#qkok?(1NUk?n}n9ll(;){ezC1OX?;R z54DV^jb~#Qbj-wm1!ognOJ@oR*9JM1F~)Vg*oCz=vHuc*qT}});Lzhe&syPDp~%+w z?`LCQz)1z};R$&IA-+l<$WP)Xi)VpeF7>0Ut4UvZ7&-fwRCU; z)z0eC%VXpk{-bMYBs7jI@R)t_U{ty(;MudiZ`ysQN8l%Pa=32!@Zrg_=<&}Q`k^?! zpkwK#Xg-L>1gTX`okOWM0J0?wXuTrQz^H1@gWoiylqq@D#_{4+r&L*vgZ@=ImaT-i zOOvO6emp&0<2u-LKt8ZeomIw2eP2iYiQ!81K__MY3 z_8FPt9>}Dxl>adF#Mq*AXl*;G)PMe*>k!rnhVK zAicaW@$byJ-PpJ|SR?`sr14E)5Uk%TN|HJc?$m2_B?Lm#dRnOBqd*F1wMHIPs?^T$ zX&u!C3jF$%B`A=QK{RH86!PF&-baFH58S95Ze@=iFuPRYE#pfsEycGA&Q`9VTGz{? zV6ONxOR?_YxS`h5hRv_zV|^tuAi?dw%=#OmkN+s^lMpKm#K+;TdYuX}uvAVeNa#sLdv zi&Vn1o5R|Y-~YQWqkN9?Xf+7v37?*B2TeZNTSH6#Cz|j>#y#MpslV&~UTeZW$f~+- zR{h|@-L79%!WpF|QMt1teF4+wfZLnlrP&1};n^+AUD8^NU!TcsJyB7R=OT|=YuGyR zi@Vg9aqW^$2WVeO)}6;{%UFJ3Y2+Eu z73K=`|JJf|{A1Hjfu{8X(gRpR>-=_Gm!62;xZg7B_l#koJj1 z@vnlde*LD+Z-s=wjg-met(6Y~Op$fgdq0jDcKf?Fmwnxw5vxWEf3Sk$8yQsaE!54)SF(y%?6ca`p9Phyc>LN8Jn~H9O-c{quc@0;YsTySnG@t;7j&PL;Mqnc3KjtE7YR}6~Wwbvk zzGB2=YDL2=npOjk1Ity-vK6cb<-_W=bkke02ZpCLjncT%DhyUIo^CoH`g3}DO#MPzmmk!10=>=`{ z)(8FDc?uF<%sMnm8~+0LO7qE1X~0g5$;0N|qt%>k%M+8p<6izXZV7`3Bu2qm&ONMi zK*~z6@i}&xRW=MGnCbRh2|}@oDZ#*IEOw%}-&#P$QYvH3{Z^3wL6YL>!qbz*(?Jj> zuPMn^t*hp2c-Hv8{8(LWGBA{}_I%OuXh!rzS#geaw!QrQOLLJFo@LsK65-cjXCppFNM%(eDC-02jT`ygO83ofq66PC{!GbBnuO%-&E1)R`F zGJ6obV(_x=2R$?idQ1@S2C`8>MT3BiWE@u3GQNpE6CA;^IYE_`U+a}`GImGs(LnanKq)uY$1&)Bk7tf-_h+ z=v(_XgaPtC;;a=68zDlS^bn4p*La6>bQ3&?p6d0_#Ix=c1(ID-ZB-{x&#j?kh}w$RjB5E z?_-7cme2kzh&JrMH(8$m*;7G5%pJl*@fqQ&N|e|yG|QL>@?yDEA4b)3sO0i<2!|KH z!gZe5b(5iMyyzO9O-F2j~clNA@o?MDCDlkvwo7v0ye; z*I`EstryB)Xr)t=43zuvY-_G9J;_B|2^E7jcROetbvy4=*WW-Qg{!nimXsGOVWs2VpzSV$2ODxrbdx?k z{6kPeja6NgW{tbf@SfE5oqtSTP8s>^_9gBz8*`KI@Ox0oR@9PRoNcJVR5%i zhn3tE=}nBNn%C zT#5}|yS1~SZR`Gv^5VaE4Te_#x?iGhKGHsYO$a<~#Qka~)wy*3%x|t)0Rt5ijbhP7 zi=mra#MQx%hs)AU^6BmQk7M)woSGhdSeA<&0|BK;IgHi&j`5v+y`nca>?Afb?;Zj4 zW@K*_EY|>2LfXq3t`Eg{O`My%|Wvc3eI5kwUuJ&>n6u3I#g6_T2j{^wQu)3 z7EaG#uOS_m@FOc=M}BsR_HFlf^p8r?P{saIyU!5AAr+N$iDjQG7>YXljt%drTPT~X zvK#o&Pnh(q^F3*2(bLoW#GY>+H%95~p2dV9-zm*AKx8xobzcdueZ(zz})lnl-8KKe1g zcITVWP4g&YW3uTFM&SlDcvjo7DsgqtILM%>SOGDnGSL9w?@|D{WgJ-7JUhmFh~u)F z2$&xI1sj|_GmZ)wQpkcPg+KhC@3tYM;q>~4_K#hUC>_T9)2;ehm!TgSTl}2An zt142CB}@z7{lY{gQKD)tNbe=nLK}=0ul@5KXtT+WX^OS5se z8cv@C?U;1j(AW4|dK@zuIm>*v%=oSE_+?~js}B1coHXjeN88;*am)=**o$spcbhxSOFYT?!7^l?s=A= zO%^Z_9qevbRt0mpQj2jVzo9JKSvfN;IU5OEVTavt(8t*|@X%*LsBaC>ID0J0n!ZUz74O{2 zi3jTiF#f=mshNO*DabH~5$eoK6n8jfkna2oK)kTek43d$|emwh+HCK~{d0xX*Vl4w2}YQdEBYwOo) zE|jpMC{R#sVrB&!fj|>nM6d~&hYvlW>hEjZU*@-L*jm|{t)iaYG_@dY%INSRG9`_9 zc-8GHcu>?Yl<+P1Hb!2Ehh;9LxRU~3$M#z&{+bpON=RnKraay9ftFYCXq6gLY|$FQ z^W8HlDB}x*IADLKZEqMxJqLL0Qt*&_?2%Wl|hHr$J&xGm;qh$PKG|`3^=(@Tw+~$MAozoB9|Jjwhe2<+Hvk8YrB+(t8MohcP&r`#A zT`8$Gt>|gEVZVPzhE09HM9bX*vq6Gb#RG0Tft%qx!Xnzuw}T@G`USt?TMC78Uv~IS zp<0w+5}puoiU>dN`DW2ND#VrBy6o~!=w;U%FLMQL$Wn77nBbQmsrHh*GIhSWSKcrA z+K&psAWd@!A!RHTPRb~&!h?m^?l8ACxj3WMRi@N0nmnHoUUbrA7O?py4dM9C1D?`4 z%^7mGn7h)hcrs!OEixNF%kNn>WA2n{neVm#;q+iPaIre*^jGB%eiubUrYy-^RCSza z-@0fYSLPe8$p)#5x|bA>Y96QeU>(x)Uza@;F5%?zKUoZ1%a}ZP`}v6*{m13-9h?0T z6HBJg5pkD3g!hcsm4NZCR&~Jp{I;Piu5kUqFQn6 zvWM_v$&0J2>!K;75`8vJ*(Y~y>;ZG`y#LL#Xt ztiHa2*~ey;KAHiej2|)Wacg}+JK9+VnFiI~Cj2hy75)77q>@?Idl~NDf9Dn_eFKA} z_V-pYRXExUH@qeN7DIPMQ&PS*2!3}Gz3E4q_Y+NB*u7N~RA=rJz4mr%DqnWdtlIKV z{a{(mv$fi>IQ_+d&4j3VhpLoM=9!}8&vqu>l#8Xzqzgux4Ce9|kOmjh%%l(6Lp)^V z6prSKN^jQ6tV?CMu=c(+|Kx0D(i(A6J0?AL$FFHQ(7$O}itHdsOkR1sil3!mcFC>^ zC&m`1&y@v^p1N(tvAKk`U-Rze<~vcMC%?z~>mEMLSUWH`{g1>ls=OM!W__7#$9^S+fr(a}rcE>t zIq%1J5dE(G)q>eZvYG`21sT61_8`(^x`ljGO^s`T2EYB{R(Iz0A~*8X-w#(_{ht;9 z0TA5j+JaY*sMw#9bP0t77OIxWGhm9cD)67PQlhM}74VifL?TZ0O4w9(me>&MWvhHu zTGX|xNgEx` z{1voQ23%ahWJt&z39`Rmg>vZ8zq-I779q!RDHYBQ*>J{hJCWnc$9vfc#DJ=kry_rIifK?LcCx|6 zS|E9Z7?AhUZdf!-Q7q(1+D9+o=5H6I29Lclt?Q>u7K948IA04JBU zF8WfO#;mslo47~6B(MmMjExE972hjr($BqXsI?E$e+{*&UB*WzCvgJtPo>z6bLj=Mh%|U z>RVK&TVBsHKiPP*dpdqPr6}9rE&r^rNG8L`Soof&5GC+t<2HQz!Rut-5TbtC7ZvR}4$smF7O9c>{#ue2I zp}Di}5!g@wrf38Qe%AsVA}p9yK&i4{|ELq4TtUal3!l=rjtHa-{a^3r3Odj^4Co8N zA7I{!fNoN>j5|j}8YQKTgL)?|-f;A{`|$8kbxsEW?m(pvihpfv47|4Y`z6;(^{@z`=XbTpkhZxrhz!#7oFohpxB;WGBORAj9@kOp!);#pHBL>2F5sP^eAkq z<{jaGWDwB*0xM^&yf;D&J!y^grBMY{7>I6bz&%UUe;OzfJ615pC?2rMM<42ebq7&i zHH?#YhLiUv=NU@@6lV}zR#6Yq%E59L97xMl;2^e4`kbe)pm(Z+zs*ZQ5*R0fsF z-zOIHs_MqDT8B&E*;L=YE~-s0dT>{Q3aOl}g=F4_mPQtiZ1hbi`4%5JnG54PIypKhF5ev;Ye`k`$7Y2hA|mc0ccN;eG%bw9zbbKLo!tx{e7muJfjuT_Pa5yXKF(9UQP)) zx%KPFx)3oP6uC1QGc7xwJG18{yF39YsGdk(DRE_?C0G1P%{iVB069^)t<^QIf;i85 zWr~K|5cl#6tr#r)I>r=su7##10mI!Qj+B@ZpjPWX`sj4er-CQGYvNLBtCB_1>$W+_ zjeKCiinY^)ijFoly1itqqnGlv&JYI$5R;IUya_l}i;{tm* z(l-%ASB-WniJ3&L4Um!}TvS-Y69?xtIVJd%nA+W%&+jd9k1HK*+Zky)U2=0(%8n9(w&PA$n|G?& z7y6q2y}0}3)d86HN&cDLpE>SN=$by^xAfWZ1Bw9mLC~zww_)jYn-8=t38aIJ(<3u> zjj^f(xe}Ic4StragMos7{5`pGT%Hy|hqa5ny}iwwAJ(N4#5m&^I{NEqw)R6h0i5ix zf8_ts^c~Pt|NsB@UgBoYT$@{V8Qrp1+$dSeCD{_Pxp8f`h?^~BuZ(o9Bs(ivSxHE; zvdWgdf3N%b|G(AgoMhd5-`u>8hz!q`8IRcr!k_FXym|q^~)+0c(JYmz1Shnb8~j#pOQ8 z`|(lwHwlFt!{WmV>q=cq6L$Qeg~ZsH81Yv<2Yz+8eWlYUJ_Z#hdj9+45hb-_&Pg;G zR;&2AZNK;?TxQqO|6~|9bpU16u49kw?714Szp3e^}`$<^436yA5o5$nNzC)CSApEFH?tuNMww^_0G&D>c2ts z`?n-TUBj(+S8(S`0PeoM59g<NN z<6PC(!O6KDV++3{l-oq$DNn~k0^&tT3KB~3&{+W zKo0#SCHekh+n5N971&EPgz?Odd~Fig2Stw{Iw&&o2RT$oeF*dt-?Le&^R+Mp5E`wx zL*^(vTOi&=ZM1?vt{xjg2z+=LnU;LuVu;FNNb^}EZ`0PY<>@lh^6Qb2yfWU?p{e6O z-awzzg<_oBuaDlV9i?N=o&hHsD55>6uYJNLo0e3_KJ0b5ePp>nA-dCLbcZ+iIHzo! zQ>N^E+r*f!53$VY`9EDLRz@8S^dn&q{4tZ)xgO+xCT4jO_W7_Xc|GtDIE;51_k#Be zn*T-4YV7VU1)sQ`(xRVoX2czSlz$lRca4c$B*yLoTbfdihheRnyC9QnPy~%tj_lR1 z%p+eX&9Bq`Ih;S39~(OeK2td@2N6U^;YXdLPIP%5D54YN;I))7pKmcjD2(OhWVgnX zT~4=;Qq5q6vaqtUvcF&JN}Tt6+YT672!=Z>z}L5KjK=cl=P1xI_&#}JsPz_@e<5Ed zoniRXb3g6^FGmCLl;G^CKC*_Aa16u?tU_|KpJv}s0F&p!|A(>{T{Srnhj1|ZDXdw5 zNWBSb(rU2Ru5tim)nizDo$Jh+j@BCXf{)`RWg{9o5zF;P7}OmTb$D9e1nn1vriXTG z;tBwB8c-<4gP7C*aoC>1_jM3NS&q^cry^be`#PYR?}r$>ABH0iCq z6Trs0&Ja%qz8$b;UF(1HsN#Op&PaNV+r&yeovQgLz{B^m{{b&JLVoH6R4&jHfe8~j ztpFgef*S&SA7!cRz}iY^0Ay`A19+Sb$p!{mXco0DIg)bu(E{QkaF~KDKrnYh(7+%Z zT2`CdTApHgcZcCw!&NLqb!23C!rtxV*Bi^g*(Cp(82X2h^K3(sj#4}q358F8$f0d( zg4~79LopC`!yZWxMyz@TmyU3ndo9PwU(LEi6y&4m!=TRp01B&{mG zPCz16;F(ig?W@;RF;ZxJA1zNRy9J&GS^J3#5X@q?;-w!q+V&Vm?2Q?`Rf{f!l9kr# ztN17=t6rxd&&NX>-{^?UpA}N|+g$H?f1CrPp#JOFewj(Bj;JmX&xqcVlKwAWN{D5S zxN$@`K9qrp-s<54#ryD9Y9=N=hEEdv(1Tn{AGNE9arlcH)riYQS>Fk+I4{g-B31)X z1|3fp-DKM)ovy5%5JSpNPi)|X^OxM8vunpw&fU1fe<92DDbm)^EHgv@!@4LV19Xy` zrvo7n`m!?rRy_32*V}MDJp7!yhIj#u{0CtZzxAI~l`LACNHzq=C}L6Ew*`RUxr-aW0=IL*Af+3GTM+#F1 z(`^HXO*-)}9F#zlMIO#|%5Gs`ePX?8Wp({{TSx^*c;)Hqq?{T<6X54puaNDcCnWM2 z)1Yip_F%ZOdeu;3eWlb$Z0KWEqd8{yujeqmK>DJ=&mGUSC9xy_H}=beMPc^1S%&%@ zKYw|4y|mWjl_w^C0?3OBvhpc0Z)P{Yhrf4BHhWGaDxc2H;3j33Z!(y)=_- z*MmQm66-EHZxZU4*dmLMl0VD=-C`oA&HyBN$pp~RVQlWPG^^?#0H*Olbu zO;=*l=f_gzI`5v$%~{E(udbM-4J^_(9e?TND^XV|wqaiKGNp^5Uk;lJTK2{``^(Fj zim$22Bd!Me?YUMeq4<}#*7`?;jS3PE`bYW;lwLw!sT{P%8aDnes#BB;_^tioZ%6d9 zlq5d$VB~1MS%OI&te+H&zfaWIG1r=pjSc1+|4C>c>sfDPvm2Vt8!EAjseEKl!FXPW zg|Sc-?X0!(HU{}xlF^z87yg>%;vyE@L_KhfQou71br(&@AoPNh`Ilbgr(U|NDBK$? z4f0t+8zBH8j{zrbyjVOG{*CZCqcZh5mWGiZNwz&82MNh$&P_CcYhTL0kWyW^6KyZv zywlMm0R}c_`{YjME+7q%%a{f_1=&*?=o+FoN{$h!T5E-ez$7znP<#NHfWf-%tq`0o z{yfm^ws52AE@q(c9{dWu<~KeQ=qPD~$NC}iX)466X+RSX-i9!c^R-NqbL?CG;TK6N%>P_iB-q(=uD z*drPK{7bq6vQk~s7M6yKb--EY&Cug03`pGtnFHfn!;V!J^U1jEI?wsK^ns5jyQ62*d%^2TY;J+8 zeKLpEn-XVYXTST5vqJ1!Kv$wnzOdr9QHGj2*Ohlsg>e*c)pL^K4C0a*o7A?oaop6O zAj?l-V$~MhDzf|A2?J-KFh|8W0{ZrGnn$0MRPP-Tsf_^Tsv=sc7Mas=@BpLB1k$W70UkX ztuF&~G?A*M_m2p~abfKvqxuFd(3pc(nKei+H%K=k#U25o=1f2vOuXQGs%rrA>}fEd zurq-#CODp?t}zr~2G0s~Ji=m4j{ZYXo71G7{$Xb2lHgO}LPOltUBnVASCt zIbRxuqvr%wxiLG6ynVb1>FVV3MSP{Rp5t$;t|T3Q)i{4q6jHYw&I&fmHm) z2!vR)U?+@f3nS6ZcHTJ1C+*OlhRT|$fK?EG9kh9vv{@U*P~yYnsNo>mqEE%(UM5js zOZQ0%wqc+(3L|*Y{(f%}&Y%i*ntSS6x0g6zK2rQ;j`(*DE>(gkN5?2;t%@dIPddyM zep?hs&#zjKX1GUdeebzkW@vb^hjd%^W*>4-TGant7-`)D3xiZ$`X9iX{D0gL*| zPw$HR&lx&qr69PXF-aN?#Ar0J%(z(f*IuB)_H4JUV){$>sCcf${0MhS>R+)uDpHl8 zsBr1h+m50e5quCDRN`;fL|E52mjDEY?E9U5rGocp?P#atMy6;xoiS6O8EX%av=S98q2HFW5@yW?*v zQc!jUoajH8UpcBCke*0eER(rX+3kESEu(Z~LNW!sWG*V8f-EZC(aXF3dgg}-`C*-r zZ+jy?K-! zSO8!0*6mR(?2ykM(4*JQ3f!$@S*BMxDT%95&+4sSS5YMAmv^12Z9-+2jM_U2JkS5U z7pup^ec8gt&h5T9&VJ}F25fNC>axX?!!?D9tFvQ@Pcr2abgK(pVRh^?^_)AEHax%;n*F(PX^nd0l=n~9eI85~bWSbPcLtDDwc zqkEou{v4z&ZXz=k+zObaNwgbjI=~a~=OGCx#jNKT)V8s6NP{nNSR=1GRd=sZhL`S- z?3OO%Nm5Szr}R%bgT;reWDu_DkRi8z6O%Sh15Uq`E=~oUMB8UI%1utG6Y*B=&meq2 zP^1bW3#G+*;T8zgQPdQYs*u@dFr}|#u-Xu~^O`nTdQb?Ub3Ca()8O?Xl<>u0HqirJFC}(G29ec2;j&&Wq#m&q5}sneniJh3B^jFh~e0q7|;o2W|xRab#p+Gp*s- zCv9h^yrk>pWDx|&$1PQ)6?{b;=jkbn6+Y^+?-T-v=d-tFPG_KfM+AczervNZ*x@Wq z%Eu8muLoTvFAaW9W>I@g}|TE?C2s%WVP1xpbA*Dh^IiC6%MXc z&|YS3_w&ctSZ?NO9e^Q#dW;~m0SJ3I0Yu`n$;hTj=m7Thq)a@3M%#(0P=of`-sd18sTPTpOky$M?t@}P~w215i^R>tP7gpqh%NIbQYAnbsgQ=oDM+!kh z?3yl@mPp`KCjxWA1)1EScC;h!qL2oKrCK6uKr|df3lahKq)-41o2N+xHJlTCVbY*` zEJBhlIe(=P2dBa|^S&q$p$~!#mjGpLf(B0-dab|LU83Nt#;6xb(;Mw%Y+Rf~x@5uT z*aUObWQ+laA0Rd|(1PcdIgOL(?9ZGc0;pwa!z6-%7Vs(~fCz!4PX-UCh}bY5Mx<+l z`MJzpS~^4%f60zm}ZH z)Cs@;w^FL0@P_!$J;NwV! zvhiWR3XAegG|}-IM|64`7aV%?&Qv%9#TB{5*`b8o#7!SXj_3}ZHq5zaSv>+;eAs)B z7;Aa6d9ZLW$XhLlYDAnDdCFd3rNpJ^3p@bE6=PYOMH(m=b&DkT1!`kz{#)ir-Ho))c3=l!HM|N^IhT9`Cs{>84-oku#}pf43ycqO9>!~ z@L%P*)YcC!qaIi3#v4@6<=Z?TsG~m-J%5qHL0m}FMMk@3p@_McVXQtYtTjSDs>MJ+ zwl1~dB`b>nH6)iP$x9YiwoVuGN-rj@o@d=s%{-6D*KI_-`l?J0b6ra$Bu)QkbEs<9 ztD`JJo5P$y`Kvo3{c0@gMP!|fB`r@so$aX{3Z3n`oi-%zYDoP02;DL#1<)yetNz4~I-%%2G&MXEF}=X10UXWr|z;!t(3R;)2f~WTuoA6drc; z_s67O85d{c{LUq-EdL|DUt)bVE2C^lzK#}?^u5uv99Of5!R!b~uq}Ucf?Iz*o&Ez% zD)yCEM61mt4DJ=wAO6WZa+?U6sVg?7<56}0$us`!x z{<_y}fA585aKe9D`RvgkEC1=*=+uw2{w%J{ppCIb9%9M!E6IwoPg{0;zL&kK$!gSK zI@=D>8-He}nB=(KZcI<+j>YYMLXCcK!H#2?%>UeKh*b{$w?v&>#aWvOMp4ia2aHxz zQ_V-iCuIYR1P3Q&+IOO1V#X3)b;sL70}Ww7nj#X(f9rV1)wsgI}u0<2;AN2b=Nk3k4 zG!nWG-D(VJJJ=fVM|tWe-ytL^Jg#7Xg{r-5xs4IykHhFN#s3yXk_#e*Az_U8_cJ6; z4HUK|Qa{lh2C;a+>jHU44u*;?xm@h08>I|?C21t(JD5Zl-JYrAOtx&?`4lP9m(Rw*FXXE~`uYP>jC42iGupD(q)DPCOM=$O8nQKW^S_?1l_*L9bG&pQhQBX)9 zSX{ICA~{BolF!vmB1jfR!~1{e3`gOf`I{JX*RV z5xA9Ee%8Mpa5e@Oy^9J{7G*I(I}PhWTgFpQ=`B7;h;o_xua2|4jM`-oB@apWf1-t^ zWpICbo~ARK9}{zJt$!D&OMIU&ODa>^A8bW2p{Qm z%#MTbSak5JOi70~9X<0V~b_<~$O0>wN3h51=OkdS0L=%Kj7v{)d5# z&zm%bZPEIHPVKIViW|+Jg8>&U@ETk(Zf5 zC$Iom4YW=ZQ$Z;>QnUaVXu#LOQnmng1a0d|4qy*_>g#P1xwL>SMuR^jz0|MFzc7d& z6+rm_GCbII(gFe(SY#$ZpdkR(X;MP)8jl)CaFWD1*D62(HU|RDeLv~YPyw>@`#B3( zP#2M4svIY90&YeM1rn5zRQv=2vD#(aiyIi6ZswDc2T5syq<5^K#YuoJ92M4w*HGY* zf&YLC1E&l=kqO{x;Kc$oC*+qo2AoV^fCAUyUPDaE@+ApH|C4lZA6wilmMLHB{EV+x zz*O9$^Z1oijkXwXsUUxpCQtI8=U$jLoOW-=&Qu78|H zB+3dvvQSpUpI+*tUZ6%{%=T*Pz#8pg)B;XZK=Bv z5L{0cBhe4}4FYx5r9e#MQ&Nln$uY`?AQjW7C_Qa+glrR8jl@QSDwNN~*_?AXkG7@| zGjFijN_;J~6%f%?;1aK7$lQgHl4nKUbaiRGguU105Rt;Su@j+1pJQ3Wa_?s&d5r2O z37@CC46=+*E5MITwqc&2^8hrA{R>|C;l$J0+OR_CO|OR(Pz2X951rxpN-7Nbn7e2F z$Fr0O7t8t;wQK3GwPek6*Ns-?3m6{uK6t<7(Da2`ovYVw!$sRXf&rar{kJ071%x2g=YU%s9O7Un@FUUgX z;fubp?!h(Z?c|_Ug;za*TiRPZI@((YUGI$d2E8S<~bh+eSlBrE}e+H?rENT|60yg^nxa% zn5`!2opm(af>-+(_9sKi*OU}7Hjp++c%7r5G?JdhwQ>Jn>*n7h-k`TpnBANJjSS#4RIBx)40MQIrnzqB+4rtg4*_F{=9axnpVrcdvefAUjOc?tL{Y|a0h zt6Ow?);6GWdhA^BYcee@`L44ro7hEplPeE~GqIIdJXMqxsXmLKuL#IOkN5xVTUDG+ z%2+mf`=)>IJ}&MI@4*D`%@~Ut3|~a`b`F(}<@1irj`^JZyZ$^pjx_TRpMa*6-k3fHK>{@@RR`?k1qwgt+e6GKR608e|MCt~$zP54662P=05VOWkXpY4{=? zD~eJONqM>8k_h0mAYiNd6lNZ0pj893j-a-Y=n(??Dlm_Msji3pxQnQ`HUSfb;v~7W$<0{MPA7rP3Jd-5nq{B)+g~J$BRiDM;$tAlssOj`6 z`ls1hW+Wx!A@0Wdg792VP6EYVR*L(LoRIPh<_#2gOPuIvtm&X=JYI|s3bn#}+;|Eb zcy}XLJH8f%oZeW`e>Rgri4$UqBRi+=%FA;)dp6H|wmx-sTGM>gxcQ{#*P9_1l+#g0 zRn(GT$Nna0RRPtwikZ$XE-wfm-UsMFtrw{cW!TXc1DVGTl$dBx zf7cL6P)jd7&!3+d*7T*6Rv!}m(mtli9mySbQ%wZl~2>ax*%AVaK^;1ZL~m^r4Z)5 zvvIl?e1tn&m^##RYxGpocUUs)WO>Lpl!2Yd2PB+L)dSps;?au#dSlIf@nRyNj8b*q z^cC4Hfb+oU^$fIal_M}&>*?vO|Eg2J1Ykv~vc3$=nz&@|>P4`o0(Mdlpt}Y0D1ZYn z;sN_67dUijfZo#<888!q)IFeqr6oypNE4`aPz)h}jFaRi?S}yXTl+A>S=|aUZW;d` z1tG#f@X7AZs3qkF@Z-=c?@zBdn_zyE49HR)MBqbR2JRA3@pmL;5SS{Bekl<`NuK9l znbN>b+D4%?zxMG4n(iw_e;rtb4pIEq-nJhJApXYO8t6Qg_zDVAt&9wl0H$Jg0L)%S zLb%uf%ECbp>+;d*?&>(WJV7HWV0qQx08}zTUnwaFf2`N=dVwJZBhub`ECPZEC9&{U z5V8z%7LZI2ZS6odFF;MeLX+uZkYD7|QwjST@K$g@071bafGJ{)2RI6j7K0L@f7ZU* z*o9Ir(B-WAgBy+PW!VDJ6*sr$)1^qz3^3wUA@%d)<(ok&!aCwkBTJAS(A!Sjv$4d4xK?xEOTYguNvex7Y6)gjwrj zm|W8+ka1s=e(foxkS;ce)xtNgIehB77Akzu1f78WMJlG}d7+MqVd~>XM5>J)M~rr= zFCwhIOtX@`_v`mt=TGoKc#i((kb7QOPdMf8+~oxFq9lV$XsVYD8ArJ^Z4UlC3(VRa z_+Q%GY9D<9gg<+k_t-|Y2%oDE?RjMR&&Qt{t$%aW)QGP2d?L&S-9Jsv&Pgu$tk@pO z7)3)NY(?(TGLeGhPvvBklh@E_=7^zJT4Z_FKwof++lC4r+7!;=heJW+^nYcEX846L zhUa`X5ZGaQnZuINT_FO=i9gOYQaxFd$srdP|_+Axde(+Ke6gRDJ>g_ z@GBBa)oy{UT9-w7{e6&9JnrB`-CHEa(CQf+U=taW0dkke$P*ZUy?am-OaD1uBTw8Z zO}FlG*v^+%#qHgj4q%@sXk~;Qn|Q`5<2XK|^+HNZo1X&l*HK`IVh(Z<{o#rqSdOgj zopxBBnKqdIUFfqn^zv7nc$+?yHyh%0)ILjTXl!|uR33aVmRVU@`C6GHI;Z-(lYO#MIcC(pWb9p&E;^jh4Q}vd z=JnUg4A%ZR{sFB^n0~-#4o6iB0kZKf#>3v;ez?k9rYM&sk1v)-ss8HJ&+&0NCG!G# zzrR8W9!9I<-fs3{1s|4v4!<96wTUu!rH_r(*l|#vDztH_A*PAuZ+F}8Sq7b^8e90R zO&9wo4BpBdDagpW(hx*TH}-dXqubx@V~T<7-{^-ee%xwb^-r2rj>l|2X#~`ZDhzek zOx0%+nm~CKm^d-7P0nY9H(~4<`8#aCf81EvDd*un{o5IvQPI#)xfEVGtTjCK(Rcn^ zfMeZU^&PInm)%IKSo+dywC21@0qBrA?|6@0qcZs?FYh%mi z-NA=ju_m9QmyOo~JQu$u6)y+Xp6wT}Hcr%YnE!0t{J03fkrB_q4K>N0#+GR>hmSW4+&gun! zej35+YrQT!%OE0GP=>!~KIJ93sNHAD9jqs}*h z3GvO``$4y$W2O@SLQsuIT zZb)0{mi0bGzy6y4wpwsDeZUMv&_&BMozmH$wfI6F=|fo-i#+K=IWFPr*|0Wtu-Rw7 zVPv7yUs{=XHU#g2*6-#YbHX zf%oT-U($pT05nl?PK&ibp~g8J3@sCsYEYIkcM9qjS8YdGh12ae`qNXDecohq5J3NN zH2Ed*3*1ZTL6wutTLWOuTbpbgr=M6`+kGN0fFyYf<+cOY*MJvg6+|FlFhDP|$%T^9 z8LB??p>qIJH#bEH%k}*x1O2b)v$z8O{k7NLK6H`@UNoIL2K8sB zYrAWfptWVN=8Z(7_j38^oii@aaQ&w+LaEdEytR3(Z2-H5>NxF{J4xSu+=WI_KaF#5 z1;6{x>uc&I&QN&fXs&s9`z;Phoc2$hl&TyiWPisb7!VDjE=##j?MZFy|FSjG`Wybw zsddhplf=Tr! z(B8ICxB)Q`SW$wZk#-8~Op8QO#Y>VjZjC!5r>CbOl=Q%5gAE8^dX@nMwP0f}9cE41 zH=>G(Bsmk1*yD`Bz!=YGV`saj4P?iF#zp7-9o zi3HyuICPN8<$zV^zlUu%0w~RM_=Y!#P949^j;b1q=A9j5l3A|G5S8K{6E|#=6bFm& zn<^GLI?ZsjmLqUBy6NSoU+CKfjA#l^fsoYocT> z;~ooizQl-S+7OfYEZ^2Oa`-)qOULY>PZYLya;NOe!YgVhT6UDauC`7glbO^^@#T4L z*)ni1kD@Axq`Zv6l$OxH2;$FbHF7M5)y69UDE}^e;O=Lv3LM`%`M@I;&so|q^88Km z-q&jk93_%i_s48^oWchk&|a#U`ZQ?7$MqveMKvwS_P8s1m%3baioUxn!h3SS^XwX<>dtuCj^&YS68T%xhVRHn~Jbq?P3A$Q|wv9MNq>8gU;TP57jqvbztM zTn|rFrMWG+P9H1Qxj8!;bo z4#oy6r>}2^WODH~ZGYNv`*^YwG;zAdd#s{hTo%>&@NS=+O3;)2FJk57??H)7(Y>PO zSe26$LT^B@zdug#?L(0D;FVDQCZTD)p*7}}ed$78<&ar`zyEk20<2?P8mxtX+V{yb z47P=n%$uCUAo#H}!LHF_ZDm#bg1z~u`Om4+hYuu-T~y|BZ$-F_^JHgfYvkP>t~HsO zzmvS@DUv-=xA*0ajD`Q-dA+IN;9%T%3C%(*eX@%7@6^HZM#*wzWE=wq19HImj9_J!^&hLSe=8-{f=;K= zi1Fk-9v%KFGC}+83MX zFD`X-?S~q5Gai+LB~aJt5!V1z!ZCUh=9B#4vHRmTDx2Mx@3MFc$OsB=|DcQKec)2P7-5DiCwAb^|# z+)NCwJ6SLARV>R}!x9L!3Re8&s39}LEv!oVh;jL9tY)7lP()cgY2*-i$?%ZeY6;wC z(D}qCbXI~bo`3r;lY=@gWJSz*s}@0>s_UFe!Lth>Hvl_35=nrn@xgvMLw3+K+UGCw zL1}C?!~+=lStVTfCC z{@csna7<*^uWJuu)KuZJ_OS0ca2rZ4I^kuA!~$7YikLg?r6P5%F86bcT<)E6$d;b5 z_bLyLEzcHJPAt!2gAe=tr_x+jS*pgI?I*kf#e22saG(rDSxG4gVOI%Ej$O7_tw9(t z$Wg}+JA!kOVtSu}md?<3FQNh8>tBy>19FjY02Y^&CQtpRju-k*k12!yX-*yW`x{HF)1Le;KTAK;P~yI)okI@)m}3q??R6I6 zwEw=+-MR42kV`bTBUe>WQu3K5=xC+U4`I&u2swxT3N>=}s8?1x1aia;mHpVWNc~uH zgKX-T2DUX#>&5cAfm17xPRFuid4(Pa7fCn^{*Zzb3RtGB>=>b{XgY5kU`L(*P@uq6 zIoU!HKbrx@ISL4HlS1lmfFT$V!#{ya3BXY{N$3`BpcS<_ftxBNE&+EeSgz_}0aoSWwS zk<;8I^KNEsL01nfcJW~IxvD0GDg>}vz~UEircyY4*{Jez1M^{UsZs{E>2DA&g20K@ zjgL>go77)Y(pu)}tM-Y{^c8fF;`|G6wx3R7vps+QsVdy!!L1@wn!D#M<4y9?@6Yq3~mAC z6ZWcXeXRZRQeeqL#G$vtXbc$P3_ZKQ;kZ$wq+BluO&d5-C)yN5bQ58}Nn&AA9#54*F zEo%yY&%3qayB7;#k$H@Ut=Ffm$q6rEFv(m&A6014Z!RggEu8#m*^|aw_Ck*{Ex3*7&yU0 z)(=dc-t^+HBV_HrtEedWd7BN-W=1Cae8Vf|;Kw|rF2|fVi0-&eJ?vFf{C&scTB}WI zu@UB^sKfRdgDQnL3%+3l$&d(;y!hF|5%9VlxK+f6+LbOI+i}>C|bb7K|^VY6?wu-F0{Ld_Dkpl7M zrR|meQq#$!qww&MF2^cG#Q=_nB|j{GrADXUEm~^-{Y2VPFwbLc>%CiS{q6^s@kGKe z*_fQGsnMEwgYV53FN^Byzx4F+c{2NHZDiz0)zU-mYkLX`MP3+4^hG=q}5aQbCLv_sODzm5}orPLL|nTiU> zhnb@tIydu5z5fjTz8v~a95gzg+FrAhRW?sDF6Rl@saj?@`O6lYb!7ymS;9JRTxNN+ zk*C+V_aMw^v<&zUnh!QQWA&~WDrUNJ^JF4g!uBR>>oDiKAN{HCs*nuw^O3kVyhEL= zd^FzBys?AJ_45OQ53dHpi&P$U7OVYl8X6Q{ZjE(srn`MK&_4SYt};0>F_G$`~AK$rfrHcM1pgxH2-Z-y0Mo!#dg^=U80!OrPdYKywlQN@vAgymF}0`}V*oA>t4 z!gus1PkvHv@Sx|oQ4$x#?kzUzf%2c^FZwd^H|$2f&k~7Y)_h3klrg_Xqv68GHc@gx0PL-kT#`P(>WsK@ccVh*n0?7EoT< z0wsSK!obQ$#-3&+S9+mXNN*r!;B*|Qz0THyH}sb6erIrA$1vyNE+IwhKyT)gNWzHA zS#&nA+b_!i8(-nj->t;~&>Zof8J3?MQs5vmzrXKOaX(<)f2sil@c(nZ{_(4MgSQSQ z;oI4MY)~`)W+-^wL9IA`FUtbN8NR;(GMtd0Fa?ayS5epHDM79w8bs1V7&j>_kjNx$ z^ga_w*ZZLrG@=5X6QH)ikokm60+h$mxHX^bKBr~_35d;SC(Y#3jS6o#`9q1s6yIAC z5Gy;(IaM@ZtE-_c3X6@DIYd$t;k#TSm{&mu4oM=TB+6;<_1fRtYOl{D+qoi?Q*Ipeh2LaxN4~O5o9$jvaI&9*OUiLt7 z)Qj(R8+(9y)-PYZ1E&V;DiL|b4@awz-)KWp83zNDaTE>}&IcKZ?Vf)FfBc+y`{vuSX&op0bBZ)8t`OlUR(`SyGImdq3F<)6n+1>41|2|- z#EYW!qwn-2@}G|i-_P!0PWCE{XR^H;-hTrFVyAXMlIJ}gK>}j|9~(s@lb*mMF?`-3n%^GN5@2@OZFjDweos+y=#S{f6$L>eIw76vbH3{Ww5HwEhJWUQT^|cG;ZkNLRV{4M78D{+JhjaV}-M|=Dk5ZmD0c; zsnOksqh(XJAnQrlA|<2rm8Ji>F8g8j@!Uh+Vr1gIv!&=exXJoPv$C^wm4l%>pe@^r z`)QM&kdVDw)4{?ABH-&xy97i)IqO#8`Af1trm}~3oUejOx_EfWDwtk%Jb8B5CjMw> zUTvmY@Lt~|<*9$l`Iptj-wOLDW7Z}E|1A_7JM#V_DRQnzo$3>->7^6rxBj+<=S z(OPwo=jN3d?P)TuyjgR)Unw+H`m;AngFDTzCyzYx>SC;MaV!sS^X8YE z4{)q?<27!)%0bQshu2u{_xrjvDX?Gf*_}(!;|<(XSU*JYC@KNsLU;Ie(7|Fv}LtPn<5cM)3U+P?1*_Ot3sXY#7(c_QBRA{$^KlV@P~ zdD3sT?|WJDa(h6qeN%I>jj|D>X|Hiz>Hzze7u=O}zWd`&mRQ#Vbx(Gkojknj@0U#n zU@%=wO3cpknQ4iewT$tvrFrzSYl>Gn%M<@_%V_Xj1=QSnV+Hgb?F65|B3C6Fqi_b6 ze?Jj~Xv-O6lCZjfkmDx@o=YhHli_eh4OSl%gBXtG{)ZBt1gluDnZFF@aLts@ ze7{1CW#EZMqr&rx2-e#!HJ9l69Ac#eIcB+7)deM6Bq#U=3AmGO0FvV5xS8+6*-jyKtJ|jCzq10S{ZdW^swgXr z&i64wUTOR0%YaI3yN6Ff8CaKv`R z4_sRJ%SL;=dU|bz3v5N&B)>})IralI1A+(8dc8-=*6N?n7_W|&@>>V=A_N|h`ZzuV zJFgxkwWy7@NyJ*xFW+x-B_sSnoR-Dy$xP>>H$kX#{%bS}Dpdg#{*l*JaXmfkQn zEs@@gdmPakAd=#jBn^ldsrNp}0mO2@+`1Cbc_A@goYhYyJUD?Tx852Q;gASJOQ|0WCS6k#dd*$o_ zVs~-99-mBW^w?TTmywvN{b-DNn$z|*Geg`kHv&OCSzY}reD!kjhlU1jO=gC}vH`hD ztj>@-TvDv=$lD&s?-IRar=g;#7tNOLtXS^+Fy&u#vr-T6V7E`eAd1_e9n3ndMTPdYwN9*mKb<4briJz9KG$V~G#qom~4 zk1-8y=qJfrBK`h`tnjXLf%Gsi#u_-r>h(E)ypF28n$NIA$*Xd_Rudd3?-iL8_2zW9 zxZHd!Eh95i$=o|Ua;V+$q|YtL>h(asl2VM6{K79BaJL`!rOU+X8i7ljbJX?Li$J9( z6Hdlu&;G8>cDiT{WUDM6O?v#|h~2I37$16p$jr#lUUIz3T~K{FY|ZD7?zl7?zvqzO zYXP_QwW3$zv`C}(@986V9KEU)e@soJx@BH@z?-69U9;FTFS__aCjENelJkW3YK}=t z-9Vd-mo!lb{TXyzH8;4RvsD6wP0k9|1Dt%Huqd&$ize;Fh2`GUzx#kotldl}Lk}CeYD~DBgWZcY-wi6_bisvcU8)q|)HZ@g%EVXiQfB(<5&kLKC zi$beo&i)qRho5$(_v#*}Nn|N{@Ei0Ked_O5yBtO1EStSOaKYCORw@T#Mpp;lZw=cH z3jBMr+&7x6so5rJ_A$u!<8?7R8jicif5TOj%rC!?OU=m2(h`3;e>fa6=8P1ma#?-> z)aP~co^qM4(630B@wHxiP!6QOmUFY!+G%mk2D5ZGYVdiNvg{&^((WB|r@MPVzowla zPho?ktFwIh?kN|*y^C@ z7WGZJHe5Pd9=y>ye$=3#IiRO<_-81bo<~K+oc4?OwMl=*J~`$Luy97c#3GUFssD9b zF1|?Bd0WI@fi3fNebB(kh6DF6-=kHTU2#h^Yb%xQT?)tF=f?;?pkZuqD?AkOJ{4wV zgWq@tVK-7WkwOp{*sItr`1pNVpiyiHyBzWoZG{9HVFgNWNqo+OD0J1sfBlZNQqxxb z!VHSj)-(+L@i2A<0MNY<%6||VM+5|_>JEYOF<9`mK%VZzd3875(-i*%N}baqX(Y7; z2!qMi;Q#Boc2i#S?j; zab{fXZM1DIy(U`yz7-E>)psY2F|2A<>P#jzC)sDsQ%BuEFgRble*CjMV6Xi2-%-!} zVNKAoOl1DS?*965zuUc%Tt+i!|D^=x7HyauC5`Hvmp^<{pe2h@Al-^in95ETz$_aR z-#b{30M1NnZ{^RQzk_H0nonk?Kq$uP$XXdT_w8&Ek@%-iTPs2egjygU)SLi|_1Vu- z(@r6wp}*UI{`{GqZjnm{bIh<8ttx9lA_$(D_dL)H-qzeY2>7K967G$A6=~EhS145u zi|_#EP{95O#`zu~hRT>svu_I6yoJ>yZ8%Bzf?EqO4vTlGe)S z1*zT+d;rK~1aEHvPZ{a33gpTAGqHWsO4%2YfM;%`=T9;DVuJQjCtZugs{lZ4>^h^8 zoyq=>rt^TN`v3p@!yrB>z3JR-nOiQ-_{v;qzb~_$wZIxaz ziq;1A!=LBVz(F|%)wC`Z@}K%3H4+q1&_hGA+y?EhamrsPp#ftU$d=8~E39pwpX;C| z5uEKnTlMd_09t8X6a=i7bx;!mHBBW&k31X#&yGrg;B)DVzf4R{GeG>-D)he&?OPu0 zC-_ILu__n1M7xM&bF7F^6P2onhGE>$rAtC|Ay|#x%LCkWzzl#5K;+*YdpVW&3JXOx&ezaS zbUcS$qE!vl%+U9qslgLuXr}b`vK_uBFByTn+rNCDu}z;EjkHMK>wi&9a-)4iCX9{W zb6uTxU(AGyCX`YLGlejbQL_!FGjkNqV*_w`v6#6m=16ET3@W5clt*$46=w05I(|MY zM2YCKpeZtlISCRZe68uh@3Q$v+ElLan$E8_Ue`F}qxi0#P8blYjKY6(graH5c=IZ8rn8s&BGk-DK7&@+y^0C*rkvdbdI>G_hy(cK_ANR49&tH2dC>YE- z;*VE)#i(yhw4bw|LiTmw4ImFd!6!Bw&=h?klDMT-PN@kk9O)#QmRz1 z{gnc3kM@SuXaEgjkKg0JCX070U-*x#ixJnGfH7o`%% z{yIC6FSVx5UBNR)jk|HnseQ**Nhm!w_UUHH`f(OP*8hY4q&Exd&%wKsZ(!W&y)!?$ zkeD0bTYuf5I4S()pJAyjpeQ}vSjc5%mv&Uf4e?YykdkQKKQKte9sXw}O(5qg3N?I6 z_qX1<(N6sf-+{fitN+RB+kl1Ifje~Ut)2@+w|F9@reA=euYt4PeGP?^dH~WvpKrJzQt^} zfXVFaY|{NtwLGaq_WG4A`!80HIb5)bYbn&NFU-1<2N(P)}`V`u?NKz@RXp1-|paZnVk}*N2Lh zil3LCBc6oVJd}vXxA@G3RN{S3|2&2G@9y9q%LX2FpWd-9P3iMtXN!=rMp^9&_GG!q zenejl_KMX@9?@RP+M`Cnnc$6Xd8-1sW8-{VflEBV)UaM_>vd^bj$y+TIt9@drH8+R zsDbKfjkYC*%ty*~K(Oh=3`sPUs*uaJ`Uom-IVdrcK$svk*N3-Fd_o^Ok157GsP!=U zV(+e!TQj`s30GZ&+=iWzf+QQHprwt9y#Spngcvj|W-Jg=q7DJf1CS{7D+qd9Ak1o! zx?+|IZA#3IHRUxh%95j89D1v|oAZjdc)ErQ`e}n_p2}38jJu49TkeXyKrpe9grRKv z@xjRX;>gRb{lN3g_U$Opl9FX;pdE5!ACL4^6`7+=>EVgy=;}ETEe$ArK3f;8zHX*$ zFd)^?GLJ@KOTL7=bqQDsLf$XdZH}+s>UeYo4A2B6A3yy4HPQO~fc>=ck^Qv)-jI|3 z-l^<~?0FpBbl}!$Wt-dYlkNKR+L@-a9-eLJuQ`^EYZ|wtdLf-;`uvhWt0WKOu}zc$l~8P0p&rP*Zy4KnaOEuuK$Td0*LGk$&6JdNfLn>M!VRx zjsDGE*v6Y2CYMx1m~G1}KQL->4obgTdJEpIm2RN6Gk2%DUqo+)Azw zxxbFt&x?UZ6I4f#mI^wsOy=Q)0$|RgxtP3_P z?AnF&2&^sA4u96#J8w$EbQ z^cN8UAjSw3KnOaVe~t$H9r7`VW`(r_qF7xblu!~`k`9+Z-4cS-?pN&^j`sf52b&e)rX|XRx&rV`jgp3o6;2ss zMNv!N2778=;1pMkHm`+ZI<{%2gD3(j73z!-RK0v;+V{XX9xs3ah+3Qs<6qA8qTz6EL0-X_FinAW&BN*I=9nwk zcih4SFHDhYV|2HcW~Kcx4Bq6zL!{_afdi&_OOmbc@VH)x0##NB_AL-%3DZWu9*Q!S5nhUJ-gK z{xDM&KwOFM^(OK}kl(Z+f3zxO9=Z<+ud!Ncp$S>8eqQmb{NWTne9xJ-F^{4}g#r_C z^-+4iUYImAa`tOoBl`n#mPgLROtG`ld5{A3x9fWX-)opZt~PBRU!Cr5az(vms$$WM ziZx=o>u10{*Z5KPDULJAt<7f*#DR6)aZsbXKD9rs-Z|}W=Op36 zTH3dFI5sgMkNR6*XTAi85KY(0xPqwHR7zN|9M$dh7NLHRY2)G|OwMt1AGbtl zlpXK=T>4i2)Ije$|43}x-{I1)&Ena`NyC~s#T#eqeQ`^75KQOkGxU}AHe&$#&|fUci~ zrnjA)vGuR*9n;lWPbTkm#g7~No}9c(7RdxTKpR8L)i!q$`%hO!z7M|QUhVJKxz~QY zT>F%k@B3hGpv%_V%_kG$(V8PEjC=$(qn7R2GkkU{{?b#r?+Nb&jS2~sXY>51H=)mW z*Vee1HNFh3kE;~;u1>aX5lcaU#~(}q>@r-UwQtdNX+?NDubC??_l0MbZe}+}p(-+) zSPu0Q_6B8~P3h<5EpyVa(QKVn#Y{I?fh6)*YrTBQ7w3QOi*)P}@Xv1rjEZoG!?~44 zCe#%z5yGQ1(*n2A=Ebx(4XjqJ3yye9d=^sMjywO@kvmKVp7gJ^N{nk6$jAG-_`-KRfoC_Fw;l_KRiepeFUE zQcNR;YYm3>U8C5>u)KaFfSnD(Fp?oUsZ5EWX|VLW`W+HPd0;eKO=7N3%47q*$+SR9 z#`cRegpiA4sA<77Y+(x8>a?*~D0v4Y1S;(C%W@CikQ2RT@qqe=1$L$YL*z5!8{V7v^0ULkU3I1Vb*N_ zv#-VH+w5nF$B%RT*C%JL%n~MJ{ZpqOSK>I$ete-=RT0}Kgw)B%=B2QTP_GZ^?G@&#CgG}ud!nhLj;?JgwOzD zAtVW0dTMpPOQ>`bYw@U&VPKT8Zv^ZCT4QeYpwoK)>>&4iY3uCH`PvvEXTL4h!}ux6 z`S!D2m_?RGeU_WU{gyvth9-xNxl)pnERSykctk3naY@PDm8rT-0GNeyvV_mAu3A>< zp9}#^B-o;E8ajp3aI!R2ur10SSDsf?*VD9saozNVR2W^v4{(B8tzhgw6n#L7L7~8e z7ULFsAGDHSaNCFN6D%!BH|zShJiNdW-R5jjR0OrJ4M2=8!3*`kDR>B^e;f~kS_uyR zfJ5ABjg}||gW%hs%S2j&jve%N(|$x?5)4{6P(_F5NH6x2z`Fwm!C-s~K`USTzzC{n zTWEGyc&p++-V-drL7*lbtWI_RDWQQ7X&RE?@XoehqDLGgi-N;iyT{JF5~%V(zzmp4 zs4H+h0?cP;vn+r{t8>sSLegafHAS4G7utz zNi9lvZ(3LwEd0Sr_cqWrfo1W<*4S;kjgs(%aB_sZ1l&*=!z^0{uD_1uBD-OCw{AZY z&V6K#STPzEfyh&QHbN!ScQ^wy$lDf4DZ8h3i4T}#j@!1z9E`_7H^_b$khw=}Y(GOT zQ&Zw0wR%Fr$1vCp*MzL6rG;;S7(@DcBNJ3t*i~b2`#QTEIWf7( zc&!^q=;5J;jEhn;(E|Zn>cFk2!q)-Dn?_S!d-q@*w?Gl?#TF?Kzi7SwGd3#rjxJND z#D@@y@HZp&b|9k}sZ6<;Ik8t*)wyG#@t)F`I7q%fKmKe+?K%58 zT&&~Ee-S@A1m#JXp19_IHhP!uM#7`oeUyXAZ@lIzoOw_b%%UimWW*cYi=~-;LkR;1 zK@u`J#<8j>%kJ;$G0yh=^bnu1ymUCTYdG`w4qA^Gw_70?BZxNBINad4yBZz0!}J1) zMJPu@IIQE%TEB^4Rhb@%tW4D^E?ZbBI{HOcq%J5CBE(su?!9#WFj-NjXiINXYnad(-%M9~_+KHrLeF{^@4i*VG(N`y}AL1;Fy- zmBv24-Y4U-Ckdp0dq9WQQd8nHZqOH&mGQ6EJX$+#X6Pu2Ddlr?GMT~$efiqYt;e^q zS(x-wE_OUB@y(_hC(T0BPKi|WWE3#5HZ$4X=tX(|-C%xe)YLHJEb4BY`(=7Mw$i3b zoMUzRZ>-zghGl}=SGSxdN8{IuTm5~5celK}yp$H#MvL#vHD`=0KC*x!TkD_J{el?^|HJ@uC0)FwPetnm&X&o>QSU+5ALU`?|AG zu=4mx7lb8GVZ3$k=RHda<1FJQU#liz-8ANICUzMhbYV0Rr&av;z|h@z1^cV1&G!(4 z)oC7<$W$Ar`{L;3CF@nL7QPDXK_#%-w>VqD^dXgk{*aZC<;rPZnRoG*lGEtn!cr^Z zAKWy-tmy~h7DSO2^9r8e28L~F{b1*bq5vj9aHa48Ku=TG;X;nmlK0hai|K4>>3#YX z&qR`&^2bdYe`jy`Z{sT4*yO#P&)0f$r%oq|_pd+jsWYlDW3Vv(u91$dX2NhjM5Xs@ z=;5M=W9{?$#~>*K+Vbz9oM0^t_-i2dl?&}te;LAdL6XCQDw{`lTUaTi8@ zLm>LU6%M|QzOOB{(S3V<2HIgMZTv!@!j5jv+3m6FWn{m@Dk*$JK`Q}tFBGAgQ zZCeW&&8b$*78^~PSm1`l0Vi@d(-3b;;bo9shB|m=kRnF~Ac}JbzZbV>SATDWKCE~? z0q}`mdfbVs%gzoa&dx#Q2JUd6YdD@cIs!JolLe`I$F}o7l|v(sUmm6gt_inq)5?cZ zic1C)6EsPbiRcAvhKYpcFA;K3uQ(sd!CXak8(x1%#9-r@nK3IlL<)Pqb_yP|%bYf! zPi~z}pC2D{gf{U-agBb(LLP-E3{+L+CIjuW*F)2hS)`5g z7188gvIl`&TU-2Bqd-_}gvrr2V8pG|1Ji97{Ab!D%NUToCIvA8g$vYK4w7fOKwIy; zpH)+0{z%b#XdDv15Uc=lAQQrS-n7I;$RMfXXKLa~a zLab~Q*zsbTOG_H}Sm1{v|B+s}f{YLyc#jwmAb{NnmV!JVkmzL^6@X~r+P0i3NI#LH zZ|B40jmN=){1&INn-?(a+Cgk+{)Oyt-W>zZAh%%<5;SOU2e20(!)vpI%NwO22ExMN zRsBmmxXB4r{Wmxb-S%66WjJL}V-Z5pCqc)3sO~Non%0PYLtRx7xv5^Gp1EL`%6~;$ zZ!|Zuih*ho$ORo@OG_sW4O5F0Z6f64o%iv0UK}Jant&~XN3~p$W~;!Cfby`g za}&$VV|lYyZA({v+k*QNq{~)mf=HFWp_l3556HkznpTQY(mz7VL_y3NSh!rCga;_x zHp}W_xnqE`gQ~IY(MV7lM`(Of)QjykC4){p87Q>2{lpQ~p~T$9A_Bq~)cDmzZP60E^a^j4yAabuX0vdv)t_(H-&Pu`XC}ig_=Dkh{CkxGYC<>HcR!?=6X}ndJ~g{^dyp^VHQG7Xh71s{($IW zkvO&@-YNl#2Li%r7!q~WkWwj9J{1I!P~RJ7Q&m#Z&vTR$5F%ZcBQ2a_Y#VXHJxS8} z4SI7Z)*NQp@!uVWTYdl4o|@m0a(?8>Cp$4rz?h zNJj|uc<&uq2@@+lZLX?WAjCc2s609YkmBlSiNn9kzke?GjM;y*Z353LADU=jsecq$ z{Vc2K%%)bP(8T~}q?WfikSZH+q^c;dO(j44_oTbi+sIL~D6#*Y0gXXK%!G~P_1vKq z%$B|V2h%G1qqcf#@}F<6xtfI1|B@pqdCKo}%^x(c-JQP-O#=MfM4n~kgy!3_mA=%! zxBPJE!SF~d0pH@kwCgFF{t^G-f$YFCa1TDFkzq-;J#~Fm*}mVHJrra8cwhGAiM{LE zZvG}12A}zvY-Hk8;&Rw>b6R}P9ks*bWPBcAnmFzh)c6#WkrIq2+Zv@W@0*FH>0Xt1 zARF+q`e1Oq89YI{!S8suyg66q<=fCY2e)4#4CE_OiB|hD{OvCLW1C>&=FAlCS6@NC z1LBBGeomRMnDyPUj#@Z0w_5v2__Onl#l=2OQ_T7rxpnbCMV#sD?TrJYzP5w0&3eKN zke*Hkx;T5csomVnGi~$RQy#C-^VlC75_r$RDE=XD==_(|%su%v%YipwZ%h43-pgs` zm39WsoQVu7xCfTtvWJV8g`<^k3@NC+8mt$)PcUlF*b~SdDIG}NzdEG#M5(NUK2oTs zn)+5^FuiF|8eb@dHGL=y(I-(_f<;c?!-(LAEFg_*+yiWltPH|C2##c4{E_ltjgyY^ zX9`cE$K-Q?Y!uSlPlUXzzCE~hCHMR!#3^vSmE38H^wZkT;bU3fgEKUoX_I?T zX%fVPL36?|2*O2Pa?oX$d~VjZ7nj5mOK#K|A!&=+r@@^ypcn zCO)!1j56pAZDc$|z;s(PLJk)xE?0)Zq=MvTGa^0=gc=Dvx)|%Uj8r2cdsXK!o-V<6 z+4p;oRoeedp7-vb&#DBjRh}fHRZUYlK{o4S*#K6BH9}@)CPZ9kIGr`omtib2ACbRQ z4HckP7!@g@L{fkh-7pvzRO^QHZ>?cB4o_J+Xo+Wq#Ocgjp zQ~*=yDD4p&Zkv~U;C8I>?`-qR1tiu!JV4D}S-XMEfiSH(J}_<0IQZ1LG( zg$lyqFj>N?kOLNoZ$CdIUKH&q3;-IOpK=!tn4evS0}6(nKFD4Fr;19yz!;Y`N{wOD zu^);`08tTaKq3A#cHq%;Jbq9QH}ns(F$VqwULk;HNw;ANZ(|3tOSj`5KKP?zT@XI^ zFMRK%=J3Sel=0XFy#k;)8o45?d7*EUz&&7p+zi-L7a-w_LJEv-4Dvv{eBtiB5N9D3 zL0euq!2|G*qP|KfT{Q`7PB0i3RBl5u$kj+1wSBDec=0SQ67~asPpTv6mH^e?@(D{f zx4K$Ee3rw9y!GP^0QG70`BU;I+m_7Kpa7drDJb}4@9<>fLFk97S_6BBE;fgm;?B}) zCY(lWQmgvsw;73dg&CFR02KsNbW`xzFd+wQd})I$6ybBRSrJ9XS-D=uPeU6-Cn>Dn zcg5>aaa{Plvb9nQo8pvj@Tp@U`&khc))CFtyIP;kh2*r6R|0109EKZNa8)H8`2$wX z`j5oKOu>7{dL!)(mGB*R<5Yal0(WnkD4j$Y(~uh~#x$HMp$T0ZiF#F?)MOcp>0oAn zYKwP(dc@aoEeZQU8OR!l>B}N$UoeGxGBv%FOb^>3sUp)56hJxyj(*>Jc1iSS&IVge z5XfGVNA?~c{R4lwak-)@$-+Qa8w26Q%#zU8D^g?fs3;+24hu$Y3jw-(%loBYx`}wXlco8}aKB-9Wi6NTFdn+w``Ch!x?U4Senr>~XzsDnxF% zd`-%56m9iqwhBwqik^#fOn(x!IxT{?se6^*@n4rPUnoW>n0fQREp{7fBct z@X={=P0z9_Q%)<-e>$CX&78J78a03Q7@GTfCgs#7$n&f9&d9S7e$CkFm&Y-io14}n ze{-cLt+&Glp7K4qUp#gk)fJ-D-sG|n{%$#GaOv0Zk~Y`h9BJdfXD0{UruUkMB6t2| z^B9gkoDu6Sw)QYEYIA?zD)3{@)#ZB*T~W{%7j4wwwal7=nwq+6zkI1_Z~q2Ot>iac zHcyS~w~8mFbu;+ZBBl&n3vBww4{X%~sdT!{y#EHL>v*1$pvf}V8u;qP#PDke2M41o z*6l}|`?hcPMi*f6skIN?{bk6h2@=KiGrq8UI1it(-=#&FmCJsQ_sJDR?~)HC{XXRn ze9t?OEA!LOMW|AxrszfAv6KI1sozM>)~57BACIjwWA(o~U3YFpEzr|QZ78}?sk6AZNy;^L&Qi+T&8O4&pGo)c-*;2{Z-d*ox#>pegr%#$zj(UC*dOn$ zMep@mDekK|a`X=m9?u0M6(NgR0A|;(`aIH;;~KniQh*vnY~79I3&TYmHdgfZ7;3%hBw!p0+!FprS`Q< z!u60u!VfT0@eCmd2oe7(5d%Ldc_03(lu!aa5G}DOVv!IELLSNQ@Z=krjm|^QJFk2v z;?ci!)s(7I?iLmU6~j<7U{;;wKatWQ$XGE=!laO8$~H)P9@!OIDAE*=qZmw)kTBr~ z!K`gxPIYRn$kJ{yuqq3XU7AHpClpukM^bTdT=~ucVNgbrFl}InDM81QjHUU4=(u8A zfgu&=$W!0Db3AjnGIJ;uxK%H^U&wFV?ozsW6cbavP%~;hVv;p9@-RRsJ;?)=Vg)xJ z_duayly9K!MdtGkm@(prtUo81Pa3e*W}uexGzDsa$l^MDlg zanJ}uf4c!X#1ww)!!iM46O#`8k?U%Wrf-{-Re&(L2Qf2J2-JYy7$}+nLqcN+0{r4O z!-73+Td%kZKUP)kEN42!_F9a92zWaXcI~0f07@b7_x5I_FNr?CWCw8{8vjxqEeK-K zFT6ZDC{7}T9e9yI*9&aKJsDV-_VC0w@Z5kp4Wv$EuEP+}#73BbS@=~r7%JcXb_uPR z#P+er@e>Jx3g=;v;v)GzjKdiu)Y7ZF@&`vpdM|t_ES=0W%p5JD6-)sj_jS+8=b0L} zPcs;*N=ov%-eM8KOP)Kg(_>0}>l$C_cRcW;DqtaLj(5e9B2^j5I9)jt`jki{D429? zrP7L%`mz;xdo3uA1=6@N-#s_|xd%sgLPK?jKLS#Q+QUdLL4>Myvf>~oMW@?sFDzu9 zdnrqSf`KT{c$D{Q)SETsg0Ev^SIzBL_Be|By?f-y*uFFclNbpo4EK$BWnW6RqTJ)S zbLW-zkBNIVP4E9c8a2!@Zu>mStbExS17(Ghs&+z%uXHk#!4L!txjBTn4_WQ_zAJKS z3J^dbE+Tht8| z#*sYRW_Q~#6ARzeX`UW5=M`k(AQ5?FYe+HgP2}uWceH+fXmWnG6}Yn7vvlY`!M~i_ z7=SmD^{<|Z+F)njm~PoQIwc1Nm}2(8FM~fzNxprDY3l%!XKCvFrV6`eqbp0NhWB;U z=yJDm@1>HHM+j2sPEBV`x3#blFGu0bs~TQzQc2YZNIvJ))D0Y~5V5cjxfDKOsTZq~ zD-)nMZXuBT#x{d+@Ec@n4BbvFFOL~bRFeJp)U&Q6UtC(2F@H0LxoU(lDr+ct(0!uv zJFoLiFOJyH$+*?! ze7e8Czo2*owqX0AVkBxT5}9-Qr@47D@!P1Ww2%$LxB8ry1TbKJP51h31#S*-FvRWW zSiV_uWgfa+GepNOb2oDPY`jem*PZ*oUkCSx>ox6=f8$i+N8$pj(VQ%P#(=CNe zgh{9NS0&2D$NaHCf6{h-V(PRtF+F-(<1u!^{H|_7dzUejH;Ii`9W`)HF3BQUUq7Dy=zjB)i3WY&P$cbQczv>Xf zc@PTVXc2fW)PdPhB_Vy?OeA1|7B=)eHMb$hl)4(BF280*BFKI7NSV?aI^UCKVJX9I zG+i>nk_g0S?8n}OfnhYOBEgwRA`8zJnL5}{sp-7`QBu}Ii$hNFT^W*^3PHrs=Nu*h zLy*FZl7B#hCG?S`9oy885u_3w5Q$Kj5ZNe$=^)w7o81pK1CD;*KcC(@IS7e+dH6Ii zSs}q4i<%I@_tME4+%pu`xSiNk!Ee&0m&8HG9V+nqQ2s(U=FLO~l0uhU)7`En?0Bo9v<4CKAkEYn(zXgN2h@GOdvmBJ05NSyLCP(bgk=#>Qqu%5Cu~Qri=L|rqNpb zaw-zS1j9gyeS0PTD<$XPgv~m8z0)15Td>;OzLN{0IcD3BYR}Ky8_k@drP)e`VRt56j8E! z%Z8lv@(FHyM5zT6fxmN48P&|uU^olt#N+?ELlC+O4sxoBz+DOu5g@S@&jvE#{xOD6 zSUK---Uf2sk7zUj^mzXywS-tvP=FwH%ass;0l}V%^`kZ~X9^B$T@+{wIjzxVSK$x| zYjO}E2d2IkpvFM}#1<32zb9&h_{0LA8<~F!>gyPg6`x9ISlYE+bilx`*@s76U?9g% zRxWUe2u=XAYX%?@3JCf-u#aKIJ3s&sI%CguqUCV*tlY4E&=u6wl{NQ^Y7S_}Y?#U= z@F~IouH!{A&J_%B)Mzsd+Jhg}4zz@55Xy7WPA9!CX==s_fcXrFi1hF(1F|fW8=RnX z_992x5vJ?PvD+-5OXmSkyht7hl@Lmm`y%wjBbxLT1)Nfm>oZfo$cN|6u4{h@xa@(+ z%tRLoR{i0T5sTsbqP9QE{RKXi1=a%!nqp~oI*)puF=!}i-KI~v0Si$((V)8) zACb7Qx7NcOdmF8`L87dN5G$~Ml08!(J!cWobQ|ThkWwzXE822^?cv5n@uJ(U6B#%;(kEwBHRn%6U1yqAvcMXSiXOe5U zgUgmnZCkieFYw>OQ_PIVaX65?^PA?$BLcbG-8ySiWwI3YBvNGyeKljo#z8zrmBV>h zp`G?96e9h?;fB$)N`?K=DIkGSJ&RVm-ZtN`ds)2 zzSGr9e$M-9#^Vtyz4x66I^WQ>oP30-CW+Xk(c;H(SMgD!UDJkw_Howrm7B38=Cx_L z{3(h3Hg=MBlb*PxuBG`8QtX54TH|lhQml-}N8;#W8u)DKU!Zcg+S6j@3B$u5S#z_8 znmM+nTc$mu+6*<6aqbT&UHo0$UpKw|4}@j0gi|EMr>(ggJysT#$j!~&l9meCYW1ox znHHa#p=0%}MHP*9e>29nvNs)jIci=?*HA7lb;P+xq5t%E6)Q76QZZ)9KfXVG>VKsa z_}^TLKkJA+5`MqR*me*md$d58)9&rE^lQ0x{ps@!5PP0|i)s%wb9<}$vYB3Jc@r?W z+OjnmidGOpm-5)9r9eHPO4khbCuEPvO!&3gHi>yTG_$1QlCuX^_PV|GW?Ee=a9LYy zGNsA|U0n-9Lqq-Vel^j)BCqM{-gU2~D!5?T6c)H=$;dWT2l&XCu!8VGF2jL1T1}I7 zzdx<_2~M#kaqKT$r)gE9Xse#N50F>R3=CMQt^FbpY%CP;Pzt!j*(_aPnj3mKYj17m zm5Eln$9j*w5Mc5QkC;b~_NVFRw27x_+$QnXeA`qj5wfrKsMOeWM&A~9ZVGHuS##UDvq`*}Vgkg3LX^6uTti0Yep+^)y zGiKf6aV;TooS8c5c52(lRR+Az8bY8l?(;uql?gmE-|DXcFZ}3aqO*VE8%I@H=ndqs zJJcD3Z}VG$%Ss#UCJ8NP(2pw`K_Qs3=oY^}-&Ur5x5qLoP1;`S-quZ%Cu$&Te53u5 z`i|m38VpN~fDq&vrpSx0$WfAN5#2(1KZJTvBZ;aN*fgDkVQK^1G}e#&%BCq84X@p2 zyD?9sh!h%7l>ba7%04R%r$m9TGmIRbPfSZH+3|xIOG9fNj-l4_4wmZ68jQh)s)E%x zuZWitx2g3j`r?cEF`nGKLl|3*s_5-=lyG4X2%-{4QjZ{spaLBb7p5Sn&%A`QF#dGm;Y=ZFQrdU7!MMykI&s3?&+qu#ayUS0&Fl{> zy~g$|xKITBbK_qCBOqyw?eVT^t?5fyy0UsG(VXEaXMf+n+dv;Yl5_9sCHO>RbpV*e z;!B?rsgHXc_x1wu)#-Et(@eA1R%!de^nTmEG5fB`QB?agD#w||Gsg2j?bPads}GY! zKNE2Uk=(5LYy^c~H^l%xGX(ZhISATD#0{fn%#y=&NiU5}76t75J{%3%I@z9^Imm1m z%XGNvfr`lIBTnqPVyk3~D|krp=Edx9LN1n2A$qt5 z3B#Pg$>Ql%_WFip)cXQ(z!G?+gj&X6) z#l!M|e*t0zKui0NJ^4SNB>068KBDcw{eZZLr{ss%V5w~ZFbmz|==g<}N>9%Um867( zE0}7#5reV$^Pg#Lr?Z3*sb;BEu}H*VRyZLTQ&(SKJPHyxAc}8aWPs#Sfyp$r=#1Az zgM)8)we?`oYkJLfk1`Y}{@9R!q`c&`xui!56ckW!*1dbPgIdDw3+Fs|V~ot9UJlRH zB|?#coYoNZ7_BtstEGkqO%Lh7F9JOg9|*KkB1KVCZfK2iEM?tW`q(pAbvGhwD&PT7 zy<3Tem(VE;8t466{=G?qwyXu>uk4nZ`j^;-*#UV+| z4FR@g>+J9O$$H@Wke`z$-udJCiLh5C{3|)#zN_{|E~_TLL)-Dh$V!%Mz{h%_lCMA z4)fQWGVfQ=1q@HbGDb1tZAGd3WUe`d+D}dzwk`t!knID(gSTndS=q~jXsb z-CbT-xO({+ky_3vP2mKEnCwGE^Lj!x!!b15V+3pEy~ zkojLYo>YE^Ka5Y*n>qw)c5KYi5fQy$|3z`}`QLfxzkas48c70w&KDc~=cgCSlaJXqZ4vNk(Ul35*I{-N3i|BU#7uFN9%MFf0Q_K<~=u zf3cQBYr&mLeSNNCPiPfUK_hK$Td8fQmz)C6?tNytIktT0?^E60UcbL_hyCTrD2VN2 zeXSez0HYeN78ylWYm;eM-Xwz^D0=vIt==6MN$~BPdGkrci$omjX!U8JC7Mx zNv(t56(^>?xfdiZ5vm1EZf=m`5Ej;g(i#T8mV$UP43Z+e`=`iN$gGr!sQCo}ocO1i zeqkH2)@R9-%Xws^5Q6l(rz&}Z$Ypg-BLs;GrJ_7k0Eu*^rnNGHVFqLR*boAc-3_gd zsbm9)+dxXh(&0lCgH;)vQyxl-gs|p7!tU5;hIDIjDi4r7MH4YqkubsXBGBHRj~MQ% zI$Pfnsz;KDyDoIyy*D}AT}-!sHWIiUceWiTbMSM#T|4$p|Le|y>a*W~K%|^61@5iW?dM$aKy_+UYvu|4 z|G36pE26@CqAl|TuyPpx{ybmQt6H=Sexc(PZU(zh3P{4`gv>)0KuaiT;%U8kv8G)7 zM*;pf-5or+0vQBpJ?qCZRu*WKHNY?-3BIh0KPD_Ze+I$VoB~3u@3&Ikb zM_FFdUi|AoC=7Z=kOg}|q=2*%c|q#PFk=@vb-;*v(L)PIVcUr?W80C0?-zaoRP!>Q}26#K)mw&1}9JwUnru0 za0$E?uw6whB?C3pMR5gs1rCyy*KT#9Amk3T@`zAKhY8fwPI2+#)&lmjmjA1}4aBf` ziqvF16kHx=o==hIV3-zb>$5rbr+&J@Ywzc9kN1O;FKrG()kUoG0G(<(#<4QUxrfui zn@4*XI6637v3gZj^aad?VK*okUaa1;3S(4)%R>|Zy`cHp54;6~0Ccgm2iL%b3{7$l zGSC&O(NDp`1HQE}LO2DwNaxztk3>TAnH(JRdFR5jI?d6FizE%M(XgPB{g5JiyeW6H z!LY=Vedyh*gdE)xl^gHZ^`BxpbphcQ$TM$K_DPnp+~-;Ush7_Di6Xk_S`)$Fg*J~X zvcK?Nv>MN)dCnwJgesYNC=p|H$1O-LHBuZx#29bjC?THr0g%3C<-hbXGr)KRf(G*z z)s(g5pX|#eC_IeE$QTM;kKuqT2gs7VOQPmPnnCHIEa55oH-uf4wTUe!^r=bQ*1u_W zzh+&G&H7sVp4}Yfhtd($Bvfz_5%*^<{a5y-I-FT29GaqiiNZ8UpaJ6}DdSlyp3S0A z$aUMI!z{KaOi_eQM2^HNNIPcfTX@dg^@gbbOYHVtaw>PK-C$+=Gac-cB_ z>~QSWq3O;&R~FShLeFqH&p4%+NzQ&ihK6!t3E}w6e}av7x!4D1#g?3?^J&VB8+FBPO zr<7992{GA|ooP$?f_`sN_s)$>lOuD)86i%Fw?|jS=1CNf;X-pI{%m?b@W=0=b*HIU zf-)~Zj{o_|oSo(65Dxz=$Q@N~5MW{5jM&P!<=3|u5Z(m1bT9pXA8i84(ALY7)rYc+ zR?UMcd_&KD>-IN>?my4{j@vn$`#SN}TT)tDnmtC@@Y*QOR_SU=>6!m(>{A|wxj)C1 z538x%cQ+2fdU|CK_jQ6>eqwQMV(xI=s}ess@iXf?xyl{uNA+J?Y?}JdA2Vi=;8U#j z<<2W>|4y$=5!Pq+TiZt3-j|h?Dc|i+2~A+DBMKv@r5Ox`UgksuGo$AziRlnXIVl9# z$WT&zy3J}z^ns;WUNuigLLHTiN>1Nu9rQmvZko*Y8=mkh?+&Q<4rSUtc6c1iN62mU zu4`{^4%{(!A-g0&bi)fk3T7?f(EmVxB6)+8$8%-4TrT-%-Daj0#Tzxjw+FbyI|X0g zX(oHJb=BQ5%s8%}_FeClJ&X#uq!Rl~iZ*q~haLb$C{$GJj%v05w)Jvx42&Kw zXfrejE@tawU^*z+@kMU^jfYi(>F0SpEXQr&z z;xoMZ$kxNvb$7mdr#LroXKiFl_F#T4e@*Vq^;iuk9PL>z3c7?RSXJzIJSBG_(~rTH z25v4eeiW-%C?ALbEDHbAq4CP;mca$6IFvXo=$eX{rLs~Q#J&Oprwj_B>I)CM(M8N5 zsGJ93%0oKYK<_jtu+cJg%u{|wT39(wlRk`vgPd6m#{LP#t27A8{e#9vG=xG6N~wx; zey2dGre!Za)fp}NNu4w&Xk!uG1Gob`r>>Oi7Hsd$nSy%qs5CL@N4ZQl2(H+rQi&ALG#JpVBRuJY^0FRSzc*B6De6ne-_Lq^PLJDHNs7!_8c zSv-1J4Mvn`t6KZ41~m^sSsCfTm;OSTL%^4m?80XCN9Q-%o>k;X%lLTi^1nR7fgpjC*39~fo+g%1k#|Iimj_+n zulu&t-VhWiC5+*vz=&yRZ|!3V8Q69((*6za3Mv^|*~7QC);U0*mp`eQD0`7{Av!)j zK6Yw9d@?FBuq0HdNPgT5HW_DBAQ~1R8ITklJ@490_4l5BkgF5`h+{xKx?1*6YV2@8 z<^Y+cf&8U{@BB+L2hAJr z1m1$+xoj+J^f}`wi^ePL{cS3T1D?>-)$@UKdO%8S4+Rv&=FS(y*9asSR>j2%2!*p3 zu+oCyogfep1nM}kvoL(E$x$f1Wp7w&VMqL-77D)m)OFZ+9Ig#=BtXg#$Q4*7n1x`$ z6uLQ82bi9)pPAf-3mGnQf-WEzApQ2j6PP~#l_pJ|1Eo;qfi#y&~WW*ox9FDDS z*a;#i2Ipwq?r&Ww#o1c>g)(Us&p($>E`hp*eQUl-A4Cy77Y#Gx*&~YlEc!;Mf#Y&? zRyqk6#$t%Z26stZFrS#ZN1f_jGd<)65+dKMvwl;sgbKD;?e9WX?W;53O+q0AQ^8nm z=4&|?KX+xZm&><>lVPsGQLUPR9|lR zIaOoujb9{Yn6F8mZQGbmOKMt*X#Gx_TMBFeGegU7DzbRrhUWW9`jH3a zMV3K=phM0cy8O#Z3E5e%veFWmxV`Dst}Gw2pWO!-)wA;U^U|3^v{+N%)`}CpDJ|H4 z_wWWYb==dM`M)vyvXIdbes&-*^mg*dP8p~HVQVWI1L&7aHtk75CY}YIvprwu?8W?i zWde5RmBus_H|Bb9>MDt5gvq@%){gFiOQl7+g$su#{kttFn)n^l*VN?Xes@-^2RsdE zRLClQws8w8f<5Ksf{pB~8$;Hm=vuG?ew{32$g4wfJZZ?W8?~^YGk67EXR|y!oD_;> zHSFqqThbvi{>_eiV2RwRJ*EwiB2IrTf+Pi<__~qhos*L!k3XG$P7Y2nYGb2o=40-; zCnp2?Uv09~2tT$<+kX#D9mfU!uGtxWZn)dx;OSMrWz>FjDtl@X-oA5`8FSR7@;I{2 zA@y;}G#Z9L-fQq%|7n@_vpY+atJe*jTf9&H#zZM7bDd2~Im!C&p16BXH!Ww~;RYcl zG6%mV?7W=VH)+_VeNMm<-1nG(!@IEcyAuA7rZW$RdjH@53=>0Qi0pf1EBl&Vqojpo zEXfiYvhO476xoH6eJj}pqmp&(vSrJ$WhYyI=iEbwG#*ZWhqa1YxLZPd>8zP#3tHvoSmX8uc+E#!v0&Mlir zRO#Oq9H(;(#;cUhr?>p5 z=YwGeKNffN-e11uDv6Sjgx~-XUZm?9BLwuQfEsGhK@G>&>O&Az^n;%Fkzj8#aG%5~ z>JPdZpyc@71^NW%W*_<-b=%jUu1tBKHDeHVvDk};|7E5F3-`G1#-BXZK$o*Zf&Lfo zq9Z=!zZOn5p4ywEz@`nog@J+kJ3){7rF)O~Ba}ns%C5KfHvrCQ9mGueZ~a&knVoQK zhkWM=VbX=78W3<7FKZ2QzAOsZ<9h7V-z(GUc+V9?{N=^O|RgyM!b-L}iQ zb6Kwpry-RuuDX#^2{&LV{y>x1c^L-PF2JyxdX(~jY(X@7goV@F=#jI!24gP}4U+oNcG6XN|+!n?Td`Pfftw6^P2YwjW+s0SP5zru&c zA95gnMjaGc*Pcz!sGeq?4o{smub)KM?^Iagc#E8>hQ+u8Jl*{8%buor@wc+oX?{Nj z!=tBarMenlXcwyos;kHwqUPO3q`N`v5wxWm(cr6qW#VnwdS}s6Zs|eMQcA8+PS{Ut zU32+gwH`AT@L~Bvy-} z$RYRpBjB>uK^CB@b(n@^D@J~w=#EOhX#pvRVgLq_2xy27h=>2bq7E)rz$$AC@W&ET zG(b&)!Xl{51reqH5iLqA zf%t~Z+$pylabFbN=ug=NRh++h57ndmiFCbT#N93LO-S{FXx{hV*o^P)NlX9rGyp`oDsI~ZZ5f4vj08QW*ec=G~0 zxDh*jrSz@478RfP*YO2B6MfQk^p;Z<$AysD;_Fc%wkDN|wJJYP6yVrw@bfafiCRvo^3$LtD|9j|d&vbD*yC~aY! zp85RXT2B1C7e{_xvSsBW)iUFk+6GUW@g8)Us+@0bH(KFVN-~sJ4v9bd8b9IfA4F>Q zKdbdQ(JoCXPFeC!0<6VrL3uHmZ{su+S1xt?Awuw%H1w}CdsX0)z73b5gs}dzClv|c z54=xsGjc>&vHHJ)s?pobRM)=*5^MkKl!s_T6(yZ z8BkY?c{-SYDy{Tiv$e6`7XXeEuU$-unW|mN!c1Ze$J4%qtsFeZGK++v`Yxs|kq(ms z;Br~I<59ndddhbuvc~cFTJ@ld zl3t#^VUVzAAsqRyZmHQp>$WVi(UG!#KJ9~E0A_4WjAGpmAJ!H8SclVStNay;IYa49LF z^U8AxLyE!X#{SvaYJ3GncAfoeKYOK@OJMMVSkF6qIVah|x=-2_0@ow8aJYzQ%%yK6$ZW@kCMbhmhJg~4 z;!PwH(zUn+aF}(82qE40hAxoBI6n5PvPDNe8yoYGbxtW48JXbkCrx$Wt@Aqhal~CSc5P9ITlus*a7j+o;l9@4)B)j4TP7Ys8H+6sf=)ZI2`@*Y zf~dUVTo5vl!w`{z(pv9jXwA^jWw9aOgv5SXILG+VK>meSfLp+N$5Q=)^O>Tig8p-s z!W-e@Ni`mT|7Ak(uBE!E=$9!H7oZF#gXJWdR{RC`kfxZWy3bYyj~7#)YQ4VBnfTr%65ONXWhjxSVuR zoSh?m%XEl1TnuE0rrFV#G7 z`mbmR^y3OHIsmhdwI7FiDvu5k5xj%7x6q9|$! zgIp{hjfl(A-H_0vkm*ql+Gmy_7Trwtj1ZY^5K)e;6rqP2)WE}=S?Mk0)n4IIj)z_u z?uMvr#@}`~1RmjXxMC2La3=kR-=AP6_soMEc5Io^3$K%>Bg#7-|F(W*Ia-WF85Zl4 zyL4q$mYwUSUUSFm{V1(MxHDDZ`!IqjV@y(y;7V*wPkfoQGQ@IA-vwp!(}eIqFIM-g z&_>MupBJE85Sd?A3c^S)-yvha>440W+~kymH$0Al|8tO_T;bQ{Wp!bf%Ty>$-llVf z4xLx`ii3GPKdQg(fQ(qUogJwjrv~nTWaEnYY<%6}-_xDDz9{%!o%at<|C+S>sV!pu zD`TEA`^$xZO{m(ljEeV?sSjAQiwI&CGka3+Gq88!H#p2YS><-Hy}jMyx4E(OC`gma zV6~foX@fpK9C5g0IX*RJa?Q|mcXnjeTV{Pi&&ku2(<)F+|iyH*_y2rGnjUYMAJf*U<{R#{M7|RU{oAu8DN~Xql+J8+zMZB|yo%jP-RG1;?$Rne4XS zDc`en;ptM!J(a4njpe~e=Bqbf4h2OdM;>)7xuL}E$NF1Ve{>fr9{E0#&HUyscxkyY zC^SZif^N`IC&N@(X*8y$7S&xA7*IDSo+8(IK9qo()0+9QV=syGy^hDmu~-(V9E|An z_B>#TCpg_mmu%o2ulBqPk36VxWS7)IUH+IV=adr+e-00PwVglpL2sEy!4Ay0YGn>RFR=ZMrhiR}{~#H9>DgIOp71QIr> zrI5i2h`2C7Af~~lET#dVL|jWvky|F<6C2-b`P?U7=eqZ!xqV zQoNSY9PJI%?GW;gICxZ|OlUeey@k%X=*|Wc;Z*$ z=eUn=pM}3Ay}C6~I4AvUT?K|H&~Ag|ZAH8SW69y>Z2B01Y z@*^a2ns z*>$gO9qiw)lQjpfEEXk941O)Zfe!ipYh9hh-Hp-t^X9&L(G}~HD!x zH%FpD*Aow^iBAT*}ddORJ8glR&Di6_u)2{4?`uR zOCFCe;EIE4>(={SVD#TX7N16Ze9LXH#0MfoVrAhkwnvoRiq$<&$HAmz83czw-<*ZA z-)K!~lFH(tfYW-Pqr42E@KD>#Eqgl#UicsIv&d{2D{Hy>&UNWWzl0+zUlz^1F264` zLiXzetU+=#;6;E+wFm3tloq9ii|vvBd4F;gnZ2%s^{uyi`+4EP#3yaN3)63Y=d2;Z zhxN{RvNY3lFVAge_w^X~e~w{%IwW&n=$SqpWEg+b{O2AY6t!wt*hW`Z^J3P={6@Gs zPC~w+cHM9bm=-QyqR+h?)p03`=L<(>dFMHptF-o*$#f0Qt!!=Cyyf z54N%+nX_awdtZ~N3;%s<6MJBISuEFPYfxdptlrNvQ1anmizU5Y5l)+9`PA}8plrJ6 z!^5|GSAE-kcK(}34J-K_T1&H*YAbUD9L#mN7}cNcvVR)A2d>84?plEP*24@COdMRR zPkyNiYG(%eWOhaWv?CaahCZLR<7>P-GL}w5iK<^N^)X0I&jh73+#lmh``v?=`$no5 zb_xw<1Z?ugvKs*vfg_q?3zZ={HsUZ;bOU29z4qhpCw$<+in$`tl#gfn(@&Zg^ZNg* z09PvdU#EaJyFHpJCotCh?%g{Zos87BQqB55apyF@v@lXp9+?=5a_Nc=Eq*jm6K?97 zRrf!f>$tsMpO-TpxId6KAQ@-aJgTkwW(R0?iT+2kIsun8n8i3#Sb@aa<)>hunC``4 z*3}cg+B0E79xm$~lI2>I!C5b_lBuoyWc#F_xgQWCM(||K@BhsC)d^n~GE>7_Ar&0q2wQh$U0-3=GeNUClJ^$W@$;ru?nGf%klvQIMTHIiJBW6~!Kbv_L zA9i);^PE|`K=xD9mh7POs;8SV&h@9QTcuTWtzYZM+#&f9LgzrD-y1+_*jXVMH;klt z&_khf(?H%LD9QqII*2Vm!?dRMTH=%M8jz7`Xm@;1btW7*(CsPj z6}hu{b9Ul7mT%}9ImM!%ilTC|iqHPauo<;w%^LX!IDD!6=@zd`4$IHRa@Vs6QE6vzG(iY;<@t-wU4SZVihDT~0{xh9k2e zwDM18X!&#@U45)+aqzx-OIOHgKu$JY{laBb^d8j*HZHXgadPND zGXZa0X>WSr{(H^ol)LL!$axsTWkMmcYpMTL@G&&8gu!K!VtpGdCQGWP0R7pqpLOJV4^FXklz#cpXzxD;BKa5TR8jb0#`evFqwEU7D z#%Kjp2myPW{;jPMzb{Y9O^4AK0WUt>ipNvuv*nqV4(tEsh;(OvVhjqM0s(+x*jZ|J zf2q_taI1MGQB+eX@TB7O$Lr>a;x$frHCj)xp>KsosCYdN$7a@iH7bjSLF!T{I>VTq zj{=ni)8~*IB}+V?KcrZjMa`?zhd-tVp6i5}C%pbi55u8^anV+%{< z;m|Hou5RbLB_7v!aByI)G(Ix&aImzrv}4Es02vGlMM+r3yiDLWKiDb(CFo%TLJ~ou z9IK%C5JNdlTyR2zE*zZpWiaf7a{z=4j4$w+3NVU9lCVmtCSKHc*SiInZu>-j0ahaL z2vtL|q?J#|Haq@zFn*=0Yhs2PD+@*yS;Nq{BRQn@l?*>UFR47frU}@LBmo{+#wT3v z-~Q<$b$mw3ssgWf9Qi3V#OK^SBCY%Jm9BeOXUJ!B7fOVcHJUV1zqQs;WW~G9j_!a= zlwIb8DQcn?Crna(b%b6c^vmMGe0@NI_5UxK3*eDq9zh^J4go%=|IP0NJw86rLeCc= z!2o__)Id|txH4%s{oeH}OhOX$VW7gn`Blq;;a5{TBKVp#LoI@;M<+7G zmCii~V#ApZUr)Rc?B3%)Wr&(5dYXnJ+IdPTO{RQK%hSHEjf5vw1|n3`BL&wOT!d5Ch!TKkE1 zf5aOORa;VYW43Ht zYZKI@jEvoiM+tF!VtW%u(LPx(Z`Naz-68JioE?!L`jhM%7qcB{EOi*zEFbZ0WG?G{@vf4Eld#KDs-l!0B=m0 z%KI9)8`O7-68z8p%tY>))&FfxS8UVCWNhB_n4EVz8O>>Nm@F?me?$Pl#~)R|_Pjn{ z6#TQ?vA_3O_eFPckt4--*Td1}?a7Zo!%eN<=AYdidmWI$l}Hy&36SUT^p{8gqO{o| z-Bh5jb70~2Nk_+v;e~@GzG$4ymW}@|^&qD1U~TJQ8}w!|)5e&kWfZ3ncjU}duj_CJ zY_<^Oz{~yBz05lKjBb6;@@qEN`DR;R2Q77ki%(U1W^0d&CiH!xtZ$z7ZcYlFS7;MZ z-h4;VqfrF(jE5X4m@^+e{d!^l`W@UYOs~8b6fjbDASokkiGxzGNNyi*fS6K zSqIyTku8==TqZ)~;ZujxK~L|~aVaIq6vvd;C0&=8q~&!(@N&^o#*s^m%LGGQw8O(7 z{BAW(?2uH}o1b%UAtCSee7ZqLbki+xs!C1{gXRlE(EnYae~R|B2XDn}1~Ff#d8?1a zU$YyEk(ylA2=#yIuQG+r&~sqPuAgjrlo=@p`uMG%8iMom{(L`ko6Xj0nugmRnAS4) zXYqn;R@ULB!-^fY(tI;%imxIO;LVymXMGugDQ_Dt;doN*F*CHrjxi%#e+PA&V!qq# z$n)ymO|=K&S@|OLv-ve~?K>3*&-44?mxmc=n2k8(5O+ zdi@PNAA6o`F}L-`^b$ma3X(z*5D!zi)b8B==l$ROdvbn>Arz$OD1#;@)+W}9JFGoG zRz~%plzVlZa{vX(V0R78l~@L5R@Q4}iuOUB4twBi$yph2GwTlX+-6WK^Qe6sCG?4x z2OoF2u_OF~lOUO;phq93P+zB^F?|R^#%Qti#$qmFWOZ({f3a8RbpLF>vHoZ;a4%ZU zxmD11f*FPF95bbXo2$$mm}4mf{wZO7o@Cc zK|whZNT@&>nP37ZSaA6Sr&rQV!si_5kOQV55_@UlIe7`7E4owu1Tt|G5L}U{WQE{{ zF3>E8TeimntZ*2_1;a-T08I57m%q&rVdQE6;2#-ANM)4`Yd7abPi4t~FAI(nq)6>5 z4@eKmLjbh`G^0BJK5?ZY$&fsSt+z(k(QCva#yQo5a&Wjh&^SJEmk1b7KsQ+-dfo#o zEOT7^TSBTac%x_v0gy$~H5C|*!A2@20=m<~^5a3%9=QB!z=8724!rwBGZYgj?d$DA zq39p>7^9%#wJ^0Ia4Z0vWbjW-VHN*r=l}9a35ii@Vc?=X5H7e_gp+_l79Jq)50l#( zq${FOEnTJ+lHG){+0IbHdfiSdpyz%Gkjd=5`(>gmz4)Q&2e6q`Dzj?N^jS2#R38v! zuDv8)R`_7%GNaM0pqB*|g(!{zlOswNeFHb4mO}?k&C3Jt_35#@oL|3Ic~&{6@Gulo zV=vn322tfgKIHGd4vVnY2774;D_C8Hsyfq|!auNGsKU>vISXD{%y<=?q!#7$%(RzQ zJP3}`ct4$TR1|Ed`$$`h-ZW-)$jfxhAn3b^B7&0K(PWf~>0NvS)O1QLq1z8S(@0FX zn}7Ra*c?8GkvixRlW{xMrC81u^*4VIlr#*S;$arH7Po>GYp|TyLJcx?2j^g=Fv5Sk@(Q}pV-diOn{nYoG?#$Qa?0$l(tn%JffE~ljC~N z%6gFh16NdpBMM{6#Ff8L-c#BPrlL{$hG59xeM%*vZV72`O8Bg1)ZRpKZCsY;`}d&S z$27R=8zS6sG40;tm9DcYbw{53!Ay_}+hiBD%pN$`;ADyGI|b47o#6U$Ul z_TRDd4fL%nqfa^fyXto%J-W?4)puA|Gd}9zzp-Z~)rh8+!qV=w>v;aiePK)|9w*Fi z;!)VKaHH*~r>RQ<8mk^uEu3f5*~xk?#lgwqCl<~Kc}Y&xDlQZ034UeR`yk-7RMqEf zf)a2{fbJZUK)?{eIfpyFW?QiE$>fW(2_rf4fP;CzI*+~ik5_tS#uUMv@b&sySJ(5< ztwOMh5a=B`sPmw=_tIKn&S;F?Ap4pz5OlAdj?wiAPR zQ&o8|`mdq8ZQJ#$jtpbW#|fo-GX%PRH`f3a|AW8Cl*Y0Z$`Z4T>YOpTJy3CMYSvY^ ze|#6U$g?%5H2>r^+cFfc!JazXpfC9~g*A84MsR+6CNV86iPktEi z-soMi^Hp7iXl+=zEmN$1MUv{z2T%v;_dxUVeiR`UMsj2C5&d}acw>_@Gq z=X@)iFWja~ zr5LrrmYt|ahOlC!hmb!0{&(sMZ})Mb<&`&1C6uT7_JvXN@eVD#aCYD5!%Q962kzvh zR+R9Fu%AehzjMOx6R0kpqY zKJFC%4L8i1rlxOzjMEUm(=e94NiMeL6F`eM58mZ{nfI*14mImid8?T>YxFuH-jd_H z?n}5~%_lG7rMnrpgCav!MW4;TgCmwz z%i0DgdMHSy6g=rr$SX43ppdeJv%f0?Id9N9Hz!fX`ubV3`N=^dO1Vbk4I1%!Jc8OviHk0@Sx--j#ecmyW>~Hwa$b)b zdvbE3_rv1`XLKkoMbFMKy&yr4D{yNLGggfY2Q<=6Ap}Q~&vB&@u&_H!uP$ zkmWmcSOPO@9cqDIu2Q_2Z=*~~35B`5rcnm>-RhmtPkN1b5fi2clxMe|b!9(HU|_vR#{{Y@os zw7@HD_q9b1AEZ7|j+el_HXZP*e8IgQ9GDg957zT>+Q^@!Tp+qmz?cf~kxtaWB`xK? zN*_l^O~!$;J+Q(9zcB>ZyeN2H0_HMFTb{8{2Kopnw+ERZn;*smeIv_!5hIDUq1!>- z9UB|F(V(1Z(IRkt|IYzv9_iXG_X^IZ{;I%gHa5j7J9s!+iL=ZX2IgUR%GPXppH*=w zS}0MZ+g18)^+%puJ4Xh@7c~|rkJ<&Ct%)s^g-;xKwT+8$IHO^|E6DB=kTzz8P(q~! zzA;KJ0)#)xDhwWpg=-S@*?R57tEq zg(Dnl${8D3vT|a^ZyygQ=xHFhq{W-RZdopf&hjpYJtY6@^o23}LqVfVgG(EeWfGJE zZsgL!X@OOzk%r7fh~!U4(91&_l_Vr%YcAh@O2GmNB125fFv5|#f2b1>@T=1h%Iepc z;^Yon2(21c3J0D333H2W?$&Pm^6Dabi@04x`|y5F!Iv^9i<(7wk32FM!WTc((RBwD zymE-QGCi%tu`4*#S-3l~d8~n|Wu-t*Nv>kfx+4VR*p}24eCupw?YT9-@^9tydT^K< z-0CL}tZ39pMNG30!7n(k@90cczI@}2`ts9Q2>xez#>ETv`sB7Du)CZDRS>z&JlQBY z+aNeQJKi&^^?Mk>`Gl~!zj^W5$}jM##&kK>3UQNzChrPU=gs(?Og{rbkK`HP)qg(Nl!h%WHH_g>#*x{7o%b_)oA8lR4%8sY7TNBZJZF+O zXo8JbxqGV+j(3;dm6gfJRy^Cw=JpG;x7r8&2V#$g8uuf&3hoVQ6j>F046eopMZ)+t z5iD1EwLO$r|IZ5m`#dXSh4vwb#N`V|ji+<+HC=;zWdi#FIyZw5I{XoUr66eG9FjQ% zhH-YsXpU>-Lxgkmzsu2;2mI|DtKaLV18FIqFriZY4Vo;)+CK}OP8q;Bo2c_fC2)Jc zV{>HwWB+er;JPV2rR;~WP+n}#fqW==yvGAIuvIqY)~gb$I1 zpN=TZhMb#&QF7?=5ERwb=)eQvuniw6*-M~1DQOe7u`}j zSDq@d<>JUG`Zx;FB}5bILe5$f@AOQQ|NO(?0*d#-8dNQ@H}si|rbBRK3fdY%?HTBa zz%!jQ(3BH-wllhBLO1!M;(1CuLjzKjK{MYjSS}o4-3Wj%xQ6v-* zXa1$>9-ehUUt(daGqKG^fcdOVEMRB-*!OHEod66#kC7Dji*d++oPuTGR9z8XJnm`U zBTm(4>RUzGEcV+E@4nLNd0u4)ny4JA1as!f9}Nz8*6+875jiJcET&^dtpQ~2pl@^j z>xuIj;jGap46Y0mWAN8MT^W)e$^{~{wd$7#0KZ}T%w@X^yoS-wknFnP1q_V9;HeL| zp=>T6;+u>hR2j)J7Z{y9k^aw~3wiPK#a_917Tcc$iUVa zJAfyLg@uDzTMKQN7}+$Tmcwi(CHsK8D>9gi{==ejC3t8_w2W&YE|UguP9$5DbUmO( zzUweTiG=gQP**;(@RJzGKqZze-5pnMg*W*Ac^>04WQ7K2Tk!7yl2!ETy%SJS29y)u zbq)MJDc*DOg8<(b&@E4zvG>6LzJJULFj0XdeT_`*DHys>(P9+XWYplcOhb3k-4Wx2 z!k#n=V33O+M?LhC8?KNOaGoHXY&7~`^*ucX!o7!;l@x+%Y1GAKcJvg)B}Xd@tWdXS zSgP@+o{sPjTr^gw=N-uJJm4vYvC6Ux2qw6r-NTuZo<6qV)5v``_(8Dno$&Z0?X4C* zSx+gh*9dJPe2JzOhcqp@6#Yw9v`~&PEDZ7~xAnVvTKHh`b;q&RTw2d7o)_HXVeX$H zMj4qRe)3!$hiqZj1zYtu~YqN6p)W6*bnD=E&DI z8iPoUmdA@m-GbAAhz1O%U1>@EFjnD9b@e-!n_<>8Xf-G~P02Y*MK#^83V#_MBls-m zVL_0Wyul*p1O=<+MD;I(O~d#qKiEH|;>#Cdxw4~6$I_=vPa|$CoCD*F<#~3`2EUAi zcbTvwUW$+EbMR2#C&%P}?6%lc*Ssc9dH(Aw8eYi8TP2Y$7PX<>?d{FP7)wq%;so33 z+UWdO77f&vHK$>9kC@F*>)JiP8=V^Y9<_tzPd87Cvhq7BK6(MFBZ-Nb{*wi`O>3j6 zv9Tl?d$D+J*-{_*KciiqegP8xUT&+chF80jk}`F$PpTDGD6zUJocvObTT#4X~S2XJR7nP0nP zEby+cZN2trZMLlthNl#>aThy0t!;L$54ik(s?Ob8!d%JU3$_<&oRatXS`H+1xT0q5 z5_9BHsNAh)ipSTk^a@7ZE_rZuW!645^=58`(?p%Tvagrl@9$2?)j^&fv7Y+9-5|T4 zN-D}HTVesFvTSBkV_Z@tI#)Xfioa&07cV&8(M#{ny?mNpK@@jS?s0l^3)O*?HZ9J$ zw-~AS!2JIDcy*N`+l^IgnbcwfGe1c-x)k}5CsVba7a9A7QB8$4AcU%S(rJEbTww<- zx>Q>3_>_7Yu;TCc+X^|3d6`o3w0gUI2DlBk7cUf8AB;!j`){A@U7bCg+yB!sth4Jp z1;j}klZy3r+f}3tt5j4{QaV*hG9bi-|$jc0x-${vuu6xQ5lD;K$E=vSx zUM>qfU0Nyb6+iWa3vlvA$F&=fbsLU8PTcwJ zwo}+!x8H3D)=IxJqi5t);UEbJDy((2XHZCa+-9WFMP33~98~+QciHIFUS13!YF! zFb@REq~>zftznZ5N@J5pql2V{H9$Q*Lf%YAv4vr$BQRJftk)pn7DSV;>Q#Lfwu6tdkT@18x;(e!Ex%w5J8Is#SrYrg)W8y zocbHl=JTW52YE54ldAj9JvN2F=Hp_6sQ~CmtTEO1?9I=3d!QQ5=`)I!XrgxBqGTwZ zhTy>Ax$pqj-+5pu;cQ-`^uo&n{8*TNGkqv0MSMXAk@BS@jTU6pU0zt|f*xp_%Yndo z^&dK|uGjgmZxGW>9ox8wMl!iiS5xrj&|X6gVnZN}rXL>s zXg7NDHi*JLHf-2U=z82m`c!_Qi1#f(hsx*`JL^+D6aYj0Scg4T(Nmf4ulmIaCe530 zPo`VhfXg4teL9`Tu1Kiza2&2WYHU;&diKR=;JzlZa1iHcBCtN8N?7|uHyDUuFRK#S0V9b-U%W`~ zGnoy(DxmFe1BwMb=@0HA*yj{|CU3?}f+P&sSs}F_z+5A&FiC;UlkXLffTeuEK)v)S zJ^(;4Lz+M2t`cEM$>jI@!@_ocTA^Q%s|mG`glbX%O$$`SlD;j#hV*oy4Yd2Xqzr*X z%M0Vv&_NOK8Kh?0{rQJ#hd2cZ4Y&dm|Gf}?oPA{wtEo+4d8Ip3^C8Pah?kTb1a_(N=EZT>D~aQtDT*k% zYsh##y+Kmj4`|l28ySPne?CCe=ySE=FmRZUb3MtqOXF;rsV0aspzH_-C4d=pV< zmiZ3heZm`Z9$-_QHqs0euk=#RO8kb2S6WuVXkhT0WbxXO80IRi=AeTE-Ict~X)A^3I#~CO(SArx%{O3(Q#3@X+1@ zG*z0)1{#h&FTwc^8}rkhz>}#;%t}w$N&3Nj%eJK#XoB6T&>6TJ?&lTofH5Jm9N%Q2 zRQ2a^>EG$0=p9$7%oY1KgxP7vtzBO-? z>Ez&;d5`(luP0M~{u3s#jE^du*T744ugV#Yk;S&`@%-0#k;$L-b+r<#U+2nAl2P3j zbw=L`TlQ4E>%B9?3~smOec&>@uWa(fEG^T_%tQ5XrrG`|)pWQ!Z>z|!2m5>GHQqk1u68qdG2xBsI`YP z<|wrUByd1zRr0CPvO(Izq?k)viOkGX{w{{vdti-R`+Br6^3W#7BOS&j^KNAO?+J$6 zjgwp1|L@?eb4s6!5(iDNY+Lr)j4sZ5NHoUmKJ(Vc?}F3iyWU_VN>VRdf2JTI$l zJLcu8z;7dU(o;+D(G8Jr%)N+c;x(o_FHCiWGCrNM=a5efJPHi$;atSqwp1nZnei zasjJHb7VVS8K?7Sf9ua;&Q{HdruC;p-*pr!2baTQfh03BrPHvmdDxB9R>p*WjQ^No z6@_FhRI`96tay~mE7!~WxE`uSMzCX!E&uHrf#n^bJWdgLw6WE?`5pb`xfngQ3)d4Y)|u= z*_KjXqrv%w>vbeH=RePc$33P_TiceK^K!S(h*Jl2pSWbzHKwca+Cng^1>x_&md`8V|h_}oc2-G(lZjRA9)D-O_h!SV)f@1QKP!8iC!PHKy* zUR@cC$BE)a(i|iGvQc3XzcQZALF{=2g3^3|Tu3S=hRE~q0hK-i2b9?lc{qr+5UI*;)H5AG zD_5#%d3EWO(V{tX!1vAqoCV-4@qh{>U`vC6xdGnj^M{`PVlqHbB=2F3T2Z=Y^53KUq!bypR9HF@k~|+tgWq&7g+8eZ|Nj<5|`1~0UexWFqerEtxD*b^zuK`RvUyH&k10wEN6MFFqH)Cj_= zYGm|`YX*g2duGT*AjraE-<4nQO6bhF#QmUk@Q@7$krK!geg&iMO8mpf%Og4du-dEa z^T+!riOA$?`txDmwSQON3S*&t8WGRDwPb5`krzw#Jqz+%<0XRiJwZ|^R+>5K%k2oJ zBsFms2w5`wwYY&df)@Kt)pz6HtWdksi1Rqj86^P|u54~_{Q7VZ zFEUGOBu!!9Jq*g2;#s8~i4sTBi{~A@8V?uz4yPA4X5@PFbKuX{l(*B=>mJ;xp^)UwHIlA;$~&DxawD4B@5c*Wb=dX>2(mfmT_y6!<#@$j4U;DDJXG~VTo$B z&$bbJ1LLxamzP&nRaG`WoeSlDGG!XLyFJ#vIk)}fHD$Bw9qM6UjMI~`sk+L_Uz$CGHPtE+D1cJ)37mNn&*y6!I&0$;dZ zsyv8(OA9(`a2LJ@v*R8Hgd)erD zokJp!5{GPc#d;o;ylxDWfIofs0}Pa+E>Y3kP|D%mRx3=PN@|Z`;Zxfo0s9XN>=?R& z0>Y|B;{>mrX5!YMK&Ib~qSW~RwvW5;jO?_90C?BJLO_{l8(+Hw7;7u+7a?u8#cp+n zsTUmpvDrmBN~iv0VX$+nILM?vz^exMo}bF=V_Yw~xx}&{;aK|0e-Up`H6oHk@^YY1 zuMu5E@nir}Cp->JOF-#xpJB$?_6Anoh-p_a+n4 z>b{ioB;|eXh=&bdll_80JI5R($LkLA-UB4ZIixrlyoV=9=vp$XDV2;hEP|(rNzBE~ zis4nc*$ry4UR#q+&QR)L8VuFo%z|o4fB)P(vjtK%60J8=a#Q8vp7y8 zY+Ha61}2yWnwIW~ZW?T&-#N7+vUmEZa}DVUjxS#PU7j!O7wCP{(<6#5WYS7w`KL|( z^R{LX0BqhclHmu_BR-H#NqWmJW%y8bc$hd@eVTrR0UBNF{gzJ@{+k!GUhJCb&NPv`YxXE~L;Ws2ApF-P zZJq6Ao-CeiEEFqB&}vN2WN8;%(KNkH`Vh~39?*D0UCr86iY%W}160&dqi`tNI3Kpl#KyHN`c9Nzv5LO}MQQ)DC z|Bc;-RI*A1!2?;pM7C3|*P5f40GOnE+_Zby4Bpt~)i7bv0Kk+0U3G)x7v2M=DeaE?C)6_$ z1tgz3f*we;pJNxuEPyK%%*cY&m-GpRcpR?LLhUn4bGixTyBP~Bf4{w+wc?$!Z026@ z{@y3uJvnJ+r+AB1W@o21J!m35dWVWoJo+rk^(W0uI3EM$g|Md-drFxlqYuapn{(M{ ze|x{eHQ_u_WR09x)M3bs(t5PPy|7ALLsWd(iawJXczKH-v^&Ss+OBRnq5CKZu0Tk> zn8c!PL4iT=-U_D9%_t>2f}Xp@#6u(5`&#?uhg7lBgr77iJ5)k)JW0)^f57gJ1Vscr(j{KBSx}lkw%N_Bd(26NBPO5i|Iu{T zQBk(v*B^S|AqE5iK}u4PkQ`7N2}KEqkgh=q0qO3LE@=cQbwE;@p;Jmkx_V*&VN*Y79q*$_?zTE+lZg~RT@&n9n~{Frz&rXK z_Yq=G#SN>rucJ0c+yZ2xm^kq@^E9+Kvn)9k5fjIqE16fBy=RwBWtWFTxid4FxvP9T zMsssBvxK{e6u{?KfL%n<=yP0DO2f}U+H2*!+8K3la8NOUq9vWl49a3a(+CI7T`Zgg ztW!6gncvKx@160acQz9TtpCsxeLp*%`SO-VSNRaWXIiFat-zvZjx@0;d6mXwJB2*b z5mh)k-1@f=SWOVva{GH7)s`R!Ky_3ksqpObgNH}m>5!tGk<|E0u72LT$wQ~+f3}dF@MTHwv9D~Sw&G-q6>a}cH>x3aRIWhc9@5w7LwnC>9RFh$fc?aDq$8FQT@P{>t zOX_{Qe?N1&*4>OkuBdgw)JHPCt4=rFhVyV@D8gFQj$sx({2eV`U(?VK^a<=gJm{5K~%ySE4Vd&9xmrfM<;W6E2W&HSrWNOJX&;!OY&e<5#NBhjW{3XKaJN3ZNJT)5u+GCEtE z->F=1BYp?E;P{GkUOg9f({_K?b?}-EO1dAWziM(j-!gC9x@(~8oDWkrsHK9a5(|XI z)^q!9RI-0sY?n7zn7PmY;Zc5=8rz@OCcd7VC%!jbQl~9si=DXsSOnc439*b_SxjAF zgc+Go`)0@k^AmWB-#uekF%1zj?4BDQQOzRpW3U&Y=NFqN<;>1r+`+}7ff@$@7!E#p zHx?do_iqKRA27`#X>#KRoij^|F5@8I$wfGLg5OUU562t88;Codngg}#`WXO$U zv59D;Aq{ZDtxqv*6t4v+mMzTX#f`eQ zn@&%5w6no?lpcAUxR(6SsZ{}zbG zK6YonyZ-m;+FTNSdAby18Nr+XdIX2<{MGgFjqFF?2!Psy0N)fCci#4$VAKafNCDnx z$cz-62*AHQ<#A~s81ichUw}&314xDYeoZE~{!GB%10A6RL>T0F0#^xstwfn%#o=ua zIO8F2z5{4{fZKmd@CD=8xOu)iom8L{1EG%(0XY`GAcnl6e%KCc7DpNkZlgt~XQtP0 zMZt42Pa)UOdM0M%1}}xd{8YX{k>54z1-l*kNXz&a{7%igv|En;&ga{~Wx#C`0G1M$ zvw`AMK++6{9;MVKVrK){E#LscEkSk;3q>3Z8-l=t$*$E6^nuKIU^xNqFa*{0J@Qmt zbrR-wn(v_Ut`Xf%fp3MjwUof*^K|EoiiW)Q4HpI~WA^{G03hq42t;GrX7bZVCK+sK zfcppw_V~{6D0)hCgXZ|8%5Hi(bRDSiMl09Pk2Vp+?`n1ENWssm#=v4zls&h_)F)M= zx~giFm|(|Ho8+Tg&+C!3x@FTZkPcXgsvzwb25AzmTu#W?O~fOys7m4In852BDeE7u zTDrFPPT&^^0EG!NiyPck#m9*;P5k0Q_Gb90vx& zZ3uTS@oqlH9lN;`ud<8fuL@n z#8XPaCi-)pVzyD2BBUKCQ!5g1XE<_xjow3UOb(C5P0nQW1+Q?y&|5#?r@4^Cvj3am zs7?mMmftruL27Gjr%&k(c)AfVs*x}=#6k(bk*JtgXldRR?u~`bL&7Qi?kN2k(4Y(d zrAGGx7MDIfDC6h@F_OFgTDVeHL0vj-%IQZDJrUXO4}TLc-kX$hXPh{b@SmXg_k!<8 zd*=OBO@BYc|NW%VkWNYU(78H%l6Mhq*_ zKC?DcjLYLBf_2j(v%fr4`_vs`1I7DAgo2fgcUe48M&p|I!X+?}{<7!Z>2*(vx&|2} zFFyI6XEk}A?4Itfn2Mm?yj`5!QXG9Q|0xR;dG>Q&_G}7r$*TWl{hDxgecXxG3oXMK zW$6DsD&^Fl>Wi4)nW;r*JfiMBUKqBNARvhOEJ;U3;CdnwptJE8%H{<%pw1^I17~gh zzVZ(`WUTc^M@MSsmV8FUh4D@b!fw}>%Q+u!{_$N+uY7Ym+}+%>_i}LyF+143U&A|c2c-)nbPmC@P5$K9#a$W8hCSO!cuKI^Hw z^TF|~mhRl-lmR12))V(XE29lXI!)>?9&wedVCm&Hen}(DHh4EP`{=x}POKPx<7y3Iu2qc~$CYA8WNf^d9rQhssGh53Tf)k~ z$+kz@AF2f~u)_$Nck#bS<5R@;y^(Hao+nn0qo;?k0OttA1gT^$!b!q}h4=V3jxrSs z!!G|lWih4{@jrq1&yBI;CsUJ#2r3J8NSHFn|4!=%@Zn|+n<bh(4MX)yvNHv%BWsrD>rLjub;lag%2Xmnl%nh4X63ao>X3V_j~ ziv$XU()**MqxV(Ds_E$H0A^_u)QERTt_?Du-9XQioox)J+7^?sbUjOY>o$R~j$A{v zA>U*XwWi2&Y-vP4F*l2>##>ffJU@fBaI`;FF|fK6gH9NMmyJS(R4b*?7N-JB>-UWY z-7u)K;Df}xu>XDVoY)HE+liDRtP1Usr(FWQtO`L=IKK4C4Hf_o(cE`>7b4t7q+M!? zWCb&Y)HvMc>ONv_RxB9kv5`sI(jJ&h$C?7%>{4sL4|vkydmtTpXGUV6cAho=@1v>W zP0pP+2!w@h{MLmbA|eMg-2?D=;0L`ML6fV;1)`22(g>`uFh}0bZ`}X;1Hi_cV?Pl0 z;`Z5Shf}T6Lkt8efD1<+;W*&a@dE-<8y|3Sqwbl#C=(SV=U}laK+(FWnz6h~Q;yz{ z;nbfy0lv2h1tVO+^hfu=Q2LV)-RtEUiLOvlQe3b{H#4(!^6|M|{Pzj9gTcsE9M8Ck z)p(b>mNsd+YkvZ%L95gDVm!Tn;2g7ULSI3GwECw;hGu0Ib(6+#c|1&g-Z9_O!!LMw3sEQngvvXSbk)^^L=6Oj&U&+LL9KxRYxP5T+J|os{}EHj z#zOIoxh%gGC~Tr#TPmD5u_4w|lxDjMb0-sjwJW)~_judrzj0YJqTy=gC^wVc?w*zB z{X@YJOu0pT&Wp0aM72+*1v7uj3n&v-7CP}cm9fGYN!63=akEja*keL66)lOstQVCD z+@v9asmye$O!yS0bz8|%Vj<5CkV;^VW?%gE3P*u^3oDG_SOVdY_=^eKssNtpG6e^8=tN@;hWQ#-@c2UjcH zD`<+NL|v=f-bz#8M-Zaa4^>7#mS8@1qgzDZ2Dr zkDoS^QAbB~Q+gl-5E0{k{HCM4o z#@oKWIx);NeByibkQn7YJU~rrnD%W-kIvPl>hn_|*EhIcD^!edS${sqlYaGMn@%E~SwYbA z1AM5D?0wV00+`0d_+DujMn%zucJ+NnKhY!efzHg#TwU%J_9ETg1tcV&=y2=*@v3_3 zQMqTYPeQPo&~u>8p_*(rEB@wqZ=z6>AWWJHjKinWH`D%jiS&Bgn1O5bDXqrf&6GEd zx(o$58)P+l38M%sXscXZ2lxi--s_&L`D5ts&!8PoL0B52ih6#zhuFL6NiptL;nj#7 znj~k$rwI=T3bvOAS0s0k3N%;g=@X*ufvE`Ik%Rhw2Iqfd0TB@9gF6Q~Ga*=_wbNWQ z0+FTDV#b{m+I}V$nY`ok8BD{;tIK`Y7&}bu0;E`W3gR^zcMLU&OMc)fR|!(mN8p{3R1r z7eH+;_`HwSz^-@asPJI!e7osJ6y#6QqR#cCZr&kAXFb8dfW}On@_jI?AMs{gam@Wl z=EQd$@UN)s=Ug2{+vO5)3E!iAFd?uKPd(CAzSj=7L=u4@P`3zHt-cos2UQYo_$usI zV#UM0KEf~|22#>v*V%ecPghGvA)3UNY6DHOUf-j+^Miu8;((I9XZVkWgp;)`1niI4 zy+}aFJT~Dd)(}(33qh6^O8mn|Y54H20{8vPBd64x-lj{bn}rx3khUU&c#R-rI{tCe z$VntPH97eUj@h0&1x;?~Qduh6&Aq&~wz0DIdm0~aiHL|upG~d)=d3J=Rns}&tD`Y+ z7rE##x>VTvl={7F{Q^+^&$u6w+QC=laisxFNEw0;ilhUcUvWxm5d^kZ6+k7JKqXyf zisXOrjvJUgAj(Dd07^8jce`CJm8IaW!e-*0tWxEQqa+v1m62~a8Gy@aAq0o5k*rv| zkBU-;`f9NK@_s;=xUk6=hNp2@1i{`3tq&^7(0Botz!qaOkYqs}(P1N^Ig*1) z?pb2>JLo#8;sGG|0m<~ z%Tp{l{h7Rm3fyu}G7-lA?RiA9EHNZFP-AAlyqNNY&%zs4CWM@t>zC2Pn^$eu}C5C=j|$_ z@x-VYMK=3o6r~p)4J6yMy^tob^TTQv*32UX3)^gI5||i)g=l6TQk_bndMoLm!&HQ$ z7G3{Thpt8QLaa80QbAyPHj*o32-ebui)12(cjcj2u=61-h8&Iui=-~|l)cage~WZm zmA8`c#;a!<^j^2g&_uPmO;=|U{-^yLuWuF9--8Lj37`6!gE}T7?X4u|gvo3;Ze^<1 ze-1V?kogh8^}4d?M~k~(skuOT@0uB70xAIiTj+Oo#OtHA3GJAhzO3`r_Y4fvPwGZQ zBD4pM=Y_ zTOvsy^QDoIVU&o7&*f1dSTE37BewH5D^4U+wVZ#1Z=IgCbyZaL{HiPdQ3>jY&HD0s z&-vT_Aj+G|v*)rtV7{yk_q?3%N?+>l87UghGu9o=n?ZZmR8$D3_DS9>{+FgbZZ6_D z;4Y5MKtr<8QmUr2^&=)V(Pctsr|D=rMze~KQS$nVfCG3_1s;YbTdr2P7!sTXzmn83 zqU%dPT^v~-8F6||mR6kkC|&CZ=VkS5)6Gas6Ma;t#%m7hWY&D^D$%hMQab>7`nP4J z!eKzY8s!o`tLEXgG*I?R1T7{tKJf$9%G1@@>-{UyclY1FbPU4|Fa}-w&|bEMl2JKH zzW6!}lg(PXI%!k~?#rISE)EXugYOS!y;oln_Iu}X8@)n44R6%*Ilq?ZFy3vt%AC7g zTa`4V3tnFCz>kQUCn#0A*!p+$WZ6Za$=glL#blIcpiU%EqKyP|l`yP*@cwL%V~+4> z{@wQ=h}~yVH&C(#Ey=D~+2Mh844o-cO3G5Zf0%;3p}vP<^gKdk2SwwXVR) zy6dSdFGp+7?NF)9FRshR)|iD3^MjQ~-|-uegh>^xKX%hxuSsfG=KFZSC=7cQ&7pwE zyn{g(hbaxf^I5qsX^}}_?nZM55}am1j*GdU@%>Oa;tyVdM3+R<<&2&8xg#U>Qkt`0 zLPkZzB;T9O9Kq9^AleNT>fYhuh*iD;pZ(qS3Tn$i!_3b{{RU9h+!brc6IxmO#GFF~ z#Glx5E*X_y@XqcGlG=!&u)3mv3iMHw-E7kZ7;yqvhqbNi9R!vd2}|(39!TyG^a1V| zPaqKu&pnA0ze*Y6iCB}K7IFq2KWx}rY!4;NyI8RdP(KJhXOTdzE?1GX|3`HtI~1j0 zgfV+@r7j(R3oeX+ABRVVp67vOUJ;yc^`H?G+GZj^-wY3%Pvcr+qSC=)WAfwj zs8~~KZlj#EnmZnT$1fK?0C#Nd7YHE0WP|R@zj(Oi1=K;w=W9^{T`nx8u0sZNDaw&i75ab93zLs&+z2 zR^uhvO>WcAde<#|&fX6{wJNv&XfTlC|JK(sv9gtMvAw@>=fxephiViA0tnA|uR5%oLryat#&1XEg zbRA|wzr5d|_ng)63VpIj8v`{i2lcO8{D*kZxD^Q;!pJ~WD;X!&}*uEjD z%T$7n0}dTOx>as*4!7!JW`M{)=3?_>$vJ)&@*S05gt8!)-)*_TNOZlQX!N=Am^gx| zcZ?irX!3?*H<$8arX_t&W;}b5jkUG46}19cgM42TZqf9`vT^mr#MAVz)0foO&0Xz0 zEgcKNF$YH)17J?~WR=pq)un^-QqRi$xaaQ&D8B3t&(NG3df}f}doPkH4@#Vk9fSp! zqngF}-I23-UTl3K>EZC2jwDnPHy&~~LSd>3f%s&xF6Za!XF(LS(yq=)iocmwWh)2u z;g?=83CZKH%vcEeBCX!?_rqwSZ~+t6>{1$(C^V&PE1Pguj%SsXg)+2AY4XIjI^}EC zeUgwby#38A*{I*0;|g~kQyvbGStqi+mL|B<@FhDSTojjonD|Z|k=-Gr9Ii-aeeQyl z&G|emlss{H1kaIpAmikl)o+}E*Id|&e!oe*BUR-B-3Wwx(tt0B%y3K9(JF65 z;?j|`*mKk((}2v!`GqG$F*)4^9QL?sVtKekO6?g_v+5d=jXeDK%vC{PvVgW^O>6FE zCB|%Qm@xCdKxSYvDEept!x+mC7xb8Z@DZ?H;mRMHJe@xl5E=VIYfu8$?62#tvV?Ma z*}?D0>QXK_2g#Z}_~J+28)nl@1QvZ)|J`&p`5s>$8e13cUmtcHpwUl*GYuQHVu;26 z8}3;Aw-MkhBc^(_a6G!V=kWN6*S_0p%B2N20lQ<6D>$&detFG8?DJQl3x3#-AKW}U&p5?uFrp<4;$e!?=kDWzcrmb|>+FCfsJG|^U z@{n0bRrBsO`U2DB=6tT#bhCVp^jS2x#% zP(!CbUNs)UNWr-YzPzf{U9rxQa|ZH-XrNgc7ExzLm%~jTE_Tp2J7Yf1%3E7o9WHPwDGcwR zE4T0J=ysRoutJt$meDMT`k+UYfSXd%)9`W%?ZgrHiYGwyq^gIz>ZQXwg&V0@8E9Kv zLLygM)bEvK_QqvqXsBh>O|^Ns9N4MRXC4AEU?t2JBqDxMTQbOBJ(feXys z84!Wxahj=1rSaPEFXYjofq4ku^^|I3vR_@l(qDqJ83qp!d);{>~zlNCoDZ??(x^a|s7f+{uua|*ie(qKj_}B8rBn5 zn!h~v%B|Sfxqe5kE6nxf$e1wKn5y-@g;Ll{%a1*tLYmpFGX>f6`?w=}Vpn!jvvwm*Yf|Hnx|4x00cC$O!l4kwonKEehoH_O^L zDBry9_e~0=}A=c|X2w=(LSYYI zYB)JK^Absq3z`@+^1Z5Wx{?4I@{^5)v@py?JM4O@X>uH zg2Xxv#No2868o`2z`Tng`=;ph-gXpK9tbzXM3aKXApguvlDUBc)gSa+g`A!iw>=RO@-9QVlvcF@umh*ElMjkV-Qs?_!m^#GVr{lS4V58Bqt{) z^sp)%&5EiDroI4xMGE?^C2;)kso;?#pB@;{qP?^cm#S|F7a%SCgCkQT!ijIeoK!73 zW;Z7eKxd%V)Ayt#fMDFdB5-NmS>@yk2oDrxay?ZqW1qCldT5Clz$ zKfjz7r?GU%QJMABxJwQ)Nn-77!wNd|jf9a?e>o?Sc2M~}C0*&a(aLc`$rfCa&Ey7S zeXH=*x*{(G3vL*bWgadCi#-;Cu>UuGJ(THGmQc`nz(1f-E=wARkS5aJkKjCv_ua6F zDvt5bGExdtC|2jR>rh{YYoqakHy1HpUN_AD!P_LIR$Tk+&B=Ub?Geb>iv)ib(t#q( z67gL*P6cdOY%Xs}T`?OQCC(lj`gus6fEdQhk5-8Jcx^I~LRp%J`{HNHz#mh|A}iq( z-Ej2`x@df2=2gjeyuDaKy9@>Ft#!|+M<~?@8A3z@LapAv$@`aRF!rfl&py(2if<}_ znV7q|4$0-6Xrm#n6&#=u#ADcyOBkfX^P$2f4Jnf46fv9JvC|S|<@w(%bN+ZGcAaE_ zMf$ttw@{23;~j;KI{K2rhhK!`lH({McLNe9UDU;~5_y}GW3CrgeK(SCf?Y8?m~95= z_QDw1d&c`?3ho}~D)(u_-RBw`8-5iK-BVz0`{TPm`!waL1e{~qO-J}(!p+;s-k!fc z?Wx-?gq=VXth#z$k&=-fxO;5_BLxw%=)SxF7|n%Q}+7iQdgjCzz5**B)Lu;A_l2vk_14 z*AEPPy#N2T0MO5*1q=W^gg}@Nr~E!4k8QNmw86}HTGoj894;=~`5v$BYzH1KtR3|f zT8tHsbPRf5UcWIg=uZaDfM^3z!>KR<5pSt=z#LgayJkuHJh?|q&^DAXEU36?IXopA z^Q&@?(d&9*LOxWuzo-`)ICN&-C~yek+w_K22l(u^c1Z9MecoFV=9|Jdxf~^Po|YJ6 zA>c&C(QWcMRP)NNnXoB974I^7@2WoE+dBZd;w)irx{T?1Z}3)HJm+Fpo%$XzvuJc) z;agXInRPRAbEP+Tg@8Zty;;CE6}X1c?o8M<~K9e!NW%~zpi|erwhKi zN?nqbH8>iopgzh$ok09I-?h{vHW2+ZMObxMI3lCs4j?alwU^8XSq7$M_LLwfqsQRj zR{W$*U}tdAa&hvWe&=f7=Ab@zL7ZS|*n)nCKAT6LRScF!<)a|Kmgy_!ruvZz5lrD1 z_JElM&|E-~1-C;mhjJVM(=|ktKtZBXXG+7#v*%o?%kvFiMFk1{<<}28cTO+n&R6)Z zK4L}*^q>$tJ6OfDsc2oU_={P*9(B!M0zeHu()N`P40UruUu7A+yz8w+?(Zn@3=(`0 z?KChF_y_)#U-MagCrv$ew<;h~sZ^L@rmpN@7AU>FmogQ(Qc%`kh% z&qU7JZYrIRJ@RYMny&k+aa&3+^oxzrgKp~Wbcrh7iPA8 z(Lm+lY$H(SO4Z#u5T+*TO)LLwWQcAALiqY8O$~2&rg)Eo zG-;SX77Ic-94rPwR2WzR=79`Qh~n)8u_sSgUJ3hmqJp^)&m71zf9tz?x@N4Sov$d7 zdDR2H$U8T!9L58?FR}Xq{X`sUyTi-hn2kf8yk-uWZoztMLL^9&eb09oTNwtlB$o+cRl(Z2$?53~{eGV%QJ1!r3anLvBWg#hYlX9E#oK|s`%RcHq_ z6nyqjL}2sni?7uO_2UMmQ4Mf-wf<+KVGL!}3TkImr0`paiER%D8&PAR;U%_w~YNT?dxIL?88#o7FZLtpDKzx1~Qq02>O#NZvfXl59aK*^clc$i? zj1xmGC2XctM|Lh2&}vINsu(aLuxN1oD8}St>m=O>*7&?{E-YxX&-V8}h#Sq5z?;Me zy?J_LHTGW~A0Icm-&`%5Y9%d4(OnF$ADVt}c5o1&iNv?)pnr~W>1^xYQxb|%3OrBOgO~I&o38?m_Y$T$#l2Z=W(wAqwH?m zJq!Q&I1r^r{6L?EL=D$1MiPZml7=$vg)o2p`x83>#uQm5TG5IZCbu=jb5}c|(H0+J zK+2us*PUjdD@VWf<@>foNDd8&4oNdaiyw9b#3WzqKG<4Vhq z@C&u(`uFe{IKo=aC@H%cPGb_DvzDy-tCo`pn@fS5(AicXzu2i-R}YF z?=fwa>YOS(7t_v9%lTwERrEC#3|h&NwJ}?F>Wc&()rnYXjh`QD2{5z~YK*4vbWI=C zuK$vGv?(W+Z1z}?!+#csmYGR+C+D=eJjkpe<*NQ>vgzbsuVVeCwO(#zVZ~Tr9lc#q zQ{$6#mna$2+bagwMh`e=yi6qw4|qq z^l&)epZ$^ER`*a}AoWF+$QTJtOqcS%u9z%IuYISVWuF{FCchPnjE;Vm^fgQ}W7CgK z{>owdwP5_4I(0`j6vX=_OguU6@g&py6K%(^GdB*_yGA~H{NGdeHa2pIXW@zuMmiDj zH*|-;B{`zf62Q^RW~gr#$QBE>rEbm(pE(kQ%W!M_mlAcFpCjhmX)%wcyY-StXQjXWr#-W!;AwgT=ggoN@ z_RPr~8MD_}LP^0vN0Ba)&vuFdV>2f%X8e+)Am4j76zZbKnJwH@C3Y?42EU=2l-X*6b-simcpH%Wr4|J{#Y}0}Kl~@gv0V1OP5I=i`&Gs8}p*y_>8n>_p<)#|TSc)06(wIvdnt)Z%JTK0tD1EZTJp99SGT+=X} z>j`Ofb#-q!E+-2Y8-&73of5v4RkEV=&kDi+43IhP@+IZ!$JWSOHUE#PmYgWstCa5 zQul)TCeSy1fZPx(AP7R6q(PneA2AzbBtxSx{^ZlN46KWD{hZPP+uf}#C!%+K=AYQ#%|NDj1u*)W=7QMBdcP<=^$ z&_M|Z3&2PR!0y~ak?x2@e*PcDvJp@tcBvXcjB6|LtpynDRp~%;``OVI;FaWeNd3a- zrR0D#nXd5}6U!V^*G-@ZNOpt#A6vMrg+A;UcJ)X#MA&A-eA7YiB*#{A+a7 z#?{hOJTnBQRX9>^5Da5?uIOZTDjYdFimC?+m6Z5;Fb@?h)PrKZuxC>EOEv99k3h&~ zKa`=d&Tl3h;KZx_mhP|qxKpF<3*DP&tQY^jvC7|FfSR;J*zbIy48ybkOD@l!&3K5M zIC(lPBQ)`O*aBoswA=`qCKtKPVlprmc4OL*V373r|mgP__9hB$vET z8WTkzRI8B2qYh54{J{m!5OTIU#ph+|+k+NWc<+c<9$=A1Mhb^;rF1p&iN7q+bPKAl zdyJR!3;pe=uk(eDqx660BVtZSC|58g6{|zMqe~?v9(}g^mKK~0fp7@pA2fKSTe7Ht=wq^^-sO?S0{*)OzAnxr?2a@oIyt|`cIFTx%h}d?s>45$rs{#l zmmoQLOv-0dQR3i-o-5{Z4V^Xp^yzG&*&VkL(u2(H^bS)?-;#F)y~S6#)jm&ZMElz_ zfA)hRO|MI(&D1+h2c?KcaMI_@#Yq_xo6ek(K-cT@D&8OY5>5H9WhS955Z$YAF;I_r zY&u$AquW_W)NcP@_VyXiGxh2mAyi$Q_0IXSm!w_6aOu{mW9GK?b7?s^N(|I9xJGqr0|u^2ki|pJ#QW4vkqPvBAl@OtD*Nj|BafzQ?CWqK#gM?M63Z;M%GNES;ZbU5t{|17Qb zHvY0doOb#?-6hqnvjQ|**kY~7VnnOc7m(;%CqjRq9`~KvZ8T$e5 z6FK)X*&$A1^24j&Kf*W*(lijyyw3hzqRD*Ea~aVm3vGjZ#mV%hf~iy|@v39{%`a4k zahXYFW4EmH(roDu_(KZVk->rq)}+7P!@q`lp4iP@AGsaCkVa`dr8V!_3wvo2TTEfnv^V{%&uZY!g75WLjPIqc66o-L^f*oS6)?-Y0^utn zjQN8W;3H@wC`y?+Ci^XQ|pqRoe4{AM6ZL!OlMmC?od*y_QA&i?XQM@vh~@o^Q3H>nVaED^R- z$Gse{KtCo6y>(B`o?q($AL!>7>_3~T+W_E?P9B#9a!gNNn^2E4zZ%vp0+y?OOhKz& zICQ|M6Shll3!W+Pqtac|U$d~Zrd0rNR$VbpLaIPTDq&!%925W`@^1|;r?kid51O!WfJm!%V7t4;h2hvt(HK7 zh|T8^KJ?-I%F4>+<>k;4A96Tz`|KwLJ9k&T-d9BeRbnnY?j?|%X(N(LGx=UPddWs) zNthf~X)8h8R`a$uW#*lDmav50GbTkS^D``R4QZ8bGXV=E%LhLNCTv0eDY0^SvFvcz zeB_h2qLFP(_T#2 zM*RE;#iifcXxlJo$U}`=#5~60>MFO#i{o+c4!n_tQr_v@vvM~xKghI=mNAuub{80M zsA{V4?s`1-f7g>5W-dPDV=wHG{g(E%sWfZ!7vkI%4PoIhtdx0?xb|aw`8zuPNd0UhhVj>$tjZJ%23U7uE@Snu~#(CgW|j(zk|Z9 znfd8^GIw<$b-l#6{c>~o3Vn=J54m1jo8MSDf9Ki8lJ~DYb0eYmU^WUWxxn{OCTx_!W~*8Dmsd0`_yBgh;q<-Xr8lVde&7qsOjc*Od2^TFS#x*fbuZXfW9P!NvP(5xsPEwzU;8SoL-I$3!A4PxA9#D3@X7 zbI4Z$PuG~3uL6=DhaILgtnKL|0jZkv+D5+KBb6BM-Qo8Wq*kM^d($@wy1G2|9JSF6 zhCdB%M19VZeb3VEc8w^`7&-b&?(Yl~BxFgVy-rVi5+Zg$NGQMR zLPb~1h1G}Jx1sOfg|zT<-utp{o`d4buiBKp8%*X>Rjrv&zq7F)A0|6r?`o&b1&n|d zF5X7c2@{tq8wGmBPJIc=73li>w9qn%r_v4<8#*wdUjD(aN#U6g~EG0Tx`t6 znj?8{QbMM+5Qwpg(?}RxM4lBuAa>r<5o67R)X7+l@QP#&U{j3SeHJ+ceDi(uW=^hC zY6x&ABSi>nmfrbTuV}Kjf8Oirvruo>xVOT6@IzOLDoCB}+i`@2Jz)Y@N^ge+ml=vB z6mr-8;WmIgDoUMR$N27FcV&59vuWS4{3V`dGOfgn9Y&v4pv)DOHu6Z1SI)tioSF2C z$`0wH-(|?TRM8X6^!e;b=_g5DRFzW ztg+ubDNVQkqPX9EN+=dg8iEhym;1^YDG$Z{#%(NX{$7?C)&QYZQw&+w5YnO|o+M?- zQR9z`O~t$W&AAs5&%~8eEJKWXt;!0qcaDcZnWVAjA^!9#oPId8hWlrC2tRTN>pS)c zJVW56AfAu?NtxJP9**!mo@zRfXgUdf_I-Qb{PFkA$-c5L_JHJ|0+Ps(_)PiT#Qfju z;34r{MV6M-uLk+F3tdKz;oNp%P)9XHb7^NgoqW(L$XEgTBUEb!?axk0qy^HsHI0ge z;+cVVmm&dp2_(noW+u|K5zZB27q|K$4ywR_R6<2R2musSf9&~UlpzzeU9zaNER>Zf zUITmle738#fJPBBxjX`{@jzq>1MI;!9YFs(Es5^pQAM#Q^jOszuM~Xmvk}jH$$p1$ zy>iU3{$?@aYBCn9-q}M#g|=&JN20zSOmMcXDs^~BPma4BF0bZpt{mu}3y>=x$t!~y z@Qtp^Ew2b55>#%%yENVgLWQsA2V z1fC&_YC+7mF%pn3=|GhODK0f;fnoH%Smao{!mU}3uD})xxoz;kpQJ;*0oeIjD03<; zh@$~!Tf4-^AuyEzB)*Qp*qp~fIx}wU|59Z9LrpkuF}vh(PYC=(OF=6OytGM24f$gfs<9h$?vS`T)52d0-O)S>rT#& z-XA`cS2tbsSjK#Q;x3-#)!+)liA!=%cz^%?&Q4!C>h8X>CIVrV_Dq)M0Llb-f%ZCF z@Z?6!R7W}HqR0I4+(Z&AT(2m;9pWcn^U}CH=M52L(ij;|jG3_T@3Ihk#&~%GW*nSxYv7r;Acl#5Spq_5&AuJFxeP=jl#*I_P`#}6aEc?3*?#RwY zL$pknfLrO1q}yts(V1S82WDqzc6N4jbQDZWRayCF>m?4aatEbOC}F326KAoA83Q-9 z2-#0a!9t`2c!LYy?f-U+MWxP8PkWu6?hWnu7>toI`Z{0+)(!7(!iw)kTm=S3Y!(8s zZjZSOTK{T&%I-n_Um*+5$(6RYw)ADw?%J2kdFQ5OH8l-)DF(&UjeT7=cNQLDYsnS9 zztYL+4wUG+ZCxXlB`}SOtoezB=?cR_*eo?Q0EzIGvNNYv$HDbM=yBnvIN{-*mY#L8 zIrk>M^ZA|3u2+(nDIZtKvole{^j8JRV};eT9)+Y1uAaTb!OIa5+-%cuxZ#ZcoVYm4 zBAL`#Vwg+X>0$(*&*ABMR^ve#1kqtumN}D|{{EBW=aGe$%qfw7J01ex)6YgJcP;8! z6tRlycMjL=ORU~AG8mR5#WbEiDVXeguhlzZb@W5D37+|~q_|kp`|>Q|K#*hWy`8O{ z?WgxCuM--_twxT#FG_BDeGfpfIo?rZylT7I@%37gkg9%KQo=XTrBKaw_@_n0Sn71E zm#-w5tNXtb24cX=Uo5Bc@o>-2y=NlCY2VNUa7p@n_XpZHTyBglttAC2Kx&`MHvjm4 zC$Clx;HhNR23d}G$swpm>-M<=~s3zbx=M5gpENK-18hy{vS9_=p21_fb-?Jzg2wb`rboGf$?_%0UWrg z2n3%{+6kX%lh!zpb{s-EISUcN;sdORjwNX}+?;ReRylzH57Ei+hABJ)rOG7onHkiZ zAJ{_NSvL3J_nhT8d*;$ab&^R~!y()|dG6MU?1l;jidbIcEPyFNEz-&Qu(^wnnBciR z1wP-mC+C%~9%W>ShRR41K?MKr1t>y6&iTo%ti#$E_2#M#>-3^5hF=aTQwMhcH%9|# zwep~*;sRLh^c)D&1Zi)mC!rDJz%e!mdGim3Jr04smdwb!&p6xU{?6-b`%`=U3q6yz zn}+KO6RZ^fA39UdDL-p-!U*PMMnT-4+N)cvVrxWKjzX2QS@QH~7@aLU( ztA0%T^}aGf}v`qodTjqs@FWNx<5=!~A0&QxBSE^y{wKp+VtlvoM6^C%|Y}y_HiV zQZpl}moO0D{G@Mm02J|y={CRgM&ULdwGYI7^SzJwYA+s}e|OeMe%6Q@^neh%t~o3b zVC#B*TMMPS09HcC7bj4HpabNlir;M#7fMb0{Nn#{hX8WeHCH1ua^?!L29LWumPoZvuFl~5YC#lPWV3I6-$$@Ki^-Q8V{t;mQxCu8o<+TZX6QnYoD^5B7KqJ_9j z8`~h|9grZX^FbCm*aDM-UZ+5qZkxtY_7JXa150VM8!6 zu@^*8)btVyA3Y5lJr5fEfJe&PW%@w8K=q&9HzZyI_}Ee86Tj};dXn^$k9I_lpgjq~r!Udf(PvQ8XDAV*K7sz6lGLs05+X;=b9Xw8x%5~d-X|WbRA;DZFD*P$_71&&E0geZ_IIvz%`YRAji$6YxC*p$ZviCpw7KT(ge!8(mn20)y*EydA5GM_nx4yAc8 zpEfRZ=alh=;AZjWbms<$2-8^_e&2V7{$0&9=w59_{pGe|DNNeR-CP+sRKUbYuUEAn z8@&9d@mT^+SX^8@@RzRqqluv*#p3Cy2xLP;GT^N9j><1$zXcF<67segv7@u#e^abc zRe4MnJ5$f_>8j!tN7oOq>#RSd;`Q)sKe1R=C(?05mWTq%JKL6_O^dFf;CYY{*MON9 zlYIIIAQ3&K=)<0`ZftD4sx6Js=jW%l(|8@tFq4XO#mYf3hnjs~5t(oH+W>u5IHRQh z{xw|OB-?1!;}YX(EG6+CG$;+QgguQ25^BrJqSls&uh4Sh&pG~Ke6Rl$lM$Ru z7kK|0o{Jjj0Re(CSnDy?lNCE5J?2_=BBGLw?u{p>i5jGyo@HFYYwPQZu+H(=F3fy= zg=$4aqA>tqEKd7-ru)dG>{GZ^-WD|K8@9jOn4ByCu{Y=~ z_R@1<|24;jIY5y@?_U3Qyj(y2GkV8!_v6a>WuBpl?~Yf1t)!1zt?x~uQXKDv@Pb#V zxx~AJH$g{dV^LhrGq05Oqu7EPD^al1gLBJ=ztX~1u0o)X{n`y4qa7qfrxz9$C>!#; zr#-IXU(5x1d$-Qc|8ABTuy-UBOx<)`uo7L{6uWCz_cWzuNiX)?(7-)IB1Rfj{;KFC8r{{X}>AYADnr*Bv3 zf1Es>9LI8^An(NwQSKu+A-y^0^*hOMYyrn*HPCOupqAfJJIbUkjD7rtIo0vzS{C<6 zV@}Qi0e<0n-$&}YKRoWfl>M_mE}S`L)JP-w;1@)XSOAY(P^(pzA=VcqVun!iVPWU=DCJ78 z^GV}^R*XhE5X(uVBk(SiFFZ|DpL!MZ9RH2uV$yeRh0yfnKXhjo?f0W96l%=svIHxL|`4#_*Z(l`u-bgg1>rfAJd6s`4}$z z>6LN=Gi^_+4fT(Uty0=A0KuT27U9PQuh0B7D$JE7O>K=soFbRtt#PJrY~2a=vv zxEXL{gIGJiqn;HY*4`_tr|UH&4!k>)ZXOdc`yBa!9?)o=ARxLE6q+e%Osp00^FbzZ zpjU$44Kqj|T5nl9Qw$cXlrDV4eP+ak^)#;M7p^>yHBNFx#YKe3SvvGxap1FNxTS%s zFxi@=!HN{YAih~MJo3?he2P;fdR7Bv1I1Ju1Gz2#I=gO;q;A4JcUxcuk+J~CRb~N| z36+JajTI!xmK*!*)cKIz@1{;EbD(a1Rm=fCdeq@&zozHfo0^>KdcfdS2n;sD8JB5v zkqISiH=9%bb0Vf7s+0lZ2-zcXB`^i3BsPE{mhU!Ms+7m|1n&aOS0SW8PxTB(gC-EP zm_oPMLYhFdKy4bRcegyI3>uk;@7V&i$SHF8XI2*Y5+WWw6LxnpBJ(rc4hCRMpvVdg z;D4-|#s|taINJ$~-9C`+`Kql~7%0r($ieRW9-a6)CISpMPl;~DlFJR*ZXoG~Ob!yk z`9G#5Ke^Aq(0Z`^3`6PyP`;q1mW$qA_cWj+f~hL#p&e3b;62m;N#Zih`2hUCT_YM4 zU=a2OQp3T{t2{0QNVFgW0yM{SSrMUW5%eRlkKn){Wo0S40jTB7VVbJW2mNoz+19Nn zZod~5yOP>B|9l9{C?{JlJnJWm?z#|nEn>QU?N;n;Pr4iM+?$$8Q5)lXO&tc>i@DaU z+Nc4rF(I+Ke>~b>pdv)-p5x=`n0+53jI_6SbI@FAg%-D_O^T-GCl-q3TS;Pqi+V;W z06eeGMBVs@5I$Fa);t|OD4ahK@AYvTt80l5CnO2Jh0n=^uS2P9iZ9X|?Z2n(Tk&x4 zL1>$OxN~%^bA&g?tdogCVp~l`mXWTlTTVMA-7{sWRI!K`49$ir`~?VD0S55|*AK%gjWiEw5_Y zX){r0#962k^DX8B4JR(j7Wdol3DoYzJ0SwTN6k-2=^rAr%;kyWBa-4>1N@Bi2#cEk z`+mK*G7|7l?*>5Yug1rL6-bZDYT&R;?|ut(io?YJWhhZJo7nz8b8lxq1UX)BKPDDs z+;C+lBtAd?M|WVG+Qs;B3cN)i1EF^KXJuq}uIXuE?sPS3AcJE04sQ#erH`+( zb5`Hs-wf^NSUB>0rCj*-LmP80?zJ{2^$o`j>D_j>1TNh#X|0#bcQ_vmJ=kb5d;|cz znyR8cF8ni}%Rl_^6;pZMH}eX7=p(np;Fwf)uVWl8Yb}eH z)0j?K=lfOQrf~QA(&Xa3<6N_!@)+$SSPzwUU(81sf~Yio%o$ ztCOT#^A$hc5>1~#C`4p2u$h#NbmSos+$j`Z-spjvo_l~F_>2?tn1xvf7PQ6pRaXKx zw#MaN@^>A6?8QKA{1S2a1Rp;2U?3JgZ_)b@)|2n~r7n~(ylzbTMK1AcZG9=lZ@BRpZOr3srx%c>gN~-uijhI9?%^(fc80bYgD;~^!=9#nkRt}LWm6To(SB1 zg#US@xG$Wb!7&?yu|vvuc(4cDEZm$tgg@FaVXyLaV5N%6q_SRTo`^jfRJF5| zhA4phR82_w!tB=p%)#aI<<|Cc^Oea>!@||h!Wq?tPajJX3Ud031SC^41=`yWMOZuD zoF-41wEJC5elhxIuZNtdc-7!CoT4{{M1pv5gNonvct6Jf0ZwVvFfYivBdFNf-2ot> zTNRTu6(ntfuFRzv0V3c){|xZ=bAz`f5`a8_ntDS73Mk7rJurW~iQ2mfiFhs}Z#1=* znN{68h`Ar?g%fDsC_cG)g9mh9f#)Nq>9_hU3;Au=2)U+*m>rV<1=226N{;RqcomS` zy(0P>vPcJd^N}X;wr_*8pUo@{R;>1rip;p~FOc&f<1O>TffDd{&yS9P<2m3-8dQc& zET{uibr$T7xwIzxSAeiD?x&3-n1SITvZDTta)n(md<{2&x`$Ln*WwnwKW^gmwy@vCu1z?Kbov~_2I2uil;j1 z?!4H1+K@gBih0bbz9GOuF{Y1HCNzpeu!lnAj4Q*K`;t&QH1g880wrcKb4zTY)LIla z)K3P%^z&&Etqkn0Ian=DLm3pA=c(EVz0qccSI4D;&DPS!N+x2@66Oq>UW0zaLDl}Q z&2MjiD;uTJjVt$qe?836*DFcXQ=!3ThDkdSz$5BxjYzf=Sda)v_+2l3!zfMV(Hy?l zEYayRkK;8}HAf6&Z&AU7re2T_iQ*m5*k$h?CzuS2#2Y13){b+@6FEw3+4mwc%1+o% zS~eT$FWS=7WtQjkRf8$V8~iy4XGAa~8}lb8>Kd6>E4a=X zY?Ex(2ytV-y`Qc5D~#>`@)f4CK7USsNu&6FVRp8(ZaeuRLo?y8&L#wIZTTt@@A76+GX)o2?&EK%;&d%G&i|wl6acAN}EhzTNUH5(UP+YuV|G@S{ZNri9wk*n$j;m7p9xg|w24AgIgg?r z-Acf6LtuDxqh*WBOUdN2^CG+FdyM9rx0W*|zGq)mTznfnzc%>o9}T=T z(qO*}Z)$GimxG!eNo0>SCJ}het?rKv@P3wPYimMASXnqxPhqxS6T;$+&{+v9T;ud(`H-3_r@gB)OdM$Q*eq1Ih2&# zp^`e}|UwNu~G&Cqbn`+oWy--A@*Zdk<8ya0=E=!RR9BXDU5SW{pPA@!K#Iz=T z1HrNc3UkF{#dro2Y|Mph-NZK93?a&^2mwBo2o~8doy5~jd0@zdV`s@{AW*9vX(Ln% zBZq%bjvl>@l$vc#N^rGY|DTxxUAclNM#N$lnJZ#+1*LcABv02&F1Z)Zj)h4zNPmo1 zFTYmO3QVQq9{41Sd$%xD8M<6lNTDlpoDo&l7x%gCWS(Hxe{T%DpDBA25sE{zM{)}q zDB8--4{3i@hWOp&vRxfy%{7@h%y4F()r=hE>!iZ}B_n1FIq^-(=<@zDO!Peuw7Z^N6=3w!{xVGdBi9 zzyGLAf-5q!JK@rmhg%J$MH>zccFL1KP$24DDzcfTW~;&eh|@j#aql^EV{R&)1i#V? ze0_PSE$e@%)%jj#HQL4yJY#9;h(Ngs;5)i*pAH_&Hkvw={NBFcZ9L_-Fmg0JX0S_p zY~WLUSKN8~yF*68_mUr>KO=dGZy=O;P{~6=ox1nBAH+(?$sas%4kvm(9sV{GyrSHHo@^CxuzDtSwb6d~xBcva(43pk z#c;*UML0oFjea4Hte+ZKQmstZuB^PbL6rj3A)lkw>FFMe>@T8NA_`S1-RbBq6XvXf z2nb(e8W0-c`v?ejv-nh`MFPfHwRB>xOneUHrP$s(ec(`weK1dvbKRfUig8inLF6;^`HkjS&>wZ8;pKb8MRy9CAT`tqEaAdW0Hv z*z8HyFy`94rdk_JJcczi9`o`J*}1yjg`r~m#w@r3&Z@556M<_-xmg@cRnpOkf+q%L z6(4Xt37D$(<3uW(GSbklBvZ;O`d` zET#_#?-){$E!wVV$eLB44BSBatRJRs_g0a~hy);5+)gsd!2A5Zx3W-u0gy(1%Lj{yxP4WVDE=_m zHUb!;Ow}f#@qz*G3s7KZ3t|~oXTS|%wynUA;>VAH*tiQEPT5qv)j#82H%3>^{K~w) zjX}sf;{=OpJ{M?kccmLs89rOyE{uQ(5qDugMD6i0h%`;yVB|>|$iE7icI!5v-M=`& z+{ZWwGvi~Kv1PCWO1~WROHELM7ExsnzN|*oxB+@!Uy&8}J&mffaJ<}O6s;U?L}om< zs>0)m82;~Xf=e)pNNdPTy=TT{4wmJ*wuMcogh4)rx+e@FM4qYn_u{`3*5!%0Jm$oS z&v}y7ftvWwcKv}xstWYySL&FY&Ofk1C@NRCJ%{ni&Jx$EDOo!>Ep-P}E08Z3_sOG9pT?%dA!r2txWQY(D^!6Dn%zU-`}fjn zS=ucde`kK1Ua_tC@bQtMDBOxlTG_j-n@+rPM9kw`x)LxajZ(6_-wL7k+{(kw4&zF; zo7LqytZ@a7TJI7Qk?@6|9bD3Pc)gD7|7EkU{q^k+c|j8GgM?|p#&uHoNYgRr8;z91 z!>C&7mE%sVbo{~`igSJ7#7s1=-^{$@AtsRz3`}4a40c1Ur&p|gdEUhM zd%qxRXn8x>f%!>&Of=dY@lS=#Eq~v}pPx3)wAwSp(fU|U_}#E+_DCs+D2MQ_&!ETGInL|ge* zBSS50j+FV%zdlFr-k;O)%GNDQ2-9h<6#tcpF!HIPmlS(itNpC>@XY1OXFM!b7CTQL zZoUEo?SDiBX_X{TRf^}D-8atqr-j>ZRx$gQs&7S2cI;xMu8uPRM3hRe%yZ#te$tIx zzDG;peztL@kr8HlTX4&fVPROb{bEtB!(n%KoALhDwdcak-k+EGjrBD(x%?7mn{Gmc zF$XcP`i!^Mrq71$YX6GKJr$R-Pw$0<@!6zzP4`|OPmWO)1BNa;9nhJ}I5a-fGtQl^ za!6{~_?>R|N7arE3_SCcl5AVD)XGz>eGWFuu3e=r#-wgIu1~>qt^I=Rx-;?c@YM;% z(b18t%+3GZeDd{+KD5kUMK~{Gc4nWV0@l~rjcY1~VpQnBc1IlP z@qGZDsB;Xsn9Oi&Ppw*>yf15)t}ZVa>4T7q)=Fl{vn759?(M`A%Gk>oK7x2{EKOCd z2^e-iNOpoV{|N<<9@`3l9{pC(;cuk;9pB~s5uCP+7Lv}##F?Y{!>DuNOpBjt)84~!h$2`as<=uIh=G7)eNTs076QV- zlM=#_44=5}%gJm0$Z-o~hRCb(nQwk{`4c{2b5`Nme&TtvakF!#RGj07+2uId;*{B61-a<26r@4Dq=RajJ1nH4W^=B=JZr4*N0?Bx7&bhq zWz6mJDf;!$+&;f9m$B=&DjKX)+7@gk;%fF1u96BqE3r>VCN@3IqQAZYUX5rt?;(oF|8M^%@QE=32ktEvzZN6XwJ%R=D==8 z@S8Dw@+))e^rDzfEg_*ImM=|pC;b|JTc@Y%Hk%h~s`3EGJA1W!po+Aropxz@&Y6{& zc{#s(?J!fn+j2JPB~jTF3Ttd{U}eD=+XB!56CgLQ+WIP}{0C|!1v~)=v&OfD5OD4h zpxsM=oYESz{*fA<#ezx6lG|cPsRUkCfSB)Gv?~w(QaXBu);|I~Odo8lfO-c?pQWPq z6o}Qvia(lCCi-Iwelctyp4$`R3w}8(vkZ)K_`xp<8f*O$FQB+$01h`*Y59xRAnA4_w|Vp2C2z>pHA9 z)=dpKyRV}~t$@pE>UP@|^xX+&LxVOIAV5yKf-(@5;N}VXTL?2QytEE%2z!!&%;~x> zMJRsU1P~=RF*pTT&73m|NqyOFIFU|9M%K6D3=LW~-m)H_7m@fa^(%^>w2QC3#irRq z|6f7-;pA1D38~)=P}1w?PWSez;m1*BJ2Cr9*TctlLK)GPwJOlu5u8vAsi{zgisoAb zXf8H6+hF-S_ozg|;5^#FMd=Dep+PMX63529)}Rda$&h4TkVFoL#9>{%grcmlfW7-? zl|GNGrrN_zgKmg(v_U9@I z_~e0xEx3v~9V8S-rD6p%T68(f=~N~|7yhL+$sTz_p-_A|H90BX(roqOaqGgy2VQ1s zY$CKiLgm^+?+b80Z9O1kwLf%8b9GSUe{N+>A;%SE@$zWSEBc}O7ke#|fq7fRw>dc| zYJO>_4Vuf@^($KmFBT9 znbp~1ZN)_A3dFxslSk-!`*e17OX|4A5;;d1^Ju z?t`waN?HN(j62|uaWK>8)h0C8F@cIjR@tFfAl@XWa)NY9z>2$ z*dS)M)3u6GdWZhgQ`+3t#T>lF`86m5XZM+z%Y;Ao6w}#a<^24IeE<2TqGtjkKcOCEF zA4)$4_@o9G5LS+^3plL+MRjuQP>9Rs>94uTqN~OI+Lx=>^T+d(>z7-3B+g=K@r~)c z+FaxzxX*hTTv`J*9vexXF5-}Uv|yfW{0k?oSmhHgo?__?|v-lu~0LncWLx^cwO&$vFs}TnXshQ zBQ;w~{@#9T;={-FYSB6bnprHgp-Yra_>_J;Cn3NMNwaNGYPpW9f_%Vf>vXLN%}shj zjI*gW22tjmNdFVO1)&b*nlOThnZ9*&JvbZj+tTn~vck+tCc)1AY4X;dG?r4vk|b1`vdWSMpY1L;hnA`%+8e ziI@WPi-|eFe$PS4bpI!PYWMU0g2cPSAz@6r^Tzsq=NtNI1^M@pT_5oG45Fr(L!m-W zSd=<)u#R}>xORxVv{@KzX-b-qlpMF*iyT`Qmq?^V8kaZ_D=hsH?_3!bS+3j|7XB+{ z>(3*tw45?@z4%>WnUe)pPF2s1lZJ|4M{-GcQb$4vR9DE=ej}YrQ*$OrMEvJxVr%p`++=>nGT1Z)F_<1|-b zzn3NX&2qpock&kKDY2PKQFXcktfeT@ByF1t3@H?nfcg&sVSBIsb80W$q>FLi7K~7} z#f%G7<6j09$pxs$2=tV} zEmgnNM)gAhK26xt<)!ayvFU|542Z4Kq3k$5UI$w$!^fXc#+g~^G(FEa#l^)h#L<2W z*_ofSO>TQnd$qp0g0C&jJ{yyE;|{|@^}<#wTF<^DY1<-^k%Ebpe+&dkbeM=JJG4~Y zZJK2P>4uGs3}E3t?YQ zr$Kdcp@K-^CEpkd1F_+a`I83Z4CL6A6GX1c(o-_s<`^ z%~8Bvd@QdrU{+_Hp|vUI^`3+ehhLvaCh5rR`@rYeUop0-U0h8*u<^`Uzc2g>V=O7Y zh!Y*z8ReN^d}KVe_6`AMT@ts%aM8m;lgF+VD?21v>hSIhe^Hazblv8A(njTi_<~qm za_ZVon?KzuWcN{96~Y*EiEm#R!?0uo6{{vxlehR4OUl=yCMJ^68lIlAQ=9AeASOqJ zNg_1)A0|(J;&Rgjz9~pD6eJ%^bI|>g8}^4f>FZ`liRLixFuIb2`Io7sm-D-SRM+1E zzP1>C2#s2^Xg9>D31em(YtT*mM}NjFhSaU?Amw3~tJ7oUvM!FU$7$Ku+bP$(3#E1U zcNqnlA6;~29~It*F?|25NhzEzj#1$O;u^w zf}c?_|08fqP=GkNuxF@3ky>Q&3Fn#_lv%&Oudm?(c})eJOim5lC0#7L4jPi6<)|2% z?vViW`wR4|nY~CuHScEn`x0l?uU~(8nlUdW`TT0{dc~@4T{tdIu{I{)y3WyP_ytwn zT$55Jqyy*!^+X~wV0oWi;&5q*Heau zhQ51?Jyen>cZD5i8(Y$)ypC5d4}9wkdYAwK`?=g7^H-5Z6$u;H3)fQt`@>n{?N<|3 zSG_51I(W4^6(L=8oXNE*R$}Fney&y&UFbNC`~F7>L7uzqqPvIrR*XC^FyTSqqZe9f zI~$op9+Rg*S&)5!e0>LKTWu{&WCveTBsi_sI+SJ@k z9oM`weLA@`9~075)qVkrlB8s_-|pHIcOP`W2&R{f=`jnN9JIN&!xl7(Y;SEL6k8bg zA#QM+fd+Absn#55Z#2OYqHP7+>*%-CgIs}Ig}PKW#6jznKtg@hQ@r52Vsf3*wpXe# zN9U*>|3Zb3^Fu@$Wq54g&zMKOztotp>OM(8nSvhTPq~TS41>=7H>3aGD@KWT*9UgW zmg@LCx>Zf+%kZfnn#mF%!bz^F1#{E(0J)k8tam}d%}%E72QyBhaXUwlQ51nJTS0}fg&(ad{A2Y1N338{QIgF zc7r-YZK8pgW|AK+2{Zf{HI?9c-6eH7d~-w=u!3H=>U2?#%a+(F zsy%a|{OY`4LMscq&Gbt67H{*U)<(4WcX5kB#m{&wKKW$jWLpTazZx!zw(cV$LH{mj zy&A)&e20Kl1qh0YKeH?qxgfQ&+ITFG%r{gs({4w{biy1A0cR;U=)dV7^g1O&we zig4@XZB0ie1C$X+DIE|+qfrTh09Mb$!i<|xkDrtDQ!pmt)L^)2k|+>Jxt6*%c+%SP zzA@OIQsUx&FZ^w7%l?W%P@J#!U1wqt*&JI>BPQW*w;@3%6%!vs4|43Co?V_;yY ztz}(mMb#l098)&}n~y1%{Ri_`|HT%i%4jV9af2|kA3FIZ9VD^r6lGC8*oDLC zT2QP+QntZG`NwTr+`cu29!66hB<8Ni+b=6EHcX}L)Xdx)^@$(E30vmc|L3x2^Ptc} zFhQtUTw%2M5O5_%Ml8m67#IYNI0D~*;U}M*4wdGF>PzEc+y7Xe%*?nGpzoQ&L!AlW ztC0qy^7=ve@lJA_-$^6M%6ca7Ze2)OIU(j{=TkS6V9g7hZ>_8Xlok^`y3HD!S_Noh zKDYSR(7w~cRdnvx9nnom@skR)P?mB&F?RF6=_2zyIhLi1Lb^6JHtIjpoynlfZVV_U zzOyf{%Pyb=k7s?;i zO%w13368DKDRqOqRQBSuVM}|xv3D+*vrUGceFQ`I5vr8LQGI${i66&8Ma-UUVCDV!`_J0V2LIS*v@)Z`@1cDzJnsJoSn>#Y0pHyVGR$1-zkZEb4U5xZAI8D( z35g0YN05By@q{79k%1m05|){HU0~*oo)!)}~neov3L znAFViyWQgo3)I5dVo2@U)^O{E&B5i`G?SX6gRYDE%8wsq6D_Sx{0wpHhXcTQN5&|H zn#d@^s!r!^uGE^CYqkHR9VYllPp)6*gWAdJnEk z#)a+lr_Z0kA(wS}qE{hR|Gw5#bg)Ap7HuXUc1b8s*p_T?uuV<}A+Gh{gd8+fgviYJE?zZu z85A2||Gj8Sk{LXGv&rCnJ!_-S4h;ngg7uyV1|h(MbwE735KlT7VBlGGYFA4jnOxhr zqqDdZc58J?Y7Yu^Uq!6)jon2~t=W!t3enD`vDcp8+vEb{N zytTGg7|{rqj^;01C8g4@oL0@bS7khihccL}Z0dwc4}Pcv#bn)B1%--O1T!;Q6*x1e zRBQq8Xn}#3GV~V2=9E7M{mL)@pe1SC@i|9BEGZdTJqUxideMIBcxf9?)Yue=#j;-H z7VHGUieOs0^8*r&Y|J$XIDdlT!m$ZL4s@MOuO%jq#XUYZxpKS?2WP`;w=eL#=)RTN z6VVN=sd(J#ni?5Gkl{HgF13HxXsR%ix9ah+=LwMYxc(g-xxKE>nhG;JT?9(e8n;Q4 zx7X41h`+8mq}q_A|8xr2-ZF4Ov&O^%Xb3_A38*b;&caEejw~rQ7PdJCTUjbN=z#$x z54|3X@Cn1$>B2jCq7xtP0KB4@j*@(L-{pIjW`ShY&7ZP^PWV$vN z@CubSE^Qtt9_k+S z#NhuBLe8GASP66NXEI$YkjS!RFyoKzoqIE0Xa7p|W8ELO<|YKd^xsD~OJ={~;aBYN zsILbKEV>emOGJInmN%UO0;~v(_4GDCND-~V(_b?Ssj)~+TQz`&oN~`2vKXsl#tq3( z-ZWsSgA!?#CHFvn1i_?P9yCrFyv)Kpun@Q-^VObdS(gyc)F}b>1UDX5+QnC{Yw*+t z#<584si~{Rz%Bjoc8mlS<=a(hKnU%rru47&s@1q_S`36hLQw}NW+|@S>d_5CxnCN6Et+fiXQpNEzMx&F(i__^ zn9j`ADGxKS{qQqdj4JYODJieUh`RB;hG~q4@O^~Z--262g`gU1V{f{v@v(OkF5k=o zH};ffdHs&EBC8<0E70(VAdGw*q>S z-q!~sH|U$T2j49CAFbi%N&KF+msKvLwP@RZ(N2%o6tLkjCRoL+(37< zwq@pqJC$cha4$~11+?@iI}}TzT)3umUXnB{NDYY-;p}( zG0`Wvx;bsXUP&AnPzY#hZTIx@<=%Mb;qqV4C5NM(V{|jw=PV#wkEyo%++0sT@!MN^ z9VSAI69@~&F`_fGXxdcb0dLOuvq|bwZ)a|B7s}JKaKy4U=1=!vSX=hU#RB&F+3t(2gzYm(N<&|dP+NanNFkPN$0ZlA~r9-@=nq+V#BVa;=h?b zVSmh>?6bk*h1t0*sB&339z;cuhy8`MV9E31oNpvkEwYfZ?_rWzer^YgONo6N>i3`e zAMfoSaxnS{Qt(=mFC(~{lJZCe=-lrnL@oUkQF{7sG0`!M8H#=6ko~UT&NFvST@aK>Bs)DRUo!Lo$}MQ4W`BaouBxM&3X{ z?*yY|@ff4#uZC)DAaTVtb()t35ZH1%vcdP?XiBk4+5@R>4){aYG9tz@2*^+{{5+ z1rS1TtVLs$Fqkr;7M2dfHiZO#c^ix-$kogEx-_|ToHY~PelQRq`kc;<;SpMp6cL`n zm4lB(2!rBNts3CJ3)6!uNF|*acG@!84tpz)+<)qOyu3{?qJFc*dowh>u0G|?yy+&^ zD)N+y(CBVia{rrgK{erY|Kr;1r;X0?7DE=)VXdvLzz`6%R=2aWbLQJ-P%*g8ZE}5( zuN3EhY$b`VtsU#_9rW_5=3s$<LKPyX~shF%*npxs$3tfu)9+xdaNip$3wv6!xut%mfCDNaQ3W zNgEh#BEYH#XyzJmKx4^D*ip5lq>R0oo(6=~$^Thxy5oSW)g}y)plbpGPZr}A5eXp7 zY)Tu{0pQ+!S7%TL!=$RC0nd(cd&h-D8p>Q*YE$7(9R_L`r8@FKDT>XuVqgvMC=1@w z-p&!5*Ke17z_Wwb1|o0y$MU*Jk=X;bg_;cJ6HUQwzNh;r?HE8U|#zkmraH4G;TdV8tDaPe)6s5IHZss=%4J> zF+GWy-Q$zn%Q zYYF3{Z|KuWr%D1>(s3S4S(th_Rm_>w?r3{rQ>^j71UAf#1Q*+So-Th)tyY zo-kBX8Y@UNG*I-3X((N!h;#@~>+Y2e@N>uJhUG#5<-?1qJ zh21}5lyaD;=*Sr;(stid)MTWYQNqU|jn3@1%`9DQ}w|UZFn10-qEZl+gt2?B1N4oRtNvtXFiwWYxT1OJLZx z9qd16W)(dNoV30Jg~&ZM8P3i$kzI3Y_HOaq>m(pk9P77!LTjTEHsK=TbLIlzU1Phm zCOjigH!A-cf6j8W-(i~Ccl#NubePn3x#LLr{df{H-TxAnHQdX~tAX~g`%pKTSSH}< zwW~TXPZ;e@tpD*~i$QUKrED)+PO^tCMSgdvxyk+2z(y!@@TE zO3#FXm=s;{5%314PG68Qetvw>HRGw;Yavxml)$<{{QK*l$0H*qpR?xBey^=;*9$Q_ zJ0M@$uFgOPufx2?dWKrT)3e?hQE}d;QKxHf?tZ=4wJ|g1Rb4wpXj?)4E&k%nX1ac8 zbpBeyciFz#?3L( zaB^TiByMK`o58gvuNsbk?eoO1?=)R>V+$Z+7B0TJt50z1t$Z=6FO#KrvP+0pX1a#N z!{FqzE;3283J)KW%if#CV}>0lz(npnd=mOAP<-M8vcAl9!WprVIak$sY-4$dcpZJx zH@i^EkgVW!ACv;kFJMXo*8+c&Ccita&8A`T$U*?y#{Mf;LR<0$|3j;~)|2BalhdD8 z3oQXYH3GGPs`5!lv^1Z&b6(y5djTS3SY3i1dU)gnqwu9iWOFE_Ynlzfxk^$h;CT5! ziR^yBhL6ex>VN%7AtPfGpZ1^MSO`51d;bY<$jiKIA12A2U%Z zM_}hrY2lEok`d>y%CA0g%j&Eb`fFh{WkD{d_9cm&`wlY3G#-Lwh=nansf9Bq1CgbK zD?{iXNwX8F$b{mm@@Rger1>r#X2q8085%h2Lz4-Ezi{Ub{pH)sT$oE17z{Hqd33WE z*R~&UdCcg0HM3yi;Y}TuDZum!iCoK6W9>QA*QR-&{xo@2le9}ZnP*}VBWlI_>wr*Y z`U&MyTodqIJ{JK7D>z)8?;{U&P9epKo#idqXuOjL9yErXEO}&v38$MP^T!OBw76gV zHo2H+Kd8EiF~K7Y5{Dx0bp7CVji%JW!ot@4PQ0Hf;1Y>l;%3DgN}*4T3jX>MnA@fN zJ?hmDq;7g|j@xf)Z~ktcvZW4M3TV8g4l9ZUO%@oY2KGW3&YNx5|Ed<6y#In}1D;^*zoL=qfIYH+Ap|6zPz98+ghC2H zUw$*(1ll^pcX=e3GO}}lONp721tQ|yhAUmaN3QZ*hf)f(-C~4+cRe?_Ew$t!r}99N zSP@yKL?T9cv_Sn$Wk*C$=D>xA1Ut@PGGIo1-p27#O&)B&J^|xXFnMLiJgzE1ffE5(2}R?8 zMN)4Tkk%%eC@6sJ=^o@`F1?!|iA4c<3E8{r1hQtB#9fC0B%(jjirIQh5Lw-}TT^&X zw&br(jsD=wJ8Hn5`Y)L4_{0OOdj0#|iY}YjI{LF>+ZPUe_C=d|ATqdJ*!K3fUmtr! z&wjght*KuRa`WWI1kq78Rs`;$k;RW_WSOWUn5dOMv9R!k(4;Prie!QmPk8*|Gg$>N z+H}X`-SmllnMv)+^%4b37Ymtw22D=;s6#MGC&C%el@nPV$ip$H*-}2)Wy#R6?ur{C zenBGmW`eEYJ*qSxPudhhh{NeC$Qwprv5T-+Z4`lp#ObVo>up$(4>McRa#n`$z6WNi5}2@ z51YRUe(U8(Xx-r+gqt9Id@Gm}~lfJpBha75@MKj~}wD7Wy^R` z)-jS@M=3jw?Swc+2-z!T9WpwFY}r{!hm2!p?`+5TJ-t8w@Bg~Gx~{J39OrPJkLTn5 zxIgZL^{0GwZH`uK`~v)rL%C0; z$68dc-YP^o%6xopDR}_m1s3XEj{9oM;;TC9|BN@)*VntRA}dzbR%TCK1N|3mr_@f@ zMsXk7VcqaO#5kShv$f;5VW=m=rlysKzQp~kvE8+kdZ)S152{@V6`4eLS*yLpp7{#v z40Fu7y)-+U=v>|~;fVAnoYj2kAJrjpsk4j`F0f{c+8mo~>H0UgQ&`9@+VOR&!FP9< zunL^nj%KYRP1~QUoNv7&aFkTZO}zxMC#BgkGUZpN?kWigD$CymQ-{+Nf7egPGpMt_ zT6w7@fKUU1E_Y7;&F+qR8h+82RZ@!a+L>+%P5Ui#KNjKR62 zbVe(VC>~MtAV*0&G3WGG3f=bdGEQr8Kr|)gi8iIb0{A+3?+x~O;4DCkU~@J<5V$`y zb=;qG+TnT{E7j*`F5;rhS!G`M73C-@xk^K&ctbcM7B^glY*H$xx{05$Cnq8EJ1|9eM%LG`#XUt4z7 z!`t1I{9EAZ;a*1dLi9f4S^J3DsHaqP^wla!r(hSi->}9YA;EzPuU1}rL|TqgY%vruHcay@&A4nR-^4wrc0GbSB~gdsg(kAeDSfEYJ& z3!&x*g~b|FEo+kINDO3}AJRz54v_$m&>WRzV)jRjtY9KEBr2Y)nffL#DeR;KL&d)j z@GT&{Rsz1fA@RNr12I6P*{aoRFfpe=cp@V))92A`VSG35+kY1c)}nPft!Pb+kuJ*+HoWs2-Sl8qtSsV zfuSa(hMb?eu#WMW2|gi9C_}$#@`ZhANx}VAZ8nq{91Z<`0ncva?q)Jc7rM5&8L;1g z+9cE-EwyMdH24!2N}W@W$F{}@EdgpE`!%wH#xC0ccijdzKX``+uMq|Yfo ze-BF=z-#jFsKgsBQ^b65#lw3!i-i&rtg@6omaWz&K^+j3lA%-t+GpYz&2;S|C>=Vb zRETGWfj{$xBZ};mfZe?VwQ6j#0m;Xrr(}^y5kbbks6;7XPYecYDOmGuOR$DtiHecLQBAXNV$lP;R(OnRG zniCf0Kjr#aS0P8ouKFR!EJW^%_7Y@z5La(O?2T0De|-_r@K6rpuzDXYcQ1mym$P{Y z+2!z09Pi9LMgfkX4GM41o20AwWp_`**3C5FKGF-hstlaDiD+GH;X&5uv2OZ5###Cw6rk1PpW_zaSnz3uHYg&aR3Z4R-QpdcewV&K>OED1}(X|TkrD|U%N zDwn6w9cS`D=$A7^;riOu4^B{abjao2Ez;}p2KN$}=wG)MuvcgxOXD5WTYI5xR(Y|LU&Z?Fe;kyJUzDBVtLTW)16xh{gZmDwJ;dk zjWncIt+d|q7DN=fUOo&W(W}o!H&14APDUdhWap&Jg2e^F8(>lWT_~@Su8!b*<`Cb| zMZc4ul$5{@7WKfkd=ypt1p!kV*3v{{1Gp>3pk=29n+(-FUKp&dt~bAh)YnKM4?6FP z>YXDnlPm#o?oC_oaz?F8ZlG>{A&?7XCrEp$q~0@pMXhTm$i$n3CSgea#b_#F(utQ} ze8IL-8!kVRfg4%`{-aH%^MP~X!TDhD!D{v9gd|9@)OC^0u&^w_VtN-nY4Lr|A`O~{`+9}5+;s-WP(l%lshwRdC*cG zGDC_e5-#>KyN!Ox#!7%_u$w}>P|9YrzpQ$hA)qF9a-lJQG!TJmMj#UB|KC08ZLxo= zt0zVCS%Y`OO^pnzh({#>h0 zA=-lV3Ti;EFbVPrs~cJ@bX73lj>DrLbZbyp4wx##JDwshc0VC7_k&DH9R%xzW9xq^ zI}b0Yn?TY9jk3Hr&YkO`R|Jz(DL}QNZeTy6hYi z6zUXk86)@YzhqJ*h~G;KgBo!X2t05y6V@>ruQx)F-d2G~H_k92dm7k_w|Cxg@Ptt* zUVkS+H`|t6+(DH~m&S+wSye>paqoxlh8(UY6u-f+LbJi6^25%)EgW;%Lx?6E!=V{U!7Npg%Yso^woD^^`ZiMwRUQ&`dD=~lOgy*j z+l>|-5OD%h4Oqf*A8OWofZT-4kR#rBQ&OSfjIBti{Z*uNH16^j5*9K(h+55JOlB!o z^_30189e-DT?7tjAiKPT%H?>8K!!|Att@1vUT(-lM5 z;-`%b2d=kStvr0`6vYn&-x+bz6OQo6hV1p*W6!mUu)p@Cb3Q~t$=%Od89Vi5#tEZx z^1_cP)QvN=LA;V2nL1}rfn-tKv#$^FUhBerFK+77=d#Et)E$nWw*&{A?J`k)D2(G) zJS(o=DC}D}>&wXKbIPKiA$=L0=02==S2;My-P$8)u21GG7OYH!&YhkT+V8tBhl?wO zzrS_5k|i_sRHWd2$rXLUcWXOG{n0(q8P%@jCH-Z$C(nng*(oXECUMv9f^L=6Ry(i= zoc|?3T*4-DDfRu)zRs-IPmNITgpS_~8y>E?vHa)vnWOr_Jq0|LCCdDR4-{+;})J}}=sIzLnx7kuow`KU~$Y3EJcg0q5* z+~m|aAtQKqxEr4Hm|tW+{PFBl^ta78pP0;6c;%PR8ta zA`d{(Yea1>)VVfggzpZ9#^tysvzPQ}BCc+%k9aw=jaW^68m@CDZk{QeSEZgUD4%|c z80cq?SuO7=)+`;M1 zqN%#Tf5TaI2*fGyO5Td_spXuV3}Wy?jI7+j8Bo&vOQrkF>Okkk8d8i+dz(b916Lh2 z!e>g(fU_QqlSt{|5Kux{-u``ZtK-j|H%z>#;NsBnystS zc$%n7CRgD0PLA&)VIk_|Ui_dBe|O7kCEgryBGwX4#TFw@7f8stBV!$0zs2bthu>&f|iLizP{A7ad}D3JRkeiGKuuSj>Fz+**-jT={5_C zmJFCDoK&CXC?B65od2DRh?8lRP3Gmam5&AQu>l5yUC1N`O>l;*hCw8<_-=lyCqpws z3NBokR{z5=g5&-^WQ!GY(awN$R#_6oFk3bR>+eiSw6`e;D*xiOHbRMq-wCsi;0?C-kpoRUHDrfZ@ zMJtI0e@pT>j~UhiHY_jH|8k&u771CujZ939C*xs;@NF||kmd0F&pKNUWj^BoTu%hX zmY4S=OhseK0zrg3OJBuA+C|?0fl=s$)1{}Id&C1^s2Z%SWShHD672Tbs^ zojQUy!VD0s{NQT@*+iL1MlWYK1aF|&VOh3$%#bJl>-*7|B{G$%12EM!K!8Zz|8v>` z>sF0F5Si7aAiDg5)5#Ay+=X}VERZhORdPpoS5*kbS~0pqZVKdMK)kB`m{+T8?3RS9 zJ@em^rmgu0O{c?ios3uOeRq!Sm5d+!czLj}mvyvu+`V1u;?d7$0x#w^k*X5W1_G;a zGnsf^F;94su8bHvgh?;Nu$@Otgr-DD)=(l!-Q2XKah2{fVniyP0_6LPT9cW|yuPhr zaKi#<`ShykG)Snbt{f{1yBf9lc2fAPCTs=bEgDuCP9q>7 zI-jXd#YbL-6ND%mnf9h29okTp0b3aVzsm5wfjM2Z@| z7VrJ4_FjxYep9Vbe(%9PbXCvDUPT0w8h?+W!AF(A%aLpFib~~$PII!OfcXA5Zga&B zPOsMjZEQUiGtnhtH@)XlDXn_duOPx4ew_XkF@qZ7;f1wjntUBK*5$N28!bU!Q|&m2 z`b`f%d7}=b$TIMsn`n&-Ou{Q)hGILgA==kE6=O^lhoz8`WUmGE-bz$S*oA-M;W5;; zC{J-*G<@7xM{5|tUNUPRi+x2koZ-lLEqM>=>RO&%ZN>Q&J5C^1%Qc9KzFbz;(Kpsr z$^DssXd&lhLHWEc_+Yc?Y^=fP$FUQk>TBIpP0%O0P@=gm%ov{=k3F0|if|N_mNT2a zaN9r{}6YLYx8Q@*szt^$X-Q%;FM@*fA25(k(Mz{7N2~N#f~=(7HcVl)UY3;iobVm zK2h{{KRVg<=+y~BulsseCu3>S2q@e77E#&PqyZ`@A?G!etUTB+D6^KQQTrVq2cHf}45GX`#sEZ_&vRE<0y()j}_ z1?aHo7jjGa!~gbA!JYVMpnmTdT$@5?NftJ6grfkIo$B!(l51yjqj6X=3{!Q_ss%!_ z#6ekPPk3Y2<3g|jtGla!(W!hq4SthX2o7po@r2R7{Fx=!V=5;8#2xe`MhG2wRf#ZL zq)^BwBQ+Bq?zP)4HVQ$+H~u-NzgNqfyciWIL}T8Wu)=62Ag^*C`@nfBDXwNP7#SE< zTkktW;d`-J-iw@SWVEt>x7EUig$<@RIIr_`F^FT-NT*dOm;>69IRuvc5;R}4X&~CF za%q~E4TO?j!VL_<#q;4W+A+}g6owc(BSmp~Rfr^=L+!)QKKV3=-}KsG&6I_QEUoV? zMG~nf$LUG?yv*6!Krj((#>^=bw*m+PxCgF;@Y!&kYsS;kQVGl3DYz;I_}|R&D*DPs_qmP-fitvV zUf`hXz`3ygqB2$PF<0l>=ejz7K*aUoumR?_m+>Q#^FV_9eARfylQMPcbc2L3An|~y0YtnyudQl+u>gCNn99roy_>U zXZq)}P=kraV{M0+O5nYnlU)F5dK+c-a5BkO4QqIs5$|OOmbXbpf|?rIz^er|sZlp5mj1qyjBMD;PV6Gri-g8EFs4Ewfy(AkrEFtR!^fh!ue)jN7azdPo3<#9XN@CrVnN%I%-D)=f3k91)G@2zuK*&N9?LKwj7Oq7(hDA0HTZ1Tr}qKE%)_GCSm>>0 z!yi8nI4C4(y)?Sb%X-Ad0$z>M4MIps)L)TPiM=f1O*J$VKr;`B26FKgwV}TQUBK!N zt9_XH!3RnL{zp1?)ar4(s^j`2N0EuQl3^T_O%I9jzzXMLn3bQ__w%>GYlkEIBkt3P z^X|C__Amw|C7;8sHOC&G>mjqSeHj1BV?{|t%=xkMJqR&gAgD3 zkHyk^E<<;2xPJWDnl)NqOpvPUtZFb9>Hd8A_;(=|3!zUMxnI`0+k$Uz9dgWg;=A+p zN;Lx#fv|dULdktsukFk}=(h>--^t2K_vjPxZ~i+SS4PU`#qS0L1^FHCIyP=C5A8%x zo%eruK2p}6P`idnD3>ipI}T(k2fsYqSVbZA8y?y?4+j#Y_X3cr zy4Bm6>X|9u@e5!m^$(X5xHFkWe1<=t{t(v>AQMR6#lMdWomKLej^>5DGDL&Va5kqa zX6JwFxWSd>^pjH+bBP~dka83K9B;RnE}DU)(mle$*yNdJj?&@QoVR18tbCA<_ue{p zkRmA=of}#_DXAQ9H`r0-+)MYR>Y4dxT#S_~a&UKgx;ZSPufWn(<6~6iYAug^&VaG* zTxz=z%}5FR*X}o`r_k?-(Its>2iewM4j8%L@1u+abZJRc#Ax%#S?ppA5$``EbV+jK zMIajnYGFABc%Z3)v@ee92oIn)eFQow1N@GD=&blX665Ysauq23O$aSc{dN7fYGV7r zfeY7WTD#tqQ##VMQZlES&kT5GI+03=2Jf*3hzc5H?sdnXgU-i2B^$Fs`H!CV z1fAfx19lr2xdDJ?*GaNQU1LWq_C~Z0+!5jYQ}N~$sg(fl>rujLEyeHNCHZ8yxeK;- z7>OEg^d^oeY)%Ak4!K%2xodbilde!W@dyazq5ZF!PlS+!=*NkW{Hm}Jy`jN-XD85k zk&5E4i`Nb7^n!3|0T7F48={cw7J4uB)ukU0CM3tbf~1M|-*>*7+|d@p*r_qis@0oh zIxKcyBdOo*;aR=(vzngMg>oW(ry>KEJfda^LEYXKBn76|Wz1O_|Sb`|W%<3{PwLc&W|4qQ*b(EEqYsZ7xJ z(gL-vZlF7gJnY&Sx;A9^C)Jy+q#@lmoI+0_q*OeMm6D>`nj8>KMCkpGznq63WH0nsF74Jnj0BB-LtqAAw zSoM{T_hrvvzWZyJyA@-mPC8`r#-5iqB>ytk1@nu}i)fo{S?XMnoV)J;OvK65kXI#u ze67Y*4jeirh?`(#vQ0w+;$}2)Aw~1O1}!v@U}blZLy^-rE+o#;@Bi^_N9kcww1H3O znZUb4g+QcT2E|afI4LjjLPd5*-QQvcN-@~|WKiJ;qU%jQpt?3kKA;Kv z=tIK814-CWqH9h4937=S5(hqf*zwB830Ta&5od>y?$901(#?)C8`?qXSLz4<1uwHJ zpBv}M-3=To1dG>}3eG(eJ}a9OHL&(YTme{18M2pFP*hx#v1*!J+t}#fkjx@|G{qU1s@IyJ(n(~A|5TF#K(xOx zP{?0Ajb#Cxtc{AsBb=;_#u`n^LAFK5g#7~y=RDRP7)Zhnv<(u$QKg*}3EFim=-AcJ z91|p3*WxLQ;(vMFy#x5pY;X!#&Gk3k#zlD=m%4gNf_&{>ifUgj%J_NPUV#=tE=hNN zVo)QM4Ha=Y&j~`!U0KgnCsjnwVr&+Ta7NIJ7dC%dt-L{V1ES@@65503%*gI} zgPDHHP2+P<*KJp{-=^LN&Wjjd12etK73mVAsL=JiH_o9@QSQ5wrL|y?TkG;<($@8r zkZsRZ7Y;v6b7ZEW1XUQimXtQr;XbJ`!d)<5yF%>wbS(5&w4^@yH>y!*KlV0k@xqRg zZmCf3*!GE91Q(XGV3!w1p`c)(f)>C2W~uhKb9h;K)!49P(CNr|_Y_ef_i)Ogu;YsXW88*`waN2;DP_{cDdG^fV!h`_2cW}F`gsOc z);=8{lhmB8TjbX~)yh$d7T#2Dd{E)695cspo%{Bp+$tWAc(-yCP=+-#D`CNk1|Ghm z3fdhl9EX=zXAC8Nu&N$+LB(+^b9xKN1@9G3oxig=YL8PoUJ5?fIyZA-!+l6>@79so zoeM(MJYrjyF=Joq&{|xK#@0TxLT$)coKF*T*lo!&sW%{9X)0t-RM2Ex(lbwe#hzOt z`ttuuP!zPks488RSlDa465Wx+b27;PfH8Uba4W2D99kN)@j7HJd}8k|?CRBPRe~Qqt?=D-v;u-@fP4ktnD)-)DePUn5wJX2x&#-x8aE&FIZ0|Cb&DF_`I% zzEUMwrA*PW3C4^JFWqO-mLIF~S>A>evx)LPo&dx{tOwzI>f5R)y1-VGE6yq*yb`@qBq8VEt5J#*}q_0g3e ze>@QN@}XP)CwEi8zGA+~z!;e7&3hc}w&R0$7|;Aux_ULjsxNXHN}Rss zgJ2*46lnV&_p$&GJkhoQY6-r(uEl9}4&Qed!4f2FhX1f_LVTMVvY>K-`GjD)2#BwG z5GYLY5TwSVIv?a#pL90gaYr>nwk*MV=uMv<0V00i`4k$2`l>QrwKR)5FCp{<^U<3Y0yKQIQt;bPA;c!ai_|; z1S^yu<6yT?+TNRLp#hA!CSNy+nUVz3P_Fyc7qRt(UW`CTsu5{!Vx}ZOr%=K3HGs1z ztr!a;aY1yG3p0RkOJ2`|l1kPoJox`TGXUj`Uuh?(#!|zIo%(%+<>^AT?-UYT%=8?J zet#CUkKz5bI0$m*%MuqR4v32T@3dL0`xnm_nzqZe_RU0d0N7*a8wQlrtkWWaRkCA^x?jn}Ey3^QGR#`mvg27H;650YR+_9DmVwB9O zst^v_`uFJXEE`Y?GBMfQf>TIy7Z1sI@QsBg#eg)8OB!9iTogcK=-}jaLz7{Xwa8|4 zA(cU9Wo8_;7%{d!reF4|&Nsa5Z*tfPP*L~tEXh)t#Z&N9*iSH&jL66S<$FI__Zo0t zJW=$dQPjU#)NLsgOYZ4VTt`p;yr%YNBVJNELos%H3kv^!FSX?nih!S=uh_(5qr4sp zvmu8M0{eZdQVT6K_47;iN>T<8sR4|+liQ&=E=nfnR zr50Cn6M+bjK`T-nI9`q{J7w6Tw`vFstxv=L^g|trN?3UBY2F6B&rA{~8WJyh>aI(= zEnzS(p*)HDJ#_V7=7jg&L0E&cNR!$G&TAK?j5r??n~x0`5Y1W*&R`vDeD^>S&7m3l0M|Pv?OxlV0?#oV5Csj*yy|e z7ysaHZE($tgKk(Jcy0`7v%GA?U`L^^(u%1 zxO#Ko19q^lj9=t@!}YZ9$YVe5e0ej7NXZ>x&YhDr?A5UBU0G}&L)^P*W22lZcU4%lWx=71cjdV(wNYPgW{bWw`S%&mN%@b zSH1mxua}w0ymI&PDN2ukcmC8)SjDfl)%XYKYRFgxA1`H)ZRe&d9*P)?-m>sojNs z74?j-Dzo#nKcb}rzBut4=k5E_9Y@>;Q%=xqU)1^AWiH2+OXe{FyL7hJeNK_4yyb4pJ0Sd zM!KXYU(95$aH?^jZ0})VPJd@_7-!Y4>o<*yrul>ZeAJx1XxH#Nyf8NT;Aq>KjqSqFuG1qEb>^8xPjQ5<`D$D?KmwoB3Sx`MoG z8@+3>r$NfGreqUrMV>@kP<&=PbZF}2Yx&u&;JtFi0G|g)NtT1aIHTVZ25LjRrv0osLZ-b$ z6Y5?Vvq?vS14}%NmP;V46hm!2?K|O8*He;FvgapozNmcG6ugK!n*l4FJQG#xF4YIK zURJcPUSoxHwSjqS#w=*Tv7}&fQ+iI8D<``biF?nD3e?gN?^s=3Jq-%3F+V%oJUJS^02^L+ba!w3%w3OcmW!miiVxq zMezqvY;Z}yTu8w4nVs%yo{{3%74K?K{tD)|m}aW#UV3YUI36D~1@Cd3}{*f3=sJOpC9#K>NNV{;cGA=6@o5ivRkk> z?Mq*~ud0S`?)I2TvTffn&}D-qqfOLVpK$4hJF)WilC*y+)ux84kzt_}m-Ok`w8=Q! zcGat`*S+fsiqnr`#^qG3W7O!86P#LM5RVwbA7@}@a#4lZqDd}s*-{D$H%~Lj$l8W` zJnt=F;TvX!eS3>RlWn-YW_zm2)Z9#cL;ZV2Ed#|f&fhRDNC-3L{YqWN#HMCmThg1) z*YRFYkpfZB+?8?quTr^aFJd;$$~-*v{bl0%!b(ESN^O7a_g?+Gme+Vp#K_6oa>phv zGw`a+P)Pitl1^gKSduigEP^92q!OtlcU-DUdP)MGbFJ3OD=1y|Y#LqHcJuMzTBYIY zAnflg4%lWJUCr08W}6RM@n#w!W6bHH_OYm^z>24tgHs zQ!gufl&E|(Sr^wIS+rV;vx3h%3;BrLBTlebk^sM7rdl zX;-rR_6P`2;P3405z3zn4IRi13K!sNiyBtl$j+)A;(uWM*ZpLxK}+x_vZ2pHeR}l8 zJ;8dPZTsObxY|+1(?0y3wOWNbb12N1*fQMH;4N07e`Tr`L*7KjJ^&IV#4_raX>9gI#8UK{k5t9 zR;Y!n2u-Qgb5wt$I_eT^J>r_{pB8&}v7B|_2`e)`_*peFz87sK6L&3>CZck+>7=Dj zdM(~x!UpB%i(CJXL9l;3jWfBkGb6#(qdUw*%0WC;e2G3HQJgZnM&T`UWZf?iJ`D(m zz^nmW_Dq^xgcdSSFJ>A(TdF_Zqq%=y7?>5Yzi$Surz@2trmH*b(6rwo^%A_@&Euup zLI0?ICG?)X3F6W16!5c$xJt)xbi8 zOa_5b>Flq<6miKicz=C_J!Q`P^TTcmiRSNNUEMQe6qmITEhNHZ;Q&qz*i=F@+SZ`K z1@lGleks>_1_ZeI1^KysNvi6fQ!-@*+l&+>wz2uEp8Z}~0%S=r4Gb#}2i~(lV0gW( zTvV`YyA>qubtvxNl?$N~552C@OlP<2KcosKyc&uwsO0~i3h_tc*bw9>v6ibEHB!jb zRx4r)frQaH+A`l9)H4$8HgeN6{KBG`E zd3A4LbY~>^uyE>VZZl|q#p!PHi)r`XRItXM_oEkEyY7dODm)G90X0B73?hB&Vs7@G zSr0T-7e{YannO(Q8uNtFB^8j0-y9s%-D3NI_toWspy)sJ@hTzBOsS;*>WdqBpV%KQ8W(_`b?jn_+9!j&4IwPcp(hwYTn`E(tzRqlO5Nv zOdWoI!OsiaS=P`0Dla-EhlqKyKEYW;YaUiGf^p=*E);II1%``V}Z#E;Y zaJy=PjJ~HQZgkx{x_x%OCnfkqE7;A$2wMa2Q_o*SX;5L?aztZNVXy|P{XM>;%Rmoi0-@Ko4w_Dt$Z>~*r`LU z)JorSCVX+Gy^y5A!)S=#W5}!axEyZBMf+Bg5_0Eqr+CNH1tgm>)7wm31Bv7%Jq4tL6c%QWhmgs>B2{rCXW8Jn1XF=b&}kaJBYpZ7KbDYOT5U0N?yMn3>qpPW{V~z7f|vhLsQw7%G8YVkbMl}5ep^Tti?OM zBbIIYOIr3WIwST18FRD0R_ee16gc&%O!Oe5LHkbf2i(xY8VenO&e(H!`(F*esks0_ za(gPr5`I=YTNcuY&n9OG*68wtV7#;5s4s^rGUyLM2mAbR+{b)ysr47qiO`QaKSQt~ zR8jNqQ?LuzdwOo2VoO1BdB6H05n?a7h=IDW-nmA0D#H^?;IBRG4BoxEF#SD6)TS4+ znVGe*PXs}7Wo5UGF$_2IeUh~D=(Svr$lE3>wl_=e(U@lX{nH8Ud( z^f~Cyi(O+=H!pWhFNhSkdNir%vwOd2$*=k-RQU*Z)LqOOyuTbxxmef>`I817`M9+2 zg*2V|#*gjK6fD8?K@_SfHLa&^3NtJ6B+0)H-jfM-;2@r_pC4+OAiU~iWtEnRXZTfifa%_;y6R0l-Fwor zJK5UVDi(0I@@o5iCqCCb#2%qvp+4Tvz#d)j38P4rm6JUwr(kh=(aY)z z%LcroHal87(cbcg`<3t(J1@L}-hhpD&;cd)=`yO32&9Xux>NHzjzDW>LB%m?v`yt& zay{nKn$d=%F>*zTWHf8(|HTMGzrE?H3R>I-T-87~@7e&L^OM~*ANQJRmdrQy`3?`z zDZ)&uNyJ_r9qI+?mybqlTV#11!=@dA0|N={cboie*g)n{t61#iEif!s)2(48{c>2r zk2IeD&9m5toYSk+Eyg|>{!S;T#@cHTs?b3P?ftojhVud5!@nZzeX3$ZM5GS!+Cl

Pwl8?7Hh#PQRCE}elH9+Ho)zuITb5VZusXF+$l^+0F7?scd;sRwhYT+d? zN>oIJg(2b+>rSQ@2W@X%5TytN#25ld{JpI_z>wnK0J7aSnBdhY=z}nw-k3B{${#al zW2j(ud0UoiVrKA2afld>Z)WfVu4#W&`5Y{!?4hpREkcTXvE@>Q;9^5fihE2aR=vAb zd!t~#MG78=TOwFh$&4|FE@F~^w1L)<8MnhV)Yp&29ih&TxKBER7n@Fw%7eQhOwhrg z>gThiWzUD;h{`lP6L#+$IWfX5Dz{6G!40A<=ELqM28 zT<8TK6r#cNT?EAh%eY8W8Ehpw^8Y9D;mT{M5mqydUyc!^t5ZTtYJrUiDNRR^jV)tS zvt^J=apxjr2~P0Z@k-nRk}{~eV7;`t7el22OhkaD;n9CV3Dp%;4NF_@1pLdzQtZX6 z)8OmiPy_LO9w>;C;Y9;mTZaXSn0eseTaC!6Xuzo@>m*<;C#I!px`HKpf#suEj{28P z$N$-Y8O})u5W!|==Ue>`7}G~xaMwJ~x6ZPBwIc~_Y282mR5{bU16c3uz6H-%)fJjv zfhTJyK02l-@sFHL!YLB_>Ho2&Ss0MBP`-UfdXte)mQ?le zk+m?&n8!YK_2)OX_}46Non+JGjMXrZOW~Gt=!w1YD>pyZs-}~Wq9$l!QX$f*@7_kH zLXb7;_#Xx)Hz*RQZbI~6JWo4h7cyA2l0T>yT9SyFFPFKztbV>AnJr_2ht$1Qc>j2< zdM&(Gl>iB|Sf=C#UEHTasLq8KwZIqe(KnE?Za;z zo5mwenrDApQ6nFG;tTbT+^NPBjz*2+c(l%vbN zTpRb~7L%BC(6QWK`ExfOptXBr^Z>?lK-+K)=*4=3k@+V_IyUg3`7d-{NQ_Kcg*kZ9XYS5a6lI^}y#n^G>C96^a| zJ#twJ-ehc&Qjo>|S{neTC2@1|$-?_p^(gk$Ju$k!Zj#)F)lAs73SZs0f&TF>`CWoo zOxcIAWx~#jv)R4&o}QlBYj9j`u@TgsbEh**7~Ay;)S&OwS)9(tDG_4_%Efa zefar7dv`ZCH{AH?l2%S8m#`!59^P{>!H&#D77|e@-gS_D_lj45kKakVX#J{hz&;p0 zm6V7E?=3bSv_2>|%b5Fcon!&G&^pvI=cN9T{a>!zAmjJFRQc?g%s)3qI|N%$Q~^b`_Mq8u9Bw%TNZgbyBGao zZm!)PRoR5i!B+nZYt{vRcA4AjiHj-ZD<+Wm z>riI74F2g19$dKseoI7%E}Sw@5#BfOBWyVc2}YblYCzo40X8GUK$LOOc}2)^Lr-2m>! zk(f}(PijccPcn!;7;R#vW2j-TVlW(Sy-ILk^zQ+hR9Zoo8bdDd55gZz09IV1tqI`8DQeeBdgpttZeM4&V9yHFSuX@vS}j+x**J#McX<8G*Q=e+gBS zthgo8`Dd?gkAlno-9l$X5mPTzqf=Pec0ZGvEPgMrKaJ|*s07Ubm@10quT|F}hlllP zWwpbB&NH;=Y{|{VrK4;8!>?iGfLP`HpPAFc%2qjo?sA)KDFxaEGqdsfX36uS5)R|##+Ws26?s~Ey)A-MB+|(^p!L}&G%Sw8Y zZSP3ibG%zLDUW3`a*txM^S$_wm^VVJAKhyHQ0fcs9Jcj>HvXo$3fm zz+=0%R!U=6Jx;w-bVvy}JZ};tkI1T*=ppjrk|+;UHrad2i|Jz@9dkNp2!m-aBF-oC zA}>a={~t|P9uM^zug8+65+=%$!jLW5w@FziTXu%XUJZ#MYj#D9C9-8tvJX)yVr*s4 zph99ABumz@55{ueIrrW_&gY!tG#b|%j*@S%lhNaB++kh#qUS}aYyc(SjP3oK{x9-EiXNZX(Ykq2sI_H{D%yVYAW^&{-@Ul<6&J+UuON`u-H!&RZEmZ?bo=SHe8r&*>y{oXhL?m^-!iL1ONU zn*<)OD3uTYl)s$3UvS$n5_Dys(O_i5)H{t7kT-rM-BHV_1Gc4uZo;tp%Q0L+DE||7 z_pljj{Z(o_!)nGa2s4cmRZVK8JCpQEF%UhcO z!pWybcBiN3g!9n5GJHda$x|-6AHM_eP0#*HGaD(ZUO$bRL02&;pcUx{aMuzK{9SHv z#urE4WFB_MEFk8b@aVx>H$<`1zdLs28D^dBaE-|*lg~5cgXI>g@llVOU>t{QaOlQP ze_ky{HFSIW@BmNU(uN|19xpVg+DceijTk#Ps5*E!52`i<+uUeq{G_aWjUeg9b!wZa z;2Yu+eACb$a>{Jo134c_U7lLs_P!0ncPjK7RBKY_*JY4 z&S~R1mv|);9at&rXG@DGT6PZCcZG-KI(~R@B1{ zPN|{QbgApj0U!P~{He)M0wZ}OY{dmAZwj~2N;y}|NId(y6&aw>D$0o~d&nF6rQrO= zOvl#2VB2w*xr4W$7ueb1rw2*Cy4p%W&wK>mhi)35$z^3pGQZ$pXa8G8Ew4`Q%HPJS z^|INJrbX=yuD`F#Z*n_0R67rjBU&cX*E-@kK?=cIn+_{^Vj1%@KYYDVxI?8&hu(&a zfAn_$^WfYffwRKU(X1DeOLrVQDVb>bZ|UFat2b!WaMJF%Hm8P4;%y@6VftKIQQ==R zGEyzI@{+e!A$+ZueCB({;AMD_|C+PfX8f#lr#^`|IB10zNd0u~EkBa&L=CiD+?aMo z!Rcx1oeQ4d84c8CJ;9y~H1Q&LdcoQKC>{%lGC*%ZqU8`O0B8~_UD2PgU`$=SNH9)H zGD>1iN@79R)V?uCp=5>#?j<(*+{a^n%E%kG$&@cV4;`UUF``T{nWLG`MXy={h1{E%A%g*KXiM1i{pV5R&qVEyx(|WiqJ1Y_Rh36aJdrlNX;b~K}crr?;6dX76?;jQbG4z!i zY@H8n-*^rgnz@hpKYXMP=TFOZ!l1>FY#P@oP0vP2PP0f;>>Y3~z{pR3A6CR)L0rh= z?HW>t7FRknH&{D>DF{5ldU{=Jv$LH5DHv#ofcB|z-?oj#Ws2I~W{t=I<|nnU`Ml2w zfn;bzXbWCpIwif+Hd-L*j?87;C@IT&+!-ymaYBwkS}s3|4NO9?nKK507ektEWK@`u z4ffxlcsg;?0L`@F75|IWw{%GQ3lO3Mh`KxK03Srvr~BMycAqg~N>^}<&&!`Mlwvd0 zr>~|!e?RQywNz)M{9r{3^TQr%)d3@5Rkf88{(vuhk=SxjcXSxzut%>`Mbt+rPxv+pmVW%rXnq;;Q62VlZXk zrrNCRx7|E*xS1Rfs)GF+{7ftXJSjV;m}pa~4O0)`S}Q^Ra}-T#17;MhO$2O>y#pF& zR{q0t%C}JXsx}(5;;rL7*}BGL2;@4n0f-cW6B5Et7(xKz`_AZDuOi2uZ0!0Ze{ux? zM`JMkAo-JE5jnZClkrIfwgyx}?8z;(eWh-E#_bZwZ<6qTsqO#ib4GjS3%gj2k~lR) zqxF%$dkC3`PUx>IsAK$a0`DEa%i28%AnHA>wL*P~bxuHJa0vp=mH~INm7ocQV9UVW z&L6yIkir1o7~qGW=<3I29h{p4fjVG*16>j}>z*dKEFr<@MS-^G1<%trJWsQKJ71m% zk&n#kDZmNnp-@J@DWMnj&qijfWHhhUwCvxU`0xWLAof?l7D=DD6*RPVDv2+*F9S98 zTnH(1*${R7Bx3H?2;AGtOWlxx>2>RAv^0Ozk0hZb?Sr?JcS9(wQ5i617<_xZ%Ix#8 zov^?m*y&DHWfd&d{bFQ-I{EWEv)9ua-OBUrWz0|&_7(yDMkgjEw#SS}=}2~UFN*9+bv3f6*=NB^69TRJ zNeRTybzi)(Aan*2{W<#a&D!P8R;PDJR3vwTlIXv;E-@^T%iC?3Q&)hv`p&3-=to;g zVSP%|U3fo6To2p?MR0+w|y!5Wq{_9!-(Gm zW#bxor*9$)XDewndJpg3^)R<+P}H!FYe>r`;uihoc6x#KXkGpS^y8sZLQG=NbGlbv zG^xMlbZJkzS3>(rfETg{vE z!HV^zhon z20imWk!R&sUmRep5?+iXLB2jz{?J4T`(eQUO@PHiX)|dD-p4otF}`Hcw5gY|ExyEzR^3>Ck6oi@z!`Qd$lUjt(Xc>kcEOLg!^vVh^O3 zhz>jJR;s%@g*`n46A4a%Z7-M7-VS-L)et{QjN1NviOr6>ahsnCu!di!vwL=%&->#e z1NN7`qxyI)3TFOhD0znOl89DHgY&+D%}Zv7A}y5Qz7T7x8uGzvo6^PnIOtG2-fGb= z;rqMGVz=L;7la-O*$&Q)Us*k<(49iGNT=klYpR;$j50#h&&wrg_)f+Qi|9>Y5KC`3~hT<^9}pzj`5h1??y0*GIU-62I%) zG7*0&^g|!|Xr}I>l#5}wYf{v2U)8@?X`4($j%9y!0I_gv#3h3hALjKrUt;dwzet~S zN~lD|mSU=|oz#n7{FYr}n^p5VhAwoc##lAjFW)iLXkurcCCGVxez1h{CVZn-^uE!2F8 zy1CoeBaxf$P=%LmUm0nkhK;|W4qs1`jnN|Hkep;4-hwQl^Kocr+!G5waecVuNr)^| zCNoj}3t?Oaa-QxLOdA=M?}B!``W^=R^Eiv{)p2xm@+^R9|LEk{O~o$Fxm$vxj*x&w zA{BsU0c?ge;(e-E4)@mgm+l6J`UQqH*b;KSBGBiUpp`MI41bE zfW>K8x>>dxToY~|1-6pWPOj8HD=V0$(edBEN#oUE5;QNH>7yCXl)=vHN8g*1$&sHc z6&Vqu=joVJ4h%0q%2p+zhq&)L|aVln(Arkmlx&!b-WSDF6(2^TQgYnl-J%o z(gqQyhr(wrG`#FbFG1b3Cd$PbNdDojM zxia^{Rp_(u$jK%CI6FmWSPoDFT8_vGoiQbyDjcm1@Auf z3|n^C?G0bE3j6cGTuN&xw(R9kRYvIFX%6%YSp=&He>9W;d3sj5ZD_AK4UR-xIy5Vp6_C0b$bHS3ISquXj6W~kQ3X@TNSpoij zM6_6*nV}_GkOzD*gat->3K_rYBC%OmcO;VQJ2c|iY6O^A4jR^fl2_@F1_EeIC;p^jar(oRD%#oCF0)#CYSCX8Cn9~;n zTszn(6D-oP$oAj?0!_w4keEwI#?ep0z+eUhFwn|A1HaC#FwKlE-E6GZQ0%c#)Ff|) z8G%{dQt&knrwK*Ot-N)4Jz2K?XJRKO{9t}~w0A&t_Un~_7w;B{%PZc^kEng68+yY- zEX@8@IN|Y|69I_M-4Oc`zf6NxX1MZWZYckIvr18z_18=HV$^O}pj^dWzo(pHMyfI{ z3ch>Av8hF1h#J)s;4Q9%8{x)=&8r?rKZYWuhvnb;us!A`u(1zKM#h>8{)sU2`jw8! zzjOJEBVDTahgKC4zdMQXZ%@2qcXpC?lzvK&bYz0^%PGh`NlEvwtI5onPbf8SEP)7= zhWz3*ueuf!cLPeV(CYQiJ6KnXS)kkfB;O=27Q$sSKgvoPOERPjZ4hwnct(e1X$7k-qPdqprJ#Xy&j_+{VW%--R9O3J0Ys=5p zk{5&CWyYF#!usNk2G_Qs4P1Pv9 zRCUAgSn_b1eHWPNYZkP6T2j@B2b=Ht>HWQ+CeqQ;pfPo4tVSg1qJy2A{(#z^HJ-TQ zAM}wK>@A&S4>mD*2TMRTJpJ_JU3%;*#(}$|5ZhdWq|uB1IF}x`Ht9!Bu81r`BV}>f z$Q0R)pp5oXo1b~A)~~Qsg#Q_7Azs+7;5`5KH+h5@s`8*jz#z_q^=hlwDelV#)<9dI zyv6_l#|b#7c6fQx&1g6N^WZ$9iT41egutBcqCwP{HW%0c0oazqorKj@$lFPb^+VBUTsbV#TjPWFsM;3?OeE!)8N_O00bVS{g)qxVy3pWNkdc4EJ0&A78 zXI+`CNiFt~K*x7Hi4YJLP+cE47G{?+V2ZZsd21GUA2%kWU`UO zqbzrHJjE){HB?Zb+MZgv&JRqPh*U+Ik1QhXv&yng%QG;8@8=4y+CKf*ZSLyky1L0q=%<}Y(jKL7m zi>_h>1Hl9=R1i)NMqd^;1i(=U4UvIS1{;O44vEhF_PdZoNYG|}FUSFx-RBO9fPsRS z0T2>c2-B9ArQuhgeGvr07_jaGlMy_FT)@#u`?4^ccQpSqgIpT}js1AkDj1RoK0?5a zIHK)Te!(7t4=v)qafC+RMMGX*3)=6@F`j$In*LxxOs*^QP6Cj^zQlr$I@bq`OPp7K ztO@jUurU&sZMM)*Kn_M<^&T|+e=WfFIKy4EL<(pGGZ0SY5(M8D;c|iY16_iXugigE zDe0O3BP7@&GlxfOLzd>i`-HeMssr44Ro@K|c3jR0Owu*gx!m^^(a|>gJ;%y%`XOA2 z4ga2A37FXZ2~@857Tp)%e*wt>DW2p5|2I(q<6#@~yE8)A>fGwcJ1-3uCULnn%B)VP zOMfi96+9-JPBX+M`$#LApJ5gCMoPx?Wn=e!J3rq%JBjQ8@|8~h-bM`njmV({?Kh zt5rH?L0P$=)BIoZ1sXf0Z}kh&qs!nOl^qHSttW4ZX|hQ3T7OS@CIII@29-%)R;`U` zE4W#{Q=;1RDQ#3}ZaO>mzA&7*?d`Y;Vb{yCtrt&KEgf83tZ*5Sc5vi+{^Kp_k>xqb zk{)>rg;jr@Dwgag95w6; z%47%$IokNdEK`D6G`9l#bmhaztFKO$G2D7PYW;Qk!UB)m!=~}yo(rQxSLXUc5{tS| z_VTO0nO04SJtbhE{wLt5I(%m&{O?2{rPnxNXQiWJOZc$2WqTQH9~Q?(-GRZH^Gs?* z&0vST^c}vxl*1k4mlGGmwyeUBA^fPJKjb;ilEOwQqFY6m53_0O>0a_*^q{G>ybWif}8>S@?$_Wh2RPu)#Nj3p&6 z!>5P*V!qtEzybmN)OkFsl@{+NDPKXzEL$j@9Dw0yBAGP879aY(L&) z;{pAYi*kvN#a(1MKI8rHePgy1I(0rCpHoY|c3iI4Iu_bG+`;_;;Hs<6EW;HCE8B;w zD}$$4hCQtI{;XOxQ%^roI&ixkcS-mB-#_233{*1><4I1CZp1pB5eE{^to}@+`ov#s z6gEl&T(PmVJ3NSI5tJJg1i~C?Ii4);XR8}nsE(VCJiR(A(Dk@kqUZrrm`!JEK$G)d z&cfz?`%umqKRP@Ln#Fo%I(FTEJc6k!WHeOe;Nsqq8xo=Y2=q_ECtngn?1oW=xKM-7 zflkIW)@lmcS)2x$08(1>t<_7Qk1OlZL&|C#Re1FSeA+A7Y{8X@v-1Dnbg0lPN7DEW7 zEQ9u7sWda$%Xhh0LK9>2q&Iw3Jxkcv60sKFDWM6lh}oeFV^xb-SH&D!;eA$~4^6xj zRYnWyzAIaw1hey9mz4@+=vAW}HudW`GA}YIwQ%I#(>^ zZ2bA?A%87mEwze7CLa9pshwm`Z*DER4NffNTLiF3G<>YA(LEz}jf!_F7ZbG?Jjq4B$d^biR(@{xzPn=2vBTN1_*bf)Xh-oKDnS96s~_GsgYthm}!llfKC2t{6yOx4|j2j)K$Oq zndz4tXgCn4C3QHjeUu6>KW8IZI?bhyG8P#eLs;oE4Z`Fy%%UzVoJ3^gj-H6UC5B{% zb7=KHY#}#{$4r7E5uQ{gqvy^>J;~~)5rUl03)WXz68~H`i>5RCd|dgs_aj5PTNk@I zOfsKv9hgKD`YRrlyG1eGct@;VJi9)54KW}=|Bwj|)qFb7@g;)C02PbX;D18T$VSKb zJS&+F8KHT$qm?DmsXh~TPKu>HB0K%HK2noep?B1|)=AmDmO30ARqEn0ICx3Lc)ZQ( z8)M%+e2rGGmXR26m-K~k3il1)b||Z=F8E1i{i&mP${qRQV{0I%+Z84S9|J!v)#ozm z{7<+|EYh={JCCmrQarCUMpisOeM#{09vwpKCVs-I9~{lfn+MXqh?jPD_Sb_oQ}v1G z5bvtlQqRrkr7GMU{N_u4C6LRO?)^f+9dqR*C&+XC=(qWVR>qH9cU*aZNSRsvO4l?F zl8mXlbH)c3IATbq>I5xiKnm z`e^59m$W;2tY=y$eEs{(ygVbPW}YG0vQGMC|J)+g&(RIXKXqAZL}X)d_wK(vCoY4# z_zAV(zk2z-Nvb=Kbic=&_iY539&@Q@d>`MDz}<9%Wq5vSGj*;yZmep#9l;sWZ|!qJ zqGWez=>zVXiuFXbiHYL@+bO~^srKCUkgEf30AlXOQyr-3)h*PgrBubk!il3lC5z3Q z9ZH9*tSus6dS~XnAA+o^pE=ZTj4E(KN&FT@s(FRlOstF7J1ABf7rKcjNftX@%`zw* zq>{#u!Dibqbv7QQgY(W|Df+e^EBV)hg$<0lYo;qb@@wrT2pK34i*kUj*`30ZIi~my zce+T=&3eR&E8;im#zTbP8msM<5j~VBq)|O(1R~35cCqbk|ITFU9P_;hI(laQR)(5b zwd>cnG|R~%C`W%1TO|ACpg>urn&F_EU*HxAs=L#}&SSQ=wv{UmhabbY96}D)jxP&8 zxyMKK2+oWyahuh9G`to0h`p;*T2ixGgKiZNO~1fj(sIveA)MbuJ9PzVI8pu!xO-!> z=)ids1ZgEmzlR-i3qx!i(Z1~^xJx%+C+yGF%=dT)Jq+>>3=H!RGCNMT)=SUQG7lz$ zK3sN*u-~vrP0A<6tl~^%G*MqpivW#xB^Z2Qx6i`Q54CT9H zie~!6g>a^iipb^F@{#N&J>UCvR`BDs4>2Vyken=vJ&Mjicq>FUbZ>f%=o$LwS!t4# zRKF4DDYC7R9ed-31RUh15+rDtkdeJhWB4N2 zG-d2Ox9ckWOfe-sung~UGKF~H&o%XY(0>FlyK2;>j#4Rm|L@&_bG&jyT@)QHBQye- z3dA~ql)n-<<=46|u0jQQz~TBdEfK=O1q=a~0o;y@!v?TOqr(=zcT^w!ptkJgdA`h- zEEz;MHB{gh*7s7h)K??8+1rzS%C6a)m%;C4enzwl1YF2oC0l>B#g+B^nN#eXxY^qi`!j%SmME9&3!P}$oy{2! zhEUs_uI7#Zu3jO7C+ZWpi3D#g^peBo_tw9f{99P(RhO)u#{v`ue~En+4SVL*4tN5$ z>a(=bXEES#;- z(dFCV$<(2708IRI38wwKZ1rr1vHD`j z_9rP166AG-SN~3#{w^coQCfEGk5|S~xQgp1!zfQ^_Jy%LnGJALFdG!2z z`Gaedue4gmEVY$=i)vMtqEp&HvQX3HE^qNGj?3JL@?tZ6**7BW>YZ%6W!mby_%NJ zvmsc=%cG*7HqbvDrC?3Foy@f45|OQyiyi_0LeG8)VbT5$@Bd8ob)|ds;@6g@M1khl z80uL$r44T3vzgL&ht57>VCPsqz)kqobnvDMOU#+P;$UXb*XYmonSwWaFFEZGs_p-6 z*|a+B3usvvVksvs`BxksRJYinhP(2CY5o)T9R+?@*+H`3<#h5EPVMmDU$wo|9Hohd zAaB26zK+LOO*=A6Ozrv1rM1G|)^jNu8x_>P+nz0n{B^TH!zZ8+>3b8b|)hKIiEmSSIF&4&Ijc9xh(`U?MmK)-v!N)^;3 z``<%;-)yr@3`G>UMN2wDuD(&unbq8w=?VIHL7vRwL02Dy!vRECH~#47axFsS;o-ts zq5S6J))*quS|RIQtjN#zUg>X*$6Ffk9?NquVW%Oh=M&;Xe#3WVfkP-+5aTyHM7mHLLs$NmjopF-^s-lxOhzA8l91B+oi_88h9>StQ zcpEa{+U9%Q>p$6%qy~&i{ZQW7Lx%e0i{=@!wxA+Lk|l?)Y-`uNwaL>;A{lZL@0;iM z&5lzu>gv8H7-k}hUrP&wg@k5BA0DnGa!>CM*pJU9REN*^*{M|a`7N(F?9EW--_9$> zWGZOl1!g5dMQQb$Yb`CDoP-m*j*kBH5zGKuAQ{gxd9@1MqAW? zJNliw;6DA|#d{kPfeRwXih^|L0vP0;49!!G`e+Mz8{yPfWMhPOnd=ovs;;hT9RZgjg2z<~r?eKXKY$nZzOupTE~#(k0tm!-?k4?V?*yerbXJJHD_6Xb1;$1B={MmOp{It7byp*vPkKS%x6jIvOO$y zG$s|gansnCFHg!`pSZmDOljP8)*MdA3RCpg99eRc>k{gc>Gawe9JGf$;lvPw1B<8N=^<)1%18tJzCW>&X zHL*5yLN#pv(|w*f+x}64#ny0zm5erQw~!p}iO31xI6uKwkm4=BJ8&3(B>M#bIe$iw zU=H?uGI&9B=L0v|j#wM##!6$(uYP$zqc1PP0e#6zyBh&y2WU#MbgsfI8M)*OfaZ-r zouvs-Av|;^0aBBO@x_AIod-`_4mWrR-^0RQ(k@*z`jkd+ZbxVnDs_r8xu1b0AB^rT z?RBqUSn#cZ=^{DnblW#dBzLY4peVSqz?(92+oZy5^YZ?zri<>Xz zKpg|FOgIhS!QT(iInux^EDN*{b49z076WZFKPQmzcYz#1B*z^~l*7}K`>%f124|iq z=cH60bvocxZ@XJ6nNce$;{C&Q+ur6Hwrp)tUKoZ3DYB+A>F8S*V%4#l5ILkYa+)62 zp7LRbjqO@x1XP;KMBXDHr?0l^0lDeX91cRBWQ^EmIRE?~e2w9HT{0!$8AZya}yt?X-`ZlqNnRH*0 zvmVp2K^P3w85!C&=z5i%%?EP}8)r{1|F?wt-8QN?-r6me1~uSKa`!F zVa81;-8a%tmN#7T8Q0ncp-R2Q66eZzxCBIsGO3X^mNh0yzX{LfqFou;wV_K4zZkg8 z9xD$JAo2qKqOivT^!Ju-$Hy|?!(J+xJVq#A_U?c9Pb2LEq2Fl#gFx-?(+5s1nf=mv z?FaqG1`JP2=ia1-;??*w^hi4;biwj;9!X}kN=n*|$|{9=h1s!LPju9ZYJDUw-9!2H z*Q`1<30!V=+Yez9sVCdfq0I?AMS!}m8U55#WFzrAgr)1BV8glkR%WqCXo0NRNxE#u zsAj%~>5yU8J@R4j(cwn^bx+*Yt+xD-)v2|P%_d6o`-Y}P>fz?*=C>6t%NRFA{!59u z?%iRx4bUW;G`{;a$EEj}JOHscfW8~ z^x#HCs$y68x=PFKz85H;^#i^zFU3=+nbN`fGZ>8LGwJ+(GRE@RT*QNEBF zWedBJa<>~Pdq%ti=$e}Ncw@DLv}eeoR_}fgx0oezHA~9b0J%BpGB9zl&N&fGUDn)h z*^fLL{1v`j;c(bCab$;XzSd$RX>3(7926?0sTH^7`(-M?ZlIvqq59jR(5i}O6Y2yD zK6HtQ!=ZaSY8OABYn-SW$)S?mfgHt{>h!A)UuvBHMP7M8o$qhKg+2GdLH4-{JdxPr zySFoXUTtswc)%hm-;C&|B~cSgopIRrcibC|;bV>oo$#l>s-~82%-J*+6OfZZq0rmD zl;6NTahqU4bagmC3=J*DQ4du8fZtTE(1|Pe(Usjj_bi`rcZ#Fz>ss=PC&jaAtzDM| zzXd22hoc_Wmg?(gzbUff+nlCyf@FzVRn*K5?o($?=@CwJL){Qzz}bK!Mi2tldsuMk z2D}?&6{`&vEpip&&mh0R3iBA^e(?4 zDo--Q_@Z6Q+U#KOMrx{_M>YWhhu{`+A7pnDz$^s?7qQ(49psJw;x2KB5}@fr@B!oM zjXMci1iO)C{}?MNPgQ*A);fm7Vj9mK|ClbC=RDMrD+^|A$l zD~tEI22&pAer|QU5yH~73fvtS+1ntd>evUIILv95%?)T&P{&&Nhizj3(Wd{yOn<}= z-N_7F8wdKIQQ#rR^2%khE_=0%;`GYgVAVJeV&|DGTN%6RI~_GuT*8+ zLLKKk`cb_tkEfnd3=|2=o~c-a=wL!VZr zr*Egk_SrPS#*AmZ7mvr2{)CMj{Pa8kOM-Be!sDhp+6(Myl2TH4CbI821h1`t$vF3> zZlX3tU(X}p(c+srunC)bUNShpyb#u8U*ptdLuv}zTAKg6F(@a6w91%6zvz8H!_Z4j zF8<19D)j1tyfT0XM=4we8YyW8pjrXX1&t&J57F8NfmtmHyYx64X4=mKI-|ftcK&-e z0a6Up-fShff*E9>1CSKAHceHs8gUUs!h8py7{tN>Ms)uOt0K(uyprP_dJE7$C6G1%+TC%Y;_F3oTSbB3S-*FdmS z9Yfm(--&~5rSL8Mgk?POV0&TR`{Eb0pM$}~;naC@(^iMxvT^@_NpKoHT)L2h!@TQS zxj=$Iag`tc<*#t%GsiyVJr;uHHc z#C9&VGCNC0a`8ug;i`TIZe>wfzgn66z2XQakZg99<0xL4wv!e$CC--~3DB!U1ZO{x ztO-tvkrXV$6D@X#mj1&DeVOm{f{*A7ZgLYeuP2Z4A|q@@W_V9`U~xShQ~G=-UL9pf zJenU>xJiyY1jt|>GL5`Q4)xg4}Ww%EGDgBto-t}*RHE}QJY6>MmlQ9D^}w16V=QwYjlyM z*SITfK$rA7;_-@>OT8=GBaN@kqc2ov+>6t~>hb{yxy^v=Ar6Zpli8f@3d-5UiOVrz z4&_*FMh$Z8K8a8z!F`>SZSXZQeTPGkq8H`l@dvu>BL= z1uwZlU*|05h}uY6wl!HKr>v1%&jn|HpCDwaG*4+j{9C|0oq(hoA?8({ntfk#ZQBQ$<}XRXeeD_uZ|q zz0`pu7u2A9O%KNxD=SX4;(g(qVV(|`jaV3588fyq^W>6ob`ZD)P!%Z~9q$*Td%-fc zFHH7;Ylvx#vme1{Gho#_P%DR9og)th?1H=&LwvlUBDzs#SL3P8osM|Fd50(yuY`oM%~Cancf_~ ze!2kXhp*r5kKr@a+UafCv94RR%)z{KbxFN1cOMT|JDA~QvTP0D%TrUm{&=dly5*L{ zEMl%}Zq9B52$3Y=k4+U=#M-VihI*0R>+CPMrZxY{kiyJnB;>XKzZPI)p{*-v!gkz! zaUSirK|R`L?Oop5_P?z^e?Q00>bC1_Zw7VQD#NOvN{mh*CBZM<$1)Co$_^z)2SKs? zQ=Wtd=+a!#EBz`fl7b1~V8N&Q1|)_=wIm9*Ftm~$c7av|C@QWdZE9uD$X7}f{Sx)@ zq>Yu+yUdoOoj-%6#^k*G{;|$CP+Mf&B@T8ClM@2ZeWl88(a1#QV-cF9CZO?SVipXD ziEbv}+*X|-5{Y%38PyIgVZnjH_+_fCMS9U$5d4kWN{;)bAql6C*mS>9_*`DIpjb%m zl*WR%WJWxd(tlB{F}yKX$xz|Gcrja|vk)rX7j^c8kY6BDI-p7sg>?B@dd z3Gd!qPSIdgPk5&sUOce{;IEZZ1#t_FCsN9bEaJ}FYTD5ObAR=OeaOL7M_=FA?;D_= zunwlZk_gjLm93!<*ayTM7JQ)mAPqbX7y>TpLfFzC1FNXs6|eMvD>B-rkr#yxx6bp0 z@6?5F-ku2EUiC#N)aaRmE;%bdP+lhgNM9_cI1PDMCMO#A#QGujlo$z9XJ75pFAxQU zhp4k4iQaAmz$-t}p1&V{`EWNWeBJnHH5_AwwH-%KQQ=%^^Ji$2_Voa0AFSPRdSc_FzLw0xg9G6 z*$4o_SNc~xT2MHBYts%k0PRhp@2=L$dRf?$gvT&S;dvB61qh1RKTfkNu;LG8o-?&`Rdf<9OM21;58V(Pg02dxpR64c@rUSBh zc|n*(gb;);7ODsAl4t&V?h`=pI$(BNK{he?^JIIH6z!xtTb$;^_51q0c$sK^kWg`4 znz=shhmnY%UGO^+h9Tfb4%=ay+76|EHg$RLs^akcZjXPHUZ|SK!o==p&v6y&eiuW9 z{Ko*!slP57*T0_s8Y3-4T&YZJjbL-^ElyfPrW;-&^ZH$t=$!lZI3WfNtrtlZQ zc)s~b$3QT}cTb$H;5lR9tk}+WBIdMiUdHs)lzQ!Z@^;1PxMN?#T8=O6>~P6^`EKWc zc!gp%ynh|G^x3)ewQ^P*?Xk{Cf)^uEpjJk0)>bbw2qN^RM zM$BSz#nMFLw3e5@osMi27b?I?$$tH=;#|l{r;AKPR){|Pg5DzOEqQQhpSR}RF=>Vi zb}?H_#r!`-j|sdgubg)J2fqR6g&e(=ui@MIhjUUbf#zM=T8C5d)kN!q{av5w_4S$F zjTqK#YABlpTxVl`Ed;kp45jECEeyEmbOG&PYKda6QpK~*Uq>=t%1J^uDXZkCwff@a2M+{R3fpg9AyNhN!3WzAs6V)m1{Sw~eJH z>=hpynm;u`XeaPc@BMO>~`j&}FB?eN>)p~^op{XWT;gc+9*Hhd5WeM{{<)~>>* zIVd@{8*jx~|7+RbYFJ|t{c${+&1RV77TUCsG`rpgY+9;E`x}dkIrF|_KMf}+0*o9L zISa1MpXwWJz}ZRq2{JXU8_2TaXt11ot~)WQxwgZG!JHwY4cKQ8Zs`XxfSNY>4) zD~S!ZDZ$4ZLxas#cs_5q7?=2^Z{rJyH@}U3cg}cU$e2tk#2hgcP91fB$F~>S61?*d z_FEJB;^xQ}URBO=%Uvcd#K&jjPs{*?v^sBm^!jprrlBzVClrtB-m2c4KU2fKi}9z@ z8b_z8lq8oLZs!B=gJo3Yd|jRXyf&zlG_<<6wV3NOXhFI7yTzUansR@$rk0?dh4NTD zxgF@$@OxPiZ#Vb4>JQ+;?zM^xpv-$L;tbsEMqX{-{QP_{`FfDo(Z26@3vt|nX7VIB`-GzS;YD+~<|8@QCIVtS zpm-*JCM6DE-$pX;kKj<&yZp-!uuC~go>CxtaADp5i?$ibPMzmz6~~YG+hQHD z3{t{yi-!TAWrSZ|t{^qD78IDx0Ufil^~H}KD)$%k&KJ6ZG6pl$*<&j}cdmcpxY2)& z#VEN!epPyYK@cwh%BhNQIByZ)qL&fxDWm%`#EQpwUW#?IqoEwMFtgTzb6HNU**8+3 z0czg+o8N_q`46aJu0kgI$!9C9 zR;fsw@`ki(LzKmf9g#nDAV{IP1Qj6}_`M#P{WIPZ^R76~BN?a~%n z@A4bm?D3W@6_9qwx_3}Zrqt8gx4XFXUbqWHsg`m|*(1MWT8@_H)LH_<4p$GG3W#g_ z`$M3j3XCwCLIjn3GJ=IKnNj^mEW^>qsg-sWa0>|lQKz8kQX1rJg9#S!`+{H!aJfcI z$ONPyZi8yYM_r_cF}{%h8zU(iU@XxtQnO^pB*f~0_HCMC#6Hwm0Gpotlzz7^-{bv6jxA7up^ zY1T6zaGGTcz?Cm4mK;Nx*v}&$<%KWmVA_K4sw&s>%Ixjzgf8=`29uRuhJDjU-~;T9 z-PqVPP;D1FULlE^bkd%+^!iYU{=}fbt5SEg5$JC+89Ix6e(L?GbgQTgeH8ThpA~8t z=%HY>Hz2{}CFaIz#|%t<>sda-UnpbK%D`A9tIO~)1x#Q@h?tw{qwb2=Rom9M%OJns zFaPY;<7K8ZnP%?g&wIrPJ*{~*`lP_*g~!m}H+#@bW~duujHlV)49BED(J=*JAxOzb zr5u?|bhjFea+vtHgQcPqsa zToV~CD|@{*t{s0%=Kdg^&hKcEntw1~di1&FC?80`1P8*d+HHm&O)V^^CaHp~Cb)H- zpB{JX>+*}deZuMJ%M}7gYe{OS4L8Pt20|cnG;Bn{!%n}x(OShL@LK+m(^u)GfE?25 zQcvol66fghVQNeckZL>Z4{`MmkdH?558P#*c@X=B&7l*&ZF5FH)uEEe<@W}7~z73I%N!TPpajRP`Lf#?A23S{v)XPLeLVq?r$ab z!c+}xS;}}DRJVf549;y>yf?d+Q9&Gb`xv-C+1&1hufKl%`e|_ujxWu8miX&joFXDr z%qROd`QiKT+E+!w*F`c$DwcNs?H)HAtOR(#!ES#$prt0WUvk2B)a921L?zDvkbf${spE;k#P~l9_F3aQz=yjWZ3BE~_xtMDf`3hAshMHRFN}Tl z2+x!F=v(pH0;CI;5R+?B>M+Qe*SIhH5k**9pDoxI>IglIDFR_NAYX)5<^%o%WEIF5 zgr7JF#KOvj1SCK$5boqH;2(gTNu#~0Fz}p7`brhp456-BORh|`gopWi%jf(|uT9>_*_umVo+|W!5SKoGC;gDi_#c04|7% zNX|+Rutn1B5xBIJn3pGqxiq=riqjUZTB4q&uv)a5PL$^Q$Q03y)PW~F!y#;It2d*% z+H)jy!d$BdjD`q(tO9ECvG13Ew7CY_dnW}UyuhwbCyL<(d7dc|$-cC&1NZsoJRx0( z_-h=P5R!*1r!PJ!gIqeEUQ?6mLcYE~IZCAryg0wkKeQO94Eq7XpOK+}c7i zXAZNULA)4S|950P-vpdMA9F-fv;bc_S6_lJZ6>mTVumxYlt*29e z6Xg<$$o;nD8bS!U6pbi^5uwoLR&EJNk~BlP<+i!zGUNB&`96L<&L5o~$C{mw_v`(9 zzMhwLPTE5V!rIoZLw1u(_q2q->Q1xlj|3!|8Es_5C=#=^vU?la05?FPJnVo(3&}+T zZ739Iw$MxvMTZ!1b=*AHr&((U3IQazel?zNa8l>l1h5Ym@kIb)_TCWOOuz(J5@!ME z8$1>Oxk4n36C@y#g9F5V!2AN~F!*P-fZ`b4O-vQ*;g8Ef`lzyv6WyIa_k4F4{`iDh zE$V1mgxZ-TV?tT=^}&{u?5(ciru=0>w>ziyC*8hT$c*mo37DB0T^Ey8z#y=KSPj$n zv(+zcj1~F0x;Rp91$%zwFM)ouf_`K(^fcsRHLZv>Qns!PF{jwANE);$q=EMq8A@a7Dnz-Xi z9ZqoGHiGeQyt(EQy@{Nb;W*Vb;@*5b%6~aZkm-(_R-rA59;J{mok&*^7x!%;wW@`1 zKJ<>%bzX33al{s~U|b5|*n>GENN=`p!nLrvj+g zFlXBFxzDH3(V}EOtmyD>Z&9Mh#tL-@VGY*CskPxTDe|?GR9hO?{A;FOOz&NF#W`_VCvjiy{eZfqPOmpH~8wAUUBhJ8*3t_ z!O}sQ#q)QepWc_czL^+!H9p7!wW~szRq9qe+XnZokp`6{#^Hkgum+IxJif+Iwrm64rAdvPLjorD#$sCOFh7MddmQg{@n@Fbe;)IZ^^v@yH3|oo<(w z7LCI0Bn}a0(&xV674qRf89=G(-Fh-x&*UGvp_5L5%DAX`}Z?Fr2Paz z)@(!e$Yw;ZOzL>)qmjk8g;q=0vfbLRf$#^|CE$GPfS!m4qfx;DdRr>O{Goj5GXa#b z!I$tRg45JwOL)Zk(w~iu`LHH(>ig7d_p?4vJDcM8Ad-b}PTY-I5{;@FMa|>OLEq_dR*~(MzHHTk71LAQr`j=!7B`mI{B}NS?=DL-9gI9*fd5H}-1z(bzKc}686lK$&h~iJo zX(5zvhsEG0TkcWk0l4$4xvJ@zcQDb?zx!6U-VCfWkG>X2w z@@>rUwTwG1mMJgJ^y&VeSa6&1dWOX= z;ecj$s^#8mY<5^9A=E=re7*+6iXx06OC>k~WdPnE2v;=#fEvUABT>*@(~FXTF3o~` z{si7ZY(6l}&K4Z|xf2C?kAvh$&Q07|Qseje`ol93sMpUL$&?qD#6G>be)I^8GEmsb z@w<||)8DOq;jH2$&(P3w5N6*uVru2FdUMiF>^t+OrqK;Q1KV5{L*9L&m66+(cxX66 z*+xk+^9`Grtqo%WM1!r3tc|zHJjX8o06t&r)-Ixke>?s@WeB5@uVy*2Q)wgJAm_#a z;|~(_^FPfwoAuAhNAPszP^*0Ickj5Fh~j5jH~7QcSjICi^@WKBp!BODO@Q4`PULq` z2OY>p&?EsPXgqgX`e*3xj7_-nC(wqybpQ&NftuL5)4EdoZxZmg5 zw^d92r4;eo-U#>|AGDOzYwTMQH>Yj6q{bg%S>NDQFn-(zyc21kpT}~J5;cCjtT{FD z)p1MrfK#f+gGh-{BWf_trqgUJZ?xH5&l!Fh^PdcJQZG~mPMbG5TycoJMU#FhLnGxg zbMs60nh2U7IvOGtRzq01h_NmYIW1F(ieyU7@~@IIJ5GbQ$3H_jPuAx@SnS$&7OglL z`;)9bHg=VdZ|UytVZ=G#eboS^P_|{o+?HlEM?a%%tk@6T5W}%COZrXfw(omlSA|`J zj;=xVW9`<~J!<}|5YI}Ql@u8>Bk0z7;TVrI#g7fPiBJZjC4*2NI>QVMw zq7H*7@npUHw+*gSl>52%SNX=Od@B7uR=<8SC_f%ByxR&!nmfWvPXFLR#m%QH{{>{!EMW7 zJLn#pvRIy{W=Aj{j?^BqqCVM4Tb{H)CJsnXwY*;mV!^&RsT;i?@XN|R=oGG?!Rnb< zxx7(U)#yCtY5w4amcv9OULdb`6ql1EFXYIU~+ne9F%Eg-&GYs<^1gM}M@S@9`lQpJE z-vf$y&@yr~wg>m-IOYRWgOaWK?>h|F3+$w3wqjicLTu=WP5=)l7akrOEF%D@Cdy!)Rn7}_I zfRsA)t4f4KM1;>sgBFs_&CSO2hDOdN`HNg-Je*<<6Vp78;qofna1Ze;odskTFXuyv zOZm(YGa%uBe~kQ8nPY3t$+GHmEeXcU=wzStsaUqBnCe$lZN$VU|Fi7FB@Y`F`tAWy zpXEd&T~nP{q&fHLEPS+mts37LW|=TZNUcguO(krrEg;#zhUJhQnm0mx6jbczAutbT z{mUS11+$;{8(;vg0>44C0@woqj8Ga3;xSF#j38iC$W)4Z%rjq%&j!iV8lnRV*R3Rp zt)*fdoj%{}F7HsBcqOqy!or1x3V=}`9@&`!ndcx1@wHoZ+=f*a0- z95&a$p(rc6uE#=6gy`1s?h1b2CPJeZ5H{LXw%l6FsQx=1*f2ky9jD$BuQ&E-n78K%iLMxf!>L_7|i zR{B|sClEcct_3koNzQ;|@;n9=*t9xkHIQL_4(#Ok0pv~lj~TtVh8{?hpp76QaL;O? zk1d@NTa3+r00-LQ?>nsmV696_l>wj+_4*|!6Km-9@z(6+$Gnm&111}BtWcuZf{z61 zkuugB28Ec>prWL4Y0dIp562eG z4@zQoIZi!SOrrW$%-sAoFO76fZNZqbF%TakA@$x!UH5b{rsIWvdXZ(pMTR;3tj&sUQH(nA0FUUcoOf%|4&f9 z@NK|-CWLvBPOfXy`G)bxl(!;&{w;aQNI_re8nIlV5_8^`DP<-L>Ax3z8fBU24PwP> z$C@zb%>rk0UM6FpvL3xVUqq3ax!-)%JN2g)kk|`C!Xmw|^yU5@Qx!EzMyRf;Kj)4& zua>l{_U11J7IrvYi>OQ&lURqgi(}Z;Cc-MHyt$yMCuh)ajI+i4ZX_r^>EEB_3COH5 zxZOn7_C^^K0f~h9cHAbvu&AU`Eb+U$tdik5^6JLYzxKV_Bf@g(ve)^16fh>gwAemgLd4{4YD~$8qY{ZR#5i zabLDxlT93}OUz!kzxI(v+19^7-wI%D_+qi^AAPu4H5yi@K^gZvYjt8&U!{<@A+@R> zh%B?a31hV-^}csl-htYRGk4~yy(m;g-qM0)Y3Ew?DM#mSoHw@F*?)d8QnzsK1^4Nl z^abq1oY>pYEAO82HBmFwoN6z-jnsru{0PMBid7Y!{UxB$qI+@uZ2PWT1DRZSYRFTi z|JF~mIP!*ALSuTR2rXAs9_AXe)q6BF_e*6BBcc~YnFksh5JhY#KNY!YnYJXWUuCaO z$ypx%)8F5Ou~g518b%-eZY^o_5`NQS8FhP!uAG&KuOZZe%(u5#Ocepsy-`tUVPI>3 zEE*#e>c8skZ~NKb#3!P2Bx$>TbkKh25AR<8&`^%zZNzM^c8^AI4C&n^KU~=Qw|zP< z=HFbu$&U5%xDWZD&$FH9W!S+N8EewuJY|&x=(Km*PPku-t(&zjt)Kh8-~46a)I3Et zOb&&W_ih3jD(f@+>=>bcc@X_v=evD7af^dobTnvv>gZr7+VMeHkq_##CxEmEecT!A z{e-(^{G1*to3XGS}utDesh2p8l#gfKx z_!&f3_dq@V7{7b9VF+3!9{)Zy8DE9v1al)k|9wQ+i+rmk5Mf-3jhj@p1o!-`q}ha6 zLBpaeQ#+(n25UFPk>(GTf1qxW9GY9hA)|L6y#Fpz)*|KD2C5TGh?GeV-~V!K?fg8vlEFu+P?K-SoS zc1Px!~5N5DJ=wm%|IRcz~;Ty zBG4XroX9ELl_}EJ)6<+J`!8RxS^^2)FR)l#%^=&GHu9CF?Lt^=DK<-992>HOM9N9o zxxRPo8TP}+Q2u2J8h5ct>R(1>X)YjB0Oh^|_{%Kt9L&ICbAc?^T<$#&1UNc@G7Ds^ zgL|8}#}njdO@P&7^B=EJbn_QL=8sr{+mm2+l(4~@6-`fEE|N{kPSCBeVcUrdSN?m? z#QN|DM~sqJN!jni#ma@C;NbJKhaae$Q}+%7xw~xUH@%#UVeZ5(9NlPq!mB6p=j=og z28{62at_eq&&AMr{(Cp$VbA38uAe@5c{ryqb?bA#U}YAHy)l-%s+e2tD=fpE+`-oO zRn3N3XkKXu^N#Nds@xO?rz?ib(Q_uBqQjgpMZ|f|rX7mn`FK;3djt`S5fFK0Oe)qw z8U_u3K|!20;zsQE024D=7F9NiUpvQ6wFI z50cgWyq0dg?M>zQ#K5KpiS(`rWev!tt3u_@jyZ4WPm%!?YJTHNiEn0BhJ-t$j=1WP z`d}fA`d9P)(|9bV1naZ;e4!L826~wJ{~21D^p@AvxQ%^OAcqaS5+@KzuEBawKu*Rl z)xotjQE|(Wx|9HecU$pl$7Kx#2hB%RZN(X4HEv%k<-GQRO-h1cixP+@XjfyxM|7g- z?)G&j=8(c>lt8xg*YmG#vW1L4YVD~&@w&ZL9;bQ;QSOZ|xiPT>d>HL)-?u(OO=Wxt zO)OS!!L_nkMm1ib91MCk>J__ZZ)%O#55j98mVPr{ z(@r7!kA+eG+$Ez>~yvt_jSm_JeM;g~PIq50y{ zlJvsCK_6pZTWNMf_BnQxPyIMGOq~Za_>}A80=cGb<9F}Sa~;aM%h8|*{`E6ywNSzS z`QLsMlgB3N^;$LVVE_Gg4Gs@pj!R9w@*3k3xsiV?r6lYiX(}>M_qyYxV|y#k@ziUD zryNC50a54(9nxh~2n(AO?@+ihIW8y)-7mkz=wIt+_(2`y&tO*la%`~J_V%Nm@xWfL zSlgZtz<)u#8UDjCIvnk9>7Hm~oGU9Hz{hE?tYY#3D#t9Al8iJ3zG0xuumG2QNS5x0 z1a1ouBfb7f1{|u~kkV8bqzDqg3Mm5C`3t5g44g2c0!9FWG&`a*e0%_A&Xblnm2&af)12KiaHTUc~- z^u3_B&jx>i8`O;_VA+J1IgPz+Wcw1L>1od*W@;nBrYH_hMg5%8g_oa!My}`8iMwH^ z%j`b~fJKpE0K)V#>ap7i+h936bLC(aW*Co(`Uu=qdK1ZtTCyJvRVcgL2WT{u@lE`A zE52=yS_LGXZFpRpaH6Z8B#2c-Kc(;GV}*4T0Ai0N&(Ji9J48dDIU$5!Xx^%0Vmfc_ zSUUaxB!e?L+?*B@UI869tN>|f)xpS}GVy@<&k)iOqfwfA6G$b&*G@P|gV3~$T^M&!GVBmeyMjH$X9EQxXnm9f zPt!CAz~22tR1QR292|>Ht^kK%>m+#FU{4HoaKOu#gEYlahP~I{ak%`rd`Zr7gqG;{ zP}vRz$|rv8v^viA^r`v8{~5 zMf8miAYSE2cEJt4zagwn)XOja1J%&&cca4`jqUW)Gcrz{`hnRtv;`%vhhIh-O0p>7 zgl>Lg1LEk56fOp?^Gv?ps=TU*hiCH^>dFnzgQmX$rSwdQJbQvtLt7FrOG<@}F`I@g z`{kRRex6i>6rRbF@iJl6h#~Yi%v?WkwgBBKTbgpw)u)n`$Nr+=ppV6*LV5@56Md6O ze7Wmi#+Ra^@L`-4rS(x|jko$GIh0fUEB!Qf2_Dkj45cKPX%43!yt_?=()v)X$~{l4 z>@A_&?y^aqME+_or?f9GULe-Bb(;vkav~`qv)4J!oEMrlV{dNOJ@3g^l8amBKRv5k zrrQ|Yp`-auO=*Eml+66<+m9D)m~$)ga8iYqLOP^BO2qc}{PG!;O)oXN);*~I7Jn6% zwO?wYchy74M5W4b3;e``BW<;)TXC*sY)5yY6SGPV-DSAwbUJ>Obf|Wg7YP1e8`ZgS?AMFo~H4#z*M;j^B z!-oDQk*KZVy`?SB_FYYbyuk%(^cX5|^oL1mjqk_2&n}15A%Au1So>iprp<7j7#$e zg_~R2uvqWOGyZ-xLGo27lZOV{dJg+vi)zwu+|s*=*3;D7pKZA6?@unpR>}LQVZvMU z-W5LW$~v2Fhje|~i>-8Z)LZGzQSW>%9;%KHw|`m(9D?$9_f{6~HE6bKOl5T5YiezO zuXF8GQQ`AR$2JfHqVT?^DjTfInu=m5*QdOzF383ljK%DLY&2Wy2Xy;hcKgv{gQtwl z0^d{hCUtdnr?HhC%3S36`J2ioSZZq&t9}}xPwqRQfWSp3<@}||`6!>0OoN)WV;p5U zri(cC4(k5z-7N*RcgaeB|GDCqd&k`bp3M^nU)yf0x9zQ3>r$z;(c8;@%0+`7$~~(e zI_U?OKk->VH~tM$qgTVoivA1zu)i$>6K|<*Qcf+^!oD)@F^L zTU^Ii5waYV?F88q16>MwtBiRjC!MP}Kld@4-mXQGz1n z&yM^4$|}A#>R{baZ}NgAeK)kZ+s)3#=yEum6ZK#XVWjaPq10LfdV?Dxx&8?ZxFa~= zMf=Y|r@8ZY_4K(AHg0a*5OF|}wJk9JfphA>>K(t}Yc#cVS~YYW&hS}YVZ0^k1``iK zqj)c)nKQGG%Yo!Al~iRcs0V+DO)(8rS3&VU25HfagjF=*aASXd|DQ+0$uLTk-ZMPC zn+Mi>AKJwM`Py9w7+6WLfRer;_u!BC%VPPb{d2?Kd!Vl{RMkb{ge5Nr(p>6z<1i`L>9>+kRH{%_jw3+qgVXQ{+I_IhPc+J2Y(TG4@uz0&WOS(Jj631d@K^sIC2b_?s?zCCI zF}xPUYAsoEQUwypfH1P4tjrAc2*%5nmQg1`KCKj|X&1`aT% z7c}5gO_k}3>$o0kKZzG*IP>)7{g=ujk}#b|)P9cVhwJFJ=$3*e<$_bSFN0g7?RPMn zGjnt5`$hE8yJ`qyQBOCs~a*Y1HIDHUQDZIoc>> zl*}PVdE*QoA~!U$zGE40P;JZ~hCbr|oes1hJIYu)&X0jYC9>xc3}SH!Fe3;wSy^Hs zP>aVL?}#{F$z1QC7F^!L|C>pri?uT^3||37r51eC5Y$$E{eu?^<9dI?;uE9bU~8$6 zp%LU;bUQ(F_{`PY*YoB=&-#5+eUqk|gKWfe%J-M>F0uN}5L>sSN^^3maB2o_v7F4~ zH`KmiN57?*jToHAs2Dx?C?v`jki=JEAnYM4Fq3Ti&2L7tn}6I+mXSF$HA{qa%Iylb zjiJCk)vqK6jwS8#V}FwSzvA(-JDr&u(_O>sa_$J;D1HGRLj&d6$nd>AeE%iRMI32- z&mm3OGuZX~^^Pd?(bqFilZRjD-%kQ$(=ycIB(@7E&i`Nru4rccLgt{4FdP^(T3j9*?sEYzH5o2-rM*g zJ(cP4?vbkget3y2>SN1mt7ie){>%2hSN7(r)b%KX%h?Tc4IIxqZ?-y*d=7fw;^e;{ zc$OD0uj`<&Ll{*0)z9JV<4+=~FQ;-m*WRM~>qcCu=q+D}*=%apcy`rk>^y3K#$h?VFdc_o}8<&hAAlH4c$Ra<9324 z8Z@D1Ub@RCd`&;O590^z&Sys2`x~N?a3_Os_jYRTV6#VkG+nf-n;^d$b#xsD7a9UB z+K;vxu-;#+u0Hjj`nb{82b4C{DiB?N=WG%1!0lJHAB_)1Z+o0SHbwc;6m!()kAds8 z+_jsC+1uY~y|o#HyD(mxWTWm5yNYoNEGb#fY9#Pk7lq|A-TgBD67gxpy>EHj&M5sv zFzUQ9a5%xa!aCR9oP3MLcmE-|W(ObsL$_U>jsf|mR|X^*9)2KRu6`)5gswFpc6sn8 ze*Ny=r`$6%)ka-e>VcplSNr;Qo;%*vbF3BdBa@!=-?9ncn;plX$$sBrXNk2~dVngMNVxo6GjBjim^kI@7sapo!;7T~E{H=`ia$!IM8eQ5 zU1rGy#NP;UvE*11yP#Qbgq4`w^nD8ebFw^o9wvib|4$>M{|dqb(2)=EGaQv%85;L1 z0N-ahAv_N;WwiL~F-|l~flXcMm@vCA860@dRG4Gy?r@=yNMT{YDd95?Exo61N8jw}~E2#OfVpM#&s`FfK|( zVlRH9l@`7rISWMt@n$JK90!YgQ?ooWGLs5&$g@YfTMCC3%+o5HRB^XqV!0OQ%%#NN z?A&nHmXPlQ)D)|%xa4Jp9+*9$(P`|V>5Ji(oIi=h^1$tt0+Z47#H7hR>a-bfgPr>g z{XQLwkc64iEK@BqGzV2ptv_JJTlWu$ptfoIUZHuPCjPR~gwtP0SK#zZi0Or{hiAbt zE%F5L_IX?6`oVa1YIh6g{alOsZ#O)=_=&B+MBk@*av}xuG;7c`K?un5yZBK+s*j71 zdvFu>f%rc(0z{OipyW2hX>5n8k?u=KgoojUV*`bbHcVoaSN@4a?f&lW?*7RUwSKf1 zbLhfaVqyBs0SH8B&HzXyn#8K_ZYwo#{qQ-ZQ_7s?GDm> zDuafAjKDVt&141mJF=9Hw)&c92fz17e3(pg!~O4tA_2Wgd&NjF@q)fcLIdbx!Q`M3 z-at30sjPx#78RFVmm;N`L_;!dQCU%XiSV9>)=Dg5IlvK;LpOb}G8-?mV95*l9{L(f zgXOngVm;=aA^(8@uL`U=imHRt62=P3aH;k*6IQ`0tqe8c#}u4w3cG(3u+4u+l7neC zVfVQ$!0zq8R$>by+PWaxo%52;psYmxBZyI<#`?!<9 zzySJ~zQ>*zDwb#Ho=$AJD4@*VN&O{kscv#5qtX^D>*eS#_j1#?k!K*NeaPLr>X~mU zzY?3~BP9;OeHy}&u`4hCD+ov2*Fe(hc6N%`hH|o7KW0ZSK9(CE&dTM8Uh`x6K+z!NU zipJ?a(!4{ckQaSJcUl7$*xdfwaLx7x8r}fT{K0k#{UcxW9vNJsdb^Q zCFyB93mt7Ov^P(!;=1e846iR<9#g=-x?`Yt=pS=PxJveG-(K}kF)iw8@}COZ9CxdO zKL&wZ>F(d*3B6Uft~?lWrjkyIMDcduhx`YryOFt%U0U%^eyXl60lqGKrsN_DGcGhs z=ttY+qd=gw*OGTz0dGm!)s#5MK4D%17+34ZI1G_k3!3B>_+(JuM@n+@AK>n7tSnMHJFBkN#&z+D zLUps&$sET z=jc2Y$8=-#OcP#r0H+YN_eNPIFhFQiDSEDN+*rLSi>dULZxhwoC=9;}PL%3jjl7SY z+FecwUt+^vI69toKA9&2p4N>=Rkflkut?XK;04}%5N((3l;(w{uu<;M3BKS^k>;enC_c*vCh z@A?bZasq#@s=W-9-6dkGMzZG`$`_i@I}VcGyLKpEeW_l zjaNCgqYp?{NTY)ed#}-*&Ou`5-1g`okxJ~Od9LL;yV-zIiJ28}ZCHG#kii8u&?OFP zbPd#jsv%3cr-sE^(dz7%bU@VL9SG;&#maHWY9>r`BRM7<%#}O3OtHy8Fd!@m<>uq# zOR@{BvsbkQ@^xN?GFbqs;!9;GbQToE%W{A{>NseIFA=H${Glzhd6<~X12wCF1jOD9 zBlxIsaA2x1+si|>lPyu`cIOOt`LeuC9X>0FMmNXWsqX(t{HzDqxM|L4NyvrBI1^oE z6)Q0It-!G7rXec`SQOFGft)B2xOTuM%VCV$lLwQw>jx`;XE7pM$A z;OV^&KJc{RWVcU#s=a#WnxRTbKqttrk2{4Jv_P1Eq%M#7OloulB_Jj`=zD4NQcQT`><_J|&*3uoq*-;N&R#p_P_@UVDp@@7nvtoFXloAAM5+=i zIjFGUlSsb0N19@$1#|!541x%ug;=h~wEq zjnd#ymX6nOrlbY!^pb^_IdD3Rpn(SBW7hGKa^*5*P{zk;3x{!9C1ukEm$IEzlRj;R z;x{zwOBJ@Q>$!hX^*F*b7G7yDXiPsaf%x!-Z~;jiO?wy5gk?xB=KnT{G^e~s=Uqxx z7L$SWX{#MKh=rN=?JQHnWW={y=q-fVQX2mi^kyyZ(ODjATK5}tt3#$43NR;XoJhd2 z^t0cdK-ch zAYx%!1aenP`&3R&7-lu|;tm&Pe=)lpCbms+G}pp}%UvbcRAH|bJpWwHm|Q24^uk-v zrZ-1a-@Qz%xW<*mE8%Mr_20ke;~xFI&sZ(vi$5i*zVy-;m6!eL*_`nNyT>Jp$e}w6 za|Z1wTa!8#P7T!o-_=6Xy7&IM zQkwLrn(n*1GZ|>gItakgTuvXdYQjh3r*3DOuODoMG)4bSqPf9|#7-jdza7{9;p+Br zHyszDqawZirt(yrP6g)AzkmOFVr#sUTq}&h3#2|>op&7#X^=kL8uM?XjLKMBe?gjK z20J5lr&jmzgZD7mYNPY6r_)E>qTbil=2A4k^i*1+zem%=pdv?K7iLMF)l_7E4+pCM-fzdeZ z{elsQO7rpYlpSF zZm|Sf5``X+^MSHY^uRB_b`e|+_lNCO8qgTrhZcA8?v`XYM@H7ygM|fYvu>7DjMdYK z*jU;eJ9+Qrh#_~?+vNw21Gu`Wl|)^&?d`DUmdVJYsjSEf`m^*joEg_$ zCwAWZgi%IHHqji*QAbt3s=wIW5 z$i_|ztv=N7E+jc02-PeY7{Hliss}+JrAxD(H$W5VpCJk_GWV%14F^RBh8=D#c6aZE z6Vxut(dA_`3=-wI3`D_MwFcO}8$!J~S=fCeX_B@Liit>0#3upKBXOGuw2z%&NQJeZ zP5cAa40O%-Smrf4uwlq#V2ITk97u&S#s2YNn!c^9r=z9mEG%40Tib+|IoFp|7|}8d zOS2R}tkdA2%62QzrhF@ugq*#IWUw3waVp2cIk2Mo%pDI;wjt_svcRrCL+YtA@7*$e z)PpS+h(YB`9w5~KP3VhBAu%yW`>OvgBMU9t5gh3cVYqOBCHVQv}J=LDhA3m!nX zC};rgFNcRKD`~SD>2hW8kAxw;n7emPsc?g0_o9^;P+_@aFxLgefU%e*{*j)q2vV#8 z$;tz>0$`i}hKQ+~!8h9brY$XL<*B=d(ExH}fV}VI8^GoFg^AW=Bffi-`I$vJ2yzNg zjKEbLBqt8yOaU+fOHJAUi^X>eGe=q*fiZj#F_!}ns>nD4pbaBGn#nP8b3z}om=#SI z**wBN1FaEhGkM63hsi5D5r7&6`VQ?Fkmhg~Wm1L(aFM73eEyoAoR#i5CS{Ts$Qt-C zH{AgHfkIhSe9~06yn=3sE^6RK9T%HrDR7~guOSKWT~k^C&wpq?^C2*$0cj$Q*QBLc zhSNe$(q}+sNx=ZH0!5F$|VUw0`mY!`N&q7SpzG>FBwl4daGti_8L5g z{zgYcg`y)i0VhsUZ`-d&D*TeRF{tq9&;Onq&Y9q79_Y^NrtUr_YNruE4}t~w&+J6Z z(q%bSS<<8JnS{ha#wGEI@*YjWGI)-Iiu-x?T_`3BpNsqu{8m+5$Z@03VNca4{B)p%*|J>Zx;HtbaJ!WSX>=%-JVX{X1Sf1^}} zoF^7Bw>w+yef?xl4w9%UN+y&4g=_0*rTQM@&Fu8xGcNOLy=kfhb%&#x;}ab-t9^ce zQfACh`f7oNtad7z9O3dB z^W{N1l}Mg%Xaru(N>Gj6Q^3gfu_1fr6>F_7byZ#O@EIPcx#)vJFZ93ZrwrP^xq#bk zkKStP-2}Ym7e01JXBPqGs$YX1D$Bn{*S|S}k~!w`Dom5Vv!k}tAdVO|@SHET`(Asi zv%i4b6j=>pDU1(SkH1wHgv(QTq_~~7Dey(`6p3#MX2L3U*Bz$^`b!b=3f~TCkoX+YI}ZT z^OY}QuI21upJ#2bpzZeE=n(wm+p0O352Z!qUSP%bb_cLM8nUtyf9xO&k_1~F6-62` zzyP~4c}(o)=~bV3aj^ty-YJs$3oK#$AS|lLq76im<@}?%9CW*cG%!NEMKxc!s$m%a z#J*871BS*@tRB7v?AnH)svYWzR=W3sUUg5kM(lhgFNJeodt8hm<|WntP3L9PZ^FMb zcRaH|7>v)?2T=ww!3~GIC49sBhP0foD zg-jBt90T670fNH1&@|g`9Byg8SA@@aS`S$jITaKNogqkn7t2%)hA=@z#pvu%&{#Yn zK{B?Wp{p1R@c|r+ap||uY!ugK7yp_Xe?@=4DJSPCVoj1`5FKjbwg+5Y#Y)H+0n7c9 zaPogvWNx5cbJe`|<;$1!FGE)8>303$dNi@u`@a;*r#?pA!t{np;B(OqVpncyVE5cF50acn5IWS$-)zi z&ZAdq#^P+)ZBdgmUDdl05Ejt|9}ld2ow$JUB{NbD7HB>C$4@nKY&KRc<5GVA{{6z+ z8|AwM%&DmioQ`dK6V+YtMAvEWcOMgg;fn_z8y<$X03yJ>2ql_{BK@NYHU*GpVqPAH zupC@)?(mS#E>IBxAg_*0!D1T;Q82NE zK+t2HoX^?Ztf8f;$*P~L7?N9o1*^&%pfs??Y|KR5jR`#zo<`Hk>ob()Xmf%vRO~Cz zoZ>X55B6wJ;18B)P2<2wDCGqzg=oLYH3?_}QbaAYLYm182n7$Nz<87dqtXXy4n>^P zGM57=yi?;x=<&;(bt`2&_v7aw-EuE@WO8l_0FTt%OT30lp|Eh&T=(VzpY?w9&eEXg z6Uxzw-rm#xSLwM}`?R{{Uw&#&4Hg>*B zkiFFPZ$!u2Z=wiAXI3+`wP8^50Pg488iQo=znQR09jz4zROK&n*ySxqXuO#3*fKID zuI7d2g^RY37ha-q1vj2kbd8L!++^%ZcYAwqZVu%%wyhgy~6Exl$SgElsZ{w`p(=Hzzl^y$X&u{R@rs&j;O3z)4=7Rdd*y~q6umBRT zPx>{D$R^~)p83Ejb3*fCeOecbkm&s`kyv`kgdF-^6$VbR{x}AQ^at6^9|mi%qqVh# zgM>%x69d~%+HdEI*YraQbfZ|g5t(J=TWP5HMq@EI1{P#^PKHOKmyvo-C%nT?$UJ5H zUhXeObA3F5HFKt-$YxBI(Id#B(_Y}RaRs8oCQO9n=i)*okqdVp?19 zt#aSY@E3&G-;IyY8DD0e+WN$55p{g*?DL|wyBqln^;$m5xF^l4>=bRW2dhLy zj+yzJ!iF76)xW}8vGpy%E9|X?a%JG>;F#R^RQoav1%ET`t9PA(aX_I0p}^$WFX4T; z28Xxh%a0=3-XE_09iAJdG@+XaM{DXwhe7WSm(@iM`^ePa;U^FOP3=3pB!O^`RktzW z=)?K#%<}B)Y^?Wwr_CAb3q6zl8tmbMKPtzGPBLQ|(Q7Zo@T9Ndr(OmA14uCd(@Z)#;b@M*Xx5G)s!zaMz5sG$8I zV6&e5&0A_X9gZ|-dd%Qt0ug~+{079*ISJ(K1OYP|HIxN01*!RFl2B7R1eeMV8z6<^ z9)q-0{GCJzKFF7W03$Al0HBE$N&6K6ObD)0)9xVsy(!+YZ%@2)8lu1R6? zZOr@Ffm6r=>2#jNpZI}jSnM&Xu&_dU_8^068U&?&CJ=x7;qf?pL`>-B@A>Gd?Gam1 z2^M}Q22*oDUone51aV#f8f3{PaVny%<<2}AoZFl4E9sZ97J2>aRi!(@HqJkYc=`$pZ34Jxt3<{P;?tSa`^QDd{_aL~<6}yR-Xa`XW7_}f-;Ezw4ex!#=Dv!`Z3e3RI9TzkKK2gX6 z`2wNu$S;M*-51F>fMo$$dJfzmZFpcSwp4NeeCrHRMk-kziQq9IXEPMf`lx(??6N`3 z22>?jz-J-(AVXt>Emm?sgI*y4XbO~{ASVh{ATt{OqKc4$iO|^msO`DbTZKqbL)o&@ z9ALeWe9U0e4HHesM4mH*eHi$xknpw97pC7Wb-Z($^sHMRD1hx1mb!z4g7mCh)zaPN zq!M`ylvK=sik=myJDwmxEchWymd6PX@Ls{EGzOkfpz|mO3#}}``3e~X?DU2582l7r zzX_9L6717H4&LL0tH(1=KM&nUGF5Z+mez_xdJ!9clU$<48&^R)bCrMl-nI*Maq4jV z>~OhY@`-2N8?#%IZ{N+ng)j**8YaW$#dyR=c@4TuKH9#jasOu{rFPzJEl@B?7ZjcQ z5ClbE(eb5JkvXWhEl2&-ZhLpAT2lS)INJopv7B;SDeo(TBc0wsE=?`?iE3K72Y-8& zJ;#uMZM3CVV^2!3H-9Mifh}vnN9;qe0IncH==~k};nWPxxD#w2ZY17tuFn^XkTV8T z-Z)W$3t`HF;YG%BdW`rLaYV&En#rTMjw^n2yKidCi;NQ}&M*fBb=|2`7&Vs^U;0%ME}!rhs!A`)lkHwG&FKD| z#9ryQp>Z?W68ki@au)QfpUiZ2M8bF#ZqQ9^{`4$T5D-9)7B{<0g`m;8=_vE7HY$y8DjU zb}wRkW$$YH5%bZ~f#mm4;#(O39PYjJxb0wclck)aHm+%1i>ASO@6mI96tvnGux}k|LDK%1$zmnUGCZI*vWcII`#A_c)*L^}DYA z;>tMZ<@tEt_v0Ry+h^7PGhW!(Q4VA8kL2MD9K6`)jhWG% zBQ+22Qvx^hMs_dFWG1g%uP?a=OLb5}3Ni?easWY9a?rouONW;UR8Us^Uy;Ye4QO@&-%4bw|h8VZ%S(bVd zWo+`n#J9fowXL4cz|DGrnt-iYVoK1$=lREIy`I$tVrjfxQoA1?ZG5Y(604_K1p9DM z*`C||fYL<~dTABt&aqIuV79nOwx|wl$T--{lhcB&BoJpFm0Z-~QTa@1K&k8?;|4=BC#U`I8`^Zx!`J#6DhR;b6CKi4=c(J`VM^Q>8jC^MqznP8j4Is=uQq^6N3XEV|_5><|Mm>deKSRF98EJ zzAMvfMDKzT(~-pr;dq3*?!LQst>&?l<3B|FBcd2#r%#Q+&;c})aJ>sJ+lB#H#t5%N zDn=oO9yVB7+)-+7qRnk5k3%FPR$9wAko)jItjNRN$z?_h#URLq*uohx*5f5%;bplj z^b|J#sMHrY9u?_S#YY7F3vBf<_gOWJ_^fkP9(dQPGMQ^Dp1Q~qfYH;_%jRZ_2vvpm z*+`a!jyDQqwk0D1SQezrynx1y#~ved-&R48SsBri7a6Xi=QXg+G$a2Us}K6EEVq>8Fa?mv_hKH7u$&XB&>9|54f_0&8}n zgXYfb$4gZ9K8-9f%X_`{QJsb9N;m4!@wmE^VJaupB3Wb}DKDMTy!_*kG_4-;J13clSTAqEwQuf`^&&0KkK)6Nw!tsIg*$ynGOa)#Qw*D2DGQ@hOFeUiOHknIX?5Raccw>^EOo8+c=lyEb=fecEaC`% zc=f>}s;96IzvOr5zc6cI>5k}dv*}sS$KNP68T{MGe2oKlGRo>yJ<8txKf~hXKQSSA zW=h(g!N*_B-G%lJ++k+HjAo+@thmhC!?4k6iLyf76f-7SwrFy+^3*9a z8oPM?xWQgJaNbp^QdjKlyA&g%zIX5H`8b7MRCU?Y7}@rzAgai5`rBVe^mhVKSML|P zu%EO>3%%67{zBr;bsY}tt7cckMS5QC)Yab3j6ESw_tJG|qhNTyBWU{)3p@yL8pCyA zA1iU$Z+X&Uw>jn8_|AFI(is~y*~jOUoU<^}#XG2Nx4KsU%_vODFr^nZghC86h2yL; zf(c5Olor_lDoL4F{_!GixDG1@?6rOHz6C8(^@9_3Fmrt5s zMkcMuqR1`u|bFVRe`_<^V)hBDH>}e*y z^;g38$jRy6e;9C71-~X#9BJll@Q%qf=c05J#qCS3>Q{$jtg03RCqAaLCtWlfF*i$g zm3tmU*{|Nq3)(Dt+5VTX@UI4pC%O6my!SggZ)fbe-7d*FFQ8aiUg7m;d3o3E5AUo& zDWmkY3Hdm8d55DDRyBm`oo2QarH2o;_S%zZ6m=%L4x_`8h?It{=~Wve?JJf~OwT!c zRaR9O=M?%IJ1cOl< zUFj(jP$)OOd2T(T#%F7Je*CzI#k+UT+0*r;!|@C4foyL=%2Q?yC3xDsyl)vKudlVv z#mpDAwo-m&MmB{;qN9k!PTF^GT@>Q8bao0;(i+C+=e%#ZRs@*jjmi}%A3{T>5aP}F zHccj$9*-GK(4vAN>hfO}NqnQ;Aw5B-g*i)C%Nsm@0I`ECi45KYiqyY%)nuy-MjUk_ zv|+9@eYNj5{5$WzGXFO<69Rt&JbVKKO)}Z7S;AqL@t9ld>4ba(D%0UulS~-$zAQo* zZn;qN_JZ45?hrYBu0lv@wVvGNOxRm@+1Os_>swp+Fh`<6!NK_=PE9)umnve+@c*>{ zaN?(7Wb0oXx~f{+)+W_)9%^1!8)iB?&LyeyC1zyj*Z^k)vvcwd#yj)cDI00oSU5=U zd-F4+r5mB{COm%*>fvr;uKO=@)*7UjWJ{=X+m`b^R#rx6;=`*?duU&Wi@Cy6AF(P*J$ zUWUD?zHwZG1(BzNb=3{|aXRTPLj%nN1_Iqmk1(+ai-}}n=R4EDt%ezW0gGH7=Vv?) z2|_`8eA6cyv!ELj#Q*%bt^eV!gK=SLqF8KCu&5po+;hpcfW${=Hz@ZMrAe>R94o0QcW~t_Q zTidfs)%u(;H|ex|V7mkQS!DXIH;2cQJK5;DK!8)rcPt)+QSoD<~~C6?SD;h=>c7U$Vq;uw%G2m<+-%7`Pc;oqCkzcKrJB zi7?@dQ7R}x$FsXVwVV}XuZK!{<<7?vWx}T#coQ94tiOzwqlCrByZF2=rJkS3y!};> zL&)^khFkfU;)Fs2eQ0h42*O? zoznclHOi#cTv5|Hp;jI$@ECQ2R#oiA`|uAV!$YsdNTEGS^FcnXxoKEi;`w zv-S?HeUy6W$#fAq0+(wl2<4fl)ekK<*@3a15tnVL ztCP6Uq@`vyAk)|c6(ThOPc2C-md2nbDFr@S?`g3bT&j(r8pZ#1MP&n+DuvS%UeIQMy{q@f~33fO(l<8PWJ39@2#1o@8T9M01=A zq;{Nt{&)M=VxVOTuh7d;f9O>K5nxLb8u2MgJNJt1qp}lBAx%yhdtJ4qFAkJoSSFf(uu+L% zPt0aT>-6+)z$L}*v-16u(Y9?jEH#acZXIc7VtP_1&Opa^CfsZw{>%&Ucj?$B8?o0y zAr~GFL=ywN10L?Ix9@o08X)c{9;I>n^XbXSK*MJU>WOd#(gj4;N&7~9&2hREt#2@c zl4)YT^TMectV(7*3RiUbdL7Ov{0NODF5v}GZywvBD9x5n?ai}WcKS7&yMOKUJBX)V zuxP-b924dxy$z4U;$@6A#rm>5jt0ZPwoS~aUThL0UVjFtEeCth4Bd6jeZ$mHJEUc5 zO5|z&+&ams%6tG|k7~zo$-<5|1U-EMC81lD`N{}8l|#D-=P+gr%8q&YyMRJOVmB43 zex;Z&efz7NvhDwZ)2=1(u`+rm@ZyrK8hH)d@ayL_9j{_#A<>qFO}^&@yzwwiV(8yf zA%}bqT?bH+FmGturG>M25!w2-H4da5`Grp-T%(19OPd)es8~(M>31|?F+*lpXoQ2T z6hiBLCiK;v-IdM=D{1SukoXj1!-QZ4HRL&;r6KS~n5`uS?~k0(Td-<#sKDk7+(BLh z)Wr6Ko(;;Fn|&g#+?2f2aY*eYBwsp*0|0-p0lK_~HrRTSXk!echD4|@Fp!P0o!}dg z+0Lc*13{>U7A-1L;4y%)+3o7=Q<2OXdRh!2?*dvb+|k5c*Q*txnI00D4c8Y?qS7$` zLXTP)I(ya-2sL~E1SpM4o4d`a_NH>~#isq94JaE!CVo_oHoNU-rfZLeXz}O+2{exo z@7h{~Q>Z1aFvTM}m`Td)D7|;I%(uTRCAZ(3)zU_p{@|^X*7ZeU(z6?{8-0*(WR=uO zZ4CJ-A5~&MKFBM6!DzB4E~oeVFQymL$HiJTzSPnx3JI3ceUpBF>AlTla%MifS**05#?i&mj^BpnPKE=gscs88F`leu~o)v>NZ_^n)Tgbq* zw(0qp_gDytHU2*NgZCB9H>S>V8-3?c6mq3u$4cP=!%f|VaT|OV>jLx8;}^EHblZ9n z5Dne_(KcH~$4%oi_8GImQgW%cw-}(#Y-bKSkH21*ZW)X7nD%ON^vLPZiEC?HBVklzU^}E)9D}nrE}q`+E25z7ie{#XFnFH6Va`YVY>Ex zZ&Vc;0GPfa!oL~nYTvv6cHJ<#K`1nq2uMDDmjxq1kN2J3My28@dj`Hw3VBONO4|!T zUl$|R{3xKLv)F%Sq4@Og*2>ZS-RS*v6xr3~zGQz14w{^uM}PjjTZp>6+t(UTk~1F} zIfRpWb>{86ci}OOg=`sWN_QlTmR;H`{FfR&ld6MO*1LN&JPBnL)d4GGxcghH`+KQM z#sznYB{>Zqr?yB7d0aVuGP*rNeQO_WN81v%L&%Q?0rA_-1nVywAjAftIE1**1np(ktY547DsOD&y_K>zyg0JBdwy@Yz>n8R zv^H>WVeW$u!L-=Z)AN4S?G)Sa7wBugvqqIqv(8j+Z}&B5ZMTnXGAix2)>Qr`N!@H! zn9iSbaq*58FcY8EHdlETEJbWE*!3fx&CDeIDJ8-M^uD&E#D3Ec>b@6p;!{A@XODqcwwuQfD?$(bLji%%cC~iqVCu9{> z;7s=#at2C!3{#Q~ywvJ|YSF0UAhkUSj%E?K0E`QD?zAKJ41j_FKy+ZNsI<&1ct?fB z9$|3gd|q%6MLiRM9R$rNOQUexD%4PpadmTMaXSz8W+ttrMz&A1Mn zog`yvMxm>!=PL$c(c9agy$jXMP74kjXv=VuJ2K);`2Y^C^^r>dwb`|u_=1sjinMK$ zhA6W%G9lLuE339NTEVd3=y~C*h+O)om7W|qqUt{4O4Q7~SLsr$Ak;9Ama5Gt3Ux*-*ss+N)jZDh1p~&O|?++*@cTzs?>9 zbRV1MUFr+8t;1<|Dhjr1Ek0qqb_m8-k}TORf?%#NTE52w>IXOfg}n;5jd$6@y6aEm zq#53(xS0E|Z$=*N$0W6z*0=N+$h=D@7>}t#&u4fBgr4^sSL=HT#QuBz40Hq% z#y4tmqJ`+chgo{q;Xl)}vsWrV;uVxe-tFWsvT~&B9a%Q42*JLulkZl!L%bWp&POA? zLdzs#ovbZ}z8Xf)Np4A9R+BGE#rqz+DixWjZ(yWiG#Rn*A)i>`5`xgzy2oiGgg!cc z)gKf5k7I|wKG-zoezUdM<8OU^MskG8N;M<&&Gbw2B|90$x1ZI^n@};#l#KDo3p<9f zMxUGz+aLkG_}lsKA2Cl0S{Fap)5gEuv?qojgf*^0q;L*K@KX)*APOMn+KI zw)FAov`O6KCo(c3wSwPdF`JVSl&*!GQ;#b`6xfWhcM*e@lUqK2j9Ts%S~A7jm({e9 zN3X>1H{3=a`?Eus%g(-=8*X;A4kgsqrDoFl4_uo%$}zUq%0?a*|2BKCN+82^xKioz!`*`Y)y^y6`u8k~U81bLA{1Z= zipEn4CLhz+KaaeVB5GthDY1xs){ZnQJ)Pd$x<1usq=W~0Vr22;rAwEr-8*}5-Qw|U zbtlq-wI~VR1WL?_L-%H1e{pXc%xw7hVa}$|W(imRE4pWaLfW4H>P)oFwy5?WlxruG z*FB2-m$r%u_Gb%fwr4>VfA;of=KhR8;L7y0z}|e*^AA7NcOqR!YQKGS#ARA@PwU1&MEzL(0!dCc<#M16hQuM>`^xCW2UvHx zB)u%0TyP0mnp|3us`2DvAS=mEq zO^*%071zdfK3*O@;n8u9dKHePrpYPNz&c3e6|4qW$21u(+Q?m>KFO_S5Zug;Qiczb z`B~8P*vO1Pf8V7)OM|IJMQeV=7mN#TMRK>3v_PzEo1z)cK6G81naY(xuDS~5KmsqY zWX4Q&>B;xc>y>)L;%}#Bd#m*p2s?J%2H3a|j&~vzA*|QkxaA{{OLB0lp?+90e6t_b zP);k>UHh}UyE3EyPU)eadrAI{+$5W;6$iN;&M=^0gFAYX?AFPt)o{DPUMwB{Za7B8 z451jPM{X*aMsqn@TK7gr19gq#fJ5JgDS%kEv|MPiU-$^(HIjUku^vO0$2zI{;l|kX zT9P*eF_c%7w{r2$|M-wxw8?Q0!x0pk_9vL`JwUQ+w6#Fa2|G|}GjB#qoS!l$by9I6 z0#8n+f7*P3OCIB5X{2&SFz*p9b7~q8>7=Z1Wz<+VWc$zPSNrTuuHG|hx=0TtQW5Mn zag#B;H+D}3%QT+K0PyfSwh6j6C*nkmpCN5`#U4vyV>EAn8md}cj~0MLw8V@#ViJgI zPW53jv&7?DbJ!M3hNZxNB)n(P>vHd1$XK|14d)&jufQ5Xp5Al$ zli9OUw9?vyr>R5Y#?k#h(us=_;eLbf=d8*`Tz9H1N+PE`o@YOz^He*+(Njiz%JlWe zC)04##Frx3PYh_Hu+sRG2VS8Qwq>HNJIb?9o#*+KbySnN;rj79OXNw+D1+>Kod~mI zqPnSn9)HeeHJUI};@d`{P|~b!8Y~lI2G26HzofEfxK~zH9Vi}5Hf%j`H<&>C#xcx* z_0se58WQ%@*Qvoqo;=kU#$)0iFU64&F{rH^HXj)p9_IPe+>_bftW`MbnXRYSpd5)* z;isb%vX$(Q4YG-s;8!WfqXrE{gKLtJFQAvk8L%j%>9=%f|l(_(gz0n)^zP}@qBh1_j|*GcdkNR z+nk0Np4n2f^O~$&FkafwQ^J{oU~3#g4D2PzW~37r2$*(^-xn` zvG>;kWE8}8oAN~Mz=!uIz7IO8dKjNICTHvrl63nNA8v>JE1Z+j&73<-*|$EVm+0L5 zb5*crv9#Y~gOnWbo7nJNG`0EJkK9wQvZal+7=B2dsGs5wOk2P{viqs zfBlP9l-brrAd3jV*wT8(U9LpQui!emzhRkBdf&)&50a7YE-h&km{ZM@$BZ>`IMJt(1UsLj~t4!*+kSm%0-i z*BkD=5nuHkVk5}SkxPk$xwYBV+_w$p#dmUhy@;k4K-9KYIj3+Z-}bW0Pycs=(4@Q) z6M?G^?rDQlxfx|`R2S0RMk|c8_^?|7C-e(!QgktsuJ)GfVi?WP*%JGVzqF)#_0 zztd>xz!?W;-sr_o#o8ZhEsJpqXzFU+dj?FQ-{g6kLXM_Rn|b?H`uMsBdii}Zk?hdB znRx>Gr*t;?Qof_8sbU}G(Y)5V#SEvy06KtX%aS3OCEaf%I;ow!K$!Dh%n$TgStpMz zSykmpW|q?@Ftu#H6E&&{^|Qn&D8o+#c?!~LHb+l1K{fJn{VgfI=;-O9bLsXx9{i*O zbm|Pp{s3iE)gl6^GqBcqZF;4gz>BqaY%e|qOA3t4i%Bx4X?A)UeeJul9r-ApU!J-H zo?!KqO!vt`vfcK}s>=g??)$ER!MNVAm8qRop^)yuma>a~uJGv<|%`#%i3Nv169CS;V^( zDZ_gXr`u)bbShFdUq*vPp8tSJ)&xXNNnU^i^=_=TvyM!oXolojF_CNTC}_fNa-WYV zj2q|DI_K`KiQ}<`65mo{u`}VeIEJL8kQQf?+>V35KgE<2*Wey0mR@$r_SKlhZtH&G z8O!nQ%T!`8PK|fZ;sIc%Fqm_j`x8`o<|;jxRsxmw)0cysM}!(bpZAIdBl70WAI#zJ zVQH6XEMcJq0TOM>u!{ngQ4i5vHX*&GzGZI8v@u~Ps58--`e-0{`uEJDiC~#cgg`%a z-G5yEkC*{}i{hr?3%fuk0D`8cX3EQ4)q*R9kOEth=;NuoM^t|FK^8qt*~7d(Wi3!x z(uk%1k`qf;)_w*r14bmBePGUWWCQNq8clE`eS4qGbKg4m5e7+&VL`J~XSS|mUOKk{ zbb7-!Di-NAY0vG~KGSHgk9lQ!HmmscQ`jA{gMts+a{Ka3GIlniPCO$c)Dd6!y1UJz zLo7Y;2bE9Gdu78E_pqbhivYQm{+r7UDZArGJ3Bg}^`r7f%vyH#S5tN;delp2r&sbH ztM_%klpE8_O@yfx6IPcbmoKm6XRGV-5GGg3L7U`f(4DPi&Igt?&A5Qb{3`;j{_F^d! zD7-=~p#e6wdg)~Tlyhc`ob*`bf%nY6TxELQ2?c{}U1<%2S@jO01w2BNo>f*7=k5sY z1Qrb{49_=Fng^G5H-G#tKhH;ae0JsFOKyV%jeZ)DdZ$71_!BtAu)iBBorRLZjORq6 z!3U@rc|g;dQJ`qjefZ;Z+afgY-ALNrgTmPFxgiHwcpCsJSWt?fw{mtG%A&}&{NFTY zj*6vwHg6<3*GQc&^=`j6+}NAuR(MhSR8fhQ0xUgD&8Q=|NK zyUUMa`ZEX2lLbaBECN=?<^&(^Okc&`d$2qY=q#VipZ>ttvub3c$o70v0ji#mjOioc&oR zyU2``swzJJYiso*uj74To5! zA{J|0iC*`Eyi1Y;mbXJ)tM|4iqLmcO<@vq`t(^yZA85D)cDFi(Pd{#2ASVeFOc(Wi zNuu#0_$KGwygVlK%wvte53iwnpRykDXKky2*YK!rsXak4deLQ3I}h?C@N!y>UFQm& zvggTTfhFtc;M|CjUrpB@OtTpT7Tl$}MlN0>N@nQ2G*mX46K zpEW$7l==GnQdGKA(Qr`-+jBB{rf6_Q)P(oytJa*ko~fsq>yQiB#2$Mf_H%gJZRHcR zy!eYuGQb=n$qBs8CZ|OeVFQDvzYV6LSZZ$4xo$YcAo}Lf3E&q&olsC*K}b`kGyP~t zBYXspqD?`olV+quyn^bosEnI zcBx4wdP4I|BP4R`CxX->jpiWwJL*dOso=s*Kf)bXZ>8!g7^al^sfBh@KnL$td9z11 z!a}5ZAE|O%id*M6FB z38TBX7jq3cIYH0(0M=Fi!4jkx#KfhQteIU5amGob%)l~A!}z~C&i3~ys67q;7hs6xq>_){ zp>5;^69k5ED#JX$cUM6$|LEn@>HqWeTH*{Y`z(zc_s9`Q=Mvw(}mB*tED)O?Sx|7_6|99h(N6zrCNPe7vSc4*9esm1z1Ppzjuwng@8l8ucKR++`rId0@9*>~*{p{?Jf@HPLh=|n9qrz4CByin zq(1Ny(Ts_KgCK#_Ih2enBxUdd-ERL4S0g*I>~n?w7TN(VC>o;~ZaO=0uIn6I($><8 z_KPQMn9v^`3IkF7b0rR+Z;vmz7X`*}-?(&#&q}e$KkAndMw(_?k^Pm&>Ls5#`E9?P z!uN*sha!#H-21<_3U{@59VPN6GNkt|;Gj!JKB?1MyPEhWxcAe|7Pmz=SlDp){r-d7&D}#Tb;=5LkbEv_q02SG zDtGw7iYaKVrk(BH56Boe*WNAsb$B8|An=##`CE&_5;Kudp|s!ygXCOWG?dl4(zM}< zQd3js{k%O7On6k^yCJ*yJEA?53lcW_N>Zx#ez24aoZDdQOfjSX$YP!6=~hE>-ce{o zoli2;cDP{izE@C5$@p>YmE(@SK9zUG<4a37mIOW9bBQjc!PiVXUi;=M?fH0C)++6` zDp_<)yGo8wwu$E>r#JcCxCuF+zD&2?|N zvxentsk5K=&Oh=tPSK)cW@W)8{;~8OR>^C+lD2IDOsm*eSY4>DerJtP;4>uyVP##v`*;! z{j#BZse62Pb#i=gi?K6Bf~SaEBCM8f1C^=^!OQ$kc?ii#%oF9u^;@!`t1C{0MT}=- z{EY0g`YS1=L<*&TdUStJs60jhbJoPsq{@{qQA1 zf5q15RM9Odi{!VtIA<=EPw!|zIueV!%E^u}mIpgjU(mt;nPb-cMmjXsU1s_i)GkMZ~ z*11OxX^fqEA`=Vs8`{)ukLIa#pFF_A=ZoSvgQq;e-%~%4ia{VHtG(VD*wY8TzJKA< zs+NxX5kX5*hp0k%Ne*^PjHb@X9(qIIurTE8RsN?5l&67p z*G_fQLoWlT!|2-YbN~T?g-!r&vToZ27;6@iCW(P!Fk6U zIu%3GpZtqU@OjLO-Z0Gn0Wa_P?c#KntEmL_0Li_&(WHq3)!k@ApC!0I1ok*m{ zWl+c2mz>2N)P(eFpgB9<|CW0`zyhf$s0puuCKMq*r#KPnr(es=Sd|jr<-QiE_Fr$6 zs`2;o+S?9|XNx``T{^HornI{usdv*(W2MjkDfg67vqG1O4GRmijG!oe=z*?agsJ1= zQ(ft6!Ggi8?Cg#VhcVlA14)X}h0cjDkKCm*3RdC1BgCHGFGJ6zOkYbAdP%wK!$G=b z#gUQUib)4LE{aE6a-?qteonQ%O?wy@Y_LL}ZTAYWZfqE@yrdW|$GYPd!wJUb&6w|U zbAnszOWWJOubGMSXk?!Ldf4>IVHIVjCma*Ey$MNk-l8dzG)u0h}6D;Tnrd z?*3{Sc4NnC=w58LNc|EEy^1nVIPC>Nyl}Sgtu%%S!~x~!gv~R;w)t{YAX78hu;I^N^K|2y0)G*mh6qN2jbNnD9q!}=bNc-HfF|L`r^Na5Sc^R*=^ z44hHFt$)>>o~&OmYg3$WI##A&{-Vvi$1x=T%FVT7IN7k^h=4&CM~M&2?)_!ACLMV= zxWdr{wP-UZ-3U`F2?ol{ezQf@)?O3H|4dfI8$g9l|2b<7!fz^#tII3#q+F1cUsk%T zch+0?O9Ht+>HID41G`JJ+mn-Oiu?i+`Zt?cFT0#8zbUJ-)>jnSv@>_BGo|#y)>6Bf znDBLT|9`nsQ-MV_l|&aW3XX93Vqz)jC)VHFbBe67usc2(MiV~}e-I4vM^EIiy?g8Q zgCV1r_Sa&mv8R+7i6l{BT=U;ECz(6b3SaB=W)}Rr=benCk4(=-&p9vM3n?nu*?pNZ zRk-WsIXL4!EJwkS(EeMI1;fKiyZ_dIVt40@I%$18w>sMTqc;jCYxY|$s(n{*7Z%N{ z{5rOF_cw_GdwpP<+y^Uj?jhx=dcT$Ry${ZIIfLC0s2cy9uVB6SW(1nWSDYa>GA_Km zp0ZY-W2d3}Id$t}WLD<{ftYkE$jbw#_GMJfKB?D}=spBBbhy&R_|_>#fuNrfM}gTH ziYAcqe~3(DF>zSTfkZ-PT(}j~-VKwz*@%3>{ap;QW3Bp1my;Tp0#+#A>HU3wpE_=h zPq0BgNZ<}7n&e?5@d~Sz`+B8u99P8KYN@+Jp7lD9mr6-l^pGI^Of0z)P?Er>nmaMv znpCP}o_u+Z6c}*-ytJH{&jDUFP57OJWxluQ`XjgAw zh#543%CY;b?tm6fhO32UYbM;*cKMxvMcPPD1+(JD=^cu1BA5V`@!IckzfD%)XSn@@ zezZ1F$;F!j*nDaYwDY6|inS764~h|K9B|Sv6Z+t2qm77j#!q9)Il{=by3u7l#D(6b@l>%wY<{) zYHGaF{`d-n?6NzsH)lAd&xR2OOh|lv%yMY{A1G`3Nyr^nc~BJ(oMlW%T6|)wK~o!Q zh@`Tdcr;R7yPLEV_@|;n#gVukNU_J!R905PR^Hd|3!tK8ds<~_UCm=p=qkVfvBU*h z8F2K*ggp&ptf9&@bTDHlFjgw?dm!^(mq6hFNwSzx|DPp!5Zw3gDJUb}{4c~1*<&5< z3FA`ehUkh$I#oAsT_k}wi%#ds#wtDJ=W}WKjBj5$hYls&kS@YDv48U@$IJAa-0$c^ zXK}~dpl>5nxalZA!GW-}kXY>(dG@OQD&LP za-}|w$+qX>>pk`)Sr&58&FzXBZnw-%%7+;`>54s{_~pqLynU%WEl!0A0S0k0S>#Qf zcp`78yHM6ac&(68vJgvMm5*fI$*vQzRML<(y?^Qb#b%j-I8KNn5=%F^s#S~!s0DUq z?0~0rvu;nE%*&x%fscP1wwhs6uo)k;y0sEngqkQF*`0oQs~~VoBSpZ|eK zJfIRbD$TEKepQ&A#ckIdVUeyyhtOYTxwCplQ`2l@5v%+p!}M31v{E=7k6@k9@@GQ% z?8aPgc!oo0v9%{+HozNVYH)g)=~!d+Iw2y0F#XMd^9xrpdsr*VkGW^$n2@bBu0&9$xU$$T5;PM{{J?`;pEuQ^13RG5TWA zp8H1X)R@eYxzk=YI5BX{R`)35ALtEm&Uug znv3iAvn4gT-jvu#Rn}U zqb%O0K+8h>dGDNt-SN#&)9yusVSs6ycGj%p6X%bxkXZ%QFTL?@-O3ekeBrwB-*>l~ z!MX&?rkvE0r^s++l}Ua_V`25qlH=JXrESI_uZoL%s)SVpPcuq_JFUm&EXY#;bNSCtPbDuH;xy{1yYhUd%Gy7$~jT zT=h%vz$|&aD>HU8nK@G*ojzg;c!S?)0lB20{2BRSn!fmO<9Fj#52Vo9 za)`|u@Nm*hGHEO-iO}SI>%7wL<~ngPXlQ}4QP3{$RUPI{NSY|bUYts|gmV;b!LJOR zL>vtNtN+`)6d_RQPnq3nUUD2hi~dtL`@<8;Cx3*rZJ8)l%wRo#v}q5sc$J&`+EBZtdtEeZr6z)oF)hV z$Gpdfz#&In`~c(UW_gA4fL4MgExXDnJ@}geWFqo3?@#!sa0WG9pb_M7)A@lY!zW_6 z?cWnlf_A`4=xH3`B|ZclHglAE^rh-6`g!_!B&(!3;;Bb7Rrr?8RXdd*YKdtdzrs{E zavInF-3_^wcXmT{ZK(Ku>=954!rI1}NZttOxR4G_CXH5~$edDAQluB)wvvp}+avCi zYow$RKb3f{7t;W0)DS@x&e2%;?y&z$E>EVWV^FDGj^UT!GzNepxQA%PkXdhc_#W3l zz#FH`6w*rrkcmqVUZEG%Ul>5ACM>xk@V$TxsUui$2^!4c6VxOocv9rM9&TPf!JHt9 zIiLyN14A17yF6O7f@002_FQKoy9$W?XyB{D8`09oCiv3ua%P+%pR#oB%^aH#aWZEM zlc?YfhI=FrW((4e`%JEhP5h!#f4bHG zkRe&3pt!{O+RwH|bSq!+%}($uCsG|_MNjC2S=He2{BauLFgKbEhWxAWYRJ4*KbhVo z6pRuMmKIA#e)uv$@F2=s2lC5+5xl7#@-@I;-b7N-m$IzCx0w^)DfP}Qd7fWjWN#B> z)sZ#wO2+Rb>{_Sp`c|so`P&oe!_Tk;H|4AL(B{_VI)n*!+5EdWZJsUGz<$S2!!top zP)$Ar;fReNMmvQ*W{?(S>UN6FcGthp`SQt#aEzN^E#oGSZ!{KBc^9E`CgUb+Mi>em z!J$j%3v;S8DduB?WSC`s;^krqO;ilyDsOS{clmq)0eE@jJEj*r%7@k{xS}Faa1__ zRg=@>6Y|X^sY#}7roa8gV|QfF^Eu_ID>8gt5PxbD931FVSz~9dVRzJ?Hf?XOg+Q^{0p(q3qv{%uO-cc4=XbT(;cw=9%#0)Gg|$yEU1!DFxuSUTbdjZckl>K zR$5y0Ho}7bNK14k6*#rGdr02>MJ6=Rn%&}GG*qj*f91*7I6cYF0(-M5yG2cNJ8{sH zI42dj-W-`~Of2yx_=DQJQarx`U}4NtpC5=xa$K+3j+g5b-r8E)8n~Lztwx% z^YceuVP7xoPX77iu&})CXyCbVbS6_uPyg)XMSSbvsmK2|eVRncPE{lK47Aua+Q zI#*1ZNeR;4Bms+5(rK+E3?Vfu6u-HNz1B{}t37+O9uy^t)c*F!eosoV%~4zpWpBr` z8I(FQi^FE5Pj53_ZaNI+2q+^%0fTbBHH3hN_e&Dr@=HX&UeP2sjZKe1-PTG^&pCB% z=|j#(iO?NI{JPSPJ0CTXnF0lXe%Yerjh&15^ti&w@qZfzB#}Ooq&S0X)?+^9Wfc{> zz=NL(`dQXw2&_}Aq4k4g1x z4@T7Bs4X*0cKO|sL<0B{&#V(D5nP#jWCtPp%nh>Gs=jp9Q9V<3aswM3X zj+r%;pS81&iK1bKEhilmQ!?Wk-P`g5l!k{$`~N10uGN&i?d_W%HJL4`x@o{@^N4a@ zA9eR(;N-bsVv8dm$aZEiBZBTL@Za+IC^Szknsm_&T*+b#=CfD%d4ehg(bh}E%c!Y{ z_KN;&Q==6OeM95+2{O1L%e#QfNJ;t-BTOZ1kDQnYk`BQf?L_ZeBLVyM(YH$H)=C7N zJf+O(4(o5y2a8fSblx9m{~gqohQtU?tt2?+gSnoj!7tZ6 z42KUTQhCv2M9?9edtognzCg)mubZ(TYWlt^b2!TS2}hk~crWUEd@VOW-56@dv2j(?&5`te8_7TOJDPYh$h0|z1J15 zkDky#Y=DH*N+_d(N;(=QBUlZ=S`2a*;ODji;C2lNJ?a(-(flSLLP%*8 zWfnsF+$L+{-nl#CJn7u9A*w@qvrTgTnM2$MtClnf_ccG((ry0zo7L=;CvzK~GIc!& zjs;5wd`p;bi5XA3!I=ATmh$-;&+(g1j~~ZjxkBF@I0!Z)9|I5VJi6AYFMn|erq2Yl z5)^N3$QEW{xb>>usu8OVGhOv38g^~?&j;U(s)4sb=0haIgrG*V)~~GOkOK?Pkx*|J={_|9d=oG-SNr_s#2^^E}Vd&DtDA zobc%|U0z`C6le^r5*Y7fPoWZNPe*>>%^FaNK^To?y4JCxUa_wI5I(_pNB&RHm@lv{ zf+pOm^mM#1;jdDOLJZ9v3rVb?MJS**HR5|Fd%N1p)-{C(BP_vqn@{P(fF}97PKRQz zUauvOp~d~kU*Y|ZY^x8S4;0i!GS(hr2hkdGvi<3-m8L@FL4_h+g0*{p<+j7OOT#Wb=s4vM*@z)J+h!@rVC{*x2C5(zFfodLnsNwg}vn zITEbvBZ0^M9j?f~x?ist)A3dYThqY(-11=NU}t8;BHq4dcWo-DYJgMD1UL&AfkR#jM_F0bX>yL7ZS7~r@}IQX}p zT7UGrlkKRtH`q>Zz3;uS&4M4w^8!Kj;)UkmFC#~j`wb(a`&HQHqqW|{7LVYg;ht2Q zc?dQfS?sWP*7NrYdN$D3LWNkQoGw5`3pTNSRvmu;;`fDpp1Py=ggRULNJoj1%I1H2 zd&Mn3zU4iizxNsBqIVP`MIx(}>4b~ABMl~Qm$D-1rwv`ja?L)6ny%Q4r%Rg%|G2i% zK}ZM9!2vqsVAWRAzUHF&%%`zSj|08R=DbTFZTR+s9@fs1$V=6VA)A}#7LR;>y?1_^ z`@ZCPbD!TGNqHRPntU7@92vPi)3Qrc$#e_Y{_3?qQD$*0^N-hg33qzs6BN_Sif{nM zF4dBHDHy8w;HVQ3B)Qmx}J z>ZLMZnVR(Io{pYRlJ^_U6MFrb{#y%!e*4Xv%ZKxcwjrw9HP$-&tzds9xSLim{)+AN@1koIp zl)Q_o%C2KV;f#P*K9(xCTvUAX`48~mE8S4opkj>M7$~Ie8t}8fOKlsdL~~iLei|Ug zA00Fl(8VE=NXACMaTi8jp=!($kcs`KDhd3^D_Be3g(S*P#4K2xektNCux7Rjr(WLNk~F= zQIck?04c~?6eg_)0Ust+W|5A%oi6weLZTOGq*3`Ivz$&w)|I%MBF52uC&MdlDhzYAh*Z$`g?_H2Sbuz`aMGqWHTh&R$X`L)#lx zok*GW^DZ_2l|p6~^X87d>Ma7gKGioL58 zydbHdju=R}8y)vG8pM4-4zyW($Zlr6KQSGkdQi-xqKF??#&d4%S4lJ+67l^OGes)!pLNl6+M14vbk|TmQ~hoq|Lq zKI$U1u(;^wPNA%Xr7$`ZHE$*7Xbl9N=7$1`1%2OtcE_)OizOCXPdxrv|tc+9NUYn{VQRz~w%~e$m4-W$;&!PWaTBZl0LzmCe z#g108F%wbRu3le9uUAp8{*F<=zHw?YH{}9B_~&nzldh73A^#xG`elmKe0)a8Ueo@o z%fV}&pKk^3Zf&6*d-2NH?cd$0sd0DlTOu~1Y;}RS%EZLsXRDjR4XD7wne|G&#mY;U zEYdy>2jS~#>c4-$JdzY2i#hjdCH>j2z{8eBl|R0x#P!)aP1m zkktz0Vxl$8*4pyzocl}W`g2h$jQ2eSvrlgAEwbgUO}*D-Sjix`yGN>wb4L(^L&_`x z7Z;Nk$%%0bs5@(=xU}wF6L>`2W-H{z<*6;Zb1L*ceG8jO)L7m>Ag8ILd-YFsIRWI%y9qkOID8`;%S!c zQiL>$eoMTotFA^ZWF_-1zIFSgH|cz8-_VDvkC;m9<9v^vMG=D`Ija<_qh7WK%yX#b7fuv0`$N@+) zLZFe1{aUGBs{G<0k(zD0N58jMf4`FUwdVOjoHl3pl5=XPlW&Xyrwf`bSZ8&VHcG&d*j6kjz3Scw5|JF zuZ`utXH=(&)hXt?CX58v$w&qsa!9wfDjgOa-t-SrgAJ%Yxi)+IZ=k^;8`{o^RxqlbdmK|z#lvNL>KAhCM_aJp} z4=JALWQkPgwi7D7<0)Y5XiZJUi=Z;m3T@{4z-vco)gK$F0+xw;Gv~$4c*)4=nV6Fr zDP`5bXoXjqs*wyTNW|oKlRRnJuQzZj?j_=EMfb6Dymk#|Bb+&fr8YY0!)o4^*nS(N zePNfv%g6Zq+z123u?R#W!*p+J z_}6dwSugRnpMKeS`a2C{%ayNDI5^eJkp|o^>l+w5$k#_8=leQE`n4u5D9&9POb7b;Y&pT(axqDYjntO`HYI2nVY zRI=)y`tdFFy&B_XdclDHtzQO58xYn}`p)){;ix+VM9LwH)I1q}c0OQy4%P{4i{=+1 zuJt$6f4NDc>s2#%HNDGKOOMq(a(-s4v)(%TvG;pJ^Ppjj*s<;7{VsJs3{@Yk?RY8% zuC4dh`Vs%EHnX&)j*Y2?>@Bnm#xk1;qgnRzoJ+(d+Uyn*i}Icql{^ku_os9bXJ9MR zoZYUiiZp?(#iLY(3u&hKs5h#U@9Y!L~;uH{xiTZ3rTo&Jnx;yBw3Do<=i z%8=QjNksbAG~r;bt#f8=&vPf^s5fM_ju5;*RaTlCxVkw^Q|Y8EY-5AZUQC5K=Z&_0 zsELSUG5VM03E<70xUgez*o3!6;S3J{IF8wUxi}tUJim7hFJ3FpbYJGlNPqO&30xTx&v__Cij9@O-Yg(XS1=I;W7m_>9A){?e2QGvQew0ng7C58XH; z=I0Z8#kp1T=0DyR#cuswShnlx^>E+o7Lu0N>#v+&Sokhn#U49aTEFK~ZWU2kCr{{I zdHHlSkD9A_IeE}j?XHUMrprcZwp4hko#YQ3S%upT>D-)T^(4|61XTw5;@YPkzqtZW zIi^g}I|7G`N^Q_9lGHAD=`tUlLA7yd@0^AsT!wV8kqCSw!}Ig(DeSdE#fe0Rx&=1t z)ZaJ9B)Xzy?(%ZneUKv5dQJrF%UNj}VVv@kV5NA*em8UQ!+WcR;C9=FN1IEXr6pC$ zD7Hf?@W#+4eP)s~DGVB~p_O$x+dMM=_xFSK$)?@;zkmMR8_Yo@DGjBlgR)#@ar(7F*oV9+X%drqWpA~EZXgqGZY*!@H>4bGO!$17reeTlUik- zs9>&8b;8Fa~ z_*FT@?m9CHh8o@uC?elL9S}V|N6LT70XoBnCM%G>x?V?~`Tb1VI_%WZrXbD#)# zAL(slYfFgy>~{Njv!s@#SZ#2Pu3IxpQ)qqUjmOzm&4-dKudE(%Jc7x z%2+s}n-E&kjFiY9YJXKOf}mjgmz<=!Y~olM^>a%me&oOlFQqSmb#-6r6_u+tk7Ghl ziwrtH3D9Ety7RY8&$=)TTw~1~h3C%xncwnb+c!PhxfD)A8I|dob3DUPc*&i?qx8F^ zpH$8uvs)xf+NT-vtRloU^-yZgj@O#(p- zK*WMscR6uaxM63al$0s$P-8<}Dw-`VbypzzbLO!r4C{@Fr&K%`yR|;zkEyG9^Q=<} z|95X)qMqEda!I^r$gTgQzFAddv!Wj2YDKI4+11IwyR51KTMoZorCuv{dgKK`JZ)f4a+&p44opq*u5>TZ?w;*#`F7VNb2{@dQ4PUtE+C@R6SThiRFQOXx?yM zv_F@A1h37rNqD%snl>y&zYw_;u$gzGTYGp@WXR}abO=FHHMGT%`bhO~x8a~~`(0YG z`T2v5^)B?9;(u@*qDsAg zs>F5G$9oH#F1V7EmhRNfO_xm=sUz&LIPex9eBbtp;eO!1$)+c(@dlTJuw!mLy`r!@ zxO^>cEHz!dLh%oveG0F*@fr6{-NQ*U33r%9#J74U+gRb3@={t-n{x(of|-nO^F89@ z;ElTzCG{k0XyH6~J;MMgj9vU9`ScG zLx@wZM|o|{9X{>$AC#zN?^gREXhFxKL3t+n1F(^!rQm?SI16J(9BEi#r+|dTo06um z=Mj_dP(v~BRk$s#fEiQ&EriJ~#7T~I7Ab%zz{@(e98ivXASxD#0=w}{a08?SywSlSr&j)Q zHEIv$*=<64da-$D{mCXobgu5j;SUya(iXhQK9wxkfs0^VD#A&&A}s)W7+t-7tuyOL z!&Vqre0-pqJ}p_KpC$|Cga($g%{it0-`?h;Q6Q(LO)OQ$SeFn zW%rGgL6kJuvyyCI)jq70C|BQwcOX69=g5^Gx-wm|6q7NGPq3wCMeFN6+K6R8?6Ir+qYkT{)T-ZS3$#8d7CxLR-L1FDxfY;Oisd)>|%Hzv&g&DMFl8 z=z!92f)Bxan&W;~u0tv2!%&Lj`O}EP_w3W)xTqTh5F=l>(dnxN_v1{~Kq=?sP@&}w zgG|Q_@m$WWG5MB$)1$gq^~AG0A+t?HbiH$FsrZ|Ga63A9G#KHFj}R(0kk2B>s9cB9 zSwE-5ag0ys$DNaR5M)zaQ|&THSZ0_Eyf6}!qWngM)Zmm-3qQ*~&L0~^qsAVpT@cDd zOG6cZ{Gl4x_i6>2niW))-l?(rXM$R4p~~Y-&y>D%v9jN8H=JsAS6ND_7o4wQccMGz z%gz9n)|?C?xppBCCBwA{!5sI>Rg|xV(o-XH6BZX;QMQ$x>;g}+^sIafT{#4Dl=Ln; zfUA%@+wupCEiJB;Th4T!5+wDKj)VRyPN8WO$;rXQaZ2p#Gv}-6KgbJw(+tbb+xLeF zJx5c;Mcg!&I-}D)Ru}NBkMG+LUoQ0xqb_naJVESwtY_Ozy4dleba&G3NG}{&+aBfB z2y&ewbIFnwyibSKa>wzHjFNf<;-%A5Kcud(qZEcJoXcAso;DvYFZ&Klu+6eLDe)dJ zhz+Asi}8xIGp|yJ^g5S$l};~p?^^$6*76-%UbV-$l+29n-qleldkg4%)xDRm3=-!jp6;uL>~6*PzVrL~w0yr51U26JL5bO7@q*-^KJUpV zI@&@qCn2l7X!#`tx?~>P+GvS>QY*iE3zR)o-(?S4gjGGT-MhQtg0* zRD8c6lUe7?^5Eu_r&bXDVRyEhdu3JpY)a>@{p#GoM7C?bvwuL{vxWG5$JZ+{%PW~b z2HuMZ+!Au%iu5{;=KRvBK|P59lXbaM@#il*yhc} zBK+#rXh`TphT$lDhV1HcT@p|7E~7GkamA?vGc z_+Y}l8BFkA3meY6FC1PY^JbR)`%6QJ0$p$NG;YC~suxWU&TQYWCNdoMypoVl%{bVQ z5HGFdnCafs)6r|Vwdq!+WZ}WEpEWSHY=@ap*_nL0=|2Mf^E=_^r#+K23TxRi$TG|2 zLOg4=HbQp6?)G3NH@Dg{o$7`gop7i8v8Bj)i1NAgh@ky00wlKY@>f5lzEEwbaW*Sz z|5YDvQy<8|r2c~YXSt*86PvCx4d;QS#84lg&uS_DeXf3ORzY@U;rG0@MOKt%U{=n;54lia4^ zj0$HYIjyY#VXnusjbsx{Xg3HKtZWt7elDkE+CBupUMN_yk8~yP8oPKq=s;ql~8XAvlrPGihE<#6X_M&;m@M6qG<~IaT$YLIML|vU<0ls| zdKHE8ZyAJs}As5_QL`RuGh8>#JE90L0F#aoKjj3+i{PP!fP zMuc|Ak-ZdgA0%OFT3@ zD%Ge;i)}Zy0;BJW7uE!{HE3RIBBB`YA}K_ak4th)vgmX(8lO7J+4gxzr)*xCQn|Le zIw?SxE)sXzrzj%R`H}U$G1%jehc>? zC31ivQz5{k&;A?MVBrrVX*U#r#)fbdDPn0yusNDAS1@!uln&e*x`q~g`(+_R0?fnV zop_Ih(jmOXf=#AY!s8Pb{4vMFB9}`Rm1Hi+VM&JI+FcJ=uST&dmUC!p!|a4YfDTD; zL<24LRs?s-CN_%Yab#UGQ2H*qa7T{)%}%{1r= z1Z)HtBfbX_uDQ0Ujcd1Ya-K+H2W|=mFIaSm?v~<^ zlBc5Qd&b;)d-8CE0l=46JT@x+k5qZ+CEls--^TBgn&rbhj})P;qHE=IOh$5zAHR!) zGuk((4GScxm66e~|M~XNgq;~_ud zC2w=zIs98^VH8EDVxd1Cb|eQzh$nn(EWOQ!=+S}CZe;69-0r1;XGUXFD$~8`Mc&52 zDh@E>iB_lF1Y)qQtF^d;aO$sZ#+yaT?j9a(%|Cpt`yr=8N>)TxjP+6%AZ~4vT=d4d zzK;1W0`}yLf3AmaC?zM)J|RCr7L;J&+x}85iYctbC{md&9bSaA!s;^G~}@9nbM<<9@d1qjfkUTRfx$S7->l&mZ+4!AAaWJvb(X2b%*jw#0=lGrVn z=iG-H%CS3RJQndIlxaF4zvBy4c*apjMnkYK@zqiP(b6(n0S}W7zCp3(k>_gZ;Xyy3 z5W=`@=i2<<3NFX~gqF6)I=EQdR7|syUK-a-te9CZ$U;M@t5?YK z9^H$#@(W6xJGr>68W>j#!qug9{xmT*)t$L9DF(j05Tc_h-n?qyk4mdrtnHUar=8gr zF$U9HpKM$H?W-Pi=MgT~jl!6*GmSs&ncn6eZ@_V14%wUWFE3*$b@zzizx`2t>~+GQ zf|VEnbJ-KJ304urj%=v9_T$T~UMegNH8mC+LHHc@y9=Yg{34}Z)r>ztp$GRm_6ZV0 zMeKT>y)Eb)qOt0prjLs;)y8W^Y*Hnuew>vd2f{~xH~kt$HiWzR86MYIy(=*|XT@dR z5cKcg)bgi*qdMXH*rQ#EU@y;fo3zLQ`PFvv<-ZH8t&FLQ%TT(z=ZX8=DYR<|w*pVc z>Rh&!ldP|;6=S83_sH)M%L`_*7kKX?#6d&;gewff`H-QEV9){}(|;!{92uODc!6*P z+ws>VO+Kl2Zv)qFvPl5K0N1jE4mIQ$cum6&7Dw8bBj~*%l&QF`3}&j`5D~4-bGscN ztn&dwt|bDHJfz?KuLuk&7Eg^p5x0^PWykxXN-Rtcm<((>ckcF#bvA zD;%M)K?bOT@d=G7%IVB?ZNBgX<_@Fd;PeN)XH@Utt30WO$3D9Y%c+SHHu#mTX1kA> zY4l_fC{E8V*rG$YVY0(c>VF#vhgObI%V)L_HPs_Y3Pprz=Nshv0csfX%pr6twJZ8w zu_+`fy{1(8*()z>z&#N_ScMTrT;G6IL{QsU%(w(t!{)wOLMJpaX25D|y(5Eo=hI&i zmuTc70?BnxT)T{Y^)TaDlm~kRXz%I?+s*X}KQW|`Se2N&I?J7j68VLQ$(CIa2jsD8 ztOgJgP*ySs$_IJMX{1py6zW6Re`_LG#+b)a0y#j@r%hImAxba zkJx>53e8ICipi2dlkX;=3Md@1)X72v zxjuoJyv^&LF1S)mv)fZdBp8XsV~3?%*t_XM(TG-++ys*wJ-eUql_E9|^e^uX?el~X z-b4FxZ8*BwuAz>&AF^MS_!7>GW_Y^kPE_cL!DDyTIrY?DpV#KSiqtDmyP3ZB>7>R30m{ZH zatbxcu<-M1lH*@|CEhr=E$rtC+E?MMZMfaHJ6mdrtA_Asve{N`~s>!@iIW zhK$4CX#Czzz_x+;Vs}S*QEKnyqcXb4{`hj~z0GBL@mlsrwN6;}wOG{Mi?JbFY#AZ@ zM9tLleu?_MpY~cJ5B1K{<=#^eHqGBV+i>`KZDU^IU73Zi-ri)NLjyiI=<$Asqb--T ze(zhp@ELol@f8nLRTkQ9cvG)ojNp^LCYxT$%FrWWW^L|W_XYRY`O#6+Ssw!eNicxUCpui5!%M?6C2KZ2WnO zURQaU5wttAb`RIOv9>&;mNPhNPtE>@%TtE>%-!zX&zVNgM+J$?gph}|HVr#_%Na*Y zr;cI2)EEA7shh8T)}lD*)rEzdzsYv zC*qI(7#waGgls(?mO}@>G2)3@zvg&l%UJy#T=^EPktP(6xCx`+YiP=@Xg@TRs|F2&!d*g%g#Jy zqT&;Ek7ca<$Hi-Lhq0Ss)ztcy)jyf)f2ZSuZt~jxqB&=pYHGnTaxIZ5AJ;t!{sgn^ z(*YKa*Oz~4-%p->%})*p6*z{%&KxO7#tZvuM}Tf%)vj2C0n1Z3Nwt0}K%1Ss;_2WJ z2k#AMCPx}_=M0EW?yzfxt6S>}YZkqKZ;IbuK?d38K}ks~&#@#A%{g;2YaG>SXZM_` z!1qJ0Mj@h$5%c~eCZUw8I1DTF=dDLXsKe>t5EKJn` zBK(M7A1jWlF*_>KaA{B?;x5a`bX&TTDg)3DCIE~J)Jq~+12XYFe;Bvp3mX`j2>|IZ z4i4}Z7(Y8U=O#wtHMjAP*S6kMZ?gso!&_02Ollfh36>h?T-LP|C(61v7R87yJJuR9dRzCU|{>ftyK6&ar%-0OBxYvV{&<#l;1k z3^_}J%6KzL6CzjxFLfLxmaZhW9BktdKnIa2>f_Juu`G0W8=sz$;Zdak*I#$5HlWa00|BX7q?&~6dGL2- zBtBXDH&^QG7g6;D!E5PS6YeF(I+~iA9m@guy?=ev)E_=DVR8Dh2;<`7c{#?=Z${tU z#|f=h4UTIamx~fxxS~-V(A6cHFP^JmWaL_$Agu>qAS!B9$Ms}rGMQ8Hn?fCk7&I<2 z%)YHd3T{GJUI6cM1QKHbLaH`ty$|;Xw;6cS4u%-&_qV1ah1*;!{dN~-6dG0!BMFx* zeEq)IaHn(U&txAHlB-oX_AKy|<=xNWH~B2dneX(Szx^XrgO`$#TT-2zlJVSCMwWAe z&s%kczOX)_6yOXs%%uvYZjXyTc`hnw;LFZBuus{K6@P_B3+`n@++N+Ex|m#(i9!bey$E9oNC6L8EKw1PaG-zQoDm22=qoS z#WnF@CMLK?FCsvmcs8MS?A6l#RG<0=$DN|wnEi9c;NLNJrI2XH znXTVtH-?JMc^4JQwMJt7LqoG(R@b@h*FF72Nie(+!F~SzI7RzIlWfyF(elf#XNNQ^ zEw5ZXv6S!SbN1%`=FgZIse6B-k4H~GdMt$-&wQ3V^E4|zK%?kpZHao%ez#Dzp9qE4 zoeP6aUZXQDcZ#?*HP89Foa^YuE?H-Hv>S@OZzXmQ_TL}gL<<^4BKA&G=0rQ?4pRNS ze9`zNGn4fh@=I5;GfxlD9zW+&q$NV$^QV~^3+`{zxmjoZBs?1S>yGA%1Bly~_a>+M zJpGO)GLC+iCz=nZKL{dm2Ah3?~#tdP*H@kz!sY*~Fl7Rq9dNWpZtQj7Uj6Gd{KQ!v_f`|BLRzhKB&Pfh=o2RtW z`0?t({lqo<5xnZ9$GdC0ENNTQ)8+A1+?RDKi0<15Ek))1)A6Qw9j?v+iMLoU&fB_r zcbm<7-|>{P-583W-uxkvKT1xy4lVO$=QToC0sb*zIrMO@H27U)%hUIp9zpx5_k9GX zZ4WkNd@mW-*VkPavj!FEeE);sdK=9P3RTK_{rID00(VCG;nK|Cqn(hD4J=RnCZrKb zWLyf^T^L;LV8Uh8eL44bZLfWwjPDC8DLgNftS*&eXtb~FMq_Y811_15lPY+R92dSH}!udVAOG*=xTIWy{MQV=;`^H9Ji$_rj9BV$EGEcy*!WRmfUm z)qShtw?!%s3wgY&=BVRrgEmcHdP96b(ehs+3O`m~8wi^&t;NI>DGI?LI*)jn zgPqoQeTiK87ZXO!PY*e99Kq>G(kay?OJc|N{9DYHhm&aGBgzaKE6t$u2OB!v+ip#&;J$`AyLk)NB7-<+nzz4-)%np>`cp@yB zQKY;OB;*<8DZ{jaY5(>E16OU&nb_=n?N;S%`et3u~dvm@6mKTUa1#kY5 zg#=@U2xNq$G5SogMtp)%?UyeqV3x0{+AuOPV7c!Ou|x_A3KzF~GgKvVYm|YDt^=7? zP?caX3Pr}LX?^|wm4K95;^0r=Kw=xh6)4QnI~F^00;UL25eSq)2ffzsVbTT%k{y9; z5SkOkEAkvN9f35#9C)&!btlDB(?|n8TL=YUv*5D_wNlImiYUy18Wnj_lD*c$Vr)S@ zHJIztxh6VIA2F;<5Dgg%$-<3YcRpg?dc{F#vR=t8ZUAY)`o zs|iRv2)##Xl-Mnb6_hC?^Xz@-@r1PRDUMF}(K=Y>3EWma2sk=aj7f3ZexI}0orn2l zFnH-kc5YO4eI2kcNs4@*9$qpnl~~z9`Iz@PLMa@!G6>8NQLz=qR(^8CyhG*KGQW#! zw>Ri$P}uaERNtCK%XH*5s3$VrV-Ri_PLSeB&pJ z59>k*gpZtUox!)nhT1gcMN>Zr3X|Pr^oeX?7Eym9+(^cdiD`|!*u`n&T2{eGN5dE8 z^dahP9fg&a8nt2U54ty=nbb5andGNS1!<9%Eakl9AMPMxoKpOXqdTOHBJTg8WSj>6 zotnDzt%%lNR{9DG*iLx8wu1lFtLqdTn+}J%nc5|AHBK<{!I`$vQP0}4G~|^s=Hdji z^SJCLY+7xX_}w{3ks0+Pd~!Oi?%~+>kMc}=B|f#Wp1QybpP3--GJtbavgEy(#77~M zbknj(piJc=FXzCE1TqTpGoSIpi?;{f?s5NZ=f1wERAJVdPW|hQb3qspf<*`G-voY9 zR8sD~cuMWmR{xeCb-7(#h4}j$ald>4O7O)lYu_!qT$ON7*DzJ5%JS+-ELWF{EGl2p z6~XWLrzxgqG7l$aY!q7a^nN3w!hTVwzt6>&W98)nTNFPiF4YQtc`8`ozHRiAW8QTnEi^1i?-|GgE zDrp~k>;1RBFj*&34aaM~>h#-N+eHs;s~*lf^3?4Q?e6YMs2YQ-t}c zb1 zW#5&UGxQRQBeMn{J@&oy5-ZHmQ`UjYAFagxJgF{y_QpuGF;jiuA%E^er9bx*U&ZLV zIAh*)yQ7qyF;>Evy$5qd;jpbp2!L>}`EZvA^(%0@ZY(i=<>`dH%21E*N0lfmS!}PIk5}Mg$w)jEc_cO6MYfXTtFT z>j9aGK3FFpNN7C}(7WXMCf zXOhg(Eg7!?oavnLrAHVb2{%F8ZdUY089cn*8}L;_TGus-y&C@@jdd>0CNOs+TdtU< zZxze&S{5ow;vaa})>p$LuEVpX9DB(4?MikH*5Ydy$TCUX?35|jJ|}4*1T#f8BK%@R z$!#97#GpiDZ&XE6UJw+!WGt-L%itD@I~-DK0=kf1RHPed9w^%Ve%@j7jNovSo5soF1SWTr`9XT_bmLyklvxJr#N>*?yk0g?mhw$UgO z<(M?Ikw+CIk@A(h=Vy+jO z3Z-O(F$5%7T)#jsRD;baxd9g*8-B#Yj39%UdU^*+0P09LlgTkbA|=4yE|!JqKcNpq zp_3*R50(gMyNM zR*d~nhD=$|2_U;g`6WS7yYlW5X|h>YM&=5M0Dz~TJTg<1h}^F?h(223IWh;EcQ54^ zA2BfyaOm$Flx`FgC8XosJFRGAV{2{YmS=SBh6v=z#v$^|+JY_?V6KN-Jh^Ekiy6`p zfnx10w19xB`yuy@6Ns_e+VXP~SS8ET%E9@FtilY)QF#`rxe4&D3Gy$CW`5(UR*tq9 z8jj|g>MXCvkIDw`H#1xgBy>zF*+>ivYdY5;PNlVj#nN2sK-S_E{W@cpbZn;C4XLL! zPj8-X)j&2Px!$qTrOIY(k`*Yoeov5IqD<1bOIZvXhWM!ANP?r!(SVA|!JI z$J|W&htcqQW+R!*kIZm0&!CzytLpm%>F9b(zB8>%`_==613G0xN*i_0otFJj<+sF> z%kF$)fkeHVSLb+V=>%%S|2VT-78hO{`1PvA`^*YnQ(rRjd^o#iXH1EDax1aEmn$1X zjCfnEVprwT&YWg%GQiX)c`r07ltWF8EK}~n-3L`}suu0IK8eW)aRH9(786-k2{M|Q zt-pWw7W@{i8Xu(w(=U#Vc<#s?D8?QR{;&Dt()VF*i0PMec~dM(TKfd?II87f!{ zo?>$@v&EKkmjVud;@HrK8%{yKzNf>K^z#=70}Lh{oH*MO6V1`$c-7l7qwdOn>O4JT zK{!23L=Z5aH_KGd960syXgx6c0UDJB*5+6vBjOPD)umPZL5J-|=b)y+#NlMe?Q{Eu z6{?459@OIWRreB)#bDIY)YFE89kw<{&Fxn)l?qjN3$aCGM?0wc$HBpeBb!^GxjQ<* z5>x{Z=K6Y7iMlSDMfc<1SwG;PS=sqjt1osA!3S(qSkMmqHhMx;&iA<3*LI=1yE_(Z zH<$F~tiJ)&PJhvb$d>mge0OJ-?N(>~uq;0d*|8LU-mlO646{E}{;{&)_TD>K2eYD) zwl{8{Z~5wWerbRAwo|afK$ZBg2G~m(9+e7&hW(W-$o=kiIP2y@_RIeB-2Ru52U}xO zv(X6+J8R~ei_=oS=MHSL-10h_Oud(?G=oxH9tZp4zQpJL9B_K8%wep9zI-G5s!{Qk zpDNR#d>uGBfe}lA=NyjmK4%!lfeb|g#z2WdT5yQ+Te?CE48F=Tz*IwWhC`^RGSh3L zpMb=y>Ko6vx;rE}zb%i~pmFI8ezY^!bo&)|MjEGY(DxBN=t6T7q5!nu=twXME>@7~ z%3(#hTqu@1M!%I?ALzS#Fj8bboH|75Z(5DD^!h5A%n<@ChW}uwa2lhWcuHLqovb=O zcN%gqcJ9r^U2%{fER!%MVIebV#yW9bAGu5hEd|I!yDeE{&{3AIuH9YZ>Gw4L@v_Je zF+u{ow8qZUw<`CYQ*_*3L=Ao8coHXhLKem=au@~x`iVhyK^c)E-8$3^ei)SqkP1X% zMW6kT1V##TN7Ru4f4Erz@dFOdewYrl4P{zjTjK@)HOdadmo#xeSNeQQ#ec&I3#jh+!rWim!)z@?^jOXWx;@z_5OX;AwRY1&`8y8p?6{s&6RF#H47^_dvx-f^c8GSgi+ z<1&hFMKsNqFkokRMwTaWz}+CA@M--gStZfgj5O}Ff??@@4-^KTIA%dUWH!&+Z2}$z z(p){vkhH!VbPCAv=QPg|T6?ZQZL1Z3V+2wKtoX?q9~2)+O`}aB6%yE;94;4$jb9Qb zl%J(+G|I!~ihBF__O%kT%YA2$=6DWgL$(PATh(=f^DEfG0ZR{9l?OS$u)HgJEiQRE z-y0G!0|L(K5$y}YhEl$bquh7FP5FU5mMHsHX;6{z+-Hm#*dS;C`n3`D!VvmY zA=}%*k3#Bh(LwfMNz9Pd$5b7jRohJU((9nv6Ub8J^xO5k*$z`sK8C! zzM|TwToI9Wn-`Y!(^r*gKD%#on^Wxhp%qo958eQPwYE;}bneZ`RTGA~b)5@!L8fT4DmQezf3 z(lGQzlH~~XpOwFqC$X1)5#HGxy+2w40mRHYes^M9|1GYLdb_`G*EaZ|-ynF`Claq5 z@^4|VrM}XrHG1c;s$uX$F!;+<-wHk`H&ET1Oa}}~;$86RA0};^-h(J>*A}I>=WhPK z%@aI;*(u662z>wWU!O9=URsHVyy|X?u&wpm>FHo8x^!WN%ORWOC$`YnJkXH7ayPxT ze{*4KclTyP)Q@uXqVzJpJ|u;GguP;HIry{X*@w!@Rf2xGml|q67+QY_x!C(>ki>1}X z13xS=xIAEEa@9{EVqtx@G2933!lPuOk|C!O0X%I|wP z0A|=a4o1OFGelv7`n`j4y1T=;fwGa62zQK?grzH_?T*Z^(%vz4zAGks^m_yXVZAKH zv4gZmLeI;F|32}xZ7pm{LE-vV&-JZu`Ky(T872_X7aDYqL4@Lc2&dv}8c;Kg7D$(b88Xt*Kr|&MZwA@w6v`p5X^05&Bb(gL&;0%CP>$2P8-I@W zp>}5cgW@nd2O}Ao=W+a3nPDLUTAJqQdr*{M18L>>Trf=pb}F@U2$o|ue;YI^Ms``YemN8P?~8`@N7Xokg5Hkl(jDK}vp*HtF0 zAOOvKZ4V9^J7;qv$Dse+Lzx0Olr24RwZk7`e~DXT*2C7ewkLQWgEwEmCmumCVhyuU z{dhP}I4Y;2R%3=P{OegH*>z@H<7QA+{V5hv8*~G+M_R9aK^*KQHzVI%kB+0_co*3#)vq6Lmg+Ryogh09wOe88yDqP z#OjC?WBU8ohf-`IF)QB?Xlu3Crh7k+-W>C>%Yu@r(<963;K-P zxC5p46J?b!TBgmJBCjgjbnf?rtk7_$P{Zpl?>Y~r=bVjVbh#p?CH@&hwSJE~i~U5H z{ApCxWm9#edWPLnqN_&5Po&_w7pF4e7fO=+q)1k$WVY#}t6YnN&z{^$pPBJe7jlx! zU!AEICrV#vEcWGwX?FKj~+&E zp6Rc*wz9+eC~z_k`dAjfmZ{|~sK)Uo)6idvQ*ShpeB)j2+wOgRIBUoY%Ou5F`U6Gt z^^{7}sRv|gbL8GMjJ%my55}rC%;g2$2jZE=J>JkK^89Dc z-Fm{|@-4W6hJCTyVRXXA)_vuPUQ1#pC<)Fq{olc2-6|&a}PDE_mE0?Or zSLCrlc(Jb4g^_;Hj7<5DG<mr*b{h|-&wu?#UoouUE)>5p^TEG4m&a?F zT8R%{TUndikqFtHX&H1&Bu?zEHuqz0?h_A-5{E+$%1g~UTUNg&7G>3_25s?2+0DVG zB^VojtIhe%x+Wn+fZwH9LR=!+e|GBP`cLmMRp;&T z(z9P79lTU*3df7f76L{sU$vz%C%Yxj9xTjrX|tBIFXT{aAP64oDQhdea}8A~eEo=@ zIR5IDciQ4;JFMySzcqvER7v^yKB5%e0mC@ajhp()q#TfTQcx~692qg?__V=XDBw>* z=J9^MVwPLADXx0+mrCUW%9aNmdI|>%ry-<8!*+Iy+b!X>QL7^pd2iQcnEW7FZEk0| zpI^JW^i>iAxEzL~y1RYfWR88V8gnA}n^n=MX$MP*mhFGYY?3N#zYH8&buGv)E7Wp_ zaDI@CbN7mei?^|=B~PSy4;(+X;GBS4cRV=4@u#GwD2&`;@(wp#EbPodjh1{n6tris zo@YWB`1NYON`w#N?6I6_cKuQncy`=1U)k3mqZboCY$y8H*nmH`{5}df8)FF)HgERw z5R>b+1aI?}g)IUOyGj*~{uDh+dr}YyUO18_IKE+yk54^`F70}%e2zt_2@%WsPrAgD z>R)VAjkx{U?7?}D%mle}5QvGNKv5{!3qpHz)g95)W1zJ`8T82B@y3|rLwi`2$lCT< z^YEh(m+xs|CMQkJut1G`cUffg*3TXnb^?)KO>VSVAOIj#663^6dBqVI8=z*uNTwdh z0EjyL4;@d_327#f`cA#5?Zc*PUodRv z2_9%glD??Te}s@9hd51bet5D~zJ24+nu`2P7k$l-neTYBiLFhl-8epGZtCsTRTZ$+ z%T##XBokAM72@>XJeHt@x|J?oKcZnxPlJe;L#6(w3fR#2KFuz9j-9OW76hrKS>4wf zcf#RSU~2eeyd8Tm)8fO#C*xFM)6yprg`AV@+X@@GtT_waj10^kgElO|^N1%8f?~b3 zF}?L%e)UmHhqItj(a1zVBWX*|(1-Gh=}k~cu#0*5D`e238F4?Z#N0fJbA01Bv8xJWXhc^kl#C;YyI5iYlGLfW45y{ z#emIq^}(wA7a1^c8i9Uvv4po8s>Cx1@y+K5{E~mqhJU~l=FG2AUGnRm^TSJfzYkGz zF?XMegnv@Ko;zZq-w{Dh7W6{Wr1&3n#k@jjL0fQ&U{d!;YIR7;Bf;z(6E*Rjzb3^5 z@8Mq5HEweKDE$iCO_`&S@ag?oT!Z#+&)P1OZ0__?@us}|O_K{NYimPB+BuXws)j^Q zn4br6NR}n~dY~`US_TUI`2ErzrERMekuAW%S>Pi?=3h z8WGv}j7h=@-K%Y|l}dhU@qnxF)27mQ=Hi$^BzsCxIm9sI{8{Nc$;g>x|NfFgJ|X7U z9YwF86y0ySE&G#lnV*mS#k|2+9&`8H-Hnto9}=+{1i>xDg+j~shB7Zhg7RvxhxY_R z7am{Uapk`pPWqzj2gRdE$w-VZ`=n-@Symr zSQsm9#Y1kD>Fn;mP#&jbhcswOLGvFQ`cb zUz*@h(|AHmzm-FFFT5@+BFz#($oG>-=9iMP4EOt>AjyxjlCw&Jd-LvcKD}oPji=6M zzxz-Bcr_e_3_g|~aV>WiHaCl@eHgFKYrCQO*#clT4u^Zvjf)wI2YMyjN8gI&HD57dSyi9jw_IQ82;40zLRGI$ReRN$?A;YqJX#nO z&cF(coQSxO`^ANoW+)cP9=63gKDqi~J^PM26oQ?d>;R70m7*e(_R7u78>#%sV!v=3 z*doX0hih#Wh15osNBMdd=`4?<7;9#a7rt?5weA>Is^{All&c0DWqWzf@0}gYE7qR< z8mPj;H#oo9fO`~JwjFSAJojg?w812exgNHP)zvJe9aIYYzdUP;%1s^28;)jgSKc_~?-x@k)-*H-ggHUEEUCP^J?ttYd*53%nS;~vqLt;)QbzE5V#6C<`4i2D ziQV6%Rf@|kD4gq$rUsKrOG>57w~M`|RkTh92CN5!8Ct$!Qk4xHqmlnkM$nhvQRb@N zFgjZ8E}w_d`Dt0^$zO}pW;TVo#s?R)pHDCQjo4QCAGg`U&vd7|Ys%+%KdN6r^D~b_ zwyxk|ooNZfpae+VAl%dz(at|pfn9I(^YL)6c{NFukNfvC;{DSOY~FgsphRR$z-;&M z5NGbUT5PH@|H~Yh2@x!$p z42HsO=?{_Y*dA5b+T0V9lQmcHSuO6M>VK0I)zD3fFtO)ke_YC{HN_S&ob-J@C8?la&T zPYBrym^O(*<)EiQP!aWRnJlD*D+q@xFr{lP(Og<071M$#nn{mNX9fZuu_gi)3!1QZ z;ImHr7xJ(x8xLNey%Ca$92V3b3^{I?HnHD4@yf4Wo^o?yFhi+&zBM+~j9XM@H}T8F#2KFYQRPFNTon)!oD6-#2pI-Re2UasE2k zz@6z6+$CV=K=cCCRp>gKdqmT(K$J2 zvtB|0un2c5|GosQoBTPHz-wZ5d)8wC>g#A z(10T8ngGSH0I>-nA=!(rOpr4}2>$*^J$wzKj;}rEg8LnFbGUxo0fn0X3^zt8`>O+w z>88Fmfi(vKOOv|Cm3#obV?lIn8Sxd^&xuf=(Yp>KLP_1zCmUX;8`B3~CWje0u^(!e zO>r9Sj0BUDlYpm}bR=aDbt%KXp066m*G$SX#&%O@rx8qmsk0ZRq12GGPRkmv6*IYx z3!RhPG-NY7N$&U(WYr1LpyA=+@gImm6#06duV7?SLKk_94y=?wRW&rXV@=u_fB0r2 za20LgyZjm~Zo*tl=k(shG@QJ~)qrAFDziVejSz*ruN5ZRPQo9|`ap>=KQQjKYhg(_!uI>Zj=Sw#9>C57SQ@H=i@6%1%T)TKpp~Mdlb{e4e&^1pV68 zYI~CEW3J<6PqT5SxF=>dMOUrQT~-xoHo3@8^e=mpx;Fv29WlAd&icp%(<^=B#}oq- zB=j7l1k~5`U(#?g>R;nao|hyIy_s4n?ZJ3g2dI$*3VWF2u5jVgz3Ia@ciyc#`>(E& zmbv@+F~92o^|Rvs+90pjX2!c$`N9@2hiZ;^^)k+`OrNx;&kuu+No~0(YSp%17K&llIvCvP&U?C%K3VNsh2-=3)$e>5_^0K~ zM9Iyxj>Wov20^i9_bGQZ)hFSP2;u#sFOR)9i#9{4!{RgR{Wyf36{;Ar_{74-q#zaT zXrSXqzqz^75q5y{K!&-*{Cr&QT-nZQ+wuGJWFCIF?eVRy>=f3ivyinPOFL zBKakI^@-1zMDO#;06;gqVZHhFq5+b$dw6N_C7r!+?X&lDcIC7ufU_<0)GW(d2w=93 zX1nS0%+=E?z}sCi1`%J2le?>+*tkJ?|I&!iyH!VF6O6|tv9c#);^2@V1Xm)za(oH_ zkYzxb1j1XOr8*O^7mztu*8;=kCpY-^fr1$t2`ly)I>^;Ua%1a*}pT;K?2yB&y_B1>^y&}aq)PR z@+;pBg=oO42~VAMk#3%?g%qupH<|GNyLDL;Z~c=j0~~a`OH?B#X*yDbkcalOiM<4( zA6PuPv`K`Kx$cx>~N=FGXFl{d%3W2gy(Oze@tbns~6bvW`EH`19KcJ|P= zwzeBi9P-{gc4_NcfhZZxu%T#50jZrIOvv)a|I~AX6H=p3w0^ig=^i1}f|!YAGJSDaYSW z_9elaO9%PmP;~$US1g&kkia;PCn_=82)+ay5h5)k16Tx6W#gX`4eZ}8B!Cp%Knuyy zp3J*puEn8Jd@0Dh$jZRpth7`G$$yy_!AELI0hyo1K$QDOlGNWCETEVe9g7sMS;qJbh~AsA za1QKrGHQf$hX?zvGdIs%A~H}NRlY>4#UzcX>*ikO?T8>S7~l9&k(Bt((X@xAr-Lv* zN+<3Si|Z>v>lczrO<#x<6wa8T}O=(ywubaPV>u5#dR_nS9};Ed^3o^Q<% zL}n%K6e(0-1*AUC!)W=(Jo>-Wd;$;!e^$f#yZF)F>9WQ1;MX?sFX74t4!{i@vC)uqex z$!<^+FMQV*dHysNRXY_*?b-(#CVXUiO61sJXr)M`Xle?N6mYm9oB$N%}V5lRSr90$;~^H_1?RjjI*>f%6!9>HUZC|PwUXjPz-EX zKQdXMY=V1#8`(_!XIq%N>EPABx-QyqsV9f56n;FsfbaMfoZS%L1CIfZcYu=`g8%VD zM>x&#kca=z6qr0;5&jVF?FhmPK|J&=pB(RZAGj(+sr}>4kl%&>hm%+NjC^wyuJ5F&~U01cl;5fXgN8;VM^R^-QC&%xgJp{* z_tlr0)3_FqScx*1^Y9b=$K#>p-Ittfv4{&L(~M1xO}uCSmZ*t`d)waqd?k>U3`+m; zZM83fqyF5J)G?fYLVRrqGw3S!_kRI`B-O-TYh46%*f&WhK%ly(q8x^;GR-1XBh9L~zckvoxAk|bWIEC63EEpE(;p`{ zZTE5ULwcp7_^P$ETPY_a@;pU*EcJ&R@>iBxqU8}Zr2_;Zw?ZlCXMzZoA)Zqy#`>cY z0TGgxksyTdVh}=&ItW2v=u+THMIgdXNcs2U$>H#z$)8!f$YDZ5B$=;DDOQT=rlE?R zqk_7e3h|3(LUtwnU?M|ECZ}n()R*Cyfn(dcB_p1@><{Un*sUx7fhz}GV#H{!g%nCa{ab8l7{`zQOM?P zI8RO+VL9QS)Y-3$pRfFOV(6K<^l|KbuU^C1PT-OAG1hCNV*04hi}uIx(&2dT#&c<9 z57~#TEE%Ter4|_$f9JgezMNvG4@R~Jejgv#-2=SZG6uV~gm!*j&~G7sQ(oo{|LffE zk3?S(XGm@|JU^TD^VsSti+ZCF2=ER{h8^{MFFOB8Cz5S-wwp(52L~r|fSiL)rHr9p zs%1>#*$9szj`KCK%|WlT|J_#oKT$hI8;b+=^Fm=Wj2+KBMc4{0%r-_;>bp+Y+M+^k zYcyFaD4G@%8Zs&PJQKBG?z!8YHtnT1^UfZ|F1NZ#Uak(Z2|9nZX;dGsy? zt$#A^v&u;$yc$m#>yA_#rVUoL>02tl`cQ@au+DA8clwBxNnyXOWB8?$g2poiv>*dq zAERil7TpLkDQdk*_lkM=x}Bw?$^$W$PxNQgRA+OfiU*nrbDvgICA8_^VF9oewOV8Z zLHtyG%1E<8iT2(D-8koaQSv6WCdKVyb#}@Lr5(_4#x){iyiKcJ5*$nVXkuvHRDsZ>ug0l@y=BIRcVlw`qgYE~~ zpaL?dgVr8DxaYPCBjCc%gO9A#oP-5Cw-aO}8_=4&As(?u3L`lzmBpy}a{-d>>qW_y zj;#;$^m49F^Kx{>-JpzT$M1Qr`o1mtP}rGlz`jzr^oRoSswnZ#N3dL z6@@R>+v7|yQ+(~;w;$jY^P;4BS9F{1ToCosFvwSqb0;l4`{7hsfM+o<+KhUj?gMA@ zt$}MF_bNBzCM!$8Nxj$RyA z5}?nM@L|^Yen&$Y?60)EC8Lupbm*CPcs3B8-lhVIaQwyzW@M0o1GEWR9wG^jm5tm) zIj@bLWj9U){pm%R?Gb*lr9jAt zipRfz1_v%L1pDU0`i1w<)U_2)KfF|W;O-*e!K@yFavUT+>22H|Jv(gN9n}xZUgU%> z6<`(2_3uyy=2vR-ZpzBa-ne0xiem17B>OjVn&sD)O-;Fr^k3C}!(1?uMz4E5eEG~k zYnI#OSBF*E)RaSoG-i7oqDd^wz_Rz?W|A`G4`uG(A*r(A!qpo})fBqF1;VI5 zTq%m6W(rZ(*`Y*HE1g3k-`BmrCo3pOeS`g;bodA3HjR597@1uYU&SiDAVT)AE4?7- z^wvdW5lJZ_h-5?%M)QZ9_l@P$e_LvbmD+sdlKAen;q@{L&GtE^nUIH4hWs8ELiV1a znwm<)*mXmj$M4!-7+|%3U2cs~;tpXlo!I@+#<-~P{Pwq>o?jeA{}#4o{mikF3#FcG zrsYslE*ZNZxojO#b}^MCtJ$ej_TiPiu-+TSHdw-^d0Jx4ob2xtpUwC18#glse`WeD z;@L~Vp%i9GeT)4vA;Gz8?a^3DLq6G214H1FNOe}jWOrRiqQJOVWK${2QFN$g>T;Uy zWw)+BC@F2nhn4>9voXoB>eG(xCN<*}j%e(tlCg zlIJ-@B;OgJtw$wv8|#@m%;^!{hHn!%Bs7hqvm)Qscuq-4ta;Y1Kc9aKXW_c_U^$>O z-w&yl8h#|O@)`#z!rbOrW8>MG-)3ciy{xms>HfUY=(!io+JheJ);=C?Wyyl0MoF>K zx;>ACJf?~R{wBbpUgm}=OHYkcy}5G*X3k@zPw?LtkABED?)-Y)G6rYBL3qE=Qqf}9 zhuXl+Cwwi*kUt%8_{X(O-T_Bh3rWuXl|Qm{9n(flBTT{rMsmsqeMzyC0(Dg&_?5!N zEQNOqQDx^arVfSP9&NAi@eFYLGXA$sx^~^Oo-DYt#tXOMFhY5?v1U?`>J4pA$1K*1 zmFn?+!e-#v!ju_#OK)#>f}HsuPd<#i02Sp@ciS+^&HtHW8{5t2^TTcB230H05)J{I zS1c4|WDc8!6;HS3`x_2_y*5yjl6vR&%%|6hm0{S=wRR zlqMcz1)yMATLgbD

-H6fy_Z!ukXVXz^CofPIOi)6uYo(^gZ8Ba)04f5u*g+ZLdvXrP(rWK6g2r!p<+&*{AZI|HfA^G;m!hJUZ{j za~*ntV9J!DAef$`@+5u|pCZ?ilgJ6#FoZLLn$Qm1W2wX+^6@gwNhv8j$r|5P=_cm{A%36C z32--d%Cu?_JJ$rYoBio~7|aRL!@CrWV0Si|St|G$HSFFzD!ID+i3}0%!&sCg|BhO) zEiBHR{;f&f5HrN^7$!-edpF=o?VqOngIV7j$X3_I)Ew>Zme=<4=w&FN`jy$fLB0hDm>9qW*Fh>u6yo2*tQe!hse!TZwqq

Sl{v&|E2~Mm9Tmw&uSj^3-j2#3gV3D&px^U21JE z??HW^?dQq31wG|MuOF_t#3Q5LZwA}%`&Fw9?)Ewgu)Ix8vG48PPi`g$-76u4U;j2F zp7-}RNY!iRy2i$4<3v@;m1lT3{}8lq6nSOPL9k2cH=pq)-iZ!t#~x_r4Iw;0oa!Ki z7W~s`1l~b|R%|JgzA+qxqo&YXXc#WNDgk-j_c$24d=Nk}PR;`h3l<$H1n22gR4x&< z{~vFF_Yl}@Jb7pB+vcvB79x;lpmj5M*a+@6O@4HtNI=~gtU$O9_{7$CVV=3nXMP_b05zla=WGyt`PZ-Y zb>)G3-rgk#%h}KS-CI!H8dnSks@~dq<~C<8Zm#RDV0bSN?pmkQic58EE%&#_!&ROG zf9h5{H=l+GM`a#n2Mrx3gjRsq)l?fI&(TajTgjDOoCNmz*{c89wi)e=KF3C z4}O=(q9Mx4+!;C+C=_7b1D@Azc|7?kf$0xiQ2@g*M!|}&7UYI)CCk)`L1~G1)z#Hi zo)gy&zAm5nI^J2clGm;@G-O#9u$@s;v;BKrxNa>tGvm44Yj*A3UOKygSJ4JtkH|6O zqOw`+#d~JSNJ0jnh>iH_5hb78eFxfI>hO5U_KXFf-&1ODMqe#+4cF-c$&&?1Lw==1hwDvJhbaR9lHKu((fc zf+cd}tb0j^&PjOK?ci-Yzd!XVOL9X%AW6%ixRyH;=4F54>p8NV&oFC!isDe>7f)d4 zxXH>C`cvps#0$Bl(=Ey_53URDV!5f)wTJ19`xB)~qaPs?eofS)&ki{Zoi{rnHZg`d zCn88fzmtt&jeJGDIF*+{$jaW0me&+5J0o|+%5N@}N~{c=n4H`GTU58=PdmT<+rsMa zqDj!&NJB)KHO|A=)3Z#&{5bdJ>7ufXZ~h;4zk^=S{wyF&qU{frh`I7G(qs;$g#{ea z&_1+FJOcwpQSJDqOlD9J>r5Glc$NL(o#G{spJsm++q+>o8Y(udD01MpeY|5 z9MlV(x>05vpfPn8_?K`p$?3<32}q$Hi}JF!>{5>5-+jMJT|;L;%+=!aWIASFgzo2I zUhQn3>@4xTPGV`EEQ2y@0}bZZ9!z()X6bycA@*S z!W$*d7zM72LeBj$H!d)I^K2=*{~p=S3*IQ|BrW{yUkP5d+RzK0E#9ooPBfp(y!L2y z=3cW+7nU(US{!a?Eb1~RTp4G9Au~2hkHo3@Y@pG}Crd441vW>p0h=S6s$#ABBcnYd z*4;`jO-qTB8!qR#8?eMcZ{Je4z|ymU-fJ^f5z5sR^S3Yq9AGF{Xa5-Dxj3c4y5hoB}VPF{x4wH9qn*elx7Y06vGm}(yW_N?q z6G$9EluIfIhCkc}vIAsc#0A}ob32fwKL}{UE(X$GwNZf5X6x}!Ikh_!Kx82vBHGwD z_RnG(+ht1~!uP<*s^jKsXw2B8lAj}1o7qUw7i88hO1o|s-{vlL;D3&5LQ|6R+wvcs z6F?3~HI2fG69^=_P2t?NXO>@#tPnpU$dcWG(t~8vK|E1}L<^+~?!2NhQzmi3KQtOp zkYI-AJW0|_i=l3#AWqu}K;=kY0$dDmQG^^r-UT%5Q$Rw7w|@!% zHx{^js`ASY0O!x{Fc)MVl=f?AyhZUB!+Z#qM64i1v&J^aBm6y181#O9m7b}a$si~O zjX0<=2zs@CbQgs%e$|*h;$Y77s&}xLmscf4sEpzo&BO5Z-41QurW9|-IpF5%Hgn|m zi`js!lUP~lvr=Y~{HlsVrRu={nAr56xas%^kddGTX_Ul>j#Pd31iAPz6v9jeNy>K^ zU9LU0D?}q9Mt|AyuHZD5f?EQHU-kRnb#chS${&S(l=&4dv_dq~VRp5IGGlwdB_mKQ z(&~US@D3pjQUkm>(6AszA6PbB0jwV&bAf}QQ2L8ItH?k{VlPe2?|vz9%u|$C>z0*O z<}lG2TZPQbPxD)L4%S6WVwt9m>k0O#j9z49kQo_48e{D$O~7* zf`-F^I#W9*3BXGwy#waau&#i`RxQkgqz)mTC7{v+co0xlbJt!#bpmRQP$B^J@OWfD zSKd37Pv`#Wu4Fe(@#o2^to2)ODiHIZeVT$a8jDwW+S`IGYZuywr=*K7W^0!Sz{>)q zLcnQwB*~}plP=uLm{662RDrBRe%uY#UhV)Dc{UZ;PjgLQ;DnI1kECg( zkbYysATL)Cg~0rhO8Q;Qe>XNZ@(lap9G5II{WgpA0vESPM7iNQlRaT%`R5tdN97+X z$->^cr^KSX!KYkhM1OTj_ui1p%na+r9ZbjM8%nb1Ah!4SKbPcZ&`doyIf@OvuzcxQ ztLaV`J^h2Os286{vV0GRIU!8Etd&3M*<1oSSgYZ9B-Xv>2R zGi>ecd%yXMBr{7xl-1=h%R31PcOFRff8thgn;3H%9`^TMA_g=3hc{MnpPH>U1~S)v z=ME1%N!+7%LKGZSw_j(6y**DZ&3=|bmTfQ$SMFR|S+SS(Pg$QkoJ@MjtL&swZJ>U5 znfa0A)-!mxp}|0pUC+8iQ}L%I#Pfgk{K<>LYi~S5Z=Aya-FxQ}UdWqx5R$R>@*>QA zT|QMO7In4%*8=D;scQ#>WrKqc8O0vESfca?oggupO^{x9t!Vq~O zxwU`Oed;&J{Ayu4vMRSd)mgI^es0*G_KnYv-ZECVMB9wmZr`34Hr8ybJolrabnomh zZ%1TVq8cN%^(VB?(zmEHFv@9vE$)%=!~92pH4j^XP;jMw&`!3R;^D{+H^7MD7|V=*9i6Lsuy_)hQksAH2i2O0dpABhMPOXW?GUtBwiDd52qsb{~U2?6PWlwkxGVu zGsw{UXW6u}fklatvx)?y0s&(nQZQT@gh60<<7|Qbyc7mR*9akHM*-wvYOO|=C}3*T zOTbQwjKaXCo~3!r66tB|fTCfBUA=<>%4%nl-4l;OJ`3lb0PyuapBVoD;x!-6{?k{N zLbtZ9`U2HD89`}f#zg~OMk}wYiJ+>)Bx?IbKK|K~b(#14vMD?3f;jJg8t3C9t@&B6 ze`ewR%)-Opi9P}`QeUumkHZ(S3TfnWXQyi78D}~PwlKxh>x{R#<7tMP`oVRPKbuHQ z?)1XPyDG0zeEi|Ef`K<9M}(|raH+#o-i z5t4ig@+f^Gr2~Ar`C8?@WZBD?HSPjld@%k)Y<51gz7Zbv{q=ilz}N^IEpWDhhq^hg zNDcDATx@WZoDMLjJppo}rAS=!`{zK$@xJ>wzx!;^n%LHW+;*tdw&(VcS}iboDAV z4T|}qetO;ZCbGf4uN-?)p*zem72Z=tWNik<l z_@(oSz%v3I6P{2sZEnQal+DXWtN1R0(y6(-CeEYFFKC;D%N?H>TV6jF*ShgaOl2*{ zYON=2dYXLy-7ec#!cbM{8)=Y9F~n^y~{$+mc-|jb>!YK zx*E8D^tNN7)vei|Ph<@3BdO$bZ@upvl(RoRJ?Ya|@H+3+*(MHoJTj+|HZZtD3e;IRgx=(np^zKDw#+W1 zB&yd|5`lKNpi_sv+?dQWudF*KhgMv68dhl*C|8_p5Tu=@2l4{ z^Q(&+I``i0&AyKl580a$T&wDv9N}<=yHFpUbmGU+&(`~N-aPh`e)NX#YU7*7pUfY> zIhmYtS(ecJRBoqQ&^`Jf_=ViIKFO*0j6oi9Rq$$i#c(xcSk-so_hff2zPd`NS#ZJN z#7P}^+@0^9J;)=Mk+)N(`QGIaP5>1zB~qdFV{EkW-ZSX;35HQ*5wo>N zGA%DTtN^r&9y<1m6J78aJ-0xO-Y=JI@4Ngb0d^aCavv|tqwwx=pZ3F&HA^Pn$&h*e z3kK}e>zb>UXA~kv^B4(*7{vA z)ZMw(F6Jbf_siEEg4fQbb>E4-Z_sCA^1g8Hd2y~=&~*CnR;<-#-xi2YJ-53$H^1d} zZntf(2X8c5t!uK1TF#1ET{T`=UYlH95YEg@>8o2WPaS(>@>cW~ZME5h|MH3H#7@=i znU;wiVdV5TWfSX7?LE#sZin4^2k}1MI7PKe!o=jqo&bMRTJGf3`g(u#Xmt15`ufN2 z3B3u`TUN9quL$XV9$sE!bGYVF3Pn0>nDHkLFH-Olu-S7HlT0a5$T&2&fuD`;u%PUA5B_zIR&QuZXtYknjStDI+5d!>4D^u$8QwY?oW4 z0{vtkuhFG0%B&@gLcw^(*nl1iF?xbM2Gb0IXE@lh81atGb)RA~wLOjb1mElTZ;!S3 zX25AVaM{4pu=1RZ6|j;AeqKQ@WDw=r42pA#1)!_ordZL4T z*(~}5(AkCXgA8T)Fd;pZh;8BY0bblzd~Lk_~ozlI?=TIj|`gq9Rp ziTuae*<^l@zP&r-NJmELci%w>-#5yJ5*V%is+d4{y$&v+}1GSXGe*2(JK~ zKIwj5j2j83Oz(7HDK0L?5h==xrAOqpI_nmeB3LNX!QwyA)E!NO@ z;3pD5u! zIRjdsE(^Q5jLr@H5uMY{mqDTb(*ZB4FpLuuSiu2=GN@+UQw^pQhc}x{h6%8m0{@nL zQzemTkqitr-;6+(tg`Vr{9*>u*lfaL&Z5sN=DNWfg_Q`g-~h}0I7MgP1W9=8UNslT z7jh{MJTt?-WDTLCvLPEB$@$xI$`uZ{Cg3yp zjm>aCHeS=!(2)KhFU`yu!T3{d=mbLFLzU;{lObjTBYy_!BODG@mSBfPe#mj(Ia1uo z{3)OF_?oJ~AJ3Z`N{j0@pZ1AD;C!N3@Jf0```|*&Mta@$mCF^XMUqk;wsc^y!!^?b zXuJG}T?lYi0@EB+m;1t?==5|VU}v@8PWztCNF6=qR|+O21nn;Nrwxyn@ywiVShTQn6&g!v92ub;Fm9V7*EoipV`LT3|HX# zKz%Z3HIVr!O}du9dAd4_V+=;LdlIe|7oTURa_k!x-Er5*uqjEMZjeZ3m2)<4>x z9T9x-X~eMkRo-{l3fzeloWM{9+69JocqlRnN-p_~d!*C%9?lSOy-`<76+z^&z_|%LOA@PIEU>N~^X0MWZKP2OV?*Giqq8 zlI)&O6ZR^xuou?XU*VGZD*lkmJyLu@&rl{0n_SPN9Qx?}@1=7mA_5lju5}(M{9+n+ zgg=&x-T0-Bfg!{?*XMIIdHp_cprrdi^OE0zD(u0Im0u!tOQW6Jy>eTvnreRQRGjKY zsT!lSxMuN=nI70d)YA8{lW*E)9dB>L$~4U|z1 z7m8#55Go6XA^5-AMo%9>u@iZK*QoO7uM0nSoKg6-&4&N6%h(7DrfOkKfeea|N$XRl zKC?cr6(rOUdYVwAB=jXk%-!dwFj*4Jjc2^@(oqQiR zl~^#XDV@1qBilw<&^P*UMh0U)mz{Y3fc9P~ArVxI>e{Il--!rf=hjs4s>v3Cw!Qnq z+vfe9bKKG6bz2p|3&U<Sq4rKIg5H$wkJXJ+u?#^2?+w`G$bXIDaR z)m07Lngu4Ri6T*z_8PLzUx@`j>`nAOpFwA=t*$re=f|IF@9Q1t&h6xxSgP)Ytx@8h z-h>Z_*$aCI1g{v4fxkr(Ot_6GcQ3EgSNAGj0Dudqmu~X67v6;-6i`EubZiXE&yI4Y zuXpCCXYltzIj5M@dd-c%p?NTe3A4R*mV)>+udaB>b#NVfr(Ffo3zRri@71etcdyV9e?8jlR19OP!19OlN zU?#9152i~ra$rN*KTQIkI9bG2BWw=&t6`W8o(dRtz`r#Ro~`Iy1XynnTcLbU@~InL z(lBOvchwm6hXg&6jznIxp^^5lozO8%U2qb{B!BcouB#1oCh@KoJfX}`TEgovg5Xx( za}9mepiPon-O>nScw@Y8*v|*U;-#FPp&A%;{7?JRiNUd|Z+eh&x?M+xk?uNjoe8uYQ-7L=@Z& z(B344`D2^7Lhw$Zv4n*TG<>IIz`Dy9;s%2%BPMyw5SUv+vh%xCZhk=!A@rg2*U|ZS zRs$>M5G!btzV6tHihMTV8}naDnYU`Dzq1i!g9OqkxZ$VwmD4*WmP%w583m51&@NrN z2;)s-BioqB5Tz!-m@|4-GJaRbMC)rS%Z)+`WbzOH{jw6hW2c&cB+t|WPZXx%vRVsy zh?K9@yAwsLVhFMzRY4!@zS{k}!?UyVU#j1WVXCJv89o9nhS{ThAl*3&^P>B_yl|Lv zqH$0#q`h{G0cqI(;4~TlB?Anh2~_)V{UIL`n0D>31BPH#z?MU0LUBd>$_xDtdY1mP zWscNlC9@~A0EY0+SkvKv6_1cQ#<#fOmA>HV@%8F_-T0FislwX0KDd*#vG1;GR08mV zRpz!<>cl~qf|2NRawp}Qs%3N2C>yN}nte-XX>rVSAeA<;>FRJfB=$bN&}QC{++C~p z_E+@i$lToAs^9jMd%zD7}gXN&SwYuc5Mqd>@ z;^yx}nOzTd@@ET93pV(rtv|uWXMMWF-2TFN$E*4mUs)by#T^NWp-JGt9v!5fn>{&71PL1jSg zv%Z3(_bJ-S>SY96{^>-8+R8cMqzw2t%`pv=K8hUW>kN=S2HmEs;UBEpI2b56)YZe#G*jXDc z^PS;8fgZ_-$LHfKO4L#GV2=8$qdS(Z!MOkz@1INi>(j!JvlR`*wKn=^Rap_X2^CAZzp5Ubtx z1S0q5S{J2cW`xP zazZR{Bck_kr9BpBbGFV~rEYVefan;$Apfg>WNvB|TahMaNppQW?wh)5VuEWPo1~0D zOS49ao||3wQ^V!DoA;)r3FFkBU+c^i6S2W8x;YW0lO1o z2g3H3C`iICf;~~Ar0NQ+8(c~GO<(NI0=g&i{Dp<^e)N3vzOwv*o$9VIzZr^(o%4lz zuQdO0LfJQL43KG1KVIiI3BqxK`fw6{#{rrGsPL~F!NJX_erp8264TKOeARUS(KoPf)RkrW_J<^vTQsK(RP#vm_xybHO6%rw5vAIWc}911#w zk&Hlk3Bb}|ocB{DZ{O-e7XL-32SJ~DG92C&nBjbCN;8UyP+aN*=tKlaEV{*lCekac zD75wJjJW2}(h1ze(mEhp?9I|we|`+@J@5x|6=&SGit3go9Xhv`>A~KLR?$Aoe?CrR z25(I{$F=Xyf#$+~a(z8DPKI$H zc-_J+-87On>{;*;vDF1if+86EQPegv4B=2RTB*5?P}CcpmPi&Ptbf!LD>?}~iQ^Kz zOZSx10dt`Rw=jsH@$gm~Tmk_CLOOLtfO<~0Sp<8SUG`7jhvFnK18pRrefMa5;bTrr z!xa!RY_a}#58(xr_71=Y1y7CuFTA6LFe+L)Z_*?9Dj!grbSg1B|3VZx#OoF?8)hwy zF0rBp?XX6(bVjea3mnOQv~E||rm=vHUTD^PfZg^^7N z(E{os+{x3ZY_e`E$EBR^*OZw#=kNEF%dl=W-VADA?RqYCd$n`pI~$KEHH+!w&oD)e zM!utEz1A9%tLL6~jQaexqYj$(E{)v0-p3>MO7AqTgW~VWk^~#?W7nUaH8^>7uir&p zTX9zL9a%L(+2$#QNB8Cj7`}ROde1#gPrQ+RZ#)P>3L9<^2Ze98%ZIQ&qW)Kpee=LS zi&I<6-1gS<57Zn%Tirlr>0Rn4oIfkKQ&OY$@lu4fLinVZu`VdyY2PXgz(2zdr@nu1 zBK}W3tDwF*>VbK}v2|9a8FiM_pQy-aW{$E?BBpyXZ37=Jy?BC~UJ8wUaMR+^?H6{^ zN#cjDM8V*%SL}+s#AOYgwlDUvQm4a?rYC!t+iC|uEJVx6t*zqC@#5_c9?Ref5T8%cH$2B%V5rQ{nM45>ay?A26wWIdX=P;mqy;wR{MA?V-3+-<2#ZF z*B!CdN2}>rsyVH9HfN_bNQ8aaG^wPuj?p@hs~jm-tx-A85b;%gyUROsU|%_|-KG?MuVE#qBBL`-OwDg19j6+& zxTf~^sTJdQw_fq8zlnIKX9euM&dV{y8B_#$l7io*iBacpOZPoJy@;9PlvABcacXO) z9PfZIdzQX5yYhcDoq0Ue`}_XKR<;sli_jQZvlhylBqOC{qN$K&WKW9hltKt&9STK@ zu_aBGu@tftsf1%0YaueSPS*L|@4mm!`RANRr{gp;?|HrM<+`3%{P|R{Dy(0c+w3bB zR(aT>wvZu!vOq;rB zSd$`{5OilAx152z&G2SKyVO`jMm31=SIa>*Ts+2Jbf%<2#2rT>-NhYl=EUWdt?G8F zHn*Zp&Gt@y#b-VDJBM5{TKwm5gYd_}LI+8L0z3<5M(vnBJligQTsIyrB7~8MB8IpL zqtHf{0QFVheJ>Uo2&V(K-%iZYH2dw7Nv2m|u!Dx@2ttHCQD8;{3LDV_2%nyitP-wv zAI$Fv+{`i)1kA=T_W>0F4*DVDf57CgNE6do1bwk<#Q;lUQ-{qsL}gb2RJo80`T>`T z)!+jFgGMG>u#33-^5y)WiD{TFub!8zW1N=^ohjCmSbly>56L*cezfj(Xm#{q3EkV* zYljo0a2>z8d}nSW%E(R|M-7<$FTlSYkHa1cZd*`1mwH@5JseozX-yG|xXs4`-O8~J1++z4=JkI+9r6T{S)3t6PKL$jv)H~}6VOvrI$rH)G# zK1aCUQIn-?6&($WgqE&_uO}sOug%mqO^!*v(K+W^IF~>sxz1V$rcDwVj4$W1Aza+F>M+=ImMwA$+**)!^*O zK3bt$96!h{3V_7ipO~^|COSGG8zxY&)?qaSa)L-BZL*3QWLz|}_M@#F#%tXJR#i8@ z2Mw+EcX^wU79&h9kQ!Bk4`P7MB`#!s-4#HH`7h< z#nCQz*aao0>^|)rZ09>n|U?&2ewK zq5bI03)jq*3av-70gD0KE7%|3-{m01<0$&cvM8Y9cowQDzOumkpmb=RkFneSnHu#F+d#@n;&-hE@ihF!KS+9vPC zYM!ur8!EPq*vkkta$}m0ebVrK&+XsYnX~!D;Y9Y4Z`&>#%j6d+y*ws&3>{rmRst=6 z`3VJu-qu_3{D;k?)t~l=xHq-p(|+ETa3AsdA^$s1(qOYbbhbjDdZ~VOi!sC;%9*Z} zwAF=n<r2yv~G_1tWDSU#B8cj7@3;_e&eDXLN|W5J6!v@lE$JXEF0Ku({(-5U z8m;PK+8_rdjmLw(FA|$9#yxR(f1Y*=TZ_QrQ8vPjF@ zj>y2%ryWX+R!Ou0)vs2BeYjLA!dL2_z@UA& zHG0>2_*K^SdS+h2@a=U)$2i>&;6A5j*7)eD_|915=x;)Z{a5uKSGNvVN7}i$(B;|f z6%{WQ7glLB_2%W-?&Xed#oqOq%|jMl-OJ0P!COmhu`@FR)baPOFe~z9kdNl{0t3CL zKj2D^e#rhsupqa%r+!Q?d)tF{aNCC%{d#W2M~}~IH^X>hV9o`GP@%D(#UUdcd9E;XoXjqiRu#xqK^#BX zOoO?u>4p6oA?I<1qN4o8RrxS5*bVFx{=-JiCQ;=Sua2{FRwiwRu1*&OZJJGXzcwYn zpjmT{*xX8Pc;3-fV)5joxkkpTlES7swQ@2zrU@p~JgD|K;cc|S9mY_hC#WIeFffe* zkae=ltFF4AMx%95A*lJ|yT;M$ zy4e!?!L2O`wov$sp{iSU&|@l9Ken^Oi`+1P=?VD`LaD@*?UzS31Jg!fyx~cZ87+bJ ztc32UVh0vJ7F6{+i$wN+Y9&}1lUVMjKlpJ&zkczvj%4WH(b?Hzhd*%5CpES=i@=l) zu2;Z?l2M68WO$oVwWl%2{0?q?U#k-LjrV+^s_LfI@SsYsr?31#C4!KyZ2+>h zvby4i26Q_;GikJ%nx=AUS)A+8 z`gpIZ|5*;vn9J%HRP5!QN~%nrAI^b9p4UYg(he7;8^k6992O1VhHQ_a-g@*IGvFoU z85dFHnyoe~wcq67vG;x&C8b|b@|`Yo#fDD~w$bSPH9YDfNoP^4JECrgJsX{ph09*nr0J2q6104-Cs$Xy#!&id6bW0?KAMXSo;Hr%;$u##bMaJf{iwPrp}2{p*%7 zEV-}L%23hw&>TdHa%;CBr36)3pLFXRhXy%UZJRPY<_D+ytl-d6L$3V!o%t&N5|$%4628gr#m|*x7!7s z>hfAy<=YyOej2hkFpTeA+{=cWh`v>`*ptO4seifo?{6R!Z&K?Qf46lN&R{8r6p8La z#q!<%m6ZBbEZ(f0E7c9W9a3B0PucXU`#Ue2Q}Rr6HhXwqNlA%UX({isqUa32b=QiZ zQ2$CDagF65$<42(oEOmHmPZrc zX(ITm%LC|i80}D{d0jLMP0^_w2>u&2nQeLp271ST5pl%o(xV< zi~qw8P12F(G5Xu2QJD)~HdY^LlL0F|Fw)~sjZA;4S=&K5hbw`IC3i1jrFb)W2-jr< z3|UY`9bST1W{;anAB4rgxP|C;{F`RKF+2RhfwK(aqI74ddtt~2`j>K$OTifhw-G^e z?f?>7h2ZkZAAcbhF&y?|9F(?jki(n;nLjllv+HDj_(6c<2RY6~_Z^1DahwC!9YF@G zj)v0-xf5TLUpKUaRtGSXh>#SQ>J5irtkqmC8QqX|<=QwM_u+J09Oodlx|(>X8N3`5 zFt*n0)M$gd3Z~t{X5{At@4A)0jf~;VA^*Dhm8=A>(ia7bA7X_ae;j?y{mGT(RnBB# zme~7HXad&5nC{G$OLO2cKEUf`ZrK4N?+0Xl%J5bc zwMWOb$3X`}WPpC5R9sVi~uuAc!uY3)Tl=Ga)Ob@rZ~p>^TTQZq_a zf}~&S@RnlO;j=O@ zP|AN8N!W&lx;qC@`25fa4C)|!9RYFz3{voEUOl!jF|jfLLv&cIU+TVrShn{rWMg0& zgnZQCsIb1nW1s*j28x&$L+XnYEA+eseWHyS%i|wEyYG>Td)@uhBkz$|qB&7uz6Q&u z599YSb)*^y@4^3{?ZvIQD)Gljig6_5z@?B(p{LW+z-EfdE1_9mA>l(x_DIAu(Bi;QqfWDub!>Z<>;ERwu}9a#;+)BsyyfiThePTqFMl?L?BETLU>C>?7d2mMPtzp} z+J>WEpR{Obk9I(f8nQG;?v@hBh}gM{TRbV8MbL)r1Q*dBbtI4NT;lVGX|rnt$Y;F0 zrf^^InjWrb%(QrBgje8Q}w?RPOe+rFWp z`jT`wMcvBs0;bXEJ(kKSr<_afAL;Th_v`E@>?+`>Gj7of<*Ju@9>I0al(WDTe4QpQ z6)92xYSY*~F9QGt%seA0l0&#s7LuJvBq19)MDNWHH&BB$blS%R%t@~Kuo2HkMZZ#i z$C-}_<>C|S=G40+I>|8mK(^{8;E@Yj(&V`0%U&98Rav(^@3n1bpn zYs!vp{Ao<^=G*@Cb8RZnpgs(?Bku0EATG(81T{#!V=4gZkSun1W1p)uUwx-{spx_t zXxamvz&O|PG-Zru9ajhLCLmRaE3^SZo;7g~Ka!-fGaLi75YjK(f7S{%VI*ZqD2Z^u z6_3PXjjOzCAB@d!$H==PU(RM9@Y=%SLhgf11SpD3C+_f|HnGE(7euL4wr)k@D^ zE@GXk#=hmLk9pb0uG+*y03v`&I?a<(s*ff|oK^4UhoJ9c-#$Vh%$K0_+h73%2!s)L zIDB?7bs$28)H=dkIfnT59e+3Ydf|iTzhEW`;ZSQv2uI`}eG!is>a?E@(u6SUtcLOk zX)7-KWEmn{Ee9%9T)t=mN&;Nx5c1_O3z6^u%m;%W?7z`=VEe|f{0EdQnBRkq5dlHf zL`id_0D7bh;D|dMK*vDQl`-Jpg7G_rHJY;l;3kfvfTT{beAC(vKJQ-qDS1K~4;FPZ zUgTM7# zQ&h=~wZ6uvakp~(j;=$`#=hpAH0@Xn4hUHOGkRQKTW32w*TQ%ZX(0s`*S;z^y0P+5 zHG>QQUN-AL!w1~*N&sSk-y>8YjQW%QXA*J>Kya3G2>np%=swE z`vT!X9M}D+03%r1024V&qLmqoYNv*9ncM_i@+bkMam!l{$ky16sICuig-0WHMc@%b zHnlv_QhZ+c5nyo|&`(t2$K?vZ;0H^8$dgNf-VVABQGT1sAOg|K2{CCPl(Dz1AKfio@GPxTaJlQ9f)qQ<=W9(VF?Vb76#lm4`WBvM{_j#!EhsuXs zh>c+V<7l%qgGp#rv_2aMBDyywCbn@CZ{2^U+g1uxiY`V z-hMx-9P~oR+Wj3s-ku)TxGQ!n7qwHw<{gXFg4AJk`*2qF5mW?=94m|T9@8h7On1K( zzshX7pH`0D9y`5&73E+<&abZ&zObJ*Y+07^DxIKBKJqTs5>9%aCUCKa(iUlSoCm|t z<@Dy7sNQ#UkjY$#*H`>NXYsOx{ftk>i^fNKZ*tbYPgGSjKB5-T%-7y`mWKYFe?fgG z=3TqqbIH3K?_H|$!u5u1IO@_I_a8Y@OiA3et~cAM&Xy4w2b1Nwx%Q1(V?d@-20br> zH3eeb3XCO=A)P}EhcFAY#v9BrG)#s8vx&KA7Q=~ruaKuVnMmX^jD+W4a2LP%Il1QL z%AiL4kfP9Rwz0RM^C}JEm7_ORvuI)U%&7yI9-wSws_IF(bnx{ znVFh>(S{Z5JLV_Yg+7nbyFUUd6Mf^#>{wS0b2syc!AdFf64Om@-z$Trt?N{3-5@1w z(qO}axd?RBywVAwMjMCzocOJ8eb|_V4;>wO6~j%h_J-6@bv8z#3_=$>v~qL<27~H# zehXg3Bu-9FI=^g&u*doN7Rd_zdpn=4oimnt@@{0so=VFuvd+u#t{6!6Dc^fWb0*Ki zU_E%ax_2IMhChD%SaNbSJ#nV%P*G1|$Hasi;Iz0Q~^uDcK1ShA?%ngY=VI$G!>88#yEaBcx;T5s7}LK?th4gU^r?64nin z@!r!Pgk)3=ULleKVQRJvQ_P$)>-hFTWU{(IfZ`aAKjwE z+>!u9s;>Y4pTT8k{7o3ROHfRVvoavekhYHpIRKXXXxJV+?Mf_6R)AcOz!iTO#k8mV zpdW$)1VR13>9#>X z-#0Gaf(1sF!0Q07T1HvV_5_LLFF6|{En%}zK6FaxK^)$&LL;inP0!ZOwsvh=vHN~N zc8;ALsV^^Gg0fV;Avk&UfvV$ozm_2?tv;2n!E9I^i;IUf{^gM(5P)L&D=hv$6mke3r|8??CQqAqH0C3`L z^KYrOG(-G`U;qHqWd;e2bsMF_!UE=f;K5XS245yzduu@O;duTpOIrkDD|GydGZ zuj*GXpx9V6_Gq#tOdO}uoM#*h^dH&?etBKdNUO`VJ{p+i?_W&uDOYw8+jH{fZI+l# zUXh(U8g%EXGJ+N@n`eb?8lFF+U-I!)L{;_FLp(~J<7gEtr?&lBLyZYVRaA@k*RB=- z=&~%o+4DPEF8tWGp2!y?hge%5J2=R<0zuc%kfq14!<=Zpi@(zM>{M-MRgRZIeg7Q8 zyJmf7^SNl+Y$(+>;``{s$meYR*%>$2YldwDG-JbA<(FE`V|e(DEe|HhIX};j&ItNk zdjgG~%&uj)!cgak`lXzp_K4#NfaIRguRwb3j?u(F$4A^G)BQIabHdiqrO1XO0+R$&CP>C$Yv@!kzK^r6z-F&`%jo? zU(00~*JiD*8YsK)=Uyc5Aq~u9_#$A!n|MIF2PYKaKqQ7Z6>{nKa(WKy-;IUoRr-Nz zSJXAW$SkLz^_=#Lu&`gfKu(}5SLD6d&ft4yzSu#SVScP%>a5>fQ%p}6epXaMpJ0v{ ztaffi4Q~#QcwGq0lE`_;*QqudBp z(7_{YQHWDTrEs*tA$}rK2%+E%K90S;ADP&mhX2Fc5%kk!hyyE z8bzU<2^gOQ7%)^OHgTZJ1^7|zQUH!{o)~=o`VU9=wb~OZ&)#sF!A+A84T30z`8z45 z7-MI-*Dfn1k?piXK@I80khu$=Za(tWMKIzRRLn_G%0Pjt{I3kQ1PmauV^$vI4hNyE zGXXjQfT+W6gpdhHUYHKqgihqBW#_K{i9Vpp3K$EKY>~;|hXa zR2Gvr5xH>h(LAo zjv+u2^izll#L$ogW0cbY6!3Fl<`MnHdPK4R`+MCR6McT0{q8Cun|)pWL!ryRlDE5L zo%_lc#dbDOE<&@VuWjPT&7c6vIshs8wwi~**igSXW09?Y@D@NJ_I>}PQa?D^gJd7V zbD?XX2ODyv6vp^Oa0vge8Myi+2sY1#glUO6NH{w|AT}AnB@B>~ho)fSQ9-{NX@FOp zxJODJbiFWsfgVjs{k(uMG43YAJ9IJ2B3oB<@Zp0X!4#Z&K zX~7#jQ|qV(zd9x-$PZ78H)ON50bH5Cu=@cdWWkUV0q#SN+c)TmD{pW7^)cF3{GfjM z_wsa2VCejhw%v-MK0ce`n31fitY@nWeO?={~Q-S+d}KBiA|?p^V3 zy{~!P$cI<(7AkTmsp*jGbQG0()=M&be1rXgRfXjjf%8%9yI9_YYunlC*VkNroRe)3 za;Jm4J1L1+rFiFpz59RMuBxZ<-?N$Ivz$Fnji+X1ym)fKRP<_NxMkT;v+nvURt^EF zZ-(1>euUpOrcX3d)IQl<-Nu4(vga^+aMBR-J%Ux5a6Z=W`s7yZsfwezfsv5^=2uxb zu(!)=$nKK(!bc%0FFC=jOZceD*;bkq`u$A9^10PgRuTN=oI7yJW z-}E@_{N`-#n#myTb30>`BTD1&|74E+D~N@N9i^Kpx#r^FJCgHB*+qvo7qKc}#gm#0 zII)AU)&wX7JLo7-*hE*Ba4fcsT?*jUVF)-g9&#^e+k~ zN#GY)9tA8fn>MJ3B%;ILlf4Qg4UfMKIEN!PA%A^5C6SXzpTT=iwrhPsGnR~ov+UJ z>=FDKTR2nRYrDK${rchfT4(6eIL(V0?+q*z+o*+=6-|8BWWeR_uG!V)S&CT zL$KfgI{;Zbl6AOnqL`wDGR_x*iZ6~6>}#TzohEcEz>|$42=Vw2dsRS{h47q=|Fjl? zl;5vYcu_aq5^6on@-uS*))%g<5U!p`f_P(qBEczjRe9-1%^u&u)7y#8a{Mgem_&ZH zluR(q+P{cB!`13w8;gA~)vEN&{#*^~lo_h~G6N<$`InKl0@@y^65sxT8p0;yBC@fB zEifFy2Z2)VUJTb*kK5;-%zQ9ri@vjovV72M1c(4j7&FxRQ={OZyx<hHKF--_B=9ot zvi&GeLuKM2-s2GJq|SR6Q)3TrP7@DSz!2~pKx^_p>CwC}QD`y5oX8r!&4{DCN$<;TWXEr`*4)sKPZjyBsN=3O)T z3O3Ka6>NV-zTQpS8VLJYdSE+ZJ3tP7pH4%R(e((p5X@s!UP0U=Y7l0o*eaAgtN~z% z#H0KQiYdEemTm3d@9=1hCn4Xjq=M4cdl&{clv?>;?&N26EN=W6ZJZ09)B!q^>hTpJ z1c?OGLHJ-7b$$0EOfJ|OOhIm-S#jz%gV#jTd2g8a>1=FF8mKs5XY5H(&JMGMDQcw- zO4&@l41w`dz}~3wNdoS3eilPZB~#>l|I~g}1Uw&c0LzDvGj!tX6M(0+10omy)e8vE z1vc$UPb|4%7DuSo!Tz)JgBF5L>Qm+Ycagz%0-i{ngTjzpiIHvqLK1SpP*080VPP>m z$AGi}E}`*XzOWgmucBvTKurvt84O zXn@RrYO(m_wjfkX8KhnXE&_>*gt^P68lFN*f+^Lw_Fj0Dp+iam-j6)x?UQBEXZ0)n zr-nl(i--TxE9zI8-CbP7N@cEKZ_D2rv=<-QCau2zeN<&l^~RWkO}y-+%iFyyO|w_% zvfJ}Aink5($~|;#&>b~>&?8VZBY2-hAkf}x+Ba(=Ba82rcAveDLw3@`Xx&4KC-?_F zzU)oOcy6J;iqWtOTyvv&mEj|-ZU%NFvP@^F|z;d){$y5>#_7V8_rk;S_Hv6=6tt@aFKj>&85{9L=^ne(p;;lCon$ zbNKR(1j(ls=#tXX-o~>*UAm$v{?xbil#KuQrp`y~iop>73UCp~($2@&bAFKul?(g8l$j0Wd#8U0xajsv4pXL7DvC@ggT= zVKFxL5aA;&bq|X#cZSaSlPodV+htEuA_$o6WC71Q4R1h4)-MY)N9#vE(q{D!ZwyIp z)rPGO|7F}?b{iIGo!b2Br+sOM;LleHEu}STS$qQ>31MsJ2z87Vomxf~t)vIvnlS)J zdRK4G%8>s$H6e5(&mwHA3*UYWOu@Z{M^mCEU1S}P4D-s)jNbIU5g6*H)hQXeG*4I` zS@ClD0ttgQSH5`}Bn_7IsM-$Gtz`!cHou+}PPd*I|JNkY-{5Cxw0-bhx`ar|)2$w0 z(cl-*%-SJ@v(5UiK0Qe7uT^eL1c~I~tfOp5Q zwsYCk5-FjPu`0&*oZ0>YAfliVQgqz7joD~z^lz~7!gvVoUKBBWBH**RzwE3jq6S6C zdH%Be{4fzdgb+N_fAByr5-kNlJP?9nh}FF?=LZHT(DmR~pxq}BIzb2-$Jxk3Y*#w| z;jz;{z)@b`cNaCR)~+YgK)>0)doft5_5vgz!gTpHN4PnR#$iE-%6|y(PH-Dr!UX9b z<}{K0YdfZ6Q5-2K6F8L+8?3)9iIj^Zvg2oX@~6LQ0|Mk8{1kPO@T$Xb?WvWz=#>b?mrL%0)=ZDFPcfR;tmYsEV#B^L@|{a|lkAz-jEm8Win&6lKIzH+k3t^6S; zmT*Cch=)jA6r9)$4$G6OX6ofbI$#=xX%%c~EFVPYS(+)oYHh!Eg(wO#F#mV2zT9y# zs*-yKovc~X9{#tGcmb5Q%*noXxTa^&8XZbONE;?yz!4sh&GH>jgXd*s2*hL2Ayxh{L?tZJ!%Iw65*6vg`hN z@Oq>h-h=EFlERPnRd%(j=cS+v;PbrO8<4$v2STpwjpgsb8~2U218zH2U+vgrcKau| zpVZFm&_BhcVdFGd6VG%fFKXP#_Ntd3#@br{5wu6`zq?oUO6b;k@?(S0Na?*zjiKsxI~uvB42^sR zCfuD+Tx^NqQu{e>HN`c?J&F+R?c~$4=GdopX`8xW%%0?wq(~IUmqa7JcZowm3DH#+ zz9$nh&=V5Aojp$}nicwt3?MY?S7c23Wdz0QE@i-)INIa=@lGniV0CP5yTSU8iIUod zwenuOkdA_Y{v_jqq?mkkzc`Ah*`Z;sH}N~ZHTAvBr`(5@Cc*cFFg_M`Nlzlx&%?tE z@&y4#<&+sbGh<9K?8e<|5z?ZlgK{jUhL%Q^C-d)q@Km~0j`!{v4-`2iPw5%hq;(ps z{$5x!Gf|OQWt{>|ld8s!UGnTs`E2q=+^1MMzw&-;tnQyluuEG??#!OUb0!H8!__!M z?n(O_nEN}<_q@P=YLR6Arb-5nt87eo>jtgPGxYziz(m!*_KL;k!!*J09g<;zi$G{* z&WFwSZXKOg-4{6j?K`KQ$VPB^@v~r`Tk$^2KbCtBdQ$o?4-am^^5FL0kzk1yVar9ZSX@o0Wh39aFyB5T>Kc@GV*3yrIN zzx=41OXZ!Vb1Swjg)=laz3gI(=@HApp`mXxenCABbvouBT9}g-%pwlUxTbSts!l4* z%wwYi=>GnYIEos#x#SLGkL!#M!rdSfWRg;66kA@daq#{V6yTQ~A2?kBrG7E;eFja4 z8ZX;RX%yYI2<%#L@j|%kZU%UI0LH{}ZIq5Q=|Ej2uzJM8gxKMjz*z$PU?5;4m~9m^ zdH!?mhe4V|fod^u4*Cr^0+4v@jv|%8eX)4=C84i@AV2Nre~cL3)RAo>d;{CzE&z%8 z;N$yEJoniRFB)g4!f3{#_VBalYkC?oJD%}2N}YhSwc`P`>(rc{5n*B%EImOEA3gF< z&?v!=4_APb1DP*FRSpq;4K(4b-S|O1wHN>CEEWj>NgfXLEOV5zV&G6K|sO_l|0M_F_TaSVENCPsRe@RG2gPb zXRjX18(w0%wHBoIJ>xxkXWtcFW^k=7C<{^aog++VUfWQw)16DXcK=XXC6u~xecZBN z)lR=YFUkHhk*10<>Qe?0{OmHvSh(a(RUMiWkL@xt%{Ap!mlj~fp!qpfrA+0F+#*sg z7^}b9T|q1HtGW_(W&O`SP$l^eGd}c}1|?7DAOE`v!4bH4HNYm}kT_kzUvwggeQYIqO#GhcRjX*&!>x zes+KGh_7XSHu(E>_G)DWga_|E7a{{a^>yd_yX}sBgud6jvcCTDq-WE&AZWQgN_Ib` zq~Tz|e%i#;q2RD@9*L65B|CJDfbQT`v^%VMz>FkrF%n6GYa(~kK^t8RH&HlbwG zV|%&+wqai}3%T*@wf{W7>b!oqt|zbv!lNf(K^>Np9aR~SF+!9{5+!4X_$LBE+T7v^HWy)qt4H3-7=bD zHYWwo$US>-eQtzz*Hk#yi9Kh@PQQI_OE4---HYeuTHer7nhGef`>NThhb4=G%XOkU z!jG{Cuqx2)^mORnpZ#4z$|J2Ym`iw?#onuv$d z=^~#50@TMUoAys3;L{KD2?`4d*-R}Be%9oC zv8I!dR$%qhOcfg-a0>V2#*NvDi$1>(TyT)#dWDvH075lbT4PeTV#wdz6C+jj$7ne< zfv|ftLBLje%M~-<`Qj-u!@b6lD}~x~=1qfHt4UV7U)F4Q->O%Id-3e}A26KN87LnI zS}A94**Q5tPsf7af;|_F!dg`?{dwO_=&!4;S{++CU=@E_pe==%KO(=ImDT-wM(~2$ zu8`?6@$>=f^?}K-HH*zt%>Epv_0~@V;F=a2so2ft)M`VDI^@_+3~vp859G!jn+oie zeB_y`{d;jVucAutxcjMi$<3*gV4D4$ENk)ldRV>pgqo0(Ug&ypkB5`fgi6@_{A5mO ze{E8xriS>y?1Tfg3Iuki-wrHoPq(HnmJ5U~e4Wd=qI)}F(M&WwJ>6yCV4HOX1EbYZ z;X<8M@h-M7V19U!Q-7Of<)ugQ!B1mvhSo#twaUwgH-m!2pq>MjCy@ZDVeQbz@xrh@ z3m8h^bpVO^J|JW(c6dOD9(;Ma4neB*kj`-84@H!pktxVi!T1YPC1lz24hJv_P`iU- z7E<=WZPfM;tbu9+BLOIVoCxm91>_BYCy`gyLx9ET@7=)yMk$T-6h$EB(81UM8wen` zVQ95gr&39uUK>Aq{H7O!WDP;0Zaev#7{vd9`W%^5I~HgwxiTj$htcpi9%ol zm+v7Yx~a$%dpW=xGCD-hn9bvX1VZXt6jo^#Nl)*EQ{%+a(6c5Oy79|pFVR6AjN^EB zMv9mUVxD!~PMi$%!trXRYutduG{$lL1dAY%!ul>1Fs0xR#Ncq=$(WMYP%Xndi3OaW z#ZxHaL2j&oh4?s-bit|x)&Q~>ad?)Oj86*|E zx*u(;t4DzO;3_pF6{B^H^=x3r-zZdy?KqkIYK$va3qHnI=ol~;rjoAW1co4k1i%CP zuRcp2izzl8i##C!9}NYb2bl0N>W1fN2q%MdGEUEw)U)iK>Z+e;q@T5L?t&6Uiz`i6BUXlsTsbxu#V&UXW+7R>O z_*}?(qhv6+h1Z(b2Toc~?U>M(I2WGJpKo@2$fIKPP@`8yQcGRK>EF+eUOyRjS6hJjJm>{nLa5lL5aHMkjO zjHw+UH1u5#5g4>*KYOn1WqZhT&v(kwhF4L}+}|x3{+~7<|Gbu{4%n+2T55$~fTxR# zLcH1`6Ai|!kcWKwm;aL3jt|dtTA~P{t^3GL1%3_z)llz$0d7j}$;@>_N zOD8Zo4J3UktN%mqR>|((jBj>0^3v#DzQWnWrl%3RY(JrRL|^WBlVezM_Y2 zL}+1mrXNZZPZc=njEgiolBgz1s5m2ccN;9|Mt5LsunlHlrup~{i^DcZo)EBu=`%l5 zh4^<;DkhA-_&S;`7ZBkbQ;~^HyREeR#|PJRDYG?wXBNL#lPCozn>sdWE;(WI8$Wq8 z=el$iXw{r0yhRFT9A7Z+oKX)r-T{A4IQB?lOT4Ik=|g#M2dvRKVgXitS9pHU>3~O* zLRG<=Kt{3H8fQ)w+6D2o1pW4AXldo9T_%6D`q1GG)y0-IGd_$Vp~@hH#O+VNL}|E~ zBVKbvynOwVMg5I{(4Rfn^?8d>Mx}u+1jRr0ukQ~ETOPX?O{G%Rng=JVyzA!UOAW&2 zKe%-2Z*C?SWUlWiTk0`ST=1ySGw3@#Ij|bs)%kX@`{#$BKYzj)ZRb zP_3<#Lp>D`6m%-5v$ON0vj6&V?<~o!zb{U4E}169UBFNxf-i}ynpDIlBNoC$Qq5}lw1BWY{?GNo9cC4edg z@gkVsU?_Ee1e+O(%pH#OBfb}fu$L+Hj~~UQ^T_S}Tvws>1VWY~1T$DZw=Gn_+Vk%e zdOb)hl2-)X%7PGibAG7ZK?ZR;NjjSLd-#De3BO&{Bs=4QBE-HKD#E(f7w{QC5<=~$ zMeZy$wXgrzl?1lQ<`y*^9^~fM^5hsIX=|6$jiuDH2xRz1Oj^uSbU$r z-S^YE%c=-PVy->$HUPFuae z8l|Z5`KjiX1WCK!pVOTKZuyJxTl19^0d&c3OECthyTy>BWPST?gS!$0jNdOtSwTh% z<|^d4)J6zeaaUt6alvQ6LL{3h)?Dp@*ZA+bF{SGRc5k45 zb0u#sltG1~6n4mtyt0+RK2t3ZfE$2b0$v?3wL=@~7(;d|_B``eqphq7Yb4ugR}(lt zcEbHUj>}{rb}|S4Lat}PQ)NDfYP^yPp-GiN4-t3b_n_^slup48op3{@&6-$r1XT=0 z#tFC?U^KW-4ogAP+Q|w?lSqaEr1=fFL%I%O$*B;iM<&DQiUy1?`)BZ4A>MqFj88+f z&4^zg?9~v;br<7bUt8M|y%@_=o_1s?@cKMm$07$hh3@5_%|XQaMZVCRoQGe)jO)7g z!=d#5hMbEO{O1D2KLlnWn?sw6ldy#Gu4iNi&JB3xX9l>(cZ}Yr zU)#xMCKA)?ka=V!Z$;Wl^A`2Lk2bgmS6l4UNIsc|Enc0;Id%u7?r1DCNj^dU@MEvdiw^Q#ltgV10YlvZA70Z!DTSM$U|t zH~b^&6??d8F6PO{Zwl!1Pw>q)=(K2=h1(*hdTyvYIPE+6Fe&MXZR~jKxyw%+JmC&_~?#<2356jDWE#66kk|%K&XHW~)+{Eb}IP>QL3-O|d z&#? zq>4KZ0PXxcXIR<4aLckj;7CL3;P25H74`GA-ppSH^LOXM7%*K}U)toWQ?IP=8y>9b z|MWJDDY-QS{IkvN9IY>`aQFCy2Uh-U3_6wC4%+Gm-|*YKmis(lYqdqP_U~9)URjM5mPs)4mvq!F zrugYfU`?99Ztdmmt+Bf_71GQ`=rE;eN1#Xm)++$)jUgmWutByAs1cvvU?32Gaxma2 zzTn59u?I8+5jqCImm#wCc3yArnE8X8)sYv7a}*q`9^JtiX$sb4AX_1}?2EXnOF+B9 zGE4;Cjb4xDEa`Vwme(l!Sew+|uC}eMC$kDR8^z-H(Wi?)F6U@iGU*3L%F-PwcTbL8FdyaOtAJ2{C-~Uxa z+5`*_?t|dV-6+^SlTG`%ARrB4d$2(W1|YaDTn1zdKv<*C3SnWnKi5H{7y*KcsECE@ zb~UuVzB=%_|9__zdgbo0#u2A6``cc+W`6$s+2g0IF`*jv8(svIhs-aSOS}_DZBxRC2$FN$1KoN>|S z2SuM-#(ygR)yS8<)du&%CBSa{xzYQmERMRl-^8oU1a4X22Ds{$DdIlda!M_0bYY(1m@%)_i|Fi&S5KlFvUKBI*n^9kYy$+#_XL0-y zICtE_p(ByI z-7=p;9En^WLjoMaq^c^$kXF`?3q!w~XfmRl;7X|@uzqwclC^e`tXp5Q2%ZxgUZ-p2 zg#N@D7$jJ0Ifh+R-5n=eX)vf4woL4isM+jU`E~v;ulCvSnM%nj^YTWnRNJAgg}j_$ z-5`C&%2e@5YOL>@5`v7ruR|3`myBA244exY5MghSmk7HN5F7Ir{4x6I(lPRwjWrtCIDdCBH1|<@>#4 z&M09iJnp6$MRnWM2YJ_v#{~pRpC#X{Bi!$4cadIPa9ht|QkcIty@OF4w!um315oah zK{HI64$;qNzF>X`+w5gFhat`g$u#jKQg>t|&%RQQUGIJ_ck5Wxo4u}B1xqa`#WhfN zo6}T_q0mC~3G=R{>Fz=rVe$d|`A#-#n-eDew!+k`% z+8Jq~J|gRyUqhx62`$5$wBe9Hf1Z%`B^+-a0*oxH9h+)%G~iq*i{-Oe06~=k^zDx^ z5dk>&Joq7USFs2bI9k#%TF5vK<9ko*Hfy0mQRJ8zrRKWGYmER&FY%ScivVcIq&iJ4Uv_P{3?!GSo zvPi{bXT16*28|S8@Wx=(ke)g~P4G9Ukywhfu5#-+j^lyYLa^M#ono)4jBTj`M zJ!fF_GE~jh`Vvmg)^-=Wn#!swSI=);aX+AWzY!90P#%_A2+|hjK|hhLLVKlATf2I) z6ZBZ~w;`nxM8~XBNRNP`nf7oiIwK4=Ys>8KWD5MYaxy%5R@ojEmx%vL6S!qTuG|jp zTlitfXz(8J4v|}psP0RpUFa6M3qRKo-gRSSAwx8UjP!IBJ3>?UGUcM!_}``ZWgTyW zEm$N<>V;~5O&}qSgH;bz3p;V0L0!KKAs|2vaEDtOi%&Za6d(6^cpDpHeqYx%?*Lkt z`;M29gSDNz+ng`r-F5jfWeDOSRQ)h<8-9^~x+w;e@<*np#wKfMsQM^#xfG-=VGGpZ zwYBZN^(!x%M?=MBs+{f=j8zT}57*b!lHO8ZNY)HX=x-C7dTGRODnAvOpOxN{MOD#X zy({{kho(z{WZvO7X&f@9LeP8GcI+NJXT&YAYihTd4YxF=Oe-U8yo{U~kmX{oF(t)v zS6rYS#lp`G4_(jT(XT9=*l5%5+Pdpbn&&i4=yQCN>DF&)4myouR^jT-6K{5K?}F}( zQ~E}N_@8Z->v|O$=7tX6uO2z`So86*=jv-hvPW~%0#|?2C!YPcM(}bOsPhrG{ncgn zqfq#Cj5+5QE*Uas8fia|>7b($ zDG6`#FzJ*@++I?i`dw*9Ml4Q@8Wh6qBv4klqY6@d($Wpc>sjOu!Ym6izF@)^< zzMJ3u_IZ4N=Z_wpa}vh9U$1+)uIClUn|l$N$+F);qkrJE9PV_s`>;H92ai882Q5VE zGgIInFyYv?*kO^t&lJf4b5sc8vg+5<(f#@uvmFdP4!A(BW$>6jL?~YgYxwbQzkHg$ z_e8mc>&Z(nZXzI~rQzk|-ce-gF&J^BMopyp2<>d$YaQ}w(^#%!chEdGX-w*ObCpa! zC4D{-G)tS=gzVD1O8RoNL34C-cTjOp(DJ|&Ffp*eeXyjq9ZzrWn^(dUxds0e(Ew84 zZPxBHT}qoCYA#@U&Eer|? z%z<$eDV>7ky>ZIaz5a=_jUt5sQW+p_qv>y`R5Lu(Z^9DxFc^Yji4BZ)=Frsdu>UOD zEdk{XXg1g{IGjbpbiNQ>&%3JxS_VrK++*HyLba=R3RVAS!)Wi7vD*oJ7Fkg~F1#EGwt z`y!dMju4gkE}Os$X4ZMg2Mv4{56&+du1^8W=Y~M5kR<|k2T&3f;$c_IV;Z`XG>y6S zAl49;%#?I@dTe+-oeq7k?ku-2{5z(!vUV}6aVv6{DMSt z@}6freegqbjV$0X%}|4vGR_II8z7DcbXsNQ<$>$5#lc&NeL(NcjgYZi>AY?ZIgtC1 zvw5NHCOBw-lAcZ_#inPsz;3FPat^tlwKQMbl=&`AK9ROl9t&iiUCTHxsU=KzDG4&6||i~=$x6O+t(%qY14=rH!>*8rwdqaLzb!%Z!4&#@^whF)4%KqTn&(k9s9e=GsS9p+ zc*uN}wKVYn0{;ch2`PbydQni;K^z~C0koDNK93UfCxjovYsrV@7B=G@@MK^6(Q=23 zw+C={o7MN}zD}Cx6toVccdBh3P+MJo)VKO~syI27FYaD7?+W1*>OZefrKMQcn*^Wb ze{6ZD{vKgVXGF8>93LnVA`r|U?tVN;yQvhim-a>Q&G23fYwBO-16&jrOmh`8m&NIG z_YX92abA2j{9In05kovpynNb~nT3^!!-#A%8p&tCbkwt^-<^M@{Nf$uXM=$k-17wO z2+z(OBhP-FH6PvQ6=p=}=6xZI5x%!eKh==2=)o(|$!h3Zrm20R^3>w zl~(J$qw0J6Wummg@+W@Ewb{e>Uisy5*oc`J6CZFn9@ien#761;3x6giT7OHbNoK#^ zWc)1>uimLBK1D5(xORuESGw#%q|7TV;|H(2Bs5K8M6q%F7JBWl8x7uGTlhHEAD!iV zD87Cx5J30gZ^T8L*iQ@;zHRJ(-0P-vF|qgcIaVU(E)KK`OzJsrVa;r8vYLj-G~^#E zh=i-{!$HgN78#ZX#~`a_o%u@e`;}8Djv>!tn0d@eyQq3 zAKsPVrM&G&!Q(AkM-#*j1?C;F)3;ykGF zAmkYqtAvyhiX;kTP*;)Rat^Xqh0zcm6Ig4c`MgW+BH}*6Eyo&8+W@Y-yl}YS&Etjx z>OesCCgdVMSFq_qEgTJZ0uWj;6aPUQ0l7MmLXE-{z}(5oBo?xWSz%*P-7ox&=Itbz zpbdO)fVEQL97pYhQSxy%H9l?oRaX3_@fVw!Rs^dKY@?&NEEg`Et!ssK1P0Qi>v*SC zjT)t@sMoBX-BRumd!?l_pZz3K?$VKolOUja(|SW3nH#YaD{81vha*SBd2l5V0V(Tv z6zPZb22O~A>dVkX<|AxQpa~$?90I3RqvataD<+ zP46=Tc|O(N1VU$~iWY{3GECuMiT*cDD?{cH3$YZZ;jOJexEqk+iN`~E48wa96G)TT z$x5Jb?f@c(K{^EQJlLtIo1AmY{iK9~GYX=+VK>pO3*p%?Iyc6Yo;5!E?BV8LT5-@I zB3fCg_}IO+hW9R_#89i?%Df*?P{CqA!N0)yL9Lh*r!M?gz1+ z9N2|b|HEOjToeT(b|ylQH|&=z4u>U7gY=Cw|LKyiDk&*pu}P^q27%wHTV8M9K#J7> ze95^N@mj8A)wM47p8J(SX_wh%b=R!+(Ywf}NO0-J^xgc@u`J zI?$i~2D!|gp7}c@oI#?bAU$q3&{km2b(9FOVc2$60|y>rsdi>b$*j=FOz#7h76WiF zU_Z3OWQ8FhbgBX<2^4-ATJ{f8@n&Y}+Je2o8@V7DQd|2Meau5;`u!Gf@CR`wrt9(nG(8p=dcM>DWGkeYVm%|WF?l}bE0a&nwWQm0D5 zU7Z-pMi~zg;bj?W(?4vdBeIL&m?~}fb?+VK-I%H>GzUdghmn;dOdWNaxBoto39u%E zRuqanJ67rJ?qT;zQ@u0%qU4!H`=2E+F_{iXFz`j8AAgB~P8XvUFb<9*_!6Nz~`~ z&(Yaw#Alun>1^5z(2&47LlW*FPjM(0HWw}5=@c?a57s=HQWl%1YV`8zFbG^|7(Bpi&;czyRJ{ zj}d<_FRxp7nv8;>%}XisjhYv%rq%Ou-^jf+P$Hy2WP??{u8!dMR7eg@*5!RVj zpJ4X~9%X)q#a?WF$M`h(cTvCvL}a&I#O-hlY$Jh&x`0gWDI($N>0v10moc*NcWl6w z?=6pg2lEEa#k3-n3qC{t^f0F#p5n!U+Dma^W^C5Yq)N$(*(V&;0d>E_9_;507#-{2 zGuaN`DyjIU&sVF@itpZfmad88V32h3vgCKsyiG0w!4x75hIK)CP~OEB*)0rL8z-}PkD!>?pPYbUlke_ ziwlJWZRACUm1rK6MqVZWT#bRn>-qyRCk>A1;px`6*8Lk# zgQu#q=wDj`Cqh<|UrY^0(~A571{Qn!GmYB4#d>#ULv1s$a=qBr+KN6FymY9gMMz-% zWnodDJJ7}d7Qo!f-5oVMIk`s?>M_Nq=^QYVf}Z^y20|}T1xgeNHZIr=fE?_tTL#FU z;Q8>>1`YAA6Qb{-hmq~UVnJ1s!Hke^5oMYK$w*hInhGHtzy||6`Ni@T&}0q5bk%f0 z^)Of;Bp^nF?DPf&>IPu#LA_o;o5n%7Hb{#sbJF)*&;*N1zEPuc3(DWs0sL7#ftq`U zCOSQA%Y#mSrRh;b2Zk07!LmFZ@<|*e#6=PEA|d`4cykES8Id)YPk_dV89Xz> zdfwBYOLI#g;SSzd%n5vv5MzkJLarf*56>3nSpli0jY` zLY56)3-ZoUvnHA(8BpF40VxllKDeE#pc(R87;au$`ve_m*Uif1_Wkerte*ETF3NoY z;FH?=;@XpDybuLH#QL}+AwK*cuS3F7Y`1%HZlR18eA`UBW}Ji`Rf}+d<0oaL3xEZ0 z3*(GJt>Q8|ASa6wYs9MeM~(+zF5%gh$T@{MCmJsHQ4BY^XFp+~Sao~$P{l@)NAO5= zgz9?gi|JJL2}S+?4>13b4`Gva7Ls%rK42p8rsZfX?cSucLAW&3oIjRvP* z&CE`W$NnnFGVbM77sl3&I(*Z2_@Ef8cw~=6$vH+02ZyjQ`n35yo-aD}0_@DhRN-@> zocoN`)mapOq~4nxWsq*rR9hVCc)MCqic&XWfPHOmfS2gF#gr+IEyI7k)05x&;L#Q-Z}QOk(&Mwwdz{A z92^Voov|;-SUNvpX{pBl=jGEhRawzEne_%$ud%}vm0x0Fua>UMz(P%oGd!vlE1NGA z*R6W$U44XYxwTu+{B*vh?&2-X{YFE)xdxlAEQ->2t$|jQJc*BRuZhC+w8f)zXy5b$ z*`_(@LS*u)1ULrC=3wJ~irK`vJP_l1_S`&5N{%2ojX&de%lTx6KP4yLXp;49JA;&V zAZBvdb7Op|`^ki4u|}~N85hZ5jJJTcM|ylF=NW4qNBynN_#DF2VDrP`_599>#j`Q43muY^mV{AN41^XUVXn-i7G zg%Op0qf_(qQ%g%rVaZ>k?%gLH)a4aPQuAG09J|8MJ+-_%H8ex-pJ_>)`q^DNqfARl zj#2a|zDnr(eq`lUgV-^f3O@kIZYX6uKPy|Gw!o4un4CO0ylz){mgYg|ZcfvV07OC` zz4cPjMqBZr_>A>$?rIlnv*qIt8Foz*+Kf--d1NZmr-e3K`-@nnmW$#owF@kB&Or(@ zEF!PrPg(WAR-FLXgKh9xPFpAVcSWv20t7m(|HqmWx#P^4FrT3coO;HL*Bs_5UNcO zCsJSo83i+D@JHxD=o(Oup0L8NIOuc04-JWA4f=*i?}0+}@y9cCKywzNdBS3Z%}H?) zmQByE;oV^e!gsxqRCd7dsD49{&iF~oJ^qjf-iF7@VhVj4!i?Nb#WG*e(qxCfyc&28 zT7U%=W2<@r*_E*O^hE3ufc0>KNBIdW7V&w5`%Ja&x*imbBk?GXpVSvVOu}Yh2sEXz z{V+utt@o}}6!)bZ<>bs(x-C{7V{g|p22mMU`Grl0SB6nnqY*oh4NLXD?$|qM0wG4A;WWW`*NSi#P1sp+iJ!Yb4uw$4LkiEqE2k z_m~V}NH5@?COxC9NFP21`4Z82%7Omdqi%%HG=6svk)|j(L|>d)XfiuQukYKa3|jJ_ z)6|xv>5{e^tI^Ft3s7W(oKUN#>swd9CokOF#T!#&YfALt%B^_vgY;=mf{rfu?4Tq7 zXW1$j&g!X5!N*urbL1++G(*%V{47!ADkZY#&SDVGFo1iY1iye0-W0jbI4qqqQCAs$ zsGweb3V7y@ckc-3GgyKMVGzo~mv-Ah69z_YH%TuWEF}TmPW4O9YS#C%h(q|iH-Nc; z!d|g2?uIMm)D#EjLV*aMAwCGi7*C$;uDX#sdMLh*ZP`TiAJe3{u zl?MoJW8l^fVEH=@6H>s7LtpsdCz5;%mB+muKPhBcH|XcyNP;)wjJ1)(t~wcJxVyYf zbb->r@4(9nqFLB06~>5$BbH1on8&Nkz*RwpmxN6i+f0(gf;KNFC#Q8|`ybPLkJZvlqM_JSSIy4%N(VE889eikl!0Uwz!w}7BWdt2jD4tPj<8#62P@LxnE6DQQVj& zsBS+<*%~gcT*!^CcmAz^{SoP2>)`x&bJHQS;z!yMg6%Hx_#XF(v2O(`=aSAH57BZQ zxPI2rCvo>jNwjCj$+yHf2`nQU6Sq#Sxz>cDY@FYq6I!H=p7eiO0QJMyR==9tsqg!N zVq~{d-^GSzQm+yY*<&iqz{bv+$`CGnJyrVjxlnF-`IA~Fy}M@4JyQDHbe;8=r3CAP z3LcWexF(CyS5B9o4gAwQo~e>bxE~@clESb1*W0JsCq9)-8JzoDJ5qc|df4jM{(~4I zcjPMxHWS?6NHRP7(et`zMSmU9dado+y54Xw?P;%nLC5}^*GGTUdtF!gs9nGbyHZOH zF;V|#B=`eihC*Fp=hFwjqWa-e`160W4hl@kUc zmjc<-p%5#BLz5*z9cgbvlh0T2`?w)lIUldKJzCx*pBJA~9TMFZ-4=*1D=({X+sc=J z1kd0`A$>fLKE9S#|Hwq+w8Vo@h8h8E%9&ExeA)Fr!*{|xm{(S?J zcj_I;Yu>rPgEi%Za_~}Ggm|w_pOsA+AhFbr$7LPsp0Zl$9=ltq(sdDjKNga2l-0LU zJ=4;*jXz6jUEbINiK|~}fsgr_D`%CIN=rUJhzAwo+Txn`OAJ^OGPv1+t)|Ssj|`$u zQ8WQGt)3>XcM!c3Se%oH>EIjF3WYqJt}Y9N8hr62Qd!}3K}uC74=`+(1la@7fMvvF zAAASiXn358M6*FZg~XSc=AML`0kMI*43nvQh%hU11fL%~xm?IT70hh`Q8gxbeg=dq zAv=Wh7I1n47`YhqpsP7p470Ptj+XCPx zz6K&}QlZ#|qm3BG>kwm<39N@y}`??&J}BOkc!q@dI=oIp0b@@-glA?=f_6pFT`xk9&3R- zlO+Ou_EF0A&&p+ILA5}6>{TVVq6PP2$pV<6?Awh>PD+ZZQ6U>Bp`$UTApd~%#Jpg{ zo2fZllq9O?Cs-;o;iIT-7I8+6 zc%{I>BYnOzG-tBb)l<^aV)pr6yb3M(6x@9oQGjq$Av=oHjK^L)LVFS>qvdg)43YyJ zuF#Zx)53qIu)`&RiD_|jttmdw<|)bOaX>TmP>LFG1=)6h9*{9*3LS0vip;~(cq1L% zSCLRvKtPkWCfGtjo;|jF1yNOiMINOv#o7Qi2^5z&^ngI0MM#c`KotYPq%rcQV*Unq zcUWYoSeogyL4O0S@GGq1DPT`Ut`e~R%C-UZC6fZfgpNOn@*WV$!TNwtFexc;sM^`X zwk%=fbKlH?&8gtUfEL@zt|@~nXj1y+a>AD$>z^>jt>}UX7O1$|ZGN^83Yt(q#<$9%SDyOjFY z>NUiuVdQyE#1T*LVUrVP zU@&*zZ=;*d!x32(Ht8PJZGXxgA9kcHF#Jj9tpLvA&I92MhGP^VWB zBCni<^p1QyUq6y3ZEGd3pQt^u{{o2z7fFfazK=Q9ELCs#%x}=SwArnnYg=LKR(3FZ zk4S|kR9?7EZrocPd!z_Mk!S01U)7>9cj5a-%={M3J>?~d7XKYw$^K>3Xgs-F-BkK0 zQvv^y$ojRhyxy{k&z}v5?%@0*6YWBMjsJ4L(6xIW{^NbNVjcQn56b*Iz9WD4ml(>~ zW?GKYllE~l`FQ$z%2r0@e9C5h>gj#QA5LDE-x|MZ5|LqBUh(kblXPwRv2sg`>1~9ikXfmjHT>!23<%O0Plb+A`}1`fww!OW4r)4 zFBYpN(ogDTMV{Gs4X9dJdaZQdMFsN)!&M*JD@<)30hnNcJ_?8@ta za77P0pdd*ZoPdCCT`>T)FQQpxLv{#2ZD2^hpMFn!oebhh^~0z@hSmQ4!K~64G3-mQ zTIGv=Q^!UR9LM6mw=J&DIY4#+FN`57prWR**(GE);|F0S59PuwCp=sflaPQ7XBgaw zFoy@ub}CpUs$p3m0?gDMM4zo5LT1{|Y&{m{a;Xe>&U;j! z+a*)wDehU$GpcJH$86WW%d4$721Kls`hEIza(c=~IcW2_yNC3Sz>*rkR07UMQ&b5I z2Q3-?mc#S|4SFmXwhlqdlL)yPs2%|#=8pgl6%!s{375DeOuI@Txip3X-@Jl7x*-;I z6>0m{(ZCfRAZyLEB&%%v?J6zofXM1DSPSS%C_+ogjK~a_PG7u2d4qw?H%#;39r+pN zj%h47sI53*-`u|Tx;89KD0scAy**ZwAfMOtu`F<5d~UEF$u8-iMrwbkr=j75{`N5s z4rc|~w$)IL!^z*IZ`<{z{xoc>VV`|3BL>JX@6utFCOiG^zc_^|NJy@g%)PWC!%x>1-YWTR6W0vCNwj-=R#-$4>@%H7p3V?hgJSr+6gEKAQNWqF1j*&RfbSHV4V4q_|aV_vg<9 zjSNEM)C6Qw8g$K6g^GFPdDxVJEWoQ&>1^;~XyVB|7P}{ETy{&Ros_uP#?7f}@*`5< zVOVWBn#U71x$iYu&!wMNXw+N`CC|!o9^^O|!pN4fuA$5N@~0WD#GKQWy! zk7Q!o^H*5Pj*Dpz-)TEJ$47^Bx(>EBOHMG$rJ{8);_UA)zCz>eUL9c;770fS%lX@G z8vKXhP**=J_B1;7@vV@cT>>18#d;q==O0M(H=j+U@63-o zCFsgLw^;gWOlq~95M#L$$Sd7jQBm>f!BvR|PyovHhe^JLqE%o8;H2SVncNh+fqmj3 zRFeC&O}X(3OZ>2#kRI}UL|(}24^h;6V4O|rhCwf;R&r=oY`tz{?axz zJvjxt3i(clf=~>vI!gBVfzx@Hdi_S`1_>Cx)ivi7)!?;HkZjeilWyjE7IK&y*980?-Kj0aL`jN9Q$RfuYSboldzHO97ly ziT2NDzS>YapN5fdR~Mz!BO>z#9%jzO^qnk6BF$az$U>>dE%?SyyDEp|%C9KXFXn(IIJ^+pA0y3I75p*69z{yJ6eqk6+{eW!$R zeDcTu>O~Qy2yf~-7t0Wksgfie}X-$W-idbzCZ+6FuJmL~t0Kx5@P*pGxck zFn(}5Ar?1s5#>!f91b;*VkHi9ZkSN*AU|S^pY!d45j#`l58m@ptK=}@y;ZeCOU@~Q zK0e#83lHkj*pT7+Z5nth_J21(#`Zr1(n}>TySBq&Dlzo$pCc&ZH+Bq!Ou{aj5wVnZ z;3kHS37Wx3zfu3)doGw^JK~Y6b(;L=XN1moAg4QsXTJq2Hmr(?VZsPg+!zHzk+7)q zqmR0)y>>6<(}uTJ1nHCV70bCEL7S6F3m50Ar%Ys0%G_460!QmpDmQJnJLy~U^qIcx zTHAH(rM>`oWy)t(x)pg?;5ta#FPH?jG~haM;nD!-Vfy(%iMHa7cYSBB1zQErp=mJ8 z!J%yk_p=r5709(H*(UFhSUfV9_z)}3XTLU8404O3q_^!^r>_pa1j60zku-TRsg~?h8S{>?p7`}+O zz`Y(gRQOv3(10%Bj6?yhS|@FsPB@-nI;h%P|QnLzshg+VVs#E^x}uE8i#g!cqY z6HvgyWXLjyG6Wi6B!CKB_g;i|uuRxko`SiomhFut0(1(?z0sX1mA|LXl+sRx1_Rb} zVR+oXQtgR;xVF|(S`;)RNTUP%GHS;kUWa7o<49i|k%1(wetDt2pj^s>h`$n>-^F-! z#~Dc-P_dMe&d|5H{@P~LlnQKm>K@y#zb-@T%tT0(zk^+Cs~_pxTurlGrFaBSOxOl4 zt}>k2r}sRrGtXvo^w^Pg*x=0l6QJ(W4jEu@C8N?^%*qU&s58|?;r1DSzpEF89*F%@b&SoP%X;)-l>lR^h~+&Vom67fEr*A~ z{MrJKc9*S6^(oh1*GkPodmhW?e0=UPldMRH{yimq2{HTIOC$(Z%_kXqC>B&KwrUBf zTy<0$AADVVy=hcN^p{btb_=QCmNb|3xJWpKPrH#*WFf}-q+i>g+V=kDp*vkF&xcPE z&m83cgsX{q9uFO#t&@KVj0!Od_e9NJL7>MNSRua!D+7-y zJaAuCaOP1lp@1|fImU+S2P)0+0x@~-6%C~m282BKpopU^Sw=i!p5k)sy`}<=Z|tGihpN4Dj_7Lr&}>umhpO0G+5CS;vHg+%pi9U#wrx$iDHS|eN%sIq zKamaplc=R;75l-wvbp;HGqv@(3HqWM{Rn-jZ&L|uk&h&nCx+(N2i83$i6vsZ6(9m& z>i-sfY`;)SV%IzU7PXDd+MIY(UCrk_mJp^^YH?G(t*kpqbFmpOHl(&*-uLNK`EP3b zx3;NaN9+t?VeOkwF=e@QDyY&U@b30NbD5f7z%7^WG<<27{`B_pR5!;NLS}cjljb(e z4fYq8XISbnXp&!K{zTlxiu}yqa&n$PowVG0583wu_WvR8BL#+C)O!42nOf6yeneaU+1$dS%{$ zViHWtu-gN(!~4gqSCJ8MG@$-`Tc}KcS8(|c*#VM45tt9tWRRy{{ZwiZKHBtgvDf9b zwmSvKro))g5caM7H2+z@u8xnALx^3xTkZE0zBt?ej`!j053<6*HiM0xc{hoX6#}+4yFf(AMkP=b2;gZ*zY7dKrpjzz!XU zoiOBx5kQ3raHwXx94Mo;n7&Ot{s$MUt^}%N9Bk%wyvU&da1wC_fXTwV2YM37l%PSX zLBt;Do^}pMVeD1cv`4w~I#Co3M5hIg14JgO44o0&$eb$J?xdHzwQk9)tt^*yzpC))IZTi&Icb!w|LTX4#Zc+h)V=#wp5n}b;qeO6_GGhL--9@2uU zzP^Eh0stpr_4C>u?OP+zLqx=&J%Psq9a$3#4&+S80I|OShwBwC9Jaa~NPKWn-`b@P z65>qQx|ixT>g!k`Qe6rgtWze#F2Jl1+MwlK^_M|`MVIM;-HS?{a!YZid|^jk&|)jt z<;+=eH_uM`D8Vq203$iJKhKyn^ zc+qEG@MYfvH+L8-?C>$*fIqj+iNImMFSyl0JmQF-pd`8I=VfTp%qei&LPKiFFj{`) zb)n^48jO#i&47YY)Z#G??Ro2#O#2Od>Y+~9*u3xlm9qKo7(h%3Mf2YVsdoyOSE(AJv?Teq*O`p+cI1WmXG4>(sWv_6`Nj~3AP ztQ#6?U$_K4fkDgnm6qiGO@_!(#yiYi@7(<(TzY@CsgQ^aY^+9_{uCmb?=LarsLtW^ zFeWZmod)h`j81s^;Bh5P4GK-Y{mA4M`oihV))PPO?Yn)hhWWRs07j1J`u-jRhlTK$ z(9tx3$7k6&8T_lt-Hp;s?yKu+Fb5jAh3OjJ_=g_iP5Z@`nrh6OYRiqgum2R5zFD4rXF%xs6MmV4bd+^Kn1O{WOe{p} z%RK?vFs5&(M}<>E^|_B}Y2Q#5#^^AM?q$>XIhKAYJp0}BpMX5bQJh!}oPp@WK-nbWqYH~GA?|bYW1IhQQ#AkUw-e4iW?jh?OifpB{3jg6hNI|e{%J5D_~jtQs3N;Q zDihZ`A~Wp7Cl(OV>fICG>%ezbqiHmYQ;#(15H2IC{XR=Hmcscs|7CKN;hw!*_Qzw+ zzi(@}^0#QjOxi{$z@31kz>t%oP)v-hlId1PrwpdDKKJQQ%k{kEBA#FWV&o9+?cNXV~ zKJ>iATvZi{nv_1(8!!`Mq$@e)tGqeAKlm6{9P(d1tgNjVo)=w_7#f&A7drZ%ztEP# zr{ueH)zx!LU={9}c}JMC?>tr1?NTaH7`VKO%PI9+^iu_rILyfLSs5w&>ZgpQr2*ih zikVt#>TXFyCYbUis-KPdCkFPX>B+xx%{!3nxLPjJrZ41k}4Jbem|9cvq# zj-93$3oQaDT>wA&Hb%p%xEl=CkQ<7GiDlPT#!F43juVqQtJ-8r{7 z{)~h^=>3B4ici}{eq!6;h;;DcV%I|3xwkjkUZ?_DO&wp?2;wX<(5xY`6;gpf>j~?1 z2#Z{bO_zaF6C^M0yVTX4k3yaql3l3xfO5GZmUaO0G(p3IfeRFsTwZbZ?sAv2+5TR0 zts^@y<>{yap@p~5^amiLSOJ{pN}E~9h>_7k#KkzP<|Z5$PAwk| z3QqXsy^Kg65mM4;1274O?Ya_V`+rEcg1l64zIqdIaI?a64~NX@j%6FM+fn$$;+^$z5Mk-C$5q>2O|x{J2_&5} zk^um21JAdpb6%x1y#%mj;G$y80W*$z4-}2bCiA!pMo?=|7$i`V!8;Q%MZV#(w?SwQy!cWw+tv`0mIM<@WT z7{FUVML>NE2_Z49lc{4u!GkFqYp}m; zi|7lUxhXk5+Pmo+P};+P<|91t9%c8omx%Bys#E5`AD5av>9+eU#?VlM;h1qGkK5^i@8~2B0dB|lXvNXU^F+?k zrv3~6TuS>G8M6|7mlcxLPCA^~^VIGzSIDXGY&5ZPR7-=|Vowr-&Qrm0mG#vRs>7|` zdy?X0A{3Td1B9Z=SNs-b>VBrJsA@g?A?x)$OcNt2DyDTkUBg`K8OdsF&zVra>ka<@ zrlzKzBn~!J|F*V{S8U$mPAwhOuW5w3cAjK>r`)?xnpNz(KAW)m7M&sWe+|ihxsX8$ z8gIm|835(h4|d4Zfsv!i&aamS8%cQ6>(1`O(+{*h9#r!FO5L=PF_wmRjl-T+Fck$5 zE2Nro5763zV)*1I@?l1TG;(_H=w zj%u2Z(#_(;?!jiY&8N002^S09UAqdr3j0(_ep^re0k9K3|7>$pylwf5L# z5^3&((|I=KhqIgU`AL8JtM?54Qe16X8gJm28>k!JFz`Rjlk{s zKywe60c8{*DA+(Q0wD)Ks5-hJ^Z-b0hQc?f-^Xnblq#?cVvKqOB(ZI8Vt#5P_E=G-3rTXw?ELV+~kkQ z2DCVxGNc|eJHaS{jYg~I@@Ppv%}6!&Ju7Z27Q-FlDRxiPZaQT zNWcatVIo*zchdF*85?25Zw*a1v8%i0cIX=YG+&3yA|mXvEU+%?W452ZSVKpq|5S%gC+#$VZ<*Z-wgx6;Hd?0kAa}u(DAHmJE+7d-(o2)K;hNt7{`dK z1T4RWRP~ZewQAs@@6J{U+FT9U-$(dk){;!0vfX&fvcC_bf))E}3awLQL6@7ZL~fyx z?(p*w3()wL0AF%`XksL{aI~7rUqo{wJ#akU{MP*_ZtJ#N?$U=CBUC{LY-H}5K=`Sa zEr=K{IEx|kL89#aiW&|3H=BQ(S^74XwJSFl0P|6-_Q%?-=4~lkc|^6V=Eo8bLP-Vl zE#GD3j3+Gn`~M3tPdxn}@gBs`EN4VfLr14$JF1vD3pBYz(X825hZSb=St6 zBOh~=u}p!MD_c5g@jf#H_i3Z7-a`(#L+BoL;=wUip9GX+NxGk^yX6I`hI?4bO~QL- zw%f!o6q{I#A;S@K1~kL%>!e=2>_|Iiv?nVergeXdt+L-l5+Sl=@ZlVnbY)rKWENg-r5Ev1 z#>*)t!M6Q42(T{$kYg2Q>%fB8#w<_}O zyACR}ZLb~vbE229!wKK_mDk&oUU5mDU^xCLom+et*!8%-%N|g>$VGgKTool>RX|sW zIJz;La!7lM4B9a}eMZg=cf5f&LCM>6A>Z=t^R~;b;vaw9$PLw3=oJ*>{BdoJA-T>M ziiok>9|L5Qd4LoLcTtUi9??jKg@fsNGDnoAt`_<=NZ2~<@v(Sn%GUSd?ZL`f$?jsG z(c*e%TZ`k`0K0i9V%|kxpV^$QT+7;~9+|nz`=-1;$E;;v)>Ym+aVP{ug%)O5t&^`T z>~ec!hE?_7Oml9jc%$kx>{A*%`}fPXmsyjsYiUWDAmgD!r7*`l?LX(cxHi+Y_}4zT zyxVF<9%@Uui&8_a(OGX3!xWPCZEOYQ-*mrYG2p2%d1h%~U;wy)#PYj=o15RFxzCT5 zC-M=!@Ie6qlJ?2Y=^&dIy^o2+KjisF{f9WTP&XtX5-uHc721h7Bk&sqK|6uuzQO3? za{zER+>04uIXMHMBr;5Fa^v!FXkSxZ87w?%OESm@U*R$%ivl(QQm5b*2mLC-1lRl+ zqhVxJ1IH}lv;w@tYmf@oz;rR=S8sqd4DeaafCu{3FsbP9369ergVw`A^r zDQ9NyyCfE#tXin<&p&o4XmPcx&8*n_aQVkGzGHj~Kam(C@6Q3?_Rz66ff^2=q4~*v zA{MUJaYMcdmlkBOxiRCavaUBdzr-LLe0cKF+~19mzyh2u=y#5T#2y7QTFldbIi1C7 zoBjKx-w8^kxjH>83&Da|tY4q&+eJx_@})SXEEmh+E4e1ZM02o-b^O8SM=_!-k9bj5pR3m>2?;H9ZKQq5v!H6{q&NCP8DGIE>YkSqMwCBP?s z00ar1EQMrMfr2O!+5hekd>xQE5&R3XZH6HX=4zDOICNr>t85soD3)`uzxq+-qF!YI z&0YLtpenc#eM*x+<*V~d28=DxM8R(`vGx#%jzie8g$0(9L}={RdCx=oI1L*OZ3DLF zgOkOu-?C|?@8Wetc{Y8=A`YM%Hnz4Ne_~)Zx7aIv>J*A3<39t#0hB0O?HuUy0`Tw| zAXPEYA`a0R3{9`IL9f8w1K>qQNeB^yfI@5Fm+?Ai*7%ezS;ChAO)-+CNV;$O2@Iv= zoqhv~9&VjeTNv1uV2_AEU|y#sfYt$N54|4@D|M0$vfx4l%SXkF%z>H8mFcS;M% zJ`a*!fsvuk?S2nZjog%I{>tmZ!?6^-8EDBn6fbt~+;5202g~^5jUKod7nIE$B%DZ> zb?4f7(>gwPxq-;H7nbE^Wq!1>7oP&4{RR^(983jvfjS9E{uE(?oe zI(J_a#l&Ps;--}!*5`=&Da>Un#!$oiftt&+=yzG(!DX-1kAtS^=g@)24;t*_N+a&V zP*d;m+G&KdF3PNDTd6R~r`~&~a4PG_`MlD{&zDBE^HPF7dHXFszf`*$&2ix9HzV%I zuM|$j^UM!r4>*u|H&{=?GF(N=_N3T4S3S%o^PL=L0v%tRR2k-!DIk3y@x#_6On<2a zYs4wT^^&Tt!BA&$;u_m>6flY7hMEo)Tfc29D#(uDmmnN-Q8@4bY(8A~2l|5oKII6~ zC|Vboa+!D~(nB@Vxyj^AESOMtxUz&Q=$*Y_**cfSfGDBw>{mzDAaq;)G8V!yz|oub z;0_)pT9VR1_Wa}Sg)4}I#|aPXGFfjvK2DW7I24Mr97s~RMSy)?HvQyPrNhE-LSm2- z=6GK&AFXSw_?f)SKdrTLc_*yCzw=(F9 zd7GW|Df*vf5H*!Lg3ng*qzW^J)j568;PKZ^E&xDoEkm$Hk{F!UuzQ0<0wb7^SY#I# zH5-?gbPg28e5AQ&xy+BJY>loY-(6dCztK(02|AEer73>iCE`wy zNCz|>a5lK?s`9O;mVkx>{M%GeJ!ZN5@yGk-qIalO&qE*xUcRNTTlTkiw_sTpPDPLvq$0-9x{8a*M`mN&gy9*QbdW zZae8PuthcA(_z;C%cCRw{stY>|^D^`cO9GaZGH&YL+&wv@97G>`(ziA64KNNu z8YfPcWp*ZCzHTE0iY-A(2Djt9{&QIId)wL#L6VvZ_(7)KQP*k%Rry;t6_LI2l@cV?GV8E8xqxVn%1g^e%eCOrsSZ^n1oWn-(zeS9jL9xbH0Ewr6gd24O9Uz+|!ZFTz5Ou6rzeK&0Ct0!16 zVgt**hOgXC(W$|!&X08QH=HDs*_=OXgQnN52B5moatdSNvYkf8cV#TmS#kh&|5tv_LAtL(4gWuXOs+QZ%bS^Z#p zyGd^BKk(y0@qGq%9LOaAv|>c^mfdlq7Su-P5KYE{GJr?2p^Kzlc;R&PyAiyx!Lp-{ z*F90&6G#GVvBj+wz@P1^0^M*fEX05%fHP2P17stZ{zH+L?}6k6h++YO1j3{zu@Y?K zK$U^0z>uCAhpYf?gVu)Ji?Jb>yR!o~pRP2|jy`EoTm2hin&m8Q1HopqiQQWd>@Z@E z1P&l(f|$JHk56eV_e&=WT?w#y14!+0ccK}H%E79Yh!;Lo2683uf?5mZ_y4h{}Dj3)e8R{vDk#;Ox1b$ETAGj@b zmL7Z6p0c0|ziVq_+u3km%=zVd*uv8plfxQLW&2`{?_Oj(Y514A_dS&~8N+^{Ns8^Z z`*Lc?uCpBXc*E{lUX~P%WK%2y(>F$zlQGNBBJR{=pa1S*E}i3P(yeDeRQrSNlA2IN zu<<%c2H+tH7(H_)rZ9yjZZ`FAtV?^u14uHj9{H05VGOlm9w*~3m6mdWlrL^i;ykaS z6{_|6kwzCbU`8)OhZN;4Bqnx146s0snE5@5N3so*!v&oixdU!IEBTaU+tbrHfe$#V z;q1ela6Sru^tleoD50)B)5dm^9sP?B^)>P(KSqobvUYy3=ll|YJ|aU2jKu2d7?CD@ zLOtIBVu&rHus9KE6*Re^3zhf|X{@utl!zS8mkfPNfqczj& z;AnR|9!^uJYLeqJV#ud?TVRV?t!@ZlgrkZiuDxDdI$T;X3FEzvD8@$!*YUL%Z*4va zo@?3qDjhg;J0MY}=vntji-T&1WgGkWbnBC~JTU4t2hW+&OIOtHcHYlw8~ZWRrW~R3 zA}Z1|0tQtjWhFu2#+CqbLU(lzC~WEO8C9gCVAi4dfZU>}*(X5e;sK+=b$6`5rMyc2 zEz5tPE;%i`HV`bJ)wbTkg+tvVoSP(^h${ z@y3K$#6mW_33LC;5{S?STWzlrvAX|s-RWw&9vANJMSuhVnoSZ1JY`z*m#_g%uT zHrUl6A){g zx#m#aZr;cRvl$?^VK5B((gM(vDkT~0WLkp#+51tA{)!T zzg;o-SU8O5WU$B{HoXRgl74fKYp&@NyGr`%*de4-_S^WkbWNgpCB9zJI-4`~HO9p` z<7i|y{*=@4cyk^18?J9T`xl)S2Ya-A6vl*wv*WU3W&HstldctGv@RPV^Y~gR?Xe&y zWHM>sbpg5x0}SCgH=A`2`m%?us_%0OoDXtG92{YsbgdTqg<1y5qL123Xzo{TF}EVP zL>-9Af-OFxJ9XIe(-o*lurgvNf_DH1FBWojWw|_NrNP_RBexdO@_^RUY`Owa+o;HY zIWX}F69zpMAEySI1NWd5^ul40tYP(SBCpg+eg};>SIljtY%D*Tsr=9HOnq%Zc}a=6 z(IwlS&2^8h!OHE*&8NZrwwv)48)GfjDrJyb1Oxa^2a>#y@{5tQj}hjpvtM{%Z>|ec zS!P(X?BtSwr!MF);sp6gojrirIWm#8lLQ)mk9t?oSkvjXV;OPm1-(Uj(q-FfK6uDb zWXc$x^OkSm!lUgU(v@q&iOSeWSZ%>%C=|(zg8T6uI1IVTmfa;A{hpv~zLB^UB%Qrd zQ4`5T%u$|5gX)?yDjXSA;*{6sn-s3VS$@+Z4hnq8v@;#=;&lL5$K%p^U87u{Dp*q1gw+xb8qB^|rL=aY!kL!Bym<2{a<`c_D`)9cWFpI4veKBoxZX z83UdQKnudR2Ib8E`V6@`AR$xioPlx=!RxT~+XWl~_Z%242LuG%xs$=)Jhipb8@SLv z1XbR{Q8QdCVp8475TQ%{Y)vuf-Qsmw-B5~C$+qiM|uN9 zV8{sBP*}19$ug%j5x${>%#J@(Q#YZL7zW)rR%~qAXZUTQ5qL%XF6D&vT6%j>TYj;kNH8GU4nm;6LyW9Qz&Du;_5sX&(ZwFUOPA|Wt)55Ql|XJ+Ny%<4sOk;7)Z*m zlyMYjCn}#CE1r8aNDW@El``ToP~Q^vAHs3YnRt$jJl-ZHUE=I`^?p;@7@x0%bK6*( zR+8|V+fRtyih3$@?TJ&=)3ZOfocYBE;KIy>M^2i{V0^%?s#ZKg4mK`4xrT zLMQ`K6>@X4J(vgp|I!R_f*~H@@sfOCg9hydxVMqbowVzV{b^aL#G4;Gs6r{l zlQaN_K}Wckulo3*(|Yz-S#1-HcO?h?`l>YJFixC~cZp~8eeOFZq;9eBz~9xA9mqF- zeLcpaVE3(05-UCHV-0iDYc7_ju~kyX<7WPQ7afxm$htt-SQ%W_Z1_F8zN?qjR($z+ zNh}~{gvk*&2*uKTE8=aS!I(Nc2$;=lMEn;aV`OWX^m z{xDKgtv3D=LR?dB_mvsvGi-_$sp>_9o@60LyI$qs%H*fAhJfIp492}jTa_7QzgL%h zKS5vMrlx2=IRC8Kz7Bq9%02%;lB@^1GABX%X(%hLMN`f5X19gYo+}NwX7che%bF z?r6&W_)QAk6rtkxw||tqFFVnCSuEM0^K!`g{MY#8;+U&B*{{kXSTfzHu*}B>pL8|5 zjCk~S4Ap>B>B@x;S{wwJFDvb2&#sPoK1NXSiNXwnQ91iL=<`uRQ{I!Z%F(uc2TQh86go#x#}ED3F7Gzt{E%d;~E^Gj0-U&_mVJ54r(xkfBMd z=b#wY)0?(4BxNUDf|^y?weSoC?V%UyVeYGVi1NefIV1wB2_OoFa3wrNJuV_vczO_l zp!}%xD2B|Z3qnyon~@#DVZ#Lyw!;k1%WIRBI?JqPNUv_{_V^v_Ze>NiDIT-72uf9* z_0G^;*{gG*e|I*_y`koGNhL`JzG8T)r8)1JMFi(xDB-2`Edmk}Xi)iE`?TmPltjC=U>l33@Bg z&K*Fw$zO$mgxW$A0NW(U!4K!rjlhWkR(<31C=1cJE8zf)HSnhC+5;>CSM?R!HRt*T zV++&t+e^?oUCc90ulqYSxNbmCY5Y)T(fI_#eOzcLv%8uomJE5B1MLNnag`;IGxRA9 z!p@VxtOvU9f4XZ3KuCY#0yZ1ecypr=Ff--NOnmyE$Lg+WNZMwr?-EkP< z-eOx+@?igGaw1VAxN&2nQZp#jwJ_P2@WoguT`o+Q`RkEsQm0PJ^mOhi&ak^eSOoW! zn@yS%3;cmC#7GN#Oo0YA`sk07hmO+CL8KSnp5hu6*&6=glpsBqc=Xqs@IB_40y0Bc zmN@g=Q&|?cy!$2;1sr!?Z3ZRI@`wC@SZoiWZNS34kKFkHKEJuiyBA}dI9e$k`z}8< z4wBmrT;%_ZaA5_fa?98rfL=WLSO7bO{IeVC#v1+*!oKbN z@bY^^gkxr!iaKeapJqs$k0!F1QFuCpGi<};qvW7?Bgc^xfF~^c?#@?br`H;jUQ2%+ z(DjxvYvPwZ?)^hRG81`hrXpzL3YmSWgm}$q&*F{5&;`Y{tsB2}9v0Qu`f^?quk7(A zTyxOT?DSt(-}oc3o*g#lJe(&_YDh_a*V7me4w+qT&wq44 z*|iBYh0W@f#RDz+jCpNQ+v%0Sz6I@6$av7u(Ft2xUY^rn+O@BZFMS_>zdm_;aPgtU z#(ccvu2=nob|0#jm*eN2}M zzyjJ`nup9Sfb4@A7#xK6d`1}#n`@97BD23m4JrFR^0hmDpovC#3(br!4sr+~5WSuH z4-)6Y34S#Qyal?FiZO}qCp*rPHB^vR!_(W_qs%-oY)<&B&~{oGn`GW1>@V{usMjF~ z7U`?IwJ{pLPF*TyWiA7F~-KQ{xo(*m<_>BFU-PcE1%@^q}a=g7g7rP&a>Bw4ci z4f=L@Y;=3U`wx`6sZ^P*uWQ7xChf~wu|&EUAU%$F$-EAu+|8o!zdAg$S!emmbSW8b zowx-ESY~s;3z)p9M#o4#a9739+?fB2FxN#P(2*lIS}m+P2v;zn(DEgO8C;SW!O$)t*&oqa9c_)$IuBWo;QAg?TCSfr? z*;Bu=PGE+Petp00#sU%0_m{Sm`hY-KjHFAfEo`ttR}D5`hsP{lZ+#@xsl7DWHTUj4 zJb|K}%s74<87u8zpB95&Kw{uYH?Dyq0CI`7KEI$qcr3WK)k!nC6x4zOk&Y}9l5pPu zm%Ukw2xfLHBaYK77JL;BUjS3a&K)KS)ITz*W)`L|A=ANjJ=7HjbEVb=1%CiDv3&p> zH77`VB@jOg<08D?yc!67!8M6~{zx&tlNVjLLtm@ZF8*@pBFNr-vF3ZOJ%*I63GZWK zJMa~Q)A={7lYpL-NBLi(89M1ARaiIOz{7cN-=hkmX?UPfGawqe0hbQe0_Sr24N5bF zrJpASvMQl-fs~K|534w!WLe@Wr1A=Ok?=3JtCIm}4k54M3?P6w$%pi9%;nMOaH1n5JJgW+r`TSXc>txqI8wO{6Z5rv2Xa$n=9wP({)3Z+(~jPTTMEn+8gqjX~iQY9Aa>*&ki3|J|B*PpYuRk(S` zyOQyW@KUIXTH83hw@^?o%*!zM?LCU{$RW$DAO_p6BW%iXuPrWaW8b10_uAa=+$L-# zml+@LSGf$f9m2Z0y4X8Ldomg$R9~C3bEhO^of_u7u9p<)Rl*@I=dGU9^K?=F^}ev? zBNVO7$O_9nMds4qd0N zsibG$a3otRvuEh?ixLx}YWgbk-+eLrc;s}80rzu^<#UYV_Fu#KS%xfFg3d6wj>FXT$L-MsRUo;%yCX#I4YG& z)m$x4ibS?fFsKX$18f52`<(dT*z2e9lXR2$_K5%{2)pT4zQVobFZ*_xJNq^qXVfi> zJZhU;3zDc^WHihPJ#E-Hydy}%EA-JwRfB;hwK`^FMrYl0V`6Y+I{0{y-&&2|!M2jU z27+N+0%jUgv$`5md$-6r292f>I(7(QQs;7X)@E3&B0ps{cN}$VUL00&2Jk`Ns19!D&W> zOdfRh4?W>tHc5AMWtd?AgF%(gYQQfORKqBjQViL{w_I!6b0m&bqC~!&eRm;{RPySD zMunKC{pI?V)n8XroCVA+&J?vux6^-dk8>E z2oY}w2hDwTwx8Vj@Eq(%EX}!eTOl5IGrR7$rMc10qQe6x)Z=JTCfJH`cK}fMEYiMk ziDDt>HyeVF`r>Hk+%Tvv4cd}09ythP&7d8WhWvAxyGICeXf`|WLO}3=-lT9isgzRo zOq}w8zNt;4CP=VpPZ--pWrd{H;U8{5-eLYt^aKkj)l<7p;}UD6E#LPd^YH9=PG#s& z=wJKGb@l7b>-_+=Zy&|`FE0C6GDMapzjgt->7YSsO-&!1c|c&K+_1AkAkbY1iZ5ZlEAy0Avm+z;8<3+6IsS*GlbqO&fPJKB;s$DwHc zaGj${ff7mrz*`XkxU%5k1?#y!zbt|R4~ekvfV>d^ip|5i52tF}Wx!|ct%kRH6%=S3cJh#P&(&^_Etb&VBVLiDSrcLa6#f?t{%I4;+v zHQjmiM|WGY67|+>6jh|nr&faQ|9HfOc@`@meUkm|F7M)E?dpxyYnsfCyH{W8@rLR0 zkS=QE>G6@I1_a#>XMOtLEYb~swj4R?aptG)G{1!1vmt)ySPhyQE; zwn9~f=x;p^(g+~80?aTb0qk37v^=2j_1g}APF?#=XjqT{DV2IdV2tV)6PYz^+Q^aT7JnVwqCR7DA|H88ns2Met9y!Zf@!Q`VY67Dh)<@+Q#3^Sf$jc zHlNTyKW%k&*XD8vpejDx(Z9y3Dv~MkjFkvp-ejvd%L>o|PBKZw%X+svM1!(eEa|t~ zNYGR9fd&nh-Eb(N#T@xWUG1;BX@4qxj~RMiKqvnbR*$B>ghgOeW=qQg5r<)krip*C z0phT(YxD>L&|f~j3Mm&D%oI?VR4U^?OjsW{@oaRYBBHbU5HKKeypD!&)x7OkWQSt` z`IzA+FVd!n`xxyb1W!kL_(ki$m|OlDwQE0HO6T6~_^k2#Kau-VyQ4M))?#`rc0yGSBQ`{s6i&Nl+%^VSEXv@i$NJ^P;o*p>vQ`%_)CY3{!&udU9v z6>HxLoP&`0t9^-`Y&#MXAYAkTUg}lY{a0_KIVMQIwIL9a zC^wEVE9r*B+e^O})+Zh2sl$dPpG@xGmAA|W^aq*k&ytmWQ?9lt{H?xlJD}_fw%!*M zf8WrRsmjq2q~tk8GKCE9_BU4DA}~FGI{`g{q%_4y6j?on(ET7hiXWyeE>Oat7X&n{ z2nfCiauLS=BXhvE3CsSmX}|>)oqd<9vl3LszyZiEbJY>&Bv*8pAW^&0R5=(rD(a~f zdaF8UcK$|XYSM>fb;8E<&XDDx&^6E1<@Duf`<3$>ABTtGw+;3S2?5;h%4*A;%MFgpJmG$H7IbXFYM56r zpzpnY9=Ox&l03TZoL={gr%%Yh0y}-R+&*|3!~_SWFV}^*;8!3Td9q+}M}}IjAw|L6 zr?e;^0|kBFBHY|)mLaGo0B$&O5n4__DA~kYl37n5K#oFs==!mC3v~E1Jw0uX`aEEX z4qyvu&rPv z?fY8z9xT@LP&^=f+%r!>IfIa1<|!cH&jDqEw20_GNy1Z9l@K0|7DJNNKpn0Cc;4P? zPtql#ZZs`6%yx9;x24~n{|;HuVwa?07_d5!C91Vm4s8{%$BP!B-2AGALRKk$cFn@@ zy{C|?zdL>v8)-o~Bd{>F#&xMI?UOcSEw1?44Z!b7sNAlOOB5vSpa!Fz723Cem;E94 z5u&tGbJ0@Q+yJ3rsUv-T*mENS@?yR&t%p=I#QmLDPN(klBUCEX8M~#?6)5S`-q%lV za-{F;aM-+U=c#K_s#hOmE^V7^IibP9yZg#f0TUhz5=WA*#GV~{#3eHn94U*+-(97* zU6i_W*GDXtRcfpmW_E|u!s69A$?fvbwrt*Wgd1D<`t@x0KwB}(BbG}m=(oVb6FY*k zW_}&-nHgZCa$FQ{u3b@R&yn+dHf45)r)-C$lmW+otm42$h06_E^{Y3os)oz(-s3gA zkAz>itA~{jK4c-~X!#`J$I0mMqdrlu8in~F@K8p&CyFmI)$okoU7YH3CD$yvFtPPZ z3entrzxiiF9FC$uJe6x{h>IjWpGORjoK^H>K|YiCDMlK3@xG**48j3RXGs#jIkjmt z`JqS4Ho}FIVU3hid6fGH^RAO#67L(plzb=VI~x?CZX98;v?w4agXoiDK;jQQ$G;a^ z;Ln^S{7nL*N(8%-;&qBAjEJY#eQg?`R+B&71n`62&(3hTouXP*eU6F1mSb$^_2XCa z?jTXd`i~$E+tbr?e$=~K^sEK4$Ls;Sq?Y7tSb!vw5a8#x@M9?z*|D;e zUknF*sVVK#ZHRJXG5fyQq>iqs7~gN7(`sK^U0rPh@b>rE5HIgngY8|zSL%DGi#kTz z9=*F#>3M$R`$LI7mDn({-P81P`jZ-Xmh&J-E+{nEH}!pI{jIg(HrMo#SNPl%De0Qj zEGH2XSOQ|2sqkn*Ukl`Nl_<*ooVk!odBUkH($WN>hx+YnlCKo9%63^P=Wxp>nfZL~ zeF6Noiad$v<`Ko@<-ee@FZQ(G+stc};_u5h5pD+SUFFkB=o-*F=^-c z5ev+l-F!GF(X@j|egm;7o3XvwZL`;4p!y8NR5Eh%)3plv6M%B3Jm1DqzjV zBirVdQau~~c5EKJy&>vZzwo1_G$;9icf(I1dof@)E`_duL@IM|J+0yI&#$<_c0!Lj z#K1PMtN?R$<&GQB7i$)KWJcG;7^I`9?dI#MMt`JM5WpaP~_BdI@15xe89f?E`1vl7jXE;OA)=Be>jvwGOJdTm_Jc zE8F&{N<%cKRwu5!=s*~KPfMrv$|M9lWce3%#)mF4Bnp~WhGtp6fAf#%thX3|+*+bs z`_t%Mo7Db5X(zq71Qp{htxlGqH4`hUBm*hSYs8;G{ zx42RV8pQS}t~5vV7f4k{lAT)4k(%~l(pa!9>vp7i3Gui=|5?3XuX@R|6&=HU)Qq$J~9^#u!zmB;TQy!<4yQvqi8MZ*PZIWBms2tBT9 zs9TyGqV=cSof{qPopShZ#dcue(>CgfzWYW8Wt81gG^W3apLv<=7p7;PpCq&YJ#l-$ z((qJ{&aAhNXqmo#+&udx0VzSVBX1~1S97JMGxaa%oxuyzql85g`G`AJlw=eXu8Fr@ zY{ovZ%r()s#GjE;DCOmA=EEi8_yR2+2;|4%_FLi-Of3AQ^ZxY*BxKjiq!{z!%Yy@A zR)6f${o#Q3A@E4Eg{$b22X6ej?H@w7)0cdNNx;cw@H``N>WV^RF3%kc_dzmfV-o(~W_^A+eGAMhDem3~r5Z-RhN{|6o!Qt8dc$AEwK>n* zbDIw1vvlwA6<@w;eK}-lxx4-ES_2Tx=F?Y`?U_aCw`WNLDp&1dT-oAgRPR1V3^k;# zG@T=tdxp%V&Xo~L^;drmfwscF+=F!!Vk;|IaHLJs(P=DXzAjy9m{u>Ye<|#FDJ^Yk zZS{7jhR#ZhT)KF2)}o)C;^7Ye^BhM=aCnVAOw&w$<|Mv&c6C0!6ZB9@bO=)TkyTdY zietOjQ%-@#K&cCD3`S=-HyY@B)cOFKtxVO@B>cMwN=2%OXpVA`I}Pk-&BB7#I5bq* zkbSIwQawx5)Az{q7%qmMc!kq@dymJ9#z@tA&+Ru>o&qHSC)HWA>q&%(9njh?c~ zJ<+YL6j(?poX;-Ewfr=I#p8WD&pD=<`JcKY%O0;@dI1ND`6Jk)|B0Bx;3+ULYu+>TZfEGNrJq<=aG5aREVSVJuqW{YDbV$hlBef%XGg~knFxXL z|1t3z@xRvTww_bBICS4d@PG#ZP31--)?w6UbOR&;s9oYMM3|xt03b>8QHD9Wy66A| zEy2_UkKPB;?7Hr>C{Z|{;A`*zXFS}_VQ}QpVL~51R`;$z+D8uudd`R>^7Av>hP~dG z$~g}PLeRwR8P>{l{aSQodU|^MS-O>?{l>S45^L%Wi-YxxX9w518fHb4lani(SKfVJ zg)iNW;2#(m5?V_nDL&Pa1w$o{4Pw1XhIB4intYQ{e)nQ8+st+>w9ox;ZlY5%K4fj% zHc?Wqmkc+|z8-AHW+Dl2OH{F$;XcJ@FFZF0dc zcrkQTH#p5E2AVy1@KR!r0^d&^bi|SnHx8S2aI?iU%cw)i4apt*$Yk86Fm_mK0*w~k zUSTWpC=i7P+G2f_U9Ri1)!d;+-_*s@lM)Z&TbO-D*m z3m^m?C=b+?!@%_b^6*{9_V}-gb&IUwrLWEDA@fbCijS*o=^GQ%tM$g3&TV%w)9yX{ zkY-r9m6Kl#z&y-LYp=|6cN%RwCfNx9A}46^0D3=Wd>)57(zB>%*+t z?ZgZ5Tbm>N3VM3FuEds#{O2bg-98rfPP7+^=Moe#2&gvA<$m(|gzguGZPE{jLl?_$ z4Mliw=EKmur0*ncTHGfrm4W15;PE;S{npLYoPoWPlDYx9lF!&V_vmWL>%P|Ix_(6Z z6ruTO(@l-$pSh|@@7sEh7u?a?Eq|z|Ss`6LO=C3xSe6y*tK|A1Qk(J$O;@RXoy@KZP^DFp+%u*?HG z1o5eF!U^W#ncEIq3YyTy_GRAVs^L8UnRaFWg{M=?rE_zmR-;zVoAZ5~UGY2AG>h8a zcQ1*818X#NH2u~@-OicG=!QS`tL33S70 z2>-wuxb%EeUJUdr&&la5&DInZimJ1ijDAQ4SYc9aC+bqaeqDM-065C(%B#Jdo&KZL z5WkAhTY*)z8c(Kny8qHyojLu-g_Ab9`f|GNd|+s3Ly>n#h(}>veRXs}anZE)$`7Z( zwD-AYj#l>dx;5Of`CP#NjpDX=Z;cD z3*f&Y!9fK|N9FSurU%pjR*V?plc1=W%$H4+>>28FE+QESXUiR4_a~)yO!QsPJNs>G1|{zxAs<`*H=Y9WyE1f56m| z#Pc$K#5D@KW~|;zOHq^U_6MY%9ZWzTPqK-HkyAxXO7?k@Zp15KdkvrKem*H9Hd(jw zrP}lK5#PV-eqRg}J$34-4SdfD9l-}DY7TR$OxJai!hJptI2KSe^2~Ag3woJE%iRbE zMIjO?d)7t6eAg?WD5`k^)V`(&-q3&m#%9&?W#9aB5S-0WZuv%z;YZ~Gvyj9CP}|FoAj@oSehH4lX%-7=NT^D> z8Pm1ZMQ2@&XReJYf+&I@pnRTmg54o&?<`*!?TZWq$3oujggHviBW!-X9l-`b6wco7 zM74h_gf}z3hF4{rP9UK>AaYXK!XBcX@FSGz(2W(Cxj%l9SMKlY%aH*ppiq>;cRpvyzB#{AM~y1ktp`AX076`kOfdyCT^MTveII&<1<_W+s*wZie~KM(Nu z{Z+o15RC;FcIRAwQ1RPdG=%`*t-5s~3p_wiMIL_yK_3=wA;=>~Ns>^s<+#9vD}~Ix z>9q@bJ9P&QPA{_Dqh1xc0^A6*KM^r}PC9d4i(31)dpdY#YA18)8+3px9ip9sfm>I^ zm5AJX{%EQg6t%Tkas8RwN(=gM)h=3T+Uu?{?{@@u_Cht`6Ry30j|-!cAyr_Vsi0Jv znyRYS91*4R5jo9v^R{sqCr06uc%qDwOJOJAwQoM*G}3*uZRa*#-rTz)6tjpuUJrSD zdfe5oF`w})8sJKf*_`IY2q?)sN_pWzcoV`U;&|jh)_2El4T}S}-&>_0PQRVSm=Mnv zlj*8ETb7j_hdXr#yY=OLKwN(K@G*tYT*kyFlPJQsfS8NO<%zv&(y&%m5=bPM>qkfV z{j4dHdg8cWd4f$JFUUjDOA8}Cx0HkBl#$_Z-g8Pu{6?%|z`K@o>~&-9k>@8><6NX{R@pGe4L?5HevzGn-ywp;Ysl4d z>VlyE~WT|B>X;DM$J^d-WukJMSisz zPQuSfz22i41JCSx#aUuMc7)BEz-f?DP4>$n6B~;tFqKhCAZJ?Q@~Y&&=6AWL7k4mj zfjQdc#(){u*G=okyhrs*wtRRw!QwhJpwiLYQ5?K*AeJT3KEG}tvHrbb`JqJc;)=%J zXN_~t4%FaaZTCOv8_65pp?@Vdz<4}5ksiEWps+)^v(l4(M^R>r5j!{c&0IF)sTUPaze{tatp*V5UvD<2RnQFMOKlGJ>>q+ERT$-_dFa9_}iV6 zURN#79QCs+E{<*cf?@mf`~5`z#68W**Hh!QG0X4e(%+^!*hVpfrp!SlpR=m`S)uz`_s~{>|ibh3_K#DN#?iHAJR>A8&^)6;0ZD zxs?PV7QTypY;gj|;1(|$P%*yt=mQbLAZ`@C(K>9zclwx8MfUeKx!C%RG|!MlTl%U@!>m$ymVI~c4G>bDo$7C_tGb)W5W8i5(s@_2*2r2HLw`0yy6tI|A zGS;|jnxXTb3__PShmLz`{5-_*}fqk`TsI;Ua`zxv4d%^Orm zkm;B^SJ{XD4q*9)G(gA_^Jmo;9l$E*i?;w+6_SWAL9qeKSketS2s#6WG8V69e4c`4 zk`tgGL7waeqZ|o1+LQ`+a6jTyJC(7M(r^9wo~6NR%@T)c?x2kXdK5-OCrImG`&tSf zi$GSIS68L>@^$iR7et7*22InGiaks>{-&?G=!k85`rt0jjkW86-xFJ)n^Vfi1GGs0 z^88cD81*v9s4TW`&_0)z*wAaLS|BJV4faZ$_zlZUF%T^7u(Tmyv8!Zb~dpR2SSj>*>9pR9y3t9S6YMQKlXy-K0 z>l@z(x-rbs8D)=6RXF&|?{FXgsmmc+pMe-1AFUF6TSsn}zh^9Y=dI8fk|n)eGLFJ` zbkB#plk%^7kz^jkMVI|PKR@Q<$t%%&_0e zMN5Sj6drD;{fc_QcaQ=~Nn~MzwtM=C(2yXb^yGRmeoRzWJi7Rbctko-yfei25`MEF zMcNt%G}{qsydO*My(E={@TVkbk(jCH_Rn>DVIn2 z9-jxsShqzsg(TVSVl_AabG>eJk5y@EDXoBz-rq_|m7^?PHq(^|nalJHnO0oO+4ved z+ps#TQ*&#ERhm3eDx`R)20TT7@7_t^*W~x)L&k9ntoTLN0JY~y-J<=*vK8pH(?+1W z@2^`bv$aXRl?uXfdQij0H)dNh-4q`Awt(U2|2H1R(x>z5M=`zjaO6ReMAWibM`PW{>%XQ!h0T%k#rQQ@=$ zNq9~%_GRN5lfHA1hpS{v$gTF8P_4YvHiYym#`24&xzXz@^(KS4A$TCl$X)>2fK&^F!u`htyg7@o@`Fs(R3g70AM zXT0gt+Qmc=maxlzVuEQMM2LWY*70<8ZLe!SlNc|kq-;_C&h|V&#Ajx{pGKMkrOBGl zAma%q5}dLR{w`-D!zr*kf}Bf>^pvddk3|&ZOH39SbX^>;QJ{Gt45Tq^mWf%gNJZmT zK`?3wc3lvx=<_24r0mfaq;TayNmV|D2!B!{=gSzP5ZDsBFXC60H&3qtb#LjDI-C## zn|HD#l;`F;O*fi#mSLc&vpN(yWxt`$gq84cKvmrddwYAGwaKo{JEw8kRMR=19qZK4 z`9=MsusMfw9@4*7&n)vpn<$;92m)NVvM{f@Vl-=I!8Gj?$={vRq zY?TBAR9o2v3M9ycoTv%eU<@w5*%`tMLHKSAx(%bEkYeKsaCY+7no2ro6U_Gmse-2B z42{=iSi};+Ji<7BxglhG#^T{Gpf?5S;E@W+>PzD3+QG}IraI}P)<0^Bm<(9=?mZD8 z?_$?8G^=6UC49}!3a*vH2_CSxKwnnZ4V!D+O=!ABTDr!8x02ubdMi>RY2%8KVV6bv z%IQd4Lc%fVW?Z+wq(D@P`>+0TIxNPhX93IteMdOT+peQD3FCM3!KJawAD4X)b;|cH z6~UK**E`qsB}fjYfe2u6J9Rcz0e7qG*9R{hB*uTANLGB}Uv>OeddQ#B^x)sAouf|2 zVkNa6Fw+ED!mk&)Gw3iz%Uj%W5sWo}%u;~#M+?u(4N2g)qg-tnfSUv6Odg=Ah=gYX zH=U+Q5Nf5xw7r3!;Lenk<469v01=so7}hr0EB`J7u)|D;EKUq=boA)_ZH+IkUHPzM zvtv_5MXG2&l`Y(RWn?a=I$CXEC{yn7?n`bmCY9zb@7}z~W(Yb^iMARX`9i z?yWd?KTdFiJx+zmXGW#LPa_6N_ru@gIGI-3DT4b9h$;5S^W4~=5_+RIK zt|$J!t#w#NT{UR_ZwsM*qs}vUG_`q%c++Qna(F3reQjebbaiNBV%Cb;aH5c$`J=Xo zV?(0fT2`2%dyl8<`%L#DbE0CNE{&EQMxIdl#}jf#8J#C!beYK|W~pRZ8*=g0d;sj2z&zTM!cvJj~5{uU&uiiY#;^8}K z!Eaf0#Aw+WGUsOlCcBj2mu5kh5v)w~94QnSb2Iy&Li8#Kh{Dk)2U{-l)n=j{l4CWD z+i68fr{TRXd)Gl*?jS&6jKYf~6R4@yFb&0FDGCUzplOC9MWDXPrvMiT<{ka8(vQya zujcqzTS-R@OVThffwqu`whvkeiwBguJjj01{-~oBhFHt@8dstw@`qDlr9d5AUnbNq zbjwZmYl@9ndD87SM!s&$3~qEzL^gnPW@K$;(ZLd`-$PJkXs3DZd`OPn%WSsA%qIO4 z@dMpdazD3bFgM8O(U^LSKloP+_(73WhKddRWq9B+qVPcf%%yuji^BeTkOZ-|kZ%Z> zxjVG}imB<dV1#HfRv1= zRuHziCZmb55L-D1oWM)4EQ7Nfat&;ufWtkoJH!4`yak4raP4Zs!$pw$2SCkx+d)&X zAVIVg6!;^<@-B^#2`j?)Fc30~L7wz~$EvUf&_lxE#{NpEE**ehBFSldpz!m>!L>h? z+m|Na&lT4$dblsGc29)<-dKGpu|pnz^5vtz8v+#mBf~0WrVj9BqOlTUF%R>C^3B)0W(Z7?W0$Ttz^Pi8U+Gd`^LBO*)BAYgX#37) z|0?~|H(b2(l9G40bQ3WrDNu-K*&>bGI^@~!bMj!q^Z>rfc`_s8XcJx6f3vtG>*C3~ z=OlU9mCPR)eK6y*b#yDd!RUC9QXD(A%rpPt(AF*=W97#G`XzDMO~<5rZ;^fLe+8>? zkG($O@Sm#gN70{KZ!ep6Hmnk3&&wTf@cL+`x6hGRfA`q_-EkH$H+lZt2V?NFD%bM* zqug+T{2PvrFfnc;+Ui9=YURTb^CH6!`P%h#1u9RU$)_B|Nhu#7nh6@gH%GFJYrJ0q zuQorWQHZC8L-fa7573&l+_Nh#kqMs=FXyUvX_)wZU3Eh@gU8GsM~0O^-IjIN$cQ(L z8ybL9O3${E`iPA&nn7DZIREd&w$EkH(ERHQ=XaT=O6dpzYP8JR807k9?l5>ELH?Cm zJr(e*07k{KuojJZWO-QtbEZ4BYrk}n2dnU8V0>B8#Q5sI%EDJQ)U3CjB4Mp2HFsj1 zSnAFBLCr&-Q%~1@RXT>%$mRT1B_>I9D-^UjW;&ta&hUJizCLfDv(g;8{3J(@UimlvB9m))9-mKm{UAr-t>nmn@8+f?~KdS4w)1vU-ULKyhiG z92ptWFcqpJFua|iFo7+=Lf#eirpGHPoxU&_Lt&3#{O>6imVya!j&#a%o~zZ=a=cKujIKc8E7S1`;+4X_-#mXO+m}iiw(XCM=X#$j z$p*SY+#^h2_!3F{+!<5HQ|`&*aF%Zi(H($ZR%F(v_Q|hpLJfc4D>8!@>-_9olE`7i zGI5ZshSLPlcn#3m1H^M=%Oo5?EKJx4qzD79BLCM7GVH!_fu*S!L8>kTB6osJ*SfvJh)v1J0&?c;ITvL9R{#q$sAG<6{n&uKfqn zeLL<#RWm+O1Z!)FPg&9^o>;nnTqkh;8x-0w`I&$7a9Zcq@3B^xM8!y~k9DrU30>4# ziw+(344o1ktgWvP@jX7+5W4aHk#nK-{$}Bw(>j+pHaaBMHcO$w7-YVWJK$os#XV4z zim=1EY|a3O8fa!4Hxyxg%aI}O|1W3os z^BO%E6|^Tn&H}X)5CYj8K&pzFkS0;XCE@$PUI1$ZdKW8~x-;B__@Ds{Uj6HhJ2LU< zT@cjWE5-KpV*@)M<_m-@cfrrrTWvLC;~d?(RNm)Ems&Gfe#?u1@Y`qokPe)h4up7 zUHx@Ryc2apzY9HYFLZtd1Yngk!&A9NekUOZ`0Vf-QZG|ASSTA;oC<$n>yFaF5m9cKX!*t^3!9Pt=qXDoJ}yZc*%7mAsJ$5 z8sG0$Z3_QfQ$(bExcjRR^{a_cX?sL$^|LD6+ukPm9WRFO`3xb)_5lw?!A@W+NmxOU zVkC6m{~0O433o;i+@iD6TiJqwFQ?ZXFSLEB7;FQ>+IhTWVnWLKBUof#&szTQ4W%Ba z^w|$cIl{=&tcF9FNrGY~?EcI6`)L>wdw!&*dWuMco(1j<6Qp!~f)NcL-iX7uGIdB@ zW}Fv$`y@JJv~>juD%m>IZVRlY4o8wjsOJ0kD{P7~S7i3T?OWR%>(M!CUd?=}R4N_i z!)ugd7`Y?!WWXcn;2M=G4Hi9^)dW9ZH*s%Of^@Cv{&JTX+W3*+zvaaZ8*erbF0&Rl zX46;423ITB$3|wO+pW@dg308>19uLt9(x=1HaYySuS(GT7(8>+!s8t|raD3EtJQWI zhI<$uHc3uTcY=VWeWgUKIQEgNifHWg!n;?-=Yy74haV;9IMr*rGrqqROWyBWwE_mI z;-aFFz?iqCqs0|)4a^;@B`-4OS_WL59dPapE(b>pR4cXrX7l)efw88j!z8VAZ#NH~L~-+lWq!9eqmxuEoE>aViY z(x@mtQ5zcSGVg)jy$sPD9J<^&6zpqFJL6vLZde@FTYQk#|Pj}^IMxAp6H(1 z_Vx*L)9&roe4o_3ua(g;fP~gbdy%&g=xFx$E`&;$ zf#Qb`(Tgi+1Q1b^u)ZCt%g4W{1R=@Jy;_e)cYIs+qMd`)GQj)d9S1=nY<%9;nA(qJ zFNdPgld+qRq~yy`0}Twwbi=@_Y=wiA2avyj*aX(fP?w=hxHI>sU>5RTk&PFW zIt)vkeibzVr&=O?s;qVwV@a(eCvR!9{aP!8XUw=Z%*_lCB(ws&Oh4x*kLs-3Z!E&9 zXs%)5Vd&!QkO7`6)0R;}n;H4z=Ndh&6>?GYUt9(RzFTU-xDUQWS1WXO%I{wv53X+* z{zSlQ0yVz<-8AMNa}-FIMbiVDI#IwIXrS8#=Q&)GJsc=IDKC z5kBZ37nmqgkBrr!P&s=Wg5iGGucF`u_~dd?#??hiDf zV*B9V6Q(&XCG^fw-|4mSuAJDtT5g2{(D;wEw?~r;Cu-bnA%`ln1Qan(tY&XZc3e9~z9zN!Sov;Bb2Fz&h;9PHlFHJ(-Af_7k_g33GI zu8`Qx5KCnK{rkOcaIK>!WMi>@?K^d6jBi8r@r z=Dl~KVqwD7wup^Glk;N+!au3Y=A40Ch#(-GnCon!8f^S}TO6(;K2^M@EU-UJxRe~Y z)b+AkZE{p~Pw|C?FIbKm3-X_p9_KoMJlJ<|^E@{@@63*aBKcOjz#$lc*d6zju6-uz zT&JHph*$krbHtoO>-(HU!_rdvxgn=wHa4d?DGYHwsx={S&`A3HIVrFkD4!N4PJDnV zu<~;stGGxQ_@MQj2%oJbg)Xe>V|n>W4_YGhc$&0zm+SVwqC_f0Y{EVF&x7IPNyHjj zW}K>p5V-5bM4W>4LY60oAF1bPi?4jY`20F(JYZCz_)TA`V(62E*v<|&Bmw3_o3NYg z5+29hBfXS~sKgM@ZSlkjVkZszlD!_<)k8i-B94R@v7iBv!su4|N7)XnEdB+20Js9^J2{LCMMN*+%#YoOYBjev40HPCcqzp= zt*6=P>GIF$FF!{*@cOL-uR&Kv!H)pXc|^@1dttY=?f6paRQmeQp^d4H)p&&85aHYs zRu#A9NBS-nZ&;&Z?Z)~_^Dt^%lGym${3^{>Ilad20=NfbtKTAfXr#ZKxsB7 zJ!BaehO6IhRfj6;)K=FJ>cn=oX?5x>{k;|_bL(VJ8yrG0g_O&6+E55Kv`_u1)efEY zIk5ga-gL!Ba(SX_N~L^mNlTUE1-$cqu^X z3$e!K`Xv;l^CW8Q(SFRG{~g9q-)ri76=Gr}#S&e`z_k@F5dhVUkc!MaDYV9#zEVGRVq zX#Sd&#VgD+BWr%^0>cOp@M92>ajt~?qV_2Ex~O6O(u@lJr2J1WoLxiwkEfU1jV?16 ziJQJisg-&C1fOI`NUt?-B9$Dr!0G83g4SeHIem-F()|0mSb*WwE!Ni*9cZs`S9bl& zk1gM2jsq;Kme>wlq6{=X3J7#P2;~$h)wm1p@XYWk8~kLz6&NXyzA(N7sRMCC#TZnD zpymRB+-sl5`8VKBAO~uvzZxonfH`Od^eq1mO=lhsW#7K>+gg@vEmXD`DWPmh%2KxR zl#nS)BFjj!)Wle$A_}RoWGqn#gOr`IMImOW6tax8%oG_3+4)^}@A3QRJ>IA1cq%jZ z{rz6cd4A61DVGfZMO|=!ZVJaUEdX^j*mA-9n`?>ATcT)5M%I4Bo1`+>h>#T+r*wrxqn3tm~%-7*F^Xo60X3wre=djFx<`7mw!ZHl~ zEMIxKeK3Jv{WhI=e|>13F)FYfVf#JST@Zsb&yExDKVTCBHKsKza!8Gdkx~#${s7X~ zXvhbc2Tq!u0SNM!D40w|?SEi2&KWV{iFy@tV`M+VJPXF(QVH!%f6uN%N(kETC_t5) z(Zhn_hxwDo6abXJqbtKf%skhh3_D$Lqp4X_f!lHQa#0d{HB>LwHihR2IlhzC0|nAw z7rSlmU{ErF7UitzQ9}a(M_U!l+x#v-&`~|8J4YX3 zfGR9SwE>Z-`4d^7r+@~5L{c}!LG3cHhsK;=^C}^44{#M6#U;Z7?T#Xu&Ql?6^td%# z01)IMIt=1zK+vL(ukI)ims(+TB?l1YB{p@+YL_9-n+k=4Bf@EUpK7{S4rFyHKHBYztBS(ma3w5H zCg=suzq>VYJpCaLGgbHA22C#hQ;>P?Fm<{+_SA-~Z4tI-@7FZmR%zbqmW^z^DYEN= z2)CG-8DjHFD(58F*JPcMNU@t6okh4rEF-e5cVp7d+B{vVZ{BHsV3&Z&tAiHRIxTyX z)Z4D6THVx=Q1efHtfTaK(+{P1(UE$Ji!PZzuTk=V(~SszO=n&~?DHGk{9DH3LMy}m zd|mja*nUVpLh0OniqhUL%ApnoHsbpZp%mvs)`4p zUpDqjcYGC^Ef+zP1Qc9h0O{_lhxf1fZP1v>oE#Q3(B^zAPC*tPYR<%($nVX?gc_c~ zeHBQ?B`dY`t69kV^jw)5Yt_#8w--YCdME2LFGZ?9zI>mYym1>s!RU-t#6}CV9i^D- z50wv1RH{BO0~?FENyWF-RY=e|1VORv-{q%Y4rbgDlu zq|H*h*WUW^aZj!BD_GVACw!gWu?D}*U5$k^$y#z9Mdpe#4z^e{xbu|oU zoC;Ti!Ufa!9RrK^z&1vO9AaN<2uK?$*K9EoW$GI84CB4Q_|pB3N*PmK#RCXxRwM zeJmnbzlXmdHdFvt_#&!pLv_1wmR{Y{OAV&GPj1#x(js&hM*fQv%*ibj+vWK|g7Dr( z3#*93Z7~zxk&AE4+z_R(jVs+))cdFCSOvvpn)5XccylEFG{RFL9Q-)Qs@O)@@}_SG zCAj9aCI9`Pw0!EY$LuLK+sUJZXO^otIo0)^S_)q9{iXjy6}LaL{lmaqM6f5B{8YFeX@uKjKYkK5mTnb3ukqytrbMxZ<*&ie*VGpIet4-WX6 zK~(^DXBjY~Pr@ZarTjtf6u4&KU-?C&%MOJ*x>%eR{?k1Wd)jP^pj{(MRF+F&vteF~ z=j=G4Ex-5Y+yr%f;ndo@4Kkr3bco)gp8W^~HmD3>Zqv;whjSFlYV5IB_uRa^<2cYC zPQF(1Fl>jD$V&IY5{`h+;-cA|_hWt$d+vOjIg93De+-EZg6GGnK5%+=IuW+{O!`j9 zbExiPX5{zs8BDF#mtg2L6gc${AObE*xli`6Jw627;LD18HQ+|5>FqXv{uEs1=*JE! zBuI0L**I#<9bx0?f$!urxH?p&<1sbjK+{nGVo|)B<#+?vTP_6S)epQPYil+bw}HKD z@g5S<|H2pB`nc!Cjz7f4c?Yfb)kStDk?}^WDRA+RZ}{xg!-^2FAdd0x5cAOdLH?QM?s|7%(95Vyo7eHcWG{EOR@C@itC6$eu8adCE z|MT)@Ki{_}N+&uwtyh%i<^EsOlK`Ju{UNhHHns9OL`JW{PN)GMmKJSn< zcgcr;VurkCc`olMQYVLSZ`|k%xIM<*V|+!sZYXWpYI&bKj{o@$wFkWNk=11f9{=2O z^$G8=<((75Sw;Lz<~`;i$-F1K2rfdt0_;+ZH?~R*d!gCxI^lj z0v#*v!FkI`%+@Qr3c0bBy{g7o%|hF^X@?Sm*T&i3Czij?#n11PINd?ZtE9;NWVdzH zM(xykbY7-(8zIlC6TA0yoru3-Jr0(njV`bBbKx#B_Vd6C4Z?S;;La?lPo<(gHay~H zT%S!eVgaAY6vuyd5Q^A?#VPP1Z~D?EhmX?eahQl5D9;-9rR*bBG|6(aZO@-g1f?r1 zjWIPl?X}A(KP^0}erJ2@fKWUk?5AiN>(&*%$ZsZfwY`GOjRYdEGu}ts&(Z`yy*Jg& z{=<89wQh zbpOlM?Z>B%w)1}eUbI|PRMa{*R`JNGKD7K~=%3dFFURls-u^6!R#3s6N+-uZphBOw z^OqS)bVkQV)R<;fImCz?j4SkAPna^yZ)&|KY3R8s~r113wAL5l41_Z!|*fcCMe| z-Zv7+IOm-!hrb1`zrFrdA{O75ntYrmmC@PxIM&b|`{YhijLXYIMJC8DR5ZzQ}t z@y+c-LSp5^^u|NJ^UjqLI!L7PTT9vwxK6pA(+w%}>^Pd6;rqkd*g1br_}Up6-LL?f z4w-7wZyTuk$tD1j9CIOm1ECwL(XW61R;j|#X)BKW@~W6<&<|VsFk<%!Ewob!BpQuD z)!{JWhGZ@Xu!04xGu){b`MnvvBXAVuLT3j23ul;XkU&YKiL86B?&WMgv#a zx~FXZ{>*n;1JZoc+MBGE#L>kO{hGs!jJ}!P{8Lj?qZ|G8vZ}qQ4UI1X=6co^!*ws9 zu4dR18C#153}Y!$0Du?}GML106i7iAhhm?;=r>CN{^*$zye}6wMC9(gl`ee2BA(@=9>@#%DRk1 zRR4o-yuP{w?<2YJMZ-FS3RxSOte&QthDI3tx~=|>UT0U_v!Roy>95O_ha_N=1y;|C zC3KyK-#0pUgG&$^!RlXY>~6s15VI!E;Lz+N7>a`83Ls52z32;OgqKda4k;BFh@FV~ z25>O|I6RLhlYh(Z-MjIjG-wp(-{k18yqsVAL40s}0qM7>p;{vUB56 z7+p!f`j=NDiEr=oSiXC6Paw|>;Sm)(C@Up&!r;Ckx72|*uMZr2iEtT+6ci^9cEq3A z;X!e}Erx&Q%eMF8Df8Dqw@Z-cW3hLz1hZqZ-aDN-m+qD1EHz}XDUzf1Q4cbB;YHET z=N!Bu2bwil1KqdZ37`GUc_^uXZ;R!SvYoaUU2@B%R#y1>A4UE8!SmHRvXnq8s$Hkc zOLH{=o-=d`xh2Ur3PcG2E~cD_SED??2haVVlDZC>4(nihz2)~02ir3$eTMeX>k9yP zQCu9U8WU-2ZmAn12kWB%W3v`jMGiB*=7^+bC95yoQ{7)bjw~)tP_NfqiuQWPZ}eub z;!8P6JW254nJN87evH?lO>JtoZ}@YB@c?H&^1l{~SCDxIjYa4t;$MHxH<5qV^BHoR zoLVy*jETamD6%m(akou!0JquFJvSpwVYm*U$p&RA9CmO~Idlu$k*(ILwku`#x6aK) z=Ko-mBCMIVJ-1yxN_agrJ6v9?b0y4wBd9*#wx$OO5Q~`n)lBubzyyyXM}g+%ZdLO6 z(#2~1#ZT)q{o(U7JyV+x9Ow7lZaGk!j!RC0SIi4k{Q$_DSy~$0g#SAOdZKG}1R{wU zBLH;)Ll`0~8BfxqZuLCUvrlX3FXBpwKFC`6_RtB!=emoi)FMF6*TmII+lNnoiPD9Q zSd}D53%k6>%lA9oBbi=?9|8~WVJd*bz;4V!RS?iLV>uy95p%)x^U@Nqqky2jjr6;j zW?NTVYnQT3lzk6O0&y|m?JtH=vKCgWmj(_a;0hr3k4PtwVJ`j444qhS4?n3(8XWUN zh18&;ao_#s>om}N;x<4T6~ej&3O{1P#tmMbH*=VlFOvu^-(D&+7y1&1+Mh{yq&qMr z-&$_NaPnaHoJr;rx9$WQ+L;1ck~)rzy?bphhlr&piI3Nw)GP)dG(l1c#7FbWO28$) z+l|mo%b>*Cc%I!$LL%k(G!zv;*>3%Jn;YkIj-1i@)VV+PnT8cbeCdR{w!w(`N$iW+ z7=tHxPAwMggE8M6Vt~IopP02O`E6`G*zv3l=|idIzi%93(_k0q4x`O>P18PyP-nb~ z3ut1%M{s@i$8B+iQFwqm12FPWU{MU?QmEP?Wcu<^+U0JL;j>U%-%~j30uTUn!caUL zv@iqaXU@tTC${yvmtn%1<))v!^iA z4a6)I`3T<yqgh$c^tT+(n~A z-C+P<1mT=J3Z>rYFRhM-z`k`a)&%M?P}09bnTTgUN*sq%)I>~98qP~nQiZnz&Uhvk zPGWOMsH0)3vyG#Gi7C8EZJh)rATS8X+i6gxKhh6}+v**hlT~z`kyXD#h%LZPK7KD_t-!C&zjF=R*VGeqet_J4GuofUdkKQ#vq(p5B8~w z#qeAa(PU?3ohnUnf9#-tj$`QO{h8C;Vc7m>B>bcX^rqC8ACa{$3Vi>_u;0V}^ zn`@7^ygaro;wJt5nczj{?8@tOK3#?$$5Dm4)4l)>?m$G`i;LI^rNOc%6P3*O_C*y4 ze7V^Yg*hU-7g}$$VsEi9L56wab3s)=gbiL7nG7dEF{K#YD2Cutz*M;s7PdN@NrWUL{l@Dve;&%Lf5>dSyv z46n=o0!tFY|9+jE{gc_=pHK=Mq$>@|{o2}1E5FLA{tioXhpQ&Oj@2mZ9IR`A5~<$) znU7DOf7sfWInNJ@PDiwTE3OZou_j~Pjc6+LVtzum|Ivn^ncGwvD1e9vEay@fFUm8i zUZ5Tt0X)NL$diVTnpm1i zQ`+BQ?08^LQCWpy8&;uNJ!d9 zNv-T^Ul2`ayq?iht5c+1zs^n+2DX`S<|QuFwByR*&}C{+P9%we)qL77WL8Dd zJ)jX9AAsONH5%9~U;}MSV;c=K-4cg!Mrv+(4jtrDfPq)ta`>!ixZe*zKyU!4VtgD{ z=cmQ4pL})iTgGM-kqTExw@zz1^*=eCHspSxfVH&A)ow^S;7hcrK&AL=6=*Lpad5Og z2)1F~C@xzE-YK{ySu=LlUL_PXK^YmU`Zry&mxByYxfa!CxOz}W2WWZA9O190 z0K^i_dxncAZhqJLk~HPsG&x34O?Bcth$L4=e(kpke>7_bJSL9kHxKvM_qN@>`!w0gxQ6zfdx|{?hmQa;t9z z9?}FmXhTD$(XdCX@X0Tl@H#IQv@8@H&Ep){6=im^Z?9L4%5zyh5eWl|iKn$mP4C#I z9|#XWl;JIiC?_v-b#Zq5tzg<9ui^cfYtMkq5kjqN8{5cvZIA!qeIEC=8sIo>p9x>w z@VtL@yFYJ5d_er{i)~_v6Io{AFQ6x0lc0nD{{99??ArubEN`ro+TD z{cz99%3@J($58te#?}vOp~JWBNA6Y{?pbK)R_%7YR{T=3GL|QdM|k7I$jlh0-e)la z*g$7IX3|TN`@SWcnX#B0EFdclz;<0CVcze24RsQulS&>Gh3FafLsM~)|K|c&sH@WU z-`rhD!HnI=h34=Xfu_T8`huHx-b3R2yM()`JoYgMEX}@O?ly^2v&cU^V_Qc&otn}n zl0IZi@DjxzI4;pLc{7QuGwkWp7Z+Hx<;tLX&ia?dqVO43_-am8XxUbN=hh6wFilJx zLqB1T9l&xnkLXU-6A7yYQFDwesDJ=HR8u}LbjGNrGS*$E&0$1EF4$=JoYb?@K{5Gy zY5l`-{>$GUW{n;R4xML))WIhQ?lEKS3O#}eJverHaZW(U2Ey?{(Sj1uTYJ5~XCjy|b5Uxi634}}QKk1k2ti2<;?n|2V38If16)K!S&$cl zNxPjVf)8@lP>S)VsSj^Azqi#EIeYaL)7TLaV`PV696+ zCzfbsgu+EorvQTfiZ1MmL1vAb2Hw*Qz-f;I{{{N*2HwG@pHG(rcHJU!ythXA%;N0G z)OA++=t6wV@8`4(0_XFQGUXDjAy7h+$*TNwTK}UqZMoFVCo6YZaqx8p%#c8Gh8$oS zoiPIS=e_q`5BE>8r!-Di#7MZ-10r^MG6x9PkQyy5v;jL&cLp~lW#DK4&(GF3F@9+f zqGpLh1E|k81V?2CV7yJWkxBw+ut4+?A&tmF04W{HqL}-y9Pww8fsgx>T?@85aFY{( z9S!$eha^nm(ETsweCqZ$Fg=43$Gs4>LW4AKkxoD9^+?O7w6tlJF3djP#Ql3=+SOxa z)hKbxai5$wX0d!p2z6{BbiH85u2; zRB}b}%}BL30Z#Z|2?#TT|i7 zFsm7vXN0E|tMpSYl~@_vd7ZA9a3ySZVrK;x?J=^;V9)msn)$1;8Wob6qWTr5%E!FU zMydX;5xm=tES(>7Z!vpr={nr>ZeVHG^JfIz{u88*vTfJH1VmKsmNkBsV=XcLV~Wcz zRz6doX}vk&^}(QfW+eT1g^p5+ycvD7a942CdvW80fNQ!prNmNe!e2aN1uTE~QefXR z5jHip+wXIJIB|YHJjk2eD|lYVY@7Es_2lwMzKQ%$F^2(5qxHhw+?%LJ>0iJf z!jTcRh26jSx=Xv1ZP9p6rG3KcY69g8SBIROmxKsSQ9F8{xR-fwfCL4aKN=j zJ7;^#$Q={H{oS`(Z4RWGZRkv{bB?L{enzZ7tgVf2`8%rzR)7iN)33WuAHzo!?!Hqh zvKyp&y+-O9eBrEydC04^S0-Iw>jiF5KG@&Yj>y?7H^>|bHuCaDBhRL;5C{alhQ-(I z`oZfX?bZM3OMiJopPODJDYb=F`;nOQ8_5Ug+NM}}0F2?rfTLIuD z>d3{gIK$KU?%Fwq7eDgzYsnlO^&pO8%`{*%S}nvPVh*7`7Z8nNUTA2L*o^(daMl~a z>>Zu!T6=AZ$n9$dEnf5E{o;5NYii8zYEC#ZP&JFfn*g>+8H_Vrx}m5aW8<`lq{|!r z75QW`kfjZ9bRBH406<84n;FYuC&g5U_l;=@&#ZY?`wmxhTnV1RXUfMOH^Z6d>3Hos zxwRcn$i=B_(3cJ-nwlP~B6M z9UEkoLoso;z$F_Y!2*#MD|(rG}* z=m6Bn-Q)Dzk?L+Q6|A>dewtkZCdh_R-oTFmyR0q))%?Hb6P7!pA{M z_|87j=si*WJkZ)SDx~(C!w(JF@goWx*)KuB2u~FT7D6B!g;_CbE(Q)IYQV~-Ff&Ls zFp@(miYRbMnsCFK6qo#NKQm(xIMjXiPLP<5wg(E^B}BnwD>pon9Sd#g11(b@J3==I z?4qxprcX??YBL&E*N9LEPKC`bOn=?q7`PU`GPTYs&z}Mw>6d!}6yWm!JQTdTqy^m~E2Bh90%l?A<#+F!LtzhGYlvXtUmjri(^{F&|TxxUEm^}w)-_1C+aj`(sJ@Qbr2p}i>rY$WZnOUXS>qv3y7USF-b*IN0RM`H^gmvL(Ck2BbBH-ncJDCxx% z%}pSw7#!2LltV~?mLkaH^L<}#QnOcgfTx|nu7W=t;9*V2kl|0N!^1z>f4y4Hs-M17 z3icS&NVoxp91IgRS-bCGq@f&n)P9haRM4XAKK60d(`+)Z9Is}7gYKxb$6>~YMqAd- zXIEYG$keSow8K4{Jl6+WlnA-+Y&>sbIuE`1fW})}0}kg3Ev>f}Z)8>%zBVmXhtDid z%pjx)kmz7J;FY^8&M9N$#0X+#qH=s4X2SJZc_k>eE!o|_w{?|CI(V_^Do^%DH{J&W zW?-0Xg)x_OFv8KdeKk&S_Y(tCzlw*M-HDG30?a1kfov@KK-Y{ zB8~o@=grLG@DVgj(`=ZrwBB*E`h3^>i6gWr-L`qUPXAyf5qFk&XA9Qq$bVN0Zf)hQ z*rH$kXR%a?p@Em=Y)BabXKhvfaxnufVywOjexl2@o+H&awqq9 zK}?JlYsh$d>_b!N>MvRE{Ah38(vIF3OAgDFSC4mW_cC^)@aMIDco_6(cz93VeS8Xz zC|}MU!JGfUD5Y%2#q8GMUjxFYClad#%-}ezkKlT%`b1S-LrLDn&D`&RoGf3$-IjX* zCK1#u$HT$GBd9*|erbHQ@t5PP23g{SiriJllc^6GPx*???D*6_$-jh`|CFns9>?$A zto2q800IQAfdJhM06S8TY_`5(o(EB>=R-2=M21jKg6K}H#)LQ%9TPk8()IH6KKl5l@}B}(>z{=oi_2-b^I`hpX!v?G^ydrx zqpNJEwM5_W^n2ES-EXIozt-cq^+Ok1VAzkU8wNZ#GzWkLDFCSfsVEj1y^Kx@FD4-1=m1Gj+_#_C?3s&WV`BnN3oB=vmT;Rv#-k0Kp{_Cn z{Ntz(g&EY>O}l1=_85>~Oo8p*CW9<{94Iq~;+08wZ&1;qLlLImbFiLG)aexuQHfLC z6Y}ruyJBR~u61gj+s?ZJQt%kyhM zfWUp%B*B=c2|9WAq?QG*8CLI7n;xfY@()3r}ox1+JJnJ3_cgw06 zbQ5@++ht{)_hmee$EdpHa`7B`Yk8AHR#tYGAx~c4 z27E-!%xZ8jKqn=IdOvEV@Vu?^aS%*%92s`LoKK~;UNzt=`MS2Y7RsJcZwM6PvSck& zd5b7N$N4RaJ?`&$qEg0}79*677~ZIB3SX^r3U{7){9>#5j_w=%`i-lMriMPQs!bVN ztW%tC@$V`-7Gcjvjyv&w^WEY-Zc0x80wZAv6R+36bu`_veUGtw+~B2HEBPF`oU0=) zNnhm3&8=e0?|`#NNcRq(BQ)J|0VIB?@SEZzF%h_}QCk>{OuZ0dIME)mPoEE%qM>>a z7eUlGrW*{Lv1Y z6-acSf9(!nGwAzi&iG+$u_IndAOa`|q5Z>?qBKFO(z)l>O^+$ZVEv@dkti;E z;y3*Hfr(e|*hSv&Cg6Z{i%Sd6lBzs9dszDv;oyvq-u98t6?i}U95Cg}BcjxsN=0Uy zk1FMu;FTV{+!K`LbBfip`Z8gi-QJ`;W5wB-NuoHzquPvC24xC0J}@n?)VaOCMRz3vYpU>UfebYm4&|B zUE|E6_%%~^elt0{tBX5Y`vqAhzc$3T#D4-~+ys*-)eow$ZPj@qlI$vY^a*3%k*kU3 z+*a{F#7lI{9?KrwP^)xSVz_H*e6n1HZ6f$`sHLw=_D!>QMp0)jBP87eQQ-80JwJBG zP=H>R{7rE@BHcH+L4Uz8OFAC%*U#%t{x-5>tN!%MPy~p)n#q(Si9E+}@G`y+Ot#(+ zs>lyH)P@K~>CM=NX!u%(fvi`BTF_Bc0gBTB?;eW9L=}JN2LhW&a6!PC0orAVXZ{M4 zYuwgXu{7AKXegZQ{g7{RHSVPp!VlkosMUQ(gDC*pc*~o(KLtj=m0H`Oxi_U*bf@*s zskN8d*Vl6r&OegrgDBSZQbB-6%!LzYzHm)2H{tyK{cFPE)gjKWEVbnqtwS%7#kCv$ z2=G^>ld1ivk{3oM7&Z{H*{~9ZzMRbQcJm4^8)|1Za?yiP#IFli0;lXatk;f=`R*&E z)Ig^+T16k3^6_n&EAb6u6G|zavM^8bgKHmUvZ2?R2*<@}sW;#k$%JZ0uPwqBr#Bbl z2S2>VP*uDQ?0f^jM3mpVv@|yXa8gLd%b(dM3bJ`1QcJi(*~ZmD1L|jDu@r*h;9zV< zB7>?HXgmm!NF>!j5?F7CACUxh5?Eru6`Np9rCgl?4fvGVB~}9%1NK}2quldeo|l=q zcmEj(PLm+l^UWaH&TEr_kSNQzYI`i6L?*|x;i3S;=XjBEn`ZS{O;DfvcT;)TWCqd;8PUQ>VB)mrVLS$M) zC2;JFKHovV^zmzlLCZM;4+fht47C6l2ZN{BLd`JvD?H!@sDQB&=_pmXYX8?UXZJ(+ z1VrgBX03UIueFZ`Pmc*Oj+lB4h~;mv!R{RKJM={6t?pZd19zaKFxQ*%L@Gi^0=bZ5 zUU|cKhgpp5mB$Fb$N<76D8AKT*BS49d~VLKR!1E3Qog=qGP`c}iGIBnetX)_pGRYl zB`1fk#Md#pE)GQZf%PU667xaVf3tsR3|#QOyfcC=OM@6eZHW%kc z5zCLCF1HG=EsdG3|IBuI%n28}xC_QaU5xLklKOFlC(g-n*59IF-P&PEQI-4Sl6y(q zO1@fBOT7(b-adA&ao$EaG?yToqHKdZrmSEKJ6kB|&kCNpi&_DcU}qT0y#=`=-)kR! zsKjf$w|a^Jh~c%*IWFRS5!?W!Y%|%i>($biPh+3d$-Gw~D-iy38BxLYn2kp{EMM_} z813zKE+ScnQB)s8qrm;~xwMwLJ>BUo81~*r0-^$EehxAN`_k6aj$W#ubV{Oqe7g5;`@9LOi@M%xppgmke$HRJ+%6>qj2 zNEe=Z0=XMBnoyplft!W~^L)skg*k#Ag#SQ)e&Byb7nBQ+)Xq321Fj2x9e>pW4}VZt z{(Ql~laO?Md%V`sVYT~Xg;B-bxohVMm%pW`DHU~+3hg!e?&7xNk}T`SS1+C4t*tGl zuy-rVY*q(!6-hVfbVL43lb5d;gD+(2v^T_8WKt6&izyXwe0IjhNWeg9>}H;m+PN)a zV*Bqxdi8$z>z_*{9n8J_U-!&VG1013r8%ZUROm0>dt9#Q?yQNc7k;-b*qDTesvf+u zc)wqNc@`o>e*)6KyUP2%8Gk`0lnG>Vx;uVqb$tAi&v_gl=K)we!cYuD)NT!7`y9h_ zUW7DXDC{jyJ@u5cGylgMuJm^V`&|GYhGQf^f<4Owc?=Z(hGOexM#yI&-O0E|WFUf3 zUY{g3P0y8{b8>80 z`!>10*0fqwdj0#v=xS_uAM=gijJjd5D61D-8H{sIi$d^)Kq42+^1+xuC4UF_*_CLh z;)6K>281Ry0U3pU!Wsvu9gx!u`UQY{7$(4xu6ypcC^XQCM$V5|%gf6UHWT`_$f>rr z_6m{o;MO;ZeQ(qtZUM$H^qF4}ZiL;D=>|J&#h=#>8^5YQ0m@#|j|7W+f>B^PVupbW z20-yIyd8}0pX;Bar)xhLbU^@!V`3!9E49{0&Y7eT3VkkH0~t{`A|hW;av6Dp&l zH=v__jJG162|D3NmDCpibvlGj%+f$`4-YDy1cIc0pbdz834CG-vm*4#`#0W)P(kW2 z&rQy>=^(hbV}We`A@-#cH64rXphYvYj!&={K(N?{;I!H)U?3XUjMyswbd*2>oJ4k z0;ApaIVXSf`Ek55=4g?B%-@G>z#rMsTw7r+yVK0T0J#%;bqf;B%~x^*$UiS!E+1$X zq+HRX>i&5AhcSFKOY+{?1F{0-f}6TklcC{defcbzW;;P73Crho>~Mt5O}2nvWTXJ6 z*&YtVNEIH59hL=~zE1ueUC)|a)7V+mdw-kNvuz)0<@oJ3K6bN{NLC=7!C7^f?yv&v zr`cYdxG0(mwAD0E&eYw=`-RDen2s2;5;eJf8m4)73p;J@;F6tj@XbV+-vR0rx=pfd z@%<`ff{iq%Sl{*fF}eDal~upjtE-&#pbXVMIe2wG+3DtNICfV!OX^wOi<^1eAg;|8 zG(LoEpYAYoQG|vPzU-~s1}*5xJ$Mf-8BNqROxp(BnJHiy!%W|SPdt4{K6U$a!7ECq zlsRT7WNjbbZx-SkaX?S`}{)!R=>d5@V-n!bo5Za{^FYic;&&{UJT6J>g#^< zL3&kvU}4EG3|shf3$n(4PEt>0$*@>wqdnT)(*|3Es7}?M_I)o@PG>!RW7#m@12cVg zPid)f};1ZG*nH-qLJuZ$|?`e z=K*ID_H^i=gbIneOR%Bh1fnylK`|-whn!fF;JK8%$r{uO6P$&jeZW}{6m33)kBzv2 zOKf`pW_l+uvagx~(-8V;K5>%S-C$uPilY9KmbTddr{>x{9r{zokuGp8I8a++R#Q zOmtr8xLNVpf-?|~?-G6oA85|uSQ-Wp(b!p9vG#<8hF72Aep^nyt(2H+J9|G;W1_WM z&v~nspZI7jq(Nxj`BTauD!?7-JB1(=Z@d0t_UYLIUe+`6}8qXvQJ#78Z5+o)D}P6Qjn9 zkYJYFbpk7X(#Y%owEzfMd*BP@@OudP0#X4WD1C~uGtkL5s1!ikLF4`y0@0p#W2(4N z%)Q!eEj=;JE>Vh_i&0!>tcuC20!cF8hYt(i_g|l-`-U#gWQBaZxIW*s7OuDWjqbGi zaDDP&<80pdOOLm9dF$oa6 zNi@pl3Jg&Z?82tuk3tCCCD~FxU{yn^fz^)B{Yda*g4zX&Vs6Xe$V@U;{c7Cw`1k1W zKZ@a;NthiJr2yn9Ft%$epQ0-L!+?hX4y=Qh=(JzmhPOl9vT_(ZUl67n8F_6IcZ1?p zL!+(Z#3W#XR#zLGMRyfeR(YrAG5|CO&{dd>!+K<46I*q!#)u=ZXzftHT4s+20uP*l z*GaJ9)^$L96toTx;Hf2zQ@N>D7EObPpu- z_d}(koKWIVyV>KD;)18YFfTpopPL2y3t(5r!PFpA7vG@xiQ- z&wJX#bj~E6cE4Fnj)iwxZ0K44=(MsJ4t|KAbK*@A-w_eHB#C)2-U{j&ZoI2`ERw_I zoM1=ub`hhu*;YD{hMlxs$(?bsH;lG$H*4}5S!`C_b4ZQXvgV@Hkp15D9T4Nv%usN{ zPY8)9xa|_asG6K#sQ)~^QAFIXAVL(s=MJ~o!MBz?TZfUhLzRGqraj-;VV+Y_r}$!* z^zYw)$4b}fYJG=Bsq_8?*_6&Y=OkknjDXT!jpH~M&IfV8=(L%XQ^$z|gUX~ZK<(1E zl$h&}*grsbE`x`vQLum?WLuQLLK?8kDnL$$yyBsN_-*hg*qQT)l7!lsW*@{Q1( z>qWv()@1Wp;!ZLs70={5xl3R1F2CC!J}tApHl-g%;Iz6KA$R3MlF^MV?nuU#?b~I* zWB29te@Jvt(DL8Op6h>d7*t*QXK3Sl|3LhTUL};imr6vz$XO~J=JWBWV9-1}z@E9> zdsrrg;rPCMaeQqo!10u}Ht6aA*)U6Q4XUrDLUaA6uc`xHR~X4R08{_LwJFw&j*COT zzgiE4B>SWoV2?OsK!0xsvz#Y(H;SucGvW$BTjRRfvF)= zPpTw{teK%@LZAHejJ}M-YGA$M^~gOX`@MfMxlerFjJ1l1?W7D=dE1y6;mB^mytorn3)LFN3m6RWK|J>=aes;uFBReGh7BiNdN@NA z6Zjt}Zosb(fhN$KgBk{LM-F&lifpJbo7U3EJJ(+2Zu2ol-Lj+T`0^hx)=hdjh0cBX zUe(vMBEHUS6?O_^>5c~dUHNome(}KRV$pdbk+r-5N^#Ht{elSzn#C~rZ|zZ;Xe6e~ ze%|{(9DfnaFu?umzw4ta2pMM;>tRK#ghh3rkxn2t2Aya~+&h@4OzMJ;e}i^E0%fN; zSmJW#8@-{h#y!X&R>ET02UM5dL!c#xX<(n@#C0oN%>l08eMcZ@9T0wze4WzY< zr+m#pju-BM%lc_9TZIVte;7Nz_$mab29Ri>OVE$qv;}Sh+}NF5KvWNGhfn`s3nvCj z8<4X68%#mO5OVpfE*tK^>7BV4AdO&;}EswA&2F^c>Qj`QUM%t=^weuT- z7sr?3OJ%ax*6I&xPN`g?&BU2&do@s(rvte~tiUF?9d-24jz}~89UZ)2j&t{gvH;Zl zFf-W(t7U{V*gXP06@o>t@Tt|nBZEd9dI= zrIHq;oXoXJ{P>IWf&lI2&8AE3xxA0|Sx7r>Q`l{-*Jc|F`tSxFEkRLSH8slY^i8P3+^3Q zBGr#Lg!|YbL5-0}7RN?xL+TCaSzXSt6OqEY^4fIjkBQv*aM z=Oj4HjDB(&*zoVM$KM;qaGZJkq9rZC)_B|1lc9e5AcI$c`NW z08^N~-hA!oq_-Wj@XJb$Oqir-uO>)NydW2}MCPe!G(oMG52B{qk`5^aX zetUCO=Ba!T&p`LLd{7R~1?;)!_Fe=h$ks){zbIP`&kKnum#-3lA%(Jj2hePH(#0BC z$l&vP}%>x)zv=Bd`JJ zq-C7J)owy&J|LHen69hO$8x?7-|;?rmM22R1kV{WVB)THTcpscQ_Pu^HvMV(_sXZa zx#iVBVwLi?o8MWJ(X3Pbsj}`7<0!%dQg8uVOs$oE1I8-`RHSp0;@3aQvTDY zfJ{qPZs8T^QWViXb2|#ui8yub22j1gFXILue;G_J+Ie^!BVpJW7fVxV-zG0-vx^Ve zS6a&Q4V|37zTTAuDyhZ!wI%(q^(j3tUo3aagia&~^=lMXf;y@K6oQ3QJ+6bMt zsp$-8B|&oYeBUa61Ou>;;DTD{^wU2qE)3)|X84Gp~)0*51Dxb5~7HU~xH zW7o3C^bnA|4n}fyy}?` z27)Ixzkj?V!0=XtoaBM{cno|)6z9k%m$c-~nnl!1(a_dFk!-GUDqkDw?mz!3 z4@bMkL88Vrg2vZp0XpNyNRx2I!hi)J2AG{EPa!|7KsHMmRF}@9aA#-FY@3p{@YdrF z-Sjq$oY3d+`nEMeqc!GIcixMta?i<>&7Ysv`sX(QzV*C>@eNEI=(&|Qisw;|@kP8+ zyK1z_s-dYiY+~q#1s%-E@uSn7}4K97WK?A^84h!n98g-Bth(M zZ*gr%dJ03B5e#AIb>#G(hWVnr(Q{gDpSDjd4)4}4aka-2ISSp^hmAJuN7+ayRjT2d{t7#fU|%wa7&?~##a*|}cMw`tZ?lHXs^ zrDlRt&`gro@MP;b&905nyS^Tw_tjC8987ST^8dlS6ciNodNywIOwYp>VeH<=rxLZr zckblae}Buay+nr(hpW^~An+Nq2^5O*SP07ICvW$%X*F zdGopk>Uy-(>YuL(`pGJM5hwK_d}?wVAEojybmq@5Ct}4c@nw15NbOG7><{*_F*^B^ zAbSB=rBnoH2Hj)*9jm?52`KYs#)3pdNeNIL!VDP79S~0fPht}J1_R%ixA%012&R#f z1KXj9KZu<|o$#E`H*JlGF)1^zQowzz%A9k4R5erO&GXPejPsD*;*W)P{S^?(&o^9K z?^*v@dUNvBdMga$ezgMIV(fX<#T_&BiT-Ne(dkyfuw`O z`Qa=`=lXD~7Rp(KJVK3mE+tC3y!ipSij_e^xVMYuv{iXSG(q6okfx@l^`&%QpV84o zKG`S6*#Y^iewXEg`i76(1;Qs7sSJ+!#l&2GK;}4;JP9l9 zA=2gJ1oPK%7mwCC5;EEcM9%lmy_p{G74KPt8SAvu|1ovu;ZXK*+rKP{C`OB=LW~w= z8(Xqg2nop~TM|ZMs4Qcraz`PIQe&+sj3rsdGPY7AV<}n3k`y6ZvTx7#>Up2zc>lZi zo0;qS{l3e2e$I`bAxr6^>u*=yDipI_VQd$Ex+UeNO`Pgm9SK%`H|;hr$^^z{<_cTO z0+!z2#c9{-xr*hqG-?ao>K|w> zk4{`KsQ+@#(L-oIXTix+3T{!zo2rna-0k5<*;`AepUfxvZO@?So#$X&)3zT--~Y*I zPxVU2M9p%miK^mMTd(r3{yg&7vR=+m=8}NV;~e#-beorj)azDCws=ot z2-Is6bO8VMsA|13*anlS^7kgscWyased?|DBgZ#q%U-h)KlbCDs)77d1T@!l?@OY1$^DN?r*~j)IkJ3BlKD6gJa2!b5!_%WHuwAa4 zP3)>bnHZ6+V0*0^;>7k%MriQUR)}6Ensg+4!uB~{(VWH-3s15JP8_EobM3d=6H`cs zV=z)DPilh3i7S{pRH!->2|F;RNRzK$4opxy%geYU`>8_IdZNMeX3n*ss)`CL|AGGg z`ny<#`#Bsdk1A|WOBc%D3TJQBfBzpmkdeWP=E_6G8m^BrGtTc2X=RG}iHsWU*e*7Z zMyuKUDe!ur|LiXfe8GM$CIyIq#*J$rs&&s#bGkuXW)7~kGZ#Go3L|l+$J#Zh9C#g7 zq5xKh^6zq`ufKY6*X!!sRc6jh+x-D{xAtT{3Q|pL4S#9J4)Td63lH2}PyEC{*OS)+ zJVQ-`RhmxOrpvtdmG?u`arW*e<@*iDAtA@5Q{p0;bdq}$r$!;`;dDmdeE-SH+8g|s_)y` zJtZjPlJ)BPwhJ;R#n`xHUFn*a`}_KAL_HGRXgM~3kB7qx?yBP+FW)qKPEW#XvEu99 zk?>#73nfzre$(eNxvHZsNkwqDJ=QyC;?Q!W-KUX?J6ETCfQ%92`pCmnvfX3g80#jj zulJtJZ4mLcg-15hUn|Z-xk@^wbJvm8f`!!Qs*0r%fXuCub~|!15&zQ?rmN;(1nU-F z*Q`yB6$j0{-RfY>ydzssq&ixBj$eu_1SW*J-y{A}2cAs6oCom*+fzv<=Hwr*6OeDe zI~3k&uqDHpK=^(qL2;CkGT9xMOI6JTco)(=1xgJmGRQ3+#vlw;B4iEdvLjQ}Ps%=f zKo|^rK>f?z0B(U+2&_0_4h@m-w`>n!*MqIplqq%E(aPYJ5?Chb<_K-EZ2k5~~ zV_Cu&AT$HLFe1btvcWrt{ascU5<>!kBYUVC{C!5D2unmn-h-ouEC_=c@HwoQexHa;cs?0~(7Tg0;^0-U;D72JOo z7Hp@3EEDA1&RTWh$&)}vfFlB$=sCY{w-cOPQ1)j+90h6}8br$gIr~$^Ooq>AU-^-X zdc<_ynsTeO%c4LM5(t@f)>@y_+FTS3S#SwhU_AT6<=RK|@Zg@MF31M=VqQsE#i@fd1;OLF zvF1CGM%a3$jVgoS)&ke)7NpCLGi4LXa!Go-ys_>RQc+P|KP3Eu@1sN^3ya!5zR#RS z-@@M9zVD;)ZO4_$j*#``Nr9SQ4rfisP>30h9Clkc*7@kHvgEGgKhMeh2d+-)5hIPm zWv}Lu^jF(1;9nA3phk;6&)k;@dS}6Og2vN(8T@XM88&h<`?`BZB;b+h7IBC*(k$SH zV;tF4%Z+Wsvaq{x60AE{<7DuT9}3Ya<2GXE@y03Z!de$|6BM)?*cEi;qr3@rr^DIoaG=NUg1oBaQJfLQe*Kvm)Bsn-3t`U| z9>S|A#-%U0MfEPk%b_J_Vl{BAn7G>!V*9^skvVMlO`P4jc+5;kzd~!!;1tbLllQL*Zr{XgEqnB^zjsBITFT&{je5|=O7kkc-8X== zIo`bLWZMMjt3Fzuu3;h|uzox6xIC2ipZ07i^{{g|bl?86V0hgD5^eZAQ@5DGb5w!2 zxF0z!@HQ#}`s$AzRuffh`g(-khnxtOH~h5g_}B29AdT{6~8)Cwzz* zNrq1~Gox+@0f&%l)gl9{3UnwHCV-r15~sc-Lvl#*KTII(vW_)XW}PTb7;RVj+Zdm7 z`iffB6E9)so$c*D9a&VJ9UaQ8ocu76*bxq3pZMX~r#-lxp~U9G{(wW-mgK{C?`=zD zA-vyelD4m~y-ittyHL?9MMJRjqyiPFnHc3~-<m{S3>zfxvtT`;)>$uKECj21%A*Z)qT`z)K2*cJ?NFMxDf^vwQ@9qTL=S zoWn@q$_Ac4N*bG#=O9r4#^pa<0<^7AYTR}nFTD}3G8A%*zLZD?hD~N!~>=WD+A{bh5Tti zp#(aG;0QX6%`r5a4r=KMAiEJ+zWtlKNdawoT7RL_%>xc_gqHcEe|51Gl3ta8&-0TT zp$&D9m_%@z$(rZTw6N*;tOzT%XFUEI-Meb!DhBny#XNf8Q}5 z|BJg#u8AMpDf5!(KN@K{n#Z-tupi;I5l5K;A32 zES8Sa=bDQ$XMYIQcegnBE$ot(%dC&m7yQL-o^|ACeoWS_SU0)1q0zmjtZF})uY-$@ z_3&=p$J_bi)_;MlSP^y+!CpSist{Yx%cA+Fqx6~;t<^Clnsj_=`X|Dr|5h)Qs5A0D zi8$@NwWFilu=-hsR4es-ve`Kk?%J$u%M1BZ21-@U=kceNXnwsdAUmXr7)YHK@VQ;B z9a}6d1P`2|QD74d%f!A(zj^YDvPhhcoOmwyq&5Pf^Bo6pCy zWzL0JZ%Mu_6`cs2ASUO)z+h>eeOB5b9J4vzIlN?WU;v!QjMVox8%Gox=t{*p2QhgP z7>tn)yDX3C82dNdx60?-M#sbv`X_vr6obOpXTAG+Cq*&iYTx$FCw9TJEAvD?WtkU; zLSZ^+y+CU=(Ohnc92KRGH+IaD>_V3R{A}t3o?x`}eK%rxwO{Y*mtIyel1UnDy7D~f z0dvhyGy*+4x=KvaUs+qzh`{>I)71{I8=COA>^#!k(J^$xcX|BWf$Ei&W|xbOqDp|Y za%onTfLi^<{D4WOn!)ItpJl@0^dOqu+k1Pw>UGe4PIA?27#dbV#x_KAmle3lHWlU{ z4OPt~f<=RjcM7l!fMyd{k8j_8wHLw&Nh~blBUCtj}dtc zPL{V=H{UvU{+UteXDeEn=EB7OI3+I@xmx%(i)fzBlq)*1zZ!TZe2?!-Q2OB)(pi4R z)o7YJuHJArPmfqcQ_bAgF7=kCZ6NoP9LD{4QcU4Ucj&p0qx>11bZyCQao+W|)!s6> zy?Z}bJgLiD|D!$-r7F&>`1?`+;T+dj`>N}CJ?z6*k2aSZoXQ?4-hSmG3}IJuURPIW zq-ZV8)WIk6mh2YK4!N@|&vbDgGr`JOe&XWpQ2hlrtU~*O@++XZqq9IKODxN;sxvT+ z?xr>S5PB21YXP*(8-5qgD+^e{mlvf_z=0Xb$)p(E0?s4|uK}h-fo7oJDw1;&9H2zc zt)8IjhNk`|OQ;&N1Z5Pn=1MWKn1ezP+njT~#nQ}W0BG*VA1h{3xBbyouJQGmyQ{U< z0xXlVfPl@pnw6wh&D9NbWiTDM7+-gD`FD|tOW=G*7Z_|jmQlt%n$7HTd!N>}&=YPXJfwu1O;?oo^s39l8F=r=+ zbU#d)1ng%LT*Bf#0Z$Z1i-j;>!usNUY;C4DRy;PRr3TZCwWH+oU#HoaM|)2KXnvxC zwawiaeq1L@oM)7MfMr7an2f|gRX}@yU4kSJ6J$GEO!1h{Fm|IAY3Rj41MLch(OuBe zL!4n=36;DH15r4fEvoTCZk{b)Vr>(d$D(_1F-^DBi(@YLt@We@Z$N=RjmDbV2QBP! z-O93^eRiSWrv|V3M2Yw8!o&A$n1$pEGle2;d#wN!9Khxs?C^}M za)aPY;%{?L>aoan)@ys!#AgGRIMt?GMm=?kImtdfBRfKg7y%tteSU3zu)|zXcBwyB zQ>_*>+tD-G;z1o(V%d9t-$vhzLWf%2yIqh8JT8Z z!jRsag>V?yyy!K{*F!b-rUQ~{IXFXk#l?$CqUs}1=_B!MmednBusL*EX+H3XLxkC4 zAVf&arNu85&MP+uqun9}YgdxIQ@?#_b>?w^JezP=*N5^jLc&=!CAjU=9Nga?_E6*Q z@3=hOw!m+WvF|0Ghsr&_b1n&>(G|~(+&mwiS3Z{bCK@7dazd6G?9#STp59|2BN1D< z#7~b14i~jnlRQ0leyhm$xLmdNr%Bd2(nznk?Alq^rY|u~_LFCeZEE*?-r>5r^r7fK z&xiEMzttsu*G2L>Baj>3Wt#m1RW(6D^FKy<+66q|Qc3~OSbNv&!Tj*LNB_K5zj|Qz zhr#4Y55Gl^U-p@){=HM!+kbS&eAO2Qo;b0@Qu<2vQ*PRW&g#0w75r$Q}+Q=!cqGH>e&^QF0pZ3<=Y-p@HS znA~8!w5yy8bF=-SkSXpC4iJ#nRV0OOxlBzNFWRlGfVybu*?h^T-ky7Gp_5c`OMIMu zePJ=L))M^AUw>CQAN2WG=?g=>ffGhpDdo920Ou`~&Q^TlWC_^B20@y{RR~Bz{HI~8 z1*cFJn(hHONkG~*)3DPBj0=C)3l2bii;&%7h?hZ)2Kh;@+v&Y=ZVPrU zlLT5*!)GDYaCIcfV(rH;FY#<)bBgHAQCQ7%_ar!~`CzNy>q8f+(3_xxnxqU8xw5Ww zNlYABS~O@X{CE&OZ-J#I1sj6t;DxamIFTkMCg5sF`lAbhD_G=Sg3|$)y|sP1I(nc2 z_kn{KItMsn0U7{VEkJpfMWYj%PilQjhAnf+9z2IwlA{hRAwdlbiLQ(8Nk6h0xrg5= zHzE?J%m}#C{0Q@opS?~Pk&Lz^puA*66l@16{hgdoJ~~nI;&<+mx^;C9zKP_{m@EXG zn-B(ep+d+t9dNY5UJk;GCGNnlA^uJot{Av$uw-amU|_(YOrNAI1N5<5?t-)6UnZPRI{ zmkt*HxOM!6lHk*wGW&MK+PBc@06*j3;!S)gBagU!%|R*yM5u9xnGjprTQ##(KpM)!fpPc z=Tkish&QdAz?xFT&crL#_l>|ba@3Cj6P^4qgJ39kR3>+7H z7*18y6=PLNCjn*wKITJRD!2VNr+)fCO9uOZ13JauaK_B}c|2BMG^PQ@@6qz9HlnZH z-7nV!kz_WfCc4sVuU+`*@t8_2@i~#ApFiO*!bD?62Uf?Xe4;S-oh;W5D+C-QQKS_B z5jz;iBcVV9qU7rdXlYs0#QDUaF$OFi0^2g;6JY1PoacrP0H}_>X9}sXn}hiU0krMf zma1v&BQm%x; zrR>?Q3HcBs$vfQVjy1l>prR`_p$!j2N-#8xtWQwJ&{){SC|)o>N(jCLvYYEkZ@%3) zUb68gFj!$SK?AlDrVBR;N`8iZP!34ygdc}egzea(4mTGQ&ZEHjss4tvKpa3swpEM$ zh4WAUj!|JL)MldU0hg7I{nT}Z`GRs|L@kUOro~?XITi*lc&ELf{}ywhm-wiQKr?l= z2zpAaL%1zLFDwJbIj9ah6qxcLQmOR;KJO?RfPpkdz~DGTUatrFbKX@N3^ec0Bzi*~ zk1)#6o3sTc*QsD7(d?2ic&0D9qv?=n(9-u0+>DhEvcYePH;U5Mf72njZcf0YX09=_ zYSh9mC`c13(#%69T1$4DrJHPS;((GlgOn9X!}#qZ=)L)8Tise!VW_?dxahv2I5)Dd z4u2@Acj!F)q@-?3m^D#c!m!#Pts%dJaDs(NCO|h$g8!zA!tj~O8pYjs>Yv`~o(%kV zpon+_DxbBElLctf36}cp2XdBNreH zz*7{FgH^}-!8r*l0{E$8N z1AH-$4Syb!w;cDACJwcxRy`GlTE!XyhK%|PL^%L`S~{j!jXG{)y}kbW~p7sddXRMFd;xR=&cv- z$qr8{920L+R%avXSa{5b#M$DO1f-Hxu3fc^d+u@Bk3kiFS=Zq$;(nu2PYYq$%VU0k zO_Ob}S4?E(ooK&+)vnF1h509uueOQPCe8J>KR*8Hf=K&?SksDvW_yOzkynZ@sfnlX zJ*l^BIcaCct|ocQQ%AloU4$`e-iV;mb*ryz0zBdOx#6M0)p8@)*#K-$Jt%CMAo}No zbYHfE0{n^hI&0!6O8 zD6!jI$bspv$GzIxT~CXfZKtbbGNeRfx)91{p#$%H92~E>1i46yCv@_b z-?>do^$$s3@n=#+SNwlH=4uEY1nk| zVLyVKWVZt7B9cM<;W|wT-1yrwdqdFSm=N{}3L%7=9Cho!Se}UdFE6$?u2}kr!uB|z z09z)&^~X>xMMF?w5L1`G=pHbo|2-~)0lGj`FNxex8SSGHTY9XTj9}B*a$W$ohOW(~ z(B_v;Zl-e&BuY2syB;X*Tov@pFIgBUpR*FcThf5%dKX!pd3Q7<+L~RKZ%xMdM&yl| zTi@Afj%V>NKYi*eg$}uDvHp`~ujz@}MdGLHd2ujErWz{5{{SLr0u^j|G~&buL5k&r z3jOXa-@Uwjp|OVzWL^I-Jbg^rnzcVFH5*LXkcAI9Oo-~(a6dLWUA?Y+b*4#H6BOLJ zQd1z@xOMln3qr7>LodoiaADY#*q~wB9Pfp{S3Hh+u%QZVe3$ z3*=(_9oQ@iStr5lzQxF3DwU%2j^UryZ<_}6W?)nRO$gvCUQc7lw}5Jcpc~Ek0ZEXR z>V;8Qj;FQ4lra4Z{6b%zn@nj+$%+F*pY{Q$jsQN@$(=aST11cECxqRus4&UnwFs&* zL81UA`wzEpBNTE5w8#h|6Lj~GNSYD>LmL7(j8sg4bPcj-9?(&SzBPFF3&rF0zCC=O zl|%+FG)m6HmY{TuWd`GVLkd^ttyYTH%S@~3H#M4~bDqD{#u=u7mGlvT=cKjgZwqEXETX~|j z8ME0jxG_<)+T1ajtwfLIzi;N{q1^iPM9bbNxozJ9wLQxC4!nyX?vGh))|WJgtBRll zrYg@%o{PcW@6_LhHaPkDKdm}nCJ5fJ2Ks#9s~esbpzY|is$ZEYc590`(QmUjAmLqE zow#F8x!!LtKs7bJ%j$R}^-X^+A4ni-+SC!(W*UC3-3TsA+tHQDB(1L`bjfPJi^#Rw zx?Nqk{=vYkFPPyAtT10{ZWsrS3maTksx#Gbl`dz}41@@Ccz{px(;B+*f!Iz~M$F*l^B zbU}&DfQ{uT?8o(v?m4Ub)RaAvOEIW=!^%Ir4TkZKZ3d0r9m{=nYEdrA$7gEx{tsU zKMc9i9+2o$wK!K{j)(e~_R|J`g#t7s@{cLc=>=f&LY^6N3AHAI-%1hEN?8H!hk930 zKp{ld(luQ3&gGS+K-OIX#TT+OAmIUwI(;ehJ~Xib6qr~^c%xBpNe^v%_OD-6M=kLZ zhF`vJ&&v9oo1{+j`u=RvHnO~v7)gwZZe+FO_TP%6aP6`(ww6E5XJ9Th&WQ>U8?yW$!%Nk9a#sCh~L^Omb2|&04dnbF#`N7 zVTNi*9G6&;j3XF9$=a-9I$wC;c$%1MSoXSBMEz1>JJ=UFT`FJsgm3r#zwVt$jg@Px z%{_rpZ!}YsIR3l+;1esnjvcGhA-*A-vyrkjVa54J9m(5zKQsDlzxZF)UjU7DO{L#~ z#;i`^X5?#&PdE4mkhMctcwkXYIs;)qNcqmth>s6|{bi1y?gx556uxjmDWFFy7W`ij zzX#hz)%r_a-e^EJ2-EcqKN(e6JVxUX`oVjqegT-gU={NuRoFuF2}XTL+?YaFz_)eH zj*&uc26+yB6Aj*Mjb7-gS^FTn@#i%RnCE(!B#W*Ft&Q0jJa8oxQ3Gpp2(PkG2#SON zz5sfZqvn2Sda)-6P05pv24;s-D&icj0MWipq5w8mx7?_YGzUni81jenVkYx|dPH-E* z$nl~4KOzI(91WS|kZEFtk9X!&Xq-Eu5A4oQiK9Z=I*tdCBjs#zdH^SZu?)~U^&!v@ z!RnghA0k)&o$$SImBSqaRD05)?EPubr4fKqSt|$_h4d1=U7-UbfaVsal4?%u_i)dz zoE>h6K{}-eYBpzLYSy0&4~;J@bnJ13yeCb#fX+VXhVKC-J%I}gzFrN_Ywu~&x{SF# ztM(mqm|dVryor_b1At(#a%~v?+z(Jew1a*sL;~K@BLQaNL-~T8;O7Dg58M`(l)A=& z^+?(3CEnn9fz1ygAdX%6&;@%o=vsi8L>w2BDB9M!4`~iO!I{>!eIV2-WJ!~D(n7aMQj&A!oQ_ezx06_Iu?qlZihw zGdC)#{ry(`9kGg{yalvlkxE+oVl zvUn`ig~QFd9;f`=IPTT*(02SAx8dBeB5r#u=v%cGC@ns`TM2@Wrs0H8VjHO zvvzQIq`|WXrH22#l%Y-FE1}?Xq0mRC%B)L6R@O`BI*6_o=Q{$$sbUH{xdf$dS?BK^ zsH&VgoM0-Ik)cCokIJZH5#)RpTXyAS!j-YsU0%>O7@+BZ0Q*$&L?9d8!41Zb(xl$F zN9B|_uYwYSSX6I^3<*i}8(hvW(GxaclQn|Q97}%wAVRwSkPraQB4T%8p2d8cE1Vzh zNPK)}*~{Bo>0Eo^vBS1)s^{W&A9^hk6P=VKoLAZzp%;5f;gaV`GJWDqXoe~N0A9*a z7*8$~JHm~B`JnP}*t1jAfsnG*b(KL)nXzbzuZbR%Dis6lmam7FzDK4(ut!O!>B>lw zM@!5i!0BMu*s>aUBE?^=Of3Z&S@!Y_3Q#h!WL^rscHw$d-H_b!*NXC0Tmr8s41k6w z1XOrUnwBe*OV@_`;~Ds43Alz!hdkm0c72P+Z@I!$CT%T9P4l&f0B(eF4bHN7FJZ9D z=p{~Lm4v|pSp?+c$6pxcfDIQygu#gd(FkL$R<5AJPcyba&nX7=6Au}IjO<2eav)qA z3r>CL+k0n)kij^`1NGY+DD5f5mo5@NGpYj23E{}D?FBjt3JpfKu7AB}iJt{6dqZCq zix)irA8*659K2GC%ci04^>tmEvdr=2^pl^&#@p78FA{cq3)GZtGK)L-%=cPVK)Mb- zJ)2+P6S^M5dSg_jCMd9zL)}0TOXoR-7THEF{+|}W`y@ccSq>kT6|LZldXKCzO2<94#9U+%GH61eR{-90B$O_ z54L!rYlL21K<$>zKztu4)F&zkkPQWeJzg>c8y;_%wHOR6YITv;(YeyW;MIknldps4 zb81#1q3rfw{yCbalmk^gZLwaqW+^xIW+tS;76V}#`QIoVmRK;pqOh2?`#t~`%AmmS z_y2NYu`FMAfH5PB>XJykj#|EOthKYpH%C-zz-9d}FOU=yA#6{mB9XR2Ho^#G%HZJE zj{}nw9v}`(nEbK9s|K6~lw|>O*rLi%h~EW1i-AnjA2?8=1ATpc1J&7{#%zUWjmQ+4 z76np&rVF|F1K`E-lpX4){bAMUw#X{Rh$zYGk89m-apn*cHggsDMH<#Zr>Oy?;Lg7Iq*2>hnx zTLKc#Z}H`VCq`4W%G)tqw@^+r12Og4Ymftv{k6#HMHXbi%QBM^tUzP>)} zM|qXqTBI~RcR*oURP>edS^t|sR;{C%;dG*^Y}2V-jSQQv4(3;@yMEK_03s)*`Y$^5 z(B|5q>kB;23RVAb|9YW1a5g}RSGFqbV3{!Ix8I=>;LX1316rE7^7?u|Y4wmWoeOUW zOh0>iizlaoeK%+8wpyqe&0P|C^0P5(cx+{UG(_If)kTO&QXR4@IWY)VQ$ zBw8~VylKJ=_sG2{(Nz#eJRc`4Ea`Mh=i-46SqxKFNj)b?TCSma_O>`xLxJ;@{}>Ne zbj;NET4LU~$>Xkq1JWT($_z@A!|2q0IOZFaOYnq-`c%diwC@Ok;SrqwEZ_34Y&p0_ zk6GOO)4ZBw;Sp&J0PIs2*`qjIc!)8j@ijp=&#{?iYd1C>zW@F|3}UcW&OSfQf*msP zh5XPFI%o8!ZeJH=}n3#A1vA}lw0sIBnQ8u`oP*1UV*4sBSa7p!uD_!ecC+Adh;eG=H z0dryH%3T2_!)WH1Ckx@)kMY{4RwubEynmx zy5&nkjfjJdo!w$%=y+8~S%6i-&!5ea!M}K8n%V_Lr&C3`N|x;%^&fCFQm(U?Bt@9NG8TsI$+(+4Bwfw-Z1(y{YEZ?TwjTI#B?{Dmd=!E$JgA+tR z0Rv!C=NcS^Fci87Y}VXqD^~&y*omjfsJjtjozLQmpt5D6twDyB>oLI2NbS~CO5D|B zm7Z)Za^H1CsnkleD=H52;STQ69izOGoFwoG52!^+-jli@AtiyL4I9mkld8`3^9FtD zP8AXH+>2+aZ9eFKDB6op(n(13KGa^Epx=1m6PFFZ7jCN5?+0aBr|?{9`dL&{P-e%m zqm*&MxBEj0a&@zE=LVwkx^qR>yw?IRU1S58(fX3rbxW|SBCy*J&3bj-ojG{1tOZwTNzHFA4C z+Fld|gxBQ({mn-FKKRFKq^;kkV4^{|x8DHJ1JHi~m}+MKh7ExX z1B|sZijxR5VUDk`B)B_JR7=T+ZW__Hl}VF!fD;s5e7U5K2HS7U4)e03<-JPCdeiHg zl^(hZob!ImGqWu`OxpIIkomz4UZ-Y242f|8;_dq(EOaEk2T>~{*i1oOkD_#8YIEQ5 zA}l#GDE1bx)CFTP0CR@Uz@+2be-s~};8Pr;Ue}_>Dis?3KFOIQ#CX+p2HXhjUC3I z1^rC=mswxMqKK@NM}2s_4j_KeQx&?Y!e>-6oD>=Jl}{=3vs9@;FgX$SfYo=vDklZY z{Kw=010a!!vW@D7zD;4|7tsU#UPZNL%ER!a9Ea)DkMcNfQO&;f=}o4VQFwbtNArn2 zK%s$89t?zx^N=$OpwHFc0Ipo5MmXg?Fa>1~cxxeO3pCQ_%wVd(;x&hw6&-lMg9!g7 zklyA8N+ev2Nw299ayO!G+a^#Sz(&7+v@Xo-eW%sY4;@2Gk*{l(x@tB$UWY74GMP-5 z#2w*mrU>rBdm2%6YFd2U3xI9NNc-%V3%G2|E{mGXJ%2qqM>{s!kO_{;xWClcUuuG@ z>M8lJNBw*jGsEHDG7e9tr-`P)+`dwJV&{XozGkbD?yKe!^Z+e7pJZN!<8cM<@KI*=I%;Y6hDLGK7hyX!R^jw zM4e)hcr0)VZ37~*sE3^hkHoKLyukTLX!aDoz=8iZ%Y;+lz)zKMgJA}Rjac+6`hq8UjbNE5A z>-E_mMsge*oS}D-G7uoA_5N5~6$8Q|hc@Ml; zA!}C|HDkBs?l(dmAE)}c?p`A&S$guRX|VB8r5qn;gi*cX{-cr)XM^{KVTG9}EXh7I zv>qNaxIVic9`5PN*p+ma)e`TXc5K2Iy6MTuqY6o@f7cfWYc_{V+ZC6M$&}Blv)^y@ zTkUijscN;zOcKa+`0*f6E=JfPb@jRE%8xBN?xLDN&ug$y>53Vh9~%oC_(PA0nR#_p z{Jc{A3BSD<{K4A2pa_KY*PmmUP?d|2RElsZBmo+Ad#==P{fR2Nn!!#Pw=O7N;r+k4 zHB^AZ0I_n#oGhG7=6E(avJB0;B>rVa1h8!4DBUQ)1s-wzURs$P3|APri;!9ZQG*A$ zEafj&JXU2GMaj#3Vf^ZQ0zb5Zw4LfnC;@m^MV#iD~kH-8gTtt4b2rt+T-%F(@H33+h3xs=UzQLcz7l%qUAScnn}9`Dg)?vJ)KuFrU3HsqVt`X zFQb>kL1Fv=+YzwUR80ZO#((p!csHOYe6`AvBA39?dI}mP6cqFCW_T!XV#3Kv&Wi2YaR|AaCI)iDe(Z+S4fy z0K|!khlU!!gT(7n7t0q#FhF8a32(Om>2DX5iLDSoGTtPc@3CWWeJDwwRAp_gs1yZ7 z+2R3oGg%-3A#ErT-b@XFp$-@ZSo!{;1)%G)2HN*AOErF~795^tafk-Lcsqu}5%tYzR(&pTt)Yf& zmP!7<0kB^{h1ST240~X>v*3r`-;Z2-LV@{-3!vd4S>$d8Y$u9F)KK3zL;nHbPSFw{ zo`n*~N(1mczcBLiE4?;v^Q{C_~NK=JTB!gcnKskQ{=_WH9SXg8S`lZ;P&Ap013pRveryDM- zhwZwRVD+_zfh&bH8uNUq;-wjy(+7z@0SCs>2%k7U9auvC*?u-7!?iI zByFPVE&!=V{Zi4ZDZ)1}(2Mj4&})kyF%pq4-w7v$4Xj@31n?{@48M1rMX*(+^7XX( zp&MEK>aCDzHab_nYc%sQE5A*V{;{k=!Qu5psRl~<0bEO>Z&0kUZ&vVHslt#b>-KTp* zoE9N{>%DIDrwD!gJ(+@|P|L$Pe8brd`{rM40r@bHDN*7n^o!V8gIS8s!k9~R=w`dt zrslV~u@4`;0B2jt87%H}P0i#@(Ck8o{jDQ8hMx{vywbN3oE_C?)i>P~(dOR>(<-!O z&Yp@jr#o50sts54j2l_w3c7SCR9`9;emplTXOh|Z3WMLRxqLHq?^thV_+tMLDYK0D>mwtfJjY6n zFQhkKJB5+j=6Bm!YR})Om)wTiI&=wCzVqZx>0Wh>l&+AqNiB{1&%$T!6GCCmYVg{w zx?Ik+{VUwKOOvG`a^Y%+JP3Iujoq(?vrF#}Kryclxu3HB&L1k=ME901*BT${?`Vj~ z$!S+qF`EkBEK6-2Rgtw@{y|zaIXe;_6SFw#Id|HeHG=aII&!w=fz$U`!@kV$amn&JoH}P2!>`ncrahYUTMx58>>92|MKsdtrjp@9qeI~^LRAF1ZqMm*%3aKr#;Jo?s?^_#R`x-L4~po9uO3r ztWpG+yH7CNfFO_T#U0u}S4VsNM3ndfv44;P0!QLIux2qH{g{H;Cglhh{a<`3a-)j@ zGlx(h>H~`lcy)wcmhP*$X&`HM<(Y(o3d;PBfI}|t+S}uAtH|bWjLQaZ%%z2_e;9=h zaM}3{(adn!R|Meji&~%5pl!Gcq}_kVIb0#w`JGsnYg^&?8y7NI+oc6bATaU9?F6J_ zw(}Aft3LtK1PyV2rly8uH@@c#LW~jQWJ3l?@@P5aT}Z!U#C|t6JHj&411>=qLYQqC zFwq|YM+4QsQ{XQ`Ee`7Sr=vYp7LOl+LOq9?=?zCpp7r&J^=;h(Ldwk zDAeWw=Mjjq!bivTEgPHRXDv?xI|%McX5mUcBtKZS!<|GRK>k?~B>4T?29kc4v9(#T z@zLj&VIKMqVEfwL?!|Yw4KMFMq!5cMlE*#ws97BvTr=66XzKEC_ppoZgAKw6@cY=Z zwt-|83iTxTT0}6|oT~vR;;kIu$^%m63t*c;au%h>2TNZDrZ75_>t~EWX$|90AR8hh zUL*vsYY*F+Jf+*d1VX!FHcs41f$TYLR~fKAQL{3h)2fwb{baW7&_w4o*Qkil+1c+y z#~fg35PTvffml^j6GKckhL+3IAIpJ0 z{4a@2sNE#Rux+Dt_y5k(^mK|&r0i%IzNxuCAW3v^b7?0E^-v-iyLmLJU>^~@h^36naV{UGbhmK-S=LqJmDFEvDqzZp9@na@ z&uMXyt%dZBhj1_KTs_Fag ztB$cdiW=trFbCJ0*8M!seAXxIMjrcnOze3LVV83w`$LBV;i+D$t66Jd^!_W<)j@pi zJ(v2avm!uCB>(cjz>iCPrG)Z46HkwZvF<}A1|MNOZ<5(Q*)cX-si~t( zsi8$C8PMe=_2^>zi1}j}V=PBRc}0*!jU-N7}K!qTX{W5q*-ds0H+2OChY(ZE14m4g!?!e-Trr7d*cn>bFi;Wh$QQw`N^m(M>USE>at- zmU`=+A}6%%dgt{pYJH)Zl>WP{u;1aL!QCy~ja!arzmO?J6W?sjPEu!}xXD~bYI$H! z0w#VqiHR!pu{vnV2l$A|kROD1Idd028r%gf$e4gz4i5Mp_b8Uo3`qLny21q1hI(ta z!8`b1(6b9Y@cA$fJiB4t)NRx zrEug;NHsG0gwf+$OjgRR!5ND4$Jg`V=P(p^Q8R#lk5W$D8*&vgtV9WreJg*D4h~(g z^PL&r_&y7icwmtNS)gGx9LVy;o#U(zIFUJZmASQ=Uw67hm|u>b{Rj%D!IFiC5uT0l zD$Fq>CO-fA)T!$weBXE8;ay{2(%=mH#(k$o=k#4Ze(4PN=TceYQgmF=Z-(c6K=%5N zCg0tEbib}u#Ax=oJIb}E^z>_jHOhKj<&@Sw1qR4z6F1VgWEQcbAL;J;~w@eBuE0t4IRqA0=Zd0d@eA<@8CQS3n#h zFk5{H%Jsi&38}5l=zG#H-8~U=`NZtXhvuZ1%g5ZW0e_gkI$(3gWHU3wr}`_1Wt}uD zl72;8>gqsOxrF-7rV49__a){eQiO&k{6WwF962+R^9WFLIJZKaZ3B(S_u6d~=12gg zo=Ww+17Z>#ythiI<>a@B8!B6yjbL#Bprj$5KXTxr8>n3V^>gA039c5%RLP;vEhkgR z{wg`0^JS1?vAN8FqELVF! z-&$NOmK?AwUMi9Zc?Nb{+f1ThgsJ^SOi=QHrZpF2Lv2h9uJuR8XtHRqka+dl_1}F} zl{Y!Awee#(=JGxPhqI?j+Ns+%MS;Kie&>X{0kX}XRsY>X->Y6^G?cmJXdQlP$rtqooHF+A1mik|o%xV8;@stz)IVu#i!Y^0lDFH80M6j6 z_0MIqiIwj+b54CI%x`M0$nVIK;^>l3h`4pE%TPDWBv672B#3!LtQ zaFaQ>K|G3+mw`uWi^kr})WwFqqF#%)i<_M2<*NDNpWPg6 zWaa=g)~+JD`hBow-IP$XIkmpNY!r1*|KejR$4U(_wUCT!v_ha8Evlv0PSFyiR#+kJ#2Loz+ffe zxs90V2S+Y?_Myk$w!60<#@Y7ZP0#yuobv7p99j^*6ws-zaalyg%Lh-@Zj(+(qSKj7 z>$cKQ@HJGGSi#|^eTYX{ho}%Ui-*F~zTp$T#?Ki+!K$4i_*?t&W*y8&ERHjy!7ArO;c5dc!SI03UpJMMQ z-HA6I9-HoTb>t75eK$Yya=?Rd(&^ls1q_4;Y$=lfxm0?}|& zEk;v){a<0_0ozFJX*kM%BVHuDft3$TY5KQ|DdYh9GpYTbQV&qMbO~1a085*UIF!ys zKpBpPzbS-9Z-hCcVF#r|z-uPf)w-LytmL}RIIS_pOpB_h66xG)9xBlhP`qICI znM6zcG$6;fTEQL$>UW@6noUDs$|S^aLRt0QfOJ+|2-6$1G&2)v7r5-Pmaet=D?NrP zMI!8}gYVEl3C=$!f_yS8%21UfCHr$fjQ0@(jV9n8%^uFCk0!%?5MBpQJktlxgN%%` zout8_uJ3fxw9J#H=H_Uq%O6odkK-{=39~;cuAR~8?Y#)*10Y!|OiVG<_w9iHLvP&g zDX1GGV*k#}z$ok9p2n$%5oTu}L`-qSQmEBcRg><}jTBwK)nzinMvCDizXaJW3|^tb z?Da0C#O0>Yd3gq#LSt(!2EemxlY=S{{Ghnx?g6Y#9Cq?W%3_Z#EUqjF-*AyO)>X>u|y z=Mn4wX#plH@;y;}OnCsnbS(EMaQDJ90rmqZNg%8+!RhU8Z^*rcZHUxpawr%Yhw)2D zTR+0-t%8`U-%zJ7?{bmQWQ=sYTJ=2p4+5N}-Id z4z91(Z2T47bhXp9^S_KMGL)Wpmy93huCVIqEzF5Cduf$I3XF3d4|Id##e z>#>;2MW=;aM$gL@MqVNH5A~55?C&C+3H8q44>>vmd!Dt;U+xCost_XtqZ(9%gM%E1 z!`EK*uDuSPo3CRqpQJgG*c^Cj3p}YKzx}MTWi?kFvurH3Xdgz%Hze7_Frg8)Y==!- zkzd=|b|7h>13dG7hD95c<&}wa#_yw?YMSy>e{<L`l=JQpq%> zQt6tcV|4$XZ{Nr7^T&SH=i{20_q>kh>v`07Pw;1VrhJakHL%#OC_QTv^{M6kRW{o! z$Wn5Q#pB!T{g$e{v1&y)`|#{viL{E*r9e*)C~0tQYH0qNmzUrJf$Tl^W1S#7Y$6YL zw~99WRm8q(E+#4-uXd(4m4v9&Cmh}|P~#J$a;<;zv$KAbO9cJ5KL(o3nwy&o4OC&W z*6nLrJ>5UhyfIRbvDZel>?wO~pkJ&Wadt>9{1)G7kK1F~p*pUE^|*)a64o3tB6%T6 zXKK%}Y4d>J3%F`5SQD2isn#2T??<4Ck*>q)uS^7IV^#wCw2`jC_jxy#{CUI3!$AyE zvX|`=j0c=oS$wHGwoK`iD0aG??cS6vJfrfaE$es4s4z?QPZk|zIC3)tYb!aIBZVZz z4qgo|y9a~Qhx$_O4&SnrIxBniNX)Jut4de(E%5kYe6I=#uKcI0jk5B-HE$POUSo3L zaNXh5@n59(84=?b6rq*Wg{+rGF`8{2@cyt&aol%y@&cmVOQ%AY>gp%qX;Hwe+9l_v z)hqAm(d!kkCM1omw|mR3UT3X}{lbpmnFWvU=KdH8Zxlm9mzvInlzNujl|Pg=KH~e^Vvg%)jNZX zl)=BVDh9#b+L+6KHZdyn%pGp+X&nqO=J9cc^_`h60h0q5ARIkYqm@)y=a+(O{*GFC|>97R$r$mH;p!}*Yai|4>un-3XW(w;R`fI_)Bzh*lY znK$e;oA~i}1M}BYmdt9c^TCqQDRKmlUyQdktnCRx;2&rl#{;dOi^fg0k9%`(A7Ahy zv6{u{R61wee20w|cqIXouBGLAsTjRD*K!nNW2z{I!QxGLJzwT>@V3)3!5y}cdw(kx*7x3w z3XxO6`OQnJ8;{+5fuzA;gD5^CQo4|hm<6xTr|pBsI&-NRd4c(fdE!XRjip`^k2^rj zM1NrLhV%BHyn+I-qlKp{sC!^Q8Vsm*g}HB`?H7h={sjv z(&2}OU59KRX0Az(`!;KO7WMyT?k0qp!h^g2_ZxjkNFi%>s|^BOC{L)-6hW@CioN7i zTlUPTr}8<;_}>S9tK429IC1vY!OX_AsKfeEdmWo}EEe%<&1wJl@J6o(^S;N{f}lK; z2|paLO^JpO$ZR>vGd|iCgj$?ceI)teK4*Ld(kus@M zT|=%8@gusH(qBs_B#0mxda_}9N~mx&u4QUkG&LqSTZAEsBXxqooTcOm6U#t5?6d{!*EDd4A#h_n&y3ZQuX#e>X>qh>3!D1P@>USN$YTxW~4(>VgI zM7%D_MXQ{Bimj$|+}(L^ynU3joo12)?ET^{zg)t5dFWw=XPoQh9k0`Srh^+9<(WK@ zL+9DR?V_~&+Y7v6-$|U z!m;U2uVBfyA5N1EGfBbMZ+#FE&wD*s=TTilWstA~av{>;!Ts%{NG(VvXCR|~6u5rE zSKpuf%YkK+?3+gc$B{^@?LhP&qCiL8vYnbx3~_-hFTqc+Z4_3C$`(>kdXUG#Iz3F1 z*aFBP9Y6d^A0`+~OPFgmcfoKZccfCkDG^ODP7@)2hJ$G~PJmK{Ir}8rmKm#O>6^!A>W7ODjr8}s19scH1x7vH zvf@JMaU)4;75?}ec)9d9NvYy3xw^77A{+tmdXwpNW&(Qvf46>M>KIng8wMN;y_9o% z{T)26t>+g`Hg@Sp-L7Y#of=zRm}zjDuA3R$Fw+LCLakuTazAsH7vgp;tu@zD%Wl^B zLkcXc>Y9l1ThWyd&2UL81iSxex`96>2o z-xiVj%>pTEkqKy-l9a%2qXF>Z$Dt~Zdin+GqSZ+lel=t6rJIgZrPsx$#!&{NBL(L-*tL7rLPb>8@2-u?E$=UTsp+u~Hk%L1MxGRaHyVeQ%fo|gs00NA@OELFMg zoWlP_3zsr07E01&eG_b5WA%7JRi~Cz+;*6}&} z@#j0xZ9j21_pGJmss&ii5GL%u7>~+jaD>T>Q)-{wXKJ5yo7!9O-yMEwoSYs+piNJ< z+4vW?EpbCzLL#V?8=EYW>e)lXwE&iucP^~qZ6oXbAI5rwd@Bu8x0!SbuovRnPRx@H zPoz)I4gbJ4WMYVVI0tn4Qy*zP9<-6&WZ8DnI;@w4G2y~tOx<1&SCkueY3^DWb9m&0 zzkUk#J`eVRw^qL#-+ezqsdq4diX`f*smmHh%o~p-wS)yJdHu^TiTtxWNI`7`}@D)Da zNE|8|X(BD$JcLd6HG8xGP;?eB8ESMBMq+xjw$+zh3WuMk-sC6ovlRqM7($ z#bS?!ju#zc!HvHZjZF+JyY#KGmX@y4)Y-?)T#j-pxWbnD6kRJW3Ih)O+?n*=*Bu*JW2%bKha4k zgXT>9rQhqWS$pt~tov2H=PM(N0t_2Egm)E)vimldOq#~Mw^cPTHzXdqIwVl&8hWT} z9|II>y4Bg=ul;|i0~h`M@{e{VvPu`Vkg$MQ6|WHoH{9J0(VMWJGo7&H+G9V~?AXFb z>Epo^Mq34F6L|zZzUEYwEgg)Oh2`XpwczGrMRBtTPaD8G0CRlU`j=yoxx02=DZa~k zbJkKb5ED|IMbHYc3_stf(I^5PfSkXR_M`>Y9XR~@rVc@uKDLB$D7~z#ETt%5ur1(7 z(PZ0@*;E~=Snbl#diA3*P3@*k4R8|{!L!F+qKIKx!4X#4aslA`+J<<>bX7j)~Fi>t5?0!EMJjbsC%nlLi z<}S;#@oY9IJR~T>6DG2knUcu_?kH|l8a2Vk>a{^8S0m8$9zWp=B%vA~JG}G5j1eG4 zL%Cy#2L?c=?%u@o{Fg*jN|nfWXPIIXcs1x|-U%ca;PMLvHoi3_`PvJ1MTM}fa$ZE z%nWaYa{}b6@aeZ^06WkqZyz*Re|4~DX%65o}ry8e@ZGY^{uvoBd^B*36UuM^d7#8o7dNsJEX9>{~V{fqwQ1Jof#$Qfq{>e)`RM+L{*fO8F ztfpVa6YMX^HkxtGFQ{j7`W;o2~5rtRgqKv=3 zozFIuuipI}x2%jrpSZ_oSROAnQl(gojzq(ZoL=8_+fjox0{@m9 z*^mB#Fv*l;z(f#2eDz@Y)K@fQn~i;0vq{+*uT3aXYu2gADP7rZO2mv9lrA?F#Hd!} z7`Qv^R4RMWKkRREN4Zq#T8Hn}Y{g#Z8i$451I+~!!lmAB6yM&qy4;8iu+8Ilw3m@EE{FMvTM!`Ly+0%KcPUq<#=} z-DQdEl@ICd&0dlf?~|-%de;7zbPq)jy?R#@FWY|}KdXv&_xHPRL7e8X`3mii{Xg{> z%fvfh(Mx$((LESiwKkm#&J3ZX#L!t@V{4L|o7Gg{uM6Je)KjB-dYtHirPu`1S_4N%@$2&3<9y9CQio@>;uXfk+ z+l$8DR9`D?oDv65i-X6e2M0wZ9nJ{~@rJXn&1TF}>}nC;y9UN5zU6I=nhh!T6bEv#hz*qK`{!@f*2N%b9joHUM@NX>1v=hHNF=ELT94r zj~qUfGXQy+H*xSlx(24j@Mr_oSax9kQJ(NC*GD4wK;0+OE*Esh`BY&$A`nDYp+1i< z&RWL~8>-aTHZ?Xr(aFma>sxqcye|ldjh=0Vvw$k9g~0fHoMZWXhO_CtX8l(IOBy;W?6~%kxAId z_^!CGf zle#MqU9Xo$KcQ~l-sQmDK>EG{8o&)UYaJEcdyF#m)nl`H-+q63I^W0Ng1$MI>QixEx{hv^-t#EKg7!mEOemd1Zeq+UlJF*V z{WY~@k;$xLwMC)8+h}hIxH7G9?GpI3Z-Dv2iA-j;W7KxC zKd9A2TP{;9gN||fa7|*a4Pp6J;eXQqX0QXBx!U~Y@u$ZODkJjsuI1%bQtu=2 z9gky19-mD19EfYy5eX{?A8S=4#_N^x6(ne|`W4RwyrbO4$pp{PYNd!Y@8>r+w&u9A z??65h{jt+fJyku>)WkP$SvJBxcGF;ww7y(79_R-%Rtd&nZBoVLp`L%!mnr_a_@yro zLqZ##^bHjklVG5-Sdl&(V+bdH!4E3&GyVjJ9PX@4s56}NX(~EqAGz@e7D#H!wkDf?r+U$70HcdWO^Xzqt z%xiDXE-SoqgzY2T6C0oSurFhA`CqDxlgmz;BaGgbe%4RFTs((&xf$x4%N{>bPApl= zK-<$ypI39NPrPf-mJzv1@u6o2^|VT(=PKQwb1YJqdHPSSxl}d%4U=y~MmWg$RNZ&wuRc4@};F^Q1bJ&*xCabWT!4nf?^g3sMSh zgWG1*Uy~b^~D-o}473-_I zttOG0VEYj8!;0y)H~kxtrjF>Lo-U`UwkwA>h)dfhhi~eWr-(iZIPbVmHW<;MT?GFp%U>G59z2#mvK!b6Tjaj`yBc$83-BMp1v#u(_uvpxqpc|ybV?6KhY6#Zy;Kn z!-@Ve-kUvJ$nBq+D#_7u$#b`7!u<@E!GA&pin$o#i&7;3MvOTt)pq_iw|64!%)==8LulS%h2A}B={~Fiick0mK-FTl-$KET^4Mt0igqfp5*SY=t*W%TiOT)(_pSlZ2L(+U+ zZ@YwV+8Y7C!a0zd#?RK*<4CYhfwp->OTWS0ENKtjufXx@kvP|w!Qo*pRkB;IrOP;* zxh?;ytF7EeuKaPiHJJ)5qNYZK`4qR}&cXrG6+1F2Rj}z&d5-_)1O2_*-rFrSesEa} z*V*(@cP+irlP}sI2W2dMF&#V8b}!8Tv_qlr^xpfA#dZH?CL}l3ztIw3jbx;Mu(cTx zG-s@vouW+T+ds_W^eLZcxSFcdcN-0%*D7h-p^mEu>7qw!#a^FZ3VtN7uwFhF_jVd1 z@>1)7bq~;V%|AZ}$qx?9i(0+*vPbTR?-34J6Hb7E`g+G2%gh=NoV`1{$!_8Q7Iz+s zFS{2u`Q7=dl)3h8JTMeuJm~dR3Txa5lhA$(eIkG;o<&gGUxu!<{`LoD9ZBAiO;Vc%cMs{Pj{ei1rS2Z_lP-}P$B4PP}% zd@TY+6n}LdhDJ9qLc3Lu*L8De)Oz*Eq~v6sD-&bEjD4($fRUcMy{6OFUxa06*ahdO zhCx#;{mTPSZU#rQe+=;4oohI3njG#Tu(eqqf9{hhUz^sBVBaO%XLvlTZF8&wghZ6J*E~?IR zWH@#vHp6T>R^aoj44G!<#@P_}dB|`ry%%C-i?Vu|Zu|MeCpt9x5)I z4$?{3La-ai`D@f(rpV*dA1aaB(QG|GPq~l z*B)y+Sr#@Pg~hO)UpxMCC@QUYI(vGgXonVM!u;nBF`pHHMTFu9rV=DO;p|oumVx!@ zc}1}UQZ-WH&9iVgrL+RB#+jT(du@c{YH@At$lmEMv7v)koD!|9H~z$K#Z@I}mE-&9 z7@5VPg+>^=$*4d)=eNNo`or6y0S86m5!l=49d8N;*oF$=2NthV=bWx8SAy5l?PGiQ z?)9l6TZG7+fdB}@duCzH3lv}g_Fl;anPjoCv5@RWM}y5zomC^+O5*-k=F;LTTy5jX zHuW_#`mGMYIXZ>UXC&`Q69Z>8XOimR$K>>i--0|{vO(x!4y{~^bdv9QB;H@x#<``1>MN0xI0v?oE+5!84(h9g(tDHw0i?(d$_Rqs#j%vEEokybfvU zuSr6)efftUe3Cm8fpFt|$r9||pHUiw?kHii#V^YHqLq5zixz0^kU?U@L)47l6y-s4 z?X%JsMFsh1yJ)2?ddN}F9|&UTRCsSqiY#kycVQf=gu)R+-0t_8eGsmZVM!g{&RZ0I zN{UCsN9hFi$zU0~hnUQl{E0?>XIZ%M^NGL}`09T3P&wUMDH1uj*;(pa+nhYL4D1{! zC70($gim~Hc~9XoU8u410d%M&5r*t z+Dd$mooDu0ifHAnvbK3p%#iXNol3~_oVmB5X#7X+z0&S!Z_%s0j3vkFRGb@nAD&N^ z3!5yDx-V`1?EZ*jiSPDWsew)NS^M$iQeKqJsO1sIszB}I!UP(paSy2!<#2Hvt}dV{ zj++pnbDc_8d62_@xOSne`FqE}T6vZ_4vx#}pB!{!9+o5qvL`Y_KiRbIji2}HOR=hI zz2EIyY|>?vy64P`X;HRH?Mmhvht2mF*F24zd*>Kq<9r|H-Pvm|o3~54_oXcN&0y9~;IB90kM?bu7#9u{jd#{PJ-5fgq^8T&zX7>o2*iv zd3mIPTB)hs8)&;k-?*v8&+(o~;^`J2NAbX(wA#D*n5zaH3kr*h%>MGs<+|UiEE@ZM zrc~EzU4x$B*sG57m9M!26*=%$b5eg`RM~ev@U_wZqOs!oGXcY&X6ylt4o(LV>|N5j zrAJ)gZO+VIr&6kf60S;~C+M@Te-Ihp!CJlC1)Kn8nKK|2l3IXGrQUCIu7GlzO{l*j zM`H?<)gJhnro`8(ke0RVWm>`Hy71D=<@vb>lFHGkH%gMXFH9Y~9FOg|V|4t2-tqJg zex2OvN9TW;y~OezvF26qJbO`;UdqrnudMlL=RGDm)^=rz&s6SjIGgrJFVX7qMb3W( z4r?gH*&B%tA{r2d)|D42;aGNQ#^!U11*7jc3oU$})9VTcB4(w05Z#hWS$TQ!3hsQq zqV@AutE5B0-wqt9QCC&%X$`#+U}^n*>iZS5@wV#e&u)EV2`!U7hzc41-s{=y$b7>y zHnta=S&!>`wy5{<+|t(v`O`M$I(z5?kI&-hmBKHCq?xlXDeNj0s;D5iCT7GsirI;}-cNeEYmWG9iAb zqF?gt!D{(&L+qa`P$`*dgIK9iQ~;(}j@Gso0#@h|#0m z=vznwArUq@J~7~daE2JdEi_RGleyHC;*i~7*i|^d`n*II*t~ecv@3XOe6uzfj+xN# z8Uw)v&j)OG-z79Ppevn;is#^B^Z9%MvH_XM7Do#ZH`_M!ZdQl?Brl6Kj{5GQia*jr z33&bZXEA4WzSfmg^pyQrwFILk;QUz<3oJHLB_Untr>55h0thpVta}nNl|iGp0cDj) z>Vs4(?X#EwE=tW>JSEzF$4=&Xo-kKN|>2tlDK6JyiVd$ei%1WekzKV#TT3n}U}$ zz-eKo4P7nPG_OMWOQE0R=!($fy04$s=ep_h?tFWsmwRSQ`2OlFwh7RibpD@LJ*3`> zZP|_T2h;f(n}(8X9rX9PV#>|=PxLVE^{i%C`Y^2CV}idx1YCbTi?Bhyq=C|pS$G%& z(h!r_cvb2YP0bgUP?rFU|;4pAl?EUAy8lELr&_k~CIFviKD!}Px!u=O@ z8WYEUCFCi2?1{n>71{l1elPFybI-R(PA~qD6m;g$i+sn7POUcvVEa?mf*u}BtL<)` ztjTu{dg17l-AmNS&hn%@W2L6*SW6dQIzU)2|Edugg~K=|C8@7FAxvOazdOG(_jL8U ztX|id9--&PE2(3UBHO!|giMcBm+>OT3I}lB+8`yDhMGy#ly&F4|BZLq*-Aa7)4Il+v*#Gh5O3UDH( z8>~{#Pqn68;*+VPX|?1zX$T-Ve6%ZdOQC!tzeI4SASR11Vd~)yOhj*1C*bl_;N8$9 zS@At3f77d`(qyV&``Dje>Ai&}jE4H=&Q1&O#Hx!9U7?L#&71iL78KZ6Y(HbEHC(%} z)Vuw-T~n3wrF{bq`R?&)X?dm(KpC)#pmrvvDVDf+DBHcgEA(KnPisDV(MwbR1IQtagHQf;1xj zokgtZfs}QAiUO{aKoM~!1hX4Wp^D8Wb-b|m0i(hfM!2HO+d&3_QOoB|FLpv*W1}u2 zIW;=~pg3kXG!Ct%lG8hlvVwOZ>aK4Kx4*Kt459_Euq|K5N~Wqq$Gag$9smCKQi+0F zY;Dna!;BRK$KN!t8PESYH-XSNCuP=rme*&gaAF0PiWUe0o7;m3-{K2j$RrO7FxGvl z%E~I#W(JprjmFNDmy~Q@q2A`5|2&8UXb`3pHDwN2%g~ryk9WQ`iU}dm!fvNcq1OT8 zN!kNt@LeB9rNCDb6(!4TkxYH}6+w1S#DGrsnw&ZvN5?uVm1A*o6&RA0SYRlEm|p;Y zvEMg`M-#fZACcreO3RDDT&*j7FjUY&3@SyEM2y<>+3=Qg%08^3{(vt^8X#FY2|oUL zoOoBZPpQTJI#8y9%QW465Ck3zF&$F0)?QAfsPGa_&}lgm%81k>a;Br8X+g*|ew~fI zg1|MiQlLP&mz)fd;K<9JYMhXY{*EhMX?00cYr?+GuDgwR$NkLib1gF^MKc*rA!Bt{ zmLfyu+xA@eR1%a&z2~=TQ#Qo!qCe_gh9MZBNmc(uc2PdxNV{thmN;5*R>OMyca458 z&t~IG5;etsR#2u~Qi&E*quwYIa_N<|-IiO+pXiV{R2{g*;`u8*J8yl_SM*q2Y%S%m znYvTP+L{o+(!o!X6XUFdi}8)utLooisb(}s^<=F(afDDiC9}h&;1~py=U#B+dcJt9II#jjr2NmM%+h{=0SQK!;i}| znwayjs*!%X@nLcuaGQef|NP2ZW!LASVlAyJ+v2l4OwG=iATf1z_pu))SSE{=TO(yB zqmL1kKab_6{4vE4PLIbI4c1QWHJyRl?Y*lw^p^o~ro(=^U4Phcc~r)T?m*%}?2EhB zDVkq8AA6cmA9h@HJ_<~hVhPImC4DaqI175$S7zdF76%uJbj`Z^3M{m7npwmKv8tKZ znr<1|B9C9xFP9h-y18>S-xx*4p<`CF*$39OZoMt?)G-PXyqk#X!UEYO32|r`8r%K+ zepbuOo`Odunm4X3IscCxq4DCr+JeRA%Sh~mhZp#@n?OhRT&)oBA z31Yyh10(=wAfl+)%Ft4h%qsj3TX#bLoO;B*TGFBKW~l= zsqnLASWJ(3|n=R>19_9|RseOK`TjN>Ekc86)1q zyHN6gqpRh!W^=0B5{XP!>}E;&>A$tt#}j|Q4yg{Q-`!tld-}M4K7ZdHpW~O6EU)i6 zw%JHK^cVdTZepRU;|7P#XIktVT~lg5$_+)EGb<1Ji3IH2c_0oG+O6gbWr2(bfi&mk z!&Dg!0aw^_Vo%=14`=_yfh~t~yh3#Kmdw-GfKPdTD_T87b0Df0?-=xwd@EmbFZo{4 z^KFOQ=k!lZ2b)X{R)>yGiYKQsJi*JF8Sk&{ILBAVr6Inyd%6{zn%>Eg!%hW_K~Yk7 zZUf%)+M2Y_fqq>O!=OwtmgV>B2UO2T1P)Ab4Pc}eqi5bBWqyaGO(UcZ=+?u|`y9l& zN{Ao#IV2}ET9>*)a2CKf=5s^7aui9K3$jEBuQxjIKCxD$fj7}><>grld#=l5u41mq zA2>`yGiZ?*cKM0vb^B+`FUPTO%r91Aa0iA42c;WDQ>U)BRxMRC4jvq;Hk%s0S$nFZ zBGwd6K8(oiD?ktg>_U*Z=hn|D04p`tzR&=%7$|5fNHN{_|}Dv^!)ZUKEa(SL61n`Q+-+_2wcsuW5ohC zBBzhq%P+ljufQ+;4%o{1cgz5 zA{o1?4DBZ!70}C1W+Yfo23RYh5;(NN+NSM3TEhwQh7hfriz09gu9V`!feAQn2EmI5 z=skHi5*a`(s)8lzzV`|ejulJhGG>(Za7XF8%At0FlizW$& z*uTDFxCkvcN_L6w9Z~QafEyA&qvw19FUZoDX{l9lTv~ypE)6RiS>_tUQe8L86gnNZ z2Uy8foT?Oq%P)^KbHEE*a+R*6mi0d52m~)(WorBv>0n{Tra{|tWv=MpjSohy3~`m0 z%dO>)@m(bWEb+ChDTZTSNW)9$OWxZ246iV4N!p_*h48YNxypY=0l|WSQ|Bfn+8_X{ zUMsm=3kTQ*lXI_c1T zs;{{g7?~Y;?YDP7Jd&qCO9Sd_vJ^;{+J;1ch?%3XGv3_M? z_Fk6O=(msVp3883*lcP7cwJvE)cE1q}nxldfN&Wck# z{DG!Jiux{cY4kd-yU3&~X0DyUu(Gx4uC0j_8XW-YyNz4-xX3|f!B(c>3cUsHQ-r}O zSg@eds91lJ!o!Aixymp2o`WWi3V^gSKa7df^UIWg*`b=2n2^#*Ha221*+JtF_%+m< zoA}(of~ur%ny-{qeU<4uYTu8ra)No{cy-nq`#tK%4e51$Exd1=@_M=Ynby<;wSt}SY#c6Jn%I*|eoj#=`FgHNpF45fzQh{r zd7e|Fydw7bca08e#$i9&I(8~BL3bNVa0(l#>#d-d9*dY<+?(sRL9Ax_{NVIxWpDO9 z)oh(>f4%DPKBqLy#AyT$L=Y;fM6 z$Wd!AVDkaJL=*^~ULdhRmZXZK;!sFvrFZ1r_7z^FKY6_CWyDqkztYS{UO+Snh=Ww( zVW*yGrT>fitH|i8ySL$^P?tEw8>q|W`~5pB+ z%uTHbH-s()N!n1!%y-Y3!+OM5B3zbcJPhM&77Qky@a5Vcc z6;gL~+>lABE)&Sb7f2i-x`lDDfMZv-&AU4A(j^cAyz`F+0DSjm0{SvvsK8#E4p$5y zKdn$>qKz#R)(7IaTWpwO zMB!3vK#-{@z2L5mfBjp_PZFhO>@+9-vs&=<0nYtW`9~3D6{BI3{G!QDeuG3o0g+%7 z5tgWpxvsYLes>ycYYzbZo@Y+VLr#dZ3&;E&%DhcU7kkDW_;=!hoa!MKiwT1OjdHFEmcIaC=9114iK_tqT_$H^4sK3@y2xBXJ-rNs+(sVcapR zdEzB{oQ1{ScBp^i!>sFm5~Yf`n_nPVa-g4Wv>5Qc`SfFUf{SU_h|_dK*l60lkd&z$ zGm~v``r8gY^?Qy!gc)0mZR%@$t>xa-e`&B$D8(S9hSk%xvnC zy2PX;zV532KjOl(_MY(@OhX6H>I(kb@$7)U$l*ci98Ia~5juoA_&En_E(F9DDVWz- zzYCa^!e0--D-kb)<@Ni>A9Oz^y?ZB;0t5p0=X_|bghtLXpHos-Tem$1>?OT&Ez)7U z*8J6z$pMYPcH6v$blZ_m?}ypB--9KOvohFj|L_6HD8)A=XL*J${jl`~zfMNkA?1Hh zl`ZzuY0zY!gdESH1`xHqK5=)!@ADpsmyBE4icB(cGi(|X8+m7kU>jQy8kBFeLF90Z zS^YW{4p4 zY_H{IVK^6N_WHSG&J22nmMD3+jH-xTp675wvfBhQx~2ani&i+(b2nCg1gu;42S`CA z8DI(HpVKOM`F-Z^X<@OtgvbP}6k^-WP1L5R9{3{E1I!b(Rm__ND}f!0hQ!{cP2i7{A}-&3_{9FPIuUlKw*LGcP4qy8kUet`(DD! z^00WXKmZ!z8%5%QVc{IgZj4ggMfb}S#XLX9#E>bj62KLB`EW=}9-9J;VD+gMNmJKQ zSM>w|dM4waXx#p^kY*UV^70`dqLw)dSVC;$Dmp;Q#(jJRZny-7Y;pv*bt5C5*tW9! zf70s*mMMmYE1H9Jh@=c4E3i3e6tM!n&LS<+Y)N#`+6JYcRJy{8ivqI>nAjjy#+?i^ z#U%pXV}W5|g@1ObO-&Bz?&}ArogPs%Ru?}b-Y`=wZ93JL%je6o7{maO1Ak%CvKL~#Wb70X(!;J6(5#;dyg*myDS zG}gb}`_%|3rKc&ar4~821#uBa++6+t<{sz@8(JFny=CT2SHSoo_XhXX2KJ`~wk#Xb zzI8sM&7VH6J!Vtcch`aLaP@R5&qm+y%pw23FF^1t`qv6eRZ z7s4e_esX56J|^+c!8;dDU(f+Nv2Ep`Eb(?GUi-Q5*`~^@2;z zyqd|xSFwtn+{ZuKOVz&4DZCM(aCX*7rSLz%XV|$=rg+v$mcgcfw~Ljxdm&g;*0-exte+^ieA2X?qo{5;q!VJ7F{}b zlZ|Ec`3W`!+)h~c3oXR{rpIef~T6=IS zQ1BG*NsCs}@PK-0Oe}8XCSA7J==M=nZ(xr`o6UfR>u{hc-!VI_Hc$w&)zfa*5SAD` zSY9RwmIQQg3qpr}fMcUkz1m|V)tuJQ`5suR}*y9o~WkB#%8Pq1Ws!dVjregvhlN-}rle87ADfNIp# zk7Fk%4MqClpN;Tk>Fd4@XR>EoZp3%h(t0zaY5P6jz_4|TOAj`kOU~v-SMbZ8#a-o` zrgjDJbY!GXtp4I|Sxh_oL8QbKa<3|#C>D9 zx4y~YVccLVYFi4&rVYe6(= zK>_38Mu~jbgfIBN2ww@t<=t)9*%bGkG6aizDj|^_ZT+6|$u<9cdSDHD38zl9_2ac@ z6&dr51{8LaWNJ|4D&$VMb)7g-Iy5n~=3ek{H*#PHyWP~nM#sXYS|;>~DH~AR5jxK|_$ftDfzK9kMw{SN3CMJJDnIB^hP$fzoN!FM?)G?+V{Sdg z4L+t!$g{W&cEs8CV@6mmSfoBnFVdX=Rx)&K0#@&E%AW>WYNtDXGuDyu zqfylD<`g{NPleJ~rw|)IGZ;30Pc6G)NHi7i6uQlrp=4@`t-moGrCNX{Mme{A7KD-~HlkOR3uMf_ z;TFkdUns$Wr``@Q&&#Kz_s~)WMGKj5gT4tzI!3jRod`?EQQqoxs~lt=>rqb%-z%Y?#hZTk23o2 zT*_JXUh0#_8DSMkwdm*MB(bl_JVOsiWVNI!PpkGm7 z@bToVGiEI&P=~Ys=1Um|jh_9IFG(Buak|DOqItWL<*JqMx9lMH-`;Ve2}Ff!ig?zo zOXW`nuWT!D>I&{D;nGE zEwl4)JTVvQJI>E8<>Z)@UeDl{&E?mvupm-BfmLDKRaeI_AtJPHK)f6?mw2hD2$yX{ z=`vKTt-jC6p$N(JrQpxbF@MSu=dk(-xky$fFsP+U4cjR`9=jC%k*lqayAdITlIN-X zu`1hLezifgi^}uMbRCjh0$zVq$_kbIu)X%Dwr|V@_uk^H=EMEZM&H|AYqD{^&oRGe zg_Gf(gbPx#CYQC_JW5Z!-hC~#zA(Fj=V)Ky4XCWMQ7!3 z_i!#6qWODS*7qRuk4sb(gOE0;NdhBW+G<&%uuG=mcxhj-5F+6Z}t{W zc0X(oM&W8W{d^$);jU#b6$4E@nO*J-W78Lp)-gWntnx|R!@T!m^2?jt_@MTd7vrM| z1CE!Y-H(nQFa5ZMWnU$ZT%owqZ@Z=CMSaCpr|^{_&bna&Ce<`VOo{(pgO6gUYt*T| z<{PQAcfAw*Tz>$%(i^J;Fh?PctcYO?wX?m%N-C_i6atT&q1Ux{uw;v5rwb_Z#j-5& z$#cJnoL8>;!pB!RxR8kc)od)iYCNCVZ5i>UcciD(7)@ZXuW<_fXSnSRHT3)7E+IY< z#rtZlvY@;@#&3hd6+Wo&Z5F{j_e}~QJ9kin3mM8wE=6ekvGAx)(PXaEBy#pRy)dPP zz;tgKqK8EC%gtA)Z)5d~3ymG9C{rOV9ptPDx8_EXqMkSF!v&OSfBLc<69rIzxSD?R zqN3lr;~|nRw!88Le}Xj zoQ#Tvs17zfG1XL6)i0vwv3jEg>go!5@BP&_ z9*By5tc`Oif?}9?{Uox*xrWdd(vGbp3OJ0ckVOa#@!W!%L&jGPmZ?=6HrQ=&GHqc* z4qmx8b5@4+R#0bmrvG6PO!g+iChLl%zjf>lJ0CWqV!j&393*C=<;?lq-3`NFKH?pe z+C?QL4InPRS$Ypi7Vh{XvKn^0k23VBI;CuW5qPKyO0vdRpsts7{|-vyF<{h(E0abyiZ?LG!|OW z=nuD)p9B40e_#Bu{PUEZ9xDGnq&L_t{B6FhCyD2mzYfjMLivu>t4f^cV5IOUH_hBs5?Y|uTHu7QIFY9hCSeC|rI6vTI*o6_NDYu!ydreMQXkYh#I`YU) zPb>KODmpD%e$OaRpM4UEJ(kg*eONM^$$W;@!Oz7v{n5JH2k93*iI1g! zEHJkOyDoHr>~hp;{Zci^A{8%$z1>3C8GrsP`7tXPP(~fGeAE4F4?}}_!4p%$mdWXf z39Q*aZdNB}9qtq)S~Y!?&psb8(S2oNgQIa;mWK86jYQbWbZvr#>VEZ7wDLUD&&Y?i zULA0$NP{rmbQ1KG>>eQC!iRAmWYY(w6xbRHDBinEE2Alww=dM6|Ec+~pT5h-)$sIU z*x<8$Mq%r(HBi^#+l-Bi+6#4p>JroXeIvcUVfQ8Y>Sw zwVV8?5pk*WRoL^^ssFH00U_>j#}>fwLSiFzzAB6erWO%_AfG&^gf&5YU_WMCw z(C}IWFGeKCA*DwV(}GLYycE9sO%<1~x}}e`)2CDyu>H6wm(h$ zb?k%RqleGte(;l8@ZdxAedU0vbUTd&uPJ+mMS@zcyn*(=XNnx_cX;vZo9V7pj|GYm zNxD}#59ISlx!UCsl%_jz>f06)vmU#aY>{6iyGUPt*0-y_|Clo{JDjU2CAIQpf;DB9 zzIOh~p#BK6(82HbCiyeNe^;A|?t2ynjdTuryT1qtpjat`#56tTqq(=3+tALBTL0JF zUo035FXOQ3?;Shu{oW>wYA6Z{;P)-FXPRXtDL&>WyiTNoee!nqGSm>oRqzW@LZN=7 zd0CcF)a$xsiF|j^G!_(gdtilo6_NU^Ug;9T$f@wC)C0jVRm@G2U17~&04&HK;Jb$$ z3yQ%i2jeZAp9ylN(ko3|wDNN_Me)XdW`@W^=(kG19P|> zvGscJka#e`v+zcKz53dD#bd#%$3)B)*i#5LIrDKN#krUZG7Pd(3I_t=p4}u7X_L>K zC1y&d+5h9|N}!?K!~Sb2w9qJpO4ArEO4gFH70IBKOs|NH!(=lA>;V`B?RNbG>Uw=^BW ziBmxwEloUJ11ab%5Mz$HgUby^=1eZ^s12ZL=Y{nJ0o@RWAXr995qc>5t7rh+;l*aJ z1Lka1*wX`-+Ft0l4TgsO=)eDrC#211EO}+J_;X42-PE3l#rIkETcxPwWj9LY_=`y* zUPSrnd;?b6{Ew|}zyjdT%!R`3bp>9sXD)4XeH4W|3P@h1TA1kD++3*fqcPZqGvWJ} zpk_=3sYb6w2vb_MSS8Ggnz#D7a1I#0pP&W+Eru)IwM7ZTLYXt}gB#Y%;(aBl2xhc- zW&P!Xa$qpT#=w#4$m@cShtQmP2G!6(FBBua(W|s?wT-H->bcw!I7^l+u%k3|%VcWu zQ~eZygFI9?6Sg&I-y_8X>17A3nLsCEQK*((y{xHU0fJvQi^~$ap|^r^RQvqk%%>4Z zbWRhsL`>u~O^*q!3AFGgeU1FQR&Qvp&zhGC?6^46PeHd`X~V_WH@r)U06_NiSdWce z>=|{YpB%2$uaVm+4m5P1cW8I5gN!54UUy_3(2>Q9;iE++^;J@=2{GvHE<*#cXT!6x znG)eNy8%r8Q|`3bhA-Y8xtOB6w|4x!A43Uv4kr6>$R-sGTs)xZ_8 zGvB19&am0-q#oys08?GcKHbx2^2W@oy(I0E0EU+sNW+9YN{^7WyZHGfdDPk7d+NnD z`k(FgS>9r*-)0!-q8;Hr9QjU)WpBq)?02J)+NiO%BkV6k_2FP=m@#0FIkzD28AA5X zkbwtKD-j`%k&{&HwD&$&zI!&Eu8= zWs8y!Q>m+ypy%xcp~JL-*!3S8_rP97QtOI%|K`KpripIrtANo4<1uaQj`YTHIY>Fi z=@Poox6*w(qmfp17FcH}vV9eHrLHS>dtEP($Ap$@c`u#sJ@D?N%W@7Qp~ zQfp7OZv=k40Bx=jo6oCkPVDjOEKm~Tnwod~UU|7?4?F<@f%l;^lf!>Ssy5vK+o?R; zB)wy|p9zIinxaQ8fSwz4E zc|Y{B;J>X+CiN|I(~G}BLK1Y!A*S2u5KOmHQ{^;}y3i4tV$5Z1C)&kzd;%XB@YaQ9 zY%PHcV%b)-J@)TEFb+d(CLXrRW8Pe-XKjy9+ z>egeuO-UCCVMSgaHtSMU6)oB5pFl8Yo%kh}T&YNEPtVYSUv}S(PTv2h4=o7xk&^!W z&jDWqubYqo4E71C1cAGE7C})CYB4+?NH}!Z6vP<8Mn}}_p<=}p`Gmq)vp^s2%%*vv zs25zp-k3O-g`}wJrWr*5*4|D^2NV}&VdRyB{u2@l!8=o=<&Z|N-5IOFJ`rif{UrMQd%;vE) zAmruQUbii}Kn%je=LnacshxTM8ECqosX&MWZHiCjpc?yrGPZ;<5-fe^8Km(Gn@6o+rB^1l5(;DC)ui7e3-gmmfme3yD;0orR`yOrR zPTM7{SZx|;ens-%n>ZZ{(=&AG*KD^7cPQRw@;{>SzC>rw*MYB(DNpI88CACJQ)`-@ zUFQ-usVSOssR>@0qCBUJOFRB-%p&Jh&*^~e0mtdFh0LClGQ^A7PCaAm`wG7B z37-CrJ$c^s*3QV;-rg537$cboi(F~~NbK4UnjS{%U{aL6X6Z!2-Bh`NW7nxG zOvhvKT)LNaVULzEIxETmB44u^g#<43KmIDA#>?>rY#>|BKM4IM{)T;lFRW zZc^|F>#gI(&na7PLx*-Mre>cduK57gw5x)}{65Y8FtS+e5c~4cCqYxHQAA+5r84(T zTHt|4Cr-D=A62GOP}V|#c?bH;T6TFW%1TPiALuq^l~Niw7@4X#%16YiBL0j1$-w;9 zkXBN884332UsD|VVrg{q(E0z)gD%7o%=d@%`zoOa_aW=(s%lwaKh*IS7vV;?y&<{9 zvP}DYZ<_e2>-+y{;v1Kp+T{ubj6T zG7aHGYTK`f$9cx2zx+k#zbrv43ms0HP1Ix<)s zb$sPzGkE-!lw|69c&E#6{mx&UZ>s#0U~>6R&q7q7Z3KiR3;h(%U8;KMo0@83ViXdd zn&M(&SP>+=6t<3`6hpH~-kS!X_SMT3?8;XWqVXAasZa9T4HwU6@|ZZoS{PAh6sv11 z_=N;Yz1_5!7T-C>s(jlj38%XFqoy3!#5}d7CgLrB#e=Ql~|n4RB$;& zy!}POq1omc1960bfIJkBz(GMPU@73HQ|HY;9&*F?|KrcQ!nR+VEPF$O&>R4`F!Y#U z-q%sP(j8+DV@|^6Y_{4pM`HU(>z;aua(k-V(gT~+i0KHCCxQXfKXA;|`hbnTZh}xU82E9bDOdZ;JpyOUr5k0yba_!uMM94PLMYWbVVEIj4;VVwUbsQdr9Xf#UTair4Yf zu)fQyq2M#JtM_byBpNGuRIO|N*O?M(I5>&Hg7$+V;6uemsBVJgvZ(@c;%RZeAT|LB z4~h_U4yCSg_P#>pt9jEpgHMeHyDsekKN zE_RJ2rGNkG4NW+Ao0i48THNrKCV*rcXc=6cBH6vtSr0`VxCuphaXD6YWS!~&V8u#GVzD@{{1Tw~90AdoYmGmzB)|30 z(=V!n0mcw94j_LLaVuXi{ikx)R`fJKb@Q)@%bJY#@{fi89lT$5Dj><4Vy-0oRTvvr zz$^=E(ZAG?9m91KB7Q)LKs@MTi^t95 zY~-crdq2P091EwAzXW9_!fMY6vEZ>y>iha zCMNm@2ykvp_`P;Zb%RC5D}tp0|FP#G^DSa^YBI8P%v&?^q!d!GElw55s-A1OY?euR z0E?nG*Mgvfp?@>I@=59M-ku^slQ2O?Q5eQ>*!n$$=Q;^e8+FdZanV@~m;mfAUwP=L zmTus#C}Rfu5H9%z$~ODoY|2Y=y^~&hRlU4N@S&NxYsZQz)r5F{YFmy&U->tKAM5{* z3jjugb3F@Pnwe|1N7t@3RI^obx@v)cbS~ihjL7GN@s5y@sAw zATf}eDA^+Ew%QMBdxwT(j}8W7ZuRbng%fnUSVwCh31&!dx{9pAINhNg(`3ywoXDS^ zN)ye49_IYfytn$cNe&>KXP@%)uh~2BNR`#nQ@1rvQ#msG=Ubeg$wFu$|}>1m(vPOU{0qn;L>e zgFG%$DbB%xmvganB`W6Pq?_HJy{gQjseIEETCm8lBhs7T0+%y zF}w|Yl)@u+@^Z6LmR9dfEV`DSSudsHB{6;%x^X!Gz+)vQQpKQ(B4>n}qDf6a4Bj^+ zX^xaxN8V@n?uSH+?$0pf0!R}7q7`g$fYN@R+y!M8!5wT?{O;F_bR^!mE(ac;r!HYV zLSoK_@X+vT&JRmEONjNz1v`ozsxx8v&5BRIOre1c2!KogtxO^5xlq!~YX+`F)8J84 z)@O;?x1s`kSa?GNN-NlifkFos@NvFy3D8*tW->aRNCV!T?PdMZMg~3jm|~53DFO=$ zGPv^+prwFa0S?xVu?8UDzRxolQbeIamKgA8fhPbs18rpb4`_Y|fson<~|@g70M)rBoM0E~g>-ejPA;!->BwYM`uua-$)E9`1dRLXfw^zIq;W;7g+ ztl_bcw@WR>>Q2yOrLQ{KhAOG^a`vy&cO=J8t=Zi#QOlXh*SG|57CJ$=Cq|7wtb31=2l_n?rn;zq+pjy zK6q(R?@|{nqSuF+g$Tw#U==f4nF!Nq@-` zKyqYV3oN|q*E)DHWWc7;SPW`=eeKWk^JH^?ieSaL^a6Am;@D2erxq(fcQ}@}M2Qrm zWX9iLfrz1i+ds?EWgI-1NH8Dq@_}v#UYlt#YbG@&TiKmJyzaZ-RrI6yp)SQocdYh} zW?%cg8}dJZ$2{KiLC$4iEG1=KlS}BNNAU|Lviq><%DtMM)t)uUv8%E!jtRq+cC%jY ze|1+3t154^r9U}@U#@-Xi8C=d(Wn;dsK%A|+G?hS5RChyp-uH#zGbx(SNPD-T#~_B z;^V<50$s2H5X&jQ_O%_*X5 zOj~m8n~S;Ay(>Xr0q?(1AWM~|v&1;cpsIS{i%#GybSs+ts~l*1ut&a0@!72gwf(}x&~&m3^f`x5&+2m1+z`r zjj#oH>z2TUzi<*(G!W={RQ}jTe7sCm03ZB$!R)2p!5l7OX#&d$FUQLH2>YGSn*rit zs&gR~x(nDJpg8h80w$Dk_aOHNxf%h6NeWa0f$eGItn<_~QGZL<2gPY&enn7+pkWV4 z`}fD%nuNW6;c5Q6Vx|}9;Alqep>zRYZ*?0W#_My))`ix}`L;YzH;(%4J5;>SvM_Al zBOTvQogrPa*WJv2TywZa`xynnpp9Vw(Y29OEE<`GM+(ogKibfR8!m%Xdk;d7Q+uqJ ztFH7<5|9wF*2+TTTI3ZLLx5Y*@;PO58-9f1u)qVm!vc6P9^@U zRHiNw=hyOUUH&IDW!%~@bZFr$NhdI{xs>A5YcxOA-k0hUzW6k4-tV~{dE{(Lr<2pJz)c3m^W!Z^ zL%qt~Vmb6(Ch~?F++UXYE2XFgm66hdyq9Z!xwl1Sx5qi}f#f~Z+ByyeLWNtoAHG@@? zr-m-Yp%p#(C1&RR^}rni8AF%qK|1Bat_C_IcQ=7}D3gNZmT>OrftBHUfOsjI_T)#ri34!AX^yyro+&ll~}v*RNdYiI}}B8g3oZ6b-klY z+izRCb;f;^P4}{N*WZJ=cL*yDekB;~nOo9a#&&p_l9gMt&o5V1ecmP5IMWodIHcd? z&GjI9x>SY;8o8w{r@38RWh{=-Fzh!q`93SFB4%N7hHG+4rME%YJh|)>Ex_0a%$EkP z>~o&saRq#S?H=)z^ zq@Lh*K&uM|CoB)7OdVV`z@kj7%Y8kljIhJkWr?RrTa_GSZV;@1VfXZ~pjfEF5| z8bOrA)o)wzmjQ&~(ZJf5(nWN{N+uM?PoER`s%=_6!GVd4!JK)!+Y88bQ zLyt?y>p?!``zgFNk+Vj7s9SExy(BiKVSr8v5-l!#xGMnWuKAlVVE|-Z;62vs)L&4- zK(3!PIunzd)?$oJw-`Y9c60{x-Dt&z&x-ap4@WW|A76Z=`5Em(F2st5^*tll*_k8p zQb?qjW#L8)z=^t$r{Uyz85m_OF>@G@5S^B1JGgKomX`DP%U*_S&eV|M3xYi`lPo8- z`*T@S9vmDGF?DGoz&195+VBPdJRZPJ8>jWDEP{ezMtBL@G83)-3{o7WIV-4Bb4OxJnR-rU&c!aeRUFpj z-Db-TmbevIoF(j`kxD77DPoA<^nSIG)!l&-&4{3%^o=_6H?+n5@N_wrvNVp*Jmn+omNAG9gRvczT)012TB zlam3eiUfpA?oo@KE2rxb9qfkxyN9wCAukZD3oaKtT0vL3dsX^7v!A9|G!v#Tu9REi z?l{Qe?wY-2V-Yu;uIJus!hwq2;G4FZmckt>*IcdQikV{@hirU&n|n`M)C+&+E!;GP0`m=7ECNUnB}^qQi=vwa~3J{|(sv>0TS48)HntpZ0k5CJsd)AsGUPM-KMWDQ1Gao8M$ zZp|bx?!sI?9pb4`WX)7JazyR^!HNl3MHh}}{W#XCcaHSH^}pGSVb+prZcS9w<tKu1;HE55B2`URbpU9Kx`Pg~Z3NBVA!?DJh~pMYUHJeg817zdWv14(hJ z^Ir2CN&vVNtfVfj2RZ;1Lf@*_xr9yt(}(IdGqq8ZT5h85-hC znz|yGVEa_O?l#dntDc~-`dedgaKO~$VCeo0eLX$potum~8cx1iD_joX6M!(!w3>t} zwN3Zwz?&k z3jX~yH~wFBA1vvP0uJ*fLA$oPx*Et0c~uT3^Ao|wJZ|>~wGN!v;m3pboK54F9!%b& z`dJsKg+M#eXukU~in$CD=lP-E-ocbePR3^Q-vV;^11x7EKxYTD>9Yi{IKC2 zR3;s0*}!?$`eCs3DI}GC1;eTU;D{{1R)@>w?nMA&!dd?LOlo<&5ddx~0y|y+rW}B# z;ttacJ-Ll>Y)Ds zy#{rlY6W-S&fElVikM!OrTD8+r>3Rpf}@2@eCHOKWAbMR*30RT+$*eTzyCVV)8!<+ z#q@~T`5qBOzJV01Uar98OZc@J%AIQ)0%YU|3zl!Qaebb-yP@UeflD&-ECWB{TEl-0 zhKxNwZEu;01AE~YI}~0-o=KTh#q>R0L6tfNbwYGc0wEa6*SpPwHeW*=k&A=gKfDD{1^NZhk8gN6?WCb^Dm!kM#H7Kf=`+dfG{O9jX;l``j^gEqMO89sD=9xC!WlAvJ}u<(gR# z$?Wb3`Mpek=ccS7<)jm1UvZBZ#Nyi}wvF$eYFWzO_X@QInFWrijw4Z{;7~g|>c)su zs*9a(W-tq#p{?>b4MeT&YvyJaKIr$AYhoX`hyJM_f{tKWnP72|m*P{okoX%6Qexfs zjLxP~&Gx@dHgnZM{=%1YMiX(RlE>2;p$*$7xlIY6bYG+J+nC#aw^+WjfHhah@Y9Gm?SdW)@pae&|#(kq@{ zEFhc3ZJ&Lccz#D(u5AdLQuldbaXes?pgQSebn(IFgK2Y zd1mv+NH3h}+g#lZlqQh10A zkOv(+h0#ghAd5$fgK0#vY7dnL>rY+C+tGuL6v{OUx&HGw?>4 z$!tr8q)p1l6$z5**WdqaWa&Aft>gu`T{j^=Ce1~I97vupOq2@%QORW%E}`}chy8w)bHPi! z6=3PYoqGY9{bc5;@iczTW=L-mUR|7@V^LaQ5#N~z17ly0QE?mK2p&Q384N5=@-O|j()V^ zhTek_uh@Al!llE)U9F@ItZYK~jBI$*te^rANMRFxKZdyn@T>XNd&d#eW`2Z72(!gG z$HcIZ+5d7j_4cMl2-tlKzqgve8=h^=4==gvA*^1IhzD7IaXGY;{}54^q5X)WYjN9e z7%$~9EE6!>mlKVTqyd8rSmmWh?3y2*IOxfnnF)x&T;qTuwl!O`TmT@T=S@pkx1}bw z!e#aC06;WY4|d7gc!!uR^?UNMbk|XUIp`Kg=;#=cNm)imK$`ROKE; z&CPG0YTu26B}F+7-m6!)XTI__>Bko$J-xqArmI^tv=ph$t=J?Qa+&`fF<;a)H-7e{ zw<`{|(OH>>s=MCpBwQj4jwMIdBqyFZ*!;k^PCe;(!2SHeFUGa@ovA0C9Z!6IU?$a) zNtwgQ)~Kr3OstZki;4FOVs-#yrT*$W35X-aD~rmtyl#t8r8WTOqE#=CAKlF#D=p=Z z0XjL(`@q%|HKslCap~@JX=Bk1p0V6UwE2AFO6RnErIK7sBv4^<;fo}yd5|3b?&qmT z48e{l_SNJyDJhD?@u;vEgDf|~3F7V?t7I73BpK-X1g=GbxaHD%EUGwNvjVI0;Q_a! z0V)}ZAI6TTv%!?~aZ^tgDqfyi zZMt78-ORir(Oid9xO-?%t=1}lVMtWg0Z2Ji%_lX)^xrqsco6A-DVu4L&78?*2EQ8h z{ZzwZYY<5!T{rnYG`oMRvA0_{e5APnVoy>JYQ zRf<)1ZJNS-=!X3eHC3YsYENAHse&bPNfP_k%riEFf~{!B5x_+b7`~YQNY$&M z;9&n+MLm+*)b$uj4F%Kmw~9Xv73DSzOb+&NMI-#hJk6|#sj15O`Bu3EZGm;yQ16qAyi=si z9jeNsj>2$;uT|IJ$u`CP_1NkQ@xGs)o#%&n?;V~K2HTQw*_br;T0i{X0#Z~+now9|->eGt7Rf}K8Cbh^jYRd6i2i$ys zF5WpjGdS33(68?jwlF9cv5jv7<)W9=G(ZlTnVf6jOfOUqOb>i#^S-IY9$q5#kfEUi zS3S{V)6<)UrKu|qH2-bz0ROeK<3lDZ&@tfwg0-F`Fl73Wo7`)ooY+YC`Z|g7B_fM z-04QcTW42`S>XV}#fxLa09kHRt})n(oOZV?++Gi2i+e+TqP|K{$1n(XP(uo8uFD}; z3yw5HQJ3P*u4YZ#z%SmQYzVDdP2U^$TMXz05co)9S5}JtTjw%A?IM~k%afA})Yl*C z4T%NMc1vc=^$d_%hL9k>h_xMEOzUB+rf&9~Nu8ILiQso=)=HnSG!c4EO zuZrca+=QJuOsIrJp3oa7i{HIN*T2r@t)2~Z!K)_=cS6S+#k>qm^=q(Igupro4ZwRq zIIHEmvrMGe(r^MkV}QHiTHOwCF_b-2VgTl z_pJqjq=@+seToy~1uPn^$QY+*ocP=(1T2>j1~Z zwS?w8gRPMa56Jb@)m>uW+AW~{q#)$D+$PEYi8BMmH_iO`?tV!W^^VXeusYdCUJU6ic4JH7CW~ofZ?tLJOeNP z;$2fZSyY($D@0etBxot;OHD$jpL(4VPL7X{w>pT_>U*bdxp`WfKlE_{AB;}C>OuL& z)YrdX84VS2-zy8l!6Q*Kn2JT;>>}&{pw56akBO5tdyz7#^FJ~J=fa!tcC9b z@4Pf@8TR{hqh){G=Gp=!F~~Q3=IeJhc;D&^XRaw@VxBRMcltCn8SghT$sKWD-`5j% zmF>Lr(a_Yr;No880SZ@TW+g&66`#ACONWQ++VupLS-KU;(Z32(Z_#gFRrdaE1p_-|haq5f5ft zOXJ<}-`~Ufh_9|(`ZR2&=&(YfK*M9%-@morNT?~?_6H$noRS$3 z&;GdbPflg<#J7JlB$G;ji&0ejgZQJdaV4xMFUPHk0{V`I#|D@%K-dJFd5|RtD)M%~ z903u204<0q!Z*id!GPlL3^U9}Sl>1PL62fGx}M6JpPl&Lv+zvNOG?nQC=V0PK<3&O z2Hi5jD>wdk0`uc_9()?k&CUDrBGKI>6(r#xR5}3W!}NVHr68=Pp&~pT-9Y>$=A+IK zxh2d(je7X4;%9)Q56Jy--Mp&39ZR)_z+Cr2t{4EzMDkGugq=rUX&MW@jZAgY9c@4! zN8v5Lp99`|=)`pg;&(`gHu>}4-Al8=N|8{UQYpG5)&KtXI=qjMk8UTaXgd(nr$3V* zE)D<;RJBB9LD0zpJ3m}FkOax8b2=!10ysyIukZKjxzJwpL*Tr5{d(A_-T%n=GCz2X z$gDaV7Mxn~@$hyr40PJal|WR0iG=kqal7sBtlJ`GSkGze+6xmNg^O2vTC!FOX?~%T z4vdojx|&1sugihB46QGQVrPKQ10H7pG(nTBORz#Kn`$I5fKcgASzhjLIu-fs?wgcl zzMh&9Me!MFEIO3d9w_2giU#D;()4z@wh4YqpHO#Q=6X^|-Nx+F5nHE!kBgrMnDei z@e2?B)%31MO)}CU+}`+S{V@W3l|WPg_STBedsaEX1}}z&oLL`bV^wIBn{#;^SR;u} zIwHZh`R?R-nZ1_ec?ZLerH;?S?5|-#)DvDpDHquM!Mr_8k4f%l-~HYwlnZDy5C&f? zPircL_4~H(b5lu8M|TXlSBgHbe+;IjBsV^+T&nOCiS)DLh5Zc=&7gmX{;hz)up~yy zum6g-9*L9e*fsJofY_Ng`Ow#%Cp5Nl&DXw31tycpn=qHEB$LJAsUb}Y*hSyvn}kkH zJLJA^#wBzeWhKYB+HCV|?w)-zx z)vti%0?&@7?!zVTU))sI@7GQrt&^W3kwe%3D%L)z-=JQ9Ze7($Yg36xNz2L%L4?%f zXBUBE?e=3;%f>sxJwSW;igv)eBY799zFp8GNa}n*?J7Kp z?wQBnB05mVA#f_LvJ-kqY(p^LnoF4q zUYwn}>r*M3n*PdC@A|g))oz!>f#362e0_s<4OeH~HR%g0Tg?nI^~Ir3Z#e>M zP%Xm43_baTOq5;#fsv_kpj(BXVb~vk5B0`gY=LzL*b9d6gP!jN(^*(&0vDVf`p(?W zj`$w37>KXgN5($E&zb#=bPD+8K&8&q7Oyg{oeoy(45_>m z_hYPmWcusZ$AVoQdw4`Y=8tN-D4nE&_peW_STMv%td(FnNas29i))i1)oPI7@L7& zUp&sdlw&^dwhjfgxhmwf_vy#32!`~Nrsj5Lmq6I7w~vWM4ZPK4$C!EG;2)fvnOO|y zY9@i1U3o5Kermnm4|f~^{#Ho4hSn5ZQ}loN?IS8sL1;Vi{li_+xSR-#lHrbXO}NK^ zNW*dmh`57@i_@y#LQnTB42Ej!`m~V}evB<;wQ*J?WI&V(?j=eHu??NDIayOW<6uG$_g6I-{DbGTp0?ebo6n2uAZLgE_O_+i^WeH8w+2YtrrHZ4;dLj zc~pnYmsxvirdA%j=~@%s{&1;A#RDabBUt#_Ax|#;fI~%R!W->&mU_x|z!C8&Q(uyL z-!OGxxdHm-Y{Ta|zISgyE3i3MTYX}vvZ67P?YKW|fu~=d8%3LK5JY@@8F-#wZbbSC zIvaP#Zs&6ZL~Zv}LpHnBr`IsQd(GK9M!#leX8cII^qXoerv@}l=HEn-T$Vho?^*fr zu%Cc)uNd}2Tu9>*vicI9Kml;ug3!l$dR79y4(^9{!Q{S8nIH%UKXZJevb7W)-Qp8M zPcqe`4G32Rz5BO@h^MRToS?H)9Kmf8>|9lDpxEJ6dx*Wfm>U}p$~#bPIy+#-c5SzC zkKJRyJ68Lzzi#c3(%SA1udK^MI(!bx9)BWxNc=Xp*+}?bt{}#2%yqc&tsSCeM!sX^YIfggs|rJD z<49TRmO$IC#Fq{VmM)YhN=I@9&mI9xGdKA@X<4YqNAzd0$3<|tUHOgUwT3?{dQSs| zWz=s^M|Hr$$OpOh7dYo2+@ynCiAf0 z9)^&bXUsokZ-N%okpF`Df_7)Sr}xFFscT*^pZ{2mel0c+wFuwvGNQaQcebtpD=xgQ zZ(#V``w=D`O4k;!m4x;Wo*jaP)w|V%2a>RUL$fvzX-LCH-c{bFwG7)Yf$%BNKBX}) zI(C5yUjYMdzyq5W$D^2Z^ZRT;ual>OYoDv5E!Yxl&fXHpFHcc|B_|Yc@|bW}v@OY# zyafbiU29eo0-?A85i z{tq6Hl8Msi)a#+na%de{P;Ke(VK%;zT?LnkBpBGv8|gx7Z~|m{3|xsfM_>N#%XB>; zof5&;5sw-uq;!WlCi**rIiORpXQQbN9$kciKVv-yCvIvluIMTe_f&Qpd=xJR+iDBM5UARPfPm zi4XdZ7bCy)kWI#+sC90N=IOAB_v_$V2FY}tjV}AtE^yOyZU;l!SMdE^Y;5!Q|1A3n zUL2?AI5@{c*JYWPRm6y|$+twEW*AV3!M2^YO^skPb`;icw=%#)nME-Jm!9J6Otg@r zO*t&bZ6Tlz*z^>5>#*#=bIl7&$Ye;bK#A^z6d+|D<+8-IihyK?Qf`o6$F+7S98Xja z^vT7nRiB!UiRvr4i;`AM^2%L66+Zt$e!G3EC4pui{q!Ew>V|qzq3lUJ1^JK9LXN8Gaoo)Lm$6kTlH`v=4D5a4dB8_*J7Z~vi-3N^e!w=aVK)TP^cK4*N zI@)Y0RG?$UVmK81a6_3@H%m%96mNV5Q6nlG5vvgSEzEs?bT1^Px82=2#06yFmQF{L zQX1-YFLu9Nrt}OO-Td}Z?(XZB=X8!q{u_ByPhHNi>avy!bD61U?7Lg__Q&EJeP3;SqfZ~JfXuR{h^hHOcODm_f;BhwiC#Hx>iVX`2pq{R8R)ic^6@?? z;C&4ij*qvqM=lkXUQtVH;E-q+I;*g-j3A)~Cb)3>Tgk(dg9E1~=qQtws3waO zX=1Ce(b-#U@Y=)F!w>boMuQ*Vjl)Z+X^*u4I?VpP9LgUAij18;;dvwq%=2oD!3LrU zQrD+i%kuW{TyvN$_f``K5ag4)J5UOx-+&!2^#71bjoRLh-KmG~+noHayF4v;KZ14q zSluxr6bd0ph%nY0l5cl1RvV54^Viu;xg}_MgC8NR1DT?4UmyY#6#%*rMohLS%miV6 z7y#SkEwI%DER4|W1YiaE;JX7rGE88n*)~92F&_DfA;5K_3rGe&XBoUM#PS^6L?Dw* zY8VKGG&N{fojk|xxNL^tAvEula7(7jzmI99B(-g#4j<&Chj zT@A*OI)K8eO{0d;j$}G|cH7>-BPyPLz-|;GKL~Ke>>=LIFpmEM^8Jrd?D%T@+mRL;|=fO&V4~XC&CP~ruz|{ z?SMZw^-9zv`ppCGv3^-ZnrZ?o=}C?DKg@S=0bfqr74J+uXK$?TwprI~+va82AMM+o zhGraBiazE}Cb~afw2(~Sz8MOzuEd#lZ=so1+KSYuF5YU9efSVk$pR3uxOZ-3`HAP_ zH8-HI#ZT~eK9)E8cPF786DW}5`|!iB3MMv>w+4!?mc4#GcKy=+V>j&*iJ^1z-T&OK zKXOy2j!qZf@H|ph(UBNLl|_E<&^m|nNI!z#Xn5fpbQK4Q3ddbz>YCJb3oSOvr^Of7 z_wXEMYdDQBUVn`SLnFV9`*UG0=ysHB;Tdu>I~W|J)ZdP`k@hx(53QII=0P`{amW=YxQ>nf4J%E2=1U$? zZ32)j#%tgW>cZwf(OtWU5(2aYv^gS^!O>Z#g>%Imo#bL*M+bkr&A&$g#CF(MjRAEV zGV7%o29{O_qrWhwZ@uz+<=gP*Yj}h}DkZs%?nsO$`F{VPu_V zQ^g$`n<8AS4#{0k3Jms)b=#PMvw<`qm>%$rFCYR4r&CnI+PORx8YIHEA25m{Lbs#3 zs@rAMkg;BpwZayHg5zo`M^9H#4&vYNXm}2~;-oLTtM|GT_2_N3g;<~Q@q(l9+e0QM zOET63^SPEP_u$F{n)8yD%~D%I&3p`=cmOewG+5a|sk*fn;EQV+cpGx9X604zMIVQ8 zknq5A+2gARO$RSog#nA~{fMqa`ql|IV8ds% zDFbU`do=X@h~8I+y=ZIsV`0H)i>^ffnCl7~ScARGzXUa$4v9X$QD8ZE`XhiIdPVlH z_y5}jz(WFLE~uX4vY5)?si)_Xc!-E!=L4(wp_KD*Ejj7xif7np>7o&IXk=VFmu(Bw zlN)n9-ojm&H1GB}0nz_8qx|Yb~IR}=%P{JJ)kie}dK_0l@@qaG|iRTdE6u8xc z4DbuYg}9N?iO7HeS2gCcaasr;syHhACu&*md|7<~;*EALuaUI9EJ*9^k673g?tpP+ zCq7~7*c1Q1ZMHwAW?o&ILPQE=3R;CkJqQbE; z@BX(BrKH^T9!q~dc>i%S{y$!NwA5LTwva&Odg!9zq6GDf(XUm<0UO{-RH=Ng=JD9J z0zDzmM>OI0kEUx(Ww>aF1F5T{xeWI7vywsH7n0fVnYN5mPW;=ckAi)Ec{@s+h0|p3 zJ{Wu&O8W;EI<(DQ>5&?a_%p)wf4zbTsAjofU(IuMaO`ewgr_V0&o|f6@(|A>3PiY) zp+XX>Kp5H0z9;{TvxdslDe7f!g4iX(#|`Ac)r5`muzPvHc~PT+7YJwV?@4SV9l;-pi#ez}+tE~~nX2*Vm3m*Fi^=H`Wm@42 z$Uy=^!G8B+DLPXvJw`7yMhskiZXSJJdv5ezcH5xdKrvs~0sQIJi0%$xkxDS?3G&zW zW#|+wOGfTJmxy&E)BlI2GXaNk|J(Ru$>5IUz7IR8`#DhO>q^2r+-dZr5Gj(F|C*tr~{U4w&>BF4k=!zQ@Xr7o z!y&JX!bcJ4#;S)$7RK#&C=NLJD6b z8WmRT`rd03Ff!LiY}VmYFQN+uZ`!vOtbPfySegMn7w}UYtuPhAGK+FyX_(werHjF_ z^Rb}fHm{6TLJ`awRe|!P>kfYc74^!Bcnw!BI%(Lwot=)zprpYq4(+sf;KngX_VCM} zE8LIyMU|$5B*Ex3#OT5#vrAYU>@@))g8jV+!XT6|a!~;% zZ*?IR;>|wBWoE4f9vK&F_FUo*@|r?QH29+sI$r$1b_Blq`&qate6aEIAp-5-=QY`4 zg*P>{&;|gH7KcFRj&|OXAUBbr7FT6qsx#E)H-NHp6`%BwCijWal9?W($*y_jeT51M zc?91qbKl>KFXY|JiRqNl_S(l-MYn!iwOeiFKl@xDX6!zb!Iqx;am$`1RKP@JR8)kG z7vdEOq^5Yl=YHzXgx7yCW>3bWSB!I-l?m$23%Kxg?v7ozMJA0+x%dZFziqbN9GqN$i1XIv6u_=X67htGvJcPDEWPp9`)uwD5YeGfqZ+ z>c3-re`{7!VbX)==3D0)@3^fbXht`5^wLpQ2ocj+cy^Cx!_lJW3B5GT&+Ik0)-J9u z9#H<1lCz6$RP68LUm`I2xiZ`SML=IaS|Iu)+k<`iZ7(ze&p+XRw6Tr5&-Z9Bn`^p9 z@M2|-ZsXEyPm8n5x+6Y^OAc7Y4}CpZ&|hW~JkviNB>AehdYP?`&>Pvs+ByX5Qy?Cw z_#^3oC3BywS&*@3g_59>D?`SAVDh{ny4F}#Rf^t_CpNCSc(rgyNhoF^LH1gAGDQ9& zkCC=bw0$shqY$?t(UN8M_k4Vd$nVMZ1og^2u>3;U%bJVao%BkTC>a$LvqtQ?KsU6X ztUQvweRc2YFMLIh?3|(-=h=eBiwM?Ew=CMRtOVB>H|H4|Y@W$&}uDX@xX(&Q?L!)Qo)1^vW}Rk?WUQJBQw`RLEnr7QVkE zabS~Xyq;#snctInMlufd<0-Y=agRs0fzOaks__@1n25>noZX<+ru-_Qg~Q;ov#O zaJH>LG=v-@KPY4L3jOltiXtDy@jA-QHvVJZ7gPwg2FkmNF2Yq(O4>Vwc9(^T()aEf zOFWlQF&J@IsXJkf%e)k7Nv!)>&5KVo`#cjqXol%H8S{0iP!MwC*ehtoE(+RGSB2RQ z|D`UfD;Cq>r^uGXheb9*{e3-*%Sj-ko=#CW{A_V*7vh!fVqJa}t2`jHh)QU@z5Of> z6Pk@@771_a588MWZ*XlL)ty=EcR`&1PgdG-nD^U;&MO#!P~9(qYSntMu)d>0jJ*pl zarESv!vZrseF$?GG_g|7~V{_cL1%q=Ep^nV`Ury_T0 zRZ(D#lZBYh4EO{nhl&H9Kgy)y5U#KKcG?)jJ=7vxJrL^&Y*$>dLc6{d4go*I-)%RK zit^Wrm^(%Be)}0_rw%+961kQTd+IR)^C1bXZGof>2NJvJt02Fb{)vJ1zYptYrPqs> zqD;tEhbYRX=l`ev|I>=%BN%{U;mq9=5dl@BIC!R5a~h;u^-3&UEh=-KZ9)$+oR)tS z`48Mw(HTO6==szH{RLN5b$EN(P~^mo_tHrcJ|sE}yQFW3zzfKy2Urab0wMjlc0SDK zFq5nZfTjd)<3@^VM9lts7@(Agr4~MI@Ebr@KZD#5;{E&1VzWRgZ4ce?qz`G)wT(Lu zYC+7p^1r2x^S{O7pgV)|)&$+)EbAx^kI5$n(Rn?k2YY-L=ReX#3(%;D=f zYLZ)3OkEb|?AW?hZU=pdsY@DLZLjrp(N#GTtBXS9EBb7@r)|;p%-6irwdWQpT9Bfbm9tOMzUqm{^P)?Jbpj zFd5xNm_uoT9T)O{GlI1qPei+uANO?In1< z1(LZVJx`6+1TJ{V6?DQWaxFFi`Z1$=zEjkm;kI(we)raEyR9%er?>4VplBL1e$fUp zPp;-YXjY~{0~DIbk;RkW|9W6kWPB-n9*4Zn%^`CtLrU=%lnaiBd2$&lG z4YB%|{>?`d&q{EQF77Kdc_t^{>Nl{{e{}dK^2cwFHYodGJ|s-vb*!U#KZiMCUaNzI z^0(s)AF`WXOz;%a)s zs5E$dxYuxGU4-ec4@>oQI%8r8!``fDat0#sXGL7!9JhSL)#CNeiwBw%A7w8ji}AckH4)KuVes;h9@{WSIK$5`*F9Z1DsQo%Wh zNgJ=tL?Y%j_DWj2m0TC5RedlaWeV1Y1aeC!+;Js%@(9heU{ggR08|TE#JL$wn(tx8 zsE;Xp8h6(TNZl4EQXE*q#xiN>_HDBqKpSs7yNv%j&jD52*^e!!-eb;h>_hwwBC z`w!IC)_U#43<epxGkzAY58-5r|2G_ zLLtts9_YSqf{^VL?IppIN;+?v(0iJ*CQIFWR-6`d?q)?(zmba`UV(`3LO8DRx%wmSZwBVt z1~aT*bjd8Ljt&TiFr@Y1-W6MQl&Z4b#I=9oku?r%EEw9*s@f>FZhr*7}GqX7iDuMuBK@?{e8Oq+AfyC!&ds%>b$l4a(8UCR-1n&F3rWn zdi~}sHFLJSV>V)izZR%8FPR_SH(S?$QWO>;GwDNOOa);B%oYUI6XrjNr_PZ8SWWMs zmOcB4a52z3;^!h{($33-1g69@g9DyV4i663_xz!mUNSKeoc!v>_o9Vt_AQg>>{^~( zWt>h~_55WjTo(y5En;WuhXreZEptI1I$=LY?Dk(^RUxvWm6bHMAFq!ibh-Os%nbyx za0uuCY-}=^{W;BLGAdQzrB{Ql8uuiADg2x3Lfj*nf_R=!n-tdk{8``C_50FMZd3g4 z7mwTq0&AYvUW&+WFSfetQq9vbuv>WE>{HCKgcn;(^7Q#;GM)0TV50TtsG{y+iL=DE zdQ@mN+;4A+6TZ!M=i%#TMgN$LlJC_35a)s$IMbOf>GC3w|M6+bv_vW5lU?;?k~1Tl z@6|9bns654ch?uGLJ83_7U{Upzu(Dw+B0AJqbvmz$t;e%s9z}dO3Kq(&BnNSq3@e) z%uVU8iK)AZP^MxdyP$AW-^Aa`ivH-8f4*k4R5ORaLev;0V!8>Tlwdy`QCho$BQV&m zPmr5gFxSdWPiEhw62;#^BLc@5-ZUkh6JoN)$Y8+60H+mz*4A`gv=mHGga`K0uTLJ{ z@vwq7l-<@=QetoCRCqZ&ekvX0We=4E*6}V(iy=$oL|H8NKZ+Rt))-Y^v)e!x3yF23_pW4riHHh%=N4ZSBRIBhz_SCSVInpEuZ{A_ zq5c|y%=v2tn=zMj;b#`>>cR^5JeErF=L#LW|$8l*5~VzF3_J4pc|9Bw8NW zWO}aY5t5cvMb27~K$Bs-1saIJ9XbO1)W@wh{uBM1E3`dK^*xkkjqwlU&-JAuXcleH z3NGIdU?l0A521!`Xu6<)=hK+Q44Rt0i4fAynQ$_O4DQ1ys(ZqQgU^NGKZoQ+hf%q3 zaIhP^^X=&A-czjuLH-+WqMny>xX2Zqo?NUB>(I-F8$U{(nYARrM8si*A2Pe9uTQ^4 z*;yVEdsm%-w96#Vi$-2P+pJuZ5DWcc_=dy8Bdtbz4{y=VF<4i=o_u~N8_IF4eTQ)x zQ@AG?dH}&bR^p+j>Wj1^{_zt+BW=oXsBefuXY>;?P{aaBuxH3xhEOCB4aznXJb>$^ zA=yqqQl}W*8Nh8}(+R+=>ukXpKo4YE*^Tpt!!6H5E*|;clh$#-j&S1RCQhI6_bGwC z=EKDchH4ms6SOWoZ92y(iwPcH)ZUm8G5h;L&?> z&Kf^dO=2GX{5Ab(=2-8%<xkT?2$7RPv@jMbtOnB9tUKryXs}8=*TKbiE9v>ASc264) z%lo@k_6F3tbFwvSVSfMBU2S*yW;a;t{^=)mx>mR5nRqJ~jrl`c9Dn{+`X=PN(j6BRx!5lg}X;JNY8Udl(}YTm*^FD6L+N=R;t~0n?4Cu%|XM#{wpK z7>a(kX>#%Mr)(^@ZP=e)yoZ~iXwRvQ?{ocg&JNl4&YyM!NqjS1%b(Nlg`+FIV~znU;07-V!)nfAO;w-OrK3+fuCML@i zu}?1XZ+_ZS>B99{YjI6Z+Bwvq^&#)Y!4-x<0cZS@{hynfAY@)j$v7UP(T5v7@8n@~ zQzuiCZNj;8Wb&Q~RlL9-lomVT4aQJ>}3X#az8M=khz-srQb!RTg|I znZf|rIsPhtX_($tQ>s|0-WF3(=cNOHCc_6oz>fYOF^F-F8RJdFh)%D0j0Qy)Yr$l% zmj0p%p!BGgC@j0jHsgRRr9b-^0^9tF!>mEWj3G~?G#U1RB#6baQ;cgKWOh>U@y!H+ zItK3P?rnkK}&y@PE$%LPQaS@|1@h={eID8S*9 zAj+-GNha%ySL(pj=05=LRf4N6g6*vCl@bOIVYD;ELA_%SDNt0Ma$b((j@n071w21^ z=+L1!m*;Tah$RvDb0YUuK}rJ?#a$ST5o^K7yrDx1><}*YHP%Z$2_xRKD?DG5tTVK% zOQddTQAK|$H@%)lp4H@_bXNj@jclPpt15OaIOJBSdt&2S{dI0gc*8P+OLw6FPmw@7 zS<|djUYrsi)T%*nm{%8N{ShJ5S#^!U7})$~Rh?556plx{aUS00Vzp-1^Kd}BSi4_EIJHG~+j>&94s6$q2Tr1FKeVOkDSrrmmL$d}+Zz;v zC^6$Az6#e8chuQ!zc-dg?B^9|R0@`! zu51JEhnrg-ZH@8^xOIIj_L>U4bKAMp zdHAvsFA2dHFIT>_N43Ww!sCR2@C|TaqU3jxu}Dy0)jH*YpLCGNm(AquwJ(^Q8(g@G z_8LZ;1Ez;ho+-H8KGkZJSMPewZ{SqZVyXK+<}Ws9Z)RNBE0(AoqAg05)pl8)=IvDY zFr~Tt?2L4Xahpj<_N&1yb%%!1B)n=0o&+)E!yO{`C&*)`3wjklLZoD;Nme zEO29jP+CpVuGe)T=7h<;*KnGtyrP)Gw~Gk;(2I+NXI9_DA(0A9%#zRaK8^@lxr)f_ zqRZv3^>}-f8OuNz=ueurQ1Hsns=h*{r$t_UL!485|MmG0=b}%})@DyUgbG&aEjrrS zS>HAE`&98nzfbUE(CVYd5%aE)b<1l|K3T2VWWx(|QI*n_bIp9pS@$B?%Vwjv%Y`p! z_86KvW8LDyl^*+Lpmhkvpq~S{!71(gALM-O>7W)nc-u+iV z=D8RKriih&B%XNFiy$MOP;RNQ;1Z*AMZrwQ+X{u&`MNz8b-E$geX(ugmPi95BY|s} zypzc}YLc{ogI!}tWs6(fzm$rH%XUwk`OzNa-M)+8 zk5x)|ZAqv%W$YAII4(J&w5pN(#`-ls@^-2TOT9%yopIi6W_3bBjCY2bc#fm|<9gkF zEO+HSVhg=?HX86p!i}c;#!dy_{5?9UeKu>|7NRO7443X3E6K)S>xD8(+wDqFol4ryUg<)(tgd|shv$yjw#;gEeX5a*L$Yptv# zPyN1i8ga3&XAaezt!ij5p7~y1S=m$RZTf6Z?)lwxIqBw~=RbpXx*UI#3U)90e;`0i zmgUSPBr98(<~cW`ND5+A8;;d1YtGo*Qee|ye?>8R7?tIMd5nqX=J^EtTZvvAlFk7N zI_$LQCAdMPN$E)ee4|vMXThai1q2PTzGtz)ai>67^+Ia$iRbM)?XKovY+bY3dC2$0l%c4&U z?<7)%S^?^ycO>vQ02P1&avh0!6Qxzv=Zu1CDDIJ4o?5<;21lPg-qwMWRhM z+bS|5p1E_Ahx)iroj&M}qy$YquC^Ip?JxBB(Vq+H-ZnK**uRB?8Nfc4)!fD};!8Yd z-%3fr;mone16k-|jhC<(4P?REDr7j3bAG+@YI^K{nqiy&#`Y5`K1R+{lw;`=;{Ct7&)VY)%eMd}tTt*Io-=Jn zZ;lfV2`4;52n=^7UouU}_sljGkZkDSU?#HVBRLq*NeQECDb8a_QiyzyCY;K>GM~SG zRYCg_r%Oce-;>X`Tu6N|J~%iTAD+%Lv~`1Gtx@T^ofgULs29nDe>K@*xi{$;XttVpksG;m!*QOI;nM z`JIu{e(ZMtdIQ^>4Rn;Gm>mVQg<;97WHo2Ptsduqv2}D?&6Ee{XO<2nP2{@0 zILKGL_4Ey|>77g6im!5xQo0=~@(1ya6Lgfn9Ct8u!Lj4%tQ{Lp_H`mY{m3%=UB`(*O~;4foZ+{Z=Tl0)%?k;|ZyEzu#oJdWgJ-%M zOUApW^QO5e)5E=GSFEn2(3D4WBg{lXZZS8v-$cwNZ{P}d`)1Wu4p9jXp6Xj@oLGT6 zbkR^B{I~3XhjKZ_4z^H*x3%xWS>zM2et5gwf)-RhC}7MOM>mc~s2++HQo!^9VvC9k z$8z>DNV{MH+*=3WENQ18SN`KC-&F<1p@ZjQ*(`a#{49Je*S?_7X8JtgNfFErK>QXU z5S+cB158(zO!{zzNmwyzB!MHV@U8+}MY;L~2M?%`lvkp( z6G{nS26R0hC`={i-B}P{*Vxz@>m@9)>G{UU_tfyjvroM(U5a%Xw08v9nL_{Kqi7MC z4SsKc-dyzJ#c&%9NkeU&%ww}ZKJ<$b(sh#X9K?9R8(wkS@lUql|2eHHfH}v-8h9{B)%ZbB&knW=$Gbxy zr0<71eoAEVk1!tb3f4rX{)a$ZZj7|7MdxV|4;gB2^#D5Zj|?LrS!xvRh3Jjm zO$V^Tl)QSWD`gO|Ys+JEV#K=fiBXZeA^;hFeq*BnW8+*5Jl#pVFUOtD zi`3pcAYUBh)%alk!nqOU(H7kL9Lq6=%?vsQSkCg`hJc#DJqvZaJX4st|9a}3f&`Gb z@J35}2Xr0b8-`CNYDSzEBK=<5;}=o)I@!CK!+Gdcvn&_mWKJY)`(9g4l)zQkW{4qXocH31 z`s#05EoY6wGIv~{Dwzg?DzgpV* znM4{hMv4(Xy(SC>&*8o^!Hrht!k@I?`UV6Xti=*uyUN$^Q?Q@!hAdAhlV`2e%wq?= z>-}O>>ra0KV!OtAeePO8lG5|HTu5I7 zc8CPewuV6J!~R>KR2L8ljO<0(sPW$Eoa8* zw@&WQ?c4l z@$ch6B=sa?j^k&s&*9ei5Ml<7gOHMpcNTA1-^+8pZ9BU}Kp6PY1VMG#M6a3gz9a~N zg%O-+zkq^$jJ2vvCCXdj$9ebpLB|&SvTC0h?2>H%qd7G9baRca(mTqlm_^c+pg>k6 zHN*fl&5KyqxrdjqnW8f;*pujkdut}<>G7XKZ;&SnJ`*(l%p=8m90A|9}Wg?!1JJ>qZPvE4d2tgqRkE z7`^aprK|j}1rk)9+=omqTTOC9R2WkLuWRl|py(>sC;YUyOD0vayN*=`85HJc!unm_#)N+23`> zX1@Y;47Zl!TE&BBMG1QTn#$jP=cgvhppHXUrb(0ADEqGGk4z%xQ}IkekIjHu3Z4323S$L(9Yr z@IMGpIM4AAQkk0OxhMfdL-$SqNI2{N#1|36p7jzFeDI_HVzk^WL2{{qT@&u;@AoKt ze$W=^U_g`oJp^UX{1N z0dE&n|002KDPl4-z5W4;`+ggwz{*VxOJ%;meod@xIING9j98S1hMnqr_QwwSi7&0uKQ0DDDFj9`eSxyA00b_;bANl<$(eRfLsq z<9C!zVs>rZpo7Oa`;+@z`~zk!mm`)Kn=on{Y(*plddDYyN(v_IgZUc#zqn3OtF2z1 zwqBC9BUH+3M|YmN-YPc<%gPABV}2j5DYYNBk%70{m3E6hF1PA|dw?`3dZ;d?DfpU6 z5%vONb-G0HB_TEXf2 zv9a;4`k__;RDSoh?|ab0%CdB-DLOx}vAC#klgiPvBF1Eg%|`Hm3m+!2>t2$-Z!9B- zWt_7eEAe|yc<%g($Y9@L?V}IvqVM%qCR-woPp*;t3HIY4%0MW7^9b$qyy#_4_}iBJ z$H?p}vT}@i(l?YIUaOdr4Q?E_$=`OOKrC-F-?F0sFHrA)=J#!BY{F|$HqJTei>#2I z1WT-KRBG5VbSe@E#If@ZM5xZy3#s{v>gI1(E^M3b^yt^Qwdl?JxETpAr7#Jl=e z%5;5jaf$!L*w7Ky%v8$EKz;9`v$sI02wZvb=+C(kRVLNHule+hj0ByZ)A4mI2kUGz zn}LS47Z_QAu7Rt!y-H8-N!)s&3T{K%7W9?=RP8dYOU~v0O%K6RMfSoy_CA%1Z_V;9 zBw=+v_cGvRf)CY{JdP_})CBaFqjDY#k0w=M!^x#I7CZPn5QIowV!b3f;;|haPq(Ai zr;`;bSCeI!0@OKfODO)j3}fAu&IkVdUfi3sejx7Q+7%iTR#x2l4>#y(soJWq2-*Rv z&?T{Dc<0ZHR^hUCX1rXmqc%<$P^0JVRZnmZEDY(>KhjK$4*UoSHbqC*V#uy0FOL)d zE|~vb^cpew^Ga~Q(8t2?p7cu2fZlrxB{O=Qp56e@6CZj)0sY={YKMY!;$X$`gP0|;9jw|FAKt) z-JX!=@B*9Qgo%0}VWRZ^oG+LlR~{Xf^G3FQ<8Kw%F|fEpawC!ynuYM;NvF1k<6-3NAUdOYl!4Ci&R}{-w8Yg9F^uYto{dasSG+R$~6Fo12ZCe8fMDn18_`} z+j5L+lXJ+Xb{wJ*w88ZVf{cydCzyB$G2T$9B{DU`My~d#90w1U! zlh+Cn6ruu9Q)Idwk65J#6Ow@yVM=F1*bBgFU99oh~c*ZhkL}g zz>fmJnH^JanK57TV({%rm;Hwixea(xv@`p|BzGS+%4oQ^{zCfN5axUaQ8qX;BY)vT zDeZQ6VH6n#Uf zPbf}xQwA$aC}i!0zAA&8J2y5ptfAqOuj<~VRKZDw5!)PK#mXvNXasLeybYtSfY%0c z)QN})UNNbFq`OpG5ZDY+Lx#pIPS(t>RK04d+|{Xb{`If@Ml|K*t2)`>W67o7Y`D%X z3!WbNI8gjNvX3^gy+cdYDovQ!qUthBtvSy6 zZ~B<2u+l4l*o{%5TDmBNz$HnEj2(Y2l@HORkk$$*=?d`i&Iq+Z4Pl+wCWOXKDYQt% zEdDxFDdw#YCMv*G;>_X~BEJco`u-Ok-UqHvAQ0}2+ zn^u0dHq^Ot)S3}$@_0vM;L-#17|+yZn|rVy4J>~z^+|7PxVL^H{LSik{j?fBS=Yto zF!u@g`p>9dR9Vme!*}a;)!XuqiEjxPql7CWIwB$Ur1qULhTn4!%RHgtxXHsT)U_53 zIwBKvtVVx_R}D<7=vWwN3!WSv8_EuvYMq)2%yZA08ZF~rNin?HILFvNo@95vt!h|e zl3RV0WplFc`6-R)N1ItazbA)>KlrN%RqJQ~0~Px3=t& zW!XrwGz1?1Nimqpb!|rbjh+NyiZ6}U{0jQjN5P|gfENZ94h*@rb5?R5y%kScY?Fh!l6hkuyo?cAfmdjB@!n|V3w zgkKC~=xYuNK} z8BX3ZO-yAd!btXx5Q2se#`tnl0f73YC|@xuH>#M1OgDhSxXQaNczJ?Av;q5i{F1Ft z)1%9h7fXBXWMPX|1DlM%L!Mu;|Mr}yq}BWA#=a{nI8vPWB?cHD$zyzF*BnWZ<>1`7 zm=sYOZGm%7Vf6QY`%wZpmf{$EHdI2zKv~uS_KsMAZw2fpur?%Ml?w#}tzxi<6SD=K zR7fO5%tJUvSo1q$5{lGW8WYdnM^F9iDx1XyUSD^t<V_~FY=*=sf9`+z9 zjsY727Et#+1&<<-x~G!~1ux_kHLyp%@NY^%zrSK^_ zeR7V(XkI!}=QrD}&C{Zz?A=&Y5moWHgQ5CTS?3Id9Ln*x+ls^2HzmOY)PjFrfr}<1h%^+ z%rkqn!S^6<9J1j!N)k+maJiTnNv92)<~%P&)o zNQo7>y%dv)1}}|GB`cH2e|M>h!92nM%a5TCwhY0Tby-PgGRpR~ehb<5_@Dnb+rbV5 zL=DQ)?>>FJpj&t3O}P0m=rZ#l2P&BL@AaxluN>(LzaqJRwYCt8RW+=X5)EkX<@6$RcOho>ooEdoc6zTQj=hXqGer)BK(&yjfTBNC=|g3 zaGv!fV@GtP_SP1i_g<^5BK7Dlg%XdI1uwf-eVbqAxDQ`l1Q6zgy!zKdnB_=mzA@*_ zj&<+0<*scktZ#|CbMe=y-42B6wPM%wuyjKqs*NMl=39Jt5MQ(>m5U(FE2p6Z(7h?@d2woeWXrH+y$CaH(wypj# zFSk}($4~dA6z&ai4gO!=NGb+RPEVkx{;Yhvl%9)u%)a#$qy!qhd;e&2CIzaTHFE$` zU`0g~KYWsWF<|I>e;-dTKHO>`c>F}kK|>=$d}vZp5liHxL$u-D;putuqxdO`YF@8o zj;XzkFn+*R5Ej4P0d<*VgHv{+p#$2&> zv(NKT&WCcL$-7TS$fDnp@sHWm-Tg)8WG!u0KAs8;^UiKrz_&fUSz^2go?xp81 z8xv+5pq`4Z3^e?r`?28BL@^vvxRgdnMJ-Jj8y-G&$cpvZ!FG=@-V1Wl zUTl&gXup(ZXiU;IIMEQ9Sunhy`xk8$wr(7(8&sM_w2rmFKh5PtGwmA}V*O}PQ_kOn*x$x`A#b%NJ?Lrfl!!++x?#d3;ThRdst zhYkEb??eeyM&b4fKb5eSggOhhzJqc1p}0N-9zZ*nUmU%eG_kiJG+A+iT!Uy-Qe0~i z67Vew=zb=^o_qP5I^~_s&K`IX*mncG3~wIxA2pipj4Ua-B0KRZ+hyRF!!_e@iM{!m z)Qkh=i_+L>=`Q!qJxJVoeNLv6=NAzoY3M0N1d2)5{6NlPMXoqRheLCy=C<|kl7m(+dQ7}bXRKb1d@$lXO zySlF@6Tr9`SYAr1c#A5Aau{i70U6Vpv%EVQOQj54ySjH-&zT&I_d)H*$0W_-cWp-v zg2o5?TMPI5^svA4SfVV9=iAmPQ3_M%JLfzxJ9BVLN?d)hXIB2NASR)11IX$Z$+^vtgX3snR)5x**!uCB zJ9g*0k1JWcckExk?pVR9$NyvwP4!M|MBVxI@Xj&!`n}t-<`5zdrbs(P?;Z+Sy2Nkxmcz>}*`uzKJ1b4e@od)zmBtc#@Hj<~@+B^7e(rBRt> z)87kd$8W3^psgDToB&Why#CCCUY_AQsigRSj7_wJ@Nl}vO25zTYpg6RnH(LQ{^MhW znCgYIx976l%|nwDdc2wHc=DHn1Z;bnv(9;`j{6bYmXkFH2CRJ03{X7?uB!c2KYqNT z;Nd6y%UU|bnymUK=vlJDj#x6j_R56D4GYWWns1?ff@oz0^Bi$#8EF`vqTWk*?Nlh2 zCHw|ZC~M4k_jMcUQ$*XP44N)X>JS{At8y57HpUD)t}xxqc1T{Rhk{%YnnFNFqkW)2sis-^ z7Sx|Qcb%sy1d#4q(=dLDuhM6CWvOpWxB5nM8!MJrQ__+~$T}a`2CE zC?LAsvOu`vw#o%C5{&@>Q;YS6BjG)vBm+RMG+y2(;U_J#>KsaobUC%Ko-3 z>9<8yxzFb&!XZb$$JaPer;8#h7p~EZnGMl_?OQlPA@#kF^20Cop8KB{fZ>naDOxAL z04}TFlh;alBTFK&=zU$|-CDD|bT~D7PYLdVDe&*>sSPa!BN4vd#g$bqeQ-t+(X)08 z(l;5uz6ZJw-l;4}=*m+l?IZ*ExF$eX)bGK+0X+_fvSZ?1T(g>&7@(U7n5$S6<6&?| z-Uq8nDmQXN(=8Cv{W$W4D1n0ACTEQ^%6`JAA@GF2woHNf&WA{F-DJDpveEe5a+RA6 zE_VCFlJ_4poNSz#v??i1=acMxcNIC7d&{lRRPA@k_toZUV_RUrWN+tCPvFeR)As!0I)j@7;gb(J=YU$vY)p^4^_Un; z5cqc9-i$3@iFX6bm*^0ZK!MH5yW3y4wFvhnF@Ojk+r zsWms-EGO;jC=V7mM@r8?toXrmp>MI$Ta;}$4GIAT?i}eVizLp~CwT_yOh9bNvGCRlRW#t32xQ&bXj_p0vrA?&BpXM0p*}BGz*y6f^V})Jz;fTRUR)d zuPvaMXKw1+aEKKkH78@cy-oWYh4ohH`+FL*0q{0pHp10steT?l;Txfa0z$LD7Z8E2 zCZrn*SEcPs+1oX(EUgwK>5)x%)s*HInX_v9quujdfD31B5Y92^mCfI_=vcqXhp$7w z>%0DnXzr@ce45?%sieTasJ42}-u3&|vkl6ZT&{QR4U9H6@shpI?0156>lk{$VFM-h zJ?&LZOPlUgzh_B6eqM+o$M3}t#aoZIePXK~Fts$-kPW~@9k+xkbjZetfB%n#J8JXf z)xL$GW2dF(hF3p4Yqrg}Xu|+PRbEEphOiLI=D0$RBxG=_u?v-~f3-!=>DJD4kl{<7 zK8Ip+$w8NK<)~7auv}_t6vw$T0_e5MuC6Oa(>DZ+Lp|Ruay)(g{5aMA8X4&WyoM-!bL}V z%OJP%wo zs&i3pTQc_hDH4jo!G+-*Rf|C9XmPnb${^H1nE2Swd|Y) zWX|IX>XerI=>j;9oX_vJg!d8%F1GTEFhoite-IKec!!PP#~Th_B7lJ~Kj0~Zf?e^< zHLFu;wIF;!@$1sv=halXSbvw2UgtsCidPdTu(9YTz`2M;464DEbolygFroV<`ekTj ztve>qJau2|I8w{Wdb(sw(9}O%C5mzT2N-FX`xk$CCJ-%{fOfR49mNCj%zYoz!$H{2 zsb&fPHBh8ZJ89P#kpZ4O)|*aIF4m+9qt5{Xcwho}*_Z_6CsA!CgkfC0!TY9{>Fa`9 zz+@8Nh;P%=ZMhBJFbbKG_k-i&vyR29FbO)n;kd*Y9$3+8$_-&Kj>tqwKcxgClH*c;Z;>{kxGFFsL&HR4y`4>mL zMet>qUCk1d;|rzfE<@$IIy-&%*aSc()vgx$1LYYU3kI*(Z@xXif|C*~o9R z{IU05cUe#0gkrFQsqIdy_?P%4T54p0*%G>}YZ`vVHFE3|w4+hgs;)%&x)Xc%(rb(r zkkdjl{$?CO%R%6mlj{DAcB1$h$H=`m-}7 zXa)mEBY;zq->ibi>syu*@1G&c=$eGy_PfndNA>EezC0NEnCazbXlJO&e1JBO55Egi z&{Hwdo%DOUSk=h>mT8|f^p~?Mq(cQ_;9#L<9nqnH;9PH0`NJ65R7;~j#pyy~bzW+M z#%A?+Lz8vX0`DC!N!LIe4yxU)N);s2k9> zIo$KY`eQrgF2B+dqUzlJi~8v*-_72y?%1LpDuY$=IO{nKIO#m^6sHunJg>Z4r%Tn9 zW%w@)2~_cOlZs--uZD*ee3xt$i^1nMogO^?rufV0<+iRCxtdiMqAaw9LYNeRHI*$C zeqit@c8n7#-9g^sAA|*D9sS?3UJ<8k8ru9L-&Pghy62*0>$bB=MV7et`}FszPd0^{ z+K&u&g)7#&O$>KVAww!teR{;9ympyQ?GN7b_V&K$;4`D^-tA2ro1akR0uwpT2`)hq zgd9L78_LM4SD2;9nkah3Vrh_Mgz%SE&4Yj=&=QAnO1~#6ZbK9N6v7UL2$K32914`J zO-qfyViCp)luw(uF*moWSDtMB%jBAVPwJnrwdE`@#)6<3&Dr=4=iJ1Df^1=%EbQ!1 zvIw)eaX{29KxC6}AL3;f6CFzl5|>FK-jdq2Brz#SR74HVL#v_I^d%S}P;E;$F$nOR z)I>E17L3`-TM<%m9E^dDb}ri6$mT6uw>d*fVEYXb#-u?PaE_?87~x>Fra>$v|A@1} z3Gxq(w%s(Q2=IUm+pl;kgQx0AdvRIUUV2f`L|T4%nB;ns95zL;v#pRxOF%{s$~21N zNL1BG8`;wMoopg+#UzFJN*yvIt-Z;Zx(5k|D6lU?uqbIlNIYv!1xe6$w%v$7^1;t| znM5=lf%R=xAV4k##{~W^tR-uE^n02{$mAWaH@N0Nc9Io(IaF|<%d>d=a9?EKlEIl> zoOBoYIo!?MoHYjfqN~scl$E})tZz&(fkG;J{ zpG=B-bdMm2uURsQWvM1^RHWAtn_px_^Nz$OWDoS)x}^^#CJ^p_C`%I5=7zI!evU9l zk|TkU$vH{XZHeOLJ9C7Eq3fVV;&oBN1<`x_nD@v;ceyOqxvbatkPk=_B%ZcSRy4M% ziquMY1^pA~0zJY2K>G_>y@#;?>a~c27Hfg7e)^G*1;a-wTMTw~{S2P5pPtU7dj~2w zU3tjz%512(#);Sb&fiW(>p$V@&qw&FAK>!DiF7Z{o$lH&%*9 zGo!to^}olz>IHih`!7Dq>#gbDb%(LbzV&8tfcJOV#{h@~Dpzo*CI8-8gE7SX^Gj@5 z1cW1mDk7Fho14P=V!8*bEf#6^Iuqk;t5soKJ|juMq$~8+Af~Fc`i9@=;D`PSCY%x9{KPIZhe?(F2<}2cQ>Z(Qj1I$}we2s)KF0ISU#|*mn|j=L#j0`Tz$>kHHw1U+n#d}B zQqEo5ajWme$a>qYuJ3goI=|1^oDPwvyIR%>$#(&Wo1)V_OJLijZ?D*PYQA z6cBc#IJTy890VL%6T+CpMfdmG_cpOKsotEVsL_C--uf#8L1H%?h3a!w=NfbA_t@G) zFCJ#8_r)McXb`hzRD@8DKFX_0PS5v`Ti0HEW~htb9vn28_bAg2`y^Uc?J9}Fpiaw2{M?iXb$49MA?1R~&xfNKhl3ep-q474!YEG`WTIa?}i zIm8Ln-VQ3=pdK>A#*hPI#X$|S4iJk(C$mJ{3p5^(cQ;#mv^~jjXf^sw=oH)lM_WwD zujjEiuAc@&glOCiqc~dKyOvIVZl9U5;y4O*%!302!2)G6$wF{_SBeKMaVPN)E~HOd z8cpIzgXkY|>#KhgJ~LE;Y|ca>IRE-Ri1Bnn7U+?^w;amu05bes`g%!ZzW4msY|n;f z3Cvm+t`oD?=NF`8LT1ciG7||n(767FS4|Pt;OXRLj?38`R2;Roc=Q)<0}*qC-Yl{U zVk!Zpm+;f2Au^3p3xtCgLT#8Re%e6b6;y=<+6FQk@1@A)s8`ncFSV!(Z)o{?vbULx z1H}p(FN3nd5pFFdN0(GKr5E{8xPvjXK<2rLMo>r~f=G!=KdE(`IJJ?U5 zuV*q4h_r}-x|`~zF3e>jvS&j`S|}{VgtDLpx7h}_iwLo^PEpJcvR(BMon5$$<_k`C z`&G$8wW>V$t4S{jsIxHaU`o#0+%wswICJCwr)2mjF3l<@ES?|Azw)w#dWXiM>c+bJ z7XfN2M=W5S!L>-26dGb4Vu%QLvHm>UFjM5S9M$f!WvAidP{rd^E(;q!z-dJz=_`&GmA2e{-`ewc zKHnz6YyQAH)7_TglYytt5|hBp&5hH_>QZ<*1SrZI#Wtg&;DYI2R>egx#y+`EeBI4b zsg;(s4<2jou^o`zvI~}XS85=xD$c zkZSj&xIv#pbXxw8sW%UYa{vFw?-3o+Mkh-t+n^jvXyG7|WT?|Rr?QtVF-gk4<+O}r zpNgbtk!ngw3}tU2ktt51$vPoPL$WXPecZi&pX>Vl^S;h?uJ=)9?)&w6J|8RR{I@i) zL5D|QaoZ!xwp2Vn=|eN8b8K09+dtjaQa+4vzJWtEw61C({Y##3aJY0OWM$QI#pL3dr*Td24Ze5-I$;|kq*rmO$klwTa%W)j*e2KR4zxbMuCA6tIt7}qd!3OqiP zjd52Nn$0vimzJKGyY^(UW3{0uucRbAeQ3=$#WLYB)1!M3$S`NqZ&7)e)yh=7WQhh+ zOe2~MDD?uv>mzmMJf1mFM8g`y^bG){F3Tks@Epi$Z@exRtbzVK2Cw_L@)L%=cY4+Y zoBb_hxaSS5W=LeUwEFFsLiLqKFja(4!etBO?Md+NPAEo9-adv)%IIS_sQof>Tl2edj3(_fhpkBf}T3f`$<5(<{QCy_1XBIhC zwNBVqSiap#(5mB+>+YKWrRGa``%0Z4|KJBh&!-mc5#NfPP+)oA!(6N$sT^LHtWI-~0`FC_^B3Ka_Mht`LHaYF)eZ3tmYP-Uzh*HJm9;i}ws zrhNKkDlzSQFb0c}SA`@Y;*{Im)3tA0p5=o7Mm$PZgrz@G7&%p#I0fek86M>XKt2Yd z`C1MW>JI;UZF^*IaEF0?;tv4l$%41;m(0x`Y66`;!-QcIHK=v)K-3wzDwFOOw*K$6 zMSp~&8S$KA8~y#5S;;-NZsZVM3rX8jyIe)Ug}I}{6?mmCroY|Xx!3N4eko-`BMfx9 zei)NrC>iIOiinc#<2BnrABxnHc*@6LFIhb*%u#E%#_t0F5{R$qob!HLrK36!Yr+ar zTW!GL(>*?JOyD1XviH5=UpQGr;0|FEFLu*i=X;nq1$ajc*E)YIr5!mXt4XUi^r!4} zh4i=>hIsnT0`>9l>wAJTGBXkoR2%>7${r6u^PwIb&PbcVuwjCp6+|mhfX47`(I_^P zo#zx2_?J$8pPC){;EZ_+Rby#|JO+=0vgR5z>wPaRl*uV5T$GqoP`zOhK3$dr3Y$(l zK_=#r^x__=wZbjK!%x5W)no?`CKb{$w+nw$8W5re=wv#jWeN4sa6zfS4$Z#q1ljQWy-IgGB(pmej%zN7066MIokpl6u~k6>vka6Gwr?w4Hw=E zwVqTXVQsl^l(M>A@xpGRb|ffz8|}Z>3LDI5Z8ay*~A)n zx;cJVH6tSE>C9~Fxj-&=D!s6Ld~&&A;f(TQMgQid?7~pt`G*_5|2+RpvF0I_GI(Pj zk&iz~I?B1T{a^RmCYZF{vzf-)SQwVM{(t)(hh9#`cB6#-fVu5j1NBKJZPu#Q~IBWKcuhEQ>6qHxZt1{Nq*+qmgX!;PZ&IlYhU*i64mi#=7h5%bGO$ zM((hjC;e)#QT<0nMQ`c4YVO9!h=_!$$jJdSx1OeGx9MHHv2dF-`FA1h6!#wko2RB@ ztF4l@S&=-?xoX?dxy){+`kYP1D0-g_sk_}jY*;%ViLB!fvZ)@fWuTVZXdgX_vehVq z7Wy}6uea%jtxIKkK;^XN`}7SJ$}4pl*wYXtfL9$r8Ie0PJw5$Dr9L7YK1K}pEQrF; zvF{=aD7(Sd{Q(hHgX&(7~OM-IRq*CS1<`|xa{w3O0ZCH;;# ztz2`El>|g|ZzGPMTqHu|?_I3*JFzSTdXSgkERH(RZeDMF_C5Fy@B5fr~dA0&hnmd#cAwmIvRSnpKFN+Ty;%I?^a z88Mb9d<#XCBPg&sAINrDNT+Tu@%tQTR<@j~Z}ULY_EFR)&YMjav`)czYl$m!aqa%& zL%Su(V)C|PnYsAfB#eMMJhLE$zICta*dpXg0)|SYA~*xLah!6^=yZ&hSDatQ?JSZm zvg}8?kd!!CY(3Y-UXqxtyV7W@1!v~aF91}&E%>~-rJF<;n z3h{f08}wW$^lv*_7^t{0!N094fBWa|<6ibwmPjvpMLG*f$0NMI#JU|UyV-8%S+R|iHyS~$Q|{h5rW-eQ{RLDB&G0b4UiP;VCEDCS zQIh_%!+B3KBm;cID!J0z&T9}}caO~*_?wPVG>e)#Xu-L?Ef47h`U7%#wY#cTebpG$+P{EBOCkTX+`$y9~_C>2+;a2{@C`1?H)N!y;d1u?z#%u7f!XH_Q? z1|9p(c-cS8uewq#CotPM)7d%|sF>LnHWbS(pUl3*n>Eiq614C}Sx|BKObhSLQW@=Y zl;#(X+j&2Bxa%P*TphcCTD*BfDt zbc4Plak?9)RH*%Py2MvT=2eUNf9&YW{HOd8^iEew}+3l8a`lga@;-aiRSum zIqM#8747qh_%!JoF+7l7I+8Qu!y@$NhPlh-S`v5h4|2OiOs3Ck@W5j6=a5(7q)@|ca6ZzxgL$2Nf z!(20s;3p0t0@pacA*r~oN+R1p1jYm{%bur?@nP8H-aMkF?(|LeUmqMb4p)xIP5Va9 zl!wnuh>bY#LyS+F_Mh+iv+r&(@BV6uwUpmv&e~^rJK2?mhc(+N`8p)k|$W#eCM zVKQ;=83>4FE?Z)2xov4GiG|<;z{**pv>N$_gi?!Ly8p^*D9V8Mq1tP&>&j}<_+|~! zg+tF3OfIZ}{ir9>;ZQD-N4a$qv|;it&<`^_;`FE#aE=a8NtV38zeexuS}xR!xF!&4 zS3^2!JoCebkEQX)-+w6oWM^~al<@~_A=W=EFl_tgw4k}S^ma#azfl67@IG|HCSGT= zU_(IJ`J5ZN)qYocvEg~xAov_%br(brG(fHGTey4`t37OZK@Cp)=bOC;AihQtHw|J5 z9JksA?Hf(3UUVN6l){?u3QyTj?tfQbsyR zPeuwTFNeyCrsR6GsMQ-SXcZe)?%$y}qbQtC57_u#K`pW2f{*PgTZ=T7`;I3*5^CE* z|L$9;fY3)z+A8~Kmy3eegZF+&Dh(Pqk$6g!o1E}p+mfyo*m@(?vGk(?J?4y?mMJ_B zKNb>#&&KAn&a3xJFXq_3-5q#GQ?W3(^o^jcT-e!Ioi?G-K708~c<7gKGpke4^;gHC znf=wWpAzAO&J<7uA&-kw&axY ztUVqx2dg(cy#&77C`JP;XB_4i(h0ERL%-aajuAOXXpZgaPdztW#QDUj6|17>b7li zFikBdYpbr3$)90J|^Gv4^6WVmVel;&y_hU+$)BvO5ZFrNaDiz8Kpc1=2xPuEv^;je4(Jb%ul#0pj65?2NwlhHd?T!gms_M$ zNzq2FnQ+*Qq6Ej6j1J+`zw{Ne;t$riya?yfVp>B0U2jNOxn(y}F;)Y-9iHf$gvnGm zD-eFwr6j?Q@ri?10Z#(2+AqIpH2fjkfk1&N{0M-*&3D873quC+sv(uH0mkmU722wYbP`j~iJw5>*R1~D zhODJhfLZITr1gmgheOG3#s;7x6mB9r4@RxMdp`Jg)DH~~z8#a1qVl(dV$Vc?k|hBs zMoO<5rj%cy&z#K6%<{>v_sI1xp@PrnV@C*Sr~PUcaR0zzn35&S!{3piRANAytuY7d zQhP1*A+CbCS_X6%4DfsDf?y4#gVYzX-!++) zq(f@i9}$;oIR%e=c%wnVXuU$HVF`5c4?lQAuww5G(+n<)SZvpnX7%u`yII?L)rR+M z%(WJUE_zGn8=86Zh2yolyr7JKZf38syrA@Q)jnEM+%BEX4My~?y|iU)BkJ3(e4C~f zU$)@8ap!O8xG1YMXff`rETL4nzX+&g6d_AURU!c{uwzBa{t&m4*A-WVcYqx$)d-g` zB&)7Eq->#WE=#BPDkx@V2nWBTn> zSCACvCR^*~>$w)Oj7nBX$HmCGL^2VLB_gK)8qLRB4?RNcWP%ZCx5BV7OouE?R$FDz zAi3sPEKaR7uS0)3KI|Pa6h#n%b8fr)sL#!w#*q*O{`&raxWLQ|shYB@n}4aZXobA( zC!#aUXH2p>tW%G;=_mjAeX$oSf}&EpByc^_Sbdx)tr`M8jr>jT4YsrNcA$>L)qM&{ z&|9WzP;d#MOMfBtruV*Iy^(KkQF{0FkfM^AAF|Hj<0rr!ghWKles_*2)Xu{9P^osq zUH!%uOYcVo%^|Zr8`_x+&42d#wmvh3_I#o zB$P|z_yFt}cLwmjlwSroAa(~xbum@Ls${GE*C+a&!w^3Bm1~^smw-F0WV_kEj9Z$` z8*SWEVeE||Xd0^5HlP8p#e&X1ZR20D&%M+=Y+S)q3g5aMCqJii zP|`+o{I6_A5%s|DT3ajcNK8GP?b7AQ^zLm@yK>yy9^oB<^CgK;%Vo%0`uX$cP(b+X zY;pTZB0q^^o3wTd&u+dcXn?$eS9KX_rM}7X_EjPklG~P$9;kmXQ+%>VRpo58p!{5& zsC|`Vtqd)1EBZkaeOGP_of;~dsU0)RXDD_z6*euy@j2j71YIDDC;{pAHyyw&y+xgz zn@ZQJApz=*h|82=LYXhLsOC}7-daK+b^wSUI$lS~u%bGAn?{hG8}$Y+BzLYjzv5Oh z!Vw7woU-xmE)c+kdZ=ELL+8>m(sER*PRV9a+v@tKyJM8#6p5r zi9Q_%l|$qoK->6D7K$RHUOxr+C_>Rrphd-JWADu(j!__IgoJ}(Ymtiv!M4iE+P ziuC_&L8b=oj=z^ik>L8Ev=p_#&G%_KbZ!j3r?nM{ROg44d}9xd=$3tjS24=kLM=vq zzx7-eHKl2N1O9vq+S3evKyi4;pGPsnFbHu@nOk-Y`Vbge7}v80{^xGAdF*3mYKolG zCca^UZ`p*p!M(3TLwW`{`XKs%)qcPZ3k~v>o|q(kvj@CPq%smAAGJm+0Iv|D6Md(H zciB%|Vweod8cffaa|)W^BwCAqRx;=97j37!s$=kQImz|@UAwVeoRkgOCjZt$wYLO8Y%rrgHgjSuY4BUHBD$#Y!V>_ka3GBSH+RLC89X-}(FG!o;OwB9Y z7JWm?N5u9hW9oZ#VDC@8zjC?8ojUV%uib!ih>VBw&|yl&%h4<6B~$iKAJHM0qUL$7 zVJRblk;8(rPaEp|>ijM|=;pl*u9wa}abCkkN}n=^s=DcBrLUrHYR222hHKBQ>r?Tv zuT@~PuRl%qx6#K^!gxhpzFda3P-L({4u{4i|BpJ0qXwQX@sZ4sk<8WMb#Ex2h)+R7 zS>555sWv5 zXQh;rwYr>C>6i=Fft4$D1(DO8kcYYk@$4@09FNwy$Q}2c>i#j_GvN7U20v?dy}F&T z_j-^p=5AJ&m0D!OP#pPbvFF)ZHkY*?{bfDQ?4==A4h?Thh&gDgP*LI{fckVyCb=-c z?Td781UIVqK!8WqQ5dGOFWbsP$!?P1idElU1wbzzWDuFpNNSzl>1iF3jIh2UBI$Fn zbj^OU%aygiB;N*7xg@rWYiE>};I|hC^P&5|^ilOOnFD_^zjfAfAwWw-ujMQ2@ zNFc<4noPzHa~M=cqTbQMbTaFWg?xD#m98H>15jv>f3HRtdg6{uALo^d`Y`w52S9ZM z`72OdUK!>w5N`<7gSjD!jev&pzr!M<0eoW265_8v`-^dTeWtY}@_#IW^b>{&fRDUouFi< zR9Dx8GQ-Q@vs&f?JgYHEz!+*1BAhji;thB(g62e~zA7tEr@W=W(j)M+}&AViPKPw+FFvN`U zdP?n-BRLWmETwG);ed4DB|e%%G35H!)AS9zYt&S562FJ=IH#Z%lIyu0CF$=&f5S~= zPcjy5++QE3^+)t!9LaCu3>;cs>!;8gd|C9Z2;?ZQqI!(VJ`Q~-_hFc1dTzU@XIXQh z>&gS;)VN(4dGj`3?mkeqoUNJa?ssSY*M<3x*|H^zokX32m1Bg8pxmSoJ|9hWlG3#n z>0r%=)e!>8C~6AxOY#s~?a_ForY`GsE>JV4mcI|$`M(~$zieIR0}@N09h~jk89qGV zY-q<@SvYgB-s_FqnQG^-;n+9t8FS~ki>O51k=EKlSAQB@O*+3oA=o zh>ldJ5+OlfC;S4w6W2UbyzE~wan}AzN-Zj?*!x5ij50Hh?vdV4*UrPB4~-ZwJ;yG3&mF z^XrjHCm>LL`u~0A7h=~Mc+s?j3daUacAPC_*zOEu;&r54`XRU3fA4#&C?^yC^mZEE z(1JUF8vM7$D^-*n=+!4}SuM^K}3tjK^(aKH?d(`E^ zyF9(@BQ|ug7&j$br8g;oIAmiP=7IDxvJ@rE%FhCcaZPFH`}1?68H58N=f3=*k8ASU zUMi&d@Z3;wEI>J30=mV7t6MhSb^OWr(#S)fuKFJ%>pq}H7N_|?VrIH2-9Mmw+p1~$ zVdRuR_%n9H$&GXV^j>*8;hA1|3Kf^{4@p{)yf>jFLp3gj zGxK`L!PZmrXUk7i_CHXoKB@ghuP5%6gZI9rx-2_=_t(85KQrePE-$;*F5JHC%bfkx zEy*w0;Rn*B{NtRK{+F^^Zg!(cu4JaDKuebp$+UiUbx!8#EU(s6t7|T^;&QdC^LMKJ zT;v?tT6kr%yX?mcVw{Z9-W6U%oc7}yxBgY7CT0o4-Q4!@<;&*Z*?&xe^?Fy+)dBXC zk%%Wgq5ViE=nv;^tv)lQgX&- zCci%}`qn-@$R7^=)85w}V5f>mIT9ZNabn?)YZwK%4aTT;HZ*MB}a z$)by|!OY^CMyjj!lO{HdLHvLWd>x*kb)dRRO-+RY4b*$Uhq2o3-Bni?2Wq<%128+? zaa9r{?=LAaHmYh1eRBXtBIa}nbrdk^TVoaGvBtY)GeM5y#+%m2dxR!b2l7v2uN3G3kwL>>KiF@hr7Aj%-?CYcL)*_BS z(guad;E`@L#DtN+;FnU~15MFT0gn?b?~1O0=eHQV5&|*|%yE^?cQf2PkGMPUAqqiy4z?TV97fX7x1VMte|eOaxinz7~~M)Npvk8l0Z;D4sPkd zSIk$Rxx_KAxZ;#Jah-$BDcN`~?;WwjZ>axI))rbLdl}@KCnx1XgeRr|RG5{Pgbk$& z`61!w8SRA|_7LRk+$!r^-mJP4h>E-MeDsh9r8Ql}urDb%Qyrlm3 zTx<3|JD)k$gAWNy3`z?R#Q-Id5=R5Z#@^o-zq5M7iQ{AFX~)20#0@TPwR!`Zb_D6^ z*8`rE8ToGY*0!6o#!P-)52x^4zx|;Ij+*jQus2vfn6JcQvw}S*E?%oEaVuAyeYRe1 zGriIM;x2lUV6@bBn9O=^FGWYOnl-!Ir1z=|8S;m(zhw-)EQ*mKD#HWCT#8R<=vWW3 zzh-w0lMF9YT%Yk+is__wt!=Fy zz4|WuvV|peRn2k9bcUwY@4qXL zvu>Wa7h+@^UAOuw`=GdGa@48$N!voWK}8PByfe<#rynt2Qv07qS$fLaz0j-V#jlb5 zR6|IU4~0}9i&%SBmH=07j_|aLN^(80|{uZ#JFgL-)QhjDIVQzQ{O;CHV`#SRToQB0yk48MXcG=z|E zl~44vQx<17SN&3B;GT_yi&B>$r~6MvM9?O=D2A2;bnH8F@xDL8t`;hC}ZbgJF2#tjyp`f5K27@qtji8{15=#iCIdS?Lz zY;S!uB0x&~M4x&eztPpwC)E`Awrd<9E#7|pJq;WNODDC~0g*iPmIQnRZrOmw2{iUR z2HcV6wY*|VF#=~$oVW)7Ve3D+dm2ubHz%C=EXOzTg*k)D_-K`j!ALbY1DHBA+utjU z!4cL5XVABhHd>Av{!=WMNW(uKgYm}l7^^YB|sewNQ7TPxzqjp z+@dt7fjnkGMa)%tgU%6np|Iqv0@+bbvi+nAt(#ie|!W zLWNS<639C?3NrIQO>~Xb)n1$?V7n1{T_v{;lDUSuy2CJkqreT!J%Op|0$kvJ3P=h) zoP#oL2kRq7T#$t-PYNPrrH21XAnBd`=-I8~8|GqC!Z~Pj8E9L%2#ELlV!)q15N|t} z7618~^$Q38*2}1RwQKHNY^fA_eUMR|W>b+&1(>(`@pfqPQcinYpf#6(s>RLTnI zJYVq#Z+wS!mzl&rZY9tD=rTJ-gF**NJFs-NuG4heHp<{1ULkjl@s!axPnvb0v&(aA zxD%|?q{Ndqqy{U&~x7v90K#sm_Snju|w&6D;+TPzKLM%Mh zL)$6MYVQwVmZ&&5j~J3j)wcIwK~##gaP+qsT5UHMf9mtwwjZ6xO%rae#e>`SbO7lM zRNkJIu7?-WdKG$G@4NoznHfIYc&=K%e7tKP_AhW{GmRVC6Z90m2c`u;rEhwJW|7Zq z4)ypE(h@P1uKO_5+tg9yLYmK=zC$La^|xJLnQUFKfR+@ko#akARNJ(Srp5Z!C1Rf0 z@t{Eae1|Fi)AlpGEBy&Ig6nz~Hm8=DgKle-gfs!x|_-K7$nsx*ooPsE(`Ob?tD zHScK;ae8njIF#yDY`#?8@dk9cY!447pjx4>ZXN<-dk&(d^$-%fN+n5MKjiU>cWq9J zDqYW!05(0o^7rLZmX`T(%=*L0shw9TP=ND6^~TJ7L2B)mYYb)7ae+UE{!5$^rK3xf{PM9=gGrgvc_@crAJD8MibP3_ zEq}09ccW@d`AZVdfKV=Xd(`nt>Z7C=D*z!gh%!~{xj>@K@s&n|gw3W#PTYQ2J{!_L z26yw5BlF~?drUA2BV5c+p^&F-u>2=Cu5!HCbHyzJdBci|nQBlGCx1={2FHJ|0_mZERshEgTU#zvO86kMFRD zO+p3qTL*ZYgFwg8_F}~FREG!w$TPa6>B+x4(AR#)RWP6A?eOek?{DEfch~rNPj{nl zva7<|R_Lzs?*XvUka#4+%V9|At<&FgnROHjjUoQjR+=u?)AB-E8c&}@dPtu&zO58M z0#wJRp~1nyAt7JwVaDr3-B#;JNDdo8a%_=fPe}0lE_4g|GHDYn>4iB3W$U0j^~vG= z60zyatjXQ`ejs2ungIbcdvE{W2rRnB`x9E$a0TU`$;x{4-z5%DTHCer4_%=6oNAG4 zP!Q}9S!_1v>v`q7c+6^$?`UUv*vJ#EUJf!aA+_=FKxOMT+(dIa8alq2@^qdBgm*b{ zBZKZd+}OYJ_FAsQDZoG5!n@G_6f}=zb149*0G)IDh87Ut+JKtOH9n~^&X6>cQxqlX zh4fr#AMw;kOM#f9BJb4#_K3Oq2t87<=F_#}{XVb)4}RLdgBC%Lm8CIXTzwu;N#`$& znrqd`_Y0ePJ_W9Bbc3&%aJtrKs!8$n+J7}I%0rqX$68jdViC`t{Xrv2_FnwXG^TOX z{3sp!#_g&6dQ!2y3>R`m0QN$>ra>(}11k*;au zt=_-?&A36TC+efRnfj0(RSGvs( z@~2#b{xU5IE_Bun2#1W-Z00AQU!AFvTevcF?I*RUS6|kvK6?=8TgYv5e8_7v2tmDG zaze3XqMI$fiD+zen-Ao=v|xp5K3_EoJn?9o8Yx$(qM{3OjXUA+O=L0T zieA6sOb7?p*+#SJo_o6OUdIcrD)=939K8hh*Del_C(t^|Vsmppz zGOl~2=fAmYeCcg|7W=yK_`<~qt%UfO(wu$p*)}Y^8seCNc_)86bk}%O?(0L>)>bv! z2`Bp>QmidnSih->e9@VV*oKjGdVP{|u2#B$JU^4Qm}x~jM;<5P1X$9HOE z@_VamU%Fyh`9;YDrl`G#<*TDPrVbCOYM4vv){+xrEyw^eZ-F;}3?(p3CDyNtWdflS z`!I88%5WjU=*Ni+g)hV}x!aMl1e~k`hweZCtSpa_nV9h-j82Crw?L+43$_awS4TN}5<^O;3sDR2N$mpPCgX=IA=C}{ns_YnA42?nZ!_ye73&$RTE8rFGteyE2RpETx>IB z5*%U2 zEylzt0)g+YM%=~#%e`0{tZ^XF&$!o8(?KT{c*nl?xI7UMgLe$p3pi9}063@_Rrx(}=*bg&AZ0<*v;yO*?&HBz-?x)& z*((PX6)fXp;SVvRoa(^*&ef{|h)v?(q@FOKC1cMo;FwuKep#FIm8Qhlc7iBuokMox#3=fz0% zyFRRI9ZGu|w1hqw7QkW749*T!FG}={94W3%4}7N+Ufi6bu6LI&D4*_%wH0u#t89B4 zb(JNsK(OLxF=(OHXJ6kkMm)D`3{zBaJVu=L%Bq2rb(wYV2wbXU4;>+tSxl8uPa}0E zHU3S*wXrKiL~V||qtypny?7px{B!(=Nw4Uzd)@8S)I{CFZ~OG9TfOnx^%&I$i$KO! z8?fNLOq0nqgN`Onom=#as{@+xKa3U;FPxJ;<)MBeo?KDxeU&?DW6`X(`Wn%`vBW6B zwGQRs;qA1hpWLtYa;`<$S*}+y>y~x56$*sYuK5GdzVwpj_Ir-dZI{n9st`V%XcNmXKV(YiP$QH@s4WB<^5*Z{Mx^4E` zf;{u3bN3!P;FQJ6_l0^>T@_Gl+KkSnc&QqKwpHX{dTAge#kYJ@XKXqU+VMRgw0_(A zOKx1|VW##E*3?Ky_sI2->GH_w^}5Tq(Byw5n_1hC%OkRP9+CR3!#OA%O`{I6+4H-f z8LJu~oWW=-au*nlZ$+-L(f3ZGk981NZFwOFa-E!Q;lp4=`PbWFy6wi9kd};ko=XRd z5fkD_8itfazpovVSEmb0PoPMFZ(5p$(N>seUZm3zmR{3t- z_0SrlN^_Ot;F8}6-Kasfns7)_IE4FKWf}j$$li(de<@k}{!i^t?T5egF7+o!#($!6 zsNc8-?>(CQrZ6Yuh3g>L%nfF^3`tsPo;EZbkFoJ1zn+s^0!DHhjTbP{h)%5WpZZln z5fQ&Qt+wK|w>1rvZI9$2l8eDxHPXh|N7u(McM&#+8(N@vX&i$_P8KvAa32$jW+cb} zK>7bBT7#6fDb)4hWF>T1)+#};!if{resIhOx*p|uq?3Jnz(6Qul0L$A@V}}UyYc=< z1?Cj!&8^uF;|fkGPVMaXH=9=!>PC*dY$e;*by2CkZzaQ1@t@Ycu zabuZ6Z{xY!9DM5sA%(7R%!R3+4Xh13D?-i_`AqTD?@mrm8zZLWViqZGoSq#kj|>U| zRq90Q{ec-_4JAR0q_D9;k78aiu%Yv)&--QNV~VeVDgt*>a0aNgZi@zv45YnBc%hKE z=wp{b5ENDgkgp^OT34hh5fz)oex?HNp`H~f0u)DHxFtQFe}}z|(}V(8j+i*~+CUMK z@p<{cVTpjY1U@cb02B13_;0_K{w60Se%Vh$f~k<`?A+_yzBbXGzT#%x+Z8U4wJzSa zdG_B5a>QkMJYi?69hO?$CC$sbU%z-^2EKI zm9PC~Zh7nQqVkE7V64tEP7|^S;}b;N`S?>hFaeO@g0-6#bw!-GFnX<8%L7eaiP`y* zfYne$q`xEv4}6RB(ca+!87X%geZQ7b_S4p*RE7aRZ$P}wsXleM=xTMN-pa%$1HL^* zAp&)MOfHYHIIXI@j?kk^MYEU-a^_U+t(aDWm z=4$c{m)*+1Qrf)r5~YE~Z4Oher1a3W}nnWn*X z38m5Wv{oOfRz_~2hs~e9=TJ52k+RDc5=H}BHvIg_^9hU+de&vzXZnTH#pkj+HfCp! zgk2HKJfnB;xQ%;@%0FL-JgGo-#*@MxqocZtrd7cu%}eL5Qhxo^;84cq*j*$59|{R= ziNSXt4T)>y^0Z+t{t{~MSBO`P-etb#s+AWbGi#7rvpDEsn>{jhrCvqhuh;Z)p0bUw9LyA>UB~N;08c1`m;>Qy*|zW z3%zh7Va>WZFEh)9-!a~_ELR9D9kVD{SmtHX8JfCh>i2Tt}6xO(yuBgxXpCVD#EFx?xQY809Tue*RhuaNpB9ReO zql`r#H*!g|6__MxIWX#VtHnH((R*e1_!H}SH%njFF%c*N-yT+VSfz2~gnOe2>3@$Y z9egAMBBK3Z-{|Bap_jmG(KTKiiJ*l0K2 zu!$C9Z_yLK(LD;^%+~>V`QnPof)^LaU!%1i9e<<{qVsm*yFzFpAccrS;vcU85qbHm zy?E6rZ*v~dK z%G*|x&Li3D$|t)z@AbzG56NBdn(y`T!kT%HP1acjZ`)?yqqXmS(n(JnO}t#v;uT$v zmC)j#U3LB9aa|H<2-=e7hKO$xXnlsq&q|BxA0v+70&%`4)xba+W&%*TYP^OEZinJ_ zb!WzF^7ccw&r@qgjL4pm&Y`}kF|%+X|J;U5;biBqvnr>|5wVX!r+fE7p!>eq`~2ah zLk1$NClXc#)%U@s+@W)Ld8}<9bV5i+k!aguN&ewmSwC;&IWzz*K!g)?iqP+*QK6I& z!5_Z{JH_qZbU@W@493G{$OHHWI0$y}l*EQwKa&;b!woF-4MMX?UO1b%A+`TjVb06V zv6p{ad+%&E1Rt!lwRN_-@0`oIcQf`w8@=~U| zGkjNaxNS}t2a2uLRnO-X>>3VO$?JYI;66Lp`R;JF5%)6Z`F;!OKA-sHj{W?Z51WgnXjH?_ z%F%!)WN%6oxjIV$0$GpA3dZWyF>9}zbM$7beK$_|I?vdlg7-)jWAg4=8=Z@5C`-)W zsw~<0N$q)($6S_PLTYcd#+%N|P=4l8mt{87Z;I|D;>wj41CM?!wP{kPV#hc1fExcs zQ<|5uS9-A%_2N2r3H=kzP@k+*Z)>Wa6wE@2k2DyDeOrOHioF~6aOI9?;^*@ZU@7TxFK;s~HwmAr z_PwE}qTs=Gqq@d^W7c+`nyT;bP9HO?uhT9ZmII+=i;dF>$?PSp6Yv+4F9`>s!-zNl zaC(2!aa<~VL)5yB8Qt!{wKe(R#6DoRmX-$)u>n^^T^*Fc8+vPNYjKM^-ZJK~>W42N ze++<#>PL>iZQkF?g>52E)Pt*+M0pd;Gg-1)FfPrlP&5C}|KVBrr)@9!48OZ_J0JNDCyLhEbJ}D^s$H7U0lws&z_X zEL8RD8O4^6DIcFUG!LHz4Niy?3bFK{?SRBRB0Zw_yUK%m_zXq*b(?sac$#O^RDoOY?pn6n` z*``IN&(mzkrDP-#f3gK>TxFSmY4CEkkVX)Ix8KNIhtJ!w=X7>$O?y-?mRooE1WXz5CBLpF^xwDeen@;La;Mlv>FV8#jh z>sS5z{rG+AmKR_^+5i4r5EX8gsHwlIb}24<=Bo6#qKL`amTA6`X#$(IhQ4Rb!A-kc z_uq6tf`sOi`Ag5sswh!txUt>F|qR?}|L%v4Gf!xiyaYYJ34LwFsRV z>Chd1!Ii}qQBuw$~I~`_YC!)n{sZ83^MFd zESp-{QrP%dTIJd9XDcRA82Z#Te?ITv0o*%AR5@`eyPe4I+4BsMDAblJL37Xfswy#X z9ikl?jabumpr?|5b_e`R9WDr_ifX!Cml(Jx;r=qa(b7!L!1vje6?f#{EtWF(V3}lZ zY&Dw=85{cZ(bam*HFL~O_4xV7wlV$B)L;#Lx=!kyJ#okNQ_*Qilq^17%H1w5nQEkA z^9sFebIf87mw|s-oXAI+talEw`|5rVQ>ccyJ!i{WVp-FVW5GUCvxVhCQKcKE4heVv z9N;>YM}$Xk+NY<7&Ax98Gr?Ig&{o_sk!En7dZ%>6vv=mry?xrP_LjNq5H7PR^tZ*Q zYWuezW{Nc^@y z-qw5jnh4bh55i647zs<#5PNNQld4+ss>sHlxl@i`G(Gry5sxFE)S+}!c{x&%lQ)#& zdPN72XS}HDU_URDY{_{R;8CA`eb0 zQS%>Ua+gdKq_X?zX*FtvK9pCtBVK>&O?^1GOCV@-^t@h>!RtH0I#KF$(+{r#62KrW zfK+5Z``=msydPE2R|?~-75Umg^y*`aG=w-PWO1XhS(egKGIOERM~@}8^#Kg0rA~^9 ziV*Ai?3nO~^HVqnPNWdU%adgc4Vs#zsJ?#VI$}KVb*7qGthg2xZ=)=+_GnSiCiJEP zt!-FO({c#gGda;4Sy5gokQ1gc2>DL2Scb_X?HK5ss}>lMHP`0&`qJI#BQmV7MPz|> zZD4!&)*sVd!DRnPvQG|enJd{XYMNJoEl)R9a?b5W6gq;9C%f+O>-pE?h&%Qu=f`#s zB&28{->qlWdlt?|ppI+WA30l{2wBu;n3prmBAxz*A(8#>4yd)#(xCak z!9@PzlU?8o$tpPidIy#0vsq6Zs*{l zbh{$!yi&mwhd~!}u_qLe_0b@TY)=pTEc}{?9s0-3gi@gfwK!x9RIl``%)^hi!}bUC z+6%}y$uc0(#>2S?R=Po&C1IEljK>3b4;p3LlL%C#if6XWeS5Rj@NoL)kq}z!y2oFg z%R^`W9g`c|ld{INGuO0R&wJjUjoH-Ho%F{hFIZpaX4YKTE2BWnLlmkcO_UOJDr^bB zb}|dnZ?m*yjVRa(dFR1MN{2>1LK|#j2~p7~g3{cxy=uE;6~4DDwzOfdNl(7^b#~Zh z>OWxb*B*SgyM{h8)Yv+;BhajTiWxEcwcl(trzwzQ`DRf3!*GIP*@UYGOToV2!N1M!MBfaF!cX_#~$#YpZ0hc`Gqs|9@J5DpbVQOI#Zv#{x@8uXIkjUcSSv z+MZN80CA0>oi{hbbdC%88DGup>--V)=T(%j& z=29E>>PS^;U{3)qxdXvkIER5wf?}q;Sg=aMS(M?84FN3~WV(oaT4 zehBqVre6%7W8Uzf|76mqu~L*nC%F}arAcR)0CTrn66>U{U9z zuXc@UmB%(OzP1<9W^={=ty)ks0TJMv)p4l;Q8GL&mkET}p$wfrhq6-~mu05TU2B9zy* z2kHR5As?c0fpIj^Mf3RkJtPKb6(Lj9mu-00fJB)g(OBSzs40RA(0d!si*8Vrc)U@a z;padkfvE)2!E7r=#0BsPKg_$KJH{tsJ!^;)jUsfhFOb_eCY|^cr`$PIH2MYUoe9fa z!=`!#lq347E5)5Mq5%5L}q4?mrjyv972?*ra}q85by8p13WhJ zt56jmCMVN0G$oA;)sUzdEgP#dVT8l@XiS52FdB9f4B!xZTcFC81bU&shX#XcBujHT z1P>j0Y8y%(wIcVMLm@{?A2sFIv3nWF{nGQ|x?F_MK9swsV88@Ikd|K1rgPt7it z*=C%v_dTvY5Bk-=G+3yPI^n?*Rf3)^_o9`0+5+?Z`r2v%cXCqn&0Qn53Ee`Rqg2GU z3Vyxero(Z0&22Z2o{qlfR*`+wg(kyLMLM?@^%2>tC`mI>{#8F(#4Lgytrl)rH`3Pj zY`dWfOB;?Zk!R1AtEwDVmZ;Dny`Jo&RtF%75fRx?sf$p97pw;#_#YCK6j*ZW%KGu5^uXJqGC9T6Sv*ck9u>YW@_QJ{EY&iS?HC8L|DePTPX!CU>n z1t)RZms$7e(+RKT@IE-Fp*^);yr;>W`%=+K_+u(Ah*_|1CaE`AyTZBq?Qj{{3Z3 zd~$@7L$gB%Q;x;4dM}utQIXC4pr-oO9P*iO=7=@bzfL(8#Kw4p+# zNZXvEvSg1*(jt3Ki7YY7lB7-!HA2KB+1jWmMUf^Xl_Wda`CV`K@B7dFIQO~hPBWj+ z`~6z3>v^47cA(gf?Cag5(iS01#|Q#%XihCBgfO&+L%#z39*&p=(1k{7y&exoE{zz( zfMm)humivLxiVdP>W<^X`;^h>d->^}`7Ivn#n+tEI&ryT@X||75E`jmM@oDyKc+&u zp|YyaM~3V-9?lk-YqUIKwTF~SiIx)0O7cjEEv0CoEwGxsxs+xE)&8ar@ro@w?j9-M zxi(!Ow)@1W<<{d~)|_?GYgf zn3MO^lzeM`Gjx*rWIoXg6JOMD9NoM84N}K`Pfd>B_Y8`^loV^{EGFdhQ`XzC%vZU; zeSYff1x!bGi(Rat5~%Z01wCA-`ahrSyT`(SqP;n^pHO;UkhVQC4As&M?HwGbWW6)8 zd}~7Y*Q&rp=?!Zbcdav%i&5X*JuEUyzcr+M5a~bs#21jQ$~? zrvxUa5Vz)ANCJ(YnO2GQ&{NX`UgB~zd@V6Y3bZ{!*mMoqg8#YA6Qw+R%S>U^~oi|8I(K$QTZ z?P0-5gVa}K8UWd?Q}S2d5OSUoHFz~Cp>w3KQh|*X0VIeC8n)V-VN}mrwLaDnAHLa7 z;6YaMk(LM<1(ub07Gy4qC(26@8_eo83ONb&i%CT8K61T0ISKWd%ysr7Xwt~#BO?K& zG#U9Zi3SQi6Lo-Wt^i&G#-4Zyy&m-pHs{8a#v1oO%gizR9f|sMU)?If;sf%o_;V>0 z+Ij;Ub{t^7-&?1&?oWX?T{7M~)uqwH>nHmbMp z$sb^bLe*S0HI&2WEvbyH0%o4aZXaj_rwvvS;LbE`)_0b8s^t<5GaK5!N-yx_)!Dfl z$c2j47&PnsE>7!ah>^2r5$zbJ0RV&G@5Mu%Lgo#q6#^Oq5PH34%VkC~OF2<5TDF!U@zmm6 zT3)w;LUX`KZ(UB0`j=$SAiH%g>(-e4d1A19-ehmP;WecY6?0@48sVGIJ8ZUcM2u;3 zH}URVAlMc&axtqm#*9~;nvnf@&kbqt6FTZJb|{KoH*xl)|Ev6>Q>#ZoLqaRVBMzJ5 z$GFbU<)wT^64s}SR}!lFjz-SEIDdY_OLnShViMDVTcMvW%uCRCz3j)c+sYTzm*!JP zqfXCxKo5y!++=eO#R>(t%Bn{#b$cEDA6KrJ1~e=s#P`wx!qV@zDtb^fciyk75a(s& z-ZfR{;Cw;aVQQ>1h^Rzt!8$I@se6gL^YyGA2R$(9tf!yRmMO2JQ}kAN1g2 zaB4k;02TyadTjgGt4;Rt?@QKa5e{+u0TLy*^9|Z{F|lJx+yHosH~}#ErmjPtAM@1M zYF38&bk{}Opy8i#OZj^g{);$%>#Lj45+iBxPjpWpHbT?94uJZKM;FJ2?tH2PA@UqC(KuM-|BSxU)3u{Mz6ni96!84 z37tZxANpWzoge$mROXgf?=w3xKI$CZSJyHXctHN1-cHyG9}G6zUbA7j2bE2y@f^6{ zcqzWvRd3}aXpx=^jWp|Y_$<{Vlwwdbt;8Zm8?37Ql&t&phr?m0#&mKY1(gi*dI9vX z+F;rJyobF?8@lo8OJ{dE(~AWs4Zh@CnDBFLdeV;%u#4d>W6q6BqL4jvt(JO)` z3r~N(g?4#O>C{-kqV=dAFy9$*ks;+ApDL6toB3_XnMAc!=~aAs;CoKcWM^lB27o!f zJs8Kf3^#!_0cjH{PEjWlykwYbL|U7^cAXftnWuD!tcSL9_`HH&Few1*BBJPKjp1dD z3)oyQ!N)_@1QaWtar`RQRHfmR*M{#vGLH1^?g=pT#BpK++ww{Z{xYE`oCCOFVyj7- zQofofXcf$gU6%NwOM5UdVv<2?@9-S_EnPfGK`bLNu>}9co2E##$;Uy2A{%#5e|Z17 z$%e^lKz?`@_qk%Yqq|q!8Fpv(1;~wG`1ts^o*}bz$1C}-=5WYq2=T~Fn%&gI6I(_} zz<76EhGiCvUm=X(=5c)ISx!XDcO)w||8$*SP7Ovo&$TK5&jGapWiXH35;)!kkS-Y+ zd@x9@NdgFk)dplT8}GSfWk6X;OCqxqm?H3%i{k=C(*j7p4UgSf!oTLdRiGSD zMpd4Bco>wnsUPBjcW@*w?>~%YC>q{0%>)>`F-KX2)f(28Bu3Qu$GsQeADl~Dn2bI6 zOddO%PeH8f3X{0RC%Tg2o7MN84Ru?N`*Xx-Zp!kA+q30_WRv{+xZM zU-eIarIt4*t$63kG5ZX`%Sg~5FyksD`m7iX)df*#p}001yZ6|lS4HMQ%$x}q zU6S&rBoGl#ShqJ-A!ciw5Wp8<+*@&u6Ybz%7&Ow+aH^-L+cKxQc;u(MjyQ9s9_1(S zQ>T0XJYal|wih9QQstMF-wGH%xs`XM*iPc}ImR`hqVjV4;Ho{vXjC5&AtRv2pF@=C zF#ws-zeo>t9DAOx^5WY1l#`s{;o$@aO{IGf(kkgN<#$)!I(2HeVONW#!%DhYOXN&&@`MHA8Z2GI-SiH6xaoB%sXffofxjymcTpe6xny%5HwTUEL7 zb#`;u*wB-5hAV_BDsP4kz`3%j;<=G(j^*gI|FHAG<;HZ)s@?ME>@Po(O=IsM)$hi? zC?*gYeXV07BR&VRPu#pwqe6)oZOyaLp&JPbh@a8)xc_59px*^>gkTE3Ru07(oLdLI ziw8Djq2)X0J^ycQHUc;S5`J}c_Z%uRJ}LTX6gIU1f+o}=sl&v8-ND#3!JH16({EKS&JQxu8H2f3qMl*eJOF%PhnwU zX>b}zY)ogIbHQ%d`l!ph_ValsMcrbrhR+n;aUt%!yoM>hd&(2pl47k)^!}m84I@& zpHm2lK2W)Q9-1zJ<*zi5dJit*=)^aq3(VXXNh?^!AM~T2I2-#H1^Gk$0L6m5yu6ud zl`JNNR3M$Cnp1E5{!m273{L0R{HSM`NMM>%O0jE9j-qK5mq6hljkT8ia^- zgw>%8T0YAJje61wx7VQP0`sjXx{Y<3WD5{0444x*pJ>2jR++2fnL#Cs(e^&XCSSu8 zO%Atm@QhR_}1F%VC@zn(wb$r*U&KYDNnA5oTcTzc}c=HF4UQZgCOhnS|p8FhS;LRl(Ce2DkY(ZX^)V2#Uh4- z8y0HhkgbS1NHiVDcvhTnv6nRxg2a863UnVop^Vt+v>*0z23uX_l?P*|z2Cdy=r)W@ zkOk^@Drj^pS)qS0B-cb}>APRIuU6WYPIo`MttTDdb+^#0pZ>yfcKlZpNv7(iR?#R8 zGnGY*pg)2aF{hTmjMgUlBCPzeun`sjF=rHGQ{}sJ9Gt&PpSZ{7kNO7|+eEj8l`rBA ze~4MyI^|njf{Zz@{7Ky?O&zIz@Ep^h{isRpdf54iIk!ms)#@Y(GvC*1qC2m~#Y(V! zKSm2fP>i+RoSF1Rwxe`dSp8!08JI8RLj$9q02i$QlaA$N`deKT1iAw5>vk7-%SwU@ zji2t3t9&~)g-EGIIW|Mpr^==Vdpndmuo!#O$g5SReV$p^Vy}hG71j(-qb7uzj~FzcM^YSM zw4en;+bQROP6z&%Lg(+N4OxGR^MvC-EMt8W4ql{6fE`eaMYr8e*|u5sgyxyPk)WV~ z^PV;aRWa;6=A%@o(*n6x@ui855s_g+H0XA0H0I+>o$6~vR4^QM0$*iJXWylXsSC)| zu4nJx@;kVRn1q`ehm@Q$Vhtgyqs#a7^{r>S@=PD7vOb8o?ic6?Xt|$tUmi8VZ}jHhEXWE< zNRb1}Z()8`>h=tm3@8aF2KcE{u}SmV=QcrSQ`a$gDCo5CRNv8_z(c1yGrHb^F#|st z;gQ);aFs#-!H)Q^Km`7U&Y`Wlu=aj#httti@(~a+Bcm+>m3g1BtPdLGA{E z;Z=^(g2#ldaB&gm?S1T|8#?IW1VEu@ANez%YnktW8WEca|yHWr0j)X(lq# z*kD^G@>zIVmhZDk(kR9T&BLo_C`W91Yd|=aYdgLcF6im;%)L3f^EdAID^fAn+_&f@RBADl!lrNFDhT|8T(Ey4bd_JNr9URV zfL|LfRuvR1G;-gV-nCOW`0EKdNkGq$sn(y-6C~|0G1fU=_3g1MOc@khQKVjU>905m z9kILwOXLl(zaQUQD`{5Xq%3~;(4DAQ$(C;$36)T&+{wzQ3r|}Fz1U$Q3K;wSt5HX! zc(7TpdRajDEdEVgGub8)38ltoLCa+Wb+nIqw+X{f%%;i67&8fuwL1snUWN%7uEVMe zp8wJnA6*c9UwaiRNn?Yh7LwG9&Y_pW!SP}7Nl+$to%*%-W}*eO?XD8R!HRCC^205^ zJ2O=pj=s`1Z8T+uC=-zRmIq%~CTPwTRc76`6P$_+DHF%EY<+9UGMl?GPai7->NR5g z)FMPrrfjJwmPGvEqf*6gvAHNbH5ly8Dl%vA(b>J-rS~_>Vxy%8IZGW$lDHV_MC9nv zNUZ)xhMp|>IQ3qk>@Owj^MWU(!+i_Jv2=;frfTVDzfEU|*(5O5W#4>M)U(8E``<&t zuHp=nFr6zG^R(*bC%H9Gvl$l_Fe&3xH#4;dj6H^5T=;v}s|Rfor=Y zfFaXJ=sYn;=ZMEPfurUJv)kGRzKIW?uhT*>q1)D5D|O^C;^M7}J|e+gJgeeM?bW#K zFnq~_n`$+LV$>jgg)|CGz4oiHz9JYL$v8uDMGQ0cWcg*?{t zm~G3E2uQM4*1C8;{5&wa{-r}?XX1G2be-X(RIt|uv#Gv|(=dHyoJG-Mv)4b;&=Xj*(7=t!uLdI0XdE-M|JfSvPDv(n@L zv_uYIwNd7CV$85Cph+tvtK3T6{X)n&&5h@G(6n!w^j8Smy&grB#bAg3g9Aj$SqN|N zS;fz?A5=f-KQb;h3Kl)Qc7(q1;fU3~S=34Ur7}KC&$5$>Xc8EHD zuD6RPW?fkY!5G)sGLY&ZYDXL;*yWc^*QExHb!3Dc)wg!GbLbx5Y}#U5R=Ov^r%1n6 zVj%`&U8VPB$)*G=aiB+dN}F~y#e$EJQMZC#NVK*%MTj&J0EE+0&#Uclg{X2ckXY>w z=M$F4sEK&>fOivz5Nr<7Ym`}Tpia?|E&~ki@Z@0c>~hs+{SSWgU0++RqKBCCcjqf^ZJDOl=TULwfqv>QbZf)!k;$sINnQxoWR&@-F_bErQPm8qUw2*$x8Nox-_hrKg8{Un_w#Z?ubg0j0)VLX28c*;jWSWW=1Z z(Ps#R!2tq>0z%(Opb|_c_u1}Q0748lTV}-B%+#H9gjU+*VEz5%JQp%xU`@#!fPde! z9a3r%ft1wfH=IH!&HGBnep(p2&Le2^{iwReYOzVeDiQ|$ZFvW`8JoQ%N))V}WP`gY zyhcnL5X4B=3BQLRN>_Xwm>Xj!wipcy1OL!DbXXQ?MVP00Z+8>uJqX%ne9}JO9&mG@ zK!yMjO5=;JgmE(Sb2Bl>V1&?`&xR*^@Tvw14{(m$x;pgAA*kV^bd3`&G2|>~i`#5v zIhMnAQKwfomew4j@tn4aN1C8EF*~FsAyIhG;t8%e`-v!w`pg8(#82hsn^O}UFNZ~V z{AE%%j`*!+3o16zm1NAxm}?gzHVyuPcjJuW++f{%eWq^XYol-bu1%fpZ%7Rs85#WE zY1@@krf%XMwPPRinf~-xLW}?SP;#*AlX(#gV1_eaiUo%hP%*}m5j)U!jYK*|e4fjJ zWtZR|r_m<}m1DY%Llxh=sb@%(kFW1yWsdiSuWq9weQjDfq%P!YnR@3r8T%PjTr>=t zI4=L7OE^?ULKjJtR!4c0`S&fn#gtca_KT|ipB6xIDZ@m!c7x}wD-90SD>(C7a1jx? z%5oYQNJ%T``{Mwn3&z;VAu=N)BMgJ2517K?AaB1q>j?k$FVcD%Rj+w5GBw^KGq-&C zwHg=G@t;srPkm2bxN~4+WGV+`m_7eWm(N?eb-o%P*6qG9_m3YPkaC<`RBP(8O3gRZ> z0;-J+tK+qqP~sTLP%(r5;>M>UwIQR<@3DvFe0^Tg12 zlv_erUb^D#IT0LB?wni0CvjI{9N>xBs9PP#bDXZf|d&9;<1IGp6eZ zVjTA!!?!2D$94@p8Tyy!x5v}(cVX^981i-K#W6@n1XwVm3kT8>aHYtST#M9qII=OA zTSbEqz!fveHSHv}Bdr-ZWPtC!$83|N^#N!Jo#R#3DlX%_whJFG~ zY18rpB4)jGm~+~cz`*`D+y<{B{MqWL8psb8eiHJ$iy)umR2jXA--~)Mjm46yVhOHk ztofHP1sS+654i?j?F^%&JnFQd(JpY&z~q0u6Qn^nX~|*<{L%MU>rOGIC)#^p{1+uw zmqaf?Gz9ge69RN30<2DlrEWNav2qhcZV$3MR63M(g#V}hD0Tw;ovvVOb>r zfc)r0>yz{Na`43mjb#MkbjP6CArg_?KCw{jJU~;gJ}AM-Qsm+!>^U;huyN0kQuIYrI1q0-2aTr1=qRhHt>i_QP8rSQ9SaLyZBzkJ4?f$v8wU; z2_2q+qq1>tS1WoflfJerx@EGbh5hJyt$=V+nmJ#1>%Vhmsq>Xb=FLzR!U|hM{?qa~ zPX^2!|Gk=1Hqz5dHw!8rLUB?mcU}=`UHdyT>cD_KII=WU}juf2?u&%WBsJVb6Pl#ztBvy+!Rp z1QacpyzuSXl6V95d3euwiQrDGOj)SG@Y=GA48D-MMFrxMC%PF9f>2;qy6)5iF(*=^ zaqo&TH85CP=r34)(wQ@7L`8|=^j*UyWvW3hXZx+N`SEtRbcpAfW3ypN<@t=N z$mjJ+*2epG?{cIoZDfK|0L&9!@CX7{!4#8JchOF$Q(*gSn2Uj-Q69`Z{imlU^T#$FgI_4od+XM_ptD&*6odo`bs`P}strR2dPrDJv7?G$ zD#?%m={NR&gEeSeuX-O)UldHyk>@))bzT8)eG+uGaZe*rnxP8YeG29FBGRrSEP!ry zsBh6-bXI)bLP~rNE?(*`l(t8{YItGMiuZ|;c|okZ*wK@KRlBuy%Hhi=-9HX^A;lLF zM6(*gP$WPzA#vRoYX6)$KM9Qd0KefP=J(=W-UnQqKjIXB?=8yAJ817e#1v1 zf$xH?j*v8%yaGgr#`+KaJd^evqfS`6AX5GmkFpVf8^{sNDSXEJ%%ExkjQ@%^hj4uf zs*TK{F_k7qoO-w;4oSum{9&Zt48}!@Mw{%T@?QxPr&{LWQhn+xQZag(Y-bo=ie{#M z65B9;UVhi9XM^9iP)1FWeJ8`h?RDB_r3(LteaY;j27Dn+Vdg#Et-BMy-8>wxTwT=1 z^1d{8tZb(yMROF;>{C`Bk(I%%!o#DmEhN<*vvtQRA#sRKu5YYWrw(A9UaL0}(t|7L zl**C(5BVF0S^z2$cN7pXy3$Aw*~+h!yZK!Ups0z?i-v~nzsE99m95>{xcHa+SyNYh zB7^*(5!OFCRK&_pJE%Q?^zd>&)E|0iN9-MWQDs~5OnOD|?L(4cx1Up{2wtWtj*c1c z#HYd4EK{6mJM-q=9tOsV$Y^ZQ&otiu`xt9g#;oLaEyJs+snIWa7E0A&!RvvFJ=!9_ z-EZB-x%bX@Xz%98WHZ;rVbfWuRny=u7E{s&hP3IUgR}1_qyg`=sr~pv2EK)si zbP-NI%s?R#*Q0h zwOQtE!v87i$Q6bg3EsTg_xR)^T(ustjDMbr#TviRdlaS#Q>4WcT8VGx{t=G(~%}TA!xkD zO$Ij}+R}k@M@&ho5To(A`6cdQYog6;T78f9yfn@jbJLnI3cc_mY~m4>UcTB9)5fuR zM#hS+vbLWEMnlU+zPrPG2ybk;Sa;$76ho>aW?x?8?AMRJ2`cJz86t_Ai%-WP8hTYL zV6L_~d!g^4ejt<)<2oTD4x58;tSkU;XU@(sQ_x^=pp)$gtV^Vwd`VO~CV1oF4USN|e}`R}gAPpv#R0(SqABYIRq`5AIPHc8<{v+&sua z5K}Tprv$Ks{3=w96im(myYpT>OC^gB;&HTvymBFb#5~%BgYOPE^A&`s6!>(IkT0eL z6g);pA8nA#zMsQ{giBWOTbSWm;U>g!DFP<6fi7?={%#flq zfQl$_0mK@=ZO2P<5iHTH9q}r@ez@-?mkZyOU~dy7!{~CM#(rQ%G@#gvF%REX2LBO` z2DBHT5?6Xv<8Xw9cnh$2kO~-lk05fEH$+2+EkE)?gBcGo22QB<09clT-$VvJcX6m_ zRRC2G4+5iPcJfkVV@_k|Xu|1$$V}(A|807toZ#gBQ)Kt5mmHS|XWcHb>gqVE`xPmT z$1b$;r!7ZmcI#v?Z&nG{h%pzRd27-AsXtnTi%$mD35~Po9BXs!FwkMfJTMkY!24Vu z!o4!4u-fx(@4Y$H86-4j-kG1O9yHoHezB(EeoJ67d$XglAU(3zqiEvyLm=pXzI$vh z{8jRWmB^0kZ0^yvyn~OUrsYvZnS8<*s{N?uX!|;VN>8tl#cB zf#uqMF|8%T0WGr)vyzl<-lm-<3L|ImOo9+d%KSOZ+6Q^krUMm!|G9p zGh1l0Zb81jf&TgNq4B!9(PIycpLQJIln#=f^Lx@J(P1{{kMY>I)>MQ+5iNrbyrw}( zM?qd5Qjx1jCuJ|A0M3#MuB_ba{aP}*&1bExGK#9O->>eMeHeF^Eys0xG;nNZUkKR} z3EZ{FEZ})2$Df+dM@tx_RqV(Pr1;Ps7?<$GS;2*H^S`HYZ)!fz}Ku5W1>=XK4`*qdW`tw!P6wfENilmEt^%}fhhUP#(4 zXU#|C>0M&oP3X^==lToADlLd{M@@KxW4 zh01PElom=5KGZu1`{8M1bjUy7eVEN+~!jhek*HFSblR=?NTuh(e0< zN&9vCfV3dB|4=OCn1!woIcL#aH|%!@91Eyr6i0{|P(d=HV{#ZVwt_*ZYn(@D1LWJ3 zzek*2ke@RtZFueFo_^G2KWC9@ zu36pcg~^3pCdNv6&)hoO2SzjXawxM4vm9fJZ7|y`$Ao;OHOH`Pd5sNB;ElKhx*a$gjwfD?Y#?3(@$owwiOQn&mDtoD@9YT8WDUvI41Kw9)K>3I& z251Ze2<`=vK5n5M&s_|2JTBK6I&eWf9VQ3t8225MarhttOcIkSFc!jI7mpRu|FZog zBoH=-J5cN9{p4S2GKDKxmz9`0qI*L+WbQSeEN=CF*O*R;DqD^wa{HIQx^a6Y;tmd* z&wUZ>IV%~7D5T^}VndYqMQ5h!gtPZxh@Qk5jJ~zuaYJF#TcPNNz(59g6h@T)d7!%} zPt30ft^2N<-_IbQrRx;=X-R7ITloj;r5(6|KGUt|=UcWv)+?K^SmQ|zUjJUO+pl7J ztYs=!Pd8DM#W5N+y(EM#l+P(%;Q!Avb+in|LfzIvo-tG*I2amc{Ww){oWp<(Rh6F1 z+g-J)XuF)4z@9ggAOSqJb)%w2j&a84(0H9P#U^NiWNta%7T%}hrlYVBtZxB*cP&qj*5@@_o!*Fh4aUHRdoW-g0+sy zSEe(Bp+kB1O`&By&>vd=%@NWw)|U+l_V{;J@LVLcW6-%)y#Wr(QaRL~DA(KH%$=hs zlO=aoRAQFWKTlsRG-f)i#?_m&#$Jk{ypgfQpB8*Pq*Syyk>u;#S#ZGAYIVkrzgZ8` z86R!SCVzJ3l*Jn}bj;RDzolX#&z(Y5;@622tG@>^ghzKOKjxLMu&~lgcccPuu=(3F zvW80wHh3-uNKZ!M#b>cNA@b-T=V|I^E67o;5Y>*h)h*kdRd5~H`%=&Oo(j$Xt34eq znB721wz2k%d9?T*wga#TBGevZw;A?F0aP?==0R|ConV!a(*hljwfp}D;}E_t&x}Vm z2W>tpUiUwYZny5btbI@Gr-(ty_N*RG^<6AnHa_5fWs=Cw(<2#5XPp2OS_+iqH;flkm3To)(b7`p+u_jv!YA>P^dx-93|lARS*z z!|la`KTGJ?>B+HG-w;CtN40$?QWKhz6d{8}s|_v*D$D;B6tUISM3H*hf%x2vStOz7 zLRkHkb6O&<0FA>@X=IBSu%&=?RY()`tuyD+J3j?j5!i7^Q|6epkiXP+$toV;>@yLL z&f2n=Bu6f!xz1i)zJ9d7s`%Q`dex$I>aNhEm2)ni#VA(!)iKe!BR_0iq=f%3eBn@c_kzwJvhP_>RJhHY3=TgcC|zEKE&F za{hSW$6>Cv=6|P^_Pp2Hf+HdQb>+l}znV8+!Sqktat+P)1-*AY{i@W8bA1VRz{x## zNqGIo+r#yXmlhotT%V%RP({L$jkm%bSbU(;OAhguudBQA@7G5U+{;21(v>r4@+w`k zy5{G==z;%TXB-7;hNUH+*EJ5EX}!-*jGZoVe;!{OF!1U=I;)xNj*L`~;pc46B+*%K zkMKU_^+Fot!3 z*3y-0_+YULuQqDz0|@V+qdP`AJ|;WNzkgeLl?c^SdPj6kp*@< zO1C}jlV8w>-)j73OT4EyzhAoWO!$~-3<}=}37eNIcksT3Y_o@-w)|vN8;;DW@0~e> zT+cy;lT;jzf|&7-23=f26r1dp>GrakHG=sTMUhwJS0?c?9A!0w>%a8%Va%MHU!TWL znxics@o3SDvQukQekYesw$2YCP%826MqlTMPnN_`8Mr>R#n5ow{``3v>`fx{L$@UF za53dV#iowU!puJ)EruMM9Ky1u0^BLxZTK`8?ECfK5lhcTHUgiKi#P1pJDgT`xDWPR z?%H`m?tIzFTaG`9 zidNoxQu%v9y@7<6r?YbA1(Vf{hVkk4qJpzRh3qG$JP-NVF`GPATiq$E_EUnxd$j(> zuH7Lnr9Gi{Ep|y#mW-f@fmEy;zKTjMGrtD53hEE7Mj$b2%)ZF{hxs}TR@|SJaI{Zb zP7hk1I&})?WXJLT=K;8bAu?vasMhKabu@l{3&tz%$}1E~ZYFZPFq*iEjDn8ivsaNc zA`)Omvop-*HJsQ0BM#Pw71A62T84Qrf+NUCio&yu4R|(WVp^dLBZoPmhtLW?)xmCP z69-8d7NpI|JIDe_#F=IPg%Qp;@^WN8J(&9#3v7l9jw&u%H1wjlVDQt|<*E9Z;?Uq8 znpI=w`z5MR0U?DixDb6&OhY9^IyR}SThkZ{IT`)&%^dzQ>x4Fa8-q`KStt#C?jcd& z?)r)!9c}u7zT;I*O-&u$Q>2lf=%4Z}F?|XS3dkeY(0&yppFqmuU(gu(qk`=o2fiXo z%dEMni54?hXFGk^?_fjK;MkBm)mfxo1=b5NI9OCWf5iBl&x^rEh|kMEhI8FMt#jw?JN?w8?{0)LQf^6$ZbLJSn?T>4qe_$tqO612+Y?Fq6D-0s zhgtsdg3md4Y@W&*?V7ki$1RG`mzX(M;>xJ<-H#c9P&r6u(9Mc|+=e0bGW%F=ozM

z}q{ou-Go@Mw%V2r&x#tfOgWbJ5|`p4d6Ztm5m6 z1ngWRA(i)4{EP zw>!J%0TN}UmHypeVBpMh&zcQo)J3h!;c)Mjj*jssec4$DbC6>&b#`%8o|!;7^v_4K zvMe%A_<5Zgo4Vgpy63#o|7ig(2;PE}@_~@oCG0E=Db;&&RAhdXcJOgGdib;q=zaEi zOQe|mRgK>v&q#STElx*4hTZ_OZYclE>cLsU`q5+COY=Ph_+Q{WfM-SPQWBQ6Shyl_ zkKTdp{8Rk0khzE6&-!}*ROcy;9;Ls8o^3swY$hN)YoVv(b*fRm?gSuRL&qLqAeJ%t z+??+u7?Uq9khQX0wMkrCx8liY_xp(Rdv~i=ov(uTJJrD7w^+`vOwLMaxoEFTl_Um= zp(F35pSbes%o1MZ*Wv%6@sAztZ0LCcH}6t3ri&NR@OZq(5^_bL3Vx!AUe9UYlJx?( zD9+qGd`ahCHCNkdoqK-0%~f1#1@(*qM1>o>(pQ9IF-b8@o}Ts{udBhW=AuX!;?>7H zSv3s3pRCG=4JuiGk|z?bw!vfXpQ*@$MWSjVJ`v~(+~*pxPIKWhCy;pya6gK$dWK^L z6B^ixFd8sHAAfDcBN8W*_Putp-@p>Q@%3P7&&`#9Kxe^?Y>~1(!`0n6x?lRATw`M? zE`b>t_1&Y&Ul84pV={Ov|6+&0W+q}wzzoyl(R>ge0QkRWY2Y_eY8iE{m*6s&t=EAf zdOZ%vl3|4RfRZrLIv*vM^=6<{s}VU;f8td*TwjRh0`zIObF`L6LLBk~_BF61UpQGE zK(@+{k}Y*b*&K-Y?EE6Veg&Ablso(lke4WR16nBp6#eY@kgNNi;f7_8XG`=>#v|~4 zs;YOcxLxq~ZnD9T($b~H09!EENQ(LC5^Y3`(v2lG8=7NQ0semuIe!$fOO9hN#_f$m z^%}z-{ERdeKBZ5bV+=9u`tGOUXoHKh{#0i4pEma`QM?FFdwjFK}C>K7EG{?xnzvv5Ifg-<}cI#YKUJ zm+{{HdPa#)U&uFtHCUHgqc*c(INgTvL6x}yY;0BwvDe2I?K(^ViVsvHr1fThl*hxx zP(CeCE<39{Z#7jioaiA4N&pD!JY}^w2ESw&FDD+V?9Q#&%HumnIQ=@qPKjJqv`cgu zDYOyPha*zKx<~Ydm)@|qU#GG|LI!=zWlM-ZSo>E+J3uOQ~D^)Z&V`nPuR!#3;*md4?-tWj-Qj%Q!YqEVfb*jJNzSpVYFRca4g3FGIpSw#D zPcZd;yoGmE-$d-2swTxqOnQDsc3Cir-0YQ>iDqLmOeV(V0>mH8Uq$O(q&c@O{V>J? z#N;NV7|sY*J@C8fS?l3V#>M)n_t~-zmzu^4f9=(YcaphWnPb{@(_npxw+o>YqpL3xS~s0`h8Z{~mb`ul{vL!Om|xS5=Sn_SIs%zS?xEs)PQAFY>m~6jUUp|akN2Z>s++Hu6SjHdI-2HUbH|U-Cc>c~`SUN9 z6;JNDu+m7xE+dF#ziu%!GK&ECr3{|j3;Qf|U4^>p(ayMCpdz{(R}8VGY{$2XbuiTV zct`1LDq`|^=kVQJGlTg}D>U`}T>pP=bK{*v5kWta{xg$3sgYxQ$9zS3&7hT1k|wo1 z@mKY6d5B!=hJ1=_|JzX*P7o511Z7T81I0Ce=WvMvw{ zTqxF#cQnL`x-8hFS2*LM+{_c(t}n(rZ}?Z8b5BYdPA>UwTmSJcSsF)wV^pdzwUsgS zSM6#y4y}2@aC&kYDB)EV)XIa7ayMV*H|g{xWzN2ZCEobMb=$KFT-`s-N?R4Xk*MsY z9X#qj#$!m^r$3LM>lzL_V8N00agbGfic8B5h&*?_%##UW#FTKp{f~SNVICjN0O~kU z_vqNbSk(TOR-)IR_!hN;)rjhYAOTrwRmTWT4Ct<`f)fWJKJBZnnJo{NQcnro4bN>G z$4mM0aVk`rwR`7DSbB1K#A`eb$Q{A8PL2&pw_!l)5SgXM zOK?IM!Uj*uW6z(C?$U!?@4h zAMbSOB1&*F0wEYKq9Mi9)lw--G<5|Xf4QfZl6<}+MFzJ=Ym$mNgWVt$Y>RW;iIX@R zgQS^yhPiy(%N6hkA?OSUlT}_Qmj`sVsnHK#{LRemXw6D5@mgo=x0l0myzAlFs3R{L(GGB`}kT^));#c z2*XoYPwNX}4>SxNUz_#T?AmL7)Xe8_O*;-cS=>e+0j7c)A2$6;QoSC|QmcCGf>e+5 zY^K*uXgoaPE-kRYQcneO@&II$4uaAxVD7TOWDDsKxHTZOJc%b8PX2*VlHf}jKh0C! zk-2g^A~;D2O|PQ|hqyhR>$BUq=+}kMn{JOCYSt+2QD7zPEPQe7Pt&pIT9O-@?wNkq zH2wCY;G+F4J9FU}A))f8Ic8syNC4kV0lUnS(zidnfa0K_{XAC@6@lIY%F+nmgAiHG z_b&PwS{U2+mqnpypGd0OtJwk3t0&tt;>jSKAx$$V*INlnZ#a`qK4l8NieXNnm9V}j||`hlRo zS=V}nEh)+GY2j&%79)wi<0a9_TzI0ho;{h2&=N7`C!PMPKlY>K=029vInsUx~H7))}{nn9k?k;76zc`0Gi&p(zV1jq!@1Dty4!1}m z!Hgoe7IYW3*$vkUZ!g9-3<~+s;NSv@nV_NrIeYmT4|QH-bl&1Zf{90=q#GOyYo(+P z7>=E4%#9dzLzBZTIqb~ix^S9aY{;-o!}#49rt+);Ne%2 z(Y0lhqvr*xbQd#~GGAJiF4ct-(1pNQ@sv-GaEj zp0e?&SDiU*+lv7`liJZYT{z>VwhF1g19HsEm-gzkKq3bnb1X0E=zn!A@nBudIC@gl zIYA>$J@HOAXtA@-9?|SGoeRN(-tRoD(oLW8@00wT`L|$+EywAwGwEFQSpg%3Eyn&Q zf-qIk{r|P>?Qpy_45dQ{G5$6v_6w4Vpl`DC`#tuoAvJpPyrsg)&Uf{1c0K0`To*O6 z;OLuxfPyOsstHUs@G<~bL@obdYK167KVwW!5f1v_u=)!6>vnJQ{$T0JWDv4*w3e?t z0#R^PnX;U)n$Ab6YpJRjo0DFDB8vAnEU0sCHQljbymT(x? z&>+Ytl<=Im!)4%S;C@NYv84ete}~%}iI*O2MfOVSs^-q0CHO{|5?*qZMcI~sZUM{M z>WSlIzdLDQ7r@d6>494kgN9}RoNg^Rr<}K1*8>!)OqiuvTwu(ctcWD??LFk~qU6k4 z#c!C@#?q@9#&UT68+mmd;Cc@S+{da^*U7o3$&`iOJD}x7jAMCfpKpow@ijp@HY#RaB;xykE}A#)uBE$*s!4hq`;*pY!ML7{kJa@+^Q=K|!9@WOHVZunp3;99*ZO3Fxz_O}gBH$Piyl7o z^YJP49|P+zho*auMBZrWyqJ5*2vVSCFiL zonmi;KtR@k==q0F98~%;HDwc;=46E%Aa6BiCbR)z6C4PKNx~gKfp1`8<*toZ(n&zy zRPcd0WhK9E& z8(TB#!}1mRl;VTzOdQxdSq_6JkkKQ-t4B;(CdWiggl@*FdS_0qGRzu1i`A<-e~)E@ zZfyxya>JH|p<1<1Ubh}^)TRDz)#0S~nseCZjK0VUMAUzFOx}I7*F28BoqAeB#T5HxuGIv5-EVs;_`*XC~4 zs2FYmv%B11jE->FloeNqO1&`nnb)J9Cwy47s{iOIWYOgvj`SaHEs^1TEHXBB4)iZx z|GTfF)~~+9-_SIgt2iNZMBAI)btK~az{iy}86ww*ZLUMqR(9KV(o4x)M@l?Gp zD!l3-SCyBx(Ttb2X`$JVri>~LPs25f6<49`l6Lr@vXFWk7A~b?C|E99gJG3&ENI2~ zQ7`nYco4g$k=#UTBDIf zIih!`dmpysSTK~$Ud{QWIg-l!5@o*Y^Q*SXVG>TY)mk#@IPIgK<&%>Ntfv;v^h!b` zRirO}<`R)sKls;nj{Z3a;)}9RWemVIzl={wyIxRXR~6mK7}%>}u->L6aBKnpwh?s1 zFQF+w0_iR(3{N2etv`Y6ChBu|T9=a*+G+&R(glpZ0Yk{aPfZC5LJlhiTR-S)@WWiBSoYw^rVYU7w|xR zY3%h8vzRcuSK=DyUWkK%1Uf0Ab2Gt1kA#^cSxHccBIy%X$z$VPphYWCWL#rW2Z9xb zHa#h19)S-PA10-WBeCRE^V#*!bn*N*l_>}_& zzMqhv1p9!)JCPd@Fedc5yBl*eD8?|k0nI`BNo3~`(9B~4ScSy%NZw&(YKwejZgwZp z9p0}e`im8th~Yuo8)HS>K6SWxIrK071{XUt3@1>xQFuaOz*56p2IB|Vt^fq4m7g?T zzhQ&gwwO;m3@{AJlLwmI4mO0{a?wB1CY*i^ohKrfzW6PTa44MIbRBYI z|87P}l$+1m<&49~Xd{Wdh&hhLFy!a3#!D~48UU;S9w`RxtD`JtIqB65#OHJ&1!Y&< z*%fHP)Xwioy1NtivG+mfPl%wzGOgq@XnMh`>gJp(HIKpaqyr zaNdzQoNH*uM)u-u7cR#X(l^uv-I$7?(bCM>;>?7fD(C6ZZ*v?b2D{rZmN;308Bb@< zUpGXzKYrf#b82wBCE)%`>B=JG;LA;`rFriCLf5&PQChtU`*>RaS?pTKWM0*b75eP5 z3UhHw#-ytK`Zy#glNE|4k6YT=n*W`qxp5$LozgMsl?;Cvo!u77D4)N@*y_yI=oPB%51lnGn#@ zFmSs-MAMT?$yGw+RTpBs4AYDP1YwX2Bc5tR8jK?jgXCp?SzWoUtPysszPcJuWel7U z-f#|GO^sHl^*yy0-#tsm)ymmm<5Z>wPQaUQim`p9;tEWw3YuK^*SAdn*4y@%Ci7#c z(!mX*Pc81D8GXeI_^$#EHOtb3fxUe!U8;Q z4~wI3pO;btPoLVGlgsp_MK3<6of7(cAq{n()}$$+TqVf znwx2%A&P=?DC5&Ft9N2LF?8&}xR&XXN<^(Z7jpfg(p4b5V_{~6yLInIUfr#gf|XwR zVc4Ne^LuPRHNAZn^Ui$JQc)?1tGf2|j^xGDJwelD_Y|&jUp`$fr!+T8OEo^l;ltDv z-_zRtD&v`s1>?l#tr+MLhSBzny7Q-cQmyJn&~tq&`pPY`MiD? zB7%nr=rE=>juz132Q!dsjwkA%bMPtaXG_qQ>o|N|#+1m-b~pYY4>2)|WL#s} zzdrgVhQ4^cF=%w`!3T0{u~e|4(xFQ=?E^(AI`>?h(q+)>B;w-Z=AlAexE<%~%(h9t zYBioxa0uDvJm&YPh%}X{pUHYT8(KleCIWq;KottEp$4_$F>^?X>#F})S6A0E;aN8Q zux$JxYCovE*^y`NV24y6{VFCTWd}RUG?CS?{5Wob|a=uLURO+fz_hr}_cZ46R-dU|M|T3T{C*COcGyecnJi!s!k384)j zj020+=V&sbu*1Bx>E`%m&dHRv*VXpP`(NibM#OwxkWNo ztf0rgu{fh=W&N|`&uiWOC+0o2QWyU_=MGnOaLglZi?6iR50;gl^ksE{yOH5(E7mK8 zyI}Xa(8ocx27?N<73H$#DBH=#cf=57#irgIYKMqovJ@q&7x;HvsvCVXXS8P`5+SP- zmoq}b%@+NY`BLTiwNalXK~tSI@Sl$SOzw#v5)wa5dn}sZJ)PWBHvRp*SpD1Q!L6!N z!4}lXzyG{iy5b{vSGH&l(CmFCg)qj<)4~)_>dwk_G@sh18kAz=mV*~JWQ7?;IazgE zB26jpWd&N)x?gK3V`F#r0)y_#%8WMO!Mf3B&2_vT!I}P>kL{1o>Art{VDX7NYS9?z zUF?6Ar)p$XZGN$M4ZCyhu^q3g9p2%%MQ*1jHr-H-m_2qWa@DT!T=rtI z!<~$E=yx`NAs`W)cDyy+U&j=b2+S}8S`0VXFb?KaRwZZ*yKnhHl5K6*7h@jgKU`;< zxiy0Nghj#;kM@UMnTv*VYz(h1ek9kXnDi_?c-t=D1!{(7DVdmZGHk`!aj`6ssNrdWnBj;@PQmhZ~ zbiAmOKHpVePv&<*o^t|3EEE5&@Kku+USV`o6-@+wb8y-+inYqO%g->n&G*;%kMXy| z0ScEHQcmm2!^E-WQ@NfOK0V$t)yLQK4B;C5eyfnGZn>o_vh5Zw_+vv}zZ%y2O3{9V z<{yNtS0!|(UTD`@Pt0|<(4=pA+??RI1Pp)aR{eB|q4S*j2M0c9p4$Xr_9WEKA-n;->;jx+Fc9&exc);7HNjS8_n&qRxw@YJW8Yw zgn1NZUmRDhZRU}qc>d)tm8~mJKwHKS zXcar7*((xyRx%asZ&*65dMOEu=5?6%x;Zc%@pbtm_(gcq`xfPB&AbU~r&;3kG*ogC zL6i4rH5Bi!St<#I1GslLGqN|I8;cz%+NM3bxfnpvc=p!;vX7b)=s{dP=L?fKJohRL14kuwE(j9>A zVGOls4z=9j^i9D1UV$3-wa-XzGw9|z+6||tU=cTll+Ve^z~r(Jmywm$jhjWQ8M6T= zD{EH>dat(>`sMZIVUmD3MI4?LXDcb@ym|AOClyv=$%(KS53aZv)9!`O(-pMl!W`83 z)P~#>4%d_c*II=2B#f5?RX{3UF4nHQNFaj}Pr6#k-^#lK7NaNFF*{x+aX4RGbnrek z*~Jmn+?$=KK{?K zyF20B@_BKC63@dujCp1e3K?n&cYRtk?sd2MpZzt_?zH%7cCnCzMaIEL7wS&xs8>|+ z{-duddcEnwwOnI9S(r9y=Pm1BG_T9k+GlZsu~{#{x37C3*yY+9OlK$RR>+$QBBeZo ziLoCR39$cneRPe~T|C#|#Z3PRUAa#j%`=kdjNvd&n>*-wp!xqI%R1>84CzZ^6^ebG*f*G4P4ja{?C9^ZZl zs!ValjD`aX_*I*lM8(Ig`>PC8rrW5tl<*-Me+9rpna)tcNP^D88@at8^oTDwO16N$ zk*u#^T;#hU+t;8PJ0wq;2A&PdylNe)C01E!Oyk>f_@(wsrALo7OYV;hp6$!GI7=Gh z3^yC$YH4|ye}!^XQm!^le_uM&1-bjO#F6R#(b10@$(qBmPL8S;YrKP>{hE41N@ zV5{h_;sW@E)9%Vbd^oRT`~`yX#zGvR@v|Jt*>Bi=1&q~W8i8GUdX;d{m89jS{>$_$ zDpB@=lGS9_Ff=o%KRwmk`;L>uuf!Aj2*+}vjk<#<_<^b2pRD=5z%zEE1i&1U4TJVQ z8!V~_O@Ae1lsxX9gOWCsBD=?85-+%!Y@b3qV2oA=YUOL_pM^BYUqK zn?P0enC%Y%iYaI9<)r0Ih7#Fv&ra1rtRSmoS%(BN#B_HC6@`1<1|#1uv$Y<4;n;D4 zb}cB63LTJZ>jp_o5!Nk#Nwyf8!*elQ@WCJd?HX&MfDhC2>!jp_?8oq{1oL9?b7$9& zQ&VcMg>1lhZmWu4e~Xs2mJVJA{jIb^Q7XG&YIvglQ}=ogc!~l?$C_(vCCZREj$v?d z8}yV<6h>7+zU5%bG}J;o?Wb)$jvqgQA9e71S8`%tISy{5w;8?&nE0ors;Uad`7taO zqxo-->>l^g{nWzgao+R{Vi_H|h*|if{H2AO;B|4|nKEzePTq$x3kFwsCm=p0J3v?= zLP2!Vmy76r{;4kK*mZW)20wnP7|SZqctrn8J2EUl0tVFCkH8S|TY_w1UF)9#*= zzC;4TVpFEjr;-I9+_rT%9ZJw;$rLe!pB!0@&uQ}$OQgVpkm9y3UZxZyD(;22~0TNpohFgjRxH}z!tXY>Ozc& z53T{bcrZ}ruKSk4v&cv~ zlFJ!>)6M0k-X9kHJGbyicMX&%2VjE0hK`$|S`YRH9{bLUAK&fT+2!pf*r6ga?RnbH z3+~e_fQbx+P}#n)@pX0I)S{=WtE;E?N%<0;c?Ii-?;RZvz@^krtj-^abye?aYkTx7 z+oRBi!#JOpmxnMR*bC=KqO_xb`gCT);@;yBv9`24F5AP%PCe|*5vB6a{QJ^>=EV3| za>N@-0sevDV;Rh(z5Zfi2`Gt|Q~qL@+Y!H%?d)hXZgQ<0z!9;mv1U5fs_KKrEr(6t>G>_N`0i?KGz?5knP5oNIJnlvrSEES*@s zcKl(>#2(>lx8-7DYi{iod8ujF+6<}x^s2wF$yFy`EKM%0nBJe4sndR}g2Q?Ju%foT zy>^>nWJe4xTS}V}-DX~9q2N~Wn4NE7c*=^oW2&P8$IkFBgEjNlM4PS_6TPv|Fqp1o zKt-khUAMl~-^+K>SUk2o^cQ2B97B9g?6ba!_=!Ax*NUngcNn_5VyV(DGiq=6y5%Pi>b7Ad(djh-4l0rC}x$1#ccc_@B+HTTS^ z3fgLIMoxwxWj3pef_RuP0&x2GV_ISC?2KV5vW&pYxqfKkBzWa<&}g7+rkF>NzBTJE zA>B2pv!SYv#5C)fYFG~xV@_6N0KA$2xmdywgE*431)3%-2{@-Jp-^%pLgjTlXx98q02->94b}7xqUWpfFZ8ZBJGP0>cnA;%neL&l32!mKd}M6 zX$wg@mLiq9auF37g!Q$rZ*wxhrNwQKQ3vGOyzA6P=ja6QQf8JVR$;i@mX$rAp`6KJ zBV|U2s>pBybO@8F8p&Hk7yE*Vzba+U%TQx21&p!&tHhZ6imcy5sR;{jZg#s38JOa$z5vF4YhE=FE? za{Rb)G_rSFM@lb7_t;p_l|X&}WpR(IEMdT3f7&*qt0^?psR?S7?()T*=hvR9 z=P?$3!E>FpqSbhV-&1>>4wzfm_Ec|QdXIhK7`*ESqnR`wZe48Ao|N&bh4zzeK@&R~ z^G8ZCc}*_eHzfBm{H>E~g{0Gk6cW$tAWnpgzHCsHHeNSGpNEJ&+6xDS`q>LUJRgr*2^A&3L;;-|r6P7;5`wzW2C9(fGi3 zO2GdZi{MKIc!EN|FbNf*(!_}R*3@j4&%{G)pvX9&QJNqTNCzij-kO`>);E!!A93f= zNMPYfgK6!n9>aMOmFXmC#Qp#7Dauh=(^c)sR=xe&QN6S;P771>yY?YU& znK6#&SmP*9f8CNdR(%xdsK}Pi0`?Z3W098{SljYDy zQY2~6$hctAo|*+R7NOQ8V0xhy>%`-Pl$y_<7xT7g^?Gv z;6B!l4NUYQE*zZ!QX;0-7mig)xBKW45FtSjA^{yY6}`2k1seP2*3aq{HP)LJ&!s8- zdsUc1qX2KbZq(yPU{PQm!9EE$iC7f2xQKRehGn^+50~K?h|aJ)%yzGUMk28qD_LbM zAYP#P3w`)oGML=w3b)84|19%3NGk>6O*M_`UY2o;i}C0_<*55T(Nd!20CWRkCABw~s$7@q-d#sJ>p zy;8^EF%Vs)em_x9ce*pX^`4r&|JWiPLui$+l^RFrPZsy}&gnlg{!Gg@Dohk@`i?b?o>sU=ZdPV?eyVmL>H((^P3(hevzWG$K3 z9iQ#(ebHG|H(HVw7fW3jkG$lAlDDgL9z2P!STa0ZhLe-w+yC~FR**=3J6zzr#t;>B z0RUxol327PvoF^n+QhVsxM56h(J*Wg6_+Ly@jTpoX&jmUp1yDAV2m?M=(@!P_X~W-9VXiW2dGSywN>XXD?`qkGa*xta=6+ZFFN1nT8ae0SN#;x}l=_u9Ep{rwqI`Nqi~?K5(g zc`iFOl#*9CHNKwy*AZSJmtc{y+n~kLSJMSUSCyX;0lBF+d1*mKrR>clQQ>^u{YndT zOQ3M?whuV%=a-_wRf0s+HU6v2C|W$Uou{oh?uuho>s$GKB-Nsys^vO5JmXr7NcK!5 zwjQ#*Xp^t-)kl~43#t)xYG}XFI6=G)?_DVA9f`f7!Y#F_yb^^m!)P3l(I{Fq_hUW( zfaK8-4#UbaD2rw@$B`g8#Kx`KgeVg<&+@{n6^{4W(N*4X-2MLM(i<|5W7wrl7rX^2 z;S4?)*&xIP5X z%}lq>OaPa9|B#>S&RNwt>QQ0}iDl6oa3GKign#^)Da%TttkR}o?RCcKTpJv17zY!Z zNmkZ6HWx*(GM9P5lyG>4u>*o`*qOI+IrjrI$%u}r7b3M62o-&mw83dZq)RX`XiEgs z%&uceOZrqIY3p(4`otWX0P4W5;dD6cf>h%LQ3G_#nulbeX@GNu#w3eg2(D!0){%E`4B1jHj)2$=^> z1-Uv$%8!PBAddcgZ*3gK1ru$h_6UY_Le9Dd=y%Y(k--UP-o=p`0hqRhtJn$5yg;EFO_r>`2F=KI@6J#ODwOQRY2UBtaL@SzgYU3%oc-fK3 z$~9E%k`GyXH2l2fzgR_aeZTnd9=Tn|0z+*ZaFv;8^DM6m${Z4$k{ z-O!oy7C+u1A?{XsM%Stjf~t|CeZNbSE7k*BU8@mc?>{v3dBbpIflOcFknKp6%n$(+#B zyUDXbXhm6kyu;3~<%r;HcWCOI65kni_?c*0L|nzApPloTMy!A0TUJbk$f+EdtNx+) zD!1EV=aHRnv4XlM;#tSbx&QomxR}^Tse|%nVSMe(B3%9|LjXi9@fXDziHD|`;sRAj znX|`L?Jm8%vVyS`H5fRegP;zR?8G8CNX`4|tf7gwg$`3AE^KE7XZxmK`J~qbfNs2Z zokGFHz(vrSGqM^vRl{1%auN0~^7W5f%04NPR+%HmH#1O`9m*g5l=m$JF$^bi;=&B`U%x$4*MzhGE7*vX~)&?;WM~0g<0Ff0vG3^L~1qa z%hxN$BELLi2YSwkg>E)R+I1{X0D>9zd2Lhd=DX4Aj zN=N*cmu*8{PaywHX|+Cw%M}m_2EE@As64EL)-)+21;>5oWg&1-P?jOryLgVg!l|_z zapb57TOgD5ToT$!C#%D+P^uVG>6`bXUUFH;Wx#CX`$Pq~eIt78%fA_EJ6(Hxyu5R5 z?y6Z#M7m#N|E~y+cAtcoS0SV%#@$9BQN|)cw~lt*k+8MnJz8J9dM!-kUD(7OT$C7z zlA%Q8Yc;^AeN$xYFhfAzycV~P^~y{2 zXlDeLvS9FOTfCsqo^(4SehN$l%&&b8FM`b z0V!*wGaTw}prCNTG7-eDvdR}W>P}ZR3&wgUxLj@?cLEj5ya+RByNDk8YN>;vYK6ih z8kbcuzO{x7gl;-wdGq(|y#WA|`r;^vg!4IHH!<2iaw&GzhfLpz}Ttl)3!HYq?izUhI zpax@KC*~J9}#7}4Y|m^pmh4txxKw7g^SbLGEAhU9)zY>krsEL z!T76$4%r+a$zeH#a`$|XJpNq&3)QAtML8iD{|XmH)65vLA5%)cxx9XzVn_%%C*Xs5 zYqO!vq<+6tRLG;>uSGX#+#i`2F*8=>-PxuQIJCZ!|28k3d+u3c;q>pizUhwje>*WO z%P9Hx67+_LDiX}ul@W!Z^6QlbrnFr)XBD~@GAHjEfL725CYSNyul&ko0j-JeTnxiv zpP|zIyv~&7SBK9_^W()xo?w~ny0?Z)D>mF5;ZFE1Gd}i7Ct$x zkh)S#?thT5w_xH9T6xl{fl+g`wK~GgtaIv=&WJf<%tRI6o3ti{yJ}GuuO*i;1>F?Q zYoryLDw1oFri>{N7Qz_E-(?${*gbIP%AVCr^h5eug|t~j=aHT2747Y1uUn^vy*ra@ zQzj!j!4O+Ue5ubj zw~)j)`1FmdA|2$ z{nV@vBbBO6&Ke`KT1vLtmpV)idlc9;WR;|+ZgssPQ;~rO%27E{M`6R8XU{MhU-J{H z*egd^GFNzxyC02mx4r6}ZOQ2i3hb=Z@>@#5FcGSEAqmYNE>=; zB_}8%a@_bL0VERy^$;?AIzs@5E~!-QaBwDt;;(~Rtw4dcnV2nNoua-8V}^YLSAywv zj2a}dXfy>9Hw9t>CO|4owu&{}S+{qQiktTZ?`@29PY}oUp#$PjI%D=JxI%fWM_=Dk z{psIt7UE#0Q^~dWdbr#JX86}4ur-mBx|FjhslPpE}1HYWGJS$lx z0S(#jul_AhXjxr8x>q%6oAvxhzsK1dr*)72`E$z4%gfJC1j!mWrAbLT(konaJyt2A zw7me6^Zbozi-L>WFh)SJ%w&N!CIV!}3CNEx^n|8wE}w}u0j!cEwA0&YEY#f;PB zn@h565K)2rig;r?bx2ItHob$X?vcxXvU(ba43he`quI^Pz3XK_$Tk_IM8nxE_4`9kJMKov5)iJK%PN zXV=f)cCz2quVkEK&QZQ(7E&Dv>4F6;Z}=aw+H$KMJ?AKW%eX{@Df7}rS>_Aw!1?px zh(nLkTtOs;SrK?vp!C5ImBO%wGYo z865;p=A+xP_$pI zR98jFl(y(3A$Vi8X)$LpXXx>?KIe;J8Ry$Z@szy2P%jVXf;)o2l+Zf*0)yLE?#k@? z1rZE=*Bpl{9&g)jNj%N&cGjga)Q+X9SbR^=IcW!Z=d+YKVeabhK3gZQy)?&S|5R=3 zOmRv)SEsWU8w&>$&y6Gu{TxJW0Wl6izBx0a)3%0bY^fSNwZV*{qU*#PhI}DkSs|ko&Mup zILeJ5Jp1lw(Yo8Adps<}?#wtwUNg{2BKND@e+9Q}3bukywE`)gio_xX;R8v!T_8qv zged7hjd0SdAeuFYaEj;8;4Z_@`Mv;YA)>`X-$Tg;!=vk!upWFR{y$n11p`vMwGJJ?ngQ<) zf*-|}9c}f7Zv~0ZnEDin*gZQ4BB}h#;qHbfolg_912>LPJe4|->FQ7X(pJaGPYnkw zUkQ7e6>`G{s)G;#TvatTJUu<_sekM#NYSKZcITEz3t|GEss;*X0fKEFfgC8;b24`i zl1)4a-70Fb4Un_x!9*@Vb6ie-;FK(exWw}ZeP)O5aSspJG4U1yd|QtoGq;^T^H&K4 zhhfK5WrV;$GCa_d0D=q37+U-Jq}nd*fw8nfsIDs0n8bM4u#dF@b57SlgvK&83~1}u zaq-iWohL1t@agx$k-@hCJfl>YVL%?e25@r(QjtDk1B>vCPxZXw^R3<-k&Uqb-6r_o zZdq+x{<5e{@!GW#nOe(tI7ubDKB!$QVwXdGIs6sb^au>!`k%-wP)oRfj)q&d5Yrd- z!$cW_Jr-L?QhjibHCCAqvb`wb#whT=hQh-xUF z_D_|LcJ#L>;e-0lTUdcUzWzhwJ!XNwqba{Wvk7oR{TF_K@VmJxg?+5QGqEu6bnVsl zy)Wx!@91>a$0u1i#0ux<1&y~&_-&6UU{reL)4W-OtTf5$~W2-9vh+#|sYl@pj;aP?>yA6~XnSYg#f zW8d!h@KwBLIQ3uPO5$Xy!1+}#t?1Q}X%ZLrDie{g2Ua6r%EM}A)VmNb;&`F#p!B1j zZx0%G3x|DB4EdRqc~UpPXY|BOzor3o21+~Tx+kii)Qg8t1t@T$vRq!OZs-&m&7S$w zJ%6KBf%&D6{}?K!EjvsP@eB{7Zv9-b-7q+$~daR+h5o z!Sjz!2_j6?TtrVdi!{XE77#{{WfWq=Fi#bC^GIdH;L!1U$6_H%IQAn6-~<{C=C5~0 zzapXAsUup=_lMdV&-t-zo@6d-^aw*6#(8!m9idlwMJ*(*O0Yn0`)#Ji4vCd^w z>AgR>lP(3NvNoUcY~-6 zXnoYJ*#M?esMVc6y)#v%Nml#zJvIKh%l(qjzdjGxCT9AIX{vTS@>fiMPIrw?PfabI znY7*1`eN!=Sk%5A$4#{dgmgNmM@RH$$~2}sD&C42GU(R@pQ!LOzC(l&5M~SgU*V)x zMe93z#8O-VzJA`fXY$i+Ut@RhMM2nt=Jb+jTGcjjakD{U7;>y&7?)I{Lc3>$9Jjo*g&&^Y}4aNMLBVZmg%O{<>Olf^f&&sthd|9waK&mWcsm6pc-)dO* zi%aMEOL2JYoaz#^@3z|A^guJ?rGNF_D%Ao%pL2Ih>-~aGPi)k-Z*4(tUC+E$-XEJm zVoJBo8h+FHr0@8%(?*7NyB6p!pYD%)awy|;dfea3sehHzq!HY~TuArl0oRp|;{X6D zbRof+>HA4c0k%R?#1R>MX%&}o9_p6zFaxf`FRHh>pzU=cx+fKs%Az5&{(0!{W0R!JYF-+PXYrz zje9PZkWRYy$m509P&m_fAET;Wt7N))eQS-8Y?!+Njc383)rTB6E4sNHb(X@YEH6QI zrlVozg!d=$3k-RR{$=?Vagn2RDrd#~j=q`xrFtFG+e#Q>U7sX&+^?G2u(}k8>x%7F zCQPSj&o@#KEJUKm4z>_Cz5oUlvY)2^T+}x?yh4FL`}@a<=CNIQ`D4WsOO->#%QRhJ zk{}=(2hm9(fS7=!rkk*F)DeOF5(f_?R4P?DJV9FaJr7F=ZV)z3*teC>pmHE7f|$k8 zkuOaXmX8b2g``l2gdM|E>)jd8KHN?9+T|}}2{46t4(76*<)AS@Wop;2h={wKujc7A zSv#!DZnCoaRmgfHaA52JaG#?BQtH%;Yk$wmdB3QDZb@ehY0UiA0JXrWFMn;DO4zpq zII(m(rTH`@7-*e!O_7t zI49k_9*q}Q2E;|dO?2%-N^n!6%ti@quEwNJAOb>UuMN#8osB~;AXhj4`R42gk@)=x*K92qTZ}f#ITA+_ z(=9@C4#II^D;fWlS-qP(He0bmQPGiL*r<2YkBn>^)oY1{0LyZvo{8g#xaeUIUA*`g z6VHZy`5>g4Bhx+Eto-7849Zg+B#D$Vrd zw}kU-+1ktu^BwP4*V9y!T&4VtA{USw3efZd@s5mg$9kK!6zgCxZ!#coqV zZm9xLgu6F{RW4TSOqh@!v~qf&zsz|1>e%`l);4QTgVU{+qhilsJhxHZaFEVpUHR(P z*g)6lc;3>2>FJB{4T<^B{rJj^D5I#WH)PF%X2KGue}!eIxt+_T7WjM@h@on}L+$7= z5OQBgou?+}YseeaY=L_jDBI3}mu?}s2WKr-J>v9jAZGi#urXOC{C)7OUw{`M;1)>% zGou@nhjpk*6Ka3n;;}Z*!e93icXx6vSTbv_tir2mY56>y=j9Wm;^Gl+{ocpl*C6(s zJ9kB&h2q2+4vF3D3q)NudMf;yW1bLGY?nDcb88X$7QWj%E&ecA%36QR_gr)_L%uV2 z1cEGga0S=$982}!p6QM6(fNx&5C)rX_C#QD5x4DF>EgbYph;MA?3zDs=l?cw{#&O< z;oHjH{=-cv4cSv0?DWn_! z7E#5dj_07$qW0cr=N*$p(|w$%G?#bx4=!|(V`bjbnX<6diWZ^n<*f0k821R82t!90 zu-MSR@ee(lBa>t;vhIAy+78dNvV&a{OA9iqQnbj{fJ+NYx4qEQ^}EjWVb$+j0@}7G z%7*e9=*S5N@z>g%6s%W{U9PRly~*k69lDr&Fquk!9#vsif{>2=c~_`Nt>MI0NZJCmWC#Ungy>{;_^*rb6dgUQpFxb^$ ziAsl<#b6emfV~#s)52U&C}hGGUoDRxKaO{-+yajhvd38n)SyLGo_7Rb$Q`1~Y!t13 z5!VwP84C0Dp8}>h7juZk+6bwEyX!Bcg9W2`rsKJ+taRs+jKrv`LUwob{7z3GxL~ka zKO3#Se&A%zY(8zjLR|eP8;}9pibwidW_mON$4-T#Yzk~jN(7&r)n_NLWl6Z z;CU`|zUa=OOQv!v7sFxuMVvHuZk>l01>YoR$bG4bu2XE}g513i@cFqU4zW{vy<@-n zdY_#hIeku_7YpefF!PIH9Y)uw7}hH#DruVMBXVa0vPM!R7?PXes@TI>^u?=NI?h#p^t`IeFP)09vUsg6MlD1$0fo0J#mlomlw8yJ zh`z)OB=YhXEo5%39D5-Mh5*JEF%IBVS3g;*2ck z(6R+$yMAo;T_bFv@HFzVp<&X1&)E=b7}IQfm+A?MeKW><$D&SppLyTZsf~o!u-2K; zw6>>IbC+AspXn(u7{>54c(r0KROmMX1o3~e7!y45c+T5{`uLDSwhZ z3R2e`NM1)VYB>fH7RO#LB*n}^x+Ns0QUEFWKAMe+c*Pi-V~~%;XFNxMvfvx8wZ)t) z&W_qR&Bbn~?2P0zs8a;Pg)1CV3C5uT5%u%@v~xUXc67Kruo1RaR+D~bB3ipH17AIa zs77TT`-ILKN{{p_N&tv&H#+g3u6p6bkjKWeXFuhx9Zp@apRe%)?Y5YsM|lcR4YdLK5)#npE-DdJ_!QI{#4=&|UOx>sYgkD~3ZeoGnLK;Q|}IONTr zhStfmg+Z03FKM;L4e7%P>og`>E+rzsRdwO7yTVMdJ1t*Lc8SyJTYkvQmamEHnT0bE zFrmwrNPe)6KGnj>8;tK69*&>#tlnC7rinlcXduHD!bZ+CKFspsjWj%oLY(Q_x1Hok zOHT-p(VWP$)caD9h~al42-X6dFeVZG6T`41yjyIQ%#H*|W~ZkMR<16E9bTk?%*0D6za{DPE~eo88ffr<(&=JG>O>%*t z0VSVXLhMPqqb!s#l-o#)5}*L}iWu-=*9Wo^WTX?)-~kwtX=4I0f-stH;ok*g3tBpX zrKJOHQ&RTOF39i7XqjhG$ z%-(&()SRTzsFP2=DJtWM@tS9be) zJ#&uLtxRX%YcAt&RX1H>o77tH)Bok<8ob^ruD_KmV|fQ~<`RjyP`?Ca^V&u1&Uu>D zCLVrCv0XVCaA;yQtL{}FxE51!)Vt0vE#$Kd9U`RiZH){gW(!1G8+(%e{9x0A#S7w8 zZ8~238tcg$37Q<|Zn%kAf;dx#Q+_P5MjtfudnkLUzFy@syaAU(U3w(w!B2j?ULIp&SR-{A%*M~ zP`htV0POvz<*LiQM6>msd9V<)Z)gd~SbFmIsjRhEGInPe;(ez!w;x)4@F<|;< zPji*DncAx~@R0uHjCit~w&w*k76y&n{t=ueZ&AhmD!DQE$Rs~L4eWIK%~7sJe#Aph zfJ!cO-Y)`VLXL$@nFdgT6c^|A&X;&n5LR=bo2Ff>AF_~y%l6`PV^YU7At6<{_nYI< zDHT&zKEDQqklNX`0c&l?+(u{SQR)R-J%ueCr$<^ReW6TFO{8gVe0_JpF7YSfp$6YQ zZBE)1j170QnXgglVu`E%m7ONa6>i`yF@2{MT$wb#zb|lN(T2^LX}5nYk~VT%Mop%C z5!s-0r)GG4&{%D8aezlE+h(;UR$WphZ};Z9bIl4zKd*CR>MRk9L_NAdOdRMQZ5!av zhw4#@sYgsS*as03(4Q8*Yv>(M{q%m)(h?DXPxdct>5jbv7gK3(HC{f+zM>fS$$|%* zdJLlt)Tpf%30~Mev+>Os`tuCghgnBb&&$$PZP?`^$W)|7sV0kDVn@{~-NPA(P=*re zrD?tT&dTLpu?m6XwTU<1WwXkpSoGzw*8WDkLij!~EngrOMPm)d-H5=Z@nFOD=k9qL z#hw48U<{cOK0M$?<9$Xm7EC=6R~9bX$!L=h4_-(hlO34*&c^w`KowPKYF~xF5>~bz z9T#U4Xifnfo89S$_HR9j_ntH17c@OI{C7luDfayY9Cf&x)6tfS3>RZ znS!GTYX5$cAxu`- zV5=eGAlG|8K|5u5q$@xA&+>0>nOe0688I>uyI%FChjMz!`{q zd&nIa=ilIney5YdR--*d;4yH^gJX+7p!zk^`sfx>zKRQGG63u>B(l*-l=6|(qh+QS ztVOP+sN6OaU$-TrLpNLQe8Xms!T&lOWGpguYaHtJIyHZKOMP7Rd>#gAr!tYSMy+Jc<5fbRuLO%BXMk)SbYv9Eo7#r z_v_0*X1*>qWTEe)H)mc^FCwowPR8(_qN|j?_4m)QTz2WtS=a2&%%tZbJOwkOt4}&V zaDVFbV0;~0PggHLC?~s=^nkiJ>JFpueo;fpT>e9pU3R^nAtWD z*Vf)*CD#gnd)j9fS1~nJJXPzUG>ohA=vMKMkc|1JuN8RXqFlTi<4ng6RhI`c(4!ar z+7ZfH$pdwVCGBSQ`qZ@=XGLLQR&-gJVQ{i_L}hZSb!vS)%9aT%R=3OLmv-k_*c`9! z@hI?DjJ;{$^-ruwPkdiNq7i#mpuFdTQ1G2q7#h7sq_7&IKtAx^wu?kk^Y>M7DIzM$ zVfOifhQA0ms47i6y2L!-kxRb_@VJC(q(HiGRgP<$mTRP#o7MT?lYvsH68FS2if*T5 zlq=c_Y@ z9f81^o`!i#`{;87S66h&)@yDLLGk&STOBx@DI0w!VI69X#;>d!P~wNY*N$`p#e8r~ z^o#yZ8>AI~4`<8Wm+`T@TdqywldizR=vaWJCW{H%5C`?OVA>Mm&>7hj$Xd8l$ z@b;seLS#0IsP+wRVS5cNR^p$;_7fBomkP*N@4$&k5po;EFlR1lsMvF_^gJsAaG50i~Hp8xqz z=2VZq>GT-m4MyfIbhGdQrcbJ-z$VN1_l{HeUY!Ey{#&Pqv(X{n0(}sNTj4`AugEkI zMh}m`b+pG|N5H6{;{yEJv9e06|9KmwC^5}WOd#M^MNTo?2k8NNi3Gc`Uy>v$1k9!I z2Vyk9%ESc%o6&hx3A}Uuf_oMv zUq-?Tuj;^R`IJx?WXqsfMr8W!G&T@tZcrXv`IZo!6bmmK{B(y^fvm{bm4R0sOuN8V zK^c^CtkoNmR`&y_%6HGqv+94YwBw|WFvb!ih;b8{)BHok$V4`(=Em6ed-}dJE>W?x z4B^|0M%b01C)RJ0_`c`2Yg&`vEzB6GYv#Uv<~f@NDqq}?30`dS)Y`<*Z|HY?@?d+{ z>Ub+nuUXn|M@OTd_ekh!Qem6VDRXKP-=INs9iTaIwW`4CwT`W-#KBaRU;on?MhU)P zIfbL!Ryy5s@$Spl05svPb+>Lcu^0~%o%HeH*)Yr&V1;J?;d8)^2j(VA9~@<8nH)=X z#|rKKHS5g^a&mSbtvjvhpZ4VEY=Zy!NAIQAMLZN;J9+^h#gwMydM(#fpdE_bZxXdX zzj9FYAa@;AkRkwKJqZ&kS>+uEm~W-2`Ln7E)+v&G`5ti4L3I($g6h=K`Tn)fnh;DJ zOMR1Uox*bJ;H;&bWAp0iybrTN=G+0M_<-i_+Wiljn&~5!9_f~TH$Fa+e<5;sxKb!f zPVDk)DVa-Z3gVle?K~VepH97aB}w;J;xm}E=Kb=7DqFRjXa4S*(Mmz){RI@OtCz}H zPj~L6lo7lvbN&l8l{$Bcty^r@R*~T{Q6!_Su5;T+7Ds{RclXhmV z2_(z3`?$4asUy^Fo?uqg>w_3;AinIq{e0%hA0}v+zEi%mr z*5_e%@u=2i$9b3hpWD2PtJgCBICoj&MGZ51^#k+3JBG#EPoslHAGy_KmwY%mw`Ixl zu%Ql1ooDXNoL%{K<`2%!{qe%4UMdP@ls!fdFH;5gxK@cWo&PcM^ky``ozE>d3j#bBK4q%bX-iN7%uAM>bxW>B zn8kT7l{?RSJ-7B*MGK9!>$8sAm*7=QY1j!-g|VWp8P-%ndqim$N3!q+m78kAPAiKw zyTQLng48<7_{d-K3Jbb=2W@t)L=-ja{ng0VFAbnB5~dIXJLf)HaLQQgp}~&9vL9mR z?{^tq^u0TBD}PmFlbFmN=VMf46Mh;Jm=ejKrFhgN3@eqH5iu?8WGl~A(GB9abED6F zFi_l;V{_{hM|U%9tLhvt6NMO7l53o?&}wR#(noFa$QRi~>1t-J`Quo}^?D;HXxFCq zUCQlg?~Px*Tt(4#?Qz!R9R{@^`yV&m??N894oZp=_p3^~R8amBIX z`UARoU-N})=mxP}&WpD~$ZkZvU-d286{Wf@_13NVGl&4qoAB2y@E_CK7ty(#{*E^| ziFF7n2mlQD=%TX5QR>cThJ=jQthx`_c3CCxwuIA&+^CP%Je7m~etv#4{aS(qST5VY ziiz@vM$rX(vC@taq@1_oU`4!9<)1C)TQ^ZmR1nEL!899|j37OSd2WmNnWQAsBPYD+ zRMPbaP?(*z4VsxZ(;qQ2I>Bv+0J#1J3xkX8=UDWg`5t_9@6J8g6_CTGWdZ@Epm}`0 z>A2GAhB8I4Nll0jGM@vz9Hl+D3{R#Qg6N0_N~nXl_JNlZwXb_ zvZ<_6_5O9Mxm2aRo%g0p0Wcb>L&g)OJ@acyQOv|dnu z89I-z-c>u`^Q#!ZHe)RPj6a>}9w)f_)}Waw{CYn2n1OJmz^Lu8@;rVV=XKTE6urW! z`zd|n;<>E+`tjdy@>#igEFJewyGoGs#qE#oI6-~srGeswAh)V;On0f*1~tvNh~#6< z=U&{F$^fEiRYxz)EArzLw-esX=L&Gr>@gYOF@SmGurtmEpxq-vkKPbhUa76bvckvb z>>WWOM!c6pt0P?0=A?cHyFV^RChji$6L%9-}mfr;y7W?uQ~$aBKfU!sCvtxld`o@m$h?u=paywAiy ztoQh)V<#6LR`GIH`QUePEG{`YYskqqG4^x=M^5Y-_5NlO>jPenYih6EH|DKuOWJt{8$oaVg6H~{kAF2+ z#tLbB?J;*Y;bqdyDTS?@4kzQQ4nslF6aHRP>1T>(WPP`qJO7*$oVFo!^m0W>2+3;!!$6W^4PT9NVbtMi6;StA8$u7Yki_HC z{bW8Lbza~7n==IL&g?W?kO?~ZnSb12gBBj<6q zZx?rXpxw_qxrk>$aAmkDOZe@%3k$Thi|X@OL-h)uQat3Q+xn(CPh1U;(_fyURf*yo zea&+|T>=MbO_8^LVQxa==bMize?8iL|HV*X6JiN8-~=x4FALuzuD*49tJQ$5ruTBZ z(`?Vq-uu_$YmXj)RD1lF%Kd+#mnbFZk>m)-eDgHy{+iUVh545(3&o?j# zj*5C@dP9a~zWtAoc7-WwEHRq)Q+HS)rmnH>FYr!$&;=dp>Qx6kXkPCn1?i)bb1_fB zRf$`0^)c$pvztl8nM&*GT}?`m$>I3F?8ql%L0g6*% z*7$iL(ua1gls+Y3VBWX+f}U~4%Vv7Lb@P(h%VxOcG!9d8M#E`Q`5A~rBx&$8?r{~6 zFKbr1S?vNPp2DT0H(<=wtu_Zo0M#j3c!9L)fg|$4(PsDj%_8(u(I2h7yqWplNd*dB zSdfPz?BBP45$zl8cMFY?M8vd- zkSL>t)FetOObHRP#;6pcFhnC;rOjGovQye*q$1JSg=EjZ&U0M-p5OC&J>Ng>@4dY4 zZp~cR=X0LNc^>a$HT-iQUt1CJ!C@TBkNeY`y2Y+siN9fZ6W55fZOmCXef-H-b<;kc zlZiI5DILcSP3{p1r~7w_taR_u%vKd*w|?h||6JSBopDTie5kQyw7t*iu8sY0NeiWY zXb7LH)Elx`-X}{f>v%Bmq+}FhQP3iif3)|vm6fE0@J>g@W*IX-_eXJ(W#}u~XvXs)@V&J{dt`PcnYx%8zl$ky})%4CY z`O=2#WfsiCoPDyyUyg40Gor!!O8h*0NM)!L`|8ELwTbQvOf~{Km(uR(?OZj#d~>6o zHps;PiFK398F66= zt%M5~L#np;TsK~B+2MIFcfaGt@)LTe&pXt(mzA8g3wT&=O*PyZzvg$&sgmET4^-cC z--84A#Ui}YsrEYJX2rz9f^cF)PV?_4l|uS|vDHLjEnRpMt?L1B9Q8|tH>GPyiTuhQ z^s8|{snF4q7NZ!EyisYU?ti5go743i&#q`StgT&zCswBYE)gbyE}V?Qcf6$9A_i(~E^?uoo$Fjr(5Jv$n}~&-dNj1;tgHc{5n->lTZ3DFbr3 zZyGkA2zg7AD}0<)oTR7EOm0xj1*E068KhxSS z!ZLK6HSt5jtYGp{*sQWl+Cxs3Dlw0WOEM>vCq&FZx+=F4mjF7K#YDFP8TGwJms!6) zY)6D){$)4nXm4p^<%5I1_}t6On_DIZ1}ttAHTFUpt8DVE4Pq@4E8jeAtY4oMcy3$& zz~qAZ{M;OA%jy5Yh>J%c$@W=)dtdwC?jot*vfF5p%7?#7hb-~Fi*jOXa99}jj?SQ{ zBYzs|T(YX6&qW!GAruoW)fN=En(XrJzX}t5h`XHlPNBG?^+F%_`?JM=_Q{EC}Pj{Gj(ULUmH*8lA$%{3pI<3=HItv30@UA zX2$<{ce7lsHtAri!W-WDV4s&Uv165$U4L6jWN1>dRJtrr&jL!vF=6pV=l|>!HP$xN z)w$4t76BCKap&V6)?%}0zG9!Fuc>Yy`LX{auSxsQpgzk-{HwII+WnZBmJ5>eHkLT! zP_%amh@QSYFVjfwWFWKko%1T*DdzQ79KE1+sGyJ;*|E=FgeE7cVN3gZA|6` z(xlM4y2F&ot5_(8POfh)<$N;P#)os3CxzGcxneMk|1gf-NDml54YgldZY;`9;a5g* z2kQQvo3jS&NI0t8#$3|+YJWV>}2#Qr*@|vJfImX(c*<^d52X1w9cEKPI zR#LRsWOq<$a{QdB zQDI%aC*M8Seeh521v00DXG3OLlsl=dp*cp9#=J$|3(7Z__SfKM*;sN0b~~_y&_amdyi)oVxZ+U(&%fbmwf48XB(1~AuL(VJ(oNSYzXC?9F3a#ELA#vagArpf=6L6 zvfOEMmcAN)!$c0h4GchW_JOHqKWun2$BtiVQeq(csM195*`vGFm9I?Xyh~cXnKTD; zm^aMUTJ5&B)(&=ZSqXp?X=E(t>B(XS-5s-OJ`5Vhvfp`x4S${08lF6b`fjQEcRy$2 zh`N>D)%$AiJd?{?s`x09cIT^p=c}&W#nOheEUO+L;~slex7(V@KXdEj%a3zsdY@8d zS1GBSlJpnMutfXn<8QQlZjDf}TtvvrE7#`X5gY=}*lfi*mq_Tp#o>KU#@b$9J6K-s z6MtPVBnyRUzvlhk^KJUJY!BIYwWS7n&sv$S*VR$G5z}R6Rnz9*<}FULe3?@Db37=v zK7ZVPR!$b{uKtXNH2RLD9b%vwzAFt5!{U>;R_9!&MsoMW;5@rDRz{%tXg|_ zFotq&@M4zQ&gA3M+n?N1okgXcVv6VaR}-JLP9 z+S_8)y+$XxBNpgKIIa^nbeQ2CpA&IDqtb9TU3QahO_nMt%RCALLS+!av`eYA(H85a z4{f5!QcE*H)^mfvW*cB)-SgE$qqZ(|YQ#w;6~MHJb^~e8k%7@y8dJ3xUg)2Gl`&Z4 z>yl^JeX_0HDT;M@)L;%zT4(*DJ^NYi{ps4TPt~lIqJ`}DqXwE)Blt@ds23rq6?EqN zUE{Ve{sC&qURX zZesN+;zfy`+{_ul$Hn|R@0%_gQ#cOYLQ*z;AMn@DQiE$9#{_m!DJuP zbgAO?OL{WNVOASjnbRL~=vEDuZs$90bV7ocnMJ+6dLCNG$2>z-VO=F!j->3Ps=m!(q2tvrbt{-ZE&Jz1x_#)D^=PezYC zUeRi%5TG|ts+6LIwT?`jFVGY~Y_WrK!`MhRzwQ zvmqjJ(J#WZ4B0s(7ZKkqxw~tfJS?eF=ExlSGJ4s|J-aH!l{{A?jjeB8olczG*OQ0V z;qF;P!?FLJ7X;k8n{+okvS_t5!oav!O@RG0^l5uo)at02pv#nfP$V#R^zWdgx26tbG@5*J{e9c}O{j9Tvy<^ScSKma^|eNVm~Pzp89ykNaPVe#6;^zdM=V;)mKUJN(c{OzbPoBW}2E zhshq1duiJS19f%vuEx)tPi$|vN%gv}OdqkE<;~JT!L6y(JpZ4F3@Or{l1kh)e#VvC z%>J|~y(Dd@E+UyV_IG5YB^PZG%tQ1QR?}U???7yQlJmo)HgCC}?AFYjE=?R2+iy{M zS=XlhULjVkbvytagJ7cZ@I(C%{Chbbug=?dud^`A+L(Glf7^xn+|0oz@mS#EmQOjAo{XWZ)PxB#vzQv$D31KFGK{M5QH+_WufzGccCUAcpX zy&qcA6kg~ALE!l=>M>cO*rUF)t~T#!M!xIFo}5n3EcbxTa^F?%IIs@Ov|JoAl&2|E z_(y9N`0id1{o~Qze7E6}0>KB?&|5VLsWXwSeor$RQbX|S6Rx6?zLh4BjZ}zDG#B(P zC{4>Z-!Vjp#-)ShFOw$`l96%Hx9G~rAi#c12H*$jAC-q=2-%(bb|?2nc)%xAkHCzq zaU_&QAPE;HIaJ5fe+GlO=YP#FI%k@Jg?46o7}j4;{S@Q) zUwLzoJesLOD7}c6Qo4~Vii72w37(G}C&Xa=J@h7v#XjC%d^kt*Tw$D$CX@WQW$yMh z52qgVZRXlKa%xvIH-(R$>fV%=d2Ml+Tb7z-$1?yiR1KNyr19$x&K24aQNc z;cJPVk(LwX8k3Eie%PY=KTMssXM1T91mj)bc-x6hr;Vb%j$z^0Y|p0Mh9AZM_#5mw zW5rM7`Yu!KKDd{7OMBgLH1}Kb-FyF^Vhn6+%inT+jqfJ&u>IN&U zi{cs-mdK~ZOFR!{ATBgKC1jD@fT;%>lRbupVA^pm28VqyBA^`m%FQFTpCUCQ`aHtt zEcQ<1AHC!{{Lb4w_JcL~L!!U~1{~$`TA^P!n@^h>(KC+HRf6Ro!I*x7hhG|PAB7xo z$fu2%253La{)WW5!$$B(ZS&D`ux5t#t5t77oXZct*Js~5~*c(k@U!PdK zhwWDyHp6)F&qJ}wr5*N+y*b^FIK`~q&CcNmL;0j#Q$m3aCfQ>Sg5*QxAAzud0-4xk z|HC7KZ2V~0(J;LEmiKRTA#K6LwSy-f*c`~hcrhep5$bIfxei&=8I@K*(($=jI4n!j zMiz=enYdyiSE@|Y%2iH(Hg>wn!7Up&%7(ajeT2`bsReJw?*`;!<@B&`S{>QUCa4m! z|F0q@8BOjzkHV~Cf<8zUTSXFRS@1oFDVI6QN>eH^qndP8i{!-DRcZ)E%N{LWNtW67 z>L-|y>s(SZvOVyb?4{{1I!j?#g{Oqo%8mXRJjEH_0A^r9aZ*AB{e&3?any2}hS z+BeAZ#RAt?sZHc#+)6OsT#e7!ZIisqVK~MUzaXji&ch7)+P@NqDrIs~sCO;xm5^rg zC5SXYYHlch%>(1EP>$A-2d#V*0Ak#y9`{F&NZaPo>E8^Az%{{3W>{&Ny*l>ecv;WE zyjJ#ogAJag`8F>ys!WnNwgDRt|NS`EKwKA5z4Vo#77v;XQv*PMOg=UOn0x;OoveJ$RH zsEX62zsw%srfdvj&&}0X-R8EnX~l|9CE2KLP5dmZg`|?b+)=W(Ty65Mt*H}UCwsX2 z_WertsK?8Eubz-O{OsVd^*=6&hKarUFb&bE-?o~#<({a^oos3TP(}&V5x26RW^l8| zM)LX<@#%Db!8)rLB&uA_O3HItiH&YTlET9P;bKg!DV^T^Xt++xx9C15G9{HU3J}hp z7zo3^RgyMYt}#^x5D72oWW?a#_Htk3SRH)AFK_gj_ zinA#(D})gL05K8j8?lNwho+bcGiC}-RpbpqL)hM6w3+z0e?Bya8IUaIde6)1n5QXw zoqCGB2{TbBmY7Zz@~Ed5_QAgMfz2TTH%M08EUZxzVoq01hb-LUEhkIr?V8Zw-)QcD zLgql*!@9&0)D~^)NV}`5$58s>l5z0S;^q5fZxZ(TYLLc;`pfL1D$8*wY!kJXIty z)mtVQXXWI`x{v{w%=3P0X+pa2!TrK~jdoZZ2a9_T#%JC0(P`~_gDcjfhvR?0as!Da zh*W`MT55Crcu(|h?Q?f;80v|0U>3114P;}lZ2^`4d?ym+BCB&%qY#GC5;5F8-+b=Y zfx3BNu>AQ!5Y^q#%EnL}KOd2a0U(x#pc)L^B5lR}JcIg~>kI0hNqHgWEIisMO)o{aRoAv<>3t%N&o6BQ z{O}s#EC+W3DUB2wHXW!?z3E$nJM;F66dTG@U<$xj8p`&j8Yhhrnr~=Dx8pe%q3Lpp z*QRdL-n{c6=Ri5ODHfAjPe_FcpNrt-r>K{a4kl7KeLhqpu&#K7HXj$E(6NhzEn#3C z{rFksPZOk;>T%kPANzUFHDX?vRtzyZVK4CiPptl)p$NTs>X&c3Hgo*Md9LNn{;y|_ zmN{QpBF0&9CjMuNc|hm=@D=_%^q=Bofo4MFh<+r4I>jR8MF?GZSwfuV+w=Q4^Vpq= zaeg0nu{n3n=TCF_^gAS{Kh1Muq6PCb{EvQ_aZdSaS;NV5%%n$|<+b}{yHC!=O$4=V zJy{z}?>=>b>4Q2rXKB`;tDwETG-p9XcvM@?c!clhFL`47itk@4jk{0=^#mQ3osMPO zG7(AaM8n~Qu6nLFo^Q;d1X@*eYHyBZ+}YsPZpRmP-F6#x zd?zN&(i)QK-+pC_chrq%vT&F&zR!!RCT0e&;`v1>eR_XmT^>)s3Ln@I`tg18m3)TL zrCMbv^x2$

4_=w+w%ZQM7#%4_shL3hcMST#YTuaVhg9}0Khg2~adv0{q~xm&(){I%{Ai`g&o z1iig~d>4rA+&8^2?UtSz`@r-mY+{~zQ7Q^E0rt5GU`ptQa|i{P9{{ZjBjXhXTf#E_ z`O0-88z{wCh@A;RMMZ{C)?IpnanfL2y9}mJNgLE;mlF|{k&e!pD-IRw3Ab~Y*{x5( ztqC*E-w+O$3SuI_FT}R6zsxR?iQ@hoef7~_f9=(Wq@*O5irEI#RXrG96PKFydBK91 z-B*zR^*DiYbu%H(UBvDCxM8_L^}EP)qD7vqGE_HEKgAa`!FTl`#>)GE_*HiHRjM$1 zL`qrrX5H{)8EeGTXXbO|WT#TCZ&DyXTgECPHOzU(-`R7f-8VQK@Hlw!ffEA|UM_w2 z(1<=5(Laj)mCn3MoR|3C~?QU=P@I&|%_0P7BvIV5TAoArgt3$;Rf-utKpj^Jq&{ zC>7{&Arf&)+7T6vh8Muah-5SgeJl`2mZD?ZFdTsyzJsKL-ReE z?Aco^6H5eJ;4wS9&f70Dux2=KHW`=vGb%z|;!>(}DoCYZ|WI$IW_W6icfedC9T zvoz99R|kE76UGxbpbyPT2$yllXN~@~#4aMG32e=Rsln6*zEJGR9mLW{8LdtEJ$r`g zuB1)22ebi|Ph7n@(@;W3yA^O!>RY*u+&-y6AF8(reA(EwhPCIoL*?k@l>PL%|Ky}% zl_vln-oK6{RhY&u9LNe(O3>Sf`0KNL?4!*0wdLan$f{D0x&WjDZ-b-I7mtXFrEK`u z3G)uIL(jE|j3CeY;{(oB`w`B=^Q>64d^BmahsDjf{M0F%X~o+Sbdlq>LM2V%A(N?M zBXjPa_%b4l-ZYD@_F|ql6%T2osCNLB5MI_#KPK@nP6rG18?b80XFpJ)1Xr6}>$+NM zJldEh=)=q5HtJa&PI+*ME1CeVRA0|xu{?x!g)QEPd#+}4xDq!Rij%F$xU z$W-lQteKbKbi?V&+VA~mS9)mA_?7sxZFKUi;z5m^95?43Rd~+)l-1MH6QTyi=zhe6 zh(4bGTS2;4ufKDC9dwhiWrMAG-y)nE@h~R&*&lsQgZLnrmp(>FO2GC$ISqr1}TEEB@y|XDr91fIT;81yw~5B z$otUeYGcTJ^CxdwZb5+^zi()0D@{5&b*Qhk^q%KuTRsyysiNJ5ZZDV&Y$wtrWMCRbj+2{{mlyD)K z32d%4j%B=2Q(_Za6mc*}!dFom!a=M@&`j@r0Aa%Ws|$Pxf_P-82V8~Xf~tB$Lf134 z7Huh#J|Yc6+vquxeL?MeiVbK&5!a32Ab0JwnIS4YV|{I`{`9N`^v;#Lb*|VXo9WmY zZISU_Fx-=H-g**P%1iUr5-1jncYX7Y*l=P++Rk}=<1KAAy9hxCYf@&rHFA`Sln0hk z#j8UJ6tY!I#pM|1=E@uInS`$n!=arXN~SB$vUFpF5)m>Ka>SkqvKk<$y&EV*yfpw9i3xs%j4U9*$b^ZnCM(T@ zMS?kb;M=^WN+CS{!y+ucifS5g6W3u6k3=%~tpVDE50o`Zs<6d*NK)3-!oOd&uG-|@ z9WtN}vn>~Ga($mmHFb9@ z&|bq8j@9q+Mtez>wxk50Z;|C{!#^6-iUGlJi8Rg54j9fJSWwi*JJWgCwt#gK-aL2Z zwi3{u0QjG%ICBqWEOqm z*oq(@nRp@lkhgo+RZ~x{rCxt4O^JeIhzcT5r4|Tx*>8|MefoWgQEI{17=L(p!8pRA z6@*s^Ybrn3Yj6gWS?b{9#A8%#?V#YdIucim45j>~=Pymw zzeWS}Upb%hyY!B{p$c2jQ*> zktsoh$jmrDImPs}1cyjmWPIYWb!UItGOY~~L0#Rg)ZS0pcYLi2DkfWU%TBA(&W?5Y zVw&WZGk6c#Z$*uG)DIk?m=ebW%9jEJ6*}$WXz$klxaS-{m$xsrY3r~4HQrw&=ub7v z_3A&mk%ttzR0r$i4Oy;h$wi@%3PaeDN?Mfh6!_hBWY=&HkgrW~-8c^3WV~U6b+6D{ z;Q>Lgbbf}{5-4u>hq8YTn_g)vQ}^Hf(bYvT^-3@%dOXZ+&7v<|rCsT5v8(3$-Yahm z)sGQO)#qpCsZJE7vP|m^b?qnS=2KAqvz4l`TXlIH{PX65~AiWN)fr? zM@Y^Bu8(>s9GE@Zy*}uHNb4}5vEJ0B8n2t=uHyfMBzyJdpje_y%%7oXLG+q68wS9s zt{h4pMf3U+h7TIeJWZ2v-1FLbqems`;j_ihOZO;}o@-Oa$=)6x>2pV-Z}Z!L5OBy^ zHCAbI?ZM38^Y`npf$7b)u559*k)APxGwg)I07TY5j7_ZmSr5fCkca0B?x$b$p#4Xpg zuc_O$LD+k)kBQR_liwRC)QcgKvW0$lFM~d)yoWe|cMzdmx_h;ag8YgaU#`|aKUq7P zHtmAmHB^T!T~07%z%&PI^<$swb7DH1(|SA}rJm2ucn{yTU40%BFsC(tZ6Df7X?-fE ziB_UQ7=Tf%N}|-&1iCqGHuwf;)-XX@4m;q-o<2uZM)4Z@wM|14RBdc4lz5ug{ zehooC);U5P1J_!?5QZa$YCI?Wm~uH8<@qmf?SCvJ#QWtWGL7L@%u_<<4Hem!TiIY# zW*mjPQQ>53lnp4V%l-eNf!?0oEY+qxcX~(vjgfkOd}S4#W96YBnXm9dk~6c zd*Y5Xm>DOQCnWe04MA!Dm~a3!-F0lz7`C)8BV$W zE6NcmkN4se(mY)}b~rI^L*gKmQve&9#9d4WCg%)Lu4*UVN72er9oxQ~ni%cxzl*W4 zg!#WT&wyo$5Hv{!=Q#|aU(}kYBEnPX6h6JXj(gtrxuSS)8*MDY#QX=DcSMlCG6d$w z!v{fhhTm@=Qe7Dt_~GF0xXaNP{q?TV{^RxcSXB0$cIsYGgQ&NEknWjA(ntGg&Qb+7 z+<-l+_3`0vqVBru2HO&N;u}yP`WpqMBSTgy##d7xwA~>vKG21&E z7tX1WimUtS@iu4O;{^k4se;}XiQx@CZ<$x87q40Czgg>r&DW-osRyFwA&Ym>4+LG^ zNEwkr2%+g|i(5&)<0Y?By<8pp_`cXzANeH{8}swU@NNUHW6W^BufE-Qz2}s%ly3Mb zRbquib$en`kggWV;q8-}_$X<$618DpsFNwa6^gDqjHCt(OA?6Du=(`cr0l?~vK8@# z{PO$5Yc7k#HF&oA`i_Sj{1J60MeDNQ&-acWJ@cQGH##}GxSahseHxSexUQsZtAPU=J0^Gy+t{8^YZBJG)y->?9P1 zBTDeB1(azBuGipzv+kPo-G)76q@j;|sGn%H?;N_TqI<9LyqV{4-hths%?aYf3idZk z{O(bJY5T+=gi%pggN)5N^K65{$@8!8jD+Cvzoo;DZO~|-_*;}-1Zb*Pmn#&Ugu_4q zkTNnQ2&Ujav!_e;9(tOwCyn_=HX`8!?ZoC_9KepB54G?0zaAeAiVi3nu$Mlzoo*9g z(DHuddl{=yp5A$2Gaujdg^+%GG)@py0%6PK@Ex2Wc*z^1m*(D3LjC9rr^2^&PcHoAs#w!T1faGe?s z1`pqa7?~A*0+`!Y9YbK6;*}Iwa0%TmvGV`z*230KTdLr76`vg0SpZ8UxztRIwYE2b zn40+z5dpaF-V{-qc8@EF=p{M1O~BfdLjbiS)&oG(a|#2n%5;Q;*#DDdhVGT z9wZcNBlr`LSjqe#tZMa-I%K`9ga8VCJMpH4_AkmanD>x0FFC8hemjys4+n34|9oEg zKWgV;EV#1Ipyfqg2A@54f1g8m*9&m`LVt~34u62f%X*jH_!S!)g-;zt<&DGb;eM=O zJN(K$pNyFddp#)xkWNE1aS1o$BanZwh$;ldG9KJk}B7D}rVU}C>EWsug!Of)4kWoDfqeuyip(Ib9(zL8# z0Bmoi$aX0#{_UiRwUd#=2RAtQwH`B(v!YA~M4&5a;a97&W zjqxK=oGcwa*A}-z9APTDTUfc@p_)e1GQAYlc6Q~0Dn?Ofy7u4r&z0}4_~R@si8 z=3&;z-wwM1^QUph)Z0v_pP;ylAlopLU2&D&RDZ}YXfHOMd{PRf$&!}IDE;eJaM=~9 ze}b`EOBmC)*QkwGmrb=kuf4#Z?$&y;&3Bt(!Dx?Q#7y1OdCrq##4lmVh2C9PNq9El zbyWaG`3m&Aw@q>nNJ@^Ar-%F!-9y#20nPVWW9mLejD%om!c`@~@G<{+Qo>n%QD9)!w zV<8gA$lYeCivPO{AQ}*#fGd$qiJBF+RGxZK+8wwzXNJ(iOjK3fspf(lw3m6 z>bN+`K?ASVTR->6omuQ%AvOmdD9N;*6FqtqU)aFY{rdbvnQ4LVSo7c@-ufc=aiS<| zw7QM){h{fzO98ad`+nzq5A0#w-_&Mve`Y>{zTklHn>mYN8BSfaJ`$)B9in`Z!IIXG z0Ma~(t(mN?pWM*4-2Arj*4LVT?u*A}vX@h2duJ2H(__l;IMw!e7>E={F?x0NE97~f zO5D^uhB}8@*IyGTRB3%}(gT#8ov9mK@idX_J)HhI9Y_3{r1rjDdM`eCHMi(uPTpkW zq;GBSQiT(Yb!k-?PT=E!m|#GGP1@Tet(Ea8@zX4Na9b3rVYlJ#)$xAY>uR*$uDZ13 zYu+gYenDXeb(3O6io^-QBq)hQddtjefZAwRm#gy6QvfVmS9GlIU-Hm^K1ZC$ZBYDl zjC%S7C^>XQbe(;?j82v;pji;PUZbm*5htJPzA@`xq(G#7+A2xJdm#8w9DH6upT^XO zwpdnv&-l`xWZKXF9C9Qb7w80}8~(}LCv2aEg0_cj0Z^jqy@9)%?00bZ!BGB>e~$_} zs|Wa-=iu&^nfK&jR)=CFCnFR8Hh%YxpUI(fC%28#ZoeHll~w5UGdop_H)A~{b7aFl zRC$FUVN_5syi5{pLFzJ)n-7Lh&e0~I51S#ORxrN~G&X$69)+4-&`bKNpN+KM#K?W-uRh#noT!v|~( z(2_*ZUJ_HO7*jt>7TNTAXUHSes4P~aC(r!ZJEV#)hzQ|0R>Jzhe}(yAmm3e^rW*28 zI5)AsSX|z2@p0=iO!|@g!4|H=P(7tI4z6wFwYm$VUt!$(yx=F1xKC7WQ>_^_z4 zZT7web~@|dM&NSu%VSNWeXgXAWq>llw?+D`M+`L^Bc zX0V9Z^OR5cI*Q(%(cV-MAII>j>#aVJarv(C!!*N)q<+hK-!k))X+uio_DZKUiS-v> z%v*}tMz6$|H;dBAW)1wcZzj4o?(e;|PkXZ{Jr2My`*)aFh%4Jp^D$Y{EukRzAQ)tI z(`vOvwE4SCw-j@;Q*fhJE=kUqX?oG>HM$nvn{n}L*2-4Bgm_A)Eh^LvRDw(~IyN~h z@qXNQM#fNi?9{-J)1Mcn-+7*DfhE2Vd-V%OeUIv7uYYb);%aELo+VQFmcgigZ`S-T znhqYBxBEgxHsw7}o9*oh!(PaLr+ z3C5QJ{O^#cv-{B8?&RU<(m{Ef4Ww(~+zp7tcTwoDFd7zy5r)q()u6kg|`yYx0 z0w9++?WLcYgY+paz@26W&GwGZ6i-cfOjQO=Cdv``=qF1R(3b{(!Elyj@Er$4vA@WR z#nMOsqUyA&Eq{8$W%Zu6ai#ZNrE>x#y33H%X7?(2i9_eqKzXd!*u)c3_3B?%mOtJa zq*yTCS|I4xh`lhskQXV=v(HG)A6G9wb=URCEbqDWg?I;1#^%11A^yzzM9zV{kBz)_ z-gr_H%c>A5E`ud#3y^+rMNq}6w*IW)I+K9k_@GXJ+QeMsq4eDTLw;+I zfVks#?llJ7m-|bN=9->X+Ew)SPPF%lm&QI3X|!~Q%VX_N3Py9x%2fIt*4$~?#7NPO}Ilb`R+dIp=#)=(Dgwb2bi9oST zh@4@-yFQB}`!~HzeLPh#C?V|zD3Jf-k`{-W`T4@A$`0TH1z8;zy0yPd+=u1(iqNv} zMu>bD;uK8&UGVG;(Hv;AzmIq1kq1YS?*fk7_ElWlImih)NR)4Z+UW_ZP0o%r?mgnE zHq-8oV?2Q>^gVgV1pmQl+!}Rb$g|+YjV@!{xUm)c;ihJ%JD~hqX|62-JeAIFb{DTg z_}|^}XZAYTcKkQ^Tv(-1^}?~q-xZP+Nhak*_#JcrP6%z6s2Lr>CqN>>Sn@No(|j%+ z8D?1FR=~^)lVU^sramke=6|oGExJQ!|Jfj1IGQVgB>U&IHnr&aE+3jFCnsgfdUQiy zPQv~~k_*TjnT>3e)DlDc4r0f2$e~VSa-e)?TTxL_j*CQhPmd6(*Q3Z@`jr$O7@{{Y zD*I}J4+ZI8t;?rrT6fuRM-W^OzGw%8CgN{*jZY<-O(LeA3`qE=l2l<3d|7?pjy128 z_Gqh-Ww0%-I6HK4n6Ofw4X+VHMa5~qe&6rQRT=7V&5PdILYkNcKzqRhLtTvnovrK` z2+2pm1b7$Q(6@|7q@ec|Qw6}cVjT5u{>DG(s{AjaGP?_WsMBk$a^yfvSU3(vHCdA}{Qfs{`aldcb z)>Q8|T84A1P!2znUeA8L=NpN3CW1fjKP&t^RR6q^dEi9<4>QlvC#l`T(O*~0ThGR` zW#hg$Xt`MOyCubbUl?(wvQ!-d!%&Kr#1)W6*DvypuONko@Opzq+hSYo7R)sW$emeIXOtWlc6wY5&BM?#e%Q@7xqM^9C2_BnYl zX~&xRUB#M|9x-@#PS4`&i|SUVa$M~uKpr9VRnG3Fjp=l6rsO2EW&+` z#`;*oY~an-?+#S>s>0;ih%zcczq#{Jd8h5RMVb`4aIe`ki=0#BVKiSDxt67EVrw^{ zCzvaJ;w{6vbPq$6!AQOy4_O=(n43X!3q^{BMdIguoI|JzS^g9ia=cw8Xq7>m*yh-2 z&O_C?B_M3^xj$5CT-|i2OVx!XEsYBb#&=p)Q)!8QoR~XSp9e-S=jY^jIAaU+)Crw{ znIyn!Y>t9B^^z#$_;#nOlZZrHc<~XEPZwuy@wc@`-Q${>H{Lkqwe3cymUba#VK&Jj z18DZV{Wg(#QVhn)?>wH$H&msJ^aS;q0<5Y?NDkHoZQI7iqDbIx41w_if{nJ7P+<2y zUFuqlxgHx++)CvSBya?Po91sOIi5o&pdkYpN1{=WE}5DJExkNg`x~;6a3lj3Ypb@_ zxEBE3R5Py`-T|?v*0u|R6t;J;H|C@iskNQ(h+Py?YMWp%Z{{iQ`04Sx4i`0Dn-s*_ zYE-dp_AUO8t$9E0_@(i6w5HCyN~d44RFSH`!_`$G1M{iQWJb%Hj7qIB>=D!pChJ*P zZHw8RgAtl4PM!ZzG1{=1IhFjQmv#5Pc=jkh00JOYpYaTpO>qqyan4F|=&Bk5_w z7d!&5%z2SO9ToeOoB=h)knOTi8gM&4Ti0uB0Ks6wNEH3G{2B}`3tg4kkY7A_3Q?V> zK2x5pb`dR8iLkW7!??%6cqw7NObmlB+%oX)*(A>*&pS=gc8ld!dyr;ly!H2}e#C~!e&W7*2 zBbrzh^r1>9Ge3Xpuhqr4@n9b?C8JBo_jk~gdAnj`P8PEAdHg?|E5ARA8+ z0>0mqKsdi+;m+!@v2`_AR=t%T|7h@%DKLw+%~yl~v53A;Mp+>}2gL)scReZW5bDtA zadiZ&_KtMBztnawX2LDEEf}MR7;ZlzmCJ+vfy>Dlu7hkSOjIG$yU_3z{^e^!9HjC^ z(Hh;9Jk-mzWh~jli0&?X@!;nNc@m-m;*adTshA1cd~8MoQi1pQ=QNare@ zt$s)OxM_{OFTy7}F}3$E(4G^-BTHvGA?&ga+g-^2CYLBp43M#SUB;P9ra6CB@ee-I zu&qE)#F{9W>M8m@_|fMoLJcKlM;>IXlSOw={yx6wJS4Qua}3Tc6Fczb;i=HK(a~Z` z%#c<7O7Gox5q9diQ}$l09k)IyBBmw%Nm)2I$umo%7Lf98^)srIIR%0ohW3hin`f4| z9;qYSNiTrOrsgUJqRO>#JiF4{1^YM>RqsDj)_ioXyhiGU)Fqkg<@{~$J+W=R?s;tN z`*+47Me40jQCl3ma#d{|7vJUFnXn&j@5<4)HNO3!W6<^K2EDoi%ZgJT?Y%r$ZEJM9 z>)^)>MTT@o<{GpR-5*^08=Ey){iXb2i650x4|IvIkyH)#+r4a)-&a+^5+zf(5R^5H zRBn$R#F%SpuL|d;$QAR#UZx}#E4@dB&>HpQ$F}TK9eG&Z=^w4R7Q53UrrpxCz_YK` z4)mp#FReOPE7G56Wbarb)f7+`Q-mah$tQxw`iXn@_;RP1rGA@q29~AP+3+`u^j#_0 zy24^p!``Y8i0xQ_f=H&xtbDh>6RkD$bsX|gKvp}in>Y&?(QQ?J6$rO{AZ32)Xy5Ld zno_6yy!OtSaq%okw5`CSg}K$~z2e?3h>F&#NLjN#j6u)bt$n&xG|gc~;np>ap{$Dg zM@uX@hs8Qo+eO{8v(#CCJI7qH-<ns^;d#bUhVZOKK{is27PYiE{4uuxLOOU_yNy$3! zqUWVc9v&+ddMWb2d0j`)(t7`R1zq~BFDV&FAT@cL${Lm1d5$XO`t@m@N7$M668G;Z z^Ck4#3~e0O?Z^Ba(GSpWaDL%!qVu8BLU6`W+?m=Txo zTnb!fUH84<+4~{ln1fQUn*=zrk&Gu!sFILg%nrydx*!{0Ppb5z098K2@}6oZDI*oC z5_LigU2y?u_vmgFEv{iKnbOYfy{$1e;fCA*P4OVaFD*!Nw|L`heT!bK-AE0)n_6lcvNzK-btc&zF0Im`AQ)I%%i1PLaH3paX**&C@aqYW@xQk)?C#pBhy zQ>I2*9ISJ#hAV?Wq%lHMsLlhpOFfm$xIb^awO)xipx2mnVZ>IOJC;G8u79L70a@!<1!_t_FJ(8${GV~A4*|saa zk&}AF;fKlb@o(g+NKS%@3l)%6Tz|8}A+8Y>pN9tCDp1}s?>RG)J3j5L!ka_?ql$|# zL}b%@Ne&0fDN?1Q591j;zQ3pqD1gG2)r0|%Hhha)|l#a?px7sGjvr>$<(~{W8}lnjJ88G+CFYT=BA6U z$yfi>J=KX7|FQPC8dQZ;+}>QgE~G+%tiQ!IK_Io6cInCnzGmYghGlkK|5gE95^WKw z^)HK*Odk`QMcd;Pu7)jUy{&B0Vu_zyHhZUc{5l;U=Uo?P6fVS-|CyFP(LOcN6%gUV zzdYD#YL+tfC)Mk3XK^_c{&MFXLGx71CZ=9#xc~iCKUrIFu{3xZIsGLzlXzgpsMx>Y z1{VBT|50D0&nwg>w~X4ygoqVn0dAUYQ|5HCkkHjj+sUkp=K9@^EJ>?5v06%NQ?W43 zF`U-l{jxT?`@`~6nCo7UL$U>HvfW7oW8Bv5NWUq&W??qJB8j$o){(+ z!`QJh*Cw}oAYsO!brrwMp+KOaG-W1zXl~40Gyg+N>mQS=U0JrA(b|#-!QWB|@nDN{ z@edVW{n+MP^w-FY744S4b4~gUN4CuYs_joJO6301fs&s3=(C0a)af?mqTX|fx!*r; zbs_K^z?Ou)eH<{xh(808Srg6D%R~$;=tLc337ubc(Ra>QlL@|H6LSi~L@1?HpD{&{j-soC0kC;X0jABv4+tNGUQtj`wpYKx=bUz#W zoU`MPKG7KcQ=-V)%ynemGQJVd3=yKgemo=i?H5tjsbHH5XLUh|#^ifll;0&y`|Vof z5$<#FLvvqys0_7*;(zYqSN9Ws?r%*+6vNNqTJ$a2^()nDP>w>q0=BHksd@gk-_uqt zDEVGGUS6B!nqs_1BPrm_XF8ISw=( zxYG5L+yco6=d9hynwlVoSlKBbaXQ%SGl2`cHHsq(id+JP!>KAo>u!RCXNX)!7+8>V zCRJl}UU+{hebuFq z(;fgIv&r3&!8NELNNQ~2dE=#Y5Q}rNv&A_$v7YGLS*s@dg88NG`nU_IC=JiC%@mtZ z#ARV1t8VM4_7RShHK{47DJh?6n6DSu@@o<6gO8#v$Cl8KQM-?AYW$RFoM1O0DbULw zW~_TQeBs_x$R(eh(FC`)0{#W*oAvisG1nHwFP|%P3?I3PHOFm7G$zAb`7U%CLw~Y| zW47?GH$BLJlsJ>^IGk^j;Vr>0@CUkZByA^ffZ!=JP;_D*wH3x&`&tOD)7z z&ZVDe+xx%8HgS)eKDBbfThw9cil1CJmU`&RyrImz{Pwl%nU<}qjC-Gq_q*9_Ei*6i zNA>ior>COn`N_eeNY44wIh}tOAGhxK_EW#W%lTYYw|X|$(l{#X<(3N5OD?Pe#^j$^ z*03ULq^NJ~W;)e)fqReTSquuWOredsM&S)N9w9&_`@0E?)--vvKzLL;vK30cT_Y0o zzBStW`7MZ5&+{B#`lZqSxtN$jU48w&9r9hprMA{DQo!IJx4o@#dAOx?m$#x_MBVp(J4kGH|46gD z?OPVh+Otyg#K0E!^m92_PDs={qaB9$yL)!|#R)ulFe^}&9v5CgBp584qHRIEc4BJ5 z#MkY1_N`8bbV4em{*;MiPSd=$>~sCZp9o5bsOu47-kbgUJD%WW-mwM?t1WB`(c-F% z-|XdK2+Mvu!!#EP5tgNrGt2}LW`A}~TlhKv0kVlp13n}kPo6B_x?v{w&-$B$QHLSm}q5DDW%)TngS-Dq?PktVU-D8nrd zlfiu06W3U%h?Q{-K_|y$WFJ>3?0|T17dh=EzpXGV*9p4nr@BIA^v~Orr1795wC^k7 z#U-3)BJqgXT2p<2+|?wJj-Jw~>eUr=iiy z7m`u#4s4+$Bn+#Yn$KmEi^;nOB_W|~IE!)zDVf6059L@I&&_k|X9f<4UcA5BS%nFw zqiJufeFUe9!8m-v6~A%BZatSk#$_=(_l-1v2pS%4gZ>emo0WAx zvg>i?PfUa^lAF|UaskSOGJkpVW%aY`VCjQ+IDnC)%I6I5 zSD}RBA0PiBz^|?dA69-=)@e6WBT+=yp4m(0|A>8cCM%rctBRQ=JX}tdCNG|siymiu zU57pzIyY`SbXQj7<};B?dc|#x7}mG2KjVC`Q&$V4N5leTG+!%}+7n!n@(D5!$&l*$ zDOyE__3pXFQ|WK6eWEX+PC!kfCbYJfXZ&q5W7P{Uy7s@j0Qn=lns0~f59U3!?FSEaVFseC7EEL z)yG~B?Z9EXde0G!sUnvArdjK?c80v3u}gRMABxu(Xx!K1327a3ZCy(BVsdHlg!kHB ztpnnOhF)*(t(@|qzk~OTU6dD3JpLwVU#JzEzciWAJeauPiPG!O zGs3mA6IzpaVHU`cBz=~Qcc$bDD{gJv@z}pSx`gO{DP^om)L1@tAs3BI84HDa50SRP z=O{EYnCP|pN4>~`MrsG07@UdIMHl-Gs{ex1{UgV5%VaHQ_}wG9>(cSwd8&SN?>~JAAL=b zAs?uhS5^a#E(?-QB9^0Y>X(2U$o|aGd*tuu%LmO-v|5p^PyjN{ioq;G&eQJ)FKVww zND&PlA>451Aelg=DXOBV&`tqIwaJ5+4Cdj8kU&=}8sEEWbgS9`pJp!(nCAxKkfhnc zk!h6$3NrihnFlYR&M+FnXeYz7A6~qNG!$sI(5qe%CV&-$6;T%zdQD#XV82qBtW$y_ zR0&OXV9b)fRa4hJblYrnZUHK*n-7T)V(qJd1uc z^i&As+L5&|^*3ch`MroSz%B{xso08p1FfD8P9I`zPAmLFp6rZ9+6o}sxa46yaoFGjy_Z&++gCcy z1A6p!qIqzqk@~uzgW#Z+V18)zq&p#U&S{mN(fr--E$}@T6jTkPc^kx?PNJhsgHPe= zgQFu!85v!J&ZpnM(Hzzudf8>)tvMX85n%Yi;&~D>w7mRfGJ)&piEn3SUTj~0%5ed# z$^=#5SG8dxaZK=8 z)RHw!tNXzO&5Gf$nAt3Lf0e2&Q{_|t`x!;EQ`nR%ns1xJ z#`56`IkA+N1nW-EX84X}XC&&@ys!)VZ;NeY=?C;OQ*2Y6`d`k&w}{hvN#H6h{S?eH z*}(Xl_T8bn*-e@MVhKyCGj=VB@8yARw{&m_@9T4bJEG3O8j5&*df0p07 zrJp58W7obl^BOH$jQup>+xJi=LOD-J@?lKKbyCaL;}F_K$!JMGl9Wy z#bVSecgMdZ)Lpu-8ZV1{*+Y%hm*#XA_s*5GMIqzXOKX@pkwWGh$BzZ09O6$#&$RpC%J}b z9n9`AC6Dt}&|`FoFsMna%2gHUJ!$pqn!uI;<_4OVM}I=2XMRpSKbDh#g8+wIcYJQP zNfvfjHs>i?LQ6G2kg>0zk&wm?I=nj`=QW4j^sDgj3No5)nJ{~kOGxB)RD-@_oqJ+s zW%Y0imjEegVX+t(-od)B|H71yK)lfA(bhBMF~-rP+{rWnPJhA{u?k7wLe z`HxG0%z#(<1~Q4sMsw6A2~gb#3t7ony@&xJs4W}>KMFak<-tapxIViVemLMi*QE0q z;m{)c@Wvp?d1pfvF^#ULpBcM_&vSNSpGtg6GWD$|>qti~;WG zo?*29h&_48`p`4{{(UI^pJYG~pJkie(5-y*4^F~loddL#v#O91cy9oDhU1%oOfwyy z5u&p8A^#^-d9Sreq5xCVZV;2Uzlg?qEL)t|t8=|J{V{g-dox(orRSlXerFu_EQk8|(s-y=`?6lD~JH}u>FyD{zF!;g@_^+6V8foB1 zn7^@7ay)IYy9B#EuY$m2GEEZ2D^5Lq7X8Q588B8W`g>2c`i zra7t!$4lh>YbRg6m+md#4ai{3mTW8Tud@D-BlVM6{YGFBLlpY1@Ashc&y|N}*@0w; z8gL{W!i|bc=SeQ!ZEvr+B9>8onB*sldqaAO^VPBMy#oWTW>0cg@3fRrYi=VqU>$MSfGS%Y}QXUzJ_K_`xTpd7gQ{mZ*~L7 z1z4cScyyM+;D+!=qh=&;gsZ!tHj+GGsJ|RLivzazvxFZw>F~XhkrK1sE{C(~Ll5uI zE@wj0M+VKvGrlv|SHJRi(!L}Xu774l z>J^LOM>5{CU59m9TI$)tCnMTL?V>_WBq=*ORFnvmo}qHErt{@GvuL{J#;97mAKK;d z>kx=gL!0k@&CJ1M(6BjjVNi-&iu@@jpt24pe0ZF;)|M8S;sU?j_y<%BWWBk#<3WJ-zu!ZXbuk@{5jT zK=Qu`4eLf7e{H9sOHU7OU~Fxyp}+J7Fu=$PrB_eS^0+j1eT?0UBJZsAC?v;;jzT$R z=AQ$7UM8SDT}KiASB4}aOS!lJKY#ym-?>$@OsDDP|056PF$t2`Lc)REM@t?DMS|!W zML;*NzIo97Sj>N*t7Em?KzA}A2m{90;ugESV0coyhZ+n00i3NQI-0xEhMZ$@7g52D zc!1q@!3hBGGiGHdiO(FpEkpcH#?wJ;1kAD-^8dzV{4h;o#03+#{v~={HhJ%C3JYX0 zZ^bI@mFrza3&fI!#jH{iVDHzuu=}vNG|rc`M|k=?8jXJA-T-S?EYu%Z+->WC?64mp zHpGKll@-z7r;f63z~_h_8Q7N=l@gdq0zYvDNsjXnOv|q6ad8N}OsCxx)WaQt`{YBc zmIrr@-RZjN>B($oomF8~`A^w))mnIHCirjEF7!YnkfJuu`kx|<&yQ}0VQN- zHv(G3(AUMmBSSjB*`8c_t!5S8Qlj2<0Jzbfj#Czgm~^CMTRMDN3C|$T?RaubCi5~k z_WTiEA~K5RwHZBn$i=TiHTdp*L~G>SVyoY?juvk8psOKj4Xr)#ymy8>(jO#I2P5XK zH01m>*FD$vS02ZW|D@nq{#}90gVE6zlP|}i3W_i3dHRJea%F-CGTn(rqG=k?#;T2B z^fo9}hgODLKqcGB+RCNkW4c7e&N<0c;eopX|MDSgrgL|RjfQfhoA}w_i=s|3>??8Qf`Ppxg4g$ z-oZ;+-}zwmLL5yuQwHQ5ZImbEoS1x$$>Mqv*QbVpYv!eh*&Yp7fG0&sSBZJYXqU8& z*Kpj4@z!;90z0!<)K5Yp;f{?Tq`}80dQVM<7fqK`9+x+{Wq*Up{5H=7SOvv|s&=Cf zVEE+kUrt7_#fd0*G?&iQZ*no$2F5QMO5H_*2&re8a{Bva24Bk^H#+wOZ+Pe6#QS0& z5^+Ys-@F07n4C*Hf4JvseLe2mIJTs6g$n2HRs(%*3+Zl#)Q7N59em}s?|J5??0%NV z-0Tbx)tsEp!RONT`9}1misZaadip3AQG1D2sNg_s%3o|jM>dto?{fpu0tulHK0anx zd1q}}jq@7Fttv>ymsGBr-ZAPB3vF9>C&~#@Sb!kYVP{uLB|GDs3` z4|BlPsc@WBq8jQ>eY$Tz&$Vy6LR95Eb)b`y21IcD3nkXWb&8<6(X5UR%hm!#Qk4hx z41^`Ajg$HZL}*nrSWq*JlcXyUbRxA zkx=mlprMB;QvttC{8c1e-7!8EQMyD79p{@Kk#t;eHt1AD5IC^HxqJ5{#dY7OrXKv5K(y4b?M|cfY^S8(!e9T zY(ij)MA@NJpV*q$n!Af%6dr#NS+wn``v^7xWY+~|zF!By{JU!9ctm=5P5xX!BjfB` zU^#=6SB7=Ys-d=5UxR7lyzSo8jEvzo$*lTOrHA81#x@}k(%{D>G3}!bqu48SUrxc* z6PYtpf`q2;in@q;Xwb)d2O=H`7x?n1DDmX{0+znw4|j{ReNE&oB_UXaa+d+nz<25s ziLdXvcHK_WWo3xq-&^RGd7@z|_H4b#|Bn1WpFgBA_?;$@BUPA?Wb_?NhbrsngHZ$3 z{RdK^W}zC9y&bH|-SF4odBU;1*y)AYM_}sg_h-d+9zO0~`FO_XeSz-uh})CZt8Zv3 zySP8!eM-h#Mk@MfMx++A#7@FXR!BmZsR}WezPN;H2;ONNgH(-3g{Bck)T`js8@9&c zI$0(w_38kL;f7!Gp>Xymn!4Ur$(*uyt<)i>a+cUxD&Q)1;OL0CzR|55C8|N^jaPvm zAvAUR3@luO$yixvD~R$WwHDpRfZFHejlV03vE3@KK<>qSI$C{ zq4v@#j)sRBjh6}s>4EIw2QR~a7Pj5X!?A|r|L0}z;V9ji;leaNjiGGQgxvb1Lv$yr z`ek#!ulUYDEHYSI+wrVvUxUt6%T?7}-^sVCzQZlS!#YOS)&x<_kk>|@a{6S>vK*G> z|MF@zjXy;UO^fQ9JY7_z1trBgj4m!i^8HJo%N6WOR^wRBTOW7TK*o_ znH_EO86DTTt5{s7X)`)uG+G3&}--uGWX^j1-P_Ypy0H z`g@1n*6^JSuD{!nHxhW@2c@FE`N5HxuAlBxzY4fWyTgm|P|(>@khb@6-(Y6^)4lzH zEwL&D-^#j2IIvdXwep}=xPk9-YB0pf5SAaYqM|xMQUjX4rcLr4-QD$Wv7HkhxhyIPZ_g@`TU$hS|Ttfa8Bls2FjWWl{;75yu+tGm@;!t4P!@ZE4}z zSy*ZxS-gOQI|?cWy8dr-{qIY}5J`%r+YDu9EW|A_NNEP9jsT2SUds$AaznQzZHWIQ z^vu9Qh-MGsBu-G_@UkD|;0}GoLL!B{GT}Sib2Cu=M3EPc0H;IImINBiKfJMxiwZ(I z29yYur0)igC%*cc({P-iq7x9s@rLLWDxQin3YDPHuqujKrwu@ML8hDFyeGmAr&R+x z%nGe=b8u>dcNW(h;CZJlH_~93JPB1`rUc`?odrCV>z}Y<&e|;8P6=GBJ#{A0*8{~H z+D{~3DvgtYVZWy*VJ{+YECMHpj7Hg3?hI&!ye+0Nc3R_uIH7?gvPlQMngI|-fRh&C z8YHcXM;!bi@gXV&f65-qhUoMYpfkuHMvjb-uFCR)V7>6lKHxDXV$M2=c~04d>#L+Z zPtSLUNK~vUOS*pa@-|w|Dlz;{;xB*NwI8?>DYPcB2*iO|>PR`wz#4xzn40!_L!hzH3j80<88fw` zI6~FPjeHS$?|%IX)hyy*K1)1W();M!x3C5NHZ+a-syhQgSM)`W%XDXr z@8IIO2~(#XQgQ&Y^*?za#mJHmZOTx-?YRwF=|YI|zRr1%!!uSwLg9?;KXI#Fah-|WMzV#5+5D&$x< z?J#qZEuCeCMY7s;ww}+m+s$7uzR9kQ#z<%I*^&6%I9_;$8B*5Q*Qde9Fe29X+obe) zwQ}=do|$=3>;tT~dopomi>}q;G#F8fJ%*=R3a;4n|CyN}q@VE`Z<`r0ErKrAT~sT} z@q*_)-tim75O{me{95(=)+yUn4`|9$XqdljeKRmM0<%M;#<3(8a#U$A8Cn#u7~58d zr&~kBx`PxL9XBCc=9i0UErec7wd#_Kiwnv?k1a08ljZkI+$F>bu{QVSCQr-_6fOSO zW37E$c}ZPe`_GCfMGTO)SZf{A%QW0JL+@=czD8x!Qhfzux7?!h6Wa_4}9iFidn51XPB?8o)k=j3JJ`glzJPPN;JxcVNk#D#d z6QuqmLSNhq_0{@6kJU@LRC_WCa3CqZ2Mqt8Qj zD6rj^?z8V-=Pk1oQalCVrvF3GxoHF363!feze*JDEW&ga_e}m0=G?x~~aJ83@Gi61!Yt z5eE(%ocSDfs9JsJ&i$vGj{~noRktzVbzwVgRB@Av8Dprs@jX``3tzx=YGy;=iQcL0 zXiV8j+2|Y@>xD}X20md9sWK@uuyb&7LL<=Xa0JT9p>idKva!7OjH#dO)nh9aNpDM0 zVPU8sd_{JrcVxX7O$b7+LI|1d?9$eT#%%D0cv~PjT)#J#c^46@V07vP#PuBDS8xP2 zagH}TTf~}B0{hd6)#f*xuem{2N&@0R4Boabvgb8M-y=k1Pm5+t6hzgPBEAQXqoV+Wy!yNxcA~ z_Ylr{+wLJ;0Y+VlHj^i_;|3O>{m zglrK0%W)}5_8@M+4ZzZL0}Yoxx_zl&*fCtvys;P_IKH?AC=Yn$zyYs&ue zK$Z#3&aTLXawPJcZhk-;1{akFgK|o+cJ1b`Q25QaQ+y4R!l!hu_=jupDA0)$Uc(Mb z;0gN#aERsm3~d%U8rqr{=Q=YoHn!*BTC=|xr3O0@kVwvWSiH$~j9kCTv%}Q=`$Lxa ztT!QC1o+QxUS@2p=U=#ISI7){wbsH6dwJWcn6=r#&mmr1VX?!zl^2)CJu&?|^`p;7 zr|v@*Py(rW(GCvh9O(DPp@GZ&nkao+vAoWv%J{%|kIR0`a9th}7KZySEPXOgN*^E1 zSHQ=+QUbuC(>zf;%ea;yp-cjwaoaBP@|7#&V*^JI;&7D3)ktEOq_H(#<*#zPpwz%J zjk_sHMk;HV>^{Hex)*$B=B8U9JIwuOrG5HuiH2jb*3h<<*V$Y4SuDfN6p|RW%?N# z`U`Qy2CGhZ592d1_#!YE>BL|U9(}63U*+@D6?t3Iu=1#%Jwq2tX`=4TloF){eNx(4 ze4Y51&YJqgfe>zH8$ZV`?OC|8OQQ{o)nl5F@K^a-e#Qos<}8fzJLDdUkS3I~Uoe~M zSQR2Lgp@?IUyRr#E<{_i`CO2z*5iOa&OUDaFKPNt&9@I4Aw>hDbyLuo43APawF&Ww zEM#4}<)m(OD3qoC69;UMcX(i2+)<`Q=8oO8H_3OYq;cQ?%*V&+<()Sx+?L|Wx1c8w zjqrHUp_;JmD~&;Zo$A0vO!MGFLNN9Z$EZ?y7_PBLBH;m}uqMNA@CT1u zwD#o6IbE2PgtLHXFWtF89&ib`tuuNyW9j9!ZgB^ zTjJ)h_jL0Iz@r$l}e9uA}IMqAS6%T=8pd@Z8meDqc5OVLvH_ec|uU3Zm zej7N*&pn~ZSxDeOH~8m|fQYFV39AtEt`iZ9R3mH-uJ|^#E0Pm^RaS@^`4f_?b^2WZ zcx3paof~0;-xi!7PF5aV6YIFkr*DP?{^a%e{%)H5RWg`^t$zM? z(7VzNhTOGp&f;d5M_vix&Kr9&kWoCFKYsq`e(ZyRb{29SNF?#nIb7F%@rUOsg&8e@q(?aMOA97nA7U>~IO9)N~{LUj`grUE!_#hGoV1mrYsV04k%+iOftngM| z{S{nMx#$f|w*;8En$eVtq9{Eq+sw-#j_%a9iQP37<>6I;X0cf7;4paz~wi;oqxuxHh%}E%azv zl?j4Cu(QxIf;O=#n5r{0&-gTQog-Imu%(eK0r?rcE> z9>AZuY5WsllJ=4rc6h^uwuGmNvlFI1yGjSAl;zOHJ3c$Z8J-MbVan$78B3h|@V)ztW0YW&rCKa0@tkONv6Ob$Wg$9rM%q0%p5-0UE+io zwZXM8KOZ~fE@0uzpw9(UGwVe1jfmU$X;C15>}| z@w8j?8McWJB$c`cUNlVY&p zFJ~#Au_C^qNd&tmrLk;@n7bJ<@y`D}sGxt%o<{aO;cmb5{3cZ;%P|V~AYpLKUHLgf zIbw-0Vf8$Tc08k8b@tn0Z4WcC*P^@5?c`Ua#mjccjUdO*m)E@#XFR3DuSoATJ0w_6 zJMwYsZM(^A-I-d3l|YhlFw@9yF%=pn<|m~f1j!DTRNY3pAD`rh$I2Vu>nOLY4f%Be z3-WX+R9cS>y#DS31Al!Js=-eR6>8I?FdRXXSBbQe zm@ZkHXYKG9IUqB1{QP#1CYp@ldeyQU7>u~ZlIaN$7u>~C^{Arb(F6_y>)eVx;9WM8Xs3Z|EuB!dUWd!7-QkM zQj3)hq9G+3!GK7GHYFyen_Vn^8{6b_{!=D0 z^e4R(z=JtB+4o5$E6|8BX(X*GV25_Rz&S+6c@18?<|rm>O9u=0@n84ei%5`RQh+h? zGeboNcSSkT{(xQQc3Gf$hFxyEJx0MkL`)(L^YXsf-t{!35Wl(AD`J8S*D7m)kEzJo z+}p7k21&;5)9Ucutu^4MUDIfa!J)Gi0=uyK=4QD~h|tDizqaYI@@L{s=cHnd*}C56 zn)}$u7YoOKgEPi+W@=PsZcyfgl@)4Mu%&<|R3l^A zc|Ku+>X$GB=Ig8`^>>iCd+5D^)zrxf%ZZSz9R4E2JG4Wgh}J^$f>enn!wxr)Jbnrr z(hcO@wn;*X3H=(lc+%+H;2I4DIC@e%xx~541inO!!b1hlU8Cm56>d`$h5dv!eQAYY zZhie2)Id;3^HIM1fOqEX6Po3bXT`kh9QkqHik@97qmvsl#}jxzc(0DHmJf(5DWP|R zSh+LtPV)#=EwWVp8d$P7@}K_)8XqOj9^*f1%rvr*YXbT|k3kZL=U=+d%=*rR&y}}d zRF6zmSx8$Gu~1HK#9V~7cQaltNP{)@OHyb%$?7{DKGpSm&=E>hs3~va{jPW6lm~Nt z8+Xrk`Oe8C=)9mD?B?+bT(~wPheo^7YR+5AUfI5m!7pm?rZs)xpDcM7uPmFXJ7XFyV*2_k_kQD;bMb}pxVR&W=cZNXrc8C`Zs&1z z_1Ci_Auy#JQLqqTQlfCwVGSX6flSZ+H|YD|^V6^j0omfPq1fT_ik|+B`w5}qx$|Gu zj`q5Pc8IaNzjN~WV@ZPg@9NDzfpt{(N9(@y884noE8fEhEkUEh?NQ|MOpZkLREh6u zf1oZG({=L9>)mR1zZ@?v;$#Q@cP>RlDckYTnoV(j;SgRxOopd~;2>5=yaIMs*kx@M zU@cJuyKU4#LYth0-u`$d2L8PpO%Z%afMBPR94M}h#TzR$ zW%ud5j^)*Jx#PoSkCTW)|CtffN9_v&gZ)TVH6Jz;6D_^yjIcCa6lgvhcXc98*$b-a zi!a3Q_7?x4$=964SK7RW7rlcEHPg9WD9TD8*j(V2d8hkX#3VGBqz5mdWz+m#Es$Hj zMu7U`iYURykA@dAEaT{F>Z6Uyp83_*XX>Qr@)==$wH!qU5yH{=Qw)8-zfV9)N(A8X z7fMK7t{Wt`k?h17vTM0)LBtn7$>12bBN^ut+`b&@Pv6YvC>DA%7p9KU)=g;o!|R&N zn(!<`iqX}Bsi7mKtSkwJIT?%Ui>mjEs5G%ph7_q}DugKo3Obl~ZBLK2I%PP>2R#%9 zlJlGY)nX>{%ebwDobgqRls=9k$fYNE2M0-`FQWUyk&R+Y23o~${4}u&+Oj|ihM%t7 zeP^rE(n#4Z5MBh-ow#mh+!MknkOrGzcWTMxQ&?Qt=>+9Pw`)&Tu(L~m?QW|xn z|4NV}PX_>-I7wUCu(*8yOiQv*icF>woTLCdM`<{H5zoQi1Z{E-6eBcwYz3MMrVK44 z8Ov=#x^uZyd6yZTP#-?OolKWo(F@e#Y!(m(kSqrEH^@6T{e}YhGgyFQL-;FG7a29# zCi`oPxBzJUskq7Ucx%UbV+*=fWxZ0KF{-DVDiQL8I1_u}%HXL+Fw%G#^ zQg7d=SkCCo43CsGe{I#ai0S%T4lDxm(SmQl@7NsVDx{o!gl}9P%`G-o4M5%IJ2c`F9sE&Shf9H}pd z*rE_YT|byMa_^wmo&o4@|9D#$v{&xEFITvT7rid=Y>T`;?qLys)9HO0`Q%ez9kCXGUSF;vIKdF0fzSX#Tn& z^?87PBObqb{-f2il{?eb*U(n%IW99BFxNX= zQ=A?dN)p}yGyM-zOwV6<`u6&s)~fBDCy$ohxaU(^feBCOjDi_eO(@fZAI`-ahCZ8* z!S03E0EIAE6x3a6%<1f_*XF-E$n{3rxfEFNw9cLLDYW&r-Ox_-_aaKG)%W?_Y=F#P z<#D=GQx0*@a_lVdviDx(H?zU-EMy|Cc&d1|!_;SFBlxbXUWM-p3{Yt|K238jtrlM_!7lKVrI{I-VS_8is(!m!`TI= zAeQji!&K+2P?{+L>Cy?&1WO0C`$OoXNL9ma0-mbw4c3#So#GORi@;o@h!>OjfHJ`+ zdp%_hq`NEhpQ)F(drR}e)+ZU|uNDAyPAqY5fB0=gfFfuxPl=gop!u_)ZE`RDfixts z5&37Sqy7?%_Gb2guFqsu=T=d3NljWH2u3|IoOHYS(v=U*ygxBFDt>7x@y{~U`^nIN zj#HD(#fx`+gWOnW=6we7G4tMyNVSB z^f+PeTG2%YGDrH^l4D}J`A)T*R_!wv0@`K2kc5p5to+!Hk&RjY$x~5?@nxn&vn+iD z)!|a~Ko;#hXRPT=;#y>9B^0{rlwBkN=w8KGA%=v4ZWH?nsV@N7L24~@DX$DaRFhdH zVi-?BA9`=QCk(|Qs0QNP8wpI>yZsYCKL2Lh@kUd1A@k0(KUE)t^i&<>#h5{DUrDSM zigJ432t;Qp1JMZQ_w_kT0~e4(DWN_h_f|*KbM@z)TnYRN&qBvx_YTAyJ7FS#<{}vx z5F!lLwy+X6GEL}u3RM`aJ}eO184w{D|M9Vz$qStf0c!CpZxilxBfc>Ekip--FG?FC zJpla$<1^1?*V(54Z%^qK=>SH~*^CMH;u;^CL`8M!t=PL}F^CF)l82=%Cme;dGz|C|n_0rq_|ED0&1CpBxB5&amo7Wg#Ig{Sr9R9WZ*-XFy5<`9iQz=E1pBVQgN}**h|*ukigxPv#*0?H>)9$ z6mAP_!l((Tk z7O)(=7!v9EeWG=X&T;d~_xoz0J2Tf`v%`9b92v39L&-!yDMx!V=j)#~CBKqkLI^eZ zE82yqvE?ZdpFE3oHt1;u^JRtYk(_V!upnT#`(&Rjs?ap_HJ^>s_b*cp&nSL5J25)E z)vcj%>{)p7tJ>_Iu;<&MQ#n&S0S|k*odxl3LY!7bq|8qe^WtMb@zB2k*+tr*`Yct| zhru3_j#Jv|a<#ESD2hZXI=7PDXUGkBVTevhbF}m#Z9I?FlJ9%IPrKft*FJ_Hhi3Eg{KDNxjdS zDo3c>mz0ec%{ZOORgidgIgqKhXM>8;@psIH(vn??v%KQNOLt)#F1w*PKKIQcU}g{@Os#?6;gd#VkCXv3jRCZH>`(AmxMPG^U)qRrI*R%3m zfbkNge^Nq@SklRfb1M=QP^nrbML+`w3Son)<1)v?_gM@%iw_vcUKSKaBLuCgzFDm@ z+})g>aIQmwNFXK2BdhVOX9g*fjz236u&Le{*4s-K(1@q!698@BwI#I`B*SsXu~P^e z9ceF7B;wyH63A8n#1F*Z;v)U3$1tz0sqC=(8wn5+IR8Jp!A6(En+g{SR3J8%Af;qTR1F|>>^oIEdF)*Ph$;rhVq}DqsV?Km+}@mc573V67BKy zkIsyHT-{?<8F%=!!#dmB+b4&6n2s)$V2A$AUB$y|K0G3M z>jH<30X|Hvz8?8@4X#$O9iWtKfoIF=s^mxY`-U}bR z_~ojMe4kXhh%ke~BqsPx-Pd%6uQ#Sz0SvPs<8P^E;`aLp{vR|m$!Vro6cwkLx6VubTiznZw<&?eKW2D|5Wcy5o>}z}X{M+q~kxZj=uw31%5ANLR z-ri3J)pc%#Ta5SnH*DRGXHFYqdiqg#BJnBm1L})%QYZGyXL;o8V+$s+y{VIk_?Yd* zAo!l=a`bL6eQj@YxQ>Uj_vq*aubj<$mC{7K3t#v)*7UT5?5dZa5Ti6+g+av9fx3gf zGy$V5C{41_fwYo<`-cK6DljuNh?-yokO&Aeu^XD5!IUy*w88Lx{$vT0I#Wu-K@t3O z!u)u${v=Mphdw`P9Y0=q;br;;;|EtOl`N=YZS#GeVbe(aOlNnI&4Tp-c=Px{+||LMWs!t!G)zM`u`UBMGds)Pt;}j;_M0t%+I7P3kgxu$IJ-B*T8qn~>zv}xgM5Qr8}zpZf;c`V|x($JzL8c$03GO;%I z8FPmXcU3Tiq@ER9WA0mOC~h<#i3LCKMPM@-ic0L~QIazDp4Oz<9?toZ)>E@;1vAL+ z6pQ7JUR@;F>l#u5P8Q0yDhnE@=<<8R>kWAbyVk9$;hpAo4WPznRNNV5E zn!-@qZ9E~&VM6AE{mbY~H@M!v0PDhv*3p!GM#0gBltBINakRM^$Qsh`L~gv_p#C=j z1&&6fzk7R7#)-n;5<0I1dWFJCXyd`tr%z|6GJGM3FJvF5Cy|q5HI@Hl4FwTbk3(qU z6`(#Ek2lc87125qu7)B}WQby%!QqG?VoXy&{0p7p{BQ)#Ltq*TJGd=w^i}21QvAE_ z%efUc{aQw2_HA2?%bigXDqSuHD$p`0 z#rBYTF~_~ENO)clmq-3`%?`kcK?*IN1Q_iB3ks$Z;ZqNeaRxt?pQu8Gz=F_+tkz=R zxuLGA`nzd?@8Ao7@VK$Okv%vW2Ml;i;kY%aIvyKyYa5rWIYIMtcXeI5gi+f|typh- z*Ksc}92Rz}tzj(48lfG=NH#8Wel6u4nLX+?^2re8zfv~(rI>*+(jn-^SsGbUPc+oe zSvHJzUtTI!^*P4w+M*;f7hPI1nv7&8UAr{W)sBM2FJw}fGYh*xVEJHeLU)SFG6f*k)H695ST-#h?@32i(I_N9&7ce&)?hw9R1! zm~RGEg=1clo)A+iV#%kq0;5WzVs}@_7$hTtLw~<1-^)y;AXDOtxlm%Bby>jT#d$Ix z5@&ynw@ueyDH?9!=GoCll84%*=r%ix@{2qQ{m+S(w!hC>w3%~tAq`5T@xQ*|iGwl?I?e9yH1NeF0<1;(MpgwzLEDCv{;tv837B3T z_>dY#yHzd)V#9(YM7GJiU>RThBhez*_7EFDa?sc<|Id>5=lG6Y-kg0?Am-TCu+G_I zJuMc*z=K7%@UaH}77$?!GT~XT z>O1-f0UyD3UKN@*3CHX7balTCwJBD~VVxO16NQpBPal~H{h4~LgHrT`OeFCP2ojV% z9$S4UP~H@#ULkLIdRa4L)88Vot>c@ri(tn-HhM!+jLOR|mG@p+5wVqWc69k&o`(ibWy>Nzc@c#*!iuPg^MFS$39^Yi<-EucGp z^!0+^hxVVKT0?3JxE?u3ltxn2t#A#uom_7(25suvojF#ul8JMznnjpnp|N2AwSq)5 z%VcP47$}9gABMV?9(jfSczt()*JUql7h)t3Tf_c2pnnpV1VpQ9Bv&687{3)q2}^FB z{r5qbb#$<&!nhJa%DeVlLe1V$Y^zpMQFBHJq#!U>rDD%?mZmQ?BMYa_p(9g{(2gI+ zQKaubpbSw#wZGsi3zA`=aRi{5AiuNSbSNk23GQOeMWlBXp@{{HA25DnM{*0vH8Z`h|sm*7wApiaDEDa?2 zpgdj$xF;;GHY(gqIhIj8_S0*wy}Jp;8t_Ipj?ZBHg>R`A2XCJr0|Riul{{Wi+cDj! zk@lA)7O^#~m6!jNZg9!!Ffux7>kzFNyZpdu^z`M`hjpSA9C#X-zMQAz@Jlm&l8bG| zYp6mITp*0i^F(2UdL~njGBOP0t8E@X!8qhPAbB_q3P$A2^yNdIr6-AX^)9Y9(igK5 zT|;l7)3Zx8fixvdP229YnV7X7r~!mh1A3y9I@*s>Eab9b$t2mC5K`d=yAIqfIR7@) zE@X~=hmbj|Fb5eOLbBlp`TaQ0P8eA>s*|k>PjW}6{8yCwtX{nM{cJ(;Fsc-VA2oxtL-#2d(<;jCC8}1W-S`tEx)C5q&l9DvB zRP56d<|`1>=KfHt|CZ!lnB%m~m1r`57#LCh|It^?{v0{^>hJem5|LzRA};nag0`EV zxQ2`|dgpJQu;CJSmn*y`Nv`fx*$I4pi(}ZpLgLGDrhdk7# zfJ4ztl~d`bLO28osP$D`#H@{rZYM7BqP!Y=M+SJ`#AbvnFx#~<236GqTh(jVGq*Gx z7Q3%bOHmE0Hn;eAd~{Nhd!DOv_Qll1$`cv-`iimTKTL3iYK#Rq{r&xfPtVbY^yqG9 z(b0&>iy@27r#<2gOeYrergeP=MV5sRoPE|WFOse-PeXpwy!c%m63ZpUN2n>Y>Ai0v zavncnL7)!Cq?ef!&X4-?Td{eEG-Y*E@fHPZErd%zoSg)l=FS7G8?F)o`Zjte43e1Gx zOChbwGEtYKQXmzLN5(;gCSs7#3PKe!C56~04|;r#T2YQYu851^!`qg0GW(jkrbDRM z*6Ys_)homhTCwKGn`l`v(W;k5QW|Co|1K1}+L|}~BJ3V@Ixzaqbc!HHAZ?K#!)$Y^ zpL=BI#O#&g@u8pRJhyHtT_$MZ=y-Q44ZniG;5MJBCh#kwEagt~YeH3-q3T5sSo$*M zgV(t}(L?%)%ia?TS zKf4!u$LMgK~A9hA&aU1SY}iZGvxstvw@6au*y*tr)* zmXB|~@|t{^Tc*x9OU55NORF5Dzrh5?QXbzR2Z#dX z6ZoCiaC~7Kw+6&eI8G`h-$OpekDp}2CQ|)_aHm8E|qK zz$Z%|{rx-h9!f^$JVxV%dws$k>`o1;%(syLA z;hc0;mY^MqZrgx{`OM@);*1qO_CtjxV_++L2e>9oFcM-0;PcLN+#ojT?-o!g#q|4e z?EQNaZeav`geEo%<46f05|79@gMq23sgk!Xo-{GaHwf0i%0avc^D9WDKUQ-TdIz)? zd|{D-)26!Il-A^NmHpzR_l5IWi}F$bb2#25c$q$%8lA#a!;ssBr2gH_PlGP&rwpz| z2%x7Tf?C5mWubF)KtuEVNC_er%=h?t9<*|F?v4jN)O7=QfBP?~c=U+8c7GUBHRyFv zAm%>(n*j?hNJC3cXUqEO-z^!%AuD*3MXWJ%dGCX(lE>t0VtMKRH}y(Fx%*8*`+f)> z%Y#KoQW5szTQXP5^zg@P!_OzEY2tp6*bK$+LexRW=!@8)1rVEr+9&eG6@Lw)F$akN&GuSqxe~!a#n<#>f%45ip0(QSnrM!^Vd-d%(XKUMM0( zL=VjZlcp%pX1zHWMZL3_qr)<`ijT<^x-9f`g+a8Mu>DuA{Jt$0irg0{$u;N8mQS`@ z4}^XK3UI9289jjS4OO3N{FS--L%Gh+pOc$5475ub+UZaC_sk7;%FNwKU8oM`>eaf) ztbXc4a9Qh0A>qsMMjln!`8Wwi?aH=H7!D2BDj~bb9PqH__sc@& z0z&M(;mHi&iI&5v3CS#RhN$?w2UKX(jD#)ysLWl2;6^$2OnaK{%tI%p*2^BEq%1)` zfV7+4|GB+ws=F?K2tV5iNk|?81x={`bnu^ay7#^JvIiP$QFAo{X-VHFlnRP5@J3%A zo}RQ`xN+UTC;3E|pL~EW;)kh$2vR^XDsLaM`gUon@A&y9)#)=ct1K=!@4{My9wR3= zVE8Y_LMDuwOqiNYFzZIxra|;TG{S<#zLt+Ao9cwC1616G10!8H<47zIQTk*$DO}J9 zCPIJ1VWSS38RUQvMPT%ipykS1)W)^V{e=yLgoJ3OxEE=3M2Hcx>xM{!^P|J6gzGaF z%w%JvfNVYtX&`O{Av}VAEf4w$5GGkOAjz&=S&)=V?*C0O{7LxrgX@`ZR?AM5S-rX* z=%oQP4VX-kZCq8|xfO#n3=7$3YQnr7Ihtk2B4Y)X*6fizjwdo-+hj zl!=SJMa9M8fvhY9H&q+C2iehW-j3ON%)jv zP49;T-5bNP?sy^%ItoIyu+Eg$AjbLt!8|!W3 zQWUVrP~K^)*ShIrO^hQ>Rl=Hp>q+dOe#joCkK8&1V;{MPCb0o&02$B?ewM}R+zO0&p-xkCs9^bxu4{ za9W=BX9Q+05exNmkbYq|GaH;Y*P}bFYZ&`u8KqKoIn|D~kWBHE+x+&1s6<7X?nixu z3^?E4x1R!VP4KZ{I!iitRp)f3?_m3EwrcC6#M$l(vw7jVvlESDtvsW|aI4R9KHQZu ztFCZ8?#10fFZ2PZi^wE^`QKE7B=so2^>sV=t4RHM7dmmKQ($po8=f{HZa&9QsOePV ze}vA#3>g%^!=j5Zf! z*ClhDIK4+=c-5mnFVAJpOt<-tb^1;>^fWjut%fg(cp%0Y3`{XHA&lk=E@8M@A@b^* zGE;o5RR&6ZX7L8yjs?HfHXiuxun~zjb)U1!xT^$SWPR0Ve$LOGm#jsyBA*0}DBbR8 z-|90|dt!Fjbha=z(_OmLK{e5LF3NOYTCQtjlm4z)?axmLSCV+68gA8{0t$ zCTTuKF4}ws(FIHyL-@b7YLslL1x!m0a+$T&DYjsf_Mem-AcsbsRcMz1xx6b+M$#-5 zg`CV;FUoC21xnJVSz{N;e4L6)o2t1nghDlk;b*|9rX^Sa%{y=-&O*+&b&B=SiHSCd zN=p+YJ}KZO!kPWi9YO_I$$X!U51Tt4ld1i zq+(KVzSSdsIj|_7g2t}PY)w*Q?C_r9_{gM3{jfZAn6>RCg(15`oJs_FpD?sMP^NCZ z`xi@$SG~>pAf#r*b9xM2h!o_BMl@o!X}zxDMw8xzWthCy3hwy#MYPA zgi^y15+ot*H4;iOO)Y>#`qrZ{Z_em+R|l4NfMY|MST&NdX;|$bZ>3w@n)7T{_dr3# zIgB%g)!4PbAayvt9Z?0}*fKgfFAt#U{Wf5S@%*FC8+B z0CS4{e;O00=!_CPU^)mKtb@MLy%StMtmz^7huvw|S(NU82VVEu5d5U>5 ziC~7?K0x4sdUmTJRdi_F)osd^&umKd*Y#6AL&IAXg1f&&(AiAe&0CCm8=LNBb!S-C z{raJzZdTF0n5*kZ`R=8JFzeF(X`>cGU@#D}R@y(UT*Z4lWl8DVo)9FNNog5i;uLH* z+gUW-)l@VyK;oCQ(LEiNTW{cpcy4W_$7dIYQxDwGrV>(rDcES~99gYIxwaZ=Ip-3S zrccG486)4bVFa0RG*ab!@|k8M6|;s#sltFZI{AS2&<76_>6kp`0*iH<+2X!`iUI7w z9)f?<8B{Cz<}GP10wP)0+qle@14>?S9j#eHz(an5WpvMNmuZCM;o~fk2G0k63ME-< z7LLBQe3}(v-&W-5_F%cM>O-9|`pcJD6QiRn=7X7kx+_EmF23%+@35u!O0Latxbx~e z&8)u5Mx37b*`B7N$(2EQ?BhDDmmbk_&t(K;UvxsA)1ab{cY37~@)Q`!HoI0PpM`jJ zORxwilkk1Sbq9pVWG$j_wZC7-5X)NgH}dnn+XD4zw;P$iMA|&3-i@^#f5-bVxrb=^ zw0!OAsipLKt&I6g2ii;`s;g9w23e#(i%VJ?3Vw+&Vf$RK-Vk&Ma#*wDBT|W8VwCLU%5cT{ew)VnfKJUJaB*b9w~7>a6ML*W}g!H@CkUdsgn_2Qxk@!-Xk4O zCmz|qov$dlcb!(??mitsbViw87sBX7(d=KWwZCq7*)IS5E2K#Ox-&dcEq{Gy6K6e8 zhA{@!RuK+6s<=u>xJBO4)GV~Zb;IsP-ZM{4SAOPA5I96JkG{9vB_$^Bi1lhvf*Yj> zQV~mr2M(MSqx!BQJ`!5>jhIHF5QYi~!5VN=aNgY+&}sdm;ekJEBA=A|@+ENX!%Iny z#Bjoq+g#ur@ZQetLW2B*FunnJ7 zWSfwHwmliQ224E{_)?rHgb2m!4cB!&s+X}2HoD_QoGnG;f2y~v&wL;N``-cFy4s+4 zlM~&j983j1!o+u4yBXOa$a%YwB&id3@g8EOl5a7q&gDF#%NW%*^n^#zw&@+Wx>!p7 zUeweq6WB%2tC5lm^0x=_EU<(n4yW&Ze(DD+0={HWK4Fyx^Oi-*n|Yx{03;mVlKmNG zRIpX_0AN0sH>RPtxDpgPeCv}-Zjl)P1ulz82dI!q3x@JMBvZ*ley85?IeCiXF2--< z&cZ?N=^3tl`8F9|TsOQ>MmZZ%tg4Pb3!I8W0M)p-%btBQ=iP8@6#fL}d0X1rMZOmZ z|E1Y3+u4_Ma@0Ysut@El{}U@wisDFXwk{h{w^>#I21T|NfiY7s7W+MS)Y6Dq#Z!qK zDKnC`az*VSNxNW>8N95T*zPEb@9@MXXiC@(DxmbjI$|-vdU~iHieW5W!Dv-(7*(rd zb-S^?lD7{g$Pk{&!7Tai9BZXsMd#7>i_zQ$C65}D2@n$Tj;(1%7{YZRp8@6)LL1z0 z}6POycK9J|u@2s#ZfWO+TlszAZj39pjjJLzWPn4?YiH7kL1!MT~zYy8* zGlo55lc|V%2A**42Yg3Y*xf-l?g0X%psCl;L4m!i&MBADy6T?%C;5u;U{lXbjY7n% zM*eH+u3)F0HgoA~L{?)>T&w$437NsVVtiA9X{_sM`>_)k7%WreV}1Mq!dmJfzjKxxrn$YXLGCHm&xq2r?h=np7S#ItjOlg}dL2m1M8l(h0z~x~mlk~Fi$5mG z>FJ5h=L`Qhkum*8dUmK+Gk@#g2l)XXs9oy@F7||r@3|(&%>1|QOHr1e*fN&g^Hll& z6pdh$10{&fJ9h#XEShB4CRo4ikC?i@^Q#%!Jl}*3A)r^Kg39*2HmekuB8gMzn1v3S zUS_dd7G(>O1x@6aWxKJ(c+KN|!=ft!8EaYc%Gjn{Or`xLGlkYs9WO>!&-7x^+U8>b@UeMTGfHK74zrm)Yk{5ErY@@t9agJ=bX!NiR8 ztdK2j-V3w*$UKbd9-hFk!@u-NmTKKF5N~foFw1~^sYI3E6w~L8 z`0!!7oA~844-B{SdFbdFiuhy)!K@N!RhSZI-gOX*`*Q# zzpK?z_6cbT;ZMINfAbO9xO2@>=;;+^dAQ?6d8lX4VX&Fhw}QDLnixS!$Mqy!e?nST z+|4Y|gj@6Y*eUGYj8!@iY_lou15tq`&Q>Qsv92-*S?+~Y6r#bw!M4~?q15KVpk^&T zhmC37YIUSoKn?prpz%cD?&!@u|MNbJYen!uVb;!(Rz-ok0ZjD%I#%w6BOe{FCRuZ&#{ybN_$ZRv0Qug>?=gVlC0kj19fA;BEXm+Q^0#h$^Z^#G9LxE z>e%mP{vb(!X+bo@l!yo7Gq!hvxDyTn&jdkSo7a@QFiLdMp`i-tCOq#%4ekV-t-ZNc za(rwe?rSVQvB@^JtA$0midm;G5N0t+eD&Diz9ofwPSMG3aTx0Z5(D9BPL{KqTDMt@ zA^v$BE~61%2iM8M`OMPvXiv_E;*jZic_~o=Ye&ysA@7acG%f8-!(+^8U#zn>%*R6e# z=G9YsC0)0H$9bWKs9C>7zBv~e*E&}mhwuW&XR^(g4`>ba|!Kci7Fvtq;Ky|7?ka1De~ICX&lZNHE}*V^6rwbtiV87 zhJt!zmL_hRr>%KU^&7gXbT-otJ)VOP{clmP9DZ%SN? zEo%95e#jgD>}ogTYYDtJU5r>AnL@XcY@#vz!l&6zre`Da`X+Cqj)RMgX>UFVX&V1R z#tyTsFUWw8bE@{E-`EO?7CWwc8IGdId&DYR!>&_I zL(gQ(7r1DiqqU&vZo*YKVB)R+=Ze$V^u#c|8s`FvNFj2h6MWA+oLKsk|G{#P+5v3IU4znD2@5FlpfcNpqkQd?k{M<6RzX# zI`nlrOHooLutb%QO@2uxojtUbByDsfp`P>-#z|G$L=%qdN_Q*D!U+XYE+TzB28Pvu z@&X+ZeY>hJl*u&AkVQW@tyy**=D26o$=59E=yBaEy4>Uh6QEo8%6jLlZ6C!*<}yQ4 z>VHus@+%Dsx@%R_7PerD+{SvBOj*1e$~Z)WhAy-{sHDuLtxXHvbPD=m+9z=w%UUG9 z9yo_YJ~pGvE#d@i5g0j2i!Fs2YT7rD-UK76u^ndG>aq7A(Ix{}Gd5AUbUzUG?4_b4 z7Mh;jNI8dgO>=KX)>3+ZfwifzU6iq1&_edS0bbjKVH%k|SCqRO^|$+@*+BifAq$NK zNp?|=q`&maIV1b}W5%X*lR}o))bz5-YD@L_I@(&n(z&i5F4t&l2rX}a2OJsj+cC0I zCln&@02ia=gocw0UCrG@#!39I07gt-l{40&IO}-Z9e0q;1#S!=2+&cfaa}k*M^85n z>*L~SKIy@eZJ1&5+0W_)XPCb8(6HE9+6w!h18~yxlU(9O+oxC?Q zu2oJ?Zm^yFGQ}=;DTSwYvW7Ejg zm0ba+SWAkD3{N-|O-}dCjCKFGlrwU;u9^{S=W{0e@EGfFYV6mqmI0a}Sftg; zqPd}n@M23L>~la2%>@4HkeCc3sCfu_5XS1zg?q&;sbS~kpBs(}ab{v1W{2B2#~Oam zXK?Eo$SwPLZ*|zqS9bIJxFwo{gzo>7rvSPr-*ukvpT!^7(0# zg^tAZ=?2*@E-h!D(V;2nw)tM~QX}XdHGQrg4G)nlJet+5QrCudn=`5D)6!&e6WrUh zjr>AE=vFD$zNPKAqaQ2YR;OIqx*J0)B;p{&fWDA&_2w_y+ChL4TH}x@(sTBX%#%k) z2SRR~4%ri;rkzRE;}ZX8+2hwwVN{u!8CaJ3uA))uAwjvouf&_Vd3d%jN5D}w5a|az zc;?rj)tSp_t}JmDl6*_jhH*e3cUDNQ^~nY)6l}I~f9Pv)daUC`vw9P_W(26z6_iW<+{JtRl5o_HVc569 z)i6+=#JbM>21(CV_DQi?o#lCn+h=3WzbBFTqLk%(ZY5xzb7j{vuc=8>PSzKsC+H4i zz{6Upf3NZAylZ}kulH?eLiRNuLkuB=;eeV&TDGu)EQAUB_@*EK!>xG?6d>VvJ1UXS z5lH#dnFMIYa0wrHmmf)~5PJnc*BeB{>`fIS$=pui6!Ll-C>V=74TlD*UN^ktJhR8< za(`IV#1$aMF6QA6xM~@bMCsR<9Q0zp`Xl_UUEU_N4aglME_zR9OC{*T_9RY2I#dRv{PhC_l;K5<3B_ zG)x#VIl$rh0ZDdXv=<;X;{)h+7|Asei?BpAYW~^=&e`h=h}lE~oz%yyzu)%@V}pT} z_;_N3!2ccz&tf30K|##>exnP{PagarIv3fu_Lw2B=;;Q)Ly<3qG8$@uwBB8MXfRGq zSxvdBSy^ErhA{6cRDG&^!jd}YAD5`&)}XZ1>QbYYU8m!W0l2q5JZ56Lz`D1y^y^o$ z?dxN@dwNa*{(Oi#WUKFw46ajPbM|eXVowd1{_ynhI9xvpsPbD9d`Jdk6EIEWbYQ5A zO)ZHB1rt1UF7m_E)m6sL!y|7~b#~kIQAVFlwC(uxa2=Q;)P)Typ|Q6tjT9mmz{zN@ zSyb?0(QZ-F)o7pX_6=|=tkg3p~2&b<->DS|1smt>v`=N7j2}4 z55D=BeKT?@y?^jdyw4?#E#1RAv$G;2pB=7C?Pi>6D!gKyo07M{m;PJQQ&wzum21Uo zEwSr#LRPW490ped3>SIdKMrUod@XcHznqLC{|RlCK#RpVPTZby{seOdqzh-9ZTW#T z03^SPvW@rA(*&Jg4}E9v65JmZ7F|!0pJ%$-{EomsI-_O(cIW)ON*k4*0tFg0j-kz3y1?;q>RMeTVi2SlA8crj4cdbNUBnYkRJq zb?92oxG+fgmbk^?LRZnN#k%5b6Pc6C)!*f&u`0L$nw;t%$7tIt8q&7)$&T~BFXkfr zi5)ug1CzXyvgCT+%hhk@UPmZqMWzoF&3+w-Y~A+G>UWj8a`#+6n$<|Wcr$S+Z$wBS z#K6oj?d-)YWf#Sek-0%5I!`ncC8|{RE9M3fLd^_w#C*n$k{kRuK>$Z%Q(kO5yenQ> z2WEb?quK<1P!;@5u9l?&u(hC^aXrR*YPQ_+md;+li``cx=X6(P@HRV`7Nx~Gs&4QA z1b3BE7$g1mI4AUdQ+36$GrcJkE z-%@8e`-azP3lrM?Ttr`_+3|kpZ3xyJ|C6G*=c;v-jNFaKRBmeE>Pr}x_?|&Ygv!ik z5_FsK3eD5MZ3sB^(`y1=?fy!pvH`a3EK07Ybp=9AigY?#BzIePHj92K(RF~!SlBCYI z*=`Oha#o?09N>4SW0D2Msb@oLblKa;41qZquQ1DrF!O*qt>KF^h7L&(=mPPj3u|El zlT`?F1AAD_=`oY!rvZ*nuoVfE>#(GPO!DjydmDlBnb8-=HwctcO=gbr3q;T01mKo2 zK#PNtl%faXm$lXL3&k{?)N5hAv+hzM!K{R?4gxdQ@jy`l)dJw>P*Y}aMjwxsEPp47 z)5kD$TXS3@bQ28n9Q6$#P`6WvtCpzb>P}Sa8uFW2qgEw)GB!WYTFPzUulmm4v2jSH zTgDDq&94dy)&hk5^jH2S5`q&BLN6*+Ik(~8!o{Vf6GKBUpyCZ93(d?%`?}#3sZ@x< zNVD637n{{Nw4?52U-b`JOm459?REob1AYrvPgmkS^m)*F=|lR^-;czq!@mkDKA~?U z?aeHF$I?Zjbq)?X8+OzwSLF$ur0FUX)D`wl59VgJ5TKA|VK4SC56Fu^-A*E{2?v}D-sK|L<&Oky5cRF-OXW8+mXPfwD<{1vZJ;66KgwA>k+x7RGT zio+W{S@oOE`uEa<;MA;s_xxDpuu;JoiFgf;zUI_)M_+G6b?N1v?o`tV&ofhQPlp>l z>QcXCA8KCYBNJA(d#N`fT-dxY1PMbH*Dj2>2i)^(xnx@cTyU}`tc(|ERFJW`w^WpS zL2Ye1XS{;*N5m)H#(AC#pLP{x-l6jX_1ZuA+ZCj)E&uwtx!JiD$m$ z`}^pyg%~NYMj9&s)+*I%}D8U$Eevgr>9r8 zT=#U{!RgeTZZqZd4hZ}2EGB1Iv`=7sgj@LTUM)+}`(S^tOhu2xnFl}q3hpY?194Uv(G6+5|vCw zI-b7ElqFkr?J0tErfy$L;#-KxAW8DpT0#jOA*~e)S$6#9&-DQ7F+o=S6Q&x0t)%jT z*3j_pkC+3Odtn<&eMfuqh&iYUQEL)?T7aKO6Hah$Jt|hV(zoWj!KZnLE`QS2t#>y< zqWxsHsn4Gd|CXkJ!6mo;gxy%cr?sY7)|Y$Hv#Tw$O{UX-r(pX|Zwn7x#J*wRyZa9L zD6U_xEWHW=v!Bu>!%jDEl3Yiqc+Pul#$X-IQJCpAo%vo}rEDj&|W$%Bsna%l;9Gw^Zu0$*#$)rlm8gNTD(n8M{+ z9PBC+C=Gfn1EDJ4H$hMzM&awm)MH1z`YN^b1P}s53ICcz8H|W?@Ug zzSQ2+`v%l+xy7ZZhVdp~E_xo|418&W3MwSrykxlqxiOi+ZbfPsfVPa50~zyxcHL&> zrmOQp_95FB?}dnhIOG@z)u<~-b{+sMb9AzmkEy-$!&np9Fr*ujhv!OBh^2F09 zti5I~7b0O3zpRNuu(anO7vCL1p?e8l8ElC9*fS_%SgozCjG7v>04I@ukidlAlS2EX zR@b0rN6I#aTq!w#@SrxmfZK%xvp@ZHWf#&!-^I_Oj=Wd#4-VKrKO#*J%~7VbZzSOb zw%HY5he0z|)Yvq-q;z5e_h{ug^bHI`68xHD+Kz+_%6@uu@_+nhL{E8SuN0*yKaAo= zE>0yAtXCWpC_ZHx6@vDN-CQYzw&lcCD*0aRrKNhUX~8WR_+4pygYq`af3Qab1d{xc zCB6XWwHOWlp!O|zc`JP^jZ;_q~`wCU`(26oZpx6X=+>Wob}sdjaT@$b~BdMEau z4B8U++&prSv<;)ys_|<#H!@beDlK{mN*@7K=tq>O|DbgwgjaXmzOJSAB;bO3eHmuO zhwC_<1Dtq=LXP);Wva{*f-1D<0xkpp00S*U3JQ&dl5jK1H2i&u>gPp-`KC_$F9UvYvb0DA*4tx3O^LJmD{T);&sEo@+fY%Z#HYC;+ zU4Lk~yJMwq?x9Hfbb$Y#c*|%DQP!n5XMdbrf23gA(WG&6V05>$$1c6q|7fKaM5H=& z&9Dz<@3ZUsGYB+jnM(W?2}7>^YF0qA^Bmdm`-J4;5w&I`97D~zi+M%*th3!&Ar+DXv33Lf8eSu7{w#6c5cule z`W5nWnhN5c#O%e}-!|q*Jl>(j{i3t^a(MF#it)kjD`O@esS}0QzYe=D$YFE~)=OaJ zSyxvy{#SE$T4Ige&eq49*KB7fl{drv5B2+7vpd7l#+FNj9&l@wN^G;gj)jb)WlR`4 zB0JKao@U=!Wk`75BxNP&lqkMeASnM&GmImq`9Re7Tn#QH)0QfOKDSXYZcvwUJ@@g3 zGXX5>HzTeD+G1icWwnXQo6gRd(hME5oY?M$$&s$r*~4FllK&WK!)c|nfx{6iUji|Z zRPSuTz;wq<-@BfnC++h$_@#!~M+l1Tmkbav?C~4w8tOR68SHHJh$@t^Z{XJY$1DIK zskom~?D2xOnL*>W=|$UOEf+7mQD&y|ZNJX66v2g{ri`pnoT2dutVzu}7p{)9w59M4 zc>G=fF%-dmB@jvm5O?CG4+M2a;_Ok{9x{u893ATWOdcnqsJ~o2oL=SF9d=O(c+RXk zkDP3q-Ezo7s2KrfbiKC_p>JvUsc-<&eL`tW@c^p1$(D4@?3D#=MXvq}A!9`5h(4Ls zZuJ?O5K_9ZM9y2tH(D*w`|qzMZvi216)6~FjWAy~HJ3xxCC4Bti(G( z*h2e;20niFkHjk_?|;ydmN~rCE0HM+&o-4-|X$9R4uso&$DM1Lh9kKB5 z!u|#knrtFCW}m2}UX2Ss^PBsOLQOEe)ZlNR1g{_2YvOdv0ZgWzWd)_?|Pd^%r_aRGzJO`=+e3sogYR^OZQm;ewHF1$7Y8eyav1eN~8?CyPwvdI#oB38Ps6X`<9-5rLV_&QITxt z#-(ZYP8oXBx9A~gn6y-g+2!0?Yg%OksScrp-~0U_ZNh>7Ui)8-*@-$%FlUN$zSnV0 zpwfRu?^_Fb+^DXiK|EuWb^osg0NfqoG1S0G>!mvVa@+4C?+mLcsti^F+1bteSP1HMl zAoZ!^iAvDw>*ogz&w)2HTo0RTJ2MCRMjQ2dURbk!m@T)sH#FV_ZkzW^*QZ{nl3$G} zAY&;+7A6wY_mnkzj~QS`CX437-CfEY;5)W|X-B{7V$n6QAlT<+IeX;qTp?UtPlSA& z=k?)qr*g=`L8Kn9*WtVRq3qwkjY~v<&OLXDJr=Av0psFd%a)hpHH6Nn_trIM**h1j z;>01;Ec;_2V(MeQE~AQpV9V5k%m^cfCrn4$py7pl(A<;BZ3;_~%DuJR_d!&&ebY-Y z^Vkj!4j!7#oVI3-Z*)fUBVx-YlR4~g zA6*(~%HRfz3*lRIcoNPn*D6uva!s_`-R)8|%-`n9DezK%vOnVXdu^PY5Pt_aEF)45 zoXvN0pRUyRmfZ&0fgwhe*rR9ruOSivBR`P*@wSY(sO@S7Kh z($Z@o3~2rG#R4MD2{IUk)P@19fQnj<0m2H(9aNwh4|Brc$A#lKJ9`VtHra2kYD*Ww zddYlE5e$?6&rz%-yS0a#*8p%`?nMP8-4UELhk~j8YGwww8!`;7mRl=DQLD90HfGNb zieUfSC712g_}mMH9utKy4$d)!^;-^*!-0|hUP zHTh}RCLl?HISnDoY)KwN^Sh-Ti%1p?i)z*7tcdQN?0&Mm+UQ}KD?ixtkP>QhJU2+= zp^6?&?n_BYQ9K|O3-lefQ&{xjKC7I`rvY&;X^zv_ja#PDS=+4Y3Hs_@=fWLikR6#R zhIuT@Mn}pV1$64RC;I{HWvlAZkSLEEZ^#uvSsnwJC_U{%3zC5J31C9u34#t5Lkq0& zu<8RcH;Ks|5`{yN%K!+s!;npyZ5!?y{pkfk`WuqU7pyosGYxGuL3{I)fM2bW%)5=s z=^p>qls;CKm$#c5HGxZ6k(pKA)8BvO7!K0JpQ+n+k9qMsqJuflR#n1#gryyt3z829 zcaT?`Cg*n~Y;TBxWRiyS4+o_;S1ZAQhgqApHp+MwosBbjzzaMy^SkWQ%WA8D-qSnQ z4rVX-7yEhfs*%w9u~u+{F|5Wt9)%E+zNsUZ$$l$=nHU-cmVZqR={&)_4CjD5Psl$C zI-eDgUVwL$_>H%LieupfrXN9+0B|MV;uS_As(8SPyIuTv475R&ji((BH|~gU^wQjS z&O>}lZa_n%&!4FQALzA8I~#J-wq5=@diDFR%k19RtcSg^MmIxODFAZhS0YGQdcJw> z@KVTkd^k$b!Ttv-=f)e2aTz3BscBQYZy6`WmGP4 zFFK*UPU~1v$sJ;gIP&_!fI-_K2rAmqG$wsvM!LCL92^NnQvYu5?dlqRIMzCa|I$-K zGahe6nKaP3!S6Z4n)-r#a&GV>kXUOQ~eW2(_Q z5(5^nU!AuURoFA+x-0&Oyn5-(*Rulv9PPrdMjyYlGJ8vZ({PLVfP{ai8{4dbb~C`> zj!XYN=|T_bRc!Y|*Zr3>S3912?JP^@kutwADG%K1kmj^_@sJ~Cc|WWHgkt^yXhg5! z(ccBssGPWXS*TYq7+i%w8OSKbw7J_Id@ZynT(HnRUApJk;>v)Zw-@|nY1{3oSCN!i zvj8CPU{V+N!*OxJ!?Exi3r>O#olTay4GrG4=c=`?)h#qhAnuOLOJi0Yrw!Sm2yYiO zEQAFBRaPN`3yO0!XrE?g)Z=f00;lbBGc56-_M9wy9ZKGJ z&Ls}Gsm<7ptseLGZq;2gv)$lO}4>z7((}PTLavdXBG_SbqrWvufk3E~> zGjh;>seZ6S{msTDC5_YrqOwHTBG|OFp|dRFRBBqtNzUusZV_{9OMrS9#aCvYW`0ZI znCWcE)Ih=YO@=LeJgXHcM?=ci7iSZW3`bE>6gZmG9U_sI%hGUM=;W%efbi)f4E(}o zuV7UMvHQRQyUl(KKiOqvhJLxHCSNvwuF#w^vQoUF_NBET-(hC!8B6BPK3Oc=^$<+o zzTXOlQ46a>`R@Ve=)2NVdo;>sIMMd^)Wwet4Gmi~AqYn_{D1-d?w)$mBdUfRw`lMg zgnYx~&tRw{sHMlc)ZsZZd9?)t#h)|pJ%U>yibr`%9@U+NW+Vvj1rU$?H{HEPXM1zTd^j#XV=+PQ?(VmfOFInKxQUYB1@+Nqm`PAjQ~~Bq z##jK|IG1ADn%9S{0Xn-vwVaTt#A8C{CzI(pc{meEFC>azeDy*yxegi-ht$xKPi{UZ z$+~!__6>Q+RvKTDyEo+ph_GbBL>ToSBFIPPN^rv%C73j zEvN1LsP4A1zAUt{34EOWQJ%5@ZvvZvJpV>)A*B*`9dsLC*B%MA4Om(Bg3F z{P41nN3u zj-GB!&crTf0|WFg30YPLa#yv+-X`({rDBPY8jxS02L&&DF>&M-;4a5$9nAJ@$D>`m z#jGUQ2NX}xUNI~@bZPsQWOuZ}V0Nr;tFHq4h z?J;YxHxCwIYyE9xUS^L>Sgo)MeZSPT(0&EquFtcl+@xRr7YDps)f;Y6_$qPY!6Ip zXc$i~9P4v2`SQcLzrZ0-_R9Wa3mNmdWdvo4Du}5)QbZPLvRHf?kD&~mA_+}>W10pxS@ULp<~dQ>M5;5D}{;Z71AVUdOZ*# zh9i();#+WWJ(jA@_|3MO0&8HZjWe6E$=v>N{$mUgsH=qek6;u42jp*TuAnajVi zyuPq2tO8X?X8i)%-;t5AJnLb`8bBuJ$%@3 z+GF||MO9LsnoA=@EMAC~+qq5twJUHvHIIE&^+lirNV*i3@#`D7S?D z_d%l3M>d68StNoCS=#6h$)KiE)hbMK@eE?4h$KI(3@;oG7I?sNlFG4`3wnUatD3t% z$vNLvYK9Pm5wZ5jf+p2qK#!4Whe9ZLM7ds$ne0?@IZ$0QtReMj@0p_MI|H7*-X)!# zo$jrdrBjAk_nQh>p}lXthIejxKr6kOzI6vz!rk;!sFz7**pNfJGEX}^s>`qLA@Kot z2FPjQ4nesVeA@Lyul?ECyM;69py~5>J~__XfwEw|0J)WrSvFU=E*4}2eY?2{ZQ+xw z0~jtQC`3a9ta{tFw@_0psIG84L%LtA=9xFR?5qROmF@_T*j|0dy!%w?KR3Vc zeazfJR<3E#IK^#U*0b>xYjL?nUh+{0OdX+vnlOULUQp&7xKz!;55C8lU0|2@`pXl} zt!-ad3Zr*OX;NIJ-~Cr@ey-2NY-y)m2}5{$_WidnLix(>y!RN(mj2SFls(*28GbL@ zNGB=jXVCWu^lXbNy{gH*=)0#)u=u5fB|Wn?zl#Gf{K~0aSZ91#Lg{_o>9|811I5&B zCFFpYPrNdOaO7SnBcoAjoIihtkE(Y#GeGO7s~Vr~iR0_c9%qfdiShRtudLATR{kWj zHx<7AD~#|(qQ1@FhB~G*A68lwi&L)=+F@Tt%SeBc8*{^%(6alKGoic&h7U+Q?|NA^ zu7Hh{Iy`;?ZU5ED8AtxcOePju7NK_r^JB#D)(~lf0wLnUJ zOO6A3=#@-weyVgnXE$;fd`9!yrn`C#O=kx&he8P8u>>gP9MAza6~C#K^P&K|9o?0xnyTpJZCt)Xk0ci=6R5HhF)peV?eqJ z#=eZn6}mNZeg_xLw9eeAxpJSrm9pp29W-kMmx&oZ?|yx7!u|#20C>m_uQtf*D`I{S zzIPjuLsp8N?G|x#uWytO&A)B2NP^Yr$7HsChDC!m(?l|@B$D7M)Njcr?jvo_6 ziAL-UQXJQnAnmu%+-}Izf!!CzgT0w&duk~Aj&*4$T=sEypN!Pk%+mWcJFD?IgT6+Y zYtU{hR@TV>!vvgk5vO-hfWyErU_p0jX{j5#e_+5v6EW@ubINAqSm6JrXp$>Bc$!5G+pDm{|*xn=TK7WaOZr4YX-vVTm+5<-_@qv1yfH@#7zff0;_ycloZk z9~DcC;E(ZYtLq+?ypDbDg;Xxdu%lq}B3@Gu8ZcnHzlFoUd-d#7PzLgtqh8s1O3Ku7 z9E7kRjq2)p0;UAa2ZDlL(5>0g_RY1RP%1tB)zML+x{R{=02binGK}lv+dG&UVAwj+ zN|(^h7&DPr1M3SpN2tmCdYT6o5u{}m6;<39M2c$+PB(PStZmRVJgn=+WEpp0DigIU zmQc6{fICx{jZS3FVSwPlhB57B&{G^|E5WlgpxxYBekx+AXjBBRsP9Wz?j!Y>!UXM7 zP?xGOk>Cb$q938?{@44M0IPYPHe^f{W;e15Fo(lhv%?Xr<`j(iRH*_~0T;;~*1fHEK)`?n4kD+|MXJ0Dc44 z%$`K}0`6l~I9!YPibZ!TS?voBfCph5u@Y?J-!}^|GdNGhkza~+g@v+Q0jfwtZUI=DMp7#}qoj9J!+5k5*%0?thi=Tkf zH~O+P@mTU79iC=8ZFA+|R>V!sey#pz)v8vt)RcyX(agSHH=obtHt7v<>^LLITl7IY zi!-9vDpk`U0K!STmhF0H|1lY2b|crf+my7CrSVjmWgqvOf}X0f@BXAe4kJxYKgY7y zkw=S1){?;;e^XcW0mgHaLO=aJD#Jz=c-)t9{+QOWMX{9qR}dIyF`3_&9$%ZT@3Ffz zXhhW$F3gVY-YM&eyH!ltp+BzqMMjP$%aylK7L?zl(RvF9j1i6c=S^Q9)~NZ9U&ndxNZs!}G1<}8 z@4XzDjUm@e=oB%}eDC4#?GC#$TVwp8IeR!ity|m9e`@M@keB9^->-s!oSk;YE=z-} z-@!LHYv}XW5aCfFWlGe7PsZ98zKx7rf!J1*YdmqR@QikKjaMvPdh#-<2V7ut1d{x9 zU>%))dWhii-Yddh{1<75u;O@TfOn-IcI9iy#xvoN9sw5HQU*#H(!=Zq6R~-NdNYtslI^~k)_th zt!9527EOK#_Qr;(8i?V+6WX*W11vDLLV2sFX4|GG;@8h~{e7x*$H25%R_l%gqqvRG zQd1tU`l%CPi2n)kAi>{tqepdyveTCCHx3eEFIO4a3*M#_4(6-6}yoK>M zTXes)er?P5eDtsUeT5sRH`T6SU&Q1@HwjQy$$esJvRBUGqc~r}Vvg`FOQAQo{WkTU z_i3Jr2vCFDnDumn9Cc?&IJ|stsOX>r_F}6dg{Z@pUAL`8ZW(|^2p73|^{jph;4`V) z^iZZD6lHHbnbn5LZWxQJ>;z^B7&l@)w#F|hMX}|cz&;jqRA+r1pmAlug+Tj(kT&d? zUi6W&+K?!i5m4Tf6AxHLww04}-`t1z1N!<>DY__6G59iH7`~PkR6|)-=dOKM5pw`4 zn&X=MoE$71dNAT8$FNi)M+8F?9_ao_I~um|D3dTi2FM28a%dDfH0)C$2q0sSQ;YSC zBlcO}LpFfotrU!ri(H2iG04^aGcurkW6|^AMnCtwh=<*UgBlZahJ^r&WB2k zM;+DwS7+?S@E=-eczD$Lkyfla1R2TPXY@sO70u!SnL2pyDjOH8#^tZ&J^85~^fh&X zeQLE)G^r>-b6G(?s%|(&1|UU`-;NI@A==P1Tw)+i9!3f1GhT_s+sNu2Gt=Ir2T{mI zPKESzUwYwmJ?4cFzwn~y)j1@yevlixnfLP$o-ByJ!MAR`oa!N4G3vFTW4;t$m4ogp z|31IBUEkRBV%^lmrtO78K`yOs5?aEBOSn!bY;N^&Ys!B*x+viHZDxiJp8?CLu-Ia` zA<1AiOG-CuQGhFw-Q&JdS-oR3f+SJVQUXXmMa1Fybz3Z#~;$LCwv9nd`bM`hl#_icZ{e!bJ=bi<#-DoPK=23x}sY@yT74s7A zfSP|@db+)%+Mg+AemB&Ha3()-y+BH}b0-KINq7a8?l(P+%q5uB_p~H$3M}F}LRdI* z7gH&O9xlAQ0eE+Heo34c(A%?&`1J8xJOHyk(-T`7hZ{vIWY2_)XJX0yk=@Wa>T05V zl(qgvAfJ{vu|GR#qdpnVM^Yq6KQ~hLNTk9vq?65Zfg7oiRe^7cLxU&}KW>-Gl-=9@ zCRYPwYZn&@Q469S-KJp5U0H>@))rf}>+2Xvpxwx<#zk3$X$MI$^_n(_AZh)Z9s`Jbt#)#Uau}B8pWK zQg$JF2bX{!qP4j$==J83I^6$4Br7@v+yD$FXl+vp@R!Hkb9O9au}f!yvaZ(Mrm)bcGnut;kWWsgqccLM{~c>5s7$MMF>%cmj}_9RgEES<*{ zRM=-s>pJZu+*Di6w_MoEG?~7NMD$^EwMJH_e@eLhU0yb_K9ecZr|r1AV-bJYzC8RA z{JlW3r2kJRalmR6=j;HNOhdug&&>|ycLjDBH{|7QHyX~oLPd8^j-EC0eTon~!BE-R z{bg(=Xh;QPiZG=Wy1&vy{E805o`nOjSN8)H*5VP#Tb`TdR9ll-0D1+II}mVj|9h;m zGVCv7UbQ)C5dC(i$RpWBT~o7eC+EBVEJc?1J%vOln1Me4^^ADa0uwU8j_p(nURqq8 zb%`1w@GUuA-fIDMw-HCHuM~^h!Y;`O zF5s-;weMU`F%iY{L#zV!o}5dp(D?>M|0ExFg5YgtC0G4SJ*LS)L|SRv?A_GGUs+n@ z*w<53sl^Qc$Xx+J22mDNCJ|EB_CfE)MR$W^i^#L>C#3zWoJ>Y%hTLp-?unXIW*te{zdb?t2NiPdO2j7zk*jkNhR!X= zHS0~T0A>^6E3nqUx2|MHJE5ZLxKBw?a>_dsDIrfKT(RRG zxdxr-oEM6mBZ(305bEaxQJ1xMY*ZfeaydfSIkZiU4dNaFY zvHB7b5sCMi_+%aLb&{rXaoUeKrSQ7e@4lQ7uYsI)lg8|%&+Jnj%~nlu`_R;vH!0rx zzH#v%V^O``IDdU+A$aloFfBW@m$e`x=(>SZzmi72$8g>3bX}w6GWONl#AvDxew{XM z40Ra{S2$m%3K6e2ySb9N_W~GHsaa`=^%>fI==z6m_mc$3@F_jnKpr86Sfpi-mm9WL zo}T^Hm%XPH8ZCD$@VlU-Lu^At8LU|1m1}KcP{)h53sd0gKEc z$-cFK$F|MoJ>xSM!W2ni3Vayq-8Y`>BX{4e zqbZe5S}N*POJ`H|YlG`BSAX_Q-a`4{D9LX1s3>72)x5KJTg<662`Ed}Of3|`;`(8mbt0JLm~|kA08nD-32hEc0RSex56A;Fg+sHGA11( zp9)EG$O4pi>|*{^Bh0%yQ|N?we`K{~EmaB74K^){%&l%4GvIl@mt~E8eClrNSFSUE zd}gYp$8t@^Ca&aMoN7K`GInWYR$cy)VD;>p4ex4h;P~aEu2|POwrP4bgViCS);?!o zTN`RGPF<<<&F6;eqc$#N*GDA7q8P~;ACcWz(H8!V^3@0Kn(HI<>>X87rH?mwTMz4{A!li%1B z7)yA0Hf#|w{qf*KjQOMJA2pjEB>jj9&?tWn8rICOwi#)T@b+XA6^0lk^y5ZDYy!_3^>Sr~l zMg}ydrmHV_MJ#)0u^2v1y^Q$A?rPVOO(uLD0tKi$Ldvcs z_3dizD&fb52d&{P;M6y=qjq+a(S3^D;o{=H^t|6w-YzckfeW!mvh0$)zHXHk_n;7V zbIkdV0~Q4=U#|69i);QKd!x=t&lZI`&6!Hm>7V|bkvjY*Vkr(?H20SG+zL#j(;>kr zP4}J)uE73eAB}5p_1PUE3z@d{QOX?fC3|Q7c)EF8TsRhRU|!{sJzI2jo-qUXWR#8V zf+M@*Io~9F=O2;uy+iPd8_ZjL<5uufaix{rOILAAYAJFyb2ChjCxmqHBd4kAT*v z{K{xHYi9Cg9S$W=q>1%RTeXdC822^A%le1(VGllnq!q+la#XxIkYCzy5sBXA3}TEL z`QwUudv67H@TF6Z6BvN^EN+Z!aTwn#P|TGPkJvmsy#p_oEYKS z_5RF19Th%*Dm2GSL?~H}5lcydtO({<7(_>}fi9JtzcC>@Q;v_1AM@&dgjB%8cB!#W zwM?=Gerj7w&0u!Ll2a`BHPp*7Oa@2RHnpQXA2H)ktI|J$0*U(uOt+&nry~qkOOIN` z?q`2u8vx64+1eEwS^Y*;hCy=Hr7_~-LgqyaSY2$)9IAB}!_KkN{G%>aBl9{2*6$)I3Mv%> zkFF!{K8wuU*)2)S8bKt*wjT?&RA< z6tJ_KTuk0W@I+DGZaRB(dW7->OP8invM0pHRJ5rVmSpE0506lQ-c*P@yt{dodA^s2 zi$?r)IJ6n=KT#0lJw)%70BQIC5q0MAQ1^Y*|Ba>6YH1M_X^^snBqdamDOzX}h00Q5 z(w?lNjfyaeM0Ax>Ba|}AGFn8UREjj&LnZreEYJD6pXc@bb6?l1`>Gf--{0qZKIgm- z5M3b_ud;X-T4&*^4wQD!I*iFPSc-^3Kp+URs~{_D|;Q@hs6 z+?O_gU>$wYOexFoulcdTl;r1EZ2Lah?lTJalt0JE_X`UPXDHZ8Fk7d!Uv%U}Jz+Sk#s()B}ED82eQwd2)9fCs-oqA6Ia zaHJMg7WngFF{3z=x=*=aCNJ?_pL1!_d;(R+C~_zSgR+9s*%Pit#zwu>(T((R{HtE` zGdNlitlV6WEV6_%#au=mn2YtPqI=0m=jhtk#$$iBj(u|+E$$wSb7~XzV%ZZzr3$Z< zNvv8Ojxj>?1JQ-hx!a^apx@m zARfb^aI`ybWV!t|XBD@c@Yb`w;oIX4x~g7`3?_^WG^i>x$r_x}NvDcn(yd=QPfQfB zt%;zX!l*gYV@)03(hFHewTKrY|E0$K)9tT^>u=8qmcQ&A=|!2GOU!q%{raP<%=%`t z{^=0^TdUQt90FYGWh|HT%O-K0+l!Bp%3k<#Gs`_817`Y_0`D4E)`xN%?BoN4jdLh^ z?pO!op6k7*9u365a1?Xo=xi8~q0lpUN5k_)r!ym+UHv=X&S9>ckNwhD6bRvGfC8?| z*oYWW<3LDckQK&t6OshZ6UV1yxTDUG5b4T)$llFZ(R_mG>OcJJjlx)`LZ%AGv#m|X z8dIF6`^3GmX-#qH+*2Ypt)dHt-&J0yUrB^)!4lw$#(-6EGGo4!Zeg4ZK)h)cCD)vN zu9C+C3IJbMQ}@s`e5Z@f?r{BRfRq6~54a%1Tr*p0hky*( z->>pP9YZE~H>cI$091=L&3g{p=2Zp$xegU4KUgTx zd#n90w=a%-bd&PfthD}%tkXw;$qbs|omlj6Hb=)g2z$4jxsgG5iFI`s?f*!gmO$2* z8Zht}LU<3tMAa$N5(BUs|C~_5-X>1>?6sQIX8yA+J=HDYeU0$YHe!QkG9TKGhq1A7 zLTU37LnC9q!M8Rndm{E!<~XEzGr?-7cC_RQ9HQP5p9NzRmkX3S_RzRs2W6@g?{B<)P?!ptAw2YdiNCg8~%5*jEr}F-nc_@!eISr%QX+TcnzRXZNEdaoiqo z5O}7bw~aFV-n8~Ciy~SWs2V^dF9E=Cv2N@gZv8SMotPMtW_p;f{**vrOxei%3~H~` z!n+x+M?V@AJVv~Z_H`*1TyLip88qJz;$a9HC*?F1wr(V|y9=&!6n`B4ynC@>`|~j^ z6jRGyjdhQW#ySR!ikm{|`f+vAD6RXt$;bi>6?j@y zi#@RM$Z@kWRiBD&)UM?{URC}3p1H{T^F73UhX-z*Zm-_(?2PVYlPkA3FWX)t?6~@F zfo4vFS8l1hJf8~!bD^qKp60{JxQSxXr>yTo9HeZptLb>jA zJ-n#jPr49g%TDZ6z@-OaYN^G5Wv>3 z#GK|bx(Hu|jtS*EF52YJ;dtSCcV$jUaOy$*wTy)w@`uPVYdrS$O}FlyhZ;^H_bvqm z-$(@`yP~Yo?t-5)41?^$CW7NzWb`q6V8JFugZzUHo{6+01jBg)li93!e{0n_lC*qe znYmqLG_Ey~o*2mK8yUh9an+7}AIEe4rZI{1;NtYeDHA1}rUvHrzkkG4wv#&5cHA?i zB5no0yJ$QPpD+RpQGaJc?s={dv%(?_K%K z!VG#dQfkGmcNTn1out`fI_8?5r7QdW#{OmIfs&O}hDSFJdk$81%sK+^!Aba+ zf(rJO+oR#dWO_AECI35SS84ue~hT~8~+|13s1Q{eHlh#!&|Dib}pMW9E;zB8c zZ{bnPrgZM44f%1$k!B+juzTyDKW^{|0Q5`Ru`eKZ$|c7YJbHzo-rzl zFQfce307_J$I_nT{Pk%U&co4l-1Va$Iaf%BZyd_v{mAb({rc+EZg11C3l{?+>Gn~r z2pcLoTO0Q07`NTh>-EWrvcZbOl7lAAnS2=8Jl`9~<0~SG?!9x?^y6Eo9m(8k(=Q*- zRh(pPo_NHMPyMz`G|uty{Oa}xGc%XMTg9)vVI!~st4H>SY@f)`?d<62cw6DHU0E7vkw$5)y2XbO)~e@pMkQIwt-R3epFD9nr;GTZ-el>qh-Qo*`s1MBLsG zjg5pi$St4<;I;kehlb7u$%RxZ;VN`yl}1t-;|Nx6?YVkYJ$#~Q;?+O&BWip{iyx=> z?fzNNKvf9;ip!B>-(=`0QO?Nq6$kz@+UWW^=gFGp<(Ctmp1=l=?64Et4pmlSSKFzUN~Cx8mjP&rm~STo@1)O zMWE%g##7)@Tx=BIA9EpQi=_VW#=Uj3VB!~f94hKb304AjC%S!Q$BZIeBH0sjz64IJ z3a9>E`+E0n=u+=Ru!_R)RHo&B_27|)P+Eiz6{xjNIB{_*v#rq zqRQ{x<`-A3(>s=R%)8hy_sm$V7QZ@ZcT0OU=!|bBeirgukE<6?20bp=%(uDq#eb{J z-XSqVf(Dk9&f$N{rLR*KgR>k4nKT})a!W;MYtF+tJX#0a21>D8_Abi970TLvYMFL{ zSC&JcU(%01Z|zO@qzb!v9}KiAMygb6+=_>WhY?NVrMhF_wsYs*)wmPTQPm#zx_W_T zg{r%Y<70IOV9Afu3*vm564l&8eEs>ORW&13vQC&sV&QK3h`bXXE$a^jao@*LTQ={G zx(6SZ%HMtwL#mdxtcc1Z=O~BrI{3=d{PORk;m>#rq;mg=&s$z3Z9F#A*&HyIz}o1k zF|@+9=i6ug=n%ie7N_sg^;I*`?GC9LghFvL#~4wHn3s;gQw*_@V&f9Rn-YJV*cpj8 z&WvpDF~p6pI_0T=LjAD*8JxDZYO{RVH`uT)QgzVV4nY`dqHc2>-hb{pl;jreuQ`3- zgMn?^W}p71R$;&A*uO&K(T}PM)p6~q70qe6^=4MZUU;^NxTB8fN0+WM8V#-NKwPE8EVnp2WHlhEEJ^mo{u_ArD+ftsFY#Og;3gy-> z_1!$5>e!n-eWm&9z(n+71Y$ww=-2x#EcSvPh{Qv*+Wt!2x%G1A9h@V&mzgZ2q$e zs0jM8MR@GRqZV(Y1U$7NrA`%$hm8%&!b-Q!=nwmg?>y%dSqSpVb?^u3DB}vSQH=b- z93r*0+gsuD%iZ(^o{gqMOp!cplp^3$7e# zsgvmXw0ck(@1#06mnOO1)XV=sZ{A>cfKEc2mecqsoF2+bYl#!wh~9quYm`2|BK}%w zP_@m^Ua&E(-77zl!@Cp!e-k5T@dCQu--~oi40SU)C9$DGKJo7>^e}(T!(zTWxs<(~agnDhuk0@GcDXj#gvK6` z{UH%$bRYKz&vN@t9m-jq#+}Q(cxWxTf$g1(i=O`lEWu;D+FzyL>ab*1Zi$}J>w{Z4 zWnPb&oUKG+q)UD-pRB)7pj+H$9v1s3;;Dw}IYCMB$-Hcz&8AsKXZlA6>xxT4_^C2DIg;CH4v{Z z7>_gXt>Yp{`QollXWw+o-b>LNOo+y~lrkKkOlm*y9U&uPEk5WwVF%O8CHA6c@SOTM z>n~Y-#Ca4fx2W+DtCF`lxcH$KYow!Y1oayUq=bWUwX>(Eqoa4kze*=^#Wua;O|rUq z{$Ad`{1EsKM!LIo-%BC#r_9Io0%ng@g`?5f;0aHA#1Jx8s9$o;B8M~{}7vbc!%D(j}h%3TL@40h3V5=h=!n0T-KN3V5IL@?Mq`IwF;`V z@U51=lor9~i!6SvLd`jB5gzjUsA8pE8DMx52=cJp?uX~c=7>t+s$+Lft~UhOZ|5xP zA|Wpxs0t66lLDy}7A*{m$G5zc3S3Y8@xa>bJo6FP>YbJR!_fxKb8vel-EY!RD5%_${Y%`?E7W@qf^$yn9@F zC-w5w{3D7FAs?3*FzUkzzPyLVMmEqhpxa&G)wrHiPXs}x^s|p5^a{@{OBryX5-vgG zJSQsn4I*jY?W-iy{c;^LS!ED~h+pg)Jm0Lyf16k194M5aEDBUS3ZakLjz`*w! z46v{$+u(qEiYp$=PFQB%wz#2IIA-zTU}LF@uA{3FTXGp1iYI&=mK4ALd^D zQy=F*>?=j)q^omQelG~rXS00I^Ueu0 zzhB&U@*g&o_kG%%yJO2Mih*5$VdzV~&5sU8CIQjuAh1wfMYjkYPGF%mnK)B8&1KUTCw7)xQaV~|k5{6~5#f*KFX zOOi|NMpJi`;fhH9QCpYW-+2Fz%7a+NH7 zHA$4hFZceYmke-2US{|q?6{u9?GjT|q6X$B$iB?ZoI!7IbLgqY;m@i*kGr<{s^&RYbTbzBH$I5m{3!C9tlj~#S0q+2F)eMPtNWSkIp?oeo(URazxku%Bmzv_HN ziO%~6DO$Y*6on&xBi}Ofgw10`2Ya1OdssW%S@xOL^2I`4o9Gx?Orwp5>NW}*Z#pHv zeqOmbCE`4PqZJ?yulonYZYtIL8jUsS=WX}YM}iD*48$mxE!HD3ZK-jd#A1#K?Vz^^ z0)~xVC!U@CoFx$}esx>{zX`Mvxg1gNF}3^Ee*CKhq1<#&nm|(76jH29N$~#?Ej2PJl()!B(Cjl|=D z_s!eY%+yk9I}=6Fu--|1zMImrNk>U1@>i#q*kc@!2qq$Z2Gyb{zt@|Uf@a1pv`EN0 z;ou9D+LuJPU_O5cjSWO)sSN3_*NX1-GQ6r?eM>>1n*Y?xusS0D zEAe|Ms_}wx7d~hW>j_vOQw5+w;9iN>VKG(9MEk>1GVRZ zDSSsD$0K8cO90A1;jMz)k%V7w$FgVgGNqv}1T%mbGcb8FkqBYVlrpJ8NC26wy&*LA zFQS>_kS5p)1Gn{Q*kEyl_X}zO9dVPY-{z3_y{Dz784{T zU4lxWDaLnft($94zq{RveQyAmGMlmC!8y*<-e82ehh<>+G}-2>5{R;gMQ69ZJYav+ z`Vstl^mDBjo#(noJ$#nBs5Go%O^a7n0J8gGr&jhwz+Sz9p%Hw{wR-*xo@0$dwnbR# zA=)*F$BJ)Os02)OlaExjfWO`n;otOIn#RfP-(l8QykyK|N{}m&)grZ`KBJ4RO2@tA z&%8J+p&nEg8&v4O5|!3|Uq7_iXnky7aIEHT!t_F?t80%L%=2mA8{B(t&d7&MM?eJ* zZkGD9Z}-{6I#k5#vf8(H5s0=zwb80bXKV8D?)!7%eF;R)XYqO$630*6MEa=v^SYUe z6ghNj6QmPNw|$Yew2D=_BOZI!`IEk%iVRkPv0VVQ2rzSBtO;J z`9BMR?dqcY;rZbSFy7o84;_@565m?ac@j;2v}7x_933{7=+*1Lw9}9^!UdXDEvqj$ zm5XJ_=%~XXq-*ZeIV)HP+9a!x$WRddofu>@ zZ*%XH!X{}|;K6Xmz3I^~mth&F6Dh-vqsZ&aqYbQa^y_?~YS;~04U|?F&M?y5#z=pK z&8Lz`?;?U0DH-rp?VRO#K3KBhKFXb!g8`&VI+GEF7nULP9MaOe1R$RY?BYg_{^LYM zNwf=KBbX(XqCpBKbR*HPIqo@I%|Nm~iId*PmGhy6e}%_@T5%Y2pQ?pZ7TL;0dRWi? z*xZfrvFPzMDHGRCTyTA7Nqt0~Nmxx9C{0aYQDB3*US(zCastExDn$D+@?+QLCGv6` z%8Ho(85Tf|NLzx6dSckSP9I-teLV~3|4kihMK(Gjmw3120^i2k9o2a3MNjo^_q9w= zf-c_Io=~Kttg(jrZcy;$V4rs6w&8!cWDzk zT!{7i1ynGA`b;=UAb0e-pu2`+mk*X2HE(NwaXQ$+?ZWAM!7_0~akOlMcP{jdr+{0! zgmiZFvB0h`@~g=k=@TTNnOvJCh=SF3)h$BD=AaF#uC9(S21FEf8F;iQ{&=Q-MNE*Q zff}gz$|jk}XO`(83U@!l(}$eZ>oLx-7%wVTM1VQbTFD1tx>Yz`QDq6D%k8-rmccuY z4f>8|luXFvqd3bL;J^*LXDKq*fHK^c0@4Pup$ZpY=~@eqiC+pB)kuXD=XK z@>l5bNY1mp_Qxi6o?ncQO?bYk&P#bJZW#lp2x60u4_B$2$&s6v%V@O;7z+#NKApGk ze|fxJba5kz7?0PXFWV2+%S2A~3)}iqHS5x+X>PE|KFoN_yK^tX%`CICudcK1SZi_T z3Gbr;{as!w!})Wav~D;bTo~ij^Xcd%;ri9f&Q;EoE*3S}M(si@kR9QFu}DV6Sah4o znzdCg^<64Z6}OB$4N5(JXhyXz*)hukyTTATdS*$lt2|wBY}e4y;+#ETntA7Bw*)yU zqX`HHh8naaIU&ElQC4c?h{?B>Ifdc|<(b!4*Z&UwZ}F`6W~;OhWy(BO)bTLOk9PDO zsTmUnWid+cOuDr)uGUz2(Z1Chco=7FWN67zKWv7}oQmB)x@y(!!?( zLT!6ByEJN>X-|3m#chf&mF^^bZ0XI+8)+4sp5b~e;$l?Un+Ag^_pvH+{i28sb;kk$ zPBGo&%gz=U_;?JF4j-6TsjZ8VO2Fb$re@(KVtmCxf@Buzoa3=}sI3xAZnvLW-E5tC_Z5)s+j!rQdUc#qN8aCdRz7avuO9qu1icu)oTB9ooQI>Y=2nvI8w z20NuFWqq|f59`cw)NUq1^8$}hn(x5N69(mJEz@QE&^#FO*{<8NO=uU;s}RsvRBBwU zS@Ax1vViw$Q!M>N8O~%pza`LIg4gdn32b%Z#bG)A2yG>;U=vWNoUcmDxN%caO@%=} z2bv#RlQ<{Fx;9v;%u8R{cg)rLourrO?bsc{wL*}At6aN%dZEm|>+GhmIqfDDdXXa}Ryj3M6Q^(a5-7}a=WCAMDk z+qcAbgkbo+fv7C%CvBNtGZ<@>+Miuww zAo@jeU%caAKj1Wy1cHow%=cQ$u(^m@fV1O}76VckGO*_pSsdXmmdwJ3AU(!hQqxTy z=Eo6#4TJvlal5eb813ajCxmXs&0z{od-0$GdXh8U56OuCL7E8Rk;j5FkB%nq*K-hQ?Tw+6*;Me3zc+aOz!6`Qd8>lOCvsp`P6zyDgRq;39|sUB+Yq<%VSQ3 zTo5I;Hv~RtoLKY?=M%ATi=)sP$1q@Qt34--o;h3U4h_unjZ9K{9(ofn zaTtAFeGtuA4HXCEiAo3b{$Un|`pk^T85cpY%1SpVco4w@B@V$rkB#|RsgUBiiVHla zCmGS+$?-B9UIg`x~?NA#ntQl>3S~C_nl_Tj% zbvQnyZxN|+stWfutG}3-XtqI2gdPiv+pWoh>{kcH?KkG05gxYh&n~+Xo#xnI9sAWs z0T_{8`kUXOr!J}N(yya`(%QrHG*tu5@0joB9Ceas=bZx=19QOtABOSs#N#PC^Z>mx z1hFZJfQjs{q{5}0ACdl;)v)TA!p_|b7L*c1R`F2*kLx}1_igX+bJp%>4V_-cl;6Fn z`yLg4KU|?oVL^>=nVo#~2SvBp2`fE8Do>t_B#^T&sxK>w&AR#%M%s?7bVdl1z|X#b>GvKJ00IlOQQ15;i!bljWD=TgyO@c^b9qnAC{()Yt24|oGld~+R>fa z^8IeFh$j{P(=4OhY|z)9Hdo|L-@6Z|ti#oBL_&&pmvcfJPd_@hEaDG=@)F;%fc%MA zFi|Vvv;a}y5mZLXlXx=WeX16s^XMyuizDn=wCgdac3w9Z*gvzZ`vm8Eee>98+17xb za|(PEWceCZ@bC^#;}3LYr3m?snV~uaod7p_yYSsikvkt)0#Y|t0+0NMXh(lr2?1T3 z$;|4wl`e83*JwT}HF2R&zV+>RM?l3wkVnj{eLV(d}Qd+Mx#hIl*0Waq6sv~~<>LtV3H+QQJbKmpe?clneIKp{lmts~+#@vFmG43+c-)LG(O5O`tk zK=vH{O`h9g1{-Z0HHwd|jKe4Rij9`?;9QE~JHZ5_FgBWa%xZVWz)DYj1$YeT6C!k z9VmBsCoe9ytP0<4YIN}iR7py{LD#VX7%+GOydVj_1yUTHZeJr5!IF>g*`%^R$mu*` zy-&&5Yxd{iR#SbYi`k3<2iS=c-B0FeA-XAP>fPC?LyhRXo6o_RPAF;pp6&rV@Aw)E;UT|^eC|Oq~gRC#U#=kb4uh2 z@8J$YF?&()fgq!~6%+UvJhtAMULESIYi&GcaBIs78W5Bd*syb%^MVP3NLc$u0r;Nk z)tJcPfm7O#^hZhtsW-yPmU(hzPl=(i5jMDt_a)d#|2<$Vti&g@&ks~)CG>y&&s#xy z|K8Mn!eG&!eI5X@SNN`1E(nu8tTZ&ONSlcU>YKL^Q3Xgo@g(j$q<8zo%6YJfP=`g zh@WDzbpAA;v~~eR8yIko$jU*_EN9{^*csx?4iLlUjzRAYv1Ue`4^_ohYUb~72+RL} zGG_0USiW{H`=#o_NJ~Vg!|0utPOd+sq}Ew*F>#XRr+zuchRusURL^k9@j2};Y%>g* zVKngj$V%QWZ+B_BLz>M+>{Iu(g65HOp)Kn9jNlih)-PlBii@)w0)-3qjwieg`R`Rt8Qts|hvdF3GSZ&DZ5f)!)Z( zVILA)ZD+b%8{+Za2PN2NIF60fxa>R20RqsAow`iFp6ON*Jw77^%FHZS7FVbKsBkwaOwO7+tKa^u-A=+w?VioYF>A z3N1s?|Hzq)^aw}MObnAmV@q0|zp#%r-b%K@qv6se`S&G;y?yP*gU-7vxOaZ3Y!Ev~ z&yT&sn6MIjDz4lGatz~97f0>M1eJrU5?8|t7(Jjc+&tE!a6wMsz>F?l^(FC3dB2@S z+_DHUZ20I(ibsdA?B*lXR=(Z}v}CuRXf)fxE(xDm^Pe6J^o%v&k&!);Zuhr|3fK2a z-+Ak|nP&M)hpLuUxj4my0AE{$MrMb)^3`-(3E>mmHLS>S(8Sa?WKs& zFxnVTp4P|HLv_geIGzh|nEwnFj#pDa1VPHYn0Fsb`GzWT9s|TxuS;%M<9E>`fZmmQ zbkBvk5PwItHFNm)-5KyiC<6qX+R{>yW;{4piWzMVc_bYAQ^iyA0Cs?VmJUY@k#$WT zR6)UC@fK0&LfMuqUOA8&I49E0T(h7saSx@@fquCDhhQ0ACnDD6G;TP^WQi_S0*wex z6CmY_xJd89?n|g{JiTu+Hs53y!DK-A6@VHy5#TR1a%3JPXpn=d?Bt#H;t3AaL%QE- z!%F@hO}NA!ab0Z94+~slaj7EKoG3!dHK3kh{eW~a7IHw(9WymYwbA`niy8`9eJI>S zbe#=vB~HJy&aV4^R3JQN)c6&D0rXh3!+q$JeRIkbLjVbrf>ZI{Vk;SomluTJei@|Y zF!$u7$^}d`v>6(LQ+22Rusr%vALpjF@SD*xSJ9h}!m=Fqkt2rl3S>QN_#aAwJLpA{ zFi-Tpny3J+70A1r$S+SvFC2N0VK&1tG<=LJqcJixduy>T&zax=>BezvVZ;gEvS=-Y{#jr@-@9C$g81o8Y-;mMGeo6*_@ z4(_hk)0eFMzuK<~=kfT^o1bSUO}SB_V96`dk0QCt9xyEh9;Eh?CS_R@cz47&Zzwxp zsJR9z8v!T~lY>m;wS4(=W3RIojx*-P7?!yc*##<>X0j7+?^O?LImLez-C|bIQlXIZ zJiD}H_TOU8DdofFnhPg47oW6^dQ)f8@NJ}1@?f>RmDsi$&Oc>gupu~#??jPET0ZjV z{)wvZsS+lYUS`r`7hBI`oD^Gcbp^)F8rGbc3)+8I9iuPMYB^?jVW{o|o|EcBZ)~*s zTN=G{mrM^TV|aZLeu;M4{(9hdq)1Nj=i>I*Svyq%buY*n|( zBiye>E4mn#&TKG-jzL`KFeg~Vq#hotZwQmPX1{iW`9h-q22*q(Y<5(!@BZ!9${Tpo zJeHiHJd(@(GVO1t_SoMV+@uo5raCDIvRJ$24E7w6vvOJ-ziq1=B}ebfeNEB;fBN&r zMo=NGtR~K|fY7pp-5zn1WHC3D4#aQD|H29wY1Jpkb^n`nR$q=Vh{oID`MqGKHO^N) zOP)>oEaMW+Pyc^j04k9rlg)pm7HJx7ClVugYD<7f%5})Yk-j|&y$V6}VvCAts>X{z zn84JV{N5J(1JZcGxB(Lmex>daH;q4H69<7cdI#Cl z*s0)?5u%-1;SP{49o`4H@e9Drtc%4HzD+1sW!G12`!aI=0EpC*S^0|uk5eD8C zN7AR=hU5um6@I{*5rv=wId{bUgUtIFh!V4{EpdnuXix^O;nhApv!zHv2*btl0+T^k z0k6bkvtyKty$yvuo>Pd6?O7!^pqH$yTt&9^1WQhP`B8hqZB-4Avd8n+xqF`+Q*xi@ z4e&c}e3J>~Hv;Ru#`aE>!JEEvDov~LU0r}w(+aq@n*^T9fEk(aE&&$VKl-;9lj%O3 zte{!Kjd==Of^>BVbA+U&u~W2w?*#`i z8syZF{y?VLpbrpyP}7lu213*W8Z%wFw|a2u?IiqkN!Y^{Y<7#9+lEYL*eSyWi}n-I z0w(M|X%&9Cr%v+9J!cA^^X^x#OpP8Jnv;NQcEfPn(e4Jmy;eg`YxK!I{dOB23T2BP z$$`M;$lf3=BQ>D!C5n0$3{!C(A#^r1rpMMFl6n3F{S_DzBtCy%n4#D(HWCyt)KW8i zGeuNH@sn7dlQ~lU?{1rK26wGSx9F1$!p%oSZsUd-v3%FYV)_{XCSoc#(X`3`*_q8>E*R-w#~R?zF68!)K! zps;Y`9Rd{v0^}gMCKT5{D(gHFY*$(%`Jy%BdQkq$FXuE(RM=-1pI7DN&PT^g%}8s_ z@cR{0^w-s1e9N#pZ+_~6h}3^-N;el@vYr$N0=)?;pSIw}I!RJSm5QTxPMB4iH9pm9 z#GBu_;_RMMTQins?AvD?kQa9BL|qf2-8dT!+F_x$zY$k1FOr(gqqOC1X1@g*Oe^EWvlBpi*Kc zp*(h?r3YMZCNwmq{UK6+i_`I*(aIa{^35fL2D7??Q>$p(4x5Cw8v6}x{x0M%eJyoJ zY9=GN2JQ~$Wjc}nm8kzFM{h#j7`n&rzTYY_Nd{*hIhooM`qW zV}gmb=>rfiK{F`0K{9D687D^CPUivCBF12&znPkQL3P*xp?xXN&6fwjoF6>li9wg>5U*6|B&{1uM0= zI20ikxvfSm#_e&ughzJ_=GEaO$h<8TTBJ$*K77|nku zvXz&3>Poj_(ag1YK0Md2kIS{GF*M=qO%}AfXTL|)27pVrJ%wNUrKVd9(86j)h70Hn zNMzvTM5-4dYk0J@9e)1Y1S%Q?U;;k|GkwFC6-l5xz6EqGEc!S>jeU?|!)|Odi_JYY zyJ(Uo1Yceu)DF*6jluJBu#ozP{yGhNnA7b?p<5{+}6%@Hc%baxjy}XxtGh`FUcp|_y;HLwQLGU+uDv+ z@$O;g0*5ebbN#QS5BgL8z@!3xa8g;(IO|k^r6LkBg{F86!tU4Bngr#GP>GBR2KqAd za={Y}%9xM}LTAhLA@1ABYevtMw{&GH+4 zziZAA=v8h&Zje}AK+re53U!7hU)1nCL|eA?&?U3eeGToS!`U_8QQ0$kwDya8yOYB6 zJ$=RRMr5N)KD(DLjkB4Uc!}Ywq(*R_ zwFe%ENg}Db_^t8iZyXA}#$*x(k#ATu@|vktZS)QJAoPxkSXeo-6E{p@u*Dy0>?uE9 zn%Ul_iRP@>vOli2Q5hQa4Ubyvc2-i0)1)|>!dIVo)sh+Ej)S%LjyW!}6`!dx*T#$- zPHffxu_n|kA=hQ!KQR(-9Hh!K*oUDevh_T^;&aYd9#<7UUh^-a&9< zfy_}(1$dU1{fL*ZZ(@0C(|rc7qIKuyr7~>_{O?^}C3nL<%S1Vs%Px8G#7auik4LjePJN69f!ufh>*jJ{{C2rkm13wFk+HO6z1?7{g=Y9G#W>aM`3&qwyB# z(Y+8nsX%&bRPe657apI#DRwPtf?1Y-*Hg#g(wgDfDKS`9y8%BE)Lt4^`+BJ!d`{2J zT-RZXhl}_B?b!M7kh`q1DG~U&x)_#WG9*gSn;BcjHDHUOc?X3nHJiJk>BYv%Kcp%C zsaeD|+jh6z$=GywaEAZDoUu-n#wROe>|HQ|z3^~{S5MW25;4L{aQTy~P-KDzLE0z@$YXfGyfFS~YSeUE`8-md6|klNE6hgPr<$qg_q+!?v&8 zBo+E=UCcFS@=y|?&AibE`b!uztn%_68MGfK1_h0F>N||Roe}UnLsrWH zJo_IEBx~2W<>>Ge(U$Q{9S;T44Qe)xN~FS{O?#=N4&UQMcp>O|fdNygwEce!kWBN* z${nmeJ*K{oL)cj)>rLyJDdpuVPobh`3kSeNG4?N61jCf;Vp_GmnT<h+K(<+iZbM ziG7vxH3r{*WTClg{O*?|pFp00QKsoCmIOu=u}BwJVeK=ocQkc6$CWn2KjvbK zbumvPC8PD(qn1@>o|Yh5PI{Ostyg*VAk3{($bymJWuR1Bqg$;#w*({E8aLh)KKwZZ z2}LtOn>_wloKj?jR1SR)l7N(67aoBE>W3IS5YRy}WWx$h11a)mD_43KUIF;8(8x?P zJ&y_`&^?{p;J9&Ry1lo!mgbH3g@-$#)dVZ5xz)fW?Pd-H+C)V)U54D{NuN3FRaZgl z-et!WciG*Op5HP@YhxeFjkq3|I9c0JEeQ(0^_o}ks;8@qEBFNX^z*s+Hf2xFD}2+? zfN1dsY01<$jt9WPL+A8c#K_Pt@8s<2ZV6)zYCDcwdY?@mIrayTL@Io^72R7IX@0FZ zit&ypJZf%N@ePZ^lnm_xoYdnB&%&eO{M_8oPwDC+N@(J0@&59ZIK&=tC-KV7_j9pC z*aY#PH|SFiU$XfoqC@C`-jM=_3YETxdE;0Q$q?SykB+dFSMPF{!_0Qmd=rFvo#PPE z|K-{+cMjSv_e~|^v(;o=a#M%p9B^l=dp6&wV9Fh zJ(c7Q`<_ygl}dgmId`moYe44=<54Mr$RxIjOq`g*+U1odYXXU5SUhqnu}n%EABati z@7zS&aI@u<``ZJaHO7VxO0zXu`}$TW$pI66O>Dx`RbI2)cPC?A%VVV!eRK3IZslpx zR>qnnE}?yTj$2c0vWQ1n!7mAGCh&3F8<)O6WV2zuu;{ zoCB|BE)v-%zlC!bk#M7Kz{Haf#ljJLM&uEcaJTbP!mH}yibC1H+!h}~c z?0`UDU#t9NhUFKT{F20_N=uIan8t_f>+{9)UyW9jyIBI16fi2#0tZ%!QCzp6zmEE(bzvox-~T-67I zediTHY;ohAV9tKGwGrnB4B%{={Jvz@&DQPD1AGU7EKc`ur{TI*Ss=T%-)|V;c&%#R zfy-z96}lKZdMkV`KdyC1LcMFk1^@~8e)+VEgg#K!i+C<6Er96_Uj*Srk!vw09+3b4)%QW6NTAggM`x0DF_6?=K}6rE z;J1U>lGXG?q3{(0VF0U0v9H$?nBPv>G3t-2j9+m$6wWamrtqH?;19-w993fQ{r=5` zT-)$&t#mkak7=Y6$SDMyAOT1_xuhdSIoUB6bCzI*G<^~Jjd$3*;TXc+hA)GYOH>w*x1ijaW*)G8@MK_V1JI1v0yO_DB;lTN!QrYiBuGOSHGo|IwYF&(l z?xDZPSdDYLvK$`ts|~Q*K^VTC$i1xCsITSNfAnW+vFthE&;zhd#nxdh>@$#Vrq$Nf zEi6mPDE{`OX3ZX68N-=ruQ`Vi4>QH#!;Y>{z`?T!4KDi=X#r< znNN1MjPX)D)X%XtBg=!Wxfn!c82ywh|K;ADdfO5@BKfv`)-OlSCh#QVC`y#77( zhf;Hq4LUEES`JG`+*tmWG(dcQpekxo7C9-ZULm08X~M|g3QFnDUXGRMOXK}`+fL5m zkV5T>B@qz3!LA_hgOqjrvxuzLV=cn3ZvndmC?poK$yPmviEK-7VKC zeAD&xbP(zIUE|e#$Yn+1r@+^A!_M%U_yu7?_m-n8q+nvlU`>>h! zZkI1EePId!xtA#-k$;586PH2VRSO@>Cg? zYtt`zo7u{Y*`VP=hB23pjr|q!c9v7W^u+Z1SEc=-{pR^CKh-Cj`ON_Mkg|+ zc~ZC5DIH7(k4wL!-$twh_bSG(Y| z&!)e9gTAR;Y>l+dq)fxnm7q(DC^>=K(7*f#ODsO(D9`Pm-NHw%w>WaLT=?r#+iuWfFc7Md!7)yQdEP&t|7@VgeUv_*AwFY zTS}v9+iA74MA&anpKcHH8?KxY&@uEO_K|9g!4PN}*dPt$(`lf!TR2VKLNXW>!|9jo zIcryugDJS}`h`e+rq3_bE`S<@xqLiY_{`CAkR{_r$R<^i_b?t~$Wk|g$T5&(Pmh5oRa}rRL7BD!4 zoWvd2wctWN+T=Ovy1Rl@#OKex9E?h$bOgB>un2NS_sl9XGDDO6BugyP;1(bUtZN^p zQv5sA=#M3fHlkC9oUy2Mz?wd1PpGzebu}Nrb=u#*zW%|%v4Ymd;%I4IA6K(Q8hdPE zF@~K?6S+x5>3X2VkoErG+ynbUB4X(Gb~4G{YbBG3#NbPy3VN$ES&MKixN}u8hB?KEm5ikBl!XPQ6l#6^mJoi^M12-J5>MdJL<8y z8>$8359rD~cVGoVW7T;C9{ei0+rNK+sy(qPbo&{Yk)54YFiVrJ;~jmdKaK~r7DF_aD_??|6a9E8}mMk()qjDZ;yAYE##jV z=9`XL0Fk6QThRBBtGP^C$3%K(Vux}ZlDA;SsCG`_?B|?65Wh|3q3ZW_Q)xp$eGeLs z{wnmCGM74Nf))OcHkSv(p_1k@ydWa^?#W12(hc)Nu22~uj z!;iRT*V7(&N09*m&ENx0pbs1DNepydeS4`nW!AUu>bh43M?wtELi4Nrvd&0JNy4Xz zIx;9%uxY+9GsQo5T;E^GvrKvMU1>|K=IJrsimUb1L_==c!Y}EU*;A!vQx()>)0Q)w29J9?tkB1h1eetIIpdS=xlszT0}%SBztLTvdv-r zq_f)J-f2&`jAzI{Tu~SD%C9y+XfaGEjrsEoWIh??neR(Fd&8=Id+(;9{xEq%;FD*! zy=G;Nt0rLYS-!)!+Ba=yzLQ>7VDjBr{lgtPb=?G4tnqbNA}$$)vK$J~U1_8dpskY%AR^=~ zxGRbZ8k2UvkfZ2vfu%!a*H(S~Osz6dr%`p>W!mswX7olYMrE9VJ7=kEjZ>Orf|_(Z z5e|&IZ2vd%8j{#G@drxa$Ad{m1)ezb{hL;&4v1U8S^c1>bf7LMP1l;B3dp+9)4xF; z$7*iB8E*UV|3l@SZKO@1spIU`Nfh(?-C=bl9;@LgS7a~oaQ`|w54IBB)>!*qU(gq z)$La9D&pgkM&km?E4KS_#4dmjKTf`-V;8K`ePR{yH0TR1{kj2F?1LKwbHFf|-@rdB zc<%E&59d8-l*+VSP(lz>OG_W7qk*X1W8Mc$?aEXvF)FTU3VM}qO!cbQ z-3oyW2{fg-^tB?3!?yok)Nkb7<@;xipN}wI10?{uEt5y#1G44kjwH-c$(>{u@z@SpYfeqY~XztmteS7n;A=;m_5hZDnJ_31eXb!EOpG6Vms5 z|I;jW=#SgW^T%eP`pwj;0PSy21}vl*uQrQ)?Mcko6}8R!S#5g$59iNtyiD-#7NFcz zHP2jU8sqL`kEGl%tpDEbFB4OzIKf$R*AZF=M+1jB_B;RAcIrg{MHu*S(5#8b|Aj@i zIa!lKiUge0L-dpLZbi1Av9XcSChx&6mwezWA~5m&_N)2Pl~gkr>FL)Hs}RuL64rlu zahZo^u+snY0$e&~5YgLKbwD_H+tB;%mjznFsyBYjUdVrnJg%I~?ed#nQH;dx`E4Ku zGGJVRtj11G;nANpHIABdf~kwe%HkfnKF^K3jtW1d1%QZ1e>nT**{ri(SmfV?2ZM1| zskQjY7?ytXFO*g~RAdx%UY}t+P}k3I{(O91Wg*n#|3lN6z{R}p|Nq-cmS{nWN~S21 zHp`I~q8X$tb2`$7ik4A|_RVrsM42QN6*^&3Q5v*Ua@vF_HMAg|v}<4I|N33N#FyEbog%%C1Y8H)&vuteZ7Xa4-Co6oVT$a!!S~3n+ z-c3D$ch}><&rVmznE@RU?lnUu$Uj(JLs2e1OVUP`Z|J29R&sdvLu#dkDz6BxNM5c+DgHX(8$v*Q6$Hn;O=na4gdam zdawX_j1^3W37CX20Y*@*Bc#s=4E8{Wb&G>mpr9AcgQD?je z&e0vEr22c8(!--z5;F~?HESCagfZZE5S<%Rg1I7;*dSIFq0#` z$s^(jk>!!84HLM1t!>o*vi`ushNK)4LcQ#2)w|aoLE+3|08ZW6Mb>9@(2(FWEkx|2n3zu`XTVd%)lu&ze`& zmt&tj(@?fr7wge)-hyZ5SEo|uUC(}& z+I60$$a82EHO$f@vIvc(Om6Lia<4imgOXCD+CY`ia7dV8_*_f5f7b(9u8E(*F`0XV zK81R>Ca_IOSn}j4(P;0|lw^t~V}qv}GWq{}{gPjh7jmRx2amQW z>UxbU{8S8du#ji65s2V=?DvJ^h~u_5N6-pVs)*ExV$6dwMj*;wj{Fz&qramA@`E22 zur~6z9bz1FU8_(2$I-}Y7);k~Eb71FmY*AFba42rtXEI_Wlt;l8dzEJoGy1r-tifo zFiE6!NHEVWyVjxf>e~bR)vMXMBD@((K)J(~q~&kkPvCwwe3jK|6=tDvvS=#Z?d#Wq zSe*)%^*JRt^)|J7I*=d82-z5e?L{&%TbI{%J9SUAxxuY%ylJHC&HIt}*>hHk?NETy zh+6G}4xP63)EsQ;q~gZXg2#?8SmohTsqYsu`-RUxVsjYA@C(|y*AnT>VmtpsT+K3` zw>Ng2&Dgl*;6&BDXtKd6;yst{zm??*?}d21%KhM3-tZl*C##iSs&h z8})a_+8_RKYFQld`ML3j-IzIFzcgVaT($^nOJp5YU|b3$dt5n|=QCV77fiNNQo<-w zwI&7p?!Yo42M0mIl4n@&Ap$GD@6BXHipt)t+Dh@zxEY(NR;*%U~R%@n9sw z2Vw2UbdAHQ!gHEm6#R&D#yZwvMaS`!&8?R{SpwqKnG1`^o(&noj;WZo&PIJiG06!S z`5goy?EjxD!BO`{1{5?yly#C4Z%#qvLj9{#4vF2Oa+uc&5T}KLzEGj=W=Wc1AH4#()F$0GL>^syL>N4kl+mm0Y%8kS$P62C{MZ|E3C}IZk~zH zg;0|d=>`514X0o0`j;-ad$cO`=$^`zEA%luqnL~ z+#S}&ziCqV-ZAvG-vi_r?7nqO7wX0gkpow+sG_-N_WZUQL%YRh^Oda z&nz=>Z2XD$6xKOhLq`%)0J48b1P+y1bO=i$1d>sm!I-AM{8%O@_4UQ>GrSuP{ilkq zP83ZI^sa00YgAn5*@O;ls>=>__%+L;CxA{-^4W<{-EFp zTH>iW3k{9?;^+unYruBN^enc9nNUcbJDJXqh2UxwHj}nY3|em|J*RmktxeXFZS|7hpqh2tQFNy8edx(U;7tJNlcvZ6;f5Z4aD5%7Ds|gN|NEP(z_& zjsZ5TJ~>*e`B3lizXXmUEiSaA`hj%94hAj3Q0qam(t}J9(hP_5LNkj0N*d zaIi+l&!3KB;q%-h0tXW}llP~2BCWS@q9>0wGVr%nB`&W5P#Q61&fA#z<{u5@w=|3t zjEHa5I^~de-}ASW7TvjGPngc0kJsbQI1GadR4nuT^dAl?+YUt}r`-%(aWXQrcj}Y( zNZ?2e{cri4un_4Knyi~oI`*y%8$;-@3XP(o=NoEl-Xc@jqw2$ux_Oo8=xM-w+Y#Jvi607?jpf{^7!@o>@r=gg z=zbivJpp%dQlmqz?SM6d%X-5DfD)yGXtEdvd5PG;t07a3G`#_W#ZoxqT#2n-FA!s# z!V0$iapU3)wJpK06Xf%!C$xZkM**E;Q=X;5=JsE}mLTYZWj1a~BH^%$*vE`}nAUQW z*1eJy{dDV2YwT{#m}mT+qqjNkXlw`_8c``lH6YOApnQ5x$&tf|zU!{Ky8^|mqSDMt zKjJUf-HrHdg7@jyTbbp`a|8^MB(^~`Hs>uO=#`E_RAP1G9~BUhu*z`4Dv^1334%q5 zI9PBc>U})utiz6lU_3QsACE)dg9uFsXh7FwHZUZmmeRH!sZhnJ#wA@~{gEx&jJpA^ z@dusaF!tlu=?C^E1MCV5<{lMi_EQ+|pf}tB$1j&Lz7O%B-&@UfAzrIc#6^Q4WRqWK z98DIn$^TYqmZAJWg^P#{gWHUZPCq^QdIz2-N_T5L+bAyZln6ze=mXo=RB75~VzM{p&+MM1b} zdE7SX-PvD9u=hwgacQ@!xIXbRQkfx0^tuYyBJAZt}e(d9- z!kwa|R*iak#jQp7I%^MC87-b11vxF{{y{pqaOW-<{S_(xA$CNVO1k<^hped@+sWSm z#qZA9;mQp^N6!s2q$>%A{FnMp_&QCLCJ=_PBG`s^Kw_C=F0lXbvyv>=2-urU7g^~@ zyyp(le`h6?$y9zgDQ?1+U>&lI5s2n+xa-&+qiR6frE_-XPfa?un%l&CN>~d;uK=9o zyhw3#i0agF-G;p-m<+xpq*iEg^;Qs>lKPQ^U55w%?}; z@^;Mo#9?p7)QdL)I#Wq&@ocEc)mgle+Y!$a6^bUmWuJMHQq{BOiLOKHZD*sbIWdZH zpBS?ow)n5Q%dsiQooEjpSD@lQT6*roPQA_OgMF>7&c6NTk%H{e<1H)u4OU_Yi4P3E z+TtX-($bF>i(fx2{fMCWyH^iKyw7>+*=sN{)N50i8=P&S5cU^GEnEBaC(AV80cOwu z$nxz*&;dxhyDaYttRCgS0fu9OruqK)(f^--S(>9U_#OQa(g^ZwQHFtEjf zWuVEwS)h2KQ$kEZ(%!lK(M4nZ3xfL2W7~|l^4ck=So2iuf0iUn)OK8-dM{J5?t;Da zDP^(LOjH%8Ym7fVfLvkD!t?v*vQg?Yl{ZkE7tK>dwPx2H`+kCcbM|9<%4>dZ)5Kd| zFaMKwuT9aD`Ky%_!7=NYgZs!#hQmoz8M|yd^}97dw&hcvMiYTx1rAOXO}`9P_z_h8 z%i^AM1O|{ok_jnzLp8cL!qAE#V11p}9g=O2dGUhPc5tc=RPKSvMS-HD=b8Fo`eBDqzW#B3SCs%FPbL z#Gb}(j6oPFjI%KA5}*y5i!dU0m4*>bg+U#QAm!HpplF=56K{^!Tv;=AsqY!`tV+zF zW5eo-F)mi5u0;8ae^=nIewbd_-QA5@tg-;S%(EGGrv!`L`VKPVagcL}@D0NJZohBg zHHlxNpa8(BFohg7tNI)cwiMS%pET->jh)2HRb1@@W_|NXbf`BH>oDvn$l><-qtSMa zMb2>c@kSz0Gs*#HNU}I#qZ?Ey9JQlPL=j8OZP*-&p~ye+R2@i)k|TMjdLMYWTqzq1 zxN%|Tq)y?Q&Cu3aJOF79d7&YPG>x!zb{e~+kDNT5(!Dkc@woBm5Y%zB=G4)!_Jb|h z=(?~WisTQ2h=7CiToC&dHejWWb^mf+ZKOkd4XP(}%1EROMS#MjFaea2Nx&8*S0S>K z2CW`c^#~%aN~E6FrQC?)5?`UkgD`mN$H;-^kP3@5&gI0dMJ)1h5G)B_=SH`tn-Q}q zZX|~7bIak=?{GcrjMTa=heIb%o8ku7@+B3K6MZ1i|#D?wl+X(+!6ihQ5*Mhcw1a!p;MGJj8wZ|>z! zzfsunGw6lS52vDAI}=TYZQAw6dv^cX`<+e7>^X&kio%(SR$>;Vd=5+q&#sk9?Y#mW zadgHgT@q*+Mb(VeMB57;kbv-4bTU_h$J*S2`a7GSa-76uS;JS4$D0!uzGd4 z6tzw1VVY<%=R=r-OJyT>d)$Qn+t|yCb{{S`zsz!)@@N>TJhjEuMO&JL0+N;n&dbKK zm>i6tG|RZllUPscI!)V-UdFgSo|3Kznd7C|x+d9mE>=2TjWbXQN5`60xAU&66m3@Y z(T?b;8Qf)QQNpVq&fa0Q(_qBr#DWQ*=gqO*?*0R}K6VVQFZ(O@uX?Xwzvl&k(_O>2 zaW-AMU()*cQK;G*kBHeXv^+nxc6%pIO-CoaJa11Rv~+9rTv=je!9j0!x*=%nzQNRh z!BnK-+V?4cGB3TpOJf`Dp0mqNSQ*Nw3WyND1*`NeA=X{PrBu<1)$H-?#S$($jNJ!} zpQeVLc$rqVreO2d$&p|%fD8SOJzReB+4t^}5+^;isD+n97TG_(*7br{R_d00I~tcD zysg+8v4mFZWz9Fl$nvJ^n=DL_Bts(BtYqz00&^}qV?7gv4vv)C4&j#c6}mN6y9l-Q?N3+3HY+S^`^fhjBFF`{1QcfZL7D`ITLx z@9*P7KkQ7&yfWTzMtA-u#h{&4!quT!=Jj0QU|-Nu@`m+b#nY45EAJMG08H-6Fpt!c z+RfU$3v2!~hFpuc`4nye`D0OENWV^GD?}yha7gRG{@gN|)k5!PWM*-Q%+;_h4Dj@B zw%j5g$=YK7vNQ&scoys&!car#6qcJo^zsnr2oK=U9-9Kc9CDOB4-C2&jv-rspdsu% zsD@@Xh=McgT&$D+XWv0n!E6&N#$>*;%8Iw2De2d%{;jojur_J>$5-#>K(G9ABKz2B zOyZZhLd4aAEgqJ1G^~16wKrc8L#CbVF)-Q~m5o}+cHSqlUYj+r58u?`{Y)fNKk9Zj1u>XLDrSm8xZ0K0Th|U#i2&|Yh!DfSH8k<$}8bq@` z(3Hm{1P;dF8vs}Rl%Bk@LuxqIj#Tmyxo9#6;b9JdP8psx&ImT#Nh zIX*cy5C*`UTY3yOfIGA1Ag9r>*BS^8fcS`(2(ut-rfpFF-`!z~P7|>6l}_{)6+x9| z{h{9nli;#HuHjt81D~Q@3-XWEjX#;8XOvaTxrDHRanYVi;Sl186iGhLUE@S_avmJS zk23G<$%1TbZRIO5!da^_-J@-XM8DrDSbO{5)dMgTzY!Nk*c=untG z(Ps1`F*;d2$bOkhP?3M8e(p}Xh0Sn~!$k6Q|K;KSk>&=49Vq)NsS11Ufd|iwJ$(y3}U%*J7=t*%Z?@Ojz&ePM9tZU;~Jh|=HbbGkl-ShKe zoKNwVE^bAmZ#z!^kyHcuybsVI$ddWXzt>(bIA~&gC~3IzwjGpsPU*^7oGMTXRMOJ| zt!T3!ah~*YkHExg7R;X@*p|o3lmzQyy2DoANJ%w;K|kEW^iCS~t^vaOl6>tfDB)(t z6xSg@PR6j9wq%Eksk6irFE zODRnMu06diRk;7^>>LU^rcGBg`!3kx8Qq1(GQ8Q|=bMz7;gt%tn-&5g4%CR7O|+i; z#)=sOSK<#yPb*tmo>AnersU&`1ZOI2KT~2$S&D%#d9ZJO54)>1v z{=PLTstZHHG4NCsD=rzEd{bjP+(hygVP3rUQOf3T`dr#B$@`dfa$t)H{E?6sTGHJO zLGRN?v&1ey<2A$j!m&Yt-h|CAW0xTOxHx7S8wqrQmInS;*ThLuml29@m0Gkbsx78~ z%(1S>bx4#{pmSbVXD=y>aa}SARhq!()FZ?;&lPabx}vJR6(7k^YAN?@?l|Tb0#DDp zC@9#vO#Bw*Ge=#*C=OEyuI9BtNGur!?+ISSSU5G{Te#cSqOT)U!^6X1T?Vz^_U7y= zlR1AHx5Aoj;KI#WPsnOI0)RHe6Q_C`4O7BKs0mP(ZwLY1vg(T`X2-mcySgCiLc*X~ z)^R#FFYo(7CcL_+p>zHeF{P!6QhQnZn7~-9t%OkwExK;m163^3;$XoZ4g@!s7uTVx zBpxah@`y}>W|YY2xc6TUt9ojBkF!%b?f>>Dny!G z)qDWo5_W4J{bxO13q$PVK!_}~VK*K9eYu8Yj<9jy6La$$h2VS^GH%bO%>3U_<-(r> z7#-Brhji)SSKZ~DgC4C4faE)ieUwxaBQya^1+ZxE|ETYpaF-LDlkg&m4H!QHL*Ih# zYIIIM$XWQZ=V_vbpOJi@v1SND&jRTm%0eDac)&z4gQs}M?2YYkub{2}7aNLCq#rQa z-#gVBP}DooD2|Ur)4+FczBOMemjAnC!Iu#r(jzJhlS~pr{S`>9TkvJ#bLEC?wIh^B z^o1S!7iL_@lxRM9Ykfo6Gh_~D?VIFAjnb6pWweDM{Iy%J&HDq-a~o8}-ZP_Qobf_- zI`|cdyf&$e=3Gj~)=x=LiDK`Ux|y*j+Nv@2pLE`em+w12fUKez`G!~0ZTgSECP1O0 zeTKVsbtn4%pBA7&a()Q77|?k{L&9hXQuZUL_?!Gov($Z_j3+;;NH*pzrOoG2sL7)W z@7@-iq)jbh{#&*05Hm=yc&*hT>fd6iEvzN2Vv)peL0#QsyRN-pduK_Zh4YrCN0mp& zp4C+W?ntj(y+@s`ud}_uV*STf{LPuKSK~y|({nmd0x@rPWDGkh0ef0*j>*MH4@2gD2aAzh}8`F3r078_2@0dvip# z&(W7$?R1b`3V)4mYk0Tcw*6Qv5y2m|*XL*+Y{E$Qp!DEel4R(igu2JJ#|mdZv%q$E z;O`&Y3{20a0&+LY^IMCio)rc0{WE(Ds|qzqzZ@fZnD1vKD=XY4T*Hiv4e zVohwfP8tB44zidq!GXHUR>C6Y->P$)thE>_T&|l?=P=@H8;J?6+3 z)2-nTJFb!1Bq4egod!Gg5Vq{VDbh5BL(B#*q^NwD6s1fx0ST-=SR_lpTO&>Uv;_u} z?qJnm!el6{>@e=}B0`e}5Hx2W6A#VP+Z}7jYl)aPG8$In-Exh*#&kfe4cGuX2AiyB zqyS`db{w8)^75u_^u}bh71V^a(h+FBeQ|<7&#p5nd;r8Xb14WZaQ(P+Pft%1h(YUP zo2|jqdP<5x>PL~J4YCA6j>Dx z-0q$H&qN`oZt>qKn18~Eaic8FgV}JEAsG@sC`>^Id{hoZEa51?Eg$Bnh#5+d<5W$n z;wLWdat=JlKH%FGl9LB}dnmMW1&QyHVF;S4-H(&_kR`1PfqP^wI*6lu>5~W&S&U%| zg&iJF%!x!;oCBLzG=eh&ZJI8QPC`5S|Iw(*JB;_H>*f$Fhxz|NbI|?)Awha_LJ-6G z6s3YZKSl6Ab`h=S4TmSU<5XzOMU1l+iJOqqA&DkHLZBGiQh}&FOJLn+9S7Gg5d;5E zic9x9{=UX&6nD1|?o5A1>u!gI5+i7+B{6db<8AG8&bU4d7>V0IjO9maDt-I;b0_pi zsJ4ErL~frbaVvgS0R!$ZfnI>wwiQqMzM`2WTAoU+$8CXBDvsL!EbAEJv^gO_9Gy=o4dRNY)h7R{lGKm%xX(nZD00eQ zZ{6;Lzn43QFVDLYww#9)+1PQTD8W5mO6btSy_kCN;>dO$0E8KCW4-C z&VWdJZb)(ll>snk6lxkOu3S}V=fkp~zfR9B$KD-TRf#}8M+XQ3cs1u)W=$83B$4LWu z)E7@Ylj%9jU{SrsjyK+aKuTFxgdsxgAAH;YD{-x!5Ski;CbG-ZTTM(-xLH zTv>BMV7(uT`r4_lV*zuXM@|(@cAIg}_&zsqP*G$*(J`fo2)1lA6t>&hJJnt^`P#SW z*1GTK7Zk=8j0{YHnVF>Y=D)3JWe*CnD#Y@97NyYWnv6L?ufbW52-A5ZQ<*hMFz(iG z=cTh&IAKNz%`b9}Orsd0B8JFkM-}GUiA461iH-N$Ym$O{&o98vCcWz8O2PjMAh<&l zOrPn-F>fd*9=Zdzh z8nqll>ReAqi3N#1sIB2x^-PtM(vh19{<4Omo!CAY}Q5 zvygEexSMNniKAV^^xqTB{OP>jLOH3*WAi@XXk_YIq4JVgF+*}7R;UJOJ|PizWFCQg z2O4Qm8)k4hYtrVJ%_A}EWJH9RDyX?qs%Q@(h5K`nB1Rvp8O~}8NQOJy2Rtr=gP$?= zzk=xNAN`>Lff+~u_mWq`v4~rJ_7O&4?~;Ocj}`d?aY91yVecr2JtwMDl1_;1J1R&> zMT)y`dJYguV=Oc(sJ+?bO9W5}lZne=95!Bfi2Vv*Vy*CS8`%*ibL!40i``Fw0_UaX z&JZrHqQl<^cXa3%6J@uw1VZBGCJi>h529fa_&I}vwdGn~_VF6jk#+tCm~oWJI1rmK zYWQOaD#lHx2p!#E6R6MS7Pf_YL?eR!v;|rqkbmBDSql~{pgm&&mNn}!>#*_XrV;D? zFiUbo%kdB84ND?74F0z-md768f{I2Zi-!J&L+eM&0VI1y#UV-hl|=>f(*zg~*m`}_ z5?H+*{Yl)R&8~1TA`gN$!_|AH3hqAh+Q%OzsEeN#?1_WjW47HM;u9~=-Dacy#2VVY zC7iL}U)A}~7BtmV`W9K0$spgS^?*V_WaYnw{u(3t!&%i?p>spR*CP%qDqsl zJ&l%1{9Gobe@(ijo_0-|ucSnKO?e_$!&|W&-6|hxv_p9C zIN4xh&q;`Uk}C*Fd2aHK>9^Hf-8?V9r|#xQM%P?mQPaC5Laqg|r!TA7|9tRB&EVxC zCpoF5aLYO5%{KGF+gEYpTYlup`@VnJUOeSFk)M+z3EBggR+YKJA&Ge(ZS?$)N1V#N zb@JqbPOs>=pB{_)3M0L3@~4I`w--%S^Sh>`zmcnyT?u#G?jLO)D>~MkgWw2v$AhYr z_ZqSM=}7){e_LLirMB^YfoPPd*CJY&2mVt_CTjuqCV>{|QEg(}U|$HQ{Y7mOo7`ng zH~nz;xwEOn6P+E#2aNBjuod}jz)ohz+S2YxJ6Dzzj(pu}V$<-l{JGXk6d)M4qe+kq zxliVFic6)47phN=Mo{w=`=&$FnM-TU_t z7^0S^RfAho{^n+ARJ#&`2ktE>f(ry=$}9V*J=U6*#)g6mY1G-2&5QmDskWW^S)Ykj zS)iVLl0oqFSf#;qNi)A7KM%Q1f6iaoSwX9AfeR^Ko@f*(n(xsIz(RyJPY*|*R)7By zlR&gvrZlkeN=;CpK}>58pOf-jD3&~4On$Nr?uBF&??@F`h%s>~%FGqoX}k6#VM2DM zl-nBzIaVC5cNG#`_(R6mApxhvdUK|dz=>ao(80M|pJ^NHJMxE8-O%Hc2@g51eh@n} z;per8IZ&X4_C*stF~0GqFf)6-up+jrgoN$Jdj7+Ya#9zQMd$Zjs1~#4D=MvLAQ@M% zm{hgjF0Ar9n#b{&$)zKaN&QU7d9$#RZm&s%f%{Ep34iyJ{9x404M&>%ljPtx_$m@Y zjS3r`OG)WpyF05Z$F-8rkF=@e>V3R%iaSqB>OGihmecJ>A+RS(Xv~x1>2JEa<5`UdCM@LWP}lK z+4)9aj9Bwu*(Gf6T`t79?oH*d#8AGRNUy<{QduhD17stK(U zUSE?9aotRI-C-;_Z6KWr6moy@h`W+hu~^u_f#~1Mz3+7CCiM}CG_CG8+n1vF!JTp` zxf@g{B_;asS-iSq|J{p3#Fo`MiBq1QwTSm%hnAeRS4ee&^TeMCPm1sFAK~3EL=f5R z&92qKT^&Y(4lZJ+wL3obVGeYpFdEXJQxrIFh`^$3XtlA?z^--m%`IW}_}}(5ISe&v zXN!^ybbA;dR~}6~j{N5t>i;qHVfOQgYJoE%UYxOvzALMGA;lAHPqo$b^e5$r6p}vG2`OXWwIo)+lVgqbux$tI@uTYoqQg zXD}S!tqa+4L8(!%29UYL_CjW6SHTSoBX?q6*{Guc&KrHWseWkx*F4^Rvs5Rxah57Y z*Q^;J5HBbFx_6e*#vW_hb47l?^YPZMKBxBgyql}77Uc`ItU>XS0>gMf%ubu7eT$}L zXYphLL=;~xM{!*cy{_`8bHk*&O}&j-v)^G&=E>N~zkle}#5qlLKPzN1k%o3DtfT|C z_I)R3O{7_sb$5&Xg;W!RJs!gMos{C-dtEZGE0(899r}mr0Qvca>1SoX-i-0DJ<-iM zb+CQgbr+w5f{M+KU;R*(u9l1#-szEY^jvt+X-|&*Z)SkvwMPYgB95YO?^C`WNj%?T zw@q`Z-gas{$zZyw`}qxRYo<}H$PT8!JF0lQF?NvQG*O<;xZ!?vFVyLMl;Ub}N(PU; zg}iVhBC8Ug&VHOJBei)9-~SPo(z)P9SER+dH=hYEoN@{w!UzT|!`S`BN^d z^Ki@-tyaC}B0oR>@r?!(9l04Jnev=D3qx+kXPoFlT#|8Ci%A4IQ3EDV!u|oTViTrZ`T#zPuzUV7Mbd&$v_? zE~5GQ9~LqGrHMFWIiKo9Tk~XXrCtpP+BGM8d+N?q@5!SzyfyluW6IXbzKG&X(ome{ zQkXNvMv)@?DznJXE9xqAGj%&*?Sh6&G-4+uj>uss^9|s7`St&CkX9iNrN2(kwgbj=oCzGY z&v%ukhhM6tkY6j&RGvu+?D;P(%PJp4q-X+I#$;V%sUmIikUWWpm$If*AUuJh`k*2xOM)S9H)59 z0gUN$IP$(G$QkC*axO2HkfjdBtijL&39_3|E$^*`xg2v3JAXN7`jpN^ULa2voXL@U zwD9*7vP*$nKwf6~wjBn+qjiJty_>DyF5u;YQjxLyTmBHMb9YVQk@8<#>ru2m+eN9+ zUkNJC4sn`C(+m@~TZL3uH}@#%7Tf=HC8=4A{w31X0>g%~g*psgY+})5_5Gsp(de+K zA1hM-WY(UZVN23hlA8&?jD@V|g9%R#JiXa?i&n!pe!Dm#@?P)Jss(CU<(HT9eMabwVaXo#2PxjA=3?2dQa8Nmw*T;V z$ZjTN^j9ue^7Js&0y-s#-f7FO(+DyAn#XH9eofktF$fIOJM$_93>b@q+BQ|$Q84gaW=DK zU$k_|vP)r$-^a&)+jlQz=VISOT>gYYP*9O;{8h&7XX&fF*9}`|aQj7}_`x7{hJ`h! z4G)9$iFN@YMt5;N6{Ql6P<0{DMM>;B+DGglKCBMeKpn5CiYgrcefeQdZ$LYb-(fKM zMj?QoSDA&!vGRCL;?`TXPx4Wz*H7b#${23r6J+xZa7T*$Tq8q zT~u6~cbH)m*f-U?qQ0^2%S+~eag@3wQMweYpfmn9L0N5{aKCC2V%j7F|5LdIcO(vg z6(H;FC$(A(m+g8O`NC#PamkDHtZ?Y98F<%qmOo(_qtOrm!#wnKe!uQZ+Nqd0`44S( zIOFlSK)^f1^$o`ntf3D$VLMT*F)5PR$Ps)zWW#Jf1E$0$Y^qn@HAUWl+B*x%)sw>2 zI(->14k+Y-2q$YhC}pwS*$wO#9}69``$FaLNjSy({B0tbEMUmQuSYnVl7Gql2}P*k&6aR0&bwkCxmwOWNRkJP$ttyAcNx4k0`OEOFWOK8j8V*Cla6 zuE3kW(Eo)xPE?N~*oW@Qjq-3qZLZNqV1@6dWn@xGG5@~9f%pi$iOX6H(|5T-+>xd3 z*`o({1rp-^w>h0Rpch?=)6Zr7KBf!?zgOxv*+G^7 zy|EBJB*%|=ZEz(~KP;OGzrdJbq4ojEkYq1;2uSwu@&SRjXZFwk9HStiNj(sNYK0^N zn}2R#wi%U~bCdLa2m9PL!hh(P5+wwZGEgYjRM|9fSq-_}l@7|AO>6soV12_H{ZJ%T zHLy$*OJ*|cuGLwN$RI+)rSE#cG2nNY)#@Nog5#VXh%3rqs>4hhs}_^e>S|Mrp#+dG zM3Ib8of!ym$RF~=>BCJpkq0p^D{Kt||8zXV_9(G|N>+4AY!3r+N&6V8<~h!@fZ6$c z<0k3HQ~i&#}xr=F-iqW{)p2YtR_s;7r@QiC#e!~ubZAO<9x9zD#j@5l9k6xai?{wP|g{l8SdxJV}FVRR$vb`;^%~WzbU$9h; zw#bSZ(E$}TBEbaMH%xkV1%*C zQL3SU1jO&_)2o@S>%2sQw&dxfl`H#1TDj)%amorq? zI2K^@>@xgWkb*zboD;&5e>tST;CiR`mFsgEN*4RHOFr3pF-5~yAjE#~DwAxzfyqQ%IM2z-w z7BpRVWRov*J@!U$eGYiWxFMbcm|z}+(p7JJd*X!P@5mzBsJ(VlaJVZ&`Kq zl@#AZ0XoUHd$?EvO*Q6r60Iw=7lfAd`#cTQPr^1oCv0^5^}xW`7t8G1aWjUeLj1{Y z1w(aX0o<)M13IQW?obm#I#9X8A$IYMb()`X{!rcFS{;#n+k35B^lF^ni;@K`7_}vSDHqpD4ZD9G#s&YXm zcgV^=V|hWAo6VZEgI?YOt7Rw&N?2e$IR|?BEU%R|D~6x7Aj;MAUXyE1DZ9@q-q68$ zr6^s_$sL>=(+HmGP|%Mx-oHQBG69Yhka>j#MNZUP?k3y3+N(D|ep|1gtNYM_Fw?r3 zA}#A{Xv#TfQ@R_K6&r7y_Vn~b-rPLH?V!Fm5^XQ`i}CGa>ywm@T2DZwoi?YzZ9(l< zmhgtm1$X8MSEz)jy;`@JS|O(RJ}_o_i4&@YI&;QcvH#Now46;@!5bA7_`dH*pZRqb z<*@3}iP+s6?cvx{AZHVma5WuWnnjI zys**1?3&=QwB|ou^lsT$uWL_#c2n-Kqb#QQT2kbkz$jT=6blRp*M)% zk+l|8JooJi?RsomXe3tn9-Sl<(AHoxm!@__)^$XU+CWHu^YEA25HB1Ov;D^Xp`O*^ZmX!5AF1@E)!QTV`OEx^okUNLZjHwXvLiI7yoXntZdu%2NE6X@O!D%xi&M+-BGGzDvv6-5?qCt z{|bjGU zs49s+U&nQ1mpD1ca25-U%83;Z&8Et!Swhb@-%ivI1j;;Zm!v3<^0O7d95%4~#oEfo z10S+nNou5ysRYaiwA&g>*lcu}E}r6qjoV06#Uuk3zhkAFaWx2R^3iKVt$ls)+w03o zlRs9WGr4w}R7GIh=*vfP;R>qvO`I^y&GGW~Hqi>Ro{w>-G0qjp*YFWB_dIkSkWA1d zk;NH;LYI7hT&FI`>&});B`;3TF~>iWoxj~_mf(X{cib(Q?9?;&yHvwIiCr8_N?;JN zHz9V2m*N@?@5L(&3LskZS|1YDck-}*Z{-czvvdXV>=daR{K4;T23vhLH)|XwxjQ+J z0vntg#x1}2tvkg0m(wF?Cnd!AE`iw{WB`VenNQZcAMbJQE*d_Ys_ zl1EKwWuw2w!Zr+7w2tn_2+sM=9gfyUY6T*aYTndVOEES)6~f!$di;niDDsd{U_)Hf z$&If36d5|E(_uI(>rUw9|FkZBUNjp_5?rFiUYYne3#T9E%tLMHLMG?q$ypV#hL`fs zpN`LBd(;aSudDR><10+um`!3q+gwW>;4dGiarlM5z# z4rjm-&W~%j;+$?;`|+!?;iF%9RnqMz*81x|{pFOW>e|jt?^L^xqA@*spTOZlOT-M5 z8ApYn!gc+&PKow6nSjFkiY|QKYR}ChVyCt8!_49obGmo>iX=8 zt_qzaq9L5Czbe}VnCZU_rYHE|nspbYabh(Jr{O3XogDL&B1zy(+xi$JrIg8ik(XcMIQ2j-EFdx1t z5lHG^Sa0Z(wts*@Zj|wN4cFaTM-H<9o~kMITUY)Lipk#Kk&cn3;NJ3Tr-ECoRa$e! zqQ8l+P#v8OaTjhP%I@4ecEeQp@g#l!;VvKldw2Hb;aK%Bo((vzq!VJb=z`{d`zHFM zqB)5k!W;DpsZ#k(dE94}A5>U8q;*4i0qD`pwwNX`*rY9Wp7mEO3;FSsv*J<<+zhjL zPzW+(4#mMF`3yEsL|G?y!S&NNiCOR&>r|&d5)nPf??@%m4hDO4LeD{E9TEV4J@|#XPP-Blmx_*Gf&O0k2I%_5{2uPQ2c5>%u zg<*kjp>z%mt7Yq>O68nqnFuo&IyM7xbZ4qX;QTDyv=tjf7vLxtw7Z{~s-lO7!{K1e zISSw6?Y-x`0r7&UglHQbwJaS^l1xnNsM8H~O%r+w?Y=jJ6)(acc*z+pz4$B!$yLWT z=Hvv*lE^pYDJL1Jcg3(_NbVhOEc0VIN)_5G9={#{5+8P^oVkif!En(~TR= zjwV_usv3UKt6>As4;?3$<@qGXi-^qH2eMd)s}4Bk9`5P=vizjVvA`&QDdENWYhH2Z zCC~*|r*;o+)K=HF1DKF_bnXSOr{PtsYWXl( zVpEeK$u5WZyUg&E{2AkY0a-NXzbV3tK7=`Ui`zR`oJ;M_p*s~Z76vgYCg$+E&S%Ym zBL@6lekWLo27%KPH3t0r5q(psa2Afl-AvP3h_&H$VX@oDEGhrZ)OuTbd<-{q5sO+z)&(3T}v6049IY6 zjllk{-8>4cCX&=x@)7^R{BU3i(_x=0dk?aH_e+K@^g1eJ=X~71o97lhP+l22QPN6> zUq&@$_73+Y66|x4=%#mVS%`Kz#P9Bs#NeSe*kt(k6asw+QikyvT#y_;$J~(&Ya~Ig z5CNaOgOnbjoLB2;YqSyecV)#ahQ#}eRf8EfiGz%ZiJf(wlF#@W4kewxZGZY zvE#|4FGk3LAd@w4tJprl!RjFGCk2-U)TN;SE353OR?F7q0}ip zl?+pm-OYuQX+F&;`qAm$t*tnPE8F&`68Y^GrH?8wc}EWQqFygaVu~4!}iwh-#rkJeFCFQYI#}%XzEJXgkm|L_G!3HteRta?dDx2xsfSQFBfoYKnDuc@J5< zi3UXl1vtH$AOp3q4IFxJq5#!EG}%;vXd4fGZaL;2Fx?hCxfTF#h0@*dJQxXTvQZc7 zkPp3#_8M#f7@+W$NZh#tyf@bgdN$Kq2v14C*0~&5SE;Cj=8_edSpRSThF#q%%&9G1 zWa!QhP!dsbP6^VOZGXSUaprA+giH~Z4W|ur0y_%~tp4N)U}a{x#d#_zXmI*$rJwI# zT)oU3*B6fhyKVf}g{QZ(b9P&3bh&=hpp)|e-=zhX%dNYTS@ZG*i&qra)B1N=tayDD zll1efWWCu7^Brt26^(a!yKEZ}5Mg)Tb7-i0dS3e8>wAe0Rj<|>9hmz#&kMxhs$VZ0 zy61^~!IyaLAYwT1lOY`(E|LJ-6gmWqMr9Ye5XlU)0omO8!IeKVEi3q~{PbEC1yNioN4=nVp zTZAulUMjen-7p>=l5nuBcmCAO-haG1)q>Vo#Jg1TEJtGs{j7prVGp#mZe z3qH}*-z&*nVarTCy(Rq0_m9&bC>37tnj(9c%wjJ)7R}rXl_gj z_xxW>qf@KIwm_f8jOm8h&Xq?_WF&zBaW&K=fSncog9MhD_rDU?M#Le=`;N=?!X?s( zp;OhMIF)3#M1mq)8$ZF26mN=i$?P!!*or+l=_uGD9^(B4KQUxujNf~=@I*`yP>$&( zTp=onQQ%8@QO?H`w#;m=7+s^Y1VT=Om(-nye)Yybh*Vl`ndGT z@{{Sf^8zIMhh6Y`<9Y#XtsI)m$T#0x-LU~7p46vu&b|$X%b+k)jww-G;h#+U?75n$D2IaQ&fNex_mw2lr=B@sE0TlU@EJ2IHd* zZR0oNJb!HPOi`#)zuftGr^lafTlXEh`e@f^svU)8V%W2Y+7J++tL)Nb%vSNpA6BQt-l| zNjC|5B!H0USIdo@?J|*cAP_)=_5zm9g2Q z(MfY*+~#(YT#l{=B#^W@A>M+RmKLPR-NabJ=*SW?deH%9lfdt*xRN^r4YgR5%B#OD ziw}7&yT^Cqw`N}5t1lG7R;h3)?mQ(>f(9jCO^iE_!47 zmiRYL@}gOId;b1^JiQ56%xnKY{%ND^g@h;>N}^K{Nehz3elRDMh&C-FEwtANM`@oZ zDGCu&(K>Bf92BaFqSC043aKe+-+r&V=l}gb*K?igT-P}|)qFnp{eHjJrPJIII5d#@ z^dpxU^7kgKgZZ+J{=*%5X1SehRnNK12WKEYycc;*U+N5H5GDF%lW3xeNAK^Y6dQqN z6T=+|dc~gOuN4zS$9Zl-pJxYbTETAYl|Xg;)ijH^cSv;d^B6(^$ID%EO(&i>l$b3nu9X~ND^TlNw$HH3 zis{Sm*r&GEp*=NwnWR;v7AZ_%=Rcp%N2NB#S*e^X^EMxc<4@`U z(A(!6cm<=5Hvf|lfz2T(SmmiGAy@%ob#ijm`TB~s>3T!Ypk=t%To?koI-iF6bfe|r z<<=%tYGGxFBFJd$=~H+PlW%jxVBSsFv+gC?()rHMH4%HBigezyee!xv?lI zC?L$9N_to>)h~b{1IVtt%>x?66D~DpRB16=b!ZN@kPqN*cU{6{D50;7!5Z<4IF<0T z*$T$fk$M?^+xP5dH@fS7exmE%8n{6X$mxl&^rfYrm`D!d?`4OF*H>M8i?e}?E=KEW$KzvfJ`$tj0~syT!ln{U~E?m?GZ z)qkP;#w3H5xqHlY&pY{XTItf(@F7vk9rft?+TGbJ7a#g`@Y9!|Tg^g=8dV?0Mgdh; zZH#hsB+)t?oB!UK9i~nV+Y~r$O6T(%7WV4S*JA#ybVN8ke_@?nS>`HLGeSksm|36_V(eES za|n%5o&AmcFK%1RpVS9#zFjS;whM6iI>@`m{v_-9^|g1N7=PYUabKR|J8oFpvIOJO zOSL5nPbOu-QpQ{oyQZ_ZH?kB{*hFv4q|u>7+P@&ZqT~@X{5r9D#_3&$q$U?qnRFbl zfLE{4ze><4ABBTX8|mhf+r+#CA3TGF%|#{hS%VEG z&JOp6VF^0FUss03WFtje|4<=5TS#%=^R%hect@Nv&pwwAIym34UN-#6algUVxsxcz zt)CXI2JK%zS;H{ls7Vzzd$&Jq`f`@SWzM7uB$@;N*2dVkXjbBkoL1g|rY$7k0J#AR z8@T+#{u7pzw7YU?cmaKA-H}y)CryHH81m7D+2A+YrRGUoS+XN!e6ivElI_at z>|Y}3%0rck15Q0A8eAC}I|WSx@M|E#S`*#cl+|YpF^Fy8W3VOxt@+2O%@v3f!D)*; ziouBY#4Oej2@w-_B|-;2MvGeTxyDbLE42_`fr9W+>w51`5S?jLw6(5$ExGPnHa!-Y1$E>?(k<-F;eohsU|)pA5L1elEzlLmJ*eQp)WKFiT+{E> zwqJ_EkNcNeS>lSIZ&S%9|6(f_O1w?U!%>=YRhzPpjK!g;gtSI@Pw#SilE}i|5#PY% zuU?~&jc#;Wj);Ys)CZ%h&D=DOqh6t&$WYHj_r%0FF`;@#;C#5FoFdHIiHn0#=Au(1?pQwJHYyjGXI*z5fU zQvooz54&I*0cu1+xI^WqaJ1kev&ScSMcVvOu)J1>Jj4<<|NK&SMbuUg@=Cgzy}@c; zDbzI(8N4e!g|z9(fXf= zl7!rvoUG8Bp#0WOJWoDxOx;cy>Q(a#M>{^rsd@dM7GO!>sn?mZ;x(GVd5`aL+8=|z z-(Vm`B~ayRQPi23-9XbEHyz~4~-r%5IL_A^v)`fdH3>-z57BC?m@Tid=9?P|u3Ee!l zVPpF)IX|B*w{$0Zx??7La_6d+{By$)RniiRH(fyM7WJb*hKtXGDh`z-cwQ5RpLUA+t z9&^T+_{!_g7uY?!g%X%$)FL6H%qG*QYq8R~U5#`1FgwSG_g}X(n{1jK((@5$Cp`7+ zw@vB-_gl``TbvlmCna&R=lL6i{wJu|8=hi7zY6(TSp&7jiuEmDcST60f_mxa% zwe0#d51oh@8W7nq9c?Rm3Ag>nzD!RpEU$RpRwY6|yeY)+kai92OWD$Vj%bw1!5SmI zKUjq?dydu#%QQG)`{hZ(z9w-!H`XLHmDOV0&V3M3^BxEN79`)Ztb9%Fw7oPV{`1hmqAX5 zvK*_`NzE~BXHBD5zSioH5dji_2~4{r`Sa3WxaNRgVhwOb|KS6?h2Z%S`>$WaO~M{u zx$Jc_s3T;=V1&h{kBJ%PgI{?_jK#9=Xt~RUhq=03M)QoL&(O2+g5y(}0?0H(R}uSY zn7Ekl;fI`0Sn)9xR%v0xCRG8UO}*W-z{MeS+mc6D$A+D?O!8lKGz9IlXKY+sE(7nJ z=lICEDq7GoI&g@;6rxeIyoY?tXmo_0mEQ1ix#d;_Z6P$!C13VH1)%1JQ$q8!kzJ&f z?DTUkA<(f5?<-^?YgNd%uWD0uf*yq3L>8gjA#15pA^h3P7g;dS1YCr}0Dr|f%^)VZ zw2g;Jlq9-|)X48q33duR${(XIDIy>7K=geaSCxPEk!aOa&Qs?m6=amtG_uwe;r&mI z#bWZ1gKSP5_{NN1?eT2U;PsFX%T> zf#PB~?P1X{;%7T9$|GUFma_~ISma`|iUexenAIS_QPhGr3>H)w4VXw=fXYcX0dpO) zUTBGqCzi_zHH5+Vg-rKg0w12;oC;#Du%yH(O=s)YBan-JFXG>JWnY7YklVGTV~pos z?CS4-U=cE6$A5j)KoYq<4|5};jD?Iye#_HN{Nh16cWEVeac;WW*a#3KkW(j$WdX-> zQ}zwle+mZI+l54Kq|f*>hdfFe^C|K)LXEZ?pnGncG!RRgrqG^4$9y8*S5qVsqM4w-?wv1M)Z1 zNrE89rOTRkNI@;#Yw&qC)s1H9w-1*V?<#y-BK~ulAOjW}kwo*iGbZHV&X1}36+Dkk z-N;j$X|2EEjQV_q+Y#5681a1$NN(bq5c|Blq>h54Lr0v780MBAZl^>OjIJ&{N5|#W zd)k|~2L9x?bApj^*zctyTb*WSR_|P-652BPeR*r9fgSH)Q-rLE50eu6;o1R4AteC~+OYBOLk8ccz2B!#V*Dgng{5)?FxJMr z^CArTTaoYU@EOzhY!EXA+KAvbg@EtR;x?3ww72<>jQSsav^crKt83oh5OTGn+?m$j zOnmBqWBG(Lwg=4nOknjuAF1H-=l89U_&WPMMr)d#wmHd_Hzb*v>*W>VG0?;=?|eQm zG$c1Me!_3)*F;r{Q<+T3aFt$(SO1L5$_?FQhPuZwMF345RjHM7)rzskW3#LU+I^iB zAAOEf9^wPSA$;uvir(gCYuY6*LSwcJb#dM&@x*X zE-l*mPl(#2LMXQ;#33+z|BOXB6%V(+tUpmF3wP|# z;Xg$JUsa7S_S+91sk#}v@u7`34?X}4nfPgNR4D)YIjuOBfVV*J@Qx#I0Du1$nbXtG zydVmHTCNtI7xxA^r#}53j1LAk&#n03vDMIEVf(&S_f~4d$I6SLmPCrHKF@@Ka^M{Gv61*BI>vM`iA??>}uoncAcq5vGe=Ccoe@T!~)eBmLZ}aNUuIIRnq8%i+LO z`-j3KB5P^2nre!Ge-S^SC<_4qb`Mlz_Sh7A_O%m}RQk#_YurID)iQQ20Y-f~txAgy zg=v@?xZf@g;^v@dMg7FTxQ&K~hGZl^odjqd7)wVd{O$cny=jAhk*k3zQXe5R4bIcw zowxb=Ko*OFnxVsNeVbGD-h=Bk=r--~hXs$!0eYraEk%9};smkd+75PbMleXbZCOKd zM4xS9E1cp1CCaZ@Mj0-(Os!u>{-m{8xr`O;V{pAe1_2$z!=odzIkIy}TIU)&K)F=< zFGu`C3tMkTW89O~T4oM06~NtzNepv6A|-ruQSLJ|l&7*sU`{|SAk9ze%kfc8*}#jl zq4Us~>uZ;`)2aWG6$*>vHHZmFDDgZExi|o-zL|F+^w$)+fMJiVQkl!VDjoyKV4Fn0 zCyj9rmH#73aPpK8^)ecvaj0`uuHg5E-A6Yyyf)S${O1?MGmmT z^+vn14nN6=3+mJ?Pd&#|bNJ`X{48}v!?wLKc7=ffP8MI*3Clb0m~w|Yx6*w~;`__!Iubvz&D4FkR=3J@mbzAgq@9x?9^YIS;Yc9AIhHQ_Bt6zzkla(Th$(wcj6!peBLyC+`hA+{gc8GhDI*uqorM1B+1Q8?NrWb{c^3W z>PxnP!A(s)zlmF;eZy|=RsAM5)t4L3xH}7Lee5a;A-d#A?|+)l+7@zbW>Y##=nF*L zJ|s_$p-p8ZcgpY_5M!Nx1{M^$@T%{0akh~?5Da%}i3Cd<51@Py+IMg?FQyWVX5hR) z^G=+!W7wL9g}~4Bs(Un%{(Z$!Yq`QeO5V36OR_Ov;-(__y|%6 zhxiS!zVf6L2KsGqAhAT2p1d_AcmQopr&wv;UUhw8Mcw^b8EQ~iLwus>M+t3*_c|Abr$k#G_ zZJRE~U6ul8|6=WyW!iswhHQ@2ud@y29W;P$8;Y>At)V_E8$=gJ7$Og1rLDudhb`mX z?%b6g-}jKWQT@GX>w1Ok*4!Km#!fS8fk)pD+Y-`>FuPchma%iC*G!7WH-r3NVNL0I zK@&GA(4%jpx2mldQ0tfYK1gRQDyh_FHCB?%S=}<2SkppS!p04W-nQeH4V0 zQ=r%MX@7NOrzu(;`4A5nRQJ)cJ>;s=(oxUKu^BC3a&u!l3;bYB;&ZocS$-f*&eV(q zN@q1+9Be4#y$FTxo^0E6K^bDt*F21?L_TW#VRF2$BIslq2W0@VtAyHaB{kB2&u2G4 zucj{rk23zSCY_HL9v;@^e8i(7>i6}5+dAISu~fnKnlE|p_Z5(e_E;up0y+(`*QO5j z83=3yM}}*WKP4F6fsx9|jyHVP(+6Q&AhGS?4gLK%=lo__%*8r@#8|jNpeTgkjKKE= zqa&S9p!B1Y_5{#RX*2crcks>=q*g>6p$7z#o^u60aFE}QmZ_cgef^#Fh+6rZf$NeF zqM9HoMrZgRG+9VYSp_bWaSjo6;cAYc-Eb7&{NFAHd}dQyMVkV?qNS}Fn+d7w>3s;K zT}WS$a+U1tfw7Ow4I0kuDG##>GhvXCT?MLeu7<{W{0=p6oTK3yH@>|s>GhkkQs8^) zt=s*3qI>^;iq(2o#i{c%UdUxo@52gH-&8)hz3JbnG3-`bTzUCgx(HxkeG;JEH@p{H zh`;~b?>0OMd3Ox+I}DC|Xl-3dmtdUp^r7J%rr3as+mMdwMmo)c0}&=oXr>)Dz~-9^ zr`#r;1;?L+yYk4;JTY;5J*YVg6KSxwRu7OpO9QkG7YQjq!qBPB&yT~OANJ`+?>eiH zY*cq?+a)iUV{|e6Mf+H`USrB|LQ;0|11cy0=%%311DbU)$(?1XxW*kVs`8X^GeV(c zV_PSD2H&ljs8US!8M7%`>=~PLCWoh0Yx(Ww#`$JEl?BIweq`D$T}{;jYo0&mpWd^a zEu7IhN1H8#L*#(bzY{F0gMx;#$M$&Vscrjv`p+SNsCu$<%gkRaquuJIOJlWH5C9)+ zlyKsUWw#gfhB2dsBHl*@Hk*n7%zyX2NDdT*7Lo+v6V3Zu(S!jNKlb56Kn~^R;tJ_3 zxXl}+$;lnB?r#*4^FQm}{o>ft-ODA_It&dNCp!j{CU;`iOTTS(9q>o!Ehc;CQ_H2S zAmsL;8^py~nE&Vbxn|#iaf0*^1pET=Jl>;}SgtS*ilFxkx8KP!;d~#tH?I`2i z=6El`U`JuN-tgz(mdWngmhpnJ=#Ab2nq)-j!S0CDiM)^19t zpNZ+JFPZ2Meo|aqShyA|cu!FC1qjj3l*XOD_Tm=J&+PMDLdB5=2<(&;?PV^FjK1b8 z9-YgnlhIKqP)OSGN^9k*Wqoq~gTtzm!?ho)SFXFJkBt!-RG~prq6~!XB397W5R~D~CT$6M};Y~EUZoFLnkJdz0!q|_5u|HQfb|6rs zYLhC-N8t$H_;C}ORK%$5+w`eQ3+*whAH_31+_km&Wwd*D4D*qvv9(q8z!De8QG_;QCg#f zqW8ef*^e=({!fZu0=sPA@B|nbA9rZc#!;EQnBn?%j)KDH_}Kc+GW4m!Rtxcz-@{Ej)pJ6of8$Vlg9JT@$$JEqcQK2zR2xmQD>Hp7J!RL0KLl`>nhnEmUfc!@k zErP6z!p*_cWAhqLgQyVOKXvSbJGpf??ue;)IZ%JXpU|U6uA5ptKsMaxwAYzy3+GG; zb_QR+DG)j>yzkJ8xNJF^@*j&m#cyY5|7v+W{qp)bI!Z=yNd+H8 z&5AnG21p3e7Lk=NHR&p@`_Wa$rpQnKSSdJhz3b*=*E+S4r^pc<)%&zjwN=Kl@`d%c z8|QG@W&OT!SN{=z|B3#>!DnUj=qh5`LMGx_m;MTl7J6jzl>Nds?+x-fpV&9H zUteOD>-*D8aBBnI7?$|D#;PA&!O}HRheXnM1|td-8#{e@`GtcHU2b06TvRqCn~C`W z3v1mRanAc^La}erruw0`BL9h&-VLTgvTM)ZoQUN7K4dW-?az9t7qC{EWwKDxZo%WP zE_>s;+*}8HJVHd>Tnm_Ka=}S;cR4o8U3tx;TqcUPAX##z8o0~mvBqtptPB_W{eE`< z7~Wyei6{R39UJ8qN`HMb@RTDdDNbb_=-gsKOG))!zSYB>!LwJ?umh%9oM&%~5}l!MaK+8vFO_5YEi$Ujsbn-X z8fkxf(0qxFg0|}PmvAG6SeRfqhdM1oO2(e(`TIOo3b6W{$`e(2bUE*|-5!Fcz>Wr! zXzNgSp*vcQJP?t<73d9ri^_Fsi70NoY1Dp${Boq)n&Tis&@Xiz16L?vfda;3Xf4g-phkwI>^L4S z$j?U-c@w!P0zp8CN7`O}S|~njJv6HA#P1v9B2e z2r!4%RzoNXG`2^fk1z*_6S9>atkn?m5Q5g3HjIK)S6)S%)DgH}AQ)N1_K<#t<{U%O z#7YAb+*y}4cYLey&Rtf795wlJa!GUsu;S)Y>5Q zK7N04TwI)A4ij_S)BOCP@9ePFQuU5(L?swd9zH%VqB24Mq1p?-C1~lJDy&0Rpb~&d zqlKCN<#xqw_NSBV-o`9fL3Q9*9VdQC)l*(?1CUq3#gxr1gG=65+{e{^L z%Po&AT!UbXH;<1}-=q?~G)@<~9LHiIzOz2g_=%ox*5oF+TV+?AP*S1RxwTV9SG_z{ z?YC0+kH2FtyZNf_OEnasbk!^BNx}^T01*j3xMU)RVybMQ?HnHlPe)A;PaRVvQQnYov zD8|zn_*n|CXa+Lq1*7pA8j{SGL9%3Q4Qp*nF?Qt@x(n=O@17{xJpQd~tz3Ah2;+{+ zgG*Y9i%|yuL+;4+7~#%cjxhi$DAk=2FTRQypW0@*njU9Klc_EC_CJFn;M^ysc;!7q zDowOFyHOYL0tw7HYX1f&*V3<|jHl&KGxMJh#R4>_JoR;MtLdWz|PQVLgGL=guQnhIrhh|_ONSU8LlQA2RTWW3d3oE=61;`(~5q{Q2-ku+)% z-DjFSMb6(?qhparjZQ)Kv`3tn2`!`E7MMDOM3@@5?Ods;7Pw*g%*nxo@!>@+e&3V% zH$RdXPM}b)#Po4h(9uTm&xapw*zRJr)-oYY0@Gik`39FFyjxZ(@F-T=0$02${_pxe zVb)7U!^4+?dH#LL{$9tr<#c@_dMXf5hYc5v<(CciUqp-_Y5e0$KE?8igApj-zcKg} zkbb%hnttmCizoturM#)G(R-+@k1m$;&-$%kC2U4CK&)}mkBRXn+mgZ8h3+jnpGvAL z)mNGd3KyqIoH|GoI~!?b#-`IBfYY8?TvGDn#g(~o9L~9qizU5VjCQY6$j*MSwub!* zQd%nE%kC9FI-QDf4Eb>r&NwP6z246jI{tEd4fmCJPTi@<_XvMehflv^e0&^>sL$x{ zHYm9KMrsq3Js7UX#G1U5)jDKX?gL+sMT3lP|Lax%4QM1af zGa?{t-xbaw_@0pLz=syKqrw>u-R^E)%pQSREJfStMjcnLt?mg)VyX}g;UeldfeK&* zo>KB_LGXm0j5X2DvN08qTBK%%;z$lG)mYC4BHGmWuUtl`+zObxdP64p2@{>ZExC1W zFCTIM!KwYbNY??f-W23-F+(ELlbTUjG(24G5B&ffgd`4}E{}fV+w@Fd6+v@RoU6?e zoFPSnzAa7zhgFW!woNR@0dEEEojs2<9CtTiA)jj*!sPEyj*@1VI~!b*<_}3iFD494 zfI6w#g(_AhzS@=oodys)&;S=RRoG}C(gQS>#A=b`}ozOKJ zwn~G})53+rL{2T%{FM&_56(pPGIB>4i#31d{+|}$daP14nS!-C#=dpMF$EibiI%=R z&-k*-(YAnNbdv>6`Ph0Q7ao*DUl1{^JHsHz(@NnCPCzoXuJOEUfvkqYfG=1&U0t^5 zL2`2|eD%@gm#LRq^MY1s2q6{|$G89Q0~0}@;*$7$zE;PuPxGJ->1!d|Q7=Klomz^! z?g*@H4o4iBNzXxY2@;IDP#(GTHQAepqURmTd2nD_Jy=Ait@T|f$^KlBS+(}%^{GZd z1?7%57a`31Agpj=qa%5z6#kZcGuvluP1((Mg~T5(Dl#w-rQQxmntS@5)O$CrWY<$+ zQQ-*oAHDdnJhBfX!Sa>1Bd=t$Y}$-$+V_UMQF(towr8$9pB%apEEHQ<2qij0+k=C2 z8q3PKXBX|VU+F4^KRO4|9q_1S`#v_K|HjZ<|A{PBzwv!wIrODwv8ilOf42Wv;NYo_ zKzzY5Eg_>*O7DZW^siGe5;+Sq5C4N-t*MBI*haQl_F6iZ=;G0+%{`sgH98w|9Gm9& zGtWkFc5vQki1>_-47AqgKD+2C%3j}??sGX?95%%fq>vDZft>~WE!tSIa=7>AO! zz7p<7Q_ELCJFTLOX0$6j63dBr{~z8_L!k(9*3=AqY6XU2AUaA8D;B?Js9*@DuY0WI z75s0?Tb1#yn39o{l3{*QqOQ$0XwD@P%Q23@U}TO{1m7nvRzpVQr@u@CT;zDYO5zEf{~h4JL=xz*IQAd z9VT)LDOKAIkY!SKKL@lIJ#!a&N?+|&B|p{T%+Q^muUDaCj>NWQ>ZCwKFex;?l5u@K zb!v2*aXWQ(@=G_G#g>N03<{v_6x-!yn9bcOYDeD|bxD)GedncH)O$^~pxIw(sP_i? z%tD+!H|N&fjWmS16e=z(Wi<%*D%o=gk8+@q2K*X!FU%xH^FD@U9rI9(7vmQRch<^!w`+EV8rb!W&(7k_&M-KJ^Rg$ zWn4eYP<#7+#Y{tS zq+GeuD#O@Vt0{CgBh;4LyV4ZdmxrohW4yEz8{bqKLuED*<4R@-v{}fwkzEB=QMM1~ z7Syj(y{=PFx)>|QG#xFg_*1G+w-@=24rKpI!`Z`!&Xv_=iYT--j|P{ck)h)chCKd$ zFhPr;{_E;uwr~;eU`i@;rvkrYJ!Q+`f*AG@vKZYw2W6&3fLsQfO{1)qQg)7d_n~x9oYE# zA{E&1j!{QGR8`G>4NVtgAq%?e#}E##qmcV;17%Dj6zKjwKC+hRlmXTHdanw;aF~Tb zCEyZPdpr+f1IG2oDR?+xaoBe4+kL2#?3R|s*W!sRi$9E@1Y`wZv%mc+y4V|3$;(*cc&@ec9v{j19GISVd5ZB>C4HI>U2u`(>mz@C$^sMl2{i|r zi?9$uU&&`5EYrw|FbKq8&kA6>RJLv=-N+SfvcXJswEYl(3-kS&JR=VDdf_~537?OJIUpocRVkl)odMZ2XlV;(5>>YSsqeg>^#?gou@9nSGc?OTcdYidT6nKZ>Q5l-(+9Ru4nTW zv!`MuuN@%;rd%eC{5m*4XR-o>-m7(6mZi{lO zi=WO~jkzSdE=;T3NZY$*RYU4cOPbxINUp@Ss>+kKDl6X0IA%>tD|QlIJi~B{tJR(O z+pZyM^z6F!`0(&>24TmG2HoCmJ`vV8?2~`2xy0Y!-!J}0J|(|HDmt*|P%u{gJPVx2 z5CozC6(4C*eWGmN-?s}W>C7f!(4kK?m-GhEJb80}g&6Z2Euk{AM99L2HX5K5yYG9vzH;DkO? zguF`AivP&|@zY1Q#CKFvV;^?IRFYl}Oj5gxn*&#%3LJ&Nq9oPIkQy!w(#Z&ZGwb$Y zpEGH_vAA1&b~YHs?h*JxbO#tW1o@P)Ab2^T9-uB3i>f4{-XF`hTLKLR)_EL|mXOtI zoVxQ+2m$8?PwPvF_|BLkf3c1ten}^Wno0hYX%aH|f z7$$xHKfC-F03EK>I`I_$Y+|BV)f9?4BVjb9mdTKIh`Ip8fBt;uv5+LTEAw-xz`$ba zAr5V>#SggT@+!47=Cf$q(H^~iy<|pLGCbz^?6`Huh!EV7Kg}X!1<4*#2vW?fYPqcV zCkj16NRL2*5`<3p2w=Or{H=K;GOK@Ik(k>0a9CCUYb_ab(tDmKXHqUx{^!-rdxjrw zY+SobUBmWNfz62WOzwO?VWIR;xi13YnV3Zv*r$cY_Ykf;Lm#!QaeA~q5P#I+M^3>S$X`kJOFmuwGb0_ z;>W@`IM@IH2!t%u?(y^Q;5@nI*zpHzwfgVQC&jP!Djdtn8T!_h!Y}fScaJr?b9#Z# z^@&M{sDAvOUw2A7g#suA0}M8V7Ykoo&M7+|B075B)zxonbIXa5^FK$I-)Y@k*7g_C zld_eaWp@EV-a>EWrVXZX+GQp8eR3Qu>PkLS=3IF|Z}?Bt0o{@QC%ThgE2`r{-s~+u zrGGG=L5GPt8SaA= z;4io&M~j{K52QU-_q?g5k{m8{WeXwQpPU*Hs$pw{O~^FN(-RRfXoMMt<)K^9OjJYV z+YZ@>G@Du~iJObjE}x$obZH;Bm16@<=F-c{JvJwVr&L&~m~9})G9>ov8oXm*?#)BK zPf*gMI@A4=c!4C}AIJ!BS!i2pBQ7QHV=7QX&HA4aE{LaS!jiROOa>7Mh$!0U*@ z+LO{3(8{IN(YASeKt$GK^}bhxUQsJkE0^6^_Ua`>c~qWJX6WTT2>#a4X+<6v3U8$; z$&-B~!B(QQBEI%K14pA)N)9&%4MdG~U>ZR8?fWrP>*qxXfyR3TYrXGFHEtLISU^esgNDgPmA zGn%=fRt$-2(2)~aH#8&mvBB^_7$7$;GY1+^Y z;=m1S?QuZ|`Z&x$VrONivyh*xn}7zN9120pkf*>O@*mJD;gCR=pC+WHtey>oDF=cc zhcw2AV~$ZM_k~V`O|+~=ndUR`0j&3lGP6Go`xNXzm6gE2p|r*#|AaYz z;rq^*T(}b?=C+@%G^}pDvun@ulC|S=al2pWuhe8^3JvYLnjUIPoB8kc(zY8G#)9%! zqkV~u#e$GmDQXsbgq0Tsg0nuohtcK+L(}cpcih?^24ymqErXEy{%Ox1ACEy6`;!vK zrhxF?8Qk z9KIAyY^VCel-0eQUUUP{eWX3W)6lohmnbDuFOFgA_-n7a_jJSboVtbVubhl+T&IEK zFVr%fl1mWK={HfK`hcsB)UVF~D2P+XcSS6om)Jcejkzew1n44+Xqt!QG1d*+r3xJ$ zW)tGeaO}e~`0!>&-^+o?u_qJ#31hDl;^lO~@aj%>p70rNYbn~yq(}x#;as^qidc2& zW%G}3wBy+&M?;cB(7vKU_*+O`)RZj%r!Ko+6xYCh?3*?Zs!RdV7;ztHb+oFTwa$6G zyldi1(=PaHVU+UGHD0K182){p+2Jv1Sbi4Ksk^zOqkT{O`_36)nY&UR8EYv^8!RGW zT4s*p%BCB3D^wjcI2$R-n)YNn?LJZffz`A?!!UY9gKi+AZ+eJ@CGWqiK+0n2!4IPE zZzge@990Jv-TRGM7q-ZR@o(tO%#g8O+Q!*!yuRF;b>`i|)a<{nYhImqdXZA8O7cv{ z8RE}aSEFA`hweW5kAlPd$ScVy?c7`KTXAot*th2?Xg%Qs#J7wLiK#2G@nWFP0q=dBLv93qP6uMn#8z9|7};-fOQ$C2aI$3 zYV;5S!>pH*B*f`Xdl=3ifKY|{8I25EBUv^ zlRRkSUjQK483EMs@<5*kF$P3DDYC}2 zBFy`QeD@zK_lEwRi6)Ey~c~r-N%Oi zm{$pdVg^puYQ%zlvF3B(A|ve)!umC0pu_BCV>k-=f>CY)zIV~hNUUgv$P z`n{@Svwd`VWbN%ACZ2nbd;p5OdqKPyzqW1dE6oW>&;$X8-C89=(U63;X^Ge;4H58ySD}zAfB_s1`ox;=fo&K4|jQvqqBY3@Cn@;F#{gkrt zgmsaZ=V))Iu_EK!s-s^djy%h<_;0l`aNI7=?wEwP=Y6a7N^xoTPDYBk7Zq6BdPN9E z{mO3i`PMh0>!a`!*V28#f5ru7^d&*8_lfZ=afRu!cj8M0+Z6(L7)@-CP;j0>bNhOx zrYqcK^j^hz-(QX1X+?F~9WvFfeUI~tKDC`SpU&Ue@NZsdd=NL4sik*(VD!o@d)4E` zCm1G{AvzuVO_3{5;Nl!Ye9?7{1&@nVX&T83zOrNAohvq}Y8V`@np-kF;jM};SAl=; zu84P`4akD-t2v58N&Q!f5&~E!wF#@kI?}|y|M3*ZFYKv1qPrI zWN2?XXgX1&pJ173B4e{lN&Z9(u$|>+6Dw`E0CNjP41S%oL{X4ipwK@i6~le?gZ{tA z<&M{M`-X_hzdirqo6z*-6tRIVd>u&rMc8kc72%#qdMhSww3L_YO*s2z!PcQ4bK?o)$5Jj(;K-5QUdG1w-XZ;{?4Y2S5AzMg!_-(lg8)ee&Xo_svuHk ztT;+5H=>{C)_I&}BTsw2YQ^?exP#WAJvzAA=&Ss^>2lNp9}7m6vK%#J!WfRQBV|!w zoosEs?j}Kt$q8e>9Zrlkwsk${=Q?%7+XwH<8QQ2Yhpn)Men&xAiEUredVct&s$SgV z*o|{y=|^iGsbZIf_!%kH4^qVO3qrV8p!ngmoK1ss6MP3ga>GGB1yZFg)AVVq%;8lY z3Vca5bJa5~+641U*q=ODGSVEpXp<1Ob(m2z4Jog*j8)9gQh+&Uz`x@{fbJz7-45FN_445)VOJCboQHzJ76s zG%mxS|7x!s)kC3WJu+1!Vd(i2|DufPbh7Ur+m;3RJvWCD~V1p(@D5vhJ z&$pIElzdM_tkp44n#<7qsgJuj3hFXqpY+c}V^u7x70bKh%yZ{H&i__};tK`)Zmogl zZ03K*#>QJz~R5 zYH~N|hcC^_C8_i;a{i^auqyvH?g0u56qDMpQ{a21kZBr=I~1Wg{=XJvIP0PXhcmj`l>HgJruV0&=rfQ1qT`)2A?$H0ZXC$SBVg^Uj77tmo=vHmUW(s=9?!_~%s2qu(nSog+!T_^3 zox9dmqKiKun5gofg!F0d;*sW(iB`SQEWJ@}|DNgi_7aMRzxH=^d3KM2*MTEI=HyT1 zay-V-?{Atq0D;&CD+nnLs6gJmD|ZL@Q&K+2-aNFJ&+V~~Bj@fvHR|b6J>g>MR zw)SX6s9NM#{RDi|!8a2qXd82XU$vI(i$>JXUQphU!tbqOxv@JURtt z=&R_wug=}HG3#7Yb2D;d7bYQ5{qc5nDa7`z7J2rd?0(v;w*m3@X3*E_-1;l{pA{EF zg%k(!wIXjTMXz(Qxq3u2ZTpPBjUp|1(kGLd82 zA?+%%L$k2Uar>~2!;T%j;F)_5U|+0gD3-uqD|J>1e?`H4QBf$;Z)_k=**(RS>x#Uo zK8xlHd;t%fbz{|&S(Boy1#ID`nYUskzwBT{;*1oYw@1#>s(`cZj!oD9X#oa&pK#PV z;Eucf>ijcLKncazi8e%AYb8{Zo&>aHt~+!HO7WQcI9sSgKwvT55o1S3g1?`;d#+%9 zX+dg5<^mZ>smJ6{8w6lNyePW_%k*s;{}5hAmpYwhZ6jEAB@ZgFQ38~rRpVH_1~nhM z&zTu)#!g5bD|gGf5ibwvaDcSdTao-M$auQgMaTzqeU_xnVN>63Y&LiiPih%KN06IV znLP#35@uDb8q$XsGCQttwtGT!J0C_dF;tH6M359gTHYW|*W%{c<28X-7RPkI7Y? zgW;WBipT&3t+EKjr2!y9phkN<89B5DD!`8sBGPB%M{>(B4`s6+Y8_A!Lm&ZInHVZ5 zIJz6e7~S_2?Tc9Col&@s73ExDAd(}H$oE=v4nlf33a4Q1fM8nWE%Xpo zT5@vhWAkOpia(%?EhdNKSbm2izUxw#XZpS+kPkz>n6vYc1Btxf+K{f(fzZ6uD1ydQ zMRM0Z49M)jv_INv9d|FO?o?ON>_LW;Yop1H>nmf8U;b?p z6kt1IUx09!(w$_zo=(p@^(9y0=@gkpr!77A@?!G}I2RB!=plY}I(2>|BG!#vS()oS zAvgK;K=*o)>FSPag@K)1dqFy$0u>&KET%$EWSKLltMZR_%tto0IA3CYg^O;}_ZdJ| zXkujyGX-Hd|B^1z2Z{%9R=V))UTo}K^CSYy8AXwMIyxDeImt%1H;x9+WT<^8^$ z-|>l#^hT|1nUz|H4+-|It2@^P_afu|f;)XOJ2e_1-_1hw0pg~ zr?a<2%<8G2BIJWqR|MITNq1pzwVU|QTY=wa&>hWdq@=Pg7uww$?wcWE ziR^U!{0I`ojkg*h{q`6dNOv`f-Dgwy@}Pm{(!8??`;xW}EUzo?jSwp-DXxD*$L-in zxwhL&21orn^+pQ)hn~w#^dyXDO^$m{jvNph8=QQu*SK62vZU~!f}$c{OiE2n=KJ?t z{XVb!wnbI`9{a0n*<8Cm$n692z`Qw5|F>C4|02yV?nxl$=HsEZbfoKb{)iL<+r_RWUh+moW3fqdHHsBV4{Wsi~ZueyOY3wpzp+fofvw*y-V7)v6y0kQ zK0hYQC8YP+bV1bdIz!mJBSmQ!c8V4hSnFH2g88{`STG~@xy^_8EEZ=wRQVRQsfmW& zN;faxHQAn|xGwATwxr1QOOib2nG7@xW}f)eeB0>^4nbvhZ1j<{21gbu3pL=%d$VI1 zg%G2uZ-EF`XkQ@DopNTe6$+T>J(zaY$_AoTBLu{wxR1T>ovC(H{DI`dHeqV0!^I|R z^pj<~bqE6nv4)=IFxz6Ls(Z?&X!*awLJ<|7Q*GMNJVZ7wJ& zBGnVbr~p)ev?4)PfFmbGgv9}w2U0o^FRrd0Rop>L;3m z`KueJE(-E5UWav!+0sPh556NmUFk@h*EM>hOkV*|y>?1FSLE*fT>70f%rJowH;KHA zG?H3|1eQKK;Bq_^CD~;%xEsh8FgnoXUNYKL2Z)mE=4uFmzu22Q+3%SDWj71(K{Sf$K*+enwemC_=*t*E>W+Q zT+R>{|M_OXBa@EEr$YzESMWBv3U;7`D|F_(_eO^A90V< z_B)5%SS@3p2iAH#EFWbi#HdaC3hGc}re&Ry@yUu<6YFXh8(sjJfgLtu38DF2gtP`8 zPUm?KNkln0dy7M^z1VRO@$DxIw=(f~!TB`n94h%9CDa8*AO+=5 zL3Ut+oLuu$KVSnca2u@^6pj6?i0e6aqcY=cbglR#_fHfwXbkSmZ1d{>34!_4gPGMc z{1mGyy?U?DZT_TJ?A3R+@Ar6dbBLP4DQ_QbZkkxkYCgLLA5lni-MLUKVVNp4*8)zo zbr1qtFsa&Umnnf8Mn^V;Ku1R2G+O@^b72O0(&Vsu!ho$G%8fI6i@NydGbN-Mn14d zJ!R8(D|}pFb~3^WXM(@X0jq)41(vaYq>XX-Gqfb8Ups zfOG^AVFF@UQ790xH)e7MB&#f8_{4Q=Apwv3^TApUsbV?_)mj7L{=I#1{RXGvEP1oe z8Lqs$PUjK^W1<^h6?sYNM+dHEfH7G!B0{y26+#*Z&C{CV_X~?48-aWf+(3)OoM|jl zDPr{XZ2qs3kq=KAT`&k;f0m+PG!4Z#6x%~#Ic?t}5}t^tmW>Y!)Xow=89ndEk4q*S&5cZdnAF<5Q?}Zt!8+wt6R>yY-K-f8P73dQ zwLQu9;A&BuIS6hmZh5-7B+obe8%f)7iGE^qw?-3fI?A=6Am;R2;R0Ol*owR#n(R+( z<^~Zff~ITtrg9Vztz)%15%biU@R-1Z!PX`yFf*vUI2TQ|)9Ey4i_+=T1~&u-{kcH9 z{juGD_{7+FMVq?qKi5M7sdNEMiXiGSfTV4_gxeOG=OMlARdH&DA2F%MjEf@NIFYk70(x8s_;hmPz4be!-!MynnH$b40M~nLymt%jG zM7Sd^!aj|Vr`I-sF*G!oinzh|HXs|9bb61$jr7_2Qm?H|mbWyk8tVWg=WR-xt{m$2 zZaT$4(68m{*E$`Lg12QNV2I4DKEsD~RlI_}w59-^1=K_<9v#g#fc) zx5%zjuZ0WpCsKTjEtgsXuVcUe0s?-xeNzeGu?kM(AOd=Xpf^SraZJU1P-+;QBO+q4 zB@jiE_jeBBdhC|zL$S{#yDy;hUGNXYE}l+pF(4Wbf|PY%A?F9=Bez#FMbewh2vPTL z%m1V4Ou%AZ`#1h8LP81^QJID;Daw{sBn?p~=A=#0O3f)HrJchON;TFJg@_>~HI=jw zb<&2k8Ev8@nf9rs<$ph&_y1n!y59Fa$DyX*?|Ht9;MZX(xcJ`gO7f=;v@V&GD7H?UYYL@J<=rvs9|ej!JkE5(CvAKQKZQu?Jm z?(9Chzf9W&HQ(n~XHEBA%2H{bId26IHDu>nm>AF#IuQ`VxU|8Jx(ct?!i^cKNds-a zj{(qDULNqlf59xLIjOLdp_rW=I?wTnu8WZ&KjIEB(w(Jgutlb4Ep(`J&>fH|l^c%m z2<%Jmhru?W`yVZO*YnXQQQV7&f3*0DZ!AVDWiVMV?s@W8uB@u~_pY9=9rt~&g$(zo z>kWTHG!AR`;U7!bry09u?h;}9qaiLa>e)?2Wzqhtm5(LN!smjpdw&($i)}|y4+~tk z-lct#drrOmYrI(nQj`|<+4WO*rR{?d3O{wnsO1Z#xP4T@95%UDwA%Cd&^2yk%(I~1 z{CWWg7n3MznDr~uq|PiGtvII$d1dgBcGF01lQ36*Vq9{(J!CYpveYX?(0wihQo^qM zzUj#NKp<+p%bpL{v+@H-_)fViyXdy2fFpXet8@XydwrP<%8%O;WAqY}H>WI$7D%G! z3}uCJ=RKXGieOW`LeLX#Oo5)5m4L(?3>5T*C8k(O;s0bllUQt-yumgj>*xjKHKj}i zbG9bd%zbNydgGU|@9M!!rey^n0ZfIO?+m`};m{9RPu(JyFQpyFI>}U&7Fznfw?|zc zX0l=A=N%&wzd3K_F_=!Fj)p40n#k#DV$wBTF>q~KksP*P4`UNo&bzbP%lY-C8k-%D zc0d$Za0a^vLomAZ;T4~wHWIqJW`U$nGmPH`AEzrEokJ$la0I}IJl1I!!p{|;__R@r zsW8d-w+vnQ3%~B`_|C}K5RLD$=r@`?9b%p2_L!I(76ToJy{%IlCg92=-@USPa+DW- zs_tkD^!DDz#D#~0jm=tudT9<+Oh^Jj!Uq$sGW^)6V0P1ZP3D1mEBSMv-8ANOivJ6V z3P%*wn3z--z28WTT8L>UD~fVIxL`5xN*Z9qyh&3{a>~6hLlINXtHguGJw@9t9U9aG z4KO}&f+0qRo{9SIc_bgpcB!?Sxpi#@N!y(UYhQiMs|oI#Q*eA@Aw>^Ts{blJ;0R~> z&GN^1UXj3#v>(-rs9q0mGv|-Bv}`>Gv7ALUW^=fo;nyS*r{~aDV3t7n!M#D?WQ<+g zEI{X7l=# z&f@^C4wxPlgE;_Be=<0-auWvQhkYtnwQDf&=-~yNcllcrW*x17NQ}!Wb4lTY`+*

UI9k!sFlg=jfJpeC>5rqvaH*Nn*Ww`G`^dvz?nH6a8l88VI*o38mK7j z(-#(i2|{=&Wb`nVQsi8)_y^B)qNRAk4!E6Pk~RKED5N_OPql}DtdXKhHwWT0V_Ftx zFsQPOkbj7{O*vf^+?7yC@BD(#-n*o9pVs94nE5?>U9oTec<Z2Y5c3oEjI;6wx(yGmKkBq#kq_t|<)-q`5>D1OWyQe4}>B2(FZZfL_*tR9dQRDeg@8Kr6 zIgOD~pm{U+&&g(0s}%D_gZjM=y8VsCa`_`~izOokoiCi3&fF8Uj<0E|A66`Fyz>-o z#Czr`V&DC(s4y7BP8V^jdAORUnF9#=%|0yyN?KSgjd4cE8uz5JpU*2lmX+n?Xs^=P zmn#zW2a}@XTnn9r&b8wOP2A1$nk+vEm@QTlQmzDZHJ)#9S}xMfFf^VWdfwOFWqBy! zBv9^slS$5Gg$1$RBx#sRnG0+3xw5IH=gM>dbA)-l%1T(YDQ{_qS2lE_JD5-@0mFIC zP}%^;1JMnmQK<$>YdWRVJZX_70&BVfznRfv2`dWTZ(L6}9|ff~R+=d32`vUf0s<#Y z1;Uo>RXOJO;>ABb-vWKt$Bop%u`&G-Q*7ulgeH~(h*IZL8pcpuPmyzY8I%RtymK2) z4(L9ikEPeQ9SRp|4%EYo;ABa(pxAtc0+Y{jLAJTij$W^9^!vI0iNAOot*X+98yB0< zn+`QhRmT-I1^1o**)N$+04R!EeD52c zWnXcgT)6v)QKB3<<5=#&`+dI|#}WbMqx|AviJ8DbL@&Xri{dEVt{W35O~04PiM?0j zbN`D~j?T;6?Chl%zFq9w!*6)V5qE{xDC5r#f_?{WF4)h{%)>(XFM%Km#>XuV?y{=& z2?rJcY4CuqyWWpa2MuflB0V8`vP3x+PC&1Z)+Tz z(Y_8xZ2@3Ut$F1rj2*(AEZgFwpQ?E%Rd0X-hWOcO1C8ijwm3}QG&TcAs4TkWz5GaDN z11PVEpa=r^*r7pQhyRhBvAMY(PY{)O)bd(eO~;ObR}p%y6{TYi710XtbM7(;P>ebI z$5W1~iN)3Dt0F8d9d;Y*V0rZ%Y-#wZ{Ce0-#OSyMcM114Uc4?S4tA@?jCZ>!uIdE~ zsWmpTJugaiMX4ou``*e}FrQ}>nW5EzE4GW6&ttZmV~N_f`07f{hmEzF9>0S}Wc7K1 zTYxpwZO$^_MgF)RER-4kGR+INjj}X`rrH@{%{(N{MkELh>m8sV`s~;TGvetr+qRie zALm^VmJYV-kM`K_R5jWjw)dkWW}sS07hyl0JF5VL&zp|RtlWac88Hq(R?(;~2gGo1 zpq(zdO5e`A@!ZV9+k@sdnjx7#s5m}-qOq`HOj2*;L&$*Sc*~d*h$Bf8_uKLs^2c^g zG=vCq@`X7hg+`Dk$VDf)Ej(;p?-CwZ=>Qy>Go$fgB#Ok<9Ax4VuW^iWzkrUoZ@A3f znM5}71nb(d$RgZFVoh6#Cz4G{YD!rb{$NUU)WqBlcxp#sb*Fmc%j`;%f8y>>DVbq( z#wxw0e~#QMkigG|(){i8$G_th%zNC+tt<<-KUf~Ec7viF&fT&G?b^fp8DXw_EVjNq zHEZpIPOof$d!w%O*FUZVS`O^i=GXAp&>mkHnW#IRW4F7iU*|`yPeWy2o*SR@^XJdl z-y5r*6<#+qTD~qCn~9w#?kerrHCIWh`NsA)BGZ+co0_Ra!?4JCs;OaR=bC3MlM}Ds zY`8UgVWhslMnhFYwXJP+&fwFG8lj#b=-JOB9*_U|CdhF;f;d5@?&0vB@pFpUl?X?E z_p}yYxGkGuG5e^R(1}o(tkx+U9=k>Qt#3GlN8P0XG zHg}77D8Wv#%YVvQS9I~Zx=4TCE-Mx4Hjz8nLu*YJ@k}Epf@9Q^l8wLNQIUTbnJ2W> z*2Mriavh*`*Y@E8!E^yGj*+jA)gPUB84%+n7^E~>Rjw~A{6*CJYicWLpca?FdjfA_b_RFwyPppGlcV*= zj^l(Chbgx5Ypf3`43GdLA(<#pLPKs23EOGJl7RCN`k(;eA6+>587rpPyUGh8lM<}^ zht4i;UH5<-snBFhItk?s5FnED3|a4?^YFwX9EF4}V}Kt+YTZAX!ryl%iC;`pMcDs_yE z_=i7>#BF~+b%F{F-a^)q2^%tM{P{P~ZiL<-%0bd|rL9@1i2(UR7+`( z_Pi=EG~Yw5{{Y_~dWPxm1C$}NES95-JaLPh!HcmxD?yS+gc#Q_(AkIm$ZbytvVS{v zlLkQ9?PPSm;MQOghR>NFRN10>ZP`-lj~VPzf3w@QFNO0=6}e+Kc--%sBab!q#ceQh z(u!bxlFN{fxyrm}!@NhfGjdWnR zzKRFMa&z_8XKxfaF-KPI$#LeZ0=aw3DegR@8qbnm3&UQHtX%QP+*iIuQ;^K;QSo-5pH&c|&2!e81|h*24dg_~1< zxN73xuJS&`@fJyX#4{1O?91yPg?2Tz!i!mkaIt0%0Ci+KjZs=rot4{)DKn>18m{ie zRekN1`N;UJS>$A7Ok21fH-Xr$;j<~$|E~p@`O})dAPN-BCh6ug5`@Qzsgwt)@TtAX z!ik!-2Z=KlQQ-kEl*Fc67Ch=MG}ROSY~$MLCVW1keUF{?+$3v;n3U(1QsXIPSVtG> z7BhFZ&px1Vb*=QZ=p~<5zdGm{(QxAX!L`-&CH@jTVMqM1roQiHn~D6UiC6jqxqRJ| zz27WC2J(sZL_sfbC}s5VMDIY$Poe%$1Ez+K;cMbgW>S$Fu)JQlxY4Qs8oWd&^6br94nH`;OCUTNL_i)t4ZKv z8^Cwi|4LF(Z}e-a3(hz$>TGK_Q7myvkd&I7nL&YzqM|?Y%wIb`v$ewzS~enGF_Z@D z_kcg%11XRFCc1T2nuRc6g~N)V6JNx&v(@(-AI)ZoJ$^Tsrn&+AWa>oAw)s;+>8sr> z?q+<)P4S`C7X*dfP{}fHa8|9zfL4icix6g{f)S`6TGYfQFy#MEBnP-CWW@xi$J%=X z#UU)vxel6_gWf88H#9R~4xp!X3_x|u9hTua%o2xt@IOFDudWH(*q^o% z))PF$CQqNSteFtwK+<9~wOZ|IN(vHK$nVd-VSE&oAkzFq(JkYp&^eSAaXx=keOwfE zXLwK(eECcE=|4%%FlqYog}|Tb9tRsv(k62^k;K%7M2^3wOOjBe4};(?S-Vl|-_r4? zLiYf{Pg#~>NgfxVkU8?lIIVpZ_1T{QL16=sg6}D&K8a+?kv@mza>!DK z!8}_66&b!&EScgc$KO2edDKJ^wDa#_mFJI@TvidvvFCIimA5QSbJwb9f1WrQY-1+N z>p312G*;2N6Yx$<+?e-?hH4#RR{{A#P)x#dHZ=&4>CvB;>5JH#7k-*AwdVDpUUb%r z7ikDs`88GPk>D@fS4U~tPc7iwlP7l!hSR1o*yYe6B@b%Sd@jgSEq(D6rXwhCxSIPS zWZ7{x4>S0D+m77dTb4v>4ffyOQ1tLkYNqb~pDSsub6b1vb@GF|zulCrl*xV;S17Ehb&|horv%mR9!`oE6;G5fLMX6tzgL}1WzNc*(ZA(~1f z;u4N;Va^7S`KBj77vN6e$^F$AQx1-HOX}-AsU^E)`OWpqm&ktF0Sxo5qw^UTWhWO^ z&0_ZKtew*H7+;jn2jHKGDw&(-B*bom`|vG2_PED8PM;n!?~(NF|7zgX#!%OOwXH|# zwirKnG3yzvv-3|qGWjn9dbtL5C6^^1Iu|CU`T%{8!YeT4`S|vItsL)&AKN$aMt|gc zJDf)$LjCcaiHiKOSH2-5`9k^paqAEvU+<;fs9VT)^|41Gy@~-n<&VjHMsmDa5-sNn zJ6l^A>BV?n@u7KK&4)2V+r< zf$HmaO$w1hxumK;nbJRL#SiKG&m`7-{>+oVAVEpTs?BvzWW;JXG!^H0(3jx^ye-%x z&2M>~KKtLjhYv@s$EcX|QwkS?P0G`~NmX74P=O`>$SkfsP8`%+fXWiX-k&KsvFA3O zq)$&uGNH`*b3x-aX>i(7XJawA`?WP^GN7-&d{dK+VvUOFZTEc-MC#gfskl)|+_7X` z!3k3uTf+`@Z(VcSukwV<@vU~QGhdxB1n4a8cF0&pSC|?g@131)Fo_`H4r&CVR3%`P z%kvuNf{Zj9ucaw9Y7~s*h0h&`O(bU|$*6|B_xNT){O`zvb9mL(YcZU+T^yU{S)4ZOR2L6w)_3L>vuP&+#<3cxL70 z{Z)nZ&`eTI2Bs|M(R*Zg8=^lMegwgr>HPIJ%Y@yc};Q6PA zZN9a4a%z`bL1raMM4_%ZEft4Rnt--Y!nameUrm$= z^b2A-s5n%%bfk9yJo5W@7K>Nvk(Zs9Cqpov`T>Jwor#L4*hvXXrE*7n`4_A)C4EGjFiKELzoV`0%1`i3Y30ConVsu5T!jnxDt~c zU=;uY1Iaaj`O1g$H!q3T3;OI2G4he{L+GpU;MHSeMaoJM*oCk=acUzmDkSY|&#Tmk z^RECOx&|jH<=ED7oWpVIz(^9mg0O-h{o;y5Lr&9~+m1QkUNFlZGNem5i{>G!W?;Yv zS768S({=d5J+Fv{+bd!AEr{i?6XRcn5-;%`{OXMZ4 z?g2r5W-y>2}C)tGb@> z55w?h(W)*Z5xvy=ST!7z3~AZJ&VaI!BI%>ty$#8oyY6vxZp7R#s#@@`JEhHy5iW)*5#EBt`TXC~Ul!5tC_UQ{V9x;B-WUP63 zKHXp*J1_89U!kJ@cDqcGdAY@U6~z&eW2}cgHPSeTF%>`+u{<=P=;S`T zg1W(3ErEJm`xo}Mse?N^M`T03SF)1&CPqQqR2=J%AKe`?oHAP8G!!w>Qah2vAO9o_ zX{ns(tsE_@B>T<$KJEOzpTC!Diqtn&C~HDr5&-}~SZafnCjP9SOQ{N5JjM@D1E$wZ zMG?iu4EZo&p_5)iI)Kj=+4XKcbs6KtlYg8oQ@!amw~4dr=G>Gyl6qsmiUaP`P4|RJ z{Is4_Qf;BF-x|JYq@icD-X(tL8*Kl%C8@TT%Oy+_F$*s~dzwv?lUlLqP69`CKT}zv zptU#>hC3)5?p$nE-2Q6g@*K~lc_JdIuTNaOFBoX>ZL*#dR5_buMw945#w38Bfa(4< zF^xkFTmS?uL`s*3|LNZ8?!Z}Pg0nk40@aWxW(#lwjx}rZ)geNSFP4{w#Ol5gCfs`o zhK^+tM+o#g3F(uN?xIBs<}D}xghG|Be3wI)LcPO*4i84!jG9@Pr0e*ls!BXSCnhgg zADxat3lDaXD>9Gjzkkum2N0N5I;$|teJ{B){%&UcB4d?n7K~Q*4cT1r!@RdJ* zasc#SPQ`gfLQH^i{AZP1Yg=0zywTX;)(Mg`4qO8aD1if~eA+K9EJ<+F z&`o3i7e(f{d^VaV3}9+HLpN8YU?EV0GPs~Zu;k~2AKZ7D>%;T<>k_tLs^SJ|QEXkWPYMx%p;LKg* z5ND^T{B=Dvm3-k5MeI3I<9EIQ^d5XPCz8H4HWkzEGtcRZG(>uqNEvKl-o8hxQ(ayC z`8wn^SQ$cs1H|h`5>cZAC?CbG9pFr&nvOw4ixi|n+?if!4FUNtUL1uU9{QWapr&#f zk{6eh&roQ}`B)|9v*mVC-MfGqxqH$9)y6J|Ql4y+`DgX>cYE(~jP9s4b6%r__LE?k zKxmR)E)hyMqYqp&>N#i}*S{w9@$OYpX*P7Rf>j*%!=Wp$%#GiUm=I1JvsOO6 z&jjnlV>dJKuHfDuPe$n+y5GWes7A0S5uWjK>czD_ki!?6@`x__5Jwo{e-=pPmhYcF#7AC!03TuT>Vy#ZMO?I zs#1kcH@`i6^5$fC^uak6X88d@FSKtxic$cY&UpoCPl(W&LgS}F z8S_ z!PFNgMk~iULk5~gUr7c}=ntDtj8q94g=g(X+k?j|M>`hrl3?)rj;P??5*1ka1Rp@^ z)79Mh0$FXdF#3nsZXtjK#XFd<7+&XPumIa-@3!U^R%pu&s5rtRAhmSzhQ^CCcsFLg zDGeJ2tLnqiU!5LC1q!`VP}nz26{ z;m$BET!oO$^R?~--GqKD($SfXUFFAyhFjh*F^+`MDd0gq!smbE&@RDf76TKYe5W!@ z2{ysn-QlZafZ`7G_58D**a;x|HQ#SAe4imo)(`h~CT}psJ#`tKJetoVNp$wWG;#w_ z^mWnw^1~l|^Hlepk_b5 z60CX2b#Rii>QRdVUj*u|$qK)L$BjTp8v6cqB5NUI#@L>YLBJxMtZvDZVJC;QH8(gt zfRKVDSi=_ZjvzH)1czzfcvr6&!9ijAl`ttp1gyA7H-p?YcS;5^TqG0hFbGdbj39VO zP^#?7jtrxS#^P?q@*|iTVQ$;GOWMGh9Ug{ZM0{nj-Wpy1hens)fzz?&cKzXS!0Sm4 z)W)I%wHX_7aaty4;CqJb|4HYf56eW9j^KfXqYJG?X&MD;lC8y#{ncrUX{Yxw0n4(! z=G5eiS)G$*(Tcqe;a!01!PG>&Bk@RM2V|B^Mc~!R8Bja&D_{@3b~31j%Mx}BHDa51 zZih5()w!67-Vw}E`kw*qObNOKTs|25;l|?%g06pBz7?hPq7Clt>4O-v?Ygk;AKS@Q zGLN}zDYkwO#iLXh_zE3Jp|CfW)L}|0lhciql$2VZWic_c1{ymL({F{F-FrXVIkxq< zt$MydQ~zub?^3aMMDo#J8Iu+B9QTT64!+D|j+eZc5!?1q?_L(@{x{z^KaYAx7aO0L z>L+3_kBXN1FrO_4$N)w%BQk+YLldVy>gsT*v>Q#H=*+CV!aMr>p7^glv$X8Lo;KRA zY%gQHCk|^SGv@8hNB;Y_{I<(>zSwm^oKj&(B|{*2uJBYM>)DPso+3Yja)FVhG&Da; zznYe>*La(Mi5gtYi$gGCv0&UWEA zs+tEpYxRL^XN{OkopLg_8-@pAcTJ?8fjwfk$hLn&g7LJs7-wu0W9+%I>=@fnqd;6X z?tg>m^XKUY$S5><)1nf17^T>Yd_K&dX?TX7KpDQF^oM^vHoYBm{{Z(LN)y8~d=XKl zSXpU9$jg*yu8z)bd(4fQ8Ky8}6mVVa<~W4QgeSP!MD_nWy>mo;>}`H`OOjK}4~6@to4MbW*9mM{`U;A;9Kbpd+zGkjvT3gfRl#|C^W3Ocwlm z;Z7v;`0$RFfqPDta_>-AMyWxb1a4BlD^yof>sDb9V1y18W>F+WA4Fyw0CwZ-)HD5x)#ktSe-XGaF92Kz28q*`B>M&=k@yo zJ}G02o|}9VU>DrV7H6v+?8h3O*D=GsL-rXrk1s55U@@0?@aLQ>91c`)fWdL9^0tq- z=dnG-vHA0H3hJl5ka|$TSMN$;{|~DseA^YjKIBd!x-@O_6Kg2OeH)aq@hUMX&o5p!4B$g+~hZ(OF9(i!rbsNPU8r22BY}2MQ$1 z1>dd4W%>grEy%B?8bAk$;E3Cvl_&O)aHq*Y-3v(NMO1A?yThx_7c-M9Zg!94m_BXl zd|K5Lr}d8a@Q;{6QZ?V<48BvH4Mhp3fb+S^M}$aH4Wr(e;xL_uRmvNWn8ZfuW<`nf zm-EEbo*8@ntGduYd_`Dz+WDo4t{N48=L-r=L;CnZ@uf`k0EsucCAVWECR*UJ^icp# zAB-d+IKqsAQaYbFAAOGd<-E5tQZjf5aNS_VfgvHe=RwRG% zL6*|W>30lb?ho}}RG;X+tX^j^MQnF!Ow3-Jx~GfSKVMG?oeKnus$Z7z2{8sQreo6# zrHAW`BGMxkN&Ru=mayZcT2J-!%8BHV)|Bz*`V)Q7XN+`)bU~BNpZK9aDmk9Z59}Uq z8sdkHg-qy=SK5up2DgBOpWFF(;IT`5zTT}%#jVAPA>k636=Hy9**(>u`7HFkdy*e# z7%ei0P>oz>#n(-G;F^4Y^)~Y2mLulZ&~5g-lF8UOvK%M*c(2K}TB8cPGva^iFyV#! zwcqkR80g(6&>xoi1TL(@&sSkl2_6~CXjA(Y_8iK|__MiGc2lKYp5MqV0Y#psMQt6CPx!OqZM7UJEBStT}%!zycSr_e7i= z|1IlGH=GnL5TBQ{Zrbv_7;^gg3R})8ippWTc>)>=bjGhT?eSL80lL9o3?pI*?vZRg zKktF+{sn)qH=l3I#cU^V{H^Q_+E>r4V0_;=<}m7D;IMzr@iV=A3juR&a!#<_02BlS zhv*@(A zUPJ`X-{r2dsRkbh^_-mdP&9I#l%|DaKl=JCY)UXLE=2Gz{`(`2AwryDATAK0ub8r; z@FXLhRMt%dhLP?Qo{`Mj&t8u;yJ7!HV)df)^c(hK#xq=RCDdg^W(*!l&Zs?!*jIjjO&&j^k}G#J zqq==*JvN&lppzhO1dmhhXvbOH%64rwkIDD49qjw=6{8H@CQf`kSc~|#Ak(I67UM<~ z`O?(H7vA>ROiLx3U8w)G6(Ujl54L!&HAoX|S0&KUHrHh6AfcgAj7%(xzVQEAfMOFn zjOJ}Bd;$H1{S(y|AL9|=+rAgJcmhU>)U~U#3y>tU4}%!^i6E^l8vj;ud1s^t{SeGb zU8lMbkHgR{IBX4;q0)Jf`H@I)kK<}&Xy?2KP_NSOr@i>L7dRKp3@JF&>$q!9gW3vK zBEkcy5`_F3iQI+TYy02I*wzjxDWehj|+rtWI{^h9YX$nz%Z_){KXJnz`f3 z`oeuad1a+}+Qnt1|3+t2#$MHWrtPg^tGrIrC7a`Xhx76Zif{!_hzli$C{^222eSS@ z)apX`>Yo>ustt)Uw%Uj*tvnTOIn<`zB%Ge#b92jW^M^#=^=WfA$+}pZt%OB z;Qm)TGX>XM%R4+bFX8TUF4q!CPmYfBuBk3V8@fmOJ1kx8$N%`qWs!)&#K%9dpSb}U zHH&vw5&P=Ak*k?`f{IO*zVXrEg3sst)KK>`uwv&Y*fX*}(Mkq~18c3kuO&X6Qu5wN zqa9W(VIILA+>>nN=c0U?@pI7%RK}S-&#{RQfF3X63X|k~Th)_SqQ-&9S z+gG3rHa0T6go7K*csEh7X~?c02b8=F;{*W?9H8T5c_>3&%_>`ZZ^@zq-WAW15^FYQ zWNGP+li$8j(A1gxSS(bb>%G4<_7_EAt`}BML&A!tUDGXn#3dH?kUbD)J0Hfzbj?V% z^N~J?2SL~T_)rHFc~4lznr)uul|p{{L;Dz{SvwM`ag45)c8KjA>9 zOpuEmtt#+^X|i1AQ0RN!$5kO2j=l_G0}OiSR%iC58H|I*qFB?hjYmYVOmnZ@rUB$j z+sD(~$3MXVMDh0{_wNr@0Z`;k3WQ@wDhH{K6Y1l0UUuCzgj>Uk%$m|{H~L*aABeWF z1kdl=oS_0&lx2(O^;Kx&9*4(o@OR+m#a_|SLtMnffCzVR1EYfo)T>00IC4v{1yaMn zm#*2DD`>>e3JlI<2z?NTn+O(T_&Qwf<>h-IMMjRmk)$r-#C^arAQB}r2^lr)1A$_D zK$JO9Y-_0iqH$Xa76PWC%1kJH#a8ZaOEDpG-~G8AdDN5K=`}HySkVQ) zzlSR&Iy{V|RZQ!6T(i+mik*tiC@kwseEXN}H1SX0y+A|N#193tN@3n^oEqOqJ$_P) z1!ikN!0z6`z$3}^*Y+biN{#6Q_21^jfG#~!yx0i8yjlj8nv2bNVGC(li19JoPEB?w z!l8+JQ-d*^56qXV&?#LpUzhLP){UE#VHRCqs3JKCp>c0cf`O3*(C1-oX0f!`bn{!&eHg_ubZdCwyXQd0tmj zqT^jh$GeZmo&NlD!2#xTvx_0KVEJo4eU`3p=FKJ(fN=m90qC+MD$7-zvwE&*;eS>7 ztmn;3t<&rH(}RV+`2(hTV*x*k!;}_EFnBhp;H2YpqHIRRY|^9NOi{;rMzEb=$yYuF zBmzv@8f2k8J*=!{iv!Zn+q)1sHDsfHy>wY+z{v+L&b!ic`PzG2bn~*cmdvS)*BgA9 zpFbA<(ADgFoRH+lBbQI!te&}H6$><&L)Tl=Dhtay&;yU_=;Z|6s(OGv>;`HhH(T>H z*kSo%`O%K8fi_-ywsbpC+Wt-4LY(0YR|`aLAcQV5tT^(vzMk$D1uoLS#((<;yJ$z% zELgxqWJiqma%qqGDcdZ#Zc8mSgLXJBKSDVinMv8|(p+sZdc%mK`5Y+AD&h$nYzbBp z=knH|ONpX3^kd@PGbfqUq4d1TzbN)sd8d?ZVgw8sZ(8$oJU5fMe~!zY@N5;{i7XAywmE%)6g&-!BhPJ5;lN&qp<#A^ zqsWe_9e8V7d+KnQKO}*2N(+FK2lU6Nl|othJqg#P+BrBY+S)35u^3-!$HZ&T0vBlS*q^! zXO)F5-9J7kv#Gqk2H(Hz>?(xc$Hx_*(4BKm1)>iU)jA2_ZxR5hs!parqe`?(#SX~d zE`uhMuBrTWd_1_~q>h3qs7vZ3b6{ipmE+#t+drNlqkjLAvh4j#!>E36EuXvgN0Y=vE{oP=NZ>0}yMuB2*er(D za)`SD_JT>@8(ev4HAn`qG73u!N*Z8$lacm9+-yJ|TnZ}mdl^+7^HJm~;TvrK?yemR z!p+VazzLw^29;Dhl0u8d&1`_5VP9klPgoC8to1!lJ>Q0sS~U4NS359moAghol&5bTONU4wZpLYS;`4 z5_lX~2Ql}TK{l2Zk6SMBbS5wXWhPbl5K|+1nQJIyk|k=Xz-B}uSx9C;lVDZ%DNs%c zLCEh&GO5nV&Zr~|>6%yZFrlT*Y!$KiUWN$I2gNsnwEt>sYODzP@mRewGc!A~Av-d= za*-uDxJw#hE_ZxRa%oewxO$O!wVN3;#9((L;%WSbiMf)Dp6e&<6-O2?l(NdgbOcFC zXC5bH&tJbhxYI3P$ZHz0$c+Oy~9(NFd2Pg|32I~*4?|gg(TLcoJTB~jC_gBAM zbiK8vDR}tT@h>;79}{%k+5IgppnR(RHzrW+tLzrAWM|p``RCPzY-j(Ji7mJ06w6;>v`Obe>tCsb&Nz~H2l1;=!{bK(!re~71fs*a^^IHyrmYda z4s2s~ys=il9mv0x5?Q(i#^Q)r@88*%)939*be%J^JS~yaJB1x{GW*NUsqfgdIoz0c zChxr~7C-0c1y1aQvBe&bMSAz_zEy@A4>uVAseddQlWsAa)TlSxq$Q2NN*JF$dsc#? z(KGz+tu{U?&ha^Re-{yjb)QirSg<4t2t`NNgtr4wKELoiXD7|9$T zB%mC-5zUD_ZF2p+rHwn;8xKIoqmP(zTAk$fUPWToq&Gq9WSDPMWP3w)yDr|N--Q5 z3|}_w^iioEw8~W-QgaB04Z5XPRtN8}|y1cETeDWDlTWZS3_DIaQfx(EgXQ$v3s zmgH!R_e@wQ5le`T1-2EtnT)iE>Fhx*62VSDP6W&%3NRLC`uCUwA^_odn|y#_I#*;Z z4rdmY>PlYJ7e@j1>kBni$*Af&*^ zVh4!th;yHjtVr92pA4!U3a2CBrj1s>7{Iz?R1II=d78o*P18GDPabd}|=4DY~u2%5-e_S#^9 z$8^x#D_?TTzIb1<G*8#h3K+ADJh4ptA&6gK?c1KRGG2w6 zO>zB9>ilZVe%M0{yrOif2f{}AS2BkqXW%lXi>$e!b$8R+#a*}fArrMBo$TJMQgF@(30RNE8$3zJL2R z^=UkH#+8Ro1u;?N9ft%i;focvtlo+aHq=xiR%;aA@x^dk6_zbUX#D?GS_yf09(Cg^ zhPW4@d0Oj&(1;CWO|#emW4;Cb;PgadyXs~)(Lh@uf|R&5vD_N#eV4!PvNZ=WkC9q* zTObr`?r1YQ8Z!)sVmBx4DRNLm7orb?-aOG&)oK>V2p#=3)*cNojlj?U!sfST)rwQp zXk`mD**trj`$vR$k<}0CbzZ>I(prY4cxe-ma-it$X11JSK`@7+d6bTW)F0Wjn1mRt z!DR4_?2rmd-2w?2bta&5ZnFzIEA@gplQY}mm^-F1cn7>tNt3Z6p<*hLNLj@19c~c? zT?sqecN=9XM@Q%CPokkK$bo}&7F^Hz2!mqNzWV9t1&!=CcgFRQAOr0PhVRk_suYJ5 z;t*s{Q96JBXz;*pJMKIKH7b0O1EPXo%$33|16*9w&|oGckAIPhSy-l{5D6p0AS5w# zCXtDgjDS+$F;IYOR_$hDl81|mjft*i38v*`S5Ow-YYaf$T5pw;on2zWi&Q|17)fXC zhE*v0Kli;pEZn=DFF64+g0ZujEM-HHtcPzseqXpO;GyuZylywd<$?u27fRdKv?*a> zBy1}qy{1U+0JQ0ld`~(<7hEF<5M{(RF%Laj6=s1g2qxsB0))GQ8H*GAbDO9V&G_)M z*#_p$qL7o2tO71;Ira}ARMRP`b!ys_+Cf+(F;*ZbZcLXTryvzEz5PouNPI721DFxf z*LO(YZ|xbXDZP%p3R~w~S7~sbjoOj@%m>P^PZ+}dU#^8*JLAC}A7KM_HXr-s2e;wgnM5g5CB%lVX7ggT>lYKrdH~GEvRR;2z49<) zzxrKTsWWJr?{|D+gb7XYb*;hkmM0flGA-k-3JqTjc074^{Kcw2nBsO#7;#o?d4*w7uT%#Fn9OH zL;LK#yH~vt(=XYmNTMw0W(UYlMR*4{A3S?!WX$Oz1UOC62O75r9n8jzg1ZFpTBv~- zZ)KKVMF8pJb*EyV&-~rx8KPAQYQWR%48P&g`latq4sLdNaJuE)rfKh(PL9iF9(2ud zXA6Y)XDSKGG=wc#OFaCW^hSSNw#XEi1ztKDQ$OD#+t361bwY7uE*U{34=ZhZTnutQ zlQT}}C|J8)*z3i+#PnIX@(7RH+OwjgbcKK=c*5-zF3W#O; zunDwF)J1iTf?LN8zukxtPv^|s#B=z~b$igYs1L(Q&pkmRO{w%Si>^~nGVDFa?o%ZX9J){;`6CwNV_4|*!@g({GU5_E!Ji1y&t>t>>5te~oZPZRZ*=IMsa7S@YGUXGQW*jU=hxCg!w*g9Nrh6=k{SPN^^< zX2O@R+vTXlX`xc&1gmPV%p2?S(8C*de9M9?kT4+=QMaL;wga7#947utSDu%oaO8-F z&EQcl?J?m1x#AQ{=iym;=mGT2nKhBct#MTziF8$fxHzv5TO(Wud0RM&5?dqoN=sbl zd=({JJrPnqqb$~$f!$@fR!H~XiiT(I+7WvwgN|rjr$@i0dN`s@(QZUcSCA^1Jb; zplXLm{1#!);W#-!$D-Di$F+jE2&v?uSRX;3&}c_$N<88!AjgDJV-+JiDjjC?E6Aa(E85nJ zus}>SNPZXSS2(iWw{DUi(WJcurVHXM-Ymq{qRU6THD>zt z73&~=`zD4D!n-5)GGdgctzErrN#@@qCphf3HwrhX4{=}{NFA%QB5B#jKX4P*P5Tk& z<6AF+=m1DHXTmSSfy^1kjEu4?>4@QO)UG!Ex|QiPhhn>Da-mp;5^ytsu?7uIP3>{i zoMfKfmpHT+`lH>2@e{-GiXeC!?)rRpco)G`FwmF$#XDh1+xD@q-Bj}2lrQ|M)!C*`Id@nvL6f*0{qa_L(;~5sU5tkrH zev|v-1+t81gw=}SJ*Fc+a$8>^4Sa3;FWr$t%Ju0!R>CgRT%W+#Z-N&xHG@iaU7shE zdw%0-%Xm^l2D6&t}Cn#TR|3^ zO7;In1W&*Ql5?Q}sjI$&hv+ZTAska(~g}Wmoixu;P z0sM(>?dAkAgAbflZU?c=u&jY^;16>`G~PY)C?biPIceU!jT-oQ-}GlLJ+`c1|))}6ou6$a7Ks+bjMzJ%S!0YcS-n2oiPR_gLSHfi9?uBrk{y5Z z?1N>~L`zQ6P7j3LjZasEV_J+yc$3n39Pn_TqBl8xWx3&=x zGx&-FVaAnDa%@%6hnuABRi|kL`H%i6l+>$O#M~#n>ha9B1=vU{ZD1c55(~wZhyn1s zR+UZsK%sVKW{Q`%c&IJqZiDT`8P-2fjY!te_vdIlLq=cWTKN#rm0GSf($b9r-Ia%l zBwFbM|BW%aFS|SRpvyx-6;i&Y=ocI&2^CzDc&Zv~#)QO}Jb}K#{*J1$^x0u3!DG%N z%VNrVWW+(@5jXFo@m~)AuLVHCD<$%Ww2T@TCnQ<_$y>-!AL6GJh*1pfWfAM>K}ebg zrkSOs5QzaaX4%*(;tygYwv)hnqNZX^sL(CpZc!fZFWk)pD&(Fqptj$h;8w#}Z4FI& z96V61%NRBF#PuED^4~G+vlp@3}Q|@QYGyu@;O$XMk*U$RLpajr^=$wKx%4mIMzsKp_6hFA55x2%MUV`zTf|5TD(laAFp{9O#d3{#=vlH1m+_VJ z#Y$PL{feVD`LtP?HKbKAmqteda6jf?tB_z`z6<-;G!FekR6lmpqNx#+DU<}kHw9fX z(X`fMlkj;7N{>75iuHa$tmZ&tqF;824+3t2NICk3 zbqG#pRgM5l7o4g11a(BS^7E&^kEOx;DGMXHV-)o=3Vj2BCIHQzNervQFl$uIZ!WPP zm>B}-8rw#DgbmxFMrtm$a9f{;hW*W8fnD( z^o@JDXy3&EWjpn6R;*@5)A*fCNe}(s!r?ql(L>#KC%;lJ z{i&H2&RbOCf|VbejW6z-so+h!V%c80qT8=;vz6la+LYgNYcyvMG!|DoHF3Kj!aT8+?A+XDD_aFs_;!`Ug?JlbrveYF&P5AYGV;IKG>B(ps_VLGo9*OpE z(S)R3_qdz&wcFE&gPJ_Tvui%P#P9P#9f`D2T8CDZN{#kqYUY1`d;h=ddavs}?;b^8cjJQFOcR8 z-k|-l$p+F?_w|4FY}+CCROO!|-C2Fy_l13Q9EX6e~`+ph_(@XSN`huk zUrfpT)fSZR?&RzM7kdJEve{x_Yaq<{8NlC!rl)a-&?j~nk zMkQ6#VIayF5D5i)$XM<^Xm2uC0KW_xRd;FP|C6fj8_DDtOwhTRqJMLKx7k}7XCN?) zV;>I;i2BRc3r@0$T;QyRU$FRNsG#HE2;v_oM@Y7*3?vCeRFTp|zafdbl~=N09D5G* z;v#Jc@M2!#ZinRF3B5epG6@BnQ9#W2>Ka49*E3FMI4 zh>o0)!Y0Yc(}4*L+25#EUp?Wo^sl7i&l|IrKF6AFD$aO+dLbHD?)sP1uFc z4CS|~uLUiXNckZhs*Ud)B_7ys@4D(LAHf-c=YDJ=TkcpMCRt+VvM-1@8k{v`glz0^ z)s-CX@6%{~zJ7ASgdQ@*wloPS2i#L2eR%<>=!g?x%N5B;v7HMq-;qWDxu~_(#{Yin}0E&y4UWcJ*i|zhS1&K8V12p$%k2IsNAlO{yS*0mCXSDuTD6k60UqQqb!Q?# z_U0bmi{^t0E)zUMGY(XCB)JHQ%4wBg#nhZZNG2q$aD_kbvSm@=hlN1*jRE0-lz5`D zh_*8BQ%b6hFf&1Z@hP*mG97bVvCk1U&sVphn(uL?&@68_b{!8i+`$(Q#=TpCJNCUR z?pJacZwxUs+n4swVZXLJ09pd7p`ejYi zp86zd=YKqc({dWz>(b5jgufwb7rz9nUScm)xz2{aLui~gyG<3WyI$GNCfOw?Lh{r( z!{fnu>P-?Z@^==@;XH6N+}Oxnv12vgD7b@JH2O0|^P}|S(niSjVp2LkF+WM~k zr*Y5EWh&@jj2L+8f0&o$!VgCxU6<@OoM8}5P<)~)bqJUBZKhqQWk_n6ASQo<1Ab*~ z8C+=5)(HO(25H^!m&>(#si*Cd{Ih7RAoJdvgri^CbgM;<;YRSsv)fS^=_o7f032&renTo{I z2T63v$)}p(K>niU_#b?APhDk;%z;+C!r8(Mpy6w$)Y{~kIb>P?Ja4`SzLE`*IDX_SDB*;M$76`D&Vs@JxGD~`O94X8ALkFb+E zV>ms6+^dxWgjeh|b`9t%x+9&NfqFB^V52fhvoGy1tZURqM%u^~F}W-17iIOIOYKz| z)N#SEkphLV?w0{d`2J=33LSDLor2l?gChuV<@5Fi5daIb&(7Y=cm!N-P9|GOWo?h^ ziLigUvOy4ofbC0&9LE{m9a@yVG3egrRZz);Cc6*V2}T-#L?l3fhJJu{sBLT4)m|P8 zz_2<*x?vB2Xg*vpubMb^N}j4|)IuhSvqy|MW8@1yHgpV<=3UbYeT%kjx~biEf}5pH z&>!K*LuJ~U{^KbV_9D47Iacd_=1CzrM?LJ6OP1V>cr>I?CwjbRCU z$<`f^I_LZzoE+0Cr-5cpW8#KSgXs(5fD;1%c-4^gqZe5R6bIi%rj+U%czi*pF6V7+ zl8bOiSKYlR8CiSmn1S;0Q6PG~R4$Fy-#h@kP$=~4Dr}K#=@R9*QvwE9Py#rw$h0cJ>BXhine^?9)PJyGa6iVYZLIFzkxPh1Qa32 zCp*R5_@nD*`sD2jhiy1qVX0Sl;h~cecR(RzK74Zi;r+Y(=W*flwA*qGTJkP3P9JY| zI{AkBm^;U}3KgcCCa-E@L`kyba9SWs{;>QuYUk0z#;5Sao2@H&1Pi3Zh9e$=W(}{F zDzEQfLT~d7Z_ebcxFLNwZ%#pee$^>kEVrorXqkIrdJJd-4~l5>zf4?uY5c&9e^u1a z{3)5_3D{&cegr#3W9H&;M}EnW+N7ZM(*k)#+IzyS*x^&Zw!hM4jas!oU#~B2D(|}7 zK4Zor%Q+re=DfnE-2J6oW}vohKSGfI{-V)2*emkLw)cJq`d|KM9`lM;-^vBBRX>eP zc>Vr5pm9YIHigAfk!7gid6T)j^vNn=YWGDBo&#}RIES@9bilG2nbXG?Z{CK( zz4bQZihcyy&X=!FMQeCnvvy`K_EMwWFtm3)Ol#X@zt4}!__HDmkJRTtpRVMRE5fnz z(hZvZY>92xSNs0$OuOMWvjNRaqB~bf8K{9mA|W?8@8;Zmzvnt`kUq-)$RKHM!_EIb zF8X2y$EK0E(h{?0nt7}4o%KB*aNf#ky#fCT$LHq(PS_-%v&W>oMJK3)~zoderO?%%;*~x$?1!9a(X*i%{jxR6@2}%yA~v(jWuY? z8XRmbD7>eU)^(JjQRmeO2MZO{^DE}%OHH2GBWTJnn8e7c*{cv?n8v+9Rr^rr*yS6; z3zI?Zsh!NuhNnJw&pbz4lEk`O8ha>>zYp*3o47{_6QQhm>E=dZ@Ub)sia6vD&Fael z8K`4znCw%?qNn}dD@mu))o7=eJ>!mE{#dk9_qE$-KJcTp=Yx6S;k+gC7#6F0v|LqT zDSIwPLYE~PgQ19$rAObxdcyBTn6ku+{$ty`*?5jk_gae`PVgNItKZJrD75P&{C)8eE zm*E0FUTUin)eWjUovOu-g^VC+NOo|e?9&jxXQ?|QITxlu|KW)Sb4w;fF=n1@Pu&N;Vy>Ib#w(LA~F`A zgVtd+P_YRUF1M0%I*;4jUI&aEbEqG@`r&m;-nz=?Chd9m9cg8EZ*d>wKaY6N{j`H& z{RT7kRhh{Im2Hxz^Q(Qo2GS0D1jJBFE-5Ow5Cr_(Gv9y>GahB$xSnwE^S_ne16e9w zgK;@M3+MPfw)5UYW1ciYq7C_Np8QZntSEzw)SSTUh70Z&a+XKfl|E1O!yrUX&>Ghi$9i%eyNB)VSt2ipbx4)ahd*b3#+G1{4Yz8 zD9UIa>&OwC<@`3w8F>hk39h(RQ6ysZMvw1t$PvnTwJoe4zGX3N#%i??T`dKyV&U<- zZs8_-~WkQWR^Fb!;>k|g!GckTUMqYK;74tU<)ON%t-un_1n;}Ff4eKu(`N{U)2FXX@ zOO6?3%B;t!>gS#&Jc0|7i+Pob*YLIJQyuMT2ZHnLUd;jvpW5|vd)!LJpv{M}$67S% z>*_p&W;w#%ina~hX$OA+|4=ZV&S4}K`)scF=nL2!ZPU680hk`IqZu4kjO4#u-8SSy zms(eG@F+I0i9iNSyRZ7zs?i9flazw{5{6=5rGi@0K?xr(tFVaMi^8hi*5e8U!~Z9T z8V-q>h@Ia*QJU#IyAMiv#PCBBI$bOV61jujFD&z^C!gW2vV~ zl-|}~G$ua`9w8u+q;SWUyMRc>ho371M_7KK;wN<%C67d>qres>f2*tGRdPEnZoxmG zzVfSUqB1Ztlfbynblhv{G}|)^8;I1Z{)R(=NR}K{W6bfy!x(d!-H3)i8*I&o_1qi=vYAw?=s^NzmIU zDPQ%ja-Bemn24EhMCdOK7P5$_obreyhWTW}PIDW?)NtK?5K}Z8s_5?Q;jxQbbYExT z%8)YlUeO|=wDT^k;ZHEojO4e&bA`YcAB*aQ^O|cGIvA<#O8%G~~D);If+;bC{dKl$s(555%iDsmZbt zjszwM^$N-0k}x+|Pp-K#GYR4V0~0=3R?eMQlpp^LqUAix3s1PC2N92kzO=#@a!i7y zNM-QIlXbaGiA}=FKtUwb%rNWu8DP~z;Gk_g;o8{$uKjHJ;9nXqi-Qf5OZ!x=3Wu9^ zcc!1@ttmHa-Kx84k6TIj`w-1#o7)yCC+v@nQ()X(M{T&ct7+(+5_BF?Dby4^w3JH# zUZspzWm4;mCJ(4y+@(m>a@e=0bRCZJVU5KL#-npa_+3uR9knCu%hjglO1GbG`pvbt{P^Y9nVI?)l_BSLEehI9*gowKmWw}L)`bL}`Vxj@XNpl$1Wp4Co$U>ZiAS0G z;{jx2oav;=6;4HrDet?fdr#AQ(3Y$E3KPde#j($p8+|GoIG^Crpn~UD4Q>l>a3Ucu z+-OOO_Oeg%5--si;}I5>#{A>=$~L4TYwC-~9RH+4>bi5DfnEAzAl*ij!70&0F7pu& z>HFZxyUw7GrPQ>_QqSTZiOy~BUwY?S^7o)vD-Sp2vwu8hFanu@soZ&z>g7(%&S|-> zpTlHxjZMB4e}hN;)Y_j?0J}{Wf0^53+_} zJrX^3e7=gu*!wir?=Kc3abnRPT*c(PMp&Mrex5gG&n{Fm?{C|#j@tY8)X4}i9qrL4 zK01a0{ddnkaz-tYP(@Z9vkRkdyQ?l@70NMQ$7BQXozO!ZpVP9_BB}Y{(ODA?^iOL{ zF>-FNQP$p|`4|){lUMegyvnwrMBaKo%F2Mo-W_82^O_%dsR@>U!#EuLX^lEjnNY=p z^?b-#l1v^HXWfftJL=EvocY+_vxW#r0#X*lK05Uyvga#r(90N{{l;_l19E$IbqIsc z=6bh2KaK3+ALWOh^x)zL1bP3TcU7#HI@c0MAfR#m>KtH>ghwJpsxY00I`>M7=)QyR z{J^swjv9lG0+f5rVZdebcaYBN3)o~LY!>4R0qPKY01}k6>Mvw4y^?~`lT;xPkaNw! z2sTTaz_7s~t2y59gE_uEc{Sm=;`O2bLh${5jAR&IbjqMO$N)D|e$0>6ZP9#Chv1iG z5g;JxFTi0E)2qAS6bd6Zb+Rh)BI$9p2d50R8JjhsH*JV_k7%>j9dX2Qi1JD9C``e zlB}nL%0PM7AR7a+(*+b~@t+kZAOdP{PvO_O7r!Vbv?m1+61d?1nAxFLgOL4%hRRIT zlC|wlD>X6u;8O~RfBFnLC!(42Ns814ILt6~+GR8Mv=E9=;V0wlvU?x`7!TA*flxUG z1e8*3h|f_;wZZ);)eid50>!G+R=V2uWVGWw8=S#$!xGb(j(nn*m9ILnn-yfIU#yUcgk!Bfn6#2YbxcSV&mh3Y|8)i!VHYjVA+7}NE%UuBXAMe z(qg!mHoYCf#wFG_Bikray0~sKBL8oa5E$ z(sWT8iS3zxPv^{K$vJQEl4If9{C0XzvJc5ULTFLDH>}|%ZkXU~@6KzyNGyoeMtfX; zW$~Aiqcz}5wYc*(Hl4MVQ;jA@>8w4i_Z?fSVbk6+Iqa)Z+VM`el0_J~@iVtNYde5X z^U5AsFUe_@XXabZc9Ti@KP~`nFBo0Rj1YkY@4zX%%Cj+X?~kl8wR6qo?ifM2`L7H9 zUSzDkpraNT%YWC%KI`2=yVcd_Hu?NHZ&Da)irYKuhr0$umQT(euPCCKl;GYYnKWJ1 zky>|YNkInpf!S{9!&EJP-;2!|om*+J8-MjJF`T}4cggz7J~^-7H+&3UZwv17`5c%S zGJ7_C(yP$f4R%Bg;zBU%l1<9;6l?!9`kSTCRyoa?X>{G{O^p2G+GRtXS7VCT+s-kX zyBf0#+?ssWCOQ9uqx8*~1lPU*+sz+ZMpBmP4|F3mT~5@m1<-ml*;~#Ry<8nshSfhtT&jv1w ze>e^Imj^vjF;YIbS-z*hHrfkztJ;y_9a+xRH6`XXMA8j9vI_A2o3F5_fs&f5`Q!!e z&^lo=2Mw=E`Y1WaOagwhG+0{o@KHD@`!M;Lompuu7g;r*Jg%_BBXRfsUcErhhx2tg zXK~1#n|RE=)Jm+Ae)K4<&dtuhr)QZ;^3kIu+mla?(L__EaTmO~1YV|}%VQlfq0+|t z%7+vO(_*Q&U;5r?MhNN(Lq$|0*dzV?WU7Y%rPv4^QsD4o&@Q2WQFPiD6XrM489qOD-HP3 zh%~dQU1~C^OHFb)=Gj(RptEp%ZE*o?jeuI%paS#?E*C@Uttp_B_YV%v1%d<>LWCoX z2Fxg<2aXAyreLTmllv3QV%aV?Gf=dPg#Up`@Znh3E(Xw1`;1OX18Cfmj&aE1geD_{eO76A{ri!Yh%DEU>@gxbi@v zEo8SP`s0K+CK3_Q7+XV#2T&{;$8$3l6{Yy9kx){evd6P{tCv1rL!HG3{&oXG?>61GlK%#1oDCK> z)t!{GW(A&z(3@B1$U_Om?t%_ON4b9$x!vUUxRzrAnAoIVA9E_ZtKGI#>L8!`dgjEx z2yFX-ek$wjwKejm{}hSEQy875QM?b;Ywt12dI~@%jBJMkqgR&ydYcC^Uu_oPO2b>_ zokCTg%TNg<8l=Z*m9OG1gT0{kmX|OS!?FY!mNh=C;wj5#DH)-4fl~ycZxillZ5gFG zAd}3t(PrW_qaGrEL~G)a$H^(`F5}i7pmh7NGsP#^)Rtg{v0TN01IvaDj)4fXc!H;2 z!(yVZJ_qOZPWS=j)+Ip4_$t)!=uvj!8$gk?9v_;h#y&JJ5E+t~>6CjuRXmiocs6j< z!z*XJA+&V&RqaJns?WLq_eA4-e5*4d(ibA>?gMQ5pV^#Tvkm7RwHZ@m-!)nczfKfE znpEME)8Ay%UO(RLB90S}I*0~xM4LswqQ_Ij&GjM`ukk9c78yZSj*X}x^qzVcYrIta zzJ9#Uh1D()m+JR z#h~@6(!{R%E51UVpRB$^hhHl}Qlw4oTH2>3(cTBmbSweC>ISxU3~Vn~Jx+bs)MUMI zsBNHS+*I>35pdMqF!I5VqOW+xly_bqPeFL{YcGt@4rBZl+VCPWtvhZy|9JYqd-D#6QOY2&Q;1;xH~_)Wn!ROb5aU&~y`BfRte-N8x4RenJ`` zs%#^-Js9xy-v-9eHvC?$Nk7vD@`VRR?QVQFJ3#E>6Mo*j8&EG|-h9_c8653;`HpY{ z7?X%620Z{IiNhlPare?KA3d85AC z%t%#al>3*Y*G5jr^p6S(r{*6jb=56bPmgu~Fa1Ke$=z`Ip2(CT;o5B7mb1n+QEfff z5O|3x+>F)dfHnvTn>FxoeR4I-ws`m%_xbyiHnQF!u##px96P?;N}mYe6Wj;j(}iAqQzTE z*G0=g?mQ0%wo21Q)YsD`@G3$O;xm}i^+oJzs7Z;1r_10ZL*xoU0)brCtdQr(%ev|h zUKj2AB5If|qucQ4T_S7Tjt|WHHWb}gp_GM%Pvti!78Iqu6o-s_^9i zW{&G564k`WY^jDwWMmFz!6c&>j>r#Z7&R zQ%R7dFdHPo*ihjAUu8+&*<_q?@uM=M<7~PQ3g;!8A6G-C}f})3vpF>9cq9 z-VH`*PBa~2(P)8tW2GFeZ##qj7$&poZ&y>B;-g@ikg5C6q;tg9PMHm^)A#VD^CMHN^WZe5$;@?N770U$xqX>T^spPut&} z$1uB;XmzGY+pqn>-MjbmpFjWMWc?2pj1dLV0*c$X(5Pu4(BRw~v`53t01~b=9GETf z)Mut5=dm@d%=yh@#T&HQZEwYWI;`P73sz;=oERGLD2d#r97&n^7R_lj`PXC?8ReJJ z;mUg-VN$x)fj{H5lt6AzUQJ995)v-dB8#+0`t#c59A4aiU1z_g(I-DaGIV{~e?=i$ zL<+UbZVnYP8<8=N2h|~rG11Zt*g2Pb{?AXUzLzVL)=ZV*FmCNtq4FeOQNK^|q;u~a1P55_qy0|iF*}XPFMY?GEz!CNc5P#QnCp}? z{}LW$#JAgdsQOwRhEw*Au-OeclI!HC)lGb(rc-A5x0t%Ye;PiK-JZOH_I^^m#B{cx z`b(XC-+SZ44|;p97ICB}Tf>AwZmZ@wAF|##ySQKROdkIpl-<|ZH_uH0lM|2Edm@1vS3?U=l+&x?riyzg<|2)u z@SO4T`tgxcmZ;6Ezd1vg=7bLcp|Vb?JYDEgLJ#3~>!o9dZsM6i&@?6UNk$pK{sfCuar{gWDt787> z`aUwiPkT}}bBDE*>TRnhFtJ)Om6}iO2sSL+G>>D`h=<>#x%lDcs2j8sh|;9yqnr{5 zj(%T{N-~;UQ73MA0uvGX=#ywMOPF2t4Q@%BhYvGAPWJEIX;=J_nNi=}J@kUUQnd@O zW#_{WjHfGAs9_S)>J$7!ic%)2rn%0Ga4W^HbVY#-3O2bbUQs>wP=*4Vn;K(VnHQli zBS+g5&Iu-R;DtybKy_c!n|gx<Z*`JrvHNbvw%jiknd< zC4%8SiZhW7DQIYdINF)Yv6G8$fGXWf_)k>*c!MW(iGq*L?#t=2^DM`H+3JVB3|hRR z9BxMGuV0(M*Kb4Uk9n{OP3TNs&B4Hruv2m}Sr1XJmvFFa!~+t#E~Ms;JsL`olEZ7w zumSrp*aM13TuLghn1@;OdHi?tZde)qgwC=6N}rV~y|Aak-SOH^ARVaK9@HnEEaW+i z;NLi7B7+QUAGkrmkp~~%MquZiRf(E?9Ua(B2-@$o6?}1JT8%6h27o`a1VRz|KUx(A zd(IXZ7WhJ>vBijs0z_DO!Fh`{v4<&F1K#wafNSxAJR)&ND@AYjNJ~$Wz zGDqBMB)aK%aP< zdzoMdna^o=b7Owh=FMK-m(Ic<(a1)Ycseo+{X-}y3j9CeUMNEzK^-=jarv%&t;KSz z;hoSkNt}&e1MoTy;%Cicq+;UuJYDAlNqp~zgtjxC^GlvU?1-2@pdbS{pSU0r|3;&= zzzGb09tQ2NSo_A}sWOvcJ340uhbYaI;QVhSiJV?wNVU&bLeGpT6?|8t#Rblc5ZH&% z_~C^8LdR(b{(F2Lj=n(mMqjQwgJv;#XiBL3cHy5wi;*|Yyn3c%QLmm|k?x_=Pa#o? zz9z2^6@3c1f3?wx@zz;h(W>EEk1T1WY*%mES}RKOQp1hiJup*^2{yWYKvBY+t>`Q{ z&FSsDQ0FcfuF2{%;xROJYa@w8iYTw3-X? zxY-;9^v*ys*NL$Ao7mcIy(Q0vWDOJ`+%U6qgW>LjfaFLm#AfiA;jdR0ZbIIhF>300 zCicV2@{{H{9tP(dC?@(VrfpmUthyaR54v`Q5nclG-`qdG-b!IVj&$x{0!{w$euBYJ zZ4uD&r5reF-(sSW{DGh$$AhJr_Z^}6`FE(Yw$s?+0)O}8p@Z6L z4<2*Xmix-lCcXc|1Tq_4>EVU!tGQB~;bYbLX+28gyAK0RQcS3$eRfVCy}VV?YoOBt zzmu$NsPm56?07RJW$@BT)OlJ}<%fA|9)}B^vrUB)wK*zBY>QN0fmeTH^TW<7Z@!N+ zg9iN&|Aj}djnx|(JvIvei42nBTj2)^VN*(4noD%HM_=8Zdhse&SE9HnNc=-(Tp;FK zi2h)C*|*gRjV(OkoSz~PmfH%fTVd2{v?XOZqXM;HKi^s^>0HJXl1hvj@|FxQdRY99Czw1RrIEjm-nUmnB(WXLUJmpTNASu+li>Cj&lKT(WLv_UpH9%}^ zxr@P83k?j75E6oE6BD{MrH8;3hz9bn(XvlN$S1Q1MKISVsn})p3birWxKH&IvdKMA zSlHaD`17hJw-RwZQxGq}H29lRy;%=So(fP7UM^8n*7wRxSOo!`HnPW|4xUJR0yw<^ zXUbxdE3oCy3NV!I0&)g6i^?k>WJ?&>)MjR62%qSSa4Wa)8nI?%Wo5~%%O^fV?t&~^ z9nB>*f$xfo17ZLpZ#B##zZrlS?(P|a47_X&3*m~0Kq`u_JHc{?dIOZ}*RLUgY1%kd62K5#d-b<1eT0A)eqK+iX)s z!igcJ)z??5FUUe5ob^&R6ikVox6xYAdD$|2*#B!2z6z1fv`WYjZzeE?A2@<@E(76V zDIj(*8BZ;gn{erdw6Qx&qYy$R*ZUxNZ)&4~>L@xuYA2<7^~x3KY$~tZ1#U!Q4OU=X z<00cw?K&L)+F*@+t_%5b%3MF~y1MTOLv7jE8o}pTw^mdzz%eQympNg!M&VHgiJ5~T zm8~Hh5Eus_MCMO~Rh5{K!1E0syk0P~hElI^(%RfP#L5XPS!nE`5A%dPSTQVlK=VWO zAhcoPmS-gkz#Q*?k1O{2_C(q_Vk%)T#dCjsxRzb*!%)%9cZU>{8#xxBW$n7$*1cGPL%kT#jK{EjHIS zhaA1ZZo00juS0``;wBa9{SBJ3WG0A5Y6CN9u!6oMKYv|;q2xLV+d_q(J{i}<%_`!- zIAOqf&_fIqW)`RoGq-#ken8Wspa)j|t@fm+NC`yA!$0oS;*!%K;F5UBHiE-0~|w_oDAi5z{10dr!-K z$3X3IS*C5JUToLW$#=DI!jR?IKPdz6hhT`)>^+(B1KA{`n30+gXTX z1Fv+`dvVz(=3iy8Hs?F1o@D)Q?CZ=H_0@~porlVvo_hJ$v~xOkuzaeCiegN<)8!;V z%s<$Ru7qft+7+Hl-Ii|y*3A3<2+chb!Pi^*oCVL3g{`P@Q}Xj{MTLHL{mj{PdS>vF zNv;UYg@F*Ep5#rUFEVPn#+=XVnK4&Fdb#h{U59hFZ!pTVP0o)8+qL!rYf;g49~8-yM(GP1Mp9z=<0EpS5y99k74fkC81iFo*dF?UV^YP# z%??p|Eb+j@v_p07B8TzcdmQRK2I7!G&k`YXy?mge({FQ{3*U=XCu$b|aQNoXRxfH7 zWaH0f)Q|l3(9>z#WpS@a8d#&s_!kZFu!mmCq`K2Kfv~0c4}0jO+-aOG!?`;d5+9$t zlXy@6Fxyx_;b@n~TFjn?_|@9U&1XtFI;Vl#q~%Ph*()jtreI=CI-szWQn~H(^Gle( zQ!Ep7;X?kroU!+aUH^dedSz;OJ500YjgO9|4@GH>9gGrONMri>NZPONtSD|?b|oob zC(>mgyp!WyLcJ&T1Y=%fu#7SZPgMT>NS1b~0Z9W}8ychvik@q`35FF7QA{x&@~Mvh z3D{AMR181MfbK+0Q7PA4yqWyrP09fAZWcW+3ep$7(lU=oxB#^%a4rTkvfybpZ&w0O z!Z2l_8OP_gBh#85l81pfkmnz)+OCP?A8 zVU*xqG&a^(s{U9dY$pnXAy5UN*KLhZe{@p~PFsOOkT`N4**C#CNa3n&X_JPFsK81( zTA$^0Uh^Qkr)?Z?cx9tUcoLJD{;v#H--D40SRLN@(No55IQuMfB)xL zH6fTHM^n{v$`o#hXm}M7<@f~coBv0hkr=)vi%x|#U=wF}^Wt_XIS3&qsLvz-&^d5D za*8y(lXfk}*gi0jl$GPY`SMIb_e^Ps1*Kfn_!E z7BnQF0>cqUboWCVZh~+VB2NMJ4%YzX-|+a~@>RkBl)wBNva~qZnDwct(dK-T;T$-^ zXp=&~BFUk|laHHkIpyRd1!s{-B$VcN6*!GR%g>p?o$!Gp=j8#+mr|ram$YTP7QDEb zdcxfN$_@hw&Sn3F0Xc*3-8Bg=pICEBfSF`Mk(CzI72ns9{^ZR)OcII(3TN zbgXUab&Gxfn9l}TNa8ng&bJ1Com4OXaIGZgy4uv)^nVBia)TP>G1$?iKbGUA^JJfz z$tL<@`<>FKdNwcERi>7GKtT>jw;X7|QWSrkgb@IJl0||Z`4N#UIPgDxhc;-p5AH+Y zne&*?7GYdI&WP8t3RwSmz1pB>wBy>sAID9*%UJS=O2tLaewCZu0hyzq_7x^KsPcNBYpd^=M#aWGykcH6 z+U|6j7+4eT5oCN>*po8HnnDk;#{Eu7KK-LD!ttxBiHr{5uz0DReK4Xz#;0~&joNh> zX9cXkyaTaE`QM!RG{|k#nqDTjC_2=YXxHviq+g5ID&q{#*lvEfb-RLG0B%MUGOa)aaZl7tn2P7&ZQZ!52(_Cd&69ZTQ7>^1S7Z+)gn z`Z=XWWsARf3-sLuHs(BGM$WLJD6;L4vWA`eIP%~}2ERO6rg1VGhra>5)S^1UcwN2F zoi+63+&BWwON3*+#ozk`USb(mcfII6;M7B+0{sye@mNr|Lp`q&=bU>jFPZ%I(ev8z zLwwiq!Q%1nS8-qdxIZL2SI3H4-t=}8?$9)jUU2_4Yl?R%X+|v5ONv;kC3DsAF>ob4 zItr^E%eN5K=+pA#y^^pgo*Lqx(T6XjqWymP+nH38(tMg<@a%OIowkcWkS5((#)~zp z2F{mwmV95Xi)D{V-TaLib!G7C>sC*ZWjO}LnA!-G%h|3y*Eg~sT~ggPgYz*N4-b#T zLBmK&+*@o%$pf7=-dyz$81uw?PlftvP_{{y#_U^YFLf4+8RleWXn$4mMdZmCq_6$W zmLt(1kugkNhzmZE+2reI0Q$ z0~P;h#8%c$l*~!^F}3qQOJF(gz$!_@BtD76it#>d2Rt_xpED9opY|C8o~a?V{EV`_ zcuX8Lsy*XExs2+v zXcVo118D_;{^O-64qTteT5V=mm<+|1b$ix_Ycz0+<-pm<=P@1XvmstgS%W-Z5+DH7 z0LK)3{oWhg+YRrb+@vAc#~s`V$Ad45wHIT+O{*-M)BtEK@nm*pdbSseu`IsF08p4Z z*f+Yk(1hRK(=BMhurDG0_YR5sbSuW@6_`Bw~UzDB<&n_7JgBYE;Pc2l1($adV!2*j&Yl z=o{cyp3e~c9~XcRbWZD&V+o&c#vvTMMk)Nb4<9ZhUoFdJry@;V&9Pe9lJb$F^Buzw zB2}P0gf{9EyuJ5=&QKjL99I!iG&Vle79r#T)0ji^!_UC^3cqVUyttwqYem1`$svRp zMyfDk*k?Bm?8v_FTG!TKST$0#nm|1Hw|yXytWCIKfTpL}k14vlR1scYoG@#+&vd2_ z)-gkY#$gHoBBH&_w+JW=MtFSu=vqsso+_c20d!4;QR^52mhLA|G_BPk$%}N9WFKVDSsAmM5pa)l8`e1h~Z6X zKr?Sd8(<6mI$FMW!zs@Dm6s+$puc+%5eXx6e64(AHUAETf`lQ6Z`k zjF(>$l|B8hl7Bv|>$!;x-}hytw!NZ1MlM>UR@=>a@-dhtvIR%uR?hA_Gpc69ZxgQ3 z+#X%pmUz;0g>MOD2=|nO!}4y-gj()Tw$+niCVS+OPa+}P)&rwuQmdtwH>nxWb&dXU zSwN?6pQ8BR>FcorqD+>ksb$mU9m08@+d?n|{X9@I{Yk#ZU>&?bSmIHqfj50aZf2}O z?;P<+Z1mV>@c^shp`M$lKWk5whJ{xTWB?xo+dRcL1fp(%_?L|SXiw-e!KAVBXi-0F zM2Igj3WuO7;XLyMZ)zC0}M%l7>JMkX=G?P0h> zclV&DzJpnol!cF?>nV8dK^Qu@pa`l&1Nq+)GCC&v|C+2qB?Y+bMY-5w_%xM=Q|x2V zAT-xBjymmqXq6tZ?$RZ9mP<}R<>>wQbM>T){+P$!PM@nGnR!-T;gagEb0ygI8CoAE ztFqOmO+K|S=QI`yIE+qXk6!ld8`h~G7p1R;fP>W=XCZn2b?4hxzZW0S{rLv(;Z0bI zR(vZR!jk__*t+@gLwgQIkqC1=umds0OV%5d$zWGAgF^?%7<$yx8=ya7d+FM0B$+Ei zbzEcO0P>u>$Q^b;SvUN)1oz*-aDZg*agjnN|e^)Kw-PB(8 z3*+*96_ zoaf}av_AK&XZ845fb)@kwQs4K$ImPa3yUFQ(hC|jENGpv>|gc=_0tans}1t8-THqX zA&aqReJ9R?pgt^~3Ly>n?ZKOH^gWMNiuv@ znfPh_;aCU`49%J(&oLUYN44AsPb3MsmJ#LNMK6o-U!bY!k){UA-&1A^#PceHOI#U) z^K$ZWt)*OH0fuZY8rwO^v4mXx9?Ji7!;1s{sXJ*&yxG=z&a`rGIB<91x6wItlxsAyij@#qgS;uoubV*GIuIqx%MJ zk&_Q$r16&%F5xY;8rkInp_iTmX1aEA{kGwp2!lcs;2FeD^cAFEZKYb@AeYQtnF@wx z8IvJ78sN95`Jv48#UP?ES4p38le`$XEJT0AQKfOL;$&UEu7HsrcK@#MIY`jF2aczX z2j&$;pfKM`40-8W-=H(01yWGN+_6|{<`k^uSp1fROrHuDq_0({=m#(?%kutRdhYmm zQ}ZEFDQi^N)#1xLvE}OGnx!{lR&X9I=~10ppD%+^d1BXnoVvSAW``nTcMM6^u-0RK z*jM*^Fnh_LCx2;cq^TK1Qtkqvbh?oTFG=jJZH0>f4x_v6rd>SwLm5Lvk<*bZi3OHa zaFXE@-TaHk?bbMU3-u7am5hMr1}0ciY9@-n82=v?GOTB()sf@i*8Sj-7|CSRs z$+3R74(xkjZDW|0734AcE9)GY>JX;-!fCF?Vc4HZ%-)U|Z$+l&Y?%{xdUCx%>j-1w zlq-eUtK3a>D>zi%9}sJ5t;Es!BW7jpN)GPh+&o@@=fhbZAJi!R27AAar+UuiO|LQ%=RpO1oxU7Qz(VVv6pj&ncf{k1jlZrb}0Z(Cbk=co zajQg;Ipb+ml7~Dlj(b{A7)i3UILBUUQbW%ZJDq5KPr3eYX;lsm z^_gB7#V>KS?(})}`gNm(HF zRK-vMk~xo=@*VLk@PxzPnnF%Es4&$-+td!m9y5e9 z6*K@$YE4h5O4D2&wAelhFwLAw}j%yh8SNrW%U{G#z^t#W#9-+Jqs ze?5CC;QoEBJzSfcd_F8T?kG^?KT3R^0-WHzHG@r4rSf%fh0K!*A%*muGOcH3!z~); zABRRA=s2#;oE~ynV(AG-dg%V%L)pU}D!A&${bkg||ETIalUzIc-Y%y+*bd~#&fa2# zAPr~3+?Q*n3Z4#SC)gQQFP-m=rY`L0SP9M>`WQSP3cUUy*^F*d>)P(jR)r})y<4nr zesRdI(=E(9gCj2e!OiJMTo&s?9gQvMudp&ifAyowQ3#ZJpQb870i#+L{txBFU+D z(82K;6FZZiymj?W?%uycY`xzd2n1j6Aa7Mj!Xq`w=PBS1A;4$#J{!rWcr)o+Qfkv* zR)$$GnF`G4d>UWdZ{on}E1hfoJvv?}j9(-4bLR!c8poD5o^ct;kBxfnuMhTNVVC8! z>!#0dJ?DmO!%$-I!YJ^C#JWp14`-Epvh@E8t6%_Lp{Xp;nqCu4PC*S6VPNa`5?9W4CF#ID3B+nZ=-nzY<<;Rv<*() zYb7@BSD&5n9kahXrtdJLb+r!?ioC>iyMp;Wt)rqFe&0ubc8rcTj^k0s6z0`l#p?UR zV)%>rm%g~-;&{7@_mA#%GsRpyNTOGUmr$`$J+FVYDztNszf~w zqE?5xj7*O!jwwvbh3#iqoetv2w0d{Jke6U+L*KDOQT<(iYum@g|93Le4Qr$4i=3hE z8W|O%$3M)Tb8nWegQ$WZLA$niYA7>8+tWK{85ObMR)Gtuko@acZMmZte0f84n_lf7&EhCEFSu#(GX0dT$h-I;fd=nu|xQvhqS__&zP81knUof)T z+op5jfk(^vkGn1;&*F`aL1e&sT#Lb!B;-B=ykm%AoP}3r#)XP`QpldkiL6m?svDn( z99K0t1`RpQ7vZ+gSB~v+mTaIQ+zN({8pjyp3vsZO@M$o??Zhy7=s6cG-7Sl_7j=~Z z3)g`H15)6u0&A1XD@=HFp(VdVw(`qJPB<2l&uzh~hrk1~d|GwR+3vT4{P128rLUZW|s zJE?tl&v{jiZcI}%nx^^;2HZ9Ik(jux@V|i-L)Z&TNy|wGu01$w_fDEr)3kj?c=p$0bgD)0vkiL zKQZnu?XJdxZi|is9bEN&qaCf`+Z8Cm#@jL7!LuE}Hl@=h?K4#~k_7J7QHO*rNbr2A&Mw2ur!^X0A$-2Ctm%jwkJVCjbH&0&|8 z#f2J(bD#c~wXh5HBhr&uR{CYW(~5%~~-=9kKT4GaeevVv@QJEW{x>J^5zQ z5fE|w^sB~p*}?7Z0bqMG~3#_ZlbjSI@29qk`fa)!$Vo^tl!c4Ji!3V@26TGZ?)fl)-yQHyh_LTP{I z4ISd+gCa4Z)#IT<+N#xjnx-pTRdp#58bjlq3^eCN{n#S%uPIZ{imE z^+LNpjXKC^fmGtREV1ff^6mG*-4{E+-)ByJ1| z3k&!CU4kJIry$rLvFkE$(AFeQ2}HA)EJtE=Grog+LD9-v&|F~r*;^ERCmd4s_N?fG z%P?c3jpFL}1aNKOGW>IJ-VdDzpmlU1+!ow7Gbj%iCcaohFq0D)P+>KQV5eP2(@drB zE#+88LEjXTu(GPU%lV$7&eR~~lhy%VTlH8yy{#3E8x?ZVd(G_b-Ma_(Cj1M38Ssd7 z7eU>HG^u9)n3%dl(66b2Dvi4=PQ2WeDWD0y^x;nXJb2EDj^%-?H{SY?ks5iB^VfxV zv>5Bwt@LCle5xmZw#)3vUs#Beek08ud3a|)RyYt|<6esB;6{4c2EwX`lsN3G=`51S ztbFi;&tFTg@w9LUb_ng-L|{p^`DrND0F<&B%-%n7Jp*SCm=tuWMbeKzq1%N9Ab;uG zK}(%A@}21$<}z~1T$|6Ecl`8nIzy8kJZ|$iX#KC}3tCQ^JUdcT-p>8;bP+T%UDPs==**<>%@Im znVEDyYIv#-ZRs>xk75YM1vX$xLT=c*N1DE$QBj-D@50&-PBgyDXQ@1X*GDioFuuxv zS&sI&elDe+<`Z1#EKtgwcLhnUi%}O@?ecMcK3O4JlXGL8++wD{P?L zA^XJ!QG*;yZe;KF*{8O5XE}_c%S+7ugB?lj$EK2dEZ}AF=bM^*hSu&#Z9D%3v9K}T ze)-Oac^jbf0h|sm3k{?%6UTY2EN?0e`(Ef4#!o7a=2ziSdkmIDp8ggfLj6s>C(VrD=FZ2gTf7kRWdWSwaQtT{!h~IeGTw^HX(6(&1i_29G4le(;m2(jPg-YI7H43R4q3nS5Ss zm7L?E^_z@ebbSr8RngDM&OUi>Tt(cYlB2t5P`GUgwF~8p1A;S1HvlkmVTysV>#63$ zSL(lK;S#j2jOTx-+Q#p}f`2sYrh)o6p1x0!UFRP4#yM)&YT9*uooS*euor(j?PEKc{wRN55)J_4`xXMp zo|^!qAUilynmJ^*KO-G4f1Wl89{(Gf1IEB2+N2AlvY*ZvQkKtH0lZkAoD7hIwp>yx!siphNyrdky&LIPcuNE zO-ZC(8sN(nDPeKI4 zGm|>e%qy5!^OxJXhWYo{axeWpt$nF6?TtD$ywrfB)Q2<$=rk<-wkn}QJl;lQ6CF7z z9DG`sx$Ri6huhD)kw_pe2MmJQ>`f;2cI#A<*1W!(RQjW7P~wgv9CM$Si8RbC0j%D0 z<~|~a#TikXingvntRw31{cjC~InD{P#x{nVHl4WokT`%?)VGWl9{svfxOMq5Rk0@k zy+dQTc8$a3x#haLZ|`?fgE{G1)8x-zqebrd1Hr|WwnfV<@xO&OxygaXu-p(UjnbC! zdk*SSuMO^ksln4!zree7^V1{t(v^_n$Qvf-={g z$s4H6Nx@woB4Y*)(GW(cqas-U>n|8~=QnTg88d15oche9F)74c<9u)7VA99oFl|ph z7RH9TM}U%>i>kO6kil4zdhK}Jl>=|{Gesz=MmpuSA1V* z7D1)A>*{Z7KQe@W+3&ZxiOlpVzeP}bRfbu~x=OdAXo}dYBJ~g7WBUf?#vE$8ESzXd zMOR1^UXk(g52W3lS$E{>!&Vh+?x!mlQEDU&3!OyteENg?c>&DK%#I&FiJy&(QI;+YnLtGl9I8+Sa9$L9O;TK_Y27XD zzIJU$0iEj68p|Dxw%IF{zTQ;M-VU5v8aQtSzP>1#f8`O;KgikH`B}2Ug$Ge$hf_kiic!a5od`GH`FHn+BRmSOFcYES7T% zF4OjnO-wqe{fX@o!?6b|FK1N)9EuuR21>UCgIivEw(lw;C#YXMz@TN_x}KtnCd3Tth`Z(sdYO~ZKNTTTAxo}l9~ z%e8DCh89OPB&FHi^xPI4yH(G6YcPB1^p+LEuQyZe|CPKYQHJ<~8i>I!L0esjCw@m3 zI(bE5!SWl6{ArsP-u2tH`7YaWM*ifkmXU8m&F_wWC07=$c{W9sMRWqhsoC0?QS&T7 zM8_k5>Siw4Ekrc&%|@RBGSkDU42YmjN>|R>Ig*w^LB8Oj>G1S%WovN^oCq1BXdyptY`V3@FC*Yql#s z%lWyQadpKCBjKH!6@5zpJR{LgyJyEuO`nX79WZV7q%6A1+WVfG)b8~i{TMtl)3=wO z=6L_HUiK^xE=P;Qez{4*VVbqneLOu;;uW-yD<5ZuH@+XGuTkrAwA+hP1Y4URRoBD`9;+3O^i}wJq_Ak8p+V%i%d?#+AY6HK2 z1HTHK!v{$-%_j#oOnlf<(D%5kF0uX1(wzL9rIu^ERz@^M7G0Vt zGJi|rkoKsPajljfbc98!03tf%XMPiJU`=Sm7Jf#?)xW5VYT+9R^`-}o>^fKO}7)@zZI2cz|rs@ zdEaZzQAQn04?e|`KCZdD&KP4Bl2BxT-s2|eI#`TX!W1SfvX2$0Xfg0KK zv65W#Xw4C_^!DwWbxB&m^XEAibj8HW5%5yDSrM{wxRsQjBk`>Ty^Nu206p#iYrneyT=gbGxNA&Oc4*dh_NDfX$GzmWaZnkWjVkAR%Wr zf&~EsAaN9d1QLje&!HN}tgsBYkw`8H;!O}AYDH|z?6l?RcGp)TJb{aTw_I& zcFFeHyh69@sCH=(EIVD9pg?{(#K>(js)nyaM(h03g6B7u?$}_S?||6lzVq0IiNrK@ zNU5~*9GZSm8= z>oE&s{JR?8f|O-_X~AVo&ah;hwsy&qB`@TKS5eW_uc5KpT6UZ9>x0@%#1fBPnmJ_J z-ke<7Jl1#qLSNfXUW4Zl4IMKoV(_J*C7;aV{^O8!7-luN@|f!DEAOk*Jl{1r+U5=! zALr_LSNd9wy=mY;WmoP&idKyM=e3fjI z3secF2njT?C`qJwSk5(qRgbXIUd zgxLbpgsi^Zv5U8nGs&R;?6lqBm_P2z54%+RMPb<-G?bzA-|WB_`}dn^y}h4 zqDO8*c#mMKBpzAJ4`^nlpTYddZJLkCGKny(!*(drbOGcxfe8nX|A7M!ls^X5F5MAz zT3)|Gx?wD^P@?#4Iytkk?f4x@m9S#2CiOAr%M{>!9%=1s0VS)E*3 zZY5i5c6R=u^@dTB%;2V1ao)qfUVVu_>X5o;<1V#24xXjQXyUZJM?bv0C3))!mTC9 z=;i2jaN5@Hc6s*J0@k#vkj4dMPk+p+wl&Vuz-X2(X^Wmo|EPoOH&pvQPuCVHoYn#M z*ri^9I2MlCT+F(v1`6Fpfms^UUMoSg%8VBmv6?-HCIWgh*5(eJ zYza5ZaVR^)*cw^_?MrcLi5kx=@Nf_qhz3E&p@;wVlaLNe7&~Z0mGCia`r_|`_zs5k zAWB22_lizs;utESNM5+TV(VwmnNLAUc{3<+N&I-R$#yY!WWd3GZ12>_d4n9~yqPn~ zp#+&8KhA=|j;7=xC|mwfVuzTbfhhb=l!o=U*Kb~N0?dbBhBSsBGXkAWmP9APe<0X< zh`~7v8X;y77%Y;B8NlzF!AKrz-g~8;!;Ey8_Wb#C%yP+q2g$1%&i(%CEO?R#>jDc` zSX)CChZU1_3!F$MwRk$o`2&<)HP)+bc26xWI&d%7`O7|TsUUEojCFGyPiJujfQNaN z=Q)I-m4I%EvpS&?kNb;~4dPa`PAFG&h0v>$N;0L(PD%%HDmq-%hURX!2duC47toN0 zf3z}LN3>ox>+6$`odEZ2Y?x7qTaPVxV?7Q#J#5}`?wkxloziz6&pK*n7W%FS2 zNZ%-IZ0^J-S{qXsm~dHY*xSbHdy`{!J&&$^;ruNK4)_MjlH)krErOn{ol|}r#y%C5 zgbAO5wR_Y}+_1cCUZm$hqI*mxrael>MUImRCkg6tZVDT_k0drK z8p$0-m#knQwr2(jw4%~&ysuKdIWUqmB#l@8JK`o*4c8u|9_`2(QozyjJ=zC4&R4{A^hoU*}isb`#h_qDdZ@xseq^Q6%AhaDM$m~)bd70dHkOBySFE*gypEF zfgztEe_tcv4d+<2>h$ueKa!XwK|0$ujk)JXUdVoqN;kCV%|dZZ`79=K+(ea(xKJ#3 z5w{*SRntNb%|U2Yo5*XNR zg>Pxxq)ctku^6`9)hg+)BHle$j@j>x)yl)za1g#Xpp{Eg$176DKfjy!{C%>~w)6+W z7T@x`I`?dd_08b?`}M)DkojeICVcovb8G+d=Ss_P?UfDYlhpVtPTD3ErPQX2tV`Z|2Hx|CJ5cp zIRVmy`$jaD2eum`dKwERul|-zT>KYZ9H$J#1~zd_eO}Wnu+R3B@ybtaKZ}aH%0l#| zL&}Q50V_kPNjT7AwkPeG%sGC)

$k9t7E%kn`1?eS>D;F&s?CxE%K5fTcQC>oOW zY~4#?v;fYWM}byhPKUMrlJH9}l|XUF+UW7pDz{aI#pnnuJw)QCZe)2~hL6;qy>trL z374NTG?g_fNSDn?VPeDu#X$~UTX_Aq!<0a!ppZf_ikg5i0K0H87Eikz-Mzh=j#Xj= z6@)00SUB%DCe$ufq{h#pZzH>GXazz|Z|jE}rYR_IqyuDwmR3cnCI%ZSbRZze#=j;u za|l%PM_wH!Z@lFvQG!kS=C}56(|)ZL8T+lliw5ff0Mjkx&@R+E;o=vCYJ>_!f za#7h0J;`){q@(ilwUDw%lVjUS4dA(}@|x^_#ogO{42xi-T)&vK8}wx2e$GiD8}JBL zgwgEOFE|^3O_!YNX;}5QRKo5ND(14TS{SN9N&v8(+W>hjG)jKn z;)=RD#rsHG3118sqI-T`9>~qOCS?OVy|nfKdMX$G7_xny`$jkG-HoLW-7M{sixAsg zS!Hks)21L*l`PklouRqdL6Ono|2VfTZ>-sqq^{7i5v+Ax={Sj0IkycKj@2sWc^4LK z=ZXOVkBi9xp6=$>Q z`jz4pSkURF$9%oSN+ZE>PfvdqdAZi$u9@&|895tUlhwgp_D^Wvz@)a{y~5KSXg>PTe4@s8@;Cp7t=8z5^cF|lbIHuQ8!X+E)hW{z=&`+i@d^g8g?SNj1`a4VbYTD!q0a9*ziT$O zvKc#cm*rd2owq~(IhfS1OHkOKbN*L=AA9;wtl0+YTVeMQMFoS>%C27rCV~6+-dFX_Z9b(JY`9 zQoAl7w`3!96-Cxt>@JG_^O)T`1ET?PogBBRjJe&dKsmyLL%%>0p@_K8B_d6Or?zxR z-Vi}nL_(#t5B>^>@N!X_5&_Y^E&k%9agH96dPezd)B1Pj`A^z%m@CMv77rHm1pHu} zTF_1{{xoMXAyyl3-A*Tmf_$2s5CB&Qmb@)Ol#Vt-FKSMXAQR-lvvKI{^M;;5SqVVb z&E+(YrLDzLf*TBJi}9(csWN6}_Dg~S?sV-^wYJ%cl$$$WVdIYf*m(|oQoEpk5C99~ zdx+90*qFKSZM*R%oHR1cgn0jiDFU#O&d#vExBSqM7?4F*!OEoxv|54EqW^Llos(rY z9}~3t#Ry$Au?N}JOA7%VOq*}7+uX*oca0CXTL!DD>^hOORO+&Qyvo_6rBRj^XRS}a zQA%?={b||~frWz9be>ZPO@Zr0>1?7)($-BLS-SJU!5`9!hB2%BKIm^&5uzU|r`W8& z+SO(9#`Cm?OFcHuVPVO|%6TTNrN3}YPxE?1Y>QLPK4n6k`XK+3LsO=l1ZTsTz^#T~ zknzeW=Ic~Y0Qq*Q0HJ;2Sd}5f0pt%Bf05mc+nt09s2+yE49GJ83e|6!rX1!@NyKGB zR$wsTHeSOeGBiPd2CNcck^inNepq)SDTnqD!siDO*+-6 ztn5H;e)cmnX{?Cs>53cuq{ut&(>rj+YoOj>#Z_VZB}y*2rt2Tf*72xs=3HZD%1SQ8 z+MC7S1Wa;mXdj1;9_Ojl1BWbRM=W4uS_dl~Z!(j+Ut5V&@5#mA@0SSE9&Dk{{dWWh z?(k*3K50Z?Scp>KLIrNAFZ~)vEucg(>uFsGRb-x#`e@p+kPYTd$9vw&XpA-I@-!ws zDK_u=As#pW)x(7U=iMX}UVa&W(svS)w9AFhc^5|7ibe1%55GwrFKX(p+@bztYi#~d z&y@{Y8tbl;Ya1)oM7BAQ`ID zQ8*u2l)$biH&!>8{X!3&t_COPl#cQz>W~d1 zFqozb#1@&t2(}6jU4`OM{AkTi*g*2LvypxQlZ6DjN~}P4kn@UV0Mupe(%>o@d+2Qi z&R4-z->=B{th(%e)!KM|nLMQoHAeWZ0$sr^8o`%VQn|{Mp@Q3V`~+5!=PDjj?&QIT zSn1q9O=H#hT{vM+94XCf^MBm)r3|r$y46Mo$SZ~2V6Fje=aHHYm(DzpH9`rd9rZOG z1EL0L@Ztm?VRNq+3%W;Y!0p4jiGZn@Ioz%BF#k?b%f9@hXt0&uW_3qg7PKd5;aUsw zr0@^!79@V%#%2!Ftd5;F51>vi1>sN^l!nR$bQO&p`4P0x zs?QEXwX~Rb-`AL$lT2M~cRzB2wY;I0r~|Mvbmq;;&@7cbjZvR~>|*U`0EJ48>clH)i_THZ~|obesE z15lhuQHK(dsmTeZr8x{W(|v~9w)zceP4=Nur(VMp@GOr=&z`V*NVH>qD&`P2TwkVz z5o34<9N|(sUB1FpTqePCs1v#iz+=d)zd4nw36`4dimY_9l@f7)1Hjt2F%Mw3ctrzM z=c}jSu*`#T98?0i$K_|hGla0qhuhP)gfz3+&&=GW3S4Bn1*h`!%c3Oa3LY&xTBm9+Z>;LV0<`^Dkdi(x zUJsdOSH;%|AoZgmG-`d15W)A}%GYcuTGzRoHvVIjHeB<2NoMT3)Se3m&vk=+m2j7G zIzV^`aH|YkE_U~$3%2_E2FOsoA;c}9tY*AW%1`#v#o?t?YP*x`vG9&d-(~Widp}%! zCI1D#IX4(geBNL?NMpSrKD`sXiP2R4=!WrjUl&&mui>I}k+_k!<5FKvGLQauN6K{h z`<(rZ4_0Fx*SM%{Tl1dh=O+Ml!g2uCl@U!jEy0M3MdW2CmOqAkEd543kC}JbF6aR{ z0>c6c7kQzA<9_Q6&<#CLtSYfGfv1?nOAxdt#&nwn{INkiHQ{2jFc^`6@ewZ+D>I#N zjc23T{fS%V*qsf2S&3zcZxRQhij08Nm<+pGu#V5)s2!k{zx1Wzk=}g zf7PuXjAU0pUjsNa3_wR?27U+V>^J>m9xb1R_Y_<>vI}@X*8*BMX$0|Nlw)6CS7dx7m$xn+jn_2#0kqz!Z+NF5)3fH0mFYF)}$& zqm)V!hMR{~eP82nw&2qaGQOp4{Yy^2@$z}CxKudo1j&K|oPodsqoA9rZ)x^F^Hi)n zbDy9ECCSpIX0JJ*o(p_>jjI90Fp-#$4TE0*n;dAdac%;)p-PUs#ss!p;7l4p1z_}N zZLG1=A4HNoXf=S5U|gy+qo)RGwHJP+gd{$z?Dl*YYqs9f>bSYtP9X(WMCC)a{_btk zA^)KyBs-DI0+AROPhRHGd|A2ID6H_W1Hso#NLfXPi*Nrs6JYX!vCem12}4F{nVjS6 z36t4IPZtoO8LeJgAl`X`gb2FPe*55y@gMuH()=2?CQY?gnDQR8r$COdY5a!LOy#37 z3~*89_`}ztTRyW+PX8CdcN;POtt;_V=#j)Sbx;7>>;P!}Dojf(u2P$3UmQGImw(|2gJ*bBK2f@3*YeE* z+^ryfATIz(4j}iftrYvIN|(d*!*L0W;Aw0c45BQz6s`yN@J)Bvlpe9cA7s=>6hl6_ z9sn~_ze~2RZmk{+C_zffVF5A65ZR-UIaSd@kCz5|?-@E2L=>2rF}a5^hZsHQwd_Oc z8ArSC&e$>iQE96^7A2C;&obwi9tnAKcgbe|=V2AuJy7)I={AlWNkJWG`X>~33+~Gm za(`5n@o{L?X|BtXV{CRHL$xBxW9;WL(W+<1*LO9=*#9{tdUIhO{p2bG?1Jp8#Yr7c zxr+h3=Zq+20*>WIj*Ap(&Ov>9YE+aZAtm4F63~2xcYGpIn}2PC&zG|RQyl5d<@tIw zakNK2YG>zr^xGE<+Q;#KEh&|d$s6A2-^j6TnLx1W&$`kJ!X>}C5ivd zyr~p1*BC?R=xDxNMsuVA`F{BW$!8{7_;m%L@5h`E{iC&PZ`{b|B}QBJP8Qcqwsx8G zN5{_iKAHXsvG)~&oueN*T(a}L;g5~tG`!^0BZD~j8bV+({i#vGgZz`*9jvDPIph-dDNV1+LhB-dVLZfYF5K~>;@P2 z&C;=hN({h)j_$%LVTy1y%p@^6ULdfLsBOyn)F!u1!PX~AmzhS?I2G1?(H+|C)8PK= z88m}Q(H=036xC6Ny%83dBoXw{)Kr9YxKJT>(XiWv9x7lKh2kHt)g3GN?lz+44`#g)0vBdJHo!@D`j+Gi+ByABaopzySkDis($GEi;65gjB@$@yx0_ zTpr`3+Cd{LAoA}2F#^zD5MfvIzbM(WK}C=4>K#Q{Z@-^il#;p^cS3kPd)u;9;7z-m z2(}@QKRG74;=P*l}e{DJDqW@K~x7{*mJEF2N*d6`$?P_6P{gPJ*F+R@kPvz^e2=zMPy)L+wwT)Pw zn}6jJ4Wu@G<%Oaa8MPee22OBF?b7JVG^=}T3a&o8pwR5lWw;5VuuoKok|1|TyH6Og zsqAALA_9OjAw`?=@4>ED6{3EaaND1-tc`cfR8hNOyvByYygN|%66kr;#>jw{96K`dje zT*14y#yNGiqiV`lpTUDXExUhT zJ_Z(2h*}`NPXrEatZPD{YDD>J1KdPqM>RHH@RgD^779!u6fuVZ{lF%9eG2$ogO+Z1HV44Z*? z8sHPIRS8wN*aE)6h*%RLcfB7nHcU&;Q7GWzeM3rE#b2$Y z2V3I1Y<<7UJnk3g`Hp*O`Th>!x5c=}P5#v8oBNI;iSLD@%tY^{XR*G+6THdJEqp&K zd(AiQEgoaYQNX&~Cb`K;UOr@3-@#vQ6CLIwiQm6(;MWw4F7ZBnRp&%yAJ%QXd#;&# zIY$)y&Mg>g8~Kg2rHfCh{0~;Us5SMxb)Q~ruwXHT<$BUpLy)%m^9^V-lLN4UHv7yxJ&KcrbrJub2<#7U$<-uMkJmkcPnv3%4*BTP00UOzC zSR&Byub#5IqPT>wdy#`U`AL)#`JF}zH%pgDQTrg;)?Npsh9h9QJ^}_Q46fw5q!E+> z`j5b&TZ%|I2t<#F6bSe^y}IKj(#^BMDmLY~noWHQh>EHW3dE0W#A2@@9wFznbx70J zJ;T~p3LOu571Y;~{|G;;rS)O{i>RCqpAaR7ElLy_u4bSE>A3_sH`G?4f!EoJBJ*vP z(q*WxsFyJE2D9cV>B~{EulQA(w{6)d4vIzlLH!LuT2Y6~NLRsR7qMXi;0x0N{0UdX z(rFE)MhLqAS{_yga_V7dih{$YF@-Lxz>Sj3ZFWfgel5OvY_szcfaR?)#|}junfZ;Z zXJbDH=~Vu+Waad0{rh3}#|i^`H$df(Jc9(tH%Mbz{v?$u64O@8{S*K^&JTMQP?4Z0 zl~NXf7c=GzHivjOaOV9npLo;aHT>n8a%}$ZXHbgod_*kM={sLL&taS|hmVlc0Un2| zhICm5GXfe&@9{&o2!BmUuclt~brr?j<=-s_3f5##7^FRt&P30NeuvW@Ml7OSfjR#o zB`KZ_z)iEyczouJrG65*&?4R=`*1_V9B_eb$ga#(WD0ROD3lYhFMEwGG+sou2DA#< z)tOwIB^FE7et{L}^nReFf zh>obh?)IARGF|N0nfU$cv)r8pI#(v}Vkd3V#lcDX=|bx7PF=Dw5qxA6K5i}5AM zItaO^Ux6mykOeVTto*$u>%x1BuzfciY-W9aEGSg*F!yDg_ZR}(?)X0GSW4>F#n0sZ zWgaMn&RqcfEK*p!lBbt1HalRm+m0zvSZ>4;)s*{m(pKH==YPm3?Pc@v9Qbudha->| z6#ii1{Dm!g;5IFES?+*?R2aE1XZyv-*SY51eUXIL2-U4F)*w-rH->)={Mz9X81Q5s zto-=Q{x!!eSK+w~KMC_R24Z;qAf$_i7UM$VLWRmp>FRx+laswoGw{cj5b2t??Sq4E zrzgNx7+)ywXoEp0=tyF38fX$r)AY^wvw~eQ%GgS^T1l^;A{qA86DOZTD=5G0f zdVM2uP96AY~g2J!MXcvd&{ioUOOI~7lG9Fl*AG7 z3&utKm`8~XDnVBM?}LgGqTVB|#UlJ)8z#pK_=yGmUq1{S&2n${scg%d{FyrcNFsm4 zccg{TJEiyVCSG;_{@v8Q3*KEoWRiH3Z(6=_9KUzJNalI>i`Q*Q9OxPU+V?=lhkwad z#{1m!d=HNXE&f4m#G)fvZ)9clmExLhdRtA*wSH%BcrozS(|n}(j8Dg3<{qOz`l_eZ zN<4_9osljW7;nB7u<>Tp&R-YQ_4~1aT2#GI^r|CH2(k!+@wJ}}x?3}kh$v1v=eCAG ztN+aAMWiTvw5Ecx!svh%IV_Kp7B47m5sanLKn=)VX4cmm4;_PzKABzhXPQC0J4Rzm zh_9)}5X-B`I0jaUtT+(Xm!E<-TowL0Ji9;5(~j5GY%X`v@||3!;CKH5??_!8W6=lX z#V|DjW{G1ZV+zajt3sV($@a`9`=AS6Tv7HrC*XA0rm<8?<3yTS?{%8AS|tZtrlbPL zEswUF=A5bq1Jz7FG{w5h!m)uHZvDj{^IVc63aF!&`Fc*$PoUqiC5E09og_*V7PBWl zpioy#`c;>!XHPcq8k^AVv<^D^kj{Zp#YdAkY};A`%?fyj51=hbaep^vS+W+K|Mtb zX>xLAq+7Si)$0M?>a?c;5p>Bk!hnn_pl$Zlr0m4V8$N{W>6lQKzFgxJui29?A$g4rv)k5Suvauh+|%MIE-oZHfQE8Brsbx zVIRazD-IBis3<#Zl!%I2=HVZsBrKf-_lZlwJqY>h1Dv^Bhq~9;gt&n}A;JF>fO_LM z_zp>oSE#4TRuPL zE9j#ucY?!1EUDNoLvyQxduLk=?UtnIAKEAn`+Zw^G&RQ7;N5vsZm3GAG_yp?&=#*wqt-ly*pL|ff{USrKL_KFF7 zR}L^W2uAz3w?O#WLo6G*RtY-v$UpKVD6sbA_nBUoNcC4q*lPYDcZ1&te+~RPWa#*b zz@ETef>&c*r3*5*Tbi240^oXtk`)8N)cisL!TI_$Nta$ki{hz8w#TIVgv_dyBZ^(sJRVAb0JMhqVsD^Rv znu7lBwBe;_ilx-P2+%2klWkJ8SBGSwpuycDt#8K+Em;6m1D+@pC@?+__2fW41B?_V zzm=h%Ir9pYQEM1QWn)E=&3cx!R1^=SJnXj4#&rygM^UoEOz&nBKC?Ukh9BHlglLRi zdJF}X!>n`z_-76}eU#d@Xu3cKyXVfJn&p@J5sQEB&kEc*x$tYj{ilUbLSJ59>AXP5 zK|?avyv3ycon6sZEVIDUD2;s@K zwf)YhG(S>z@LE>^EW;E1b>==Z-j5x4kAxA7E@Ct_n|MPqKDnlaA$3;}6Zl=x{DtR` zxB0hIZ#o~kWO?=jUVi1R%!c*rwY^9>`oJqU>zPkAo1wD|><&1&Fmw*O4stl01O_VP z?-1%YWCC=&0BSXGKQ=b=q?JFSzdhdDt~aRp3v*ee-4emJmM3 zo)AbNfHEKi2m%^#fe0$Nup1auL?rvmV4bL!O6+5b|XRiL2y zgGXKY6aY{PN~(Zz!cL@)p(9m&QW1H{E82P8%kg!HtZHNhqNNIQ&k{p0!-z7 z>Ae~Kg>=j)(q9mSUf2SFQt~Jrs?T9jMd|}m7B`VW0p|#4Qm^P_sZup8${pPkNN?4g z&xrA7q_tfrqaX-EceYB=qRd#^;`T?@0aB(LXTg@~_E{^LSqN9MRjUNiA50dZv|4A3 z(r5e?1wjxxvZV~^pJ~h8w(C7+I3v@WymcrbC9}9>IN+&OdOht5hm=;wjK0!BYElpc zp*vf3AXBv$2q-ZGmXHc|1(4bZoAcBqNC|G$DoykUlYv7hBded{G7@LKx0J4=AP7P$ zN*53<`bp{L>k6Q9{f>34Lg=%6-q>Vb73C{7C8H6^Yr81L7JVT>5QJXX0&4((oM6Kb z>Q(_fAk543SZ9%|At=8PSBOgdnD?k&-d8+G73-f-p3A8Yn0<&BW~r04cD7 z25*vG?Dc*7M1SPivNxkInOiK@PjRY()2s>UMF$9i&>xFBkST!2U;SeMkY%70Kvp@1 z^z_hjl|ZHdGEl0LM8;Vv8FAJO0LsE8^A%!dEKBp%&8lR4dYvo-P=RFjufvh(_O|)G zDqwn;n}Ob?8c!A9YV|f>Hrz36zn+2DCC|yKq)w2*D5M3%!bkhRE+`r)6t*x z+o~~kaa6JvodX=8GDaEiC}X6tZ)J>44-Ix9Ei%^s%d8YblE3*p0436Y1(1(4qqIG4 z68r9I;_tbGEhmZFZs=TuFew(umIVdy`J+GcgsV?=ZB_8txfy^;u#20LTXYWijDgZn zM&EDgF=Ji%(z6!-dx;C7J8_wM5Yfz4C^ z;I=Iw`~D zlz|lwGzn{EVf8yb4iJ?!O)bWAlHeE096t%4k*Fm0leEal{oeW>Mg3kpupH;`iE??Z zd;~au%eep`=Krekw>o7;D!M%wk;;xF%3<2o?bjQl&AK!@5^7fx6}k5T!QU*bpM@j+ z8}qkmBDGWnr`-_3H)}kMVR=_dOmBLqJ>#rIW+bN0$W|NwI>*-^t240ZPn7sgRig(9 z1|@&XxvNq%LIcsZ9aj$_?yWY@w4ZRK^X?>-!&UO8?*KsaYD4q{Co9WQ4|A?0^oMo< z0rmm`R4$0D3KHGMF54hy^|97Ap7f|j&eh{Gvh~U6Q-S(hb!d^1yCPGc6^MQS$lvl; zfuuXY-OPyePkJs4ME=%uQ3qaF zIgZ>n8llu~HNo$Co9j4=SzFieWfTlfTvW`4q1c^MBQ-1!PNF?qjUC z)QB|0eicIN5>zak(osc37Ug>#k|I+Jzw$yj_EAn|!OOyIY*^k_$L_Eyq=+poF(G>O ztO6_4*?3p<4@r~YUcHrYD@?0j6Ln8|B0u}wy2e()!|58qhgv{(Z&>d8MLdyg~#*D;ZNxsBqB%sc07v7%j~^qXy!nRo5j{WyV%BYMOAI&Pb?X$9qB*6?y4i zs6>BrO<)d%wW8aY+4%8OB1EcRUNi3zCMuFIC(=}pmFy9b{+bIx79KIsMo^YQt;1wW zfO=|BTb)5%F+z*9xKLR`d{6wh&Q(ZBzp*3v+rpy1c-=4caVeoKj0ET8zTXcS&=$yk z$5~oRWT$k$n8sOrO`YsIgeob-Q*H*A0RYz7?L~i!jP)hkc|}->%-1Jb2QWpsRZTMI zV|7O7md%QO^2HU_g%*hBJ`GhQCHHYgR_;6Mo@nrvoK^N&Ojxoz^~B`_-lNuYQl%lc zVgYt{ta&N8k5*Vc z$_N+|oO*z<#=9l=74fv=ZGYnGso8a8OgW4qBx^1t5#<7ckZkHC`g@vDql<#J!v^jT zPusN4pRDyZc5#w9f5&+!otcBQ7@fo7b-x^O9bqWQ_RxeQMg@%0&_qe{68`IA#p9|F zuBxD@NbZNYSL7qZDoqTSRv6y{(DyJb-FU0Nr3B9a6sT0?(OTmMK>p6Z zuB+=&;?61ZeHBK6;sXE>VHEpKd;6VrL_D1fN48jg?5`5~IsRW4r8cBRCsIxW1U#9I2)p}aREz_szUfaXR8+yp2Y zDfe+9ei4r^5fHvit-zZl{1Q3($uBEPuDSq@`4K0Pz+it9STVvN(}B#1p#uK1!9eSb ztuKu)+*_Snd|93eJn4qN@jj@Ihr%e>-rw5^sAVyh;0DT!R8;d0<|1DTt0<=e{>B^| zso0cVvIrjRZvvMAEk+G_%0Km9Bsg)!RwcB^*u8||Gh#8|SJ{3`KStdPYhZhS004CW z00e|GmVHEGPFS0EdTcJLs`P74wY$tbj4U&}yJekTqxJ zwNrk)5cfrj8Pk?6a6~`Zah#bv9ijyGY}UC1fL@(E(hnFnAukZ{or89A-|gHRVZZSn zQIs#c8_9chSXIOqF8JAUB!L!L0HFt#Do>M22&WGT*3_zYFCkp#ZY2OfH%$N{`X_;5 zEHj+|L#%U_dz{?oE^S1jLfpvs2CU0xdkJKAf0dkagh^bJVoU_7j?gvWNdj=AOF=07;$N-a=u-p^nzAnwznEfvP7OoyjhxxPkdmBOw zF{BsD(A6@m-}`C zZ?W{X$fCTX#PnO{AGr3~g+dIj3kaYYsU4|A?sCQMB_wBz=&3~38359Sdy<1l7!6py z$8-od8=Mon(Q@C{m?QfZWCgtCv)SE9=?8RR%V_|a@xPEzb4iw`t>hzp#gw7~$@rq^ zOLxCwIMBuWugoVbE}(HkKAeR**@L#L#@?$nq z8ge3A&U49(|1l8qG4A0F+NG$77X9Jh7*SNaen6rgQtZ2;&-QaDj0vg}V95HIE&`_* zIJxg=6kQG}_lXjK5-40sw}ufagzY5=iEJt3{%5$!wUKwcGDwhyD&j(|YuI-QvBi1^ zJW{k2RtC}T{>(fC@=zENbSD5<5zi?G`^j@+-4U#I0=FhQ5}bwxbS_%NTSbxOTcmUy z1P@z3d)>(ZV5$7-frYf|%FOws5{&d-vFj-zNrIC^>baPVHGaR1GUF`k(R1h)C9E6# z?vUXmS?@{AWnm;ZhLHQ#+e)=iwwDms;qbkr(u&jB0)U^r_OZ%&9I1jYMj0fe2Uh*G z(IRDJiZWoU8tq^5o%N10Q;}XvKl7dqyItkI87r>V)?qGCgXL^cdDv}_?=Bb#f@901 zA?Savxz%k}1)S?fnq`8;mih29a$ZRD6k8|*zPm@KCj+KaC?O+2*0vwuw>7%z0IsUu z(yD74;l2)qkicdo_0R^tEZz!nPI&%%Gl{mQ`8 z4`@9?VA~z>88N(ft6xzbo6&KU@o)yAj^SQY(F7Bt*o6+r?i~5Vc$prUN@Ny7Cy4Y8 zrOW+rFTw9S7$`0IOP#YV3knQ zN$&FkgpG`=fWU!WKtOyKEJiR{ksXymeELwvScz=@#)OP~A^wa}ZWKlwh1weJz+*_BS$P7T$GESLiGf!Sc zBr6{kS4dSpm61-*XAGn#E5={l6R;yyIK7MgLyYwND-t-2OAW=m$pi%Au4k-+<9k>__bMH@fTz3EjWSnQlGP=!^!cZAN^>(2WZGGzBML{})7^`acv#41NVj ztw26ZO4f6Vflwr7-h>1xa^FyFo?Ol)jyU;Vvj)t4u>}G37G&hfjd(#8P<5${#&F&- z|Mcvu9?uD{2IZ4+7>{|IX5cfVW=uBl`D(L)XwmPvV<+FhN&h}ILGjwto$CwZfRT^1 z?DlsE9D|0`5LSRSvAG0h*iwn zP`b*K#rh;9=zDPPF<;OpGC(&Ij6g$@>%UBtahci|v zv+a5Wy6SK!j12BsDN2+96-ho`O5z#ezCS)3tS>rDZIJ$-YSuDyWet;yPCP^K_W(dY zN^P0itWX(*g?l%d-e%Od&KR4XtQd1!n2fH-=FSF%yZ=xaG1mL(52F?lBh%UaA)Kod zg>VV#l34|mHDQGsD{8fawa+BUK6f>+g_?rZqB8Is>5=;xByD>TsWUIqMOLKqVs!=LXEaJqpLNe zpKpg?Q3u!|9DP8Kyn83@0GUj&$tqe5Er4Aj8cGN$_E zXMYHUF+-_%yS-6i+BR@!^&nZVs5D0T+*q17L0MA9guxN2s{SXd4v}$6{-o|$71}Ts zV9QqDXscg*$0`Fybdu>Kli9_3Gm?cw>7;m>o~R6f*RL5auEKN3o+^Gvrg%=0;!wzM zCLV0lQ2kRsao8j40i~}``2&Q}!zTa$#g6x~Z=9;~=|fTzMAtZmTIXyO3-bpX(%(0I zGi1wmUoJr4ot{q=OO@|S7VPfC$#nZA3>f%keb`$XCF`x22+_Y`?R|1^k3A{u7lzJR zPBCyD1#lDdbH1_Z0QSp8?J@r$w#5bAaW$4o5hD*k z#L1{^Io?#p^IOYKFiMPH39SiQH)HQFv^BvzUzTbRnEULH{dkml+Bt;_GD>ucCUv-- zEcnS3??s99-tviLfRZWWRG@sEF+M#}z9rxNhZS+sUzi9{&)k$|lE;Y zbFZ+sC*jr|N8&#)YO354wDdP)fGWNZvX(uLNl=XeXlPRu09^YTTlZvF(PL{fJp(%# zF3s;9g4l6pwr9W+U+4yKtF)fj-K z#r2NRw)x;U+dbAX-(6@*_V+5VfgD*HQ(?APvwRY^12MpcMIKqN!^JDb+cRsbCX%7U z2BY)pHS_66s-1Tl6(B2ya%5DbmDPETj4A1;Monqv93hzfzfx=vA2K5~f}C391iL7-UYh9vY1RP~dM-;XHHd=dZ4gc(xYZwmnO8<4y-8)3K; zfWxF5bKn1@bz#huP+UA=_-6o4e0frt3F}ZJ`n7f6P7_e-baUC#&#!*Om3qcc7i)$l z;M_wUNorc(KthKth6wuJmd-9D$@OoR?<063;c z9oa%shqoAtR0hB%^9buKPFM$oyGNh-%MT{AuU@s-;*25O{R#l`x4wUXl7;?oC8)>P zC*`#%-|RP<6nY*>$hTzRl?|Z=d>BTiC9>;7P7~M(z|aJiI^oy|-JlhKWz%QiS`+07 z)kK05nWhYa)^||KJJ+Sft5;YP>A4CsHAzzj%D&fJ`YLrz{;vPV<`HHNdh1LPPaFPV zHZZ3XfD;%tyQf3ovGKhU($!o+P2dXjGMcpa@kJc-pVS1d{;+!qn?p4S{DLbV`O#x9 ztRpk*L2GU;G_675bdEAmR$d)$H8LDK!9Vi5V=eZm@Lbd>M3?`tYyNxl!xR9(*N=F< zojx$mY`?GhIUg?0Je~h>E!fOvKQW5Kw({$li8Z0H{R&(0y6qu5jCAzdg*yRmRAApX zV8_D=+bGoX2pNzy8S!Bwtk7ivsC5HwB(B&74iYT%V|(EhkNW6w7us@%lKc3)EBFAl zp?>x0n>Bgr-9QxpzzeT<)JKlHpgxtka^H|yNH;)4WU|?wZu0wj6`q~}lPstV zPQ2>9RsLYxKxI*uexOrDlE3q9I$XT+tZ)XJo95cGXGU>&<*m)HMX{!IBy46YK7J=r z<&;C}7_h@YCB_6bfu}iIYlEF-z}CuPk0wy6NzfGTR?JN{GxRzD0DzAiS9yVqw#01k zL?{C$(kO>-J-&IF-IW1z313a9(oVSQkE#lh?KJpWczyy`bFNGj&fj@<87^M+8md|> z#cSS>pZ!Kr0TZG)qSgVFZJZnqMv~dN^vq@wijtv8jn2AMDcNxtowYZS_6T%i^J6EH z*=J%_EWUdz9C?Kyuk}Op$$ga&=~o6e*d8Y(UZj+d+{GwzCn5zIz=JC3&tID>h5QL# zWzdfN9cSwXT)g_VZHo~`O>qPfnO_3{Mq@IJ_ue}MaZ3a=O|GcMP1jKuX37NHa(ASB z^?%F!2jfK}7Zd11U75MrO7(WoO8;ZrZd*!{(%H;LcKux0O-A}8wMpwOriofH`sRUG z{xQBUK6xKB{87AnqiB5=Vfg#Q`P<)GMisAqUH%7e0Z_&7yq>MUFmZ~bAivrWoDG)! ze4O#X-G^UXM&$z3fSFT)#DI)y=F;GM%>dh`bxd=p-_;DAst=W$0I<>PL~erl5BPfk zS@jQ+-j)!z1hJ(qu<79lR-zoT@Zbib!U6)i9EfGhrlIGJkfdvt)mZq`re>ALwJ zyrmAj859&}F={}VIK|PBU(Fc)I(%G2LEcUP7V)ITW?$DT84K@dnQC_ds*)|)!wn8& zO<p9Fc*qr zAis*9lbsA@^83%Sod&7^;PnCZ^4LY9SKBi1?ZIJ6rW-=PPD9KVB{cy)xaxd3=BJsT zF$F3Y5W3CHLkyVtC@CTO{BwsqUq>MuD=*O9I=D^dsPBBBE{AN(F(jtvg|B-D$eI)7 zq#FKR$`PiEzY`FF$C<-+2;B6cP2%EeghdFEJbDbEDU128B)*uAr1gg`wxwnr6KEP} z^{W-W<@#Sz?qld}@u}hBC}rT8GwO5~{B=0$@(-XC9gO$3FzbVH#P2l^&Fs`984jbup^wV#=`V;rliI1ML z`46QFsKk^5nH_2Ab4%fq%0NTfxmFg(kmn+eERKe_|0$6F*#~hAV@Z{R>2j0pqd0+H zgmUq!z%a*Gmc`0lyc{JK|ycQpVu(82CC388$@$4wK3t zrjl-fnJH2HV*r+?2&XsGSYv7<={ungd^SHfmsjA17^?GUA^8{F^1j9l39KJd`gI zmvhKt=-TK1{ln%3004>?yu?jeyy)KoK>m?Gb<>+Qrou64T6yGMec7cG&`J8wrbP?D z8va|CfdWtutdB3P{-3aB*wH0)hrluxGvlNt6s1yBnid@b>qR!xm)3RbP9`^yjC&*X+eGv_EF0fr z@>^LL?+~v_C&(85z7M5f=}v%Q=GUS;GY{QdI^O;Yn1Wr8gx!x!lm5kXPcNQ#dhxu| z6Y`W9bw5B8WB7OJ93V67q#NG_P~R?PCj@|p-~3K=n4lkGd$C#d7;-auV4{WV~HS@1ZFvbt^>f% zM|7^cMap9-Ui7Q^N8V2u)TjSCKFmM#zOc5B_W0{GC*An2Z|yw;&|NBT?8CnIPMwA> zvkn)p5YaD$uzIH|CEU}f0J&brsvwhqX!p*ga5)MZ8DJRf-Z21nSpXI%%1kgPtXV*2 zdvKp366oY(CLdIJ_Mjgc?pFW+6wiBcT6&}dieLFPI?an;ro;IM|A*p` zbihMzItKuVJWM&oE9669LI|qc&7HDsH89^_$IK6m`jTa~k({noNu;54TqEDHDA%?> zJ_Wocu+n?0F=6UiKt^Avx<#}V4}`DZNWe@09U;Ywel;QSOMasa_7;(=T`#2dJZ~8%WfV0Nkyl(p{^V&`v z`#g=J(kR=Cj~^0<(gZM8Io1VtFQ5v`j@R(V;eca@43ka+ejS-{X)TPSUR-iq8C>bF|E0!qt?#|yvzDkM z{YW^?tmXk3TS1in#|y#O0RXBKu>V7cukV;BH9`KTe`ueGQ3i2}q4>>JiT?T7Hk*sH z(LO1x-QK42cC%rBB-OB8W1o+86S40K8E-8CBM&Ki-?)}FW`Gmyea7|s0Cp@73s!yn z7+XO&3KqaK006MxLsnQ*KVy(zeHi<6T%vNXa7yy`}pY!~1YQV}4p!O}U(`R-psjqZS0pp|ah)jWc-$`G2 z**70qMbu9^fAGrcHZh8q{uVyW|KvTzul;uZC+|s848_Y|IaK|Ej6sPC{ow5cfY~71 z+52XKV1Ht90W5!ntf*ZouBH=?=?Wl&7EeX7?O5*fVa-*+boW^40cneUi)#U3ifUlt zK0IszyzikGzI@qXY1Z%<>w(uoIYRr=-?XBOU;AzSZ%O{g@7C$ba*E$rpY#`IL$hHe zc3&EF zD@Q;*2&_N>{KmI`=)Dj5fA}t^JvG5g@$0WB1Nr;jRYjquE7D)+8IS+RIt+zloIE}~ z!MK35no_o1L|REk%@h@HI`7N<Ie%9wqNtM@IgqJP{7*a8LWL7*N4@F0K_ z003UT{9$542*E@8-7<8*+L5O{aq>&<%`aKzmlU9&-W;<=F#?(iXDCbN#=BugXIN5s zAG4)n49fiD65yX<$#+L~gR)Zwr99~V0aY5207vdyTs2NLu%#a4J3S54dYba9c-fij zt^#73_fPaGG)98@e`9>fX$4R}ZWw2!XNc%oA)Wl< zdjJ5*ee1lc_jA$m%{WbO@Q@mg))TG4R{$!khvMj*W1o+O@SrkqHrY0C0 zTmI7{t+mTE1?Wh;K*g(n7htOQaAV0YzPmY4SOk^QOc^nZzXOMfu~agw%rGv~3ZSrJ z{&1x|X-HATIasJjYxoyhjR6paJ9V(rd+Ip`I2Vw3C8CL0=QRQ5@EbOV{Nf+fMy)fK z(rfj%=>%}o`Qz6NE2Bnk?U=^LP5fs;r*IW)OCLKo$OU3SdmmK`XU7+6>N4hir0E`j zc^?Hq7#Rxe**@S}r)DPrth3REziHazG-LuhtN;KG_;SRL;&D0zbOKL|Lbm{SEG+w- zOlkdAG6w4>=EE{$#8v?BS$yL?i?7#56Ilu{X~v{s^SA&0x~m|hQqT6mvR(mlc+~$V zMK*azg#*()aafsQWPMwIP*+pY2}sdttN=g>tQ7!m7G;Wih21-NiGZ#bBg73skFQAG z*QU$^m&d~RFciRh7T?t2Ni76};yEu~dmRK}WfTuS5Fn-#pyeJ!bpkjc&YSkJk(4x1 z(D+BF^YnX#HH3RHt}9?_Kz0e3vJX9q0e2CwCUC!+2&46=6D}b9=%>I)@2nsUN~Hq; zYRT?8e6VPx#(@#sQUKfVS4@1Jk?s(9Y^12yx3ToO-hgse001S*uq>u5dh4trGlDJU z8%<#K55_N>Yz1IFtdVPi{4YNYFnt4j4D}yF9fU-Rha6bReaprt`vF!0;%uDZ4@gW{ zc>%>cxm4)SlZHc?RmRuHc6uFBj@fScc5G3u=tEA*v!0^SY64>xkZPP|`Vo(|=A$70 zpz}4DM2cTOGymgviu@INppiM&im>`$YLDn5@?+g!1>k25g})gYAxIqSp3b9)1eTPy z%R&7XRmW;6=UWjLxj;-ye4YN_<*|1xuG~3FzdweU21?yufniQJX->aovq+i@s_?wT zSm|#UVp@ngjAaKEZU>WFMWi98vsr-(mDK<{=yH9>5vPhrVm^&9aT0xlC#x>tGBMfO;*)lpuf| zKX(n-uCxh5xPZ=BKJ=W$H&$O2K@gIuB(5pzUDFrLWGYPe3zZ;smW^H;Ck?CcAAD~L0f4_k3P+B1?)fFP_L%h7Mh zdbeAUMs{I+g`nXNwDk9z&GGN?{-55zE|HM+;0*ijj+Fk~))UT77=84o#sa$?^hB7$ zGZ2IhP*UF5qQ)HuE)QFE0)mFWdm*!?!GaI^2OX6uBx&^zQdWkTfR|g&ZxYjUhQLUm zYjNx1sza8?L|tR7EQ&iPK&^H&^=Pz2}3Cx@xTaz zD*se{0F|A}eH1K(>;m4=k7ThC_S6wTQPRK4i^?~`re9uHgH8hg@zS51U4$;-2I^li zc@?la1yC}e8dwW+(LKd0e{bDY5L)4`1P0YeSu2^T81k=%<=57Quyuj6<$?~Qcp$?q zptMV}pC@h)gImvsTh8|t#c7&Dm&cR`H!rS?xXyT4wE`$9)xcadK_6DY7!=7E>L7H% zko#^YKmi#42Y|2+AjL7zVcU3*DVB;)=mg+vIeDXq>0wwGGV)EE^(X+%jMPA9#vp&k zPzNCyt`mT*e#%GWZYFAyU(j5E?F4WJJ5@4v0r@d5r!%{0QhNr7ThI4-lVSp;7wCJ7 zD*{&qr_tvx*S6tgpI|W%;UDkN)05817p#z$pE$=?Iiu@o;Q9lF6smV zn-0}-++T<9pKoYJ0JzW7?KC%koGwsTpj4q#H<{Ml1HiQQ3l+cg;{I!sL_e)y6lx@Y z$A4LO6@(V>pM|kRojW$*E!FVyd;K1i~to$2z|$KPlKF4hdAcHduehcVDIv{GTlv!%YzpjC!=rybwUJ|u+d=O zj+R*{l2{{VI)4=87nIqk^{sf0zrPk_xE-#;$NvF(?0|wM@9lqIrEl&E${46B@BA@4 zR0^gngvQtdh$R2353RcjJu%(pBa8%9+xXQ1)HXhqOdnWTtTAEijftoNHvE&P;*gLf z@WTV1v!1C$toe`9u$Mz|H%_w?FkuBS4kqmYbeY-D*#K<0uayCyNWZLCICoP5cgWX- zn7TvOH&mW2uTw?^xOHJAkCHo@47l(2I(UB1*za5|o^h< z^9=+A#s6)}0WiXL z#z@=Wf3^7#x1h_K+04dU+E7K$4wWhdkI-P*^D1fi+ zx%Q$x*MQ;ksjPm54%bq*HLx*1R2Tr$V`|8KEZLQviI(+D7E`{{UK(@GK5*fh8&Bnp zcT?Kh%gRXk&Y1jIj;GrGWH-X|vL3N~P<{I+(+^mK0=Q_;4O-A+p^rKN-0nivng!SZx#B)mityGppGIvMQ$g+cI+tM*_v3xpOl;Y zC&n7x;2-rRoki#hSqtfJ*3b$BI{_uvE-vnH)fKV2LEww_+**(K>S2`(4gcaTz9#416w(R|D|OX%WCkkXt%Ah?T%)JegSk zkD2omO;IoL-TFuBa=c_G>cy`m_URI=dz6#cnw8WJzjk3ba(Tivi;J_^y4A**=D&Kh8gsa(&ukLx!okH?^|jBb-QF z%B+j|@9`{!?$uGt6YHO%zPtF>wl!D<11f-v_S|cVeo&@xr-p)!!-$KFU&T(3{G9*1 z?kWf=Xt`e<)c-2aj?hlBwy)CmkHWTI-^&Q=?8%V*SoMd=e;o2t>ohn$>CKN{3s#2@ z>f-!i!jT-cJh6NvM=l@Sz7oSTlmhtbo&t-0Y~!2DeciCp75LoZYre~f)!Zw^8UIdh z>BMm5K3LX0(+L1dJ+!X|Z|pzWNO&arDA+YQ06=~!{QSHR<>!59h?)z+RMBFU zo#pAIw378z4eLUQES?GwoZ}Cao*+F)9q785#1!aR0ep22d}R-i9v)Nl0}zpop0Lz| zeVI8ufe|9NcS4X(e<0=l3OfP7c>Lq2bO1CmJv{Xj>`NbXTHDLlg@gmsr%wg&mEBDn z)LtFDyMw1s0E`O=ymz~J_Dg!KzmUI6b_1Opl=DZK2{^fLbpkrTtp_G`fFi3&rt^n` zk)3HV0z55xn+E!oUDo5UCViGCGc>cSiFc-cR)?V#Ve@(vg3u1b-A^t8@Fp%70X*S= zUTZ=frWe(I>Suog0K{^K8PQJ<;KH4?X@Qq|J6?Wd{&U`c0MuR3@x&$P=%&d3^zG}e zf-p5~=MU2f0LoKT$MhooZEs9pA~?d{=Vkw*clN>T_2Z~adu0B* ztG($CR;2d^o(E;J^wf%du8C}JLJx;Tr{TRT%90&?I{Q;UoXnc2u zH=mmk6tOtKMTDgw06@^`zfx=$JXL{X>a}3UY%s?|s_%>_(901fPRky^ zm&-vT?ffyl|JW&{XZ3(FBgl65iwg)~UZ#bx8r;p`tPi`dv@&*>>jWI@75!vUb~vPF z`oS%EUec(I0{G|sjl-tBS%U#az!LrJkN~LiKl*I$59WEBhP&lJRXu=K>xg>?r|D3K9Tdsata|2kM7ku?x4nB1So+{{Heva zbOrLi`B3+tJw9gEu7p*gw0uJUlH0(ou0D-7X8S3f3d^5{iUn`D?+yXI=g;h3)2JT6 zm&#PNEnW?VFwURq(1^Du{D3no9CQa66`G$S7KD~y=MQ;m6%?mJ{%QN-+fVJGWWxYw zW*O0)fWDAvpvn~YPzSLZU}l1bb%67AFisyBH3ER*SuaWdy@D_=?6F@o9-vlgC>7m| zeGc6TSbhSyEF16I5(_nTx`^t-0LCGNS;gf$dDKReMceHx)X zq}-pAm;wM;oCeEJI39VbbI{wXA^?6g*yICdJS zZeWC+K|B53c*4U&4G9o^g)%a~^(s^@u9-3dTo}J33IJ4b*a?w8Ul2yj%$+|z+!0!U zex?76M}Q$s0l2>Y$iV<3;BE~a-Ve?l2C%9IV7k!_mwMl0LxM0K=oYQ&MF8_v2BhH+ zy-9z1XXznk8LgGYjstH2FvR7)yAO5K8RC>u1NI>fR9Mnnf$imYhXlaX2XxXc-806Ydzxe|9A zaI>54i3L2dfF~{;7r(vi%ZWDz1FWwC*h2zf4hfiP;z_ax1~483VWn7K_^Kme=3QPr zW(Z*Xe0mL6B0GPX*^EfRp6B&Y{z$-+dm47^f3xXBZ$fH&FQ5p#7ZAA4AInEXF9ZW* z{`+T$)+Hsm{ep>!PMylH{Wd5lj(iAPtRRd5yKlY$&L0gD%D5BI7dxK=w|~sO(C!&Y ze*jp7y(MN07VCCW)A?iM$*hOPiGIHhh@qQBzh)2Lob5GX7+mL%>5ZK$+M?6eB@XxW zChdAoKjn-TcMzBr{ndffx-4sh7z{8l{ApRd=;&9Ej*(G$=kZI6GpPDJ8y)Un9BJIZj zh`|8H`Geabas(M7K5j_Bty`Qx4|IjijBD#ROXC&NAzIBwbON}!9drK81F!{PJNcb9 zWyC0b9GVFV$~Z)6jG3TyOfwnOnJQW*Fs6OA4QFmV$$G?b{=q+3%XNh*Q@=*~ZM09# z6l@d906;55FPFi#*5O%QVWc>rHRP|fBVp|1pSjBHnS;>@*pMcSer8`&KR1fxF#rI5FCaI8nKLva zNKrF?j3I&N+_YsD*^$wh|0NqRZBOVGg_eEcfAOjLLazUs^)K$7m~{X|WNF>oL%x=L z*XqHR`z7=u0I0hHK+g#BX(qcx(5nNbfe5oeSrT8zgQE=Qi0;O7bH9ZMlGg#0?T$#A zHWL&=qMw@~3cNJ$FD#b0FfrW8ptF|#8ZqsKfM-S6+}J)39ms3l0qc{Hq<05JDgc0=TU@VDEHM+* z`g7vzuss3P*&4b^re_41wdy0BG2yi}C27J!Bnm*ke)X(7E5RIFla~HiDB!J|g?Kz$ zL6p&S|G;wo&{ltKi{L}UeFQ*G_~B**Daby$HwREJys5D26ZjR$NK+CRGI+NGnjLsT2p1M2A-@S6 z7y|%D+?z%{N<--bYA`^L;&^5R;XVObD=O@36shqmK-#Ym4Ke-S>W0s>6JWmRT3!e( zuoM94G^B4WHtLg{KR9pQ2>^G(4>cOB6+@kateVewAED5%kv@lzjAdBiNHyaoW!rVq z322KR1m?z2$T0v_N@4}}9{?H?M&%mmm2o|CPYC~LFjcV#$4=CE@7lbH#p%DZ%F79J zK)+Fq4UGSttNh1iARiVY;I@JQzdmR;6BK7OokE7U2b^JH{>w0KRYxJs+flsutaVpG zm=3;`z&bQXd8nKKc_>8CZ45w%&B1^s0q6YD@l7GL4q*I39i=?!M0CP}Fco~`0W(Ej z+&&0y1wqGSIo`yWY5*G|_F#Y&?>PG1Vc~kTz;gV1o_1=tU}D_`Vbf_|IY;6foq#za zFK$nGwu0c|6#zVEzwd&AzbKBZB4TEOQcfY$E3b8cF&WfdCBRg#??y3e`$?ES)(eIs z=iCWsY(TCPAVg!10R#*OJJN6U1HVNm;S}`ZcQ#(7&E{ zdLAfaCC?~!ahxVwOg!0q?8p}^u4z_vMSd)v`+9J#1E7}s=0Y&zWAP2KPo7f@(pZE^ zW7=ni+*fvj*XX^uEm%G5kB@p9bnVrHIq+S0PpEV1O|Jlo=8L?^-b6Pqj-X z2;)TAPJg@Qs#&_kwG<%2Ag^y4sarwV@zovoF9%~1P=mlRI>7(s=MGMxgzSPa4(!)) z=8FITwbqgf|CjD}<@@h# z#+rg-!ld&D$D^Sgcl(DXU{{a+6)C5rH3<`>c;<=guEMG@jD5w#3vuYJAV|1VM!W)N z{g?aoM{D~BYk4q=*QMh%z<5sxv=~@<^VAVC<bH%3X7e~ZzP9xBx8U(UaqrxFKeHOZA9APSb%r1aqo9=j6@C|h5P^R;P>AsYanc+d zHQ;yt;P|>&-?pId*t@q*XjP0mY^N9mK^PtOZlH>Y7lM#3AdN>WmU~*Pz4HLTfz2OH{RCL5hM~{5GDlmD$7!Ub}(ZAth6L<@New6{Jr}g zP~~eo6V%uZqR|R^&X27F+?8Ty-)|Sx$^c+nq44Xk-==;2#4i%XAPD1y_4v!n+KQO1 zAUvm(dzu{+)`yIGV3r4K)$ZRLu9-Hf9EI_w!^*?$S|uoj!vFreJE@;34N4Hkigx%Q z!@mmu%GxS5MLfHKmQZJ%zLsI;J63bIOfma|Av@y_0GSa93szoi?-~Aoo@-`zXLru-J#&wmASzbC z*xv?(KlXY$AnR}19<;EVmN$x`Oy!E8XMHgcGpuc6-Q|Oq1(w8vq6TO?N9;B|yx5yN~tAt0(K&~P}N$|VHfS2*HE z=?ko_II^f}hS&}W75;Jsd=K{?Z{@@w;pjaQ`50Z0rbRL(ix`QsPFY#;*9{ffZ9U{> zu(h~AX$9T}@g02*n52@3d@sB^2QU)Wm_6(!4j<%Oo~k%lW4F9tyK7_@O;|eiHAvo~3oexxV*MRoxVS*e0{GOZ9J#jQue&p1T{W?+NqE_QR*O z>ZwyUL@pm9KEULnH}gDIop+o0>czTi>cz=TQ_8S-sFIKi zBwhSmsu~OuBQyFlKXtV7jy*6hKK{l`>NY3Ay2Kz9PtxIkRVAOxVK{eiN8dqZ#m*^M zT^BL7UaG23AWJrT$;^}+#u|?^p}Iz^*6?s7Z3ITT`R443?Q1i4db;`=1G(K2wsAS^ z53Vmv7i!=qt`eM1YYaLaK|Rf1^KN{dzsHpNWlY%^0ktzby$_&#!Cj4~-Q&!9ukm~M zC%$6z9#?V@8?WI4dZEMT1{0v4^Ny|HL7cnTpCU%`etvBo1nB3#klUQ^>CY(ux_J z)qIadRmX)YC8y)nD)g(E@l3-~zG9Y_uqixQG$5{iFH80fHaE-fdJD_mWVJ}nE*Lbj zw)4e*{zTab(9;`X2giSNcymt-N<4do#gGauIsq}4*%3cj5&!yV$ASvMbMD<@G7Egu z4M^t|%iyusmPExd3A%|Ml&~xXGS5`q!N)}9_xyEo-G+HiFGR*A=0m}qQ7G){>6a5Lm2q%)383VF8)tLR z+HTuPi7!uiwyVn3S71u2m6aNU?cEdA5YVuEM;MSg#Zbb^@LvvG4&(6$wE=vYS=RFY z{?!{gIy8Asn9ZQ#3PSba`uF7G|N)h&Z(uLidTJ8z-T9cI6 z2H9`ziiWuINc~Y10?J323JzN4Zame6Bs8?|Y8E3;kWgnf* zNunuZ+_z36-|o-|Q_VePJ;w!x+|B{wSi zLo$$#68I)|iMtl3(nSxE{n3rH&V46c041xf%xgm1RzoJMm28x^w(fG$N^qm`$IgR% zpdd5ZCtAo)+&~$yi6qpgSA$gdc*Bn~D{* z!g%b6K^pKnd+q*zDi|+Bu&=OFwO@;5F&=H@fWoWnNstd%+YV9CSv`AH%_)o(&6(LZ^nB_oo=QwibP{+1SmSeSxHqz#%)J6v8KlL?gcS*4YDhO*`LO8|@Ac zf>2b?1jjtJup7()S$8a_ZNi(e|ArNj2!akoDz>WieTEl^hI~=+S5pp{mG91YV|tQMj{Zpl;|!KfsLQBuWK}}G5}cX5@qLMT zhIm!U!}r%mQ^@86algYoW~V%e}pQ%MTE(KZL?O=zYQ0+qoEoc&-iJ=fCSoJ6Z6d&4*P(SQ?cq z$8)m!vQM8%7ER%IiIi`p(wV4=fOe~r8nE+??A9bjpM+p}_o`Y`H}2D)@>@`)KZ%^~ zSIhKeqTB2fy;Z?@TB?8!C`yCLZunsIW5}%CzhSXT4qBt!JH*?*SRnH7FVB7q&94W$ zQUG6C2Ksi)k~-5g>G8=RoiB(QnOd_Fvwh5SJ5?Zw6;kpLop+VO%{j?`>S-xH_wH387p* zF;F`Xiu=GYmCtp$xHJF9gT$sGzzaD3{HeWYV8QbuNUam2h5bvk*RyZ-SNagFbTA?_ z0&8?_-JEFt-lkf>0L`a?hyX4{{^Fl~PR~wyixpS17WN+l$5XwDf1;y=#XIFqb(;zN z8WHA;HMnh+jWcOch0lED#j`W}=b1Qp3zNGDnIt||;L^t}u^*@F25qDk0>@ubR-i2X za-gg|@nKJj-Qn}4%sY2b z-C66qe;CRnSeSXNxu{eKwDNQ;Lgm>_>!J+}p%$+yXkCcGfz(RD+e^|#^v9n*kj<7^s6;(T|qgJJGh@`XKiL%XmdGufL6q}b#2$ghyE)r*R!@%UdvZjf;17IGx z-}KJq$^`?vdcO!!ygeA5aarUNWK|t>KTQ8|)SMDGb<<~(clu~T<(S4O*x7NpbWS*1 zj^FFh>+9{^A*!#AgFL7?sgQZtsq-Q1xtbnt_nF#-h@1}DuSV0|!%ric-yBjgng$E1wAa>~51lfP{VFCYkK)2?|S!ezTDe!T4G8AoepmlKR zGgh5K=lA!TcaBM^Hb%+e5>6%coLLn#=cuD>9w+g857rnyTxMrC1nyDp&r54+^TbVTG`$(QZegn|~< z6pobZ7b#Y#FV~e{_^G#q}U$UUm-vjl1)149yi~^VdJ6eIMZfWOFHFhtd>W>Wpal?9`oU zREF>(VQ2!yczdH;F-s6HgPPSK$I+5x6K~@71)7g7-st>wYE_V4_zOhF~MM^GS=oJQ$M4N+V(vMK7M9P^k5pIX!efjZp zTvhOui>NrMVqZYf7aIMR)){kI_MOa{wC10vg8wq!vJ(=$`RQ+d+7ElU1KHk4{coQ= z(p)OpDR1oU?IBTF#eQScy`oT0klnPHd9aSQyEpg4@(faskNGDK6zi(B#pu|(4%y8( zAjyXG(R2gY51%(cly`8d4ck@+d zHet}0^wam*5rD4dDNRpSMi-@BPLQMW+1<&$JAnzZCYN`AH5ZUSD;l7c`3Ae0weKF| z2%vnTB?QSnm{*a>+Qaq1!i6_s(_7+APe7p#i2-1Vq1+5f|C=sInq1OZn?VbT^W<=z zt<)v*CTyt?dY5msRpf&pF4zO+$qjVNI7fPlt9k_YXNqBDV{^CyVIaOF-gP8E_PYuS% zwRf-3cpp9@%>v~he%5Mgv4OzxL_E*K!TDo=xqB6j)**PJZ&oV#WB3@m{bk5;)WgMD z)r5?{emxD_S$!O+x9wP&i+EcAr5F+PI`WU>;|IKA>BxkbMOIY732F1;NdZMZNfOHz z1afVr89cUB8*s%p>-dapvk8)k&!Apc8F(U@>%Q;fV{% zhJy=RXb9DFLr_{3>kXqZE}j++iNMem?1XtPHyKoovYs@{-Ji_;tjIuQ(*P z^-#M0R&15Sk~L}xyskeWX(ts{3~?(>P0_;GtyekoW&EvC*s?hO#pv`n#MwY)kJNkq zj`#KeQ|SJn@!N`?!#}krF520aJHLtb4cK4Lx>$$liFh7a4~#&4cH!AASFL=)lQvi0 z&HpyU;62l3Q<{sQ9KTz^drt#?-g??4Q(l%+v2P9-CN1o6S}ieO;!eu;noI=ER@!o* zKrZQFqvC-BDON)`OWMulg&RtcI#IDaC@yE>QaX(pr@MDF^I@zuqNEF-8#xJSSdsrb zR9MkLH%&f~^r)k*Fux@L;GOJq zSf~N_-Trf75xt!rVqgAfs$}F(s`9cT*2H!HGkFOT!qSE=IRjWyh|f$x^tIqHaZv_ee%|(G zrg(xyrX%$vKf8@_9bMhU)JmbpYhLT~!f;mrC5M7HfY+4AGRR?zlqr1(_nOauKH;GA zMxrPr(ZVwND6ESoNArdlFm3v|%j?M-k`$a4r5MxUNKNZ-=6}N+@$HlLhX~Wpom)5z z$2yEZ=KLqaZ~=M__w&-vgzv(YX}!z$6GVP@L9&GQFK<)RRr;k9L-eSbBFpP0KI4@_ zbkDq$bV7xi9p%~w*~NH|-PzI$qHKXAtH$8Sw9UnM@pZnXN%2AVOVs$9*2O%?I^-43 zpNW0y)I}E@uQUmply|%2_;k7$2P9UOl3VKa_uPEo{pQRpOniS8_z7{ZsZSvsTN2 zXiSue5J-tj`I=8(wIxE!^dAa7S-ucO1dT}=Iz==AnUP&zA1A+3~*Lc0{ zAGSvSDyNdR4StIOwF0BdQ+V_tEgw*+{Bh zbK0Yy99QrS^Fi5=sg@tz|0aEc6;F}2R+dLHFjh(@ODl8 zxNSqrXS_zjSlUl6}SR(lQ7z+ zxGJ?^Gwnb@6!35*CI;|L8yqN6V9!7dmX;IcpFO`0#e8m`%>u15roXaTRS%J)f^}EEjX_x`pnzaKs3;GPUwG3sZIsWizd1 zN3d<@tr?cOeg9mI-z8hS@3xqAtKQIXjjnf4DKN_UJ*Xl8y`J$SXXW32Bc#VuyuZch zxaJ}auc0%LB0p%|qfBLoaxS{Z2bqn*1O$Kl8C^)l+ z1LZmWHDit2N$BetX2mPP2F)c%$(xlVTdqF-yl3+!tt9V#ME__PHA)_%K?1YJC~|YZ z4_>kFfD3r^tzwIY@{FvrW8H@-e@AGv=0ojV2DNQz)G3UmHVoQnMEMAFh}(@DSw=9x zgPd~%G|f^09=WNZ31l7vC$!(Ewxk}O7jucqP?>Gwv}8hq{?B1riJDrcgnG0Iz^)i@ zeS=&c`9-h(v!0k-)61Tjf|5ffBWI7e$DVD;z#j8#DscF17nwo~mEHsp3~ij$wrNtH z;M=i=g0@U7F}dHy)8dc7>-CSg!bLCqO}nk+?Y`?@Y0tjBTI+5^C(x~C(TF@watF__ z#E^8;H{Z906Ax<PE2Gc%c;43Cp{)UId*_9`HJ|b&$9@Q( zLX{5X-FK<_YLinfK@&~*=c_wBm&U$x(wyo5DV!%c0@M6HZ@&t5(Mn0=0l;=cio7WN zt1YWNun@2_#?Hwu1#f%gM`&d5#a)kyQYX@+sD21v<($eO6#%BO;6Ylwx*1NDW2LV~ zb(yPt^W(oCW~jIw9;!g?vdEd{oQ-hXuc4;Fpo7=G|2KaDZf^lZOkpNhxUiiGmQ+z2oV5i-YjCZbWphen^Zk=R@Ew? zLb^QcZ>Ug89!Zr7$c3fiM68Y6TX!3OIw7|w&eseqGp-Z>&r2*Rkr3c*f5@kEc7a&( z9q-L^ZmbaY^=xQR2&v!ceqw`Z_!#vXXdmY~0{H}+q>3W4LhZEFK>MRxBN2VD$xN%( z%C13^uKdtAzc89{D@S;Oe!)j>y0c6aU>xIxiY>`g= zLpUOmrBCu24!#B=$8}tUCLjon;T+X(RuFWCJozEg%&q0|+%0mUX-0B=Zl^&ZtOQpd zIVrt9c9s1}G+9cl#!ak*_`g@-b@^m9Q1rARS@l0z1!SBXA(QG7SWD|dj(@paAhdJbY`n^BD>-z4W?b`L;wfA0ozFyDA>6vu(%Eg1CM??VtIC#k%YYPBE z;7iCyr~vqMO#U+r0F;4C*uQZR5X;7)o~fH*vJ={~wQ+s=F(LP~?Q>p>Kl1KNx2FjOzGKb(MYE(;w zkUp&)@`E+I4w8;lkbD~%tsKQm6F+={m$gDyYRwJf&k8kSt;|a7XXqtiP5s&jiH_WN zIWAm710xK^ktD0^>^z#x@JOrtUZUG1l~1Xn%XxH&j;^=bOS}l--y1B;niFq)ky7bV zSLw9Y^oiC}RWg^j7|p-8zTMKI%iZaC=bJ?rRZ-4m2q>eYdlCS(Pa>}fNSR)HXge<3 z1D=GMr2Vc6>P}&Vuq@RwFWcbJf92+8hFrt*vqKbvi4q5OJ}olpE0dR30P*V*!} z_>@u%-kv4qiWOo6Srpz9^2)3tHB(@xTl`3~@(9vj@cYz)Ljq`cb&0R3v;`c{Wa^n| z`c}Ol;nOMZ9Uh~Po3IIedUUe9zRei~Hi48&a0RaK>mgxec(O^@<9Y9L5zkU6-qJBn z_O4Gt(vbRX*iZKVl0@Op$8DSSU*sY^1qJsZIuMn&5O=qerP}lKE}%8z8B0!_X7Xiq zvog}5nr9*NiHpk__BjUkVuNbC&7Qy@2gLxEu>}f!{JR}WJ2dUGI^mpemTu1XxTOVd z?eg>I<4yFEByZ;Q-ujjjO9p*aj*d$vsY#+FAFMQeyw1uu6@iS1!HR;bxFnKa=zA&qCs+I3V)LD0v~ zq5;$6fD|6SPY7V;y~Rzmk)Qy}(#lE-1}@b5!6#4%1P&pYcj1Iq7o<&Y@nEmW2(=S3 zSXLf|L4^QtJboXL>%$-wFwCLCBw5B7?P7CR)QX+Uz32g*?rH|3W=;54?ak5w`njx7 zv$usa8}GIjm@-O6)mRh4MJ#YN_!9Ck@`Q|?HX5%DV2_)qUcd^PVgY09(5YO8c{6rB zGqcwhAeK@^na2>SccZ!bgy#ZuZY8~>R>GC8hP>d8aK~B(+1lYx|%fe9%80|Qs$Y|8|NDWwT* zJeJES6qRJ-rA^X<(~t}`#0y*Ot${Lr&B}y*>~#KUff0J)XeY=5i7wH=}sDX%F6*Hvksp!+ox~W*Y+0qd;hrXDebk!t@B^f zUTVDz+qu54;;4s{uJDTxs>&|)q(sHeLeIv&2T|`7@8Ix*K^&MUCNs zB~FNoWr;2ISw!%a+rPJ*Qe{lTxJCv}j(&ZrzDAGoMK0fEr&t|fKb2@(9)SPDsEP~w z^N((~hI-E4kG&m#n7$7oW$14<%ctk9cjmz8-o((3YRxiu#k?Vrpz~LN?#x^l{$<#G zZHkrmtBs$(esSHMiAAr)X0l-0KZYXj#l%G3ySMoB zUh1kw?9S0ThW(9GVWPs&w)<{DPfD-#yflpdw_xlJB-K@TpRu&qedy+y3B@af1|c7! zSc0)I>N9(Fe1@ZP<=zXNtYE9=-3Ibj_9F$9=E7i*I`lhx+3+ zhT|vI(q_84-yE2|+PTv*+q-zbu@YIt-s(`xExAJLLEJSUCZepvaY74 z$`1AY#siP5_q`tkC6Iq=-dk8&t+wZ+TuOq$!wSVd{3(PHJsiRw-Dea^gi3!Nsphqv zTr-S|{lNJ?z&)e3`E%&IZkMXZVMjgvVlTz-1Pl8tEdjp8m1n-C&wd8ferOQk@zP9> ze6<<$Yg^~<$i(#l%z|V;_h9VHzw|C3z@2MnXQ%4UGj@qwTG&208hHRh#|@WzXAO%y zHYaJdHe=b&PE-iO{3+s)-C04x1uQ<>eO9gF*KZjOjX3_}y0ys)#klFk+8IODyj%j% zxWQQBIMvUH@EixVgdYOk`gW2?Y`>1xpf-v=S90-vxi^*!Wxp#FI3(AgcO|z2i@&23 zyFDGZYQMK-v~#L{q0?xY9ls$4Z*-M_12DkE_34uJ?m{&`b}?z$Fyoo6x+s1!KPYN1 z{&A1>2dRS_CiozcAgmv_?NvP8VS$N?#cPrxu3$F;wMX zZGKH;@N^%hcjsB!(ZUbj9|E}lCK9T&wcZS-ZGE_c0TVBFKh)I;8$cv;C8OSRx zTSG1h=Mx5DKg#x2HTJf4v<^1uT}i6VDzj?ew?C!8bM+;siZSCLmDGSqLp|!l;mbTM zZnVi(m!~1qY49_7v$P_H1^ew=H+jwQB3ku*kG0q zR3+V=@De%sHMHwTaC;hu?)|$X`Wo9!*6gnQcwdi8%=*x>b&k{Q!vZxTRG9JXG6WD3 z!V*m0p2up&pPdI@1(%e3P7nuvv@Mj~xLLor&dnH&+Wyrza$^vO*DO2Fqb5OY@OG(y z7rogrxjZFB0J9N1cAQ}Qly>0IKd^5ocqEVVo@~o5^Uy&P)GAZ^-sY-A z@MR&i5G>9DC8*h%_ZH#PN@67tiDR{%1jKPf8!biIm?g)8-A@8EGwdl8C_a6t@CN*E zO&du#fYVmJg2{Mx8A%W(aW`zw5-|j0Ei|7-BGd3^rc8vyu3Oyj56?MYzr8-4l3`zA zCIyEW<1ZtDtJnsy{f!MQpaGK;(t*(+%w=$6wkIoc3}Pb!F??D`sB}rdz}_G~ZtIuV zeuCX;S78$HBILq*C!;RjNMqx_Pbbkrhu@689W6_du^qccop1ks~FE9q;!_8y}u@EAFmP7%X z&mqKGlLX6DXm@0rIg$R%_7+0uDxR+(K#>EQWw+e^bi+fSDj5i{VAm8IXv=u0k0?Md zx5rBh6eJg%7kp4xuIT)(^zw zR$xvOee_mL-H}a{=bIuGXEASW@1u^HUp*_vKidb67)i{{GG(lNWwU>Ey*-sTyb(|I zzulx&8y&X(YkR&gsYTc7X3@l_k?TjQiOc6m6Yct=ieW2Dnp%l38_94Y{5OzS6R|q9 zrQysy>=vwggLT-d_EX5op!Gk?*19vCQrh>OmeLw0lNryHET_`Qb8Zdg_fdv%k<_-` z-l6>;wTUKbV+x;uB7gZrw&r(?*O-?$7otKD_>1zlk-xL^-onpZ$YspQ^uJ#L=Yns% zC*4hOaZ%5B%r|v{z@+{myUxBIjj0-Ox?kv96hEGw=RKHnt*dsD1{-=MDve4e<5~AV z|L_wBl$=Im%ANDP&%OKo>?iyE0kDUMHwB>IUJ}((q~2!LT#BjETOU4ZohHuvPuXsj zDgNyh_QsshJw3ey$7`H9A6f%Bg<>vr-q1lDbEWUsP~z3CDxKVwfSA2$&z>A3eZQl; z%yNC$U6hq}h>V`qy}56%XP)p+dnSfkt0b`5b03FZ<|s8Ziml=rr7Yc!xK&5*4RuOH zwKv>K_VUq7|0;o^M+Dl8QY+|YkOQv{)CG7}hwe@DWU`Rjp?c@My7}LcQ@ZUBDKe05 zf?Mx^(fY(BrDJ1b@wg8I$b0*}RM(==iAAchfAL^%adgvapE;(e;6D5rMEL=v&g6I= zMNM*p0g@VwA!YBYb^UU>t`Y$y)QRCggg?Rhmkn8=@OZCk@uc`QtgMFx^3dxL@h58h zq%W+)PPLV_8`1SUTl|>CN6URpe_cy`x=JCL+_5xB9oI}%SttKXdSOf2524HQnDYy+ zg+6MwgZGpASty<@tQR9fq93uFPOK~Z996qp6gLwXH+ea5_osC&lM;%Q5dxTFP6`G9 zOcK~`46l=*FW+cm34iHdS^RM}?~lmnZppEznRda|`8$=gGOIouvDq?I8vC03ECkXg zd$PwMr-!giJ>tLlV`=jRlxKDDRVp!o<0bqTV_YhJ4MiVwva|P}v$fEj;ci^DR}s?4 zwQ_o7C!`5t8MHa(7@&L&>;)94WlqebFF`mO3MDNJ2kxfV!$RunoK)O9KBr0WvZ)x} zmB-@wWZQ0Lxpo6*g$_%@v*jk)G z(rf;zBmDsK$~!VB6wPrgHr|D1G=M{pXK&ywqV{9fW^k{A(6eLvw&&s8gxGEs}pB|dS#fJM;UJEHS| zCu`~n9hk%gixFHX9zv1RyJ!nix{n3vw#PFlOL|r(WXkN{l5wH}Q?|)o-IL2QU@OZi z;`rN`VO7rpa2uP5mW4JFg#zoPLjVTMr>97aL?oI+i9ka_V&?|O<jr4EWglFV@yaC~RppC+x;K7wvD4ge8`G1da< z<0I@UTq;MTPLhMWiDTdX8LRc+D=4QslDw_4Z9!7-h+@X?tNS!%6GwXXCiD|U4j|kK zHXdR4$-scX5Opr*`0Q}lfHwc$!cd~MhN(1Z2p3|35CGOafL9E{g;JCxaITH;J`wzi zLWUe%01%ijq!u0l=D}hTkOc&QIulkmN>b1S`L75-_j#YlFi8Mh!Mh^NQUH8Qzx*3g z>iBhy4JRcK83+dUSN1W4oi@;BX-SfDF-@onAZg}dvD|1lUb?M2 zT7!YQ0+_R0ACiQL=ASN-e`3vNuVZnda5nw~0y{xF>5lF?5r4m+nZi)h)JN`vga5T{ zH=&h<#bI&mYI~L?Tiy-|0$IA{TL$oDVE55hzR_|w=ka`YcXgF0duS2WHN5!SqRZAI zaap`doR&xd;A-{JtEn)~xaor86Xn~Q02&a~qWoMljM$9Z9*^7P)o&c#o7CO=+W!CB z_DEM1f!)>;^CCno4>!A8sat>bm{`+%t&E0Dafl=O+{Nz5L{i}dezgAkto+xJH%*Ds z*&h`%fizc&@(E?&qVfkn`!v^Dg#cBB=T@krLpr`W9VO;A6$M`CmT3QF=E=^hJvs^3 zkF_lQBy3$A%*wV%DZf+GIoZCrwAxTAygj7~~lC zWN!Rhc#3CWH?wiqxgu>dX#GcuOvcW`hTjbn1!jzxe?r%SYe&RpUac36t`AS|Y{9B% zxFy^hV;SX)X~No0M#h>1A^-8b0Oq=XBdTUu`qTICv3nvF)n)dP5#K-8K-{6?uK+mI z*eGUcnpYH?h|DL4n;pswaU>@m_X?ZZ(J+jJdV0bHV1jT<$%*{|gG$`*siLp-Kb?u> z1j>Z&bnh&e`@SX}Ib!_c-$&jjHzy{fdiV`I4a2%m5n-X);->Iy`VRs}q;0}g08kQt z(fQmgJyFl7YI(6`b9Z~Jz4rOkE4jqG#F81GtCz+`K0`=DfNqzdgNi z>0a=&&DSo0YVFI>ZC`W%C^BAp0YJPTj^#5`JZ;WbKOEZn!WtgYmgT?>lI+k#&Klx`~7%H`ktmOK6q?xH*C~Zfr+3B>e_4Mf2Y$5+`Iwz!KJ|6ZL zhxw+8{@x*@e${A?k0qP28dxwm;3q+(z%RWeQbT5IMH-~W7Z;a`+tywheDbX;oM8md z)_SU!;z_O*b(v9#07^CJ8B#?mVVo&qR#& zmxa^}&Ciu{<^s3F_c}K=HmvWh%*D6RDAaB z`f$;;@;a+}%`i&GO0eb{L_S+yL7w$k{6*VEk;KkOX#uousGhzfE9>e$m%%cDIr=SO zqO00+hep*A_{rWZrz^SKXw^e~bxK8JU8%hWcI=N?v6}HWIAR{D$QH`s|a9#)-F{fL&x;II7& zp0uP11?#>E%8&^5^oe68sX-Rrm>erq;qR#G>bjBd7>t4bIa!ZnOa{VsEt``kcp6z0h)?b$)wigB7Q1JJ}sC+hl0& zJnnSHGxtAS6dHbC4k++Ctnyv3%`w=G&R~$f0I)(v4MR>D4IwiA4Vjf?S*YjcB0!y_ z_3A!Q%*9JnZh#El&az4Gk;nIyW4YQ^=W}{s0LxuHF|l)5-xKfjsOcBwGWU5^F`%4Z zbHkrbo2e>!5YA!@^TRl?S8d>KCdRfP_YN0NDpJ$3QtaFUZRsM|5Gz|6aIMGL(Rnl= znZnqHg3K2I`KAb0d38VC(LFWcTRFS2#`ia)r#Dc`h{(m;n1;L`3C~g^cz3K7G*zG@`qpex1$!AfAhJ2epCK7X#0g`zF zKqL_WSKvPuSUzS6Nq`tY`exY$#0eQ&HL`$T+W%7z1T@hw8yg53_;NmSA1ty5V_81t4OUNzg7*5{#7!1DUo4=!4*IhjB65cG3XW zMCi_J&04M~u$oygTbM~gm~cMko)t5d7JwHWZkwf@ibilFc?QZPbBjXqp&G&C+E&Qu zwop8C+&ei<4mPO`9N->%#z4GI1^~nnqQ^t~*@-)g^EV~pmO29s>cYcCwT+Vk!@|wVgePK%tN2%~U?H=fqcPD#T2`;DO9C8Nopcp5+hxo21C{^z z$QxBTI5~|PR7F>avuhs`%EsU9Gk?~ZC1r=lit3?B6bJWS{GBQ?zqdm< z4KN^!Tx>Ji`(>zgFhbz7H!H|eX{2NjGawXRtJ_fc>z%)j*)`PP-7kZ({t&9GKUMkH zEOX-n)j=_F!E7(`}BrOy}uyQ*O0K70*15 zo6N7fHhAW}NCNKcxh2$q%=#vM3`@$|!ikWAVc-Tc0JbD*|X)$Pqmv zdFx#~|yv|neYk`k(*7)ifXny7LA6J|BAC$Wm``btL&-r}&spsrD zly@5S_a&JbZJ{{cw%=5tKSxN}>^J>{Ox@mYn^N48o2vusaQKy;-$S#^44KGJWv82e zIkDHHrbmJlGRKeUW?>R$I%ke~va^pBocnLzTjQ3ihsbB0zVG%fXE|GmK_U!iOeUA5 z#>1jZL1H6sioZ`rATCHF0Q$@s;Gg)WORuf%jMDn_{PTOi-mP_zptB;rm)Sj#(Jf+^ zoJ=5VQ&rEjU7Y8lN&?2?cIsnKogx(+0l=ze%r%}OL5cK3HOCOgtHNU)?01=-8vN1f z>0_jZ7fuQ_Hv_{{0YdKP?9a`(O^~FY z1Y0i%l`4j3rS9lk+Nl*nnVzkaG3B)IJaUs+VsoXrC5AprrFfTdQ&9@1r@AZMXeLnM zCm~_o+M#xX(g-^3a(C#YZWic5PmSI#vihuAdo<%gFkb>b<)I1L1sm^am;%|4ot|o7$vTNKF=? zgm(kD1O@#tb1i<=c+)>2SF93|$DUFPJG9K&&F~(n)pa5b<%Jyjg#@(-@R+qhYhDPp zBtA)@lixy#Bkw9uw|OyxI{tRiZNg73FLsCfH>G+3q)I7O#%~KVF+b)sNU)LmsssTd zd5PWiduX}SI>+T*gj;88Z?piEK{Y%-A5&&Z8koO{ua?JMrhK5 zFTeA>w;(*0EtxJWDLdv{IUyT@{3+Ll5|BmNH|qMEV(Ds#*9_3jUup6wn@&Vc;qWRE z5*UnetS|KSh8rBOutkdmFT;s=17oX(EY;@_?FSu4x#(jHS9Cy3-HnvWlOk{nR z03qxrr(%uLk|ZybZ(@*NCP8P07P6xWG9RVwn|s6cU$x3Yy7dXFh=AX&1iREcb9Dh% z)a|xeg?K8cQQ*qR51P%AJ?!lp8nx)It(Ok5{t>!f#;p2!%=l0QjNYOi*z^5{M+=m0HzFAAleXU~dt+F<4DO ztQJ!i%o!}Zf4I|~WDZxs@)cy21tjky1(b8c#e`W{5>~e6BmzHl4AC}Qd+{v|jpEVp z((uq8=f4|ZCdk{eBK&WdK)S1|D^I_=|{I_4v7uzZ71{U4;VByqa&TN(MXI<&X38!?}9r z_1^u5ArjvYJ>obW3c&*p*}n<34s&!{AhBTf0rS?gi277u>B?18+Xw5_$+q7;M(ipo2U~8!CKBE zvApG(I?~ycY4S6Q1zZ3NNZ!U8izFZ-|Jz)4iQW3qeu>@hq#*pk(07gs3GT%k371rBw>S+9TQgDdx~PbNuQC!O)YB(`s4TnCv>4 z6B|}mbza|a`*ZE`GT8i!*ePuMk!Vpx>iJK78-72)BlLO5Sk0+_3}|5dw8Ooc^^4ADzY}Yr4`2lz1%UTOa=*O z|C+&|i??;oyK<=(cKePWaYw9rbdatmT1b^QJ+Zw~NojxQA6C5^xH~n9(KFc0h}+1o zUz%zn-)7Eahd6OSvl;~&asd^bb9cJk>A(~f8kD>r-bS(Q;J9tBt{H82uNiqUlD#F? z#xBBO3))xNdd)VX+uv&YOxxy1H0l>i_c}D%-0jrMMG~-9PVgY48Q$61@ljy`1Tlbb zNt4J(VG}NsTrXgW-*iGjxG&5Pc}h8?5cW9_|o0YW7PbvR~mw5YN|1*QNV+PK{(b{O>KQmkx=6{sd$_e!xbf|B2 zAbDgnJkIQRo)~cBt(1*6Z{(f7=>kJ77wc#bX~Z_e@cqDW`OBVRdP!pJH_obQM+=ZK|9f!RPT9u5Zx z{`bOyBi3fuT~S$~k0f4;*OC4W`QMF%l$7{lwd^ixS)u67;H{N~cBOeTscU}1J0;eb zA_jFXEM8^6%E?|D{%{O#%uXg13h^LBD5O17gn*)h$2RD^2T7|5-bwRdjq4TLXVGj& zB~T~aZ@KeoArbuF^pfA_WRj4P1l3feM3a`7;GtcpV1c=XTmz%Zf#oTZ5?R2YeAP?? zG_!gbuyT%*MN+o!%rGiiDYyenajBJ$9OT3T0&PMB2B_>AMF(v(wpknPY`Z7JlV~33 zzcBgaelZrXXT&&^4+Zj1UIe+{Uh8qMvsCXK1lV5IMY$Q}i zFD`x7*PY39ljW4pRF%(Vb`iGX*9Y^Zl#g> zkg#CfptQbjj<%^0j7cqof>{TrK>{%W*=e+%SRehroTg5MCt=oPFtocjs@A!~*EDks8M@6ghud{4B7@{P=mDs3{7Hq)X3Y5(cN^Oz?_h^1H zNtn(6we(U(GIU(Z&cYDK1dX}!dNkx&{n~4&8|4GDboKmWn=-ekHk~O!{J`*&HKbSOS z<;dc7S3i5crdT6_g~^4TN5Fc?Aus7I?kM`w=Bya2^>qDaR{d7sPTO9W%Wlu^=f&Qt z{kz*g&qnCpzENtAJb}N|cei@xMUmhgag6%;QLj5gXK2fHNngSMsI3Z*nUYe!S8QGA zv@@2-=Q{N?sP#i0x|z4*+8qB;AbXGU9~C&Mhc~?+x$;DkO15o&m94SVpW`%N&!5i* zdy5bcSiHr_@k>k#n!-Td55Jb6tI``$`fZk`9Xk|T^(;5b$e24@tx>gVl>w_wn&O}3 zGgk+K4?o<^$}zwU9aM)!C36J*CC1vjxLk#Y3oZ)%LoExk#;lm?H~6C)jmLSq&qnoey$6OTi6PIY)H~T(i&Wf^e!U z23WuTei_)-Q}Q+7NqUn$dX&EvWR&^z-=aD=FC`gwj5oATX4_!%*L(Aw&1(L41HA>O zL=;&~NHg!>p*h2QOSkk7t_3QNW@&_!l!k4&g+Q)nZTOk5cwvlY4>L=aJEgUlyFY#8 zPkxN?>{UGd0;Z4rcgX){yH9!PBAzL7~D)i(fgnTR06tVrvfJ44p_JFzzq-oQ8SA7Ea}I=ntY6=dt{rCh ze6stU-fCKB+}445S5lurUc`wI)G{Oe_n9tv*wkP`56-ih;zLDepJ4rPS)I`aZ{69gf^TRuIyTSS!SbFUWxy1f6umD zgdha+qj+zVx9iwZcx{mj?=4XxIO*qMf$#uD$!MNq@jiH?vQC$t6(Y2^%&xl6{{M4}p$73FbyVMzG^_&ypteB49E4e-Rm|0@>cDZOS zb~N8%%S`~SDxdG@bDMBHYJpn~{X_{Ziccq7Vucv-= zUp*xpkbMxy(b2KN+Noou9-RCs8zX6;OtuAeSk~#ucZ`JQG}DDNj1Zp`vyg!Ez0CvT z*8ngI@W1I3!fbs9wOy}SwC82Y30%Rj)d0;r+m(Yt{S{bgfbtEaBUm?ey$kB5om1f- zPfB=lxe)P)M_b-#VUK&Bw0>D16&aOY1Q2Wg34B6DxJ$da10b|eKCTHNmdfk4i4+aW zWCc1&5d^Sy+JgM`*2T@8@cFu}?vZ%5yP@w;kl5?w2}hq|goBwyA=0xjm(Zli5LLmm zZ-7E%$ZBkveJ*?tENb={1tY=~Z)r4Z0tttu3jc3z)Hg#uzWINxFnPwO_A z^0qs(lBpMlHBV4I;&B|SEeM#H9^Xf!?{6R}0JCeR-9wge&^-_XrkHZ@Lr)9S?9}oo zg_(tNsC+P7X~mA@*XW}0*DF0$6I$zzJFxYfCdrn{W7Oc|N{6JV2o|;{ag%xhr7r&qmP( zC?b((f>Aw~+L(<@s!U3WQfrB?2dR@C%p5U{Uj5y(`$uVwi?&1Fwy3;jW`ZU)3SKY% zNjp_`$OZ~&0Dwl^$7J(jd^5}9j4H#2G*Kg|O>pOda|U07dr?opWQJ{r&lClMN-$2q z;(SjWKmM-lg>BdANiiTz4qj6DpI%-{=N!-4#V|5*SmL>ytgLLov^H>uMT7zb<+3B! z&*bgj&EBfu#zpLLv$Ie_h(BEXQ+iSYh~X^wY^8luReOt(hu3Mv_G4`1XfD7_m< zkwdc`U_lgmP$pI@N`f@5H&Pd*b@Pm|Uq~p%@{LFM-S>=K&fGPuN8ejV^%9*lKc-UL zTDA3VSsY(uXR`i}On{=&1-`mQDdmn@a72Wrm>|Wf?{3_@V34img06U=V%x%4>%rxx z28~hTs0T-8SKp6pPlX#+O6_iD7&_{{_7=F#*qUpZR9(BLR(Yd1{s6t>bdb*ImGM~J zDHUByf=+5XMu}3f^*ZIp*8J$h5{Qub_&BrpqC=EeujGfMsndihAX63sc}sT;^H2=Q z{@O1zdS(g{YKffNg6Tz!-erorg$HfSG3Tz%;7*?07m{{gY2@6ku@ApzcCNy+Chr%{ zhVks}B<@qIcj{eNoOlkFjbjU^P*CG}vEJ*TK^%Hr=M*2VE)9B%Pkw_#KS zKPJ=pr4x--SBDA=I6eL>k5p%A@OKkQ;mAacdDTL|Q0U>GGdSn9aZm?t4f_7rv)X%p zeYIx#X`tb!X#Rl0-4Fgp|7PVT)V$PgdcU`$p_p$wRpQMNm!C^)e8~LuLG5+mV~MnC zdTr#^YM0Vh?{448lR5XCmx#9W(5%;pCjf(zPl0=EA7^`EA1Hn{1b@k$er-Z7sD4pDr)JYL?$;X$C9c1_fuX~wq2agLC_#BU2!QpANB6OF zJ1fs63ej^P{>QRPwd)us8%8hvEZy#Mx%m-v6dPE$gK&^Q0j~ypgcAUgt6FZ}fUQtN zEBQz9R(Qbqs<=}LSItbJGwfXdpFSUcWoph0BV|w_vp@qNzdW=t>2Anb*=h6v)s$9m zfd=w2Ie6h^5-?`HJ#BO_P(}IkO(Rf&;dp0)*EhdX5=PWTe!PN2FS=JkyHk9+Bg<&V zuBK<&X7-%p?`YE9EK0l8uQ=y$t0H6gQ$a>)ByjF0EVlCRX4QwXO-%dzaZPS*sJzLy zwH?A>g_Yj}(}r02%f)y$hZ3kmz*VwHxV8N`9B|#g@vqqltH0mRkmQp-RuXL-Y`~@f@ zWF48lt_cM`U>44&qq*7A0Wx-RUPJsvO4~_ZecX-x`{8C-JVzD8^fQ;047S&sF197k z(D#=m%aPO&uc!<<&FtXpK@%-atX4cS!$Gvb*?*03ApvO*N)pD$iA8hbKy5ft)>QAD zLpW1CN~z{(8#3L*eD<5z!yq+Gd}fHehaZPTB!Eay*eju5>uFNb{-^D50hn#a4LrmA zk6Wg#kr-(#8x5d4F~@2l!i?YF;Lklv%BE;fuVSeMhv97717k)(MdtQ6CdF5WHek}ZnKQ` zo~uN}`@XPqb5}BeA0d(~$8WhprE+E1&x#6?aczD;*|m?p4A4K}$phC4F*5jlf`U+$ z(=uqpS*AlC2nC|LKuP8PXfi5_A95wDtJ^X}9b})DzbIL<__^7o-<%wS-Je74v9e|# z2i%3hb_$T7aM0GUD2873^>>fp&38REidgTiZ2l^CHsY85BS3u%nn+zNd?J5e6zAT6$Bn{Wrb7Fw}JOMCKtkAA4wf2 zUzUc0I1hWP>LG~hSgBy*k5u-X{EX47t;(m#0kS}*93t~Zx~~HWaVhs9Fhu<%ZJB%d z4C7GEMF4AzE=*6Ng}b(5NybvvqeYzpw3aPigEQk-Bm}2iLST`0e@; z$CtD}_B=O?%Scs)qr#;l*YlTmw65V>-rT5gIOFVeFu6Z>Iu>BBXi|tmQ0ytfrweO0|_HZwK+E4f`<+ z#MaK5PL^ku%C%Z)d1Z!&O1OuiDX+#eOe=8vkt&zk@@u=#YOk0%xc1mdECw~KE|;k? zcHQ@yU6Vd)`&%Oa^AGrYL6ou(&+S*-jy^aO)P~G3KK<}Z!iQv)bcYnLyWjO(S9hMY zqO`4=(lQ6anGfX-zf^arFSm(ZzpNxq%8Fgz-dJX)FyEx5>5n$QPb3_(K|XlE{(8e% zOQn3dB}TpAwrn1*7*rYw)#q=mFGgSd($(<&fbjOD$jQ8{HAxDM(njUA1xffMB=h+jHi<0^L}`b-bI-t2UXvp*rPq8y@N)M!w3penv8(T{^qtj;+fv$nQ@?n#UV+kOY<2Jn31@{PFy~#% zu`&CNzOIA}vt+=*;)5@MO)wYIywbP)oVhn&y3_JlF9?0hp01t@(abdt^rzdWH$>)u0-fvAS)H>M$ z8rxfj%wPvkXXgYf=HtvLP#{3DWNjQ*^v*to+*zX3-QAX%Q|@8*eAaBIUm zqdf`TTXjmuJqLzQtVsW1S@Ja=Q{S2=-CJ3}d(PS`B6M8q3Niz+Ees(Z>34t|<9&;{ z7(khTzwM3yqx^EM)6>ftk8|o`R+s+x=*r3h&ftlwDHwAAob1Np(xLFe6Z?opo4boO zGlusTH`lt08nvGzi0>WlDj8Jmjt}QsHK80N_?yiIxAS}*wFKV3-EXX54^}%WX zmmW|kn7Sth(SR@eteeYT(3Z4L0M)_-gc`#(FWC|^XuChCT8Z=pmxPJnXWNyjZmK?v zZ(7-OovS_RZt|sqMW!S{;Z|0b@oO)$3p1z5X!QT1=}g0+`rj~qNRr5mB|{6Ql2Ku@ zrx2qgN;4*VwxaC2?20s5LQR<%k*s4&6S9*n+eku^L5#^dvc_2c-`|V>b@iebxf*BA zIp62GpZoqi1z+kUx`?kEA;^cet#DnvV21d?$)E1$2IdR@QYgshCVRO+R+V`~;~;&| z0Fs})1>AWa8c^q!~CRoBVi$HGphlbft!;X?Zpz#`Hr`;A6|)bS z#Kd^-c)^Rl!IB%{GpE9jG#EZ4fJb7iRZUM71xg5az+Yd?qqA0CY> z%A^qf=t2tcy^8tDFMpFlc^q>*NCD4|7Q|5UWu;zOzK@s{Gf<6Y7 zoLq7{oY{9O{bFe4&?-f??9s!v1x1sQu0At1#l{Wwm{RO$5D}~c3zrGy9?i-Z2~vM z{8#?>eD{Sd(!J*GEn&4OYC8DdLhyJKD+YGnvjY`dw$r z9=!$`zm)tLB?dN@@X~@mA`#-?Fv+5Tnn`YuVBYUs1iXusj;?3GozM`>JgS%!@Qi2w zSHu0i4X}pN<6L|4%8>RvjV9Mn5oRuX6+kVP(mwKzArQ`p1XTb~Gavhqee#h;u2tpM zzD9ED%<13G`)sX;Y1KpJ5^}1kfrs&{jZFdCz*OAX4LYM6HgEWFj+vq*@^uf^X0-lw zhBM@M*t@jt>Wb8{YwdCGr*j$3>IaW2-kA8;c+=;rn&@zy!TkCu(a3eGeC;x=y2AaN zH+N%WnMH2czu%K9!3j1Y(<4_3S_D%s^Bo*mzF(0>qvgg9z8i>SuP0xr_*vYY8oNze z%RevbUYxu@i=Q8&DH{!Lb}~!-1}=E#IEHV z9hMR#UBVmhk+glZd~LC2*y^H&hJ4eH2hP>4k6Ytf(P^Sa+Oe(uUg>S3 zZ!o6p2c42sssdN^t$ygPG#C|`VZXiI9a?974%+V+aWI18s6xZqlEj5jKkuNw$FD3m z$*qapUYTAc-OlBUgWDP~Tm^N`6Otg+`tm`%vDUOoDoundb|oLVKuiyeVGS8 zD#8#kK|P12gXM2%X{kHpG?@=?ysDPVp9e}iLb}&#)w$w@*Bn{E$Vx65pLL^8E;nDA z>xI%$<-ZA`+XZFQvJKNi3{m;?Rd#H3=bG(+%DgKSZtm4V$$Y*PH!|MXTjsJO9I`x7|CkgYA>&$ zw9*nXt4-RkKuWrkW|VU`4_gV16y0V2nSxjI&|kzR<@>l#dDahaExhPip9mAaUHnYl zzrj85eM)pqUX#E`Jv@a+-}8a7&V$X#`}Mgpz3iFZmL@B3Q7X!N|>&qf&!Q;pqxZT=KUeblj%0@t;i>{8}`7o3*-ZoX&Vr* zGsn#IX!0dtGZLy`?`$nCwKfX2AOBtGwrTf6U?Pl!;pLobwQ|hNU{_)_zidT_I->>OO`I_fdZpG{Akq81Z4lM?tP&$mf&`4``}cSZIcj%}%N zIgI3OJe~nw)fkr|tPB3;9&Ii~V?`aVs0&8wCxMg%x_DNo!QEkj;rWH>Wz+PqzjGS} z%O+e;7sVk-K{zyK34GubXGhE(=zt*fuXO!cs&p7@Xu6`f*$`ygpZ>8`4_|LgOQ44@ z{z{jCZnu_UwZDXJXz4UDa^^U>Cu{UkAPsB7aocrvgT z6(Ql?ZvPU;MgY{weuhK-mgR)>C->(POI~8f#FNAnfW~DzMUFM%iZCCP6J5@ED#axl z64$6Wh}GlTUvRHGd*Cw-?Nj7k1~RtRb8EGPEFy<69}s?7M^ugO`1cVB_v_4jOHtXc zEck89Ncjf9+tH$wT}a7}33&E8>lVhUtGe6&-`c74a8}=`8@I_TO<6fSc{x!hkpEr* zyWVT~P1F!y)llL79a?vjz-aK|-+c-0BWg?Zz^R^NTH%{p_`WD?j7*_vr$uK=OTU8j zO^$|D=V@KD5>t7b+PbQ$O~7Sv;LgdUa6=%QP7lT(*Ma|~N$H?OVC(EgjeUeD*rWP^ zvcXIWWsEA)Kl>nPLxQVNQ2fL(fN;Zh8A@Ks={ z+(S@LPL{tN%396^U*6W7{b_JvIOflW9Do5$4a1d$Il;ZY(^PG^vgWOQ zG{I>2J9a<(HP3#C>>#o+TfY+Ez(+52;EsU(9`CgqZe3mmY5+g!XyGe7I9?^TlS<^L zd@x<=vzCT{wW3Y1&Eck1Zqx{gDCU7lMAof6zVz2W6|Un9N_vVlL$|gV?Rs#uA{PkD z?b)NaS6dO3WH>zh5*Nl~4~PgT#5Rsr`fbshs)1@6DteVT{;0`I!E#mk}#<}@D;wl#Q}lZF8SKcGU5ly`8HXsOPLFl31~b(PPrBH z9gFcZsQhjZ0+1l`Z;R&2KWF$N1{j-*vSac&AVH1{%95pH4u!x&0QLuDiVqwQk_7?J zNaikQvte&d?&>Hh_m$r#eQ5x-Lk5;bH`{J#W9|Ht*xVUz+gBOmKn|E!yFMJ6z+)6= zEd(j3cp-4A={95=D=X`f^A3dgw^Xp)U{7k~&7yzh_eAdlu9})@eqb2Qix|w_Vx!ul62KURrWa zrqoqfaYgopEgkD5X=>D}9nCc=7L&TnBz@T@T64&)H&Ej7NS@Mc%7k9u<$&_xly`cA zg;v4LKbHf1O^n=*C^Kd@?o`*GzgRoc%J2@`{g+rPvDVbtJ>~rC#@(tpw)qN6>%oa` zXaA2?pMHg{4LOZ&($`-dTqt(hXWgke7uPDwsluNvY}qxan()k_FJk|Vce)oYSn>CL z)Tk%%)$dL<&fPmmNIYQ1EtA-nD-W`B8!k#^`NyORs}}o%+y2t|6FIB@#)2uyO>#8? zCx|bloLhdwzn;C4pLl>)ZMC}5k|XX*74!0)n{un*S+EZ-8zRRFua#OBT9Y4_`_cAY zWu4uwRz27oIPIulS$n=(f1)nSw`^!cU?=U}J6twWgu@xGDD=_o<#86>#t){;Y3lIH zQ9XFAu>Jx&(n)^jx6MXDXR#s`tM`3s*&O87@`*8vH^dN`d0l&}>c zU`LhEQ)Ye`nP-jGmfe=S)}F%&#cE44EYs_M+~^A`Tcn9)$P%&s+mcAbA6&^kJ1zC> z!%ZZN5y<88k;LExM1zTuQFnt0+-smkZ}9vT6vJApMzdPDx5ayd8otyP{-;2KyG=cJ ztd?W0ZDo3bnUG$;M!$jb2w+S9lU>^CM+qG(N(LnWH_M)n=hJN(o?%b5k()B&Yu;)D z+_SxrF5EyH2>;96?H)tGA_FQXw-o|e!vG@kC7W_-aU9IAm5t71Te($mf58|D<=#KH z=gt*d+;tv8GmskOrqc2iaI$(JUVVybx~*{Zj1zkEzgD%KOz*Oh!`17f;i^%dA)jua5$z-XY*mDl=GU59`a#Azwj~6SEB~hE z-vT&*CT1n*nwo!pwwhp3`#KqgZYg69eD_pRyS-5pME}tG*(W9xhh!Hw9g^Q!sVgk+ zA|M#xu)1}Zi9YsI*puM+7)t0PJZIa?KtJG(utoc5J8t2 ztpLDTz%Qj+ zwfF4V1Lm!J9PD*#;CxWn;&}Yn$mq_(>(?nDN07H3GW%yNEm&3S!2?!pzyb)I>HS*O zEy82qr2{|x&cgR-qwbC-aNjCWapPMM*KouLCy}Xy^DHN-99KFP+n;jac*Hbm)_=55 z8G|e?TiBFJ#uk{|gnXYp@oFh~*rhd9PW@dW34)$f~Lg47(hsvLOP^8=EFuY9CCDhbYK z%MA8vE2sMLb6iKk$AfCcb63(>p?}+%H`43W#ByD^xuuagygY^>-Cbbx?Cc1-PBd4W z@9cx^g{EMT(bPO|cJ>f8lCd>SHBHwFqbs44Khxw7QOV!@t4HVAR4$9kD~J_4ziWsu@FkB7p?B!?0c4hy{4>Cl<7EkL^5w?dU|8R zsif|~=F)HPQ?iuHV3tPVzO1i*&v_6di+pME6G0F6Wpzr_2JC`brm4(_oKrJ0&r^CI zsVJ0`vX{jVgBNeh*Z-?XMeOelenM~?K6dO_5bJjOn`cdT9GA^wG1=cGw#Qi>Dfgf# z{bnFIMMDutPFti-vzw3sDl=y(nld0u_|i3@u&}m0yWD*W6zpp1C3t>5`1n~6R}fMD zoZdE(j~dpSt$=%*I#eg^yD1u~Mbr2K4hf5s?qqN+0qquN<6 zO$xWItfHl-km?LFuIP8|0lG%pGamTSrgs`wBraC1uO^JL7so?y_NMsAQOm6*3MGSv zR;x#fV~!NP;`OW?svb+PKW{C6Udj6GlwQ`YvzbOh0oB`%qith1dgQ}r(?iy^Hdr7w zvMIkC%c@`hvuL{)t2Z;vD0Vw6;?>op_VfLywKdl@1A`-pmN^{%z(cI_H4#f`ag?Olkst)Ctu#>v(^?$C~!@9&(Eb_SXK%ieo z=fSmMCuVA2_ovwkx28JFAg%T0^x6j^mJ+&T)%ilVpMMUy-LpUPBrM?X<_mdE`I7;? z$`3EW5|6OU-43&IOxCNnlTF<&s6|ZZ63!xY@Ohl5c{!DyfbHN|=_7>=fqARHx0a9$ zY)AYbq=C|Yw|xf2vJnqutz2n6v^VP$rz+>f_IeE_=;ARQ_|`Mc&j_^w(Q&f2jDP>e zCIpV@`Bx0Lbf>D8#-Dj!UVF}QO7v7o?)~rwH6b3Mu&D#akBRHs59kR_!>3R6MNYg6 zHS-OS$VdPopq(kL&8dP@J#-BVa4gKeh7*0El|Pp@?B7?bdW@bw|G9j~$}QvjaNCn# z&3#Vt*DJO^xa};~?ztys@^C*g^6n2;39aB&U#&Ct0UjzE?qU}E_PM|wTa8W51=x_^ zdHgDDYMD`pnx7r)n*8##{{=9=e94@DmK@vJ-7-5beZLm56sAw#`y0WGjqLvwUp*g| z-W)gKs2_ThNjh=mTpR6i&g-6`jljdtZl&q|^eCoVp4F-T(#ol=&nc<*Vc>0+MnOw_ z@nOnAydZk;{OvcP?Dh$*U9FwZg>K$({|l+z4Ys2K`cZ>p{Gh@HuWX$YpIxZt>~Xe$ zz(D~J9|w&ds_g#fLKl~pUPr`MBA=}5xC&1@SC^EXchtUyePeU5ekln`1~Ue=i}j0iiNZsTK)rz^UK_*{BHcupm`@V&9 z?+G)VcV|h7S5xP^$c&-%;MxV34UhVH_G;L5Li!B@F*wsL)cb+wCvyHwxBu>`bj^{~ zi5c6Cp6wNzf9(?6ml=lbPlrItN-K_Os_G#(kpJZ@m)gbic{RbIfj)t?fg4jHwL@=g zimxRNGLxY(4$g>uJkV}y{aR=J(&^oDS;?Bmi`n%X>04|m>6>4&5udTV=vW<8;H|+{ zF>6HRJe&fD)1^c$ijf1ANB{e;JA)HPk%>L#NzffGT$WVZ8-}ecna=)^X036SN zC!8NWs(v2R++DY4ufrDwb7^gH9RO(vV7telqP`fS8Ke((vg)y33G~3pw2SH%c)yE} zzdneqfK;m8NBQZmBO@8Y-*VHnf;W~{dv^Z~f}rMr1%|9+i)5u;I_=w^o-2MXR@s0gMpl4hRH!6aq-jasD|A2c2!m4?(CVd_8Y%twPi0xC}C%qMv_y z_YZygUGOQu`UT_*=UL|%RC5$h)E}~ux?<`2fEZ2B-JcD^qCQ6#DG!jyu|DO0<#Mtp zt>?>W7RQm<#CiW@pYrJa=;q0^_DV^6xo@izYL8LPCcMb=P8`PgOa0=PjaAMdGwu~i zHIu22ric!5mHM=kOxHN`uHhy|raJ{G?(iII;>XKzN$(?TA25+kSwSC{>WDh}0|*y> zMOoX9li7ScYiEz^8MG7305=lG5fN{vLNE?2$b@)7X8!RCun_{M^6i?+xhEMF+CEh; zIaUrS9?y)4G2r2V@wBTu@oUutZ#7mY9Q&n_rp#|yd^+6AD>Sfnjcz1$3vWHB8U1NA zz*?)B7;ncS`z?&wZp>|5W6st8Gu`#3os1@7K}jWg74;Zl-x0?{=!%2%@9^!(AnF)) zUFImX!i zkNc>*yi#DwQS6~&Q}bYXj?q#qp%+6?CQ8J4-(^1d_MZ+hgzFEz|cUSLS@gp_cR0VB(lR0T)iWZOa#RMwJ&xk zGB~&GN$vc75egfSveZmZRJ0Z1S;^O*Eu! zJ!m~@Q>=<3SZnQ!=gRN&?e3U@5@fX`Wd1a(hpBj(AZ0ZI8bA)1HXrT+azSNyd3CC> zalDBwFlQh5>sB$w>BrlHQrwTIv3@APoUXpp)uIp*=I`IP4*H`{_pGheXA3rJE@iDc z_Sw+Sq!@@zQL~FI94<<6j>%-dr~5iAL|?g5@S^3HU?t`D8G)$9plbE|!;FxF$c#^i z^i-ss_E^X}tC>fvOG1VjoT(!#EwLSn`ae7dMF&A?rTckk=KX1tAxA`R=)rwPp~iz@ zDma|P*~9B&!Yb7@nm~kGj-{Hm(Gi?*j=Lt50_Rdv_tbKzXy~(rdmNo7O_ZTXD2or( zs8+Nt)ONpeam+;$r2bL4a?-iyd|de+q9YDrqsg{>4cwo(PTn`Xfg|zVwz01N;qS&c z@|odYBPL|dv^uNpKsZJ%__=R=;b`$I{?~mQmh_>o{7m-3qNkWnNRYp@%0;ycAs^K^ zT{yVDXjA|Fjs86~yF8tD z-^Ts;hwzZ~oe;n8ZAyMeUwwO^8i)HL$Pufsa20+e=_G}G zL)MLvJpcJ;48JK&!zI>!zVNxqOO3)1!*fpsh2COGv=aJO{O)*o8g|L=ZqYouR9Fg$ z;WXxgfCLGLIG~3xc*N^B7Xnva3XFDwbXFURh%Hp6sY7Y4w#IKR)R;n``{aNeNCbW# z#!=`xnp0cu1E~jNKoc_oL~##1y}xWUVB3B4CDx?b@^WHJ$TR(Y`(n{q^L4XTc4TRn zIeTysC&FtK>vx}w?gF6ZiiXx&x5w@mRl)b@shQ2G8OOfwF9Ti?KpWd? z_uzrIC&(Oa&bU^R;8a<0haU=@M6yF%#`){xjEz-=7DS&gj%JRrH>4y2G&`7`nkX}o znFP;|7RO3nQN9WENrdiFwKm+>Z43VI1^B({jAl=J?0(hSO%Bh@x4M3n?=Dw|gB~*d-u^7ON}z<9DJL6KU!SJ zX*=rt0`)?mW1UqA(=C=z(jym#M(1u6@`H!mHI0E-M%aVNgXc?cl{k!*H!WL@`Qrx& z6%8^?tKF@-W&(!|rQ)R&;K=W>j5Lh^()8rL78-*j+x9Pe)lpPOsq4v;eU)Fd*iAS5 zQ@iCuW>c5TrJK#?YkdaZ2b9Z15pzg2KG4rwB0_sWZrnuV=OQo&oVQ27jU zTLG}{+h@B~vQ02f)I*naJJ?~rRzn$NI~7;qcEKsEJ&hpjAS*i|EI)YI$r||4kigSU zAtF(iS!skRz1Clh_T4S3SE*7dl~rhe*n+6ITM#FML|2MOH6wbOk44xxwuR#f{sMNtO8p zKP{09ZKbnMU@y?E<`ac@ym4Bf#`Qj7#lxMnJvc*iP^Ekl&%HmO(%E9g!KdARGieiT zWi`6eM2aP1e~>zY9nAE+X_OdBR}`je&O^N|djBO1wnJMOx4?b~8_v*XGV6-R6O4mdWWZ^1p6Nhb{%wi0 z=htwW>9A~)%2{<>pB9w|fTN}9&gD?8S7Z=41oXlT-mWNpDBd{ z%cEEGAzQ{AA_pdjL_eaudhR2~tNrf~bWVs<@{!CPILoy|460ScaDh`+7|yQ zl$8?%lghXu{7L48$0U1c9i-AgGXi&rMWz-K1}q>hF4WyWYy=fO(8qw3_KS?4U!C zY9?U`S21yDYI%D$(JC>2^4zm`)N;xNLBDO!GJ43`N6x7K?=qm@lu_ZlFs}OACW1YB$2M6 z1lw+6V|c4a!YW2jOTxvZf#?%GWPvk%xm@i1YQIPXVd%Z^Q}jzLCcAjH3GmRmW^(Ku zU5rrbhEmMudQZHLY-(mJ8QI-3Rd>P^*1D0?`sH$cgC5u-PCEg%g!gsS8*3|f|80qo zwclF1sk@yeTV>(P6A7C4WNiWm{YJXW3uZeIG`$?uh5Jqlk7v6#KNizNSMHs|&z~kF zDc$0JtxpPQ@*Rn9dvYa#MONqw8nwPLo+)8dUuP&~rl0C=+~2CvI~QBy!@MWDnLJyZ zkS+PM%Hr&+t~KXs>wr++Qm>knvVwAT&GQ#7s2BgtVFe$YZXf?qe5r4Ry_(kmMSGC*S1wo~peLBKsG&}Sj7f9@f_9228#xCyU zDVmU)K$n6MOqX_Y(pB$>6oUI)288w5#d`uy1B!omj3v(a zv!_>62YcRV?Trc+VEx^K6&dvf)raoXhHp-%MZW8Al$x|Z`&f-}B9F{v-}<6urg3_Y zSHFV4`l)N$QI8AnTd1zuXt=*UXAC1iR~k5Vs!dJPZ{ObjQd_NH^SS2H1r8pCM+J6$ z+w@cNtzIdB#dLAURx9h{MGur|v&;r{xnNoDLS+DR;V%|o-c@zQ?a6B{XU6G&M*tco zV6RR9u0Tecr_a55V<&Za+0Fn}eybLZ({Z^sUOB0>Tz5a^nCD2#HVnam$&mqC`@;^l zj!bkS4^%r|{`bunA~3zLhWoy_M$4W(1?;#OPA)EOsG-6{#N#2|9;vO+#nKF1T&TW5 z29(fiLjkpAD%rw1zO=5I+Hj_tBZ`-j0a2Vuz@kvV%Py`MP%)Y(pU#e;KPM|n2~vH^ zC(jwayGx%tkI5^%B-0v%bWVwmySdk;TMfL*312LR1sn#~Uj~46B((Pdt>T+=v7-M8 z80<8O-EmMe46frSplu}u)+ifMbB5;DphO+A>Onl+>NeglI|9oEOJsraj;B=K%c1sz%2mk&+@U#1H7XLNA)HwT)@r(sdKn;q7Hp=9P7c?X8|rQ8-2z z#v#nX0gYeVT?K{){7c1Fn7!=DsDGQkKM1RnD(FMz8kSut_f!0vgzYuetuB5F=7k1l zQ^UxzELm14gTJq(Kc0G78{i5bt1?Ba!!F!D>u7W_+B2-|vhmHkQ_o}VE@NCs1k#3M zwF5ZcYKXpNbSoOUgxHH-`; zzP_Z);LCu_FaRTsvx?;*h&-nl!8zuv9=!W^dwsMroJA}B zE21cs6ySfGy_MZvyr)@jSWTK0nsn~5QZ|w|uECHtWQX8yRJ%Uwruw*{^&Iulx!$h= zQqm5eidI}p?$~kHoHwPx_DX4$VndA+@!{x1r9522I;}}D! zb1$fl11fmDXy5^OAsP~Q=*X6|H`s5I2CS=CAnCSox;$WE8JO%1mIy5cEk}ZF3xAgi59d6;7Izaf);R# z1;c=}8^(xnOsj_7FK}$MKKOU7{K+1t`3=VEtg7fh3aWX?wfDOws0*k^b;&xyy&Hw* z{}ID_>L1iuoDE;d4M#FLd0Rik_*x4@0G`)c7heWAG(HYA6E8jFxuh(*A1#HHB*+Mz zX95SOLkEq14r>s%9|pTBl9>29i;xF?vp~eD+LO+FPhj4?9o1E9l>m+ephKJ#PFuLS zhkrWQ`a*RoDQ90YaWJH0f^|AbK_Mv)P8r|`6oCNMfb}M1Wqd+_9{TaT8B7Wg3;Dbd zxeWUO73IS(e85s2K*!rH3ttQmU0l%6)yj*Jx_#u#&kZt2>glmWBCKB_*W^bP zqvlXjodjgUf$iW;#9rodIVyyL(CFvX!U)X0I5-~kB_bn!p>gPDqW9$pRFwJfJ@D__ zV7hVpIyVa44lRqJBRM5ijP$@KjUhfifc$Rc7I(8BXf|;U#tr?>fuAg(F}25DF`$-O z?(Yw(7~aDPX08~i+$>qpy2Y&@gnUrZrAu!Jg{7Pwpf)7~B#cCAQ2~HE1SU+l$aftO!iVCW9>G3$QVYWW z-KbkXFuL7d627X7G^07Cc9$R4!B(Y*$sK9vgV!_8XJAYe}K)ehy|bt-fJ_JCVuq z3v}~-s+dK^EJ)Nbd$j5`ZRCd|2Y@;#mhvb<=kXuXyC1<%0uE6Fp*c)c-iOv(BI4m; zwHvmMZ^$%lUK!}}B6P==(4!f?M-~*-Pd4~+;ND#C#!kx!maL5i`!s%89y0jU@%+pI z;%7aey-3toUeHwAnwns*77j5!jQ9fvfZB}bkji}Z`myhRhfk`~g@(~l7yMLb3v!3M z<(gU?CnN{z%$1iP2e9kpQ8fXq1$*@9-Tmsp-23f#?#~5PR+>LmdgY!t;8)%GJXhhx z2^^nYkiXZ)=r&!z+1OF{zs&N30}w}|K8HyZUB_4wa6xGo0)1KkR3W#5f-G5S`j{F1M*It0ul$RWT>quWrE*c{L)I*FMS5324CYyB(o*#4p#HkWEM zveszfaz+s@b#MZNB?lmF%Z+XKf|K=ipMZXdyeR^A;1ikxeRPuoXdXgB?iGsMbcmzm z0Q5S+I3|lY+ky509*a%87?imSKQ)g+OfI4Atc|j}HBPnNpa(8?*8jr^EPxo=95~1h zdz^Nn$$8k{L~?1L=+HYuMc*lUT^3L9-GaGZalyNYBK*HEI(j{Q>4Cm+>CH*Z#2jh=BVQf^f!su)JRpkC&{($HBs#f9i5;b_#6vrO|7j^N_l|GBW1t*;dw z3gl&c8KH*V2pFYLGODb)L|~VE42&2*Nb|+%I(KsV8>g&5}M02MmWYYg}sNk$POhggk-;lTQjVb9q`h%MQdz zbXo5GM4#&^9!MS>M2R}N5h~Y;-BM#`yNCJ#X2+&ptyk(&%vf2WJ?BqMgpay`#(C^ zy0ttq?t8f(!&)v=U(X~vk5lO21koo3-9iLocS_Y7#>{)aR1PuLx$k@DhO3`~YIH8@ z84lKqk~WrnR3~u_MHnm8#UO=~h*Z1cSxRvYP^L)j3QtIc{U+>UiCl;r27#+ONF*Ou%OG6?~upfj~GAJR8ivUd$ z!^8Oi@H`Q@b|jF?$&@kcq~@G!o%0_lP!;`8uuJxk!yP)oX$<5FV;QV_z6>4t-4fXx zR{=pu04Sg^s&x_kpTPmoOqT;KH)37`TGXAm{Zb-uX%i3&QIyi=Ng}~+{wH$!&@ydF zj&5#oPtk2K2)-Zq6e)GHx^b>?goqinmZ~))>l?VPY#7dxjp!=^Xir8M`DZyd{sd<~ z*5G=(1^ZunlSbPUdL=4nyDofV37jptr`iDgN-AgGUyBb!w*PDCWm)8++CD561u~yq zb49Cka~IfGbH|+LR9W99V_rU-Etj@yinE_5OqZO4$}us4_X-9!on)vErlMNC5GE&@ z?-aTWm){p>)hb_j{GL^XZ5GFw(!?SS31Anl4`h*4t9M@9NZj)Mt}=LgIEc%*W+JWChvIPiwnYq$-!`sD);v&6oCxEcmAdV( zn_f!k8foe3o*FB#BRD({t7a&D%LkvbLMfU?B_*Ia}>;m7v{ePsoE%?E<#+?O+wjqe55>>D%|%oVZwbzuGpr> z>V6@Uh?9W+G`yGArW|GwoE5Ens=?D57H1{72^`V$o6Zha zc*SJSmp%6lgkHR^~;= ziRtc6^zToxV&Ws>Gs`{{B(fvdHu5_hnRMtm{&#ChZ zyE{8f{S_gJn%&8Tzh$2t$p(b#ZJupEy}y7k(pG@GbRo}~)Z<5%Th}mhpj$;F(hn}> z40o&7Q_o+pK5BF4-%6~LNMl0S;<1WuV$9tY0wvM@k;2*NV)KD9M8jP4zaYfPT=S<- zQta#5rn>{XUg~%6L=u1t9n!``c;xd$AOVt8bn~k;NxrF%Q8;zv9y#{6ac}`-7{YT6waNe^ZfH z8AZIJ?n+wtYShpVE;sc{6{aPZ(E>>YIvs*KRVrU#$Mhh4C*y8ZV-U{uNbw*ssu?K&F1UAvDS?9@H-qA9R1 zk7DkQBWut-~kv3ryw^`~!9=!jklu+X2%M{aN3P(DQpGu5Pt&KzuSnFbFVfS>i(U^| z?)=`EEtaTJL{?o;v(3CO?!oVX$km3fJlQv2_+LVFk}5D7zC_hpJ*z{?L4nDReMdF{ z-3l%PP2I(egIuQn;DEM+AzB(}1PV!%>r!;EW0F$_mgF;lDDZe1gA`OmX?LjS3OmH0 z^1+}1D;xn!^T~7u@;9LYLo>(gWnm2rHXNzjllyMe?{35{&l<^{%#FkFWKh6d9g>u- zFp!J*VraOvNbgnE+8NtEm2lAXnxjEJ6ahkim`fe$&r#AU7gm~fcfxlD1~ngi3)n^o zL1$jYT4Emfm8}g3qq4s!T=%oytt<(@SL8P!*r#TQ{9WskQbjo;1FF62?ZG7!90BFz zaaKms9{5i~=PRlgwtjE+<(2@~MjUz%Cntmq0kw{Z2ZwAP;3y+0oS!ZA^C+*Tfv;QO z&4vH!530Ft^GTmCcr52WFmlY0bG&bEk&XH>M%Eny=Rb5 z*;0B8%jA^IK=TozD=AjA7K>OOjGD`7moBB2Fg~=jgBjjIcH*mO5~_K-&Y_8FZfS~d z53HUYm^C7_pAQc5z7ubxE~Wx5j-RzDJDM(&@)`{B>^U!6j|iNkrS#vvfLW3P?jV6RD^4G80&S z1{8!eoC+v{NmeJCo4W|wc|bt18g<=We9@x`W;Z3_^QX~z3Hg>itqYdRmcj%lsXK3nG^=A$B^kiGt z^J{P!*$i#7H%D%jDMAlM;vEcM!GDa*wWZF^9$BLfeJ<~=n|)KOHo>`E<$gv3SWMQ8 zUP|7bJ}7!>Imq08L06~QoRRGIGItzY=k2+n<>lGg!Rj9(XVi5M?z>#SOi%OBRO`0# z(0z(JIv{*4tSTYhV^0J=TXQP$ZpXI)+6TQU9W${y#q=Io|2I>eLsH+89`Y=D$FN7% zo=DJv7E+*TbFg&P*S<_y$vLoebZ-6VU2rt5*p|u|u+7Sw{?$5xr6g~5H`)^FxBCS? zx!K&VIUI41va^2Owv;sCXk1QuQK)VfW{ z;2`tH4X0&+^qPd$Xe+ZuOPtsq!uINv8lUG69h`1QVuwmjq4&K!tJ_;Icb7b@)u8a|dY%<{Bd84|l23Orjg~kH_c^PP?{{elV&&fNnyNjbndVJK1 z^88T4o5Db|5RUfpZk6nvU&_)yHjwksvQ}Yq$Sl`^sSN2hh^Rq7Kupek8z7DKsJ-cbP`yqZ7~%4cxAl>Gz_d zw-wAC5_yuU>`b(|jQjh&HC<+`FnVMvm=f_AV;udI`6h_oczkqzF*(4WIxJ9;lMhNF z=y{n+&PP{D--O6vjb{^%gQIg*TAM4=THB4wxg{mV71nUD@cw=4dpqNJRAc&U9X|8I zGG2q`lX}osg^yHo{=j#~;68lR^2=YF0)vA-si|8Xk?4AAt_N6?51dr1<)ZWr_bunF zl}qFz|B%7TH?|iA>?%xZN1UdBlhH`l0E1@~jhE+>(R2;WF24u7euXzxqGIR+ zM$yK&5}taPJ7DFcF6)ph`acxQI(=C*QEC>}jgy)p=aLfNJEsg4t`3O1q*3X?Tz}TB zI|9i%gFsZxw$h24?Oy0^SsiK#iV=ewpfVz&Dom7tBQ6OBH7TL;)^F?KJAm5~0F|qK zydU_!H*O9ifkF}|M-#U{uc_%huogP#x2+J3!sz;jJTUIpWGr0?Uz!%!{W@5`?VyDr zM2o>&VY-IZp{MlH%IKCzF8s|)C-8d4NUq1&X0r)!EE4W@+)c?*09~t!G^49|xg`#U z?-$<_p|6k06nFT=szTtv&6Sl2wgt5!j6o!j4EzY_%XmGoN66QQ8oD+!Hyx`gI+#lG z2Fthi?}w526@h&b#YAFZi3HNLr#ic}O(NtUU86Jb+R83`?mliW9#Mo^L?s2IROu%*>xM&UlV3^;Kz}`^n;^i^V0Xp>#echklMU9fr7wf zh0nITgY)Ss#pk zk=6dO-c*-P8B49A6eQxnoTyi=wd75D_$DxscKX4kkN^XY+oOQT;k7001B?FKY%YfQ zg+w~ODeJfN_!Z2WZxdjR=0CcEfuq!2P!V~K5k&BE^C=eQfE4v0MIV3>XnN)&SJ4HM z9zYIMe_C|3^-VY~_>)>o_?r=Ll&^B4NuRata~G<$O$H&J;Nfr3`Z@E##b>a+-XE zkda~KH0RTd-}C*uuJ4~+S6A1zUWdo?@p#;CHz$g>?D@Nhc$^6Qgk)yyCCCqzObgy` zGW~^*j2*t^^ex*QF23U2riW~2XyOI~f$!E0c!uA&D_lE{cdvfhZ?)%POQ@3}uPUkMUj+}a#SLPJ&NNbGQ zJ<$Q{_?$a!zUEX9_AW(x$6vj>!Cs#i-4}MF@UyR}Sye0#b!GYAHzi(!e?BTnkg9Eg zfp5Dxl7}<ab2PptNJ|T z&I5cran5=us*c-wq&jbUbEt=Xe$?mgBKJqWFvRNDJJL{Q*)G$t~sQ z?hXCuv+W+-s?%K7K62^nPx`}$=ls?Q$4Uk8^3^-XmpVx-p`1}KGZk8UdF z;&U~__GMX&)E-p6vpA{IZ^?HaEcB%RZfF>zH)nfYJ11EF<8J+)+47`?*qLL|3+~~S zO|Gi$aiPd(wi2B$*T2y7ZOXFV_y$-?N;HUK4d!AoKF0C(Ew#@r6fQlaGoCBs#m)#+ zv@5M!`2Pq>HV@pA(H{-p9~Dv<(J((#>6vP+zZ!(y1cDU$nGa2eEj2la z_bBgFIM^XN7mU1q4Bww>Ckb6nTcLi9%JC(v3!V7@{ z_QEL^uD3JNQc+wu(8^~H1LMKyXbDS+tANLDsFq%r`4x_*a5R& zW=-Fpf>eCi*1wG2HnOCxlnKg!_bYKKD;B2P_MM&9;9p>=FIfOIv1>{3xKmI`$%$_x z5{39XNArwl!}mH5X*SHo^MF)b^4uU{uc6go!XdyVOL~r=b zt~L3e&{2A?c=t9YHW%^Pmn&({<@aJx=ZCE8*6a}BPP+jmO05(iGL&AOkebdcN`u(e zk2@Q~EXdA)47^ZR$4ynu;)caQK}^D+O|kI3E07#m$9QK~*IRd6=xWsOh6tJ}R%u>P z`kNh;JsqSHvbNEle>n51KhOF}ObMe3M0PfT~V3#`iLSEhy-wI_ZeVVTGUhw5%HO> zvOe)yp({8r3`2l(+M}w>{(4Y%kP*M+XBRe=XAOE=YQdi=Ia#>5GK7%!<^K#5(Ev&b z#cb^MtlNa_&1Tr-15r5yq=Z*a6Ge({qf%0EV69k3zz6YoZ|+?^5c}->X&j`s7GgE$ z)?Vd@e;Vg=>M*!?u@fWUH@@UVIynR<7Q}GI6Dmx}hkHfM0km?J$zYnHf-mJP zxXD$U21JX~ZjWpe%-?^+svU#KzXeE6u(tc*!-!FSW60j(Py7+6NhS5W&X+EABvd_a|WCk ze+FXi9rfLA8D?myf}R~TxjjB{1|qK2ust(y4W)AdC7}&wS4WEHK{;e6+S#Q}YdAT8 zxC!?$kYr6^8>9GHsn( z8tuh3z0hZ|`Y;K_=Wu;nVnyE7uZ3+~o@A1L@ZI8!=O3)5XMM@((!kVcLl`cGv|z(0 zI(BzBcWZzd>|Xz-&QMNn#8mB?+Ot*%^S-xR^5?(&Zi_EXZaQ!!P5i!g4KIGi>I0Cl zxz2kG`^E=i%@rgUi_oZ?F*k&+jC13chQPhW-IhP|URA<-cK)O-cvUy`LT}`ez6B(~ zrPsFhL0CiIJMOcx^Y=LC=QjVXx~eCt*o1h0cu5Ixmffn=wf9S&>)Zbe89SA*yKW}e zuOg)T^sMCP9=~Cn3!YG#Q$+}<`+LTB*{+pgQf-Rz%q5W9OAOnD|I$n+aKVV62B36R&3X)r}|*vCePpK6?i% zJQ>OR?3-D(GrQWLewC~5f9kA9V!rYa#@B_kf)A!Y3FBhVi4)%qI+SP2*=XKj0CSpV zkPp4-fwaFxk&EhjTl$FgVSCRyr=h@oY_Y}+E5c2y(cJT(G<>7^@Sl*4q=W>(=KPTf zNQA~7=SJ2*|OD!2^8p8V(bmHR!^s}t52Ksw{Y{H*5<{T`42(L+QhvDTB zNGA8Qpl=yMU@|$bTt!@BAkzz6f%TP)WI?xxi;KrUM!ew4#iEK`rA*#KPat8S)xr<^ z&+V!taC3(izAtpRlh2GNk<<_WG;iljGRW%D=ofDY3!BySn2UULjW5_wIiLI~NOwP` z-(^wq@v<$%T^ce_bq8;{F*RSN7_*|Ch&n0#@)$%uv-R02Q5=D?#zrA{#xdi zvHoIPvK@WyECd!Wq7Y0+JI2A9?I5%aGelu~*$qFcA`*mibswo1jEpzp?jj#jo&X8M z?toB#zvmvB4bbm#mkMxT4hC?-Y&a0Nj3BGQ90{UlA+|}R3dh)B*S@m%|G*=BYGdVj z&6$uLGPS;l6J!)nTde_&l)231NszhnYaDM+!+b8a@;X>pzkDm9*R&h=Svy4O2QP7#!{|C`xKOq@!5y6vE!o0d`UWLs9Zw5}n2Sk011Wu-Tt^*ROdv z@2GXRKwqyW<;PExyWU_`5V9!BDxtG-9i26`+8R6=wD$K8bMX1BeI-5ydN3WMHSxqB zaluJbQ*Di6MEx?pq>DijGC@7$itJH4+_~8N1?=Ji2e)Bwgt@+?wo)SUHiE3q{s>P0 z6->+e*&96BXUX;m?xYh%B>v=K$wCO(eKXO={|}4}PPCL0N=l(X#cU#5lX3-y z#y12q_1;TF;@~idh_-&^BwsBK&>WK;_V?O%osIIFzkJC9vC{~Ul~@vlz%#Rmk`Y-f z5O~?#QoU#6>dY$h`K-=++$9Mm-$F3zw>HzuG`Wk6|Ep*izTvEOu52KQXWH+7>kp(_XDg5i5XXt>D1x(T&{>TaJ zk6i66Ov|8|iHGiOkUl&Fq*te%!?Td*hkQhSg(DCJZ8kWEJmlO3`tQ-MmKb{DCixYJ zd(FN?WKi84^~I$jrv_;Mm@{M%YFmbQPcibbJsF4ccOgHcEF${T9yf!I5cI1FGWCP&vq)fU6|UM7A9uHXtdc z_Z0vzJ14A_9|96X0R3NVZ3E!SO=&z49AA@KBsx%0z>%$kV}==_$iXOl74YUUGNGMR^B2z994lEQRxf6vFZOgU1}G zOq04V4F{`6;od$^S58kJ<_TK#ioj~?Mn6$UpEwZ)`7e)ru5e_%;K5pG7tFsuI?!c) zj<`ET&&wmgnN1nzsEQh)o4>UO)GJQY#3EVckBls`efJ6T`F!<>6r1ALP%U0v-T_xF zfxy*GQhhu~+8Dnq<{vnBUWixrQi{GsKyjps>5Uu}OtALf0)tUfSu8+suI2P z+vubd?71P?_`&=B47rq+g@#7CQ%Z z{h?Nhj35$YCmyWgEt5l(`S@8r@(RzFuF08O-8uKgsCjD|Fyk8aZO!V zAa_)CqqKc(JAB1|jOw7xM}%-i%L|Np9`2F){iqe{8WhLzr5Xz6VyCn9h@aA=jW0yG z!|LnjOYq{ixc%vMIk}qpVCReJ>*r}A(h_1Y85*x557Cx8+pb$qD|GjrS%wf(6$d>T zQ~>=_aeHlBTzuHqI>FM(P-<%ao>-Lt8iP1NUD++o825%8mwjqD_>u~D9HeiVKFOJ* zl0+;XC1>8x|s+W((zK?+5dyLRn(DVl#j67~bi!jYe^VAL)Cd>=wT18Om6? znB0NDNN%)(B|Wp!_SF`jfoL;YM(Cv07wlN4hNELATpvZQ6e+eK+dH+fMYO7dt{wE1 z|C1Gwlad8l$XEV(r|#%e>f7y8@5CZw=UaSOAjpigE35{CY+R@|6j=?j#JIFIgr!=TO`& zr_H<6RJW%Ntd)d2x_ZG)Yrqu+;>S`_U?Vf?X?!d|0&~gG0Eubq-QjHhe#^gqqs@o( z{al;F@k!9XRTvZo>*B!y;7r0KA!1q4l#`|iOMT;$3YQ9tpA`!XnV?Xy(3Ufeht}Fr z;Ya?QJ{%9>qZA_x3rjve3M}d z2QDK@7_OL}T0o3}89xskNuq*{I_noXn->CVGW+HU;6r?Ac-ZHx`DMaGh>M<^yHh7q zP(N|zs40N;Z+Rh07XW4p_iNa&cb2^R$FJseQ3-fmNTHt0%P%+)fAEEB@zkb4bp#r+ zHXTrH-De?-otFv#i9iE5Ez-U9eZ43#=qoHd)Tg!oM(Ph{+c(YR5W;l_+C&780+G=Ru!g3?y?vp2NCw@i;G+1)b_L}5$D{AWP@N@2@%$mjh>ipvw@i~3>(JU!hPKLZV zM0!u@Lgoor^gT(Ef5QZyoNPsm9sgO#X@aonnt}CrF)<6%5)aN|2}fh+r4%trZE11B z_NHb8zpzGGCrLKcxeHEaW^XG>>$nX7#^G;f=n6&6DG4D2Q}|wJfXvA*{%lyzfhdIT zcXfHs=H5y%;YR|?IEKq$DhnkUFC4)lAt?+sChNY>6p6^{_81A@n;ijFetc0sIR?QJ zfd%TIk2s!C8+~KUk+bK({yMl()H*#i8yH(uPXD{fb0F2XFl&GCugGR`iy0;ibMXy` zfS9bQw&Ss|E(^i+QCH;U!u`#D%`oa8rp>{W^*L@ypj5runPj1VLg^f51j_3e>~k7o z77o&Ny;Ag|Ok#How70Axay<{%-~bZ?esVf4MaK(+kxb1@GzC%H)DmcFF%pJ^Me-vf z-~|N+GYxmtmbOFn+tr;RRMp0YF9&O*r5QphRK=`Qpo=J+30gZ5B_#;BH+Q~jQH``Sz+?-P~P zZrco|-?+cwX2axWU#9<==GB#DA4)6{ zcbr*FFhGxB9*pRAdrT&qO6#KHw!<`meZ;$MVbdw$cC#cL7@2$%ZlhRwd2sRseg_Ve z&KJyx0Kh5877$w)!e=9p^@QU%HV_NCa6;h12_?3TB+xU!6+J-S_qF~6m>;jLcoMR( zvKRp=de%`WrfTM;z8@J}>ItTbfr&Wu(rY3sT!AX{&E(2SjHDt)A_9FbRxkAdM!-b2 zo|%V(B4!sGIZf%I0<4)bLRidZQcfLf#MK?baXq}xZ8bhq9+ciATuB;OoQ-i2KC3W- zksq7@>juf2mo}Ix(En}xeUlKFZDRb};7Yb)6R~vc zwq&faiPlXewr`iRuno-`s%lqRZ>F&2y)oCRK?XIQ{@*gkbY{Hh8EMib_4~)iHS6H? ziE98jM+3wF=YF||)_qxg<3CiDZ{6^cjOy!C-fn&Myl`hX;wPKtq=#1Mo^Eg56A|TK z%N?1f`3_gC$#n%+5TE?h9r`OOh@`*=J{rxn9Q3v!wVSLOnzbZL>C&&xrCY0w3KAKl z1f+mMKN($JKVcKLk(FIO7k@P>uH?Ag?SRLHnvdTekKnR|K-nbDe`yNaTN^SIIaa^U zbsKVB{I`0@;Y6pAnv?FsJ@lKfb!c1!+Y$ zeHqhOV8m@i{7MnDR*!2G=}^_Z`TJ(==yIoBnV9LI_0n`&M@7X;yCv1k!ZPhgt|JWh z*XHaM8om@UnK|EyN$yGz^s$CG(ZX>%xb3KxA^?(9*uny>;;;l2KF@T!e* zF3Mp-J5xtb6$r9~B;uf{P%$mNSC9X17vL;>CM_1M1hFWbw1=sg`%NBFIB#)YX7^g; z(bn};9=CXqFDh%QZ)Rp@bcQmKcr+y!>no61TTzOh+17F*%yCBMPpAt4*BZLq4G#1;P-W=gV4pz^c4 zDGxP$G3$znn}MUg_vU4B!5~lrUMSSK53=G}47QWfKG9>6K`bhqc`@88C}{7&;jkQY zLVTYa-kJ7ZZyZfk6_c*JwN2+o8Xr0Ld<4jcf0oT?+`awB^G)#;7^o3)o0yUjfYA(Q z1K|gr2MV+Rt($B|h7j#iXhZ8*OR*5liMOs~d?_-u#!5d>oP)dXs0JpVvu zPdSoMx>>zu#jdqriBZ35o-_z(3ji!+JvsR#*y%#lM3dH4^I0qKSXzwxz8Taw&S%=q zRF#AS0AnyML?P!|(7HF*+lr8tuoRily zGtU-ammgQzcfzNIi!z^GDg?pEbQ3{$-!FK7>&`aRPrf53Bnu{9{!ckkShZlc>?EQ< zAE)a}n%HDci3Zd3Qwb%P=|6kb$@X0L*u`~*e)7WLT&#kr6)q;^aciR}vN7zG=>?x# zrGZPM5D>CfO)#`B!b7DA)4A)ErRY^58;!%B{IIR~4*=5P3Fr{Jf-r^BI9&EAFx!P! z_=h63+e|)TWqGeb0wOO&v53O65hWT8*!`{6!J0F9xng2?QCXTbc#anz4;$g5ji?mr zS({0+MU9{h1;*ljttz(HapN@ZB2_s))_K^!TnY;h`lyFEIjDNPU#@~iswh9L;70s- znp(QB8NXg?GUHXn(^6;!{pglsJ=vKS`*^sT5%#weAvC(Yh5A`769J2GmMRcZS;%~e zi-w9~1t*e?c_Q9aNYSl|S=CjVt1?v#t$qAL;!R{*(@4dD^z#h2#n9~dV$~bD?JFSq zwwRY1W$P;-)$eX?%;i)})J?}hVLa6!@;JH8RBbQe{};15+5-xKhYby1x^x!^PJU7* zaWi;=iwOp(D%nsv^adOR0s~RJt*Pa%7N0Ybx4sS8+abV@x#rYL0RrgEEWIp(utT>l z+84RtM5<2vZ+x)UGkGw)tr@}x3td5G{I?_wfBll>-cKJXa{Yt#(Xxsol9{6bL8&@x zg{tCiO0$>3we>>uqFm)W&Ykbf#C=!4P+-LkPbqxMjV`IB;MH_Zq0S3BJkQ0HO zT(-7q@x%_R>TxCrTaL)d%2ue<@}ukt4+u`S#JC8^J$)8{O=i1rRoyadh4O&jv>u>F zH<8uj$DhQ2mOK`5Av(%78n@85Wy2gYYG#&SGzFWp1pNKdp)xl{6CY-xdQ+8WFs)&` z6EH+SUDo}{^K70Vn63&)s~CZkC#F<&fu5Bc*60A-&DuXlqzU`;)AO(To5S|@?S+fr z_C!$dc$|`Wivz{i4>yBe+Y4|2#=7x-YB!Nl^q)oBye~%z5`n!NCm{(@bjJof&9wjh zyNnTr#?Zy!SLqo&frEF1M4K1OK2K}$^FNaQIA5!RElRz8AA7H!3zLN@wy|CV~FD9MxrGFj{}v|>jTF5*2= zcjNW8>?{w5ZS^=E_|F~m4Y_PPdf%=&*>c2J=k+_e$d^iJe|404MHw3ihg%0|s$ zb{vPx^nD-^Fi5c<+j_U{p`4R7D$m3F!8o0U|5qvLN&S~wqHlhAI#|5*sTI=L)lUi|*s^3F!U7+slRcWtJx zBK%`^bLgRLz{723`{sph2MF)uB(D@JUtY-~^!;aJ9=a1IN25!cRl_SO%Vwk@yOBbq zTp3%;wO^X!@qJ#Eqn^~ycom>gmcQ$6?fY!#Tw%lVI}r(1P8*EUl|XtJwbj3wId|je zrto0eIn`TEFMEUln|xz7gA((+-Sy!}(fY34lG^dyqoQ(e*K9dzLLvw+md-qE+Hc>D zH-0+RA&(}Kvgw*vWi%J}{<0pct2V%w7 ziXU#d#06#)xLQcaem}3|*lkd9De~DUKeeYPhv3)KiXmS)?qI!Jeo3NCyLo?aIzFfI zgyWzz$awLyJ_V{3?dTsys|Q`H!F=MM-5;=vvk254I|w4}7KLwIJnU@V4`*$0r3_iC zw0)l3#IfnY*;zbUSXmRfYG>g7caL}2H8eEEnm$>OcUv%O+TZ)26}-BA zNTHKy>l5-+3~WH{CQ8Xv38hHdx6HCPK!$BD&T8%7I$T`b*a)879j1d-2xY_E zPw&&RuSQtd0=XjlBfqxZwl=i>bwznSwNh7@fD+tf2tbP^f7ORGRKUU!6arcU)Np3L zU~1YY5&kYi0r2v40bm|hNSxjZ8OcX|4`F*FMXt5e$0;sYrfVd;V|nPYrIyiNCizX+ z)BpiS(83u?RLS?{k|@+8_bTS}`^dJcs?l^XCG$q%2dnGOa$$#@0GX)d+i2NaSEqvl76sZb zo-qQ5$bfF)`?N^^TcwT|jJp8zjk_xZ1vhrop|^T8JGa$wuUD*7o{h@$)-&%8`3M@b zXv2v*#ibFbpi+LnyS#WThHH@DL6%Ft@G(bepjn_9Mw5`xmQlD`a^!O znW>$T00ZgN*SGwW!~Z=<*4!UHT@+I~TQ-qgxwd@p4;hItM`Ypn%zB{TW`i5<5QJtC92y7vQ9$ zeGd7(HnXG{i4_PT&rVPKG>&dkGqHk02m)C38rmJ|iC;j2d(t!>N#N&&^rnD99Mb%! zv0tq-EfP>P$jf+9Q8DTI3JeB?A9*WIEiFAQPHb%zfd3YW_O4j~>x1 zz@&%KK-*4?&CA#NXNSuPV-$!s%v!}|60_%|eFw=x>lNiWQ!Ub9K5n94i;I(WwjTVs zXjLp_uN;A2mrroIXLcQ90`wLt$6FOU(&F`v5e^9mM+o3+S{rn!ccM7%fjbIgX4W&? zfZJ+SO&A>N+uQ8{^A0P3+(0E}-B{_xn@APnq=bK8QGm!pVbv8^AHZFtls~}3*6Q75#bu`w9Puld=TZ{vo`w4Grc6n0; z34UW8)PMVgk_E+oReWTD>7Aa1AV|Zd;I6p8Vl{>*Ba;#Fz~C6{1UJ2b!qlIK<2WEh zCqP{ya;Mts>%DgccZOn;F`Db`k|nDFLX8geH4T&7rV0O5UH381dQnPf%w%$gnF{U_ z9C3k$OW`{%=xco&b|kld?ByN(+bq2)S^9$F8ky}btb_MPaBT*}ZWPYe6?Mrz0>V+C z-;2Be0TnLRrd<6$5T2`r4fR>H)a$YX+ zJ4vWN&*q``W2gA%Q-}apHz9n_Tmzp-=erK^&!nkR>wMW5Zv{h6L$Gl07P9|$z3BDY z>CVgInGi5LyT54gB&YkmPh+jxvQF_>iS0sV>Gz0ZY9}Y2Z1s=i_zmOFoGFlmLE{Bk zW?t1_1P6u9fP=M+<2kRWYSOR00(he21%=lP|Ch-6V7|;?%0<)0hO(m}kY4IN=E3N^ z#n}_c*N_lD_U6kHy~B?G}L!=XqkLnh3}rp{$hLIrXRk>P_XOf$sd}6kGzx+mZoOz6TLSS zJR>iPnjWln+JtRRJ5DH;1_oDWYN=U?MZ4;+tvqJGc*l#)$(F6<210&=x;tw&zEtSt z?farZyFUE0xkli<=`W479rigBA5TYzH5;8Gjsn(~v2|+K+d<4@JRg)birc3e7$K+E zs6rX*?Lg=0U9--0PlESq2l|mopA@674@z>I*L*FkkdF3AaIL6t6gfxz(70QyZWYlo z1hrYZm3&WKAAZN4uNXp6I1zhY>n?(}B=2~8+bB7QaH{C@0;707XK%SIXLvz8{NPEB z0y}rh`r#cRe0xZ^bIf%uT1d_0+GO75#D0+YICZu6oNAVVNp^~M&Lx*;RuF$&=|k^l zQBm4lM+Kg-5w+8cr-;PA=S?h+N=kB@+>Vg6d)aGnMWMR0$BnUBuh|p6D>J!-Z*>@a zhA032Lqh+@QqPgeD(TkJgLc@W)%%o za}n<$ToNFVgW?85K`!oyH#UeuVfdBLmK)*!)F1S1|IrVIKQu8r z+*Y~}CNikZXrg;vo*|v!;kv1C>J_CWY zhhKcB8yyDHN?FZs7@lmvMisvSgvJvX0Y^KiV};7j&2m2RYs?Ra2U;4MSA(ckLg6%( zrus#Ol^X3t1NQa3Ur>Q(1b2KDisR_!9iLVaYVMIXJA5ulWljxl_i?M;p8{ZiU!JX` zH?NB`$63cz3}rXhFB&C-H{^c%<^iSL6q9LM$>AWoP5L;qcyFX8>C>MdokvQgQlKIE;?e(8~VW&u61iqX3AYFo4Iv#<`E2aMgFrydZGY&>^85&>ZdK-nf3p=jR5{p#Oqu-0-}Hq=}{L zvo|NBmCeDjDpR$5Pd5E((UXLwF~aI`w8c3#xdIg7XHa0(gwZQWE4e-BzEjnS3aW-W zEz&6LgTHiMP~GC0UJB^{$RZqHrEYUmC&P@KO742aY&BT z3O`Q8*H9K?Ow7VD$lvkdS3V@2Hp|kOz2VE-VXL_xnET@&Ce_q+ejqz8_J06?^bGpM z7O;fHd36mjylTha>3MZTZdljn_qY!DyW767k{Y?nL$x0epVNEv#Yr%a_K0iFyspAj z;Q3=-3tEwtes@oka|QQQfq+UPH2lx}+!X%Kl zn;$z4yHj3*W*6>^)t$@KPe+43vq>~U!~t9Kp?R|^thN|zm%$6s{O-A@I&MQ4vuo39 zYwwb^6o%iU6O?*%N7z1Sr=KrmQ(3vwqZ<=JRjrI8&Y56k*G2hScV>2nsLn!z_;Re2 zloXhk5hL|*Tp)k~p)g*qi@x*U+8P}wm754&T`qt3uBu890@?r`;a@0A@XyoB9!LXVBE$fTFDgmnhDa5_r8W90 z(Ulzmw3K4^1_i~AzX`fO)MhUP+;gmb8)Fv`RvGH!9qQdEhrw|j<+}GLniv@gk08bs zN5bD!J#DZIp_ZFX2F!*{R2s{qbu&PCMmt=k?q;my*Ayb?%A-WBb)BlRru+z&j9GGDHo=>DLsN#{>cKgd}`~C`Ac2hNgOp#_}i_Vaw9pX1i6`Ah{&KqQae1 z$-GRee0{knjU^3?el!Dg_%ZO_lK1#jT-NoU!cv8P?t^~3te8K2pLogMv)_D^YSX%< zwQ+jAL$H^X1t_-Rdy~F~R9Gs{sc)x=DJFLjBi#j-mrq__p_t!z<;5>Xh zR1@D`K;LU}*O5=eZYPZhem`{-rOyu>~B0AyX>j3~7m zK2F#iR>>J8tv~QLx2u^vvn3=k`xNVHJt#abymKPHphVj!I?&8@oNe}hYE|#^GF_#R zd{~d{4v8iEl8&runO=J6){YT{G36TE*DEomLJ?Ub3*46t`B~NSfZeM@u1uwa`P*$f zd^vaIO=Sd^3V#Iu7j1(W+DLw1;De)ORglXLHnqW&5N12`IiGAzOeUJ`&Ffuxf=Su2 zbm=TFigHaxe3Om#$TuGrV#+a|nEbGfsTNHp*0VXV=}9Wvn(C6DOA_+@3UA4k5x;?( zsS6Wt$)n$S$vhk`al0Y40ZfX_3Wt;yMa+KgUB}Do&)Z&LzQUEsr@mROrFGlgbudUI zEfpMzV9M*oY3@|G2Rql8jq~MuZmY%fKOk||Vn1zl7}h={pbVWu6%xmnKAYWoG}fQ@ zBz&XgIVYbu0i7VJbA})B8X>Y!ly(^#7g#@8l;+Q1 z+J&3T?A6y8)m|wD3%Ggif{Fg_D;W&r)6f;NFx6A_4tUaZxZD@G=LlneO1|oVzwXSX zo%+|A@618+;SQsDZCPEe*{f*j>W!yiK_Qt=7-(wR2}m*Vx_ohRo<=;Nn2VbU3LvUF z(mDglCA~=A!QUK*@smNNZlSUvjpFtOEy03<1JIC@4N?i~i@AW&bV>3G7Lo1-o9i@^ zJ1A}54!)Js*H~W@w*BFtaPU>1d`D(n72BHy*|K^k^nsg zo7GRq_i`6QzL{jvz%!)^AkLS4u>-O$#)Zx3!B8(_T^p3K>Ap936N9q<@9l< zR@5-Wo3|CtZq|hD(r$S9+^FIW8}bhwVR4mJ>d3sz={XV#KE+&Grwa$<3c>A0c><0v zU&Fd;X=0rAs8>FzxX$7OY{yHrSZ6$7A*39GiE&XzQPdrJovK7=fp`LS^J?KD{u-rB z;0M&2zU7cmd76Em8a!=?UYqb#?TIr(-w{Qda$PjqR!li!9sl2PQ$g@vVZ(#f8hZ$}&(LplBvF)nyBp`ECgCw%l=aSlsP0UKzGf=}paI ziO9;gvU+VgY z*%xMggfBWQ%C~Rr@FzIhfp}@!C#8&(m$0CK0Nm8I@ypn?K)*m?XLgAzK$HZr^kHFxv+A<5L)_fS zYGmxn^1;M<4JBZ9!6tZie|V`bFZHOK?PgNl*?;ldq! znn5eeHIydbAhdo(S^5iIXe_jT>IM~)j=3(W`rrlN8uCQK3s}L6btLX1dQ}pgioZj4 zOhOh~)rz3#0B8nn$D4M)iNi_T%O8-C({yywsZr+X8)N}B?yRT-51v7Q?8-CHue zz(4Fy4*XjcA+y7Kxo+4JdjzA~7T8bhEhBOjOAuWX9Ou$r;xw9nH*J%Q#5F>Es;0I**R(Rr*^BnM+**sU{Weqsg6PI{R>fu3j){KjQ`f%joOa+<18L}HDSGZf4sT! zuceM2_BWrY6XnUUcT!=RktTCrYxlvS%s#t+|6Rzx;h@o~38$(r!43azNYICSbm?Wq z6ith>(|E_zC(SK4+{YEI?2=sKj=q=8iO`qMF5PfHi4}m|S9>2sBQIsp^OQ6n3I2$D z#8r&^87Ngn9z0n7$6=U(wJ>)*-5D9jA88af(kfx{fPMrbfomy|?^HC}4a$_|t7lvf zn{}(PBe5!(ouzkP;U!(PEEl=Zhz(-hw%O}4Iuo`-;#-#aJuzNnF~j6cHmW-~$X$O& zav0$-|L`?1VB^u4wavqa8ud+=u=C}&PuTcUb8Zd%eioAAT1E~?cYB{ zz!Bs#3EUZzI^lOmmqu6ZwTc4AZpXfiH&u#G+Vhju!06ITT(&AhHdeacbsC+~3_FRE-@d)=rdTiwzA$0XA0`9S+sx;M>i^pXfPYO~ z3fo!y!>1VI;hFrVg^w-*4W-MMZPWxVq ziBU$Q^``CZxmEj2p^m2Ah|m$pQFLl;aRHL8+jz&PdECRF?SG&93KkOQ z2TPe$Nj{U)Wg2I$x+RTG9nCiy9KwHBb%VWKHVHah9Re?r(Lq`U?h+C8i0e*H~$ zPvc86r(hTX2R#9l0PH9%7A0ItxeLs)JZ>k(!SN)H1 z7eMC7_n0RXMwnsw_Qa|a#)$K(rQ86ra~WqI=`3V+*gnbRq|~ktz6xKkVf2kWtlQrC z*N%@vf-`Zog=kgS-CC(Pl`1I-tilecbhq+e;yo#viSB3jNF>@PjHVub3ef2Ip$8V> z+gc3&)1K%7%bu#Rm8tk~=T3;Feo0l35Y(m7l835T_`9aXqO&0M^j6FbgA(`1f`4^> zc~n0w(Q=`d`c_q5>Q8@wYYT9*PzpF)oPPOTA{D5Ll4{RH-{zkac9243WZoH3j!N;# zn=9s)Ydje9sg*~SZpK}H@Ek#ahKy7J?_TF_0Er`N$#3UR{^6scFE)E~BasSRw&m{6 zFJ7tXH%fjT->sB>r8CWK>4vJ-C?snM5SOvDnQ&G`LmVQboBKPf`^rKStisw09CcM` zjiu5hXiSMTL?2ha-FYiV4d~1+JD2k{eTw=~A=KzKA=WYRN51gs=ZCW|@1(mV^)#tX zNN2=r(h7(L@;B$XTC-g-u^y2sIlURV5qNfq! zpE7wt8wqwOXH|8>>aQF1wPSne5= zc(O_?ALn#)=VD3y^18EMPT`18qi=)#d+NKs*&(GPve`Gke9|7_V4Wy48_r%jn99wc zGY1IzUoV^*pWK;kRXkb1U4&L%5FkD^R47z5AQ7XXAgJg}D?5Mg3S|@wiJ}8Z57nO6 zGsFCaZ*Zm8uI6zGxgWzV%)$%bLxe^i+_&0vUpep+j#iVJQl*VXfgi9pJr-9B&*C@5 z7s-N?(58l=Si!cRzv|-gBk^a-ReBAg>X~+UCzKDRP&gOcd!-0{2L>2^QX#byT8(2` z^_p$?ECHy+4hKB_B})p}@WjBNP?H3;qP`$zcf5bo>RhR3!@*iP$<)CRvB})l676si zc4+>4gPMpeL|2@j)kqo;rZ!^9$Eh16KJooMn}fpOntsfXFtNAr6S26MbU&)r$F8D` zVgYC#R9?tJ8Axf2O(jaQ8K{Xzm;AH@h3L^P&YHiLv@*$0(e`91{V49tJI2P&eY{r) z_XRODJdy*GC<$SY0Pi}WG2oA^>6kOoJe=X!?^URa<2-0->p3@uss zp4c+rCO6UO&)A>Y*m>Nj^G%se8>RD{O9krcsB=|K4G>^A8@2XYj`{bS_MUfix_N^V z%wjJ6+I?Jpgr91cx%^v`L9U-#!aY!SNGVG^{(=MQ8B2USUW-HxK*(!&bE0Le;N=kMNy0HYP4(72@P z)^!hnSFBup$w4%9T2{`502&IDS;}=OfQ}vlKLpDq5_<0C9Y;YHhs3vXC2_^CO>(RB zGO>Npz`Srf+4t>~qWmu%3$&*oW`Gs63j7#Jj zC3teDa?L|)$UGu2f59$z(`{R2X_b{%!* zrhRSI58$8!)(@7(Yx)IC^OBUk78X+STAlN|!s^8y?dzdDi-D}qgBZ< ztvZ$Tea#NmxhKA#Ll}kuYq~*UlHbZJGZ=q@WG~V#z8fpGlgB&gw@vFcC@oAKlQ?op zJg(|Sxx;i%&q99Fp6v|PASi}*;)of8=avg~(&CfzuI=SFZ#$!Bsu(pYrA?K^E*^~zr|pS@_dGn4 zYywx$n}2w-t_`VOA@zt~+X+dSeej`qdc5h<=W_Aw@m6Z5<8RPizqS3)wN9B{QE}Ws z&~iI|v++To-dQ&{$%h_>vgO;=Zv301C5pV9blLM(M?UKaM8<>xH=)uNN`xGfc*d3R zYIy%&d%IsfHp*Hkn{da%ujHYSN5k9f&uO;BoY#wu`~jdz*sU>XmM?s5z(^}_rtErK zcflJDFsl}Tg>v!KjW4CX;E^nlx&%oD-A6q@8gAGgzE>gu0pwE99a#abzJ|@c_|VB? z*%#PQwsZT1-+HNv^y5cZl@qnb%C0y6RD65%nOmym!?1ts_la;~1TOt@@$gG|dc->dI+{rac=aB0Wa>%O1&^L{>f;UKRSY%*Zazyp>qG3zD=n*8f) zd=3W^f>hIx_gh_XrDSzWT*WAuAVkdm9`Et$6RCAwVi6|?hoV+C3>pSz3^vxUmPnsrzw2T@%h54FWQWS++o9O+V_KvS+ghGbTVn#J z*sx|WMz4F;7ypMD13mpw{ffx{4&QXRDIH7KwL&;vVi4~p)1`&p?{YP^RaI+Rn(*ie z6RcI1QQ^0lp*>WK1C^CEb#uN{TmB&0Av{;#-G>ZORF;3e7!N(~uK8(|Phx^nmU)}D(lcBb*OBG6= zT|AhvqL4>g%QHX7F1D4nodo%O+6KUK7%?=te2MI3)<9iqu@oDh%*KF*XD1|r9o;?} zV$gCtn(*HBjOgzN24Ky-ad~Id+)JyYn0PYf72&yharidaKSHn#TIii!)Ayt0xI5ck zkBCE7-eRh*JG@l2+V!qzrBAPwx3T2hyp9XZma7tfjps_!gf8eLbXBjeJa-v!j260haqYS@6%~3ik-f25%JTWa2oWtI3<~{2TCyq5? zVW0!ND)9)%_bwK(Ryp>+`AIA`5g$PM)e?g58iO7X-v3%b!?=!>&{6TNdaAx9zt@Rd zj}Pm|BU+Hm!s}@L0Y4HL@@)FjBn__}yjV_Uu7xJk=;}=6QO%b1si3u=J@ef;u1P?K z4*ceXQcZK*+V!8>u7uC2*owS**Q%ME+=k7GjkV=~<~z&RdCU2$zkAMtwDxBf>{#d* zsJ$w+AT{=G(P2~n!(+(Jzm3l#`Bj^{@qxJt9=#&yGgLBJ;lQJ^LO2A5hFQ;YU!nFm z+So{X-DNs^HsD$P(!-ipBu(;(8W72anb3T)J+T#JP~xLw4i3%r}JNO5=fr=V00RWlz5 zB>(q(mdOAc+M>Xkkaid;br4KYHHBcs$|@!JS5WLNjS-R*+Eb}mqss=wYoJvq09Ja6 zOttfTdtE#BU_>z)u)gcAYd;~!LxeMNLJ&ON39bIBzG+*JqAt**I&Bj_xqx!uy#-`D z-;b@$lCdeFzCx{51~a=5*DF89{cI#_uwBUUPFR(*3A&TUS^!yUlO{bc3npQDo}{iq z7tC~yely6am~-2hj=D>AQUdi4YI(T9sS2%IywFc?1z^9`TFy@x%n!Rcu58L(p1@}^^hGM%TA zb7v6Ae*b#jx3ixdJ}p!;M7h%_N26)n1e-r%61*O?HRyd8dWtZp$na0&?5S zi^o0p4&RSonWmkDh}`}dX87pRBjg_CqlN<)%zrZMf->0LdmZTGe`ont&Qdc+<&I>_ z*41Fj?dil;`gcRB!%_d*;Z&&$nhfW_wzcC_->b@fcB_gbs6Hp&J#Y-FPF3xdi*Wfm z_0UPcUHhf{S5b4?C8ltUlon%cGZ)IwDthX1=8#Rv$CzH{vSErG*u61$An3MA_a8oN z?4-NJQUFlZ=}~eET&iCi9u4 zSU3*og_XRf}LEowKt>58Lcl|iKW^i^~hBR0-aoAuVeWoq=+Q`NFq72B=yt&fH zfm@;*E3nggAN0-BX~|IS^Y?ed<%Lb$YqwdO&eIdhI;LNbeXn^KzVmjjAnwtBIv?SS zN%JDRuOOHP5r4)FR(s{51lB+pTEfdo# z5_rw>%A};UJyGaC$K9e#r{}9fCv%(c3tr)w=lIz>jjJrsM3!}Pxa9U(kDUQqi5&z+VZ78Wqo9y%v3m8 zw8Nu6j1N>8yZ^Q1?*!uXhTIlAw_(10P|z?>T@31R*x%=#vmEykBnfUW7+(D9$kD!V z-_6XVV3PjaLthUJCQY^ZB(whVgB?v}h3XyZ7OWc_&CWhOgW{1rz)|q3{>WuX6S&=U z{i{TTDXyJm&92FFs)N5Mi8pH7wF{?wsZ&`J9XiWg>F>Gx;X-3W&5pwY2J+!M7O~QQ zpJ#Z`-HkWw|vI~hY6XH$|p8x zB{ZplZAI7Vy@*1^`vSjVOleTCba%2g_iJP#6Z$y+5$+WPl~yy0EVLtQ-K?Of-s2|s zO5mEfa>?40CYjRfJrZo|Kkm{}#^ z%O|oJ;IWhA+<&$+>lTCVHcYrRge|QmEL*a!y^`7ON&5qyd-m?6z(>^UXxl_wA|kCx zfc`8aQ#^iB0PrDElkC9k+&iVF)?$>mq7K-ki(c;-t5wj4hu_Tz}f7Cp5=T13$M3rOyB z>JtKldi|iy_JfjXFLv+0@L+uk5N;Q4(odrjUOfnZzr%Yuu4l#Tos%df2;En-Ygxd% z^m);@Ke&RBnrdqq!F~W5X|hugSFo>F^AzOlF&oi`qA+##YRgN$L8JgM3nMgJpP1@E z4AFMrk(?p`0#WqB2?#Lpi)^6&%*5yw^TOA#Rn0+B6eovEC(@nzo%YA1zKA!UFE@wWlnQmRb=SSYV$yZiVbMA}z)v9|ZhmpX zCJI4-O#oKfNw^IK{!_>A&xIgp6Zkt9R(}=q8s{^84rl~J#Iwj}b*jhH%crroC@h3{ zRR4jiFG3!P-g&Ru=j=Dit^0f`d(0&VgSl{iihs`(sjO`)@o*`ex?iz{LD%#18y4XFoEMRV<-8;_p<8ct1Ska6@|N*M8Ca-+@1TqJQasq=Ox4f%ct$ z{?4`QQYKd4j8+Rcp+C03hSOu-np@OXuUZb3n}R3@co|`Wm}qp~BM8|;Tsf1j>tt=H z;bwz|_&@Hh6U|dnQYsOKa3S)>8X{uLZXf0u*ku9t+%5IA6O5au55YwmdV-UL<)g^~ z_&66c4!|%Zw&`K5vlL~Ej_0Q#iyBTjz-eN)qBA#hMEPkjm1vAjz&a1pfLwXAAheL;TJ zo`1jbu*z8o6wcP@p66TTG_O_EMr~&6%y7?zfKXf5Q^_$RFkL572Y)z{W;|a2mk4mpT?_w2I_u;jqs1s+aP4?jF^5$toS*srx`Gt&ueyrZ^+%u#T^j# zIp*23&xU1fFNhCUP==)hpmF1u2XcyhNR&bi;Rk^*L*oyx0=EVNABjQa*SFSYYMVFZ z){~+<4HD}JB~x*CNs6AG8_wPdCQ;Ig8eqP^p{quFC5k(;!3gW zvtD&_MT@>|E++qz&h$_zWTfr|g*ezfIF=9i6cm*w(3yt&JS0eW z_bAWcXV{Ub{=CDV!P15?aDNg0fcb@7xL_@6G`(qYpb_V3F^svRn(nddF}{?wp^Hy4 z&^za}H0Vo3_0d7R9T@bS8S-kp{Hbg@vev-wRRWD)91~j06D-kt$j2U`93-H#x2Z0w z=MGvZ7rQ`GMJpCx`|PDVVBLE{a~i?cDMVggI=>PCB8K(V>O+Xbz1~t74#|%Nssq|M zcpZb%MuXfF!xp9{US8?mTxhh4{QI%EyD9{7qvA~ATlEB}JkBH^Dy$?g3<061Iww|( zeU%~Bt%Dx#qF;RANau4uf?|D1$E`W4+Vw{>E~LRR?mvQ<&={%+X*r(=VK~7~c!Kx` zCzg}lDWzx+(T|Q`Iyq=<<|Ce>MP&sx-J2ZwU9#vt zSj&~MIWqjCwt_IT6!&uYjY~W=q|V_S77TA!`ug;{Z~l2;pdZ<^wwb#%)qMdp{rHkJ z5V3b1KqKM_kH|_8rIL6?szlx{_a5ppQ@iR1Em**6>j`=&f>Wg#DSQBP84ZTRWW&jP z5{l$$zA`c*3ad*UjQl&kQ*O(^?<2drV)B992rt55w8AqnFx13*MsIK?LI1xR%++V3HX`%)KugJ_o~8tdrxutddF z(!zFnDXwf1Tv~1yLL<+&c6Q2-xa64`-!~c8LKDp5Z6q<%O>@jQ%e=_HKe;QbH_;NY z{f=)8naYLX$MZqzV&v?|inp77BR-Vz8D;j=y??oAj;{M|zGGAaOndk*_GE=g71K8U zXWmIlxX!igy_xNtTi$?2k7l(Or}B|dm|g!Lk9Q?1Qe&Zb>8RBnK5uI%uG^J6;zCG5 z_RO|-NFPFpy<9Q%SXi%qVw`Q?|t8= zP(-3gTtyy8nNQw@GPbLrj!7G-=mmqNlU!RZIc`1dwWmG?t(w+oe$08T<6R({2Dj6_HOzRYzNgwwl9z z#YbIK_~0>K2iA|yjEroA$!BD1XMVde;)Iu(avX_M^U(0UW-!`#&r9lc|kW{0f3cHAg;{{{VJ^UBEBTDQX*io2lFB8^S5xt;j5pU@sc+xpevZLr#ZvU$Zm zDk7rV9HH_2TK|!vmY|QZIP-2dmyOn~m8c`0c4)W<{JijQkn9N;wv&u9eFlN6BZhL1 zL4TXt*`*Qw#7R^^MGLGUWcda-*}OpaE2&pv_omxX7gEgWeXI_hZYyVRVCxyLXZ0Q9^0yWedJ_fxzhmq2-ug!9owT&+=2>mV>JG6dts4-%A{f9Q@ zOQ=Ct?)l~i>+2?FbF7UklL>2qBvq9cj5|cWf1+Bz%orlO;?>BHVCfv*pyVTpS6^QQ zdnqAier72EH$SqHU$JJwSw4BQQPeo)(95x|5QjsN_v-4g_TSS9}GYDSbg$^go}yEOi)yqNT{tZPm4+n3Xp0p1G5} zg<-aA?M`!R$%y%(TO4h~t?2JWlo$j}1sTd{Erw?D%Muwn83Leof=rYd;c7uD9FONj zEe+>JZcMKQo^O!QpzC%ie0BjL@$6tagMeyBjtU!^m{}@!ZgB*gKlKc@`V7`On(yDO zCr`%r-xpL+7}Btar8%!CY5sFFWjrTa1>&38?sOPLtDu?Z!6tQ3zg-$n{4UXJyCas+ zFGKG{Fp4Tk6u69$T}eFjXJZF4ux4#~)7mVcj9lqri=^L+s9jrV>!@m)zl>q$*_(lA z!@(c^#4nDX#Ed^uk;8$Y#rq^zNLIlD{~ja~TKK$XT9&nkvM~`Bc-Dp) zv&$Zzg&O&_aGal-kldRZU*bXH&o2fM$L>m7UGJzVWhj@Z5IoGfs|42*n9z!YgR;G{ zztouk*cZBYc69o3n#3371XGnla#k%jA}eDC;^Wm*|T z%{_};3u~U`H?4IoA3amgK<+eASy4AP|6Q-hFwI+RyE>YUtEtTL$*c?z#QTo=#g}58 zw--TM?<$!vtw43BgWAbA zu%`smzig_@j#;y(DU)4-t-mk-oy!16)Zs41 zrL~8}n5DRg9j1#Y{g!m_GzNfR8vS;XO*G;7Nr=WX3@2~gGPK+9Kp1bwWaVNU)6g5CSHU9X8Nx0d5f)9`Te ze@HJu`C0uK2QvigLUTQZ#bUaYr$?~k2^7V`_4U<&y&sYGp}b{(+m-1^QH2G}aH8bT zJJN~n9$}HyqVCtD``=q+dHj%#Eg~BwcGUFG;5`Z4x|gHy&-$GY2@O?=cfos_ivcPL zR8onM2WJpLU=vc4c~G7?Ulp}1#p)Ox4B34KS={7IsEhTg95xrA(i&dxavoX}Tz z;ae3tGZpEW$;J$imB-z#=LD630UymfgVBfh()B!n4u`%nK49-^R##uQ(ckK}KA{#q z{mbusqHSW2^Z}1lRJoSll#OYf64R1hmx{cly+j~(o;qk8!FI%|;BP)1H%*Yn8XqsZ z_g(J0bVp}wMiONQoI{rZ33&xb)ond6kKKHc>+Wi3krz} z%H?MeK#w)lN(UAbmx+4ecVR7LQzAH@z(95BG5Nj!U`<8)DGYD0IjS2ebxB@6_V;9b z^j+y%T4QiiWdlW#@qs5dh9rodEqz1)W7>fUNx*;9j6;c?JyMuzOiletwXkJJI3EUa zQ3^%3D-fNCTQ>LkMxyf4p5^XvRn!DI8PV9ZCa688fnn<0OAbgX4 ziBgR}hR)_ATR^2z5|q4$%{|*IYoz?b#7?X57b!_WHg%PJd+C?y-CU#o}-A2|C`MdAU`TXfSTo$vk3(rUH-+<8aRnKcl1 zQD5oXvF}w^7n7Q+yI+8!MAwSx-I6Y7QJK8tx9(Ct5;zR>HG?V90_3cZ?hNiK*cSNsda2Sza z)>T>Xp}g#6CDOS9C>hqv7$UzY^-9@^L#G(YQ`yv<+x>Pmf&Z~ejs$&Ly7OW1DC+I4 z#H=!Umn8kee8>5_^oroVow<>loaVL0s6WrPuC^8W$ZU_leL*FkY>kd45Wk$8Oti^M z6-H|;h0rJ>*fSS1fI1kxKLMc63`G=6gggDj?Ox}@(U|77r8j|5!;K0OHsCvSG3A;& z-Q2vByx$1i2*INyEpzKGB;s?OFVo5FYMrh(j;Z2%#+fc?n2ja^lf7RB$oud#ldopn z=U@B|Shbn)rlbD`fQdssnb%-&^IrW#PtxUUt6a`AF=@zwG2+wvq{o!lq_%u+C|U?= z)QK#FMoxywg-`Oi;L2ag?tN*(u4Q~zF37JMaS3`woYTC5wotZENXAL@fb@JyudI0Q zVweA9iGLC;WV2P7|1TyFvRETZJVwHK#vV+%CUTh5o zZhg#MDGcN`>)Ve_N2)WR?+ChBl0uu~>*c1|lXj9~|996z$YxKVaP!5is7+ebl2s(F zG@NJm%*~}0kjZ-wFRK-Y>L>R0w>{{&zUE%v9}uU!;C~DrjB&&=?!IMI9t1|S%=&7^ zRNQO`&AIB8a(YcA!zURT2L-Q{ghxZuV1Y}#60klH-c8ik@^r0 z`EE;tn%y{pxt)EV>@UroaA=QL)Q7>T^4A@UU-zE@S(mk(L3#M*7bkdoK6eex>sGig zp!}Boq}hcYHKhjCl$H&w`RsMnIP?-1!m`Bu*wgDvCGk`8MB2qlSX_2m73om%+w+M4 z-LoPH|3i6pwE6ynU>)W^vS$cO61H75noLmoroOE}CGIY_yGQyM9P(9Ps6^UgwC6O4 z&Kl*_Ic&DLtsLNOPGs#6S7;WDg**{;<-9 zNsibHfWo2C!SD-x;wM}N7oZ~8Q`R0yVmQob>)A9$)i`M`R%0(E4$Ec^j1nonz3=I| z2%qV}NTTsa^MuOjOl`o@m23XsxHO&bzglx7c4#6XtlmlKo6O-c$JY_gVfb zSKAmBI#dp>;C{d52;QNwc0I34=7>V*r}=cY4rlO+oBmp(T;$)LVJX~xuWj;-5^}G8 z`U^?<=dz_x8&MlHrwFO%7(P9{Giqv5u>Q%OH!YJJ^q}tiy1*c^VTzW;;k;;Zu+^ce zpwo`*rEjX|jfn#%f?W>sgd5DTP2h}=WbD=G|W{**hhGO!kGUXRRD%6yWIbyW&WjL;I%Mhm7y zX~Xu6==t8h?x@A=+^yBMXGghZr)X4gSJYwsm~r=F0D(^8ykz)-IvxSN0x67fuv$5GFax)HoaMPTEVC z_EgL#b@X)&Qpz||_IN;zC0p-^C*UpZByV`YH5mV$y5Z${S`<>M0`UU7;vf_ua(V-} zobK`Toa3R-aZB85%JA)E$dN>qxYu>>)bo#MCSkqpt>L~pn@ z>%IRlX{TMhv?qRzKIm0zAd6z6F^-;Qu*s>czza@Q_QrnMC(xdq>XuowiV_F@ddlk| z^`m=%(S{RZksWlXs4dj(ALY*TzHE{78?9Kv7_z{A&Rv!dUAx6k+79)+j`nmgjweuA z>X(jREd_vRPetzvEyXAA^<*urtQwZ{C(64{!~y-|KpIL#Af7cC3H?$nkUS3TkLWI> z#c+9aM2rxjWIp*RP$atG8eJdtuI15n8}Em1gn?3=w|Y3L(0>9YRtnmoXA~;a>44`C z|7F0ZUF2~G2ZcZdP#~tbA8m+!ZLJ9E4dVhactbwqq2U#>*ryb-u>5mjV|nOi;FDv* z@p|_~BVGp&N=YNlElAk99YRXcfX8a1NLlIp^u9;PpRl(I@^qMpXW zu9>g=XA_F8`|(-x!|2NRM#$XC(ZNE4L5%9E)J};cd_^+u%a`ID^Hm&pl;w7g2+Fg_#hFv@TwGOpX_IxG)ujMl^ zJ?3-H`CdhF!a!f}ykFS;AX-?>VAKN;fVcH?;hs(x$DLS&;NLbZYk5S<7_0LlRlIVH z$@B2zye}>@;e3n0WS^<0n0PlH81_oxsK@ELH!Ih6livo`$5hJc%gxJ$|LFnN_stDX zmIWJce%u;OxNUybgdi%SMC^C)OmYW7qp6?F)t6QSI#3hsVf=VPiLeMX&-{k)fp-Yu z{Wc|rF?S05rbb6sa#v#l6W@vBZg`=!I(6Y1orPc8+PnbK{NgTNemT0Lc@gDW;+)9uFsCgD={w^@9#y{h4 zuUfAEQrw{X*3#oJi&5KGoaq1>kDb4Mv5D(t&jif_4i#^|K&^RMwY2OB-f*2 z05zD{FHJWlI~nKI_sbO#lMrI+J(^QO@0r(`sr76)#yM(nXuK+7S#Oy&*ho1r>4)h% zS@!Z4Psj`;_z><&U%_I~NH12tiI`#BU46$&5_MR=w0(6>mhnI7k?;>qmUXg#ANfN+ z4)M92MtO-g8xO&YD$KNww{(qtY#DFteOXzmL&I?FUfl_%9rmzGsh``Y#%!F&bEY-B zG3+ixtBbDy*XDil)FsdWU;}Gu8|qv=XExWF{w()GmXW>z(s3c7tm`@?a1YRx!J$8< zZosv$B_L0rA(^(-O#fQFE8l9myoi>W6ZTOa}T}2 zHTU%D^+Ns7rMZ^*^sSH08}_PJ_QAce&jau@VEY96GEU& z*9bVNUx(Czxt6KmwLQKBT#6*EPEh|+(siEYHvFAi>2oIuspHI)`6y#ZjIgnF3&>e> zG;=&tU)8Y22m{XDKSLW${$?o>m&}x(+}9QN`+z;{U4dtWEsyi9E^PklZ|NUz%fF@! z_6u5Ebb?Xe{IQ^I8PVTMuNHs^1N2HwB@n7@&6suMCG+<@07E8SdjD$IXOZY~Ewb2+ zy|ZHh%Ofp|!^QS=Spp#g{oeGUu*d@o6QM7s00_MFlk^)E2og-j=4YJuH7_Pr>4)F3 zL33s3eg!u@?`MLQ#^uU6E|N{%Ll}Fb3^7&S)B8=9nzY3}<;-BPniBH`u?~&)3L(@^D~UVwH1` z%b`tXn44pz<(CgNm8#AH$5!cb#PLzeBuCToe7ZI2)&4wW(aV8D8MVm8!SO7qKxy7< zx9^l*ciOaXT!Y`j@fVy*!nK&5W(qNb>Z7{lD$75o zzB=$6-uRtzYbsR(6^WS=0-D8zyHXE z=DNCmOJ2Aj`xZ~oI_pInoY6ipR^;1ArMZ7_sgXL_fgGjl2gVIOpp+$Mq-n=Jl>cNL zJ5ZyDy{v3=&!+BWyUX7O_0hJPb?{N9^Hw(Gf-#e%TmQb8Mz2$G!iKtAmZgbtQy9u!p-kMU)SYiOl-42;N_HD@0Mp+H%_}F(ygjxiCxS(mh%~sq%VH3@3#WH=pzBl%E|6gb?!7mUjodi?AjiAcekoC~Q!s^b>BhKuz44qWy* zV|4`aVHbO@(+>6IH=>yXTioTSzvIK+Q7i1om5M9rnBEbTcHCVt$BPhgoN5cQ)tFU% z_WDIJrQ13D_AqRyOe=k9Myh#sW`4Ti$gsL42onp&(AZ0KdANv2(J`p;P1^YaQX_?Y zF3tgz0QUBkl`d{HAdj8og)e`6(0|fn@)TUri+)+M@JmM)XMV9dPzASi5ZwQxNjuXO zK)Y^BIB|``0$SOyZqr@CujaqYTQ&RnE~t1!TG0}B;Q9Wu%^#Z1z?qq+#Y}90B+Bq{ zy0-_wc>;BuJwNzQ)Kt2<@CxC0&fs`k{4TM9BYS&gaVdkFV9%TIZig7wy!M=91<#^%`Sn9gRJV9Eak3SbANyt}gY&8V$LCc7IX zT90F!r`8+_=D-#liaFV5BxLg$x_9`4YxcLa1F*m(+;y{zOZpSEfJUcRD3L#`{aL7+ zRF~+`W*(c%M;RrGe8C$3=A0XS&pDDvRVX6QMKnvd`s|$_=Bw?J&#$kvqgMD$N3g%q zH615ie@sQL_V@BuhOU4LV8zP-3alH3@dPo57t8+nHO1$+WMY604JnB|(`-Z^+xx$K ze_5>0_1MzDNrTPJ$8HXfsE!%&d0_a@NysnyHsHGE@F6VY_4KO?UInSW(MY5zg#1 z{AAPM)Dk-@dokJM;+2LeEVg{UFQm2uNqL95N%XWi?_9;S@8EQeO$2bh^^vi(nl^<; ze|~wrjF%CGcwj27PrmH!ZVF$WeaWwV3etZZ(LyKC+XDi$sT6-_0i#ZFV?{?$aWKO2 zt{9jH;F;)-rdu8mrk=O%s74o9u_RT#LZf4lKm76dxFLFX?&eg2x538LN(c#UW0rHt zx(5kT?!1IelNU^bRL$S(`j%BSM{Ln}s{@>UY9P_K8yT@aG7+_!Etj2LKBoTilXMXC z6k!*Rh+lK>S?(~|+2^fRnQIU=E4MMt3%?&)|GWNqM^B`5k&h}oU)Ow|ERc#|YjtUM zBU=!k-NpPdq1YlQ0~z`EZ|F^a#&YjBwS%2E?TYX2H|e7?>Nch^F)ykMNSDkZ@u{Ss zg9;_MkT7YJdsG*RJOb1dvK@7h@6u~$JVM%*N3Q!l?X|Yhve?UK$05LBk0W}TgFGc5 zuv;68nj%}F6YY%~jK?~1KoAdYa#9slsggjC!1FzlX1Q8vRj0Nn&kUkMg2N&oeAP;N z^}c^f7RRRUx-kiPivV}HfL1gv)#z>;YHxNhh5+qt3j&Qqkfrvo_{OPHhq0>}EVwmw~;r6WMeNqG8{m_ZaGh#q)Yl4>Lm{dXOaC{o2`c;17*V~-O| z*h0{`+-gxeI5 zJP8WMF&Z}Q$U;A2lDkp^V9v|J#LpTkT()u7F8rb{4hN%n0^wh^;Pi&9@Hv$dKY}9o zWO}v55dJ5Q-cAOa4=wr2Omaz8HYJ1x@-U1=uznnE3$&wm#_h~c`f;hd^R9FjK!Ce| zSOQFq8b_2N9$xZN$|$1r6Y`vL5wJj`Fk#+Fh^g{3{}dLGxmXY%nj;j%)S!@=IOzFD zRIk16G(G*WyNfTu1VkrlUhOd5SigII{J|kl;X~LY0+-9(%x+#=o|(~xz#zgB^0KfJ z0;K)3e2K6%LBZHq zmiUPs`K1JZmASpN>EU#HH4k6V#hlYF@*-!cJoytuqt%64A~7V_3+D{nNICh_|1(Vd zKwBH>@J>6n?ezcm0^C^|ObC`}l;L9%UyrzGj(*?>9twu zai!$4#e6Nag_+WOxl5isNLN;0OLeftc4vix!N~B??*^fvdp;gc_bzLa^SJ*2|FZQR zxKyxwqRJZqSFg5{O{0Txg4s^>PAj(`(?xeP`IB_w@qM`OT{zU;G@G=z;tqgXo2$L> z_rvG!-_m}=lH*HEVX$+;gbWD$6V~_+Q|LIVKmzW8&E@@gJ+c_2AQq7%%92(T273VV z(7ZVrh_XhjG)jZH41xldxvP||uX2GCD(M>HPfm&x~pYw1YrUjdC|P}(MsZPn!#c=0NlA# ze}7+nenKjH3^}TAh2v6|`5}VlU;|}kXU}r--haDe z{i`GDmMXubH-8<0LpPOpn~X33@Ka8gwk0SRyudwGjytV1>+BZ6=dC$MSsV}J8-CN; zbM`=QdbjK6RH0kiU~eJ9e&6uz@6vScKgzq|3}Vzm)Ot?JoX+ODS}hgN zOaqd3U22Vwm6fH$xkOJ}`yIc^2d#S5nQ-Bj>OezM+EGkS43tEP=)Es^{VTi6#3+$7 ztyp~TLA{qo(;UuJevTDy$_^G&R~pmo{-~#y=m}FMcMRlKrgJtF3Q%ZQ6I+<#eSQd? zh~plOC3VcGld9J6M**B5lMWiT-18ADz1;vxF|3x$n<+->^1l<;Gs%WSjrQ^kC6(Ac zhhrxe2enT*Vw2uQ9}TDyIxUsmhss2cVlZ{he~X(Jv0(Y{aQdVPPun7{Pwa$yGTq&8 zGQPauKZNz)^mO*}%)&i?tL_xsK!At&V9?WJ9XB4~Zc%nC#D7A*^q8<>EA28iJ%rw_ zgp!FHSMN-hDpqrKEhJUEPHnMI(+aO~y{d}G*T(q-U=7R_q+)#0eGqbch`(Ozr~jns zkBN;EcoxS7% zy^JDIz}j#9T$4M)QDhKNAxyy23Ei3RLkbAc3AWA6Ih_Ig_#G#^UDxBbm~LVBx4t^) zwSH%(flrw~ryw<8Mw@kqSHqvwB8s1lo({-G1u=_=M-8G@Xa<`%y?EC*)f4}z(2Zx2 z#+OR!le72Hrn8C@;QLX@%7VC*e-ex-vKxR4-DOYl$E1rx75}G4JFFN{vE*upJ1D@I zj)Tncj$tXC?#h5mo$<%aki%Mv|IQb1?vrqdJx=qC#|fZkAIsV&$gZ?cTV^^ocqPJY zwi65uF)MQGzrm}~psR;j#ypnTxAr*o>mo*xY0~yqD|wH<4(H{lN26;RoF#*H@NQg= zb{aF`Ibu%*UNpB>EJ!U!a2?S}NWs2g@H+rRK0VhU^bqJ746V^Xx`)~*$GFl@eKto* zL5y#T%fV9cOGAy6z{u%AJomxd3FjCluCvfEjbJDF1o}(=iXsR&#Jyw1OW5dQmuPg^ zH&rTh7xd=B!sjr4b_X(!C{96u|I`Rxf&3cT`!oU$uL!1ZNJ^&#~^bABrZ(jG^AkUPS<-w3)IzndC_qkpN~H(4s5zT>zaM z%?(2z0W(f7^a(gt9F_)mJl=9Usq|ECf^65ke%EV2C$1zo*nxOw@$C;$s$wIgpf(7x zj!y`!%-C8M26MG(IYrh*q0fOD;gO1{wG!y# z(G5mVw&ILlLnWgLhVt9(Zi?Cb*_s{OxF)<>bHN!%ObNZWtU4>_5+XxGt7kYx6Ke?x zi&t$OtJ~^pLMCfg|Fk7oU0C&dXqQs({L(@9iEJO)M}+}Bk&|8ci3fEZ<{}Qf(+B{A?t6ttM-h(r{d99BR$P`Qqs6*vv_Gt%dD!!mU0$b*MgQUKe~|0`PiAT^Iam zP8b(ec9Y($#bXIXw^~(It{`NerPM2b6zWT#`VJfZkAS^CvRurWNwU`?1&O{E569&V zkl8*v(vrYQrBwz@v>$SIJn2y_pYT9gP`)-=eHOjPGnlv+_uT^E^PVAo=$*gI_5XBF z8h_l$UQ6giq0aTLYHYi7P7+SRRhR9E*ZJJK)?@Fb(>1Ki2o+Nf1p76)=Qn#!=0?m< zg2u8{E)E2AKXd^GI7u7j?ZyoC1H)P^DRZY{Gtlwz1fcV!&CP}M-Uq1{s2E|mM-qYs zg-A-;fH$BZm54J%ewI!M!FUs|j+O};XR%vzYM7iHY43fWN+zgPgZ@V^iCxU83sYOT zoFPlWLXy_YmeRI>>a6qsWu9rfbn=npAsfGKHi;0#bCc)6)l4|&zLeTo$V1r81D|(Q z-@UPG|A>P}?dkZg0H$Y33wgB&->`h47a3}R(s=P9s=3_wWo3m*I%VX=n)}q+U2%mX zFtKNU!%W*}4f;}?D{EN;MLrYc_Cg4;yQnrWC;m~=Qv?EsMkCXSC{cw`^Snxb!c|H0 z8)Jwkq@Z?3bOn`hN4e#BWo6|=yHsJmSsvmu^cX@X7;qIr0~Le~(HZ?=YnySo_xv|@ z^TO&X*S#p&7WK!!n0Tr}2w&8v3sW=3W#q|_=_Fv-Mc$e-k(mS$Xk<=c^TKIJ5jL8fPZ)7w5RFVPiFTm(rKac9t>v!oZ0`Hk_tEb` zB(-wVm#fv$RV2sg3iv(1kYQ*Yxnzdys;`;bYe-NovO~Lm!@c#XpnxEWmfxvZ%(yDi;U9LaH>z+~K=c0;m&bNGxg~sK8Kx+TPl2ZLIpCwwM03jb< zH(;JQu|7Ak?z=eE$U%K}co`JB{8BAysRxAa|G6<3N3145{=>=(M{N%y$7A6h6(E%M z#AlY1cF{-!O@G^4Vt1W!_E9P|_x++^bD%70Stn|C42QocKKWB${I%)*KP>^$d!Ics zlioA$MZ1PbF8$Gj+sO<7z@1lfyOvIQa$TF|7iH^9UXDMa;>qM@pthq6}6YdIqr$unMB0r*2(D=>mb!& zjF3_oGA>n3H64TLE~-%Swctezxw79=ai5Lj=RxWq-QxntM?0M_to@|VYwgdJ2X)%J zH{ffHxCPSS9BqA}gQCM*TL58cc+bwl5t51KXaO0)2(o}c-KDp|`hxpdUEyE#qm~!? zX~m!hJ-Zx`<52WWE_*AtYRm7dCNS3ARtapZWopcOHP*RQX8gTzA($Dy@^^h|eXe=4 zJ1TI1byXy~wx$B>?I`If$_?|x#Lxcn1;oL?qjI$t*J5p@bt0Mv{kp4ORW)zSUIz|G z^}S;6Erv<#7e`9xUB72)MharW;4-#H8R`rNHWhIhP5Ck!H25t|Ybp^Fh^OmHzyupL zats8Sj0n+5RJhgp|7g1QXr}-FKT^g=*)&;ESfNQ6a)}UAl1pq$?zfQKLhjcj=9UV% zO-f8gq=np*TW*uYVwp-Tcbfb4_v(Aj@1KsOb*#77^YwgOm16EReve5Lwexsp{W=bI z73~DoCANov9u&Xp1b0u+frL2L{`u?fYHunCJQ%I>V-NKXxY0vEX5sZ)3B_q2W3N6= zdqQ0`*`4i`Vwtmt@1CDB;B9gFufNRw@S}uHib8wT@?YQJh1KMuyxNob`R8L_>1DT$!d5&A<9!R?P}dU;Ib_s zR+uCnbsC77Uj{xT`aT}K?O$nGM2ZuCM5!QC>etFB8utv~?yuKu6Qb+^T;GnII-`fx zi}OLiQOLXNv?=e-uMb+4e+v&d9Mp8i8 zD9u&pz=s*C)XFrXf^JV_Y#O!l2t}NXOvP9S=Us(AM)3+lJd&jG53+bZfol#uXKthI z?|qXK+m|Evs;J}(NU|AG!VjeQVbaTx|D$Uo*Z1X|Bf z!0=_3p%I}8?p&vVL=d(LZjKZk00NxWj{0>BzI>*KPh0SsAYt}KCWXf*7++?`x;?_282t|fyvJ|?#WcN2^!s76f*{YR^Y zo@4WVE#37>G94`aQ#-#rTvVOX2Oz=qAKRt!lo4T8GWFWY2S^0$Qc13ge|nq` z5sgT$Neb^nzq3)iebkqTmJk$-z2^Lf)><+xD{=1YX8SRr_8_$a(*jTFULA+^A3ufm zw)>dt{U9qfvyuHb(N0ryAr5k@@w#@DqY0My3Fy>$iIfBwTv!(Z7ju@&Ff+G}zs>;R zFPX*=&KEZwT4LkzS@Ca*Le(-btr2{>1_S~1vk*`Q2PgD!Utmw=?z@ z10z%)>K+04XOeg@f6Pn#;W91*u#dOvPD*+wpCgxrb=ADy0l(8uGka`y^UF{QO}2XH z8eNlB&pf2pdh8^MGEMU2f5^w~&5;^<57V^@cAOu%giorN>3vGnH56~BM{c)wuPtoX zHEr8OE8yr~jcf`@fi15n6}Pk=s*PF!CkUIsul`($*X{qUJe%0 zw>;9HX$G%oH#LFa z&baDA^KX~-qPhn|kej6cgoVwldt5N-dEl_L5)IpBy4uah>T{vGYG72*i0LpNcM&^X zYu0u`@o@i3_EiNy;q+h*Kpes=GyBxIvrhC%^}cg&+M7)t3!7s!E#_v_uaPP55S^VO z$MY9jTyW>+RFi`vN;VJUA$zCNrQW&DwyD=bMY`w+syN70~g> zuJzT7MgIC^I51U!uqji{)7bXqt0)sulp_yhnxU^?>&R8HSw`r$%!7I_%nrHYULB`H%lgJksl>7qW}0dmN`|ydvRhT%oKVUMbLPFC%O+2S zoM<(8u%i|m(448lG@6{0QFxgAK6cE~$I*e2t&M`Kg+cDIu)wrK$VXSjRbR zckH!AhSX;sb$3iEOp6f7C^148QnnqH-LpgZekR7HB>ij)!%Ur*e9QN0xn;dAm8})Q zZn!z)Mt}SCk*`V?QRnJX>^sE%bC;Uf-);8avmZt};b>woQ(Um)5yF9oleqn|<}-4A zvQKA{&q=mg2dm^62ZDz474#+L$!;l-0w28EnIUBNOb#a-ikaw@KhH|WwBmhDUs215 z1xUg3^8uCB)enUNy+khf&lI>FbEN6n*wl4pplE8!h8Ifdjdh0Fk&Gyqy0ZWg47!$hEi;NJW#zBWE!A(k8k<}SB}hWKDi3zkjA#Q-*6`$ z)z(UCq)f7p-qSH0`WtpWJ`_EXrkhj>32lzky8`#L z*LeZ-|8J=O4-I%Q&v8l`a*H1Z#`L$7+CIs|=h74il#3Iw7wc%k0W^l_GN777Me7hQ zianx4Kd0Mg3i3YCAyjk#5upAHikNmq(Kp;|Jop+j0_-`!Y&f<50Sy-oh9AW2l^1zE zdzD{8*?7mM<u3v`XM9OatnhM^E|^)evO^dwM{`s z`F444FV97;UXEN|da3CB+CWX?JTmqoScE^MW3 zK_k-Sg~wT8;Y8W$7T6P_G`v^<@K0o!!msI4lMzr%Ay}5G(ysCpKdP|L@CykFSlL!I zVWDaePDy?d)Zrs=7v)%hCaJZMu0BL(m{Gda-JQ#cI`OamHj1`C!98r**m&>+trrI? zJ%&y3H)`$I7-->u(^bi1w9rJwy%KkG$f(|)jN*Vcw0DmjcS}NBSRZ>zO+-eveVyd~i zFC;s(SO=T5KQ+tl5;c_4O8_;qHUtaoMT(_Cg-c&M0(i!W2q2?BUxM2CTx9+2O&Th{ zMOE2<@N1>Na@*aA;LaZZQ5hA6gUD+PfpOM_I`Q|5dgxlaPv^$VKGB2XUR&!!+<7}Q z)mkBo>;Ix0TwfpUurHO+#*(OYqp}%h8wpv-4pF`|R(ItJ)0*la!qGbCtDNg|0;AsO zqm);*Qk{1`Vq&8xVvf69{;tql=tF)N3wyqj+tLboUm3ltzitQL4f@egE}cTwOK^kk zAmwD`#A@8?1_l5PVSir){tMY1(%{n4URzt1Gt4DE`K05Kv^x#>7o;4SUR#)SAHIRI zT5w3;)Eu)uYt9g#RBFGW)}hT%8ZyVk4!YzdipWi-mf4mE=0ucIrtOs18EePdg*cJ)il zFy)n@*{Ztx8`yZi#~Y<}wbr&Wbd02X61AQ=dy2I;t+mCUGqUe@{lZ%8i?Nlsfz`=m z;n9MU5=-ny)ly}vnfi+BzGb9?KKQ{7A@lOR+3{|16LPL1Fw0Jj+&D%49%Sw)qn6h* z?R_D%dR3ErGb?uu*eTfKs$K!=3VgT5_&d1S11%3KcAH;PO`6snzu*B{pz!B*9pi!0 z@;-Rd3rxY9R_O9%Xx`3p3-=CKCmp+Xkl_T3BC!CmzqFE)?TAlzs8%Oc_G$Ug6kAD2 zar?O+#N%kXP$wd|#GlkbKOiRic{j5AbGQ0}Tyb4J-^!{hF#}huo;&pn)sQ_qKW}VI zxQ}hER@;W1;F6Ti4}~};If&p5XnKU1k)kv|^fhN4np&$y($co?%6wd2_}`6}gJkmu zuYlT%vt1sp2)N{m+2U8X&=1Nk5&*K9d4;awzx8`#E71Fyh$RrVV%j-thi7#R3iS!W zAfv}4dA|}cJ$f<*jnW+r(QOz7H~8pmNJ}ZDr+)O{j%s_R9~$fNn!`S62~dwf)1*`= z0=_Nd!W-}#CgyRt5@**25)gYEEz++!cBl)0w2Zc0SQA{=M89{GZ_a#9vl%;mrb z!xm(ptnAp%kJPcPttK0_?smSNJ2UMSujXTK(1FEeY;Ly`$hDhxR<}HmV1t&Fj3#nY zAc)9#Z82>@`YnEJ%mu);+%e+d1iLjD=24BD+JcmPUKhz|3MZBez8@^o*qCy(HmHP> zhW{*wfw>+(lOKV3(LwO&7y&mY6VlI5SV14rAiFeH^>Lv?HOs}zsFzUFpYL~uI^zR-uP@*JGZSAv6Wa+5qS|;W z=V1O*=Qq0~?tGbyIH;>JpDjFa#d9=7U30h%tCUk6F4EU0H-B60K3TPdXc2va)(dSsc|;K%pTWQMWoJ zTHgz|!1BQgJ=0~?cqxh~FD@87O`GxtjRb49^%fSOLJDZPYZFoqcz^zm9Fdb0az?*l>i3o%?7EYz- zXd`LtGEoxMu->*@BF>>2S5>3ml|{_1O+W(;Gt3F@GgOr>hk_vNfBbwYCAQ&S9x=1L z{@gw1vTJwZ;LtH#0Y(bE-~sZ!x1W_oA)AR+e$86NDR#J?*oDH;AxUXNlJ2RheDu~ZznnLt!DB-FkT|E5$k7~?x^MgE{s+u zo@NFPgxEg03=`R>HHZa6TyRUh@FkE-ppj>sSpzW1m|ia^W-hh@;gFwM9&DG(tg$g4 z1RJogJvTvEAv69=4{UB^=wINk_qS9y`81nNOlRTpwf)R)LZ;MaiUn zQD3}W2hbDEqRg=A)z13YyUpIaKbXDaRj(Tg<(^q9+`{BtsD1wy5TyDW%-(^zYVQvi zvv{XJx+G(l*rgvo$LC;PC(cf$W-|_qBEUoKFbj8TcoIPb2PL3dxHzj??6Wd*URO-A zFT0BMjD%FqIT=5>Hpi zHT2_6ujV@N=jX5mL#cy1@yb995+}>*9?U4&4f_Q72Kw;i6ZN|`rf)k#saF{9=5UGg z>V2c3zCJ6zfBn5ptqGiQ!GXO;LP*}qNqPZCTZsI7^yu`oWC7NL-zD|)f-IfUVV<+5 z6~4?`2)o<(y)`Wns#pT*6$=rLT=w6H21!>6Agw)5m!?(b{|)Y@zYX5GB0U*7D|x%i zEs+}oCSIee4j%^x-@3amgv-9oGzqNR-S({+o-IA+Iahu?r{xMzH@|Fhg~o2&(fkji z+4$btt11=vmM`??zg`2_#oLM@`D!D@hbIeKRS&hi2TI3fTG3;}QKcS@Sb6tp&O>U| zM!8N{gR%FazI(KTD6_|9#X3Dbv6(z?oc8k=jJQ!ud{ts#@4_^|kWmI;M*&|IG^HOvDZgVzCo#*Q;%g#={^TeJz;?sD$ zZb&WEr$!@FsoMCE-eBzoIf}u}*Mew6kb^_%N~M%*D26T^&Bh&b3JD9?pss1|{uqcW zF|tb_A_x#^6lCtGJD;%A4T4WHpt|LK&=0aoF{x!Wk!$U2kTs@x!KEd(rmUgbWq?1& zQxsP_sB%EKE^fx$`Y*|L-K?A@O2(* zG2D?iFm=s>nw^?3gkXwDy80=7vdo~F+_9ZpQJR#eZ0+d0*VuXZU<5Jsim=mkVBOws z-fp?p?vil3n&bg(P$4Cj&nxjyKqnZAg@FH6U_}Ihxo~lm z2oHflv0SjnuOQdvY7_0kq7M(o#135OY!TGLA7AOvjq7~YZrMZs5a>5 z16E23KhGnx`g8xHFu4j=v`}qX%d8m$^gQVbDREQDuRlT#a_#_}Mk&-i|rvVXr-|fE-AOMC>7u%j$ z-J%+c^ev`PO3vuo1NFJ28ASTpai`kIwaN0Zg~GA*=ES-rD0O}S_9Wqu)2G6qh3AlF z1=bT?BIOS4oY4h0;V&NVV)DEF?XVXSEdcZknVbscg)M~vg87(J0u+AHv;g)Ad3})7 zeGX2j1V1C?;A&uw1;H7=RS#td2@wdwt{s^9%@=Mn8+U)@;?m6wwD=?@G8LoDVt7)X zS=Y0FN=35GBNr3LBGqEnJ6R^1k4iDTNEb=OW3$#{0W^gQKVyh{5@ogJlOg2#%? z8(9^$o66is$wc<+ZUZ&e$ltjPTM7A}tl;@w8^SB;#*fSAtuwp0(7P9OPLFg6y zT@~F8)gt+?$hS}2&Mmy*!~pQE-1U+{7nRr>Y6C;*7_z&t%L(0lcYs!yDKi>H!SKK$ zaI%H(DYZUZs~#h{BBHA;Q2UW{AT0d5Jl{}lrkU(Vter;KvXEBznz?Q8e3rUOcJ1oW zX?($5qq)}v`w`{Djrug5p1RTNg6)~&d_&*b!me*oio@VXb#I=2&IObL~CdW zL6kN=#OigFoLPZ65}mXr^TL-G?HV?AO*F&qRD6HMtEg*=KPU{remhh6;|xXGtQ1r8 zY1nuC4F7{yWFLsOnsMz@UlOxEd|_xRzhrN|yn$Dc)x%!%DzCC~PnMQ6nrjgH4C4gW zMo*l-je8DnVHBTPlG7OfiyT=}^&;QG4|kaEy}2XlanOLe2&$FmR;JmU4PBX*-6$F> zf89Sf5fC@Vtc-3?t)8OM0G00=7qU$x3-ztc3lXlP$k@b{$@M?$w=iS#0RWg!94@6u zgRYTwYGOCFq@?qv@B2&^iRT@2Uec4w@J#+G^QYt6IYGriW_ZA0WW=BlnsPhyN_rND zN40v(>>0XpZ-WKB!)9+I)o)?P&t&v4I;D>mK5@uZ zu?68snXVo4a!N>%qkGr0r}FAI=3P^0h);S@*kGCfyfE#}WrWjBmsvDX-(Yk8YTx#k zK-=v}s>x`hkKt#n^(D}>v9>`q8AGe(*;y<2F{<)M{Ea#{e)$FmMCip-6_-8D8ClZW zT-zIJF0kq$+t?gGOJ-nXRO(1qZB!_?>iwT;MQ#@$itAO{fsFmCbEjq9=)v+P_7w-# z429U5DVgp!q-Q!~V<3^-5}4P(?wLFM3h7kR)sYtG^KJ;FE-v5Ebkgk}lrBKFe*(G} zBVhh^k~W%v$isYZ=dihojz>HV zn+aMP6Wk4eWt!86wJz;i;rKr%3DMZGs->$Uq3_#oM z`xNS($wRrOJ6rERq_#l0u<&|<t!YDx0gMd&6 zKC}efSy!#l0s7Bun{+Ne8>ieJgY3X)goUlX)QSW_3X3YnDMxBPg*4OzkKec#k(7Ex z$Z5p0YHwigZ{O~Eid{J)HVXpKYtsk6+<7HXg8Q}UV)q z5`ZvQI1J&8=iL?fc?QtyV%9iN0}V%)VfwxJ)`K6i{H|_qD^@==KJ>6?bSliOaun!Y z{1ng_;Td=D&TmyShsbljB2Ct-JznSSG}M~j*Q# z91vtiAoLvlJbd%*%$5VPgrX43sI~MAC`2rbwt;5PoUXc;!LFtLUrEN3)sv&5+v|P1 zDO%etz-j*RSOn%QfoED^{W>KwD87IWzKZ6&CR>BR7!DnS*~rl2QiqTM?b;IL z?{VK!#0xxf-KFh7FzjIr=J4ZPLHHFkVE30tz)6zRw0@R;m%mS?d+r7Tq;7|_w2Sn( z=JSdbsva7bKj3aeuQIX;^}b?Yb##1su&T-Ob#CR*;{CW3uhIH`r8!#=PL`E9tX@QU zTO^G_FQl7sQFzy32Wg2H2^Pf=0 z`YgS?X=%uNXHqVFZ_xXhjf{ED3u1z;AMGd^7*&^k|N5ekI31?^nj+nPilUY==fwg~ zcEcUk;^fjVDz&#oDuZb*rqCnaIx4T~4(#-frG&w`s&aR`U^x^<0#bijBkAQivYWK- zCv@22l2CcW-38%3E$T5HEiUb&W@aM~gB5Q&8JTZ&4R17f0~s4@VeF;*w{E?JKPMn4 z1;f~QZLGZ{h^ib~JVC@35J6b0(N10D7GPb@!ih#nouM5u;xVLdFJzJDL3`!g8}6Ip z1!;)-?;gHSd%ZFegIu#tlfU!dUs`!xSIs|3z28{uREF7qh(cX1)V6G2XU4G=(vd(#Mou-;v*>MEKTh_FIW=cWXs%<(f1lVfs(t zy4sGt)C^CKZZ&`Yt>k)yJjU*4lxcwxZQFRa;B!1nn$gqF0soSx0jci zOWmhk=b5X_2QWt(ZDYjT23W*B19ZpMXf<96D>UDUiXzmGth2*RynVw(o;ODt@0GmZ zB^avnIi0V&mJTkk88f}PIVvOM-M_P_!f#ch&0!VRU=4ju`K}5wx-=WDkINiMB_Bcy zPr_b`XB*Y_2AEgQP4$ak^g}jFvbYG6mfnGN5v-YZb*-dv-%817>U9M6op3u01Pxqa zJbV#W_5H#y-@o*d_B0Y8Tk05I08BNcR~nsY+Swjpjz|d!mCVsB{p9m1{oRkwj4p1B z``Hng!}l#zW+Xia&IA7EMEffVKvge9tWNxs3$)jXYH2h{>*3S02>v3vj}>CYK+qlX zCFWAo$DRX!|FTUQKxwR;rr+9>y2@ng{95F4s#X~LK7e+gnpH6x)4se*t{76waI!8_ zF`>y7>QBrK-u7Gg{X=Uvcg+6R1%0&(q&`52;h^$p;lz zcnQ|uBJW5?N|oo#BVR2(cGb$zsr~9D2H|5(VXWU-R+nQtExAD^ivsxRJVep?foTJ* zLYMlCbyAktK-qDerRUZ}NC~g|tKxda`b=8Fuh(l@JN;G*JF_q20Qez|E#T+zz;aPM z3_C42Bool-X18?%jgO24FHJ2(vTHKzf@+Jya0Fmxz6dIcFKE_jWCnC}#Dzm?-}ZLa z_I@`@BimIkDY(=zd$L2$dsep~ab6?tt?!r~d%55RXq`WOD@8zpCT)1mE6le>$)g>d zZN*SL*+y7LMCZ;B=Lo+Oe6C}8_+?_>iQEZP4HRxB%LT&z&p~*!DKs^wv+xD9(gX^1 zZU2X!YHyK-zhC^y>(_fczIavD*=W5Z*n~2wjNm*L?U|J~om3}Cj(p;!%5|i~t;lcD z1J7*A*&018|JRlCQ%9M>Dc?o(Oi6|ZuX|jnntfmOpD;#%OLnsmESqOPi++vx!++;- z{@LhujCE15BmMDBtG73=oRWBqi0kdW(Ac8*ecW>9{8qhOq1Z)#5pg2#2T*ZXMJ{t; z59b&A8SfyS3=!}_5ga3c>;4)=I{G-_b;(;w7ihaVups{C>TInnOGM{YPWy&fR95hU zuR)8vfJj__*>8^}GllM_z1oVnK?>A}pzJ(cH5x)aN6j=-K5P#J5#(o%Bkytxx!#IO z9hS)ASrCj0G$!!$d z#So^a^m+^&>~3=;k;^=RP;P4gRHdq{xgKnYdNZ;`?R{W9x-ZYvMe(xy9 ztFA*=wBPUJgnc>$fj@!}&q(ufT)77kgNnJHgn}+3uBgXi`2A6jqfL0UwIRf)Q?fkZ z>%@}ZpMrsQziU_sGSWCe>=a=?Eb0`NOAI1#O7FoXz{GQ0ft=#t5aYb}sP*9wfeKw1 zgr|rTS_VTvAt!y}UGReUwCyih0|)+ltUw+L`U{8Bfwdmuc=Ao02UswAsU! zJEaJNA;i<1ANw`l@SLvA9t0r;W?hNF11sb54|6=#y(y^oUFM^;JB#yik*j+Vq1XFJ zxT{OW47%3Zm&9tX(LWt-*^Z`M_majx`;SgLt_%b+Bg1N?OQdt!ko(QC2-po9^DKP~ zke?JBy;7qifHEfRZ&6J!z|qlE(Muq=QK9f=!Qmxaz2(lf&7gj+g&to<%BVa*B}Plj zrr+M7oN~Ubhuz4Nr;_IW*l&!mp6&fA$?MO*we=?qo^TDZzte&AHVY>OaYMJcCHNCA z{`eZN|Fd#ADmIh7aT|B!L6p|k;&@;E;`gQgpKT$+PACh4vuO;8tqSU==OLVTxFO=4 zoG9MU#R&-skUP;D0pWBbki=?p;G`LiVs>P|-j;)c;=+X}3RHZZow!on$ld`g;;`IK zS9ghL)7&Luwgv4d%D9m4g&T$BDIygOQY*=sRi3O|#V-M$vRJQE?DP1qnDURiigN!&WVz-w9t2M&UQbU<{^etr?;K(o&)@EonkK2T>TyLGjs}{|NV)4)#1o?P@%oFqvyKA?b-|QDP_qJMV<5haDm_K@ z#(+8d$eO0=Kd}|iW}XC;>Ox!u#J*t6Xa2Hx6T3MsaBrC2bZ5@K$!q#!jZgM81sv_n zx~jRSRB~B~htl{@=Jw(bdt}i7n=R!kw4?O+DNggd)iaUf&vNrhp35d~l)~Y}0}HiY z-^Q%)&PVHoSep)bQ;6qSM`qU#U8o*ZHYV)}uk6swkK@U(Do?wodW0hc=-lU2--t$$)95jT5_0L8{rGaQq>F%^AlmsZm zw9qHJy=p;a2LYNvi*ME0a-7b^KPX@22gD>0KAl>f6AhmjG}qb+gX-B37-ff>cYPy5 z0)93$`S`|M^PtIL-?*uZc3A-T@Mxu#RJ@v=A4Ye-kqsgn#{0ovw`+KsvdC7W@P?=K(CP}h87NagM zms9?U3$t@ZPLn-Bx83f^6~4?J+Pt;5ct0;}rgsgzf#(;lk+3faWkC6b3T~D@4(p2;Kz)o9OW~}PL%iV3Aos}4} zCj%Z77NVT&WPylWX<6$UE^x||P`Vt3?&WJFSRxVGlz)3lE)o*paT-aM~0UE#G&8h6P zvxVQ24`Z)z-Z93}q9FPhm+mL**QpJ1O{>3zu>-^I6nrI2G?d&2@f@AEFBq8; zbWLSkd-HZC#v0f`v3dR^?_)W?CYw}jr zHqeM{Gee8qZuC)$BQMIj+UkeLtd7;p#opYw<2{9q^)VO*>ZxL920FUPqN`Z6s7&}R zX8pK1mz*@SCev(;e{EiCyKbRjL%3R=Dx>br`6w|LY)Gk19CsL zP^V$mm~3qb4DsoZwg7km?Bai1Zg>K?5a{c0abg5GVO$(gF33d~$R;rVcUyoi`JEE~ zCN2)SC~#_j)GP!RmY^hHu7932P2r=p)jM4>1_wvXUY=E4s1)5eyY_s;H!c>w5IPS+ zz}R`A6X_mGwhGkRvgkEWdMaKJhGwB+$i;m$IbY?X(+y#F*HW9dht_JvuRC8<5HKrB-<2^#}m3x5bzFAkLoKP z=HPkh&|$dWnP7Soi8H(cS$y(X&6U%*Oh->6Rb%fDZ@2!3{AslV^=H<${kfPfK2~kI)^UfLBWS}RIsk|3F zMw3TDUJJn){bqogI2_im0N?Nn}pw?cyinoo{=B9bmDVhn!b==rM zjqLGsZIVg`+3WMF{#;Pi!3dF5@ z{=XKW_|x8P&6y9tB@eXS(pa}(C)g_NzW$eOWbbljL zjqoiOkSP1vn=w>#jgStE+P{AFr~0w(k{s{MgRzQMW(=trp-VnB?=p8CBP!fx-rk_G zn%%mN^wvgvx1*&_xQUo`87W@H2t4UMLOnm>p|Ruu!vaR37q$;#S|*FDJAI|)IggLf;G8>Qz_?XfI#4p8L$!6Om_! zJbVkos-=)sMcyJC{i2d_8jjy5*BeH&PticQcb*HCm>^sFh){hdnei zu8Fzkv}gKi+4}N|Cgi_T_7rxK(a8ilg*Q#sX@ttrDz&zJ=rH8da0t7FU-Y}WRWXJ5 zO1hVXQ@lE^t&KH#c&O6q_<~%@p+jCLL^6Si$U@O4}@U}t@O*)f|;E;H_v)%4r?-LyBp z_a#m~X?!>&$EiNx%{M#Q7rgd$b6?e-s7XngUH7L2W857L-ihEMf&!LQv}!`{+UIx;*%k$M(4k8U} z6kf5IH?LZDOD%gSsqRuuJ1LO^p`uPA?LKvLn+~wYq`!#q+tg%qFbmS^;UbfGEnUy% zz`_M_5MN6o`4LQs_L*eTl@Uiy*=4ro|D%!yT5UeaSg#~CVGEU&FpONnwU}#93yB^; zT}s*nHw=t$;zuFzGy<@&)}v?MM(LY!X^&JT;+DbUBk&X=0HU62La%%S^2h^66>&Kzz z`IINUcm(9)Jz`W06rU!>1IH*rP%yZ)fZ#0bhoH59?LBS1ok5htRsLjRl{1zYoeKCL0g!As**QhDAkbi*fDej1uD!M2d6X z1Ly9Sq`MSI50ry=91hFi0$Z~L2Q-@V9;Ef*W61uu`#$LZ+tIaWVO$rj1t2If@#y1E zAXltS2Wu(O18LO9YQp76w|Ykrr}~JnJ6oIa;H3LQIt(u|JF?3k!8#+?^tY=@v?#Mj zhAR&kQX55e7Y7i5VT;_MR~3i+Yb?qa!nZqfy!V!OQce(oP8)=?al+Bjp*t()^BVqV zCN$b^x$OPSiCp`!+d`q>ZQfo*nK7u+8m*m#=I+Vg(j6Bzu7S|Q2NLXbiu z`WU#xn)E{-eNq#i!q?;ccf$rAj%PZO97!rG^<`ZsRTj2YUmKw9Zk$9YkL_Dh@=f@* z&{)t0yS&L7FDQm7B=v@tXWV40p6cb(whOAwF8DZE=?)^DE`NF)j(N-8Bgq zafFkWae|H-g?Mc>NdY@Y;Eh-f`dBFm2%u%l#zGCQJvQA}Mth=s>e z-a>9<=n>YrQ;drOc2?w?Mx2B1R@u^yT?Gr@&F_cQj@A#5@5J>rpw^v1S(+6WOuYCn z8eGw$3y9iSpoRQ!6|Bx;*ykvw`_Xz_uM6tE-_H7qP~O#Hs2>HFM6E>(`WQU*L>75W z-rrZlTpd>`OygOi-McQk_O!b#+5IxrVqgUauYaUxf%Ft9%7>04S=8*->L&J11Y@_~ zJ7NjUDceG*c;Stw4=8|YbIUe^f86yo<*N2%SlGxtO{}GilxbaP`s8xJ5VuTuK-a^0 z)_OI}#UT6%@abCV#C(~=AJ(P_$fkqGw2Nj5;TykG&*|us7Zt3SRUng0^Pfql>k&?* z!xV@OTs-2Y{@9mGM;|$HfEc#;bJU-{26B=cKwbONmKF%tMx147v=z^6delJm;G9@I z0ekCd@9!rG+Srk@rd!-BaE}TQa)lgWOMZCxEMzmwia!6nu?)8sXBX<^U86cOwq{(C zk7qqu+I=Y%xS$24u!9d56-$2%t5DU{fV{D^NeUN^Zn{w&8XBtf--}x=RAACZ4||A6 zMs>t(5ll;~JZS-MNE|ZVX5GJ*cH&wP9k+~Z&a!&97a?l2#eAU|f^x+6pY7hY`Q6_yxl{U7cH|T6zh_;7U?fjA z_(8zU9de^;C13zQ(cL#1F<$7Zwe}syo!B0{lLHc*__e~;?nDO9t%G~6)v6}(19u+I z7_i+QRW{YuGABT*>fhX%y_U!w?ij9x6VG0s$bB~Ox3r9ZHN(gvK_8cXfOspR!YzBn zddaiiAd1O6>dI=o9wHZ5(ONc<5qcqlK=& z?ypv89h+Y|y|-ktyV4<)`)~Pl)J#P8-w09x7dF0&7Mriemgr{PIZi^QQbkD8z<#&Ah<1ZJvjs?%Sj)iaSa2L&xdS&*>n_)>5wyoHu zlMZT!5pV%@mrL1xwtCsM_5NXtJ-sh$`Sb`4n-5g*Uwd?*I8qhE%i9}MGDBj=i86P7 zd-ydU*jwJ^=k04?0G*1YARY&5_u)zti^{>@I=A59rW_R;9W zhPldwiTl+(X>57yeG3{>eZdA^PdxIV2xQ=5{~=_;gcYU<&T_${3N|`sbtL+SP5)Pv z0M53&8e>c`CLR8Qh8~R-cb?gL!FS?=3!`!eS%1=#v3gAqf?|_t!wSXIJ*8y^3txj- z_+N!#0TsJjqV+o~?touQL$_)NUNdVvx;N6xM z`*2)a3?;@B6+@YgQqti-rhyl#|w?G-x?Y&O4 z7(@W#%nep&9{3~hPjyKso)n8BK3d-|0J8=<=u2P~zIaTJ3&Ozx1s_79PX%DL9pg?x zp1_(9p;7azNJVDImso#M=BpjTh9%qi=%rxb4iGhAf z%ctN8JpE;&y-+chVRqL;m+niMN8OCEdS7b@j1(Nn>?SR)JJ{w3GZfBY@AByQ{wvq? z@G((GIkJ!P6#Y$?+w1b{yMTL2Fpcq;Y%swbwLow@LgJt&I0dg@)L2ksjG#F5&!bxL zL%7-6<~SH>lB9E|Pm7Ib9859p)5Cx5Jf!_034|10%I;S?oA^=voFcSG#@LiVqO5sg zN<=S&Y!9W3*#H*2wyD}MxZ?;l8;dh{CPZgI9z9J~+M4Gdn`g{XL?O@@WaqjJ|r%A&FGn*iwylH!OWiGQ?H};lkj86ifQARx& z4oIAVN?D%B?83dLe$O1GyLAY35X>=C4=SIJynr@J|JOa$IW_F!zZ43f=T4WT*zuS9 z#+ln1+Xfjec58&Pl&`?=X+w(Cb)wayc%jHE`vSGMqpdkUoB>zO zu%8VSLrgG>88o#a+_7auAg4Lf{0T19GSN5(XMK9*Iq!6VM~* zaea8B$qgRyhQcD-?b*4R%YEN#riyk`BG>386pfLwK+0)O9c@!m_A4kKi8nj|Edv{)>b^I;CZr_b;9{WGMQSI_5lJ+8-ffAnNuSbNr!4d>(7 zj0Ow@6a}(-Lyi@D>fF-O-rT-wcB0Cb`jcvt=0>nIVt^G!f$gbUroIWI?2vd0l}c@+ zf+n`DqnO36#jBajit8Of_l!Wk_`i<+F-DntD-0i31TO-ttr}UvV)!=up5ib5- z4P#S;LCt6I=YId(NfdqWYaKa7ug%D7*!rpR&g+=eu{oukg;1UC=AD(^HtKo>`!urH zEpg`9uji8Ed@>{!-eCrvYh=+ao;;$p@ zOgNEe$Hy`~AaYD z{KNdvlma;r{&00KcW*p5jr6D`J|el%Nz)7*(+8<1d36Z`@U?0Ic|)Y@Toa(bv zy^QUJ+jVkX3!N_(pXvm^x#>+qfFj>Wh;g1gGBFWhhuJb6cJ)=u3BEj0bN8NjE^)g5 z#iAq3>Ll?O6)g&w6`9qs1p=?kMR^&BEN+Aq%lTU;?}1&Fr~TgIirF~#(auk{(#2IP zqv=g2fA*BW$|$AH2{|4xhO6CH-x+S+8IGLK;4Wqfpg!~nM45|5Lj(kL!EO2wY9+eq z8k3(0g+@UH#AO2HYz(8J59be7KD%$q@1*+gWnF1-nF7D=wOgX1kP%}8gE#u1O%~ zq!8UVvhXA;B_LrywU^b~IT0Zm?Q%#IpJ`DURGhw86+S&^;}Bj)ay1aO8Uv4+XNOOH zKv)gKOJ6|s5h!>$)Ya`A@1}50OX(sH??HLJ_dTF5<5j>dOE&-g*4a5PHXt@Yncbf9 z-iaVH^xCU0{~+v%Da1-xqNp}idcKLB(qtmfZB>=e)ub=}o_B`L5U%1p?~ivEm_nW- zTp=Sp4addtCFKoGAl=E2Kx0x3uo868jq9rL^0tU$Mr1Bq@|~21{t&8)Tp6m!*}Hcy zpP?eo1e?y1EF)CNMW@JHioH_cO{gbP>;fa+mXPnRJ_+)2?i2^o0zvXfiU(0+m>BpPukh%-N_@E29c_7z|}v=eK>SBaQ3y zy)6xtO+9|AGcu#7Dqq?0pfV#jlz)WU@^xq+Nz;BQfC4B-wv2Fg2et^;UNvYg}6 zqm(mxQBhX}vg?;jS8<>W$&!9Rp4Hx5+h!|$KSB1~_-=L$gLVumcrtUi1V5*uiW6mFZIo|cN(N_uL&74|l!1XTZR8VA^3M~Gj(xX3ha zkEruC_mBg2OS(!2FZo4&5PnZ z4URFlvYisApQqpmKTW%E%v4{xOw8+}!`;=5;mi;5%I&}S4F0~7^QE|Df2nhXt*%OV zsskEFbLgkk=B=U(Nit1qnQCW7Fyz0&EAb=CgUW) zeS|VkDpeG@@J_7<&`gkXK1bmroiZTKqJM9Be@uRCb7x0 z_uNO5QPY9cUPxi8l`1;(XB(MJP%+?Ky2z#Ha5mQ-nGMZ8v)mQ8X|UdMsefK;F4IdB zpR1W_S>(?3=73vg=kuAq=FRVDZufdUdnb?6v_&7g8qe)!pN=0;U2YSw@R#R3I3O19 zb0ltl?KX#Lc4B*q<*>mV-+62@>eax|3{=kJD6u3*)qtP{5T*~gB2o@o-}Cx_XvC|? zQt5s>%S{?wvGtCOAst{KpwZ(G^ex0pFcJplDXE{Uv;&zcfnEtS8p&mzNBv0Mz64no z)y89V?!Nci%s$HK5QK-AX~Q;=OB_|N3TDkkEc{ps^JlL8*qEQs{L?wIZl?VoH&7>J zbuZ_8c-Y%(i2cl(>C+aI;t+ZrK?SvIe!6jNm9@-r2w6Fk7r73`c-yxlu^IfGz!!>m z%&f`mi*r;~@llNVtFzUaXZmWcAvZ$1ED0*eaZW}Xd+Olv7jpY>=)|3$A`#3%7N=(G ze*L#EE}Gt?T{>FA?PIj|FnfNTvNF%{s!>ye!D-xRz}DaSN2hoG4v2t&2?jIi{43IP zbRt3%BLJDFCzM>^cdJRQ#s_h(O{HSmLjxD@a{PdLF*j5z`LfA>r+?%|FToFrh#vQ{ z$&jD6cRYeSBFfy;uy6 z2}UD%7lS@6Z;6pt=>Rd6bAGw@#p`Ohyo;Kb8gA@os^;|>anh#rN^mMwbDbl>$pgOH zXTa+)HQZBQDVZ-P#0ew%kLjB8qm8e0jwHfUU9e(~*~AVrdeiEocg;)d!`iDq$(k%O zsDarXydI+wZ*O_L8w;Us(;ULN4%=lqIyZXwcpqk^KzVjYp?C=GI`4=~sXS ze=eWxCT-=i7g7b9bO`A9PFl4GU6Y1b@k6dXgi0fLbp@iKJUkB}KY%y@8uq9k2j}yo zFPlsMr*{yD+9xlY8}PvPLqT^9=Y_(RqYDKLLA!4c&g_%(dH?Djgn))W;f#r0nn4O^ z;Hr<`G&=lji`w2;nwxmoAB2947)t|U!1J)_SS^RmpGP~cc4VcKi&7zX$Z*gFhIZGH zgxl7b?;;moOEsPUKtS;6hIJW2NCm!~rHxA?ti1a07rJ1)w__8zrJfhIpgZW&&HGSb z_Yk{AdcV)`1Hl=j_|$tru4$&Ix!?1zoQ;FMz(avH5LGA;P<>db#gIb~&;>|A$9o;f z;)}v1Q8#dCU$Ij{&|trc4DDmiB*F<>^6>xX+l zFYPKXeR^Pp(52Dtm<(oD4K1M0{_!Ox-A{I8mCCzV4}EjJfHd-(dZy84a1iHu{Tr40 zRLyhs4_ck4C%X&p1>-s{m|jjdxS=>hZC40#z!W8haK6-G?SR(|!{3{}h$A?eB5>~9 zx3e2wnNCI`Cmb4AHqTnvEtekk>%!H5d445W+n~7}p&^RCtm^9sV=!lNj}PY%EmM3F z?Z$Jm@I*05a!9`wClaK-Et)l*u$x~i$aRt})zuMZn`nKg$sAn#ti%bk{$F=Zxh3P) z$oF1re@jx-72cD*|LuwTPw%IoPXgaH2@2hu1}ouW9Goo+>fM@Ksvy4BA(Go*mUk>{ za#=EmB$xPu+7LdQ9eBiO&oi{_dc-vbq{Br)bTNfHki2R#J{f0lUr4uSaGPOLJo)QiS$9SB|)8x^|n^ z3h+Sxbxyvr$HK;6ZO?60&gP57q`TkuF<3iK&#r|~RH<`qo3`xz4&Np|&DSbcS@{tKAV-RUzyP$TtlGUTS3~?DE;TrqVJ;;W1^9ewErDHuMF9y{Xk6 zRDY9<1Pf*l=H}=7;{i?iO`pXVNyZz|PR;9dEb7$}z3*5xbw#O*kU1GlezD`a!kb6YzdR)-)l?i&C64fo2%Oa>cU$Zl(rke%?+8SZ&RoJ62bU}aGg`E z+^*nk2-mowCSSKe`P)vKjo`#fkru&E8<)5wlO`$1DaXe^9WLCuMXhlFZqY<=S8L?; zS(=V1A8?iv3Uu*yMdlTy5^6nl%D;KRPP_Lq=mkqI*#9D6IrUDgXA2|u7S~@hBNua} zw);nQG&wZFXPA?gf%|a?f96M!i|f&&@g#iIRKNLMi9_VXlv3mTXQhbA>)q|fn3H91 z<3@}Jtb$m%j}aJuJBfCkjoF>1uOn{nW1U@40r(zQM2!@?fy>&)hTA`6lU~Pm<_0JoBy z5;c>K05eH4Q^Uj&S(aPtkAXRFINpgS6W_$;9y(Qmi}kxw4dP^v=e_j&rU+JTkh0Lk z*5XohZE-nMLc6c{C&F~fAwgg4%O5^230oBbQ?TvwPp*inF zv^>~010Tr3qTVGtUVJ6E8^8v5?XjeDFYsPS6;Z3pF=s`0Iq#6x^pb;k0TMvKM_x-X z6gMu6A|2$B)-_1Y`rp@_;#Fbudn5ql>zZbJA5@eAzLZ~pBz^0nJOI2(Tkz|y?Hr5@gGu2q+2~lypLPyLO#CXvARq$LV0{ue$lnqcX4^j#(sQcELV@9 zcPuW20?_*)YFIyJFl3RtGbQqPBJ+I0F6-d8gqSo=&Dh+9IP4HUy|H}8qa1H6vpxN; zInvkn3W_8MhV?&^9dRiN>-%DBY0AiyDDfG>zi>=4^CaXD4@vMFuP#VV6oZP&p~N9a zU&G_RTu`Sq&Ry-)jCrG8CB#au?I}0Y1*DtIgv?jAw`HTM1*~|&r&b=@s#iJGg}G_x zApJ&{5v+p0NLg85I%w{V-2@$v6-U525I5Y*ND4`8t8vK`kR1uJ@K~& zKR*%ClRfkM*B`T{)wZgp`|Jv(OC2##W_jfS(D0M7bPFp#I=4GkKJze&p_$^5{P34T zYY)BNF+0xZZo|;gHrl!S%L^^j_x2P-2qLfTnxo^ORVPkd)V|~x9q46^Dadqs5LcWz zl%tmP;Ur_Ez1&`LO0!s@zL^Z`D3#iaQNZ~*KTag3R?FiJ9vtiNZ&-ivE^>pqsvR6u zebB;Uzl^*hOt$T0!L?LSa*Ii`8j)A5ERC)fvy>%BU=K2LPDT*Jyi|8jl#Ao6kpJK=Pe3bd(e<}9U)0St-uS(@RWzNJtnd=3 zQF(trS^L6;OZJ|SAZLlib$WqJTBVee5xM@Qo=34pPOodxcufwlTkAYALHCt)9ex2y z-g!oULUh$1PH#?j{+5{Vi`u#0OMe(l=D%vz5B3PP&B>L6WbS;zR&6c0j zM~8EWPndsyul@S{>&D|fBe*gJ9v<6&h{~F>&L--@IVOP=`?qhmG(79)bMqJg6(0&b zX{mttWic#5GWrVd_eeh9L&`RAN`?eT_9nfn3|~%jec2FPTe{g;xjo3)`SGYv3gGVA z8>e@zNd0J7v*R}#P9kh#Ag4J&3@1^vk)~~%osKaQ6g8kVxHtSIlL$MM-xC(n1ftts z>ufFNg>iFN&D8a~f`#WF3>6Th{LE=sq=QvPSX7SHT744nmvLHZT*vYm zUS15sgW}T_?;)JhZ|V8qfk&Mr7V1t2=~5>pz3jHSuA3=k!(BBmjEiaQrF|PIuPpPW zdg&*Vq~RE<{~JI5sf0RtstX0!z#Z{~MF_Y!i3FP*6N@$5;i~IKu4VqCBCc$cVG*PO zD@?#AlZcSD$kIERpT~O$RGvtGyEJ;$H}GkuYJvb>&CdI4VQR(s=ckA$nz2l&pa534 z=T3PEJv~YCCH1(|0{te7=wsPQKVo5w6xk{V2Z-8wP?oEC@=6{+no=L((&k&)i^ z=UHW#^u~sF-^WMYNP?)LBfN)+goS%!FJD%CYeHK%{nIicgu2g=q{sdTNO42ipS5)L z@oma_Uu@|Gda?;1&PA6GXPtsDmich9i$;V+F0`Ch(%$J|JA}v-*LXE_XNa8jQ#W1& z!?=1fc`z?xb#`YZaxG6JKw^VW^kKvS2#>TSri9l#D#6kygeS@in8x7$hyev1U{0N! zV)bN51<_~u^LvaTqKJIbnma0{0;;F=52Rr+PWS&WgQG}BX1W+F9%w#Do0UHVFsT^1 zFUm|;G3gTdhhj!3lDRmDT8H!q$Lby~GzaVCQC9qBa_>=#mVUPfH4BeJPMyV@>k;WuaVK=rUhDAQtp@|0a8sjqN9_|U2qte zDZ--Ec1xb|fEf8#dE!~{5`mxqjy8VaC0YfrJoam{jtP01r z!bB*Lv2U_-Pr)&cxA6c}S$>%I9&A{mgykRr4+~gw2Cr=4(!V9}kmw`PZ`BejH!M)a zKHuF)STq<4FDKG{FN?zF5j z>cSTX(POzPym@V^IumwIML!VE5=HTcC)DCj+TYR)eXhSPCS@2<2$p zJa2L+`?}fqe>LiYI`$x}M4>>Qq#S3ED$paG|F=mY2?Q&-!8$6X^aU7o?M^gXl+T%% z;MsBR5Bm5zt$W$St83&n6EiB}f`!~|h{%riqrsJOvj3{rZGG{FJm9e=TGEZyZg`PXOe*rcAX@6ZjF!70~~nw(6_=~-1%X{LgfdxOu-T07$r zFVQ3rrCht>K^092wzJdx?#)FOsy=z4>z6q6^{oDfxbBKp6(74aBn=VcNFYMHcm3t4 zlW>tIrc@<`&fHLuonP@%jXNWf#cV~Quyl+-6keF@ABQh?>%!udZm2c=?GcuCt=swS zW9@&aGA;Reyi5HNRfZ;kHqay9$4WBKDy1yS)hxQ~RyvbeRbn zLmvUUSx%D!J$s8vtyf@IYh1D&3thUKNemuPb@6}GENOW`TdNxp2o&Avr@X{W!YUs$ zUmh`uh=CQ5<~XxAe)qcANo<3wS;GI6W;3_{Y6siPIs@Hw#s5u%Oj=9qQtb-wy<3SPF2ofcYt$tVAc^JmP6?U2x;ZW|heKp)_^- zu#Jjg`>(b=iLE>2ovo)}tqCmQN-U1tcU0&qC_UqXV)ns&!W$^G*=HymxYeO%Q%;@HS43a$Z ztG!11PMnC`_`4L!iSXsjyGekRQGxs(kBViw$v~kryyPw&k#z837N7{xZn7@A*ZaG0 zj#gcYoVcts2TWumTKdf(~N( zIuF9D2#S=-eOWa$JMs9aQuETL@)PXIVq?-vw`0YH z&@?j+gIynyn6N*iNkEhAh>1ykJVC55HRruO(^NVU5eT*>9#^$qu@XB1^06hKNAe>kS`pqb;WH_Pz$*7 zBJex5){zwA5MdiXCYIauF?Bm@0@4^!3?wcKZ-udP69N|{Dh6+5^-2(`YX+`tU1_Lj zHJ$|gYM7!to@t2(NxFjkcZJMF`FB5+Zw6Rw2c=0%DqrE71l~fDG<27$3VQfYLZD{? z_q{np5W0O9_0ZMJ-t;TuzF!}h^GoWGwn_??XjWF@R=jju`(M#1WQ^?Ki)S6E0fM>TQt`>VMfIig!d~Z^GM9eEhMgqmBnt5X7xumAv!37@qu~XaQRg z90viZcJnbLP_-Ti%!`~F>di6holS!~l=g)#>=c=Xy>3i{$r@>jv>AS&W8sCVStHojB=hs-obdas4ExZj(xWzy zj@Ve)=~RxYxgMsu5s2WDEOxZeY#j%<3Uxd_0Z0{Az_}$ZUx4~m?lUBp4=(_$zFkqq zOiq^%Zx7`crDTpMBhk}#6URj#qyKbVLx}{ks+#Y+53V3^@N6f5@MPA!Yu;JNu+IjW zgW^o!%NJvu_n#o_$?7FOMxOJ-u7!$7MRNA)Yz(>gQ5Sm9^emDBn3-dlfasXHKi_2{ z>v15ZlubZS2&LS}0Gpm|8jlD5yIG|#phYIif&crS_Eg?4ZA$ z(TKQx^@X-;OLuDN2+eL6td+}jxd~#m?IQ}j*{meQ2dG|pO=fR7Qbty^Gm#=Cbu1U= ztk4N2qMYWfmaW(R>T%H5U|6A#A3DMjf~&=$jX>fc=^p+u5^-pAoQKik^Tupzx2`KS^PLlL?g>uD z0)rkXs0J2IB)&IA)ZX`M$~^VZ|DR92>l+?a(`$;y|KwJwYqmp~PD3@GflXMI{=v3K z6%mA?90^ircl$cgMU9>X`cSC8fIn6ZGacqwzHi`eCguao8o;M6w1F8{G~EV3vQgzm zq-?)`%!9~-%l|^0JtpkB0Gw~_*Pq1>SL#`(uA!SznTEcJh-I+a0|=Nz-x!wSY>4~N z*c-z6hDF?fzl^LCWe8UAY=KT+SfD!%EMI$1OOJJimmG068_p5Yq3+PRd5w$PxqCZU z2p7@Aw96Pj3AHPjEV-l@s8e#ADw6Ez_og9ea@yS?WUh4B;lJ?3uA=txb?kcgkwV@1y)@g<(LEXFs<}!t-ul#WWAL#b zmg9l>&kLrry_v+>UTa(B0L0z{2`52huEz!E^4+AZD+anB5oQBodY=fD z4&Sy`8DWz)jF8!t!L49BEGwI6;bf`oIN;C9QDfbbC^Fpc+nMGJHH6ackBgvEEi22q zG*u1^C_h1*!ud@voYIY0tgxv(_DA>phm&x2#4*|@tL-iZm`IEI#7X77e7E&JE{C+j z0Hxt}Zm3S3-;R=YQ)K-d+6Z#kJquDI4-i$=a$ukfZc-=Ef8a!MiebpI?|#Fp&6}T9 zYz_n@++S^BKDqAfiAkf~PrinFb2UFQD7SgDYG<;AZn?`YjX8}^04&o405k(a zgb8ArAL^I{l3XPXtt`7_P~E?hqO&TG9Sd>?p22D18vV$fiGQCUi8V9v+|#Ugik$Y7 z`T`!eCaK6U|41{dEKOp~biAY&nH+9zwNi*XZ5H2^C?q_1#* zM!zhs(`F0+Z_vx);C@YPMuEm0gsDtRSXpHWNE%{zPQm#>D=r~Q0pvYiKHmIKr~k(6 z(%CUlKtGg*CpHs-cm1YwLcU;=?uQ=K(2Z!AvjD26o*(+YXNvd5Ol^1QF7njZTL&Pe zuK{4EU|}W=VLb2vsGJ(6TJb79}9J+TZ&gI|K5nmZWVK~5F5(oIvk5VNx#Xt zWubwKE2ty^W!#j+3&oSF)=FsNBj-Sk!;v0A5~_=%^^v!H2n_kBqt6 z;o7{K8~BpCB^EW78+)E6-c&gQs$(OF)!+?qMs>A5MSs+kWGrt%q98cB<|BLp;XH%e z8fvJ0No#8hz{uQ{#zUCvIjr!tUoF$V3}G~guTMtO8=y`)ru3ViVnN-g=AULD>}PcN zlfq0n2oS#Wd2`})9(7|WE#qaw;AtE?4k65x!w%(mA@dGRv^Lntv?l_Zas?DeMd&iySh0O9B@&FgpOnXhso4WDm@fpl? z*4LZhT*kOeRLJ~qNy0Mv_go{kCkI&wc7i@=hSq;me)|?Tuo5+=DA|w{Te8bu zW~`@9hLI1)`*;V+6g)NS!}*Viv^~0db@z1K*=mV*Ha1pxuWBOyGuIjCq(;NzFIKQKR?Avz?RIRN*SeO^WQbiXORO)o5Lb>N z@H~R1@b}~_*Duk}W_*k$wD6@+W_^e1~Fr)1X$at3a+z)qjilfL5(JvV3z) zVk)?`uh9)G{wN#~x>P=wN-cZ?SjRd0?(w+t!<|K2}iLRlWA}4#2eR-sgRD+80mI5X1-HR)%hX zE{H4&fS`28Y^P+CX{A|3Anez9Q`Z;3Sm4AT#hj6zU@4~~ac|jsaR)n{1uzx|rz2Oi zcF=FX$`m*rGdLf2HyI&h28@&@>iC~CwPkTjoUPC7_)wvaLK53cV|2+`fSZKVEXyz% zcn{-;pH%j?XfhH8s|Da@CT0IdITTN2?vCPbeHv>NvdSkpDOj) zC#g?m2)VgcTzlUm`f_Ys;Mtn{fULroxePj0ed|J$LA^vzR;_=@ONx zS@fseu?^wcIYU@xOe%mGv5_oDMpKa$qJcd^Gl)s4nU&94cT77XTHvKLd{=Tu6`K9vMWjwggTRzSrCsG?_aQ7FTjUM1JWfqlL|H`ZQprU`+(-GBG3!zZJ7={4kK70Y1*BjBvbk@ z+%kPq`N`0mf4@hr85obi$mC3MhJTyJ6`!FHS2oFGCVT%LtDro~Z#82YCMI^r|IE@- zHzK5EIpy+2gbF0-Ia$M1A5RB{3v%4PHjM;);L82Tz+=Ufv156JEvd*gDp30O{n$vm z-eXKlHLwr|y_h2`*Keq<;4gTJ?-1)1^zggyr;{=1o^U9uycSjX{Mt`$pmwv58>jR- zcPw>74!hLf?_<=7WfN+L#0*5y2au)mWKnTkz>u}eVM|cOU|D*2_(8pz@~2Ns1MaN~ zIRsCJ^|Ym0N^o+K#`$0jQmA}djS6NhhvuVgz&l2ZmifRAA+Jo!^(G|z9V|mTVUdi z)lUjW2TAE)wDojK$D&yTosC~}#d%{~Zu53;8JI7;0WDRNd{V0K#2*RJr&AXN&l&qq z=lXpp$Ig&chrr=7DaOK-qOkq@^@ZQwn=u2nY6nkng35o<(uxgY96;mME04vcQjrBS z!VXOjplEyd~oGDbm?kqk{tt{yZcm5fh!Y59O`C%kZUu0a3jpRPmxV;)88J)%4P_;lD} zM&$Iy$l7z*fvVX=USA@FXQo|q`UW$9R(j|5#E+u7nV7xdBJv;)00rcK8;zX z+ZY^nDq)=`81#tD>D-Z(O_mwN^ozVEd$}T=i3OGQ%edMRk8j$guh_c zKdZcRHSl>563_&Q=JXLcJTmbYNx`|xWOpNAGEBk=t~VUO*#rQwNMBZ88KB=f^))5WmAKRGSYY39(&;LlVk+Vp8>$sH!AA1P3F%0&gN2!#YEEe z_)z&^>NJVuk$uyuzEY}K!_<-Nw!i=N3v%S&qvLDK-c6#G*8N1q98!7Ly}&vUNRKd) z;V~C)yVxGY+HTV@X;>sG+S#Sw`Exbz(&oxl5ec$v;VsG7Uxo63QX||CQ}g&n*_yQR zQgU6MU|5RrC2ESc+`OLO*Q{|t(?QdHC4I4#iTDPBEM zm>QVg%_R5cHSbJoaUw%F^H@AkwwM?;=+Bn-fmvmqA<~L53v$ew=39X}xze@0c{@-h zF}K~f?uLdtJ|E6hU1nNIJo&o$dVHHj9=pU7=LqeG>C=B!EE{{QHO}g#x(`=rUf=oa z-8`9#XmsddS?#FZQw{ zK%llYrokoIPYs07EYXkRboB*jH*klXKyo#Oe%arGtJECCJ_vnx3rZh|e!M~SILQm0*eiEN(2)D0i_ZN`^2vE;Y5 zf*Kq#D;vPla%2iBC4$|#_M5}1{>dp;l*V-Y7JhtNe&;_Ufw11Guop9LvMH}pP z*jhLve^BqH!V&l0kbz(aW5*fp#4ND0oo-%Ksys1w1_BguITigBjDX?pI$-yD`QIma z0&+{NksQ}6_8Pwe5?(p!jB2cE?fD1XZ>N}oYE!TK<{~3j2d-yS(sMR$YgV!AOS?#N zC-(`kD?@h%fU3lH&rsBKf6`}zxWZdLky>5C3--?bQEuOrq{Rjaep+!`?SJl!@%~qn zX*V{GO>e(%Tlq2kq9A;Q)b-%9ILaI&D=~I(_reD^JbY6evpYrC zxw?C<1CJZH^DX5b{*Cbh)Berx+rFZHrXV8|B!gvsg{j$^L%}qhr$k<~+&^wad0VIT zhpP3WDphEa)08*aOl4~plT0x-HvVR-5BiMF`kX>9I%^4x@^~CR<^hMIqN4zPJI3(W zp00Sq_4mbm2usv6>F8&8UEV7`cm6%?D=b6lc-Gkylv(6Dzhpf)SerX(x6LMh4`iTc zTMUy^+3-OuI(!3N)tgZ^=@d~nb{OZR*yuOZ3Z&yZw~OaY5R;%3Z@i-jbsFHe?WU@07?l*iK}>JH>!?70Gu`iW$q#yCL(%B zRKUC>k)-F(u*wUWoiq#kxm-JFG1<8zW6+9&A}zPhPdJAML@>G6$XP#TZ&P=`IpkM2LZ123-?=5bR_ZBOrJr zQ9;ucLb_K`+I^0Q0`7==k9lra*eOXeMt!n3C?<})e|I97CXhg{ybJD+YavI$g5S6Z z2J^-LR5XGQPD#&oX_GBZHSm>y9~6gxy3GZr|2M8_bJ_d2lB*Kf0_toJ7&c>QSrn#P zo5;XN?bw3js$`-Y5n2qT1{S@;s(!e$KR$DY1TRSHRr|mZ!#K;2M=R!IM zn7HA%OzZACeAuFvcdpJQE?Q^VJGUJ0?c(I{z_wiLkGbFulC4iBRc9z<_^LzRpBgmEfD{0m~&6SLuxQIX5QN0wP zt&jax?7E&sVXJek#bZ^#Eb0ItUu}6ct0WJ&59=9X0lqDDId|{Vv|#&s)nx|v=&-5j zlPBil9}j_%pC7dCAd`CFGC0=Q^0F`W z*4${o@UrCSSQFSR+_jm_5I(EM7T)N=G3uUGJ1$nJkFU=JGPb`3axOJ}Eh0DzAY5XJ z3Ox#7trCtoPV<4$ND2hyY`t%DD~!LPPhW1g>nz9Xa5v86guBA}0H`G_1x0C)__XXav>&aLEED&F z>5S2A_)oQvfpu4~O6YA{ob`@iGkp91G`v!1OuRuH45LV0v3z!qzJ6L~eIgir;w)>F za=hc2?+QaPqpVVjuBh0js17Ly7CK{t#}=;1WQts)ALC5|qDTQ*6h0d4PD6YTU0Ztm zPAY6RaISfE$rn}(I$u0J)V%`#i@>7{rkO=z#J7l~V7rL9Ws%60<%~JT#iocx`?DE6 zvXiRrQ$yJ9@5@`tPtbT;=FZRNt{|s&FBD37uTmYJ1X)rf;$%Pt*tS> zxwVX z9uz?OjCtnk75`ST`!km$XQ}-R8IyS@vsLWhLn;HX*DeQSuT*t z%|)W|+z2^ADSaoLE?PqNLE8J8A=*#UOW*h^oW z`^oFmW6Lj?BoerfPv|Ytslhwc*26eDwxQ{?tiEvmeKnSXU|V5S$rG6=1(_?q)1LX# z#AWZzblpTtFm5u->lQa>SzfsmJDmg0qpLE+W6s&c)aNR)CKDjU*B?V8w5Wcl@#c1S z_cF<3uf(K!Cs~M~a*8|{2f%qjr)_>q<{1cH!$kc}CIMUirXqiS;u$^wRvXus?myF0 zXrmh=QWA}a@aOLZX)x`pa*)`cx|qv+Kp+m&eHB##{=id`_;+ z(}f@p0ds*e=(932QxmMqCPl)2zV2Qo$!!iSJ|@krRFLLYXGguq`wAdkq*TJIBWMYJ zFfswAM8RhysG-Qo@rzXJ;XzwYqoke~1}A$BUPrp;zF${E`XENM7j6zQ;uCk|#aHW! z7Z^bfiM}A=L^06I7=swA{VzyF0@?^|>})9LIYUys?ydlFIu{l-TbVnI0j7y1;Z*!S zL0z8u)}Skxe8GIhu@3tt?)M~Xg1D+gU2~4S#c(42f((7u{1eZ3{hFbJKM;p6fk5y&J ze5jNn-zmB2_Z~1`QXGeU_ZkOY*~~~ z>}mV(0c0Y(q!7-t{^V|b7m3`6m7FWN0~ruQ)gqGGop9x|fVA0y!-np(nCN5w{^q|Y$2cLR)AFW=$wJI)d8==}vo z+El*-$m3@v)y=A~&hh_`rgM*Hy8q+;h+mRI$b_&fvgNc8Qi!=KjdEC;NVb~FDRa#E zs*C27iZaY0<nCd?$6Sf+?2hmrGP+@J3IasS=pk$n4pKcDyE^?JVGO*=~w ztzKCTM`}?}#saQU=DaP|!1gatczkpk&=d7b4govFWuk9#yonX&Oq^!htuhQ?vTL2R z?T3yezhT zTUW>+$VYwav&#Au&#pp_dpd0A`$fUGv(pV?YFeJjK|n&b*b`+^Qb=YzF8S0PIDI2> zeB;f~KD?&nFPkHtXOildxMAtIH<D$QSf)Ay~v;FXSRK=t2PkDq!H z{jv!Shc*{F*JDX$Az`z#tK5pNe4WIW5t%dbCDbPr;O~E_S?B2qXH?DSzbP-id_n5t z>PHH$3Zq}MDW$>xTBum-GnzaecH%0FM>oiJ^YwKzkMB2b*Q6plC(=giZ&``8DHUph zW*M65fXk1fJW9DdnDt9WrQvi%cP)_ihecGvo3nclg0eVHcD(fUo?p$o*0zYAN&e3{ zEfrnVQYz*5VCy2=h}*O?8=~Si*FhdLNLKqh24}Ob0CT`d?@`;|e?=~KwFMyv=txvq z`z*&+-88|6%3cdaVn1bQhMW0kgoP zk-)f`^|1n=^~uaXSx}kI@$WA zT9E(R6XZ$nN4kKKJ8P&)b0bQRX@9`t)$p>QJ=j_Hnvk4!cfOXmCv$z`=DGFZzOF;u zn%P=KLeRK&O8+?~i`>(K`4(EQn%{62V}Hey6QxwB_wO6O&2V0s&!n12z<)!GoP{jDnJ}fQ}^4(;@W8jv2>(YP{!oOml+baDsin|2c&Q1)J0h ze51yZ{%)Uh@$pSHToB@$_1;N-durkl*~VS!vx#Y(?9(==^P&qX#I1E`6@(WEEYN6Y zltG~^4h9xIAVMBT?hPJsZdsoMpKtCKv&cPBEl%orVn$G{3eaq$`zHvi>_)y|Fj~L| z*%`JlJCi}oyS(X=cG>rhk}4GkyQ`M0zl-CGfM|4#I2z`q;_iK|Az+%(M^#}Ir8mCB z2JjbB!5gEKv%t{GM8tiFqlrCmsyc4Ub4=ix!h}f~-JfiM@(Es8N@YVWv=#ZKt7eI9 zAbAPb|M&Xy2Xd+e=%5s{w{9y=5iaFM4$(()0>HL$lyYnkY(444#OP-3^uuD4-%R%Oes&3+B0c z_|&0|Gx1-p6sJ8eL*~D=1b<9ZDyBlNpM+RRilkYeXkp(itf5cQi9uv{dj$EE-R1thROQ24(c*ggd33#ddtjy4RBRWyZ(&Xa2trS184f;jE}0m+RpYAb znYiu^u1d|JyN=Jg0flR@c0@jUv&4KmW3aidFmPus7$JBSvs?6v<6!+8<+YLGq}%v~URG9@ zlw9oY|Clg^yom_k>$PR3O&?6&l!* zVTofb5D()i&$ioneou7!3{>xn#l4u08)?aUW}bj1pT_Ijw9f z?Sr&UMc{0n9!E+D2&BGt-}9nWR?G;EPLQ4S%W+hCY)HRW1t3WKY%YLyGkUydl@%f|jwM^#n0Us+!8F}M_0qwq zO(B4F$f6!k0#fwNrIHZ$hRAV7=aZThKS38yw{BK;tnZG$fgjH1y#4do%G&8Lf*m~9 z-FKrrnpnBs9X-j5ny-;OYAavU?QAWg$P(t`wA)L`g8-s55PL@G9ZJA=-1B{TUb!{af%B;h5x zar>2nfWNZX-2)mfc)>C;hn8mD`LSxA#}TXt^RpM(X3bwC$9p#2BgV@%Q*`5Q|Jrz= z{8IOnbWxhqzhsPIfh?Y+W>DaMV)>|h{o?MZACA%UXU&>Vx#VkJSITSf8;xH2ajOP$ zowU(nKI*;m$z5Qo+x(l@RX=^QvkN_`a8Wf+@u*sZf7r|40Mj>>s~y=_+emSA!!W*# z-dk;^C0^jqgds~3@)hargjAv#7PJsA6F|~W%kQ#~7I6QY)qk-?#*>h7`xH;Wo;p;q z4_bGk=*BO0yR|GA&NV{)ZCiiT~$aY8YcF?Qon40;Va0K?h%V=j(Kn9UL*SA&_jJ zTKDi(`zmYBGD5hRq_^lhc#s`PUwWw$zA&!K6_&!kdENo9rGIgnkhOGs-bR3SbkEk# z=M0gk9$>)*S_&jGAZcMK^yc23Z{PcOrySNLJkw{p)bTr_luEz94;L<=V2H9F$GyF~ zj+b2Uv?bkc)>TcJI z4OUuUj${?xoLco+-R=+A@*E`hDn%;3 z8-?_1s>xi0zWgRGP5J-KFdU)r7uUhOnB^3##mb-$`& zD5to%y!#?6?rp}WsGo?V@V&e6N}G=hVq=l>%R8XY3_T|szBK|_{( zYUgWmqwd$!CT71`moY+*kxaDsAJ~j*sAnEswkof@WFn&0kF(gb|GzMk@U6AZJ2lMv z9^&u`sY0ydV31WCKs@E0GbxBrz4=`z({g_9zXULxFSo&Iz&f2zaIy_2*FpzY|C0Vi zEiHMkS2rSsKh9{AHRQej_Kh$2Z7wvwkkaJ(Oq66jfbC#nux-$cA?R-|QZeq36~GTj zTLW*h6wQOkioeCG51jNG-D2qqhW(HMHtS$9@#mzu^Uz-@ETVTRc^cw`Ak|#*v)lsfO=sp*16Ot@9HVBWBmOmQo__)R5)bvaycVUH535 znvuIrE{BzspWU=K<~YeI5+1Alpje1p7k4BVY7HHt-QN5(lx5^6L4P|stF;K0!f;BC zQji+R!ld-vAHYpYQk07-XX89Ft1K{kfuieZzYbdvHS!pM!7&_J!@dg&`U+e0Z29psg6%FWJ6QcOGv9Z88oqf zhRYQ}y1;%Xh(s0ujZYrgno-#d@y*Hct}RPnJG%Xi_nekVTGHoNF z#R=|iX!4(ZYhuENAF#K<8g^*qQ|Q&FTxzmz>w@B=@_xJv<0xf&q6rmf91{lMh1E#S|fMfrTt!3Eb_eAyWs))|Gz8Af3+J( zApZr&RA{rq$5fD<8|5tDf+(rd;*=kqtkOJ43zK*<^f_pGE}Rb_`tvNg=U`(&;eK?rqW%@S+`>%ysAuv$gCrRnYctAJ&wGux8>-in} z(hHtl)LKot`@Qe%J|dx1kkz`Rm=1t+P6xM#!_Kswe^qM36GV-=(2<3UiME5w>5VJ8 zf^hT2g>-j{!y&rU6_Duek%QA}-rJA*4?4CG*6hOa3{r=o(k!pjeFlA2K!YY&QB0}T zZJv*?saH8F*GD0lymAfY?F;{;5~paj0!&K zv?HD!nw0wRu&oCw;ZrHwKT^In)n3y{=Z0T?f&FXqbmbnTS;SVLP37z9)+KkrYVT-s zD)CoCPP~M^G=$o0iwwqJ8dEg7n6cEm!{nP{bt!803)VwHbV6fzn15%S_2=;102hPy z(sG~^s_$vpVPvhgEKG*`H7#Ek!#W9FnSSvUtYK*${8LEVaf4XZr_CXZD=|qP{0J7j zsG2gUOF2B!QrQx|=;G#lX*gx!)UC_vmUdOH+LlR(vC^B9{r7?#GSe(cQ^S1?^ZWDC zKD}H_lsZ6`x6Q^;-Ukw^b--?E-rhWps+HN00PhG?FLXNCvSi%_Z+DW5T|NwBidZ@x zR4ZH@xh88;@ZQv3nb8T=P%T6=^RKXeO`o0iP>KiLxV079?`t$J6FV4;MOg>fu!n+2 zFI!jgJHU{IS0nE`DU13yS;0yiX#IuUbP0?v}QQD&YDky$E?JY2!*hUu?o+Y2oq4j_FW{XoPMSlp#F4|y#ZmDGTsK45; zaj|D5db@GwR^_dR$D96P{63je_++(w@&Os4OPc#-cPH$qpqX(QQIaxPf)xC-o}%zS zRS7`+bf26fB%=}o!Qdriq-A7*9$EvZ0YYr!Dn9Nemy>>^n=Oq6)Y%ECUt$fN>}FEC zm_8gJR^2v#=CY1t6fd-~hbgfcC=@1R=+KEc zKm!Q;&zqD-HAzJ5r<~Tqrine%=YNf!_sZQN9?Z6cknXB`N)N#QO>-bkS)c$S#I7P2 zivPob?e1CmK3>Ff5eB@T>>5^m)sk8pnElq$TfaN1MBb|@mbX2>7L^k{_q_PHv_4WA zV&A@6Y`IXODJvcefI@ozltWN3L_Q!ec&)|UwU$E}gNF?;NkAc zh59=C!pw5zSQ8XtQmnqM+e1pP5vSH?uP3!3n5{&~c4uRN6}omB61KJ!F}i#eLr0fAkoSb-pfege-*v)z60clnFB%g zvW}z?y*3IMv@Fen@YjXO=8DMGZ7Bzqf+_?y1SZlB13rZ+uYd$ZO-LSux!o#S^mN4ZVG zVc7KYCoHcSBs1#Nj!Y27n_Ium5NuNezRs*BVpIPGJuflocKsDSS`8tyaHK`_(|_R}!AT#DMLmt~=3{#^= zU`U;v0@B4NYYZ)-7geISaWolwdf;s6EU=`XV7N5;UG*~lH?V%F)+eOiYiBHX?R82^ zV4ZSUcf{gw4Hj^Kx4jVHPo`J-Rd}Xw*521QKLcJVM3)2<)2qbbe*5;gI}h6 zb0T{HBZp&x@$mJso4`W(AOCdN?_?u>^mbkA`rJ!>SidBl{P~_F27DAhC@(StKFRL& z117;?FWr%CEAx$ADq(XQV6*n^M)R+tJQyB*w4}aH3HRat&X3kD4ru7IiQ;ORyI}VJ z{A!xd|CHi^CeCiuU@=<{qnB3Yx$?0gOtp3?n9Q={ml-g&&bT!iJjhO5CiX4k#XJW0 z@xi94XEi5clRNIFVrc_5N!PzX378&}V-V}EJ*cOtL3Su$HsNJ=$hjFzl!TN=|7Zso zE@jX2PnSCjIj^N-15P9!Rxa!CNJ4_hO4Rfx3cCg2X6GPl4P^6gcjo)b`8t;=-22k9)u-y zqGl-g`-VVM(%t?Qo9RI^GEgau|Ha$d+y2sA4H?EkZrj5N%*T3lX3+XFc z2;C=HKHDcFCgPbKVkZPn%l#11bIUThYhP+o$0?#8Db|vCK!w!s_N!n#dZV}55J=-u zkYY=xJR1-X23+>=0_b1yu8;6P&&CJ|=~YnFGzj2UjX{v}#HBOxjXP|ozyhe?rejf> zQh!5vu%oIow?1fbBdlh6czggS{_c1U{cTQf2U#a%Q+7P6?&7$y?p{3e@uy%3g&5d* z?(%rMue*YTg6;RDN>z&&kngLSvc1KYFD_}yCTJbcHC${Mu8I7f{YSf{2BR|$X=o|~ zxgP}3>VD!kxC3_I=g9INirH9zGsTPX~G0~TVQNN)9 z%=)`_LNJE`>O2D~Ep*O_rljfQ4-mjYXgvv70z8p=|An})%s=Odc0hUiFWEAw&DHst zAz{dg0hM}vhlQ1mIfNIxgb^0)tL4jM&VW@!xzvAuehMn@7&_+8K|sXGwuD-FXa1U- zy&8l$$70Ou#g;2NbOG`1xPe`&VH}{qEQd{%x@miY`T0$cjM5;Ld&>pne~0t}lD_{Y zzPyoC$$)z8gNQnG!7_#*RB?P#&GQV1#CV!Duxv0)u7)~eCXDT6rSUgvr%A=-)b~SGT8%9stR5b%h$o-kC}^3j($uezUu>A~ zIC~5~vQ99K{aKdLdq^X5?96e-9ETNt7T_JPc;UoU&0Mt0zNZC{g&}+a?nKtW&93!@ zp?m0c?n~OAt?$5See}+PdZj|qd5q9a7(@+-EV>lLdCi7@3w36YN^4-^AKD4>X=G9i zAj-Y=%PPEP*siiUZf@lFOAwXIneE+a^UQ2;)t(eDcCg1hRWE`%5T6So_G{?Ab$t!yHv`-WSvGksCuTHbO*UNp3HXmhB zYFG{Vciqe>ezix>c5v?|z1B)7e0}g{-wGXEOJA$q+%7+W>ufv@AP`_(CM7or!~Di_ zmA(A*l6K+S*TUnt4N8l4LVf$UR#FH#Y2B@sCq&QC_hhQv+9_PJ{W4dEgcrPgSwmw(H7s6?8~+hh>z?2UTAIJi?Yvjn+?Bii^Fm2G z+NpW5v4y|!4}@TLO`Dxqk0?xgfg@+D{d`tf{^g4sXNQsAy6`MK#XWM}8qW+KJ!9Ce zYVz<1YpAQS{-sLTa(P`G#96i=1bc*cDt2w|!9!MtwPT$X*{BDM^{mXL{>f0u$yU*o zKie&*0N%A(-z=J*;)xT9ry_{koY9EIz3!W=#uS#-({h#j|G6A$<1kyh+Aw`t#_xueH!(8*|#p>4ywC>r~o!lKG-PSD}VEW&XB)>N( zI6`}mrJt`+9PeD7?#3?jq9;4(y2&NFEMfF$t*kY#aokV&x^Pi%GV5HJ^JuX(NOuWS~n4nOvA!H)h=C7<;Wu z_74h_4S01FwDUp6P5DJI9*>1nG8esSPPkG*3VfFL`8(%GxT;ZJ! z4=?iMo&WtkVlv4-Uy7>qaOjoKa3`@cg7?mfucU8^2a$a~$K(JG&DLlM3ARm$P-#&E zW0m{6{YU-qEO@#HnCKsnk>T4OWoIHMTKJe(R4QzE-vh%_K1bCHR&{F?U$`a&9Hb(S zGpa`dQwt9T)Q6mk-UyX^$|?NKK7{W8rX{PS#ECG{Z8M(=6=kfKV-h&J%Zd-tIZ>CS zd0$ie^>Mf{WP5FS98~u?hfFh6qL>VGvTToL`J^Y35^m-gVB{inCPpL=FXPeqXE$l| z^`cmIHCrxJwG>0moDbY;A(4AF~XXQtTrRpziJ9^W_HrGlzo(!sP+iX0|th610RGiSbG25Z}!R*==i0cobP8A z&fcNz&n!G?wJYAMIOD2NdgfAZ<`vzpqpd{ukxf?~~<^Fn%0zAH-^$Z1;x zCxJ#W3@9=V_1o!CF=9S$raX&VO?VAyc)p2z?14&;|H-Q2x~!c!vrVtbSh;**fTuf$ z*(0I}(KsGwZ78q6cssirmvixGIIR=JP_(Qud+sSx3m@H|C{)46BOf96;blQsd3s3? z5QP>{y7iLOK|skww@T#p*{GkJRhkywU!;8MI51S3>Wq}Vjx~xr6z-X9$dDK>rq+LW zgwzn>gZ~bpCHglCKHopdR<4N#aT_|er0Mn{1?-~Whl=e!lv%3p# zH)#73WMw3ADa`?ZMde);@Hg_O&xYsjd@8}n**tN*as2iwum9zPW>cdIm6_g>Z;l8z zu-bNdrtD=a1H!9c8JjemUklD@3BM{w?Lz-yG69{V1?sKkC5*JFtV+JJp7cLXAe;0) zX^)CStS}XkpAO=Je`e+VsTK9HbP`+r0{hQe;XFMZn^> zY>b=FPo?KJ|7Bs*semV!Q1AT8j8CfJHultVg5Abv7v4oZ|0MZ9UkQ(!Jb$&o)yB>T zqoSgM3E%vH9eaDNLg)E~6T#7bQNfi>JM-~|lU&ETvdV%VzR)=GeVX_yR|XkqKp68k zJ|&POJ$^n+qXp=!>1BUL{!J%T&RKWAt3KTnRb7AOw3&O;;b@0VAcnY z)RuekPwSW1j7lQ^wy$9W0|Qbu0q-P-`=7#VW)&g@B!OhKX~t89Jr2eB*K_~J2hr-; z=Z(n&ET|m(zU%LZlUW9~#g;PfOWeZ+5Bh-xW6rfTCx9?1m_k|WvK4v8Yx96+3qZP~ zz?{Z!TA6%6!@#i^t77t%R}$l2g4}dO+hCton^zx^5d8S1_9EYi-v!|+k#lq3wV17S7X?SW|i#mKGoqLtMZ6z0YB^4}O* z+SA2%+$c{RbF<2naSw@R;_Kebyfp+G#CE~*F0yGg)pWb zO1fv7WSTf|d}1tnuNrBruXEiQ1i2)(?yxzMc6EX`u6`Rw*ib1OID(4$s4S#f;KYU& z^7u-v;P?m!T{if)YuMTXkV)3X)kseJ6m4^dfQ|jbr?`j@T%N@l^OzP453*R(jV^-OsWMsz^-FX>%f%=$F{pYh27<6|KP$Xb1Emlmi01<)2UzL)a!o2!URhN`kDk0xltPCp0UJXyVDIxK3?& z(55E)<4Epr@6FF7(+3FsB8rqnGk^%JneJieVZ8t%YUCA2o&f{_e1P-`6v9+s94xpl z(XNF!>63+Qp9pK5`}_Wk?HxYd`}iK#=O8!Y@XBBMi67o=Z}oK!5u4#KrYi_q902VG zz^EAWs)zTh{d?O{=KBv^<$e?Gc@h3B2*p<_*C!QL~e8$Uaz zfZkd@bJz;>w6`8&F+x(Re+W6w6eQ*@tC4aOikDWi5R#K_29t$^bDdaJk_TPlrykG} z6{NW)P@g-TtMagVg_eLp&_}4^q~hX2SKu22gfo4J7ZgQxAqGD$ntdhy{kq>pIq{|O z59peS<-)7J56LvrsroCBH%SPm7%J{8(8}L&bPlJ1N4LNd$~zW!yGZ<>>OcLW^7;BV zfO@EaCmw__?n-N`U&YJbNVdnog!8DX#$IwC9TJL#nG($+#R*dXK%N|bgglmnTpYRq zO-;);jiH`+Clk;aOFrY2KoXaw+K3QNFyrF$M0ye^d&>b!r(X(>u9tm%Uy}RqTQU+7 z|Eqcr6L1;pNn#KJ3^yZ1HjekM6_oB_YMD|YWHD#4KvAj-I0=0=TS(}mskJ`j;@{gt zp1#pzv5iLiJSyQ;a~U_f89dvjAQ6jGl?p;2AD0GR5*{g83v1MjZAw$fv# z!RUH6k05a`c6$C_GF;Z+{`jFQ=>dm343hqmzTbKT0lz71(ha#^=hF`b>NHfN$2s_J z;1Pp}dKD%|^R~w&s3lZ!kik?aqALFnwRk_CX;N~l-V!a+mi8)bAWX2X+q}V?Rjg>* zdh(#z1esE=SsCJMmTk<7^FKP_kTl_+#D?;{XOsJmx1ra9eMg%-BzB2t%1G-=lUw!x z{euQjOj;k|IiQ^6OcNxffnzY$WB8wZ(hr!mtSJ?2k1(PZ=@wtqfN4_(E(?*t(oL&( z0WE~|M4D%RXRe^LS9(FPJLS(_efx9n8uw!4%wKFQy!{Gi^)E2na|%jYxa(KpQ_?c+ z&}A!UDMw^ERH>tn`fxs5-%vX1=_Y46P>r`qJ^46fIIV*b>-LPkB}qO(Xqy;VA~C%ITeL)&^^q zL+*W-ludcq9{`KwKX}M(to_aL*;!kfiKxl2)$nmFqUb)KE*O4MOtQe(z+nLJiLgG{ zU9;*tTpLp85q)BrYh#l*KvluZ1tWMfeGvyc{7qLNSErp4Ai$44TwQPu9sfmwK3^~h zq*@hG{|^yJj+S-LGJ%;aY7AH}f2Aqt;bMc!fFkYg3fObxx3vBMo6SIC915 zm}jn8X7sQ2q5vI}qcB`PXcw+{^|a$mCO>sln`a&7Ht!>}iFMv?zKM_jxa?muYt!jK z)MShG{T;#Rz3p|+IAozK*;r&Z#>=O5 zDLikp>@+Ua*qM%kfw9E%POfMeuPHyoS=&`p0O zoCFK-c>-AXYGyb6j}SbQ)b9L}YVw*Up#4cthJHNVG;3L3gDK<&>{qieOmA`t>2CjZ zH~Nre=*lqHv12jKVPXV24tSuxRoXPc2>ws<=C)R$aEJR}V!lIDQYjhvtFtk|BEe^7S` z($$uCfoj7PA&CJ}J%q}*D<`Z!0h$pMSUtI-90~~f ztaU)Rc^fm|GEdn8<3TNQk^cj%aH+5tx-h)(L!<`pprw1AW6+ahFBK zAo1tm!kYSuUKwOn35!^WN2&wpOIdid75cTTm-p4(d?gZDL0nI+@BBoD?Lm8KxF`gq zQ2<8Y<3#U`7yH=Im+5b;{y6Y7gjMsck~mQ$_(e|PZ3O*)DCVhbwAsoSt)l5}QJJf0 zmTz43)F*O+$IFk%!YHUvs8^PTv6l@TOqN*lA0>fEePcjnCpGsb-jjBIJ_;J=pM=3U zW7^Spz@{nlXT83o6H5wUp$vQ!d2Z6m9mN)dk`Ce|V20&<1Narn%}FR;PFPW=KmsrF z!G-PudG%tmXlJZ0RdD+6}ub7Sv+L4oH)Ag!JNo1F;hZ`JQm?y}GcB0!S=+f(RyA zh`?|#4e*#{uM6v2)%=JEj9B{JacyhEh`S+awz})$XoGLk9v0g+VCVbGr?mSHEN`&RBUILh-(+~Y;9+Fwa8 zb0C==4q=dc#)K{2v^i{dxv$?Q+#ma%+7Db?j-!I#0WWTQD5DlXUj5(whn9{)X}@Bi z_Ri2nLVaLdN1A0ZxG|B|@G34S7p0n_SLU=mZGo%2W@H5~_w~E?Q@Ig65zq-5aljFu za~NMrLC$@;Q*%Yzh_!i}Bi?r-T9R3u^?f0gN`$EKU=tCQ!hxhdmt(?&mFL=uZ?f$Q zPi6fR(=&OjB2v2~Y#N`mNjvX0h#r=FfFRm++tz&v^de51QK@N90n?MO?1T!W0i>Ie zqUmj_>yNu^7X}otGGl@#Q-j$j@My~>^W1dVUip&3+baZpek6RNZ)%Fr9J%_A4%nXj z0V8hf7sds+aP=Pz0>HBY#rHcV%jL;?)VmC4K#^~BkJ@hc^c`&s021+(9d3o-(ZQi$ zHxO}r5#@6=+{+@Z%Gj&HV+QnDLxG&RR^T&g2&!&1%8IeISs#9PxW1dTcY_z7@7@g1I2`xRq~qgt5FMwbZoK-w=jFvy zA&qHcW$GYLJe&5so=PWh%4(ZK%3p8YI2nuNw=7=c81$c~UGsBDNUe2S#j{L8(~0Nn zA)&N577>gf{2NIT%#CBKrzm#(&e1DkPIX6r)l*DXBIEXe47&8oxbOdJDu zPqL(4*wr%wCy(Z{Of>;Av(zwT<>>1ELOd(0{OF}8xYE~=1Co($n8l&bQZn{+SolKV z$lL72~QWSbbFKT{mNkHq_TGQmY#(vA*6<9N8XUCfKG0d`^Q)1>c zM}5n-HPIgQf}6-|!&nW4;@(gy;M0imJIJUT(2m;jQY0(GDZ%gruX^_3Nf9q?{R;Lp z`2u>K-S;l=(-Qq|rE5*lY}3*FWrEL_D?COTuB&AEazP++LMvV1qg;dJpy1}& z!@1X-SX^VX8~B6MvyGB=+a0YtDJ4@g9Z^4a*Ku?TjdN>RnXWfT>b#}-zD`qqqJky`&{fnQBSDwlCPM$ywLBKS zRB$ZJ8g=t5Mo5Etzocm|SCJ0Z?r~TMFb3pq{|KqIZD&FXT*-TYTxm?vuX%O7qUqYb zqhaw=SpZZHa?G|A?~t1Vm}vo18)y9E=WWH?)e$Bo2>pwkFf$NrK53EVae4T?hX%iy`UtNDql&TEn44t^9er5++lqfm{b$6^f>$8c@tHoP>0QM(TfVfy zY~wu*SqOegfQ^ZWGqI9=ISAtnU}Gp79WLkOn(K`uc&Hy)!f_t-lc>NG*)u&F-0RKU z!1LDcoJk)J?SEI4wh7$14qy{PH+GqJiY4V`61m$ay`w^U9?^XK$X z$1ejY0O&qIa;*>$*VU)t$jAI#I_S_nqpZH~FQ~_9RN*^i$SpNtF;xwzR0PTiu$6VB zAutU+X>fPLgxxHqN04Z=LE%#x6T#(7965-@-`kNGJF1G5-VB;h|CqN8Ch z#FnV>joh7na|15~%vdGimd=o(-}VlRc*Dy+1_L9(#oJzAvMWyb>DJ0mv+kvj*}({)TCh)$pkKns>7Ney$USLx zgT9-l;B@O@&z=5kZ5^Br*n6_(am^!-7Owl1s}Ew_oSzk2R!`R@E(h070YP^kuXTeV zNKFJ8HlDzqZNd;6pj@y=dK2N?d(RFy-k9v-T#WcJ#ouh(8&aaS}{%hpl`0ODMmoj#0=aCL+6XZe|x_@Y92rRjo ztI_HDN|Ye(JzyybdrEs#!y2XwnlJ5!WF;md3+MvD(~0hiRsjcKQUNMe@FPN<`ffK) zN1d-n^VpSl?g^~^#t8-%#Ay>*R!=Ul;3w%S(Q_*)5&UCy70T5?n0q_im#NO9Ez!pl zzF&X|6ZjNTF)3(e_{i50ucn~YT*~Dacc^c!Xk$J@595H*B5cBYVnk2k?CwoG+SUzY z=DpeSdv0dzE7S@lfKE4fgAl6_`GktR>cMm!5sqqLjdCn1fNiF&T+lr&iz$D zLeF}UYhbH)QpmTBztMeSZE26H7D7LTARsfX()6Vi&K(P?mKMkG31f)l4x0R~ZW+ zTl;bU(7N?J%cTf$k#(@`l#kbw<4Nma@?Q)T)LxiG!^z?8!yn#$bL@KkVAXH?w+_-JIDGETdh~A)C=K~3sdr{!Hz?Nr zWVHQR-HOVpf(H8-HNnpwBPFdP4UR>CR+W%(hjG>3KLo^A0DmPx9Lh-vb1|gJ{=%|j zU>dHdfhUvv&p!xJiC!;2fD@F4AOThP@x?6u*PW4y77s0%b3(;qS4mH9uedC}t$^bh%QG=itg}xiZu5@a)xb90INJe5Q12V;fgV zaT;jgm%ZyB+`lKRmRr7|mR>cyqTrpKSTBW?L7u_HpO>Q|94Iy35<&$e%Xm`!i!rUe z#j^GoJUJd^z>~$}@bOqoqFCT=6xrZe@g2A@c*&pyzVaWUT`(z6RagjAGr|^^`jET{ zLU^UCsV4^!$}6oDzexbofqW3!;a!IRgT#MAl>$wEn>Pf|bB*v?{@&9Gch6(2Yh>f$ ztK(NtoRguvWJ3`g0VZV+kIg8dZhQ`j?C2llT^uzt!8 z6yZ&7UJb%bIBZ0L1mFO*wShZ$@~@Lp{?c%3c9swNHWYt;&wtxTwz_p&hL1*0m|jcE zM;?Wb0c73*h_Jr%J5wHbE-;5*T{8ag<4MR+FiL3Nm6y*piF0A6eQM~n>SDRr?*m`` z{Z$6pBdL4hWI<>|s4CS8O*f{B{U4gnJRIu%fB!>@<0wXGN=5ULjD(?RD8winvQCyr zOh~ru`x0WTootQl(qQbyl4Ur;$TpG?lR-inW5~Y$UcT4$yRQDJtA%Oi{d&Hh_kBNZ zlZefzh568xoc%8q`yTGcvJSw7Mz@wT_=4cY+6%*ccx97XVA|jzv&jFEjfb zdmApBw~kD=uz3XB3N^qs!~>cdD*l;ShtP@pUf7m_9N1zN|$% zX1V?5iQeN+zO8`(_3C!1uq`vI7Hs*bA{Q4!mw$EN# z+fHCP$oxu2nVJsE`?7uth~!w6DrS^3O85wRSh98L2r7ZpT|;zo(xsj?aQZ+b+Blq7 znAoBO^0sc()>{Y9gq)E#VXLfyP~3k-8wy_HVBLl|xqvOWr4IPgrQbt1e%TI16XA17 ztH0O&3Uhq;PwReq>xQXjLCT*t&Q~pmSpDFi3$(UCr|qCBUDU%l^0o>W+RMG_S9FMx zX&yJ|?-kw+!9flFMd&CST>fEmo+x?KY2Zxnf>(8YtFOC{LZadO#jlv>BV~#c5myRF z-ZHwPHB<{SD=u7IWU;cWOV7D=WsVarDKOUU$rB+n6PsjT#Z$aEtvg@{feo!pAJi1b z{Q9{Uj%R)U(4v|{-bkp|z?@a++TFe4P{^x)-#*y~7A57;9Lnc;2_7|)TJctUw96ET zcUGm0M*i0VSm=vqEhdd2MMS>L!0nN?+K7FZ(M}kx?)G?2Ab38TxhORJB$S_A?X=zh zxo7L9GLcb}-0ciI!RH}8bJMkP>EPYaC_UhCee+_DrE{Z=1f0GNzx=*b5_JZ18GzBr zo?&w-0!7XH)K|CG_j3Za>18v3ihiY+Ie9P}dVF{|pj}r_FnkkkH!`A~l3+8pPGIa@ znr}9jKHLf2VU4zFzg~FqWn|dCDP8}Ho-%asio^WOO`*;@R>Tc3F)feT9v4&)_cP^a z-A;8Y?fB|Fn`NA8quZ7a2>R>57V(g@(@E!qqQk4j|;$MRY>|b|`bQmty$8(JQ=i8Fqnh$@~D$+w|4wCV`&qx>khTP~w zIM{(_|LQyWU`#(`EwE+v{hOtU+ebUkJ8N^wtclPq2|p3z@r{|m183ZJ z#bH^_?zevic(FW}{N@F!ElV@%?ji(}`OBiKp1pmO-LRjW6AS`CMA_o2GyC1$jzY{X zGtSVNt$*<%w*s0~Gg6JRGi9P|f>wyn8H@8w8{-q3^I|?$?Zj((q|F9k%gFxw9~isQukMxM_9=kM~5M8sG*_4ElOV`lCnBH*S-DQZGTb5V*+Fb z51x;D1NXE_;rCZiG-@`P6z5APA0FMesVK-=bdjW08(^^>ieNfL@F9HyTP z<>Igv2k#9v%{2`@VAD9ip`n8idY$>_W+I$lD$pVG231!6tbO|v9%1n)B^K8cu!c>x zv1e#hQnwAV9+iTBL*fk75RQ|`1+F%EVJz3PGBz9+rSb;FT-bQrd3QG8AvzaSA}(L! z#tdG7Kg)Qg;*x-*m0P<6K-&aCwM$T(B$zB9>@NhkJ4Hn8$JxMe!4U?z3{G9BycPS= zvK?&E;p&lN1((%z9EaB7KjLlFnR^5g4;|EelIQumPsg~kQ7Rw&D@RR2lqq%PJcf$# zLxkVPjv3ExcQEnzrxwxpKMT(?jIKKeEpzvvj)_VLA48-S$BmscHpL(sz-`;GvPvin zCxnpXmQd^aS%#3zHfMugGm3p`bzJt!WsN7fx~4$re{3%pgK*moX`m+}`hj3)nwFr> zW`qG>v)22faQrv3a5=Ec0J!)IaC`Ca*k6qz|J>gl63T@qd7Q=m?tQ3Q+YH*3mIRy%;x33_eM%9jy-}LeDPz-oJFJ&lqt|2 z^aNvnQDyHIg^LpDC>9wf=|x+oTR?_-!0!6sOU7nS(9UU*tNE0F!SAQ>4w`4zos=&j z;^d5bzVN<7E|y;6%SCi*4{@;Y(t=QE9p9l1ym1IK4g*F09EQyJjP2X0<3Nb4@>H1D1?|JEQXB5l z(wEE38kc|2R13@v3Pj>PjvM?<5VV*nP8)L)G#*&l+5@$^-Amg&hD(_!dKAy+In8IR ztqF!I=vi@l01#BGr106?6I9kcx`(4Xbd_~MwJwi5^3E{qK;&TDn*C;+30?24_`C@^ z%Dn~*ktLF-L}%uLN9~yFg$zP@?vJt(Vx?-1?%Q+dSNEwqE%hTK-rjX)Ia$^mZW&52 z1>H(%DMc&hguJgCbk&25(L}t&>rgvj*x!wZ(a4(#W7qqaA`VpN$Cq|PMtqCOjZFa= z*-P1-8&4LY?#{2yt7pP&em)+%FA%R0i8~g1N2l@+TV7bWnw)wp$8?-s)fL;WaF!tjoZ%lJa1l#L_Ipr z{8w6`pI);}&#q9g_TN2Vg#Z?-zD%hM9-j-TLIzKQnF@V`a&9lz4;q|Y48EIW(9bk<5QLSJfEwbG~9(@#`;+Ny;N;{W3^*7c}%m1OG z)##*(WnUpiD1A}JX5x8+Yhzo(R2H-w(QZK+E6pfBGu-LiXen)J`1_^`N(E)6Yuv;8 z>OR^Fl~c1nb@aUBBYF?n8A3oBfU|eo1V$WR zJQDT(Loz=oxc8m_3dGdXwGyY@Kn^{W&Is|XiAw43@t3k0x&%Af4*kSe^`OaBvvO&9 zO7x~_Jy-*1W|W7rre`XeJr7G*DoQQi2`R=@qEh@jNgpE}^XeO*b?0BBKlH+svw!|f zIOXhjT+Q*@-e&B^4Y_Qp?#;dN=X z_xTEkiamYKNB0vp=(DhYoZ>yLbT0{1wEFGNAAIFyBPIcf^=%{Ltt(HP5dCV=^1;HG zIsY|v18wgi^6sy-IP1W}jLlc$A?LAPBeAiPz%9e|DJk0K=Y@9N6A&m~0@Sn?;YdJ% zUaOri51kaQxaG?jFI|f&KKrwKd+yEg^vTaXm9qE^C1UNH z#=fq@jCG*gd|fGT%k@zDCEYOW=q9MubnZ(a+hGJU8WDfjTT1mzjhXR@T)2%KAxP;D zNSDq!n)45C2OQ%=4iqNKZ4nq!BwT@%_7jjbJm2gY-8*|gw}nNy(6S$uie#4=7wwdr zhC#Z=0w=%L0(5q-FzL@WnYiYIEa~Cn_!R{+hX1lvTEA4P_|T~gv~r;ehwILERS{!D zV52m9m1}P27g6nKuZH4!y?@X^{U+F@8r9I-13Mx!@5@Mg>d?)x36i!+mlEOC#HP6Q z5!vhW+cj?=yhq;3>2I+$oO)zK%AqL^A?DCJn$Ha5?aM`wV|8OYuIYT701Vri9 zeW!TSlC=emAG!TLV$Tz~!!59j@)U4d3A72@gSH}IwkpmTS{?3urkwb$i2ne{@qh}? zCeYR|o?1&_M!5{daK8`$#jm-s7ua7se~F7nq6z3A{pKNjHeI*cDfo}d^DajzRM5@>fiCR2#~XUMHoDf1PxahkGyL8Z=xZb(dd}#P ziQRKopXW?!SqA-_{W%~)X1G4Z>hj4^?i1y%jw9uUR=T@8XOGJ}7#{DL!W7g9q31I! z*usfgppl7>IMs+3Z+qxu-R!>Hb5PBU>MCKj_ixm=qKEl_NGmkl=rT$R02v;2XgDdY z9B^zw34Ivw2S|$AVnGH*AS|3qcK{-)hThF{8!vxVB^gWJzAnBHUB!$R^H(SiUv>T_ zd%9{#E&Utpe@URKCOus(bVvW-Q?GA@h%`~fNx4IBVqF6muwx_~*aX5nN6eM8QV`e|%N8dsY`S*KJ@!bSbFXv}gR}omz$jcbqZ`r#}eo9$pPKB6Mv;yq}M0}9cbe=<}zwg=3yLaUDaPYn6|9eiL7%gA_>%DJM1BKoxz;&?yL*SOHk&F4|ZJU0}eD0Ix7;Y(4>El(_#y zE*%ZDYHUC#*8pW9N`y?!zXm{Pi03tX-;)IQv>2_N7wiGYA-9i>v*GaRfU;mn^_Y3Q zZF)GIb06g-b&ap+r$X7QxPu$6;`2_3uePy&s^8vwx8UWeU*A6%M5>`@Zc<<|T)@;Ya&A6oS!GrVPBDYyaKxXPnjoim zf#iK(6Ci>cZe0?!WN6znDJYE-nwiP>UK6$ zx#>e6oOmwNdjv$x94CC>wkKKr4!~mXa(|(_dx79e-mD<6sbl=Q{fE3j$A>*k_;j83 zJ0g8I)7ZEk_+?%C97zD*Wp=-W6+CUPyRb4eLtt5d2%dTFHfb?h!+h41faoVaLuOPc zIAOPD17*}Wp5Q-k0>Jz=)ToQEm&eMi@5LbI{=Iwiv~m_3pZjDzNOE9IaA0K2hnwRh zW}VYjLRcf4EeBs1GV})j%3F=4htsBXk*+GI-F@=*&G<`O1SZ$B`1EUYN$**^1g7TC z#kIxB!Mk}p_RW`j)kU4M$IomsYA~NO6 zzaG=Uy2VR7?&pbov3#YTXn`(6Ozc#2%7C=Oraj!I5uVk9kdA*_(X96+e-&*tnP4KJq>982?DhU$Vdb&31ieM-lc z>&ol($c~NXn5?q8$$;l;!@d_MLIVcZHAa2G(y}|B>d$U;E>8<}`ZYV^@=*sQihcG% zH+@$*I?%1fYjuad*6?uj`g{s$b9ivpC$$aT4vT@cDNcGSqjP z6HOeXOE*AX-?xhH6I@>`j6HdJ;7Y2E54BJr8fF|1$-FVTxv3Tu9BM=6vk z9>2cd=(=H_{4jc#{x;-%%x9kn{(-`wg#z{EUtO8TLV8F^0m)=yWNomO8|{>uVajCV zVUY+Wu)f^<*l}R7@{jLUrfp~poos6efsNNqe4SXCoon5;4#5r=s_x3{`z0d4v?tu< zKIBDtet-Mt-k-sl!o%gmt*ko6!vFdrRU^|^TmTUp)ME+6UI3_L&`7S54}snh1iuLB z6nPA{XMcQh=oF|}^T8wDo21PKDU|d)pWk3sOBw0F&l#)SZY`qaIgXb*X$lhIA1P|7 z>9P4ZFsni^cJSl)Ps++UdW2*-Kh?y+MYFoOvn)%fCE$u0Ne`AUZJMFbjWvwWz?O4f-p6>_Cw)ne*q#4xTt|EWs#&j zTfvbT8Jyl2Tk%^OV9G!fV?$%L9{g8n7zX()9|accT9`F%Ahd#g`4gUp?QP2TOFJrs zx&x2nt3>V=)$KnI2skyBU~1jqyE#I)wT}l}+O@T2$A@Z{OGtH6u|BZu?5s|F4_x=} zfykqdi2nBda+lY&B3R}4jB@!%@`Bj=nqpdK!Fl5o?#l6L?tv=BrGQi|Gtu%s-h0yO zYrp2iqY>s%@A|vdRZVl|fJ2+|EsZ`7H9@#KT9+eS@~Cc{UpPDo0O}vJv-svScWs_F zwTN_0eJ_yW_=GxoE|>`A@z6o0uPKmjq_|nOONuk7v<0<74o|sWBMTo61kZu|NK$dhqd0 z>&8KJjvv#`KKZin9Q-EmV$|`lq3Py)g((j*PM}E(1zhxVGuQOPJx?ITwH~Cp3?(41 zIVAh&&ePgn+7>c6)zXh3OeQv%^FeN<{Ic7 z9)J)s2tu=A?8LaX6)q5%?|M4>DiY} z(Jbnbqj2For#;9~lAun*AQd#PFuEF@+|{Rp=1PyM;~AAR!PK*o-2B6h zj(^EUvEd{I0IE1tO>91;sl|!1m>GwhOMw*F-_E*!B{2lNc9xizc_Q>sRz%L;^g#2< z?>O%vKL-WxA>JzCyX||wwo-D>FalK4J3yI0+uMhVr{;$iY!!Nwe%Gm*N!#k4DY?Pr z>-I?4_Lhoutp>5VHomb~8<{gOM=IW=%0&~^(;64J(s9|@RzPOgh$kwQh_eTQJ07w6 zX~v1ieCq%QH}kI1vCyuF_g)5iAiCx^Don0Bz6iQFg1pEY0=ki(6CF4(G z0EQSJvbEOY(Val&nQLo}A5~1crL;tt~A0EAq^j>^QN4w?+bACCVu1 z(LmY5PM)Ik5z#@yL~~5`v;!1Vr1N}ZX45rz$yj7}i>y4lG4B@Y_Xohq(=zL6bB{x- z%-#NG?I7h|BgIqR6XTVUvzamjG6xZ%GXvMeF_@?^FA5k{BoXg>hkMK)3gj`nY|f9+ z60mg?dW(MoZoIr?*PY}TGGFF<&xb^eL~7_z%*46r7WsNZu|F&vtv|F}kKA?^YQ{Xa z5DK33ZI>-0jyb1!CL&&ZI!8M>bIMUX-yY_fHkG;h$RvXF?{{9Sp@cIT8*PINtk9W= zdXZZR;c@EbvqNWa*yD?i`@A^&EJ(!jh74CqzCq5**Ds zkGGE1O$HrKPwovLt`AkTW>)tB2cZ>>xkj~cdirap$J{JgP-c?6^5&pV^$o|6w!cS! z(P-@@fxK@u!96=wZ?Y%9Uc;r4h|Fl-ob#=#%fHCHIU%bDL#uijv%F?b#y#BCpl$l| zCZcdEqBe~SU?r@CuEoOr^!?`M4)*%rxRQf5cP4~6lRqlDyh#zsa-rs*n{z)u2IKRe z_vi`ZU%g{vfBl@b_@E=^IO`5!Elsq|{CIt^Z^O75Yi?*^eV^RINcz;hV4mcRi;*qv ziRjE{Sz!B1rO>rYCv4mM+HZ1uSqSNk3SKf})ajJ~o$Wp_rCeIWI**r2H5b%4zAY@A z2RBI{R8H)#{h7E`DCnP8h|;b~rd*n}6zD9e=jHudx*1E5vN*1qWm4iY#QTnzra7(g zD|!%h74eeKHZ9ZBaLZ+glA>};sloq4t71;^&usvJOH2SCK~RnP@)Y)bG=A2$mVX%5 zpHQU&ohdOHJxt1P-wL@wkUzB;5G zZnv%co)4L`ew>g0QXm!8()#V|k;_?sK<1S`^`Jr~q}Wk;M*-;Pe9(hKI2_Xn_VI$4 z<0eN(H=vLG1;X6N!hn*FgyM?E5&t-SgB@h+ll>Vx)3R&k$i#)VckhyquFmqOBG?W3 z;S?A<@nazCzRXBey2?kiC^p`c3VSdtMTB$nsiFIx;LE1@_MDBb&7Ed__dtTJ8aPc0 zQwFFq1Ev`>L%oemtd4=5Js&y+XA)VClRS;FLl(2M>Cx)<|0NwkzW@*h*p0&=zXa7{ zxI|wPCCb5$0ICH_%W!ye;MWt@2qWSofJ$n=UzaJ5%jJd>9PsJoxF?u?bDv5L$glsw z(_=Dg0e}{)YvbKVzzU!}Se2(8uL%mhu{SAbQCnL$#Dx~4Mg8*X9qy}l1dFfvEG7Qx zOL@dxq=R^yVmsG=!u-RJ%X}$k-w_LGOGBVO%rkUA7W(z9w8pm$EPqc2t;KCeW$q`B zey<145u=Faz`Tr=IL#)ifUcwpi}xRixb{Vf$U3XZSMTb5ln`W31Ew+kdY1fRmV6)j zv3=vmqdYe<7er(LKHf$L(YitbVaq=suMSN9qMSdD)pd5}dXdnL=uGhdCjiVIf^vAB zY5bN0~C^OkF8N^+}KyndQeUyFAS_pm@Vz+cGD4dKgEbxop$_N*YDS@&UkXQ zf$ZVw!8)db_ZuT0YMSOJR2)t+Q{LbSQ~}78UH9~luH6%F9{DX@30;hiLEU6z36sJ; zSv*v{fHT&ygJ#y-L5*}Zxg?9d&|9t>Y5$BF-T;R*OaqwkaS1nwZ;gz?)If8R$4Ie` zkc~ZiF*oubAw&0(DjVq8E(!PuzM6+>2E-D=1&A(3kpx;GYzd5l5&$3s(i4&(X`a6Z z4dc>v=2^LSbpNi_68uTJ>l>*ffCAEYpn5PZ=s8M&TI*mvL8>3|tXW zfWFxdx}j>lC$4*Y?#|T$2n&<+OE%Hq{NlAtZv;gfbI#$c?8w@TUr1FrH!{$v7hYLa z(r=*%rC|0@(NXGn*84V74= z4x)6W+!z}LFoib=@7(#MdAv zFqq-Z_Jz*bM%R%HCf!yc9uY@LIrZkW;WZ6Z$F0N}x-H>94~75b>w#|G>~q+(-j{Z+ zjV(Mc(wkax1gPc@G4DNJ;P--r6uotdS-UpiafJ4O?u~W+4kGuP)BV=px07c-^RhD= zUu$QS2QUBZF!vb=m9!E+cK1;7a9wsv=X!+QP~Dl5#!_Mi=RfdgyVHvvHxS3z z-eeG@V$b9>8K3YC^4VCk-KF{ut&@pz!nSG!l5s5}Z_6iLGl0aOnF2Il^8R*#Bkf(X z{LJF2FDpf*#){?(lxXS*ZND=}r405n*Z@q3V0q@I;z`Z6dZePFf@=DvqGT1kdXPNR z>q7HEIEbIaKA8)FdEQt4c1ez+1satM0yclIDuzsf{qhcW)Aiy~@OBnw>-PFCN9o8q z-J@>I`HCG9DBAe$GcVLY_;TfDVt>HC$UZI9#zJUyK@4G$3Ue=X$1i#ax#{aS0iM4JWv_z zMLp`6jB+R1eE|RwJC|(qXjqR6m}nba>@l5SQq$rBQ(%VS+hj{$tQZ_3sorGR8?-K2hE_f_@@ z*3#|GOs!JJ9GUkOa0hJof;@~T+~awrby{bDv9A@7mtg&M*~eKCETfjd;KPB#Vv(M= z=^q%4AJao%X>spYm-cyI5v%b6FUqn~G~>Zd-a$m=HVVAd>l63%W$I^cf<6U%Tig4H zVoCWf_jr{5e3|zMUP_K9m>M&76S&)Xf~Q9gx7$YCUopdaLrbJS>0dCk8*j1KI?f7+2k}J;~Lj#Mqcz3rs4zL5I8O)YhKV`>*Tm z9uKTkZ%XtUd0g!B3h>V(<|}3BR^x5}yN8lP#HOZ%tx(a3%RLSjm>(O7J&reuY4)&t z;P!~345FIKg(WtGRyn)gbOk3OkR;EvFxY96AFw!hv&a0n&EsAU{%)O)z&L;NGzeM_ z`H;bAJUax#u2FaS?2~nlu%URWjP#v+9RN@cMMZoHc&N{|ON#mbUH}3Kf4$SamM&pq z0hV1UB*haDjVzK5Seik8!ob-Vt)DIJFr++M@p7sQ#vmYK!xNZM-|8m#y2=@*8O-g* zgPeoS$(@giDqE%@b60w*VLL5S>gT(_ZTFdRg~Iw+=WOTf4r4ON0d|j_3CX=G%BKbL z+t8K>;*Xqs;+6vDIH;IVM|)^u@IXhE96A;5+b5Qf2Jvo?(o`yjT>eNE+5hgKdhlm; z|MTe;{A||d#gOIc!J*{UkY9O_ONGw9Jl4u)5A3!;Tq3KgqXT@)@S6^W7;}z_SR?@t zKm8D!Ng6o^!bK1O-NeQkNZ8y%XVqfkj}GtLSSfz&b#UKQ2Iz9YrFm=8Y5M?LX))?O z`j5~e@F`0OG#&#L>qmXt7(qjJ5Dw;61B@2*@z@Jspu*%yLXh$%nwo;5fVoA+)NH2lgQq$O2W>Dq-gskCwol@;ETFCN9xI_sh zQ#18NsZxjK&3D{8?f8YWd|Z+}%2B>N@?ioqP8H-o3!~N{GqcKA3UP^oS2w&V@|M7i zwmJU}$HC$fB}`dDn?3Cp$7O;RoZ4Y$NRF}Y7Ey9rpdekAV&+7g`rFN@$AO__SKKpI zHkjE68r0pjJPx}TfYbFsjTZSCrxnY&7-V9OW46T1_LsM%bv zaX}Em>mr1m2+2L>PWV_plP}lJKKgoAw&r;9Vfc`~0Qm{HG%@g17Deuc49+y^F4#ltEyPS4$Bv$MaiQY(}5yw)&TY zm$$U?MmL1CzgDw7uf!Kg3Ns>{-iE+tJgSN^=GOLX&kr$$IWf>in>D(k3$s)iMgD}U z4OSE<2d~cAD&1~s2BtQyrIGb^zHpgXPTq?*tSVx)G3qxc$oEfqI7M_=_oW{gE{sgK z$*xhyd;1AoZRYa8?5fe@em)NVWO+1Ey52iklY(TI2+uH?mF3Z+c~8iun{1Yg1ntl- zI241{OXdh|r$M>i?U8Z~b+$zrrRui(A|?tyH`E=}@@w3cR!dcaONNVdtu1#C&Lop~ z^&d=bO?3~BNfJPGqp^$uHcv_H;0+ZY8>^D+=|f$TnX90a4}vRN*LME#bvxhJx|P7& zvP?g%=SX(6ClSjZvZPGdWIZLg;Xt9yXErANblb}~lsnzLDrq6mCfl^lqro}<_*ztz zc?F{`OQ;Pt?kudPImk0JG_;CedFl2&XOZ>ri_63~XvpgHc_`eTTwRp$z+|$Sy!pNM zJ#kJ7W4_3`W;6mSUt^Q2by3GsG_fP^R{tqdN&<)G>KNSviO`^q!J6pKp48;-0?B_c zw@|kO8ClWRd*gwV&4*&*C~KGBA&>2g!vAwdqbq)dW|HNCavHQ@!~X+Lh>72lr#W20%vwyEmM@7tIO)o&F&woNWOHd24<|H}+e zmTBf~`Nv~^hpxZ>Yu@Ajkan$w+wZ!u3_Z8W#tX*duEJP9m8`E;tkQ+u5aW8@#QUw@ zhuw-I=X1)1gHISh1u;pPS)LTwYpHy8KEqgOm`xqESPMKk5bX?^?*R)`pvL|n(;oI+ zbttLcp+vm%0XxLYn6_k|WW+#^h~l==p9xW=YGK>c0EX`_^GHiyqAiTklicoIL4uEDb8O$7VR%mEY%;^4r zPu-0(kMFj~&`j`7CIW#!sfZwuVDpcOz$FKpb|OgTC?}4GQKld)-ssPKi}b;*Y%SKf1~3+F6|Ur`7>#Z^ zykYd}?W-Q{xB&tD;LpI}qW<|snWnm{+#+2o3*BRb3$x&CCB?7N)%L#bI^m4e$?5_2vEI!*2WZhixc0drA!6UjgBE zeyN|3DhXPi@eNXOQ)JJybQ11~`^dRoR2)*bZw6Qu_W2ZPJ6p~-C{N0c8v^Su^ksN@ zDX^PEJ|;#@%_qldfvilOu(1w6ldJz#lRSHt9iToySnlH~Hg33)AV&5y^qA;Jd2ZWq zbrYO~p97CZUKo*Gc8@1lc|`U!$;RGDlPVYgKl$UVC>u++-vr_3nrua11dr!(gKD)! z@Xb=dI@KHvSg`Dm?T>Q}6iGhitU0#Bl?!15E%NsfvzakmXoJpEuZcQT?xJV+wb6fk z`M_!ZKGID-jEzIfk8(Q5aKwspYIxpFzU`rDZdxF z>7hW8E=L1GHCO!kz4L2=#^k2mGPm>F@(U**9Dtr~3;!1f5*`X8a!k?r zy^pKDAyd05+kYlBX4(m7DPp-75|JZ%86MK%GU2So7RF9KS5)z`EArZ82FtaF;4 zl)hnqn&soH>quMU?jwRDHewTFo?S8GJ#_AbV;UgNO#FLM9_?1}#xU9q||u!QN9%Pd?Xcsy!i zG|@Si40=%Szw*w^21KYXj@$a|kJHy9$WltyOZ!`@yAg`Ko5X4ur9&4%aT#jyJRF=5 zj@A(eHX}LRk#ibiNesdbwB!On3Lb7PjLq_fE(Ol5nlD(HpRi3%5`zL7TolfT|0P&! zo^Sq}nwG{j*+1R(0+_jyj{LJkek?nHSKGq@o-X9BIu|JXO4M~Oy9^Q$T8KFA)4*_e zgTf&JMZN||Cm^?8gB}5l@tIEI)!_mKEqUJz`E0JlEiIn{BzV#d zkTw(}cC6(bC?5tqZ$53j)JUx^=5{E(0S-_`xgvT9v{={)hSj-Lz^P++QY^pC1EKnI z>n5KMGHOF>JXWKisvHqlEw$s`YzZbQdZ5}_rQ#mE2e3NYQqvQvboXVS49+?$6sxOt zTq!J>-2Y9p-ug|`A5hGb;HsqDWW|`FcUpwI?wAw~jmgG?j9Of+cx3nyY|*Y8Nzt2l zBF9mrW9FKxx$B^diGoMk zoFC0_p?L#$SdVQeYEz{s-{m1j8&SrnlL8p4et3yqe-!ATOc~%D8`0Bga14Y?#>r+0 zw99_gQ%rPM%KAQL-R#4tT=S7D&J76gUnrZregmo+x@#X>EF49Yyk6o>Js0TXZ=R|- zx>@fw!T-8Ngeo)2`zmoVWNYnj;0T;v@s9_+6}hetp)p8)(v1f>uieiZhfq+yAL{qM zmdNZ?0l|S>LG}YK2;tVv+DZR;_tEPaF1O2wjV`<8KtOoCT27R_%=h#>rN54Tb)t3i z@6h`m_s#8xKu$r*xKBGT>YMcDzxiG+#%{fEiC=pjmr=z=hLOo}y~%O?sykl*0zHt5 ze89M-9O_r;8`3}p&QW~!_EvuBmG)4Eq?y*F!3_MI2c z<&5UkH1u*&rkHT(M=}G9&5Zp-Uc6bdJX}58o4=eODjlIp{_vFM+F*8{_{BVf^yFVj zZ$Jq`>sTL74Vu#ZmlJmN2S!ht-1&q+CQIBAL{m{tJh)sfL=3kH+YJi9TnnZ83(|uY zs1B1s+YK3J-#3B>if+zrYyu`VplRZ(x6Za#?b`>MHrE`NqHUBit`UskeTAe($G0tU$OMGm zmG?H1>V|?ZC7VeA&9Bt-L2O2?27lj32Ma!Qb)d#PdN&Z!yE2we^1(UAFRYCHmXilJ zI7oMr$Ai}?Uu;##p0Z6#RjN5ltZQB1w#7r&BgS~Dyf5g0T*v_)Md^Hb}3v%0}b5c;HrBZ zm?n;7<)ZNA_#d&7;QGlAKv-Xufd$ZhNV1UU%LV%+sn8$yLVxYHvXb?z9y$TGv0KZ2 z+bBRy2L+(O!HIO&1yyIov8GECC`)SSOnvAp++WJvqJF-Wiml%J%R9Blu)6Vx*`wSP z1|w@sO)^USzp}h^jpv%nl;=ABG_QMC=0$@1YUm0Ourjcx2tom3J>J3O1(9or$l*n+ z(NhFYdi0ZTpHIo-AX*2ZcTy8Bg#*;u=ag#PvOK6C4NC#JxyRoGUeYr3BQ`qv5&RjFS5q+ zp4i-{9WY4Q05+6Ub$jF6jPBxMphcmYZVIt1xBRU@Z4LCFp;(hUT46i+&1(N;#3}~A z(D~a$P{8C4e{=!LnZ^d4>Sz{dV5|DejW_4__4sGL)o4dy~r`Np?&6WzIYd%`54!P4sBd{5~EG`=9Sj zmjTxc&Iu*e7sB<~!@!~)1RJ^7w6DLv?x(uN7o-J8>qg>@bo2GaUc-`clr^*X7+mRW zcTs?!SL2PG!v+1lUvUGLBCmQI^)@FdGXsYtb95c<$oi>D_7bH8&SA&FoTh^~ z&U%%o-_#-_mobm3f(~Bl$p3T?Gn;8umVxJ&Kb`l<67%Gx-N()98#!06ch=Zs-Eg*z zg_KqiCE=9H+O!y~4q)y4b*Uo-4-<~;L$%*EQ4i`f=Twi?&eP=yQvhEh<$1Q9GrsZ; z8g%#KW718o7jXRR3bq0tRqy%fvcc6}qrrPy9vC8R#p$_j8vNU=gN=&&S7tCYO;uem zg=J()Kj7$qXJa&E zzv8rEeAVXk&x63p!-K+{2KQ?Nq&g9kBu`hRi$EgtYc(rRq)HpPpJWs<)NNEv@Yo*qdX3M))c7B(j_lb#`J3 zBQ{WNXZ6O;zq09uWN$Cf44TNytTC^T9dLIHX!E;=K@jhCbv4oCq1~iDxe{*Rg?;lT z&fA#fGT>A16CkpiS07(3kydgp>T>KWsM?TsNhA5!M+-f2Ij6{ocgcTGEE7t;1Wwji zak*bFcXb(1-Dq)WEC&Jm$j_(RsX=KEhrFyrek=viHzV{N9TZL?`KzkzP0~t+<-)PL z={MjzOYJip>b z`Jz80eZ>dZhWQ+oUf@QY^bFBuq>@IApvdgtN-;91ff%~`ivGceA#|+7ThDpJr(UQx z6=#M8PY#iW+Cc9>9bKv{va0~|`t+s9r&$rdrvS(vi=y02k1sm;vq z$jzGD;~(fofUOGPy^3Qy%x2B4Mp>a7J2`uK zrXgFYo0B0sjW-A)J951ywXgCG91`Tk!5TnyZzuF%^Wcqxt7Qz5Dw1)seTtKn=}lGe zPFDX^YB*QO>vNDG5%BCqSU+V3}Yaa zNmZo#f7@u|bSsmm+?+QNi_9egzWD{nYXM_+Elk9wC`=*$uh^@!AyfKh-@VDhMNh?w z#Mr&TK^uV^lwf9Apa!yvQjns~)jJ$;otQ~#<1`FDc)S}i>htcGZS6(dB3k*TO`rnR zvZY+umQEWhj)liAx%5Z3Sd}^P8O3T$zUmE6pC>h3jdLZ#^Zyl#{0!ji-+hifZ0|@W zo);XO!lsz~?Br9Yts@EfQa<%{X(iq??~(v3-`io`Pc2h5S^FLnu#erYu)OOfy- z1>0CeC*PIi-<`s{iiQ4j-@Qy4q*_A(+RRKO+p1-sK0Up%V2gUmd&}2wL%NSu3+X zs1LDGxZrDLIyc7mF_1TLiLM&7+2%fR9oa!50T3|}%m*<bi@0?P!gKdRc*b4*Nms5AjnReDzYcwG=(jZ*PMf?Qo_Se`JBO z$MVR>JdHI(3y&-qX-=2G~f zRW{oEnzp*cwU5~9mOj2E!in0$6#{uS% zy6(Lz4!q!D_=X|Iy?@I2^9imRHZ=@39?}CBex>6S&x`DUfl4%j823xi^Uen#G$@DO zTci;`k?{}^bi9*i0PQ?Y>_Nw}KsFvJ4*%j7!LOBPz-P#R>DC>zTDHTx>dLex*QdLe zItt)GrN~3X#NvoOr-_KW;3D(G+Ws%#3FH2SP2!jwDxK24;TjzFEFC2$?)d;Mhpi+0 zZ@#+dn{Yz**qC8{L{^#6dnRX267R~O?Sf`G)73gB;SA$}(cAcvh=_f)n#yu~f2obr z*4EE8KpF`?Sjez5H*<=WI`i@s^75tJPgbwz!3gjXjnGcwz&M#1aSztJY>v}-A2seT z`rX<9Lo3<{^v?!O_`Hc5_NaYSCd|@EI(dAmbc~kX8nio?5HTU$Lp%$K!~;#DxA!s> zo^oC4#sV5U{hkOs7xaQBsok?PoEyvVWwrVStz6C7`N`Y5lUM!e zjd!c-c%F#Z`}(EZH*cdRCMH_UYIRfW(vjzF`!a=1kCUpX3HJo=1W&pMB*r!K$!TaA z7D#X_+{KtOEYPJl(tFWH_WcE3ku1AVU&UfSma(pR_MK^s=Tv*@dojf2cISAuJLvRu zE<_9wM-*dgtE>Xe3+OLXWJy43;xjSHi#iGIgvE59b1EBq3|DhJ_6nplfx=IWwbj6| z{W_s03djAz8ie6-ibsC{3b4h(XpZ*pfrr4W^(p6YJ4Z$3HrP`8nXF%u6+p9}JE7`f zf1RkVV>L>e?)6SKKQ;{SjrZhB*Spte-(WFtcX(uEqmc>u>T(9lr%fGSDXNYtt97A? zw|$VzD33#?__y51*offOep{}3yY+*6Wos!-aY<$C`{+{hHr;*xm`NO5CN?QO+C~fR zr*70!UCM|~;g=U~*Dd`Fd*>gnHXjH2zQA#Jrt2O=e5T5WarkRA^hRWnB!loU=OTIU zd&1Q~8g)FY%zS#WdPzJPnH#JMAZslZj1ytKtL_+kDvw4{Pd+nvqGm#Nk>$*y-ircs zqi%HIE~oa-f4Ix$K(~lS>yNfFsNs{HVqbcezYCX zr;g#mH_!Bf(gfyCIpgBBanFkOC|*XR;BeWtmt|`3U)Zo)0^(c_*a*9^Kq0 zx}MS>D4a1&pYQv=n=1?to}86Ft&rYplFFqyheqdl({}!SOAS46atqoo+wD5j+voz~ zybw%53hpfTYcV3?GQ?_h-d{mF?o3W2@Rhl>?tEcJkjo}_e`i&YedX3BJR0m3w7<;G zCZ%WH80vm{>*9+~<}{y)!IiOH*Nb}&t$&JdkR1+Y``HAap*?eIf2zG#(I>m1PBrph zlrZQ&fc;PYjb@&jj#28%*e$-8DLKU~-A4Q11~WZ^v55Mpcaw4xa1U^ZkgXM6w7&36 zAK}y~bX}0lV zP-TI+VflE7g9UPM+jf19d@ppq^)MmB)R(-Oyz<1?O*!&&?QJN=P8x1S+lC2lP4nJ9 zj1lqMp6bc28Vevll6sT8@>J=qW%+pQZ&Y9MhY5vrxGGs@yRpY#G;cj4HyKE^(PNMpN+g@pW>=)5?!Y$apa1 zKm_7lw*Y$m#~<5-R%-e?64N+&snmO8-oWQY1jd+2|Mv zjZvuz@+hZ@M`NgOlfumv85E1v9!}TEo8M}w7|lmd&T{FVH|Dt%``a1Fr^aEqk?>=r zuj{gFx*B;PUHQt0#wai5N6`#<6hT<%B}Hweq+24+;qOMqvIm5?u% z6o|cIa)(Dk!GujhO?c~6CzeCPM3A)L7wB}~z$u<|7Zby!-vLuyApt#h^6+&XGZr5D z-0x4q=w!fte;~tWSwjX6G18&n7YYIU_uM;l{`bLs^SKgCa7cqL(#}5(<%GxTf<}-C7Pt(lzZOFpVub9n&D$e*k>XA# z!|1y(elGvCgnOE4D0tmSW7lGk-1x*>=2G9icmI#9GmnP)4g3F)P$?s_q->Qf$(WEO zd>Iu6Stk3=C~MheE!$X1LT0Q*#9&$`WY3P-LhcvSNlE@-hIoYpXaL|Fgnh*HzEr17S>)m$71sr@dBWNN)i6wNF z4j9dQ!MVZu=4%F18>ypp^CAcs9`vJfZY<802`d?4dn$72Wu$P%HZn1A&dh_j1! zJ*y3i2glU8ZTIH zANiw8Z&}IhnEnQM@eYQ*~Bh zJYEj0tq)_*a$+$zG=5dCsP5IXhYKP2YAIr+FjxUWkW2<#hbL7Q^tvRl50#=0%Y6=( zu-dxZYE&ICjBf;M%fXht-+_0PXdc+`x%@0%9HW68V{zO$u`cWxh23kkY?hqTWO}LC z`Oa&+?kG)}e)KE%z*uel6MKmRYX``{zS|=xm|MTGIWIKZklh3kIh%Z08}(L51SCUVy#W&PWZkjm2z8k@=u4p3unvG}A^aG4 zMe>+$2t0%%?3 zJWaS$Is!+}Q2olzf;ZFN{IZ$BqC|RBRIrgF_4zkRW>@3<6?flGMoP28=mw8)acfKE4BNp?6$$w$%QMB z3x^VG%yJLDx z_>tG&asof*qeUglxm!LS2B?&Gqh-5e+uI$xjG!LX8+q|#-7es2!S@(bs(gV{S#jp! zk1=`73;piQ`tgym`rW?Mi8`f&0rgw=Z$+teo-xp`qt{px53;Yhz#nXenGJa4P(lak zswzGk7CJ^;IQE{89YiD|BoTi$L`Z&PH$(-8p}X)oG!{Rf^vZZIHWYJ2I{e5^)qfl4ms&iEHz#J5H-%3tN+Tc37a`V&SE^?ByVw z%fA{R^VN)2n48<)TNeVqo79GDoszB8aivT$K5tc+7i|Pw{FVU++XJtKjUJ%5$is%_ z;=Z4(_OY+^0D`dY-!NX$x(|fLdyKQ^o!5YJIG`Pp-{B?VH1@;9<3oa#{@s@Qs;hrG zudDhv2XANE?(B^c%XKWuTm`2lnyU$Mzh%48)4T4H_%<``1<>;?Q}@I7)poA9T!Wza z_FmvV=V|0<_v*wC4E1~We7PuKEclE)IgTDsv7UF+l5jNXboB^t&&&E?$K?nnc4yW9&dMluCCkyM(skYY8CEd8?d12Nve< zInW}BmxZMk2Y3bY#)9ZQrYnDfsf|PUhX7!jdd>yI{hd?0 zUjN=p&2KB(a&X&!&SRuJG6}}vvqIWX*k<3R8@;+7azOrYFd800UCd#xm+V|#zJ@BJ z#$XdvI86Ll*p+LUWg=A_E4T&ABx;$4s5q`Wm;dR(e^F zkCWlS2NORA+&`NQ(3AAX6jd%R3#y}le3CFb42=ecx&ZRU#Eq+I&$ScF!I_ah0TARQqILHur+d0R%q<=5u z)8(Rfyokd5$I0eJw_8J$;B5lg+5LKz4V9KRGcVgn-}e}dzAQv0TA5HQf)B6~VuUF7;oPwO~UGtVzX;N0YYueU)SNM+@V-OA9r3 zPRlUdhW~bG8<-m5I(aUct5(e`SRKMFB47zo{K!MJ<7g*(xfEN6*Lif2keRT|fG9 z{b1F;3d01fBv3L9C&0t)4R|j z!)bpB%tm!YkS4E>!va)WUOL2Us@()~=6)kctUWF`pa-&x2K7e1gz7LBLi64^m33sp z+b*L3v$bq!WK`+*h(vryIU&8oLTl(zjv}K*qBXegt<|ESEP@&sYVq9PkoX zR)ENXCNoMt^ST7c+-Dg!qlj&aZl~E*K^edS2zgLW0F(tB@~G2K65}8kSDm<3@LGgK zRNmqtn@J2pk|L54VB74S*y@ozgRGFl2Mu*ksizPW*ym$ZXJEt*@tx6r)q=fu^ZYZ< z=elaXmc(UkL-(ZkU2!q$kB&guOp|<=%dU7gYu^(uEQ2@)zcF{vtM)88kUuxG6(CUi z_g8{8j4dZF5r!jb3rQmW_*su^>5a&Nj`e)4V6C9(Y*$H54bf2WRRqJP>X|Wqa4=WJ zOW!XcP&-8glXPhL?Ej%0pO9oM9nWE44w2u3Kj0-q-8|;p(F>#d>_?MFd;8&Q-3LqE zf9KmxK$jyCb@wcFYw>9BSEWtZWN~C&P)?NyvC2npaM0sJ1SW>JtQ-_`+BiO)p7Z>v zBhYhpj@h7OyFogTk@=L=V{SP|@I~&}R8&?#zH_>pAuxBfa6=Z6Vu&c*a~PNcAlTFq z>JiVd4v8XDOOC=V&|`2;4v46zXwkE~3P9TDWEjXeEy~CWY#}mF;~2!>;F%)sqO{Ic zKUIste0&>$dG-wvb3!Ou$uY~hIn~6=YG~K8;qR$YC;}$%JnCkf$t>YvCa)tU5_9&W z+(l>dmg-%dedUqfwIZpFgjUH`UX2T=Dwur1mm*6rK<6e`cYFo%!sv}ib|yU$p~dPk z^UjzAsZ+wx$9LDpnx|RXdB#I1hnDmt(`*9?b1Lh*2p{PJtb@@xD91}@b5=tW@K=H5 zSPsK^K;^KKQdbd3dwt^D)TWb)K(`KE_lW#ngB4$G)_>i4^sqiX$Fx76m_SVEG(;6* z6W_ik2yTLn(@$Ry`nKNL&GB9`Ve<9%e>`m$9_$w8{YgdTR_2R4gY=3T;o5_-$ijy_ z;8YcEGB%}uSfK$YQP!;AXrG5ASApcU0qSE^T9E!d!P&{RhbUl>u!bY8$N3!BYlZG% z9n3SI%Mo; zk}*=aCFXOdDsVA2R(iC%`&U%rC6j~+RMEB>+5Jh&LC`FjmEH$MOM4nozU?cqZj|2q z*)#9^J1L;@<2@67_APxFW1yyf(^4SoWc~opFKxP!>TR6*~fS_e=Y>x z$bJzg2q)23)Sj%^?W^rxJ*w!GrN!dEgGRI44*u>k6=nG$LB*{aG-Vu_f2um1`q))t zpbiex!=5{Lj+WTpkBkJ(y{0OO@}UZxnct`<3SX&$b<9o6R-$DEuJkVieu3xGn_nu! z2|CA(UN!D}u9B?gj&oeQ---Q2CX?M&2-GK41cU48F$>;RBw`{ix;kqSD;sI87T%gVIgiZ3hc%b?Qa*%DP{MZd zH#&arPda?cNR-S>^Bd8Q$4!Et(`?YEx;j7aoz+aQh5-5l(23S=&AS`kza*+Jfyb~n zT3n4MxH%>wO;WX3lX2N#Oah3;5(V{w@qb2#b3<3FsNLh$N|K*TSXefOLgt5K#oh-9 zWPRQBRAYPfPCR~$B@P5cNr7%@>`#tW+2;zH3$Yj|9C!UzRsXf>T`s-$tirdiI1PB} zwZFR2y%Cwc42|h|(1I#gy`>HFZI%&uzSn45y14e$dqAY)b8#6gCTO)@e4Q(w{jFrl zXQ>h}rS}a5sk97I_pgdNk>#x$@Rkg6q2s;>ktxTYyW}~PJ?9sW;>|2PrK%FRI!|^3 z>AkVGxz@Pz>BV5v{9I4Np6TJ=|Gysic^Y!^xVn(|U1Jl-$*0V%j{n+=f{DSBNv5QO zJ}~n*02a*j!%fg?ZS0cH_ilwE^M2L~nrs1^t!j2^m9na>o>+b%KWKh0rtL1YPKED} zb|2&$gs+$$jT)qB-5)F?wzY4zWd@A@qf3QMYTkv}*w|En?6G?&m9|Y@R^&Sf;FTeN z-;01~oqZ|^5^qCd!6ZPySX@1V5fK&sp9zCISomN2?rxUia0BQpK)(jsuQ8k2hOyfA zu@7OFTV7Tz9X2<6)vu8iXn&SN*v7!(J47h2E_+D#x{42VFD>@YdvM_?S*AHBQ=F5F zSuNeNbtPoQyL}w5nMkD&2h37TaN+^dQEyHg*F+Vxg}pE>G-TTjYPfPVsY3kna|Auh^d^0tdEZ&v@h?xRIZuKx)xt6o}kj5 zkOx}08{MC!z_|jN7w5csK~`~Z(;0IVw|Pz+zM$P`6@-Yts;2u5a!zC&yCDiASpo&m zBno>bsoOSuW5qH+u+M|#-s>T}RF)6G*|vSOCvTKWokW>S4Z_+=O#MN}9O~xAt-&T- zn(1HXxmd^-^C&Q+8lO3fud*uTE)nfs>IEjHiaA&t;0t-9+Og_PLZWM`MJLrsh?a=6 z9Pos@tdBJrik<;B`IVnBV5%$*P~|RU_b6y6tH{X+ECbkW1R&D!;~-kV8u9KQcn850 zAzpykk!IwK#6Un6K_C*yHTZkS)tMMuxd7-l!vQHGj3}BoV&}lJLY}JMOS`-?ebUaN zDtj3ivstdIg*HPOZd#RA+uyVxT+awoy%;`G^*%oDK^;#I{`-DCRq2S-tI+Z2HN|`` zUc~^29+VAp*8hwaV}+x>lRO3o_44t-mc6o$hOB%L=}sdfLm>NuOwj6wH6TBwdcowK z_&Q!PyBr||9ysP-fmO>Y46GWkybPnP`@8wg`A2)Sqh5nU68iyFZ9kucc=Npaq42}| z&J71uAI8G=+78L7akzU<1LmT@NK*h}Z`e37!@@Dpmk!8bHhWBmdHzXRv@CwE_Y*#b zms%kvqA8wrCFDAB$OLiXBl$d-@xa@8wOSP0Ng`(*MMT}$)FFxXs3QDbqi+`cIUfh+ z%(;!@VR#J`?mO?XCg!JzXmyCmaS+q+46weBfhWxb=NpcgcLW$ogq8wGY&!Sm^fwuP z(c^LWqO%;m%<`r7F28xtz^q5c5Bb9!Tu{AOKqZ{@#=-F9FU>L}vinD}g63Xa@kVkI#}OERnRIzo8mTeuXA zUR_3fDdKm4XD41}hENkg=#7{4$U(I2-ym8(J}b+*es8Jqj@qh*+NR!!GcMDhEkfR! zV)a^?TG#Nz+3S<*<<{k8#os~&oe2q0M;j9`;>VoTG_%fOx98Q!Nc=Hd&D|s0y)IP~ z<~;tj)MH=(OW+@_&qRv0h!*f_l>TV?^f1;QrEucQtxQmju#rGw*IqqwKr5N6d2Qig zq7n|N?uvy|G78Ipw5gm4LT?`r`r)y9Vh0nZC0gTjKjnyzo&X23XAja3n0&3QzSw|} z|M_a0w2F#CVuyH~6!+Dl_$kdn`WU^h99#iH?p+iE>sx01dgibHrS3(?WywX-Jx0vk zd|YtmT+~9tG`y5Qr58Fo+0jaA*ly#gUz@ATClUk`KMCJP1*(C(swU1TUQSpNUJ^t> zZZthVND5z#=E<#F12f7a5JWODHWaUYU7FiN0fT36b>U(ya{EX0bn~O!xGB z9=1FF7iX#9^{+GglXeCB=A_F59sA?+ z{QlwQ-)D*0FWNo8%hS`2ssAvd6enM2@GL)}pQk>IV(F#E`YeCrI9~}E7eX2A^1udz zh_<7XM&eo(|GwJaAN%1;{p>d5<6{}AI(_@82)GM(g7fC#UgMaP(!ukiechwkqt(nx z!g9HXDc5de<2kpTDeoS?Tgg@aerhrHHo%x77O0=U$;3qthV0eqzS^goAt0-B)7(Dea)sxc^e*X{j6niGbZs zcgFd=x*Qj%#)Ye^QV2dG4%!@i+ZgHP7?SEPQ6Y*^c)V0^4y@Ha%mAzG&L@lRjzIp~(ePMCZdT5$*6kM6 zz#=x)i%T@;pb8u5MMCAk%)lP+USq<8vwWsnlkUi3sjC#(lvyE*>)a5;mcu64inuGlK4E?oZovr?68yex5vdp)sc!oA%Kj#v!=Eswo<#j zHxj8#Bb=JAo7<-@#GIOZ&<1_xg5jlCehY1zJKUu@Y1QgqtX=l@8xqsJa zN5SEgL9PeGh4|ZTkJ#Qyeuhp>4n@oPelmj-F)v}l?^Ld55ROK>!)F@~+8eeMjuvgj z*GmahmCik=O@j~MM66g#QK1^~Yu=BCf07aN&(#bCSITh@ng7x-2)R}uHAC+L zX8Sz=H03(-iV`z9_sv}imw46XGNIc|59Cr}m)!zw69Y`zh-OHCB4y#7Jbk;xDHZ0{swn$e5-h2k}&Sw}z)QJI^ zk``zqsqLoA^G{>@_Pm$1F%pGNi5(jxnSCgB==|%;{M5o*s)}l=bq|JLfb96+-(}yQ zbP2k2g#!@N#baI?W$52lAP6Gg8*3tw{>_h)l_~Bcz}GV9XFRx!_uOmLlObsLJPfqxP!T!IES-GsdVQA?al4y)*G6j6tm~F1T>JavyJETzqwlT&lOVdIKP-V?PKD8 z8RT8+#9<&Uyl@IY4D4NI?8h4Q`m45(%$p1G@gzlnFd#WDmBM4*F7B_)&+pKVQpUq} zk5wL##EuZ=PIy2~IeYBo>H?6OP8p2veA}oDK@RXX+uco+c$ezJ_cVm{02-1AsJC^D zew38&MUMtP!U{!N@{n^t2V#0z-e#eTfB@eoeg_cF z!GUp>;SKPxU~t*?&80%4-yD%lO)>WVF=h6KIKA6Pt+q!AEmlq-K#42mQ(LSZ?)a0C zPp`4t6=)}O;F7rA`*?_5we`2W+^6M~3%S<3Q*QesTFDF#lm+uuf;aHxb1RX}q;)5g zvJt`$IK`@WOOq80BQ%tw6u?X^h(4JOV5BN_Y_MXHLa^0;8qTBjUm)@=Q#`;Vz%1Nw z=BPEqt9S9Kzwpatej^(X2TK`lbfP?WybgvxfSU7);Vs2m`wQ$1tDDaw8|j_1Pi_dL z2R%Ocp-(&LS-@S!y|@$fdaD`o07pTlQgGK~FKR#|^aQWK*-i_y!4|(tvd~a+tv>^@ zpM~~?&Aap(u4I8}s+P0Wb8H|=0mkH3rk?U3rwY}Z^uxQ(#-rOMAFra=z!gnIf3mR1 zv>qMr%;Mxg-KzV#8OEwQ;89Zv&rQ5dth?3X`y|AIi;r`$P+ugB*C8>Rot%LhmA>Dl zv7`kz1GB2q!RIivYOelm=fub5__A`6hK)9y>6>z!%nZ-%x4GHi`^8WRA-)G9=-J|Q)cHzLcc4@NxG9L(#c&S$1uJ2 zpxj1b^bx(W$Du!Dwk~BTM3pZsJwXmzL4k|P7@vI(OT+E&Yz+PoDWQsXmX>>};AJTq ztS7rl^4XlqxH|a^&ZG!g?sWbtC z^3nWER_PU?);GU}(E6|5K$Cw4+>3+#srTDzw+UTfu?;#}2?0AK9ZnY<)`e4}`Oj53 z>j05E_weBQk?B$IdoO_{0(H3R?_T-Upt;4ux>~C}C_7Na$R4*8MErab8N<-@QcskFZ}tb(da7$(z#|+~Pl*w5~r% z@3i4Mo{^{C%dGY5tA57t`aOfs4(6%Ox>HC2vddU-__VT0v&F%7@;QZyu!dB~%&Ryv zY#avXLuQ61nqiBUieF?H{^*EvENmW{i7UBdDoqk>@L%{;lFruG_xxsfg%tqQWM`W+ z%U~rjm}u6IJ}B07bXP%ggRieyv{K>bz`kH&#@_s@o$UGJ6df{b*4^Lx$&=4k@v9+y zGkLuoPV>VZMXF{}Q6Gm(jisggSa@C}8x2-4M-CCF6*c#}FuQj0)=06-iO`9wEtove z&(Zev#wmF+)EJY&{wH-OY+jt<8L0^08XYM!k#NBlq@M7ntaO-$)7%7Wcb*9f@|0tV z_&AvamBZxsUVl3Tt6j{WtFwRx5-U*uL?-ve;_A=VW~0ryx|GPF7Df5yo<;{H0Yx#oetPHD z3VZ$TRQOT2@zd$!IW5Mp3LustJEPg09~m z6^HAWqHMNyhtAzmJ2-(Vp{@>$&_XG*3N|%sVNw=4_xp|d;voK8>(NOnK?i%6OiNQw z@w~{QBb*AEzOf;YExu&3aN&h#-34r#zT_T(dwq}uiCHVm-SVYs0kmRzT{XUK+E7}t zz$!i-!yuz5^MX@viZ4xI6i1CBDpuNO0+0NO4>r zqvQdi29_kn#LmtA9z7Pv$|;`y%AwE5=#Q?D!z3P`C8I7im37k|0&|ASp-_Wqe0aQT zh7yySK!2mMAij`*^r;!zvL2y>$db90g}s%Ihw%^VM$0`KhF0!Vmq+*CdnoX#M=%sT z=m9APcd_OGv*s{2ago#E2h16D-0ovm0uGG$$%;^S13eV@An;SctdOB&z#*wacora{ zb*=E7>pzUa2@X3MXfi8285DX@cqSm0lOViyXqo0?BF|WKdTvE>kc;uRAnIM-I>2qQ zGsrO!1(X$|Fi#*s)uiF*dNesT8u=D zVO@!m|5}1*+x}qI3L3i+4}RknN7*-L2*qyp+;e#u358Z!bjX((u1k|Fib^Wq3ySbK zSTcPq4j^pgbQMn#F;^|V6tU7kv@<-p5rf6_-2l|-NftX9Gw@u1z;FLrmqC5pg?&{3 zq)dGWg1~P$bdp78iH}VNWqeKRG(zKYFzE{muU!NVP@U|(o5o-fk~>EW4F?7>S#=+< zckLg~mp}(<{71HP7JjY0-KZC2W;nynQ#JqfOy?FFAl@|38=ZaK>dRGotjCqOyk|dr z0|i$ym)<8d_|}>s#Sp39Hl)IQ!)6j}R*&B{h+5}Ww>j6TFjnLDnWTj(f zi7=hDhg5Mf7IV{XaTJ?(9FL-DOL$b9nNBvXO%5IGLt-jsUma%J9tH;(kO7J1?_rm+ z8XZT;sSeYNO7A2Rw<@T63xOdazNugmt-zD?;%*2$#e5%!z<<4{B!gA4&12-^MFH!YkmS(crLTL3*hoS# zuV=mUAzu;~@d659yWalh$dY`GziRe{YiAN4sPMhz`|p&04S}YRS-$b#^UOkfyK)=i z_qE2_8DH-TUw72%DAeZ@u$S*0F86M4dz+dHw}Bcul$E&fm7vi9e)sXGB|>M`CzC>E zI+W=vz^&K2MJAaA){V*%ee}(4rwKX?e<{OtiA`6ZY-eF1?&iI_j4Z;3)dWvx(;Iew zJy#1`1AEC|N7z3J#)R?CWOXXyGBWVoXyH8JGh@3G*4EMQ1w-dg<%Z1VC)x6&4h6$z z-Ka&vUx9Cx$}C5%vFWPyK|KONz{Pbw@n?T&SRud({TwW+nqznktjA9E>mla;rC zQ4G#;uVpJC{lyuFAAZXt6)ZiI4$=tNvNMN5rXHH89k(#!Zr;xjv+Ewe##H65Z}5IY zg7y3C(q`%Mp2y&)uhu-Y9FO{qJ>~HoGBqHby6?ijCZOIiWC!8+gk$_!_dC;7Vz=Xt zbohdCci6&iQs{j0Rh9%rRgUVC0i+TXw^kY;|^N;_CPS`9xSI}S?cN}D!$Z~bt7 z{L622$a|FiAuN|%m|sub7e3g0pL0mfJ=h^6)l_8PD8H%DauXz1VDQygJy9ZGo8wFf zb(wxRn_KsHS;4D5c;CHh49gG&YW7Hm##lTa@keIUwXH>@*3|n24F6x0u7t#FtMBGt zqCv>wkeIXplAUMcM=;~Ca88-LV3w!+jAJ4?!x&)GI|KV}a?nQeykp0t0R!;Pw9*bw z{l*l5cKxDYuo(KL4GGyZYZAmx-13LxH53pOm3*t}M<#;S>K*gLHS})%*Co3Sk8fn+ z=Bx+rkIA7P?1z;PwOTnyi`4Qao#FODogPaw^7m*M_B8bv-!{};aJ(>xI;RrRyjyzl z*Hzk|_^k)?v3W|H&D0O$JHxaPzkq$_q!%%%x`vc2`j}$Xqvb`G>-7`u?ONC7N?k>) z06>wGHKNf3oYmk=I{OXzLb13w<9r{oD?TGbV(9`IT>s^V!WtYcd^jMF1GI4+Fhra|b5eE`j%EW6+mALB0J?L(QgpiKNuB*< z|C9Yi;5OSOv(!iza_N#?TwH2KU;LX#MqszGWQKcil(P~G)Xw#OJR>voFr1Xgs>X`L zapDpI=mT)#YJEhcNRYl8fnKhpmL~Llon6vK?%!V&wQQs9#=4`!GFtumoSVWJ&3M2F z!iAz-Knhkp*=-hlGL!61Tnk-M ztB@dCi}oP91e#)o2w~OK5fgjwBIYt}XgnxP`NeJ+XrQrrClS_8 z918KTjqYD-h9=-SV{n}5DA2zHs+0rsv8Xs~r3X(eFJ7I5mqbW7i+GPE-G1KafFvzt z%lO>ag}Le=e0_ao1d>SZyfInC^HD>JkM+ID;vlXyBcTo3$YvJ*xSV>wChV>`NQNz$ zz?oyYiQ3C8CS6PJL}g2lsG_1X5=j|KHx0`x1oyCj&utjVZqvf>U~wXwiRRL~<}QCi z#K|JaHbVJ5HD#8$kgSNZ^pXeM`i8ab{YqL6n=c~iY0->38jP(W z@vail5V$ew80+@}EWX&G`y>Y|JJh}#91N#YUaMpx(bF6$u(he3raK>OLud9bsYa=` zX{6MC!DRKtIu?HdDabm8U2Qse%y?daF#vQ z$ms+4qg;+>Dc1!Ax2@IiO^qQsQ{;inA5}vkJ?&UP-mMuN-<{we58B!a@cK}ZopElI zXyq*t&008@6+q??F7!b|mh9^9D!xyJ0ILV5J#n-GmUJgSp*?{<7RCbMT=3kmJy;L_ zH0GY|BlLtmN+LCeMH~R zPMO`CTC>;hP*gbo+~1lOWe+J`ub;8^{-QqMIg&%T55|DO!HQYsp{w;XwN@TrWnb?a z5+5Ds(}VrBAy~cLmp{1jr>v<=kDrf-7lQDxH@wQe0-nS z!*_a0c-UQz<`s_SOS@5zMwSUwM{)sGNv@>iUeFzc@D3iIVYrc@+sR8Vnzg@QHyzPpc9amdB$;pJfhEs{=L`0`Nls&l!A54qRS2NY*V zGg7auOzmOWXEdur>4$Z*LyqjWK20s3Ey^lAIzh%!OUVA=VnL;6{pu7yy?Y=a-R&%k zQ0oIUB8qmkK&br{F<`wf-&B>p2IAA#TynmK`N<35hGl#cPPN-TgWAncuOBXaIBW>t zED7J7N=vx&-sLLPwmz_tWueBtd}v!Uqq{JcrT0Sb%U|zvp3Ec&hFj=99=j+gAkUNZ zX~?(c{^|EFxUu-ybmTsa2cFRU4GCepE5Sd3sHNxkm?5yN zZ|r&F=PIaKH$_@_+slJj;_l>xuM{W5!ciWJdsCB*jUkV#EgJp~1k>SL&31(n&h`tA zS$b__`_*S`;LES4*PQzLctE;D{WY|Zh^D+XX^yzY)KWvpGkIC?@fpBbMp^yT8OPTHTvkY11$)uOgf`T!(V>x38dgs(_aGp2X$wXXu%f0fM z+qgZ8?0?+OjsYnhv<^V8CK3j)6e+C1=vDoU zLP8{+3?t%#XjpUXfA1`w(ea|lDFjNl#~|#lquRz`J=F2?oMj~~jGm@oTeo%yHI_b( z#xK^2{hm&;37y*OkNsd1MmwNF46{^je6#zv`w0Jv3l{AiJKL%?Z5IYegqekO?h~Rn+QR5P2_{mvMsV zGZk$d@4=IBo+Hhu!o$?tUSoBP#Q;%LadFRH7I#C>u}}#6mY>=FPE*Zt#mrK6W*3@A z`oe(Tt(HD|9X$u|UP@#eaVr%gVRu!TmTNNLXjS7Y%tG?<&GiO^0Ad_)wWb`ZHf0;U8PyZA~%zbZlpDlAl_uA2+)x8CaV9w z#01hxdy0x{>TL-XH3Swr=6{zK`ZfY^a@e8Cn4iZWSb$;&_Zb8o!-BbstqlMTV@DN4 z2Ckw`V){u3S6L(njFS(DBz9;>iy}OdFTyB(xe@8X9-*p^sB+>hb$TFh@(|Cr+Gm{9 z)z&rJ`nTCs`okX3Q?DeiO?^`=j#RTI$a{>m2YOdn5aeG3m5;d(dlD^F_kOniS9X07 z1hdm61Ox?`XzXZXZk;QfYhR0LqcsNizX1kBqxrUaQB>-l$YlTNm zR=FT^;Vo#`%hr&&EEf?-1q&!%qRjg--$)SBH-zhL1nG+l^GGBIYgCpl8Heji#MN%J z04mv)%tjLCTW|}BN#vUA_%Tjy2Zv$DZp?)Ve%JkZ(*`LOnF z+94$zKn8fT0_dLOy9K$2Jqhix*5eAO2Xn;QkrlbFn{%H>$`QZ6JXR5SxVVV-7NL&X zn3~oT7T4U*{6vRx8)txqY=LyV!A83Ke#tJ_jY49wp6=BrNyPgwj;{Et_G!jz@D6Sb zJ@KI)4pl7cNb{WGF|Z2%N^>+E-8xwC_Sss09RFA~v-zbCUrc>!mXQsK-N>-_LM_$t z@|s@}WP_xS!S02b5$+?nVpRieK|UhJM`0|C_MGTnPK`tM4_CNl3@b9+3l@_KO>Bm$ z?e}f5-|}`Q+5qtQS^T{q1B6&-e^29o%U5PE)LzHClynU}A!7B-W+ruc7OS^yenDeX z<3VFHwwLeKur3BN<{ImqrJZ>lkPk7*m@ixo(u!~&AkaNQpO@1E#rEt6HQ&uk-70H; zjFYTYGme^VkDB)Z+XD|W(OOe|#_0tQ&V{hrU|Xy3C;hBLDFuV|fU3H)Mp0{f1In9s zD(>>i*MHrRL;C0wAH%be@e63;2Ko8z{L=e!r)z7%HwF@bt#_;}csy`pp#N(68Fp^a z#|SAYsmS#HrY}Ry5k4TowA;!GiBn9^!z&gnd@au8z&Ipo>FO)KHzD2DD~l;CK2ba5 zZjfH0{9X)r)rttX|E;Ley$@LdMRTk+czd`8Y)kyGq>a@QU0M9kfGQvEh~~I2htiW! z7PpfD*F$XmX0eOf2DsfrHZ4}Il-FJe*8>vOmx-t0s|NM!X_SJ6t?E>}O#%DhRLc|%D&VrA*iJ5G!v46pL zd$<-b93RRBmyx>%AQvFm_k)Js|W> z!FH$j!%>?Thc3fs5hhv-toMERRD$h6`3E!oXe&}du^S}{!_cX0X(_ z)uaZ%T>48bNb$wz1!QEQi4d%PHwl~@-{3eL6fA^S@zduihuwj3J`W7 z3>EKPTM$B7a5-bSzs~5GTTP0`SRsvUWNl*<>Jd2(q}f4ex8SGXtoXTXULgdz#wZ?t z@Y6@|pepy!XwZ-OPgTI)sOebXavO{0j{+`iF@7V*Uhv7%BzVUm2a{L5>Ndh8ETZoX zKE*{95U$FNmRrZ;Sjlmm_H&XuYY&{Fy3p_OWJUP7*LVUJK+|&dG7IrkJTHV=qe@xI zazsP3Fr3gorc08 z&*X$LbSB*@aI3s4@*EyZ;1vDl4Wn71Sg_^R4IVW{U)Jl-2r!BIk8v1EM}wtAVEj@H zMmy+Kxz~hMJK+zkz(TAlND_qmtbxj zz3Z#OmsCry6?>(#uxDT6QCTzU4bEfG6D)(|>-jthuy#!dVWxOpv7G&Y5_sgazjMhn;dP}d z_~+= z19r~e<}~`Q1ZUXG=GG=fhVKI67A9$0Q3a_@Bq3}Dt1^XTSE!X1hbt~(gmOc5BqW^C zMkxCs$HF`d9m8@Tyz5-n5{{3Ax!d0dW<~K<^f1v!1}+EZ z1qsRwh$t2|ar_sSz)4BaP^7w~^c3XphSPHo?=-)>-8DbI`VHB2qpd~C^+!ZTcG-Z( zAPTiQrkrQk%gYwC;3P$2=DO4?oBN_&&$`bcv2%IFxBQwbtRTO+ISljfXa}36Bnu*DA!ys<8>d}{*SUpJX z_WD(jtNM0b;b1={+mCwmN@chx@0ZCySs-&d+z02pS6vN7(C2J z+WAl4#=?zs@BPDvMd#5P+9VK07K?R^H=t2y0zaJ5XS`C#;q`)( z*AJVQy65-6PYu`M4>o$k>O9OZ&l$yMXO(%!A^b5WC{-r*H^tA2K`(~R4d2@< z*X03Ra$}wp&NcFAP53L5Y@gVKAWo2Z;xX=3p$u)c63w^3Cb4sC+*Gvu{B^%%8L-#Z zn!rWrw_)?+N}HL0%o{);V^oh4F0AmV^AV030-UC!owR&_TaRbkM!Rkz7uo$96%I{o8;o-_vuaLD^wZHJ({gx0}MI|$L|C$tH!JO~b4^4dZ z7beO{?00_;<%f&Y`Iji6AZMRaFLHJ0#Ox|ZPHTEM zvWFfKbDzw;Jr!H1BPCH_XstL|SZuutG1rf1T&lAS$WG~aa9O{iX60~bacXkPsp^6e zvpX!)pgsQ{N|6U`<1u17{^Th0dfjeU`dFXP2TQ$d^1ke4LSqFCJ;i~?NIiJYqi`CR8js%Tzw@R6^5~bN%>~-wT z_d8=>}W_gp?d@_S~w zEa~?}8xAZRj>^OTUOk+D!;87X)J;Nf$90F#Q5)7QTZ|z7V{wk6@XjhW7~XYtDvQSf5OkCJe zbh^EG3$y&ojOT8Zo|oVk4NCI0uOQ6*l;4?pUhkFj&l5P(r%2N#jw< z5hXx@9SUJoC$%7ec{+jt@5&6edzD#Ga=hw0gS>3aP`jIVA{g}F5j0lyqXdQ8!7IqY zAb?Q{oZoyL(NLWZ^fu{^>fckghaDB81y&$vCv>5_ax8EkH2DZ8ysKz%l$b#94*2mU z-FmXTptb<*q=}b zRm5U!5gt~U>P?P|APADa+u^T(v8SONM{&tFpj9%r#N9OQKRd1^{C{46w2afC7h)J9 zIQfz?Is%^2C`!|y|RAZ~D=*>geInXX{ zW3YEoapFwrKH3s#d88I5c+n7)lS5HVzeSM+dmi|*PKaM|>&bHk;;!8!mrpz_Jul{# zh%{bgNh_n!Uq1`u(?pVRGt^V0TQ^Ym!Z6KHlm|w0{0=CT)AFp(Mv*- zn4p}T%9IvG5JwEIa1Qv;F{FvjJ70{a9%+xy;I!M7BHr%XDy zeZducSp+x}9L{4Y(O+=F?}J1nOt zA*}Y8Pb!a|RJe{v-xNq%4BvBW7~EQWuS$=5FIaQ??TVv=*>s>uFr{{bu$+(Ux}C=U zbTv|H4o=DX2o(m#Gv61u4mJ@+qLnNJ{a7C(PSHR}m1@P=LD-mQvP{y{gM|QY^)+~7 z+~0I0nnd)!6lKVAK;Y11oP83gS4tLgeDo1WkE9dhfGrCim`DVU)ky}R6hOLB(=o(5 z^gotU)}z^rod0Ghy&i+6;A1~noSklM*zdKyAh*@%{$yePUah59z{n`U!%~D$;wsD6 z4?Jp~6*c`&rt1V1wq_G}FfZdz=GFx5lRLb9D89QZT{QvvrVTr@xn^a9w!4d`MqiFq z2mLxD(Z-sWMdZ^!DGvEW0M3HG;w<(RPKkmkD&~h@Er7@nQ;np9c#VXsy%)Zo5%_j> zJoKS_ra)pz_)+@dZE~yPd)E&Qhi%>AhnzfTD1*|rS%Oj%$MFvbw>6c_38p2pMa6R| z9O|82{&hnP{vWa3ZJe~x1y}70ZTW_S9=aX99lj>0$MbQ~m|D67g}8+t+@2OiwoUgx z8D$5ZbU~_4yq`5se;zkr7>P-2qflM}%R{c5`1m&@#Ke%(RF>QAd;+z5fFBxQJy@~4 z75hO}_?+`&>X!dqU@kD!2Zj-8G`wGgq@`Oql2PnvXa@=k@2$Oq<)OlJ_Sn|c?C%fy zZcbL8lqgsxT$*G%IzRn>^1RdfuK^ z+JrrwsT-k((V}T#%iT6$drbtSQcDBqtI<025=2Cn2>NGszjJ1RN;yo|4Qw0Mr@O|vcCIQW+vWYW@~=wv)#n=;zh#3lRCrZvAWr6>ePp$j*^sxKv@9~c}os3 zCr4LUf$>I4N6|>R+UED@iP5zX|H+*PBYq>xE018=dhZ+eg$pHj9vio(4tu)9TltRo zqgFiz8NQ#S%(#~`uFXz^5-%T*#}*4tDbyeQpoJY6G#m_%xMXho_Qr4EEx@0OVNKw* z!#B%(JjWPgAGq^t(j{!Z*>)${MX)M_gk-ZMQBKPC2h$C*R*Q;1*wpVd9E~^ZU#~wL z9r`N#It&A3Qo)NeuV}eh1y*OcHwph1X zSJPr4=N%-kJl&bAo250Zj(!NIlmqQrvk1$lj^ubF$%K|HD6+5~6!EMXjlaopzaN_? zlWvr?kzf4;I3YH=L*{W}0#(~TouAe1HPo~)V(unBmUWE* z8)sGiH$#`~GJK?EjxA2erPIB}Jz^&xs46R|T~20xnUg zp|xqv|Il>q;Y|Pk|DQvs#6+m%RMASZmh&;DgN7QTM3`EU^I|zGWFjTXWR-=Al8*hm%wPNR{I}w8pn_1xe0FJsn&R=~^TC(BW$v#r z`vmyve+uK|K_7_g<-0^Yr>wEaQh&RLwM&^f8fCaO?IOQEG_dfDFy{>$SabMZl|$a$ z$*%9{__9!EqH26D$@kOY0qvd&JlEa!+)(>cIPbx**|XjcC+_(^;2(PK82C)+Z(;a{ ziy!pW`ADpT!Z_1?YSg2fyXwjtSyxe1aocV5{V>9^{=wSCf$Yl0b7$tMI9#?o_cN-gxU>g zh2$L^w*ewuWBs7rNr@?tgpMSW(5l*ZaJ+9o_krG1bk1+AGLJq)1^LAP0WBKW9wIKL z1og?GPds3vt{%tu6wptxeSOPS%An`>F$$i;g1E%oq&nnc&tE6FD250>Z9CP5yNFEu zbAn&0!Ykz|shEnWhq_ph$=8u`P)W>~zO%9j()A3N>U*uNY+5WK_Yg!8v3Ee1izGpC zl1jY9A?ic!^++Q7T$8nRtXr&ZJ?Tbd%o{fx)LH#XSyG1IfdYFSusP0o-B|=QIBnWe z7~ZFoY7He*3}6KYl1O2v412Tgi@|bY!#oJkMl;VHd9L*CP>oyBO|P3E3LOGJj)>wx z{zUMlE)Hn>K)&+{0Gk|y_%-OcAl3|i0m#7>d4KcZJW~Ytt^O^@-v~m~79Uz``enJ* zLpfDo4i81`3#UK+YCR(ZL4-s2m_So#V+O~lpVH>=!Hx%~Lxev7ua)9|>3rZCgx5m& zJ|}skLpC=pL$+Nk!*cdG!_zg*XDa#JyZvBF5seDlMT4tuhQfwxWtMuOGrkD2vI%Rg zu9iwJN>Q8ZElK)rZNN2NJx@!#e4s+>E-p&~!6y_>Kg0xOE>7U8861JLQI`~OqO;aA zj&l_iOR~*S5R^F;^k!zrX(WIH>{DVw4x(Zo8@<7U-%g1)H&^mB9R>d0N?MraMr+{` zV`5?;P||f0i3RUm0n=}cggPmgoFevBx1jPUuUNobg*fDfI<3NEqeM=&>fzrBZrb|J z&&T4|IYrY3U#p9M3~U%u{|sz2(F4`}{g$rw`-}P$rjPl1qg;MnKPD>yRm8sV#$q$R z?s=^!MvRo$uXtSXEAMUi9^z%iN4xg?j+Hj@i;;q1q*^#ya+tc(5Ks1RfptlI)UgHm~ zV9$Y=(D_;>RUE@t!$ciTc5-PFX#K?Z`io?Y&&*!-1mxE(RrtWwKRpb-Xw z7X_>5CyOKQV7kxSTdlQuDl3}qqvb8xVWc`Iit}tG7Z1XpkNjK$Nl>&siI=UIjT!yp zit&7im_@$>zHut5v}u{3xhL=?6Gt@5j`?1swx%o-{aK>Y_u-JS5DPQF_TUgI$xp6o zD=mN0x%n(N5_|%VJ5JqTJ&$_wll-<)5QH)vclpyz~u4c7=J|OfC?i00SRd2Qt!ln*;4OZ=Zk!#A> zBi}^w)j+5phlVFDkbb%AsI#FJY9Z5Q*;T6(&$koWEA4iz$nDhaXp9?2lFkxS3H8v8 zPzY03HEZ;}xfMt-Dhyf7Pv86~xBlo%D30S7((RzDbJptKgiG(fpsiOC5g-BlB#P6d zE$JT;r+oLWS|mMiZgy+qd3#kLcl7sfC+&0(f-WB|F@~&fV8G{GMpDQ=Q?(%M@|Kk?f!e$gTy8Ror9cYfHIkDdQH`-IfGx80!M`t4kxx^JDRrG;!7wb=a1F~Qif zTGp8#a(Y^80Bjw$wnVVB;S{ySr*^+IZ*$^DBLcB9&F7Z2kMjb;O0V2@pK|qvm0Za3 z_yL8yDcYX%K-Z9tukcqpFg}L;vl2F8yA$oW-Bv$Fz4TO4$xdY)V$sgR%*;FWoMZnd zI_0o(H|%$i;l@X)S$zYs*Fz31Yq|HkN%t!I4?X<7LHcghE#mT{d!TZqwR(GuFq=ws zaJPO&Hkq$8MsBHr0(^h1a9I)+4>P@Pe1LT0%13=CxQF5Prd9e*LoBdRk9cd(ZOGC( zOUz;E_S2q*I_z)mj2@Bt>ud}rO4{nCtv2^6##V`)pzPcuV&c#(Sd{yrFKG3R>(tnT zL&55^8(MK78f$liV?z(*pFo9^fP{nC6IZ3`wBRz@&1fs z3JEAe8dOl=T!RQ6y*d_bwM)Uj&TlM5K9RQlwWyn563m?)S?VcY4n0wF=+hyplO5x5 zEY2GXmFAi7;}RglYmZrIbwMz@gw11VN zlhE_vEX9ID^R=L#;ka2RVRW-_z+CS#!-L1#}(g z*Kq01Krn00q4^yE{p3@(I2hOdX*_%!O~tE$K)#=+@ywTMfkeMFeJ5faAriK}JMJRYyu zbvemv@Hu7OyLJGlG@68F0dX2y9n3|GXh4JpH!9GjfsHZw zhH92vQ&j*DCnInDH;|@neLZ!{E@x!MVf_9 zi8-COkx&!K>-87^w0QbNhsEdGf_y^ zWsZfBTCx3E9x$y}{7;tVfk-zu&74|aDnVEwg1-WB9*8ggpCqHM6foWpyvU!r3K?iK z!v=d_R-^S57~Rg=oP7>4^9XG0U(^Dnn#swB8M{37@rzCDcU-Sq)uCHCsT#J%(lHl) z8g9)DR)(w$CvX3hGVq;JiV8eSu~a_&$RBJBmIvTP^l@r4e1BEy#O+_HN0owO$?z*3 zShvkcp}l*Bw58PVC{BxMi-9R*G8&`|qkuZ~G}7AE4=hau^c0xC8klC+#3Utag#XJB zIQk+*$LCi=m+v=R_`w-C{9`Qydap2tmIU002p(@m3nVGh5E+DW!tp&JwLwU^xd)8~ zd}fXy4yey%EetpTg+lm2P?a@x#sWr&sNtVq`8PESx9=OSXE~Hw72B)1PB}|c6TjVF z80z>VC>rlr9WpoNRk894G-~s;c44dAa_IuR8ic%OpllxIRQ+*G3Kdoe?5B$vUoPzsS<}k_n+F+Z2ZWZoT6En44ow&*+1<3V$&4DXmf5pB}Sz3>{ zn9ZfkPI(P%r*;oA!akXmNwBH0ZZR-d80;>BFCn)v33OfdQSzulJ;DgXF=UOMobE-L zciegB$ajKvy^Fe{s286r*F+U(nsp@Mt-1wU*K8ew7C}04`cBo{`ez|8!jXfLi{CsM z2d#7*@}qKd>ptgWPLIn_fxzwh=l2?vg2Rvh-Fi!V@sUJ4 zE~QP$enD<$`c$mzVJjW|n*nopn61cb822PU`&Xr-ht9>`bABjSnUNAX$;CCR?t;c7 z8!3td;CtDb??Zpq0*ghR>Yw0zD6H_=D6RVQW2^aY_EhR#g{(|%adD$82?$_#naBp! zkXFZEjd2~fzJhSk@3HLz?vF(kKKrRReD3$acTj9a3?Htpj(61VY~Od>&KeBZ`t3w6 ziW)+<_&I=RSX-$Pl8ET**2ed8PXK{w;J63$6g6OVSD~cg4j{-Q)BEbrBja#&(@+SkeDIj0b_yoP|_awG*N^mY!O?sK0@607g@E$_pgNA`7G4YKtxp4ol^CRM4l#Yu;5JCG`#`XWB!AWZ z!-9*?iRHS@rg*-UtKx=u*4VEn7 z0yD+nS;v#Xi3frbsQiVUN5SLUnC2R8!YCOZola&(%)OceqsUB~-=O%Czi#Xi;JN3f{AgeQF z0!v`Z6_l&=yOaa$D!C`{CKBXqXO)~43)N63@Y&Dr1NDp)V(ua1um-0<;z-lSIYG#P zu2?)gmwf9Jby15J+qOI#(Yzv;)?ja~o^`wYZo@Gq#0+MBBwl13BSe{*9i7I;T}DEZ z&|oevph$9l{%?U!-K&sjnf5^r)<>gO7Raq@V~eMuZaQ8w>B57X8`F5c$dQ^ch$yNoeolrCq9)7N0N*h zsHTzU&wDMC;f^U4*v9f0qGPjVuCKTyIIk+pr8_Md->gRUP!6ELC*?G>WCxtSga zcXP%me$N2j4zN;@loZ2a5wT@C2jhTtA?7Q*`_<7mIZwe7<*&jt`Fxx8z7N#JwZM(v ztJ7KBwC%6?hf6)}0m@}9x@z$i0UVUI^@-gBWsB_pUEhB#gLepFK*m06pcgVe{%S~u z2>gl=aEOO(6mCX^?Qpkm8D6NojU0_oegQrrZRf^5^?RDZz;??Iqdk{OBpJcH|N8EpJ9Tu)8k z8NEnLEODLe$vn;_a0*6q=+7 zn#`>geC>haj*woa^j!Cac8@XDG}NKwgQ_qmqx7a4&udW;CAk$|CvAhe`MF2-UOO4M zI9Z#SPsNx0PQ7@yS=3T_z{5p*7HzXAve@g8s#&B{GksgLVtHtKd8?@Bv&UnO@CYKh z=$-2oBrPS@AD)bk{0jGQsgTBwol?Jzflz!PYK44|(_{HdHArLr8sGw&7X%hw#o)uB zLvzB4`CE{#N2ZGZ8_NqM@bUsP7;gFd-u9i<^!2ywN#nMGvXGU- zpwSrm)1xNL+MvE%Oe5)cww@UXT#LGUD|8}?Q#vTu{FPajbmOL+%D8!FWJ|2~)7*W| zI<7ssiu4KuLj43>H~Y!^L!eB))PcT@n+uU@UYXU`(Y=WPbY1Q1EKbS5botBH&$*3o zquL<3;2x`}w-TqzZJS7+a|pb>BN-{a3LuGhP!x6?2O_+4Y%uy1^XrjO#V3lO^}^w` zA2eMlYr&ILTLf0g_$e$)`0;Dr(@*qyFSQw+NVZ1$!qo7V(1YUV*-YOb|Aec@li~3p zhH>!P_qiq<4Ga6uuEfhG$9^^JK72w-y~cXCJc&mwNgq&yzL`N?o{hxh&@f>p0h)?&t7Gh+a1xVawo$!qqW%o|KC)lkkuJNCu7kpB6x2Jk!+l z3lQVw*?0ilakSe@JSH5YF+$0L|D~Z&qV|K}p=?TO0 z>f%V`uMiR#Grd9!%ReTtbSKJdolq*qpPEtp%JJmL6`^n;4$$t!_o%}7=<7Z0!IP7( zj`9JEoiPMpO)CAD_6&2%LYJP>$9-d#Nl}eKU|N5|iRmr?CN*H)|8H8)%7TiCizob} z946t-zUeAkK+YDSpSmgh8Vc$76s-)#9jIsI^J?l5VnmV??ccQjsNz2tpE1$`Nd*#9 zRNH%r131ZRr?bGm9WD+}RMS-+xIE@?@^$QfCjoW7p(EV`k6z%Naa>@9jQO{6S4TwE zs^%VYqPw7!^OkU&%FWGAfag5P9DK-SO#}w{Y42q{60(Hy2tfFSr0XAeeA9ktnM#!DG#XG#y-zH8QS{n;d|2Dick-c9}o8V=t`g8 zEGoq%N}?DZ*-y&%FmKy|lJBrU_`~Pk{vTuD#U3{UG=(d9)I!!LKb`nt^3(-8e5%#d z%r(wL*ERa>U!Q3L<-Ls=xx{a*A==G=d_wDhE(we%@5>pF^#^u0CwYc>cL#+n&A;)u zDXs3OPrGeLC4T6u3bJgA7m>7(ae^i5tggt(?koq1J^}762FS|6U@*XGm98_~<}c;q zM%_%Xtm^vV-0dgDIh|J5Hey%w*vEl;?XLQ!_1s^QxAeA`6AaCUpjGx)kRJ0`CruHR%-R8SLk%sU4n^tHkfDYE~^b%~gf0fGFv;f|a)|Fmf&t>hq5;ktsd$ zACLUd`tUC>KLygp_LK7UJj7xO?vzy-zzIw7doXk7Myw755xSlw|*CO zSFawC+ZeslZu{uqbs!*iXK+A1?eBwag>jN-mDg3%y zwD#U3_`uZwjyo27nKG%pGJkv{#&aZaJabYtCzbkpoHBjDeG5J?HfMg;u1HmoXi5jlF}4jwTNHn zAN#Lhzvi!HF1!^Ph~aN;y*!qxrKI4Q;-=v-b&@z=A_v^2*ZLmRmL(b#JaNaN9!|c| zPWe%stnf+-;xM_@~k+4ZidupLCY!0;h|L*412M4V7Cx9UFqt5MrTduTM{oU+5Q~fu% zw1;_DT(S4TRwf-+l*>O?A<7z~rcT3SNN(QD2A8-S!xg9K@Z-GBmg-F(Z!Zmq4P%R1 zv(#E|%?G{wM3+>mdEu*sg@Dm5HsRlwnh7>fI3<+ALq#Q}x%vk>-?Rx1auqjKrN9o} zy10DQ^cWXy-KLV&wPNzL<7tVxerkyVKbRh*&~pKU2iuRp6zeVspm3sf zEP-VWQr~f}(MpeVUuP)tcG~ZOUclQh985 zxGE15#ShF`L~FJY?yGiy7&p}gi^JL!QDb?sa>QfcI?iH1U!b0B+z{cS@v5?7`LYe2*?$ykcxF6z846m0eD5AMup3pgSSX?!UY+(MeYX5a~>oLmb@YQ zy!y|&?p$A0>A;d&t9BktOdJB%8#Sot)*h^eISdG+O;B~h^4ymTx2|Cn7X|{9!FUAQ zvL$_`19X$MX%H&@;bTaBnplF1q_cC3b~Xtj{a&I`92x#7&51_e)4KM+z%?d-G35`A z4Am^@9EoE6e9NAvwADf~1#d$>EdM zZYfr(bTD$@M`N&O`FI*KP4`^@3A=w4q=io;p9L~|`u>kX0M|hNhe}XKC=NjF{gzsI z!gn@oLyJ8Q%M!x22e-e45*3BzX)?c-@p3_L3-U6eE|VsDJKo}dQ9Cm@{VZbCniIS= z3xL@DLx)Wc7;D+Hct-7;d@jK(dYj_VEK0#5OM7?(q&6dW@F3+oW0S>=U2LDtTkoC?b&ZOEtUW8hksNyJyqm;3>c^)tY6kaL&AvWa->H zQ*Pho8ZdlsJi-x0p^0FGwC|g_R?am1aX(w;`+=&__NS+({4fdJNP*lg6_G8hLDbAE zXOt+b6pWf#AZ@J;3>SKrjtI-!oOX#D+YNDhjaF3T$^b6%=f3jLRr2%7`IbdXHfB|D zr+Y3Ova9ggeWUi}r4RyS0~9jb5U+tBV9 zP*4=5>=Of`AKe+AMg8iv&$Kmb&v1)E<3ufOfw5Uv)I!dGV*OS9m@iMATAaCqreBD! zzpA3&0lgNvjrio$53W9S3SITm(aw4|y}CIbM}j#TS5qx|BN`Q(J{IH|0C6sP%&Dv^ z!*nrqL$sSCTk|MB;s7!=iXA@Nu@o;PmwYDrqJ z(IoGYdw-%Vs}~yQHh-RKH`I6K3^{O0>=xAG^E?P&Nc%#XQ9F%>n_~o72bm+xXJ0%h zGyd6hP;faoK8+EdJH}r<)eK0TVatto!SD_P8 zXP0m8Qob15_yC=4ty%)~_=|wIo`uu-8{%M#(u)iFGx>^7`f0CK>o=>!8m3^ZDb!%l zJtodbQFZM5a}!L|sf!l}){++18coOgYq4asinb@??Vf)GTT(N?v4}9wH9c7Ac!z!f zPuC9_SzmDCac=ODxd6rZ^?MMqZY$k3=@xZS4Kb{d7`lA3)X(WZuh5yL>SfIxtJ5t& z9I0|c=+>%o==8rkFc3`_v4AjX`M`Va3{`eZX}a{Gydd@@6SBzSfhM5M z;;yw}TSlZes^r!ah@@}27n%Iv?gQ$%9Jjd3Y@!p8mRr>wKdIeJBDy|LzehP#Q!sS} z)0DOy|tJGb2ZfWbnTs|%TxYh|dnrdI|>%HWy zU;$d2xr-Yzb`hwdO#gFBUg)|{i z{Jb-dgf5_JH`>Eybxr2MTKVA|8J2a9!V;0(TUS~{YG*RF1>a2Po-GpRQi0IjO${fB zQ^aDSJSXhTRDm;FofHKn9Rz}PCmj6(1dMc02g333L@;(2Hd+Rrw;+CJ9*~qaeS@_t zT!;_gS&&~wD{a|HXT=PTsXVM>K9xj3oj&M8P$(2`zOLwU8xx*)(1|91z}FQ^;m` z#PR;3(o@qMWdcL~S21le6)xt^W)S z^yQkqklHamUq}U|oY3FO<_tS8`VjJGSAmRdq`dYWE??{->y^Dldpp_G+(amIY#N)0 zF377y_bdfPG>Z!;;=ptA>mPiV zC}!i5(R3L~57^DmJ^39OEnV6_zbyFNW_RLc-Sl=Us2e?Qid9|rGX1hg!JpG!{r3UK z+Bj#bC9WyyiL*S`2mt*1*bxB-j5#1^Hmy)ofT?^M9WO)1}zb zBW{%r9_yNOdaJ-oJ{a)OcW0Fukd8*5W~%(M21}BO4Ta|>sDzjT)w_dBldXe`JBHp8)^y7!36UD*Bpb0OWiZWv6x+G8TwiF6JF z-_YD1T>=004iVNQQNdZ_t8IGds!efpFU9mX_6By0i2}^(!zP+|e}i?0S-H zdfGUZQog_f(k929XN8-k)$_4jN`c!XoC|N#xddIA+txK)n%i1RcNx#vWz;bp#p9Mr z5fuHeQLErd4vr@M>v}Z3b+>>9sH$^#K3s266_L}`JNstO+ua6QWDRF@Q2X=|KDDpd z0SnGkV%PNcxAoesW-D$Ygn%z^ERM4VL zE#kgL5dnVX*^N?{NpyVUQ#Y$J*D>-}X4m^1k3{Tq*U6u7+W87KCu4r2wx;(cCn@m! zCw~X%_2Q9(cOhb6-S>!S)WAFj`d4r^A^~KPrA-PHQ{#g=Bl7Yf5j>drG6_W;9i2_7 zuuVt#Q(I~kfbLaT>9?`^S20=m1${x>W6W{wEB=h(&flWav|jfT++=0MBXY#b9v4Z7 zX|aSl5DecS4^=8FS@9*L0G+dT)_Z!mv!%H-GpWdUx$l;0K)dQ&`eQ)&`IYH0MUYuHYoW3 zGN^#Of1kp?cw_M|kl+V96pucdXL7SsgqiDg_DzDxAU&;g%Ob4T- zjc&U!oPW*;gfsO8CKwtQdX8pD^CBpA1;wN9$B`1)+s;}kO7H}_4Te`{prlQWX_=k| zGUCR~6K(SDbQjZ02HagWd9v zJ`j`WW!92PFUYfHeEeF$qCqV121L_S4nhdcJEFC1JZe_LZ{1Ftx6Cfr7hSO^dHL^lUg@d%udmdlkNzF~(zPd?ygQSQgzg4I z1_x@)ktE|Hz7w$&5}}MCU$CKEO4S`rm^nxyQN?(fy)8(0=wVNcR8Zk5dpkefx7uUc&m8uw zik9zckVlP+gfDy7^Wd;J2>2!rK`@v>geF1LMafxXFrv2Kc|2a9fX9agR&GsHuihQl z+C;ONZCxo!jil9s>Zgw1XUnV9!IdP*v>v8g{sQP@%P26ThKEy2$=Lw{^PIue)cX4R zqWVV5?N>YU4f6ZV@we@wF#~EzXK`;M$Pinc6n9rbJ$RPO4`Z;trd;vgHnTQYM zGmO_l_<=mzDL>-G-_;XY-aY{br0KFqgMihasJtJY@7^V+SIZd(?j*L?*kAb;pwStd zH?y^|Vku%H7^^`%XO1uj3Xj0DTa=@hoFwz^P@AUOSm(_<^}h6mdRHm&@^p7o=)EQ8 zLe3ooVL`RH&Kv0ifwS*D6q(vh67~3%SziA9MZH&cYMzBQH(ZvDMExHI3WY+HXW??yh`n(dx;7i=H|g(M#5xMA{(Y4VN% zBaL!9lQ$g$w;JKyJ4WX-H+{mcSksP*+bn~ClRik5} zoAa9h;nF`>vC(7Qwl7?CF^>uGoeQ}%wQt-(Qa13BT*d3z_INs zfKV!8BVS!nE}LC;pVFBqp0S!wFzAcIF?!UlagKcv?X0jn-G;hfSv;9`v)Ci90d4;6 zWB<&0Np3vUc+fvQkIWDq`C|XqP55w+q7+&6EKgPae1;n0)uhVs--kWL2}IwH6~i#!rN5JJ%x$egDq2NIJspZw z56UNBGTE|)&4S6gc+$7Qrv=S!r&<~YeHd^@L;sV_PGa^mAy_5s<9Z%j#3D2@YQ)1CuWNf@0i=5z^cZ+@1JtKl4QTNyIBV zuB!$jpI&@coJWM{-TB#^bGC^5tkd2s<~&*$WsTu+OX>1EEe^!k-GHq8v z*D;(DulS=kZr*2#ZI%k|Bel3K%(~IpU=zSG0omMlt@vsbVY{52X+Bhw7ZMS=eG2DE zH;P|pz;-1#84h{kMzqL1ZXIV{>x;j#w?5!4xJyi(!nMzPazfz(B36N9a^D>G1ggPt zt{jLP`B`kv(SY+iquJnFus`zhV=@;_cJ-3ZZu57_pj~$877zmurugL0NYWYA0$IJl zh0%#Ie@#?b+=w130Js=~*!?NeX^f!dUyB6Gc+p-7(@5f&0ENuwX~EyiXFV0D8@$l- z4!|E)hZC>hmBHX22bon>ga~=B&<{oQF+u`Ymh($I#j=P?KmO3YutNc?W1kMwN?d_8;X=*3`J_dy_D=i05H{gFvRD$>v8t!b zr)Fk1C+*l+Gv--g6G}$Jt&l%!iSOzy<@8#z`t%vaN1CUmmL`VLsq0mS_NOs^(#_45 z?M3Su_lHF~?e7c!nO=3$74D=q2TU?d6Tf>hDED1^MP?N~sLeI?E$3bE=8j$}&UrK> zaJC5Q0=rY$lM>_f8h4rG=nY&XT=ME{^d6n=-$}>M*f587@Fr>t>BsD51Ck!3ti0m_V=l>+`{4v~lUcC@yTgu?^yq1|#x$^C< zu%R88JnX(@j)&j7v7E}YNX?sM2kuqOU+Qm9D>!BJyWF#*l=eEMff>NUV32mpav?Ki z5g0>Dd~S)|GN<3-y2W#mKKLu&fJ!oLZ7JC?$Bt`XGV=NG1wwV0|J08OSJkK(X65Kw zM`!F9HkZa$d9wN~LOJa3?8WMhnYplq`OVG2kophdlzM<=p?=18c^&jIQ~*m7a_u~8(7(h@xQ51SkM>%QUN?^~Sd^25@RTTiAT%N~uh=vwVhph2T}Q+}FQ6qdoNY_y-3|93z!MS!Y!J!F`<{nd6#L;41QZ zuUOB%qkH9!yaxvwmWK0x@K7G*&NU#X>a(yVSp*-6 zE5oXUkD2%a44FuV0EDUQOS*Yy(xR|n z5%kdz{SbC?g9Uh0K%m%oqAswWrfs>%L@K^_!--^|r?ldL+*%5gM@ODx;ZMI3YHc*G zOH+}GEiuQ9%M+f%mmN%)BU-P}WSBsYdx_osryr;6{FJYPSsUr<(goAEtYmA^sx z^~uZX>3J=FpNFuMit;H}@-cW-oIzXBk3BX05g&+v$>1q~t zwqoJeR^rG}K=jTz1mev}F2e9g+GU)EIYO*a+UltS(IyptuzA9*@?dsPU$%CkCZlz# zP3sOQ>a8?gaEM(sDj2^M9070=opG35mm+~c%z9?WcJ7IxRE zpguLLFjXXw#xLY~!*>UPhPmNb9cpy8`Qk;#^Ia|`K0vAA>IZj!V4VT~l82YikKlnMhUq4wm zeA#H+f?tWZU#&0y6lm&QIL1%6&+W|t24V7&d=zEv{xWj&_t^V3Lu+)2%ae%;br zL1R&K)myURgu%5p2iDgdS947Vqohk2*V+s=His>P|BQ9kk0o*2JhiSrxSOpEQ7s_A zjuRL`Q={HJ4i1G}ba{b`Q_*2;Tx?a?>Z+^i*pH5O>LdjTFBEUuR$~cYJ*T15a_nvFNnBZ7V=>7amcfA0=@-AZRoCT=F=W8d!IR)|c zYSYF-nDa`}C8Va92ON6B^G2dG!;4b@mInj?&dkuP(~7fVWu<^d%^>u_0m)P9 zyZ*QppF`k0(cmeeiEBB#!^Te)$`wd*oP&LR?s(Q!*!{gInCF~A^C_TB&BPN$ZChKH z?Ap*m@GMi#fHtEMIn^)ycr-w#xdpGOs-2+0?d|Av!vOD4c1b?D zOjiuzOQ^wk9J=@ze9DigGR{`i21dnFdW+M{ar~yD0f09 z9-b!i_soDn;MCYgX}sucnk%CBF22vxbiBBTiE|c*1Lx@-T(39 zbBI-9;*N^2M7m4X93!Wua=x2}hGc3oIWAT?hL|Y1DVsyeVP!(aWagAp2OD=W!sd`n zPLrI^-`D4N{l3@ryRP3~<>I>7d+)tp&*$T4@tp2FZ<1L%ooUqR|3E_F>G$_!Sw?<_ z?-!I#g}j(tCYJBPUoRWlGitUSH@mS`zP0%tw4u64E=ye3$Z+Q^WNv3}kNkfQ>4L8! z8SZFR9GU?RkQ?9rnH=?cEeNVMR>Ft=qd8oi?BX48UwU9+ZcHf5-;+Y9y2-K{INo19 zi9UE_hgUw`6hF1T)KPj}o@$#L61kjy{<=XG!t~G|{Sqc})z7CS{kmKCA@@D0y>Uiu z?)dkkR+=>blmhB$@{K2jGNR@sM(%tip|qZiniSKyLUp6b;;cAQC0V+n?Bgk)(Ay8b zG3E$o5Kbxo<`*_1$WTO@F}v=SeNov*6TAD$-o+}?a&jU;8;E`}AYCB!BvZ15l~Pym~2cOcTyo*_)>9cWukRpHfo_GF%OgimNBx7k-b>X!osiN zWY60(|2vkMk;#6h*s2%49-<%;7mp1QIa;LX^yf@<$w$SN{d+r#c2#7Hs6K8kImQN_ z7ggAEg5ZkHj^}iuHrx({cjiJu440G$Sb7Ije5A^^`({o>&oQ_fP%#4(S`5HphMXWD zfkr}Wz9)E#$;NEuAOjy!+3fI?7xYt&Y&8k|&U;Dw9fZ=$^iZXjImyswPIRMEOdP6( z=f|b*B2|}Ap~zrD*4T$*EpILds+_qC3@dNPrA686^~R>A(=|Pur&CM(c2r|^a88x5dS6ZBeIO0^oxN@b`Y-QyGseV}q zI@(Oee?UM)9r+W-T-+SRtLr%s?|E0)QF8JOX||&e_f_^Sh@o9p6<>D0guA+r)Qk0o zwp_B|*3s3VNEa@8ipv%JSX-OuY6nj1tO{ex$H5&%H?)d+Y)}LV5{xMp1ph`CowN#Ol{<>xe{SCrAIVuHiT?i0Y`sX+8(W!R<)u>B-+cI8KdPi)~J zbF=4Qc@2wd^qe5A)2=XdmzZ^G#4%*KW5(U4l*^BcS1iyGJIctq42ACnhpq^j%*v)_ z_0S=)P+1XGQCSu%tN7TEs>a}9I7IrDbLkg0KvJ5Jj}HDXo;AKt1c0A(I<+VREYiRB zlMK4fAcwpK@&)2*&o5z05$EvQMcr7d_$1pC5Rl=sQ@oLHb>k}oj^=Jiuyd%QT{1eO z`{7N`j6oPVh;SD%T-r!rmSnB&f#8Kfq!nb*I{$!rH7nAEQH`T5re)L$E9qfg24Pa6sQ0~qcC zlM?KS`Bm0h9e8QBtPr&! zoI5str{j7KjZ3&p7bd*5F1GjmGWNN3?CvL-j^60s<%8?LKgc}>jvPtet!KoPuY3_$ zMR84dghUMCA;Pz`h%Jl?tBe@inn)%&xTA4D;n7UHHHEQf?@nm%UgDM-%t~q=t3Y(Avj_ zjS`vi@{S_R-k6Y%p!MwSndrHxhPCCPt>(Zh%DjUa)PF*f(k%X&Z_bd;s-(8B>Qar3 zme?klXikPJMLPQp^aDpFAfZdUSgS&5A#$iC&UDfKW-Q7J;#8GyX!6T3b-l56@L^^z zOS5<2w4GK<=lgkgd;Z#|@@J*a9yJH%UycuWl{r-N9?FmQSq#1WuE|uw$B2T{^lS{G zH&{F9FsT}_t72V)3c}aq=fdXKy=MngFkH)FZvN%4;=rcnc7Fat`wUg77%~sQzU~}) zKc3CyQFD*BK%W~vm<;G}G-zH85H){(1{8GSy@0k_2e*8vL3J<|+ z!?mm=Kkw-%l5W26TTvX<#3PlqxZ3P+=hA#@YHMri2c?>C&@9y3s$CcSfkJ@ZgXK$w zqZpU)xU^dZI}tHA-XBcx$`SN&&{7wx!R+pzrQwzO&x0D{VGDI}HMm9#%>4V`7{7~f z8*pzaUnz0ua>rz6&~iFEPuiZadyNl}zFo>yvbg<~WZzXNf8PiyhlCI*;SbbkKwC^G zWlsycbTcCgdJb6rs?i{~D56?Ebmb6>{fB7XN@e>jj}}q-a&}WZFi`(4puKv6Chvy} zghw)smi-C1YZ}B$A5A#mImP1ZX`R@|&!5Vw3SOp%)9#etO!WG`NA=YCuV*?L4?gKS z1hm=Nr=uSrE~LXND8{m}7oZ>R(UO{Vz+*mcwtjOYG0&7DKy&T5N=qqOA|P7)&zY`u zl7lCp%f^L#QxjM1eUV-2Ud4>P|LJ~JzKTzS#bWrx_a!A95T8{-(_r{_h58RIv-m-G zLL;Ms7Z)bRxOdN@{0G>?L$o`JFK5Ci0(ZbGKMMvooQR=_>ZuB#{%qQ&(ASXmT`h_t z)#2%uLk#-b&x!jz$C{d2*m|9kl7Dkg-#q!W#K{Y83G>3s4vN9Nb-5K472%}W3(y5I zb_v24TIt)QT=Ffg#RDpLE{C`;gR0gOi$mHZv4CXOT-=v{vb z6O}s?v2dGt12id_-5Q@>aM|jN{$_x-9W&Y5IJudU{obQs(rPho*=&Op_4DDt%kwAA zqEnOjDb$4EQ!ksjIOZ=WsAG9gv*D90{#)#E^>{Q;CTJ#}7glMq1y%dQwBkpbn`d;Y zy>n0mP)$@-UlRIfSI~39qDw^F6zI_THlxhy%tW|i}%Ax z4v(ZmI))-=o8zp8^zEh8T7e7r>8VGf1jZywy6p1I-HPO}M9Lu14%qGl6ZY|8=9P8ZAc6?^Cc`|y=%*1s;E1|jUq5bKGny9-yoO=9GwYsGZ54DpFhdT-3 z8UJtuCfWTyj@pB(zeY%dn=6}+Drf5Z<6#^&AH*2*-7yxrQgK{S6268Qvhp%&g;Ne* zp-c3yMW6`i)tdt#Ihv6EgYb16d;h=p{ODz~?Yh1F&CT2}*8arc_Xm@1e|?WRq4$tl zW&m1LI|G!r$IR9XmK{>rHbY^M?uXVjRS2TNk^K274%p>aJB(GL*K<=_M#q@>RsqPe&Tt1@&yEkx)Q6_|23Nw3MAdjS_ zd$MQ1{jl9NwDH6<96Ncx;$O<)%$wNl?CoiV?YWcNlg(2lMBgXk&vS?m?BesocvU5e z222xWO`@b~%zkzxTMlwqWP}?R)e-763IFtXTtn}CWW!_^-PT`9>jLalvrcw=(DL;2 zzyg+MU?PxQG`Bw-haXQ3V`eqn?%q9GZM%1+VrpcBdsV2GFr|eYE$V76sP}ie_SBuP z`%#t1MfA>4%=)JHp#U_WC?>RAd9f~OcZnNDtUJ^m@LDiP3#ufn>+4?xIy8SYFz*AQkjj)+jmFmGVD@3({%ceUhs)LyIu#aMV8x!j@!bWf8=by-O$v?4G&3JWhg4 zRl0z9bpQz-IG^|m?X8`g+`RaKf{)`v;p1^KW|7r{kLZ)qFdqLBIIlrZ_qT)PwYNh; z0F|UO{Y%2w9RkH-{Cp;cj%%>20+*2P(tBcD@9F2e8 z*_capN^c83#z=tiPuy4Zh9WLJ#$qVSuNbGmpQhRrq;nCZ5XI`q+7vUp-7&6NV2(Sg z4i}c;jmCX*6q4)Rj+-laUqHkLfwHLAz1N?CB+!09>@px{#3+FPB3865jxn&8bCTbQ zxG=1+NUe%uDn5)tl17zcUYem4; zYMq0JyvIHyL*D2p6*)VJT_h(_z(V_8-W&RrP1fmT_GH;gv+>R)Hjm{CsM$lGn6P`x zP&IKKIjA|N1Z&$7WH3)l@_zteJ_$)9&=ur=HX;sEsuyqG;vjA)X7>{qweW1Ie7Z)H zo`Qk5D380uyY$jXrrD5F!TP9}EsujX+1cIOA7gweG;7{)+{g!hj2W-!SK6gpLKj1{ zVTSY(c&?YCZ7G(^!!4F3Hr+@}43(^+`Tv`FQ53anVL)Rnf-Zhb~Zsh?BlQ1EEs%Cgm6^GrW`mh^8rCE;XL%kJcI^)KSOX z{nQ>a>sG()-WKMqcWEXjFXGob>lf=P(hJJ`KKhnnz|$%3nP*P!p=FPCUY#-Vt73D= zTj)KIcvR+3zpMR(0*(H+px`VL_|%$^>?XS+=jvoAQVsz|0}|~Z9Sfwd@aZHdgroot zLs@3Hb}N4vCJRi^k`yhn4loKzhzJE`3}?)pHa-C4M*?U9>1E1ZSp<@7^ZAGZlDG_0 zZv~*ZGnakImHa9L7r>qddNHLI^$4-fS5$hKJ$4~CtK`W)o)V^PeKa2t^yU}Z56CY76#b|6mx5LsKj6LV@v^esG}M6bPgW^jkZfi4upqO^vh^`qz0uD0tBZq7{mPelj{%Uhjn1OIoz2qL zlgTq-*4E>nW?s2Hcbh?24><6Wnenf!6z;jk{l?n90I-8`W+PT6-al@>WdDD)0QCUh z99mr&O?2$mD!M@^qB9?ky84BhQ+7fwLe(jwo`1dn4GHcN(2yk1T$y}}v9Ixu+j4K&ed20q|m89EP_ZRv$J{Wjq9V3qZ*ZDvA zCG&{lV;5nuscA5RtO^=h`rvTEEA#Bi!u#l64(EgEM^n@HkxQoQe}v0xydEsE10m7L znz1}KwtNuyDAa%s+rC4pqp3NX9MC)%RPA1CD&93T>AX)gS*L z8{A97UV>VVnSP1i83!n*FCMDM$~*2{R%4ufrA*&*R^R_2SQ6Qx#XmrUkkV=w%SHwLHYEmJ}E)e{IB2r zBlXmWMtPoP-F6iIF{GJEUBuL;WW#cs@hso$iu4nzg*d5^+Q;|9kParkeQIY8V+L2R zdkn3CB-;o9$Yu?n?<@67oX=gwF;mp0JA9_>&A`-Qw>94|M|!6#DH*jLh zyy(@b%#uOAHyMzI0yLCjM+1cpQgDVdl4HaQhh9`~Jd>FN^lG;!gT{?bBi7T)P0g}z z0qn}LCZKNOq(XaKUEO@^WNzZi-7Q{4pG;(LXt;G5<6EjxD-36+R;Zc` zvhbG^jpzGr-ktAfe77G?sIt)eDT{dCVZv=y{F({!&ih=J8v&`Zf~C4=r4cP(wsi2beP=!WCMiHI&P~(FVAZhJu~_{ z$tdKrmX2&y&smWm|8F^uj%4n7zRw?bO%OWd{Wn?Uy{5nCq*cdzn(|I+SEaAOqaV~x zW&kRXP=Ba$s^2GY+FBLEa$oexELne<390=)8mf_>nM!lyXgV0Gv@JWhWM*GP;T~w& zT;=r-SijxRU333P2iXfDirrGr%`@Ufr{5V~Jt@@pAO56{YQ1@;XC5;swd?kScSw6+ z$7p%%r%b%Asv}z=$2?}fP0X?zfb2kUHW zK*WcJsC9q75zFg0Haa5i1~Vgm4}10Md-PI_&ZMCUS@I}wyfa{y7|cAEkV|}4$*J`7 zma-qPf!bXap#KtToeNbEz*;PX(lKO0sSv^|yRBD(agy=?>oWZquLN6+aYeae&O+(C zt}31{?blDDj_{jJ2|0s2b^OaF?Yx^VxswJG*>OWaL_Hnn(v#_H{2xoJJ2Iz3fxa40qL4DM=2k3__>!UM)8l)QWg*po0d{^NwifZo;=eb0Zlafbu-Lh^xzm0hK(pXHr;eb&0^G11g)2^$R88!eDP<=62PVMwtMH2vz!{ zBMtZwMvwdCUF1#u$RU}t9Uy|q?6^TQp)OcbmQdR4YJ&lXGRXi55jT8H+&5B|UF|kd z*az-$ywZHZ$CuerY@^Yn-YfN+U3shN_q?#%?}yfYEJuxNIz5<*x|vU=K?a(VSe_mysZmpnx+yy*{U|UC7EaL!eI9qCEpSe&V4KhX(vsd>e>&VK< zR+wER0GIg#wXASZ#|%qC>`l)Oq*4PvaNH>qJMrNC1LkiC{fevrCJG_C{6Bwalal4{ z6VH1H0RaJc;Xd_3`K0d+BHG9C&VDIwxRRIijHc+P zr-_3jRYLA83qj_XVMBGqTHA;7S8DiGGv(U_(My_Uo5clne8sbvQZ5vHTj|g3$_5tF zm*b(#{Zx5#kGBRKb|3f;smnf2)h7%_Lm2&3$0S!S`vooBc-~7f(d5*;;Q~Z?dM58# zUU3h9)dAy8kxOO%q%!7`qg z7nQ3cj(6Y~cSoo%#rg6!J- z^7{ETV-=7+@&Ye@Y8k6H?#{^CPtMA~LA^m*7U8}($ux3qq9E|jYTtOEhq0%O=SKhf zsNqxh0S)_?>4?nLjz@$OMYqyFzqW553vpfMZf-S?0%6mZT~{GC^euKg#~X&P#`fw; zuCpqv$00;O?;LFIZN42A+;^cm?ACwdf7}{2pB(x@L$o!=Md}fk%lxQgKj(bQ7*>&E zJzEj_NQiL0?9BI}iwrMzZ>n@wRSBK_fq$vQSJ{^7zNm^VGbp;m%|d56zKj`j=WIkU z0%Gl0OFwao;h+?5>^)$eqHBL4k=e#PehLUMbi%Zc9u)_OlhO>wZ1Jm1M|v zChH3i^VYx4)Av}TUPjTK{K4Wr*^ittjS!=+|J!QFcI*$&!yRt46tqgmKtQlxGl+Y{AQ-ZPbP;NQm| z-}+@+8;ESI{G9IH5)Q5Z7&jv+g$V=Ox-0jd1*^_nrs?{q=L*B~Oj4pI*XSH9^Y1(T zdS}ZZ`jIMq()g~{8=2XAm~nCtHOXQ2xm)4iArst^L>&2PIBtIf_U|wy26KNlQY75TzL7ts~2Hd;s&;W8&wZ!2ZsgTqhO1f24{f1PcG!pX-FPi)du+N9>I?ETY$ zyGjj;5Q75f|Lj!^kz|N6Y%vtnx(Bjzl5o&sYqfwRn8y|E5N&XVk%5StTjTEE=AKY5 zNxq-0D6Ax|hneMTg8)`4V52&+OBNX;UjPt%4qpl39t>p9 zj7Q!bOjsiuVTIFoDis77R#CJPPN-R84*!D*UC#Jc=x6cCy9cWbD#|EXVh*}ecm8fM zoHz}xhlqibK^K;94~z=^Pvid6wTFJ-L&2XU(6DL*Fz$)J0Ch{h&OldYG>Ln?!{Q!m zSbcn&2;+KS{4jcwWNJJWN^_=bJ7PLFeehx7(Rx}Cf}%-IJwUjvZ+Hqa8JX7c>B#V+sPon-I&)$ z-7$g%iky-xx6)n9FmcuDIN*eqFoeKGgHtRhd_J2a6~ii_8e78frvNjqlLB~NzhW$5 zCb8CaxqS@F>Av~a-Ry2eSQPV?Bp`YG^pFtLD-8d2w%xFPHh^%$G}9fpgAJtZ5aywT zuYmAd>N42Q&D&z%`UV7tLmOt%>t|2$>+fv#2S!gUW*d}+dK6$%m&P?;j$QFHs*F;F6BCVPMOsh<8V#icbZa<`M!xL{ z#<3XS&nqEtcc~_PYOl#+(%@}=BCHB!w*Tv??w&0Rsm+=8Yydp7pc@ZDf zHD9q?TFFueDJyMpNZAZL+H4WiGt)|W&sr6s-*Y*rmJ$EQ4J*5&1CDdqzPyb-v$;s@ zA6G(`ZrA7d%N-|AE`{NXCR;=JG}jXC-l;JHKh@jpXYOi*kG^qTb?y4_*Rc@d^48pD z`n<~OpyL&71JbO@keN|~dzokSx^V8Z#IHGfe&<%p^2Xx!@VL|Ci~~qk^hULcB<@)Y z1^s%`V?fxUk=gzvOF*BWP`{v<{HUlBG0mp2N50O@je*APHiqiE!G-L4g|^D6rR6Xy z%R_6UT@|^xd@sc|G>+V?BQ7iHJoPY(<5Pj2>OJ&K<)rf{0Aka$%3Tn8+7|o*of!0F z>7DhrnR$+gnh8c+T$TO!xI(HU;I%sLe+}a=7WlQGZ6kvsZVC|+1~T{l{XKZICv`Ng zYxkRLt+RDoJ+r{e8rOB7F8Ya?fyHq6fEocOJ=PXHqrd5Lgb{1Jhs~+=8`GdkML5zo z7TB=5rSph>uCe2$Ge)z5%G%TXy>dqQdTM>-PY6P4v~LwSVVRwk!1mnvlN!g)BU&m21{bJ~^k7ZN(-V(L`{agaG@AadlFj~dsAsO|#t-icqSzQ_P{| ze0YUp?NSpdYMMK{_0z9H+qZN+mp>N5Pb~=gMXLy|ctww1%-sHn_gMzXy&!f)Dm&^| zVj6k)dmrByjSbWf*aFXiEq?S&s>;mFLbIyco2k2X5{Zb^iZZRD!RUyv?YUKu)yg-n zua2&9eJz;?3Sx90Qi~`+tjp_Wd#6alhJ}JdmXO94lxn{Ie~HiPwvt=|8deqk*ED~QexSnbLC5m$irkBAW=>1*v?!u6aLOTZIpVi$8i+7nC`?_^SyPr|)o8_hG zGWF!1D_pKdgEKyFOj6m1175$#5n}YZp|GKWSLv^ieGSCeZTxTqN=LJ8=I9$@G?GSp zqDUxZrlix4#-XHdhB1?~wX3xwPsR6F;_U zvr&5m9M^;wx@jzVHQZkJSTRBeFtKF2bCY&TH}32RicM!R#T1jTEHuCCY>&DT`!heY z#GbsfvH2pEoCgC;xNN+;gwW%v&iYRIa3*_uxav+ZXILgze~plr%A<*c@y+dmisxt)lFDt{Y* zH1oYv{Ch+F<>C_&GDaseOVB{51nbu*0vc0X83F5eb+4KzO1y<2P}Ngj`@qIYxgo^y zqP%X9D+992b|Wup|8;AJ5M?5GO$f?_vDxo|44q2p<74)S<2CYCe+Y|?0l785wA;qK z)W$r;tDSEVlxUn)MZHz3lj?nCdD9T@bVOBrry2~2$foKT*o&r7d(l>gMT(TfoRLFk z|8X*K)as$DYT&)TX*!qu#io!cKuu0Du6X5t2P%T16XEef0*>@SaQ57&{a?VqX$1lGLWow-ckGXhY+0Sz`)MMW|nY57!uFv z0RaM!-szbcfDcyrdqXjpk{+z>;ISfSqN7DD6hQ*E01DL^EcJFMb_V(ssgzDDdc~5f zfF{SoS~wP0LiC(UvuqJa%)vj-p({Oot$+9|86huRH)X%u|6U$mqS21g(-+b4J9l-u zhf`2xUDR(3s$fE@6hD6D$Ne7J68c1MB!cll=Y;1*U2k4Z=;%bYK}e~6S2wU(c4z{Y ztzk~U8v4`Uj?l|&#}uEQ=nrNKI#6mT(&3GZ(o4%cwI+y&FeY2>9+krbB`w@4fMGN` zLUi6^OIUKBM7$)1W3um+K`X=pI_!kfh7gPx$RWK7bd>>^w8uE{v|{>xp2bfgN)?u@ zlg8}Da^r|lk)%GjVd5U2m5xlrFaYk9?O&~Gvu*3IZ16f+mq2N<9Q96mB!>x{3K|QUOJ5O zT^a0yJu(GinaLn?zvPOx%eX@F_SEi%_3en6Qu%zHMWdH65d}eCp+CAn$e4WC%4y^3Dz8q#hW&umAGm(2uRX#lmZiNdPT*{`1qKr=(@B#1f-Pj%=xnQ69BH?;M8 zuCMOACirQRso|jzj}w_IX9X;ly%eAiwvNE>-l`Q(Fq_-VTLU|{S;OE>de7&=Bfm$} z=QlT3J8o6&Pk0$HsHk5j9-K%xl3(T9y9s=rO5gc?$_6C>xj8jK^H6X~pZ`uf3gn24 z+-8N6BeG&w^IHjw!37|cfDuk?KF*xFVp+@jo}=xI*I?f>lBuhyh=(1%H!Q#>o;VY} ziIw_RsFP<$B9V525a_uxRt1dKZo)daOf9Mr@~dX|09;0Y%dtg zI5tFWU#r7rUoHjEgp%n{pI3gc(vf&SNmfyJdU_X^Q0H2#vTI0NjMy!4Bv9{L5z61EvxeB3r$oGqP z>s(6#T*9gXR7%Bua>S>_(q$E%vFY|7H`4a7Utr#e9>lqQYB5Q?I(q+8LPsA1cC;m^ z(s+AocIBzcO7}<8r7yeZt=m!D4KPWUI$Kh1%}|nA+l*~Nbk>aWw92$B4`Z&BML(CU|g z=ZIb9`d#@0~HSeE6?Vg<+;qf)$g{BDr}Z@F9r$8 zuFrEkO}yD=lCruvI?uDS)sohcMFQCZP$xhBK}=+oUm0>M?e#7`UfaMrNKQ0aYJP=R z6Ic787@#yg9&D#o<^NJZD5G0c_h3Od&0Gj0%Te>5S`(pWB2jhZYG5YS`vKeJ(H+Hv z=&hpisI9=rfY9-o3Z2O4w+?RpVpkPEdTvao{{PSLTUw_h6p1GkJhFCJ%P9DLe6sit zNt5sJ;4kUt27&yi*__IWfT8aqqqq80I%tkF!dvziEb@bj!`@DII%oTosYFe;zI0S5 z0W7D8N#y)*&)T^|G3PZEln#Vuy$8LQ_;r7*LY>>gIJ>N0LZ9TtF}hj9G$t)R-kL&r za~&w(uhKCken+Y=5c*3qKB5z)h_K*cKHv9Xksv3L*ZLnL?X0fs=s)ZP_m1AkgH4P4 zB;)Q#q@bNsEllivb{byYxU)=XHIp1@w$U;(<;}I%UhdQuxdjN*(e}ZLD*NLoNJls2 zGKyjZMW%`GWJ|*?UM2Lmu>oFopGj|1bwiMi(GScP`^@T)*>&r}brwG5_$2eHeI?KU3m%Ln0uMbq{phFgk@MUl~Ae( zFgO^DOZV0;axQ&BrCd;d^M(vF*(I4qr_n()ad)VHuZ9zn1YxTmXICD9A4ivf(ixjz zbBYMGf>|V=r1;$3uh<3!3DNfMD7u6pRu{Lbdi3gQfv`(^P0p?U9Xr`Kg_ys{@24H5Z?KQ7h(13N{Ta@Mxu zLW8at{o} zUb01*%Jk-MnW*IoM~{=EzX$6QQ5$E?e)FZ>-L;9uaNfD3rtRg16_7xGrjGSK(^i@2 zfROeEk#O>UQfKXE}7j&yP|kh~BJGiPH2lRX>6240f@(N?|J*(1xKplPx*|gm$LW*ewhc!u3 zmhwqCrb|w>aRegA8*zcGgw(C>-WK?H)@;g)ylXwKrl{tkr$+>fx>l>A7y>{*?i6n* zNSfXn+ZMXa4w^}f^ttu^?_Uct?lB-gS*mD^OUWX`FVSqSAUdMfWV@>O%GETPL%D-y zQ5(Z6?v^VpekcF$|8H-WE}Pws2)i5h$gD8ejwNrga+VCO+#z}o0uxbCm#$wxrc;Sf$XRPqMniX%%S{)WJ3e0)=< z|LHoT`7ns0&%RY_)h$!N{E%iFOzOhnBegTz8C0vZ^yF5$O0WFM-bk35s2r7`ZN+g) z$6c`B8x|e*K5}H@WkST*jcC%hDurY&t}b9e;{lJkedAjpmiqy6IFKIX~>?S-1J8 z;{D*ATT#om-eSwz5G4d)c3hHK@_rnw#1GmGN*x~e8GkvR$>{N1t1vsAdkd9eEBh2o z%frU=m!)L?(fcdu-t|DAXYf5PU#^{=Neq6AEnOcms9zb|oa!ZZ!1r3pr(tb-^+Bf% zEt$Kvv^70?((FAl4=Gons|7$3x7P*&ioK@vm!ijha^5zwzqvI&vXYKIL}0HuT08if zSj?CVsoP7l9ym3>IoefT8#yaezqRF3zcttwB3B4~aOnSP0W7ZqwnwDYQA1}|ad$%AZgg%9G|X@8?sW7) zYUq5W%#Y!AE~5zpRpH^rKy z5?X28muoKqyJ#jYypgrEfD7LKIv1C$H#S`||v-HB5J$g-)k(}J_KKa^@b7oxXedrL&4f?|Rh5teLfduw(t=7N0 zCaT>x`?t5;^0u=Z_VOH44wc`96i*p`@?3X}nwXECB9<5j=G~uIPY&%T9E3C*wl&6h z9(TU;OJ-Rhj4(}sbZ>07uJnJ1D7WrYZnR`bdta7bmz;O&#TWE^OkVtYbL-2)X6s${ zQg)U5=lkAyE;g4IY=ViauayphdX_EaAwFj%e*gLzd-l}tfP+`+O|xkW(3@=gYX-({ zH-)A(?xpX5dNcsG zLRXYD{6|FgR=UQHD>=&-|7&T4eDb&#I5O*66yLCg=EaOtBIZ9OSL!8bBPHk2& znVk`T7N$YRi2Sz?CYGppsdP5c-mIGr=YiB8gt%6b0L?a`DSCgwh`?jBsOyFT^sy>l zwnnJ^G?;eU5bw2gwG4+HQ>^%}t<_pT*$IvU0~uKOXuGZ+$8dNfk50ff1l>UDJ{(Xc z!0(F{AMs)ry%M=+9nU}Rvcp`6wbiBz1vkK$?mGbR9cSnV_E{JSW`W_@aVSS65X&a} z^oS&)Ch($ggW0#?v`iqgpY&30!WE5?y2mk+f+uE>&T1Q3V}OnT z#F90+01zMbQyM^0kPBMDWHmC~XjpL8OuiH$0jfVYe$Dmu4%W;IjAu_eA0&O0qXT<- zXvt5<$Ug;LzVCs?L4$vn?^)I}JGeS5+&m9rat_3~8-HJ~pWW!`y%H6rq_6ohlLU^a zX;1~zN&}8zFLih+!|&Tc&*+ys-$e&KF3Gw_fwnXSJhjDOnpDPq4V%Xr{^Pf(2>}D+ zbO7o#4K#5itDUM~Wgi5+;y8%3i=LOnb6VvNAS9>Lvs)FP`FE0TsmRej~>=EpZ1L^A|B%q>o?cw=r z@hoHonG!8`52X$zc^p126bQeEM8t{Nq3nVrRqfmWBs(WA3#wDQ_HFEfsI+a20Oj?a znO|e$c@zB-Za^;dBEU|`l5CNs!2mi(n1z44!RBwX?X|$I=IB57Ki~SpAKIFWUU96~ zp*qAL72hYI?^6fDAqXARki-8RHe2yvW~5gn_YOtO#;vD{w5puS<)C4JN^e zd!$T%YV58PHw^D2nd^RBr3@_EUHaCTo&TY2xGyqbO~Q_jYv0}tJdF1V;IlF7UbSIw zjFVpU)F}PIANNlIdfCc{O|^&Kk#!Lqyc08-X?rK z+(Lca9YdnYg&kbm`WbnAti)| zRJlHT2AmNbv&}yPj%Lf#I#SXw>j4dne|9$w^@dA}4hURhe|^SMQ5GVBSL?02$8i@% z#%jbDC3eQn;J-utADnHFE}j68vy6;%n>)Rye%7VriO#*pX!p|fzH1?OnRhp5SPkoI z1DpyXm=ga=Y!8X`bCnDM~SY&*-m!W*r*sjN$h#EN7$t!(hYa=#WbMdc8|2 z;gFTOIPgdA{d(0MnS?#ok-J!G#U)ej@BF?{$4ZJf1ZqJ!5dS-Y!9^XRH7W#h9ecEk4xy47`hU$}tw zY6y?Rzg(DP0kU!uy~t{n_NRtF%uQ_nZrErW+8*;XiWq785?r%?lH|aX0He zfB0}My?qRCn8Oy>M{KQa1@uzZTj>q1GW5HV(aY)OgI8V~ct%bgiV6EBO0j1}FG&Ul zUpQxCA2N0I015x48_F7J#mx_23uP+ZNd6GtC{LjPBEb0)vGi>5@#5WHSvXk2r;y{> zXj_a(|IsA!PJuIk>>nGV}V_@J^PA}?4 zjH64knFkRcppQ;y6e?28;~S+&8ls4bn+T7zH%BZiBVwspH0mvXvReEFHc)eS{k8L* z74YT4hW{aH>>WY-X>mEqhd^`(5Q5``@Ov>;NqFIJMNvo{4gxUSEP1DNV8a!;gh3J$ zvt`quatPUbWUzc{h?=7aW%yCo;Wjvk>ga}pd9BJ?OG4uqp_$^Rr4~PNtI3WwDXkjZ50{s|UyhRb0VV#YZDtbi~y<)>DqTd06Ca=Bt>XOS^yDX*9C4>{=$1tEhJN7%D zO0j~#OwP&DVEM)nO#_XX>TWs#v^8#@bPL*7ayg8jxY^LtAD%aFPbzc6czAHRNX@iU ze|;$|{O6sewH*q2K*`M^RyF3Z`dej5iGLG6iAZTeMSp&Py-qZLn*j;Ab|>cbr+Z4D zW2J20-aK0<|L(I!AD?>`6Z();KNQsQzZBR%eA`q1iA9@9GQ$t8srBXuM7{9;agA4H ze=|FQ3ZiE~=a#J6^KQC=RMZRlUZQ+3NzaMc%ODUSyt<73%w3POKIDGdaTIfQc;Z?& z?H8WV##W23vS;TD?tZW>1(~kvFS@aSgW3)3;X4ym?d-&3Cb3#A>U%9=@COK;&56`JrH#hrs2^0n_4Hs{RN}{%i64Dtd6B;d zHxrFAv3@pl{ew#{%~t1Ju0&|d@NsX~7~AX1SE?87pd)RIC7ox&&t#qokmJduIEN->H$O&RF1`BihyV; zhZrV65deVaiFU$>)mj790uRHr6WOKq-w|LH2WU88OmfMn_@r*_MrB|rZtMkYwo$7* zm8o*qAX85O17a?am)NN62egjDGCU}EN1zhHIxPiBh6E8|AR^Eb3K20SI6e5v4*oC_ zWT@nKyi!6EDfpv(*|7&dSdKhHA#oLO;QI1CFl58P+UJTyEV1F>PfLb zm;M!Mekh@9wU(~0rJS2HJ3GVhKW%!(*z~)iKJee;4{~q%5TD{)%bdkKie9fp+}4j?zESTQIy!d&BU0_#as87OYN>phVSo0& zfv(%3fhS#zO^rK`1Uh0dXD%;AYNuZ`R!%*qrDq}C*}=*gsYm1{0JjDjir4oHYp?eV z-5iFM)yP%at(E7p_*+)I3{Oo3DTl7R{bO3j`J%EdnO;SVY`DZ)F17fDD zP$T|&?-MM6i+h&n<$Y?9KZve4pLl+IBXy{HvuUPY<O9A?zGXE&ucF+B$|&ZpS0X&PqbcJqpL3i-U5H+qm93^Lhycsjl&7 zN`nVr^Wcr&n#^T+-W{#$9lX6fF_B|Mxq!L9U%YfuXf*!rsbqEXZ^5mNFEc)-OOx~E zgY|D4kbX|8(iOqR)D%#&aBBa<|HIa~2QvM~|9;cTQeQS*sKhLnl-#emYYL%qZ*Ebo zFLKFZ?w1UcL{V&RCD&=HuUuwsxpvv8+``e?CH`EwD3!YOC5;I8rS>`V$uaup9NYd8&MQBSoxWmNzeepGN6{we+vH_49w^9_}m z1W9;cnXmd}0)H|1803oFCM4*QMAi?L$HOS2fQD$ATU)@jNS;2@UnigQ{6Rw}~@v zb+oSrxs;m#S+duj?=v?J5?{cY+`=Yu@-_>j)>cN>V}+t7*DLf5uD-l~mN@if`ho#( z;m>N<&M)q=gUG`dy%65FDoGQUvN-syq>!kyrdf`TyS?{iOyV8U>| zTQV;?G^FDrkPI&~d34gkFi@hWA}lZx1g+0*Y$z#hp< zF0f(xX_@c)b7xFku4bbAg9yv&H9C98K6`23BJ46m1@MjGqW9Sxa3p1>8k1sv7%Qcc zL4-Hb5r&F(#2BMIWQ8B4Ti0MP9C3`tgBMjtQk>{up^SFEFR6rApg;X+A#6OP*32$A zDOtmSJJ_k-!d^#{7AcerYbYqf4{%g3$##_W3LpC%Tu`yFHiQILHAU+7sxDt&?qI{(l>YB7qtT zJ&kIoDkGqbLE-{5`AC^?Knrp4S3TD`U@?B#jz9#?J2?T>mT})mXfrI|8K6W$4E75? zxZtz@9hA`X-_z>|2>12H=wi_<8D$_NHMuIa$6dx9%_p{fhB;S*VuIzu7{r}5Y>pfM{LN25I`ST^x z;W`ehLFC;q)v`j$u>%RBBsdr4;n8GgX$M7gQ?hoUWC%4!l#%b*tOq2>XH5v#s#Ow( zKV1l%=fbLGM<6n2oa*U9#3Q9x!%+wyICDS2GT9bT6&rWYp+0872j5PnrMbLypVu9N z3{XnLQD_K9!~>4GfujmUlYlQ^m%moFA?QT1==5YtkH%gUFrSNg3nDW6nlKP^JHFuL zF&H3_Ye~TmKvC#M+g_`#DHqMV5j%cSzb1A*xUJnmK<>q6W`f|BS*)E$Xn_Bp#+{!# zAyYYF-7}Me+uR%i7f6~9O5e}iOf4hRH-ps%M+Om(fKZm6E`a7A6KrAvYAQh9WP>IF zd~U&x-F)oh+=qTB@cII;^%_hK_|~F<+wllk2N-6|&MbYo)i5Yd$s+b z?*-XgpX_8YKHWfRl?{>~1=iYc1l%NC$V_>7X{hRWrR4+U>*cmzbK&5cSyipU*lz9} z9+tetkL(^;4*}t&N)db$TOPDK|%wZ$LD>;_3=<)5e7X}+Ya{yGE zyU8zG*(aGn?Pc!0;p^}Gi~6w@lWq-1%f%1%2Q_T!xQ48(AKTejA&BS7*OnXTYfA&+ z;r)u4x1QFt%E^2x?ekk7uD*WFe--Ph;8=IF9{>-}a70tE0X4BE6w&q<8f{9)tI@xv z#}=o5>ni#AS-hI#3et7MLl?XBcY3FC8|$5E<_fL4IS)))Er*XUR@x_s0#0GIpxCqU6mZGBKa8d@@I03kz}j&X%guwaTpwu9nU!U+@AumXA{9{g3928 z4?JL5I~z%EVOyQU6}?SN;As?4g{TMebZ^+j$*C%TDM@}c63NjqSZn6bZPfO>e&Ag9 zTZU8jJnal2D)cS|9~lt*%V7IEAZ#?x*8^WiffLQEGp*_fRa`tTUbMPea~zdFbK_6m zRx2=ojB2XZTxGc!WXsoH>Ar0tD+o+$Et(@?JE#2&!k4!vVkf$--}W_ID7RO6o`W-u zG2BijFow);x*A{0N8B@2($tc9vD$XbA(v4FUNs>hQQqg9B?~;WIyp%P`yW$svU7IE zXZ>i#KN%zJiMUjJ%s?tXp)NRZ^NF`k;ZM$OFY1H_@>QI*H)wIxS^p9bzQN|OL@=!u z+;qHsck;l?9IK4wwm*NuzwrDeQn0GW13W3f$WLup@2t<;jB~p>60)^XQN3?^UbZ7b zq4js;_WaKFROF0A$VumIhO0+Poi1{ zcwevUl|t8Tt~H%*&zh)8Ov<+L=zfXSpnQ1i8KhZM&8yn9PMJCl?w$WcZM;xSwh5n~ zT{yGJelYa>R5W#CaV+~>`1bl%CK`G4u&SP}+i*ni*~yQ_m}|x!0u~S^janZ6{8K$K zNSCr3*Ii2u^tWApv}phMyyGwx3$U50ie3>Pfb!R{r@hENEAI?R>)~TKIV%G#<#QkX z_G945-ZCqk=dJ5is>d&7!Bic}ykdV|W|5Q5L4mX5YGBLH8(awV>%HAZ=rOMPEyQ!5 zBmU81FwI?5ZKD9ulp-4d@`F9|l8Y1VBa-jEzZJRI&Cqd55jWTx%mUu60JhLTkE7I- zyV}v>rvF!Y=Yc{nmg zSIBu)%N8;z%UTCc!JoC(|IrW8INbBt%XZ$qzzCCO2vaC5w~wWh>C|`7)K~8kA*n9k z_hC@(GBTQFg$PnVd_TrrrpYA}3?}yw$O_Z_9-N2j9*6fz#v1~|t+5nGrVs(Lml2Od zjUW8os!Q%6yhL7s|JN>Z67WmO4(ixlj*gB1Sxvg;TUkO*^zW8J2WiEuJ$CcR2kUc5 z;8EvT|6QfRZ}>9BFwFhl7_>1)&g2o~9<`KOde0P-c@l;LZk~tM0ubb0qkqA*SKgRd zX?@B?KyvIJBQ}%VH|E=b>ukok+F7zJp#R!|YbMl-136H3O1T5Y<#2F&Q1ML`@*_*LqX3H(BR6-R;T)hA>!JX}ZRL!b%x3*AKr?=g}{yS6UZMmownM5|UP0Y95?YzbCQ8}M*g z?!FdtD71aA^L;ANrMF!fYQ6$?xKKVI_~fh5VZZehR(=Qc(+Od;!IhTqH%vQd$>3+9 zpXUwDA4LNvK&F*!-bQPOF+i@%UJ@FOTzI#2;nIRZc&(#6OAkI;Q^k8D1WcpkvhFLY z`&$;a%M2PqB6dEGaD#gk99*)#FL$|GK2U57to~gl#BNY_TS@jrwOF{twULf9is2Tz{67$CcDV-LR#Ufwzv5bo&5C3(iyYPKh z`@rgbK;C-|$=AaihGSr88FWI65e8RORMg&FR78~*JNL4Zk_D(PX-9EEJg~1df2Qsp zq-E$0AvG~0&FsKWK+Ky7{wOjt6`F=w&aA(RMGrU=44PVf*&w|-+WLth6WkNOQ5d^m z!tUVw+r0Zi>B{t^e8ynl*61IxEpb=^a-}-rR6^s(9GFz z`Y9|Jq}$W>($(dP5MV_*{=w}29bK(kNLGB*zy zyAvKVN0TWs>OKOBx)r=H4!N6SNt#hR7yb0~UGBO>-3<^}7Hz=}RZZM+@;*bit6E75e`lyb)X`Y(rb@2knXIg1 z{jXeovVtnHfWR%U?RVSP*Q$6(N9UY^ivgJFT2Yei*51`vb-B9{{RF+FXf22Ebrzv< zaU-XHp^gw-g+Qv>*x_XEkzf7Oa*bO4gdDqAlBhURx8WiYI-Vx6ImVjZq#s6$SNog^ zRPzPs34`E(-=kZ9c9z(*TfEg(k96POt2CWs-7h!BKEzPx=efc*_uW;*w|a^V8nkon z4tu@7so}dy&`1%9pm8`AGdFs9ej^c!as8tqTl2h2Q~LL8dG3?QmA>Il@@3+7@KYV#4VkbIUApKyr4@F*p z{ieI~yyalFmGAs*L3*}A7~i+8;NGaUA5;1Pvp*e1j2|BE_+KqREpNMf0;j?UwpauS z@dw4-Q@(DyZBPPZ6WzV_#l=azO%|=F^Pu*^_?%g_x-SF#IF>qDYP2#1^LaK)S$NR= zInufUJe9x_Ji)r`u=?(FQ!!iWlLjx7+a5zjqL@sgAs5$o%SEuwJjbeKyS;t&E*sv#VJ07=E{?5`kZuBWkkomHaLn0`E1q z931qthF!y1-gmdm1j3cBKV!w3nwo;S;*mdC;FO_#HLxBWEkZ;Gzm!;xZ#>CyaIIVa zLp$b@$0OX*ESHfDKow5n5)xzuvn)F*SW8@vmAU81%3wK)L)rN4JGtJau>_Zyc;|Qu zegH!F<< z+A_rNdmwTh+R2oJiwT0n<$G{8Fa%JkF((21mv4;I3ahc7-;kVQ^I~^3??=~kh=N{q z5)cd@r9Y-;9Yun~6!X%epIo`NObUVs)~93MSZ_P0eMWEy64;4I5G7S0y|4r67Ow#k z-8`@cpkeQk`EiIR*yANXrEfu)FdpJu>OQbK%9t`M6*LqpXxnXS}Y_fgs(BtnUNDX^gcwdjDlwFH@|ul{v|+ zY0ZGtFv!r?>V%qQ=|%_$@`Tia56Em~0@}Kbz!f4n@%=C>dFCD!dhH$@OsM#mbRAVF ztTtMmz;6#~N9YKxHgDsN#P)}-h<5f~3|LGv=kGBZS2wbvW~0`BdY1* z%kan6H&V$zvd_WOu4G-5i%@KixlxHdo||i+rN0nwVSxo3U`B&xFI9tVp`nSx#(UF5 z>yklxedL)J+K7lBt+tf6>#gfM8f#IU*0jHdihSPHa#vTz1Ec|IN9=qU2U3*ZoZ$o^ zL95{_m3(TG`+3&)=|J#peHytJuj6%{WO-k4xaL=BO8v$gp}NImjXQA(9n0CvOEdI7 z5Z86z-A7lP?$r5&q$zXa%=*ZS;x4Yw7C2g*P$u>&)i?>Lh$l-CyO%>~l|D}6uj$G_ z`@O)3oW8f1f2^}pB&&O`>JRs|d4r9O&L^io^-}GRSF(b2J)XKx$7vHk^ID$V3108B zvy=XOTSY@teUWngY>pYAZD~Pz&r+CPr2%{8%gQe*Ltd-XVnPO9b#_fDpHI!s1_SHP z2a$$foSn_yYQe4y(1BOlqlIOnA-`KL2b71P(73_Ow-OOQRtb?~>q5Fw6P%ST&{N5s z=kJ_KdTuK-I5eQEs|^Aux)q)4LstfSw~8!X`d3_{ZhFTOxdx$>3NCkE1^RHNW<4cx zGVNHm=Y1%bo=&-_kzy3D@1VYS>62eQ?^VOviViQ&wio#EA)m1jSr7id*`7@-F--Ro zW|%l|93zFMQd$i*e$f`Tr^_~nvLYGb z0Y+jPnwsX~hs&N2ui;$!b)4-+gBRY7uD7{8NqaG0pVOnkUyScNYqg|m02uH8pMvYL zy8Xc{P%?fXHKTWr)|lb$!%f0#BTk!}S!p+4f&08T^oS$$1@b&piHIO{yts1zMOA%$ z_3p9h+ma|7U{9-CnX8moTU_Qzh>wIVz6Fvf$mQitA)zW>)hoRUew4E3DnI`%A;B&P zVi!zCYW)3V26ZNXAwi|!o7IJGnfB#!H~TY&9)k~5lD~5!z@I()Vs9SZ;7%dca|FaMFh0TJW+qt0fAXTEi6W)ojCwO=2s$XNuR>Q!fF;<~rIV zHI2+j12AaD4`;T~C?A0z9DClJ#{l}I(mSXm!VpG~B{&Nh%aIt>SH$4W#C^>ml+bWL z+I>$9>G}h7j5GpY*NR2~ERHWl?P%rrJz(ZKS_zQQ=E@(jV>0cCf^?9)WpfQ|DP?5r zb}2)^fwRiz08nkCh0pni+aUVXE2uvoW`8;w4X)RG&m`iXOJrt}dU|>S6u4Hz%gp_m!a39h)| z+bM3FUnI6c)?@yQi8Rg8hNy+{G;q{%4a&*N8mQbFc5tg(`MIx}Py4|3k101DUG1UK zfw|hq2In}$;ZMHT&yIZiwidO$n56k?z8%&5p~Q!BC9VC%mrl;zs9X4xPZsAbiVyI` zAdE?pHDRTPxG27BUVH>O7vm_3!fV>8@5&~T-;cpyk7U{o_I*1JFz3`ghQZ01iD1tS5-xk#?BihG z6!Yh;d#p^3)%bLeuK8^z&Gx_gMS&y7Aa#AAcf(gt?@aH2trk#kTDgYIfZ(O2m4Um) zFjaowa^Lk#-Pxa)Lt}vn`dbX(bk^!X+;)N2F-!5=ZcPFoX-p7I&wOH|;B6o1q`(pz z0so%~7yfMDH4hoScgMN@S`bZ}N*Zk-YF%{)3Iz)h!J4B<@HB=hNS`dC0?1p!zGjOW zL#73+Xdjxd76J0SG~|j7#=?<+(N^oI5Zk(RBiou;m`TwgdD0!Z4?(ibSS9rcu%emE z-8hAIsXl5>elRF`i}2Qx0^VjsPQQ5nZ;ys@@(`|f#cw!bXZh9tm}~OHx{O*|Ir{r! z$xpD*&$}ljbx`t_X&w*c;xqhQw^|e2LTCCaqgE4M8R)z0*9I$({#$E%eKsI}Tz^YioNwY?J^mkgEg zNcTrFGPIRy{hf`w`0MWr`_3MzPW#Zx+>8YJ(8cxeJJ(-qE$-{$-uC6|WNs z%%fL13Pu5QQb<&kpC5s6_ITF7z(Bahk>o+ncv|t+<*MrHj)^Oyyfm4uUW1(h8tWgv zGxlW_>*%&r5CR}Owe0@>60kSa?M!+v=-2YrP#FSE$LTjTFUo0Ho)!jDY@M#7RlktcTOJw6u@MXI~6CyAV;Q3`AXk z`%h2=zlBf3^*Jf*+SSAizw>*S+l(y}Z_^jU;J65f%zP!Afzv0f!S59Xb+0~jj zt9OYWq-X+tH6jlj{cD$hpiPx{R}L%~g#Jou{4<-R?$ec@ve5oFJ^A59ez|HDZwL? ziejp>5af7l0+r(mo+Q-DP~|R*Gekqo`ge`A8$?zSmxf9{Ws@9a<91^o3$rT`muI##w4>VRkrv757y`(3f z(&aG4O}|)b|MJ)8CwA2owd<<0%S!3iNz^hxS4zvbOHxj5FTIhY2%?JjHc`FR3DQN+ z6)&5~m2ZqMPR@ll>`xSRE~}+ey(_6B85BItZdeZvEJ9QH+TIHH_W{$aDlVvL82G58 znLf#21Yn7IV}Jn}pr11!zb;bEVQ3E-nE*l!eHXXL9LAT4vS@C#kbA8|loKcmxfX4T zvF=vlM{AKt+At5v@0r#Qlw0@7nII+eMbD*qAQB~k70*!$oPOaQuVunx!1JRBK_n)c zW&-G>k*ztPV8*Ei0@%Pq4$zpm2j7XHnJR7fSD;xOgW76yGo8+gD)9#0jEtd*1IgfQPFVIb%!8|aRmaNCq^Ti-N9gP?hl~qopA*z4@QJFN2OXS9|GTZv!0PzG36hPu-K?G*{ z1*g3~%|*WL{aAB(x*^G7152Nb(a4?7O@2^T13J0l#_zSkjVXB$smf~^6C}uL^^vaM zrW^!H1CR*R&#Thk_(%hX*T@LJFb%KxYzG%1v^(_Amv`frPaWV&bVjIvCjCko#ZGln z_vO>F)0<%ubs;O~x||cyMJAd1d%z#v&s;I_LQ%ibaQo;NX(ytmlC+g$|HW%$J?Q8! zpZn*WhTw8r_!~#g<9BtH$~r)ES6&+hRu0RYg{|!o)&A@I14TO>LPmb%ZDmExi$tyW zix5WGBcpypwgKEtNrxQXk1yeO>a!|G>kT=7hED|Z*0?r^!TR~X0vuA zocxbgI6WQa-`a8WUch&%)^+Fn>~rpQ(X%BuT(X)ldU*ZziE$z#!H=YP9u1cwrpikq zP;17Jy(aJv=l36ZeaM23*oug0djID7gB$Gj;OX*mZu#?B`(Bz(efP5NRCYZNn=}je%6=GcQSC_H67!P z6>8UmpBlR!aW`RFT@+XM<bU` zN@shSAUNIE1n!3+mV~Ww0^Z&OjqOX9+dqs0Ys(#V;BA~?_A1hdg#^Qh+g!9&(W^mil)g{Tom zy7VI#7m)7#f#`!@bx+R_&K$6<)W3qSxV0Fi)H2$8urN8v`iFC0iAML9bRul zKeWw+yrN zn&bYvpaR|roj94jk!>3%RSw&AP(aRD(x~qsCTmx}=^PR~c1`*Aw|*Em%IMi;Sfa$o zK0qjly3EjF~g~SdV1B8m} zW&m7?Cx!Lrdq6j{Q&FR`YTnoUqt1mg#fXjTuj&?=ueQ0GqhZ1JPT-Y;bjh$giN0_l z!6oC9vzL!leXo$X{(4MT{jckzJL}oPNHg_fDLKFDtUDCAxWsYFIW@W+k>S)IIN|*G zeR)sErOu9!?bxssfUnF6P$>KzQSH3H66@_F8cHzG(b-8d`1PdNH+Qc6&U66DV!}c= zzgum0sx5JPQ#=|nm1RkrzgB-%OUsmk$v>#dV+HXhm#(W+*@XP;qYY_ZQmCFd=GOp@ zBCSUM<$_kJod{>px_o`7d>DZ|(ew3g*ldgOu*Gy0$-jt51}eUAol8oEZC9n;x*~ zzoPi3CuJds@uFpyT|L`bK$_rUbu@-)j>3N>mC(rKFqCd# zf!w42Zm}rp(Q>8tOW^Mn3R4WCc$=K^get-m{pq(lK7H*fRT$5V6{} z&^P*`wJzQgw{N95O6UIeynKeG0TjKvn_IH_IoDCmUj%C3o^=+SZO}P3CDf(hC$6yB zTG|P6zSVzg&y>FvveI188)0MbzS74pxBn+gKQq7mV>N*A=4ZuakuCFpJ(qW7&F^W_ z&Ds5V|DoC5&t_^6noCWKUU51jJ;2C1tGVT z^>?Ac8}?_l9Bn@HhS?u|b*A)t?IrSZHJ6L?>T_&9QaTm76cwtMb%P@Er24&XDkQmI z{t}W~6k<-X>tPx?s`-gOjC^FPZPl%n(eTN>Ww_SWHfgDMcc^?mG$lMs4Gz!ZE=x)WPRHeLyT4Mr7;)59KLqq>(XP z7-?i32Q!6}iQ1)%G}I$I2qxIxQZDhbtedNbzV>_e!B~;SCrGdGe z5X!yFz1ja!TMrdvH@~Rla1V0QO+!J)qn>yw&aC$Y{5+8{Uy0L}wew^#lMOMMNBFo_ zDr|3`Znflz%!>1!jAEqVr4{lHG%sWK=l8u~PO`aIU%B>`8HZFtsvpW33 zb{lR=oE!AoHS$j!sI6~AHl#k8>~J@QIyD&*8{dl)+@Im1lt56W`RKbsNUBUK z>m^gwOw#B)40^xh6!bCI7np_#{HfM_2(FxTDoq_C^;pI(F`AJE`^;ps^rBHEW_xSH zFsXlyw-6FMTFw)O^+rE_+^(KtNW6gJlY-ncgj}|ZhM0a&*-K<3TtJx$?1u57^w9_H z1YNACW^owjbJtQ}rZ8QxFlfqYxJ6;Z&e)g6rB~a_ZhzQiHgb$R6!VDRYjb|vgq?1k zg@&l`8vV0p!>5LMDMJ0MVJ7rD!`Re$8Sc7FTJh?gI>@c#i#~PmiC#qst#^CT_-AX1s_CEPNtdRb*VP>*|dG zLW+XM&~VR77Cs~(NV%(*T{SfPnFoDp-A=dYR^zq{iR*5IAf}53OR;X0i}R03MV=J% zWhdE$2THsKFdXMzxHioQ$%U)ozq}nt&KjQfWt4``4<`UiS+zubh=PmNrym|-Q-gy6 zbi~J*nVCylGp|4#T(_>9tLuoCwyXTpXPM-LgvyB*FG|xD2xzIb>EDUfMHG2-;_rwI ze8aanb8>M=T@AbBS*L~Y#SN#0h!yYA@Zg}*Q}F1!n$Iu)%ek2w z=P0NbZGB(BEtJz&>>A3c0Np}jMy@o9a^law^|cYp1(jan3wpu7{I+FxR_2{FZOl75 zI?(L-Ae{dG;ei1+ z-nixny)lP#hjP7(bpq>6{V;52XImj-S^9}yiS!Z>j=rdgO{o)Y582SJHciP#5d^o9U`T>f*@E%BbCXr0`EO<9t@Z4Ks3@}ltL&0QUUIciLV@nFi>eE@ zq0&uW`cDU5B;Ul|EsJgQQolQ7y|94e<0mJ${4{AF)L3Rypl>vXZYb|lajw5p?<}Uc zY4s!g)UAoPb85}%#l86p_){zpBe|KPc&THZ{NhJ(-dXLVwUExK4eo^M%_9N#KbO0C zaUpL>bS7iCeNfb})KT6~>Rs;8jjH8ToM)xuer@O?9KT@WI;l{mw(rWnPyfwy3R{@F z(&R^b$bI?r!nskV`Lkf%0Tu*@7nfLxIBbY<4V$k})ZJkdfcLUeb3|8f6yS`{fJw$! zf2)UfDe8OM)WS&U&(&nl@=qp&*-UNkpI^t92AS1EIXBJ}>PG&mIl^Vv_x>oqwC+K8 zGjN+$^~1yRr!5ETm7!y&UZK)uJX0$^UfDZHB_pRrw8sk5Sz1AIEvRN+Q>no@pQ_$a z$>ZLhj5kG4f#7piTV8bM)tpm$W9OGkSVZwY&R27vzI>*}lYBHsx${i3w+~B~uP^GqVYvK;A`aI)rW>j)gzJ z|6bPtQn!bAfyf|XTGd1d9faLY-rtho5INa1EcF~E%?QQ;vUg&a*Zvu<})AsYYkxKbrA~5Vb%k3M7O*_&e78+ zahpNaC$^%Ib@)7W*<>}zPS++MX*+D6lpc{f>i1#m>`YRSnQ427^w93kO zZ?rLlczG2P3KBY*kW`D%Hr{ukb=M3=x^OfJH8T#{r~Z4<)cbG*&MMkr3<TCpQeWE!UvE#7Kb(6l5mE-2SGqUsRbmL-mg`NaHowQg?d`2_p;Gg8T^-Qyr0V;qS)EDnLAjBRbz3#HIfL}3yxj4KXWjq!do z+!~I6^VYyESYQU(chuB*Li}Ifg1JZE4hY1Z%BO-AOMJow$Q*;syNY3E_j`Fm(9w&3 zz1>)+i<8}&DF`U<>!5Czzk%}^Kk?%b(T zM*NQVXe6(?ag}yK#Ocu9xi7<}2(@bLu@g_vi6Fam%NBbx^0wY7hHq3}Y6xClyH@WE zXz43n&+{vEy8$$gxQL2R$h{h9^RC9rheScsZ+_3XnQi#M{vdS|h!7Qzlm z%25yx4f}b>hFe^ck}APXAtPb7w>UTICq6HD8xKPJmj6}nlKxTt^gA-^ju^m_DW?Vm z(L*-h&BOuoE90SIPO6O)9~uo1YB-+r=RfY?F7cFD$R;c!#b3TYq{!K;e>vgtOI6o1ZYglZC4h zLf7u_G@!zHVe@#!y2U?33+%8hC%-%wF7xlUR%9IgYi`&nZ+-HUqCS3;lbm*kl99ya z(%37WFDHIodq0?P_1~Vs&dxk$MIKuVY5B=Fb1*oB?pYY*xkxHyR${H>JkJxU@ae-` z&bWA=*9p45qZTF0jeB0QKJHY4i6WZu$&=0fl`3e}NBgGsG*a5EfMxXaU1(qp_D8nq zQ@Xm4abKBLB0MwB>FsxhCxt^NhowHS--oGXhX7_7YrU=Nss&z-7IU|{?=m*$;_;6E zhAg|C%`09nF7~~AtML%8t|=tB3)vuYkV1D-Q`HoL#lfx%8C@=^wC9cGBBB{4(P7c# z4s{3`CU=VOoA9aPD+gyAlgdC zq}yUlk@dzZh4K_knoRv;Yr>fy<+H!U&5$#-LBtl3F6Vk zJYo1e5+gO0ZX;}&pKmOT{wdBaKNW_AK6{Ea_oUHvK46`Ee1NK3dP*MMdWZnp*{^M% zSLBkE_*ioif7<=@0;l@&Hoo7|$jTuDX4!Us$*g?|{ zspOqA<%V`Zlx2q`Hj1PM+Mv9>eiEAiY3qbC} zp-Z6+r+18_hpV~eLYL`9! z4d;W)q6}-QvBUM`99QR&u;41}8CD%o0%}hU-mVyUJjV!+j9hx*wl=9+eF;8SBv-oX z5)~d`L+pO5qt_@J|Ac;Ex^{nX%^8t0_i4LUrb%G-#WL0l7vJiuHr|0>gfy)lDryY* z)h~0wYi-BCEovF~e3H9a1yrs$(pSbfnpQbTK?&MlR6SNK$8KCK&4~QN->^nbF(6D# zH=WpEpAm^gQP*dHM{s&1YH`wFZ8nO>`G7RJWc5%kASlSyn-MaLJJY>BaC4NGkl=mA z<>dAsp@?zLQtd2bSgWjPCA9MBooUU3OBX`zXf#f` zi4-68yEwOqIu7M~#(*mEUe5T}2d~5xyGE?fNUVMJzAzgXa=ZNl1$odm7SeVl^?qNxwlXr)w#6?rRmG^+zgi#`J-Hu4^HIKAkHe?q zQZzu5aJWhL&=oyh-Jcl5BU}7eo`gZ@&*{a&V+kbxW&WY1ZLK`{grPF&=)sTk?n)_g zXxkJ&@qZ#@F*5qP!{N(1DQWMAvl1BAR*D33c{|%9*P@3!#XmXHY0uP{>;FDW13?k=-KhNUkC6!?7g zN-HeI6);v?p^hVt3Ta-dPGSX9x%%PU)flot_}hW1)#>>PA0H9C-e_{=VabiyiKX96 zSj=hu*_GFhd|KhFR>5_v>;0~wOL2dj4X}pINn%a=;!9onp{VuWImcerZ!BfxGQz@x zl`>TJ57SPR3q2hQN!v3MQ2f}uY`i2ex42J{pP-Onk`z)s^p&i}x;Zk}4(Fs-$nZ(E zT+h9Tf&3qut~{RUKmLCh0Il@9&C}%W;%3UKg z*Bq53$4IW+xf4dNx&7Y#9=~6IEKDq&N@XEUk^soyst=P}LZOKqI)4;l7xU?Ee3bOqHHC zrnA{~cqxyE^TeGq!gzK!z`EZ81|y&|SDcT$037Kw~PmiiGPSmEqBWXOSCkbC$? z9UO2D{}O#jbD>yiLTHx~u;p3(0+ED6%^^S7;>is-JrptqfUliDF3Wf{!$1M%IJjxEmztz%HfiuopwWZ^NAYBj^ zFi#p+p;ey0>)=(^jk+%KF0=}$y0+jl$={LQpne4$&{Uc&qp7xuYyg>(qSM2uxr_cH zr9Tp*4@BqbOWYm@2TYGzLciBFJ#+(x*7>g3*Tdt5TOQj!2RRt4eu0*(kVTvWdGDpV zy9pZ0S=HOq8yAS@SLRx~K%JP-*`m&O^viA29Eh0SXjgWKrcuwZP(sTpaes=U(GoqL-Jtr;q2R}FK3U#h&N?io+_)VZ=c>C zs@~+RbGH|&mj^+ff6J|`)b)YK?B;so7`!WF4^|ESFc6Xd5P(;W^XE)V9rl9jfU6Xa zghG)``YO*l2kgM2R-^%vBtl$*i zVW^(wA|Hc$?Wb#MVq&sPqv}A|!x*+XgWb7JE`%OJBTOEpM@bx^xp0vSNPd9G zNxO1%S<)xbawdqh6EkiH1>v+gTIYS~T6LfTo1m?DKC0gUyxg$ZXm6Mkh&Dw zXmX4_gdh_0#Y`hzD6g^`oP=kE8KLhOOxkZ_^JUBC%G`)vwpz>P`?+7rGjY@I=8OG* z>-lg7hApO^1ve0f2vS8L{F7zZAif0FoF(w5CT|V`o-jXfi5ob@U$tr@pA$y6J|kM7 zlrTK5JLXd9RbrRI=;#6&1fA;b-PT*vr*+=edMU+|)m)}VWycJ5FuJFl2i9A*nq^Xj z-(`{w4GbRFx&#EAX&IZFgXY>!PN-xp`S$Z~vQ4*zwwh9L!{dK%4SKRK5o5oB!1iP5 zvbt;4%QN`_n=^iq&GwFdr5DhzNaV}87$b+Vvp^I_zBl9fWvjb1{&&r|MPq5K<-x{C zi-x>My{MP*q#Jq2t3;gnP;Y+2jbhdFrarT5PfeOcn=;^DPs1O3uZ|DByc6)3&hq~} zxmtVM^ZOD{y@7JV^4#KmC4&R!1G&u#&$y|{BElF+Rz?3)j&!arb9Q~n?abwcslf*e z&Rf^2e=*d{k`@0u{P_OI)*(=9vHGJcV5Unt@%~r2J>Ar~m7n@82O~=~9(aI396R=U z|Bl1xO?xB#3>W%2_lS)116KFP`3Uszbk52gHoSE8``ALilf;6t4zHoeyK{oh%R^oj z8qG@A!Y$s`c6;fpF>2*Bo53nlw^Ft1o+^AeK8|{Y_xix(CpYCAdwb=q?`K_FykH8O z{OBdkvYQw<*gx;$`JTgal;Q&2N_iR&o02wUT0V!$vzS74n2?>g`d(f1U1k z{^~^4h4Q|Awfl>gJu62s{AAMKdAEs=LRJ+E)2(_TLhkF!!8&iHV`wT&3)uH$!xl`J z;=m2zW6R-fb{HNal6ln6^X5bBClQ#P5oQYL%S7j*p&Ep3Ss89q(?He-(Kn*)n3} zMQC2DSJD&dlGJm*S?%_3+2!s1YUdBH-C&RBG&6HYStW*R2Bs$BBg)n{ri(|A-V3sk zU`27c2|EPW?jv#Qdz?L}bn>=4_|~cQSFc?88>V7Q(b;O{YK7gQO&Rf59g33WzU4G! zeCT%q0-e%X2R{y)0eliSSxI_~klgGjS9X6A%cqn#Z#CsG3Brq3(D`9vV$}84e6oLGgmfmnW(M?bMZ7%J~e$8B3c4nMAcu!9+XUZ+X9o)Xh zWIc{O63>vniw*I)Ooe`x#K@haR-2Uy}{CZc2Rdo6h^n$|7*PJ+eTjxr!no`GbYdCfNWOH+~ zn;!qaiY?%r*kVwcWhk(0dx5I?d3WFztxK)+NssumGG@Ka$a2C24nN8Q-nAbUis8r@ z+y)ZP&Wj`SM4PNv0Up(`zijXKCbbIYIA$ot?T_2epYO^-b3IgeB9N52v*_b0mt)H^ z;`(?9gPwp5hVd&E(S9-G1W3Tlse;<>0D*7^$TW=uHz8VSY2Sk_rr~yj#s>S=p@6y5soT#3SCVREqkig3TsT8n z`1qUveZk~EyoP(t^m6n5>1hf4(xfP~rYs79q*2pprGAc`O``BFAc%gUXhB#$6oM~k z1rq}ygMRKmt~vd87Zq60ASA+jyM`ZZ(Ve{;vrE?$b`N|g{j>yFjxkq>M38^P#n4_H z)qQ@tVw{7d{i}l_puj&U2!{a!SW+2Xi#obpcQCouoONeHGobE}djQ*SgR_U`MFF9X+VpHoZhdh5#SmR#uDyBXTj zQnj?azCAtouf}I=d*QytT5_q-@pN&roOYDL^O~hyAJt?caxc}}{l6Drxy(>)>q-6t zj!eK(IK}W;rd=1;Cx`vg(jX&lMq%?WWngt_aJ?qBro&cA1pE?ySHiLsKTFT~wK1GK zHUFJEV!t%XX_eVxrtaem-K#vZeyR296nDU{x_xck z=iyIrl60nd0=YbIe@Ca7wyVeO=sC zpU+K+vDI;Mx?{pA_kui)bIQL>boW`N=#}+2io6s)fA0DnQ|GPws)5REO4rEd(w_$` zo(I!zU7mLndb=0%CpydVs(r=pkD3%;k?QrD=X&`{YevF!ey=6hi@}DUR~7u z@};4*xqH7e%?Ha;AYn=jwI=U0!}78_U|p_1I4-I?C}FtoYivROkW8_~aZ$BPoMR$; zEuAn)IhSg?x|@p^)>~wb&OKSLOAUOW6yC%c^!18=zeh!CZ(z8?5yq5eoujwiEBtuW{!P>O4d<(`&^aY(m$qRv>7Lgf8~rj#q9yHuA`&FDY5p-(1O$9 z`xO+f_aXNsTu^~XXU)A#1K$y+#C*lxllgtt{FVtnzAx?Rb{y}Q+uz4tuvMbe8$9bw zjG=#ecr)K}>BabtDA0PMZgs5ny;PT`Zq9CJMx33}Z02yBx_%FiAp^~G(7QCJdkrGP9! zQx|}agT57a?oB9064u9qy#SriBLK4{oTEw9MBh@T((WnQ-pfx60_n^{yvDu2SCkCu z*6VHwuO+wH3x@*F%+7nZ61OugyY`OUv`2wsj;#MOzShLJP};1EA}%I))>!@y5hXGF z#mXV&l5QBOIcMq|n&={)(b1C(qPjC=Ib%T@l4u?d!Hz?2)2vr5;$m>Tq*>QkoB&qh z9vgOD&KYA<+C`2BFhef~ct{-?KD3V>hRc`Om$be(-E&|RAN*9wudy;`?LU*W-5NNj z^rvt%T|^CJDV+l*js~vX73xxjawUFcY5e^obbftYXyC!Sh@3TN5D)R$nBy2en3UK5 zX411dw$#0P$9RKZ15M%jv)1D8ulUw&N)N}&&H4bHjhTF)Jt~j~Mkgj0GyD>2BY(2%w<5$qomy{dH)+v_GYgIzg zJ}K)}2}enpDrN}qvgyNB84|H2*w3`ijo&vb%^7OAJ{SrP5HN(!MrsE(Y*j_Wd$WvOaZCy$q%wboOwE=?TIh?Dr(vE)>egxKnQ%O5Zrp1M|_|6of$ z)!#vtZJ7|$5FYMe{FnA7xI&l?f3F9q&X_xhk2wc$`<<&cKdH7zTiv+t*7ZpBd?r|J%YV((*fL%V zY=(cW{Wu2>HU=3Dox}`o|Ct!r=u0v@kY|5!u%y$gZBKN^_uV!UcMg4>vE{zxPqj9h zu)ErpH-&rM*)w)uf@Qb05zFg*zSJFvumL_D+||VuZ}n%IorQZY4tj1XT<+>+-}uwI zmNr{{)gg*v@Jw$hx$P&n_P>;gz(tGd^}wy3d`C6wS^F-FV6{@p24$-`aM_`H?dbM! z>Q>{F<&3Wb%6PT?WD0@ZSXf!=Th=etk)Kd5wNzjE-&sLyO^{sI+QymySxLXWEImM3 z{d^qs&8E1$oKA@}jKsXFOFzO+b)2}n;HI`{Xt1wYQB`(LIs=U18O%WSLc`|%3x$M_ z8ve7>n_1T=&pIjlt{KYYd+D2ru|u+H;tw4c8rf%Gk18Z%!1A}e4{KX_2%q+xACcwK z-x_D8hj7Tkl?&Q;-`JUtc_@qyZ#`hmm}K6W{5r&GJtua$BcGB{to+T6v>ZBnK6Tv9 zP4>aq(@>qapG2#;!}FVWTb}W+oj*D1+5GZ}u-N9W>FHAw>!CVw&jRPS+Q=ml87hxG zJPMD%9&o#jA*1L}j>}o${I8ya`z6^^g~H>An@x&J8mW!lUKW{d69a#TewG|;yOB43 znfPMt{Mh~C5Ap5TAIbSCd3AYyRV&H!k=wN*+h3062d=Yb0k!NrJAQ=2JS)E+E$_E6 zH^9HCnz}VQ6$!3!X7PQVBc;Zsx%r*`-XY(czPnVGorqr76crJEc3jFlHtiI2nkn5l zJb=RHP+3W0Fydw64@Q-K&5I!AD^7tZ(V;IUyDB{^Sq(qaf9g*u$Ln3XS`#> z{4dVSC1vfE8{>8*)8lSTdWu@P-|XV|FXip>>5|M3nJ3yRZdf@__?Yjt6L-V~kGzh-JHW}OG5UY+o5!mhq3Ane;w3Zi5^ZWa-n)fJ4hY;g7o3f%6#I>& zXGyQ1v($~Wi4OwDAPw1_8(eW)vuHIel!69`cz#^~A(s}>8LV||`{DCSX#pAMjn$>50+>Qmfa z6wJbrZArWxc|)()_#Y00Oo&?M4yZ}DVjJ;{F z$Iy{Tr0n8meZ5htd-%~Hkxj#j5g6F(nX=tcEJ@rRaFvi3?e41q?#*W0k3P*X zd*X*qC_602Ob*4iKxln230`!8HO1t_3}O7@W9VmIuUhfk%CtR!gZhH^M4~>nw;zC< zpCGAo$gda(eOYM_$S!FeA07fv2_7;PL=&(`ej}sSIP!Ef90lo4p9#WY0f9^kLvCr{ z;DUmtRP+!AG64etp!VNxibdFd%k%K#;&8zixj8YykGEd(rwpj52W$u5t@$2K3)^FP zFgimq5(`6##9B~kR7f;Pczx^lFDjMA%ZDU@FG0IPB;?W(U)*yXz;>ag;)62FH z?sa)+C=$}G|FKszx~V)FsV$3x(4SJ2_Hr8Xz4KZOVKmljv%D(~J6oE6!YH!iE_$p*q zKL_q%$th1s19f0aSH0uRKOe)@$U@)MTPu;)ORL8D>T3;m2fP>RgA0_%(s@dZvx2}E zxPF?;VO*q;O5}gr+nwk_;aSwJ6ESI@-KW~H-6}@s2I4+bo@8oK23i5PSLbIB<{|T zQA&7NXm))fCiL&hO$PPK)@5XH{%F>EZuC z`B_Fhm!cn>?9sFPTt~WZ)yuwPpDSyHWDB3_F1(P+LG^Xkf?UPZsgC{{CcQbsawbew zEC_v@N?d9@qrcjHaSjaRKUh1fcx@rVm-J#UFCS*V(_;fx-tNaC%bg<2 zQ^89QX*=I&R}MJswe3#d4ew$dJH?RhF8?7Mk{#EnX72FFrolG;XZoz)DTKf?AG1F3 zEy8n55)z+p;0v#7rr-!;|o$@fmKWkP6`VZEC{zg4rPLCGak*bB2kipq?c zT%(Go3Y`vI;%?25Nr=+tMeVLTX9bbRZF66vZ`GG4vo8UYKc{)Fyvw|~yIl>AlK&48 zf>h*}-z|_v1Ay=_7${fv3-0)-_Suq}9Gkeq$J293V`Dyl^Yh@wR8}1?qf_Xv(BR5) zul05(#oFpVNjoH`VrymSL_tzqTzsK?TvfSkywg;SL^;V9LnXAEjP1m7@6H42d?k-0M( z8Hpuy2NT{;uysNBatFa750@)}gVZX{3O%GHTQ_TLb+mv>_1aYRs;d8BBSYHGpk6e- zht!AT19)BnPC!7;uy5ib$1vIUQ5*v}-U+}r1kl`!qW`q2k%mQaLF%9Ci0@D0AlHke zM2XRzx@Z_d0OVGJBGJ$j^_Wsu*UI%Ak*&{xD+?MH!L~a|j#Bhx|Ad%3@c2i&g7V+ig(jbMi`ns1v7c=2QC+KSLWBVAj|W?Oq(L`7{%b~X|WE09J-l6FpFIIZS9X%e}+$VAgS{8%jX4bqe& zaa|&@J7n8z>}@aPHl!qa0{jF+3}M*43JK;G3xN7HS;kW7IlFXSWFU~eY_kDBoE^0?{tdhb>oWh(iS`IuS&5t_G%42$|v$38n2MFSKie7&9w`y3e z9aED*@0n|z{2Lj-S$Z{F8P7VYW7!p1^J_p_T6!QbV42glpt06Q8T5B$nm99>7p6HQ z$}h~j_!$TJBY~GU*N>;bN(AwSnVG9HHmA6}{7A`qa~@1IkJ-_iXUA=Xu3gguYJouyY*vm z%W!+e!FqcsaE>3eMcKT5FI~N~_Fq`BPfA|CwNqwJv33=uxD}tTp?u6e(>N`IDU=jW z=x;I_j|m-G{EgH+-uWM;EJ=|ybDHvu!>BX3RA1D;G2nDi*8FS-YpP)O$3U%<&)87q zdX^4CMp`jxYDQpw{(-X0ZJ zqQjdr3j3$0Sj%@jb-SYZWn!qE^ZL!klk?=6}oeyb5|T$Btq0bxh5|tep~& zpO30HXS!9)3Q`D@E0QL%Iam*#P3dTii^hO?VZ1YVh_iC&3GLV3Y+54f_?5C(I55#PO?Qw`5D)rG>i+Cp0=6%h zhC;t%y75yXEKU6(A>`9|GtwyP=YO(?u-^EEr2_)(Kyqa;$z9=Lg@+Vlh0?vk@|cD7k(@| zB2CGeu_FhEnikU+?@kHRF3lbVfAJ((N^1U=4kufjZk*=^EGccRS#NT!{2m0d`d?b! z@Sm9BZq0!_m}`Kbjl*RvfTy{gC#^Q4Wdi;b8FJM8eU_Nc)e9}#zm5hjWd-~mm@LR? zA8#WkhUPN9zG|0vJtAwuEoz*4J0%6;C;K! zkaSi!sgzeV1CNTa%`AbUz_D7%-1&a$97=Q7G7Y6-v}W`_}w9KMh=8XzXI z@iAdhi*vvhkHWpqx;)!`3YeG46`Sv{UJ` zF*(xAv-}T4TrU!_(CAKBRB6U*5Q@)~kl+k)KpqkgMi=eZLD<0O)cxpbKBp(Y;%Nkg zA0Q2L`#$RcwoeNICy<~obtE_;GmvZ?N4Rcc-%$U(sPusM4! zYCH?3;RRthZ_z`)Y?Z8UI8S8I0Q?aY^n4tPsu!P#bNgYF`46^cDDr2o2`Ob=~j+Fc_BE(7Uh^2jS%VZ(d558>iW!x3Jw~(i4(F!1X47 zY;CKx|4mEP--d~S2lG9r`LA6J^nTytRFdJFu)n^?oDtybam8V?8KiMHhjT&RzrVQC z&A@+f!sEZ9ZbfdFA-{p@mDp@A6;|D+pKt#-iDyV&9L)b}n%d@j*23SqI$J=B5BOcB26IE5R;rDEK;@fsAVg5dvm+A?_lUs{mrR&^%A{b2E@QI$jmf~w?#~p_%EXrNg)X#mf8u|OlyP)6FDbKph z-GidO{Cd|7PCSKTj9RphY74$KJs-7Dyt2s)=+92{gRS8QtnTOUryR@Nl`)LEETLpkM|(Otm|r?-`CIy;rUGJ+6rjt}$5Z_M%Kqn;7`b9Jef-^68e^fu(|s zHPZC*e{#m+9I2jrM=*+BZwvN+GuiMhK|C3!{ft{%yseby2Wc!n(b0K(+`PiiYpF8J zu;a(y`pHkZk-tvA<&?H8kQ;9(GAm2U@~Rd-I$hYUrmRv`awNR2*U)oRw9aJ2Y(x)pzWTh%M?uwfdOt~5?*8QGglMAo6zo_S*>fm68_biT^ z?|BoO?zZH1T4L43^UQPhC^WEAAR@(#`FXjBH%S#62~@Ymlh*5t7S5zE3NrEcJ(XJ; zGt2U?y{$U>+p6+mdE9H=x>u25OP?g}qDvG0pbzY5503cle%@S!S}2(TtOhZRRkEI= z=Z(GmoB^|?DMxy|`Om1@cWs?LACgdsQG~@ZRh4rFnH{~g9b-4*<0L)J@AOC;Gg>EJ z6>(gcRwAQsf|q=+!;T2Li=zz1eL|E@zNCsd)OIN*V^TZq#4##n7~iaxq`eqhK9C%SW^arT%mc3$ zH)Z$rE03GMG2yKxCa&AEPFo?t(p&}K9A=!}??OrJ0bgaz_Yt?EmlpH}H)j8?FJ$xh zG5aD*d!qu^-?3uw4s|3&qq-uONjKBeB{sEN5JitOYAfPEZRUbpLIyO9X1^&`lxigZ zQD{Lu_ERRIANnZ(?gMii6(pgDQ%ht`=R_g+X!M-J&U|8rlt}0&zY60zd&o)hnOE!L zVh=;6FYJroNem<-G|{NO{RE;`h|(`ksiuGuX?SNa(^MedL<@!_9stu%b0?Mn%^^{E zn72C&#PGD-^ezr&RRS@u1xR|}$3Ct}lD=e_Q1}#RU;YN2W9^=n|4u@qj^tSS6MMP+ zMvx6^4oDp|RP;E|7%u@>y`=16nLtjQ5TlrxR#L76{``M0fC_>dN6z%wVh?Ve)Y#~d z2^_ul+YEpJP;ZzaK4=NgHQ5JX$_ZZYPAAzcg z&d#Na>EnRy(VR%zRgZieN`E>+dLO5^6EYP8TpE@SE%@95Y~Dl*Mq@>j5d_$%upMEtU3F(u>V^oXT)2>AhoR z?||*EEN{u!(OU6H$Kmp2Q-wo#6Z}~FSo&*Nab*t)h^c%81M#tRztyh&RAX`*#WOfmwis+ylsg)H`w)tp4r}-q68TW z2hP^~@Spp979#ia@+*BfZq2%;p;a0h8h5{(J{cOkQnSwGue+txA|oTM)aC&^)$gqy zrZmNvIXJ3Hy>(SSucoYa-O$(v*ik(uHz^t`)`6?ntdcD)?>j(6>ow~q4gVP*BK^md zwi5RO^^Tg!=G(Kg$P7rcTA- zaDEZ>FDbmimIf`&Eto--sv?Z)5S+&ueXq_gzhsmlb!d z#bx&7dC8+7HMN|?>u=t<=}9zSuXtw58F=ciVS}dY-*CDMyK38Om)p#r@5QW*4b94b z`OdH_n2@KmAX2#ZEnZj)UR{nA*i z?KxG}gPFgTv@B|=T}bF6B*W3HzMI@`|9+MZp$c-}le<_Ia2c7#ukv@9+I z8g+af?Bg%#J93T(1qc8A)X%zjM5*yZXlCfhF0*ghjl*Yqevt5uC&68p*MXwJswnNb zul1duuaeb{)J>eQoH9OtZZdM;zN?$NP>SuHdKPPyc_(?Y+ipmTT|76*zr;~*+D#gb zc=ywhBGdAXkXqcB%rY>s_)x6iI~w=4WCrktJ4Gj)euIE|q30cQw`S>~4%4RgeP2Bd z6cg^q&t}R=W$Y{Cc`a!wbqv(ftEV9`kut{`A(}F^h812$RVK>KX!AZ%`U7XqBVm*E^55w>&Eh+{ZZch&6irG7YJGVCB zGU7mMa;%v>+rg1jAjy0*NF&)hs|7654gKfYN>+l=Z>MI!t<=cA7nqxpW}K89DaMYD zfJbHc^iF#%6sob*ETne_L=CwdVl}s$Jo*BHh(>}j;3y~jqsHLyf3gyLPZ|xn;ERet z2?~nAqF{0%2SRcZ0nY~fmyMuoBq6q+1AE&e1-s!TEFL$U1wI*6S7gw+Qft`^Kpr7ev;L7%$-3GTk*@cVP>REHY zz`?=fWiRyM%i7vk6;1Ob{`(K*bclMtzEJb0wk-U=MkHSj;r8%h64Lh4p)>#O5kT^d z!s3e>B%aTGyzXY~Xlr^-9`~lqbwn`>sKLE{jD+pvZ<3AKDHF?H?w?sc4-tJj4MBaEdLgs`zy#vPx#3q?WREhJeS;x`O-#4l1*ptiq>1doc#@rHgh z_3eo%%WCg=ci`zo;F1w1MWds^nsx!?8~Pb}(F-vw{+eI5bd{1$QE=Kz$%F1Zb6Z;n zDf#Dcm_Ur2*h3HZtvz^|N47C?qQ-d93pyx-e2qGKaTo**4x>>3)4_)B3G)UqN@z`c zkQoP+3^S5=XllEH#bkK%a6@QoNMkK)L^%e!7s4ttvsor>=#z$N zc*4eRc+?NyGIMEdc~Lsu-5~~<7){K?Ljq}WX`+4mHKQO`q8gSDj(;YnCBP+pZi4il z@FEB(#1m0XJs5roqJ}i}arSMG1ahs*5?qD#TxBx6!DVn5g;=DOF`E<;sh6~fk^A`4 z(7y}?K$L^R#esbN~(H{=-l5#m73!NdH;p+0^u_PO(1 z36}}Ib*7!%2bzKU>xQy_{N}(#Kc|`NNmU&R6>ar$@8x7|1|*JmH-%Yb;(}~43Bvn~ zXP@4jRhJi|AI2)xpf!K6@9jK=6WuRB^7~~w_U$R2+Bplu-@-rh&hIo2JN>*N0(@nJ z-S|$ds60;^3;oSR_>Q)XUPDAvM8uwBFg=*8Ksu;vl6v%2RP-rA^GCnFxa|pXoG4B{ z!uBh9O7_5;3<3D;LuxPDPFsMAvB}j*Aj;y#%V2Wm;#Ll>@>GQ*k)YWe8t;^kwS|zS z(Fy|EyU4rvFX()0S1X~p-1UKEarS>*v*|sCZGGj@oU36+_mZb9u^<0@jaa(U*Mc^UgRb7hG=-pKxRuyNB#h(4km6=$OFvpUZ_I^h4HKu+pwLCIAI z*OJX!UK6$5lUH^l64?uVZ)AiTYh~|q*9YEo&aX~bZ}b4q;6&;JUuMgtv%-^=l)*K_ zt&!^Gz|H*aI(`lRm*P>OH2#6W^}n@dAAADc{h0lO)BNghQeFh2w&WaQ{(_x`uEu*nD-&i8kf=QLsDcY4}vA*I&p>2$hgey@ju<;kA zzPOcDc|Rz)v5!%=AY(PF$SS;U)o;-F>8pLO3U2=o-blmk(RIW8;?Tg2)&!4CP-rY% zb||+X!t-~f#^B|>$|Cn?Zj^?4FuSt^uGkz=DJ}U@7=L@`&8|#Ssct{ZXCtp;lE*8$ zF=St^jem(o-}G`<=<=}B_K=0pta_#Q`f&Q?%TgMZ<(q%Qg%Isvai&@dPDZGPm5|lC zu%Ogsec#!lneirWDRs3|DJ40tx}t1-bgbjmQmR_u(#qdew`^;*Kua4%e`tk72u3y-eeoeY>9X*$*@l;2 z0^#sZRA~Qk-%hgD^u(m>Ot=NZQ}Rtn!Jdvr**)$b>;kU{jCT80US}+`W;*(3Y)j}p zYWr&J3xw^D{Q5m$QQrL!aBBC5E!KDk@zxlj^G7#rLD{ z=WC`QN#lPl6n%_^2y@~GSZJxhjxBf;D(yJwf+8FA-KVq(V2*b9=NUxhMz z7-1YnvrFNw*RW^6-YsUYNS>3^zR=ZWC;1jfjbr0wj+FJtlx-W0v%+&S?_~FdFTFpc zC&j_TkbIx|VWc1kCkE+7%Tnas-IZby7pxyXlZ&HsJe1zRbb z=l!?lO9E#@HC8w7Ouf|kKGIlZy|Nst!F|fT8s9PVeW^BFXs1_wW$Dq6Wp%ggb?Du1 zbRscl*bJt04paMoM_v;n`l|k`=rla08-OiY@O%BYh=Cn1qSMj_{2Y#5aaD33;L(gy zzaS8al@}%bH>K|T>mgl`5@kEBjyne>9?tQD5I;y@MVD>H0bO^8!{XnXzTU#VXdvs& zx*~A$VnZPMhv;WF@gdXDTyF%`#&&tYQ%0=xu&($_iauOZcK#F@H)*TadR<=-_)f-s zcFOMI`P8H!uc^m}Lk3}=q6jyv2dN$!E$l((_K^XnjF9t$Enkak~jwB9ZuIdnW zvNk~m5T^@50jrVzs-iod))-kzeI2`fL-MQn>8I*)xQK)F7!pbE)~VWX?tthIww^fT zyLd_KgeJvZ9umJ}J5|YM#L4XgI4w#+fba*&8Fxb9@0=jWUkGdJe8YwKK0dAOXWx_L z*y3L_M3BT0e0Z@a**C4^ZodzmS!K*li&?NKl_+X=k%8Y)MyEE#jiw(BH?wW7OzO5T zOY><#l-}6mMLhJ~PdL+z@Eeon<0Rg0-t?}23er0hgvZAXD~N*L`WMmvo+9YHEcuGw z;luRkoJ)7W<0oGT5Ccs7UC^mimVT1?QL_qklxt^=Mz_?YPF8rKZ5xI|Any}DE<|B|Z zak1$vK^X-H#^r@eh4JJHuA;)Z)?0uql#j|Y@nU8UU7b1Uh%eP$m|T&UgJ;%Y+m7B^r- zr+R_qyd3uZUHae2Hl4r`=Z*F1Wl9y-FK|vb1abCPcae^>Mw!Xiq2=YJnPrY_mYY!9 z+Q#3cUbYhErBuaz?#nMr0fCg#gWgQ~;aklo4O0(ZPdf6lD~XkL_oSgg!W+Lw;=^sM z{-iR07azqJmX0O=F&}l;uZ=FY`W$X(yr!hoRnj0CKGrdVpY$+VM$=DyEr<`?49-e; zJEWxHzqH|dt>}vtxXv# ztIBS$PQ|xCm@~f2z8h&ER1@Ai6KNd~Pv9RI_|vlWqs4!MQMX zwjOjMtk2Dy?3no@Yb5dY+XH`=*&e}z@0>*tg`VJrI88=jDcFNlJ8K(c0s>s%@K z3i`SI0fT<&SMN^6wlSS39#-eiqg{WpDe9`L>#0@6n^J}%u$AZ4o7R`yt)E>y{8%Sa zTK;wWkE|Lm7SHtr-k$?cWsQHlVBB?X_03)Is5FlV?&uRKrk;91zgIgY+y1KETut5~ z$M$^ut&%~*Hnoy6op;w7m)!m?x7|Hiv$nS8C1!U-fkSkOEH0Jqn%nCnF7_;JZ2d5^L)s&#+JJ zu>H1Ej6~#(YP(g`&z!d0e4iR8+&~x!Nbw5ozb)M7Xe6{trEzt#`}P@aMJ-HbRrj&S z<}xiUeyRCR`OYOrjk2beu7q9^q{RHURI416M~XS5Ln!M%AGkU1#B%7KJTfKAbtwY& z{MQjeCnxCM{_g&)>X~k`?1K3-;hR(bPL=UL{6s)clkb?*_`&YDR#DJFrN3)^X22+Z zg!H{hKSw(=k*t%n8IY1mBaOE&y9=Mag-@PRAi&3V* z)yCM^JAivLpA|ol@5l+g*ejBm!&agsO~_bP`)s*Ynr|HqTyF7SNE-ZI3HBY1s6#Pi zz9&FWQV@j|u2hnfZ5B!2?!o2SB5cQPKlsID+Wk>4W^LX|1HYU_V9n_4X?k>Wp&Ur}mC2QYEdzo|7xCY7~mf0i@6^>SqJe|FRLx(zZ)_K|ur? zoUgVm@sw$p$kUpeL|cI?oPZ8)5dn&aUf6NHnK zOV*Z$v=h<4jPw|11!{Ne5}*Z=kBtHf0V`ea8=p$*bv+c{Si8iYQQq?}WblMn;28-d z_l9A1cq|M7`XO&p&9w(4^}%^Qo<&>};i2V6Y{ zqVfLUL?ivqf^1GutCvJJO_fgC*;3P+NZ|GX!#6dt_5ar1z7fHr3(M$qJv5hA+F`CQ zr64LP$7X+PLR{%*v6*ZUFZXzfmO61?FX z4Z>sPpG(xT_Yl&Xy!o-j!czK~N3?W$G`K<_G$E()T1YPl@q|dc5OkC1DbIx_Fz)(M%Mhcog>ov(gaJXJvePbDYoK)RZ!XQV$?^ACZl$ZncB9YG?1 zD;OIf(ujjPbSM%BfZ?|$T13;p8y)D7{SL%;@ccvz+_aIh0{Bu7IzS@1{0~jn9?$gt z|2HXg%I!!gmtoS%EfjK@5JOQ@gpgtixii;U5>5znS?5y&S%#hTGC?W%~SG1@G*^EuL&Kp7O$C{e7_^uNHpa z2-DJT9a))d)zWr|Q^O|XHTITQZ(v9h^jBwMzMALCnZ!3>=T-wYXWdy_euwX`Qh?W- zk-Nt0ps5*DE$T4&#AIrKHND~<=8d5^v^27T1NWVox$rVQbF6_rQI${=5f~gi-7ZnK zgw4sqHH;k0%T|c~9#{>iI~6KNd8gpoFd}B(d+Qi6|K$BU%N`kPpgG3EDb8NcZ`0Xd zny>$@YKcNryASN2YPHO^JaV69H=jgqctBMUdwzTGdrSSu{s5QxWO%>^cn{NpV^bOf ze3`NmEO?tvXn@YOqdP;k2_D;n3HB}AHR4$rL*2>Y%#$ttji*}b8(BNurFnaNt%1#= zrOIk`q>5JNN`LT0qjB+~Pw!mppVXdQo*P?`b@0GijjdL`EH0%yI45yW!8~fo5R%!} zd*4_2SN|S8Gn1@ZJX`a!+wu5WrSj-O%A;N~X6f^d*hy9wQDapi{uPV!WBBgm{%SH^ zaCS!4JlKu!CajRy?$~hTyY1xwM#SS6D|$B7qQcI=H#DU0WYE)0Haz=k`lg%wbEmai zJ<(U>qOQ3;A&u2cd`n_32Gh4^Tx9)s!5nJsvZir&`|ox^RbRu5lClVD|hH*d#n{>DXITW*>LyQ1arr7{Vy#iDgyof z@rEkaH@ABnQj@cadC6T3ZmIc4nQfSyGoNjj{oh6hUAaEE*fsi>o5)eOjY?5sX?y3V zsl!QD6%}hV+EDkL&&8tP1e`xsf3z$3xTB~MR^kPbe!B31E6m%6gS+`_Cefh<7xt*? z)oXII{^@8(k7o1LQ2&5{U>q2X1Tn890brhx_PrPvJEv?xV&OjARX46`e;^5RH>Pg> z^;-G1O5g2jn%qOgNXXgfD_7LNI?{aI!j^8JGnw^o-~SZfhD4#aNkP7vPhW33`7777 zsjh}>P5Woelc`f)kF+1Wo!e+1=?cCS*QVMxsO9`fl-O>%7M5Y_wh0WE8$h$afjnS; zwdYC`s75cj)_?-*gf=B!|5MR(4^$^KwXKQhmCh%k|H2877n8}ej2I@rsioLq_HQL$A-=vZ>|%Um*$HuaruGn zk(0r`38>o`~m{}Jv|Z-bx~dplpbiWEEGbO)up6>L1RQ= zAVNmPb}il5=dHdsSKe(53g`}{Eglz;WPjKYQ;d@4Yfqh|DFEiEdlYT**@~0jP}2ts zrisFQaHtoSAdr*}8JA1d`YiDHw)j5<=}%LH1mLLCHwdJun3NwOr;Meqo`yPM44lpy zt4QBlU8{;te?>IdymR;TtCiI|#sDz8{N#{RSFNxE~)L#yvQ$v%jY~ z$r_4AbErPt;A*EHhr!es)0m>37|1W=LyU(UEw0L-vM2!6+;GUD zs{?^TNzI@*`=RI@F!yKJ_VvU(D!U-_)`;WoOMQ6{Lv7e12BtFS0g-;-QO4lagV-?JK8N7fbz@As>oIoj4pM>$l`udLE zjBWS}QpT9DSraIu57}TMI)5B8z-&RBX2&z&I=`D;&TvpcyxSQf5O69)2jU@|zt5@2aF^tAa0-Hdej(@$Pcaxz z=KR?62m_DoOfitY%5P+tv2lTRe@S=~q4{DO>n1qj~4VL8A=}#IU~VkK>f=|2-ce<>Mj7Fc^50g!n|A7iY4jX4Vea zd~9}w{pv%~8uZd!SJx64uQ6$0$PNZ45?ZaR&`UB;9d>%vI&6wacq3Z*NaDQQl@jmcdxyrJHi?^|6dF6Yy9vpVhcOoA#`En2Xifadv3Uw_)z{}{c9iJ z;FOo|-R#``X_9&D#&_oOs-!YsSpsD;+|TgWE}1I1zA`=Qcgq4D1toS9M2frbxQ&F~ zll!{h5Q_7yn_OFHf6(yOK9ciW*Bh8(Uz#L!Tr6>KXK(wfL@RWCLi#TmJP;bpgl{65 z%LuKIZ8;U2<^F}Bj9@2`VsAuV`XTD?Z?t})8(|(Z1K?2EF?TT#yI!B#A)!C%Gp zSUyRDHyRc1e`;CXeA6)p^0H0oHqtg%M>|}#vL$f$k4IH$O-{}`lvy)h+g5gQ?J}3xlHfzJri94dx1Bl1Pds$9OFXV~Bl*O;;qKVjWaqL? zNy7%{-HKaBh25$}>gtpn8zMEMUQpRyVO6=j7G}-Ze``x*D~)m&aJT>+1(Ri!LE+fc zr-=#*eHV|t8Y8b#$@Dv*8cd^bFdI8Y8e-lw(w%n}{rV~F+=*@(c;Kht=iDpUS4Cv% zs%qbHZRmGpJ@m$#oWm_PWeXDy6HTKxNJD#$IYmJV&UfXB@P(jl^l)imdMf(wjH0lA z6=}!Y?nxB`)o1hf`#s6`y#5e;$)`pX9=0)3N>Zx}pQ~V{ZVnEDD{Pe8ywB!CvY#dBWEZ7l zZt7e?vUWYgXPU7Sjp}yc?2&~Edk5_XE#^Zc17{glP1qc!3Y1%Qx*ltM--o zBmO~tt133%L@m-pN~CoOnGKpe5x>j}39x@+68S~=d${q{XuzQ5r4Ngc<4m4{{aOJO zoXE{GGOrb-2%wK8EZaot;P248f|=qf>#yIlvJdpRb*am zY^`WXO*G-Cqbv43?`lSx0m~9=5Wx$*L;>Kv$#0yf4hS16(O~)lN3XfL8v;h-fkU@` zoA4xZ8rRG62%_*iBH|+dAmRH$8__5TCp=MIN>{K+mIrMDK}CRcQBWBHfrl;FP6~0} zL?fIBXwf5O{o|)4ct?bU~D8kas?4D4Cdf z`}I~toOtx(p=X^vohd0I0vtU(2|c>6M4tAj&O8uxLukJ-YRpW}{4j)O*_RXsLIt#S zg|LKlL|4!FlT$}jKx7X@s*27DLj)5!Kcak#Mc`Q35ot)hNK6d;*7(VpyW{ZG2W?6q zHxQH1rh21{N6E({%wyH-m9msd@netXLogA6#Bn>cK_WO^2nI(MOxs6uJmq|p*puyq z(D|{{F5@IB1Cf5L1Q0*6o(Pc6ga;oPbJK+Lsv!S=-)?yNwUAULLjjQrhoT^}w05!t zq*J;iEd&yG9U)zKT?SbFbWg2zQc;Hz)0??oPt)3slMUXah0Ldw#GP^l*9CrcU&vTg z;0dja(Q~^<-0AG6MEfvyyJz@X2)Jh*Jjd!q`F!&?me-nD*+{x<_&Ot;?kaJ-cGBFE z1wI+pXk#|EN~V)Dsj74x{k8|**jMH!V;KsT{l26%nA)aCRV%f(fqLWEJHm#6wZgZvNWW~p^I?)MW%xf;3Q{Pa5)GQ&cuM(!-siRXr|{+Zq-&*v+a zgT4;?@p0B4wH(~~%Ae`|Sz0hDHGR9Y&eZhSypt=S+m2|4Zb;c)_;zI!!3`r z4{lzR`g`2N#VOP$jG4dSS;VvEa9=~gtDp^xgAVu*T0wgT>1F=;Epapm3q?hl4r}Vv@Mc2nOr`rVKuGiou?OHQlx|!cYu9Jz<$^m0- z0d-H@3FnRKD#zBM9dAEsxHr&{TX(d6_6kN^JtbIuKSF;1DqI`p=t$vzURy70GfX5btTAKk#~Y~fq1SEY#)UPif2b}A5_Vb6Z|SwUyk&GU z%?lTREtml=Mx$l^ub=6 zDJ0=41N{yjRUzJ7B`G5Dehl=B^!8h8={ztARKwkrOzNioSe^J0-kOL}8Y8m9F{$f1 zumAdV+pnb2H9oVRlXDr?NSWDFb*B>(4> zQ>E08QK(R-7abEJh7q0DwIRCed<`O<0Hg@+&CW025aVq@;5~ zxnUc43@2=gk0(NRny<{NbnXG5VlM*~RSG#@=l{?iA3QV;mm*;jg*iD!w1?-qXVAjZ0s}<5LKzv}p*`=`6R5@?cMtjjMd& zPH@fsXw}!XR_0KZY=UL?wT%!}!V!?V$3fsundXo}Ga!KeIG>jhPX|u6=S~J&;`s3< zA=&hjAyUD_Lk|_OE*yxXwcL%vT&}~ZUvI{u3||2rlFrEiR-33ytYFQ!shAA- zl|Au{cVBNAMsl8(ma>3E*+k`;{MLSSPvK;Hc4DOXEmM)Gj1mBk=>ku=HphecAei}f zo@(%KqXi*o0p@4}4%mG|V{k^JG{@XNuQGOP4P&UnooM2XP5$q4KlM}bJydXeO%f9E z@-@}Nv%}^aH9)OTUMhh3OhAAK59j8=qzGw05_J`c&KuG@-J-`I7js(>b{s^C_QYKm zPrv%&x-=Pe`t|i|1tM4V_yKFBcNTo8PXP{0{DOG9Ih^8LsEpibZ7 z^vl|AlDQ>QAtIfh3_e{cPH5s4EyGmmWf(#4H_dFI}yU{-+hc+@vQK4psw1?xAZA_R$mjF zykeVU8Sblg=+%Rk5vr(7>qJkC=jf`ZvsKy5ayD*D{Qd_Hj8?-)c=HuFiVMPIpy zE-zl~h1TBFYN$UoWGX~z9%Ies_bKm<%+1a7N0($mIX{Z;_Rj6rO@v)>Ip~U2tGG;} zj^`@;TQEk2#w5>uzH6mVC9e)r?;T4xIoCCEejW!>GsyDFg-WA$n`AoBhH6mkrsLxL z?2_MO4@zjp=G?0AcP^r=gceTdBLf+>i>W%8I$4pUrNdfZ6v1P2@0msKQdVjG^{B<% z{n^;DvDGCf{|0gNMY{gK^y-qirnZnZ9s8lZVx7R@&dI&mb}nKmR&l7$v#xc|7I`<$ ztDOBM#51A2wSJ5$is5h|-K~fkkOtSu!2Vs-++Bl7^Gzeg$zwH5;X!`_wY4-zsMk5j zqA4bFhsw!I%CQ)l9upoLI=-{5mJ>&*Slb@c2kT~KotDPk{sk*fWYB)^?)kz6ENPdV zS!_NWzTC?8l+X?mEi0V;QfgHpJ+SoYn`+$LijzpmL`wFPqsh?Mb0Z^rTcN8je@736 z$hY}4#Pu8`$g3~c$eRv6+i#gX_3*M=88us>SEJtuV|b}H*5qOEw_2w|dY@s^zuv$V z2DMGFA3D^z-@q((@NGJ3Bjnt4NvEWm0-HzV5UTYp}Od{<_uY zt1g;BvX;7OaxoDWiT3F&q%@u$GMCV@VYIO^OmY>G@=zO)7=8h=c4}zl1ndDx)6cHe zzT$C53Ll9z+~@GahS{QMhx-t=>%)Ao!b~k=X7wXx?Ut;9QhkMQ&kZ`J1qL))KLLq( zf$OJD651l~-8`x*_g5N^e@8%T>qui$O8F25enm8mhdjh`MUrQfwhK)WeJwrydap03 zjV@vyYDkN?vgUU;6U8S;#LH*+Ulq0CnA4Qf$JSAK64BnG(G>OjHHHww*~kIOlPlYg zj+fm~Q|t74)H<1YQKb0sizrFHDetQ0hSACE9}MbW7Y=b}yPKKx*3`5tljHb76lZ!~ z@RNzX0XplIg@>s@^=D$-7j&uxx(rW}UX28P>;s;Hx+D zX+b8fO>52_VLg1pA**v(jY;(g$5jTcehNE8ywc}iQbQ32T+e&OxRl%)%-%PW2>p}5 zUX;N7nUXc140fr}C|m7}M+}CAyMsI`?b{1?Dk-@%KRi)*n z&?bdK(!fLxVcbnSO^`}+UTloeL=@IbKVBhmuaSHjtvxR{hf1`yf7Q zccc%@MoF67N`IWRn+}@6yMJ?W*<8HbXYW_Oc@Buw&zua|T-n#s<)h#^U`0XVdpOak z?$QecyRJ<7&(y4Bf$$vJ1P5tu*vr@TGAKAX&dK1FwF!?=Ur@Y8jgx+Vd2vw68 z+yqP)il2Z2^$dD5!PmZ1bG1X}Cmvx`89<5&J$=hZ5R!Kd^;w>eC58_5mg zrjp4=U&BQ=(xl)|zu)2piCufbFJq)Zs5vBpTdlb_r=hLm5^`_st&?cC(`09bwly^0k&3(%hKK8tZ=qi7fj?@IVk;$KVamTt- zd5`URqxIcxc*7Ck`0_#X{PP0f`;7Kezs_Vy$}F2ezo(A-k8nr!JVIETz-6v=N<(V7 z@f>lYdoMp~_0xy zDQlC{Q926-{F4N|7l{zSh>bgJ#i8e{Io4yt>CqDG!SH=|3EFv3<096pXco>0-&w;Q zNbFB6AX!~inU;G#uZWwmgTuL65p}FNO4Ty8rPj_a?wr1ZG}V@mZ$rp1 zQfM=y_D4$h;MW98yNjb*iV!mbXcRV?&2aQbr7fH9>tz&j`g?%D_-4R z-%vzaeOVk?qyR4ktBZ?E z&0Gw*g@jfdeI=MN7jQtIBYQTp*1MinMV~Atl~Qpf73JF%x!LZ-JtlJZRoKDkGhah( zInwv>&-165V(dQ^&Ge4;E($JaZK^%M2Dja=7QS1?6=vLe&^0W9+jTYz3}&x`(o)Z~ zJqo=gcpNE0t1x<&X5*6Z!Bl31Bcy@aT0dgfCqKt-4w(Tx!o#d}cg@y=Gawm}C}C&U za;}8ym#MoObB98zKX8)SN?EjwY9`02X z&vM7HXL4J%X<#!ud5|5#CsB}fVqZP}Z@=_zPYQLbnwPL7lD*FSAxVru8~ zwnh*v<{EKIPAo)xco<9F_m?iY?DO%F(I_a3&otasgsLF@8_Nqo}sn(ONj;#DybnWMX0Y-V}SJB*dMec}j4xyk*U*G;g_a zbl<8k_n^N|2N3@Rsm_+ozFQeh8F5EVNUl-&{)IR{1*-Ed_G3 zmMT%)hspm%BO>(D(1>(=)pLXaiNx zqy4YIiW5Z>mlVV-#zcnHYr?7wB2-0<#mxkD>;D3^SC5SH9+74G-{x}<_+3~rGXYP+ zS4sDOp926fFHkd7FO9HXYE)P-cpsE(VDse0(eYc6U|%SGb+iuhN~CjMUJJ!R;6M5t z5E39?f$>}g=mLZ?69P`EU}z}%8rTB>CPqWxDyJo(DV#BBU?>XOE2`vTMSK;yD_?DJ z%JSi z?G=+!{~%-G9>y>p?(bp{xHkYsJRY(*(Pjie=|ViG%tE>FNnq+4>9HYfHatV})CoEO zdKUIITUQS!YJE-D5z{nilUbCmdtL*;0VJMNMus#eu-R1Lgpd)mL%?OOa=;QX4RGmX zk%D=eE{)Nj&AD0C^iLbvF0e=a{dIGDDyq5L1MN5T|o>4I@7r!KwkP%Y4ib9)p z^}v%-oG^t><4K$x5hQ)b{l5{`-$p>f9!y3uq5y9>h6eQ38X+U&Mmx&$wgw90d3|9d zE+Cd#_8{#)^)W#zBg9QyQgnk`!zF(%%g02uw1&Kiw)Ia4aLI5n#>~@9pLC<4r;?I+ zVEh6g3#Qn~2w@E%(GV<5x6}zqm>%GkwJ-r!6T-uI1kRZvJcgiy@_7V4-B^kT6saU= zibv=crEtHp2IFC`Si|#rM)>rr-2Y(uT6g{ww=(!Zk6dkZK` z)UX_#@)?$MK`W>x6f=4!!UB^E!=Tlo&w6|O1W45kuO$3yOAMoKO3P-Y$p_{9Bh{)DaG1uj) zW}G(x)mc2+p(8SKKi7d)UTb?-M>R2YvwG6fq0oRa7<*@6fNz-|eCR%PE}Y&q+-Gms z%v@iYz}#~sjoc9MuC!*zI8axRq5k;L$0ueNgTp@98^0wpOhfj-2mr+RxK*^W(xl4E z%bRO&pYMKpb5Z$I<2hSnl>M_Wdro)b?I!(ag6}T1)MQxn%8-}?HlUjT4L!!fC+Z0{ z4nVJW+_AQEH`~jqDh#qtTPpQFwb!c+4+<>%OOMocyOF)JBIPeuP+R>tBdt+2;imgC zZ;2r4lIKt<&JJ>QXyg|yI_QC(S%azbsUukxzfM@-MeL%{_m2p6B_7AbM72e*%#_|D;keZ}E?T?U6gTs8&P;%IJh30G5aCL9x>q)g;_=^jgs^>L zZ(_-bw{(k0D&n?1-g&t2<1r?+X>65PVjNNViAoGw^dY9$&>cmYEs^a3qYj=GSf=)) zV%cJWfBjoVJW9E`lF3DWBOqy_z&}X$r|T)Tne%Vt2b~I1Q%o)wiPq|9UafS-hE+|P zB*{CQ633P^A8Q7bW*z-}xlKJq{6%*rwUkQFdy=_?KFJfdIHwBCMoS82mt~5nxZ%%C zkeXuE=<@^1!d(g7UD-|0+1bfuu@hQ%=3LgA7|$lztF6_@>jEZ-RJ0EQF8!bt*|Q0s zdOPHbkxc(EEBCQSNU~%|m_XWmDW%16AEB|}G^;v%6Rt9C*~@bu1V$f$>A`HD3~HT` zmzr;^=Xx6R(|i+$H0D<&n?A881_MH@>fp&xW9}}si~nq43?(0cwCG+CMjss9f1^9g zVj^ytVEPS%D6@K2KqRU$!?daHKFX%=h1$Mbc`7=r+LUF|kFMJ+d>OZqtGNLjrFQ?$18u(#OrJWN%SO)DN4|ng~lDj_NU546+X# zj;}&EXT`~x{j_y%-M~PDb8**=(m4Kr9w%V)7l@HQ-1T3nF66Z)P_{gm@{*O(`iz1! zKF=b^sGN?+7z*kd)N?_ug7SJRZrz4t3s5l}skM(1ysB#?2}Py#phg9ZA!*kMA)-lf z+`v&Vn}Px{oj{;zOj7`gl!&xABUpT+zLF3G#Szg<&i{Wcz|G&>oS&qP^L~@cQ;s3v z+(yxh>(g`2!~XF3pvA_QUj)1j1OniZMh%Vvx_i$a6^X@bj}djrl>xLsMaXOrlpbwjgm`{@Qr>4hjz^bl85b zEBGz|%oxxZSj)B3L5(7y*PsT>Rp-x`J7{W*;N5HFyWe;X=vDzpfD6?@1YwSbf<^@H zpYmr-3!V6nLP2uae>^%;cQ%VB0){B5;qIckJpnD!g|{2s(~5#x8YVojB%2Fspt0gR zRYpdIKo-NN&k>^8Z_n)EE`i0hpPdV${}?``y0B5rnA|+%YE+OUc`XuRY&alyFM=D@ zKW^&_wdVA$2|(|3R`X2=>Xy%C@KG8e zS_**ZY?cM8yXnUgs6>SMR)WZUG~~w++RSb^$*|L|tR~1l&4xPjw&q9%I0?|~x&)vf zwTpIz@!Sn0A=4*@5lSj}c-&bYyo_m=;3}`L2^<<(kjM`w4a}h-Kmyew^IZ2cRhp9r z5^pHoZ}Y=a`g2bpC#{wg{)Z2@Mv0bK5kB@X!D%d$dd5?Gcgo?Q6v=81-&ygg)BZuh z_=i=6&6LS9dd=QD-t#})eb_qSFySeq%n zs2Ar3LoJAfyZM{P@q-EnJG*!I6NWFmjkgO5TzhkdE2a9!HgE$vv^F&ztmCpl>uv?Y zRzXl}+FcaKqJNbs&JCll_|n;M*dxuVSHaLNp+g@^j9kGh0ByVNI<5_ux$I z4Y}1_O2EHm!KCzZlhXjtOnUlYf&v{hMJSIQ$YkjK7eF|4FiSgj+XR+LkJqgl**4;go2^d zADt}GlBWdmgg>vMLS$uS+fEI5AZ1JoXW352VMQ8RX@GECIo76Lp7>XzxXeTQ2R1Q4 zYCl-%P7G7?`rXKDXJukdv~)8QiKhwPX*P__@@YMN5fgYwb5>mSm{{6ja+1ogQ&;e> zgnx(_S$b8k@E1|&&J~U`q>T*<@)$uph}lg?8mSyP0@-Twu%8!J zc)NB5(O7P=IZprS&d>2Q%aO-$h0#LoeUd&}S#7xz^GB(m=bbL{CFWSikNJ83*2$o^ zDZToHzRf1&b;JVNL}8?v49;}c39_4xIx9sK^$AVn4bBta7b{&c$u*9?%uT_qw8UTUgtq)=kZWPpW;Jl?HeNP<~fn zlNsWR#S3^iq2Rt(DznfE)&pQ(0#D@p-Xx=3Y%p`H40kt;;5&K3gxs7Wmlp&goa>`y zlKE+>QD2+nOv^aQ?)GV!R2{vtUB?X9O`9>c5_z*Scm8n(w0fRzEq9+5PG8H-t+1oa zq+Kin_tRDlCCg&*4>`cLRH3(5GU;EPRP>|8c}xazl+W(6LN^!$wD@(SD?DqNkL^RD z6ldGC=V^QBrgk#<&&mkBkG+1fSeAj?v0|5fxZr?ek^68PBNF>N3l-&9klP{7{L_0T zA$*2~m6&L)6A!5d>lsSIP#9yhErdavT;BVHZkeDFmoV>Yree4gvV4b67t3(&O`%I zW6nU%fw!6vz%C320-a#4ZZ$*P*Er!2jHSs%K~6I45+mj&5N1N4+)_Kmpo)il3?FTD zPKe(x8c+R%^mdbLEb^y4DiBssC7 z#gh_YI25O_p{S2SE#_gC2(Y2mFt6i042|IiX|9PWk(!OZIBz~Ud|ZHr zlAPj&CcfY|xXBOx8uOvjI*0JB-c0k!z`fs2RlOR?Ti@**1$lO zQ9s8oboF7N=$sS8PgV~GJNG$3FJebbMVbe%E_je){Y|6L0G$Vh!x`x^Dj9`N1wn6z zj&{WffXs$kVR6Zz`U3Z%RD!Qmd`DK5i17uDLZ|&S5zf;xm-u)<`|@&Q%HQPi6H`Ws zQU(yglJb9ogXPBS zz2N4d@eZKYxiN;i5d|rN#;DgmCS7un2#w;DIH%r*Ss{U%hUoG9p(|w5O~_53Ms;eI zyJegD(RXDCsRg0Dp$xT2iJ~BoEn;o+7sLCvj~Rq-P*k9?>c`Qpm#73UK4U~WNmhjb zgBGNq5?7ezCwSJ_+pv!1N% zgYDe?XOkiHDK66Cwx4UoyWrFDvI%b}Z&&|^h`SU=a7Om5@^Qkuop*xLh`W1UGQTmd zOsY?%HL@YRVoj4cYd=3%q!3-Gb7c&oE}*b0R@B2z!oqbU1ps7}s83dGibL|>72>_*qau2S-&t}ESxf_>$6 z_=#rhpZVt4nS7fS_SDcl@+Qc1!(3+m+CAax z+TB#$tZMajI&gVwBJ-q6>o)DoW@XH~SWn9^MCk4`rSU@e)?DlXQ#My8G;nXIeS~%A zU~w+Mb>d{m=Khz?FZ@nX@0;xQ+Z1!@h4qE2ak z-6<@)`(O*n>^n%_Rg!;#+*Pwflv2QC%w6nrsCSU6XV2XPX9@!tDrXw654O~Trf~&6 zKbhi`rEDkTr&&H$FRYcluCvf^rpGEWy0$%5KFb>2GkpreWFXxeB|!(pLsUGt5R#^MkrsPci@MdNhK{7J`yYEw+2 zTZ}m8ALsBx_K80`&h0& z<+`O_*IZ_P?zuOBCfa0U$}V9m{B=ZmUq6jZ(zVNQT6T1vuFfsE8(&JW=tA&0-#h+r zQkF|!jkHR~x$wZuhBM!O&=&o2%Cha}@!?_Sqa^w4oOk+nT}h)3b~hA@gYU*a?9v|J zjz-+e^ln~^Zb?abtN|cLm8>>q2OF9(`B>}_M*pOUWIoFc-LJ|G-P-AQJD74{l`>hg z6OWD{{5U;tpsfU<#^Ommy4zukOr7Es)3Y~;jbjo330zK-K~Pjz9HN1VLsH!tZQuFq zE&_YjV?!*F6AaDxD9!?}eE$s17aD$1;>8JN@D6%}1DfHML(E*Qz2uN~eo?7UqY&83 z4z^j*nU6>Q^20(j=IE~3%GdNhXs(QVd*hONJ|Dh)Hu(3FYwHio#sO@448ive#jyOA~BFNW1~~yL1(P;))c{0P6IKD@WVGVsn|7Y|;ydCf5F# zJ1M~$(1!e1W_Z&~SW<=K7*Ab{?X&jY?}8-JXxybO2$ZKzN=OhI z_7}`!kvsea1P)b_ehIcyk2ufq93TnYczBDxpb)37Bv6%3y@W#m2CnI_<)B|~MZN?W zd5#+kpVFN9t{t}eX$)iv{TXcoQqr!5S@$k@8UT>&`DAxtpcf` zfbdj3nj{Yzg(noYfYVczlfWBm#9=%Z&ff{%g`rlW!Vl*1#qhu3dfGA?>hW!Tf}cZ^HaUhLORy zkvKy=SQ1+B7mX0d{SSOA=O7WS zU_%PtSlT7CGpR!{%mrDyUekhj=>5Me87E1mC1!Vq)dtm%nM>%Lik^`1EXyTkT0&PA zf?LGJbIL2X4zx)3=KMU*=^H1|CJ!mawdvvL^jJ@wgFpR)!zQ5l*G{T1&F61;P;3=w z`JD*OK=0+7ho^!wBIrMWuIKmVTuR7fd0g7k82OoC*DKL7$`PzI|CM2eRb!qUCM{j0 zIIB&*YotF$s(MqLr5#onc!w?4dvOz@N_=HSd4O-Jxw++_E^}W&i?F-dv@zMYsi6#h3u~$%(wCj ze=TiU>q$hL{jT)qLD=$Mqw{Q4(J{WtyrmqGLJdL$JoI&;v-NzCLW$g_=u=Ald5vM4 z;UN0@{`Bm=P*}pMI7bIG^Teb2rpU;wi)4O}^196Azj^hktHeT^N^jA`<7vEVYO#tg z#b>@hC_z0vR*Z{FstwWpc>}%=chN-tMV>9 zIzdTN(RzP7E9=dgzjIZggks@&L6J^*H@ViTQ@v z>pnRPZH^LC@=}FP2;(=X`8d^pXHV7C#vbQ1UqZa=la&R!T5{L>CEsZ2qhXH+Z!Z+~ zt}6AFRJE*ic-J?M?g|Plk)%qVD|nXkj(!{c&i7F5TwJxKv~5eck0ttO5X?tmu)3Z( zFdtN|v9SF3pw!bobiM!N0T7bpCwuQNg9Hfiq7hpaQ^>fs&7}30>UAY4c6wdp|DRivdQ{Er)KJyo?zNZAJb7FUQL& z5>^G^sfTb8oR7PP?g@~<8r!I>c3vE_-yOaYzZr|$PVWdRv0H?t4#byUl!@i$%Po>A ze9)zAp@0(ER7Qq-H{V`k0=R?xGt?AxY2eI!Vbp_W@wid*Xs;wo7aVJal5p_5t*w;h z3F4sFrrNmv!@FO^+=C6S)=>7J^HOq!l%K7vttlp$hW?&9cc_PtD0Q7=~og7f#;-lFe3p+UlAg})!7pOf4Z)F)501(w6j#^v<7NMFU zBY2eO1wTX@nv^mtKmfZsV`Bh#WtWT#QVCE{*OAC6?Q5p`Y*qkHka_A`Rz`UwE`TUR zoAin#hM*+JUvP^Wa{%y6f}uE65B z0~3+thir%e`(`31Sk^+X3I=l3eX%|AdbZlSBJKzbE@&iq^}9d;e@nhJcx{RNu%|Gd z81-oZJU?WrFHx5p4w;U@>v8}cswDrUATXf&aU#t66v1>9vi=f++5upRiPGeN#p^Tn zX1FH97s#>+682fS0fn>f5T4l-T~$5?|4rhkO)NLJYKFB!(5YaaDPEpBApvrmwjKw+ zq~IcOOmM4Jt{u(GPvkxt6El<%!kPFIbQIGX@A(jZ2~52az>ARO(l24JK~_i)x`bS5 zg1U$J@k!pZM!>cLzZO`UYGB;egRYcL6u)8u#6Tl@VDo$&3l-E;u1YzkhcfKe-~n~e z=(0=WGcQ3h40l=<`f`MZEfBhx0u%->b!f=d7sC3UdhZ_W;xX2D&_yDZW z1ca0`^7g`E{(?lGZ}58%o-SM9)!*}S z3D`RxbeV@U)_O5m(4I{!AIjw7TVth%A5`oEqUl*fA9}pm?o~6Q6BxKgTTQk)X(bWP zo~!J>RP8a?w3eo?b}i#?kF3*@P2=Uo!FSqvhx4JJFR=9$SuewN)wCwYzbw-`gR#r* zs#Np%`scT+{(5}=)WjkJKk`6fX2C%#guS&`7J^MH-5sp3zw%Sd9M7xQKgv}x86Fty z(?Vs%_O%2u*kzI$_ytA9OuvSa%QY1D*Sm|M8}6j=MzI7!vp<%S2{wtL+Ald2u$eK7 zemFf){kv8xPv4!N%XVzA>5U39e_!QSJ7GuL{;H2V*j{{~6SB2M*$q~MWoBv} zk}_&`M52-RV>>0l-Qu!?p9V+2&_H*0m8#rC&~nYdDB!o>9)F;^HwuJr*RiGWlY4yZ z0i{e`%H^kNiA)cjwS_LUf!oEJQ`C2B1ECc81u&1~&e00`dZvt0a{F@@{H~jH$<00* zdoi2cE03CMxBe!!M*ZaTkEQpvpoiC2T!cvZ-^U%BxjH0AJiTDGoIg0?`eEIXN8JYy#>t1I_RR&WlP9a%6Mc$>t;UX%uZuQL zBrJT7Gg9IS`Kp>mzrqkpGp*0R?S2{m-KE}9)G=yS z9mUhorutb-lH03I{Q*+AMzAD|LBH17A6i8d|W41H8=M4tG*d*+doct({ZQ|Gg!_1 zvlwgh@AZ?*s|)7#p$FLTaI80-c(CMfSmUJ(T)O8S#U#clvgcgha%F@5>EcQWSz}Dv zxLc{+unbZukucu;+{TSCo?V^Shc6m{B#t|rp_Z+MKmv3J)Z+(ln=}iS63PyD zWhImJGfYYfYlq@g>sUC^;*z1j8MdoVLfV^UpAt$BDT~^)ta+|OnIL>M-?~zV9_Fcc zrkDlFit7~b!_`VCLsFl|VK>cunyCuHo7TBsm1)KOzi;i2Y+50AH)IucLiS8sHx?#> zm*cDckEUynXZrvC8!O}EGCs&Pqm`!IqLAF?(yT~xE7wxZeeULNA>9+^j)e*W@c>^*yXopYY&d8tei3fLZHQ#t%QI;zkTy!SS6H=1F} z|787uMC@IvEa@yUmh4?jZ$9bauc}I2DfvUJ6jYbyKds6!(O7d$Cr{HBr@IdC%CIrYSPYX-YK~=%PQ(I<>{+!D>P6Xsx2tPn0tN8oh3}WzjN039Qn$tfK zEvt=+mX$l_0g2n5&#NlB-Or~gs&rna!B+zdaY3+`UQ=UwDvzAb0NO`cNIXVlnuavB z&z46%V36hDfILMZi!>3;jB))y;YJR@$l?$h2w<4f%EBRxo~Laz9b7}HmR5%&0o*1m zoR_G-zcN~x>A!vPeBf?+ZQxFSPT~zp@F37|Ae+?ardb3414oq(jHg&SFM7*WO4)|% zZ`iD5o_#o6yAB|(+5&Mf6awj@15uMPr$<6yFf5%apx3AhAOdd#3-XgY@sMSHbCv1; zOjTThKeNzH3(3d?(9gf^Emx`A8s=x)pw?F>_qyU}8S&6VJ_sG*G#!2!LI$I=s9b_G z@MUu^t=4*-+Rp<{@JMo*8jeMW+bq=Zl!4-gLm~q@wq})ysrV@dkR}rUf_55dlFZAf4Ia1j_;C?SF6CdF2>8$#B!3>P zDx>NyFmixlUF3~sBK`}0SO4zUg!=ogGFL=b8zvTRUqL}pN_lBFz}SX5g@pjp5_{?G zXIdmtmRwXEdB`LhnXTvQ_K2**PNmDcVT5zq!=C$iI(R+dLo3;7&7vu ziD_iqMEYaU!luOo>QR~-SZk!zr{>ypQ_pGSP;TlMam8&yU|5;j@Ho}VSe4^#r{h0U zHAgnnR#&IicIrDfKI}QyUO)P|aZDXu)1|r6@GmF5w}i7wx@mL0&1(&`g?+2#1Io=# zj<#%J2 z=uO|sQKa91Nc)vpFXfH+-hE;3{pF#t=ak69U&H-vdy8!g*D;jqjyuMk0rks1{fi3K z;RUNDlkWBv$>jvXu<2OL`sl)SQDw94sSh4LHIspxhc~`P&)Uf;d%GO>93_xwg7osd zq5ef6&P#N)dxv_ko20HX>{&A!wZIWx^giThcD0-;*wF0*$P9i<+sih}4m(d&hAjh6 zKDG@lc3Mj|fB10-Vv|gJ7Mu6?TebX;UCr$%)dDn$rH+|FwQA0)-i*c%W*e!Z&?#T% z>!_2Q%B@}@l}5MS9n$27K%Xk9xy?SVwu169BlX?oNb5|c<3lfx)g8ah1-2+^@c(lG zeB>e`djkJZ!;(^!$g#?S*R@>6`upg^^Wh-4`*8l4>RWq9`FQ@{rUIDdudVS;-e<)JHzjZ$%B0LmsveKL;@Inxt8ll|~L(^(-(p@a{vMRev~c9%|lx zq#nnOcYJbL28D*w9htbjDgUAJUEX~Xeu5LIaciRrvSDVCJ2iJQH z5H0N-NCy?K%-0B&lL>e9ZA)=jbhq^uKHr7UcG#o7*WZex%6#Mf!a&ZPY$~`F%`GfK zUXw0-wyVF9QQjx3dw$7bON~M$Q0N^LGOI6AY(>1iT?}uTcM%G{lyEnU(M~z8dVadL zAW=|esCtdY^aR)mz1av!9-Aj_Jq#^VPmJ6uStmN!J>nHo3EbN~=|9;^5IUN#J^p67 z9yThg6VHt8u(zi>_hxu_R}d0UM^HbLy-sve#j(293TZc_kO4x#tlEP%iP9HN0fWMY zJ`t4WXW5to7rIdo@B<3ou5y(os|1Q8p#3$Zt&zFek?{v_HyY9k@MXi}wy&d@HA}@Y zwXxRfDqJO#yt#>#A*<1)7%lLk@&|GG^JtQSZ$@te_W*G$`k-bisc5YY7{%V^xRE!H z_GWNtq|PT=tBbZT?2Bj&ZvP${0?wb!`#;Z2?G34bfEuUFM)`w|FDfT9VX;7BKESM+ zG*CO~^EXoH!xjiW9(C|KUTf=2lH^^GJ04^(ABn66+klU-N=LDK`@-7R*>EI@EcA+{B67hz@Sy z=ST?Oc@0<=eGmiTG<*b`Lxcc1InxV>?F}go4xn;D#RnmiQ&4bN@xIEy zK?u9Thtdo|O#sU_R0}-<5l%nDFFSA*LZ_-4goNCH04a$xQUK0?LJ5Gnh~R{&(Pf1r z;}ZS}a*mdtW;q9CiU*Z8ngQAUwsViRJ}`22qS620v2-e6W9phWy~6*VhlyZ>Wfs#Q zHQ~d25YQGN-tkx0;Bgvtrn>0*@u#VP1q842#cAu=Kg^|Qhr?w$6~I;%DEuA)g6OGD zEsa6$(o=vt)V1tMrq|T4XOGU}MGbQ24dU&JSX5nGqvz4q49E`Z`D%N1yhbv=Dx^ax z4|Or5XmI#bG{fR)0QP3<4UXBB0)7iRH_jxoNWcK2kT(H%H$5G|&eY%{fO@@07U%`w z$iFNgi{opTD{e7k!uE8>#2d|$>S}HdZD6Pq0;}hZ?xzb$@pYA9E7FW}C(+}I;;^qb zks@$jaZWl-EszE$9rNV!6Vf{&=pwi~br~kjJI!e}+zb&WsbqNcT<*@7{GzCVY8&V$ zsy>d!EgVlg%|Yhu4{C>N{-eeKiDGa*c!XBK%8+Cb3g3=jU4i;9AA$y*sYGaLV-n?`{@{xif#q0Osp5)=DTF4ri)6te(C)Aq z(_LcV@$6d9=9_8&e1$%4?_4JucmA|GJ^i@JuOc;LqdlQ#vOe%z-@ww+steOkSCZzm zdlSs>E1I`9FU_%cqvusgjwTKNMr~)?N~YQ;P~k&>EA!aR*j~CZvHZTRt&%G`&D)^- zfujQbvchj~Wu<>kRQ%VmJ)5<8K+WWkQND@Y_}Ycbp>2RqU@A{aJ=)y-{V{!D$gl24 zRB7ApWZ80k(-Ql|g@^Spp%0xh8GUXz!% zR^`xE=gDmILHV;Qul#BIUD>_r>2|!gs$TgvdmPw&wH2G||LH27Ibs4@angY_O2+uJ ze00d&C>sPG7a0&>@A6(=x!v`7l4QArgmCHEi7!W#i(Cgvo{G64Z31~gF&BWIzHDuG zK-STdGAiYc{!@9jW0knHXeJT&{60n(u3nUUVeMu#*EYAKvD~Pme0}hMVhbcnzFD>C zUU`A-nvu*rtJF3ll|1&2`i7J!o_~5{hWEgKZMV8QvZQ3|k0x5&*8&V>ZGPUaL2Voz z6;rm96x_P&mr>?YwIIcdiHsWQ?M5almMwxX&aCW>3Toh=y)&sUDyHtc8`SLalE}_I z2b=2Rj_Gt#sa8UM(O{wVs`1rte#&>y&^nWH?bKcZ5p~yYYu@}U2fintn>q7OB~iNh zy6@)7;Txg-L0?Dx5s#add7UDkx~7c^wDG#Utq{8glba=T^1Ax>dzLB_&aHjvCSIxi zR%35}!TxH^IL6DGT2=0k6TR7)=wP`EA^1DVCJ(2s2N=6%dd?k3T1y^(RN4EeazG6{ zwmzP zmhmrJle?=mKMC4>Z!=krrU|m03Yvr6#52+6!1~~0m(7(}Rfpk$g|>#GxGVpng2S%1 znEbntXCz1e_&LQ^NylT%o`TK{*x4Qs3OG!+Jf38jI-*q;^acQIMCEw2z_Jm{#&ivd zK=eFAngW`+u-!9}d*A^UjXu?;K=prXgK;?I`y1K5+f|7-M3W$WR99UJkbR0AqiTui zTK`Nq%OC)85(W8=HT#!%F*n@VjW63?7^(*=>yOfsk)wu(kMTjlQt&Lf`l{c#rHKXD zEE4md$PfZOjl*?l*Kh~9HgL1&aSB2r;2o_0(K$tB=n-+4Y@1ST)wM7JiR!_;)7Uilcj=aZV?~#15T+l36{N z8QR+eE(bRi>QkciJ30Wt6Z-**ki#NiY|dHyby_k(C?w+ucGmuo4{0V-`QQ0ZjZOq) zSV)}SMF`#WRp{pt*bEu<6+ZJC4v&M8!3BMmg8{Y0e^#X@7odG3cpP!~jaoQd4WgY4 zfJ22P8(~1W)j>tW9>6-vI$Is2CZ#U8H7q1fD4oBPf&UHC37691DNAV$W&h>XsyYdrtP1T?dvp zJYJc!G$)Tks1eSDX({#<;sW08(lFQ+y2(0ni*+tjVd2Djt2amzyJKlorAF2JJcW3U(D^q zhxOeTDYl2dXB~_`a+6|XozmZ`j_V}oJb}_oDLgl|rvkkGAv0?4Z_nECTp=fnIv)%d zEg0DQdU)o-3VRl(9b-$d4^xqLh-Ccv)k{X0b}c=)Hu&46EUkp@A&XbH1*$WH5vK% z_MAP38Xm0YD+{yrvYmq*;bsq4ciGIq-`hhzayory`M&(ztTZm4QViHQ?pRMS98D^! z5enG%O7nd3nW|VDmWb0p5A5y4bG~qr^($Z?Uz0rM}{@23jEuPRs z0vc+=Qnb-KlG?pc!r;^-tvgUsY5i(nZll>#HdAST<-XwVnYn#x+gq8VrIYSJTjpMK zfC>~R@A#q#TLB(b_j;BH$>lyAdAI381H!|PWYy^UO)lkW8D>(rUv$MTl~8WhzTJ2T z?A<0}^KN%iYF&IHijZ_n+w_Z<$dIQkdz$_`4iu_~dS=)6z7ZGP7F1Ss+1FjLFYaj* zy<*h4YxWK`bN8Y$Tv;#8)ur~vR>+@b$$L<#1}8|<92FkaYjDLFUF4z&;xsoNJYz0W zx8?cAlVaPw9Rw4_WP{_hEf>WEy zx%E}aZnRl`tE`f_*TU4-!$mri1=V@a-uCVC!Kf57hvyv4HPEBFk-2DaY@vrrN$W1{ ztnaL^;YNJAJdt(*wcr06t`M7a=8W;`!{OaZ+R)H5e%}piFcOBPfxJ`mcB_~pIKsc( zr_np0CNqC-;fgpRIiE_*t-mZ$&>3-kyYhNAcl7v`_0CN@?}K4&IiYsykY}w2pSH~6 z+J%zrNb2HNLGLjzAe}kcZ$6r<*t4pat=zMkA#fO#v~_I0fN=~Me7_2Sj?t&7n)b;5 zDB*p{`tR+d^l%yRH@||l1w_9H71k69{!f8>h!$k-Uc(xZHJkuxNQ2z2_WoVAN`Fyb zcyPge8XY}XW#Qx;{9tNfVnI>#lI|ICO^aOayrFmWS4b(c9Qx?jKb8WL*|PE*Zt-57 z{cWd6ymjSfMBAG?+ZV^G1zU;+kD4IKf7I=(wf;P=9-`KySvoX(9UkTg`5jLGAqDP@ z1gsBr8pkU89)_uSZ_kh3a*GX5JfzA2RX#1%sd?|$-({OIvnD_9RKRG4e#{#5MF9h{{ zqT42ZtwoTGLLhLZWDyu#wTCw-S1%4&%HTs_yz7wvWESw({E%l|%yQV3(+~^w5bmwf zgQ)YqwL>@;nL1143+WK*F7pd7slW z#zUYtq|Sl(KnR`GIbz&@bW&{@;G+38@xOrwDG)~np|&pwMy8NYPf=zvbXDP?)R7^K zAuaauan9;>+`=3uLg3Ag9+m0}ZK^qq(9;0pq14hE==SOG7g10cN{s^*M|-8udI|-( zA(g<%P+ISci-Dt23uzO{_%{_B*JZTek3%Ms%l26QgIp=|L}G{1(!{R6tDGFE7oC?j zQFb1^E%}j zhEA0(W1<@a{WyXA@pK%j4JobRrW5}7m3su+pqR@IMd!^Et50cbLqNBO*M*(uMYml= zV;Ed?J_u`yS8GDBXeiGYTNT~BVH+2qre>Ue%1cR$=Rf7fmNjT{%dsDbA2nJMQd2_c z&z;Nw=;cnp(gsV3Vr$?1-+u_Zi>7RWN3}p1btD(y`zxcx?rQTGZGZF^&6G{jBE7k; z&g9NIKpp>j)${FFd@fy>FipEN^f0exX?1Ihirv3ErBdgQ+cmN0FE}MtUB~ltf* zvT19-|1Ezg?a)f;)vL0!G**?;J+EdTQM)xi&!!~^#K-v4^R zdGWA&gy?8@uza{u@}+mud+Cp*&+b*y!OFsdsAc-mHi&14r0v+%h)1iB@Tbg9 zi*2d9LRR&v_CMBN$Z#$zUVdf6GA{1gZue}Ep1w@yhm(spZ<6sVj*01*#5jS{ry4!s zs@8f?MwA07`GSC~hU4%btk~Re%G*@>5O!EQqyFffb3Z}{^jl^^ySZfrgg!#p`qWwn z5uZFwB_wZ&Q{Ub?A`gCKDb2pdOb@G5dusdr9$a_she@iSPXYR+Jqqjmv zkxv}|AeSaQ{B5gmcYms(NZaXDnTpoFs&#tUOkMXx>DMGBE$NF3ZrRnOf#>Vx5ryCD zsz}SZ8uf2GWAy`pPWgqL^YJ+b>+Ny4^kGLCyEL}Q&ky;=7hOm4eO&$A{oEh>+YM-i z+X^tQHmv!Fk_uhCy*HOTzcioZWcr@~-9hD@jA6dg8k0^R5Ndknq`mog>7=yz?-H)G z7jRO9jte$U{dVySZC2_$}BLUh+f z3>79pQb@wnVbS6Qda{d{)&)6ICm@%*z7M{DcsH*=l8rQpzOCSmBi2x9s38;T<@$f* z?~9*3YyG&Acjrkhm56gBT+8fs)n%8C_L%8xv+Ca!Oh0H~j5@edDo1Is-sy?gjX5(q zP$g-6P*QyDrH^;LZE1HHm^1LVpNy@M?z&V=Dto)`^f!CC`}mv~2W;K3G`9%Y-;xac zJM+czhPSSawt3Q&m-Et@$-t#_IZMUsCih31{q|gI$D5D#{kQDn?Ch_~zY^<%pHu&F zXP~2hrRQe_YW9xnZja+x(A;NhR@tyWv^)pJu?ur#0}8@~S`7$xCZo=h39@|AV6D`~ z!WhI0Bw)GWHo_c4VtXRTSG_9kyhIaw`|hqYl_{bOAnmkTvnmeQWp+a}v4D%y;EU7c zpo2qU-Qt*PBQz#R16bVgpvm$`M(sQ!M%vl{h+uDu(HgGhM%Prnz0;}euo25j#dPLoHX zP+9b3NLSS75iDIeup#^0jFYMjPK!^e=Vg4R8Z-i-L$b5Sf#^d}5Y&*us&v9+)Unei z7GadxzhDih4Zc4UTBa5;my?q-1Q=!01b~9-!Mwx^=F!k_Pw*m!!cWhT2{c_*5MR## z>5kH3RInyFl@8%;+}&Qk(8ETUFu~=%0Dk}xlTx5A5!O#Xo8q~9 zBdJFk8O$ADOS*@<_9dVK`!fTbj@NG7+i_C)a5Q9Go{?@DS_K@E-z%jETHjH~>nU}k z2;8h`xYxa(?Z)@GS7KP-v6g#peL%lYIpFt|+-l4xV)M!GwzhO&w`if*=;k`u{{C!d ztn$&PWVS{Bk$RR6IY1AffW5L({g@zI@C&v(#-`g{m0|1&%;e zcm57#?hQ2m`qi^ZOba+1HC8zqO`=|&QhM!Zr#K$7tGn3ooztdteU~z~$Dyj*g!Yv) z^$=t{rOKdotJktgc5Z!cE^^&dWnE~Z$#-dfd2_V0+(NkngiIez&)b+rY)DQX4yhbu z9u@?4FN}AewMzdct6SNmsGywD%W&bEr1>Y;3Rpjecp8(ZQxRZ)2bgJ`X~~Fh8Q}8ZeGX)#+t8%A|FqT`3;%ubrkF z93&T@JqiuK6UJU%mssk&ae0Oj*1*dCWBpMreT0YLV{DAc!4&Bza(8SqWv_TmTdegnMeB~SLT>cTkf1yXhRE=iU(-9kJCOO?@6s9HVis(ODtb^$AHvNe z+GV}0I2c;-pw`ss+S1&UnL#$U!M99Tdnf_b$qN#~3O}Saq`2TbK7*mB2WGN!w%fD{ zyS!K#o}6El=qV+1U8d|+q^1AHQ)b^7%6suAW6|eqTcz9;Zra~9aHuQY7sRj*$N?k0Ky1CiK6_;_OP#lfLKM7FP$o zqvwEhzA=2*B2_C#r36Y}m9`OU{{dgnMhZWJ z&7R&1>_1&z(U8C7-*^l;Duo8OVg7$}D7)k;7Sj zXF`yy*!8Wz;)Cd$+_)?_bliTNL4p{CVOd7 z;tijH#xvPU{1wQkzTsU6;nmhM?Y|yH6&NI?zD$dxC_qSfjb$1{keJ6j2cME@wj!W3 zHJ%YplQ>v&v!vIG=sgUdW2NaYV)~UBefc!bhw2%l^K*;QZN)fgn4u2(G>dc_4+e*Z zadC06sA(6Q(FuRZEtW2hbC#coh*n7Dk|T4nU%D3c2n|f$z)ccgY%*dvFqp@qSuu{2WUaJXWc8AU@M##%C@-41emqZygzj1;;iSXpIpb9& zl4NbtihVUSphl~F{>2^``k^u>xG!dxtU`f0G9VLXI7L#)GKra{)E zDrE7i0!2|<*zlRNe8l~0a$AjAI69&;=eQetb|2OI{AYxrCXc}}f}Hlx*F>xEr{ol< zE>njU4O~+_#F_M;@^$mlf7aX$DbiKKDrt$jz-iKk)oMHQw9XU>{Z9bo_mD<}fT)S19c* zBpeo&`Z3b~@K*K8-tW)%xKvx- zyX0}yADp10^7zs!)jQ5^^tNGD%+r{PM6*z_6?bXFhl$QLyglQd($7grTTf*6J|F$G&sVliIX3JwG#$V9z8=w(!<+(*tNXn*e58nPWf+L-e8HId7#_uhIu9$o*rsgwoqr{!e@~*?BfR)MwF%TGa4BT|yW;hWTY{zc* zcq&blciTxtwe3GFl!YYA=}3>qP_(1&wy}`IapUV{f@U&XLq4USB3>daiz=kl-mW> zr#(oQSU*vrQIELc+N7{^iBc@x>85i1vcKqryDH>Lv!OaH(JjnL%uVWOWIyd))2{#| z`FeIr3yaaTDjY#~u3cioQ{8xCLQqGhA3-{k+BE(rkL_-mW%JWLs8x{IME|Z-7_T3h zODbyvisAHl)|f4RRJe7Xm94_Qe-~jzag;QIr5dmtsa^^Bif~vSD-*&Mt(s^g@+JNA zIoy+81}-tY1gwrP>)p9KQfOaD$09{{ZcNbAkyK$vGKJ?S6oD8=>Dc;l&sUlkF+J8> z9aZQq|DU}hCDPUrx}y4*>Q@!ni|}0f0=G81!V3}je2=#!A`#!qpc1 zHIckNlyRko_zOwU_VGS_M{Fu8o_Idn&)9)7&Co!6TOIYLZ=s zvmy}cT!?=|qd4DDACBh;O?;c%8gL5OIB4Gbv(a>P6lQK2RGjKGMr{S=W;@kM$LoQs zy*sVbp-#<5vA6A~w zkx7#WGm0C5+aH5PA4!OCVCuZxe=QbRg1)Z(qZPYBhLUgDr`52|Hixl4jZB*E1D;1x zaN&8WZFQA)PIw|-BjoSg#0_N;MpX@mUcne8_6A>RHxiu)-Mf1(q~N4)(slbH5{Cu{ z_Sy?E5l%BS!Sy+7p^ZceCsXOYidg~;D;2k0lFdw<%7f-8V z$z*ydprX_5!zo;EI{rCg;g*%iTo(}mf9AXfel>H5;`H&yFrmgjJBq@~tL06e| zDpvTGH0j(=))wvJ@K7Yijrmax{!>OoF&<_N=aiA-Z#ToS7E2de(!u4+cpEY;w-KZg1+Y+LK`e^s*~{ z;o+fIqxo$P@{^aWtZa`WRwH-jZi()$IiXb_;W+ z_sn9FWqn}HXuv@*8|$j=1>v-UtjFVQfV=Q|K1Nd}-C(l{bjP$Qg|WBepoX^jjc+tm zm=8yCS_$Sb%`^!fz-|+CiXUaU2dgMI-_!km>r1D}>|VaFpXc51Qg88O*b!}RApg6u z(^>G67e8A0xcY3e1?-CBOk`i`8F>3Dr+jwqr?p?nSl|D6al6oGV+@b$c+}*!`gi!x zLb7A^x`n*Sy|YHE-N8dULg0v-Tll!Xceqz0SG&5kKbCuU6RFI1`Lpo2qL2z&;+&VS zQM0SOFR78&&HHdWH>D?VXRDlRYa`&-a$~GeJ>Z6E7j^ib96GoywO?h3OnLd<;Q|Cp zB&8SL!Mj6r`}<;#+G_GbtgbzWe(G7%uO*J4Gv1Ee$xul#7@&jo=kUb4j*t{$Jq8XJ zERQ;$juA<7QnJz(mJ*@~KYc2x(c?ZBa@+2)c_X+C&!ag(DkubZUc*p7JbJLwE`H^7 z{rrvOR7iH2i(d#2;*u(vSBj4J>$2~fr(T=SBXdcOiZ_PQ#h9}XLJ{noKyG#L%kOA= z9@euuQdVH_XFQ!_=mQ4d^-5Jk<$>}|_z&WP(5z(=&*{sroNr3h{XoKCZ9l3@B2~2+ z!hR5u5u=>A?NUNw}k&5xoVZvD(H;}6SB2kJA?gfX=^bUV^2FQkF)IYKHWt7tlO>ncpD zRf-&88@xbg@OEVR^fpz>J)Pt@B3k;!C_^}I^bh^zr9u%`HlA77S8~f03C|x6l*mZy zGbObuf2T_~0uTT8i&>ZBpDbFJMAl9Q_)3?Y%t{{BODCCq8{OMaCk6iPJZYP{p{y)n z+$Bh>=e%@&$qe`LgaIaS!iFyng;ubZPc`o?NH!_hUT_>a`dB+8~5w<>g0CTcwOt_T@F}%6!k~#x?ThYgdEL=Z72g>?(e+v!!1Me=7Zy~Dc_S; zwzD^=9>MTOQMEDUje99cmVPtC4%cm0Y|Is-M%7q^+pt#n5muql+g8$Y6yfYp*gew2Nwh(7c^<*v&~Y4}BN%l}u&^>rvr2(OkYS>cGY38m zyJ~|zg?z3weyQdRCMyn1PM^8BPCW#mW8aLg2&Rwf(l+B9?#zY~U=3@fLT|s`@9y=# zR*3%$k^~|YLz{#`pNarS6ir-Df%VeV{*Eb->x#wS5`KP*RS(Mm?BEcviklFa0Balu z*s#qqfoQ|*;t#W#km(qqbE+I!^?O|L(pp^7l~xx-bj;;+(!t4o_cQeuqfA7yWe^zX zXu5~&Fo8wZFBx_wOQyP=W<1#8+< z!ud1wS;arjLES0o_3W@+NLUJ#$F0VSHSCDRG}x>rI}%|sZHOS81R zYBlrNOPdiv#1$r&&H=Jz(KMwNm$cn5d{sind9t zN8c?EN}9jvTzX8+t>ItM-kNPRH6IT+{L4FWNAAq+%?J2OoLqrU?aw=3CYeZ-fPq@a z&76*TE&WJm^55i3uCj{j*CCY`ioSlVGMc6)EOpw_Ke*r4y6`?lw;|wg`QyN!ww2{Y zph2&%9CKIkb04E=L0CaA^zZS`mpe4-jeToNUv#10y6=>AjrPEH3koa988hU`ADquQ z{h=b6q)<*FUN7Ac5d3h``lY1il93U`?WKEP*PBoiPL0hgQR**e-TUEf(bnU%yt%eN z_ucvig>Kvr{59Y8Jo-N8?T%RER8kL!r$1Sqj1KmdoN(R^{N3|qeQ&rBQ~2wdedKc- zx`s%JeAuNrzB`*?RTt>^bIzuXHd*gI=R6tf-MGGCmRY;*DbNm5qXOorY(z_ydqz5` zk*yn+siH%L7gX6E!k5Nr2SO@VY4X3m%{bhB#;{K0*~*F4r3I|?+-VHh=>NG=Dx`dU z!-(#7s`p^km;*_X;!*XLK)m*xQPsea0(>{y-U>ft9ZJ4s;b;tL@84myj>JqVD;HY{ zxCZR@2jkS4)ihi;b9f-P6ALKfZoW&EmVb9of>n~j-abH->KEf9q_G!Wm})O`c($r$ z^A;x>yv&Vjm3n0s!l526EI0@d#-|89obC9!r=0EUcgfjBca00}%}nS{Gn0j5mp!G_ z(O-GTJ=YlS4)F++nF`~_#lN1x!WtNHr3MR{%x za!pj+Pa49dqF?=^_iGzgjCFC4qttMzzbww)aO+9vK9$#mXe)-T@)5%}1ifm~3ul|as`N+D))g>#MhoR)_CutH=DOMv^jTrcFY<*$? zk5%9PgP2iH$JkpMBiUtAF+V5)EYew2D;{avzS}Q+-RUo|JZ9x|$Phjg#d}oNIW8P) zXj3!Jno>!4O+5Qhfq_E`a!T*P=d!l4*0L~IUAgX^Dc`@F9Y0sr_K3Be9xn}A6RfQ* z52#at$J;ZOe@VwyRN1-YTWBFAzr&>Cfs@}mR zRF2Zryez3D7+O(_-_K@{FJJoCF(~B1RUO0bBsX#@xIM=m12<=W&UwlS7I@~4xI9J$MbD*iQpp=QfHkrOu4EqU?OE+nNnj;-#HQls z_1#mc1M#VJ&fX~igm+pr7>{UoxcEX<4F!`TQmlG+U3*wRBlIIYxK??FQ)||JW@Ft} z+bdG&f#MDcx8Nv-LuA~{TqFrJRuZI%0WpzqOIC)&p!&Tlf_L}bO@wnnxLy~FY7{#; zCDKm9Tc90Sx?Xr}J|cpD+hT60{rWz-ZDOY95?IjX7N2HeoyTKapr5(`4->%|WA&t0 zP{e>8ulkqE0y<5DX(w8-8XE?YDXniIpU(<^fFY75pz;AL|ET-~Ls@^EWHidKRX&Dz zijyQKLr2)@@!e4I`YYe=HTQQvI4t&26u=st&1N&;P})=Squ9@)UZ;?N76ZWE>Eei6 zoHH2!Ut^f2fkKJBL?F_1@c>I88&6OV@yyvp_IIz!{LOe_6~M^KGy#!6zWALwF%zSr zG0T?13*pFWk%T(8bSWRLbkbPEfJ^o57vvOujjM50@wd=O!y!S!sb8FPu47%IhURTz zc?kDq->{P66sNIt3frSe+Wy1KZ6As*8M4RMabmzm@a02+bgLM1x$Rax+zeMGKBDbi zfdx*YJ~`!)fSWXbdw=&MIC7emgG`BpyL3S1NM1ds$n+>pPUlODG$e#BpyNh6QiOBn zZ1OD$1$yTeoJ*bE5BdiLngj|$d)^|5Qi~&}Dgbk~X#y?g7I6`R(W^_iSRaRAC;f{F zDPEzW+wf)~BA6>7S;fLOa5Y2yD8rXl%)W*%@loiuM0~h#d!esLF^9xY3%yg*tfTt% z8cd)Yv4}`f=s?gjk{AjxhR+@ee8DqKi_l>-u*KnVobi~JE^2o-q)^XL9nQLlZhqOZ~loZo@UYIDorQmz6G!x2yB|x z#w1WIlH1yS`y%1AJo*h?*m}Jwx^5nz7078C*-4`21hFzyZ-3N{Nj@2pli~88~q7Cb5Fl}J23P3ipss~zos|0ta~%M z*^-<-_>|W*A8b|*82+QGL8W$qV?z1*eFl`kUrz<)6b{(HM0BFJ8k_b6|?y=$u?TE^VZ)7|Eq$ruM#}n)TY-(tv6H@ z6q0YJCQIxKi*20kF^n6eN=xa@=UA77_4Za5Lj!0wGusJePL!FBo4r$qhnU6yfd;**8NB-D)%1R$l(=W_Yy;RAonB)x|k)It^!0*5KlHk zodKDh$_m3lpSyhinX-TpHq53Yks%Ea>7~hk9zUO@)KII%pSA|C7K;6aoPW*hNgoO= zu5+Qk0_Ax3aYezXB%A-cLuf;fsAyi|%A&Muvx2GSbHiffWq*~Z`@x*|BBW!VG+KDG8HTni^MtBtK zS_N3^)L;@nSgs}CwsyXGHtYJL`A$ULE<(%h-T3H)Jl6*n}@Td!O@ zv+T4K_wd+rOJe4APh>+d=sF42Tx0EBAkZoedb0RaO9?uoD_$-K|W z0yNJKDl}PfqMP}|SQrKodsB@36A^B3*J9D+{ z+w*&F?+4d|PL<95-oT#)7Jf53D^|Wu=IbAZz7`h)Bi9$UuLX5kg9=p>3(EyXG?>*V z%RK!LejUy~_Nakx?YY0Ybq!tFQMD0fT~aBgMK2*yV{z|t`N5WStoOE+GIQSQx4o^% z4ZkBc<)b~xM(2}b#f{@%z8n63XIe$iqzYmU8~x|@`7@6P3oN}WbcNgHX=5&cH&E;> zN#cHNOh6e zJ|sp)(g@3_rv1ulksAX{e7a~_xQPACe{ z{D4M$b*l&j@Rb$DaczA#;!8!I} zi>F(<3twYoNp)wo8WD-P;Su2}T$j|m4*vccIv~-e>RsIH;Khb7;X-b-gNObVjX!Fr zag+dgB}+Yz!dI<4JX|dJv>StJb{tZ_4why1UV2H|n)FXGreRbnO2PWl;;*bE z0Vx^wyX+9wrL)+FeV5c8MPb08-)&}qbqP!50<52xSu3?I^2kWr9Gw zdH6ssqj`&nH8lT1P1c-WxI;B}A_*z`8AR6jH}@PxFTA(7?R0x(3pAeI&NoL`$D39K zcF$~iGwc5B(w9CjH|HhItP?R}-TmNN`GD^o-C~}l1g4hvxX$3?6scjO@KfWIHsBs1(`jWS=-VAr!Lr>?jgh$BaX=5|TJZvN_0} z=Xx7+8R-yi&QIL>j-d0p4_c-|k6$K3Y1#DbBUdvp`mwzoOYUdJ8J?c4p_ho~dH$EzJd%1*O? zfbx!D$ft2=Q$;3uQ|-{uAl*dBkHIJfhZEtx5#RA~!Y|t}uFBk@=PtEm3G9bFL&!9W z2&of6_8!gb&H90e{X%(Z>ORifoNJ14R8Hq_3&Cj01hoG$$VX8G2|V8m{zdXeNJia3 z0^Iaq;g4%gOZ}LaOH|7$4u<^vL!=0+m}d;7BSL+OF!Pij%ntAUj|E7hyu7YpwFteL zV_#NwTWIOGdtG^|;YW1%5S*S77G1Tf{*--bK{pMs8k%u_uax5(ItdJ_UtZ+z5KTwf zCkLz+qsQLX`%!r^To#kJ*PM0}*=o4uU=bH0U({Y?hv7_)>kB!XjyN3%0cgI_62 zI4WNpZ&Vw8K{k`}+B1%&>KHd@wW$C%JU!a+*uFCa(waDSHD1 z^of%oGDUEbqFxC?Pu$Y0PfzGj|3PtZ6(UIF0V5`G3or%z02fbuVgXJ7NnhC0lzJ{>u(Qh(qI|SY|xsd(30f-(ky=9l>`0zb%7)_;o^;a$^H73Kr?;^swcT)eIKi z$%gdf26@Xx_HeQE%ji6yo7ESl0Z~<3Q|zdzoS*?=~xxi z>`$jQ$Ql#wNG&AN4Uc35tC{>BH~(Zi9~C$Me?E&uemYNP47=#n?lf(>?i?!5MfSu^ zLx?tp|G!)mFf~MbnsB$!wh@8uTCc>-Zyx7|G@}jz2g+dPT(FdSwpGsPLBkI)_&IVH z1tp1TX4l$I3^FU@!0 z&;#BXO*#XJ!V}hat0FW=)|kXNINFjO9aIo>K`TzO(-0oT;`qx@vV`p+1CG;I97Opb z&5-muf@N>mJ|*8|(Bj>eU|@pYVx>&#hb*1ad92#zO|`{@X~Xq76nPqAV={K_CX4Q^&%K*|b=^`v`qIZy?|;=GE4>okk{+ z4_ZS`TMu_#ytoTsue-fB&awwjP6p4q>%WM*PS4Y?SJQjt@RC^Sb_AjSx{8 zw~;nVG7sFE8uI+9+WgCZ=Ry6iT8@tA^666<(wckx-tWG)Bv-dw{I+{HDZHdi3&A}2 zlkm;)H}}Z$1KCWmg-o}7@Bw@bN&-#^Tw@%}##VeP3br1NB1oqCe7576*`&OGM?|jN zpk=%4A9ZSh2WPZ=-1bTXUxf4}JqqX>oKb=+B9}Ubf@SYDEFC$S6Y*Z_+55b%ji4dc zC`|I!@Li;dH2nkZT-y5ng(Tcdt4-I>_@J7DFR^kIfW=v%WghVF@c$_-D0{j|+FmqK zI{CvTPTo14sEQeL=PvuIb~146(R@7HQCiNi!OMLc7cm~5Xk%k|_OzMg&1+b4abfsY z$i@RzQsbd(;OT=Q%h!Jcm97hUt)V=_YNyig=C03;I$ieN&Ud36R%P9^HV)-K z$Mflhd1)DZ_o1qNw!8%6aP|5-%+b;8?E30h-)Xa6LX_8jgA%Iok8j_~NCM$2pK?gN z&6NDTievYQ{THF+{=w78u>EQIG~?9jac@cSg$TbKU1VB=6jqUeta0sRR(Iq0<{5vUe`xi4raEaGZ z`#bT-SI$-47}sEW6q+`;fMpf>RnC?~4|lBAl9iSbx~L!V1S7+&=7--BWC;uLf-dA6j_uuz-G%*5KpQ3d~q)gS@)8LdShWj<;ll%G3kZ|h6 ziS=4HgxAz{c_np(rxtx04}@Zlvx-vW0X3T^!~H}oE1qX2PyO6N*#%PyDi%|Jd8KZr zhz_dj9#qtdYqk8Z1q^5@CscFoY9`hl8{3MyTw~baOz`VkARjVri1k8@L-QAZmA|h` zu0C9fj_r4n`wOzX+AD#l_w?VYNARqn{Tr555s+lqy7eq-ZFZbavv6T#9`d`i z+s8Ws3BNvnycypyT)l{QD;;SjC*6<_`Yofh5pi-%+`k73Lbl~d#GnllF=FJ#XPSvB zOk8`so5Zgw#>du>=mHUL&rXUktpW3*n1b8#XaQtaJw$69L6t)N(E@!j+|}@{Oij_- zz)2#0f5&L!fZ^GPPEHrwX9<)+^+9<5k6 zkd&$zJ4K!S9bBX>6%XD!zsO;okgFVYaIie@vYMBkox|M<D8iXhRnO(K!{tu&}>fK{=IIg|nCjL8|s z`bBdH7D^FKWyvnJn1fw!z^7Abg7=8I*wv1F5#)Pe%I6JE{F8k|1SJ`UgWUp$tZ;r} zwp^c)FjKPmq>(lS_})*vg>x~zdJc_GSE|x$>nHXHFcv|VJ!vPK?toBh!CAXL1B7Q^ z$#Cw`HpxL?x~G4H53T|M~%N0Qj7re!E|`_oo7niH#Ni?Va|Z z^6G7q6q__NCot#*2wmuxz9@$>oCpSOQm<6O>KWVzAAa-m2Z{F>_In2aP}E-Gib5+2ezfSBEfN!?uE+qdxcSoU9z~(&QQAd;_TD zo7;%=yYEHV;gNC%28HywLGy>=A+w(cTaJE|+Be!;`+?3v4F8=Nx8D`(L2?$2(6P+* zif5U)43ko~i4V1I6jbA=8!r!oLw$n$SibY42WJxK;lyGs}lFYBz9r zHw39CW$nPw-Uo`|E7m6}_`Gj56lGb6uv}mOAs}CgK0P9Dyh%qRyB&e}`)>Zk#3;Cu z4FY$a&}SPdK>0xb@mB>7scZTW%|@jeY9LVffT40XuMU(2jeqSc6`f?s22&3ra z)hLlpi$LT5Bc&i9rOkFC#gPdpvJm}@yA!nv94OlSAOVtlv3e(uJILOMe2?Swe8W_) zKnFH(mXXvmP6Y-RJVk5u;4ktt>(g2D^q~gomNR9m2FP0wOI9-g=DxvkcF3>@6yV?( z5nV=+A{?mac%vcHrT#64eqZx@BhHb5zYn-8q2Na(Y1(v(DxR6$SO@}Jry}-V1w0id zb3XY;VxLicvo9D)wk;P(dF5#=c>&piIAQ4@kmCE&(n;E z)PWNM;l0@n0YnO?=YDSspMgS_v=Mt|na2EFLV&?2CvEmEcc}jZNf# z=PR2$pEWp7pKY!MH&}hJ93jRY;`vnFyLPh=|5~8jr&Sahf4P!->ZU&y&_-|HDyHsJ zcsD|{&a}0ShSk74`b&E&RxKL+Rz0n(r%z{T2_d8F2FuL4v1adG=&{t#qU{{z71AKj zy<2Xk+8=x|yjH#CB6l*pp;lk7tYpjm6P|HQ+grZY)OzP+L{z*lBhX(yd!XB-;wO2Y zyrV~yXbL6oe7^7F@awT#^zA&pqYdRy>H~R84K}Chl7KT$Rp0EG0gmdRQd*~$DMrjW z6A|wg7oV#BM7|HT5Igw{-IRO%+;=H;27gY}@v1WRcN$!#Jr&)LpSJf%8V3!G_}^zc zscQQ(%j1RBrI*yBLZjbITBP&#n{Ze_eADiJqe6?|lqN4bn$qyit zk_jwT`0i+8V(8}VaqQ3mVXmV)^X%h0rmn)>MD4Zp?$iWckbWLHQ71Gyx64^nlNz?z zdN#;0e2XP}(8nvJj)l)r%r9~a)&PkT;is3qUqdBi(dYDCQg-o| zYt@*v@a5B=cOFf)@f3WAAk|G1G$Iwa$Gp2fYSnQz%3_53VI=gGYtUKB^RPh(Ew@qR zF9>5Igp&GZo;tPvS2}*n#EVfFoTgYAr7tDSAl3n`6ou)5Zb8RtztZJX2$-TVEd=jj zd(h)_c|q!SHwy)Q#W^&(J+NLtDaN5rhh*lx9DDi0flG6Xjr&yS=Fr9oX@iG5_pDcK zfBS-_t+nkK*@JwncDz1K?!LC|Wq??`UW7ZkW`N+Qt5-T}1@pmc2a>edX95=<3ex=` zdPO{fz93rJNYWPyfu zrYI3zn3m23vcTw2KoiZl4D?+wL9`7$ggyT|58?Wf3)w>82U#iww@TarVT#;h%6dti*LX^xC;s7(X3~*{P#f?QK8EDgiY>l;$AuU*h>0ft9w3^;*0bhv5Pw!o}8F<0{59X7}`a zY5vA>)`#_I+cEqVF!U5~EKbbBvOstwd{AtnBq$tfsy!pIFU>&cBW}^fv{5`4E8b8< z(Js5!>rx7WhP5v$HicL`XbXt}`=q2lqytQ5dZsA^rLKMJDCh2bT;7W>D)mY;Oh~W& zH`P?3pi0T^J%lqDDQ8&5r>@y?K}Y}z1#&Mka4l-6!ipU5}8=0aNM&s+tc$Wh&k7>LEx&D;@_J*CZs8) z)6KPi9SN%Ur01Tj7E@=(cZs(=zyBK?=B%~Qutr-swp^M1o_d;MRHseyWKj+0(JkBl z3XC2lJ^ zVW2=5y`L%yDSj{N96mxVg!CgnSKZMv4!D`wboPS?PuX?XN4y#d|8|HoDz>Rv4xWfF zn7Vr#`$M}YN>D>*D$M`zz=aFvvNU{(ue0OrMpeAkLa3c={&{eZ{I^{EWO+aIPMS*F z`QI{WX6Qvy4sdt)4Lts;f>xwK)k{&c4?SwJ5$}&85wwc9Kt&YB86kxzCW2DN5V^qkj5YZMiA7{1b-qH80$CQTU%S=H0D z*!^COvuQEQ<2Y?&Szcc_qJXPIeA3$Kz1u5vJgK#83!zbQhZLHffv;Rm31v}NvR^%U$jy^q;ShC)BBr1I$rF6OPu+HPxtCN$ z<~^P6YkKnXZ4wVYuhp&Ax;d-5ugK>-kfwZ@uT?Cstd4jZ^hgV-L9O7RFQG+L$Mz$0 z70q5&OG;}}SvsK4#}vwIVw8UKCjxM|DXc?Ef zS>RI$r_Gh`g$%F@82!r%6xz1=@p))={x*obdNP9>8vUs~M^+sIU3+l(E{L~-tB+ zhg{?>kJDz*T$m2heIVNGL8Jxu;+ZJ?9F5M$MLPp86n*3ut^$!JaOzGJp+pNnw5dU5 zujhUXpZ|mrk}wx>IDOI|w!J)lm>aTs90qLBpG%y7hx#oV+jhIiW?M4Q_B%?Zrv(kD z=ETJ;59SUrWE1R@i=;Y zI7q$*=OGV8-M0*-lFNPR#7@f-Fuu#sLs!bPya+}H5`=*@;C1{~W9eEJ53 zm;l58ETC9@$qq&oGp?xqz8HZRt$NDUy4Tw&^9G%HcY0S)%XIYnZV2L*Hl!rEu_A0P z$OHJWYjC*2j)-oP94n;GpNtNQ|Gw%wh+h44z$!wmv3Zf-aKP$4PLvh+2mtQ8^9*wG z5cmjnCTBNQz?8I63G$!k;<7#jBp3)H***W82D7w0F}~o5mh8#{z7;Q^FQaI&Du6vw zs%TI;vlrwRJZrG|mKu7}Eldrq&tweAHT05;!3jq~_8p8VDL%4C^U{c z%F+Pt?1WCjbPy+Rl>I~ss^@2>%D`wh?Xu2_$l3T<%i-tgGhz?XLZmvVcr;t-S|wRjZ9gdN zcw>N+Lk~Ce*-M)1NJ=8eO$81{<#YY3y+0^a9Z`5FiULB7eAw^LrfK{g;#3E&qGfZOr}J)w58UDsFxMk3{O?Jp9ndOLcSJ}1oub?f;-t2>rmRaNh=pLMI9k@PqQ zL;pn%-%sK+O_l%q?`(K`qI$fMZ%VOM__4~+?{O9w;o#4fKxuNcucz@GNq0@;+vB(}nKMM6Wpc zsPZJ5eCEO1x8P@6*=Y1q#T3VKE$J523l`O~5s9t3!07Z9@vh88n4tG#Bv$KosRS)| zNJ8zo7jNK{W<_sM`0vv7K3r8a++~SBVHX;C5$z0Sl9~B2OSCM{{h2O}go}i;_p!P_ zLPL#(FZsl|>?pBmd8vDPVkOSGJc#YT>aVo+GfjM^(5T2 z|GYojH3V^9;5Hg&d0!3_O8Vi4uW(!W*0h5+MlZX*7^kjAMDgMog&x)yu1h|$WXD0J z>Zvfo=Bd%L6Ek+YwC63^1^KBNE>G}gUaHcyy&`Nt!|3=`t8QYi<3UtJgckjcYp=2L zQ5Pj0mngcQ#+5|fMpL}g7@=>9hHj`+P|noU!0xse#v638z1Co`4)98F(>{9=aTZ>M^yGnfBw> zvoZ1qmcj_!znR%N@=ohfcG(&}RR5N?{+}rPeMCIa^!Nq!>y=EsOQ0SY0OkXC8=|=W zGDy8PV~yFQ;U?vn|8|#?#2f}6akc(CKiqSWd$uJPx;+-=JQ8>05VT=e_E0%(uyohg zZcxZ*xYkxO_jYN>w0(uRl#f)!wSHgDQc9+d?;}XRddN!_h#p>R;VJNuR4%Vw5Vh|J3`l zZC~l|^7XQ^n7emxSR=SJkn8vs6Rl}xt#5N?THa%|qjn5IMo6P;4=(^Cg>biCw1~k4 zU?R+ByC6WxpZW}fkw!tNDX`y(x4!XKrUxO;kpw~ND1!ezOdkzE8loWrvj3k$68IYR zUS5dtS^iTwH~LxeRF3twXS z9}B?7ItfZ8bAj`m#H6mRPr1njd9I}o35_VCA~B)S4M~=)$QM^q0VrIxNNS?UO9KuL z$u1FHumbyZGXjjYl7cCEF89g||CS``4KmLDyqK24wLpVri-BI&tPcr3 zu(ksXS?Jp5F}2elLmw{QzQ#Y~x1@+JN`S!Jx{!ZMYMvSJ!_jmx;Wxdn8y zatl4o#-QwbWlM_RO|5@@UU!koFp}VOP;Pf+qP~-`%SmL?U=^5jpkeprsZ~lWdj@?S z^`n+k^tKQS!9OU#pUL}XI{mU|+FgY0bP3=Ir%8%*@I}{R42zDIESLGc4?jJXR8+Z5 zO0>S6zN$4LCh|ZUi0cF5VC3-uSL5d4gpBh8SofG8zIMZ6iqtsjZynPO(=tUDmQ*-0 zXlQ*;_MT=Q4<7UH?U#K#tdhTZ4{_PONZN?%=KLqOiBNq74hZ!Q&17tP2VJuHk%KUe zs1tCXvYEj(p-z!(Z;F4($brR;Qn(l(U37OxUuC|epR_R6e2IMQRLlnOuNj#`*e$6- z=;U#W4~q42#V(E>th9Hl3UHnrNJxmk)VD=LXJ|C z(%osU#0p94_#J>;0NEvVbu`-Z-(fVvW(?d32p|uewVt<>7)Z!U9X$eB= z{O^7$Hji@sewQa9Hv9XFTL zjviH4w*H%3{xd$mK#YEpTHfFO=mHXNS>b=$aqUU&@d&Zd>*2e}X1~?K-tvu>edAjW zUh=t?aA@=&ey+#GpC)TXp04~V^_I>S616oL%;x3ozczg`6@*Cjn_jrdZFEWM6%$67 z;6~i;gC^0$<5joZUgqhLqd(1ac)jh7reiTt`JsJ%u1=VHHus2R--`aP!-@}<{rnmf zWnU9}1M3jQxkihNCgPKSr-;LT6CC1x#NY+e^0?D}GxKz&Y?Am?^QmjTcwy}f@%QN){QErPSV!u@z9^Sl6 zA^bs$j&4D6)lZ6qb^S8|1=`kp26uTOQImF6jG3nMA$+1jmc-aXLYD#kw zYkru?sM==5Wxk&O#IeLZnl>omBC+$!HKf@YZ$p6GWbAl4+2&yNNIB~3+`j6ail3Zm zH+E$$kup39#M7aq?I#?o8^QbQ8)3(<_{i^aRg@JX@3SQad$%adrA!ryd7?Dj^qKaHq;~!PsVwv6U47 zCj_APqGn}SDVzZkD+l3VeN)Uv3oR4&0Ko&)x7HN;Vz9UvCEzQ8P;5W*OazW}2seCb z@MOoD8!#m7L&-lRcC2FXi{=?6FC~Gu@IvqC3i)Uy*Wb1hCmB_-icF!V=#~kOSBdVJ zl>-((ro>NrF^K~8ug&S+`!ucnG(i@kD zEu+7M!Y_~(Ab@6dCb=(+sS98L_d>4^5nw}3OHoboki!JI(Q{o}Lqn&F8;wB&cP$@6 zzdVD0m!AhbE1dVn&n@eggO%2Uhm}MHg+vxjq{*UGT8e+FfwR!XJ`OCqU_MAZDWy9rNd+c(>09S-iLUoc)ocxV91_tGx3~FNg z9Vz5N8@f-~1N`>-TR6WiHg6SRTXNeX;2=lQiStH@MhXCKoQd`k%>3JBb%c%#Tea@$1J^6r(VlKG=u3qTJZEzBQ~zOAGp}`75F1s{7qh{#9$o zaO&cx7Gsh$QnYuFX4*aoTebQtnH!C&i`*6O5<{k$J0K`limREWHsHfivGD=+vcws4 z-HENr+*^z=Ig{yD_j@hMf&Z?xhK^2|h~_PYOuWJoe0@IamK73|!m?Fgu)Kx2({N?+ zFaM-AXz0F;aS{@I4kq2%Y^-n1_33bjQJKK2GR`wz@%p-gkBMNE{wF>fJjFgN0vj$& z@E*XefOG2`{5mWDGAZze{AAy)Mmz|>IN{V!WMf?e;e32NQ!ODi6}tc5q8jo%bnC1mnxHl2CRFI8$Q!njqSWF% zt#*IUy`oD|LLz1`Yd|+_RU1!F!}0?=i9*d3DU#c(HW2DyGjV$)oAGBPhBwS5-A| ze(y%xlj!Om-yPqE(`bA0S@r0A{X13EO?%6fSf(fxubTTsr^2nCvdadc`{TzNB@yR| zt1PO1foXe3(&YU$LP%K(p0^D$$n|y8nQay-=SrBDV8+)%fYm?A`a7 zE$gdWOXn*m%Tby8;1ZJ?x;eA9%i&?7H+r8h6wMhFlJKd$>>U%+;5LXa6csCc}34PJ*_V1v}oaXg#tRh0`#4 zHQ0H`;zhc8oe#ckqmqdgwF9O`iQbwCXgMo!mA!^N$xf{52>?A$J(j869QovU9NMZf= z&*kdj`%sEG$qbs}2cN^)lX;C^IjFP7fg|k;2+Z{3y*Zbc!cW0%uz``aa&mW4FPY`M(x z{>D0oVRs(o9NsM6X~49qPYYa)(|sxu$CdW5`W%!#CV%7mh$-Pa74_r8gRMY3SAuR& z6cQf~A1JkGt9)BtK1#Yj9kR$rZYOW8aJ24xIZf64E-coWv_1d)Ca+0X?D+L!ZSQJ3 z=8nXq-P1&GS#U*cN&|cAzSLEtfdFL}N2s91fQaUa@HIWXUsoO_fY5SuIy)%S=<9m{ z3&%oofKMHx35VE40Lu@LMx;Q!Lp)azOS~hYuipScBd-C$aXy5Y_DwPrr8oi_SH)Z> z9M=GJKhE$sZ$LA0#IHFSR(QL)ff(3yz@39g)JRbH)<#Eq0Y;PcrvJG$nSj5D1=#T? zXFcT&2FOR^XH6h;2HAhT_%FzQo33tIjn2Xpz~eH6QvWS5Pls;PdW<4>e;DphpS0ii zL%!hG|H8urM%E-i;eyaPLEzu?G(l2O+Ih34uuww4i1UIR$oKK6Z|HcO;0T$k;QAv(KmpwwHI&2>yY?SrxPT_k%s zOJl|Til2hW&nAH9S^&23a11`$l(ECJ!RGTRi=|JMYtWQ`$Gi(;H5dfjo(i`qV1up2L*?#nKqa%Ve!R^8V$;mV*4kYW#Kszp zcDB=J*Lm;^awPSRF8rCbh!HuvI{Eezl>di2!_pLvX&W-jJ7(j!g1J(&zX+B|WQD38by6G~z!iPf=RTSuwE zOuBQ)eWxWc%sDnK#puWj?oN_*|lu{U0Z2p&T*piL)~C1OBm*#7j}qEFR+j_qlZM;JLW>3$(B9{6gN70Q#vdAOCsf~6}&>Ae3< z4%M32hipfv1#Ev9uSvI@mC~yQjYXiEd3$D=@Kjp1<3o=yRIOhABF0DrGX`%8T=mp< zUK)O?9C$h(q%h$!*3sv@H-Fb|hP6-cu3kIr+$5+4h&WTpb+@YuP{7sqKSombyKcv;Hg}hM(ha(U!{r zU59#nHlg!A;uITdA)1T>$}BVtc46~pOu#zkp-511+(A;<_K@hJ zp1AmNe`tMnSFLmBTI=D)S!_~a3N2l;QcrV@tr`cO=(-RfTRrc{DqY`@dF})5&bd*c zy{ySXHx`H1Yt$J`B3~b{Y+^1?+^FL+FK}yjlY@Re_1O!G85)sh?7b?`chR}?;_>IZ z=IhYct~ETd=Z;_F9IMa_tfGIvNJtLu+=%6sk~Y8TqsfM8bmVQYozsoee=ty=^r|+q zvU0)e&K?ia)|@UjCqOr)qWx8J)t6-iGJ>AAsz5O6#RQkDEQcG1uSzfb)r%s~_u}L0 zPX*kHJ|NNqgoNec5*)Zo7qwr$U}3px^egW1BqB24iw4_h6JMcqR!;RD_1^QB=^s1h zq+QdD)EX;@k)1JZ?^I^FBEQhdiMjbuSFA`oZb!5%0ItDId6~x5@n%VSR{BN4l8a-W zm1Ws8ZJ4gPgZ>B)UgawD#Ek+F46z@iQQ``sh)$T#mQ2nz$tMwYE&s-*&c0cf1TcZZ z8DMst?_XayB<#+Q_K)_jyQ?wGNrT2&gu{yM7#(R5i({+Ave(e3}=7*&Hu%-#-1m3LXQ-U0sBp0^KM^2hPPHEjepBr#GnmnAD zOX5>&+Hkr${>kn}hO9JWZ2TX8Jnw>Y-}ZK9ug%)o)_4bPf@C+(IR?~G&ag$3r=OPW z3ccAvI_&Pw9fvgRi{9SFRJp1c>$o}ng~btj*I>cjQ~wWI#&BVu=D2&vj5 zw56h4Sj;ZRcB-K9-VGCDW01gB;suL#R*M@3y&fd2zHN6_ZR!MFRN+a2l4x{z>&sjvvbX zi1{o{tlNZYz`vf>qt+JW*k|al^qAj`aDD;q0}9$NJSbY!VmwtiKP?uEqbz1ae!$VQ z&QAX!O?sg~>ZArzhq}8@``o5dI6oH3Bria@pavI^7vTT15KpBcgP9>IJdyIz16g;T zC^L46u>8Nl-rhI+x96gnEe1M14k}QQPVQ?@+CGObp2Vt=$26gwjsp#U|B?zgHOm}} zap=1}4QVN`omXRgr{CmwcSg4-O==)5Kb(H} zw(-?cQ)E^akf20{J0(8ai2k+7>8{UR}nGuq#yC6>38J ze131pU_5>MTyz-TkIf(HT29`ulwpG3F~AeQOCyQ<*klJ!i6=P=6|0^W?8}P3qnw>! z@=skFb4rAC4V*ZagMMGZ<~2!t9GB=XOJ3cTj}IAhufy9Ius?(ObLrkv1-GG@MncKqT!A zOJ`=vBNIzjCy92OjTInF!8v0)`BUcXrNW=cVgW=dRkUNvM8d@B9YUUnBu#rcOdA9- z5#-~l+ugzYISz})`Wk%@af-rsgsR>4`Bq#XgiXPffNLWQ8+b9j!Qg{ex=ciX--$rf z@zm2M@?a%p{T_qBTqS`Orv(}i?$ns6G}HXCF~HxedG*LC*F1R>>;~yR;q5?a=4x%m z2W)Q#?IQC2>G*!Ae4nh5g~fQ!zop_a-l^40)KpNTSVJGd-0TCd*zYpMmoDE@z6uqu zE6X93mos9CC26Ca(bCgOYDy%o?8TOiRUPtK(&B1nrg-R9bpnaU{yj=9m<(tOCA;e@ zEVUMAn=T=r$3y0K0byk2{LLyjw|9GDVwbS~=VYheBa?r8QX4hLZ^z5cQ*5r<(g3P0 zC~J@tmJU)zdc9}6siY7xF+sf2y*sO`rnOahUAh2Wnv8!uw!aHnVurd+HY(#)cb87q z2b*?=Mi=VN4(m(?teI1LOWwu5J*^8p8A!Dcw7E#)sU-2-$j~vgwRMkHJJ{wUGEFqb zfU(g;=yG*s+IXN+ zL(r9RqPR!2N$qi_1Cu~ymKf5&I@gaZ^V9o4m*PMw;xo*brbl-Jf%*?~@&ViC@aEm~(ZMJ+uL&S^|)&tA6REa^~wtst!SMM z>M<DH);S@&VnUgVL`rIAKfHE0TYVq$oEfTtql|r>dC;A%+7F zMl`2qyQD1;Zd8nRU*j#QbvRAa#yx)7;UC|1=?#^|l3|`a@|!I7A;<=DOokQ1unoDhz5k3mA#>&SXDbuAxg|R(gSpLz z4c5b1lFPVAe;!I?q(TRF{`6x|sE;Ivl5NhUQnPgzVsXTm@yWHK+tByCU)mPlo?m|dmEM6In@pcDw_l!yaH#+Akk zp>L!2H>gMh=fwp03EwE<8>mQjNTeydh7K5>o&O`x((!_FL3}2U5{uPB2nk4b+I&+s zDTX~aJ?GU_A;P+)G#?)k0|90n8dft9H_oo1%`R*;`Co(#iKdfF-@AhnM4L=#oEU{t@{Wck(q20Dc#RPtzNg$lRK%l@$M|%ZybA}pd zLr`rXVu)Lh+RP8d?#I1&4a31rjiUVv@j9u5h_F4SX)B5J@sG*M~?_{hjWfu3#M7^CdzFr1@yX0knW(v#;u1m^> z%Q%}zcD++>mDtBs(7k{;yY!_AT{@48=@+t{o^-D}E!Y?^p?g70jE-o&8;^Xys!Kpd z_^P<+A@e0()%!f?k`T~*ADm`BfO9PV`a&ep9Jiv_wN$K+goi81`}G$Tu47r<)Z5kD zwmRh~!C6SEASn6V2 zdxKr77rl{+Q8jz{>OI0$nv9HqoZ9<(zmp!WybS>MXd{dFI7ij^VdX)E{x*sJIq7Iv zcvrHah{Dsa2*x=HBOh6mbk}zoBPeJ2J!#0X!&h2DmqNdfcN^orO&?JX-`=kohn=B) ziiMZWSb0O?#lFogMECtuZ+6E?(%yE~?^-%d1i?Ve3A+d82^I!(pfb3QEFHo`#Re zypJG7VPl?R(IC1j(BS#eqq^Kny(E9w1TJ7Vg_dvn{c)Cf1Ye_nc@~}Q?q9cW-A!08vLARG zt)LR>8A$fs&E5$6IPq%2*>iF0pT0WfA60yA_VwyizNTY%a`oBLSlHPI5sZm@ZR_D+ z>*;U9{kMLfZFWpN+_h$Q=jLoqw#IvgKCN35uT2~l_D+zG^)_m3{eEr@wwl&o~Cm(wHYAlp&Pu|=eY~G91dy=_YzN(;degJ4J|~s92M(V$60$Ficib5&NYPw24;RcERfn=mrjA7 zZbmHj18_ib(K`@iNBQq8@&ScjscH8|gtduDw3lEhuH5l{{)%UHx<_ zyuI>i4w1FdSD}In_r-Fg2Kmd($AB+`fzp>T#AI43zAW#>dX(}obWSnF+`0D;w&LNy z9r(}dCh%|#W*JxYHU~YA!ZA-~SYElzHU>FP~ zCLm0@6=@iqLqIx4x8x*MK)QRBNHb{|(jo%FNGWNM?)UyZ&-?trIXgR?oiXm+pYL^j zt`KznHR_(wWhLM!ywyy%PECh-U=2ZthJ}ZmhL;v;F>e6NdF}TfvAGq}cW?LF*iBIr zi@f1?ZKsSV3}GZ5_>fH!^4>-&y(!{8rK9ZbI*XHbsd0azPLo`47m0U z^Hxj{F0HB?8@?G-)(h9C9c~?Y;O_M_>cP=qY1*!tk0jdk(zHutZ8L+)q(ltw;lGe$ zzp89(vm0sblpx?pL={?i4^~-bX zsJdH!l7!RDm3kCQtE&YBv<}nv1ywf)TOz8)1Uv*?Ws|y&#cpupMG9)>;($RqTrgec zw3CrRA=#ftP9wJ~8gv6{wW6*B1|w@x--)EP<)*2ek5PqCKv}yU43N+N1r4yj1fu5s zIr7ti!<@i$DfSNd10>{H8}TKW6B;B6oIo5OadXIliL}S2%jq?`oAqFg#kQc-*Lzua zMj#>VD}2SEY;11uqUR0pf)uTsw(|g0kBjuh4JJ|}xq!uqmK30b8B7F50yF`jK#~$# zN(V-%-4MQc2&gr$Gimq;BLieS>&@lY5brTtL`%3|sIbKX4cD{iQ3Rj=#illud z0H=K-Gr#z_g`iaY*MN5577;@v$M3C`f9uayb2-XlbuRbdqu=Hn+EG86Dk8mMlj(&H z1&+mbpKrTbsR9r-{x&i7sMywVC;vNLI2J1l;?6ysyv1RL7t^9x36;_sasNfdT?~y3 z676j3en{@Gh=f1Jzh@uV55SdJXj2(XOpA7A%w$$rNb$vxSkP>2}iby*TkfiLyIO8UPNaw*tk#Z-e_8~RZ zvu^3Rx^j?-(h#D+&D|gE;yqIti$db`C&o(}3|}GiVQGUNsc3?r`wS%CNDe8t;yvpi z>{zGw6tH%E(ww5vg8K$|*UrV|P6+~Heh5lE0}cP8Sx1;jckNrY!ey=G1DJX_!9tw~ ztp!$GNhm}NPtr1g$$=$N5C$+vV^Rsy&rJ*9;-~y62mMDr)uxA+i#@AAPId1q5bm-@ z&!fKcx6WW`rP#?Vxmu>Naa>-;QxrZ{w^UeS|L@t_Vf@x?WFidkJyn+HeSg5L84JZF zpja8*g_iwl35lBP>Qvqmq6mbsAjhg>)dM_R^Yuq|r@+0@Qp@x0_`k!e$%PI=(l_*#xYzpW=6%M6?f-U>oii-Z%eWz=DetU;$ zmj|sEBlR2V;u0@x*SU27@$>MUpL6B7UeE4SNHzBTRNdUw{ApJ6zN2xE((+;6wsgH_ z;*y5|wc12p=kiwFhzhHYgT0eSQtT@+O)!J^#$K~#-xoI1fQ#K_^2e~GLywMfsHs!9 zb{|dVoXAh)-h#%2f^H%_&s}`=U-{1E{9E^n&lBFW<^LmD++-b#-GKd;6~ zQ-{`n-4haC0YaPgmWnuAQ}5**%+ulF=bdindjjD1?m(a8qL*RMnR)AaX#<}XG%l7& zEh2-FT%xhbKcKOklbD80@?xxBQgroSgrpbW=NeE|OirZ16c)?LA8Xls*C{GVkR(g2 z@uI_y#zfN4(PMGhQFkI{VASby_WDDa{pyysM{l9gPn35)b17u~q$B;=BP7Pkq#N|L zSSLNbTJM9k=AY~bO|i~5sp&>zXJWmf54G2P2Vm6Cj7^dgw@)zfTI;Dc(7`3;)VJBs z@ZyLcZrW5;xsh)lc<@VyQ!s;^NvYm6yt^Ci9VZLwVi@q-m1x(mso@z!K$wOvef-_4 zx0#~0-^!1w0|pmj8+>}9bQ^^gC8vr!;fEUwB}r!xw|f`GO2bzJ=RKB)rkgnx$%@=L z6~)j+epAz5D*2{xQO(6Z5!aerEJldF?|Xx#Bzr=FJhGG-DMQ8}n_Hph(Zx(m|8GDn z?_FKk4X`cf3whX$n|Fyx-%6X2`f{32)t0co*!iMb;C54%NSB z+ZPwg@=Cqiv8O)OjZFqU5JF*Z0c9r_)ZMrwJi&CH%*AsTz^At)`!Dy=8em#yXHP&U zKz@E!YO$v-#Y2-}#lD!UZMaA_p+ohdA97l3m zN)K&tWJpTXeC#4S^n$^2`-HVkTJ8o>JxYbp1zDz+T>g*!WiNh_eAg4`Bmw`=I5naL z+N5cNG4s@a90P8M@PS-!P&Y(jfI^mSjPv}^JIox>5_Le(Vh1bOvu8$HP6h-gZ3d1B zDQSj3b_ZJz`)x8cRTug56J#hAOBb7LrU50gpqiD(SNqnzaqBC*aLY+z{cLfpE~PJO zely`n0wlr}eUUi$@SF%afG{y160}et{HVzv2zafIl1J`cz_<@?$HwY8d0qMOHae!d zq^CB0uEWPPJ<O5 zn^AnjkUAWuhB#80bzICXa@gNr&1L=!JYT>+*wyB-fha(%q8tdeqd$(jq>v--(IhsH ztfvtYQ0;u>zB1u1snoszCY>iuu}!G@JcxTIf3}h_dWZ5w^5o9TyAj!LtW_Pib7|Y8 zVRRdY10aeHK`pn4|JaTpt@obxbT8WE(*0Q`Hj9_S+MxmL$^L& z20(glc`C}QC+dwMmbV;}R;m*2pd74tHM;@i8|_j(N~h5`n9el$aF6lg7gjvNI(>2w0B=RC`frv85JLJ9w7s|{-}!Y0_RcRPzleaf275_Ru~LeBQ9VToyRSw6h?JCc8j zmFEL@FU{i!E4+p1w35t3p_L%TyDGqGU^x>d*L}Z$vFp=1&m*d5R;Qc+@!QEHm4DAQxA~}1>gLB@-j8W3j5MnzpkR?#Y-*w}JZ2I3P~0uHvx0}nFT zTF&M-`%O;<<}O8B584&8zU^N{1Omgtz<46+dEnNTu1s-LQ^~^$#vT?n3%r$KxQ4|; zhxnpP?MGb?UzLx2nbU>WSQn+I|M1BFh_(3rES81dLY1`OjVlK!%8X@{U$u==s94&BMW+rbhirSC zZiemTtU)L)NgG9c^q%_`( z#jvv!zwDcwK_Y22h~(tuR)LbUF50F#f$719_}9Hak9g332LEkdC{SVr5NiWo(sHyK ziCI#lo>c1qn~E!*7cl`MpQKr|f#_M!Hl(&3ZTpN1%TiD_5iNtTuqT7GGa4Pm5s6`& zZ`h|pSseqnudPzkmA3x?Yqd?P)Kndi;9khAO{$(~!*aEx*1Dg^)=CgOe8Sgy@IQ~- zDJed^22*#r(1NAfPGQ%#u1ukS9HBo2W3YX!0ev%ME-W8JMYdz-V{t@KVi2*&kg3Z6 zm7<&=*LF80PWJ47TuC4`PX62bS^l*F%W#z# z9d&6kBH{;rQF4FH<|pG9{(MdNDuz%X0XfKy{t%omn*b;ndC=zbbe5_Y@2DSTN-my7 z(yo{*J4TJt#l|{+Xmfpk^XGSwXO#IVkPzAAFdP=^6__4qn{d zM{ZOEDr%KPPn;f7kjj6Ue`RZ^c`2Px_pzxx18`sAzfZ!D@3)QA!4r5Li`IaG{K!zdSV7VC^L4{@q3@ zuy{j(urD+Jn1v->n;&T2cu3PlmUb`Ll|PogC%Q?R^qqVZVnWywhfK6lYNR(~?%CfL znEGsFpSfZ~s^p^K{w5tT1aHiU2qDvZW<*r{TSdghx2C2tjO-ym=9KtAfuq3(#PTJ7 znNvNmwmo;P`mftJTA;wMxg}#I9~xd!kK1zO|J?%YIClan^`E|Pnu((sQnS#a>bg{9 z3j?%U?l?kLMtY6^eg=T5tOT;yj^nBP$D03@^w6k&1_mt6olJcGo%>JExE@eFOH%s1 zY&4Nm{wE-HHDN|P@tMAaLHYf%Gj&bei~DGAz*3?*q}FZU-CY2jL+|E+PxfmO}w_$*-T`MC=*>Y<_o zn{30>PEyp7K&9C9cKC7D+_&Q;3uzPm`{?Xq-_d$w-L27!&f{4pS#+JzRiE%Ii`LbQ z)Air=mGxR*nly;~GO*zutIm_R$3jd3oq09Nuo4Zkm)+-VG2Tsc6aC!ZYQ#Kx!aRAM z3hh@Uir|C7@TXJ1XSOTkWs%1(l@X2ShH*p4H^1YkO??&*>ng?xRmo#ZQHQ)~*Yl?_ zk!4LQeqfx^sy$tf!+LN;aU9d2XO_|B0?^3#GfCq3?Ca^@bz9z}yg1&tv$K)YUYw-g z9o*SoUUi=DY7X}6_kFfja?MaU>n5&=M3rfV``31W_%eXpn+wb{7mYj?Pp0};OPBxj z`dk;yUDGb1E2ky5Hq0|K9gaptj@>WkXV=F@E$K6zRvzoxg;|c`o6ek@Nq8k1F2eX) zrbC^pX17;ts`LuCwj@ujuSehH#aFK`RX;&1Aqacxf8W+JN5Fw;ny5KRvp-@BBx(wZ zM{#mdifZOoI9o_MS1&9jk42JzwQqg&ep7FWJ4U=BfD<*pt4^T8E`#n`_mnZCa+IU* z(yb`F04|Pqoh#wb93&bCG_x{i(+V3A;)NR^nO>G9Wf+TGLHVm&?&~**pXjy4n!iq+ z+;WioYuk;I?hEj?(dlSL%b1}zMjsSe7rWAuz<<;X2ms&|DQ^fgu5BK1xv~Cy_fZi# zK(Z)B(EK_#yBXm>=YA)RP$aC_ul4!$&=7mDfMfFU?@$Wqlt=3nJ#_?^KL6%iN3eNS zb_s15^Boawb!l?&od@d095Ug=LR|FxwBNt+w^R3nL?F{;ywZMI+s}4uW zi&M{5fOT#*bx6ZIc%9!~#a5N3A?ro9;!4SBitl-d7Q%OW8jOhdYf5n#9c9PGY`C+l zGC@;*CB>sXpx-J&)G9%S;g%Ap7!_tdWjgaqC5gu}tA4R1VY+_i>rQE5W78C{!M!dG zJdnJulsxWlb-ix)Pj4xowy(Yir1-DyCHoMTihT@9gO+= z4%3Lc3k|xarw$GRqWaQsDQm3L03*EG=0eTVBYj1YoQ838z!?Eo%q4!JRR=jjt#rS~ zC36*9fvbo^@~A6$RLdI%o)w&DUH{4xmOT8ImgUcr$ui=u&9EJcx!3t!uc5CbF%>>r^iT4>I@5{Sx_3}UF z2L;pq3DSyPiRM(02@#Q|l;NBQOv{uMbnW)3U7c^TMCc~p_e^g7Uh~+QK>}KAhn*w) zW7oX^OHuZZb2~w6^eMsbKL6slxzT%T0~XdIo0#z1ao@wDoYTv1{(w|Cgp?S~^@Y;` z770Soal#f^XRDa#u$#-ua{`pV=)M)v*U-`x+$h<~K>s3I{c;nIVdqa_|M1LRg?A|$ zy{UiuHP;W>pc`a&qA8y=-M2_q`@Qi34~m4G<=EHTVDJcCq{!>tx9ypSsJIHIyD3#mV!yRQ|(VR(kWzx6RW}pLW^#`oR{eJIgYIrV#YPS~m zIq-$lh@;}?Di&6^wNnPAfltbD;?ROE9z%sJC@2%&Fpqw?%1z2+i6ay$OX8!(e3VNl zkbTRWs9HP1q}!RI>Gg_m;Fc$&uv0XG20q*3-L!R{6u6WqdA>e@U8A(Fa|m2K`7*qA z=s9;kPc&V}VTvbpvcGb=_WQ<;7*}pp)F@U08xr|m>19E-!>j&RiBXP(c5K(Di<%a_ za@E!9MVl?Z?3C8?ZPB*J5?37~u7C~y+B&|s=18KD^4sZ%{Dg<(;od6a=#NJ+@B%oe z)tEaCpKfDvUgv3-;X9}m#)aURL8H5Mw7oF$G&DV``q5`M!HfdUinHybwUP4p?#bn& z%N|`I5(3cur$47-h;EM@NE(&#cCLEi>lYxB(d@Q*P`jGtv%kA!`mcX}H4NJUE* zzFg{f{Ac7NcYW+6S-JPIJyq8yyt%F`A+$5y zRk%#HnX=^$oX~>CxA^RWI`&ueI`0QUHokl+vvS|)G0g% z`*KgTStsG!TdOt~fs!t(v3|I??^nOy+xD=Md%BlLiA7lkyhS_4b#p$e8ugRmkNp0m z#PwzPO5&LVU_0&o2%VlxT_pX}Cxe~D*>g4l>!rT5wr)l-nOldRDJAcY5Y)j9k zm?W<~uZ{wr7gpSR!DKJ)p!v#Ja=<$3mGNyo3-nWXp(8}2x{PLX0qicXdLZs17uq*^ zLkS7p5U|qeI52pXc`~?5Py8P|#tX{m9W3b^+YG(){f3$b= z|Fi&6WUwle<-tb`44eypljnO=(%*CX&T^_#sD#i&gP-Wh3RtTtYN8;ZSbma+M_x2S z57gD&-r!IyyVQ1XJs&DAlH@q|8aYem+6GHWr z5!iJ?8}34A)%oYmDM${~-w}}!k>4kUK5%ANHw&VE3X)S->hX!t#qzfSmk~Ilb@a2k)*RkV`BC#$kIP>DP_lL+Kc~WV-xiW$X zi}@jVxVN{^?z+&d0wb}uwg&Rp%SPASe*PNov-;0@)Otm8J)*lU;lH}P3V7n!&dcB{ ze6wB~tF0GW@r6~7{Ld6)U19Bw@yjE>RIsD>SndOTNZ);;D26mp10nUFNhy$KfF2D3 zOPNgYFsn5m7FFW#3hsfBmRat&$_v{QW-8`ly#>d0B$QL}m^F*j5XrOcx$C*W(=oNH zzoWxq0?{t;aRp)j-Pl)*xng0+gWH%r8ah!(aw2VooL)lQ#@Ztdu5{O?06g1bM+ zyej#wg@tm5=`y|-u9jez`ub+oICEp+TUd9h9TfCcw)aUfC z5RI|)C|ja*cVFn+5u->?9gc!z*YR8|!~%#Ohyf$Xs>Xd*MA1Uf!h}z* zeXtN>te#!Ed*o-$8}BX<@XOq^OSGbVJ z&i`s(;Xx5Zi{&`HU5_9buRb>GOEmVZa=IrIci1>#;=zwSK z2Cjepe()g@l7nz)DKupQFnOJVm>#7z1o@ug(xvz5Su7-n%^lJ;DM*QFP}e|;Lfk@B zkNkp!z`3GH#!);t#?a+EpBDib z;pw5pB2EZ!ht6UtIY+T zoLo)He`)#mY{^ka#pJx}c4_HMbM@=NRJ{`ugM=Scr4uf z5va5jGu*+~iI+VdO0{-kiAvlL`1?!3sC>@ca*K!lnJ z|0^cTkwBH}j;2lD(OM5*@S6$PTNVX)6o(|V_i|VfjTO+=(*sBRImNP~ueLk;ADvjz zISzcQx0+GBh1{C)VY%0tk$393opGHec|DKL3NVk9us=6u1G=dz& zC3Glx5)n9IK-JDz^IDeeJo%qr9Y1QFRy{m`C42;vqWmZ^OH0U0ZMTLM$Ab_^`y&<) zTYRbfOK7o;UsG66$hd#8XUl`BMVLqS*d}y-JhI>a|NdvfN7Az%y#U6D+wEE=B;ro*ZbbMm| zKC8)t%wd|vw!uAm>lE+cp9BoPlkMzg8WlhJX31wss?-jlOh&jJkhoJ(9V~^qNAp;` z?uE!IN3*7uFsFvQt5xZ}o|zX%$c~gM8rwgPLdZ{++WN7}^J5fQs}WoeEhxQq=NlQ@ zq{!@kOOsH&`97a>v!|B$F7&`mN~+;`u#Ai-ZzTrI>7^*ybvSNdmtIt&r(C@H!@0c3 z9@tpXRo@+?OmNI*{p|p|%l5Cr;rt*&c&~$pqxe?f8pTzLmx_WtiNmhL{ zgfOd~aU|4j;0r4rsfbfvUXsVn`mKhTp4L_Zx$=LiJzEawBz>H}oP;=C^bQA}7BNP7 z!`6xdHz&JmDoU}bL$?H0UW3%XlMr|;WH@>TJ(klQI!IS{V`-f~r}u)v;c^qzy2#?6 zzaSje>Pm%DLp3u$jyGoN)IzHMWZdS>H^O&qI0c@xUR|07tc^`%`d@{Wj-4I+ZDW3p zGl>RUSXHly#Hz63;XrSh@SK;$X44vAxb7;$6ekx}td15^NXwPi!ZyYVg~llY6XWwb zH6vwUWL=OdJTV>wgb>i%QK>7zeWCKV=gXcLp!z7zLg9FQyJ$c>6$9_4C-NsQma&Y1 z`2giE(Fu=l0LYe8L4(IOTBAbWqO4jWnxfz>O#g`1&Ow9cVNZe*j9&h?0NxAuZ0QFP zPi)H>@)LrCpil}dg>Bb&Ix&t8(>rn_IcxzJ`&qTX7VJBs^pF4dg8T$^_bY>;NdqPs zu7`FbkRIVVpL4@G?`CYr6F!OS@||xc$aZE)K(EPS$z+{>PDhJr~5B@1b0>YKp2equpeGSWeNFRPwM5a~E1g znjL-=N~SE$A){vV>K6RuW=xr|9*4Gl-BR@N^5!=uLaqUS`}x^83{_0ru0?^AkESGn z9*`KTG4O|LLKMon4di|cgxe|cF3Ig~4z6ft9x?#BXA2erm4x%+&0jz06!9O8l2u>6 zH#c(u5kXzLhNW}DUwSGik;Z}jZjjt0UHNdAE&k4;6b#T;ZRAxOMV9*A*HS8YVeIO9 zk2u<_E%@EX-+4;OG75ACziT&P2_0iVvgVlI5K7fpi$Z6YN^h5TX4I4QAeyp@@Q65ds`majcoCrEs@pzT2Bs|(cRwq`bm`MI zuJxGa>QM6hFb`L+>!2GZe%-#<6SxStrA@C#O~o6~p2D%?lTBC&uZt7=TJdD%PqCxe zOtmy76QA|Vl1r{x>4`d&&XP4ACidCHOsl~bkl$%4~A*-I9;cJ-Rv0? z3AA&R_((`dNp)Q@P!~sj%$A%xJl$|wpw@iiH5#ydFYwu|YQrdR&{ce;*gn2l(L6eL z}e}WZ|d9AIsmU0yu0vW{|}z@jlNJ zzOfpVdVF6-t7YlTR*XCJopxLAq(8MzbNn0e)Uv^-z9d2Ter0fN#Hh2yebOOMS%Hk3 z*4xGoMhkCDS`XhIUXcSqSO@4&{k9k;+|}M?Ka;7?3ol<6Zw<4gGqF4A^$I~Dg}wM+ zLy6`GcnG`}4c&Zbmo{Zw%Ol&wTsPYN)nof~QJ&6k03qUAw-&G}x-*B!WE;ZHPj6X< zM1p3raS|0hzX#T*sl1yFslZ-~3uCX_pNyD0CY$4e}WVi3$A?1%YM1^*^5fKx20I3f)4=g=+7_pI7k&Ita++F+%axdTK z%o#~2b#n2l5mQjAOTS|{FcQ6Sn}ULf<;|B5(j37- z&gIVKQgL6OM^U-U3Maq= z&SN~Ums`&+g5}bwZ6QyjM4x`Vch! zrb?6BQ}7k|N_spTieF059EVt__Cityi+UpZPyGO)FdVX+|@eUMQ7ke z>BSE}&3ksu=%~pqZ_h8uD(h3el3iYI&g>URM_>^KY+zl70Hi2{X9v8cxfBo!0NHU8 z`%u|A43s3Gx)L-22+66&HQ_o0dx#{9PS%X{moZb;K$gSLLNO3v-sWQEqqw1)cP-@Q zkYH^MWE-t$Q^i1Lt-5i@$KR#z zY^9+v@r7GN%Y3jt8qAj>iehdKFFPJ~XmKAM@B{{~fP4*u=Bn+=evROY+|DWXV+(vG z)mlkU*7f~9mVy|QJrT*xo*l&P3oYi(1~PV`#F!fhOHykdC}P>@EAXbhP`DZYy~i!i zt0jg&JX}lFN&%C}4^20k!&$qLbhL6FTnAWSm)J63bu$CciX_h0d$L;5t84dIcv5&@ za#FOQoZNe7UE7x*qC^^q7%Ammnn|^XJS=bg_TZuG&x)Ohc8C^|qdOntWb0~GwX{SH zc?%2czdgnJkb_vJxGL7B^Gz=eh)YEM-{-ncgJ@b#1OA&}TG~RbFVU=}3=R?80EVVO zhE?Z>!hZ=N^2mtbq0FIn_lY4~AF_j)Dax|RZwpP(*X4(TqnAT`aZ&widqhL1r;Eii zAHJRugkOX|P$ln~54OUJDVeVEE@cUMvFOZZyC8Zor= zwNbVWiWjH|c)rZ?0_eGsI11OPZ$-BrNlD=8iEt)f zEvsz!7Ks}d7OK8gIyh#lrA@;KloNU_oP1a(wFU9Z(1^qDaK^(@8^3kvV<}c4H&OXq zaEq|QoD%TDW;BQEKK){YL0;d;r%$~p3CRNskRcJ@@4YY(feINWNqU>ayJry{OI;P) z|7840dbge&hyiL}=hdH4^zxR)UB&TxnrDRT?zzj1z_X1g0F>654m^@oKIRlXTxtJVbPeJ}TN-bbB#Uobv-f>07ctLowx;z#B-{1%bjzYDQAdf~;CiAJF#t@^loPQ$u5^Juj> zfVf@CX8ltUWjqnvN&EVAcCydV_gSf`wZzIlFVXvKysogh)A@z+?#(wQ*K4A2)Ukz% zqfI-DdVQTpocFgT?^U_ieTaJR0fRE;8o@) z*~AFqZ$8I*l%paH2hL;e@$)gM^2-*yrOBUcm!lnVzvC=mZ5wQv zY*{SdJXUw-=jZeG$MT}8C*3L*cS}t#myKIldmJU~WEdVKSC^JXSTiAuV?XcrMf62{ zQtGvhKGe4Qn*HXeEbm`2ipt{6%PtI@UOsUx;Z+Eu&b_jBgF2jfwafSvE$|JjF=K@- zPZPq-C>&*y=Sd*IdDf~Y4@fKDX1iE4J#7s<>z5Rk6xlp)H%N26-=jA%W(B6;AJbn;;wxC2TIiG*E<6YfJORV{b}@{s5moH+u!py6jDf^oWqr9D zU=5^Q2KsrCCYSrJiq@FBc$#WZA%y}hCp#*CM{AR}tZTH@*tdbq~;8VIQNJ{uodXb+xbk(4%{&{X-Y)s2v86G06xTiWaD!e*&SOA zxVTL-%&SVBgl9*glp=4ni?04?{zvy<;Ku#=;coQdX5$(s8i$yI(NuDkiyy3jbRe*ud`dUzOsU_t4 zLUrVnUKvkZPS#&tWE@KrV|Ra*r|o<@mPV3Umjk}4H_Erj7H%!1{!5|{WuuiIc^v(b zHh41L4gi)?ayO7~hA~$+vc))pK)w`Qn6E`aKwm>Jmk*U&WibZADFwq8i?wIkYK&=0 z$*D^vK2ESBrU+)w_6>@JLp38mf6|B+nvm1hFQ2&X4LpdF>g|4E7fq%DoUj;bjQSDx zfa^g)t`_rob$j|`5(w7Qsuc5FeEVMLDWf(K=jIEUHhq~kpYYEWij@DkXV3#Hl;Q>R zPlxzpjZC_uN&{H5l<@pnYJ>I)PrF_kqut~L9zXumX2JqXnRkhW^xh4t=oC!_Y&hav z6Hn;_+WtF820e@A(iZZ9+`Xwi*`H#>e{%=GpB&CAZNXv0tOm3+jLgpJZLZ~QHx)qh z9PP1#pXYDAs{qXI53z0e91M{t)>S(zs*S1>UdD6l2&wJ(G|4QA70*FyVJ{lE@tmu(?M-A*_4U}?nP}@?T+1_2 z0~32fNVomO@i8Co_2~7<9N?_FTK&I)n%2@9=z^fOob_Vcj8g2cbM3d;-#(`y7j$3T zL+O)eMNPr){$3We6N8o->y{8n9QLjz?e`wH9A|dubmW~M+k*yCO=ZpXW1=*}Y$g(p zGW!!IemQ&FX0~&{TGO^CKEy^da@}VXIphhS#WgVZxOz1t`#g~W6XGlg_4r04knhgh z@yDy`3tm~a;VmK0hAv&w$rJjo4_%LgH(#HuZynE?j7N3;_}#~w6#wER03*u`SZd6b zFQbH=F8}sq-bJ6T&YhrPV(!jnRF%yao2PX%#$~}SgzK8b$ z(nZnrs!ebQf(zuVWdjA96E*a<$a?XXnz^18A6M5oGn&UyxD&9uyFKEngR38!;G0Eo zzhW!*Al?x-+4%81#-&2FKyFZhEcwi5L^+?HAv#wfC`Zl=Y|E!G?~18sQX$ab1jRh} zPwd5SEPi-2G!w9Xpf=Zhe7@sPdeQONL~ndMWM2qBu+ss&dvsmjsu4M;rbdV86 zHJ^SyAW#&wY_I%nZ=0YZV7I>hcWCSSto78;;HR4b+kKu}9=Mrwec{uCQt}`m0^^ zNv;9F3Gx??SrI%s`MYwvAp&X7A1jiZUYzWc*E{iN1!n`xj6*K32*@{C0i+7@9T^QV z3H_1w+Kceagks`DQj#I9XN~jL{3PUL(1RZ%TW^^`Mz5neXQYOrIek?>C|kmAS-|ds z>6_{jpuk&|8Qdbg3<43~XW5i$4}M4SY=Q-nEW2btbCcQmN9XriqNgmuQsj2yOwlBb z>d4LIj#;ZxL_cb%7yc~bK0QG8zWO*AMDvS*o078=6kZWU*jjG#KktkPJlL9O-HWMI zDU9d4oHlhzeGkbq;H`Y#3CR$8*q!jNVhazDbV2aKijZTI=qF9O-_ZD%N(Ea6oR9Et z%D~{&bRnHubFK?Uj zzANTKC2`55@nT`-X= zFRa^mg2saWiuA6=7^(^Q2k@L+*4Go)`*k1x)}O7S)( zrnvRDxj1QOcq_3kK&vP%Djjo`=c_jTxTI;-N4BSm!%<~I z@Z|&n$p@fpzbt^v1zf9{+-IT3L;BWba437^Hc{}G$DoPGTx|Bm2X>GzF$K0S6G|MJ z%MSI+3TB)UP&m?tIn;k;`#&v!ftSn??T_YM3eZFXn1^@^as#Cv{tvhDn$KJwSgLDUy|8qlWRQE# zWK^E~-0XYG*3rKUC_bm8^wcj0r8I<6QS}Dmwj>4~SwaREK6SGIm^8Xw6!pLo^(HzY zm?ks`v_;L6p3eUI`;Y3zTsHNX)m4m$T|vqZK}c!R6PIv9;a49ypu~Ns_bDCU$Mlcq zr6XNhk_Aki-7v~#?X^@82>ZJ*;;{5DG85G^{5Hv%Qa8eGP>8za(`(}OJq%rQGrw%? zGA0yqD8H@O>l8sHtkH*Reoq+$yoSle#1Rp{sPJ^;yhFv@)T-=KJwBbbF`jNbh=MZ5 z=N#HB_h~t;ncn8u6yN(+u+h*Y6SinkXNbCgK8v{=zV5%iiVHlpi$6V>UB)A{T>ZYy zUjCW8xCdyIT3-DBp}RSMnPhVQYzF;CIh2Y2Pho!t5(zk1yD{NBN?GrYv^iM+Co4lV{>7-s_!u2vuHbd$)? zvnb?9ug8r}4ltv~w^N&Z_O@fH-OuO!4!6&DW{qe0F_kkJMX^mYACx9Hr##uFg?BFo z4JG&9ug(Ry9RePf?HNK(R39H>by8OIA=A#R69ozwK8h;Kd_CqFgH2nr7k>j_20z&o z*cwl@(fqB)yC@da$fwt_ofQcc)Z}!!x9znkBru6l+kJOmX()Y;n-hDHF~+n}ckj=_ z$iIRjr!MVroH+zvH&dVqtYk$kwpqser<@}8T#~XROe)S7t`^5;^1P+_!o3!qKe-}s z_F6EfInk^J7F$iY*>bA!05!7`)1tia(4(<;)qjkL6>r*BQIj+o4OMt-T}CPL&9=ZR z?dC&za4E-?-ws%u-Mz2QE)|``nx+^4)^FRyfw1LcUFy8(Wu9?}cf(!%(0|foP>=Nq z93^rX%JRJ$&!--Ib7fuGx*%JdJgAJk{CRyiNA1E@0I{>*q8}^}*(ifcv2r8Cpq4rt zzZev=DfBuskF)g@#m%EddVZj5p$ueIkB%}bxvjJ!zgkm1{3w7N^ci)mhdwF<{LOxg zgt@E1xszrfk>d3D41Sk$^pzGFn^uc~lSN_R;8-)(DO=-n6D@pKT5g(uz7V*E&Z;R-+B$hz)YE2py(;G!gP$>&07O@J^tJITW- z%KXH^wM)^5*-PI=et6gm3j(C;=)B$TMbNt&H|Y)jq#F0UkpY=WvBTxc30bg>qJ;#GG2k2y2SIpuSulQE5;-8$0*n4s(BWDUMC+DG~&ze`W4?K1Ld0x|vE70m6wzaId*;zEiK!wVa zefjJ8vVb|Q_pgL=dTkFzwiRoWynBoVhSP=RsU4NKEH!VM2#CZD&ChclObjWW6;_Sz z?oC@hiK0FZ`IA&4XSAItlAZmkX0z}{_|E)U&1^j&^gq=`T+2P_87sA_N9veFQ#=48 z5BdCsO77pZ4v7v7q}L)l^~f#gYz^-y3G-3`k+5KG&-7Q7)7K@F%5OjNO4ByErY_?; zT5;Qq=<-+d5{jJ)u|Lzvw7Rr$N+Qpk&#=r|y{c=AYVQ?S+N~-Jn^&AY%V(J{wmE&> zjc?$%%p@CQpDxShA1T&pqPL2@tvHA;jKMOdmjMk3;qc z;e$!p{=~S{*Zjex1`07Q<8ug==Lfi%4C&@!UZ(1Pw-F{&E;eIVEV{MNG|{`L1lR4j zCU!ZrX4<{|C^dD69C{I~chu^vy4y$&7Z>qG(2}7dDD$c?ed>-R2GsT=q>vSy1~4Vz zzdsUS%io^qO=6{zg0K?c5SaRSxeW{o69ZGzp{%K+xnXcIOc9z@7~_O6V-+^!vQ@+Y z2LakiDk_@3#0ymiT`c%(rX7k8V?oUHp^Fy)@oL>HR`Fgu25vL#&Rv1Ri9oUzFlX;* zBFE~7IR;q_((ejkrwrs zXrw3D@iTcRr%nf8y^(k@GYF&z1+f?43Q=;n;BPy;a-Yf@1&=zyU=jn!yr+3&9~ z_D3@&mOC}7zyFvA4lsK7Lg=o@kUmD=>-+O4$!2P)r{&XwzHT)ITGlYej_6gtpDvT7 zMLiR4=@km(sSrbJiKOAHzS=|%%)2YZc^aoUA2-<__fi=uY5e|0(0DoJ7=NCm^xc0iF z`~uVM7PUM&fCx}q{?Lv#NTB2`^@XUbni|0LpyT#sSz<6wNGc3nQ6~x z21UE^e4mia9vUvGdC{S$VH=txqFGQfKIw2@S85SR#Nu)JY8w%$SOe4LTD3cZ?vkORD8o| zW`+1?v6{Q%_F-`>J$31g28&!D#G5&5SsiZ4iJaj1^13~WYMqT?q5p?XKi~VRN>jPg zUwU`zGN!`<1PsF#Ka;*70?B))9bt`|u{AS_3UXL_^1EMtpD+bjGB(HK{@MIUl*MY} zgVxIu)uHPePph+f+O>aT#!~CVBDJlve{Akg=$EHfzgk<%=q#O8w&u?MMg~f22tfCF zW81_`$Zz)(iT29f{^``kySry&HbLGVGpDOrybY9JjlyNq;8wHb*#_Uuxvj?7Nncsl zwa!wWA0j!o{uAO=Qc`&?e$QEyXLN|gtCMiAFFp9?v;PBYu5xoo%+(C> z>bg-40HZ;Y%*W?Zm84Q$r6$!)d&w8Np+^~(F4a?zHn`uW-{Vk9z;d>d-=OH)!iyol zHC|;*ZcXUefAmA%Xc1c3+{f$gQ>FA~^}*GnKlVSH?+Vy=%q+xH^7S>@7j1ZRn?m;C z=naD#5>5XWzSWSGrb>g8X%smZDrK3&{>=xAtL_|D8)<$h$K?%YhNw`mSqw&l=;eK6ZP#y_^+Mx!T?fZwqYhbzgnr+#EniKB!m zWSnlXKW_?zv-tKGUZ!l<1hwQ*OjLp|a2Z_?*6Q>;qMkcV9<{J-2+b-?=9q@_Gl@*}QDI>Jkw z&}p=#5hBtlEt(M!>Z>4V*I?@nY$ zV7XU(&%u7OLMpe?r^zZuJoc+UZ%*_6)@JyQ_yzf>;F#cS6TYz{47uCuUHMA2j$#`g zZt`TrWyt;hq!*Wiz6HV)Q-qWmDv?OSO~hgTRIhgepxf}FKWH+!TomQQd^^5XksW1@ zux)@|{U07511MGd%wsl){HZv&a^lC);jU5Wx~t9698mjwx^g~yv{@!c=AQI8`}>9Y z;9%`;Y?_${12uJz+&fk$?XmJd0!dzc&OImrc&-WCSJU^#QBiNp1#hh}%2Gu^Xu+dz zuZRp))hVc2-;;Pf>eW1r+7a>z)WP!F7xXP{ijBhUoOGCxdOQgSK&!xKx4P6$FC}^9lbsu?hCQxj zP5%~U!?0;kMlzNa7^J^-Pb{S45Q+eQ=!5EOxy5qBgsG7nG4qYPibO9xEeM>z(Co-T zH-5_xLW*V*Kt)=&sChU{>yKJ0BRj^HGVsW6*sxX z#-V@1yO4~LuD#TnBC@6JvnR?cRDJ5%jJoEv6v7|eb^$wxilfp&It`nJ8M(@6v+vyQrsx*kxB z+tb>)kbJhr>QtOMU30c9Y#<$DjyzBlNYLSt1xm0Q?NBwpeP=`6vC|Np5eE8n`vtR| z?F)uT75kooRs%c6d*HTrBk?!^(7P*267N`_gL5!)%DU9P?QX57m)teF-#~;@R*9TC z2S@_J`zO#L(tOx?u^+{z@5o@t}A2+|}lM7 zRBVFm7O)3e?UZGaC0*}y|GL(Vw|B=iaf8T#VcDJe94U`aYlF;y*bc9OYUI7Yc98#?V0~YO9o#fWjCH!rG{&Y>=iw#|}vX3vhs4ehu@%lp43E=oS@1C3XR)lCy0sWsO zf5Rt+OL1+;CvPU5v+6Rq46`Z?oaK#*2M{Yq^Yj`W?o6IX~3ygeQhxC*E z8TiV1!C?)>$fm&yUZ%mm`+nl4^VzhK^6r_x%9`vaK8J_bfN^~#ixIDiU#)*ryurNl zE+^j#u^TzPFVga|k5{yQao>-T71Ouon()$MY!Uhe5#T5xZ~e-&hjbS3gR^O`^-~0E zmi{&1$f4S?W9xBodJueZQgab#@#dq3QrIY=)O@5hkX^~JB_FlxXpq(Q;P#^i2d;^o zoFgu;!xlrXm0&Bi|K?ULD;AXLa9}h)vy^E(Am(YS+cX+m=WRIKZ9d&4hwQJYkDz4{!Qbjg$0Qa2U-@-U z!~|4uDH3wa@r50;&kAtwTveD$n-WC1wrJ`azUF>qBrS9zeOViythHA>WPz3V^P_02-QmjCSp_&a zIH90=x_XgAyWn>GoTk2>R!_xXi3GE}FicNkzpZxqAgdZN;+1Go1?G2_@!Y^r#5zEZ zh(7GDL(dufKvOkoXJu(aSM@B=43SzGwEFW)*oo}(S+^S1!yU_u`Ps7|i*)(Y=JWT- zM#8DZHSQ+T(eJRHNgr)FyprtcGL(KFKxk%u`C`g364?vX0k`?0B;4SiOYu=rmuNZM z9&kqc^{$0fPD8w2Ojh&iq$KljU95Z|pYH$(`LoBH9z0f!?wO5q+%9_#k~cwR$QixK zgUM<|WrfzGZpTc7gT9D!{qTMiPJz@@fiV(xf<@bqdhks?hGIoXDJW<{ozU0dkK(hs z!nf>(Tfjd5M~wU~h{*u9r!ua@pSN2JUJ~RH20-?{gcLyG(7@|Bgg!jJ2l7DTkQhF? z8F?9m3<--v_7@7F_>eJk*+66z1H7`~(?lE-|KVJ}D9H_J$c4%%!lC87hbfH57pR3k3#?HHYxB@BVqqsom zCc4z0>0WH}jwd}MT3}gWeE{XuM)(r>6_?U9%gus>%_)UtN|eJd&yUA@#X}QaV_)Cv zb=shp>SqsgYt5`Xt8C-f%$$^k)EP!G%R->}4yJc{hbsL&TM-QV; z90DPXB|=72JCDx|fQFJ2#P0xKlHH{dlB* zCrG4-`7->KOF|JxhoepkZd+nrWZBI${Y`;m;d=iZ z_F`|>Xkcyapl#^P0yDat9OhS362JPx&_!Z>TzGEA+xOp`+r{6JKx;Nbo%dlJG17;| zC4XL}*p*rJ;r{+Tf1YLECtnmqE;aZP`q0@rc-gkR88f43ttuxk-f1PT+AP@^Cg(9W zsj})))fgJG#E=`hRpiWDfBbiPQT1qRfH!=})+F7$j0d>b{#*9;*_$i5lOSBin^S#u zCb4Od$zo(k&dtUle+4*6)>qYB5La<*5~44|0-AE(H~Ke;P+V-{zZ?7%?TOBDBTv@_ zt$*(HAec0trBXclgn8>Lj2#rd0gZrrMeI4aUi+V`u@bNDua_JrEWQUD@fc>dHU~FM z&0204tt}!fgX8BWRnmuk2l`j@{77&)*g88w&=Q@hCLAvsRC{}B2_sXRN59QvwK;tJ zi1c0;=gz7JZImtXfoF;SNdvs~VV)b0&pTjjoAWAnI&(bj2M z_+InRx$W|=n#x5LtA?I4=2x{NnSLk}7avs%W}Bw>6@rYo08Kp|Flt4Z(AFgxOX%1W z7<}=Vr{8=ztiaa*Phu9XpwxRZ8!MK&7By5!ZaS(|z1Z~#Kay?w+w)Azv}aKciGb}8 zM-0wR!ney*j^ao*p-1h@F3KH`+44nEc)1Qc4#Y?>8JplG?MX}k7IMI^g&5oH>FHhZ zumy|9oI&ww;EiatdA*G6I-oD7jbT^5iJDgMzZV_A#himh3(^g7>gUl#K{z1~J>hCG z5XOgpu3WFBqQ0>*QTn~B#LjuD!tDNB%V1>M1C;Am7p;|G9Ak#YB^DYEcAbA{)d)JJ z+m1lr4_|~v4A1EQj0aH0VW=)_h29&fKU8>)X?La(5jHg zp68Yy+IOoDs|pM7zMr@nGTj(X!8ad{grQ*kN?I^5yP=k5TCPP}x>LkT~+osQG+E{Jz0|2hEgzqc?NTL-M7L z)p@QkJ2K$D0;2-3Y${eoNaWMoTs;f+i16U zPx#ZU{|27yTpF;#ym6j;cX zf=l`J4U5_sk8m}V;dnK)<#dqx(2$Kq%6Td*AqLASwMEl__n28w`30o9;URfrSDs-3!ycKq+ zWKr%?K3IO)i%ZjF*mtv0w$_J4yy0>BV^e{wiMaM^EReT>wMOs?%DgfR9g%4VfH_>M z<<(baZ+xv zk5C*!;MSy~e-|(+H{Hw7x7f-|d0~_lHLOn!3X

ollxc6M;O3zH43Lp`E&h2%Y=o4Uq@i{ih7Op8BBk?Y08~QCP z5Ag2Qn~+&nkby{$xrdO<^3MN37LIJZaZ0!6FEllzB8+Ov>zmVzo70LbhSE|-lyqf^Rf4L=e|C`BHM}%=T=Zg#>gDo7 zU<1St)Hiq_e>~QY$MzaQDFbv4x4%0g%6?M4i~j|3j|me8A%N z-}dqC0C!UBcvKw^ff@8R(}v@T2h`h#iU~Uwt7g&^0C%$UpT7L}co>#6@nwo8!rEVC zI0m(iU0?TKR@P=+h5dwmLrb4k0`|fKIxVvHKDDvAn^_@Nh#uemLjM+@3%v_gxadT> ztw$D>gVmn^2@d~N&|S+9!G^MVwj(|}zESSP3t0s!VA@3MSw?Yn)7bcbpPBv6z9j3YEn>?`sgSjrehd3hCHp z_kGIb-b(gi=ft8tyPK~SI|$OzMmhK=abvSiR}uafS{r#&lSvodG}Gzk-Lt~6sKwmr z_H*w=eZ}Tkm0_6?J>{{EA55rEf~*dWU3q&uw#UEDdPlJ&q>OoGpyqO!`10Ej78(@@ z8dfV!bvzRL(Njl$00_Lg(Q>Ntq=DP}fB&tBPe{_ciR?nqw$5^VJ}K!S$5xqy$dRZT z@+8d|v{jmHTK8o}V{;!!F6tVGLMQqmabjt?esAPdZpU@Zi~J#chB51|ZkbEUB}Rh^I;+FJ@Gw3A>uYA z`Q!22Q*z1n&QneZM}5}`XEF@+B$D?LjvBRaU82cZ-7IL&=4!Uj(#4=8`m~sxl78#& zkr31LHg84#hX_eN0hB4ZE&*m`@8@^^9x@?;jCzvx@0saUE9!OmSjZx^4qchE7JW^(=f4g+^z=T6)WGCOC5*ev$Li4k*g|E zo!zL225Eup$BJRPrfu{(JB`6JADd z*+G$kJnhjdlV4v|&j*@4+x)seDr))bFGG~n^lZQC>V>+}g0bNe@AKQo(DD{uHxHgl zuXo8lc=Mm1wf9#V{5I-1+Y>SvIkbFTa{gcqLv{aQ1+O>q)`pj`+m-+8R#vN5c$ko0 z)1l14!bt5<_VjS|a&hL^;J%kfchqC`PV9$Ux%|$=%{#vR`2K0EF|@yWbtQ9Gs?1yF z28?&8q4-bUpY3sHY($SY@8i+gn{D*a7&hk_eT(Q|1Ccjfms=1RQ58NXDNkFO^jw9} z$2Y4SLh{a>i)rn53beLb^sdfLapyR;6y(T8lFZM!_NO>?SRLzu0|drhMnwgxn|U5* zL-BrxUEgfF1L)6;STw%xz~zVN<_}5r(N_58%VntEbhMS$=t%HGb7nw%M6u1=c#uf{ zL_L*b`|ZlXJJa5WipXuI%xS!K!Wb5@-hm?hfsV#sRzIPR+TONB1uxG9yBr>iPq=zl zgR>25XfzcNzTBCDFm@m^$F&hI7x}_^_+guTj1Bcr5rIp-l!C}BuYD_49CX4%&C&3= z$xoKct)8p%nXCMZf7=5Di5VKh6o)yIM||@(-#kn%k$nsm&o5LC|3>0$FjAh;Hr^+^ zl^*PoYnP}FxeNghH=v>4!;{-_^?8ETuk@;@_IFmEIWzWimcK#~~_360giNoev9 zZRcw%U%vD=A3p2Yr%!*v;Y0aZ)%oYfGv$X&{&8N{o$q3=qB7(kwfIl&v@iZ|XZ1tE z4Q0nP@1v2MC!W~HkMpqjwy))5K^E0#`>GbZXDuFnfoD6PkP>XVMt&#nM3KH)Jk){%m$x!=X1_SwNG!=bZI*(dg$KLj7pfA0vf;S7JPRvUbS zjyrC~69_3rr*v+6BjcFV=N0MCm2SKh=s)GZJp+1jG+qJe4;K5A@w!P?Rxuw%U%xL+ zd4CwWE|ZGB0W1VAXdA~LcLnS23kxk1k6{uBq#Q>$5Wt`Eh1v)HFRBN`=B4rAQnP2T z`H&!g?6!w`lj)A}@Y4feb?`)`c|BC_s`2sq z=yb=?1DD=79!kIR)-kkqI4ga;MB;eJQL{wlvU-h|>YD$Ah%>VbF8MDlE&=}g3)8LWAr?P6D5{8Cmw2fHPK}9vxh8a1{ zD5oKt!=f>iTBHMuQ8|oNSg$P z3qSCvrw#Pd3Z<+LSsw^ozyExjavb#XpJQ72CK4V77q7OBoBux6Bt7)y^xTN=(IGN{ z!lkrNTA6O6QS5D+BYD*b@{*os^%HBjli zC&?x1R&xxE`Hx_rwCf{cZk`gfKNh?=7Ra&M z-BV%rLI8r)byNf1DRQB25|gIt4t%}kLS{J?{w#xJLI9SxY<#?YtA2I(rO9)~c<3&s zz4zKn`L(&u?rerQm(6Z=m@&+!(2dupULM+Kj{WnljqTBWjcl8q+HLnc@5`rJbEL}e z9wxqU(p3Dcu7)-IVW+~6=`0)F_qZhZW(1p?ub`Ab)7Ea^XybTKgZe$C++yZY@IKZO z!g2R>2@amKv$Kr}moF@CZ1=dEcvsf=U_?aoQyxP|+_x=1!ncC0aJzmLWXn#@VLfMu|WV zGMUZ!nGUC)eTK}^79)u(o|R|53CMhh7Q zBBQx5D;OdrV+g!VUaxL!1CC0iYO3-u?=1d*`KIPH0+Apl&V;@ls5=OlS0H&9!)1bM z-m3`YM8FD>hlx|5LYQG2s8u~?QMAG6g3K-}oa&*+Gx@asg&dF(R!*dWXJf>f{Pkh6 zcKj#J#-@)SKmH?&0wcFM2=)eY*(VDx55-KeT&UL4HARsL}vvF>QgF@pWeDois0I`OC|FBnleyo&%Oy z?T6m}X(aDFcp_Jr+Z?4bkiyF0$uA|o@y z6B**BA`>X2eu71(x@_U9ZL4wE?+ot5eT7jn$yOqjbMm$_9b7pjOlpD44-t7GdGdV( zA|-jUqPwEETuT(;g07s77@%RFO?uLS-QmbH!B~!Mp$jx#hdg^H@L!m0w0b`~+;^#CB5bB&(RY&lhiXIGjRlkz zXtXofmkOoIQ*UXA)avT{G*uhLoZf0wT;r=)0C3~LyJYxE%V8CU8a1c|kH}ms3DU(8 zhH@!Mbb}-%JdnFQ@}PU%7Tm<@QFvTR%0RC&D@OxrM^!&(G%x&=^R^ERDIZ6gMfP>_ zwa&1pxxae6V>X|+wWXLxG$ll`-ju8J|?1Ic~s( zyWI+X@h=WY3tJV3mTT(4+${<7iyEyO2O<*zp_19dtVdhr>9`gqT=bLUI|%Ui#!$Q} z7&*YksljeyHAl%(@93`gH6CtReWnPEBN5*8*_AT1D(~cA%0tR>iAhq~RER9WT3jo& z46#U>j-HjAqHU~>oS@5=Ur)!#|NAffeNCEgO8J&@G`hIlW2>8z3*$-QuNxl+V?ykn zGSo;2!viGZtk0BtKbspJ^#v_()n=ZCJ`squZBq4!Z`!rEy)3bStf#vZW`jTV04v+$ zq78{cgf3*OCB3*YqYMYX7Gp>twR9&Qmy|U=K7LEbt2R31V6H(e$P8|n555<|S*+_| zid{gu&E&3NyjZ3g0LD6&&_G-8H@ibZQ>u^DjFD$~=g}TZW0uAXy<--44>unT?97_T zvUL>~O4~#GWeu@GuN6p1pAL`ymJp^(C^Q_SV=of#D_3-UxcoX~VW2;Rt(=HLQ!)7W zMfoG#_}ne|#a3@pww))WvkwM|QS515JXb5PW88aVb<%d=t-p9{>O(W<+b%Crlwo4m zp9jx@&utrMw?{x>XmpJzbo zbXv`LEV1O`$g>ExtIMONB469TWGt0x1rja+19M@()-?tdd;Hp%#^5T6sk>2C)AG62 zql=;M=h~Ug5_wL~q-b3!u$ZW2Nwr}sk**SraXuVGvBCaLDy|o&=T4x) z#Gou22uDc{)#O6k&f@_b@}<@EYL<_Saj_lqNF5S{nMJ;^rif4{haBQUN zS1(@9R{Wfw%hr6Gk4Rs1IwMTc$OEPlTT|)k5K(CWCZd3b8*~Ayn+ZyBq^n0}l=B5} zasoiMxJoeWl>W}u=r*t(4?0QL6F3*c$v!!lL7+0w z^4c<>H|*Qd%7gX=pB=D%7seZJ4sw@zJYHSKX!g%yYn7oqCsHXy;8U|7zuT)#a4 zRqNuwE)W`&?NeY(E`SNvz03}4F}U9rz!)*W9LUSHoyptziFRbzhEWa|Kj2U_jc>+asJ)rkqj zUyxZI8O_6@saHFdx$Fg&(ouR+0-yFc=TP8t)i@;;=ANT_3&Q@*IXC=@8eqr{0LJ2S zyG5`i)-GGS#9l1v0pX1kuK_ew>*c+WHLkNUWAk*fVh;!b{Lu(StbStXWfMC#i}g$__-K0NbnV$c0<@ zkX5<<8%~k}QRN<&1LQ=y#>Pn!Vu54aT_2?Cp{gDtw5^R;Tml8!GLRx53&fI6c23k_ zE^vKbPs%qj_$*@%j@KDJWL>57e?VduFXyeTh%Hs@y?&Q$D>TcPeCs>ryV&|Q?9xHu z<%oldTI!a=xu<5c#%HTqK!u-k>A+~6)bnAFP1P1g&?4GdHUvBoGj-fOQCvku>#83< zEdE)_doI!1ucXA{5E{1{Zmj~Un&`FP0{eR(wcS&u@3N#Dr~rj90O-0tE_$%fT35DfVotcvhH@aMEeDGjP3C z=w0wgCiqd{K`_|IhzehtnqU5Up?-aAtyNutTx^88Yb!ZNfApgwAOUt4?+QY4iKGr3 zSC1P7oTGMe;0RiBL2x9A1r?DuCFK)?C|yN|`E?3Bn?bka1L9JoQam1gK#a&_z^#HQ zx5z302fe6#&*X$Iz9g<8>5LCIDld(yXGK8|tzx)<(9u+&AZAo8BM9!_odlfuZTMI9 zl9UFlbk|c$>sHaw8yL#zO*suT1 zG1{%3?)*OK!gWs+Iz7J31z}e{HQ^ks+@s$xuxLGAv1js%!Km!Mn89W2L0zXIFn>y( z_MnO6sE2BSNdQEJBvIF@F~tOk1E@tfvmGFIw>mafn{~!=TwPt|bx{jr2cXFb%z4Cu zPw77<$nSe94m(!>HhG~pGPWK8IOV$ceG4;Xi?`9k4(5{XWPVy+?psjTXJ0+gM7&)! ze)i6VBNs&_$z%@ledQB>zD)5r1NgV`sS8mG?>nhYM#K;csv!(5%E@*f+s~9Rdu&B?CvW7gL@RNNC_C@)PO5(1Uwh`Bmdn z_ZeG?bKY8Kc+mNMswBEf!q=SYS5vfLI|-$tcG`v)W_@fiy7pU>2rS_MIs-1+b_W8F z{66I5m7SYgdOd(mdG*<0MK|+PBRfi)V%ERZaHcz-AIN+fBB{xxISLt<5smx|i+k-seoX7#lsAx*}(dA-X`zG2%N}_blhFm$>!Kxxr_jX+&o~R?O)1g4$qC- zZ;Yz9PJI30PKK>`E9tFwRQ3JML>!TWB@vSt8ZED`a0oeSDDaP~ou(h0+5M(9Odj61wOyGCjaO=S`x?iF z{ukM2=f$x>gd0mTNk(Okmo!AR@;(g?!ru3`W4jh>Yis-ODgC$9Pn1#B2+5~zWK3XA zyXeJo)dHtpK@q_$B4HLvqZV>P2FIs9 zEJh*Q=DJEwn)dv!yF=T%HhO*O$NcGy+35o`#!i02;nZw{pj5)-r7gu?wmH%Bl9Bz+ zsU~!Ukgib{EssVt0M?Txk-(&;@~y$A0j>0Ju2hI?V%gw=9-9!b%2cCd6BQr6P^DK{ z8ATz*t8$fqV`MK4WHJ>A^nlY9g2E~~{4l;QlOmnVt9|2nC$~e*ST0ew3tT7uTaqzx z+&z3^V&DCc={|_8I3&3-W52dCnb3Ln&BpRZ-C9Te%EirplyjaPFzxKQH}RsAjdWf; zuNkhyCu!d{ZQsnhZ!60BP|C$&xLd`kc2$KD?XpHi?0yVoHxY+7!*gN6W5yA4{N{2q zEv48C>YzPtR^IYQEf`=|CcPs&o4&XBQR{|aSL=R2gA8d=1T6)r;`&8e7J&)~Fr~}^->5rW!jtl0$R;7)C=vLq|AQCtv5dgfn z)rme43F7N#=MOH$L~YPa2y}z(5R&K*Hpl5new+^KeiBvkVSzbl0nvf;MZ4CUDKFqy z0gRr4n{9MzVl_PutKkqTXwPnc7F!!C;|lI~3iD|TQC`oo?t^)EpimV7$u)H>ge`%e zPS)&U>}kDz9cm>(vm5%GKV0_}SA6>6NaJ09Us)7IyW$il3_*YLLtW?T?ku}-czwfl zp(HN=%POv6z05^ERF7$@c-`|UMvA5%LwXL~U)T_y;<&%6^$pIEL@0n0U4ux8yB>qy z)xs$*DR;>G-MNptX0w)cEB`%(p;w2|#43F}mk6R$uDb9rL$17`ObGi1oYe*!gZBDQ zPrT}vmOD1aHzw>cy~4c>IsY?j;6s!zEIz>%3IL3|1?Uw)mn?B0D<*-nsUvzUmhLNW z!e4vaC*^DAkzFdi_t6cmJT<>{h7&0F5_C;kDZ@hgh6&dJf6! z46V}+`)KFuT>wN5%s`sdMLj2BNYhaFy9Z)airLI#7{b|Lgi(edsCck8Lg|5kODRy| z`?s?L8P98(3Xn0<97J?077$=XD46qZ{0o>4ax1%w zHtiojIQCL9wr$$}Lz?wT(cuSzg~_m#HZ~pj#f<+WjT&s~1@gk)rl7a7UmM$JS0-LJ zyUKyEL?)?UX)6^mpDc_9r-w#F{Tg2Dg%jG)?EfutV`SQGOr3t;Yk{FsWb%C~xQ1O$ zekuPLW&k>aiD5!|A>#Ys^R(cm&)gMbotfra{bD1e_PJZouwP_<|dyC*ymBjJbuO|2{lv!0yDx>#UUo)3lzxlG=ketW%JGq*i7_4>Cr6 z;js@+&Hc=qZdT6G6>@FvRujp)@PtHWg=;9!`uVAHSIEf#Gqt zBx1G^{>mV`JlVyE@SHbEPbpN_LC5l8(!RVNt}Z_}xh zuP4|?d)mwYDlP39XVy>2y9(7E_!}~5c!Uag`FIdc#wT9UNKzH&LRY8QcnI@tOtrzj z8cN$%AaE~^hLhDO%`$OUiH@ee)hw(6JGczvASxb3N!+s*pD*R)v6}aDCwOYhmvm73 z&bS>MyS_0YoWg{(2iC1Es0yVkm)akDAa$xg{dZlCc_1zTTLTJTa3P<@2F?llkHRW8 zrxuudZOAzgaLj58(4hUYUyi&PJq#fLbpLhV{;PguynfhjNiAL$}5IXkrCA5iEpA`1cC8G0F z*))u%P^=)*iVt0^D4rF^%x~r%c;T#}OzO61DsoTq*g(~aDl#M;v1vM3!8^UNp zvpRJw2ea5(0N~)g2))1rhTzIv5?=zo44cZe&$r_2oeVSYR53x;HSIInt0eDtF&vH<#Z4p(+(OLi}}Edn@row2y`b@pfe`1oZWBAi!n zP1Lfr>JvT%{juS-0TzFNL!=}HWPd8!#EU0^DIeS2OUVg{S(?#)AT#PxzmYGsE)e`Ex^0%$HS*$ra*jXyg90y;s^5 zfV8=?d(&|`%v5-g8U7TQ`p#efZl=U^Fy+0JeMX{Z>|#>fXr}lEBaw}m8lL_v=0RFWp=Dm9s9_E1+a5oCkJli z^Q&J&-D)Ifo*;v>U2qL0AdH&*MGnN>d{%UQCzL^YA5GXUM5$>1~>n?39KUyGZA6`PvvY z4N>$?zb_&4;`_IAaUcbD6*uRXZu3KB);r;Sy z|3d4}gl0<4>X){q`Ed;t@29JJe8?L0nN6^V6()osVHS*>%8EKGoSk4tzHEa_ zY{yq+37paaQEO+=fWU8XAAGU{nJgI*%#O8FY%Pk~!Y9hmJe-}@rLIhiiv-l-Y-ueI;;3 zzM#T(+^lIqu5&4yImjv%GBPkp1L;qg|HHKagdN1SjHo9GU{skxMgIFFhsVdN&L9m;#G7c@w0BXJ9ws~2?G&OqtuO0O5kl7o%r@P%4`hAje{}d~t zaq>12n6uK53nKXV#)Jr1uEVibNY>+^vyy#4Irc~L` zlxQ^y=dJ(8o)HhOR{%5cRFd+RA`bxL@5*laV;7O6_hrP&ZvEYY_xgXXy z`MFlg2NjnV_Af9yd;J2y628!le$b78`#^oE0P;AQ5&es6qn+~l)#bdRN9(`3Q$g@% zR^eoJ$FrUu*@hh9nB?*SmfvSeAIX<~(-+Gw;+Ba}=gb;ZF%JK%uV*%d7IUs;>PYOJlS@X2L>blKs|;DHbzN zc3CJENdNO-SPtdWdP0=^OTjpaCI%h3vni1| z92hx2ngvH^VjwCIuG}KPw78$~@c>?jmLMXDri^nZLc39M2^f3+QvF8YMv2Sgn}F28 zWD1$QiYU$I-;WGOAyZJ**;1(H9M};00uUi97_HfSA>yf>gjJe|>MnBc0^TJha_R~gzl{t!A|9FKj`+_PX7%(Sv#;gbL=0eL zQ||ZjT6EpneZ&HEF#(0Zbc5gkq>hOiJF5q2H#0wY0lI`ZA(1cEFV6$lv#B=EV{xB6 zkIh~OcFmQSO1&g{^!_I2;kLQXIwqJV%8#ATBz0fe;s&9MT;T9O52aP!$sf1OGe8Xu z=sx@;gBczKFsDgaBCisOogf?l3T zRprXU23Tp$y&qmKYtEYP+e(~ZnTnYZwQkW4wC-h^NxDIC_*?T^*Q%$0`i*_Y;i^~? zprm^bgQNM-sd}W`yBMIUWE$=U8|@iZL~9R|R5wK3zm1jGk9t6$rei2T`P#tBBOnmg z<6Cf*Wl^3tWQ_| zjadb&K1GrHPcySNlJ~_mX1#D^p8jX?>(J6Fts9*V@6%!nA9n1s zX)fw-l2|xPCdlcTl;lPQou*#XEKB)`!N@tluGO8~O3f663QTT0r?v|1y%&ns=MqkX zL3_NnY5w}{_{Ie@L#UX7F3)&Sn}+CK8RS3=544L+7?HA-B$m`p%Y~`eG}-&IHoswL z>n*l^S9pHjGX%Yb^rtd(AHuUU4)$4(1^pgUS6A0=jVKPwy1e|KSr9}9C$<+b>;0w_ zhl@N2+(vA_B8f;w!qKrX6r51+!iBME_vqks~L-;IF+9WthYzq<6Ji(0l?QnXEG4mYIjam6TKhga9`( ziNCgB7abn=41y2x{w=vRa-z^|eR6tZM)vv$aeA;;hY=vZNupl^jQi&kR@&+d zI2%4obP_}7yD+M8}4j&g$-iKXg-%| z2VqGBT*0>mlOBOtwJF?gBbN!n44zt0#jy%F8CN3>e`=Rz-E%O_Tr6^(Z6!4f<^FKVxM)9uC(@O6JK!Ais)PI{+UdVqOC*$*b z`ax-q;386so)ihY)Y#pG3MI}snA3)|jNJ7MmY-4kPuF(;jv>c-B*A=k$4Iw?+SDuX ziy>M!^@2SeJoeQtFn^4&v;9##V45+wSA{L`3&@T@d31UH2F!Z>Q!2kt>RT&a%!&!S zW}7056bVbe%!d`&!I(psJVHRh#B>Z$m~dO%%w1sAr}n7-j3<4XPs>|ss zDX-cYULzZ!lH=>(qNSAN{V=Dz0D9X zcDA)U^|;>Wa`)Ig?>VdGQ<(wb-3p>IDK;g{Pj_qk2}fVD7#dE5Z8(as6TkrXr9vk! z&}`Rh`)AtK%LpS@zeEVVZ&mlBd2eOC&1S~y6Nt_oz)a3BuY6T(_?FzajsT*5rq-_% zw1oyw%!X%Zj7*zA5Rfik9-SUn}FabpHR@7U5{Zt z5N$eKJuSFv9dm~v2r=Eetos=0w#HriAxKvNWeUqYLZTl zlf4C7U{k<(BWuw<@^BK@iF0D{OU}Vx5N<5Gu1aQpv+0Dnkf~94a3a=l)(~1E`iT$O zpUWFr_FkX0w{e>&bt&lNEimO%6T4D3t{;u_`mIsOWCZZ16s^ZGKQt*40hbGp=SXUq zHr!p?7d>d5b9u(w>a-CGNv~bq=}P@sw=)fZDoX~gc(jW!X&AFj&sYTl z#(pV7X=OL!F*^SpClo_e&5>B(T)L{V-qcaILfA+t9I%EQzP-JmP^ZTz0-YR;1+5Td zOT3E4fbR@>TKb`GjkB>3(_kD9boPi4mMFWMBu_rOHFA?w08Y9n`=)TMBJfNc*rc<7 z2>vvH+6cV-LF5D+kpU1U ztMxkw2NXKy&ZYA!|2Yytv`*tWPFB7N#8idc%qd@9S-g?$)-?&Ipi|5U1FTa1#c!|> z{|O61gh_|e`f6(;G;WZiF=@=qzlCJ9e`SVc;D@u%PMUe!O#@}$RSp+!KC3tG35|Wp z>d|;(-E+28ikvNNUIB`iIXGrnCXwGVHE=TlTJOoabEPM{uH^J!UF^)9>W#n z2MuQ9AD=03Q&eu)Ot8Y?VFyAE1-6=1=3vlZ!yt}G8ICmsbJ_ZKXgJM>TENF}iFo%U zRSb&go}YgmpA-*aF&uJSMvI#v6~j|~XCHh*G+j}HG$~ADNUQ1ntY)D61nZ8gqo9>u zdJm|_z=gG9KabSLSLe8cQEOipOx(eK7=$CTX(SG!96WB-u0PO=*~r;zam?6w7^}_`K!z(huIM5&i zy%q%;m1n~RFpN9Ql{I;fe##;7T+Y%(Sy`21^Apywo%zEQuut^J=vn1ey$qr{Vud0; z5O_($!Fi`e*Y(6KwOuA0Uey6~?BK@m>BA@utAkp!%V7smxc#UG!qGhhEKPRJ#;)$= zOS>mwR^=J$Sk)Y~f&;}Y{ilke_`{zMN8hJ1-iA%tsjPu&Gv*rnce%lcM|($Ki=Z%1KiXuvyE z?0D_{gp=RLxma_t;Plw{jPjE8E>Cb5roiX$-&W$mJ9XqFZi=ja|T4e8Z=!h*0d+ zN~NcN?jnxmP$@|dGV{f2gRm_6T9kDf?tv7XN8$79TFokj`PJ7wuKZi)ZN*l?7@>@e z4IvzD83#x{%5lBBm=>G^J`ROf;9(lf(0qt&9Rvg#RM>%XhrF5!vZ#Ft5DLpB<1zLw zGbAVyLWApe!vv>2HAK##4Ce(s1<;50syIe&g9cl9!PNq1gfe6L@&l{(`qQ1_2>za= z;X3aViwAd8fSxlE^T=j*&Rj1|{>&tfG_c&q|YzoB~jTRcqEQ9ip;382m;BgW-Kil-rt(iVuF??ix-^w?ctyI|)7SNs)Hy)DeC*^jveQlj&f|oAPKEiH{p9o>z z^z@t&-Lei0sg;Mz<=z`_7c2*BV>V_p1Xz#luJ0|r0AK=u-tL+NaNX9N1RSAITgcQe zyIu?4#h68}_cxO!d9j#~(_{hl>Q-N$_aqpg zFh2;IgsDtU#8U$tmO=#}ZN=V+`MVoe*JgYrmoA6d4NW|ctlDc8bg?jFBGk~qrqwG~ znDr0MM*7pZ4>4BtTTq!H56k81IdQEFu)LvCFo1!7I6kzbp930$;`dtA95jJK8jj_z z3tTYi_`)Ib7-;19O-AYA*!R*d30tm)FgY5H3e$i}prFe--^kOn`bS zd@9v6Y_%`F?%%E#(oZp<7`)xw)K34cTHO*)@i5z<$hXY0K#v&{SLr{M=K zdi<34c^@Qo8&**+1OH1?1;|n26M-9mgSLMn^W3$$c;ekguyN1l_o5sK+o;fq+v0Q^ zJc?%ncqa5Kg*U=vya5>oe;*bv2K$Z-)N)>|I7I<1Q4B>(9BsveMEMHo!nt3w?kcZ_O=@_KCjL__nip)V^qF#Bsb(~u6RHFUV&@= z_ZG)QW746M(5&T`63#On!Gwm@?;Fj}n^7^dP&5eZ( zd3MyGny%BOPm-2Hds|Bq<_06b95?cje_XwKFjwuu=Pv@>m+UVx&_YuyB*J%goCcZi z9&2}ZBLOH49&~c($&;g}y0cYJxnFYe6PLigm%66>4s)FH8`-t85SPCbg^N+s;z?ob zB3M`olLFs;No|MmfhK?x(`}viO&Vuq;C_Xu_l&_BU;7s00Fg$>j22$ye1Lu#q6uFh z5sphhz!%kySeDwLsp)Rin0IY%tdbcJqW?q8pNfqRiS`v+Kd0S@cQ~K2ZGbv_9xnkZ z$c@5{kM$f;e&XG(0qU;S&ukG`C1=-$?)c^0jsXx4b<_7WaxSD_#*XI-f;r?Tll?*j z*e-N;p8EcH*OUxICdz46eDEkN#9}cDS-Oj zXaOr!iNc+(aUr-n6M=|)h!v`;YYg`(<9^AW?qgzhABhwEZNa<8*NeLmzx9QN>P{kx z&jfjQ)xax)zmyelbeP7GDZ+p09?%P5h|YZGVvCs#2@B`+tC?@l8FAlYQofTs6R;5q zW%jD4_Q~3fr7P#YPYT;9X@6(8**G7_Omif4XBR=v+RA)~H%FcwI2aRty*)jyN+I~u za%g+HzN(KpNGKqa={R3!dY{)Fr!po|_`37wOS=SLvNrlmYc$M)r+^;ne#bW5KIgZm zd+C)=ejAEBSR1+g>o$oyCFLzP)$ES17UPpTzeXeA=LGA^x0y+Ji}8d6VB-O{T~0b- zo#=hty6B(jlI?uyTd=Kh?~2BEFT@6FeG-+Oo0QQtCEFB1WW-{Wf?mi@#%W-~LZ`m9 zE;sN6s_?g&@irj<8#-s;bV(;5;8*w92J%?N6UONS&&4HUEf+L!iCE)Mh4*2|#{R*m zds(%`3rDoI}@y0vVqhU0INbOY7yw$4{1eZ}jr+p%Kah(+)7Fell|${sTO&!#57* zHnZ&E^cI;g6{D`fXdnjY#^>|YbR8Wx1uWCsVtlq*3mA5_zcbTrB0LUyuh^N6yJ6qDCja9waPn*sW%hn?xZO+A5m8#5o{%-EK~hk+?rWBq1|lQY&w zq^!acr9M4w6d=-im}kXerh60J*?iz(&u4yk^j_jEkt0`7Vons zG?BzlkMEZ}#U77uuo%7Zw^EIy>X_*Ah>ShmmA;&1AEocBdctVGo*G(fn8tT-G*aGV zJXW{1X21G}|0Yp-YF`OQe5|rH!Q#*L;TJisCBXxGj;3WNwpbZCKD6KTtD5eWPb)Js zOIPjIWRo!~GGy?w@~?XP4>*shU-RnLv9()mGu#}YFgcNF4etb&{J`s>29cznwtQYv zvgsE~;+1nJ@~b8VOfhKi(iMKVlWEOOJaxy(oxZF*#iHJOED1ZX$ee!Ga`w)4;D_Ba zFkUyEI4Nuc+2lF&=g9Lv#92TuFu1T&rEu<=wXJ&C8T?LbXA0fi|8L5EKT9@65kUh3 z9AL7}RCXM=CluRY+$ln2^?)uO{jJchR5rfiG8@zx3c@fFK`G?2hNEM}Rtj2|l`;$T z8z3fgZsM!`Mna4ZKhWxsZPb8>X$w+t?>z>Ij`fG^dj^=Mt-$vJdYH{b1R(te#YoZA zKQQs^88D~b4kAGM=#er&sHo2Xy{Pc*Syw|fS-Y8@!snX4MV#Gd?)vOx;C<5_ zqA=hBuZuV;k?DQCGFc+;#h#;=gc^*`f<&I03b;D?0UXPrY(*!4O@3xkx$$idmg@OK z=M~mf2f{3YeHc;KCnX)Dju9eve%x>HP=WLJPgEJpQfcmVSVBIwLH5jotub?sY!q*% zED5z7R8^XoeMz2Xnle5^*84$;EwRyCh|LHp`Q8| zQ*_nzv&{A%q3brOk9Qh3e-_9T+p3Rx_Rz0Ngg^ zx;!228nFNt>>B85t%?7!DSUQj$SzZ@u(M|0QD8d_@|;r2_xYz?h-j~^!3f37DHhJ* z6Nz9cZMy$_A?nEAZ_D?nT;ZG)Mbxu^K07EnocE{I0r63l!p=TG1=li9ijQ29J98fi z#s*>qIL|u;;vf(NMBh0rcaGR|)F^n1*uZye;PPS$B_827Rbau9-UzNZ8JUhf!@{?B&$m?$s&)OfQ6Q^f3TeSW=Nu}#)@zpHEC0R-{tvN*NB zS3N{udDxYLPO?Fb0UDDwKtadD@o+xx-7EBwOGbLYgoDD($6n}5#Y)IVp*ObnI`;w) zlc@I4ijs_17i?p3fD5;vRU%a&zHxR;J`RCA>^$?51?$0D`HXz}L*4v@q5YaQ(bu`R z&B4=gqs`RonZ6^s<_uxzu;uZP-)}JcrEEmX7C91Ubf{<;b&y2%cOQgbI8Ili};d_8yRvoPOaWcFp;U`!1w;@9K9uo(=6=l(1?M<;J^(dy~= z?-68*AEzxl(JEJ`slu+TG$1_|rC+nPH>%~`wQ~YLq=d;hTxsB2B(|nB*lo^yxFt1l zi}bnhwC`re?TL%?mRTrZddue%Qfq1jccp=PWcmNDYI1gbL5;9@wL72tY=a< z{mrjv?en~A^vZK@Ha-4B%px)!y@3oL>Ylr1yZ7kL<38k@=qo9QN()WB|C-c^0x`~s zzCN4;5T-jG_~BfYnG!eb^S9Q3=SYcM>e#fn;gDcsSsO9z*tA ztVhsg)%;Dw9mnMDM08Q|95&;mW#SESNlMTBi)a4yKIaNKH{FL7u$arFvP8Dd&dw(j zT3TenudO>K>#wchcTzTb>?0R@ylvCcH<|l=!cw_z%S19|CjlH#W_Abg?g2{#t)msp zEN1p|AC1f0K+N9_?K~?h#{nZB(AiOlx?gv)F;OPHk(`(Q_jHFfT}bXRCVQJTMDc743j8 z+)!J261WH0hkj;hJ(w0;qC5FexItrO;*zEcm$y-+f<*OJ!b8@{W4ga`kEf(FIhMp? zP*(NOMY3nF2NthHdb-}bBCZiJv*pne(Y2y4G69fCKNplBtrSryaw!6A9X4mB4m7o= zTPw1GGkkz9nSSBuehL{g#6}K&E3XRQD^-e1KpTMlq+pMCBv=f0yu7wn0I$bSTlF$G zM_qcm4MP#4Bs(!}@dNp_HNHXPJ%{~f!yKXjs zEtv`$&ydxXZ2R8c)FiCa)saLVIwG%A#uA@Vxd#$Me+ppe-pJ?asiu@~^{}+CPqeX9 zB`OOamege1AjBVtZ#Z0Cn4?jaUZ%n)4IKx-FiIDps1O{{zyjowGgx71Vx0j`paDnz za&pHX629{#=N0bku`u9Qh*_UVV7vN1LB6#lPt2TWASbtZNev*2SzWtaXB- zyAmuJv)GbGGW&t^&5Qf{kV>R=KM3tL+duwdyC(etgxU&td5I(@z_p^dAyupSD&fW@PVJ?ZHx+s2>gW8<~k$9+%h zg`}ighbmB1fJF$y2>nfhQ-h)GEPf|sR{g4W0iUdS?*i|tm?;Vhlz*RWrl^GDUEHJa z9Be0x+pUjWBFjR+@G*LcUL;tkrgybCJ>&)Nk+C=@PaZ>5l8UOuwoN<_TLa&H43MBl z5jU$(PH0+V=pkaS#i%nqKaW+NJ`wObCxUa!?1#P4TGRD2&3zsrNjn%ZfhAIlt@5ca z&w{f--F@!&yG2)B!1L5sg!9V#6Lk`&Cm<}|{)b-8P$=XbN;e*ce|2o0V6F^-`}2pfb_`0zlzHpj$t9;w^%`a(07$I>`5nWe4y}p9` zY(W@aEA)@odnEpD?7*$W6ueR(7|y&G{i1)^uiY`3Ge1#NderX8Z~5cQjnKXWU(5C} zy%+kVtrj}nW|yNt@$FpxXF(X)(;C+8MYpDHeCgTnR6*)~9k<+A(h=Eq&;1s5T2BE( zI0*dlT7x}lrQW02mfq+475D2C9b>{{mJ3CBWy`7(wj}|tYpgub*RAD9AYzO@X*gf< zIj;bQ-JL22iJZz@>za}hHDjJtsE7%()cB5dsQ<^)na4x9hX4PWF*M3DGpPs}V-${v z%91eFX0(W75@jjWQO3^5I+n6z8IvX1T9g_>(ulE@38yJK$<`P|l9-X~*}iw*-*Wyr z=XGAE(>aglx$f)w+}G#*;k^X^Bjgt)$c1}0^T4Gvk@%y+u*`;v)Z}$wmkQG)9l$bq zVitO;TK3YCKWRczu?0lf5~ z1B=3)Vq0*?*ry_v2Kanri2lzvD>bR(4HaOFshtXalViRGuc=J9O_vF*)fDOReNrY# zKE!{-WY@p1xx8}OttoQu*E71fm4+_f>O1P5>2|a|F?>lV&~ILkz~{_DouCcNTDWJKpM@_;32e&JE0C(~=m?<4{E#}=iE<07V_!i~u|8ihhsQ655^ObSaimJ+;$g^mGaA8iUg z8dS1>c%UQ3Z1Irzo^C{)GG@UP+7!;kD8(3sf_$HQO zNcL}QdrM-fj(Igdl*oUYlv-n?o9m^h5@m4-PJUiC^}!`bYbwy$*6_wFerVU7px&k# z<#E}&!W?={*QAinirQQhtWHe)oqPWv$vjY>^-2%4w^SDw7xS%(K0zKREPAUVE*K&u#q%iJWMHyYFdk4I*i4o@ zFx6B`=9n|sWqyN_>G7UmC=NE#t=n$@{g`$R=uzD^zCUDNCMTE&+zw(X-V;_h@i$u8 z(laKm(JS5Brp9id5QlGWG%BmOHHM29ocinW1v&1@mj=peL6A#sdwaWrhcKd6Wi+tS zrl4!$v}Kix7GSlRKHUd|^@W+}#plK8CraifYdlTdDyO`&U-KEC+nQV}(U~g8(%W}U zBpog6O$9A5-GkU)9nm@Ii`AtZe;aVi5O*K+VrR&**KvWJE(SrGTqfxGom>u6#Yy~} z(F04yxVGy02%esYI{r8lJfII`7O!o;w^PnSaHj$}sQ4V&D_z)DK9%ASl%A=_Yhs@p z9RVL2ADx+JujaYE-YI81I9%3)SRDbJO-ms5K#CV|3;n8)FN=$QQk${6yCd z%X54j$vj^-t=yR+tv-Xo-oM``qk`F2LU(eJW9@+J!tnwB)bg-FD(ZM%xIM@I|Lp=WP^`Ksp&^&m5=!+_ z10O7z_?RcysZXK4pj@wFGo!lsJ!xrAKj`Lk_{)dA;J7tjQ$Qyqg+(`|)6LbgX5~7- zaf^?oTd;H;|~HIRwwJ- zmR7z5uKb+r?w&g~;LAnq9dqA??r%%@bgnM#Rq&29e#PP;q1HiehV)crb2y(Nj@yCW zsxEWSA^{v8Tjm>2bDCT>fj`@W?Iocn+S535-TOA*D-~}2otrD2snXs7rqT3FIeq&C z^Lz4yq|=sd^#w|MT+6x3?J>)?fUTgE`c9{9B{+P=f8)JX=$r_T&pK!S?Yj{0h^d+C zAPL?DOz&HfNssHmi1~*_s;&|!q5f@fVo-G;%~-eWTxLsX>ouF^nG0*cYnFXq#<4?%1a32sko8O)Q1VcglE zJ=vVwTppGLTol*Zx-Ks{@^!AiNuk7Q!EJfcfth-Fl$dUill8Zb{Mag&L_?K}PJKxz zUCT#oU`bty66&*5<|2y(3jPR7)AACX`&+hPVD!ZsN%SLf`w^naC~QrP!49 zmjA7=XpC;KV=c@oAuCUe=bkEHj%wlXR)~@Oo#xg1#fM|1`H_$0d3;Iahm%whI7!SW z=vE?fSlt{AWI)LpkSr_~@W9A-dQlR;FydUKteJiSTR+o4x4N8#OFQe+{*E{k2aA(REtfn~BfeopQZ2wOx;T?mgX;CwCt_F#U8S4-IzvG^aGY zhifa~K7Om^8p&P?JICHBzX@RnpS+-sv(NO6*_mfQvIk5{;F?p{9L=ii)fz=?_z&R7<7hg+0X9@Rg!TAlZE<*nu;A1x~+1GgvO$3?5y|r zsMM9Q?bd8&T;~%9uFMThv`6dK^n{K@%~Y4U2%G?F`TSzY%#Vst`E4k8!b=?@jU$bZ zZ5eGdr-8T0p#KOB$4SG2qmYll#%5;80r}GWRT{r74S)K(6ijb~?W^?pn_EhJg0BHl zPtesO^p#Ssr3e!~2`oZHC~lQJUaeouDnBu5eRLt$4VI}c9{>19pY)2OX-qbnhEMqO z5>!<4^+vjWUgk@R`5cE2ND|F43@~uxVept6$(7iTI(wvwnr)-sAjurpV z?Zxhd?^od+Ey&qb`i0E`!8(*q=78_8Lr>|%6nkPSd!eSNo_n@KXh9w@DOBoRn15V$ z{C68Hld^f=u$0v zeL00`1jZ{p*#}7eKwGCpg6dti4rLt8R@dgP}b}ok}z;ToM;oeNutNxKB%e#*awR11?xYd?lt2Kji%-w5Y zBtFIGIk zd0SUkZVb5ScZ^xdjZyx@?=#|I0Oi3uRn(3wJd*&D(s_%9`uE0bZlHACXM*aZjuhv3 zy#SIe==`DJTtnRl%!LF zeAdBZmRKKZ$R#)*$e&|$x%#}I(516CJ``;K;KDwLc~bVdQ{tX5$AO$D{=JjmLoq5r zlFwo2a%9PJF8$M^dQsEgqhD_BDz)wEt8{Hnk^gUFk-w^68RN-jih@9b)j{@Wg~8|b z>(b4utm)#0=!N;n70|MmW+?3dz>=|>yNGce?{v(a`+ENAG{*IIgBFw-SbLKC*Zj|) zsLY_wi3!`8rggo8J7#BF+W{gxa&{RBl1Q())JEZ~_F`cv9|ji(Ui=v}Z_bfEc67W0 zJ+;ma;J(^_x`Tq%#bM~4Mz~xrv-6ebs3AS98NRV~1(%UWI|;O8vcP<-s$6cs_XPEL zN(WNi{NkA@2Ubn*tpDs)Z_K{D z;Ht&GGv(UjLQ!eKY)Ou9QNSx7fSa4UqrfTbF2#TX9?Zm|Efesdx&0umn`NkL4iBnI zJBK-PSLEA>NLxRJN__!S`ix=V%z+?_FxTyOKj2PPQGcBX^ohGa;(>ONN&U}~BQ ziJ%VX<;+dqbGaQa5FUZ1!kzmTuCuaoCGJuVYypGWab<~w`8Tb*)Q9SnCmsEv$Omea9U6CQ$Z~uqrs?{X$aUjlVy&jl|x6> zUQ@1{Gno=mt6zS-U%iRshP=$U~-5D?jYX65&(@cHEiZYljGrjYZRJ4UZJzo%JY$c#m;91)RuAi81NYe zeNg-;d+odM3S03W`gd*RDHWM}Nz1~?@J_lyo~4@Z*j+lo9ra-gKt-{Ac?-WATqXc= zEp(u)Ug9-h?JQixx>}01Ol|)CrZQ%Y++I%xN(E4Oz;nqhbz%I6v0DY`TPY)iT5!vV zm=A2=<>%1aXWs0VOPyL^52~mqW@S#PIdb-N5)l`&{m5PR2W6S9=5W3x(Qi0<>Ahc! z2>Md?>aK|RW@U)M_7*42OFj4oTs7}D~^=fQg0np z=uF+uefG6ME?Fc783&2ep=)Lvo2AeVuX8z;fgKl~v%3t*5vEJd17rma-C!5hJ z`z*^iloNTXx}bMKdU*W;h?c^WpD+O-r*uKk+SHwHegaP8E>kqOP7$w=qkzo{yD`Vr(z zxN`DH^m9Sb=b?$gB|eGT#{di-XIAe=uu)CML8D5*Zq`I3AP59_-5-h_0**ouzU^9*gLKU< z?qiADA3d+t7xUXTdUJTaY*SB9+J0$pv2nupa-CCqHP8)a9E}+Dyv3%OP)Bl?6WPP5 zUJ0$C0gP_z83f|MUT-!VT=UjvUcu+BHkFqFsY4NiNdze)x9AeOR}dtBSr3P7 z!Sc6-g%@qa`$h^F8={X&K!GJwgv2wxOpg7-%eN>0e#4ppaUm;-s7mTv7I^GT@#?M2x+jYh%;&3D~GNi zW}DntX-vD2XoKS+bq!5T4Qumb8HcS&ye4gK*y{Y=me$tRv6Z9jrGe2x1U7lXC&KtC zLP<#p(0j5=z__TB@{)AX2%2eA18Actm5|4~v2LzKwNqB$35MQ05AFf2$b|Yr18SBf zx&aIqAVPC^QL>}H$f4EPiph*vEFi%9)BpDPNlVp%zZ2HkwkLWywVm~uS^Z|HPL`ze zgB+etC0oV~K1s>qixWSeI$?RZ?JRL`Cc;t!Fm+;WJ}v@m@&i-bgDup#FMVqYAI#z! z0rB_9ZNWg^qC`bEpEcI9EN6j2%r1dU*M`=UD8Ms@V?|I~;D{EHFc2=^V5Ww~6YVf0 zk}5Ffb50U&nxy>8DYl>h*Q3Qbz)w%g?$!+7Cw;2|V?dT^G@BtU)>&!5mQ=?c22DYNt zHp4{hK~Om|&Jy+YGHd(S%Sf;)R4)m)j4LK-f@nF68IJgCrFshy?Vo_L($D5)s{TxqN#XGHD*2=BaLnAVU)PRs zWy#0W7&YZnlfgMZZt6?BZGJnCX~7euR5xb3$JxcM$?_mp4R9@qa6o|?=^~I;!~ z%W!GRi|y0r?N%F=e=7V4ga8S~ah7oOspz@I$>FuRnAb-Hk0*c@($|+uiJ|zx%6h%Z zJtV3b6ShjOuBJP!;_zy?ssOdvD-oglkn|QpEzhS`L?!gn(oFQixL_ha~F(>5kv#irX_hFqp=)w9V1tRV~9Q+w#!5ntX zd{#Us^TwWJi|CjxS}h_l@v9~gLK30g<$=w@+OOYyY17Yb%CHg6 z;^R9(xj!z+v=lwJCjAJ-fY?pIN8+0?x0BAfk51)hFvwSv}yC>XYR-|aR47j?O^R-tM=%M?n*85_X zTFWwjpEQuo8kjE}LooVmmik6hHJhVLw0e1CsQ4m$1q=Ez; z+u4@+>8RnszsXQNFO-^5Ozx3|7Ncg0Kn^cc2W6lb(MiHMkS6A?x%A;z3j}`_jEUyS z97XgNzzEcOlB3-77#2qW_P6Mp88g4?S|O=1sS#|;kniQtf_I%mMV-N{P$NOVIC3-{ zz=~d~B*)NXkO+eRh$N&71F#k8m-oW91MdO>LyX0ct?ai{Tf&cyq+P22u5` z)KlLEo5O>CSH^5w0Sh-mS$rQ6z}G%10x%JeM8E;dx7kOmc&swg9%lw9{R|{+EjgYe zj+p@HjxiBmVC+-2QKcd9ahAY4z?J$rGScvg*B-QEJAMEJ08MNIgf1@j8MWDUX@a{j zmfi=*nTZ42#s3|ANr4~E(Vyt%>DXFKp=iKziLH+C?T(OdnT`%W3;P42BVc&Nu3D9S zf`(Ka&zH^P6;$$uq#y>M3ypb;gKpgZ$o_aw8n?-9Y0twsT~?GU>zZq>w36xi{3M{J zlew~E;nxa-#0(1eIDo%;Kj>b(N9jd*X`*%|kNnYo;Y(t3qwl%b;GC_taqgA(ZUAoV z+U7kBn;je~`S(~mw^perfQZ+c+UnmaX9UGr(1Gn0q=;blAqhWe2{;1wz7#&T{~4QE zvX#aWijYWkB7O`AfC}||kqB`b9y?LMy7f|$hNp%7LDg!&s)GLE@fjCEn1+ruU6`Xm z7%aiVIkE3vh5nkDm^Jvvl4;uH>!$ewkwqeBpT)!?46)Quz>zkL5b{EJr4cNu5lciD zVUESV0*D*RX4&xOx31`gXl_{H#`3S<*YdRsiKQWi`#t0|QW85u8`qY4>w+0=I7c{43KK%G&_$^X7|Nq%-{P z|Ht=8#e>K_p<(_-DXAHP4Gx&*lMtLP^Q{C7_9%o6ir2{e&f=v@6CEs6?VzNXuYGRO zu|^CK^c1_?PQ8BFxocJRVRM?Xt*qt~RBu&;i4Y)_8kK+>f8 zd;*3+`kW5TB~Yr@B-ltHT^XdGsHXHyg%}l{F~X}VixXPv&;!P*uq?!DL6q>m!w#b) zL3emHu$}hTz6TjBxXb#mq1dE@05b^!RfwZ)!l+`hD8U|>Kz3R>WRD`AFhRjA@p4Kb zUZgR#i%tn$bH^v&%e6cXTrKVDa%+gNLE$^kS~CRoUnp`L@r4&l0-j&7ma@Bz*jwJ9D#|Po4?_nT~t(LbL0;TnBh+h`ylBD*~=iQ z`(RZw5laYMHU;v~d`Y6-V(!+M6%)U>1-yPDEiCX@R72Cu{ymiqq|UQBMeCps8?L}v zyfn^H&L+}i+GX(qp&noYG|hw@Gbj6I=rB`0>h6Tn70*{X?)7jYd`=&e6>m9`iu)5f zcgkFY{=mkw2dO(T{k67!ZL88{*#l;SFcE`(p5O#KZJ2!Fl#g%>cO{i*sJ9U+(lxMTUh<*YVn1 zE*gPQo~E#)G1q?B;p)1s@xKj8y6@kQOPUI1v!k51&=NyvHHDrmQ(&?VDzYA!jBlj6 zvFd68!pG@hVu+J9<@v3G96L-BLYvprwddiBE5$B{O`4B_I8_zZY8!YJ#gR7^9z8c7 zYINQ;{1nynsPTKlbEWzjfIz;w$R8i?ZkHYwM3h~TySg86rk!mkmi$2R+m<5tfG7xJ zxr|DiHb$?0aRQl1-0DwiwG-1=&PmJ@H8{8xHopiNf()}g_&6D9U>EjfO4uExz1Bo9XbxhIxZ6b@$molff6!6BzO; zeaym0tnKVZPw{3BlXxK(VTEb9WoeH`(m)I*g7bU6+txI4wHW#ewfXw9cmtQ^`vu&g zn2m+pjM5j1TL6Om4^a5wM@i|CLQ8%c*xuM4>$kZmZ&TvHl;7`B&iysNoWzU)p_#!) zZUK@5@T5v(Ek(Z@!iZaOOhDL%=&6MzOn(bJrVLSKL;N<_F5Bd7Z@f?FaCl-GcuEx8 zz6<*wTnW8ZuH&=snY%}txcimK%UcDCT4AVjl^DgL8qJy*ci-woOHtZlT`txSBn2$erzg!;60R1z#|O|BP(KWSij! zmhyxUKS*dqJCgcLa~lm<#O;~pa8Hmqq6NZ3L^++W0)#%d5Pl`QAJmr$4EQH8Uz-F$ z!-{j(c>X$n3HYwo7)GR{&?#C!+KDVP;X{WL;J1U|up~={K$rsx9wxh<&nLFY%8=fG zod{NLNSY*uM#+RepE?ir3FSl(M7rZ$5Bl;5Q#u(9`T`cDSHzx5SaKKsnft8K&` z^Z^mtHV#1zIt2tEhaQt9`!6$Z@P)y(%w8{5bpDY~tNNuyK`!lMt#X9y@Xm~4x8}%A zM2p$9mlFhB*=X#931#N_<~O#|@X;cWhQ2(%vNAXKMh{9UL6%Q30o-gFqQ9(|0u=vA znTdskkYOsr<5TOHM^8VX!p?#6tPBqF`qjC)IY1pbOapNXQ(*J*yXP>A1KoNV(doT9 z`(EW=#!zF_xrg18huUz}6gY^Z!GmN}Fg;kBYXmHvkf>t%)TZ5KV!)4Cd61(76g z!*L-%$qr16x;>c@2E`_+@#zLA%M%#=XN4sK79SiSQJui8p4MWsN1{jagmcs0GTJUIu1-&Myx$L5VRhd+1|I%l?Et}A+d!!3G!Cm;ym(a?zk zS(-E-3cM^&fKd8oJ}3b4B49`eJfIESHbRL9UTzNY z!tb$cia3fULKlnIyXQnXUNiXgt_L@k8{SJB6}wer_!ZTcvTs4e(X$R|<5Nq1L)u0# zMsh7!cMO9?rY_yN4f-&9 zIy(&d@^!p^rW?_Fk2$-tGTvI6aUTQ6j&Ss7rL}HZSJ+LRKn-yrd&m`=G?(Pm+PamO zJ_kEOYb#^YV41DvdHK~Icwj2PmYWzit^e4jC8A31F^LG3o=nWB9F7iiZBrv(+=sW4 zGXqIU1dKWs8*&$pPmg!|o{l5pL#5K+$PXR}@EKev5U~Cx+h@L1_Sp9-)^Zd9*g45F zVEsFJYJB0#mjKOeKmxdiLI-yV_h!q++Sr32ihgjq5pl_$zE!%-@%O*p&A4MggFM`#o2jxD4Pa7YPOibQv>FXYzYC z;s{81IS4gc;5BdjMJt3(z}@qU1bGGnM!A#CYwMNFPdDNb4xoXSeK3D8r39N&;%mU{ zoOsS|US<1{Ego9%|4DVuU6`EBe6iM(0dC|(L4FiSJ#iP}_fGoK2vT4aCyMEZs^~Kq zKdq@lXox~SVm!C%+dCG`h``O*+wkg&! z84T{SCMU&P7Q#=)aY)l3Q6t)*7)t%4oSb8V#9A_fK?KGX3=J=n8BE3CrzS0F_M?XK zM4nKL@Ky)jZoDt~nI`@rAcv=V4cF#QbOjBo_Q*1rVoAUx=%kLB7Dln()s1PHq3j44 zy1`Funhp^*X&Ca@24s~9iK@53QMwu`YS`xN0hErr>{z1c-9ic|)yaa2kCXFNnid*Q zFk=MPx>d|ZijvXR5lBc=Hu|TuaG+?>`X)uVU z;>`{q)G_*?3}TZ&o5RmexevVG5Pqi}QzO#=m9&4B&ha&(bOAnnv7|e1v2{AS(UtGo zCkl~z-h*KPurHa`Jq8YFeeuyh;S08Y*>qnkbw2yC=qbP;|%me{Y&NH z2tpi2Jd-EPotk!+!x@&;O8-SeU>66JirkF)c?b*$BP`b9Wyovw3Et;ZlRfr>J^hNt)EMwz&=l+*1d9zsBb_9`y5D}Cs{-RSx1LN)j-pP5EQ=Pmlyju9@B z(Q4iuJwDZ;6csPGwTxsIm)WYwvL}>M;J(X{24lo5J2$t>!{ti318HIT=eL@o=5V*EQKpXd!t{X4LnRZ} zjh|nvKFW#$&N2gn-z5%$0%~M)lm>oO#JGele3V3BRUv{FCUW4JA_rLAeD~dVxDEjB z;(;Q%1PsDd?@4H?RtmC%ZiU%NRRC0-@61*s0o@j+&Adpt1(Km~!R z%b+-7ks7m!SXPC*U*!FGvqH_}&8CWYmK_ zT>j7m2rkX#T0e8B|FZJMj_W-fdK#}L>R-#I?7L(xKGIbHas~;QK~(@_G{Dm>K`OJj zZ@)3WP~@%=0``B!4S68caYzcNEki)kL6D$0hT1nN7!r{V3trlsi&-zm$D_W3jKRga znN^O0Rz)1>T521{yr52|x&4Fb{*(3^5KDEmf-O!Itp)-q4J1@V36t6TtF1|J zS;XBE5T@6CDjV5p2g8g9EJi%3W%@} z$;{sZj=us_ue6f3vwgQp6rd;HOfGi`eqV`j>UHk57e!AdfE)rWzi@tVUsCsEgJv0E ze|`4NM?R#!jIN97yU+spZ;>#J53M)mJ%3(XI#<6mZQu<^?GPRyl~3a~67WQjD-V>* z1aJumBD`rhzzqundsHKZXK^5DOB%#|rzdAIZ7?vfZlsQT)-4zScPN0~Md4MhZmg_$ z74v-&SoI37TF-^l-5#GF7w-quKRc^9cN$_A5;}rkKq) zVCV)3lf~CP8HTIPzt?k{W2jpR2gIdx)Htxf?@}lu{SH{0WUK=C-0`rVmw{NmY=yzX zMh*1S3pt?}C^pE#9{&bHgwcry8ag+Y1G8&Vadlb?-x@GP|9*B%c+-i?GpFJ_v$ie= z7n%xQo_8H?xMuq?6op7fKX!Pr25|n)@HhyLeZD$2mF<}WJ}b zy})#Bxf>)7Kd16yl z3I+D@pT$F2TM-zDCIKW7-P_F~?G+@xG$|5jtIe=o%&2C%U}rKfiJ8YOL-R*#e)%h6(qd6b)1T6wufF6^aGx1K~R zCp{sp5J|7uOmy2k|3USY_nCZI*zB?UCL%uNxi6MxHw3j#D(+)%Z&+f)F^>b!s6y2r z$$E6_-cGOF|D4yjrfZ+AYquRjq}*3aDTZNN6d`+zYNl4qT;i~oo21ONxg0B^-f`jA zk?I$V`fg1J=+<(2JMJx0@hLb}p{0h5{Z)Z5Y_M0r_G?N*YRIIVPH^TNec#^7Z{>f< zC@p8cD{&wj-iUp2@&*j`?(;(m#9*GlSdw9nnRFr`=@dHD>}0qE@vO$HfX>TG24=i7 za-LrB4h;;u95djoV%XM_>wtF#|Ec&0ck3NOoS-S1*^Y(t|Dk*yWv@>27FzYW*rWApM9Z@9E%QbkV-IK+D6B@J81@r*u-?!6^yo$F>_<`SI_9TPEg^!^fPlBsh;z>F(oGkZt<4Qlk{9^2$vX!OapiX|smV~mWPx$lN*72>~s z@&BjWfjlv1g?=jfB-3O5>Czr_3U~vfrt(B@dp@>%_l`MjJRB3*Q2rOhgPai^Lu|^d zHR6D^HHfx_0ww5AMa^2X$y(~6Rq8PC>zXnTg*TtqYG)gfSO;%;l3(e$=hH4+CSB?F zygkwpyo089l5w8AI2(q1GamTtPhE%KJrv%hVTTE@P%p`>ds=4x_f`A(p<~|;y`bw} zJr-9YY1MLLza8*g?uD*9Cjcm=;vU=F#MRbMyTw7$?9+2Gp)r?VTFDziuh}?n_7ZHQ z!PhNnX=7n-wN*DN^61m6wURA*#5k^Q#=9}T;wzII0`EIGgukI?iSDssJ$Za?>&MT* zCdGlNl^e^)cwI%tMw;CGTEFJy(S@TY=Z-3+w_huwR8H+iGl;2~QM_thoTd8w?{O}w zR4+4iC;H^Yn_{o^d_?dnmT$GmvdU`9F75pt&WE9uz{TwzOvlK|>5~DPM|+#~DF`FoY^*F!?h&OZGqF zYt?^4>wFSr?33^&+maK~n7i|$Qn~f8m*;z>m6ZCPF6mUig{b$5HbGa>SBg*WH{b7k z^Pgw82sY6A_BcJFhB-q}zT0Vn3*Z}x!;MBxvp>eCk{~3nN{tQ$rfL@}Zp`L(U7**% z`pJ0M%eMy_;$525<@IlT`HP14p<}^+55R|x9@A@xr@Um2{HkD1Ylw*X^zSv>>iF$4 zCg8@xI6FnSoaE8@GRweaW&WyKeu|)pS~Hq zZOE)`%lF~69W%+&mN%KnBPLjG>D_N9Q zLSfhw2Vqr`1n_bVh)oBcdEGy|j{$i;6fiMf(^##pQ?W}VQ zhJUw%Atn^3_MaG17UkmAO8Wwryj1sA)RP>ZsFCqb+qG%=z1zBvyhm1|cgohxPw6FU zuCNA}847~QnyyWj2?8}lN(6^|q}ds}$)!b0iQ~DIdp@c?kchWe!#Uq9GwJSNeYj zA{d+nsAyMmv$LUK3k(+df6BBU*@_pl)oqv>yt#&&UhC#NkJQWD<*}J6W#y-dHz=sPS%%?Ch)3R6 z{+3sv{(Ti6F@rhBk#*9tia)7af$&d-VR15nE0?u1Y)iTP0CDx;5T`y}VaD-+66RL@ zZ1rTog7rFDs2%frqqWP;`09QWlcL@iB5Lw_|0dmj{4&-C03u3$4Pr zk1HGhv0C%*{N4~j)GB`_T6=W-=B}kBpma7x&91G?3O_jKPpIOU%%vvH<5!f9{+YPK^!31Zn$JS(Jq_@rzu+bUwxHCJnw*W z4b$i8{=^3Yog-=gy!rUo^Q*rg>GqWaU7YN+z^J27b4^&8_%a5e#a3jd*V#5>E|7Y3 zXh2j1L1?{~q!$w~?E0>5QK$ORhe5=MH=nun=lX@c&nW8+i(bB+h@X?Q^8#RPE$Z}^ zJy2opsQlu?pmPEqE-`x$<#^+Qe4f*dSM8m6%7-U1dvw9joZ47B7V*7|MyFkLI1=yH8sd=vC`J z|MsLY=JQbGQQqDj9KrKZ83BIR(%#eZG_JzuCPMV?c`Zk;0mKfRcs$OGHy#KuaWvRx z^0*?b)vML9ZZIHr)Z+U+*qJp#v2-)qpMXgaNRWS%PH0 z)%OxPKp2!=wlcVahkpG1t}^f>&okD$wSqa+-cfV)axRw*_qkc2DNoyWmm&*+azIb$ zUf{V!UP}r+)gGCoXP5FsJ?>Q@Sn;HkPlU`zHx(2W4T*}%NT|KdIqQ{6DiMF}zr(tY zDRFtgGu=62GXw0eRk|9peIDcS2>)2+eLCRb@(E=-jJjP3K1KOtcQCbqUC;@3A=8|@wLoMA`i}EC zP_e%(w+HR>mL~|#|D7*!Ns6S0KLa*A$$QnsX+)^ePX!7xNTD52Z#f`AL?HXc+`%>5r<0dnpE*Bp zph0Ehb#A3wCRnBLg2dM3PJGadzQ}%igOq}Br`^4f`{2#y@8-2G${kDiUeT5+E>@## z$<=WnqU!`3s?nR=i*vq;6|eDTGXFD*EieBiMM%Io*N7RFxn~RkwOBWiqK_xVKp=k>`*3WAXWb?nPq^d@{CRi2QFx%Rd6YN$dxXv3LxNOm z9?fO199m^d3kXvoi^?0>V_?^Pj%VhvV01*o(|k^no^Bu4%TNIa|0%1kTc&XkNBrEW zpk=%Nk+()X8h^gRMug!GSTnu%t65F&=PqK8uerNe8*?*qKV*7ECe;;_#3%WPZqU|Z}q_$tTym|V2a6PTTNK4OW?4Z%X2iH61 z#xIVIjZNk&nQZ*JtgSLXIU8(Ji7(qqxGLD#kg`7W;@Xq9%<6j|eD6FOoBbY0u9*6~ zdio!yoF^yq>U^h^qBkSpU3>PVx3{vXGj0uG0WmShyq$KE0ItM9^CpgX>05YR>O0Vz z-)Fj-H2eMcs8y6N0r~sxfI}RaBt2wmOM|1x+~K3{}q5(Sv^?*N{rm-u-v1cE6RSd|tM? z`hD0Q54uA_iQY-{NqfMw`tNg%g46+@+`o?Hnx}Ak20{})AJXRHME~7Mv5r}oPt=e< zM9PK5w-P-()9j)=ZGl`^u336P9t&3Jm4y(UV@qsV-qi7xpkZLHvEakP48l;46|Kxa zrDq{QX1#;qR0<*KsrMEv9#aJl@u^;*1AEX|ceR7-wf=)$JN$IV*P9dCrQY8pA-f^i=Fc}Gw28k@&Pl-a z%%+*=Mf>q1rezxRpF1GOi^nqmq_}}pY-Akg^3VmxP{DaeJs(KS$8i8kc9Ap6lrg(_ z+0VFGOVJXBD;`#qngeTX5HBNF(0z?-BR`J&Fhb2;`!XB1ySrv^*fh*h)IJMFqTErE zn%k9lv@$=*@KYRAq;+**e^~8_iu(Cyl&F-jBZaWFS@515EtHT2vO_}XSKSwNhf^R4 z*{Xo^dq;01xP-dEzLtV%HWIg-=LgY8vP%|62LSDy(eZ0C(qyptd=9XTMIR~NQ(W}+ z5{Kpb=$ex@FJ^glSRsR&ry`>?6d7a^gBbIVJpFESwojU62Oe{NnFu==I-Uq`x( zeVuN%9%PRv+MxI2(O`my@Mul;d6xKToVXioFnb$#B&@QxWIY1PQH=PyLSwLB%#Q#y z!IWJG#7Nk(^Qs2UH}&ElpBP3RaHnCtWyg!5!C2a}gA)B>&r}E>Ta@QD`f5(@L|VyD zLEBD$JW zCsa*yCmB%=X<(l|XZJt#Sh)jUyPkRM5NLiNz&uJ~%QYU*hUS_#N}KE49?j{s`PZ7+ zDJK^v8_jlAsUQgqm*MqU>O2{yC%F_S*#ErLv}ko#S4L$qA2c^7|F&Oye7yvjoMmZO z5?W#&l%Gy*=XS3E9%8zl&b$*5edWKL6@RM1{WrC_%A!{NPNc2Ymo#2$xsknM9kCbs z_dc6ybiCGBP-cU!$4OWPPYZ8v{wZ~mGBm#=Z5btgX3%AjLc9p;C$OK-WPR7u|T$$Wa) zF}C1QGUnAkUjoUD8koVszqVUm$}E_u^O5zK|F1TQ{wbpLJ`?|_8-X9{5*xu2Vi`g+g>at)ETBwkYixF9!1tCI1s_0G2%&l=+q)!^$T6fV&Y!f44c z;LmS1faUj>IsNVEc@8--hHW#`$#P3{h@5fvAzey^SzJeT z<(Fq`+3DacZAkRV{Cr6E5*SVAchEUt zrCfuA1L$ZTn1$$RF4{?})X6w=4}>g)am?*n#kG^ipe_5|z6E_};C{1uwdaSHC9({=!>5kNTPAM(Om60Otn{x+G)*fitYw@} zTdJH5Q2Uw8BUR30iHOr55Hhw9eQ{6{G4SzcQowBCK!APt!4eAtja&OIt8le{0*`-I z>9+E)h~OL|5*^W6lX>u=>0&y3lqy7r7(R0wmq>BI>bRvyW_)XL{kMc?T+C+lY%Y66 zv;Br7{GFSbzz{T#X~}|1@baPHb6uJc9o&kzInB8Wq0u@UwY0L`--T`}m}l&tGSb=2 zA=AG);rP5#IvT&=Fa)MlygA(ydIb}twWT@^K{w@N@$A$hf`t{yom+iLylLy}F_=kR zg-{D*i^GGqf_pJJ(1{!P93`Jm-d)cK-tGkbx&nOVm^fwCMKX1n;x-6co6k3c^lXIuEB3eRPxubnjQC zr0SemKoN+cR}56Uxr9Idcj|2EXiausqqn6pklF1mT%HDFGA6<(RqFzlT5;3q3YMCZ zUk&1T85sT+)iimFlUxU!h7NuAsd~=nXJW9PqbAn@m{5N9(47iLz(iR$`KEh}e(HXl z`(xXBZlW+8WD)Y20CW+<_T&~ulou)46q#}(k9de9(7uAkRcwm)sDRVe8PBn2?r|}% zqy~<14q+QMBn~}Q7j%03b!B^NXW;uvw<}ojuCIT0zdrx74mxT}hDy7NamM5lj?MJG zqB=~lM zNj{#trv82)&!T|7Z0wQNI?WvxuB=?{HOejpL|$QxLE6>zj;sCdk1d2T9df%eA?AiQjO!Doypek(fg7;aR}!sjRTTfo+GweRzm=U-;(6pQl#_4h#sspqTVyMnnf#eAG{y zb(s$5Rhs_%?fyG1P9U{ATTum_mueb4&{ zaoQkIBDd4iu6g%Iz}IuuszcLPaqlaGHU>tTL;Tm~enQU))Z7Adqbfc{jHsym&BG>n z&-wmBB)S0A@NU|;;E{-|&IgX1*RBsZ>U>t~&f$ezKu(VnmT3IVD*E9&5avJ zWpEL5=em@{9Z;z}5qQ#YDPy5|S9y3UO`y(!G~ZTC#0mKZH+6sr~&!j zjmd5nq&&>E$1}x%vc?pqAW6NZt*Y?}Y|2@WfuqJT7iSYqC<2xE>2-f--$p)!( zlCh;FsoKs+Moz1c-PLPqRsAAye3qPo>5$NQhWoDdq11C!6yaGR6zDZSy$#$U?3)A2 z6OV+4=&CGNDQgi?r0ERC^%Bwy*{ z$Pp7X7+{z+1V9DY?2@fDmji9H$0oSTg{a?j`$kf5gwI2epl}}H+F1#jb8y0>5;q)F zC9Hh)i)weI@q3)Y5Lh@wVklOr;3OG%ao&KEZ zquJY!(_%V{Q|ej&R^fumq^2?Q#xnWFtN~rMe;~}6OP4^;CE@wlW)D}~bB14ILJBZD z`6;(K{X1a(zB#WTuA#;8S=My+u`{0e!0(l?R?H0qB^6#Ls`bg)NW^J{5)K(V^;8WSI9W! zfl*X}`5xo8qi@eyx^;;4+Yk_zkw*6l%oVT*nvuZCt0Yp=53sod@WIad%)pC}gDY?2 z)B3U-A3f6^IZIhC`T(;TQ6jafEz$? zSSva2E~Ps{kwQ#OUuRehTcIH#qxgikTzCHGg6P&NQxRh#@7#}5`dNcl zOS|+c82ReZv#g=3;zHBDKnX$)i;KGMG}(E#5k zlLYtVKF*4tUz5?(1f!7GC|Q7W$oNL|fd8Er6aBp_g`3 zcwA4>$=3dl25mMoJzRcDOQ$%I9x7Gx;$&YEL6G@2P(g*&{KoR3f1@oa{x2&%I=i}L zXBJ=2Wmm3!I2PY2c4wn0QK(KZ<|rOIbBT)<0rxxe!QW-07>eQI&q)2ra?`KnYmG8*eonk#(RwaF z`jK^u&9hUky`M$xqKGZeF5}$Ogoa8h98o+2kRbKATyNOs@Yxz+m5n^M;82uksKr8_ z!{B9)y~fHc`9HISsv;Bp!21kbAN*Ge5eyc@mU~eS_L@xOS>g3jjF?d2MS{mNj|G6xl2I9;eE< z-dn7M#M<#tojoZnYT3<~2mNYC5ANM;oh;Y4?MWvcGU%UXaN&`7Pf7%KyizCv-J7t7 zj)v6+B*~^I~Cb>97Z8TdA(+y{lyv5#>THH&VeC^y?d{C&+b^1sSFi%i$n` zN}OJ&08Fz}i9ot|CbEeA@=dBWF36jA{zr-N(N?G8!YTLKEB>3OjfzZ#!7q8_OE`MG z3c)jIcD$L>ftgy?LIf$~BgSb^l1Foalq=_xbVHQj1J1IVxJ7 zG~hSHX+XL)wuXg-B(MRngZ+CgM#}O#&xlGOsIZIa$hSICs$GW&?g@w|;{Icev?9RtumR>M=%zJeAx_!vf zvc}nkgHde^j4Tg?EF3t|jxL{Am|?Yst^Hno)}^C$6J=$yfl)| zz&ZMpTsS(fdK_l#0q?M#|MjexT?do5K=QYi7mTOXOCEU|gU*cy_2fQkU=&RRGz@R{U&)L; z;iO;_ucc`Cq%!7xFdC@Sfx%eTG)p(}&*F`(nQ5lB$EooNJG+UHjd!lhZPG&gbCym! z7`J40eirrVhX#3|AT>xtrcR(dvCAEWdV`*0VEI6iMxtZ2B8G;rHytxm?Lb?^DE`HJ zh_9usJ!-zVi{(SaxQCdpPPvy>5=?ZJx33Qx#Bo`yW-c!sm1esKe@nLoyZ_*wnXrJ+ z>bbqz+O;I(52cA}dDTsG`i+g&KbokAqG;&`bHT#dT7w$)&CJd4<{jP^chgu@3dme= zhLL!+)rSmaQ$)3eb-FXmFMe7Iw4H^}NO9z8q_sZ`F+cMI8k&x&8(-)!9o26N2_3Ru zAy*!*F9mS=<#g!bn4V1z2_(4A-V8aa-hp0Rw%-YA9{qP|?tA5Cfd0s6Om=7XNYk^HH5kzaj@Bn#>lO9yr~vYT|Qy}YP;JgBTI zQGvUpn#L!S+(E95=R>8}+kaiXemfw1YyGd@!DbaJad&@sijEcHuVaJ&>XIS6$P{l$z~&!=fDp4}W&Dbf zL@DECDcaFF3xT@JD()H%?lv980-h;B>bVK=iA!)V0#Twyx&()~X3k{9K;@-(!6uj; z1%DrO7|`ws4N6+Zsi7xMj*Kq^Y>xfZo=-YvDpr?&_;_Oau{~NI&SNsOk9AynZb=?` zDQmFE^>>B1G$9+in+=nI3@8*pT~#u&1O+^=S0VNZgg3mXAd2B1C0TzL5}+DMWM~w6 zO8By(r@rrQh3^!>xOBPIj7&aCp0<4c*4hK{gk}WZCY!4FhYE)NJNz*UX#fC$H#qf5 zwgz}~;bBXw^NZUV+BW|Bo5SLRgXbTP!NA5Mvtx6iX}23N7{F*B-)Hw%Y~lc69Y#R) zwg)ZYBF~NhKez^3hJ@jcs2h@`)RjBh>IM`7cc~K7*1FUr6M?}+&3E`^pHaFvU1Zm+ zGlxw%>TptP(C^jl1K&rS4=FADlnDI@ z6)trhQqr1lo&1sSno}bNoC+E%#IrPHV zTp;$F1Sd#Wbu-lH{zX!a{BW-_0u?u6PM$R;5wUzN$1A(rqr~ZiOJvr~|Et@dMtXI+ z^L4d25u~B_IKI2;4$LkrB`u5GQm2m3z`XVe{j)T{AzQ~I%u0+s5+HLxBuGFKA(i7= zyNmPMcraf9G7*aENqGe`SFID6uGCoW2Eov83(pT)`?3{8@z+n=MH>Bx$ZOk&=fZ$i zur_@CAObCTN#_nr$>HJP?pHN-38gypqc>Y^qha0an5KiEuPgfY2V2y2^FV*waWu|5*T@a1k!}WmhDtL2s zb0PdyQ^Ux706qJ&-cv&UoSS1lgThU#d!ebP4lKP|P!cu77`PkM)=olaL|k(rW#2ij zrNE^QWvm~O3IF|(7sidfX}}eA(}g*ALd(GtBTw&QBxj%6W`-}Ctvp?8B48X(&K~7!@h1)Q6SGwN1cO^h+oT)mL6x4BYtdd!hmoe)Uxt zb7JA)cs;D^kq-ajHDJ$KLR#5c8DnjH8}4B>FoWxYL7&Y$d^>p4=z$S&bGvC_HJ$%> zrH#i;gO_Vhm1ZAl9ZqoT-~6g{Z|B#1Z7=A(5f;Ie8^6M7G=}uD z*#BFzuP}6HLsoy|W-k()JwingDiM)(P5*Vf9ClAi(eX@+zvz)z0OKy#8X!@H2v3Ax zvoHutqbVNz==4a;T%$2ixmv5DN|n630Koa?+0hy5zj^cEB23BjJ!8b#L)AG$QhXzW zwz>ZX@7<^tZ|9W2mV&Hcd+*(0#JPo98$~>F($)Q3Rwxpy(|&@jQ(5gF8oI1+m-Wpe z_jQ(fk7M6&<>cZNzwk^CHY@YHk|>mY2PKU1Y7wH)hQJDoc3cbMRyPQ7pdx{9Fs548 zI9Bl9xE#)sAOI>wX>o-G3giaxs<$g=v}XjY>AwovwBPxj+<1)Za|~+9G_UQwwNVwo zH^mSq@OI_VHDZOLr`zRQv4=$~~O`iX;xUAL`;ZTI8eE-sKI-6$m_-# z;oStPBXf??)o^1N#Cjwg{nAiA(5uYkGpxGlQdTM5QRV2=Ts6uGHEI^maQc5P073KB zyL6|SR`&yEdq10A90QBm@L;31$&H3u9(7g0I{HN;Fp*A#`8Rskoh-!!smB}|Ip$jG zwDX-Q0|V=*tqTi@Mg-YdS9Ar1qF`~2aLN$VdwF_%6a;0S>+s_NTP&({zs*p#)}G4` zr{8^oQRido^bSBYaMZ$AHiQbsD!BO^W?UK=E7PmrJGv`4KFgge>tpd&yX#}itrc}$ z<*w3RUOA^WFMo8^-^9#(ly+}v=7M+Gg#U71$CbD5R8U0TaQwROK9 z9Q#npm7p|AjZG8^)WHKcGMW@ zrJj8g`nu!yx$s}#z&)q9rOwoM@sHkcWc`^I&)MF(U+BbEc6|a}7s0N;{LWl&U4tXh zIvraxoC!&?h@qr)XP2_`?U8*R<8u$sXWOQ8@zCSeK4L_Xr}GrRCY>m&_%YA!;9g|& zPIQ^U_0w5AcR@K1@?es0S4`}>8zM@%gk|aK71w*e3*mFC4*_`|SImEC*tchzu1OlU z{1prr7qWD6hn4r$Xwi~`rQXmq4-pWcT3x?b1D~EM1Iq#|o%h!pe-fD;d|XS_NYUua z($W%W+`MX)yS-xBUO9SpL5JN8>8~@jv|y2c`B5UOB521}{ntE>wBvF>-cT(oGy+K8 zJi_V*+*pR`R_b}ZAeR;#lmZ~X=Soy$w`=t~O<|BZ1Lymyzcm_uuz%wNj7Gcoy_iyR zpTz*p@|$OFOifTfA?IgzVzPa?S?As9iuAY- z7$xjunAPYaF$2v!jf<`T?YigiZ%XPkhQIX&dAPLLXWDd>+@}Fx56Y{s<)3wXAz-tb z2ctPVB+0(4%}#|F0)OjGh7v86cvA$SKG&s8?Kjjt!mPl?y<#>`%&#H(gQBxYaHT#h ztTU62$?FxA5WSNw5;fms{g98S(GCeCeD|hpR?r^&USC&uQSEZF$mg7G728OPnnfxX zD&tTal@GpxJgvws)$ENAjw}uT&9M)gk9-qugM6O$iX2<}JLujpAa{DVLRt`Vg{!;L zX%|VH6YQ5R?0sqzbkLpmuz~{C78m~(@_)9zy%V8hzo_0s?jRsAUvrzF!-EP#rxH?{}&vlX@C({dw=OPwdxnB_qw@I2^t@m&?KEqp`w6 zax5D*>(a}{d ziUK=WT@m?frz1cX$HChtO7vfaY|joBZi?&w`0*pHd1JmXXJ<~hDST&k@%ZP@8$YJ3 z`ogzrn>TKI-%5wn<|@pP)FTG37e4WdgB@VoZXaM216Qo|7QoOZrKVOd{S%n{+jy94 zb=w7yf#YyE-WgW3AJ@@x&duP)efO|XO{Gt-jqCWq!GTAq-@CvytiA73T4!d#2b{4Y z0qW0N%gWpSF;!$A5~9UXc56x1@x7pSwV7uze0O`0Q!Fgcs}H%K^rS+fKLFwHgMVt; zQ!AY#$%TF_qGg^?i^?^3i`7TO>eevpAQ6l9mC5pn`I$`UYGau1?xHYah=%(s&>NR2 z&DPtFi7PT5WX?Q3w!E{m6EG37TfP^86J)Xv*XG#Uk5!S^-l~QD`SHhIZ!=KVnuNUa zTv-2ASf-N%q!?Qu#AIZq!xgyTwq$xg=#*mOwCX9Bk#i$MB%O}un!N-Iaq!~t#;k$n z6Z^C!y@<6(7;Z3h$l)|lyCX35*=!B=xRkt-k;Uha|3s-M7V%Y$3kpBix{tOdsrt%| z@KU&Q+Zc~^QvI&9rWO{bBo!5H+s6mA^feFbh_egr*i zdubpdH-^2RZYXOkp^yVphmbeCmsWQsM;Dq?xgdU&c+HaZ(w%wbQR*q*ov*;WX6M~N z`mt_zDZo%8#(oU`D5)6his2V#rH5~91WaSB{fFJH93OT|lRA#=YYYzxb`n4uv>SVX z@W&@;#p|bkB;;W}<{ez!93KH8CWXZh3<1R)dHQ+Bs3IAb(z{@kSbGoMz6`T17r&+$YInOo>16kjj|otyx0 zf};KA>1FLfp#dwrMTjp?)nW0?&=BvEmEO*Ok~ka=kX2JtQy=h2`Rg3fipK-YS;2*^ z7PdN^X20`meZ5Y(d!?tRVh%eZt>xRx%GBvNF~=p0z|5H51EjYSO|z(LtQ4oWl2^Pf ztJwa`Mn|jEEMG03b7@x=fC4DGs0aZ4R@0fj2^OSMB@~`aB3Jp>HF&8&f!wst;W7Q|JziFwXMI#MWi#nZ`yQPcu97dl4C z+aYZXqd-1H90KH!&F!m*l4GL)bp+uFk1k$9(twW`wfHf>{`pVZa2oH=b$?~(xW+$9 z2g_2ZmVLhP{`~mKPM!7xB5j8ZEdkT4)t{8)N28S7=8nf$qfTNTJ{`>lNu3KNeJsDM z+QDw*(LmqE!)_9*@gPcCuRfOMNzGtzp?zGEDs^1L*1jeh%1m5!{WAuHw%b#!t#>C! zGY*S7{@YMrKWuLYYz;Ik?K97LEQAivw>N+pK*|dd$F_;F@$VkX7~HonnK{Ol%V^r2 zjJ6M5+25(->LKL%c|OSKuGz1uY?a0%k-xs*YG^uP{#oT;kNNV^yO4y64QKJ0%^rHm zn%G$BU%M&+O$@;}#(9Rth&j{ZUr#vWkq3gadgn^!_x)o@@-6nblyX$Py)#qA#v`j> zlI64iOHA%Jr8ubLa>r%Qvuz))#Jdcgc?ffv2Ac@-X-khR)C;wE(LBNXloCXO8+s;_ zy2d&jgJ#LG*4ftix-R1~9gn50wLBhb zHQwn3M=s(EkE)iphhc zn23Vjtra!IYRmIMT~JtkTn>r=t>qAS!D=`;!#qp@)SD<+&g&bOdeTv&!mzIi z)+;xp$T4#&US$D@M2G;9j=5g?G<dZE8Oc&aR?I0klkzUqq5X!K-ld}W=(x?CGVq~YV@wL-Pg0|N+7RZV|}c-WO8zcc-d91N9lP4a&K{kfkUmnt-Zc= zP`FPub6id38$*Y!!zJG4{nzl6DrIip#5s&CFF}F zmxpFq^jPl<$V2TYB-sn$=24-gdR@|O_~k!I^0#KI5}BKwnyP5(Smoe|CQ+l zHF$(#@{U#W#nKJYjWB!!pw0-p&VW<^r(tmK{_h$UfDTcUX7ve-jsJ%4gFsf|2#GL& zmN)r&@440wZcC&h9eqa$Xz9ylgD@6fOw;V}4=b-bA3Uq_1h{!Uf%6a)fv#mpp^D!E zE1z;A|2bcE%(hqa=={#&`S9a<()*tX$y*e(ng3?5cK>p2-c1q$q?4pQ+`RzU)#(Nr z7VBzh8BeWiN&GET1FIe#&HF%l;U1i@)VeI=cs9N$<4T6LYskJuW0K=(ldqD5zZ89R z5C^28-@c>uuzOkvLPFYTpI({ptrTbP#ufii-^$T>e)C8n9)dT6&q$#=HCD(SrN<4L z49`qS)CZgavgVI8^cUd*7crEe^|dVI_ne|CXhZn&020%7Z&LS23c}!Jg&sfR@~{(Vu_Q?O zviuJE0#876o^fYQfe%pCE|*Unc{8nXmVCyeUkq73dw_h_BOUm_8W|H3+(I#As zn(xLzZXA(_4G&ogViAFY>;f11oxcm0aBPlwg^;-=siDjN(n<|~j-wN`U_LWe2!YU< zW!XMdRkEqfN~cq1GpR%X8ONacTS%3?w!E;r&h}y{-CnN2c7x!DD15z*hcBx*!L6o9 zU||@_JI2&JVhH(a9VXsW+H=Fh?g@jQ$G}9iWS&ME#5l3edzA&1&lPPaVFX9jCSC>m z2a8w^V}Y|eg`0G2_JC7T`b2Y}2%<0hK*iST*!Hq`S$igvT;J4S8RHxu`0E?-ihsI$ z+PqsyZB1$ZN{up8qkXEiai0AcL#P((t_WWK@fH-8ebJ|gAb~b)JHviA?!)(6*GtaE zTm%zM+U4oLc{yhmvZ!`WEKbpBkC(rn)&e-gI4)8&?ndg7{ZGt2%mmVA5BTmK?YCLT zLe7Dn$J6SeBXMZa)YL+a_d#uS^ufu&mvQ*N{zRsio}f&m~ItO~3n*%wH|d*9)W zfQFQq?(5XjF2Mmfm;s~uoC%`4;=<7u(th#Mij)i;gSh~ve+sE^-~|Ko*a&E^db@O7 zNj>S|o7lAj1Ik|-I-J<108^>%ZO~6V=HZff>tQ8@yTHgCUWb51pj9d6*m1eAYfyV| zyQG0-9!~eZD4mc3xgRmSXavRZ#X@d0v?EgqW*#Ag*6LpQx%0Qgt?jPoJY*XPe>sme zc_3PV0nzCMfoi^ch60L);-d0~mPRoT6k@^94p)rDc7k16b~@(-u*LzvNssnKBe+F( zeub~+1s4~dt(u;>-#6+bG0^X?KiV@Inkz^}@t51F<1-~mv3u-WaHd@(|2vUpNHoOt zg;xgDaDVdc3#EzkfEM8z<@vxf*VcC?a{#AcORHMCA?4w6;rFwm?TX)fslYJ!as3Ow z1nspB4RH7LFoP?%Gk{ec+uu7oJm6KhZ%AE6CHvP@Cp_n>{i*Qnjqsh(@TET;=lL%_ zwbSw~c1rluv(^XON}Jf0F4>RPH2N9=cW@ek6QVvEMiqU&!b-2~f&^P2LJiOrck{gs zYgR5vfjeILIFOOS2Mb*K(Nm;dM)bUq0=gDN|Gwy=(G1Qgr#0+5;`*+P^$oW26@R zApfkMIWV5SCdT(qlNuaQd6HVUCl5F8^b~P|`Ntim+?dhH*{a<;CuJ6bJU};CZuaAC z&vhr4dRtWqfnjLQrydt|C@2?X@6#m;sR`RW$yA`!pJit zB#z3uC0T&O5``_hzx%rBJa0HgZy~s~+&iaDF@JoSZX$@@jxGevu zI(|{`Og*3Nw@&8h=}QmY?e*$x7Ji<2UG5Nc;i#Z@7w+7vJ1~joKCiJbCnxC8<>$#V zr`G@b@$2$MkGMnyML6;cFGfBEY_G$YSK`IXvi}8Z6$pi<05F1E9V|b%Y?~Thtxp!p zq^6un=T%I}Q^N2nTjH2P;f=(LXwRqhw9}SJI(V(UKBjCd} z@i8ZsSc=!R+Hdw6w6plpl@!pKS*If$<$N!ZT=c@1bdOwVo4(t@^CmmJ6mw4`?L4r+ zj1}=XP5RVON=+jlR;*$0;8$(AWj?v5>~OZb#ITP$!p2K!SNBXloq&< z)t^%kt~byH1;qw*@uGoD-va45C<%};AfO;_Wgk8-ErO0sgmLBC0o@lINHA=94L(e> zM{;&E!l#w!yhg?`Nc<>PzE{Un;oAwAFoKk-bJ~FCe7U64w*%c37r`H7xu}fk;(c$! zZJtUZpTyW4Rhl`#2@)L+c8ye^r@M}guPR2+DbKuQw~l_v8Fq$!=tBe z_9Bo(s@he1W*joa5coTx(na)uM-mErYh0(KC7-BaL%B!-HW&{cS#xfxSS^6S+=hs` zMk0pfN(Ttd5E@r=`Y;wq2d6PS64dTcYrfy)l&U0{_zMQoooeKQpuy1`qXNtvsP?v> zz@jfz=K_+NsdePa0vJ!Oc&GEA4R!8E&d1awEiK(Yg2)*AAfHmjdCTD(PL>ALEF_); zwzG_`Vh!y-E1V3mpuqYJYwz*#knJsURp9!UJ6H$9Q(P^Qv^OFJG-k&7p>K$afl~;L{e$` z6Sq*<9D~i(A~AJCH|gbwTVpghd>XzD2l}!9dn}#Kp515KU|TAd_(8YwUnIVTw9~)SH0UUb46LhSrsV4m zc(70Wnki5E-6{3G%1(jm3atwP!0+Z6WV3OmB(H%m9RLeafckc4;C>X8EE)|adnt*nQ0LR6VT5ea)gm6)Kh19a~VFJdrNaQYID@vrU(A4}q;WC}OWzPsPi2HYdDpoCJlp_Lq~b_qUUB^7FI)*I6l7@_ z)v$?DrKV1;>ujAtzmhJpbwPO| zLx03>@ObgPqtXkbD<{qdJsT|co9WqZcy^X;TBuzP0|zXTV1gc(ixr^{Nl;6=Hki?l7gaLqV!KjG_#V{v)X=U>G&X2>*wn2yS5vaf8 zF!JVA14%5_{?bOh|Z9CY!yV0}#Lw~zc zKlIl(_e(ur$F?04rYoUUBhrOsg-?Cnm~4J}M^`3wfz`-g99>+iVcoC+@YeqNE4>cpCAkRJLw zmWWSm_tt{{_ig86sPm9U$V ziSYLJ0x-G|)!7Ah$QW6k$PP%BwmtP~1W;UXaUvEdI#?~~bgWNLg#WP*-}y7`1*34^ zs2T%1;j43MO>0^IVC_gXo$OICF3QD&mmx~1qRGG#3DMOB@5jY3K7T0&H-hMJ&}f~m z){$;?gVsgjux{%D7_Zb78Yn}&PoMgEJJ4#53>=po#v!onnH@}~ThD{;=?K7(CQ#9u z-Kr5-K9ed7)$Dp(lIUs6NNmncZV5C_Im7qk|JCaSY5l8Z6Biv%qg03ZJ9(IbEm5#Q z?gw^&SqS5fyv-G%zp)yPi+>_^-Qb>4%0-2?fT}0j)2%nR-qiD9QY3Cm$LFZ2_B`25EtagHo ztKN``jNYqj@cjv99x6D2d*e@Vy8TfPM4voeC{oM{Q=9aKuCB|a$G~ORW&an24egLU{G6eiE^7k&P=loo)fJe>I9Iu#{K;QW-LJ~B zuC1*lRgbD566t{NEe|Ny>a(K#X?m`gB=HU2abZj^(HZH?H$F`LIp9|n;JE+4;jp<})4+dZiS`QMk*w2-KpH zr4hB*)XGB2iEzE-^&wdKIbGjN`?UdT02uSi4+tggzWr;y^6);nHz+hVt;lEQ8DDaGv|q@|uMMAO+n;I0 zLEEb{Z@aAuvUS6ZEI)+R7Am|@IoX2o^p&dzjw_97dnTtQ)qO8ykZVU5fYS3-eb}-~ z?I`iYfn@Lr=7er!{j;w$i4zkujsh~WJpiUYCB3lkED`H_DCX%}QT%p=a!K|0V>|4q zApd&PQiZ_UjajLb^lEAs&$8GuZpY%I}fO7DN%)&)YX0ktm{K!C6*d0k`TMA#Q5_e6JEvjWvl5riFhyJBd7XA2nd=FgsNrzQ1 zz5Jy{S9bl2;uFPFpGG+oy5Xb2A#0oA4wbbJeI+hGw5z(B+A%fxh);sJD89Q(e+%nu$0KfSf0Rx>BS)HFB+x;_O zzf)UgKcBX@B_lIAC-m2sAN~9Ef;)xWxNgJ;-fVp4&g`Xd7b~@tChkWefM`Yu$mBr} z;?50+Wmf~6ieb?Fz!k4KaUXqkM+jiKR8JZmx(}9jZdgXw@tc1RnyBEo)MsBcH(L9j zR00f*KZ5v3BPj(Gv~-m~QWb~(HiW$VL?Czr=2g@QYD(&HX*Ne2a1Fi0#g}h*({Q%x zT|8i>DR&2xFxZv|BEgOEg}3vu{`$A6qOl6Gp@zo=xeC`?g^4K-2n~!m*2b1hn6GcZ z=?^FftffJx4c6!=b*PV}zq8}IPc=Z!?pZwoC|>9o#UGI;WEF36)APog8h5@9Hdk?h zjfXXvRgvgkR(a+UEk`f-0MOwZSBa_EL>BOc-u)Vj`wNFR*UnYH;CV$61?NoxIH#ZrYlzax*NE0^Z-gc*H zYkSL|3fVe3QjzqD+zR(h6GHo5dWazigGc;VDNm|q%TKa!xEd_@M;_Rb=rM`j-V4AJ zZ`5YbTd(Het#21 zyrnDCx1qw=95r(2X$-3>v64mfv9n4GUf^X_b;`^pW$eCaZVD9D(OIhe4K z8J6B2+v#Qot~A=UURjGc2GRkHCqR&c^EbNE(J-+L2b#(lq+^E%J-^^tMwP>hM{jmbk`hfTlk z9eF>(yfkxQKRp+|lH%BlHad2Y*zYh6!~7vAdE2$8D_X%IdMql<%x1jkPD&5^`pCD1 zpz|UmyHgil7D>a^dH4OhpBtQgH&+*L4Z2soU|g-M@m%<=f9a&>KMeX+*v2{RtNssc z@EtRx@i+)4r7xXZb2{FtE_0-2_Q>Je`GW(41Apv60jYy7@{h%b&UdPcr-Pln=XPF9 zt7_Ni@TSwnlyC)tT#dQ8ndF;)v|mpJHJ^7@HK#Nnui!p##!f$Wy5(qYa7u<58pWFV z*yPY*xN4G(Kc&bsu+K7Y^0#ZQp1n?-JhL}JwJC*4ON;{w9_DMy+$y+F*21iGgJ zgR$_U1ou?*qYvJ;yD02*T&5 zu?R=(h&SX{B!KkeuKjjbG`ha{8D0Quk6@jZ$AzrdH8i%4(d#z8z4o?4JPyXDlS9%8 zzh$+tr^O5p#p8Mn1dXo!6#gyy?|{lPqQ9VlNosPd!o1V*+DcWQx%Ke}j=q04MAof# zzGai2XinLd23D^pr7UFx&k8q14_&lnqC@QQV(teBIi;cnftnHd^>few zR0^ty-VHF?aMcT5f7*lAs;4_^*z99(@wihlDb|N>DR^pPLi4r(h^ps3B`v?d)3fEG z>E~Qb-1xbN1au|gFu(Y5ru*{eR)#{OGuKIvRgI0dEj#qq`rtaVZY{a)Y0_An^o@i$ z9xZ#!A2fk95>9XC(~mYH+By7k=z1V(DTVy&)UK?k@%45c-6gO`!Vn7DMLAdh#qoMc z;`ndnJxnK&(+PN-91+RqX4HDEK#AelR?Qooccsn!o4+%7PpvE-S_|f*J=P>vSMIZA zVc%XVE>@To6mu%myU9p#5yNtxIQA}(yg`sy3CC-N zWLBey_Yq2YOELq$ubs$pz`ELZ9^yl@hmY9BL6k?iR3g=um8I0mf0JDkxJIZsf;K^^ zgT2k^QfZEl>q*`vcH5;JBCTbPx6biNb{tOQE44~Q_0d&mg7Q$chv7q$FO31X^9rv! zbDB&H!|0H~9D>&hjUU>T;=8gwme^K@Yk(yRoGy|L;K+bjq+zC8YQcl>d}nBU*_xc(ygHE^u9L!+-Y zJV+4B7dN_5v%uW=aJy$?WN%${U0ouPf~LfX$>p7_?zXT{Ck!i=a3EBOw4F7MIl=J> zm6zu!H+2zsPY{VwS;amlxU&qfyg5k)i)s*LNiHKU(@7=Awq!u7iCMMKo$A$U45cA z>3_1g{6&%2;|d<^ERFl#f|m#chj$?%gY(Pn4GcV#s=(MbIId_e(#qRrb8Tz0O(Nzd z7zkyn7+jBIB@xviC=F$_D8Cpu@o}I^r67lADX6MX5b^y5M${U?m$KN<0)8=jANFYY z%{30pNKCs`1#d6Y(iix_J)u96GQYT}j6ZPlo*5N3C51z;ilng3t-+;9s?fRDH0nGK z0}X+^rQ8-(tFq3_<3dr6`Hm75Ey^E)AGyY&ZM`E=>7;1sD#o2o(;R65QKds|487}A zFe*egSySI0;-4-*umlMMGK(fO68Gevb)@ex%%_=PyjYEI>tTZ#MRFk*KUdhhRe=V> zaykbK7(cr(A6=Cnv(V0`}yqplEz@qR1cxy6~`4_{0#t}Mbd|EQ zwXlsH=hGrpp=;)gX%3^)i#nd7I^i51{Ie!Xfvoeh{hLJnz*^Bi14I<04&)5K9C_|6 zmeMDR_eU_X`MXAmoWO)&U^C!MZ1c#K$G#cLWCTqp^vukGD%==D9VKQI+WBNI)!g-5 z43Y`|2)*gD(uL4YZ`vnS%Kic?57sLCkmudgM?i^8at%Hz6&jl}E|gTf#8$sC?Bwp< zg}{ub?wP~6LH@ZPhWw_=DVHEEiU`VxG~ze^Psx^-(eXd+l~qEzO8YB(u)B*+!6_!!;@lFG_TGHv)NZ+~=vH z;bJH#DqzmmQ%nO=O1ZWScY(RE+OexE?)B$g zJv@u^IRtT5qXAfl_?^i8lnyr{8TD?A(JGztfxEtK7&@CHtadV3iDD2C>SzH1-6_&WO9&x28R>)VeqYU1+u538^ zuD3TZlSkiZ=Slfz5>oFY9_)OGgWtl)x4jk{I=9#@5oOEz!1IWJ;HY5g=<-I}sg2I! zCUF`42YeDSv1C0w$q-DY@T3LDzsVmp)>sR%5(JMF`_C?@u~Q0{V)O1+b>97SR!VaGEKGq+iw%$QE-hKNLRL2PXH8#Z zaINh3q4%0Ly-wdYHq0*_1|OcxImM0yBZC&WlvAsN= zFthE;qd2P{usqXpHrD!cSQrQuRu5nRfJ||+VT?eBevsRGf|3ZQdZimSrJeX*feg|= zT2j)ehuI^Nn9*b<%T0bIP#UDDHj}<4d%BgfnW3V?io;3YOvCoTLGL*t_V9gSB%I}` z?=T9PZ!~<$>(qoqPFAB0##H0pPxlXh91Y?J+a$z@l$>&h?Ny^5 z$JevtDN9R1VPQ1{e`XQ!xIIcZZG%*@FVYASm@ zNEbw^YpOsb5mEP6o{+728e?D6rf?tcWVVAou$Hom-W+6{=tg>fyKJ_mD)jm!w{l3Q z*JOXP9=)9<&?>gwG{B7A3O0nd&n}nd5K22wfBHW|i4;Ellb#`gdshKB7M@rm;`OmP zk2};^=IyfV$EuX*I|&YY=}_4cYkA`Zj?g5~)Zm+-)!pqRP9n}ey-sXsWG~3yL8INrBsNDN#2_}G zN1Zp$`)!mVwLWvESR@r>J$Ngn35FK~2%)hr^(FsZ!AZqD!%$#2889Fw;mq2bb#V-a z&7&tGn?{YhK&DvBovRU9{}UHgCkz_3D^E=LV$Y7K-eCy@I`X5@!*MJa!9NsmHU@jN zA>k2L<(xz8H#T)vL=xHzl-GGIA>397*DD|Yzx%kXFD!02?>{IpcdHJ*ER^6W88zlo z(CAOzFPEF9<3^QP7S!@W#na|NuqIc&b3 z1wQ{i2BrCJlF$IM*VKk~FF+Z}i{7@RUktnKH7Q51QDp{-Of4acRp#T>wKXRX@PgS% zwU|8PwL^9M&bOkf<#>ca!-m|XfF4_1Rzxwt~F35pMF2y~1IIKO4 z@y84~Ix*R{KG*(Dh~VN!OA@roXbUQNGx<@ut#O{82kdHQQy!GK*(7j%nyr zL|b1^AnRq4qvMHShTbQ*eHgY!LiyY`*(pe1&XhDlJy_^W?OA4*3K`H!CtTeJ=SIs4 z=?-J$rLa`hj72qO&Z)96FNZO*n+|Tr^0$F^OwwOFk)qMTLP-gT=^Ji|m@#3*FXM3H zy{#_@$HkK5zJ<9Mf_*s@Zy`Qxf-j4#tU>x$Mw7!8PObfDn5|y>vH4|}kzHl_dl^1t z5VYj_2@Bs1_qxp&*Zi&M0o>Nsg34f3WR*v(!xy{nJr3&yUcpdWKd>PBim9_zCIDt3)K(X<9HL~Zs_F9e7|Sf z`R??%Xr1HgaTDP3&l8CQ+4`~Uadl?qwiz|QReEh< zbnJn9S}6ve@!ZK<-qXVJ_Xp;`jjnu{WES^XzmZ(q+~f~%Frz%l=Fp_}t9xSk(O$EJ zsHTjU%*w!{B0P9q3#E?w(NUA<$;rw4H&%=-Q0TKRCdN{yR(@o(!d}KNX8R-yI%CFd zO*?CI?TD7vaq7YcV<4A&AxsDR{_7KW(uct7+Y++8W>Lw_j_ckPDH71*&X+l@;MIe_ zl1y2+Tigw&0z!S~69O_owOKrcX`A;so=Tuaa=)^Df^;9#zYx~k(yk`aM?JXD=#37( zW3sZBnlK=y#3U)2stKLzI7*d3VxLQPRm!4yn#Adfop-slzeuLFO| z<3bpio7~2w)h>Ou^5lWd^{|nsvK#8oZlte3tCBOIP$3_(7Et4K?M6Hkm?&d8(z6DL zy$7p6zKe|m*Mk6vQw>YcS_%-_CVwUwA?2!P#oj5qDKlE?n=5l`c+NvTT2nJ$)O<>n zmdlfI+f(Ei)!VbF_uM8lMUp0q@@-C5$aK+6EcyqxRuk)1R(S8>+{@Cxu+c$r3OQ<7 zFKQL5O#Uo4{z{6-c&HgJYly&ON|K%YyE-hEL$JDVkYA9Eo|+L3$5XOcOs^r1!jZ0R zoav@zbe()5*%Vqix&!9&RC2WS&sU1HxyXKyVD`_lgUkgUxo=c+nS%Xv@($S~8n|LkQM8Gf}H0`%1r$RY9n zK(hMQWwEjU;vSuSPLH|_C+>b19(Runs`#LOKAIE#0z(SZ4||FOjyRaOkhIL zH6U`}064^+)cYK-o}bz%{3ukDs2?4G<5wIiLmXS+0EUoz^IM_cu)dq3x+#}gV4hS;L0a_;LtnNAi~i!ata7Oj{Mw6)1y;sX(X|W) zKEawC%2#Oj+r93Ie7@8;EI{EeGB^aCJrMLsaDikqMr{v5xpc zp73k|RWv)z=UR85!;HNCj;gFzpXRO1yMlsrL-_N|(5c^3f#~87HGXcWajM+~VmBL> zJ{=7m7BNNzMLHJvYo~;Ee{xGu^1gH_LGo3^-Mq7*h(jD&1#i0-{zS)gcF335o)E%W zsWmwzypK?RzDG{mnoGdsgNzgoWm(}O(JURMFcsQKrle$5=ZT9~hXasAc9JShW5 z?`nyVZJ^p*Aa^%ADpVP|rRN?+a2JYU=y3D|0|=1ZkQtbGbFiSHHB^$0lvt53ka0-g zWaZ|H#Rgx!V`?2A8(l3L=Z=>!jNg8dup~;Rq|_af9?l(0lES6q_*MWuDAtI|AKp1or`8|7w;KCPFB&*Juut{`!qs!H zJ*%kY=#|Dsj|Qr;eS;e~n5)bV3pOUG6hsus$mCSN-5nBPcvvuy!)Pkwu$>CV=? zbSo(6GJa9BSQvi7_1?lN%88uaP{?TfiSC7MRyVp}b|&@SQV6wX;_{=CNcU6cLS3Fq%bGn(BRO-prAYUu? zaF~Iwm$4^%7$+e1@O_uVzyJ{PF%{qIT4`?^cef2#)UIOP-q5-G7H`G;|KineHw8S%zRs#?4|>-*O;qAA+TYg{bbI zz8jnFr#7ZWmvk=eXVF#2s!#g4u8J=O{3b$C!JOEKje$|7v6%p=*_;-Z5Bq zmeEpD%pHxFLIO}<8yh3(cOj^0{#Mj>d2*snLU{c28xVwpIzH0O=2`&MKu7IAXbU4IHQ z1D7KoKdz~{wNN$(Rh2?AyiODlu)f}@WAsKc(ZSH+Nuxkgk8%g`om(WBWJ|kBZtOEg z6IhyMqhBBRY@L~d7~nMvTMz>6Af18TmxmItCKG~XNEcOIgTL;^2#Q6t3Y``+vJS7! zZ+DADy0_P2QA^;&*)O$o5Yg@}LV~w;LG*|D6#zKL8xi?WO3io8hrt(;c`?a^gvT>v zp=C#$s8^6v4H@uIgJhf7(qa9C{$Ajfkf{ehywb-LupSdf^L)R57Xl`P*=I&qR3h(y zw_Xv0;D16RRl@ucl_k7nDe?8^C_6tlcNT-O35&X;_1t8L#nW*;rpY`_7*uOJN{AK?2QmOpzOM?l5pO2^KtTU+0-nawZ*RNDOgA7kss z8zmESS_BdHUq#AdNcsq;F(K#dwcghGBH4+irn~0$WwuWy#6Qx^540s}Kv;fF_g4r= zs9H!Y#)yl8L#_@BqA><=0!G_Y_&IGuF&t`316%zTn|yGStr^;l@gHF)lw?Q(KsFSw zWf)I<=wCUalU^Q&yB2_l0n*61Ok6ys_gqzr^^b;zm3iaDwHKdX&kSz-$>1H_`tz$J z`*}1z2Sc=LJ2&r8OL)c2(M{{7??dh7;zPJuoe~_n8$T;sR$JL~u^wIL?xt0>(7GCF zf?FX)%zPKm3siO#pK(4*2)9;2c+mV8W-^~6uWR%{B=+UsW_624P50MI%#u?~le2oL z;ydo&bV%h@CV(h=DD6O}P~zR`{>$eMg_LTspx5K-RzCWz4{l=1nlv_FZ}zpLq3@C+Mc(*o!5adG;?Sch?ib zS$jec8e#`o$k8|nBel?8L!$uP^H(K%#QYIk{+gw_%@40R>D-`y#>x>2N!3?R>eWi` z)r3F{FbHG+@EDH?zu=?1{VWYqedCq)fucX98=xWz)u24Y4VQ%2-iJgAI2*gWW58^g z1I<|aMGUT`yDuik7bA@lDD(hxYJn6Ms5&5(^SxmzgDDWMkJa~|(h{|9p7zgeEkZf5 zKAuXXt^7XI-9A#cHM?ntZ2h*_N-mOsnCh~iyqWTpKX){OdHmkS8e|qYb#<$Se3&a!GZ|sTUL3edzZI{MEsWA2mC4{^)d=# z;8YEsYHa#4yXF)j)ad62=33g;l;c|)@tl_O+)??GL)q407$dRRgUs!c1%5eYBl|Z{ zpo)I2sff!f8TG;Z%GTI2xx~-sWUt`6+Ruo;Xo7Gx7zE(rS1WBCrWn8tCJ>wtH9(W) zOPORl3z?lxHoXU|FMgX03Yut3dytymf6`YaB4WA{57u+A6WL$1xdc(x5JD}@xWeo^ zT~r(O4l47E4{Gu)9kJ-Gt*A(H4|<%%V6lW^G7D!`LAuoxhEINo+fofr90^5BAPFIk z<$BK}BA|rNp*}u%@bA#6-os)|iFFZ2-uB3u?uO__pqhu;c1Xoz-V)Px+J$d(hSk(uCImZVZ` zt{$F%!fn7tZZjl1u4hQ+a1whanp`VP-~Sp{#ut5I3lVi-m7h9W)p^Q{UA57PYDTSS z;hm6BVjirIa6|0lgsd-Sp}O;qh5AmHW_z|kL>_t*>(~qk<%=_nPE(?+anmSZu!Fas zBt<2>^o0={pv^&#dZ-cLd)$rUffBPecjrW_>!r%?Sy?xkMddE3HVEe!nYBQxI~wy} zDG`!cH#!B8-me5|QbCSpi7iXCs-+~ch{P&{y#OeV($@sw(WJXqJKfU;P;cZo zevCF`WX{u)OuMf>T9`DBntYk@@S)`o0Xm?{zV~{X z=nF+1LR7t|`Wegck^aiW^zZ*HmgIk+7=8s0?a>HH(3;VcKx*T)$ z&oUo>_Gr7??C8w6yuKVR6MFo#OLs#tsGVFo1xOiuRH;`aSp99EP#&oyBw7CxdaykK z$GoGPD|7MDSaTU;E+2&m62d%94a1g};kjqAqDpp3CEz1?&rtk+4QrTCYB#asWN;R* zq-zr?q*^o;j9dm|7yL;tY=4fdSNgjs)`wn|aMZ8NS(zJCN{Z8C%Kyz}r+psu)qQ=S zYraX=3h+EgcE7sEjnLJd?`-U^#TW}Ks1_eESisj8Ic?-lx$bO4TN_S#6%S= z2{OqcI1VUYZ43;kh(V(HD4N#;v=vHjiXn%igtq1_)-8}zTdNWjI>AGtRsu#t5g3@= z-`vHyeNMtl)QTBh3k%)@#i=FYyYZxt;CE5iNo`APv#73Z3ls`UPF_l_Spp%h3s|BwwIrOFdclr4=A6pQpXZ`P z*1P4vuKKBI)^DQYhDZNe(W@03p&MV4esN>E9Pe%Bq;34$dr%5>`D*RuqF9!F>4XtE zDP`)b;8(|xrqTPB7640U_RdAT`q2N&!}Y{{pK7xMpA&=2PYR!JYQR@|c)(Y0IcraLL}2!~d!&&Fy{-6{)x8iD3Ig|a=*6Qiub%eswXsb(-*@sVF=GxZAkjP`E-}5uRNV3NN zZ>e_Y@iYT(*ZQ8!! z-oo#a=|ksd0EsYhGtL2lwmsly7-0()!iB8_8h3MOs$rqF4G#$u%(V+tv}EtgzdV7E z+LCKat&O9~6ZX?l*G@x+dg{4sjg<@yA>#yz!cTGJzF7Q0J*e<#O($^HAJuO^7;F8H zX0lqj2(`&4o<_n&pEf?`QkvspOeN&VI&Z@oG0zy~rxPS1VrrIhi-h^9Jzd9?B*w@H zob%MnFnVJ5e_H>$`+_W;e*ezyd@^)rwgclf{+-*UF>;lq0gD0k^?@VS1k^*ao)`zD z_iQ3tjz%ZtJ$!lBJm*&G1h_h0K{4w9(iFg8lWZ z_X@E{h=R_gkS7zA(3|aDwX%DqaQnsADi55`_Dn4-wC?Dw%rCvNlZBuJK+Bk;_6?=v zhXo2i<4X}&YC8HUmJymMvpbpn%VGayMrh{{R`pnaYr9g~cL22cB$)XAh^qpeg~UF% zNC*A%s1+K2WRghp-TW&SaY#jp9&>l=_pnPvN~CV=d_rbx$~Z-VQuI{SvNdQ$zJ%G! z4M}n%U<*0sQNI=C<{hiLI#@>lxY{dfCp6U5ZPm0zHl4Pi9VAO3XF?6$bark2{x;bO zCvxO+*FA4nbz$BMb_4g(A6qU?5p?Y4kDhs>KW)aQ{q^Yi%*LP941mJn6h0N>3d{%i zKtCLnRzkTR>W()}t}kOSqE30W3CZJb6*A3B_Ta%#DEao%(PUBaYyYn13vpbF6KB#+ z2bj~sShNaC_T*7_1M{#%40U7A2avsQXUcB%05!_B)@w@SRF&%M(Ulw~4R|xvFs@By zHkaHuzmzMB8%QU@p`LF`jny7GrxqH&97vAg58d-TT2c=L z4kL1rp_@%a?!4#9$O`k+pnjg5Z}rlQw@CGtRoJCc8JS)0eacssOXvQozu|~27{-$d z8I}*a!L>@OwgL~Iyr#zmcFTHYj0Fm?IY}mhi4Ksd+gD&d2AFs-9rQu7cz_Bm_T=O@ z&yOrq4LJAg(?mo*+9Z+r<(S{xZ}sy#`2V*gx0_mYojRcv$}iV@=S2U;z>YHA6mOA4 z+HjRfa>B93pKgXRc7Q{_x3I90!yHot-7g6~vfcLsK@Lu-%J51YEeVEkImpUp3D)5> z^R?z8R4~r-@kE1FDp-o44XU zua;$6W9w}ck%f;E67XI$<3m{2&9_Z2t141$YSo_*(a}z`^XRi(-A|@k3$IVQ4kFT!V~fGe8+q9hSYu15sBW6-F? zIxpv~4vY1(3aA3B?#2XEH?)`B5V+?v<+s?jIrquxsxIv<9li!_!O#&M!gen~dO3-b`7PX7Y_IWX~#*2`(a5XV{^RzkFEU_dilUxl! zFBHv~He2I%n;#)cy?@%ft#UBOTuy1&TuOd|gS^vWqiz%MkIIq#o6o{A_zMDkp&uDV zVYuMd{l08mWPYfw7pf=}=Eo{cE_i-A3qpDzE)Sd@g4X{SEb@)P24S7vN4nHMjWLRv zZJ)q12k4k0eSoe7W(HsGT5vg)cKbHrk_mqS2c$V-#CIu^`VvUT0VZHqvqUqw`%QP& z_xr$r&^RkS7Y_|vWW4~bXJ+hXkIgUH~Up>5f zZ=(b!im{12Qs=ch;DL)0@;f57hd5kF%@#l5L-qqqG7p zCgFC2T@-*s!+;oUMT0aol`EzPkKlew>jq&_1}O|U65|5mN;yVV1t^aP+#GO*hIZ*O zbNEw&U{o%Rp8}~~NF1NjNbY-v{~;|6KvA2>+FQH0o$6TlL;1w_llur5)PIrfreJ7i zAp+;k%cN^-QDmV1lZWq&i26z2yM7h_oUb;~_8k#PJk$1K;zUvQ+RHaPVIls0pPWtvZo1qhGwDp({2jB3%x0eJzCTWo#ZRt|LjzrIQa z&KwAkb!=Bd1fwBf#!caelXE=LXhi3FfHFU44M{H(hvn`)U}F6hNY5LiUs9|6wpLN~ zO(Gkgi``RWg)%^QL%&@77z9%rKh_&>4q^rOO2qyVWD~@5RYA$lXF&nDc5B?1fhO1e zpL1JtBXaDkNqmA93GQIjv$n3LO_{M3mt?&L33Bs#LlSKpP6xe zhbFyVP37s&4E^&CWdW?y)A2*&*l3b;eos$kv3#`p}ATn-&gC zCAOZZwRlHexcBR|4B-z?$)RXM z3|cE1aTk?}P9J!t&G{iA3+|6$&qV#N^I3;)jRk2O+y|k4H2x^5T0LrBv8aVA%FXv3 z8Q%?c8biW}Ba)~BjqL;VmXZXc?{AHf^)2WlM~%n{Vz1c6N}@!AWnz;mWY3Hvn%HOW zxtrnIRhxSIHdv=b$-T`m&^lYx;=x3l+GR4#4&Tez6e%6bqm%-%WM05JzsB9>TLnr~ zD_WF;VqZdhHGTVvT$T9Le;F3**~0f+-(>VZdT{9iG~i(!Md_|NEiE-&Ph352bfP47 zK$fJuAu^DnmzxU>J69@Nm&e0yY|XUY`?E3YvvbHQsm^O*bs@QG`uDmMDEyxsPi+a) zp{*hL8A@PtKT9 z_t4$l`vMD2) zz?V^!ohJ0i^H$|EGJOC=Lo)qCbwN|m-W&gZXEY47U+$S6_qYtp^u75gl_tS^%jQ>6 zqM*YIWiTx1xh_=$=pv>C)TVc~Yh}1O5Fp9t53UqI}Gd z4ojbHRZ$UV>HXF_(`E^o=?|II5{D}`I%G~h{`U0yqF`sTk48#ssZ?U?yez2)Aq28C zHuLj~GVHUN)C1Q4PMOhQhY#NKytPs-Ph2UpNaA58Uwv*%Ke=96G3fm({jnB6A0y%y zeiX@W56T`s%`>or!oMmw!?i*M#}%F(u~cZ-3`Jn)v%x;Ys3}_aG?eG5 zGzvNNri!a<1Wky?m6ouxvC@G(?PSGVLS|9h#Iek^pn2!iQiacxi{B=__0IFey^Zm7 zUovnbbAFmXt7$y1z8BQJt+@=()GKxc-h%|gxj#()CNdcFulfO|2VV%$2)EtTri&NXe*WL?S6do%>Vc#_Z=ryK7!?gbaM3jbGYE0vGl=LLXbgu4W4UF zMu{lL7b;l80%DSU?<8u~7wG$AKQ8zj=<_-bv0%!Shava~pi^iD>1ETzYO$hmMOxc< z7C>>i+;X@MRFS7$^SoO>*V25J)cpST&%WtA@Oh$Yt)pS3dZE26kKyv8GM{%MY|v+u zjb2sdEm(kJ{lgPzRpo>7M{~ta%r|T;Cu$r&H@(pBsc9goE%w_VujLdZ13(RNCBMI6 z76XHW54wBgk-l=c4X_V&yz*P0=G|P6bClzsd}MO2n9C?W{UH?24nxr+7A?hDjo=C+ zHhXUPS-72V&69KO5C`ZTt1=f$W+r@b{9>elOat=wkiDSOL|?l#Eq}!QNZp^ylgWb% zyD5}>qhK6jfoeU=DrN}A7U0vo6k2`)y}XZT?A^LSg$t26jQx9k&C8Bh)S7h_H;;b$ z69Z@3k4FfstPEPZWlO~rBGKop>SBUMy7 zT#zBXL{z-hl@T69D;h6390SN}g1ELAf_5))?b$<8lyL~UUe&Ta<~5+c7x7q}dd2)6 zQqIVAp>>8$wB1|I)-WLR!#oO*x1vb9XwI#^%4yqMXfp~W9E$yZzvFj!axm0!a3G?v zLRJBv<(Zn5lxYtAunE+~pMA}_XJbtgth?DQPXpMKyIfL#9?i$j(HGlDz4Y#qq^USq zo^O6f#al)VNa<}~Sd+%WTEBPZF~~YZJ8rkOYQM|omxxrj=E%eXsir<5$LyHg8KQk3 z=V>Dw>1#-yC3SBkT<=b2W8G1lF;FN9&}|MQKoI`tez2rr^x zX|^UFjZNb4c(ON^Uu)Y@qGe87C{fB9=OeWMr3rj z+IM9&pY;8}4MFQ4p408xMr2S%amV!Y=*s%&oLiGuB;BYa+tlpfOG#G-Ey<>3)F0EI zpbyG|y8D%9YMH~@?=dE?#`+()PTAf%>{t_r-6!{mmXxKu>anpJao_V6!d3peX770i z;`^iec-U^9-@M@J`9rkF^nu-tE5@R339R&HlLymfeor_X55->R<3iYQpTeXCD7 zOvttMb?YqVrc$#|^ZdZioAV~jH3!b|aCEcVN57AJ7P1q#P>A#7SYYNt))X-%PV_ffkA5;;6Ln)M!So$8DgbE@lr8piXpUyIUh30 z)UJvqhF&x?z)F48Nzm1+Ubu>DzzCHX4c#wI$L%DtKwcoe+vdR!b@AZu}0g z1^?1*Y8M&Ezhc4LCMIu2bt~y?Y>qiueD7~u+SYo9g+cW4C*D)bznQN!afed}AXPOM zQ$eHd%X}aGL{cjA6)8;qKiw?n%i|5|`dSaQ>%am0TJsMlTv`bAI}w7|)tkDvbVD~u* zd+eH=aAB{-hseN@(!ebNRn9O&JS3#>k}G{P*^D&ad3@JAR<==&t6o z(XlO`6)Z2{N;1$70<;g`*!^*jA+;2$Hvm4^*UVT-?Z5YD>Lah;A63KBQ+;EdLKk#V2 zckQKYrWMd8Z(${_(nZ|}hhbDZ7!n+_(sN!zIO+P?3p=MhPyz*3^}uScD!;jX)UNuE z&0RD^7!?znW&7mCy{%i`vl*=fs9HRxuVi@@V@!~sUFtytk~-Q14g?OY2cSFs|miz`DSlyZnYgLqUM~Vp;BH!oCR>{6zE>yU@p3o`?kFYhj+VjUZ3Y1QGG8i2jwpaJ` z-Q5j4PS5AFF;q6qYg8cFwkXpTD!D@u=`%(|D91w;2=m7)UWm0z9Jt@{RnawE?ADLy zH?3g~e5E;hnGw0U41?=q>Yr%moRSfSJ%HVSgPVU zc!%3$ii0TisF2?C^w8AuWUIW&f`iEvl5`^5kF)dnU5HIkNT3d-_de(B0~# z>wx(2n(-WHtcdE$cIf|G9pUg**(H8w0Sa4*;s|zD0PLd3wHu>$1ZR>z;*Q)U z84<`+<*XckSVX0?v6kzpT69P(8@`WJ8`@f31G0&6T>_dOh0MU!H2|6sr9x-PJ_Mum zd=Ck2gfBere&$l>WR=2ka)*?{>R6->?RsYUgxz?CLTg~jQ;Q6?^*9x zn1PeaHV~&^r!w5#e4yTuds&!IP0(%MUO0doCotI!@?{e3ZjAol9iUI%jh$<@<)t)C zl-}jLh#ITiN0xM z*RDN6GGPCr?DV*|=gbf2HY=Aw&u+42mt=CX2aKsK~kYRh&LezpW z@2FdATk}i&Sle>NY+KVfN0G|u7QMY(*jOmtjRy1ycpdsg#ZALRrDDpVa~#gbwU7^1 zMl9xp4FjGgQ6GZEm@^dbkaz^B2}9z~?CTMXUhk@#*V>|!x=^I95mIA(5J`r+d#2rgR1fh_Q(i3<)IY+!uDoqGq>? zAGSVfte<^?cFP`<=XwX<4`sLi;*y)<7TXEJY+nh)qQ4@7TYr=#%1}i~& z|I26d<9R<>eL1&Y=N;YhmJMorqAv`laQv|#gouT1p94@=L(H;lAI(Ocw~aSXuqF(3 z?w1PL?q9Neqr;dI63!&ht-}XYSn~8shi`RUEX5%VY+z;)tb|~R?D6gU{6AuFnY*LJ z=MEpAztvH1xR>n^`v+)>8Qrn!^kZ7 zSy{hhWgRIZ35ts!g(^M=bME>}lDg7|?Qdie>L=!Vdx^bcx$!W*6KGcW&FN-mSW4(- zugQ@%mPCNLXz=D$&!czB_9XIt>o=G_)m4Fy|Eaf?cHIpN9#AoasRP@8`9iPwKDL-k z5uKi76_GAhEFHF0mF1Uf0_Hr1q^?o=Dugp8$>eZfcF@AOhq~;A1SVU9rcI>6Io^rn zhN1;$zY}$p-Z!5&d=D3X0UeX_T(P3sR*BD*^&M^@I-z5QBJcI|D)nVCj`rqMzY^3zu+ zsyH+FaTevvoRg>&XFv|uEK>P}%4vw#G)l**=~)woX(p0Ahm+<1mokz(KY#SRYx2Pm z`hjhogK%0)DxIPzssMf8d~}5(vm{lo!A{rNlj*{aw@vLzm0ZJl514Cr}$2*r$FzEJ!?Pd7g@cLZQzXm^A%rw!f5 z@*?|&9uoC%M}~Hqfj6pAD4??3Up{g_3W<%CJcX4q+>4_) z9Wtyk_{o1-EW|jyWhTRjX*=|(|MaDk6~12HYuA$|_Mq_Iul1(WLE%3;uhl+Kck+9< zak}^u3~+Ma1#-V*9||k7n&M)01H6hwJa_lAX|JX+^PakMpFCCffqMZ_Ybh-zC!P!+RCf2FE9Y>dH1Ht#xnHAib zwUW%NNV}>LuRf@Gc)ybk%O9SZ49CgEUs3l~|BmG_uAx6hX{>y1)7T)TlSAVrjWU}t zCDF~&*+=lbMXeVK9=a8FL{>hN42fOlDQERS(a|1kz~}J?CykMs^!su+=d|O~K}`~i z*&~(CpFO_{Y}6ZAO1Q$f?Frt2*A2?_BJ;7L;oxV7$(3da>}Cnn1h&T)1Mul20~Rhm zOSrRZ)w}h87WMh8Ab|`|{*6S`HC^~C)g$&9X4Hdxc@z+DuiX$hsJeQ*zviS6uZoJw zMLx;I2w}=LbXD1nfcnGo|7be%cqsQb?%y+(tTo0IMH$mnNVZCe7|viu8)|ZFAyGoM zELkVnm1VM|NJ-mR8w|1*p&^cxZOR%dWGhRy=kj}==bV4~d-1qgpzSs5nyg%f) z346)K>32mkfm6e0s+T9@t7q2kJ{az7ykTuqQ@;H3&v->gon$$WF|E+>Sq|&!?>@ty zLerg%aU_|#24J=ZFDwE10jaEORaprjQfmD?i&lP=>i8X9K&gTRTi6H(`JlB0sOkL5 z`L!P9;PU*-3C5EB**qB1pzi5b!7l4#% z(`-UtUw_DaN2cN&RyG=rJr`)Mfe2@`F&OcA9Gd_~RhArzgXR|k!3nxuQ3riT#HW4s<^K0bQ?T!#-)HbaQ`PwKpt0{M| zq#yN5vB%xi2vl4mdv|CO!Rno`2_a2`46YYY)xi$V z+r!IicZn+(ibL4gjW_`w+ODe0d!wTe^AT+W+MUE0ygrsx-nwOMxx)#DEZhFBE!2q1 z)~Rqt6zBx*p%W&wLfuQxnh}r--AR1H3N%r%a4z#d>h^q2h!m5HGxwpDMCFFr(Jwjd z+8o(eq1Rjq-+bK5Q)z;>_b($)7Fu|vO}7(w?|26m7|w+K$qpO?Ww!m^*mja*=hg}J z!|1${T-G2nH>}+Pk=&hQBsQn@#u&&@1bL@RF=1az^Ww$wKFm!py}5*ozpvTe-wOz^ zKYfD6p2@CM{BAUuC;Af8N9A#88lGVU3oV_~vT~uej-m7*-;m(hZ_i3V4XEyuT=FOQ zLg}zwA3NCpUz@MTPoDCMWkCQ+15DSWg=3UbPkfq_P~IF_$5P~1+jO(9;*EnjB#OBd zjQ7wGwY%R2-Tfe+S>3`}wx?S2Yg@<4o8_tGQ=VVd>2vRhPHAK9%U@Sln~q6umPJdZ z9ckPH#L_6xNSD*hKWeo-E_A+Ked|DUwn^F^kNcyYJLq{fn4^j?4mH72y7A86zCTfL zMIMfY^U7o4^UC!shhcZyh8SB5+?uI5vw^`cm~gk{vg6=z7KxTkOnQ6CAu;`#AnBLE z5mISTiK}Y+v^JWJjAO6j&s%Z6S zx@f3ot&&v_+~%h@Yu0H>(hE2eh)Y*^vr<=zN#{lia_!cHc-0bXC z1jL-)MLC?%@vLkNmHH(bjxD&HP?5k*ctQ6~(?*q;J!&x3hQY|T0|aQgvG7qu;e%J- zndz*3cB96rKI`oK^z{Y?c~z8Q&fbl#kHhbYIW*y)WIhsVXL*rK5j&7g&k01)N#}bS z!mYs#L&pc7*$5MMao<$NbOEk;l%}M6kBY9UK+{s1fdcHx(gKr`A5GmuK z>^MFA-VO#C>#dvGfEGAYnyC}Spe;P___|uR`s2F)(E`iTQ;#N~2iScO7Kq;CPne#U zXePgDG*r~KY~*&!a>X)?6naWGgOR*e6A9)`!27JlP6d6RJ%8zt!S@&})qPXwz-~#i z5ry^9SYW6u72t|ofxTL%vhw%S`iCvma|Jcar!Ki3FHHRya}Y^^L!8 zMJm8gjZhLHwiI^raJ0ZSx<`piYv}U3DO?AHcDq|dW7q|3jc`9FTP7Lh-?!q?MbX14n^eC2?uxeTUBaV9l-| zOw=}lV7Jl(2?!CPZM~T6YyP?P4jpzZrZ-S{iw8b=RJD5&_Hf&QS;w5#2~G>B81>E} zO`Z|1~xc0RkYS2lc-!waGk zD}B%3)qi&7o$5H32J6ih#en zXM*mI(Z%B<4=OI7xi;p6P9I?su5{fP=dyREE>&LJGCu$F*Pu$tHV*TM+mzupWduW~ zOd;5|%$lRHTo@K}kK;|y0Q<={jkbgIIsg2VNZQM&;lb&jBW6ldMC{Rm{qN&zR>g3% z8^LGqm9oYsd83D1it zNsZ3A9`#xf+8=W0O!*^I9k4RI@O*jhQPx6roW=4{x22!O`P_dEU3V|LxBVPpHPca{ z1WG8}Q)k*B(`v>>7b_9*MtFLG1YP6dM0H9`ul^N7Al`4_AVPIGk=X6k$t)Cf^@uL zs4V#bW%N7X@D3%6MRs^rCckYs(jTx!v=Q8fx`#lL6`(?V`rd4;yEfKda129AN=ec9 zTc6~OS-^B0o`luhpq%gz>=aVsIw07mh@EB;i(}BU#Zt$uj;7jQ8T_y11Gmjb(vIgm z)Crkd`}N^F_t1wq&le{dbDsB}@ey${(qH;lMn7E(mGH327>#j*cA z_ape>vj^PgIKdr~8n$uh@AP{^nYA97kg0jUmFZgx7O~!6Pmj&5{;=cv z(-L2_%)S1Q_eb^g^T^1#^2$24>y|OE?ev4q^G&g;43+m+Zss^$eOv~Z%B7#D`j1g7 zhYb-C9=r-GczSZdE%nD2(Qu2qWb0|6FRLLgZ&u?SdT#6-E$OUSC@*Ec4ybN=tRExI zc)W*_qGxU^Ef66l`937WMpTw$t4Tj~;x;j6w`YXRT+dgU_moCJ%@n7+)Ssf;G6$a= zMl%$#3cj&Ey+vm2N!Bu&F4}!TrtwJiOlxM)`h&=AT=m8l?{6&%b$j=iO1wG?R%=k}3*&_R#vN8{>HrDn1bh z$Nm0Yo3vR;Fe6y=nQnvwDqMCZUgX2Kcw%v5Z#x)6swzo*x~ZpZD|f!VA77IiL$O zAcBXlPW@%)4t;s1r&*eLU*`v!I;^bUdZR8r=xZQ8g5=DNYJaiy{gHFD6H_<5y#mBz zA|p33MhKq?A{!|-D7G#Ow8)8CnQhM-8>6n|nV<*$mwX9`2(Q*{y(N9t$uzH%kfx@l z)qwmLVDncm@e|;qDMo6>X@y>Kt}UGwHYps%iW2^S+oymXhdVsh!Z8Ly7amqMn8OX{ z`yMa+QV6%5kgHx;*$WW~0^NHDnQbo?G7;lZ8WLR8$%ZoAVX!9ugt7ldp>#TQuyuEFhVoBYDvEE8Ck->~YktJTcxkJO4Gq?*98a&mQ&$8e@k}VtuAQG^E3o z!LN8cP}^)2G928sGjohg-SYmt^Vz=6-PGv2Ir!h_gihCM2itbHaRa@3I}^v7Tu0T9 zvshZq8-qY)l6&M%4}BOfVG$U7qrqAL&K&x{=7G%+Kz0T(%8C-U4!>xKW}_;QGET%G z{+}4=1@XZv@K%1SizlFwkWGQ;Y0)cb5Py~^z-YMUN~z9cz2zd%f&*R_-M~k+S`svNfc!96S~Kq-Y&NUC=N)1p%=Gco z$~)4?ts5+RC?i_wH#7fZCfKqqZ((?*lSW+joCvykY3^%n-V-E3-#J)-%^*uh~>C=jkkdzbr%Bx|_0VhyGT{P(Rs3hFmn{K1lfM0h|_Q z0WkKT7KQP90$iyO>VyDYGfE()KMT z=8Tk)M*;wN8fziSf*frpo!Q$k%Dhs=1eP99kQEL#KlBQo{qg*fpmxB_wojsFDb@hj zW^!Q7UFf21`2V#4-97yHmkUZTm z4m3yXw$G_be6|cF9yv1y1|VA@YAbuPCHJHWkyPAids|hmM1Tj*0(Gn8WMofb!nyfw z_Uj#Ki0H=c;jP?qptg>-cAV;-uV18pU2~J8b+YeNTyErYc_6K<$Oz&Qi%~oVR)^}; zQ6~VKX4U2l1G#^b#ZUpaP3G127ZFWaC@#s-b5qhOR*7T9!ugR`uHcg#`f;6gilbzr ziP(!EuhmGfopT<4t*!NCq3;GC26^A7`5v6370jrNfGKt8C{X|61Q_iIG)H<%cCO7dwJzJ#6Kwr}TAtAI}^9JnSFvop{je>oYqBjqldb zhnXw82}FbO_8~v57>*H_##g5#pW@(D)uzFA_1doTw6AwORe3{i2TR6BfOb+Yi+_1cVHy@-PJ`h+aC=B4yh$Pg<+c%Rim|``+bf>_h1nR~K)~W?pTjLU516>AGgm?#`{X zgYJ0qd1-sgHoQggl?v?!-Y*s)Y-!QRQOnBXs*e@N+B%}o^9};a4rD;>_la-4PDexE z#cqLzyVlP5Z!H>`c)>#p-P;4dpP=(geh_372QJry(mZA8Rk?y}}h32WMKSP5fhJ4+p+YGz~q+89( zx3dQ}nd020u3ZS8-JTkrL{1oz!j|mb1C{!9)FUwSgZM@_#*Hq47YIEA<4@`Y1&!Br z-)EZj!deb@72IY+S&hkLf|dfa}Yt>)-Q>N269@`5AF^fTB_96(tg;s-wN><+^OVZ zzcAsr)OV!shSlZ!=g7kHaz;bR6neKmuk6f~;Yf38EvcvUNa>hs@M=bd&eHr5 z1+NDh2G{3_?Z3SxN3eUrQuO$qk0=1EL!!)ep;s@uTw;N160 z;9VhRK|np;wC#E8YXL{zwV)&!;sHL%s6mqQiF?sq? zI9pIzVh&^@q=`U2%ozn`WCuRDEmoqKFa7l^|pi3t(H<)YMd! ztC9#s6iT}VxtIy|OS(0%{B}@k?WO2c6#vmN-gZlyl<=%O83jyGK-GHPZn+8t8iIiU zJnFzepA;LYB=is{=acOu+x0%dNNy{XM5aRhK1N?quvM3<`D?JZx__1cwnZ>7tDkQC z43!ICbuKvyXLS9!zH7{+wDFqMCGsubl52H7l(tNreLWTw)uNByTD$&9q~#Z%x_Voe zHI?#fR-LUHk?%hqzfjQWJzfQ|5*|T;u zN51ObrvGSB-_p;Tl56)SCm(+9TS!poFmQ&@k=v?XaqGhYk$W>sE6s;KJ3$-G4Gh{f zeh;wO%?F$>-T6(CQn8iNtVYpcpt`o6fJ7Y;!SH(M((!`7h%u_ zV3T(Gh_o2=vIBgJyaUOU7^oz~UxZLMQd0fSsGYhPURR!| z>fgg&&gPAQM>8&;A5HqbvSisf^6%ls?!WnmO{fEd zx(%7vrJHDXt5DPinchrSCT&Ctnt|HECk38YYlq~?S-v$528e;NW)8!GVD^CS*Y%Qv zgM&s+!#(ktksJBk%8Dw>l-&b!Kg6aj-KsRl`~oZEqlRbH2`-9}4?15DDri+yG|%nx zI?eM#@nl_mc1|YylCQ zEoYRKPrzjbNA@NTi6;#4`2ieikrysy^>LtzMD!DI`l>IiK?-rzqa6~+1;XX@E(zrR z)ma}8(NS!6nqAY1&JdJ*q+|;`{(Ob*B!V80B|$&?LIF~(Dq#gX zg~KhQXeZGe#4?KSxAzU^Cs92HY7uM(k6Z62!-)0)jsH-;|0m zWdi!qAnbREx={pqG_ME{vq5q~G6*Bn853v>b}K@GtSAhx=-uly$KJwID-U6~otS>G zW-hY-@4&4o45G}$s*@@d_Uq*-6LrsR6#;!ZN=2)Yo|gcGw8S(Y{jf=nLVzPyz)6a$ zG*)=(Wyytkb;p#MjBTHo$o_KOGH5%()JCrMJWAR3o! zo{!#c)|&{=kF@>6w&&?R{&xv_?1MR0+!q@AsAX#VVV`0z1!byD!R)4s7(?!ZDp6n9 zEN`5xcwz}nZ&EOf!lE!LK4P*z=9H_CDhgAO{Fu()$-NH#o60yoWaQD&v1}CDw#Q2( zCUWGz)YFA74BAM+cLlH43KqV}1#`oXh6VZ?A+4I z^z`(tsUZB1!O9&l{2;ncfT?}z_*kHyU-lHFTF@X0=o?F# z(3{SaygqX)Jb#W-ySwUxm0`8^9dDQfs(Uu?Fh6*l;~;6qFEEYXQ1s12pnz{fst#i!Mts(TG6+(4at;|!5!OmjX-8D@FCO+ z7v<)gwv$%v{?1jmA((D5U{OmCZ7c3383DC8q93uHaH*TlXNj0;09e;^(n^y%BD}Jh zYLzg}M*-a#{L-da>Ma@{xM;m@mwz~B7P#cDy(`$a#@n_PzYZ5Hr zgFwP>+IE?>*{%(k-?@>%@k!rZZQR%gYy0|_A|_S69OKN>9+uqNFf|fzLe{V}#DYGX zJ{Yt^BqPP7nSd2OX6(#)0U>PireAq=vnaLBwwgU1GD zu+5(*zZQY!3idXr69km|zF!Cg@u2x#CWtc}aPMN}8Fag(Q&_s4BsAdc0t@u!$2;Szl<%B#d_#ZL ztk8|PnxzbOzMgcI(imgsd9`--e)u2?kh~Vf0{fI^^~si)PQu03w6weuCPx7cs8IZv zBrzNIYM_T8UZy!1kR1%139kF!`Z&(_k%Q)YE=ShsGCah@DjDZST7D>CB>1VdF-<2I z1zp-Sb`QC06<;yu`!}YgKK$T`Y`rvEa@C()f-w!Ta06RqaVL4lL;IFAwx!!+Kt13C zoP|E5r5z;rPpQa70}s!CY-v*R$wGuM;{_9pjIm>-vb4|loHPp{2^BBuwwvm>=Cnax}H@cRK)MZEZtxY&Tn!RO}N_bnfYk;Tb$f z<>gal`dB(52Wd{70Th_7CV9qbM8X!Zsng#krCL$r`CvMHQA!mhK3dXQhtZX2@B~0s zRhS9MF}yn<-Z+_>KmL>1SuqGR<#eZ1fZYkwDG9I&x#6IBkV-zJpl}yVOZX_}&no3A zd60_Ufk*L`Yu-CM4GPNBu{CXQNv0;i{qr$wZBwsfwRXJsCv~r{qw1c}C*N?~?jTvC zkA>F9j8_+<5*#a`f=Ic6#1*tj#!!Ut+KKfUFRaPm1qFvWu3w!Q#?01r)lx8_rtUvw=>J&w8Aw_XvgwbPJ}KLRxJ zD|v2Xjjo#gecIzy&JuYg*EES-dVmcA2+U>o%4Uvr@mikcmFmrWcHp2#_kn7U3*58~ zgUqY_X34%IyZrrQ;=n~3(PI)!Kf5HccXMD`#(!4aj6n8pbmX15JB{M|wK&3b?N+2N_6p0XD z+1z>(o29+{Vc+_+&AR2Ea3My>@5>=8I%^#^b3K+Yg3n$gL)fsaJnpr?BuLkW`0D#N zfdl)0MmhUsDZ6M>X33xjW|a`nBd@< zye@{fGaIQ}b&f9eZ6lx?axEGcJEqnKYt~vzJ6!|kRttcw-`&u;yLIeOvsnQ+d-am% z1_$jdOEtVUz4gItjK*Jm$n{KV&YuMaE3J?E7Dkhvt!d#q?J9h#Uw8t(PM+^QtIO50 ziYyxbqOKAE~@oFYM)BwW{pB(#f$(PvyFY?m*~tp1EOQ>Gftv~t~`gU(zj z2>Cm?@UTBlqcJy4qr<$FB|5EVCiYlhk}{KtirOh?Z@6P|WM8J%m;Mtscj{sX!YMyR zO(n9))B73dU!sDZTU+O*2!j@b`1jIw2 zRd<=#P`UY_63DeGJ_bF>PFC)ljEBr@6W}HvvNZeo!-pBaqtb3uxW_x4q%=*%2u`;& zO|rkM3BoWfiHydZSDc*GBcgg6w(2K>@bchBkQlmmpUpLJ%z{ zQM(OHvv#34y9weDhu;>F1?~;>bZCgZZx3%RC^|1r9haweKlXnV&;Q z=^JAw=lvHu=F4_kczVJl4HD$z1z??E1md%-C{CI=?jP)SF^5Pw!6cjyZRFj_uGW}X z&+;!8<3W$REmF@VKNf}uiG2rzN{GtXmrk!_%PFC9g`$RTf!_|%Q5s&>ZM=j~)2Y}= z1)jddw{ar!ddOBn$-^_a)N1G^F2cogSLvTGmK9Y2d!1S!z^_l!$;$aAFG@stA;EvIxA!*aFC2i3Vjt zmQ2cn%P~*ss$M(oThW;I6o(&qJXeBVDwv@zbTt}(`SJyV-i=~9QRJ{3iehuS56z&M zwd~oVarv}~O~7&fP6G6&ChfMl88x2{xwK)28s;aKxQ!3E%Vsu?t#uoPnb!07 zbFu8>cuzuX5r{J3AkSUvmnW9wb6BwgHRLePcl zd3^>6BH8B8gv>Oj7T9bDz3FA&(gK-X!HcVI;YTmW<+gAy<7r9uV zT;U)UxJ}0_3YH2j9=FW1q|g{5LXP255-GL7zkXr?n`qR?O6^= z^>sYM^XSo7VnfsW{3|EOxBGH9J~FF;+7Myiyd1fFYX&OL1RiANws2w!h*uUfh){x)ZYIAX)ElxtZqmn5>9yJZ1 zH!SM>)5#X%BV)(7M95Z2-Y&*qDl{)QC59hyVZ;pZF@Mg?EdKqo+JrNw(VyaFAzY?{ z2|Rl8BPIe$1s2no@1sv~Hya$Op%8#-osXfO>#Uw4$oCW;i2nFm5r43Q79e9!Y+@$8 zRpOd_-;3pS8RnP~UCn4@00`O?qR@Dv2U-`CE&`ly zNc^i*4_eBoXtSyAUB=7H6NuqQQFv8@l$-^RKCq5((rz4!7dU>y)6lrS=?k0YdVFdp zbis$i4W>*l?YVvBm1|_eeBW{~e~*Ru((Jp~jvvMO!gMBUwI{Z1z2``XGnXAX{A!|Z z5EIiE@MiqAlIttbQJi?Cl(+EE9M>N-_LAJ&%%V$!)!qXxeeSx^z`_39wAtM{wR0N- z*@KQ~@BFMzZ`XXEpt9W|zP+(2p_fIjXXUo3LR%dN8SB<=gpsIcoM1CCfVo|qBE03{WuXNw1r2xa692n^3UXaG~TXSx6{ zC<&k{UeZap4f2clp^s7tx;tKYPT9+p+Xs1sXt@B!L-b{P+w+cL_D)~}2UeB`2@Slz z>$~ehh_-=E=>u=gGKJpPiq7Q_#pV;>ztkZunB{uHQtEwQ01b`Tf6Ou0&kAQ=y=2rI z|9pK`qJP}MfbzFKUMbw|^x+xC7 z9%U$097fX7(c-oHqqCmbQevXE-R;FeMK`9%##{jecwNY1-;7R>*{LQ@YL#gw|%~ zX}e@(QXI;wDvD+bs{dHltXK5^{oc_QJh!@F(78z_Xk}?kSthRpy(Kt6g+}9ByCr{MB0+pOsRSX=I{0Zie4ySW`;q=hg%V((hvq$>ZO_Lj&Op<>T z=eW3sl1+(E|KmHXDhDVzgqK7&dtSBv{qnl8y>yB}A{KR;;rCcMA*tSmC)CaE*u%!= zqV>}C5lwauEQ1sXOy+{Nfm<`H_?>%PVp_6ODvF_=g9U||x_qK3!Y^WkqbCC6$++bt zLgSOflel8CPPa|W%uA-mQVT8sv`UST;%&Xf*XaqU>$*pT5nfacs+NC1Pz5nHO}NJt z5>K-?s!bvTGxfsnKAok-yKtp&C@-(FW}kwkFRyMGycAsIC>3!zn}jwa9H*h=xHJX{ zy;qQ78zyird6EeNEH%=~{g4H>^`k`W2Iz*LlIT&Q7<;E(Q{Z$N!4SE>2)!%{MRvxB zxR-0rN2iPOKwkL(FM1$M_-;KETcSw!-XAYx=qOO+qAs8k1VEg70o9}+DHIM^xtmb} zlI%SZfYg!1TRCVFD82jwWr4CUOTsVGz^+2|Q;@1eYCU@(>?>;^)Fj{4$>zq|?~(CM z*5Puh2Z6MvYS2>^-*IEg9`oHky>+*RR>0q|NA;==EXCXGsXBME;t64=eqSomtnaQV zo$}OS^oJiBbASv)rrDW6AVb^ef4|#yVP)PeaQN5!{MyXF(}V6;#H!+Rzp$aIv}k4e z#+-UJ70@eNH8+v3A11(JdWsmGa89xa!wJ2SNGFEUGz>NsD(;7$z$)&XSpr+SuTdcCTv}pM!jTyT)aG09J2If%kt6BEL)w03G;>L!N1Dm ze?IX)-{$|tFj@G8-WwItMS_R^icqL{R5ZR1{uQVl)!7rQE50xB-qD*3i$nThaH^fe zJmdiFcY@iciE!7awuHo--)Fke*Fsv>E0FQrBY_{StVO* z`xYwpO=(vzs_tck-Un+gt(RXA?{&_cAjoyNi~9qDGYI7Bl6g0oK{TDxhIFa6;9ZeY zMoIPiJ-}gUCaeEF^b_AyE!Hs9EpJTw7aTd@xnB(EePx`u8u* zv7q&VC-FKf-|zMX#3DTbn@Ed++8z8>4pRISuzNGA!4A~wnPPoc8H9P({DX=-dlN@k z2b*CSR83k+<>0sH<#CU_k<@^IJ?$FT^_B59RN&vCHNRbT2-#XcOo_6BhToclS7inN zZGRriJ2pA_A!j-AvSr|pjC}y&GH=aQ6QSQdN+o*hnqm)|q$3!Zkr7QsGJ~dP8Z!Zx z#U&iJc86q~PkbBU1EF^*(+5Cvh^eh}3TauiS^u^LhuZBmvHXx0*vuxL1{JY`_zO-h zD>1ElhyA&&@(cu8eu{nqM^&xJ1@Zxn!Fr@ zbwF>BP3i)heQ4z(i|FZd4=Dx$L=QWu>>L9}2UDzItwYRN$Lht2B5!Mp;s;#rl~`~a z3G>|dvpWgJ5-)-gd$ZqOO{Ckw43^sJMD!tPEVV0n^0mszmHXgOm7!R4?ICb>1xaq( zDn@)GOeb3KLSi2EKM+R}a}*A`QiR&+IWJxqy*(@E|9R&6FZ*-b=qzfCMEk{KnG0P7 zHV|akNh23`QqX(#Lu=6UfP7QSC-wm332XqnBb)OM19fpKz)?HsZ!vSlnRFg5Wr!6! zhr^)!jWH`@iITATl2~0a2{1Bd+l89RRj@?Ps1Q#-L?rK$=bdl&i)&)-qx;suRgxo%1{B}b8>po)TSrjKzw zV8O+*G&e~P`#x%$SX$LPR<1McbTiBKh_C6ynEj}GIrE}mLOHk$ub1i9!7AeV}mID3Pk_)uUE0$;aSDxoyQrSjD zNz$$PH&`(81j=0n2`aU58IY`>`?a*SuA1*zgIMY2|J&u3G*E#Rg;gd-C=q^d`vGvj*U=X)iM;~8?{EU{Vie)tAG45U-~RQ+wmsYP zbKjrcirCP}@Gz))ptqW+h?s#gM_gr}Rl*@s47kS`1KGmpe6%u>q->ke#FTb=kgX@y zPOu7(E>!KwXDWukwYO$j%4T^^XKg;UFKBGWPs?SzuW=K^JH0WK$v89SU`_co79=F7 zg2ISX5nh8dQW&{czm}9zWHs{Io%Uug^42{iC!MAwm9IuO;R8X14V^&ZF)i-Q;-f1p z^u<3Pu3nhy3t6|c;hUatTwWQeb817s`A-V+dx=rP;^Ok?7i!UJ+JQ44(})kD$GCe& z$I{%!-{&&E*<74+PtJouHkC*xn-GDV1hU|JOtqavyR#wW zDi8?$H{~!vVFR z0Eu=!xtUJAxfrVYSsz_!SK)#dBRKqvi#`Hxaq$T(y(NkF5mS5lcSq+%r%87&DOXup zz5bR0Viu^OrS$#vP)hxuV5_%`3xK3sN6J-2B7Q*ug#7u1-`DTs;a0M zud0JG+D$9jxw-9Ol|88VcnX{KG4yHGa@!FZZXCyFqT34$P|@J{Y;KC%Lc zg@`bpl7k*y%p>0~ZPfu|FvYjrLe z#l7bO&2l&0npUPDp^Gqpp5qF|Bq2=K`pdE4XH z@b$jNrftWjf@E%Z9d#MMYWb0+7_m@wIT`2b#APQ=EcaOysW!+3SeLq5BD>-nncqGS zuLey8S*I|MWwwdUfO7L!1++e68Ig^fjK|sVjZTgAEql^vK~qGF`WyYQ0;!nN`pVWP z?zKs<>N-q7D35bgVVKQ+cjUibtQcNoRMK1@K5HnVd;l0n8IxlT1WB}vGw~V`aP1^N z!NF~m!4z_L+!!hsirU^T7QRGw8Sk|yI&Q#7xCA>Y)4Y5Fui_JvM~a()+|Ey_ z)W@1ZHzKZ!5myycAz|wIL{De=?McMFj3z)qmPZKxoQ(qSTd^)WI0q?%_Q;;NcX^Xc zWm$hw3FZ$(6vBQn%yhbCO)ZZ145 zmXDThM}`k@UCkk5P^sCJ#z2fLx=wwRJf4-;d|yM&(2`yE!Mb=P(0^iCqnD8eM9I~k zq8CGC83^?x+YV75nB7XMqp@=WO@eu7$!BRjw2}RoyAZ>yyP_a~LntV%^l*(`%WKwGO#hvkU8g3_Sw& zZS-vY7b*{I1-cd+7AD-X1ORF))Y*~CmAfQ4HgoZx z^C_+gh!$--f_lOc-y51u91^ZXCz!{N&8<)O&FL)Hg?M#$HV*$7E!=r#<6a%I*lt*G zp_+5jh}}rx@)CIQda^g&x0ALLLlqHqL8&JI*H);5EJPI7>GJtbzI^7%tQCGloVQls zl-S12exfQq(VnBYJYTrhcccbw`+Mf^T3I~$7H$u4LNWU=2+AEzvcbJ%=>+}Z7?8Ds z=6~PXqAgh!GSZWmt&nORflA1F5uHthq2}qKWHOTOuIqVjbsCnUe+RX3%^&xoPu&&{ zx|u{a2^5B$AWA4N@wjwbW|j78yKnVs$-={1-^W1Ral9c)z$EB8BKAf&5&r@MlQ{sE z=nD?Omi{Xn=dcj8=~3*JW`a=mActc_h4^!Af9QSJ78fa|FclycF&98l^Y`6Y=83BZ zu07Pcwc|~0t^#*@tF2T68S4%alY2i#OeVLZwrS_=7-xYi zCUzU|o%hMfX$bDBYjh_if-Kg+xAFY~12sw15=%h?RSfHXzMOM5*$$~MSS-?6t&5Vg zykxmeUQL{hGCF`Wb%<*Lluj1Ti~*^QF8hfwmt=Mqy%0v0tIf*C3Q>{+L^TUcI%{@q zZSeDWSK}~v1t~@`0##y!1ao?-gHv8&F|@Z-r1GtDIm>0C@67X#nd@*HPtNu>?`74h zpS<(QfOP!r&) z_|fh*(-5dXE_Zn$)_9Tu9?Qf-U$T-<2%+t7GegIJ{Zc2ey>IyVMhU>O)Odu77332C zfj_jMFeHeusT#X6mG-$la`lM0nz&FfWjK|m55hX4HW<;59I*+S+TS?*e)_fRk;n%@$1+o0U9q(-CdrS# z+h4jdwVLt#%tP%eal2b#IRp#K`!7_%8f#H{fGmaQE$$@j*b~EBg!O?b-dna@Eo46~ za2PKHsN=8M4k$7@8Q4|wdP2qoms|AX1_ef;8np0GLT#TW6=8E(Q3P4}EPY;j3y~C^ z4VqM!_;wFn?AV;s?`lQi7odp~OJZT?@BKvtXZr)aS3f-0n#WdcnKIwB0OlC64Dyfwd={9L}F zBa`|^r2)*NFhP3iyVSd?3$42!8eq|bg7nE*TKNETmX=(kR>W~j+J`Ab!TfXOh>N6( zOC8-cLA{~rAvnE$dbqiAHy_D6Y?iUhCbKR6z&5yiSUR5=m8|OTJN|Si&|gdXTGu2= z!3&9Ev)S|2A;U*P0=S*)E2-;Z*@;Q=gP}C-sZqUpY(r^?WXVeQt}+ z^7r9xa5X9o4cFP{?w60rIw}Ys-DBmj7s|%s@}TfrLz9L?Ly16eh3khd{1Gn@BLRRr zU>z45pM*{TqT zfaD?}O@%~}jSjnmdERMJ%wKD!!a0nBmu(;{I?PT=#Sdj^7WC}{cD*rkwf%$L^5VPZ zg@-kBe+NDK7vdrD@?ES%e7qr-xD^HG{8x*p?0+3F>SQ)XFwvZ?`xcMb;G2DV@Ov+7 zSc|)WC-?u*bms9;@9+D650emOCPFG2Lze6(C1r~;D&aKEArlURLW&GoC&^A@vZN?U z+t_C^i7cfkBPwN^ED?^zn(W)}_W3=&f1Jm8oPW|W^Ss%M)G|rN2$fJ7p9x(;hMXuyW4}eaWu2HXO3yyTkKs z6*>4-0RXfj;iz2Esow{xr;>b^r+vevXitrTDU2Nk5Np58sT^6I{N0u*Rzi~Z5rC4cjNRgg>hjf>;= zE_9mN7U@L8rs`Ib6TFaMg5;v>^et@5ai#=3%=>!)=uR6W6`$KFKQ1NB5$PJQl2fQv zUysT&II2J5B}Hn{rdaJ0K;;mGrexT6MAAUoiG2Z2$C{x`JPk%5$|)&@TIRWbe++9b zY@(`C4FqzqjdehI2|Uo2myLG%Xz{5%OFc{P3)I3<&@2ksh$pQhgIvd;E)VBcFReksXY%v0`#s$|Idz;uuM=M?3V|e_Z&IN- z+vC#P(;dg?fa6>}5UVQZs*BV$9Vys6h%-Li@S2IYry!UIba4T0MOV=Y0wCmQc;Vz7 z8V=84cd}Dox&O+c%UFwRfEt6=T>~M+`il#1J+@~iDPo7z{|CF?^JEed{phJ07@`wd z1gpsIkd3M=hzmU2*Kt+p!|YY#t*2EaKj*TTcJUuLcph{rTOcx39*^_y8HHF)j*QKY zjwFd^a4o*nryW7%C_7meY`PA)<*ucUrIM5LKc>DPW2BaAaz{eDIAgOzLine9wYaRJ zyRikSsfzFpzEp0o*9Ud^&@S}^Jgp%nqNoCu3p{5if**^(|S0Vz5@r;vN0J=K7@qp*-~^<}UPmz$FN z4-wqgcz~*Ysr|1?H~$M!)0baS;I;QSOz&C>2)_*E=?7{uJbaE@KR_RS;mZ@c;QEqz zSm{`_p7`dnQVM`PWZ8B5K%DkyRLVXI*&^1i*N{fBN46`=>^_$^wXuaiqPuHOvO8w3 zAm;Chy2D;Azw8ymzC*iw_R*`6;&u9oPW{pd{jHY7)~OAGeP~8s8bqT-tg(+I_5j-G zv?Y=!p|U%dz!DE)sv|{FK0%37>%-YNYd{J2@0z!RimF60J2Lm`M=9rsc5rM&Y&i5W8REf_<9z*3d{khLZgeV1v(?4Mw zUlqj6TsmGd=ihsZ8w_1p(+lNAF?09#o?T01AQC_>TfZG@i=7%wVC6TGC?0J$0Iac9 znWvq&whNf=JZ$FtwJJ=C1zp^HW^Hh|=*quSW-*MCy`;Op89I|=)H1=``kl%eh>=ZflT#N_-wV$P z7N3)E89t{h_4!VbB>`G>5fK_Jck#G?Q-UpPJ-5vVqkk%n6*Vk#=F zEDUG@9#nBXWdb+)kF92Zq463!g75bnk@!;KlV+fcO8yLgk;uY*1pH;C^Y(28hj!k? z#CzIz9$Q@7vuQk7gWJs4zNyn=(B3tCnn)r=&?Pl~)ouP)_8JzwS>kQFqKN47R=*6# zK{e@xkVq|bT}g^?^wx$H+~2u-87EV^z4h~%`OTg3Ud?km?L$a`$4l>T^u`c1rJovX z1;Z#JiHg`z3(%A;TW;QLXhM4n=D~-i_^*9>TW;AlSg4+sGQqw=nb_gPB=mJb01NJ@ z3OnG`tYs9mcIlrjF@hhMegr7m-AYP&^JDAjR{~EsndLTW@;H+Lj=!Nvcd!$$?+yZE9kb9SlG|1 zoRQV1fg@fwude$wm58}yk2ja|Z)OS*a%Plog;Y`1GJXW!L&~(RN zprkZk4U4cZG`~#R;VMJp2X(nic{BK|tQJr}Dl|U_^SN36_8?D-xi#A~88mc=?Pxo~ z|5!g2RA6PxX&4+;lc@A*3K)6Px)Ay@bePw>%fI8FE&N+cOFnW>TAyi!!Nnz?ndLtg z*0d0G(1|lPUQ!*jR<#YI0q{YvZ-gn?Qi&DuZsrMXx?3-)IC!Npp&9-aO2h<{W^XWj z+g}Wso15bXJHH=X*RcH)JyF_vN}M*I79FwLZw|1IYAliDP8kaSpBKPiOb}>U9RFmd z!1qPgUN5h1Dh0ap;uT!nq?{wMOf|OH3(vw0AApKysV0!da95_aZGXnSy*8<6e17`5 z(vK7wxOD5Vjt0AZEND$Cc)O(<6UW-m&+bGV*SC4?OUa9}xJ`cb231HiAuTusAgvAUV}c zH9+J=iv#Oe!mwXXzmcSne~9h=cwlnqkQUo0Xv%h?ipAkx_ReS$$;c&K2s79*4#wz5 zbJe@XwK9%BuihII`#vk@-l3~P3b|o?Ud```wTXy}3VOTMJjNyOpA?WHa2Dv zN-gLDpy%9Q{cq3x)%mSE$CYeD7k{n}4%fuaCJ1ti^MNCfy9VloRI4?Kt_i`B|xA*8F|_?elU} z^V-L^qq)ahHO+*$DvA(Q2D>sW4a%vRWrBSy_=&beq0kL)>`D4!#~soG+8uzAh4cnj zH|g{oy2sJ*v03k~srX@t2*YcTfjr8QY~WIOoGd*quZiTl%Yipn^gz|x zj~B+P|D9dyoHJ@_G}wcv;=4+~E7kNIHU8BBmg^HVFf_JUrHZ#}ZZ+x5++c!1%vdO3 z&d1>L@o;uR^r=8_e|%s#>ZHglcsVcfI_j4P^GU9o358|Z((y(ybj6TT;w5NJS*~u%sy6`lNp6OKo&pld7(IBeIn83Kq$oAEm<~Sy(yWG~ zmdIPfx1_|HclAjwAwzGa;)+*RBi3#Xt<#%Iy~N#`udKJ3Gj;QNq$jQNPz-pGb%s1@ z<|*l1rSs&ry6y)rlt1ieAg9xO5w{`ey1TpIcQ^~54>11Nf6^b7{a5&+hx)4Yqa1il zlTA8zqae7vusj4UMDjh=!85_+rInSH)+eWO-*pV#9`PeyGn7C(%LsiCep!UfwJm)? zJ(sifmA@I?8@e#GGS|D&ghhpwv43K@tZQoii;I0w4g1~zL?_M5i6S%;;?~Ye@ldvPVPFaeIF}=8b#@XZWNN}c>F+dYKnN|tc{dsO3>>|@;jXz?H*Kux4-rs! z4Y6&)Ztk7*whi&-0bj51#Z9A73=ZZsY_+1zZP1o~C@KFYpD*vF7eMS3qN7Ex{?i7t2XNF~+H#=8)FqxsA-x4e)bzdTZt+OMl=ujnA7Y%VgHrKe6f_E#NGpHo^E%SlkUZBHAfEd6X* ztE(HZE&SWCZ6Pbw;h_qH5v0TbT>uiYsOU8&H26A8%`69I)HOXPbT zsX|1xNHP&7WWu(Sm^8gpm-@y|NWL-G;N$C`TRys=QGlrGXGR)w9w)v9`Y^?9jdN zsl|_T)hkmT_t$c@xV#s>&= zKf-!sO2Dj#Ce7_aH->I>^E`(A$%|?5Bg1QU!LK55fRYef7L%WD<8|099{8dX7Go-L zYZ&B}z%!j`Xlks>jFXELGPn9m;lc>Ut`m3m=?n5G-U_E`*MA~n_4mxJJrh;)lf2&5 z|5kj%CebEiy5fMQ=&a7tvKOI|aHZ4Y2+xiVdK@t=v-+8zxk_Xo>k1)r!|l|u0{j7g zcV)yb{x$@jhYj|K#8m}C_*iF%@*=6-x5o&c&@%c7v%(qcFT~8j;?wRg8E|45#0h`W zWUQNniHPGP318<7ag#i}AmpZnt{Y;a^8&~OC}(Zzx)v3PxIp(OWFaw7<|xjX-wtk; zDJjVKOF`O;Hs7^28M20Vi0z^bHJyj9j?Izv&0}g*!1`wScWpjzpFT}ldhN9Gw2T@U zG52%T2A-`#0MH!iF7EZv;eNl*(=V^NBi7+YUj)6;txSU(F2#w)0I$FIK4b*guPCWz! zM{R8GfH{XiDBLGllq-X=JDrxVyLEP@n_OWOy6QHzGmpG{hZ~LR050!_5~j(hnpe{f zf1_P3#WkU~GAE#=-J;U_E|kkK?mAJ?65?oem9YM}U=+YvG-7TsB~9A0DQ4XIN|JJMbCa&wJ`QA3<+ssxdI|ZNh3VZ^kF<=&>zmCCBY3w*4oEvNF?v z?(y7DmZl!)?|x=$#9TYcQ0t*()1Lu~x1z_@$Hx{9`MH0*lHS_vm)2@1>0KA?(yxv# zzZG<&ScV4MlvgM~`4a%VDG-RY7{f(IsW2+y=@8^1bl_3#hMJ@wjZe4xBPCPCt3S0O zRtFV*5jy;~b5&B_io@Olgt=O|OEJvIz#DSs2)UBbDs^1+*~Pc{l*4{1z+PU+i?RWlv>W-K{yN(0Nls{%;4|~Qggi~i6$;XvmLzh(f(r0-@iZBohMIhjyaM*HIUcS zGvhQ+qjwe_^Rg?5F|_sfzO-}vUTWY!TjnruwF#Si-2h7p!IHfzF}-U8vHC+hUYa6V zdTdc(*X5zy+VmT;T4yWv@`EJ|8fX|yF|?rGs+m7NXCWFdA2#3LDj$(sSA|oFCo!NN z;HmmAWpkJ~k`_~?6%Ma%wZ1`He`>st+taVR>Ee*67t-ULTTi^Zg*=a3kV}-** zeg=GCoh|t%E;p-9n6UQmOt=158WXLj{+4c5(X>}j&!_nCX8xDpjRtxmbew9=sM>^R z37J^La!K739XPq!o?@5;krtCLE@XZ^)xBruW~9gH)k4|CtF>R;7h7&-=(OfY_R=LQ zL-?cmU!ui6P9)|=Q#}PTn!2aH7bzRBgUZd5? zTc<>CR$r$D`Z+EWeARwOY4Z*l*L*cb z)rX2Bz38HRY9t z&p~TNOTZdQP~m)t`@Ljn&*{CVb57WDlfO{s) zV|WWH*b_TC84kYwVivKDS&))R)#YAVk92x{ZiEw)K>T|H(?zBkfHk4d8Zs)F-6FFx zaw?=LA!tf?+GxObWCZh(M$lKldO>wRGq}>7J+|e(F*)NRH0LM?N7}z+1FhJS#vz=( z+H|$rdw81C)Z~`{5q{on>du=_mMZIlw^o&LI+VXx6D|qAH%%hyaKTl{2>s16o!ykd>e}r^h@> z5`nG)%S4^#;o}Ms!=#Wi=c2Fg8i6yk9!zSF#Y6si>Z`s8(wLm)P8 zCqb@P!33H{1SgLII}B&8dc`8z4C{MkD;7~LuOp3C0A$dloLMhpzo8F^HBN`_ZS;h_ zxh+8IB#S3E7n@Icb-8$CY|_jy{ce*hX{VAqXDu;V#DpEB-+}MPVZkQ(71B`PZTyR* z`mcRkW0t?Uxl>!)Ho-JK|DImsyZ)~h2V2Pd^d8PsF2McdLV`z)5|QjTCiTEyRMEl7%%jD+`n+x()6Z_E}4JwrP zVtwEGBHynm2>*Kw6!3Le>;KNtNYI9qMJsa^$=x6}!c~6vK2759LVx6M|72`ojJ>8kii_xD(?rZ zN#f^_o1T0ZGUyLR4eoN#J*=#H?pkWpUAm=vTCti(mk{AoIc_T1H@0}C)p-7}1@yi@ zCubH0#BmyAs202c1Py)GDzz9FSI}V%*q11FcqLTNx0CM829S2H8(0srhg3%V{#jB~ zH5Xgk+^p7t7pH^02#;_G?%)2WWCJrKbb4rv<1?mA)i47@&P9C6*ORazfm;AnDem{T zCfWX~I?mEiaEQH7NEyuVl?Qw&Bo+UyY{ZKLhglb~dMo8Cc09?PNO=r9B?bVL{jKTi z+ztcNH;=!D@HnNg*-I*CnCnOa?ZFM2e~WV8?a+gw9HmB4+s3^Tt^idAkQ-3m^=|!S z75Hz)+MR~Eo0a*pARo`*xVRom1e?F}S?onzuG(-DlkqiVW2vGgAO~vs zsQJXsT7BS}2-`I7W$Zr3NlGPiyqaH<^WIx^2-VAIIaRHO)GWx&1;%hGhCVzP(of-q zwheWztc|G)jb_`1xzvN%JrS#a;mrFRs{$E?Wsd??k&b)*?n;-HZkS=j!A!KxnE*Vi zp&ecmg<3In5Kuymi%HN=6M58US?F|%{g#c|-X89hE)WUg(G4<1c#%(g2CB|+$N?3OOwn5T6{m>s9RwImfUmo73}EI!PTEPpTZn2q z&u6p5FG*wUY)BZC+ssP*7|Bc;kWY>d5{)b2z^+`laSKgS-(Zhee?1CK;Ln0Y+s? zmn_ELpaKPX)WLC|Diw?*3<(LM@$zT_V0|cOUW%EZRpX%#Rjw8;Mc^7h4E&Q*27At$ z@8#yk2JcBggDol}K*`1)5p#owsy^whjio7uhOc`vJ=^UYHoviE`sT#Mcy-Xi;@Z6N z+DG~2X5;Fb%BB86{wd=HE|;=2b<^1PZFhG!pHvLqRkf|L+q5ApoVmf7>=4yx*s(3= zlgn6DSwZ6!qUPbeoUb@Z0Ta;Es1-29@jgU)Tuu z_m7QQn{`xCDwT;$ff4o7FTLsIBV6ofNu0>1{Tt3GJ4g1s2AEs38jrHokf(ANSa{XX ztOQEPO18Blq0MRxBJ_%wf$Ir(QKc8r9@T|Ja8lrCfjaNiYjF@SNftAV% zgA^Ku;2-Tk1Ip=56RJ8JTvJ^)xD8BXCZea=>6qeOCpFtx$pkV3|IydC7EX}=$QlbO}2g}puZr^wf$87zZ>$*|(&B(O^Q5fV5 zj7x|+Ly`dA;)}eJs=b?NI!7l?eikkl#nYOiG*t5)yfU~OXcsNx(I(F>S_YFSG@4mv z=UFz&>Bjq5wOfarG-CpMs!-ky%UV z)#d(g8K=hE9tGNQ*ztzWa)Pv^hJgWSnCyj)G86tLB}U;sRg)$i2(ISDG9xuEH=m9o zr$KoGZ-blrQ8ZFnJwKT5v|`u`ZqxH{+Z>*`lymt|c6yIqE98ub(0lISAm>_r*rN> z20vIqXZUB*m=AAAM&T?U^EqVy@`>pe_p)zhT>bChx!=zR_5JhUINhS?VUYjj_FzGy zUm6$04|Zeu4%y1#OF;-)TYa_yMtI;9K^=SS6F@gy9ogIJ9cv%xFoL9=*N{-uYp zkF@6IPUV$|=UO~O=UBi~>WPf9FoguvZ8xu~Ii=ihM61skWx7r^%L{{{@t*#hug{&j zAMt0o%45c%#}dNv&`4&pUnt zm)H7F`bQZ1gZq}F_)aB@W}RWrLM<-SGtB-hA6;J#fZLX)!AmuJ^OLfsANqz3 zzuPDuI@Nj8Xz9ZiR-?XfH0!a80JW^g(l*{EOoOe`T$+M5`C=iUZ~1DqfACbqq+n4X zL*;P9>S)6KFy>5-Fihx_)bg#*)T4VISQ4P0Sh5BM`aZHAMqh8fDOH4deQ6_LCgZ#Q zH?JL2FrTTQ5m-qml-Dn}N6fG@o`}QwfF@2)HJA7|O`WaFjZR6c##p?Geyjc=nvA0s z{o;NxD-y84{>(Dq9Ebb1My>@rn|d>-qTY9{En?MaWj12rx_tQWn20}GtB{b6SbV+3 z7&ZC7|Lg`<-x_~y*?9Hmll$RQ3&WVt>4R4eCHsJg&__(y;uZMC7M>qF=_ZSB9DiL` zL5E_YJBlGUA#G}fS2WKNt2!dPU!NxMDnA4Aecu`f+M5GnOXmAJ?V#mYr0 zT(tbRLA@{Z;L-m^*dA4L22b)K>?~3%BqCSTsMev^8jwb$UL{fLsAr(aFD@`v?p)ko z&Xp_{BhM0v2Va!{sLytGa0oK8+U{C?HRz|ccj5YYjoH`mz98Er5^otv$~AeVc!SJw zxs{5>Qr%^hMF#2(`@L%BPOX0aYuB98|9Js8;+5+r>AQAb;`+3XGS9*~73aiKA0CC* zbLddB4z#O(lzZhWH<<)B>&-D`bKvbQ^1eP{iDrHgLdBzfwLL&-hl6H@7SMzSLAL#J z5eEz09u>2ntUo={*gRwck3j=Ky>>0GQDC=fUejL^cF!O0>@@Qq8dz(P`hLT^a%kAp zIC&uAUVDIX%XD}_U}4(6TlJD}|JiN#fbbEY`4)fXdSCjuYl4?JMn8GFygeQ z_rRq9Vc>D0I>y2A${TU3oH=?a(dDe&%RE|Gm$mjH3z2ax;N}X`4W3vM^jg8R2}IDK zL!34w_CCrKGN!i#9PI~jIdm>45|<48-z0n5Kl(Hh1nJ`ODpDq6Oh+G3BFfH){(C4Q zi#>`3Nk7ZYhqo#@sd)!9R9JL}sGZBNOu2pf z;OZWEMT+K`qKBgYwF9H=-dyTqpdZQWuq@j~4TCZ@t?;RY{q60Xh8_G00f6}j_i}W= zoXGRkP*Z#J!Py9YX1p-5Y2> zWn7y@4&c1oo0Xe!&-ZS6)|huYbKNF?k_kE_zv_Bu?bx28bKO2yJuBp|1~&Q(o$$Dt zcTtrWgKQVLMJJ-cv+5mOP~q0P_hV>RCp>{&0;sYSB76X5&nC0kmcC@{gA}V>~YxhL2cwH7Kmi}s_8SI945G3OSor#k%^xE z$vs=R!5egkgN8Rn486X-aUx<^UF%+$O>yTomhunJH_iH%IuL>LOMIEo#uAD_Dy_9rDh?V#7&l@;4UD19fy8G@Y@D5)OnLJT1;FG#3bhz8Qu`VLb# zGAQYPuZ~HvJaaoSh+^F6KOy?8Y+F3t>}#^J#3VZ-ux2j%rnmn_0C31En3!NhU%$^R z^Cx!FVnNr_ffb0qHLV0imw27f28&Tizpxb@sCuz~fZuSlcYZqJht}%Q z8o;DOLsvG{EVr!ukdIg~UP)R*)z;NU%=<16PK2(l7%$!`?x_wvU!uY7u=cmk2vks_ zwCQ8rVv(ZsqXK;u)Q%@U&m{tBZ++Z+KZhj5vS966nsiWQ!$w#o-&4O{$p@X_$^1AAs_x{iq!)-AQ3UaSGC4b3YTB& zr68Vycp9ZDc=_kY)|Kv$*EjlzAkgWif>n?z{Bepcep)I(C?k+qFZ+Snc!E|9K!31B zBl)7*uXob?PzoZS^j!osum5G@oHz!kiDNxiho=UPHB?r%a=vMDwO?oZ(BS0`My5(A zbr*7eI0|DnPSS-jj{=4Uk3y0{2s8`Z-4Js_@{oiA<`R#DA1Zj#;&f@x(YHS?1%!o> z(>(moNWm4C4v#t_+(EO<7!!a{hf1vnM1Hq=yd4go8m@6u1Sg*baWS_{K}Ez3whk{? zP~=-qjbjwe*c=T}AAnPPO7w>eM=-zLJh5f2xq}x`HHvO$8 z6yTAhNW!&e?7})opADU$K0NQ^eg+Qgs%&e{*$KvwOkrSLUcF4!3!6j(zsIPK!m_1- z%l6xN@H))b&LH{m zh>{~v_yz3CvaK1Tj7XEt!oUtmvL;DI688@gei-&FKQJ(`y}f-mCOi~ow+ZEptTf)c zC9|P*c6o4&EnOU(ke^=%PMU`Mhsf!x^Pd%MtM=FGn{>$Vv|kzSIz=MIY~0^o_=2C$ z*J-6XZ6hF6bsATvjmuBb5xWf3Qht4i9%*e!T@5%Ok>&rV zjg#`E)B-))mdlEKUr;$P_4+#hE?*D__3yjlz5n@`DTt+zcDcvv7e8{{*!67t{< zp{M6E=gF^Nz-9xVZzcLB=P5f&4=1Ssvz?w>2Jx{D8muYM&@Y6|K|h=ky3}l%16P92 zi(sX7+(+fTXST^*E7$@5-u5|!2Y_z^%L}+}2nzP7W4UF4ZHvdcrg^Q7caz!U*8WX* z2BF{O^3T0bvPbN#L6Ol60fS8^R9qqWsXLeJcN#$xhX|OT>5{6de~yHTr^-lv=m4eH zg8^#%Rl!u-Ig`)gWj?e{JFZ>(1eKtG-7s4%0?x-th3WJspp zBOmOctpP{l@nUs|u-aFLn(FE}Pxw2QSw|{7iY>3Gfa5G4^_)|yN%E?)@Cu8IJ;?28 zuP$&ktO{NIu;ZcH@DBU30uukn;_I22TLW@ z{H$$ACjOsxFV*^vp4AjBKm~@*$wgc`*wfhz7)9;dh5Hbkq^WLT8d1pG+1s_L)Ccl4 zzGOSfP!?i#67yuK^~Kt}I@=1Qnm6|s`a_&n)Y{d@aF7cq-`aAe{?i6kTX68;-^s&+ z0uMC!%AtFJD&)*4&nXwI-IRip0_LiQW}eOHojjXZoX95OB`^8V#cb(0A$+HdfBGg$ z27!M1{a~YR77_6TwM`o8+|>~D`pxT&VZ1&-LA3$D==W00IW=N=Y>)BMt+oGJPZ=#P z23D_StS*4>{qqvYGXL>=7gjT>myfT#^IblS1U8JVj{lKg;YAF}^@dM)Ijz-?TzTHT zsH^Gzn2W*gV++&ng9iSk;;)W|*0v*gDg{*^GZ{sjy*hc|oJBY~w#v`Q=CYNb8qvL9 ztBp1anT(G9?x=4%QFpYn5$c%4mzYJkoaE=fKzrU zA+HeUfqinYLiWg2=_+}h-JkR#96wxM{ZhACtWHyoW3=_NndEyvgD@eIlqr__Lk|z- zrRju%tb{A|;sosdP zYMdJx3IiSrk0TwLax_ivt)PxX2OeN^JrsamX*nrSTv~>hWOeuUoM|pt{L{H9J~#Ir ztB4e%UWuG`@5G_D3rWO#0yRoRbu{uM0k0WqtB;b47P%DDvhqc1IV*oC%hg&J*_tk? z5p2kw0_Wluk|FS!ECYK@892Ao9a4@g2-LU zE>(=vV-TSO#n;yt7M4@X3)2Hr9N#{y$CpJj(9645Fj4MKeFck#B_dHE!|DBu|i zJ~ws1iVxs?3p?-6taw;SX99&`41660>fQt)VH=N35kY((?)^irbhSB!z&Oc&m2~x>PlM0W&yi`LyHzh@{|Wxy-EADQ+Fw$1 zbJt;5IlSP`a>RLa4G+16Wpys(jOtrg4(#ww?atVMPxR|l7GC%MU$!NtB7#q|Ui#=; z^F&O%PJT(qC{Cwb9he%(y!F$CEaLX<%Tm+9d)5r*g^@z0SwX>)Pi6JNL!p;6;+)NC zC8l4B=t!hQhl8LC@KIvVXp&R~sAswmF$MLTa}9T%CGh!P7M3^>6Vd*}f4#`K+HM)e z;aCtFM!T$!kxKT4R-}>4|p;7{?15dKvvrNsoeb|b8jAb_I6sC zeC@6^$B}=TkrfAUmXV`%^A64TUPDIQP zIE4ZUC|l}Pd{tUkkq zK@g7-Wq^G|r43N%+^@0-5536Zv`Ot|GLd8aDlJ#uxvKfU{40K4Imoc{vg30Xo9~_~ zYS?poj?uTNR(gIiR!5gzG8=3LjG!u1_8!G+ca+{t1P=(kmUH-^1`H0Cv-^&Kt&nsWP z44?gc%;Ag`#?;P`ksI__FB)%`t7#dZH-7}m3m_u2Uhj!UL9ZZK4c9qSCU*BXsRH7} z>;dpjETW*9Q$je1H)K5Dx4`CA(iJG%OeItV?-^YEp)1^hkSS+(r)Yn%V3yIN{LVD% zFs=HVSQ;Ow>HIgd2}`XlD?g2ArB|n*&~bmw%!_dTi?x*qzEg#Xr0;4Pe120g&^`$ntobe6@!6a^dk!| z+=yC7mBprOo{*Iqt)jg2W@t0T4qQ2UUQXn9$?P^$RWp5@xdgPY7!1p>8}0AG8B18m z8LO9{c=xUs(sFSE{-3TNYlruN{@G0ymbsD-$fJ3}W6-}WjeTVByK189CbitK=l-~p zEWR1)6H-#$XkTSJ&5r+#K7v!lLcdI=J*6&(TIF;&V#+)57XDo9Ux=$mj<-x6WO!Ok zwkre#Osho2_#RpZ$5LvEgE$!td`hBl${@S3QEk+lf%Ta;gHI)i`Fjh3wuH;4K=coC z+7CU)r~9B}lO%ip;h*0N(=#R2D{XgOVa!_v(?P0`$HHxDO;0vivc?mqm@12f8% zPUP|#Y1c&l-MbApilv`+REytl@lX)>>oSqdLTvbRVz`_gE?22@u@`>Q)?sXW~ zxZ#rhK>{sPaTmnN#c9LPn?P7a?#?npWuDb^>D|cwLv>T2R-nl z5`mrDn80cesH(2MP-x)Q^tsbJ69Zx;pnqF=AF>~K0_OJ56 zy&hN7*%#a&fr^nf=tp@??W~tw*H~c6V9}r(QTb?9dDIP1~aS{g% zHsLq*$w;D};5L(gGcui)X6GXMTUP&TuU=VM8_4ffdd9W^ir9P%rq8iTBqM)R zK+FcKWcLd3l+&Et>tI+wf`)2rpaSHwSYiKc0s9Xpr-x6j&oaI|JGh6Y;H+*o;fe)Qhsg3)*@*A1BPr>=jCU~gr=zH5c ztfL9vG}YDHd(NJ%zx|gk8!I2aWT@qID4|*x|Cx82c;O@lOCWrY^El`Vt?|;|fecbD z1cVow0#vNVwOjW418-bF!C3%5v;7(Sz~52e`H+0@DH$s)e6jDC*2HRGr97d@FHH#} z^wb7!U3izj4+)}x+#l%NiI`z_r-1L3%2cx>ZZKi^Wa;SL@9mBl*%Q(4w0z_K>cisD zvG(wliO>a)@WtX)Zq4E`r-iQKmBrqL-!033T2@<)SK8NxB1HP8dM)Ff=?UdQMYy7fXb*iIFFfCe#%VpXmJW%9GTuTvD}eQ(mH3fhR$)xXlP>MR7LQn zu$f1z#tG|~$4NiEBAat@*J1k%C3f}F`2FXc$c{J<2*H1;_kyvD7LoWF9I*1xc=jQj zz|#HQA93+vsP!P@_iK>3N3}QCCmV`@mk%dwnVV`~EUTbumIo|)5b2;#U{t_a5$C!pJu}4ft;zOaQ|%1}@fO>QF`yZwqoo9#p!(#OXksS145k z*_f)Wg3Xb{YDz}xyl`z^o^O4!A@(#lwYSI{rJ`$znIc%}Y6)2kvTj!~gUU836Ii(F zzRUJO(6KEmzqM8m(PBL@3c}kJ6h4>`G4p)`r;Ng8al@fAzogD7lJ^aJ7gjB_-Gx6+ zOtnSSZD3ntdTPxHf?M}Ryhtg7pgb_6OU=mx`0oeqjB&zM0!cJBC$ zhw?Hk3{EDL+Y|=YrctCv4cK$%j1-@J+HBJN*9l!VJa~T11@W-Zf)c4L5iEp(L=+tW z`yen{cADM{z61 z@`hvh@A;v{UzfhuPfG{B2znOz^Z9zRTzFeC|3e_e&=?JS0~I(r^#UvJCvx za&_A&Cj5{pn`GLP_78~YS(6rhI$}JWPB8QjSu9j z5fIiF{cAj4rA~tjS+R?Cg@GyEdwg(*tNXY0_W`uORB=9*)mR2Nrx&LpL@x4 zS>pVtH-d|0>olyb#yBnfHl7&{UsLa09GElO{Vdkz?^rxgw6;v`BS^xr)EU}LHIc8d zL3r!Mxm*vaGeE^X7iJvXB!IEiB*fIENurf3yo~bOwjumrsn2-Xq7w{YfXVZwR%a=L zux^i0e8||2Z$XSPloj33fmm*L^(Xos zr&#Gz38RpO2@qJ`Xsv!VzPj|gvv;0Xvk>DHHdnLM zvf4Gq^@teoT^o`QpXpv(ZeQ(+Sn6FnRRb9@>DrpP;x+Z+@o{4qMijE|#CUJW#9@-% z_oK;~ld=fugq^Xq4z1W zc2P+5KSHtj0V$_Bc$!cijhv?M-IS@vzLCDI@i}c zF*t}uwBaN@;2Fm(iiz|ALAi5U+NUafc?c@ejKgL}mfU2Dm9#HVH3Q?~Yb^lg$E4E~6i#sT8s`N>Gg zEjDbLd~Ud_H+<=&jQxn;OJq^NgdzYXs013Yo)~<+Okz=+gNoRMFn#a+sW+6m4p{{i zEC55`BZe2dGWKaHacHA_#2sk8fKdl(0plMEsq-;faI(l-fME%-N*gpS%eDDDO{}&U zgMQsU`O;~{V=c1@{|Mj+?m(P&Tx9J!L*VqTG>2%N>rO81?(M!Fm7R&1f&k*iExQW% zX1e*#w{%0hb^?JuTTgF~N!(X^^T`vH%+R%^2|)#spv2A$3V9o1FN=wp$+4l#^c4FR ziJZ zDj*8H$-lu!?zBxnk6reZMSh@=nFc%&WXETCpL{#3h_KX5yM+Ezqx&Z^VWJ&1hkTI< z@fz&r5U_-Vctw-XrCaQ_wI8&~7_*BKr=xQ>nA8&MGog|bD#n_;3sX`(4L#DuWfb}v z1#*N*o$E!%QDdb((H1k5%d$~`iI z$O-Y9YZyE5IG@uRyRF2u*+68wkjd{~zb*jCa643=iCMn3@jbkbv(L`NdwcV?JqUo= zsn2P17$5qcJcnjq7!h}NTI7-{E9F-{Yr$@V2|h&Oz9OdXaSXMP555OIb|M?(yMNL( z@5Lpy^%vZDWAgE3($){2;*ZG;2fl*i1{1r^OlaM;6tze=dO7ijF0CL^T*ic7r8_JW zukCEe4xZqD$!F=V!xUKR>@sClIJPTTppwb_B3*hWI(HulmE$I;Evzc+_K3^ij6H|c z?0#OA*5^BLbVU?~voi6+Sx;JN^U}R>UiXsO>7TmKD0-ct{J3~mPrdcLhXI$JMdV$n zXng9|rJ3Qg43^^M zUOwmie&_rBvs33h+|SH)U(5UbdPnigx@*Jo2Ek3B-G-~YOfHYC@-}UUtg?w|#V{GF zv}U*WLEtIUmSJ@tjzmChHUtw|gmY#RImjfvlAM$ba|suo@cBlXP!2#Ioy@Pknpfs4 zN}oa0IfRUD?SLhh10$327^sQu>=Hp?{H49B!1xe93`R@SGrt&I`(9!#YhW1;*^wUR zLzIQGt~#p6=ZO4Uc0Dp_`449{mPXUERf5Jep)<|({kymXbYAU!o2m{K7JY8YVeuJJ!9``+`Ww0(nfDk|&FS^cZ^&!MH~fyS1oiC@sp ztXc@!X$a8=s3Xhc`T7^)*-xlMAe3Rt@q47ZWM?sd*IJNugE3UR$;W3aKjg>1Ok{pCdkNf;wjVe%o3*_@VtiVM*deN ztG)Y{Zavexh{-WiSB;mQ*1|7s9U-;I&99eFE+FRFz5L5^T9W6=e!jcz%JBEkn+5)m z1>P#5J6xZ`PTXQ|P%tdisz?M*H_B$VDsI~G?(j;h0+ZdW2!BvQu9dN^k>7r{od2z0 zfWp~_QOCWE^scE5{#{sIT%hx_B4ce&)$MZKFNQN{`K^-18=^nAp2uy zj*|QjjOr1ZGT&-~yf%9i>RGWTPo6ZF*17shyrT-XNAo-!S|jyuFBzvkB1v9&Q5o@w z6^#X&qR`&?2P1X|JLzGEW`q5SGgziS=xhe?2i`s=cpH9p|38aQatk~bB>Lswm7PrC zk^;FY7Du$3%`B(p_!uDbEr)pEq&kxx{F(%PMMhLirl7}*#b$KIlt8L5w5%5XYQRnq@ z6BBLb71@vAE@Fu6i~E-1)X-0wvngyAOf9(m0yvG5H!Kt9o2T1ggE=&<^x5V{aLO0WEi5dY z)~(7v(Ckt@cg5$(+fkRXAz?U_EhxJKro=E+0nc*vFd5S6OW$1@L1gpA(`}U`yRLPV zNmPww^s=0OxfW3#lkYUduEC*#O0gXu@{;Ldl{8J$!80d?v`)kR%}DsIU)K3fzK-q2N+i>yO3u?H zP4C7REzG;Ik*5#m#;&`b!p)neKdY=6;s5n3fdlZlugj;)67ORuUsdS-P8qF>A2;8U zgP_hwgR|-p9$`>2oI0&rxYD}x-n35!@Hc$2DFoL?H=Pz{Mz=-!vUlGe+Fh)bR5E<> z(g(3^z9whI&{$tjE?l6m3Esm;Cs@=y@@F_|D5@TT##SVozFazK?5yR4oyk;bJAnxNVmh3&CTtZnK#?pJM^7S*D!g3eL`6X_VOh*jF7uvGWK$8oYfGf zrl0vTF%-@boQT+)(|rgkj9_S=tBF>3&$7FSF`bKMd@OEdW_Ckw;1UOK%ZzS?@V+}< z@PR^k&%Tv0jS=ThXAol;2z*snY>5cGa9r3d|Nhyf@1*8_DcFDqS)XYywKxcl+Y9#~iYV?+0x8*uSC z+Fud%J*c;|sH;@>w~LQb&+j*H-jszb&5st74!`X_rbH{v-OoIdJRj}AC08!)%z(+X z*2g)X)zgk-Y$wV(kdD4NHvPk=F$iLfgOUl%U9x2D?-Dps7ee$$=1Kt}1FpTNF~z($ zB>(^ujdjRn_amq2Lp%>l@h($tW}`G$6zmY*0myU{oBWh8q&eV14fZ?@AbwY6-qIh7qp zOX?b554YG^5BW2<`#EHpf1G}3w`Y7u3E2gY`oE5W^Z?z>{vcXMw3mnZrZ$V{Ld6z*B_%U&}7RlgfXc<5w=au z9cyWJKUyVt^MNvoM*ww=CR1kWaLe?1v#6q)3@H=<5$})9N&I`(m^yXa(xc< zJk*lgCddAGLE^kX_%KGW!#`+qqdads-^`ie1t;&sNqJwi{uCqZH$;+|TxLh#Oe>5x zzJiUTYw*g>jvw&Vf3PC0j5;b<=1>tt;PUS`_Nu>oH|g82pDK(c5A(c|=%BV_C?Izt z6Wij#;^H`uF|s_o-^azy!Av#MI?j#e&Kw&MX*R1Nyh(;@~4yLP8zyb7BNrLyB zlaq-?huVh5O&R)e-oHV=Wf~TCOwg1s zU8A#kdpoOHnK8C*^DIL;H+M3z=l93!U6*u#HSoaatX4BtEZqFnOAPh^A%@eiWBSQT zRz^vBYq0r#3QhCFY2D53$shaqw}uk7dBhU{-hCw-ch&apT&4 zaW_J?y>ICnhT&S|n}=<*oldoAlWc*p^%;N@H2-XW(N0pTDp)cd`hg$vm3qWrb;*}f z$b<$HS@er9v57cSBctbiu$2eF3;OYmxNX(eKu|HUvt^qHai2T>9n zdDLMceP7e2;)t@qr#zhlLxL9wbu~3VgJk6yCuHG!BxKOhx?L-Yp?bu!vm@~x4P3d} zvv1yzvZYji|2^}i!6$G>mB;|Wtm3Xe@4(m0)}CY+2l7?BR~BE|Z@crXO#K>ruhN5W zuN6lxUP}XoO;p?4iqY%z0djg*##8EZzqA%_BG$7Y^{&m_l?ulPQnP-8rYSjVez7w( zO$n;zH*Q#re_5r)Z+;u!rnz3Uvdk=eb)Qq6pkJ1f%OwcyigzUqbrqmHzn_07dZ~x3 z-n-jn^O))U$L%g|s3dfe0*8<9HkSA0Whg)45`akv-~;>dl}~Dt+V)Q|^1@=D4MaF? z5!e&|JB_POh1u_cAGJg^OOtr~)!i9d%z^r0vHp`z?`KLZ(UAQ^NhV%I6K@Jei3}yq z!|01Q#Nv*wJ>@)8Ftz1vdf2Sk(dp|vRt}bzB zb9aS%e5-pTWZFJt_TQ#IA-lf@8<#lMcGlt*Mk$x+@I);fYNJNGz)rve5x<J70xL&w+O)T~4F5S1e-a7DOV0Uj(MFK0rut3$rZv_S9BTMEkFtP< zo1o#%Fk%|&)_IBz2_3jaI}7xNdAD6Y`AEnn1LuYnL$1T!DQ&O;fQEk%=Csgz>;RIg8z&yJvL=7N!+GJ?8^;M0Z=1^N{e- zy-}7`gN-+bsxNH7NCt3H4V9R5x*k0APUP*T~2SI-jzl>7AV&H^r-;PV2JY;bizS(UzJ@QjUQ*T%2^fa$nut z$OSKLLk^uJtlYhYNV~Ig0ZxFQlLpn3lJ+ZNl>>gT)QA*w1Tgsr+U!D_L|&%ozXdmp z`7@>w#8>!bby^13d8=z5u64YH%PaV1RTG(bM66lhYCy3udL2(gzVcLweclHW!wFxN zUv&C2SPxLF(DEk|yE_w9x0s5}ZkQpDiP84hyq6a$#-@A~ZIp1tXosKyLiB;xsf@Yu zJy%FUf0jH)y2=n=KcD@ZKYvEs5bH)=9z6Fl&llHBEGl*teT_uLJxW#La3c`+e7&Uw z|I)9_z9?Any_WWLL0^A(Vb<1U97xEpWc~+}Hr)^Zj$MFquhsqd$vch%Bi9DKShVz) zhM&%jszd>%+ViMAKKCuP^UqO~R$>7)vS!Gf;KW|0+fP~O1f+gSY-GWK9FR+X0eeKW z4ZQ)B?ILC~F#UAgy~E^pMe6|a((yq~I4hcwkmgLmlOd2=Ta+updC0c4D3V7o-OD`9 zIv&I=LD7i|UM6L-xio(QQC6KgujXE7<`#ZT{E$0N$ds%;B!uhbdY zGWjvfR!$XAZ7YgR#{z8P4X1uCl%c2^cEkY3EPDC2wjpn_VriGWC4whJ5OQQukXbQ# z*7e-Z$nK^wSfrxt!6SPmw}yQmC`&SV7%dT%Bm!U`Lb1$u+ahcTSHc!({d$MyO{KQt?XZ2#ujE{ zlJfJ#J-?b}^vj=vTa&g^;Tp3@Z@H@OO+bnfi>zPD5D9br&&Tpc-;gpZ#_~E<_SdgIV}q>mR`BEWY(lozxQ z|D%2pGuiDiEQx`i>%(BvHX&$(zO&P}`_W?k2mkh$v%3@Dn*OvqB^3Fq1aEDmi0G+*4*s(- z7wx?ZhozH(CgP!)eU{s z9nPcQGcyN+=u{vPGZFe)VSIgldvvsezi~fzltea?OKdLDeMk8##=}T3C}(a6@}r7F1|Ts*#Ubz znN6R})sIirg=g<-d5qT;B4fzux^C7y^6EMy+jO{OGG$W~1(%xbF(?S@bzKxoy4Sk1 zu|X}1<;?mV@hHRg-c|V%JRGQz_skt{ArVs?rX?GI&|WO!r0_PUlB8qzb6IhoW}#rU zbfiVU@^mk4z3I}s0b{zBQ@XLp&`^dWMV$Z!{Y*9>jboAMt4xU45M!jCyPyl1t$6EG z)7G0vq@-xhLnU5@_{-aqAm}*prmK!#ze%ux{^is$1za4gfA7aTs&Ooi_7G}?yy-~lVkT+pVmS_llODxI1 z$jcEHM>R_i|9ZO5Ffm%cLKdbI*_wsYRqEnygo(9C3Aw^^OMQ3NS!+C+_0XG84a(`QnTX)mAgeZhz1e<+GfOI2bNGKTE5@30Yh>0q4B zot`u|dQVE#pI*}>H59Q>KvhA7f4^0}QQ(*!Ubk)4G@h=jZWyEOSP+x1eGpC3q3U@$ zHBjeo6;{(U*dV8+e*@2~PKYdXicO_(73%%|bu&wfWi{m`HU3@z<@c}U6@{_-#@gW3 zUkX{O>%yW*w#9QEd>sWE&5AECKEg27krR?SX4rVe@-=08JQKaNL!-?aB%dDW<+CoB zTV6^L>6q3il+nC-JU#4i+{V=~!o@F15P-uzDeiVxrd^p4^xfw*+>iU+ zH0#;c3!1#J^Q$RD(ZT_i@eAV$*xro8- z`S~xpy2%S=0bwZKIc1jaQ@E=nyif#25$FF8nsl&K$LYumVaYk=GM4%0&)=8LmI+hR zH>X9`0w}!GVH5%-S@S+dT?M6Km<#HpF67U~b=Ts#js9|<1#~^i()#=d`DRx6TtX-# znGMlHT59~@Uu64zYw&4mXbLe&g*0H$i%UM_0*VI0$TIe&akc%S>-LU9$bRXUa~F!& z{L(W>y_be&mKm|2TW3FTF~W*iW^UW8a>tp%p&-q|GscEtabv)G4k66fEJaKOVKzmld!fba@z7PMjXN?A#mCEY-k#XEWh81b@jEi_4QoLSUJ|_G>jo+XCks) zC3wgu(Flyrbsj=QQCN*c-a}V&8>+>XO zwJj_Z;zziwY-VA<-x?g!q{at(1$K41IRrd|%1ES22rXe8Uojfs+7M+*JJWG(a32{9mly#X(ONhyuyp#p0_!IZ6z9p+`n_^I$|KPMu|v!j>TcsY2p5m<*k#wUWp z(<3|-%m{cC54INoW-P6LxvcJrU~5pQyE&r3v^=2j*eWpFD)TE3=vcolK4)pRS1gZ{ zbG76FNsc`N8z-R!ZveCBIig?jC6I(1A8ZKcXaS~ybodk@3G@E0kB^j;lqA1ea9r-m zbX({&J&~@Z|43k&GBmTW(0TC9@8{@hnFNB@tsDI{bu*S+$gWSAMJ(%Nub+;t5+Z%7 zEed)7M&#LAlUc{KtEqs`3ZSd5C-JXuxn$A2dOB$V#NR6amX7m7!mpC%1Aos?vf2b2 zD}}X@hg~tFmvdN?pDgBeTEoSLa*>NIF?%!UFoh-)qhSM}f@15h5YRIG7{S5( z7iF2ro+c{Wfv^<@%_xM>tH-w;Zs~GBL=tKzMty3NteQw{0ik9qWL@3oD*P9w5~B<- zqO)6_<*E|W9l&5O51-aW%+GjS8c^xuF4U{iX(_rW21;^FKNCVh_1AnoR)zn-8{% z32G-_?sLa@T43l{9sVMQ&zDKv2;qrUc-H_K1)(4dWi0a;vVz1Yi zgPYw{o1(zd0V|5ggfZ%15rzT1PQzp&%f=``CWwXKGbzcWqigCSMn?Pc?8_nOuYHEmVzbnV{C zdTz1Rw386B++`6AO?P&Ey~PKMot5$RL%Z8eODjteO-vb7O=Yn{dE>b0YP>4TduX<;3F~hesku1O<$f<3_{$D^O@GY=W ziJgpJxK3S_<6{ekD@_hwUPdxN3*I-MrjPmlmZLXpo=Pmj`FZ_z7&f=FgADfi zmyjcT{whIK9bHsLphQ@~al4t4%Lbf7W%hk&c|l#x*oV3YUXcsHH8!O(`FbUSvSz)e-hG zKrsT)G^#?kOg3rSZD=nQ>&PjbcX~Q}Gw~X=my!@6p2t=^BB>c9MM01w?(;pLImGxl zvJ-=ig2KKFg&m+Wf+nO4hKWhHt)B{wLLUG`&00-Uz;y0ob0e+Lq>3fam!WVS%_gZA z;`ty6bbWayhFdDl7R3e#GzdfblmScrSwCUsWObugki>$6s8P9Eb`^ihK!O%1Hgv-xY8` zq{qdj+rE>y`&-5OJfbqc2Jpnn2v&E`pz^vJ#FATw0+CO=HJ4sizE}p5j9khgLg*ou zNKA8_=mF^ARa=khuu02D9=dOn!Na@g~*8@ zc#7i#NI|1sya^=qBmMY0*#9z;MK5|NIiTSlU86N*lCjyk)L_rga4lUZAKp=KTn0@U zq;&^evX~{{q;}Fe>)WV{j~R`2_T5;39oqZVtxNr)&sdw=Yb6`>B0OVPe7j{}ImGx#IA|p<`OM{eZe5k&@66{^4zA-s;{4#zjFdg)5gZ z43-@;t&8jc=l!gtJ&S$Glnn3D!fL+<*Xi&C4?#2@Al)mE7m|eE(H^k2lC&O+%Q;yG zWYyw18uSX+Iyn&tkcp<%=28p9wTPhxlE$xCK%UT1iv}V=G?pkMcT&yvZX1uFCrn%D z?rz7Qq09&dSGT*=tvBS34 zPEy*Kn+{EAbM+xfACD?78lNZzQA%tGvVD_(iaOkY96wk2PTbl>m3kQs&SMl&2? zkEwOYml4ptS(E#LTO*Y9S_B&<7itfoz{qeoCpztBE34>B=bSsSDOD&llZbEYIdHRN zynE9Q4cibcCiNM+p(AHJ!u$P;yQe+A7p6NYouGMT_@qP8zdk2Vj4!P%tH!cV!M*rU z$Mjy(whXQNG+#e)xVJQ(k39}4b^p9)e!;_o?D775C7Vlt8Mz~q3>Of2ro;-l3sp4r z3i$=eBL8fzQ>KUZQD$lsq;=~Q#(8MkkAE!C^G)gc}1pZ$GZ~Z~l0oxR@ys z^??M9`7ukQs4uz;g@Z1tyQ>eggXZE|Cl~)#j`W56x+m##w(j7X&+bHe$oBY-XUK*} zb@`lI$lCJEx$B#5{e4>>xgknm!v~`4>Oyw<_tTr!`eQcJJ7z}s`GZ&Uc0T~1aC~cc zuxY15b@x0B%C@my&I4EF4=3CRSZK)OulHT5*EwYqVAA1!+?JulK=qw0D)Fj*DA2da zF<8s%0zexZ0+w$QPGe|-IrP4085u1A+1*zXUMVCcKRMt%~5d$am>dY1_C#~SJrX!OLisQw;HO;pBtU= zBH11RbP0f6K-D6TsYm@4L!g3umwk2w#iMRV5)whpAR(-r75SYA3jDNbwS9Vm|{sVyh*u%AaQ zVx;R)&74tf5g5Kj4;59v-ED_cTyRCq+TQg3}l*w}}LK<3O)gq~pKc>>UP0C7=D zk1CnPA89*jvGq?#ykUa2^LOJLjrE(oYhw!yAzSZ$?{U=OL^KN;m6e_|8m<8B!A))a zR5rc(>6-CKuIz8vdauWPlgeu1v7U&v0U`@T9f492u5+TZL^6{B1i_Rn?aDB^Hl!8( z@Jpm`29K@rT6de2-zubz;$F{}VqT(B)J^zesZU>vBMgHe$L<-I= zlQ#jd=iJ%*zVu{8+W1W z!(ED#-B@Go=Ei0p5-$UL{`{XC8>So@(eR=nz$+CsFTc61Z0E$PPHzBj*0cOH8V^Q0bKa~?Y!P5z^NGgUC-W39RaRFg*#xt zy_2ak`KX$oz7`E6Gt9c%Ydg7_Vs2Em^5V#W}f8a8kA1t$9;WV%Kt=hAxjeYpP{^F zJY!tQ2#%@Vcm39J>mS>$+pT?i*5^6wG3p4Wuk9Zr965aP%7h(3fc zavSKe{s|838g3~W`1H|6>ihw%*@A9ROE_%1d5vyJnvO55N)t~c_>`oNPWFiCxt{p4 z1wPd#Q>UWNONnydl=UJ|!V1t>*MqKHl}|dNDOaaKKad8ZJLj z`FJ^Xwtl;P&|diZfbe}EpJ$d~n*7Y>iEw_+mA~J{N;ClF$RZj{KYN<{#^V}+oJ%sT zHPX$l$y^5>X@$X|BbkZe$Z^7-(eceGc=t zZhoN$PU`J6uWi3kTYI|Oy1Vl`Wa?2Ky>aEMugcEbJhheYv(L|*+ni{Hg^X(O#@EmJ z(|I9Z`^HAccYmcf{%P7?*`3+gaNC@}YcEBo(^l?s?u0k}iu zr{HHpo?nRax!~omtDnq!+&6!I+IBoHSY9s%w2)>T5V&;3P1A|YJ3R7Z_oX5eYC7eS zl>0R(%co>^X_hdi$DOAtEQUYiR14$EJ8xWAJz`vULlR9oQzrV^E5MAdcZEYTRxWvn z2P+SVCN42|K^d+Zrgt{ao*@Pqqyfo277+yyGE6*JWSG%`p+q<8ei6Tl|K=mQ>EOWN z&i6GiTH;k({%Hno>ruvMjj)$6emgz7y{&vXm)LS+_1^YMTo=ifhr(J1g+VNu1I5eB zfkkoV5)d0w_(xL)OGPfhmSCGKs0lrO>-3ysed7B$&2+xwGQ!sTHf;7M@GCBx}Z~O z=etvggiOvtaZyom(QSiOz5zD^Jh@EUXK`_OG$T0?-nkq?=&Jl%=6a-0o0|2j>AR^- zHczSeD%x$Uv*oh(w!uHvb|%)lM&SSB)l@v9m!WU#$Fi)KTfFU#(IRq~ut3}0+ltcKQbo zxZa>XEWz`*l!hH2%F3_Q994w5FQGhF?!NNY21Hq>C+@)SumF=2fVE!Eu^5c z^Q$%oeAM#ES8f%e+QV-SFbzdQ(2VI-JJRPgO%8JM0rm=zs)m4B>x;iDd!f$=#G!PR zTIMlgWv-r7**2JMsIK- zyaB!Z0V)@0D@CJO9?$L9gS$<#eiS^I$?)RKn91m+O7soa%*(PgL%>T7TwdFpFzRF` z;8z-ciOgln()bvW%k^ZCn1tX#6tBjnwDOd+ZV^Xn$bgk?QYBV5~m*4 zpfvWF7+5VstR=#Tjl#-ffN-V(n?H)7lkNc|0;Ca4*YD?i*1FX+a)nFlWpxqw`DMSA z&HK~^!QvjT6<1nCn}(#r(A$v6I_D2m0^?8q%GxhHz!h>hr!&J7J>PZ0&2Csoi_}wU z*IN+gl;UYO^W3aK3K1WW1m$6<+jaD_n74#ZFLx0Xj0m_+?YJ~iN60+) zPOoe1W?l6O^Bx%{JKGAo_J#bB{fEYf=stAFn*;4laAY!KlZJ9dc%Z_TXdt<{4y@c& z?vPDeUXNme0}oc6qxiG%lAeq_qv`jO(@D7VeC2r6At{r6#%T%G$KEcxUqW)#oBs+= z$L2cUh`cWv#SOwo!TXM&l!-W*XHH=STnwXSDAr6~9*=r2ubzn8EDPBB^XTEdge`9-o$Om~;tM%~)h2*M} zU2cR52d?}BV~@r2%}99l7DNGlZ4mU7h_V0YiPjJEHL}h8jOf5J=1vJ~YZ$Tq2qe}F z7b#`_PH0^1Km@1Uf`U9f&u4x<;aMBap##dvkNXgV13*t0LC7&zBe4_+KgweIV|$@~ z^~&zgCc=lR-WJ}W887p1nGk{*^7m7*tx<2(Kj82DwYr(e!p1N7IbD^uGnLQ>2~CCOymn$ z<~k;HNs!8;S)Tj27RjVxLd}=-H;PW|pzfE1p4;RM?UTF|H9CijbcRNH(m9-XT0YC# zPFTk*@y|Y;5!m}xu=4OSs4z_YgX9f3#@?axMA0^aoAxsYm>fyY&?#Hdmd4!%VYpd5 zw74duz1q9)?~hgnip(qkX0pb|;$+C$g|=tdHO2W)~>^;9V8@J&vV$ z&T$_^0IYv~_w?cZL-(0+M3~r5`XWkhEh@)|8XSmH64BARI+MxF z3z{q06w3-m%U-2+)0yqysK}LycqKv8Io9^>^^)}q*&m7jb}qkFj?er7)DXFINn>f*|DBeh%5Dr)Iq!(P$1RWIyAi~3~ zd#^r|R@T-24(Bz|N5|J2)HYK4LcF+J_MzD7k-zMV*=RQD=6?duCL=W{^`Ahe=Yn+( zlR=eGQd$1mXoNiuHj7bl&X(09)s12IGjf3AY&z$TdQ2st^)bz*S)$s1s1JS9($LJxwQ}EW`cb_H~uV-(E zM~c?XXL=rYdP1aNRK8(ih$g{eH~#om?3CB-ye6(I$p`rW@dXo ze?iCDsv;(x6V`TRXPh-3zV9GHN*!pJ!RLf#QxkS+W@U0gLLs>0JlvMXZ}M=1jtK

uu1m zi8Rpz8rK4L`?9yyf)~<5O8JZ0w-^5NG8;@e7_!=j~qZMwb6>AWGUOk4iJU{&{aA*GW?{9tlX7k=>bpV#MhjWEyirgxXSX@nYHcM=a2-B4X zNqQs`!UdBuxZw>#bpewGae6f@xZKDW%Rg@OS;xz;aAL4x`5wIxG{jLQmtsRKe6v&$ zFLOR{>#sX~R5J8&PGv@U_0GiWyAG^huNh~fsx%QZTV6bcs`BV^gH$b;X@G&;Z<;SY zQuv0?L=t9ln^~Uo$qP)cSaP)TsnbhD4{+(i9azrZc2W=n!hR5;qOql=F!BJF%9o+J zv8kyK_93QDo2?pK*9eq?OUdjSvN!U@L7*_3**Ih#>ASpW8DQQ~&Rt#nOV66cxS^&& z$k+2X^4J_Nc)A_`K3(#MTg@c$Y}jb|UG#c~14{UD=7xg*(Wg z3~p*?=f72-rp?hg|6|s~ihk3Sud-(BrmJ<4Ml;jf=O_ibs(#DuF4cc%*CSbUFrey3 z?ahoAyFLh-zPj8oy;po!l>ZG+Yy2}NcuZ`>v$uQRnUl2deG!m)AWJ?J_ga^b2nvl% z&#S#O{|d$uNy6&0dk^k(W9nZPc<9_JWGE6xMC#oZ-GJJ)Tli%tS?{ghU-YYj!>PZ~ua}ZuhGRsqsZW(*m1^&RDL#k^R z_`TWfL4MAm<0c3zEP!Gm(Kr;kyd z(D>}=|IVHJI1e#{((^d6mz4+Ws1;F&x?3!X-Eio{G)A#QbWq!nz-xVcj#<6J?x`%w ze%4<({#9*sE*{A+NhKZb&+%$5G9A29pHMmkSVxbnaVMJf}oxOQD$u0ON>UJ4e0|CQv3X?~~)m~n`H zFU;j1mn+JFNP)yo%Rq&*>9{W=1q92yp+kv(z2$rBQDib4`ys|%2-YCZH7G4|B(4Ob zw)yEBUU}VNd^~8`;m1bXS^A&Gz{!6tcDn6@S4D!C^VYlqeLYvc_H;{`ARgC-tI*2dvk}f&yDaOoa-)b z+P#FMu=T~3b=gm7llDEtXiUc%RtSe%C4mUdo@CR1%J6ra|-*0%qGB>FNEaboYZQ(+9vd{t&vB%VFl(%vr3 z5(TW7#GKqb*QU*h*R9mrCK&gZ*MHm&W%bDX1%D&Y4j=K&R@uQ6qz?GSROLM%R)qGx1omDXs*_<}QHmPbzH4vqUFhMY2W zv=_Q*A(V74Qz(pvdpX(SS9)FR*LId}C*KTFR0;g657K}LD=@L5E@JvT?2KB5h9Jlq zycsH-&R1vrl|TR5E79lG{)jl+r#kc0mpmeYwgF-2zBEEX*`zs}@f8)VZXSP4_1~Ea zKe@KqS|*Xq(pr)~-#I+g+u4au%&3}fp(v2>tejsEtmAbK1&;YhB$1TLtPTiy*g=r? zL1FE@D#}%OCMx4hyMIUs2&Z|iC(h`Q&U~wYbn&atouiUXWA>KTRTC*4dZtcT%NJ+F zAWk{BNzLpy*QwlrA7OGvLS(IGMuC@|p1pvX9H$E<{dpb@dd29H!WbDlQj5I0EF4~q zQBwx=qgL`RW8JM*EP<2v-ivlEUAJYr(0n>5PmmYPPJq-FU6)|RyTDrQaD@_L$*F| zlxi-pu(nAvO+~qQ#K+|V`Yo~W%uvQ>V7D^KtMA2Pc^+)e#lda`V?A(8hsP@^mC@`W zUWlE7%f%)FJy^V@eaTl(Hdo?G>G-Ka1!GiXq!P_zA|p{&u~8w%@|!UM}7xce0D<`^gDG4yWi4G_IQT7NE({0NDk`wzVTHhI`O;BzdA* zol7SPBNlJY28X;ihJm zk}FyE3O=%vT$lpXPj6Hr5X_Mbv8ekCGM7uf@m0y?y@-_eyej+-UR*<;O#3pe&)N1; z!8|+Hjl83AQ%YEi^Q{iY z<_{Vl@*iJmoG&gi2NZ^02Z(F;{OxPcrM6~^ZPVJ^tL&alYC02#i!K6ro~cf}Ts%J- zuTCjk>(0nX2Cw&$Z?=i#M}jEGZSBxm8EYM9WE1+vJm;e0aupkDZRem|W3YeNqo=}& z(KxYa`($4M4h+o2L?~te5Rsb_Y|CJUr!y3>#Lj^z09!!$seC<~ycRanJfUxUXHa$h z*V)YzV1fD5JK`GhcWXv!`)Bc(O7OQ)k%Y7&z53sm>0R87e`fjuXYE6#L_#*ywi9-r zuI(&#S^VwT{r)4R0}$f2Aw&EJqracpp*L;Lt=;R`-O$_qDx$Xju4!W&0ztl|tEEI9 zIrxTWE(PS~dfO9+w&SwbUl~hfs|EQ!npWf>9lklT0P$@3KUi9-ZlaF3o>w>iov zipEb2`l2XdacqZ&_W%lEFCwuSCZt3{(tUH@!3>2GkRTJ0`wrGu%IR+s+_C={r-~+aHLe{Y^>!=KkUbv;eBJ#0{WcA`m<$V7^7kvu$U(#ogXbmV zqx>>LE{G0eAR`BY@?=0K5)7bnrf`Tg@8xjpG1YJIV2Sqe>pJ6peYZbXkxE`Fap4;idi%n`$&M`8POk6?ljJ;H`X>Z)HaUM*MvM;8v=i^MwCQ3;{lm!R09n==OhXASG^uCWF03?12Tu}9dQr4gCX#_tO_-YS_6_o}i#!m7c(sTp&%V`GJL-7<{GNIm5d$vT!PPDbok z+Neu)qN#V?*x6^)Xon2P!E45kWB{Rg0VC=PM4E2C4>D+C17cLe0Lkd ztDH`KGfNxG866$(Q(F7i!u#KfgA=z^dNT2k*1yNys~bfFJ$?8?-GZ!{EhuB)YBK^$ zpgMpGFk%7gg5W;pM!qcr>FGc1&nvNK>`xROtZTe~DhksKanpBRz~(t#DbG2%LF&Nk z67vj3Qzv#^LsG9y*#QcHw@B{Ia|6Y4I9zlr`HuI&o8ZrkL@q>t8qODrnS!DB!{5gI zEl%UPrd^BeGh4e`+`D5ISwA*q?EP)xZhtmO{UMQV?tRoASS>Krm9p}1S-^!6(OJ~o zI+BE2(FJ8nq9$ayp^}uJ)}XAWT8gM^*-e37D&`QEvRQ7C30pxXK*cOxYB{Pv*}GK= zp)o8Yih@Y!go2nRZ0@4UV(>NWu}OHAF!t{0`~X{6+tct1y$l@oYLCXxo$=X#W8Grf~SySQi2?>BBTNY4-a z;3*ub{1F7al3|;RXfb9ig_ceWa6L|uYQMI&$spE@p>jZotx?gQtJyfnC(>bXP{B4k zel2f$G&lsxPWJaF;~Vq#vzh(JC`uj5wA*(W^)sw{J74P4V{lB}e2|S(7G$c22ol(k zcNw1M#tfGg`%OideC0f|F3)Yd$5q9CyvCs45$#6yK4vQ z-b_60aD|`hy6d@~l|RoymPafC?}SVjZ#lU(ZPP4vopuL`cc%LCPYGP?<~x)fye6Wy zayNUu(qgyMxDh?UnXoEnE{VQs?^cv&61=+HNY;5AxYwg5mO4Jl>4H6OE&1^Z%`}}5 zg=2w3A45^MQr`b5>CD5~%-25tL{i0DQ^{~B4rzp{sHF^T$6iaK3tF*PV+l24s>`v~ zQXQR8YdYaIiXK%Fc`rb{1|((qSA-55N5jHZM<{`!uZt|7(k}TC3~!jh7A_iXC+sH!Cy78 zSB53V8EP}fMzbt)Ys$;DPI@qlv{# z)YhEB8wHn&AgB&q%#WB1`09zm(0IULsFS^$T)p2fIH!-(EpG>E*CZNf68Gfe_VBb* z{(p|F6l$x>E0AYV6|M+>{rs8W-)Q-GsZ&J;a%8#> z<8ef59^))nB)d3S1d0DcceYnKqN|O9sdktpL7BzMK?-vCM@;*v;VT&{b?XEpXulz- zxIzjl4X1|d%(io*+Gb%q*e0;()J_JEPeAWc$(PI_Q6%>#m56qjpf$nb`Zx1gPb!De_yrvEVxTyWz3#V1FIV~~Z9AH#*vhmX7V$5Am#*26Ht(j5?{LcjI zM>o-a4 zUf&kn;1!+~IXN1B9EU5`He@k(IXYV3zt-SaS`acD_co?b{OEL1y|Ch@Y($#9|I87Fd(b$8 zNZo~x{Z%T2S^b-~`kxK&RUby#fNIpB4YdwxD*+3aG>+@L)7#+^uB zbe{C1FM|5z+GUWd#TK1*I_(#j0Rko%r8qw5CQ$|>c*6`zx}kfizvd9&j9z>E1D^3* zJ{Ym&M?@*GE+)2<$TfVbe3&~hK)vjkJ#a?ZP1K~a!zf2;WQXXEcoa|f<*LV_D|Kpz zkfEWIXNyXiU4{|4im4x3(5eBte^o{ny^gJVd%)uR!HvkcZ;kN^7mebXvMKVgT_pQI z*I4?U`3iL$XZIIMgwd#oX3qoVPL*y*8P8~Pue z!$=R+v$S_12c=x^gNTF)`Sn=Y#OsFkdPXT6-Fuf2JQb2SW<3rez1hg^tLXWi_+ z4%RM*2y~{t&OZ`8?BVf$j}r(VNB=yn*!s=WJ-awC)^}#JX7?#j?As*~%h3aRa#e@5 zL(*KTvcSvMURmjw_|tr`5~A()Mv4E)-xO#Eeebr$P^3QrjomQTvV?A|@}S5h+mPU- zzLZK%ol;1_KSzgaLgrf%(T#WsD&cj%%EuBD8i*uKHEY6A9_*eJ%Kjt_Y9Ps}G-9@( z?~l#bxxVo$?H$1jqh@)6vre0@RzlxCSxrxfTbdi+5RHEy8;5xG)+=*vK|)^ano+`v zBHzqmZn<0q)S;0eZyPaP6OVNr&g{MRA-5=Qjc2h2@9E~gYhHs|w%7pOSh(Q+eBUY_YX`4*rH25vCXc&5suH1&n^SfX74Nz!5-b|ZQhRhchM8=u;%FZ^@X zd|#C@qeCxAURsUGidp!VZR}va$na)ZwrBMAR-7E--m>=hM^E;B{6m6t+iv{Bsp|+p zmvG_K_9j9~F&PLV48;eCBn)t^g4}}KD8(2RQimRhz`r4hm#lc4lLMq9q(c*a7@-iAwZn0BR;to*B%+!aie$JfaVo6Oa@$um zT$Res>{Q~{1hT`1qViGMM+h$O6_62@cFJzN^kS+!uB#g`unLSUg7?K@1UQoe2JLL1 zG7+SPgbb5GV^j_%3v*De>d_Gaqk))f2%hJea*mKtiv-SeP1g9iedW8N1NIpxSKAJspxm(3u+Gk|MmGBWIk!b&j9FDPUPTgVjVO_KiPm z(I5C^j>+p({IU|y zQ8jWy1ivW*#&o7!hcZ}~{WN0c0vBzN6_7V;j)MLDu5dP+C8fI@U$|C{3e4zMJ$e=R zIU@MyN+mQ-xEBWh_Kxh_SiG;l8AmSB9xlv{ZX8cn#`(G5N3q_sFikbc ziPR60ogN%VEJml66F#BK^Ff#RC~)6*adh8$?~P0gx~He6cTsqJE)AW0x#D3fZ7$VW zTV5tvJEa6_sz$MP>bBiu3D$%RoPQ9qDt32gHv)O9lL|0@luaZpl8L)m#YDAsjP089 z-c50f>G_1smAy~4zgK+hOfTbaeLA6Uc~$)Eh2<(qeVvx^a6}}$w%oqv`@QkOwaH~y zT~9C>`(AhA1Iwi!*VN6T7T@g3^lcFz+sYk_S^o&jC->pbY@(b4 ze1W0_ifPuPB6<22?z4n=?#=m}*QrUSg{x8D_)iFRrH-I%IU~S|({o z+`JTszDroIJ8J&(LdzlkV_hTdA?kYtAG+MXp%_ZlI2G7ahwDXSRdmmJf+rR9SZ%4h zxs9Ta(QFMHS2uxH3JE-|EJh_U`&l;BrmR26GMF^4;Y7+*s`|^GV+1>_38IdwmTkLv z&Lj$RS0~ITMQ$EaPcr2&*AOy9bc~ouSm8*xM0e=?Y%_eMvi3_`QQy1Rwn<7AL%<9c zdq~-R$`SOv4SX$U_Hz98;uO$(xCMm;Cpf@lACA$u087Wpt9gM`I-9(+)FXB40Z`DN zenNs`cJsxel3GW=w}gof_3uMUCqg%;r(ORz7tyZNJgt=fcg`6ycf~M=BVz}Ln)1t3 z9c2cR7odBqfT{&8Vo8l81q#pknK&w{ya%RB#&$!!s%+1lFk%rW$y`77pwF(FdS5oR zR}~f<#*W0W6a8hU7H*%bHmc>6hJeDX&M*i8NwDZ;NJjE62g-u;MR|nY-YQh3DxlLp z#Kq377Thvj*j!TIM8z{UM#Y8dYYRW@bbZcbnPfmEePfbSNlVxzve}Nk%o?{FV>M;D zkJMo>p%Jx9eUgc9b7<4xO0ndujy>Z?Z>=}BZilvh+rs}UeA1%J|DW^mOB%Q;T^L{+<$Kj2ciTq@yP3szC$K$ z27uGy;R&Cv-8cCIj#Ig-9gTn`!LCArw0X1;651l#+FDVkc@c47=@((9>U;2WGBR)v>da7{xHv^l8Rzgi?zAlx^%o zoV=r#UD;ryi=gYr6g}6}>HfLO%46jztIMkmHJdxro6l7@eg&EepN_WBYp8FuE^FQQ z`dvDx+29|%wjEQHRXR=LNwpM52bP+=#Cm(XJJ}IKCM6rnb5JoyoXL`t zzM&2E^@S~Nf0pj$29v3R}LjWdqxS_It{P}GYOu9+FqjfZ)eF28ilS738;&gnUF-PGCE9~IIg`mjT$;x$j;v8m4Z}xe5cTdla?j9UF za&k`iaEX1mt+6Ka9*wB8HY9UmrK&0!arxUXQzhyWTLb$Wq>L^_q<$~2j6y)mIdB+x z!(Yrib;i+!%)#r*8{m;gE)Zc*&=Xd$HEu7K2uw&eyc;&F2AGvjg@Fye(omg{k;zMX zI7u*$o!I;6>JaWho;Uz=D^3jGZgHi9mJ0)Q*b5mJihFvNhHelV>xN5=q$iab=%WlY zw$wAZZrCI62d?V&ut(@}$9avNg`;nmT4;cE2ElQuH;~ntoJ<5EQ+w$KCq$umhY?mH zQNdfj@qH5YDBe@Dnfifvsf&t^p?uP@HnJ|Ws^U$Mdq#BfmiJETQYFcmQ#k=HdVS8* z7*%H46(uFkfHH`7@1jV;g*LB(vziV_glwD+MtdG6zDu1ISTYc`HtOw3km6RcphWfP z2(^kk0aCd5hq|*esLfGVFHX6X5r)SHAt)$7`#_{dQhG-qVw#sCUTLy}QwbBJpL8xn z7|NLw$1%lTLJ?jr9=6jo@u9%@D5me)ijw+Hf9QOC=-%71CC2+n{^!i*1ffaA?%%T%$&}+Rny?kDgS=;S~FTVYer9FnqW$ zwp#<&2xus+)<|#7UNBvAtvdG$J(d`Hki)mc+jhwA&$Q?!1`RweW@0HO+P%XK4Y*+H zy|tV*y53@%Q`JAVH-gch(2|1v}u`c0_ z@4nUIexZ$%slHcNrWSZGu@<^~7;-#2lEvI!dhwWTH6TrJso$mwhi)F=wzg&(H`keE zPpEgUu(6&?woUH+AU~ydJ=aEsK!Ax7@F4IB2()fM< zHQa^y*ZDnG@o=jD#{BmAvB{Fq?f4K%Trn#phY+r*dQoVGusF5hlo_(wyB&3W=DD`^ zaXFFiJdt-QkHFb~BF@apeh&|5?V<=%>u-1WXSehb@)U}bp$xg>6WZHag?v_uuYzZa zCHV5^K6DvxQeRM*vBhijsg{kP`a0%=ly4_1nnD|Q=W~o4LjnS8e`msz1Txdc-HS;Y zzuj;6QqC)tl@X@Kn~na;QA1pY+%WSmk!{l*2gyzA1AL>wJD=T^oaIM8!(}hu{5Y}n zck-ewcVDxbU2IcD&l+|&`^`buv4kY2f=pX)lXPVKp6=b7de(TJDJ$m}f)*VWP z$Z*i@*eV{@hHvoZ($qGN@?9=;dt&NN&g93FXY`NdLGw?iII5eB9j?y%*^a7Z_Qi^C z8fkRze|~u+dbq_`+Tl9u^To(?#jFjFXD2hxs|hZ; zU#sa~UG-J@#-U30S}8swa+GQ=?yU}0Of-C-=y^fy@RP3EqUNmkele6dS2-go2&;F|D+%Pfp9mB@{UGx z$*6gzGFIBSwc2vH&lk#x51MSY+gheRhzu}bNdk2WCm*smBlpK28V;2XhC!0i$XSUY*8%&;H5K3BrvY zUvZHUF(Cg}S%2L_jl*y3z15yj3s(=Sj1lXNS4qFi&L}5zeW4@AGi33|8p=)3m5Ci} zs|(&QBy ze`ggBQ|uoOpp91GUNsu3!F#gi;!E@{fkeOvjcFvUx5>y4*mV-X6|Ux!JO+y=6-X9F5}MA~`^8RqfFoj0skR^OY#VSZhTvCGSwm*?ffZK9}V4p;gCoE<+S=lGQQy@Jz(}7OF9b}D zFe-<_3j(!~q-`~wqPzTvw+_0s<{$%PqIH9=?^k3Z*y9?>X`KPh{kw!|7!2eG5Qz$1 zNHOOOSXdDy7o6;ZfeOCW)deMKe)9jO_T4#5ypmy%@X}9Gtd9=(NmP@Nc!CEA=pDIs zA}kSrW`lJv7AD^b6bB?>^bpC%3=O}&Rd}tyYx&g8C_Wsl?f+WVk41egz61^XifZ6o zh(t%vsFCoq#7-uLT6ylxEc2}-KN9NM?o49D&cY_m2#ics+}6&9Wlt6{4HydnA)t`3 zCrf%^vK6C~8I-er&?JaNvIxJxh_ffKod(xJm*70dE$NC#UoZq1BL`j64D~;6KXW zauOg0qyn$K^E_1*c12PY?KaKO!6PT64H5t+Kn7XKedr@kFhm0ZfB^)tBzao=TQVRK z4-u0{uoZ$z0)Y+Zi73NsRho$GK&bb1A3g^RK>QRq8wm?7IKx&$M1>*o+@Z<6Q&8GO zDuu;D&H5( z(sV7v+%smvA=+7#Gzoq~nGD!7NjYJfQk?d&r_qlG%B62zC)HZ-^mlpaj`iI1VP1|C zFjpPIl~fBJ7a$COvEthlKHRFajxAVcb+|`ww@kOK9W`%TO0+*= zsqwQ#m4b%Ml&dvA6o|q9(KU^7bh!EjqKAwEyg}dG2^bt#c%TnDgRz#-5%`p9?fRk( z>!!mzbrAI*=6ByCH>I^zS8Md`Q-qn}1!Jmbgsbgl+uVOoFR)r3_WLKP6~13vo!eN{ zU0@8G+*|8t8z|a3SVB6R&;Gpm^PNwH_5I@Pg_-UDj!^A|eqOq0MhkS>$Qa>0LVD(= z$KReolI=_WX!WGE5nRrwXMPl(ag1uTOO<1qMGmMM=ge6=pnYaoKk+GOZT9+(rBuk7 zD3yW!0B#pG3z1@@I1HUT@GJHvysbWp0NDPoopA-q=SQbdmFK*bLZ25_hWJggaMh!= zJ9%62nRf4NI`rLmr}OjNoZtPk82$r}#z!}@sA3L1@~wK!Om!@K<5Z$L3yhGDb$0O#4^6n`0*D6neV63{qV648SAQGiVyPV_zx(ml!E} zl(r~igKJbr;I(UFV%}q^x#kkn2bE(9HyLXKS%?>36AQ+ z9yOFj=Hj^U{*s?vQ{%z(V58yF0>=x-E--0K37#sRs#?Jgbo5|(5eq}9zx{uI#;9n>PtGC_7HqQm#`sG&=EGdP= zT;%H%im;!vLHRsFk6{P-Zro_t!cc9?TG49q@onb1876D_8v7H+GlLG^^<=Q)y)pRk z1VOSN0IXGi$%TVN&gQG(za$SR-;)BY$OpOASO+gQa}L^-)c58ej50k2CzY@Hlv((B zClKps@|u!#DyN-C>CQrYTmPBDb^w23SnM=buos;_B+FwvLUWbGE>Po(ExibTvDA%z z1;@X#ztHKLk}WhGTL4itN`OnM%wfS=ztBu(EXHc&5g*9gEdg08_?0pC+*=-#7idtZ z&mV1}3!o*Z$&fcjaqJ{b1}e}KAAJXDP?a1tOLla{GI@A6N6Xlo+(}L7XNIgybrr)6 z1T-<5qri0tQb9WboR$3hcOUxBm`BJsOZXtsGh}`IINK)O!$`8&%YS=kntjOdgR3{- z73h}*keXyg?cL^=zSY!*hFR(u^K#=ZRrtW|a6VI-q#KV?MXj968r@Z>3gEI@^gT_o z1Zqun_YqO0M_NvVzBVEz`d$#=MkZJFyCj8Y-mGZ2I`Rk|e=oHvP)%IRm24D!51&MX zWb3a-xuoX17)XlBofYI4-w5mlUW8^b3{i$qHJsiFxzxH#(5z(8HBnM>0&!YTR-Rsx z3|f6TawtD`&{Dyyu6;Y%8GYKS*v`hrY1&m0GmWD*s%q>Wn5rL+nl>i_(7WNDa) zq`U#r?20qV-%Ck;KO6jH8X<8vT%4kxg3_Fq2DDIrC3!;dD8vYp2CPj3%$}03S9ybS z^}1LP>qunAYGN2@2ofaQvo`KuMEbBR%R}bOUe+X^HIwuaim(8g&5tU_f#t;Hj3mY7 zbEwUm z3ezf2xy|#wl95UoK%vkn=L7+3(%jp#Z@Gmm6fv5^VNAYF9;s!zHy*tA3)wi|wE3;# z>ab<-;m7=B7Z|1fLoSLMv6 zc_|B-YHaUK9qw=rzS(WPZ8~@mGAW~mTYoOU#XR`TEWvK(S5#C)smplG95|`(ohaX5 z?vk+^wK?fti$sb443UO_($ATh; zn>{9H2HTno6^FVe_x5TZo7M?-%1LKF{@BghddtZ?mBzek7gYbfP`5E-^|puQ{M1)^ z!KA|eYX5ONE_2C$r*BiHR2+M2jOnW4aXf<@5p`<-rNmcV9CN&RN6Y8hNBrqxAT@Ml z=<3++1h>+$cYC#O+m&^X1vssYU)9*}Sfmfsz?*j6#&$5mw|x8#aG~wD)O?>;w7MMZ zb)8>)xi#P4_FoD9N8kOEop=^y`(=YVe5~&AgE0`fdWL%aRvOUkq)UeYrax-eZ z`SaUT($T;lj4gec8#mO0go|Oa>p#l>y!<-8dDU;1V3tDn-*zr@{4Jaj%i`SVj(uq_ zr01=-&Z;|gOZC5xz^(D(!OW4zGX3jM9&d2T;Rs(Ey=7>#wn^=V`OA`jn3KQud{?f{ z5Smu2;^FGbIbwNMevfK@&eV<`XFcBrknP5pHknthQ6oh$e{&+wx7{-BFT`Dru(TmN z_*Q5Hv-`OfzgKZQ%}0_&-;{ee?TD`PJZ_iQT;y**)Hhc5pPD}h8Zo{zHSjW!voIua z!>^VAl}P?zQac>Vu8?U8jXI_zQFtbQl&>wocAC@ufSvA6#95vU0<{ zJlG9g^c4SGnZm`yEBNrQO0-XYj`h};^^vfZ+0_Np{gwEpjSW6@l$o1HsOqb8g{#olAIX&hELnZjw=H}aX@@|Pke zrrY}G{8dls*rc3Gr22V_$1jpiglLlb0v;ofHXgG2O7cm)78asz9|HJiD4$zRjh zVU!`itA+jXI~*N@M;~5lIv~((h?`by8*q3a82sU;wq6*&u9=~{d7du60L@rZGl8Zi zhD=5U@_CzcvCw2qC{afmKwxNH_&dFHMT7*m$MB=ZF_K#MNP<8C|CynFnWn8I3_|3t zYl$MR=4tLF6`7M+1GT?B1~GekT?A|j?g&`dTT}w?uLFSOIEL5hgI&bMU+H#^01OZb zlD9>2lWLukAW+#Hu$Z}Mg7#%Y&&y$mocHsvIV^D=X7W==AZkFl@|+QCfV{!`R4q<~ z7=StB*OyWaa3-Gyd|{TH;+Z;-edTWiUNKEf2IIB0*S*g69-kC=A-AJ##;+;Bv6__S zJrWgwHF7Idkd?S7uN$U&0u1Rj(gP$tj1*8ymQ2DE??$80)Bf2_2)Xpp6U{>gM_ zpqvu7$l_(?4KP=rc%l)okDf43M94WDgNkpQGcX`2zdeHn|3L8oT*!)Axv<<is18yVmH4wuHyb2HiMQP~r zTSYtRk}W#}TrkHZ(&(U$;40VIepJkhZe2?XOD$c_c1jX;;b7{w6`LczgR zXdp2DKPwHB7(lXI?6WuRJj^clDh7%W>vJ9FN#$sf7&`aw`&lwo-8g?*=Sy5v#y=GjRijvVCYz>WTJd{C?2!Yj zj%`hEMRhZt-5+@*s-0da7F9={m#wjazUIvG|Fx}2n|t|`<)BWfZAdlg%{yk5a!wLt zc!pA-)7^jhl*q5>(S+|Ug1QSFOXcB#L1|f~1VCcgrPlGFg05fFjyIEtcx{BV;FZ!> zT?6y-;(2k|S;~f5ph|tJ@Jyl8rt3M8><^@ektYf^W})Uu7tGrx{MY|b`(LILh66@R z8U1oftKV9-`+nPpDojECfd|I^>!Fx(v&)rQuPzifWOXW^Uf`&g|A0gL_p5BWgm!>C z74x#Nq-~A4xzl0^vNe2gt_J=^u%TSDaNP`3Xt-j)_c2`r<9@vjeKcri&$VXQcWUv#3<0Ij%f?1iVq)6-YK%nU z`d3(Nwf*t)J@QBRbuY@l3)d7os_D6$p^}_58nF80xdz;{Ebc9cW>uxT?p2VsQ7h#U zs{GhC-LyZw5bnvNbJP1LPFJrwK$3^IcoCPo`aJa!i?ZP#_`#WWFNvi5b@a}gK-NGf z&2VK_mEQHazZw29lr8+<#k!`@6hi{>I3}hyj=oM_f+5A8<0(A?79kxq4;yp zy}9RYE}A_c3wVeYll}Gk-`K#*o-pyzolA$kcIl4-eSC~xxQw?5r+Y}eM`fr6$x3(i z{l-?n{C&JBXmWRT+U$M|p^UyTKJ{n=~Wq}tpk>{Pd`bs%%Gi9Ycw~E^ccaqxb zJQ-pl_|Aitu0f~aQ!ZtmOMsGNnKLaVAJWo< z9KLSfG&+vT#Flwtm5RNnaOT4F=Fh<4l2$r4P&GYd_fC^{u=nl&CzIGqclFZb&|iN=caXX%drl z`7^ppHkNc|;_U$L@mnzjl=N^NfN(V37|q!TaLIR>C+CkwjS@zo)uVw9Zu|Lm4gLW> zyQ}l1PDwB2fw06xf1N!+c_pQ!)Hpz^{X@$pEJ7qlZ4IO?nUolyYE1QWyg0X%FtYETn&)z>V%DawTnc05wlUEXi-^VQ?H+lllylZk z0L!^1XO1vh;Q}s=DJMsYz463$CnQv%sFr{dtKYsxw|Wi*PTl=dQCY;hdhEnP#_qWCWz+t}17(@Z zcyR!%H_(&>M*17!bE~Duiu^5ITo&EH0HHmZBTIMx&b^F=G$_Uu+Y2Gm<90(gln7|W*3gLfJ$D@si}qwgvfU4>e? zvds|I8@DY-a%it+*~a!=z+fZ`SQ=5b=+Z~U8Dcu3(ntS_V*K|Y%?L@ z(33LQvJiIW<3&%`*5mQFlpi$<=>Tuj_`i;CO=j+`?|h!=OCc==N?Ayb_QxBU;n1wI z;B{bzdW-B=AmCy%D8vgq`$rq{#52(z`OWhBOsSMhm*rD{4 zF<3r0s`U;*sm9McEikq_)yPZZo^kJJ=;pd_ce6s^xa)<-4^8~qLOAQ=u8z$c#)qZ{ zl*3*cIvi{u4xEKQS<1cp5=rtWpZz1(6A!ofANs2AbW(~~1Fk|bgJ`BPioNfz3^#3a zN$vKfw2R9c%V+xu+oi6|Z$59dIYk11o~s&%u7&Q5aT5#&UBZnV6B}|~p37X~o0`^a zf!exZ&gdhzNo8)9V#Bq{x@0mx|e~im^7aoMpr4eSFrk60!$P{`}E%3uM>F(jTc=i2{?0x4Z4Jo6hx?$n?{H~a_ zwTeZ*(5)eb%PS0sYS7;D>MFO@w&X+-_-=H!+CS%PxcdJOd(~pOArLF*uxSjKzf<`V zYuoqki|8P#r_ujVQ#(MJ>(d*)D5`(UqA!kLv#+rhHeG9wT5Cwp^pMXMyeo$%ok~tAvBe!#*bNq!w0BP7cUZb%RV46kmQD^}K>sQdK?5 zl#+ucED-ryv!%$FtfPC#Wf6UW{17VF5H;)UYxd_;5ST5D&3z^Mwi7&#Ax9cT=p|#r= zsI9`a_>*YTfj_T(>p&#nlQ2mL;PaYf=M)$i_){(Ch~A0ZG<`lvU~+afDG~8T>4V|- zbmY&E*kiJC$y~j=;%Y3F<5fWX1QW>0=(O-*3!XuNAkhc_SNor}6)f?SVF)M=^a8^Y z0N;36UL{qKhiH~GDr#0iERon^w9X3xaZM&^-0?q4iNIwzAdCowWI^Ob@1nMJ>W?Re zUyBj|T+9ySexH87I z)%?s2!v*Ri#h+lnVy_j%BuL@~{&O&s2(GV)z8P7UMsdQpb@ge35J_BZDMLIVTs$lc ziIe>IrJwf=BTs7ni;`wv3YMHXt%AFd2=z8Zc0l|HPp}>?#RLE0?hG$sJ=t=n8;<7? zAL;2u)ZNd$4?rPku^1SXYM%=UBb@^Yx;PjXCjV(o;8Ccsz?=X;{UW*Pn*`CYBMmso!MSHdp}qjYi)(lt1dEG3fco_GiR@1Z7Js;oiwJ~Ed7^yyfju4k?2#Zn~Cv6hDgXTI>0u3anYF6>{d zNUI4L&41*!pQpu}Y3kzkf2yc+4{X#HU+PnqY*Kh!8mG_fBrepd*NUM!wcuQ$p7QQG`m36irtP5ML=^J&ATadPFqA{fbVBV#153 zwFwe{`$yv*XCx&O!<7F`K;OBu_#(O7UwP<__yA$o;4Fcn{?)1&7~_3Ci|W*k1#})v~jX^L^arBKUPTk9Brz4-L;n4b+^t zpLU_}s5$)3*@4|USMWWH7B~6#70fqN2h-EH@wr1s)1)FV_MHHp4*s#M`+{OKsGZ1E zejcit5&OZa@`RBy@cxGZ&08(jhP|@AHo@p_V-~Z9pFlL9%JU9q3%A-!Z^)K)q0q&cRvDo9ncOIT<)OG?`e(s5M`>2Q z_TQzDOmEx4q>6$0qEDjm3{)HhNRzry#NRHXE0NRqEy@((yBBAxZxq-un`Tno2L%8csaP>-d#@HI2(z#(dtu zNIMw$*k^~E( zx)sJPFPfy*%2P^NHECWpDOGh*(+*wb;__V|qbjZLelBI9I)^&2)<(J`Y(7s<;S7yB zf8PN0GDmWi;uyA-@w@rpXKMU2Vc1{|hu}ncu5m-cx>J(g_2R>{gRgf}=Cp*U?hi5E z{-EuJmI|i_`IN<>p}AT?;U&)S7j~qH$nNAlxx$ytW=8vIO`D-7CtE81u{@iY-KBE% zKGaas(n9pVRQ;dK0dXQw;9JaEKi^oW`nt6)!mt+=9krFiun-@a34m!Wl@pV)MaB0& zKIf$0vsC+Z%ai=?ar|&(&hf}b;hj?Ui$TBZeIxIzA+;r)dQZUiehxaPR7$~R;@z6*$o zDgw#&pEs3h+<#lf_4Q)7-!N9EM_*G?kpxD3Z?=B)4=dGMPTuk;6rox~=@b*Muu3Ct z2A5q2>sGS8!O)xL0GPd`wOj)E79StSYPh`AW{fCdxwzX+6a7@eDo=5-oeoeFa)NQ$ z>5KByfWPSBmX@KInVy~O%zPDM)lPe)F<(~7&U4P^U$=R5#-<$3!P=VbL({)EGmVda z(wa_wVfcx`VJh>o&~g30itaFJ7C(gV)>4YFO3w&um<8ji%FT{^yS=~fdP29}Wrl99 zE~1N$ALUQD~jZtgKM=C04gSH8+4|V%vb|8*tr{WXoG-8UHhtEbe%tpT{clj9D|ylwhS>a7KZ*11M|Zyfe2A?0O%k)w zEt>q9M$`s`Wfy4|6`nvAMHS^GGpW@VVHnB$GY;WLM6ZLyjZ~cC0bgYTwsIi#k&s)H zt<79rg<>)wisouIRr*URQ^|7RC0j!mvX6?E!UfW=bobfgM%7Yoa<8L8p-%`EQF`G8 z;dcNqkp$W@Z|39l5O$i~Hi;dwpTo^Y)TyQs1YlQZocy>HjlBbaTjV|GnMrl*az~16t+|U#5E9$okwtNYgOy zZXNd4CC>phz`-leAeOsOn@Ol|a77~SR@}u;-`s!am)>eho5_4UX46F7o)2W7vN=2` zpok1jNj7YyrIn{NvVGd`$Cs6r@kKV%v%B9Lz00o1BA_wV9q&Mbi_Kld8rG3Tfpp)v;Qb~n+Vu7p0Gx<$hRqFD+lJ#9H0Gi|vF?J`uLHX-Bhp+tT)%4{9}%cRr6bHBu-lw0*2EQoSnIJ%g9A%>|zs^5Tq04Tn4UDSNyf+Y*r|jh9@wRUMMmGA+gFY(x&0dWS%8v#?%R7r? zqKDG6?hcxTBI(!E-VS}3F)y<}9(p1k9Of6o3O!^=PK9zz_s$~_;zxO4_bvI3pUH}n z{hp+l4^_Pe0-exQ961UCwkHd8Oxs`A;td{5opI=|zcPT({lPRhyx#X6Hd{Y}j)`(W zbDt~ks=HeN5Usie6DcgxdTf)y92<=x7HXThowd{jh!$OUfAw5LlcSIKf*5bk^Ohii{ zm#CrxIA(EF8}*_*iXX-ojZl>$Dn%l=BnMHXHJ$#541|o{e8zHYHRrPc{2n4%-A21I5w^Qux za{+!l0DAVdGF01wRylC2T`UYFqHVd&tE-9n(f+^V_UL`Ye;YQ1bPGVZegYSl&#pjV zAFSoX?i<2jpy9>;Tpt-(%Gc{8uOlpf(R5qfyao7W?^#-CRX;aBqIt{!<`^EO`Bk&C zRTBX(yaq`6Bmh^DuzU-FxNf8`z%)HW*BLNFv} zf%hl&f>N(?3Z%gzX2vH(MeqHqn}A`s4r3!6rLR&J_nYCMW6%%Rf#yDb5co|9EaA+} zfha&$f+oKxNK+Fn_lg_2O~Mzv(fn>>L67C(AV%*)U^{VlYc+qBREs8*vNcas2E;&M zZ=)PiU&swCKQ#2ZstM85)P-=V7ElBVfkVUbZ?vD}#nXQ29??Q&0q%zLc#3?Y7e_M~ zx6`S>iIj;WQ8I=vboPFAGs5KL85+^+V0#J$F|nX%zv$x+6MZ5dUFR(ck10)H`dp z8z;{CaJ(*rxs#3+=H23LNjvLjp7694{Rb$ox{8Owi7snQ%n0^axXfEW4j(A`n(i!b zA_9dHNJ}@8zW$`iWlf+n*Yy+qa#)Gv)zk0mZaw=oaqN_T2T1(cL$_c;p4B(?dzFe0 zP9WeXo(TZM!^`jgQNNNl$8!{#b)=YNY=}4^7WL8P?FXaFlyq7_s`2r6$?jwiG$Gww zcQ{w~gJ99_mtQ4MJorX^3>0gBfwEXqX{m3tq=;y4h(odqz0x}+_-fe28m*jj+WpS6 zm}iB?#tJw5u9jVTuFP|>Cqv^fSNG}ygnvLIb~GX`P}$* zNEk>0B)j~g=6z|PPrBK~KX@&G!2WX-D^YYw(!eF8ZqAbdLh|SKftlW7s2Rr`}>(SSCoV(mI? zJkR>wKdMfM4ft27;n@>_kng1Ay$iDk?3jF7_(*w2!bxZh=QKr$P8oaidqGjeGk8K;JZq_|Y@oCanx4|9!-NR}a z_X{~J-Hu8@y+%%?+5gw$cwxuKrmZnDi-ATPiE0gbDA9v$8Sj|W=NtD|dNcx=PQl*Z zp&zER)`t+w)8V@Q-TS@^(*aAU-|i8~D34Q`V?L6FcjyY7X4c@~=wnN}I-!|^Asy4)AYQ#>;_WaZMBPynA&3$uvk?t#`)Bp0ncVGnmk5TA>>D~(u z>3J4e(szxD`rHEn-GubxicKs#DBIv3l|_kZ6^n z`C_E{2vl8Fh~Q{#WSoaNk(G=K_T~(o_f+4W*w_zAk{M5IIIU%=X#UDy86p?vusnp< zA7&PQ-k)8}6?G^mvKCcdXC9Zy2w9utYuXu)$$xNuc+pvuU*hMKdmedPjN3STRA2=p zu%v(Fx6-Z-DL)r$!`fm&Zb0{!dkypNjnnOt0bBLw_*Y54=j#~^)im1L2{Zc6jrg?t zmV)C;HX5|G7s@7netc~%wr+E~rCoxWZlm$d57dL$>kGduyt@GwKWK4lLH`MJX~(X~ zuZTugl5yMIXAN3c(u>izlRu}XL((z#FSUtGaXEH(Ve$*V!vxv|truLmAQ^>TbFqeI zWGwBZ3-*TD1+7f4Jtzy^>zK(5@uDVcYXj~}y1j{FTm%Aj!T2ct4{`c(jjP`R$F`^2 znwFWKL6dI686Pv+361{S)1C+9rnSEv{}M0fZ|p6sZ!R6sHy&B4F+K7E;B8(t!+FVZ z{d=Lfn-4xq;# zkL`7vYV5DaupG$_39%5EhzJ`Y3V?)XQ3g@oCOxIyV}T(7^}`;wbOwE{qdG6bNs4D- zmVQb`cxwzTnwZ>Tl{ZqE!ZVh-NX9gP zCKWXehk**Bqj0+ZQPI&K3JZ@4<_6{_hk?!9Vjxj?@CCT|z`Z72xe+LL&fP^5Z~&L= zEb(euT8Ou!4L#n5M**Ui{r_rlJzYx)B1!-Vg^ARa{$n72M@`LGvM$j3L1Ox8?rG-w z1yB^y6VJ$g$rHfx>RDE$(D3iGE78tC5jEn<*veS1ydDkLn049n5px% zQJ7Xz_u9fdL1pTkEq6fjM}Jr_KO&%(5`}DJxwt6i#BgNTtVJA;+=Wz;d@ zv{ZSyGy*H8qJ?xG1cotem*O>c*4Kt7ch=|D$~4rPW)&r}POAz{?`JEUk9~XY=jR>j z=l2l(`kvdvd4ZGEZrfiyQB{2Wy&Ewuhgs$$Gbdh-FQ?fx)i>ZB#aiWP6;ktJCguK4tLbjuuqvT~pA$Qpj%GM}m5qPX4j{GoN7OYTi9Y#nrL> zEwS{EqK_chMSs5!0^-Jg|N7sFAJUiIRHPiqUlL{|C;l%BaFeO&as6s@)W~A7(tD6;t}38vB<9~n5wgY3D%Du*>$=8|7be*c&7XJkB?SOcVUt!hnXqs zPGpL5J|9D)g9#lNBXf#5TXIJw$3;V=j1bD18I^<>F(!wR^I>c`&e`wt{p0ty#~zQ( zK6}4k*LA&K&x?{eXgcckqiJlzZGYTZyRl|xX1|rYuQj@1Ua;q*o<{%nP=0o1u+s6Qdi&GB3luw@jtS2m;_`dBg8li_6t^8b=~S zlFo;7f&O&=-ftQE(`kbnkaIw9stDt$_|2KtkY(|YzTwk`YL}C4`2?ZR6MO}Q!UJ&z zqXC6IQ+F~-DIZ#u_8#kez=FUDliaOm=E?hH9a?*8|fyauC^J>%62B^ zFBGJ2xOJhJ(kd5QczN8Vnw*eQsB3qSa?=I|c29@jxzu;lS(BEYdWk$TvM5j(o8E^> zDM+tmMuBq9fz2Rq;d;+oe-l>fk{A3+iuv@**nVCYz~DCY$`M^dmK4YgdV){pF(~@J z8K3MEz7w$pYPV3f@&lNE&_;>{&r>mWy%PKvZ+xgZ99v>td=)TKL!h8RLR+%H=kuN` zFbD(;Gm0jHz&A)--Gic;; zegXZzv8k4Th(@~E-V@eMEd2HsRVGh}fwj7DA!FUlK|^qEtf4UQob%a$#x3Cdv9Nps z_(L&M3_*V+8RLqC-?2E}(}A`E&II_kx9R+k5`1S_52!$XigjF==wfa!%;AHAprQw1 zSL{8HfeppMuyci{poQm%CJ+cT`P?a3EG$I=TzplR5As1l51JTcr~*h&+gF(y$zLHt z#9X2*T$qpSCju9zzlnyx__d>A6M<2MuyCw`>2=q?NvGf-l_|u#!uxQmBO|hMGnTM? zm%^4{B<1O0QT^BUFO;GD&@A+sZw`|WNBD{9g+v6b5UvY;0_KyA1)b3Uq6IT8L@4}u zPkbFE3gw3ZKUrx#NW<}H-9C^p*bFMWBoAo(uxAKU{a!;uBQQt;G#d@k<1<7=fewls zz3~#J3w<2>+_>h0N)!kJi5Arqx$)Y*v*4!CAycTV@YlN_n;V4Zx?m#Ft{if9iQ0jV zP7#HoJd5?ffUOr4WmE1GQ<&&6h|yILzHuTJl73hMdDi;^T<;8ua2Qz#*GIz=($#>c z8NtUOB;#=J2*nG*Zth7cUKAy-K*38h0#~7l}z0{@Hx> z{Jdhx=m@{vr4tnp;RHj`*hS@=1lx+~T-%PKm;!zMgTjzb|DTS8eIM~{J7xgo-~s&) z0Uq=WSz);2DBQ27q&@Dk(ha-+dO^Qc*JM{QUDQX8r^O-sD(9GY%Z6JQKBphW7S|@i zZTiGS^$qJTlzJ6UGPiQ9>9r-5UDNN<8J9gBQz=yq<-JqdQ(`{eP(gFKeAg3(?^Q5X zEEDSsepViXWSW*`OR#`9r58QKe}(;MA?8+0-#b}CSJs^dTBz_P+$BWT5gqx@b{`%a zcDf&XyJ%GcTiN+k+Kn{KJ*bzcf8u3O)etMUq7&tD;6NcPsV60;aYV-Gl?%WBXtry3 zZ8l&0)1xe^w;vo?=vk1e(lK8aIFNeEx-+n#e0xH~^9n2Oeow29jzse3$FJM{Q1XS8 zObF255_(@~=rc6cF_^CO70pB+sh3LgKzdaTp_yeRviiERdiXj`{N={P! z?=1?l(1Pk2-YN32m--njcGDxcZ*%~Rezot~XqW#$zx}oU)LCyHR%aOeV^J%;&fe3u zKZ|>S)S@l`^O$R1uk?<9&4m#oP^hK|F#(*Ho^s*U)1dX$vfdgR^#KS*B&ARfn0i!@ zZlnfC#AuUc-}R}u9M=OAhCZvF4GwR-qgAUwi8qM!tqb2=*E{$PHj$()LQV@f*C4fB z8aYLqb}9s9ePpJE|5AE#0J4}8WY`}d-5o&g3|354F+({p=e@KV)%W+fo6|y(J7!i} zTZ>Y$=zqb*o9cqy_X}JljrkvBWBvhs6|Xz$m)_rCA$;*GzFJG`%4XZy?9$3ZPaf}| zMEX??v}(l024JkMs`K-y?JJD@w0wBokYMTP$nO09n$Y`H5oHh-rkC)xaJr<3@=)yo zM}>%U0u+T#=;r*+>Lf6dVaTCCo=EuMa0l+=bN#dj7S~%IplP*{HkGVE>QMX@%3n+dmlqlv zxa$)dsq?6yeU46lqibbl6_}xSL;Q}XS7rJfefPkDyc(8_S=j0xqq1UXyQyhR;oJ%u z^pTD6{FlCcLCG_iTO>1;X%#rs-j33zz52|hUNHLmNk_!=%364J$&~jFy>WMZAO)z~ z9MkyXnm|60nH-J~GzksIVJCiP{45hqXl=u+RQ6`}s0+eB(2Z2(Uzl)Q62UeZCd%?` zpz-q~M~&fPjJEVFsI*J?3n3^`_&;!pgTb~|RC*rU&#)$@@L2fSw^Un%CgkDerZzlE zu<22z^kRZ-fnq`Qc3DZk8c%6-xS_t`P5+T77zp~<)DSp`Z@3Ca{T1emEnN`(GPMa< zM|DDc_*hzSL+}?oN;A}NX{5Yp1yDU2((p()aE|&Yw zsx{qh3#2-B8jlC5r()!yCdZVoy8u0M?hOjN3@7$xlU z_M>ZHbXh?0O8xMtRxdif1*d3q%~Em75;mh6XP|SmauZ{I8TG2N7l+BiiM$$h)dlRj zeCr00A!QmmT60?wimvHyAZm)^Xu$Sv4(UG9>!~bxYPb)rXB?!?ivb?zx2Ab8IiFC% z{y@8$&emK$kkAaVzjggun`s5c0;v}jy%Px!bG!+%&b|Xo!Gs$2y0>K_*LGi&Gknha z`1AhqB3EKg&g2Vs_=o!i?0wRy4_mvMUojNVQ1!k%1dJR8;)R5^NB6#3@2y2nWwW7YakMbix@7NkA)_jaXJ(%N3q@K9}d(KtkUW}rBe*g?q z1mA)XscHn_LVnn=e_D#XvTpiYE;WZsKbl+kQw|1C4QNAV*oPr0qGK=sOyyb*ljDC| zc*df=4g}{v@$Bx(p)XJJdU(6Pgg|-09>r56qe@Z_FT4{8x1?J-6oE`*O@r8Vdk^~~ z_Z?(*k2i98d*28Rj~T}w3GjrxooQJ!55PtNYO80djz0@hFU`bd%JTDYk)n?aFHlIX zSFT(k_it@&otnI}b1PzzySp7Z-?+81znLB87oh!UbCK?q#z61v>^yYrhd8HAHDmol z0w0sUZ!sQPAHKrM%q6Y-dN2&)_g0wNnx6LFZIYP_S_cf^gWEF>pK`9f&ciuMTuhrz zwMlDQ((PMXeWY_uNa&xRg{zpN;}e|R^DXS5CT{RPP&scLMe0rVH7)fuRa_jvI`IAD zG##(!_NeW=Jn9Y8FSEb0cN^!_zVqs&byruH2M+i(q@Pt|KV90KtICLvoFQljS7xL0 zlPkLe7AGO+s@$lS=CHK%`5A2<-H6}HEOk3ahb2h$U8v)zTg$xha?X6y zY0A6QqaL>UHPk(RcWvH8I$lOgtEE{GA#N&>{N-uz?wpYJ?ppT#&aUlZvSd-oF?rp$ zhw7Vu&GE9F!v8Lr{LX^8))+v97I={}hjnTkQZttmR}7j{&RT2NUu`_5*GcCJGqMx|U3~3zQ zpG~orPMvFVv)2CoCbh?jBgEJ}mV1o4SW#8PU`MT$=ia$gs}?3spDPBC^&Qr}X6OH$J77 zIy>pE)rB+;;r*Etk3#PNqh2Ae|K>J1lbchu>nssF#$nWppUv%Dg zc4o1Tk3-MFJwO;wgpr+{hvyJ|W3tWFGeW(i^3pxf^7v*Sp>gG9IfDT-hd4{_C_&*5 ztyiT=I<0Lvy~&gciNh${z6sSdOgXt=I``b_^p$~MGoQInFGNO!9_2msQmCa|i&S)W27exw+GFDnU8 z+sZUA*k5zr`ggZx`+el!llz~&BPAz)@ffNyGr>-tIKjIb@dlTPg+NInZuOKbkXsR` z-f2;=|L3sIW@Y2HgTZKRsF(EE(L)kY&?IyZ3cY>;FzJDk=-3tS-S)`UxfBbi#MXto z@75K_A<;+jf`iwlZ`z6_0d3jj0nGgFZWH5d+PVAKwu)L4Lr*7++~@ObtmIy^&R*%b z)Z;(g{h!Xq`y#nIo8`nLA%bER7DZ5K^VfL{g?8) zV~eLWJXDi}|AS;ji-Vgb{ho*a?kilsQ@&To3vUtc@*hnb%@o+${^|}u*%Th%2mg}8 zVGX&mM0CLo^Y_Ix37o13LwWek^!W6&=cBWs2wi?G7y};WOk4Tz}i$0WVLj z`^avQ(T-S|t`pUfbOVS9n;J}q+>ry%Pd^fZQ962UEZC03B&=8x0{uq|Dc?gR&00bD zI~3(ijeoM>QEw4)^4$u0#1s(v-RIXl2ne0*G>qXUn;wBb6n~x@`$+9^^KXCyXMB^O z^pt0nZv=#05eFp{^h9-agA$_R5{w<}xmGK7?D{|`{*a2CDe5N+b%GqNa>MhPoeN&g z7F)$60GtUHwDmKyGKQEV2I>yc$BtmsnpCf`2O$txl7KE=x|YU_hndKPXz@c^Zm_A`lf*h5fT=?i*QH0q{SdagpGuwV82ZL*QF7rwr2!T z36R7@(>z`NTt0+sz_VPH%`8|Hh{P`oib{e5q^Wm2X`&NZh&$u{ezJv?zp0x<>1WhVHnOzpZ(qp#sjh zJPrXoV@M*gzIWuRfUfF+52DDPSIAf{-*Ztuxq6bjR3iDxT(dl})s#;}#TE_0i{_Qo&ZC`IV{Bk?&gOI4lg3A`%4?0qL3gpmtF;XNlmR#Vj|h z)YId{`PXTB<~|>$f--T2)5=WCs##OMsDVEXRfpb^#)+-WP~XD>f0m}~ymTPy#N1vz(t&*Nyr9N4qrq)HMkU zH!07ITWR0uCkiu!^85lYX${QrYd-SFZF6+5 zC@bS#-Btf5C`yFZB#D20dHWLa)qVEGrmQUQG{zhjhZp~_f~&`14rAu)e~a8>G%&Ar znVh#s2GA+q3Dwhm@&t$DRhh}@S41b9+T61OYV4!PZVY9WqNpVOk&<1KdS^WDb>7@V zhoYt5r{FSi6YQa(Lu;0XV#^gJL%v}_zUw>98MssDd;>Hw5*ij&a$z656eoW5A2Nv1 z4%!J4n+6DdH43-QwX$yBlKE)&{U|oUm%6g%^Mu~Y#AI>XS@&3WPnPd%(Cq!*Y}=T3 zjlfNPKDc=fIXVIDU=-T5yt_>D_)Omqm8{gYUIz*D3Te@3-}2%N7K_fBy=W3vc4hl3 zL3;~0?*|5Ng81Ffw6&5He!c$bE1nu46{Ai#Kz9P2aBh4iBzKA&z$h{4Dsc{6+VFo#!=*Z-_K@8@_?5gH|N(C=I)-1Tq`}#?g55S9SiF| z!(M7DW#WIkQ(C40F&io;a4$2Dp=q*OzKC_|uRQ49!YGq!9~j`wZ{-=`^XN7}FemoW zw+^P5r;sa$0DMBH`ay10G+wBsfLU2R)P$>MC9ZGHPjfh*RwL9q6NiJ+`m7^w-^}J zi*ayBGxTvv8#(Z$z9Ne&+`)q%CuXFLi|jZpk>YB8bJa4QCn^pYi4lwoVXZ_*kxreDAo7X2TBf z?Cp&Zv?F|ct46)*H`I@6-FI~0YQaMdJ;Uw$XOnuCf_@%-zt+LR`bSjpFiM?Wo$EvB zpQ^`%L%7}}PK~sN6E@GO62#A`IPrSXQYZ5O6bLR?&I8_)N@-Dd@Lqy0{6i7S1hCXy6UB$Y_O!1xFkr{$LMLOB*%=8;7vdW$P>DyLA`3vS>a4 zAY*YXXb`V9p$wSJokxemcGs%+*BduW`!KBH%F9ZgT(kGlz8{Do321XRtK;cC5SVCV zydFDCGcom`AysU1Ut!==c&DHB=l=_gs0t`Itz@RUUMr}1BKh=d9KdBzJM|Kvanu11 z0G}v9gr_pDssv2)cE*d`oV7y%2`>WHGo8``HA^8t0^QWNBZI2F+_0_H!`YErZ6?+~ z?kPVgrkGeV+$YPY<`@~{jpI5>x zw36iep>c_=ll!?^@K4ayO6g`TN}OtWL}_KyQpLJNguBM00ipFRdYs<7_)cJp!RXO<81J_{Nc^T)=8 zbHqx-=T4RGkar+C!G`_XC0wh9QsTtF$?TL-m{?z5 z>kIqxhciT_uFo$z8f!?V9a{>LtV@XLKq%#TRcMxY_AbxvER5|vbf_7!|Gf9aH*9N3 zu9uIeVk3ozEv^3*+M6wUFdXJ%EHOGVkZk5El$qWU?DR8xd$MUP#ah`5Dj+wUv@s{M z!`NrPP@0*w^?foBxIdRKGf*+WRl+#jcTzee_;e^wzsPmjc%mxooYy^S3Q~7ZsBozPU5g=*~{+)*gx5HW8B5U`dq<5v-(e77p=h zN+Z&fjLkj2P{ztUo#k@*Sb+2D>iv~J<8T$uG(!>^g;rCGDR1R!hxxp%>_9)ghP`;9 zSf{ZeD~Y-S+!@@JqN1jIj;>+h{woXY(v={|xz-);y%FvX=T;;9H5ue?j4`xEqFBIC z{vpuf7#dU0IL#-=@ls=W@BK*7*_)j!10pTv0?I&6o5h@1`nt*KZfd6-{CMY1=Cz5M z^K91A@6dh?<#No6j925vMU|pFCNu7~TnrGLd)}*}#15;Y)oyLfO{|oM=cO{`-%M|= z^#Q}){+8f5nlnq16Q9q(Wu+a=&D{;8lIJH5p9CB{_`Jq70K~Pw!tmao(pj633Ex{% zjZctqjM&)ty0)nI2ZsZh;-A8&ng;?MLy@Wqaz=IAs_`pjS<_Q9&U^EXKuE>EN&>)s zl8_?Mdsq;Fl#2rixEfZCIQ*lV@7f%i9kIGf&DNHBnqwl^$MgH*uID}OfsxpGT zWKSr8z@ofcrK4GkgzA{4C;yA8vT#{^7uZ*o*fvEOd>j4yJERKOIp3({Uo}U z$2_iprl8L=?e1D~KU8aAE8vb%m(o3{DU~6ywOj=n#_9#kDIEj-*#zq@r%vDkEcrX~` zZH5s7g2MiUyf-ozHUmJ>K%G9Wg=8tBTCRT7$^~pHe7`X=F<0Xcz@mz)8TBsw!hB=W ze0(qg8`I}ekZ%idb3=<`s@8qpRz+kp{sPkJe4MgK1+@uEOhO*3G>)!CGFWncALJ>n zUX?Y`Bh(~;h0BZ{YPZMINT}3Ll~N0Kvm%Nw{W>}?u2uA<`D5c)ms}8e{X1Ic|GfYb z5D4}V3=UT3O1vzvdtT8&bipFU^}f}AWFPtUl0u3FW+_DS+K8>P++!e6-$4Sg+C!bp z^GE^!e-eD1C6{arfl3iirkVb{>&eE0kp(r@3|J1Ys;bq}EU1(u0tJDE6AjA%HfvF3 zav{ao1rQs!MAc&xgQp;R5`~q*ss>!Lxqy>ol!Qe=1`ZY+5Pn>1Hje}rNpwFWupfs& zS;*t8jE?}wS!{=B>^M^nh*Fo66riH7qM*4HG!k_Hd`d;WJ1$q^py5BKWFM=RnecyT zenG9}o7G}6f$|A?9RwLk0rMxS!8?Dq z);U4x2lZ6T?6^slq!9;0kw6t@x!*SJ8C^GhKw;{CEQXcUb!D*vG_`&FcR)lV%vD`hopKmCl1g_^{`NxT1 zf8bfs`Zkh-AaX7Mq)vX_RZ)s`7@}7c zWVwc|?@&@eaN8&e`EE;z3*Y|ObR{=e#a}u>`$rgb;3+@Ub4aKO{*Hj8id-g*qdyg& zH-MmzPUKbI^jpMftGh>g<>gQ?hJ1xf>*}{E`_9GvExV-XY5i6H=zqqB#zO0+`l@y^ ztfIU4+)_X~(qEXciS?pp0ygPC9+UlbvD0ytSNzXM-1$a=nM>XN>8E+D5@UFasL*6% z{;c&rdYY1B^CIZ<)ipd(m9#j$g#XvzR*gaU?k8sH8*hgSO3p!atRY)reb;wq-X~2U z&(KihDG&j!k=3c!+#a~6$89A>hjOyD>ua>nw@_X(qb}pC-6nnmqoZ0{F|3R(4)yr8Nex{J5M#RxEZ)C@;{h>TFjRTve&A`j-g+`Q>vH6}n$Kku=sX74v(y_}Yd= z|L_$*M95=K`KZ4+>D0U2UKHW@vuPJ=yST1y;iHn2Uz_cnpD{7^wOPJ3z;TB0+2!u< zXul7YHu((AH`#OcvLpzd4ryfB;k4d!)V~ zK)gOP+nXD|f|ZQP(XRiU@IcXtBY0NW^F>ic6Ht!QZ%b!pUz;%Xw;{wZ7Fju>88ho` zF$odew9)}V;KbESh^Wa(XultwR@ae#^=L-Uuw*LzHaK(o6&8QUmH+wh!@U1t5h8Y2 z))72jgkSi>C{r;tA`eDBt&2Q(iZ9s)xO2?nDPhZFhqJ?Xa!D#mD**IJ7Pw~?RV4-U z#Q^eT37*4redB;e-uHQ*MpwnFF@QJrqI`Fa?v>Em8+s-F37N;#*;!?jMr>LL03>ei zZvXyL+k30UE^KUez+=Y(kvslO+DY40=xp^3vmsCNmz0kE3n%o>*S41(0oPCA=hKaFY4B zVao?didb4jm2|f}35|X(jjjXI<(&Uj*cmv%V(%~o;c|MXd; z1pS4DdKPd%o4y(cfEt(O^aK#F$0~!WFM;++uERxsV+ZCXRLJ++F~Pu61G#6I=O8n7 zUC+qlL~`?s+8ex)?Ya_GbVk%Pynz=Zl-X90$u! zmhS(_2fVv$D--oDhCsVlrM&Wt0EqsU06Nb;f-7g?^T!xMGW&n1*%5mKEkd1L9aAa`5_f6SuEQ?90 z4VEeduD9=D=?9^g<1VQT4a%Y3oh0zl2=h)@4{;CV!Mh0!C5k9ni1^d7oriANwD}M&Lp^L};%wu3Q&;0kTMU(T8KqLrQ+-g}*P(L1oScVySnP)7F6rzRH)_OB z;Hkc9AWH9Hp$lpmOZ1FtC1=`82+G()a=vj{X&0%)UEom}OF`lOo)zei%yG^;*Y9;z zv9N*AkDeNI|AfSf5-m7Jh|oyW*aIqi?@}%%!A`L04~OhWP;lUyQ_yHGls1tq@$?>{ z>M&$#AY%LLla)nP;M3NzEG3W%wpgazQ;b}B<8i1K>J_jfNL~f*=XDK<%JaEO_hdtp zL_o=S-Yf?+{3aKaOq;1cPc93^SBe5ZY;!oWpoR9ZxVYF%_-=0FE%Sm(V{h`sUUMRt zGRvZyD<%%dMU%~bLO{UvonV=4?9Xd$jct8|0zmvKD7rWl)Dh;T2+Vr^ELiXV5ZYVF z-kK0nTF>xRmHSe@8~+`r?KnCNtRR}G*A00T99%WZyjmZ;vQ^Qs&Dwj|$Oa^eiqYRK z4hIk)evP~HL$`D`oBQ`ioVUC7e?)HGlF_M`^td7&Z!DR%{%7pT#Ms@*u=K`Ad!7NX zgJ|vw31`3I2~6v?gP&u3FaLS?WW46emmU-prCk>X46-(BBa zY3gH-g+(r{rmVa$`7Eh5(@$6_a62QjSOw%CMxCTms&bY&u^sK@UbUJnx4W%MNAA3; zP`ng(Vn_hYnVzbVo>}{f{bu)7_oUS^0aDb%M5}IR!1L|M62D|Mfh{j^syGi2wS#Lt zZa&mZE2@6JzVVRfbE;!wf%A8nbNi>VRf*82NfKF=_6h#lkirk?D^Q+nr}9_sW7?SBP-SE%W{1$llRrZMD{%ppr{0fzqT4Syo zt7Dr}_?0aVU=Z4D-dW#zc*?H6&EWzyy<*V*@(^&>4CD#Qgs;E(>#IHNcr;Vey}i_N zK^gD2c+0{QN|#j{y4?`8UgXvvbM+eCVkzgf19J7g*Y3jCz4z@aZ9aA*Q7x`lq!WOm zPHJOy`Ti|U1Mkq9r28M)eRH!0n{=75tm_T5hWXAqvQtCI+Bmy(TQggTvA>+Kx3s?@ zw9ozOsDJKYx_ut}LG_S!jk-?O^w7`~#9kywKZCw{I:CVZ7dd>i0}1UxM4n<{g9c_w~&xaCHQ^U=3Fx0vv5YgW~2^>F!XMJc$?#KmdE;!1g7mR|Rwi z?EQHX|sBB%e%yxMvK^6rgQfuPd4s$0k`a! zTI3%*p=F8_R9B}}AL9S2XUqp!o}~!-;X7Rl7>3rD4pY=0)vi&^ zNB}s`i{$xf7#Y9J8RZTV-c;=Jc5x2l*2>=Sbi+oTU}rL+h|t}V8oO^}hYI*Vdxh{tT5 z++S`y7z-m7W$#Qdw;NZu`zFFcLgrtAaw*uJ?mi7Q`)0~#E&%L!%0(m_zuqqUxV<>- zlWqo4{$gR@Z(J6X(?(N3p@C%8Gak?jdut-t=fDN=NxZC(rq#scT7sNn7K&5(RRA~+ zQcPCv>E{a;?RLeK>b-${82~MI18@yqV;y*gF;6HV)v_$~$ixoIf<(yc>qyiSSp#0j zF@B(oAelcVkxjrL)Y*e?QwKv2Cz?kk;ke4EB|$S?&~1;T&`Lq6r#kSC5z=>Td)6*4UJj#;~9GRR|% zu5SK!oIr>HCz?NVImeO|p@(pd&)fx>QtCr4w%b`RR!@|D)N;i_9m%;80_md0o@B7J zQWLc&-7H*EOGOmKBMGB*Qvh7cirMsN**cEa@&5_U^wEr#+C^VxFrPzd)UX zApp|_AV*qqwx^!*nfw1sSruasy4O?>0lj})mzrS18Vxt_U^}NRXH+yu6Srg3uM=e@#Z%s+5ypuO(vVFCY&hWeuMu!Q}yT5Y+^n6N?ZK zK_K|yFNyAW2_%I`g1s8YA3~Fh4}(x$v;4aHF!?d5vj5GPIge0@=0?%A79f2%!vC-Y zEkzl{*S!10L};X*MoyEr1(^!=r7=C1!c0J>M=Mj&)2=UD(GSIqT`NXV2WbW<*K~&^ z{dc|dKSDt&u6R%gyP9Bvs<9WUl{hM#i@3&9k%#cRbCoF_2+&uSJAj6I9gNgIdP1M8 z_pVo8c1^GiXcAP4@kx+HUW%gUut--0QRAX!?%K#f7lauqor*39h504~#em(HvXW$x zPn2ztE_vM`moqQH2a&H5MN~%&j+hc+5MNkt2_1KcDs)X1H2Me@L_!LHd=pd;fWOc~ zq7lO2C20Wx5Cvhwsf{6Z%T-FWoF?9@?9)c&n%kSdinemusc^ zooL_d&QwVKym&h^S~jGnDBqrm8;Wlkj|0c?`+qbzE`>H>DDyx!Fmd@8BZ``Uk2DduSfVFU)y~MSFa1-{c-R7laptUEHAD(z8kJ|A~mVLbn;Gf?JcXiecZOv zvMLwpa{0_dUE?F_In4Xr={@te^L%R@hN_xbSmHzse)rLq{sg{IZZS-QqZWV%>YKHp zB8}TutcOJYo$veAdB|DARAY4U1>zgqoZn>^@`GtK4NBRXvckcJ2ga)qr9Fqp zh3&@u7#+{QOe!L|6;S|~Limh9=E8q$!X=+#!th>>8M(7{zpe8tBY7zR(x;*-uh(XA zv#8qJ+dAAa4&b6mOH7vxFRTl7RgX5*h4}dHZP7CT>0DZZ#|Y`eSQ|@(hLtI$2-(MP zVdJ!Yj?Q+GcWKFS53Ph1O~C;BLFHax&}l!^ycw(*;MC8kUxlb0_&Yf^#lms4E+}=T zRc-!3P9DHsih~{b@+Y7IZLGA)K1^yQ zCAq?Mu_^;-?^c==7)SwIC8~z#>hT4@OzHsLqjtsySc-znGOHs~g(_>d)nCrIX%G$r zrd8c2Kupuy2QeEOhhYDWXguy%p!K6cuS2nQwPbpb7iri|u@ceT!T-;2oQx_@}0in@0)y&^YQ){(m=qq}=E*>Mx@ zE^Hb}<>)Jy)tkV68u;64F{qP=BE?Q7=JB7wQ$z;t(Cw!l)3oXU`^qOuE|93+9qO}Y~%rHQ$4yfA6!7G4shDu9B8OsAD?0a0LG8S&Q6&L6B~cKn}8ZV zY-xPTdFP)=xB>?+|?^9ZVn~$m4hod_L3$Aa{i%bRg_w_-qXI zpO2(5pNC2vGTV&zKssrnR9=ydfrbq8-e0sz$hr?N76t;Cdg%jYRc@mV8*N<;JDaz< zO1y>05;Ozh5m{Lx3?@*lmJGcjIHe(@v-x#KCUR%&FtGR_@lmxXBy*AXD8S|xa`ie{6aXR|o)u;2G4!4q<)JbTE1Yjmz8NORI)3^@|nWu+td9u4TMnA{m zIpzXfpfN7^iFe^yF8LLv!LY_~YVO897Fb~)DTR$n0|<1%aR7470Nv)EH7mcE>U#U2J=S&6XOd&)3yR1jj; zOf(_+z1@r?5JKi=0zg> zetIg}!t-3^5#>`5V3pC!)++x>K^C8h5Z$<;nD zgR1zpPaS`g4Xj37--|%4LzlW+M)itT9@W!E7X@2@o>A~?F*V?1pI#|-0>XQA=Ut1) zF`do7yM&kvX=UoZjoDURRtYihsn#tMyppFcWGNBD{Wp2kG_{z_{>Ife+%VpNMqr(B z+TRaMT;#^i)LKGg(4NKU?&QKGsp(hrixqlB_-m&|GTuq*y;Io6*j!(^@1+YoHR?ot zhNn48VIVjT685pka55Qnl?8arKe$80tK>h}Yub7lv zPAiIVUJBD`yxLhheXvvd_4IOxhcR_F^Z<8eE=@++_8qIrM-2%gt-B=fmUR`%{6 z8c(^T+eaa(yr^0x(tmd)t(3Lsr&Y2%Thu2xh$qA}-Sha|TQh_oTBEsm+3rmC*a4a{w{Y23;RnS5BlW!*#;A14fL zM{c~x=EhSWtT4*Yj+FkHTOEIR_59hjzlXKM29IgE*VHRG@}`s;hP|tSZ}a%d==Q?1 z;E?dlYAEGDkD|(9I)jn2Ce+#aCr~+c?dq2_XRXMkHKpY3{k?>UZKZvsNOl^Cb7t1KWFoc<*YqrYm0RXL4yvyk^uKaFrBMoK{J`y|{hjK44wc)meRl7c5&%3@y&m;8)?G2r^_kev zqL}W#?HNPc4{&KS87cI0`Kw#g5l$X{?7D|o$7T0L`XbAD^K_)iDF3QrjmAiiT)hz} z8T7HGq^s7*awRNtnziTt16ZWwyw7M{?+Rb<{zYk8GA*;fX($4h<$dyuP?n>>u(f}5 zUU03Z4hrx#r!=$+ZBJD6Hu*-ZuP#>udzq(8P!qp+XEWAh_HXT7G6nI4?K(92mO1T` zb$BN|aBn*_F<(GPAYkz95gPr%6j{lHJaWuRl@ArM^Ykw#slZTYFVQWmoIEaJ%%yWO zd&Yt~98VU9{G^DU>eB}SI9{>h07twc2$K82!Y+j3u9U#e4O(X%4A!(Q=up#d1mm4dpHN9ip2aQz&Qj|?5LDp zjJyOt-#FAj?@LPQkI$7y?mDFoM!}>7-ol7yz@VrEQQ4?ZNt#l@y0;vLTxcT~^w3ez zZ@*@8xCX@4PeW9D!^x6=DW-5B_wmB`HNyW1*p$DKV)N6<;<(|r4zp;m-Vs!ai?^@+ z;4jxxGdQa&Mjyu~^P?Wt0(w*likx96+1@ zBMZ_O8G#==@))5Dj0O1+{wh6S@mkU#29S=+JM=|bF6rZC39|ngRr)^yL}V@4y21Ws zai#lbmW;p{bdHmZ@dRE5(|wPqZ?+Nk;X!~gzb*fD2iw+GF}Mp})%Jy$o(K`fpKBD| z?T(OrcGv4A43_?cXsCiP`Xzmxm=vBS3&a&yJ#vo?@qcapBZEd;@526D%$%EtA+ zj|C0KDa*nQzir%%);0D74Idj7ad$Da;7p&<10jTsQznfcV;>gtslKP0#W6h$i~8I- zSbQ?9-pCa49|LUY3DT=PgU06B=>9M?%Iz`hc_>y1GoTL z&71jPlqJDU^=o9!2Ynw?;D278!T@#=pNJ*)x?A~MxRR+CPlqG_t5hXtymGg?@ky>D z{P|t0A{^&q(3Su90^nC0ta;PFWvH3&MfnF@+6cmEp>GbrIglw#JPi|$B|-$+tkH)m z9FBNi>{9&p{y*x!hThK`WDNNGJQP#|k*8-csg(5rx%-7l&rGrq>AJleKINMO91y># zZsOm#hHd^BgKzlnS=uFmMe0l ztXIrv@waN1D`So4D)Hl@Ji&LwD`q6M@WEY*n2W%ZYGKrHN?Kh74DIHAOyX{kZ_kw9x~B3y}c|up0DV7 zxk$I5e1Fc_iF)gdh=t+2*qiBtM-M{118u+l(Y~?vU{od_S-aIRH0rG;#rPCV%LWCd zePkQwP55RfKYd5{*jUE1+Z;U4MCYKmEDev3S zq6;?JblnlKSyn^(FiWv-6`u1$ep&Y$#4=R*AP2w33MUSm7FE8<`iOC_*2%*Eh+$oa zfUtRxXB<12C_plS{*#@IW~DTT?Fi zceTmVLIbYD<2I(7JwAT z;)^>ieEr1hf-i72YwN>*cbksYkX|rSGN{{U!Z%iTPAYLbt<@Z@V8`cK5#+oA|I|U| zOq!6IH%!1AI=aQ(8;`uIsfC>p3P2c){@E(j?4^m_T>kR_~BY;ZOV>a2L;X>jAa}$M2=}sEyW}9yg6E9|7*;#-UL!!U|gd zw$Scx0)@FaCZ0nfO%|~IUVNymBPTI5369mQMWdmQw4OXJ#qs?NkWmFdB(aBQa4r%wZ8$jpS6r zN=3+Vj#+XT6^ofe5fXEVP1qd5oTox^{yjh6>-t@nKe5AWd%hlr`~7xT^<*%3`&3~u zF^Jfgs00tZP%m4|UDaGj8)NBDOG!zAg>3Ne&bFH6<@!{XR?2TA=(`}loFL|A6h%!L zpX=K{$*;^eY0Mj~PcCQlYb!&rlw?49tX}B|H2OFF+NOGL-E)tAfbu11ll|0?&yU-@ zSp5KomvTMlOmE@kphS+O3F!0n&Atje2#ScgN(9xuaf!B3N9l68J>bxT zxFR)NY+VK{fMa+cpFObKlvzDKd*})2Wr(Cmgv6*qvRtg3ywm{khb<=DJn<^MySOX2Ts*EYT`9`PBz=2S)dq#DT!E zKPy0VP&XU&XL{mNt1^3II;yy4b-7;SE;MAz925z#B8o@QDixOOWRMfM!s*E!#Q=|6M373itIre=_@-=jYiRTeH0iYMkUdCO`+e}Avk%vaf@8?eeNb%}RO{;RlAoKJE4UCR79mI4mBwkJ&{!s(I6{J9^iJ#M@A5U2|%dZ_WI@NRAT&-Dpz>j1C zeMZ@7V&PHZ$aI(XWYFX73qHlinE zB??qaF)_<(fQHiIk5sUM@XdVjD+1*8U zE|}4<>bUNbfFtHvDL}L~?Ln@qo&y%!o7m9XstNQ`>PR}yx`}T9Mm9;hxnE z5*~RnAlV?+DSfRP%s{%=2aBs$My}_n>gg2x_NU3+50pMLP#m%2n$djZaAogp?|yK} z1qSR>8E+<5=OwWs_9^vloicDHZ)SWfuV$?&8Lih}U2YDUX#*L@{Yn6PbJqYQvkLgL zyi_aY!z}r~D@tb!CTdm3xJwHQ3t$e~uRe{#F9>4zG(EE3VZ~hEkR+p(!Pn&epa}kD zpOSs2xW4Jl!Q|5iEsY%hb}pPUITD+c82uRgdG_d#hX9Tw^ICGq^6Iku!?mYdtrni@I^C=J^Eqz)ajv^~-|!f4)V@-srw;3v zQQz$IN-K$C${@%WY)(5n&D}utXV=% z@1m4t;2QVxN?-TJNWuS*OY6)|t_3cS5q>iD-oRp~ej@J4Mk1>HStyIO64wln>`NMp zXA*5GCg=d#k=KldFsfCC;rcH@*8+VgI4~)({@KQPYiqpM@3*GleCz-tA7#bMb?@-o zVFIrM4>bEkf15wdx4M2!U8pcaTq!n#WW`*-pC{d0yrryK%UL!gw|-Dj#H;=<=v4mK zy3N|Q8g;T@P4okuK-a%bmapEJUY#$EH|>DX?!K{KpJ>aN1z(tH#au-VC_R2=y&X>) zZU-?>>&pY{fsw;}69$tSGbmDQIdFkuqF{_v>@HZpsr?4n{%g)SAj!@1*gF)<^6MW-y$lt3LD03(b14WsjP~nsjIR)|~ySL|pTAB9W z@m(}O?6!+rL0BJ3K>-a}2)b->d=aE(;D}y|cw#KZ!onM|4~u{(#F!N@j8VoV-UnW+ zoJo{+r?+@-&Xl0)>NzHUe-i-3^p?2UTu*VoA5`{gCoZEh9D~{FGrcl=moo0n)P^dv zQaSW}$`V)#2BA^njvf-x?PFsj)Y>f1HCb*K6Kysnc90#v<5FL0NmFGNkRa$i9&2$z zQ;cE%8suMoI#+J{^bX63DE4kPE=*&JEtwgAf@8UD=;fC?rm%CX8xl&b3+{_tk1I}B zW@W>2P@is(`z4m>jnUpg!*G?2LUdCj`u$fe~vEF@rI_M$GCrn5vGSHX^YEgt_D39%SO8KBw^2Gd4?=Vka2|>m zEmi4{V2Yn(&u%j($i}9=e8$5-AHWdO&mn%T%#-H;+k;29(|&E>R}!EM<69v>B;p=N z&+wZfieF+}K$N}3f6PZ3d#E91(vWkImS=a2O|a#TtxX(ro^106h`(Pz@S4ybaV`|* zF7#&d++Bqt+0gynQ@gTmZP+W7!heK?$Q*33fV(39Sj4oVps3Z6$Qy5mfChalVZsN#s)=^nHvLt*G81}AN- zkA^&|b%G5x6g78Tcg)X>$AR&-;-@`KWM-;~*(T#Z0&d>#WH8AuI-Y(TSuP)+CTrz4;IZ0?k!e9d9unT!BIu1*@S5(ZZn> zvbr9X9W_Sez>TF5NX0X?PG)FG7dlx|0(#AxAg5|k098!cp9Spfxq_j$?qZ5_z4!rg zXK74KJ2_9{qNV@7xHe1eh?_$1%}HE(QN!owp+Y(~s;DjBvgQ;k_Or40?t8`*4fR{*OI*%&V`=Ba>SfWX~ze`~}XPu6V zzTbGo!dTT@Vlxag6}kS1CV#&Sw!CAcSB7X1e=5IK;M1Y>aq_~h5M138U2YHY(n}ZE$n**S+2u&-E+<4Aj?t>~!vC@=#oR; zRU7l@(fRtz>ewylK)GT4?S4p-rB!+YKC;NE*zEP9o+?xHcV$>Vay+^v;nw{{Twf(O*Nj#2%2 zLHpty4!{?M{6Oo@59KSKRW6==w6x?t-FZDXh~ARMyxw6=8I-aK(ktEVb+#!{>>8N2 zIR1^C;7+Ax1g&%1s{H|}*2~N4QU4=F5FWkt5e7^Ub#^b6%7hMV{O(lCtyy9h(_>Jk zrC)n8oSh$zJtkK#{@#)iJhs-!IrS9;@DjaL&3X9C1syG7@nDSpIun0m&x)GCpAqX1 z%#SLT#Fu_9#h0BE#{ynZD|RYn>Z&ccmX)2&N$$p%t<-_UPsT?`Qf%tp%=qu^WROV8 zv^Oo~CE%hPCp0)_G5W3a*+05FoQ?EZ`j6w;tt3yRvo*w%A*ya^_GXhx4Ba3MZF9vl z*?Tj~Ojd@wa$FDC*R`A6Qbx5}>v(@up__JrJOs!YeDUT@xdA7KLEq?`5;E490d$F1 zgO^rEeesHLkevXfq#DKASv-NC%R(_`D@OiKH!YEk)(2lp^;cEsp4M}`3R?2j$@;dM ze-HL7(|6h|johqi0VxaK>^^n+gFg$NuW*K^jn*co?%)|4%Qf?j;+*J&UbKaBrP{v*>&{;HE`dKihKG3!Ak@-(2n7An@hJKlE1uNQ@@iz$&`=Ira*C3~Hu*Y+n zO-saiDmMkCB#u<$i_MEJ-$+c$WYb5yr`gsWXjtY)coU!WEi3fbS3XENbs{o%V#Lhg z7nDs+Ec!=5D~iYFz4U|b45M{^h(9ZOLfK1HR#m(`I_oX-kyH2E>RBhte{Il0EP_jTQnKZ(@0eGS)pLcRG!cdwtdbE`67ekLEt zs3b2u25()5l+oIHqx?tri-1%=<*Q$#dnTjrevQDJNWAQpE5`4i#U<7Nnr`ri?4Q#& zZSe)#7E!L_Wnft1JwRSs=FALiG}f$K1?!~YnvL1jAfzuRpdjEOvv@pH15ew?clolPkPC zEj@_h?4SqFP2LjBuK4l`8>VF2M}1xJG<<8*2>ZFZzZp+T@e<< z#T~x~saT+LsUAfuug~2-`SW2otz)0ut4}jlfxa`j|4qwPKOlt!h44l44WH*GwZ^PY zZuHFUUQ1dj8ju`*aG=33?HM>`8tZ}s=O&dhHoytQ&CMcdJxb7z9@ZVv;@m3}tfiN{ zuPOf&XE}ce+lBE;8k^y)b@#31DxD$wM#Nv7;-vPa0wkvXjBOjQ;NI|7*Q2`-Xdlvs zaAB%=u`xsC*4XWl`yu*WD6hPka;>?WLOpV}=03Z0eb&FBMZ*b$s?+I}bFHTj1m5uq z{t-#?4O#!g)tXVupank&?(nikga!1>MBn+_*eylQvywMp_1;q|STwpWs#*UNHLz+F zGFPu&y*xiTe^c{WPZ~UGQ&KWAnAE;9Te&hl`E=MPgdB|<2=bda6SBsg13U5w-PIu} zHH}l~!HE7W@kOcsecPG^LpfK2-nkg;D%|=fn7^*i8V^54- zu{apvUA2$s)i~UN99a4HxJdrd{l#|$%p>F&Z{DcnwLGiXz{v{5Je6(Fn>w}H8a;}b zF6kL8M{G;;2`k%-sjPLwzIjv!xe%ZD^Te)w=X^I;VNbM;DS5y^@)s+JXks&iu>)+bx_ECXg0=!c9dlX2^TmB@;^3|ZZKSI&^ z=zua;vnBw{?V z%OH6$z-`HsVWL$g>zacx-2@iY6-ys>lEJEO|6%$FQ(Qsm#*X~Jd zYN0iMZ?W1c){|Bm2d3+N?2(;sWl=jlrNiPl6}%H5Fkqy*r%?0fyRN!Ytd>sPV3X6f zLzcud16;h*HqA(M&WMW>xb5*%_;$q5&Ej9-tczR2yf=Sf5-{I9T(+J&r)5b1RH4{f z163y2DRMlwk@q+HI?9rDt}E}l;8)BPbKeTtihxRlWAtNj_r=d`KXXU)^et13ey;Wq z6i0y}cVdws&sy<}e{9{#y7vy9W;$O-3=OYM3ld>Q;?bo>t)5)le8$#H$cL#vA5dDUH$3hMdcJi9)KHK;6wW&CH+1<0ya-_FVEa zA0DnXas{t@DK+Ki>P>^oqa)2)s;Yj8d(g&<`25sF+&@)i3ojU@3?6|F@a!;8c^@8o zI_&#Cagt?|W!_Ur7NRKzofX5Gf%8STK%;q^*yri6!=9n1ATs!*g$T;#jLT+yl z*^vT(@`Hq+0fFGoISW6Xb7p}%aSSdWvTu7kp~|AEtS=2F_LOI$C1X+{AT zA^T%{nK=}dcjx7oGDQeFnUAwZ5E)Q3dJOBMd>9RH-xC|AWq#g!R=?`On$SDl4H4bK zcV}{Gq&)FQsZ1WGsNuKn!80h#BSrIYRQovLks?-00{V=KIENv4o9Rnqj0+iJFv^Bh zIO?d_P7FNLe4oSxX^1KC2gRHjc}^5c9Vl z+>2S<_WcaAQv0!ekkONEU^QW!*PJ&}SXb(@eWmX1gNo$bCxp4mq`hCMgqxHKHP({n zo@eh*tFedU1pt`17h3|CK>xV+*wb#8?kRdaDbe5}sv_R*b?k!b0?V>BkxW){Q@UaF z9iGL-kKv|Hs9HWbQg(dt#3=^P$1Q`wt-xx9VbIUj+(T#{KA9g+=9IoQ7JB~Lxp}Xb zat9{=k;W#8eUf(;s;o#V+x#YxS@2}oR?4M@{MiJLi2XU4#z)ZGS#!53GJP{V#X}h7 zb|^G%_;$%w%S9>n(+CJ36N%g!qvTDh`|&METz^o25PKU6ji43uoM`iT3^3BVMpYIQ zg0~&l`}X;HGN<442p*Ju?-iAo|ISGEOp2*E4|HB~vOzlC*O}i8*izSwc65Uw*?Sv? zKt)r(uKb+gi>bORS_UHv!XGgL;oAKw){jE=WpWwuT3LqEz^#-sb6Tk@J)dqUD`#lc zzds*Zl2B5@5qQi0`5d1Wo|2j+{-GUyq;Msgz54TSR%r^GJ1ueX-TBbZ+sE84H5B%B<%Bz!aF`6*7Spu&GmGjbzxgY4HM(hZzPTjV=Kji> z?tI^xF_Iaszzd4xdqs#`L-_K$p<2)C+C44xUh-#lr2F3s4i2ae2qGDAny)-H35A$I z5wVa*k9KY~waznj+J0kT^z5A0LE&f`D7?mUH^#}qN5WvAxIYr-wPx>nDX3R9-uE%u&1Es%Jw;3aK)zfUXgLaANHX{56MVbfo&+my}k zzc7X0&er5v+CrTMXD-|F?zZxN5qafC;==s=&6KI!45NVM`JOxL z_3|#XBAf+Qi&LUOcDDb?CbvdpDgB)Bu5na_U%2F&F8s4BB&0WcIuzPRbuRQ40?87? z*=w;+U`!!dc%OXbS901PJ8+LZ+>yeeL32S#N z#d6>tYxZwrQ&=ab7fSyaJT9o3J+ZOv%mCAg06cdgzquvF=~aBu3!ya%;mtZ7O7)Q< zN5fIxtS!g`^Xsu<4;MeDWm(qDEge>%>Z18x<7{vd41)a^ht^I@iTWLPtl3RoIfhI+ zI%el2lTc*oNKd{B*3MTrSL|@#b9z%oX|m30fFSWkML9P|Eq#XuGy?EH6qar z%Xt{Gr_m!_h~rR?j=?TqQRqB`i5>r-aZ3CXJTc6j`HH}))Fv|WCJ9ygMm>^I{rVPp z-m=I}eVJN=9g&9+%5ks!zt8#t1>3=QyOhI!hA)<^5_icVm)jt424j9##Jk)(lVSJdEl(E7 zRA06?kx6;GizfOqK zN{Tar0-1eno#o?yJXv>30(ZMb`fk>ctXuc-zZYP@xfQZ!<6md-M#;wCvh}|;fTudW zSi^QHrd;?R9q0ag2gr`>fMaBbzuh|OYQ^$t=`|buuS@k<4u5+r?3;ErvRa;vsjG8- zrA10PER6pCw=_3)IkK+nSlG#C{dv86YY(bWKbxnf>Iw=t*;1b$+>2eNzj^TlvQKdS zr>D`!wco$fO4zCQuD7ne)6={6Mn|WcoY)+r8{4<&gP+v-KxIIh#2#1)A-wO98&MMLyQgGGT zh9R=#3>B#4OJ2HQ;^n?;Sn^_vOrcrcRbBw@!Q3*ZTW94~hUO6We&xRZa%ppegT879 znS6D5gNOdX_di^#Dhn=X_UM$NZ%p?!t4YZlmOIQ}`KFb40)J(I-{o5~ zp16B9v+wGP(wB19>*lhkTTf&s;Aj; zqetj2cFX+Hcop}r%DS>ahO=y3(4T9rZw3P%{9f*>Ss7Tfv1JI_bK`eJcC;iXQ^Qb@ zd08qP1%VwwV<<+;CMJ9F&;LFy1xjQOr*6%ujyhTGUdUn7d zC@27oz1wU~{wMncb!pcwXdx4~72V(wy!?~ndyL+d*TqX=C*lsZ7bfdz9w%W-2_j?4 zX*Z?aZc4~tUF(firHr+S-EFNW3u;#X3t7LqLaeD6ClzR8T5!aw${rV&nFgG#g|l_` zHx<1x+&A4eA96{3wtVBn!svq0no$V&d&4E})unAU>z9M)Q)_--)`vpGP^%NO>&4Bk z|HvD!H?*L4Ohe&F?D_LBe}BkORz4;v@{(kMv=)k3bD+vUW>mIGLjS`SvUn9?hf%#Q?b z-g1$X>h36PA}BIFVY;=4mUBo%XKR8;R<8i)bE(PT?ssgTq}a=t(8d!5=CBkd%~sXw z5>bLHvds?W<`a+yRtsof=m%4sLAzw%_KbKsN*Ca!c3i?<@1fd8mG*j`})kgX zt?)>r;H%yKLpW=CsZ%}_Ap>sU^Q=@$g(I4aKAXj%Uv_>**Zv$juQ3Nnx+cVq$Yox* z1jGJlG1VQrP4ITX-;;udp^m}8a?yJSG|bLc^)TY@w(*MFLe4%-wjR~KxqjUT^7T-B z58r`89UKy&5XX;)FL_o?vL6PO6fhx*Eh<-tGDs-=EkQErbX2(`F zK8dhd9JvYk0z%OPAs`nhTaZJlTe1F0TV$wDl7YxL488^a1)J#vNxG1FJgfO2MCv~} z2z`OU;UG_Ft8N$+1$~52_~vZQs|<*OKt*c#!T-@PNR*i_6?~QeXRV4=na5CoLZT>J z23b?zu0XG$qb~@vX5X+%c~s>`b~(w%!^Mw6VWD>QEwzu6>JGLHftLx9*c<@ zk2~^Gw&R{NC9&62a|=HWqN4;mE;A^XEiDqZVkcCYJWryxTxO`IL%iT1Y7V7)JQ5UB z2$`2jOgIX$6J~J^ew6-xYnWYla_#GnM_NSIEh1y@&G0C8SiRFGIQ$}$SD_{o_w<(& z>_Yh_u?v+qrVDWWdSJMNCEwte#J`;}zU_szW^7X*h)w~MZi&pSnFGKl@9 zF)uoqc%-&d|0>NZWthNrBY*`68gU$oG^QX7n|cN#Z!}MHnsf&tGNy_On>~1Ix=~-( zO5&`Uj?ZlO5>K~8j<%os7Sw(CmGH;R4i}>D6wc78n62hG=Syn{@E*~l2ON9y?`GB3 z#rHh0?6(q~Er5I_x~}N9zkd$s5;tKh9UF zBaG$Py)papT!H7;UH3X*Z-sbR*+ThXAvN{XCNUiLv{6;3%Bs(ys9T4g(NTCbUqG(J%#9g6#J z^jLMO!S8K$Lm{>!$JtRFPjZR8-S>&6f|IVh@k+%qp{6zFx9NIEU%bLukGKk1@&iaVf&<&)L{JZ+@smaIZtc9Foo@*#+o4 ze{8?+tS&{%ueHjr+flcNVfeKSOlT+sLva$j{z3z4O38=$X3Xin z2pTxv`CCJ%Hq1Cmy7lPIPQnX~NVcX7GV0yCXPq=Vh(9H{NtFN*3B?vKxDq^tX9lcn z6`qzsTnSlOR}pjE1&-giY>-i601zmhIg;I5*kWoIQC-YTaqJ$=@uPWl63r`E)!uSJ z0}Far1-FyG9*WK1bWP7$)y95Jr|qgXN%Qh65C?XM3di{0b+)J#oAi_B^7bJZdoh_* z2%74cgdUV**B$3;(`k2E4m7Xj;+lXSRayBO@~qVQJV>#G%My+d`xhOl#v0KcDUoV2 zb9R%S9a2$Y#zEG~O1lgl)d#K!R-1Bdf)_5Y*A`qZ1`CaX#9{;JETVs@ctaHO&PXmf zfO){rf*!xSxVQm_`2BCFYGwBrd_!1&%OZf~aGPhjOYcP^h+ZY#KVhZ$M5E(=h{Jpu zwX&k}ih3e;etOCBk}9LnFX!eu3G0y|t8RT$Q#I?& zMl~)w&X?}1P#eqnK6*2Z#mnnbb3-KrsjFZ{Xa;Bm4{z}V9Raq$7WwCFalVUnza2a^ ziHY4hO#3+pMgk>?*mtmDW~hCv5PfXlmnV72uXxn*c+a6>I~Qk{v3O2ea#8@92Kenn zW#>de9X^dX5xd!klvMjTIkCCkmA0w8S5y=5Ti8=jfKx?Nllvt?F(^u-YH%ccNG_B$ zz}YeQu*A@5MBb=R26G-Mc8$3Q*i;8!pItQapTAb+a?iPlDRyDkX1h^cYxIXb%UPB! zetR0%hIAA2^YuKemC=azlizi%Y(28i`E41(rKVOrSb9Kv!}at1;J76-lqvls(icc3 zCw&g2vXY;8f=oVX5s;r{!jVS^$O-RJm1F097V-O&EWIM@UOq{P8v5Bf(Z0yhuZ^=v zEUA(~a$E2>hH^aAw9!d>s6NG<23EXBI+4kH5qW&HYtaB1QPix*I*nA1aJfVsO<*g% zqTL&3=YZxcpbEsF78|YonMky`I=$mH)82_hhG2nxLgqcYjQ7S@5+(yQ-g_#fa+*i|n2rVke@dtR z4E*EBb3Gvode7&y+Fnt^L6^qR-WEEc8j4MVp#3vhWIZkqGWp?zCZdf0m}&>Z&gJFK(qQ_A+B-2AyK zLRLJOunL?nU2ZnjEFmb~<}~=WC@%z^Z2@Z)P$;@x4W3(ybJJmOq8@@mG+6<}S4qix zAjiYEY&!(W#uua_WiWaZJx!B=pp;&l4fdJsKghj%;4G2R+{BM=%sc5cpO)W+!-`|D zT64ZB;ii-^oW!*Ttya#!qq8_O)M2aqFD=eGcLfUz_f)mV_)^Y^CHV(-H2M~Oq1o*| zQ`1wJ8lWjdfI(lz~1r71?UIrl zu=i{+69!`1?w4&tXclN7LApjx&Y6KRwM9J%TSyD~n750Cwx*Okz;;dFWIAk*a>3$o zB`0l2M4tYOVSoJto{Ubd;)rUd8TL$~tR5qR?^#6-&Nm6-as50PTzq=X!+TW*s~v7v zH^xFXLRJ?+Yr8fU{HrN@c3BOCk`|<{Y0T$;Z^`vocW2dV)v&57b>_iLLf^yau7SnS z(W+Pt_Se6YU$jecC z|IUdZ$J>-(AiL=U0OtUcxdFSv(D~@|%aKz$eLCGc9F6?_C#)ODiDSh?WdLeY6&X~x z1sI54C@r=jKKVKo0o6oq$b$ycgX|llg)Z;E`h65da`xVR@>AFGMu`b72D6iMai6}1 zEb&q=g>MY&q?{-tkcdqNn#SUV@J!h&voV@f*X@!qv#$X+y}q+M@r7=aN8v(!HQ(+k z<8oAR2Ti!-Q*lMIu3{=dDQbT3ZjhVrw>8LOo?T8(E#P$r19wdD2Yu)CVw@5cxyKq9 z6XvJ;+-$0sr74lKM)3=Jbi3SU0q1hf#zydijrrD|3B45h7g93*-qySq-^WG5>5i(i z=_|wKcNj-DYwlHYR++o|uP5s8gK%V$@u9DSm21L<++vrFpLJUtGOh_;TZNv12Ygys zUtFJ_@}==|casfQZ;}fag!QpbZ6^JOfxnmQgV)E0*0$_cGCpd{GUVM*?i9t|4)*^& z*fA`%7!eSnP1&N+*7;YstTa&V?@RMkZQhwSX{W4w=hS=q%g$vEDmyZpgL)3SDSQe# z2HLo^*R!W?_}#j``K_&^TEz>;nO_4N!y9Y)j>L~f=UcE}u#!+QSZM!Kctv>m;TF`} zuK=;W{BJng&jQ=ka)0HFMIP@|+hI57dlTSRNN0(o5g6=SxaJrQ{jN_QXAxB&LprJX zMfDEjI5KL4R@mdaFYfEYeH)6Q@@K7kEtL)`4nQM2p=;f#rAe}w@Hwy;d1l}i`YE;W z`z@<)89~1njFtrQ8{_KhwZ*GHrO383EByk~o0ZyD1@%84us2;8``~hO>&9R1RPgww z5h0dFk{*JSOMC&&V0@5ua*-O!KKsSHrkI(0S`0N3Uy*}KdBZv>^OEEFxrM`?3Z7M!Q$u`&x~h`_Im2J-0;-=yJ3ig<9z&_Oib=|+N+a{?ZO zIL7gMu{n;1u15o33cI=**OBQ2FXPc9P?Hr`gx}Ci-stslHf@j2itn*k68U&1nV0xu zp|rceU4q#1*&q}_06BTPTt6Whdyx{FV5l4lIl@zK`Gqh-ad&8HA|H&qaH;^sEw(W@z5F^acaD+>hmWmk01nKg@L24 za}`ZGujoHQ%3XLRR0z#az+>ZBwlMUgx3hn=UR7Jt@szVL1WM$$b+K24Z;Wj@f72UY zxeJMfVPRD=A~B6^GMJm33N_Qr(g-;6KDn}9&KjBRDT1}1CNyBd;b-cQG}bE{B%9qs zL#OCbD=%5GT1emWngv&cy@kzrRk!AMp!HGbWwZRER%ikS&)#zzCMk6z+0$$S+E`hFQCiHbprUSQr*lh5jUgK9a_7IJsnkgHq^EHsJ#7>+~`klqCE z7iG{vxEs3BsdhvTWdhS=1E{HzLQ()jm5M-_KqyW-krX(3Gqenln?)60uyc0$wfrY= zEaew`>vh5>&f{drNPL?Ouqaji_K%`sxq>=XvU4&)LjjtZlfu@rs&Aq6gi%pwK_{c?vvcb?Dh1UeDnj|p}I8Fg^+){+o+Vt}5fn2l+qc>BZ%Ttf|;zw&J>}@fn zCrl!#*SNGU1Gqau)Y^jT`cD1S0-?62$cR%Zdin>9u|vjKj6W(50?*VwbbZ(LBd*6a zHN-At!{Z6qugYvEFI9cJaPQ*<=BOlirjzeBSI(gWFtXAG#w+Ze!f$dwP_K1e`pqx! z+7^ECCJ9W$^=PN`r0{b|%hl1pAQp2z8AK54hTfMc1$qJ97vL>&MMsw*hLE*T3TvAJ z*`Vb7Ff#N)7vw!1d}RUbZrj4)S0d!Rq- zpV_n{=`nohn#ngRn5Uau7luCGGvs4S=HA5or;WxypgGyGh1QB1XCcS_>v)468rIr! zBQ0+0!Ld`jXZ_|`B{6G5NhLa#j@f%tPwGSjw(TVF7N_{nZ@50;(S|ryrnVw-qp!ft z$|L2?zUji9X2DnPr}F#sNAq?P!zqQAc2#RT-Ie=(uVH$QUx_}7+-DxEveLgpQ>t7~ zR`(19CVAnuwe?Sp;!|sXbwB_22mz6C5DTfqKMX9Hjo|ux*h|(qE>cDq*L##q7E5*Z znRa?`|`tCm+&>!nVR7P$&%6uORzH zRVn5O@>1y0+7?gZ6xUC!UO@E17CuASo8_6+dYgSg8e>IjwP0C=_lH3u zfmzONX>GH9G3*ZVPuoahdeABEgFxN#v*nK+D2K9{4cIU+(F3|>Fs3X+XV0=dQdVU@ zp`?_4=ERcxN?2Vp>tE07(W_^x=l%`l+Ei;V$_M}XoNJRVx8nvMDq)*GDC;bHYSbMPX}dOdi5l~ zM?cX`{c7^k#DkvEQhd?Lf_g2hK9GZVe{prX<8dIQ|BB1OhP+w7fqTvadB2*wFYDzU zdNI5+3~;jea)8s%@jU))ZuRHFVFi5?Y+>?K#6_Gd0m-W9c{<)i@Up*p)urYk$sqBV zidZRu&Q+tIUYxzkuR;w@Pg5Lfo%bG7$p?GQM4air>FIdPMjPDPZX*H#Kfy`EylN)ZA%c$->*c z{b&z5hDo2z+T=^7Uwro!e~c{Q;7u2Y?^X$r@5WDGG!PVek~IILYiVw2qo=UoUQ#!( z@4kL$&i549V0+K~9jRl9IPz zv6rakru?9~?HEyHVDoC+lm&nkz%Xt~1+&5b`pHKAvqNj!W*#7q2-R{I+L`2{vOt7a zLX-;sUK-1al$IZWfum`pQ*vi-JsZ9oPy(3FT2IVTlqG-NR(k$7zdcy(g7|=ZSx!|K zJ_UKPfB}GL=-624K~XI&R!H+}U4HRa@zO52#=S7j3?aH!Z^Dx`zVdlh6|Hy)Ws%2u zM)hP+zbbPHgdLv*Xp}NsIR7>vz=EL8UoRT|N-{f>&u`l3U9~XK6-}>IM6P$VjUO_#fq*X6uz5cSB zn^Mj1#1N+T8B81nh~ptgbG0PXsE`i)q3rn5t_X;xLUwW+T^b1&DV*1HLlWNLoUFmN z*dh;w@P$#&Q3U)tup7L8Ah&!p>)4#WPE>VsUAy)i^%wOQ3Tg_uDN5|_YpedZT%t6< zpMD{C(c<|pss;&t-Sx<3F)__3I7BaZQJ%l{dC_onWVq2ScRv9-D7vNA=zFTCFd@p= z&WY$Pl)J3M4*3UQ-C&LM7G4VTucFt z>=>1lh1pRNY{8JfzIEp`GD=OxR#TmMu(9cY-jjUPJIA}VNn=YBbKM*B8_R1o>r;R& zov|dR2@b@msnj)J(Tcw0n$|$R{GF4NrKhL4Z=z?727~uzH(B8wk23rWOYdvGD)6N_ z;%a`(3(~3^KN!6;3<=;`%y=30PxE^N$CR2~c6V6Y7f8=@3kr7k)ujrCY_3)+&KL#E z25qb1&ypjDb>)cv-F)w&#?C5sJ#gexTHHO~+3?4XEA>^U$EHj(>`LCu-3oc%bFJfy zxbe{6`N@hb`b2w?%U6-MrxR`9bfM^(@$NOe;vJ&ZH$hB_%Kh$@$bw+sU?^p#C|!SL z(r00H2-nz=eB%@z+L}=6!g#0uxF|-mwM|136#>T%iIGY%$EWXKXlQpma8c>N4$c*f zyBTVP0fqcdT(9vuDEs&)c?elWy+ue$hEqFh+mATZtSv(elvE%i*nVBJOJCgWsLGSB=U; zP8Qn7|M{!omS(syIR_TpHVL`SG!o7}op3f&=^MJfvug0{OyxdUUMua*n>Z$O_dw{<8qT%(7$*69(~6@ zd8f1T&!lbg*hEwF)O!)RFaZQ=#cMhRnTZAkPQep|59f;eT%SyHyhM|;<|D`q;Y%GECx%$S> zwzcnV8!a4HYh@2r%?mg$$b7Cqh-epx1#5R}eiRBl`V0(AzQWCy|*ZW&{MyfF? zie%MfV5bdyh+wM%>V2>A5^7g3desMLPn8ev`c3r-T;|Me49TzmU1RT-5BfDe@bB{a z_t%l+Xxkq72CBo|ytd_4?xpwFj)YQK$x6se*5@uahqGs;8d+Vu=?CnU%Nq+Jai&mX z6hsWszudI(yN|m%yIQpoOFeWz3?ZROP3lMy!@_iSyUvws&#!6iMvuf>sKWe0!TcW% z!FHwOS=f6JknRL$Yx+kj22@yt#cNr=t_k5bDV_!S7AVa*xRl#>A-oBD&OF!K2_rL7uh2%a#Z-{g|v#-Crf_a8aVjIF`0jZH7+$gBIded5rPvv0sEr9r5B`8$vm*4o4Jmv$M#djxt&SB{Ju0?@X8@90a+%1{~>HpDm?(s}L{vRJ! zMq)!ziCLlf!_MC7C2wy|-%-*Qx@GmIb*Gng-0*n>SK7@dHaoH7HbdF3>iUTk)% zahAw{f-KlLmc_~ewvDo~2tc&e)PV+Z14<&Khi4H&&jy9Sq>i49(i4@GA7{ivL5NtH zNw6wWR-)QX6;!gP@=Y<1FnT z_GQP(>)TzWBLK=TJ}b+{J^w$EL);KIX@uudI0C49L}DOdRRTcUCPC_=Nid+-ghywc z`_RD!efAa($a=C)aie2F5U{54qnr~wlE7-60XjEscQeaQT%R&b0zspQ+z*Zb3(qK^ zK~=UMM!z3^GyDly%`?EtRs1^s&G* z#M{1P&Y=vMikons?{Ia}F@wdMZw(9#1cZf!k0flcPXT z5iLEmZwV3xxpmx4zQzbA?9Bx6whzYV#>bar!zMW(U<1zQuFQQ1h9YQ6batLEvqf-Q zk$$o_8`BwPL-w93UG^qPRzrhk=*IL$Ma70Jc^JytI)Fg9jff;&$3Ia~^|MB4L=&Cv z;zo0_-@P>^NozKxV@ieFC470$p`$vuToKnH(RC1C?%by5wmHI4H*Xbr8-(?@7IV;0 zoTmx;mhTEZN9v@-1_9^zB}Gn`vsQJfT|!>q3Q(k<%t31So;J|B}e-^^%o5iq+h4ao>ML5 zy7KttsRayo^~RS{6?;z--={nvdk^}VFXyFvA^Z@u<1|~DM_eK14CFeGon=!Ntjfmo zzVDS3@mJ5&zCH8%oAE^OtSC23;w+`}<=6wRKP(%Qk7uh-j1YTdDq&_r-J(KW?Sn_M zNYUaj1&V3M(t~lqQmuae+r|)Qe$t+QsI3EqG~8sPQD%tms{JT5D<)=ijA3tz%j|8#?`YVtnc2 z(tWxPql#R565=#JZpH*@5aN;zb(weO+&oW4kMlGwH@eP^TbbN>pWAz37XC{xt~7_n z1<`*v{p_yp!TcS?^#LjE@RjWlVwU>CkaxtQ^}W&94&WH-pNYId9-&`C^*~L^B1=!A zcJ{1>oaxF#UUvl!_ZbTfQ%uP?3ju@t!gxesi}W z18K!FE_q%#b{@xL7`>HaQZ`E$W;;COYZ~Y|dy~`26_Sqc_wLjEpzRK2w+qh3vi7Tg zA>ND4jumZ0?0?anzjg4*C!&`1hCm&|w%V03oE%O)Zn2~;U?3}+{W7x{e}y}9Uo{1g zl&U3LgAc(i4b9dyel<^30##CWXqFT#@jvWHsWWzYqj%C+r>Jz>5+(c;XgumVp=odhZRk=bW`6>jUxu9`FuT*yZD;Tcd}%t$v%UoK;;32tgcYa(O-2go+2(l`-z`A&%e>$0EMhg$b$9vlzr_J5o$$XU%NM=8)HYngcL063V)u2= zvHU!WIR4{Kheu9k@JH{!V852{7!{(-$h;4c1iAz!G08E^YQ4>_=?5Jp9u>FtB3daQid+KK+Nc z-4=Vhn}Me~B@CqX_-*Y??3{M>uF2WaRswCeEYP1ms-fnj2akB>)AZ-I_&i|N+BQ+;fcm#PNz9qjeYZQl?J?u|1nv(<}Tvh7ef7iau2=y){*}DXCiz z(3ngvOIS>Vt?p_nB}?iAt^JYDY#cjX1i;@Yz_vAff+8BH*nr0#a|I#3c6|##cI&+m zHHxiKBT5usJ2sH^2vq2|2)F=E6?-ew?T7M62!a^eGt@7a{XjVFem*^>9 za7&Sy?N}+ntHi#vM1qB7(>(HLDJ5E{aoD4nKTYTBb_V)&4t~}>obD+I-@aD*Z~o_f zVx2BitEk%kC?J;{15&qp-VKIbT#_oYmC^}uJ8ua0QG=E>+Bj&P|A&*WNFJbCO~lEK z1=#z1ULUYwx_xX{EYU;V@&Xwl4WH((231gKSRM~rH9VZdvTfVM5BSr`AmH`*x zRe)E?9 z$}5(ctSH%p-vVyxjiibFtuuB{Ooz@5!Wv#>BsASGo(@un^FcSPgLRn0^Y*=z5&zMH zg^1~hkmd_%dT0;{0z$?7@JF@9lj4CNNO@U)f!D(YjfdmJyqwdsZ`fuw4yG!?tI#>X zwr}H05QY&yQ5e0#hPQqK>w#u^HccxlSWVDyq6=>Jfx<}!Vq^V@kxvJj|GCj6cj{T* zre1iRq*pnaz;2Ru(g5nJxvj%A%`Xc6c!EP7@~u5#iacOV>=x*5Pd2yy4UL$hkMXD^ z8(N~{rjcD++uQ089%KD^e^syfx$VBw_#!<1FcAS}dweV&2z%Iay2ok=Fzk_OU2wEJ zjU##c9*v_ZVbL)7a@j2%Gw{P55IK*UnTuBlY`mZGV)#p(s- zwR49b{+nlOie&)e=>Pyq?3P|+g2w46X#uO^C+1JG_kT+5mNJqeow z!BQb~9u9lB7<{Ym5g+>&4rb-$Dln95t@^jLsf5L z*`>#kbnE=tMF4p-UXEmXc^J zfHC3Gew^a4;C8;I0Vz_dg<>6%{)O2VB~U>Ek#u8-S%a-x)PGT+SZLNH+}i0$I7E8n zqEdEtZ1BfpZ8P6T$5~Ca_{WaqY+xM`C!*KsTYrk=2BBbO{dp&E#haLaM&SbdHMOFE zPKK`drbi_cLsnO_4!D{it&AOz896teQ>iQxCvNX0s5!|2^NK5@>Y`=Z;x$ zgv#3!YFLyt3a5@5KNB63EddAQz4ez+WIRN5Ew9mX;HNiQVCy@MkRwZ|zXVgm${v^2 zkONLyVvg#{cU(X~z(3}y7|^NoG0?xfaSw$6$@MLqbpZT-e}PL`L-ueR8eUJQiad)* zj+fwoqW&ECaaX3#d1h+sG&Q=W?Ys`A|fziEg-1hqd4?I#&0*z&!?<}cF zc$?D^ULzUT(n=qrXE%yiK@1{kR5Cg7E%Z|R4}We63pfr#boDlmzm|17W%vy~X8Pc2 zWQ?8#@NV4%I&X={7?NHj$`7g%RLUIZ5_WBxLEpyVtu}zml@DZH~dA<9XRreZLmg zw^urNTX+AS8o)h;zP6R|=hnN=iTUueo56l?+#Nq^f5u^gf{54k+^1F>6MKTw;5|s6ZBcaki!#2?t}dxv`HN zJk`YfBuXuQz?*ZtiXYmdp=NZ1?03YYLiD12`Bn4@ZluGWV+1+b$D3U6Dg(?F{Lx z8kzp5gNOLcdQ`7ou|m5NdE?}6hz(5njsZaYu}7b;=41r7PW;EsTmp=TbFc5!P(GNC zN&fa%E8o#9wVG6o)qYLG74c&&vJmyESH_Hl(Z@ zFS>HA>pt#mUI{i_n2qzew6SAfQMje7SVz3OFhpiOHMmzJOae~$P13v3FHheJHs8M; z1PQSVP=~)>UH>zC-lNNBfHZIMm+}w7-R=M}cZkdt0%ewK>{LjeG zhw&b!&Vf7O*!w{4!2=qeKPkNKWKZ0UOw&HozSXp4&IY_`2CPZS;^TlAT$*}IGeug{x7Q;iQUAT5Xu!&i8ydYR z)H9^4*t__Gi9aWUilYrzH#G2=`4RwnKUT)T3}AHP)hq@&8MrH8ge}SyL*UNxUEaNa zsXw?+>v5=A8|GA$&fe5c#BSB>^f{^K%|AoT{cU#n!bM(xk85oR0kek2?3isu{@&{I zjI-yZV=;-eB5_kHlHwZbSKn;wwRM;D;eUPVbj0$68TEFN_ z`lg#g;bq5S+rqN`=6WVg&6H~3M~lm=H`aSc#)g#FSRpl|<#F~7BVEBC&C)%W+-?B@ zvR&fQq@228Op-aEQSIv(*F|fbjAfHNuNpToJ-Qp!Vo{ zEK`6Jm}7BXRWRmlx_z{A)Cl>gh~QS)SOmSr&z=^5Du@*6R5T!-94I4k^zG(B;2wx%^0BZRJU>O8yt9{I1g71 zauUR70-op0FO>R|JufXmHZ>QVGQQd$L6rKDknfwR+%}#vh3nru2fmJ`nF@p{u@Ygv zgbM7A;uFJ>ExF zjM%rx0Sw8QbcTSuWA9I8#v3Gcx(mAfDDMI0Da$)h_nZtdB^N27IGGWTkH9vo_lCxV z(}Y5U@Gb8(&q%=1JGD8EXtz(*9beO9U}|#Kys^(=3uM0z>gA*M*LXq7moMFEI_#u~TYFL1Ul8|Zo z1gR4ebjUBJs{b(G!-rkiBJzmo>b-^5XWiVq{J|gGDi*8(p!C`1|Ua6Ti&=YXQx9MMpY7>52ID{UKos$0)zO=lN zDQ-L0r;UJ-tgEOy43(p1(|Cz(iizcCDH2PS1Af%N~MkB&lZ}6r}U7SjhTZh?EB%@!j4^!^vUr5 zw!FU>y8LEmWz0JC@^fsD(5njW{&E*74q(#P`1j}UJZs4|PsoTkuqy-lR}bB-rjw1OS1o(|LQ_MMJUiWcIu<D6M~feKEv+tZCPeWlcc__BJ1G zP0MITNg<2*?urMI+Izm%rKx%iW^)R;t(1b<;a;}Kd^uNpdR}Y@^ z_-bmKT(?H}0}V}#p0uwQTluh-V-^#J&Y{uY8H@eI@N?nw3kQoh7QhCpBRh*U{)EIl zD(I$;LU2#|y4qs7$qotcsErN~E2;br2(+`vCt+DPS=(9uABE9F z+vz#AG!qa^M7#U-1d1pN82gVKT)@_o>2ELGAi5ct#E<)Xb*39Iv0JcI|$IxS6(9Al`;B8!m!=gYJrHlfhM2^RGI5FctFwi%%Osn9F-nc#i z;JZWdl;Z`JqwE$#8Nh{rX)65yUfY zvZ~Qkl`lhGwF^5V6&0C|w*~ey8h8Y8{+i?Q-v{;3aKddI>JHADs0oXLfJCS#8bqGa z2R0eG*{3H68bn#3>dnq3Yw3YtDyT_N!=)qihHTY$4IQW9aTAHsouX!C!$sbJqlL@` zM-X{|(mOY|4Gof*PPzGdxCn;_R!7QYVE%61$_urIMs-Y$4#s~t+9}-0#5zFQ2N|a$ z={@3@B#JGNKy3a!KI>*ZRaLK(ZGq+pMncd)HncmN!L8X2c*R((!FC``IIN$g4^JUq zk~oln#eg)m1R|@HCD6V+lNM+YtU+s%AKKQ5c#Vhqj}tWH5HMLiCM!4F<|s%7_KYkt zF0q-Fon`g}f_oY&7>BB&i@^2Ao2eA>@myd60}+|*^aX}lUz*$rM-W9<%$!D^W9-Wo znB6&8FEd9xpFT-*mRpnS@B?I{A(pHD1VF0`B*gImVqq05%!Bs+7mg$77Sj$x)9lak ztAIY#n2^eB;`Otp`VjAbc~fkNaw!d$^ne7X_vmr^Qu7nQ{m5{-3A#H~wZsmi|C=X^ zm8n6wuA{mgI$zJ<&djhkAR&tyYE%6fC*Zv83WrsVBo6y9%^e6ZAx0NpB>9;GRGxi# zJeyw+H!t8ydcYRQXmk3tSGlHgI%AwmI(CsW`hk^ok+0zdF%G0H?Igj)$YtW<%U+cbwyZnN)m-Pv`e{|BZ7~O24>K9rdjPd?kXnVI@Vt8V0yk}>Y7>$SzHA`CXs6y|!k zsrvmMZZW}4U2Hu-s$%#R>5=%hPTAnM^$=%gj?kH@@6$bXJ-_LD9?op^W483?mQ?@# zFWd5Dm1AX;8eE2_*2Mk5Vh?eRnxVAhyVH1EJqIgKU|5hCZYQhmWDt2mq%YoEI;Q8^ z=CakfyJKT}4|F=6JW7YIOZ$BS5ZNrJ8$>@h=^L4fYj^MdUS|;(BB_xl-rt3)x1LE| zWwx$-42{?l+W$iS3VE0e;rwrr$PG*tG(o&v(h0+X0l^vD`%JQf*N`1B`gwq4YPsZl zW!;+tGC4y|d}p>xm*6uCN$EgQ?CXW+MD{>$i@N%4Ze-+S^Kf+5oH8#GF69;_GOs@= z_COG!HsOv(M+eQYPmJt6fvOn=^bn$Mig)b%=NqLihhAg?EXeAyr5)G%MfPRG+yB&KXiBYkbmO6)w3D}Q zxeaZs#Ylzi%~Uutr@;Q2T(Qf0atHgZ*r8}+v1!c*l;ecz;UXE!)ieV*8z=^VLeyda zGuYj7$@~b3eWzt?$^VO-kdhBEPN^V5V=Yh1*07&}w!veE0Ch1=trOnkA&_$UYjm>s4fsg_Zlh1kV$|+uQaiY6uISH zcjoiP{m>jX5JY=02V~9{JlqmQ@um_bfw&8w5*PQ`vh2D_4 z{(hxF#vler^h+gWBOm+LveGeA>gd25)-EPGW~KsBS@8f6M-b7*QtDG*@VkcxVw4`l z@qkOdhs+fN`L+u?IuN1oc}x=kZw~GCx969DKUK-F@9*CK5_5#lFMpQ4_d76R_ZdL% zZH?F;66>FETz-nj339tZguy@nz%I&EvB56s%M_!q2J}a}Y=Yr(H>- z^lIi?>?5X2^1Qc;Zv5UT^GW-7hEZJ}Fr-$?4ISOZ;HFZI0?=$KMUmTQqnId|- zWS%j;=_F8ja!1r)LByyT{2Oi(CDx)IJE~VnklBYA491fENg+t<;|-o zF;|day$Eb%I69>?W7I}1_A?RLHOFqKar{*I%OjuF&JezNlhXyo4>6Ui%@nJHZuz0lS6UP#iB zB5qkcy%LneZu%vhCFPjEX?TOY|50~uw|{@wGGfzZOF@<&fzBd)q;Q0;T3f0FI=Rc% zlTX3um)f)W1hGd{UZ=YW;GD^dy=lODPgZ(xIQCAJ6Dk$BxDWmQTd<9>>`ioexbqjtpa5dI{;Tn@c5`!sqN4$?jAxCSnl-md z6~raKEMmGUS@+*uOcgUB+a@pD5Td12Q>)mORj7Vh((=4&fA7Ke=Kh=g(^XC9A2hesFda(=nN06*~2e0R2Yp?{N{U(kB1~*VIXS?9HR#2+h9LuK}kaJp&K4 z6`T?bC)S;4l)+(AaQ^B@zsnwgKn6C|o-~F)Tn9_S7o~xMW*JT3(VYyAV9#aT@znKi zdw)8L3m)z+?hy+fAca$Dwf4Zf3fQKWs^bKutBXM6Pe4Q=X@L&7KHh6{{InpHuS$7n zxJYZnKE5Ht#O!~Z6bMDVZKvgkw6K1xsUmoJ`>e1(wdlATv@jSMY$xGdnqjYZ;prY; z?FWmKLCKv#JN4i^PW z*Be9GqoXWW{HX1;uXU8+C1GF4c-aDeHndNl98yH0%ZnZ07`Sp}N+51dv zF11))o4z`xEO7G^xkH;LJn8hRdgmB*fBJ@o7}@pHzaiGkVVO+T8P(?oFA8a|llz9p zmWH~zu#rE;S>~%vzkcc`{NwlzX2?AL96-iuylycq9n!qgr!k^b=bqfJe*UGtTf*HO zr9$>&iIM4Mzz)C8zOf)}WS0z6h}c;g2?10PLAxO@ z=~R;a)%|-z2OD(DJ|(Gh6!ISMa$Set8QD!dWD*~9uWWT?ZFfCSxmz#!BKOpcBVpx( zn>{($)>7K>P29&hc2J}Ez;th^Z1ZDa(%_V&A{=1#(|Gi$?!k=Mf^rivP{!{pALSRB zwcg*lJ>MhL7qMAfa5OV{Llltduv)gu6?XEU*K`lfFScLG>m0H66yo1AnqC{Uj zc7q!vg@o^o006P=*@|*LI3ki0^#c&N0yqKgtj~C?wJi6SP)n(Unbxf_08{7xHap`-ij7?KmNE49M9*bcUS;wARVoj zz%Bp$wLCVkp{~MbwWjzVae0T+JhJWAazrLb5_at)L%0o~x?{1ffAUN6i-YYlmO}2} ziaVyhyy6{OlBL+-9q^YVEF@LTt3p$(@WA7W%nYI1xh&RxtR8A)pu`V$bhpniJ6iu< znz%Y|f5a->H(;gICE}e^Mc*t^98_Dn((b)x|8T3yC7Vh)oAR}(0R?%xT$!CiqFY;M zV){M;;n%d$nOrkMCELOPYqOT$^az9ZD(jVN)6Z{imVxk3BL@ z%}BeZFr#g5ay__7{2EXqWai~IVqW9yKpo2p!%URo#OyP-exWpATZ9ZXI)dQ-7zgaK1r zU$t2DHMQ{)2nJr($Lc}QW}HX7%Up22qz>QwBE@3+Q)n9~TKB25XZ>t0n?f>HwFYJw zHYfD;KV?f==4*%i&jHiR1TyEDgA5zB@jUPptVn)S4|Y@)0a**zwS1NneI4j9m_{!P z`;==&9ijDCZ>k<1N`e)B@)e?$oHMKLa-hw_5C)h?_j!Hg=t6nWGdnLYx-(!~;uj}S zGb&T$=P;Fu%R+L^auPca)dVT&lwr)P1|D}PG#XzNc{K(6nHY>@+C;~a?4wImZ#rq> zMF?RS?xZC6gK-A@rzEVr2$wU6FGHMsog$d^=`x0-oI0BOn##`2pd^6)9*_D1$}&46 z9!V`Jp#`nNkTgYYK|HX zMY+->_E~9eAW#|VejTfC5UU?43OOVX=i>)Q(g27u4RMdDpFpBD@;-v2!65yp$k$C> z5QyFfhY!egLl@J$%tCodX;BD=N(1#lAz#uNZ!$!o zDgKs+Ho*c0XLH?u7VZm(A2Z*p|v9-U1ul!@~_h23W3WsFjs+iLBO) z2eODCOoAUm&o0-JjO>onK>TleuaVLpP$gmRU?V+L%!{Gnb-NNM z5EPQ1(G5Ztf>?%N*xAlBe)NR!l@j?#_?dgMQ__eUH5m3-s~7|6#8J;!oayyUHZB66 z0K?^Bp!!d&uL%%{xt6IXfxz_w8mVXNg!%DgT2<+?oBeUQXi*sC0`xE?NZAlmoEXP# zew1TEOP~cfsi#th*#bU!q#W$wli2I}Dr0w=J<*$8E!FDvy8UEf)ZWt!f-IFz6<^2&eIaq7Yu{xmPq;`yXVDF5rEa>K+UKb7<7 z5AP>o<0#b_X@g^=GnKL?lxNVdY0_a5J?Zp27jN7(@o1Jj0jr7s1X|;+xFfHlRh+mE z|Ng0Z@VGvf8fEbssh*ixr_m!cEbm*#(X3M;)(s$L9t6JAaY>qfSWZ@7a!PWySa{hV zo@p(-&1Ct_RVn{)qP+3nuyr^$nCU^SFAvYCA*8?vqOs9ByJdt)|eHO~No@rfe5(TPZD~{E# zQjvYG-!n&LPN>rdwAa&~cIl2D<=qU9a2P}=8^2iS4+ySj{S7?8skvoO#X_Oi%a#wy zCU$>C>^+le$vUnFcfXD{=GTkT`!j1y(lc)csx9q@Ym@WEty}9&gYIe8vN!Qe9P)Qp zATg(C&*QIN=7XA(;*0cgVuMkx#k0`dzPqOEGAbTy1TPFqJo^J-)S0FNNxhmZseSNQ z28?i%PlBR0;f83837siRd7z!2fx%exVz$c%+>5sV_|wm0u>frnqwvfXSEFWSS7961 z;h`oNuKQXsxXh>AXZz*mXs##*YxHHt(ZoyP90Cfg^1&;!jPv6$HrPnm1#6gG<9ilweruZ7o1?!YrCAwfaC$Y3y1 zNJ+`KrKN%1*i_&6jk)S3%UPNsFRbHPGY<%L5#jWSH{BE)jQ7Tl-<)ZgkWygj&`rF9 ziOO@5F>Z{x?HzH}S2JII;W-FN8POmz!;t|In%tU}RkVZ`gGI>jzj@2QT14EcBu%}b zxlfCE#T?W`h87maT<4UOlv)6brqsUF!Pd@17!czW0X%LRfoRXvw%^(so9mj6oZ6c7 zv{Sj%uqKyl=b8YBkW14sl+p?f49ovbqu`WmEYIUUg*3d4c>4 z;m!~Vc5uVx+=%VpnFn*05!z(YgoTzfx~e3NT5jnnM&w^sCnMuYMW{L zexH8xsmD<_odWez*E&g^kj)hh-LSwKC*AsSF2@Xe{3-f_cVj;!pVq~_%3gQcyhRuG zjj+cj?gi`gqd2M4pJ&tYs~y3r&oSW=S5aP)WafNO{>#zza4$vL-e;lkI_HYC6KKq* z4ozi*4C)wGW{UHXaYitXhviVlc>+7TELaS8jDp#k}TxT;TD&mJV(zZyL3 zTB?TlFxU8o2IWgu%5U9W>3_Ih+V3pcClX15OS{CA?&PzaY;4RyT#YTIWqi{MQZ1_= zHGmu&79gy4e4U;-y1&-{Fhn!|TF&q3p5*P8ON*OCB5(3N$*Gk|yoR75b-iG3vS(tu zd!%)*tm0X!|8c#+##}@ShSQjCW;6+m$xV?=C!@v|-eu|5I~|`xKQllUvmVHr8e3pQ zAZS=XFv+kj<@$T<7Bax@_+jjIhte9O*d_|t{B>|uIz9kYWKdaq7=kXZ@Bv!zf5io@ zK><}2Wsl;*4!r=xy#s?mG%e56}-k}c~iaTB}SJHQP9F*rM;D04|FSzcApu#a!@ z--Y=3;GBc@<%4GvyGJH2N($}(X!rS!t3q{TEP7F>cwJM%vUqO_^5Lpf)6PoVazaT~ zf}S*#OYenL2xuTUrwFh(`}-#c+u5jP2Rg~6xZ9gHv|QR<98h|=|2tEI*aM+a!yau$ zw}bqW-BSd3(dI@rMsS~*TuG;;mesO~@XcpF+7BQ6E^CORr7?;S7*E0`#>7hzIJH2s zHQI~Gc{9~t zvNH>r{X#o_i`El%^XJKWU$5b5Z30Pqy-E>VU6~c9rXDCYEJ*1Di|%ce&K6`&Pu1yc{h20Cn9>ss zp9JgZGV$S0Z)2aj{J$2U<9BAiON;IXYvy?P6|Zw@7OR5T*s<2sg>S{D93yDCH&`F%N+lAc~kV)QzIm}XdlNzL%y)Y*h}O>gyuAHV+kYa~r; zD-q)cegnK26Y45PH)xXzBG`#rk)i`$7l31I7LOOMnP@Z+NrC=u68&v|lJ)H?L1B;?LsV z-DDvG6Dc+8wr>t{`wp0%Rw?ra$IbR<=sh=mz{qShSe zItDgmrr9go2bf*~vQY=oF#=aAZR}C7Gz2KNt=_(W^#r=F_WZG1BLV!P#A8;e{|g|m z8J0_y`T@k(PqqV>g0~UqE9Sj}fDoi{JoUnqW6V?`A_ZUO>uVkBp8v#fZLnAb1wt>Z$Baz+WZi0)ZVFVxOkP?>*VQORAUQa zyfJO4&M?okCwzid+gAjR-AcFbw}!#O9_gX=d@WzNLp}#IG{zWQpQr@lXcUftrXuy2 zvDegOJUP7>BL%r57vbTRKOK)cc}h-6p09ZlF7<_5`3qo3P6^dBxdJDfn|?2UysCXw zZ}7#fBhvJBdHXXdX?)+b&1wc|*CC$NLIVS|al$$A41v$1^2T~#GcCTUDX7c|eOQUS zJ~%p+5uF5de;~JOzhSRIe~*>KS|0*8y2E1ISTPsAl=mYr3D3T~H-8Sq)e2-G+d}oT zc*Xh zK9K&nvn7!p$RC@*bi3r~AVTN@4Eki)URjPHM7$A28f1eRgXn9v#7BB(-y7K+J8PT( zxz;Sl4f~M@hd>~zzy5<-9TVO(ra_FvrG2=#U--SM;{ zemxtYzRCTH!K)rafUqz~`ya@4=?pV?4K^*%QjG(f;({R<0`BUb9Ht>0ngWJH&*?=$ zK`{sr7|sRdmgZQY{Z+AEOov!%LgZ#N2o2Utp`GMFL1_$Qy>lrf-^U3FkQhY$>c&>yHsKp!p-vAG^o0p^@J)@YJbcv2tAU6gBl!H1jc1+5(zGDI6R$pGzhP_NmE zBuK(ptdQInV#7is+u|N3?HtoV!Ej{rcI%193wy53Cwp4RY)XHy;vFj1$V?AGB1IaP zl@0Ry&h5aB`Ck-qSF_viF}a}1HMf*Y3=E`|)zl7g>7$hmY~E+583EYf+4T^|`8@I`$nQPuA3_fUrJ#_t++xx)FU`6!OTzeISvw5#$^)Fg$PYAiM_>SBts5 zm^yH$*1}pbammN!T5IFY09vy=OsiPBIJ3fe^=7g(GYhNc;PsN`=+@1Rg(j<$2fmt+ zMP5DT`Z23>XW;cL<>G6f5-pdF+CKHV#_O0*^fxh?E=}Kcg92BSe_jvPv@E@U&F^Lg z9qF|lxK!Gc94O~Az2p&fB(vo7$ez8vS6$CcJHAP=k|k(a`(MQ!oji7>=q!eIrhO4F zZflaPP8S>C&tufU&9W<5yv0a|&r=6)fC~Vcbzxe$wG46NJ=u_6qSfgy7MoGzE z+KRmu*De?wd)&JJ;}Up(k;!DT+E0MN+`^l`6n^kLLdYU17=Ab$NIqF^-C65eICUkc zG@}vlY|t%N9Ua!}I<%BfGRVvDfB7FnF8>%mjbG2LuAQq?OIDnP@BIhN^33(K=9Sj~ zwjM7sV_WArrWX^ZGcua?J*4^5cSOA;5cLQCiUHEOo(fn4`V+4jov@&xnfpab&Mk@x z;QNx1+Vzcdl{NEqJp(C&XENrsiYwF8lYkkLczf<*z6Q}pdRRuGhU;7T4g5uOlr*dz z;5~7@)Pr-wfx8m%Wp^qjF@p0fdH=hmPH2!y+U|-{>vdQf>AE#4V74kwOrr;d99#c3 z?&H15CE(OD?lrQo;vG>^!-XMVMN_fZVKPt^Wt;^?L0bO0?Dj;Mf5;K1<0h`geh;B@=1!?-zaIqZ6;c#P+C! zo>NBR(kSLr15n2THCapJ_};I(t=oILTg9!b&B?8MUqXQvT4LKHpWNeJ)qMl+36oAL zUAjowotujJdXmpT&(EjA+xu}Jc>BjdPsUO$W5ex2l{QcBZsl zmXkRuO1%KNrlO#A|BF&< z>v?!Q?vH3KS}9vh3ff@`l?=jXK-R0-wdrq&%u>nAnMs*D9mEwNTuR?vOx~~^XJds)qnkZX(Ru`4RZ@D8Qjm;iXzv_4cFI{qqa8H zXp+UCMoM^x?!BPQ5ot$@89`k*dL80`Tf*^;*qq+W)o*P2wg}9IBU{skTkja#wplkl zQzZ@ivg;nbO>uomGn!J*_^QRjKnSW8Iw##yjODJV&*A=an>1Z2)^TYXy zETZ-OKJ6OK|HVEf?qzXZkXT-T6y%DCioRx-k?`^kM(9wd`*FspK70L+C*9#Ga3-rK*Ksqr@ zslMuR>oO(PFpRr!lQlW9>-o&*i&$?R;g$*_IN^+2g{Z?qh9cN#<00lWuw< zYZa})WI25MH!U@4b$%dv>qk)Ged124;QJk`juRFTS=2Lch`^Ph{6Qd3Zd+UQjbP7+ zRx8z$DIhA+8bf;a>5 z>K`XOFt;KS1OThMg+HkZt*POPblYJM!3DE~-`9#`DnZF}Nc&_eDL3FSfUE`^6kKMh z+F$O@EGzMjECNw1&EI?i`+F3d=kifR_Yn_)qhFfA>c4Oe*as@LR5C-K`rgMVtKQ3} z3<`6V-%ZTn3-uIe;Ex_DV)DwBTcu0_YHxswPf+Flfh>tnj)qYoYuA76Hu<=$R^((G zZ(5iay*A3?{<>P_|Fk(IgeO1gouU*haKM-Pu(j9Sw&CPP^{Hv+thaCeZmu?rS7)An z^zUmWAMO4+d;E`TdROldZJ}p~4_vyi;II1vTMEXsM}r>$)&87Ebf6YuP&6{wby3Nl zIolUBqy8TGsOG9RCGdz|)mXm=Xs3`3=esqET(={3;ypNW;VYs$7AUbqo>-(4D-+mLUuZB^7 zf?8b3d&9W_2mBnpcfCk}#r@zIZgI+`cKY} zwZ*TwE{|u@hORep24}3f=o=;M1qY{vtK-zh)+Xxc=?(VO_AG;M81o0u zt37>-3WKG4cb~j`?9J9+&ecD;hRGuq^S+%*XF!I2iQ;<)oqn9oM1QefNs293kvqJ;h+?@_SN-fS^(W;TE8?n?sBRUnXb42vnfP=MD3f=Lu z1(FbN~%RO6{b z+fssu&QTyAUCNF2hxxEqv<6ag<05|l{4(#S`FI9kDlqXSl`(@I7P&$KCiF;rZnpo= zUbLevsy*gT(GdFVyVqRi7*rOuTehjXs#LZPUG+4_vg#bZAerbWBN!lhYs9pKaus`s z0y_dT0@_)UEDAm?g{~$3Ztm+*l(L|N-X}Z|{Dsz0HbVstzUEFux@P@=7N3R3e7`0I z7evZ-w<>dl_rC9w60$l@w!fAEBc%PTU0rh}(FSysK!VKG z85+}L$r_Q>C(P77x|hY3YGk<7mTIVae3pR_jLf9Pg!fp}Ix*@W4bEgxGzhtt`;Wj{ zGwi%w13wAWYVZ1ZSh8#|cbAIl1$%Jq`MXNSatZY5g96gb*krGZ>+y#D!xX)=&?B;!z3s{;pG#Ih97z6_gC~9;Cb=P!m*V<)U55d+ex< z2dEb`79j|Szv^{B zS)GGiI`E9T_l8AhB~l;`B7Ihyb=B&^{*F#F+0qHe1EAaPQ$s=r`HWieGsbc8Fo^nG z3;1$vrDW|9(#W)M+s1N=2G}!0Wna9NQUGOHd_1hx1pN_?5ERUS!*-h(Nf}uxuqK)r zGSWtAXFI~-80mdtF%>cJbfyRbBOoOX6WEtn2{Y!$c?!VNCc8p$8KcV=>`7*plJX@^6INIRlsO6fx179Fd+yjxL5ou_7-N6@w{@e zsabJ93JZlK2Q^|TI`X;1>%@H3``3-$S57|?N4RG)v?e4k14$RmS_&zE_+m@_6sAu* zeOMSoB<({(P3AM-7)cZDcVi|Vgu54s#Vkl>5y6-5Xd$CJ)K&Z?ZR7a4Pl7_VcVVIy z+OJP}lM7ybrRRt}#U4wV1dD^F>Ndv%m&(d|(K64ivU)-*)7@Jn4~6L!B*{Ko%pSYV zYoCu;rJqd;vl_jsFf=pW)wTEXsUo{0feNg7rXHiPe@^Y3fgAZl;PTf4Lu=3*Q>i9z z?|dSB|7DO1Iv==zl=tfO`bdzO+Q?8W?F+;ti0!M0Bn6rlNeKz*gx{mAwa++bjSmH_ z?)m8>XPr@hri!CrfYd!j5HJ&`J>A=W<)b_21??$AMoWq+1yiV{G&pKIL1= zObM+>?`S!iVE#N08Rn@oZ~|}s^*+k-0C}wk2}qMZduu2N;F3xeS5e-T;$X_ ziqEyGndOqx)9D~wMxk_Y3{-=UV5$dW;^iky&FqKo^WUtAe;nb*Q zZ6nM+Q7a3$TR3<0w(?|}y}62IrTFCoK6i1|8*mQ6}{Lp@-hx8z#oF)suuu&UpX+Cy{QrV4PP_%BI@;?3H}utI^5tBgH-6d}8zMD4C6dMP~D`NR0e zXO$9};>VH--(`=~Kl;^VgZlba@j#@eFzBDk{zD}91!M}#yv|;Hn+4unU}e{?R+orjry})cjmvXq@nN;>f%7uYH#Oq zkltlv*xGkXh;Q(J{FA_%Vf;944maeuk$Gx+7JI6hf23{WLB%~67J`$WA*brwb^rN3 zIA-FY@f(fov59Q2fZBmjSIa3@HQQVyGCSbvaDJbDS!u4f4GGk9>#avHXa3Xa-6RQL z!-xWmAE`ZWXG->6&j8LL>(uO&FS&)U&GKpGOg3oB$jBf!UY@;n^@@hIgVHMxr=$A- z!{r~Tv$}XiV9#y#k$&gEf3(C&!QKXt*nfp|B0sP#Le-xa&e zs9^1Tme<&rT$1ly)jd;5FSHZ7UYM=y*0Qz2a*JGBxaXQhkTMdBB`on`O=tI17?2qLweg|UPf|rq9}_06%|6+J>h*15#vfb@rI<(@ z)Dn?haCBlbmw(K$flso=aBXvLUX71~n8$^Pb7Jx4|3Hneyn6w$fI}7fv?G@`dwh4k zkDrSEyFC|$<#fydv5Z5%~I6{dP|M5jjgme~3&ZB1Mj|A^FQMbM&z1yAZV%BGE)_4E9P1BUGSy1Sk z>Q1dyPo^icWyPq%8yk7_Q(7G7ws@{o7U`*>jQysI{2`e-ak7N;JN*^E3~8z` zWDBiekaB{<)r3I?w3ehNSH)ea}q=~yhw;~Y|a zU+rp?R-p}RPOpZfBO=!!+C4N7y*95R9KGSYIV{b}=weJw7|iD5sV=BK-sWUOOO6t2 zsWH#oTrtdGXZY0Sb^l3<5|Wy--`doPPMaI{@-bW+GSrs9Vjd<`r ztJLHB_+=&jOv(4Er`YUQ)1 z53?tl7|w1Qfz}I-k~Y|dRVS`tOG9%=sLu8RPuVqc#j_@?PQh-_JOB(S0-`rQ+pxH< zZjO^h3U*(zMMa~x=g(kyyEKH*iA2_hwJ*DOy#8a) z;5Ry^y__34v+yH8etpxMx9Dq-R6@V&icS5P+p#$9_m^e3ReI5RQTYRU&y&|gt7+>$ z%VGCl$He1fRGwXJj@+2fc4N>Rv0;tRkHdE8n!ZsR7pJ0v@ssF1byvwI&V#Q;%knQo zXrD4{i>&J*^*!)9>tMzTj`YXxbS-vjRx1_y)=%ZzYwR|At@!UXg3Ne2#u7wMw#=!PW*S8{u-2>yC9ICz1@?yF>txuc+*i${>V7(?(%S`Yc{4QX&86v zF)vgy^V6Hiz<;xKe7lSHbeG6I*GMuCY1TJTb4q${n&o42S!s2qL3?DSxleP3Ikj0Z z6&1ykt%xbm&j@f?XLv=m6i!XFZtdM!ir(ls0~|A(qg%_({dL|#gVb0q0cIhcnSrXZ zMm6Q^wa0wK-HUA8>TKK0E_8O&PE*_comtNprPBUR(mcp3z&$&)wY1ggY;3LY$n?sv zzl3)^7-m!;^sIZktD zlEI0Akdk5W?wMmo{f_9|#0yz!o@<6X^QU%x@PI#8G?E`6vC8cC<-FQI1qqyhNRtX zsUn2Ogoq=cQYP*C<}t?IDnt*ml(|11qt5gHNY0U;xWSRlxYOfBej*+%o~{=9G`!+M z9LLr29?$b$XmF^G#IAIdBNt|FDf9;h8TZl~NJ-0`UHEZR`;^%ql^XJjzkKf)_JXQ7CLy9UW(x*zKv?anc?mmKs5R zOP8E>5}wcdKP`Yj3<^{eO@szr^Ft@C3~K&|G#9G$_{mJZ!?1ky9HD5TURqpIQaSr) zF0bBGD&puKFdnR@2lS9v{T10w-k)0dUh;=|FgHZ#`&eO?qndZm7%`*q&F=k)%3xQ%Ux>ClU-d5ur<&Aw67 zf41xbqiw>oWZQs2SV%*1P#vTL*%4^NaE>QAVppEQfn(NML9%hLi5W~s(o750)o0&D z(?`lZf{8xVw!7nrT@(ij1}Lm7-_aKqBL$Nx{ThBo0Xbs}{}LuDRVvOY>FdqN%=iIg z?}<;&J)tmN7|3Z!`K0!^bhf@;6c%V}u{XmT+N2(bg2IihO)MdHJ)ZQw&W9ybQ!Now zpd~*SCr~G81VvrJ_K6%!PQ z*cSuc7Y9K;rzV)O!OPR}fA8|^(!?P_{3Vq-+#aa>68umG^0`H=yv4=Mgp9i6mspCQ zrW^K*vmNqZbgssXUQJ`kk{|wxmnYew>RcrpCRJr3j}-Vb=>+ncjkqpT>07vPEeR*~ z^B;$0Wh5e?eDK6qJSqZDBVN}pe@(|cIQ;p>E8KDYM;=thaB0Eiy`36^hxQ})QjRK3CzbAWh?Gm`V8-q`=8Wg-hD}PpE$44An+dyY*4Y_}ZttK9=@<$bSmQa!rrXJs!s#%=VBsb356ecSHWx zYeLdYev93kgct7B!PK1GBxSOA15wid^|8#4^ATb_w=B$pk%5C5A#KS1w{sqW-n2ToM5sg+ zY0B8_M+*}CWZ%8%Qi~MdURagzUM6VcyU8XY(Rwv4w?9PbQoKdjoIv(1`q24Lopx1< zZ_yj?p;REoAR;U_hA^8S^RIX33kW;}h5WJQt9R&A-gswi^^x&&3FH+=Hf^Qr-f@HI z_UIy{8=ioG{!PHxoF?j z*{~5RpH>l$e@P}&&Lgp#bkSBmpeVLY2)ngJetWpPy@_r_AcWpc ztbMsSpUEEI*kGq@UGv4&tmb+6upMiZ_~pDo^8QiA6Y=y5!sNGOx^Rn3s`OF6G)sR` z#QF=Ev;Z7xiZT197{$FfwKnJ5D)wRTRLJ^}TNJKESFc=LfZxzM!I(6xfC)0r83_V8 zY6-*`DR{j>K>U#Az(!SAvxgK!@cqd4_|9)bYl~E#C3GUYNyOvnhj)4(GLnk_&@Jhq zJ|v3-yy!)qIZ5PFr^+LbLKdBzS3@?;9a(2`ZhX`sHjm>bW_niUnicV)N#GMq2Q@`% zRg&OIGxI$w7;I!+PDUASb(O>M(^IAtFcV~vBHgzvL&p{k*8A(N6lT(_`g>~=sqkyp zjsApU2I+ug*x z-mQC7%oT)o!GO5*vDBBoWj%rx?rr0_!GT9=sZ)j$HsyhqxpoVTGB1h$%Fj0r@S~PW z;1gQJ$0L4uj(d^FfbojFWYIM0oM#>uKsi;n$1hxq#tJ>&J$4p>UDPhkADY(N`IV`> zy;ijS`*z#f!rXXx;NFTIQHPY;QbMVe2Zw9z-J@N@XVn~WyM2z0mFoLCFn%1husg$d#%B8Zyo>BSN_8X~)nA%hdo7s&S zHhsH1^v%g?-Q1haDpd~zkJV%Xn3M#&C@bHSWBJQl+>vC3O5c?DloqTig0_S*TBs>7 z3#g=|NcYTqP;PecJi~^y##45STwhC3c4NHd%&3u0gCK3ks@~cL-54WyiAwohPYCMo z7tNw*_7=ZdnP2KIRHLNyoZcB46&YTmJvHHcG2X!~E7%3gW^zF5jH{n-+35kODSk97 zDSEBD&Fn&U^V=xB0!D#5_rSBzH)D1-sjF0m)?sPn&BAP6^BX!XQofNdi7Tl%YlH~9 z?pn3-wi<&9KqI_bGJi5Gve5C*;PJ`OJDv|!>c(^+$+IO;!7sUu8)NI8oy&9VdJv$z zvalG*E)d6riUW=_J`NJb1+jL;$bll~?b50B$<(N&#on#AZ*9^uG8&z@o|9ps`-Kq3 zzd75}MVl#xTLl31>M%0oRZVtvaanwuH#Bdb=wEk?#RFR4{6f(K zTsh@lVGYq0*mK(D`9Sw@{?Q9k#-Ex8upatLr}{}mI+{d|6_Z3tbl-3o0itr`+1x-u z6_NX(prD^?doiR{RziNu3+*X|d@X4SmNJTaNjV@V?QHf*rO!%VLPXMEuOPKMlSFi0 z9Y26H+Ea`quh9ECAQzsmxCSU`KgqYWAOTCCFF9BY*INBVR-Q9SJ2eOX5t!5uKfMfS z16}7y91L^L^sy0CNn-}rmPs67gUK&5v>^NJb1Ll{NRAEPnZK=!T=Lza8IJj!KJ=Ah zkk8B?!quk`cx!sb)kE>%2`@NZM z=z=||aRhX;PxgfLRF)`aJPFg0XbTQpp6u$fO&q7r_~Jx;FSCbw8TiR);7nbw1NZat z@V2++?&o>Zis>emhtKdRH9T~L3NxuZEegm&#kcZ`pZL47 z(c}_Y1bzLCa_jnhO>{wEV{5}$>P+3%wr5{cVf~Geum{pIf~f)T-n{EXxJ9kiWh;B~ z>TKR!XyE=6x%1+-es<^lrYrrPE7ykiI#?xjNX_T%t)A}5=Y`dlxzEhR72bvF6h$xp zrfp3(FkGT$0(RUp{4=H7$H#}zNdQEE=i_~+nnRzC4}LZY$oSbix*%b(yK50&6wR9v zZH+zOxwTTMgw_2z+~SsYB!iSxrS@d30ESXzug|f^y)I>IUL%i26n0A+KE2-%x3gY% zt!P5hr6fU<&BV3re`*ee?ECTNC77uFsW;f9d)6JZbTux=Sw)3M?}+ZyL~pijzSsdi z+0}7>s(#H%h*r8_vcs9bFsML$iZ?1vI29lp#M0@G+^wFKuGDBY^;GlDq-R|v*)SQr zr0G;4tA2jcOcyRti$=OY%s@9aecOGV35F|Xb^)SzP0+OJ4M5-KdF7XZO(CeO=0kM$ zHy*R%>hHIsr?#%Vi)v#t!DFWJWw1nY8e(aQaEDxvn+oBE84T1+O;-0d9qYxZZvPl5 z+KO(ASmy44gFM9*WqFXTKQivUINQRfA213z6?lOiy?Mqkd<}&Bl#kp}$o+bs5kWrJ zk)Wu3Ku*+jpD3ZiyT?mnuk;9|Nw-`A&Cf5cXkANTrjna@Ne8LhW!Tylynd=;jF1>i$;jv5c z$U$;;z7t#SHr|)D89kP8N7I#Ww4WBzASzrvDl`vsN?gPU9#o(u;#f~ty!99x2)pYEe> z-X&zYJ@tGV(8PG7`BKl2N2u04P1P%JfIMdDq+T-Us8Wq$WMf{>Qu6XjiF$gXc3c+( zIb1~TsDgvGh#b6y8m=W6yXe^vu9fACa(BH35xg@9YoMmZ?8jv0I{99;oF_jho5UXb zRQtyNW3OX(afP?9K4DS^7H9D^unYj+O(ny*3Kr~wSv6q_g|b5U#?=TWlLUY3T|=c2 z2(M?E=VzUrc6G?0zJ?VgPSC8~Kh6aecE5f@&nR2;bZomCu;=YO z#szDK(Hts~4QE5*V=9u8_Wq}}&X6o7acpekrNZj-GYN@KKK~%W>_IS|)Z_$(=?DrS z(C-;ACei3$&A=m1q~{uk6-(|w`!2Vl_C$tE zCEd}^5+oG2dD7+N*dp-+Td8M+rttW^N2gQmi6-C;+h|OLpkSZFG^52it^q=j*oz`( z-uDS|WifSuXAe z7^fkhpS{ke^=dqS z@n4dI5KyMy?t_UgXNemyhj z|Ct4Rk~_m?H{Y{<-U#`YMeI9JtRSj=5!fH~uJGVz9MmM7Er zvheoG$E)02 z4ZOTcR&(`(FEo#D58~_pG2`MMzpRvsaZPU;PUUY*y$m$egdIwU>!ZweeVN}q7_N+L zbl>a51+sLTmFD!#S>~svDSe5QR}W@se`t$Kep>k;y(I%(M#$Os+#x@UQh)rCacgw2 z|M^Gy$Vx@dYQ@{Jm+3WJN%1c-5P2`eGy<|L9|MuAf?ns~M8G*+2Av=3?_Aepm>d19 zLTcyIlHbw93y)13M(8q|H|s(Ba@LuCeA?2Wv6Wzi3aX=NSq_G}%50_+np+Ixcf$mY z#m+yO{qE@0uN`*qNtb`icrKW|0t?Fev>%CqC3B3CkVCGnzii6u(gGd4h2fN0xCvH3kNi>c}6m{mnOs*eNe+hWr5CD|5hL?MH+`)oEmy<{?)X z*C5_S3SLvR0j)nF1OCuQBNY&Sg-AnPqNdDDOHVAT|G@6hqL)wM>m2j;Hc`CfTgKI_ zNje91Kg)TNpRo|?Dgke2peW$t%3(65=P7hK-`_QGjpS?3&toVJNR{Jre>1osV}}q!G+5WM1VY*5J6{caJz) z*<7wxO1kk)IHBG1xB&Y71m1W|dSCaeFVLIwGL z<098^s|9?>nNvUo$6N@g*Y0Ph4ecE$6q_bY<`E`AyNPz4I_c;`ArF9L;YFs(wbYN= z_ir-nJ=#Xmvt3o!$n+Z57VUE>$TI(s^;u8qXlo0#EjmOc1?Uup96`)r?-s5;2S%q` zDzF_>S!-$o7JqKmFB`G9R=00d`yBu0kQb$cHj!%OLsq6dxgn)h6YM%ddE2A}S*4yd zO6#qau(_S=Z7C43S&&*&Q`5H< zc}XM@xq7-=OIRcxXqo~4U?Q6`IeDrzY>nA_%@@n3c^;HxH_@B+#K43sq}yxe@}00) zvK;&3RK)fpesz(v8?OEY{!HVkUN6_Su)w@tzraAVA79q=PKlfe+}lv_!Rt8IXXp3r z=>n5oti*Rs`s3EGwSxMKF|N`F$5ONcu5~?YFwMc z=~}-ivrja(-*tyvFc1j+P~70O7`5Z~bb#gIie=*%xLcGokcb~%NfpOFkzA?gWt z-jh&L<})^f3I}+U%5F{ieVH1WD+eJm2fA&so{R}F+%tMca1x8XBHswR1 zb)$fx+Q)0Unrsjr#-jmvZjdU}%#7gSU{=DnDNfF%=7^d`aeHV{Z3hEf*v*P;M}>fJ z{!*TDD-aPVgD6pJGJ`Qu;2xr7Vvg|V!}NZ`5XpD+0!E05H{efR&vK(SY24_I`&C=_ z>T{4L@kkw!-3Up6;+*{!Qb@F=EREJicbvLg1{?)1DF9TNv$rQdNY%O&-2S`@3iIVz zF-cj*OnOebK)Zg&0i$Dk&~!(IACk~4M^>o1rnJWRqZkSu%(Wdbsog`h)nG;d@3fWe znCMl>x8boh>t$&#tJUQY3o9#KS|apw-!~X#^{&`psW{SL-dqOawbK5MUagGhXF1hK z*$&fqPXP7{JTe?ih5$Yf7?+gY<(MqPR5jUHA6DpMOK{*n(3`F#NVx~C67(WE-+9eZ z>v_seYg1dg(YL4tP_2S~mdBy=l#~`KK+827wybZi*d`Ni9PRFPxyKc)PZEepAeFt; z5td_Zb#-kF6g7^rz*YRQa^l<&=SP#ff`i7bvkDY*?IUiiGj^?$zbqw1%GcNRrj&bE z)FN4{Zpxr<1E6vo zKMHDB7bL4CtCsnHdpOj3X`|A8+IjqP)HZvn`ENjeS=APEt!taAc}>&fUsB}XSs|_q zavu^Nm+?inzkF?uJ*B7Dtg+}NQE}vP}7-j%1ZB zzgZ3T8N~Xs7t%j`$*NP|9_B{8X=yb2P7B>y(7Ju|5}KxDrux&U-x9GOAc5Yl`nl!~ zix%n^lzF)>Ob0nKcxtU}<4SnE;o2}ulx&fXuFW_e>6Gj+QIuV}lABncG{jgokhj=x z>K*9qNMAc+xB=FX>v@bf3Kju29=Xi1$D$WAoGF%f@}p7JxPM(17K5-)kV`B0y0nwmpe6$@&_q1vdGbqyBLKAdaeq54Q6dvYV9 zunt-EP>!LWAGO_cd#BrQBYS7Ejpw`7FWQFB9~s~1Y^vU1+@p^E!k@tG_6rZMSGsMy z`766r$yB(Xh*ZxGSRi6FDZM|>_7O+Ywtfs$Umqc ziI8OO5v|+)D7msddc+N2wir7hfstFC+{i!NZJObPZ#~6{>?5yzrZ_KIty}Anwj82V zWpeqV1!YzkxETU%QkkK}e&+Kprndfvh;4sSw3WFNsrz_mI(n5)yAM&2e2h026vz-r zeI_J`3W2`62-0~fZZa^#j0}~J1fzBt$UjiH91C~4q!IjMVCy9x2WzKU2*T4r(<+Pn z&N*u`h^(%u5fM$A)H#Y=z(LI3zswXz#Bf^2ed>p_V6M%rE>2UIOtEz810gu)v5~?k zO>K@2LTiY~4w|BgJSXv@?8oy*MBPAnVg`?25kZzaV@uPdAXnxYiJ)~pcpU{p5SH?5 z6I44SKWi z)JPyUCQZ_S`E?>(6NtFM#tn++NhF*tCRzCa zpS2MmK;Z-Yijz>CLat{o~yHRRaIb_itH zTDMU0RTH#J$8=zFO`&XX9m%YGmPf&d8!p#G3CYP2TMV*~aZa)_nUFz%fnf)Dn@vOZ zL6L&oG+2y)#R4L(n}IW@e`z<$2j9<2Qg4kE4`}f%<9g z>d+U2Und9K?J2HqQNoGY#|955kU1}|OMI$*JFH`TLlyzOnoK1Rj_R4`JrB`XGs0t@N6obH zOH_rf4lg#cr0S<`JrkWvKZB6#JeQt*9+x_qR8rvQK*b znAc!%oZG}?Cv1 zZXsgxX8^Bia`OWeE>P*1-&`K#YN_)~Y6rPm!=H!c$;eorf(q@hKamzB<{VFZ2=fE+H#dH!mV1Eb?=?22Hzk%?s-nIBpgBzfC569zT7CTG zKUz&nI(~YEjy?*BN?mn~f1X}tKhd?eYHb`(fg<~?aFp|QUZm2v*)K2ZLR|?K1Ygdo zuU=C_tA0%7*FAjypK|e6vHiRK1mCg|@2wOZc~sxF6|h(6S5*A<`0D?RL{H_=PzAamGz3fh}PmLww-*MjW2m3aZyj9@> zOeXVmpRpjU^r|2tlN4u;N%%&HFCC8ag|{vjZRzeby}K6a=Do4mHF9L!dZe^BZwrW7 z8RuEYh4#&X}BV(M$y#~CrUSeg8u;JkOyHs_b^3ccU?cy*UzP zg(6epR~h`GEwJ?8%A4AupGfWB7v-3Bq^4R~gAEM4)(T}utGv#gE9ETUE_=EVAx@7v zqpHV&Sy?BTIQE7zv;4-jMugX)IF_8-A9(mf^H+ZfhBYD1j{qW>n6(aM`@CHWW`aKS zs?eShe0@zdZoPW{`$#ddtEQOC=O-3Z$ysQ&m%@1{LNY0x;Eiq6*lSa6L1W5|cs5>D zt)WPko5>Q#T2~mpH5%-)1&-%ctPD^3)3VyJJCsppSC_3H*+mv<`Bl)-m))&aA~KFG}!4zIW6WpRC^b>kga4~DCY>>04y z^ZjwY>Uq)5SB|MGu1cm;F0PEtFGbsb?(-*gB+KPkp*_^aFpzy?W#dxs`e-P^*UOu$ z7e1rQZNqpET?L7ltqwH=`44G+h2P@Eymod4KORrP2~MrUnuc4&q%dx!gns z-Y(0)DkVI{9AYA!u_uzEj)n_r4%N{_o(kmQvA$-j*avwI3LZV`*@}G>uVewE%0~{~y{$`)ya**|mQIq+#-Lrm)|C@AB@{xr#EbjcB%o z`LA$Jq)Kw>G0L>BK2Ojrj^B|+9m(RMdo8plGNWZPa1$>Aa`M-lmo_Eht%KYHmF(}* z1O(u8w>C`tXAC~_Zxn0vn8v=Uz*4`+Jf1V-_2^yi?>|=nLs~Bc$UlD$%!TmiU8ggn zw||E<>9%bAyjeHCI{xIK==r{+q2<-pd(j&!H0$18hY>4t>6P1}r}U$KC+cuk>yx(R zUK;3yAH6wc^>cSkrMAVcHm!a<&33 zs59<_Og!YST=NcdW;>kw%W&=Q!s;t`&0UTKqM#)qxXiQ<>PxPd=dE~CK4@L9OVqXO zT3!ONM6;QZ+uf}@UuI}Vcje3HIZ6Y)8LH?34$0?V(UegdqnKv)tMG6F{IXSOvqLm{ z^q{Qq5DTAF`ZM&@zvcuA>4e~wQ!iAWIF>n!1{$1eOug}MDrB|$#hhF)kZEIt>qqJh zql2l+T`v=_iv4=Dmn!RjcJb_OPIub+d{DUVqW*>6rO}je!>zxWms|fLS!X-`J12xn zUtD*m1tI_aB|C9UAUM=9^O6Vaa=>7p6^`V<)2G(H)aZxvdeBcCn#6qp#W4|BI~fzh z6O4EVRNpT(>+?{-mB^cd-^B)rR(3S2Mg})f3BR#*BO1Upd<`NitcOoR8Vz-v_zEH} zO=Cq({==p6$az;`#f+PJ)^*f(E;I@8TLk14d7)i4eTEyeDLc&QZP15)5uFTYKe{22 zu(sTp(y2!6>Iwue))|D!xA<>uxM)3cmyc+LR@*%A57Vym_l_SDHFd(z~u z)ZPp#@#|NR!MfrS(Ct-d_wYRI`=t^RMZ;&2pD2^FZhK9P~tIW){70vAjNuvFa z%fb1A?upR6M}6I<-(Sg=ok)>}s_&KXvkRxSXaw&)pColj7IkX#gD(O$_4oeHY8yzG zi=F}c=Y7Hfr>_hVpMw}rRl&*}*#4AClI}a2fEHqR`q;zo%!Z3K+W*n?hYKE@6iIqj zp?+E;ntZwP?dcBAq!9kG5wBCN7U<{Oci-UCwy}`2@~rh5*YbM zy+OkLEkc#7at&9wqEs+V%KDs&?laF>k@kJDT@2y(?>#?Uf@&G(iPfnz%5*glb8o7s z;;*T<--N4c@(upM{EuYu9wZ6wMHsy#8JCbQ7|TMLjYNYFgJa%5Q-}Kcp!lTR^LELx z4wgQbDy$O}KA=#Sl=>7BXVmf>y!IgXXiJC$${>>t!bDU)ekpy54OE4{YnjTQ>nwoc z_T1CdQpKkOWD4 zrgQOUy8r+G9AZjr_{5dd>`JACwPd24rh{Wm$Q%l_E|Y~}4mm}cgp`;OosbEY<}^7+ zE*ll2*c`&hVUknMzt{D<-M)W7)3*2C@7MGBINYluyxL1*&r;3)DQQ)rVY$PnZ5RTX zxI&oeMc+6hcn-|+Ha6i%HSB@cC)+zu3G5uN9I{4&{3nsXk-m6M38y9E%0+Jcx!q>e z%P(-m%!lyIoUC>>DBl-_i^%|W;qBaVTX%T*R|e2izs}tb?M%Kl!$rg)j?gf<%KV$VKPhY*3Bohd5;06(%YP#S!9P3a0j$ zf9}VMi&GZ0o@DUyhY>Wc(+F6SpwK*31k#g8z-Loqp4zHDy&2OG!-#F?LNL@%iQ@hc z8H%I`00dWwiHpXvRmS{bW>{KvuK*&S_=fM`4F@?%q=czBhW5#9pESi_N7`A4%2RwX zl}3Lgwyz2DULSb@9Q(jq8Bw;of@m>)TF_5?5y8e*oxzr94f|uDW6~iQo(tAIrka?9 zdgbD4Ro2K8sWOUV=^TBV6*v4Jc7ZE^~Xlr?LStDeA*Bc9C4+fTHlW|{4zObZ@Ur%HZ1MB^Yfj9 zO;|ztLvcc1s|sT;O5WkhUL1Z&>Zx<(dOuz+r@-w$n%XDPN-q!gI*j3DV0A9zIRd*M zVrz?2^3u*9@5eSE^eK{3UorjjJ(yEg$AkC>98Uj@(l-;ezPJC`n4HvK_Z|C{%yZFI z+zR|s!e(OJ#g(&7X7{g6I+T=n-yMj`vMdsn+xPJskxS<$QvcfPkmsv>`<3tUn4F7Z z-J{%4{J-wLSN**LWpC&mT~TW0^(%>qG4)|JQK4@JdhQK0|4g6Id1ifqW&y4KIsab# zPw8Col)Dbfe<;|#GCOtUK;9nMFhs0C@ASQFojWXO@>9RXtXJ5C*ejz?P z^-}2zo-~6@OPrE!!YPQv#7Jq~{`2INyT?!nXyWR44pM<*$L%$O?H-ma^Pg&-(fIq& zl+C-Tb$rr^R)vBA*L%he=F+K1zD<&268qUMxvN^t3_7p;?_i(%O;--&W?n0@+=m^> z?}6=mbBP0}7e`f-^4K}G#T}T%$~K-P(U!&Or~A*K2KGOCQuQ*Nf~J7pNfAo*2IRGU)djm zp!PUr38jXuJnD&9k?_K%?G0B);xzJh_I#ttpp7r&Yp%5x^b2fG$P&oqo)95L#CXtMo#M}mLF zfLiJSu7tslUw^z-xE&po!CU=Ho1gR3e_*7wF9sfA)`bQyEp<3+EEj9gS07p*addo= zKPT77)Q_pD>&PF&@pFceydD|=ynk80x!G=iD(PI^%2sy$#*b-DT|y_jNgG?;!~OQ; z9zc0FF!c|>z_0~58!zP_Bb8s2E$Jz2HC7#wiTRbhJ!P^{IdRQXFdH6RIfR}ks(=S2 zoxi>|b=TDF&zHEQ1Bw&u#nrw{voQgwe&BW2@xz3g+BzRwRi)Oq)&VYoj+#&BzCP^m zp(h?}g{~-!;yT`?OHLReY2TOl{CSMgClLo<#sZE`ga#VhR<6IGOMMvtF0;um7Vz)0 z6(zl}m)eH;80pC3rL|@MkP6Ko*#n!~n~(Amnf0rw+k`$#*2JkGAJ$&yQRr{nz&q`H zpUfr_v)`|mtW)SC(SRKN%q+kzeoQK>Z2l$aZqp7le)4JaM&;j=BmVwvp9^6Qz8rpP zw>H3|!VL#V_6xV@1xb9J2|4d7%z)up8rV7%Uh}bCSKtQem-2#&#z($a%&l!kMdSDE z$1UK%I$R~;jBF=w=6YV#DkvR#v^{;Ge(lG&d#RPS(21x4L%~rZLJwDcG9XjT1|at! zcWS(MvN!019G^y2Rd}{x!(4K6%c6db7@2Hzvg+sgvV)-;=b6FhWV*ozGO!e0zE{j) zD7cRj;gy0kFsQUwJBjceSo%|3rgP^Xe8v(1y?7Fx7NH=6I(vV8^KI|f6?fn82;(Pq z3*BcFnH8HO{}JR}9MXRMX$;FWm!8MyGIp9eUUu`~_O|L+E-N_n1#|QO%xK}~MJrTg z03Zhyx+N$$M>3|Gem}Y#75KqKRLxx4+D;dcA1+$j|q zgLcxbmAcKX(F8^I4U)JSlitwM{u<+C0IC3M&K5B7#DEjxW+TO1{*>pM_C7mRlhL8Qjc8!0E(h#j!!H74KMOJ;^^w24=V^u)G)r~Kfm#@V|!e7s}c0# z2Ga#O)9=Q5@;TwmG2Y5(2#b+#1E^T5o0Org+4>C&ba(IXhxUbGDhaSLwd!man{)r^ zB~oL06h$cpoqW99*}2kW^?PC7t@$5o%b<;l`g6M(J2r$sqV@IvyZYdt0=lyP+^XCf z<{Q+lJdw>k74>-~(G<}zA|zOuY60CdlL$bWRecZ1I^qvuybs5BBef(T8dReq29)B? zBUK7=$%KsAkRvNJ&TJ^A=%=x6N9|ddXBvX(gw$bXxY3E}!$N|ccnnP||C2Vt3-l^8 zs@LCX8!A%N@9N}V70Adofx$>&-!VT4XTZRv;dVALE5h0%^Lj_W<$q$EzjEZ9%)>@3FZPi*>NIiOr8JX0i~gWDcj`~Dm6(@r`q zPQE|-Pr-Wg{Pp@ji=p)GkI~CzWo@xiVIIqEMXz$7%w~iYF}J3=yMX0$^YXCzyx@f- zBI@11{pQdL_xiAaim4NJ0hKOgUV1BqvLV=GU^9GFw9L8r^Gd&-ZW#XPYrnOW9B%C~ z*WH^qdREbZMy0`E=-Oa*>RQkL^g}iGNUSt@|LE^Go*lXsdirPvt}iy>6eA7H@Bi8v zw7qaq#!W$BHvcdf*13g&C%Wlzce0RY1g~Gsxi^gjpYBD^!kvuV9a-Mf88^w z(=<`+S$aahFuiJS#d`CjA`mLKek4tldARXUj~rw-*}PM$sqDNf7e(_v*K!hX+*&EKmNl@v>ipYz}JUSqCL z$b)b<*#YvKFemhQ%uKoD( zrvEh2I`^iX%m0eM`SmrA2cRq_PBTyPUN?o@X*iyzle&Pvs?hYgkq?%XN8_BlWse^# zudaCnZ4O3#=pW(_4x(PGuPs%{t(29mbfu2}Q&Lz^*sL^mYf`Se*rz5J4S;gcS)B=h z%H5JQS)G}7cE(;6vb6zmb#S)@n#CHB+=HeVz(W$M<>B&hfVgzH_e}6(Wl~K(Ejx1M zg>2pSla;<~Tc6(G_KP>?mH|~9*Q5OrE50p(mW?cApuiT?cHld~?PjGT-1}+)KD#>W zCwF|Q*g3O)`OCTu58sh5z>`a@J4sOi0n2|z?ik%YHSR_|Z&gzA1i&f@jFO*vi`Zj; zOXyY1O!~d?ds!g-wGJlD=(S03YV2+=wf6`F?Q`59=P-VZRHB}aC0@mj$}(`yQS z#q-Cm!&5ZkmGIqRoz^-?V;OKXs);Dk-&xsrkvY4vUOU#i7u|L3 zbx7)KcJaPiCVyt@cOny-=OgM@$~HT1-kOu$Ui=U5CwOI>Xlm1cOdO>z^_&5Y9cC@O z`05IQ05OHrW`6MnD>KpZ>gLO0B2N`8{5brqv%6c)qUiMMEJJzgG5X<2{i*~6gCN8z zVCjc=7MVEeg7HTfS<9b-tV)2fwLcE0xa|~?)#=<9Z@V)uGSY>Zq;bs8EdCN3@9?)j zjL48q(dy|phdL@l48S~gxAZXHxfx*JyrjYM>us-!ci%;R`dJ8??CDgFz`45aZU!U1 z)mW~p_h-H3?)Q3+vUa=w%iJ;IMuc8qzI~JB*E$l42kg0y=P@uZsC7|fCatK*$v2Apd4O{WUU_ESR{hS@aYW|xNrM9z>=iXHSX#hLL3fKbBg1;Xmnhpf z9|{fwL_gc?+xX%erqYbo0%+q!2N?OLtq2TWH{y?hkLD^v+Abq*M@Vb54nugEZq$SE zpI3b7d&u%5PRUU0OCmD9?-L&~g|kAnD1n0%(p+yLLeBwx&y2no4VRB&m*|g2vIrr&VXc;SkD!7%1W>88)nk zt~>CWC@u*%WZ$2I_vF-@VVhc-h`HoMjb0~ya$@3He&Vpq{@X@x&tCB@0Dx$5(JW=_ z7$cNCL{y$t%s|7@EM+)orRDVSIY9h?QK3Q^gG_`tu>}4I@P}bWZd5bE-hIQl5e~ru z#6A@-7zIwnJ zNDvWlw^G6G%QWu#&ZfD<`#S7LnsPcR0|ApaNjF8(bBafFYgZ>lsChHTNA-H~t)&j- z)sAQY0yO$eng1<>wt3Paud1K!kP?qM`{b_D-F&5cUS_*Dz*PzP~_B|LdM7UMP|DP5-xq*@}HqXhIGrb4+#3{ZyJuoLo)K6 z?xx5IdYy{0@A&G!-;wjQVx;%t6mj1XJbs_C8(WP7qbE_kZ$Rk*fePbrb>rpGz^Q(N5k+9Ag$4b*+3 zU=3l5YFT=aelYW4<{g(Fyw}5h-R9Zpwe|@<=7?8j%4<=oNZo}uM)h^oTqidC?$U#O zUEjsR$hQNPUS8wUIXfnurr##DF!tal<&t53>V!J)}U$QXu zN{Pig=&{$o-hFo2ZTe_J`nPI9{^isk8Op^}ai2CZqeI=RpO5G}#~-ZKMt|yyJfkv~ zasUQk++$UJAu(V6&kJzIKjjO@Tw2q4KMqX@q%`o&umDGXMNnWRlo3^d!0T6AEi~4q zxXD~OFJg(zWES_o4J+&I+53&W5eU_@1E*=aTO3wy#M?|Rlr6itl6Ijd zQOR_tMuBMy@wh$Nx5WC3NOjwc5c}R`Hwlnpv6S_=qEq4i9#$uF?f$#YK)G-D%zqF5 zmHH)*dn0SYhWO0@y1@9zE_h|H5<>#L-aByf*4oB3lf{w>en@0k`5f-PhO|Xni~si2 z_!7*A(YwMASLwMm<6!lrr)M$9m_GxUp5nR1HCYW$KJnttngk6+P5jK;+}P!~zLYu` zw)MNBhfdBVdkPM|W;!Owi(PS!;f-LWDaid*M)2xpzPB`?fH<)9>S&IzlqV9{v^_Mm zD!Wy3D$(c;>^g=*OPx$srLOk2Ck!aMD10WK5Q_UyX3 z&NaFsrFOkU)*zdyca!4kw>SRxLzYhRsQ-!F<-*k;Hzb>8XXov=X4(c$Z9P_xVkMcI zLOmzt%E7$z>sC3bKd@v0oP&!?BQ}PmwJQ@GbS$%V!Ze=Fu{1OLd(4PRHSb-Q3jAh% z5KbkZfx)X`+1~a{fyF(}#zN(Bv=LE~IDF1l2 z;9B{VdamE`X-6$CkYpzU>4MD>C2!*)Kg*_KFoLf|Zvd3T;-kwa>**OkQeg3kY(BVy zIEokmAgCv$w&uGvRHg-H)w#gekC_cQjK2}A!(KRcGUCnFtop5W0}$I~-8>cLU$NT; zWf_y1;~XjZ98_1we-2iK`xbXycK_cFpNPP>jz5wX%8RF!ca*FTzAy4rIdL~{wnF36 z?A8M>x*(r1sA})sH+S5^FPui$AK0BU{hee@@*c7`R4@F_XO$iXs}L{g*hCkc^!n&e zAqM>03zMY!dZQcwNn%7=vEQpnz-Et6=ah?O8dOfbci-)91A}ED(Gcw2hbHEfeSsA@(fiagR)tRV}b&x7?5UAO{cpS5r zfp_)OID0RV>Vlz;;dIJK+cTgp7KoHXs{7k~2?7#!L($ZKA);zRM$}XWJcCCNO{0?6 zhgN^h{-=chYIGT*jOmpty~rNN@k;bH6S9hZN^D)_;e?*Axcgd`$R80%Elaew=l%@X zZIBML)*(7sY5rIWS6R~umP)}h=uZj~6TR*;nVOl+BN*Fq#*+IzR8V9gQRCBRO4ASj zC|jZy_E=X(0NuWuhexmIw9XQCoG;;yh^OOliU!k5L3FNmX7~vX>aLO)oLGdIsv)^8 zxm(@u^Rn@8fn5r92`tU8*yDW`Ra4Daj?DBrMse^X_`g)(yT^M|V~X((CHco4(Pv>J zeLN1&*AFG`btwNa9>~Pli@qmw1z=hW3ns7YZgA@BT$086oF>8yZ90TE`iSls8|{Uc zH(1f@Ch9El+bsD>wf~}n@nJ6X5%s0sM`x~2&wH_UED&e%PKN!Nyk!t%k%y$RzI_O* z_@IhXH%PqVxRBkg5+`zBluBEBa!FMecRG-4xo1gqTLWQP%C$ zt*g?i51oG)9RB-CUx`82P5ZJ^8TAjFi$A;1OwZoy>iRVn@u}?B_v;n)eD#}kw}QFW z($EK0)fn}*0Mb%bj-c6d_Wj=OD3?QHUzTqzY^MJD(Xlc0)kadvd3}`QrVj9Nzx^YP z?`3FScS^dU^{LeQe=o0`bKgDktzT=J%jM*4FHSJi%efD{pcMeZE>wSr0f!>FY~yKn<4kvaZ|zi^}Ush#8-9vQowE^qw2b;|nc=Ro_e_ z{hXAHZ1M*=GY?LgLOD+*yl5lG!Vc$ocnl5>S{4M%tVOXu3Ikb1{Rc)eKJ?m!?)dwC z+1#=-D3D`j=WmUGKIe)0wL=mb&kF?p8i5cYHoeAfghGkHd3z!Q6U5lS00O#tv+~n# z`}^%iz~C@*$gjqTn~^K7bFZBa|NWDd0%hPmiW%W_0joL9G%~NVE96(-THQ3u&Xwsj z6tQw7m_!gFo)_#EmSljx)-G$Zrq@cd-T^a5JRjJ6n|?Hi#x5?QN1s9a4%JPo%; zqdz%Os$g&Ygj=Czm-Ss&xvjAd#qIW?&CN0okH7u4I790bQNO;d6OZf83PX{9NGDGX z%4q#^yJ$wVYr#Uk1pEuZ-9s>#NAi0Z$ai~BcphJv+nA*MN{*hoxzQ0r>KiSKUTnM> zwbH!(du4k)Cy9l=U=^VCSS0uWm^x#rY-5QFXrR=|#~!?=RO|S-!IqiywrD5WZ?Cz( zLH%_*EZYW4BKTAE(&())D@QoN+;^|Vd5VD;zxkw0T5Jy4M7rbXBY7oZt{0JEk;#j6 zdDpC-lPA9lYhLJ3MjNasz3kcJt?=|8U|Gbc~m!+Utz={caG~_N6W*}yUg&u*cl;&_k?N+`_Yh|EjJt!AM>E< zaW5mzRJ{CiFiT@c8Zm>cdp^(o!=z&;Ijep8Ur-7u{& zfw(C4cGkUkd^Xq??7;;Suu_i2%CuKSca>}%Z&&@*ApDnY3+#h2M)E~QaqN>4Ma1G~ z*@9Y^-6hkM!oSnF`9|0u2X9#RqX=EQ$~52t2vRPSx+Pj^ghnZg0=Lq9ATz&Z~o6_4Osw)>AS^e&g{8A9O)}h--{XYXrpnfvB7|M|7Izz#1@tGoh0q!PP8=Z$Gn;vL@TL zz-z`QQJe?lJ|RkrF~;X+)<_f#_3RZV3R+R1MEjWxj%oLmN`>N*R3#F^3%R`)h|Uds zb82MXa48}Gm}4?3#J!S@{v<+T#=2oIy3@?S)85X;{l4})m)*J^LwX+?7w=}tH?u8U zICt84KtmC2*c~(KOE~Y~xqm-Fg2%qI<5z)zAoE!n@mxt1f;x$KFNI>1~y%^8Q$x6H;WSoY; ztBrQ~pec%Q@WpGl#8hYE_yMWlVim_kHO@=Gd8R=14Gav#VE285+-7ilAytNOR5@d3 z`B1Ym7NLj2J5Zox8&Mc4`!5k7led6Baat(j^`QD344tHL7Xj=K?j?+)X<4$7qUT-z zKJV~9Pfrmb_luvGeopWQKRuqiqoopJ&v7!E9C}6Ma}O1AI}3f`zSmv+p@MMSXk1oJdX3KG{tV4*x_tcio=Z>!+Q^8X61n}+Sr>wAkcv0psY2jh zHXuh1v1;f3+BIh!?q8$URXLE|{A>=$JetnPz?FgKFFjfQIRZwFkzHhFNL$hL!>U3A zf@ibj#X3}yRYB-sKkdiwZrNSoQBpC=cz>vBf?3pT0VQC@aIWqvQbe+kziQ1lw+R91 zlz5Sf-MP!-JCT@1zsFu(53R}iY8KC4IjD)IFf}Yo{a988ZP#WJ9z18*wNzL?JuG4r zkoPcc{aw1!*(W1o{}gDnO3Y;w4tOIc_Xn{GzP)bZKZ$R^YJB3|IveP=(}-@=`2C3# zswGOl-E9iJNsiJ6A*+%$l81H|Iu7H1!CUWOYjGkR+juBTy3tzSg_I$OLMYmT`$ zdC|%JhW?5Mc4PptbSa=Bg%LzKnD)#xvq9WJ>6z2L`7an72GGsyW6x!T$;7sQ$a<#C z<&C7BH8)mv@b#k@yXEGl*SgJJC&x8Qtw6Ef5J{VTG4U+?)0zi1pW#ioFU0N`S(ZtjqNOkvQ}}2;1$_R{8<^B zChaCd0VA@n4Ke!pWOVQj7=WJLEA~8CQeB~ANpbcQXE4t_IGAItLGaAVe0`5H7#37+ zv@u;jU%cM@O#eyd#>P0eV|uf4FmmzBMAuNY@h**9>mMlA(C*pNisM0Apg`5SNPD9_ zQ@5=SU`+0fXs26yBfW~4O&YNrH%C@_>oeCt6qidp&(-<3Ir6~vIrm$tmZhU|g3d=^ zY`CZ|i?q)(4qe_Dcbhe+Tkkw@nZE_to_(Ww9823c|Eu_WDc(d|{)dZVh8U`Uo;gs} zcA8&78BnAnGp%RWb6F$)B@_RoAW( zjEcN~@_}8C^d{(SQLl(d&vwnecP_~&i9i#(Zj1~lfgGB3xbNP#qt(*``ZPkD7=lq* zZVST)!uF(%)~clJ8jj3l8)vQw*XK(5iqpRmRa||=b@N}hJ)2_z3h&n-79aLzKz)0) z{?BOJb-<<=DKo~H%!+jZJk2Sag^&;ZrG20Yqc@ITiBBbyN=jPOEO8HDW8>4luzW=E zTggdM^rejPAbpSAo3d?MdS%Wpj56Gg7dNU{1O8}}^wV9xmmi(6b=C31?}W2ANEH7D z{-u}pMPr%;3g$H5$oVxv`)d0)P!%tFDfuL?ltk%%xEtGYU_d|aW=Qwk_Roav8QJKK z_VUBzR1G~e>am*;935y`RGuo9`Ez<8k_umeG8G`#q9fk%aUFHlSD$B0tmNiwmt0;S zuirF?S{+$+qTy_i&n5i0w(F(JZDyR-fSL8E+==F6k*gbyI;&Stk_@s-r)?a~G45p( zniF`bOM!-V-GKDx<4Y_p=)Uo$x#x;E|Ev185@2&Eu;+uxe1j5y=vp zyjmXaALZm578ZP1BPjMx;w7h1rFaU9A3$H}uH7q%Jc@>8zet)NiL;gHbY z4Zs7I0sqxZrVWB1NAT1s0T?N!lfh_}N9y2|ZvAFx`Cc$!ceuHd3(LE^m6}NPthx{S z=Z8(-z|3uYax;OO88hMb`+a&Q&^n`+r^*%k+QNKn=a^39B3tgZ+{SK)a?Q-%y*zun zikl~E{|tX9v>%Gv=yXkWDt=sT60!W1IVeoo#00swHTA!*pp#FjT(3K0EDgNSCTqX0 z0|(v`Whi_jhPqZqUg@W^c3Jm*bW#>!^Vq`~xK~UmNix~MF$uLJE!~Ui>5}2&!ONj# zxHHh536xbZAnI$M2z1Ev>Y$laDsO4y5MRZT|Va0VMT(1!rRz8U1X9 zr<#iBClmS8HGO@+0I=RBtLs`)qTqb;I|+8RGhf}weJHB}KNvba-#oYZTQbZA?At#& z4H)YpT3{J&@rhZ!CEXACKoGb;dJxIx0e`^Sk0oy2)}KO?t;ufw78JSvXk`S1riA?i z3{nU$2$-)Sz^8{at})&mtgK%x0S3&_Fg5d6D|qFEQ`8>3h%>Wvn)<3&AY|?_kTts$ z`eCm_AGe=Yoxb;Wyb@PMoUCi@A;`}N#MlATyY~pp!m3@w^BhXM14q<+kTvc$_ZY{$ zG3hWw!5*_sYIcye>7l>#zu(TYtQtGPNh&(}wnm?uZk~QcSaKXrw6z4U&;QWllwDEK zG$s^Rs!iXC7~IvUDi`XOtT)FxC?}H;hTr4h$A}!-9VvO{zNg9>tVN}SiJvB_c->!k zcg)XyswSQ1&V1a@GX`H2agW8Z72G{))xf*-FfCNPf~D6%rpM(WaQ|Hb+Wy?ui)b>- zoyA}=`$O8oA_9LDXijw1{h2b^Jh09EtceuOF}*Bi8Y6aG2#N>@53J+oB#Q;3N_)FXLv(M-3NvVStxD_9lv{OneC;K( zzN=rJ6?k|ZkQ0@J?-w8n!Fl^9Nvmu{@@`&`JOcF`6zbR)jKncCmtU7Fu{;9M&w#B*bELD6Dn@PvsG3zO9R=G1q!l<_K)<$q$Q z$_EBUFZLEqYu-`7;}}-DIY&AZ7hpJ(x|L>iFUp7Q?``^BQpPX;jAZIQSSwW* z5Qrt|KZrJVPHHJdbL$_$js48D7iIOIh^^r>(TgC7`m0OFz#=ak>9OK|R9RFvMYGF- zGf=l3SS0z;?1-;Crh1oNW*{riZe0Plw{m)++m=kdB7F;WV<V2BSACX_nR^Fv#7}64-pfM&E-kfFHbGGV@LUQ zv!qng`|r!%vcZ1I7@6kKsIc2gB(ilRT{eL=VIW4nog8T*!U`k2(}}n3D^bh!ME@X~ zxbu^3Fzy;VXpPd`0E#5$_r}NR>EeON!yS4-Ij7HuGL0@aG3G?)8L5eHQ);yr^0qg+ zw^vi679*n9F0|**8IfOQWsm5>QDQpmsj30>a1E~zN$QwdxmdmevIS;#75E_HBc$V% z5+{w+Z;j43FFc#uw=~T?ln+_)!4rKosCo%X7mrLJk?dn#);iZ_)^+aSe}8Y^BUgOL z6eSK+#W%}fVGzACdq%4j=6z2Jt07LgE*L$=SwJEqGtD31TpfbR5MW!mNU%cDzRzto z=517NFGg>a)UR&dtXufRVb3O&dAJV=w;G35Iioq`BE!DXhhX##%gU5~njT&`5WVz! zseZm}b8TqdIeGz95&)8sBGbpAen35Y>c3wE;nai;*4?W4GrF8L(3jyRxc1XwZEAda zWvI@rtd-D-b-(9+kLYAA=3i-2S5y6=ny;GLy)>I5g?I=nsJ>y)yc$9dJDN*s)pUmS z6==jOgzC$*{J^e{){fDw`RWIdUIjX>&+Ogrt8e_eETZysXqCVHxku%bq1c~f^;@po z=-&%nsSX4}gQ&G1a0V3*PBxAQ(A9EY z=UpCR;RtqLF$Lh{-X|L zFLRg{bFV3O`Wf&hH?x#7aajioE(S_aX~ODeUi@DLASgk>?9cEz9RuBE?dZOnUpvMC zL&Deh$&ob}!wX#gd?@XxhyZFv{lvexJBB5Xg6dhLYFr)TjA+>BEinc8dtfYOkzL_<+ zdyOyN?B%Kcs++#Zv2khPV6l#z5BBcpBh{@6CHhhtr=_&P5(las>*<)BB{haE@yRoX z<&v+3zj(jLl0HRLN?B0Y_ovSs$~e^I-zT_o)L?rrS_&oQ>kBb*g95$X!-G#}y;*c; zGi&0c%tSwd4okrj=9r@>zu1<;>0v2&Nn;OIYv*Sf!Koi@y{QZ$=$lR+KC3l`ix-2s z-`o7$*K6~?mi{0Q0`gp}ikt7plSrC;_el!bl;%xkzsHw&)YZv(^3cu(`)RRYF3XOC zVSA)y;Kv>IqbNZ4mcL?$)jHjfy*C<&m?UCMaW<{}eL<MqxF^9NJLArih8C<06pgBm zD6xXb-)SIjNtnjeNF}l4ANB6>-sedZyIR0WHzS@Fhokf*QDSz&)|M;4NL7te!a^=8 z!;8Y8Hdw}93;#1kkAYX5_q@G|$W1#*RA$%AD^+yI$U~m;X z8Q8Et64Jtslm=O<{(jv5E*pI(ReDE;b8kur7yAhrToczo_ zrGIDIOOZH!+}*PyaV*_BDp%Q4Ar~a9##*dPOQ*y!RIQy%LKD{ifWnU32=UlOkyLf# z!680>&?8yv_RFk~N_fzM=M@{q8Bh>&$UAZU_yY$0h3vDQ4I>eHJ7b)9lFUEMGO{3s-N;lS}t_ePTX%VgGLNt?e$ap=|5J zXFLynrXV0PUMhs3`3re6jva1JTH0LtcmOjuQxo&PDArZcOuNY9-zd13g~z0{ zxrnmj{8PQsBY?N)20{EDs>-J*nDzYxL{vpff_#%XUi*fsXTNY%IYp+7`d&){Z>VuV%Anz8)!H68nPi$cGllgNp zXescZf>s+W_-N_vl1?bT4c+{liMw;>4o|zpez~uVuZn2e&c3|8MFAX@?NoLUw~!aa zU15zL>#FW~rzYumn20?Vq>7dtQE1-6s7{1|6KjqoJCcIwCB&`2rE^0Y>LPxX0|MLP!c>XwV)y~W%^<{Iv5gnP$$96n>Hs|Pi&!^K+>ZbE3ZeVs~ zQqW=}9L2n$!n&%(M*@_F2j9crR%gG+u(8SSZN>$b3YUeCK+?(1b|9%Z8_`o3nuFda zo))0A+%~>Coo%u@IkCOb1YYONH0RL|mSj8A^Rm>Aid33T0E+)tM;ntHFD;3Hyc>fl)Z)>@kv9C?I$vGAHpa^#RE z<#J$FX3p)`&c*oY_u74wbh_&c>${#I39!S%L^>_Drx)+mtup(KnZW%k9SYK3S$#^v6) zn^fMNpm@D7+p#ZyI-A96_MCjEC-o@S%LXj&MShGP;|paw9$vnD+1`4vYrM;3>o*8u zw{!VwFf2+ZL#qkVb6=Wwl_V=M8FacvJi?r@XWz>*ltuj9 z4k_W_`^P!ic<9?X+|WwP%bQj4!=|v~4(of_W_k-Ct{{fk@8H;7tKjI+os$HtQ`tmc zYzuJisSrp)Z%sOZqG-&6nD-B+E<$VDK6b>#aK>aV-XkpFUjU^tX^51r#57z$mV z|MY-jx5+9)eDZ%i_8PwigGS1u824L&m#-*+QQXQ^&;W=@SIxd7s&iiL$805io`< zey_cXtdnd2Jy_IV`rrYCp$B zxS$jzd*wI#6uhg>nA*(evUC@o7hr?HRTn@Q z;bN8}CBaHUj3Du}x7CK>MARoY@N0__-(WC~hHZMqyD)CqiXBGyYdn^7GbdhJ5 z^nmsKTkzB=U2>P#PWaL1r-mz|$FuEq)KwnWz`DP^&=RIxG3Q1W_shD&{x&Gr2=;`k zpNigkR7Q&W+1OkO)_w!FJ2fVj!*y6%Wv!;4r};8m`F&Pr-H$!5R=7S^+vAkUJ3cV` zWj0X%wYOW_H%sttf80_kO>N7oujS|7pymrQe2esp2Of;orlxjP{QHFb+9B&V&Z*gT z=vG&G)Z&5YPvgS&@0L@}b_)CxmqM-+^LNzU4d4B+xB zNA4vIl_y*-sqmbvoSuJ?Y7#LK*uB#12A;HX;CET|qKHnEHj4-D+)hTgac8&jMm0rQ6+3cVzVWlFiyEImeun>pX7+ru<@3BWO-a* zCnEg!pT>pEzPVE;)_;sA!>k;t3e&B8rK?<_&x*j&3}1|8LlO}2jGgCwZLze2cOUo$ zlaVo(XzUNn<3T<}CA)B(zq@gVV@+Gc9mwX2=8l?PKO0JO-5@j_)dgF6za0pO zG)x4`d7bpOhaemiwqRiz2G_mF24I%)EaC7H@BC$vS&-l0&dEAxc~>6Q*9+#T9neV} zJ<~>8+FPnbE3H`rS#YEP=)F`QEq#eE1y9ZgK&~>dR|y(eulK#QOB~UWAB$rGydnO0heujs{bNMPlBiL& zSWT$BA(+j+pVW60Gt8kS(xmLzAa$qI(j<^EKtt?W?5;ehZUiY=NR+Hy%T)sQiU83# zLJ&Y=A+QS${{y6kF<}8Q1u;XC32fj?$s9-+RfDTwA!)2ek@H|SBb5sLU(`1>0k0KA zT3izKgw$71XQIZJX6q$sReS|abUk}jVv^2g$|VK42d?B;`*P@3(*9!)`66d*%r4Q7 zJCGZ|plNr-tBOAKw-+)7vb`5Xl2a}tkdng)UEgPMiAKh+6(wp1hV|32L*@aocQG0#{{hp z!S4puWos^J`U*PJd90jTO7H|7O5#xE` z!QLya`=%oE@Q#w^LrYrp?<4+h6fM1T_X$z7a#peLgV4aE9<#EE)k+6eP6d}#xOWzR zv6x&2AO}{Rb(&NP^x_%caGIcjcfu|AiRMoR-bGNOjqiA9eT^W6(o51y$|{67XLG3M zGmoB~Y#RxQ4lwLr~ixyRQ49E8);ISH_`W0546LIOp1TBXdcTR22 z>)wQGP7X@Xe>Hd8_AQaMbW2G+0ja}~|1QG2^=1&-U&7&o2RS^|6{7rF|oAQ`= z;4M&dAcS|?+b5g?#vfm_fxbZ%dKdh?%TS@4RpxU>u={mEey`3Qw?iT}{y+MUNx%i5 z)X1yvBRHhqG$`H-VC3Ib`tQPcLS6I~>S*-hu`hvVQA5wPX(lD2#HSB12PZc3HfFlJ z9k)L&I5$00t~vO%5P@WkN}IzHHOAbWy=6o1wcGTKzDdUsJHlK7JD835Ok7{Eb~^dP zgq_B(5k1r{C~1#F(3v95J5_rV`1~lP^)Ni*((bsd9V5LqwqoTXOfG(NX5&6Id+FO9 zCDBY=-L0*f9&KSU7iMua!*iy~zBhBCu;gbB0OGL*fYX!{<^p+zzb_IK_q8f(xsoJ< z8QC5fT4T;_9RO#yZ>lNz^y*mvgE^M?sr!s=^^=}Doro_dl;3Q72Rm36_702}dXXI6lo(}2NJX9RwCWXU+8GB2}c%y{ub);;s-&Z1W_%e^$t?TtGlF{3hQA?YZ>Q)a< zebi~i`CggAu}i>z;aj2P_3PQ(Dn5x1#uXhyP)4w$p!<=$S4|zCKf4UdOI&4ji>LS` zN~KYb-x)#=Lx6Z*K1(Q9;~GyqwBC`EWq#HjB<$OI8T77&950mwH3TdkL>+O{0l9sn z{$zx#}Z=~V>hHsT8PPHOUaO7C>mlcNhR45MwTJT5*cYQ*?-sb`n|sW)vG_`zVGY4 zuj@RI<2>FnP;d1<5OZXEM&T+VkYNf#CsPE;Ftq{sBi})ty5m z4~>)R&V4-5`gs9dM`h6Ygw;Qw#G`(BB$3QM$i*gW=QT}>hLzD?|2xno7XNdB-@F72 ztyG^9g*iBw+D&BpF%}+!l9isYI>jph6b?`XpVYEfj$*l*Q}6e6o(`xTVdoGC!^u;< zH+Y=wj~1PypjkZ~C3^aC{^O#9ES3E(z~*Ou67{N zKYsVqj@rUKygeNHeDU??_XGE_;#? z{#T#x1N$;G6!^>FV`{)-Hp*kqT{*a;Z7p@>hqrZijkRh|+tH?wkb3;Rmy4>_wI!3m z@ez_&wcmX!&U~v7=d|wFJYWyEDYpt@zXW^6W(FboG zu>T!d^(kPxFU^3^-F!WM>96OV5R3}Tzpc>3^j+~!Zm>?O_~ox6=;YT0^s|tF@cPCP z16|g)ryZKlYC7(8+;Q9Datab6W8)eZTBQ>b58(p(G`hS3>-|##HOtuwB>=WC zUg@;H74q26az1`wf6Dw|rCY4lhvgrC4COuehh(4;9?w;XEbHdz)0ZP>@)b%-oGb1b zQL1hK6Bd7E4i45@*W_mM&d5iF$Hn9oLO*M!||^1+nWP3 zJ#PJei|6Avezi;zyR}aYA@itH6_g{6+8uVPRy7AF=VN2z!=5D{{oy%K={Ol(eH-mM zKI$5`7JFuOzU#GX0nTLSi1TlDH6bg1&zjV~oom0w_*)SK$1*yrEP7`3*6OXV8oDnI z{4dqt5cc5iQ1SsetI#)M-xS^;z8?(vB!)3DK_r=Ak}dreB1X71tokw*z0AR$vBC)A z1wNk14!a-1W0;u~y&F7~h|Ia_&1yXNIJYS-e8^eymPbs4Rt$mGP(4BmA@Q_qZm>6F zJ6C@Rjv$~Gr&a&{vS+cZ(Sbq#AvDcjH&uh`fq<#aLx6g9~-~R6M z<}rd|r~bFtpn2rTz;qMG!lm1L9Rerus!rM>E)RG*m^qm_P2Ze|8(grS_jQ7z6mxy; z>;)t?|BP6d_$o043cW#}+*7^7N4I|Rx4%1s zdh%gy!L6@L8mja79IzFMwm$bZEMh1Z2BA;cvmWeRMWn*4MkE3bIz_7LEO0?Knu&-D~fWOs4xX?nTPx zzB=rEI2k7Us1pgB5kkO^u2rPWzuC3x|HMbTbALWDuhvJ@fr>7gzL>ErLwDLTGoXt(f;dp5Zi3!w)Zn90p+1PmwpC zkcATPl*Ong zp)$JY8=v`}8bs(5cQ{EH7D6P$UkDE6+km3@@{o^ zoZTbQO`>0f8rK)m0K3M1Jc@`LAH?Yw zE~*=Uc-qV|FuFcled)UH>1)NjdgPlYr%Y<5>56bmy!jyn83r#(O_#YU$I9~yXn|iQ zp$dxyZ|{+lwM!;t*QJnbb{X!5ok~VRMabd@GvJq>OWr7izqK%y`-uPF6L^xK&2J1D zju1z}gfS)smUhkrLx>$B4Nj&Ty|dF3Bz?QbtL9Xdw?!dH5c230t_*V3OaUW+%&--% zn#U<0!UR|j=v_U!t};VWD*3@>)`Tn51z}K;3L0GPVN=J%WqOPb)(#?Um<|PiUqm{@ z)~!^1_#xsEa>^N_E?m{` z;IkL(FgSZ-2w6MD%&eFWS35dkc+mze18&nJzpx(k%{HOayAVZ!@O0!gZ^dD}5bSNn zZIHWbR;8Ij&i-&D*~kXFy#Mr>ASsbFHO(ZkWD^&y>Tp-3Z0#fVVvb}w8Bf@sq%u=o z&FP>H{!RL}Pf%PCgAs&-RSSWE3xz=Q=|KBjuHA)sKKTjy%o;HK^pY>@Um;}rB}a|#0>=`dBy*e z7377^g(+lVG_x+=##smi-z1Uzxa(4RjrZC`d48r6-%Z^))xMjXtK804uy5O&OI{@? z3QF)=*}R9-dPPhev77-*_VekxhDwRz-bB3)!bXz0^%_%p0c~4Va^}=Nx&AHRsK#-} zrH<+VYD&f8jo9$G1LhB8Rye`o5rJ>}8h)jfn2Fi=T?x>h)HyyA9-=xQ{g0KIf67Fl zGWn}yS|ZlMHbHy;sYAR}$yxPKGv2WCD?Q8Xa3`_O3ygh?j_}O34X?V(eV92Y2)`E(HlLkO^OVO7I=U=W8hkH?RD**lq^t|r50`xK}J@$n3l-zS)T z8AD(eCw_*15(WK)@6^bH|IBczVp3orC*NbX;ED@deSB1U@C)3+Mf-Y`>md6IRw%Hdq57 z$8g~5Y}0H14<1fbkE2*92<#fvt}V{Vn955_5t1o1`@ZR4o4wxWTQ?%D89N-vQYi@d zu%H2agByL)n}6G<-s49Www^}9{&nf_p4I9*g(9F^z4^V?22al!wz$z2H#{Ts@*$h+ zmGK+RoB87^Ou$abY-(t-w;bObW+{HjDf>3n#fZ_XtG~w3n(=*Hw&!+Vm0pwHx$cgi zk@Y$TxgWMQD&=Hwep|}}U2B2=qGniKxVfsVN#B>A69G=3cnC6;`RsRxJU1pb>DaVh zK?j4A$#3*jcL&zm8r&60SXp;4uF17DTWzsEzip7PD3&mz-OStP7UNSZ5!Q{Q*S3Z@ zw0NJ%!a+l$LVAh1Ga4e3dOfOc<2pk#cIF(51Bp?}C4Ig6Qf@9|1=FW zfARE7B><4t%5Cq=$S#HalauBmJ(i=LhI}?~(a3g=#r+dot8(YL1OGRCVt!;K%8Auf z@Zn|0&!sg9S@SsKK4OVo-4I)I+rYpP^Au>V8>|G%` zUD_$O>as{wuOjImt6blAukVp5fBIZ@oD;UFO#Jl1o*L{D@dNCLpDue~ral<5YUl*&P>#lcL&SnKo4W{V* zLyxaK4$!v6{_tehSi5nQ=5xZhtUy-&hbGpD^k6tA@Pj{^)H-pkxbWxF`#_f?f^@BW zw#rkh!N)h^mH*q(SNSE(>$+}v3+ylVI}}kagSk^w?b?L3Kipva4FMx4V8>4Sx@LuU zwkK98HE-p+)$5&O)v<&cnf07s6)HX2V8@>60ogwBUo9rTiY@IHE6J2EqecH!C~(^W zNXhk$gw3tRogeQ*TyMZW)K|z60z9D-2&9S8i!7tiUmIn2staNk^WFZgJ2ox<`s05l zJiqJx&fm6z8I|Vx`2F^mPpprHIs`Y5kB^-Ik250f2v@bz4dgT#Y~FKQ&sIoNNh_(N zT=gaZ$b3dAZ4V*9O0T}&p9{ir$-@O8B$nV-U9#>M9JC ze&Y$Rg@V(hfu9%9 zWm*-|R5$V(*OnrGh2_+YFxeH-5v%|LgHqMm0YEV0HR`eR|K|nxyUs!`k^BvV80GU5 zugd3zKkKt`qa3XBJ3ZAxEz3y_Q8@xZx;b*~hFE-b7&yFqJVwvK9XYZw+_#f0e%fh(7H6{KOO?m!5Y?%;doS1b$b~*8*x+?r1vyO(; z&z*kY$s+5N%#|%Ijf;AmEK@3MA9}fPo*Ac?4}@8Hxrnu`Wm>!aMFlQPwVBQofMq<2Dy-~0dj``@Gn0q|6%$grd!GE52% z*Mq|h6UiiqDO?OjhP=Ch+^Y^tOr;C&O-k`H{5HP4y!4D%p;B`pA^c^`^_sZ&hzQ-~ z3twh@CabG|`mz3(fumj-*}?}>>vauw<{XU#dBW(a+ZI{p;Iw)*hxJ-P|xX9eA90B)0{NA3!R$#x*v^#r5uYWL2vH_e`s{ z&pB0szVgh!J1sK>aeu!LRF_p7%D7tdO4qhc3&t878ZJty7FbR?jpa!bUb%ms$7>gB z7sUNpU!87Lpqldj*QPS0LZj?=(ydfIzxJbbq;DTRBsZkfhjpTKgW2R-rp6U(18prLpFbYG9a|sUpJp2> zt&x$Dw1syaJ6@rpG9I(R(A=DKtTX_Oob^8|9tj^MX$}pD0N1ALQC4?)_`H|N)BX1* zbu3c6qM~9JnR)xS-h0Ph2bFdHOlw57O2_PW_geNp!sZGKp=S9XhrX69kbU2z_bPHl zQwE7C^(PG;j!;wPslpv;1zh7x`8aO#MvHa)V!`Ib&URYDcy8LH$(tJsiF-`JK@@9@ zvl_ZfV%<1sUb)E4MAGD*q{>x8PDvu<4#5+JO)&Odn4}hR{L!X$?z!>pp~@4EVn$fI zUDz;3+e3%!)!EEf)03ZP@+@|F66_JWeDi0l!D-zRw&V@8uX@~~d5Tl* zWimSJM-4%w(R9=*xv2xpX?maSxf4Tne@vbHX*X>v9>2gL9v8;!GWSJAVWt`S#Oeks;KLuo)snI zA~CTby)`DibI)z-X6@ti#dDnPYu+eHgszj;Z8q%u#!&M`@pt1J`OVD~Kf3M=n+_15 zrS>hz3YBh)^sw#C^(;@)$sE=dvqJ)=iR4sz78CQN5Cuc!?)vIiO);4Udl5MGy#LB) zGQY&mhL+w#=#~s8k<@NAIXip7QAi9XI3gsT7&b_(tN-7(BEc+N*)G3!O3UFuRL^*H zF(dig`!Z+y{bIygPlTO)nme|8FDC5BDTxc?m4wU2Vbh)r&C8maNk|E9;Yq>W#!wU{ z9TH}i97&M-sAhZUHmT1Lk(g71L@CMF^Wz>577Jc1QdvPeiha(cF_|#$Ll{s161`lW zq9usA$}J8fAPW(9QUZZ`n;-z0+7C;{6!5AJgY&#*cw^4Xf$sw5N@b~eD_Q}yZBc>U zQOY9p+c9KvDdeg*RDkj&!*`rEc_p-p{2LYpX>X@%lfzFk?Tt!2PJsnOFZ8C>gSs(j zQiB8|Y7)4F(qa&~g{KRl1T}9TZh^=t5Tsnppsmkt-U*MZVk??nmfw2|BK0eSHp-YE zMs-qx-q<}!C6_KfWByB+5WrwfhL7RRx{6W4>w&c_jQ#~;QeLyVXs(5M*j`>YBFZUM z$YoG7Xu^ZutsQFS{$sR@CjyLPIkgL)y9f&#@n|oXJE`d+E$-}5`=ZOYe3fV~w0?Nf zA@!c9;fB)ZtXw+l!aL3`g!7@C*c_=&~=8vq-?Mf$s{>!hS{gRiC+|NtC}R2DM}!*6hSQc)4=;RUngqR zO&jbDlaq!Q!z@3*j4(w-xxRXN(+;`xi^-*_X4LBJXy_>{sW9oo?`cHQ><|EVKDbMs z3<;Ei*lVJG?1#KngRZoMh(FiND5nU#SMo0U?eqclf5j|QdN zAd-sl`p{RDQ6aG;xC~4jB?yNjf#D2Gd6JrLXTMuW!07j_Y~AdBJv|e|qmwY_0Nv~y z_7^25f)y%zcdMNcjF|W%Pqnh!U~BmhCe{#I1c5@Iz)Us?Sd1_R0?JZQ*I*iCATscz zNO1jd7)1DHBq&W`P{=M}C=w}SWK>M?u(^B)%}}O&-)Ajt5Ir+@_1rS}=G2$xo2=+4 zn;&i(mTqe@cnHEvD}JoR2h!@kR_}9m3A82*Td};(+xe$FT|BGVF*LgneD)T-?qQ7- zN#)cN$4W$;m1d4v{isD-cmVS(6#7$ue63s2UNTql*r6YH zZ9@glsA`WqO^{v5-{V}GDUS%5d0JCfM;#z^nOdK08@AcU7BnAun#<=QBj!SVCidwp zM>P?yTICf46}UW3`1{j`@sf=K&}8A{WZ3p0K|#dCF&krQb?r3N6g(3+LLFoC1R_Hh zmxBJ-clTrK?_YlWb?!e|x=$b`C(XST6$PIU)mI?R7?V0m9e&sY({>8qfk29Im zhLMqxYTuUz-s3;{x|#(*>hsVxCRq6LVS3fjU1l`e*wQ&1W>Vy-c=col4#&k=@f!R; zY)9s>D$I3#9?mJ3#3tw@dVtZZu}&qEdf;T@jE*;NtX5mQHMtTP?=um8`SO-Ygtc?NKZ1HClWm$+ITw zOOV!L6JJFlNIwRjTRER&7cpY_$?2`z*eF^pptxyq=hw#KPJ2Q8A~BwKE=a#g&2TUr zP;5(l8vqPRS}fP&v!|fx&^pC##lKd6ByifxiCu`gFs@3-rrJYMAb6^wsnPl*&`mNv z4h==H^10kJM6bSyDHi`?zMi)b;WSt=j}LYljB;H+zi((pLv-tNIIpVa+Eq5b0}WUU z2Hi6=J{_UrHpqJr-Rqps#JHNi29RhtzSUyAJ-)a-wILn1+TM}dSC#rvLsZu*4T*$& zBqOiUN$DXv${VytPFTqE4v{C0cjHn*X1H#nm5~*H1Z;+p|(F&$kNzpG}0io5$3>5eU zsetUeXN~=g$I;0PC}sji;{6MOG|kZCC6m4m6Q8HHLPU-1BXWJuSkW954Ay_G`=47V z4moGpHn}v_#Ti(;?_TvvWnasJ#`U_eG#UkF6z=L5aQ=R42qR(pdvrpca{$zkjRUuP zT)L4RGCRXG`5Uw~T&vv|c{ZONu4^!^-_%gwR0l{fnR&maR#p}`@hr|GKhT^x@DMj& zUr`XhJ-5!?-V$@$Y$@3Kwv~3?+3&d|2`AhhpYasQnl1qtm|b-v7HBUq?SVB=rfVI){w=dge#NIlVDP6 zok}y;b-F8E$G3hf0L}0FRKr1pUNBMI6AnSd!WD&|)SP@XSq4R*2iFfZftQ{=vKYXp`jHSS)(zQS3Rtj&G@ zm0w#Bu3O@1bas3;6mRa56|VeV_Gs@^5gl^BWGz_l;TLR?WBQ#SkLZ|yE20!80>Nw!Sw9Ym>v}n5v#u5Y%n@H27>>G z@dnH7o%%Q{x9vaYsMHx$PN?{oPVjrJPOBV6&u|mlmx9k87lqXHy^=^7-qh)-o4@5T zyU}f7-Bw4*=)`(DvDYu2%d_gh*ZAaii<5AYrf2TK(oE3ViYULxaiXq|eLGsdI-J2z zX&o3a9t<~}rsULyI~ik*M;jNbN;!*Zi8>>JdvBB3d7gyu^UBaK$ApndbsdV56D3i% z$)IbL2b9#Vg1GHDvF)LPt(l#r@%#@hoSVIT&i1P!ift9{(-vpD8T3Wka&wPiOh93I zXs(q|KbI2RxWpuOYPfoi~Zg5^Y!_J_04=AN1r~m zmE1dB*ZsqS6hm^ci3sSe1-g71<2l=YpRq2MNcFyYBz`$0+=!rC5tRDj;6W3umonOb-=Z|dFOKYEVJ-@Tuzx|iBxMRK3VGtV^ z#~KQ>lf#H3l$h#9SReq=vy`$+%?MIlx}bSwAXg)HmZjp81``JX6Licj#X@g^+sLEt z;7F{jAGiK@e2rG1f5Z26c!%ReRYxg`|T zRb~0?(obcMgKjZ=^BEsj6q;63(Se?F?;nOlCZ~QnlI4|8-G!lMK2N@cW=5AW_XanO zTnPl;k!`WZ1~GZ-9+GLR&K@8I?|J9E<+hWS&>)dAzQy1E(AP#q zmv}L{WRX%zv@BfirNMBt6Z#>E&S0KM0~vLzPuLq<6QO;LD?k45ShTY%`?_S4;H2kF zqt7$`?GS7->k{-f8Hq&24Nm1XFeg1K-x~a#T-@2yy!5{#M|>Virq4}CxeNmL(V#Zi z@i_ek8`*A$FGF^|NpCs=rn|0^d@lIHMDsxCf?`HS`TOSW?n!E`f*{v5_r~QLaaK?> zU$hfwLEZ4){URzo8DlJv{y>SzhUG}M=i$P{)J@Xkx(S4#qA2n;DxeI=nvj7RvaY_q zzOL?PsB4zJrL2+h6LIBEXd%QT=hMJ|SE|m#KkM7b^gIi!o*r<$$^0ks80I)pd3a&W zZeVRGyWQpA~*?IVGyyr5l|;tvge}`~V|ACqIusgAnNN3`4o8em_~Xpk{|R z&CUplAi4>ECDWP(G{TVAmR_2yjX6S>Wy62qA zN<1%A$%V4Yp%Rei#io`}rWTM+)pacU=C=&7oW^-pxNFJNXJ6|p+WT9>xYJ&j4<*u5 z^*`@<-nEfu7w**20F+=OoD>8~-eY$e4wWWDJ~x@WSP8yv^KeB1Qd!v9{M6P^6^0L&MI=NYr59=juF=VA_gl^&Gxc_= z77^awFM;~>1lD=ChzyaF5fqma5Pb6K$U){s>KTk6%4oOotQ;)e(EPRt$Q}l36l)LV zsuULfd6O$7h_m~PT7Q~C zF1;98%AG*|q?EgK_ZIdSqdbfJnL3CpTn!c+-4EgYZVDR0@L`7%-&hzIG2P+2p`q#s znY~Y13ri@ItIsnFIBE1CIOSS*L^ue59k|DuOoSw3AmVQD215ZDkW7DLVBZtL zKal>vgbFnh-^sw7f`VJ|pSqe1ggS@}8mQM#ZD8Ns5Qqjt4D4gXFM)Ks-VGY^_?xLA zE9HdApHt_oyEn=Q`E5Qy`sbxOB4&p+dAS?Zl(pC8<_sP_3uk}mTUGgG#rn-3oBnfW zyRt&58IQBVb-V8^aD(edxe+4^8s2Z;3VlsVK zN}q^{tcZBV#aHK-YCfpBcuu{f*iEB8dGzCu=kFenq?Pa9<+o1>3&S9%0*}|a22of1 zj&eG-a2HDhZn3+iq2J?7Kox_=shnT?s?FRQev=;jKxdpQ`S0z>^Ood2Fn&+aVomPPwP*V< z(|Bth&diDG_xa`_O8LpcfyRh+aG~ccU8*==#avXm8?@0A)F@Z8vRsw5Se+9MFGGg& zHS{GHuFkr0#uw8Rf>e+)sN@{@J0TRTMJNMhWP^m-A4IrNcReBqmC_MVSmL)th>?v6 z=2W3zMkMC#m$ks?nW4-<;vTV{b~dw|u(wJ}j3|y)I8@490m1tnRU|{4t+wUl68D2V z5D5+<1l;|=O}@Ui!f9m9P}n$ubd3SzE*K7L65(RyUE=jqY1c>hJ6}a^*YF%5wAkbBaBVZvQ0iZ0<4m+q<~UNZ>EMS9yD5^zLLtwM0t1(-FwPGfHSv zemB5u-xUx@@4Tf_NgL&+jSUC>SFZX6fV0*2U>%DK{9kidu-!Ge)e9Hxf!d?fMF;j} z4Io;2zS~*?!YUYG4&?Kh?5e}IQL*8!xzaPn_U6hXzInx_#s+_X-Wl1N*nW|~U#ot( z=ywOm0e}zqnb;%cBC_?ufRO++neEvagLSUh`Pe8{5aYo?6N6$7i1QbW}ZNe<7~*zK>$8 ztZaF>bZl!RM8s`uwgb`RPM6N;*tqq-1yCRyOPhPV`%DZnh#H;ZPICiYv%0*iDGoVe zE`tsF^*Y*yX5cWr&W%sd(~r5Xd)-BSYc}%;4=?3*NO`e~J|VS^k&UL}0PY_~79<>U7k3DQZW@ z9Ztm6ziq1LcYXl?%lyvw#q*74r9b$(%mb%ik1L0Qw_g}~W^U`k4rj!#@60Aq3+8Kn zo&VT8el)C`xw_C8M-8hyTXIF^TxnH{!$AcY{B7Yb!&KyL_~)k&9FmeSg*UNxUfEnr z*%9oeT@W(AFC_0g_4-qIY43<}O?}#7#e;&dgs5G0TPI3`JJC<_BnbzG7?74|rFP z1r9QpTigG{)Q(Yyh1Al59S8F4u%c~0M~+lBZ?3O7_PBD>&Oi{pjFrG?QK%r8k2p}p z=XwKM0^eW_5O))nw>K682mf~_DBPE!Y|dE}E39&=3^kJ{px3HZo3@vajGvFX9{zIV zmBS)G#nAK0J!Q3uLAoSqC0_41cy%~Kfk!_@A4ero*!b?Kqj%Ez{0$ILtg0z5a|-%~ zqJe^Rn#aY(@mF|`Zt=W7YN~R^a(bQn1>mv&(}VmK62hnp(j_M#VOFfJxy;3eoo8-4 z;1|-DxRqgN+|MZcq|wD-;{Mo}bw^dZCgxce@4^rk)GW&~SLhUVk-FNk=tTyVf<5}= zIjl~J$#=E7r7j`_L*y5)t*&mrFtBJVt)VOGQjuX+Wh-VH%FOy0abJeCXdC;ODM@^6 z%uF|kT~^J}qN-ck&c_{3S&5F*Io=h(boCktIog;TZu^k^Ycmy3$dUx_@!(hjT==BdUHFj z=#NH=k%E+&HQq=&jhRf833LK2ZM;7~OtV~`Ly^cw<&eIpAYf94o_`mz1q@3d`LODPN}P{Ddw z_h&_2Z#rhC>sC1)bG@l@LC4Yl9wwzouUz}zMa$8W$!)Gq0DGi*z~oU;l_L7N*Oi!M z!zt}%{#G?_pPy@5YhO58ysci&z8)0+mglUTU%tl^o#Bl&cTSh})HViaJ4)-X*>vn4 zaf!Yj{<@KKSAw@WaKtTkdox!dcV*8=b%x`aAfn0tc>%nRKS|Ay5he_}#qox^7-Fp( zEM9=hKHc&`AL_Z|iwXaASA!PWBX<_{ABseqbuEIX*S+b7);(*7xe=!;_-**y6BXkJ-6|r= zh$;~?|6W9^jgJ2UT#1CG^_BUNpDE)TfBjjF22yV0V`F2Se-_F-TyXX0jz50PD7cc> z#aNtKTMdp357U0$-IBYN7<>d*=bB~_eZ5SICF3TtUbLJ)JXpKhyg6nazq7MB+2x%d zCjJ1@DGP_KjzQqay`&&o5wuez==K~>yLLJL<;d>O%A+n;Fc~ZiYUmeQJq9L9$eC)q z$t#X!6JX;T3#<ebRYX!rG1YCTBC*T@B7hdMW*!n8glUR~Kin>|rX|uf5LmUd?7p8sJSl z>);Fxc{i%)mZkd98P+_1Zpx&dsJy%YFcNTHN_GH8l|n(>+QRrcr+E!ieyj$1wf*;z4I56WV5xnf}f%OeXncKK0gbj9l0B% zQ(&2XP}WLDSipYT->Prea2EbV+9i4Wn{U-}2}jhag;=7&xIZu)tmr&i3wdmK*@L9} z(th8&b{h~X2r$q&N5U>4XP{4OK=a{ z7#TyXQ7N?BCP-AeU6+2Tc(4A4BGw8#1Kd8j-mwie%2Nt!W9wPRovo#>T?wYfdPW~{ zw|pNbehpxo6BLz9o#(?AxKa=_!Vo#tk5>@%{3Zv78e(o<=q|+Nu8fT?{kVEgmG@ok zQqVmp8j}vEr_5Z5CUD|vonlIbPx|1RiQuQInChboq;XQa;IHGyC>Ba#GG_QS~Ys~-;hJ9Lx=(`5DY{P&SVEe z-*y_p4}Reoq9Dn|MW}=IPTB@7%~){(H53LVD2KwzDOl&wo~mo4+B_NEFR3CgswncB$7eeG>4q+t@eAn?VJ8 zbEBYAHXku?P;7Ca0n{sC8Nu7v!M)&#Rv&j&KT;A1-KZ3#H%mlP~4$dmsp4~&7uF=MQMKxI|SEuD} z;Y@Ni)K%|4NumFPG0`3@k}o+xLWn-4qh2WOyUFc-V;Zzud_o5EMjun}WVIIqQM`+( zm4c$a9ei4M$IoFGoXn2yZr5udTB3u$7lE1|jk*gn#c8NAoV3Hl_B;&U14qIWk7|WF`x5QY3!TY)bZ&D;&N5<-?2-FHD2(~yR z1{n;Tp>C5QVDoc_9fb&r z9lhZP#4e7s&*n{jfu0o|d=iMcDOI?AFk+tUu%&bXYiA~{m4^E|+h%XTG_ z;8G9kPng++niYBZIjl{uSSI^?e)v1{Xa+u#{loj78R3Lk&aM0H-Un`fY;~|Jp3J`| z3k~_lu2p_Pi>1{?*kAj4kuw3{7fNcBj+gJMMzu$t*SIQ}SeYHlEu*{~j5=DIdsmzB zVHBARp9TYdTOo@7))`pImquxbA=>4gJ`Ts+Pzo1?L7}C-Hfk^W>9le??>m89hY3g~ zHn|>IuW$+ZGw{^h19PXjkSh$gE8{MVOZG0K(Pej!rg)hA1c&}JKNi$XzPuEHTcu3G znsVlHqbh0T=4Ny>P3jc-9_p9!@MY}vn7x1Q1i2>15L`aOY+y--Vqzo=HXRBV5Jn+U z6H)?*id$7m)i<%PVTfgzTCz9-BAa*c&EB(bV5Ebv_d;nZH5iF=ewU)mBA%KIla(r~$x(#;!f?+Z&rZzCk&h`t9?Qjo@{Z=#NU+i_6?9C}}Yx4o= zF(Z>WF>|7rrSOXZEea*pU+@$)&nb7?A%o15ZZ z9czvX&$Nx07eKlP=B~UR@ec|Nw7HmF(yj-8=QiESf2_i^3d_&(;|$I}@WdWZYZDuf z`eU$Nn_zIN(V4*1a=u3^diClgs>iMIG(YcE4Dy9!im&VazE>mV$x1YEAM78l_+3eB zpSH*xrs; zqU9B^q9<|36j?}$>0b8D;kp)tcQ+&@45Pdu)L$wy9 zA#FHn6H7gpAl5(p&z-ca6R9N<8;QL?rc>(h@1Aw=+Gc#flXi6-ulO(#TRm3p7*~n} z3&QuX@E*)<9*@^?r>v)WeY&r*pwYLSV<(3qxnm)fZsT`#8H1CY5Gjd-m1ji2E*k?m zP;%z&x?(;fOdH6LjB2xatuEfyc5rySmPo6*>R>H#aHF*#eyOV`erdtlAR!_qPu871 z*~GR zE<0?m4LK@%kt@bpSoN?g z1ZtHHX!JA=fLEihN-8DeIzDUi%Fc3!k9{bjuAq1!P{HWlqx+eAZgt_qni9hF-{AS| z4IBtqnr9G+s8B0_Nsh@YSP)SoCW%5n*U#iRmL+<2OJK0q?`Uh+j_W0?bX5Zwia0EZ zrw%4N;b3QgcIIQ|8&x`Vek{iS9lIpmu)*yE_xl`bGtu}-ZcHRjS-$d?x+viNfLqd` zomQ!$Rc8MWtFEpCmD^P>kf9E_eCQ8Ym(}W?J)7!9-!z?g*g&jE$(PZuo|t zktZX)SWYDrz3;2s?X|Lbw^-iyBW|E7xRZTZ4h6%VDk9rJNvwT)zjVTqkTB%iFe~ed zZiBV%4e3U{XRXt&&nza}S=+wU{6CHR=%*>rh+Me zii!{~m6$71T+ZFMzB!G@Ovy+T$>XRA=)`8&Mp91CP{1Hv+awm{i?4Jn^Dxoft83Yz zr^+}6S3rqi0Hwp^4B_zGOb7-c05qJvyWah09SVqZ9oEUpv$GF1^FEvi;7VjQL7tva zr|xYNY$xw~ND}3`Yt{&B3oHvT02seou$A9TQ!MJ_#fC>Y5QH@4!_%~b#x^Gt{#aL5 z20_F@Pzd=z(zIx@4F-()K%hc~>ZsoiP%D#7anq;iVCpzXz#W_Z86L5|JivWntfy5#Qy4zavmk7_EDiFy^UlOhfKuz! zP(-67dy-D6l5AUuzCvwK1SP+Iz244`#**u2h+?mWemt%5+y0+)9A7)(_tt{9ZB6ba zR!H4Q4>Q7YPOAreYT|3S=5MQ(hqIqYX^Wn-<4q0!YF|6o{AXLi^3Ul**CYqaxDH|) zAkOz!d;*`-(UBH0bKLRwwP|0?7oMY>__gm-ykU0PN;DHOa9O9~mY0+3=vZU?*4;+^ zy6E+m$u?Hm|H`%DPaLke?F>1Nqe`qFUvWsIwyjmL-$&P8YaHW@H`j8S5~3bbVAhIe z$nOz!x5m1tmj$;%UXL=uk4hvjZNDxT*K+FqFws7AwsLoofH{k0(DZdYVe9*$S6AeENI~A+-|5JS!8Ke??-+Hkl3c&`+a)N!_v9@)`rop zuzfu@F8tiu55jiO1_oZl;i6a9CE2Py z5mMw@6FGaCL>M0e6PySV2XmlPHzG9 zchJ_#_?60w^4-K^rd~hCl#8PR8+-a1Tq{w9KQt)isIF1{X?%<}_LYO1Ud)nn!W65L zzp(lu{rD|G3|3I@^qGu4y%|d46EYqCCFb1ml8sgwJ-w@%qIC7F%^#tBUQhhXW4y}P z8O~u5Q#u+Y+7`ufGN^C(DqRxXll14uzv4Sn2Ah=`X3(6ijM_j|*G7Q{AL|_Gcs{Ir zuxxVaZ_Bwfsr<$G)%V(A0e2y#^a%kY6Ua6a98ytc-K1JBs_<=~%BK8Z({FO}3yeMK z895SYt|$@(OMDkgufw> z)y0(Sk7p>E+56IQp|##wxRc1Yw3?zXowu%Z=9Aec$RS7ZW!wk0Ty_f1Z!zTiQ&R@f zvNY3p*K}8XYL0}!9x@VE_~T17k&h|=Fre2(`5F+hvDNr|x8Rd(s$7>IX+_O~7aJ0P zGC7@Bb$mt=aZpnm5fX+J1h4U95>hr+A0(N}BvD`@xt1e~*{?3CAw@{i`nt{fos5wy zEV>GlR)n4!_Itf28(U6<-Nc!>W=V=cux8?-JQGvaxwj9_jGh^2C?kjOOTM-WQ*JNz zVoDZANto-7l)E<6S$?AMG*mBGF^6;x0{Q@zmPP3j`OQ8dK$nvjq@x>D^((ryQd*(C zuz5}>j`xBrcib!_E$T7)yVU$jq|Wi4h>^3Fw_dovz9Aw8hvKYY*Q;epW-W2PT*L%d z@k>{7r1=|o@7USBV&vd6_xWxAb~};T>w&DAKn{Zq%E<|pPr;EodoiHaGDRlC$ifc) zUhV~%m!IpwOW9AeP^g3S z#6HT6A*X-4&AKTh&en%OF;I*i8HOc+b3Q^m7%F%W_@YPkfwn4NBKMXYTn%}9Bl$+- zKwiqi|D);JqnZBy|IDiCW|N8v!-R4Rxs=OXVy5J?ipV9E6>^Wc8@U!?iLgjnLgSM= zb190%Tr(e+S?*<-d&~Xz>U+-boZ26q>>S(sb$L7<&&T6INc8Ht!*p}o|INSmtn9c! zHPQDG!f9GcSm-A1l$7`wl1UGQ%Qqcb#-N(a3gzI4Q?B*&8}izbTqQ#U_>FdxNMK~c z7%erT0M(W$yspV%Ng@9ABFoEg#E=L*;Kqf}R#DMk&`-dV|{ zzzi-fk0?MAoT~vHW!)TPCze(yg+uUtkggr{s2`HZAKp4cYW6NBv}H|~A0ukFj|9;w z6xCvWG01zQU3(Y)cxj4{9Fe|)FNM=OH#|so2kG^L>Joj)W}>B)ftf`)FTi!%L;2D5 zmokY%zzx-LVj|$+i1K56t!SyMS|P&02rnK|P?Hd?fvhK9-xJqAo3eEMH2;-3n-t^B znnUu>Uf#dy`?BKm!<%y5DV>#^d!ZS!VtYxhaGsZh>W$@3az-B9D|3)D``woFTlO7vXDSGXCQ32)ybI7}} zR80NWxf9YypZ7BbU#a3AM4SQGi<+Adho8ysJ z%d*W2Dqbj5)MUWTmCR}4l7^DO#Il2W2>dlhhcxzi4V+I3b?VebZE$hpXy+U2gf0D9 zU-u8!!lUEwF(r>)b77^`MoG(@QN!OTf#@z+H|{LnZTzzr9RW8sZfoP0a&=;j1X=e` ztqyw=g^+xx$mZk=ZwuKw3yYT`j~ylIdP%Baxr+lD_L-ha~R33i8zy zCN1^qjVnF5d4%^iN$JD=>FkDI2Ab_=X2k=yX<~71d~wP$2J z2XG}`l=QivUkA%ZYvZw;ttrqbvtfighK!vUVc_K3@t*U7?5)WOhJUDEptpaRM%TU( zv+NvTK3$t-FbF4%FI?N3c!S~FpG;pWk8Io@_{>MZ7j{KOAsh? zbUIL8TkMIcZ&h5`dprAV*64gXq1m$Ob;iDbd>YQ52%fLnFq-$T(${Gi3ETV_OuD$d zH1~J_Bt(qogO{fupyc;-SY|q_H^LW z8g|D&r*+1XTO|RynJ{hKIN!K9*4NJRueWvg3OnfboZ}R3m&E^clrheW zCN`;)zdT12xoia%f#eSVsEQDw7TvdJn4!tu(65 zY)`D!=DyzbEg1Kb$89S0yEndeFPuY~%c{ZqjbI@@mgo79X3zMntOAlcGopB;h)jb5eLegl5!VAMicl$d=IGSsDZnx(`s@%{CZER+TxpgFSz08Ho@W>HpXsW|l8n4#OuC+SuIpM{vr{1pkK;~9P*%1* z^apHX3@*gv+S%KulFd8oc~p(V|MXKUD%GWYI_YyK(@%(N#Y0kjziJ=Ki#vG@sm7_# zqCevDHf-JSpZP0Cb)bA8$05=X^erRPc!oMb&R@%Xc9$$$wr{4g?I{#X>Zrj$UQ^bXF_XBTTgm+_^v>#My&+0Wh<&C*VO*B#qvvItTz| z{n=C2yX$7G$BO=e^-XbA2R#`ykulJCHd1sxK7*$GvfsqoCGLcaN3gMKJW|eBw90|Vhpvkcd>9>lxN{%VB@M%hV##R(wtrmMpn>`S`3a&&a* z3R#a!ZF8@6EI+m`$!4+Yi52E#Tb1w1f~}vWXF@cU=K}tKsiYGolBxg3vAFj~JR1K1 zQbIp``^_qYV3%mbRL}cW%<9p7G~Aj#TvnENP+I-7(@z88QVDn~c z@rn3^iqOAIJsrmv?pFSG4Z58sgHv^8YwMPcb^2)r^KaGybeMs*wv8E2^w&1q^|#Bq z!vDCjH=03iZ0S`p-vclgFedJ?8-Fb-vI;6IDR|YmNpVECDaezcJUa3Y*HEjKgn@9g zub!3Xi;4{f--TD%&_?e%-mT)l`x>X3796)mV;eU-w=43kk7o95S3eJQ)BQ3>(A{4{ zoM$HWh3IrHmwsdB2adjLVO;l^7p&sNX3;}&E)}+k&D{(LAdE)Cc?ElnE0`yxnpIXj zDk_|9Z0BK`oWs$e?$sEyywIvfrKPBOr@(mPFo)wUccdIJNcePH`BE^j%Xb|Yd7c!9 zNWu5!gsra;bhlU8>tkA}8yj1L{(UD{ul)Hj_-I+0A5ssZ1O47s_l+4`4Z{7{!Sk-O z-r@II7oYAGC?#rYN?yAbb;|a}G8}1E*a}K<4&#(;K&FjfLDBpD@j#w`SFxQKJ~!~Z zG=fIAq0CiEfq?V6Z}0C!yX$YBh3+g!Y)VHK8jhn$@Xg7)Iq{ZQZAt#I2q4(rjp+xQ z1NmC`BBKm-4J}?>_$bbA*((xA^Re(|{zl`V>PIG87@lRWX)@L|ZS|(4IGxnmZ>f)jeBF&KWb!vAjIkelEeL7GBldVDGnRXS6)w|l7uFbOCQrL& zX4B-RsrSM1t9NEqR=>BaVcGZitca^A@Ys7+F7^8cb05CUkhz3(xFMUOZh9RB35rVg zssenJ2=1rH{s+AFGR3BJ>ZOV?MPzn$t3U)C_V6aIpd!t@a`fpJt+e<1V_oz*mal&u zygtq3`5s1=S^PtZl17O*(QcOGjugtSnYU>>Lqg_d^!E2 z(X|$*d-a+e*fnFMg~mQ9NOd42^Bao~-Fr>OE_%Z9YI#;abHwNig&Zx5y!Ha5ioTm1 z$$SKVuipvzh$vLKYJ35xiU69k>ge>0J@VropZM`4ux}y_gfJ*_Hr77#?IXm?z4Soi zWJJn>N)^0rd9tVU8)ulFcZ=_EruMb&15#tfnNS1O0)Gx*0T9TWQEx%&LzF4Xrx$|s zthr)*Rirzwus73>Lr`j3z(Byk2hxntV6+5-!UE^25E7N5UVyCVB*jRBkS!!GsxgUci!7liK1z`FXj*YC>?4RTkOmJ4a zybbZ!%$^4alrwb=uSLQBqaE6>^&t)-DZCdR6a`8O;YcrHq_}}9^d=n0MtfdLMPLho zrf*hz{_@{h+Ehw!xdNR<$UdTWC^ztJVJsMi5lH~{ z0gdsGFCPLt9+1BxB*YS)^cN3)?@Eb-#KY?@Y}TMekq|6El@PR)m!S?E0Rb@|qVU~( zFpEfI7zE0P*dGa`YdFB%a0+<0o8VpGyA3u$t}(LB=1}wT&hPT}OS-*w=eyPc=OQa?!~vFmuwyw!ZfoxMa*% zv3q{;&TTeg>-Xv(d8xV87kQmL$a>(yaIXS1;+Z;ww}`#2Pt{FSUdi8*3p^+cx;5jj zYG_wc9g1Uzx4wyTu~G~=nVR}}LN%T9^T$EesFW+2)>*9+kNot0&EFN|VK4@VK0Gu& z_@qcZak2o0xs015F#zcMcukT59 z`uKwfmaE=5wty3NK$FKkCzd--@Q58wNQ3KJOLUe-fn zRW%Jj0XU*0CEVFx$$1vb<9eKwnl`b#aJ3?1S3srx zi}_0C5Qsf|gF7ieM1X-9{S!#!9ig8D?flWi&BnpV^y@dOR&>71ZzP`C-pQ$|U^Zlj z7W);3e7*MVv$O28s5rE7Bs^-D5CXkl?3ns1EKIT|-ynSjd&nS3K!Qe8E9XD3#`*-yD zgGRRbOVN+3L2oNM&3Cy>syrCYwDBR5wz}t-Mcxj-H<}4$dg7*n(Xd`LNDt&gKym8Q z#?bv2%mi*0wX5upZpZ=gMne+QM-Cd04AVNkOj`(9TGs~J)Z)>Bl)3; zlBQHqzcv2T|Lo?E<|KyPmxm?+p9VeVl*qBo$eLK?FXWo0I-pRu*&P2mbo5bD3SEnxcW+=}jI`LPc} z{vO5~4TtWBpBRpBU7ZW1ot-KFHk-@b%nMwx&zN3YJg!_@9K8Lj&9y%JO-;Lr58d8~ zG&skw|A})u@LhkK#U5T=)BiKDvlR5h*Q~uR87nW5uWbl49J{5utFL2<+qD_X7bBaz zDINE1(~fp!XV3W;HAtuW)@Ti9^wit4M-`XRpb7A01vLixsEkoLA8hU%u457*?0&P!7Xi_g$LvVDWlc75kI-@4$BzH5-Jgt<8RpOF_EzfDzk$ zpt*29$+sTZ0q1z3)}tZ*J-lXD5lEyXXPWk%f%>t?7`QH<&^Q|u4si|)Q*ET)EwS(OB_Ul6QUEGW3R{I$QkxqXO zVs}4#bC#afA0!uTvNs)|LUl*V{Ak#=x*?zWr@5`|ryvfO*ILFR&>fCny|MADzrRaA zbag`?lIV>MM@q4i)A(+iV&@P-iUE+MIq2G|z_6*T27*aSWVUs|w$0pKl0A zOVr=^wG_TRs?RRA!gnm!&C*BwYVN4f8|jU;HEKhzm+j?$_JM#adxx!o@C~9rC)Wh> z!^c6;sO_Xv=1egMujFR~;HVvC-a#j{)`6DsuCs4zvAU7%=)ew{-_RdEU9#?xZNkUt zFHE%<-FvN8Ng@B-7So!Y*o`07V)T{nZ%)ROzeyE?$qJ*Kr_WMBagp~i-B+Ai@Wj8l zfXA(=Sopes*6LiIVruAH%?q0=l1C&Et7rrknXr$!h<;)X~S+EMp14s=W`j4 z9lFe_a;#e$U-KyA)_T+*gY{Eu=`y}awr*`}5<5@X;emmnVU@$~nht=&P3k6;6=VGT zLUZs?KR>@^?hVh7pY>JJ!oBLsODeBrIPLsu9D47nmexD-?$ z^n0_7KxfoEu#XW&0xjZ{OqS>urMu8EJ%-vB=Yl?UKWg%Q@v5pSAZJ%pcvFBLy57L4 z?d6FX@V;mh?T?D1@D}!+?WGI*#B;l~E+Gx1GTb#dF1FLo8Pm=uT5Fi(zMzVs`x`tY8OVDy22j}8jtvcKi?I@0rs2y~iLg?+Br#EmsN=h1b#+3CMbyq_5_j7V3l&qTj z7_%Wioc}BWnrWkX?em53ux;jXuopQLjZZKA-sXns*sZG`q|4Hsd>hUaQ!m|0ua-zE z@$i(*VF!dXR5pM}`mIHO8(b;nP{_~Or3b`put=gndhO@9C|19qr?|^q7XkzUps-73w)pOp8EOOy=b6taRHVLnrv}cu&vsX0f)< zs<~F$&jM|WTh3j0XI*dWB@UkE*6^L2&C&U=9n)oe_(YcD#>#U0gciT6;0ajN(>PQH zi0a~#1YLJjpjtFt&ICa=Ql7ktQiY>*MGRuJi7X>6qb4MK&V`X5sBN))-Hk11#Fl(j zb9^n)5meIrF4?Rpso!CGXD0R8;WQP&Na($v5fI+>G%9l%X-=yMWP>3b6b7EkkvQ<=wvc~zPfO7cVo zKkSP)g5lA)^`-X9dc*Hx=R+nQ-c3^O__eJfmjBsEQbhF8onLg| zwn!x#GC+HBDoC;EtYNON&rWZ9Z4L!@rQkqkos<9uJmMgx8zqV9)luFw9C&tT_Xp_~ z@67a}k;E0Nja#8+!0Zp=3VB(jpHhwFWMs>ly-(yvgLQgtcJs%Ur{N-TyKKjh+|z*_ z=UeRB{$XSYg_Hl?qb}64fI6cL-7K1KTwa@69n%tUBDB4$fWTBou2^s_l3U;i)v_ZV z<#0Zg+ZNNvu@v8vgLN0;1QC4F7?Zd=N}`YOUrQCZszz-Rof{WMD!39o2`5?G$r98?so7wya0hFu?f!Wexf# ze7+Lw1TWmGW=oj%!mvzHGhBM)Dja<2~G0xLhldxlvaxds#`z)01dV3>Ps2VaSX()HkV+ep|kS z&E2llGdi}N3u(p|NPEW?J%aV0Jc6GQ_33oDk%%>kH*zdAjjB2__?=8W!G)|B8-I~D ze04Lvr;bxwqcOR%az8jU*mLjmf8e(raRDMVIn%lA?Re>QAqGD>Iysq)1fyuh6}`{x ze);(3cS|YQn7L%8m(5LkX~91o_30$Jx@q5yHk5ild;WEgN>{s`7?^I%MTuik@?)P8 z&PDA1MJIP)@>1Ps+|l$AowR8s1Jq$CA6fe@mfQ0T@T)8KlC=%P5_fsil7bm#25OP& z(3@YucZiF6}0=E{LI zj-Nhm7OE-YV~i|N&aFajIg}Kz_-j#1xvGjNGczld3x}A%_U~1j5K!3<+9RlUOx~nI z@o)QgH|b)hQ}G%kvh8w1yJVE<^2yxO7c6N9l40Emad0x~Fdq~O2jlT(-}xb_sbm?o zWEiG$T2}p(aisc%sN@9Xt25|GG|qzDAtDJ^5h5j!x@*{H@3DoousfkeIvEQQ@H=x6y_$PbpP z^J&XQ%FFV*6}989;Ly5;z1_q#p_j?H2pM^C$L$~-6NOiepfg-g%uqFs3FAz?>~IWXTbPdzwrebk1c5g3L#0rpmtImr z5J@;t@l(OX4j)n&@(5xqBxL*#0s@6%zy<)`0|GO)1W=TO+7yVCLLp%&_>L4A0*6E4 ze4lFP(R?VI8}_ykmG6t6KbPH2Vh62Px3d^pwAfBkI>>m}StW#~JFtIw3hp7bmtr&P zo+-VcF=LTeRxN!mSU-~bzK@}i!AmT{qgU)l4?4?fN5tBKdlU6e^K70(X-#=T#gmEZ zi?KG^@`4OdBYo(?dH46Cj6EuJ{x%ccBdok~+I$ib-|!;mhsg z3`JQu8fN)p-Q$F;nlJHKVw&#~{KDkZR9p9>!(&Sx>J=k?3~8M_0661FAMe5VCMna- zX7UDFDVRcubqYCe%gOG5z1h#r`(@&QzTZ6bA}SBtCIyYW2g67sUe+PQ(>%A<(+v=4 zZ>bM|K41-Kf$k08YV|vnl}omVh>cqkJHz3(Gh2=X@n}aa>j0o>s9*l@c@Tu}4{t@Z zDCJYYlBlRy?FRjlFvEA^-1qi^IrX(5Qp@Rwts8NpN7@I6lq^WC3tK^F)CVjoa&E>^BreL!c6;Tp4w*g4o)-`X-62JJD^r zmQ@)5CBVH3&Stm|aE=s%=I*&^Eep_JsJpqi7U;O7(su^OfXQX0s)4gsH(E9YcTVJ(hG8NnR-vsMc zOTS8^mD{%FUore{XT*B+52zLW?YNm(LbOj`ci{H81}%xSPK1QBOPGCH_73&~R_w6F zO)l5r``X$dW9~&>+@Hz*{?8tLBUu}S{^Ji$)0NmZm2oR(r6I_+rmkX_T&m+V~pKWd~zIG|*O}xEXzPHRt zq>{60$I-HA-2655nIPg8{QHl$YFesQQUCV8JAcZ$Hi}6<^OZdvF4NA=Zxo-t@QAs& zti5#DpYH?e zbCCW-uc_boQPvI$;*+*Ph7U{pq)>&nf#4oXiE>LsvI;}3Ew$HG#GkW$1I&WHa17sZ zn{V{1v;{UaAyOw{k=gm14n7r7H?8xavMQxMMKT1CHq-%9w^%mq-=A;*K+jg zwam2@+sC=BE}#dV$ZMEa>g)vNgqbr*`fCa@bgjn!JTy!Q{KBo?>wl)E^w+l}m^!~S z+@5w-xK|D%CP!ty+J8UwQ!{K%ECN+ZP4#g<0BgI(?omMVXH({3cC69R_1RShE7Ss% z$grO+v$!f2#Ms;RN6dfrrI!F1zp4d1J? z_t(E{u6{Rg8d`JuvbbX^-ip&7RDm;*&QOc5y-GZ)E}oyo8Ezi?!I%k*0hjkw-&dlf z2`#_S@USowF9+97|At{D*^0`cX=iUiwP6pdc08EE&C$_2(Zb0B)?h8=e%%hOcc8|0 zt}Gv9&#ZFVvp~tB!1#+Q_K(`!N`GHpYqyF!_P}$#eyggUJ{{ zbKaHK+?`GlCQHrSzsML?XMh4`+JriDnw!%1kdmOzMVJR;mho8oh`ba+f+dy&k0f~+;)UXNG+*-}j4_ZXeG|l| zqgXIlrGtPagL5>}0ulp-TqXhdrzMF3AG$mm0yDt;xzZF5Nmj=PpadXha56ZdVTOXq z9Wb!Zj(x%+V7tsvC<py3*a=}R9#(PEc0AHxgu#mTYr+w$1 zq%g3D-X|c_K6K8i&KU)Ytk1a~{#DsL-NSvCI=M95yfye{W2x_P`NHz;tv@OnJj%QF zw2)EDE@g4WTZchN#OK$KIYn7(S}ZOv$Fbf=YeP@49*KzkCi7+?pl+63|K9=asv}jg zYnIZF&QA1miXH=>aDQ*wY}i{hysco7^WtdoWIU{byBt*UMCOSvJ!^J<JQvR8tK(Z8ks<_&;+VtKc;CCfn zxSOfHmV$_6bdXcxn44P46Y5F6&YeXK^Q8tp#N_zj{UvqF=?%*j>_6Y_4bsY}b=4lf zC$t9O@p;Cjm6hL)aE;hKzqC5dX_q^zj0nCtMQYC1U1(t-T=t=IIPl}}Qt|Svt*ue% z4h5Oh)CW{_*|d8BgSF9cTDvtq7DWyn5NmC_;ocq)xMq8idu&E~#<*0Yq+*H!xEkw6 z!TjI3gbw-8?WJq(t0kMC=XHWZdi;RPU6UBwmH^ArM`^FH2xm!lX;WH^&;dUg^Xs%2 zmrUKw{{Fe(u1>Jk4Jp5zqM*g|K}$M@u+_Xz*e{^2%{B&T1O!N%paOtP% zgSnGei*Be2AU)L0&Bo+syc`d(>{wVHbL7w=p&PzxC)ETIPA$y3_7|c`V36m9+v>)| z^Lt1GY0L{q{6%d=b4BVmTQi)LdzJXXzITW?%D#mCitP&K`z2yLGC3QbdN15MXksma zu8Ctp|2jnc(w%lWW>ufbFGn^0p>=8ZYO~7a_O&&SV@Z-&FCv6sh09LQ?11^%&(O{i z1(IQtl-wWYqBAmRp+OL_Bq^&wd@bOV2A{GU38mYz#16g$8NHRmbBkKLBTv6aL60|!cx zRhDq9i^k9(;W^k_jbUiDry~l1Am|X@KdYVb^8U}CYi}HBdh09Ku;{Ek$dH@j?~lc} zP^_9U&E6FJ*Z8-LE2YyG6aHs)MvK94N6t(JAt6~*3Y+{O!q7~ZVHBAV1=)3vumXo_ zQ-?B1jPCT}rz#e&V+HN4-S%C;iQ*qy{_&tE!aZq0-=?AK#pTpTQ7AZ6t`|*BZF(Uu z9|_?@n5dh+`VV*;^mL?jq%=6!iq4Aqmby5!crRH-@vEznjDw=0?1T)YtA;_yp#yml z#&=Q;GN!Z(ZbnG!$lN0kohdzoz5q%{+cMh|P$(Q926|v`iZBczWXAW2Uq}{--K};= zPG0I>>K+JE`|fxIj2L?-4Mt7XF~mz538K&sqad)q*t_XylMGBT3uy^cbt1?Qj)YVV zA1NcP7eg+#*}5x2k$rf^cSYgSI{=Eh*d)kl2gdB!=trEF&M{h32` zXxHNMMEM^5o7|)ed%a64BL!ekk~kjrG1dL-N}nA|EID}L(?uk79X}c}@w2~wmE{D( zKqCQ~1MoNcP{d1=kgO1VFABA{sRSVmgZ_QBfRUmga5S0(VBuf5w+o5DVuUXkz+fb; zT!mMN-pjd3Id|{A{Sb*@F*A{J%xnea6vd6y|_yt z4@H8xUlW3;Ei+q&Aa%U)jHpZOoOum*7fx;#hkPLGQh4z5H&lar;?T4Y0#l$)%sLj? z^w>0OE(l`jMhCY2eCKCsii)Ee)Dx|NT>6~KgS79LmZlF9UaxzQo?T)euy-A!^$$0{ z7irmgaA>*a*+p)VGK0|q8TbzZK|#!n4X$GUOTN#(^-QJmi~RZ7e;qEoJ2Sm{mGnDqi_SVH8lG1K&MNa+1sckP5FnaN*R%-i*WR>8V&uT&&%>kjl1AbH{ zPUv3@S`8v|H|cG~SOg^U;+-D`a^j8@F)lZy*YelzZqgU+l+p>}P=m_SV^T0c!ax(~oDk;>fIPIhSz(x!&h*JyzbkeXRs*i2&n=+NcxwLvZAjftf_ z`rDuNx3(|quW!2Ax?1BpT{5Rr)gt2LWF!v8PLC4nGpKhUH{8-Si8Y+whdP%Jk(|SQ zE6(5%|h!k^30qsA^$6DzX9rHiKbC(Mn31C&_Ml<7a>!%e!@5~TY0gxlaeZ*r z0a-J7jXgs_&k0V^8q%m91Z2&z5Mt?JE(p9a6@S7x+)2 zwSD-!r+BY_85dt$PX`>Srqbeu{-1^5@P+2~tYA=}<;$}yA4;?36S>r_(-nYGJN_t? zQ{=e5kG=Vw&R(B=x@_;e(-`*W@y--4EFi3s<8$tpU{Yt*tFuWU@e1gfz~<>(piL#u zakmk)E$eWOzTE+_550b^PrY@-pCl1EM?L>`d&Gpr#RVP%pFqt6`I&n(7j?V*T~ccN=$_LCDc%y>k}r z>RsmUtu8;;M>{YvbP}a3uT}w{5ZgRawz_A&er+@h2t?<)v<(VriOV{S$9cuVz$IdP zYKph>Bj2-eXR3J8HcJ$=?nzQv{&U^s<#u0P>j~piQ~ktn&M^DW&>mF6O1A*X*=E}1 zYJi)Pi%6~Q4d2*1#%}JwE~uDpU8Vo0O<8Yq>TVU!R3I17iWrdcQvic2IBg>YY&TckveKzc4Mi~B%}ebIDhn$g&Ysh_ z`h5(%*d1xHcTx zmew0^f*ms9f{pbSjTvPn#Wu4y=C@nt!*@*6_BZi2-9t;ku>V7ZFtpBh0qi(9ghBrR z3lutP*IRO}q90>p*6pJB=N`fB|ibM&Z zu{bGzl|Ma$AY8}%^1yN5tSpHl3F$ZRUiZQ9 ziNUhscfWHvi(2>TPS-`ReBkn`cs$;feW%6b9$v9}K5{mx9SD+%EdMW49{Tk<3eR-T zJ4&SgTv}SCCn@851;ZAX*;}tA>KCW`!hb$gX0aqRn{UF5vT{8c1Dt2jy?Jpz z0305^5WeZr_PGO{A_7iWh(SIl9w(Uc3+_HodrDOrup2 z%AI~(DUAaO!%_mII~MXYSAB|UVoz?%58fjZi9OScUddC_|J;zSIkrx%1Tz}Sk4;l4 z1EDiW2ux(5?XL32Kl|8gEz9{y8l3*SB_5!6+!x11K58Bl=?xMAc0+urbAdWPxO4g* z{mw;thif^!TM82S{TTWSmrDhDF%^1`cA+{Lj!WyfZ<98ieFchw0L`$!J4qsEeCj?deMn*INSxQ>-_rx(hrYA7hj#*v(P|SV81R)W?L$BoPlM+T zZ2+!8@pn24=4%6O#dADM=I0qp>dI(7k$yY$E=!?%CZQ1~IH+&wbV`TLtJHUv%O=Mp z1<<>qlYQc?=*6UkX+&nQQcZuFxoE8qg&>E=fpqth5|8k?xx4ynf1Fi)d3aS484ow7 ztv3-w-q_N~tu9g-_mq&T=1K;83%UY}71M=j88S&Kz0!D9xO(j#GXq(ZD_?}@y-9s{ zc4L9gC6$-accizF1E|Y> zzv3@xu5OAW_u_Ythp<@UZ)W+LFbHlBQ7nD|VVUK5o|}$xX(LmW@&gO-$tN**V=y>% z0fvrf`(fy)Dm6W%)Jc2<4%gX(Bq#$F_cbk(j@Cg*M!bXohXOp{lXs?!j`j`qsKmo* z;1UrUI@$nZtX0A#GpGex3%rw_K>Ap&$ zP59IC;End`hL^j2U!8jqoRnnOMKplMACgfU z;3vrr$_YRcO)8K46}#l%I()`*Ffe@)6?Lfh6 zK^dm-s=;0pyi)aJ5+wPf+#Xbelt6Mc>LW`ARIJ@rf1UA<*Ow`oqXKBVA6X`aHPs*V zV$RGIyT5S}w=!}l74d@xaZ8|4WIjp##j`)WG6l#E_{N#_#~2}QycCVSdl|O$O4=VU?gJu z091+#bjC3?05XLkd;fmqlB6cFabqA=$_NQrU@36Yf+qs8y%!4p^@&$33H*T|gnyVV?hrp8{M?zc zYs1wr(j6tgPSJbf4*PkUoY-z>YE2?xNvVJ17P_$GV*GZ7@ZFN1w7MP}sP0xX%X^0JfPa)BM?w`v#K`8Th*Pqt zh!X5x0#CWp=#l=~WHd?@lYQ$!AWc=8WQUF<$6;FT!O|&;l^^fEQJVQx0SdE<(q|(^ zSGU55q%)tdy6r;TmZJi~S_S4iV3r_B6~>yilOJyo&f2lL*n`a~ic~YJX%~?g#JETJ zTL&Z{(*{!%Kne&nq))71EG%0lT&tY0tIBxd_pL9 zTDgA@&Z*18`N0z;Q*CcQIz`n=aK(4zE-zv>FO3Fr4hTW`M9f~NKmwqoWG}PN_mee#QMz$H9qI{N9h98g6RmpY*AB z0eMOpO!igOrkL0Csn5M0$nkdvcA@4#2NZ4ncN9S;{hNB9PCA~oI=(d3xc!^B!?Ye< zk1h$xba(7|Uw>X1YTnncx+0dSAF|VIH@oVw{#0UfGO1x>LNL4jT}9OSGcy;} zC|C%{Fmt$l5p6F2@nY}etkB^~f1xIwM98dnBkTV4mg(`fnQT3s<3l@>1K~dzvVt+W zZc_Rozk5F{m(9thTc3fEeU&`*0#`uPJvPQJ-9@jnolt)uCMRU&XBZ`CL|^{~QDf!0 zJ1W9hh0^U6Jkjdi=4^{&SC}CFOS-L2ADuJW4}5SZKKcLf_}%K#}?}XIWAdmyzk#af3HY-81dJ^1?Uu_^s{rXD&YGRdUt>0s`qfE3UjPp5EH)`R#?zs~&CC+N_K` zTer?Yha-@Wk?rX+bZZjf$N_yGwQFZ-pz%+lJjocyA zB=N%o-Re{(-aPKi^8=y!mk!k_wW~krTjeh7VTXD;{Q%(aP2lKn`)CGrf2eiZF75E2 ziLp81TW8E_O4j`y9@)GUjSvy|PN+KG>isnurI>8xs_n>2lF$R%!R)lgOi&p+Yp}kI zp{~f@S_IxK+Wgj9u!Pu5$cg-B;OX@l_D9R`CEt<6e3c1a4b*AaUf7&zTv{t>SY{IX z^F?s9<rKfa9hk1auhzyDF`PSwwQ~RfBGOfa%#h%g?qCx3tvjr}({mJ;c zkibw+R^#u5ChBvGW9h~%BCMhmh*`P2QGv^GHMh)`m*nO0$;&y7n`QbtJ-}Y^gFt-O z&nkjpxCa-|pAZUBH_2YH6;=q7qKeEjG57 zA>tC1!FTb}IZ4TqcKjo^Hs_4=VowP>3j6%<)!5*~Ga_2b`{MCm>l8wVziw&WRRcV^ zeDXwj_33n5H|^o#;WrgG?T5eNjo|LX$-Bvz;WrI#^vVM6GWl|cVS(R?eEht+ycI8) z*D3B`_lwuc$>PjnY{bXFh?G!?WeMc_>1t^r zADn<1VRgW3M`UU`eW+5(nLhQrAVp2=Dnt=bbM zWu`pPW%yvn_p*2k!l5y|!G_k=RdrcnWO!xnb0Pb(c}&T?=Xl}iSZTKdtf8BIjP2=Z zmBXG_>g;hTnQwktZ*}{J-cL+DZ}|M4s_{klwi3_I(T$a*oGr)3(8V8{j~zpJA0O_6 zI=CHrh)!4Hz970EQkcZ!;nZ)XlN-Z~L08OT(Ztfz%O0JzT!tx6uevVe_vWBP_{{m8 zWzQ{ruv-4ql>BYvVL$l!^scf}r$(#y{Vd~sedHM#{s8a5t^DxcTbFYjfh1qReRfC1 z-+tdsuuq`)boc~bXgQvFZP#y4q+o`P%T$z|+di`%o_X`52`u|j0wnp?{yQqw8|A5h zEnHSjAF7-ybmMoDybd?nOFGe8KH1f{IC;Er;hEzGRas*1k*ML@;xh^ZS_~@ljTr)C zT!shfPC|HGD4Q0WeagVExVAyp>gX5e?Ci$6zzv$_u4FJEWS=GzWyvx#eCr?(bCZlK zAdbj<7NJ-EtgVbMs7=SaDz>XP)YaV|R?5@5)IO&5+lW|cqbYCZ;HLZJHp5wd7l!8X zNw!O=apS1|c5vgmdE?S!$E=yDRtcT+o!T)d)N|2)SZ=E#3eLe!rfN=i?S%bUt*Jv&4O#6IyWmQ7iLf>pW}7nQnc^YOqT1DnA}; zR{^+4^$$Dq;lIbuR8J8Wqxw#VFONn;5Kym(NC+hno|uS>M8~5?^p(;yYr~h9SMDHP z_Qt5-kdBunQV4eJ5=VowAZd~c6f-3`A)jdQ4i3#{kaZg_`zGJSUWf2jizfC}n!adX z5xt34d$Yxy&x}4cn^RkB{CB2MOjK%evi~5KnffsDMTz^Y^pStr?!CCLbQJ8KWVIQt zmO}XRv;TQiH{$lXK%{Qe_0mwLJni0UN@PCqH6DUV=fTM|woOY!wJX}P*pKQnXRFoD z>mG2-^6kwh*>1_lgNLT+*m(@!q)LarPXy3tp^PI8-nq=MA&4Gi%&DMa#aN}saeW%c ztS`%c>=NUPCXWSiFKTUd#WmiY8zyyp?l;Ixm5iAJ83rboP8`FyMcBF>$+S&fb$!Q5 zu-o77_9}OOx5X*UrwH4w3d_^e@~Q{u7g`(*zDSb~g$Ae1++G+SkS5E~{_orPqwuxtsJ~zkU^gneck;mO)wZZn-ZrkY=tA zhHh5zfkP#OD`(AppPJ^w(bWB3e@Bzx2-CRFV(eU!Bu_5s zYH^s*9Ta^((m0RzY*~#iT0*u7{>A*0>DaKCJ?lixE08a})l#4!w-<$KOY?;aKM*E4 z<2xV{w3Bt*sU6$ZJU%VcMxVmW>kU&VU7>=){oQBwX5xP^UkUI@7!gy2adG^&RSxu} z;jxD!ZYw^h-H&;XF3rr%OtrPMKi!6=o0d=Ay}de2f1dt~SZjGq2SK-_VD~DYu0BKi z%$&JKPA2QU@*hyCPh(Cp&|gdFxvmp=)nQI6 zRyamarp0R2hlkO%P9$6{eumzItv=vv(Dz!X{h>hdQVlmt`XMszBo@AxxGG{qhMvtE zA*K2TSQTGKMOC`rj8muDKEaIe;~*5gij;j4;Owwa0UQpkeLyJ=-B*MNOBxYbhtdI`Y}zvd zcs!lZQG9^gFDTbF!t=r9bJ0Vgc;`n)3a=fr_RUgDf5d#HtBTggns}%6)K|_| zp5c__7hKocU-a%wZ&zjU6+$8X(8)(9hx^%Ge{=`)Yuij+0shHuJ=>n_DPwC)U1Y*8EHq0W3weaTEur%-eO!TG z0JjIui-thavX7e_EuScs?WIMzD5^)a? zkD`kX-ef81&jP&rPtitCeuNk@y^k(6)F&jsu%2pNH(N$XSA_)%68r( zT*GWd%?v}ebuBJ*7uO1{VZAwV>7ClsBN6SdJu^#V9KmA_0O64jK)P( z&R-uRJLg*RNkG1+gZOK3^~{7Y+zCPj>a;%h^BEx5A(5b4PRhn(_g-$L;N1y+fpOSJ zURkd)nV<+$cTm1xTBBBNzOyPU7?dv6UT!Yj9^%v5qK0pCwKijOZ0(mYs>+D#`voD1 zYK8RgM~&I%9$CEBY8XA|zNe7}z~DdNAaS%lZ=PMh3EXwp*Tr{OIS({wzu1}Po@*ST z2T}fG=S(NZ)jE-xeFuSv<WfQmSiAjS|7g2`Yg9GEAD&J7dYo{%yC?ZO;c(>Gq`x9i1jvxaWHGYM1z74)TrK)84Y5Hp&5( zw%;@Urv)$#+WooF*#9=@nLwLtx^M({2icZ!{!r-dOyw?3p$_OUTY-Xb6RcBLzi)51 zHz%w`PwwlqS211bm>u;i&AAlbUGd{4<4{vzi~FG1I!9U|r@oduKpx}NY3+=1ax{)v zyguTEoxOZ^HtvXzwV?9H$G9H1oz2o(ZdLeNs{{7~z|xvB;bg1@`MSO05Zo}O}y zs?dH{XfM^Ws6N$a^Y_+f>}izln7!Rn&F$R{tu4;_K+(#gb3c8(Q3$)`>PEc&)m+{R8q3?kdq*F&qcI>t7; z_l<4$Hf*pHF4YW);|qH=mI~BgHL<46dRUDY)$gpk+S>Q`6^Q=p>8FJXJxre5TQU_kp>)XEEi=C{7DmfbDpVCM5?zR_1o4MZk z)`R&eFKyk&)yz2Fl|pjo=s|Luzkk2(3-YdXLbRk&he%ecj7*jU^&%wm6|Zv?oQLRo z^9lA`p(ZIqsCbG}WVIfcarFta-IZZ&b?gOFXa5arpF({?M>R>L=k>+=S-yyqH(I1; zHR7+z(cCg!K%!PMwL0a(Y%Q^LM8AC1`RJ{==z4b%vg+9;3$gytj8~K1M4!XXkV@w2 zWb``k0Fj!-62l=<2^rK{rg*~SJ5~v}xMk059@eI2S~Jgo>`JyYIRyTGoxNGU0aPB~ zpz$_STC+QT)2na_rISW=%9u&G6uPr7{LfsFn++7!N=tx;017YLW3UWK*1VS0(l1V znvw+PdH#+KQ5@|SLjc1WN?REQ(jMS&90dAq#06q|_}A%6MAa=xDoHipB^*X5D_n0m#=<04FKdP zF=H<><%5_MUvFGP%Y*WABOucqWNX!~JC+CeReD7CbIZ$R=KbwVVoV419;v;tTtEMD zRV6eeR0W?|z5<|Hsk{Tk;_iU1WNWn6=G^X1omN~+7@!WD*1q3hR^qV{K+ZmKPqewv zorwgqbS5izU|8h`SidO#aZhIF6zjx2=H{&qx!oxm+nEvH@oZSRI0i~#mA+jB8;5q) z?0P^zuDbgBGE`rteD|q7pV`0IzL*m-yH9I-VxJPt7A!{ZM?pi!F1TBtg(k9LdKvr_ zNTQ-L`5Do*&^_~JTy-B&%&`z8{Wb~h`O-Sij9o>7y%pNQN4=xfJ7d=Nrb#HXLg|rX zes^5{4uvsmn|-N%w-po^HLRc3O5W->R0tU46z<2;n9S!7y_W9Iqaw1Xq^u^=Q>8bL za+hjeJ^pi{LL#5-99~;fZK~Ad2tJ17!E6mSX97b_b~R9TBT%Mfz&G|GxcM7J{xU)2 znikFzGvX(|=`rmZz_y0DUdMn;6FBu3nI0JeW;0I9M2V~g09HByK5N)5_S~H*-CcA5 zX30wpwe>^s{nItcg#AsqZqgcz5aD*)3rvq;fI$}sSpRUf{FE7K5DFD5!`CquUeB2u zYJEl0-di4Me|R$OW{grzaLkpSu<(VNSK#(=@Y(AqQ{kO)6A?PL_vO^)KCP`^)P~

;{Y1* z4wCods4^@CC)?!siSYVBqY&Zr`zd@0y2b^dRgng8u#9oKqp_dcUHutMs}{F-rIgo> z6^@kS4_b|F#*yPkpS~hZ;7d*(MIv|w6P2f2h+R@YO#ta!n4TF^1};X0)J!3j*~6+}-F2aD=0 zOX*GTz2!}xw3b0M=6iBeY{g)_2m?$+N@$y)nY9XD>?`$u$ z^+=xeLH-_sNiR49=%&O&q5cglacL?(B1t~!lNi5XB=0F244w9}_)+#01xz|6t9LE| z?O51`w+jr@V^ZwH|1!z3H=p2!eRwLB^)H=gUg1RAbJAbyBnc3-^L#Ar>!uvk0diWfoxUQ2K#WuB+niX|F# z2|=t8O-|Mw14ShJ;gi5t8a3`?f;FI8t=o#0B7G8(@T5fC_oMssGftjUieJfcGgYc6 zRJw(I)#JcMoK!n!DpJGt(x}8v19(Z9&60k{utlGFgtPHEDct5GFK_+A)_L!T zqGlnZ)76QPIkqBl@7&?rFZLK@bVok3MW1({q+4$CHX<)m7z-F7TlS@cAV$Fi3u(J7 z^8y;Fb1>nAZSBU!kPZ&m%6P+hfak73U+2ReAVP)SkAg=)5RZYc0tqhSPh$6hLlG7B z1dX0J>}`k!3f5&|lMjF(gdvR7B%naR8WRCW!O$ZT02*G>wfGA-AxJVj^21}?2tQ)~ z2QeUfg#nD1h}ch#xfqGF5a0pprN0N;1|A~;1*{?l4WMNV;DnWZTfCZSx$c+=u-&EJl63 z<_W{|?XPbfyQP!n<9zmP?Y+QTzmVoI_!PW40i z$$EcK9~Omy1EU4dU}M~Ce(KG2_;q9@Yc_LGl8#Px<0w`n|AZu!QVA01U%_x z;(t>&8(j-M>vwK5*v-;f;mbbR)IfQOy~fB9F$>ooZt$#vyu*Icn)B2Qd`Z8=!?X+m z8c`pTP|01r;rC6=OyZw|Z&P46T=BVAbN$R$Elx>ubRxpXS`pU&Jiql;4ECIk7_6p$ z>*us-gNRXEbrxK9_N*13${i!S22t{-u_;z(L(4@qY=6-_9Ma-=&>#}i=HlFVX75Gl z4|e}`SJoev*4Dmoa@AP!i-%4vrpa+av(+gmdP?}!s4|m zR-}5$N3^-iue5IY&*;$F=;j)DlTr2VgeQf@lVJ8NK8*fnqdQo9dpRd`Ni}?W-czF< zz$bYcqWhioYUtnqVaeUnlv(3d&+;>csXv{(k+l{r^+lb!*rinye&Q*<&PWDx>%BdhCe^Gop7Sw|RG;`1TtT`A>gd*X9D0qm( z0C;{-Dbdy^Fu*^PpmKoH#666Q3?f$Q;*WH|xrKyp`b3jJP0WprT3G$BR0DI__#%7Du z|G4_E3+c!`ydAgv-x$~@MD@GQwfEN=xsP@)M8R2ThpRYp!U@m&h-u5eHO zUbpDVAo6h&ZwhUBWC`|9|J<4hUJBn{6c70YxU;#uV^;JU;F|z3nyVMu%NfzgR3~1E zxuePlewEg7svUNQk2P$s9rvu;*|=M`Rjjp-O93$WQflm zJitEOqVq2eq3F|6JuuAkmlwR#usxs~LlQY$YUXgAfI80XM()r9Apa4#u>lNL^WbKS`K9_=T_I+z6$hOSd2+QW{ zEvF7Pen`O=pR-W$4&B?K?-)&hT)LoNF!b>A>9aMt&MF8RH zC!^uVFKk~kbYYIp=Hg?!TUMi+Thy`9l4#bBm)cWZroXA^qxzc8&jqx9Q;}z=6slA9 zEExV%G6*mEyUw;(Z*`H2R$Z0<&{MrT)Q=^p6jh5JHq^!%C`)VD@Xo4~od_f{gZa5`(UqE_PpcT9#g_mu zV!x}kc$d4o(XgA-z-8Pix*vsy8zaDJ`dyjg zr6V#&LFe&G8hx;XwB3{BePIU9Q*%fnkd2mtl_Dk*0*C(F&jUr1Fc2y_jXwha=?*}O z5ENi%fkPzG_MI*gVvGZ9W7rd!7Z_z2(3)Yu%b0H2W1u<(0|kf?!W#*G&NIzOS-0X7?JV0m;7>-YBJ=!sEIOYm;}X_Qi)Zc5 z#%YJ0@4W@)O@Y>_BPx%_HO!kQmuI$SIvaNLW~r*~gV#Y5-12@BWFmCzdhV2{j-N4` zvhf6y*w_|B$|i|!)nAM6Js6RnPk4gAAJ=UZ>>bK+RL&O~nZJ>h0JkuULoR!HgNj8L(i>e?`KWt`JxccwiK8*-Ee5?UVcmJ*4L* z<%k^&@-KJGeALA^#u;akN5i~!zi$QP_$KxFyZ7c3=QR{)*PcV*elQ$hZdGuNaRyRQ z_{)yw<$Ja!(nD1(4+%xW%vb#GS%TyQCD>d>3IU{@aj9e51D)Yqe8Zn|hq|Ez&g8)i z#voC9@2yP0jnKC=6e2;^Hq~}5`qsflX{{v7E9T;(j1zT{`C`q5DUyKjtAn8;(jOw* z?rE5@55ox9bF{w7c9r(lG9=Oe#{+ZwkV!XBP4L$XIMqCPt<~qPU3_ot@s<9tR}XVN z2kb6{&ll}}4&QNj^xkoXP+W3k9H2UM1kA`7tQ#)TEwB{O|o1U`VC3T}GL~h0rQWI@zrIy9sh? z6V>PNtsg_iI?D$xF4Q&rh&vasipxB~iqKVbeE;_Bmn&xslk&DB(fU^;r<!fw%86AQ52<80T<3S}qfBw91eKyN;N&x@BjC|I6*X| zQ52CjI|Z=4rsmKhaLJnWN?;&G-Xm;2lx1l4jC9mWZ+k%1@hu=;elo}Kz|vYD-;N(x z)lHub#Iif2{_7i_zU@q}eElNjYNU0AU@;U42z1gF;yFs!sRG^D0azqDLw!iHO;oSq zq|0*+4F!6for8(B>rtG9I-{hhc;I!S&so)+S*LPqdJL`4@~h$>vqw6Pg;#7I>gDO7 zf_NY;S-#eS5s__gI)c2L0*ry|Lcm0U5 zF~r*(BXK`P4;PW-vEaM5K&zk$@S5IGf#nxJ3R4vu_-G-SS{-+5z2mrf_{PKvD55Wh z!{!L5icgjcq8#%jA@$1}+j*_?$*UQ9v0lE~pv=Cw_;Z&(&C*!zLvn(hgN==edvUdO z?6)_M5d8yjZ{%LcnyQ59L_jgRl5As%Uq+=uL$kM?@mM^`hX2xE;YjBS;4k`5zHdYPMEFziq~

@;AF?7ugWm^nRlLsfrZX+4TEwK*-Tmc{(LZ;K>xPUeO^8MkkX0 zEEyIeEdcrcFK-m1I&g40am2k!OD|b~eNqAgeInm$U%^_#`4q3WWl;Jw4GY0#U*6s2ns}lwW{n;t1v`Cgg)l?t2GA z0&3?J1*tc2bUzG7fMI#TDWeH;aeOw`+s z0^vHle9(y_pEQBpa$CR{nu7Zd5~p5t@&bdUZ{bE^0iVK&oac4RQ_Bx}S6dm2L3NkZ z)rZ*YOIpEU!GZnKoL>Rq|D^WjGHUDP>CZiyR)e?;n@3+(2glAaYEvY=>qOR~3zvS^ z3gC)vs9iqr;>KJ73D!oDKR+u|G{F%MfvemHl2WrO=AIXU)|B8ue-1adRXw79>G3y@ zb!USz`pK9`BhhY(wvHY|k%+TEL`6yUcoa%QIN5Ea8 zjqH;&(lJD1c_F-jV71G7p3!}u@iEJ%#3_B2!mu@w5Tsm=l-{mcwnvrBkLRSYS_p$>)_Vp^#H;(;sVW?Zy2q0bg$iL2lyq7O&4tc0yNuoQ?_i94vA*FSL3N10qytnJb>3CJIN`%7wCjQZ*%v;_(SQHhPYF=qpW@$^bs zN>(lXMRz+Md*_Z!^v4CeOY^;ks{8t@#e)#w!k+J12kBB2IIgE1-amiZnPQ45YO6Wb+YX z&~Z(ngmD#eO|XwI!^%~TUbi;)-Ku^~AG%T&}iXB-%KfBfF^ z&@zoCWm9`3DZw4WJponomh*<75iBbwJLmaAL3QiU<8i!^YKYvyMAv=Iew--;P zotLpf^m&lyIKbv2G0XBxyjRCc7OL5vYphNvqKb#sibNCV8CqL&7qzy>FD_|vw!rGG zam7u$rx-B>?_p@+W@J8 ztvA*a!ZuqSc5HImtB*(D0NFiiTCCdIS~G0j+J=M=ne1=+-J{C9+M(1EoFq$?9j`6% z_ehF2&jmccK6UsP_nJ+t_gs(jgB$NBBFglvXR1LR$WF94-BQ8KT;7xXC&asE^dPJD z44(q9ON<5YK6pECAH4l9i0GX7k0~xm99y020zs&A7i%VB_Wt_$Id-1O9Pz(3X1a1F zv1yUrMHYKm|E{LESTpp`c+2Ob2BBtl|+~l3AVBSbX3V~pvzR6ze0M;@-1^H~h zt+wOlgs%+lL_n4Adi0%wD$bAJGtSmuR|BX%mzY_%t8UDh4;Fz)R`tzqt3{XW#ugiv zx$6x(i{#yH7GG7gQ^p-*AU#N$6RKUB6xjPGPmrRLLtB*fgNU{GM;+9jbmb5r&iajIl#8i1& z{nFu;+B4@00HqrcelHA!r|uI6qVHhu@`sKF#()0+Xx|QGDj}61MI7{}Kq_Mh$Bh#y z1QYWU&%?JCRl{a_J?*n{2tk4V%I(Tgt3l6_4+uPk<8ldK2_}Vd(ps8B2X)1ZL3Bh# zU(6hby)boKs3u01X5eU_T95Blp%VUvI80BCzJ!81tz3kW)piDraJHm6RcZAN>zwsf zmd9gh272!8BXNcXm1e6*9God1vuY+!!*`+}cn5VAAJ zK{I^kX2tV z=rq$EW*3MoHVzdg_ty3a+I7qb$~~>g61ZZc+147SMYk|B9G%v?<)c6czs^4Kus{34 zx8obu@eRKUtFm>zu@8gPofJO?%hSy4RbX}iXLlleM{8%(lgl1**2lpR-(x8E_)zxU zrxo+y#kf?(7XJ(QNTk%Y38 z1i+OjxGu=SK|%mT)rM#zOXonYoy7*PG5RUyw2%AZ|Fi%|Bt{zr{e^%mgQT5W$re^~ zZYP^2rf-DD_STM<22M5(P0A!#P5%15CC|uw+q&b{@WWAWV+R1W8uzdHFL3~#8WlX zzi4&Huyc&l$Pf{75)XQR=)4juR(HKMsO21K8{w{&2PJVoyt7I5VcrAF5u%SZB3 zn2VM800wJ!A@f*H@NB%@XO7m68nhrYSN}48#Pqrf>P`{6@lM0sy=MIB^zFgvftQu3Ba~p1O9yqM|H-hoWxW%2 z(ZQJWYu~bVWfN5Hzf?Im8PH&!-6s2)ka;}*{9!KPC*d`i-`wNjU$QhZYDUCnfaeTO zVMJN<4cEvI4&#t_i-F8v;lO>!$mRX(`2(-}q*co*jP$++x=NJymbi7VaenwI8yqli z!?HZqqpKtG;X08?Dp#X^@fu^`dEI3k+fzslSg+#1uxPPLAk{E0MlyV|Vz)c?xc;8B zk@k2bDVp|2eR0-l0XQ=4d>V1jM6lI`?X+&?eoNhk%+v* z6y=VIALbVd&N)8vkCbcSeE%upX<9_SlB=JcpoIykJ4#AQ;seX3Ftv82k7&wnElV7I zDLjP9o6h3gCUZWj9b5^4jKn!tvU}QZq@o{Ul=Fl!B5sFNb>98suX^=yOjdI5T5DvN znjgI~3&`nA?0yGY`><09HB)#J=x*S@1tJ1$ilVF2tg+V<)3x_U0M_CYKNN;iTnn75 zNnGp2@W0RN?T=-Knq87R5G6&)uI+ceZ6c_Hz25U}-CR7YzLv!T@#k!TE0XBx6dM&B z$ga3^8+%Tg4-KMPz)>FP-tTg&Y>_~`dbX(8A7rc`_kM{-DVQ};RWDxPHK>>xm2A@> z9%yO9(6Z3dRYV*231>A)%TOy<9@z*Sw*C1>MOmVo(x71RLr3@*aFYoj;S>mFYN{v~ z&ptOi@!z%2-_{`}#rQ(qF<}d0#ek$_!5^TdVsib|+Gv806$6~5iDysCQ37N4BF1}H zdW%@{ff+LoJb;Z|RwxAQVZwkIVgn)dv=c7$o${-bWa8`neVeui*vQ$aD0+mQn(2GlDk; z>T%hFZBM*9CyR7NC20owWa!Hhi|BukHCn~Mem!N%7j7d0|#zHpg1i} z1ZNY5Z5){t2@vR(d~|-|3zGe>ugCd1#h;MJK7_3Xv z*G$eSV|~8jv6=l(nn)QsMjqILcGuc!W@;emg-!&>w@gr{ITbRw9WDlMEQ|X5Ef_Vm zN1a|EqHrc?xD*_fO~CS?F%($b!TSO*MI2o3{RpPQ<*zLgM}SCB_Q!|LK0>+5VR&3D zjF3;^ycono2xt`2fuTu4TPrK&HSmAGu^I5 zrWWtv(&h%V6xI3m)kV{yZhDjL4xx1c+KCkwv^}>l-Cz7NeX~qJd;k5*9?*(mqY6P4k@j{Y z2+>4J+fk?~St8W0Zhflmmb`l%*!UM3%8h)(AhJhXXnj-i2)(nX>AWWFVuL|i>`M7O z)7|ad`p5ZW^Wr;mQmutiWx1C66}heS%9BD9Ts5&ZK=LW)1RcN~5KHflHw1c5I4%#) zg=3&-y&mwO&tvE#-XBj8-+mCj4pK%x28sIozN1i51Hw-`TJ&49;YP#eU}6L%w^f;` zXZ?oSpbP7qp?2cv)d$66d&Q9OvCV94hsk?tFC9phmvcCZdVPz)LY2%6W(qYa=0dw|wQ%64_P z>%gkNub+ok47e80jQT%MDyB0TjCocTg{jFdDTTa=t|xn(&(%q`zid5s;#)tpV_N z&)1iJB6_7cdkOn*$sKBA^I)F%i7VFoR(5jPuhaAGqg z6xx=^X=H&{*y2M zXfa^W^+(MJ45Hw*@^RLnZ-B(1N zC&&nHn7K$i+}8|A{1i~7{IfMDm@^nQfp_2xb!NTUs!kc>_AYTpRl~i!1In!9>6XUo z1$q6hS+jxRX@DBDPjxzX7=ZWinfB%e0NCZIW~Ev_i7rTnb&9J3+X>^ zYsD4QlUHB&y>_8hCdikD@7gRmXoNTx%deC<{QU9bQtGmJgaa%?oPz0K8a zQt=Fa$owkxs$Ogix9r`l;cP)m_4CxlfClSBbW0r$=|uFUYDQ=zK#U3{9^o4c(>bB* zTmaNQf+2HYnDBK?QFX$IU&RE?`!68uINBV3rQusP1hiLUCL6057lD}<*0Z{+9sES25K1`f@< zVGTVU5)ec*VJ)tiy1ZX$bt8xW{w0}CB@RyBV=$i)St0%FRMjf+`gdF0((rj3u-pF~ zPzs*b#3%?w-ASAOifa)Kv!0UNO$5-nAf@dfu4D6d+wAW$@V<-Xx|DU_Q4vFA!Y4F{(Z6 z>Dw!WSEL_40eO)7a(W2#>6MUIBzw<+TVsQS48O1d*NPD*auH1= z-N%)m)<^izz9nz0WO}vGA4@v}GJF;X8{88hPBgPQa4hpKh4uM^O#W^<#-uSE3q$J`#xI|(S<3LT7(f1Sa zYN!`hUI{@wQAzwhsv$c2ALnDXuNlD|8j~;-FiuPIB9ZK*sHYI4{0SL&VibmQ0R|iy znv@uDls?4aAlep4ZAc_Wh#z!eU?3*^luR&ZAP|NaaGLUHzcc*XfdP-oON8)iz>p|3 z?>cx5s7=;^G!>3A1n$CnpWB*ld;zs!iNphSD8k&cF59oYhQ~ZFg^J1@_Vp%HJQf&# z_;wo=!k6(5!zTc+0VO>B#CBk?@HJ~CJSCVNyHmg~(!9f7TLWR18^^=J<8b?zFe~|@ zF~lHop)7p0$RP;$=3L$ISpMaU4V-RcfzUiq z3d&D`c)-}stl<}3VQ0ju;oG4-?+I>hNrbZC5%ytWSN)V z-byfmTG(L7$^(SME0W%H5x(9K|G>@kL2-fnQ+z*WJdWqm1YlSh)#N@Rlg$Ul{RKwe zaGo{_@Querm%F#I&0lKA;Jho!ResUPiEj~Z9@oLM+Nv*BO?T1Dr;%yh~g3Bks~joF7^Ecq1D^@Y-}vbSnaG(VeM zQ*3xw@4rqE0hZLXz}WL^p$GKcKr$zkWT0x^@+we5R)27HrOfZ|Mmj%>5-~9RZTgfp zLSLmjJsB^HhwAyNx^<%;cKKJQ?!Q%m)>DQebtJo{`y>e_D=L}kQD{p$)y}J5pGPIH zIvPC4c3^eKMRmKndF*{Tuop*3H-5<T7~-eOrBT~+trWXJ3H0N6)pXBLg#D^{6SkW-K&d{a`lO2fs^+-?V6NP zUXml}SwwoTi(`DM#>c%Vao7$ryEHZm|k2xuFlvr-9^o9EU-0X}0QP++11s>^?Z_WbY!#AEHmmtY&trC_tKWLCe(dh2H^%Jdu)*^xe2U;~1iD8Lb7QeB#-#%ZzieB|hxZ;b>ZgMJ)2RigxisxT+2;>8hZL z0uQ9I1g`;`As#vjO2hr8-q5BO==4C6ipdRUqz(!sXu&Ozq-&qR9VOk9>U611S~@`x zCEsCIvQ*i!_-_j8gR^GXTJhj0XL*IIB8T@@%_ur&>^vYjQb#}4_@yexHsoI5ae~_f zI|_2LDy3(~%ga1hu}t3&D@O}5!DDA-P9vO0#9uiT!n8+{KS^029;4AB5_>=35)B3h z+F0*nPNwzw{BG(~Z;NyEF$a7jj3jh%KZoSOf8}_~Nji}?!&*;nCiRN|Hzf3qMJakd29q^h$^T|9)8^kukwAz&HZv!lV636R>Ce zAcqtO*f~Ai#=H?C0zenc#8DvQ1iDNZ*sp;fwo&x|nJ@tF;2;3A@k0}V#vWj?s3WY5DFqvjiN`uQI#S3r|C(bPE(9b&XVbSVVF<3_^X95A*hZd6bdqU z0TvP9fnw~H2onC-hP6LQ#{p$w&F&#Q$&8+Irl%&i2Zg7NgcN>`fcX9>cpbWBFCs#kMVsO7z;?yDXQ znRq~Dste0KBMMx&ICM9N)7>hkqvDSpwDbk2wHs&ze~o@48}h$pif`3tz7mGFl%=HD zMrO*<^HXvzg>B5`bGE9&r#epE`k@5 zSmQ*v3;acJ3_z+zLg^InKCENW%WJ)c4&3cKt_LJW?qZ!Z*Hkj8B66<+N&MK0`OL)| z_Nm0o_fv=U!-E2Xf_@JtM}xBJ@PBHuWc@>rJqfh0k?-^!dSl4D`_o~!} z9Ohy+sy$jhVG<;&jgg1y<}W~^NuaW{JxJxJVmmFjRbHDATgeh5%4M#)ih_l5acW?; zapizyMP_RBu{*ldVmu-uWW8=3*wj8&)N&eEw6U+T_lj?+>_8`j^XFt!1<2u40_bYx=lV@%XHtv;6rE%LtE@A$kTUz6H#U&mdYrTEbBQK{%LVw1q&IFoN%ri3ux4N6H#x_Pdpvk#>)`}cWI;kWs zryN0WHEI!yz>xPLatLvLWAB z0Fqh*HQP7)DdlPhhr81|J2^WV zbm~S`4zVIevAjH)o>cTUXJ!b%*1xto;hrDPQY|B7j#y)L3WGJV{COyO-!ZwL`^4)u zK6-|%X9DX{P6KCRbq(UxFy`RSry>=mV+d&>&Y$h{PZ!TA4QC(7+3W`##q3z%3f=IS zsZ!^(GsEhWjk!3v<vbXR_Fvt<+F9CS?2fZ-?*|PWZ;G z7O*r_(qmj8I+8z}vr&x}Mll2Mq!cd!e!@E$DXUvxyB|xo4_8~OKK=+e&IaQI`PG4^ zp1HWQuy9-RX)%3$G|E6EVqi`ZZ5BcOXB|J^Kkk8=d#vX(Pst2E za7D73#TKBa1_Q>Pj0Z-@KpzObkCcITcOD=MQN}95rIn}oItV)Eh%^}^d*bG;<-fJ-aV%iioka~n*DCvfu)c&-zCo|rTxKRhI!vCyl?XEiPT+9iaZI5|ZUmeP&HzO-Kpx1nHEqal) zxcdi;%Hhk*26DZ15{OJeKbGQ+fFnVcEm%cjo&wPbRvW2}3*jj>lEebn14;v?qXmt? z;7}BuNI+X+q=h7Kh7fHOKw*lL{P{?u#Jk|oL>hk5gko}~aFiqn6gti?ghIe1w8u4T zb+Esl0B#He`Oc33eaR@4k*M&JK6uJwq_ly`a2Gko2AXMwrWGiMf&Z@)a1QnTQ& zG1M8(_FYODP9=h<6;Ix&}3B#&S#}W3MqjCh_Z0tX48#1 zZKn7P0_sw1d_$v5P%bJa@q@8cJJ*?oTPe$A_@`4#>X{+T*(PJ2tW*1BWxqyWlRl~z5qTsGrUg5!7X3Qw ziXV>voRaqB)`H&K;-=Kw#=&mnqVz?fNw?AUP>-f8=6;{A)$-Z~BL7FzxyLiz|Nnp1 zswrhjwYnU(nzYhPR=6Bfmxico9b}nPC5N0tl0y>83L_Ju>&mz!bj6(Jkc7mjgo_yo zbIRnL^Y7{Nz5V{WuG@8$!5Msh73{w)=h3MX)s3 zU8~=sE40OaK&1~FSo&`GjW5hSCXJW*NStAGD`s%oWKZ-Ablw@Vm)hCrJT>CnRBg93 z)G?(RI5O={!;GM+&LRZh{34@YE^ignir=&eI?51Bf87sZvP*em@E6fRUK0uu8 zd#<_9)HF2kl1F=%xOo-D$x(e1FQ%wgHjJZlqsw=AX~(kvioP@XG;itI>X5#=448te zu%XLC&(cf?aHssK8WV3oH3|(=2nm5zJT($!(5rB__0#58x3kOB2K#OWf#OckhX*;*!LQ` z4mlYWwi%*xS}}j~ev@DsNR(Z;baHAcZl>1*kptC~$C?|2#qY6*{uEeBUX)xjiXjLr z8Rm0ns8TWWU?ILZ_w~tRx}Gd_)qLs_Tncy9C;h=6q#2u}+W+8nb-m~iYQB47-^kd- zT&%_q=9U)GEdsqPU0p35z;tNh8q>viA9K#zov*}^y&U&k6jW-dI2&=WUsi$-dd_Rh zyjfo0>8zN4xYB=>p3Bh!uHWFbCcFq{GNF*!U1m%S!@j$epy$Ueq(_CMe4&||m&BVO z4V$vKvyQrD|3&lVK^KvBlzoda%sJ{)&gMvhNx*-^KFM^LXJtCP7*wR6jx}{LdXG6A zexaQq?Ed(9;L>Gn?T*t^RtfZ^&2yo<>qQEot({OReDcVp*S1xsC*{_C;C%JBcAOQ( z<@=>FwghVM^FJqPL>fhgTrJ3L?z7wQFC(w}j@N82lq?9VR9;yyTwL`JZ@8HE`84jY zkt1&nf40#~8feVZTILO2Z@Rzw-`JTz!^ehDKPZJC$V+!EElAsJ%-)#aDTjC@i>CNN zISDp7z`S0`z1zn>DWhWa#B0wa^TK2}oMq3Yonss3xPm)>7Y0YvLP-z^5}IXE2*m#} z0-!gN_V?2+Z*#Tq)=xIVA9R<%CjMoqzm7I*MNg>^KRLTN{Q9A6y*e~GOXfF}g+$`f zV1<-5nZdp~8X;?_Y3Z|AQo83V|2K&}_bk1+qOitBMrdiu-|N{B;?@qiz)o_ZZ=#xf z(`6rc@caN8Cn@8w|If*N2#5WCn?+mqEs%=dTxySwAaV>|`^Oy``09Kp=UHmXkGX)4 z$%lTUFRWg1!J(wl{w{bvwfQ}f|#KJk)9W6Wf2=uFz6`t zs{Uc{3oFrUV`QMYSNtFyju<5b(pV=3M#+? zc(mYwSpjpTKRjsC!NiF}5C{nPa;`T@g(!SeI1W3=eylO_RgN)<4F|7;@vX^Ue}4rU zi?@kZoq+d@S2zm64Qnd~Py6_uh1@g|ppf{tiz_OuUzTY>gAF3|c|7mV8=-YY*;R6h zfu8^55cCXo9+blo?mqW`LS3jxbHo?W2{G@t8K3o1kJH#J5_>_u9zprwc~a(7yj)q) z$YinXI^5@1+=E?lh?otLF;O_gafIYul*G2%1NARPZqH914FBd8!!U{P94ReR*xQB4-=}>wQl*@9r@>Te*@XhpI31@po1Qz-?U{W#s-}4Oz&WMy_P^`u4tql! z{IbbJo7ISy1*B;4*bwaZ6%WMt@lBuU)t~;L?sT=hbM$85`v{ATZ|!m4)@Th~^f=iQ zu!L>%GEo*B&bmg_DAJb5{wt5mpZY-~Z*t6$I5wTtFrQ=5RJnZ5?^)rlt?C)i$ej*B_hm0}}xVs*hKPwE83jvnH% zS4?ua*Q~wRbxwL6uUuSKf6Z0wC|eO#&OT`wOS0{`ranru%G>y5HsZu4yK;qv+|B)z z=H!`?s{w$iPWQKT6Z@Kh7t9QoSvRTP2(e8L%i0{pHB7lzJ>`Pa?BxL|Fp)U+WTL#m-B2GJ;FzQ^Yx;U zS+TbMt-;F>vg3jyb|H=?fHf79vA% z2mzmOdODp*uT5^z`@XtE7P!gJ67gH@=(`?)aQ?m~(U^S?bU}niOx@?%+yG zG^ui?Tyd!*pgE1vZQdYL9oyQe5+-zOr{`mEu{UxgtV|?4-YDoTwjF}i|D)!>$r%g9 zG@F!XAPCQvulCJV1bUYGFAv9k8F?eSS)yz(r^F>iR80Y*#Yz)zJaA=38HzN1C98#} zuy#xL-Nc?^U#u=|+hm`5o$AmFqoo!Hcp9-oi!dKMBn`r0)U#R@kR8`T{Uncn-0)_E z=hO2!^gda&pH?P6ZDG|A$5K2-As=9qtx;_9sX@@QJXsFUm1q)5DUl^6d;5DjlgH;&%# z`kUc0&h9*bzCHWBW=wq6IS?{Z!PEErR);o@>+(wDzIm0HK2!^bqW6b?%Dk<<<(TtX zipEq+Y;9{qJ~*X3s(NSSQC?8**s1G+Y(ceX_?!f{5c5v+F{f}XI;R)@y0WC?&g!~7 zrqGv>?w=H1vCq@r`?7PCnnEqnPgu~%amp8x!vGL@H1Xfjfc&9J**+Z@k}t!-p4@si zVPI0^cJOGe!J85US9FR+d&n?HG`@4wf86pThKG)6)QY22znIFOipuX+dAqGebC>SV zwgip}_lr0dfejsy<)twH;fQ_Vm%wnX5WX^RHg7spSTbr|R=hC0sMy`r%{SH3(pB?+ zXvej-u}T3?mx6rl{+#wvYQL@jQLL+F0(cBEoQ}Nty5|a6rk}#+`hV2o+(-|>o_6lj zyd234o3A(}cL_+d5U|5C3g~xrpw*Ei$VoWASb#%4M<8)Gr4{!<)hPT)31f_S zTd+BT(3?s?q;CmipS!^q#PUpo&NRHaaV%ST*L5u=cXOF^-Y?vSskW7m8Wl?e0Mt`# z(^AfV4KJ^8ND&N7ybuUU9D-j=cEw_^G<4j+_*gD&6P{>5CDTH9ab(t8U)?*)P!-Z& z-^ck1)#HDSsLnFtG|7*vvPJZ zLVk+XpyO~^g&Uri)OlP*IhE-$`w9x$J|5B66Z$f?;$u)aKMB;tTjnVlLTn5o^sVaZ z_d%QBW$x6Jw*(6syV`v$+BI_go9dO|d}Wx+gje*)Z?$OmJJACLzpBTCQ`v%K;jg8E z9nbkMZA5Tc%?q6O7R)#woB`H2*n>>!4ITOGpU{MV92t}|#Fapm+9Q0yM$(gO!(O-V z_<9BS&5ez(YSz5&IfJ7%O}&XfI8UA?LO|rw7Tplr1bY?E(vWbjc6r4jc)kImizA=r zvRlbbHA2%YwGAOq;gE?kBw@1uimEbiUk*x1#{DN0|BOou`Wcnxf5k0GqtG+Uf#902 zK%b%m0Fwj*mgy(wA^xj)7VRUE1bxKGJOV;1+%_=-8nf8JqZ$<}KODMloH3Z9v;C6> zhi6}(Hf3yKWTXbIWW&>OrI~?*J%jPSp1|=yxQa=jB*3t>N9hie_46$ite7z|Zv#TU zv34un)Jm#xO2zLczEzST2z^jE4jRB`CuNY(`>S@zawm&)%Vj4rJ!nY8DeS~atEHy7 zuFHvD8k+Pa?U3PjT{iC!8Ye(y=UeoXi;}q)v;9*|U90}{gW_(r@Xj)@&Z)8*Az#g1 zFLP2`CUW2U%?>x~VN1>`jZZ3~%fENVimruUtwI0>3VS%rpBQr)ox{~rmSnKy=^~{6 zlTvK+8R+ijwh4oBNyt!psT?hwqyuUw=YArz?X5QlxZ3%(ccg*jH;&=u(1Km%$ zrgnaDFI3HS_l9BSYM95(iH~vDiUf*V)xs)9x3-+@{L?Z4n?vDX%Z^rsZVOqTJosf` zh-APiUGMF+!|+M_7cW?l?R`ai#g)I0bv)K`jF{kLPE@D`%*DYdOUE1*bEoaa24qxN z=GQ;s-a1)+rKA5<3?F`71TJ>N$e5%e*}p^R*&p&^y8cg z$6=k}t4W%3kMtBJBfb=h(ED^u$(srG=v)!W&$wb_(aG|I!R@p!b}4eFDEXqp;b&bo z<39)`LRr5NL&Bc^k&oreQ<4X-4e_G*BhLm^BT@!AF`{l16-Hn~b{{Qyn_xy1cSd#P z$MSV>SAFtpDU)LC3O#J<#LwOnhP9tcIQMtQ8*ESr7>&239znb@`Sz3LnFCdqqmLrOpXd)37=R4h1W4BP4OW|Itv=BRBEUO zG^d=B--cwwpQ(G`n8g@6=D>Omf~g@P_GrF5;;s*SzlG(dXan#)JUxN&>S4b*Oa3Ul z5=nO94=C_WvdzF+u@BLfqV(Q2u>C1M+~CvYEj!olnpFd`NsAOSlCPHWN5Vp<1zXxrVxck59%>dGIYc`HGLnd}j9K^_mMQ>X(DgIQ&pp?Lki7+Zf zfocbUh*%5)ev02g&!a*aE_@70z;FbBe^UxZJc(Wj;M4!HZH};{6$+Cf4#sI5OmjxQrMf;D$$1Q|i@asc`h8UQ<^UdEA-aG52(QL}>eNq>FQg3nS50@QbAZKc_ zY&XCT0f!c)T+YckD&Y{muf&pk#ihGn*1%-18HOMOgc8`jqP}M8v~Qx?KfHK3&VwL{ zJMb_R5fg%2(t;lYJe1>>HOGB7BB5a?$6q{2F=s&jNUo8|REr-;ZuRg9Y?-k%^!~Rs z<(#LFmSU}1_$Mo^`(!&wKI&qVdHv$w_u5_c zo?(c2ZhPv$?}Z=es(Dj@?eop=RNSfvGG_qk@QItbPDA!h58l#7Zx5A2{f67n6lK@hs&}`KqJA|9{%wA>g-aZiHN5l@ z31#Xcyoou58rFethQADqiAO|R@c^a> zeafXRkj%aB#u^M={J#nBZrU~jI3f^)M<{&NfD8`(F4h2v!%3Qvh>1Q#k*xPanXN5d zgVW=ykKAQ`KdpYtoyh$Plpq)4DQ*dn&~iBO3grt0qoweZLr6m zZn@(N1sNGV^Fn=18=v6i-)uT_Ez~YC?OLS~UJv2fbLQCS3^@!NUg6%|`08SsscUzJ z6HIma^evoty*ke%)11)?woc~jkx~$C{E5xh)|s+$zWrlg` zf?;II=*O}c@;5RB9^G<`)L9ONJ>$Duih3$5x*n<3*b>ZWhq?ahuM0~R7S2@6k6dqF z^J237W3Q^YX$WGbihFn(RKLaLH!6I2gPc}Jv-5`)8P_&Q;F!frff6 zhac)wa)?vBsA)!$-g$!j!dOrBR88nJw~H{B0F=GA1!g*aejI9P!(|=+sIt&qB*Q5eEa>S^1M?P3xW?D-(V_$6-S%MJ0C2XQWKQv}A77Mh_ks zv(R5`8>J*?&N~#T=4=Ij5r7=__%2r04Eypd$9)4fqE$G;u5M0B&#kd1*mu0~;9rv? zqSm@W7|c?$D~rp3+fli=x-ucX@^f)quM(CU=2Ko8BudLV1U{^7&xebn6fRr@cr$!IZ2Ag}a|>+!<+h*{>+Y^Cj3Ub!PMbh@_q`4uV2o!xb*FirWkN-!Llw+D z)tbxG)w@=g&IC`6DOSuaEnFn47t*2VSqk+QYK?bFu^L=l30Igbx~l_It!#E^I?BCr zVspA1ULg4&(VB*jy?6FZZMD;Z!rh!Eh)xh#>0Y7T}qJ@bp#aSw&Ij(e2r#k!5Lp9cCYm&cugf?4eE6B2@?8vfn}I7)^Gv zK9=mW>qY$uljYm;hs%n~4qnshc*Uz|P&@1O%>yghPpZQtFL@-QcK;hcV(*gbJyJ>< zEKq5f+QnY|Azir$uepJ!w8ir-WAM8lZmC20E_w#M5sqywDk@rS*IyD=&h@P34GNAP z$B0RHQE7nN-CHf**FPBh6PtjEluse3)YcKJw?Y5;2d zP)(e9O}{y(&?(7UOOO%2R=h*a-N%CctR~CgU1OILLY%hPcsXt9ee#*KiZ5V_N79&_ zw(Qa0SQ7_O$F(^0QOYiZYVwV??23k1SDn-CkbNC?D;l?l6zxdba_^ciYIwN5P_b0@ z3c8AcN2%vpz(S$LHidnJe@*`|uUZyFy!D$|MQwyfeU5J(K7?(3;?QQL7A^-WWS9IH zA$a`W+J!l@`_7iPw_AB0z#ydClc@}IWkK&v9@M=CUN6AjyAO}@iiW_nfuJ{*d{ZZG zf@smRTd}sfAfB#&CusS}nM(8g;9)jE}y!%EYwy*eXG**$PYfBwws zX1@!5!V}~@^WsItZ`aY00HcI74ea1?2R7}M=%o_G4`BU(I&SiP+iQi=vD?d&3l6zE zwqovl%TdE14N9gyG?w2_#QA6`)M}yPzICghifJa^mJnkLJ2iNnli;&S)oqq@w4T@1 zJawa1WKOO%_?x1P(?V7KU1j)>m>5QniVE4t!oOpLbxHU#QZt-%rCMmt*>FSd9Cq+Y zbdca4lT2q;U09b>x*f;o*tT^&dj9k-x8y`%JAbN7yjV>eIvRG#dA&za=~08myRzwe(Tn{8FKO<7qL_J$4$Z za0)N3H?cRdzD%K5JieHW*p^{?qZH4Qo>#G%p z{VMur~# zpqFhA;d~WsdY=iloXqh%i9DUdQEJ5&U##{X?@~`PWjqW_3m(o-gTm>hxA$oWKU`=Z ztA#_NuM822G5jZo1-wk_gp1jm1KESuB&D>J&oOKpXgI_s2V6N9V;GlwvyfpU9FxdM z5&2725sCv$h^LZ8GFKAWoqnH_PsY6BZy74pF>kqz{rIOVNf~4K!~3I_`P319jgM;B zP&Xm=eQel9By~?L?T7bcwQlj&|4{}c(R`sH&h~1~lm6@7w`WGg9)4IhCkEHiCAneW z2N8rdLGo;CiSpCCv(50Qh{)-DiIPd@V4c0!IUZAuy1Nzqu!_bErF$c|$MU~*Q<0$t zS6nt#5kg|L!ChhXUANfwB)RP%24oU9zer*s?c|4T$YkDU+=F!TwALlGTERsVSBALk zC`QYO#XV}w<=Wyoh_{Tsvf}fm>+Nj4BRVjy)&~&{9nhZkdPhhrvR?KI#k+)%*ZuV? z;e$%LEOV~$za-vS7q!hSTou|PX9vm-kFxMSMUFWh-}PW$DGK)sVgoZi z>Le0J*oKmTRCezm41Q3Y(z~|!Gd9La9EVP+=Y;RgaCR8~@<;uF0e^^oMA%7C>_Nmg zd1tc*=F`C;48e+dihxI-LZUxV*^sA$DR2%YqZkL3EXAh`5%Bp4YxoDy0f7yOTJw)S zhQ>{Zy5S!{iwg*M(4}%HHXgEDY~~Fyf@%O_^Q$%yCTt%Pw|-j~!tm{(=w_Fx?1p5_ zSY&!^Yk6}CsJIC6mB#1Q_WQe~tvjDSDp)I$S{|Ah%NXojC zpM+47$=G>X45hVuCCRAb?4xztU}nW3WgY`r_kW(vQ{WnK!Z{|~<8waBhZq2R5cXQV z*Qs*Gi23P>`LeGs{4Klw*n0`?SUDFXs;e3eriqFfk_fOFE#&&;!e(R%DKhr2WMSz2lnN5$KJs`ZrqQayO;z-oi-qrLpxmK{{2I0sN;@3eO{ z9mXzAwqCW^3=XsJhC^#$m;5p1WPb>Z+?AzF2Re0sy!pmjQS|2Y1q_l&p__Z^o3lVi z<0qGyIuW@I{+2uIuRLrim}Zc;+dSAIGoK`W*X>B6KeW?tYR;PrJK;e`?|i^HRw8To zcc3Q9|u4Xp=vjpnyY0Fb(g!NVzX$uej`Z>*ZJ8 zapQ$*&h>##cUG?}4z&Om>7*cXXU3mIm!D_>8HRxXw$zlvCCaj!`AeyC<sb9KLtG`3f^rz}IBQO!h&L zQz+yMNj1fa(xa_p^M;_5I)Cdqp>MwRmO#ZmtB(WxockVcI;M%b0TWA$<4_dy*A5G@ z*XwWH^r^Na9`3NImNugj-YJ=9EZi$*Z>F#-#@*fgEZQx0?b>xh|CPnMbCXVTgY#rQ zqp3khD6ZpGQ_T9t#JOLOH4Th7td=V-PjA!@^!4Yt^OLpvr^@2#O7}N9Y*=<)nxu#cM?Fhv z#q#2%qTuDx;K80n{<0?gU^L86Gz}^XHg$D_rME?=y=@_7@EVDq$tmrd7^ZiJ%kjE| zKV~6`*JJVVM9-;vUDBpw<33t{_}L^()+j6Il~4ZD{BJzn`B{b&Px$rX99+6gdpH)V zO<+p_tc9l^)*bHpNmry`Mh_G(lH_Zh%J--!ef9P6o)e!^U1{!FZqr}L>?!X)lhfuz z!oG=jzN45$2;CH8aCCmHv z!qB@$Ql7h0%%Ytfyghy9mwuqW@WH7VbXrZ668y7i%|jd*`3**69r1V6~hS-f9a2-Agt%O2?LBRg`w&kK#Gs_^LM6<;7*Cf-%!9Xf{8-6dYF7 z(LB}>xPN+ZK9?I*o!Z@-a&GF!L7vX}4&%s{n}2U8z1;OyUS<{feXHaO((M~dI|j4s z6Z-B~YDi46M7+3Z$UH^UiRY^9>;KQh>G9WdD`qY^taWtr1cNLuOTbh!FGP;syY^gWK_2s2s=Y$U2gItr5q_3$I zNiG^{mnA)UVngSvzH&x+*5y)t=S^}r#SK-h&8*4YPr zECvJ#YRpw5zh{ZN;Se?Nx@IJaGDs;t2?;?+9X_O*fNDnoOe^$$%1~2^qr#pJZ#B0v z$GlfXr|o;N9YQ=9nMmymTY*Ce7lu{$Ty6M($k$-@b9%W*Q5C0xLCvkmQbXjSDG&8t&HTA1qXSmsrp+_YMSe)ZOF$0)9F2bY^7*5FL+Prz{~GzJs{>d zNF6a_8h@<-!eoA6m&!@MH1<+J6RZM zu_1(?D1^juFA4G1Dka3u(5`hm&Lw%3%kR(gu}o+fduc{|@91!QgA5w&kiPpSQXRm_ zF^KY++CzDjvy+>f^^1fz8h?1mndG<%`mLC!iQ;3UR)Cjmp#WfkZ^{IUO0Mg%V|i+%blJ*&-WtJ7C(4!*QcyO>*~$O9Bm?1^=e*jX zxKv*`b$J{=b7NstfJa5CeH}TI>z3hfj{mW6bE1~LdT;fo{$7c*G#|EY|0%`by-SDC z=;ym}#b8FZ!Q)`z4}t@{z}_mcjHsw<4%~%u;hutJasn+|+o=li=HfYTd;$#tTF%7c90^!YHpN}KrQK&tH@qIU04bG5-4t2%GTWFqXeE?H zJJQyfh%bNF0|9X z#56ki>8Kg|^gA-M=hk9tnodQDP*JE`JH!pc z$m51NHyJ$r#}rqKWIMUeT=~avai1HrOA=rga(TK6`1kt<{IkBe38Oh8|KXz1d9o%m zzDpy!wM>O`^{yG3$Z<+N^d2)%A@0OILQ@_$BLt{YWx&L~k^Nq?}v!9|~ zsoOa#=a~_Q|85k*9xJ(Zg#0+{?>}gyjaP6F+v&QApD&q?b?&dh&3O_@YmkRfgvk+g zw#Qx=Fb;&r*yDytexH9eHAq*?#YGD;uj1CnsZy#Ae7>8p7Y$LRP~v)HhCoE?w|>cMV6qyejQsw{Pw{T&j+aj@%mq(=W;N*W_x^qV z`_==Ws2BYZ_(Y5H`7igR^@1X|8`2&+)oX=gkub8py5)K1h^`U{WOw*8-J7tFYMRiQoB^oy~<`Z^j`^^)~(+tbN+3GE8M<( zT(fEn9qrZ4UwlrI{e#(eo&ku$hnP-T#*zGLvW%v_Kt2M`HvGhFzCM zw=|i#DplKfAO!zv(HwJke>m+Ss$|g0k^Ga)ltJQkPN4Er4n4QMO3uen?}oOIcxA@o z42(IlGHMz8(&Ry!3!X0oSlX56u^#QlGjt*GEtQNCS)tMs(Z#$FTah^At+vN!m3EdP z>Z;o99PW7p3H#Ufln;g`#M|Zhj6BqqJ}c+@vR4kYN*;gy%%e!CbRUQeni6m+ zk-%C&BB@9j1lTtG4yBo0Em2`o7FC!uQ>Vi2K{Y`%13C!14zaM^9|mOqchZqJ9wF zS;7GEH+&d`%w7rgP_L4d*NKht;-g__O(k%UCN#$3!M%e~j=#HABJ5=7&b_^?b?HZ| zL`uAqG{`|>%%RrC;DuZWm5TFU?VhKN=0VT!6F8jLoiUK9 zUQ;q&#!5_r0!O3_u6Oki z_Dtx%uC(@JsBov>wA|$0QNxLMb%5JnRzfiUSY_|R~SG8h=pI71fo;Bsrs$c9^BDmqqC$-YYpN$a` zcYoNgG`Ghvq|%&{AwPDw_^`4@#2uYi z?aAp&k9vNIOr=RGoXSREx}z(W}Mo zQCiJ4qJV!a<7-wrsMUOL5_%-c=*B6ze=ZZ8U?7F61 zBZtY2$ey4<{xF$o+Wo5ZYleS{UcmJ91Yf~m`#U$DZch$Tf9n;}wR}3?RIkxLzr(H6 zA^1PoOG&j9SmzZ6rWqdKFk7a3Unqx`dyISWthenEDFMs?zMa5dKPOslbhH*c`V2&p z>~^}zVJ^wE!q4BgLflhQ88G#P-9CCDwYFJ7-+#LQUqfWyLi#8o;*WKrYv#3>YR|Q6 zRqNQJ`i4rcD=2cF+*!Yi* zwOd=w@qJrY`+8RT6jzq=g%0_G+~{iZ<8y+-z@GcItxzm4A2D%DuFZ97XhftKH081? zuAKNSu>I9VU5=oySf#{O;ABbigOozK#Tm8t*v20VqQXbL_C-(GCC1ynLp$Zt^`6CH z=lt$h7J-|rM}mlIoI>O5+#GRT->(_A>P6Qhd*A;zmz}aprp6}_8}3>9U#|F>E6ES) zc(aaf(B9gYl70WRz^!fhV2(xNV9I8kdcf_#MR0yDcc(3ZnA#+rDz2lA7W8K>UO~qO z*L)aJu$PPIy`^)oS+z@hb!M)6CC6s@V_xN)_+CT4Q&R3+omHzJaH^dF@KjAHa^+d) zt+uRA21h36JMEEv(tlsv@#rCcd+9%T<#tZ|lyaCD4IdS?FpVJbz7fU_>-aW`g?NM;5WpIVUJZPw5PPpY*Rs zh5M_~WVygqC4NbS~))ut1P?7do%BhPoAxas6wxcGfn z_a!eU8k5LxQOP52*d?;6vy~8jEY#O^zZxat75pqMb5 zy$|B9S#E7XezWK8KM)BeiUg&J-Bges*L*ko7)adlv*hYQ6s&wV?Ij-fg8yRcfRQ_L zHpbKl886q2Cd-8Iell^PBn_~2K>s!p`Hl4%A@Nn+LC13!LZ)?nq%s&iK*R)f5g<&V z&zpOR(gRyNQUODs>pe^K2EU|Oin=6{nq>KU`@7}M?q$=5 zY*stPOZF)aA!>i*`84f@+KnUm^ilm~y&qj{S^ z5+)9$t$y}X(7SE#Al_^1pmvFDa>-WA-WN1|P=lUl#wJ)y~Ed#T-WF7dxVo)JF3CEiayvnEF-7D(3J;rUf z?s(Nstno~8cavtcQ;7F5UFGpdpaDC>m~%1zoAvrs!j-E+#m5diugDF`-CORdoI0f# zxKQkB-=1FKVjT0Mb0HSbyy=@_yODAEqPGuOtt=e8>|_|t|6LxDkIg@!jvsE{E5IYL6f%qBhIc6xVGWE zn#6j|;N4{9r_;*YMrd*0dx4-TA2tn#+Wbdv=%1}lb^@xsDL|&ZcS)+R`*aKrXE5wF zXqwg8(GxhvPDO(MB%hv1xW;p?n5&jv8SD8q>72hsD9W#c6W~Yb&bPgqjZ-XIZEK_Sl%#ABard1D4CIzhDO^u+czlk^8tTVAEsi6Ojb8<@lTiV0*_s%oS;{JYW zp<<0o$0V>G`B^z9J0$Ho9#)$1*L_cjb^(Z%jS2ns`CW=SEH-W;Gq6ct(Lw(*p3w4u zXuE4I&lQVddJwTfr4UNhBazr>U4i9HgcCFzWEiC%*J}4|RenMnd7~0M=wh?fqPTp6 zxHXTMVdc_ve}jqIQLhItYaU^~A@NkTqc3Y{>6)tEr?cWs{u%Ggb$Sfz$9Mm|r!%cg zoGu35qnY2b(fCJPj)Y8QB>0lz= z--kRX_k!!Hz4e77kxo|6LKDM0Q>36G+>CX22STi5X!sKVqRg$U#!4w6~bl}$w} zQ?kVmoCT!zO}6z~oQyV;FXb{n1pC{+lfb#~JHf&yTJ1e1V+6g^#m8^+T?5==Zt~O- z)ebB*KIIQ2+}J~(BUmv9rWt)PVFt+wO27~E&Ts6> zpajhE{RsRA12!V@Pg1N=X%yd0l*gte#V61Rs6H?f)q7pYyGlM$a8}8H`#ZvqBkM$Yd!Oa~q%eC&ByCh@aDNT< z9%1vb$5HERF=eIO#0N_#X8&+SpBCQW!oPJNbE5B*6t@~u)kIc}D)%wxWaAA}L~)$b zOxg7xYQ7+k-2?}3`HuNG!CnGGzy3hGd+@8Of}8XK{Bb0N6+nWMFh;G9VWC6f4UjAt6$voa0T<%&brcZ%K(mCw zNCvonIQ-rB58%VgNdSWZgIU=C+TtB^RG1A8w*+;c@K4Fu4aa3Y4UG|KDiWSMYeSff z#9cyD;i%OB*E+>r>CVECWV-E5A>I-HVR>ot`*2)l2muMxC+MDVWIDaSUB0)tM^P#E z)^N?B-oo@>gh-=e55o{6BM4q|Kr0fa7v8__o2jEl#Bdaz+PZx0q`C%v6%&w37kymZc>x)g#+9+s|$Wfc~uMxa<%0mvXj?63ZuFR z&S#qtf0qCivDK%}Q>8?OvuF1UAG3VxJVP`w9J>yd6~La#%$2OOvz{5d9-VuUfz5aJ zkw}l-n+Tk^kfivRiz~M%NnIzTWV)Uit&>0>01wGnS^P$xn-{M{FMU7ts_kL!dFd*9 zrbp)a&Z84W{(Y@%iJx1|323kO2fGFPpZ-Z=_j^72wi}`&7(Z&M_~%x1t*sip{TQ(} zrGb2Silyo|+OyD_7f-Ks(vyn&Y>4)5YG4Tiiv$&uwZ93*ZVUZd0F+c@*7a%;`yveB zk~!9a`IdpdCazbmLcM;nO~B%^YDKEO)tvC9JFoD8+V0PDjKecGcv(Szk8oX*qVk`$ zv+N_YJpFSj^nZ908QTY)Hk^2vU=ILzes7}bBV~%kVYo2lxy^|y7&EFm#eN{M#ycg+ zzf`INrlV6;XPw?c9XjfOR%mqzV)sRdp zXT;f+@XR8SR58C9G)$oVrQ~Xdn^(Up6KlbX zGxh-f>xvOrRgLVg6h`|j zqey>ibe?;J-7OFQRKt+)-$eXyOueP#p<}^<k9Y2t`en?+W%77PyOPXt72*;V5?QuDs) z&W@KZ$r?8PPDLZ-ZR0BgHhLAhZWo0qE?Hcc&i@Kr3v6`+Hw>BFHh-w@Jkjpsotvgx zzPu}VqD6lh&}aI$e^)ilX%!A$yL(doMTvzmf@(fxC4A&NerJ)>Zu4t_-Mu6Vuqo?u z?JS%>wOTiRXYO9KMluv0?H)hv+Ma6>_%Ok{LYG-*Cs*gxl5r-@YW1GY>c^f{(IP>$ zsW3ZN@XCTyY89QA`@*w)1n`Op1G64Kc(YXl>j%!{x`TPapV(|liq3UA zfkqml9YoED#0)3Poll?+C?8CQeyd`LQ`I&|FBEDC+-NQFBX>R8HJkg$U}$_83Jo_y z!Gdm{s%k{vCyMbqhw^Yr3Nwzdx%bCXm&^RzYEJMNpPkm+dZ9s+Uvj%A-7YD$(hts; zO8wf53GI)ZbS$n?S1xF_zAx?0*C;w_{q3v#h3anouV5&CxJtf2spmb{GLAjy<=f)Bjm~V ze4F8qdC!d-k8~C~2|TgU)wq&=WaxU;qeq7|fooYkHt}EB>ygD}yGtfokK_9LQjEi} zi-nB2K*6y-avPmm;OZ@x2^)YX{j`UkP1jOH`)f0tMAx3ORV+-l;rI%=FM*Q zv5A8ND9GSsrDn%byjqHo*}SeRQr;v}5@<9~Y7BL|D;5wIk=Y`UZ6g8FT8I;#NNWEhw1=ueP$K{=PHTK|c*9qZRa!2TDv4p}UQZ zNfRiH!55+NMpc?1~DC%m7VKi?i2ibzFxt%3c}L%Ug|Z5|KOswF2j zBM(TTBtl8C2&$nUF7i2!1);?EJqF)T0-0e=Kn#Jy8d!m0+hsz!?%S{m#JqSJ(72N0 z;&0X2OL;_BQD6KSa#9A5(#9VspYPl}9ynmimQGCusMuNIy^b;!tz8%|4fQW8-=tTD zJTz6bc$#+;X4A)NbaZK7`qOQprkb(TO&-SL_s>R12Ut~9!*8?^yA)wy(?GXxx$u=d zYaJ#P?`fY-K%|$1T_@zV+T8M(0I{)hwlh0bSjP8L)y)i+lx zR@JTkZ0`viC}}A9UZH6nrhGHBiN^FaWc0g(TI0TO`# z9zT9hgg6M1K?DzCUS_>X1gY0@&tSp$58&brHUIRR{ol+%>O>OwwdBgb3l946w|MGC z*;6+j1rvLFdymoR(g{V8d-?eXr2;;gyBw??b3Ynu6$`AHT@M5V2hY@YOX`v>k@+H# z<-xIBlD@fL_CJbaXE?|(j91*0Onu_T>H|(R3MOl@OqGlcf9`z*)>$B2)SmNX=bI3l z+4EMLVqeP!=%2^tD$A#E3J)Y*z$cG< zx7{cpPf-fPj#a#jW#hcj!mK|yTR&!!(pPfI-RmxH{XIWON{}Q)Fz!oB^rqLwFWfz! z!VNaoAaq3gI1F6xY*Jg*TE`#IGKgfOg3W7My~Q|JIXf3IGzP>EWsks}K?BGLEvJ6`wZkMW$M}lea!|O!pE;{rYjK%j{l0Wf z`o98Qwi}0N5Ey@1GOhC1^FQ0nOiK9Hh=hcVw-rUDVY0B)t-(uxuLWlk*>X1RU{~kA z+V_)rpykd!)ccT}nq72Mv1hCXjSakiMj$QuN z;^GG}?0n_$k!&eeZ;#sJlgAd(yWvN{HhRU1@x|1dEZdxUNY9r>IW^U{IK;T6n^08i zvMMK|-u|26KTOQ+PE=rA85WIJ{BG`z&a<76Lc}cP+rzIFV1Z=bw}`C(la%CV*y_e2 zBgRnl$U)nDHrz<~p#IyA-`|psMMi*YgyCNyqkL($_d~~8*a(htC_=y2AN}NZ8u+Uz zf=@jB{k5ViCaWCVkfo;k-?-HDKRP{yUCvAlB*w zhkv)fmPor9VFQs&1n(^bI0E63%A_AqfVsz!?o#TRcR3xj)fDm3>c|F$zWLFp&%iw^YTO9Wt4 z1I#xT2$lk(jWHPbB2c%FLMq|}D*dl$v=n#v!oY9#C+e-_pcofd6eMl_Pl!a67v6?} zCHHBz85Y~u%Gj4NXIC#7DWp!LqntDJ5Z=(~>)Yq#Q#24?t3dNEE>o*I|C;297%_;q zRm@fXhto$;5dz=TvzGr1VqIx`1U)2}Zu2Az1Yj%*zA*Fm!&NIa~6vO?&q@OH}*e<3-y{ zAEsymWZ)DXoAda*Oyj>|aAw)cNSF&2iIr=T`e7?+!Gqoh^(KIc09X{%l!$=a5NuGu z$Xx5xP-yIyY-H*qlGA6)D_6<^=WTkOxwn)$ONw~m%Hnuc@U5L`TKct`=>g}~uF8@t z_@e$4en9}-Z0&2QC|&=X96h`-3cN*N-0{=8C`VwU5OhV+PXxf?`B8|U+nu9n0=)&- zC}cPMYUT9Ca?nN7MP)P9va;sSB#$1qf%q<8!F`>nHpRW$JFn7m4uZi!S^7?ZCLp{G z1YG03Ze!-|?utg^d#RzlWI=3RotjW!U^VuNhCHwdPv0x+`wp6QgH_zow>Q>0lKFJA zwaY7Z<~(-)zQ0t~=zP=L-wF+^IPveC@twM#fIwJMYA?t+bc;unfK9O@D6X&P4ng>< zJknRI=a;Q+1$~+uxZMOUB;&oq+ut0E%L!i3i)AHK;sq5=CdkaQlOV@?#XU0W-jm8AH{Lkfy)fA88G~2z^`@O;l>2|RntXya{cXBxKGW+l&>@C z1?Anl(Xwh!nJQP>9);PiZfkNj!|K8>_+0a|vTA$dKQO13(`Af`J!1a|j+3-+6#4IV zee6O0g&++-E?X#F+@O`dS9JY8mTgHCr1+A#-sxE6>V69(6K=w%)e8 zxx2_ay#0Z**&MfsOC9yHDY`yTtkM*iM%WzPQG4F##Uz_$3~y0}H|~ec1lI)7G&CzK zzEo6BZiF}~in;#hXc)%{B!M|)$bo_8o5P+9#0 zy?V;q8s~5Pbg61mU$#{>>+(9W+i9K9V=KH-E&8OIQ(C~l#nJ#bNN+fFVSRB_t#fwz z57_oDUUtz~0*=Ys8KQ$Vw_M{elx6oCjyHZ8a1^vR*QLXEdBYY~Hbu3!w}Q}q=;d|x z?+kIUHf4(hLZwAb`R1(a!vVg_ZQBiHyA7*h%amSrCdCTPqB}|m@0IY6uA{pTa|AE~qls>hW`-{PVc&4wJBb#88b!V~&_95L z=)9$xq|q*YFnDzn1j4WF^dDah-?qLLxbQpn`=*(;#;@OK%JoOImpBPHaA_7W{@N>5 z`tAN1sVZn*oO7=U_X;i(*=OXK>MfiLyerx#j4}P9yn5P$vaL}r&)n)o!XU#->gJZSIGM4l94(VRokUTH3FL?Tfv zWM`{>F^?I%6(F1&<3u^#Ev+q*VB5PK8n)9{T<6|9&QtFqXyR738H$z?KcD{WYiGa0 z$JGAcrA&9{S)8|O8&iP?1~&Tr!3k56T0!zYU)-(%JJfKa;Cx;eal;MOj7c-vHeU~XlVb89)25b8tl_b)x$ ztY*5~%h~x2I37C%`-#WiLBQ4Kj50vXNbKd4f01J8%D|$$z;n~iLB_?c8J7fzJ4#xC zf8SzvC`DoA(9QX^j>b$p8myC!u5~P?%U`Uva*1zt$gr|yxfd~OjwQW*i6=D9ANQzs z?jGQT!%;N(dqS+d(g5Gmu#oEQ%$*L=i)zDKw1J|c!s_{rRo3q8cbtA%N0gS9=C#B(4iX0Ld8gTV`^J-NB~ATwE*s&W?8%^rL8C z7GMg2IZnt6k$XjlH(SeU0=+mpI2RK;S07ahUrzs*aVrjgr`ft5_r53$egHyfRN)rV!I>b9qr6lS#MCfoi4MQ@L6wrBV(q-fA z-H8Xx6gtRDCE_6Q2yitpkjZ*6OX351iaZN6a=OBFtfD!cUeU8JqR2>xpWm2EQb$*u z>#adIUX)oAFat*9>tt1{8NXI^E(qY>I;f{*EP@Pq}wEobQrS72=;|}vO+F7 zK89q&t$KXpK~&V(+2)0*;+frXa4s^+su91Z7c|RR)z(ElUCLm=(`aFgb${R;AdNXw zmTk2}EC?DynDr=IWQ@c7cs!#AD~NeCX+Ccmw=*Sb= zZ0%CLNfRXgH5^4nH+?zZ;LAaUnzVyS$9EJoZ@rlO&&*&Ky_Y6wFytEj2*I)=~Wa=kK&t&=MTsZL@> z9V|^^ehi~Mp^GQR(ew<(&s|(B(Z)om0tD7ozXF>G^0K?6tL&9?f5#rs%F72dUTjvI zMU|vnc$upC7-p~UQ-*lqBnyTXI)aiJf_wG9`%flxo#1ck=9LvUj`Q^ky!w1|R87k4 z*6yG8t6DVM)K0&3b8eG|LIQ6uR##M3(H55{JbheKGGDzstu!Vl(O;4>=LptcG;{Iq zXF||^4Bjr~a%rU$oESpEp-N<;9QMMeEF~#Pei7E$bbE3&`YOhBU(?`wE`8@`-vChq z_g3Nb?`+a#HkJ~q+OjB9J7{ER5r-O|2pzt%D6Yf*Fl8{_vf!ElFwDgA8Dn5FF$LGG zSRm~)`}}Z(7Rxy!`nHUp*bVD7E=8h?d9UASrKDLlfHHAkb~kkIDF{T5Dyu$DFDK(t zQ!He!fp7?l$^1b+3rQZR;F!Q`$=&85Q^2jO6_)DlPN@L9HcTMw%$cRAD0v`57p@I6 zX@g;FO$W>&EL?m}%yLkurU=u*l{&N0;{vGv6}AVXy}FGN*)-`(uj^>tSqx$I+xWa+$DR=B5^hxAEv@cchpOx6=EY-nUZs-u2$y zNKeoPhPWNIOUe;R8->;;?>d@r=^ft0=FggygJEH`{W38a?*wxbwj-J9lz-LAR+adt zMEJI&`Kz0z#z?Y39OUkV>^CRL?3k}-vV^2MAteZNJ|kiJW$CwQ$shEry-u=eLQ+Oq zLQsC4<|kUKv{A)e{SV!z5DwmZoWJAntxqvBr0dpSUs=F@;q$1-!H*l@@}5L$3Pr1A zj~)78z{i7DX96LHyN@iSBBkX9Hei8#wjfM~jED?8|Al-Z;SPkKt5ZP7JVITfd)3z8 z+GH;uQk@KdOl1W+IRAvBghnB0_kv>jxwcRf)&L#H{Wa#OtO?pN>_kF`ZUorC(=`W0 zs1%<(*SR$C1V?cxh#Q?!jnI811V@^}ZkWs!M<)Ud6<5W;$!v)8-IBLRT^Xb5m9>s& zGi@l?Hq_BUAtd+^AUg{GBlW_Uz~u;$;gUy2@bT&WRDUN6m6jF4x`k%CQqphVb8qwt z@vVOPRltjs+RJu>h~#*`0u63k6LNjMe{xdImvZ%i2gG})uOOix_KJ5CrqYWp3KBO8 zZUrpt6wd&{e#2B(xz?BPT{ZS$w+piwoW}dA1VAkE*M1zOeF>~fjvRpjG2g$!?q6~Q zV)Fk92d;maQBQ}GM2yaw5*!M^FkqMBssI!rj|Apglo;e27W_2mlC6O{6qKz0%ob~h z!PGJ}sq7R#_ed0(%;(qZ9pvk zhB-Kxf}4*8`U@b#2!J6H(=#(Ya-G$mcdhq1mT3dK6NuFcAAHi2_7Da~f}>9yMNk6n zmwzrE7zP$;1X{i$QvC8p_E)n2fKk((#JQlzRH6T$#E48{#yZDv+p`+5B1gKdcrp%_q_~Fw8%ccHpUD z?&}TU`a1Q3X|lMtsk}SEaB+;bjcjMsuQS#Ify@+(wq?7-r8C`ybAzo|$c@?hW&bLz z=c8R_+PnX5*&q&>oM-uduR>d~cm;_b@5mNG^6PfsORmqyinna9&$VhAiz~7TkbPxZ zn;v1i!5*5`HPeebo?F)8%L5*ofs()c8AYnDAA{67gn!@Q#(#Z4AgKDP-?DkT7yk%} z1WS!7luc-q1`!v%=+l0vw^#IHsLAh+x@cP6NC>Tuvzo=MQ40oiNw(*W<+}BCbz{{7 zd7S8K(bPb#69m1LyE`F-j{v!1ns=NPcyTG}(B{Rw@}HUq)oC|tgnMkc+b_zKMH)w! z>9P;wikH{>9tU1Hksh_m}MJLw=TQ?#>DR=r7=ui5z< zW;(^$Qr%rl7~XUed=hMREasPJg5GfE8#nlgLygrXFIO0V7pQ`IcxIHS7ukW_Jbfc9MCAcGvpU=;WSbn|Brj__>r45HKqB zUIusp-Ua*m?No6><}$aR)%>N)SFQY>b|_{}fJffR#wpJebit0CdpDQ&7K@Vt-j+3Uj4VZ$Y&S4t&+R*vS!7Vm-FWS`)pcWK$QkSh3|&={AYXX!Fdp- z{@E#|{XA~mJ%dHhPtO^@q`ke)*%>hlUs+oBDg-V80P!AkKV*-_nmo-;e~FXyD_1H$ z`pl7=(UX+hD`L0Ppjxv;DYL8590oL>l@VzRJ6^p^iwt6YyyHImw4B?5)eCDws+oge ztr7rynnpa=miiWNtN5bJ`+}-~<=|}d@-m${FGw+MKKD`8ighf}g>r0w9v1#ZW7hfn zQr(<;IIsxaJScXup^0f+xLJsGCgr9)xX7cDmHIhz0`EdxbYYz79#6r67DN*GI%~E8 zgruF_ziM4nJM_Gb&9hNKSx8h?>iL9G$BR6nWez;8Jr00!KV#ws-Vx^Q;c@pWJmb{+ zr#Di?o$aQME)G}Z(jDJ;o3fLVtcgkwJMk2{5#g8s zl6*eG@w#hs6P;3e6i_D$n<+slVAawWdsM*=t`Pzc@ zB#LS}F4dV7#sX@+vfZwl)!z#?YZh>T1pGY_84ox56NQRNMnGY}b77YRR|;ESzLc?` zuq3KYt1d6!TsU4tjR`(>EOc0^?DN@+-zzT54y|u(xE9&EZwOpgy)!ubT(wL!_9znO z5=TxsB}nN`!lgoD#$1W4;oS|Qh-iR3t^n?$Ff_%qD zrIn;iJ0iutwjh##yWJEH1>QzO?j+P>G(who1$)y4i>7RZRS830;;i(Bb)`cLxHEp6 zy?`6@MP)mQ)sL^Q9KRK~i1ny)&ahbc=ci=dPw&qH*H^HsE<>((^LL$YtIt!XU~1vr z{2grL;aq%Hn-|@N#{oZB%G<=&bcO*;1oVUU!+rpexuZZ|bgT;Uhqa!=Um;UZBl?7qdB-I3ijCZHi*fq*B(T}NNhjW7mb zRPEVlijS%KYUnW}7VT)myZu=Jyqc*vsd8(g5BTP0DgGSb>}(xKV293kY}eT&NZ}{D z+AkEdL(`_#?-^zKiv_@sXpYn)@I9UfNR8a^%`w(00H zYU3JL*vvNcBsoHWP{+=_@XW=v|78Jo=;5m#$*8BmmH803V7bAtL1Iq?*uas2!DJFa z&mSbE4f(;Mr}V!&9wI^>2n4=z%}pMiJawe+pj`WDDR zCZ-O|u1NSe;Ad`h212cV2fJ7yXI}*=fHWssZM1T%dY5gLv9&WG+MW0U$_;zSXK#Pkj7+^U9H;jDu<2mOX`CGm zgy?;@JC7P6&Ap?}+e+J$8b}v(I;KAfKW}{905F|oaEVuxh;X`%zUo4aZD~s7?-K&r z>kn5PO;78~B)xkYJL#R_>V-kY!^PY0dmtV6-H1E&H0iZ0MF(*E-i)Zxv0z^gDF%Z( z9i==0R>s=vPa8*5XaN7v?;uAtLyPC&T6mDQ!&lQxpnOm5|Y;ZSwOgEr{R6s@a`|4Lwg~Q2i?#|fG4Bp z4;rg;dvf7;0;gtkshDhuf$L19h-YyYO3rqSH36Ncx-_IiKi@!dHL*Qv}nU?NR#>9)iDKZ^Jfs7{c#F8NdtK@$EpkQ zUHP0r3RQ-hdbH^*eh->t^exkQ`UK=@vu7+Cx;5>8iG3QZXw8ed=D`OQliqhr9Z;-k!4oovzu~juq{xOyjk99*r!S+@F(7t1bV~v^Lm$D z7^|wZ&|yE>Z_dao5y&eh8C+4{S{eYns@&SOL%K-nBj;D@$m}4Uz0w#L=XTQt)Woq0 zchFM!6r77IpYFSMEJU*1=y785VF4XzVnmNFG9w8B!zGq7KW>t44Kh^ae|P;7bnXa#2L1KSzK$5P^C)2286-n^nbhOTE}SFLA}zy@}=O zvyv@FN(Lnhza4xCq+GH-oGzgYtW!Nd4=YiP`r@yfJeE>gQos1?VHx>yK3-nF`)=hwgON0oDNl3m9){n46@Y#u>A^bXE<|_tbH=Pg( z9a0J6J#bf~S-@^s$MK;62;iY43RJ&FFvOoIHT8kQ=zq3Ede9H`@s!TnCnWTp<>Dfi z6}|*VAx`9i$!4$*t*yzbfN`6of2g%LQxm4{8<;j>mU&B*w^3O9wZ&;lg?fY>i<|;h zx5Yh!%dCHP5^P;N@L!5mpx(tjc$20bXpI zfLG~HcTg!3heP%NJ`xC833B0zqQG*f(H|@dQ1!S#I~x20nvMK7^Zo7KBwJ2sqF1F< zq?C5|vzDmxTJB<)E+87%UM>n9EimP=Ri(#$9n;hvShBTB^$w+-ku6R4bDhiORPGM# z7u|6MGPa_NUrgN9bE{{r>)mpl@wot1Ua}=>Jao6=wQYUv=<=W4!HlhqjS7Z$sj&X} z5ryaX&;|63DnOVhXMzj3i8-;WG9`UmO@91*spoJka zn0NxKgHHT(^A3LEp5mRAsO1Q+n=T1guVnPL@hU1u}xjbHJG z06ku`F{(D6BHvc#INMuL#{}?@fw=^7scMEMzNn{ZZnW)IcG#C22hFtC1;0OPj;n5? zP;oOZH-_i@c{#RnWRniwD&4k14;dc4nyN4Q{zi(e(W9>hHw%@zn9OP}S<9a|mu55r z4|uWfjy0~Y4y}La?(qwyr~v-ft3LO#1oPhUOT2}+lHS%QqiQNZa#6kfvaB?8cRg+< zofeuW#j=EvQ({VmpWp@@1zTHNv(r3rM1`QX}f`iy7F#C-MXzlmz{3O(@AFEk^xu1BS4VV@)yYp4KnX9(DlOq=m zXags&7u+ts8U4po&D7`h1b~iftWPb@gl}i=HiOT~u&s-QQ?bbTg4-$|3*}l__wvBj z>t593bUL|mv!n4|Mp5he8L^`1hZ$iTARo4BmYLz9iglZ*PPk518*tABy8-E()y9p7 zrR>5-mq}|LTL*?`KCjvm!u(4IIIE4w-)2L*lMjl6ym#}P?M%uE)m6+nP6HRtd;j)S zuKdpG@MfKM2y2Sz6^rPUBp+V=cX7pGi5jYVO3uawpIaoKO=>wi&NCIl+};3nA~AgK zIB$_$gICb*=zUd_g5}e>%FiuKw3ezO{#|&fQ<2n}ibh`1j~nhJR$+6}M4&TOt1|q^ zmCfyum4FDa;(9(^*7;v~&l;Fxwb{Xay-LxG3w?BE=k#`5@w*wl|5Es4^<9zVvywio zj-;IR;+cW+l;!qY4|rR!q9HEU%|bbgR+0(>#Pl+eVV^tRnMChbIWu6A))q=M6M#+T#W?{DPW&QsBmhwPZVt9Qqk@Gs zp9SU!;%!e5$q{xxeOXPOJ*AIffBw4c^2)?-agZSP(MnGS_Y;hvQgri-$vr(ONqb^* zQZ>k(elVLiF%%qxQ}>*M!~9qHt?uGp?;o6}`@6xBG2ZwtyAZMJjed?V1V%YuD^CGmYAI0M%JJFa@NAtN{`smraChgG6TxSV4vNo z{i54j+p8iMgXSI-hk1IH+7+o5+-9s^-SeF}@)vxl24~rJ;Y%{o;r>3>Sh2)G7dJ5| z%GnVzfwOk?K?7;wN*8DuY;L*p{_a>`p@LYvUbx0HpUH&b-L>NhphhbdSJexz7HP3C z4J=%Klc2r(h@kylUj6t5Gh-M+0t&8Y5?~?CP~siY-jFNkF(?{?xFqM3z(xujmozU0 zSm#2rzCfoD3kNGBTSCSGPb2>3%7Bv}0&XK<{(-XV08hv@i&gnntShxNg`_O}Y{ESZ z_7L?<8Pqx1Da@9GDW&O*TU*Pw)M;NT)j*+K<)f6gY}<;iTCI)dR4?w_&#d|Nptl(} z`0)uosspYMhwuZ)UZjAm$Y4!n1z{b`8BZh}Mo1(d&!Qd```A+;C;e2+;DZ4|+}`l< z+f$#O#P^6pkjfHYj~}(QA#Csx*!`rpIuIR4V%veJWpGgd zGe)npi9o2iNuDg;6(UI`?#zQ(>94T$XN{Rv zU#c`(ZHamxsCMofF<+_%Sk(g$O4I3%c0Vgq3Y+zacqg<P(WnyE_pl=Jv$b zhZa|{)w5c&=}sMtu*mIrq`$;8Ni`DlPf`UC9NT!Ns_@D(&BmzfVGe-son&m5B{J-7h< zI+pS)YgxT48S#)E;=4QaJ0z^EMkC&R-{0)gX+r?gWnO+OsVk`q7l;)jkQpi7B{3h+ z1ai0Bx=rkBO0>w=5ziDa#(251uKN%nP}Ma4FUfdGos)3K)XqhU!s$FmOzE^S$;2fi zN)W=<@Y=BY46gHZfbRL99lg0k!_>!_e^6E&E{M4k1>xrwyXQfbT0I);1fj`E z{ZTs>fvR9swA2g91_b(Po%HW28DsoC4m`1hu%$!z#|VN^mCrtN>+{ihDtqsyCcRHB z71{90kTU52yx;?3yv`!WB!^c*Wy#%!C@E>3ApNrd=VdbE1GBU~{)C}MH>YW8TjM{R zy&QNmHk)tohRczEEb~saHmU(;Hd@I+)iiPJIRcXEbG_s!lDqbe^t=f%xx*#yD4pKh zr^C+ayJ(zBXTxG4R<`uvg)rFAir6_=eD1W6+K`C?Mi_O$h_we8Hx%!=oC zd zZ*Ns=6DdKU)5V>6IOnKh>XTe?w?Ixbr@R~WyXn2kL!=Hw(iE^m3=y+QMZJ0yH@jGj zxC^CZ5HI!GXJ5MuvYW+D_o$j@ceVLPD~kU!&Z%8R^i`FBU;6sQyBXIHrKh+QFzg9{ zasSup=@DkndS|et#w}eA+c)?Pzr+*C+)0S9@$hU!Vq%9R0&1R=P6eL3cM*!g(=?t* zPtssjo3pkos2sVtG#|cZ2)FdPaOH6>V0`l23u7=mw!`B6PhpX?>b4(caK||?7b4}oB@_X zC&2$FSRcZD3O50yd3F;96Q~VRuihn9?W~HG)M>E8`oi2OT7Rn}D#1CLAWcPvO(dFNU@1IW=6wGC~itJ1sAHL1m=9!t;-kCm?`qvK$M~TCAP9RWxR>&jJ->vq* zsc49S=pwAH5?}&|y^y`A`8$zXZa_J?1>QH7XY)llIsV9n3sq2n3P#(2F zlnEA4eGC%KU|2$w_S|$qUQJSj=ax-C7+G8!TCy9}K^odM{3@TGrsXLUt{rfcl*N~P z5^cO*aCrae{hs@E`1xMN=0QJD2Wx_*d+{uF)d}1axes{sz1F#aizO4+;-B3cl245T zmTcFY)JR58+WWYCvDWf0!Nbc-J(UjwJXhE1g9%~4DYfTgqQNi&@8Sx-e68NwEe?Pp z)H1`j?;SY;-fy~7+0;sPz-GE>zMomMT}5ck)Y>el zSt=U5c(W+=fSOn*Sy1-|Pbg2SgXIxvf7+Y84?jWYWZEc4P`91#@2YEYhE5o*p7?B6 zWI~~Vz0~jab?vJ6GjZ-aweRDKNBsiXLB)!H$B&7`^!eAQGLrw9wH#^KS`!Ki`X!j> zwjz(DH#&5fESRHC#92m(M}={iyx;jb?DJkLNUEM_`_7>J?mE%#OW9;+7;W3NX6b;7!`Gmyg&yGnx}*Ht zq@HD(^95^JoQbGbP|#;P01POLn>m?Df36(Nf~b8-lUY?O zKe6qeepTgtgRejUF<8BKLaWusErc`LXlc9pU+ZQH_*@Y<8E4o?}kzDVvP^BvtP3w>Mucp?uPusWzFU|hhVQR3qmYVA8 zEr%}FI8&bpE|R9?U{_Cq6XjVYVfFdMRGj?K&4ZynZRC0ZPNqnvh^R;DKss~h&xT|1 za4$Zgr(pb(6SdW+@Oy^~uohEa_k+yWkSZX=3}~uxXKkyECvk?#^)`y* zu!nQNqDo@c%GCO@M;PnT==*U;)fL;UU~~1GMdwE)qY^1p?agQMABo$2^BY05H#s)e zSo8_e%-NOE;<)DfL@P*SUq_HZuF(6NJnv?3@lD-85E_{0SIi{acagN$mZn6jH|GIl z>F@ho;;3>P`9UMU1-ICjVAq2Y`C~RNl)#MC&@#Iv?cHVht-)UH-Tngv_OSXzb*<~v z{%M!;LyB+)GfdmGixl^I`%*Zow}-&apHhBKEq&CFKjv^>824p}-B7L-GBT2NV7Iks z%k@&hxHr`ud{6-^Hsz0WLMD(dr)Qp^7%bOLDKfP~7apj#bu9HUR+tHyVXNC_;cH+d ztsRTepR#lDyB~{;>`4m)=~-*n@^1TS(`!OUu@)C^MtOwHGcvb2(~D{XcBdUTM@Hio zb3%zN4>Eju{kGfV-i|$REI{3VSf@k8#lql9$iBJ8^f@p~6ruEVY0fnu69q=wSDVL^ z#=7pa$f@ebpsc_lv*IV8Y~*_43|jAX5Gd>ZW!5}zUIQvTZ8-YX^MB`$iLChNNm>v7 zva@h55TpQV-O9S|RyUH07dZJ@M_id4?U#sKQp3cg1aUGmn&2q?sR0!f-OAFQW7Rz8wMrQ&C7rc=(;jyv2~3jGAZSYGD!3@x^me_|LBrMW-$ z1E{)w$kzL0KZ1Xn9JLw>nR5l;ps6Y6*xIJ@6z8AhqaKHJfZ*@cR|g}p28MUJD64>e zJ_;0{QVHoZ@62WxpOq&J4+~rx_R|}V;|9b&eqD%y>0uQ34@_@F<;gF}bZc2Eho+I+ zs7_>txeQ_UX|#_!sA*jEXZe?TP#BuBNzgUGqUJ!?23_U-(Rq8N;ct_F2bCjgam1GR z@9t%;loi{b<;nz)!hFf?a>H1oV|77BU_E=6#l72aUG$LeTD0=&`|5}J_&h)#B7p3JFHrzva8$3R?OqigL=)2TV%j?@{m|zL9wK*~*eGG4 z%c6s{V#LPOIz#OqLE1haVsz{(q;*e%Vrsu-l)i!+MLiF8)sMRh7NZFDU3Gfb-9Je0 zZb{QfvqtEBriYy`#tj51#+PTmwLpi))10U8kWA*@AGvStMtOZx?ixlH^6IpXg&W&3 z6?;VYaZlt@he6`O` zj}EW%zUDf_F*Ifp?W%Vl@rpnNifv+bWX#{iF!1Obt4zA)s!QHX>8Mi{xZ^bdQe@Mrxt`lXndL122 zbM=l$p1mP^1T(zqtoT4q{?6qlfymAfBOvTh%ptJ^@5nxWoBt9|I_K+^;jQgEnsV*2 zJ-3cQWS@;|0o^$F032eBtc4n5^bs)eh}g5y0P>&bMskGK{O#QKs9w#3kiw(eV2^pLZFnb)8*hC;tOv)HBM1&fk0Je%o}dyt5C4H>hgUvQBM)F# zi=EERDZPyP@b#%Z-qqq7VZThG;3%p1CRj_9Rcx?1mzUp}t46jR2Qw*4IGt9wb`bts44VYq%m+b4A%b?IElb9_s)&^LM&n|xY4U-CV= zw&z3S^r1+;NEpx>!4elvi0NP=_KSN;^I5(<1tUcI{>4j){4Wc@Z{H4q8t00B=QH?f zZO%}?kE~7LGQu!$Jfna{j(2r@$aa{1Mo*6jH92GnzQ^L|CliNW;9Qi`U5^~(-fxV- zNJrkJFj`2}vwv=o?wb2u(APOHjUnV?t{LcGGm2?97ON<9rMx&xIT)IosD59`f*}V6 zj@_M_#0rs$Y18|?1OR(d5s85p2e#TCo2pJ<$j2^fDy}5mKb9;K+%ND0O&!zIK@#Et&)@PX-pIt|-TO)9RCMO&m*T{- z#B(o!T`gRk3*;>fW1v7RFEzYm?uF6!arKNwJ^6&^=^{mUFNaq2JyZO(?1&{G6%P#M z?<0>Y(V3Q4UcQaBB=GOgf_=Vl%r>_6AC4vGy2}xaWkInSxOkfzAJsP>Q~?+7xiC_Z zobA%=E=&(r*kDaByV&~TU&wXak4*gMr@xl1^i|hK=rp7()$}La5?&^a~ zf{7uJClVp>w-}V97jSZfN5v#Y#Q@L&IE^3(cjW%>K9QpDAaE34WPquD3=0v#7Xi_a z%0_$@h}3xFOW2Bu`3)X+;{W~t6a@fxF(0q%xoVjPR^guyq>pFaD!M*uV;|&GmDjrG zh}dt+Q-m@218@`!12RkKd~o;eV@JPB&o#L)$tU$z_X2_&^N{bmZ28`p03QrI`vYK> zeTRyPOJ=;s=wlK=FV-B2qC4lq)Qr{85QC_wSEncG;0d;05}cq2%n49Z!o&`J5v&+@ zfF4XwKd$r!d(X}M3oW1DJm$lR?#}PoSmUpntY6EEnlzt|o9|!cY51V&_3bjJG4IcG z*V+fQyF41i^Dx6mlb#j%dAcY`9C1>Mt`5JV=uX&_Ga!`qpu|rPoq#}*O3rb&`KW?R z3qdp4Fw+lUm6z<5ahcHqoD7=#uDzUaqCjI5Q*HErOX^4QJ$$`lOV}NHgKs{=%Ncs$ z&;H0B@Zz^GPCq}eU9(YqYZF{Ez01FRsmREw6uopLrE>xYg$7jOAFL$jjp5(l%!D=d z-U_})@Y&vxHoNlQi6=98`(6ry4wRf!jODox+&gMTH4FSZ;Q1UbiT!**RSWeZ`s``^mWhjvN>H(zQm`V_pgUV4+Zx40Uc-$~eZn54H<)eAOwdF0!g zg!ZQQInvGq+VN~FKcjh_$Svn2<&A-%KzVoZ==)WP$^~_xBE8Z8 zEqoB9W>TBUhuMeh)p9lz>kLZk`^`1${#drF$vlm za~@%WJp5yV{suPNIPXX@*juS$cMEny?r80z z{5JVk*wjdsT>YiYkPUDT9k0)7Ru?Tw6>Hd5%edwC+^P;-at7KP+iC(Y<9AjlN>M$*`2P?(CD~JBUxik0`0a zPsS^mW16{wMgF79{x#`2U5x2~DiPLt-#8;~m6IBnhV}YvSwk8KJ~luq{xDGr?@?_KuW<0Ct%ZgbhxWNJ z?Ik^J9!jZ4DCdp#+DPU-ZPqGGjiUpd?Ah`dp#WD>j^P9@r+l_?YBpef zI*!+MT+>W-AT<6zGvrry(pk7tvwHa7rewfjr40wMl6ghm3_mE_^y(k)S*?1_=&4je zLjPeqS{6%Y|IEA0FKW;C$nUgR)$BaBVl&l&YpfLizGahMt!}~7n|{R{OrH;}r-yUG zZHCLS_JbTOTGD`u%{v@3wd|ki8Vm}8&t|(LMLUnjy}90w%~IU_CAud9{m&=C{(FUM zck02bE4)a^wAYcuLKN6FQSZkm$|Dw zOSc|_Iqyf@$^4F4mtrYT)|!$2QQH$0a^F8O%|=O$B-MfK{j7mcHZ0N{ zrrvrWq067fiM&GI>TCI?9$`Z>Y=?zvtw zCIj9*;Tn{d$ItYd46bCdbf+E_D(2x$O|I%guJ%+VE!wYi*?S&8+ydFn5YaO!U{a{2 zghy}a&kLV7h?n~#T@Z!BdJ3Az!O^1t7|&F_DaVAoVF+7XCG)C|=0^h3=M0_VsBsa< zSOJyzvy`Ic5T=@B$k~Z|N!sf_x*F#+gI9h{9@)32vB*GBM}IK*rohUfQ;?fgp&7bJ z#^~Uq&6!ziyBhlEBf5eQxoZ+AX%s+1OGir`$0C7`Rs;dB;5!uc;|pLez)|xOIylgt zxL+Trsu(Rj-YZrY+X&=o=Qkq-zJED9AOSI(CDm#TZrX)#(t1 z240T$;u!r|!f-f1TWr;AX3mORTBhJl`$%`iP<@k__+3KKA3TUYJUeH&k_bdZt+lm| z&r;Y|qPV$xyOm_TA3*N9E$&L)kDGu9NUG(kqhBphJ?U(_dpH#2fQXq}LBO|vPBT>I zSRchVL|y}>1){PGR};u`-1p)lG#>mLwFd%r*)T96m%)Fztc_-tgs-1*#M5o^E(nGb zhi4lm_mLl}p{4T_QkWknMqlpycyh^A=h|d&RoIGud3k34XKD-Uryh@^&X*^D?T@@`KZP$$rjUQX1+b(xN|9pxBa54$1`}YwW(>o<9pNm z&-rQh$|K1rW$w_os>!ePf*27JQ8`r` z`G*v-4+14g#(%LM+WhSTgZ&GI2n~S(;xc$yJm?9;LBNg9AO-`eA;N_Bz>qts2qOf% z3_$2GSDvB}u)6l7u{(LFYcyupVP|)CrHa!1FUrb3fKaV2%UT;>DDR%sC+v@U06{+O zm3SGSapTN2YlE1Vg#x*~g6<0U6eymjdAadq2f#w{rDkq=D#riRVDs(_QH@-C4qwv` zIBkGX@nYZeSnkaqXXl)D^4b^kB(FcC$mICF!bQkwi+WE*sstTm7X4nv#`fzLLG*=e^)qKMAtW8)j}T`ckQSu@&P(fug{ai%Uk~0RCjH4D@n3o>U+m@ zh-&At-%dH_eOf1yFE3r_L-X}sXuF~3M1c z*Lqm77L(RLrDLsMF3;%KeaB40SI%{5ToJIo@FqNag?OIPi$BL^yCCY1Rz!hwwWnWK z;ANjP`eVPf1?N!zpaG4UeT*JxwQ|n}$|v-CeEKVZswczwg`natQ{;l+#ohnvWIG4g z?&Z;+O_O0}=_bRgn_F76?u=c^R#!njW9X-EE3^B;r1UH4(=h1xv&mFwG6WHY6oD3; z?)W%!;o2c1ujS>7~1l7jx`&|k|_6}K1?Y5f%|HmA!We_f8{yd8Ay%B z=Il=E)#o#d?$Gt!!_hwitqGapT0*h3WaOc1IR|mC_gIz7#GI2v%SYHv*)gj0`5xfB- zHkolv*i5WL{)A9kZv``SFS>iu^JyCMR4Sj) zFYXPrSwH;;uLhG*@aEo_w;vj+iTr#}+UzuLVPcb%<>1rcA$m0$g^=GU?w)Q<>r^(! zo`jmv*_!Z!FV(N*&Nu^?#-}M()eN4Xnz>IO^3zJBixXi}|7xy+d5_MF_s2fNU%OYh zge^28lFscu!;BFhG{zZBT6%wCiAO(3-j91wFuylDav30!TWQgPu8i|n)A>l{Wv`bn zK*Us!3PpWsvBpqzacGC>$Gr)!>zz+8cU?-dEt;73d!N1NEny|d=#{4}E5rl;%|!ZM zh?Po8`Y1I)fU4}ic*L>~e}-OwFea08Mf{5M1a#C7^BbYDifnF0J1GdXsiq+PsXFS)g`XWym;KrEi=GI@ zQ(4E=Cp5T*NNs6|0dDjX90n4nkZ2hC6f*kr39u1^#&h*?0yv1YE)otWBaEYfP^N|? zBOlacT;!M00do#i2+A+Ohk^>BvC=5SD5?Q;sl3pl&1BB5*Vl(I#q+;Mvzf4$2cx~taAp|KXMU9={JbB=hEW~pMa;7 zdFxp#!PA|C1bX2l5B4t+)7||7eudVvJLT3?qc1GyWEsk=P$6cGrs}w})={e7cj4x~ zgxBChJHO58692Un6i}IYGxBFmS=H)IN+;)HzLmUAfT|fL-=jaN3tTJ}1jjUbEGI3W zif^c08`QoTwzekSfV#EjQID7y91PT#?wo~^&g2=mI(rZG8aCcG2 zR5m{nDFh~S3shk;*INIY0hrdhCwU?%Nagg5(@joC?g`!9(=_Q_xHDNjPvNMym9oyp zZI3Tqzox1>U^vWcV7bY#IBTroKXvz;O8z|0wmZA$;Lmb6?i%MPs&OVD{(bLvQ%B%V3zzwDFY>1l!81+wj5YyuY|CUTH2R9qkZae{u~dpr+&Ztn&8n5y4DcpBW`(8ZFSQS)7(YLQrJ{}6m)d#FXHc@ib2*dndU`ELoS zA+i)?)WrthvZFrdS=Wa5HP<&LWeJ9tMECYvPph?ti>(kPxqg0O%DEqJ%9}JfJZ!GF zI4u|BJGiH2%uOr=HMP0@YlySeQ_r3}Nz)1dRKUF6z}4301^$W!-(1TEuKe>|MkdPv z`1gN#(%mi<^|bqtSg&6n7Yg?C#d=<9{>S9!#^g!L2YW%ij~-d8F5AC5x|+&`%Y(Cw z!9x-pO_1bCEjAcL3!eV0=@_kf(S?fX@9}8+TIXzT$ ztXj2l44Yj%s|{A`vN69M|I`haR}8f>sV^j6&?&TDlcjJs^sm6sYjnm7$D6aHO&KxU z$gz^Gr`hY%Vuc4`z0NhDK#^#Z(qDKmZ)J2VRP?R6FY~&4He^jrll6I!2MVq>e(kJ} zycTl|QeYp(6Fd>O4#S+RakDq`(oB3KetG6rh^2TAm*G5;X7l#IhBX^qW+4hC3%;y;y8LU3M z9>Sro=wG!*Ve;244y8(;I;;6PoBO9#CP|wkrVHurwQ1(F zu2lJC_@kz-OisHg&_lB|sezi_$EWrtdp z!22;Av2%4FC$KF4B93I+lbPuyc1N|f`u9`Ss+EQWh)ENAN|`dNCKngc8r-q^>bzOk z#Bu;7wNTx|)4{|uPx{rXLRwlJ$xN4`wGEm~k|d?*vF_-Y&)>~AJp}U{Okf4{4m)34 zMTSLYi74<)m{wMOAN<GWv<9mMXJ-G=8V z(ny4UZo*IZ%FF0?i~^BHIiYwX1iIcmZ;v!mNLboJh!i=?upJ88I+U7cf-|@VVXE*N zcX)j}lzc8Fi1*7qz~A4R<5&^OrLo*dw$1-g0-1LLH-XS%x$(PWY}UIke`#rB@@Prb z@7no}%vH0tXZJF~XU1gO8vIoH*q@KS>YEg}{7*mkg4@T2(S1J}+lpNjU?)FFk-{&# z*7&F>9lUzYgFX=)jcORWJnte6kZiuD04Emz1OkN`jRIwPztJD@2i*8wsqC$BcMk3I z_u0+jU2vF{RgaVC<*8y6LQ3^3C#!2OmCb_ z=P-#MhRvm~3j%%hascb7X@RSa=PkmEkso~#W8lQjoFyHyI|09WUq%t^R@G?V+7NNjqo3!FcTR#U?-=2)Jn0^|>)gGwiMu z#MsBHT8cClukBnZZf2e|$5A)M24W-r{2XhmTtI%gcTq;Vlk^k(#6y~z_@!_G8@q&> z?TyHVRjWj4)JX1=(`&z9nfJ5N=F_;MbzgMDo?%#`> zL_Fm0P;@oLun;MtR79`bm^K|?2bOX+bqMHKu$TG|Z=!hpUxozznQP#uU)n)oTI?Iv zQ~oertAPABA5;{NT2lQ2W%v)hIbx0bgug=Xz)FK;?3i)@HmZe&N0`|7py3x#({I7Y z_a~4eJac+H^E^#RXyxnj29VPBL3WFs6)=g!LzMUW=i^Y}iA6oh(GJ6R&Tq;VE{W>C z8N$V%t}O5*?)hq6$>ck6{|;vVv$}ULT;~lXjPSCWNjJm81MM4(^*sqK5pzS+o=SSj z#H(GF{UIq0%<;~05rSMoRVlK>`x636hdxH$Q{AhGXt0l!zpBhVjH5UcyfRD$CR>v& zvy^@!e_B#a`Emq&;-Tog;MP}V5=I3_Ndr|grdYO}fFex|n0JXG%0)eLZ!U_}y&IUl z^3Qu9@1~49zfULL^yjd>#kwUVT{5`LIZG@}{T{l(JI~~Wak2%J&tL2+DGA-(`|C^Q z*UvZQvmES;3d(wyU*PgRYz~rauR-H?p*3TZiH{Z2`mN!}t4rAPs~)YVr_B($?`)15 z$0OkeUyv^J`!NL%om7@+JzME6mmRu6-(1AZR^!XFVtSzC$}qm57w?j2b{bVk@71a= zsaW4A8{TrN&hAcQA4>!Taw`PW8tr0&A!4OF13bPR&Mk~8GwW?;v#a>oA639Nfwm;< zb$xXCWX;F&G@$U$emQ)3@K~WPu1DX~%WRG%Pm$1jORs-P^j38DGCTK1*gx9IV%7@7 zJgQV9;!>~=#ea>A+7Ci_LKz+wGpzptjy1{H9&HzbIg8{^N?ay*q0`F({lb<;Ib$TP zh;x)@L?J$YG+O$l-sK-S1p2|C`o)bO9rqDdi8K*)2-PA*s~+o?>e`DxDD+UEor>by zF9gF}6M@5d^3srT$lcn@gC3rYLzerk>p4)xE>^yb*;(3Fbxh5Tx2}W;NdPmho@4cH z^P*oZk6eNwsOZ$%oUkH-Oyx3%r?cVE2;3>xD%)ry^H>xrxpN}6km$IGb9MC$= zsC`;OVQ7jcV$=dFZ3lot{P{K?!~9okh@A>7IX^WQ*~2b#H5FjGWzD+y?s7^9RyoZo3R zRLxk%yV@^td@~@yi_BgQRXd<+eSCYU+<;E&J|btIMYnv}zVTn9xT&uYREsUgH*jp_ za>A^#yz}opaxu7!!*+z=EL^U#a=-Fp4C1`z7ZUP-J}epngBcsIxxiz5j{mQ^Ti8gk zd(w};mS5*8IRzA>gAJ?^0I=wc@_%vi3&3gx`;T-kX0kkr$?hlBYYsyF8ng9vrS}Pg zOQ_dL#ye5jp_Ut2iSt%EDu8LGuv^$ppcmm>;?ip|^=X zbSP5a0wia4#}wNZ@veXbH_|L-4?JcLjgG=8u*xq~M=bsO(w9mo^6SB`HY)Z#<5HdP zHgO&$k2?>Ou(3AHzTd)!9dF*r8XnyJp?i1E3=3@6pOhhAnTo(kP3{Rf+1$ud46iSGDjUNs9}?vaYZLuSE$p6j(<};yf>x%~CdbtHKiDG3%B498 zXn$fBN0a;E`&&?y_cygtdb8Lzp*f+nl!G57#T7w@LO)CY^12JoZuB zER(%a&*ty|yKc3ypu3-@|Hoq}Y%Jg+8X<6(WGw&3xR&%2ib^$vAyJ^6;Gi(P#oZNS zhUj$1kS!gMH6n5iPPq`{8gae&8c2D!ea+h9&Ns(GTCol2(|H~<8|a3X*gv+sT)(x& zGp$}{`PgS~HEVCZ7IVwgimfsi_9T!7X15h?I#L}S9QNrA=YPh_%BDv}xznTJ3S9Lz z;-aYD=K-lWk!;P-bC0{cS&v)?fMas~=j$Rp`M+}Fe-dJDGdxVaN7hQ5FO@r)+?_9O zRlx$*KCSZdbW;xRK+R|I4Rwmauw0zhS2cg^^>pHX#q+CmYSoJ)?2^d!1KUkLV7*L= zLyl>*q0<#(zEBsbrUfc7NIgNcvX9?fc`Gmy)ohI@*vLFMs7{{eO@vgMW$l10RbQ57 zxId|SuHsK;^^z5L=0p?6yP7jArdM{e#Qr>cY($N>8n-y{dwhO*x`Q#P`=R$FqjT^d zxi+q?*d~hw>U>%9bRc5+F*tL^-FcQXugu}SGt2XLgI4RzpCybejQUZVFSYq-ZHY!5_g;(TcvGxHs8Lb){nW?8w$>m;P15VOWvz-X`Q^gEgnpII#)tZLFwO- z{iph#5j}VmirAT+nSTI`!nqPT_TBXfH<+aMR+Vt@Q(T>&_@p|;hHr3?QzEKK9n+Y= zTbY2}P~5y~)xz@dWgPv-(ZCY!GR9^(?_iY69HcHAOox_l~c z*l9{UHr%Zw452u@rAg$;_CIkmf3!i+UKNva$fDsWq^-MZiKNv5?pYtXbk<*6PZoV+ z+3z_38E|GFJ8t)11b;)pced%`Ef0-)l<=RTD1hy;0#>N;x{LIKZwG zwx%ZkX+7lXR`ieDKdp@G4_Y6`iFZlo|R8+{ugjp z^*AV`HzLz^QL9hk3=ajc}6zQsYkp$Pfex1kzjx}~ zMO)T14Goo&qoZ%25a*eDQKI^`QwK8#Uw05B&zKdrsdAgahZEe%#U&jbbC~#0f8X=$ zu3)L*@a+#h{q+`{;Y#Mk@nG3&wKGYrF7cGi6W9Bi>p$43a096@MRtJEPfv#0NQiOM36M5K0Jb<} z9^A>OfYk!ABx(=8rPRICl!z@ph>(uOor_6sfkc58n+HxG_e8a)m4aJS^%STn_BaVD z^o1Mt@Jz6~m4chuP#|lod+_$F8^JJ-rdS{?241t^435ET`{tZo*ax{Wfuq7WVPRCp zRd0CIXsVMd#E!swgu$e;D|`Dr*^E{ie~7&v(dkyst;kPP#-q^c zeMl%j#whyhgKe9ECir9S&%H?akGO~*vx}vS`$qW0_bRHdS*GVo z#bx0MHPQ25Ws{S;GfdTt=P}A+4-5o`!&bL;mTe%}~5HF`TD}!Jyd50pkRm+ucedbm)A{FuT%*@2A zxr?d7_Mk-V$F3-_3I$oMAY547Z!dVv9_3mz0)>LrN*za$K~4+KHxgrn=NIU^^LN4|ewX_0?l3T9C(-{t$RYM$3y*SK+u~gK(r(iGPokIvUpoO)#Ul_>ep67KvkyzfevQGYvW zU@J}9bh)T>xp@m6-D78xB6wKC(SKmp?91!sgfX@ATzl6TCpt8_!jwZ@^kh=GgFuGV zlfU24+uy$0@k`-xG=J4pti7o~PO#S%g}on-IG-YVuv-Q>vY!WWI$&f$=@Iy*HzalC zRSXWYUlydfqchly;@IL|8vjWZ63H+HU zH{(GFa_Dr^gsK_mbkj2o;h>QB+r4ZXdOgzlqh*FEP#Wwg(hy^Cpty!DejoFxSmocR z7-MrZ5rQW|L}3ry{o{%lg~-d6PxLNhcP}`XhP>AfX@w<x4sSPNVCi);<1X81YsULPZB(hKV zL_-9~xab&r6!fc;Ln8J>DL5*k?<3W&e1GIBIt~*HSDlpb@Tmx#Z{pm_Aj;o&y}O4W z;iRx@Tz6U+UpWYF*aa^cVdQ!l-AYSV z9?dm|oLF|?GVlm+Bs0e+&!HNoEEJU9eYEjZIl`aXqq)0?_Ap-5!K~H+BPhb(gxHJj z>!sQNq9rMp0Lk^J>DL#Lp3qtsILk+%g0Wj8o#EPe3K0lD3T6!bgOd9_w_`o#=Y zvMYM`vtG<$b^j*!`ZLt#2?cH#b@KLPYBMX%)9cE)PBd6#ypt%e^S#5)Jn|3i8q&~i zzXRQ?_>gdnxNP3_%!8+BdFeLIlH{01^Q@Xh)?B3W#2s88&A!M!te&Q280ew#I6RSe z)3g4JB0QC5Ga41Yr*>ygs^M{dll@3I#z>x=jDs{BM5Yb$iMeAWjUXp%6<*&UJj%5P zAWcbesAV)pm{)rS?g6NHyfQnS;S&)T_f*zVIoj{3>4h<|vWA1if^uD>2eWFA`?#5l z6CdIe{_Rl!xzGV#o^OSgHmkCFST=6VK4OXO<^U*kwpAPK#rn||HJW&~#)aY874}g< zy=jCQZ34gR-Bg?+SNhASGS9Z|cmG6vVC2+aSp)Rd0OBmMUc92W?v}E%(fhPOB{On< zI;4A2<|Rbn6$-#u!o;8>P=5YlJ>+Ge>HL0(LBjb`V)o|7>=Dri1kByLjHn1qQK-UV zFQ9{gHrjZnyj}@#)JcQf=?QWW3IYS!yqb#jUHnLols7yi2&wWvAVWY30Vix!8$XFM zuz;|^e`|!>o~n7+im# z5)dm>8=ltzL9zFv(?<`guEOy~-$HpGIf{t_ZsLWuh-N{e1YLpeHCbOe_PSkwn6VDhN}1BF5xDi_lGrLskI>_eao>%z zq+cnXmIvJH%Zkw`C-he*-b07-(1<#5{`3@Au&(G-@K>jJw6eBF?tJ%2TI5#Gb(u>! zR&Vvrm>0`$PrX>>bdVmbb%kwMm9TE-9)1M>AzWn|{ksu#I$@y5#2>rJ{uCBGC9%dV zevhyb6%nWu2Jb5MBp&O-<^KB))Me2PVZ|xXU$4bQEH z3nWaOtG~N2IvL0m2cg34yO6b!MNlIe6c8vH2fZ05f=EHDI#B6tz0G*ff`1~Zjln#t z^3Q5J?W3+l3Bfot1EHuAg{gXa7Yhjh%+g?67sh+#jA) z-353!_km9*6_~jW0n1^=;V2}mWn6weFf#o}VoW!lPr+vntX^?D_Z>IR^ijCr z+I~sz&;7`e{BjXe+?X#_UbTqrx;W3~D1*urn}mq6ftsy_1r0EZ@H@mMf7`wrO6m*X z%yI%N@eCWV1utDLykH6%9I?xPezmkX3odH-kV02a+ali2l{32!WDiqIC={+6c%}OK z{jdqQQbg-GGE$V@V)+tx8_z(lGFRm7xGyRFao3-M{E}mj7q`5tFY;Uv@^W$Luif~I ziDT`g$Vs|tQsaY~$BkpWyX4K;t-zM`jj&xm4faX-G+GiKqGJ%u3g#w|38;FAndOk4 z$$Z<)-am9VbG>()TjI|Dy?q9Hc)HX$-epA-?fI>V;lpi<<8;pK{y30_s;U@%MD(VG zPt441b!o3nvRAGXGV`!`YFA2G6g)?>;@so0?Yj~i#dDkW?W@>|_3`OTRXc2{jls+| zNk`b9qmetdjzeCYLy1WxXRS<9Wn;w0ysMLH{EEv+z*965$O15tpJyXSX3JK_6f-nK z|9t*9IpqFJH?cfy zC?}R+Z$bd4p`zh&Ie6{R=G2q3k+Z-IOdsCqy>#~9yAq8Brvr{*D8C)(Dn|5cJ)NZa zS#!A(CiO)8zr(Y*r5tE|~O6-h8Za7xX|5WuXQm5S2 zEtlxbo3oFgE?95P6O#H8wud*@Ba7$CtL9Q~6rbQakNdU)ADM4P;^6E7pzO%Ewe4@j zaw{|whyVOo?;F}2FPaOh(44dxJ(D2imY_)K zT;+hGXz%KswaF7r>SAKRpUlXaX|+x04CfYkaSd*6i_&P2Sx^MgIS!WT1vwC4GwZ;8OfvMMhzX6BsFC zG|APdn{Y2Ew-f;lbPBQ>&`AHtw@c+W8?9xgZlUEwlX=I;IRzbYclr zDpEwb#jwz7AX==FwpY$_@min1!$8r^0XTB_B!8s9#gSdfhR16TBEOOV{SqRLN+mx} zQ7CoV9i0o$|lKp;tL#j z4XY|R+gp)qk^YLH6qg6Ve3lT7ns`Og{{R~7ayDm`C&u97KOpB5MBJ5k;VjAUQ1;33R%fJDL z7kTXVIAjBUE`Jb$=owg1s~qHsLS5<#&C&V*XoeggC&`gsv^kpnR3hU89Lc>XWrYsi^>eTY1qsT%vxDVZvsZPl_asE!bB1S7HEg@o+ z?c_xjV-|a)V<4861U4TI4Tq&7T>Ah!%Weq+6*z$STZLo%J4z@yBOy0eor|UPc+U48 zEjcSzStc6&h^QsefFDp}0~*(&gdVB`w4?`TIajDTo)xWASn3dW*@$YZb|}o`Q#x~E zcxdPWI!0VKUJ-({AP{|AfhvmpI{-l%JiK{|*WV>u{sObCV3)G#k@DMykRb`ODYm}X ze&O5|$m6lK>a8ckYbj?Vwx<_l8wA5?%IeNM@kCkak=ES}(slas-kkMb1tk$Hmw&C>m&mrRo|4kz8Ohl-FTug55v)n0rKM0lrj>jdV@C1i$lkP za*~)HKi>e~l_kc^B71uD&Ov82iTuq?2YJ4BWj4cx37`?#z)-Y406hMv?<9xe6G~6U zi&wSQkjScg5X5KwQGFOri5BAyN;^*5Ppqzgl(Cc}jxXmI^H4i~Ng zf}%w1(r7(>m)i5cjmb3KrOyPQ0=ULd7l0RRd~m zXSe@e43;8(onVUoDsN^bSzgREkt?eI!2>0%_3fT2KI{`Oqtec9D4W%{xJUn&QPS5O zI68zcMOIiJArK+h*psT)iF;553Gd5+V}bHY)lt5jTQ0`u*O+XT`V>A$!;7^ z4b6{8`-m5G!QMO*FLJTrrA^V8Rd&e6HfxS19#Z-x%h2gBiuGBh?UubA1un?CGtprwi5nYx(F zU;-YnTX;xSHbD+13UrK72nIk{i(OyhD5t`CY`4hY^aHOI`%E$pTfH01$j}$p$uMma ztnriYxSm-j?t~f&^4l6(v|GC;?ox0F0#yQ#O1TVKeT4M5Cwo&1n&GE%E?wt(u}$OH zknZovRA&=Uxjtb%lpIC(T+9z13U$Y3FN_^db$y^*&cYyGLQKwOH1kJ8^g9zFsznpZ zY^zp1?T@{pdfCJP_wS^EF>!XRmL}^$=-j%4JlOS#@m)up#K37NAw zjFU+DBakd*AH{Uldhs}|r~QL`K}5NYR)^&M#QnLZhD4PIFB4Bvo=5$jRQ_gAOA|T% z1%Kv2)tvJW-*2h*=k^L4eZGi+C@X=%j-#R7nSOR>z` zNQcX*iL#7n1UiJMD?K4l181H|hu$SA?YbpM25~9Mt{Bv7V@W+_mm)Tla`2aBT2YXx z;=U!lr>c94bd4$6#89{YfX82 zgLV_N_oO+gm*Z}w>2r}@A z8!JWc%WC`{HQ{XJI>Yv4+E*+N#Ssh0mWed$RKNS;8KDYAUncxMb0i@nF)?6=0|5;> ztI2|{7_|D$6gbEi;zWFPffNK0HU@)GbSmlr`K~kg{RyPvgoh1{qMa~^=x9WiH3=}S zMq^?&dzL5IZ2Dp7-Y7b=`O!%aMSnfY&7nDC5N-T|aDkw4jIR+2wX)P~dcGyamE#HI ze<{xF9``IyF{~2PP61$5vOi9uKUjN-YP#1GUiC~G-V4(PvQmPK?O%30zOU{swNa$j z_nWPlTO-!glksb{k(u_-@D&Ch*6?6rLzSr_82Cq>19lebedRF?>dnVee>=dzk0xAo zkBmFlU_m&JC6Ql3VA7X`5ymKAX(;A)&7gq=61oSKLPn7xM*O*$453s#BqSA>&H+m$ z4K%mkMkg7$Ax1$4pj{1)77|8B!F8R8I!H)#s?l+vd`@IJi{MIAm5hy~ z`EV#cP;>-8?yd+2;YCnxivZXWkU>b+7d{}Ohj3*C2S}9z>c)d8JrhoQSFOFtyB}oM zu=nbsectTK{1f0loc?p?u!{*+GRZ|@^R-VEiA0jplLfnEx!8y@O)?A>g~7B#jN=sr z!&S`=dcfV^GWZob6B(cC+vA+Z(jHw_Y*A-H_{ZBxW6GHTps{3`T@}dCG)vpx2%sv| zcvrB=PKG2Sjg-n!V*F4zCMD>8jqL7&8ucQqn+xuSoixicm{MGAX6AF$Ykogcs$WgI zZdh3O{2s@hXYlq!fAt#By21c=;tPw#oOPB z$b!ggpyI(kG8xo`Nk2Hqk9yz(+KC)w(CLTy%OyXX;l3mqMkm9Qafm?OTJX@!#R%7c zYFKt{_2%54qpU4}F3gcKp*xtAtqwSDE=O)0)c*ZE`_CvBOjK!Hn`s5v4G}N^tZw0? zX&lB<8kfF#m~zx}fkBGo9vBW^9kauyPu>tl9fyLrXAwgMQ843-fK{lZDjJfY+Y8>A z2FLl+G!T%$z?e zek;}R*}ZQ}Sv!11oc@$qu{v^z_N>S6*m0M46V557 znm6`sZEgPm7>z-iH)F`2>gDu_RSlX`7dJ}X>LyNLB=$>H1+D*?aCkT}G3#|13m$n1 ziVj&mpEkERJf{W`mxl#&T_b8kgW&30&WnC(8CT^<7j@IC)_x3ThdKaoRF`dNuhy9C z&3K-2hu)NVm;~r4YRjMl)i*G<{6^sJ%I*F!nZ6|6>L#-8yQjx9PdX?Qj*72;7ql=H zq9}-t0iK;SEM;tdZIs8`O3EJgI^Y<}eLcMOn&kbdv9}^k!o_oFFr0eQ$E+0TEWaM4 z5$GVMJH--7%nlA&9@Ac1IS{#H2g>|KbpM=jXcY^JhFXoo3RMlrDkiITdJ0Vzg^AVxL8JT>0-!miEn%H2o+*h^40uR?D zZ@=X_-wgWpw$mM#KpPLvG3aooI5023O7k!{^nqX?9Gz4HcN!`X2hG|3w9;X zik7!HTdLY??@XIoEaO2`_3dtE=6$CTV43b!r{v5H^1U&47$&`ZG=}cOduC2*u$3Me z0%oU+AhBRf?OV8b?BoSAD?z~Rw8PE~Nv^c^<4uH82f6n9H^)NMTNvRh^Xqm=XMY4R zB+7v`f!K+*QVYjKw*^%$g!KNfy5@yVc-Np{8OoDO$lQ&GLbL|AC# zzl;W_Z~^eGgZARBk?WZ(jSM;%9Z3v^PvuUB8h13rKR7Tvq6)tR)E!XQkcOe9l+lX1!h)vSY zSs>i$fJVGE$<&%ejM4E&%EAXu8G*KTI9S!de()or*W`t3E<>W645M8E)y&+`OXx`6hi?* zumqu?6|V>{Me2!-Dfk;Uh?{sc`d*M|1bcdBD4oF!C9oZMpvhWbJG)oUE%$j8!nH&2 zcd!;bHq+%OIjwykXdwCwcTTDkgi+kikmjQ0SpM(rMcO^WA2#Pu?kn~+CKbtIoNgl~ExmxdU%^cI;_%zEt-aa7W8b;ji@(Bp4m2AC z4$d{ImjQ=Jv$7kd!J}%J#|>_!b@%6acr(DLwlgZGwMvOxaVy;Wl5g+$$X$1{P8>D) zEuG1F9^mj09gEBherBDS9fRBecbHfwFf^KA539EYt1me`gn(66d7AqmZ@*#TAxM|< z_FVORXm2af*3aT`CE%V^P3-FUL4vagKXu9H_!OT%WBWg(Z40_~3(H zUDc#wdEh7-pI!(9{@Q*}60U9kI{n(inc5 ztr`5MW04Y92ZcSNe`;=CWDN|IWmT^576<-E9%r)d<8qj~P6SDpyJ90Sql>;ia6M1~ zqG-5!ehC~q9vY4%jlmn$-=oVcIK4||Q#(706?5Wa7uo84_Jr9*W?*5eb!S0t>iP5N zPmL!73DU|R<8Q`0;e-bE9x8$Rd_7Z%%&jEo9~BY#MK(c%BObLEU>uBTmW{xK*qBn((ggX83xXc2M^CJMr@K+==NXw!H5CpoN0-i{plXP8WLu z)eg%-vj2tTOqH84@~9037?RTYrU&kHBxuLXDp57}@lKRi0ohimeC%^$@r`XYzyV?$ zxm)Tf(PBq$p7854IddqdG)MdK@uoDt0tVxB%^Rd`-QDz)kcSGYubG+B8@JwTOWGA7 z`(_M|$>gQAa4jeCN@S`@0R+>Li1gs?e(=%q%q^jwme`!^{82;k#)8jSk|v*d9!~%A zq68VrYvO1GpXuS46wORnm<~uaB2g(PAGpTopMocoAy^|5g*sRD^k9!GXsrCRy1L9t zUFAu@YmP?6zkDtPx%DymRHgr1tDAYT3BkdP*8NMX&-3=T=N1GxxDjZr6hTUlH+g!g zukWRZCHbs)($hwp?Difxq;rnh#*lx~94;>>jXPN?DhI=e>ZzKQc9h>H9(n+}DA_(J?8O7KVCe1!*u#0i``)lS1&CtdbCI z^i_6$tMd>A9eF0=I)uOet+JHi+Ug+>4`_yt-)EYL@N|Vb-$jrc_~CkNZLrx>~OcnQ>s;hyW9rVGr00(K%Xm1>*kR!a6peI!Y;h`4rnftl zmDz_E3)k*>6+docauA_wN$F}|-K;}PYtU|Mu~kR~&(!rvpN^oYOXJF|#1lWgN#|#7 zyChe z6!Jl!xhV>k$-22I@rbBgK@k8-F$OlADE%9Rt{Y6nv%W@0=`c4BZfJhLIL?NgGJX4H*@-M5(HkH_93 zj+i0#{%cG{3Q6Z!m^^UpQl6mNd7&&9;uRMA3#FeW7|_{?kUUWO8kqg9!d`ZN+-rBs z!D{06Z*X4?VRDWk;6DsWK0+O}iK!41>07y9;wN2&@iCcEa5zeLcLs3Ej@kD$-|ASV z^)hW3&nyLA_Dr^FkyK85AO|1a27MX$uNQqP&kqgCiZR*CrI~vB>gATh9qkf&rQxVt z`TY3bX&};d$EGhyDs1Vt`JXOe!!HuXJnvwG0(2YXLsS*N94i9|ClgTp?{~ z9da&$12aPYk$?m5vC>J^Xjscspf0SOPgqECiBr98yKTw4U|`D2)(l%e;z&_eS3q??w9-U?4K_qCe|-2k@;! zcYXIT8Z^AhRNIP6*j+CY7G>IswKtY-`9*F%vVD@@JAF%{k-4PKe~NL1m=c2^*_GG| zbu4cMNtn{rxm7c&GxZv6-VqGV*!~IEfYtg?mYeDUVAR`bsw;`)Zux}Gy*8HwJHGvK zTh8yNfGaguO|mgKOV0#5kv4d2T!U@dE(m$x);I7@{|hH+^B9EPXfRy8{cUgc24Tl@ zcp@`%mf*Hk@~6|5Xy$LbH{)Jn?;Qq?o^D9>af+?8{b*?{^@r zF8tXDxoF;Xi@FgJ^z%{Q^hk27WS6goq)*_OF90x>R0f&RDcC{qCtK z=s}FFs%r{d{n6Fd(BE5hZRMl3giV6Z7v;yGIZ{q&%=-Kc`~T5&?%_=T|NoygHKmMv zm{Nv`l{1Biku(&&r^uW;EQg%7SO`l(2qAJ#8EW{AF_1f$8d_3;=`|Vz-J0YIIE-A`5^0YMb!FwcW(Jj49Yam|AKzHCxe8b3& z>d@?=;MC#36z;8A95FW--zc@LG&&FUJr(25(mSIPO?!V$9CUs0`RcZ+hN6zjS2 zfL!LNyqW8?x~)~UG6()KTjkW^%C#E+lE%H;v;W)xmsD0YV-U18T5Bl<2I)t|!AqMt zdQ3OE+4N?OtFUKge(f)SkyDZZ)b`%niRXKtZFC$}*&d9q-ahPff18`NRM@q;5d+%P)?=v$~8?+I$dt zZfllROld3#@XA%z{XBU4@p1i-L^451{B)_kB6m=yA@K3s>c@eD!Q=0~UgeG4Bl(dX z+-E@bx_)>o$m_lam4HE^TSG$n0iO)w0MzciF=<~r!3u}ICjxoJkY*ko4xZad9SU5Z z>vh~JqzqqI5l73}XL=7Nv5qwaWah8jQ0rcc-vO;K2b}JED3c4>oDw^XoRPAeIxj%0 zg)%=}O{v-u3Yl|qrR%f$^ufr!7{dc95Z5PJQ?Pc`2M|abeC?NkjW>U=(kEbIioG*1 zAG)YJyf(C%qmP+GZ@5sej;Cp2iPm-*^|EYo%ir+>LXqzSQvV?b-iA3P^jFjT&g0^( zuXSLV7`!$+zG<*EYRdQ7Ws=|CK2s|DXoR%9(^>9))+h3_ZyDPQB?UH3pbAy22#mV^ zL$p$RWkO6GK%Imj1wZwBT~MlU(OK@)n?KY5xX0JOXR(Rt0RMX|{wBAhFYtfDUWc4Z zY;}D7D$iY7(rg{kD;5KjpYT5(GoBC1%wKZEnDKae@v@H;bAObsNo=JT&)1#FG~T`j;Rbg76$(~K!yPy z6<;C*yryx6!e{v~jm@Afps6v5CBeT&rZWiBt)VM-l;<-uSQ!j4Mo*NghADWAZe>(& zvzjjKdx(Z)zc7UY#vT;9X74Yxk;$_6i0vGdfy1vDPo_MB5R8jX%M7yFkf$S>Y#J~p z17Z5+RW143nhB6tK~rqF(Mg7%4m0g2TM$dyg8`_lBu{J5Bch_BjD~AlBuR)jma%GA zLNYy`Mn$&1g`jKOgs8xmN)_!Oso7^{Ie1eXS|DqgM=c|&3esT-Urm$yn}gK^K~Xcr zr(DdPeuDC_(E+q_CSpgEVgEA3M4X9jO4w+WA?nrTPJ4cefq`AT)svokP#j_P7@Od! z3CbA5p~8sJ_cFv0UWfy5-T0)DJI}fZ?P-hX%=@1o#NUa7aMpF zG)ebTv0R`sT7{=QSHBp}x1{&z{_<#_)YbxTciL%Z;v7%-J#w#t8HW5cIWe!FfVl?A zY0^oP_&n#O#g;3$7cgNlOo6z2Fsw~6IuO&ns}9-uPmBY-+IiWZ7{~_9w4k#ju&Gn3 z7p70CRBnB7NDuhV=y5vdw$Kr}jnl^W)X>?*-@w6TW9LjMJ89E|W>~B*Hx|XwBSR+8y^U?LptuDX`-br9zg~Oij@cGwA2TfQ1Nw zqV?nja%7_p8$mGwXlXt9Uw=)jR7e;#d;$m5N(EVg{do9G1z9=7b$V}bDrNJLFfF;H z$i>vbVAavCeM~CPwK`^z;KVg#9aP5a>p!NK>rba2`e={qK z?wMyChVMvi9Ez&dcJLGmHjr#+XUiBRW*jgic(6ILMv3i{VswF*#uKk*ggW2ADVEH` z2N}j@#Z~v`UrU9EDuE66_T}CCx=+DIZ+{Iq3Eh~Cr%S^`OmHtrdq~Q3LZRk(RZdf; z%ebO&k&AB$hb~_0^7iR6TrLJ{`Mjsg=vGeB!Qex4tNXx_PmqzjV!H(7aDv>hRDEuf zRT?JYgi&ttAPO?hoOzHvo-oezclb|9^cndgX_Bl&_G~xeT6?fDV6R)Ls~B+{{`~Bo z=mZ}b1y-+^Ceadtc6b|6z>>Kz)E|D0>>W5AJ;o$N$++wYdmiTU|kfZ$3I!t1UZZ$Hnr1!f6ZZBs`wqP z$eW-mEg>AzVTv8MHak|K`TQhkPFH{m;~Jgw#fWbhQ(un>s`LqlnZh3((wSSm zr~otD5AIcseWKD7@w_VvgR$f7?%~aXty4N3QHRs)EP%tEDazTu)a5Sg0y4w<+b;`W zGNr+1li1Q1Uf8McLAg}gcWJlZ*9$bOZENkE#jrcC+TH8R_}7)IpV~17%e|n%gJ&Vx zf{Y0Hm>yU~1{x|NlRg=>w=KyWB`n;?9(;X9!tT*4C<0c4OTQ4#y6~@Mrr8S?AFX@r zowmhI7>+ODMIxhr&`JTqhjQk&8$qO(^1yWGJ_+kr6c;||d_X|$^8ZY5O?9t&0+jzp z1>Ls=0cQx`xkOw4Hglza(l2V*m^FR_Y*mFk zyj|*HXFv-}5auftLuL8CXR7kp?!bjc=+M55>HDRfRh&9e)JzYa5hd^N3uj z|1{$cL!e*i$`edcjU*I5P!h2sg8YUE5m%~no(23d_zM`7iiLu9CJ6W-=mf;)!wP6B z0uD#H8Ha<|T!kI|GU(szt1LrYK!OJ5guU=`1puNwEbr1o7$JX@3*%!-Q2URV!V^i0 zggt2Zq!_TNViB4(tYi*v#Q1L;XV~8&Ed(D~7P();rt}2r#^k1Q(C|7}l}&DR0R7~j z2R{@}Ec zrU_i~s%@L+ffcc^G&WI!%%GswWcBu{pJ5E)fmKDZT3HkwO15UK36<>6olP3|D$p<|>_uLmPtE zh#krT2V7QR5M_G|GHv4J+ppqjSB_&HM zfu~am9yz#*p}_y-R;mj4Exd1_#C~>I*QZIlGC=jG2^9# zC}e!3iuEZ*Sr$r{mN3gYZZNlb9Agl&*lgAR#@h1j+Z+dnJ!=b;VPgxw>SD$xNKw4Fa^qx6t4l-@0YIEggVz=c98zu0mk&!x>4hvV z6Dgp44=`tDN@nI59X~{c6F}MAv!smojE@yV{tiQLtcyK2biv?d{?B*7)daPTJGZ{+ zaC8ka3fv5i@tI>z5g-#_FdO@i@xnZJT|2INm+c)qcXW7rbzhGDr+(0X6{`th^z=;c z_@FV3gXWmV%CeNfk^#%$U)?#ojVfEsVA|`b)HQhUXEbzk&fs5K7qDN?tel+49E^>M zDlFA6s09@Xk#j4n)8pgSYXCXY;21h~x5VqqI*~&uJmX1W-RbR>j_WM7RhrMvc`PIG zKSOs0flp7eK)#n{ur(Ap9CH8fjKl}DIj|m1G#sey%9Ae8n$HSdG4}?^CMEP!dqIcA z%>r3I@kv@fMxbAa5f6%3_aMkn-5;v zCj~f=4FjBzP)Q!yk0R?)1PTJLz)%;K8zwe*Cwjg4j63LQ5-|pTh?tA#+j1! zZY6}u2lF4gDmYSyKqxq6ceZ*vW4>y$N1IJM^LiyXA{l>{OED!Vr)o7!Ee>&dojz?! z?POGksatjeP$Trg+Gw9P+ri@L)Ln+;Sryu+d%K`7HFRy+or(01T$kGUMG2XRui9-K zIi(?=Movu}5tF+-qL4Xx5dzA7y9sth98(Jb+}Rx4G}z{P7;GMP`k}Z9|HNyo719sV z3ruO_1>-WlkRH@!UaW-sqf6Yc0c@GzEdDi;8Dm(E;4 zAMhX#SCf6Uj~6iQId@ZI>UQq`kcv|UDxxlr*#r0`9<^;3zXqyF7Oek$lks#4M!l>( zD*J$1Vq7xI9VNB%92}KWtkN0+&Mfs$FKCDE)|C8qpfl!!aE$JZxnCR8OW2Z zhSLi%Q5S~gDM!rdpc>Xnf8fog@^k!ZE)dk(yn+MK4DBC_7I-`{`AzrnBWb!NAj_U4a)~D3Ky3$GlZ1#s zWR1#wMDXBzZq`_F@3*|B1|Ey)js>?*D0i`i$=c(p1TXC|DhE8FU*6k~hG$qXzJ&JA zc8RVgC>g-whBR^_s0RjYvmg56pNIgSioGJ-f(R~Brqb(^kB6(II6Ru>0*DFYh z>LD0ITYk1$ZK4;^oK=y8&GCzK`X=i8JW1Y%cYw__*6m9BbGRh zk$4K<^Ad#^rzN}6yUwz2XPUby1rU@rle^ch(`VLmka$W>zdirm~73EHJtgZ0=-muKP!-KOY|t z%Ws{&`1$|508GgS0c>gqsc&MG&H$MoVmTP$>AOqiAuCSna!dF8%eX8r$p*LdNI=DZ zBvHV`nKhDI65T!Wx(TLU)=h(BV(Iy|pMPnac%WFBEaep@xm;gfBV!_9GKlO!f7&Ui zDyMZCa$9f9DRf?Hh!r|-?sUJT>|Z5!IzW=skbQof^}hPpM43^d!|Ldn)U(UMEdtn5 zB5_2MmQ08NhJ;@&{BF^1RaZZuNglI@ z#Jdjabu+TqykH8ANRgw!|%pd7kX)KCyBEptrm@YP>M%%QYMM+H`$@BWrQ-C z&D>UP9?MI&1>H?)r=VX+lbjbx6Qi5pF=~;GFYLx)MVj9*dd3E2Af-JxjYoNKK2>#@ ziqQ*KV2vS6kcvM4eCPXijHN+vTi#O1N^8~9bZ^L?Mz5gr|DgV--b$3ab4eDQZQ^=1 z#=aADEpARYdi?J$b8;Ln_ZO8nAH304XKnu7^hRlgE*!-OTfa$CE3m96Nf7yXQ;D;VqgT$Y0*isa$IG6V;Wf7ip%aEI!t9+!@-J14t7%0Ue#s{e&2wS2Gm^ zkHZzC4Q?{7Cj7Y53q$ME8>$yPl)}Pvx}n5IdfAn)eWV|jR#7Hpt`NCQB;V_Y(qqZ_ znLgS-ND`6fEuQ>zXZ+yC(X9~%iFkL089`Y*I5i)<3yN~}fuIXf5C9bi2zV3(zX;j5 zm3J)eHOrL5%k0o=_AALE;(X~59VCknE zQZGOIKSN=HV8ELriKzrxnXxW{tYE|?WwBb{%yFis02QqPO%6X?V-@|cFiI{VfjT;r zjuVK8QnvNvySXZ8l{T@rwFQ6D5JB7vcaAY>!~WBk^m5eEovs9bHsl8&MDDNE0@O>a z4^WSMYqTqZ3Qw~nqnT$OxgJs|u(y+SagI?vPiGG%1;kjpk7mBQ)&@fgOG8YkCmPvC z^0<1{q9sABkr`1_giQB}fG08u@|!oRpmVR=Tx*r-98 z^-)&{XX+N_+AZAP{82ny^r{DWDJoqr^3?^9PfZ`MYGNcOFJ0Y_-NUcAAt_8dLs4NU zM!IB9+zR0>g4JX2pY})Utx8?s!|w%}T-Z#v%*57YqXu~Wh~S`ne5k0ycwsdEFP$)L zz=)TJfdpT+EJmOl42uw;1w!&3q9CSx!lDq+a4e7qbS3!juWVeIs|cD8Wa&}Dd0APW zUS)RhMBGUz7_!7CGOWM5D2AcK!+_cbp4t!r@FYKCD)d+e7luZFc}vt8ZH$)@&?pll z>J>7=_JV6dk$2Hdgcu_af&-X6trre%%@{rVO>K$MS z^hHk8YVw$NN*hIUUJN7`JkfN@#darkhxa55lFSmtwtY&5wHh0*AWWbz7+*93+kvAh zrKe$x*5sdwx*Zr(DkLh(hX=n9{!9iz<$IX<;O#*e8l)Bn6CwN6WoVg$aU(FJF9N2f zC;^0OqKQV464v;DDcbO@O;ZfpjIPJjiS5k9T>)&hJ@-5OBszSvv!Y(+b-Oc%rMM2+ zl{<@-wO5CCe~#=u!L#-#^qUNVkkjPA3b+GeNcD4ossd5D1FUN+GUGbIO+djS*rr&c z7}c9GlO$!@3CfX)LUdT!M%NE&=712j0^N=kPReSpWMX zY%*A<%|GB(hHlz~tg~$#@A32t>PYMD1vv}?e+q#$sxri~S4kZJ<)7mw^vdn=8CYCH z?W@+{-bZ`CcC&jppk0wuN#Sh}Q^~+z<#slX91s{>GRsn_+Kvc1Yq8`X3bY7H|w zc?-SOOEu-7OHj4N>rAS|EmC}&W-FbMOzOR@b=aAxGr{cI_Bw!&kItw~t~f+x&A-j& zn>?)4?*w=iUMBDy{Rdl31`G8n57rNClO87v|2Lv0(MCaBJ%UmWY}OFllV8EAYViVf zS=IObE3>{!DwVM~JKC#YOFdIOI=ZB1P}w&h-`O_7x-)Z9vi?2TsR1Cy10G$gAmI3i zpejEy*^gY=HIZ;*dHVpf-@_qJ)bVrcLewyBC~wH?ID_az#L zA9FiDGlu`ervlFEd?v_KJ^rV`H~ESObLiMx|45~!Rc-U=9`{0NKZghzBNj*BfVZel zPd)GH%e(tru+u&tzei8Uskp_u$xYdiMGhJIzO_6}WZFAsX8Aev5;kWSMmYYvHS#$j zBSBK&m%)Rw9Pj56KTRa(A(JxBnE6YoAGXaWo75wHQ`(jWege zGh6fePH(tbp~_IDBv>d1CB@E+sTZK%T^O7_G<<)4WL~eL>J!(bX6fy{22Fl+f@6bO}E+-p&EBcQOa)4_*3W7C~#zud$U~F(_ zRJMSuwx$xiQsDG4D6-8r(=lKn+lpI7Pz2t#MrdlW$jLx8?3h2N8_|8X#2|}Y(QVn(ZBx_upM(I`d7BIO0E^12B(%z?beBm zlJ`I7cZa05SLZ{PO5|-I=f;vX@_J4-THAU4FCi#JR9Mr*gIhRL(UXp**nuL->Xk)< zC98QLi45yI9b_I|YxQoucZIG1)c{JBHwjx44g-s^-{inJG_aiLU&O8nn}Wm? zSc|r05luSa1lSGAUzk@<81d-ASiR3HjI1yv?SH2Tpji5;ihB#w2q-X=DY=Fz1=B8J; z_a5JIJ2?EOYMxxO`qt~_VRQRb0T~4_rNKV3(B3LIXd6(R8H5GPNhtIgsY07|e`RRw zX#8=1hZD7(MKc_ioL3IsLQ;AG8(ZUV=UKf{`ah&h8he8co*#Ldkvpssb0Aog>0TuE zI}izj>p@Y>XOIjjMsi|1u0j`{XhOyypxCm0TsQ)b9U^$rucgL(F&Ck-E4-B%J@(MS z=dWqV3wzKt9Jv=DS`Wt_kG%*n&d8tgK{n77X>E5oJPZv9eF}qp<2U+Q(F)}_PzfW? z7Wfe`KJnE~ktv6kKmiqD1j@znJLs}!RLw+G#r)zog}9d4f|e{=Yw(=8_X8mF=M3KE zk?9A!8H%StW#1me&G2OWUAl4;-b^iuzGG9pd}?>Ab$emZueOa@bb4Q(Bv^jEUVwQ;dkyGLxc%Cq}navGbF&UIUeA~6{!%7tcq7_UdjYXa2vIVnG6=*&Xb;;cw^QI zlCWo|*J=Br8ZUIzJjX6YT?J6G%;qY(++);M&l@Z|2<9@&`$=)$XEx9 zf$bWH0{M)k&dY~>fS06<_^e!_+V$Qs{IoV3ZRY`KLgPC1XdP1=t%u{q8{Uo&#iL77vu8IgEF5G~sEra?4CkX)X z5&l8p{NmWyg^WX+ZdDv^(JAC+a;mk58}VL1PRVEde}L+wlh4}Lf6+~F+pA81*E5r` z^~$ZCf|#$^2)udTX>aiY`SQ*7O4Dg__PCr$jP(BNDa@t-d-q{lk7Q!nb3DFyW|c(=6uBfONo8vyg@4dzhaWYThQ*7;c*}@$OGCKG%;b*+Z${#V&B{* zL^^@g|1XYEf`oC-$}4 z3$=Rf%Qs^MsJ5!wjb~a)sU;WX<+=@<4okJ*9OQwSMJ zpD1O@om;np657%mkb~z;PSK1sAB7{{FmFU*ejdmPm>ZZ6wkOD5^{^}M1y|~A#O2sX z-#2s#I;b%uVC0ZwGkO3y)&9$)n52U8AfAaK1SWD(>`fW*=X&4|3#&pe^f%;r+vsOr zmjFJaR+IlgH~;iq5aNvaCy(#HAwkUpOCKPpr&n@DTndYn_m%jjXQ{qpoJbIbB_#R) z;F2Ls~6bQ2HyV`pjDLqCk*Rjcn) zcfYB#Dmdx<0@R7*)Z5Z-YWF?3Ki)*(4>Th0W~b7+a_3>OOE;(o!m%RvbiQFbnk)H| z?VVpT(?26Y+B)pLx$rFyef9xr3A>_Ooi&YjJ%IsXxg-dD^h6|LiL>+BnQweC8TyrG z{rZ}>9@Jhv>=yarcg2{8YW35{|ElBUXmd{!k^N%!ju{ilXzviTM$&<{f4-aI-+>64 zW~)hbxIOkzjp99r{>#@qg`G8V>~jSQ5WL@f*y(?;sbtNg6OEh&d=m7Lgoly|8E2G3 z_Uvv>!QX^4u04^y?%_GfqJcn=r&7K#rl2%uT=aGMnN*pFFt@OY;i!!-HOOR2eum z59Amj3CV!=f&)9rXAp%aFxan)a5#kTmlYVa(72B=e~ankj6b2UBF-kCMwNm4rQP*G z?rCvH6tEkZqsbN*BexBqQL?gVYVy4RU;m&Wn~b9ZpXDT3G&I{-5Z65!+~oSwgAPX{`1aRgzXOO2M7|=9wjG?a7`{U_XYkEQ$A7S z1nPMNR+eNDUQffK4e=uAgnB7=ZcQ^M!2;2nQ$K<_TV5&+C(e6 zou*{$eL0c!=;C#HgqCBlC_7ufTK`g~7bU7DWg3mY6h4pqS7vMXZXa*{T+r$)cnf^AEe5iuLuR(#N4-|eY2F>1-aGO$ z&QsG~yzPwbmDL2&$)gXcx;BYi_lIK$jSAQ`!~yE8}8e-L=C^)F=hin~J!Kb}r+ zeDt`VU|~Cy^5KPT&WL5mLP_X`eD!ku>!#l0jv){Hc*DDoys;IP17-dAXtZTdZT|d! zXm!w%7SF2HK3;!YaLu6DcC1qerG!%-K(4;{nh3A)6V7gqypHXPD$4Sc@J+| zin=mQacp)pZ)UN3j(c?efzLJH54Mqr!3@@`_wh9k3%ihCGE(K8HV2O;G$3wR1jnht zG`?-C0_zD#!zsS_q(&Lxta_E}HaE5TiQEu`RwNg=RdB!=&F$QB823<9WPHx#dax`W z$}PaZQ?5(4YMFZ7VCn7`0|1}%zds#43t`R7Fq4DC#pxU1<81HFWDIXNRBvv}+fbDK zn1Fh=@~t_HAHvSiDy9?Qm=hvstM3TVQJ{$VVPmknk+Wtw+oEO2r&b2xNsxx8xk zS7+a&%AZ`-CJd7`cr#i^i<2=?B-t5hnZ4prJ{GzSS)~e=}8l z32%LVc*4sdF4&^AxY!7eZU~Twc+NMX_t3x0F_mzr6O>2x9HG*hgL`SoMp2OQ52fQp z`a;|PHLXuiyK6no=ysnx%h#zlk$giC2;>_qDZTeAru5Sh;&4Tpz0`~87%SsLo`GL#zw}jLg%8s7T_R>vB|7G zLyjb79CmT`7UTE^65K~O;U-5MucUU`gl?S*?tK=X21|sX)A}gG+kZfmG7ItaB?JfD z9}su?ny`pkxbj7DchAk*NfC4vOauW-b;p3(iGqyozNz}y$l7~;EKk6S`C<+tYoQQR z4OxLii0L0VM4D-=4g)756rUlCuPYUuTGTD$MnNugY?pLKicbisv^rLX3ZEyKX++Sv zMQdFoi@m+Hf~$`;Api75^5Ex&x%2gfW&Y(-rxf!`yG+ubnc!ai6Ncuc+$crBOUJ`- zM-DEEvTJ(m@o-`u%U!7nuV|cZ>dtKw#@)59GU# z;{vcI%ZAV#Vb zZw3IxH%?{m*_o+cq3kS6ZN5kTR=pSLCLo=CHv-(&()n}T1pFn;W5oFFXNa5sG61J2 z4p4sJV$GzM^TWM8^}f+Hcr%C8d9Htrw%{>0z^NbRu9{;yKb7Jk_IE3GM|wj&6gT>% zwm)boG43xVTSbHAzs3wJ6Hl_CvnvkgUC)jhhM zrd*I|l}d)Yq^AxHcw(9!1*IxqHcuP3G|EP-8q|GcIb-JM!!wcum}o>5eytsDJXf!Yfi;x>-B z>2|1wU}fQwNt88&!->JYN=t*`uD5{vI;R@vFf5^?Vy;Pk*|k5nNe2ei*0n7__;1$E zg}^Rx!{7uIEYk~}AGrB(2SR|eS z;AgL^S{aSs0PRMo);$!-2TDQ-Po>Lx+?9yd8Asiu15ZJe!kx$Qs$D1lT{&OPId&t8 z_8f^{O0l}jZEtqa#EV>UA9xd4SO!{e-*pgF_w1P(>YBJm`k-@(?4cY$=YMHF^l6?I zU^`2*Hv4WG$Lv9TAu^5&1tlc(6aiq{9_fp*4{t4*PXwi}Op}%AM|4_B(i-Ky;i#AssjW?mKYx$9>y{DN&0`27RXCf2 zJF@9aP6EwQkU~?z8UlIGky2Z_f8-ts;}^GXCB?#S5$QS*s9HVkD%OM?)%M>EZuXE> zZ0?yzSePd8(W;9i;ut13&Mm85c%lW?gb4uA`iv#fYH@}#P$?0=QN_AWi7zf=kBJOs zu84;+|Q4}~O zOP`f|t2|MdEL}ho4!$ZSPjP!imf~CN&C$U{f$SHg*vZ0B;0_bq!~RoVrkY8 zH5jEm!RTMMgUnBoDFlR&uNTq3vy#VYFp)g-jP5JrZi-I;=!}v(4{IY3Q)1-I}wXS-az#cG?20M(_moS$A^GQCqM;B5K!0w z;ah-<-h*9Nzy6NK95ltL%GNmd3@RZ%_xuMFcnJsGAZNxA>)N*QN{vBJA)N;NF^J(2 zch8zPVBhhzZH$(jyf}VKsW(1&=jnX#pS8xN8N8Wl5kN;Zyr_56(UtJ>qQD%otzbX# z7^R7;=4v;|2rn@-^VGO~s@w^3s+RB(>ur}zt7xK2c0NLp218u&8(v=bVpUT@)Zb`< zl+%yqbiKVA=`XE4Qd#}~u_P0WB{AWUD8Qo|d{{bZ7vAYSq?Q%N=)nCN{!DhcZJm<>=T>(MiH)pVle&#M3lf4>Ov$0fpUX6fqnW#6P%9#RpL<^ ztChx#0rMUNp%Rr>i5)o*k|!%^3NYZ!u`pbEJ5B>^c@RS(Ga3fF;=4NgI9XpC11qP4 zG%7Z=*=pB^fv=3^dQecT-YxcPU*D7qAtLieX^*?bI&ks|9XCiTz~tLk0{u|OPAGWT zn>S*glKGp+sOWpT^xb-`ne>>nr}{x{{#T#lpJi#S)uSma=}2+#z&c zFt=yF!rqz9khAFp9G8#@uu$EmRPWl&Ke&JWBpM6ox8m`V(j zlBJRZ2y}5VsFWQP4DO{A>j!GbkCZA>Kev6A#pPXI>f$*>FMv68^cFe9H)MNjT~B4v zUlZUF+*rB~mPc)4f3-gf>I6h@;8*(eQMU7&@^{-oYSj!}do8QdF8c2Bo{j`#}&Al;UhG^eRg^Is*IVZCd~c+Kwra z>~u*7q}F~w;}7ctWtxrME9-rY>%_{wOp8v~tDZBhOI)9|KMN(^A@h#_LZq=1s0r!m zK^Dw_Q#3P2k0fJK`b4J4OF}eNzaeMs_ni$bxH32IXcW-QWXrgFkN(0cG!PD?ob?At)$l?Ql)z5vmGen0C!d( zBeA#ErCL|==c~tWXDqZl-r5|wV@Ok^upH>==2_#9NBbHh{@}m+8>~7g(<(RHljcFe zVg~rFCDJmbpXlT8tijS@r}ggx-j0r$j}e9; zJPyxbYt1(mm?%Rs=bbVw%(sg|N4$4`*i@;q&3pZH-Tg?{oeZXeLUCI_7O{E3rjl>;7iYU3)xL70%&1ikKL4- zYp`{Ozb|ta#1}E3`^E5F0-c?aR)=(ms)45fBPz*2Vo`kf!JmoH)dCfZ9>z6lWWah& z$w0i&X&SmQo|^e8{57)Hj@KHx^)zyzc4vL%>F3<}r|ygt0J6=G!+Lls-=4Igo}Xqt zKu*MzB=vHg#$B!y&W9{7Oih^{a+&N{ne!*4B>Zk$X)X4i_qT&^zdPKi?_}pUf%C0Y zgXHT+i9NwuElr;kVG&iu^oml0SoX?J3G3X5=4IH^i|YOUEOWKDJ+-Igw^JP}r39PQ zDH#7?E%xp7RONDsO=I4`3i=!MM$%`eSi!TVusP$k62oUtnE_6Z5_&NRcAlZ$CBOS4>u z(oCahX?~5Hst4*3ipYazI>NDPdC3yZisNr%Fk^2+{eyW!k@3KS^2|pZ1x2$J!?6nW zkOX76*m<0qGHrHsWX^whP#VM!q=eDE!i_8c8R&v72dJp=(yGvP6u|9O_yS~ml1g@RE+oew@tH+1wAh3G16GLZr5_sk1hxvMnA8YAupfE|Pwi9tVI z078ITc<#I%&>8#Fouy46T=$_-D1fZ#M4V_PLI=A)o$hU;sGhok+H>oH0L1Wf^JrCa zg;c}9T!`}6y%NWR!KEnpOSHyuzGN){O+r+7>{p>Ds3)==&A4w41HN7i`^-0dXL$I5 zPszU7e5=9bM*?N#o|ymy;}C8?3K_QjBxk)a#xG>)dC&}-81w>A^`@mwf&{3~n!r|# z!bq_>J{UT}h&&Oxx;!@(@-s=X&+0{G8-dXG z;&&S*Jg!->0H#p)0`CssLDz;)_qJ=QBw#-#TYcAInYZnzjwAUpmlr~J8KGMop`5J+ zkgyov{}3R@e`_mY`Wpjp6B7q-*W-f$D^sx!i@1VmA~L2)>Q!xn7%9@fZyS0y5wBTh z7`6K38>!@|ho~o(%%WuX8XV}qm2I`?sa}n*+UeaLaM}^yY0lXq?>6Var8Bd#6%U#h ziYeB8G>FZkiF(k{K#{9+p1qX6>b?Ct)X`4PjmSN&_@a-^Q8H|FJ0XsyqTp23^q&b2 zseoJ#6mc1asBl<AS>(Kh z=|J7oetR_&@9xLQW;v?bUS@9(R>WYGi)LR6%fnJ$pf${kF86Vs=vC|GH28+Tc=dRt zal^crv&p9DD>BaX2A)=Iy7buv?T!J)`pkUmI_ILQQ;aUW0~8sn%zxAKX{quA-YmL3 zm&sV_-tcF!G0dwTPo($nmqzNS$c@2x$dM3Ck?3VltzKu)%RuB-*&bwEgLmSMeiD&~ zI&Xn=E!!{TLlsBrOzk_}S@4`Wc0Fb67Ne?yHG{wV7I~L~PIsfF)Uy0FQC%FU0 z7h6MEdeLDDQaRbcM|IOwr{FfmBm&T|)Cl{1)9*Zl;9r_UZG!b<$!599CL?2w(?o;k zG-`4J{!dRjQh*N{_{fN0_CyWp!#nxe!};GK(tZ(g^rl-JQKybpCJ7ESn7z1{kDW&} z)A&t^ummej=eMUHYb)`qTp{70>`5+4A?l?wk*mL)C6VEgPCU?qzWy<^Vu;&7Ff$9V zHER)Q%a36(kK0C>+v1Q)`9I9$t`js8Ym|FyIWGTkbtv={8s_MrgXU>V2cY`_mel>?H}!kJO_;+1{-o2IGfk*Q*x ztohxSO#6^q5T(+dHE6|KUCtXRgMf%#aZ}uvcmyIO>LuzE_zLqSB>u6KL2VsRq{57# zeC>iFv0cL0zl*dqwYD2A5O@ciI{I;-LDWbPmL78-D214>@OEI970Hu$uW0V6ZwZQ7 zy7ptkgozPS(k{{>s$ck_$^ucKhZLn`E{uu_15%nmG*p3?`6{npuTCL=EC7Xrsp>&A z8g2%K0pi;)UIIknmsL2d0~IL&(fEyXr9VR;n{l`VkI9lIw}rbUj%L2Dg>&zk<%>YW z)6)12LC-?IIYtt@D0RZpKa!(aT=7XaRup*`rrz$~IXKuFA)Wu@;7qM11AkMH z#y~dHZevOnP)Mtm#C$h>$yM}!F$hN#Oe5?b1*|6&(hHe~_trbN&(;KX3(s@B%*hGe z$1b9!sR=h?(RNFSW}0=z-=K9ua=0wWH^R|;fOl;`MMLUdNX}Zl7_ZAndMDe#xqzhi zoD>nkY8a88KyXyG2$$}oBO&E;B=l5=rV970x<;bOnZj1L%o80rB!aZ_M5S`9L%!83 z1@C$$PS!pW?{N*T>3u_0Bs`BW(AW5GIR4;W2LB$Ic=OLg2|5Y&w1-1R@AmF#Bgl67 zRhm0ai2klyp8~zj0^!T`wK2@KeNqO}Faem7BJD&;fBGI6+*`)bNZkm2RW;>zEQY2X zPsY6$Xg?5@J6}&@2Eh#%30W|7WUSbENCNrZMS6GG6n_^8e(!#<1HIN@J+{g2)!!Ix z#M|wEIBE}^98oY>H{LK|c^m?b7rlYrQJq;yzZLxt9?pmLV2=@N06bw^?uZ=!fv{MW z7q;(Yk4rd#pRzCdAw(ci8u^e`+VPh!2RL@Ja?~j41noqhTj3Cai)i-!TWAQt{+ZyU ze>iQ{RSRDCnwB{|AwEZ6 zssUIj1h<#|A5Z5V&-DBM|BaQA7^x((Nonswg+>(S(C|j@={Sv!!ZN3rLk>w%3Q5Eq zQVyZKO76Ac=pHQDoGga zib+t{4j8Q})=jwZqj&%iw;`6p?gM4x28f_{bl%|Ju1o`3oqCz8$wI`PA`d1fZfKzo zbkSJ_6~)?Za-H`=n5tumm1z;dh1-ukVlp`*{ffK(9}SF+ZA7nct&YFYSZ+N*FIzSa z{arNQxd`Hco)#Nb$+|IAsoUzn7Y-iF8_O#!Qq6T+?T=Eep8M6`dAqIg*5hOT==3}6 z$(r2@Q-55v{JQ;oFZ(=UeaQSCpns?FL$`m>$J2(V9uMo&p<+2yA(x#%)3#(!&n zx_6%p0E8Ul)l!OW+$cYj@xy&_os@yiPneo{foIM9phgde;OJr7QFTN<795I>(*Man zCXiYy*e)||wX?r6*ZxM#ueKRg83k9WY(|C6?4_0QHvV^6Rz0f5a7s2LSu^q)-JPcL z6`bN#bk5{t?OgI^$3%g1@!Fz$x`WZvC{_@UhKZH~H}epi->WQ-qe*zU(ubDLAiegL zPmOIGgPx(7%(NnQ;Vb-Q>wJ2%TPG!+>@Sge>dIJ~u@Qh)G*388){s1&2YdL9U%bfR z0Frvt@^m2SsN?n!k4@PdUb_l|lQJYkf&CQP=FIlsOy57}y7McTm7G%nPi{m=N2}v- zSFbmPcWz{|J&7JJS$$9dg1m6kXEz4fTPb%dhATYYo?j-+70pQ1mf z{T@}f?W>s<%93cy*D@W**Aox@UMBTmqGG^e&P&6$_HGYp)l^ex>THb56t#je9&=#* z(@+eR{%3Bj^3%@2CL1)YB|ZE1fkSC(3*BwiA{*n)mtiwwHR}$UVbg=6`3r@4Mw;`D z#z9poQT3(w#w0SInq71k&Tn>mhD>ZzZL#U)`y1r>5y@m3plCzi@M#PDhdv!u9J;}G z-pt!jM*=PsajsrhC67Mc+3qJ6RU}+komWy?bNWxVal#NdYtsid`!T13?xpt76VvdA z)Uy*I2-hD;x9EmsO9_+D-}>B1S7>WwXH~2t3T(%bZlp0i`tvA zcXG`iTPHh4)@S;wC6?QgZ&jR1&mcN&&aC?JG4s0HkO+{bOEFUBhA1~;mWPDPm>bEh z%hV6k;;)kM?g#GHaQs5TLVT%ssjSI0_MdLPH?fE1@+x_8Z7HB^@4!8NsQ>=e-=ki^ zM$hkw=t8Eq1IdaQRb-a$y4X7ce9Fl$G?LG{AG!4`y0HFkV94ZFx_=pG>cm@SI=?OV z)+uFssQewe`f_3Y#KZ_IY;It~zEP=msW8kXC7Dea7$Hm!0@kX#rhR7Z%5Y=mMqAkG z=A|BNgl!{T2W>dzHmgVPTnz;dPj18yqsGeZ< z0tzB80FoLhD~d*bn+a_838W^%Fd=1P=ZwtLt>MKu04XyeZ8u5Qfyh(V5BM%;HCNcs z%lwE3a8RV$Xduz%F*~;NuAkq7i%xqHpU3(`D2CF= zo|yNnS!$42w(FdGTgXxE=bkoHHuLFtX1Q&`>m+et9~%#F+-s-vzFY*6%%E3|vyKqU z4vhHx46q80*1*C|B1dnX&d9AuWF6%ib6zUVf6N%ovE+DSLIf==7Oqp}o2y{o4;*09 zMTCuJu6H^IEI*4HqgG6mCQ|Elwai-~AjjM|lX=V##xmhW@4NWGqoBLDp+2~_AM zwi2EMeLdX~+Nm+ry-3SG&CK5QVXu(izI(7~G0g|VvKhEVk$}zY43E5PWUC32RL?GI z9s(qQ+Ev>0dc(l_^u|hC=wkBb2WM-+*lnhgD=MC7N5O%fZ0Q9X^lc%rHNOqL_hhH% zdc|fr`(U^_k`fnPKln=^2bKUZHc_&F9hQUsjm9SLlS=rj!&1LziEu(8`|(TG5XV+4^QM%gZ~nzC)#~7KP9i`lw)#_JcJ}~)ROHP_R~P)VaUuC~Op08z ztBc)Vv6`HwhH53*!1m=WioE$Be=1FV+rRA!zQ1HXkuYC^xn zv*51E0Pn;jnjA_6gGCM=~#n00bq|5j+f+a9gIz}IHbXmCMM5+Wao5wWZKW; zbKrp0*nf=j(E^hAxkcfcfO&ec-YYP~k+cmxc5_tjM|Awz!=Hvn!9Rd35BAW^&YFDF z;L^GHb%&SVKwzc;kCBl7Osu({CvwW7UwfzaME{Jv;W0>_ zJRbbLse=8}GbqOYRB|*fqvxZTu14gp?~ml)+|1a=8&Dbb@jdxGDWQ1M`mC5FrI`NQ zt3>I;o;5eZ)fO^Dy^D?Wz2R|Q%nG6K*TnW8*$RJ1!SpO*1@Etps949otV&lP-mozHuzWaX?O5r-ilmB$=k=ik=wZ&-960@#E^g_;;EM_~AsyQoMWq_Jo-zctpIp3AlEoU8U)b{HunI zI8=u-4Tt>JfLj6hk_qT>#=~GhS*93cCv7hgXlwhWZ*8~4oRo}G# z6E6n+oZfSH@E#rO!s-w3$z)lfXrEs?n;!W{%L4hvzyl+Lna7h>U^uIJJK^^S>-}BjWt=)}o9-2Q|s?q8ekyP;lP0)BlL4T=$hxz>A7M6nA0mx?+ zd9aLdf=F2DK@)V~wmp(r7C4ZdtlplD+>U^BWXGE$zFe$XShYXB5t$(~FZB?bpoUb_ zu+M;W?}DhQX=wDiZ!ZZOj|*9JR0W-FKf;B`1mS~u{^GUMv;$-JDo@2$+vj*Z`mdv^ zNbZ{09^01Ic$n1DEuSoH+%w*H|Ge|)!X&}{rNK`8(fhokYe|+^JuRiqu zX9UnkyGpmtE`J>0w``9{$w_oCq(ENnv7*=u{8C z*wgGER{PBeBogZP0eP3Z`0zb1g6%Bv+NR-7(7NP0Lx>x=E5SYjDGoh&bF_A@t%u#E zmY2w!BHscxIB~yVU&psaq~2%s`Z9F3a4eXTIeP1IPnPOOj=!PZ{Bc&Ziy}8fvmu}B zhwKS7Xx(N7WwHWpJ4vY{h{=?pakA#Z)NlL`Y~?9C+3EBLIJ6%zNq0fymiqdVjc`de zbm7_b<~XHxRitWEGsBe)vG*bN;H9h}omJVx29ywxnxppl6xdSHz+e6$$%o+h{jyv< zMA_NMkTX4WcYg0C+f$lYKo41Fs*1jAixwUP-_GmQjji`iWhS=VQ?AVE8k!9VHVRqk zcWiUMqG~^H2qI@|20Xys(>T=s!=6U(amUv-8S-+AP4mr@^<9e(#5+Hl7fzoJs%~EO zI;oP^JDyQx)9Y|L!>$K|vDbD=Bs69Pk3EZ`)&$=JimX-LwkBQ+B#AKU7qT$(seMsa zFfi#G8oK(%0{6%FdsD5jDKDy1L9U6v(R(^44S3HtRwhcQ^}z3@9k%kxW&91DIaGWeOp3ulF8nYmT8#y7IkJ_Ze5OS9@;$TCQDg8j1msb!hyF zwmdwEB(=qg`y3FTfc`gO_HbtKBq&4&f%*~LCIqKKy;ly0O$LL2;k?yPq7uK$!WzSj zgIGb0v2o0lNUMwu{<(G|uhX$+EiX&e5vdEWnnI0GjT}|)d#{#^6$(}dB zh2G@BP-$yzweip{BAav(lKUPN9j5Qg4J0Pp4#KK~?ZI;k(ix&PjfP<3+= zfO22tU7YXJ@+8{;42h*~xGwfA*X;?;@sMr~A$f<&L{gU6bWVepdegBico7NdLWNi>O((YO#3J zw^mtxXXDT@15fb$uat3E4@yG5%lzaIg4&0xoF{UbU;nd2H4a#3)QXzUWIFwQMRvG> zooj?E_s;L(S;zh8*KF%Lo^LCRlkQ6Fsh*$Nun$`qeAMCqMsFSK;9<<{bu{AU@s7hc z{WKeIRa6>OZH_TJDWK(w}_JFhX{KcLr*GWe+tT``v zE)W05%?T&?y7B3OFwYI73Gd2tJLr}{C>*UaXzhs_5{Z^*QL>f8^OXtuwlS`^nLIMn zbl{qkW1;3b8#!2mzm8hYs#p0bTganp>!W8fTbkD@7*6&wpNxRcAHdm9vYNdKYiVP* z4ASi|Q4>uu)XmYbmBNd@qTQRl&TctL1ff>(WRPzfm)5-ms2v*M1u0(ltPM$Z3H|zX zW%H=cItV^jhr%PgqOySlBC-vrbAZ+pf!K(D4qEfv00{(aCUy@AFi$f0pxO-^<1-q) z-_b4KbuCT(p7SEaHg@W!VSB01Vz293A8nBADn)6A-xQ?#5zAo$S~qOK^J5Rl*OrhIaL z-mOy^qtTGRRlvPRF!Qqj8i;$LAeYbrKPwNC*wszm?3tAZ6)ajZEIImM9cv2$;_S2E zO+BamFa)>XG(4MmfKk)za)RYs_)Pm65cOZcbzpcPrJytqFi4UBip(Zk~}NVf}3E? z<8|dDfxS-bjRDG9%vA9j#g#@6ylmHLR7}d8_g5Bk1&Ku;6Hm&Beo_o>Te%1FA|u>M06H_Nzd-eVPcPro6;$smq&hpZ ze+x+HD)FlM(fWB_Zr855k4b>%_d*SFlflw&A@zD-LXsV zGQGPKpG5B{pD^@|JKOr$MNaH$`{qVZ*fiKAXWM`)-lhLdMQ{69(d3%evk=*j&61^r z$!?b1a417%O{;>^R2I@2i~r}1m3MF&8$ZowRo9ue7~=h=erlct&S)sN&IWGct$J3dloG)S@?&XZApmg0rs&W1owmB*l<& zQc$pZ5Z;X@(1aPOX~5374>YVYk^rj@LeeR46PP-fh%cbKU7go{@#@`zd}iOUEq~j= z6O94~mT6sQ%?};$)KvfRp6#Cf9IE((P|gg$aM^ieY*Y=o87X#qxlQ#cPs3h&e;47v_N#|{=60$5M+zSL zw0e#3PO)*;E7jp+pi^U3u_lny95>*3$n@`B1L*UAfUm%7`cAMu%Rs~82nlsnR|y*5 z(lkoHX@3J0F@Y^^1e*arko!y%TPt$>9u!vV$WHn=plmN>9c?4g&R?~znV7#uu-Y?y z=@6Vv5Eg+dAY+NcU*tc7iP=Ulw~XHb>J<|d()=3>7yqxhU1(a5x3b;*y)upyPx)yX z$0M)vTz6$63Vx~i3mdj0|Xw~L%l ziIz~e7y>JI)P4TVpy$GY1)@@dre4x6_w87mV5=lD8qs<(Q#`?%WcecEW@Kd=^$i_B zUg%|6)5(5%H%gIiqjI*d6$CQhcsBW4bJBQ6^6sYQD*eI#Lw^K;LnNWFEhZ4tj&Odi z#2u$yI?Wj}c@Bb;Vsb2AGX2iijk|;;&av+wzpH%)GikHEdF+BpNuj>P zn{rVGcYCEtZkl4R-=vH|(%=?_&va1`r9JYmkE|TMxlDhr-h)?ooz)iTWMkKlB_|@J zmcfbfKb5td6B<2u6D1IQxbul?Z&g<+_vznhzPh?x0-U|8=~*@pm4x>ZtW8Z4lIc^7 zy%a-MN$|;+zwxC9JHQOC#fT6vx9fRJDi$hl8S##Of9eIJe81B4&ESTTX79i50;~){GS<`lT z6_Xu=0<7SUEplJK@!rPSiG~>ZIov%-`a?N{m{KKKIcoPs%!;(6WEc#TiogXiU<$m5 z)}K|xKHC5ts=OdR5(%f^#7)g3nP?EqXc7^w{^~!uQL; zgul`j&|I*DnN;1piE|nK8c&E+kASG(FE@*SjSN2XK^?hS-~M9h_nM1hBRKIu_YYl>UDHhL z;q8mP@n?F#*s(bkAL*6a%082+=i zqzjl*HIas5J5k}tLywWj=LopcTS*uc{`x+IyWJ$_TayiKtJv`p2#SsXFrdc}=}4IA zRu~K@Zz-GW!fB_|Vg9dd3U}UX!h!S}EjZQ%V*@AR3Y zcAjgfu^~H=_&_Up#dD2Z(t8I3CY>}nvjN7g96d=|_lId~8ly3P+Q|xcKP0R*cb-gQUI&?G2ohLbBpbWFzw<~<=SYh zi{%Z?^YNf5jj7!sM?X)ALN>KPN?k2Gq~*iml0LqWELYm1fvlOmeE4%0^=rsz5XWIE zkJXm*Vwzz_ht(J5UDct3I$|J*!D+$MI=H2|Je^*_(bew!xWr4Z;ysn>zQCY* z6WD&}A^ont(OY|>LUm$u6p%gw=PS-;Z&v?a23%=&^FjKovse0+Yv$`!!zSOVhAqDU zhl%I4{(*@~wvvLF*-2%47+487M9ZmF)hDjBGPjIaQnNuaoShgDG~LC0vTht;7`Su7)97Bn=G1%k&N?tgpZMJn zqtT}A_{CrO1l9JqxX0zup^0-G6+hy#z%gzOkX}zS%WE=XwCZK^^1Dw+pK6-8%ayJU zzeT%ORcKxs~ zj@WZ5bZ#QAO)K|SMfu6~4T|x`8qh`i1o|4O9EeX#?q!iYnk(V>Z``MVx{LcUw(zp8 zdeO#s*}-|0YglZoFJw2`hY2~xPuOJ7xZ+d#wG}lgl}5!4ILdV6e@_uiMi?wGR zrFXa`sAstq*%~hn3NcYT zz6A?eZce8+W?y)2&dh?xy|7m`B*@#>eKrbjO+RrTG^dZuUvcC!Pv@9p)&bu|^7|~F zOD9ET{6=#0xUc+_u05!&@yTueOw2xRW?sIfQOHu2rLWRszRNxS`n?RhjC;m1D3#oY zqb_CdNhVBheLIl)gdX7xS;?vUbJ8mej}?yuq<+ncA$Z0%+Gi32eCF>?-`SlNmvP1E z{X2SU3iH2mhn}1=kfW2_AG+f8zpQ4LJ6W~^{4#1GXQ=9Z!q;o#YoSi;G>5Lf5*3>F4!v1rM_Y9Dyg&*<^ zoBDpwEzPVqERwkkA!mGQRd#}X(r>%R*X=D`zvtH0=KfT6Ej7J}+1vbg46uWlLV;4 z$+?nd5@zW3QyA~m*c3T|fRhsguD-WaP`FJmaagOpWzArS8(ParxXU1L=3{n)Yl3}7 zwSL+ti00K1mqR5y`E?kzr(#bOKUc%ch?N)UrU^4efL~Vop;!D#lo2{@sfbK7~bjjB$|EQsV7=rId*0LT5B?W@Fgl(llD8uV?ZT&r^%Rf zzI}dk2JgTrW_swx{Pd|HuYqTgA2~ml8S{h(&-@MB8UwXxE)1T&R*sWOEXcxo68{|H zYNs~R`po?$@LN78P4Y9N_jgb;ku5*BtUUQ)!bNS5PkFxen=AP} zJ%mpJM!wy~E5C)FcBI4i>F0n?pt^!Vu%Xe)0xxr=O-Py`RGksBR=c@`8NJ1eH7lgs zoLJ%k4N}xbe`wF*sn@_=Ub@e&)6L0~EGy@|`umT*W@D!t5fpXTGRA~shH#i5eHvIJ zd}JD2#!>XMg1Pn)5!vi$P8TJ=ImJ9#xvqA8cj%6~z00jfDyZAd!lv)^EQ@-{zTkJi zKphzlE1+h;FQi6C=0QruWxJX^l^&TO8Q?`$cRWZ5r0>gH90g3(#SoADLVu9&!@gr1%ulWntg*y2ssE#lW^&ytLa-T9&M9oB zsWT?XsoJymcM^jAt zRLXXZBL9_&$SJF_A?1?=sWKOr-~NgT2)6vZD{pz?xcmj+f>8p$kEpTpS2IkFU2cV$6DIlW9g^3fRjUOnk9>@KZ0~T)JIG zN+LgSrqn>YtL4bp74}O+%T6ghoo&}@d%64KgnSp`#WRWW&+ecoF>sv+3MgOsh2cp; zSqMY7;>Xi0!%N8zb>sm6Bp^^NVTUYZ>m`!~O9)bf4;+#;OvRP!^=3Y`;mo4VEM z3hxl)En#x4DCtj=FfFe0-z?Qi0`<8sI=;2lKZ^4fqOsSjY+{UFcD8V*Wh9q)Hj?|k z%-?f-*Z&g56kjV{GwE6WQ2>L|!1vj*#opizTFK>5dC`X#qrebS z6^`3dj;X=okw@NC7~sU{dcH3rbkS)^TKkN?BmTTKFA5A`>C;iJ1WAvj3)4$>v# z;a$f+HU~QG(r~+EbKns2wr5T^+dQ`31pWG!)2TgBcn)3UAFQ9gG~{K-YD(9|YKnb* zN1LpqD1`;jIVCs;2lBoE|MD9-7laRSx z(9dq9{Gp#V|KyaxA?mzSDUz>}^=`-IX0^$iNE0)>7J+|w*(mA*HmFmR-~bW(^$N`6H3wqGE2d!K@rBN$2Waq;^A}%>IYo%=vkzk zSW`&}Z_rD*Qbsz@p$EqgXt%1HrXqjGV#T5j!N-7M zp96O$$ft-oTOLgMJCTniH&?wUxj|D+iAw}RgAJ#~P>bYmdFblnqj^6FrM!0IAW_zXrm4~v(8DBEq>tj+S|eH%Vsczw zMd|tWw>?fA*?ORf$)lfDjv`O_q9^$iUGYhM{|*Z95ad~LgFt_601z&PK+((})$FZr zEKJn5Ad108+2M*8|5r+0-eHNMTJ2q4LvTOzTX(lS8TJeYh5q==wE_cirT40pomKZ{ zs~I4jt0wWE|FK;n)l;_<8D$q7_wKRG27!x=Ug?ll4j;t0=ZL@&_H7jai_Qh>pM10TyQZo<*;^h@4VC;0^V`{^j7P z+m}eZWxyPv|V`qO%9# zt=ET3|8}mgH*~Z7DZWgDQ%-F;`GFq%{-zFY6!}$Q65cMZM<(rkkGdy=nb(#Xg|M@W zefy1^2H@S#L3&e&^)anoX4WbXS6zvo3>w`nbre6^*HSt?*AO$=Onp`$>gwsQp#&Yb zFZtB?0Um-87_Y5gev)v#1+7B6u-w{qZt-v0C5AK7Zme(I%U{+mV$@%s9bbzK0FUvG&X^bt?Gw{Zg0F5ql;7Z6lxhjzL`1VvSE zLkuggtvGCDaLm3K6n{U@Jv>5x@=bSlw|}_!@yM(0GVzK&YkgGNu!-9>vn9@9lRv6E z2SS$L)^3VqC9e$JvA1V47}SyWwwweY+A)mCQNUZHnN;fLobd{Pgc}1wTeq@W$H*52 zuPEey-@)~kjDcN@*}}Ws%@3{WwFg~?jcLkhyXIS}^;f7d()DlHC-1ubpj^aIM>oE! z-JAF{(LNHYXvaPbpvaVEp1xrDt$|%^+;uo@V$r|Hk7pFi5s|Ae;SdlPwjU8a5PQ@-&8^{&^*zQ9&J z`_*-8vCWRdw+Gfc-ZGq+o6i{i0sKKxpt7fb=NXWjTFFc98x1_z-o>7L+5Z7CtZU<0 z;_#?O{8#K^5dGVS6GWN%>mLyEf|!QSP<{6lNu%m2R}g4$@1v8EzOm|~Pv>mh+KQdZ znH9y!HhM8A?wu3phQFP!LM1Lk_}tuXcJ7bM2gM69BmT8i;1DX!r6(o+X8B7rPR#x| zV_%$MM{wNnJW=gFVK3J`KV%?ekuF?5`54>&Z+c?q(A#T@kXLAn>n$99Q7J%4qQ{CH zwRZ!owkDleQ!d6zZ=780ZBlZKdL?RXHd*=S8YDhRN6&2*g>;w4Dcy|6=b&Sr02W3~k{-qoY%v zmnL&<)uW@C+hp5E)Ui4mlKORT!Lz&qvHSfiQ#j(hK6Hfb)6&(6PwG>rd~SSWAY(AL1P! z);|{4u|JkXpa|WJS%R}A1QOztjS)gp4WcaLRWTmdvrViA!{O_vD9OO}m1Uw->%jO5 z_)3^m18C!Yrnna#m%3M3LQOuRyq*Vn0td)(6+q%ViqUU50?N_X@WM~D-`XYQ*h#UYCU^bL@4 zRH1u5EmQf0k@01I9?$sg!hJns_D7Wtd!sWv=&-&ncq%8TcHcbo9W3PPj=zl?1n z0V18OC1ENP0S~`0iK&_G&J?jPhWg6>MCN1e_9GU7nO7-8K#%7%bB_H-6Mh)NYK`lw3OU zNGnI7urmLlBDL>|HA(6ECC%OFugEE8D~(pUf&qaavDwrY(x&dDf=Z6yKs%3x#8Na| zy()J^w)4DAK3_4H-m3A-%VeAkY`R|hrV`^2o(l5UiWw{|dvEKMB=Fb?^ktNzCpk zyvX~XFH8nigNB4w&g91e5=pS{1}vxS;9cvZ-4+A+B zBRykDSPBJEWH-w8@W$GTz6L7baQ~^BXEA$nW#H)&SEGOb$=S2TH-B>E zIs=RYT28^yA31Rq%``U!b}n`}ZLAMgdnd!GVzXbv zUVZENopL%F(5Q+Rkcm;OQvCIM^Ziy^P6y6$TON8PyjHCW#3aCBTzo8&bj)%{8zi$gH*cloX{vcc&3F%N#UrWQs9{r-=iE*?(>+7)d`j6X> zj@sq4rKg_OH?FC!>{D>)E^6*P=ObmiU4Yyk{W|r@O#f_9fd_^Kd5HLa&KmLj)rF86 z9v||gz2%%HOdb}0{Z(OQJr66*ZW&a&K8m$Qlwjg-ex%iyuaJN~=wZvcF72}KTT!zx@PgiF zmbXbbR$m!;E%uPwQOT_QLM4lqDOdU-Iy<+((iAZWRWu(xzW0y`TweX%pP*{4z_QN0 zQ&H@?waI_BsLIJJf3A;r-$^CKW}VoXg~-Omzi}`49gY5EivPQH86hC)F^BjX+5K^3s>Y=v>s3dlF6E3)-*X=mNk>&>z*Ffp}4BZVL3l0fdb& zH>-onlLcyTY*CShb>fnry0A~x6hK@_yeUi|gM)h&(^67Scz{kSIC}m^os9o{>BFBd zT#$~OxGyb(TzK9?=*<-{3Pua#S4aH0ZMQDy=vNjMvL1z=J)C_uAeeb9{&l@L zS2?D}ciEyx?oI*3<$U>hJ&ZWQoLilLazd~Y!Q7Eu_Y_-eR%iCKxMuFx=-lz#yCF=+ zBSCuqcB-33>dq^gk^Ycj*r%TjL5`ei%|^~e4v>|J7c6|TNn!8o%_ zy9+T?7CFsQUp-RU;+w+o)B@1S+4?#cC&BPf=mqr;-`ft7y>#rw4exrrLp%4~VHj9I zh<3X#GLFH-#oPqoBo8;bOzV1Ic7e2adEV!_!xP!*Opx=}?G7Cb#n=s1DOTc1nlB@n z(_be7fLL)_bd+Y#RA4Yer2k|6B8+0MD+ZM_*rOfFUYH2fK`D#oRgpwy=*I9%Vcu>G z^MZ|ZR)K_Ac7ay18SPp236EUUh?M8@<94VGeUJuNz~T;iQRJY5qY(VlV-`9NIw)Rs z*{&PvK!%rc{Vqjshn(TrZKyAbE!Aw7T*&q4V~^5aoP~!YKZzsZtUtgAbR-+zBMgG1#wqT1T*c(%Wq8|Hoo&BxVlzMU40zW~L66SeZ~WToPZl!9I| zgPPmROOCOKHZ|v}yk@?bF+3=b6XXTD?=pKww_|FCkN4%QOmA>DgP#6?dhqAtj5lJ! zmXfi6)8`;fD}XjmzKl)`ETC1F^LU1*`UU=-<*JWD>6gOOawT6s$ZO0a^B=VBGhE-8 z@Yacwhoq@$^N83MVjn-ZqU*)b5TCrfK4*dEcSnuI)a)Hg@a^X_(7CtUoZpp+bdyE_ z>E~`0fp~@J!Qj-`6dRTI_z?xdxYKKQF?NDWT3gF|2!uiuE}4nSyRBVR2oM!x^F}#} z#bi%mkzF0=d{-92aquM1Ex45s#N0lEQHoyFA~zs718ml*w_qQTW4KvMf) zx@Nh8;qS|IEZ)uGpU#6*AZi_pr>xHVHHIon^o1>fWDM+ZA`h_ekO{HuS7)*#6^|wJ zSS^)D^N{+ea z)i~A$EQf-|T9L%GXr{i6RMI@j;R6K;*EAZYGoM_l=RvpeR$6ur6m1l*e`eIqgLKHe z(6znw6UWX$8;y(s&&353y2#f~#y{MM3!P4{-C%^x+u!4BQj7tQS6bv!LLEK6kn%qk zYxG@PMe~i4o_%Q>UyDT_-5oW-?UKO}3GP-0Exx=+B2igdFav@nV<_?ZtK12H=H~e9 zeAwFHnDP4f#5^^90LpD)rRS#NrBJW(Q}&vC?3O}Ce@W#2%YuO5El1~|5q^&#T}9j1 zF0b)SjKc2v-x8{)YL5R`a-lGV-?%z_)5B#*zd_O2m{=Ql9P-|sm<&MgIa&?JlM8k^ zoOCMo`L3?*eC2$%)+3Rw7EmkCHZ1zd3=Xec0_aEi03YuUJbUDY=35H+v|Po?G>3mt zFo>^P=IIcvW6}mAiZ{NaExQjcBzEYsE;6VDlJzw$z1;PUvEB9>9<;|eKoum>$VGkZ z$&t66i+$f`gY*rZdit(Eb>DZLp!G=MtpTf=t`uSZaoX_w3#6d`9EO>nB5zk-0kOL} zo)CS7M}8Zf5&{&bp!x{9H=Kxjm)fq3kc_z&eJl~UNP8FzEC3=KN9y;iE&N{f$22I! z^_&4=2t&HWD?ISin`4_I#zxP;8n1ROIZU)ZbrZn1GD&Fr45CqJ=;Cni2e(H3(5={Nvz#i4>-5ofc(Pf|yNn7yZ~%eCkY zilzns{Bn_rg5P*5F9!Kt$JA2Q+?`!pUc-yap}Ua1^wWOb?^6*I#EOGcS|9lfIYAa6 zP-qB_>wOj;Rq=evN6Pevu4A#~MJFL++|Vjj&%r=so4D zRbZ^4xgwgcUH3h6W)hWmZTwJ{9?1oe$Hkk# zjT-w1NwgzAF&hqBVQk2l$UR1Z)`r3QpFdJaNR+rj`&FzrMa&Kn$*gz*LttHPADrdE z?$+^4rLKbYtpW4$jhE4Y>zh!*Wy1fK0AKDKLL1{GAByQvBnFWXF|Tl$yn3L{h9V>c z5bk}89-gs5|I{)_=}?i8Iu#x7O3O!uAKM~M@`yADXdfBQMIZDlWDz`2i1>y#)Ul4# z{L2d2Y3`)Rcd6ns_NMNgS`=SRwY!UnZz|4wMgu~-ndbJHL_CfEL*#%V6@dFq{y%CE z-m{zk{^%l*j(yFwJv3@LQz!fD{wFAA%a0r*%)`CkxU%#z9O+-cWFHsFp4O!!K6~Bs zQ4r0!cTUwoqyGm?tH2ujDlcWGp*=qTg|3I+)L~M5 zs(J<1G`0Jmky(k>L3WoNCo8M=j-76(pev|N$nUr&{16V5fK3&LJ73-Sc~Nf}3B#2G z4|Zv;{AW@3XLBbm88_jpMc2PcpYmMZkNv~l?&N6m8NW9&`yKsDJ9iv32SCTa4dhuY zbzY(VK9Jxg0nEpy;YdaEt|O6vgL(A4r~98Z7RFihNtmey>prLkF*m3F4#$2zhrWAz zV9c{-!^?4z7kB!=muuKrad{ay^s{cmPeSvt6D5k~EZ}uOZT0Zz&H4TQ{EgR8S^?}a z>QzDN^Qtgiqw4-Ga(>O|ZuV7~v#{_;MCyspDl+>cN9_Wh>{-AQp32QA4C%N12MbRb zxr;E12kA4(3T6(5NC-+|#7OZG*`zd;$X&%S<&sNti(H~UE|cr9+~*QP5z75ixn!C?#oQJuQDW{R zW>jvuP34-)eBXV4kMHC6cgy2!=bZQJ^1Q*0>IK}XU_^;LgTj6ajG8bcu0I z)P?`wg8OND?v!uX4_B-fSME3%u}!M7@AVAGT>2vU8EU06bD?{$_9bC5J^h0*M}QoA zz6p4_()XZ1vHB(eLqXCw52TLW;OOSi;fgA-uh33xG(>-t(P{WTU+3spGbz~b9ghI|V=rxRTT-gb^Y^!F!unVb|TG~yNE zjXf5JyqRTu=!t=Et)IL%Sgik@_#T`!|1kO$DFkyZz~gP6WNGXT5Z^{6K+Kh35saZ94J<^YSWJ)Kx9#A-^!?GXiLXfP!(CnH6Ki&G&o zz&uV~_sQ3{k}?Jsfh460*K(ErSBYXC`{Bb@88+(&uJ#RIbute8$=#{)tIhRP(K|CW zyS(2VpUhY2*@0QbP~%Lkw42|^(Qro%MD8hCS4m8~UaIaYsd;6ok~{Ft6cT{%JY#;+ zg+Pu8o9f+Rta>4v$GXt>RBj?kb)jHr0AAI?=u5mVwCvDK{CEj6y{4hih{_zmmYyW8 zwn}>{HE4!ap7=SiD)X_tI0J_u5gSQwni_^JnNQ{$nm{|jxB|0k9GnwS35?H<7elzy ztHk_0gTku)0XgzSD>CMTSdO?KmN_keX7fwKk0;c>6Vm;=kK7LdAeDS(u8>#L|F1Q> zgWBAJ;>!7RY=`R>R9YOWw3KXM9{6_aiH!=;hY)Tm^P1rkxif!n10WP5Uh9g6o)Hi- zZv5Xgsz<-8K;8a-q7h-%$GGYM&|+LMF)_ipBy+4iK}42_kT8$T>VrUsGD^weCm+NN z$ud1TIk{jF4wMa0Q@jD`Z~vfpDUF;CN8Lgmg(#3z)RbV1#W zFjS#}K7jNY`<7k0c!n&K>>9b_vz?2ETX~siZ~ctX-Zj>4w3GKYHK7iO-@I^Mqn^!a z^W)c%uT=AC<~}$6^{#O_SYCHUFXai3h7;SANoBCum#oYlJf_VxhOR?|eJ$2562iB) z@8<9#W9)r`d{d(6J6RTCz7blF&hfWIG)MY{_s_tkXSmx70Y83w*ILoi;{}li+h!+H zwDSoj=+kkPOAYlIxhw`4^5{GMU>thj&lv^mQQ!y>RK*t5t97g#SlA3YrPJn7;2`hD zx=o_adTT$F*z~3?%mj~d+VFD(TG-;k#*vq!NBr&OMSUY90w3LMVtW||FEcMwYy1jC zlg5}gjTAp5RaCV0r1Y7T~pEOLLWDq$gmJO zH&uP@bRO#3v_E~gKwwsThs3qA@FL7J{b|>5&dlkb*n6^N?##bZyMH#j-gQ)X_D^>; zEfqA@g{*yF+ue{|db8Pf#Lzdq>S4xGexaiy+uc)f-?w}pEzOAeZ~q(zh_(LsxVH8| zXKJAQzhZHAf%Netg)*QtZS_~Io4s&fV7gLpa<=_fkKjAt;E_W9=aM{hfkvr_j4SMA2+1*n!WkB(GApB_ApZ@NGi0waBW=FN@O~Zg;urh36 zaf}yKVuSA=4K(dfLPqmt1PnGL(_E)PP38bYmz7LNsxOb<$6sl5xS?X2NZ&V&60poz zB|I_F(MCQg->G-ndZfLxtlh}+zL|X1TTMG`CT6L5>s$Yf4G|+PV&rwEtlECXDSVz5 zDtkF{sWu{BM2c$J-TAzwOq0mZcs!IFO2?j$YO&tIf z0JhgDg$^J?eIl13fPyF;6nb;Z6`XCHx;;rv*U#*G3p!ozJcfjCnhs15hlMHZM80#- zMSXMSK;EdRDAntIlZ2QsC1s*xo6O2CSIE2ZvC+k;sN)H#!~-_N0^k>s;0ogt!Aa^6bO%FIC6XWlNRojj=O?5{0Sw$$M6iW7P_(dU z5jChwhkx~rhMa_d6;LCRl$Ot%Th!(L1L1*TbcIZb*`>BtyrODCQ5D%{iM!f*4`lq4 z6%**)%XMeeozBL7`!+n=L%IPOUavRyNc^|x(*JP*dZ*;eSd6vrf0irf*JzYbQ^P2+ z=yKpQ-75wWzrjg4I=0(YxS2g<3J5MPm39^H?eFE`rLGyR4$9rYm{0(5#k7B5YGb3l zN{aiVrPeVrAmoiBe>nd`=@L~H&@ebS%I`~~Ond)ZS@IYKsLCDcnH9MVy41x#YeVBl z5ARnQUtDJa&aIRhYsZz&0x3v-aPkT&pElzc(m@u61Rf7YaxnmwChHWS3r@mLocAJ@*a^Dy3DvfXa_N-w3mmg3m zo`8HWIKK76y_cHupu$=HUk!f1rnuu7g2l&D?2Ll}k6Ya&{DH&J)#&VQ+G=>M{b_t+ zZLWjGAtB*#(BCmK%Mb01K3Mj@yl0nw07hgb#Dw$MjtD+332^36Jb z@2t861R5=XR8ZHcJ1>BMaW)iTe`iOTuYaF+8ED;ktgrwN_M_x`ow_|JUXmIE{O_AFqvj1v_(eVg=xDM+e@3#E-#2d@7GynegOvP$*5(;eKqox2bgO z4OibxB$yoc=?;ivdA^$dg;RbI<>n{{9z@iirX?Kx$!+ORauanuYGIJ{EWTo6JA^*I zg!#^K;Ed{ocpMOTQutyB)Y0MgUsFjHPnLp+9s<>a2P6;BJWPA97*jQlnQ^lP;SNE+o@sV>Tco^YnRxUGoAM__%mjZ;`Z?}mG)JWl0r1OYH-y{5pLy4 z`Q3M}qcSTy9Vtvck40LlsU1L1W|RVV?40Q|yg%uEQckJ{0QAXwIu$cqb>KfmVi1h5 zJWr&UfjWj@ggjeMM=*G6E0;XZlno3Rc}n9cFaaUIW94yAx=kzNy@}yUr?3GI1vA26 z#6tU_bd~n-Hb=hp=74SCvdIDc{28zAT?WR4i&*tGp zHe@3i$zb?+&%U=O%KQU+6sj&^DthjtJEvIU49HC_?bAh+cx3k5yQ=FVOs;42T#12O zIjjetW_%OK3FSv842+pJ3zak(m$)+R#m5K&Z0(}*iq zMYDUSEC~z^{ltcbV{Hni`k%y(eVwp>nm}3AdpSbr$AX?0^41b$Lj>(EY=l%5da9_@ z>yc$f8&!_;qFODl2l9NC8PyR!`%qa4&5%5MFJV_Z;GJz}4J%k`WjByY<9y2=`<1(P z%f}~_W%}R2vTUR45Bn~~O534j?9kFzQ$tb{%Jr!tSePX|&-dB`b*%11U6c&2|8R-4 z(Z~m{gozKY)@#-;g!OMVE^Q^Rhrgs%&UY_|2O0CtE|K5}uDJ|a8V*NcV8Z@zb!Zgj zIc%BG}-FMv9=r~$V#|lm%&~k)yHBs)l zi1$!gD;apnvVqmF=ycr#tR6zHMEouCSbmAM5)TR)4KetuC@782I~`edNn=uD#NtryBy6wqGob=rNr&t1*;Mod1^S zoS;uBg%`Xno>>zTs%mTnkL4Ae(&^Q@rfU6}ZM%M@#c*h$%`Xk<`7h$ifxX0{1%NmU zU0w9|XdF{d`s`mX5jP7`2;)-QUZw-d3*1em2KzrJfp3X!`4Vqbo2?@(yO$-F{b=#egs51 zUQQ_t^6Iblk}rAOkkyTtwr|7izhP~qCtq*a%g7ZebKwY>>sd1KMnkIc&X!g}dl7x@ zHHOjJox`&jor)k43x08m6+{u2#yJ|@CT3Ng^DtR415e3L{BF=wETXL5I5301g1n{@ zEyss_VEMuhF`{~Z-yw;62sl#6>gplQq<>HsU~uW^NZp?jP$9B{EJWz)qoSwMl&6<} zhbye_{(8AP#q@ur!LMT0VH+9pIxK`PR5ZxvU!`4Vi_n3)$#xKe=wsrq#w1Nemxo^* z{4ZxupXy@%auw61MoOS|o}n<+Gr`F39fjdLk1|JUG?EVj(P>3%*dWQG z3tZ5%3QwhjpZx0;mi_Wv!?#+y!(Ct5k2#LN0r~RhMaz=p?;@Y_z5CPZAVO~lSzDQ# z?I4|1j!m_Lm{nHhiWpN_Y{x?_8M9-mjF8&-EiQLz_|1~fAdBr>2SQ6;+fkl}vKIte zEN805+ApU_ITaMvg|d{dJ_-OZgSWSL?G`(KIlZGQNpZ+e{Mpl`hE>=2BFBqEd^fcD zbJ^cQPF{~=2dPcHW=kSYi&nM1=+;;g)WZZeWiA zmem^13-!OT}| zWpJ<|mE75hGV~9I>pEzU6qJo#?dobUCW`MnU-=(jEwjWGDr3o=#mUgD1LJ;WsB z1yT`4<%-8sExIPM^akwa{p%CZx79qc_AIdF66<-rbA08ERf0{NG`G zQShka%i3DjMO_h{Gmpp#fRZ7EW&=1LxFB!+o^j-6a{s*Cc?E(e8Qo11dSYd-e8kgk z27(|s5nUB-Bba@5r*?lfH*r5V+Re`rW&4$ zJ%uX#=a8!WZZ}M8T2gvpb0oLBF~ByzHh0mogQJjKpI3M~XTX~jdbN@0r#Rm*_l6jx zc|RV|Sfgz7+x&V-l#meroK5d9-nindOnjV2qK;rovEuU|{)63g*Uz+uKrgjN{$g!* z)OmVGRn@9%s8}4sn||aHq~njvAn9h;{Gt}3;0390;S?Ao=&Y+Wg0(T&sW^pAaVjcm z3_Vl|OGa!W-nh&2TvH~lO|rO4J~f4u7$iP73xPbn6Y8l~4ou6JcDdpCnk zc|rc^>8ealL1VzWi%Q{{X`*b!uq$0{y~a?c3`6n)`LAZdnjiq|Vfs|`lzX5`AL=GDc>nepu*z*Ygu*qUsk zKR+ifF9AEQofN61wJp0jCi7ADLlL1vere=HEW8+DkO0geq)|`gI2VM4NV4~i3B!c7 zvARE_5e3J%PC6?44n3>^ik#qak_n%;JWQB!lExhcsilS7UsAw0*nxF1EM#@dr+IyF zUF!|VOz|r|PbR38ROfX!ZPeRHjcV*NUqGm{vx;d}{P2^XHR~O@fjC3Xj95zGDJcyyy0rd04^Hgh+sFjdk zZ9j86fQF#3*xbz^i^P(Qks3oq*o*0D<#oFQS-y688R=TZKv`KucYY9o)4%j)nLDGsMHnY3##MUc ze*yz3#38q#hEbA3Pt2;Xk4n~IzZeKp=N}K5nUIQDCMLB?&)^xORO=&UZ_e|p)#k3c z(uX-j`RU7m+*e2R+hnRag->y(%)_e+AsGanLvI-jI~>3ev>x1~GH0dv-sY8vEYBEF zjJi}Z`TiTUOVm(bqBnT~82GZ3Rui|iaF-al@Ugj%v>2l1y&mt8H@Xli1=fk}{T&_4 z^9&vRoKjvLW2%W!l5Lr|i&4^_D{n6dTz2TIT(p00`J#d3P=-z&y-flPRd@V^w+VlT z)(&%bvzezy^$hTdDw1O@nxc?zu%tF5!?WiaRTqVncqpDB(q|cyn*@}e3BY_-8bns2 zP9l-;y}C~ldU&IdAGA*(As^O-v{4W^IaLG!|3HNC#TG$K6R;3r4xs6(IvfH!ES^?~1t?q22cU2oN^uk1bNk zbQxR^KT`q{ChI~2_dP1IqqGa*L}Hb7Hk%4*?d^*kg)4W9u=%FZD@9S{{+NBF^ck$% zmGVK@`zRDlNDa_P=*|HZ$cq}yU+f(`dWKypzlP9774Djgb!Afj5$L~W>@iX!^32BS zc(oV)APA?G9S+I|=0#Ec%(JdY^5>17!(Jg@ZqRV`$}yr5q}@j@865cL zD~1w|NmHm2bGa@3DR0?DizR50o|Zjj_lz&<1kEAWpGs$Qw{Hc~hZ9d?VKRHK$&0qA z^NyAmXDjNTX+4|-;%%Pm7Fk<75}CM>OskVKIHVYo_>Q8dztqWCfysGO+r19y5a@+A>^Zkw0ti?j1JfD4`*8i(SPH~< zU8JSmMLVEz z5n-tIAr`NX%&{ci*BQ;mcb0T+%2W1L91PIr*GYk4u?D0v1mc3agBE)MnlT5maTNC{ zohpeFV_(r%b}y&hyQeFTXhT9D+vQ|*^8ROi5Ne3sJmJxUCnP+vwE31%kw7qi`3St} z;MwS{KJd25(939^jn339@?rUXHmx>MJ{mRsa;*7H$l8Lr#I61snzc|Cc;SKxc#KN9 z$V_8D2t)Owa1KH86-$~-wpw~>^7-1p`F||6+*)ZrW!YBEB)Idg>4B(#H1cz~S&%$| zNQmACw`zi5fn#P3hN;^VJkIuBQ*5=XsPA^kGf4F=RlG(Md)BYhvlB3A{a)W9*;UK* z;4D}dQay9?h^)X8OEN{+5{#5!acp$vrhIsRvc|za6^3Q$NjWrPmTY_czbwXHiLxtC zJ*4m1Cq1Hw^UHVDcrmW%6VI3!>F8Bz+`aaqZ@Bat+n7ow$4W#A@Ub$kc`j@M8mM20 zf8#KSv+imgo}1btjo;Z}@|@LHcUa*K^IfW>PvHmEYU?w06q>erp8=)Mhb&?{E$sIO zIP9l4gK}L)1^a_)d2TRu`C#SKI{H?fjfSs8I%uV0KaMJ2DZ!ElClIi((ZYY0UkAVUB9zGomsAhR+! zV1t)NhVYAz-X}vupcokTCybXYo#x{EI%of{Jad)0BT%F?>iF|FD__SZfHn^eJCwh= z=qzTWh|Lqg>SL18)tCboP3jKp7qt{&Jyfc(A4yXt0V&-_YnQy#VR26}F~K$vfBZS$ zEaf|AnjhT;raO8jm@5-fkx;{M(+ArciS7wc9_Qo?knSfm*kW2|bz%?(kQbMyWdQAl z0?0JdlsQ-Fr#c>v45%&+C0@LwDLa}>uBY3M2bvg}95lvoP2 z*qz%6%F75)iP3LoMkRKoy!wh>xza;5wI|a~Ss2|NEWtIv99Row6dh5M?G@L97TbLt zg2LDCRT|Rl&_%y~-%iwxZf|Ldwb-B+3*h?OB{mYo*=Gbt+ag1f_XweDuI%{hhIl0^|@niR`ll(`bF)F z^~4~2-gxLzi~hK2YvMoT6D3T7;*{otXMKX{tzvk7w7U`Sq=KpRx!gcZNtun>d(HXH z1@GzU!4H!%>6llI0hI_;D++Z!DZr%TnC zNrkW8w*gxKGeyU|`~XZPsl~q@qW-`l(OK*x+glJtTXY#z!(6e*US&IX(s!J*O6j6A znPtmG-!_A&(j?B9+IoD-(U)qhvyH#9F*Ej~jXA?>3c_M*Tejofn?a4|$$9?4JIu_@ zN-F2+lgV;xr_+z?2gO#_rl+69rwCeT*`Dq)wO+P$Gu7qf7sj2?Idu8BV0_fq7ll%7 z9*x6q=XdC&QhOBMzsb?ZB{|+%BJNv1tEH-Q_GIQF=j-I~EJ1Ppqu=PFV97wl;P~}U z?uO0S0$usRgllc&#>y~3afxMZ_0j&$q}BtyT=Aiv;<#c&!-@Ly@7Ui`lNRH*bH~Hx zNzLoM6Z5MaU&vPu#2_pCd9<&ZEQ9~80yx-CZ*r0fgMX$wg)e`M++b{xx*`@yW8CR@ zvr@lnFKa39M!mfUDLFtvG?UaSA&qHkQMeEiwpwDdv?~g{{k;zASLZCQ#jCb9d6pEu zyC-tPdQh$01NEBiUFI>j<(>6=qQdRC4G%ZvW#kse_-rgmh)^Qkw$i#j!&yxJth|{` z2i~6%OxG4!-m#3Bp_0Zozy7)|b)kWM6wu)uM6lG>{M}dzxro^W0!rDrFWI}#v^Pr% zH$Ue({rNs0&U#Tx$7G(o-4H<(J8P|UC^(4zhXWu_wcY-+&6{7(&AhQceRe4i3~((c zrK_3(*S{%D+VO6`dKt!@iP)@IUt;sV0_^YF`Bi^KCq^bv9jcp%zo$!uH`sOUxt-Hi z{vE&nQDSguG$CSTVYAfd`T=o0By(9SoC|^=yYfA9YU0Do^`nr= zt*&Ck+#F}|ttOw58e_(yYj}gb<5=S!U()gmubhEEckyJ4E(`e*Yhx1%4e=jaDh?wh z5PzbzqpH6sL~I{+r1E|_^dUaytPOIQJ!b#XhZO(ps$Li{ASMJ=ja{QIMQjG#heuKR z4A%*&CiNMbh3nefX-}tyNN(>l+2%j2@y)gKQafy?KdWU++9P|6Z$w0Y$#+k_^G$oV zByuTVP)Z9l+Cf#PTDAVHJjq^nAo}@L%3<1g*5x_ljY?B*SW7qgowlB+In_u0W04c+ zHKdGu?oP8a3jBRb<2u!vOpdOMqAUgVD^uKA%GVfIB~2&&8^>PMvPAkrs&+Pd(|4zq zwt-%Ab7`lfaCc~?it8&ja^f*z2>_CzQd-+TzV)~G{zvGpe7UR)1$Hem`ZDn2I+_TC z0Xa4S0(!pU^Hz6d5a0I-KZW?=fUUyi4d{0bC?ZYW_Dol|>E2{?v6w+3!tps6MZ3A3 zQad2HNFuJ%Q#)c~a=mG}aVcy)X3_a`{|^qN^K|Tgc3n*?ZJsYjo0sqVgx7lD(_Q+D zi~ce<931irI$a%dU4~TA&ovmG`IqCJM~+_7MF~e!jQC!88{>wH};hR5P z8;_LPGoa6nF7Tn-AWyUE)5(aVqm6fb*Pkx2z+z{?)r*-^b9Jal)$P3`)3jWpD~nT=>HP9H+FcxXEg)(JLA z^$GkFb=t}F9diaGYguZKPD7cP+2iFVpLo9p2Onb`@(pZZ;K@bn%X$=2Y{lTI1!m&Eyuit-Wy~VVf8u%2oMi+i{`)Vy|MeaHx8nOwu z=^g1)?Sx@fkG$XWz$)%~SH($}v{Xc2xg0F2D8uL+ST=~=RI!LkM4TFJ+8Ha0oV*oA>Iu1WU$48k$LDi`F}@I6t55&g^LA6-j@dpO*jTkh*bT1ztAXvo7^!4<0r_;L-N79 zg#d=q+R;A+tQh`w(X7=Gv<~C|%^ED+32R^ABth}c)BEy`4#+`pG5xt>o!2U$17a2k z+F@A>garoa;UY)dXLXgKk%V$bT2&0v7#UURifxr1aegnl&bxIq8G<022niyzNPN@; zH<}-dz&+x~Sn7N?fTM5&qn3|~6FM7$KHc>;&2t(Xws)%EV)F~aSkE7i0 zngOV{le}v#8-3Cx`S=jwG5$7Q=@EY)Z;yT}rR+q#tqRYVk~U{@PH1wwgtc+voNJkE zMMds)p{qhlrO!oPxv*b|YVz_>2WvbipseYx{kj=xi-`_3C&qHG2u9P`bL~JtUk$_9@I`ZhfN79Nja=Hl! z6q2t~;+B!$(Lkj`spWyjYLz*69zC`VL()RS|2ToPu=)BcuV8V2m3K6p0vvK%RSI zUj?qFQpEQb0c66>`jwP&+$DG_#tkBK6LEID8CzL6=1nL^?-K&fE0j47S@U9odSQzc z3MLHUMd({0QsvE0Vug$JVx?ix>MqH>FZy&K(h!{lM8eXslhMehiFLUNzz*!{UW6YckT)BudZMoN5eVcq}i(9y?W zf7hon=%PJESUg{B-4RI$FBS)&I;epz?hZT}hP8qmc*ll*+JE&B;KqX~|L?Cav$z+E zLp@deB!q)2kdA5~loeAs-Y*NB-h@Ro9BE4d4vNY1c)U5(psuRn-wFpp4)VjspG?ky zk}+3pr!(){@o$cM!397+nlxR@#w_FMCr`Au4h30@oscPgu!O0w4Ik- z?x_Y}*-s8cmfT3}X1IC{t)e=;YT4PLiHbvM#KsHRQvTVm_ZKCK!J;stB+*0a`9DT* z?*ZjT$^rG`cAvHhB@H%FSablaQ zQ@3f4nFNjG;m*=L<8m(+Ou~N^e^UI=w6`e~r(AN)(*#p*TYkKx_&1EJkSQt(H^#V* z6~l`L#4Rn1AO?xxm&*fY`&is4d((4P&ZGhgT2pU5IoIWo8&wOOUJ?4^-QHxtm-6}7dsCW+!XO#ffA{YRYd zQ-&9QuiT ziT!}wtn|zc%DbdAR21-%rs{Rw3E5lf0e^1I&cB6tGPt=AWWwvfsy2c9?)>O=d1auw zvlTfd8s{wh&NZ}7JAKHhL9cIAzT0#uuTVQUXn&Dc?#?%brLC<@H&?3|?;0MZBt;OW z-gtfn8N9MG93cTd*Swi+qp4w%4m@_BX(uF$&$`?;cvgqS*{+F9I26v z_v@TmwQ)MPT0i_I7+CJ&BUoaKuna7R={Ew3&+5 zzmwZB?Ugp0=8et9<#eEe8xLP17}qjfGmZ28hdDvg;#Ov+hs$J7$?7F|ueG;)^l1uP zf4R#Oso07juXspUmdv`k9~qY#C0y~V0@2v}E`UZ^-b#PTF^}dzqK$DG&C7z;GotWX zR%618$4T~y5Ogd)F}vAMF>;Zs&ni|eaS3X&Lq4aaAYa`skc7JRK45X?7z-spLgYg@4EGJ=l<>=8V||8 zy$Zy@XdkO*E$Y)eb5FFkd{cN(->|zMAeq|hvXKOh+!8UBlV1bsh8c^S!;8RXW??P9 zKb`r)n8jFRGC1qncYfzKZ?RJfMsr%&_$#KQWwB#qKXLZO=YTMWc}n2aPl{OdE0+x9 zEx%aOBJOT`0?&-!?B$w!pv;hhUcYew**q(g?0B;o(o#%-+m&BIjR(LX0@S-k>!OQ| zwlAj9ZGT><&Ajl+`yv^a3!HAQW!S0F^^%>()@751hyNN)J)Ms$vk~ap0*uAc#o=5n<@K(u8V}Xn#VQt!>`kkCIh|B_4|U3~L6aA))zC1q7*8k3(?uBbjKygM{#J>n zUj3T&=lRF~d_B07IbBLomnO=`JIf5K&eD>Y0Dk=05xFF_4Gg6(XPye^*pK}w!Mh#b z{BwCcV&+-%)~ROh%FgA`8@!!nNczG1LgSZ_0i;tJ+UJwWd-yCbkoMa{X3mZWPwX$; zc__8{zWLY7?PN-T*SKoAPcG9XF5|Q1A(4w|W;C{=)FZcWjc@_ARYk znn^#&%SdtGB0Y#^x6evQ!U{-PIC6dK`OgLF2V9tQ%BGl-6Rm!qWvogjU$dpWhggf; z|Fn}`1s>rkxvgR&86c+|X8usDCBLI;izMGr$-YgRXFM=HFrsQm#?LEE+kXa*9s`(6 zJSDNyjs3#M!U!Fk<-)3=Xo3Yon#*n0iIOigMwr$TU3Fie{~$?r89W>YCg+wBeBt6B zFPMrys{jK&`Gd&ln*q7E1VyJat}PkOTilP$%haW&)vow>v|f>%LqGN_hn7Q6|7!$i zVu7j2T3?s%=Gf=SA70*Z{^AXYvCg0C2Q(jOWZE$p`Ni~FOhF+~Xa~zr4X?UZY5&}d z1(}(Ki3yZ6I0}^i*BReApqNA0zrv+u7*`;{=+;zxvQC+OoFbhLcqF*JU@QWgfCrNr zhoE1Jvv~`S{p|{1hLG(&5OsFG_oY7e;@<6Dz;MPX_wRMr6F~s*YE%*eg<7iYJu^K` z6K{~Q_%{5syWcm+ziFXiIhdsBbG$U7{#wClx8=L4i*LN({+~3S!-^8(dPvkiL||TO zD96nQ&eU^)k-Z5XpXG#g-SNut{rUl7aV-iQ!4|H<00FFbx{_>n=VCfK(*IoRd;)2+ zFUyOWYyE=(v;~Gja`=$^bT|M;bzhGVbyVUEiUt#pJhuA^OkvoI6&6{_-N1KTws^y+8xqT60r1*#A^Tt%gHcTdA zOikxS8*=}uxg7L>VhPwJ=mh4SIK%)b%9iS?VdOXMt)=Lrd&#ceu9Swc+m<3Q0FhE` z(3Z?RY0z}TK^tl)1ez*K0~nG|2Lac`Hhi`eTw$$>$!Ps~q3?up{C-wi-R0Du)Z z>H!Xt3U1a0fTqZIOtI!Ck$4;gX`rZz8LPh*zB$>(pd4JO@i5LtMFGWPR#}#Kg+7`o z8GSMh{~1VH^QsaF2**=s%=3K==Ck({&mOU72thr^PI`+%Yms%M7tnP*+jj;qNL+gC zK8FpS1@k58%L0#3$q}5TN}M_2NjmJVuFkXPsVD~=+FVFY_PLzQW@)=Cq(bq-$?Cb^ zch5#}LdPS{fB4~DRY|w6F&k`g&TFV~=%V|{l~_Y8J>A%idxq5S?DV z-EAJ4wr2_*#w!meQLUsdo12+U-;~!KB($EsTSRf4#-;1>10Xjpt*mBIpapsJWGkLu zPSZ3!Q4=F)s%#>Ctuzf^ZO5CMjJ8xd1h&}T5@^`-p1Zf{rY~HH#KP_nDC+f2BqFBv z8mn*Rbm!7m_^x(a7O}E^aKv*+%W9EQsnyS^d1sOybo;jHJ{RFuH129K1bD9&O~%1_ zh3{3Iyed8QeAKt)kS^~@(UXZH3HKHt(?9mbu!HE7ii(O*o2BKEc?H3n$-BGFYD6pg zzXxqUFW;`w8+w=33E`AI)X^mDR{}DvDa)Df?a&N6Xn_EmsUB>^#~X07{E;#y`O-}z zkKU;r^)#)a`n#xA4f>Y4S@_WX{=CsHQ;_e;@YWu>WY<-m0mG)%V*+ltV(N9LRZWPQ zw||6!s7$Z5iL$Y}EvnnhnOisvldZ>hx8I^>(9(0S;g6Ncja61zic^zj^C%YOr-y{R z|1>!Up~WQ(Or5hKDcvmZT@MDST;m|!Lg5h%@f9k9mO%bDDI2~{pf7EC=OpFodtzjJ zM9#>hQC0dzz2qN}>y4j^G(h_pX||u^-Uj7u%6HQaIGi)@v2P*wtP$p}`RDC+pn(DY7fef`pOcW{RCrGABfI>=dnG(4F@MK_iV)4pF`KysgEbe0$V2BW_AZ7 ze-`Ff(m$S+kGI>KOfJN39XCJpwD+{4p#7zR`X(UKRe->{AlJY8*V_f0s_>(+Bi0s& zoE#msL;W;Nh(l9PmQ+1jT<)p_BNTYzuLc9LyO)b0JQd^k=bhb?SJpD%pX(vbGy6IT z)FFC49DxE}qhBwPh)Tqi!$5u_-(Qh5pW0AKobZ38a5G8OZBAixl48vkj_cZGN(L}*H zqLT)m@F%{{9zFp^AA%iIz%WraHTKB4*L(dzYsD zLo)+*1{4}Eh4xT+qL*;h_()kcZoeU9ayopR2HfmX*F7&8JIv8X305CsLSL4c#(nd2 z+J$8F8WRcUsNAg|&1qYM^!|LZ~kA&7A+y8DT2BF&t=m?M`nlCskN`VghLk zYzxmtm#Pjh%OMD&0(ma~4-w0#sLJ(i?e+X2O2SxP~{Zl7Ay&Z>`g z<48A^mT^u8sxdQ2s4(G6g*SlD#Z7X+^O1ni;Su_^unntz#+3dCYJVXzC?Fu<^`~7< z^ZI2YOqzV9YGI`B+I8(+jG>uhUbA{6%}(CVi?jXZ$ofaWkcfz1*(r^^aHR^GuF%&i z(HX&|@r(4p&4umXzm`QmUanB%7Q&wMQ21sF(lfcY+ZoXhafz#bv(=4_;2%Ud`=z~0rRp>hS zu4&1?3uv&EeAruO3jcf&3|pJ<8H-$exdZf`>kIFTk~-!Wy-$P7THwS!NU{F-@pAPM z@3nUTYHZ(fi{zSdS@rYN!FB=;NB6Br;^POuZxU+jk8XO?$DJGQSn zvS-);$kbj=dC=XpDevUyLr7x!KkS4cp3|xi1B1lb-lt|wT6QY48}5NyD*&j`+UoU3 z7tyk&gS8p1H9vULL~Sx@G*+!op@gKDYHr6oW7#ItJ1j7Gn3Vs|jBrYU)Aoc@#4g+C zVs@@p*k&F^5A=3at3GLQ5234NLWvpMi##uPdIZBZoi^T=aoAc6%)hm4BlVB$I=`&93=dP?Qna^A)|*zj=^c?9Nlv?6NlC5# z|5guDq^CiQI(lK9ZddWJ#pNV$2JO<_>)%9hUoc-6mOcYi?CIqSMsM%Ave?6! zEE9iHl}ADR6CYYv$!XD!R+m@yr>E-|KJK({ioI=RJ`!>;W$oOd4eza!{J0nqwz3d? zS@wwmh8cr5q5^l!&Z*vKfQ-p}*|?q(@ojSK)eInk8VYS%ME(}sT`lB>My~tpjCy_) z8?1$XkAq`*AaE!O5k;_q#F7(z^OYmf07);Yg{zBhm(WqK3#K;f~6q4#7U-)sz} z?;VK-Di?$AL$UC$zzA={eTt|3I+gQy^!Pu9H}})*BDP7pUj)NvYcuQ`M#HySJ~pqM z8s8`(jg5EHI;)BkAlTnsi|O5wn-e~beoHN~-9wivGWz{riETzG1|NqZRHRU*P$upL5D7#x9|bjg|Vkf-mcGfD;z_o*|ev|A_Kb6iPkRq|yM zz?t~R{nIq>+R(f13&gca8f_;+#@6T}WLWyM{brtkziCU4VA7MNE$9EC>D=R){@?$< zt(7Tdljz8d(!6uXA-pNWsG@6AS^8eXsG^}Md@@wh(@4rE&Mf?Rk;c#uo&F{)(=k3J^~jFKWQyt_#u z&yv{}Y<*uIn&499;>o-0oZj>@frVEisSnWY*H{$Z_PPKV!_U4eGY2O)`2;Y}j(djl z6r=U;gEN6J4N6xyNXPOU{1=;_VpCSdnVz2Y=y|C|c_&gPq5zvF}KptqB!qH=b8 zap_4jfW;@K_bx97SMmHQ9Byzq-F=eLWMp{{-WZT!Qsw}n*3GbuXW22GgtM+IywHu& zhz;}Y2CJ<s!lL-ChB!lmb$YaeO^x}e6hm;pqf zW|z%w0@I?u_yTKeRBW==RnaOgPA(ZtyB_E5H?-Vdix5bH3)7Sznf;O%mv9~3CM+Y4 zGyyxAc^rr}fP$2D1TEe>3f=f6zWJ0v9>hQkxf6+u+7TIvGeDz{BI=@P*YD7PXDw<@ zhMJ5s&_c^VU^0*2=-+{xs0%*G1J$%nD`n&qO(^~`c`wrP^$F|n7SD6ZVkqOLF?B0X zkm#cD;X(fEq)eN8CZ00OE<)~Q_6e!xOqL0srD2K|Mw<8;8#jffNg7I{`Zxb)u={SL z0l(VjAIM$A?ehkx8?h3e1#!rni%_*apW2`DERM4^+6Tl@ud8^sHfzf3vJ;G7KO0+E z^w;}SICu7N;Zz8#Z)OFuUfUnn5ynEeA8lABYBQ>j7^lhhwG-`$Ty}cX%;#>8JaKX= z*QRI8p~;SL(vKOZR8DC!sykAM2-5B%_zYb&e3uY6a%%=>>;Ad+X=SalDz+>)ph?EF1C)-DEuFT3RX8JN{W^ z%77uQGbl98OHC^2+rZk7r9btT7~=4}QKS>e=9FY?K-%TJ_&_4_Zqk?HPNfL~sb?(X zo0g>Q5(umvRJRfY_(jTT`nN+&FxdAGkhu8ki#DV{r+wih{Sj(L?eBY<5o>qmI^&NJ zi^qqE&rrBP(cH@OxVEYJ`38Qbi*KR7Uic6I_Z~JkLcl>Y_o^!;LHK#TNO)cL3CdhT zYyPe$BJze+q`tUBsHy^3q6*{uhO|jVcsT-IB-ZuzpjNOpv`A4df7I`qMSj<4R&)CB z`TZwX@n6nDpG+9sxs7FucMRZGdJAoiKTd+jBTXQ1*koV{YoB&%zk17W=V_6J5Ektk zhsU{zKN7tardb<0F$2zO$D~nDIYal?HfAmCu7v8cmad$hxk2j2@V5sV7=n{>OfjCB zKNt9rE}@v_m;mm;U8)@Di%qTD*V+-o(TLruWGt?v@qvZvx8~t!6SMZQ3nkz|GLIq_ znU7gO)nzY_ zhOyp!pFu+Z$4^M_>I+;5IDDyTY_??Byz7?S>zUcYU4P?TGMw$j(3lVfG+JF=@o2nyf*3d;Ic2TAiQIfV z38h+5+mt0nQ!4C!+Vv}o*hwIQM$=J<#xeJ1vD3wo-n)c_Jj{kL1mF8#!bL%Rx)I_; z`^k3$gKv!>U$N%x21&ZT&S^S~*t_6Bjv|yk1qYNGg``OIRqVTR&;eLffCV$<^XOVg zcoJD^T~}oD%A|R!mF1&`O*@jK$XRh76(ne^9q6@FKq6JqWT7)nR3rB-JB@DESDuRDU=BHbv;itSXTTv0S zI;ZKAX71~IiICk9zj;fCZ)S>%JrS7pwMM5Zf2BphBbh(UhW4b`6%-$tLp;L=VTc+Ld2U?%|5`*Xky2n1>bGw~(E9&Uc6gJeA< zFvC*~quw$$0uU(^^NWJjIqJwAV-Q%&SMr%$oSI*6T$J=GY$#W%8sGJz(+n#w`l9*x zSf?4cS8i7x-Q)bL*DAX`&d6$WHE^xPon}AL^72$!dHDtuCO$B*qB{+sabz(Q*E~@d zNzYERcff!6iOCtML$Ub_k3mFw5Q{}9g`1wQ)}il+%ta$`prtb%O#)MD(_0@OwCsrT z10svuHYgk?_HM^J?!ZZvym*ttqSxaGUZr!A`&{d8u4HeuXFs=ro5l9aH>|qpWR9qhhvrpbg;VVYLhK^+|sG+oog z9S4We@+)PQ3z!u$0MZ?_?aW;dE~O7rm85S?tbtsg?RD@aG?d+I#X9qCz~wS8$gk5F z_XHIg<&y>I6SU6@To$wymslH zz-^<}Dz4+r;4DWeyDSa@RG}H1bA_Q}dq2c<>0d#Vd#>jEY;!)KO7 zv(E|zOfN0{C&~x>px95t;9_gw?qPY3yXaSCg^GsT-e{qCCzD4zdWu^92Y zl{zN9HO!IL4SgvsziLNJR%zW2G5u&vCmi7d4lBc^Wos&iQnzu}Dq>~7sNVeeoo#S^ z9}-e7d+@Jb-S^qT_;H(oW4X_|UJw**&G=b1VXH@^--eQw8@5>>2$riUP*Pq$r!1jj z5P6t@I~_No{;-{J?@8gp`W=oSpt`m?aN&-;ashjTr?<^t_!Gi9s#IPH&5$ZTj@qq4 z2pSd|dRsABvBRrS-u`8OoQs*vp@6r9{82E}8l154aUeOJiVirMU8f7ox6hsp`tgE_ zSx-KLNQl>M!5L0J8rQn?HttfWYcy?|cb9X3pWGi!de%@`n-wovaG3w^KrzwEYsj>tdZsvXy z+7!0ft%Ug%OI*tGSR<|^k$-vABl zYaUqtN31bw*Oszt1e3j`=55z==n^Bk%F(%%4&&_CW-71ZpGnDAmCk5UOn25DOaA z11|=B8BNKYE}Im?OJ?C4!@An7%4OVBm`PW&X@NUOI$~XVW5ewaZ>wByv2bg$jgrm< z>3uJg%4-(4dTO`cuZ(>b7%q1k!ZkT43`#FTSH%Ex$fndn3=s*+N<0W^ z+^VC;nZT|Gz6HZEa$qEw2tPSpD2_V+?YYrw0=0E+qg^>-O4IyTHGfmIcJpsb%_@&j zNpUcH+)1d|F%16X+1oSnL(~vGGd6jmGRWntBdT#Q2QrwMcVy>ox`YdW49O@;?$I1$kCWA_R&rtF{?A$L_cvOewv}qr}$k!5Y{-xd_XV zIK1xKKJHV-gg$4fJbnEgK-J88t_o*?yL5&P|JC2*!c!7E8tEz+cIwlV-D>1kZ8kXG z3VrTN@GlPeeg_2HhGbzxMbGoUaY%iAxF`+@Hy!vJuNt_J^!6^13E7D!<#&5q zh|#*!^5VtyRci~ocOmLfvJZH7yPpcz<=V&0K5#OQ9relbqEv>y%?O}`-+& z@Vvgh;Hqr%*}%ZXvB1f|V9f+-ec)IAE+45?u;$-1kC^q}dbb)r&f93@RUQ0S7zNm9 zkc-q`bGODi{PjT1snO_385q1wCph^q=l+c(V@K@92@~w3P>C14t%_GPMn}i_v9)uY z0m4k7cD{#S`fSU+?O)0pU33WJu{WnsbiifxQJ9{Vfl25=8#V?lgt# z51_I4^2GD*!Z28%WdBLaIf+2~A>jHTqMl@80*5DPA#n(FtvMvX5WW-aHE?23q_hka znt;1Cvz0mPcZ=0)gb#F5T5p;TXOQu;fkScRK=P_jmi{;h!cBDYJ-y_T8q1j&&1X3r zdC1&FAN4u7K-C+|Afr7N4w%P4(o%F!b>%Bq9n<%R%e! zinOEqwWp=WMCM^GN43c-8w9IaT_}F=EO0xuN_y*S`P&^itl(QWme_HF+l6yfrytIq zIC#vbrzx;kDeRpoP4626j@t6(8icdDL7Lw+1X#s0`cj(4{5TpPz+yYOo9N32-M8k* z{|fr9iWapT&_(*3H`|*Podmho5UR1%zv*hwVv5q9Kv*nh*nDlAU?YBdGVih%A$04W z35R~W`{}46MVl5sxhrYE!ZcoMy>m7Pp@cy;LFM_O3y5PP;aTIUIpE?WH{hh~#y@{F zUVBX|IpZkat2W)shz4&9VmE(!poj+pXih++0caMkFL<-R^BXp`7!J@_Z}b6u8!;1D z!UJ)YrSMV~HYNPTb1?s*PJ8KXSq*LGoMDsG%mPc>5r@4kZ!S^hOZ7dMg zk_n!7`RBe~orOZ#r&?X5Uf2tjR6)cz7n+plyKQ8wn9ZquwXlyBXvsl}(eF ziUgmBm(9wMjUYSnKHcNYsr5l>UamASC`q z!C;~}w8uFQPI$Ld&@!*Vq`#39ko7>k6NC@#l%Z_@spkOgPZp3YDFr9!Cz?VwtVrLa@?QYQdu{I_u`sJyo7HGrPS}o(~Wo;BOp#_rlQ# zzY{c?oK7^f3Q426_oGZ`asJNg3^Qh< zB7qJj=nmdW9ex=zG+k|i3&3Xi`q>ppuWxEqJ6a0A$Tcr7D`#w~aLI}58PHCGQxqqa z{n+n}<$g|?g<67g0(gWxEM3jXnm8F+xBQ+@ucno%1o0+jFyYBj@69`I>$jCRCgbYD zz2-l~c*z_8GaVRwgt8a`;tE&w78mPogxBn`x__cE1cDH|499}Bkx5!!P)Hh;W_`I-9*1?qNuHnp8>DkXOU!O;FTA9$J)pEsmF_?)NkB8?&V*kCd zxeyW_N_BODpphtSAw51PPR=S{B0frvCbtjF0)P)9AL5gjez%jjU-&%&3WuA(a7fy9 zG!hOs_(LCX;qAnsW$xuYRs>L9S(_IBv$r( z31*hBDpL}4TtEXzNEEjzR^+5!RF~~K?8DC({}yyCN0mX}mBtBboI2OaO6hHuGb#d; zP1rz9_ihyo;y!wxiBS(FD+A|y(fl6L)D#0^U66`0!1;amG07ZPhp-8e;x5nSbsWmEy!;qeJ)vtEm_K~br? zMXo4sZ9GQ$T!cL_(b_3-blmfd$PS?Sc;BZ$1K|;k&2m3w71N@+`?~xtV6!u&=Bj!i zm5fU@{n>(w?RL+qn1kOcCX}hI{##4^qH|V@A)%o)|Ncu@sz0*o7q_@Ex)$plaO?Fi zj$g(JTx_l8t2vJPjWjdicekFmv-R_niXDzAN`e?)BI|*m<}$fU>!Ex@={YY7L;U`; zv9I1>52$!NU)*}nvP*5>qtZ{q>+8Q}fB@N9_vV^HRK~{eFV%ehdjRckLCH+5t(Asm zeRbC43}*HhPIvtpZ8_GtvN5&jKKbDLHBH4USp|e?s*?6vmnS8FRYSi~o0-tBWzo~) zL;!nFRiMcVX3)GHG4vN`>3nr|dPh+n*ovv7o%$5WX}Mixm$;#Dw66 z3i+oPO}TTN(QN7>pHa811{P#nn>tn73%ozQjDD;<=gpgeS$UcuU>K^h6v{prom=Sm zbuDwXcFiz5d|GrfOS)z7df2TSVPW5bTrvy)ZLM#IjhDM-xw*LPb>Xl3O;*R2l3>Qh zrKMn(K@Hn(PmC>{ZH<`jZJe44V}%3->>cTyx`*<-mP_b=+T^y?IUSqZf34DmVe{3v z^eTglHL_;dlm@Y!gI$KK7PTyoe`tI*X0SVc#5uawA1Dc2?gR#ETG|%(^w0NOwbrc< z0jw^!p+~T$)9R{v9LALRN%QP}s!yk@@^gz=x5k-5dMo*@+p&6o*gfFa)$}PW+>V%T z?kEE88I9iwA!d5Zlg;g(8(@q%C^0b8~&+~#-A4#sJtPRap)E*hP8H!l?8F+f&94F|tb1;@gn6N2b zTG-ea`*fF+c}kM?X?@bWZ|+e_J+s4BUa7p?%(wW6-(cw8{27Xlete|>xUcry^Q?N* zQ#dVKojVT3Qg-Z`DYna^%(-HDm2`3@%eb_Q12 zH5)qHtw0c4s>irg&T4ZeMGbHV^yb;TrH2t46~%fllML@$7e9oXkSSz}tS}PHsbuu; z17V5@@%E0N(NVN>kuTysfX7wkPTqBDU7_Hs?fLYHMrxfkQJ5Rmh1+DqxRT=@LMR{YPhqw0m8QX{i=IpVf`z9X>DCbtE zs(94tAXe~1%WRUGDHdo(ee&j`{Vpr9rUQL_)5ep;L}?N*b%qT|_E3AJ00puvE>8-& zh>lK*`IQoUCCInlsm3Yh{>KnbhD7Oc69Z(PH9W`LT^HAL)of9hVKYH+@`b}&SOyrR zfp4;U0%T?vsTkVXXY$4|FqR&W5iEGgGHHyd^=~KoCJ^wcv7jf6U2ZqK58xTp=Va5* z8D!s={c{s+lV8;$i3^My?n=Q$tfNu4*b6e zs+f?q_@`ZZc=3Bz;P*1=55JrCN!jF$cNG4z%M8sXuMExo79lYOwdK=ui~L{T9{K!U zCHsdn5>tiDnZOr``LhkC`v&-CJ0n0zK$n>P1;L_mVscrkYPw@m#_*jKOr#YQ0TPvf z;5H%&(ug-Q!rMcT)~EwAIWQCy{bv8q#s7Kzh;8M$`CB?nc$L@9rwSO7m za%lI99PzK|N)t9j)#c0hCs%DlNG^;9_OIy*14UWBdGJUPs{C>u@ED|qBlfz798>^Cr67nVdh>8Z) z&1{3V(tmd(V068fB{1LKrjCDl+AnCcU?D!)m@x*wId5+1!w#Kibmrlj38`+QwY z|J3@x+pFi3I|=4klt^5XE!N1WtMd-3)>@d0Ev(m4l8jYtO|gX!K5HuOOyd$s`e~^p zPZaJD9SDnr;u38|yPoO%s$h;z$ZsrN#pLd;9ah3}6Lut4QnUJiWcV3#+u{zp+KvCp z!)Iqj3w~)&=}M~ohes+HTUT5cjU2txRBEWDykfiSUVkG}h1UJfxTb_bGvkgj^3@|KoY-EUpAV!D0f$P^(Db^*YHf zLge{~Mu_%njR_ z^V-2|ub79KDUI!5P@Q4lmKL$XlB`{8F`O^JAYXc1O(Qcxg~A!4BO~bR6q1kG(k@V~4#a#t$>Z74)Mmv!SB_DE1qGRsoT?1pz*xYP0N9A2!7i@tMvZVTE zi=&Yl7Mo8XSz^Cjp1kri-d2s`_0ccQyeO2w+iQvC3ZZFb&c4V zEZ<^nPf~bWpY1IBL;k^>Ak^qL+wBxljWmWBL4djvCbNTfA0h($Baq!u=tp!Nn9P%& zrfQwHVbyO}ds~&BzF)dg^Y4SjOT1fxU*qEoOHm)E8cmDGem;|D{kbv;SM6H6R)KA+ zpJk?fGmWN$l%-;Q12_shK`2E)WMm9*5IT6Qepv@8-dBtN1e9Sh7Hu;DS^l+z>%*#FdxuRRScr-6uZj9)Q)>YDQHp$GNKN> z0yOfdpMC|*P|FjMeMh0@!Uj*VqzlxWeTvD9^pOr%zTH;cGh1Y|AK`5(PbdK z%}`kh?1qb$X@QIjl7`AS#h?t&7%;f>I1%}bPBZBlQ@W~3ASV~vJsLQ61yx%!n3eJT zRd1N~HHSTEsP4B|yxqFe+-i)?ujRja@94xsaP3rNmEfhhgoouXsNU{f!jC<|@R4$8 z&%=Bu?FI#P@gf2Z`!=`}77q|{2w~crXPzRG?HLa|d;uJaUI;KtV$dB?B?fRgC<-Em zk^}Vx8js##_1MlHT$6Ao;YM&3wTt$s$lbRUWNpll(7D&$CSg%Bc6NBX{C}OIe(W=) zfx?A{1XS-jd_6QcqN*2XZnTEW3CU1n^A?)|YeLJk5TZBco>XEbFmbEC=30j26AS14Xh|kFO z``7U6TD?^k{YzVZsFEd)A1{+fPmu8}0J-l76V&{VwnL^!PqSB@DS-}Mp;BTAo!dT?FT;3Iy<#QqTk1_ve+h^=XXHkMY~wB1!FC~sws z4V0SDu4b*5aR#M>W3Z*VjE5qI#j4;o-hQ}n<^O8|0@>DGHvKEswVO4owF}%i>h$dD zxv*P2=Ta*+Qh!~kp1>zo?Jd_d0Y z^_&Gl#td@xkW`Kj%avkUop@k;?S&rXWWKA5Te-v@^RMXJvs69qVw)(&JAY>1$k?Z` z*w%Ax1HS%cR%ebB8HoSv>FI|cYmctGvx;H@GA2rAsT{qGtmn$DE!bBC<(L1%92IP8 zS@h5Pes!^yjJ*rftg0dg&uw%%h2ILwObQ2uT780=0U+_4@-ZPyp^AZ&lBkc=3Pd%HDX7-wnaVCAQ}W!sgMP^>7>WmKO%YLZoU$&fdw zqsPn03S|~V)@BC_{?aDrsEf0__0LYc?H`FgNL7w7SeKt@L! zCHv+WXl3uUZhwz^`(|d*ZJSj`ae6xajl0aHX57j6jQx@UB9$_}y*LWS^4c1b|3G%&UXz9m`*339+BTmfP#&q^av6HxK?L zPR`DqyY>4Apk8;#gQfObZ|`Tj8W#IZyy;jR;0vWTE!y;}jMlqHe)-f}d@m`iv-z86 z#n82G*Iy&0)6_{^hM(mN!n3uN#>B*q{fM@WUyWVv8Nnk(DJ%c2jS>Z{s-d;n@|xww z<=JPY%rTL7PO=C(Jpqb-^z|cRb!EM&b!!+%+LWnlv3lzZixXajX@RB54??p984E;V zuk>-i-TlMd-iTOV?s2`f(zyJvxaRjpMas3K4W-llK4oD2nw~hOZrS0yyyWygJ})6A;vq4Mp| zTR;1&-)4}=aX>VxeVnsByhr-h2xZ|{mXJ9KrQT6HXK#;&AkM3R`5^odtjNrU`5v(g zqWVtf4N%lVhW80a{+w?Q{%9Mq<+b&_e4``6vr5|B7cw4d=@LN=ThQBLx@|XY z_th=^ER1W_oK9Mr+t@7Ml-#c8ZBe$q)m6JH`ukTA!^oVQi#h;4lqtFbgz6!rOP4MQ zHeKN~2oh)a$PVP0sbauan2O0N1cBIsBw+s3BN{!x^i0Cg-&2lk=1DApM7EDL=adv- zO)1+`%G)26w>GSR#)&Z$vHc9tx;S;KD*{{JpZnf{;&J)y#)pdR&31+xb-uSASi1Y4 zGxn(6K^$VP>0UZ873g|O$o9CSlWi9}iQp8En&F6;v@|CC6`Pxza!*kPou@|{tjeU^ zn4rE-5*B@w3XHph))t1ZRX9#01u{VN93G9ippp6*^&U*`TgmfukKL+{L=+gMb_}E? zqAx2vt=4&PRmp{SkBEO_!nDBKv^0%HUdGznlU40~-xJI_6)+6OL}^#Ts4g%qpf6|~ zH*X}6u2&&c(u}ctOCThyCdeq(FHg5EZ=Am*XFxga>g7YVaP}X!VOD@bZ)iU{`1)tJAn5${8r6Q*?jT${j)10R#G*a zo2$~)g^;X0`1M*RrRYy>SQX2wO8MP{5=QsuV)fOG=D|Ytu3QZA=;;sjP$(Ls@Kixg z_RkLP5wsR&UOWKUsLE36fjFv|Q?JF?1x6i!k_^2KEWwz|3Ygt0ASb1H(6pOi1lN*@$tR%SukCQ6U9^jNUX(#)n?GtP-Zm)m!TX9>Ph*%pM zOTAe{FNqSUTe?Lo>X0A0Z4^tpl`~GjUUiGTM{`A<%2@!q;i9vY%OD6oEBPjBNJ_Rg zSTEauKy>}0wUJ%h*pl=XW7|aq7ZP=Ij}1PUlX-s^7M6hd3K*@X;L?e=HbRt`#G_?k z0MfM}o-Ots1zJryFr!7mqtH|nG(5ldO) zqrj!Rc~abvx7xHER^~h4yEh;(thV2;)R;u2R)&s@d2PMdtQ{F8viB(~dJ{_sX3M{8 zrwc+|l_X;7pCq6}PQNC4a%J;J`HdbD`o*zj|1ifh^yL7X=01^;P*N#N0S_v!ETt(_ zi4y>K$A)UbY0m{^p-J5r@~Xj$WrjYRf#2h{ul|4c4Sya;5xSkP`{*XhvAn0M%E{c( zKI$5<5RiRJCT)m(Il`abr@RBA6#KhoS{C`;=Wl;K7WanoYM|9JI<4F0WFKKa6mQX$ zUU~)CE=6-RM8Dac1oyD{oXFVP7<}c8C+5p01#(X0iadJXa=`5BzL-Pk(S0Tc)z^MP z^?k~a_P25BI|uLCTLyg8a#R|x&wWQI#ZvfOSs>%gNj3UIZ1-ao(ez}N*7@={M%CF(?+Y6U|59FMQbX&RlYu;d*mcvu=Sa#PBNZ3QPkLL!LKPy7U$SggX;leHUj} zfiY};n7mrMeshlBnRTcdlm-YkKUmxG8zJo`4yQ_SQQQfL$p&~F4lv)cRqf^Pifh=% z-w=ghBK1Iv2}A1P5O8AyG1vjo~GchuG5OTwBv!& zzmjnx!LY~Cj8(}NKM+4z?N`P!cOXs&p6M8GCpanX(y-T{WKY1_b6aDL%85*tYU_wI zp%`0OHjPWMNmKJ$q+hr4{Hbp*Vbi zxZU^mjaRZqnk|tpr5}lM$EF_d%234EDNf*V7?5nWZ&9~JBfs;wtP0~_seScr$`U(p z6j4!>k5uW{@RCPz;u$a11J*`PA&XDOfAKqX<2uxPK0{3DKj?7uQw;i^GzJadX&^?y zM@4}Ph4>BoX-@MG_0}lh!N)*M5m5$6m^FSU4W>U#k1B~zD#XC_fKCT<6nRltlzuWR zL8o9h3c|NkH9-{>rQQQnA2_-g0A=UtKOV<>^AF36@1mj6Pjjyfotf4U&b!5)Y2goM zrzJvJ_3nDyz4w8^;TrRyBkN`HjRfTuOFw`ALYwbFvAK0xE_0uIn-iu2U%u&`)4%2r zOCXvNN~;JKtn)`dV>3`Km-#xPrx^9i!GiTYt-80CK$|9%s~~45H^IMB@q`q5gJs@` zI~85qZSYE6D84z;8YL!QYUJa4v_a6SYYWDU>Emp+*H0qrXyMby040T|7;NefQE~uv z7kCo!_*Z!+_%ax|vzXL-CS>{4W>9l*VnFVaSM++E&uzYLY@?b0T-Pdp`G>Te`#3pW zM2Q08V!JH+KTp_g2w3f-jXv5v!Xa<%hR3BD$17YZFg;+6I*LL=Z20Kn;NIq>j}eP= z+fJT?#CDYK%xX9fY);bC(>=hwZ%6l4kh`pMqo;p!Hu&a2uLF)ui4q&q{#Vnlic)}= zHQ&x0(7R%NGE%}R)G$m+nO{}78Mp%%Cjl9gCIDv$)orpgd10$Rxqc$wM(EshPAu&` zC=#ad{2>|W?~SGBl@6qx0EVFuIqOF`>C18k2?{Git2}59<|S{dKVpmrVi&+9A#`&3hg(D%s{euGO@JX(fL#z^IVq#*%8UMmr$=~09`o^E7U+bQlS!F%SXSW9^ zL!rtO{53DWS4BmK#+Uxh_sxEOl+sTaFAx&2UhB^__x%48ZkE> z_~7kC3#=leX;bUCEfONgsNqgGsl5jH3VBUUY3jz*YWYNIedpK=(}j0UQ0sJRm+igl z2YjXSyOp;mWBuPQ3^!!o3gq-3D7-(KB*h!Z%FdGOsGUwY{BBb#>|+H(650FQ!G+h; zSKuSwUYu0L6a4{=S@U0^z^w2iJ3_Qw&!@cec?f zsVC^Y!GA#mnpCp1t{?dGX1r?{_w{taMcx?|a&{9LTDr2w%is|5vxVI_-!a$TryCpwv}^ z_5K^Jn;U=3;DC){7eWUR{{PNFd>HgHYda%}_ zfcqRZF#MksNT&@LuTZ}Xw%@NxNvxUwx~R9B|F?xax1D;)?fdf-k(R}f;B6_p%P^!Z zo4PdWzcp94rWvt#q*d?Dt-zoi?OxIYt(g`hAWYPPe0DIyIV1ZuSYkyiJY;N-GR{fz zv4uA!C1ZtFUkpAH7$QMthiRQ|-Rq3>hLO^A-sb1@zm%A|&G*l~Wq71|*+X$T-RIG% zV;Mk6np%uNFY4ZWU9WY*9CI@NdGylV*0&pD%5Ud?T-lF`bq~2703P9$(eV{00O-D$ z=#$l0#7gb6`|4TqRa?}M@vLzxj73nEtiQ9k=<}}@AZ8vOxkj#bWXe=aH~e3&)Va{W z@Uu(Wjt=j8JqMR#pWBR2)mvrbUbvQL*HFqkU+Eo9cshNvJSfAat!q^NN-!g9 z%#s-io5gNh6%lhi5&v!f_H}V>VX+$kbgXd{fp`@P@n+q(HfmNchMGJjFG^h0)t!8R z-T}F{EqV7ZpB;@hReADAG2^k_bk`7cXA5mv&2eEWW==1S7W1y+-JOZKWS{7hb~RnC zTi>UZ>weFaDxakURECbO{Fz^#tJ&oD&)rgKVRaFlYHF*8=2kIaNJ%d`s-HECLQ0hc z;vsO;xOaMhM$JdoSzX6tW28Tll&sI}|i7t|2Qmt9pmmw}xkK)VSU^S(JDW z9%=8Mu}^Jd8Mvd%;X(^47BTgC1>rqxPVqgTVhejKhtdwN!kAx)Z`$V=>2TeLwq_?V zo|Ocp>e?Og+-jv&pf+&D7qG#q0_zB(@Q!{S)<*@b4!SRmD@+EqxJWz(h&HRmuo~A> z5*|3*l?<;AxdOppi&GO8IG+Wp%F&-dm9?;KakMweGb%!#Uf~R?_Y4GSVGad^18csK z$^_m9W0`X2I5}?ou`NL{Or@++5EECnD%c@wry{c178G7tJJ)%tFo}CG;EAU_lXa{> z`->6pxP6?~g+%(e2e~+g{eYZFblJP<$(|IHO}|Rxa-B$x`~m(x%_^t3FO3O@Xg*5d z^qxKK?}wB#^}(_r28+!iibkD}gK+f|4kH@qi5f3ksyi=i|lXAe0Hzmmervh#5Xj z6S)-aT`?kE1sw_*VR4D`Grdz@*%2$AX;xNex~>HUXC>@)0Vhet*`ozEQf`CJylaWS zxPR+im1a-5?&{@zmSEdt(`VOI6T7H1vBRDlk?}r034*^Y{ISedxik)mzd&ZtKGu8t?-^F1eI?B+S$3naZk?AXo@_&UGxBI)Xb70uK?eQB!hfPbUO`vq zSv(lfV-PsF9R9BUQDHkd7zQ06w|kciLYCmEN*XZOHYx zmGv_pWIv>5XJv2yA+>IU%-J;3&Rm69_a~oUN=GBkzbV-l`!j4MdExr^I|e`7g4&%g zoJE53`L}n0_udD&((r>5+UaKsQ=vbl0Mk8uxf^T>75Xsi9^}R4E8cwWX4~8U;E!Jg zrBFuTNQ{C>$~eK^W0EuON~*|Ugb&TGl#V65bI-s$H7~9_p`d*g$v@C!lxZe3-YNX# zf0YO1WS+tR=+h7kjyzGfeh&2l-1?d6W$x_WT#+gdg>SkEj>UU(N<7S;ilLZn`hA}_ zd*lxGUejK}!B1B?nC-+vE*_v8$KNhoul2(F9)RyO^<^Ek3(~#tso%>r-?Cpa^EH^}tEuV)tReKJx8U zcns(!PS}Ta={DyVnSSeh%Nj2@tgo>*t}Fh2BKnT?Rb*7^`L>!M7bVu-@Ht$%{Key! zpGuuu0td$@5MAt@Wo~wck(S5?5}#W6Q5CMizX*D9v<~3cfPU2u8C9$lla+(}tQuo` z0k|q)MYO0dmsh@3td<4G7{`^{T8ac~TU~Xy2-W=#_(ppmw(N+og~?!JIww0jOSgB< zJu|uSj%PQexD)-v0-IpJGsE0h3XV3g!5_>m0PUW27abBMazOY4cu2bNKe!yFdx*xq zv=YU2zciAHNK`&yH{PUVH~ksf4r+dgR&rmiA|Q>Efrh=XS7ySjQED0%WJMb8``A%F z^1zEOn)?@a_c+SE8_cfKjZ?iWOmVA|fi~@ZB|-wFp1z~-_KBGxc!CY)4jkUKBd_F! zLb8pMc|pWdZ1y(WZM`C;;^pI0h+E*`Z+Z{~(s=Dz}_?F`C`#NAG_kXetIf%Us z)W*&To+l)O+<0bU0MGe>9Tq}Ba}?g}*QY)Gia2om4(z~B6k1EnK6Gr1A$2zF*1?AE zw{x7_xdI=eB}8hU0p9K^`(TaScEJx@nK;}v%6`*H`J$WVI=d!ldD|Gxc3%P2Ie z>wY{{T>0Ar`{6DPJu!eG7Kbxz%|yg5c#;(h3Q`CpfQCx_2ahW`^yuK*9cp{qWhMgB zs>{@D{V$SctL?@O9+x%o{V-P?%wz&QN?_`*%!}t#`PO(6Gv#?$68i}{^*mm<5zDTs zog=GKvd#7yz-Ek+M*@>0DBuL_OqsR%y|FaF`**=?J_y1dL0+5oEE*NX!*aFnKqIB>+-f5=vVh z!mVNLqCre9?!;n%76pPi3Bem7{t8n}a5=C9oQ*G^SYmzgHbNHPWhV?Sg-8wWufvPZ z2Xir;fDg7uemvB4{l{mXFEm#ZyuDQ`;k^s^q5W0`5-$($f@n`9js@yHs#h6s<#}}Z z*KF2|sSI!;8arRwABkqCG{puT=?~_(DNBk=t&B{0E>1QkBf=G``ZM!xPy_a9s8$LL zfminC%2w|)<2e7|jw_RPtdxIyCPl=j$Y$DIR)P1D;NeL2Qgv2DA8TWeEJ{Gnnt=ltqZc2`*gL5jN+D9-52)qj1RlyxZWy~vr;b_&=L6|H_I%o=TgPo;i54CFAv(NLJTbn z&Lpe0j(H7*EE~H~sW)#5ez%X5&8=q`jm|G~$JW;3nU&pRGpI|N{iXf0y^RE}YuNaf ziioyTW|MQN@vVu$IO<|4Z%c@`wI!78s<{fxxZP}VlrZJuaX*(0zc%Qc*H0_e)e(1g0t|$%~u(Ka9aO8W+tmn)NH)kxVb>9dzm_sTjkmhiUFm) z*N&3giM-c))C4R{IhZo=th!u&rS1~4&_XeKA$c}(vnJ&fAQwk3e4cLuxtvk-8eEyS zcfyV8d7|YE=Q+!D?&QOyXb7)KgP)rUAne#pr;=h}r11bU)w#DrsD6(2^pe+01yBWw->%-)GD@gWep7shQ?vdR2jOr zmzN{56eDKt8ULA{&wA{x<5ZH-&l9dKv^;fPZ#}u%#p#rHGecoSmyU#EFBXq^szvp# z58eFK+ZOB@yyq|AztoDN?}x11&n(V-CH&$WQgQUS!aINRkIzz4CivGlIh5>}w*08% z*K+}~=!rCnI-$TUE&tLTxa7Mn`(oWZu3sOx+iz6KbH3nwVd(d+wzs0%S=JlF*&7FL zexBWSn9^F&U&;v&(GNe^_T_5DQ2N!#+lyC9T@+Iqd2?_3c}CTSYHxYjMp1un%0Hwj zZFy;#oiR2tGBQ1^f@M#%Stj#6zR!gkwlsUajQ8B%I5++0&+`040kfz07Z8^2{=hqE zHOK7>F1^>w;c)Vs11~KvYHbSr2Mi-t)_P8f4%DqA)|t&i!msV~n!ENzaV61sBPAMC zL!90oG2#|qK-=tpreL746K~3@WM7zXugN^I=hy@YDjNqQDBC4d zvXSRFob7Sb(P8hxramoq2d@iUmxw6*qUN^m$_R;DD$l0Nozo}S=y8?YgWu#_))#IF zNS)jX*VP))IHO{(ub*!)`=B@(l2nieu_Tjibk3-l44lW)KiApF*d#;%vS6y+!;(gS zc|2N3LV-~vP74R?_G-`GpKe8}$~uciL+ev@E3}QZxlq~PpDfy<1y-)he|iR=I;9|R zbVsjale=fD7h9c5YS*~}*Uc{#$^r7g*Fif!tK{PKL!$WWPA47^sw=a4^}A+BDkDPQ zTslJ*&5OL8Y<|G2s#@Q*q_Nv;2lV^x?C@EJEJp0yKw^Zz2%`$U6=K=kq1?%P7{;^- zAZCU+GA|N@f8)!`I9`{T_w!`M9(CTXIC-h4xckxoP68rM#5Gq-y#l`I_x+Ln`qpVj zxe_l$3UpS+J8J#LEp~qeSLJzS3je3MUKY*WD)oTbpf+>-)$s`fRN(sq*F zgfHEYsax5>@z>2BvEJO5`0T;hLotdav&B4`JHksyy5$ON{_Us`b)lqYc|WI*7yhq| z4EB8`i(43Gpinr;`|2;>a?`U$w8!Xuh@KS@C-AQ{9Ln+0V_iJy?l-WM z!r+h}Gm?$`vLnEYsk1s2zKcMRyG7BrVt!-A{4hxQ`$lC3_EzWw!Vb>Rzn9Tvd zEY<{XF8(;X)YUk2Ipy@xlK`DCGk3SRxVa^AHvdNMN^6R7k?Lt9b=9xpPndr`BBg*J#UOK^q&I1 znz@aLp%*qtj~_Q{1x#AZx|QpJX~>w2(X!)p*)pW#<+3RAsr2OU>^WPT1qZly6=Hhn4pnqoR1e)KKWhMp(i< z3y?TG^hg6{WTwYudHnH>V*h8iOO3mT;exxg?(iV?&;j*V;phhNzH2n_wrYhmKCo65 z*!6XkXLXZUnY3kX4Q8PnrZl4?VjGeI`I@Ky)!hY)S8tsO9}_Y~_5K^XOHKh3shALb z{hem_t3%E9DVacU7}BVqq;_rk?tEL!*Z~(WZ;jpBI~npRyRmlqO39?3+SJtN7Tqirm2gUX^3PeFD*Y-2AOY(rM?6GtbF-t{=i@r*?{y(MAA* zQCo8l9uoG)v3C#+C%jdHv%;N_Z%X4WXs+a+5ta%p!4nSu( zwAL;YiSI;#`HPd!*Pk=i4^VM|MkhK5REEOm7bkjp8a*Ej@_b5NZ0Fwv zNheK0Jj}1Kc}IL4$IF2S?5Y@Uf4Zk`+Ab==R5}fxpnOFaJa@bB?Ut;IO51tGT2@Zu zXUJ7()6e0h8Q+Ok44DF)%9Jk|Qn^<~YTzIoE|ZoyekQCWyYlROwF|R4)cmi4l{cB2 z#bmoLOnQ>&y(-T`0`~$K`f{hS^P_ zjeOzOBZuR@UH0MnYK{$rFKAaxYoamvAu6yq3bx~+qb+?74*&G^_Ip`HZ`Gq(&Hla_ z=s?)lXO2Y|D00PFVGmlk#M!5AXx}ob8UB?oo@1o~w|r*v?A@-QmqF@r=_7WO|6#$r z=<{u8vQPJG2$POUN5*x=9x?`DV@TIJts^RCp}X28Rm;o7f?Y&Rjf#I5&8*fPg2B z0Q#CW1%epFq;kXczP6YmFU9M09lBbo;LU6d<8nB_q5XQRDAzD*CY_cu1n4cKV}nB9 zoIwSM{WkEbiEr_FlJEDhO*!q zk3jSVuxmiuDCduFrV=D`;`pPW zeTT@4`s&9xr3H$sUHyKwe*(;BYYx&b4tS##jl%kLtk9ArnmzTm^lgBivVX=z)2Q|M zVZDg8pWhx7wv}+2A7}AOqUOAFSHY>jF=)YTe1Bvvmh736498w`=^MWFlCh&6^x2N@ zTI81)uV8XFMsFA|bMGdWZqCiF-Ob`h*76F=Qu z&Y|V=#w$^@8#huEF7swYwz;l1{QRmnh$QXn>Z(@?{>In$hA%F)=Mx0Ow{F%b?pp1y zUpP4wDx$^ki?!<3CZ|UtLqfLo-Q7lm|6N@-tkCHS%iQ=Q89C0PDI9t{&IBEaBff&g zS3CZB7A^*#%9@S2^f1@wxJzV(@u{$A5XKc3_Vfe_$Zs??+bXiI%120I*u4j%R|P{W zEUn1Jp4#8tBIC#ay<_tff>TDzZ4u#NK}+_FBD++gcS+st#p^?>&c=&;0!) zr{31-8#{%+xD^r-QVT{`f2&wuCY(F`sDOCEcb$|oi{WNTZzouGscLY*xT=Ee0JWD6&-SOb5yTxO>(n$ zZ|&lz&P9?H?8@v+fkh=fOZ+8^^on&6FXxqI6im zZUqbJu_8vlBBIk}j-+C7%u9`01TJQxuYUw=0- zk@)LRWMCj*I^%DJ7;0L{>R~?gR+pXF!MEc@PWj}J0&|`Ge5ROw$8WesZRQ_X*4peS zS>xv}_pVHuAaoV)dyy!$vyIV94l#2y4+U~MvHHn5!t7BkE7GoRD}OzwD#>wk8zbSk z`xM=-?H67gjyR`dSxF;|xZvrBzP9_QyHvmN(r9=pYHj1@hD{t(0THxooRsb-_=_^< z^#1y5Um7R)`K9emIaOKxwA!fkHQ(v9tg{-^tV$i@)q3MUe-3LUpI#r@6b{uz+<_p- zBwZOK0tVALA1jyKW#sk(NnW}R*eswI0);k29ouzUL--e#NGF3zMTiQzsM1Q=V8>}Q z+5&xcrL}IuA$sK2j|v6FQ(=GaX~nD`u3HuQ`=Zk6lw7IY$O$IkaE?6%e6INkJ(SL| z9jwaJ#N>KyE;l>{?&)?=A}--l$;INuLl`IyIZOh|RVqa~6<2&3>WTX5>7oxK|i}D&VS$W zeioa_EuIM$2-8g7ayy(HNQcf(OP@xY%RhQdU}QWVTs5p1jBtBG?;P-X$*?ecK_GAe zNSUFJg-J(w8WD=SEB9~vP5@|BbDQ~UV|ffEuH8!m1fMO|lzO}H6fV&$vmGIh1_!X? z!@VMc#4}l3rre!`oU}AF6b=paw(@K4Pys=bh7OPUp`@o62U^n6O-X7H#P?8&C~h|l3AGG0fuKT84*4DzqU9GCfT<-$gs%*e<@l*=R@K z`y;Rn?qUCkY=pH{7SUC%aPTnm3{ouS>zzDpf71{(@sFW^eJK7h$$Yb143s(=4l<_zDGf9RuEyvd)~_~cKF z{$o)$dw#aM>FO~J&ab)8a?2DJdn+XsLWxyJpa7)=`2Zk(KspF!k3d^Q z7NF}vQ3N#%XpE_5*rn?@yfP#Qi`Mcj>v0Vat#!=JEg4$>*#yXQQ%WIP4H*n^?K>n2 zUIV3S=Or!7kTF6312enMWU+8#`a2q|Te!*$up1f6_Y`+~y*~Y}{_2Sqt3)LFQ;YIv zoFyumTe>$8u%o(&8C-SZ+%MihI{J$IblJiTX+ZHsx7RUS%)nsu>h+AVZ!*Kst;VD}%(x;Fn&DX{e!yEONI<}bTsMMs|`@yI(CLIJ5t1V_2n6d`O#ME=# zH}Y2b^6&B17ECOO3V-cT?CDZa4J7t6B56nbQGUltZ+K9Me#Y(qVbn`i%$KYCti*@) zIab~-cryeUl>h@33}ie(xibmPjHf){p8RUOJl;IC^s`sDf;zygaPgX{=}fSfAdP?d z8VQbv;t?>8ZXu&wnxXt`pGvnfLRwaP7i;lZsv9Zwb}9AMYWH$*9oze@JBZx~->m6j zB#8Fp^^&@PQsci|QRi!GlhX$WX1?!10YKHI^OmE$aW5A5=)j& zqXYCZ=8WB2!jTgL7!&1mDYGP@xH%kmGH=m?zTXS&;;ApMhG}jY@f{C)t}bluKqZ_Q zy1AM1^{EaIHhhtf?WUE=e_A`yMOY~DV>7RYAT^egUabY1B;4v~KsS(y(XF_W=WQ|Ww4m%c72mJ2aH$*p-3{T9qWlSg|A5QQoXAigmYFRY`m{vg{~+&22kZ*|^ieh1 zS9o%8d68G(wI7@rOw0;K%eeN>$mVR@ro<7IKpO-S{S^xZyt`XDNCF^vw^$Fyp={!Y z)FALJK!z}oFD;IVO+|{!*t8(izRFr+VM=pwwMhP=!y7+eOpv}peBPTz|I8OvK{@0i z_?3TqdxLXm3MMi|CuAAb`X2!thH=7QODDf@Z(v^sarWqr^a65qA@{&l^U4EQJ7!@T z9s0@pj@{b7EkB6cn4%msmM*>@nV)=mrZ@lIKWh4K?pwP{S^};)k|d&RG42^7Fy&Z+oR>GVQp`?*OoOSbGITm2ftc$8sHu{SaH|wn;;VJ$ zZlp4$K*t1kTMwtJLdPS}O6O6~5f}89uM8kZuzM)=fQnOb1FKe{UB%?%0Ac}$R(f(0 z`km_N_24V<@^?#;%&#=NN;Wx37XDUNU?d)@(apnYF)T_Lc)2tZ{0hm+n{L3BxZ;wL zfbt~inx-HUP-K#23aGbI$hg=7 z9f143@?}Jo(X!8LDh=%hPnJRri=@@ys&uvv=SaF#k}Q(Z&b&0Mq-p|#A=`JL3hW8b zobE%?;8y^R2rZ3p_iv+88M5vYU%Mu)L-ECVyL=nJe!AIoi=YdYQ}TRp3hAG6dz(1+ zIn|eIs|=BeNkSsVA9ax~K#oY47*~GC>hB*~o|6Ot7(iYeywy!Jet$ z*&4r?-wP|kyEl63M1%2)hV133x<7mUeEnjE6{Cdu6(w~dP&#mT#Qq&r-NC=KRsfl< zsTd3wSa}mN2)H*6-oUL4OYmk|vtZ_i47Z_30$@y()|i>#7cXNyA}eg8hRp;vM~tH}V(O{_ZN{&xPvC4@L`ist^mp zs%m%~X3d|abAB_y73>d{Uw7ywCh?=y+>hE`@m+6Pj}BzNdw z4)0)fS4+~M%4Z(OnXEGrc6`g7u$-arv0=%Wwvdgg+09>#E>Snl@4nI0+HF5>VVkq3 zf)l>@rC4iIYqMu)vo2<_LbKdE({}#-{>H`>g@sAmoKt>AV9C63xbBouue&*>xYCll zF0|cM5Bc4%Xk=tP@2zE=Ghv`S7`}dtJP!<4JZ7VAuOH4`WxB5Kb&UpngL>^uIWj{7 z(s)(-x|y37i&#bD`A)bDXkcjNm5ydqf?o05^^#L-pV}fvFu;)^tE2`$DH@E5@myb9 z8>oq%3#mKSJ@dKfuqM6AjGOkgG$ z2+0sS>GqdI&~P_OI*mTW1-L`pInzZDX%ylteIxn9w*8$ndiq*x)s5Ll43cB^p&CR3#Vscjw#4M^w#@APu z0Sl1diFNafCDHtKPfy{SB-ypNrGNYVHkvAimVP*u*f#QmOW&||uy&p1;4p_9wqVIe z|CptMa<*BeTr$(bkCz0|0p>o^q*|9`z;pu*N_M?}&Un55v=O9=EnTpa9~xbIOht!2 z^rUZxGJS0eWfC6C{lGN=p_y$lL40z0y>x(*MtR(07s&m zxtAl6w2#B{jJty3_0_oG@4!v3X=oxoTbfB|V<0slAO%`f_;#eVTR&Fbi{Xe*4Hq=O zf8scz0P5vB7Y3lri+pW+mD8EDgO@LyMTIdW-qnHTP$hsf6*8W83fvTOSf zhD%}s^ zP2iXPluY|~J0L3P@Rx%F%N?PWRsBQ4T_kgvj~$s*DeQB<13QADb)DVdz~h(tZtsLRuDjcveWn8-LhItt`anbK*1y!ef1Wp4g0$#)MO&MltP=E#`@ zVs^2xPcoL74hk`wqR5r@yT!T7?3h`OgTjzd(xzth(_<;{fj;iwVcdMBO(2HQPgI@V zZbwr9JcTMVOrkq_Kj;cR7WdO-JZ#s>jZ^DQS}}9Yow{P`4O(v$3@=H}MlTg)1ngk( zp;)GB_#^(U%YCm_I{Jfa(7q_&kX0h+jVpwOmGch%6@T+(QAg2pmnttpQY93&fzra!RR?1j0j|Ehf*}$@84) z-kDk|9{Eq&iQb#s`1-Q_g7-(BJ;lnQDFoPSVF7E$W0@as9J0FiwdeALaeLu15NHAA zIby^NzI%VQ`QQ1OaQVji;YpWMt8+b@y|m~M;)zrlvt6u(LDf_w;`wmM-iM2$mG2XEc6Wpu*>vh? z?fiyo-)V{m3q;uw-!z$~!w;9=(oGNsZwtg=uaGDUBhBw|ms9Fb`qiunx3&3&L|6(* zx~Y_;UvdztPH9r;`ds&F+bj}_&#OE$>LssI3Z%S8um8p2$Z4eVGG7v1{3Az&O~0{q ziarI_#rx2s{OThOMj)zI=IM7)=nQ*HQrsVXt+$k#lzV^rA{-u?yT34#A!ix9-@*6K z;Z2@$d%->(mVHAnpPdFL3Lq^9za_lxJ`b|vVxp5D#7u%qtLh?n1UkVFH{2&kcD|$T zXLkF0SXnjUq$Scvj9@?QtjuT82wl>*9g?l(xf?lc8~5s#I~zlCb*^VV+UoY@aUswW zZLZzB5n}tc@<6yP);#ti{=p0XCDv)%s^3T5^ z+?5FZNBvQM_m!Rf@hRpNe;4uvMNp|TQe?OcWdM8_z}@DntPLU-61NvcMk0pIq^{^H ziN_*e?nbD=I4EcwTtY1t5evsw&#id(^z@`?PozW`cQ6#;uqs zQj!7^_3=t9D$qjWOA^Gf1+M}5m9zbub*wHd6&njW)m(eZO{P{e%+vGih<4XVtxJjb zBDc>_OE)kCV|R(DC5%;m{-K9x>QU1+Pq3OB>D0A=KS+9gn#n*sdBLb4xx~f6Go?iy z;DLM(g#oB11TP-fN%)4qG~@PRI%jfpOk#Bh#jcnmU|{8<@7Nz=BpfkMEh?ZBPy+)4 z%AHshwvI}Yt|&?NYT3wfEeyfPQVg!{X)a@@!Lq<9+dsU^jR+}KP`ZPK!EeL%&7$jT zDxDHF^PUvOwZI8FDg<59LpSC~mJ~-md11m-pFXH0cMAm&N+sdON?;C`?VuehfCbcdZdmW~#O z&(B2F$1x02M zpMALE$>U^@Y0n3fl{e0|wzYoA3rACwO=YkUI{Ibk(R?}-7(0_di&gAd3&G26K|%QD zvGsna`dCB6EU?ji$fmo$K* zS9cJ@SN!~dY;7h%z@w$tHh;wS{BY{j)tCgZzqa|>S)w3jpm5r`@s046FefMH>XRJ0 z!Y&;ZZBL6dvl~m-o}1@OC+|N7e-H`b?^TsSURyHLy&}7#-AqO$Hu5^woPOFi#6j^@ z@hibw@7&FJ7B?a^XQK9UghPdxc%7@w@lmr_w^p>;HanFJLdB}5F{fmpYB^nTb%1wL zFM2p6X8E4e4Q7LG+p4Fgl>xD2_3Dq;tH2WZ>b`NtshY|YeXmz)a{*Z^Tokjp(h~z% zo^!>ntK9X*y)l!3Kl%TE?Yds$y0LZu1o7J>--KK@OO$G&Qs|3OS|$Xh`>9KNEDZ`Z zLnwqlU_Kl}VR5TgWaZmIy)njac6e&!%YQWIxT`7v>){gC5d1wk1h3 zyWNdB{ODf+!J>FtkDpOxb)PVatBfydnpq0%oEQiR%N{SD5xNG?{(cA|Pn6x!X`2JL7wHQM@g?mq_h6yL%Yh*gJHyMYdqm!go= zIiL(V(oFD5mz9Wx;EMtsAEi8!Z4c^Ab`70r$X%an1B|r|K>qnJ>vRhAL1lpAtijn% zokzQ$WxobUqY~=5D3(1_dFCs-=by#$802u0r%ljOsC>Tbp2Nl;su=4r_`kZ!!~yXZ#3K`W~y~|{ZGn9 zOG=cmn_ZE;|Ne!cASL17>&)h-^D25kuDpIAW_5O*RW~o`m;E$#@VQ)AcsT4Qc%0H7 z{G-c>i=Fz;Gk-T%v^H{b*FFmrPlb+-JKHe0duIoZ{_$e}1MmY3D){D-S0q0|5#;5+ zz5QaACY#2B;#yt{-e*0QFKpte#Ky(-5kZZAeB616?pXFh?B{~Vx=L>JTw(1Jy$29{ zlS?1_%jfA6ORS1gG(%oz9!z!=8;kghE?H^yZ1S1xd^OMU3gvh24etE&7rg#Cmv=`wK;#-RE*uFDK1c2wkghRj&x^n?(vPLh{}op8wF!-p7u)KCUBkzI1QFz>B_& z5Au>v)8)t|j|SNTAX$K$$WQH#7vf;nC7NHo2DGgrpG76F^P6V z?y026t+(|cl>2!pT(3mM)sDTG}u2|EgD|;ME~aj9M^GYF1g2b zIZe-aeY#o8<+9;SfXhyRA*J5T+)IYwneDM|KFsojJ!IwQ8Kwzk5Lumk*_kT9ojO*Q zz_1UQT|Fh+w7%pK7BWYUO-?@%wp?s(>Cy$SB05r$U`C6_958s;Yw`Y|k+ z6qZb4UVs%gX7M>Eo;zRm(bB9y2DU=Hm_Q~J`&-PdwTUC?#cY0W28U3P;ssP3EFppC z+e1`&Fwv6ahOc$;!>ZdmsUnBTs8DkL;`Hd!SDt8f&WlYm{j3Jscn@OaK@Sf%5|4vW z5S30gHt$)-ZLEA)+!qPp;>r+b)L+d(;2eaVl!@he&rsi;)qno*Y1PCGlY6p59a7!bxlSr?)PQ$9K^giFG zH*Fs2fss#hpCA{~mNz05rPSx{`5%dgJ)Qp&4tY4g{~u4^Xl3L;Nz_Cz5e*OBNg9K=TK|Jl@p3)p1YSMsg{(Z;C?;#qx z3%!A@MSy|sQ4}#FDHPlPf`;-{qqxWUoNnJ-!^J2~ z7VHTvb0BXr;1IL>d0tyUuIOZ%Z%#JDJ`;L^{Fb;VeI)1(il9OGL)CdkzzbKxGO=ZL zJwfNZ@tO^U%zqbO9cZMR+q%%gql1As2k%pS!PsWIl+eZd`(znEe=)j_w$H9LOx{8T zb*Dv$9`khMItMf~*h7a6^yWvUymVo3TfKVDd}%~V&Jji{BMeW67|`(dD8pad1)&j1{aa0EBZC~+(exP`)Y9R$T<}=#9PiQJss8D z@v*>?>fgyBr(P?`Ft>bqW6LN<$XzYllSZ+a~ieuWoCG z5fiayJ!7dz)(g%D#X`r}XW77&&Y|B(32|Fs$a<-?Z_1a+$`jmqMvvp^A3}aLJfkb2 zj7)?76f(=R&odW2j0&=quT?0X-U{4@11e6fMr%g32BKXf*V9F_#(hEyP~ZT&!FG%o zDv#9{#M9Ao4P9^Ws|{>RQewtyW)i)%y;)D6=3I953$#I^x<23x5k+VAp|`-Tnwl80 z6d9Z)5`BlPPBzEm(PM6%WjLv>F?%nJjKqhEK6&fYuHHq=DmvUUwZ)n6eP1%%)4BC@ zk5NtSH*|%Evk>ptVn}>!R=OuSmVNK1kVVbswCm5@hNzvH_u%jX@QiZe_9m$$T#=Zv z*FCi}`_4I~Qa^LHoFT`dLQ=Tc%we_KrF+I}iktlov&OIHE00()gO1%k*XO!g9K&zg zIQ8ZAOKI5ED?^J`&d4~oxVuWa{~juQr)voxxO5tnr{aJTfNkQXgcX-XUBdf*Vc5%{ zvUNpyZ4PX7)>HWsMc>9_Rk;}#Zmf1tO07hIrxh@L1C;Cjt@A zJO*KXd=Vmb{=xqJ?_Jx1aM@`n_j=;uhi~NjHxLMzXXyV-m3Jj2N$tXo$PF8aZ-dW? z!SCHjf~Z5nAL(mnDtjcQrhWF~Ll;J@LbS9>yo#C$D|sq_sO$-C8bAQs+pI<6$Hic^ z;Uy21GjXOGrp`T<%0*Jitc$S}oCINeDomMJ1`?z=DQQZ?H|HE$14j~H%sehH<$K>Q zajPwA$4w2w`vh&#=a!Dz2S^`6K*)a>@=zO7FgF}` zG3!dKdR1qOkpU`ok$zt+)1dqF0NABaSeCeUX|~Q&NJbSdEpY!zj+MZZ*{4&Vm+w*11HM6-j@}nw53&OiJ(zO6i;h^wSJJ{kpvZk3Pdz`)rUnWF{`aoy zBK{uytpWhlG;w&qFL5}Ba^L|0zx|0*ae4t;782)F@TNnmKf)Eb&8S}3sF6Vq#>gV%1rNrW#`aq$AG=zW$%X_IYl?p>9 zOWi{v!SsZl6`Jnvl0gj!aK)>t4)2zRk_&R`CB@1AiW#b4Wgse^83S-rFC~nWIgEr- zqRWw`yo)8`_B*ATT#rL;jhofyGJZU%Fsg^ z+#93?fvi#s(fbe;yUqLwo$Og813}Bme9XT2wJAx1S}HQw4nvBQOQHl%U1J0@k|3~;kKQ<3 zx54dKj9i;MU(x1p+HZ7@w744G(-tjS6_vA(%5HE1%B-VV#wM(TP)oHw~-eh|{D} zFj5CxcuoCRzl7QFwn-|ibK_IMIr)+3jWbyGn(Qggv#RBt1qR^2-TX!|e{s5%lU1*+ z{+!AXp8!{4Q(U?`&Q3yB+r`xB_h|=zwFIPX2_}V z+vmKzrCH?(*jvV6&F^-QU_yA!$4fCS35Ujywbe6*0#Qo!tM{QD7+Q^zSpN@0zfP-SNV5`SO}C% zt(eaE5Z^(McFi{>qSc~iUbpWiYqolo6R}qhBwji48dl8b;wY7O&=wT41 zwHFKu3-{9IFZ*WaK7Fc?(z&oSHC89m+T6(9=*V*DpV4p4c~7sJaHj*4u34i<*uQh_ z<6|fFKwE8CbSm_BvFoOgEmE*$NdISa)CAHxlsEICHfDcCzq1b~=c|y zn(OkrwwPs$Q-OkC9xfSqZM{)PSeX7t^Q)3tw*rpap7%}*5PrCfms@d>hJlmEWnYK( zj=c^JoraQ8F_E|JGnUtWEpV3&T4-TP3qPA4CtOnzSPjvED7dQ0|PKJ6|JrJYx{xM zsn%&QWdsTjB^zt5gD$5y#rahEk7d-boQ=mZn?p;bG1FSFPX%$AT=Q}SBoJ*gMoqfR zD6@Pp+Ffnf+eSgawYm7O1rTQ-+T4|7&PANL8G!%zwDi2*VHVwy#%!w<5^Ofcy|rMW zp;b|{_3=gaPmBg=QJywA%#LLKhT9~i-+r2%QW686hhh>2BIZ&P_GhHG{eKZmAEHE@ z+m4Zq#oGH-jyT)D=Zl(2lT!a+yZ*l2pA6E6R9Pjg)JHLSby*p4@{-TzJHN%DD4s^) zsIU2pQ3F*>A5>1-xpmwI64y=$fKV=;c6CbJBf1IHLp0;fFF^YI_gh8n;!^^CNaWn=Y@?K>i$N0;HPtYF;J_MlGndD~ zu4WKUoI3H%<}e07^}+CU&uSl797`hs0%37&9T=@$PA&~|eD9dcd#pH`&3RpZ19zAu z{k3;I%wMOf(+ADEC#$0e0m)POi&SKYt^#90AsCpF^d)?HR}e3}hRD31eSUj- z-?#T=T;=E7J}<$Cfgoq$d#nuQi)Ua-Nbn&cn4AFIht~D!{k=`? zy-of-B8|^DsM2V5eC_rt@;9UaLF4K3b22zEQ~?m*)l}m2Vz2`~s6x}AfI86P`NL&) z+`UKx*mlmySwhz2RGvJ}a`L`Pa;EhZUjTko$Fu%H#tL1WoHEWRnG{%NPN=HsRis{w zvIYI%ikCiU_e@$U@n0|oP<_M-s@|aA%DAY)Ir}kuvaQXg)g~qI{fzI2L7@|{W@_|@ zr3MC6xTBRCFt1pxfmPLm(YIzlStuF_KC~-) zG12m5;EU&0YzJ-?KGl?EPh|hFz2RHOPv1NLJ!bkZXGUMx=o!QxZB52}*BIL?956g- z^bhjEX!x1=-KPQCciK2Bia;| zuYfl)YAU&B5L6Rsu9e-UF~X9yl44B&?%J07A!=iCDyVn{m<&!QYE>`R%=UOlfH?B= z9b_!(!vLrGn(*PRko@!yPaJ)&y2T;xY#j-$c_nSY=CoFX7Mwv&Y1b-QU7%ss?A^q>0|CsfNX%KfpL1`A9E| z=R4a3oZePV;>O?KuJV=^yxD#RH~+qJf=HvDH1j@Y_Bb<*VramCv^~-*F#1r56Bejm zPsRyZ=0(R;A4^H68ivsV%!f_G?PCkGG?-|UWnwru-m?Y?a1!7B| zirh>HR2Cbe#R8QSnN%~WR7AmOqaghmVasHCf8kKrrU?$ZUs^inavp+iLI%;Ev_IGh zvVf_#z%QzzOQ)4#g?=vWaROqALsyZBV1=*LDuR=_PdTZj$@bB4ho1heT%sjJ_DX@= zKVBLuZbi-fGVmb07_uFY^aRB-nuYdG5TYcnQkDggqdayVGBB_Sghb(4XYejg$x?9J zi+C&F*p+OnMB=Mwqk}{-^aB*?J1#D@#k5^jPfxtF`X~8UAjRHG-ft_6#p=w@-{Ygl zVe|H-wwtCIb#nu3SohiJ&yTgN0RJ|mZhqr#cD4EGuROe&BY))ov;aj)bjKlvC-Hu* zBJI802}l%>FWPI$*x zO$IV)(5uNHEqh|5$;s^Su?f_fvaS0caR19Sk{(KVpaQ17iVYZhG?amwd}ys_quX`k z(z@`^waoF0-Zs%?y=%<6731jje933En%hxQRRR!M|0825FSV8OQd$N}Kq}pV$9=?* zwDsa-pSOSN%Ur(0(odDkCb@|-@B6xZtEP5xej3>JtR5Xv@3&WdX*IAArrFo3s#eFE zO3|x-T-YDKx;##L)@x5pl#(?qI-B~ypjRfrqv%MT}tQ zUBE7w%seJl01dcR>bT`CPiSlNsL)^b$pEy4p&ko-v|ylY&}@w+icJcUoFvFsz&J0C zc+OU_cPi@}gU|EyHLRqe=Tg(0@v)}LJMEa#?T~%R_S*|?GRrk@K%i8{6S<^w_396z za>c`gF?Y*&Kp6e9*#$p83j3hR+Rr?eD(FrPJf6?)w3eQ)u5>D5rAvHm;aHQas+RR_ z%&q4sl*cUwS!_8c?|Gp6wiKStOP~gNx4XOU6!Tp5e8Vy?ZgM8TP1DZnRJa%A;eeA{ za*|ZiHZQ0OqOhAgP$LL%#CxafqA7(}yJ?I=pDB$PFQ&LM4)#o1>HpDm?(t0b|Noy^ zMVG>IB@#0e>q=ybLK`j32u+_36Y7eEWk_-g%cUs95SAi`k*k)%oaRu;*$A1-VZ=m| zNe;stey_f_+wZS#x42<@zxR4S50A(Fk$#C9@7DK~bif)cxn!fFt`k1+hT`3bo=>lD z=bTEb{=A(8l5?#w2i!K|l(s)6g9_`!$ro(2n_J;Fy&UF>SF>{;m{0VfL12KPvj4m^ zMpY1RWX(Pb=k(6dU-;4ZW zfrkLK4;T(4$!v!v-i*9rCA(P%B*pCinVtNdRnk@b5Q(tk;uDi40h=$5 zM%=kHBpRxIn^h3}w5Mg_$MTEWXja2EjXS04_f^?tR__F!w`&9)^R{a}LuOcM2d7<$ zW(=T41zAs0fZrUrOF<8ZvR9mWXU@3M1*zI=@#OLK-I!U43kki2jKZ@ahh_f<% zei#YbeA7fO$F4|bNM zOW0qMZ4V#m_w@fS`kwibx0eW!l}u73okhK;6K zkO#EaCt}lhI7ISKg2v__*i8(`um9ajE`Q~gSEbr;`jZXrlMvOaL`L4|%`V{+Ldn6d0{PVbEbGYJdv?yT0&Jzh;r=BmJMVt3Pvd zIcr&7|4`A*v=Yf8ZEYE>jYL_?YX)u@rycc%`kd5cUey-bv#g=ofSzWZw7v^{P8g@u zUn_mC)2mPWOqJ0X3VoB&_LqL`n-k_1X!<9w zOB1ov>zDrqol{13=gO}T?q0FPZ|O73Eg|djK`vI$guPs`vk)B}zfDs-gwPEvoBRgP9$t@ZQ z1w#+fQM+Wz`cISNI!zh1ZGC+bzbAeDb!$v6JC$|RzMp58aGqs^F*O|~s1~51O{X(b z=8F$H_bmca_s7~1*ULW&DyM(dMB9tZ@2s-LCsreBHw3d`%g^t(SMvvQ^ybw_g^zKu z7gO(*_I?6b?xSOi%06K$v03Zg8AaawmvtNEn|J9m;aN9b*yj;8g%VFy@ii*1os74e zS{VOkTsQY@^PB5RJ$7B_`a+TB(pH@EYZ-JfWh$#YFI~2_c)n+sYLn*y*8XdKfo)(} zJ@-9iv!f>ZcOu7hV?U(?2fu?~=DSOY9H%jF{8}hZKJ|Em2amKU8Eq zy;yAvz{2#c<##40R=PqsBi@s&@$u>ZMU)<^t*F}gwy{1y7R|?(V9IY*_qVs*@(Vt7 z@>hzW>QM6j29g(*Q5F6qpR^m3HDSo>0S!ldNeP)4UlF+3m9+-kj@*$o9xtA2r1gnx z-rV9Snq=jTL-Ii=Xuu`$Gp2h<@}ar0D#1%h?Zeu&gHrm0Oq zSYWNo;<2Jtqw&)3B)bVWPe1X}3Pn(m;uSkP67lP&uqoqdnN4Vg{*jbjcK2^d+ycyQ zC92Ql`wWHt5}gJYpa1fZv;BOV@gpB~w)KIWvj6nKD%Z`BmiF}~d37k-K?`!Za~C~1 zTUvn~HtA*9Z4E+4ESGgaa`jl2<+9WV4^e8;UY>w-)7T#qC|&4~mRu=~urMr;lX+*b zz&>IP0swj<#$8t%Vq@D9hr`AH6h%xw3zg5b?Mb=$nw9s|Gd12PeB!aOYs3n#vvxzo zo#oB{P2q5ai@xC@#bkEX39i$n)~e}8N2zTO+_IAM6e20;dk$JvPm}ky<^aiPM{r&H z?46*^mgK)MrY8o#wBl7?{UU9|%apt$Q|?L{n3kHx&_9t&O+4mFIj8J)s$Y!NDWbvW< zhib~UqRmgY5&$ak2$3x`DI1t@R|n&Fx^Oqrj){f z1&mIjf@rZc@^{ihNK{gIuL^U0`_Q+`Wi##tJ`hRZD2B<&Q%eFxwQ7gP6NU5x0%3^IuL4m`Clc@=NN@dYjkBO zetg`x1AHp^J*8%q6$1$+U|~o0=A1X*7KwN+-MteDtO;-_3rKuQltvQlT^waA=>F6I z2PrNOg@Y5IKd=87_XxXL&3Ge-A6(y)Z4W^xCRrk6W$5_sAt^kSbAAn^a9d4Rm3|L} zu=t*2FBs~H3K{}BIRL0d-6S4c3CGGBJ~3T?7l;4lW>qc?^)=oHNlId7%1R^0bRs4b z1hoN<^gO<*l-B*;)s7jbh}F)ua!67r@qyb*PTB2%fPEobQ5Mz|i0(aKpi?D4%s}cl z=zu{GT_PO;wvI`PNNoiuA}PoYsw=bYqm;!ROHfTJoUp(JJ%Y$cDS<2e0Rx0*V^TPH z6!f{0f;-56hrku^-EoRY#JhM!C}3#%;S}Hm925vCZU+0EI(buix&MOe+85zA>>}tR zSEkZ{k%gAl1nXn~HQH}V0lVs-hx8zIe1!$$j`?VPbx9^zU zXgd6a{4wMk)w|^tnsA6CwWq4|^KLyEP(MtpM<=Y-{sCMq!~^V!S}~t&^o|G{ay2mr zERi{Y@GH+BP(Xh02wU>=q%FAl$HVShM&><*pV?X^G0{J!G6fFNy?Lr#Uk|=HRie-g z))_?ahcZ`t1HrKD@Ga+fE7f=_%uViy&-s_C-o8F;?@6d`W%=%71+356oviaoNpORO z%EPDhBrMCf>Z^&wLPd+4M;0W0)-52hMUek^DLhaY5=t9y?^{N3%X+_QR!$X z3Z*5eDKp49rO@7DJe>_PKyUhSLPr~0a$i2PG@`OCpjlo1An(%&U%mWc=Jzx{x^B^1 z=Ookv4|xdgH7KxKEr!W^JfTQ|AP4?HM?#olAuZj#Llt3}s?!j4Xsd~M4Qnd?D z?3$#xY}ec)kc(6Tv5ro$M;C(8y*!V?6!%_v8}#pKED?>`q5xL5oE!X?!N)ulu7H^W zkXHifW+DXI4H{h{$<{{uf7AtM7vk9$v;JsCGLIDwW}x!=Wf%HPlW6;)k*L6zoZy>U zS|8qV%R9gWRThzRDtX9uo0Mi?zlW7=nX;I%@w6$GF}@)O@ZHH(U|de;tnkd3sWYh7D^6lUc2$4`K*|L!h`4GmEes_W&AaPrQP*41Z6Dr~8TmHP6JJ zMBTP&d$9Gx3!JCl@mtrY!;dyzB&WT89oY3r>EvxKq)}hum2)x~wOZ$L$`Cl*nd3ks zh1T4%Jaz#4jHu{ENXY;eVGF=t0b>O$!c2$047+NCli6Yc;LHjNFe#X)rplh}C$^zc zPmU>OE4x;M8+8(FQ9-2rl29h(*ae0GD0oiXjH-uxJ-j)DtmeD`hf5Kkc( zAr9%GqDVJ6yEXUlUVI|`t7O=@sp0ffz1ZnV{(|Je!)=!kGat;1m4Lqt`5{(_Qrf3ng-_LtadBb}GRd z4MAg)tfb#(^GW88a3`uc5+nOl9rmavoiT5C-Am2RYoC`@CoW+)bYb{0AV3?QlBJ;X zP%?!|+jbDG6-OxyBmkf?~(P0*p6uPZHhV;=WPVetaAmlsshit2z2jyTxZggcv=+lMtMvJ_Z)|5}7G7mGE zS7{KfNR*w-_6f7INJA-WUvab1a9g{dt^&>~KdLurt^9NUrm zeAs_x6rb;5Hb+YFY>Y|7T~UoLnV-4+gq*+y2Cxm?PeXY|3Re;!=ZK!vz4w!n40$)a zEw(>r7{J?YGwDXEv#eqc#l;utz8@ls0#O`N*(t!)4umpV7B~ky0fr+&>$dIj%D$98 z;eHrnjk*QJA%H5H?u(=Y|9jOXeEQzn(-1-{SgNCBWq?P1c1pV%k3%8Gq7n(aU* zWGN|v0|tB*70Xpl^F^}qVs2r86d}fz)fH!yoAG#zvwYF!k3|9$PJ%kbp5f5HnYX`E zGVYF}pmcS$wPAubrRVML-u6X4v$vy*YUd{gU4wp5u#y@1Oo2!pTd{{I^&pLaQ@~#d zOyBImu115_Z*>-D>ZdPih-0b%+rH&O_|xl{s%MGxs1&b#FcmNxL77MRtq)KWhC}A# zL1bmbR-DuMLz0Lo*A?mVK*`uWd~6I?8T+fZ+$m~r-NLG{ZGN6VC^C@eWcnD_G*B@6 zCRE-HNO(K}MQu1(!j3J`i<1a6?|G`Vzlh@sMh!Y4Gf_d|{^hT|0keeDK7SUH0=S?G z4+bmQHkk4Y8o*eV8ZeycJ$dZW^v$7>#dG+lJ_T=s_B8?|P88=;ecL=Rz8;smrdKWz z4h%>}*5B|~m%Hj`ZvWwjIb%a@)fLe;Hlj6H3$67p$F?|3AKtNOnss93uh}p|eX3q9 zR*lbz7n;P^_kIob;||XBal9XHnqwD4w^adphDW=;(B~3%%b)90b4K`SaJ5l*!K<*G zds5|o3GbXu_KMM?^sQliXW_m4)1m<=>Zycwend7wFb$tsPxs;1x3*?wc@?T7{-*%X(NV@a&# zhL!%#i1`}qO3}tJKnpH~yJ!`27U!?q|2eaE!#}v}*(B$5L2%xLyMUJ8ek-YQ#w3+| zVq;<6=g!Y5u!ietDl)6CHkmg6{VEL}2`B9{H5%lEUm$-5PkAf*A$lhP1q5w>cT8zCrK;eq=^W8=Fi z_`G~wotU5m1}%-Pg2ccjqnqB-!f55+F_y_A8$TxA_iB5B?7zP9K;oI6H-j^29B@B9 z^Y&O;n-IxwERC$5oUQ%ecL(B(IfA8BqXAGK4%WXw3US0{vX1`k`A`jP#HO%dzSt_t z)M+}&Fd3L`Q@Y8ngI?oC@imL?-aV9mMd-!hXtD;@Wb=Kw>!u!dbrD>WXMP6KuLGlH zW|p|}CsuxNJ4N@m6&-3blap>~Hv)FNvy_COnVXW{K6Ue|su(_v=2HZGMcZ3ujBXqq z6l@@_V9p3lM7N_0^fP@L=WJY;KlJBr)BU(1GwN$1+8M31Br)G1S{xhu^*6UrNPqiX zM4MSR>13DB7U-gI|alUhQ7Jt#&{AGl}=bWg`|V!EQ!JjA27({&Gd_ zNYvEY_3>p<&Bl0%j**t=)GbRR)e834>Ydql{4R_5_wk(`ic$(FHzEWM7l$;e^1k>u zXT}Gl-zN`6|1ICqNUq-VtgJsyd2-NGZOA+Da_zdHlh3VpXzdY(mfwPDt|l^NVhW>z}*=a~Y`=ra)>)dh>Mr|`MQrkWF8Wzf9qvqQ4Lt{&sMMW296vX5;(g& zWmKE0bvDk8jSWSUz4j5OYLu~utN!xWrIflmhvs~SGpSUVUsC03n}t`LMBwie%V4l7 z-yf8NClxG;Z|Vth$MPyiW|pR_mSTn-llDeuCs|!%*RQNx0u(rtogA|uUu^`^(7*bE zphg^HYt7~e{bu)E4Lb$sbChzKT?bjiCvo`QVz8Xf;9hrgTaxLvgCu@=;O9J8b(Dabb`ZQeeQ5rm zHbgcFH(*}HWr#9W6qzKe?ex!~kW0k5w02v4*0>cNc=@{j3%Rp4m7KM{0-OZv2{iF( zLXG%bk`)9nZ`+r@y>IAk2&T@gEY4IPHJ1JqS{e>#S{L(4vC4s%*KCcnBgoL%q~~dL z(smal;%SWAVSi&|*H9m-G(s0S2bYz((*n|L%qq<4%m%w}lw*G+*i4%vVODu|5TICf zwSwn?)(!Pr0xI^J^HUqD5r>;}C^C~65ENJ%OSQ(?LTTq8a@65*M*loZY?x)f59(|u zDEJ0qRDpc;LCo@;#ySVE36KJw2O=f7%sljKSAE2K!iKd4?ZjuIG|V~+8%EnI3$_9X z-R($OYm~MWY|C9EG$4oIfwmQt?PHlTHrl|)2^Vg~V39oDXgeDEf1pJR6HT!09v-}5 z92m%b%b%a;_4ZE)CykT)MJ8eb91d`*1P`vt=Fi#nf(;&arQpFXDU{|Y9%^l21^*{}$OmXh->m z{F~`%F~E#7WAI}l;Dx*QONIjA=bs-k?6Em(g?frk^?U_O8-xiWL@@DsiHD#6aQ$?NmoOHJ3Dq@!RM$NNCQ4m+oB zu4-Y8;8m#n%Z&YRW@p0dj-{r6nNd*^^0>9JJsQ)#58h&HUQxCDzPxTZVw3HY2mzpu z-8Ir`Tb1{id!fydk25^UeVicAu5u9KiD|i@;c_B0Jeg7xh>4XkRz633(41`fAnx2; zw-y0|)P@Xt8kP&fv$Dyt49;%A+gG9IDF7E^Kjjzi^G*r>v0~)I6_XuyWy2Gk(+~3u z!Ej$GT-E{tOZw1HIlxiyFn`om#kA6bbhMF%wv_SjEf1Kwt}gU1#!l~xC+*f}5?chw z<9Pi{MbQR-TK>e^+U{nB#7hrt4zMUu%zdfuYF>w>OQS-l4F?V5GFwTPE%Af{B8F_t zbJQMz83so|L2_Be71t;FZ#%Z*heQea3uBx|t<7aoy~Cz0aZ3NQX*qY`@lD_K#^B6p zgFSxTA+ab1JbFx1rAw>8uf3iBq;ipB7Tb3vq$FBHpg5;H)$?TVnc=HabaipSlx<` zyk4)VOuE*tL>SyIKM55Tg{WBRr$qG&1TGai+dr6pcn3S=^(^-v3Z6*MCx`qiPIQPS z7IQM0oc~rQ)J?>^57Ls>~NQbEUhSxgtQ<>Dx*qMsKebqq;QIHP^ z`a$i`K+K-lN|lgK{$3ssppS~IkR=@TC|PKMXAA*Xvkj$+>ER9W*q^S5m^p4V205)) z0ON4#&x|RDkhU`#x6z$zeb& zRHZ(>V(&<*bkD=VVbvkj!~E}@j;8({M*i3GK-@6F(JJ9`UvE1~0aAGG0M9_~9{@5V zCp5Rmyl8Or#aN>gFY*`v<_d1)bJ&vgtKMgcQi)6iS{p|~8{@|tzOER_wN<~WNjAEM zx5DS=*|rF%bEJnVp|P9*%(Nm}${{~3Nzp_z1$n9c+t%moeOvSJd(iI%b}~u6#(|is zy_jCi&gfj6@e`GI!>05Ugsct>4*@6g^C%U=Qw~aa97Kv?RTb(7o*j;G7cgmThdDrH zaYRTSXnv8Pph2*3aJU`eDHtqTnq<$7_WsXpNHCm##Yk1gY65tFX5~K?jd#^=L&fp6 zLSV2!eO5(AUONh4Dsd2dR98B4dH^D2Fkm1@*=mR(Q)xR9k69@(9&GNQNnGI%_UU}a zgp~otGX+O)j8noZK;lQFEpS8A6e~lFwZCyB(25h#7;VP#i6oQ$NAcrABZ~!j%Mng6_v({n< zXBt!2XE&82M*Lg^JKhbfz7d75_thDmx#qS<5C>3lFO>9IZsW8%Wgbu6#d#q{=oh{* zmcLVIAO{GW&~N4d;plBXNJEtk&+d#S6a7Metp!up|0t?E`dLaLTUecW2AurI!Sev{ zcl^{`!xnIbgX^OWGc-^36Ls@y)oFvzWI;B5N#Ix6zb};|U;in`r(o)K#GRmkN|jc? z-rJU@EYfb^8BxZ=T|m$$VL>KIu`5IgV{KG->@`+A*W>QYs^$)gV*q|IW9s`awbuHL zPg*vO7hEb|oU8#zuKcTN_lHY3x4EW4Zvi6Yg2oAxksFz2puI|uza1RzVq@+3Ea5`h zI(w54*N(FONju`8s#n#3qse;*1qAD zF{7OkOPk9tp97rj;@S;IFQAFOEg2NhoCl2_ArNuGpYtOjvm=s|n?p{n0H8bf<@+z+ zAy-$|zl6WWe%vXU@?IoQ9=RP|FQC<_w027$2o}=j(`x$%x0N$OZ*b;lE}+cTn1W2n z^n`7gjVY|SE?iQQaY5bXA)r9t=7v#dM|(zn;}VsN8ltmB32ho{&o4?Lex)bpW3C2@R+IzsnPTYA#`4ACtYP>kT~K z#kTsF+t}=`KEYM>=+z$$J9w!9VP8j2qWd^u%l+3Cg9C!+0BsQ)6tuRr{kysa40iMM#>a>xP;sbGZ|VFyIJ-8p*_^d98xd)Q zgUG26>AgWm;{F+|U7T!kpV7SP>HTj&pQ_Z!?M5tLpLmb3sg^(um&!EH7uV3&9nA;j zdf8Q#T~`3dwPeQV^Oz{hylx#dI)+54@G_^J=0GmCw)m3w&&uOi0kn%`GS^D0lF~_&x`Hl}l8Bd(HeKK_PQ0$d^cP_}hTu1Wt6Gj_?Lfw&{ z3;Sq3n)VY0<9Sd-6FOEvhrmoeD587$eS(1F&{GXUNN?0c!m8&Qr|af5Hod2-UwN-j zlw+4GeQL$yD`%#!QWQr;l%wY*16GO7|oHuqI#2^M5$I= zbm%nYpbJU1E4GNes7~P{A7B0LF6q|_O(3w&J-j|%{d&H*)IC0if81J2U~V{6^O^j+ zTWj>x-T7tgjuZ6=M#jbLvG*m}Gd)VoL$kR;EJY{1H1O*p%yh<Ku5znt`QQtL|p(hbvIQfh!; z--Nq2b(-B&RmPVTm&K&u>EguWcPpj8v03m))E$i$P#P<~eMNOUu%$al9_43`TiE%I zN1Tfxv?*Fv=!%2I8wBF4RAnP|5Spsd=clfK9KLG2 zA&78|W;bZS3gOe8u6VTVeL1Z)$qTN%-M8j}N} zChmb=3H3A)hLF+uAS)Y#aDn5jAwcx0850T*cei?S*bsC(P-IM~716}{E(`&I%7CQ| zs6^p#YYP)aJHj4Wz)g?=yIcn)7!+E!HlZ9o?Xxn9U7y@g)|3SpQ@B23>o*u(1(Qrk zLI51M^@kTSs*Zc8#|CMxAe^#nF!)l+N(UGFbGSUBE5?>FWGfWT&-K#;8VQ5EiHi1y zuov|rU&y70d-aew`MsO=nxCIPdt(W@>Y3BqcK z;WhLrrszZwJCzh?{yCQ`p{OOyAHJGg-@as{HAMk#RtS*&7a$0-b`2AmJzv@ef}o$O zEB2-J-aRhYR`t}Ub7Cbu2ZcMo-SBrS2dy&0Qm2of$)(r(dFnyH8*G#G6Rcr_9_Vya zRBM*a^y?k;%X=pEMaW%O{FW5Zmnh_i{98#l`jI5#<2)no?R-Z=L z&z4Xx1}m*SDT#8n@8T5ER}E6KcLu!Tm__*MW$rG{s|xY!lT_tv`@DkvOlZ?V7oCV(QTX=+<0lM64B^xP!`Q(uTd&0b zU@E{84Q~2U8BkRETUD*@p^@sL%W{W2MZp&(Gu^b*o%H1sWB3o^L>Np#jH2t%VK|5% zQpWds6hQ`gg~Eio87U~PtnMuWD7k^E!F?K+pSgddML@2AND8Fq$J^XvYS%Fdawuev z9PtxSUORt(l>Rjg8$8vE@%5d7`ofJUasa5*7Z& zUV`ifGmO(8&<7|vnCD5h5ndibJVn97)AO&E2!@75Lu{qa&t^rWDyKP1j3q{K#A+5iYvYnexzKs3@$ zBhx`U&Uwq4rh(O}S1zpv=K}v~2z9e6<@XK$iEbgN3c$**_*|MV5FgM!4h)!eGLjHD zCeXs)D!KZiCNS6e@>5xIpIx(n_l*Jo;JK%_Q*HsuX2{Tty!k0v)Lar12~()c+u19? zlyDBU%&5x(0@@Qs>G$2l2Na_cTQ+!di1L-5f3D#pk&b{@UD0IAJj;Xv7_`OEE{JSY zmy8T)J3@v~ae5SQqWK^cPN=w)0P=$1kh@X7mWlbcbOeg=8ywx-7CSGT+r!YQIPFh7 zo^e!Ce|PyYU}6#uuplwXwwS+Mh;x7+YC)NxpyIc}ac+3|XEF6e;<<7iOP`nV9V+Nv>jm2S{s2;BAeMy)|oS>JxW8Jx(|a!+5w5K zm2B_K*bT!HP5}seAsnDN24M1GcN=$AyIJKjf~+Chr}9Z7$wVLs(858WD7OQSAk;c2 zoGY1(=<|^jW`((0;*||Rm~cb8w!77|o|g5VOVlIf>)}~Uh9Mcf#i17UVsWEaBPf*n z46-)9xuFc;lWEDDC3TWO?Jq31@BOhEr;kK@iA?|~@1V8T+_%dcL1u%QU@Ne5@y)BO zu#JVO*l7-@d^l)*M!%*%6x-3%nN^dXw)p**;Vv)&^9ke%?|^w9Sm8BhS7eZiPK21q z4Lj)v80d3SzRmq;_yc4A)j+NtY|Q$|S&i?9*g*>p`I=iE^2rx`6xY9x{TR(X4Xu-O z>C`(oQKN--o~9|(Ei~>OoGDd_cE1FcIIx`*ko=Ba{+8P|U(!@m-HpsL59JROgTCKS z>%Y^TKH;N1lWkRQA9*u}kOiJ<_W{Adu28(&{Lt3TR$&{@2*h7$oT#V*e`F)DKMo6X z?Xkw5O@2y#z5uaH53%j{7vc`{|jripjXhPXf&`JxK z(NSy-rBYEd+TT!hOJDWZCNwtQyNX|q?D!h7fnDE%`HS`G2A4^kbN7_g&n*G$!S9y~ zfMH_n+H%6$-H272BJ=O&hdMf%FZP9(kL;~@c7ML)Oy29+B{t`6I^c|A20N*K8GQkP z>2-^O&ewZ8I?B@0lpAWqwE~)8X5#iFO=$2cTHq5T=FL!U{r$x1fem%uEP3mA@oUl7 zx%xK0J!Kg)S6y6&hGi?v1}%Z1a_~m^HMX&FU)G5*z9VS+wEUg>rhzt9Ft=CZ&MyEE zGS#@Vx**i)v|+P3?FJZe5))zw`U;6*k@t~bfK5NLOs!iDT(5Fn=kHA@@T;gY(YQbA zYi2b8c>G|b{%1E>_eCtYZmuL0iRCpemuB`*{LR!1{neU+U2snn!5~s@O1xGdG2-M? zeZ0uqdC;M4!(p7p|$zqwaGF3;Lf;fRqcCRPr@sHu_~ zO1*jP9NoC>rg;$>eYmL2C@y*!kxqg?P=c@(B>@|&xfft@^>0+ZJFMNoJUzpC()%|A zR#!EY>2o>>9k#Zxl$?OY>bv)im8=gqGJ}tB&X7 zosw`mEu(TB;%zcPug4eE z*OTjn8muvs&bpuM*|i~KAm#j#e|lRwbE*6GD_62ZRYK&x&r7_+&(SzXR2h zvJ(M7W=!-cdo3@v(Sa=huN}?g@G-j->_{|&YqPRgw2t}e1JPBrXwr~}3-By|9#cF^ ze3qa6`8Xf~dV6z%^zJqCEs1oxp{2f*!+tuS3&Vj)dfT~#Z;a`IM@=gxo$w%NSy_I! z2MV=j2>mp09DvTG+(Xc)X!3nOlR=tIA!vjq?K2gtt3Wu9P9&XlKy-c3yKsw}l}J8% zeFI{^BH!UMy%u*Rag;D^%^Y#rYX%Y|BpS;IP4=iLf)v5$o~rWEU#EJmw-xIic~sxf zutLF{8lMro-ksHWm(KMm1GlZA)ZmT%QZ)fmqSTt%rBI0SU#?f!Hyg3keyHhK`tfPh_G%KR+ zasZ3OA@g4@RBvY|x7X~5rIiwS?CL^EL8n-9E%t|bh?^U+)fReE&!=|ods^-CYQxHT z5+3kl0IX-aig>f!&jbx~qGp9}{8*RAhWYvHfb0aEex)fS(maI1AG-i{>yu7N;4CxI zhs5c!Dwy17wnB%Y#%%bWg1NC9p?=}#<7&k2-t)zWsMFwwg6~|tT|TIh#*unK6Ag#F zVrT4q-)_QyfJdD#GMAC4pvaWP!8amgSU^XZ+MQdzn^VCMSru2Pcv3_Zt6b)sIzk(Q z(Hf<2QZ*!98tP4F;VmRJw}p)XVH0@QHkULc@{m114>UVEH9y@B138Glv#l7QD8xZv za0S>W!dW6c5~mP_N{akxo&!226bx+Bw$r2PcFA_5EFfrYSvs5`6@{qAgE$f*6o(6X zK>xXE0cN?Qc}i`NL@3MwBHK)m0v%rzh+=#Yngjy9!I$wk6HVP_f(5)b8t5+->>Og3n3ALgyQ^^8H#WsJCT5g$!brX+fGMe9P^)_mVdnzz4E^PWhXW) zhx9w#Odh-J0B?`0FvCX7c+K->!^1%mlgS~Q=^h8EM3X7K`)^;dcLn+Sb+H1NlSlI3 zsz35)AJK~4Rm#t>L=fkcLKbF>_U!~|Umh>tol7NwP2ltEPx>h@=BtuY0fr-E%A_;T z{d*Mtu#8prP_Fo8TWm(gAc;CHi1B-hjQk8b@g2g7L$SQ9 z=6T-5*wYgOIg2s27BE>Eh%5`Hkf&Mld4TL+KF_=FM&$|AU2b5*Lj+nElL^fTi)O6|$S8%#KVTr3!56h{_6w}((LT4?`D||B%w`r=DT~p z72L=XvyNzC;NvFeFgsX>rd6}mH37R4RGg!KrUEV}B%23T^#|E(>b69Pc3|f>gnmbd z(=3%bTeJSNAAs3sEQpW*P#n`qk@(1{O3hz2fx~OxT1sSCP+^lypOn>@zty<$F2wKKFD2 z2!_*b2$fG#km)klx(~8TZV!56AEX#MX7DI3ec4J{DdbQ$aBr#iQLI=vMWr~p0zIRP zhYX1|8<}}DpY!dOjRli-o;ao0s#f6XJjpXyYUhWz4RZrmPKR$?-}vsjoOYH@SmY zdd*F5OKVD85kBuZq3e#CSxBim?e^@Q68W#y=W-RxZMJ!vc6-dLGJ-4j36`e>(3a-+ zQ~2#zzQs2fim=q~g-UOQgrcmiVX(xZbM~GW4r)f)xaC92&gJ3GqR#TRPWE2(=?nLG zOBvftK>4Q_ipXPZq*5+y#4Yc6UhNA&Y)oIJVy)_asyn{6eFDVD*%z1g@!CBN_gkEqzOD zc2-rUWoXD5Os}ZZC)t+yzJFgKDn3K-QqYh*Da{=xXV}+U<0oD#$)!}M*s_Yn2Jm+# z=P|B*sZ19$WFixe_ctyXKCh~s`nLjkw%$R|X4pBA%8*q+0YGvjy;{i~YLMGScGafk zkN)`a<15b@O>?7q&+JnXvF=p|QK0x+syvg=stmmk9!!hk)G-ljcO=Pj&wb*x(qXL} zai$7G2mCb4!rEu~%|H)R-s3QY*=2;;T~7K7!XnQqv?JaR=?aGSg~%jAScGaM9USR& z9_5yp599?pTj@qx07D}hCOiInI(=_c`;D4@Stk4*c%J7(qmmfb?*!E;?LTU!QIC_j z=*MsuEm_&;2yl`UKFC@qCjQ)Rt)Sq-!2Q(#07{hYQP#3Q{{%@)Fb5(8Y7bGgo$A`_ zbJ^9kh%If6yMktk!5>*)tPqj7O+3pPmP%K7AA=Zm88Xi~jRIjGWXcmJx9gQSlYu~` zcX{Z5gC1_*4(?ohg09HOk&*zxSwf$WHMAQh=T$2HP=sk+bG`tncfbT#A~8~YGQ*!g#OA*r0yfdtdce(8|@BQ$$knSQM8gZZc5Lfm7ueFAN z!}u2!5zDzc%&uIJ3lg%aGmLg$?ugc?e^p-g+J*vtap>f;K#}WH*B|*~Cmw+^9EKD& z@Xl;+h-F^)X6^r14Io;E^*4sLxvr0eHgPulBIYkN z9Z&fV@3=ikYAr6S_p7a~^#mg{0F0aawVn{ZJi9R+v2;D+mp|)s{itu*Go)WAh~HDu z?+EPl5nGj&9ik4-%DX)M(y+30yDlqj>6d5^10=C+{PM(=N)UP>*%+kQV zbYmX7&T?HXs9UYf3Ys5Y0ZVM}{IlJ~2eZs1w<6MQ=6IBOSD+95t3W`*bl8Amwjt>9 zd8zs8JQxB~bUVZEMctbI+SoSNpomL-_O8{hIBE$c#eaM=-vZ84iTKdav^-E1jY!xd z>(6|`%*5xQpGJd#XgKbp!!~`pZbGOYCX@<7#eLYa$9C2mebx_~=(>OvcU&I{7H%{g zd!gK?pDS(;D$(?+T8t1bX1Y={Yo2&xSh-+AK23hsRFTRsA$ zxqq-yW=f@$m`Ol8+D|jx@xKojrvtHTL9}Vgt68&0!s>Q9jV9jwGP{{uwEnD4l2JD&?_w+F-MGY$IT6pP zSl_$ZnzdrT`EoOS$kt{S60@fo@*ijhccRVB+a-KWbk{1m)%V*D9p+X7(fu&=wz+;* z-4IB|FnYwgQ4mtA(m2-3i(|J{n^gpsF%PtG8Un+Y7gqZh8;mY@uD68$naI4rUG3jC znejd?)1LMy!S#nD;p?}d-O9JV1)m>^SLRxih*Deo`DJDNkfnCc^(XPYQVZ?74~SU* zNtEl`w2$7igUS>x{wN_8{QCb|fWpd#?wnIg4tb>Sg-32a`mcQBj%Uyri0k_VMYF@g z2S6p6G57JC=%k)b>p_aqt}hg5e)e{#!RG<3p&#FeYwCWsMKmVr`^?s^%*;lt4{C(} z`cbu*$)s$3$LlB)g0pDzkE}4U;CGcHY%(q{Kk4`LmO=qk0wLd)5M$JzZH@7R~iE@ z#SQ}XL>#D55K%bHuf;s8&z|@l{PvBsEh?8jpb@h*m(GFoFYIC5%C_Z)jvPr>{dsDG$X47v5R z4~X?NB7QAQl_&>F>Z{9ye#hFuHkE2RMS8@kmhkt^u77j_2fgjdfWYpxKih1jh>S0? z3SB;;oxoMvVq7QrN5edf0k_WWlB1&nw*l~I!i$EH@P#kz)A9wLms0~GOiDp8HwK)% zWa2)rMR*q`1Re17KDpIsr%ENZ!x(HH>))RKOtwB~1IiY$M7UvceS)Iecr~WI-j9(2 z(lR@3DBT1FI?()NUm&&0$zb=(76A^tEY9yG2M^xmhupmaK{IJ6PUIrs$t7moHOK^N z)p(u%Xyw@TUU>p0mz!}I$UkRm*OzGJ5_#YddW!r0Cxo)~OH0pnG#K}eew6u?htfsi z_oNu+x@bxzfwTxH!ootw2&oNVxk*qNDH!6x#{`g`JQ|e;c#twggr+P)_BRt9hKB>j zX9NJE&uSs)^qS5F`x&}L6tF4w%AALOo^ z#5K83nLh;jpjY1JgU|L&_CJF-`Sh494m*CU*%5Ft1fxJ#e17cnmcVUprR}#$b|3yc zAW_xSKhYb)#iskckd6^{AG+Oh)ddB)RX%f(|K<4X7HJ0hcLAHKS|f|-M}m#cLA`$m zzfvlW9WvkY_X`eZCqmn}ZFtJA85(bxv$MXqEIZ}+XD&DFFnNw|33*R`wHO`{K8#$7 z28V24$jb?TC+(-+#$W>DpyoE)uZ8N8!%9%dMAhlxtu^ zyK+zJa!UCEIXb{|Ht3-Uk@v|XVZ!%f4Xh>vqg#;Op_gtkPr8$-{PPIC@!M3x{j2E- z{%G~=mnFQ|!IPFJ+0#|a^X8 z=*mIb6Vc9XQd{p#mCT-~sSTd{WoL=rS$NvGq&W&l>NfgZx!7q|CGJY58Ye-|L`s1X zkbNYDX4Tvdh`Go0^`xY38ImYK!YPA`0;nJe9{)*K%HeQl9N7jXv)KN(T_h}urE_n7 z#y9XXEM0}(KK@rTL3Q7MqOv9-5`wp~nlO5lL^{@+eabcU{KLx7eA2%SFVhBv*+C50 zR};IMBNjSf?)UB@m8hclcL0^qAgg&RNeM_Kwi}ZD{$gzmX{;7vmpa!UV1IRPjB(AN z-wS8&tc{mr0Zd?IMUd8KU%T{j^G$}~-!D$iIujls5Px3V4iZuSSG~KOBaVB{Oi>`j zxdhgyRJwG&to-vD<%!}IJY1$l?zvA>G4>GS-v&`umY|gXsBJv8J9|qD@5?`und;rb zi#0Y)+A=2YrI`bNnl8wFXo*phjfBP}#u+3=k@U7aH_>{Feo=bF{UiK4+IY9IjzFcb zSxG^2^s#MamxZw%tkUUsvmL=*cHK%4pw9?(?mQfIQ&{ABH%9fK7y^bNZ4M-;`E{Uz z$n1Mp+<-QjE=pw}Kt@XuE9E;SQ>Er~!VAuUUZ-8fsoQTlD}VUzpec9qPlRl1VxnPg zUfd5wkkM1hGXm;&90Kj>&8}cXArK+<53HnNpGg)A>Pa434MP4ORp%bgbpOZyO{?fG z=ev*?R;)Xbxtq%QIEUi94njyVhhs?$yX>=l-mlm5`FuQgUdG+rZx5v(X^`(`j-Eos@;AXP>E$;$+JH4Hf2O494t!z4V7WiD-*4#AikCBAW({N5r! zhy;m7!Thrvs?}Sm%PpCLu%$_!%y-OACh}g7}=AbhA~P=)AHI#Yp}~# zsb${>q|Qu?B>mB;PvAr6+~L0!6@M1@KC!fGSbCkRqR8n~ub@Uo?xJVE;Gb9u${=6NqYvPi(x+EfG~hKsAy|yc?e?*v&w+)v6FbR z0IJm=N3R(^eE`dVcv)!UqVv)}s($aZ2|B`kM1`b=V(klMOf9`Z3=g#Ja`4*Za;shH zv@9_=%1qkO*2h}1*%W0FzR=Bz9zFo}0&hKosS z%6i_8Z>LZ|1L$dN2}HcTe`{yWDQ3*#gSDJ%^+33fh5t@sMOteGKWb%O zatqdh=sk$<@tZ4un^a#v67{RNJ8GlZ5wbBAw6VN8G^MlEViH!x&T&aeZEt&QxLMn6 zOyZ6=2<9)QXm{8NH@ym4iO)lx|Lqi#JGfMHM9_=K4??#XJ*{p}shl6e2^I-kKbJa^ z%9<}vB{q90y?oc*B$N}DA2lIud>S5h3o@)frQ+FGA8|cm??fo0!O$cnsd?d#fe`Ok zO@*snoo~omYi&pY!-fZIQZES2ASx_}tru4lhfNQ+j9iPkR64&p6D|;)w@iT*!cc$q zgN)h+`xiL_6J+A%;_^^RwrW$&`pQ%dC)Ij%WK>40rSn!bTl$H9cQCWfb7e6SJQ>u} z8XcMuY2~t#H8N|pMzL*jn83de%Js&>9e&PEEasy}XSfS%%O!~(qxJIFD<6CErpMMr zpgnwRK~raWz4_Q}=B23<>RBwzUL6`5#JFuR0kpt`wI9N<)z$Lo1>dHPp{prPBJ@_e z|8u&$*uHFE$W$@dN)Uqh5QoVxu9_$M*PdxQZas?uphc!*w1^NBTTv%ug2I6}X3o>T z!Q6OK>#%H3S5+=7%V%Bq8`gh5dob0yn8;wpy%OH-A>8IcA4iDyg|z0j$TBsRKF z6)%Cp-O+g=LG*3b{KLp_N_MrN{?@`~_wSjGVcva#=sM+h*M2Ebeehou&f6}~-8f=- z<678WMWf2BweiW)trfSit)(&1S|X4E`f@kl4teAF`9-L zgP9#YUK+DFkLGby2GKlE;0u5b-)|OOf1>EO^(jVR!p2qSC*(4k4R$j+Z{}rZu;{iK z74+z>iMeZkJeX^hs<(IzlQ&XTbO=J)63D(rX72<3RvgQ0^Z@5Y%FLOe;L{abSY$bkWEk5jSTDOl`DK%d2(l|Spp7;hd z(mhI>yjkfPJt=Gq_FcMeka2{d2}$&tq1i^97tW!9rj2()^IVu~Auf`f1rG)#b*4M$Dvnw544v(p9vs`~l4=y?OFh0t;zW8E)!OP+rf`10&o&mW z3P&TR=WV(R49^EK=5bmFp%MN7X_GlJAKHggmw-E}gJoxVNY3%I$VM={coiu^1A#i9 zm;|tJ?)$`XXX2bJDJQR0=Q0tBz%tf9OIWb$0tcZKGH)-LDmFwiQ33IlD!P?-Iy~Z1 z*67K5m7K1Qdym1x>wA}&+R}khvS?_*pqd4=hq2L7E4~FSw^LsBJ!rGnAk||>Zf2@O zktkbNq<;6g62E@i5{6GnJPd3A^5oHBAa))fPki32o704~J0`@YV(pBuy-p)|S~JAo zS!chhQsvRE2D@+>e(ZweHooNr39H)AAfGe?@_(8FI0LWG16a1 z&QtpRz$?3(Uh{Aw&h@XbowaXABg^m|{q;wBPC;y2Iyq3wsfse3a=^cOdXw~tDPFO> zgxE-+azF`*FP7x2{s1Sfx9#1yuIltEA?B;%ZZw$BR z4(P!Yr0sNOcY5msYT@o;$SheCXGnf~lq=xo0_kuitZB6&UDagILEA7is#ovB$ih`D zpTjX;=j8&CJbzvI8uOZFg-Dv<0in(HvwxNnZ&PpM3EbJ>&iMfy72 z&UsNw2lyU0i$GEQaa8C#X5>dh9V}RW=DJuyZlW`(isUU=r`}l*s{_3WN&(c?V<^x1 zdLjzF2GZr!%9`wnmIJXen%0jL(|EX|qDW_F&&|)-55>L_?3Pj;qCl9k_!obRzO@@` z*OK4bp4wj8Z5$#@f|$nX$K5-(3$7+D>t`8fEsZIH?E+rNOpG~1?H24s*bYo$w_|^;i%P zq9z^p>#7(AU{%D#Y)z#xCGm2g=?rA)Wd4W%5R7l`&kpe0s*dKf&9RtIesO0&^WaAg zv~K@xIt>CE7@ts{IFHy{H-+)l&q}F|m?&pwSEJVtjz+Hcw5dkr$s#g9AUMdQAZl`F zdTAlcRkF>>@|cN>+p88gyvzy7J7=CSm1m`8#1Q19_CopKQ_PgyVp)k`xs|SGi8_3q z`W5$eeaVix-iw?;%pKVoz!Oj_uB!5SE~93ed7F2{gQY@Wsec{2d$%bSXZ@>aZ`IqL zAD}xcal*p8yWfdh_nIzAxWqain`Zal`-g7HavfwPx<>NJp9b|FSZhQnRJQ>4 z32;T3Tg%QMGjU&2pY0nPo9}E8#@3Q-UTi-+fPz|St59>j{A2`m*6Ml^;mDp-w<+Sl z)M{3fAI@*6J3Z-ScNWzmN!soiYEeFx!Kj=-M2Y@SwFZ#976A(tlO(6f!>$VlX?)fGE6w-b11%+J{m_* zG{b@(4}{unily|&iycn*!);!-A|n5}UQH!P?JQ0JyO#`CJilpuriC-U+F|q%IKlIG zAB6TI$O?G(tfhP#Va)HJr@d?$QhbgY^RD5BUkNZKY8}7_x%@I6ulq9c%#}jru4|iYJ11rVXamjx}apzw8 zf>zwU!UCuS0)x@LI`s_A+j?WNU=t&HymdDH$k@=IP3*PO+|3QT=N7GLwR)@TL3X0* ztxfixmvrkQz4)ztX75wUU}kw2nDHo9Ufc{mf9*&^;*+B}f18v4mr|{QG{d|<(5zcS zjJbq3ZP8%Jj=mB0R>k*jTY>iWnVy!C!~*_wB~js(yK46Cb7AOzdq_tJ&)m4q!TplEbO7F@OMp{SJ1~77@Q>gr z47olWDIz#BG!%ymq?*aOjO^A&Lu3liA&;73E$brfq+?StD4hWfJq^xEo*Vayk)5sof}Cg+|}MbAqi+R4W*V&5GLG;59z#^I83tSTi>4q z-?(WI4ZD04NC*^On--Fp>;H72=ExuC30EQxgoBaN*H0C~#vdlZpU8bVlSj3^-AWPP zE7a>}Dc$YF$@UMjKma&ZCfPybV9owLQS*2_Jv_avWv~Fo1X;59+-m>&t#WD_mfpL*>7FxdIbh1?bdH>s zH4EFOXp}{VUY{O*6sg^!p{@Z)N8}+5OcvJf0$wp$iY^u&5g8U4Dg6WYLarv#Iy06c z`>AsNd+}QptaVZD9k{d%j}@78F4-G-5LFCZ0VUqvAWEQwM{)sO%%8R`!}5c@T8;Hy z#2%{NqlbFkfBA=7@v>ex$iyikpc#NHf&e~Tak$4Z6k4uANRbD7-Vb=|4u?Ex>k><+ zc*HX^G5ELnYL(5Ig$Ib;cK_uR-(U=>WLr_e1V=-w(zwHs;x`0Dg^>fMAhtmUGdrlM zNCP)pZ%YIMn3NzhJ!%;+@{0$q$&5SaN~pH3Zrq+kY@!#OO3lRJN)Q>iLlUt?sSxD7 zB8n!?1OMq99$#_>A}_?|>6_W*=TM8lCw#bAiRA~(uZK)!`=LNha)TyZg6fa6Aj-m4 zc7Y&+INTrMp#k7mMHC>eV!?({_NLejeX>4!spD~V-H_@sqLc``Xr~6MU4%aF@Up0=lY~zpN4?TtUEM*` ze9^BVlZ^&`^mL-*bc9UK=g9>vq&j3*oOk&z1Dy;OtE4b`p`jWSSa_~jsNND0{I@t` zB9l^A2`$0sfK|Hq_*7_sma!IBY#c=mFA7zfz>v*UD@tM^MAP|=&^9W z@13HH$>kjzz+ejsCaxtEE;W{IE|ls-3jm~97_-hDTOaRhd+g!ZM*-I@gaXr2pPnRR zG}7t~*&Dz2nFxZx6jllHPSonr8n!BLjPbmxzjd& zeTrcIW@P00#*Z|HXa3`d6KxTvXJ$7>o@4;GY?cp_z-#2pi!Zk~9<_JtuJQ$$LyObx zo!n4!+ROo3r@&4fmFSwvB4x|>hE{S^?{5tTZFG&TscvNlZA=Zm))_U9SL|VxqyjA1 z%KtatJ$MFrOW$)>-}?Ix1CP|^!X?ebtBz(FFttima~Lmhc8Qpum)-a4&c5~P(6h&W zGb{Zob6Yv*y3x(&qO=I!QU?Y{2&HJ%g7d=SrHJ{lwOi@f{yjT$t? z9H+Op4JK-$6XoyY-6+D){oOeMMz{pi#aq7uiIASNPFmY-lg=T3{I^`-GGZKjEVI4; zO^esP+^cRZY5j9!4ohpe<5y|M=TwsiCV2W-b35%Dgw3fMl_}hZH%t5jI1Q+HQ@SQR z&AKlCi^o5_5UrNH_@Y9CPUsiRWrYCCOs(P!*mV%7brwxLMt^_c+YK5L_%VNgGm)YS zVF76Q1O=z>2U?t?7yo)3!_P;n8oh1w$Up6q_kFuJ?O)XJFhtUV*8D^c126;)*46Y7 z^w~p@xHu9_kCO(PwE@5bf56o82tF8$0z(?mT_5gAE7IC3swR%7UG-MU{+ARc#O}gq zh-=Bc8#hp$-ku3eXLF%!fuIrq1?*xedU0vWEkksM@C1Y7C-ed7^m_u@Qh&s8mt5e#~)xd0Y!y* zO*!#ozlzJq@xF`r)Bf%(%AX{gCQl~9Kv^R2cwgr{=YeLox>zg%B4bur$>EI-v@}FI z=W?pDG8e8YQn_`zMy?$a$TmFi!{3pWy*F_Pt`0aLkNhs!LBsO~eY*=xBG#DpC)k1I zM|GZDnmYJYr(>AJr)|5AzOCrxePHLS5OOozeEEqLk9OD%o@OL$o83UkOGL8403~T z-ynKy^Zn%5YC}-eB-`X7>rkvW@@~=Mme*gSR|xi%0(cW&VGKQe3BQ>b1^i>@LqeRx zhB$<<)Kh`uFii{;sayn6Pfjvblel-|FEsSy9^VWn*a#d{-D8r(3s=--Fj`_C?n;~y z&-iBG-}Zyx?414TCH}Ff&lTUb8g;e4EQT#3vnW7dAUq%@0*m=pZ>1FY>r{8aTu^SFt9GY>)(;(NiG%gsji50jTPrGdfIAVW-uS-ZAX@7Fc=^ z8gjB2iCB!a6w$$OluxW>)7pXesh?INZ;NJ%m`+{QLq4a>K9F)NQVK~*h;#lke+S{fcfZHwyx zcYZj^+&~7N*M9klo)uOMDS<0Ni-RB@!1IBDK}H%gVF@S8LMGy4e_nNoy34T zD4tXV%Z!CViy%N2JhA&ngRi5>=EQ)ZDxQYN!^OAt`c0|G$cpzIK|#ghAmU&_g2RC$ zm8uEpx?z`RG(UfG*m(W7pz7lT-*k`0TLY21>18w%((hlNR;Qd}R$S<^RGz+YMiZLR z3f8xrXp_L>>zn_>9til?%}wLP>D=aVr<87cc3{G0eFpF!*hsb>O}@H?dg5?J`bj9cNyIm&xc>8b7dPO*CSv<7tC*<;}@EMWKiJfql) zQ+AcoV2$P<-~Df~|MRf*J5;NpTC4Pv{SH3AL3cE8N;@e2JX2cBctT&2dtda?NJ%XZ zltF4iwa%y9Nlg`Sj%ox+waw!I+QrwSAm4p#+yCfx?>x>?Gq-jRS7#{pC=9<3DjDu zVeTkFTz=ld>72Wsm$JW;#C?nQ6Vxe?#V|$RK&lPQ4sZ!ucrAwjPF#+g{exTYR7IuH zbEVOP&5Z6>YaG!xIHH*7B)Ms>_7Y*ir0$<_BROnL!GD z(_mahZzCMW4|>g?U7!mEol~#>wTjb+pS@d4+%{z4g;B%8C7_fH>Yd6QZL(Tw%gFfm zk;<@vfWC`U#n}@(Ofkq}2Om4>QQeBVyZYsC4$STi=bVC!7a%eKN;mvY>>uog=?JRY z0V-|zenf9Ofa(^9PVc+A1TxA;xS=TA)G%pR2BgM?f9$?b9ysqZK&FE+`9|FhL)BG3 zpSVj)BeJOWL8`+xGt3P^!TWw)NhDPfA^jPV@!7#Lf!vb3?*Z(x`~FXzxMXoz+!^p% zJ)^nn%j%xx`d4vMEoihvJ-xn8i^Je!E1m(IAPBu|x)l!i3eNzCc`?(}336{YIm4Tm ziB+(BbA>mmvHOr8b$T9mxCPUJCRvsw$%$d^At>MWU$&cKx$aMlY!Eh&=SXjdf-HjD z;J^q(I!Og?PlWa~r!W-#8^UbCLr{QALGgX0EHG50f(*MUBGOyihcV>P2e~nCYl6S|N5k%hHm3t|dXX<}YJjz-qoVG;p9Sp#=+C8DqcrY?xT7j5Vz+T| z_XVV|u&)jlL`VOEeGp#N(N`lQ^>pidJi_tQ%>b&2b;F~p*Bz{^aduB!tie0uY$ln( z!9AzjRE_F=Z_)a4#;JZ;MGqcg4p)N+h=2Rw8bUIsjd<>6BY>0J^hp=R$op+%YAe1BMyLj;nLMV4_dA|oNT zkT}RAMTy15jk&e81Yk`|gaMP{oRp31$DrwXU&ldkZ^}&0c72r#^=t6OA$cBPzX=J; zrclW}kq|8&7-Qk5vEJ74peFtdMoe0|=UF0kz}0qQ&$tIp4E__~W}gaGWT+=VK+xyV zSO!H=lX~)4W#I*#Gf$S1X6P4Cc-qn^hvP>>LkQL=Kx(NCuBMJO*vzWv`LtfyIE@Rx zg8)hM|Kwy%cg0?R8i};>o>hr;kjQ+3c1;g^YkHM`M1SRbBZTAG`=;p>x^S|hYHwS_i{|UZs#D5Rz`(PQq5a|& zo55zEf~2c>6!1f>Mc*EDOSaWg7P}r)C(PR8(d(0|1mQ~0GanaL$o-^{{O!9#l-u_B zOC9Y34m(kecWd2I?yyPB!fb~psk(Y^Pa82FAe!n7Pn}{Ic%};k**b$s6F;VwtLOvm z)hb3K4!MHL$`E(;is~Of29^wUz+RP2oNb5^EzS-$hHu{4H^}w}PC`i=Z|jom8^kJ? zK@}P9aP-%)OA*xVf28Bj@|V47Aui6Cj=KBwTT2|x zvDK-;Xx^!@y3y_!0LTf_aKkIEep@uu3plXc77=3r1SdKRgfEzgh^VMd{$@(dH6^ZL z_jK;OE-Smd{GP%~9ej{cH9OEz0s2Gq-&prQXNqk0`AXE^3fZhSSt~2>JgL|_G_?0g z5m7nP(#=_dZ)CV0H72sQ1Fr>6{_V1pC9h)Y!&1w#kAhyTB-#Kd%WZ@ejWlu`n^fElpRUfS&5@zg0J~P11jET&q4YC!`4{ zfsahJE#NKjQBi$eqmhY8%<}IA)vdN@-hARTw+^TZT>`)=`bnyf3m)`Ie>tLo7(hcTf4e5mG|;VjAM6ChBfI-~Ra@z_|_25FMQ-A|EEXT8+bl_WM_2|nM)FVV@!p+J~f^&D* z_2~PPGBjvT5Pu|v+&0<6(WqlokMeoTF-zs5w5Ao`7?FVcD%*Jbfp2xMokTWUtj8kN z7*W&KK$ED+)4e`e9QBk&yRc2>MTb|7LL$4kA#a+ZmFEp0KE69T)3UD)J$%|fU7gsL ztER`?05GfjOIJ=^Ydg8OoB)~n*X`TlmGzbJsvOQ-dU?69yPUt~rDC`Fo8Ur9xZyT` zM{{~QcYL-cdU28W-%Xivp$%*8`xVB4+0b8uiQ6w9Q~J4M=Y71%(LHu{8Gyv)Ww?6J zcN$@S@(3~NVogwvoQZ#zt4T-qT6pOXQ9oCEdK2MxSQtut1i}{(S zeAVHmu$wzJcgKFar|8IJrs1Xtz~Q$G;9kyZ>+Uqwxb2GfR&q(nr5169c#a!yV)hO- zg^OmLW9D~)9fmJB_BVvw#-%Wa%HepBf0wf6K}VUKI_k<3hE)iMyXuQ z29cU(eQWP!-KWBg{>U)&Ga21GWZb2}s@L=XmBG@IM)3_4%*sDZDZ?1tEW%;@R&YDeFh~FmQ^gj9YRV!tE!CcuYmve>Mr+- zQ{Yo`nMW{@Y$j9>1sSs&!Po1O3r#OJsI zFyVUG$>`o+x}F34|CM~vtPSvh57oa_p~@h??`zqHh zvrqqM2Pr2TxKkOYm|$x5J~S$AiWP$c;|+)=C&fnFTh62rmGLwPBF$omP?8ibnmGTP zMD0_;jI)31tJ614GkXS37R z!x%w###=ep!)IR>8^$d3`jMgUI?dz2NCwwHf%t@}Y#dw~b`XqnaiFyQLy#I&TJulX z@130PL69qy4$AoRlgQ-H04Nb#qY0HBg#+Bn_S-O1jJg`RMiY#8rf|6I^=g2I1M=gi zc9=Lc0|J`a`|*0{C%xP@|yFWVOL_>-+3%fYMH#AIr;^HP5Br`t@tEBV8xv$6(Bi zhu0kKuK=TjD`cfv-ENQ!M5!M;$CsflP7M6@vB1m<1Ap;Qw?CSFz^@meLRzkXF}`4q11j zUvQ5k+ca*27xTy~3i59utlGj~v8cR5{j&1s*OVx(8l9Dhb>$;_$`m4DrW%dQ z%K&gP)}@W`DRNFcS6>4T8nKG-PrC_{&xLQV?2=iWpo(QAr;eO?#u%HIvb87?kINLF zD6mv|ffg6n;$78lb~0P8V!3*b&DkEVWDQ4tnIYI6w0t4id@B!6OW64K574+5rl}`t zs&~hki!ZINrgtpMOml^|rscpm4lJh<9`C#>h&?%k8aJF`F0<9WFPztKy}3 znVW|D3?ed185AlZ{)C>!`H?Di=eU969aYI!&nJ$Wz91?~3g&L!9{9nNb&c2CjynX+ z$gnhpZI6XRP=wao@aOE!IYOVlie#k>U6NZ@7s=n;xF!USdk|a@u$yJ#u`q0$=^d)Q z-iHQ-g}I&<-*N(p&np%l^;bxkt$NEl^Q?Ag_=32YdWEkNQX&WgU&u{$ka$7`ustfc zVki}R`9?sg`2z$@Nt!+LES}@!IiC*mJ2xATixuB?L-%N*t3BTfM=i8`QA`J5VWoi1 z-4gnDB2&KBl|HTM)=oQToh~VDN<07A;qHD?n=V`q>3G}jz4(U_nhi!Najmk6%Wm3w zyl&wc&HXePYU;^K+8qD2n(iSQj2YK)?;MWVs?2h3i+|V~X>Mj(V*^+z-KlZlA_pK1 zcuT(7C8a_J!#37CGflF{&H*6&vL5T>zjM;V+m_IamckP@AE+K9_3w+3xZ4- zC(b>q<#e9@5c<5WJq3h1)9+TddE~eJ{N8)xf9l&atu^2nY08Hm-|hQk&8}-5Kj-*^ zcv_ax>BJ;SX}EcFhe(KXBL|CNPO`TPv-avetyxkb6u~NT_O$2;aQ?8fVur2}N=IEz6N?27~lDAQMV}brnXFUspKFPj9et~&}l=H@6 zil{OtKgl1XR4l{&$ED z`zK(C+pr8|hK076UWEgP!XuKN}bI3 zGJgG%nwp0u4%F% z!d3dy`oaz8{C)DO+5iAiNyYfq7t+?8Kqr||s~E^oe7K19Xlz`>CXIDfmO8rPWsvv0 zksfvjdtCWFDcN!m7%VmxqKIUxPc1Rup2LV)?2TC8+=*-sIpbt^vfj3hEHRYHuj17 z!Tx4ARVF~DNd#cjg=4ErrRl1-mKwrROB_%jVxF8m&8XyrYW-*#03V6fjdliO^Ys)! zUOSS0R2363fqPMJG?$1~@$eWuASruau+h@tyv}H@Y)cPi|6H1%=W^MlK}OMQEH|FV z$kDEH zF~V`DGV);c`fMmbvb6mGqj;OwSBJ^;=--B)Qs(u~nW#*|p4p_=kE%xh=-cNxqEeXG zN-WrS_$>0*wQ83^R^$=x+B~pvcA;bDmI*PzQ4K?>I-Z_jqxvSl1QY?b-kSd8mR?|d zXCG~TwIjQuqBp9{$3&+=$iW2wfp1K8y1SrB#4C?kixJK9H-Fja$SEflE`dCrf5CJ} zU>rpH7nTCnrN*qqrE-HPbEX|IxCVGFYB+tcbDcg_6|1 z8j~Y2dLSL2lDqjvA*GT=-({^fyjSR#Rz|#ofWLTc|4=ROmDK%CcA09v}r*YwfPUYm{hlBBl*`_*PiVw zcjZnxb%(L(VE_R)H74p7u`iT#bO;y>_T+fYn5r#1uvFzl>Q&sx2oKGke^9L=8Xps) z_=eFLLsfk{OtsP)sjUvkJKsCF>~!NO5gOoevW+)ZQk>C6wd=!5?Wv=r$0cdGKUGLU z)E+C@1s1j{D&zM(~SALGIZjqv$1I7Vu_E- z#>X-i)-hpxc{#MKnVro}yep{dom<=}qn-X75lALCG%d~a^i`{9b4gYCq3J4DA3?mD znj)h@@}`|ZSubbkPD;v~i{6Ky$!pBCsC^Cn3(9lqaz?w~2(v3MFNYY`)POC)x~Hgg zYd&T(I7Vc}E%!Ea^a{jVZw+o0o2>5Jn(K~ZtK4Se-OX$nY z*L=zH*F58xs8{sb)%0b&W7LoLtUXd_pi8E4o2Q)^p4TSQzp4lF%+A)QHYF`)Q( z(88^8$u-%r?+`vJPihxnLYOzMh{Yoa`+hyQx`-pw(2}YXK2>7;-t1Z(Tc_{z(FAR5cnMNFAj6e8ef0cEWz`fro%H0I4?C$tOf* zP*-5D-NxF}-&fvVMmHYTJ+o zhgN=?YHgZq_&;lA2kFmDNqLfk;Ardmjbht#9?2v;)tP2724c!7+8LKS)2B0U_SZL$$ ztqy)3zX}YD^e<)fEOPN)3}^^q{4)^g>6S98@i+1j8Rmrl)DK4EIVk|}iVX9k1s*?3 z#LFa3F3v7>g1N7GAqQKcekHI$h`9|BmxxebVv%472o?E42-4iRO0u^#I=8iu9vTwN z0AAs=%ZHm5=sH`IppYQqW-W*atp5`;>0AJ^xI+$Y5kHOe&i1BcmxEh<4adQgG(FV& zly#$u{qV{@U*BB+xk7q~(iS~t+T^}?*#3m~OhnGYYDzZ1;zGn_rFmqErS3sM?^enH zaSQ_)81&CA-c(jI6SEC*I~K@xkc@Z)nEN~s2g&j^#J zOpd|srM0OnNN1{+$5fS)_F1|D2%)lvWr69K0s+=zX*e}jhS7O$WRPXA&8@3??Oz6j zL&mrzu+=T*dPWITUa?>0olQbrI=j;%*|jNxm^XDkYbE@vFKJ=-8BP;Iyl@2E+hY2>{_l35K)9J#-f^sDzblKy z`AXVb&72!Te%LMDhE$h1pm>#r=h7*xNAUo%oHn_#zC|7bf!X&lHv;CNSB&RSYb`@9 zzK^38JU69ce(r2qZ`@5i3;pyNHFNQusr&A9OrP=}QLr-v%S#f|$-LNBu@_Dz<*Qc#ePQR&Y2I+srI#_?2yvYAih z9wGn!9B{!NNe91FkANld2qK1X=s&9<{42U$T!jsZxJ&JSvL`?wui$b*#62dqUU>8! z({IP8PFFsz#E`65PZ_PF)}rKO{x_mw@q}UZS8(PI+t?>Wg)I7zk!)(xgu{DgvP;Uv z!N0|9^Dw$BEJh4I6sft#5@Z8#`T~l)t%i88bBVfthSu%&LP-fas8sJCc5_as{m1Gm zMqEPTODY1M!ywZ_oMi2ht#X)I8EIgL4Wh{>Lc}t9^eS1hFOsg&_R!;IjAotMh)y7M z)=^;%QwvK!hs!LZ*D$E1i$&U%xi*I%wwy-Z&P;YohxxaT_T|IW5lOL_;BN7-^gEQ* z#{cI9z&vnb7Gd&hj@^~Z?7NugCH=+q@$`1-_e_|?yOdl-TaAa*Oi&c+#tuZo4{8Mm zHqa%XQvwJ*r_yTLM)&*Yb{bH6!3{(c)QyN;#!27rcw|?E@$i^Co_iWsr9zhQ4{V_Q z^9h@RZ3vV2jP|3XR$w>wV5qiN6G%5PMP&U+-E%(67;%JOUhD0*psuW3+m)XQqIHF! zyogG+j+<+Ez;wu@vqA!k5`gEAh0;*B5bG=+2}F;rweAEdc;xNrazZL;edqz3F$oT- zpwfb5*aiIMQcYV6k$gk5QFPHU-qdm=-iE6>O_dYnK&Q$RE-T9T2_#HsY zl%N?%MZT3KD1pG_)qtD_!NX1sWH(RSiSvLa49j^_lY0WvYieqTB=KcL35ZN;97Pdn z_OjWumuXs6RYmtHDZ<`*eurv1q=9Pgw5?)c{c)r_2$&LwH=fp>n$&49SCxygLV${@ zX7SAMJ1`JOMcmc}d~rJvfItnhwjf(;1RFNJ!X*+n(O~_Gu#lEKml6P)18yn zcP?OcqNO9mMW-A5>3UX<-97nV8D|eQe06O$H0HXHd3|ySHw+3pLNa|6bV3;+E-D^# zBb#7py~g`uZqIF-H2XYR4=#cZP^*YLd93I;TaJgZ5)Ue{DC~+U$ubo56dL* z36Zn9I;zpXKaH)NQr+xLRE^nK6-Xz7K5PY%E%;QaA{IUB_Mc?mv1a4Dpj}8D2u zR~dQiR2rhSRoJ3*@XZfaFt}U z?w%iMj*VOSk5^`gLbrjkzR=1c)%##A1!^wBqk@H-0D1GIOJLrcYJn`?E4-1H zp4&O~{+r_=lcQWG`xjd}Zol^8-5wR(U5#quZ?!1|chOnK{jVRqV!U$X9Z$1$fE~JL zTco9F3iH1IVMR=yvdy_RN&UwmtomzpO0MO-nosUd>fYYB;k)jMi>Wzvd{meKGy~2+ z;_!JofW0ld;#FD|wzi^zriM9HmLCQEg_OdTd2oczAFZjYuld>_n92>Qyer$6RB&-0 z$R`d)G;&l4QZ|)~Lt&$f{-#q4%YXZ^+tM=%`)(PiG_Z&Y7%+e9&`wW=8>+yp1_6e1mrk=dChMD63k?rG)p&7u_+;$p zm9hb*WT{+NvgR*Q=t;ULz-_On+4>)yyU}qT0dRDg$hl*OBPxMeAqu2X7 zayR?-p&|W?ea&`@9gd+UH){VT8tJIke;rfa7gla@;N`w%hE#dN$)n^_x{gr+Un)$X zOojY)!r-sP5{Y&lV};Ty12f(ohDSC@O)Aq6{c}yjd$QTYGN1V<7Y4KigCZwG6mqo( zt)}$k_Lv~@B+6~gy{iDC;=X-u05x*s8UNOmTb+JIxl}h|d5b*~GSZ3B^gGi#0`H%d z@%IMnH@)C$wrH+?P+g%*O^p8yco3CyHRfZ22OQ#&^KA)tp54_TJ* ze6(A5#K3%St_<0NsG~woocz>IR8HQ91T@hL65NW|x7buBMk$$!fPkka97Ul>K}N7g z3%g^f7K>1F%4v(9Hyb6t==K*^MZ zqZ|dju9~`g8i!J0+joOnPL1{?3Pt8e*#uqVRGd%K70wh&P!c&vQ8?&&M zzr|50tj^0*u#qT*msB4dH|kFjpl#2#c*RI5&K*!TTSOQ3`MV7MjV-X1DePa+k6D{o z3ysOi{y7BxhFEhn%945mVjX_&|~cXG`c>#2As#~rG5UuUP#-#{)qp7v(%}?$9T%Z;#x`8A|raDt(-5(9ZoEi&TI8zaO8CW?`A=N3mvl%W7rv- zeqHGL3Lzf0ZUmKpL&jAO=KPPUKdWM93Sy1Eu$$JV5M~ZC7GP)o71KADh9|+{5(q@S zwJ9t<62uo(%*?<@N&ywYzYrqS)DAEYvNgf9Ts7f>f~N9|&=w>8CCjt2vn{d;edeU}yFzyuZrPx-_xBTc@_>{u##N|!bQq&7=a@6E3 zh^TD6qCyhCb~&_`QN!k=`@Xt{=~!sDP2T1qWnLCDgZH;WKl`Nlm*Mf&c2CS?f42XJ zt-8v2oHegsaHdq{a0_sQPCfK?{5uTVKqo3?g@owZTJ`2&wGX1e;cZy|G>txL@g;QR z2v@zm;mcRn8F20kalvZ?z3;Q((z&PdI~5x`{9eRk?mzkEPS)=oiR2^D z08Oa(kjn5MQJwy`E7R8$$MW)PfZlZaOjH7hu>);BE~62Gg^t`PQxN0)^3>|Nm1?rh z=U7aVX|lDC677QKo8_{W(uq17X_mMas0qmglV`-?&Lb$b zG*F9hLfMggy%L<1wCxWi%r*$U6u=^A5%0M%*QOKXSzmW7xENETSmXq>lA;F^4i-a{ z3eRChC{)d;uKxE#`EuBRoh2HDe$|rglkc|AGFE@W14lwqk>YVw`x}+aBxa!`jRxmv zYhYLt!QC&iR1{@eq7-H;URx-h5g4BL)WC}EmWC8S3lV8g_G3CyDUg2%xJy}oTZ;oI z$tB}K|mBGSihlHu6_z0ndPUjE=iK2G? z7GTg+rcXJl?w1S;8>~iW6hyE51RWk*?{_wBbYCCgn`t#r#DA<4%j~L_v`h1J|9nP z2L2s+AFR8(Q~xri|7&gm2y2AcdmYNdzx}R^-=xWajD=uQxx4PZD0FN&zhg*ef7Xu}DuhHziGo zT%sJ3;ot`QcGEz*M8}0cu*meO>;%_MA-oMsj8gR095KuucLz;1tuq^xvde``akAOl zwz%_2mo4{vJnXvX$CUo27Xad#u6Yg^ZE49ebp=@U0~zk{X1t{^%WNCmYmQEbd46sN z?(=Kgh;~Ii1WaebbRW<9?Ua5GA;Htz>Lfw~^Bj~FY}R~oI}m`r5w!H_3}RHAJ!Wx0 zeG?M9Cs9|4VtpTW&CM*kI`h79XLIsXTx?zx7;E1$+yLxN03!YI7r!`9*QE`^a`PNq zPQ|X^(d(2FQ^|aBTYS0*9mogndnj z;^DlQpT!Rix9`IKa3MqIn9@o^p&0|yXMgu zdY~K060|DjQOU}netx<%<1dODN9#$RB8kkDhv*;HvqjlX<>igm{kJ0zBITh7#bUKj z)8(j0+uM~1MtdLO;|F>B5fm+A=8XQ15kKc~_Y+)i^Efqaj8wYfCr&bwQk6!7BB8(_ zjZ`yL`YY~F`J;)?+x2X*#4`@wxr&=*<@DZJ9lh?*KUa>ml!AQXI%6f&zSLrmA=L7^{`&dyYPhN0jsZy6ZurWa!T4LWccQ><=Bv*cII z{I7&fzljCCm-mI5kt8g6cmiVkYJvF8Gajuu671bgxxB`$9<*@gdBbX8nEKi zTwml(ZABXVW(Pr_4ATzIoz#EcRQ+iU+S@0o{iND&J{F5Oi)36R3bZn!AVhttgWpABWuz?s=Hq$XhQsL=zD!(rcN`kbn7P@8UY~rPE=6 zw_to1=tk$I(-4~ki_x7RyeJq1e-MEGtASBrttmdYd%!l2%E;(hoDmw=8Gr66A%occ zTu=S{hW>?!bzjMYL9y?KKto#PD*>c=ExxaGacgxh0qL>tqUOUdDT*^Uo$Y8ytNk1v zN7?D;v)WTSfJ4?b_P9L8T2&8}5PlZvmBcf&MN;2KqLZAjHY7|+>y!lNsh)G}u2}q* z&{)*p?;9Sv?nUyM8PQh@e)`ziJG%V}52I%56298*yZX*U<*L(8=APxfK#QCSmpp8% zwND4*4=ONC+Cl;Spe#Dur6Cxo4cb5hQ!%Qq3ElX$GRB8G|E7_G`>Ai}h{5T#+2x{U zR61Vx=CyYc2v~n~eZlFeQeukH4%UO=r?H$(xd@S-hP-vw=s`@H-CI1!_%L1 zhaBEv~>YmI#RS6ZY%53yYmM3oW>X%37fPxIPn@(Ox!U*hCEcNrRx`$(@&dQA3LOikY0y%(*u^`(M|0=`X^^1qRB-d!qH|8C2swE`KP?U@-l| zPjyTkRn(J6^L`oBZ-`99udW&!>ogh$X#Tk=U|^?_uzWMgb%A#uXV z?uh5iKuv#ws1LgDQi0d<()B?0D0dDgbsTbQ8-+s)jW|`o2@@t6JU`RVAN_YL+s|Of zjkzD@r2+fX?)_T&g#inAMF=4Y6a|A$n7t5{u$8y~rFc*r*yPCm>s{H%TJa@eDyt_q zp;Py9z{_k1Nqhd&0+%~y))6&K9?f5Ax?-+TD05Nt>lVf+-Rsi+)Qw^CiO>7LUzzbT zxJv#wTv2|-5j_g-Mfz4~i%n7pK=lC7bGh)8uj;nd73sh4?#n}{*bhO8)vVoCdxQ)| zzj0tula=4|C&RR-{{s78T!>kXqoy;@7SOZ87cZ^1zgekl5UsncF9<_t*DpOTI0xbW z69_|P8`Z3|qr(NQE=xbjmBv})1u7A@tNU-}$8KRJ5I=BPY_PU=#f9Of5e&w6)k6;D{h)>^yp~u(kBHxB4|=zzhA>gh@@rJBFh734b|b+O?!){p}z}asLVkSnkFu z#U{ujZ)f+E;lZ9`4$s?eLp%hABfa2!`JjU`BZjH?Jd{mzZhGR`&0u2~GL7^qmaR6g zPyn3*y!5)R;SrmMm?!wNaWMnxcnD}?Lg|$*RPj}$3#zNSet;g&M^IpjvHD~U!fjoI zXxCeqGp(iN-E&H@7*N*8?!tSDhhKS2XF+0O;F_PfcyYqP<^+~JttABPliHu3{}O|_ ze=iY^^zFwBYITV9^KgD+X|xS)Cgp{b^qGCFrJI3Q%}cYU<1#Vxkt;Jvk3jLEOX ze&2e(fPlYv!AS!IA+=>-6JB$tj9d(;V!}djk#^t#X2EE&hS1b(&uEfABzOXyvjeQ) ze2odhf}lF%rvkxFsv@H@Fd7^yL1F$H(7e1!V+=HT(wJV|OU?yHU5-&WIC<25u?Hi9 z{R7h{&e0SHK?+tf>k%GYxgW5DB_$2wKTKAb;=!P4uFDeBw^p>6naSN_3|>Q_8^b3F zlDU$wu@%8B5Os2MFbwQ6OQ(ZTO+ST(1gfII z;+-Pk(?Db(nlaBH05A%8ibK($%H8jv6x_5H1lf@HlW!$aX3wIK+tiR0U~4l}2kz4- z6(lgNA`wXB8pO|BHVTP&@14i?c!XE;J4m6J4O=5oauA?QLgZvjageAG^AtSjJd?qm zQNxx3ypfrdK+knIGk!W#B6FE#gTcLwEm|4`w1 zp|M5wxUFBBZoz}?GRBR zpL+7&WTzhAu~4pc5#^)hK0{RmmYaWTPis-UijDKEYYL+&1S37@%{Z>{W;d@FV?z(N z0?GeuabR?3(_JrFO>>v{-7xLHw*z6XM5m&_{g|3*LE;TJ%m zLSSmwUj+EfTxY9}2?{!YEqRH52)?PEb>QH|Jgd<%2mioJBLh=N0bj3bRu$D7b^!w+M9?b=;HI*2cF1Efi4|JNV$%`Il3`fwv+hu z(jOE*@WDcXe8b(2!`Qw|z5cmd&6aH4%moTwo!GfnMz6A>0{A1q#@7DJIP*R>ACe5b zsdp+lboiGT{Mt>WAGNPrJ4gpfO09jsE$J38KM*nRZ}MwyVWxFDb9g7dC1D;|=Nfe@ z2I4WnSDkKx2F1>a5<27EUA6`D&yORw0|LN}F^rT_k4pN5C z;oW4O$$ob*kI^OMKl(AEyNCLg@29*rK+3k#1h6>&%B^oSk5}e7{T(4r0-bjKu#b#TRRnn~y2R9nh=hS245q&i4-a*SZ)m!x*;T@Cw_7S|3 zqcE1gGdm`~G&UX#E<{V3*?!_h{e3$F<-3(7qiNv_=yjGv)EKeC|8LRYSHdAOB>MWt zpabQ6a$0Bbo5JWZ{qCWEU+uK+Bsz@C(DX^($B$%nt641!05bZC#}#)qpVUlTgzWAw zJWre~KW=(S*_rIMK2XqOJC}Ilap(<$`jf@}olQ2DZziIvt2(bFsCv#ka3~JQI0*4h z>JNw=fL{J&t%}0B?s*jCWPyFv#Opm%?5@2pPW)BrguGR5ah-xN7Vf#lf?;+Bg0lqu zF)%D73cC%t8AAa$Q!0&dq%Z&0E%JaW6y)`2R-4~r?NQ8N%g0{`^kR{sHuT48wAF;_`+AS zh0y`TJ^pg}LA-3JHZ-tpV3MqF&~e4e$r0=y{k1NR^qoX@*v2AgG!7yo@3I{H8r-wd zM*Ur)oSOTiNdT)+N>8rdy8}-Ic+;nve`3uZnRO(RcVZy2#x*fApAUWFL+QYiPSHEp zoB%BT<~J;f1KnHRC0J%bpZ%rje|DRh=CR;5>-0YlH9@yG>Rxz2H9utQW=4FJ)qYW= zM~5Mzs@c6p=#N2En<91)F>?GOrJeoE+DsZ?l62KkG)d4gi-H40{)9OuUfT{1G*n@U)c!Rejg1gzqr?N{qb@xtu{WbdobPuMn6hQ1whv)R=@>-ju+Jse} zt*P_TWKJj<@SN^gF?`IP>E@L9Ivdy4cp5wN_vhy>DhGll^Nm{sa7lJ{0z%)_+Is;a z5Fe|qJ{2yU0_|5NlDeFgEQ7$0LgTQ-`DFlc8QMFzGEg>g{(F>4-`Y==l^)4Epms(N zH|i3{J3Vr;0m!AF5S_aSk`BsOZ~6)rsc#mmcs}uI%%+aM%dK5apI?Rk`q|4JS`zg8 zDu^5B?igk9{_Vf1Y#jRCxqEs3XH#oY(N>WWy0{BJ5u_u4Ek@sPb9TO3J`gc8GVM{h z3L~ zX~0o3*;@wC7?w}o{Wmkz)I@SP9Xz*f-240PhPi3UBp9FCHtjhL_%( zs#_T7>HgpsdaHVs*Y68_l_sk!beLcy&7fhHEBxFlM}@!E(FuOPIDDoh$oT^a_+n3F zje~e%kh8P%;MzpQcmY7w<$eaeFMq`T$nNEbJ~b}@mTy0v_1Rsel?Tf}?DN47-SFTr zwc3>T|K|k|izBA&TS4Jr5%a3Eb4{k6K|j}Ky37Ne+MRu~wdb_>ZqmKgPkZ~hmpNdt zmjjO;F46z09k$bOMjQwdp`RLy_)Sey`km9Amt341g3rZ__Fu{dqt)VMPl+?1r_8(c zhR;_{b6I=hyKd6(YcI$qHcqd%b1a6lk)z(S?I9{W2z7CEsOi$$x832t0z(&ERn8>lVaW!C>%6q94Xiyc_Kd zv=&krxCJZ#wvO<<;3aFz>@k^}#np4ezlO7lW-^}-?%!#jmS)f1VG-ESuTn3W18B)q zf{A2+y_=o2SG>AT#4IQqm$As;KC-v~`1$}%IgzB3#Ms`r2V;JZJx4FJbk(Le| zAs)K1@SoFLzp3aG1NZ)2ZCUl*pSFuaX(VlY99&bTB;_>FF0tDiesv$9#N$u*<9JlM=zDqE5&KYjjg2OJUo{KR@P!Nh{F?dS=NG-W2;*;u5ac|7A z0FL3x56JhC0}16lJPzN|&j3JcEW56=c0xS$F$VE5zr&+`7Ma}n0?Fv5OJ~==vsE_w zD(gkX!tgtW+BCosH}8n4%rRQ|0RX5E#U^FF);&E2CK7{MM7cU8ElVydfis644hXdzqM*n<{8cuZjrqG{-{lB&Fl7HHzJ&F z{=A(J{^xRP?|9&gf;t<6qiJexej$c@bxff%WP3qKXL6k!QQNNqF^j@8`fh%R1`GAy z!A&nskldUf=nw7&v9ujc@u#@QGYf$?YqDLPlaQwv4eCXL&CI=3V~K)sXG=dOmc{Zg zpTFYR%87Z}Q>HWdbF7H%8zBU;vIGR<{LIbG%)!-{6ElF;LGP%ksl6x8(&#iS&u*Ce zFA#VooKnx>{X$0CADAp|m1I>8hCXet-vG_2)WAUiajEPX_~`eu?$V7q-s6uWQ}&<; zWpLw$%j?E_{*}JQ6`3T5ZhC?i({kBG(j?JjhVG!S_Xe&1c!YfM8&ryeNlC%Y_7p~e z(m4=*0kvP0WH<$G28oj+lSxNRPhSlBbv+QH#U zndDg|)8E5mWF*!`MhXFI{sDMK{|h{Zd51>kP5GSDF)Mj}-P44og(R54nozbEdw=#9Bn);sUnS}Hi6LI+P}#q)b|jA{Wb zB{TDstgvojd@tCM8)YU>7I%6Qix*s< z?wfL6EJ%UE^p0JYwqVeZ8FO>w(4ebOsP+9ks&Vj9SaN!cflg&Xs_b80egFs(j`2wZ z8t)dTo0XN(DSzrcfUEA(e{h*6mEAQgsyQs0Yus84uz%$^oO7*M_r^gu&nfHh^ppqS(Y}zQ(^O`648+hb;@%s;(~iMK!cff1-c#Bi{&SqR&hL~$KRna+-r-8Idfhzv(_3LHxr&(k|_fYbt)!a?8| zD`qV7!{;>u(7r(2E*@TNM?_J7ZCKHkNnFI9d<$s?%aF63mjUBZ=@C3}_b;ZrqPp z4V291gx(2V9Q!CuaP02nJ&ahnRKIKjICu*~XfV@F1*Ig%-9bORqMo07_wP1Et+%E7 zkD~=UkrfXPw3_WptGC?ZW9eff3}a_Lj?RuL{EELtIEi4&Da9B3y3IcI*($&Utm3r< zIbqZ7fjM;vxCcJw^#LcsmWItHx@;QnokC~w<&Db#XCdAX_u{Ku?pXQ7#(&L{IJmzz zy(PR-aAE&rKtCE>^tfdHmInNb)h@*0`(&N~vUjIh|`DA#=hVbk18*(Ua* z`a67PL}0myh|Hsp=x%5IywqwlO*SYNb+|Y2IF@gk^{?;Sg1)F0Ow+wF-5z2l)ZODb zK5nf_uu|0vb~9fb_~;7Bt@R+vb$8#{@|BP!pO+wyN@qMvfD~Foo8ot$Z;3yjrx!vr zw~;Z!d$44cCiVRQt0M;-?ZqLV~wvqC#M8Hrr z@A#&kkZozuO+Z8@C^HbB=k@JM%JoBjSOo%OY| z7TY2ZRpK~lx_2N{RdJ9u)O{?#rDkNd}D$U{$47k=Ch3<-R}G8bxo9rhMN622MC5|46TjNx{matKr$= z^?Ki8mblmBbzxD_OLiZBKkx3x$7jv^5g!jdmv7n@8HG%K1(%YOg0G#Gg-1n2VyOt3 zjbvT(qk1sSXDIx>qv?j}cdiFk@}0VlW!rl6dF0gf%lOLrH+)m^Q2Wh8b z+Hb1U=>w)RrgG;|$YhAcRduKgGL|0W9jW(3Q@tQ)qjIAwCtQ@+1JVR$ayD+kn&v6G zTz{hS2aC7ytup}3KHSu`xZE@*Srj!ai6h4PoeIfD9Dn=6NP|-j(qTQ(UkSB$CVm!d zd>1mt-5)HjM$AX^XO`oONZIy{KgPfjCu-NgD~HWbPCfT%L+gOM;Ry){mrbBwhxhnO zhAw44jR3zV+HEfkU%U6TfAPn*h7VJ{4laK{X-mqqBxM)qh{?jKh*6WJo`~Se!Aj5R z1?;z!f;M0N$+|ZudXq+q&<*+mY3HkF%+ycJHwttGiy=@CgU|Wvi_2qo>zsY;iux8r zMmwAWFcw9w2PSWaoKu3RqbvLQ8(+j>+Dz7%?q_@UgS3^Qv5nrb;~4&{bnb{MN`&`1 zfMDtgw}-B8)DdchEmOh%cki0dt_=^@Nt>wotu7X`Jv{7wY}`u!ub0l)tc0;@ z5b^zwob`H87cWln7!01hQ^|KHdcScf*$m8%uA}-FoLlPpJz6`mPlr|T1v(`al3ymP zt9D_P&c%9iam_}jdbNrdoFdW-iuj+eG4D>-Ctb-8TI{F`6&|PCv)2W>5*|97Z#PZK z=GO_Mhk;`{xUTnAWm;PQ`cQF*hs*jq4-0nC$mq|}_m-q$r>ir{r%&&mB6}2QbQ&E| zaQANQ2w2yh&*VC6*QESo6-Rbwi$E-za zQW7Irh_ccqrCu1UVL{Tr2sseAlGo&?m0?1N}fDd#9UYDhH*Ffqbc* zJ{hPXBTFM^y$=6A(-t}=D&e1YDz-05mAV#T`1G~C=Fftlr{mJfCONCzQY~15epyU< zesu}+&O%w>=lXk+@w=6osYG(+=g-@Go)$D30%%#2MbQ|uzjB=PqvquHBHX#dYH^O< zKBU$m-MVk&O9s=|Z&fybQ~5AFw#da`ikyy>kupB|tu@pya&y+LOv=I}S)$VA@3(vQ z?=YtLWo#^6TF=grFeC!Mx`qF`!uQy*gnIr@Km2XKIkA(M8vl17zIJu=w#L=|#F?9Q zHSJwnpoV!{ervx|_P(`uHa+sNk3OZ5Y2QYEwbHSxglyFsKQk1{mT=Zjxh(U%+jJ_W zbBwmm_O%9v5A78~@6FG@vs4+LvZ=o%9PR!xle+XTbC-+w?~dg$LDM4e6R5(nIuptI z!-oKjT<@QAw)$rTPA2;TMCIjv=G*diojTROy{q4-ZKU?4`?1SMj`2HNXeU0miukUF zz?+J22DeHIf0J`Jdd{k3;J~O%ZgOgK!}@0pm#~qIuh&h`(w|)*SGs708t9!FHzudg zzzmc0F@XkU!^FJZXd(=!aKmJtLDKj4FH`s{UZrbTuIBYdr^&*q@6)HD6Q@){MOos( z)ulOsu6s*@$S4i}^xoJ;7P@}@!`_^rYLylKU2%_Oysf=VI zyjQ|gfvsQl+eQrce~8r&#FVCM%fk9f-*<3;(}mQnhBegG{AU+twi(~^Ge!%b5a4&5 z?0JhL^g;s2Yt*u2z7qV)tS^XosRuvB;Jpqzw$cfXh-CdTLraG2wRl~8OU3&RrBA~H z0jzyp9f3~T0KlFOxZ&Ca%yX)siO0*b2{HdHf>jZA6y>%y(;?~YT<*P5!T12d z8esC{LA%v=V&TskOQpBfEaqklh^W?DRI8;8{7`P%^@N46o^wQVa`!s1?65OOi>UxD z>^_53-)#Esn0dMN!#oad>=>h+1GwkBEUcONVGQ?5+}@-FGfTm7i-6nI+okr22WgbmJd~tHS1jz#pwiUvc%pf^-_yltMXY6>b}OD|piz`7M8G_? zUrw{unqc15qNb{SBJ<~PihrY>4S@Sep|bVV$sMc-hync&^YdpzzQ zi-W}+l$;u{qgP_URELzn1PX;Bk;55aPDOxZ5mp9^g_uGj5jQW|l?*h9KW|mB zpkq65XJn}|rUn^7#Rr%{&UR-90|Ns0c+YWz7uH=i-t8U?J`3Jt@eT7Vmmm)Y@#=F$ z`Y-&WdUnwCczpcs*4o-TH=15Y2!~Q$(+@;m8w{-Uy@~G;JoPzV6fpQCO~_ZS5j;r~ zY>YLm_*3!u?Yvul)nVbR#uC>L)2%vzIQz_rym zSG;|+DR5$Bzqp%uzH zV%tNGe^@Z-motLQFc?JB1zHI8*M}N3EBx1dEax3JGz|@6uc|uJHs??8C*;Ti;6>W&j3XTNIy4RTD`hF#>plXhz=C= za1%zB5vHkGx4vQ}oqhGHK-_}jCnV!7O6jGXc+l)v>HCyt#0T4UHM&pi!ppYHd8yrb z`&L{t@^gi&uQ{!^_Y}zEaFlCADb*D4S`{d3W3h7I1&mnX6#L9AhtyO(b<};bIfa}I zTAtjm5@2{GhURlAssFqSZ8`{UZt|k%B*uO%mW)=DxD#c{2JSMwmn`rrT&O zM{Si5kHL?WSDkuBxLU|`zsm}I*<`Zuz-7f_e{GiyShYcc@ zWW{$qD==bcuSY=mNsSloq_7_K{@V9bpK9E>?he;aJM}h&N8USm4{eswNBc;bT8&zX$v`>()L$~N`h8AReGY65 zrmor2IE3KHcZS*?8b^}Hzp0p~oXd~GnX0AB;4n(ssB^(n?9Z|31x@?>t)!wLcbJP# zu?c=xIX<#dszdp&=>hgRQ*>0#VE4q>GLq9x6xUOf5<<6lG+ zb&NAj<>2=P%|BP`r(3%2_5|>Cx5LHJ#uiYjgZE$N@w#Q#$z<3+o0B_Lz3nXv%|Rcc zxs9cTzLFFTmV4kao`JH`gc1IL5aEVsOcb6|TMnuus9W^FjTNxoI`z*-F)SmXC*llOzFWA=pVf1C(tl1%+w7JgI~%crvWX zQb>L!Pm_V1+s1hI8%XGSk(t?!xc>;@PCV+U#=)iU#)z1#1PGFnY=)_EXuWe5MOTwL zASLzBt_OCn zK+U~uwv7Uh5y+t!r=9^ZUv)FqNjvC5vRQ`W0rbItg*8DW2v_&gA2M)KDm7P&h&Q{Ed)VAX+KmZt-E=RZUhv=7a;NQuHa+ZGnt>C`tyu+#Rbdu;R z;iwgsO5E}skMbR?rCKsA3s)P%BhuLfo==1!XqR!B?&Ws!1-H^uZ_doL)z$YWwS7kC z11U6Ko0=@(8L|6RKxI(=hajaIvO}uOp;!uT?K!VD$j*u>Ta(I=C4Ioho!)$nbOEp3 z#mCsnS(q~PXhh&N^@Qo2NzPPZAvEK6gWf1bOX&PC+*6_W+(7_;7dTs*m3Qlb4qldg zhDD1tmSK4Sg(+d;;t;Dkcm5<0slDus1VvtG%rsqWm(N_L1?uy%iN{gO30 zTk<7sKu-+JlOeN9pBg{5)zM4Br~JXKI%sLBI_=kjZ^Z0eipXQ4ZO(i9H1}l@GJFT^ zyDTuZ;UMo#t`Q-iUbiZ2?$3sGgLQ_<^7+aU!>=_e1$zq$z#~wwGkOB8^9MJ+VY%@YHy}^5QbSl%>eBJr3_4Tbu z-C^P%t?1%M%9gNb(#4@$--J7(-AUu*w}xDyN$A?=^GOZM0}r-d(owVhUaJLKZ>#dv zGfYn=sKddXe}B!&ht|r7*?8aD^%dX_4c-_kYn|!3n=u}9h*`B-++XQ6N6MgAMNAyb zotS9LF^*^_to|9X6zJQ1geEGj0zM<*ohtuA{;0=>Is%M&XOC!q9m!NHd}% zrt3sSVIW?Vr>{hb0g8F2K6m7P&#fAV^@@`4W%0&0-wkaL72}ts_>orq!f%HkeH_hw zY2vV>4PBD$e0BYlWGX^3?&wRtcriiub_N)g?UPfPI~s3^#uLHQqBdlrTVYku30W7GfX#)-#ej6kQlie78`e#ub8a;C}Z?v3lz?1MQsr6Dz4Epgx@ z7hPKW>9WF@SrtA_<8Do33p^*G37wbYp*2;!&m%*hxwfCOlm4XO!fu@in_8UW)@L4o zq{;d`O)Z-1p6Rp~WLdXoUlj`(YP`P>Wj`hEx3~|eMW0VefRB?<;owA0>MIZLQ0Tv)`xU3)-Cb zQB))wl^3Horn)NkYgTy6omyq55caK!%ZqAp5DSdz3RU?dZI&E_K zyi0ubi09;1v8eIR6WxwP);+(i-vy{0N{>$KSsWpw)JqjgSYHXKF8sz@;p(T5Kyabo zh#p+(4pA`*t>CKw0(6B|qu04Ht3Y26ck`_Uk0NHOr>Li4E-`hg%ff6+dZ&E<3~*;$ zHkFk^{xc(fPVY1_ZE5aSJBz~DY9^D(dDXkccyB*+)9ULZtf~<0oo_kzMXtxTGZnCT zpd-F+x~A`M7|4kbit=#h^4TeeJ`7*P1o{Gd0O(${f}299x$;umfNzEQRYCQW)%~ws zk(U<2?BmY6#nU0poY_KB1_XhWQdP?*=`?Y(P@XID|K|ljaZH=KKh~iI!W~{Kb~sir%o?SB{4JJ_#bIXyr~VD zMZ9RT)CPqe39F6Y2vz++bu4Bsm6n6G(%)6Bk9#H6|K<&4?ow_|iI+Ar?!Q%^=D0=Udm*8|GFG zGP@GN?x(JAW+%FW4PGj9(bCG=R^GC#rMiBDh>yM-|Do&F$Mpp{r$gq3G%khz5O2I6 z+pvjO`4HLeUjmQc2?fS8>a%K1e`kW(TC}9sMGybBRLhcalvz}yja60M zN8N%rA0?NEq9wZ#X|tN9z&IrjfyzHrr^?`PYT!Jzuvn5el}(0xc_EJlvZ6#40ao6$ z-whsMNsE$`LmK|B!=1Hs|m1KYv;> z?maP)Ch5!BDAOMliorjpcEOUyTIz@#6-&O0O~QgVI(maAYa9zQQ!YqmQwk()1`U|) zMfjgyY=cf$lL2WJx^H|J(QoseR}>G(s8{?aHmy0t^>)at2Sb4IN5gc`@J z&dlo(4u;RK-FD6ZKt*nXnK$&G)Z5)Xe|=NQ=V&<-z}g60lTESILQa=%xhL&h1!vOB zo-Md#2x*SNzkC++{n$;rB9K$RTXXdGzK`&Np!Na?O$JVhL`1?6=??Z`#@n01OfEz> z!jXF3bJfQnEPBeq%aXAHZi-kX%U8VBy<fR=D&)M#y!>PBl$&XBlyH=uiZD;$G)}}{;i(Zgs{*z zzf+|8Vfk|+mmF7?YgFIIEH`_-`nn`MJvCQI@YelDlaWnwEFX&L!|6=^>x}&m2LgYRlb-Cq@D2F~byWY%(Bck~@I~F(-IxgMU6L z=apU2b)$qEaTGnOrMhZ>(~K7%2o#}{D=FN62WJkz<)lnmN)$f=;g1+WHpA}eXem5V z(eyqH&~>GdKVPK(MLR`u=5aj7QTKLe!>)nE{sERJ!~*+FF*dycpPa+ ztkUyiQiU9O3(&lv*p!rjL|8y3+>a6t?Z|6Skl|kdUPYYlgLVSZJJ%XB921pH)lasT z0_-v*6ep!5mFKwyn@m--$gtlkLsi^?L><|wc~&j)*-^Fl%*S$0E@iCd?f1)v?c&sJ z%bA;zm=w6K9`10*cEu?HOpQi4WqYeKVf%kP`5o7LdSY-;2GYA2Zw_xxkjHt}{jlg4 zNN@QvIsS~`cJxS-Dg|fCFhBShE`!bE#hMXEk3nx4V05e^ZeQ9KYl-JPK zgCE8al4UMHY+1J_Yobv5+}+%Cv>$2-P+)T>g92OmQ=)TZife zAGXp2cX8AK?N+(=xZUUj7?3Uelwes6r3Y(Eyi8k5V6E!}nOI1JHqy7Zn^_G$eFS(lc*}{zXw*!_qR?_Jyr- z+g?3VJ|6`~QQTyivN7*s zP5}*sA_(EV>puRvM#Nerr}fwT+VFJ4%D_kIY{-3=8~(RDc4>e_M)-cf5g(2L=N2SJ zomORj2I&gS5IDBd1n46lTsRdzI=E^p;e}s4u92B0;KBaw2SOCs$^kZ=fY}Euon>;?6>fVT>niFT_2BtfiFe8pM#~QhXMIj&jU@DAF~X5=WNG)AEpLo$^x{D zSw(&Wzik0cU1P)-fkN-V+oe?f$I*@Vnyue1M$g@@Y~U$}FK0>DgPHIAguS-f zFI|DgCotI6y`gL={EuTx1bz__^|436Z&pKQT+ zab{Ck_Jo4pjk4oo_Y94~!mAw?B7P;U-N#$TnFBtCC~MWKS5<|{zHxWOmxHx_ zuuuHovy^c|ZJz+}N`fa?ZS|)gKZkTg=f=n63Lm{zzs)uYT^t_=cUH@qkO{yf>;^(x zQ&)v{>(tbTS8k7F7hX8-aM~};?pTQSQ=9ob)8AQJ?it+(m<%5h6XbsFahUcYt5>X8A|j0GQb3pQx-2I~rWF zdv^cnIEl^Q;ZzqkJzmESe0?|CWI-sI$n5M~Al|?d%|;C`;2)2CU1*%?H+asn=Ci{@ zE^A>8WmVww5~EP~L%=jM^G+NM_6HSqU|wErN7sqwR;6tE7IsZr@9xi7M-#tmS@t0p#niKSVxwy*nW}tx#7*v{4!h>a`}d2yLH{|;kQdo8jxIW zP5lFhz0%Y@1+o-6jZ;_BRHs#(IC8~GaYg5TbW+Z`y#!3)E)t$gt*G0|ai}*u@^WGj&$Z%KjO8U;QipZWQP^)+ljn0XVr(&gz)hanla3 zHon>B^6K~lwo0m@^&gIgUy4m3Tf~3cPrp2JF?@Z*1F}!|JDAC~KRc%bMCrt@of>Wa zgp1@H9jl+O7u6cI;s$H||BzwU3)MS0UVawT-mZ==LR`u#=Gy3`wWaltKxLz~(Y*~T zS<G< z1zY0J)$lqcOKs-m3|Zaha~Zo$)V_o6d4#Is6xj->-*malJgd3a-FTw|;xpGKz4PH+ zc*uJeJeeUF2xLvOtr?0G1u6rq6g&7hb*YX7W)&5JGe4|XK)T<-gPM(YC>RK9PR={o z$5X9F4Y@wx!IR1DOHj=HDtGjPsJ48#dzVW|^l($cI4FwRp2s-%-cSe0du11`=lDRs z@@{%YbpX&N5mGV9_qe#glxN;2&^}~fCLJQe0aAPgT;~a?2lO_50rMY;>ZPj5pCp3y zz5~omdw^i(h|tlNd*QVC01-}0rjiknzbuUUwUzXL6(ikeM-wSuK>Dl^e)6960HPW)SbsOjSI zqTHgE1Z!{}Z9nTVPL1;>5aOE^j$Q-{Btkhz_hq&h%Nr<3QD!_HJnx{HhMx%W43E*j zGVBGZ(PGrk0yJMZ1N- zo(uyqS#?8@-@$~EBP*hmaId9xC<)E1eDtJ~@cmO(R5(gv0|M?|HsqIY(H z_q|_bU7+~0nza?g(4hnhD69(YYLc~xvi2z-^R@=*S@C>Z1jPN z@7(1P*9GdxkL~2GyjCK;4<`TtA%B-Waoc%-%2WuRQ|K0V-AW(t_b33HJKxNnr=Fj0gH$`_;chepVa~qKzQ5nMf1O(1+u4n~^)2|k z7kc>cZ6)u(a<5#f_1^!O1+fV8WD6AgY#}n5g4%|p6=vVG-^1?t5?IEa!muE1Z7Wz# zUnlOQ?Wy5=aC5l=H2DTVIF3C}u$C`Z$Ekm@UoWVXPimqVP~Uc0?|57(pML@04?0lc zVu;<8-i<@bKW14Xm`E5rM9k||S-xpJKWw}lV>~~5^Ylj#Q9qaKA368!YaM{e2?5u< zZt7XxT!BkqyKHG-&Lgy^D$b5KCfFv?IoX1EAzHE!%9iU8Z^m_awH7Av5$gYa`L ze85&_>es`A=j)r_wsR*c?qA`dQz)igoeLD(LpRyVbrmi0C}#HP*}udimH36)?kM&z zgBa}kwd+9#1tmPFCUCQ?^#3gVqhKm_{Hcqw;IzZ$EN!6LgExP!e6IY+v+REi!|}q9 zo{J-7r;DWn28MNCn!jjG=?bg4f`N4Q?Hw0Q;APKmQO~H~Md`seU?m~?cdP?$hOjdK zdmX{oB6?l%Dq`O*c!=NG2>>n#w*qY|uv45)&{=a`IJ;`CSl#d~qflrPF(_VKJE{tqlke5c9(U(?Q6G)zCN`O081s8x7<-O}#3WlVUm7*Igl)6r!Tfj{L`8J&ugtDjo zMRL<2vf)BRu38jscRmUSbWEJIwMFvc6q>F!juf@igbdMvZw21ZZyL}?rGjbO0d*w) z4q_WRg)XpcpxU`t=%Zq%I!SQC7cR2Gso+ttjvm~CWU;-Ge8Kr!XB7%ZI$5x_HC=l| zAOfr-nH>+iQ^{7BIQ09%+%GAWW_ud$^VBGmmK+SW@&H@e3S00G`lYzz!RE|lLU4c% z5ueF6bJaBggq+tyUAm-%-?WSr#UJ#P-q3Ukq#z%1!!3$biMjwUIA*RX^T4v38smSe z5&bTorxwb5$}W^=#mN(q1rNLwVE0tR3{fhKObmm#$r& z-ORDv_8zfC5cPcG<+nHVKSrD03ydKg_Q!x8|z1FJa$3>>mJA>tt>Jq z5S)4(7_SQbOn@Ksu(lA5(7|{bBEKMsQFkCUej*+^Po;)RZrc5ETIsKw+f^sAE+O27 zTj}Xw>}jTc`TE6+CCiOY#>;st4%uzDKKAy`(@IqjoYAAY?K4E4t7EutTX%y~=I#~X zL(>hgN=8`yyS0IpeUmVY4`Mv*Bicj`?|&O24PmU9mRM9OZRbe+C*k4yEB|wdT&R*iu9Xrd?_8Lw#_M|<`nBw1g!7k&whWweH)|a(w4_cgIY(_)rFEy?> zXH^YWhWl)@#EIx*0p)Z}LlwjDH?My!(Bfi031jLz4;6b=Idg8gYOH)8DP4X=eEW)@ zLH+bln(ZbSnO|A*``?7DZ0`Nqd6A_{=oDWfGNkNbA8z52 zO}NNE%dg3xs9oB&D_Gxn5Uf;XT&*1}A7CV9PzCcXwD75gvZkfE_w}nYnROwOvZ|PR zB{cMP?6kQGSuqCo<&{QW-OKO^wouuCaf*A(f7~$i8j232oqA(4Gd>RGeQB0SvP}{9gj35u1T#KkUIo3uMsq*6`_?QL4~7Z9*3ReH<=xM!`gb11 zK8gY4if?FL`)0NWyDY6})hw{9wD^_&+8h5nW6SHJmC`vKVWm_uvHiV z29&LqlDwr+koN4+8(jVQ;}Ubqz!KOH{S~+gZk)|TG6J!$RT`_4-Xh)Uz2nUApOz`T zx-iLqCDs1HesBA7vh{df*J}ID*9DdFet=-u%FmVha-${PGkxxk*bx8J*6NCm1kR_u zdbZA$5!%wjciTq4HP61#u(d7ruN$=d`A?mbIPAv=IwU;|;%0}kXLJ*4%D4uVSJ~h& z`YEYhvdGrk6)H|aeG4kxL+{z}z-3X;XFQ{0yqFy+7Do;`IEORNigG5XNP3s|jAi6f z-eQ&UvYv14LO<(|pPt#%u2Z+RS=OXnX9O{>YcJ~Fb2@y-R(7I8$)(~=O-*h>ScOKr z$e4f5v7|Ao`voD!{YYQlV6U@_?2MaXO@z?G&FFfNkycJ;&&0yITA?VyIbyg?B6a^< zFH|9!98?p^uy2!=OK)LImbJAEM_)M0 zrkOPydHk6=ICGC{`!vZGp30!P1rh#|47)rDIbzwWQZxA4%O!NWOJCvN_xT=MvKohI zi(3}i4gHS~K6j}*u+jZmdDEyfA9>A7Mw7BtN>fw7&dC!m&ff>~k25A_d6NM1|L5Xg zj4sQi&RRG+8rv9V9-DLn`tzx%;O=avh3K zA25g<`?kHL?(cl23zsXT=k&ildVfMz#l)fl)*-)uy}VBIw~PCwe_@)_<3c%s2NTC;er9@W+73~G<0<3KG_UP9+h+JT zZP>m>-b%z%({?w|#)yLCi+D$wRO^3Ix>w!Q{?K#GQ)F~E)!}Kk_VN75CY;V4#^YZ5 z4OS>hmZRn|d*2<*^H?H=E}%!8ienC_nKJtmiRL=avFXvVy2Bm_nKGm{25L@#C1S6WkZzanGOx>X`-ZWf#b&=mP3Dg*XOeQHBC{@Za~M zGB4sG6ALodyp(z;Y+DS4{D1lFe_v>{+qSD1G5-GPNUN{Dm)(JIA8l$lALEMMiDmO?sm9@jLd)XSmY}?l$>`we$q(*I>1gg#Uon4NZO%> zWg|@FZai-P3><|(QmEy=(@F^yMH=cA2XJh%Bbt`<&SMj?$tlA7CkPb(FDA z^D}{?;6PS~L3t^7zm@^l+qlOfpcA8;!btMkhOA(mWeIsYsAOI09#s@JM4M;! zNMeh{BeBvg>7g(-@b-;)9R)9UmiD&97A&8SFwxdxz04{sovPV1HnW~0PH9^1_rp&j zNq`g)yfqmOk?xe;Qv}e5nON>QyDnEphUYV9pA(}Sw2UPjS+E37(`mJ_f}UX^D|(gD(ZTZ~CdWtr*C$(c--Ifs?;JjR4& z#N2k5(CjNlgrLR7)0-lGY>k|EhycOq=|mT!P~Zyf?;@+p8*&YL%DW0fjPJL(Z<8Lk z?mJc7nSaEuId=0E$BjK4a{K35zua!C>AOA8Egq}oO$gg`?<;2vEYc35NmypR>y2v@ zqckH8>#-F0Pj;lM7eZqtgTj~`M#PpJsZF8?+GbS|FFd|LDwbO?Dov)TAeSUzI;9|VB~=1 zet*1niW%U1S+{v#83{Mu+quUxR?&~?w` zGetolvES)*3vC_kE-1C3tsl$U4jr3S1{ues@eY^*A(crH?NrsN0p<{RfelRi(t1{u z8xZV9$I?X*Y+9Ly^%PCLQb?gpUZg3)sCzc6e&NTeSrt4498dIlLO?r7Yv)7xlk4S7 zk_qlRy)3d$6e+iHwbhB1M1O}k^Yvg85L~7ZvC4$^{P>s0aCha@Q*4tnShy6pdA|8J zWT9JQ?0yEVqJzt@L(7rm%X9bO`TbXvKGjFiub`Uw59MuA*a|?SaJGiI(i$`=04>UdcCc?fB=?3|M5mMP4#C@yPmUekn9Mq+j7sj{g5t(} zX8{5!UH0Kw`Mz^aBqB?Zg*dq%m>^AKZQL;+E`x=Ge?r$^Oytu+`2D!PIzmnWdc_ zO4=-ZzCr)7M~tPNa?JHBIynxqE&Q7o9{WYc7DfB;vdOD*~jNOmmN z$fuxT%tkdf^kugROBZ89(6NGl2X?Z8yA(<<)x0uToP(+KwNZI67}B0L zrg@SD+pp6fmQ~0-_w7+SE3y89XyS>Um4zBA3bKNVHURz`OA%a4;7v9#IRsjxp-tmt z(YeHWT^R^mqodVe(UV9EIHhgJnV9Fspo7I18lwc+39(yrx*0Tr25E*QnxEwPN( z!m)^Li575srI`nl1Iw0?!@jE$-7L?H@>HkJ$xcSu+lYy{ zD#<`5ND$wYhfqY?dM3cdVc~cfl8HrbMFO;G7y!{?GC?ioez z0AVb>Q<-~TvNUP@w`a`ZjlEIW(sWpP@YQXPk9LPR8ZG=hNpv`r-KXbU(OYk6SLj7O zeu=ZW2^45{c{w?k^}d#z=d0{92%ZvDYrwt27RDVp^?-&_I<<_c`zx{pvc4LsB1q@A*ol z@#H1p;_@pEPPsg<_;wT`K*h(gr0`+J1mmhCNo;(5?x*8{stEVcML}DLmr6KeHFAF4 z;M`JiaC>kS7#UyD^9gpig(q5`F;lXkp?+VExbUHozWxrM^CdiX#x9R4mxXWT5t9xP!(*TzyQY`zNbac0 zhQ&%-wN{%Ww7H%?y`Q?gT^tfG{`DE08g0!kx>J@gd~NF6>_VAOs!{lyn`1_(tn%uw z)t`0CAAEv+`EO6e0fk7dMz+`eP=o8!1>KD0h0{oUdG<`*G{B(T-70e1nckbZ>>3gF z#wBt1?u5k`eR1S;8z>4vsCSwpF|J(wZROJus&k1Gxa~0|j+F*HK>$KytR&+c_fMmm zN=9b)OfOiM8?P=Usw}l^6`#|8=tQUw+6ErVjWeFH+)s9S%Xu!50S>q7SCT0;_8Dx| z0B0Ji#5j04QRw?x*}?9O;>+B%-%fbdBmr#5a0S)%$^Rz6XQ$}qe{^@m4YxEmzvk!W z<>nZL1_d1^QcDWC_c9ONsXr{u`2=1N;>RoB29JWZAP_F0uc-?ccer}#uFTXeWJZj7 zM9k`~4h*i=mQ*iHzv$QRE0gOl>{)N_b9}V@^Jjs_286i|x<49b9To#*i=SwkND>4+3XfH|MuUtP~C?#G{FOLO;@TC9UsUUpwc> zmnPJXg>PYa{|dVDr$aN{@RfU^_DRjZUowdxJ7HMrD*#Pvz zZn+i&Bkm9TnL{6k1(=v}DfRZ=N3QB@0q4w=l7VXfiD5gVqYBi?3 z%ar2`|Gzrys^nK@2G6-7VCI+btH+{Q{Qu~@j>X}}?W5m^_dnMg{vOEc>r`V2r(Dak z+h>IVPT!oXmapD(y5>F#x<>Rm-z!$`@wus~9beQKNjyf*;0w6yYhoPHu%&iNnM!Y*dg{X2Li+l}r!_ zz*fFH*v2pH^4hGMS;rvfwmhS=DI*aT=qWRY>vVwQyB9E3#9aZ|{a^vblu0OCg> zNNvU6pf#$Iit^Jd-JgOz3mO!woJz#R+Q2O0ky$-Mls$J@kT-#*TL*pLucyPKdKGfr z9T{T!mJ|Yb7PB%h(nX&K7F?Z2?H~ICk61&F#j(`imMJweTXLA$mVi^L_Px;{wO>P9 zHeiEQkuvO^6+s=KWz%uZd?_Wt8)L4AP@hN>(170J>kzv48>K(yVPP^kABES%W$P%jlY7RZ)PbY|MS^A+(l-&_`4R_85g*QCA5NCI0DA?{i?7$K~e7_Uq(CmDh1m0eLq&GZrnkjb=a{|*K8^&D=WYF|~UTl%{p zm_GQn()qZsYFW42!C2CNVeVVD_)WbiR8)KIt^WPC^Ug8UGhMO2W9qA^C94yw-+f>6 z5;A}*kU!Beyz4M#pIj;l@Vk=bK#~%GJCC9N)mJ7d=B6J#cHj7z;)e$|3@9}LBwZ*K zpnw4S2Prws9TGCyoCpDks2{+6{zJepvFkq=n}TJ#uv-;iO%L{?3Jl+XRXD&$6S@J) zB*ec(ykxK&Vnu|<4w_O(piUw)K?{sM)1$lmT@pDzY$u8oE+^rl5GE#IyRYNP$EjfY z%E!EwOTM5$wN!~*a9F8d9iQy-fJmkv(5g2Is)XuG#&V#?@j)GY3-)sRfH~1c?%!V# z!HDP$AEjWTgg+N69TTy#RpIzCZySQ(<^_RnfR>Sp40Q5pu#Q}AhZ(_D=@ze#QFhd@ zkK-^L5m~{w`geRhL1dq@C3i5y@IoMEkXc(*yQ6DV51322cz zfSl5OvDjbUFCs$W6XRZ{>+YK1+yC4PuDRu7J*`O0?X2T-kflZ4`MA7dV8-)W_x zJXRl#YrU-+>oTmJKYui2sQ@r}Cbhq@}Ry9906q_jS>mU>$3pAm&6b|(5bD2s!- zbfv$SKCaSDaKDW1(|&#KOxONoJJ~7wrQV1`g!g-Q6^D2YAHJWH`_-SiG3Z`j&)#f1 zWdja9P$S0dB#nL0Rp+kj^e#JD92SkmVx^*Vw*;dIZ(q)wNhm~oi6(FBpukB=Z0x&4 zdM*L2Ncg2IlM`F%bg-~mzIev(&Gwk1UxfPF#9 zo6vAjrq%The|*#L7teat;4knj)mXTcDJs?v?bCiflVt@ME>=hs%dt?@{}y2W(x}CN z+-7EnhI5PoK$%}dv+W}O#W^<7h}JpMf&Z$biVx@$VQcvi?Qs3~Dj;n3R7 zL{)r({Dt!$+47X#B0{Ai$b^ux9t>G_pJ+jvf)&Ze{MdKs5eq9c0c8&WS7ZY?k$7rn zBBd~06%y%|f`*0H2X%7HJnyaZNKd@q@fc@rFFxZOHmMXotbGI51d*ai2n7w(#+JYO`%*e^C%Bq5g zyi#cPwQ6cV7;mIbOKv3k*B5xXI7ytZX)!|+mlD_QKZ;}hv~|OYHb=g za~(BI6!8yf#2GJN&OVqd$B0hRJy}?FERIO3w|}%(n`?uC>5LinPmstcMb%DJurDX` zAvqm$ksOU+r4x6M2|XnD!p<5}3o;A#02+R!K{)2-fAfL}N>^kNdMIET8B5xhc;=~x zn|OKjZkoT+KxH0!7qoWklNr8s;wvL;S)Asaby$&l<4jbzUT4^53qs5;XIjHwBcU{ zWbR5TF7T%Xlkg)IaUS#$Aw0N&fv;8@KPZ*IDsfvn%>tuqngOb+{}wX!p{?6 z>+5r{(2N6^k%sz%k$$T``ebw2SGTRxiC0dQnbJVLOB~bVjh%iS(i7zHuL5x*H#hN| z+-&P(rJ+rZFhT@a7Tcr2gMejnX zb53ra;q~eNC7N*@Y@aJ-%#Ke_i&t)z)cxtS_7DnN0p+1@g7z%XQ2qTWV zwSyCl565K}>sKy_9%$}xS>y#rjEwn)FLOX>%`ia1O+f0Xr4;3daR?fiqdI|Z;UL)Sn*6Zb=~xjnwV9d-Rjo7$X{U2$bZ@+sS2Ns7;Xu= zJ@;o|Ikq}*YA5(Evu8%_!e-Vzr|T^))15*1r8;1EG{4kLT-4nhRI0C3J0pszo1Q7J zTbTf3$6PC%znnIzlNU6~)V3{$VB-5f4<0_i}-8@{%f6miRyfjv` z#f2(Hul@nylDyT-RWQ08XwwhAtOP2rhg5ymt;l7qm15(WuPeNHCzr?{0m0knCO~On zosSk3d$n+R!czYH(lry)iZ3^GzDv)25}m6HeD$q;LSLnS*OwcIXK#TPw-TAu3R0t>9We}QyB;aY)9=bYezu{l~eez+HbKD48fL0_i9bZ zw&rB-(lXSGmESLYQ(ML0y2j7upzy1K;ZviDt_lKPHZ|V8JUcJf(1|ftI=lELFY}ND zEW5kkPT>Bo5rY?+>b_F#O+=sY^1RI2d%a*Hq8% z$k8?4!>$M==<0OxW2g?rUP_jj0$6hDPy4a`GJwI-1|8;{+QpGL$7c?u;PxdOa5ofq zDHVD>D@z_X%;0I4US}2h-v=g&1}B?D72%xxzkAU>9>ArdIplmpK! z7|_^k)=B0B!wkDKq?n4TV3o}UYwrVN71>P4#_+1LE4RN-=RPY_2JQN1XHFKaX--cE z;#+R3hUdZKqJ{(u+EbZ>IIC_7_^C|AhFWDj9WbmgEn=6Yg9X3q;@*W5Uk>w3|MJ1^ z^=f@6fGMq>+Tm>x7AEd0ADI7BZ>Jpgr=zBHDx7RzJJ-(8VG;)fR`|r- zt@N#uE%Vd8Ba-SBav<0arVihz_ zE_a1p_xGzEXo3*s5g&*w&7z=@Arv6C+g_rNY1w1f{lLE2Gbr?*MyYv3GVO z2T#YBE04#^>te!d%db_NpG6upG4s~4% zVtD^#ltwTZYp-g!)0bOq z@`VO09&Wl@?xU2RAKJe`in8y6RNUo?{a2OT8ZuxpL|g%$8D;mnPZShvZ+62%u`ujtDSypl%Zxm3&OQ{pHo8Gx9 z;1;yYXJ|cCCx*fm1@FKB&+_RtUr26iO_Ecggob0;ne2)+$*0KvkB+@P5=*)N^B3Kr zKk*!cJR)j2mw0K9&}$#KwE2K96A=8$GORr~V#s4;f(o?pnzZoN|!Z+L-R6A{Y>y=dh$QdZwJ$vg;g!}~ra?U=u$=l&p+uWb`A?VAy z`5%O;q+i#xpFO?|it|Ka*LdS{zloA8`}rB57q+vzBUnDw=pR}+_-w3$7AWbcM2*e7 z;J3?=`k%!N1sym}c8iNnBe0RNZvHV})WXgZ^i%e^)3!eCXv#osyI~L4%|a8b)m8I1 zAOnx~b~Uz;*d&FNqJ0}1Of1HR3lkI&mme3Q)}GSQ+g9m+kvDh5UUX&@tjd7^~kbm@DewumCgJ z$);95J=54<)U=59BJ}e%x|4!4*sqp3s~az(ot^HyrBy< z&TPzny}f1f<+1qv?bfDEHdr+>p?*IyxjW-OH-A}oU)b)G4$vCYr}PIu;B-?={=vn`WLr}=fhWM%tMW@Dc z+zR_0z3+nbq`7@E_Av_d_^@E|WhWoZesEA9m%S4EMUP+ z!4zn)E4FS!kwfHIAak9k9jv4F95@JhP8L~?1Sz8VbSyU=+;pHgedfP=YgK{r`P2?F zfwmK{U7MP0tmykt%&P2{Wm{Ni6F-Hu!E62(+HPZFp_7j{aJPdcr?a5H#3(nrk@dg? z%skwb?q&fvEA&Is?6=v9R#rv2&bLXBMa6c=il9W&RwMpdFN23wEl+=+oR279b%^+D z8M&}) zOWHjn0ubLum&IZ%%w%0rH*hzCRvZAI8%fXn_6&G!q~Jpk$-IzPx#fLRk54=tOhJ+GWgHpP-ambF!v z)A)^H{uG?QR8&+p>k!da7pa2bwp+S-p?`i)_63V0e`NzrHz#R(wA&reIjgu5apR91LZvRWDLfd68^aN#sQ%(&S`)BN@7 zTBmIiuOmZmaPfPC)7O=Wyp@;K7J4pQDbAPYqxEZY{+Kwtj9PiOvZM!0}Bn=Z+ zjg61g8R#2n4{NutPWeXuYMkin<3E?2EdfWuD}pJ5N}y)W67*&N9c^tlN4!tVKfXuJ zb=`-_$=jJ15vmY6Jp5XxljQM*+CFg%75Zs1eeq3BkWjd_?93OH9C7XJEPrre`RhuF zR$atu*q8_pjJJHG+&kU&D~=1=X}ZHB9istxj9;O3Q^SMvlUtn`qR$iCzs69d?z^1( z%-J3?*4VpjDUAGOyt=*JV2WGX-mmCTA5oV#+cn|y_*(7Ez`9n9o-bb){$Y}~^fhuk zDNk8Nwv0%nj#)cV%H|A!xYv5Q=4;)2WY~|rzSV){Am-erM4Vn5s|%YlNL#!6BsNLU z^5Hcd6rOL0Tl-b$96rBjBpK2F+Ft18z@?wl-x0H!xoiM_P5X!G)Pd`gn`c#gwaQt0 z8oUZ^+?~&z1GQq<5^rRe`2J?F>`^~HJ?HtXUe}Hl$L*=uLqkveobyx~-QWG@^}b@Z z&D1Ntb7xC$ua}dcmH*kgnY$c;kw?3LNtUr>s_ti!GN{KcolTS|yPTbFv;QZsoQ?!s z(<|5gB!V3MLw8)N7KxmkXSXuuXY(!3+nNcgFNc1X!#-G(`EJYHjZAU>5&dtrlZz#F zRu^DF?-+@JFbumpJ9~!lWUOcOuG3e@;QG~(3l`M@wP1qp5jj_71fEP1kUqWXT+M@H zDZVwK;swrFyHVtZcNY?liTgwUeqP=Mc|xuqzn@8DJoPwd+tn|4`25b-PnS5tMX$bm z*v-jj3;uytC&h+3Y+k;KTfsK3wehD43)M5i*Iip~9AWG(x&}{WUJ*}W7UM_e3cw(d z0Zs@#rWfv9ug=RGFJz0qjt%>tV;y1g7SdV`nf!cfo}0-#42^sGfCpR-k9-n!Vya^_ zD?5>WIg@>_oVz`{?UzBFp61x_aL-{VS+|=Kry}>HC-V2Yy48iU(nVS2@R4GdNb$h% zL_`Zxi>=vO;q2S^<3A62*ytv$x~0y5)=u!iGDK%~IIJNNWWJ@EO=g!rPb&W58F0Bl z=sr-s9MLPu?J}6T+mMvTkZhN=j=dKIMs-;nAZ{%?ytifgK+u?;G-p1SXd|@JJ?5 z3GD4h;V~RZ!hHc-;@q!p^3-g{ts4c;@$dZ=5HrdU>ECl%6e z{cZd<60Idcv<1EBb;ss*gJVAlj+ZY=M`kG^)j;GM4_WD|wZ%R>14E~zD#q)3vJ_L$ z54lZeGiZXbnYaS&HlQcc4sgtnhzAzi2Iq(JmOE4q<)?r=5@W&#C|E>%5ad`1s&m+* zlUEZk)ipTz_p$Nh)rSdlgAr5l5*5SBfZ@w^dHdc}QCfZlMKY?77#c2H)=mDGnOoxs zuH9f>RG}Qx#t0uCpZlCxS~;^Sa9D`|RjryD15&uP@N?-LN^Tt{frJFpDTF%of5C(h zeli^*A)@!<)d8X8$13nB0BIf|m0k-ew}1au8ZhhGZ%yV=jj%flSF!yNAp^-hjyXlkf}XQ3%8d0Jf|!CBEB#YJGr@ zF)*1;SGh1Ia)QNVIdhC%3N+Vi7dd3S6dV~8T)DWAEnXTLT*-SQ+`7nv0Z0n;!7`Rg zHg_9Z4-hJ#VQOv){$cNj7$j0f6}uFvhF#K$-3#{a)*+55YIfBQ-xb!*a>^5#AWI8N z#&{NV_M<97iyFM5(lOZgNRtknw$n~^B<@5U#hLTA#Cu2F#O%pi=7hitf+F2v-Ge$A zuH#)l8`N$-NGVFN>AXdy$`bC%ooJ%8z6KAlhFZU&EMCoF_=1J0p>7-Cua2QVZvL^} z{}?0-!F1L9s+FxLLq_t#f6Z%EuW;lc_kzk9<+6-eNLo%t+i}TLNqo*YB&;&>T7*}l z4J*{V!ZFGA9uhG2x(qU@yHQPRF6i8;@_Nd4cDj4zYxV2c-6F#@IU@Y_nw*3{71nts zDOq5l^8jvKEN32*J4+_;~tiu%1d@cF7rd740qUWPaU2Y7$Np8 zpNiRrj;juOwXZ=dsMMTj?Zk~YNx``a%F?~E&J4eJy#?%2kxU0^z}gOzdq=r{AztRT zE-{(-)?eWk`yk5VjdCbg)9yyn7A3V{gWzhIl&SSdffmDJlfYg+96#fpfy z(0J$S=>d~F#s0Yh_<#FB50gE^3zZLsiZ0h|LSTQ~75c6&M$QjbpH<<9OGKWte@n}^ z&#%<)s#}S#TWWk=dC2&G;&Pv%t9pY*=Z#rg9&4G7!Q*<4bRSTINzYvOg4^EtDl25q zVEu=AGm9z)+nDg5+s^La&@eV>zps#;!C3SRo9dYVu3Xc)yl^)BpeQJGZ*5-2+FagS z-`3vdj+>vh;%*JKc5YzZ%6CP28S9zIA(MesE;@ylkQ@p_*OWZf)HJ<%Nxe!QdJj&3 za#pHR6geVl|4|>$Muy?+fG{JPgj53Pn?KYGZD8aBV0dY?22c9{@?=2p4auf6z|8_ouJH12(K$)QJ!|8g>e59e8%1qeV`k^y_gM!cI zdmXSZ_buGXj>R4YE(h`@xew2@CM(KS-z!K*%CMumsY$=Vd~-vvS_(y6l>WeGcbWzA zHsT%}fx*UrgGkFGd?IFjk)>N91^5+#)-lWEH@cz5GUMV{PYWOSXlB5P`QT-l%!>+?E>I)j+j45w zfgxPAe84_y=&DY5b_eE&jM!b>U^6IH_(FIR2JvVCGn06fZc&BA$bXCJD-51I)bLPxQ4Bpo&`K%_>E>#B((yP zN!$P^1#v_QP3d|O4OF)1s7K{8Q4g3Gxgc$dyp@W_=6A&U#>-*#riLJjLqftSi`}Pv zq}1Q@<3h&_)x3a=4vU8kPQKh)UNs`BSxof|dadj*ysdqea1@tYBhguBjv^7wEc5oxf6(0Jt%DNH!oW%v{c# zz|O!G&B&ne%mn%GqOv&{2&hxY?&fZB%uqsu`VVHTGDkuobMCs)W`C0v30PdgGd4UO z^h=5PQVk1(6sz1PQ?J_%#y0vTZA)kxODj zNxx3ecUw68!NB6p7`uqc%+;8|l@FP=can@|njIn*H@F-t^dSj zutaG?6nCiMVP9YmPLYfDh8!cHv8pf-$d@w$>t!$);O=4&CLj`$jJPgkp#wZ2Ad0zL z2Ul`le_nPar;fxdP?Xx;+0WnI%te~h%wG?v-rY;LIQNj1vftT1_z#)j{v`0U$X+5g17$@NmI0<+N-ig>EJ4K2YT%JDU{9aoN-XEqE zLmjhkE!Hxe`cylXmKQePyZTEHNZf~8Lmc;Ml`FoaZY(>aW@l%I9DmGuoz~{fn)R)T z6yFunmw)Ch)wX$`ODe z*=RA9&aXHz2I*j0J7Zim%HAl~NJ4TqK5g(0)cOU6dR@96LqFz!In>R67KhFIxXj(u z6Xp4~CAe82Up zWS7bA+j+%S=#^@YVHUj608)kQa{5w$mhs{z=kOv%Wkq#@be3=MVvOCsw(GAPdt9pz z*S)@|)n8jSctz5Bb$Qxc1Lsr3oVCs?^m^i6)tBe16`z^TyA(cFQ)Rrmp^h=%=<`+F z@5s6JMx#qt%P?YAYn7e1IPdb;Qug`a+XK%ULzA>L7HCgSCVdqfhFxEYmZEuXx|#$z zN300=yZU6`bZwafmXuSR%fh+8+kF>WBoAqC2sCQ?VX7~EM)8w!19?-rwX=}PV z2P*$}$1=O_&vIVh#4G^xU)h^WhXyJo*B!r=whz_@O>tx2k2lXxCkCrHk9+8KLXQ;I z<);~zT23eM4UT=BT$ppK@t5oZ3Uew6_@#_8yzhtRg%)(Hf$3jOF?-8!oEIm?aU`X$ z)iA!!Z*lxdMo}4GyFRQ`S-2%w<^1Q9p(C@s)?btK%wUHl*DJDtbXG0cBfHD>+~duu z=$G8CUqKr#EV{jn1AX4H?;6rx@F%CpkE%9aDl#KjoYFEQG~EAa5?_5^$kv0jyP6dt zD>F@zb9|bgM7$_mZEDNbGp<(_A946_E%W&K7TKcM=O1*c4D?F-#?AjrQOb% z+42yeP>1bHJvj9Yo!9F7_628lZ6O97vmys+4+ST99^9^sLb<}$WNAq$m^dC&nB{$=8y?>>1Ls~SRpkiQ8`#vU9g zSvNl=^+7sBP$S9h{{W;6!}c~&+l!qF;$Q_;vcsNdNJxAe`QZ_-z<)$YXT@8iBD|00 zuzh@}raNeW1!#$azSGN;D$cud0-u->Z1qyX7Q#ualMmvgqfCDrDT-O(l_d;0P&%Nd z4J>!yCUWqOfaj$2tWotOh^q?@Nt^9ydzKNm2B#)V6_Z0I2h{%kk@XH-BXv(Py`V}>!{eE|LDLmMbnx7Qu94VOro2A2&$`uy zgmoGNvXM>9OmDiyD7LiBXyP%?No?|{B9jv1fB5J>fN^M^lX=oWMo5-USNvv469NgG z0c%e5lR1hVPVHRf8*4h7xR*KBIFk>a?25{&BW_bu9BK*WZ23N$Z zqV}cA$V%Q2eXB6jC1QEIZ|&53pq>ma&r>_eD))7coEg@NSlFbMv!jGR=j5_9+6k6a z+aJeVOvVLPx)id@wwTR?c~|8HcL7#hPUf%4wD^hF_g(0D_kGnhIe;(5kv!<7m#+au ziAk6_#t7_P5g-f_4kw@htq`zQ@d#k9Vq&0_WKc{eN6V%p|FHuHM-*hGMEU>&H3JNW z2k1zDq6uC-ISO>JnNSqd??2Ge{$LDlU%&`}g2};d=whXa;P<&dD}{+^k+TBJNhyeE z-?TrfYA_Ng%Menj>TceM$Sc=*@KF$-rnxcp}u8<<7p`n z{>J`*-|O43?B{>hC#?Ow-dv%rK$pT~J?;c`u_q1WmQqw7Xr?GOSmW|PG0Og4O#RmR zsi&fOYq9=&omAnW)Bc%>7ACFj$TLXwrCg9eQzj{Fc80uQ#M<)!i`N~?jS$rg9=%iV`OcG>VtT|Y;Ln+&k((qfaVKv8yO z?Vy(7jUg#a6Z@drT|%;j>7^Z%dzrn~&9Q(0>pqJNSZA&Ztjez)OETR@I=&Y7*eiYS z{}z!2e&wj!(SAfyffWva;mNO`p6C130=x{hL)&x1ci&9z2pkiXRe?eL%4}Jv-9CPJ zT^=|!YKpq5yMc$f-djv={W9yusFEogwUYsM+cGLqEjD^Quw#&7WpA(fYoWKfZpL@1 z^6%fhvZ4XLxDae$Y#lU9 zh0tsht3;ckoaPX7DDKr=nW6*Bp@vkL(;V(7(+{9h6vftHE8#p>t=I3YSavzx^i;^lyXve;&&r zKRj<#DLhYP)Aza29<=M^3*yJ?(WUI2Uk*>|SM&K%&r2VEYq6S&lD4rP&AZ>`SFu0o zAx#I|263Q;`uN;f4rt(dQO}U6teLmW4|e%%jaMjws+OGO{)7{oRDt6p9%g(elkfa8 z-3DqfGNmfMPT+M6VWn%Y38r!yMTz^_x zY90RZh;S=j4}7BD;5!-4-y5uPrGGsu# zuA_O|%nFaC!i`;0)2Mm-&A+NDQY_JMH+h0;ti0u0p$f%##zy9P84APImgYW)X3O%f zmQzC+S5jPVmPWBh zXZTO|0oW~z|FFD|aTLOg<7-pN^wefo;CJH-kLO9C5<&b16c%847PCE5*AgLp1XAje z43J_cJOA3A5P!kE1%Xhol7E)c2Nr*>=CCSQ;zx;iS=j{eSXQ~Iifz(-9hd%aeKBLH zX!qhzqklXO&GSz+2$NlaNA;c2nnTUB?}-!l*2dyiz{h=G$l$MEKouAx3qeca5fl{0 z?Wwq{-n&4W3`24O3`~YVfo0lo4NU@ffdV{6U-g^{BoQF4&is){1Qj-n+e#E1Eac8W z0B5VmX(7*O#x$faE)o0`)B6Zq>fI==c*r0LFA$1^h9MC^XdcwS4YGzrD zlV#N_bE|62%Z!?o5`|}#)<+Et4)zBdLC5dl|NHaP7HP-9 z^;%!+W&3rl_KjUyn+=v2Ws+xw9sT8x23;6CD_4!y8p;^G)h-hSrDAt|gCi3O%d4k6 zRJ?+{7bPx7KU6I1?@+Vx4QGZH5t!q z<7KXKHl4I84EIkeDVh6I|9fZ6l6Za9w|aJ$(@OaApaV&bBa_G;jvT279=~DVCGHnHE!7(x+T1@yUtL%sCgnd4yTvSVH%Ncz6ucPg zxz^Ls6Wl)@02u7A_D5$^8(!^~G45xU9xirESEXPhBxnWwy0S1pZ!b6S9qk%46i??G z&Ix_WUSvG~wb@3L=Ud`$|d^&(JkNQF9l8DQGF$& z=DdiMx@()zwy};8GQSr7xc!VHvpE!?`XRTx{f$ZSSJc!j(gek2o`RXg(+3U!<#3s` z!-ZSpv%i2&Vw|zwyV?a-&AV4>9h!{Jcnr@3Ry!P+YYdsrShe{7?o$VH=6dRW*EXtY z`x&P-zxG>POuIal_bGgJdMPV9V`1zQrdxBWtJ|~7uFL@Ul5qR#K<$jqm-hdb+dp1h zSt#%*DCPcV++D#7s;Id-ekEimuIGqj$j`>!A(>~AZ$%b6yT{i^y{ne-jFNB5^O}Ga zdRb?4+ki6WS?3V`D>kKvIk&3MNoo~O)w^$hD^=;%?Q=sY*YJ;+{n{tm#+WzX9&jf5 zA>5e^nhh`Qw^VYC0{yBDY1hnmN0$!uGjCQYOB%j;*b_AQPr=&oPKM|xZTn?gQSZd0 z(>e1KqZjoZm69%Ay^!;yR201Ff|~=R+u*9cp~Aj4;-1GA7|AZXsuvy_6A+5*%)bTZ zxFV17r_$$-Xpkb?MivlnOESI~Tb3>u7o2!2GFsTXE#JA)~fXAn_%dlmCBLNAGahNo3e@A!&>IhNg!tudsxr9gYd{R=%&gHXSCH9)l zO`5)~!rP?>+tMhw0zqTTlVc`_HI)+OvCGML@kh=do zggx7J2ZZ`+?P6!IOJXR{Y);BWxvFm<5u3+N-nw|Q)UV*C901J-`NEIh`+*Ide)yXe zN%_ZJPHg`V`kO>;ot7ASG8zwizumG{3-#HP1R_lUuSL}k|Au3Z!fs#0Jm$AE=?~;B zapb*8GUn2z$2so9{Egt? zqV91>%w+>Puv1g|Sk%5Z&*JJ~kF2_rfS1papXdp&X@w7EmIcS7vzc78Uqns2b{hYx zq6J`1?nC~mU;JGNK)~yHyVq0N^WEtn3Go~JC=C2{@DcYFGkhvjOgKsqJ*l%EBLyN8R_x7$RxmEG#z^%$Cx#-gN*USDjvl+|W z^=2V>@8w{bIm!mXFOf7lQQ{ z4qzyaKuhlLitaCyvJ6;|@vL&yOn}^7P8)1$qP|xKmbwW_pGG$1-DZd-N+<#TT=Yw} zcWordpbdU0?zYW8@QV}Xs1gIUqEE^{%~|GmKLZQB%OnR}rJ*rHNaWr+W>a6j_ZTNN zhp}JYxY9RJ`+P=6uX#iGk8zB(i}Wok&E6TURV<4*wkMPJ z?7sD6zullqo^xthI~mO5sT5ULoBHgI6Sjtd{wk?h%k~itRz(YUq3l_JM*;g)$zj=1 zuvCDiVqo+QT3K8BQ3jCj%15M=%;JDm9l0&S;7&F`Q>(CuGkv%D7oXB!r|mFqvyM}* z%XN{rIuF|Two++rKeYn?Ouv%#EU-qVrdbj&Bx?f5Ky}zoa{o+U@5thoD1YLL`SJXi zeml5}^W=GKra?U2{FQ}oD#RsG7Lu9(HX0x<9e)ArI*k*MDkgybDtf_SJlm;$a_@w7 zT+w$S=_HH7VmoI?Tzq;e=jw2@15`U1O^s80b`0;zsZidaz;rfqqLn+`t|})|y)-!@ zuu0~Owv{W4>|U-ln))werT&U-PgB$}U0zv5NcocH`uirw7x!|mH07pQzm2?<r{@Eak4CCuR9QV=R{ zubG_f>By+2klzD+(b)6R%W6`)9ech#7GBL2=zgiJ_jqR)eWUnMOvKa$Ir4EIpTVjK zFqEf$?^mXfAR8znoH{uU-Rmr9?8*_q{U-GvZ8pjF+-(mw{n+(v+ z)T8Yu(Wmmo=@9FSgmg}G@s8c652e!Lj{13Sd0BLN-w7BB?wgT(I(l2SO29;Ek7a%- z#NB{+l6;#jZ+8#|my^je0J6&`zM)h!`@8xCq5?~IQv5JwI1u9#T)S`$=rEs13@HZB^6h&Y(DcW$#Q)r9gcTBVJ| zCW78Gn(85nwvLAb9X1@?RFYqpA3><&jEgTmok*AAQ1Er1?Xq{qZHCeJ5U|kl0J8^` zGIZ(8GRJ4ukmdljcurk3M;sG#qfFVJ?*=cjz?d3rLrE%FvQ7($$1>*+0KWig_%mx4 zb=trOg`x&fRI{TXy7x>SXnTR5JdF!(2yoYGizqt2I1=IVx;+3+K{%cR$_fzJmnEZ> zGYlW(5Qv3^p7^VW^P?c&nI-KIIscdToaMT@e*qaRCUE7?uS(4?DXM72{b8y}IegiO zi+^Y%CHqUq+SrWOm5+~31^6%gFdlsrkpQ7yp8@P)7kZon!_g|CWPdd4@o8UM0tvre zv&*`H3053rn#mg zm3EU5?Cl@)(mtgRlre=WMHXZhJ`o}*GBQ-Sn+y3Ii!Q$sV>imP7%7v8np8oeYe4xq z8W0uBzQ&ZBq66@d_X`FvB06FMWp$CKupS<=+zZ@e;F|1W7I!xJbqP;dUY_vTl@3rz zMY#qn%n)GI03%ys8?R^Y#2!}mq6Q_QndU?rO-RHbv~Z9XzH4^x!OI6FpcC?z^OpeE z5p31m38l$kZ58Mil%AsOA5{DZ@QinGUwFRm7HKy%cGmsY7RdPf-xT2v8~|iYo$fr{ z-MxAX;8i!$>d9McteGnXMKy=XR&8U2+au*6*}3yBpkU zpL0=rK~`v=cwm63a~y6vp=9yC%2`{TbXo4Us7khYyu}fq(*-j|fs>2*al4afDK7G# zz)rMu2XDU3ozI_{i4OUx7Cf62IbT*Oa(_xpyG62mVB3n%ESEoc4+oJr@B(~&7LigG z78c;gJXsYxvqWE>uG>V_X`OBu9?puKFJ#>E44HYPX6v-ZE9A|Tg^cfO`ch~`z?Y`D z(I?UyL=5Uj=2OD))+*)3D@JQwgGS<_-D~f2dzZfF^TgqTcZ}4nU@mr6^Ti8E{UHCf z-Rm9e{iB6E;=O)e|7BlBnM0W4%Gj7b)uK!~#l`1)6q&_@bHA^Z6Y-3wKVgi`)EUM&O#@ zO!a!3RO2hfYwh#4_ljtPw*qbjpD4Du*1pR!$e#J3CD|pt^2XAipYDp5bhEF6{uOVk z6(Wzu?4wva1h4H}?{HfC&&hB0V;cSSY_K=UX|l`x-?H%>x)}|tHvA@_NVo(p6K!_h2zX6?ueKE z#4dl5YD;%?v@ggATEXCwckDTDGgGNk+0&n~)^f#YerZ^zck#y(GoR{s&J%jh@tV;* z*H%LAVJBb-Hf8A7=$}gpNc-u|sBD)ierE~b^}I6IO8+v2_Q=uNthSfqtKn%!xZ&@Y zFWXmW8oU4m@&oEg1`bV+Fse&oj};X?Pe=B9Rj1Vi1dIRpk#?N8=IGfjm0z@@_rPj+ z@u-^S3)_y`L8p*~3#7y<`=!V;I%m2Y!;2Jx43y6nKvKPee70Oj{~|d{uKoGWUF#-< z=S0UACsQM-?gVofw&2ZHN8#K9YV;7tda}-s)bt)f&%$}53_%r4Gy$j$itLi0 zT2d1eF!*DW+ORQ=*&CI+s6UC{%jv}xxZ%JC%^5k zBQ%+My5G*D$l%qEnyNR|Z#t#x5b8c|-~ldnS||*zZXcn8BWQvfy(y#StrCm?#oW*II~kOr3AiO80^pLN5s)wl{3q_c5*jrJ zAcSA7f=wn0C_M1>%UE`xvd zvSvXx;?XQKR0L+@grW5Bp89&bRlUhzR|W@!GmX{;JVMs4tnnE-y!kcXkg3Ae*qNEe zwDEh{coqvZzX-seb|+J~8N){76mWYY7(YRV$tykL>L>UVr<32Y_?IQkSTaGNljS&Q@YZ&v+l?0O-}0fk`JJ5<5~vE!T-M-P6gpaIgx#hU z7M9i8Vc3^6n+gkkXSx#lRWKglAh5PebMvu#$`k|mh zn;jc&rQ%?CJeW1JBB+^_TT3^a^2)oEUnrK)M(f0}Y2x&3cY;B&T*?cJ`MAU3HOsR? z5qrdd59DJ5>AV0!B5_9WX=@JGpr)J_o9~wHULYgS>$rF}ww6Itw2y2FIALvF4^bdV zS^~)yCrn;d2KeE_AjYULgqnvp$st+QSSQYv`zeA34swi;cWe6y_ zNT~ezA(;~np6wko&UZ%WW?_x5Hk%51aH>>vQ7+A6*2@=wB#V!cX9{<70v034ixi_W@{^* zZcrI-HZ2Gjf7-o!y+NmD6XGpXpVK{;`QdoVzDlhZht;xp;L`&Tb;Dp19NZ@^1fMdd z8&WZu$lBRBz3N##o#a~+u=Hc0v(x1u=;RMAG0#Y!?v5Uf(pG;bcy_>AEdf^F9$v1> z%5J41ftnaYI)`b)O9;PH&2gxBD%|qE%~iOo*6Azsr?R7W+|OZ|Pj}$H;_|!g^mDi` zB5!I8cKeSMJ#!RzDm-)9bma2y>Mh3x=sdR>+38axlUwC`uhC2pPZBrTiK-r8aVHJ# zn;rBeKDML(va_#K7=Wb%D{&jXeF zbUbwXJhhQn7A5;iSAg0}o=ZPro!u%a|Bu!7=D`i&9C11e{p12YkzyW^@&s)AMd$OP zGD)TrJLKD}M}wYnEwatN@?Gzy!>vV^Zzrop7CDzF+gpqKPV6YN+kEpu3Ru}Pex%DM z%?Mo&Z{D5>(V0~S-w_T$1xvcQ$=Q*lQ+CT4+RFq`7B@CGbEH6MjVHZP~9jX&nv9c@t>z((Wgdw#~ z(ocVStT1eDoPD2T*$|74$qvN;T8T`7+Bb)$Q}h@S2YoZl(g(qIxz% zCW6ZF@=fGPVOmO3&}4-9IG1A8rvb<~UtKYodf)F?m`2&)s>;z}FH?Y)Gaex{I>IoJ z-g;Qm@!|2t>o4uoIK+St`a1uZD=S^KDrjX$T~AFpqukSby!96C$voA1>Q%{UFvB(f zV!dyoVBX)Y?t4Vvi=ihnH7QbCCxCE#`@C{l3@`$UNX7Ffy3#8*(FRnpl+<02L?|qD}S|sbw>aA0*GMwGOU-saY&sThj~K2>Uw}ybAd9TqC z!z$m&h5!AxF^&up)r-Sq^r}>i z%9Mv9q9_y$JD|Y^^ylSbBOpjjQ3|#wg)`yk;f;g*Oy+=iB9$5!Z-zFpnld0DSrg@) z6u=M#jWp&EXCXuU@uFIC8JQxOfvX z-}}Mf9dewuW=FS3d@Du1+ih{WvdM7nV}8H;p{7RQPb}^kA822u7a#8G?Ci`~Py@Kc z3kHIjwzf8KXB`!9D2bwQpJWItbu=37q)6z%;5lM|ucpfOVsAi{04EO@POiVN|IKkm zobp5E-AV@xs+RytZWV~smI~C?=TmCt##S0c7#4qXRYMRbc-CVx!$>Vn z0V!t@4-nzf0>ph_XE)cA+>ST9L7|_vI&$=T;9NmR@WM>S$~TW(y4J|-yC8%P@Pxl$ zd*AZz#Cqlc>08i|l%jcHG8=6qS`0ACOx@2F2LB>?uD;!s+gSCjkMX=eM|}8rWmau1 zLNu0>tLcc=H9Y#9(V?T`*pMH0B9ewHRrtjH^t;BbG^~vJ#xxM_7sO6JdL%f=34J@f^z+#ch)#iK z!hBr2MeTQ(M&F~sNzGT$*LEG3lxt7BsRSHOpFWLl{i2zh?&LQPPLJVvJG+PLZ_$#b z7j=}Oy4oI<{@}aSD}bb@I|U6a_rmP%xG{Q}>tl6`6U|f4benvw;}nJFYHxQ`I1HTX z)o5kv>e6;AKEIvD4JvPPb!mlB-Fli z!{OG$rHao#6(w^A>jW!n(fP%ql_j2F(6J)K^AMu^K{pulJZgNlqdwBR|0d)s*Pm0? zJvyWZwXS8(WXjDEbE2*_FxlatW3-9I#`^5Pc|LNa-E`oO`^bZUkn3ybKDUMk#BDu1 zfBJIV*$7qfbv=m(IREROiuq9b99MJot%GOqn4YcS%5- z#8U-lY@PgPFQj(U4IZYyJgsSZ#PCSW=d`qff1Q$l*EQ}m__NT~`dIpMUP^c4=xCa2 zP_ZFCh&J%L(-`xlXY^ z1L7xTXVsuhvTUt#-cxM>nY>_&W>Gg8TjEvar(`y=Fi@;9DNBn%4T`CIhaIb=P4n93t>i~8&>gD)8b?uCIR@};^Na5FUvMsH6G9&pja67{mC^KZ zw9x?uy9_$TJMow9W^|5!`oMp01#NA=>;8>XFYS8NPMe)z)IG|s*sh5|NcYEI z`sL`1XE)bwHh)u5kwo>-s67kaNTxT9X+&s~bZV7Ix%Ot1C-M;3XEv4K)AA4x3FGAP zMT`y{T;XTgMvSkIFW}#w_Nf1=-2?$C$Q`{T*dHQ-)xyVyvB3Dx41z&%{+dW+pa@7k z$R${DweQ`0TKj50aIq=Rw5-j8O6mGS+}hVqy@A&%AJIH|nS;Et8u5glEf_JJ-^Ax< zg^NKAtEee(S`Z*L`grO7){NB=kaKPg`4brz7x&sHBgGKB7h`4Z!0j9_MkLmOB*6d> z#Oz)h46y`?L59YY(gC`rQ+lqM1UxK}jH2AZlgVIX1A!tlLE?{Mg^^6W0A6G)IN1^c z1$aUhNcsG|w}2uENDacnGVv?Ycs%UAQdrm@89?I`s;GqGCn%7J-v9pM4!y1M_`t2u zP#`i3L)?9z?iI~)-2fcK|CtHVkWl;_069SZh7Qd%PE5tE{EA!m1c{J=cK*Y+ynx7% zk+}7rwpHRK-}Jx*5Em>o3Yvof!pFijU^V+Ab1BYIpBV+dfE|e}#2z>b9jpm1N_aSV zL5V_HQ2M)X0(U$>Q&jnhb6Q!+t(l(FF*XSUY=^K0VALU~qTnDeXZgUMZt{c!k#I8) zi(nX2_X0(!u@w?-IhLSJGUg!dAU7HXWRoWe7o5SVCY~M7VS#JlDZZO9oD6Ws@f)lN z5SdOK#_u3^j%sOF{_ou@?uVp(;*`Cs9N+1(t@_>Nm^WI4<4g2>8=ppsPu%CM@HW@L z>6Jj*jyn`T6V3A*dUTgjSZl`L~O%*Pzk=`2IK%R%^!v z)m)uQBv9?bjS<&p_;?KBLcvY@F6Mq2PT0=I&lK6q>bMfeSeezesh`i1eGLPDGVr*> zY_>U*0Bl0(oOoqLrI*RYGadx&p%=IPX_z-Ya(gplFrBynTQnvK8Gix+$8N(*LL-3R z?E)PL2c0#5K5&fg_^e1Q=RW+HrcVm^^^SRyCsMHA3zLr?&Q` zH()t`{YOXd+K66?X2xkv77dTs<{03`Yn46*}ch9}(RPH0i7yQ7KslJtG$$L+h1pD3a z@+pm_=#+2QnMgh@!k-#^A@!d@s5t^`$SQN$R`(GI6x=Scl8})2QZ36Gda7vK^E&lX zWm63USu4oI25=%e8|^<;eSV_1+id8PP8t8-DO#jRTQ$BuwBki@GYm_CP+^!NnvzYW zMxN{hYJYx0GY$)ta|oKD?i-_lxnefHwriWbV;=1|AGSkqw$pBk3PdfOVg6+H1O z91Ahmaygk8+)1xmty7vVUB_jhsVBp*1*a`&(RD(+oMm`kwkmVa^{2JMWWIJP#5wWC ze0pfa&Nv$ie#@S_7n&GEIX>m(l?V2-+4Vy#_Su3+5o7L>jke@5bo`KXkJI&u+Z(EUcz#seWv5s#$V2nNQVgsJ=V@#Sde>hUHkSFtu8z>oLnukUb8tjr( zNVsj;)bBV9YEMox5e*jB*-$hBX;#23l?E9yG9(tID_uH2!N`W9%&6}@?PgJM71c2S zwhzlDvt$tndY`g$06wY*7GWQy{H^I{0E~>0|&WhDid!& z`_RJljLx<(whG+Uzva+>(vr2oS^)Qg;)<^P* z@@za`e0r4au5mY=rzEOzGA020u?HaL*Mn-+rZz9O(9@PioNY0?Y8$n6w z>b=AHGx_5J!68=_dB9+OHlCnuZbr9avEy4w;R`%{Kd+2zJPGVu;4Iqc*~rgB2EuDi zBB(j=aS@@E>m&u_L=u(%NSol`!SfX!B*8E-ucfq-3QD6OF=;QVUMqS2}N9ZQJeGyP;`ss*h|`$AcMW5X z0k}1ZnBd2tXhMl|Rr?L6GKIhk&5+gFVjZJ7nnrEa{(jI97i()&ib}wU%3D{jW&vlk#0B%L0WMEB!2hLV zK}Y0Gxq!*he;=hB{`O9&TBWP!c`ZSfr=)zfJ-@A<7l4LG+z9rb`q_GgGc~kUAHF;< zTKQd9cR#nOdg{^Enw41J^@)_4wUz0Qf(Qfp24oo6uH}~4Z%NGYztulzwD@uNLQuvs z*k7#u`8DKK-1EF6Qp!We(|~5?z1&t9*x$Pzy)OD>H1{k3tnY1^t)3InG|p21VCyF>gYFQkKl z#_Ror^8hb0UgB6t(W`m0HrHC*`0G{4(arEKeT@Q<@T#?U{B9%O{C^$0rMc&Nh5Bzo zRvP+0-7NhQmD}Vrk>gfM1CsOi@0i@E_5k|5+6%L}nojrf#c72GJrg-uwWiSB`ayH0 zo*{!Z>;E~W8u}GJ|JXQw{nnwRKF~s11LCZTjMYYqe3Sk%qbl_}-UA_6mR+BF;v(^n zQlX;$^~(t4euKklQ!no&oMq}CS@$~Oc&=%mMCirRBVEs$cPR&6r9u6IiV)<@!+oft!h%E zS^u8LetEqOne}EG{ME{PWap@Ud6AoYMW@pL$hj>>3j@R9f(LJB(iT^XXKo5c(%o); zU(kZM%C|DQCLE9Ed!PLv(1m>-YrL+a(vqD1MCpZeyJ=_XKuK2H(gj6!IcK2uzVW8H zqnEo%E5x=vdcp&%?v9RnN8Y3+k8+P=ST2AI3_Dx16a~4X89W^A$rBHh_4-fdJFU+x zwjIWTY@akWwR2ZtdhpNUjFpAaIAz1~nzR7{(@$I?eYvw#G~oJg(5Z-X1>%|Ll$nR~ zyM;QMX%`QPMQv?2ox1E!6OK0uX@GEXhB86FaGQur${Q-Uudh#2W12f&^EIcZ=$#pD z=D$AEIze|h^LuFRqSK`=jsDQ>#fH(dS+(K);o-DR^)3?z$G-o3_ah<#;qp|o;!%!U zdVuqqQN%k3{_A0Xg-s!^1QdLeF%S0>PZF%$f-$&W-)bEU{*Pr@B2G*}siPFMFDz1}AKL)VPT)6m*A5`Vr!r|e9JFX;C-w&;E44=GuD0zBw4;3($!+cVYK z4Lz5KL9N5VIXgx+TOSoG!+ER>rhBgVrxH<_&0y};7b-)hQ+_~E32&s{#sH%@8N~sD zT$asGKvh6uCM>N~C%C7C{&1*yUcC z)!S4?V_Vuxzk6YJ6oj$#|_`QRpH!LN7jWGwPIw66y{gZ*LuX54;#t zln)A`y_}t$x?b@ir}L*U*sd0=Db>t8PFaSalL~NLENLti7P}T^U%*Yin6v=oQeuI)9k86a8US^LyGJaZpQrqlpjJ zH&F{L2tW_QfQ&0s9W0~BOC~>2OWhasf4``#VE$d zgN)yw(7&ytjHR)(^*_-yC#^f1zyRrT$gidq>yVM@k%8XD`SsTPQ3uF}gg+AShyXae zj{>R6Y&1Zuk z93sa|xQ!nJC^75Pp z_O6py2pWTdm?s08gmv6uO?Jy8yz5;@S?+=?w!$$MlmZ*7Pz|ma0iQ=HQWz1TZ;xpp z{ike@N7V;pRHl<62b&HQigdqSbWEnm-KPUIp9!9FuU4z67=yq@QkfALR+~~bp2DC{ zwCY#*n{76gcmL0;GK0A7FVXQy+OgXS@1=mC=oz%Y0>LrH5IWtYtLa&w zOFqV;)C;yIzm}c1NeI00idN7u>3B}VM`B^9IXtbqyIsL;qHYUZcs2D(GqG6Klc#5p z#DT%XAj1vX^D&T%&e_5TR-moqe)#$6N)f~D;I|eW8~Nm{4D|xI_+6Mif@X29Y(VHt z^6qP2R_RC+vk`&O<;hfLKhJ<<&3x!Je1;Ft)ssN>iDGe)xwi?xNp z^FS_I;-Q1R8vt{-7{<(jqmp)Aa{AOY=(6MX#c;z-a*;$0(Pq!!q2FbiFVaP0B7drt z^PA;wUE#&|gGMVWd926m_O8yX;^^pIkcekHk20+}|EmA@8S?<#jJC+a-wC&o>5ok? z#su&@f>DsWF_@OOH+<9r;KshMDXNsO>d3In5ylsni7WXR4=n`v`b3;K!>y-z8c2Ho zen!_ZfRiz<`|BdL6$ZFB0oLg#Tmssn?zZ1$q_MvIM4jl>!{;CC9D3ZAz1073=fA7r z_f@}e0m}1;k(YVDMe_#`Ut>NFL4VX+$7L7=gcP55`K2$wsB-jJeBld=RLz-^*&A8% z{1U$GFRn9wle|_Lb(A=XLq{mRHHBhMMvxI+#Wo1bP&&sg8xuOA%)9?u*+Ky>u*QAE z5#H?DLWtL5?j^!0nY*5B0#E>L`dz!b+;Sy5{1g<>^P;@8I95-kOV7%%ITIUHm|tU2 zE{+-`K@2=%Rezsx3q_7On$2YsjHMt@vmC5j1i0o~f*{yGqhAB=oBb2f49?(x*Ig9d z7MU0n^ye}tZ4&Ne?{eFK%nk+9o^#CmU~FO;kAgoiQ-}u?m?2pNi-CM6gfIyM%JtN{ z6i66U7J;|)(JAiRkSf3BvkiJ;fX*hiifD0sJ9;+LY&IQzkwxA}9njY-khFAR7M-F} z?qtfV&VHuy`6~8PE^csHj(PT72WPZGWN1mc<$Hckg*@8XN*3PofIu=K=9+LUsjN!E zG0h0X*{Pm4)F&84KZ2uTm<)_`(t@DEM4^p|;2UXzvU|v(+<|RDUC<`ESjB@Yc9~d=K>OXE&9^e9O zXhCE|hhuPHSz1KQXXPSVLBMF)^7+TeC>xz^THiLlkAdKr=IELXP|UTYPM)8KIOn7l zp1uqukr4iKz=B7D$N`JE?R_X`DxFiYQ${9120l&3+6z^oUh|*N(N5;b$KLue0l{k& z9E)I^OV|FGK;xU$p^2HgLkS%HFixd>tQ9n#NK{P#A{V+j5esw~07c=3pBP3=fGs1Q z51=2}pV=R9ib!A$zyk0n1n$OW=K(-rza3aJF(AYw0?24nzCy_mXS3kZ%HHLS^=_xD z%^~8+)sKIBCQ0M;aWKaB?FK1dtfVD~IgraOsNioKPEPGy9CkCOZ?FWc52Q+xIogY4 zY#ptvf~-ja9p68ua42%cP%&Xc)Zf**0P%-xvNs8&6fEO=1D3ux0Z6t41>(1rg@@41 zA^Oue33gr&(-{^PKaVI+U_qd8>fJ0^vH}up<^h5uyYfC8oyb`Xl}7^CUA#FJ9c#Xc zKvGq7&T(X6C=E7$tk5J?n}pz^0_g!FYOC&gZN}3L57vcf;NnS=5t(mdA0v&=kHsUcR+tuCm#SI z%F2B4pB_7&Kfm7Gv^wOWX@Gy3meXe_-4BSu0^Q@4(fOlo?z=ef+mB&+F#={KEf)B1 z2C6eaG3HsXQ1q`RuS{Idoc;4oJT5v@BYyPvP_Vwx(oyrrp~lBsuOfhM)qo(u#&~5t zTaJnt*h@yo8&-t77rq-U7lW|;-#q!Eo7H8d!=p*Y8q<9v?mUH_V1U8>Q?s%wZg+a? z%FkLU?aHbu_X4Bf>2i(Mw%-EXdsnWg4OHJ+$upX*__X!JZSU{nSLUx@e_%}JVh_Bq+%fS4Xn@49lxAt_YD4( zq+_)9IAgWG>0!om+|A02C!Yi&k@oR!!5g;wK(GJOL~-}Bqc|=GClD=!L9?EI8FHEH-WJ9Z~oM--b#f} ziEo*ehI*pl`M#y$%BF$pfZ<<1-<*P;-j~_F#5@$^h%1`)3l8ux5J4a0)(L?{K#D}E zvNEY~Ae{-bso|xh0*?XeRi&}Bmp@Uc&Tnygt z@vL;-;F#PKw?i>;C)zKI)BJ>0egJ7~PSqip%FX>79uByl%$vH42R%CAp7e&TnX!&Uq9+y4A| zsFs^nx%m3|)u-VO_RNz{O8wK9%I#gQ7t?$}a7*caU1Jr$tdjSE<}Nm2Wm7?^2lfka z!GFvGFv?c=0R|)2ZN$2;6sXQ9{yzSdy^}#Nr<}KIEDLq6xa=?0;Jja~udgkhp<0cu zj*RU1ajPETlU z)UIHovL1)%%I@>oOaQsLRg*E0Y~pR}GI{X0wev*o>-{|OJ&92Bc==8oUhcTbq!M5Q zaR^9!1fLB@fc1`+oSQZzLFK2UB?|si(wIu0M!@jSw;>c=3_k`BW{k7Sc&j}634p_b zn3#-MM`$SY6tR*W2{Z@~~_=^v>N2TJ`8dKkcux9T6C(QcAC^6h$)&S)DQ zynC#Mcr)ocbw~)j=n;7`DD{er)a8Qa{(-sVxAnvI?ut;#T`+ve5k~86CF78ZkZk23 zPD+$|DdYxDa90oRyX(_Gx+4aZ)J`o~o#@X!0iz(@ED|y7cVsECh74$)gM(MN?d@3_ zTN)(vFfmW-JP7cRnX;Odp5FqanaGfV>5(pe_57C^&9$t;kl(vJ&z}>4Dwp?Dqoq4r zLk0x4yt!Y-9^e}7j;02KkWQ}-x+f4O(Sp~b=k zvUJh+00|wBuOi#Yk~fBVnSm2u6&YM)Sbu`x0H7k5~Cs`1qZLH&@)Z}!vfo&>B*3vI+Js)MvKKpV$b!o_37Wg z+j`f<>obKbEl$0RcHc?^=+AXY5afuE@Ree7(9(#FSPUx@L%L6WzX=`zP!sTY(EDGv zg-75(FLw2%(vjFo2i~{U~Ai8Lt9Zf)M;)M;Jg6 zg80M}&J4mL3{GWHIhL?YFMQ|*`~@$npK-ROE(XK;U`z+^!?2Q5>ToK!_F<53nnlJa z8v>3D;oF4K_1{9{Ajc?_s0n=*o{Wy*!!Oba|6~>=!`=#jYldQwN=3EWu(oT`)w*M4 zfb_GuSiAv4;;~HKHzDp3 zHM%R(W@#WEF7;>DS+BhX2XT%|TQxjcZUM=LYbGZ|P%%i>FZ!W30Up;F0uc!eAZ5VM z8{1u@(9r)zKu}QS4Hkwu%4PR->%O2(lF{auOM+i1(`=!jN^>5#g+5<=F2A=6i>$VM=jV;UQ4O$NH zblCuncdVLw$bO&D43AMAJQ1E4eEn6df0st=+p~?#b7$!EDqlU0kAqd*)6%izJuJs> zG>sn1`^h#r5Tr0>`?soyG;zBC1poF(hMKGLpR!XD6Ny{UW@HuwX}&QY&VslRP>@!^ z7FSN)W^$8uag-KOMZyiEd#cy=nzrGQ-fG{<4BFL5?5^a)rIf^d?xnQzV^?6MjOcHd zl}DbL7L1=nBUB+-9n`_sC<43h`{v7!8G}c%-~9B5`=Y-ny3*nDZ*JOuYIXBPFY5S{ zCd=H|wDGDMZ52rz+_wIc@yzBwNua_Y;J|jqB_Puk)Z%8Hn8%Xr=^^ISTJwncW~oC6n`_t&G|0sc9D7;lT`NjG^K98 zs%HA*&(bg7q@}S3dK`A&PHh9Uk*lodnZ^^fe0b3s=p-W}uaNEIPpK2xZ zgQ1I(hP!MvmanJEUZiu`?P=IXyHB)jc6+z7rBEl46eJ3cKxk1x|Bef3w&4`q45i1| zkivnw9b5;rNYxiMxOj;8h%lJCiy2Jo)i;x3nxctWNjrBx_xZ;u3&X{Pc}>q=|M||A zqnQ9O{X_eBrP~JAU-k7}F*7A4?R=1r1u9MEex0%ajy$-K0y>5IW7&NJNO6xP-5n^t zjaP!x_5C-i5Q#U*CW&cVO^*|pDRy^Ls1#U~4Kf~(^ngOL^t1vpnI?EZP$b}RwXR&* z#JsE?+!O2Tq{P3~8f!Plff&1n=$#Dv<0Iw=0L~T%5|6a3`#3PDsSvI6 z)N>%2XPH9{f1qI?yF){ZBaxz!Ab^Gdfw)Xcfa*P}C7gZ(#aBJ7{bF-He10ZuY&xg* z=eey^P?uWKo3CVK0BChNsXV!*c$o|qYF)7k4ER)jy<1^dTFpT5h8K-oiq;n2OoMm!b{J`IeG#8CK>ZkMoMKif8)wssI;Xf<~P0XuhR zhz$M{jiO6KOzVa5f(0(P*W`kO1&(Nq;3s4;$cKT0#lkulY})X06OGZCd$2_E_D^vV z#gF#G@R$X~xi@Y*L=go2VI%0oTcf8-FJw?+aPS=g!0+4;9W4G#vc$$2qQg2Juehym ziWFfj_(fj;J=apUHveP#$Kr&N+Xiwc!I#S zjn*;syvgby!c|Nv7^vPV-4INlXdAxvWGJlf*s<<6iqWDHN~RTMWjB`=NLuzdr_q?_ z#iu*Z*vLj#^j=S^4qx%!`q^5$y1#Z|s&?bSlCOGDT=O%ev?%!Y-TVvE$&ob#?XOYqzTuw*EE#B`RhVcH^kHS)$I|mBsm$wY*HXN&TAT;=$z( z0KW?Bbu@k}#fv93R+r^`b{saML0sf3D^a>s!tTu1sPK$_l_0OnjHUbW$?n_UyV6Qt)sm7%0ZR6nKnvu=fH*(7VWUjxgNp)J!e0;ONkmv2%UQ}W;YnRc%x8}Yho=|I#r@4 zr|%xq5au-_xHR~27tP%{f2YL9(|H#xU)-e>_n&HA|FALG}HG0(<+OMFZ;Gw0)dO8%NK>PTxKLf6|4Pp_Y6GyL0lyg_nxtbCy-5{Y&G`A!-sFX@6vg{@D$6?;*H%^m zsBKWB*MV^y5L?Z>q%5(kC$x41V+!8Co8CNN+V3i01ht;r^&3R_Y;2+HRFw2lZJ&vP zh3A~e$H^fVR>}Hyb5*I7`8&3`OY!kC!obcBxo=?nA#^9T#h=N(p)H{TwlNs@L>;+i zEC38G^5a*_5Q&K%tKiHj5=&_qc@_@gm3N)~Y3F${o- z8Rj!V#~oL`hsYYTq>0ihk9}+6-cqFvB@_L|7%7g{xnRpbZ%PNFY|iK3kIq`l-aY>L zxOhFO(D6@^1P&|nEcVfwy^YpC#3=@Q?u19StRM~z)q{R91SqPBt=y~5YbNq}up&jN zOTe}l$EdbSq< z^NUjik|os3YHg$H&>t<$Q4q0%@)roXD$tcK_@(ICb&`#>Y~o^k0oY;2D16IheQfK? z$cVevh+u3cd^V_NbL3^%)Fes$tsrjJK`DIrz41m%k5al}mvs2tx$un#?hHx4n{!W zOr?=AG*6bf6dim78x;h+PC`n?1P}fXlnfHALL`A|Q2r*0$2Y(%a4H%|2nI}OKt<4i zO9Bk4f4k&lqEwl5bNk;r6iFn~7{q!mA(1HY7*&`gKLLu8M2V?r!~pM9om7H^UCGpR zN!iB!t;zJwpHnYGrwj)-{KLQP^(6;^oywLHk|u+Q$UwsBQL4aM2Ra+0&=7E*gI&uGbZLYl4GlyME|Ro;2NR`+ z8;x)A$kfM+NA2!9)kTPLIOynWklocW^O75T{*3zHVT z3C?#9dZl@YiK4F+w7!Al?jFHDTk4#?Yd+&=$diNsFW+=X=QH;Q=>IaY2MxFd?#8D& z`5@-xx9>woWy9+)*Z#UVGnyGZRh?W>#0j3L?s4pY^Kicx==zy%nHasMzaRq&a}ypr ziDYo6Nk*sqbDiVt93<3QVsxG%XqKRzlve41hU5f?h#$bIB}0aMHac^O_L=gsk#~Ya z{BWX8Z+~oR@8ik2oh@KYl4VQRBW1tiAM1Y9yupu6i9sEc5%qa=AV?n@VPEu#lFyhd zAlwXMhF#{jwSuC&Re$3xj}Hc$U(}sl&Q+FG$?|J{C6sQ?xh#9{ZA(*C#hSp+zwB8P zD1shI_5P&k()5#Yw(>i>9F_RVX<{%G^2$F)f{;%oa`If$vU3++@6p%SOuc5~^de_l zQxY**ao9e)+dJ3BMP9s9e&xeTOJ^$>#Y_5NSNVkxc{Wae)_>l!qmBVdM@b>w7k0R{ z-O_#V8&J%^z@#B5l-7f&hzUIiv-@hC48E?}R!m2QGkFxKmQ!z|mC|d13TvHKD<}oS zVQeZGE2p2SOiS*fRB~JEyY5~KGJ;?1v!xv(b{{{OVsFYag~X8Rd9#6z|MlOo8g6Xl z)^+{o>@scF*5gjtTR+LumAaYSHPJowX|$@GVx?yF(-?S?gV<`_8%dX_NPS7$OzL+@Pos_J7b>GMec3Q<#*h?rx7Kb~}!SD0`9- zxTq|=Hkm};E*Zm#vli1k*iOY34pgFO46p&RB$3>*#gVyXaT$;b!1V9BiR}nrp)#Mv zG(;eXl3rkvFNMw!sq;jrbOLBT;_^rCnV}d-NDRG=7NB7i$%GUlpg%$Fg$%AGMnoDC zWXRx=oa1W#aY$7d{Rdkpe!k8cqoZ_fnlbvqRv8rI?j44qen)r+{?9%QKVLGiCiGH^ zx{379j)fvmJu3EMcC(=f9%-8x{JH+9!XZzixkQF?Hzl_e%pKl z`}T6ycQS;QEwIANVl)VXk2y2Wa9X3h^ zy%WOC*~F^XsiVL(Q%Twm5EqOuGfS0TFkBzWNKVY_!f2EcB{(o7WC0w}%AX8Ru4Wf= zy5-owNsb2<=txy%4(=JFVP@<>iVGa@D}GdaShG3FnP+K6lx)7w^W7O)+y*18>akM} zZY-kiw#)L{gVe!FLrVGHk~IdU`m{KiO_WQBVh=lOJU9-W0iC2+*iS`>X=zECxg_l+ zN)zYWEdBXAk=<+3n*vxt}}1|*IPn^6;i z4d7G3CJ$V-L11VohDPJYb7SI>VrZTLFvKJsB3oAM_3t!d3dv0aW`L~@1QDc{!~!q< z!P!WJ7_D4{&XQ%WzkM8t(^qBWcCYDaV_;_vK>C2Lzy|;Dqh)O{qeR~ z$zXvD&^9sqgV=47be1$Qlx(|)#_MDC;lh(U0|4q#9AZjga#=*1+~Tr!-d)${9F0PQ z=pi!zuCnV4t9|Kw`smbjptsv%Nl~L$KW|mI7?_sr`q#f7!A~alAfOa_&V^5xqCGVV&Yn-T%YIpUGzQr()i?Bx$$hYgQ!72 zx%=wwg3?9aOigvs=K9d8(;#)T--WtXovJ|VrkcxWlah(q*0VzcPN^w?Yy1f4VAt*V{t+OPGC(nA$bDIy$-^q@AlPO9p4W z6`K4WXK$R)Hq$~-8pcj8W+t9ISzA_iJIoI@p3vh0DsG+HfCM&tkk@rkHFoY>OG)?Y zz``koCeg96xuU)2`KVKKDzAz+^*7hHMr>S`>jDZ>E8UA%4*pmO`5EcieHcPkDsk+^T&>sUVkrk zcj}Qpdyi66Tw&om+YZw6X!r8onSrX~;d4K-9$6%MR8CN%C)y_#!Js@(pcpf4AMF|( zQoYvTWT&m&<~d3inK@az*&XC;RAo?oyuYeUFg@z7bDvh;zV9uMzqsavI(@fuu5&Jq zcf)g9&@V!3jo4Cn)VR(ac=>9`A2Hv3v~tV;q(*BLn$@O9}Ux&n@R^Z`t%0{(_=9;hj`v< z_SP$3I;~t*evO^nxR>}O{Yi02JczmkjUIi>>YS6xwFm!H{tCWzP>?M6JGD~KuSC6BA$ym2wEp?`O>$pbQpSd!U^*vr zxvMev!H^J%`m67gibUtmSKeL)m(ngazjh)!9CB|S54|A1<`sV4^kT^CGz>;}tmMN6 z`O#X3FpdQRr&!wA*cI| z?EC4!LP30SauWC`3or}il?>t0o%P@o{OOIn=8~fN6O|V*CuNkHGFeyjg8cQ}voE_L z^9G)kfnIEH*}Dy-^a$jyH31( z;pC?bf;Q7J<`Dpf>14nd<3b0M`vd8qR$#gNlj7 z!{MlWB=83SN*z)KiF^tk0h-yj_sX!p&x5A{yXUt^K_ft{2q=`>N`7b{lGaaxY)+XK zC`X@zjq-->9c6`ZzCIcNr2AbtD+(y5aV%;0y$S4ei>Y&xja2Ba9L@r4fLmqf)Za)5G4sbarTn9D`08#`f23?atOZ+`=3Q^b4wEV z*rE_LAnBIx{BHrpSB*)umliS()wk?V{5Y^SfTb~^ayAYJVkr>X1o2wM^EAX}c5qQ* zpm&R48EcQekAwqDo}vjI@h%Yw?wnGR2pV`nFjCOD^91;*NLevDLLY5akZ80NVkRPkE~SgbsNsjC&|nq=8NnmV8MMpj=FbP!=nd9z z23tB5%{~6Cg>;b%(;-8e{x2gm`r>i zrlJaCSL(Kv)=%^GhYjp@i3PQpPbKK#G{M_2$?wD=A4BoE6LIp_rh!ybqg}HxJSNzz zOW)dSJomu(#Ffo2ouXG|_s#yOKNmhSxR#hc$nBgOgAi~HQl|N}FXX-xHW{~c#Vfo2 zaR15_!+}j4XozMdUftH$0l#4LH~jmZPCs@(ujvf{7o`GAL^-Si}LRUrgE1wz_B zBiv+?s-ux6+p}>yG7xazv~)g3A}Crv?V{r1T&v*3KK*)~rK3yF@88YTISbZhtM#3E z{emgG(Dkc>>jQCn1P0d8@9g5S7qYvFge(7CM?G7(HGIC6bt=Ia_w!= z0$2Xy^P^RV^!!=Ld7R_~q=l$`oX;Wh*v>*=KsBN+uK$>KW2fv<$Ur}GH^;bRKNCYs z4T}^>LUCQ)gC}nOZF)=2maeO&^q;$>+YZZnBs2o!@U#-fgiQ0I%1z*zbcl#j#_em$ zw9-5aaSQ$|CRrxx(N5pvsO)WJ?IX#UD4UXm*|txfJoyp03yHs%UrcI^dYlZdMjVTr zEOT6O@~K>{)i*_xcg`t_`!5jxvpG^)BdebgOC_1xNs*oTDc$JZ`p2)y%IK!N&14Nw z@x`CVT`iTVx9SK*1B`>kXSKB)XN(-O*nYdEFpMY^Mi*AL-!=E5n5N}Smb!3vNsVvN=lU5qclQzOVyVR+;dD{rX{lpg(2hYtf^Z$%=s5ypx%6-3aw5<8y}` zZQMkahnVLqjWeIVe^V5-Q^o{`BUzs(HPa(KQ?nGc8BJpPEYHI803

rhV$xrw zaJUa(Qv2HO8(jXwY$0Fi;EPx8Pe1^)4=rYZl8A>c!Wfu$@x`p6 zZqP#`bO!a-V6BNe0rvuj46FHWiUbVpr_BKf^Kal!g>v}KYA78dj|wddxvVqZ0s6oW z0@!Jf*r{EPg6gs-*Y(L{M3z??@Hym7_3wS@3$VjW{esP|ys3IUu!HJwuC6%-Y9{sI z`lV|do45v$-duYq;EOe*xOP$W4vV-w$fvFbXefp zcfAyNNx+eVQ|VN&xw^muVI~k9?jCM6-ck?0k4rqT0lmGRZ}!qL=eA$cod#;BHYD!PS#*R`43-DjV-e<>P7LyR}(JEOH-swn}X*!v6b zMn)zAQ;ANaJd*s~*&7CYp)i|s>2X>@{U;}ziEmwv9Z$R8D7;s@`6#<~&bxLN;L%_5 zEvf~juJht2LvOF7YxvYD0%4qTcY&pxsaPm zUw(8Rn9h_3GNWywQGWuna~?^KZoYOt+a^t=&yww!<^kFH*w%{ z&+w{nPx*-AC;*!6txdAM(k0Oug)I_{HfGsAlDd2-It@U%%2a`pb=a{C;Gz zqEA|zH|$lx$%Wv*w6udNM_!${eLJK^f!bDI#J3G%PdL9P=B@FmM?`zgl)`URDBKJV0IiDDx*xyMQ+*-_D@B;mphS!u8ZI2oubDuX`to z&xNGDeEBjV?2RDa{ru=r-l^>D``JlvjEoKMxR(B~9_h4_uq*B7K1`l?mA=$@(?2M9 zjc1jp^w=;|;~BG+pFF?|c{n-+ppXDRVWzO%AKTmVs`_|!GiV;0>$ps~>RJqE)tG;@ zIaBJM_Qu<|RB-~3w)GUVF<8p>cLUqptYuAa20f&H*9En=wdOOjQ9b}!H#VVj$5J!e zt3n{q(z=!_-0tNS>cwCeEY<6sYP}+4t9&K19g}N{YKjINE#0OPqEf{`4LIXkwM7;J zTwSaQqqqF^MU^v`AhZ;%Jvho%j7ai61!wR&(%e2{Ygb`@SUSul#UE-)XFlSGK2QU95)3yT3Qrk$|%z9MOMg!CU!=O4SS1MrOp60 zR&_9j(`{Oq(q_D#x+QqI(HK6`cFgtjno`wrZP-{)?P@}hi{J+uc4OFMAY^JTJ#s9ek08c#|2&abm!kFE4ZYv+VuglL51m-ykXuEz7;ZO^vmYuDWc zargpM2S7t9BO`OsD0wzp*90d6)Bu5iLgnMF;RJaCI72`LKr{frZ16lD1u~xya65lf z1Of$6w4-KJVZh8~3OD&%66R|0+c+%=^6jv1R=;u92pCcmd|^Hke_l!kAuSF2rV7?D zGGG&P_V+JmVgge3U#o2y=VdXFHO&#s=uh5W|2nu)y18H_ad@kzc1vQjFMPHXpTulP z%s{W#N?O&$qWSqAKnsEF3=&x@0R!R*m>a;xNm4Ql#9ty&>yiYV0}4t3tI*P;kF%M9S~A< zC=$-Qfu^B#Ep*jHc+YpEP2gfoHo+9mL%PS7SzS?!K%i*!-@1$l4EVq*i8hhOn_9;> zN`Z({Bv*jPV2g*02sFODeHJRj56J*8lZgp<9nlsYo_aeXf0{MK0*>7+1U?cBEn$z! z_roGA(HXX4!ozsbuqxOoc@71Mk@nqv#E^Ym)Jo$sO@$GXKG;>P=VUnqCJVEOA4^?742ePjI}B@=fbE$%W=P*5})Uw5a_ zXD>O3s^9wAK)h40GQ`wUwVk4>@tpMtAep7%pywBiQ@@kY)F>2EDO2j}`Nu%;76)5? zCMI`t3zDtJb+lBP98N8%q zV%})TYwhgm3Hq&VaW}E7yw*4gmrEXrfEuW)Yog(0{y{&rpkHvyzL|SkzrN$wq}%z? zMT#@`M^zvH&7Sn95}YRMm~oGsRN~|}9ff2|SX1HjjiB?$NA0}q?wxd?t4*+$2fQv~ z%%0z+6LsV;F=7PBB0}$;Wjo4*xgWM@3mhdZ(0Yj3{mV_G-!Is&u+pIaOyS-jhwQ_p z^#N0dixD=ix2&DUV4If>()*@U6Av3NG!56TrPgXjTt_$wO~5c}CNFeqA4tS-)^JrzbsLR2`&Adc)NZ|8(~RU2vm zPb9!~5TYWo3W#2$<{ymFyQ&H>OVKml?3`XMf=QPq_;>K4kPn7@CIYTD>7Gi$Yy7Eb z4bM>@c6H?TI>B$LyGAx;?l^ACYe^$~xIB6`cB#91&m9$+Ug~ql-ABa1pp9AHqR)bL12aMBzn!((>COg>e!xH~0<1eFBPwg!1ceQgw6m)|aj z-PI5l8}`L0~TH*Fgm}w>TrXDZucU z>gD4}Zf=szGH0XM9@&-dz?KMW_*=`u{s2PC{s3P4G|EBtTca}m>EEU#CipYysa`hE z-JJz`qk$W3Me7KiDidO`9(q+H2lOZb2Jc9XwsG3-meY76WeY+f<*hZNm2nGLvXq+9;l;+a-$G6a1aj4rZluYQuQ$~ouQO3lLe|C!y; z2fH2=2=&{-fnf`}l?V!DZAW%MUL(!Q#RCc3b%Ea;v_S#tB`PL9tKE~sx=28P<>uKB zGT@y7iWBY)nn_zelg;49;~~o{7S`o(9Y8a~SRjny)+(-1spae}9tqG3Ko5G^?U@aa zR35&gnP*S5CV4n_^W}r8Vn#+X?`aU8I@2 zhrvJtWZg)!n#@w>9uxKlTN?UoyQ-SL+@B2xRaAFbi!t%}DsO-n&D8=!z2;WJmv7hz$i2?@+m$}ExgARFq3Yk9XjeVCxI8=2 zGTJybCE?;+o3<9v!{ceS0FeqBl5-o!IHBLJN*IR)gcbIOC_KKs`KxQCW%1nzXMcjE zXCu%i)#(S8u6(aL#JCXWdv|t~y!REaY^4@h@HcZ@HdBN8_zDzRZuIK+ZzC?7ty>=l zSAg@)cdPs5!0+dq#X-tlNwmOj?we59IKBC4l}xVW7=_*_k&R{@yg2l^FRpT`;ii7x zDI39c?Y7f@f~8{Xf>1}RGgabadRp2Uta;cg!`nJq+n>k`vQ!!-4B}H~8+n^8!_mGc zYtSJ25R@%?e znwcIGcmDIJ^qmVwsKtini057MSXNhQ<75ft$d10^-iXSHS4Ku5x56gLogKc5Hc=0A zxhZQSjng%d@kV*+K-qDTm3Irmslko=((HwnPEoLyXv*o&%nDq)(+P%E^@4AeZ3BPR zcYG}grGzwE;ZC@@Q%8TEELyx4<>Ih#Oa)bgQ&< zAo!PqF{t^in(HRXCx^)D5BIL{pZ(!SDf#<~;~s7D^R@cJyN6%B&hPKc^lllDx16)( zwK8RCJCAm^w+!5|g#XsGw%C61`_|UZa-RQ`Fiq=~%E4B>(vU}n#J4LqC;>M?rc8Re zzDMc6aLceLFh1%jh|gWSKsoIn{_E#Z!uymlb&tl$6G7Wx9lexrfTiyj_-x;QSNVbM z{?HRjc5SEI@HXzPftCHo_<8<#Sm~Nk!@%fdeTN7-mygCl1BC`hCY0=h56#1ta#?3hrdNPeg|}JEo>surrH>*iuFgo?6)< z>}<}`buF>Op%c}ec*n#VW7|$}7rx*q>S+b~VQB4Cx43x40)03M)Sy`qXBe8CtnP}l z7#y6KOD)Txg4FrXD;Fao!KGCa;c5ZXm3#Y7HkiG=rJ|q$6#hIz#!U}5y8SH|?MCut z9ETTyZfu}i9Q*#WDsmU+Yl<&XD3qIllp#{Rz5ej|*dE8b{}h;ME%CWf8E7Od23#ia zlq3I%8_)_n-r^NF{p~tu{8cqR3F4F4&bOa;33&P4(o!Eh^9H;N0LB^;Tw-U?CjmlA z8r1)|~ zIfHi3-ai;Jl>jJe)7s(Sx?pUu@{;{QYm_2CwL7|v%+&-lH{~QE3BCt-Qz7G4I+~9f`ujFij^Jv^w zyY|NLOqB$!%xZ_Ojv9#02pM#UE(t|MS!1M>@t_BGSs4ztFPf20H9!PrJsijmNk8;D z46Q7tqzsJruT&t@n@ge+FFu|=I#aV`qLr3AeunfmQQX*gK^ex&l) zl4x%Z@H&yGd%`F>JY%;Boup@W0Jut?%ls*ga?i%Y^`!Mw-?3ESgX%FPnk)gye5E3T zdCSG)G-(J)Y%;)Enoiia^_wSf2bylzM21zy`TQoDMoILq`l3Aku*UH%qAW|`%dMHG`|&>}GGzcH>Bs>Se_2S24uBN>k0Vl+|zCW3L5 zplILE*PCBd0D-UwKZ;%jD!ww^ac3bib4)Nng4*zmY`*^VkajOoPy zrEDlTJpKSI+i|=8B1qq{io4_SE%A|ebxYi({_*~&+0!Oa-6BI1qi>1E<@_07&=4ly zR0E7Um^TpoXzCG_lw@2Pb>>nen*osDZ_G8^Nk&wXj1I=%GReRuQ(xhP>b3}$M zUQ7poBaqF_iZGfU9=)xc>b6fyO~i}kMr!3lF)DafG)(3!@cBid-o`WWI{?=hP6!e~ zdTs;Rytld{pwYz=JSm4%Rl~#GgwTI`rAhAljIe5_Y!0{H3J44Qze_mGsgDWXL8ff! z7F&xbNE$>avd-FPgU)NV1<4X%%IK`iSx8lrB5?BoubjWQQTZ_^vhT$3@2Gvd(PDnvOXprP$=sa zSXNz5xzR-lU;p~+l`$asS(pb*NjZFyIk(qij(=?dUp(+&Qc8t2;T)qhmY|A_^@Rw-++H&$X3qakPHHDn1irle?tI0Bt(hvyH8w4G#uZ_hd=R z{5T8`!Sn&U4`>9TC9vPYszt@HaVH`XpAxS>u+qJ14Qe8oP~<4-1Td&Aibyf6<=eUF z5pW&H)`RjU*zfowcYG8D+IMJWaFhI}(OHg~2@pj>l^2hu{mzikZwDA{aP2}jCx%69 zS4+3X{NzJ?HO|`HS zk%ashCDdybF{BmiJLxL}kp0mnPo+>{I0&7O{x-fay*akooU%D$yfmjZB7~e~0I4mS zSXI$^zUtuxx5ei1>V-5Z1fS;_35Gr>{Usuo$K@%Q&OC7=0ZzjU6dW8cj8q+f-NXHY z?!QzfvDdN97E6jnz_8C=mq`>?q*neBlcp(`zyihY0I#Er;l#u@4;Vt&N3!S+ZW$aQ zNn=T(IWi0>wlpkAlPo;l60hm6bT?B*6rrp_ov#N0ChB|)bopWgtupm*=^|@rOXBL! zRd26HX`&mTZ!csZsGwNlpUVF#{!8ri|0zH8_4Se0GX9dv)^w@YGLpni_;QoWyK|CC zk}=xIlQc{WPx{(l^YYKCvG+aj4jH&_x95QE-gi4 zR7c&b!~C&rHrdjYwaIp+wSk_a!~1+fSC?<@YnmqQY9Fi$nHz3%37?->kl1WXJV^DDI1@w zg7*!C&(6E7r)+Vyrh~$kYS-;Hhr+HoKi;l12@YB>JVVoRDl5;ed0nfvQK}tq`qq=? z;^X~K%&X$1lr{Z(CF%Z8dMbJ^UUF8k_;%fpFQ2n9`}1Q`tA|H_1i52sczxFI0IRyZ zx3h5CfR&{Ge&osCwtUY~5r;;7?{{__&rSO4(Pz=Yik?dWs$&B^o|Qws z_oG`|2F+!kyIiQpva?cy|0c*+*jpjBtWlA>4?xU*{07 z=uqe1?KTR=!Lx1?vyVdPffb;J0Y`C->bjy5!@ii)b>&F*LK$M%{j z^!(NJy5#V7&$%~y3SGYv9?$c?kgo17lGH7{|JR$gXhQSs6|*scYi&u`NDPZ|^50ruh5eO#_7-&XPtWc%%BK+%Pyj z_hzxVIUWx$UM580+djEIasUSw-CYtYx~ExEy((E;JO_FR+Q8$Hw=GOblZx?rIrOO6 zGzKCAIAUSa2;4o}Z#hV;DsmEm{@1p+`xcxAfGSZaJckmc>qWou^vpr!@ppZW=5C`M za&Y5-u#&$DGrM`D{6-M80IkwC1%PX2KLwn(-dbTqZ-waNJIx9jdEjTBxFtgNHhdm^< zR=6sn{825Q(jqZNRxm6ZE$sIbJ+Dc zu&gsHMb^J3+5NUWHXa;7is;Ksv|h+l(217X*ikMbLk4`@P2j`BMT|`T)KfN(~0G{_>?Bc85!~ zU1}V6UDc9A>@23yaVT9F$=od)B=7Mm7OE!uxI57>{UH6@oTcWSVjpaq@mLXCd*3O8 zcuuf64V7S?<>+l)ZU`e3SotO4uFja4`RV)PBq`wgIR4=H5g=bs?jPcTUqJ$ovz9_2 z(r9`F8ZukR0JI$x3XY+H*`dTOZDlZk+rN#zT|)(U6q{+ldgPy1?V z0>ImNwV7Tq6fzQ^1;D}Wcf!2Rle`^YmI4NN(%_thFu~$v5Hvkp!9r&DahbeACRx2US~mRUMGAE;;00xkfIk1kdjc{7M}`tq$p#Up2wthe2GNP>#HUw3!+ zR|NVe{kmRgblB!db_1~|r0L#wj`=MZLalsd<$R8!m<*QVIHM=tm=mBSB-NBy-pqf1 zb9+$@YCm=D!;QT@HUqdy^liId%dyqI5#E>_o3MqAdnC_HUH)9@h?m(`?6fog1~XR zj6|_$yAgy`H=UHVKdJX(QsYIECdjpLMeN{PQr%>@s5XV%N^=bOp=)&uHW^d zY3t4Wnr)Og{N=08o;J7q>pnTXDl>Fy?!GbB)l(a`Hk>H1NlarngV+&=Rb0%|VL2wd zC)jeV{mz#hP|aXYB3!d{15AUGB1iEZQbssAFt$Z#Bq$A*eW!K^*5r?Uc6eazvGeaC~n+QsD9ICJshMWlQ1>+Z45YVDM9kpdoPxwSBxp6gZq<0@yEg_xOj1 z5EA!PmS93U(85E5UYp&gA#1Tmi%FF|#ArW0IWU(_#B&gAsmRoOXh}8`6~SULTr&P9 zn$uszH={8)j0rhey5)xylflM7(med*hYY<)J-Xh$1V%5_az6gDUo4aRkWJj9jY>Ze zHouZLHRgLsFd(ER5^opEri8FZEoijY$`V0R_s#qYISY#Sw8fUddN|k)LZ8s- z8yWdG6%?#UDZ?axGXWS4A}|UqUFF`cA=o`pw8@Y;@LLUw+%}Ph?xB%1z?9KsLNM0+ zgh%>TMa@1wl?Pf^@OxAvYy~!IMaCa}h2nE>n1_U* zQB=bWm_Q3SpRY6u`1~i|`zTq~7*dqZ{d$r-@mfKFx9A1$78x2Bkl4n5Caxo(1OzNg_|04w`&%Sfkj$+QhFw9!9?mv!1v~An5xj)U2VwNj zgh>PqCC1dP=Yj^PVQ1#^V$%<{1gT!L$oMEpDVnvG<)aJcXZ%VJI;i&a$FkXJ>Ku5TL1@#sjqY z?2!7XdJ{{<6k}rT9&6c=b;!BNk!$@1lNbwELwT zulq5Tz*}#Vja0nfS;TF>TG)%1o3!^<1BSbAs)uAgz@TkD{Wt@!u@Eond)xc`&YG=7QwJ(xvy)b3%ZcmYwvBI z=4*vDJUmr#IMt8u6LeL}qjFmC&ETbv{G`rKsdlPU%0l=`!Qe`Q%bI4-+Q{gux`$+7 z0i&#s4>=jH30$^bZcg%C|83``)s}%L;q&K{ho`6WHfC3YpVtTX-17Gip6YFki<=Ah zGiM>DC%Qj*&b90I#kMV&Pt2#|Jo3~I$8e3InBp7)Sr5>TjJ%%FyV#=_`1^Y`HN z69Sz3j=x;%HXax(Hn1Er$W%`=4x7JTdI|6tCi48SHU0r17qh*L!hU`aIYN$yx(9rn z53fSUCZ44ZBfhRKk{tBS0FL+7BVTLT_kEO?ZnC#8^hgYZU5qb%DX!NY zCrI@Y*ulQmyR2UI_LjciDW9td`#C*k2O57RYBmZa0Kqx~rhYE}`rFUDeULxEog&7jypzkR*DX%I zD%g4Q;*XCXKTeIT^!AcO&mZMZ?XbkC={}2=fma2)40H9*CBEn@%4ZY@3*s{$E>UrL zEz!F10grlyZ<%K-3H2fzoKgZX|2Ar7`0abRN6T6(qM6?L-j$zVs4hO|moV`8O`N&Y zx!B>dUh>`Pl9FWaKVnWV#%z2mYdZK=!2Pn@+k2`H;gq~B^4;N*vDm6!rO}$xQ#Yvw zlJmr5_i}+!a*14MrEJ_@n3l@FF=aL7J_VIj%)eQc7HvPIzfeE6I`Z)!TdNLhz6GX* zf+e7#i%-q%JgBORVwjsRj<@!yBxRtU5x}7C-7eq-fCK{m0`1Dd83Gzxdg)s^*5GOcIz7G4 z@(Cg+4sHDP3vUuw#53^~y@7^lKET1wB94aSn*CKc4ugNKc+q)ctIuU+!DT(Vc55zt z-f(T>8;>U#Tv=AH-MBNj)iTxt?tc11K&RI%e4`p~RsTPl-aVe_{}2CvZKgJfSrQe^ zHnB=%iX2DMhVULA6-A0gGD*&-k#f$gg+(YENjf>7QpurAPEj(1LJ7&4@O%3HzTbb! zt(#^uUa#llab4H_@>+eX<@Dsiz)HK-T1oh5>$FqFI5f6lBnfCZis`ZshGBuZ2S8dNG1=(9-+!4U zhY#&p=hrTehp#S=JT18uOi+AJx&O@^s5jC;<$3jO1gEi)5?KdNhY*pCMWffk@nE#! z5jM0PtkPgqxiTF0Y9qt%zcTW4=6w5V|KPBm#ukb3c?@Pt1JWw!O$$sg9yF>X?b z#n%aihe@flNFd9gcwkJ>)IlM$c^nNeH7LV@GzE#_1osiXaFb2owPGv<;-FJB;DRk2 z9jm5KPMsB97V;*7>8wJiIHq5Et%ei!rdTP0z5R8gh8+{rsfe87V8(IO3_R5MC52y z`)j4^hnBt1jPjMek4T&Mm00fQG(;3`A=A%hOikVPSm%Fywt37Q!R2tZkBFJS7!KVU8>=~ zLAubyuSnx$C!>m+>UwTPT>`>wV`F{DnfgCJNcfD`Y*UVUb6>8sH?e(1^BJhXAsGP{ zsY>4gp2c=8bd56B2On?&oVr|p{>m1&Y>P`i{dq6bMb)y%_gs7hx9~+}aO>`)0dKxK zL?P2ir1%|34@q>Fz6QkxY|?j%0&uYWELd<-q(X}HIJ zyaz|put5z*y^BS_af&ePpd&P=08x-pCN#DjbsPJS?M`<(K`|{oraOpUZe7ix)oAy{ z>0((71X2S}6&s3`<9r~X^5>q~8bD~;>_MUp0bwlmzVB)h0^3d@YqCAhK_FLwM^Nb@ z*8_hxfJ2m(VQ@*YuZk<^8!3^`J4%2v{7QREV8(sFtJThz_$y>($&Us; zDghO6e(5hRnVs(5>#FKIv8vq?J^TqDYbfYd%M@v{(0zak0%3V27<^F_EtkI;o3Ize zG{Gg?U$q7KKv)x?ChGEG!BgwASu3OKT>H2xDTrt!34$CfI)McazeyRNeb3mT zShUB$fE_0XfGB$j02@}=`0^zjf|isv!UujbNKh@URV28g?^Y^zLXF{g znV5XWqsOxWgdi>xfiE2zSHGf_Q#IF(eBzB7zJixP((hhAh^#2vQ8p7Oq6+_g%t|=lrqX4h?X6FD5g4z%^0ai0r3wo&xR~% zkoUvxN=v2yah?Di>R1-L7ZscYIw=ZI(7Sc6Xw}h4-85uLw}S^nmHk>me4c?%a=~#^wuO?sZmBJ=T}$h7WZ$A&OfwU3g=b_p>Kr+CkBG1 zma1A6LZ^1^DK0sazcPFX_pz+k^_+it%cWQt4DI@D-=kn5A zdW&_~zjo#IrSQe9S0SM*BW;*8ykqs;V$G;k_*!b%+UK>mPC-6yC>AJt2$)*3No%aM zEGtu+y6u%a{6Uzh|8+{)KWyTCPANSXH#0ZLNF4rDY7tA=vDEqH=0|fS#bN^KbiF?vD-~f&Y|Y=*vRa+AQJXHN%>)(3v+?t=%%8 z%RaY0RjBn1lgKu<8Q1dId^IE0z5hm&bM;pS>~|jMW1Q(@9Ju-Iyg^!0ue1LPZuc#v zTLxAh1yvJ2e)xGD8Bq0|eZo&xGpx-FnXy{!373H)(pO)c*thMwLu;l%@ZYf;3;lbq z>shiD^tXQ*2{h2vjn0ngzR3OTe#V?QI$E`)o$ew0)LeA#P_#6*MTtUmKj6##40<0K zll7jS`Z#JvmRFWxXeF_CRpWkkZ@pi%8L{`JN%O1gsQU3?pa{(r#RP=TjQE9P4>80V zkfjzf1v4*__>Kk&YOSsQ!xGs#_ER2C4R@S57`M*qAmZ)60oBj*TGiE9*83k1257$u zQdMfWc6vldTywl-=i>`j&HywTqX>rLTU$b~UD^ zW~K+n^{k45VSvQEc2)0V)Jh0Z_KM-2ocg3- z7~L8J+c1&=K(dpf;^2PJ+BDl$;DLv^ngzTL#-t@j!QekXZi{(tOOHbG;&!2sm`WGW znu2S2B4ZeVbxj&mJ+BEW0k->t@)ki8M*|^}fQHmcq@fW8lV=~l%LdJpZi<0aNw*u_ zpVSL(J>bxC7Jl`Ek`b>yp>bTBcP2sQc+3dR`0o&cz@&h_2`h*KIt-N2dh;1^$*ARA#6(9)tT1aKKaagl$N@DTjVR?+9~=RO{(^ZuDy6(ObNBk8XDsiUtp|81|N;GGloP`jzEpmWF;VO*DVTK3*Brp7`iD zqnXE1^xwuw#x}^0h@hC77fmUM&asjpV=1F{LE>1l{#zBMCccf-cff`$c6Gnh;75uS zF7e?}i%eS+2#4HxAAvoNfPAL(h1#F?WiPP!Z^i$Zp{|=W(+=q1aEf>oI1%M+MztwQ z!3Y10KwE2$MKZm=$YkBV1B08XO8q>q!hyR3w&@8|#N_)#cwfzeW6iBfLL~o_LZ3U_ z{(5A(_gFIBIWyP$Gx>ZB-xIfxsae`j3{bskiKFqQiJyH{`7&A%_hCfa*Wi6r z6&E`u!F>d5^~{Nu7__r?GT9~4)U~v`=JYfmIN8XZ!%|d^UvyY0x@1MTpXCXTl^%2P zGc!ef-F@cMKeap4xXoX&vJ>s|Z~d;+JoBik>9y(%@hJ;0sy!-fNe77O|9df)_sT0N zYmzpJ;6eU)5SUkirEz)vcc7SUuuZQi>Pq+oiMV18CO3gy!`T@bD0R~M5MER^@t7*z zG$$F0`ZNUU!(5X9saL?kX*|5dyV{z-=0e zkE7Gkf!F3_u~H)EHe)_F9!p<$M>P@W}J}G%M^RcvS!c+I-o7hg{qs886c!{wz`lM8X zcJbwCSS&T#LRQ_CnRe)ywITwp1C^L<$DwiC-7%LN58a-as2L7jocBNNu_`$QisM3^ zLO*})_1-D^W5I^*66a##CTgTk5=t4VNf-gQ6bxWFK~`~C8-1nbxC@=EQc@ncuWvW` z`#$8oT}C9cCJT0};ab4%#_(UQA#>|%n`;l>#-o^~<>~3i=}GSlBM5c`*ia(^%U|^? z>q`LrH6#FbkkZ7*T2LVZ(8KnFFU5jh;5M{vOo2u6J9)M`iAft$fT0ma7r?=b$(sZ< z0NlpT*{t=v^%uc%jSr+3z|z;=oG4*LPC9MhY>|U%vNf3O8{90Q+d`JWZHB%75nP69Kxe4*O>GbGG6^iI3S^ykmfNfLKF zOGi728jaq-Rgm)c-_jPX>bdWOAB*K0`|ZK{_haYK$LLe3$5hd7r3cKDUiE?b?5bW? zaFTtqWccEnXKVLs7wY^6f_*<)9DXueQ5H62xVW(PYyDr@dh}HF0?r1T7gJ`qK5{4e zRC~(ITuZ_5(z4!MLeSi|`RW7Bvo@^?{~c*j9Q!e?zEFoLHxTSyQr8Rqo0i|dd}DR~ zKJdBCw0GT!pK!BtHusnkX681j83r!?okza&dvx;)V?i=YPsoVw9$uAn%#g@?+4HKB zTXrL{>$bVcUS3(&*|pBB@cCcbt0N1B4@ozB-Tl7PA2n!nKUi2>b7#E1@n-&GVld^I z#HcMi&H}%AA>~UqO#o$ltu9ase%9+Pv}Mn*KQ|KjWe4ZWMt?3}57RG^^lEilj*ZR= zp8wMly~C4nd8xl3eJXTO5$3z{_EMH0Iq689L(;*V(Tz~Sw}8%T?(+QK;nVw_LV_yR z$Cl^&MxW(&hyPh?w93@`A~APk!SGc;z;yTUev&TehSCnyZiN^OuQ9jn2jSLWr?&L# zQWnS@q)%9%1CUKeAV|m-UYr9`k)~|ct0h~Aaa*(ZoaaclSEYTD|3IME%y&5^$Toz} zj9hgLvi0A;wm3cfV)@4AQ@b$drRqSNG1mnSTf+{S2go<@z?ywRULt+T(ompk3@-t?^Tjkc}1|2>I%&~ zR^gds+32g;vC*HuyUg>G&zQAXXcgF%y838mI-PTJ%JQ8ZJL_)JMb@xesP8=&Yz^;oAc*ZpW_uHZ_0YQ=&pXdBn$L$8>#bS(o%nfWIpwhkV?+)3D3dC453n!7J(6(`N(0AW5>^H}&sZbgRSEStBcjbD?v2 zuV(K!{S$tCS$Xo@o{+@{5$CR{O>VmS^H7WDU9LWGO-s#m*pIXAJ!)ry2SjA$%#Lq* zKeYC1Zfopa1ZD%`b&Nm|Dq@)kkRgJiK!zTP%mQYt4d`-=E-1A`n2=8c&ln7g9kK!G zNfv^Anu>#H7+3@_cnBwJJ8D!#0k8~sP$En^Y7ZU&o&V%1DgwV4*!KNXgu^LhGzxgP{wbzhXjO1J{&!@4 zjKQXTpiuQi;4n1WjesOGdA5~uWR>H_r~ktstRY~bD1oD3ya;%rROEkbE(~oeyc=i1 zCd!==E}~xF=YFtFYGQG4_xD4HPd4E2?2p;RxxlNE;xYS+E|Jwq82Tpnd#O!Pc2_SF z6=M4xhzk0^cZZ??iHbF5=@MlJ+PeE7S%8UqYHLPEs3@5@D_s=@W(FhXRsVyRV*p7vB^YyE8D= z%lzJg3jIDWL!JBn^`j}MK)KSKJ-0_`A!WTn;qI2LW=P<^-!D-gWaTriZ(^M-7tutR zY)b?8cmf$HkEs1@kVX=xI3Is4z=I)l(V|{OLO9~yZOMB7CmFs?{f0%&c6A! zi$9Cn8;0_ZB8=ewxe0v|jJ^ufgm0 zk>1|k;pcK+JK`MP+B*r)?tdg<{OPn3PxGP}4=dY}A%~UyRU%I7fMg$79KXeZE>9zb zXK4;WL>Yazkx6vb*VkeI3ms?5w0bZ`bKwRUyorK42k55o`e#>&d)`Fjw4yZaS#!%+-GS`PGYu^ zI5MwOU(L=>h0QqV>$pe#b~G_Vy%yX>X^@npvCY#EXY`{;1~)?sQs*AjGx4rLQFs3j>#_ zd;fuxrVSJ|mMlgJo}YbB-(5RBF>vB?m3)J9Q%rgtkwm>WeXZ8XUe{`-b~Zlzsp`yT zwWm(60(z9n0L&uSRW2Haes3S5qVymEq($nt5~h^{|BVfH>~t@Y-ib0B`d}ADcwPQ- z`}?MZe$lk#?Ckzv4|$Mp^XZ2fvGk2Gr&wGm-itW}{j05lI9&>9UO`G8YDxGc4}l6x zW{i3fEsn=8Nsx8{VI;JLE0Mo&I-z|9QUTq)uvN)!dZkAND-JS_!L(O77Mzy>Ch1b+ey z3kW5Y5Mve%fGaCElRKjK=&%0>UsYRu+qw$QOFN_g*XIes7{V(JAg`mZflH9#f+|%r zz|4wY=*M>euo@IJYjJ$95s+0ja_-|bs)Za4i7o+!rHLV576sf-I9p>|ww&T|I$$O; z5#JhyfCWv)pM5`Vw5o*yJF!X;z`L8j0+K6(3N&X&=um(Um6?O<7SRzk!TQTzazl!jL7V?L&*1x5$v?L348@ z0FMUuut~e>wkIV=)V6>`)imzByXP4ltUu`cfrIr$PeL6i<=c1sLKi5Gwcj5h(0nQV z?3kx2jru3V;KcVIxiSQe`zrNGjWgAnxR%vxwS|)(INupnK-k)(k{1{@wVD(*F}1er zUpw8Bdg-{^e;tdzdxmT0Kd%)!t?GtP`LEad;|Y&oUe(i!EqO_tLw&;P@}vEh=KHJ; zP3_SO4D?wX8ZJmo9j>?&5Na@B`Aqbc&VdB=(auY)VozEUKLXd-rBges)XH*#ZxV-U zdOMr>HLGKn)q{QYZg(A_?^ua%Zj}6Bof#eyy1H!2bu9|@C7D+WIX)(PNR z$?5x}I~DqGZQRCNSJm@O?kZgq)KDLO6&|dE)E(_QFXDL>JepdKh&}(>a0%)n@kV;` z=qp=1?w8+gt-CH$0lsN~{QPwO)Wy}B1;b2y_@C*Py6CE`u$guTFN5PruJ)e}tFAii z(F>pZ`{(!jA9WK~tBTcXrx&l0LIQmL_0JemvNwA%X6K%*ez#hGcW0)fcCJ6VurXSz zu~XA9_<4A!4>V!!Wl+d?mdm9bG98IeucJSL91oPG)^)$B*z($G?WP*EI2m1Lb#OCO zbk}>gl}-F`Mb^jBetb#QSEsX+zCI6U+V5U6J|=y~r|yYTj-R&|K@w^M7~;o54U zx)QFk3Wi}EDSnE9RpT(~e4pj>qFv6pyh9GH{SW7CM}LHYs7yg%=53}*8rQ8JB(5HO zvezSdD~y_JvJ4J6>l;s~+c2u|bhidyD?f|aW7xr_2C z3XGKem@k~^!TK8()#YKKKCgcE(9~z_?IfPhy()Gz|5=li-V#;|QYrCQK8z(hniVSD zoSFU&XgmbB5xy$f%isxd+P%4J@W#d(X!5J zC}3`RPO}yI*m+$~9v^IynLE=#FN3*E)1GjKN|ry^xtK zAw=S^8%8XwVr({+Nx*LWBMW%>VaaGD_?QV|?~_PGloi_0n6iifcq^C@Fp0%sA($x= ze4e!EV3rAR{v(-xP;8L#%uc3>K}KZgxDi3r2#W;mmuT=HbS@R*$&rp@*pN~A2_q2k zCnz$n&Zvb9`T&|$%KXRRspF3qHo*XKjDQt;s|@;KjD>gtAb!1z-%sF!T1*&nLz~IE z&HU2{NMk^SK@bQSv>grh{pjcK`eXYG_Q`?uLu&W z$k*g-=~NXXiii!;2_?TVIKfk45(UIz)mv)Xu5z_inVpF9g7kP z&}l3hv5jmE!BEVrRv7OSSkROAg6*bB^4|qMg;zglrC0YVZ3# zG6s4RyevgB`=Edl8DyXZ2|Ot_jr+hB^JmBu>^*bAQ{ZbDGZXeIjhUvUCxa9hcok-M zhYEm)I?YTrwc_YcOEppJ9jFdZcW3?be1uA|t9Mkpz1yRHeBxNXw=CyO^xxL?`0zpH z@Ieo!z?nC98YPS0{nQIxs4`qESs&gL@~3@Vav*dES*Z$XYzF*V=mXb#uN2)69>)@% zAlt~N%^<>={0|KJhXW(^&5Q#xFEd6Dq8Lfhe}n85oUS-!&_Tle?ynzX$Hkia_ptuQa$ieRK&92j;0wnQH!@Z@vWC)A2w3+2 z5T7zRf-4Tq>YqB@E33c6^`xpVjL&4~8~xA6=|gZbO-)P|TaMy0%8o@4%0VZR z!nwh#@K}W=6IC?2Pq;N^41_$ukkQY9pDs8N)xPaR!Y}^u^6fGVAx`N{O~%K@7qL?Qod&-VIrdz8BcQZEH9~*t>z5d;Rxl4O?%C7(+d_UH?-*q0wTvUh?d| z1PGp&)%f#+rV2O1NFs_v+$l4ZI$ont+D93^;6_lz-EWePm3BMpI&yk{toLr<=-nV8 zHq%Ltj=vT8c8IG!!Kdwg_BVH=xO#&>y>5R_UcIVk?r7F(QphOozd@(b;nvXa<=+V!h>kcO)l0`HDVL z{Mb#zTLDZeoZXnDa6GD_;wY5}>p$dEWQ#cqe%I|?z*Gnh$?-A#!>)jK%ja-GQ(1Dp zg+E?(63iVMFg6R+Ns`~nYl#3_;w&DtJ{oonThh%mzS4^hVR#&U<9yvVu`D!Mw&fI^ zJ+=u*btWBCr@ZgFwNE$+LsN zv;yewp!$Tlh%i(HMfD+ZJP3}B)deHU!v7sOSZ#Tb%U)*f^b{x|y8~RdG&&D#@E{C* zWQ4y+Covi#cud;3ws`p|;pIZU%snX??g-t54p(7}JQW0H-o1urN(s9n0oG$CPgTg?ppj8x@@{ zbbfi2D}72%&a_e&1sOcIDm!#B=!EC(e{1!5vNWcA}K{2U<{x3P^E8jcC8jMhEwoHaFzNBIKWao$K~t3 z4`ySTnxrx-bsP+|IcWK40S3ks4cJp09@G$lQX4^k&Iw5NvM8d>j*tz=7cXVhfJUPP zi4h3p>B;pc$w?GNoDxfg9woGp(|;*5;8oV;c~v*d5-k5#x(1d(F?9XWRGE0f*!w%t zwSV`ouRU7@xsyq)S4;oU@q{M9tNAW9n>2=()473ui)Ktsep0IBQ_0a*!^)87a?iXj z!OUlOG>!}Amp@%}$7bpUR}v4W^xxHL1f2KPqGow!&8g;pe*)G9-IoPj^}`d3L-W>R zWs{Q6p3X}?d$K%}4P^;X-$R9UVgN8U()eP<6}Wx%g-&K zL?WQ}433c-s6NhpCeawZGLbHM&_E~CQ9h|x$8i#%5vo_+f)Ckh!L==vZ>YX!o)~`y zqBbK+O3!?S62a;b-iBufPw)OZ zef@IH-McG4!WKsEXdV1DFWJ97Hh+~}+?U{Zz=(8-$Gx1Ny5m#{$9s28N+&pl-iHp% z=+*z$ojq%Be$ZFtSf8s$ysKO}0HIf&N=lINtQ{~2yoT~QDK%Hqw6SFBkNBbR3)yMhM3Xs`}yW%5-oM3&AmO@Zo165qtZLUku58R3wKJ=Rr|q?NX6Ge64O_cZ`){etU}kxF zr1sylwchYywY84cke`KFfh(jfPn6XT9zKW&uR3w1~N*lp|ft>_o-$+mnLI!{@EEWwZMPOB8fGRM_Vgkq)ESZS~ zV+jUBr7j{+U{40UH3OxO3jzx+&JG;?5rlv1I6H)r6q@>k(7^-yLLf?@VQ7C7qYXb6 z74%h_VU;2@$p}$Uk^(AIz&7fXb=dAPDUVK+Q0FFAn-8INa=tbOd!$Mv4olSv(H> z`=k`r7?UU=W@dy*WKqQYGe#!4L^8XIibEoKJkHC_c663d9x^g2;9yy&sZ`KiMgj8x zT$U|I`d{1~`lc8F6oVtke}^ndIqh*I;EvN{P5shXl1~);QLShjhSPyxhz`$7a z>m)Xt2G6!NV?zBfx4lgiDs){k(ykn|b|S%`$I|R*AtS#jLu^O`e@x#PZSo&ORGJ(a zDRiS_F5E?tx!_jMLSXh&nH5wl%PewJhf1so4}pfqMpacv(Y%w8g{-auxrDPRKk{nV z%)>`g*Zy5P_-i;i)l0AZS7GhSq~v;4?W&>WZm0FNGGNF<|M@ofqh$_;j`6Zj5Ag&7Fa}Zz;$VZvz%!W?A|R zWoV9Hfrn$rQkohMPV^3HE?hWrVwS>Izro>x@DrMB1OX!BldBcX^j8YA~Tm5*t>>PV?x{n^Bn0dHh2tr)=sBx^*4?i=gh4buUcWb3Ol2aSH#7v+Js zHO)koF zjJ;GuT~MyPs)aFia`vum53XvR@N7rszAW#eeQZZZE`_P&x%V^tYs$vX6zuB3xt|^3 zcYp02s;|-wA{*}&Dv}3>fs47-M=bvlKUccOv&_M$=D69)gk65;^?mgYQ;~@!vrP%~ zNye)K@j#=Sm3Z0xSU`~?QXqG^eU{1fPfqZn2-tgk_UTwUr=n;fvyE=kcZC~iq7o;W zjVlIX=?v0QEh%&r`M3-F;QdXJr(Nv>5R&L zs`QUY#&dV_t(U~b&9ds^vRAF-wLI&XL5xSkh8LN|2X?s}%f)^mc)IezAxpv z-=pPd$YkP<_k?7|(n_3&(Bj6?%yaS;g5ILw9V_mj=>`zJPtKlBt&s4o;&OWM1l5@! zZH3_P)q=)h3wxsLneP5z6AtY<+ys&M;kQ2S4wNVbI=b+&4nwLwWihNz!Q~Zl6B4m4 z+Kkfl2PrE%c7XO8n`e&a=C$7|3|jI)ZEJIeT!{`dX7?>c8>wXOq^W(9_2u1hQP!5e zQAV^WZ+P~J%H;FL41qM%0h!Woy%V^MZ$-&o_BF#E`_Vg9v$`~z)#{a9gUk%r2HiK4V|RV6;pBKAD!WqdE_ z4yLnr|FRYusoa&rkXeEz+nqlrQ6=3*PLVLe0gJt?7mU2&yLX|R#VhwOJbvQljtuZE9KzV9?xs8MV$PfLHIC;b(=s8}c`&Sv0G-B^5PL_Q-vPL! zyW9hDu6w=r+bnLPYQfRjcLW?PuOC7H05X|ho(|)f2-%3&0yjD#s)=I)loMssd($41 zo2)TN5gV!o4sS!m_&#E6dM%6(_D=m2q(x#*jxZ45Zmn^b3qmd$HXh?Ni61f$pj1`_ zo20cTAQaojMu6z5co~sQAom(z1MjGvm93tRasz#@{#FdshGv{4V zaqptRQ;IPB-+8UuGVJM}&8aIbi<7JR%r~Lt!QN@%p`q1j4azGmbKaXu3VsaM1gFo) z3$tpf|IOxDja&O)8hyt2T3Pz^5uddR!T`thugK=<*i?dY=ui}Lh|!p>3t?I+no9iq&6;Hd1M$8 zQu}E+Jan(3C-?VXH^!fp4j&w8EE~TZI#an}c`y4_|$8e{J=Y zQ|Y+q%Cxdx2LA6I~PUh z-ioX94g)_S0`r44{*O!f$}dkieFhMqLzeuxyY8LEhtVB1D?4O2J(-yM(KUWbExxB` zEy2>?vF~h2f3yxME{=`08+&h zwyXU*^R0J+F|qn{{8IFfHv6p4u4g{eZcWgST|0M5&9|&C?F{ko1J|Ru%hx?*8+Jah z&{lQW`F!9?{O8irAL^|yo`f1GT$1bCa&y9uJ?d;w+TUoeqI>q~_}4Rmr2~6LkA1&K zBq=1#Xk6L^F>(jr--vhL4aJMg=8O(%Px(6lg}SD((J5rywC_v){p;ORef zhL%>NOxe{-j@=4Nf6IqP{&YJ?njOL;fBWxZUs}0el~@O2IgBcOLtt@MKbe#6b!1rc z_NA3RIti{`WG@C$ft(u&6c{ZGIlq1q9n++6AB4_Xf+wFI+M1cpj}f<)JQ-hJ{`I)T zPg}TqWccNQ&n(ec!QX^WMdo_4Q>qx1pKWNUNJ&j zQ3VV#7%;$q2?tQFBA5_dvr``a7UgZe(Q@yFmbL_tc+hr10crhbQfN@U;%$xvT;8D+ zm6&oR5`AO$k2YbI-vv<(#QO=x!ldrhlX0CrqoZn>a|&QVwV}jZjV@Q(u!@0zJ_ysx zz(7J8X$tC0%8$_i_35n^h{3=HpMh8<%6~(T*#tVt$e1$1;4Xq9_=p?;vNRcJbli&i zr+yI@!l?fK`S?sOFPTXmrkc7u?xtOiU=i6M--wQ|DCrMIxU*H-6L=7kd{55O#Hb9* zGtoZR_8BbyT!427yaMuT0F04J)}eN2+<~kTFoJ+BW66;ansDCKU+W^+t+~;yaU296 z0aOdqc_e#suObfIuCvA4RU)DYWQb~WtHMZGT`MvYn|8+7j0$+i>D*ov6ba#OM5S+u zVQ~O?S^Z)Zg+e7oDsS4$1DX_cm&5S3d>x)1@1d07-b@i zU_^!|UdNMJEQBn|SQ$lBf|(ha2_F*hh(8EDDV{|Hld>%;N+r@1_>rTMiAI=g0VP>e z3#s#-Ck0QWH*8ZUxnK7O*`njQv`CH^3J$YoR;0_}rNxGBo3teW`&A!AflNR!T?dvZ z&CY&j%QiJ8l3uOcm|E>OT$}D49j<4n&~xtkdWQe4T?gsO&sqPLYG0jorgJNLy}X_# zfw%DxdouaF-=Ivau3oasE%6sjcPjboC;R9_Ig+I(>gXGS2OywvMGPDxsJ_F=M%`0|6%W9$kv>6uwpa;G8YVZ z@(`k=I~q4@V{b|y+HN@DwXF&s}pYJ2oMO)!3f@Ai#__myn;} z@$|^#rsh{BBbBC>!%?NCI8NH8gYsyk8owkgeCKCxgI8}E-|pSJIko;Ry7pg>8U_A| zN+HMYC^7qXuO>T&IYyLFc;-&0DQLwflhs7;!c4lQ-p>;I`52K;>$u z_EXQ3O3ss;@?C*v6JUZ-a}-(Fm1t+~j-8~O6vd!Tx+XHGPoIz}5>Mu6DEgn`spQDX zfs%9ybEwdHxA$3fnevN{-z4xs(ZSnsRgreF0@`IzSZ$o`T6SG0c#6+aXc=>SQX;W% zPF3A-x5Om>gz}-3d$fH@6l^k^rg9s}dbGV6PJ(iFz)Z*6!Krq<&+QE%hC{12k7p1F zI(=fXg5NdiN3r)nI>vvhM$&hzopSF*$#Y%(hb$Zrs3WXZM7cZQ`5fCbAHI!$jY5NK z>a{Dbv;7@zT)6RD?XBFFLX$@eQJUhuvStp)%t-S{7WXHezgQnu+ncDqHk6|#9#*<* zn=ygvPnz+5#QgZUQ8R3A*45*Xn&`|9&6Pu&H=jBR#I4 zc%|mtxdB%7D}&jXk`iA}g2Ol=Skm94a0?ur%+~my5C_L5T1Vz`kYbvUf%N8z9*av= z@=W{9$YhXDo~w|@gWrI+EiF$@vs-Os>`B?g#dDc@VHwJ1{;hyI%Lb`xDjG3BQ8L0vDJp7U)1)AGzV_>G z2U9VPdvbT-TrPnEstBd-Yih+?5S4g{^Sf`^i&2SIgov`)!%ZzVmkX(H9P^UCI@f}K|K!}* z-R4AvW4jZ&wb|rg%<6PzmZzOkE~kJu3}> zV3c5KwdU~xNUkN>FgfMi;EXjY1+pit=FZ_}P?=U8op1*P=l7UKMO%tg0R#>BZKa5a zl5PW&e-RrZPo~r6vnEnLZhmZmV4}gdPHIsbE zxxspEw=_bJPun2&E(i`%C775vpz@-xdU)1fDaQI8z#(E5f0wIoPA6|p^)H+Ur~GQ^ z$%@Y9QvUGfh{C#={)S}4`d_I%{yIl&Htgma!zww4wY16{>%+ZmGltGzy;ockq?=vL zpSxZ#+5Yloor7@S$F}Tao1N6UfV=~Y887=8= zEuJ`g#VCKid7Ni^UBzhrq{Q0#bl~0ZQn~jN`IX%~-h4AJ-we5{D6;q3>1(l+cFIys z)hAo`{@g41H;8x0=7R?+Ak5@n!2z$Z$;~Cv<(3$7^o~c72VaE#3hI zM>z-CvOfWh8{D1zfRAkbTAgRQ?SH;BKY!D%J5eNeR(Pqq_zgW11aop5SKrz3hfWTk zQ&0Xfx3SuGet4sk4-Rjez1DH{#q_MaB(>mYd2$BAIu{mR!&QQ*Z!`}_S=Jx`+nXv&QNZ4{hHSG zkCYP%Gh3HL%a=+3gGS6M=(0?X^xd`8KJV zrq4XG-Hx9gqtzZ;m_ogMYyFw}-NnTYSbu|b<@=hvPju~hkuL~zfKF!RGY@_5h49ww znak2)0hJdAx*kHY+wxYv7Isl&R)+4xg3s=i$2@=g3HB<_sX=?VZyKVsuuzt>k-fDh zx%Jm-YqWpTYEC~W;#ZKbHZ`Wx5)at2=%@px#Co%2jCH*EbiLWnx@YJIzw68D%?fLG zKc*R}0Z9AjmGCP8$Ft{0HbQD=i`iHqzeY~*QAoC%OpLpWs$LHXmdA_)j!Yr4Dh>>j zio|h@J3}}z{7|Y-*5{d~N#9eI@;ihoqTZa4MGl}Bpkb|Gyn z`Syg)g;g&U;XR{vZ&YW2>%N&wrd6+wY)tBJE%zUATz|CHpFA8fH=A8jBCNkLJ-jhm zkh?WKHs%c_{usTsP%sy^2Cf4OKRY+ZSEn-@H*esCw%#Q->@IVa4SCGFCMx1yN%V-2z4KVB`CPq236pK`?OQhdvdc8LB{oBH}h(00vVW*^?H9 zqE`dM3k?C31DN2W6hZDh1?0{n_JKCU=wU-8Bnkua7_j$q0N(|Hffxz!Mk%TY45Pq5 zKtF7U!c9huwZWl~{x38yKnH8@XuA)$QLyN{`AdFbi$CYBKe7iHlO09Bb)h3$+rXd< z1@4L?9`I;8a9oc;Xb&-ap4uftPpNEu`On_PxD=6wp zpdGodayA7dUjVT80lmnP@1PiNLGSP}s9DRFsBc3NnwQXbFGI5KFK~ zgDf5cl`jXyfF6@Vkg!@>9jqznEAcyo_n>Mz4v)sB|7u1o<^YBiw(8E15p&}CDLP~u z60dseKwk7Yz@eSfRhHSaU*)W3bqzqn&?ih^nW4n!dmjPkq~GJauj52+kUiSthLo%d zq3mNtUv{T+vnL*sPSDc=i%Sw2eXa?s-koNvdnl3uuJ##L0DE5x( zzIW5TQ;0cW2pO4(MsFvg6d^FYNQxJDwt&h29jOw51RdXF{^63pZkgnOqMKIi_AjvA zt{oV>B6M_5*I5HRU7E4i&?DLXF^JW3Tf~)a3dO6QP*vQngh^6E?zmZLpVsxC;zvXpBL4n3 ztiScs7se!hN92p+vs8m&KIQT-gg{#74=;*g=ec;-{dAV>bc(d<86?<+(Fvr3|N7*R zEP>X+OjosL#T4s>iQ|mwn10bU5L+-g?F3}nyYzu z(gkeP&EZ#3oiZeYxqJH;g#uh2R=i@q@K;UT@uK7?XLtLv3Y%C(N`N{lcrn4NDuvMT zTcfNnZ_2It42j4SKmn35#CniIfMZdBoD%i+wSlL@uE}F(9lnKpwI!Lvd^i^c_}B3w z5HJ+Y+6Mu@=v2^=L!-Gcl6o}KD|qBOzNKi4IEu-H$8%|45(=M~ff|-GbuKZTtSr1j)44Xlv8e=n;GxjQ&{0g)QT;Dt4dBQZ&=w)swE)XTLPthP~6d7G8CcVrN&<%t4?|QWl*ZO8B43Yry!KRxbSF9W_nnZ)9Nt_`~ zHYOje&2hmlujLC}soqNAnN`EVX<$ETYFhlSZe?!(Zd;%;6)YDLsBDU7y|fz@f^pfO zNCmbcY!jCN0a-V4)TqsyeSnZ}lB0r-IhinaiOS5k$VyE?A?SIn=i+~8oC8ixRhf`E zX#^VQw-fSi*bA4!yx^hSAKWHRgn$r)2&8r!B4XQi(G(P*ZXlwJktj$S3X21Nv7m#* zH#K0J(kd_aex=zYIovmF;qQ2x)8kss=6G9XlQmewU4=bMf}A9B-m7umsliYNT`XYb#YDp4;4*G3LqpKv$OCZjNS+;_b&-*v zn8^r>d*t?p|3}oD0f)lKB=m*&ZSWK(D!tVLn3?{e_-kh;9vl$X51cCnk=AQkXXouS z({>Ob7+9J>`X~%du7arGltEEZ&b^wD(pxS-OV9`F#1Al^uxks4E?+U2$H@X=jL>S51eT$?ID7x+NZ(5w&43N#)Q11Xzcb&k6opn zMi1QtRIh{FXv|_9<+DbQg-LNCU6K2_e2 zxh92VX1^uaFk~6f&&Ah*-8-gTurQms4^;&E5xk*-*jfb|ZS!};%9vI7-?%Aq} z$7wBN-r@X>Dh2!dycKXH{oCK0?<&8xYr!;odYQd4@obe*viB`=W~OPThIhX25c(sB z`w9FdjA`>XSIQ?PEA-w}ZNJn~PVQZ3D#@OaA8v?v9#>R0nfe2etYgHo zo2h)5w}BZ)>{gP5K3V`_1Fy?f#ARjr+(i7f)@Z|B{y3`2Apsboyl#hBi)h!7Be`kKez|T3}tI|`K~{AayRu6tk@iL_NbN`jiU8q z=WvjwO@yCc9rLn`$EW3~@fpYPrN6Ug!o&67iWgUUoxSjcM~{ow}}e-Da=(dzrK*N$hm>c}VSzGoqND0?sh z`D`+2w)FZVPHl3|@0MR)ejB~rl4?FxO#cB@Tu5}EPvw9T2wrFlj?tRScvf8NM6a2i?&7YZPr%vf6_%{sOsd^cC zIO>LEbdBv44sF~S8KfuwJhw6QL>ZXUXShiKsD%FZ{L>HG*Tq{V^1 zJg7^bPwu%a7s|Zi^6*eT-toJ0Gg16d^RxV_DQQX{@9(sRPhF#a!Ms#k){HmP{Aj?w z7#RCeh z!>-iodv0J7yaHsDUh(4u1z->P5(nH|RByS=l$t$nBfSFn#VN%&YN2a!Z675O+*M&{ zpNn>+&-Q(OQU|%!Aw#LJrDIuAvB3?)v;5lfa!z<{sS)Q|aXBXgAckdk;>?T4I^gr3)a~Khh__MJRxcujidiYXFa>Qm^a+zlm zEJ0`BwEp@~Rm0l5+PV6LK)ZF|+nV~dkQuQRqF_H*n|Y~_Vu%n~cx5qG%`84&=6FZe zy?^dFkX5s}oBXZ81kj9J+RK52&yQz9Soe@7)*=9g1QAhT98mMwN z7({v-8eqT{1i-aG13lrO2{K9rFu?x6#f@LF-#lw;URk-hCd_8%>TS4RJdXryt$$Gu zun~zK26*@Iec(j-QesY21U|A49=+uV%21Ss{z)Xz^szmX4vwA3f1UQkz?+4cT_Fd+ z5QqRt$EVnoTrosqeA@^_APGrv36wVLczTcno2?A20&qNCTT#F`hHNUP3>CoxxC^+K zW8kWs1WcU81IP=p1Gmx#_c$MHKa9q>6ayqz_M@KflsX8^O3=Dc1<`6j*F3llMKCmF z5TsaxfiPGaWEU0(!QfzpOyaaIcH4{5{VKt>^HW3toyblQAtr{N#s+XmIHe~#qKWX} z!c1ou5(uFP$Zvh;sONxZlX zTDCMKHeY_Sf-jLuram@{#iYO!n`x;QxAO{FajhS24<={=0!>kxwjww!3c%9vG6*E{ zU#uTuTnx8H(xed}<&GesFvvG1NXRFaCV0*ekV*M^e+TtoDkzOW;0}N~JwVt`V-m4l zmY@&Kg#;R-TN7C4qFSOi4(M;14X@Tm{Ndg_?HFRmZl|q|cSP{YwiY{%GzPb<@Y>Nz z6k!+|HJTw1rxGI&MgQ57gGR}Cry&tR-X;|9o!kcx^iRni1XVF^sD1M;QVlvRFs3@4 z?3c*V3{>lz$(nh?G|j+v>@KkC_6oa7O@WMrYRx_xVMu0DO^ss6x9u>>XXtPxG8O`A z;Y^F8#kA7cN(N^jia@w3oqewbJkxj>dJmEXVkrJMFFJO(W+ktsu#^ zwEraWwqXkVL;URmsQDZn>nroQy{n@*_^O&%uSbXF*W1UsKBWkxpqQ%2hoaHWIKhgq zx6b?SBQe)j-&N@?PnVY!&u;QcByBz=;c1N8ey3Sa{qGS=>#NsJab%NI3;Q?R>ZW6( zg0DIKe4gQuu{t$3&am=)e#D?Hy{6_RAF}26`A5ZL9m2D5)1w*Svg9VY?jm=7sXF(v-nS9=U!C)8#?6uNlf z0`tG1$E|S*arOLw;Ni&&GZSn6=WOndACH?kXnd&1FzViCB~e10PdUYdkzt^ec(oIO z6nQJg_zefWvD_S0C03hehY^qcCUdlY6|;AS43Hzz8F;O-L+WQc*-C(UdG* z)RQCU_Qau1+_xwTEK?QTq|96_eU+dpCQ1T`bDszC)R>!*HzZ^V6LL^ahZkQap@d?? zNKu0iZsXH*>`Fr_XE$HSN-&(_B-9L9HOD~LUaZkgw|ZMk-;!QNX1l+7F_KF)esT;A zs6L;ar6d@yY=s;fzU8R(#kRMR58h^<{hWVJoz^nN{H%nF{n?DhViV0wTNza~MJ|AN zlxKlgea-eV1pOd4swlf5zK%yS7c|YH=~Jm)npJW3i49V*&Cd2^Hhxm9unODPL&k%H zpZ?DaFjslXRlYc=QGZcB)@{e#Cl-6F2s}1g>;|;>vC*e=Y4azvAxiERj@8rBZ3nD_q8o;Rc>i-h0 z=dmeI{A59A3LLI3gi5}F1U6Tn$3~zXmXty}Ud0aisLN^6EvO&mY9pTof<|??^d5R) zD;@v7od_(tP!PETml~u2s5f>cRhy-l5}8B*)rBkG)`XA`R@j#bn11MfWTkYnJwc)q zke=~M?%q(5V6ezZ`EaQ2zzBdt;+H2y-f9a@UO7Zh^ZFp>N`mDVh=c9Q;;y7PCD1+( zi4s5_h=PpnD;zPd1|&I*Y^pY}w&Ib)s3#$q?V_Q}Q+`nRoZ?yf-yG~MF(RE{sO?jb z`)#Fvy1r_7`OnRO;qV1suMhMs$KdDfBv8Sg0@O!yAPh^ER(w(o6b%AZD%8sfp6hmU zSA*Y^PKOYvro~=m>CUFaP9^MYH1njz0wC?wA4fyN?I~`yKe%eoE#gS{hhHGfpM8 zD5ZQrY&TA3L98IgF3FE8Kr;Olp@{UdU{nYUVN}nGBu)L)=y7_i>%&b&0!JMI031+1 zb&05UTOgV&dMWXzk_ZT0F-Q?R8I1)2d>yN93oOpgV?pN*{DS!}Q6v_u(OcWw5BrT$ zQ-b$@B7^Q}7G4UGZ|1V!jml!NYvBQsa45N$%v8l?ogq_6+8|$pdCd-v#-u^edqt&H zpRln#r1vZ@bu54`m#9lz2Gp`Lf~qTt&U7utj1gU6KE9wSeF2+#+Kh5%KI@otL136$Z5-dR5fsMX5jd~Gm@9h8y(c; zOJmy`I@FBjeFDloyJwHA4%YR6y7RDO=L$}D3;r0~o~NiD`;yQ&$ZZ_7^1OJzG=8pl zqu)97#>OREHS5sw{)oTj9qB>dLEh!bHLia9l@+nW!Ct)0u^G#-zdvU>90z%C?K`-D?I$JvX?ub2{3M{p|`m!7om*^f%W_8hKog%RK$H z#ZP9Ap=V@0FY2y7=z9*nQ`^8rMrdF|V6}scX4P?%BRk7zxZf*OK995HKkd*W{5(@Z z2XM3)kFtN&Hg1iW>8~wMjQ91LL5@xq^Q;^OFTQEyFWqeG^}4rOo|(N+Ua@aLb8Goi zUv5MYpF2=?F;`7Ld~(|CV+npL=D5o|rxEjj+=0VJ9*Hm77z|#4xylP2GwDv5Y5E&T-2HdPn%64tQMi@5 zy~XTcmrprim+C2wH2xapSUfEBsG$vk&vR%@og?(;Cfq*sVep)RO|99t4=#BH||10_|_jvCa(#z&{gIge)Qs{^FT8VY(%2>URy*mQZ#^Zc z%}IYQpgTOP_+=7W=#1q1j;1D<%IWuh7c> zyGrW}CXAT%9_e6rH_R5-Gu0#+P2s_tp$oqrIfkuAL@aU|=j(^JHijPvty$@>fjIqd zApe#ns{#hn2WPLH2%j973ta}Lu*Q|C`I`*j6m8~5EOr8L*ATC_H-ECb%yU{hgPg%I zd9oegY`t(Y9;!w!-Lf`k8u`PnR2M_gG+U^_s9sO)!I`gE#)y?h<+ve6RapO|!fgNT~=>Z}hrE)ce#w zdtmQ9Q__t=0gOt#23b`UE+8NRW`k#={=F;^LKj6Peg(?{K~(V*P}D=$G-wrf12{;P z+nOoTivL^|Oy)i%U^@q0aD_Fe1PCD6a)~+`ZM`2jb(xBtgLwsTRDN~pjvUBmaTLN# z)L<;tP&0kB**y7b{UK=U)rS~aX+ScAmxL5RSh(UCAEr=bGPvNMKYi~%+4 z2MvNd3xSS_k|A(KXuvjL{lL`J0{a-~aCx^Isw5%`V_BG?05c~FOe|#-M+lG`;LSln z;g_g7SR_1M6$chDt#Q#v3?@KJOTfQ_gB80}`kytGd@tlIDJ6R7l%fb|Ry7gPD2Tj) zQ-TZV8p3Z`M1o{2ZZ^)M2m@@^x52>~f#KYbZb$`f6K8V-P?phRMCy)6IN`pEa@YOB zPS#%)GQE(cNfvt?4yT&9>qdNj@yJ;Cy0e=-TEl{q>Il?ZvrU z%g;sWSO7;O#1%rsY{Q(ciJt8+nWs~%aCZR4&d}j$uyEX44Z;2Ga``r_jG}9lM){e+ zRiC5b^_bEI|0Y zGKUlJgim{-5O|UZL~AEgI!Z+V1u2MpA_l;1;Pgrd_y^ee%eoc|y}|dL!f2;2yd{T* z+(QW19{zY-OBo`T)^kP`|J~M{ao_G)4BExYWYqb@pq!AXwp~KD+f%A8Id5Oc{{M-8 zDDB4O!onK`KLGNIJnI~``Ma6ntSlaNKTumJo2_79+R)G+Ddm3p53RPWxvXWRpUPkU zs}rmH;>Pb3BrnN1~VOF0?g? zsO;8RTO-y=@YO0PJZJjT`l$c`@l0Y&(~7B)W*SxMhgTJOm`M(G-(xM;vdf|yM4UP# zW}Z|SOWw-MwlkQKqj%noPoS7Dih!Nfw7~XpCGkSewTmH694z#tE)Jj^#k|(EV`y=U@Vrd|u4_W~WMMVu3D7xr& zU0i~MF5VaeQeY3wlDz_u72=3A7Jx-`J*ze|PL8(3mZv+r93+C{>Af@L`7TO?cR4e} zzBKk@nSMgg>hEhuk3f1UXW!HSu+TT1Fn^TYrCh~;onMvm(p~tNl&2Lb{@SwWqdkT= zV!hVec${GrfV&fJFOKR})tpNv1RUbJKFc1MEifw!<1O}U_e|SNYjiA(Xhd3!yT6o* zb*ddUhs}=ku5dURKf@cf0*KW824v$DxJqlBw=5>Zc}yD_@t|rb^d<&RWcC*vGAYPr zo+^xM6-VIo(W0rM&{h^PB}PdV3y4hu09PV4t8y0ZwK<~Cf|C@m ziqPoJKr6sPhqVgQqX;s4=pg>`gQ{r=hGZh`VEgM85TMmj4iwyiPWHS2Jr%$QRh93H z4FAxrGZX+nc_u&dkhc+KODl$4-iI; zVMIKg3q{=y!T1To;RJA^+KGq30;57!_CQPl?+|%%1aXAj#&6_J1T-#i2Rs|XD;+vj zpeflV?p%XB@$>SZ0GIexwH&y6$y|u9l}?1T&#K@;k}X{Kw_{vgNd8tx19ch|hWVhC zr->VysaFsZgO(ME9}u9MMx_l}qJ6Wd0loo9qf(5r0SuKwEqaqm+wsKAn53Gu$4D-Q zM49UhK43{m`H(6uT5sl2f2BHT{tlVJN>N zou|1OUmK(f6edbp@eY7Gt_}tp-@5>&kipSp7-a@@9!R+#EqLIi{e*f1T)9#}f(kU9 zj>MU%6iJnW7Bo$dQmgL4U`A{BoW|)i)?xGnd$IQls#1PC;=cz3qYrG|9}9 zFqWVpNi$?=MN)sYJL1pcxPQ54NqH|VD}JqZIC$*AT=;UQ{)(AZfOP&134TB$uf?`) zb7JXNTW!1M?r)VrHBwZk6VKVVlxDwTi?W+IJxjGGv<7a!-B;Ea9@enq9-Zi#0~xgF zo{^j>>R;Fx>2BW)m6gv`<9EN7nJJjr+2j)m>b};09dMMb9AK2}7ErI^kQDbCCWp?f z{@pMWzO(vH(yF0h;MU@UnS~9fBv$rpQgL~6*9Du)VK1{AvQ~ctzJ7YXWIQ||u%X|q zg_g6lu;df;@^HoNnSAY_Q>XFI%%wA$UP#Fvw#ngek9Xgwm(>eh^s2BAU0oc%Bbi-0 zrN8#KzhI_(t}c9KVxO??jc-=D`i*L%*_l@yIkTIik8&FU!Pi||_PB09s?KYjYxA+g zVSLYqh1IrM`5y)4yh(Lhz#2!P&aa;NeQRA(Uph4Y2fu+g^1?|iYlZ^?YK_tdtszn$!k zhpx=@RzIhs_FWSdUHgSMo5u!TJSqm&X;1P$gN4Q$$b~pF8Y$4 zf<1(kPBSYhdFOg|;eJmi|h=!(G~Lw|K0tij@@(YTBx>^TW`HYLFQ}T_=&-Z*;x)v$@QrE zgt}H$Ky15@?cOrNDZ9gxe$ju&IZMq;{=-@quhYt-UncF6krwTZ-8p#$wDMHVN{?v> zx;{42m5KEZ_y#(B`}tebceZ#P;eS>-!slm&_0|jYSDQGSDXIZw6&VyFb%IuvTYNLR zfStuGa%rK&gEL=oAv>5P`Yz;if(5-IgFM*U)I5ROInQ~b!9fk98xd4BP{AlKAEgQ{*dK0@*jQm)_nf^}4|`bg=|XTv4fsKF#ThJ~ zyT+v~s=D7}zpRN&^-9Ok&Gmx0t;Ny+z2$W@LqrC{2h{Z>NXfvqh(pE$efm+c9 zxqA`d-7&Tn-wp&xBnDyt7B48b2{I)8g+p13H>+oM_B56BUKePKanM@;oJEes_ZabD zYmSi>6*tB&tAU69*~UJU{Zl>Q`TWbYfLw|$C~$$Kc^Mmmddk97z=e(i$_By`5c$^| zMuz}eafBAyFE9 zR`ds@@&xz|7it=Qlz_$MpwP)I0>$`nOk{Jun5^h7fG0%+i33zF`H7MU5^&=`6Qop9 z_PfSMgM9nV)cQx#32YoHB^@pjz0X@6%aJv7k#VANg#fX?+6?UVE##mNnU;89%%Gd0 zQjv;Jq#U7y(KtTX-(VoApFt3bq>+`5+AgJtS4Ch3Ekq1d-7-{F+Y{)_kvKXk-weDc zWjv%v98lt@_n6t4qlJ-P{5U%Pvf6g*IngII6;q0>EQ|pfb=#C~M%B!M{Idsup*L7% zXn(fAr;xF}fKHbJ{LYc-aUmEy9+PN_G&bFg7iXG++>rnYtq5%62XKGiWhZa_nA_x- zoxd{K_GXy-MWP^mYf^t>lhZa(*043XQ<^iNxoy8PB#jP9Dq?khq?j($HYr9HWrjs} z843jq zGsB}dWHCr!naunktBO!ewI-odl}8RD39*Ec&aUDQ@xvc7#{2>o@eDPqo(pBuJx$4XD>m&?KJ z2sbRyZO|Q{rxSXp;GrbLBzR1G4b<4% zI9BrYjzdziD6E&}kt1Sj;c={~hi6iY*z$Yc|2Xp4L~I)b@PG?9&Um%g#0Uv0PUtiu{SYUsn3dDv(eoN zNadOfb9;2&`@F=wngodP>j9Yy6N0FW$6YPfD+Gbi8P}FqkwkK`Ue)B~x`Q%0-!!vhxdr zagAT>JnNt^6ma--Ci*9vL9kftS+_z3<^gft;5jaJ0{)jk?BYNH5}Jeien#c)?GUCk z(-ig<5f9SbiT`u{;FOT`JT}ExWqaPxAugsz>gwt1Z|k?qoxC7j7)fnroI;Ev@GuOEFiJo|PvvL#QSd6;0m=(R z@Y9&EGbBZUsKUY_Tv6Or(BnZ2C^I^`(4-0O&c_F?dnEF~JwQq{Z7{(l8FGnQl+hfh zdAP+J%m~30LyGl)3PHc>Pm7aeusF-yxHI?{+zyDJ*$(tYdZH^z?)I*s8_VP1x;DZrE0U(07 zgsIYiD6Z+-Ic6t|G#|u$@>)p-09oGDN^_E=Qpung1Jq;Hm>oPzwE=nhvssU7DnJK4 z{K8<1HvnyY4d#!6H^NlKu%7P*kYMP)kNHAbC@n@@eg+FJk{bI9jxRGOs?-@$IRvJ!fpD7EK*TzK zYq8lZqT<0z+a#}n!Ry08{PwwxQ(Nrh%|!*Buo}+qf$3|0Ayq+>9IZ0-j>%bWf1kPo z_W*I=TJvw8`fCT%C8AwWp27pOH~PfXwS1SV-&BW=joi&lOT*4Mz42HW9OISXAd*Ha z@5-|=L$+mk4YJe!Uw`<{fUD%srIohWWckV`*N@juG?VU%Ff-el!H2Smyt;6Y`dp>D18wuJ zr+)CpyOpun^8?wlJ*)hP&E^2dh>cKLz0Fl>_c5DOvi`dMX~nJV`7bNu3R@#{d&eGi zIO^FR1|Z?7lF7b;`Y^wx=JutCl`Hysr^d$rz8ek<-T14a&ymM2l$P-NwZ)&B-D_&q zjPMCqo^Eb$4qmy@hYAl2v$>s|TW@>Ur}BB`B%|45y~k z=8pEcxw+~Ys@DT{YL!(aOnN|q?qPj$9=XvN&CWIU`R4?c+}~+VI_>wV8djJH!p+5O zmu%9wB;{T@^WE-{!&hm=GisEj!wxOI$hN4dA9QR~Ofx;mR5%?5m)M4vrM^a(*?4Pu zrpo;tJiTzHW8C>y%LxjjI308oDHB~*ofF(FRrhv>%fveA=x>u+o7J?^HTtS8NET|! zlXsQ!_Ky)4NQe1Ky&Pz!;&>}xCu{ibX6Fju?PegyeB4@GcFi*8x*z~mMB-D+*tslwjD@uIdt(XN?lFWhdn_qA9~TkQbHX|lPGaqFFb z?8YpYCi`)L7nI$NGoCLxtD93_pY}Q5?54~xoT}{~luC>_mFoLK3RUGSk?dkyZ|{{pCZ<)%AT|H zC4!t6d%*`Rp|pxzCp1ngcRMY7qzskn?)|u;Yn{v0XuobR*sR?F&|)7?vV1||*l(e3 zS={4%fZozn@JP%F2w3QTRHeV!mg{ieF=EbftuNDPWAxK`{mozMo1;7RgS>0oS>(?? z&xXS%6Nk6BYoMj3EK?~MgbCKyX1oK}r&d=-cp67oZL?IZDviq?a%RS+8RVFJQr4qi zjVp6oW?DPbK?btDRXt(_4uM8u98y7G14K|zplC!^^g}980~kfZd&ir3DnO|i!o1Ny z9+-%x!$Ix@0aVFx0EfkcXbF%o{|f8jCI)b@39%&XdWfQHivmp}>HuOZ8e}tw0H6dT zP>R53Mt`WX3mp2QfX7TAEl>0kX$Ktw;1J`@D}x|qG|SmB{Eq=90Jb1NbwqES|EE0M zxCuExX{^VCv^-#A2?%UOi2gH+0jUJ!2arN=U@5zaQh^|ofc4r1k|&LU0L}{mh5!o@ zE)il(wmm$pEeHwu5T5mFCkJCq%!0_Ie~xBCTLrTemFXboLWLybrSftRKrMl@za|mH z(vc(tsBFYT&t-`@PYX=2dVVy=i%o&vZ4s_0L^>6NNkz?mD81J`MTH>2y)Zg&$_bMo z5~(ReZ%v02qa!t88Wc3n7zV6Z@T(KlLIg5BpOtP*rq_sCqwns(7|W0g;qt0taJSEJ z)yNnCq2C57Dy?^ssqopt>MMXl+38*iNmoUkC8xpjqovyuP#{KughLGo%B){t;7BIV z21t|rX7xOR7I0U=Z=m1e2&HyRRW0oBkNjYAcEI0QoUHiHQ{WGW#( zt~YoiV6!QLzuGjc>-gtI?pI&G%GG&cz18Vh{kV&3&62stU&>_xpWxFA9q?axnJtCN zAG3Xxn!3WP3w3k+#G@1UJxc4BUi$wxH~qBocjaZX2^VBS+|6`>LugAlvcbUqPk`5L zcz`|XdG(KjnD}be9#nc9YNs-c;XlBwK6{aK@#18dy+?bu)G)t6*thiQw02TNBhR|( z<91{s(o#@`Yd(kBjx$xQFmu6JB|y%nb^_>a6HX(Rmi1wo5BqE6y$|Gxf{|kqGY0yQI?<%Ux?fjM}6I3!^XW{%@@7RNTT9 zt2Q3Dz1L5Ahslyq$%Rq@%7jg97CFZ_iz#Vj2uUQ#bOtMdGSCzNH-~(7E8U5J!R~YK zcH*!^-^2?PONIUuReRHk zsoodKK9vYpdf)0TgEMfyFyZ#SdL&S1DY__)D6{9&sOUw+)yGDri|3&A83~p~$pj}E zQ-M)=vz@JPjD?-A40SIkrbNfV5FC_uQ zD<+Dg(@`9Y6f&~qWu-iz8)UL^P3A|*X{k{OH~4XodG0A;{mtLJ-u5J9J5~%2WX_Se z*E~($5TrQG*psN_)&lQWN`+menKFJeH7*|{sdk=)-D`Gd*l;e{mp+ovvGa7O4;-P6 zSz8LlUY;?)5dcG-K@<@+~v z=IS=Y-xEoqx>&|3q7pP}O4kxo6XFe4ho$_4!(12!3i`~!Kp%}m6RV}&p6EacXe$g% z2kHizPXMSO~ zbdlNtX?rEu1bGXv&pN3f%cvE&JK*0wGb+j}7HFFvrHpp!m#G9L^R(B8#Rq@EU zGGdf8lmNp+;KciJC`-a<5{Se6Ll_^xfK5GC4BVuEtvQKnKNJB0Ko^04!gQ}#2m$OI zRRmyG36t5pkm2CJo4|V$GWltxzc}3xOFq!dVMwZjIVNEGsTyJcckX8?Ja)s0%pV`tU&<-cLZC15TLwj*Ac9Wg&dtH|({C8;7S2RLo#J%wTm zu*w$Qf&P_4&x*-|Ec8QOTx)AwYvt>>6qgoq{J%gx=*jwQfe?ju5&pobruZlfps^v& zc?Xok1u{mtrmxb;j4RX`(I>zGA~#uN27BB*=Xn1?Zt0_5(xsV;%%Z^J;JMDr5!zoC zeC}r!@e^!M8>tHY@w$&Y8<4?9^&_O2qN<-b==bdaf&YVxA%Hrexy7M^owVD9;Aj{r z!ZgjgKs8Q|SPj|wt*}wwSgRNDlUmY#qnzVtpR@HPV#RUYacgF4e)XmTSHhyiJL10j zk&fK@4NOQI+p#WmV?v`*@AtH|!u`^1+keE6E<~-lHt5+S-kez4pq$|*J#&pK=-j@zC%va%k$d+L<%m*Ft4 ztzeo$=wF{R4rW`6-RH9z^XG>ewtmiUL>^a|=x`VgT^wgb%nZy)lq)n;JI^<;%!kc= zcOQ=QbkqstZ`M0*ekl*SU|gyEg?+g+l=qiMeLTFiIKH)TGg)50VR>mIM7VFv%(L>N z{N;)O^^U|F#VB0i-C3kU=xXS*W2`FQEk^PY`DZc04i_(87v^h?ZM6Lw9UamxC7i>Z zxC!oh>+3vk{SM#SlSi(U_~@k{8F=)ZzkodbwmJCvXTj^jzFokFBv>-CAgR6@df!oY z^K-m`wfhBi7 zL9n7aq;_nAB(82$N~Qhy{BbRNfoD4zbV4@MNw%-#iT(Y{vfkQxevpMtjfBgls~Qh& zsxQ+P=4~0O3)P1Q#_}!w!Nyf3<%M)UKDpuIge&nXZTGF-*A&P5mwjFfov^v$6}wN! zjD;gxUwSG6af*0r?X-O?`u@?m$oL}O*q|6`Z&i(&8yWM~n{s+A+Uc!!enlmx_~E?} zIgO;&525!bjTm}@Mb&_^l1~28(Q(F1P^kq<)i8tmpJL(SKl*&@h?O{@AS@n3`G|e~ zsND4ed~s;f*4Fl^`gJ$8tL%{EIQB%-2t?QyZ)o;k=4+uaQIBs z(%NO?N798oh=&10BR^Ogy1N~pbXo4>%j!&u!0V#frJVulMPIL)y28A0Z_GY~N7VIm zAGzI+ai@wRx)MYc0VEZg>fVNaA)Y)mS>!tLI%^c;rz0BxKJU?X3w49ns_H+!(j>+P z9pN@EC~Ra4E9A;$*1wH|Sl3-+?^72?jB{Tw-fpz5(J~bCI;EeKlx%bb%S~&GqroN7 z1JFWa$Ld~R{d8kn3Q6i>m$!ntgZ6#$^|M}@jTU%6Cn zgUrlY$I$9s$Iz|Lrk(sFU!*q1lJzenx>iuG3-5l`L*aiMr&cM%PIH^A?~;I5HE~Q+ zs4aBe6LhS6x(Y0_ZUK60>$?XPq4&};+s}v?h(@D;HUSKoe_ev`?I|F7DFhvv6rcm1 zB>m5xQ4bI_K7fWAfR_4zxKm)`0#}R#v1t7AiKvGvad7;70!$z(?f=nq?$J#D@gHYK zlwwOYav3J{C8AuC`(-l$`Kyq~Yv^Z9tP|Ep#MPdp|sgSWak2r@W<2u%q`CBN0y+~WI36$8aA zyz;(x-7(n!kYy*3)392F)|ozI-Dr`<3QQFcNe*ja_Hke-=EL zQ}r|em`iI>piniC7Tr{|*x zp6vi&4Bjp}YZ#7joa3d<4x55AXFyvds4_8I)|X(#anl8Gz+~PV`-BHH*k_FDuQBP% zJ7`71fS{u&5uVGPBJs|(G9e_9fp3GP#pL8p^>*z+arX8{!+8_@nGo_g+|lrOFol$i zKuJh~!bZxIOFoJzUx3*h!$FosTq{lnU)AKk$0p(KfYp0@MoU#oi%Lloc_u3_3i!az(bXPG0HUWXD3l(V-9G9aH+L9|b5HBLeVN2AxUAQHT2~GivO!Aq6TS z&k7eg{OWN~7dEB7%V4ahla+@b)AgAHBq?PQzvgI%g3 zfEX%EFZu|tH%L;#bsm~M**T8l*j&-OX*hzp8+^NYgTO9f@Tzq{nV;cm_k z46G~U-Su1kyVtex_Eio{wNi!zPv%Yt^lS{MWf)O(Ug_Sx-ZJ2&Y(1d3>!=4IOY%K0 z-YS2n37IWSMY0z#>l*`X0=T=vxErV2k|n~C58#qo?rL`o#pKg+rgsB0omB_NX*y4A zrY~uW=)O49ndka^8=;?>IP`DVI{!@rRf4XWs~QfS%NexJFw(I zp7CU0!^7iw%(|Fk3u8J#h4Q8goxs%-F4P7+DyKdE3%yYpf5Sg zVP8C+{+x_+zhA?u;USAg-3vG77dO!M;z6HFV`Al_lbGc@VDhiS&sWiNQhJ>wv0{{1 zVr}_`O87TGGwwUS54wY{8LYhXwvQRH>sF7oqL zdOPlM;5pVj^CK`}3Z{Tb%r^D0ew-e+c5&p1RaYy7_kRsNvLzG@K2UwawYrYc0Ib!o z5^11$h_`$4Z9`-2BSA>4Wq|`50hjg@N`H-pU_adh8`pq~ik4~9O9hfQVnp)LMfTGz z#>|TwXotA_Mex=Jnj@GwToid~>nM_cBtb86@_`b+zC1g)2-fo2I5zkzp0Qu*%}@LL zt9QHe+cz2OWrOlqPsK>2DdAF)K>D!7Ah>-geIcpN5iMLy93RUfPcEG+PCbgznmsj^1Ory$IZQ|yBCm}iX*ua{DW47U#NO3=h zelnnI_3NK+THi2bbV|yBm;(v@lhyL z^DRgzF5Omp5UYNT$t$H8I1Jg3eh|>#YIEir4*>m&Jvoj0gOiU}uSrwV?z%6T@14F5 z=3&qRdwXnyKS<3ilYcm(nBT5^WOQ*N+2ws|3@NEFl#BF|6_z;zJN8I01(Sw*P?Rz7 zo9Unb%}YxonM@lLjkKY%+5jYp9Jq9K8(>?rx8k4}Z<&$-i?J@Sx&dZ8z*R_!6%+?< z4#ylU3wGs6KL->sC+^6E_aGA-i6S^qNyAjTt#o2iDZ{exp1BJv^3n5-*ag)SF_V6E zD*PuL&0jrX%QIImrXV~haw1|5jxKIid=a)Ur_#=L#V=it3@?c9IGJZILqRNOkX1fm zq@~jwBA~_SwQsGwC27e#8$i7i}pSj1{+9J4rdKg8$u zwLX<3A!^~pg4vK~=~?4U3p0MTWI^lKkJom4CSE^Q&-iV&|Ec8&Q{g~Wa&Fkl-_9iU zkiXrQwA7nD6U_}lbCCtJ0UoLcBX!GfcQ@5{=y#TYJ79+C;Ez*J(66r0nw++u)qFR# zC57t8A%Rurjf8G5xNpdm`b+;EN@E093M!nL>~CE+jt{P#VDSp$FX}Rj!QD#@38iHP z1qon#B8k8Z`E?MXFMqQAVz&hNhE9;og4i3@3v)n z(s)zYxJc8GVBkj;Koo1w<0B$TYqE#4+gXa=RG!*i-~YQ`>5*Nk_HO*37oFRW11$mh zMM*-}OP)qJ+1)DO%}n3OPs&XfV=Mpwm3x56CBDSJGai2PzHY-kg#=j_>D0Gs3tV;k zK}}oZ7BO6*J5TOv*N^P)Snqc-9Xy%XAN>G-pqd!PJNDR4LP4qCLf_%BC}LB=$!Vs9 za3>ytU+-XzsEW?sV4Y7_dl_SW56e=j!th2t0gGebGJyi z&D1-qSauXL$u57JQKfj(z*>Q8DUS!!xlT*}dH?k{&som|dw?y|!5m^6s>@h1_AieT1> zUdD}BboYD%TbG%>Kq;2%67e*lBsZ&(F|O5xsD#Nf{I#1m>n!90J0*2~@}N@2`ruEC(ZO=q&i?AaZ}mNw zuzk;G`Tp`pxM9U+=OSz+pr+?r8B)0Lg|r|q#ZFGZ%$gn#0*+BJF^WxUf12M_e$7=J zQ})7UOsvJVKBW_YPe~pQ0>2&1?@xh!=CPk%{Ys}NNY<)+0uZP=MkqnNVO@~qxL0%d zv$At{l3zYy6%-z5yz;f6-dsu}lf158SQ;2R+Fq%1TDMtvpd%SmVX!Y;Syg zVgR9d%=KLUM!R-2#znsA!NE>a)8YFc>j&R}5D`)jUHjYGDRi(kslM|g$-4gCXG0(B z(zeaGVkGf*rs|WFB3zU`ZjE1>I{z&@G8kYg+e1mBtTyMp91(GebgETc*RI&V{T|T z5kyBoRZ0m4vvrgMC;@f=>BiW(hA85{#n1x?yERP5gd0379iuIkPq2Iv91eQS&78cI$#gW*<`N*w7s{Dl z(gLn3pgu4X`T$Z)Onq<+1}^r5aAX9VJ~tD*U=AvWcl^rE0ZGt%Y{-GS$HttZEDyzm z^LmLet=(k`OroQ}%YS@Aj8BDr8XLRKB>W?hNyPLsh|$O1)dS!nR>(g}O#xk2)P|@b zFA5?(V`F0|2S*)H_F|7Elh`7lwqOiek(Pp`ut&xL#E<)lqabWb=6DYJwx)rYOGd_m z96s^nJ9%by2nrMqz=e^_h#U18yzCs{?HLYUm~ovwgRJ3jj!9DfDa2M!UQzUUY`qu^ zm7J0lCC3+QsLKXT@zaWa&dyyh@Y@kkl%c%rBJxkUpOPp_pJo~L$^6c~ivB%3p!N>M z&(*G@2mKgerD1>W)6WYMVv&@$OuYxwVFz`gjm*8%3deoIg@2BQsK;aGWa9+7Q$``g|8f|J?DqHOPoN zsqNij`K!?Q+og)79@V5<2~MD~E2X4-!QHRrQWeEXXM_7*cO}8tS+OQ)zIa_pYB5;q zra=*t#7RfPPhC$<;#E%;Fv%wgM#dXHLIIKl>Mc2|W)>{HzH=bo#|y(!n3BI-;*k#U zy6BcJNV?-~o7u+rA@PY_-bJ{Eua@V<;J~||14|m>&`8`lPql%T6q540gqEtT8m^mJ z^8sm|_p+a#)g~+rYlGQtT)<-<_y_$ds_w1VkmFJ?&E^D>n!#i#dtbCaXI^zTqs6Y4qt`Cg=-Es+AmuWiqRFoUM$6+QBE6l0` zRW4i9IfFi~o?d2#FDV|)fFFCyWX*>c=nNsu{GM_P$|CL>R& zpf}?Y@VH9qR+{}RNE=X+uG6+Za!(H-fBC_!z!LE`3XMCp*6LbHV9z*M(uV>u zugqbbmk>|&W3)i&^)tVFkNZS}ByV8CTj#$fQc_)O@kwW9T!iKiV$1*TbPae}iCk&M z2}m+U;*Y_BEmW#|_U~Q2lM!Y*M=&BHUD-+|h3w7O$dDq!f}08U`zNIn;GE`v$-0iphyF#}a$77scexCXfNurL|%61msc&wpS_fmeSCb-C&=}1|>^! zKvE-PiTR5wpR<5-p-4XM&re5%fxkP>Dv7k3)8tkId$qUq;!|1kXPH{B7L2!KlSK}$ z8VRa?rgx#c%Rw<~0lhzaybkr%S(+&o z0&)l7Gu)N%s9FC1y#Pqva~z6ilt5&@6I^GPXdvkS91y18J|!!W0Kgp7k%QnR+sjSQ zORt?%nlr#O^ zaPlPxo%`^~uR5vk{@Q+ghL+md**PO)1%TRK%qV$q-Zg@d2S*AMGdQR*kmc`b4?3Cp ze>!E+dYKAzexk(KuS9^f%6$k}l)xb<04j!wUu8~)AonEU>=9tH1@dgb)GNXI^FL5j zAATJ<)jAb2_CtWFUX%&m2;9eHaKd6r2wQ`FfW`xYnCcG)3)wq<7F|z4_1QJprid4mzmNIrm+>H3m2o z`hUVjJ73h~7<>~(GF%TRdVrRy!mW2v=O)%0U1CRn)?b^QX8q97BFq?pwwgYXe(W|7x_cXlx?T}!Jt z7FZyNSx@oNcz^>`lQD3)1L2Tov2g^!8rF<*KndW0^#-Lw;YD|oEq1_rRpm~=ZBAgl{khn0gBnQa7qeMcgB00)nY9e+U! z&2SQZ3M0eF&plskE1?}-_BRiD!v3~|?KPE}C;c{_H+HYCEAmj^-UOZHdt3+I6G@BX zgn6)48C4J2{R9fQN=w~C*D8&AqDM?eEe0n&0m(7#@{cw#_8$YGb!%BU8;&Yx|19;@ zD3sj58Z6t*r`0ZoD9X&2H~I!B@NN3+{&7VA8E#$sbr8Z-(uHr!4cVJom1%tN=U4CW z_RixTYh{Gh84dB`_^qXy@xa}KsjU4ULF)Tkz+9LS$MWFd_mzTqh8oXI$)oAbZ&@;% z?J^syy5%0~YC>J=VF!*XJ&-qCb@Zu&os_D))LyrVomEB&x^H-U*cqP$J@TJSP0W1D z%D7qB+>iaP!1W(zN+(>oj+J$SYuY*a&_xE?D0fVV(CM|kw%&C_C}d+}GNx&5>wWn; zm-QX##bi86z*0@A>5zd=-+z1i_A~VWPmjxk7{7!&dg4 zdIZ6e%q_kiF)t&|O?yUGn*^?yNZJ`01A(nyu|pFNV1cX}8nR$+z z9o4UUTK9s1V$Gs$)1B(cOPRyqv2qvTymtLAq4S5Q)If}FxH0uz`qa=XuFdWXOrwj{ zii$T$!rznzf%vTSnz|qPnsuI|LFU^xw>gqN%QJ0iPcB#yCg}xvE|1Z<4AklEZcUM! zUYTuIG*O>z)o+$?EiBTHc$!;izZk`5I&!9tsj{2{W5QhqD&3C(>u*VQN0zhIh_e9YpJb+k@%H~(SPsGC znUDeXm+MBA5}6i=1zzNI(3|j|e#WrU36y9Ga1AhorNJgw^aI96MQ|nn9Pza!~b%Ma2(E$Dz9!N0zf|4_o8=yE4f(4RU?PzczsY_V~G>PHxetnh&N zyT&tPCU%g5Hv#?{lu2CHE~ujv&M=h>)`f3(TP6WX#zQ*%i5BW!g+zu!!=HoI4bc+H z8u3eM3ObxPnx-cnw-!_Fo29gPekxgwu}m%h#s>= z@gBP$qja8?TZ`WzaPF8W2_9qb(>^BOVeCSL+Vd$Fkglt+cPdv5MB3M-zKBhBjdv*~ zI4!qbFRIibAqc3lK4rbTUOnMNj(tw8wrbZT{>#|Z?;Qop4txlWw#B*dG267oHmZbN-Fq8VlnrW-1G%S-O`NMs@(U|#DHFANvxOu2a$dw6 zw!C_}xUn`haATTD^{NUvKkfU*`ao2SlZ>^Mo%elFV%L+$PtM$|nKw_j#r${(6vDey zxU5_PwB*GdAzfT7dlEmvo;ONEq>BVCe98G$0a=Vut&Hxz**9gYV9zH3%Uah-6zRIB zE>qAm*yqlV=vTzkM3mc*pvV5dSUD43;a_-#WD$*JpoK7L|&k zl4k|Ozc_|8_BUde{f_+B3;AYnXXb~?;hsn1&iH0d$i}A*?k#p=vsPSLpI>T9!+)vg zlHELuPjv)Q%w{k?W>_XNudsO5`i`Si!Be}-)D62b6s4DLdk$ilIq=c8aPXydg9?Pn2Ei#peZ$EE+tvy?wqQKLW%FR#ZH;&CR69|@z>v|1I3%= zQmYnh5j@H%$bt)H<-fc_D;nyD2VzMrgMM`*%QIE1)HMG5YW;?Vb~WsCI>{^PK5=?n z^G655TR(|VsXAdOBU2g~`?GIxIzdrrf41GIX=k7YL<7;HF+LU|ChX$KhvnB|t1i+m zkJ@pLirpBC@#rEi8w9Xy*1k?rlMl83a4Vyb$-}yJ0wOV z4n_1SFg>dKpdikElLTu;mst(0I}flpmHg`JTKB7b1?!wutf|a~mFM88VqIf(8YYG2 zk5~UXI@Jwc8Ngdgnz;MbDBpHbekHbpSRJ!05q{Lvk!6%4)tN%paG~iii$K7~rjQ41 z7f*+oBx?P%x^nS*Rjt$6WS&j$UtiDYSMMT}qZ739B*Y5Jq$LX^U@1u&xMGJ}ZS{0z zwwD;nAp29CTpycPDmkCat_X&X#5oh0B$-AD$FPzZyZHNp96vF_wk&$^AwjYhAxb-f zy_H1lJ35Rw##}8L83ZS&+`(?|d~1q6E@%g6jjcGhqZ!0-&_*MFqGQ2&|6mCyHdbist`g%RKRON$VHT4Ysdwdgf{ez(8@KSd_^{qdXgiNd3)^Bc>h|d%mI8!Q$M~W~zh}_$1M&61+^v*gDHDy)C z$U?e5X`?Rp>U`~O*Kd3QA(blj7eazVeFMrF*J-Zi z^Z4JJ)>da$eibyV&hGsk=$a`lm2a3|?K=2<-#1W>`g*APikx~~BmSXK_A}QW1z34p zU=YH{+PdbIe|I%tWpC{T9`-qv;@){#EuP2?KKQ*~BUpbp&HBftVO(Zk=-}6r`K-~> zruD(OK;PNP?XE7{faA*k(!5Q3OE+^~7iG7^6xx3_bpjDmEhwiPl&d={l4E)Ki5qjgY z9hTFy^C!P&{K4O?GZR7cKeqLW7Y6%&?)7$-RIabR2c>*l`CKyHf~w;=!NCnG7UHJc zv{DeybmR&?Z0R{s%hS3Y$ok9kTrMERytgzO58nHJM13!>*U|Scpk1T6gaX#qE5A)_ zD;_>=`dfM!NVr0;lkmNv;3Ph?FRLfiuqmOYOop(7rcA$T#>n+i8&j7O+Ir&xpm$kH z`%2|+T44#4oNMAqJwhM1Z-uRRTTL%+5dE7z+-J_tN?+K-tVKj#3Nb#r+cFz6*NL#p z#AliFMEK;0MiO42M%xg^w@QZvhL$~L{|?O0XZ&5TFX=mCc-GuS!p5)W>h9H<79<5z zm*h}s^&cP2v-*c;m%DAq=c=F6Z8eI!Ex|!b{5!Yv{~amRZ&}A_UVfi#o5Bu)m-c`C zDtPt`{&OP@C!zTt{|5h*#>1{?oCK?QH2z}n#_&vfIwRk(eBAZa#ixjnVhXFt-Aw;o z%FLpB*lgzo|E#W8{c=5>2u9)HJBDkzgBtyauA!+V?Z%DEjSb_pdt5y-za4jXwpYKE z%Jk(M+WuWwTe}<7_Q%!=?^1pzsHU!#q4~^RQ8b-#)gUk=U?4rTV)$yk(%HF^(S{Yb zrtDg(o3k&U0DlZaq`jrG^2va`x1f(?`5ljpbKbSVzP@!ToJlR-TeHKD!B*n%$i#lj z@+N(z}RKZ4&mUqY)1pCAi68?^V*`jkg<#A$Rbw?mS{`M6oK5MPIt7_ zV_s3OQ#tes7wONqV)kwIG7CA9`<;s^Iy%ey(;I#T$E%CXCov>4z`i?PzDDip^!5!= z>G8qLEri(bth72dWTwwL99FZ)&Z^n<*3J?xwXNB{|4qn@0P*v!X=877W@7)n z(ZTm5wFet}PesCu2R!!1RGRic^;78IHpj})jWytAw30}l*b;BNeC@yg{8kYX*jqam zX}UN`UuRm{-<=)3pYL0@n+}BzXUJ?=$#8iw)sPL&PZoN4hAdia5z2Cy3hA?U;Dh+WFo2PJErQYKaw&&+X_8xg_ErXPNB+DN~G*h*j_~qPYa1I zA%u@bT+{3}&qdp>qj8dL$tE(xDO zD7?EV5`U3!jB_rvyg4l{yIMOA9^OQhm)3xc#&IKwA4%B~1<5C$NI)O46kui$Y^aV) z7~!&nGU+musIoLv4?I3nmCKk%VG(80tjTtmxG$KP)aqt#iEIor27rNUMVV8QWgDNc z3qK?}7n`IKo>hwyb>!sSL=y|bs~n{47cOaa_!Z_$preWG54DtW5xod)%m=~&F)Vo9zC0nu-Vzz{ zB9&Wi5cU)Et3&i7iOOBwr@$`qL5YU~wXuw&S7nn^;@dH<`ZmdVJP$8LC$M7tM&LxP zJpYN1`3W#&V+=&CUKwa{S5sHzH8@;s+TA>Sf4HF{qZS%6q@G)N-epNZXr(RxF(~!@ zd~xB)!0*7Y?;X|27j=kzPV;XUHNw$C5a$Ah)F|VY=vROIqjQUBKC+ZabYEfG(3_e} z{KSNs8Y6gZ?MC*9#qxXf?_CN@GvPUzQb5*8GmhlGv`a`cg-D%PaS^Z>}^_Fu}!LLI_<$!OLPngQq6sM zdtW4RrjjW-C(?1QMJG#AF-6H z5A|XYaZljzzo9Pt>Z`^h;wu+d*=t4HIh9Mw}(H{DM@kE0h4oz+&Kl^PRNN0AEqB zD#mNPGe2A}wQ(f#n(d(h--O*7a29m4d;(yjCAS!Xw!=Ig>Lt=7LjolTmdj7s+7 zPoZDYu-F*{M`G+a+A-R`>`tf25E7~&dSnxdOU0w6IxYt8obVeV*hPtmWNVqaz=XY0 zs|%_kD4V@U{HVHd_{Ti3&-8Kh6$44Ka$A{nvb~R)i!`h)MX%6JSVK6A4i(}M(1m8G z;5s(JvUjcuikp={xuP5j-SpcsV#}ysOcHOG-c&#A@|YF0DROI`qmvZA;DgqG|J@8d z%#FJ2`0h%B<~BHMjv3TK9>k9{J_HPMwts{>)j(ru_&(u(jw^UqmfkalPFkq;Ar zvUOerlYHv{Fwbx2x~`Bl=rJOD z-~S>;9%a~aa#%5}4%Y_c3E8U$48@5n>Z+RWROzP6|M?8ejMg3-5BBt~&T+o-y)TQ= zt(N_HaF^?;3q^w7Dp%@cc!iNnuX9#3(uPCpHiD}D_JZCOd`dwbhw z&xqUo8W?aJfdz)tjjm7q_{8?0Om#n4QGHZE&~W9zlI!Wg!f?ra%d?Gn#?$XVHh4b2 z8{m6)CvB#tG{^ONPq)#CSqY@wDP3`O)+753NTo#l+!aza3Z8$~*JE`@dUfwV>!82D zcX*B3X}i5OH2}6Maw*nZpH;GoRU5|F%jqF=la7i$6>8fXDjqpJi|!j|&J+Qi{KvJf zv0gczG_n1#CTy#>Zi9Bh5M zEch_L=Y^r-+-CP6*xc+5AN*nTST_W2{7r8J9-Q&eF}x}nOA6hL$qionG_!p5N?oAW zaDFNQyE;5ovbeF3yE|2yU3#_c2&|PHvyId;pKk8Q8<~%y#ksCuxS*su)%v)k^V^VcG2^*Doo{eqwRgjqcqwB|PO!>%Lm4zV*d~SJ`jB z@TrCRgQysfX1){k@9gJpTlcKmUK#yzj@|qz;hNCcc*S|C8hTX4i%T23W6QgU^qV(J z-^ippRDJEfZe(OsUBo5m>5Y|M@NaA&r>oKQvyR)@m>!kujGtY#m9nF$=J7zU^Sm}6 zTT4bBJds-eqA|aOkyp z9x^z@r*1;p?S_BMzEN)If&anM^8S*?VMExo;^E&GG#48G74c69GHi*@2j!U=Tz2gh4izU+4Jr)VU}RF_mV2`cs#@_CqNtvlZl;pxS9EhyIA zIdRQ*#B~ss=b38wcRDaMBtW$ulPK$FEXVc{k=FS&=n)foz`ZeNMr}DHsB&+%{Z>rJ z*8h6}a`$JsLjOE&+R63^*&Q`f587!L+WQ3rIvV^xmEpdk z#waG+WaWx@G2Sv#nHUfUXCq(;qLf`D3aS8Eonfb|a>Un)FJ-7eSRg)V8x0!`evXI) z`z%q8vqY(8xindu2$HPLl0HHfj$rwjsA+>@ZnJViEJU=dOEro+ zFFDy>oM?YB4JN!m#A&6KClFCAJW1^ZAL8YS4CIn8b^s zhkXch+685(vfPW;N9!C?x#Mt?o)%2PLgfKfr!89lh1jc%8h)#(;r&eN>wh+k*1I?GdC_+G&CONY z(EAl3em*{GRO{uR)3(?Z-lBjiP%wQ=(+n?gklWUut~>*?uC zxVBZu_N-l(M#z!*8chEq1j^zw8+wX-WEABt-$@ ze)_KPHMdwfZyt?!9nBIYWx84Hqw-`n80`DSLc-@u_CjxHOc!WLn${Ln)HN`UKcQ15 zH3mcIO1IW>LbA-2rTVqb<+-`!Cm9C%T{DeWqbbOQtiepMk7|1&3JKmgQTG{!W5Z&8 zQ6E8^qSIq#Ceq)|&72nhVTo+(RbkcBDd(+oURT=0Y-9DkMl2nNo%V#X%V%dte>o^q z=Pw*Q0STIV7GrSqVdjEKLBJBy=JE}F10&(dL1!URRg978jcCe~#os?#z^=)?aphoF zeg9Ju*Q#9GY(ot`f~5U2wTyKs-@ru6?pLUK`j@KAaK;k17?vYSo;4bWbsPzAM?gfh z_(Tmjcx+|z4L~dVOCkmtbBfjJ-L>OH26{xh0}LjX@`-YbhOGknCB+vv>a_cBC?$}p zqzp1~m!d`O`FY)Lq>qPinUy%Z)G==Vk`O+HOGSy5OJ$4R!WFtbv}egFlyfU&tOo~r zg|6>-S7rh~F=)d+eOtu5#E?xTqNLN$-rj9ugCX?+Hk)#waLzZ;-mW>i)JzXny})J8=mgjIERPP6fSM z^ezqG6ukcX{{#ulDhty*YE7|Z&Tvpn^`#cyB|+= zaCXbY>kOTKgQj3oV@I4x$vp75poS!hzp&j|Z4B%@ERLy=;7rvc78p7eUToXwpp!&T zTEgJuGzkhZRaxs5jhMQD_(VeeQVHmHb~EiSxZ|lQ0Flg7R#{ zXy;e7BVP+b6rIT5P_&2_=@Ugu;7i2JuvI{i2s=!FZLe6ns8>>+IpX|^Vjiz6fl8JQ z`PBh~4Z+S+J~n_b?+#>$(@COvi``DYTK>2W6v9I(kj}ub!-za4BB^sEZFYoRhKjJ3 zrbJ)2Xwh8r%=ih@!;-Y-opBe53`R@^cImrFttDdfHrHWlYA87KP-qYq^LIa$9-C9W5Yzwe(%JAW!7Uw^AbsX`P%pQ!^4gtAwIh;MmZPAy8(yYlQCkK zB+i%$h?dSgd$BOx(w^SqFOU%I?X@!do;QwhwY~n?^L<2mOw?j-*bI!ja76uGJ-+np zADhb1y;<9;k=+N|d+Y5zIRk^CD`&>R<6~wM4D=sV;+YBFs6XJMk!hZ5y&SrK);c7( z`o`?e?~O0*{a8n}rgwln;QJq~|Au9VXMpL)n->O`8&|#qRRMbFpKQ1*j|sl%8FZSz z@)S2ntAc-9t(S^fU3B!RNV}xFzvt{vo5(F4?NL=ypKuS`8t$BDT%A-^(hOlKHHxZ!#01%Ox=Zq1$_e{(&Hm zkg4Fh?eBd>`(;g6Z-?#M%RfBKKm4uE;Xp9W6)^Lk-XHJo^7Hiz^?t|DD^s=9m+Ex2 zC>pDEfHBR?(SSMVrI@Ryq!PFM%`tU zYBkW;4W*h0`RN4Z@VQWqu&TJ4MuL~DTY+tN5!;anws8SIS~V%hsEb-ie{?( z9)tu0fPv;~^Q^h40S6B1XXie1x68eJ`>OS`oWUo@SL;Uw zcv?xNGvBfst=x7Dt%Kj*ncnyI^4rkExd8}uhA8j)S^E1Tw9x3nr`XI0S3z5 zC~&hr$ZnAkFDinSt13&vKx9aq>q561YC53UA1h7kS2_<;X(TSa%AnTyz?8mFC+tZ+Vv@~>QrKo9RanmH;zVcR4vD+&*xhwP| zoGD#jgIs8Xe}(pFhj)LmxAyblh>2=JJ5t#eHo|sLHYi&Jv#?!6t>`C&56T{_B2Mo$ z#lP?Db92cYoSN9LUq;voHnv<@uv@yCVsG*=^#-dwGA=d`235FRaVR6k@xl1{+WH_W` z!@{|L(vjVq%#tFXjFsHtxpjz7@CHU_<>WE?;n&zjoT-yaSNdK$Swu<1eO#_caPE;L7l@sdup5+{GIMDYOlc_0lSVmtHrGIvZ%*C9T&J9u8TZt&*OJj z3t>FehJ^64=y~f&KBt>W+&`TXRO9u$s+_}?B@*h&adwnKmqcR;|3s zJIe`Zyzq0`5tK3kF|1^@{GuVx`QOw59Mol=d_gxa7Ea-b&sN<>3W#Z~8Ga=O&J(y1 zwolnvt64W{8rKuTHf0Xco1J+8S373CP`&zNP4Td2Lh!_<`tDr&YS*gmYt3iV+dJN2 zK|zNbedr#magr(w!Qm>ZB9eLM2Hr1%g6|I+Nn^)UO1G3NvhEVzs!%IVnb;sYe^lv7 z63!lr#=RpK0-{vNOqO+s@73Ug;m!p{I0_WGeH&eo+24^l>D;(4&Thw<8k@tL(tH)8(u_ORV!Tn;wNiD# z#e*DCGrG7xCmY`v{454O>SZC9E=ExsSgCq5eOaEfbE`;G3`~EsBuWP?| zs+v}>%zumzOAb0R%GpxJ8(r6DTf-1sN@A02%X>|23J6*MJJ5ND(I~q+k52O6?md$G zI37;r{mNc<0tl74!4ai?hef56SRTw*#sx9g2zk}iuYo1BGzluTi%r<5C7k^2)JF?K zLJm^aOg5Hbd}{Fk$xpfe5(sHKBT;B+oGS3f9AKr9fF@E=JkIjh`8xi+LzrbMpyF+ z#>{(43j1ibA+MRuN5M^@Z^&c0!pzBk-dCbw#v;bSZSJ*Lw3jP&eW4-_+n*h0-S$LXhD zV>i2sTEDnqc^3wQ9$oq9`CI&pyLvTERC@JFBFq2Kbnfv?_x~G@q$y!ik@G2(!*X2C zjWUOvItb;EQ^Oo`3OQvtlyhrZPLZL*avV7fB_yYB#vH~JQJPtDn6uye{^R$!|H&iW zd9>~Ge!pJVbv>{9E)xP;Z|1#HQ~Ew*PbXTWJ9Yp2xp1Omb>VQ4epDzSg&A<_PV>~% z^z`m;Gb53t$E)<_z)`0tmW-3DM$C)c`geA{ni=JkNhb}7q++6q#cCnxq?_Z7Lt1|( z0LRu;@ebYrTp*D|tw;VM$t7#5NFP7)WzVwU)Dn9qKcKnVPfP&77**qH#qeEnuRSjz zD!)rxjWKj><{j~EwkeTROBL%CUb;|eNvwWqPZ%zb+wtOI{ zELk_Ld3k+lm6{hAx3z2rSf;kU6BARrb~)}E`PVJWDfuz-T4)`c_w3}xsVPax+sq|a zrXOR07hAE$eG;?)-2TPrePZ>*s1I1NsvgP7jc;f@YUTR62>ueecDPWK@s{L4xf7SL z0)NJ1xHsDugs_TG-`xbEIpq@SLu51i)+mYO-Hg)(JFBc3w%6?fN0%olbyOv0b~qI@=<(m~Y`Tcj!rX zy+N=B7CK#SQt=UQ zc}efG;%4_ZlH1nu@_Kc&^UnJ=HXFq<8LYjYwvE7jHh4fcD?R=G?_NYS+?v+k(7Lzu z_LQ1Y8~`b=Ish1Jr5d2Ew9G$!a(iL(9_rCe=eTh8zqw%C*AY$f%4)R*intaz-Z8W? zqTkRL*tWu@SW*_ZGvnPX65oruztZ#6U9a(T?_i+e#>P{t{UNm&1B=aq>0ObkyfRHg z%SylPzm!3Tjag9o=&Ki?J=^OL0gAzkt+cFHqT+OKFKMUr_Ahl#7K;BeGkLI0E_aXJ z@9^m+krs8jbG6FMXyj|!CaVMC{+;t-zT5-E9i9vX#Atx@xpD6TsXhzMYz# zD*K`}IYdtL8w6c?j=Cr7RJMTKY_egmBe$XG!N#~w+a|qjl~{=tEYfd_+z0jLf1eIY zFuTihX&nI@-JKAUrG5iBI{L3~<*gItAJhVoIL0)K<9)IVW{LLpbw+|k9UkOo6J#qwR{i4I2+~`Qt4d~WISIEl$E})M4!?5i=HTPW};UbsFft8iQ zhv!XLMBXrifzTv-;j^=!L4x*9NQfozXKI*Bw6im)m|u+z3Hddk3#RGnY5tC&xE5E( z%wBiLT#9}srLI6bcl!yIHV)&Rg%im{%gnTn-~sBJnVwe)r)-LXbj32w%)?TC>8Rz_ zXPj1TI7MTeD@%y{ST!A7{VHPqQDiZ(Z$($FW8@I2N?Y<*-Dv&f+V=QLKyBrOa!6a- zg>`~KQ!DuI@$2!GyCT+-C!B%23YwOO#PV6 zY}@!Ty}LZy9k@RcvERq+@3)EFf7QlrHro0=>+`tEAfv-!I&#*bb)`QrmU+&>A-B5l zzjVKTVe2xTW+&m+KzH_a$+Jtz8p_AbeH)n*&8$T4Cj;~|4i6Tum`}p1i(oXq3GshY zq~R(kh1Xblq3p3If=Pqc^x=UW%Y=s)DGY0qI%FMkrbkXIt}vU-IBE zrkvXKskTao%=2HbB`y02zI1wnK%&v`YMBQoNkU2%=K;*~oh4&kR}D110VVEwiGE5S z_VdAlIsEag>UN(oYf)!NwzavjjStKE_*p1^0K`8h;)4_g#*f=sl9YQnJ<8DorMB^C zbxJr!U8U64`ws`|6sYo4(l8fIJ6|uqdO%dvJX|-O6PT=n$`b5lC@C5=sq#w}HRdT< zLSv}Jc0~Lkl!tl#1+NlJtTaUs1FJWwQRxvrS0Ie(cRa0kX!%98@fSIWYyzer9Iz8a z(;f|7zIO&PbQ#iz|BQ!tW*c0T=H>p81%HY>hsd%nT@~Rp;o;Esfl9m2_9@y~4BHl9(O;X=3z&YwG}H9rVfxkw5wdnw3Z-U)mn%t7{;z7t{_64yZJR(k{jG+7 zDBsZ%Wsq#kaI{qUHyM@v)s~m+HOR~JMlPCk9{B}X;~(UN=O#B#GX~;iX<47FjzrgvPft(3 z`aPZv-feQlADYGh+1_+29~UWn*oQ^TtyoZW^7~x94w9sPji5tTEIM5I(Iw<#+g=x$ zC>tvk!kQ|kO5EObm2PYw%C6?KbWZqMHJ%=k9IfpPE63|*r3c@+y-;9ZZ9dDDD14+t zcs!&qQfeS6!Ajj+7LtAWkb8C<3hD{t&}L9SJsD|tNFvw>fJf$yQ3YZ;ZYAS zei4S9{pynZ0%c}?(GThQF!ifi5L0 zcKm&D7|Q9?z|SYlz0eo8#WF}j4O)QDe)NBOD+rZ3Iky+wH#0R%2sbXi^Q)JzyC&js zbCg;$QhX;W{9UM;m(YdbruT0x7qrRHIp6%Q;15j`86KNEz$ZR+-h$^DN<;Mut95My zyzAV=zQ(rgQ%C8$tDDTsxE(_nZ&)+_y{ekLDws|+0qA8aAfFyko<{>u)Iio!c`$N& zZ|{CYoYC+^w2_z%KD^A`aTHETq&Hs)6z5nn7^PaK%aB3?3tpP`)R_hvAczr4QLI_` z&x4lgt#sayH;oM!R1UB9fyV-)N#@FnGG^7gklsb|h!a)IPie|g(VS*ATeCW^JraET zMhE;Dkx*-Vf&Qt<9+Hw#940Vt8Jke&M`- zOmy`$-(2V0W=uP`h#3m4bVSJDxKE0igTr@P2dd)wjywIq?CSw38JIz>&tTt14p)r^ zMR4IT)XwtaAF|IGH)kJ3M6oU8OJ8B-_;cVYm0s*yM5O{J66r>1=z1Zesh%3ef_k-0 z;heIZ{K#v4h1#|%q=hUkEJ5QyjZs8|GfY&jn+ilxIMj1v4Zv4IIr9DSHVV3c39&gh^}tv z?N74-(wDeq|JXDY^1A$luF0o-b5kz2cK!nf5cBUE0s>G$*Bma-vMZPk1-xRg_V8(_ zJmM2dZuI~c(({bARDz5K+Cz?4`;$~^+~*eWq4|W)gNbtO@%?_W@dcv};56H&Q*31p zm~;D-95x{mZb)q>S~bws_2#Xh1fhg<^j{H08KD}Hq+;w)bRgr6ZE6XGr=01}c&um# ze;VJnNEGqVYeqc0|55wPL3!;*|CcE|`NxJzXwf111DW>XXbijsx zTvYLa=45rbSCABcYRU*f4^_YSD~s&Mqs%^QWa_G zz_lxn5T@D5$X&uhR*dbDzb~c~roPsaBT*CVIgzx5x=#F})qicFeN>I;!$*0gImQPC zkuUmc)sN-nv&*@y zE9p}KQTwmdTqg73PxA*t*Y|#O4;m&KvCZ0+?>8(2tV}K~**sajd)1_gY-IXb^Tz+Y zCw6|$!?;+ttfud?7Zi$GHWufuOt4oL>Leu4mC5$WPThhYsdB>tsg_ulf+QxXc1kltUYj&I zSWfHMeY(3oOPgKuK0ef(sitPpS3bvVpx>~9~$=`9oVhP_VrSjM;amv86Lw--WN=(i7;sIVEYO>bqq!W_RQ z@OW!+a|L2RZjB9t=i?}PHq#Ggzl|ij>hJ&D>^7Mq5_gAQz3phiQQlVWZWZlj?tg7_ zxW&g-cvt_fx5dAF`P50>o@o?pjNp^*3Qvwjz-^((yTc|`qvh~ji` zM0e-~b9?SX{pOvB^Zu%eCqBY+dX}->vhU7kz$+e6Q$DR}ao!N1;4qOt*6XLIiDWyE z3KJ0>ObX%*Y5r{+`gkfM*zGo?I)8~3VEOH4cZFv#HKy(cTkz!Fs+o z=fm2jmby?V^n~lrg^fS+XEY*cSBCP)B3&~Tv}5wmeME1&REdZj#yy*bTG`A$n!=$< z!{(pOE-&rv%{{2~#cS(Ld{1f)pABuC=JOz&93D?sK9|&Q$_TwXo(o>&-HrX-J^uZM zwp}tXg&ppluoPO{?)b6PS~Kk~=*sUh>ncaBc5 z>T|-I(JIUH6a~U(I3HoSJhRgF0ImO;Og-(2%K3~AO~!~|5pvS7`{ z2wLAQ@O<7L574*_;5Pe=>Dca%<}1Ml?-=*;eU!BG`r*9e(eGpHA^~A(NPVauRiQDh6iFUFluAK`s*gW30W7fJn62S(N=K8z>YhN>Zdq8q? z>p$!miBO9jdP-U&kpxIsP<{NGqUjy?*I{pE-wB)&Nz|rNpQ5;oc4SR@mRB15_*lys z_mxbZtOK+h|CMAYr!!MS$F4n44UH;x7>igw1=^qoWD|4 zHd+ADg&3RHO5jmK^JJk1Fua0pX<#=D^_lsVmQ_a!uvwXmJ`J+sH!ONIpN}qb`P1*u z0u(jL)u3SBr^sl3&uAw>4(669FeU}_0rLfzOkn(6+{^#zE7? zeY=#z^U-UTb@c42NGTYk?_k2_FX&Bu7!t%|RE%qm32JlZ3R*iK>CxuSu9uQ~()T$B z#>a)&NIN{!_qZMTIO~d{kaDlDbLBX9qVbU`nG$vq7av9linNxE>b2$XK_d7|s6)pe zO@^SafMZ6+m!~t)UPewdHO@2#I3m^#IDaoR*F~Eu0@&rav(6dw-{fsA5Deuoxat;i zrg*fgSVo-*P7Z4YZk{ZdkM23Be${bvuBB8gS(c-|TE+dSK(R46puq`N&k=lvM^^7x z0xvlt#Cy5@a?43~QL!WD#X;Xcg@Rj7FnP?-j6a-!Rfkt*!c0J`jyx$lZ&!Z>*P$SHqi?dw0{a*TzMtb`Dt^}t5 zmW|u9pfjZZ-OKNyZwvfErP|_i<eC5`fDbNTqU&3eLi_8`p6L z$4|ZX;uMsUqnUtSke^yY-PBsGpRf7+oKq27QKy%11fzcrMXj6Pw$%VX_m|f*thK+b z(&LgoUW)kdU3IJrmHEv6cL8bk=S3L$%XOkzrNO9+M1G2*R(W(2iRt}@M5j-= z`zonCb^qI>&ig5#0QFMA&*W1XSCRnn>QRH&VOFQix^MXL)L?YQQ@$qz)zE6*dD z$EP6l8(Sw>-A-X~aPs}ghPsoF`!%(mu^wz^KKNT(B#~+M-DamcP;!2=91OpEd+mPU z!@vJ%&io zTnM>+&f9JF5CE%^|UYpc|`Fn?LGCZKHjzAn}&N?pk5 zh4t6#opSI$QqpgUD$nwQ_4_Rq<<{u37Cgk5Y>*Txb2m4LU0vPlJoOj?Yc&$nKnq)p zvl@tN6n!6dGpl8Jv39VVY52LHdHV}g_bs7*bz%ZGoCV7%L-qAhn>IRH*5*ZX5d8i= zx&`%?LaDWN1vsH%s?*>*!mw^UaF>*$$@6ulrrBAT-v-WpsASFbSEbbEftNlH z8&b|K4u)ajKFxaNujCm%Ixa7h!4AAg7k zkMNlPR+iC-X4S8q7VybAHe*@*SM5L-!Wg5zJ7u&h3Oyw1UqMR3;)(2fRWcxpmG-qX zw}EKq{>Qg@H2bfevFtzd^;phf!JH^>Q{+cAQ^@CowD`57NbvY9!Eth~9IcN80UI|x zxl0E)FZt`_z3qKMU%9VeCY~eXFSl3+tpovZQCau)_zO?D>a$^8@o2CjYL!bk?^Dl_ z*SALue4tW-lrDx`EF1^7hmmy{Zyr-yCVzY&s#g36#@OC;!G}mt0<|WfXu1ktv9fxb}UwyV^cmsh-nUFRMy8@&HB`>jLr#~=06QHwGok~no?ftT^ z&2Y%9zQn5Y%FCq%uitX+U9`@Uk%?AiOhi8wfb zdO0KG5^Mz_KFXVg-@72i3}fO&ik-f~hTBu@AIpLCRm&OZ%`XF{#xJNZ(B{(51V245 z93R3P0ucE3&#U?&riz}fGR`IZp%ToGvIeI97c(6X9Z;`xB z+F!2RpJ(s=+DA>?vbich6Qmylq>3``GQe^JjE=W8R_Au(7qJ?E+}T@Bv&f|9sWT@T)3zrR?`=E@FHm zkqv!1A(9ruimuU7w>5ITV%SU_dd#d{nJc}Z(1jU(aIp3M+D_1x>)sw~Nr&bdyUp}r zmy_0t|1fOcn@BvNxOf;Z*ZQaxO;57b{e5?~oPj4zf}a?--uc#Qf758~Tr+Cp_eyRY z+f1@`Yi4QY+lT2T7crkjg;S!}MhjPJtO%UBH1uGLYi2XJyulMv1d}PtVA+q44GX!7 zXkh%?__NjjwigFbW3m6+di>S4JJ5A$KFrZ+Ww&?#U)y%&IwfOZcQ@FuaB_RCvooN< zk2o09Goe1Z8_+NvXrWSHE9x$KbMz!ej`nj|9Gs)YkwUqhwA;T z4I~RGmN7XQ<-+BExn3{dv)lHZ^i4+_=KWjNQ>Z*Z?9|{qbcvs3|54PCvdFvEA4D z-p`q~u!mJaK!*T(Frba;8&c#-Z*g+Iiroz;A{WeGHMN@6OzW6v&f`u(AgiaXh{Q7) z-Lt*9YC=s-En`dCFX`I>`PM5S%rX`reAvmSVo`f?GDkd>g5cUWLI(-@Ilm~2*xhdd zJf(@~q9uAtbfBh4_OoYKNapyn%?CXE{a-7)W8!%bHL&#qsR8XN9D;~{070*>sLU@= zlcn$WFrGtD-mxZqk@H8{i^a1w!QPi80i&sD>fKrltHV&C=CQAGV%o-TS@si+p<7cy zA$<-+z2V%}*xT1h?>NT~ zQnquT3hC`gXmD(JY&fVv=~?K}49$!4EHG1PvT zbcQL*fCAowMwfEVIeau6k{YRF{>I366#;HAp+cvUxa0Q>IEYFmv|hzq?Uldk_A8A zU5%}wG1JcrO0@%1*^z1U(lyQ9VVl^^XUY5l0Rj7amAjYy3Zip>Les~}s@hCzmjW1o zeI048v3Y**H8f!pZJ&x1J*eF!1#8P~M|4dde-0w~lTTr8u{zS9v(Y@t;9E1=0al3_ zo(ZNY(X4n-4!%mK@b!dyAK}0yBJ*S$O_vL>7EP83#}OPS;Tk5{*2dC;n58wke1^X< z6jS1JxuV=lHX%qxq!*zs;?^6l2(9NR_d9X9m>TkqfIaJetJm#$?io~}&ntIDlGt_A zbVYf8UO_WXT70_POYHB+Zti^im_Y&lVcq#Nnfav}(J~_DCqd%Y6mv}5&HO`obu?=% ztYSR+g+L_WFR=8-d}>#*>}Lk_3hIF5VMVw=Y9L1wDtD2Oc3f*Q{teDQF9fT!?~3 z^$AW6K$fVM5)#DZn{nq`m#3p;zFhm#1!h8NB_UvR=+Sn|LP$%M8m(0B4Gr!L715^* zrvrZV#nw2*u=R|<{&Z#k-wwrx{0oLT{$z#nw6~XW`0d4^TIR(g?jFjI)HMVW)O8DF z%?WV5%QwXq6g8mIUK2Ave8Z5l^##px{w5cd&V3d5+9!CPog{0%guEM4^EHpzp-|a+ zKk|^S^3hKybC8DR?jbi?^)^og`8xcz7lxTX<%bh&=cNki}$g%)-j0KCfZ_ybPH}^LWGmN zT#`__VtgjzI3VY{Xp3nM}i;dKv zsCw0d#JLAIqoRb9P-6BS9S)Mrz)HiItp#^{+`K}ou$^jUpwY(fr%rE~^k_d7jm>hI zrRQ-uC^47Fjql&i@dM?Z&}W(VtFeK)2)00{`NQs#Ek8*lpPj_bMK!32ST^}QvG-@w zO={A_VuZVHPTZ-wjd*-dop^GvVcU@hZXti%L^`khb=j4(8tG{!OXBB787QsvS}i_C zWV9Ba2kThv6f^qF2kgDrsG%qcK8=$8m8WKv0(1Yi!W*WGiV7v>58Zl9eH#W=9B33* zOu)jm3bxQbywV_6jwdBWzvjFdv}OwUT4gwgYiT$kXuSp{T+xEZJRX2Thf$5$3|@H) z#+4(FYJ3Kltnz||!8rEO9yw-;L5w$lte4}J5t@98wU&|-5Jrl6C}YV+Q9FNZV&~2! z(M3N1HRKV@jLhyc9dq0No(wLy&a7dl*qL6}t*!?8Ymyr;NRb$5$drCB>8pIO08FB9N(Cb(YE~DaKVH>UXQ4||VBx2gLJxllWe`=4 zhQB6Z|11)pKICb7c zgo!vPt54G9{jchTiW0MU4ZKxh6@UaEe7ZY0tHgBJT~VG3dY+Gj&C#xxE_JVn?9Q>^ zNu^To1S}X%A1~KvW?(4zsfy3pN#I*?gtbBfHCPOxzC;XBqnHWi_%~2a^gjMx_|iu=#KnmP(zwGj zdQvbpFMu@2F9C}XN0c9U&2Bl>7jo0^)}o5?UBwwD;(n=uz%TzsPBOS0`z6%R01-T> zEdX`18XUHRKo&sb$KFWWszYe)F%(InVLOuKxIad#++Ox`-F~(o=5*WYs{Ea1THEfX zj_QE*bR4ULvFl#=tGpq%D0*k3s!kzOA}wTkeeaHu&9Kj?S|$JC+#hReTR$|tm9{-^ zP6$lYhljz31Hq#Q}+g{Ptx{{2l(@BD#T5t2o`dg3A`c^#NUCeZG zarN&~({H`m`S+jq{mG|(N?c6FI*iHqEB zi($|*)g)Si!`Bzrvj!XnZ&dnIucFxg9sI|tXu zFtPFu=KGWd|2xY0F755^^NVRtjb!PkPVmL&J_Bl1r~-zlFX1F^cl}?}*{;L<;P;M{ zD+mRTMH#6j6S~AL)`sRcvj&*%arf@k=o%C&n9SX+b$HJ#c^RI{eo_ zLhIao60?x%J$NR19-dKeGC>b;)sG%O^=M{hXK`^=xuD?I^U6RqXVz>L_zbsAqa$c3 z>Q^W*>$fP<8^#}*l~u|wnL&V48JXDV?9C;U`n|m{ntUedU+4^9M9B?pQR;DP7Z+$& zkN&GqJujYwT>H>;$0%fMa3z+t8y+XztBLJNm$G(^Y3~%F80#6U`@g)HmCg{?Y1n2k zY%0~-))FNj%+gpft3SN_3cHjjYO0lO%f!HfqW60{MccKO3?loKS|xpRfE~Blw#fka z-6i%=R{$BzY9XVe~q)zbah+tV8pI#lqXn%Vi$2@uHp zJ8CYTNcHQH~SW#sqR$*FqOKaaS%=lHUZKz$}WyZp)&WTDP{m4jf(4KUQtXE=5cae?{#l3h;Fz#=z1$|Uyo%Jx4$5{=@EC& ziP*YAmfWKP?nENnXq@>Aa;)R;7VvXzU3J~59wf&`)i_orO$PoVh&*%ZcFzLrfv%NF zxq(4zjSxp%{D@{>Z_fCB2l#o9O8YO?aTvvHz21bH*EcG-Te|Ub%3}OOYy^ct^hM6! zP}WnqN1Odw+)}uzee!q&FLLa`WkB^30P?$M7Fxhe-Rz_~&Qlg9byNiQWk%zZ7+w}K z^Kk$Fy#Pm*xh~hJz}kwk06H^8@4or;nBKsGy@F;!g#Q7>Ps<%=k+gf^DZ%bii|PxTl7;;1)&~1w;4~ld;&|l zM@sq7<&ytEFS@nm$8rP^lTVF{ZKb3$qAWe~4GPE}d9sgEQVNxn5XCSzQCQc*LM7=# z8^|v=CzqjPQkzO`OPUH$VeJ<;f z1q>Nx@^@a8?SD7g&74`}LK!MEP?PA0ICk7V=@+YYpIjLiap9KIop;wsLP3LnVzna7 z1^$Nyn6>xN+XDfQ@*#S1hsc(tJU!YuZU$6Z2lv!7wZ5~Mn7_`YHDinS4zz)!RL-eMR|F#D*5P8;UAcqCHD71HO{`*-KbpL zE^1x+YmPY2trLiTB_)kRIT8hdE|W{;PQU1|5Qd=k!Ir&0iTzQx0s@UbT)+m81+XdC zWdFFgC0B(Q92=uWHa_p7bYh&&;?X7w@OI&^m z90_(RYUHExCld_#2ziTB;pqpO`m^g^Bt^P7v29Dd>=#{*lBw#}&-$3H1o0tX;rf+# zvRq5nOAxUmrPbi7q88Y2+{NEk_YhRRKpIh<`oZz!rPYecmd(<|2+(tfobwesR4;R< zdAe6!D)*rxQ43)$XKaTxKp*AE5j%r^Sn?&!zJ|?JB2^sB zYZ53n@@c5zkQMub+fj5_L=f|+2L8~IK%LH?nb zuS#SVK3=*|2c>SXctge*rC&!gKkwaQ{3remN4@LzAmrX=(tmm6FogQEWBu^#LP-HqwFcDBUl;E3Y0 zJ5fpCu<3pSfv|wHHcp7q(1gF1fKCR0krqJNlW#$z=DO zFZ9nw1Adv3=A5Nf8k7|9ATceA4#ZzJEh70~Q zx;{ZIZuux46=d@no-vkW?~8pn~b?R|NLXaHC_LOP?;y1*~o72*7oFc4Y z?SbT;;#q=gfYhQVK#`dje|L%Swt;<#7z#%oiQ%5+u;3Z*lIEC&V<9}3tY)8ImXWal zuLV%4?0t#AJb?mt7)64`uv2-k7%*ZXj{sZvh_BXvf{dvYOwh#OEc9z#ySA+*hZzuL zQe~uH0|sUka64R|%m(r{nqAlhJ zA_tJke*J)nFJQk;k6H)i)Z$*CTdk%X{QD57KwnvcQ&Lj0Fyi*WJj|2E0(CBh$PQZv zP=_^k;|sTP3h*xfHu%VyDw|hl@)(jKXNzrrPf+~N4rcvpdMEEcpv}(c0R6sx#-sm* zM{G>e0(V6B=|$Ub;}$A^dy5YF8U(Ocd~5fr8(gOY!ML!hw7!z(m)?=sZ$a6Z=!uF8 zx!)>QC};CQ+hOZbkJS4?HD~`8ln<&}Q`HeG4WT@ud6)orO}FU!S8O`3=FOlZ!_5-CafcAut8@VHBBx>ulG*%3eG03fj-Bx zM@pIpd-c;hdNy^1tjQmy;(jb|zAa}QW{mI~wr+jwR#Og8PyTKi#rij2kgKyl`Ad?# z`|~5MDEiK}B$y7?=g@C3ip7KEd#y^}qFvDJ(Ul>$XgJ1zZ*8UW)_upCU(SK8>py>t zyQ3T$l671SXaRw_k(*s+gZm#NV*hr%UU9G55d)w8GtE zW2l3&^18JR=s(+kr^*9&H}c{(6zF?@H|Id+;79MSS9{NvzvAp%KQkb=(nvQDKQPHF z3&Yk-4ffuH8{M`nRr0z^zD;-G?9DObw;60+?V2^C!1{n6o$pS7M%CuxdvJ5 zK#L@foE}-9nG26-N9sBkRXGLM-%;lEdmnH=va^RrK@|6B1k>Mty{$!=aa?u4?r+ak z3wJRbvp=9Y-Sc$$X3$+CT076Z_S3P@kT4oWT>kyb z3BGf>_-Xngops`%jf+Q9{6Gsq1v%-j^s&YZVj+JeP*~=!L11nkZFl}>DW6A?&ndph zu|elAC@22e4)z@15mW*B4poz-c!#??iRR%$3 zi|lu2aF1R&xVl&P2jWj@`%x9@4sPT7U%(Rw`pfGEhTx0q%8Z#WNl};E2)X?R(ajen8n13JJwomQt z_>x_4)aW>NV&>j|JtQ%+4?Ln>PSOBAX{>8Jqp}^JL5JNcV@sL$|_*({!NzDpIYM2 z@g-Io#m>Do+U=}-@Pj$xt2}fs`WV)}ub|Ko{?E>@A2#d`9+{f&lA^+D!T0ZXy6&;$ z2*;g|q`m@LiMPOWS?Lv#qr9AnSr^A9v#U1IoGUhRFf)MkN^GBe>M83lASL3#lP3uk z2BCcSCwlY99CX4Xz#0B@c?PL?aqO~Ntf`=|XIi7ICr8(gOO8JnToBv^1qCkClM~#Y zX;3J^6h%y^&d##<3?DAq_KCewWz^TUycW2M1Ao*_K>a_NC6@DOUpBCB8G7VRo476U z^ob`lDg=94szVTGN%d5ruk>Tjr%k@7&o}V&8A$iublW?SknOoNE@-9=mF~gUU*|kt zOcfM^qK*oEEd&Q=7JAA24Pi`G9`PdgP=)-EIwl{rL@G2+F-1uKP$o^F^7Pc<1=ivT z7a<99dK$;Tp_eF=uY@_^p$waanI219c5j2oy33YUWe1%Wk#j#Wo|$AA37P4RE)C+a8Gq`ps|d-C-}^vkAd3c;eQVH)rz-<@(?mEoCxHO zhkBR4YQp8DSZ-NjKn?<%LZMH>V1+47qDM2hc^u>Z+3bEZ+LhdY^p@WU&p%}_O4-

$d*?A{W0}wFXiciZ*#XPrr>4PkV|EEN34>xY%xL01Jeh`_WSBj4K$bQdDqLBY9kMVsfaQ5tdyU9-WbvJ@*tfxpbdhYY)Q9bG0ZTwQm{dng%;SE%UTvU|b@}V&`r3AK0PqMcz z3;q&IuDgb(305Af{QYzOpTI|VmnfTH&pg{O<$yONRkTQQQ{72B_2ceWWoi`erP?!K zBT*!=NnLrcbJg?4-Az|qwdT6*w)7n7Z&7?BO6HRDkkk)PVc6=)%cRu`vGui?k4+7E zOmwQR53ArcLi*7uC!g9MK~knRzVa5qneMk>&Ek*U$u4}`AIFx+2WQ~}D=kh}j^1FQ z7dqgpUgPgZNAZjN#+Vu*+#~g@qj^`OUMV~*^t|Jz73p%5_+iS#{-M+JQ)SSjsoIo} z<~;eOjyBSj@22+Lgaj9y%sf4OCa@qGz*@D+Ra6gA#eVWOVTsK@f3sd|JAp4dIbhQ` zbw}}I>|hP>sFdd>wshOqqv6oT~(a zmo*`t%In{R5A4Fy!W#6HEi?aj?$j@SK=({`-JT!Z-x=KRs@%UEkrWD+iwb+=MH|oB zw)q=E8jim<^*kdbMB?rEpR@D)xR`kf^$7ASsEt7785v7S_nbi++p8Sv(f(g_uFz0V z&-|bH_5M-G%#Od`6pCE(3m5CRFKl-_p^U(-J60Dv=W27+9A<~->CXh`2d6M;TD^5@$g_7z%p>hhql!w%I}$rTDY$vjq2ogxUc!zOX^bcLo;9gk^f`5E#W49z zJ5dFZ9O>xvRC5@tgi1e*)4d~P8jtec$ikU^5g3ABdq>SH(6YeH6THecx+8acW~~n9 zs2`UORk$V-->1o5EJTTl{)IxsJH-Jo*cdpOti*%mxawsP+175t+)@-f3kDjWOLu08 z4Ed5Crxc1eV`V@EA`9igkjTP=zys-;3F9_rA}B$!A9jKnY-eA=SYU)8(-edD`Yclx z>XrqRlja#NU?vlK__MeuEN zG&qc~jW+HIbGK_h*VBD0@EekFA!j3PDM8LS-n8r^L1;-4VYUZtk7s7da4JQYQ2>Is z7?Q9wZappHd%N-mK*Y?v!pg)Pe$~$NeELcarE5L{xs%byC1?9xFJ4+B?q9EKU3zr^ zz5@t1PmA%*DR`g7QY7zgZr#c9!l#N1(>epJ3fBE<}Bnf2i9BaXjA`v!YUoE zDnWBTT=f(0{x<&0t6HW%z({hwk^MdzPiBk#u?uDq8w&B>j!uL5xt$BeH@LI~-SlKW ziziaLh+*wgN+t2NH{_kJc^lF2gEPA$?`}ifW$g9 zUIQJ{jpz1N851OjrKVJAm|`pd$T;}-6!bB~9CQd+5dQ-OizI_mTK5VwiYADwWORU$ zwE|3NuTtzw=t^cJq4qNw7L(Zs@IR+(P;&m*%KIl;RA3)E;s|WM42Y>I@+=fIyF8Mj zgzFwx1RW>Dk&3leWg=Um7{XzXRCgN!`WYT~fK+H#f|KF-VI{T10pzsEw{lP^Re;Kw_j6m9;aP3;Xt7a6uqasr*JEShDs^LL@MbD?cj!!>d) zbfuqdv_o%Z88qJiVCFF*l}@Uo2L?1S)~+E)X_?kKAhWVN{d?7$n`$k%1s{j)z}>$K0RbwfM&Hl_`By59 z$UB`Nk-iC#U=B8tM({W`-O};7{XlihxA?V@^tIIah75oM9N& zU%*17Oz&7g>G`VTOF$#8tp$RW&WSQt7tHZa@_CsiL|s#Px$DL%xmaO4j|*1@38q0( z2bOV16TL^PN2U5I`N{+*Te)TLwum(aDz??dX;CpoxVGgY2X9iSz$(zf&dasZ)}yq_ zdUt=Ai(Jk|`8idVlsypZE?uB`V1;jFzJqL1k$eJ{!E)BUg; zw4kneNXO%3E?1xD+g3c}TM;T0D>BlAl-G_7S zi!_(GxSrlc0k84Z<}x&4A)vgQ){Y?sYG>xD`sYd@AyO|TPS(qcO$xyWMdD7V?_{!F zwUCCxB?gyj&feCIzihxz{nFN{zB*i}B(e08-unpZUNa%=d06JP*xs$=Jso1^KSHTf zuWS_cD#p}p6q5yNLM0|agQ9c&=aEo>*;!yDQzJb(`W{ss8}n>@>01e2;oRlv^@w$< zE=-dc(ptgTb&B5_H&Yf8Hl~c%mXR@To^S5*)OF7r`YOe6hAv%@j#mksHIxe=sy7k+ zt0&tVD9V=iQ7$fSO}aMfGKxCToTsLNYTl%k=TS8>Jb`NLXW#isuy&|Co-ec4m}%BL zY2<@h`u)7^*8Qb@rs846eo2QBE{Fd(*{~<`1KV`ggI8_m+4;D}-)PjPf2uG#6AF8p zM?A$@lLLwwvh=6N!nA+PETh1?`qP)jbvzP$P#(9nb@Z|KS8&`<^c@wBqpt&5$9T8H zSCm#?sNOnc$|n~Ed70 zuM0B=yTkMk{-K7j#o*c_>W}Xp8N9|kfQ?Xh3Of;`NTY0S_=!e`?Cspp1!T$qjL#0} zZ;5i%>yFmqFzVmkMRh^jU+vAz652a!3y`9mhcl*AZil~vV~_k|k8U;f9>Es>94;QN zME26Duqky|wf#q|q7LmnE{;mkr>>1TBzri}y22stRs8GdT?r{$xWGrdodrv{L8Z^p z``&{^YMCx971l}Fq>GAqJDw9z(l>O^WW4#I(1w|NrR=SY674VclKDcIje9H{;Cww2 zrHE$JylVPVfB&ZCgqOLRdyh@Lw=*v-{iLHiPZZ-gjVt(9qQ^ zDnO$w1=mv;+WEW_!RUHjMYSDPB`jG?GK93vn0f1I>m5^t9OILg0POAl}amsaaFP z31A=ni9Xj*Oht7R{;3^TN|w#oo7 zUq-T4B78P@TEQ8(aOH1&5&<+4P~6Cp@HWr-1?^!?OWr7_*-u@S7{x3l3@v~DCa(iy zzjgWzTIEeyC{B|2nA_}|^**?lv>K!_hnk`yZy@?MbrlRvPkLWsVwVMe2lMGolr!_` z)@@ybTu3@2ub79VoD|XD^0K%TF&BDC3}IahjDOq=65e^%wVJujCnZP3)|o}@KKAZ{ z&B1_roDQ+|Dnxs7^Z>NTQ80@Ks1E%{k;k8(NxU?cE3Rm;)UW>)sP8<@i2z9^_FOY| zeufe?;LywQPQPFwcf%4i(SUj+X8wdy4XLUM#6zz7@H5D+nR8;0q2FJ>t$PQB4Z;f4 zbMGs7UnC^SX4_U)=X@CDm2S&IHq3Msw;)S36;U8St9W_dC3nLh6_^#x#80jbYH1fm zP?QN99`pLl5mD85M9ZME>gr?<{qpi)1$1cl!5>nde;}sRdiVY!fxzK~$~6dZ!~X}L zF!QS=hC6a$?Jak#4O99~WA-N4w(h#lU&Y35;L6K4Rt`NN{%JqzQpPkkr^+zrqvTtH zS*$<^q$Xul*dn2oYQjI+lH_EOI?&3AoZi&U2#`z7Qr0zAy%jJvTISMTX#gj#cy~2I zT+byivT7San~NH`u(Be`md4}@yWc7LM?WHCX$lvbE5EMS*z!w!AV^NOu~mCcd?*4I zL2Y=cgY084Qf1i z{k+FODV@DJ0xJ1W{k`gqB?R{z_YHO9$q+X+d_>$dmybj3$>Mod4r3n9v>&DZ-$M+P z0x$kkTt-&Px4rAKNL|2L+vw5P?kw(Yue?8BemvH6z{ERFp|rW}KPlfITcq!62gfny z%mkoN*QI9CWYKU>$MX|nSVL2is=3pY$xv=zJ3RXa?^n@mZ|6@j2m$kU$=5|S1#Z#5 zf#LVvtETQpp`jpYyyeWLcyZ2kQH@5ykEv$986`geO)IBaDt*dpJX{H4Y6EYm1n8-n zyfF`mcP;y8=fY9>$xxM1@*LEfq|}6sm~F)BSQjHjCIfJ4lc5`yvX#ccW401CZS|u2 z51|wJMpRBvPT5cO6|D8=?|l2#e;(dnba|ZLQL?iI&v|wxUlq{|!b1FGmTCIn+1+z5 zz0}{U;$hOavI!=snW4=hy^pG9m+hni!9EDKV*5&pi0z!c$^)bnfs!J%>~?oyQ#oZm z2Lc+MKa&tDknC|HKfFbk^VBCO&Wbn<()t;;HLwUdu$h749uk}&O#yAU(n19$f*@l+ znvj*268E{J#!D;tk2%lU9L;YFp9n%}a@O5@$^miN(G&tSB-7WU;O7Hc|#IYR6rohgr_{=^r0|u!CDX9c_OX*CqM>ga1 zP5l#KPK5!N)(0@L%B3)K8@^z^F*_cJu^}-}!lb24_Bn3?N~60}s0|pGm_|j+53(VB zOyca*FGi1kEP?f*zJ<(Jt7pmtamad^-b=Junk;C6)a`~mXa9dM0E`23@cr|uYuxhg z9oI)kpA(%vs%G>D1W>xcN6K|^lhaar6g!N&%0=Pj@vD`QDF#vtcL15BVMW^6nOR=` z^5yyF$nHjvqtF{TP=oI4&IHx^BZ>-^eLK45aa{uwodw}J%qGkp#mpCmLK~2cD3mS? z2ewPP5^#1iam_3!Ze8~zQJ2rzkoA3O#Oubd_AjLjKtOVXAP7=CJPg&cG^v@*C>g2E z878Uf6A$_Oce?rP5s!6oDh_Gg$=Ur;lgl1hkNb`r;n?f`14sQ~ao} zVYuuhUc-O@yQlnWX|mFWY20<__V$a?${d{a2nl~j0^#|)qIM(0-@2(yF}snVa((~H znI;{%3T4E6Z0w&uORqo^OF*w49TPkmIvbdDI4kij1J?r$?>gQjZUq9U^4`la#k+R{ zFP8L#v_?@s@8a91g(I*V(HezQq9x^AU($@A>yFjM;b4cop`jDm?xKuSC#f&e-35~< zc_6bt^fZ|(*&m?kUTt9xH2p1b+3$)8O}TH8Ao4h^;~^$%D4 z+@MQq8=J>Rv-&V4$iHU{y<`n!{<7fr3D^Ebl`s%o7X<0ORKC9=zd2w1{aBCi)Dou@$EObOTJB9+;`C!fl$#EJMnpZ-6N%_}99cepHK40#iiq5piU?KK)g%%= zNNC+h`tCI)VeZk zLsRTMc$42M!emf`&J?tjSV0%qtCO~OR+#RQPrjD_2U%8H*0VE5+E9&o6u!IAmc0+Rm%~JP|+kUD?aJ$KJ_V^sgf?t1#6We@O}$e$lWUXsnJ{?c=P8659u+D z2ft2OSG2%}mR0UI;2JFv8k$SZ+UvC9r)-mU&Cg{KA3Gb8PgPp|YhC-HWYq{Y&^+^r zfZkntcfs|Ve2ktv-nV~m=l4w2@cHf?hC<}h*O{|C(+C5JywGn4h;Y;5wT#eeX;U@3 zP^3(;0Os#F&A<&N_`2>xhrLtCh zri-wr8~Jzzj^waiyo%e`alW#WyZ2OehVx3V;d0$LQXp#pC+F{{2Cl=o-%4)A2Xl;pE~Wy_d?SPeby{*L0Kux$ z=SO@4!eH7R=*9Km#(c{VTPHGhc11e4aiu9{?}}p2zL#PgHDfDwYd$!RhT7^mT)@97 zw#sykUV5v(_-F%6Gy8iZmq5OhGlCPSBLyH0IBleWqS+#NPhxepsL7`1S1~kWa9;ho z;}kp%etv0&odvomKq_wny{FH?9pv=EWuRCRj3chvX#TEbu8zNSC0*7Y?%h5 zh74$d{9w59K{>x!`U0Dh*>wD0%-1xqsf9{y3V4so0I@_o(Obx5I`w3#q)@`?o5f=e z5emQGpFSMBA5wUnbxhtO9*6^I83P4;RRK;w0_c|U z=vy)S#@8+-q*R{W{8omMDZLL=R<7`olwL2W@P!UX8@hwy$+wb9VAMKh058QHs3#r* z>f8C(7){{ouM?Po@ffk7&CJ7V3T_uLD1>7=Xh;=gHEnZ3sAWaEV-Doj#()6q>`;ZT zmPJvLmSVuH4Dp}f7?*++Sv%;ZY_*8gdngnL2Pv`hR(u#;==!B$9Ro495SNpfi0DNB zOFNO6(MIH!P*D1h@si3}3(4&7Fy5OC;@&b$sVTD36IWS{ae)DBEa3Mz%> z1gJ?!=9gA#&r!z5a|pDq7MCB-mD9P76JK>K1kcAfs^hmmpAkIL3c9#=o9+%PbPycIN&bzYV2^Qe^y&jOtZEfKJu{sstHT&sY=J{I`S$?kfGgX*^j=0(jo*Sk9&|OW_~ZEcvydE!9Zy@Mq59wdCv88!o$K< zTSUJGFj$|UA9}btQ!`a3JKL}G`#0xUxHB?CYeFU~XpPJXf2z87`q_rYRT0d6Ov0e~ zqiC+}#&^3d-CMSx=EO5ydUrvk&Dc0~q0Mg?kz&tk$ZNm#w*AYRy@g1Ut@q08rgy}s zEm?^Zi3o>a)TI{rB9-~-kbkvc=p}BjnIjfCTC5deI;@iUk<&9y9SU}UZzjv24KxeW zA=CIzcJOL$*-4-k&D;X6){=2Bc*L$DW%T#>%I_Gv2~`rr4IwV8QEH9I2i4grDSo)C z$7^?D!#cVYkk)u0w&dHN6jCx}@~9F$kqBm)6D;O0B#o)-7>)q}lS0W;?VI9D+6KnV zC)ZvpjL^W#35cF-e=m{nlQiZ>%)bU>^*ylTM_gD zu!vu7Zb%+j`Uxs=3k!Vy`|<4{P$d)0H;bG9l6{4PgCi;3XG}!W?}PAyWBw?6sw@lG zju+0y#)Y?ab@ynFKKYV?O;UOZhbKU!=f8u0bvhl~O~y zw875Cb~|_40wgg#YXv}Ei3D9@t}=$W0gW(74k*Q0t^>t3;I~w1Ydi@;43jXod?X6u zc+SWyO=;3z!jQp>eVVg=F14!SoLu^oq>7tz?N2hHRKR}D?3;z+UT3%jTu8bM>Tu!N zp?@oqCGeO?V&|F3icFHmq~OFX)Hh%IBEh!n%s_xfE&>^>dkqI$7^eqwEUsHGi2jg1$rNig*(;KUIgwgIi#zaP?$ zb~kP`f_ZWi>InMldmgrO_}_f3XCAg?vuY$;rcKO5ryDs!1b<% zI=?X3pTjK-zBT4(%%*pHF0n)J%>n4Bb(Om*k`9;NL%eb-~5%&G~q{fE}GM;P-cnp*bl(Ys)S zs~I!Dz+gWLc^4HCs|-nAkACzvZg=kt=mj{R075~(iNU(_iXDDL)ZkcmG^r|UL4W&- zTQupsTU=CO(y*eAJkRmhSBv|z>OFKSy`VgHcWEGRZE5Bd52|a2ih1?QC?FuX)vUZM z&=vNmXOnByuNJ2p-CW9Key0PQnCDSSn-+E5Pzej#J5!(@fGbe69tX*4xqBacrWMIk zJ(PB`_w8-P*q?imRJsdU)MeprZ``3}FEDefcL1rpLzmZ1!bmVE*tcN+H|0EDDP(d! z>%r+Er~G_bHInU5ji!y686sR9C!uQ5U-RcGy3TQW}{bew^3T{oqHwCNZ5d zduyLc7yZ0{zP$I%bFL1`-Q}s?oxJ0P-s50B9bJrucGshj1-#`&oknD~|Erq-lFgSEsYCT{J1JwU9VXwy<o$X^)JTsrX z?Ha61kF=6x%Jufq1;#Vf4zu)Ahw)z{f<)c6f`Ua$^uBrz%*c@p3b|)w&t6vj@0Ka_ zLHNkVmx=#;)-rrtfs{zKq?ZOquQnZ{dUuD4-415TkN4^Zd4hzavV{`b)`Iaphf9)15x+>sl- z;22cUB!ku70XdFp~z_0;jFt!Hy0Y6B1fO-2B%d`)*+ z=SKj+sm5stufTQn-W9sY%v5;P@tP@}Xk@23Tf$Dv^Y1M$Xm>3s#U(FS)v9AwcQ z2Fq3;byP_O8i3MAc;5jJ<4PG|0fXCZuYr3e9Q0B)_eC4#LJU9x-`n{^D?9J>OR>d9IOn{x#L44nV_^%i+hHwic@I(q%SV?(EvbTFzw zF3{>mmzp^T=9s_3&R^BY%w11hiCNxzG%GEI*W(9fCRf&OB8p$yyOU4SgO7K@mUOT) z7}8ZvobA&M1Ga(NFO1_25gyHeNx2b0zaFNYfi?!Y*oBP^RTPSi3)o*m9P+`U(+Olx zeRH5VA_yFs@}O-c^3e$$KpAQRf)+yq>WPMva}(O^a_(m(_98id2n0g5wb=5ns$BQ~ z0E!xocudvY<>2yuH3}@|YOFbG?K#aTNi+GsPPcX*L$MMjbEZ(719LhuI|I1Wc*YqA zMTog4L|Mee42y;Y03bn(XrgQ_mFRuzyAym8R!}+lK&Eo{B9Fb<&nTcLSt<>81!m)S*^t4T=Y!Z1;UuNoCuIm5WF-2c=@ zL>iM>SeGQt9fsywWbJ2JM_x)p?ct>XHYVP_c4Cg~()r;cN%!+~VS?=NZ=Xq&V!tVz zTZt}FBqG^l;`Qgj?Lhrgyhiu_xi9y10q-lAmiOh*TU#MHd@fVHBUupX$M&oYXgADA zmp<7s2i6KO@mV}iy6o989^W9rvv)V-pZSi9yb&GA_V+V7FAS9x7DsJF_xfK0i)$;PBE+P@EIC#PN3i0%`qVsYdVcN0C9=sH=oB^7)Mhl$S-u`c-NE zma805b?+ni(MhGPTIP(>A8y-BeVna(vS46VEqA(DRe<#@L#O6PVGDmu;y>K|Z$&!D zopo-u&r=$j+c0iC;8!PE^^#EnH;BC2l97$SqrtFU32i` zPk%O$4$m-V)b%*QSL$Rd7RoLBLMaW&a|-!wod3(~!&pHz3iO1y8TX(;@Ep&3@5&dP z)slCNSU3h8EFt9I+uz=WJjg-D{-M(HeRAj{Bh-Spwevj(#cpxOr5!+jcH$FY5Dx@8 zuFwd#JIHM;Xp3cfU!a`IMqBgaDPT#p@mirCVQ-nk(5wOpl?s`)CUe@uy#qr!{R;Sba+_fw+7}iJ zynwO4R-wV@$x%=MgGlQO0)0ILN)o#ZrE+VLy+>og(G((HwTJq%w&&Maunqp+sdi0X z0Y?8*oo5I#+`M8Hq91?;0AvgF?^EqytyHcQYH9{-RPC8!kQaj@Mu0PLl9<~pEv|{T z#b%{!>&6=7p45&R%sG)DwFz3Q`W#ZW@|smBPrxY_b@VperRD5pJF=3Q)6{hpzzpND z|KaL3wejJvk0&c`ZA|gtkDnf`XsR~U$r(G!ZHQSNJ8CZX^E;<$IHlgvH4v+k$u&Ms zr4M}B=&8CqmW&xp1P6{jP2=|ZL+XIe;=(3yC@m?uEzAYkSgYY{(4d)PcX!OAY}o(9 zLlzFS@5)$E2N4HmqSrm`J?-s{rP;O$p{?_?L6~PLX!Jn$#g*m#h{*6ZZFzF5DydS| z1miag5|w?eR3w_9q96reg`j;6gj0pWs+ki`XiID29qi@Ke%Q(B;R=d=zDTy|?q4LmmzWQ|lTau~mS$jen4Nta(4H^9 zw__3c;#3nVoRs$AwMqaAR3ThQV$DqPe_n|w(*q^1_S8Vsj9AGG_?QwNCS_{yf+a44 ztSK5KxDdQRN#}V_yN}9^ueDJ;E?c#(6#a9AsuCQ%7krel_AXD$ zIIW#J1%$F4Z%TmM;XK8ujm8yJ4xqYoBZ+M`x;n5`fXphfRPb3)2p}i#)GCgvBX?55 zH~6MwwQ!bOz=KvCI?ayEe?$;qF;5*Zf0sn zT&hhy%k)I7x=>ck^ai5?{4^VAJMui~nJ{f^Y{;H)nj!TcDTK*m1~Yj9IO228#&ipQ zQ$zR7D`?%%myyv)VdF82Q@h8ZWgVTm@dK+Wn5ZafRdDQ2)YL`YE({&ylb)?FzZ<}| zwJ=X;2|e8aS!&fU75QaQ((i-iUm8thpMY)4m2%p6Tmf7%t29BME2-|yzp zYm-wKOHMAvK}$3BkMhc48=jFEw<7{*Oq!v{G`Z=P{LH3yxb@s4Xy3V`f4C?5cG~JZ z7Y?TwxfmBpSv*pVBfXJ#gRbr>_Jm$|N&k=2l5Z4yz@>k1qWhIshT+P4UrJGO0rrk)8TDPpf%8B*Hqq0j6ZM{HXeN zP*BnN`xT6oex1D3$Dt1|!p7|^AHDwUi+yd9&2a7Cxx!1CY*^NJdl!(+^4-xR^CIW9 zsb}m1JK!3^1yPM&sZ$qKtak?ceT!O(Xx_D%4#Vdar_e4X<&>h1(BJDb(TARnQF|CoCvX7*s{i7&LZw`y#Muv%8X z-qZ6o>gYFBXe(~3>EH|CSNtL$kBZV)s|fyrS;KpA$AAy!c0@j&3Ml9bcX197e`bGR zgoy;kt=L+^^OjFC?B86C*$2cxc)H2#CEDUQ7n-m_3RTJ20$rDJB;0|eK8>yS_wRkG z+c93hDrGD7&ry{r={@Mg6^t0zSxKByjMOHnl2kK`JA;$IP*kn`2KM$Ifi?uEfvEPP znkhH0Hjg5f&`8=2DJwW=i@|*P_x%p-Md4Lx{P`}*!YmzBx~))yTvw{Lv^0%%g$rzj zS9kZG65S4;#1&>J9xau-=2L$!?_vw4B8Pp}SahPdzy7LvHO$piBOc#H95@O=fPw)d z)SdIIf3MCbP28oPRr)v@DFd8!f1DQpE;B3XMD1Il1A+|x-wV*10p|cy#|6vyz*C@6 z9zK=|+-piQAmbzXmoq>c)inpYj?zj8v*VE2G_$-CGdsA_A6znb7fRr1?Gy9vyE&)Q z1ebsSuyT4!AA^*aHQ*G8d5eQHl7rXG+9LJUD{L{btEYWX+{ej1L18ep&jEhha_^vP z>)^-gA_R4u(YqU#OiEbHIN?D_%Z@Tx;bTgLF_|;x6q%JwgK?@`!kSSH7y@qguNZ^C z3gb$$)J(i4j|1qR%!S0tB;0V1HE@s3>oa8ba&&hEz%_pXCM(>6ijOsa&Wt7eM%t+F zQ`l7_4%(}yPkDXDN>-QOG!!{XDC5UN1)pk;TTaGn%s^_wA#~EUYJb5N=YY%C4Ke7^ zOtd!91BZ38U^gnw3Y%^95-9MItFXuVJ}-H@D4JYxli7CAAvxRyI%~aY{=4(FJ$9s9 z9x(k=NUa3>`z+PA-c;ZvO2YfIiI)WFN`KTvqiJQS*O-9jXrOG)U~Tp7bxWVPcp#81 zGR(ze`^1Q1EO2+>8XwIXO_mXNfNJZ5d$XIhpPpux>l3SemuBWH1C(TDk4RWqmH;pn za^(Jj1N?)Uy=)&-sYX{{zGX#+mYHwi(0V2>m)x{!S!Z3S0MHabZB~(&mT|6q=dJPVYedBqL`P1&im&tG@ z81^%j_}`cn0M7OdRme~r9e1n^4f*0!%tcm397g~7*%U+i^VzhQ`pV5Yxa_h-wSSv9 zQDAvF6lMKFT=VSf72ciK*(NvUSyK2wp3Km_s=_!j6U1966BkP$W%CO~+-kCww2Y0W(9(X1 zWi7fx^Wv2MOG>MEBqC(L8Zps!=V!?kr2XTCr=>ibB5g5aWa8BY2nAsXPy#fVG;$mn@-D+?X4xw4R%W0 zu)pjdc)vnsz#za2M<$qRo zTXy$E!2Tq~VhiyiQqRLqxdGr9K~cx&;=UAaWx;z_c%@%7GYNl!b8w7ecoY!*<`LYa zKAl@<2n=k<7gA#p14r>PX7^-6Pa1_Nr)pUvN7XynPZy&H7}=y4rFg@o^45*BZz5ja z)v|{h-YwZ`yx6O$7*M>W2mKw|7u0nKx`9&{|LjjK(tnsJe0H{wt@L}~d5U$34^V;4 z42*Zy!Kh^LSj=J#1^Ag}K-@-M2fG5fqWY9|j-5^I;24ly>Fw4!?gtMakZ1eZ-EMg=^+rQsJGAUw*~2#mq&pj*?2?Hq(R`q3QjEV zIg)i%0LvGEb+j(72A!etKlsL{L4*(%3Zi&=i>EH?w~D0Mvu0bfJFv1?;jCo1!CaHW z_*XFY)|Ps)%L$(EflyxsT09y}fXN{V&vo&8sX!tjrVr?bkX?8`!LX`g*^IydYHwy+ zDGT~&nFs_4!(0_<6Jssd7GNy`11%_*XCGH}m()CDQK~~Ua|i?$Fw4b{24ZI5J1TMC z+ycqD0JZiBc1G%CK)`r)NNG(ciNTvsQi#*j`S6U}hF~ot z4&OZe$b}&5BXHS}nZ-F5;yPmGD#v5T`c;%yO!Jn#v6-^>){sF>l(fX4u9x_eKrawU zBG{UNMO;e;e&vi*wnoc4HE?E_3Bb9ho96?2w)Y}4Y@~dA1ICz~|N8iTxK28~+}U5= zd5??zDbxFB6QHvX3AKv?$HKJ8+;*9Ugshx`O6JTjLppGs94)C!vj~E!uFcqAL)VEalqUWF9#Z zC$uyw1*plS`J-uQqra_!&+{RtN1lmD**;6f{#C$w<3E&t~y)H5Wv~~ zGpMk#oMuPgOtl9<1^XnYTHx>V5cp{uP!CkY0Ff;YH2;edP>A`zrJ$2eY_c|i;v}n% zUDw&D36)ZwYXI~BG$vk}>ZBHXcw1?b$Lnj=YbeX;L(w==)8UiehrbA9aZg#)9(tI| z4Yu*~)#71F!IV9_m!p&ZVku^qN?wfmeE?bj7ryw?evM)4Kt(-$-B15)^0Kxl#^G{~ zFl`t~_iT%Ts8d;UNyQFO>NhV2 z;?(RIZifewJzNy8wx91BoA)@{JcH}m9(RuWKCB0!yxNL6U_1Up&boTlO<(_M%3*6X zeR)`aZ^ciK{^N6P#Gm)U(OZhgqWZM=k*@TZ@}Ai*&jov^@AAZ1w->Mh zFKETr)UIE8H>1%*`SYNtpuN5AX`5oqCdy|+o$li@1sQSrwzliBaX8}<1C5;KTpoL+ z@>$*JwReV-!~z|lu@yIeYFwr4k2?oh^ez>bKOC$hC=o=olJg^O6a!jsZx?K9 zfVKeL-XEY)vbHjV-PW(F;diy-4tAus7dpxVaglCE>p~sLq^Bg0ln2!9-}>~XBNAn7 z@q9_7u{dm4&l&t%h@2nEGh9Q@;@i!#v@IHDf^q*lSXrVr)Lu{H@pi z8%p&*^+fO1<-j*Gg=;_vOF@4IMLHi;Ul>R-%DZ!8?9^=6I!X{6x4G9xZnAA|{uohh zCE7>0J5+=OuY_Q8M>Fbnh8{@$u++bp-_>VmS ziJ-BrHo%foq#Nl!ch%L?i&N#mcQ*PF|LHy|1kmoq&v!OC6@!BdeCDl-qa17eHMGl} za08)5N!O~mdXB%ZMD#Xd*Q0iyr?TIRyW4XJ9H76i^e)h_HV2>Mf&`KdkAg}I@&O6U zmJF=Nsu{(hvcG?6EG~%X#r_TiogJ!#3IeFnVeIYhX#rhefL@74Xe>eiVvPWTjC+a_ z3`?)8A8H-$%!DPr@skI3H3msWwPQtI88sQhp}%@fJUl0mErEl9O<$+gMcP0EBc{B~87FS9|~EK!LaMT3KlM7U!REqUo#K1P;+eC9-0u9GDx<@2_y z@abe$ZP-_$^>AUvEedjm*v@?WA&+LedxA;fE-OAF_y0+MR>b>a^kSOUZ6c*L6Dj+e zN^s71GLr3=S<8F)SQ*p!N@5*APChOeS$N5tCEl1eV>rb+!cLkdTrX|EM$ip3$X3e@ zG;ilolgU-Xdpq+)Tm=Sn0~{lJf|%X(N*Q>MJft{C;7+6*rg!niP%isPW&pKZ2Y^&V zF>fJn`D+|}l{72o3M;(OP~EwSd?jN<1;3Q>B}@l;7nmbVnCl4=V5Kb~#mF?8DizY> z>9vh{D5wq6wr#a8l>)S~nJ#OKkldTb{0ZWQ@&CXLTg89OV`%I1H@|(K7d@QA9i2H| zn5UI%IX#>sG zSOIaY0C%pe1m9Etx?yx_)_@0Oo++@PazQuKh#Dm6F$v2w3AnVfRCT7Kqoc`Xos;qa zb~oAH2}cm*8CRvfG^Ngn7-`!LF!fov!h%=ZjZ0PTSvyihT&Fxd>qV6CWbY((U%D91rZ-Ck!-`v{>r zX{QLO8GuN4TUg+@o_{?+;K{qMqoH+_*Gl$~`$$2p-YFJRvJ zPEK1T0*sfw{sLkXxl5YwRAve~9P^E@P8#}gCaKNdxwPQ4*R{zBSkQ3jT8msyQPx+8 z9Nl;5kpmVRb)i#KZν#ry@SKD<3t+=T0x0+paugaxOJ3Pd510nU#^$WoMrwC&(? zwf-uKmRd%3w+VuyY)D(SqSt5HZq)CbO_encnGoV}nCx#A^QaON;xUc~8W`Nfh8Xqn{I^6#9smyb)cz-3J0hw5~=qmTfD6-$~~p8508zM)hG z4tY}n_oN(8VA+MS|M`j7T3VyN@MvQMzp78&^c%;G#~u~*=IZ`i^2$=d zn#)K2->Jw*o-|nu&34j06RSMw(J(NZKZuDe-FV>WAcT~#dwoluY>y2o$wDKTQRdTV zU_5(yISqNeSs2N*Cfm|LR?Qf&y*unNJFgq}95a=oML6`(TZG`R@{n7_PztbMGy+7F z)*+C?5RJ>gnsq0@AEkipY@C;QW4vP(Xp*uxR+Y>JBJ{cIR$T~QGw~O+p7#7TW)tHY zNq&2|_f3F?0z&#M<`pTtFBa&tv$n}vlj!+V_fZ0*g*IAQ(KMRiQOENc8tGIq8v9N4 z#hv^0y#A-ukZ}HZNcDm<*+quA4k-pABeQ0}SZC&JuVBJ6U8HyN@7VJ=0oVn*J-hNH zo|K{@iP-KVY}`-3L0$8&qa|5w)lQajyBau56VFMfsoh59dFY`Gf01aEG2UF z9)H%z1R2j8b1F=Mz({V$Q<2SWs1KiX25V5&n|~dNVk5K@afbHB2xcJ?pEwJ6w@$Ex zT;g@F#e+%ptCbL&cyw+)BNN8}FnlqaXy7AenL;c1zy>Uk;w+Uu73-A`_xt<%-CbMkm-mkKM)ip>{2nLEzex$qgrfDi&2qh{_SX@yJwz+~_E+)q ztKJjZ$)`-@!F`3lBiu3naOs}FP>ZofSXowwdWS-o@UZ`E0|e9aRv~;ks3xVe5fY~X zR@fq$rY7Hd6`4FRw!48Pb^&oA z)Unksbvm#nv?SyzdBUlqMOBgP;R>pl|CZ#~TOwpp9kGh5KK>Y@Az=9Ych6;Nl+l8* zNkEyec^;N;Z>Tli1~D$%2~zo|ioacxCpXZGwjjyS{Q1g(+KOwcEV3F?bZL93`8+6I z@SDv{u}YMlxr)x0fg!rmh|ABz1f1JC;HT>qkgx}N90}ZYY4)@EGfAO z6R~UQcKqK}Y^ZK_wGTfN6SRiuQ<*g%wDB_JGl4Zi$DcFi1oQ}5Z^sanPFyivs56~VI&;lyqXxB!K z-{#PmDuGN2?J8Y}q3;GqlLu-QgI5SaSyKf>EH+fzB1PaEG)|yq>8EE{;neC>Bz4;+ zZcRo1_m6LM#mys}+tGd~CW^i!RP4mD*cH3C9Y}vab+PyG&*$6Z_XCut*!ev2;qd`2 zb_0gfJE|9rI?QNeN%L}WircEHE$@8urU*dUVhHpx$D)P|cWw6anCLGAv;sL1lzwa% zsb^Yt%_u@#BEPWecIgS{QxAy)v5q+Pf!eFM?am7pme30mN2ZH=_ZCx9_TC%}X7$pc z<-Nat`}!XSY{f-~_v}rqE*vB;9wc4iBs^IbeD{Xfee~l&N?#d~J#gsVPz^#*ny^_+ zBrg;!PZKNRevVB+S1fpaIxbW{f`)Z9Oz9u3;edp65dqWu?2M&^VpInrri`hu6Lyd`o+(a&_F% zm)cRX(X2TtpAqUU{9%xZ=gIDLz7h8QCh^RjbVImbBe9}>n zYrfS*okw-H?bkisr#-H*%c~S_WR4k^yzAFeSr>cjw^@`&DnsX(DL7Q2Q!S}> zYNtG)QHkM#NoNWQz<-(LhoS8=!koipdfNKst9yH6l$!RLfBcFmlqH={fZFaaEb1z5 zccpNkY~WXjPWxu40Ca1HI5TsTWV|Id^lO0DOId%9B@kn0x_HxCIA4&9ySVhA)Mri6 zha+Ikfr84+w+6`ukL({oOGyTVZJW@>wLq%?L3q@`T zA-Bmjq;JKPOK!PaLN@o@bEhGWg881_j`YTzw`UYaU5ps zv-jt9c|IS{TVLxw-hvP@PBxzw3O??$|JVB1rq$@ApH&2m17XhWnOh*@20){4ia3Gr z8tn<7S_3gRY|LkX;4VrQ`B=~Jq$3kX0g?(*HN|WG+f0Bi37YG6L#yNY-woDV%vX$^ z%%gY!8JSI#C65vSnjx+2$+@2K@$oP^ZGU>!_b1@JWruM^{O9dS|9Dc`P|VDeJ_Sr7 z0IDGBBqLvKII;f$;0|_}L>v#bSinLG*o+d@pxJ29!<}aZFgjk*$M3t^`qSkN??m<& z@RdM_Ic`QGNsgrC6K-BDS~5|VnNnYD319AXsw!kg+GkJ9DBQ*&*Cv4+$7$N+PB}Fn zWGU)aCRskYGPN|T3LtftjXjcXe81mlBMVi?HmnYjSjqz>mOyK*^#uLt?)L3{?#nXnOY zMevRKC~^CX21YUcH;2wh>cVtCb@SH9f(|tP0hkGve2(X-Qs$56p0eb1%;M5aN`hZ> z;A9w=2NZx@dk;Y)SXw+t+~b*zD`K!qNArZUq;pRLEip8T&>-UQimPvuXIaxjR*&zS zMGPY51|0H7Q-UZxie;FBfudxN8)rQM0_}PBQ80OV$$E`)XfVa?oorPw-h%P=t~P+~f9nk>k3WcfW>z zOqXZLxjO7p8QFp}WTH<>rR9LYhtWt9s=CB}n3|(+pKn({vYlx=T>ItwFu7{TBWu3j z(u5}Hn93_kDA1FYo|M;FujyEC z-OJFW$Z>B2_`S5JOMI!#qr-%onTqV2HI)GuS#_211YTh(IHY}qOsA&i9PV|pCMpxi zcYcDw&<9$wUQ&Z|8bsFt7w$j_x_-9FS}Z!d2q2{HQ#9CNsi@!_)JMZVoFX z^3TY}R;~y*E2Qr3X?*Pm&r-$e56V5?DA4}i8V5~Z%hNfTu+x3U&=|zLjQaW}r( z4nXz9-xf3(LQ2KXwUWHq=?cZGy_{@f9`AT2jRQEXJEMB%3v}N9WOos$NvpBupNoTi zt{aZfRc6hR*N#1Tu3u9u)#&{z5vk)%fl;up;e)+A@ZU}aCbCNcZ)1*)S-8xY=7Of& zHH_jhvp)?WpUV&0-^KwGeCOC=*gOE(bT^HYu^_TIHT9T2m^##^HM{cvm*JJy8_$zI zV*jEz&M?#$l?ZBp%M zwAlIqI2UdTlnz`)7fuOWcI4v`$WjxP*Mz^m=v2lhbwWTBXCb{Dr9jj%oin>3keu*q z!@^NuWw@^4zHUi3b^o#RY7e+XLMy+RMO$oOx>N-g9i@zA``QRxF%Gq22ojCA0O1!UBTHbu{}>Pmv}M0^n~6sh_pfS>NdIG;Hi~srq|d&n(AvKn z_J)yY8RPJkOvrHN>qd{Lf?MfTY<_y(ViWmjOYY#?gKp%0yztSd|NE2&M&)AxO0mY; z0gh-M=q}t4(mUwy1^99-pqtwknF{xUiHb9Yp7?%6geg=%z4JN@v}N&967p4y0ztpW zHr2;8M*^hWH%0ic2n@~3!j3L<0L3JFquV2|Pz0&*R3kF``f9-FH+g$Mzdn-e9n8uF=&0M< zDpP(T4JY2`yO}#{NAf4-I>tXRLdItbY5pX}jRW=}qz?^`ZxWoU^?NcsocZ1Gwvj%Q zj)5RdL;(PKK1MMy$1^c29E*o?>E^@!5i!>B8smC$Z?f3?_4VZZ?Rp9&1ZCDSf>>#% zt?Y(cb@T-MhD)!ZY7ut~%>Gdox>I+N2tct-xpcwYvr~eL7c6??bNQ3e?nUeqPL`2# zX*f*)mlwgb2!rN{NQwJIBK5frr3K)ysfoS)p#3R;CZEzs`S<{SG*g9Yze#lf6DD4-Bb!f1i3epf_#JV9SNr%rv znrI{-WIfeR&_k` z@5O+jYv(t}WkFP9~5W9Hf*Z zm4mmdXu)d@Gs%jdElPvbW+>#K#iUu%(7^(j6;sKf|GsreaSmRolDxWWFtgp=`k}A` zrJUS8t@(V9RF*P6w>NXN;q240akHs7uR6wH<=!n*QbhsRgOPflzTYl_BE_+|&6iUL zpqu4d-{>UnSjb(KQ)Zhv=rjN$E-eP#Zo7Y^&)kk2y7t3y zjT1h45w-;uo)6oQjaMXYw&L-*47-pON}#YN>S^fx*uQ_0PC?f>4u75sqtHSq_$Hyl zU;J5mJVioXFLQH!!nS8e`Xo~tb64gz4i;&#-J_T6HQ5Tof{9tqIa#qOS39#H+1GCX)5h^Rf6cGvr z3yL6PmjBw@SK`hHX^LKcwvglYSlQxp+js60)gKJ8B;Oz-L6L0lX8hd3)vWU(G2gmQ zd8*WR_rAQaxANfMmKIgVhIhF`DvvTz$#1p6bj~x5RW9*by zxX{(9G~cV(`6*nNdxOx>p!G%PpZidMaelnQKNH%qw|txwJ=YWAmvRj45vLUX(Y45- zTHPp#l>Vja;J0%!(ZW9R+_h}`p?Y}<&72D;(TPf86>`o=z&;#mZWX+}PNHA9vy8&J z;mv#WWJ};VxQ@Lp^TTg;2P<|*q_DqPNBLoafsN{Bee$Chsy`epA8ql=Revbd3JdZ> zUl5V@1o^`ZOitq$%@^XKZyWA=jImn2CnPAGRKzlbxL_w#LA(nhp(P8i6}Iy)2E46$ zj&`e$meGYFD?W$9VMlUDC1I3(Ph36t^OIb0l%1_g^P6`0k5&T!fcX6!b#--%N*&1> zx`0u{3^a$JcARizrxnS21eY&g)N+;SpDFo1-W)yG+0VJExYmCJc7*wd z-2E4E_3q%DYJpc%qt^cR4oIOtT%v`pFhUm#4|>CXj|<%lO7Me-hwSe!cfNQ@qIx!5 z%yV1Z9P_8eH)si!xl!?AL~`Xg*k8Bcr-YL$K$1b_18`z#+w6vI7al$U$prVLD65+J zfH$b!2mssAY%Np!Lr$Z{pxgFlEDL3A zEV6(&P)RN;jI(xBe!|D=?4n*&KGsy(-tMP{jkPkzbvc9{k{{00lf{6kg4JT^GyHuN zf)W2YUbKB%sqiSn?tnY6DKKo#=jfJ=i?;n?7*ta6d|j%7Apkv0EZ6~1+GkBMGpEFl zkba;Sq#GD1E_?=iG>2aWI$VuA3atDRj5t?!9x}crCLqo zL3k?fuaFlCi0WLYQIe!T4%@dNP#?kCDI_rITam%WrPbQym)R#qVEi<@U((R;~~ z4RSZ~i3xBx%w-4AUW(_&)gjK(>jkp(mnhzkj461zzK6Q_DHj|-Aa`Apt=b$z_4fx^ zqgG0Q=wXnoUgViGNLB)wIb@}LiPKV`UjhE(bZl8XL{C;ke@MW%p6vO`!n}!`RpRU- z?T|Ze9CiC~Q3k=LR6<*?>NFo}B|JZ!Ehj$SGLIDyh>fl%q}FirSh`FmgR}^4wu$q) zkl|Z~Oi^zcCo?UBBaOxp!vQy##ALp>YnqL$j%$BqN&xcTA#R8hKNE&WD#6qB(*33= z6W9;s%F(x@C9blyh_h}emB$7AHTCyFIL4@`n?Mhjh_o?FUA|cn0lnq@P8){}1evz! zx#<*?^1w)}u%?`xZ7_=dYrD5Xv;#>R_lwhtqKe$*+D&Jf&ch;Z zM=`r6%}w9$s@XW)_S{<1w>&azL&5?)W93EBPmW#F*+S}~!O zM}Y@n4q~L%QM}1s#L8~6pBtXVlI1me#`}Jc8`=AQQ((_Ui6ke$4wU)?VxKa`@87Gs zLIKOBx=~9ES?5ahy9rGS#@Zcu;|;s>>xdYy)VEJe%^Sr&N!qjNn|1x$o!%R7UHu@o ztCnDeFor&jH$CJ|2q|41 z^S73r3r@VMLej4gIqF`e=fx2fCE+&aZ~vRw0d>>B(+O9;-8$G@F}r8uG>Pj~3-&bP zxPww+l&UF=m+uszbN%DA6-WP>m3#S%0x{PN>!VFQ-S44f++|gAH?Ik15u}}^ek@3c ziWALztLksDieqA!9L01jqHdRG+83n#$>(w^OO!yTd@Rk$kaxT%+pbAK#MBA_)zWMn zSs*95uKdPTS(8*Flj}Cgr{o*zWMI5f@#7Ph(~>mN=WQ~7mEwJIXx}qzIF4%{UxXOV&udMP;IP$ z96pZFovfpc@z50&C3IDTq22brdZ7l|*$NYY4g}cz{1`4}?3og7qws+g!v;d*wa@Vi zus$oUfXwuqaHL@oy79#IJ1fJJL>F+SUX>f138gQMhc2$T$DH@$P6rf&znDq{bw zYVIhwtSYdzC#6g>$t-EmHS`V`MfiFQ_`i`fW4U$b`U;YoU!woy{&!TA;@b}oy4s4d znBls3QQVY?4JfS=ke=4_0n;;QON#w?mxsBms=B*orOGpbC+ng+C1?o1QIt%gJ{y&e zEHpq~#kDA}_XO>3BjGS=4tIpE_GAvL;l#v;l4CosZ%^NiKbA-<@#hf#2#e^?g5HxOOy*OC*Y4Q9Ohg~2|gcqbt=j4qN zH#2of0l`COdF3I)40*2fVCHN@U*X=EodWRROS}cn)S~@J-dt-7PoAWxOh@LUx7qy&& z8atF7E#Top#l*~yF0WMuo+MqzPOZ(e_K3wH^)JcU$(uiXSf@U>`+7>fj=N?mVuEH} zP0UwdW4prHqh6rZ5whi0)wTPVtN$8s_Hj*9LITSWd?!U!h0uNVN}BBc1()o34W@`V zQTM8Fh0hvtCLY=#x@b~~5j%&%a|MNj@F!sDASrVSJ3}Jf9&wU#em@6$7UG9)(n{2O zgitr7E6TZT?cpi?Z6q3)u)Z#BA-t7Z8FS}#FVz99Y9?V1`PvJC3d=)yY}&HAy)F$Z zs1;+@H<7FA0I?rtcegUFs>ek(P4%5yQQW(OpnbJU? zk;m;})eoX?f#kqLn#-Tp3t^M!drR7KqX7D?KlQsNz>h+U$T*&c%&pf-lvO;jzD=^c zsWc<5h&{bDXmGp+$j^D;G$P_k39opAb1fYX>kVjmkfbCFLcO=hAsnnm(9U?8KEzR` zrgnsAawq;T!k$B~cf-OXvnGw#Jw%>j7rYklKJfNt6L=NdcNX5|BI%vuq3Yi_^>P+| z2RES?^HoCE_P;Q0Zok0^r8MCNc0F+izb=sfQfARZA1=A(z8ibQVA41Zchk4DOD}j)&uvcNC&=+F$p|*r52LJlcIg ze(Nf^ZM!|DwfU+Lz1KSyx+{Fhmc`XyEqz){{NTDOWuQB|~}j$GjjsuVbeZ>(EfZ zKH`qs;kJA3+R$-8rjSAr?K_89KwQdo&0XgRT?@INXUctm89)WEt^In8on+trvwJ-b z0km5Zr9my4(~}`et1(6F72Dex5Bew@V|LrqeYmbZ+}y}1j?k^Dp2CMSAr$qQwuy(K zI|GtE3q7v5++3SijZ;-;Nz;R8x4S`b&Cb#b+4XhG+4uEZu7{McO|5Ol5&k9ik(giJ z@|(@(fAwVjn*o*+PfF>kneraCU5MdZRvkr3HL%+RTv%<)6JR%FJMMfe&0rWVFE>rD z)v~yfB2*_7RewM z!tHy;Tz^2{j-KkN&WPXV;vBw^1SS3?Efy-WCti80E&tEk8m+Ada^61P3vLLXfD-np zSPsY!^}cj3Ff_po6}IbCc{Wv!ZwziK6PLJG&e2UduG?I_`bJlGaX03{1Gdgq*xjhl zs`AO40+%4Rq~}_!6P4CU^*Q$(WPqay`Ry5-SeN#TRu`Wh?9=5D zjbo1acs7@_(mpCm%xmGfQ;rdqSfd%M{EzCVlU&L2KU~<8f*h=~`LC};Y$lv;s6*(8 z@C$xB_G|ey?%3v7_E`U=ubwvv1-9ASKu2y5y&)$p>9C zhr5zPw!wc_e`6Qr%3A)DKHqxVfB~(-NpT1Mjn_(P@^Qe~@t8jjvPxF3Hu_gN2GN6v zEsAlfIXK|B$wEfam+ZD1>~=uj&wBMi(#&?#;je1VkiWjx7`e74)b`rr%C365tK%24 za9GYcmw{$?AU5*$Db4fY2)vatB%~3te{$}0=QDfj2~VpO&++0G{PChUk|SxG36|NC zoCy^vH(Oh#d{lBJ7FW6kEMi|`mDVaMRvwJ+h5g0N9NL7<(e_v64*mj~Lpwn+N-ubS z-yJvQ4MY@ly0f)7i9Fp;pT^{YS&=Ly?igdk1^;bhY{1LI3un#IV2nUqf&Ry(n~97; zL==R$o!#5ry#$u%YH2mmGBs)donSPvPzKgOBD(hU*myLkLx4)o2`M_YpPj0pr9X`o z_cXDOI1AytUTsvzWWwwzRs+5+%EBw=6d_Rpcc}7&?jvLsCeYJuR!zDanqWc%M zM0&3?`-#d+rptFT(?>u%1WZ%^o0X)dpd}(7hX!4ey}0)Euh~ZzbpM+*rxTMr%B%bx zL_fYcCdLXv0J~md$K++IKweaDzXSHpXNL~Cxj#W>CmMz?LO0k&-$}hgMosAW%cvXik(1BZ+EXms3Du>!* z2zrLaRZ{xy_=xw;m9NM;6Mi-^D9ci}@-BZUBvIf zMHC0(#my3Cn4rsJ~^D2BU~iN|%Q@!jGQ2ISs}E{j)=pDS=6 zcW_0p=8^G+DW9L5ZpDrMs{E?^q;_>7*|F40i9Hv5`ZR88SnU4uS`aSk6>~!kz4Fn! z37lL|wtw%gNYtwdXQ|711sHNBR!pYID&;p5fXH{Ik_YLRy~WR4l#G0OTKQrZn*u9Z zt)G_vbueO;@8+uE`{rKxV9$-agg9_L8Fff3yC59A;V|@YtVmg4X*Ilv;IP!kd9JO# zRQr7T*>0#Rw77HB*aOB1{kq{K5NBTyr(4y}edkXSGO>V4(w5#}@8$&AuPbECb(@W3 z`}Zm!3) zcrD}y>Z7@M;Z8$RstT1&PL9@J=L@vibj%f{U#;?rer0FUWfIgm2|3SOZX^p!=GH4Z z#o7BdxYVHg8DvrXmb z*#BL4K$_Xh@<-@;z~m@b!q0|l)kY$wLj{0L ziH?j8xBLcpHLf?frO|-4oo6Tk&XE9`HK5xW*47hj^zuLtWcVI93QieB6>HQ+gYE-X z^PTlqfdYFp$Pqdz62%F$*N%xxRR{cG>*GqeJD?%Ua;_DGZi|=AU2BryDIpA?NT{Q3 zTG$Hz%>Iip)zCvaEo3e?tmdLYRBBX`LL9oW^SWeX+A&t18`34=AMu+~cRWsb9#4Nh zaQ)4A-t}Z|{Tp5&gk{hbOXhtO-r+Q^T1_s_E7$^^io3~X-v=oujA=il*|ni=ciP@7U1nx0l<^SloF z{}%Q6*=CuSlrhyO0@BfLugh5fiB%9C=Ib()-ndm|de^5aQLN!RcHpiJVk^;dJXg8v z=UkC&pKoZlw*il_bHTyiF;b{jQ)ph+O70YS7o}-@xnzT|5Oh;0r6h9zr7Y{^)>406 z_UtwGF4a*2mN3gQA#4tS4Bd#7p1HBjB#^IBUr)f6F=F)~tWyoibdCS|BU3-wl1eg&g7x3|Bn0Wjw z8oe>ve{+w#Dy%Blp@r2tGH?og`Az-3NqNa}^G=oZ=;GG)k1my&;0>FO zBgz43c6mXSjS`GQZ*0$AAP4QQ#twx(NB!oK>#b+`Ro~d3Q=Uct#C`p{Vkk7@DN}YETOc3QG=1i$mo0HUZ;}(K$M) zVy@`c&flT7&2{X9nS(>gfuIne9|~FXeRv#$c1bYc7{qwa><%(w5rcuQVF2$~ySYy- zt3Di>*}(@Ew$<`2&&6JtIou{%ZS0)lxVg9eBS869l4N1fGZopeBmSAAQ#0Ey=-5r~ zO1q$E?G+`j)^`Rdd%#uW*_hK-J2m>9VW)9snKB&xpaD38I2N6A%AB#J{r#b~5ri#G za`n~g^_M_G7#M5ro!syT%Q2)sll&v2)Y3iVh*%-4ft&QazE_b;>5A>xR`OX|*p1!m zq96|mjKZ)@6QAR>uzkH-^7M$Ouvx#tkljDCU-pLVzVmtHAYLL)1jgoS=Z?9^II_XV zB!|4Iw&W11pN~Km0d=#j%_^mk__J~wa5VM@Sr>A>2)4gtuocJxH&MOF_aV3IQ2@(Odb1K zezXW)xr{kwZdIK+L6eRiJ9+X+s>Pb_rKYBbGc_`m<3HQfAsZVCdmyAbsq%hazKDXk zj6qvX$G3-~*E5Yx2>b!+TLv)^B=(E{)Q#MTjSq6cxim>+0Pj!Rn_~*>{RSVZeJ!tC z?mwH0sZ^o&U7)Y~Hj?BMLzbMIoD1UZv7dT}zYccAvR%>58;xl9RrNhc$Qw!6Odh~s z{ZQ}NESgb+B*BVrt#v|6NkOG7*_PSrU9ahXh93OC7J%opdl3(h47Xaw*<5mtB-?4x z$wMp6wKWBtU}ekrn-R%{_@K9Jyw^QMo6pw32)DZU`;vF+j^eVXWfLTXDzS<2P0FyZ~$xRp~F_{@QKH?r5P2FtCT(*8gOM z&h~+ON!VufVFO5V38g$}Uuy}>Y7E|SZS=wKjOK*&V%LM45Lsghq!?;j`;GpQ+JVA$ z6d83BAH1=^?~~SjDg3hw?)R+TbkKSNCh_>`g&YLYt9Q`h?fC+&qm7-48>1J-WF^yS7io8GqKzM3uF@S>!!7WLT`WG*&zbBPaa><(sNaz z(t}ym+kL~YlZug*RhvQ9_bVFUF2)GV`65eq!=rT|U<3+srm6;06V&0a6I!D343?8d z_K7;5Ff~lbp?##d=b==@jw4vL{CC%KpgS^)PeBq@({#AZ{6w|uWF3s$j;ALoKt%ZE zwL~3ZBLOXmj3uHhebG0}vTG1bHeD;=X-Qn<1*l!cC zsXN-5+36TQpIr!aduH|#phG&7D9+Cm@sY8u@Sk5Pcl>jFs+WkPh+_nl!S=r$(WiwT zmW87iALD>+Ty@n;95l9`w%pm=B7TplM&UJLZ_Cboa-(x6r1A`Y`2Kr`>WQ^Qg&{+- zpzqw|G0iPgFLdCkMl4*G8$w0bD!W-0qLEIom%ymo@-mfkTB$_Q9M&CC;&3-A($sTs z=z+)#X`t#(?7vU+`;}NDk+6&wC3Y4CIk!`=lBC<^8|;Pwc*64cYN+YFC#z-J4SOV1-T@ zPZ`9CS(c~uy5DolDKU$EaZX2g<@;~%TM9!1`o$-1O#td2thezE9Khfv&~~VDuw6$5 zG+oe5Y`98lkU|gjTP7rpEU}DBUGz{l1s>T7+&g6apPV<49pzBd3dHSFBKzFv-tc+p zRK} zpes>%Yq25Rp>m|YG6ta=+cL(b{I*1i|6-Hgv``9g>*+C1UG!KDs3>tQoGfZkSWYLc z&Eo^-s9V3s28I!ArM;zWU3J$CD-mXo3$mo@YSWH!_$!~-7#y}r>Q_3?%gmMd*{BMF zdiqO-<@<@#2r*csRQ;_u#2-NuqVzk`ll+0#1si7O@}55p*`Dj9x(Ha`fI4w~S3ezN zd`Yq*?SM%y!qWO8uZPCe=3Fhq44#GxFqX*3fL!-jh;}QD%OH!yrTuyHw%9rOT^8TD zI__5lKKKgT2|u~puSFFV0K{Qgn+7l9*E@&jPAz3AsROx2!(yo>cK4FGAuKV)m3;QL zyqBwxk28Al;So<*CNh~$j6ij&WRi;NWGsqa=*Vj?7O+B%PURwMrA2j0CGXVqieDxY zJyod>DryHzE_JEaH##j?J#L!9ug|X=4EYqc?QEQyIcUt+RQld^%JqTD9`Zeq>A2rO zuYk23UQ#uL*$_l#Hj2GMFTaMyR4)YmkG_pWU4S|?r(oQbtK;;sf2Mfg&d5fz|%&5YcHp3u80s z=vZ;d|4tyT>Si?D@SAj*(;L+YuzA}gdw3vw#8M5Vb1Dm)4Vv*>5$IF>mc}lMfix?+;T!$Y~G4N-M-e{C*o zBP_&=_hfvKZHz-IXS!-Ux7p__P$p>S6(&d#w|EZUceD!D@^t#Pl4#@uQDz<}m&+ya zE1a2sofC-?XNHJJ^l%u8rfQ!~frUF^EED1guW<&jUQ=!OSJR)!vZeqU86RX_&~}LO zqCD5ACxk-|*`!53=MyIXt0GD>WquP7KFXrtM=!Tz^Zf({Fsi2H-Y2xres|&Ca&_pY z2?y0~%MG==uYaZ^FbLUbt@NR}%|I1D+gblJnU$NaTY(?@=QM+g42tKY_pg5?s$o8<4t>$D0n>~3xTG&T>O?# zy5H88~jJ zFA%<#Gy?g_@5e6w*3+62$9qk`qXGltoO=6HwW*q-;-aZCqTzXTRUQVJB$g^OttlX% z(=V#Q9G9dTwzGt-I6x^0xepiv1Jy;Ny^56!asgfc%8<{Y4%WNsE_X0u!-5|M7cACp z~f@qGt@qy5lIc?Fioa4Kjj~46=qkFv9i^%fP>_j}l<$rqV=fZw^J`j))A~u({5l z{9J}={o%&K!Y*-OYxbaTz}?gxXspZ)^uvOYchEpAQc6L{?h+QP81U602kO-!TUCX@D-EcFzf0HbC}kWs z+jf`D+gb{<00dXG%XG%?@1P9;9sQlGvklw-aaT(qi(Jj#q$X`-w6#l&wz({w?-i3p zU*B@s-JYvBRsG2LvYMAlZh1qBU1(Y#E`*P=)!YmW#$xB{KC! zxzCQEE9cbS!Jmoq>P)jv7IZ}fmENCD8zZ$dZnEoFcf_bSIKm#}^m-UZAB!UF5ZY8tSh^&A@3+N&z#g1F^R1G=LXyH*?t4d z$Gq{!kQ$0?(;fCwu;f!QY4y<`QzpI|^=qKJpTamQ8xzH-8{GkYy_;vNB9!6=Ui&UY zKd!vR8*g^zAH$ei@>Z(Tb-2?$lLcvsPot3q;R^E%lc_fXgDqwmt$}n)L$?M2RCaGL_lRt_b0%y~C2a3P`>vAR!8h|kzXM`n@Yv$6S+0mWC1;TQ(P>^rRq+vXLeD*8lY%FV_ z<=gw>jiBI}1paS2$+q|A{>I!&*V*AIbMl(d$hAi^RIUB_FGm|%N0@KBl3}}77&JR} zqtjsl{AiB$h(b}aIz0Sgm^nWd8h z0<6AkAzaYNpL;BwSGb_eaF+iH9B3O?xVTwl#!qo^eHO?G5ow4HOrM2I5~|y26n+dU z(r&J^CdQRc>Ie(+_ovLVfQR8c361JEU8bJ4G^_e=Yk#m~wLfV@x+PyR3z+B+#eII1dhshro^@-@>$AIA|m^a#Jx%lv%&IgatCKsr{9$h8lVl z?5{Y~_cAvGk>s)DtMP%ba)0Vm{8v_vPfJNc5T{Hy1HM5mh8xSAkrvagPl!i?v7J;j z0R(V5jV7OWZv9-@>^_XMUa?#}X`D58_J(jO5Y00`6Crms6QOrX+`{@y| zN;?3Uy^$tNz$CBPPf|P6)cE=L%YvMNEP~vULQ9?*n36`@r^_VsV@fZ5vxrt#pAsn? z(3{C!4v2J5{Ke!EC$*qJ%SpD9{LzB+lFU|h_+U<4Cii#uiUuR&UQm+Elk%<3mJkS< zpsXnwMFleQ(#1LIded|I@h!2|e<5#3OBG{M<$)=G42kImhTqg=8-jpmK3}L*PH;v+kXDash zJ@nw zt$|XNLm!o?&$59v>hd&4Jw-^_#aIj5*ALZ3AcV)-dQul$Up zL#koK8>R>ejW;5W_{RudZaUkid`rXbYf9|($${b;@?w#jUmaq!S^aKg!YMGRc{3nk z!utsN)U)eGB#voUG|$Eh$wx#W%aqt<&Oq($zw5x{>!9br^VEL)D(BMEPl9~5aS1nq zeio~w-{Fr-|05{T7QqRTnKM(3bkM)nZ{@D0er4oo_JShM@f2U$>8o->!sL!Hyxp*T zd+@s3^TLIlU|i7O?H|IS^pJQ(HhiFxUkVvl>~wxMT>K5=>a)mHI6P2A$##h(atzNk z8}-y^*5Q)rk9Q3&M!Hi2E_fk3+ZoUMKop4HOX=955cYdB0EjA|W2kY7(nQ`3YhRCu zb?x*1`{$a0j&^Uot<3nJ#R`8#bj!@|OkbZx*U?)ZiLTS_pV{&tqJ}Z2dR5)>^Em%$ zDk_FVhYJnhUdZ&CW?h(C;3GbrzHQ|J8@A_QZ;iQK)+*eXOqLsnToN^4juIc^a;E;ui@UWzg#4`y6Lgbm! znNfj8YQG74b^UmCxZ?2>3YntPwoBD4*(~s54jA#AUMEG?Uba7Eu}_*P8kBuLlL?%f zV$=Okzl9gVC*qx44Do@Y&mQkGL11wZ4izQlcnIiprVsW#_xd_E=+ZeBG(iW9w##`a z9OhnC$}Lj@ZoETb`{p-yHkMS`8CT`B{`Zqh>v}?+f<~O5Stb8#p3*tfjT9MI0q+!~ zz>33|Aux?dSZb;@JX;1F@|=OpaQLwsIy%9^_FUE5Mp3=utFPkz;L+0}x-OB&@V}_w zG5oEs%E`q#sLpr;mxGxBCmd!AJ6&WH2Sa&~ai-9D%NWIDRmv$+T{YH8 zT6@ufVFwS||1O47`#cT2y%*-@w^i9OXPke|ih=H@U#Utb9Bh28UHZS~aH`S&FkO6q zs#R&=U`Yu)fVS~`zv|CH4J^s>bW_vj@^1hrCwdb&Xc=64j_L&h(>7OwcyHa!mZ(yx zBxFW*Y5*mhdJk*-!(Xc7g#LN_%4bmfVI01y8PG1Dh=)L8A}FuNUgy<9*#ua0{wZbU zKsko}+0!$QcY?IZ#X5R;DSz#WSXbq{T- z@e(Fggt=#VizPuU7(YacqcNrrX7X|Nxu+zltmLZ6Sy)~iK~vP5(c^2bCI*$X`X-$N zp~;r~~f9F#9%*RIxN-j0O4Z`dSrj7+yqT@lKThkX*$h~y3_%t@$W^OUY2qfURpyEal^YAW)tWQ3j?KfS zK!d^iU+&Qg9|dpGecTa;^Y0d4J-M6o9lyETR_tAVU06)xSK}DP%Jj8ONNoqHxR#5Z zAvYxVGRb8Mo%H}WcZwFq=v6ll{i|f|&hTkFS^|nDu%%aG^IMt0wT2umFD#OSHU{7A zH8iwu2({i2DtI*0`0e1-1y{ZE^%fjqLFkZLBH6AwxuJb}2J}9}E}GZid7qw=n?b=x z4SS16t0^}pXl10}#Gk#yXl+(~87K!ezv0i!_Eun#*2Kg8-@sa)KHMV*+zZ0N2P75Y z{IkD3aXa(BZyUD-1`$yjLB6zKo(*btVQn_;jQxeeP`XWpe~Su8>l_^X7WeE=-%HZE z%d&a3k5UtHBAH`hasd@r-+QS@4!>U0aNWGm1-CQoN>2QVQqlkXe(R~$CUvHzRa3@G zW@n)9cHPb5|GFfWec)nxUAnZ`u|}OakPO==o44(isDK1*d^2LXY&^EC(DrCQiyRby z!;v2a^#poe9e0$rd(JS@RL8XwXF_*JWrPu$0@WEMBIkbM_ZU9zVa< znfGAF+?DGIG`j+=Am8;Nt?i#X1M6kv;Qhgay&ku>V|7=9?#Z8d9)z0~$Xb~aT>Axr z27=eC=#~X!@>RUgeGk5)gQK;XW~*!FUQGxNXi?@}V=_OyZk0NJwoK*>L@6dB9F}arw30RuGZ5qUDM})ssXqFS>39R<@s-94 zmE$sJY4Z`-z0^*J}Lfx*OCY#}=#@?aX zJRYW&cOrjvhVZIc+y4EP(PGxsjNx;cH)5gBxJOt7o1=plz+YW92cgI>_=$>#pV=KcB=)QeZv>1LqA=EQ8p$|UD?s~J_vo7`D z+>^Q#dxD!a$prGtS1(_lQjqn}iG8Ug)Dd&eSM`P1Nb-U}a(&E4xFY9laTFgeq`wbX zo&ra_-TJ6@B+C?_{4tnvIO z)#V2ww`^zEMddaf)$mQNiAvYtC}Gpiq}_a)75UbJ zGg6z=5Dt@OhKTS$4dIYfh^`3avk@#*9Ha>9uxP>JVLU8H33>E`y)5%WJh)}W$H73| zK^0*;BdYy`_gnS;um55J=em%Gl%oUM?UDYDh-U76D=uhyY8*^-`vI#COXRU4n0B0S z+%cUsy-4uE6>_4p@DjAMPz1u#nIgt&*sBo-f&5}&>141*sz-8WEiS64G#RU*nld$R zL`3yRp=f!AY9&r6-yn=1S+MNFgQm>%w%AjjB*bIVx|kv}LDfc9Gm0lb4Gj(FKi6BF zZcxC8_p7n~5LGQdr}VT`xmX6Zva-1g%XV#*WbGxTrB|XeBvizh;}JlUnha;Tgy?xB zQEm`*rav9$C)!(y&XSoM;Tg6;rQ_P(a znIz=?e}8`e^F7DeIWzCK_u1Ziy`GQfm=7=Sjhz7FWUwQNmmSV)88#&Xb&(Cz`6KprGWx8rKfk0PZV&fn+IL&1MPh5$4R=@Ijzv3+y# zmvIW0{#Uf&#+p?QVB(T=u#lb(&S}}<0%hY&AqyT>SyE*(BPel9A?iwI*0fPzgYB1v z9fWFnx`%gDdd5f>7lv8^*8VzSsBRDrZg{ zleTcCHFJ=1Tf>j1PXlzjgJtT2x7z@NBR_6xNJ{Ot;M7Jzfs={aT65uBUwhK%$VXSD zMy>}ISK%pLsYWBo{U3sOpopC&x$w=`-pBD+ZxU0lf*d{?l{{Q#@joqqgP-hNasyG}q|B4mFgOB?B?7AXay~_BD zfug%8FZxN@>Fa{;=1#E*KO!h1BM?w9^*hHHK;Bl2#YQQW^nUy1LB_a*&pNT2-eW^@ zgLrrr5~eFoGfcmDkrXlA`T1V_OZ)8Pe1ZiF-&m|`Y<^ZL-rDH&w1Rfzh1eHUjHkO2 z$nt|*=2>8Q2_$Szvn)|T+r`Ti37`deC>+GaID#Qzw$xstYviv!C`|76;IvXHJ z_FNPw!|E+7U1v5jMrc~0i^H|Wf@dV>I*Y1y#ENJ<{UUva2vo+X#Usnc%ON|zeyEf3 z)@k!kw}7Q_D>3oG#|P7`Gn*7U&(?-BP!LqsHbou@?s~v*kwJ_uc8OgJm&yUp-}Xp< zm@6Qac0mo=MYul0QKa53W*D@ES27u7L3UJ z%>usw=ShRx!m~r}WOCM^$70#1JLRL<;f(P08G>2m?Z&=|`Xx4B7aM`~3j@C3qWfeh@-=QsdJMzgAEvAt~VQu8>{S z20$Y%Y~GK5!VG~mg#b$3w45NUzgF7q1Rof@nRr`u`N5e_Q$#iBRYNJZfL+{swTgyj znM5M58Ia-gRkeqEn|A}076Cq=V@v2yH_rrR=jc7zxO%Q6WCNdPYd{H35l@p@KELSO zcfMob0UUSt)a`t*L=IRz9|nGfkcfeuKgwwTyN0*IW`WXj&SQZzrwCgQ{4GLGWaygO z%-&SZ(KLcfV{24no9J}V>MLSo@a5Av7{CRjcHf48APhPn2$0qeV4Vem!Iyu&^WEBS z5u2I-VH5)cYpt9|u))-2a$vwNGdI@)KR*((3x1g+RSNod8w8*+$9Ueavg|1F}}u88uE8qUGVN@&U0NIKQbvc z(%P?-QF;)0xve=L^+Cu5H^tNXU(TNuqn^7!wLKHu7o9G6dQG_t$ENrI3=BjC?c~2C z<(k__j~emx`+c9{Qq8+?mPPCaEb0iDQ0VIZSbWc3A?epH@Fj$~`Sm76kUwu-<_ggp zwYT`_OLSHIc0G?XkDn+y+D&i)6oeGSAmKiX3s!AocL716WKKY!F{2@NHFxVNX;(_s zNdZ_yZs}DH)gOVx`dURlmxuWShL1_-xZ)Nz5fWZryY!o+ekIblipng2izgqMT&p4* zz=OT(iY>4@}sLeh7VyY#I`?J5jkC7DCL+YWUBUT-0Oj>Px`aBMf_%KDpk| zaIu0Cj2N6c`ne?#*LA+uSH$p(>e7RTI{IuYko;TPFtOhcSRz;E7)aq8@{MNaE;6G$ z3bGoM^e#$8{1>Ul2B%)w`u&pT>sYowhpqC&G&DEg$oIZxQmB5|wX4yR_3c>Rdx)aa z_t2^rI~{fyC;s%`&%~;Se?lgyzkx9Zxu^8!RVLLpsiG|*MV>;G6l?8Fv~A@T!voY- zYJ+x;UC4)--RU^Xl+S_u6b*; zoLqJa+gNfwb~@f1kFzYaw@=dkav}U+w9M)0q5FIF#lQ3gR@Z?BROnH3Sv%k`%B?N? zc2|~?GQNzioRceCxHN9jv6VOF-l%=uX^Gr_wAGOzXLR*vS)uxBt2pozl=@w7^-v*qhd*lqYgSx}cR0_+mI4*?oQmwATsW;2u>BH08gUDspDGGI zng-@wc3Q)C_txin=x*(YbXF555pH6eTR>az!TR`xf*b!C7y@LOrMXxyV9u256{`-U zG|!|zU7>$Fn>A^Y9J0pn^l+Z`b89LU+H$MnVivbOW{GW2&bzmN+%Om{eyqAYt=(WZp@q-?`!)DZ@F@nxt-_;1*SFRK-yi)hW_1rc9%!wR zlOte@obMG@oW`5E-I5&iFTT*L?0R0np!aGJr=pUiyjIj{!B?GzHXXKHpf@@<V`N#t(3>ap_In zOlEb?_YT@gk8nPvz?T^hkJb8O)VH+yLmqu?StgR@Q}#vKL8)iznq?+NYFv6cHFwa~ zECc$??0sKN5q2+G^@ksx?vJ`)eOW)%IReBguRl8sLq_p~cYHe3wzL4Huq;GI)G*0Y za86V0s+AWv$lp!GCS~?7GcRZ%!TF7>j*G_t;29V+yB`~rKson)eaEDxx_xKps?=HOm@ououbM`6m%a7#IUsJ@8wHxrZ?c=zaz3DO&F^zvY za-qj^$IqOO3TlpOasMv2Z+fPM((vnYM~BNPeXjaF!1#J@+Rp+=W~%$vw~KdU4vJrh z)yr0qfqaN%x6hx2*te1?Ic{8fD7Vk&U#or5zoof0)=X^js#~q61U5{eM?cnaYqTD( zg&%C3Opl+;{-@*?*9h}(u*DkyJsj`AzHRi;?>VNI!QRlwzU}q(M1gVDWip~+I;HRS zH+jBV%SlnXBpl`#zCIGZ5BQ6qFV^CGu$sSr?IprAApq(~(T~E->Odl3|DU*l0r=xY z0C_4c3Pv~whOkFz=t5w|ASevVpbx^vM4e)TM`*$sZ$mXkn}fJEfU}Nywo)(vXnK-obrB*5~6MJr9>~L z%v>0zS;rF9!4XBn@#=!I<4yCyFEt%`Zb0-23!)rR`Q^{m;3B+Y9OqaJdvvgV^KVql z8z`=4=3Zd*{rh6nE=_gnYnifeu?~RgG52p7>;E<8p8KqIODP@kbI=12iYRnlZUO{7 zYB*=f`i5zY0h&F99$GJ)RVraHh;I_Gdw!qZHnw^R=}E$TO3FvXOSb0yKns2fwOvJU z0gAkjysdlwi0f^_ajp-md_OnAjGpMoM#oR)O*)I%X>4wLtcZP)Sy~jslc$4q-lU%o z-X$XpJX*(HD_XrNYtskvd{`C3HQ)TqpFY_U`8=PPc&D||Q$%9fg9}SAkH=p)Mw<0f zjg6oq&AcP6jWjSa;x>a8IsuI3)}gA_UTr;cB%#*b8~_iUDYu*ZE33y#^qq;RkjD}Y zdE0*ZecQpgTwfNa-Uw2<=6pm9b7%=t>Zfi)C5(X{_W&H8Q>pi2+b8A8la0gGU;(Jq zC14gBZ%`9pi%Mez2W$YGuAN7S&xfEUwH?Hq2`^X##DJ!Wt)-Pw3=HtZg^N=9X!3!L zfzF$>lsKtUqZmCb1SA=w#gkw)jR>fC?C|Hu&M&kEpf#|-id&p9Yt6aPaZYC5h3F`K z;Od9H9UDy0N6$ealU6@OJwMKyS)g`rvcAHlS;VNV(l2CC>b@XHK0oyf7;Nf$`zIT*I&rm;ml`OBSIx@6CY-N^JKutMn)8Tpy03(uHdr0Hf|S}9O>NmdhkcZ*9i z+L+N0mS!V;>7qzUO4kZqIIbsp+Fg{9+wWB%px9f53S3Pa5yr`PJI zJ~f6F{TCGf{Md;yTQ^Qoy76lt$auDSxlnrMVbw3Z(A5Ar0Fb;m#RQ6PgIHfoHe=Gc@;%|B(o1DZo5)t7mx_Y5}PV1 z=0&a8<<s zOs~`jIM^HTf-7nCd-zg8<&_p0=?ScAjH#EhnHCOTkMaZyE9KhGEW1j5a$2SrsFlEB zv$J%X7n&}{t>x4AE=MhyI^RL+6s6uMkA>*?*cd!SOTCqK!^qWF>YFO>mZnp3bJ)J^ zin1nGUgyfTtss+51+nW`X?8?HN{D$mBIWZYk)m~PD@(rR?pZ`smY3uH0R&W|r4>jd z+(744AGZq_Mhl#!MSx+N`0be^Y?xy2cRY$1~-H5eR` zeA;i80He|95+Fcv&^>i{%Eyb%?-Umy5l75ZqvL#L2P1JB%%3g(F(jWhi6^Mhx!^on zIEfVtIAeBG6EkP~{^fSd%%-uc&+kiJ==OQ)pGF)MHRG4;e}pc}J9Y#7o}CVJ#66A_wq7DmvM>2EZ@)%v|$r(1CV= zYO#gc?!CdJ;2yFv>w^8V@Lh)~uZ3XUnejMoUFAoVcX#W0TOdr6_;K@0RNi)IjYFS@ zF2|d0dHLt*fZNLQVs@%zhIv!71j|?I4$;RSz?8g1QPOA81)Q|%)_^L<`}Z?u(p*R( z7MD+FOCTM{hl+Q{v!Q%3L9g~&WiNHh^?x5q~?tS z!FiIGM#jb8DN(6aAgQ}guArfGUvld!6;BDXY}L^XWK zh_}*vTRO0HH6z!%dS|0u+%G}ZVPj{xtn5-*-laSJtQ-6<$#2_Reu(3(hcv>M*Jk#o zUryy~>yKy;*SZaA93B41^L|R;uWhRLC|le1wH$q~w2`a4JF@m=SoKlg!wP;kU(8&S zni~_PwC?)N8g1;SNb9N zhE47{lir`N`>QC6zYd=iL}_Ygp}cogB;LMkoAD1)xs#1`7?2R-?CK$KOSJ5N#q^uE zAN3wg`cg>;#Jo`?BLhEG^~RLtgq^s$$nNCpu2ZujLeot|Wo$QE*E|)G38OKdK zOOweO0l^cw8sTBVAAfE&AGqIb+oT+bJ2>p97W!{`&CJ;1MFRtZmNzL=Rpf`wfqCOo z1?FD~_Ho08zozVC(fg&nwQP5@=y6!3BGM|a7;mywN2SN)@s_rmj^eqHfAbHZxGs$ z4_Z-=>G?;yC+p#Dc3w(N7rk~=Vv2?R2G*SQr83N4$BHZ{-9`F+{h;QIF~EXYPUGJX zjP-i-nCr7)GMS-1mQd%$`}t7U9PH%d@c`d?bZd#FhXjlD4N;xGGl9=aU5r1!yX&qM zbEI7G4Vzuu=fhY=mG)ug9k@3;ti8~AfP+4RsH(o3F4G_c2p>+Iz5}=VZZVHoekR0MbO9R68l0X%9h*ceyE=_p0+J) zfd-3K@mGmq1~y}bAG;KGNIi?D*2>h|40v+5EdGs2?d+61z4d9BH@UO3;}ughhtSUZ zj#EM)xRJb8&!w-QT2kSvwU(I%N$;$mlnz=h{}ILx#J||q6pv3(cA3pImF8i~G5;cJ zxOBw*?#!JZc{iGx!+d;?NEIp$XPX{;MZrqO>Lmg$p6 zPl5pTSgUB+!~Cp|V-E|d3cEp4^_DSw7PZ&pp4p*1tuosB39K2_{Zggm%9(d}`||jG zf?Iwz`v(NnPu&4*(DJ&@dIL*;+upw6?qK`j-q0aFd`%$i_c8ZO@NR4SL1Xy2V*&g9>LaKR zq*D~qS-@ll?Vj?*LS8J8XadKypUYe}phs9b1TpA!K)qCpAU=gWKF8tk2rxm-Bp#2*d+srFT39=RBqZVnJtlazGbbyy*~k--JqJt0oO(>lhM{T3 zNw3CAgi*#a%nW8!O?jq1B%dO9So0OKI3?RTS?KLwVD6sH(@0UFBtflo*ex>wh89zT z`#VgTDCpJTnME@1=q9;-b3;yr zYqf&&h~$cX?eQzDrT(flv7PTohESc1hmIog5{u~&ofZnkLsyCAO8r|%Ueo>3Yy5MW z>6GplWA#~1nZuo4(hDj;w{n%LE9)4VQ0T;z2Rh}8_*AVoyR*pnv zK-xpNKm!b{AYWgGU8}(Z*PkvZj{p&{G@-a8K@;pOwGQhswZlM`JDBsGSKbEo+H41@ zT+!230lXXyJu4;pisdsV1}LG8dCQPb*O|{h>XQP)8O`4{C5qw5H0cD;7TlfPxkA@c z0jpjqTyB8B0^)~s4orcOoL%a%bz{LwZ`MBG2!6#h+4-_H=L*j6#{KB2ja@@Xu3gdx zRU5_VMFrZs4@!2K7l0*Vd*T%52j#mx_zHJSB0TTaWHRt?hDcgtTM}-INU2U&uvtw1 zl!!caT!Fr6eT9YXtEGsquCevhw%2O0hH!NtuQVEDC6s(~H|JpHnAWHhMXYdN{pLko z5YtXlFxujYQmTcq7n)brTQSaC#<3)W6`V6tO(i6^IHH84%r4V$_l!;Rw}&?Z)hx|A zITT$$WsFfQT3yB0Ty%=9ea^#;6)oR$MB1r=A(}AFNJb&{OP)K5beju1GKvp%Yu>z< z4xrL+=nlv)!}KzvPE|@}cd7F-(L}OeN2w{ea6Z>T#+X0kG4t+sw?Oz_lp9p| zHyImd5rvrU+k&C|1{c62C^9BrGJ|$c6@B_uX1pNOS^BArG$TnKrgvv$QeOKRdNH{;DMJzmWm<^Q9@Hu26Lv2lJ%O=->m$+_OVi*|JwcVEQp2@k zq)mW-ZZewmQV($+QSs;yJyA45l!Ow1M{^&qRP4Mj>ut;5c+h%Rr+OA-g@uP`k|I@ z0efmQ;iE|loGNOU>)FzjWTo!i^0Yb4BZJElwsgSpSO!!xH&(A*Qlv`8BE(kGQNDV7 zkrOy5|3Eo@=3VBLyA=90Wny=#P6m0t8zHy!>&Z5CYe=J6c1L)ID=c3e^>nH|z^cig< zsd!vY)7fMkOr%`Df;?qq1uw;O3i74>1Y*VP3m)IcA-Vx}(}_+8pWHNd zE##IChDKeLkWnB8M!u(sI)e8WUvu~BrPz7qjq)l*3}gL89asm+fNPdhXI-2Nfe*N4!*SBqqFb;%Xf`>K_+I1m{jiDY|$GMg*r%Z*Is0pqVG zXTMbRO1It(Y0TVD-p<|5g}8Geu~lk#lxiZ@(kCD(p?d%l`xrS z>tW5!KZ!9mXZwbCMZ__FMoHPe^2ymR6sOp)N+K-X)1!nG-cOCV?sNWqA9-ad%Ae6w z--k(2#^{{jQG#8h2?BvAb&i#;C`;~ERxts8?Nk~OQS^%gGp>nYWQ*$7t*vNHW0Z)X zTsl>?Y@>pd8I*IWSXtmd1QYgm#ZQIgkkDV3M+>S)6%`b4h6a{hJKMJj2n_8}^x)Le zu_J_|gZFZf!Y(QJ#t_Dn-%WP=&uXw^LV{p${nTUZ>&~4iAj@S3OWckvpFHy47_|NM zO`qC+682e&=HEJ5R8+WAMb87=8eZlt4Sw-x@Xd%lC<;EF{zMnqw_LK6;xYz+c-zfC;a{`Ym%$!JNn1)jTcGLh9JnO<1*uKAsdzIHX%u1`=qb@hK* zfW#k)Rb;c7^)eyc?c@V1jyae1nRf?6)bK#!*_qIPiv`>_`4*39F-*EsL@N!BhfbN} zGeM2qQ+wzwPmQe!%T@1_A7=$jWF5n3KV)y2?XB$7O1BmQewlOBP>JWvWJ<;D>BnT^ zhDksh@oOHR_4QR9QVT{Kolam}dwa`+DMd}Z=9O^nnWwC8*eq1Pa|fLoq;#2mriZDH zFApW}SogZd8&2LC?U$QYop`4~m%>G4b0zfKQ6L! zduMXXR`XqR5XS^>c(AJPcP`UHO(fwIEOdEousUj2a^ zhA+Zk(s;9iSAD_m8FhZZjV60zcP zfw43fx;l%PUAV9h6219h^0hq2=To-|aPO0h&V`y(g&jT6px^C+eISPYUVMV-MR)C~ z>iE1pn|b5fYb{e+PQK40VgarBtKOm*l;YVOBl$pbHWk)+3d+uB`Wf;{E1H9ylLI8( zi2m-(&%hde>F!wX52-0O;N&W5Z=3EIn!1uPA6)|2`Omy%i_Xt}?)(hR)%&6CppZS- zFKT5c4)9Fu((`WLojW-;3E%khXH)KEzx{}c8It%G5Ts$uE#_GMQEWf`TT43XYtItd z{3|K2UB;C-m1Bqdka_hEM(Vi5-6#m%B%7S9%AFi~X&m=^hi_~gt~+fI2Ol4PUEV0~mB8wC z?LP`gqfec~{t6thm@@ILWylQ5io;z*H$EH_MBI3_ar=eqE2r8SzuGQQMbtUnC?3X2 zoBR2@0w#VcmY2y{>vi7v>V4;0RB1Jl@co#waX5E!$bB+ibX4j@4B3z!tTgcotUYTn zD7C!pVdbgd2_r_Yt@Q(?Y8a{}cB}Sfv9pG8ifoO?V`2XlwS2ONO-(Fn^1qN^6&P5W zM+t{p;1<8ZqT|!S@L%yM0_k)BvHIq>8+AZ^!i)eEwC5R*BW@`$ENgb`{r5;%0^rN} z*{BFLMldTKH!CZG!_0yauvq{rF%CvXU<`E#OY~2X5o(Pfb-6k%^K^I= zjQYneiU6Z?0fk3d`=6e>j=`Jz`?SXJ-69o5O;CP{>d6KuzX)c+K<6T;X&@ned)dG5 z|94)Cs8h*XcjIRVEf@#;{<~Nx73y=W4D6Nv0jrLt42w#9b4co}je&zyqPr&K75S}j zhaJA;Yb24y7Hg}$LJX5#Dp76-p&|+Vn#DZnVLjEIpGTUVfEJ^3?X;73X@8pxjKIs} z&_~eYi%BnkHle9%vt4(w{te$`i;c14S?P3xBufdYdBQ^SSr$gxEEpyNdL>**kT5Xy zIH$wqp(|oWbr~RxqfB){Dg#j6XG|EK4&P->K1GN;#7j!!Vyv{pJx;c|s7Q8+Vd;`5 z+UXD}<_w&56%NjR5v>3?M}S}1p1UAo5U+X{nkggzigJl%L3K%hlM(b=2@KwMK0{SR zzD9wlY*9iw1I3YAr?it~&wWxq7fFM_I<)vafSQx3Q96{x&Ci{BRbJi{l6EgvGr&df zihm@fOt4k?IzwDa_25aTuai2VDL?WY%6#NT@3_Us3ms@7m9p3cY zGJE24s#b^HM(zR4Uy6rkNo9$Yn53z9eZF}uja8rHl`RH>gSWQt{a7@;*!qRrb|!C-2{^`mC;E;aNW~{F=kz+szq!svsePK^Dw9PcMhTN%p6p zTvVv)4M&Zp35gPetZ$YRl_^{HpxdgXt*8*iHS@pbU8!s4iF=U=*+5sh{J-9D5d`?? zg8oOv56}47C(Ol0=!3h=#O1uJ7gAp;T48X~ zcp>~Vh=_94?S6b;=5H85 z%wBI~yD^VOsL|724kT`ijv9@B`ACqY+vuhjryDr(Cb?cbA0=@M~X-?bC^Y$o>eu=eoG9x0k*ce#jK#UBa04h}bIVm^q?0#YE!mX=(nU%&f*bs&!vtr-W4Akuxr7z(9 z99l&S^54nz4?EV-wLd{4K7blycjn2_Wv8Qw#vx zInN+(eHn)w;$}SRW73t&t+aJ@4ez3F*v}@LQwJ^2vG*Sx~34MlE=w3BeeD1<2Z?A-VOp(cO zm5{_RIFmo{QGI;$G|zd7yctl(Iyll)WBH=5wLd#6kxPDka|Up{j7}5{5GzwCH!{2< zk&e<;F8y9vZyizGnO9-1tLED3NW$b8`r2@Jg^A?Nn7u0=;~NOJsxX3eu7v8VQNYX(Coe zjZ=JFI4YyZSEO+`b6r*!g=zr*;$!B z93t!#@Mr(ANl`GkmzP%r>^QxgpvD!2TZzOq5ryCpCt$9qh-lzah&ewk2uxh`!N>&> zL~`^~j)6Nmv28Q&#4s_c)No@5dw^!V>-tj2D|vg5&6 zV$IQ5|K{IpXV?WQ8&stiaNkn#^Lg6sQEXl9JwdwjSUFZOHnP@&;`xA+J!BOpDKR1~ z;oPeuWtUHh%Gy! z#HjXhV}Pvi{a@EzV3(+-61or&4JCHN3*Rd^k0!m>VmkQn7%OZ^pDJC;c0+0Blc4n< zr$&TB`(9p_vl=vZf9BeopQ;ah2^aIPDw@2}F&?{R0QnFF<`HVNx94FB9r_|_O1m;8 z3}4TM++z~r1AzjIftn21Qcg<>HcCs1bb_7*y|SV`3qrTPTGJO&v2cV(Vu*8*`F|E*rVHt=ROhYZ(bWZ z_*K&Lh0HNycf&S-^psc>ZTKOVa@0d6PrW7;1c+Op5rE>XF#^y-D=uGJJ6YI0c~pt6 zeqJP(VVCWvtrcjKx0`#!<)Isx!xg^+de^0mwq5#&&r_^TQ?UU=^}6lZow*+J>$nua z_F<^)$*y5h*xWX&z{x-Ewxh$=ms@1{zYZ1aUkC>kTNrGinuhA+JFiv0rhn95A>v^+ zo16w^BAiv0hOvHMXU*+wCVw7J_`Vc6wGoY zU?5>ot1=VbVhrzgRcZbAr&abRW&4LfQTXqDI~JnrUprdef-@6U$hshg7S=R&w@@|c z{S0&Mb=kY4JM{;0`T6f=nyBGh_>|tf$6|l7oWkB3?mtm;NE-byvcEM{P_XztH{9Ri zCSe+DvrL!Y75Yctoj#c;D+;Cm`iE9&58o``*q=QvbvkZ3S=89)&bpqwC5TxW*RH>A zyfs35Lf&OWYG1ZC5M5>-e|fBwUoeWT`>JGiMrVcRAifC#chEDgi&g8>>rVFV*W-T3 z8IumxbZHQ1?c_^&bHD!L7Vdj2?N?4wEiq2o+Hr}B)Ti+X=p@~^(&`D@zQx%q6JzuzbUo(0elly8Cc89H z;D)%)biW0C04lo8fbp1Hj7fFRX!@3(s(Q1xz#1yyrHSl7N^}aNvx}LSStG%0Aa+X} z?4EoVm;uC&xaQZ|Q{b%mif;#?sBVx9$A-OGj8hOdBf*Tk3&}xm+4S@l&-wUN*EBV2 zfgWJ@7XJXwsQ``v07Vh^&8HiQPDf35okFg3r(z11T^q&kCrS0X+U_g}MmGRKa0kA! z_0Ja`;9~^)Kc>41EjNi<==61|fsI%a{8g|gwB-w(!{@U!wYrU!c8H|vH6NtD|bXi8QNfQ&W^$}0Qk=9-Br|7y=BouR(AFI8Gx_=C}V?{l!Qg7$tFhwdurqVv0Ivu z4&SgepMHk_W0;s32QLANc~)O6!?GNJn%a4hI#l(TSvnBSvON7{4gZl(+hy1~?=&OH zNK-kxUZg8{#jvWf^Tk>aOQ)!nNM;V7R0dzUaRP4kmH~3CQB7bs-M6n`0;UCzGEtI{ z#7nSfnTo_Bv9IGL64a^+*TJHEVAEHZqWGx3eVrWq1H+n@xxg@qGzk~)%Am)LiJF%b z(~_ZQ&n1Jo7!}OWI&6_BRfujr4bu4v8NtHNqGgHFWn$zkF~2M^n@sFo>@PuH0eN#` zU1p0_5v;1E)uX;1^<- z>WiZy&q|pKo3VYRuD}s^Gfuu3P+_^E#5{lEEKql9G6BeUZir0@d=EFzz^-a`x)Nu4 zna5|LgMpbTGP2E?MT^Vmw1oK?nc+)}=~`0VFS^>~FCeTQB&EjCheJ_d46 z@cP@J3g+{rZ-C%3&g*wDMz>!;zzS?*<_;^EEDYd)@0jVdx9zk)F|)5C-oASrreRx~ zcl7tyUP1fG?lBO*xS%Cqfxq%bPk-M~m`~=e6VGUEC84)R$FcPE*qiqu0U4 zBQp8On&^8Sh{vh%IuBBboY-w`1RR`t1n4)L2^IZtEiR;%k84h5=`~FdmJ76~*)!ma z$vKo--wejeeB8;{iYb15veve*#w= z*vfPc5Fy@lN7*Jo1tW3Gz*+8sIo$2t94tzjPH={#zcu}Cfn@Sh>gbGrfkF;PD4&O9 zpdg+3>2-W2BZjv5B9DsRArUsdP1+p%RI4d~Ts;?pf5pI@zj_a-52eo(M@2+MYoCf{ zVPgk_!3Z$Or+n7_G~|`$B1${t*7rMqZ%k*Ombw)=Q7OczFcM>pbiSvADiusDyz^|p zkpuBY|8YNG$9`LT=-S|T`}Tff&C|c@8&B1iZFL5&Jew^^7_%O@fs0A+zR~NBc9RyQq9LJAMYcwKE32DFlFcI=uDT4O3YC$dGk5n ztVbBB;0DC0LVR!xR(>o!q6}8==6IC4VNK}}Ek&l=X7`7IB4s{|?utbj}99Kv2sFG%PH-#$KPIy#tiuhatJ(sxdg^u_o!BuY!Wvh(9 zl~*>+l~*oM1~vs9JB$HoD;84pYMMHzr9qo|A5*_d=BSPF_MAbjB}PWFtwyj zA1sXi-8wKZr5jTQfVQ1^HW3N zf5>+W+e7>g_+naRN3b%PF@Q&&(hE2p_YIf?%vTL}$r2D|itD2i*bG-RJ7CcfpJIc$ zg0&$!@$uWa>#=z%!yOA-SC{K-AdGmw;7>kaCce+Z?+3g}_+lep#c?HF9T8^7zfcq| zHy$jPcP(;@e>JEG|FHHm#6=SZG)5uFnCf#NElo9?=|9b9pv$J&5~J4!6s6KKXU9bE zdZKjsVgw0p;)c;}*k_i-vTs%4x{BFxJ`d{9BexA2@Ws*~PMel8nhyM+PLK=@imQju%bhD}- zz$5tj4;xvDzOB>Q?%++2)@rm=fJ8S5t+uQh^V{U)r`$=N)4o98ZsFvjhzmmX`qQ$^1Nal8H{ zh&EaCAzNU5uPldD_41=8ThFpalbhSCwRuuNzsnkv+}~9by0A9X`tPtxj%w@eHk;DE zUqD7QACLp#I3+cEj!XU1(bij2vWcD#*E`AkzmE4h@uRPGXDYJwF-BPMa0=Zjh~pM-!>-LP!gi{sONY4~W=bnE0P+f9 zlK0wqd#mU~$6&MZ_;Av@6??LmhfVu>dT1)hzv;{5`j_`Oq!S@jJ1YOq)?n9BV*fZ` zpHsh*LZs9G6gL%-Mtjh*q+C1vg`pIyIE5?Ylb5^WHVKIjD+5%9+_EO+p8j<#nn$;K zl5Xz&sqL%U^vlCkzwitEK*AsO9Bq9t)Vq%j$uJ-8uh1XomU5)2OYa(Ux9#uz5I^3_ zD?0hrZ+LhdIAOFz0=zErllqrDYTK@>+ZdJlCq_5_U?$%wv>zY|EV$%0>Kze`9K>B9 zIaTYwQ$%W}r{3u;Z0;urMil+~emV=oAm;dJ!^!KdxtC}X?dDE}I8lI04;xs!yqbma zLOzyl_))EVDtr%*)!6$~AmA;I{70MIh!MQo?}tjYmvx-< zb$`)8^`)Re>1G?5eSb}jG#&>R;{DpU%GQQ1E+5Xj8Mq35R>Yuzw8KC93yq`N-NF$1ug#a} zGxr7iKA7C@9$>~vki%J_Xp~IY&S*qAuwC$!zHnu1q(Wo_iklK%^=Ey(XCBoYaVL zwnotV%ac8G476X{Ock%sn4X_|L1sWuOrL?+c*d`ruFUaVlm7(f6h1Eq^CJ}_BiZ;s zF`hyq(rpWeY^B9o2}YPE`#6Zw#ood$<}QXL`@Hwcd7Kum^)B|2wRt}VA5m=11w5{u zGTsIZ7>>h3e`2RY54M*bkGspl7cmksV*#VnUb)L0=5~sWeD?*kJ+1BVByF(5E$9y~ zm908Y63`W{sINy&O;HVHn=G*c8R_3hd6zEr#r5~Vd%^bj@wN59#{Pw2xnAeOGT`LD zCmLrCGn`KT$p8JX_nWA(*O-#R-TsF){Lhxgfkj*#D|)*u{MWOtCHcRh?drvLzCIvP z!N=&^s!Co(9(i{D8C=-5!9X^mT)$KU5Fo-DD@|?BlDpqbF2Ib1CtW^vO zpYQqJQ+=&Jqb76>f3h8ZP49Yd^eCq`|Xu5_$#23UAPuq7bsb z*yibn;k-U!@<(=(iHtIU3CHdH8%Xn2zA$iQ1_+pt{`* zS{_{A4&G8b8QL%z9Z-f+fAIQLvk@Y;jz9nrwILxrkJ!N2LwvBnlXJ6&cR=|!7~D(< zG{!+J+XinRbN-1A2z$)JIJgV-xe1#EcrD-up0uE)%%OeqZ}YwmRmS}k2X`f!o}HJd z-(g)<>XH4Yr6N`pFA=2{!X@=hnnhur6Po)X*nF7M@?e9-pwzlr734mQWY#8JjDVa| zP*?{;tNcSBUD-JrLkVbey?A_o8W3-oWEi_YMa zbl%}?zH!?(f>0x=S)+nh(ON&dW(Zm}BWRTtZPh3eDT>-FwK`CH){LU98L?+otP-kX z&(^Bi`@Q=-&+9Koa&Twd$#s9P^E^LifYOMyfj}3=5`Rg`kX_bPVq-^rBhkPVCB}l$ z&gVc1>lR+($A$_UfD^T&NpvBJVoB2QRb@zP&&XR{lP# zdK7Oh+fEA}V+P$68*C8@{#-P;Pf9KSV1azRx)W-_?-HiP;j);f6V4Rvjhkih2oKgt z{+h}K(~6{`mH@+lB@rOBD)YuZ!KB1UExGz|6^Xjp5ZN#3PI{)d0h4jxBf~Nav)t;G zIZvBJ>-(o&g z^Ei}TW$LT)RaaC0W;O8x$XC6CO;O+!-*0d&6p0^V$}<1sUKs;`SOIvu!TkKw$~K)1 zO=-(F7m;a2IfT*0!K6{vV|S%xFLxSNi4-E0uoUR+Xsl~nRA@9Ygf}t2>+W-dJZ9mft!?$&fB)p!ozB%`1IT0 z>Ka`pa!Hvav8sohX)J3taiRW}z3O5D`4d5+deeN|I5N7<|JM8ufPNI0#u3@RxVZS! z)kxN&7WPgXmrG0=r7^3n8l@`}cA1J$9{U-QxHS(jSl!V_QvA=wJOA__TI&WczWHtQ zR0%s(B)l=GKd@_R!yV(CnOyopmdw#E|AYmO^!t^x+`Jt(W`MDt!NdEB%-V8$NJNfeWNt5E^rzS92vZ+K2xQ&Pk|<=S7skZo zI0Jcu8+l)=hk zJc1C&-W3@M;-$qjUsQEtPF19K49t|U62WxH!0+N(Rx|1D-EgNhO`1ywXxq!QV(1X?Sk#or3Y zEvT?xar)$#HzS3YZvL~DzNxknmAgP7-(3DZil8&YD7ExKDQxd!OakW?)%x%kQ57`_ zM5{`qbqQIZ+f`h)Lp<3g`cD`|O^AbR>-5QJcEGM{z;wV`Qu5ha>BH4ysbb*a#NgId{DlGA zVldVSf^HE&Rc)%aOos5#2)i%A{BiVNay}4BW)T9^je%47V1W?`Ubh6OS#<>Bp#tPF z8{ig1p9FkiSc)fxeY!T&uRsm>ilNlja@Y$(9gy^D>+A7=*kuYdW^IjN_ci`v0USoP zB}IT6N?G<*bZxJDQ-so)_8OQ1fPtm^feTR&e76exKkC&ZzrA|lE9EL+)L(=T_zqf3#{RyGZle5LMDO*`!Cjj&=eWeRq4BE8G-9r;LHp!= z+;^YnjB-a=$dspu6i09NfG7z^QYr*6sPCZ&OY$Eq>N}=>2Wwys!`I^jwM160BfHlp zWLgkC3x;yrM6A9+eK6 zozrwSL5=#mg3?^%?Jq#B>3nZR;6mJ{np(EEq?K1=qYdb7Z2r&Svg-EFa{Hx|{6>ZU z1?|ZR2JDS)eW;Atp9%>6>T}sv%5wgi<{o9Rpdw(oQEAFgE4Dl4i8%Sw>nZid^8*8< zn(dzX_V=F+*WvACwdUi4+X^Zw8g~m}b{7jXl!iq+o`1I8|Cy!QnC_tV`#8oIseDgr zpvcyF{e!gHu+LUs6n91A;f8m>*~ymeUdQX#$+949(3gp(!+xU6*~z-$0iR> zzs3PC`sMCLpzud&%<~1hE?}q2<7CKV=?kZt7Y4swxCV%wUG~*Hkr*Cp1yU!Y(9HK9 zNR>{`DzGc~gU^rhN}%9-EYdlyk%uuFJgThPTwl){B_ySXAG(UnS2QTc#tUS4-%#c4 z2$9iZP$${g{Fzy^I$Pg7FP%PFmp&m4WKGpoPr1`MJL11sOVxASaSe@s^ja<%>3ZLz z2H4_4>DHI~pQYZn1`noUk$9f7pimI} zSq(%@E%Z<*F0BOkxKITQ)OExyIlUGmz<`FwVe(;^feHbe4gk=enudmIU15&B;}8l? zb&W!U>E(9p(A4Z>@j}62It)-=kkgE*mR6mkjavrrWN2;(V+CNshFLl1PS^+%2v&pfhE%Jm<_UV@NOWAOk(1MCb zk#lXPr&Jkvq|;JzBLb#f=_+1mzjEJoTRwH%ud=UT@w;^?UKn3C`m-VNyNg8X z&roaY?>~ParZ3Z;VqeQzyG~5*^b-O3wM(`6?`m@yZ&uJAp#27H0UKx?n`dW&0bAG3 z_tx(#)et8Eu;Tmx7RWZc#;Nr}x711{mMbj2{RH{3gLS2;)9&+Q>FK8JwTu+?D@f{cwS)ivBYKm+Gc;&+>GzqYol z&JG6p8WJ7cwPIy)8p^6zef09b5oxBuq~%bGdRcrnZCeS_fzh~vn}2z$E)} z1q?p|{nP}Qm(a^;%KZw!Ej9>>EhJpsXZe_MZf;FQ^G$Jn;?c-@VM#T;RGxc$Fn9?U zQ=Hz-V^H=bDrMr1w8r@_!Lt|Q>toG3Ph2@6XpJktxI)uEZ3u`|RAx}X&yGO*K>wv& z>X!N+3e5nAr?UZ)EUq;1!Ijr$UM7P#!2ZC2fWO(lh;GXMccTq^2c{`GcsnFvczAmo z%PA{o<|StlCp&7bOLn;+8w?_U9)^%@eH@AFtiVG>l^6?RK3MJ{yKRKDBICuLhxm5! zGw^d{P%XvMI+EnTIs@+U;xe&bm7?Awp_h8e?<}!B)zS29t$nz+C0g@oXvq)=pX`4M zdFI#QkWK+P{`&aFoDn^@nVAkm8DN^K`(Pl48Vu%B7IM&|;{}h=zgfd85MAR|tn~aP}cRa4C$D}GH0lJ zQ^Mv&9>2d+lUygmx{&H_R~tq}AJPw8$c^pKr7R)^u8ErMX1t>I(aureim@oG9y#A@ zK8wmeBV^kEwG-nLwS^h!9rIf=%|{+*M5T>~eI}RnhH_dbQCFYdX)Sez@Wm%jl)7bq zcT~D<>bwN#kTc5Vp(3F~u<;sEcQB@J#0S%_P{tacJa6;+S22L1oxQW~ZfktFH6GEb z{9Gm3YJ+mnKdviIC$sEdVza%EG18qBXf>mReW!4OWR0gJNiG}iMZNaPt2VA-Jacc_yub10TWm(9EZ;2rbe+ZiZJT5H*DO5% z4j*@#8FuDrB{gc!+ijVtNM6D_ECr0E-gCCF1^ud*N#X)F@QYk5V~9A#N|=PU99H>W z+-l#NgzaDnDsIR+PMBv7s-!F_t?w#*wWAd1f`tTFC?`~fn|#6&nt$i89u501Y~no{54~}} z`=AcYwg%Y#f*M$~ox8Gss1u}RQg^3o_V1VKNirAI;juI~I-@89BJ;=u#F;ir0~N0e z4u&RjwG2kWA!>Fk!eW^YNw60pSEB9du-Y9=Qu$iW#dh@gncv@c6^(E?5_#?{3>FBe z7#+W`{7Or1uy*h_g=<%=gBfY$!8UTHPBVbWi;)c0q0;A-fTggbCMlFh`IZQ?A{7jL zJcl|KlkbQR8MISD%3(#tSZ%-CYybm-hQ`@Z?exu?8lM#(W@M{&Kpac~N=#jNadl18 zs!Q3%WfWp0BgH|IV8N~nL16T4bV;8baZ!+v(cdzx;s`l*@~-1`+^j92a>EUv`>!dD z>Wh7yi!bL7{*3nV4QHJH<(s~#akH+$Ci}9N)MP@h8;gPB2#?+pqj~5|S5~l?tjrVO z+meI^e|sQ@xNYF341$L{f;#!3{2v)%%DBxTA0W+#?CwNw@2oi7k8BFs`O~CYAP@D? zN01CH`fTW;I+ZE@OYUyf3cUsIt)Ys>^BAK%DKe#tB={PEkP( za1mkPCgj8%9X4a^+LiSuF?icHejB)Mr%?M8ts=qHfKzu-e3=$F;)c7U@SMq((6|nN z_deQYs@sS0;2796Nm8c>fFP|Esj9G1pDye96 zwU0aS@3oD9g^k*WK{{bgM}K?Wm;7HC^!zh2I+AA`0g~V*@$8Yb`mwp@-&cZxzor_W zdSLxJ{=P}W+*0@FUS1Or@C=L>>#h|F)(&A}Vr8V+eYcHuDX^F}0`@~(rhTeW`rnlY zd870x4Gc{8NyKq6i2jMyG^=Qd8R#!nLL_m{#v7 zRolE(^oqYjjwR|6;Mr!OHmj!&cV)b3DpNezPDRfx0}l>yWp#DYrDJJ0+*{f@{M#if zn-h`|pftAhD^(Sxli}MHdtd2QNF~<#!{(3vDuZaCMmuHJ*x_D7hK);&{hXRiK;; zTjHUqam)~Oz8U!I{Gj^(#-wt&{aV3nTeVd8%hI)O+n?|IxZ!*@GJwJ%AEl}<*Q0EM zMtll?rul4`yIy=URAAKa=I+8jt#-20ojpJ>96p&MvbDALxK6)Z-;?us5HM@pzrI>A z9dtbOVYjOB^GyxwvIlj(Z$e+Lu6LKV1KZRNO;g4WU-oBQPG=@7$^WAvm8Ljhr4+3s z{;O5&vnnkQS~_rKp3T`D@R@irCV70ebkKID=IQpPTF~Z_aHMLj$tFeZEXJb=^YgXD-;?#> z#I_IOn>GWZs~(d<6;_Qzfasts|Km#I`HJvB0ioJ*`z7^_dJ$c$WTE|9l&z%Iq1oTC zoLRX63Xi!m@dt^Z=D*qBnBF}>c;@}2c4Em_%5nO|^S9b{gx?-zNasCtrbh<9Vr4~> z@A(E$S={=kXgU!6vR=)Wbr|(!{1hmSZjVvjcdsXp{;XMC;lo?vz@+O z^g2t8aK3_>-YwE+2>5+8a!B~) zO0_wkyw0lI%$x8&DKl9E|(suB3j`|8Fv&Pr05S z^5^Z1w0~6Pl0v&k4Y22XFuN5G3@)O zK@YME3+xK%GAYlj;qjTlO=ZUAXcJPgnKsP6pFTVSjZj-Nm217R}Q05gm7G@uw= z2W1q2Y=ETE&5I>}wZdRNd_yJLDf3Sl9|@Lrik8-ROehoC^zEoNpeE*wJ`;6bS(=P@xARUB z%I%Ut{wG`)X3p!dqt4YMr#!|FiX9Z<#8PmKJ`@b3J0ejmj>K1IaS zM)ybE-WeLQm|H4lDoGdfq=BlWTMa__f5NqBN??Czu7*GssIN>hC4rE)ujUy@SZFbu zSzqJqZuKr-pUB3V)TURDS)V)htI)e<`)5MLBibVE28{S=G;*bH`@goX& zgzVnFfvXfJiJCFN&7MfTxQZ~ybyG2Y!VAsa9B0Eha7K;15umv_RKqN1l*4f&v?W#< z?AEJ%QDjMsLr06&k}+DM#GdDNh)c(<=;j@zpsgs4^H+TzwyiXdeix2dw!1l>#RV;E z9tiX$DWj3KVqa5CQvRIX*YRI}dlFV{m~AYyr^DMaDv9DQQh3KD zx8XZ|k0i?_+-c0(*9zl_F<-~)oB6-IrzkekWk%)F-{IwubPQmE?>Z>$g`}i?M#*)9 zLkNCMNRm#=6+5oXCdT0ulXxzZy$>R#oi2dotoXY?&`IZqvF20vvU?VH6yE5L0SYWn zii-QFd=KSL$?sfIAoC7z>st9aLy^pKD2&Kek{D-1ii}7n>f^$A*hOI#pv)IkqPO~a z{kVyk#h_no41WBmIqDC=q`~`qi|j&f-riFU#-WtpKMOG*IoRLww5yH5vRql(b$*%BP{fi5KOxS*ToZ~HTEBA;Zg>lq>|{}mdi9?rU!q(P(836 zEN5nhVp>eWnYL)<3URq~!jm8n(p>9aEn;KFoCfm=* zsQk1T$fM#;2lhs5S$2q1n%+S#g@~OXQ5t`;Kw03rpf|LvAbuN!Mdu_n)GK9qoTLo~ zICZ8_2084$i_(ez&%!t%l$=kgqvds&Fl#8t0t$zKS|?ooOqg@t>p4q6j2B3ea zN@O%KtaL@r)6_*_J108$!$6&XnFT@{9DiTIM@b24p)#Xou}BNZO5eE8OR{AEvtLST zabY5gGvg`gMC%F;ckfcZ zzb>7a4j@{CRR@%nfLRyb!bZhy0hPs8Mt^{N;Oel|<0q>?)H#Xf@BjA#OjCWd#=#YW zlQUe)SlyLe%6PS7&2%Y7ln4G>8v|zx%Rw^<6_e_!qGI~`RV)%~^l6biPQ2Ou20Z~ZndxQOB~0E5-8B_p8khdcU!AOhYf{SmJXHqC2#}gJ_+92o`FkEAZgU z!aN{%9-DS%mMdbP=Kby@IPpflU3CS%mGACwv}Ztk>+Q*vgh0Q*rs?%~tC$ZHwT&Y- zp2I#jxYw>32+_OP6STsST43rB=fd0JS`!Y&;>BO?YCYj!;qJJK0{X1v4CUWWvI1LY z&bYTD-{m{l!Jq7FpJaf)^$391vOK+1Y#-JJboW3%7d)MgO_?znY10lH zN*c;lqZ^hMRPJh1hcL5)71)KZ)R^$-)yJ39+Gjam6h#Ojq@;UNi%CHC!E>>PFeY)W z`y-b;OZ%-G2J!)CJ)n0qn!Wr^X14!=Kyj zHdBEw4<~Dz{3!yNiUCgTTU&Xq-<20jNYeq!_EPiR8|wQa)BE3S);CY5vT<8&J-1CY zwqIFgyYCaXOZDb^@IhxgFLwSqeH=gRKW0;E*D%?>(_L!y`nB_Lf_Szj0U>62C+kjA zv^~Ma(#-2dL3E9gUlsAcX5+wT{cLJMt97nf?%u;0KmqmcPi$=z;o1JSeB8Xu5+8Sy)At!)sWiD9xnmke%BAq z$~6ny;3vQ1k0MeCIq{`b2~TE@9ryz=~nd-9v-cxINsaQOP(QBSAE;EO72Z#S2Ttn#N)im@85cQYXX>!)b7 z1$q_Hbtz>1y-R)vJXZcyMhPcNVw=2BTOO@_?Y;^TN8Btry}#LfoHTv%`)Sb1HO9|I z;$4IJKe|i};>@HKCjbV+;b!2*a#PjKo4k>?5%_!kDqTPJZ4(?Im|C)nO5fsdKcZlv z^S7l!eCd;*GQV<%bQ;wgwE(?UDD$Rnm{?W3?_zZAh3`YP*;d*dy71h$xWwL zOGxx1GOj9=6Cv|ermf}Eht1qsJ^QRnqW?5uTqx>iFsHm7CzL<3G4++cV{+mA;qqJh z|G-yppJ=0~m?Tl|2-CYdOI=_lbp((7QWuEY7;YELl8#+^JTB@UIq>x7~clxOhfIndXxZ1#p<{|k$=HHh2=5a)E{Y2;D zuKY5PwU8><*lW+gigTKh%UzKMc|#{H$XGlwdOfN!ddWt<7}voQM(=a~Mtx@64oRX4jj(<6k zOAVrBlaaO%%icw`flw2y?`r0L(_Zy?@1S%4#se2GtVNueE~uDn&_lG(SUOqRA`q96 z!91bS!fG!LcrrABSw{<4c$Uxq;q?I2gckp@^tBlpDGC}y4dj?~(fSZHfTqIQRlh-HSKq=M7U2JX{qx__5|@Et3QxiVT430||k%&ql6k z9{nuE_MguLof=3+&_XFH5P)g1e109S1!3sMfHK$^fyE7&{uq@9z;)<$x__=c08k5D zEo;@y1_ST_ns_Q2fOi2rPJd7aA25%B_-7+UWvUODC0|MlHTu=Tag$^BJ`AM~MQkGG&l%cwuYA>3beX!Q-@e z#e!4QK8kI4ja#Jnuu`22a|c3EremljL{$*?*2Wah2|y7_;(?PlI3zeUBs3(%6Ub~} zvTh^VnK>a8%zR5GEw`z=GVny`un^!P&Q!+ziWtRIEC+P!6;f6wiK8URrPwb1l2P7c z?PxN|WuoSTPL_@-cbR1gXE@JSIw%rBTWuN#X(@?R#g9ZwY;@d`9YJ?WAP_4e?OL&Q zk8;}JWlk_%PyNYIb^vOXU%{5F23P3~=!NJgC3>c;E}gWuW!qV>$b3{GSTO-J-x3$NgcIsu+b@TjZ)j0jzwWgJyE_9FjclYqq%ls4h@QMm=iwGA$SEOZycL)G)`cK7@ zuky)|DwL{A-tOw;UcGGxMsBLH`tm+jL6WR-_}w-)@c2w8OqLtiw+8H)44fDs#sHyM zjG*asl735x@yy^I=<9GPs)PBa(JB(|qFHIhU*(@b%q-oA>0MF^ord;9KE&MjHwlAX z#clGO?GE4qYY6mXUQA8n<*r1Bo_iLp=FC`y3RWEco&}@X?qe_ilzrkBFGdczGTEJT z5z%E$SK_GO8(7KrXwYR;zE5o+fZ1G@1!PaExg{jO9>_ClTiHAEA07F_@@tb=B|)3| zN6I-fymVL}8%Vpec88lMH-CqPf6@98ChHq@xr9-4`~tG`-~L3E4oih$0-zU@w)JFiR!5byWwYW85{T>davrM- zj~Ezqv?vcI> zxK;@rJ5DAnEEHyp0xtbxQ6f)St0FF4fY{TAftVsu^&K){=s_@9i_t*54kBRY*-B@D zcF;mBU5bD(_Jr7jW(Ra{wt^T9*?9na9>|@;$u5$LllLpd6bF+D3H^dwh_-N7cISB> zaD%X;PLmGhXXfDL!M(adiV!u6Rr^3geS^NN(<-LQMyf(TyK7Qk zwiOcF@&qSw1<>c;p{nohU}{C_hhTZbYDGLh74L18kc6#WS%gNc&7<8ljM?Mykr0D2 zJTD5OP+GtdCyUGCuShF=_2aZVIi}oqgFs}P3X+c4xAhZR9aHki#Ts0GTnJF(`H7 zY0*C|CuJfeIyyT2mz=PJC7cQh3>2&eB?TM^WUTnr7FLRufs~_#g${ULp7D!~6e54* z9o8EQv;(}71+lO?lKXU+>#XE_9GHa=J{8_NAPcYV$q*MZiDIJ_7JX|lM}m-OZDfH$ zv7%5_)@231;ihm(nWd_h=@2ax(7iw^GPQz-xq`Qh%*8e3>IVo*|S*A+O>x&@8N zLXK~&sA|ugysWGHUJSqLEos}^BfHK!V90LE_7-E3l`7|!=h})B0DBdp3ZbP=FugQ- z3%tGYg!ToXAD4*-Wct-^Fj%`)6aZV4ri4H^%)oQYw-ALkctTiM;i`H=&{+N({e;Z`AY5>p3}Ca4%55uN+l;s*E-WC~wUp6gN&Gc<(-hnQV}^XS!#-SB%~ zn@b%<&+mN@d#T_eEm5+1Q1S;$K9%wG@QoiHjNjBg^m_tWq-xK`N3|l{KO=|D>n|HE zyxP82C3&qjHzcG_!HN(0_=owOlFL>X(%uiVdoJ~;xbLXjnlLfbCMVaSSGgu63H|fM z7tb1-45Cg|ZE1fbg@rq6dPKK92C)E*~%Ab*I7=}x!(&NHIv zw||2%<3{yCSP^&Sz0BWbm6e6BG#2HT=N=?IN$)~No>Fr3uaycOoLNl;Y|d`@jg`M{ z-rfka{(DDStv0*pT~TQ+&_K|`7C7DgfZ&A}uI`VKI@wy?Hy^t!JyCLG^ILg=qiuL{ z<1DPZcNmB_jnT;t{kB;zx9}o8Nvp6jBD%j{T@)^sN?-aF=<~Fi32(ATY;x7y`#X6p z9jJA(@@P6;>h1R7ylwk(E27d~iL-Kb@~n?xpHstglOX+aPh>ja`5{~2Dxb7w&}y-f zzJ94m!x2Skx?!3x@90}*Ws?#2c2!CJINNmKc~k2BRM7EGBll6lu0PwrvUvLa>a?QF z@j-=aF+Uie-El^W!26?mi;-XMCT%wRct0g)dhE3)nheBio_(LRc~+TT=sdOQ)44Wb zqG-0;IlNJKXTmv9Z6w)Uz@zKe*?ej8z-VN)$>GMYJe0rZXKBajfX!dRqlF(*wBPW} zI(dD6q|?9L-e6sIP4-qSoiOLh6$Ho0!3!_K#I$D6&gbRLaw6-CZ8Q0^ zI}*K*?X$3eg&_LYaQ^%U^1%6zr<-a%>13u@XW@Yq^Xs-z!D90*etixhOkg3?>p~&s za@!q&cK$}w!@Gb671j~O!E1{Ck)X6j&vhY<>cq5k%!ntGD@rowL_J8m=_pdY3ðojJcYUF*?6V$0DYA#aw%o%5%9h{wbIEn+>Z29A!hS&X9;}LGZ^yYb)idGi ztsyjSVLJUEt>j(*#@n|DV1Ni)+x20?+F+`PcjNBk&!m*NiT2Iow&`!NjX&0EkGI&G z_l{PlPxc-jmOhjcrH+A{Cy>;weC}3QwaYMR3@o0U%uV`C@nJKUn2`oO1;O&-ibga5 z?qOTaWcws(`mnp&QtkpCsK7W*C|W+b1kfYUEr&tZfYiYWT`25-*P%%jVC4}6IDIW} zU?&fXrq)MLGWlqva53`$e-GUbhj61o{QnGm+-N{R;)VkA6Ch;S{QKc&01gI+Bp2T1 zeV$esocaofPf>y4f~c%GITf(o(4h4stENBmnm3u}r;n2!mN^16E)!AQ{7C^Q<0-0> zg&WO4&5dpXpcZhDk2@F`q5$yUiOOu`1t0@O4czsQOL2%5R-QRYU{q#kV_6;m2!Ryf z3ITLmoN%v1_e!wp3~RAOeClmT1(!L#x}J#3&xz5kTscDiCcA6K-!qrTf+*109JfpQ z4lr&IiP2!<6W_|szlO03+S6|@;6Fc>lXoiN1UB3_@~=H6$rQva#0HD0e4ys0fP*2l z)eey%5|&WvtGbR1VN5jCOiCac9v&qQF95B9*5}8%izzV!o0~Ms|D1aejVm*-Tb)95 zh*UX=6rmaIF=Ub&c971q@TP4WtSiYNYdZrA{_Mxe;A3X-w$RO6MSuUhBI*&p8C|PH z9u5|5MFOM%I+pNYRcr*6Tnyb+ku;;;_EIKzXj!9#kir}$Dfy% zPNk~XS70(cVvo^)U^Me4Cnpp>W~Wy+LPa0JM;%VZ!&^+pc$Yf&_JZNCj4^+44z-dg zUPt>n>L}g@+$J9u{79Rrj-7@Kv<(21H9lME`C<-dny^PyV~ zxhDB_lWS_l9PGJiSQy~n16o1iudiAJ1ps9<)}_Uidau=@Fkm=R^#GFc~tr%6eN;Zp8J z3nepwEPRG}KBk1hc=NevH-9=x5#l~O#aE9nQxy6Vmw6tgUNB(S?!QXkN1os)^)1)s z^kKxOM2H$;xqJ{>lcmw2J|(H8=}#bUIEHPOVDe_&$VnU2XiQ+Gfc6^~u1Ds*luqUM zyrEaf_T@g7lcwu_DH|WTUso_dx!-bUYx@6Pz^5%EC!tU@KiHTK;Sil`{R>rJoGx4X z_2YL5sa(=Mo9Md`mHT@H>yq5fMTbh&dkWm?jO5>lMZyR2;jXv*sCYggd0ckem->!- zTx(65?Z*>;JdOL$=x{HOtf+v0U0xpdqW*yzfs)Tt;H> zMl-^XYbNStW98pkk92a7%;*Xn5f~9Y5*&cuAWNNY;ccfMCZ(QI(Zqv54tf1Zl5U5( zOM}<(&acJAo?q+R*VxPrWSz=17S}8%Y6OaYbqCFLS4d|yovka~QGi0MxKXWPw`6^m zof>~`c)Kt0*F`Jm;RB{KB)L6o-G*9}XL3Sdq)SkW7Np?z2q4=On=*+pn3d=yztQT4 z6~7Va&4JksqT6$F?2HqNIbYw6FyIrXSI-O;m)b^6me4b1gw?<$eCcyh+If~}FktKc z#TSZ{uuP?n`o^*txy4;YDTdgEUS?8e7{V0YCed*=%u#1+_`lNq#X{xa9?hfzHufxTyU$+y!FD})` zC%h^i&)c*t)iwAhC*6kY;PAq}Qtk4ufVi8jm4PKoT`Ey4Aq^RW^A1>cWUUL6u4io} zS>)GeYN|K?SUakDRWiQ0Z#&Vn_w7Q^Nt{Pa`0FOW)wo(gk(=zF46=l@u7VmavKM?> zNfmu#w9h#mK%D_UtZaj_9K}P#*OpV7a zp7bPSEOS()-P?s!kMio=ui| zB=Eth7IGGxEoPh+3Y0zzGKT+;3xkyK#sh;AN4U;}qNAk?rzuMTmt2gHqLI044?*7O z;@hLxAh4OU1Cx;Q0|U&pt{l8&*~rC5Oz=s}R~6!YFxIlViR{lF2c=}|kVFS&GX#Eodw(NvwmXP)co|xY7b?D0R=uDW zKQAAL=QU>%iiC{D?3oMt&PHjR4h;mHkneYwp6>ba=$oy-XSj}u#HHztPHRVTS&vbg}A9-RDll zyH{&wNdD!uDQ_=|U!*CpOL9pxXtw)|m_6c+-IcuC8aesi-mdloum_fsa>1Qg+83y~ z<5mfD@hPz2R~2k~)rPB|OIFX#=!pZwXQMC)qU5o93|*-?>+kSTvEi@7MWk(c!*z!q z7v1U4gql^?MxW&JM;Rrlkd*&c6(&RNdpmU}*L8J?@lDGIxIrB@&Wx9>%3o}91W+!b zS8mO~21DRf)FA>j`r+$Yke1@4UFf`FZ8+WI6v9ixi9BiyQv2r1d`pKpzZkv%ee1T1 zp#LVKp84Du+YuO3{dh4EnD08`#D}Z+1uLx|CHWS*y`>VUl4;35oNaB2B`xbcW^RedGE`<$&!t{i3IG zF=%j^KU@-YQB-7Vv4{WG4>#Eqf@nL zUr=qzmaVkO|JUBHriB=X@x`)#ugpW=vKJbw@3UWS9Tp9rENoqElUbgWd2V0vQ!?F) z&jG`S-*qEOZy#<96+L*VV6wN=9%DjL4>)|RvM~24d%aRHV2DytGc4cN9;lQau-_wE z-0=LTpx3VN&Na zeUo1}A)54S`XAqj=9l)zG#!+1H}7uDPww)V{wXp)J7^r%^j(e{X!`rt{l>7VM`q>? zE_Ipp+W6-EgO{pfnsw*TgSp>zJ)`3)l`7boYpguoMZ1y(e15&Gtaf?r4Qwf@|1r-F zB*fV_Y8)nPHiUfb85$zDD*;frqofqjHyeXBK18UCfswc`aY8Sy^aH!L9Z&BHNk|b& zU5Xp@&d7iW6V(fl*SBLYDHlAjwdL9#9%gsD|1*;3(jH09IJ3|`!{SNG-{HO`wx+GJ z>4UiGlkdqv_8G4I_jGQ-we|pA*|W;}Y`uBg=REb{0T5^~F7o9Xvi>b&>|Q7fc;A4M z>CNLBx6*q(bPcFdN1^aVhph{mTjR^dW1m;=?(9g)3b&CX!!pbYZUZ`40veL*jDD0R z^WhZ^?G>R4mi2rYdN~C9K|41-#f%B??8VA64pg!1z;Zs(hp7*<|Gvd6f88lZJEASH zTSn(G2GL9t!Nka0Y}&e|ZeDoXDfH@&DNHMziAE9uDgG42D8c-~Ug?uH{K6#=C}S(F zPoW@m@CwP9_vk&?@)pz6!4|N;qUutc`#`H-U+W^7yhu)5Kb!CM2;5(9K6h=de^8Zu zI3(S$^Y?nZl2PU4`ZVCCSXd}_o&b>NlN(Dw?g%9Z$0(I9xsyG!`tZ?phwePfD$6$7 zZ`OC+GqAw8Nh4m6!}~}^&aUY#%Mx%;mv7cm17QmI5be7QR#^6)9cv!`OctHH8~p#h z0L?p{wNt*EnE<`fRdZjL1wI~d_%!g(&Osf~ORw^ZA`E6nlB*u9Vx~qyq-0x>?x2C=>|5HJmg26N>kM;~fC}b}?Z%+6^2|m4QYoUIZ70+m2Ngya?@vcfbXJVi8>m3$T`j&TP!JvFN|h z6Ns5TFT612P}A4nUVdKTTIS`EHAy^Fl$+mrp?KL}t)?53@#f|PvX+{Oj#^t=9ll7l z8yuEJrTv>xdoDi-q7PHNn1KdZLnWaS7p*TUAa19LmZ(qpckR76>8lO!8Q5srtRD5+ zQrlFE0532AU7#G=~chuAg^niYX9h z``-qO09WNfQh*nc0SJ8Q2=jyI03s96#~2(l!wRqqvxWIp82;B|c&h~pG+ROWJ32e5 zF#uL0gO&lXN-npk08LfCfMM|;Ob`GLLe&cN!VKpZHo!1tR^Aa83k#?jupJ82KDMTF zyx%rP6n*|!OLSM{i-hZH8w@L7dM}Urnkct@$uX9F2{$~z0~AzC(s8|7X9aP76gG$j zIy~^ob-4yEJpbWeh>99?0U$nIW*;1E=2oYGS!j+yiBk?0r?4U5VuG2fAX!6aW;j9A zEXAfQ?EGjM2qchn0F4OdokN8fn6i=}@Rr!Z)(mUe56)U&Ma0b{xN<|kOUQc4#E)o$ z`HTC_(+Xb(8$9Dp7j?D%3(__K!eL|}bm{o=Yp&}h`ZRhrLsbO&+SQN3(f9atI3*nu zwa4(O)P#$PNYmEXH)5&f*CI^uCJAJN=|_58H`?BZjUe?<#ab{Pa%;|Fad2>mb_i=< zT^=VE*~Sb-h{aRW=!pO=sF?crfC$5Als;9_O?@U#n(cUd6T|;U(^*F~{r>M?V8B3P zbO=(4fQleBBuBqd(t&^=r67|YAq}HONJz?PrKO~$rKC|xV537?MY?{spWpfZ<2iab zJFfxmzMs$Qx*pdfJ|2r0N}JBG``>Do`#u&tIOVh%nWto8WK6FL!`(GppJ^zJyi5r= zR5(8}KPuASy7*XWnzmx>fAnkaH1=Z8>1?#_+W5JVDYiItTI1`uyz8ge0UV=7jb2se zv=Wp|o(y0i;7GAk7>Rp0(xNqrL<{CF?5r=Ma5#C#a!13GF8?YAoK0b7XYhsxtF^8= zs`MYAG8i-}6@Gr#cokk)xbP)N$^BNS#m@L6)pS1KPrb>zBh1ZPR;`tmZ#9l7rfe{o ztmaKdn;mR-A3Vw#oA%s>ukeTDB=U#p-z@^ZufJMV*VGYo=8^;zCd>55cT#$%wGC5D zG)?drY-Ih@IEyjWnbPp~j2F0x$By8KBb()ZYN>=D2<}GZJ#@)>$fB&vmhUa;MBOk= z9|dOmqR zHD^j2b1!YgZM(~({Q6pkW6wv&LHpVn$C=tWTA%FQwDUNhrfv49N;@}n<+m1xU{l8) zR`;n7{RH^#48ak;j&mq2SMXf(p}j{romY{C(q$|7odgo08yV%#2=)dBA};A9MLR;7 z`h7PW`RjygA|V}ZKzSI<7~}o|*Qd;#hhxzrwR^AvOObe#8k8f|k}L$KA7?orsum=( zb}L0{=Ge8S<@48u4~d{&?Xe&h60g(p`*UQ#5^gumz_SgS`~1lu*AdSXQp$9G$)48fuOp$9%`O;sTd#NLW&vUNd)o4b-StoSjI5DH;OapFG% zWu|rMw}3Gk0jDp7wY5vr!#ZJ>(re!2WHiJ|liWja%%WO!BG^&rWz<^EwOx4^%qmjg zz@BbJ5HV#Rh8O3b*!4H)3dEIE(&A76lb&7WKxJ7`2x^`r>I6h zIw@;x4z8}GJd>3%_B(zxSG<$ue|}uodh9>BuUuAdP09j$OV39mZ5^8bA`MGK{fMDB zL{ad=*PpuWitR7iBQ2RY=vm421enrc^vfpJ(KTr@#f8rPYhyJ8Cn?Ow+?t4yvcBOvSrM4))mHNKJQ{!clR##`?3q8FRsI9sixu@}~17 ztIkwF+2~|NK38}lMb5#Z81i%nD$MKO76h>DGBHab*$awEPk9#u`GkDGg6Z@r2fX-8 zJV2tiYix#JUJ9#Dh3?Rp8hIr4J$if-G_JegvIfZN_pbx=sNKrhnD{j zqfGKeMBB-KaS22Q>Qp+5BZ?bS-u|Q1>$_&=>r=kQ3g+>5JAY2~JJ?V0-?^G~fiHNr zC&oFu_z1bj1WMwTIGYL&^AI zG<}(tirHB?VgfL3r7&V9MtV0`dwX`#Y;;uV7+a!B7`D0z*p5bu0q zq=2EzEs5%@x&n!EE~H}6Y*?EmhUkDp@X@kdqa1ldp!4DN>M@CbRl5u{dzmKS7V0gI zanA1Z@A2plYEQM}<5@1jF%sL};{G@Zcrrt7oPObyd(xF%l%p!8jPD&_tOr;agM%`5 z?8~?WqLNri5ZM#jq6~i^7s`C!T_w>r#Z7LH6fVs`BJ^?c<79fKMcB2Hn|Bo3azY_Y z{Ds-h#AL(_tkENZ%0Ur!>Z5^gJ+ZD;3unUVimPo|@wYo5+M0jYMDFik<9U|4KdP>Y zgmXfdB&4LO?~3Y2vwnSN0#%|~{?f%nziz@TmTdb=R-D7&HCfU*(^6+I#)*YsfWPPDIse5@$}r7ob?lFi><{kQMokVqaSHe~ zpY+6hT6W6RIP<`IW^l;xq14qzyi zKJ&epwHuXfZfLtxCKov%DG4_KIWOfQq#jFqc9IXE2_F7vdty^0{e`tt1D zb~5%}nUk=vxlwwzyqxFdjo1dmnVm!6aFUEZmFXWfzbMk#aXlUn_~XGcbK0*;wNNVc zEQWXYa^6z-;LGuP?yJ^|EmVW)R`)vS`Yjx9iopc@**SM?c>UT%j(V!1e|vUMD@(&g z+Q|mtRyeNmnBm^xWW!GDUxut};o$CiMwr~mY;tWGST##&x%{=Um*p!>);t@tlv+2V zRkojDD<$-&a?k%;_o1+qnSxB#VG6E!@`2Nmm5+Yja*3ji$HDzINu`p#W}I1l zV;;AbUKUjSRj0itzmK2#^ybub_l`}?wE6kjtAJlawBds{z9J)gj^anVXoWL<|DG*x z@E;1^NxrIB5p0Xw_ZOfOc0Iq?zgYK{31=H%CNz(O23Wg+J;|1eG&8)tX3>+5zpuqE z@YlGAkiL>nn@{H#5(}ylMoSJ`PFpXB=A5QeO>V%L{bp%xlEq(A6$V;i$cmG+YpMSg>vV1w_)ax~EK9f{S2dW(YnzY7$|@+`L2ajguyv z)3xU%=4beld$Wi7H`JKL^q)68PcIDJW(F7=XWKeH$O$vV6Dh6RF4QR3Fml6LCH1aF zm)@0dq8WWkL0$@okhrcT`9q^G*V&!x+ttPjNqAq<5*>_v@gH{NmZ^Gtl9>pH%KgpO zwFsnO6zWj%q`WNx(}-)&4uz00Nmc|?4tez3r~_RMlE*I8$rf#DUP-WoF$l)Es#FyX~ zzuG(ayAl!%MCTkmM-x@SL7+U4ht(LpQIfo8^olP2ZNG^2%yz}p_JDnwtHeXm2^39V zPAKU}jQwp~*6S6Ju^V=*ol!XJle!oT*ng-s zI@WaY{hqJ4JdWV^TUB4jzL3;F-zr`A=G|=lTOK4!8oCEQc;maN!{4Ap^hoD!YDYIt zh%Pp+%~H9Dd#e_2>QIXljcp`2vfhg0lJ`DYDQ`Z#c6sP@85MAxGQ2bES%QE@N_QYR zB1BVtbf>n%wjBe0ABnQtRC!7C19!*ygg@)xBLf`&-L)$IuFH+q(=5UOLPfK5r;L~7 z$>bTu!dEbfT~HB$;iP_#hlm`)LA0g=uB_<(V=;&e!r2o5{y0HSip~X1*Y1MAgTym1 z4gQX|z;p_3^ ze_lf39gc{38ZbL$0q#3?9=sfy8+=J8DIU=l%H{I!EnMnAJYmj&x)GxSw6pLsh0iTb zZi*^x14`H$X1WCpaBhl$XWzxyi0)cP&sf&aZW(>_mKyXbP9~DFvgkXDXeoH^YFT4Z zbxVMJNkbFakx`q&jB4YDT3B?FiMsOeYmyR$64QK%g~H(g(F_ro=OFELAtzbrfl!$^ zf5pNQ_34N@LbD5XZwnWW3=4?Zx6}P1;|Jwl?K}ulavn;dL<||E+7i#;t;AysxiO-W z9}O4H0lmJ!W&5x+5%V5#S4fS%{Z3C{u#BM#IcP@35+&+?3uK`Yk0Z`=<+fmA8PMZV zb>&e3(^F((G+A*DMkr5_H}IMu033>c6GwI=dUaG3u=@4G7v>eOk}*L-_<|{ksM7fs zz9JMAVM}e-=o2IO6|Feh6ys?Q>fc8Sb>$S?eMI8WFY?{#%8JAM~hoqXB#qe7r21a zUEl4)S;M_b!x4VXP%ldBgW;B=MVXoXll2!=X@jP+SY|P2B2P?l!;&yILds!j9Ks=J z6V>JV^>NmX-5!+3CsQ+rFq0}{gLv2tmRFBcHQn2e>3~&L6%VEix;8>^af2X{3lrdp zzzon5uyzDU_u(mu;p2ej9wN&mtxJ*HkSv^M6~}r7EE#9ctki#aQ0+ zJ^#x6r0Cm6O%9ra*B9Y7?Wg?j+?MK@DR#!eE73yPC0n}$Cf#oVtENoQx5zF^=*R{f5N=8Jzwq>HejHyVNyB?ugqgIW$MVKRqK2jjwp#4Y!#6+t zoEmVL=sq{nrxFdZOcxJT%R@c{OC{<8{hK0*2P3<0hJeYvrvuDY2RI&1zH~ zp<{<$b+PP1s{#(s`|262sGfC4D(g-so21_7f$;$_>Rc58)SJ=Rh%x3zSW@K{a_bKk zCGp>E((X!^3`-dQGv)2GJ4@)H<@$^Z(=DL@)!n~V3*_mnk4`3At!;QQx+nuWa;Y9p z>Ky}9WQ_?E%z&=QP#Ie;?|G0>AjP}5q!Aqw*aoK~<`H=Ve@4i^MQ;@G{155X0fbl)z%aUc?r{_zuG2ZON+m@)`|ZI+Z_HU#R*u(Jd&A z+e ze;09l`rbn>KmUpSe;@uT%QY#(t%t$=Wp?GB*NU?-l#caF+V;H+?3EZw!TT?0^g-|S z7YHxX87r<`l&VNdw4lzxBt9Z3sB@F0hx9+u34Nt8mS^<=?#-S?bEZ*^QII553>E_z z7c-KpMPZB&1sz6dmY&6tFdK?k0M6_)&+qKF6$AXMGS$wrSMHuns^H}q=$H(WOn~qu4&qnG z0NaVKF|5ih<{qcgmA)?}6)PADLlxyMn{2-C0dw@A)0@!`?2pG>(va_q3xU_PTV&V9HS5hVMg>t$FU)$+y^M9TSZzVzhcwAffiGZ%MnP9j!@e2R-U0L3y9q`q$f|}9Z zFvMx*-ecjiKQ;-;SDCNk|BKh}eV2$0GFi9nybhG88vQqAdAlQI>_0Gy5L zM4j4W(BHzJ25r;f8m^lt@uqhO3Q%pe^pD#9MWZZh6iE;bEf1_gWoy^t}0TCGOn6F*CXUqH9l8-|GR*z1h}Aug@*X-@C4-9%ih) z?JlZk$kXC^k`=Z!_3Y>;LF$=LJ6_?n?{SUiY{__9*GIdziHnY#gN5uZzj~jrn4Qih zM2)JZdk&_w?q}PL`pz=#nL4mj{%YSJtWr-Y7@jlp5G;Dc-vN(#K_yDqs@3aGu&H@@ zx~8M!adXWi${6bHB+sSUfZyFoFV%jsM=LxLn`tKT*g@jX?!a!=Ja_oaWWNseOjM{Qfe zD9(&ULv$+)KX8rOyWzS+*5ElIoOXs8S#oUU;VofmX#H7D<~r3G{`PQ`$apb(?$6fW zqg|@d6~z*dZ`#+szU*D`Zj?96*vV|ZJoG;g z7%vP-|NLWcdcy-I5mI~erue68BZ@D7Xm7pAw-mia_NP-s_qIS4o5RCvQ@as&AM@KH zf6_l*uyI%_6!pFyZn-fNR#w`0UKO=zb?|fX&tWT=cTP&@j*rbx9!|UQ>T71?7o|mL z=x(3vJn`SZJc$_g{e#XrAKM@F?z@@y<#!ijloAs1{ z)lwb5Rrdi_axnbRSluAiT*=-Pv2IllU3oi#33|-`5%hg3Wi$T?>F^~I10*IT(r_|H zH6S{*2|Tr;9S&+EBde8qZSxH+;voIfTi4nC17l>ioI^OYLve-|jfGi2)?Vgnhlu^; z2}Fca($Mj;B3Ug4{bPk_L@i?k1n)Ib zgUQ1-kw>{!tD}j7#aKxIYz}j&HqqDQMld~Bpvp^&8gqTVD)f0~TeH+`u7OSW73ZN3 z9Yqmhj39ikyyY;M{Bl^q&*z(Gl-FgEPSc-%?!I2v3vzHCruhGk@|&~lFh5-x?qOx# zyE$E9R5{1|CPlKFAXJx~?a^tZ31KI&R(BeKd0S(V6pB%b8L$|e6g zE=^5YD38}y!+>B4#v2=EOg`%+?s9$i-MdB-o7J7Ru5pQg>tJpHa*8x0oevB=Ah!Z) zoJfF5a}^H84#dA}<{D`6k-vebcm6kz03rnoO{a?@V4H)Brwbhs-c*Hyg{3otga{xi zoax-rkf8BiRO3{#i3(#U0XXjf1YL!$L#1;t==5;cZ&fTy-mLVxg8yHc%Vk>3Q6e=5 z7*E=x7BX8$iP&Wl4 zP$!X#3mDDRA*MhCvEF7*(rp{zg6b2eYy5T`EVrd5ULZdFyps8qByeKYoZHG5IPl+0(Q9im-xWo;9%F~Gi)FNLrFtSgMq?%0w3R|;jPb!WCPCq;@n&{ zvjH|W*Dgws?NA5srf9z45JSA8E{_^M{;N^DZjX>wXSN-yM=E#V$PIi%pJTRzGi*#W z-NbH2WR*P$#gV8q>KrFloJz;nps2{1&dmx>MT9^}RA{DSn)2)f-dO>iEJsy{2bSov z+!peIV=Pj7=x+E;%N_)iuJhMy3s|-i2DF$`LSO=5SB}WZ4dNbodn<-gMSvSpz+b3A z+Ww}@cB4W9=}eUs?D?Q~u2SP?{y6S&3n@;N*N z>?P?-uFILrMQf)fLm+#EhT6D$2ORDzocx<}E-sudo~eYr4JKoH^nz{4QD}Hhy0v$7 z-y?zlcAszMwBy8h@q@6y5};%X3s;y7O>8!kQS(ND3wKvip_?G}=vWsF=b`Y(Flqs= zMYT#Zh5}bJY$G3U8OVLG5ts3<78279@6f+D6yre0B3uLw!RSMtgrb@K(2crlqjhai zpaCmj6xU6dR`alaRz2v=ii7c2mHj8Z22(CF(EG(7(mqf;m}VmtBh+4LFhh9M0opx| zXFF^iISPfwPzaGW7eokOyv=N=zNW`Rgy@Xc{?>DUud40o?pK3(n38TQi6Uf`FljcD zF-q`FLz&HamvgbjHg(5~QVkFl(>2>I%P=L3NvW1yO}aU4!|pV$ zq$C}!>s|rymV}^yg#!7tAuhk;5@3-nqSTPM3Se&7$V8Li;ss1#lr=_%_v9q%u;u(G z8^EVvgc?R91*rIP;n)QB{D|5Y_wS&yF*3y*MyiZr)5$GM`BtR-uo#Yz_gCJLP}Jur zp;$?_;Pkor)U+b++4NF{l6kTJa^qYyp39>3S z@IaX`@G6=I)#S5#vD8CrTX0yODR(`bsL2ku;@dK_Yds=5DI24epjpP=IZ*5c6@_Hv zZ>1`s^oI;o2TC2Da)-sGAvN!MrMVhXtGDePRryJ6ukca%w0b{cYLbp!eXEVtzo3rGZ^4- zaY1~bFfkh_4qT{VCy!YYvZ8sdDuBy4}B z1$DHT;^0Q0-|Xyv9Y9g#I6P$%tO0V~88pcGp$Z46QbJ0Ea06=ip~)Z~?{diazM=75 z18CfBXuOVfeTc+!fNev=iZn})HMZzK-bIi3T;f!=f4m?(1UWt!uv!rCDQjO;188*$~$f%`4kfg3|1^0^5>PfJ5C}IBbT0``{E16u*(gvj#WNT9XZMk}o6& zHj)g*MifGccLEa@5m#K!6lnnZ$R+(LXvug7bSGefD4gHHyMi?qQ2ZT>u)&Qbpr{vY zyIc_9kcn2{AwCL{=H>aa2$X(p|hZLQ}+o!8#Z=N!ax``+2 zTzPi?ieyI3}4I}|4A!=dplw}#r;%8HV*Kd2bBW8N2xATVT9W$!#>z0`!=?h>L$ z(Ylhu0!ggBY*MRo+n`oHu3ZtZUuA9jK5Ea?+yIkXb_IDb1C)b8-KQSI%;A_F{`Dw& z^P1+$5Ss%z<(KLgU!xh;Zb4oE2d$k|RbH0MrF_TrpxQ1WVE+C2z(!07!{Gd*qQ%M! z{DvPylbjM6q>+W3#~i2IMCia@VrXi856!IpxX^>k!OsWz>rUryE{{rDPs!gdChXH} zc=R<69_^kz1+emfLt62!o=wiN?L<%9@3ZF@_~Og?joggE-2s**|E3?i!^6Wt{COhU zY5gxJYV{1dQSRoD%PreydP(OZa!+^tkJ|aH@Y~@&hr4*wIgPxrlZ_tvlj(DrQ^A1q z)7^lD1TMCN<84o_GVN7SQqQo;*ZVn%yK=r8xwZu*Ui#|!sF`zZjCRdV81BXYmwHfB zo;VkdS5q-w-)cP9s{DFW8VP7moyIah*XHx~j$3PK5M#o-Ib(M(4kwS%@%@YTuF=t{ zjeq^!Q^g?6)pU9^m5?&Dt3EDe9#4O@@r+mVqe z6dTtLGqd7uJ;Cw6bid}>^0~!ipSjw+y1y{zGwrHhf?5e}xxx`hu=p>ZEpN{G{QZln zLg6Ndm>p(5CRfe*oD%A0U$3}*EB74rP}r{BG&yfB*+*`#>=|F%2m7jFf^+A@0S;_mmE&WP5FC{Nq%=cAJS=z`mt!sFettFm_XC8rf!&B*E1v)SYOp>r3j zGLyJX#t!tk-JE#iMryOKZNp4#<9Ws4ez?@>J%DXj{Jkj5W%{u|w$!ksY37XfvOj>} z@#X^ueI+%0^{Z1>-Xa7Ob^X#8{@&W|XsyN80d_>ZQzcqug?p&2!Modg z&{um#B-*Gev~NnWRM?390%#9DKBY`|{G+|ghFpyQt%n{Tl613J!Hy60(*;X^@T zmOb-R^;Y*axBV(`4o=`om31k+kto7$xW1+=G{@v_4d!|$YoLB{q5pb;!rsK1d<1m# zt9`d`x3?A`HP4LHau@+_MLa4*5s7iNNV0_F?7|8d9cxpoOuv`Ig}Av#5F~t$ey9uy z7}?xUwyg-HWT1lOgvKxMG;-S7e&t|P6L|h!OqF^WP?oGe>>Xw{eYG{k;~8PLcwI4v;H$Vk zUE}L8k_3tdXRjA2PdZYE%N^x?eGi6$)h}n}E(!PXO=laM=I7l~z1Z~IP8grFhs*xXDc422!pSYc?y^@3dwo~UFZ)=`kH*dw&U)s~yC-L5jRveLS}*Rk zMi`B;DywTy$?Zvp4+pj>wyH7)=_@*m^l+BnS^dca5fM2{i@Mz%f1G|yPmk0+AVa+X z_Ts5$W)9sgCcSy7$8me>$K$mAe|DTM4|bc+{@l(wK4U>Dr&RB-DV51bdr4+QOXIu* zCCZ&R8m4I0SSA}1YyWeY`8P@yzk~9G07uiY&c)v4(10q$SxTzhW-a9j6fQ$NlnK0V zL-)WKHU&usLJAbl1^Suz=Y5rap#KG}z*g@c9o-W+1Hpa|Z`KAt<{Y*loCV5#J2@dh zhhkv?1a+_tywc7I8Uvkh{9V;k_I~6nbc!mREY4En7BSOVM- zGE=`h9b0Q!VX_b-!=q0LzF9&-^_F4kx-e(foFGav8ajykqwG&CanSLw3FBx)IY?Zi_9!8v@{5)>S8^UIqZdpX{zV|JnQK=O$)T z%Hy=l!-Gs=8q~yj+!z7ivj;){E#T^-g8(8le;A$K0SA%6eQvi1e`V+vlAMSKGsIS| zh)^7fEdKmXh^)*g?^WSD{dPNgp0_+Kg)r`5CF1w5dS6xFjGgzr1MHN1H@SX9;a}+z4R@kfD%3iNKvbfY7Q>*!tjAi(o5GhcgBpFa!meppu|{cE4n@@| zx%zH~f<+Hqd-^b;<@Bewfihv$d)L{!b{hY{#P`>cEB(^v>HDEtqMlcOxVF^S8BFd$tfx)q2jr@EpoW~zhp_5mD>e6!X2}}N6LbpxhHE=zSNnfNA+TQ3Xw=9jtbHx3 zK&MJkYW!OWwc$fyh}P<=e?{uu{LvDB`&(5dRSBj-FbpM?H4RT;-?c0sGi2-GEd`;P zw8r|Y@Rv{k@hO^zLoHS@e2dw>B9d@LsTWOF4_+kYC}K44 z-~XT@Sg&}+b~sxR64YtxY;^Ux!2J9c1so!RjiaDubQb50k(MFO!vqJ8ii^LY368KL zi;;1B-Il>95XKI#?4V>X3{4!fvxfhi){kn-knsegk(=}8#Y)%u_)1=JwS&*;#J7&{ z*qJh>F~W(Z{d8iFK8hl@>kc-R4W7%}$@)rgC}xY>sMKuoO#_6~_RgxIGIabA!R)_E z7b#d>ntuAQEep$&uBKODk^|flE78+lojGa*!CpF6Y9dBJE?DCl+Malw;sbt_Y zL=+~m3TVS*t@zwVIzmE6Y&G-$qhb;g@Szxls6q-vS;kQ{Y0|SF#%j0ir!&k;X=7=I zwXZMjU>kc_uXsMuQ_&PuM5VcKBv5{O&o2Hm6T6&#YKheQWyOpPZ5_yX+9OI9pb4`b z9zZhDi9H6YpoExWX7RY@T|ggD6hTXoObNOVe++{`mIcMoo|&#a1Z#jl1&Ui*l772& zbTPY~=w|Ak_qb=DE4NfigQ` zz_S_*&g_HjC7sqI-xpl$l`dpkT|PEIlQP8lZ&l-@FM8o)j6gS zo}b_OL;^VNP^gdND(_-FcP??g^d}NPzPz#s&J5o#09#9r=Ugr_5&DO#;r^-)^T225 z00S@Xcxd}+4>*`{flETf-^Jfx4`#HAZgv*3=Z_jk3a+^f7>5XV4L7~sm1;Rox)-n` zkt~L}AG1Y8(r_hNJ!24VbU!0btVBZSkxUw2D&i_}->d{)ktg=!r0Fv{hB`;FcZyf} zkgz`*R2szOL@U-bVlR1=A-3gh63^&JgUCRLVV~XebIdv;J*y9KsAcx2>Q9Oz}^pc}AbkOomOQQTX4!$LI|4;zL>dhZhn zA#rLvaY2ARmv8prj)($=a%i1xlUmebMB=5zeM@f*LIvRyXKjj9qKj*jMWu!J)d$W- zkG+xKNEv@9T_qn;vbfg)9ePGWLpJm*gzEOeeMn!LiObTTG#3j=>jrKW#*_H*Fh;!` zcD>5J@frtmIeDv5F&w5M_1l2O4cqS!2=fT~__^;{q1TT5CZyGTmRr%PcCQ! zl&A_yv`W3)PoQ0zp}p>*C06fL+gvEgUOXs7XdyEhl`+I4^EeboD<2EHBp zI^zZVX0P4$-u8^8m1>7z#svQXoJ)c}x|vXTNWSg*O&j!YK@n0*KTkob^L_*Kji{c{>?WU-bevA`b5x7I&NXS;qc%SB zHjejzy)J=E!JoE6y>@85t@R@BN!e)=TTh99dj6{U(U+^YQcBcg%Oa0G=gxm^W}W{1 z^rpn5sc+jj<&_`kBX^To4s#XB`g{H|&xFb|vw^SX;%|G$=>D-K8Xl1oQ7NTaG<1y<|0eFLvL(heU*H4Md(#w;&G{!s8Y4)Ffe(t>yl0ShOw}yUq zuMfhEJef!i-`YV)e87J3?fy;oh`ap?DNUO|f&IiwEBONEiEF5?+sfTS#5JF$*#ERA zj4GVX(q0T-Zi2YfV1U1u@2f`6j}s{Os_ina`DP`U04Nj`~s>o6HT9?X2w+unEFV?hr5k{tLj3RZj|7|A}?H{?7B zCm#Xev$tWIV}DEs@J5R07x+b0SEzZMkE0$R;pIp7Z7HTIaF zodN2{9~S>Z+Lrw{=Kgy}&JmMyXZz-9Ix@FkFyDIc?*6*bY#5Z11gV*`%cfpjDQ0e= zcKw}OHM%gH+uq5@sh6aREg{D33aOC9QjCD#@c!V*#>U@`Pu`AJ^xyXLFMoaO)tU9W zGDEk(VASd20XTjtS6tc<9M6Y=x19i%hjK)KKtT@Cm6Ml+ zx7H)6=W7fRZBumLK{ zDuiM|s%dd&3veX1p!HRJ0CRD+@~>BSO%M!WEY6BB+n#?9S^z+Qz%`f{7#z5l2ta;W zpoNO(-(|^%SXeZSQAxBUuYQSJ30gUpuK&23YA4R>V_xo}4No^?hwrqzgHP48=|mrV zFG_reFS8AGoju-S z68N6$+C*4>FjQ*ea48+50RzM@Q4%6hr;FF1)-!gpdy48xN4Zf`o(C$=d_Q#K z6#QfY?D3<5;Q#LCbzT!uP!IO=?J8!wcr)GKau^NwtGqlRm5IW6KSI*`;mO%KLWz-@*ve#fQe`}0 z;4}Y<3CSXTj!7xxO<^&ER{y7bSMS9~1H2aaiIjsvVjs{$ zqw(@FuG+raWkL(pdk$x(e_V~q{oYlv5zeXvzfKYnN~$hY z)SkYcxOrU&4j0r@k1pU~gb*`A;}DkJAMeLJCnq5yCnpNJLP-L>QCJuU!m@c43B0+> z#4$p7B3YtTsg?i)z7gjPI@+xiL*7ylc@Bu&dWrhJy&@axeEH5N;Eb?K_cT}^S(a+Qx zq@X(^Mj|4A$(xjkm{B*^3NSfIw69api6I4(e(00sU+oJ6*3|*$TTh&IiR*)4i7=bu zn)}gmyu^at{M#Y3snvw8_5Vhz&qWHiB(ye8c|Jh(9}-R1vX!_a(4{spd_tIl#4s1e zZzd&Bo3i3B=Bu+AGl+2yJduGauoY+OkHaw7F%xhQ&|7`1SxqO%bzd1n1qNc1O$Lh_ z!(mrEJEqVu6$nI^&QDWiKyJ<6QBZ9>8`Mq-U<^uXh-m<|4!y?5`%_(oFvv+qR6dR* z{g4*a$PgR`!#5j_$}L!9fI9rf`q_YO>sigcNzkWl*H~rTeshZaXRzT3q@F%@exa9*Ls`5oRb|5~d6t(DGJ=Z6bm$P$rrfb0?8 zG$aGHx&zMzO;?SXtf6&PcT$b@$(s+tqP*u-y^u2A+En_;sZ_dEJSff;SJ( zCkA4YtIGWs#?6m601WMN;G-58dZJeJRDT!?*Eh6BFImUzv_aGk=-t3LP!0g&)b=@x zawSZg5?bn`qT3@RSm3R(xJpVqz>R4qqx7KxtH75ziaJxeS9$1V1WeQQC0?HD*9Ko*`^Ls_3mrs;^Jbm zNyD!Yuca$k{%o@9zH#Q^S#w$UBk7gaBsiEJz9=L0iL zSji-xdN89^j7s$^(E>>x`cv$=s3bWF@o6OXcT<2&y-;-93;67k&poP7T~ts8ZNNQP)~k5lWZ z)7hJV6x7=e#HF$P?j=6>6Gr^p1xVZ+Tu_m3yP&NfQ!5u*A|ZDYS3SM5zLHQiMm z-xTw7iZaH>jK2|Zpn7l2R{Umv<;gA=*N}p*@5N9sSR{SR)|uF>Tz!$2cKX@gJmB}r zFuw78;dmwM>{o`A{Na~Zp0WN%JH1mjaCmB(^-#s&_<8f_-Z%>0f`;oL40;wz{DbS? zOU?8fKZ+7>tTE*n$``W#Q_t3)KlWngPUC@9l|#W`)bOnTuVs{2G_3->fuJSP+uZoD z<})Y2EFZKVd)+Hl!hW~It=M{BLh^Lmy9_DkP6a5;Rl5AL=@kAyB)6oH-v-SDcxgeRGP zziUoCTlN#eE9ZRI$JZW1XS8T#(Q7~dZlL5dv_JR8_4~x$lcPnfw2yn^`lEUt_slgK zwK^ZdLq`sSDQC7*qqJymN%>VelnqrK#y&a!^*-y;?WfoA)EfEiU31xwY^A2mWnuwK zpeF0M7lp25vvH6)f4TgBUVyz4U}ifWTwUlWu|FVqa``Xq-5Y)k-|d;HikRQcFn1Kw z__#yf>%{rU(XsYfX|eoXk&nrC&#qqu=R>|}h=Vc*0lgnAT!T2VOxM0OvvH4eFt9xm zG*gyM_yttR>YlZpb6r-wRgbNCr}%eFq9`Mq4$|c4Efp)eNJecLM%F!$s<&V<H#q3K1WV%-34Zu!B^vCPT;vT^P*3z$Gp!F~O9-L8UXvkC3F zNOW-Hn(4>s(x>48XBk|w-bY8EgckUsro&CuJ0aX+qs+9F$yANJqcVq_>O*_{PKEuY&;A}p%f-xxo1>&|?m z7kEVz3OeTpyInS>?|C)4|mWIA8zG)COXw zwR?-dSIZ2#eUJERQ{{fR?q)LZa0roS7$vCvnYqf616{=XDE~2a&ThEn%;7onOB|zh z`cS^s=--YC6DO{$^wzySasc0(6Fn?@wL8~%-hHq6WUxHo7_>tN{CWe5rN3VtUQKU3 z9%qT6wbgTDe`d`*&69(Y$v-cA2IJF4m?--`76l3->6UxEAWWF6Uv}l zI7VH=8)PCa*DTxm+SN;bx;}N#z`bfcEB#s1<*#MWfXkT~_sbRYixc}w(;&w5r{po9y&Uem4ni!1-5JTe2az#@5gg_Kqq5N{WVY}LhQLa zd%T#^BK~e5GdbaSY$Q>`iRd(wQKL zOM!j!d`#d~FrRG!o;i2S9%yF#hqF-sf%X6z5g@HYJOQ?sXe|o?9-_0$B|pKV3fKvu zU>lU(jz=mN8PoMhsN80{`BI=};8sHL$|Kbw;j&jXM7ow7OjL-FuJrM=RFRv9BVVon zIjHj1NZS=oIOB~GRg`MB;dGcg(b6!KQQV4#iB|wA;_;zF3<VYPcZHJCU)YxIsq zk`)J4t#NO?ywVd5Zi}~}i(o2(fbzmfkVW!P`5FqVjHE0p)D@#yg2<{J|41A{hN9E_ieV|*Mca$F9Z)<`){g+*w(ho~8dkD<&`Bxl-r3N4;F6N&5IRUI71kX3z`u*3B) zR5uzqyhpjmiZ1KV@KY}p=JrdH#`jxx+F9dQx1f&U36A53*D=VeA`e7gR&J>L-XPxL zC5Gr7KEP?$DF?WTa7BJ}a*S?U#O}_-%jhzB0KKM_OU4+vbkW@bEPM$FR3ZeuqTMXR3e6JM32!wFrUA$yl{T(+`;Ce(p)DK4wg{qIE=>8f6JY5{kbZ}J!K zJ3M4bBZWG-&uAJLop9Ogn(lPp7n*HTPWBG3C#Na@WaR2Ac!RRoGzOT40miX)?MUafCLT~Ya9*g*(gbK=UR^&-S>!IvXh zdEqL+sE6v}41&=)7r==TdU@bm)5G^%1M=Pwr0WkDiCN*IR-uK+mq|I<)Ls_D2t^8} z$^S>wdw{d~zVH7=5NaewZH*X3ZEDmEYAZ!c6}8pgdxzS!Yj3p`t=fB2LVc_fu}7`Y zs=fZt`};qB$KenXvh&>6bzkTCI=SpkOPw4>_4}#e0Khze4J?|(ssNY)i7DfC7N`W@ z7uM6l!sSCr`%INcP^8N4gt+AZw}@-?J&dO{iEr=muD7I24dFR`9x8<-qEYH~_~JC3xnStH z`1Cdj#REq?EzR_RF7+lXZ_HEs7cT-dHo*H$|?XrLgcG-jn@uL#k!xeV{pY6(}N$x zf{Uq%h%8l@$XcK!;Ex+GxS!LIkrapi_G%(#D>C0a1sp^|03lfjpb!9#oG*AI zEZD~E)-T4H~7$?iyjGp&S6#9*VV+e4Bks7 z`ieRt{kNm3(?>z~*Ey%pB7S)v+H{h${?J1ZBm ziD>WzIXUNb`0JYeeuCCoIL7cK7o->n+)M8|A(u<~;LbirId9GtJhSmDt7= zm8w^BR&HBq*Vmh}MOi%%&10J}UY==51C14m-@5WgQ<$JXZ?Kh7*;_LienGSbIb7fM zzq`M2;m_}W%$B$H$x6}OrD2{ zKm~lfmg*Atr!-)Cw|V(a@B!vKf%=(rIx2G|_$b__OTuWP?BxUDcxz0Z-n8S;*YsIL zLuPa8wF=S8r(8L1#yf2jr4Ja=jQ258Dn1G6a&oOq?r-vpzYFoD+sWGLw|3Aw&)pL3 zl$+$w@G~SXM(F&zg4waWj8jmDUzoms*jl}ZCP^zi1 zw@b!YB|goo5;<5CuQ}~nC~tdeV{!=E$crkt-c-4A)Q+;7ZKUA$vCY90?=n%j%?#R4VVg?) zsCOsgCZBWfXiu)lbiPk%9BoUpvHfRgCG|Tc%RN==a;^%0NcdB9Lmac2$xh>q%l*#1 zahasR$<)dGZ?k1{dU{K@I_umrw+Zf;q@5-i^G0}X({p5@!`ibNdBI*Ba(p^E5J)0N z#9PXq)fS%lSS*K*keQcz%jf>L!~JmG-Ozr4-|a@h)r@}w1{-P4^g;K<+E-)GkmIeo zpv$p$m&5lLk2F2#qgbVvWH>aq)v8RJ(M5CXy@Hz1|72nr|Z2qAKCjX1CNyk zW7j~X>2K&&a)cMiNrN)l&SEk=ca%8ykbGbbS6x$Tk;T6v$$a2RdJhbNPmE`?t&yMW z?%U(8MxTW&D}AFNk83ModF~nHCX3?O+P*kW>ZfsvQiR$e03;vL&wi?kdL*B|>Q6-^ z6hxye*g}Z=HnZ0p&LcbmQ-#%nWCdvfHs9D*wwOn~0&$F=4Im2!M>1={89S4al0rm! z=Cu(o16j(Cvpw+ROM{O(Rl5J)-{b)Lyp^_~or%et8-dL-0{7JJ+q`D&g8X;g-cHS! zJQL%DjbGMM(uT~;%y`qH%~}%+1Nk|dX}GTQ!!eFt(T}G4(vzW| zt?X(C+3YL#QD=X4FQty;F2V(Xz7@b`w7MN$G!$H201bp06;58fP>3-NS6yc+ElCCxc> z4Qv6FKX&s115#c>hbZ^#&9r<=goA{D9;Hx2ZzK`N@vw_AD-t3+TuNM}<9G;!|`u^uAm!nB5D-ir__G$uKzT0kS%g9_kph>slp*tHEA9Mz zsQl+#j@dnFOPj`YtE#8G+(;P;IY~qQhd~nkqIqAM!R*=T(W2VC553yia)BW$F(()z zssm7rkiB@`#%{IIO&lcLLMYyJN6rdhxuG^JCJ`oufmJi1A|{i9;fk;#9M%eQV#;mb zE%nf_aQW4PQcdAAbyj*);%HbzM2uiy*?z?*S6v$(SW3mG+=>L^I;AqLG`ui;dL|wa z`|sa2x)%Ie5G7zYgPyAN*ILoLT2|F8P7zvl^RH%1fL&+Gn-o9#39f}ej8&#QDHUNa z4RNo1)*RYinQwF4bOMy7pnjkwVz0BCE&Wjh^lgM#WXVoAhmV`;1;`u%O9|6sHmZQE zf{VkGJDZALyB9}41591G^gMK+020j^SWI?dA1)?39Pvd}^zx^E_@S|C4A|x|36%F) z6Pv*^(fVh@v zy&cOKtF6cTEoOH+RYFdpg3aySA5I%9deN-3LHI z%@dwj*{snJgTaDD(F|7TRHDIK*9DiRaFu^fQYa6lO+X^AD4Y}bSmX_Q>s!v=pKmLg zdVE;uSS|B5T#t`N^;@ljcmMk`@GBoRC-oxLGV|JnAoFY)<*caiA{`JHHHl`WF0EEW z&i0a+$PiXg^uv`AfAz^>w z&9C(hrO$?=-KW>AsvpQ;o8=WG{$d(c57)9L`Va0tsh3PXs^8U9 zv+PZz?{CIbZgbw(Z+$*Z3dr%Jh)9|)+*JeH-W>}SijDMz0Na%{DG)oUSz+Fu7EsnU=Grt&W|shl+UMz{z>*x^aP z92g^$b2Ia-BtSZ?DQce>l3+co;o;NY*;(nBJ=8gDNpxUIP`F>UaiDi|ms6zcHZqJ6 z%mgBf|0$0LSfjuUbiF;jg%&dT=0v!?M5OLxq%Vv9vi2*jtN(~#Y#Gpp3HImJ+OquV ziBJS_GOYFGxu#V%AP0*X%NgL%p!wi`%W?0nvEf})dF?)3w;x@Qnr&Vuo4x&dI^Dm2 z&`d^_>Q}!NPTg(=;l>uKrM&rA(YQX<zin;=L&_yXq zSbFiyWDz|AB6G6W6=7lVZ~&ABk)R`S=Pb9bNP9MGH+5Q?ZnVTpPM$trx6-nNqSY=? zjrXu?__Qur-m0If&R1roW-6mFij3wFc{3xq!?ecvprX`hI?Yc#ec;{B<&HD{tO@Lm zd=MwxJ+*-&QLrJ6k_%iHfL#k^&;Mf!SI`APMoEuteU(#2c{!qw!4Oa;{i-S3`|Mm@ zp3<4U6v(J9=7a$^;-@JjG%1S}%$`MDfn9?}1Sqw9&i(e;DsmI+krie|xTs;%WBfz= zep7o!c#QYWw=~eKgAxumM=Ih#O`Y4s*fe-|EX4EdpQt#dx3_m;dV0x|bCkV;#iO!x z28N@?i3<%I5cw~^*8rr7$Bvt_*o52B#(te7?=~3bOQ;5cvV=@n+2FxLao`G+5LgTh z{Pi&mTm-w&gW`h!XhIGMRH3HoLRlQsEUF6dd|b6q7%boI99V&7gEAul&e6qWe^7p0 zyY_VEnY;IS+TRwmvk$t=P997CIj!6dc`@>!IrySs6$6qsdnC)MVe5#mnx>xrQQ zJ$wEL1(>K9DLmjC7X)y1L!a;ng#Z2QiFEr&uQfK9jjDBS+Pxxv9A)_6)7XO!*Lrql z`7oAenewakmOf!bS{mrEOhPMBz!)Vj?>g8*34=sG0a7h%HCL4cCk!pJGaq0{rP}fx z9FOtQ_Q&ZDzDJNs4Uq}!a`KrGOTCBnr(e4ibo#7Nt2Dc~yQ+eO zz5BQSiK^Xx+-G_;CGg9UP9-5x^+|=G2m#TSjeMY}Cny$dXdbQ@Q%yuI8Py@EQ#FH1?O0SystX1!c%seiW#x8}z(+qF7UJVb3Ay0$#KJJ6V<`V+O{?~pk(8FKZ>_!8sN z)%nbbhr^7i+90H3x#I*|;^5=Vbmo-fSoM`Tl5&tY&qW|{(L1Z%p*nm&s#@0}gTCz2 z{p{=9t7%f}_|?mH@kH|UBk5-=q?Ued6Wq*9V#C$Wyr;XD&LWx=6ZuP$l9xB-@ABYx zgGYgX-n)5PwvIcUT%C7HJNi(tNIPX4Ypw+Po_(b)cL_*3uxM$xZT}i)}8)W4VpIXx_q{4i9QqtaezGbrmy&L`2xG)?{@Ylq>+0{q*zyZc{`OXlDGx{j;iqfU{D950~YA{pYq46dZW-+Jno!O==x`pf2VyKD{1L;G0^Ax8lz4L)~Y?BGtBU)NWoo4JhT zgZ8qo-$(4cITOVeUS{x)>Kb|8e(WOfw$24WVvc4E!y#uH_j+FjjoQ6EKGi-ln=lr9 zNk7Nfmy?!i-4;ndr0HDoVK${UywGlnlG4)*##R3z+0LrYiPh~-nj8D$Hu7BIlTB_9 z^G2)e<>31%m*77rpCh^5t7Qki(k7>LQlSj@+s%vpm8*%2`{R%Ie+zEPXD#!~!0KPt zl2Z=}gkGFDi%*n}mr|PBP?kN>O6@+{+6loDz4P#C_siQtHkoHbHVKh-eNO^TG=(2( zR4D=m;f)V|W&4FhQLBo4q^tFzgdh=WFqf}&b15}>03L~i>ObZHG}%7TKB|4RFH6%+ zMSI>dw6f*mp`g5o`UnnbE7NJ-BBEXp*>@dz9Wx^0hp-Ak#NgvdXdSpMe@Sud(~pkl zaAfD$gR&SaF7rsKjc6&5gyeK{jnU#m;SHrP@l=XM@|D)P?$fZhF3l?eM{6#3*o+W> zShVNS>~cpGaxZ7ZYmkyYHW(gN4x~h_9J9)d0 z65H9n8eJ=Y7jSAD@)s!mn!8=E=TMI>a|$qyK**bj&%67BVZ$23r3khW2=EM%bJCe9 z*3c_ov4lx^6zvz{hV>>q)~0{V?!40X5b_h*59)hRdi?L;<}SQEgBESq0Ko3-O!;5i z+UB?fop**@e~=5lSiM`ht1OUg^*&r2HBY-du<+PeTe}F+h$Z^zy z0A>9F@qagT$E<(=vqpo9AnRGt5Evd967e}2=*L)Dsc|D>r}@DA5fXsx?uQ+R`%qmv+B*$;1=q`|Zl6fG0`W$$h`I`Zf44_5Obf=JnvFUa+WjKSobn;X z$E6%2m>yqRW#b*ee@X1>R&Uk(>I?e^d<2M6t3eQDT^l#6QE)NRebsk=d-vAmI(%51 zHm>#SzGTqu{q1_l--285N)&gd`swP$;#$#q@8x#Ik?n9v+SgyjT3T{PVjH5CB#Bn; zi4e-dlK#QL%hxto)@j5zGaAv;U_BFl8_C4W-5% z*<^un!;=I#C?3N{-k7rKelv2YFXvT{&;f%RJbyK}+hy-8dLN3u0H@9#57j8Gh8g}d znR!N=;WZ#SpY1*Y|7;Y?wuGt~waeYQ!e}zttQ_b1}K2ch!85rjV zM)jb>vpk}m9or4|rOyku?;8sTRukr1TVkB2K3WnB%-0qG(K*RFAMN|X*;#EU8qyR# zUN$K!(@Y|exa7{=|Nf_T^3f$^vXejk_O*rhsu}WkhK7CK^G|dS)DAw11V~ba5d}D} z8VglGl6rg9l+`sq3~|vQA$VcKz2DF?--NYzW&Mv@-Evt9WOuK-oc=n~3Cugxd3@oe z#T@3$FZ-YOeq@}V$j=XetReTDZJ>ysqQskzVAQZM_VEMkX-PTlzEfqsNGT+YV<|>n z`9+J~lK|wB4hcA_A``JHJq;Y_2xFdz(1DrapCEe%imme(stH7@roEK}KYossU(;3c z`i!%f?xu|QSXe^hpH3mGHZ?;210jz-gihkSP7flfRoFa+^Cb^7bFB}bNA$CT7rSop zex*o%G>2vj+p&CKIA=1I8tErpJId0O2m;BC^dAQ-DXvG0H^~{Mz8(BIC&TBmS5xBM zS5HS5Ip2IU>UThC>Auh849nW${Ip&=lUw5tnaEd4Lg(^oOX&RwoeLVRc0ke|uq$O{#7Fyhc-W=$)*0O>AnkMA?$SN~wBv7bM%UTL=G_2q z5q(z(DEbMr1pAd)_JYQcX;us=4T!Ikj%Zx4gh5sT85+;CCYohcX?Jb3Q>kE>5)ib8 zMHw8)bQ|$62YH@#p66r5Xg5SBJa*AGJOq!Umqe|ztGGBy3+jDo9OV{ANoV-w zqj=%tHLs7dslzVzJ6z8b*nNlye3dRf8C8GIZODSMre=+%07EIZ;<-Jn4PlE^gw+8- z0OcJiEb9!`GtMpx32WDY5#w@mh|KO`X(E#J9lXxL?3w`&2Ux;16)06XQ>md?mH{Ho z^zl$L0rpoutl%ErEd9=WrboA{6n8z+37Ly!T9P^X4q4@D-W;Vfo1|&FEOJ1Q4Wo;! z-%a5=7T%2N$BB>rjp3)NwG0~v@pIteDyZTO&5>FC!_3E zgy5t;Hn3VK#6keR#MXzac4FLCdrQ=P@xau9yR_|bgON=ZGZRZIAe`-b^KRmVI*da^ zBcM^gIQV`TdpncZafe?Qw0SW^Y@#AO?rKXHH9cMH;N`A>cJn0F01K)LD$2`m{~#5S z0EwCj>T!Cr?Rz;ksT%RCDzAJsuE)6h^-jh1TSh_=&7q`ZpwnFQLTZSX#t$X4VmqA& z8nRYNz2$6$tiwp7UyfOv*rl>=T!Kd}#v+re`oqH9dQXsGcy!^> z8~&^Z8^Gyrio!5FvhRZZ*={Q8`*llf zwiEMAy!6V_zooLrZS>|DVa&|#JN!$bP#bWq=2A%FVR|rP{(q;RH6_q|Xfm)y_f>T_ zAO@em@Bc{avcoTD>e3brB)eXA1H;38fx7{@wm<8KGh*dAUh@JgGBVv?0r}nC)mv?W z$f^L~j85b3)3bn{MhEdL&YeRu-Blcn@`pyVQA4W3a2+N9+Z#T-KUTDl zCTh=n>%X@Bu`*43C8&9Z!D~_k+UeU;*=&^w4thOk z1zYyV;u)s)_R-x8g{?!^@$6B}qt5HUDzaC9QK>+2+iG@pgHmK|9@1Rtytn#=&9*wq zcM;QT^$8OC%wA?c>c(Qr7qhpv)WEfuad+W^UN+gux+{H_O9f4^ThxLeSekn z4m$p}ZE#O}LQFjIveiJ2W#D=Tt&)RLbIzADYPDe49&@|9lA@41AI->cy31?s=3_Q} z%Rg+VIyZWXUl6$E+0b==*KT6(U#Tp8zV3l`^T)nF%?UXka-R}Qzsijj@fR)IkS%A= z@-p%H;uNZ$Rjmhd9MGr>x&aiO_ryQ>7#wyfq$s%=IX`o~vhkE*=Y^7az>$aPVDi^B zlLAN`>Ye(l};b}ET*9|9eN1XxP zT6WoGfcMue1APTJCIUzFQ_?TKjf@f@0%l zuM-HiM9V4ts3BK-@O~A9$KweR>?ao^m0EllV?_V>HQ=7?=>f#nq@+~ME*4QRL9Y4| z!cxJ6+`Ix=e?U~{Xb^eo9N^t`*%)$L`tGiACHT5CYFMV=ZeaLsdFA@@ZL0@7??S@tB}V=xF;A(}!7rV1{QyJCad3lyv#CLkC_w@6QTK^v=M^CH z$J{r~h`qJ_Y`jkfp7O?d(JxyX4=KaFqrc;SKG&FbaN`~%L}L$0h){abNqMmvrqsO} z7>Y}ZN2w11Z?-iqBalQp~-M4$VFm_&k3)X;{Yow>49zc_^|pPMZxj&@sNdiBMG zCKY1k>9lcn+HjY3gJR!+eXny5KD|?pm_w;?cI1q!Boe3=!VO zrFVTH7t{9}a`*3Eth~wiGm7eB+`0U)(O+=?HRJ*%-t`>)*^KKc_rtM4T{ofepy?0D zA>pRHv3kaDZ@8c9epDT`_X73(EOznuL7QXZ%j?e28A+9%@_dFN>61;J(+lpL(LMdE zrdFmQ7!z0?Xs*CYpv?FuxWc3T9JnmFbYT04tXDoU9kve#1W|EajNX<%;I6~*dsAgL zRVP)4O(&i|8}~7p9@*6ze~)uLvf^U8>~@Z2imdFiAAjb5n&M;9OdlmyYL{E9p^a1k zz0rr`eJ9F{-kyFG@F%hR(n;hb^tfxZUw?d)MJv_*^cXyXq zbOSo}Vy=0}U1|;l#?>N% zlt)qy`L3O%Uc><;y(i~g=V#X$w6wF~VB$non-sN~JqVIP7!S<7l&sVdxHES?Boy1Q z?8-3$D2}ImloU2SmtMuaO&9SJbRIu)hhZhF8=zJn>pnwgWaRX3ILz*EZEg8CJXPSH)opmQnx3tz9a7f<5fmG z`2x^FaW~HSWv5OFJfuXU_;>WH;<_g=Qq7u#BlL4W&gCnOcJ-0Bm>ieKKE;zs)fJ{1>1-ncCOW2=ei`^UZ`Nph zVVfe(D5=`WIQ#R6cEy9)JxZHVO|MCr@_0xrI7}1z_4oCo>#51sc|QiWkpQjf^9LGD zn3{4sVPbA%v|-&m;2N5rn0V3d+-k`Cf2V*1&#Pc(Zw*GA8j6D#!45Hi_RUW86PtuYiD-K_~F z7fx-@&?Nv`y;N?v?+}I<5|AQK30=d20!q`H?CvMDLzd4zhep58er=Io21~ClNuwN) z);f`Xb)L(pwuXzCnK$)Yvz0v$zh5qwTV84#DlT_Q7CLA#)=p#@oB8*kDwWFT=;s;i zJ!^0JA;%d0dl(`#te^A+$a;I75`l)Z(N9OvJ1O!h6*-MO;nHOL?>7zEi2vsFbo%xj zcrh~y6f&T3Kv0KBYDsAk7B&^u5+zF)+&H)|d0=YUi25I1-T%cQKFZ%&DEB$?r||k+ zRVzD1hB6PuLg^yQ7~631AJH*W6pTm+?a@-W#nYDzfj(xtjcY1vQ4eQUNCdlPCdbgR zu?~cC!7yZ^nAzvAI$xc#obO65pLfo+@fX~_W<_b9T$_9~o)X=3Y<$1s;W=*cf{!<& zW)8i--=*g6t&G+c#uEavIz-JsxfQE1@%~N#wEMav^gc{V@2SiQv&yv>u#P|UDv{;X z-w!1We*&}841@js(ky0{M;_ioqTA&=l@5}UMNV$z)UJyU#mk^H>ejgWXTy5nofz z`c>nHO}m8B(Qzr&)ElP~*)t2&mD$x`<1XRe%v$|<2CTgdcwCpUKFi!2blQo@s`Dap zAIQBAYBPoL{H*8@63_l)1Bkti4C~^^xWC)EE5AQjxkyCQ0{rt_7au2dckun6kkjV7 z!|uC=kSC&Rfenc7PS^8Ca(5RR&5?FE+nAfPxaO6>i_O1*cBc7K?aWJyUnP>*2{79V zVqRSv=y$h`D|bN=48<)mtx~mrCe)-}y`|~e`9$%LTc)e!X5HcZT}Ob!rv~jtm-QPn z8=W|9OM3Ua#kWVI4TGao7U`mlXg7wFpQ4BM%{fF_<=)Gu%@nk=n6Ju?Pt!+#ZMlo? zH*J_7VDpxFNYm>G`U&+(r+js8_W1ctnWKx*DaCk?c{xFH>_{!57H3*+;T6vykb`7{m-WI z!zmCR*{i7@`$55aL%{%YI2bGnF^k~SG_;`u0G7aDYSmGtsXeYd;~sT?@!;L%qCxQA z^83+Wo;ip7rI{AO)%_B!V}Z+0xno8I<6Ei8{QU#}Vf%;C=0;588kLsIPpp5~Y&*l( zZLqSWiu^P{P$jskQmx_5eG%=^?Qvq@Be*CTJWX>HWc|a?x~otog0PA7iPHO>p8yD2 zKJp<$W?^3fBOcy_^T+-J9DlG*kGTpn9cMA*Q{2;q=+SvbJ4%y*^4V?ar;E(If|deG z52Jnp%!vm8syQv}lpIQK^Zo&Wh<;%dAshfU!wOwd-#I}FL?q-?Ht+GFq&(lvHu)qf z`&DWUG^tAC$37{F@4G$W817;NuQM?fh1n^k9VX<>R+9E}1yto6VjIPm?=XO`={#gN zL}O3x=0kz+T4{zZX~P=;xN$o4_J~LJW&^jc+nt)6{>t<;CB6bj_(u z6Y0j&c-J0s*sTvF!)m^I?s`s?SnxMK6kyv0;^Xe*KwJ?3%mHvGU9!Pj@BxJGjT%w{ zV8{YE-3c-vl@~~RVse!SE@zHl+HIq5{f2 z2TQD^fsvW`07IOucy-AY@Om);6;B_lb0ssa~gK;E5f0NPrZNEgim+m&{G(i%&-_~-ouPb1V!qS zkh7*dj$UPFrPWpVG}Y@{fDET(;(7fC2akM$j0kuj;YbffFcMs)&jzM+WwTv;tZ zq0zXna!u(X5f+vRAq@qgT$z66mrANJ!Y_Hivk<_sOqchX{xL|QB!~o^Cx+6GJ?G2e z1Dgs(C)05ghzR+FWm1=?bsdQ}!jZkA!u#}5&sS)z=v2l9*+A+D5b%2bgpBWZST@Q? z=L(=BPZLHf>ETdyT>LN=&a>i|WVsL_+c_cqAK)Kk2z)Yq#nO-5>+7HSFA}*7}=YC^w5w2z+@auH$2BtN;?D|HGgxF~7H9a-hjXJp+s)<;L0%Z@2szQ_~L+Larx}6x9TVVckR< zjG1P?Atr~;-iy}51M1ZPQK>EkY8c_=@u=%EPRN~k%F&FB!sfD zlMQ~)v*zPA7@IBj&saQ^V70Ij0s%Rkm@jq~d;}R{k+H1-`p^4qGK-N_JN8xUra)wx ztrU@oY}o9Chf_>nVthR)_J?cIBI$1Cs41lLiUNwvG;# za(6MQwq+BV6Lpe3U!i}gbsc{fr4pN`38f`aHHq+j%<*1a^O2miKr3>CpM;+M9{&&6?r7OPscZ$Rn!#r7V)=G(4lS2Is8CD%;9=Io;WVjB%j-X~@ zieUWIN%#J3nI?BcD32d};PqxH?K|J=wTGDJtEj{N&uJ>OEKC2O*rZ`m2qAcTC zBg6e%CY;CHQA3#L1AdA4aJ+SF)w<0#ko*1AgIc6L$kR31!q1;rK~u^42h5YK)Zzu9 zu;>7Qd0B<@0P&xAc=UL5T4SO}g+e#=NJ4yJak#FUx*NPD<%y6^_4u|SNato<= zG!rO1g*fb|AhstNOkB_-|B{G}z4%+T&dXkAT0tFGSMcf*Se2E7#1I$%IglC(=_yoD zbjPDEV#u=~|Bfg(|Cwq31sW^mEE@Au82ifutj>p9mrZc6$!hSTg(c0X7v+6U>v_aqYFloswH zCo)vTvzjzCG^_(U?%btKT9nCjo>H24K`Si0+Z$;GQk`2^m!%L}hOx(TfBr{%zbZTX zlIS@FH&wh~I2mAU1G3}9({O}@B~1}MzbRSk7mCctlRIG*FN>TYMkm=1biS7O-G6v= zm0xfl&`oI>tv>S;MLXNt)&j2LEcT7>Ju_DSLIV1;$Nhd@Y~NhC0kHk?RLv|-?r=xy zj-@%wi&nt{Mb5F(kKt7$x+wK8uN{8rJrx)6SsEu;Y@$iF-*&cfw!!k7O#*to!q+0z z6Cw$%M4i1N2$~8T){5xNR&YS0k><m<01b%3SzkDbTuXts=1Af=_L=$>jSmzkOT@)# z$PmwgV;IWin8gR+?JdPK;!TLadEi}98vyfs6)OQafE#vz)dvm^8Fw>=3_E;rX0iOG zIDi6Rk4sDX)N7F&604Iq8=`=1K~L_^4_8S6EW|0|Q9g&~Y@>ya;lctCP>o6$K(N4j zdDAa|xtnPY`Bzfc;d(UjrX?tcuHu7R@oR4>^-`y-^O;z%vnU_YFoadldw`rA);B_i zi%S$vNXkP^x8Q8(@@rpepfXZ^z7Q$7p~@XGvc?Jqj~9LbkMAx;4}b zHJ`wy%*H}~_MCoup(i10#pBm0RDBqz+&Jrx_Tiqe`8?2z+d#iDVn68Yun`97pZd7_)xraD>@7juwV8HZdx_ zXE&Ka$s1(#l4I8+c11m~q zqB74WqADl|NR`Jc2ykga+}%2jpE^lh&n5QblIqYst`R)=b*LI+u7E$RGOj(s$j=X` z9?2!8&005iX?&a;40Rqzv@^#kHs#!Ju3S0Xk4@e>Np?_WyGm*bl>$ZKs>@B({ng|x z>RwC~w}q)J^MCWpfycWPa`)Sp?eg()i9ws;b(j#JW>iaF-g5C~S6gcoXS84%kL&s7 zv0~j)fO~78``3>93p}45_HiT0{AQJtK?|{Wo-)pL-6y|KeF}nawxkpr$Er_ziyf}! zlI?0< z!2|nt#AZodSN+n9`5esgzqagx<-Kcu)0#+gDVh@>{(RnS>}1HW3cBg?!^*{9b2Rh0 z45ItQvd+;U=j6mXwrJ@1eM7)ns|bzX;abU-Gu!Kd+f<(;vew|k(XG^zIEwuI<+uNU zoZBtW1#$2#A^@WJ>yv%7(!zGG1KEgn;1$)8tjX;iZMPwfO>^*Si9pPCJtG-5pXGB! zJG`MbD6lcuKNv&k*Fn$Uys-=CmW5)O1R^V?O|S{uDCfo}tkh7x**|Z~RT`QAnpDRA z+WR@}+2EbL`9X=CypHzeyu^N$0=dilcAwCbQ|xKnK0cX`O~Xut-T0W$N_Wd0)&TqT zWe9+XlM9h{`M&VR-jc+KFLHKocl1D~@HvyST!^iRmUXA!{-{?5GIm_goo@Wqrqx`9 zFKJPZmn{9yrxEI6P4IsE)16>IYPMZ)TWKG>gRS(`XJohgs;000wf1mx72?!8Lc_od z#hX^j|7|NeTpxWn|EP^F6Ve|*bG{WHzNhGKPEt;*Dio#%=atGhvkw`GDEA;WhPm8sT~JedLSO~xs^;&H?>0`x(sbuV0ZZKVop#Xt z!tSUGAPf!u`vA!64Q~xRn+!s)^(ri~s4+41$>{hhEvGp5AwbRK$^gIcPpz>2+%cr9H;onb#G`mySDLrNT>)BniA?9T*l zJ{8c=FogkeBTOvP{(a&QS7)%q5s>Jl{~y}iL$SwC88QrD!Tl0p2|&Xo%?3Y^jBXE) zmPm-J-{D^cuxqRQNGWkpt}Td3smBc$@uP>4RA(!&o zqYHUnH1aIDN=Qpw97mbTw0e2F-EI1G{j(P7!NJ`D`023K8)D>t73%5@Hvj^}MdZp5 zDMi>a0rx;TLdIvA4d4j!!xK*8B?5rFtI!iI@VW#Lu6v^fDg_oAqF(RqUEiJdAbL4C&O`&C{$7cDFagoJua*dwaL+k^PffvxB;x6(G(5be zI@a;XNnU_8v$`x9+*D&mk4eLR=@2ew^z-9G2+0*7`ht)iK~^3FJtxrB7;%5% zOcnvN0B_F^I3$Fh7@@+T3fL+PX7*E_pj^$cR6kplAJ)P~t`NVP$*Ru%oebP)5h=xL zrmSiByobp{A54OzryQXQnyhD29*_PSUgTitq^ASRNmbx&oKcU>gu+YBA_+k>MX&db znxrh0B8(u`lRR)-H75r5UZz*BPrv#N+k?W@)j=E?T@K|K7!N^_nkJQyFtyerXt#pG<(sRiO^@UX@PY{0lE~O zAU+eupZw%D7nSfENYZ+#Tl`R+gJ)ZxC|uQb97;48-;^xorB};8U9;hi{|P1h#`Q2PE74 zN@Uwu!F{yb_)F{YQmTclVfIowa6m$I`3x~Z`B57N*jBQi;X(qbH=*!ilFWdN|2Z>Y zo>qJ=oV6z@Dwq`DuS-z+R^N|$`O>3*A*a0QsBH|@W+Wq<`9-YXQS7bDoSL1kl;(n~ zNCx9UYpdc)S+0m`!T+o{VqxpWXt(TUJ9hy+0_v*viq)>n^L-RdNJkQ@H~&vNopv^} z@z91&ae$aO_A)PgA$%XjJM{4rov5u8HfON+#-f$JJW%?rW7MI3+e$~8%A;Ilq$e$3(}+BP*S55_MilZ#tg}cP7;s3;mP%%Z?3@Q*8-(m@ z?4woz50~o+Oz3mAiVy89i9S9ncOxA4gRWYP^qR+rPK!AVw&eQ$ClWWNsnjF=NpV?! z_}h`uFR9JTe!hYGbKySA#8vXsVm!L)hl`vb<{|E#Z?qPW~h7sa$x7Z2KtpBzR)xB(VQiDu@MXp6bBI%!V?9e<(D|3}k# zhg0GH|34fYGR`S`J4z_yWbZw)w|BDDvG+L1o}CbhGP75NN;t^MN_JMpF>@pw$=<)a z&+q#F!yjDEadFOlzh2MrC@6r799Z!&Lx`?J4MC&JBG+f(f~aJvVLqm96L07Cd(^EY zWim#}VBsM0^?C^mVLqx9pUA^+{JdQ5x?ezwD@QDBtfNrTa=@hF@%esD_|I8|<6zqp z zPntAiGc{ASlAkmCdJCVBJ#T+n{_dXmj%%)$wi;keI9^}xL)D)Do?5_g=i*!!!m$46 zLSwdVyND#a#~oB`#HNN&L*@L)D?D`bWf*R-x#IXk94{j!^wJ?Z&64GLvs~ylI^?G+ z=$6v~HO^C&dZt9r^qK*FnMzw|vb6l$yeYdVMAYx#=by#=gyq7LNv1DitG~^CU1m$o zMSF1vF<#($*g#}N>T_rupSdndNVB}6JOIiHp$KBUp1j``*SYY#Ydci#W+yPoIs+ z^=R~hdvmO8$)xc>P#%;x3Cgwk3@Z6=g2KvfUyqT8d&@av_$f1*;|bCPJOV-ul+pA*5P+bED_3kk6@md;9esdQY{0K^UASg9C%= zk7&KoxjyK2oMiSEIGmEhFKW%*a(RuOeV{;=lbKcB1l1$rU64WnbGMcEjv&2J)^5W>84JA#UA23P(}NI<&L<)yq!aHhoNxmUvM5>^P^o;2u~0 z$b0Fv-;`*SXsOHoqK{CChe`aB#_W@Qd#2L|w{mg~pW`B=zfjZ9-LHN}M_usx8V#)r z3!Ou;xr0MvzUp^zXzRr(ldlT{H zE7q~$5!+v150uB0$OG@kYKc@l>FHwd%6glP9i)?RbaeY`x%czN8z&u|)gGm9nYv)_ zbZdi#-G|)CK(%z*x=eA2`{NTjcv2E3#i!5>8fi&E%>)+Y`oJg!P;XzE>F1oEm|Ixc z&U%(5s1oK?V|M)}S(9j`3ug|qJG(un4-Sa=rdqQ75zoBUu)3e0|fFrT{*3|5lCsVGFk+d|SNkXo5&ho=x zTAr2doV>zuhe6n{b<`1g+sP_z>z-B76Mx^m59tKZCHJuT&5d7X{BO60l4u%Mj$WbX zeI#$M;JTM?_x9G<-mwi2$!+MoWs4mvJ9>31U9Xm!C0isI@Q=(w^(#Af zC_P!WbMDluw$AI5ThCPo-i#pz*tz5+#;3bs4Xm8j)n1%J9Pi8zg*nIX{iE3e5v= z4425_^=x(nq1J=4Y_TnR@w!0 z{nBnD(cSKobq2!e!gAs0W>(*!I&%P-%Ke++SI43TC_XS>{$~3*YRBu23w5=v!54(- zx>PjQT<9dP9sm%?>!Wm?VrIldp1Mi0p--7qigq9D{jfHJfv zW3GSEZWjZEBl!IDMcS`1z!qP=eD;hr&P@A}G}kjz=bJcitwQ#|NP-ESQr)lt z_ngvI*Ji6KI5kp?9~VlPM2G%;pl~s25q^Go{D$*%j+R)te=Y3K3i+=3l)s*{)PL_E z!x8V^vTB#e$3lqV8W~(lByi%y_he76yxPCX2*$rV_!uQSpF63>RUR)fcvt?LW1c5q7{j+s}tW{&8R`^I6;Ues`2VFm&#NiNU8VQJl=_3GvK_Kskw}6#xjB* z-y4+2mBa(~gn;ez7Ls$B7tgd9admkU5EP|ATObKB7|6IHK=(Qr)&40>P{J2#M(+za zXhc^7BNTYDn(d9;n3d0`-2iT+3(=ry40lWRFYv?F%@8CDyim^>NH@bHg_9J zz+i(}_ZRJQRX}lCqosCV)obI*AZUTda@ubBZ`4mp8j7m_+IgMxm9CJGlg7pceu=%; zVSh!L?I{cc7ajOvLR3IE#|_GGs3@gq)c9cBU!as^#56<#|6p0$6huB1%gixM@3qHX zTrEt~O{CK#avFZq>iCTbQUD6h1@KY@UT#qL2F&;RpA_&?;vt&_BgzR3oH{gLw;MM| zC1Un=0{2Ma& zvhMAF9{3i0@u@7oI^MgF2JWTQ+e_xF1QzCN^T#L&#wZ0)MH!Ot$v8x$5+lm*QuKkv zX|+Ffg}{H}4i8(3p6l}Hb*Ak=Q=+@X45>v;jkp<2wW!T~ZZU$&_sXuXHhqexwrAuE z=c)_o=2NdXlo#SUqb+QMj&*IH?PhvO=*64VRo{DB`w2)adZ+&Kyf+`b8Eo3Gu3$k4 z{TE==1uu9`G#>q5RY^v4VlQTVrvsqIa z!P-cJo8m|VX8HgXAj8wci!&$&vOm4?UFa&k*N-#TO|m0pMk8z>J}@@Wbh)%=7udpn zdhAfwWZnxufcTA580mMu za6tSdSSYGWn9>3db}$n?vyhlqBO%P!w;QRFG{ z^=&u1C@3*=8o*2t30(751&kWy7Z`IZ7m^jV#PN8QsrR$?D!Tub$jpCl7mHGgy28UG z#ZurvL%~LcfG{cNtMosIUwi1SW!Ryt^f)hC=_(B|$)_%D{zVMn*g|P4Hdn!@WjOA9 z&4i3w-64a1mH_JZ1WWF%|2*8ywuG%l@dV`DW?(%<8DVM5ThKJ?^o!l9{IjIl?}B#R>z^8K1Z zq6t;UK#z-Mb$vgudt@7_p{#=+W2IUG?rt}irB59$1i@6Xp_2+N8NiL*h0NG@C;MgZ zz%l(iBkEs0AvK>V9~TU3q@;w2f+9r{o%1Ozk*YEEE|sgs#+av1YdOz%!|`pWdExgV zaB2a8mz6jfd7#r|Iov5JrXy1Cag746kwQxU(1uxp)hAkG+(|VFXOG-ORurPZ<$>h& z)=WkM4nBIBEGm^SE!0obd|~Uh9Xb@$gFfkDX=;wE=J03;{zKQ?p}M(91c&=Zs$sB1 zDYvmC)ygV-*DNsHP;OPv7tbGQYCAl9IOfxotyaG?XI)LmYTIGYThFOIv`JVyu9%4y zK`bANN}@H#fd&;ymeOP)5LM9>T=i-jOj44fT;0(*y;kwE*aR(rG^Xzw00ek5wb@eT z@(IX4$`j;;Wo1P?rm+#6upS0VrfOnj)ZACV&^9qJxX&!zjw3=#`oY!c=7@mo)PW;K zqUU<$=G($Ab!?Ap{Ls69b*q>UVJeAmrXFMr%+adKd?Dog0quNfbM~NtzCP#Y(?H4W z?EBRyJOV&{lcKLg$&q}C{MUz0h}b0pV8V8|a%UtLiWk9R3WFc0LA=qeoo&%ha{%q7 zz_kcUWeGGpbMAq}qhh{go1_zyZu7t?=NID-j$ z&PW$lBlU4@@!N>+b?ft0V~n;TNzG1Tf~GKULo79s`HO;Rs0r-r`?%aNb!ag^#9gPV z7!pN4XQ&LEI={FgI-n%xqY$DPlBZ%k++VZ?G4JoEUae)`%K6Bh9MkSjrkkw9@8&t_F4+~w zbl>Y_LQgX9Znp9Bt!i`C8=nMwHS_mKqy%(%KT#t<36^Bn*9`twtHh!zN=h;IYO$`H zf#ceSuG1b*`?h4+1mC{;;Iw^|*pk)Q1d5G#$>LJh(;Nm+{?z;*XYVHI%GArgyPF5U zR$$MD{XCarJAgOQPyR*j@bid<3F54@6ko9RJN}-g7Dgn=yb*f zc@6EEN354UANpsH)l1R)-dhi$;XHlbLBEFAG+MhmYlNE+wid-7{8^`ZbD4163 z@_q?q+GZCNYRG2lyv^Bix#)|lsXrgAcj@dinp$hJ+{a%WouHUbE%KT#OAJDOHY|kg zoy^kONJ+m%35RbU*WN$82sWq)Vi4*LS=;mfF0pNE)r$71#!l_jqPMU9?M)Wuc#}6g zOE78BZvY&sonH^*wPf$@3W;~0IsBShnJAX0Wa&ZX-I>`A-&zenm~FHDc3@=SJl3{1 zQ+X>@Xf32}-79a%ploaK#Vy?Uz(T0MXNeqck8yVCF^dmRsci4=zK~bXUA?9UTfWc< zpx|3&`-|m4elB(Yp6?soZaE|bT9M{)1mL{nKV#7^6@o4=b`zw%Yv;pu`&KoFU*}!^ zYLT3mUGRv@Mk>x6*q;587hc`i4%wLBe8YII-OsMoy3G)i47MJ^Zh0>9^TjHo)zNX>KlgtO3;)eC`nN-?5?uDi>jS9x;vIsoR+)mw?LmM$e+Yo5+$0D zIFs29X9r;2-c0l=y?v0<}PSlNGcKPnlOr(gS*~#H7d?HbxMTahJ=DMY!cSid) z8JcSDXk~nUJBGFMtB43nVKIqSPj%Lg2WePfj=CyfRb6i|)G}F}&2-ni*~aT~F?-=6 zFKj72^uN%}34^dhYX;c)Sr#c znG3YBl7YIO6}!#}asJVOm@ArwJ8lvW>d${K74=UvJ#Mtbo#8GI7%wh_&rfi*j&PL` zrZ1n|Y(iH{@-EyIM@z9*x{@1%Pi8p6(t)C z{Db*9Y@D{X)~rBnLX}p4qi#{4peeF9gHGY%w+?6M@x-9({zOfvVEQH*SdgCaE3>Tu zq|;>~#K#Jdd|_RrKCpHG8j=DX%nCQ6NQ4%-LX-e+m;7G^JebB3fx-p&Bhl|~CGGx0 z0ZL@dNd9H1tiUu#y( zV|MdobWRQY?bVI1H-r*qP~Rn@j|19@YV67#Xo%SpVfN(DqM`H}8ByQO;y7sSoWE$Q ziD-7P0R$2osC|Yqk$;QaDS*(tA|WDr3XP@ZXQD(vxu9IdUjw-`Ts0t~GZdZBxCp48 zPMf2Iy~(pAGc|8UwDR1bxZNu{kun(%g!;$3iOx4kD|l2mGWBK3ILQuFl%ORDW4D_( zwL6qMa+o@hMJ^&`sI1pGrPOkIQSjT{A{%%sUgC@ppQ@&ikCc0fsQ9UZ)PiuE_9O}b ztf2@(dlp90sa2(Rld&l&Of9y>(naQFAnK8@1+U<_Qr6vrMJ_g7=K^@3Y*b;qK(?T= zPmv47H<2hqV$&I=K2udvatIo_$R;HvfaQsj9!oN&_(sE|L;(ikxT|EJ{52G#qCYay z`)HH)(i2lSd=WrlO$7LeD(-HS^JpgIU3Ony91+%aE2tWATfFbb{}hF^ZzSPh5cUUCl-bJ<&RE$=kvayH&? zO-pnfC9 zPDAQ$c0fnhJ>_24RH0Reept1(yzBC+=Zo?Nd}{WV$j^_PGeX^ElB`B=#A_$s8x6pG z#4wo+Na~wB89_09qjSBVx4_x&-m>xZ!wu?bSGtd5B_a%d#V#+SFzP82QWCG=D!O?m znViSYufqSdg~n2r_%1Fka*3$~$|-@Oxf!F|s(2+SLmE1P8(;0%piH{?Dkxz{;kA9K zo(E+Ot>=^3nq_EkW9WiaFcVmaVbS_c^)BB<5*>xkMVf-+M{(KJ`<7;6Q^vFdI8`Vj z>OL|7x#)>vQJIox9M8Gx{W+sMxPdc#MbI#cJ6;O$Q)PC<3Hr}!K#zbvgk>m2!gFY) z)nFK~vtwp4{G_B_V2ZkaLiCh3wslhC1-X@BH#ZZpI6^~QPAQi8;a9cZYuDbA6dH0Z z(3nrLYnt#grCHy)d7_B&*)X$$jRJ5JcuG}oa*Lf+`zvY3+Ol6Dd`nMnIG zl8o$jO`4eYf9Xe*Ilx=H{>gIi9P_Ps!xf--#gIvj7?C_ZbrQnFZz+8JGcrsrn;?*r zW+k!*dr~G`&k3ir@aNpRWw`Y|qgk;9V41KKEGfT>MR$sjje;4`uEoBdi&PuM#vkj- zcEgaVL;9Cg`68F0k`X8c+9SCkVrY4wBAJPo!&Cn4-VRzV5}rGr08OsD{j5*(Sxhxj z4O$Mq&w8~za2ss&_YlRinI<$+;+H*@RjW#}{X-Y>a@qEqTeF_R;_Us6BBzU~k&tfo zCE?w(bJ>cHIX7`7wShUDzc2(nM?E)i=vsA=hymaW7GeTY&8R1*Dr;ML1g1KYA7xqz z$cq9h@%I!UUvo2Kf%-G>Lf%(sLSPY(Dn%eQ;G-lvP6Hvyv`}UGE}ye2kPzXRe>LZb zh$D{HDTzUYiwRCnzv>c{{C5_8do zRC(_|@?Z`E0ABF^EgO=&4L})SGJ=?rM1esqdz%}2jfTz}EqWae-pSi(VI4SWSg(&J zgq$sgT1;>%VmCbOUElEx3I&f1P zgS}ucblQ4!Y?;tpmgWFm^dumVyk?{W?rgm;{bmEX<6wmV0)L;sZk$CW0130$^ zd9ADBegO@gjj`5K0)R?F_IVB!FEgip#s(M1*=xcat}^Q{F`0W42|}fq2JC1^@80BqZN7F2#}}a-A;6@~y^OQ%5#sZ{Y4* zJ;JO~-1r+e7-v;ZmL$M`?YdMmM`RJ{26bijU8+tgJBe)l3|%I2hlhnmZ8RBCS}m)8PLkNZ4#NNjy$V`${TVdR=T}J42uERi&HQ3&bun@*~bS zKs9kO&G;!??i00#j--8~TIq<1#xnCj{u-V=P}U*e?b$QS_23>|{yTWcBd_mE`tBWl znV+uMqwQ%qH+Eij=Y)|bX*lF(0^0@!q<%a~IV;N00(-q|Bq}<(gYNEzrn^KATamV0 z98{1AB7%+lf*O=^04b4KL8PyLm#3y{`Ky-{+OGfIu_vRHhkhFA$a?Da0YsC#NY$9y z+p$lyt8(6SAooO+$SKH#^3G-zcN=Pkg=?nH7kNE`>(+b24oMdFchCzVB3PpD^%mJ- zn`p(O?=5B7xa_s$ZNXuGX>yL%%RT2wm)Y)CFLBe7d)%Gr3g_2`_Z)-v_Wouk*Nn@* zRd{mrXC7CZ8YF9~_#j6vJkX&;P6n{bP7Na8j4YL<_U$>B3Y0u%{uZG4d1o?ub$X{S zT1C-l^u6H*tJn=@_ zRQG()En9y$om+D{mtOFrsPdLW$P(~!hg@!QUJPw?Nd1 zor~$r#?ak!^4SlEFAbUqsSRF=|9Q+m_6_j!J74Y_y_(Q1E1A8q<2#do_l+cQpjD6G zn%(!Ed<#-daba?@xoH!x@WyGH^0=7c@Sm@ebMB~)ALdrugzb2)1<60u^Dqs45>#vH zQT_Dnah+@yq(i)}AqlMgrBo{2s~e)fR*VN3GWyoldw8-B=Gk~gNDeJ@1WeyCcRW9s zI9VBHmk$r|m%XW^7Pj3nwx-W`iMKu8v$*_&drDj5*%P9WxNy3R%jyNj>c^wHla2bb z&y0lwvt6_sUiT*q>We6sEjQ$~HTSPBoziM|mj9TG!AzGO$uY;Kqz35Cmi zeILodVkq)snH4yQ3m)=5`}H%WUz|aU8Xu!Y1#v7bhW2z&F&HkA3GgwDymkc=6cKSy zwAl;;uShHvGeSyA4A!m$!d4%-d7V4#$k?HL;(n>O0B-`6p z*IVSq%d7NaKD9WxmaM^2NOyOIeCy|nbFZ+|?aMF1vsjtt(=W6af0Cs*Oe#v`!p=Uu zzMHA9GE(nR3a00~iH;cfZs|Q-v7ZxDZT4zTO?9;nKT=&1Ef;GzSUHjAF!pIB13l}J zNCYc($*$fI>!Rxf7~@%LFlnybVhle!X$W6&YpcyMAmqFWSqfG-@7_Ki@H)dQp7wE` z-mdK{PFr#cU#{&x*1hR0`{-`(^R3q#6C<>GQ+-<|udilAMXM0ULgEzFuR)l&qas#F z3KKJ}GTtb4d17sR0?z;JjP<577CjIDGuUu(5dH@Z-l0k9%_u7P5e8YF^$D{+fy6Yga1A zR=>dU8v(W9Yl>$EKwwf*V?(cvrj`-T!U5ve_@6Hh3wC%Qh(x3*1xBEp?f(U#I*8CP zA^`n>_<-n=JRE#fo`ZX{!McJp*w#q?H{cLKG~0Jzozv^<`xE<8Ni@FsC^KNBQ1iAh z6V20~0b0fS-sXYSUfUsg_^0_jb4~DQLW?0v?Z*j_e@I{=djmE`crO^bVCnL`hmSSX z=H58{{|C$cN0I`n6kG|26#r&08lVj=OAY_e!-tg`%HzSTL_i4uMCtgyo`50RlbR}Kr__#z4&*vd)w1c z;|c876q50g?QDVhhFa`FSBc5k$w@e~l!!>k$pNdDG;#dJa}x4f0(HxBD{N5CYu-1M z)MJJr^Z?-#=k62h_tvTEpc%A$~a1X z#5a)_*D9!Zlquq&omz?G-)yuKnTbS=5sZZnL%GqEgf6AGSU3;z!v;k>W#MM#5)Dn1 z03jol7)h3&CWBJ@VNybeDYqBp6S?a$?O_DF$;a&wCk<@z89u$wnMS()%Lg9Wdqo0q zq7Pk3$#3$NAYj)>nYa3-nRc+1$- zaE)(u$kVG)*k*9I%NIz(tYqX9ss%uv;zmhEb9s}_$UW`GafS5RvVO1~`utqAWZ2OV zUi5y=D9YKf)x@aslOCJ)+X;twWhJrXA|55MZsv*;NqbjV6*ub2s-oS*qIp|EU2XbV zHn$K^QLm|IGo8E~ly}ZBFqq7~oqjFH0V|^CB8j4(pqt5`Rk)gjX$Eg`K5 z{@DWupGfL9$CWq!c+bjO5D!Ul=SApgORq`9T9xzFVKd@Qckj(ohJBAouvW0swbkR_hr-uuG@MsGv}}gu;h!nvH&LKpo%Tn7mT|!zaDokr!hs-wDX#!A8Sc28 zgyzbxyTWtfr!6|J2BzBFkb!&Gi$zQ`+8KzY$TLAI(~eTs*$(m)LW(e@L8#Gah=@Rp zJO9&CiF489vGRDPEvVHlAaLW6H)b)UT!n<0DgcVHBehWT)=XqVmct<$-Wa=(a^L)X zE;a8WVq!8H%5TbXWR%M>TF8SeHE-7f83YEBQlTPV;Yh0Yn76+8>w7&!+@vvVf;ZRS zLwn}{7rYR*I~W+&)Y=Mbu-fqdE{Lz~-^k8Mc!f|Vg#bZBJWh@wKU-`$v80rVH`TKN zH{p8i6TT2x%7yy*GWz#J8S&jg)OFLFzij$Sp4s1Nbh|b2?zOR7i{I(y^55^)uluL_ zc1A@Kw_7jEJ+dtO{ShTG9*QDwGOpsOI+z3M9a#96$XUD?!$#zGy50g&ay(z%mol{pa z^qbQ)^&8^vvecOhXwYXc0E^$S5w5z&sVY7L@=$)VC1JnQNteWX`B`S7^rQJG0t%@y z5wVCWF-O+~qcUWL5J)y451G4(12-IoyNk|j+(*>!Fy|^lps)f_D8LO7t*LW0gqzW~ zzxim9ki8w5;GFtWj>HomyvS7;wL$>jLjamFgc@&N8JkZK!jwZZIIrAH&pThw^DoQF zY&N@nGhNQI3USSZk{c|hB(?$@PTRr`(VU+zZN>tfoSbOq!)sic?FR?|j_nD;tQal? z8*~`6I3x;Q*5N7fS7?;YOmS?6W=7zd^-k;P8N)^WU^Ku%F~^qU1lDz;erO|mu)c#! zqI2ZYel-(w*11L#`2q+U)I^2L50mzatyq|tbJYZHpINlBE($zA1?9Nqpp}|w_rIB` zOkrncP4N&X&FK9q8s-S)?oQjqTDXZF4Y^^{*0~{u8`(}GE^JK+!N0oLYx@L@iO3d^rHl3Sh z?Y*10Jg2EZj(e9RcT;h+MkEC)~JhB#Jq zZ;xbGdMoksqZUVrl6#*|xeh~RvTCP&KNp)ey)Lz{?Or;98U;S+N!d#3&gn*q8FHzT zgGw*52L+VG;5`6KN@V^%j_ewFtUcgmr-;_QpLWpDn$6xQ-B@ms9dJtf64?7tLnfN? z)lycaTg908_?JE;QaJ)beFOHR;|d)AzGF%&f`=*SbU*L(f|H`3vBu&&!et5+FBps~ z9_}Q!oa3X3NIq?F*w)R-a3N1V(Ct5G)9pr=S8S%Haa4q_+>|jc9QnLNzl@mvv zt?hz4$Gp4gPt@#!m37$9i~Fg|hG(n6hm5J!H0PcTr?>`Ar`oEu%%0R~|E3JYU7EVr zCl?dH`-*l`gBy~X$bKXR)joKdA)r>7Q2IcZx8e2fhct=12_Jv=9-sBuaPp z2dDe~IttGP{rP#a-kBhmwz3i^i^@lFYKJ~Pet2yx9hBo$dxRZdo}I6~)>ICt&j`gk z9&*ZuG|l2if2;HN_IIy4_+2+^w0W9t;3+tBU@%m}X>FbU;j(M%K|<+y(XDik znYetT(%nEZ-}%F-&WT>aT-*At2;P1Q{btbBtRef0-lOm9It_WJ11%5q;@2c+$Ht0^ z)D-da{>b&}so7fw!c&ex-nG{HQOj?)^chk&_LaUvHYx|N7{rB)YtX;N>%})DGa3j@ z8Pqoigy%l|=+3(!W$WQ~vA64#Cnaqef2Ac3AiQ?o>0Qp-o}X=h-uW}@rD*;9IE1O~ zu)A42*-O5Kqk>*4Q#avNWmxbNvAnXrW7p`3@)`by+-5LEwV>zepEk7{TA|;f?gOTWy!Te}cEeUsZ>0&w5?_wrIWBz3i`P+kYtQ zAr1kk!JSdDp2wF%eeT}}%2LOU5tw;->wmA`(&h$z#ZwbovRKL#k|LDrOD#q+k8&uZhI--x5d5Fe%m;1>?%$Y_1pdXyn<{~_~GPM?aJ}H zt1S54X^V@#DO4){qD8i>Hvu_?WE9=#eW^n~F)oHIWr{8zC{0}{>J~{{$za@_9_{;U z3knvp(rwi2Hkn2Bbb=vpGA1r1NGz$Y^jBc?cppbhOd|HeE;^Y@3sSZKC;8BQHPoQW zpS|wDbvU`1x8=GQ-%q+D@;55cn&i#`1FC zNa!^++SFOsw%%WLT{94V|FKO*gn~8 zIUNRH4B2WJKXQ zai#WmQpGY}E3xAc6u7|Y=d5p(McW`82DB*9 zb0VrFNW!*!V$R z{JP08sLS)}cWzax*6F)>AE)6wD1ZivX%|_{Uwr@Hh=p8AO{M`e@%<$-gypjop9r$M zn&7)jTpMRH~{*oqz_6jwMyev zT2?lWA)T4Z&|B543&%!_xt<@@%;$-XATi=kimyj*`ud$CrgBH9q`nRE8j6@0S)1>8yOp=~%Bi<#x*)r`t-Rp$D=4>D4 zebhh=PVu}adN;V?^|pLdR)ZeplJ9IK7tq$IQ?m5bGW>z^jiJOgS)_OGeChR>U6Z({ z{?uMqIiV4o@a;yN2Y)<^gSVImTGh7pstuPjc7M6gP4Q2t?Qx0iSap!+%$;NuZLZC$ zunhDQrwZ1o<4@viN6yTqj?Va0mp+L%pK4vuVJ(fJfoF#o$DF%chwVxoTF>MP;&E@4?DfSa{meCj<`6}C8#KDD$qwGG~S^>n+O9?{#y{;;=%KU+uN0zfWSgEoyPVLF=U81Om9EFCzcUFhzt>x@K zAhc{-x}hzm_WTVDhILWv)0=&dvytXebg^ArN7oCqw6x&b7gxA1u23+;V`9`G*HU17 z6ns%#T0cGrI*<={>G0O~e(24esNJ78+c%$R#s!D>ORoiCz4U?;*cWLP@-R}}<&?~b zmnkvy&=HkbW;!}Hgf5pI7p!sFp9mhuoS6TKn)Gi>1S`~|Uu;YrOlXXHeFIp|@c*6ERc(WB8m2`Yngz+1-^d`j~NIVoFjL?`nwu7nZM9a2Q|yBG+QE zTHoUcm06KN(A-8`!WB;`TenC(;Lpze9;afMZosPfe_nu)y3O4r6a41}XY>9ElLoKQ z_1m`A>^NNqr)17_*UCq>zC!py78RymBUP%3ItHRS_<9qHX^m;TBHfZPf#zZEEtucu z$x=5^H`wl07dHA}KWFVXhw8i6^rXhAbAsh@FdEte1AUIn)6tHLj*g2Ka#~@bsi)+@ zjEoyAMdrowvbMt|2)Ou3>`%~vVuu_Nd*=k&pa5#(y&CzyC5s5g(5QX-{+;Qe|1=6* z7%CiW;sw*UoWlR`S}B!>?f`4su@2+4rmPp1?#n zCI%+F+c&c_YkA_YRIsRc8^ZI)U+TbbSQ$yuA~6+aeuu6MQDoGhN~4ZJ6fKEfi!WwU zg@TE3&>E!L%!0n)h$gsH_{{(yc!zyXSq%m!7bO|k{Ij?i&H1=*;LCLsgCkvv@yG1$ z47Hm*rmpAshSuGQh2y^+I~}6v-1FbtA;*hH`R4s4GM;$+5IuZ}0={(lEc*S*KgmrB zqXkt~n+v(slV5QGvBM+Da{sWmG*WHD>}V2j>I?$NJb2)4oJW}@FnpV-sX{9v z8nc;Uj#L#%&5h;d70ub1@$vEUkvsws6~yLMSPjj5$E?K<54T}xKo*j|r zUT&7z%!lttXYptOyO6khff5O6-gF9-T344umcL-CAX;4as7uU<5+&s?h)Byc&baEK zIyNG~H4du9RtDtk?eyP*VJnE&3C&2~l&fwaKIc>B0`KT}^REW?X}^vcbKF~(tZq>Q zKkq9|7T z?Mn*jtT|b`VuK!IF>X^(74Z`qv?*vAbnT!PH7;J~d$phCqM#_Bw|4yNmr`_mv%jFE z=ZmY$p9Jgf>SI2lF|6j9Jtz1F*;^7Z*w10lOSyS{dvYeC>eUbJC`k1i<;v*TPI508 zm}py@<>ix+?h@H9KR7tqi9uOmom@aFXrVWkmb(G@HXye1%b%%7;^vl2)6lT+4L)=( z?_5kIdCm2-N19X7eyhyhn;t?#(sD6mh=;#l+w(HUQTLN_dw(dMl%ZOBJG;rQ65I8P z@^mDk(~;w|+3-;34syy%r5&aAV&na?b|n1nyB!swaox74P$|XZ=L;7NZQH$viht%> zYPWug2jbjl^|#sfrnW|7=h<3_KWx|pdp}vr4`1);XwV;etw$_m8oA#cShpF``o#FA zwqfJ(`2L!g?ded9=I}!6K~Ib3tUZe#^3Z}KCw|btR`H6Mzpz5+gFiA z!}fBfA+IH{imv%|bE}NT!mHJ%jU~C)$2|1pWM87&LZ2hoDkoveCZOiNm9Ag)!LPGV z2`8;?QwclIpVHDW@_s+?nGhee`W-hl%8Jv^nLt3EMmm9ZQ)Mq(Ls@0@Xp)lmcy-Wl2iUk-g7)F?ZBpR$fkVRTIcNH zP<>-g;#fc0bMj@|>7NkM!O-g_&SHO^Ys2t8KAC3@wd+}^MrRLMt6=F>&#)-cEL zeSA@WwVvLH1myag_&Osmp;_)VOZfoY`jad3XvgjEU3Npe7Oj5;{)C^MEnH;Up4H`@ zx3wDjc`}|)8>*}4!HkyT8>d|HHWk!uTCsn0qOJE3BqODhB2-(&|>t$vM{=6tZ&k zetQPQp&I6!4!`&f*L!GlTUASr$&uKepGbm%qiwcc5HZos*1%%Q5IS4@Q)OyjSnjg= z@>k8-gY!3K&MY&ebngmpJ1@O-QJqyH?!5Yu{OVUbyBFN5F;|#bGf_fQX(|go{?v$| zela+Sbo5v~2JuDC&?$o%zqB+{AxwMVA{%v=wrju$LHZd%1VUaTDp6Oy(Rbe7ptj+U zHEs+{gi2*8DRFmRJK&B4tl_(Ir8F@l|EUl?y&@>(ZU-q#{F&MMl!G^V2%O>g;q#zTU>V}p z00#wF8LGJoHNNID_T{hJ3vI9z8bnrNBY)>6g#J(o2%!@tGv_MyqC9a6AZH|Zy zis}0eDL-QBaSi)0A9gq)8FqZNE$G9%jiSQQ;;GHi0BzW%a0tOd@%RI6%NlN&X6!6F z?{o0ly4#o-`zB|tlwHQ=Xpv9WX>00gRO{Lw*b}~gG-UzE*~=Wzu(d-|khJNnbPeL| zEyR%?OgsNM{O{s2;0piUKJ#k(({{F<*X$Dli;f>D{!#p+^poYmWl!>DcV|(w`qY87 zpYPwt(~@QBogE!vQvqvhYt~a$!c!BQXPd;gZO`6-p7v7(|B$W6@&j?>zbk%w>QN?C zpVMB}UXrnOu!HQgYvA8M$nYF6lEp@lfbxkpgLY+5h~cEE=FJ8&R|rhPN=PynNL+Cd zgchy9=5Bxuq>_VF+JjUeXt)myt=X>J4)^|_W0A3Isb{}PGkJKxicWbzSFK&ybizln zJ-ak$Cw5KoPYP}BT=3EHa5(6Z0&?BOB@c*ufyTjd%=RC0HBvt?%&B>kLtt~HY%u#? zYY4fIPtNTxNuXI{_Y?w>XYdXXS-aNdQw_BMSsgS~DoP4SgCWUJVXjr7ZFg?2$t5gm z8CLz<3fH+p2}!b;a!kYuzQTCW0aM4o_>f#}d_WB{$KG2M_q$ralSA!w0%{b^-8CgF z`R?jKzSVj=S9An|o{kM|7_}4^jTTWMR^?Kv+KkaMETy1^lsr^}tLK}0J9JTr2C95v z&!O{i9E#fH%FyWQi)Dwa7O&5fwqM^1G5E@7sV;9K9u#h}pB29QF%vGhxwDztWM&&ggK1vcg{0G~b2q{>hME z={oj~NJH_+f%#=uU|juJywd{q0@1 zPZ^%3A*3BBj+Ec8wbw7WUwq`u=E=U5_k0B>h^$u0^MMk)Es zS><~e!vc1GbEr4b39ZQt-|x?dubB;$1;P)~vJYEIl&Re%_35Q(tj7q^X|T)A3$+eK5|Z zJ}9HK^?BpTV7V9LRm3U3js9__TX6a;f9L8Gsb7{9PwJUr_lvQE(wL^;0Mi>}qxsU= zD;}(CzY|u!^!Q}xv{S#GDAW!xVN5G0#_IT_!x;G8i|5x15q08uIQX4-0{; zz?OIGvMKUnY7-|L%x+^Gz9TJ7mikZn%%O#+B|jwGf4gU6Qw*r~xPuy)QQ;Q2Qo7^6u-jPk0A@Ljip8Ys(kf)R^l$L2=L? zPG9JvmIFOMy`L*L-}DEnZ}j9uq(mgKRDuI9pc;B2su7el#FUiuR6eFqYEe6=NbOhv z$lDA+BgaLk@(tHt-x%GBFjG}AL>FpR1%!tmgY)owS2($%)sL0HoM>J$-W#?EQ zD_iI&A!mBC{lUR>yAi3xuIZ1D;Aw5gx1p&K$tl?#F>h9QEER#@!e+P zr4rF=<@xBsfbK;XDeU*|wQ)b&muWieT&#RR?PJW;#nkxpc#pVc(`XS^z%uhSX(7>o zWk_Lwr^r+@+VtgUUdD3WM#H-IBhAsA&~!`3bQaZc#lF6baW#k-E?Jml)K{L~5Cun% z&Zt33fKFtZ^G0~0jZ}?6Y(^}AYv@B{G*mIIWK7a!fe|qBgLo$opB8K;j8Ct8%%Be+ zmJvHo5=u8j^o*EJIDjtIErgahNedTtvqJPS;llAH2bV&_VPIF9@dfmm9xFWv z^{d1Qg4`k$F)S6dpKKhoFKpT1U3fOwxL1XD1C z#{3O$pkM$~_fQWtA7wozYM*h=x^LO@B%(Z#$V*NhJue?j(Zr`)Yik53v==7yJ7x&$ z`*jT^(Ishh4fseHI^u>Z8sjm|31e*`0Elj)a4@FKP6_H{*Y@RfqRT(xPR7Mg=BK^%gyxyFwc=VLQyJLA&sRj7QIsyZ_&nMvxD{8t0w#h=W0?x00U?OYPY3^37_rL9a0iO3i_XX zIQ5g+=Vpyd*c*FRnORtDYb#ll|3}70sq=E^{<)>KOlOVvMr#Dgh0G5o?gP5q1Gpya zvLi4JwMz}}d->}rDb@b>?XH(t3r$;kQ`B`AaSe!UBt@##l4dxWNGq_B+1FWB0@u#Y z1I10_^U0sXqR)?qit0Py&6_KaxC6)gNTbyDK5oV`h|YtT#&bu18{B4P9|oSz<~zr7 zJriR?3>3QZ$=7kzG)m?1f-5m$_w-j=Y#;bq=AK2UBNXZsK0hvhgUJR57;9zzXscwG zhO~Wl*D&_%yYRl2uN2+Jr3mmbYMQ<<5v6tZ`{8j8M2-Kf(cBeh2A_D=KOZ5BRy=f&p(69vMUO&M&Fye<-32kDr>$j)r^HDOZ@s=>V0f==uzo=)VVp4-}}0F z)G1q_{J3>DKX%>gyfy!7nOkbFU3$I~H!rHoM#$5DG~O`lfor{+1T~4|bCs>F%aOck zt7<&^bfoL{RPF;5)+VEh?0MIFu+{l5Gmyhe5)r~5t@Y(+pY$}}$I(3!bKo(&!J%na z{7CttBov9Ro}#uq98)~$5IxCm{=4nke6lj7(qoe40T@CJvC(*{QMEZU#mQ#u>A}%v zt6@!r`|S+I#`8NUmGLT`-(r2J-SuO}bJE=L9~d96xHL~VAR8qc*u)*j?j0+h%r@_Q zczy&_P)MZwI?qlbBBX`VEI3pJY`V}ezvod3eOz!q zn$nA7j|=4Fx8RwrRJ6$VIZ@C%#$z8tLL^>E3Nl~l;vfs>3^Of>@KpvjB6AdV=X19Y zbBctsV|rhsqrv!XQqxTQly!H9 zr{HSe-@Vf)%aiiCfWLn?H;2xmfNLt@>~Hbiec)3$OR)gO*Q{jRHubFk-<}l9X%}kI z{~V{J0ywL$r+B+3z#Xo>y*O#>q34j(0=dMN;-WDb*?65;`%`B)k6u;JqkBFxGZT=V zPeH12TTE+l4p_am83Tza?p)j@G59Zn)nNN&ZF1)WXp8&rO~|{xd25dI4*c|cYP;9f zDLwGh50~58!!F|)PJ0JKi@U#$YMPG9xsP{xYuqg6;tEr{QZMMI70VVLTsq&K+v2P! z5wapO>TqopGlTUifGPyBKyuJkoCc-Tp$hmNsG!J}{XzAk){ezu0jJ#`)GFqHPY5HM zHgA~#XCdWNnI?_e1uzy1Lx|*kHrr`KjvBzom|6)+pvj1(ra>uLJRjKRKAfkXz3aOp z47vh+T3~F()cWq6Efm==4|4tq0FxLDB5KB}5T7j2y7lJp0556=Dn3;}fHzYG;gv4b zGvyYn62#{$*rS8VT=Oj`oWW>~(%c3`}l*5A-o4)_bmtXoJWvh?~ zq@&UK$|pIUi4J`=7N1Z9A#Gs(%3c4FCIK;`A66}m4(1DmBJ-AFkgi>DD|&iVA{br@ z6A8#+RcUuL;2>L+-`0k_Q%zMji;kgQp(Bf{Pz!%u%Ifn46>iX)%c~r>1RlW0(PFP& z+f+Xk1EMaW)FFN+^Qu$3%2yrVsvoI3Fn9b7*3Lng(ICuv<{^c0#w?|42V4ZPFkDCO z&zM1#h!VQRF2#cd%kvLsorjO+&bntZT*p~|6)JAeHlH`2<)6V?m=jB z(@SYZ3XN1JbK;ks81RBtM#B1<(n?Sgs~!`MjVB`Uf!Yrfk^O=fcQf6nVd!*`h`N4U zIl?ujqvZNUycp?+^4J&kI|02jG8GyV+7T$(JRTy?b_js zPl7z_bWqwzI_rwtF?-+jw3LyiB3zm8WY=o6H8;H)JFZium6gVnjMzZUHF45q7&R@Z z_^lLk3Hh10mxDDxh*<)SN9j>+grbMALd+^*4Gvcyb1cV&=k!*{&e5&s6|?ws%}D=J z_$eZEz#z{%zpxv@!{d$8c_o zxHdoB$HZan%V5&&;d994kp80pV&jJQ!`20^?DfTNKh+XnHght+btJpYUpQQO(Z>u@ zlVlJ_vv2AwQl(uI=_;=L?IMnhlA1b%ibDupApp)T2UzRHpzb7_8;ZV!0q?iA+h#lvlCx(9U zierC7=-4-BX2iweS+6Vd18zmZ4w)(ugwj;Wu>$2i255oBq{x zxT&~>;73i|k@`&fM{0^MfwhZ!h;t!I9XrNp`s*cZnuWkslB$IE9@HEy$FGFh-| zorpYuTelg7HQgu)O)_;VNAkAA)e4df`XDqY+qmG2jErb}OvAVn{)#QEeMSki*`_@R zAHbZcbp~&8Yjma+rL0$0gcqkubb8t~6BfzID&EYiJeVU?n4Te9n}N6jmbFkEb7b$2 z{@ri-@ENg#QuKMgSyMNp)KM*9>^FDT?_+T|CUg92w!GM_d8^!gulJ6sQ#r{3pT;*2 zv``m#$r*(5gusj!7D}6HYX?O#kVNFo^qJ_%Uggk&%}-twE0gz0Of+I)kHJS3rmxg8 zf!!7kRS1!Vd#<=Osop1r(VWieDw0)!?34LwAuvAS&4t7F*fg%f?tFO8^qtRw_+j6)D&7HX|Os^=&_zvBssWW*AWPZ!%5gnpMo)xn=A{|HKCFoYiH0uhj8~ z(!9X=J`Jv4bh%G&i=!hyMivKF3wsOG1`N51vGA^R9No{~zjGRKQKPikn<+$KMl=a${siAG+6lC2VJcYfR+GN3+~l3X=4M zOXgiR_e%+qqk<7?x(!yfOGCB{j1Olngs^8IeWl)6QeoJ11G+wIgjZg)`HZctt&J0} zsNnwe@MF-$IWfXbIS~>4T<0`(^x!=`n|7gk$dlvfF8j50tOpyze9|FVF&ljNa6;W`A%~IDZ+Hg6F-`bT&B!{3Pc@-ILK~?}MF-&HKNZ zVf2+8DBe@FBI&}BA1qwG4b{Wl~*I;C3MZY-~*HBWY?Kl^m)*f!DN4wdh2-<#pS z!Qvfq{NCM~jpmoQk@nTt(N%kArp`>=fq^W=yOXO&A2Kta+z==H ze-?lwqeA!J@7X*Pgu*m~{qW(9te~^m4x*Q&DHo>59;~0Lg2qpy@2rU5SCON;jn9|& zK!fMS&!66b=Qv&0ey$J8lTTwado$d#38NN@Q#&sqn;o8Y<24DQk!~MGVIrh=F;1>m zt>7B;LLFh>r`V=;pL>6iYr=UPNLrriWYqe*PDJfZG*MLSYghhm-r37v&s=sq4zbU| z+p<3h*!Dc$ntAkgyK#NVH}DHrLxqWy_}=Ex=Gp38qdV!itg+I%!C^{aImWn+hpI|} zA~sd^>21+b_i|J0ln!qA%jIu}b{D7XuuG&xsQ_TurWn6__^MAV$?WL%)7W2Hw(?c= z@<_y$V1o}AjD$mDfG+5`OL2D&>%mEmhRz>!gEioXPwH|Uv0a>HNSER_?u`H)eqNP* zRG0lo+Tg8kq{t>H5HviUwWnwu4zV(pys%sF1|+f}ZDL zhvf-5UR<3`85%HNnCjWj5ar*?eenDEe3~)9W_JNsaM|x62wO(db;?u0^rCYT=b0AM zD;8tE(Q@#^OXCF!|GV~EDOZUsp8$edOImD7J@$`_)%$O6dpo2@j=rvFty!aZCCqS# zLy3Z2LMkx_5Do00Vk(h9<)dDd)^}Ndj}iL7AvYvmn1XIzEToOrFWO41B~qC7kprTo zo0tT5-2a;Knb8uK_`goTO}vvq{DCEw-}> zQR(%qVa2Wd8BcbV-^Zl2lZBx+Lkv@LW8)pk+w!X~7X!wtT=_zy`|FSvFHOtuf7&pu zG}WBJib;-&X;+T^=Y31hx$*0CwB|TJ>(kU_7t(Oj_|#@=TNem9ZUpS_*2FXJEAHj) z2kb>Po!0~|mkAaE$YL*XO>}wSq=kClSXfvmdF0lR(wm1B4?m>YrFZ|lbx#iv$UnZ? z#zm&VP4=P@%9m)4zpB(qys{_F1+Bi6u~d|;ZrBX}8;g5q;i-PR}|4+1M2Yox-G=IX~wB-^2Csjq|}9cb^@P zy?j$C&1_Wm1hDPI1}0|ChtIc~pK^4eRA6E?$NRbm`H;*Y8Zbcu@+z>l)ehuVFfal8 z=i2%iLlIhw0RF9bXx<7@{$CoBcL7vnVE3y9RASUjpyc4_q6BEccR{bDw6z3XWx@dP zBDzc{o}$T?H{IqriBvhzyk8i*Jq+M%qQp#8%R5Eo7EpKvz52)p1(UP?d9&mpnVe+H zF(5P<48%SCtk`85F!KUSYV9+W;N4)UIZy!d4m4d8fV=ok5!FJ8%>-XjExu8R_-zIN zs&Bf{`J>=VO|zV=FC>*+d9Vb8f~d)S3}4oQ+XFJ556>Ig@Msj)N8t1rwQ^f?*HTqEk*(*2;+r9xkhE>cbng^a_U_)2vm}c+E z17!u91+Y|l+Nu(Vl}Sf=U~a*u^2OuSlECDNyb`5`fS|A2yPInMkCiyjpsYs_v+d%< zDCa17OgqR|1C=s)K$lo`X{m*F*e@+DsTbBGun{NCzWI2eM=F_mrIcWH$CA$QVU55} z&3ZHB(?cshB7vOUG+h%a=rG};WJZbO(0iTpJ<~+Q!@mDv2Pbv-uh7@*lFWa<%X1|8 zc!`DZsB6{c(^s~2%LCE!%WJk-OsC^#|0SHspPyMO`kp!m5%=`z^bMZRb=`edd+xc+ zHC3DC1f48`e=NwYPmq=784x-)-+$InI+30;VKyVJS619&dG=HHd{%hw^eBT-^{M>X zTwLp)gkKZBKlV4aGjV~4#4g1x!S$tX9ibyl~K<@z` z2oi+?A&S{NF?N;rS^e{um|&pJK*8J%oT9`_(yz+*$N$4|I_pVxakir{gqzXn8F&^P z0-yc>hTEpoza}3m=N9Q%o0;`tvM8qQ+UNCcJ!Lva<|9}BlpIq+I$o%dU^hJK^k`a& zs#mr^ia|E|Dl?|bU?s^@94G(&hB?=8v)`h|#vWKEr>=&o&=LTB!MS3xJYSfON_a!LBo-`+R3?}M1Ic3Qy?^q(H5)qCjA zm%@yMR5k%>!qxx9D_#q#Ii{7Qx76EjZm?ad`c&&I(19+f?aHZ3@=f-`$;c!c*qG~f zh#uu4P`m$Crs(Q$qwik5ogp+zx}BQJy15V!<#n>VLf+KXFs-k@w4EKWIda+ZtUQR4 z2_hk%XBC|j8pbX!#6rRICmE;(N1oh~SClVVdoPW}?V&q3nZzX#B}N#0S%EytIKz8P zs(5)>P@VNwp#v0}l8{msTa{M17#U6VlBYh|RgsWUgfBZj?Y7H-`|}APRR!ktTD!Bt zR3K4TCJbb}D4=kEa$0tbjSU<%VOWqut|J&73?3WP9Ja^y5;QY<7>v9f0!R@fpH9 z7QR~iWnn?1HY5TS<~8MNIC@2DBiZJ%ZTE!DV10#6ocUZAFquS`Ug;8d_j`>{~S%>CIadXK!`9bM1_4cbx*G!gI8x%SClc{^*PpU+H}PQ97dGQ9qq|8zlnjh zIYeZpX_=JkQEDW8Gi2z`N+h=}Duscr4Gp>Ubrs?rvWWX{G+)#qCzH>{BvTYmdl*kU z*_w|I)|6GJU+~1$MSp)RQHJ-x2Ilg{H!Qk6O(wu`3@9v2pGn(sZ4wqrwI0Qx(k)BP zs;UfiV}J&|vac}b#9fB+K%?;`=_Z2zlY8-&2q^b=%uFjl=y_62J}nUc6}0y;1Og{3 zFztDxzkokXW6h)yKjQs+I%d>VF|n+YIGhJ!&B4Qm45Ioz$&B_M9csUw&_~Bp5>pbq z$h$zC|2oj>+7&y|+Ili~`coI0^m-fV1O+YBNVpmZ7hb7vIvxXsZ>RGdO=;cJ)d?Ak zW1V|1W77QvDdDkXKvBY{Om{^E*2*!>8MFQ@2BjJU-mStffS-Z_f1KLrOc<5^W-$bf zL2vFyLwSLs%#9cil_zy`kq!)@LPDW+kHkTXM>U)iCt6rrS8^iQk}V-ALycx-@|Zwz zQ0p@RVz3f8)1(nEK${3I{&*y=PcM!aA{9QCY-8_4 zsT$zlvvidSy(qz#P)W8mD*ST0ViR{CW2h;vE_wB+|K~ID({|y3^Mm5MN7JzbSg&At z6&(cu|41O#YYl*3N0xxx5p&?iWhe*8ESc!ZWn6nC~P1Ee^o<;Z)<^T;D zvG{o@=~&7_5Sw7=5YK0c49T1^$EO$B4f~0k5bnR&wflW+4c8Qj=MW*@WK5Mx<@x5P zJ;h8e{wk>?bvVK67O6m$lSvH{-ju)kK!k@9ACoz8|J5h6%y%Xt(U)rw1{lGT%PBox zLQzo!`vS0a&_Ss}vZ!_Yxk8Ua=3W(5c4|-cOn{0fuq_dg2IB?ctkZu?32FUMu$e6>&YaXYHa4X_C30D^ z!n`nj*kZoluEXyRok~@zVca7b)U%WD`znGikK!3ii*oefHIOG&)^~51MTEQ=N7bGv zjL`Y`K0i7jP1QX#FKk;>Aw9p~B!Ku4xtm^}i}n0SXNQk5CW_y{L8 z@NNa31s%Abx6U1`ZVL|t?e|c@V*<{B$>`ak5&Cc}?9J8Q>wi0)SZPQWm?2zNfs<@` zY@ODMZnNj|e$(brv1OfP{9(C|PXAOz{O0W8(NJ5|c!jxas?7a`?ePkHV$Gw!8+ZM- z{(1$7Geic=|MjTOEd7pr$kjV@gRM9ri^H<{b4i|TSv6;;2nLhg%iDfmb3B1D%<1~# zrp=KH2MA6I{DAb?=-DfCZ3V&&NGGh>V97enGa?R_z#K-vL^3zlM>AC_|>w{$xU5L z9v+?4+}|n`R{Q3|1t^0&uhYe{jrtt+JQ~WKPQM8c?AD$9T-_g=dQq z>HOJggW%^(^Kxe6`}k&(di+ z`+f3twZ8iFZ=d~hfz#BDifZnLfWFSn)}pB|Gx7fDlG$w0K0N<#zp0L-Yer=i6d-BHQd6-pSGRw`;e%qc zoMQIaPY2m-9eYuYsm`acY`8LN@}2Uh4eyOZ0p#=n`p~x38u3Zz$CDV*k>G zA}cW^I~T$JqJV?bn!v;H!2Rs=-Z=-M)3ZyHfuP5)`j^{^Xa^|zw|6&xE*vsWyR7U? zuU{2Z^YQE_aVb0Cz0S*hRHfRX7BZz3PV}GR*i*IAQ?eTlU!{<4x|vzu<x4z6twCdeUG7|VW z308V^D58{;5h%t>wGbM0xOF%?1SaNjPwcaC7>bH-|Gm-DHy2b)0gaU2r{%<4N-{D^ zO3DzL4e^I4YH8^Ezo7!I8iL{NkI5LQsL05XEJn_xJIWNj*HM4uEZvQ#NafTC%?DAI z$9;1rRS&fT7evqfOVdU$a>&%?v(BmJ!wyk%Ia98ib}1s9mU2x}L@WnxysB;~r**~_ z+Cld!vvJ)tf+b8vU1I4pXev<9t32*4|%8~6aGgG3%5jbs4PM)Lk+FbGpp zuJ!zLFqD63`3_Jq*#Ijy2^HEBD;n^(e_QlvM(o_#0$bNY=udJIB6^W`9x&jegJZ)0 ztscPOLHP*kN|k@YF-{M_($8X63g`5hy^ah88W`&?P87_CI-C;=CTx5EtNs8p@eB<2 zbZPwij{(Z07{USb@K(K7nyyu}x*Nk;{7@g`V@ywqTm)AOBrkbMxQ!ZyKz8XG3u6P zO~smWaUyFa5LR_b4&@e!D;^pVW_lij7vdq)-4SpsMOS7jjL|OdHD{+X+FLobtJd*R zOCQtEQWj{KgMto3hu!uyO?@qjrXn*tO$f@IuXF)jjP*Lqn9QtZxWXxs@2u8NU{@!^iNlMA3EnlS5v=+O|J`0|sZu zAI@<7x{A;LSWQ)9GzXeJmd9QW(5+%H9exJc?nf+-jXJ!$1%Km*S++_%Pk;X=ITOE3jmM4XdHyEkzS&UmMGa&UXKt!KA|XU%Uyro#R!QW55{0fMva(f^N`O=afe8;Y7W2 zm$iPO*?S+|XNH(E>r^Am9HU7AjVWf+W{To|$AwqdSPEXWPFF`Lb=O_e2YWJPst_6D zkxlqDd3{Q2=Erv)#^ka{=HmevkbyV4d+YDB-KDQuLY>&RUN@iIw21jh^*U7U2SYc5 z2(MdzJOVFjA%8NY8*q|xw!3fq?$b<8%o9L*(#(DO{Q_{)LXl6OKE3;HWOTxAZL<2+ z&#yApT_DV;gvL_)urWOlmwqb!PK)c#-8*+pvlQ;)S~)41u%pf?36p)dI}msw)9Fso zg(DXJco>6l6-+gRkb|NN?oUJexWqabLL*mFLdzhqcmeP~qQwxQ7X?fQ!`UF{9(D-* z5*;~%VNt}aAO(hn`m0W930ueQ2m?f(^yQo|G8S4@F_?jJL{m#N6#?}FXQPz)8u&sY zyXO&NN@Ua_5C(E`hVQc%XxWR_s@Aj<htMfL|GN2kLZql%eL-?p~dIO{cgsboJ@+L64(gVTCg*XRknBz+CJ_ z7;oXTWPB!0+_-~-4AUX#CN7Y3MYE?AZvzcbjK0UE;RC~iPwWshMnTb1ySPt`n9J=x zUF*Gllq`C_IUbwLefER;d_JLxJ2d7y_(+Lo<-ar;e;5~NWe-PuHdcyeEiA5pbE+Gt zQC$_Mjv#*pr_nJNjji*)?Honwul(2kWeZ%44SMd^MBYk+!U-b83)_Bet*vSO_+%rZ zXN*yNYv38pB*QAbUsQTjEq~Vxv=wAF-bI^WFY*{+o)~G0)Uo^&^*l{;E@Z)70@=&r zV1xHb3rO9xvT3DnHDBh64=ianCw%@d^O*6VZpm^T6@!U}P2~oa-4%~JcNMNhEf)_(84xygHigv`9 z#E`WUKqG|uCp8oS8HJJS5q1PQzzKi`@qf^TIWZ@$9X5cROw0S)d?8+13&OP7e)xV` zL)zgnS_S$&ez7)#O%eeB`xBeRdQ9Pp*P-9yx?Jej6weqf?xl0<$-_O zldEfJQwURvpC^b)i1H@MnWH=D(_ z!S#mrEgqtHnNu9uW4}`&>Iab_)mL@1pvBTD%*5%R(eW*vgSLNmm$?U_ zksALY>EWVXQ@GI+k$)XaYm8`PSA`CSp3aJ%EjFK8o_kfW%{}{jV0G8hXYn+u`1~N~ zI3sAo{VbtneAd@XEc-*l=2_ctHo*8^ix}4#=rZfaiCiDg74Jn|kJd7%auAC8_3M`g z$&6ZLY^IUAcnS*%?S7;yVq|X*f=aO{(LRO>?pqJ~=^9JE9v+#2f%a@`MfT zjyb#M;cTM@zvmY-!t1>Wk;#{j?qlxIwOL~Z(utElQHn%iNkPZYGhbZCvsq|R%W*#3 zcV&@s3YP8`0cXVLlU}FK_N%DfEJO|1HN~|<vukKa+m8e zTtOEPOO@MB#vRVCtmXT-1s-(%(pEehtC{Ow^pkD&I_{)bZ8~bKnOx`Vo%SV8@MEi8 zgAVpy-e)~F6R~Va@AMw7Zj2C$l$i^BNSKp*L|sTrAXau11U_$aHCLv!9UtvbP`Ap^ zctLirVx|>PCkRYnH)FG@<{xbXdA#v(P8TCGQu@sF^Ld}#T-dsSQmrBS<*4CHV z5S=XK((tup;d6YM>y0Zm7}riZvpbo;3?i+cdsWBu{<1uJ!F^n3c{JMbrO6AKt;N4O z%PD9?Fbn6T2k7tk%6ydC&g0R*lSBIoF7BI*m*3QuJcsL&|xGF z=gMzDm%RNJ`m4;;6`Mg;E<;_(aD4jy^z(y}A5G-p38QPU}ccOGU2=gXaK* zhlmv|yZXb>ZxH#J@0dS$Pb1wiQEm1fR_OTK zRQXzpzq{hesp8p@;$d>oe+h>giu(~AKlKeUT^hX`jeEqPBg-=>kJHKIjPVamJKwgA zMY%b-Z{2uf=PQ=oR}>%DHu&_N(~s)Y#o-&`D>k<;ijQbtvhB9*uZwGg*$(DB#gLJb zUIT$lyEXiILiN@9CPmph4Pa@r!Cmp-sKzp*kDuH3SA^*EJwx4ok*590jPswm0T$96 zgwt)sy@k|r&1Cy*2hL(igFK{m+X77J$5s|CInwL>*ogFKQlPeYk#UX^BN=lX-L1A3 zy8yq9*~QTnmjGdXj` zt4E(!8@lXQ51(HSORr0IA+oWtF>>Dt^lW1Ip?eV2x{OXk6v5@ zWf{}5AoV}0Js9wLD8croCoTbw<5@WkQt{poTp)-t=5r9(rd%@~7}1a-!+5(H^aw0c zof7e20C=UHgH;^o0rR<(3^(MWq8`0qM+9f2@~780CZOkRK`AHRf5%{FIOK7A(yp-x zjwz7tUZb%Im#qVtD{I{rfUE->jO3KSaK)nzE~03`_+S+nhcY6e{hF*lC}X0nB8Bit zq4M%PyjGF&Pjv0|MaK5?rEA$<-k zVdBNBz?QgoIY3hyoskw?Rxf}u+!RkhVRBL_N6oZUFIW;B0PHfBG`O;_*>m$j~A(}-Q4O7w?^Ih zuSTF<3A;iob3~@ENkKseL+N$+?K$mH?ePkfid_ay)4wz>s0m!?LZmF(Dn}p@EG1R^ z_>z+|za|SkC_Z1&J!K18Y>u5dN_I{W>F*~#eMX!dE$fR4I1G8RuQOKb*wFDMOZtyZ z)jQ0ngJ242>-p`X6;c>=%!6o)m>47%a4~Iv2kZ0GA5QvHG`4e-6l#5Gc&|LZSrM9c z5!ChwS}nsL46>yxI0_#PSc`AUMNnpgE8e&G0+vqk*hF;K0{?#{j8r5+%`v?9>J~Ch zD#NuVRX38QGnQWYPPwO|U$rl7#!#j2JLNb3brh+!=e!tF?ZmdAFly79P}KFE#YD9F zwn_4&IG<7rQ_RJAyXcYzGID%wyq`juWh3?%zzNxjml^<(5#H!&qpOS#bYXyt(=1E3 zd28(SQz|}29$%OW6^yX%ehMY>3lX`bc5Ls~dp^T9Rp&Yk+VJD6{5Rrb((8J^-e2vv zXu_Ue8sIwJ0OyjBgZb!cMHxC@^HEH_nTZz3(uL)f=7VbfaClqMDyJh_Tg?DI$%9Te zyWU+bsy{m8DaadhmApT`(}Cz#NNX)-n1Uah_p*%_d^w@zfUZnysEf6Y?MdnwTE4rx z_2Fz~1F~=Pw(r3wgaJYI0@<`S4BbBCfkm~N==?|RZsxnYC%s}P`BtcqXF17$uHG>! zbpd%fBxmb)&!OFLQBuqlpwxb7-bNVVTwEU4{-$H{o@N5!W>t=M&Iz8*XJXlVr(%`_ zU7f6@*DBD$hl7J7C>1(#o$>v`1FzdmGExu4aZ}Ze9rJBafLD}$ya(akS)+srtZC;& zD82jpYUu9;hR!TRL{fL??%H)c?bU8Rd0ya#NDT`!6sAC7AT^w9tlBoFkA%fwEKfTj zl(dgw(TS&EH z&WXXdh}n?$XN4xVuy6>sD*-~Pq<4FoR>c4~v#2RXo##$FaiWb|@7x2*N)6(2@nr*n zN0*vUbc0Ths)S`eST>#!s=5+%Ys_nAzt}ygT-VVZ(7P}G>r=LNF@AIH`7awVAX=^0 z!9@6fl886SNn*CWSs0#U^qi0{Pkx2s8F=N(!rOnm8YiTlhFOt7lS&8r)7kR;?N#ot zxSdm(YzPK-Gov7taw}TJuoB~d%7O7xij_Fztlpzx9`g7t!2;DoZQJ~A>);y7UYj?(l0}I8| zSPuIeg)GVfx-US|5$eyS9LEFC!Z9(ivUiFv(}C44`Px;TL4**VWJd&PKLqbQ0?<2w zDY=%NS7;6CPmZSr4dm;~1A)Y0UKMYbX&ix^hibZow|VWEvtOsOXDVDr}cix|c5w8MgJz=R8_OM?v3j7WM7TxNnD z)BjA;pStbkYL_7 z58j?^|M4^#HE>mLA?;?_3>3_6o}Ff&01S=6=XF*l_DED>(rc=xlEOti1$cu|P@ysM zT)@Zpi( zlHyniG$9X%T{~qq-ezVvwmpwjnd3>6|M`krv1p{m9F8{{apBKnm07q3RI;OgBJ6nzRz zZ?h98&q{5%Af=#t(sIWvv^(A#c~r zgTIl>{WzIZJdag89uMRnk9D6`luZ@wzdhq!d8%>V8+2ZCHaSPtv^l@o`W##Rr#fTZ z-lBGMY(fn!T`5!~(?75>Sj)!5m{*BUA1meDqRwvEY+X$W*3dOd&=rj|3m#f~`DT0C zHMS*%BNx$deOl9(f8fWQ(!8NsHSCQh=L*27M z;jT*J?wjooU(eLvEmV%X0qI0F_xb2}vw25F+?#~iI^O`34@cHnD<Feavm!Z6<-ori=5|8rN&B_Ax9O=2$N6sCY!BIg(BG=z&T875UyH~{ zvFFiBNN1e+y0h1KW1st-Zqau2>R21H)EUPyVAlcAta9E{Lg8|%Jf8Sgk+zoTM zhZ&WXPr2Nex{V~>DBFA9;7hv1eZG*={8X%5g!5L>@Slm>VQV1C&Fa&o0!7N&S1!ay zBl7UI%bA>=W`ssKah9#2hEuGz`_0u@Urp3w`S@OhOv18Y_+r?fkAVuMOZt}X$3rvg zg44d=XZkb+i6nBK$i=p>{9kK@jI(uqzn|WeQqy+B+^ek@QH_?lmJ8p^%xP=wO`1NPCk~8E)LZq*GJnKH9 zlO*DHU{27FHXATG2X@gPE)(}(z#Kr_`W6H#7OFxOMkOQ$SF)y|F?GmQVx+j{QKH1t za)DB!@J1Unz^?11_$3N)iFe|}^_gSKqZOI+pQ0zq>Wwu;uFempJ2dHlJ`-uzJLn-F#|jdGMeO8Mtd11bX@! zir0Ccof`*kMNK~;$Z9?uxybO=A%{DyuOz_=c*5qb0PQtESA2ykWSt80HcBjti3&Ci zr$#$Y^*!?0$Wl-+f0zBiXjOY(GH9Q>ag!JZlZs3jZ77jya2keb4-`&pF=+fAp zD7cTUnvGLAKX{J&m})He()VVE<|hS)vR&fOo{7UZT|vJtW|Pz(?H@j`D#tI8FqqPA z%X9hjO0X12xDyGpg^-#8bUo|=qVXItf8q-?VdwnwQ2+ky>!D!?5}0A}l7N(JjV5%y zHn`y<-#nNpnYECCS=c{N;<7n!Z7lG0A#Sp5$BuSlnUtnEz#Ix?2E#NyT_wJg7hU>v z9wvH<5~+O&@{WdJCdNyO4z2_2#fwP)(Ao>}fK>l+`Kt!FBtsFk4Qq8*p(JSS1<-JW zA`zht9|4yUG5^h<148CQrtvIcJLy6wML(c*EYtWi07BN{2?7P1d4nZ zCI=s~Em{^*Qi8CWSJxDDVD591y$-YweecXvNBi=TJV`51A!c;26Tejvc>dIiw>q zwL5Llitma?S7xHz1G`wzHY$!;SN!4_(-U%_$Azj2kz$k(L(zPtN?zX0vq} zy_3zpS5+<+5qsAM3yWxC`<`L8N6K|X#!_;Gn%K}zyZnFH?jHZi=p|(b?q+OPH2xsH zE-2OFDakN4gMp9~n|?b5x@!|LS)yY%s;%Zh;DmwQMOA=_LACNw-71vJqm8`y@|k+5 zzxrkKouY|!&+83lcOBxah^zJ(M)_kRh8)nZc&k~>KzBDkux-ROensL zf3$SWSJSW*#nDY9j|`jVl0r-BV`Y5MQiAbGPDN7q(f2Q{1>B4>l8Q1L__etd7`3Oy zBtoQkw5pO;lwdp%VGJf+z_1#|(j|_wf!2+z*64C8er;*Y@ZnkU9@g+_d(&y~fc0%@ zDVO`Z_kp{WqNi_a=IVY&SqqK6r>Up?`ISZE!$8LJRBlX>(dxsz=*UFe?Z-m}*v!ca zc2CEQ+Vx_%igYX<<<)JX^4FB9l@r1=4Wr>5ok=!{lQ!-u3yY4Ga!XGyX}TJl*4I$Y zyNeeEvOYv%5A~Wk1m0=knbI z(}y(i%J*dfwEE&q^Fs2{`}4z6bvz+Xsi7#~s-=ZPk*a!do{uR>MJ($mU(El4JSEjMZ%$rSJZp3hP_cEGGQtF&l@BQT2a3lpj`~&3 zlKMp}f-77V&x!UM&0foYD*unB^NyzakNyS_xi()J*WP4RvgzX5J9}>- zBwNT1$=;iAuhF$vw#v@lzfZs4`JLmBu5-EfRQLUUjpy_Eh~?H=gX3fx2L`yT?1_Ke ztyhvuCxlS!HWPZu7a84qtYBF(DgW6(O+`N>J#-R9#yL>#O*J}wV?TvkwbUUIhxKZ| zGKup!^6|MVFrg65^r&%w^b=S0g1T+AnPmxa5Lrd$Fod>^L=iEKYcMFrKpvzzvLkG} zX|b6v@WJn9?(gklCNRuC!v{j!3mYPi4DOjpA6EWoi&74#gi+qs+>#T;xk`EPSD^8mVc$4T@e`kG*YBAO)%q*+>M zNE0Ugh?U0>gC-?<|B2oLE(p{Afai>s41>s(IC>9732|$Pf7DqZT_-rz(=%D_^hQ9! zBmsc4ch{nxo?aIL&QCe{4Ju$`)@TRnIF2>#U;HwKDz%jbh3v4bI{HhuUM-Qg-z_@T zEnY9F@de(s{6w`h^@zPexR$a`pvd@bGJmApmxb_qxe+Y@v%Y8q421v~SN!q)MF%SVn=rg+YP|)c20UkXddJzKm z5~W4R1JcI<7eHufMGnJH#B)B|b@cLcr?xbDvgv@Wb?|ks{ZG-Y zW}60fb%w4|uSS+Gqo)H_Dsr!PXaghGsQ$(mYkf~o{NuA4zF#)8(V|-P1LRIrD?K~9#bmBIeZjr z4$DjtQk3lkmtdg)n(UJ;!Z~epwx!hyx-C{l*yJ6$;lX9}4A~%;auJvEvT8bk$w4&p z(>Rb#1aYrRD=v8RyErzs-1Zl3&FT3$^aBQob@EzEDbB*QPW`CcRXf{@*a+Exk;Xmx zNc&lSdfelgw2(JC>Vvd4hy2ghDr2@89C^vBC;#lh2yA-i_s4n zAs@#C_n?ZG4{0h*l_cyxKR^$LUx2etGOFQV7?X=1A*1~((`rLRD7lgGd-~1dL^FJ% z!b)OdgReovPfH%<1&agp34lZ73`nWMySwgnBZ6?KdD__-uwid3@@=Dnx3-}028T|@Sr?$>qSi9Z`}szR-?>U6WWVR_6-g;C`=ip zJgr8H4K}%a_hZLF|GPEzgPzDyKIcko-GAYf~=G$!D36T=ZUx1S;6|2E)o zFLbME=3<5~b8~6dR>BSgjl6cpcHDLKtZf%_#y*WPB3*+!TB07K-z#7jnmk#R3%r|* zvJxIfV0zk9A=bfD{pE{#mPerjTOEICrM#N6+Rkn*moL_aXH_KZRZAa)5@+;+Rxs0h zx5?7io`V-7gKvwfVspH8^a3Nght`w!aj#~qcy~Cy(fp~Vvb4{r zj)_o7&o;wz&LRKTlm3~yJ_q_?6{;fcSQJ+174_TtrB?U)Z-2HjZ?FFj-sIlS{=CBO z^C2<6$1UoN;&bj%gp`G*Pom0LwK2|oNPq|n9AmL8AuTnuAu&i zw*w|3XB)1X*iWi4pTi_{6~pTRajrF_nE=)WqXu&{ezuRg4?sHKz+7xzvjvYksYItO zgZ_I|FWO+f0&IJx;Ah(l<9hA4V=_nx3y_UsZw7TQ%me zj@#1)>GOjwG0hh91=1d5&1U^bg(#559epZV?+G2Q0gt=`=pbOHEH zzq6`O+~_fzj%5fTCkemn-h ze6>-9)cwI1acOCz+z||9g_J3kmaw5nrnakbqOI-Wqw@0D;oYAXPPbivU{P_BS}ty` zS8SUeA-}P+v-3Fcg4W5XLnPNrX}E7=V^WNab~~UcO_Y1mFm_fXzX1G4Kt~rEbVLkX)zoVz4Auz`C0)E0 zp1a8515-wQkD8Bri%oY!cJmluop9?JrNLdm{51a2GA<|{kU0K(3EX%<_t8K6X5CcH60EuSr!uuplk%B zjxbQJv-bNUhXo^j#!>8qM|M=Iq1%YTV^$D=KBZ9#&B$a90VI`pj`^rfGM>hC6kOft z6ej8gBOSVLLTaRk1F%DZ^&0{*sgS9e@FGe|fQd zlTWtP;{c*kh9G~CHi<94&SQPUQ!AGRHs|v zqV;B|&`w7<_b(gQDxl|qjeS;>n>oQl$Z&aS?d#xv;ckli;)?*}o-~Y0) zX)fodR7J$y%t?b#wox+XNGfx(z*{u-uf3oJ(1vv>-J>>Nv4J6qDP4(Q|_Wg(bgMVi?PUlY67K`?;p65q!iFi{H|8Oh{ zn5wnRspO^Inzt9JbD%F~HA5n5n+Ya42#f}vWur5sJ~HS3*&YW-4u~wkJ!YhL@R=n7 zo@$$#!D8*TpV2scvSTy5f4QrdT2qwj@}yQnaKmWvqeBhDw-tbqrvF%B`Eq>KuLkcq zfv8;QAH8kN{B(|V8(O!`!&7L}uZ}LNOI0#^l<&&8oAXhO-|6k5sAlTjmBjw8YqiJ+ zjjHb5*&T#*+V@?BGn>U0o>c_okw~@r>?h*9i89tYpXt8p3>o3)kNJC7^+XqBEXH)o z+&;0CrLR4db9Uu@r%Y2CLDHqMW&-WEK*m=7j%_`jTTEEGVFvAO;y>2)a0U#d3kq-m z<=(YO0Rt3X&pq4(*9i1I1eH$p}*~JX_#&8w&EIPAFWmv^(l=)$38Rhrpous5S-o6e}cC^L&?Pq(%CRb?krK~Wc1g{KrZg6-uUU(_Q~e)v6xL7 zW^O=hw5n3XfdQlX)7mX$$Cl!eyoFVkGbg?)8_Ami&ae`wd>=3t8Cs9ydH!C88^2Ib zmYKmp%wf)!XEp{TTFGQ8EqR&j)cTl*%<*Btro}S->hRgVr0=D@DAHoC=HINBLK{sIZ zz-|Mfph1*OqIp<(_?Ue`0YNeMHVFZ(I-py`p+U$i+zVvc`a9flOsjzJrJr3i_#S|Z zjkP%+wCxAp*#Z0EHOfV*-|>w&#E-KR*zgo_t?;gDK3E-%FpjqjJBg}+GE z$tc~41N2&1v}3*RTJO zg8TWq-FTPYFB#zg_l$)jBG_g97bti){?8Ly@Xg-Ek>Rjwbz)IPkJv`_HhsCc7FO&7 zDg{+Mpk!M; z_%(aKTZ~vB{=V)CEDADXZ{JdbauJaW(|P&ChTfp~>%CCYOj6(BN7@j$=hlv= z5U;V48!5g75h9^0FB0F4Ownc;7vJF1SWq{%H7=YRzc2{DW?%IxiC0g=_(CEf6A z^^Z}B@yx*?ogmUU7}}gD7%wu%T&W?5UFg$S^S6o(VF0`u$d&VXOZI-TPx{Ii*ohrB z++vAbChLv>m(=#$G5PJD(`|p?c|-7-sQ>hc^xNYvcG!IlnLcUxsMs?4awoXH{1A2g7Z#Uh3Q9 z&`8>kZOjY|52^urNyc2!1BS@!u8YZ&49XXH@eLF^14b{BX{F@`N$WV zb1WmpE=ewDX3hyKY|r}x(!O~4x6a-Sz0Td$xgPP7x)%{Z;=q+`N_vxTYY9g+dHP%r z?b_XK@868)r<IV3oJ!H%FF<}Vwjut%4^q?8m%m7M4v)52 zgmYWG7r*&m{a#CMV$rBOZ8i0>&EdV9WTe9w=s ze-r7hOwDHJwt6+&tX_>)Jr(I0ZFOylHs`u6eX&=WE19n9Uz_vY8(OTi9U%F}qs7~^ zHlwcK$X!rx>+oWdR?2_tFG}=F1IEvh+vH1wfxoy@z`^l#cJVet`9)^c0_$}6FP{cF zOy%f*G757SJOA5bg%4#HSeBpO9F>di|0Hot;PY(z!0~HjcT37w)M;Srg@4q0qb2|L zqTTrBBCxLh;;H3R_M$YMW1ZF%@0e1D=d*kL$s$u(6t+6La`)t^bL?sxTO? zSCPJInhspyG<`AY0u%0a-%YE0q=5dOei1Se0=F;ew;)#IGW&`jDQs23oXFgXkE>R4 z4%lR-5qM;3+EFkgnP3`fXD&!yD2_l+hVAk%>i^QrK9kvV#%ntFWGC4gz`Gv!kfp-$ zB0;<$=xLTzO(Ws7j9C~NYb`va3twW09RYb$^*|Q*Fswv{f+e_?&k3K`Gr)AZvy+~i zFUbaxrNXFZWX9#k{89CJ7z{z@2)b=7>8UWvwe}BRy z+OBG;&3|qEt;cr%tVMO&sCDN_O)@keq@<*zkvzxYxrlye{1X^!-gYUG2cD7No_pOb zYngcep5hDmT`}5vIwXD95wKqcTotaZ8BSjFRo8_tnu~CLXE-iB<%*FjE%{MbOIqg6 zhyl~5eG-UMr+Q(BwugD}TQpO1^ZlLN3yR=>Z^pPenTpO>f&y zd}u?9pnAdz#u#g!Rk-Ps+d0#lNe0o84C<y^))bdu^`joioG`ws!Kp<0bO9tXh6o$8DO6h!imw{=f z))k)L^#r9o!p-N|+(Uvw?v?QMawPnCoRZt_ej%fAVr?ly{XGiHRE+FwF+1PJjNExyjjUiw zpSF>cAXVw@#>QSo3aKeJ)qVuN+X68~IlexmIHO=$HW|tp1%)F%yBNXqG-2|aq-!$D zLZl34u_88wdjH@=EFo^%D$!50fkgr-6v{@gl;VOLNr=xQ&sJkI>nQ#ol5^s*!DCl5 zQQ06;5R`})Y6XF4pVsD+DwyHo6sm#opdcbb-00Bgi$8pKuRBf~0=7l>Q+DA)Y7MD9 zZ%_K)HDvfq{5}3wW}z`Q&l#KWR0QEMiO$^@X)K(zXqhite!BTkzbqa9X4~|3b$-9~ zXxUFvqY#)AXcof$t(!^|0RjzqenYT~Ni5b_DD5dAj>hX-&*yV>7C6hB$U5rXJ|IuRXUriItRTns zhF^0g#~WH5$14*1(JgYNz+bIAK1|e7i^j`s!1x{o#7p-BRA(eP!VC!*UV!B^tRzN) zbrs1PVuoC;bx1a55YGIRdD^O9Vsy5G>vBMRoV))h#BBmx()}FZ^Oroc3ru|7SPBBfOQadjcOhQ88 z2~aOTLApK#VR_Sh)bm^uK@^1Gs3=Ri|D4H4xX>(e1S@7iQT1PYDAgf|Pcru()h6c2 z%DFqM5^xH!y(xi*;^K+rLfB;ANLe;0;ETdSzP$*(M@B+Noy8TU4djYK_47WF#po+5 zv#?F@_xw&h0-SVf$u(6SH}53)I{vP&gg%Qm&P4l32=auhBL7|XaqgMo18 zyA5C3(b4Jccj9Fs${%G*O;8&An})~XS+OJoO67}4V`Dk6ft|X`FC|i7JrgE9+ScN= zzzAY#)I|-7XQp>Bv-0Dc{L5Evs@aNy03N6^)ZS@`#3n~n*-kKUY_c|Uvhoy8pa?-T zIs54?c&z!p`H0CwqnONc6o>~9G~5F?mGS8;L5;7+mK)Ot2OvO9Avb%jam#6V?oDgv zqz<|w#ZXPdSHpE+kxAP7vaZVCLuy;gxC9r$PAfNapA|H@!03FM z)dmqNN!zd9ig#ni1?FVHV_DVrK#=%ynI+ds2mBN;=T022PIMRWLwYoD zQ5b1VC^M_r=H{MQetwzQB#-Y%@IBnUO)>yjoryX9dF6Gx+xkKv9&{NJRe~DSYZ{G0@TgsrY2$`jWu5+89xVe?@Ki@mi`p`Dg%8QgubjYi#&dL zUCI+#@ZpBUbl`3A(m(1-z3&Z;EFNKqHTr9a_?pb15N~OoWCS}AO&ne@2?0kDP8I}2 z9CngnXhX>|#>V!o#cD{|3^qu$7w0VsKDvm*0_hbegwHb~%&i&<>}(&ErF4sp3xx%V z^9NZfsy2SzW`-#lAFWezTT|8=e7s0}b zF#e0#{QK7xT0=-$Hn}r5_&jTro1NV9KPe6coz=er`^a8e;~3yj{L$`C8?G~BKU}ZG z)*qy=!;GJi+GdN7_+*eF&%M_7rscoY^{_POUz^%c!ie|DR5l0}nL?AV^DF&-LB^{L zu6g32bk8D*<3EKy{{AdbasFE)VSg7t5Chd?IRd-^G_5l(E)}|KImrcsRH`uQ80p(M z_*IIs&*&YGsd<55>FK;onxwM=66Ct@$>?wauC(iz%za!60r@mDqDLvxx4VJIrZ)q3 zvkjg)LIDRWYj(xMeC>WmD_1{>o;KSltPwFuwR<*SuMUeY-W)c+cwcVo_ieGRy03f< z;XYe?B;tQIxHfIte)r=YmWVv(X>$rDh@&@ho6#T$5RIK44$iuIS8tcTI@p)=`8I2{ zz&E`2<+VwNCv_%=mIv(U?4cxs$j$E)?3%aWgO)i5m{#ebPC^Efe|stLwyQ0wf3va4vpc$ci)B4uw>c4&UmRVV=1xBP2kzP&{vF>r&DXyk^t@czaQ2@)rqLIt zxcN1EIlecWPk_8(n{Ul*C|A85(rOR*Z@>Lw`M0R_TRvO2+SY*m(-WgziTyw}>`^(d z^y%N>+$Ild{oD0OtsGN_z~64UC|&pK&E5H_sz~!0r1#(JB*R?$$fE%Fa<8h~C)Su> z*9WtTdJms@pMKzL<&V143XBf+#tfnpk{j104tVmqnc;B-+pAZ z>)_=-8)4)#&9ZgkgT+|03YB7RJRis<(>ttriaxc}E=T6*eEW1%gcCz6`s%DFnKQw} zf4k!6)u!*ep}ORaFWV8UQTKRO&5*FDCc81}4p6Zx=zHtSJ?O)0B<6FL}DZGD-}g++D!`J(8wNkg?)n0a7If(=}I(QzHy zaY-vK@kUfYV_g%`Ar>{%}*{~##z5Pgj8Xm+r(8<&u^XeS4dNQ3(}o7T**}5l9%?u=qa$?^b`eK3P0}qlQS>0VOXA?d4-MD zpsT+w!D6wQ(^{jIjH6peYm+GceN-tBOL@M0DB6Csx0^ZLexNITTgVr1n|oXH^P&#u zgd{|(vQ3R{{(jtV;Ko?jc#Ce!s!><~yxlJICNrr=m`~v#IAbMxvSc4-?x4{aMW&HR=t(y}Q6h^b*A@%Z+ zI5GoXpoi+C9N-)iSezhY3b^aKD&O^~Gch(=xGwCt{Ap@hmHaw6xykyhAhaoySoL7* zcBkWfs7*q)K{LMJ+z3!-+`N7J_8uC!3kUm4XUv{Vo_IpFHsINi5Nff>c%Qr$fMsECL_NK`clm;Ay{g+ty-w zH8)*V<l(!^~dCGqGutdL3I9t23; zVqoU|d0H^=1&2Vt%MjuM?<&@Ob)a_uOtosMF~1<*adR;KNX7A~K3oMDV9Jsdrr7Z! zIR;IV5@nNGEFaWm&?SKf!qG+~p^0d9%9oDcWR+!=kp_=C(JpE-@)Qy9fy16R4QZGn zo!qG*53OmqCL0Sxp50oNU0h-kq1`nj2w`%gFCZj=vt_7PtjkBOgTr49j3vX|P;ZJc z#-Ot&$o!Ld^#ncNb(WUvFu;@Q%!6G3|Wf=zn-L5Ap z+~SUFVk~I<)MtJ1ti?v?3I`+wR)`B|?$`9FJ<1Rxr0NvRWoaJAc*b(vvoJk75M)Xy z!(%}mg3dB$=JZ5!0cmI?NTDVdr^Nx6Bt1Lf@3V3Ss=``8Hv8k~lbE0#gM#f0dWu2= zFBH3ISP6|N^>-Tq3gdb3jj{mSv*#=%4n+n!J%9@$QCV;<+7`bUKlMP>qvUJvbZ=Z+ zPFA$+kb20y&+gtNnJaf7{&tN@N!q!_5(v9=_f`lK*-^T$;W+Jlc)`~L{DU+#0$4dYaRc{!NcnWD^&QX+KV@gHkWJh{f2 zPjo#RHd+_$mAr^hVd)-@{@+>EL65xUm2sbmK38?MQsD{nm@WFGItX4*YuP>4%@)O^ z{IJXQ*2<#gK2>>0Stbm3b5r5E=k^iK>0MTbBC2zcc$eJ9R!v1B$d(?*sKnxl z2D4DDTcuiaUm^tiWc0wI$%*&OH<3Eb&)C0eD-Vgc6c;(DkxoY0>blAWrwi(%n6<}* z)W?uqDXJsN^6c{S0_x0wFO&|~DVkRdU(5>R42RCD?a=AL;io+KY$dh4mLU&e^v-EB znVrn<->qu1q}9p82|)tf6nJH3%K%D}S7`YwLF5AxY6w(}4c_{-z)UHBP+l7k_TMR? zGsxzXtW2zg{VcJvA^|;@Hj7;FgOGmZ=)3{JGI`v{=*m2il!y0`j5puE6ihvcCx76z zzj!xtwj>T57}tYTj}~}EHRgrNC+XSVFZ|WSD$_?)JGf%4(21^^5#|P}rG-AG{D&1fT60s=8(0X>BklDBZwWw^+ zf^zyG^UK->*P6Ws7KI9@z>DNiSb$2b1T41-sa0C7UTO{| zs{xHw2}mURTv9eFU$0Q9vDmbP%l| zIzAOy2}m8u!m}+aqz|`j5M3GzF*S=hGAI}#3kt5bM9PHC@Ixe!9Mr+k=_)ax z0QDWZs3=I|6|&~yxLE3fGjPv3GC)F;$_&X}SY)d+q`Wp0n(m9Of4(gSE>zEP9eGD5 zjLW@|rJE6v$8?$E_Loh8TX<_?=S?^&OunMddvF0lv9cG#!~Hph-YcP`P~A}^cU0=A z|0eh5&sN~&aIV9M7T2Smdy1|=R6CkGd@{zI*_w|%;#cs_CuhxA$ExPUS)5F;0p}e#@c82i@kU02h_j~j#IK+CCJA5{- zs4q^39~kbX2AIK0gM0lnRgWb_MN@`yT;RpFGxkFm%;cnozPkf<^O<_zvk&xzQ}x@L z`wPf%{^Nx&`3BN2e+Yf4f5UU(tTGP=uSamKjEJdgsG;V#UFWawj_%Hf15Y~6F`U~LzgO0_ z&PEdgF6)jOo6bl2i|G4)^bCyd=Q7ft;iC!b$Wn9ih~Z`a`Efev1O+I?Vr z)I&=P)J&sV@ec!z&)vl(#9!h%-ga&L+4S+)zy4*$f3<$GE3(BYD#~fxZshdP#K_o~ z)X`|*bmZ@^<8%1NGqN}HT0id&szYjO)eY`-g?&T#-`AJTngCMh<3UgNtod;94Y@3I*^crF_n~THK}O7oYiWb zA?rANy&tezcZBT;72RJlG_H!MjyV3J&hqp{W~M;9$JYAETDV#Su+GWp&0gDhUG?)d zc~1+lksHC5tGt*k%~(99IorW3)`aHX9GB}>+?|n2H5wTsbDJ_8#~Gh&N?#s?_S>1J znqKtYOlxgT&mT^A+$`BoT}O|$HQ8iVVis2p%`MBfhqp3+1IxSYr<&3__QDeTex9a^LPwu{1v{ zdNr@Ye|qDUvoPkq6fb9S8*R>A54!d8X(P49-^kt1K&Rile+yLX+X zI{rk8tf_9Bzdb%5&vfdz0oE7r^bxHDM@A+Sdye#$;;f|4IzMYi58ok>&{3s=7k{=wvEUHe>`=w7%&$F^}_OzB!LvG$; z?4j&^0{iGt@Bh~Va0polzLX)C6iQ?`5GJ)-NrEW8vNk?%OFGq zF+Fs~&OC%c>|Q9zYm`>mj<_$*{StTx0*@4pfXjvlS&D_RQ-9x)490qmK=9D07$cES#qQeJHyvF%Bt|%_c7rm#QZN^h{S#z@0R6Nc$C4A)jtso` zD4JQ3DJ;(3kn-cOYXOb2d2+~icLBI0U+jOh{qGqt*{^u9ov9&h`b4#2K#9ozr;~`} z!NE#_EzeH?N78x9lLiR6`6|3Wk59j6KGw4MyXTg zS~r6DkP4}MEk)RkW~1XsCN^gVPK|_YO-b#y-e%K;Coc7cbVxbJ5Wj{ z!BeXUD`YF%Ab4}->(IwjJ;@`;Ce$c$YwsM z!5sc7rX-CW7`^)Hgn=zb!Nh2oRVrF7U1vy`hccqr9wLm(f}Y_Qti>biUbG`kWO$h* z+r3ygSHC;hWx>C#`i|Vu;EQik=zFTc-$Xiu&+q5h(AVQoi4B&L5kAs$mE$#2PLyc` znJ0q9#h*Ve3|i@rr=vvHI?zW>rNT3K`Cp=#o1`pK|j zt9~(!=ax+`?Tffsx!5@q{#AI;Zm>M?G}zooBufTiuU_JJx?VPrvQ;rP90Z5>l8S>U zy6J_2dT03RIN_d%-E=-1${U%V$*C!% zK;jQEg4><3kBfiG#S1EpjpKu^$;**(M1_y5o7=P3U;3-%F^(*3II?3AcxnH^`-jVn6j|%gCnW2TjiL~aI{q_C^|7c9Ili^9Gp(fB4J!RePe|bE|bsH zeMcYM@VZDD`rUI{-~^HtPeCQe|VOe9rd$gngK~z$58?8i+#y90k|&d0t^qP8b;Un+GfBL z5P7ip zoR6J7swVUQ*{p%s5>ffoDS)3wA#wivqk-;A`4QVV=kb?u=7TbC1zZK=*_)d5P+ZoJ z2}Bq2`=89e)F|5yj~JMr*L7s{_*t*$5n@vN9?|?}N5$=7E8HSQ0}Ta7`qoccM{xxTAxg zOX?Jb-5awQ8DVT^XO&KkvlhJBP!eBO&Z40&h1B>ta5)6`PMu8{A+BJr8W|1^rQUY{ z6O0JH7mEK#3@QZhxe^B-2_MLl!b=i6KLu4!%Y@+I!v0HoP9RyU&C-Jp{D|Rch-44P z=KXp`0j{sX-AfKoW<)SWoSw^f#(4@3XL!k&tT`Vbxlz=!a_99ACn4tX4WYw_8t0R7 zb*exT&2hbklpSGxD=aUjg)l~_jO#(spXUP|N4qr=RmYi=o*tpEfI9HkflpoO8U*(d zeo{*?andW%?aTID595(i+c`kQ^DgGQxDshFTWGa<#4hs(P$#Cagd!&?xXX14lMp|U zZBBprE;Ba=w%8H4HJ)tE_p}nYlKqd@e}AcNY1o(Y^I1{kO#q?Xj59eCSm z%%L)A1tD}$4T}u8H76&ki$Rt7rI7WaU&|sGo3hYx94d2e z;3L_jbZ+V-gfjCf8gtKAh0naPDbrk80DQ1cND%|di@Nu(jdF-&49+tIvX8WIuwwG^ zXFAyWJt?r<#M=OuiwY-yEc&Mp&@1_GXCiYJ2-fsiQ<5^@FQ`?Rv81P;&hR^ncE$lE z3w;cz+7c?!pA&`?5!_<=&mgtSOhFNpt{@Nim0VSkgz_MG51Or(mWA$=5*Yy^!0my9 zck>u~6QUXO7@55VYP6Mc(Q%9{_-W~EotPKfCmlCVx7(D@0Ty)$#q;2z-373q90kcB zP!`mbyir=-OQSPO)y?Ry21cY?MZdKtN{~|`4)b+UrRpTXz_BX6l`>!s`PYW&I2sbW ziPn@%YUKKDoR0ea#ySPABwOeDF!l9>TJ{W3hC5TJ*#f9SO z-2ZSAGpyDhJq!EdC_>2bggrh%MUz{dsz;_`zI{KEztGR!M|C>H5 zR|>tZQg-u2*`pv9{#^cCst=L{4;Cmkd`^~uzFX9xa2lNeN+xYU2^%gYx;UUOz;f72z2RGY(7h9rK{A<|3dDC&k&(7!0p z+sA-r$5(KO)I9rvEcwMRi(;+*u{E#3R9IzKc&b|d1XJtBy(~9(dHnV;FaagCjd=($ z44G&i1m<0k>4eqy%2b3=gxi0Plkml%0~?S>x#9UVEGsx$EA>2ndNHcU@hsj-97IZwDBil^6Y%eX^La zbu=ktWSD~$qO&-gYlnsLfr5H~b2HdcBAmdxybgB9X#^L07=AfZ%zG({tP zJfGk=Le^YUu(4&*bhG~Va?y(^@NTutPQ-B+esMB3I=7+sXSD64KeHiTs z#S?E@VX}C#E#s@>ao_SB$AHUI&b=(&c_6X=P~zv+!EM_bU%Tto^{-DDZp`M{NIYMz zl(%1-w@aPvVgq}`SPw1VUT$_44Benlo@4w9`|MxC6!@=U3fx{KN;6(qU>mKO(5QRb z;#bYs@phl=AX|wkM5{M*Kq*&D!ut$`2h(Ayh};hNUbkTUv?VLI;>y=rX?SP{b zsOKWHczD;daYnN$H`m_la>ZB6X#zb$KKJ^aas1`4i;Y_2QL=fWMj z`%?U@n6ii_d!ZG#umhC^XBP(kEa3PT1`sCzE>3fSMM>!<55Kp9I&bFiteExGK1^Vc z8i2^JXAF;=71Qf#9 zWb$;%gQ=6W(Obi>8yxE#IKOk}=EANArT>OYpWT-Z+}bu}WkM8ID&My;3&KtR#vT$d zjOzOf8AV$+t_Z&T)<6&$L|6MY7@rYr29KnHqRsA;)@sjYB0}yVf;rVCHSmCkGgNFP ziCrvac)Y%Jgk12>2e_MX%PLu%U^ya2wluECPx)*Z;^UWT#8xdO#q?%6@$t54?M2n8 ziaF7mU0vq5cwM+6a76yGy)SCx90dGsd_1d{vJv}=BsKQs zGw-3&pQn2{I^At4K5jL0_Vv1p(GJq~BJ-swV<()fD11gCAB?2xLI-8!J(>g7VCuP|o_-u00oY8cK}b2P6cyfYWm^BCzrdY$U4WC*_VH2XMZEx zmh9`1r>hrzeH$kmlPACj@v>CCkXdyx(+e}+wK{#f((pbgk<}uDL*>PbX=v2X9+~Th zKvxtNd@c#@O`!V@j?M-86(lGfA`w9hCdR`dTxG{Qw2UyPuSiK>X30-0iBF#JV1# zjn6Eo#+~j9JX5&4b5Tw}urDXQsUj5@fpTK;~I%rr%C7$-GUohnsE`Lleo%P0jmt19XGW-3;U29lG;p)A&@ z%b~-{Gvhabhom3+x=hIyGgDGTcN0zm;?-4CHS0#Q%ZuFc<#71&Bfz=bezoqsW?#(XEGReFrb_WQrBH@amYcII z3Z#X4MyiXRH|iwUtsRWTowX~DEKE(P6tUoA zPoS^i*hqQNla~CEzG5~^cw}qIZ-a>Z;YLd4>E|f`OIcJcq@W@}k=x?CJ+Ecb>f@?? z7&{sDXQkDDCW1_e*I7QfOxxp+Bg#V7pjwI0tO zN`2QS&uBha&C*Q5+=keCbX>Xfs)srk%O^gs$E5uAfiCk zw;D_7lrr~53QC^4E`^oLk{qZ`-Clbxj*klzUU&ImChsYh=|u(+ECeM>2qiKkRWrJD zCW2&^&CJZSS(xQ;Lh)$?@X=;rxQy!B%w4#OP?q2>uqg##8#Q!JV`fGK$q_u_m6_m$ zf+)q}#)5&(5s>B?Bo~zY`WsYffm`t9A%7$|ye%ko157?;m#XH7%K`BX!S7$Xr|6g$ zQW7jc4K(ip;2jS*f}p^GOO}9kQkjhPO>^o=%mQV#{kQbMKgmvjZ?@gnC%~~kwphz* z^J~`VmF*M#S>oNXb)$UBzbOk28GysJaEb>r2Yx^@aL;SLlmh9v7laaq_H$Dsfn_-v z>*pfd&VE~5mW7*hXYZ@i*|p+PgYsQYla{+4CVw%z)syL^^Kq=T$CDm-wPl0^MHu`M zaEVz##GtnM^x1-%Z)ItMceA$GWDM$0w7RD<&z8Jr;tY zJ;w>i%;9g9`OknBU1RUayJ3+`yjVx}`FuSuMICh*yHsnbNWkpev%--jU|N(I-M0*_p50~XZ-}bg}BLS zPakklLn(I&6&_JL#KcRjR?~jgwoxzxAXkRI!hS+X;AFgcf*?vvjG#I!4R5!WpuQna zUK09@!y7X&OC|_;w6uP{4iuHx6#;euFeyOmxEo8VuYOaEZM|yVLwgTeGjY2QNhp6F ze)D*E#R4f;^bCYgP{9tW*LN9`=!&8K8rLQml>_kxfKg$RJU*7G(_Vo3HGz}6a?M+S z>=YJc`>pv%UOqGsLPrTBMhOqI&^eH=bIJjT3P~4A%yvrJd2a{iP0Utp;y8D?MB8#Z zR+cK+J4;$z6S}fXvXd(LYL+KIc`4hif1qEw!MtWXd|D(LQIh{EU`I(sa+gO8`L@8C z&WnfoY0Uf4+P<#JaiL@1BF_AOqUvH9b+g#nPj1L5*{kkZ+0!pWx5p{6J>0VQ`QAXH z7R*R>Qxk$h2x!2tX}5fMqG`B50Xi z#e7}A-#S@KzpP&WDX9p3gfmCIdO00yL>1oUmi)^!g32CEfo&Ec6pg3?6gBiKrkGqKC(s{i0Ju2|Gpb)uI zimsUN{6taH<)-v*rm)%%mn~7re5-ViOQs0zLhWzk4h?N~D3tVZbB5TgPfKbVLIvBZ z>QJvA=8X^IQZeZ^`HsgrB z=${(t*c4+iNuL_fW0h|8x{8*}k&tX;>9!^j_VaM9VOGtU?xweOKI<$65YpFi%Zco) zEF&3z=ezNdrk#L_ZZri8!P#E+oUC-SyH68+ci+I~_%H9fsj5AnkDf`4?oAcJSe7iN z)cmhG*>iStcMBtn2O}34p$6k$Vl&R(xO0zG6?RDzeikE{XA^~{zTf(0kG6^>-q^iJ zZ`d95^r*<wg`H6Wh!)duW)zSK24x?J_GYYc!f z$DfY(52{Qrzd6>Z-E`D;6Ya7Bx8padzcVYbD)$=JT20xKaSllrXF&AVcE z9zCfiDVbAPrQec%Y&TZMpKUmJwl`lDZjO#9I2m4Sn$dVx;Dz-}`wUxs<)A(&C)7H1 z8p|r{bz|#zH%=jAW8^-l5kpS1h51QJTos;LP?VGhMr91qD$xN7q<&i-F)=X-E8$Uc zjx&Iz=5&wq7IG(DzWYi#=vO-M_o~$2f5Kp^^$z{gg0bNKsBf#E}z6%Yywvtz~;Mj*m6wa%6$d`IJ_D52p*Y&c-EvJIPLK z%uI>A-TrW(V|sOMdYk4bb$w_hArne9DNh8XKNF}bRrk>K3-enX+v+(D1M8}^njiu{ z5J40~_NM!ZO1p;n13cCBukH8fHO%pZrPv%sp3+5~^MTy(pEyl+koJ@>FR{OUaw$w_ zPK5W6@JD$7Aw5W%2_=YF%9ST*Cy7}EQ-X{FUIhJVCwKdoW^T5(o+P>y9h)Ci@-;9x z{EuLzQHO6YpwlI1_*fo5YB(uR7#6B|-jB?apMM&2`~W1zm^4XNCkA9zEMVsEh+3~R zS}%&-_hc`p{7*7UMTU;vRd~2Ld%F61qfqY?lt)F_E)a5%rxP|jd@5EFuK9Lu=mt@D z$C{XBkvbY}e&avDVmNCuuOKcMGwP6PQ@qOp-CbniYkHew<9oQGZ?C?-;&Efua`_3! zZt+`7xf?Q-m65qj%eky*sFl6?L}Yr|VXGS}@D~-?GV!h*1I_Pbb|1%?32JeZN~LBw zcbHe?{-=Vh=;khnFtE@#8=W_u46-Afljqpg@l7Nbpw(J{+Ho8V>}6 z20|3T_t~VbRgqIiMYK6aj{iXu)*uK@*+D#3jsxro|KJ=iQE6#OERB~}|Qmf0rf0_4oJz7AUzFmt7UeI;a|CDiwF3OmSg88bkL_X-#xtW(vzgIles z2%V-^rBLpA#Qk0|`v@Ch;1gtLJW}IVqcT>sg@7QwgE7-mPdLGjd~q0sYA~@mA~o)p zXQV^B$O&ikaHs6<81b6tdk-@c#+;$fyl*s){E7(*dD3rei+=|&X?;T zaIbu*T2iYdv01%N3w=7FuVP|*%)G21`m<`CUJ-6i7D4l9(vWxRztaTv_cgqoS~z_< zm2BZorOkEHb`hN?$!+_DL1qNvVW4P&K&AFPD<^~Ch1|gNkgu>@RS#Hi zngJ$FiPUht_hFwJ6(vxu91LsA4Sc~xL{2G=Jbqx4|5mO4VITo9=phYnuEzHmVv>Kv zM3isz;s~XB(+GFtV7YAK5=+QDku?%#7RYeRMWp|-DG-%AkOP=@m%RmK8n5<&NKRm~ zu*!M|WCTXa9{vrU_uf<9?L!J@mR%Lj9B9n*Y`ZXAV#n474FAwT=dk^k-;GaR&hLdH zfCA)SmzfK<8<<5VVLox)-tBvb{zFW$D%SAahaZa*3IS$@B22qK*=@k1QTn zIkKtn#Eg0NHfOEv+DO*6sRddkgy~xS_ZJ}S{O>wdorhCI2Klt$@{gywi&zBEJO2`v z9_09K46ynPr~Kv9*z`a-qo1xa{71L6bv8&_SZwNjl;zs0eLjvmvOEJ~p0st@|4$3B zd;a0s{UbN;H-`g)X&j^5bB2``D3p%KN)2C%ugDNabeRd-m(b0_WST$uEPHy-;>hOa2n3o5=&K+!*3}pzQ^Ne47_|T{)5g7Sk*WKlr5rJ zspy{pryP=IG5OaZz+vn{@l-JIj#(%P1e!1zdGC`JM)_T~aRTSqc!+i-Kw!Mk*6=K? z;t(Io^GNS2IeP^NAsK!M$y6F65n&MFk{pa2 z6hzpaO?=;`TCOAOo>i*Wk1m_3yI!2hU9;HyhDrkpx4yI2%9p5YJg+`#k=*pm zT~lJhfD<0j%OmEPpY#EmS2ON@|FsI@?UtR=!lDFj)#h2uD6%STZOWp7gAInSoU9-? zL6Z6ghb$PY+`H;J*|AUQ+bV0m_HMmHZeG&v{+erPI@k&L=i2bRL=@~o_}Z#N98v^* zSN0^ef>DVWUsWwe!kf~2cSXUTm)5FbX1g}Gp_cUmt19cUyi;OQz#TV(S)&7PDQdgfsNF_*1tZr%VS~5d8kFmc zcF+$LnG&+3CMn^&_`!mgnSQ&g-hdu z@KSlh_b1tGq;8d3bijA=hn>e z-I{T%9#$$$XDR(1z^B@`vLy3QE`>Gugq5jZs=-^0C zxRz#tMXR=UE0#Kb7|fFV-XRr7#`m=nZOPQo(3NEru(9@5TfgK-^lFg#BzDfrmJeTF zS7qX1o~P~6b_{U-?KSdu=tj;ZtGXadkHp6e3OyT}>NB^nUrP5R9iJHp>u6Xun3QO0 z>hbq}`fCm#{(pa@pyx>REEZWIF1fr-N=!AIAbPmMQzA6TR2IK)R>yADC~vDqHM$+x zd<^#u3yCp%H_f)#E>g7~U(sxdg*&^*PXwDG80(wanB2P~x`L{NADy>}Cq$LvPH8yD zDcTxto&2t=d1tvz|~GxbV)70Z{W{>RTfhxg;s=$|UbU#P_gAX}DfUWoJ~^GJP*rI<@~Xs!fCkAGuN zE)+z@VE^JzIjB9^GcQvvm^{<%rAm1y3q!x)Q&K5k?YbEsx9$-rGKoCmUYEd4^W75b z-Pzr8S<~5emQ_ZfSOy>u8!2{=i4neA$+GI>Z#}X*Iz}E*l}US@433<<5%`(Yk&!}+ zZg3kv(eISX$p6;TO6NvyRosQSNc(j5I?{3>I+p)ELm(|nCP4MyVq7kckvcP(5BFrz zK0cBwgmCIW6E6?lN^{9(f6t?KBF(|wtSnXm>7}V1KBTGF$J6#z!U>xZ-@OA#?w-ON zzvI6mbv?Qh6ttGh{mB~rtStF;*>*kU8RlNABU4)f^YeDyV)Gth%^aK`{ALPfX8Qh{ z$l=#Cx%(Gbto(yKH&aeKzO46}%PerkR|Td9vytqOX1NuMio3|4_2?N_DpyDb|cGJ1R8tl&}BZ0uJd#K%N`B%ET(op zg$W&{{jS%ykLNbLgarfmE#W{X@E|<|_bE2cG$P~Vlq8W|R$AyxLwuvp5e>?9M z#r$u&j))W+0JEp&);H($z#c~+1N{8_igtp=uP$kH^$?jluGohz?qb~YJMM^d=bfsG z+_L^)>UlCEu5O<>*U;oET5Rr4>*hXXZzDB3psSe!+WDeuf5k zO89^+XpiC+x=>L-w$UHw;p$d-+pQ~mb|T=P9p=74xk0J{GXo(48Q0A_PkDApsgfmH zADrcO@V#-;3p86>pi34+5V3ZUN?Yg!Ezmfa5!==W62EooZzr?MZ3_xEbP^9H7qT-4 z5#iQ?P8cME2o33S+k2b7ehgu6$KP$^@pi@tj`Arz5f36Id&|@xXBME^3t0e`!=Q-S zObOa70>gI&Emeckv{Yi4cj9+|cNT7UFj`2G3%XP#If_tkP3dMy6}CmiWD| zu(V+xnLq?^P&*6B8PCqJ!KHIq#Cy?8(NRK5Ch2q*kQdth)cu{$Wdw4AZxzOSJAM`?6mg7rgz z;YZyj8l>#V5O)cppK<9|c}M2C4X5F8cwBHPe2zF6R(0Z~hY+JpCo=+sz({gHRDiRh*6LO(NU5##x!U%f~;TCraJX7M>PBm_#Bat#xNE4)RJz!a?RS)M+iGd zl5aO^(}h$;xxD*nrneCDdnAE@^wpbGSm28e8}$w9u$XMA;rDe(%IEXMEa zmEEi*FGz6Hu3hThowi<~{BO!`R$`j~A%^ZQi-7-$_g?dfVe2jH^-Sw|jqV^YUfc9? zXx8KKuB0Eja*|3C~ zu%Wi)$<4-QC#w|V(f9tmtt}CaXP2cJn@!s(o#K!1JAxDJPW6tB6M5goADuW9hSRWd z7~s%)z{&IyMNi3+4Av}|YSuGY@k>p7QyiCEwn@tN?MiajWZ3459PA&_CjDy$9mA}GGOC9VtEgCGnB zA&A%LPk#3XIzt}CGrJpv0w5m-3l2tvGK29$0twQXQlDyad=u4%({{%bI1dND_{2ik zyD%&l*9M3LiJ3@AK;wF@cJAAJDg6&4j6RGWo{N{3U1_t()ZdMC?I5c>PsTKxFS7Pv zX*`8k10dwp#nY3SWkHC_#WA-zTnWjeFK7C>6NxtFrBPJ0b!QF381m(ByP^NO_Pvyy zcpgIq}EZPju%KGP}4M>Fd{hf*n#Ao}bi%--Shhev&R zT_uvg?)gNw%Ls-P2(P=;xV9b~8p1Z$Adv|P`7L`OR7p(@Sd6*eTOpMc3Iz!X6aVum zQ&!Bk5aE`8g9Sty1w2$p>W9_5C?$U!xf##$k6( zIBadx8&AHS8;-y30^o6{vo#i21c5Uo;8f1r4Hgb|pU6%-1%_lW9xQu@G?qCoWFHq| zK|%qRCc^KhhOl^Fvk`N^v7Ma~aj^6El=9&?iv+dZiYdF@>>O#Y^95Ve8dz-H7k6E=pLA#|7b$^OGIw)WZYF6>uZqfi5AteyJ`9*wUR&xtYX4^Jv^|F4GFQIVL$I-nkN ze2YD8pd>(4{L|TU(_`t4{>X^9&PW zQp+y(Ul_b_J2;-gWQ~6G>bM}N?`#LNAMp)k52U16j-dRy59lrEeo!@ZGS-Fw>CTHJ zkLjq%8R*2R*K;Yws?*j|Uk}2}zDJ7`8p=};Mjs?kr#?1W-ZbdD4}1=9xRR=PC3D}Wz1!c6rr<9VMd#dNRbyjPaK5)+ z&azJ=nh)An$B<{EIo=y12ZtMOO=MaBgHD}Bk*<;N(AFwE%qO#9bs4-_EG2_`^XhXh zS*rYP8LY-X|63Rdmdt6m%k8_!vP$XkohIv?(JV{%&cI4%&p9M3ZVk112n?5J&G~t` z9;__Qbpi!erL~i4I;MYZaa(&${+^9S@0xConHugocj}MvNQ_eMOKQC{_r@X5EXXk^#-tM<`rZ=a30+}V3x1Z4N z;{`i{VnC`Vy0`K_o;}C99^c!`Cuc(89(QgAAL-AreH4Y$Ek|qK^ZqWv=aw3tx}$EH zSCyH_yM{6V!(@GP7jV4Y$e5S;gG*39Dwla)nVBu+>7MPmaod^WaWirz)8uot(Z$;2 z@9Wp-b6|1ef4#6_diBRPr`aF(P8jR&ai?K5>VRsX&o;6%{JrjVHC1)Ry#;*k0TEgB z>|9jIRwL`(c4X`6PF;X?>I<`R{izt8ob6oVQpGm2%+PFBrcr`vG2RLUn{;hc(5H2yP}-ZSpou>PquY@_|) z(oIat?{M)32#%ZCGo|k8L>KmKjjg&h)=w#~7^z^8H0`YM)Qcb`o_qtGx!Cul02n;( zQ9g%iG9?TzVe$cmTtOxv`P_Xeo>w!So?*c=CQ4;f;%O_CQ6PbphO8v*=H&RD>Hzd% znr8E5$4%AfH(ir@|HCO=2`>;KAQ|$4P^T`?)b@+13D-&fOcaVW0pX^o^5Ur!6~DjN z0}u@f5tURhR3q1^JcLBIJQ#2otFNd@d}4Xr4`J#bZd)KlD#hitKa_d;<}J6D8Gaau zkg-01{X=;mXQn(MB9werZi&jUmkG?JB-lZNEHGS)c&TZyD7nUr4s`xaN-V6QsVq(X z2nbkz@#&ce@KzW&lwjl<5_IimL44Fs1%aiw&4dP*JvsJE)izkk^SWOcnle^tL|Fg0?##XJy!}Ul0N8GJG7uzmX88p8BXM@DP=9){}4{Dr39 z$|%KsV~lSKqWER2$%%py)=u`QLE!q6v?25ZEu=MR{x0rfRm4NWmjF zE(*MGy$fWtA9r=VyExvcGQEnPkIUch&W5n+1i!3184nr=1GV2hVFSvm z08lj~OQX9CG8K(2|GVCSt=A+TPaiMQxxZC>0= z#>{>}50X`Gtfu+4%Sd`-4mka5)h}aLm_tJwu zf3W6b{$LdmlB=T=0fGj?3#&KLiOV(RJu|aTzAxsVYVhD{4O}D_sUkbJ`%b)47M9X2 zHEm&Q^u(&wDub{_{B}3Rjnr5D;V`pi3z1Fo%+hazAP7e%vsmMAqo-^iq9KtnSyyvQVLS-0%`-!Hpb*sE0wuow6RLjf2POAs2o*f>AzRu+P!~{ z-bi0+14Wrwr*E7;U=Y$Iqwfq*N}W&mX-xl^g8*4zZUExb0u0vHmg_wHRpBSc2SnD_ zFc_y@0Wk&Gi6goUc!T{uT}kV zjyD&r2Yc63VFEt4BYlNi$C@oiHx#!QjyG3#bMrTcvw+H=S+-xb16$T}!BJRLYg6=n z)eRd8=cM{)kYX&>Uj_fQGHn3!RAS3teuw&=r5U>a0s2{RbmX10Bq<-fEiR3%W?CyC z9DHiwG>t2s`jqj5Mc#XN&eb~GFeG6_iUT@g`Cm`e^rRtwUwv`$=oeSFlMz=Xg?kbL zP0=jo1$Ls|eJYC%n1VG(sESIJcRe?zzhK;B@cSe|gk4eXdS$^lT)T430RrJHEP5Ui z63;BA&tEkD^TR;yV|t!KrkV`;Mj?%=BjQAOM}j9xnI#o2FSKegicMH#F`g*7`q)e_ zbF)4d4FI>|&4($YjR~ATr0T2ut~OS05+z?cH%vJ=kI^I#?q=HY^YazX8d+M$|8>Z| zOmeBM5aoPucH-iULK~jWBIzuXVHrQuCZ-u*us>na=dV%s-7RP^P^o!)f9ef;|G%_? zO$}Zb2HOYgs6WXCYh&AUomGW<(tOH7H8lDa8HNyfN)`l+SlOqeKdwmvBCY`m;DF&% zcfhe~EOHPS9=u=M^iX_aO&tuv6Z%%8#6tL+fxA6J zlo{*;Ko03DV3L0KNI83}i`sDJ0u;%8=LIIZU*`9M=}GaKl3}Sz%oXgJ>t^`NFgb|X zf|eN}LM|v2p-acaa4hJeWkyVxQXW8pA4Wn*NYCXYGlB@n4QgAYdo1$2ll%1XcNl4~ z6Yt35@XRy@kT?gB7|YZTQyOlQ(`pAet6m_70){A{8tpy!JR9SHaSLOjGH#eTqu85A zV{6am{c(UqI)46cye^~e<-|bEyXTV9^r6mluiy}%?Y5)=)7Vn%T3WKmHtJQAE)C8J zb#68ptQniWObD~)mtb?@=VA;+DEn@>p}#(95ZzO;9&tmPH|QPvy1V*r?e@KNMCJk+ zt}Z;Yt=Hpq1An(-2U|{dsg7z5cva`6qs{2(74boQkJ9u75rknNY1>Krcz~pR_kfUH z;x$<&T*b5AAXPu*C^2$t$06<@#s8LZ{&H4q?sA_56J^jD)zY^tuBsw2-|T(6f*Eb7 z<#=|M#481lOWOzYa^{+TL=TAKI8;Zmr1-IB0=O0Ek|yeG*I4!g6ag#Rd*1h!A|0Hl z{2R|3PvOH*zePfNoph{VT8IS%nyTEZjc;IE^A-^7W#~&0DUrxO0-xPW0Gx7>U@#1R zPdHHlR)K?-)PNJx$cKB*6%>vmZ?{aZUgsuZzwoF0HLx#%9xN)x`fr(DpNf+ST=^pW_rB9&YhRqJq{#;V5o05s(~wm5#GO0_UI{2(kVi z0+YkxKOQnT3B?KCjggQ5Qa5kNu zpM-)cD4;ZX3X}SISM8n)Ryj`sz!Sg+NCn{4P@a)JtIX@iYS5j8&k@ApJF)|iXPYPAdCL0I?wdA(kHbBT@J;iRuyJUTjIO5hVqfC)7l!wfo3eY z27Jq!r4a&`9zgFyjHH_~a`9A0(MYp={M2H_B=H<>#gPO<5IqpAN7f@#fg3iwjdA2h z^h-_M$(=a!P|6!hArMIXsMi6OIY8)Wl983^kGU$~xoKez& zsF#vsvq^PzX9m_bHxIi~SWXJv*J+QL#V00u%N3q>L#c|N^-0D_d=L!E#Vvp+?b_Jd zX_#o@%!5c(1?eQ{%!3|s(81bCsa~fsbCx>7x_gFXF87;f@4DzSo3YsiXTG;Sd$!&A6jS_SK*PS|#4XUB1^fx)X!J>=03i%Y5JH zeIOnJ4E7g-xc8PdX5xg2fKFmS8$aaK-F4sH;ied{)?Y>6EwcKfsOEh=TGIOFum1(l z{4z-``adl|aZ9Pd9KWaV!2kFE;@hmgXv61}Wm!3ng@0EaMy9>!`YAu3yg^%p5fvNO zY5p3VQcYx7$m&UXpB6xLrYYlvQWD=U@px>`?kkA1kyvS+ML)Yr}Hd)VI0O}jN=>VLj78ksqv zE%~p&@lw0_kN+jA?4yM5&d%Aq$F)a11-nn?IFX`Qk0*m@Va5ZQD_;Q__v*{hIu;oz zS^vGyv2!v;E5~SxA^&amGyn6|tNigu=i6&;Sr^|+i}WqYSb@kMYA@XNQuohR-zEm! z;knJxZI{>21C;Fb#=P$dnHj^{z5FCz#~uvafmr~jE$e!>%i40HF;Q1}-GOqKYrc+F zEL?W;_OH1fy!emDHDX>;oIy29T_B6;C2iFennJU%!f){lPPJqi>0L`d--10Y9y<}7 z*I&u-tt#=8xjgZz@^o=NTo^=gi}CXV%uBAdiW90q&#}8(k73tOpTw!!$Rzd%F%dm_ ze2n>am2-s^oAayO{=35n{Loz&C+F)v?=iq!i~ayN83~3+s*lR6Eho8r2FocGWHJgT zuI$!w%W%Np)3q1tsuT)pN8&?O-s(jdiRdG07GU=pwX9c+%N$5hK69Ks$8wuoE)|+y z96u3|y1O=xNzTk{GhT0RTVQw$j>&D~Iil}W8jXv>2GDUe5(b&)+Qyp`Dh|sLF~3Ru zUrYrHa{a43UNAk9u5FPJ{P+#nDYeZUk4&vRB;YJpu18Pl)vg&H9+}8?Rz)2Et(-`o zh=*kFEs_}Y3d-XL>nN3fHKKZFRaM~F&}f0StY~{;+;hOJCyy)x!Y#-jK92g`CjQs; z$9?X{&jUyql?0&=ndJ!BWwc0^6;wO~hm#zH3#;dQsOODu z0#R&3mL~kk0q7i4BTs;i2#w!2PuEtN**U+=*t;Fc@!67eY|83)(a7;w?aH}4XwBxm zIoQl=% zV>u#v(cyBPQV*}U{6MaudDU!-zn`D9LriSS{N><`KTh^$Pv-QGZ$yiIqbSkl%-V;s zjE`*x+|Hx z!{dPc+}Z5ixosW~zKJxz7H)w$#u`dk{l2&flfLu!gs0f&Bw`=UPAz;)X zfL+4>YQ`-Ghd|#6c)SYuZ2}q!0iaY2O#2Tvw^)vp=evS^IT!cr_>ary>qj{^{f7(t z2j3J;uP#|r7)-1Vq9!BcC=tM{5)Q}>tvKB95s+;#1bWRGBu5Fw!~Y%*><25T@W4S< zA%G51iXB*$U*2mE`yV6&4%kZ!Ul4$j+?Q-83W2E4s4agiH;7sOfYd2k#8ZN@3FEOK zLei8WhfWA!3^B|ClT(1~s$guN2}|p!JQIdzDj@;g=C;yjphi^Nfzu`pPnqjU4VN&` z!Hge%kGZ4~DC2f6Me*QLbmN8d%SQz!=@lQ5#0N3d5Ip!j3J!4p zdLzxd^fm1`h1C2XyU6Bkyko2+lLwr($M}ni(V6cVyn~v#U=BYnP1A{t* z`J!Nu=#lDv_WU3y9@!h}kWqnD?#8tq{|(0*?$*nBAD1*4mphB8=2)cZq?*nT_4WcW7oYlrfm%XOdk-ny3axqD2i25tQaT*HAuT>OT%fReg@Wag(8M zFhIW<7gcKA-SEb}Q{G{`_mO3?LI7C!zr94}XB#86xxJV*ZO;2j@w`Jd_exfv549gz z27cD1Nb|V(Wa!xJzPbAhKmtmi!!unlkVE)oT>x1(Y#Eg$brYsW6oDNxta-Nmpz8TfeTaYyv>iFmC# z5cs#+l+kuHWyF^Tsmh(uIS%!z)s@CZc`jRW$`Xqtx07NmMmlY$6XGtH@YB>xp1qu$Uyw`tR#M8(0vG!P=@!eG4VP3zFNMMvk~nWR!S& zyg`5{|2HksS4gD~LE8>h0*v_*OS@a9KK~TyFwg`Q#z`7y7D`GM{fK}IME-iiI~02I zQ83ygPN)l(8~6+`REYp`0{~M6R?tEgh65&_Xd%i&pp^X(z1Zvu+;nkp4RTALT>DACLUE$*SXwQthPp?*#&b0d;D8;HWF< zL*V$+^JlC=PQ6-R+hJVOq0U^KHtkUb8{b-vuTeTHVsk!6Iytw$>sk&TBaJ5-CpN1k z*cd~6}q&zYTUPrrC=p`A1?u4(5G8JSBYyJ5yNJNGCwKHSzp02yaw%gifrocXZ z0I4)(b5d(vVC^uCbvIVo*xt@-6u2ziLv!J1S*2tLMs4T)*g3CSX!mXh8TXbaf1Vjk zY5bFyoBvyFM{-1yTyC!UJ^9m94L!}MVL>vWpNQIgAk^U=_AH0edsD+yf{QS|#no8mv)+ooF``4*_6{D0cgz{CPj3)D0! z2Aub$TTtRbJwQWB`1cVZ98@rlL|_V##skp$N=Uf?Ic><|;%)`Ot_BS1oytK4?vQqa z;433(ApYGJLQsW}upZ%U<#&oh5D>K84Siqcc0|{2Thae_pHxgRudDIiZVk1&qIW(u ztdIi`uBswz(g9@3lMi}2be|*MMU?)xNQ_*GD?^yJ>Y)0JE6-~9j~WdCc13mx0hNt4 z)WS8!6Sd60rPMp!&{MzIKt_&wMkH#?w?c1NbcK*&vtMdlTk6MuzVj%b-+5gRMwN<0_Uz z60I4q5p9&Zx^_hPZ=b|yK&~tULRLW=s91B&f;10 z3U-nXdUbjYEVj2^5BMKE@!!*pb>J5mKSHMaUyll8^ETd{w_dN_E$!XawRL&TsU5}o zUv?$FJOfNnNk?BdYO1Qt`HgpJOG?7pdB?&l#$RnxkOS6N;h}GztomXF#AL3#7y@Ej zJ?`=i>uQg#XB9O~Wh8vOJUwgaS&U7@;z{khtCktv_p-1*o|R5?ip_gH%1775QZzR4 zw4~v1v6qUp6J!^I2knf7nzf@Rg(kP((X!1=qV;uln#GpO7uj4hbu7kW>T_zV$a%lx zRY^du)~TndNo2|6?B?p*+-z_{6n%`{$rw8x)15!>y^*vZZSrto+8uq*`=i(oy>6^uju&M@!7Rb+a+@WPf39gu-`a z&MOnp4z_;6jW=rdy%E)L{V9?0#BU{%^+?;)_Xv$+-z&Qa#5tNc6xI!mi#aj@^tepr zhr`6;0SdoeovqQr8FP=T5z8W(Pb?-TC+dyvE^lmnJ)Cd4msR^VaQ^2ytw);~ZAfWR zjJ88u?WmOIYWoi3w~543|H=jjG;&+lT_eU(?Mw9yQm$QQWcFCXbe)3u(XAd~agLT@|mD4`eLi5-EUAmgA4EN8PGt zjuf3vuAZOr)Bjdl=XsU5TGAOMS-WNZq8WQp>6xuL#NxkFc0J7Mv$Z2B_Lf_W+(kuq z%e*-Yzq_G7e=y&xoC=Dsn%oZ$2d8le^Q`iMPy2asplLj{p;Tpv2MEf8i}hdWDzz=N z=C$O{@6}FBRE!RY({eZzQO{4ZD6%(9Wahn!m9D=cm_Msvy>8Ln^}Xwn5GM?~&jG=P zknFWXnE(JI{O6e`F~P^-&H&o&dxXHHfDa;MrekUY-8VQTVQL2p1HDiLeB$DEi(rOF zPQ(On*3Iywsr9NRI(0s4i0~P$dC^f@z#_8l>PNbT!eI$+G3xfM3*dWsT zrH|Mf3Q41Y=s79B%k^e%KnvOIf63S?p|RR$dU4+tEi}5mLu|BmImDs8_z9lCqe z6PEPH1~K}AfM6yttBdWI+;F8>$1_^ZUb13uGrJv!B=n7+)Di!V4Q|+@aW!Kv!iOVfp)N>YS1B#iQ zIFw20TO@wyj#INq>&dvc?>x)t&W*P_H+Rs0TYXc@oI_6{qvGB9gkNXQQ+*ZU)V}Ng z;h;N8Km_U!1L2WC03(zf7=9k70P+r65J(6I7A_xvAVMgVvr~iK2~1W1q(6D+j$1ko z(C0ysG*G2F$GPi30l#+b=hD(Qo2Q3 z;8Pq}0RUIvmmt__P%9u7ymh1m;RP)aP(rUQftPmz=kCNovfSZ@bsF8yfF6?;N4qRi zXaU9hO%6VeLKAR(qOSQv3LSgeX#1;@VN`V<$;%L$hXniN)Dgo3;S zlX&$joyuxL(b^i?WM>ASI;wkry?r9TWsZ#zj*J-yhyc?_OE@>1j|fM751|j*QOHPr zqD)Po_=;c*L*`oWoTE{V$HOd-1|AsP*4{Q*ye$&Z5U`#hL%mqz6%Fg?$4cX2PgB~gJJLF^!*7sWSR^dMsPN$U zq@T>6Jq~AnnUSFQZ&Qg2727tzD@9JOQ9DyIF|c$VwD21d|H0@yJT6`a~bGRo1J!h?thlosF|O-v~QLMFDiR>C#bjiH& z@x94)G-+iC3_6SKI^5sizELc$ZBAd4$*-V}NaB;vA5Z)SC{5O9kkV0=Z*Y~H(-O}t zC*QJ>6!V^Gy8nfmow_n9Z?gIisu>}5oX$yN8( zVVpSt)YJzp)8ha$NnF6a7xmr=2(wp!&BR**7d&=&z4TX` zQt4;@Z}J3ypG`!m(5LnpsXo)6SzG>Z-re`)(k)z(cEJn?aRk!50{O&w7Xq5Ts+kEQ zfPZL!}<=3=_I zEP1oRKJP6>czF`mcK!^pFj8w@mM3Cg>C~2;P!`#_3@0a zmDxGf~>B3cPgkWky1Xj9Xbk?TYNvS+C-U zZVznBTF(ZHLc%wO8`gwG|v0 zD$i19)oGw(wi&32+NJ+T(|JI%`Mz(w2x7;oy=SyE_8uWxwW*@^Xk*nbsoFb6QF~Lh zx2jdOYYSRMRqUcxD7DxB{r=ARpTh~x>m+g>@AF*uechkSzs+-v5!RSX1Jsb5YjEr< zArKnQ6K+*`BtYgy&isB@^uqzmm!)l}IXs4SsW;I&{uvI_!heir#nXQ2pcxp0q{BaS99Rizb%fd9up4bppSBHO=@p?s(Uts2~PU&NkAFo_Rq_wt+p=75MWFe;IXx{%HHQ#iyMY6;jO54Eh% zunzAGM-bX;z@}2_^h8r(4R<7gIU+C4P2mHEwYc%e4Bfmw@>Zl8x~Tug@@mnn)w2z9 zm3$G$JZUu_k)M)Kf8A~d z^-7o*;!nF0VNb#gE+3-c{1<2=4_cA|R`n_N2PDL|* z*`XT)qS4XuJnXHF3(4`#@8zc9ua|YlU$Nn|pNuvBs@0u3KR=hy1<0j=OXf?B+ig}U zv{eL^_P} zmA=TARW76Z_^mlYTTm;@AKtCN@I5cO`&{w^^ob+BSQCr-Se<>tJjQgG09~&}yn)y)M zJ_YVSa+H+y?977Nv&GtSQFviu;`Hf?CK<(F4K!b zZf1YjC^54Qrw#JhnaN{`c3R{|{Mq%|Vb77nFE}5HLnS8UTUZuYS$4fXTF#qljAqyw zwQc{HU?ZNtpwNce-}tLA*nfOtzU0@gXsXm2xYplyv+_ovpwzr-1F)P)U#!0k?{8rT zCL@SBf>$DsjxXNG3)2e3;XYN0=kH`GEGn>k=9gzhVLIfa=Z}$@+gn?O_wVOhS@=|t zkhLv!dcKw#Pt+^ueC<`{I!`Q3RR%2M*{N4j+JPfhBP?Z`%4dHsQB-n-ISnt7daj@S zkN*7jIL>R~=(s#s-P;*-rA)MHb~Fs~^1GH+K0WjvtdiD!5OjI$UUT>skw2mz=u28@ zWTv{a{c!SsnhiHhTO>`NS)K(5W$Kb9h~1 z_M6Y=xrj?|R6^CDyhFxP(B>!ePhAJIowrLtYZS}d&hxzH$AKiVvyG!W0O}B0Ie;&X_5(53M5Op)-%DNIs_LYJI2l3_}rJ@|GIh>Kj@+Uh@vR{C4` z#?snN%G+;mW$lAGO6rMle}VE#hPhgYuI#}4jiWL>ui37vWm$CGly`(QMrM{JP&z@} zLwu)5TQ6#l?2&X%YJ}9<>!6e0X&g5z(o4#UroPZQ3+EaUr`pcEO8+}zDZkkvKn1Aj zhiCSNUo5!sIW#NcPS!Kc7;x5O1)h}W{M0?V^AZn~Uw7`Xh-;OCM;3Ptw1@APq_)?x z4OYwuJqJ#Xa%RFx=ZD_G$KC~Jp?Y0j|04DJk~`?{b2grWyL|^ zGBP3LY~bd}Fo3FeAFkj1-gcjke>L0CkE z&2ZiA6b5-&^58ZAcef;U-OFG@EaSWHo=k$}eChM)K>2vf*)+3ktc0w8&HSD|mWqlh zCwE}a*l-D@DV6Xdd$ZQ*qSIXD(kvj8zi{6SHQ=fJ7*K`AnoOHso_^PP`<>U*%0b61 z!TUSusn1Vw*sJfs2PVoVBXPHbx99E3$0Z!{X2QbTOXnkrUi(t)5?R}yq`Q~1kH|Jg z{!;72$;p7iDLgfO4oStpcY!-n);YAyft&}2rx_!sETu=)CO5KwG z-^l0NzjD2ke-yu3b7Z34+542Ywi$$TC~W@V65RI9mG1i~f$?h7eq4AAP}hN* z{^!f->Ejh=$uUWY;k?9@gr!y8Eim}hMZjP3+|cXPGe2L+Z-f{y#L2_!dBDIp5gfr8 zg9ZkU{>A&F|MS~{&>bqfg#KYRdce67AV4H>f|WSIH}Qa;fgtJyieK%Y)SPlCbKz4{ z(@+n+@(MU216=ntDLHjrHw#Ob;mSt9j6Pt#1B6Y?9sI}CJ=UDmTu^*E&{8<(Pg+uZ z_(6Oz;Gd)BqV6H)C4A5M`XM9)0pbAE6esuukYB*ZjWRI0RJix+Km#hN)A_mcF8*T# z=L$|0ZmLPD!1{Q3MRgZp18DrcEMAlVFs$@kb=qaTBArY7dgnY8bRhPQVc{y@dq zU)!jvLPEdlRuq5Lg=+kcXb%G$&fm}RZC{XZm7gd<#yN3I|4;?B*=9fP&Fi!m`Ju^M z4mh+|J_$G3XWN93!=ucGC}daQdBbdLAtXSOh6xr<{@X#g`2W2C1kjZP1W4@5$BZGS z0{vdH^q-Go3_alWQ!ipu;tfqjS{LgxRP+s!XjV-5bGd)>ei(CVD4+iO(YYPtdk^Z{ z{VUy!&WP$oT-&72GF=%FFLPg5TfKKcN~6|^*jT_297smBpLk!t%|vP-+A!5r%_dY4 zHYB_Tr1ti=%H-~lC z7s0_w{g@R0mC@j%z1ilS#@ns^Ym?x!adXUclcD#I-&K2zcul3L7Gj^@$Ls2(-$7;k z#?e5_+UQhOrKx~wj=0HwbsltOWo0-SZK#+fITuw?#HrG@0~`_&jFs@I^05^}#{Dqn zP$S@^n0Wxs0E*y-rIha}u|N1-9Zbfr9UA9C&)LZKK z8jxMe%*ydE=GAAmB&Fc}ah5WNH5hV=ReQx!^V(VVE=!BaD1Xgho1R~MWueP=Q_TVv zNhiiZ^(i9Q;j?*4FMszv|H1w#v(;DO>)-V+2O1P%F`Q1U$anHd!iSHxp6>|_2!PE}+C0d;29 zU;-`ZlTM?V$b-5%`$5HZI$V<+SpDN~oT^TaRt4_q$JFH6UlLot|JZz!WdGt8)53oE z9u(O@MEYC<76ObK!9ycnyyOSacRP4>Nk6?|5IXRQ7@bmTw|+Q9`3E{M>;&;7%i+J- zHxM3)n7_Epb0Dgz8*cO8#40HpFC$Q^7B>QFArv4+I;9_BJ>--mLSP_!9FI6ULE-zU zg*yYfvDI`g>YPkX7~H3p^4y*eY* zwH4DyX4p%EuBe~l2m8jZ(Tf3piYDWbARax4iQn-V--tFvnq~@5h4(Kk`I_Jq)pd7S z=kfSd*}f7YlMasf&7amLr6cBfc@vH~UZ2~_ipb((qC??p8M|Ph6F#~lmP<2+T8NA% z$9M2SD^||*OQV1P8t7KIG8cnS!6*R*d=$ef(|_iUX#jUHtcb08=IkZaXgI11LgM2= z`M`-_s%}&-kE$3+;2lLZ5Cmv}zXpZ!iqj6ogVA?TiQvc7zf*bDK@myuY^NHs*Z=ea zhI!CHjmU^9<5kCEz;R;d%}qO12JvX$hYzPqfvpOr*;yx$AKTL(K0k`c(kAtwO1#7S zH`GReZ?E;y9lTYh1_o6c{$cW%Jm9Wg+5x~OLW_ar#|gHhiUHeA;02=1*kDZD`P8aF zgXe(?4J0^<(-*ArhXB2^bG#sr3fd6pGID9?09dfxn$VDE_+y~>HGQpPFlRTfZ zMd=^QoH%^pWKOt&jB6Oa>oPZ*jIo*eLqne2U(w`5QG0{bA=wF~py<=US+j|$eHO!X z3;FYFiLZ1E0gObP1Cz~x@t(5#O2>zJ99O*#O1Bq-vYCw*VT}u3K2CjqaOj9keLe?- zGqhxe@yQ=EyRi(D9ZWNGscoCZt7t9Cj8|+3@UD&xj3AU^E!)h=%#MtbGR;;?#G(eq z1H_KXKXsYs2j^gXJFF&N19sP?37=yJuq$QI+7FOOq{V$`0N(}GG!%4!_(D$kSP}x$NGtPMeXkmY9 zR#N#j=BGxlFXEe54j@~Fk#|_4?uBvcYFJn{ntoiMJmt_{n?zY|U+npcSI?HrOr`LU zyer>{tFmQnugzNeJY4O-3Mtw9Bd3qnFQ=Uk6`07JXggM{4*}82fay+z$bUx2uMIVd z8~LpehOMSqbUWQm^7L?!|K1eA$GAps;_}szwlN=OU*-nb<+t9{*0q^^1FDSUQ@$_V zmP+@X{9)k9@ZPWeYEmw4i@X@>LHv*9d`?ndlbJmv+ zf_mGf1m%^_w)5zE_Z8*38ZsZGqQ=LgEPnksek}FG_*=#A!X7QzH!CN9i^!%5E8V>O zBvZ{o-yH_lbp}kH?iW~UPrVXzVYjwaY_)LL%75o!Jl`n)04tw4;njRpg^}N1DBuuL z_T2e1ULCmq#=Jk`O^{^1$X%`|6noIo$rhP36;*+S)!VuBcj~j2?c>w#J{Ee%f1RBT ztC1~~8>7#%OP$11N8=2N=o%b0Gag-k(eK~&5Dl(3+k`GDDp-tt&WSsR={EgZhs7fU zoo9CT+VwcPuD3GukZ)x+s~XT>iy!2(m(eXR;zr?cwWCqkvAOl=F*84X8!;9P1kC$&RH>KrN*J&SgoSpki zml?*64i6hJ&T=SpjF%+vZ_c}ltS{DlaK7m|pXLa<-rB7{M|EAzS)YfWE(TrOD_`pc zm$|Qg3ovH&_V@KUUVUr7H*a$HsNuPdf50ckL6HLw@qp`{C1<0H=Bx<^sygYO?S;8& zlD}Rfrv;XQ`()c(J0|nTRN5&5z2WRyyanzsJQLocT#H`{<7LTL-L7b6gze1nk<^N2nSY5{ayUiAo)c@3xV6dw2+XaL~N0pk3hywMIMvq7!9| z{uD-%jqoWIL69(eJXm(@cXc~clHM0r*> z4M6PTxrmGwhMweOE(_&!nb2IBZEJzE##J)1o6wADz-Sr%sO#u*|4O;*3NTeyvU7+m z-mKk} zWnip_CJ#C8NMM?lZ5i_xfEY5-y+0a7#@ z4;z7{#Z4dB2d^yoZ7s$HEtmfUnQOgGlnl*mB?+BC+x+f)<*V_KEYR-OnD zikRB-5h%Kl)JVJseuvr>(%zmB zb>A_U$vuBt5zb9IwxatvnFCPeXEpHhwC0j*ZTt9!&uwe1GNJ>?;@kjd zs|TCnC&Cx?qZvxXh8-|t5~ufoKz@iu;=i-We8(JXPsobzdPjgria`CaI&OKMBQ>iNx+HvVIN9=kMnmJD4DxxT04#L=gSy8ae(%h4k@Rfgh1{y z_<|q^QDVYKa#A8vB5G1ZIj2OZ8O&h@=(QN$A&6G_kf~O9H+k76-AJ+bJ7K9_m!IV_N4aASn2>5RwXUWG*GyV!Rh`v&;$U?&jo9V-(Edw~ZyW zhjT)4zef^6?&!|f6O!63@1ki^t8I7(35oBGZN6;YZKVxs9sTw`FHfzT3{k#Ih>Wr2 zeOMav^Q!-LdGKaq>BhalDxt+~p|bg^MEL@lpMR})yA^zlsk^=@eajWWVtMrM&Al*& zC!vrCr1`_6UtgaaS1}c}%0?76WvfB9vVAijf+Wc*Dw^(AK|v^nr&Tj0tyv#K+M;2! z&C?c$5a-U_HD~h>el(i0zdN+h4p(VbRZ*Ga15Gz1Ta49)x%VQ)#4`k;5l$nxv1GS6 zSu{F_2fT_Cb)1!0d)~Cczm-X`qGr&qu2}(=k>?gHO8P4@&|owf()L;sj_6;|?7a>_qL1>jSi&*kWh>}z$i zA1aB0lsVB%7q>=Oc&WxtMara{jS-ReJZ<8B|Ja9>&a)eCfxucq5Z&ieOL(k!24QF} zAuzrSyV1g1HezZl2HRsv!8!{GD}VMDKBy21uH_y`AR>HMxQ#0@dRo&I5)u+uZoYTv z`wd0hDB`=vq44?l8!~z!e-aS$Pu1t{VN5U2DAietY$NR;TxwzX!ZIA5C!~xZ51Ej6 z{O?*?LsUY9c{6(?$G|MxBi^S8u?Z(Tv!3Tuk}HZ>2hobGwI!UL9-~rLu~$ zaxyZE16zmNpIx($;^H#g*{&9aygT|yHzHJ^uL*c0J}Isdk%9#U>GZ#5HECxRlGBqT z>+Kwr%INHD#>!cnEsff&+_R+uw`%lmPvjE|lme^?sePm)3VRkbo21m8Hc8s8EXz_4 zjed!w<+`Y+F{Wg38ETS<3U4kPJM$p9qAWBeRpWIuxwWTwubxp-r9%f&lf$1$ilYdq zPk`K8LK3)oadulfCwdvz8XFs1`76JQl(PtoqXcK}&*g^`grO@(*uyxNL$XFGjl{j5 zd}E_FpgzI&jNK6@HjKyb3?F6Zl-&%z91JpobT5SDdPCO_w=Yg_*Ey8@uUd03n{nrj zgNf~PtnjBGkY{;Qy7NZu$8dQ{+<5*SV5BLls<3hyiQ7ekCrD%xz}z&d5CdNju)FwC zqBiHTz!D^YcjptRfCP)y?c0znPe&~kOWW(*xA|*tEd{lkQ zIIgc|aqV$nZnz|ff@{^vh1vsQWUr00(!{fihpRu`NqAO~Zb$d?j) z)?P{pQ>9nz$e2!^zHG^y0%QZszG?M>nZb*FP&9(EJ-_o&8uSt=zAjoBLFd88Yt(?R zxwL|tt+GqM$fxtHsydc<+hhbWsx`UisVryeE3KC`AsD%HZ%jt1bRUdoHuSRPKj^w0 zghzG3O>LIO-m*p=kpl{ochv%;r+mgX{?KsCXxnf?xI!CE;GFf1Zvbzgyp+qBMhv5q zJ20RC{mYY-D+al_|;zRkbO5 zNfI0GYZHI3*7%j8tCshORj4psCOquj7jD5{h9=~+M=X=@2vQfw{SRzL#Y1><@)CMxJ*c4+5i zT-U#hptHJHsKk9`b4>fclhGE!o5RH0P30St;G$;C7p?C32TOO)OdL$48RBe?^BNmn z+1n*{ie7q?6j_x?N$o%j7CXFus$=XYlNzn-qJRjfrWU2Yng!q6_3{Zb`9x-Ojxetk zpBGfe^b~jAe9!Y~PTm{t-%jj2KKOHX;BPIH&)3n#&Ubb_Iy#;+)weFSd78g?`&)}c z`gC+!Drd=AQgW|pSnQ{hK;o>Q;xn*q_F>h7d>g)uH*NVdRb0)YvlqX2uU-c&XZqze z?Ga~~81&`!g|i&ZeXE|Qd?Fd#Y^4Pb)MPN(A+Fk~3)t@WBVAQ!#cGgS(pq;0%FzLU zr9nWa)$Fusmf!#U!>ugfXka&vBiL4aBls|SKl3re23OS1bXK@1^d&HyHmo;;IlkCl zDLuI1tIHD!A2KPhSlA=!{rj!vK}Ueg%vW0>X}7$Ms-vSFTgD^DkJ+V1n2Tu!UAExc zxowwyrPnLZPuv4<9fFRjl+V7qoZj?I+?cie*~gmRWf%m4Z0}}=_pL8HtLq(KU-4?Q ziWUL7UvuYkZH|*>Zi_Mjt&2pb^RDwH64}aZQC2T=w@s8T4<*(|fp=;aggmazFHa_y)!eRcMH zMazIITAbSkce&7#diOaxt4*GhTVZn#ey=rz66w*s2sUpmeTgP>gclMHY5^UNe zt>7~|3OW>m)R}=e03iFxVudH3{N9BuHiVKDL}aQKLF5LfA{tqg1<5S)04-u-VQqaC zF2JuI+JR3f(m;}@HXy(%5uy@ikM`&}i8uUXUi!}YKEtGH1fige|M=n^N<4gjA{THH z=aU%)#Se$OD^p!J(zlyOag7r}E2GkGi}%~cHXCi_Ei5em>kN+p#{F!++NPMEyb3x( zYB(ai6cX);UztS;pI(qGj}k2ElZip+w6Q?!e{8CP0e|!evct-~xoPH+-o)a$$^La$ z*M&KQNfqSZ%<#9hi$3^Lc8$tNBHC$VcrUeMVppCu`WjH=)R@h)&}Wk?&4Y*ho$m9HLiw*rbH8kD;a z@u0?@Cxsl{@+=1+eo}jE@`TBVEQ4i$9g90m9=!&Z`A?JaW=c6Y->7;yr z)8UB%&QZS4m39`-{*~#uFLi!tJ)5?^q_1+>j}8X| zb8_P-+Mc{%0yyjDJi>#aCvP9p!v@Hh|1OpX;jt2fJXI_#x~V-+*X`bEF-7Cy8E}>Z z3tQ%w-s`Nf_29%}LLNQ%_kA8b>MKSWOp?UpyfQq7!Fs$g{So4JCmD>l?ZuF=M&VXDUE0p&5;^!VE7 z522*Cy39^qZ0R3-?1oS z191Y7sD%;M0>P?RG-m}Gw2?+0zgd^;M8)vIbZEr#w51Iha=V`-s zt1NgDlhNGPJTnTR7dMQ>8+rj5gCo?jV`}>1Dn`zdAbL@65FD{^udd5$pK7W7w!u8w zI_QY@7HDStf;-R7f6Fa|e~{qPUHdmO{P!5Q;u+8CjldrbGuyAAlx?3UPl@L->s~W;Qff=5IhcnC zg@_p!DY{Dk?}f%{-mQPGhmU|yvgerCFCI$d|xafc3Y zS39#`Jz?~{6Srkwf?vH^K~r^C z>a|!w;7LlsMM?0@PK#Bm_sO5|ieJ_Hz}9Nl*y%LSAJIBT&OGg6=}zovG>ujNim}vy zFTlTIpS~zd7Yb`fS>|{{n?C#fjOiKkl&%sjhJ;s|HbEpLD_nk=l?pgyxTb6b2ERG_ zy}Nt0`sTR8#QNp~YDxZ2_9IZO33@rd?}`B*$tQJ<2wJTV&e<5OY!IO*fED|XYo|S2<6egZ$B`eus$gHVYZ-H9$Vg? z(;k9D8#fx>YemO$qAR&q-MC3JpLXXlegKykvkv0Hv21Y2AnFc1J+%ib$WQmFXXUh^ zP+=vU9uMU`2AIOHK4{W zXscSV-;WtCt#%Cu>)0s?I7A7Z&APWi&= zTYw}=7JJfIUkWapG)5BD`D6k4_MenIt=%t`Hvgs0kv{hH5p%-77k#su99dvN@7EeJ?4cZ76BAQ@xEQ^Ygv{ z+s03~pD)39-U)hz;gsZJGM_y9uZcliGOpodO&`VAs{|$noHXDLjkQ@5j^=iS%-mR+ zP&G#zt&ZjGY}@4x=wC2%E7D&_gq1ZM9t}vY$xknd!yx!Nsz5m$C}PmiwMN_llHF48 zNtqAC)V}Z|Pdlb}lMwEcSqNUXQUm|>$9?O%L%=ZM;lNxGX$EWcObO@73=QeMgWtQD zE=T=u&i#7Pr1OA*azC&0_RrxzkCT~>Cw;d$w|~1XwUn<+#sTwwE}r{>yyVpiQo;F` z!a8bvqIs&>J>BwojuwRe9&})*q4VtfLe}S*Y8vAm=;r5ILdTqgnW_g>+Z+K09&=Km zADN?$FlW2Yj*}vhIRbGRZtRL*m^GV;9ZVAQmD)~wYZ5s`*n$%?GI9YQ zt@7MW>K6RBcHcBHX-UfOg%$h0YNK||Y7Lfrig?bnw#GK_U4$N;7tS7Hf|}PIeVg= zu4(6@@NoBAzx23BoOKp4NwjOcNzO`K-9iV-{_o=4dR@?Uo`^{LLg>8=hD05YSk;vS z+`>Eq)ly_Y^ZH!utZs(G{8oVCV&?l_KzI@^EMRH$!OOufGO~+S`LhYSA~$q0`$emv!qmJY8}z^ z&HUL)dMD?1~A_w1l8|*X~@Z0nHg1V2^F!RNB{$_ z8bP1|>!G)RhY)~)X_G!?{4o_372615g+9`L!N|haDPN5+a#A24H%wR%aRPdi*+XA# zOG5Ff{`b;z0wP-SLP#NTcvOclqY;deGb|iVWY36xcg78pu@BU(Vf_L&A7M67C1AT> z7)pvyNq%`|0H~kSVP9A~Sy$B98V(}`XGJ}4ia zq?Bz2|D6at>7P}4h`xVUJBu!c%}1+7f=t6^xeyqNB2N=*n6n$OgYUj4{!q>M2$6|V zVVt$FuuypO@9pL3pxiZ}fCc~u-Ob9%H``d-8A&0I|LLE~^YAhT>zfg(z#EJ-=;E0& zMIW+pfifklq*l>%Y_{q+wee|=By+v>Im7MYpM&MIKi$=p8a1VrJD3gktA&E(O<>=v z%)-maFxe$p-IWQB4Iz^U9yw?{RJsXS@rV&;N#Vdb3B20MnQ)ZLnGhaACW8-_5drsl zC#>zpEORE5XUcNW_fwwiQrCtZeK-7ss=@x^96Ux8~N@zxE#r z+u!xbr|n^*K4ArvO>QDsCRiJg=OIUyAix!ax}l@S66PxBgaE2bqkHbZ3q4VtaUqSs z_Y8QCfRLmt~XqCxFrQ_DHUW_xQe=YQ~6~Nun6~G3w#=yRGGg%wED_ zapqba|Yn83|R|Vfuu5u5}VNjHFxI9KzX$RTbO=Yo?$F{#_VZY>R28G zKrA52=?xGbgA}QX1YGJ^&qsvfpZVYR_f$Gf+Ud@UC4gIjRq58chEFYub>znFrp5{y zK-1Vx>FjH!JuM{4W7BhcUOWmPNzel~*+qeAfO@@=4dc%zBxdRrOeVj8Y+Y{qhlDYL zraif}{keu3qEGv3=x9B~5eE=z0m+xr|JYLWA9|n>kKp)xPk6K;-7%r%GfbabNVTy%8Po7jH#^@(C3AcukbF+|ck|Ii6gL_Va z2(z(_kHeSHIe?UTezkZyW`XcvEsFgh>Rh2-nB5@2oykMl`rq2-#3j@_e%JqEN`bZw zQg~0{5Ad zp3O1H^_5z3GZ{S(=$O+4OELhA?o&wE?Dp=^!uhu~+Xdd9KuKNEV%1|qbq|L}cc?i* z6p!`vsN5G6vIo3;n%oStA69M5?|ou>grefQgCjEZT9Nf8KzSbtCGhCXmofq+u&QY+ zULx0w87m&v66mb~2R$|v!s8JLUEt#wWTul zzGaDS`Uy+u*H&+ycNK2hGZW9jyrIq;XmHKmIcA1ij5&)^RZds$|8g1uyE<1sgO)fY zvpgAhdx~HUb8cWZTIkrnYuU6jA5Qn?x9*oPl zncKIrv{Fwqr07|&2djwq$ht`9ya_n^Gn`UpIZH8B%q>&2S|VkcqGcf1R5{@63){CN z-@({yaN{SRYu~FyN?T9LO_2CVjx3fKoJuG{^Wp6zT+?Q ziNOs>E4Eb;Jh`LjfE=ccD)!9XFtZNa>aV-Lny>|GSrvvFVvV^uset>{FQ5CL#V6Mc z!{k&iO(=_ofhHa=Z&rKGtQik}W2uvuCK6FoGGnM&BgxI%X8t3ocLDokylp1g&@E?R zOmRJFWKm(Zd{|N7K}ouqpUCDe6v|!l<2U)6mGQqO!H35aU4IX+%?AMz)+-N<`N`+l zXZJlew_`DsF}bGyeiNZIU$E-K7&c-ma;y++$3J4KdYRxB87Dk4U z>}4WL-*uQh`}c}%XYXvWudIyWx~S{8HxP&I4F#ovonhLo-2-h(WYx=H|1a{mbZMP8kt@W9(dF&#Faz5u?p-1$ z9G3gBbM+6}mxSUKC(JY)PCyS52EA;PAr_FX23|fvs~rkn(>f)k;3wzaf*BTVaSQ$F zO8v4qr%cZUYMIlnPW*7mdkxf6|G|2a9hm4iL{qWjW_J2}xKR5aWkT}32IdG|AE8+U zeq@P#Yu+Uqcvs8Emwi_mFPh}dA6o(!$F}AW5Rd2ZG`(!2Tv+~As#DRPle`GfA`|m| zr8@8B7sI4OTr>GhKSZ$wO zKg#%b;3bB#9X|UJ*V4R$c~dztE;Xm&TKj!%sz7r08>AF# z3ey*_I^1$f-G3d8Vj4X!j|$$@YglnF`hD*7{3Nk9hrIcU>6=O%Uy@ZuE$KFG{aX8N zOb1xtGCuQPk6$J(y*adUAU@p>TK%^g&@NkNRK$*bZ7ZGnLCJN3w9jHcs%z26Qo zWhVKu+XtV{eq+|69WtzMcdPal-!#j~S%~BiHq7aI!;CuoF97013wE!g%tZP1*}tl~ z#dEBK)%gNS3IApowWMevY$YS>(I^zw%G`WPncy;i^&`)G-@?kXRj%@=bf#r7sLs5W z^0Tje20wgJZe9el>*44oleWzEX8wvy3_2@c3vWM@O}90o&+9;oA3FF zFi=p{2wQNwTK1plJiO)ODS=vvLt_TyWb#S}ysCO{2>*yK}IdV;w)lD0woo zSpLOD=4e#{#jXS@;|GeZ*OAgn=TilN*Zq3I$vLQHS_?8TkZv1BLdy6GSiaP9neW3% zXt0E9W+65NwErwv-bac%+K}LBW!e%CCfN{^+_lJACa<-@BSF53lJsDa^5}mlaoS@; zM#!HDpX?R|k=u9>yfHm^Al<{nI7^NkvZ)7%cydE9H~|yUcDmSOeDl&_9%kNc<=uZJJpVu$zIOVX!{sJ8kU z*dyp9Hw+CAopMoqFv<_@vt|WK@;Mv-vn0(nNfr(3Ol?eiJ#(ox9<6mPGyLeEHR{{q z(oW=R67qK2%#BeXifi7y#cfw=9^=bE-RG85(RI1d@?d6O zuj@v0-Uo5x-ojz2 znPkXf?Tjq4CT=bb-HO(=gl7cQ&R+Q&k4cY;%YS1tF;lruD!H^*V$9xY#9+k|SlN81 zU~f~}O*o}fnFz>%z7vxSjxnA#E@2@8u>_-6<+YZ;xUpgtcs~m08M|bvSG*Ediv&e> zzBlGB$0K1S1)F86EL(_!hwh8@p+f~?yWtZ0_mGJ7<-$3N7j2Ug;&dOWBXi}CJad!H z)oq-bs{4j4VD{g{84YZCA3QS^Ctv(zKPzT3 zn8YBAVActkZIW53=8iTk4&l*imrY_o#;?Eyqh21j5+3^F?~9k_f;Z5FPhln6emp`J zywiR=h+8?o2Y`igYl3&)%g-yHy5DBGU!UAAu+=1d&UN|X-)S83EGOkLa>2Cn^~Y#ta!Okn7HZ{qFduikT(2Nw;V!}u*I&<~SSDxkc!S^R zo%fHhIa8kxdmV>HBQgMOyHIUeM)0-X+yiu=F+nh7#g3Qgf^`UgwvTB`ftChqAG;TUgd; z)s&3HbZ2A7d^$Z}eOjQXS}$@s^p!4u_*T$>Augze1$)2br5mZFjz~#qF5UL$Tt(aG zEzul`-i_)@i(h;IX1r(A%QMvQ{b+%Ua%y`SyrHH17l3!Sn`D?k{VIASM~5*+ z;hldyMW~eiuC67rw_O?u;ivcuy}*5T%h&QP&=Ng;`7zavox{p4$}?B90{Qx|(}m~x zl`U?u?S-kJCNy~ryO+(|J=Q%2;dC~N9Mc|x=>f8+8%wUHI@>!2BE?HqwMEh(dG&Ba z8X98aNfCkMV-#rS_ptcQF&)DQFHHppn*pmrw2Jo8)lTr$Y&O7zG1JVF{%&iK=*ZsW5^Pvz3pSgv!b&c7xwPZMlMnO_}95rEz{<^)U zCYGesAm|eC@L~Y-iX~jHm7?H7z$ZP-n0Xz?zirv4N5>g-eAgPFOmUxl0nn6`f8-kk zfy8sd*C~vtq0pCAp^aS}^d2=jPFub-{coDdV4Qz;)UG_D3N<*!CnPJX{g{73@>X{4 zT(B6Kh&pbvwz)JRymA2lWJ9RVD!|aB0;NADm&A>7@$z#&n4WrhIW69D7%ls<(WBnk zQ#UxdUcfOUlyPp2_I8XVlPO@ER0 z6UCCNBxM438)5in&s6;EAxAg2qs#2c;yTSt%wCfDA>)1Z4_@o*qUU6tNir+l0R!+v z1);~0A>o4C`U|Om_wHQV%d{62S@7<6l0B{mwZ;2ca7);_`s|NQzz@rw53_Zf&z|$% z=Ivosl1L&oIulRGKgu*gobS&sazKyAQ_k|s+kS(*Z(c;znFyt%)yvPq87w9Tz= zva5Ug=b4^vS7O?0p86SyL98M$!IZT4en39CfEIo4zKfSyVv$zX2!Wl0Av*rn zy87Vwr`yftfUmKdM*&@1pdn~_x+-2t+ z@%h4;At7n`gYAWP0z=ql>qR`BtK|fd>nd(K03TU1Huq~Qr}NE-4So1v(q^_|_DuC>gsn$2xC;Lgu2kcB7O>pjyA_HMjB6K@JhVU!YQB(qa8-_nl87UlDSma#5l!gPdvZvE51~bdpU0= z+H!U9-EH}k?FbiE!7{|JC1kDp@k&d@@pYtvR{EZ+*i(&zz+^6D+tt>ZMAF*AX_2+A z!Sy;iIUMjC=W<;Vbmijmt&nIp?tbH%Q9fbZw}Hb3In^{H>ivSMLoP?gt``>*SJt-H z0=_P};O(T?8|Pk#fVf`nPry}QvfOLH)jnA6tfTG#Ah zN^i_tS?PuTZgxu5NxR@0a&wG1=HG5k4v1 zvim%a^~GzRTk!kaa!IK4mYrw)UCpzC;tQ?#?tVn;5knPw$f4j8t#pblg#x%4m`ol>;y{jU{sm zQH-UNZ5R!^#w~^V2pWupMhq#~oq17!U1KO2oS=ebeIOwhdFvJEF=+zexK$DfK;&-= zGxn(ty0b|-7lw0EG5&$oM-WS5!#E#EK$t-Z66$SW8pgjK{%X1+nTkpr1y+|0H`}c@ zgNT;1iK?r_H9uLNul^`Isb5ZG#&B|?y(=KL2 zxXt>a+4$Dd70)E}RfX_?)vEvagCV@!;JSp0xZE=xUUTNQT0s|MRM33Y9>}zVzgeof&TBoC4aG0oAh8+2cguQv2WX$g zzggJr_Vh&sE)5o=!vB9Sz}oZBv&;}%)GiRXp)g}|y1pSE_b7nIePMi%f5S7-dr4f& z@l_q-b%W2&`r(MJt^>-_xpp=_zQ6TIjAxNyHg3GPZHu>d8tT?`0r$v{F4im?TJn5d)n)U*MWMeVMkeiXdli$JSU z*~ZnnsCe8AZYUF`J#w#c3pZLkpLJ1jH?pME;grPW%XAX@aSQgakl*zJl`LQhYCZ`- zCrKcI?VJTT7jX2Cstt^kni7*DaiR|04 z+T^ww>YjjQT-)3|4cqnNXPTZpkSyp^`BH(6&NrDgRkE|kzSP_>c~k^NydWOjedhV8zaP(AKN zwm3QIKec-;Rh_9h1-MD*dYW`ldlfvwAQyNp z#L$KlJfvCZP)0_nxBKvo(dYeX8oo{jpAsNd$>*v5NTwvhPF<)_S6B1lBVCMCz63X~ zf{;{FeWdZQFSV2;B+iK>HVj0(oUP$LV5=r;N_D?YZPDyuN1}F0Lj#71Y0ai8gqn1Hm)~CaNYtxP#(0zMwv`HPr|YW`Q;TlB4AI%}l0p!9T)OHwj71V- zCepyJ`l~zL_VfMqzI=8`yHVPw)F5up5^{QJnu{)x20l8 zh)L|LoXWfc_b07ytglV#9-LvE1ouPyP6o6DwuY{ELYL?278Dx2ycO1tUH!ZpZs84Y zzXScBdh$jVZudSRF_JIGJmpK1Agg;eC-bT<2iq*1Dos2w`>^5^O z;pdvYJ7&rIt+%mjWT&8!u;&(HRBN`H-84tLvs-I+lrs>gMbjwo(70IO%y_$^s55>* z0GU{9_nj)m!sPQ|kkdy)L7JR7Hagc}@9KG%o-m4@a;@jHte$#uE`5*Jiz*fF&y;L^ zWrcp@f?W_ven8ufFw%XQaeX5#Jt%t=?$IuY}MO=iCU3VM^J<$n*78^%rgzxARU z%y8fO=87VL#xnuhq$KgFjs7lA)*gxHn&aE+k`D;Ru=O~B(!laalG0g&6^G~FKI;Ph zjo962iaK;jL;cLlM;QCe2A$%JT9IhiLyDlJMKrlu&Dq4`43ztSFZ9gp*PmFUe3?OiDd@YeOEHcY~`0J{s>X^h3Ox@B8Vwd%)UD&FB z@kb;lxi$p$2j=c9;KLXTWrs^Z?z`(#5-0Dls{C zL0ng3Zf-K@)n^*OdN)}=5tnQEHxG?4GBR?a(J8)7W-z9io}1&4ZSpV9*hau8q~3h; z)BcRT{f5gJC#Q%knj4v*f@xN$E6&n;2eGk%<9g?mOOn+z$IXdl5q0VG@W$?Zw9f8B zfNTr}Q%6f+sDXzgrY*q` zgIHYt_Yb{r0eEm6tRF6I&tF|E+_dNP#NL%k`|SnKYEUbC?D&z9p4lemcRovCEd>dw z6dzwDOKt2sr9;cX={XdWE$}Mj7gk#{UD_;`Axdt*p<+nq8%np{0w{{zV{GpMjy=+) z^inlJ#-sgpcPR^%UJpevX0OYC$+W)w&2@&X(q@e%mLja;yvvozSrU>!T zK-1s4L+Us|$=J!q2riISS~i&q*qBQX)qJ_c%F*H#+5URHhfsZ};-C2HQ&~LtW>6lj zunvEj?=&M;%=aNR#~*0r7cmpbATMl=Ge24PCoxP)3fUHXc~x9+cA2S6nEB`aaA5?I zC1v=%%6Ee)-vsgF^S*;5v(RJV&NgX=k1Z>UM6%rRJZ~gw*#^a#yCnw--Ho{K z8@v``_=YN3ORatVw@Xf!gkM(CV~NT%~=@+P?_@lKmGVS#ZZC8=bKq_K(1bnS6&=!r*nJ ze_NtOopvltTf)SC6ly0Sk!3@{LXrV^`b$lj|1q{1@OxOH`NQl(K#W&@eyWtL(c4Ve z*YOVyuW}_y->?2c`o9uO@ACw%qwni0WBW=OYSKWs$Zc<$*>FhgT}*xBtK42ugA&Ym zAHY+0Cp^qDv-WT&y8G92!1&;ZB}dey)3Iyh-lRrMxMcO5jj=G(b9RoOv)mp*+G8U! zr%?6|aOUr*-(CEVB{n8G#BvblN=-Eo9(^luI!9k;+JbG zz$p7aqnp9H`J2n~x^Up%mKjvoKXYTp>jU_j<9b|9XSc>r^VdoV@s%!_6yoy=y?8l8 zpE}?kBFZrr_wC#vxQ3p$&&BWIVv`FR9X{-ND=0pgOZWHsTQxIY(HOMy_F+z})!96S z(aTnJfV(@ST?>8aH^E65*l)T3D&%Qv%NJZqL08e4l`$T&`X;+2TWLKMPN~Q_7sn5r zRt7GErWJL`8M4m?q%#FGS8$GF2+`g*xi2e~baPl647|=Zx7K&8ucXs_619FSP7O#a z%>p8RddxLC$UVCrm;z#ax{!T~j9L1zJq7WF7O#t=t+Ddb{rOg(n+m~={Q{Z-G=e_A z>f=F^3iW7>l2h!V6 z9Ie1O%B2h#({vTOAIA9Jk$jzshewv?YsM>An|u?XnEmRJ;q;uy3(awpId)7!N{NGv zNGX;OpWZatIJ@^bV>KVBZ3p33H=`ALfSI2)>vQB#U4cIhrz#!UV4*tD-bN~y{exQe zQ}kWtMIz9DI1iVoa6f(I+vHE-41YT?_tm2R$3=ZyUH5NvxEA)KlxNBlP55X035$JZkm`7)rL_6(H6f+> zHQWh`cz2jPmlR)Kw-CBNy*6!q>2`DOc73(*K+%%F=HV2PK^mXv1#a^bS7|^4$8#;& zkmKjAA^7z}$A;X}>WmkE;Wg8VYbSZLsC0+ybqC?%afg75IXdMa&y#7R)=8haG<$nG z+`@fn+Ro5RrW?;hpa*~+(AO6$r9-DT{ea4d3YUOnA^AF^Bq}MX8En+USm;&YuzV@0 zl;8Q`fU41t+n{C$T<)Q^BbP+J&0as*o8?jt;Oos-FcVui9p5PkxcW$^e7VVWT@-4m z0lb?_N<%V*g+4Imof0uz`!b&TcQVV=Z!SAmDkPE*C=p<&ABDGZ-#AW&Vqix+Vx#7Q8cF%nYmoJ#Co7G=v*Eiv~h@jYbLwvqJW3rFUJ zGcr@PDIs47;oCj^>$eAj*<n&~}{U(Jbtq0iRY33r?RQ-@B;` zCd{oaDfKWeSMf`wX~npEC!?ytyJnNeVJuT3YhR<&Hx<;K5z-v@R$?@1KJA&yvN;+H z_h#L7DS0LW{aE{kc{7lD9Z5tg1(0K~^x@$VtXZ~(U@~&%UI&X>DNKqg^Veu7I|)4> zGk17oeTJ%W{ko0aV`2FZ44wKp+DO|^JIrvfcKusPDqU{PDf)1hV*1Z+LjS2Tu6~J` zO!>=Zf1Xj6BK5fU9YAr*qJrPq4E!ANm}=fsKvJ3p9Y)DcA~m!7)HX&_6zu-z6!ggR zo2TwWH9)}8!?PYsF+u_b_!^TOc;1kx8v`Wbq370@7X??NKzMOJ;MQ_HqL7^b z29QiSq3c^b#e${c6&Y^9r@ODR27&=xsGLp1vu}@nq}WNv5E-GKAh9Bvo)#wqavvLh ze|D)|!NSF#YV}_`${xuZK>5FoO=ewm$3KZTsTJF>&Asa>f-bgOu_U%tm8_yliL&i2 zvr&^ILCMqbN3naAQt`>&;_gjQs`;{^>MGzcEsOTZXrq3cI%TZ+M?$1-yP|;=egY&5 za&En;Gv@~hoQ$taf82J3yCgQ6{~D9N{q&pd_QjjozphD=yR=NfG>M(sy1^%Na{Xm$ zp8G#3lrvf6%-M6@rh0)KeLWlwHZo`)@y`6|pb+wJUdM2Yz^P0|O?%<0l+ZDQg?!6K zr;ii%Jj?dh;|qcgMyA&kl7}92^^UwBo_59R<9XJ&I}FMzgV%~@fmPfY&BkQFbDR+z z=sy9EH#V#-7cnxt^CrLh!N60GpdkFeWp5vM2^x(LZBM?j`2GAUFE25nJ#ES_k7gB& zzYY=>_F6!B2_f9_FvYMu>%AmeCcwX3a>~R}Xab`os1E%PD9+yRNGp$NxZ9!BOJw>) z84hbx1&0ehr*Ss2NyT#LebozZw8HD#p#0Oy?x%0imi6xfbC|(uR3t+5*vR@t z874{-5Y$rj)pT`Kf+{Rk8^*H>O2Lq+d%j|y^!*$ani$x42Dt ze7t3GZ>T2EkEx!H9OzAD5#|Hgy`ta%2bguT*QUVQ!5qxBd~Qfzc0TPCxv$1@n`*}G zfX4cd_2>s#xSTs}00c}00zY6bj3ohR7Jnq#si~-kZB~aqeDVO&?f1a#(jO%0O;t%F zLA*!9W|*u;+mzqAd#t#waJ7_6i}Vy|@CFmfM?;9rL{E*tCFUI=a}ERZBID&$Iw- zu_2f<=ZBgRVe*oSk4qOR6}e8g&u`=~E{FqjLwH{NRMG+JlmH_aC-zRzL>H6_IOai& zEy#E}l=x2gkVpuOGVb8O#%MViNohCJImb&9m7)oOhDGt^LqJQ=T{2T46?~csCoUtk z*xTRds!KfhY!5Nt?BUyF#@Tu`h?X5p;{EKu3(a~bm>uZC2~}^u$^74&x#AW{)#_n0qooK4^R{T;=_nQhf(}edaA0Lzb5rlk+736 zqG~2+`Na8jX~FqBt_x@lBdA>tmmR1JxG+{4$)nckp^r<;P}%5~9g4O&CuH}WA$-}U zTG5l>kd0O9FdYn@(t96ga?7}6)OBgT;IKLCFDJ_!04Mb) z|5z=7;ntuSq@V|V_rIt>ybRSFtr=4495cG75JO8s;yeDX%vg9u+vy3x6t`{Xv8doS#Zv>JMp&=*3=r?f#-!TJ>zd&=NC8Ga|8D?w2~D+KNMN_GWoWW z?$z^sV>N49)hS)qNuO6ThD9SbV&eTkQaWW8T`o3?mnQ>MN zcCrm@8MVu8wteaVF@RY`Y$=J!1U7B;od3EsG{LjHey*Npd%U{$dNNHiFarkDux(xn z&=AepxyuW$b4!z|s5TpAjhFWYvDHp_b2Pk0bpceW-A8dq! ztWpaO+mOCuz4zDo&c~dgHg@{!FeL@@$m50cn<}0Th=-*%@_Ug*+Zpnd$ARCDvOJL>Kmf9Y0X z6zb$iB4_Q=Ph`RG0%ruw;*{08VMCkBf#!oV$LEv9N}t9%qR<+vmAoJ`U5L8m-8YUE{?br*pHL~bR~=X@1^`nsz)xE!M`Yu>l5|p$mLB}m zjCm%$*Yo5b9-&Mq%T&QvGbO7WN!yF7#y}?**^g|D0ZLP@MvR`B8U@+9ds-ybT?u!< zb%mUTN-+jXF1OTX69FP4A%{?>d{SFhP>i9ZrnhWoWha3z{)iz?TD+Ir!7j-sw{nw7 zl5Bg67tHFtIIJoW$+Bw$YESUg0bL2@s?#y(8{3kS-!e1x_3m+}{ZHU)iVZQTb74Cb zHLJcmRkwGthn-aAzSU*3_4NdhrU>1m2w4?$Rl;9B(JjEcW*ZtNrR|mN{Or}O5b*!) zER!Yj<-p9X4zPBvo1?CIfjf7|Hh0okSQ0H}3>#lFd?jnxHjEf^#k$I>y5LZnVNZ0e z+-j$G26FbBZnk&!FPEOTc>J_%x?I`_Ii+ZEYo2d9Sy#AOAG(f0D*qclGrB3}D!PB3 ze?|#9atB4+`YdU{$GZ^4uz6bBrxs16~ zB4>`lILq&N>RK62G!LD1Z+-T+tkkNzw!fYz2st0zv)%Na&10$XFZV&^4Gs=rmH21B z%dWU$zdxhnvTiv%nM-cDTz=xHTecra5Ln*7993~gkRUyOHlqog07I!I5+Hj9sq#eZ z^MTb4hyiX6fK^)H13`o0fnU`Q4Cnz@a&=-Jz$hLdF#Ycjc5q>wjd-bdK)_FPw{C|g zkkPG?e^Le4IHs4U!{t@YXXw@o1=BKia0IE2CI|)sY{-ER0RXh(+<@^pV2!SJ;1ZD% z2YjT8fDn(LI^=(^EQG0={9xK83yshO0h6jA;5`6=B)G*)BS9S z7=|7?ptQz5kLB=I{Y1*=CR#e4O_3zhtEiX{>42=yAAz81S^QwP52@d@26YNYskrqr zzKohndJ$kzaYQ6hkao4fvX89nZ-)}%y1uI@yvSZFpV&V1{d`*@b%Zszz|jT1+rXeU zwIoIWq6IZo-6M`!j*Pd7h5fkuBy_xd(OQsjRX$Q%i19=HRqA)F!*Xv^)P`YRJEy+C zD3~(mUMVLs44j3je*Hk-8}~^@|2FqHNG-#>qGsB7pwIPpUL~)+Isd1pX`Z@EkGU18 z>#!4IQV&q>P1-q${9cHfCrxX)!Qb*>Zyby7lQim=d2?84-A#Wq#gJ&OgEW!!52h%B~vcomP!o6VW#-EM!W0C>N4v08Ov!IN(GxzPT00v9} zH5?p=u~NLlsJRFg=Z^kGe3$Wlm&+pP`AS%#)Gb|?FDc*|8+cu>Ta+ZW@O7^05yxva z4yng?JKM~--$tiH^=aq>wUmls%z`8)9Rb_7`vH2chDyT9IH7uOX)qrU=Eaes3+ahr zm9N=H!W8tg?&VZZdrDlewH_2)?zZBezihM(J@{C+&~o#(I;$0r4m~Zn#tzXjWezPU z2IJ>qGtoj8gV3(eWAo0!#gf%bA1F2bq*V>Fv5GkPFy%kI-%tIN=CEoAXeKv z=Bc$6EW{eW(+%JCn6*MqX`jsVax;RP*jgHd4F*5 zBmFaKQ8i2x5*4L`yT{cy_e4=5P0J4RAC6nqBnqF$2ZaF!U)t}%dVN1fvvouxAesw4 z#kbWV^gmbcH06umF83HCT-D!|FD@I0K(n0htsa}f&eL_{!I_v&V&YLA!mRmsd|G-X z??iRb?sU$+a(%%0<>oOunWyY&CS%HgXThiPH}CyJo8~Icy+>(wCLZWmB(Er2B_4m> z_eGVo8C0A#^`F^=oVmY&$|l`TF4>&u*r`12{cfE(V=gjeC|iD?ld@__P;etNlP)gj!xeH(ws0zz9nOe(bE`8?2 z{k=9r#9!KO8L*I1%@TnrLZIPaz%SmrpOElFLE#i&hNxbwRRjPG=5C0kOjd<_N$*fv z(}Wm1eSG(6r_tnFRA5}n^s7zRTuwR-S;I9knU`(eWMtG-Wktlqw8UP2J>5ZMk6J|A zV8A>(vmBTe#9UTHCP(pKK$gv5I1C88C|S9*hZlkVp0+kXnyaa*uB-lta&o67p_jf6 zqND~b!`eZl(tq3OsTj5YfHxBwc^_=r(y-)45(|U8y`yF@i)D` zvj&no=Pmlh<1;>1Wr=Y_&`)+FtbGph1(~0R5DNdl7r>k`iNC|bB_q`if-gh>HaH=K z>(1%#MnVKDWo6|D=3*_UAFD_gF08oD_QYFb6yzVX0{;D^jBwxPp<2&q`6j>F*o-PHXjSBAhBcVSQ;ZD5Iwgx!D*LvNL$Ty&d55 z(d)U>#}`g6e;UZ=%{Bipaspne>#~E%X~jL6Q}{DTyCX_j+59~uw9gdb+7Re8Fvkml z5yLY?_@$!I6sHUVq>5N26Uh|h!zfySWz{^n%^65l2J)@k1{ZWeY@8i}7 zU&6Sh5N-oX5pE11Fo1hQGOB_A200WA1QEngVm>LoUcNS7qO=qkz*|ZI{U#2i4;-K) z($UoZ*__Vf?uIi2!Gy4HbcJ+o2eL;gfC2eL1OTLVj?as#nvNn1ZWLiJ%F@tv=A|b3 z?s**w9+U@~Y0IPUMhdzJ(ADm0c@U#io}ci7PdrNa2Ml3|}W3ri;eB&ueccI}4?zA$t^&3jvMX6Pj) zr#!w}ejkJb^I8Z|)`+^>~iGynA}mB-7I&H8GAf5%p4b2V-)x1}d9 zUCoS6i(T%!5QC6yx388@V-%&@;CPItle5;k6cB20%YngfE$22yc;hAS*ybZ1efYRh3y|<^VJFrdw1eE3B4bsyF3}6-`wiRzgI#Z8%Ij!;7_yb1gPZ1hq z6i{9SmqcP#*Awpz87)C$zdf3yOp(mhq{>J#{oQAn+bQp$1GZ71#J!|xYM)&faU{(q z`IAMio6%6b>`iBDh{vzXRa3#C0x>PZwDajG+kTV(obuT?rTc{+Ee76+84G;=+&c7h zGoXoc^ur6EwTHNpQC*gyf<~{9pTA~+_^ojNb`5QPU~_|+OY27TMt-x$`CC)~VX63Y zW%t(ggl|owa`uN&=L{yHtu2evKK~iReM`mj-(#{RqtA*f=JqQ%#l~`n$Lvds{ij~& zogF%kDe5Bmf=`{#Y(7i55<(F7CyWOjEVl0s%^Qo(j&gn%Sir@I#ZuN(r_aHsavIDs zx0bq2tS@dAG&W@$+Rr_4bZQY^xyUSkxWNA_Z@U}_VB2~MuKo-ZY2^UdgIhn7jF=8; zX`T<+%e#2^9BPF#q{$Px7-~N91_5BW$U3g3k=g3;Ob4>Zug%%#T0BCE5>|=`)}dPs zOt_a7EeDgGIa-}k8>QBb7k3=x^K1_aE$Zq_Ed&%;&STMgUE3oybp;M6C9hw9;N_!} zreyQYe)dYAU9YP`7ql+UcKi30Pfu&=LI54K^Rd(o`*M)E^gYj8wPP6-dGbMi8`QM& z&C%KO`Os60XGoMat}pVqc4zd?$Mw3#pi#P_3*YZU`Gj&S|KlsPtlRvckka3A|5|&) z%zvr&@ihtvv8pPdO`20;$5XudA+%6sMNjX(2L{$Apl zE_Lv>`K;^adPDjAU#xEqP@ibMICVUp1RA=72-jDG)kF;wL_)B+9{{1;k4`tkIAJJDZ=$Q_6czl>y6pc4`_9W_4_)fFzCae7F17R{ z1~Wp>7B2e7BNXtwn_rzg>9l^VpQpMTy0#gZ{c~Zfk08Ue*^o{RcM`RSFWxKH6Y064 zSnwlM+$=L)&%526><`&T>h~8G3^nF{e_{le9m;^890Z{AE_*_^OJDkLb)`E4HX6Oy z*ZZE$O7cp*@Ql#_)Vyom^JK0mla{0HoP~=mBW#oZ%6Y&XR!>y0|IGTrB9w^-S)5Lk zhEw)aJt(Clfq+7@f4>BQ)gik86bY;fQRD_>PZSYU8$t{+ii=DE0qiAOK3WoEFqlM* zNF4yg+WF#vxv1qrKEeD3uZ^^V%hP|WtBF$!mmN$k+CooxcuoO;XdG~289+Zp0D6Z5 zU@)md=!vOFKmetw01!71!$3ex0ttj(-g^hWmIi)6Y5*Myv;YkKR^%1rxz*;FI7adE zXu~V+>wpR+UV!KW4?!kB8JB=)n}}=#(fLFGxH5HZNEkXtNRdPh7R94(0@0b|(f{Y3 z_AshgGfFE9Q?$g*kX8I-=L^xV*uU}a=^Z(IQus+CWJae%4gr{@mPPl>ih>a*d`;mg zZ?>0LSbWyj9% zuUWT}nD6SdgGuQ1zY3zbH(0Z@kVEzJ^vmAe6I9_*3ec249i*~+pH*YX)#x+s{FlJE zn&hzzyRo=wx4y~=-Kbg!I@*liR}Q*p4(uE`%naSQ)q3g`inf@tH%y)n^*i=c(tS+t zQ8MQ1*sRgxFSJNmlp1P2Z z2HoLV!#dtli{g$e9GW#DgYNPpS&AEsA%Mh=00?31V9YpAoXGvS7n!BoqSzEIW_g4< zK-eah=W4U?nIfS=UmFU5V{KV^ zeC=yOQYUA((uU^F&jaZ;YFw3W>l8n`1rg0U*4W;7DZBQzccL%GvhLxiP)q8#<;+9Pdi*@ zdEy#7D*J`DAL)Y{O3&27sM=z&SX(w$$($d^;>Nkb7{;%Y!b@sS6C64)&{8#pKsZq^ zmLnxB4hDFLXo50K{IXVo9ENSGM(X`4RajcsUtVerO^}gh6aWlNifiDtr{i=q(bC?9Y8M2CM+qEiWgI;9vKF3 zj%Yzj&fKte_DKoV@a}N6^-pb3eTj&04HCf0B8uf@VOv6E-@r=2)p*bK)_&-5_W-_b z!LL(yRW9o#&RCr@e5ZK~n1Jj0_qYAzr_5tAh;8 z*;x%1Gai;=8~t$=4`JLai%|7IA>^08q&((cQ73IHL=sZQs!^p%dMJ*1g-@hWK#GWO z`Q0Q|KNSj%vWtM}3qUD;GtdiYXhx-gUKyE$$r9WNn~gZZ&|UHG&&mhjUivc_2!ED5|}SngnV(@De2{B`CDw{xT_0mee6R)O3g7swq-=)W0@p{noO+J|G0G z*Qi$f*K1LZ0#sbu_l!};ynzk+z>53f7;uW>=bZ<=F!PEP*E+Tyz!naxFON_SLq=1i zm{3K?xx1kzbG;UZz-|>2=GkaFl6UE;Cnod&OpFB<2h@U`2J*njhaea&pW3)N_j>0+ zhm@?!RUa@jzZRYOGRSqFa1~@zZG)bDX{EE8`_FmtG^?_dYg6IRX%Yp~^{HnK$G~d4 zvrNCy+|rT2%fGJE-;q=m+}g+@GEh7)HYJRMWt-j&q^}7#cQ9PAedoYuZ_b;Wd*|b` z7a}$`RW3-X`L~HC(>SobFsH4RQCOhp8#J4qP*T{l@>sfHl>!=kS8kf=vvP|4Ruw~2 zL-{o<;YxxnW;((3Q~IR2u5a-1UkeM&Mn)g!zur;3(mB_+hz^qH%7iQ@9%nu z2Nx zaQrmOkv@~NOm1GgJVo@L6{oUrPNL4%Q99mK#zJ?^Pe-NHFo8E%Ai`YdQQ0qDRZ(iG zB)2ve47XY&rSBpv>r)3iH3>EA_qIi_u>S9)^1GGKF>tJ6CtGqAU}CNk!y*R)F>e2P zQr~!T{622Z6)mTGGsL6(f9fj)0%!gT81{Sh;fLcvGU zH;JLA{WsUG7hDrXYj^9CfT^)2FO?UAp(|6Z?jFB_)+R^vWRnoMwqDQt@_BUA`Am`4 z6naNlG!6C6d-S+@7jU7QTR7I`=2U4UIj>Y;qjx6+T-cz_F8jr?%F2xhfBzfLk8kOo z&Bjhyi0>$S)yhSJ0IBm`xvtvsd!@CqN?`rGYow1TVTzE9e^Kkbvw9j((;U3Adni{S zqY&qi9hI+wRQdbsg}ssJ-d_2LNUN*j>+C%_Ivxa+Ij%B#&$`ys=%H-JjVc&06t%$>wg5agW5dgF2YjwH%Hby#UNSwZH6Y{*5-eS2c# z*c3t-s2-&e6web^KB;D!_j9Mb>{Gev+fe?e@40V2P_jJp0P5Vmb=3V%_e~Y!PgJ_f z&)wN4vZjH*ILhmK!P6hMCWCNl_vQ|sO+9~)V5Ag;Yvc1J7s8@BoytI;@s^x9f{pL5%Jqxjz7KR~xaW4b2y)!~Bcl=UY>T{ER)q`k zr$q;bAse(H@ZM%5vaXg5A%tWkw!)e8{m~PZe`DGwpVK?Xk6%|0R?*Zfo3KNBe19XU z*RT@?mX%X@8MNA9Q4qA%uz!O~24=k!`x)e-IV-srnJ3-Jl@@%v)Y_m4#xPa(+%P$J zv-a0P@p&7-wAWC5hsVub>QX1AH*jv~icN!)ecj^sxY;@p{FohpsdVUlnpbdA1 z0QWl*q$>&_ijSm`G)EE#;r}s$>jh-KMl#R_n03&SXMIv7Zzq%UHg2<_Wf2yU|2pht zYzrb)8)_$K2YNeCe3@>hZvKS=0N9I#U>siMv~d4CDzIJ)?~CttnDW8VO4b}O_vpZJ z1B?RYr~pX2v;kb#C;?p|TQx9e@hR7|ykeXlr&{jPJl!y!ojGG-lIi6oUd;LHJ%B7b6nsMnJ};Y<4Y@$vY}$t`#{x?yHVx;o1zJR20v#n@$bj-@{~&hFOE zT3=MC0LXIXvt22psyYi;#M$r_>SlL?zp*ln5f^ts$4LbgUk-ZscusGt!2tQdN2?Bj zMS)>qDRGMyd{AhFs);6;j2q0yqY5U25XVIl6+$%sPk}_~Q$;YxOjqP=>@PH1JLS+^ zc?~J!r-wq$w*&A)*VAqp4<=bFp0?;j5CJ$@9x$lAK<9szo&$RZ*#COhfkF_tB@K2e zr45|#)Jt3QK=2(MXyHrCe%ieP@#p1F@wair@ZPz{;9G7PKec#IRPPw;E+q+Nm!_M0 z38g?kc)1QlwpnHHX=_I5FWH*J0T5br9T5*mJ1oi$SDC)L1m%f{B;twUQxEIl z&{5TdF+j~E5k@6zK@z67NL*yl(nn*iUv>g`%y$|qbxq5DJ<=V26n2ckG#xLkJn=I8 zG>UMhqG!RD{YObj83EB@)Z&y9*Qv8;NBWhJL1_ySL$vOCAbpj@k15)U=Vf~9r)VdvUg}jEA`}o?i zuV91{|GpHO<11Utt8U+TP1ZZS6eQtAZ4b=DLBup~R^?J4n$bjRTE3u(Ed|{!GFq1M z`Z2ok2v{49@KtIpul=J~at^$HZROJf-JJ&|P^lB1uWE+BbR~IGz9ts&b1pt9W#myK zjU*>oY5Sxa5k@NjhJdNr>E-08JY!kr{~$d+1MsEeaS|GO#?4Jl62Q4qScpMwFoBGeMDGbj>@?lgtjZbTCiX^h>ioEWiw)S5ofHF( z_gb$Ip&s~S*&(JH*?lF)38&ld#q?8L9yi74mQ_R0Z^JXli5hprpHz$Y=8>e~#j6!$+JN-d79gm;2UBW@s^0-$ zXGLL}Y0hw4E-*C?=s6BRMHCKI__JMG_bnbHrgmHQ&oA&+ zzzuS7s<7Lcv5aX;asefpm;q*z^D z_ybR&IxFgN_#J_FUN8^(9*^!7dE9gj;hJN=)29N}VvP$Nl1t)<`n@wzGwVN9oZwr` z!+xGVmy_!6^Sh>h`Xa}Q2FVzu1yMC09Ni1ib&xS~Ss=L7T>Y6#(~_N?t#*g;dknuD z=}f<9xQ%~W_fk3FqWL&rUSWR$hs$1wDltz>Ed;Qj&#Vv@0-BklB6l}JOnF93e$Dn8 zJ;M)}nOF3q5r|~Yxdue3{>9FYi@i+FP-R_CrS-|AYu&}!tJ;M<1Ind=Vr`R$LP9wP z#n}$riDJC-MfOw5~zia-Pn*QbhePl3jt z{V>PaWz%&!t^8TjCT7p&jRh%T|B zLG@n*9g7xFDPmrvC;vKpI;`YgA11&1KRgq$6Eh%(K>tN>@kqD>H@+~4%Um^*GAiOM z+a;QVi{5+qlNw1RnX{UNItAq;;LM!tl3;r2w<)$!fXI^5wHeOxQNgbbUG<`$3vE@@ z%^NFx#oIn>Y8*4a&%wOJiGkN#$*tR^0@gOTCXVsSet|THRyI*2dLuUqbElXmE~VI6 z<|8YVWXE&R%1e-Bxy^V15#M#W{m-02XG3rYST-lzE^%DWbr*I4TU#}5t!HtSS~SF; zpMFy#0~osy7OEp-+ujcv5u(yb5AH~)MpAV@9$s4u3UO=pyFM!oA>=H~?-6>b<9K;q zZF>47!vv4aa)#dbSgVWUAZO&5#d>H|thN3TPs-2BQ; z4W80mQ-Bw%YSRmj0K2;Z>|xbZt$Kw`7}&UeBbT)4K7!&1(6S)))LsmuT2v$-4~)bE z#z!1M#1oeCyMUKcf?*hI;RMw$zT8o{sQQx5Wo>zRSa-9kP}LmL_)_tBd~Csg?|AH3 z-2~MB*w3&2OWapcm>hk?qACO?k%rXKBqAnRCJoZo7RZN4*1(9;fRq`x6qvAh$2)A9 z5~vzNrQO1c?cnO*-mrs7EE#T4Es9p30?Pg;0bu1)07FRauC3Np&u_M^uQKD9dq(Ea zl~Q_Y=?u&YLfjGjd6s`CfuTirKPiPC&)y zXZon8a?p0sQ1G!7*TrwG{078^-KMARyR(S&%afDsZQbP~yNWbZPc2=MjW1+xfRfEp z!fXA9Rur#fHZF4=J~Q@dR`@OA#_Zzd>4A3aOuu5r?hht9-Oj*fgD0kR`_&d{+x|HE zQ^NnF>Ab_K{{R1PoH(-1L8OdhWE2rHvN?Th>hQM8Dv>Sg;MiM)kUbNU5XYV&E3;&r z?7hz+<7EGy{jTf#SC?~Hm(J_?dOaTZ`~7yW7Z>6RUSce?d@reKm8FDKLKH~a=7 z{Jqx)UB{$Qr?s=Ol{Ylnv#@Y)&zc#cErb5oVAE#X@NEbY+y3z z2m8UdxL4L*x-ErFC!}c80)oY4cn?Y7X-T z>}(Txap^;&or}XmG!O)4%?@jO1s`moG_!^1JB<{Mp5gbU+D@5WYjVvWSdh{?qvM^? zihG;==#&^@c{#_^*=dsl7lqbE8mRME_~=+_HI5rsjJh;?9dDC>|&-TnAxZKw*} zOlHlj@1LFC8hV8y zE^1XgZAJ&8_t#g}%5h(Q%~T`j zTiG#~@%L#g*C#dDT=uL@YinGus9UnJH(E-wt}8R1c(I7X4TLJCHq8v~bd9d94K~L7 z(6gPvuJJpy4elSe#5Yf`9qhQA?|Ieb+J8P-*c;p#>*9&F&Ba_ew!AEqYp$0tK^~ad z_J)RcJ(JNBoHH3LklEe!!rs|gyEqzdIXb!N(tLWcw6){>speQ(Ck2I1!o1Uf{<0rQ z7V=4O6Ei_p8}>_#jZe!LLZD=BLn=F8<GD>G{2aqgl|JGo-v!CwDX7$+IN!ZZtzo}~B$2?C{R%Hm4EzaTLq^_b z5|u7kGYk7aFTj%OmD%tsG>zmm zqc1@;R2-^bX>JTyQjl{tM$l%pvz5;?IOlh;nM0K6Nz*S`7@} z{)6~ACsGE=AU%NSB~I~p ztZjckkkAvbeWxN|uSf2E%_`ns*MH8_%!_FHMAOS1NXj1mMq1HOaq5Iyc{PTb_pvxf zVrRkjTQlj+a`l6na?4m^a9?u2 zFKx}Fw*FzXIRBn%FN|NPS#>O|%^Xx%@pG%XJ=il-p4>P$?JL}N(G+;FG8}l4UQD=8 z-0|WZ@jO;Mi@)r@%gO69+uU%v)PIKz(oPSDgplw8&1RQ8Lgjj@o_z@w^p4iwyvAn+34%zx9~q)s%ZARY%j1lJ+#Q}{-ON} zSR9}s^w1DRH5eNhhHSw|2IeACWnf_A%K0~fDWOP$qe#95hs>-0(~)?uz}h1rq#^Sn zU{q5LQDVEo`90+%-$IB5)IO2cFh!GKnK&5mcg4A&pel?5$}LnVz55jr^{-R@ZXHTE zJ>A~319W_l+>6P z61B6+S#XY0y3d^o>oGhpI?A>vMxEPo4?Abs(Wv+RjyFq!U2PRcCI07xOpravIj2Jp zh<380HSF$H)cm9eQ9ww25NhN+mT2I=$THfZlq2pDSiB^+E>S9%2ZpiP;!*@W$52ZtI{%`r2MbJ1$By<`#ykNi-s_2Rbw zP|oMrTil6#iKgxZO4BYg0T={6u(pksAP){rV$k?7P_7bA68cr_Eu{w{;wI~rsWIhIQsE{Ol;h=2P?|Tcl6LLk zwY^8sO998FlCKkXX^&QoioqbQota|N-P$t2ik=;O0HLD@e(*k$-9Q}yGk`(GN`A6Y z0LUVYjq1V2FF{u^X{y0j|4|u^N2p>SeYK)XFCb$)c%<}58FuzDu7He!^@c>8uV@;= zN?w)6GS`ZplzqEhDIrfK2$2A%BUAoLf>9qqNN?r`DF?YHOEd7gzWf{!h}W-BnEo5k z))sg2!{wi9^ydIiT;3sdqr!99ZmnL9c{KQ$8!;i*lx$a&5mX6(gTT(qTO}k)NkuF=>SX||tme@EFg0*f#LV36a)Hx->rLIPc?I*D z?V3yT;gN5RdQm8JTAo`@MIdT?kz_AS`l|Q~ae8jkqZKdhOXowV;79nNFD#~rF^=OJ$m%e>?40*}QoyASDV zxTgh!35ZXUzP^>ucGcaG-<1MWM6GGn5XM3FAWb^0RxZGAZ}wC_J!SuRb31uo+^xtW zM10n@g)2n1cv<$5)o|ApnFZxJaf=R;o37H~!b>>|g7qs4AY%=N=-n;6Sj%>N+=+8u4}!Ed?ES%rHQ5OJ6+ zzZ93X?)&qG&7-v0;+v1SZ|Gaq@!xW5Js&~`9#veHfkhFE;d%dBshLCZR#(N@Cg-F+ z+T8e1B)7t=j1;`|xsXz-uEOkTE9U%fNz<_IQrxPHXN$+$5UzB1deHx36+OrB6xm#T zJt(rSiE<({_hk7F0M<06rV=b>o81TpdU!?OogFkY`F_Ch^v1?c>wm=26-VPCW0 zKfli-75BSR3Br-+irW8tWcm|9oaLsA;@NBgdR6{;c7DM9t-wF}B6KqTTkV5W1o{6- zl%)7qmvq-F1TI)N_z@0WhFSL42ny#dkwz{S({vicS-Gu87yk*qz+rDRVzv(76JAzs z|5-Y(U;m?cK8v~RwpIM|5_`T_TJf~?(%WLIoMIP$xD&vpw;BWdTP4SRn-?p>yG<@~ z_2OFu zzx%Vhh=Q&+-7R1kxYj>5Ei@x*GO}o2M_yhB0?L_}_$GP|h1SNB^5m)k&2$wmM(>Fi z;_mUTf~dJeJO?~4bbPaZE`Br_l{nBsn&@dpxc~>p%H0+1dZ{^QDRnIFb8=scM&2W6 z`YliY)DPowYeS%oKu``^n5;iklRWNMH#KGmj-S+DD_H|5P5-&v&#M*9y9auH3u7Vy zJJeZ$5V3#mGAQHc_I#xfc{TCt`Cn;{L?fx3qe6xjVhgVFJaw-oX}_lJ%HsR-%W9-S z{epn|FKNwr(a0RmpNLly?U0+-7nmNvAWu7~ge*g7556q-%813?P~&j~)b9uNR?Sv* zwhGU^GYW#JhAct$_4>k9Nyj>mbUft2%P(OvjxygxBRM23Mb}hm%k$c0pmzo6eO&kM zwEa2Ey*$0_ELPY*9`--JqvSBi^IiJNfthBXv@06q=(pTHl{Lts6bH03G|TXCE0iRV zT{eGiY(&?2VVZ0Xy@ z?#b^|#mgV57JuK&owQU098>GfHL3ocJE^<4JuLqQnT>#2aihOPK#VNEgs=`E+?fyo z>Pq1^Cxi2T{Lg;j3}C~@KnhV)`8PGeu3kyZ z0`VX)HU%L-Q0ELJfIuNE*bh=E1)K$sd5*4GIH4??RDRYrkvT3#-)! zOy=UD|9}VSiO_~RsF2`vxHX>%n~xk9z=8=zzZ^_5ft39RTSSB;Gr)zXA!07H2@nXc zR@r|ZO5SPdn7n_B%LFD4P3FN+QE~JHBk1=G;x_Se37Pi9mOmM2f;u}(m2CB(_|Pf> zUmTIY7)aqrgw=Zjs~QZCIME)GD84@pnxe?Wc@ac^d(YcWt!XY#3Jt8QZzrMLZoPke zlffoAgjMV*^2)2^^;ofIRA{DN>8SbPEsSXw&!Ji7Yd8lYJ=T>z7K*iIE*n~l0S`&# zQmTcLA(lAe^K@=7?wAM^8cy>hzHKT`dEJq%PL-AXpM8CCa%M2AKG!YlWTo(53$!7) z0sBK{PNHkpJycOLTG`w1Bn3+3tIZd;1VS@m%r-nWTJ6oH~jUS zV)Ao~;0C1Prkz*BBQ(X17;$Od?-Rq2?h&L?Mc*HX(}b^N=>*3$U~|8|U7%yV;Q{T? zVEu3UUcr6tVAY7AAiB(6D#pQRlE-)YfQs~q=PeDRe#l!~mYuc27u@JAGShHGY=O22 zv?zoobd|SrYV%$ES;gfpVK)2F1#>a$oRR8vI23Aep?29Xa(-^%x6-gb!THoXCeeC< z>ZY41P3e9y0WZlytk9g9Yn1vBuXwpVbG$9pdOEWg#`f(-}^qgR?$Z64Nb1X+-#K49egO}?m|UM3SUl+smogC05&vb^}!il%O7i~ zt;uI8EBT8Y%8Aq3+@?v(X&s>jycvC^kUwuomOn|`Opv~KCb<9^$0oL<>l3+}xC=1Tea`{~?@)tM19 z`9|H^-y32@uEu2(EB4~IC?5XVwH_=O#<|^a$m~u;UeT}m=v<sFK$;Br@u=y*&|%jPQqZ+{#FvOKcJN=l@WaRn6bI1{ZXp2RU2^p50_M|RL_ zjQo8RLJ}HR5ENaYKdDR_$-#E@Is^g+CZ^s;`H>`%uaTO+f+)IwP;Gw&Odfj1zTWg7 zmJk3Iro^m+H5wJ!ZBES*;K-yEYX}ZJDiE28y^*OH@RvjcUioz32{K(%?BO?wcj_{x zj0gUlWr<=)3F6C!EnpwJzfyjmllWZIyZ6H=cJyvB%AuOCmldiQ(s&QMoEQ+cvr z9sv`L6BX|YP|VIL*B^>G-YuT$? zCgo4cGruPb-6!&X`IW&~?qSK{(Kj^S|GOCkjE?{ODGDbxFb1}7^nI6)QxaGM0trK2 zl&cE|SKk1n7gYC9cq5%^#v=al1GuNjxu5pNd62y3iC3ZwA^~$eSC}-60TBjUq=E-G zQF3{Zd?O{buQ^}IJ^S4?HpUsS6%SgVQe#Z!h%BiS{aphe?%L)xV8Sp;$axOsU9LUQ z5wPNDn5nA%dj2bqH#Z&FL%|SqKZ99e@If;uoFghL@fJ@Me}*hveNhRaZ?*w;D{@fwC|3 z4ofG+n-`V%P(u|Htr;v+tXF4G0)Qlw9``x91RVAFyCqwV$%%!$C1Zx)*9ULCLj_rn zANu1Pv)t>oUgtHaAsuS8_4ogm0B+SBQK0J%RLBaOJP@TuyU;F{$npb2g;DFtv0n4; zz)U_t7d*>5&RgqjMn!}qzkP*xo-s*)rVaK2ny1Y&2gBp~mKSUrnC@s(nRPLndUu}& zoMW-6{t#Ayh-Ed?b9&LXWvCUA)5?#AYA#qR6mLC_prO!hv8v;-1)}`B-|GKUOkf~o zIF%Lu@O{I;46dEJx1 zgUPBl|Ip&Xt3u2|6JHiTenrmksFM%mx%uRld;tZI$E^Gg*LQ`R*eB``Ij0gdy9)On zX9u-LLhc+97TXuu{%6W{i%m#50zyF*vIkF1mFUS{37HNy&i!#zP4S+flpw%ZSGOE@ zNVSv_qs2^Zs3oM&??%bWFwj0van)MA`bq6gA@?sc=aiQhfd_ztJ3PcPQ=I!?s>Z9< z{A^a%D89lOSj*b{T7Un0g+zRq-r2bo^XmSJ^9{7WVr-_)#9_b|c2?p5YPC(gh1UI>jP>w~FDP4QGeH~JCID1$u4Ct%AS zJGCQTTd{LUNq-qG;&tOvp5$r#AK+vl)eQI)%x7A5bxfwX6Xl_H>U%bHB4f+qR={qqc*0!>@=w z(&3~>uH;k{ab6?A?#Wzvp)!tEL*tDpS;d4bDQLyCM?kZYSZqSxnt)}PymVG@XUdT7|o2FzDgoVg0ICS)0mtzDm41cfOjiTqanU>@GOQ%Uy(;_1?;!Xgyt> z2;4^lfnT0@Fr(LU@Z}xDIsRjuT%q;JwIM^Ui(7Yo^u4wJiBEZcTe}zp@JTZ%WRj6;=ohFObe#C#(3y- z?Adw~lX8jYdLuUJq4!gl9u~zTP&-+Y`w^64a45FQDViPn2V!wLg*l&72V2IO%VuV$ z9~HZ_T^yn3nlEvB0opdU{9CK$4(Amhvm}Vl{(veneX{T6>DkHn&wFqNR2Btgk`P$f z2LuyvrXj$lHcAQh?^UXh`G4{bf({ti_?aM_iAdO0GA^(TTh1CD(&bQS_Qt0dD-v;f zpft>XsqD1vaH>t;{w;zeJS6m=Dg+JTzB+XzNg@JB zLjc#ayQU6-sly4iV(ocMVw|2?2XbABWzr@+w^5=`3;D zi~$zb2e1k;Pz~jvM4AOWoD_8VxvISe;!ZG%h#Hg!}ZwmI!tYRhOye)&?GU#)$lCj)%b#+tAzV2(^Ma~FU zhd?uUet4>9H>Cqa(!j6jrLWPhg&%fZg>cGZQ<;AgsSHRj+4tJ7&%j%`Pu4 zdS2zM)l8qdEA~4A!tM5}#c!{&CN;7Wi%KAH1_qJ0nhUo=q@W)(4G@0;83TMD9YE{|rqpqRO?2|-i-@JWQS!=PX(&E!e~`HcQ`YnbiJ*PO6PC6E z9u`%!^OCE~X?_i1e!`{WOqIpYBY2 zp|5DjR94tmdL^G1>H~r0hZ%{xqe*{0o^bAd^(W2NNsBiLqy8OWPlj@=0sV^m$tS$n zLt61$TINO0Cp0ijkMvoCwfNKd5J|FPhQv|zbU zRG&2rV@FrEZDw2|?tMuf(2|#ycAcnhV7=CZ#TEI!`ssJCto%){6WZJ3;9xIFXvMMX zx1I4Y3w3Uh)osD|8OzIA9W9NNV&N-nW4D-sn6X}Ioa3d%_yrD_SVJU5qQZ~j*MDlZ@EdB*>F0mv3*cu8dnqdq}_ zwtrkiEDLPpXRQQd4z7Hjgl*jK11Uhk006=@AQ+QTvC%x3+4~^CGeTq$+nPt@l@^qYmxa zl{NcXxVJKXE!&LIQ+4>i@`jl|z7c76<1|@2aRTvVqQ=}Wi!VuTx>U*u@U29#eFvq&FB`J=iDIf;x8BdYyTT3< z@T$B*Zz*}JPvMljB5-AEZl^BO8iO~N=Y=mj78)q$$rADAa{h}P!1`6x zSMw_w1u``sc-bO_6pl~&+lbj{^JcW|_3klyMuhlYF&iiQ{~(rP8X!3oMWRuU0Zkkv z8t^oeQS1C{)SVD0Y+e@5*F~oeO-~QwMSv+74z^p+gh^@`Sw1_|Ka2!~hN4J9fJ>lC zOvmD6PsDF`e!<0mXY1=)!0u__mV*VQjalYE1|L6mbGR$=BR+^15u%u^Z8n8OmN^%( zBe*|N!eo^oi3qZ9x|)K;VMt_9Q%uX|UBO~r#^Hza;Juf}4x(Ckj^K2mTN+9bSq5Y> zYCtFm`n822Egir@x2fP@lLdd}>A&B_dAz`4QGb(TtkhceSVm)1!Y9m#XzHG%{aOj- zN$EC}s3};(tN~X77qd;Dw#==sGcQuy_3cYue8S7T06|yYbQ90dhu(`qPof7B`Qa225cp0`)`^1 z{PFNU@nGvIcbGa3IgT}DrLbY|=^0?r<{8_-aHkDde$y4>MHR(9efkBL$Ph`1oYz%y z7Uc@HoSNt_1#KESb8E>d;Kx?>_Gw4s2EfwVw`B)|rYCwyZZ+0AWE{pG_me~f#f&BlQ>6F-ok)kH*)wm(zOOust% zO;n7qZnF+s744wltW4R7u*&Njko_D?q041SOCc-`Dv$C*EJFrn;k?)9uhwqU@aW~} zX6kslxM}vNc_)bBCS?>NReNENEXn0xaC3$}zFXg5^GQOuP%M|LzO_5g!GvR^86v*E zaAR&U&a!6lZ<;O3Q**bi*xGgm;6z1=#wBZtS*N}7)DZ0LF3t2(SQ-a*x%R~5$v*a| z>px+&}6wK3{j`5G9`No~$;d8kq`3SV8%Y%_)^iv0d%jbFCxuTe0#4gkuxc`| zn&o6HILeC~aYy|om;f)=5!1H2rB+XAJ3nd1pZ4!}3F~hb?>UZVXXnU0B~AszMp>~H zZT4;Pe=vAC@y7R?48x%E}Xr(eOn_v0|-bCOW6A@%Xb=qREtp#pyXw zYK8meguMCRN&;r-P?n!%YOjCJXZgkLKhVxspx2ziL&B+1vUMss~{DH1#dXh%l-Y%}phvmWKB17R!24Gp#VLuD<#*FMqZq@rZAZnVk$9jHkc+L1K`klsL9sa`>ICOeyX)5Ke=K{Sq;C3vA3^!Xa14YDbj9uST~pGaQI2Q3@Y` z><|U%6)_CGzyxerhQ{@#?r|?Ijq8w_By2>Pg7W!r`#hY<`)&MF6|%^i^<*FlVe=?o ziL71th$B?>ODY(vpb)wc9socn_x_vE6C}w(ePX}7kxF5*hDx`y{t^Nkdu~9W`Y+c zJGEWuwqh&3p`0{`x?Llwqp$fceZ&Uq^JjZ=hN$@Wok-x}%xS!Nz5CJcJ0gAyk%7Cp zmzypDmzgepn~W84O9!a|M?J#|#8A;lvYX?;t!Tyl!bW_$WT*_|N=6NHv zl{t91OT4twq`KanKYj!MPhT?mW=;|^kAYs1B~{5sOu`{i@qp0=#3dx`Ebt$$?E<2q zgoK6z!6vw|_FX-CZHPYbNL>ALJ@<_4aYSVlI~TW#AMam|kokCZGKj7KGzSoe6#oZ1 zvb63M`R(fyf-w=TB|EC`a1_`3w2gh(Lm?kZdefMm!5B_$yVi6&+DP5$gg zfg5O|P@yY5cj0znggOcdroyJoWw=UOlsqg9b~RrKp5q<|MXSBub(Dc3j$px}{bLSD zU|biR=IKD@S+C+@q+!4_qF!ZPBmIr8_XEN$NlTEgbWC5@++W6p8Ec}beJ-tA$iQVH zz7-+%ILmrjJALvMKM2$mJ4IREj*17BDBPlt$%DfXwpZDN8&O+c`ZKEkE0ds=EkwYB zY0!xYZy83B5F41K`haW%DN>V$T!-Rq>?>{(%3D}RL#-0L&1%gvzMg9-RjzVuQC|RP ztJoTgGtjzwKQH;`s$8so6uXAgsJ8yA3S+SjD(=a*TnUe<#Z(3!*yl58*C*X90%<1- zx~pzQ2HeWwkYE`)Y}_j(H|uj!^3V?R{#j7O*{<{m=kPTzNR^CVwM4?{Q&Iun+AFqu za7(IS(;`|71qH=pbI9$9(qW6y(+tZ(~V9R!AQk6NOekk0TPT z-Wz!Fc2pwEpl+&yeV?<@Q>gT-`>chCA4VOIVZk&qpywj)qc==f{P{Lja9)T~!oPH1 z7Xz6U{&FvH*X7dTatL7I+p!gXyPy5{x-xgpa?cJgmoJYaFW3Hzw=b2JHRax2Gm;{I z6ZSjVsB>2}H(+OL&ZjNKl~ev@RW>`jT$8E)#i{w}A3{LgcLN8d6l)u9MEZXM`u+>v z$1mOG>C|6Gy_nF(2UlI!yszI8fqH^vnEfC(PW3D8O>Z-qGSpLN^hH@@<*)Us*GuY3 zFxb^l5;eC8b6vsi5@WF#B~6=AgWr-y@uu1AF&~Y;*Dxa!uSB`3MGV-NB!(dVMj=G| zcz#=_z0rq~9oTHd1rHOfu2!6eU%QIUW=p-?S0fjY^GY?s0OLp`ou` z@O&WsAiYQ@-9G*Gt%bMR`+R14&hWm!%QIM~^^28HP8k7Ha}N~FEGoVmpOko*CH?l= zu2b-NcgI-LPG8QXdfdZoRJcmcbYtUFTl(vF(u$^XtvJ)~Z{qs~8gcenez(=?Tq<(p z#Bh$|%qvzc-)(d>Tb4ZK8$m?At*tYsrQSe#Qoz}|0%LD*kAPr(e=2IWc*a6|- zQUcc`7nM(aC6Ivm5~j21HNrAkKl)z#9ld+(=vDtxFD}lxd+)+#k=v4-j*jZKP+lZ6 z+y8(#Yz+lwV4DB+imE7)Um+Xn4T)X^aP|;YB_#m)msbu6x=JyW6Wn?4^E~V>PHTQ7 zI5_Vsq}@Cuh~oBj1LKbSP#VySWf>L}L;*sn5b**-?%i0uWn_A|Aa%Dp7u#Z^rGicn=^!e4*UucG3DdsBb9(azOl>2E zh%;)vLUvEe>x4sG?xh&14ED-xZ5ZOn^!i_MVEm4{M&_nj^I&h4-~70{j`MamZ{deU z{QZFed6Xm>h(snmSu5S@-@F%h%eG(e&FJLv_)M{>`*#@reqHwaR`0bln;IYASJy04 zK^B{>%S9-D09BsH*Y+C+TQB_Rbyx+j_o9K$|k41l=jd-pFnoP!JUw4z+`5;r{C zgn0txN>5i>h$DH3#HDv9yC-FW131b0ScVtP|MA6UBx#gou~TOG)_}IGz+^N#S`Wi2 z$gL^puZXxW6Mic32Cf`-YwP#W4A1*yhAWx~Hr5o*PqMK~MRu^XG!f|sytlf8v!{OoFPvCoN_l7OU_^k{)X!>1jO3l) z6g^T;9K^A#Sh`!?(I!33&)Iy=CQoNq-I=ve&!$FQ>~1hqqn>4`zkg7e$be;q;2{GK zG6qKWmp7_60L5EzJ19;s&PkHz*6#?b*ux_2Q3Jk_XAKCc%&||}FDi{;_uhmyrJ}YZ z?wh4%%5A?HH7K&P&+zkeo0fD+a^mlJ_rzL)7RxFn70)RL>eh9fLZeqgmQ;n5yQxzI z$O}h2dyQQ*sFbB5zuTzJ@f0|jaHvpH8{aDv<;ez`Y`EPAnJ{KDLx7(Z9)t@4>@|Tx zY#_hb{B0apo|4t1tG}uzcUpG|A+yM;LFt)7WZs-x0Lu^pVHpyCg~s&ZrQZs zKIK(641a3DI6u_VG@#dRMK__%)1aIlFgW;nFvZn8AiCM|_lU$uN33rchchuI2AcV z@LQA5amcW_ds9AWzn~#Do(ZB(8m}2efjY< zd?NSz}qsN=DJ!&yCn(R8bZ--OFBB%%^Nr!WXH@$7re9 zSEXH}4U<{1X4QZ$2V-zl6^Y00eZM@-Mr-l9$We(HpVPfmLcku@rS-V7X@+`@EvJ*r z1_rXJG{VwMt_oGbRI9GvWMucL4g!`igsZ^z6<+mis+2E_p>=^fsewyv=bV>Adu3CKCya_F zrN!2H#M#UF)WGvQ{)*+}nf;|(E*C>}nFTl;ZbM6CT1MePGkVRhAq`;ohBKOz$Qn)1 z)marThMBF3@-pUkS@I%EO4PD;KWe+sW`&4|E-WV#q@ ziVZg5&*?cX&I5M?H9nd5OLWmaH8;od0O(t5M0=|)|HXzUR8Dq4z^C> zx`)0sf*~aIDDLQz5lwMb3$hd8r8GtQGTo)?(U47KpJI_@Oj0CIh&8XXE#XFK2 z+Mf1>PH9)2v~-hIJhgvmLNs9pJz>bH`61&pPaih$OYZUkn5a1|IeuHi60Q`cW!Un) z!0va^VCG>rO0si+tmu`5meXjx5wfa!BNF%d=E*&7SYk)05VI++<;S zH=yDMk00F@<9%PnkD`7D9Z2I#RDMrJ7OA3XKpw1|kj?PuI00eH*A5}2g0TMY=)o^W z@sGyugRQ7TNbYU@l+ZMsq++YOr!zo@EB^-tOUuvOnxwdgfU4#NArNGy0^lM-@Z8jS zCaz-hR=wM%(@|G({u=95p?f+&09+2E>`h$o9QRxjWukA4%YL=_TTX~sZb~Jb>V|=O z^bKC+`M6ln^fdyF)eucIU9P6B5z~P|25iy<4n@va0uL(y`~`OsYHJa2X=0vLX5@R? zf7ugwOt^^TSBv>iQMYRiTT4@8Y>ktXs+E>A``u|fA$7B-jsrf~-fTkbTvI&%jfofG zu$YF)TKDDm+kJ8_Lbdd56pk*{VPB|jPRQL#|7~kcyEZ9WX$7Dnh=9rbCP&Jm!fZo35#sPCV6F=8VucRv?a}OFlz0NQMg)|Wx zBNnOsrGmpjoBugFRO_IUy!`J&VI?hR~K=8i-#=Mc-3)0{+Y)?iG}iv8G!|JCR& za1COw8O$W@-f&97+8J}`vFJt1YxQZHvx|z;)1$#lu_mtCnC75pYa3PKv|$_C2AMsKj2(ktZY&S&j?q9J2GT|eN{Az|*lC&LUv6)IuOw|9+ITjYlno>& zwzv}U8+~unSNBac8%$~mep}gFTU#+YfotQqW1L2Pan`EY1pSgIjlLk(q|V&MP^$FC zy{*R0dpcbXGj#sK|Dj55rRPh;lBY%S_M3Ud7db6+mDv4hb`mMCh>xd>qXWFdUD5Oz zg|@?;x>*@nQ(ci3*Ym@=m*NzV^Qb%rfp)hzS;@6cR*3cWuV(FANBsywzd&w>*t9q9S7Dw$a?)XX4 zoww{`1B8sEq!ucZ+%LZMm;*TW#@=J(%VA#ah{?AGGY(~YPpiT{;(sg4+H|`Y8bV=k zWp&Mzf!MW08PJe=#2o^SmmlCwx1;A)LX1Re??q0!(}TnaPW8cz$Z+JES>i@!sTI%>=LMs{5mrQ7Pim% zZ#B|YB!3rOe3v{actw2RS(90r;e?b!|DdA+;kV7b+)+v7BM0Fw>%wF!HV{-6jdPmF zX5;YMXLX7}rVCsXhZK&~#x9-MtiT)W5=}Hy8slo8S0Zd9-jg6ogIy5W<_Sw`U3k4+auiOV`WQF3D zzD4}N#c98DOpfkUjZi6@597IaEwK^=56OO5?CL$P4(O;Xx_QB1}VGh4NN`=#@w*4{OwgKw-#)hwZ z!0Ca-#aX7s`OqmLK570)ZY{t3-!OC(llwPqeukeVUx@cj;+1EA{6Z#Dx^P=p5-r`y$I$GwOO3Jw!a<)wBINSeQNt+#EoH9}R%adLu zFSMt3K&wGl_2SQ7M+=L$^SrsPn?e(QX?T_|r}g!H9Yg+J%;ZZ$%KaOA^5+97x{)4% zTX+QOH1cLnH? zZNEOXX-Bnsot>_39xwe^+D%&N-&0~nm0CHmIb_rq4*Og?)tS{R9Zj3=jo7>4fiU!`W4;&|Fw1$D$ z29hB$tlc5z-$kfo(*k~(CrIkt{ZY>j!^bhe;3t1zI<94VFjspl;MgZE5^HWr0N7+( z=|v{A2Dt`B&+NqpoJwI_;+@WGvHL~l+Q}sd*@k#pHbfc909*uLTNti=;$NIx>&1zJ1;`*1LG+% zH<)cnZ)bMXQCfs`QHinjP*aU{v#slM9VqZNVmJh}fy5AGGQoyMP(F;BxhI|Xsn(|7 zVXAF`^JAd|u6*YbT{@o|>to6{Fq9;RWAu0B)o+-EC?H;b)*_c}eTUg_a;ynb)U9R^JY8Ngi zp8&PE`y-V}dL0LU^e#4OFITKjdrhtUmx|jD^S6hO9fDTJbN)@|*qVz|`G!CoYDrfj zOl^p72T;)1jHs~*NCeVGNyd(aEfNV>99+#V`2E9moabDl7XUxq(9f>c3^YJ4-|YWc zH+;}_Ve`Y~y!7`@@%8d3+r9N!Th9|Qod&n8)y(QDx8^fYo^#8@@bK7)9*07+Rb|IT zo!jg4w^KJ`{HE&an!B$vIxai>eM=?hh&6!oPkBB-1TEgCg9WNXcOaypP{7RAr3-~% z*a4jaMIeB4pH4*B?oI9T#^y6m^pd zun9!OurAKq4B-Dve8~U)0It3SBAD{N15nQw4p=xo!oghpAbx7UF{fV(*pNhE;W7sPaA+g$gvm;Mg3- zEB;uyk~D##D=s`h9W(@Plq2pQYBhNlN*}1MlDcAFbe$q7v)d#jcjMx!qpEI_W5iu= z)JX4b)j-6Jl()k+te`%MF^zG=s!l=4?IUURc2z62Kdo2>o;wC0!5@DSm6`}?`}`(lBqeX5hd9NWFN$>yp|ua-`o#S_&bDsrUcsbCkiyQ#4_y|Hu>djhnA z0si$jdbrh%l%;RWK2uYuF>FO;3VJ(3Fwg9{8W@d&nws|GDjYL3k{v<$jx1{HHzu9! zlo`+!dBk27beLa%xD0M^>E9KVQW<$*GzZZUs003;rzyw`F1#sG^E48IeWfF8$FreH zMLd*MYT{#r+3jVnOfOj!;v#$Zkzo#or3mF;$;I?k-3aBZHdUEvfFEh7olc86_bbT88C)NsrnB{WVj68ro*@-%?cSLFz*obzf`8) z6=d+f^)SpTp;EyuM=FoQyJhG=CXVKjZ{Vpv&}KF>i6A+{uD5MOWRzF$uTK}QD;KWF zi}i%BPjR#v%;Ygld##r_*O%7?hXa;T1}aoPo;ep%Jo;$K_T;fb;MIF{$7Pn7%N+X~ zQD33sJ}ugLOSj7lRxeXWqvAg&G#kQ7|AtyP<(pd{3;y!~Iw>|+ij@;Z(%y`rOFyK? zv@~L()6+B|$f(48r&3-d4knE@HTLki>0+VNl+IV!%q)bB&h2udLG(_;)EIh_BAxK| zWj`Zp26(=()f2XlidgY9Ke>mS5SRd?VS7yDY1a?WmYH<}(yt0%leKOt6M3+a!;~%9 zOpyg1(kHP+RgM*LuVZh17tzQbycg*rL@g1M?`W2$S^7{iig&Y^#^F{i;Rp8fV_FSS zChDbLhdpaWg(o_Gli@v8eu1^w+F|>H;^?c3{Bb|}bcX85CyxJ`aU3VL+x+Ft;hQSB zxOE>kOrN`g?x(k}W3e3UK6^^d+WhyJYSoHOX=&E=+$KM6wNY7OCtQA#1=d?sjp(jT zdeQ1B26-BL-P~;UQHV?B6xt{sHpvY0(~D+ent~wfK9mVqCPhCMDvG{E;3a*pWjc^_ z8rMWZ)16I%hrsDnzBu96WpY{F#np&lX!=KU4|?Z}7{0b)nlmEd_;sPO#w9yfgaD=t zTk_c39Svi&h%oT5cz_dtfDo=^SO_9j7ApXU1mG9#A;_@DE{5{5_jl4?tn1DA5ZVMY zks%=9GXfQH7dd7_a37lls!WS-!c`-_TG}R7BDkzZPb<~Gp_*1jKfWhsru444jZODHH>%YZdOY1PdN3;hu?uL z*H*c-_@sNrdi-{M@a0$ZPSd{{_I1LQO_RJri?Z+08dJx4aqy(%!I5zL*~G%NcwnAJ zf%=Gy(aLJ-IOSCCjw~}o26YDtCs2fbv$EC8jTq9^7X5v96c?~2UVR}9Pz7(xs8sSI zWY#%UiKJ_x-2-jpH^06u8qAi1PMi}l}uciV7u7G>5-@|91Lds=#erQ?K8)&&xmA0 zJMAI9vYvr`Z`e`Vp$GYNy6fW+WSq2!ZG2m0_?zB@&UVJsw0O0K!7x zh!Jb|jSp#ZLI{CqI08SCjitl`kA`3u0~)8yyChN60+7YUhHy@nzJtB1mJR^{Oh|^` zh~Y>t4#fb4&6Q6u8#=Lu8bm*4ge7oBi#qB{m-Cp48^7i6O?^g=`h{}>Y=T@R>Xl?x zf3nLkjZd%?(&&^Yz+1^%H}QH1;fjU?cd;8Y8kbL;#6H2VW@-)aIE2?b?q#zDUG-aC zl}cL&5bBuX;%Q#oaz}~u2oOju`$ZD@G3>p^HcHv$@LjNHfoe@@4lEwFbtM^ZI_hnEf~?kU;vx~N znJVei=B2-hxi1zM6UOYE%WCI6y?f#q@$+2uhd0!J-OW~fE^d?rr9asdlLI~V-iqfi zzI(7gW_n9j=2_FCy>V3)K(nw@jQ`GqqzFCBO#K!y966j`mA|*is%e|L>2IW=0G8S) zx#GM&w7yUa-cxGx+F0!8WNY$rA6wA4bh})ze(k%re-sb}T!oRce_6kR2`l}bElhyF zEMm0d5+Cq9Q$;)4qQVV7-}28{2{;6v558zS0!+o6-W5GY9JrUk7flZJE3fLNi=dqy zS0iX9FN@g?TKtH^ZpDxI5mzf;_g{PihB%tFEvGjAwE_2uKD@6_4Qu2BsuNn;Y~ANT zF#dz{n=(#CzrRBV2R->=;}fsO2KBeIlEN}FcKruwX=cKzn%D-NzQr0+*(&JjRgco1 zKR2L8JT2}2K8=W|R`L&&u)g}cVSRnIQvRIMw~d9cb$>&i?CaZj*Q)l5KCjo&p1v}= ze%>DJhJ(DK%(jJ4nHM?WGC zHbFh%DOamOU-9?MVcnZof5lI-+Zs|eUF?`WALA^7PqrrRp3p2@UFG*oYbT!w<;=_a z7w!EcSNmQYpR*2U%Ak_ZSx%Z5>)pro7gx9WUKcA7UOKd%EN#6w?pkZ6I4Bz%vKLmm z)^3xjbCmbJ>Mhzcoc)^H<8#_K)nQCvFc>e(##Piyn|5{$WJRIlNcDanO$;9;8~3z2 z7bgD^%c)bQ@BZO=Gt)xM-J^EBjx&b;=ykDxz@NsZer8quM`h2EIQA4ce{az*vA2em zJSEX^)}ecSC3&KK23mp-R2fR_0bHrp)DcgLg(d(yEh(#A;d&vI)N;el1kX0Qm&Nwp zz;xTOZn#(5*iQY?Q%NtceqzA#k2I155BrrBmN;p?ZQ2djdofjyrdiMN_x(%n)_#1> zr1X9H@um$xxjGhjRTDxJ-sa5A)h(LyTV*u63rs0Jh9q%@B-j#D$L@1Hf6z)Id~n+| zLD>eQCGu@?aYqoY65+gQOMDvwPVK>TbTL{elY0S>2sSELWiI6qNoI(IzO5bGZ`V5! z?fH%+jIbFFgwZBfs7g4P>`7yvSY0CBy^nxLDU_H^01U~6Q{Ana;tcxtujA}VM{V}s zCrU@Ph2}|l*e@UX9dOkW~8x%k!|@`t0n;pCF#&cc2w~lHz_FIGuYczjBedMjW%Dyofo9hHiau z2jF3p;#bjv08XriG=hVyadGE>ww-{x-r>BMS?z8R|nm^&nH6(b`q;e6ds-fW|v<#MuRU-x2D<;d@A2}0BAfsTxfB` znhtnomnF2{_$v|G_01v;b`gTVz=qWFb;q@Y5GY_CXdf_g&Js0e*?Hz1t^mCD84StB zZ?)l2sKgiJpDN#aMcVDJq4u*71OT)@6yEevPYxw}r z2|^%`)xFxj@pi~<0fb3;NTkhr*>W&3^bwi~iJEI#1Fgdmjo4ET2=L2qG?q2XErzsU z7qJ43E11PY%i7G7&Sb)bli{#(7e#cafQ$(RF)%WK{~T4o&_pC zacRioQYqyrxd|?31`~G)T*i73b;Yt9W7P{8j6|RF-M4SV{E*aUNv1S{x&ybnzOr)X z^j&B!CIo{FL6w*}8rBRXH5Y!y6g>%;*P}aR~anzl)gb)vFQvyLi#Q zIdsKcsj<4B1vS$j3{VHt7~2^7PF!>StoCgP9^A`@P7e=b5f!5$_pa4MY_U$41cEw=1c7B#<2DmMtUys>UcH90i+#c!*L zeBpW@k@8j5X2~jLGEc;Q);eI9$*ssrH|wGhY%viJKUfBP)Y2fms^GP}uAXFHdCF23*X3#-OHZWtSLDUP_Ax}5XcKW_lsnTS zuf6nj_el#K17KP%?l!wCB51$sFCJc!FB?U#NW$A^0z!UeNw)vNqH<7n=n4Wrg zs`EcN;y)=H{o*Kb?RzKc^-DW{|JtCXv>sr^8#a*3XplDDh9-=;^|}0MNeVk#QPZX#ZX{4h4==C>n`E;erj0fx7R*Mfa@7tyMrHhwx?{{yi8Gf-~-!q_k)Ne5d zD|pKVktVHZOoQM-LUIE5MH;-&;^(lPRAZPo6{<6VnW6YsG#t;Gm)6u$vRK4gVM0N< zTz5ZDKn@R3-pcaUd4celcvgd^C;s`PNb^qr(dl|7zK>e&*9x?wU3fnE_wz{P+f>nJpjUkQljS;cGaTK0{n=Ppa4|{BQx1)%S6eD(b5Y@Fp_O(C`-Xs%?GM%WW<=j z4uzqJ{tFW>5Hk`#(}Ved=gzp$UTP>P6m~pk>AI9^+`&_ZSahA3qlQi7mSJl)T&;$Q z7?&n}n6E|_uHNSYkuI&YzeeS6)FDXl9Q%-k@l$OsK(Pb;wJULuG9=1q0;j4EBOTHX zPo~2+B`4m1gM2Filg@wtv5eSV+L-YXp#5M@{B_S@)S{8h!&F`<%~Cusf~MOF`^fb% zz+pD`0wD2wY(n$?mxX|~9gGh?f4{P#YGA{rHA2%^41HnF89D4jpIqb^bCygHp`sx? zUO;EPV2<(_^keNe*j==l=De5saHy-lbgsgrFu7_E(B|sz3?h%3?;~C|JRyc@=&ac5 zP>B{o=`7U*{c1%C^?REE;5mMlsCq7k`dR)I1DC<+cfBto^^1VYbt5-d*C9uPe1X(A z0#KtKyMbh!PP+OO#^7$oZVj#vz%2AqJ#u=^=HVb-QB{q47W7IxmTG0#sn+b?>J@wX zHzysa9V*-$IJ^Qmc0OJZq1w4e^FlAzPC9vLIQk5;ymQZ9B#ej>bQf9zwV|K@(`na) zlHGUz-TmQ+MNhBTgSo%7Sz1Rt;6Qd=P5(F5%lfsygE%{*M<1O_9*!eGy5nQq>0f;o z&!aQB_UBYlP3>HF2rPOdeFVbsM9K@iN|&^}zyI0kLEvQZ28UP&u+3XapGc3np}B^q zn0@zHZC1=Bjq{V0hfkzj6!{PnmM&n^_F2G4FHi57GX19i+?HHL4bDKIoVr%_JI}a; zg5PKJN*Y?4?#qB7hl)v=uU{+39oS@Al;1m8gIE4w>XG44*xC+TgWK!NEbHs{9nymK zR)YtD$4x1F3OgIuJ16bwc(#kvu-j-Fn)4PN+Q5~b{!SnQ8+^>C_;2JyX=i5ruP38L zmDJRz(#ih9)tvL*#o|DNsdEJR>t_{)Rq>`hDORufO9D?093@*U+&C4kN?cx~pVgA{ zeSe&hmucy?$38q$FkbK4xAn5EDYb9AwXb_=C->K1n|W!=VA=Qbx~Zmt-_{1U&Il)a zb4q5JmBj_Fr{ZW@;cBU;f}l)$aj&ex z2A>k)r-OAPx-IK!5f_j7h7vMXI_bXDQwrY5xwxA8SM_Ex)BrJYZ>NS;G zRBgPl>yXIllWGOpd(BcCL&;4?Z^z4%yNmbk#eX0ViO#finfoL2Htd~|Ti*d584&3E zcX5P@yX4|ZPU-Zptv4xS_;PKBJia>40he^N{$qH0;D@-&l%m(G&b6a^edsBYntO~g zmhpR8mKVQnjb8qYZ`(hZKAP?w?k|7a^y|+?e%tAwR*ckIKW9O2S5}IZ5jB3k$QL*+ zdEIutcu8xh*>yQ^okBs+oqjOnN5K*||8h`lW`f~xKVf5Rk$NV&0;mHPq-h+mk{Cx}nG_&O~_J`AO z6Z0K$etzWxj7A>6C zS#v}#i3`vF`&%6x0i`%uOl^~t?_+Pe0lHOm*QwCDlS>;8T_ge$kH`=h*`_jFH5Asd zd|^j8+*+xvy*}o=BrII!T%9~#kmf&jamx5zB=Y{xx=Tjf2QPHT{0HI73*q+D?w*+M z8Tt8Pe0rnVZNYqB^*ys=ne)rcE5~KBl@xF<8#+#+{x=$Po6I<}Pc7P7W8%1)y50;H z5oZg98lm(?g^7qas_D8cJE#9Amr#v7_>eGcqZ~vAB!pc7jbw+AfJOuX{<85!a3*lS%?0613(pJJweD|Z-7SPfak~k_xx-~ z+#(HPQ3gIo=YdADZ7gu_$U>HPWCB1!7&$o%9N4S@(hDTC2#SN?F*0!>w=uvQ2)=DQ zdZq=U0i;x6*$E!^`tRwR5)f!z2!vfwL9xLsz|!bPOCM6@8X?%`TX1X(Ntplw4=nKC z;{@=oco{4NFO(O8Z3G@#i6g|1P%&9zbSwVJKWb8yny5un)_q=qV{YYH#y%b4K=|cp zWMLy4DF%JCAPlOVvB^*_JtN}VWbSNi+P@!#Mnkx4-aA23_bEupNkb_q-z$XOq`U($ z5`mO(A?l)|qx%>lnIAL0aC|t&lftZ8=R`x}qACO??T;{rkDW*i`g}Jt8!~g-l#7Ig zmV7dky}$aBlr&9L97jWF?|2h>tLNbzIF=q{e<(N`n#|0n4_#N_(Hf~zkp!z~3BeBq z-+pFy@5xFiiD0KL_$IT&_&WCJ|GfZ=D?L-POc@1h@P);A$Ry;$&Pt7Q+ITF zWD@CCzUfja9ruo2;jho)GsAG7P}Lzt)U6;yZU$3Fri6JC1%kjRj4 zdS@5rcTk~n>#35Pa5Z@k!W@^hsegm6HwMcLrdT&d4c#k^)-3d4?X#PZFI9*1`p9Eb zZ>d8JsH90SWoOwn8;C~*>0F+Huf$y4A}uPKS044g`@<_#_C;r~>6urT7*xiRAJ-vb7{O(A;xZ_9n zF26plFah^DvZr_FufO2n+0jE){qkwqY)Rp4wpPOF-^wYg>zRfHK@;oNfQzmqg23k& zvqFPs{$Qn@4^xJd`l?u2hw3A%SrHwkzQr%^{AQa1rlNNJoz9Q#>SVPYpL~-dqwYW1 z3qCw`92drEO%)wYH>v9Hp1XR~1fHK7RX9Oz8f4YeWjy$4EM&6N)t1kfBAs2^h_zcs zeBpmMQSUsN@ngy# z%D`XZN2Ip>!*dbrNK~f>BPrUQP!Gg2m+2X)PJHEP&R@hY(ZGWwjv%CJLBd=yJHG_wbolV(SB3&3(n7LJM&@p(BwRbtf`0iFPsr0aGY10g=tpR zCp~yFaSvQ)PU_e)IfM#pEM)HIcZRIUq-S6cb)Hld<i%(_%c78+@B6eAMszD)ooOfE9mTdp}d z*>AmZwCjbF;{@k&9x07e=Qvtg6^H;O7T!?yq!KVc;E)gOfN#%|GGHOFaV=yhw|7O* zNnoSlav=~oM43RyH7OMBFpBe#hEZ@4b@KtM0o2_cExxeyp(Vv4(w6Y2y!!Qa7TOR> z@u;&4_n^SpAogSOeQg##uy_BQaw897P7|0rbq=wk$$|Nt7rMuT(N+)YgDHz##E0yJ z0LpD>&eGVW-x6h{*cAr|r=2swX+VoP=mAs*Y3ctChZbG&_7LER6N`W>FUqa2^UCc| zubkcp-qtFcDc~*xirKMcp5KR8KQzUt>rX(9CKMk5Gq`93X2sRs)&4U{9-Ru&oZtqi z#EA+fzwuJewT!DMJYPV$k_@Y_DOzqq4dKG7kJlrd>=7W~D*U&uU`rx%qxI36u#b-E za^#n{a{Q0Q0Z#D#mBy5mPISib`XBrET1V#p>YD;Kd?)K%83UW-Q-zrzezh!~TmKY` z)HPElY|Y&oTyH*oX;9)f=x3*fnGom>`~>+zi}X~9n6*d-jP(VVp_D~t(p?bZ9@8svDd!K>oh+Pz`u(Dr zneKr@PCX-b6ciw;)zIC}2_EEDKwKP@bmcs9_(RahQlf$1d2+g}ti2C8s7H1s975i| zsNd9HWD>Vm>*dw8^>{#bz9pVzMLn7`c&{ht-_L3^I&NfCXpfV#^`JY;l$Q4TVDI$= zleq9&?q2);pRlM)w$mAMPLlYkjM3oZaZW|W0DMmo5SpBwus_-v$O`yAedcdavAYbImHs-3PyC(p z$Wf88-0%<(TZ6t*a4iaC?$EiuFRX^R=`X-vb-ru-kQ@ma-junWaWv>*Hzd zQfwVa=xx^uKAoSQ=wEn!JTEScQ}S!Jx*lj)XtD4ZlTPoRKC16N$oqFepbcT@meDDl z(Z9Rj(ROlLoZV8Zz0|X(bcPOEx}hgzTE1(fHNS3QE4AHD_%Ysb88J%qiQd@zgix-< zI34?ZvJY^G_#fLG9B=jdH_9ve7dd7)(0-^e;nN`;l}nDL+zaO`-|c5IRrHSSNl4dsysxA z6PCF3S7Py89gudCzb+i@xEjJG5n_e`O5rsSthwLTD4N1Bu3KsHmphLYQ})52&jZR` zxY=MA>wh==1zuK9ATj;n98)d6Fbcg8cyyK%NLV|LAU_m`-l2MuPS!?Fsh*>vwS>N$6h!-lp^;YWty$U)rK<_Fg`%`T|>EI+;0< zxiR+7wX(%70};$`#Id=6{)%{`&`UX^x)!k4M#$p4I958tm4A;BzItL^rJH02F)z=t zv?|W6OExIqZH$5z@uwut)^DX7mG}NKI;pvB;Ou=;?}CynH1qU$F*`XN0!#tz>Txs> z%&NI?wP}w?5kpInOZpweiVTpuTDZQB z?yR0}P7}sW0pMoZRP(NubegXWQgCH$`YfiF5PSjT!ZzJKJb||GkIBnjz=cWeCFsK-b}AtW_6k;oGj;(k_~8j&GH>@ z-Fhd(;m)x)b5`ba^F_WlgF0O+zsLv(Y8AVhiFm;#NxRr!^Ix{}TcY8uu z@Tm~@4SG6Wd5HQ$Z*3HOCfP|pBT~%ZuB(OkomEt&Ix2wDO%XMxZM$< z>LXUe;i}4^6f!d0n_S4y56%cVqkFa#V96BonK)#!q@&8;)jG0N+lTzAk8aemv}7Bk zz1pFw7qR`B_%QMvgfd}ZZ0t?DjL!FY|KUK&Jd^Y6Huc4^#0Pf=)jhyq82o}+DD}&Z z58FL6mlxtsiI>Poc_omP(P1m0C~py77Br|&(=}D9vj zp5@2M-XXs+BAk$byWScFNPHJcKE)f-MY!6%p#3_x>;1Ox<-r#nmp#?jwMr!@tSOB{ ze72C5=MBb_(lw6YmG^Qwvq5`dYCH&=pR2a_q-pGF_ZF`5_W~DG-qm#GlG#(nL&vMO zqq5{=pQGh9JHHHY@A{DbNM}6J9WILd;91!Vxfk)6x6d5%nFW-ebiO=6A|l>-Tc5k4 zS*uZdDKs2Ya7P&```FhvydZ2grnQo3yD|Wr`bxybq-B|dE=elBkiiryRcy=5Lkcp5 z!oS()x4^@>xM|()J@EaO%tt?g6VYxdnpA9{lAEacWD;gCnkF;*(KlS{kyFY}U&ZUz zxsi-lfg9@=?#EYX#mp~`b+(0+=P>fO>;B ze)t&5PGC{h^EL=$t2V+aBZ<6zV{*eJ)1mL*{Gd(U4~e`3L{8v9J5=ftXl10!@`Sv) z_54Tws9H5sv2c3kyS`6QAqHr8AwwNPb@7Lfi*70B!vQB>vFEj)7=Rg_Y4yO6g0gI} zEnBxL6ge)nA~X2yLk2I`+n!Bb=(4#c#qzE+XVBs4v}dhottlRtHO#wkIZw-L`H!jn zbW#b(#wU!O9BXiZ}i=Ka3r&)i?-(%ojn_wDi1x8`N=wR@sl&Gj0^ zOy3)<+6loz(gF#t8izIDfQqj1=Nmek7w>BA^ z_?v#2UQFC$_%=KQh}a2ehkd^NCbSa`@jD+P7u-^1kW?x0cYx}rj|5fOyfE+ zKqGABra)k@3CRY)vln?ZzI9s~jIiW2N0BeW+D$D%9)d5@i<~nuqH3k_3xT^`S<+T* z8D0P)8eM)ggPL09EnZn!ah%d^?klKwd7iGr>m*JL5nmUdyIgj1o7&^WeJwb0GHx4k z7}uDpb4f}R&HABRgBs!X@a~ma_TKETcS+OXpZNDN`LmUq;pek2TD24$qH$uty!p-C z;)qYf+P1@gV{PF)=P+74?twlfaSv85hNYR5 zzA>E9>Tz}2u)1IXr;@!?J|{~Q&QmgN)b~{2nS0;6Pa+we0C4k1P7?hJ7w5i#VrQklK~J2_jumPunj z4j?I%($p_Sg78^U)&L@DYChoA#_E3g!etk3mOK{uhRb&wzq@}rKfZBkHXm?!P{HEl zF0a&#ennVE#{JRLogzF4kk6r-^>3fH+Bq+7DQ7MGbXMVV%h%WQ^s4u>QBDCbBuzn4 zj&^7MM^|O<;Y)?%72oY=^{MqtrnhK=-Q`_86>+f{E^bfXeVG$1r=4D3$`&-2Iua;9>IkgvFdmgmKkGcvKFG$`K3WxhTXcMG|Sbc^y} z_L=>|OI;YaF)(d?y3;eN(CA#Lbv(bafxcN;@NrVA@Oz9){oydv#-+QTXJCWlY!o@+ z^EB=yL0V{1ecWSTUC%V5eBwL>AY5AeZ(m6RSG{>xZ>nWw>#*l}@LpG&T!Wiy@V*s# z<@oT_-NzRzC*qjl7PK;JYFd78_nbqfMP5Aq{@?T2YC&Gy`UOG*DmU%l*5pw`)cT7F zI6F(qpW2&Kj_rZ4jijSZk5-3Ap|$}7jW_u>GCiFVW5wctF3*Ul6!Y4+HwN*3+v=jNUVsUkoy@AK?g*&dCI}UqC+s|hF zr-QfKfC7j%+Kzu=e8njl5FRb{CEf6$5L>p^N$j^KVojEeIkOQAe6D=JV1)m9Xqvqx zVf`*T=%9Gv?5|w)!Jx}e1{xa>3*Am`=+}5sqfJ{1;*+L&Vvk)G2$)(Mu1Z42$ZHWm zmf{XZH~Nr~yxixI3n%k`(P?`_LEDDR@Qz3)11kgo(tfMq%I2~mX8$s#62Um-GuBNU zs}C4AddRFr<6hAN`DGFsOh~AQP3?oeCBamcPRNr~<&fM^&}|tB8xc%sqX}F&fy?*c zqQ@Sa4dJ%EoN3+ko#So{XBm0x(or`6sruiMf{c+-ovlw#FNg8f! zHNPBRIJ>;wunydH=s27X-W9&SyBB=jqsFOlb}M*SI=!gLOX9jR_+%lJU7O2>OiiSl z5dx0zk2Fy)xIk$ka3a!y3TMNqdamyS zCK;BMR@*?B4EEzo<&<5K?V*A5pyN-82Zt>j0I7nn&ra6i&Qr%3dp0$3B%~ZKRt`)3 zv@wz`$Nz{@jN*oql*o;KOGNPwJ|9^+C>y;J*JvO4nEsKIWa&c)HxfKpL>I1{XOsvF z)clk9_7bx6^W}Y9qj=ovkQK`(lnhYCVKwaenYkYm>)egpX;?18%!@FPf)dfYDN9y976{f$jNWPQ?c2T10-Ed6XM;jJ2 zFEtR)YU;Wx))%6gy{O<4rpkOi`uNus1$U?-g!!Xy7fCLA2n4YxH$HMr7$t}$$uCPJ<$X1{jTkAp-uP0aQ}p95oW@fOoZv4$GxE(npR{NHGCb{C z!C{$n9wfo9A5KW5TLNzPL}ZADy=U5#$IO@K6{Q20zv;=|rAyEhN~Uiud3;}qDO@v( zzI&1D;yT*=&NuLrZ2N0>v|{jHzQe#zpF7hf_*&ith0F!T?BKvAxi*Wc!PJ_wSBUEG zLEnm6q?tzbq~AJX(^%!&MNbT@a z&?AKM9sg2z6G4>rAJWhF+oor;pQo>{2xs59m3MaamfCM5hLV1h>r@mOk{faJgGB~1 zGz2VH#lj4nt-i?JFps2EtHFS7+}WANk~2dv&eYt$RYFur-a7*vNsM!v0uQSLGUEmm09!>)u`rSpH$CzUhf!b3rU+wPbB?dC{VbXtkS3^#{KrG z^QX^D*MZ_n`^`7K~ z`M5+P@3;m#uu<8YyYJ`Y^WGrwnLVI;I63|!;R%y|w*6|J ze!1YgJ0WcqaK~`=%lMYW2HF1pzI!!Zh`;-`JGv_3*#|m~iMuf3CdZ=jw6uvf18zwj zpLocL`R(r8+-U>l$OBpwIK%n>n$(LOeBRuA343n`d6w?O6X|5Ndf(_ zVsRG4+uHN56*+p==bx<}|5)xjSRNTpsvqD;7W3!l&(IinDV4=0WG}53=bFtX$^Z8G zt7`tjf3)~#C@++OvL`YDDjR)x zZWs+6cxRE0E;ci}c6v-=uI()iQUv(q5hLy9#Hfafps}}mzJ0mP7Aqe`V**Y7&$o~Y z+_YirG7@85G$1hO(G*q0mZ;3i&97^W__-z$X|68TdN?HYlXRx1A5EU)V;83m9r7FY zULerdI)fLt)*Es|iCI6yPvd{f$=JBnesuipO0hAokQx?B?>u?8@11Szgl2;qLNsnQ z7Uh(xz27~~wBkSeG>!TI?-Ril2x}3t}kB;F+;Vs%_*Pcqh@%n!Z{Ae9<;p+;fU5c)2hntUJ<8o z!_9*XrRy}MtIb|oMgK3U+U@)MLDt_nuNU9h&Bn88ojjX}>Sql)pQqSAAO1g@&N8kE z_v^!g0|pWspnxKbQQ{9|0uqu#lny6KNK1EjgM=boqg6sgTDn0>N~9a4Yk!NYnIb)*wDBE+GnWlG80s+Ein z^4%Vg{nRz3-xAn9350vf0bf7>0E#U{JdOqh6%m9&xHl`5;IW*}e<=U9t_?>1+QfJS zIuH^lO@45FvCH|H1mSfDo~*Y7E5BN$H!*5u=Tf_g!$qhl+JfM zs%g*eyu&WCLV>UR&~zW?)+D)J8zwBKxx|q=OvS$YIVi~3(h*lX8r0{?IY_lQ;z+X~ z!j&^D=pmRoydjcTX%T?=ioNw-tKXwxR*y%B`Fy_3EYGaq@W|ky*J45)6>d7EH}_3` z-fGg-IsS63$`2pacswEGdzjS37r6+W?%Q*xADSE&m#Qf*ny#2Hl_x20L+{x`XvU@A z-nwu7QLS=`()8C8f*=OQ<`7SX_4UUvs5X=y5u}+e3A6)#=jl5aX22KaUZ||HZy{vi zG?x8GBC^8fuaV&Tq^W4U#+>JBlHWRAe?KqBQ1|-#^13QJ6|=YvUyq8%BH%Bn_G+5a z1@#bUMx0%Smai|ZHto7jRVdqX=UlDXUC<$-z$WkfpN)5tsxTcIh!-^+!G(mhWMm^~ z$@WMI;GpKngMh{#sFePP?E{utc``MBfAAAEZ%(`d7pR+bZa{zsDiBPL0wtfol4-pH zfzdWlRZeD?2B@IU!_&$ks4VS z)o`eo`R)ILG(h9njsImcwM-l)A_uYm&SF3ud50(AMq^2)Y zdY35~?~efwPGDL%LMWbqN=fb)?E0f>!M6co?Hb?jvYaweLm*?IN~I1P{zblZANmrx z_P8Tv`l0$g1gKg0$djYt0pZ#=gGm*k)AG+;rm-pvd?pk(sck-~*CwWE70Epl=1Wm> zc=zObz%wYaOA8l69`3L0z$p|jt-x(+QS*(d3w0~>ebbfX#h5l@#=rc8nMKXXHW&{z zUAg(;XYBk?@(~ph)h^DiwHymYN&}-K?-6~IPJJOsiH@#aV%7X$gq~VzjAv7JBr8sR z*Q`XKC(d~@Dn1oM#!E^Y0{!X_-e(1h7&g_*$?k61yrj>f=s0d9_p$@GDPwPKu~_|~ z=#J#fhnzkO`gf#M;b3OjMgB|gP{DuLrLf=;Zw`5(#cLjKRL{Z)x!4NDU_YJm>G7Yh z-OBmx&Ak#%VyY93K8;^LH+ZbhJ6Gu0l0@(Raac7t?dW^bDIunxQ7EXgQQKjqd~AA; zM7PqSv38uv)n+fhsz&}z)6}*?LiE_1)v|3PZr#yrE3gDU6qVeUGqeo@>mNc?D+6bL zQv1$VKJ>k(gA*8H49eTB8?;~l$hIh;Kb44RTTD&uxe?|6g^9y)2yv%J4u%`zVD8Q1 zEqbLJ$1{PV#jha+!CjSwHn}m6gceNvcY_NWU0W$4lH6|=7yoy^G%cOdS_4r;VK5I6Lqx=1bZCS#Et_jr3{XK# z&x(j76A=MV-h!=AVGC*Efe40CaBcI4gRXV}gpeeZnAjYFKxE}`Mesz-&wJkwdLng$ zfK{07OZ3Ozf>5?+d9R@6%`tC~{>^|Xztlr+IJgCaue#~^xj+c1j5IK(S5C?(s%D$-?#IFqO zSgaGx0)~%ekm~v`m%?9z3uvxKt;MfWxgkD!UMu0~z88v|U!|O0^%EF>wvV!F8)?$hF#0 z#fL+Mi*2$4Dy&PtOu{q4>ZrLX7dx;g)g4Ju&%<-n5$scOv;olyqrj`bE5ta*~_t&aLagVyivwT!>L>!Fh5m-my4wm7H46~Ah z5@qteh>L4x{o2Xom%(;K7z{(a=m%pOmgY8AX|F8RWcfci_IPl{b0H5%`APBja%5yC z%h_n|6^Rf?^YIfn^jYQWSt)d52np*Gp%@j88)4%3uyGu4mra8_xWsibH^ouqT;+Zl zcZizR&8~0pe=1%TXBm%v|Dg3Q$&w2mz_luv7yKoMSU{PTb^$kH%!g&?ukqrkh<~1I zERQMS4A<6eonb}huwlK3wh5S+n5g9-K67K*y_la|SOR$Un0*ohJfH|mYKKWtnQZ@_ zs$3^%Mu1FBv7Y4bXsOKdLu1dUASK_C5M1X09XYJ3mIeQ4tZE=yeqOXcZG3hG3-OQ^;Xndt95ip`%-< zQ2?%B>B_gNc7C}mmeV~l;!6cbvb?NNK-S|ne=l907Yf|B$i>_IO(qlXZQYawlEcr5 z?RzYpvW$#bA`qo4*d1eg=nYr|3iKCv=*I{X$p@;dv*g_Yeh`)F*cmzwfg2m#nyL z{i&CG^8$PVCgu~uK*fY2|0cx9WYDopR2Pt@Rb1^CRrIFZu*P%^+b5#=%ebF+!dg?w zg45mJ;V|>E@M^=VX`dH2EnGXf^&n|8)9+AaAM4h5NTM&Ep;|0hS8%wo$~4XM8PFg& zAEEYIPTtR*_V}$I7@f?XF{|`-Y!JPAV?)tR$#H_ah?^WcG+nF3rJuPe6z)iRI8@F` zc$~UVKA)dmm=UtQ`$*(f&w_P>m;Gw9^y2)$tId61w^80r&8S;KZ5K!1HaX((84_Ab zx3u!RD>p(p^YVsH27&2lWpAsk$55P{YKIByTr-{fqoFMv@KC%+jDT#Vh*Vhx%V}nIEix$ri*)sQcmPWK?H3zw=^72fq?lAi9&P4fLX!zzT zpNKMxhic+n2|DABQkk2~Q&x&Er|DL7_b*nNxy~&kUXzrwc|d*@cdn)`csD$r(rG-L z;N_uQnQ^UqEb50!Kerd+uJX}PJUkd&{$1v~w@sq&dvOF_xM5;OQE1-g!fcxcC1;_e zpIFnCf@r4O`mM1F@oi}dI&0W>vmbGT_h4{jp zg1WDs*rS8*okMR1ge$S~_D1ax5lU%kX%T-K;a2K2M_MUq?srr?@Mv^^+&2j{T0}Y~ zES+A|)kw5_JY!GEZe(Uex2I0B2b>{?SNmd*ZcerAo-9oZe8}E-8KNXrm>@+TP?8pl z1tV;|hFVz|3zyIbQ)NCsATo>kA~h= zjF5=%(uU_@cO2koZ!LDN0zLNMmQGa_-r~;EWUa{_oGnK;+jK+XpM_XplN=V9z$7Y( z8gQ|f7xh(9nq~UgpY_-^98J>A&L8!Z1QR-S&F|6^Yc^ASF(@&xyY^-W4w(+lpd-9} zM5cslAsa==!RAqpF8!WA(&MY0?$|cN>AlG*iG>V;UqFTZSDs6 zLrEHe(Xx@em?gPtD?Voi(D^EWCO<0(Knp0(T8DzL<=*l#yS;n$RxNIHJFYP`fe$M{ z`DXYx-bON&YH?{{TVv_bZ7pxMfK^;!384`eH|S=zw@>3Gb+iG zgYKabQ(+06Mvto;A*T9zO(tsqn04LrnmcWqJ5RT3I+^@$$9u0(v`WSI%&qYx>9SQ- zq8k6#wETq1cVTX6jsCuIa#kq2dUXhdf%0QByD8Xr@4Lkn`OUHDmMK9@K@QVe%_IOCV4TW&s_OL;iP-WOem5P zphuC_^?G-im`+uGcvff^k804-&0WpM`4?aAu9gI2_KsD3_v{Et+cM@4&Zz@eAuU%V z;s3Da<8icEprkV5Bn0F>1W2NUl7h?~3zrlO&cRY63PuJ0 z@aM82W7+>Q9-e!t=FTW z^1&O>q5cV_<7mc2tO%swZ^bG{^XkYKJ$|s8z_XEOz4}}i7X2$D|{`HHa zgU2TKu}!WpwQ&apgx7dUP6olUkO0Me0-Zke7K1uWfYC)qZxC-yd<3B+R_RZsCwglw z^Xb(+gDz57a98*rgL#9kFTjQJ7LtQlTH;99fCJwxJ3A0a-GJYF`0~q=jMUI~qiOPF z;4}O%Zf$Y(unOP@6edDm|a=*K;RNp72E6x+P#! zCzhOGC~7sunY4*vY}3(=>(o{jWuq@FT!iM7>U{PL#*WNq4Q!UGeeTO2y$A0~9gf## zl~&+`>(!I7m*0N*(Ic)y`#lX@Bo9P|RlKv>TNYEp-u5w7WtnueR`FI(ozsq zHW{r*HPktpIdqL4T(K@;=wa-L{ERCZUUzJ$h_~b-=&2O3@>Jt z#b(QNH!~x>C)n$4TU(IC#Kg#CUcLe(ajSpf?_T@zC%dSX{XDv)7atx>U4+F02>qG%sj>U2iFoa@(vn(wT$jB*hk;w35A;O^l=FX14y9fDl z&dvEt($}Wizlp2d!YK$w4jo#GDm};_MRFn8p28LYo&*{QrQ&~zSRjB)@j0oEh{i9;1L^&ej>F6N@7n6oa-%UAUT^z9amICBg~uSSgD_r zc7+c%8(b$TAtnhxv-EwzHt=}ejZkY@@HaJ1`4_T7puQlEAQX^@=w`W_ZoT%M5gXB2 z{%EOZ3DCdrWojAQ@bHvo4@1Hrf6Dt_r1ynIxxNI*@YQE9a?g1$R`?xlOS&n{K zBUZ&C+!Eybp-DDWpn63Q-&Byl;$%0uLf@!7B;0T*2} zQB3||1w-jXWH2w?e$i&Ey29O#g>%aUq@}yUXoc=it~}?fgrwQ4T~@`Du<*~%7QX9a6KU8vL)kU*M;tM|rlO;{AV+<*Gpdep9JN@`(Hpk~yv zTOq&3;-_#rBaf1&YpKF5t{ka91JyqJnq9q&^`5XlL{ZU8a6v39jU1N9OUZCO0wRrAd9(~-P*AI@ZKmxF)ek3XIV07rd(BE*>=`t%<9kpyI=&&wtkr0L zC_oXjgfmA&Ci$~GKY+mz8z~U=UfV9E+X4pN`qB6}EwUpJdyx~7Czf${|0cAV1gf(= z<}=5_1O(JAi92Vw(q^dAG(Ryv{tr{dE&P2bq7|be5-KW65G*^a-G})}$`;+*P^%%Y zJhc+f!~RjbV2n@sb1z0g+ME}eYw@)rg*3WX2?zMH;>f_e;CyD)@n6Eh4Y}AA{jrvZ z+E!fbuJu2`?|D?SGg&DwvW-4gDddQZN|ZdWA+c*b{hR)}v%K*?lh`xUa!N&^$VfZJ z2R#CWu{I%t+yiIzX#?>z71g4#eRSV>lsnS3wQM@Je+g)Xh9<*R3cK#zlu;4DRvI#D z6|ZX}lQ}|SIB3xMOG-oY{igiNFNP|+TJMI1^|@N1QU`>^njOBPY5XkiPbqkOdlSsFUJVBbgc>+?TN9(x<#aCmgMtuyu7UUl@6a{y_+twu<8?o`7XXN3-O$+U!v9xrsKDGHJVIs|! zpnsVNn6#oY%aU0KtG3sFXg}Pr0vLDHsH!UOtmx~z&dNzcB{LjbaXkfp zmd$2;QB5vl5zD7re=S7;DO^&EaX5(Kjp1f_)6od8`;TJ3)y24{`d=kyB8wUO=REDt zG@4FiUp;6#uc?~k@WGdxttLgWR#%t3564_wb8Mq(@T3w>b6FHlu)wH^U9NvNE6(87 zf1K=dw6sxtUc;+b6iUUMd9%2{aLdutzW#W3>t_ls&v&iG&iAU}th4;f(7dbgCJZj8 zqyHhQICRrNxZ$zSVj(XRcaleWqqpnPhWC;4{ix!iJNPiLU1l=2n(4WpFsA?bbjFQY zyhaDFyl=cId2s5Zo1xv$Y1f!UQQA`feWWnbD0UjTL-e#^hYfIi>ftDm{)7+OZ8;-y3=_+WCHN&fMXw$V*vdIV~mE zqOQnB8^56*g(`>Ek7|F7f%bA^wGz}bXX;y{sL4m@559Y*k zA&trKyC51|TXZp4g}bU~I;XKaAD=o953_iunknXeaPV0+ujy)r3d}Y*GbO~GG^X$( zLQ;JD_8$>!BigO3VfIPG0?PdiTGg`E;3U$siW|BR1q6ouSum(Ody?q~_QhKmwSiD7 zY3qaiHGWOBRES9LL>+?ZBhw1_S&trUOF@$jDDQOrk_x0qRn@X7`QfeNM+4zEUmzbX z3BFz(oVRrd0(*@90R}gSZ<2lA5}^g_HT2eoL=4O&#F1GgKCSB_Ha(6il4f>5!P}2E zP`bWJ;Unu7w;t$_{cuvmSngNr?aJYIqRKY{Ax`v${?{BD{&;@qY{N@lCN$ykO?!oQ z-WPd(Kmi2fc)HtdmPaLdSv|^^+Gh)zB3^ivxx4YF2l_6-dU8Kwm$=aLPto)%e5xz;gATyCv@?#wfz)5sZZw85n@in}lOr@!V* z-1p=^zjSN7dffz4^fPt){ZZZvA2fC@KF=L<`dwN{Uao9Xg&3aWuTJ&lsc;ywoHG8* zI8y{Y_E`$Kkb%(v2r)vbdDVsADw-RT(g+yXt5{D^rltFx4{~OTi=OfNuKRi88>l98 zwfbuXUyqr}w+TNIVdgnYyCakG4-2t-D9BmzKHB(3@pbNe%CIno0!ht zDAg;>HPqDC_d8hY#!H?rnfd-rFZs^!6Q$C0Fn6Ik(l*1+&M&W;kQsCQ#62i!cYUI0bM{SH0h!T*&Abc!TbWp-lIH~Y-32ZINF-2BakZi`2sng=fdGW>2?)_JF}eU_ zDHx%=l;9KfVqw!)4TQ@5B3e_Gx>Mwf0!l-|Dww~RS}jRyp$qGWAD+Cm7vfr;e)Qo> z&3b>425{rxZ$rt`8qy}i@;#k-79jyaL|pv0l-O8Ja>JpMi4H%=X>bsAS!pDLX})^Y zZ6*Z2RClZwMVwbOHP^yTx3A?i=$}x+*yr~{Sj5Pw2y?W>IeSc>a4Fk9qp86B7aRMu z-`W^eKKZKNI#2AqaX9%-r>%E+5y4=4SeC< zWHLMZ&l4HGmsF&2Vr(1r-BTD=C^|YeVFLz9gsk9X5JcTboe?&%S`NEBWPEvFZBeFM zK|#WMO5ELkCOwuBK;sZ2c?To^IS3>+tQA1fi$wG|a69!+Zy>m|1(g9t!KmxV>k+dB&Hm|e8( z|2Ik$Xqp?elB=P(F0x5-FB5+lMu#4sg|YW2c< zc4Q-Ht9ztt;~m}O@iI>HmX86C4(3s1Zo$ut0*T2hL2U&d0V|hxX`x?GW|fFSx$vI< zkca^ETZV5ePu_~K0je^(bM_hmKRsIQUo6;*fm-QT>$OPsl*ASTWy!WcL$>AsvJSmK z^4D@-48l($3KSN*9zG1$Zb7v86N$2%X7t^53C{A*3M@5eApSa6>##d{;Wc-18QKXj zVCTDSY5M|+MOIFu!nLy9H5Qpuwj{+lo=PTUQ77N{d)lq4$8Kvq97$<@k&+v0%=CbT zD=ofH9P|6z&Z@44IGP^JZd8X_K-vWYqd8$w(len+v zW|nB3!)M>42n!^b0#EUk0A_pnYBBwSvd}N3PROQ=VLS zz1p{b28Wz@pYoCHnN2r(AiKHI)uO>9fna4g$+)c22BQFf82LuZ9RfCy0@$PsO!?sF z{%p-k{<6VdGHW8u;%sbKy=%x%qZ{y8VD|NJulFAhha!y{Ca!@*ArNS&B*vCkkBV;~?kQz7zljx_47D_bcYLP{DWyZLj{2;7o-l>)~JiX%}B1Kq|T4v2O?4Eq%+ zAGS((zz7q?0co%dgg}}a25cT-+Ll1gn+Q(p1xoWyNcEY3ijb;`@85xoYV0`)(voXY zSi!QcpPN(+)V+nVj{T+_QgVdKL+XlqVQHypPK73%f$`Lsei5wvJE(Y)lb|B5Lg_`} zBTylVOH->^g@ced$J1z#kOW<0f+2ws43e=sds+a@`#?z>H@2~$Ck~Cqy4b`y z36^g>pRvN`I!HTgcC?6serf-dU8D2a5^fKz^6ZCz^*}!_XVkJ|Ofab%b7h+=J-kXK za%Z}B!lf`J;)i-i{&yeQDMSqQNH^BlJ%<*l$sIFJ4q9>x5sN1$9&!6dH3lM`L72UF zGE!5qcPtH4?%fOrhBbw73ryU)*UAkx*PlNkMN=s%$~1qwSy$@l>gwwjzuL^FMX(?0 z*6DDkEE9%{KUDe7V_K?B)%J^-TUboSh`zdB#@^naJ-1awy*1z0#n;7tGuik+oFK4` zRkO9ZnuYy0Xkqh^$3GHjBV2*m69f`@(LniVH5XrVx3CDSqmDSBa%vx?OuhP0zbg*- zlUthG@O$$s6p2FPRv+JzS;^^$e^!~UCJH3=gq0eV8_vQBu!o6x18dr*H&SHy6bv1% z^Faof77~I0E?)f~bUm>P+sMkmk{fQ8*CqTo+e#ig9Q1r__@_Dm@}cJj-IQp+a8|m9 zodZ^7Yk1>4r8JtHH~32eX0H{c_8$RLcJDVJA*IkAm;jb3aLW_&U64FI9h(ggvlBnx zO82T-N%UL22nD{TOW_2(gwIib!)vFWx#Q#KKZ(VFYvyusM?DHZcV$kN0qQ0_fuh;^ zt82pI`b~~k#-#UJUO9nDN-X6R;Qq>De+S6=30xbD4&+jOIx;v3;yeO*=UcV;j- zTzZ<9q>*V`)cJVf#J)6sY|M_y$GrxCN8YSuPWj@GCoBbJSK|OvS5o z6#m=)^PK2)_i+wFdNw_{0S)Um-Q(c1JoF+q=qpVugD)JuvWaJ$?AcgMw(twqjN zKWEPgP3`Y}0@gG~Ykw{O{^hrmOrCqp)Zysk>QR#};qEM9XY+;bjfv5oM$_Mu5!A)v zj_=?3(S-?1uZN?|z9<6IUHVjeEcMwySV6jZArx=W8)zo7-Iz>;>=I;Pmx}Pw)XI zW08w%In)o;uPQ>LnvN#ZAKV$a%;Bv++Ffst+u!UHpfIT&ta77To%8TMT4|^&o~hq! zS#JkQ6T6G$;>O8kQ!_F=LSA(Mpl0`^*Ut|Y$0V=XgMv)-imT}8I=QHJ2iHBwKA!Jx z{aG@<+}QhDGWc|_d~?C^pndN{Qc`-c1_>VL(qm#t%_IXmu-V`1%xt{6z`qze7LaIg zH%++frss7rVlpRQSKo`_PbjhrQ0;#}MV0hnv4V1;dC%K-C+Erh!Pe<=+_L2B&5rcC z03qcmm%{875r%-V4ZehY_d~v$-Q;m!DpGRd%doAiLfEi;T98SP&B@)CVtQ^xN~IW{ zp5SvPp@TNKy?A%*A#yNiVdNJl&W6}CKK7aH+)+^zAavyHCcJHl_-bpEM z{pD#;lKY{FX6r-i1ul^2BLsX)!lHRW#uA|xvZ4uz&ys;tCH_ESqcLCd7Q*U`A_=`k z*l&1)r`I6x)?>}KTZ#5i8l3=xV2XoZEu?IEo2TYeN|QuC8~e>WZkx;jRa%M=Ex&GL!052Lk<$3)p=|486clFs^WFRZ zD%*e<^SthAwfG`P|AIvF%;`#7G7}t)(q)pK_=PyLJlx=+&D2u6(X4>T*E}|&%|6%r zIh&L1Mx%m#dxIaNxqvv$l3z!+xNC& zU4y;fg>gx?cLz?H_DH~cDtTUL*WkMYQu8xc8%ci0LVjoX#`Byizol&`_b1c=hMrp|d6AqkarkuafH&_L>h`7h^7+(L+KDmV=d7cdL-AB{X3njh&ZvEY$ zyBfVZ^}E<8=Dqbk$YV}0--;hT)zVb*@bP!p{6lA-`1(A41|Y7X{Sofyb16(&TC9M|3!n$aF5zOuT3y+wI9 zraF|JRT{J9E(Zw&D<9dQ7wXkz9IHV^2w{5xfo9v2APKwK+(7jt_a}J`_eDRL2T zv4b{jbR;FEW#N>eJ*k#bT<>I&t||>&iHIKw?INXWwGa*A;eg?izYMzBObH}tQd}p% zxl4hs$(&en8R3PlFew9hOuY0M%R}X@;dfHf&kCLI=9I*}SjC}-|46~4yI9R%69Tbr zFf=J^SYWe903J(m@7kMjNj%b@;rhP41_hjM{%(F9-u4yy>{c1g5$yZ$`^+ z30tGTun=;f?2pKU(ZVeDs4rU#!qCU|Uk)gy0;~mi?u3RnS}Dba7ruCQ#7KVI-t)7{ zaD=MyXL_YCPibuLq2MY*Fcq#PC70>-73(UPGsU8u!mz?nApc88Aocvp8f`vB``n5E z{^^#h5(4V@Nj;@k*f3-QJ*HOfCfN!pHXJ=X4s+*pwmvE2V{-Yg6a@nN4^rX0b?) zxwSJYrc9>Zx}hGIxN?n57YotR4TpULFsagZy$JH!2kDKil1=2fCHK#iz7%?IewF>@ z!hG^ui|PvZ9<3;&k`qd)2hGaksU38~9``v-Qa5z6ZBPnU^T(7m z?!4M$sn3m1&Ak)y64K{wJ0zT#0#I(qRUNT=?5pZI_i~g^%pZ#C7bcZou9;WX%oc@) z|8(KOz2r0E)gnWR855%sadnE0Zt^fWu4V17GVTZ@3Qld%wP(-f8q7$?R}P&nV1K`n z80%%i$@YS;&SAXD=4{V$-tq=1nR3tId5A-FJonQd%OjQ*47q>gxU>K$fJ~aBTj`ah zeB!i~ipSTd@BlVovyOL69dexIS@999n~u!%*!>OyMbs3N|jIg~UBWdfb{Jp&Y)iZGOi_dBYLQ%;Qq9YR3pX;1%= zD2T^PT<{nEo9q%0pFyn55iP`z1q?{tFi-dtKHdT$D><256-~AOOnW^;2&i;m^9bl) z#%Go_UYkox$H(R6hZjk9jc2o79J7B!Kr7zNYBUh#Kh50=ODy_P42 z@*Zui^ev89UQEQ96;C(p19ipzD5a{3gy%Uq!%!Ieba!~Jp{Vq)3TrZB7(~fne*RZb zX;lC@&o=`C%IjW{?9?@*cVtQI>M!SkywL78iCfYVj0vXP536{l;Og!@l(*nn5gUwB zOzk5cel)?Ipxq;2I9jnSObMtW&?X(50L-S51dU(Eb}A==p8)JJLGAGy55lv$K_YD? zFCPMD;v>-09bgG|1ppusaWjsL_p8S**su^eD2rI@jMZV792d4*9D?40BEt+Cw6257 z34Kl4)Y2&yA|rG71qa`f9}5m4DGUsOn4YS>yJiOR@eP!gp&{K?6~;@!>`I!gGWphmn5d#UjLGm?SUr|oT~XWJw#_`y{6+V^ic9={mj4E5`~)YB`pzs zC(i>}!Y1gLPLTsWiQ|*8=Ql{a5MPI=obS@DvOU~P-Y%_Z{KOn)@Gvj6^pR4su=pl# zktuIO*Cj>Qk9YZ~h~CwR>#M7vehnpA`tGq4R2tv5$ODP8<9VlXraT!J6mD%E1V)Pow;LsN{vg!_20u!8VrZ+>rt|eQoEN(5L}i zgJS`?OGQRXkN z@h{TBUPEZGcx|m-RH|Lm;pAoa2Zyg3d2|{V&JK+k%LnEc?qA&}uSoPSde>d9js`NP z>uRp{+BYn@!SQ$Wa_(wrb*I7Q>T>ULYhig~mAT2T(m1md8cG9Htb}EP}g8rgm zmZ!|O+`pmB5*J5ixX6k|clUFwsF2_BeD_!8rz~q_Abc2=p?BG_x-*b+Zs&VBI56wA z^IG3~*;s-(yYVz`zps1ne4+eMO{Cc2Xshik)62@wkGDv}*XQOFt=>ASjC2$79DJtk zbYl&^8d{|)^iYtdZPM$zSXry6OLB^#xN8u-E ze&H(StaB}5yR(gnxo^F%nsqwK@|udvekSK$8c1 zLp}QiFX!-y)L-Jcuq-3m^`p~Ua)OaQXFBe~+LndzFnc#_UoEbq<&R>f&tU-w)Fy~_ z?$=cb`!Z+?zZw6v-9l8cW@L>DRDsb-0@j5;YQ!K}uuo`1p&} zl;qW(>eVvydH0NHm43C;W@^*lK5x~JTfKP z@D@~wrlY(6U8!cm6*U8jo7%4ZAEiP-h1-0)pG(|>@<#QaE$fTp_44;USKC*|ewTZa zC;E0XkG1;iv{F}f7jbX$Iqu^6=*maADKZ-W7R-5{w9^Tu&c;$)xUcpr8#K(u|8f-3 zw>#xic1d}alvL2Sd**j)Hh28z&ifNiH79BnY{H8t31MsN|r<J~k@1&-fWk2iam# zqs4&)W3=(Vn*g6x?1vnv4R&qP^~!)(3m98`t^6*xEMEdpU%Lfn<4jLFk$pK$88%4e z^HaI7qPwOx2?Hmtu}DeNfV9a0SafBp#bcxz45j@2Lr1>V6o#{y3FE#dqWUb~`l)|! zFgCQD9S&1b(6qE<$I7ZxS-x%N!@(?5qLVpdOLKlCicaii(TYW*K$uSk7Rin=qL%}A zPSZ{-S>TD03VCYd>jy$ZUBbVO721gc{iUM$hh*Zy5!VdW{!4V|q___em{*em3;p+> zNJ;sR!|5XsC@AXQQsUzn8A!RvP;j^*A*WFF3!;ABzSpM#C{)>V;>zA+mv0oKU~nfj z#HTESh@pAG@j=EQ9QyUme0U*uY;-aii+%5|!Dz1GHxd$^5AlJ-D^8WjWHJ$&eu2S0 z`p^?ctYw3q-8dgBdu1-^;EHMdy_*3)1O^4$BEAPqdvg?Q-Ldh z=G~Q}%gehO*3TPkCVd%`bVX~LydBSXKNY>o6X7YNxKMwAv9chK{ZuWKcw2E%^L@S5 zt)UWy@P}KYmw&w<#Xr8bUwQb-red?PsY1xlwL-A`HdCY$Q;c%HMLB&g<||ECuqc@2 zgk{O6d{tDyOfB^ZH#(jjcelIDsTMQxWZLE)3O{Dcm+$*#6=E@|#Ga~<|6b6pV=`A@ zIQ9dF(3|{f4gOYAh{%+qM4b+3o)x%>M480KP(NHK>CMOAR`!~%pxad5gNE4$R?7SB zT;90axafT9VAUw5k4Jwy<-&@6lCQK*J@NK+^{{zYl+J^nqLPqks7tf46xrGQU?Tb` zV)JoA@<39Y#y(#{cgd6uZe^RKpfQ3d+2mzTO=*f{VdI?T7g}NM-UqKzH)2-z`3^t| zSjtrU!HPyf#;$dK*Jt+)Q!lTc!*(r~%1Mr>Md8!|WIb*DD5`$As9W~z{Yyz$z5SWF zOHC2Z%rf`AVyg+C)*%@m4Lp`0*0N9v!bd=zt8NtlMi|I6#1AJ7BsO|6xECUGjUc%< zc0@bchy<;&ZtmBZJm8CKX=8d7{joU$JNRS9W9*SKkBj)hrtj@M!dF%aF!P>ofNaq0 z_Gx=k`&}qapno)b^UPG*s&1o)w>c`&F)_8E^LpFO*WKMtA!G!B6x@g`lIw3c0|Hv! zrQaemre`r=CjPPo5r#tU3PWgt$)23xCOIJ?IXSh3QGqGI0EVZN69keG5EG(}%mV#y z5k?XDQvQDyfQ;UlUd#D_mFqc2@0Yt!!C%cXeBAf?BcYt2Zo={zk}?qB=)1nqyfz({ zB1R9XNx%2rSu+>0^81TBlNE}jIy&m_AFu*DncUlbbwNSmXoVVP&u|NX0Ou##Y{Z9k zSUWPGmbw?_1k0*e+-uKH1EIJu?f7p>CK9Ou^|$2F$=@oZug%`Lp>~cZ)>Zzm2NrMA_|FMF?1Ps)&O3Jh0L)QT6 zMt#konVbqWsgwlfyFPn;XLEk5Z9P5w=tC3@44%vLb%@RC*4ew?cAosb7#Ikj9cqmw z=j4xCq+$9AhEM;#uafjVAI^68t2Gumbnh}`s>)X39hBb*AGR9?N+To199n*>DGsFN zA?AHus!}dAmLbqUk?{L64o+ZB5{*R?hVj7U_^>}X*(wRAKac)_Lrgj1)PiM8XkLTx zA5_fs8tKP0o;)@#Skhg9geZ6w^)Hyp#sUHp*h(omQ!aVrE);5m1}t_c zAppT}ZB&dRlTQ5JSD2U6{&A`j4BIF2BDJos9Yb1XJV!Pq(u1$z}fnigk_ce>8P zmGdKV`oCz*?AMBFuUQM^C))(Burv&WPmv3&b<7DC;Mv_mqiIDc$?#<_-(#1j&3hsc zVRxf2&)kx<%9cb&#Qk4NQVtDQ78i1T6)NQI~(4yoy-c+4_%hQ{O4*l9X77f;A=+ zmzi`sbMs!cuAe!SheONb9TTyRpDd&R@s<1uHW!+bCLgYvEz>V|;N$1BjC$U%v#0tBwzVc zgQ}~mJzY28`zQ731MAw9iP=hXLzUS-60>Nf-Pr@vEN)jS-D_bo274L~U*^>iZPess z>h$v|WkxAo*y&FY#pIT2R`()ka!?1!rOD;9r~~We-aYs~%MJy(l7;~PTGm_A+to`g zL7H~X&Rr-()m9Jdr^L# z-X(L~t7&P!sM=(y&hi;ErvI!wd_DBTw9WFv#9_Nh;oR{(!Z6Zc!bMvH| z6jwb|$&F7QNG79_01~nN_Oz)g?0_7FK(wIWrJ26h=FY{WP@}!Do!`;1_e8GOnODJNZIj^&}s08O(D&08!x~q*r$4gvLC-7R>8?M)@ywa$ORMD$- zI4F`Fp zXV)i&7Jggl_D7cGEDAC+-@V*j4E^v(_ov8&CF9)H+Jwfe_u*#ojL*)(P-P<3gO2By z8|j}%JT(hLlXe&zU3dCxnddGCNtD{Bg@&pb2FkYKiOP{U#s_ravu_@GrfwNk;A)S? z8h0m$h6+mKsRlHjiU{SCFD?$f@98_NYI46?>+kztwUuY~_p zr3LWLGj!@pn$CBPM#fGzGriUuWI=@S0Z`T!B!UsoP@Y*7vbuW7J6pl7-hT1V1pDra z6)&N(%Hpqr5R#;}gJMbF)9rz#@7jm@KFiCC%jYCJl3#KA!QrK&9C_tjjVGr)V{He# zjaO~SMUAJY{|T+~SA8$KT(fprb>CZ?u>5@F+)yLtcl`HaV5ZtZKu7m(#FH2Gee1GO z87paOzB_yEGjSI}k#vs;-R&P`;FodTduXN6N+HSpkQ@*>4i3%gTR-!=>_2Qzn78z4 zn9#8@@^JRXk2BfN{tBw7W?8xBrj)Gdw;ihuPmx7H(ibv$o5POFlFfJ75U#G zc^^foFWA-#QyvSEEV!-EHSpRPY7d6w(PsIXW!rZdCz&@f1G2Snc-)C_kCa2_5FUnmxK^Hd=y+- zc;oeFVr>oDU3$+^swg2E5wOcYEltuj&e0Ju(Y6TUIJUp$h|?QP7s2A4Pk!kLU(C7& zE}AxN|KlC+A@>w-4-Xa7?j{$*DrZu1kPiptDvsQF&bkTLIW zad5dbE9zpJXK3%io3C)>MRQ7)fkucIZn^gjp{*oGD%00V#3kGX_d0OQx>%KBbPC)}r*C zqS8G!ijLzbE@2&G$A8p|EN-+;#)R6UY&e7x$=dBb4uaERSBP8NpcvNg3j@!9#H9QH zILCSm^U~pwk=5Yz0z-KpV1`?&*k1w^&FdO*ZKs8sjTh0=M=hNLQ&S$n7kISN$=C@R z9akFsyQjeUzpH-)2=3Dv(=tmdq0qW0Lr$uww`V~al#-17;e0Jna`M)`(Jv+&YSc6+ zco-4N;`OM;&*x}nHaaoqG*0PwBjjxQytm<`R2&87eEym9EM-~MC*A(~{tCy-O@H@B zEE}W~o{!_x(njt~)V@o4GygO3MXi}d>4?RuBpq>YZ?EoRIplP*Z-THhw{E)bG`p2} z-VtJB2-(geWxvlZzrhMI1-(h`a+d$dfj|yuqvP}+(T@*^4%uPZM(Y1jF0^lwQSz&V zLMRxrFEav~d6ha;t%e%X#HS3fe_+l9_DN+R0K^D{U+}7`KwpioPK>cPfm&RtEkutVvBb$x#Y{K}!Lh6b4cwr>V*;AYTRE zI5Heg!y0MJ#N+hp5ip5Co%5g!l~-r=B(U$UC5u?98C%(9PfnKExk zis21~ZPl$F%7|FUB4cy!SENDSSE=!CM;ywgQ zTPfMHum+`|kccCpdYpP?FcO365(1wwky5%hyhstjR=0%eR zkQ?tAGEMOR8rm{FHp-@+9sD;^lvi}=>1y#kX{iZfQKeqCc2Uce=(N22;fhyQdw13E z*1`c`hhi;#_WJW{@qCkUob>a57P3|)NgjjjmZV?7qR%;deiq2<4LS{%L~jpI{T5+Y7~o-@y`LACqJ2OXTyu@y3UE7 z=MdoUxKW0u?X&BpDatftFP1ps{LC4QM6SLi8GfAyCd>5`gFZsm$(%F;XxQbf<9i%# zF-`p1boh84AUcGb^vtPq%4{_FO0*sN!uT}vaeKX<8gCrdJW;Ae^yuGPR^`u1N=tE> zoEA|`OyruX@XcR)GE4)Xn0aPt40z%Hr0|dCI;jEDq*jE}*#H$-jedI!(T)L6iS7_x>pRGR>f;y=J ztql(u!=O5#jw-J+4z%QYX(nRBB8Vb$%ZQ^bFBbsK*$H<*71=>Dkb(w1A<@fAkk1 z8LwdJR|%t~xy3=sqgDwId(Q@8v32{-*x#?4^7dIPEySjfT!n!KfHA;EahXLDo=Zo` zxnU(K_So%hc<535UBs8MADYd950#a2`Ce$hkhSA*7v`e~pI}T-ai_@m#ySIKbUw$G zhWx%b>t(R0_gtOZ^}00(*L5DbrJ725Qef!V<2;YQC*pkELZSe}n@EjH=lyHS5^CC7 z^G}v5uwZGJmpAP#a=xDTC)+Tiy_~lYXHBcqCGsE=1~&UWq>i?INJwpUR%z)|_F~2Q zi3arYEK!&T9K;*t70$YVT*bBNAo*^rp%ykTm-d4_^m)dpyW4+^kDHkE7hUR1PvDwX zaOH5?_TjISmxqu|=kNN?7Kp-yiP>Nbh0zoWXYBkktog8F)HS)cw|87M0>ny{)yP1ftK?{hoJhVEL9_s7hG-AZmaF(*zGJdpTnM*7Elf*Vd-MFkPSZ_ z0(t>!n7@*e{1*lA+3`X7zv+Wg=_)ubXaV-QveS|Np=T0FS3rK0iIJ(e=a)j&C^JQJ zMph3*{Sla%S!uMAAmrg$Ng6d8jDgyw^1>L5Epw}AH{_dVXjSubjWtM2lWG%atO@#bTM_}EuRdbSF7*XdD9ag=%W zGm_EBTw`OM&jHZz!WhFe(gj-!-CyqSn}}-0x?5#^f2jS;MyGuk4o^sV3(bfs`f`#t zd_Sk}uTw%ilIG4}iihFgOc*Ch9ZvsAS3gA+m#)dF^GO$1Zc#h(vvO^Hpz>!IT-nN| z;dgYS{Vy*sKy@9%#J44lF~@V%g6=EH5uYhNI{w^|gCig+?2qJ?9a+;eA!A37R+a9( zwyw6g7B7Uzd@BcdWT7;-EZ#o4Oc6oSzswCww}M1SvC4$Y>bhOI{YM!h1p8T*3=&)@ zSOzn2S(w}x#Z9@Ju`@HFNUets)-+cGpg!Swg_&WV{yo1rA*RvMYwK_6eE&u0dx@>{ zn+{SMwOIL(al68;^ZRWzKw1WnzLu}!-GC=8{Is~k;7-WuQxID; zJUgy*GSgdsHe(b2DfwetLC(E1zs*-4pISCHOvSri99}BulrM=2zQsP4Dj?k17DwGJ zUjA=6_Rj}LUM0B;{GAXgjuZQa-%9n*_C7VVIgL7HXIW%fScIH(15qEk_$N3E2G??y ziVs($@RaZxywmEwICRW8IU0RmCpb`IUSz)@=n!zlhp@$sG-!RGoz{P&bIb{FS-WpyEJ7tx?fzKiRP8xcZu2CVrykv7Lu~*tRaoM0(+RmuX!qU=QsbS~u zYPIV$($bp}jvSeVR#Z5HwN= zJb9`}kalc3m?8!vM3=<2))u6aZ6&loWhC+dqTUtN?>P&4H_^?cBrK`EE*ia;l58sk zQ`79KrF6haT=q@m){ca)2Hq1=O05Z9FL~B8Sy`=K-;ZP zyzBR3K~8VU3Gc<}>_N!>Ov}f?xK-~Wan709=hKA+G^I?R02c$A)5nf_2%2cJ`Ji=g z(V(6Bt=>^T;Xvu)&-?1B8sCdW_O-Tg(sCJt*e)Og=0@nuU2CA@)`iLnNWnTXj*zX@@|f`4cB(= zlWgD}*ot$^!?(=f?F9 z$v_Uq8NB2KC^7uEw!!33ff9T?zubH7T{@JE6=VtF&%OlPHj`j^o3uxi(SL=DNg+8Z zjG9i=2F>rGeVfi-feBxG!#pt}ZF6cP)iYrq%MCY!>w9splgFoo)ki95_7kr`TBXg* z;W+~vY7{DAG!lw)VY!=y(FQ#7fv1Hah^P9Z;$rE1*)r4HS^u7EMRY`HNe^|m|MY-j9CB?s0B_p&90f`IC0$wEHQCdWt7#xxJ=N*(r z6=gj6A~XhWgmV!Qi4o(n74i3Oz55`Nk(`!4@w>&sw#|Opi+o5iE{JJj)P+O0Fp4zAe7p<%KcVt=Zjk+g~)$J^I@fXTU)u#nQ=SC zM;@|o&fskI_d4rJ^hEyg3Th}B8n5E44=6HEZV1q~N5n5g!WZ(bhST+iXoSNH1heK~ z{Eu&wQ;9sj&0%4mu^=UHs4ucOK-AGH$QqPH=+w6SH?+}iheK397^mO8 z+#U;UZRY1wq3Gbd#bkxy2QCbL`wAS^Kkup4~gPyh~Og+rM&e`=Fay>ode zgXdGT$#{8R2&BK!C#c^`DPqz4Ad|0(0V4j}oI`hs@kL=Yw4Kln7CBBT65~%YVQCIv zTGZB{?k-*(s<$s8BoyDS>($<#^Hcu7hhkgfL@v(*=urTmQ?(s207Ywh!k ze*;%M-?UAwIUvNBDjHMo51AbPnpD=7`ZHh?T>hKMud?=cAih2}N3QAcOI~l!?XG8O=A1?KhttNX zJ?uS_L#x4E!2Tb1&mcKd^5+j2YTZeJF0Q0@qXQbNY^!60(=u+8D7^baa!=%=_LT&7 z^JW>x`xP92+8l0lPLj7wHu#Se_!^Wl*zM#c#FZ#m?kRh_8b&=sNjV>^1-!%H-`bB5 zN2O|04QFgiEBq@=-W12G|63;QDqdRpxC_skE>-pN7r^2SFS>8}rx_dB>!JKPH1bnC z|3u&ILn$UO(F;((h_=p|(q}O#FQl>-Dvs_F|K%;rN)oQsU`^aIrAD)__B`QMSMM4Y zT8*}s-OR{pw+`5Tc|N%FCNWvp&x)CrAyR#9D+{KqaQEhT zharuRZsZLF7G!jE5(UYb^q~UEU-|eVp(t|;Qr+3&7w7TvL$uxU7a`4=HC9GB&-9Nv zt+}dU^iRuW(+p*3T|!S(*4V$jsj+|h%Z*mzfA$~z2VbG6x0z9qexBiGH(dU^ zT>VK^-TqU>gZ2mpUVVp-y+wzLyC!~oxw-T!u->#%ao4A>Pzs;zt~eTK1-OA58_i zh`hHjGgn00pfoh1r8lwyH#;^ZgfhA$2Ylko);NY!XsPJI`e&|z)x_RaVbCY!I>o5d zidwgSaekUvuJ77--Zek;XKvfS1`TP2vxaK%Xui#OF!B$RAwrqFb3iY_!J23d^F zPl1s$oARhYaxgJu4-VPnv^%R{x)cJ+>Wo0WV#-v&Ef8)Al|K!@zn)2hNp%`ZWXI+H z{L_*e`AD0pMnhZZu_GXj!pJGU6((s3nI!2lLKrtRg(40iA+a#9$||FhVwRzKhmaU< zEEWO@QBjqM*&+-7oL@(<6)E)V^+|$!W0MOXJqC&wwn%DG6|WSD2Ka!M(RY-LQ*!?rc_G; zaj*c~w%+DGJCD>aV~(UAR1QN1keVnVO%Z;i!? z6dcX0^lwaAbHwC6InH)znc7GiqK$VC;~e}ZX>>UzrFj(bar5RYHc__tOWlmk=Y>KgEfPZ)9(c=~>4nAUP z+;U3SHq%+NlwEbfRT$f4!;bpr4YTbu@iUAmw@Zde2sI6Tr^1?=-INu%<813sPuj!U z!j0|UWW7{X(f3k-A+4)ll-oAUTE#LvQch9rP2c(Zp)t_i-5WoympBy^eZ9lUxALKq zhnu$U7jYBUmseD#5%lplsFvB?{TF4Ev!Eo|`vP)zu5WB7 zDjio`{Adc^G~KNC-dS06IPkz9?KhZ)%x_+_`!=5J5j5fqvMqb@!6#EV-oS0Iag^u9 z!s1}Lsf%>x;K%u?zuor*PtP=}4H(*YhIY5v?^uSc3$-{XyRdV#vYAYJ&vDhK#~rNw@QDw}wBOmMYYEm;XB7PgK;yVJm+*I}&t* zUw*P(5}8!GR#D-Qp>sX@e0z|6`usSvc>sPoESz}J0?br9!x2DroH=y7HuvYKdk6$n zW%}|=;F#F^`uc_m>qC;ZA@#w?YXpu9JZS6_`?4<|u=V*?SYhW*|F)gDHp$7X-c&-L zzWVTG*vx4R(jBqgAXms6bjsnkJb)W7>>$tV5!VU7V?56AG&AIA^2GS4P1@4bU}rP< zxc-(gVKRNr@2=uBui`@0|7ih8O{Y`i-HI2<291X+gNXnK6F7f9@OXrG|BNBqB5Qs3 zO|*tV@34U}?m?}YLet60`pLn@7vt6OoeiJfPMpE%*4WYFPteQ$JJ66^ZNS#N**M{p znQ-jo`*!E=%+k1Pp}0=iqexYk{k6rhj*DGk^Xa}F5P?#GO`o4yWpLr;r6~5#sFus! zC@9&y_%4^2on5MUJjO2Ep;7d}dEFrJU{bDwy6I?^{chSsVMt|pwMB@6urvrLUFbZ? z)2Mt|+l`_y>>8k;ds6T^#S<7iD*(`_u$Hx%PMU$zu*-bo{wsH~c#Yv1(PAk`1u z?~$`wiB9n>&c_D?$efqEHtiIiA5!}^Zr|&^R3+yl7sd0y`jJclo z0-fnxTU)?Whst3GG2Bqw-{#4WuQ-{+J^-2$NQg)=)E}FKm*V+A^A)dM&J|7MSExfD zU*2rk10N!C2A5=)X6W^mW@`|s-8(A;F>`kYiVaggaw=|)-F~$QCJDgfZRXp)8s@H7 z7A_`gMNUp`3jh9SmXXdvIgE)yyteLB_pX9stH_8rP{lobpN^UsyN>=6(IwCFq5G$H z%*0&-FKlBpC095Ravg-5INgI4Zl((%Ur5i=Q+?>8yEM*?B47q zKyLbICJ}aE=-@1t4}l$&Y#RQBVh50j9ZV!<$?zjSZx z-d4fB{IuCc97;M&!U~Wfnm=I<75+2HIx}cy!;=?K8^HmATfLbKV0^rH;_D*D{(QuD zqjAb9WZRLU=}0)_U9qqg7uSr!a-WH-%rm!u>n^GcEF`#EGaD61%!u~+8O0esM2jde zH^JQ*$>cp>n7^3mJ3A`hY3pBJc%I|vm|km=7Ff$c4~!jixPzv>^Ak&Hqu!(KWIM2o zb4Qm9*F1A}nUXOtl@|NecGT9oxN*^;blQ{GJ$<%BC@#9UZFycDGS)MpP^;s>bf@nQ zY+LYBxm{ESGoVNw`eH|8mcEcx5*D4K21CJa3!azue$3x>r;@^8Q9gmSh^#XhC`rqn@4 zZqoT$2y&rgBc}MQj1mPKovNK$_uiFFNmlziPc_?)LqkRB~9*WYxD3wuoALOw^j{> zc}mA%2wK)lE>j=)Nn!$YaK`jnIn?XneEE?-E}fnto*TzVl&`5c`}n$~c$7Pbaq*s? zTbVhI6jYs=+U-u5d@p*e{pUFNmtN-NLg&}Q9~lCM)A(zQ(Bno&sYNr#V)Ft?-!v?S{}Tr6|7@_r?zN#mVxsbWs`P0c}{kC-Qda1$@e)|0I_gIfkR+>B<^qT@sTDO;v)Mw>LUhwor*~U`rZ7Vj0wG38rXVF)qFQ?k0Lsj3ANvy z;hPKYAR}$t*CV!V@17pEEv_%lj-i4oxq6=x6bpY{L-D_v55Hd>L+g^4 z`e0pw9e*NB&6ckOk`=yKeEBn)Xf(;g%>`nGR_Z<)KgA1HE9S2mvl_*{8moKDzbN_c zhj8(gx?a`+09=7#In|~&wfP0|S;@b9WN~Ey7d&3bSJVzWAb=#G=U0x7v_nnQy*l+s zIB!|8HE2E-L%*)1V<%|?de4!Nuh`MGN5DS#__nOI3+~ntE}0lnk{B~72^h-uC8@gn zdW@(GgC$)hQ*fNZONj%#>kn-%P3D2=o#OjyuC zFj6+?yjRXuG045qdDv7zuIV#gyM_RZAY)0NFj7y)!aQ|0@~hT{7oV7VnOA3`V0nPg z8}Uj2xmqWmMj=FV$%(=I(j{I>diZa93DjS4!o!%ney7`C~ng*6xnS}N2 zzFObq)NdA=`<}R0tjr>{k)MV$Fqt|Y2Pw>aMOC-nP8eyU+NHEKDcpPD7&0w>ev)Q3 z$;}sW2}YjR5Yx{ygQ9>bheGY~$k=JSs7!C!+S=xL=(}GK)Y?(D$>my8563(OxW(N| zbeNQheO3=?gU*RD7QRMXlvy$>la*O=LwH_4kJSc>>ZYpIf08~=X@oSfq+B?Xj&y~t zG8*$lo3ger1repncOolNgGy@8yJ%x*G&lX{=7&8ZoIWmPg0y;Dq)-7Et8#~tSUZHL zbZklmTB0H)i4!NKuCCcCDuBF=t3v8HiY-rgzt0<1#TdS3%O?Q<@LrJiSj{jp?j?$f zjVb+rXvINGM}%Ro=hh5=!2g21L#}7&STAi*rPuB&8;VqXGW_FE@lG-!q6HMEl)e9ErC%G?Yk!NxJQFQTn0!6S=1KZ}ANjl?p;*Uvc_A`u%n2)Oi0XU4n3Pv&>?1dv zc{6#sDNeAC9&vo*S$M8WI1@^ya1As2aDzWWEsQ+A#-=1*!wo`tPxq;=9NUdaX14zH zJ4Npn`9-Zdj&ytwg&pzK{pms_C7)lVte_L+0(wGR2nJ<1f`N_lkY*SFt&WXTQ@zvz6Q3 zr*u?b6>u?Su5TbK&*!U)cv0|=kDTgHHczY$ciN4(w@8||2p9F41Wt`;x=VxVMP68I za{b#*RiI*&eM~zySJ83N-gLBCI|fjn1-}#n0`^FkB+UA5JajFbA*BxGD5l zHlbM#&*uxHiDB2%gH8{(WkfHAEYDHS+Xlf0#DmR=(>0H5B*G|-WoyH+nguWdI>91F+J^+~5G?XF{=36H&zrjg{rsR%pG@;`#+=f7cN~sp25|aE5hJ|y zX3mPIbNRye278C-JFKssYfJ|S^_q* zK25uCMlN=FFJ6Ie@XqeWE4vP6%k zSUxXRF8&^!n)Zf^6_~W7c_u(#$>+cPC%56Hm;guuOf(0d%H5|Si-c*wz?)rCaD%S! zUu+#K=|G^uVB^mcsT%OaWR=pa;AXgOf%HB}MZq<$6Z=rYO(atK1y znrs=V!dqeCUiK{^4?K-jwupR@QB&8-q86sb zBu85W@#WI%>2?m*Tz84w>JU^)>yzcU;)}D*vt!FM%X4F2uM^Yh9}o!m|aaQd^B zmLHSa&O2rfj!Yl|Q1F4SC$>9FUIetOvk998M{Q$m%ZWKb$47%5eHJdh2(*vh3@S9Z z*Mc18t``&29D`vE&CKNFqgf%G&TRCQHtenRjPOj!E#W?lYE+tCOFj8kYI1T9_KejRpb#{r_2LNJ_YX7DoLHQSU!Ig>!a!pVFQLI;PD zFrXB=x=JW%vp|S`$}+qO?9w`@ub4+rr#@~PlI{Qn0)y3vB&=TJqq8mLqba+i;(Ucj z%Gb;`brh+sy&-Uoj|M^|vD3h&0$DQTXqW0FQL$cGGV{R^7!tP@27L6BlKkIj zcIu{^7Qd}4NvZAg@$&NvuH85ezPk@1$rg4O{+`zJ9viDY(*CU%=0EZv&M+>MAxNpu z$o{Q|OK2n~-luy&dy?qsg>8^{9{Vyq0)shBlH*`@QRmZq=$tKYnsIgP4Q9ReLEP)+ z*eE$BKKKMiCG;&~U<(3>d_s1}kH-7*dF>V>4E){p%fLi*4PE;&MifbmhZ@?HZq`3Y zq6PFkT?C55^6mFnq4;tgIhD&KW!8w$nT!aPSMgF4%`d|tlw5Rl)RbN?qsXsC7}1J6 zz9I#e;1e~Xm3jV9MFfK3VD7})Au-JDct&Qld31QK%^&&o2RX|_sp5kUITZwkGq>_d zfdRn+)fiiKczn&kH_5kLzQFH|Nx#Jr<8JlqEdp<&;uhdhIoWg8Z>fhEqs7_CE6T-g6&(f<(M#goLaa2m!=Mo9ni6J+uz%RR3tTjA(9 zQ|kHoIH3N^jN^_cOs>hIU&`p-9bfcGQ_vb%X8i}X=AhSW!!bfI&+!!V=Bjfpf~1Gh zefN>%0;;Pdmaxc{>(Yse{!_T6r(LFF5SV3eNfaa@TCUMkd@!@Me_gFlRq$85d`C(X07>N#!XrKW1 z{MQsSrX@E1a$$s8==uYQm8R8(OMznzwx0)`B$x;#$<6P+lsqW3GyP(%K#vQx7V!Sb zsgpZ6m`oHGw3F^B-YcoZd}eYffbv(sD4}at6JNSa2~3E=q~|kKwKr~lJ+a{er+~8$ zKMVWrIaPx^4Zg-7d@51gwwfTD_cP!38F&ks+)8dV4Ftsb($mK}l2fLFh44x$+#RP% zO-aWFCz9~=rkHy*cQ0L~x;fL|0#UH1=(r;7kiTjY{{_{>#?0~j11pk9M@Km#VcW>e z$Ou!T0Gn6#%QwRu8V>nV9tA^+%cTuRzq-5E0TQcT^G;u{DL8>oBI6da2_-4aV)B9y zA_ek)BGXMg;xJ?)i?FxJ2A*1-lgXT~Z{n}9C4s`{5;;()F)P_orH4gg%I(%G_EVYqQ^38gwLa4i1r*KtXvPTP;|?O9Yq!b{nFOx;A!i+i5tmswJc z#NMRP-8Bvvc`m+pe^HJ}IZH$wZEdY79453;m3vKv6BE^k6Wow9?ch(quDf zG!Cj&FF;NKBatC&OKZln)iraWuT+^^C+U(Q0N1KoXJ%e2t7P}kr%x8k$yf9f+DQlJ ztJQ+mErba`qQIZ{-#(Uptd=c}@bi^2_mPpn{KRsyx=V`gDtX7MISiHql_d2J2S99Nw`yl5k%C_lQ>MuGV7m^P+lUI$e( z=$$@rZIE^R{qi?BMq*wwZPaPZMN=PFX~ktC+DYS!1dX#9eGh?V&VZ%Zy=#=9fMP`B zfCwVUKwH<;M@|6g_RcP?Iy)}XumQZrKX28g;E{c2vG+43x2{Sj@DfwP&}YfNU%|jLb>6b$DUCkZ z?|d>IZP2Ue=XWA(kZrCv_}6OGx$8~a;r7@OYHEfj+i_);VWZyrWY;63>0oyLq&ksZ zt;s^q*CkuA&b@y8i=rIi^mlSvVfVT4a$m^rfy~0Vtco1mvO8CpZuivuxd-87J?G5N zEKBsu?fgdHi+ymmCwZFet4WLx?*sl!wM+JS(PsU@smB>HG2|F`;;Tf+^2OB_b&vG} zI9_AO=F*YFNds?ChH0`_d2P7t$q!rlxHdPtG3q*p*UbMorPQGYuUxEhg?ao}ClXIrTCZhhuhXsD>AKRN4u19l9Ra;6>oL5she#(99k}=coUw zpR|F-qnY;gw%PG&*Wh5EBVey5KCo~d@ho~i&CA6da(2FcN8GsSd|UWeHaAyxz3+i~ zYu3k-i#L7ZE)VW)1U|~1z}1bsmIq#EX^D4?shs493AA;*JsQnFF!3+ zk_qyvBx^iabHJX>T3eb1UK|ZYNL!v9UuUQu4D@mL_Q#9opDHOGAL5c18!hKPs%479J+?^Y0uTVHL!GNju^7$@fEIRGj60B_L^HdlFuQHpv1|R$sT!fL%t=6 zG>PjLrh3^Pz1fD2S32WUe$0BDvNs+L=Nz$2*B&3CLh+TBy0=xE8_wh_-yrEtJ$fx@ho zmsflmy))2sxPH)hwpab5!H7*~C08|^j(fL^GTPLP0EwnUI9XBCB=8fj-D3UjMt8&O zk=3QNeh@rDMGaRD^Q?i<2J_w@4I`2{es?3IqPZ0qhAO~rL#}z1g@$%XwWQh$TqDF9 z%QjhY$Tqa}58P?F=}4FK{4&Q3mF;K?r3?oLYr)kW^&(xlu6WKuVUQn3llApRxUs*# z`}yhG#c6cY_Q?52Q;*-NPSfF}`&u$uTb7`Q&oJp7oAA`{G%9+Lu~hry(?Y_4gVe!G z>y1H4jc-2E3TXHJqhxl2oE&pAoDS~4$|ow4b)$2#R> zuR_gPZ)PIkKYRL>!7B_`t?e%Mn=V`jZk<7+&2GVg?%kg z_I(v)WEJCMIsnEzi)*scAL%GZsJSnz@Md_JFnQD+7j|uDw}CM!q;=B05l;HFLB=H z>`crcs}ZjD_C#OB@ro@Kht&p9+4ayN*fk~Kfby`!!-T34*5a3iaEweCISx%SEm1)~ zNFnC0BGg)A9(g1(YJy*9y|(BTX+oEY!-^S|ZlWo4MQz&K|5kn~RhP*1%9r>D(+7CA z2tX#b%re*J;t?&hzb|wDOa7OU%tf2>Ow@zjv1swak{q4)%K{Zh)By~`>Z1NBxLl7uMJv3~jW3cJ<%A3JRTOWxlZH#~4IVNaVf22|nRfd68d|)jtIzvIx$Q{H?2R znZ+;|H(_Dbn~d2;DP7reK&Vq5c|AV~0Zy6v#WnnmbNY@}959WC654I?4bY@yIpoKC zb@A%O>2L2BKM-M3@c=~?tu6u*<9Nk@@tF|qlIHh3cd-ahoHF$l2=*sNGnV2>9h2*` z50w8_Hpja$#yDaheE3H@zdI$IP8wF$xT!7nowa8&b)Mq~Dua=_`#~|TvZ2eO>*qs{ z4{zlh+CaxZhW?rAx>cuxhGcufwRDy@4WVlv=Q zXNyf=!7|H~F04}pm*Zl$G_zPz#Mg=uCR(eVdnL%*w>@e`b>DjidU=&2pGt*CQ zQED#q_O)E5yLax4w7VE(e7bwWr8?|g8|o0`2WpIp?vx&6jSYuJ$30I+XR6~Y)DUqy zH?_8p^XLfmeo_EdQp@9p{QQ4ffXvzS7rGidij>V^CEa=rP28W^q3Mj%jsh9`8 zUt;3mnCzdHdv@(tF%EZ+F!{s*(mHA3{s`C8L+Z(`a+7xN;fKK{CP~RG$avy*3qa$F ztofFd%sCM!lus2SAXm7A;2gOs%G4|)0gRF_t*kK0Ab?aYg7Qg;)QU2rS@$R#cZ;AG zBcmJL?GkT{^<{2jEmZ~Q4m>>tmjpzYPJx38H{kp8b!7M-&3<^f@TK_-J{4*fubD?2 z5_mvS0n1dk;JBEFTU|o>%Q-7~Z-V#yuEWzDB_)FY{MJ!iMHWe3F#X1()28^Au}z$P z!1Q9@L2&j#(8%uf12baDpRu8#b(dexa*?om%ttpc46WqqH|@A!hLJMrnwl!FBQcLW zl<6^KvX2>6%VW!9)#9DyVUz1FgyoWdOa3)SZ%)@l`TAv_pm65@BygKHdsCtvJOn<2 zU`P;R=A2Q)CV*igS63gYG7{OyPGW*ELLhliENo}XjS)=|3sn?IGQ>%Npa~ja5RKsj z*u1|MI12}N2CX=g6ZWRl_KST}%Nv{@t$=(g=3~NMR9lu_)OC6~c^?RT*>FunYHWAXxp@~ITR*G`?P8?pb6Ah*-|>;@(4 zqSf@-!Ze^M<1dzak2+=adCklSaiYzor?lbC&-+|Qu4@JA{?|j* zdL8rUF-T_*B}=AAvM;TRV6-u)2WWJ4{Q?CYka$E9c^CuUkU~He%}5?e0x^hll;Ek% zjCVr$$Qr;y7NIg*hZurJB*~*UX`7#EW1E6WLTi}eEDeOHMjvdZHQc9p5J||)w>56a z$S-h?>{rp3oseG5G@sUpT>L5N{8jzi6CsdGRi$_P3COK(RYNfX?cQZRcm=YUS_ni` zKGYWRQRU#Y7j#`DJSxSXIFy0fvd-$zHC$38)5LStQ{IWDzR zH0EBu+>Vz=;@+f6M3G|9&&qzJWDsuCV1#vgh^DkdT3cdt-@@Q^edzEjYbW2=od}`EJhrf(4 zelad1i)igZ9Fyyi>`3=TXImuiW=6O_;zYZ+(0s=lLOG(wTV#3V*p=yWy5J0AAp;( z9kfvy?7ye`svvK5t1E!m(=#;Gv$&^6lVBVdU8=CO7T;i<|AK_I8TjBXqA8qkT8Xl=gll`j=5Xw@W5H4Qi|tF=j{j6le*{a#SFulJ%h`< zPQ$0CO?$D_cP7X677s3FaMoNKy>(Ug*#?6>D3-4vQ3=q@*6k|BPFvzPEnNzc-5W=R zmcfCI$iVsc3{xP7_pEXbg2YoLpRZb~x5?=gR!y$AcX5Wo+KoO7Hgjp&vI&hDW9nAOHEYwg%!QL(Q@6 z!Rb|UIy5z-SC-?(BG7hyr6a3*K126r1NZj;Nj2cY^0b8k)oGZS!=>PqS>T)*Q}$^q zR8zJvC8OZ2h?Easa(v8|o9`>bE=T}B22H8!;j7G?WRhf}U8Fk*-%ZjM;h9=!pVScn zRhr37=%C8TJ=fqri%qBR`U1C$bCwsNI-kRG>C7w;y3g8~U)bEUBM=(vYiri0{XMod zlmeH>mHd|f`pCtzK;U{tk(nl4dLZ2ir8iDHdsQTN;~m9MBq+*kMX)j!VwORE2ZM>c zAomEc~8#v&Qfy9O=pu}jV(w!rv!{Gx+H_|2D zA>AM~LZn2b#8IOWkd}uQMo8B{x_R&Ccg}kbe~h#HFkttt>-yH`bHhNLne~(Sp_0;9 zTn8OUqSUaIIB9wB>~^dDJnwETGq}g5&n4hC;UWNso6G~NIL&$0)$20$l}{J|T)y6+ znFl=R#O^GQjL#zgCZg?)snH^!;l93D8~$%$qYO|01O4n-R&bRc4`6BM$*$gMguuvf zKtz)A_V4vhEI>TIJseD8$jzfeYb2WGuTbCiwo`-xz&&yjtAPyQG{j|_R2U9=^b(x) zQRe-CNjqT*zlg}LUo@&>rz|sbuJCUEw$Jo-&Gh1AJZ(j|tY}S=cE@RPU2@0$q%nBo z#|zI2373H72S8gMyu`=^JG4=Eb+(_5oJQ>h)T)=xot&O}VHNBGuGfM2!O6Rwvpa0T zMgQ7Yjnccr{Tr=}p^E+fq2i59z3bqV=q368Y)~YGj5?fv7tEg$3IO&%z;2fehCx87 z=lXci)M%Ml!0rnJTSfZs{^cY758DT20<$uoCyRn1Br*X0VJV4NwuS@HJ+;8V5TZ^c zz}X7{0bh3rFu{LzsW1u^1sE0R&IQ0k$U#z*S8-r-D0en71uL^0yEnD+I!;EF_LFXd zl@DI1T0fSHR#pMRts~<@gZ#Gr=(`d`lqpmJl98%M6nX^Mby=B{2@An$aOUU(89B~q zDH$*{qS$q46{?_20+WN)frF2ia6M~6Z)rGWo!wK(Rv@zD^*HB0$LF6J%Zw4Lxmbsh zS%(vFC$EMK0U_2sQ2^x)q*wNpT;Y?hvU7q^=?|*WRvOdlxUnSGZc4PpCta|6?>&Li zn9@S37t8PQh=~=1zdY1bWgqr<)>ARETj9zp8ZFz0)_F3`)@R?0rf|4l^MD_Tr3v9u6Z-%Pw4=6yr} z5?cn^)s+WU6`VJTTx!YL>OR%?3RS8o_3A`nh zU)s~YbOj@U9|yR*=5lgs5vFTLa0zO&%H>7XO(yC~CZoJ;U9>)ED_ zaTS^(QwJ>ht|9-{Hka4l2oBaiAl1{!yBHbmz3c-f19 zbNIA!vk`A?^Y$T&jCz&y>r{V?XPNpfZC#L)n$rg`$-+GMw6IdnGt3G!W|D zG)x@7bLWd3j;a`0EWEsan;N6ucq%~v*oy+^3n~&|gfW?viS@k%1fMd3HLT+v_?Qo7 zvLp{U6qYk6Yl)z;cw(~`{Um>f{-Wqjz_Rj@q@We$XfQHNG<#HcP)uR^yH4e3zUiqB zpBgU3!#!!6&?*`E%*0KO=I84Q2MS*W&GLy@W|cvJHM{>?xS?rwXk))ExO0+>O4%$K zNSCwo@{)sC1ecbQ3qxS?YXH9sL}-(2HfRwUgN?SK3Kyag9Wp2KpaHtEyJTfTMD@Gw zKgp7T?6Q6S#YzB5lmDnL+NX9&zw*OmPEI>-8))wC=qQxyi1o6dlSvlKuEQc9*nn1t z@Ls#R=0qB#c-roCdqnJ zDYQYij4LjVKG;@u5xFM@eWZ94y8Dr zz-5p2qw3qY4OjzymgEE-r*Hq9<+@{!M5U!p_#GPpBg)cI>=Y}TICde872NpiIpNWV znDVy6f4dpmP8NV;dE6V0v~vL*R!oWi%`TMx9^i?Xx1_KbWl@h*&KM$Ho;*92gOr8? z!Hz-*3=m<2DnZOM)OWWmLzEizlJ12`5r^S15o@=&VrG3BXCCroO{`k6YXkGY;rED> zBevulAA(XLj4@yna2irIBenPdEJw-sz+1+q1qSQ{P$(=0p#kWl0u&(r0qQ&<+F*RQ zCG-RshNqID&aXlTb_1|_xJj1OY^CdK(@XDCJI5U1=zC{&IjV4I3i4ZPI>2rPJmw_^ zvHrxTz)MB2rn{@cQKSIuonIsCcPZESCR)>)?L znyB`_*kYM5z)EHJlO_)pyFKYM2lMuyF|*3%d;SyZ9U3q4$ag4?(WhrFfj1y`p})PfM>nVzyUShU9`UYmbTL!-QvFi zoCi6xd)>ZHMw!3OX))l=d9$I@+R_G}L;+NQe+Ib3_)zAN64qVeR;%i1pGTsaGjjR5 z^9-V4urOmSxWdwy%hg^L(a;O#oKilBxefMfk%MwfZVFRT|937pU!tRkk&*f&*P38~ zhr4! zWjgUN4~sV^rf0GLPOLAa>P-Qzw69zdCD-|Ta708QDq&qMKCWEp<{_X_k~b=f=%xhb zv&O!^cns_@v@h!oAA8scd|mFp3f@DUYXu$T?IXlZB=v_E{enEC3!L-@IS{u?Cr3rT zmWx6AfBw$??e4j5t=QQZuX}SA{+^bUULq>ZV7uLJ$G&7fSomcZar&S}O;~ zvuVRQ1$P4+j4kiHMKTtz!Wk1*4mQt!jzRpq{4skCh@0%`;A6*DqoMtVzj=dBTx_Ml za&lN#a(Q=i)3Df1XVc4Ehd%XbI$t=d02JXH%l+FD`vG_@?#=q#dhn7HKL=?4E_QCu zb7B-Bezkgmt?L1r>bSXGy!+zbxp_Q=vTRip1aXxeV_aIjJw1d@_0F{R+ut>Bs$~m3 z?yN&?*~izWo1Rw$uLZ~SkZ8=6`IP60Vo(M2X>Uho-!P^@nWZoS#& zz~L?W)N6dI)Bk?4RoXt2xL@gQYb-E&+G)e-8a$>lZ^)f-^v1J&VV>7-mYl*g@ZE;h zKUi;Tx+w{sl76y-sh*?E(NP^$9k>pc+F-{G20)k2>IEGcBJ36HQ51;`@0?H`vC*Y= ztS{b-0LhWn`(59LNa2!zx15RRpKs}uohA^pI0yn|FG;tK1OaEwanY<2S02v+ji(GH z>LILiYW=JN4(_+}4iv$+Wx;>c5Lb#LiDFr@Vf52_qz{|e%o?n}WMvK4uCMnW?YG`6 zv|mqow_mh2ECzdtX|8Q<(r{WccdM-8iM!NG7+=I-vOVL<<4I6(0X036fXB`PQ3M}1F}AP(KBv@VZtiNpg(wRHpZ>@X zYlZj&O5HGODiT8fQ0*FO7+4lYCD$1W=xrgPFfe%p1a`0_QwaN?dnyF4aK6~?nF5Fr zD)(PZBy+$K6AqB@{%4c|afX0@$R2PgD*#FCFoZmF7(#_PELejRd`lO$qy@M%fy)4T z-hbx|8F2{-OiMF~cMM)(E0~p>ApXD%0F~SLz=l#WDBws2H*Zg00}#=kM8e_xb= z89Abq`&)EhtfkMlLPULf6!1c68Ggc)X;~61oo(|S3A`kRc%c9?>2;azkZWIF_+!xf zdFVY#8$fycWhJyDzSOQTQJ#z(#Kaa?Z$51qNz1TjA)GOweJ~&^BNK+__KP?&nT@qN$W67B58!D1hG(Z84=%l3`#h*Ob8jK0?7W z?QN<2nm~s zSoH|m0orOabpPaYox*+}yf8XxLI7wE#DmD+h0DJVZ$Bys`ZGM*+VEVf zer4sTDEQ=Q`w_+67~=M_`mU;j<#+w?G6rd*A)(F^{cF}es0r(u%xteZRs21tLHcs< zwJMk9*WX?enzj`ePKfNQytE^4o&wK)_Os}>!@b*aYXP5Mm6ki90J_yi!%iN>v!J`T zr(bz0yrz=IMNh;wR(k&YIc1k6)*Wn0D&g@Q8^C_aEC;GKu}W#FQPbNnS^h~dEPBfE ztMgKT0#fF&N1e3KTIZJY7iww|>>r_UwnPz5^3d=?4je}G;iD2*U+%zzo8^D-B5&VoQ{4^!>sOia{M_0(N2&0 zI@aohL?o6xJFuPxqz+zn#Db3-(pyL?N@o+_N5r%1DD^%m@H?@d{I(U9c4fPNeZIA~ zS8C@D$r%V==}B_&<}j|KReRTe^*gKAfNfnPXDwhh$#?`kF;+B4%%^TWX2k(ML9>J5 zT`DhfX6qS2$^*J(_TRt-Xk*0jw}>mrxy@HGMZVKX)_nWU4Xv5KUu0T0+>-v6?k zkZgz*l>8?tMMQLm0tgZT0TKO<1E(<`xXOlzhWnV%qAv1R)X_v)S1%(JO9aEWyvnirhLMJG8y>=tvX>4 z3TBOS6-ZP6ly1SFZC_bepY1*Tb!TKGu{!E6z?_=-$MvUnN9V_7vk*`ii3bg=!~Fgu zfFUF&Bl8Dl)^G8nP?YUsI5GQMU`CyUpc70hzA2`x-N6(J>*(x|;Z1$W;3Jd#R1yY* z5HSqdfW4&fK}5Zs1or{%YM5*Xm@AGjp>B35G$L$*mvuAcp{xi?fY`o?G$QcMLO^}I zf@0Lg#ib1CaAHo^&GNCI*pBX{K)?D=^3~<>*A86bFgcu%w$DdiS~-42JlRGfSU+o$ ztM@GxQ*<)k-)cpGynU|BUuVT$TCTtu?K>Uxw=OAo#{qFaikJXI%nmt0o4{#2FwsXnsN;oxX+iyx$8^rola1lEDA zP~s=HhwEh9mqWSLg4L0#D*hp)aDX;tQsK`9&@ENP)<~J&0OSRGE_exlV(7*^#NQcS zHV@%TxTm1{26>V^^H5(k)gBH^GpXCK1GOigb0F2FDkiB~38&RAb)$f1D?*lVlh}&E zbe+qF_RIA#``X-5ubYG23%1lZCN9FMTp4jl`|Mtx;AM^~7iZ?{x`JCkjW%4jLA@{K z+iWy6I;t5B^9iuMSh}`CX9IoZOwvk(kOO)6t$GlM+`PD^gK>l*3 zrp@MA)|eoG;ug$q1v|U^38zSY=cg)SiLq`y-LB87GfJkM%ip`-*?l#X#MDVj7ZwhH zp3?s^IG6*DGO!KIbyEyr=?UR>z0$+jGSuu##Ouf@Uz7hB7J?3~zZ2lSBwLXwH!__r zFJ=$5_f)Aj;?>w0d`>$!2{rDs2<;TC#qt#hXn-?30O^uSue}O_H(u0-mt1+s<{j6K zGNML5S)hN$aqv>Ofh$goU-&7%2)z9NdjT?@C+e!RG>ACXck4IL##fc3a|$KXGrH~L ze^(dzDspT%#LH(0n6XlxcKwBk4B09JOeLEkyrfhb z0jJx8i1U#%MtUBGuj?*S?ORp_;y`HRb<^p**H5*z?sc?!>YF)7{N!-IxLZzeeQrJ5z;*Pbp0IDB3Ei>AQW?JDjuCq?x9)_?OP{ojDQHCjWh(i|#X?kgE!>T74ln_G?3916*nr z_jbHHZEXXGHLV|RSPZP+>zkC6!Zed-aV54LU#jf{UGFt4(2IzmGnC3~7jKtZGe<`d zzWYB}7Fy|?Iiy-VE~js|P2YI!E#9r&t+WoWcZU0~h%QJ6GtAurE2^&XEv^p5XymjI z*yekbMuDrpysR@uXdv2}-v|xwInP4}a~TS_WBa_hr#kX{=dz^4P3oNt?OP2@`6fP} zpr;vmY_a-kh=lIFm!F;Hoc;nuRiT~cT(wGh+QhH-G&M7VmyfD%a1DzipK_!SK{Z*! zEcOv1O?H_2z2EbK?DtsTWUytE!oOr9Q?1`KGry4olyT8g-ZEV#Z+}-!8K|bb8Oi=Q zA*bz-0&0x%_w*Ks181wN+7txdloZ^}iUef?e_ z$ehv-Z^pf3ve~0^cO8YUempF2ed-dBnrRY-NnU~zJsRmW@9v~a?C4m2k}vbX zHu+;H@e^L~rg<3YJ<#`>5YjNba1trf@{lJc)0MbbFP@ObJDyWy>yl##L zcWkNkrW;Vh^*obo$N`&PS%m{8e_4N^3jy4PWjPLOH?wI0b|NS~*s4Bj6zG5szCH}U z@*dIDN@}hLib}V0!B+?iUv+Hi6H&r@vJ@Y}Nz`U)3Ak5>jYsOhAgbJF^LTah(x!D5(-w5`t}Xjd!QJ{k*~)9F7bSNW1-C~A^t{9> zn-^;(+CTvZ$`pggESfwM2b6!9lbPjq;Z!8=VIhz|FgdU+kWCa#rUG^513eO)(Xa^S z5J&{5P@6L%0@CmJMG=UiWRM^TSQZo<3yB4Qd-*Ut*@He1kTQjVV*s-*a75{R5VkbR z0+wc{0tJWt_p}QoC>T&QhAl0!f@OINhV3g$biK9UzLhdC84!TbR*p~tG*IBsp+9&L z9qP~se`UIeUnU{Ua$NvPpMjh7-~cGH*xP`;sqtgM5lloXyNV!LVB6;HcTjx1+@BhC z51-vvA=MrPOOBwLP)5$G_^DV z=ujk_87BEj{lh`sxF0{rL7e3oTlMjL%rtU{ufXa2O+f& zAsv+Lsyz`zP@q@c24>%xx70z3|EYf$?IfY0g8=7Bg|duUNpcd#K*CB3)nQ1B+~m|{ z26&l8wgKmRUnOTG7dlMOz4URZ93C*2j%T^RpFqVyOkw4tD94K$jK{JgOLg7l;iaym zVXffw&+pg5PRI$Ke1>r*fBe^zlu)20EId>OmIVWd%2W`rm{T~>xPmIIC7F^9CTq^a z@g@9WSjHQ668Q2z-4IpCeX){PpQe20NV`9$KQnvD^%M4!3`5WF`T{Bo0>MK$KUB$n zV*HtHuqh7d4#69%_kH#Od`du(bHDR7A4_?-`7=Q>8}}qP3%>3i=MDn8cq;|%Xa4L% zGe;c}3YFivxgPxwW*is^-U5x-1U~_@|km0DAVd{JF`y?;_s(FPs)Gtiw>V( z1sb_M+^S0m*u%j9STW|0`BDI@3ODng1&eyxvbwdQXVfci_uLzr#M|q(y-#e$c`&_Z zQWhe5i~Bovp?22xw{qV_7~?!eHtv)2^^Dg|ya1b6)X+rVyFLF{1dg(< z{X1~iO`ZE=yMF!5`0n<0v~J1|h0P5--EuZ zDBIQ55zR^p9bhF*&Vq$1z%&&)XrNI)$p2YOchvL08s7~(4Z@(OjwBHaf!ikDOaao9 zJ5*fdIh>U$@|ja&#z{wo6IA9CMw5KM62|GEbO3*h?fq6%Ptg2qaWv7+$z+h4YBd(o z>epnL_qD3ZdHz{bwTE4$s<{Lbw!3csjwp05@;zQ?EmuE;q$UAN^)2Cjhi*hNmWpXU zhYdZ&ESHLPbd(cBu|ScrjV+?`6XlXvdYMK(y~up-y16v|qaUAab6+jJ9QfX~)`J=B zvES@%nqR=>w>DPkzjP~`dXi%B9En`Ac?w$p=@pyI`+bVaemGE5K67ML6PK4Ky@->} zS=xGh`YY5t@_`S2XC67p>z}R!kA&y@A-@_Q!bDxmqLwtnX$eRp@#I4~f63655PC-9 zg_=c>+gK$c+0W=sUr59Pv<2W!hvm?UCpxl!lv~#%l)WcUBtXOe8q90OS!4G3d*svY zm;uQ&N|FI})$}h_5<3|0ML(b?QxY)0{p}vqDlkO^U31Dg*V|QUme7%}NM_pQm)UWn z+4x8UHHpX0Zhm>kzC}AVVC?cMu=W*bRb~8{`*YV3PNB?HOmDrE!+PmMi>IDc&)g4{ z^|}|DB&RB7;G~?DJ1(-|5753g#Vp^)5YRj!<&_O1z<>1PFg`FW^94T|=>O$AbqyIv zft3{Qq#9Og!h>#Y+Yg^EUfiyqvL_;c4wbz8Ji!hxaXmU*P1ilc1bRHZFf$j%@r0tbn7K52O^np|so<|vd(`@wU>^cW4j>fXe*;!65nx#ZrlZo(?(DamJ zB5Q<+Eafjph#Vbp4H?)`DVEz-(bXyk<)lJKYbo18K;w9ifHe_#-mHd9nLveZHpHpJ zuSfVJ3$N1s*{YIyU3`@kq=GVkGz$~xzN2FV3blV-UT{~6+*h{dMo+z?3Kg|S3yXkN zl$m-q3>?-p**@)GQhl3~9F0{5%6r75&cn|2p#}~S&27~7mCVHNUmK<{m%J#SLOKw# zDsnQ<-e)d}{spy1*XycftHEP`Hf3gQH0|vF`Yov86_@TfAUV4BHh+Ua`SN#WyQ|l? z=0@*&n#f_VxU5o=X73d>FZMMQ5}WIy=e@7C63f47>V z`pWf4cv@fPM&_AjrhGd>J#f*~WMN~O&A3nU8^Se9a`?&Pci9HNy{-<|1`T#<^j}0W zDJm>_ynYZDx)y5=<5g|Kq5xO;_%Xwmt`=i% z)@s#MywljEm>lNzNq4=8f!qTgn7OhV5%h5fobqtx$B7#ArUdfOZhUSGxgX~|ywPHO z$h`QU=EOCEi034q9UGJtEV$zz9u2*6P$%rP@9)py9zRKztsw|q?zoM#v0pm|adjkr z96JSQ;c27GR3O5aGXhSZ6LM*lO0#>y4B!G4kGcut8<7vjfAE_9q(2^dYR~fHn^7k;( zZS^=;{A#W8(b!q;*DZb$cME-Y&lBpqE}pyn;G*0&2pdT4d65j|7C!=<8~x%Lx^ zV3_Dm_R}*Q00gv|`|x*^Ecpm= zeXF$dKBR0~B+Bl#3*{2@ce&?EPh|1(e0=LvwcJ6q;Rqs9gEXB#vx!FTTb}!X*gd%QFG(%5ZgH+aDcWFNqEe`MDz|yQ z#Oi4c82~Cwy4x+doGrK+FywHNT;C-n2H9}WJMt>;o{>ICY#tJ_l{&2IYE{y&te`*HT)O@>o z5mzxcH+OStxOlU`bF*vVi zOy=Po%4W1IGWhE}zQ(`d$7QTDGOHR3-&3u==+|7!K zl?kI*tm{zxw(<#agd+EPf{9_YnNa%^qhdgm+Y8@@St0%231$q1ccAWEf_x240zIQm!apN7)qrujsg z&)3=y_OI)Lai)z}M(NvgF>Vo&>EOSMcY`bEUBi)ugR}`H3b6+ELK$_hQPjo_JQ>gb zbY6TJILqPd9AMMRENHN`#pw3V$pa{HDJsj=EX&U_x`Vi}{a@yt?Z@lWnKmH(42A-rdid0rBpb5A zaIqmmiL%!z4*gg;rz*6Hdly;Ghwl;a3HaW|n?DJ0{sr^%RhQT9B03#TH4W+`VoLX=Vm6yD-d!5EW`DAP*7^7mp zo=B#!d3#}(xw7tsVFU68_bbiEt(y~lONCfjc?0|O?LKfbRA$B%dLIq$d0`k0)3B`X zC)7b7qw!{)(VQg)Byu4A*eQF?92D!pmb)lIYR_Fipgo47p@vBISLj3e8Y!8u`?Mg! zXRN@o7X^Cs#M_V44E*+5S~l!qBd|%l##w=R=^9zwwV>)|&5w*N^Z7VmaX^M6T+IZm zR10ZopWai;f_41rfc=E<0^>fvJ{CSSGPjy^%hFb&S9##qLC5aM8kyg{eEsfb9cZt( z9*eW@{cRHLdfFMqI5#4u_NC;BfrIcCr}v16B4upWIyYK$)_N6uMN?XwI+LC+Ubn{U=CA6}s z3H{qqZH9&wS*#2t!Qxvr0Pm-Y^0(oQoV_VWmJ%=!mC&gWcvzvPa-42?RcI`kEaU$U z??vjpi=s+lW@WN>s+^rqNv3MPH!kyxA zW{ISKJnH$PS>Qm-V;`-ZT(=?P<=f??INOt z*}qx3NgF?LNMcycZNPM6l1AFk*H^|*zU?$88&ux>;+f+39y{DBfV8M9)P1Z5tS6Yg z#<`Qg>LZVg2UPJa&YYjgP=)`|cza`t_&sP09cqngjFKgq^TEhZ!o4xb&k03H&i7!) z^_W5+lo{7a%*p0hCq_+u{(uyV_oUOw6q6|0sV#rh88j*iwP>4rbuXJtTOOh(KNMo+0??=RF~i8&ftCm0gG<7?UY)^1_T0A1_l+#yoN?$GVi30 zUGdCk_Of2GPI0{B_|?e(irEu5Wuaiuwh?|h&-uY1`bX=7MC2!R!8HFwg z+^;m^RI5WATHd4iWO0fE^c)V6iP*%Od`MYY@sK26LR7_Ek9~iS7<|SV?B+M{OXr!6 zY$tC>49Lb~&}-EE_q?MpYA=l=snPp>sZei>GDzQ11mK}FY8=bmwHPfR6@ z<8?6EwoC8Oe(ud#8;5_q?oO04OQsl&TC-BuHXqSnu6iBy?;Yht{yyL0X}i#&0PMF7 z!C*;I)9J1%wEg1zJnPZ=MRT#wo&C{CAB9%t?uOr6w_q^^@{b6qYU|sC{o9do?C=gn zLCd^4X76@Eg<`k2c{|FDyP(CVsy8otd{7!5e1wh)R2{9i{E6!7|I)7S8S7J@eHsP- zfHd&;^YCahQjBmAl9V>&cK`%QSAe_2^xl}nYw znpW^p>s1nWSyRA<1R}sSsM+9jnnzgvN7Nja!nCDPRAQfckOv`-7`(;on||>1yE;71 z8$4R{^*a%1zgq78A+Cd2119DS84>=LOa0wMNuyfQZ3}oV`IY!e%~(h5eA)MkljDWd zbr(tBJqg4uE9+8`Z2^I$Q~SZVX{%9n(AoF~qNTaH>C!5(ZLk~XdbOrhZCn+(bMsCJ zv(p@WHG1=B=WPGRu>D#ubWnt$^<-qu3lnsDU4y-exw56uili{X1+5fqFe2t|W2#%x zBe%mz&WKiQ#uUIVN}S3~`}Td{;;R;-an?mGFtF9<=Ff|g?**lEnWIu}w@Zh^QPgCN z1Cq{Xo;e-^<@;IdlwX@~*Lh2me;88mv|X-uPyWKc>uYG&s;Jx%Ib-lP&P3uc+;Wxw z6ju#GQ*;v3nWKT22bu2sIEC4$mh8)a_)K^ux@`w~p=m3@Ox5qjbz~G)GMVimGAj>r=bzJ%(D`cNeDTmciQ_ZS{UPOmT#0B)gno=yVUG`~m>C2}HJM>mu#PQ`?msUm4wOyH8^Uf0=pS4*m2dVWNu1lZye-dYCn_19r)jZoqMdMwKjuUsTKDe-;%?u=8usFa(bSz`FxUUm*Dx=Gq6S5joo-cIdT z=UbE2*V~I%PumZl$Msl>Cqs4M`eUSm`sSV$;ZCOQK z+R5yeA6?nqF5+C|_IxxrO^L!4sETtNNk)PmT4jCge8PXMy-a%)t=LWwnpIEtQnhED zS95NUW3&K)X}j&bV!S;xz1 z1_d{^V%q>N$%%Wd1YJF*du{Co>#V1Wb@CP&m2PdDy?=6eZRIZb2Ut){yM>iW%4d11 zs$|V%e*PD&^w5VVTfgar@q$Syg}qs4*B{|i*2@Cp-d)15{+9&dyk@L(bSg8cc$Q3w z>I1J-*8~XE2pl_7N zr*5lL5PcH!d%{rsM8GfN#2N|&le7`6;T^*yLL#taS%6|f{1h%HC<0D?jd}#0)ku}S zuShbC2E(a(k(HG@?#fHZZHro7r*=jiRk1Q(?!wQN0DpNGaE7i}@Tq(B>{3LfQrfJ%Q$rcjZr&B8{ilBK7vT3#)efD8YF6~oq62Q}*P!wbqAuPX^xaDtOxS#c0MO{ER8hn}WreFpJv{6t6ZQJxM zfpG;P{BGt1OEh#f5xK>WMv?%)i5T^frV-6@)p!ByUQ=Py#rGd?Hk~o&8^DVS+n3fUSibK(o47@13h^460EwW zNksc39->`%uXD)O51iFuhI>)i^&{^QG1A(8KAWjyo|sn3bPx1k#jM-wf#m--xuU zRW?Gi%Vky)VKQboLH*9hG0tXBWZ&J3`zU1JT{;oZHjEBfYZWQLen(L=PH!uBJwtnm zeVD4bn%5{H9rRpO%q}gTfI#7^-R4gs+g^`aKOQkI(7C+KTxe=;yID=sYVi0#8)_r=jQT!5c0)X<@x4Zl96CZz^=BufcpB4!EgfZ^Ap z3>~Dqgriw3nehK4^3`B*Ij96YcyW3eVn76lQz0VJF(86f28f9b<%`psb5k7e zrQ(S&GRYBKt157U2(Dv`lZP0sQHy1IqTj^+rBA%hj!Xf4*TbV%jF4lxcR$`_IT7I< zcthy}ppt=eFk?QCW@LKChOWBuVnkLtoAW_!qXVu zQ_mV+oXp(itTYpy?mm*I;4oY%BvE3eV;H9$O9j0@*EqY%9rbC-9)l(+PG=^-%%Z3G zN28U+N?2bz*bSqF8X`ZJ%;qN}1GWk%|bdqv2sS zw^g22z(w0$eRM2=I5%rDlJtF-?a_eUW30LoVaTo48$7B5fRAbE^1Q=rig-IGu{|BX z(jLMsU5g&C6a29n=KZD41zzvE4S8BQ<~h^&iez}k>@smO$3RRyVw0#hhCfZBH|0K( zzVADoezkI_nSL_0cKHWgJ2E$=E*ow-a)nAu-rQ{&3}NH>-S6{uAEP!i_^| zfYvy=SK0TfTP71wCif+vp3X-r*cE@=Z<)~@01I3C>gDF?$pyH^-(ruvXnwLCD z#`AUJm~?TfyE%q&2=j^f`r`PU!z<~l+O?|i2 zR}ipqLwzRRJaBpVY4C!G5h2CsbG!stcGI*>oI^!4^+H&TjTiCaa&3J*n>zwd##R`(Uy*;@txX7-) zQA3;w=)i+-0Nrmx&{;#MIoj{)!M?JQlz(k2HfY5WuvMLm?=A1&Zl)!f?gry_T!MYj zzHQi~BcmKt>n>7xFn7Zs?cKu0{^G8Q=9Zd&w7tf^ zt!ZmK*MF<8vk@1=B5eoaOrUMk3$9M<) z14izS<`4mQD;sk+`Y0B*xynfvoKLO(dR0+V{j=ogbhb%@&|D8?0Frt?x1eevAmGly zG~h;UzvZ?!jcDsIeocmpwCtDcdlG?_jOBERNKygGPzLAa9PyNlnn-d=M>~-pf%=`4 zFB?M%1XywJctbwQcJt6G*~>DsH76<$5xM{I8Wc=>cq21XtndT|vL3R9I^s8MyBXCHrvq9aM)X-&Gdgg;WvIs&szGlG#hDWlat?e*AGND)ptpEN7Ymg z?q_3l6>&!%-M75?`CqB!8Q~|!iOSKrNQHxeTi&)7tWo=XOUo=>=`8F$4)&gv7yRqF z%qBTyTTv01I9`k&JQwg%?q{PAqxrpF8cS{ENE>f>UO`p+b&m+o{^Hd%P%FD`3jRwC zb`$-@v$-$7EI?+nSr|?#Vuk~~-u_YNU{IpVinPeDuBs|9F%G;wo((?Ky9MsW!O2fa z(I=lUSo&0pO%H%YJAU$P1DD4WxTj`%S$<*<Oz;6(7zL z$A+u+6Yros#_QgO+hfFufN9{_aGA;!G~56G{$CM0YE+G)R*Y0jj2g99YZZ+ajZLYol2)o_N{!m1b}2RLr7=p7 zruM4ZwTY^&MbOyu_k4fO?|Y7aIF3V3JRgty{kpE(<$1q9!s`RpizzAYO@p(UE-(_| zrfQ>?T-~(0tPF=e#w30EQ!Zhd+v-@^3dV2HSMjsq@Em1RB{bTgDO&UsR^Y&{6B*4G zi2xT)$#eWR133fb9FvjJVEV|W9M4txn%mvqccEasmdJsJf7S@T7fZ78XQl^%)|VOLIOM;8n@ z&_iIKuG0AM!KzxhBNO}pGic23?_FU+EfGmd|1rxxaA%I`Op%r2z46>kiG7#aIUK}H zOEwl{9fs?cD13*9TkY{(<}2>wgJU%zF~BBH{z?{@on662%*8_p#AL})dzaDUK8%l0 z?2ujE)A}$e$xSSR-5@RNB17(F?9r`3%GdMrpwMRg_{E{>p!(=9;(uTNEB~*Y`1DoD z>ZL_iIvFs-b#^WGD}^sz;O37dMY0&b4cS-1ixM-ysWZ15>frV2Z+>;Y`NVtDs zY`RzQ-+Gm2eqQ@U)%fvQh`_}l*~j&JOMGR9c65^UqY0UQojCzO0Q=wJ-p}6dryHpW zGMDUMGB(NK==PiTs+aa~sc-KRbYz7Uj(O;2AYcmX{jcgZb(l-!#w32+rgE z&_DI}mEyo+15%1>xBFEbunCVjtNuyz2>&kEsoKVV)`m?t;SOGJ0PT$@47y9b(KqPt zq9?^|M8g}VWW|ax6$R_9_e zV&j(QII^5`M_jyJ7HQsB%nA6!h%-RUyW;ihM;aTYuoO>c;xylW)ZUk77_RTCq5)t( zka_o?y591DQ-B&jmyUWI+5{=hIT4jpf4%9rKQX_Eqq|x{4@XHluD2&-8ea4)ix)p; zYu<|ezk@8lsUc+Z{C#EUF67&{e_xHM&6xs5Z_|o{-q`zuDevRmr6FXw zLQ0BF{D)YHexVyfdZ31*C0gz^5uIa7-N zZPpv+{6xp5uYZX?QhF)gJ_cXnWd!Npc(WE*SVv^%BzZ#}c@0Ri`tMP;b5h~s2nxR zz{1ja68jUxM{6`G`~%99CUDJBjOOZhGa)U}M;?O*##O(^>92x7cO*zR^ueP)Vss~D z?&~iZM-y1JaL@URhpyGX-a`Bi12MBhC6XLLev*QIBTI zIG%)U9W|V2Ml}ULTMbg&8OAipK+1ip^?y3a#4Xm&en!1TSesCJ_$U`g7iE+L{1Ql9 zR5D#8JwvyLeIO8~*b(&akVrLmAxK@dwWk83fkR)6)~QsT&X+3XWack%GF=kdtO&zo zqI^Qy5Hd{)29o zyl-oW8-u0_yRy$dbgDLqh=@?C?l)3YROv8c*Ogf1NV)IXKja0uBebhlm!q8A5!2$pTl&9| zi9{mpvj28Xzpqss=0TVlp>7WPqsiiluy>BFsLuHodD+3| z{OE$LCK0C~zsDZ7l@<^+okZO^bIA$I(dm^h8VRulgEP!*((10sF$9Ec%i^FKblz z5@4k@Cm6vsTBzG+ONh~BIzXIi5d&#S%A>hs974IJE4?^#ZU=YY@>4p+g#M{KiwE=x zMV4Qe$d}!3Z1#+y9S8)ue#*!Dp?otrTr;uD+pQF?!F7o;ana%b@<|){2~j;2WA-7N zT3kE$E!BXRO`Du&lha;X{wJ%0l>)Y2&8Gw9QOOo7W4}v@e$`g4^?R-i&(}Af^M(E? zw^y?|7?jSl6S$pFY5Q5@+tjlB^S2y9+q-(OkN2J^V2D!30zof*rMnxab@kw9J8sP?O=oMr_LQgx zStzlydwXQD)p?enb2%;+^7wSqzcJr?Xx&{{rHH>z^YMJty5o!0f%o-f?}60N+<*k2yp$&KV zPI9sR@2_qb(27$`<^Bbs=eBNcc5`9sd08-{tWT=a2)8($(71ipPAkG_4xVLFO@*Q%#isr zQ}v*b!(jWvzQBCDUwoH?GZM^U{W@=Re88H>mM3SPm87YPNQ`|Wrs-P9{zS7(Mofqw`dqLG zD3B(jO#IsuIAF!O#57?&gv5(vVw`*bB=^l393f3O$xQd{l6AjW@n=>E;f-+*owsJ? z_%z`jc%pNe3pXc15MJEpPn@g>JvH*Zn9o1`m+>oDCpIq?SvuRabw|+??`W0O;i@y; z0)CS!n@Z;k48Kr>++ z>zM^24vTee=mfC>Dmec<+SyNa*sR}IyM_D-57fAtxyws&)O`Dbp?kHcHpEzIWM zTGQP5#G3S>4FqB07W_?b36~qR+U2F^7Lwtg+_ZwwcV#(#FxtR;w%|rZf|-1-uC+L1 z0%_fF8t_9_ZdbQjZ3tX*#iAv_kIt#yx%&6gF>OrK)3u(MwCKz1QCv$MN`4DUA*+iQ z>#Lzhp(k^p`vO7Byc5KB`TMxr2FdItb*{uQ>$FK$Fr?z&*iEI!e(l@Yxo*v-t!d ziwT^Yhk_t-=mP7uOLFpS^Yp7pj;}r4a!0e${1(p=xnF^!-S_3yiC>SmcL3$7;^Ln@ zklQ%vpHrW!Ky*yK@~hEM2poRFhFJ4ze493R-j>m{-8m?o5i8rDF#&+Ir0ZtJl==tl zZSwQ;-^nJ5n;!uZ+*xe%VWRrUad`gWKdzo&{CTg&1=pLt7-6vL`7VqbOv}J)Fu6jE z08VO{wNDaJ#Nv^em zM76VhSDv|k?8DdXp$*{ULBgY6aU5Z@!1x62PZ%=roE%WbTPLuJEkE?2F+$;$tF?Vr z0-@LlUPi@mk;2>IqK>?PO5~OfVwfL~dlM(Z?hmL!IT^z2wc|Ib81+1v9Y5xRw3o$twwnm zXnf>T*XaSJUxyq6Y3GMDrziqI`D>W~*1#<*vj4^UK9=%S|&EA&U%9f<4yBHX;c1J_ID z*l|9Y zdLS&m!V@kCl4biOBzN`LCoDkfIbqBYtWbO!buj?6^<89Lyi~OV4NCduX#^iXJ*PCA zB`(gdAUasS`CpU^sNHXvwk;~-q}IM$@aTHiUqq??tJQwX>wp&GdNbX-F9xcRv)oT^ z_=|Qg?yIxHWJO1E=5#JE7Z{JAs@L?*bCBh1DUWr(=9UWnxBg#ms(G25kBqKb9eqln zLaCWMGZbF$m4A!&x0Ru{PhHVCGNbVJ9LQ*rU0C>M)%Qim4Q=rQh1m6KK0}|)6|d@V zxz>`D!roMCUw*?s#tfqM!lT+S&e8uKdPp220Te(+`_41@pZ^V--@=uQ_PZdZEM54x zVoA3(@@EZsA}a=pryoz}0hK!S6Q&iHDPEbLWn%|}^`;e-bA-^XM&RK$zFvMNv>cL` zsIxSv-eCPSm@>8Kl8{q&ULYO1lMzDUof$*0CFa`~t3HqQnV#b=dRAWfIWn=5<-j7g zUA1(%@cKR`eYRWi_HxUEza$12$j~!*PM~|oNltgM$I%1Fz~QJ;3YNmZHA8s%d&2bE zAF>n-?<#i@eoa+KVWRXhSVnHTo5XR+&zT2_pTl2D*msBnDRk}{ zL148y-5;cH2;-267m+rQZNTem;ZZ0G!b zkzuaFcigM38u0zEc7D%G+Fxw?ZnAVsl}=|v6|Eg2D^v#1bHJMifTZEQJ?`5k45?;B zOW>C|GWBKdQ{D$+^3{U(w|@cDt9;2%{R;=cG8n53>_clrMmLa#HM0<1MuUQA0JUBR zmaqf;Z;)}_HWCCY(ECYpu*uf7T7VmFhjI-8(}@?BBSon?C#S#1rmaTWy4u1>xr1Q)L}2O>TO3b?UpWUd4-6hWapRa6ErQQ%lW8-;<_L}w;f(xG-= znDwqc%&&me*7x@X`iC=C zn$}O6i~wS;hc`uD0JwPE#yn;;030n9`0I%$0eM$tAUYDHY@t;Xp^fot+UzCxbZt%D zHPIyDjgl*xj)8eyE3}5ni`JS&9E@-UabajtG*k~)oG$F=v~55!@a*R5@+R0#@m#yS%1yz6;m*2~K~hom{rp4x@(&CgPZPuG2s1b*rN=LPt7 z@!-b};E@D&Du&i#jg;xx|4l(&Om`XC*prBHwnj47N|oOX4AkeouSNn7;2%m(=B}uc zb+-}@@au~95)KdGjVmU)qD=-$xs+lYhEv(ai=R!JUsJBp5R}sVG$jwBN%;$ z%lCYIl%~9_q+-IZTR2Q&2_aqm3FDKWm6{#uSO2{Qt~XOYj?6r+Ze|Y5RCM2mbg-9N zFR1|&e?cq#JvY{8zl-kM*vnn#7KfByWrI*Be|qP>poCJ|xE!b`%@sS!(%r6Jnl@ns zI0~Hj*l+>4B~88VjfGnW0->s=i$_N^oyRl=|5AY*5NiM7~H_0@ML?EK3o03Je{dXbsPdz=^Y zVXh5y%{Yx8@284F2Y>rY{+f%rLr%094LDxE=rz4~r*V)WrG5}8M9gD8I}r#%Q+_ks zO+%@CbG?s+)QH~*pPf@*A)=qWIof@8xW6Y_L^rc%jTs18PklN=k{*vO!w>Uy?Tm!hhw^b^CZSdl525K~^|5BS753uvK(5(Lz*S#oxx>%X6kEvTVtw;#Y+VbW~#GFV; zdwNz-fRdE3pyx$a`K5ekTmX_=;rZa@D?U-~Aby7rtZck@ zU|80?|ISxUWy9iZfsA@_-S75b^Uh(ai(;-lDd3>>NbjGoM$`Ec>OjX=qxK9Fy4+Y{ zbYL-Svp9RN(k6cKo~eK|F{Ii`^&8qBFL0np1om(qgj|+xt`p}7i`b^QU4xxY%j+8n zBNG}yH}HNW>aF1I4e`*8SfF<4BB=giZ!74V#)kEKvQOPs^UG>}PJ4jv&uiH&@N&IB z^n~SH_w8Yh#sNzxS+e<^%WtKvx#Lr=;|gMkUjRUDv_G$o!dyn5b+TL!eJOXoox?KM ze8-~D!W3QIi;%b8{_Btb`)~PW(B?a!CiDU_d6}twETsN#Wc17B0R`=DSpiHGiVrpA>t!Ux}oM0RJF&QKe&-;EU&n3aQ+Yv=(f@6ph_uNtj?)2X1juv9}}5YcNO)EAr4pwGgs$#B_69vZ4Z@fFL%0DI_u{ang#+KELRiExD$b8_@6u1HC&`}Z*u8ALsJfWQdu+tzVRkr zteakJ%pC<@42Ba|+5GD4_)6Wg*9*502#LCNm!i|D!Qgqi(6uPe*rs=1G~%AF&eZgy za@Uua`%!rIrmqBbzLLd|gYxEMUSL^uGQOTDjOjdRJSQ zNbC+bof&u;tiN+7Ma07$!0EuM67FCSlo)SPrCfcB0V3PQuAmK;Rga;cnWXg-enL%) zC5Zl?ZB7slLJRw3T`>srj$oz5RztpLhQ0+}o>Ms>=W`i*R7&4>5MzDU;rww#OW4tM ztmxEAamBg^4tLw`S|m-a-;I?IjdZ030jR^(QJ!vi5T0uK|9n?eLU z)4J`$m6k9qf4LMdljrO{%w{Q`=3qqmRTzhVP4dk)Qc9Ip*sSJvZV@~7yKQw)P5pv` ztrEhd53X3h#L-JJRhNv?fSjBa^a2SFz*vVz2jUq*66P!-@s1u&%Me4)Y7htXcsl^&f(Tn-R%(R^ z`v{v304jjJqxYaLpcNK1)N%m)Weaz~K*157{Vz)KfPbVzY1qZ1UC@o0roBb=0afa2 z#)k;O2fRKIYBW_UJ3GY~jB^we{GeUMmzmH|AP5p=*H8N)FEkH+9hQ{~Q`->K!iIrY z(goYWk+f7<)-)j5zM<&fKy^4^^9)m#ap2T3mb3cwc69CJ{6m+G`z_rFLwDuk>HkC= zE63N5UgoYEau)wQ$bMR?Tdx1m=w-D-w%a@UYdRSoHP$#zV1SBvjeI7;u3cQ5i}XxE zdLnVt^O_m%B?>0U;&ne!c6Mhft!1dVp%4v$cUyjdjQWpebO?w*p1-@;2tBNkt`IMl zKnMKGnL9MSSid;mnFygyMZ7v8A1UUk%{`y>`)qP;l?Sd(d#5vLr2pYppTmDDfLJ@B z!Tt4Her!3-%D8`x@yiPD8^w+vLx3cQx?q3$PwQCV%Ix1d3PKiCnkg4t3H z^(W9L;9sy|6x)|Gb1JuR3WFuG@gs#>UMOe(k7*(|9Xh_C=3aP9>Ecs=+Aux4{wnz= zYHF<( zQnMB5{c^xNgfbt#IKTbATrx+x@g%+Uk0jt9KAw$b$!lblM``T3kQ7yxNyxw#Q^C(( zyli+p;IkAoxoM%S_MVT8(S_s7#&kny6aVq@Nqz{z!@JOkra7PV4}RID1QQBh;X{=chbjXnD?u64ho7#3 zv97{vQSWl~-daK0ordl0=4@=YVtbPRE9aontwov}))~Q45QaW=yeTpgr8YmjQd6{% zH;*?x-0KOW%T7lxL%9#=427QNeiAuru@d|c_93bbmr(G)H4@vNTp{u_Tba}6kq-le znH`*6t@(s4#=?N#KrPAF74!>LkBRY z&`As-XO*XCvOk3cx%=f71E6L(tb?Jqt=R<`yhI#D%;=w3r+C9!0E8$eYXwn0Tcrhh zQ>3KTRP*@aJFpL2-=oWz2;BCyC5P->oYKI>VdlK_*KE7JBv>7MV)!B?t{P`#i3$6$ zx2hh*b{6(VojKM#K3`)AozDo}te2|v6$YCm8F}F8EsVQF_H1e#|`HM(H zK4=&Z8Lof(IzVa_GqA3-+3gIw#l!)OJKI0b(%6TZdMoh9CqU2$$oO>OA3AI47Nv=r zcu^2F)iW{t2wi%fe0n{4tjuHrFamftRlc8`e8u1#=k62M4-7joSCT~#j7inZU6ZtI zUptLxXHqmzFW=M6sDZK$nUHo{2q?U{UExE9QZ=)7ZnU)m`+tucaNnmb}b6Kc5o7myHz^M z58C zfXIiLRW-#~w2-bH19!oq=ypfndiuumwbsPoKWN|P^WQUbM-7v{P5aM?$b{ls=%AhW zsG0u13#Xs^#LYv0zJLk8$g(JPZv$%X2df+!oe07hKwxxyu?jc2K6ji)X z*YletfaQPlj^f3D{bA+#OyE|?-HtJzi|MIZe3gF-wMl;_* zfWLe#F=dJJwNvY_=0@4++I;4WY7g?S%gagJcg$7~INhzm42J%$N!;(|#7WVGZU-Gq zpQ%ukaP^)ati2OX&IT_QD?i!)n(}D|>PPg(UB@(L1US!L<*vG`+HGMFheK(Py;V9g zuB(2t+8w+M&_r*z1UISMKVP&_Z^~8=+W%%ug!G0qKEBy1RlN1Hee+A}?E$tI{}mr9 z4HEzS;jIiI164D=6Xk;>wH%KVV3+`Xo1BH5E!@*M`5QiA4=X;O_6=J9m?Ms{;KFc~ zQ=)s_kAIXV2KxDJ4Rc-3vxhbx93H2xpCyKp#};kQ$2Crm&nU|!v13jY2V%%p4@E%$ zWtdD^KalbPMwnkGYprLLdVycK#oZtb>-5bNpAn|uop*GKQGa;zRoB}x6en6R>aTW6 z&&Mk1bg?SaMk(A}Mpr|1)sBv*5Ast2XVrbIzt%m0sS z?m4ik5Bax82h>p5XYA~qBc&x&`* za@^U&y7kVF#HSkP1k2Rjn&$mq!mD#HQH`%Q@f^vB1hcpDkj71fs{u@JU=~F%hQTyP zk=h1~iqwdRQDixOQr`oow+04O+^I0#Tb)Vhi5HDU^!FEEDs5nMiKG_*ma>?0etGEP zw@T$jLH^-Su3xWeZEwXR7-5_``CLYkqKnDxSg9Ht*_)G}dnDIds-9jWG_AO5kXbB= zJ3Y%}U{AGD8MIfg5p;UG0tW^!z3=`28bIiUZB&FiPC-#?z_zAzhnr0qqe+&n1DYXg z#8ZV|N>);S#ao%KB)IXFSejTGq9?tDBvJ$vasPReLj*V;@m*3M z{@}8%pyL&Q)UEki@^2pfsFt(pza`j+F_@Ff8jeRu;;Ls;*cB(15>m&fYk&&2vC8w^ z!P7SB;ALK*fPMmL?a4+3Z2t715jiZ~I=IazxnlJe)-(|>-TCf8^J{4(!1|8Xrv(uYT^8V$pKp6}~R_wXYmP?lpExx%PpS_X0=N0=Bm@DDo!g$CZ{d{V1tT z*U+^SM*=tS1o*SpAF}pu@Qft=PWGZ@^_NYhqH|g3dFZJpU;(G32xtWSFk)9ofh?rQ zSG|d&(eL7pXj##9FoE)P7}be-2}Mw$g@xdg>7cmyhkzXrntZy+30Z8+dH@xg15ocC^Mm<9uVf=tHI|@ z&sTGMTa<5G&5!%Z1M2;o<%IafFXf~(NfXF*P2(%H60fPW^?76*>9qx^-agRfNYd0! zmwin|9q~j+Mn*pwE=&^Yw zYob1Dc_yP1qTTcQ_zYZSw^HjZX1~>H3X5MBj{Yqu%JEwe3Wq=ug*1#QBf9x8=J2ME z50N4~+*@i@)Gz?z@h<1W5NFW&`dfBj*S*|aPRG95}SN;i~1f1HD zfhHfdDhR?LlXB@vt#ClGasxTur3chK&jz9J7CwxjOXCwX6KxwG4?XA=iq(nWP(#yt z37DlGLcY?}w0FGkdVh&JikAQ5l|q_feG_j8wd<(%k2D_B1{p3zxdTp|0H@3Ja@wuZ zJA<@Vpe&A`Rowos-MixG1&-;585a`7Nzb-CBz;C{BN<>>_)CglpV7M}eEK9da*?ig z(I_5RX;)XWQzAsa$ZO*2IGWij3WV^UIOUG82(N#WQ4sONO$869v; z=BfRX`0KY193Lmm=a}<#%*DB-mh1jIU_TZ$7r5m%JcuTJLSDsy#kwP$v8zv{^Kq>D zTlT+(v}uJ)YwaqhRo^MO71NLWar%UKhcg}L;+nvv6$sc^JW4f!J;-)MzjIrxdPXT5 zvv{+jTB4w6Iqt_T!~@(PD}j3#}jT znO@f*$1CgmbjL1_N_df3);&9YYV2=DL7S(3i4Agkr;i6?tluUds~20my=j*J&tGc2 zVC12{@~tkvX|ncTgo5c?k1`{9x#MLAGBIcKrqQrrY+9qx+wsM!aypwAIMdb3WsnsvG9q0Duj@H^AWz?CcK7K?ExnkG@ zWu=n^YUK#Sge_|&`FSxpYpJeH|9?+82wm z&M}i`NVxBk99#~Q==L?-am6(=+ASGHEBqvk!G@8XNzn83zjXg^O+FtEVVE-FaLfQv<%bJ-1zLs zLM386G)#wk2EY9No5UKI&87njEr?F5?OL#thXbGVl(##Gx>VqU_K+?vbDkl*;v)wX z>A-q9UWMV>R9TD)GZQD%ejo%H$#X{no&sWOi^*#0j(2a9d(aaj28E``B^b-ucFPM< zsqa_j@g3OyBK`Wcv4YGg;_UCU_9R~x17C~s%ia%z!rO~jHGUqPsSdh|U49~~=|G#( z7pLM%tG_@45MQaWSubp#x&k8*v+$(=RC@#~eOy{f76T88l0nXI-2HuhrI~UbrP^3% z+V^fLLZ|h;>&tt_@F8ArF%S<1!gQI$6S%^|<3lgJ_O)pY;W2Rj2BUs(7!Z8g6Dafo zMmUkTG%ZOIFTbr?{PE+*{{DC{W0q)rv}S`f`A)lV;a%&S=^l6^JL`=DbMlv+rzDN$ z41{dW_`(OhSo%f>*Pc|uYFeK$BDMrTS;GkY4%+!3Z8jkw(5J$U>AQ3V1I?o1WCKC% zhL|E9xqA z(gXh{yNbafi>3@h5d{8ADKA^$aVqRx{8TAP9i~H6A5=6Ad(0O!9fAzm9qvZ-HGKO< z3#C#Pha2GV6bfZ9lw89Cq(zdtmkpTkTt94(xrl9}RzupB=Jx;#=U zQ3zRU;rU8P_=jo~NFPQB^qlX(F2zvm;l?0+vo{Ni)B0K10Z^PpY~v-ADPf&tE7XTD zBui;}NN>Nse2MCg8?K+iSAcMJP<(f$%F>>Ml0wJ05qe$K2Rmn@3NS#c(uzAf@|I=j zGVnhMz>53m1k|Kjc`F;Af8+CD#W(K#Xk7fb_mS=(s>!^zVqL#!js#llVaqp+36~l< zcuvjj;z}&$U_H~E5E*tM(aT&e(uJjI`%6{U67<^o(wPQKK53PEVKS?&%p`5Q;t+oK z3b!8PK2V3Z`S;d}D=Q0Sx*E2|b*79lZkag(KdBF{lk}dIowi-m#Hx+2V?W)kC_;24 zt23I%r3*aZf3GZ#Iu=_&SIYU7hVDhTzY%@RqR7uMMlP<6r-(ueq+@VL)stXwOlH6_ zxFbAj^3s(jO4Q-B8LFXgc}iFHC$E9{z^~Pm;;Kr?lO%*>FHP@lJ{@e*9Zn=2mk!f_Y_UhtS zYUy|hI5y-(t(E>;WR#TJ9VFPssJCEdZUFCY|6}vC?`LCRZ^*B~{NU#+u5*WLuaPx&xWv+OArCNx(R7T5IaBTqU z#Utx@`rl91Doc)nl$+2YU;h3ZnXM&%E;bSRaM$bLMCQO2crt!2cT&7R(vQnYjGgcC zzo_bce`M$VU;l6a3bs3UkmqkEu8$(;PPV7QNA?8lw>FoWh^1+etbhp@J9ztSYT(2R zSm{zE+b|Sjl(!4|KyN_)C0zIjKpqnV4H=R+3c@XnVy$kbE3X0-X^6fNyA(oB0QpXl z+bs^AjJa2f!)8@^3#lmOyePkrci`+-J?zuyZL#jHTxS_|e>;o>y358GRbV*O+^-6*o} z^E$0*MN$&S|7?BTz4Lqbp87WKtgSY0kMsIAweB$9z9TOEVbNr9pd-YIyGnFp(wo8W zS%8{v-C2W!&Gs64s6FB6Ekb_)&dQAOqIs>xeIFWim0s*GC&aY2tG4tZqU(KAHzZ0v ztftwKuORC6Yd~EpVNgs+&`*$VZ7HBDko2j4&for8c4vv<7X0J-<2VV4Hwe~UwQ|v7 zL772g04cI;*?dIyy~w{<69}Qq_U3qd4kM|-Y>v{G$k%`R5Iu4CDW3%v6Tl<#SSlb) zDuGW<8(nKUqwabz2~WT z^UhpmR*sRZ+|Xj_AOxNYPr`PX!dWqpREC{YNGcZ0?Le;+rUYE@`!pkWoI%uJF{~pW zaPYUof$s+06s^1sux;VS(JHhH=B{E4iwR0_9a&b5l@)FFOk;XDD_s}=&TAezb`94| z)(b`IomE+5v5x#+xX`&hPqfCIlMMMF6)KksZzmOYDkZpPm%{XQsrzg}saS1phZGW@ z2uCEpenUsmUYr&SW&gOc4kvM8C^d&xTsW%^yXV}*VYEwyj^QQTvbiYMKUB`8D?G5 zb?1iC>0mWm;gj;jK>fcea1Wt~*A=TDI7oitq8^=bzf#k-u2WC zW5Y7vWXB0RM(TPi)oMC8+>KTdc0qPR!qZ|d&Bw5ceNAw0$cx1Oya{7VzF)v zXxfjrFMHr~Am~2Q=Yxkpus+-9-5RlC^ydo#{=4#hJXNp>ZhQ%d(sZ`SJM%X> z(>hh?(|?V7Qv3rPse+pyzzXu*O42NfQ_*Suj2pH1(dX2o8oqYtGUIdq(dF5Fg>APn z^kv8u5CfH##>cf3d1taP*N>=Oh?MmcHZMghb#_8J}M9SA56GrZYzfWV%mL-93}< zci)%^5mN@bylTueg~XqEY@!fMdMe0Unsve+Qp`0c(lM1voUpuU2#f8g@=s3wdFHWOB z#wy7AI+kpGiZ2l9P!-XNWMsHj)_rZPK)Vfe1^SS%*f4T~Eb*+A>TZ6L1T%z*Aj6qavj%(+Cc6N3=6vtSkq};W_upkBq4S*BAwWi`h(=Heh@$?}; zIl&IQK(uwkw&e|F0lqDh{b3hI9q2-g)9*q5n|=5tP!Mhq4OCv%*G~{|_0oQS@i&fL`8(U^!KRnR%J4|*So+ykUfQgR2kiBtKLe)c3L#`X++xAPDZ_m!sY-RcdG=_+hBgMr8je>KJMUxfT*! zPLq{AlgHsSIwjCBMkUfQj7OSV?D=okOrX|5QBDzV5Y~7}KMb&~cVVHL4&48H=0iht z*+6}90!#)%Nx;noo*DsHw2P*1>Dz7F+hf)cV}RGBA;@19H7<@Uujk#Ov#v-y2~o}{ zqz5R5P&isqBe1^M}Yq}~yMOq&O)zkGHQ;ly=LI5!H(dqw$`}nydTS>F31S8T~*j%#bbr5EZ;0!NSkl^?|6-TFxw^C_=- z<)?Dy;Gq}qvrH+F=K!N>ddnZ3m3;HX#c5^GpI(iVeQ{IieNn(@H~i|m5Hc3HSoZgD z(k)7q2^>>K7A<~kZf*|08hi0L6N*7i$VgdLR_lWQ>yz_wc&>)l!ioc6h1Z0txte?{ zNME48N=chm1|gJXuuqO+3`E+32R-zV+Rw}mHV$fkI}nO^&0O-<0==j%(_Ev+MyNbt z<=%A|`q0|(@Ow;}pded3;?o<8R-RXvQDS>TW)3j{rn38Tt{eNczuh{WX!z-}C&|%W z9&etqW()?L=cd8XStUNz4gnn=okJt>#wtjc05HR~k@R_P6CsE0%_tk2g)HPBI>Y5( zYVa@fcbg-qKsPw_tHA%GH%?bgRn4sbo&MUf!`A+qz*>ku1F9|t^K+~)w%?@qW zsc?9BEBljFu(fB~AIo!QD3ri6_z>pXDg9kHGo?vWhuRaZetI zQ`^AfM%!wb{wKCI5vMY_xkTD8bq&>U6M{@&OL=Kwq}3Sy#(wFq3lE{^pfQF8hEN z@4T(oeJX~X%3q$H`*|L3dmMy|novjzYc$sFbSFdlCs^a(Y;--aTC#x*Y+y5Gi zyD=Js^ZBt&`}491^>5#fh@q#gTmt<4HR=c3=ZpROQ_G7V{l++6hAg%=UfU6$yHHx) zHLq+=yE>7xIqEcpS==$x8O*blKJI+QEqnEF$^U|qAKEy`aJcku(QKTdJ6%dU>{SacuO54^fgBY@*CO z%aUj7TUpn9NU+?0!T2nwV$b!4(0d$bsSc(lADG(Cx4f=QVoSl=OBHhMv;7cwABogQ zLXKdw2t1M6Y`278w)Vp@-7T}`Kj>U(@BG$$8=Y3en?g#(5``Q~SY1CvM~*I^{%x<3 zZlrV#emgrpOMPL|lVViO*F|@*mDoOHIOU~~_j7odZT)t8m8R_+RBpo%CcW}U4h}vrmjf{O+i22@ zFy3{&iyz@581<7M(&v5Fm1=hcPCBO8O2q~L8j}TU=2(T5+uxo==J4K>kus~w;l4{! zzT=wrJhgQMIuz(FGXGUp4xm?y57*_*xa4!Q*qNJT@q1vdqr(w0RG#gd}IGb zo`44Nvz#07gnu{Qx_^h2&4>td! zY@POoE?YL8zLWO5NOO0p@H(iC?C>y{8@X04ijy_n<%eO1SFJ7EBqcCX2 z4b7j6PfhPf8Z6`kwMv2!aB5?A?q~ryIfMUw8bd9|nn^_qVvzIehIH^7a7QvgppLGm zU~Dp4s+ikBANZSr35QSLRX+?1XQf>b=XMZdfIJZl>3|C@CbU4nnXDSEebAk!+|kt3 zJYttS_^Ed;VzGy8)R2e<=X8>YHZTLZ{%J`CoGD@S?N5Ly5|l~|7t#$gaLl}fbzJ#C zEw}h4n)|q7l#`7+Qpi#4I}AS#X=hD=>$GX6Wa(sz8nCjHufKgFb(6!jgkBEX2Vs?k z2tAWC$n3x>bH2?*>t1?Qu!X`g)5D(~ME~E%()Bxng-297o%zS7^-Tv_6EAXRYi)Mx zbF6z1Cb8;s8~ck5W}oWntm1@+&UuM3-PUq^-05rBb@>x-ru1j25Y_a*CMOdIUk(010QCu<1fHBj= zCXc&O{UycfGO@ZwaMPBk1r(VCd05FY_z2Z(Ol<+W(9RRrzjx}aSz*HvFckv?Ov?=7 zi(p>5YrN7H#nv-!XO->Qb%yzM=T)`(HmXcVnkt1T6^ zYSpGn?9rO7RWvrGMb+LjsF<}{Bczd}tu|^zC=uK5{`}7Q{*^y+94EPRzwYaLUeD|C z{Dakwyt2Y3d$eUf+(M%CVxKh^6YTVzE_G_L@uoC;Di}Ctaa_Iu9{j8ICG94`0Gamm zcd7C!%fHQ*dzaS4B*AARJ zou^yi&LmS@wlYqB;*X0iMj(eG7fam5awqf6k)b-W6DvUS^uzoFF_=?BGI6?X9E*CA zW#W@*Zqqxb5J1uVVUC9(>>0#O=){CFOPW0TZ#mwIj^L~(ToA!G`+`BAV;it!%w4p_#KU;Jj0o*P=F1v`Da$v8$6|e@k>~g1Y zGu~-={Qj!NCV(SZyjsxyU0GY(9^w;%?J6{>nND}#fPDi`va2+2_c%O!&vM4=PLgf6 zY*Ah85$t(5HCwclbvtiv<=W6x?}|%#%KSVzR9y;9)`mT*k(Ulg<@&JYo{`cq9uxEL zUpkQ|B&MTVsOQ{GFy`>|(`NE}G0KEuXQWR(FuML(0vKZ>LVC4ypooj#c5S>FHhcbf zSonaVwZLfk+keN;4#ObQr%#P6{3%%QiohIeW5+3^M4o56151M45Kh-`-H+;IX3OUr zpSDjZnzS5eV!Gnk4Lk_<((mk}ede=z9SX9mL-HD{?L@=AqFe2{x}|I4UFh}lgA9{g zM7gLzDyzDT@n97uBY&|E^!a?edK@4X-OsnbWQa>r5(X_3bj5;sX!zhO78&r>ugS~X zRovh7tW8UM8!+3Um0X{9zxCW%X?yp8Wy;9BzAdR+zpVGWw~rt1={vl;ep6=GXd;QI-KSg@gisyb&^?}y)N2iRvyY5D_?6&f1Vi-_A_N@|oJ zf}T~;tAbZVf4;lRd-d7n+kmnid`XFEtK+vqh(pfP+qGS;cWd^ADu3PmlQ{bM$vZB$ zHs^6*MbD<@KNV=w7om9lRZ&lP@{fj~{8;~FCkDH>iOI^2G-7x0$UeNE#Gu3kAOrQTa_0Z^cUYPRcCmQr zDO|&CWs)pR3_xF5*}xYz|^nYaBXap z>>XFWr1->P-WXY}q~ZP9NO zOvm|@FH`tdAPg+)?bp7Tl10~5U3}l%c!Yl)C!Y|?q$LMwK|VXN>``>N?9B* zF*?l`()}yCf}JA2peA@knb6RAj0%a-<@1$gQz5AG3mmC{pB9ZiK=vG8&kz-#TES9{ z2u-aBt^eC7gy?f9_K{KcWk4w6pZsjQ4cpp39IgMuK{1TqbcJODcgKR}Y$XazJ29o> zu3yQ;q@u1ekVAE+&Bj!gce{oZsRHYyl?3E4_HWSpAMfP2Id8vuT2ELBiB<#>>tKRz z9&z@z1WcOWxOX>Uq>Qk_0O@P)`KPXh|w9o49#j@vz`!K6!xGs@Z5Lw!B) zX`9cj@H$L-h!ADQt}*C6R}VG(tMdzC1N5_y3GdIpgkjgxvP8QiWWEB~#a5Il6#!BC z%%htMSsX<}Z@ z`-di!F1LSuaWq#;%u}Z%Z>Q%88@WLb4!2t|ihTz^)duVakv)`lSd&gLQIuqKA9O<42bRIE1X%N_MTKqbU$_i8&Tij>xs zZe!GO7k_cyVP4(&rnGwB)x`eXl4^}~aME{*{MWU3e0+4I7)5ZYA!?O9jtz@GnG6^> z#*L6gqE3*r{m%vE5mBVyMIsO(8U4I!Xdd#{H*|9v@b#z>4I!?SLKfatIc3QV9e2#A8KX-yiEl@BjGu$3NoiDRWexAA~Zq zcK+Szcmxk5C&liO&R)Lnw=XNnkRGc?Vf`-`mkPJrD3;wSs{ZHGSd4&$T+wbgRm4YR zUMMOyChg@c?lwJTzb{+gJ~QvF1OUrA_xc9V20qbC)1xq4B*3oS5Yw(KH)SqXItQoS- zh^!2#XSm7`ywqA<{CXaKa0eyYKh$HF7{pklA`;* zhB%l^Oi{sdzLx0z)0$Wj2hNw9Ln|wf6q5|sq@BV}(t$jj=NHe<=3dT^m{Ry6p;9;L zF***0s?TO)W@E-SQexanvmVLa%)hc{u$^BuJy!O+K>%{Xcbwt%q*ub=SyDWAnuJ60 z=g_ejasD%^C#^0Jr3@yW$xEv#eDLykKevLbJtgs3P`C=?kn;xenzqMGzY<5}3d2R0I`+>AGaG@fz953BASFK!m~s>5Jq{XOTdvHxcM zl6bxOywmiAO9Q~HQIKYRW{{{dArB21b-qp`oJ}GbtC#DP$H6j7{^GEYJ6M@ZJDLyw^ zg1XT%NK9Zt4a6oo7?;Ja_RC%pP4CKQ+A^J*b;(G%R7)wR z%MGXA26lhZUiQu@ApL}h&C1-V+yuHVn4a3N;SNc2fClbsTK;2L?G|71cW4!JMvB>$ z>qDUiZ|H6rd$O&c5+OT4y75M1`f6A(EH*smAn-yr6}2}JNSj=d%vV#f9J8+)D6wBpDX2&M(j4sjGa7UJ zGXTC%xRT{Y#4PklL7t?fK;^p-y)@c-7o%2TuXKOlL%1cqQANuDEr0dJVA;{@Si-PLDK1$i~WI%vNhX0Bq6FlI;7k2>^s@dXSy=#2*DF=cMH)AQ9!g;Sx-2c+=O6o zD|pXYXl-PyxFb2L!=ab*KK$az$(1tf&c#N>=*yadoNo*tWXnrag>T-cS=D=3XM*kQ zATrgy`9TO9{={Aj%|I-DMV;NF6_YLD6?2uOR+Hx7kX93wbOB3`Ij?6YVbf2o<|*Q_P@J=tnU`wgA0v7M!}2r6T{e(|f18)r-K9#i0RN}yIUmQ{GG54x8$Dl5dU?&nrBF5zS3|q~=4M9i zszwt&N9gt9xUn8-VaV9tC|KO;+T>Kk^z$_GRX^|~O+^va%k;sk23*i;I(^`lyli#( zm660x$rsj-xZ&n0&l6@sF_>_d!a=15Z3`rrpZ3NRFZub}pyh_KJ#47ggrN{16v!-CYF4v{IC!M*X7n8*OVEMapVys8)a-RKh#v^rFp=OK|cY|oMHTkHj@ zS>R`1u7_dPxs(&eCG`sIOx6*Q*odGG?38KD-f_dUq0M#W=JnJZ8KVT?h!`Ip75zwS zuGe<=@|6E{(9o#%r`5kUK00RetTD4ZB=Hy`PwWj9(_zcWAb<7^9f{}J>$TOSefOS$ z-r9EYBy$mt;{WpkKw0Mvpkk)^)+Ro!vYr^S{|&*s(BR0}pbqwdiPvi+BO2vaa!wm( zRz6_dF_LdSaUFkR~w0X6ku92R!(NG6YIp&IST#&~xJHW<)Td>K{9okcs?KH(w zC32N>;auGpIkQP;he_f-NmV4wizbGd22gh>fvB@ZOY&26hj?E~_UHJC4dY$y zIWnhGcNs>FmX`?zzlQ12Gh6ShO;evV-RA&pwKa>1r{Vj$-wX$g93+dx0ED2}!~JL1 z^SMWx8*FQX1ep=A;!3W-&2GC!^Efk$dDYq1R=Ka%5hZRO+SeEpxvbJk&~T4xaTB2? zmHQlB6n}e;uaN=ucR;xaL)j4CK$^-2m`QE-Dhu6LP@i077T5Yqp9`2_N0RK zDHM?2x@`I^pMZj=C^NOgTiR^IeU*dT9hs3|p%7tK1li@|0L3sClX=n5*cTp5`8Qoe zaqQdMkLn$W?JBDx9sL-I5R|<9itQi*0Zo5Dyay{Kc3@l(PY@M!XtYS`j}JC#0^%Bi z>l51dUrZMUy}MB?+JC3X(KTm6I|zoa>Ta-E80w2_?(VC2fbvoEfhXm7{c7?QygBgh z0eDi6;TIF?t8=^rE9=VRmt7G<;B1E5Df}OGFy~tg=wvnW53!<<{!b z>(Y7q7a^mlH?IuwslAvO+73q@x5%9!+c5qp3*djE@~=`BB9P!Le;5pHzj+1_b#q?t zwG#QeXM>sEf6+}L7lK%lLyI>(OqmG<#Efb9mYGUtr?Z*>@U1063)U`<8&84pdgfUX zeose4cilMTB=5W(a?Eq_@`C2e+=<#L4$XbIxOp-Q83+rHZ!MLT~ITpUI+gZKMOOq95V~agspS?AW!y%&nx#CZL7WJMjIqF13 zQFdJM7u{vY$DU=6@dLqX8SbrijWN4LWe#cA*puDEd$cm&y|?WgTP2=RqK}ZT7n@?2 z@zax!zHIwWvx!9SEk=4;c+0A@E(Q4ekGht}V`a(I8NR69U+A$Hz3&H&h>?c5P#~-|tNm zwgZ2VR!vF82(65ec4{c0ZAwya&9kVsm54nL>*~EU8Wa_-5ks6W5(%StJN$a6=ydd> zVk&z5XtFUNb5a@pteL+Fq7$3pCLklFp=71^mrjSq*VKr{cWd|^r>-<$P-CZV!?lD+ zg6XM$$unfBP~VADqBoBF0J@X=T=PE1$Lh68dBoWJ3Xs7j8fu?O9$7qUt>zKYjy*nI z|MO=Aoiq8G?D4Ro&Sur)1{{PzP^=jb{BLY^6ty*ywi^RPZbg#`)6>zWo*q8Tz2wJm zsrhWEMGKy28}v^MkoJ5EB>fH#gNc>6^y?M22G_7f|&FGc0)jF z5HGwEO;E3CZy0^J2~;0im4TWj%_RjK&a#pT&;!e5`m{tkH7oHF0924+0 zyH0L)wGN4d!DV``H#(QNe{kH0G^E**t8}aK(~Wb};^LlRnsC1F<19%wqb0lv^hn`& z^J>c>06l6h0br(d>~p>CHKs|Y<%$O=ib{z=T1I-mLyvVtww~BdjPqevA1M`jBq2~&WR2KvWc@8s z<;v}P@j30b{YP5lI8vDDzv0EZFqi`Ei<&`Unt~kY(~=-J+z&0#UuQOuW@UB>Xf(d^ zCzH?Pbi;Qy#Q&C*I!j9S41T?tsz)P4M}6Da#6?N2ZfT!RrBmkiY~3ZZLYEKi*S450 z<;$SC^^NMK*^6^~xYq@jHj__Il+)^^rJgeL%-BrreX+?+$**E~y!rLJaz?HG)k(b+ zGg;qNgKLbbrH-sOh&8aJW+Qa3y#yc(dWzE(VM8whE%ao0i8zkjX+m@R2_R@+d^snyB^x5bueQ56|Qgx_N7>c=JfOl2HtmT zrpQ_n(suq_rN6I?i*aTCQ*(y3ceuvP@}1)PFAFuRO_&C!{%%rzBF*BISEt>bNvV>i z{j{%^OUdB_4t@uFR?nE_<(H7l^N7w6`4iMD@mCS1pZ$5a33kq)#Lvne>bWPC%%f5* zy$eqf`tdZ;u$w)`2j+i53;OnhKA!kS8|%O2@J!jZdh_oSseKLF zDL~UIMNZisoW489_7n6o_j{kV4yHd`W5F6q5__zN-CWeT7d$IhDbv#yT4t-?9q{ML zeL{H6tLDEiCto+l96a+zmoI!bwZn{gh03?*iY4eYpl(D(?}5`oR{XaqWA{45U8;X! zfhcPKD))lJlfxh0D)`w>1$180ZT1%C+!X64g*-svxpJRf==_by`HDsKDuHm^087qY zCtFsbq@ulcY^Cj&uiZfi*umY!bmOSpp?y-WcFr#)F@NO;y%t&`ue`i zy8Y{oWK(*2)(g(aIxEu&GcB@=o@7Kmd~e!B%BKDMhd0lQGyS$xIDVR?T5ovYaL$xU z$tQ%yE?d;RZY6r$&}>EVm!nkl^o49{%i%3@rr#@baXq^+v3;=`a`p0iL#c9iWaQkE zpS1I%HiNV>ke00Tf|Y$}5fVJn-NpFTBTb~PeU@md327nTY&70|w1LfPu-;SCitToQ zj1ec3RRtGAJ#bw;3O_$rVOic+Sc_;kiF9m?)}GTuNHp8!cocrTl!`+d$U0nWS4FD2 zNGL75S}6K<K%o+!CylVY`L_k+*RtbI{r6 z->Y&fzP9Y6dUw4ai)1F7N!6gbnn{+HD(uGf?~ zZT_mC*h`IODVO(PxL-|zudiVOak6zfw6zq-pM}hLEe3A7c|I0f_5(I#P2a1xdDzKZ z;+JIMpl`AgbG8HX(rt#U`xzvMAD1dd?Nlnp9xh$14J<RQdRDRJa~l8P1eMS^Gi4u|t8v6;`ss2w3#3u+ z!KYK1^GVKwa4xA2RK9yQ9yDUq*%74V)df6_Fn1HOzQh387v+oirn@ zdePAs_v`bS$)IiDAVRT<<70o0gk#2_*%Ta$E8d@J z`6^Ipc?Fv*nse4Ka`1{{RoBP4vtb%eP6~4Cb@>R^_0-HRndZLsJi=2`Ib%V-PE^cg zwsy7)pHsnAocm?&QDaw^=snPF2Ak_2wKtrFFV#6GNK6VLL7#Us)B^(leO_~>z5X$9 z40&CcWx=F=D>RpR%FWZuOoalIn|RIR+W{T~aY{$e?vD3?XD5p`J=8G7T`)0oZ@yNg z^w!T`FSZ1ww?$+=Yk+UiA$1u{To6e@b-LQnAMv+ZRT~<;uB70^ywWuT!$&5jnO{AI zdlgoDK_diAZq5Yr(ce_x4ANn7?<~*lLtL2(MQU^2rdu6fl&Uoa^{t)%Jg*(loZa(o z|6W2=7P2}xdD%+Bg(q9z6ojvqqi*-Ai~^vB9)ylCYcIA+x^_<`RKQz`6R4LdCub1| zg*={=qt>O9@a~8R8}y!sP= zct7?Oe{tnPDYx`NClGwec!PPhBMDqHISWIuFZBpRd^IgN(wj4ZJxXFB3f7i=NtI*`M}i`DnD z2lKm6fWX<%7=Xa1zEnFj(M*Abdcs&0gQJwE&w$wy)+yp*B2-6&WhuGa$a8J8<&#MC zF=6DO;x5n>b@w9#Y>OzR#SpV#{zf&@;}ZM|7SZY;1V?F7UO)Uo*sva3om>h~DAkE1 z1(QT5$&InAz;$zEUOha+@7-}0+}O-(Y;@|63GRgm6MzlRvZCEtCrWc}W6UYDaYsCe zf$s`=D)v|MEz0^?TPpS6^;PA|L)zWT#Ewn%CD>$;llYU5PLaXt#5GbR$$LG#8(XTQ z^%~{fdJ7)C|)sCgyPD0|?LGf4RG{E7Hb zfHBQWb1LJG@ZVcrOn>Rbep#)fEsE()**Q3Pxd3(M64J7>Xc0);;hAl8)Q(IEg`pD1MJR)GeZ~yt5r1JgJY-P?AOM|-6Z^dDPNkP2cHyK_|&wbaP1x5gS=*^_bWr*kO)}2q4Ovom*pNh)H57dJz2T?1O(vFO=)rj`*jt*8d zS|pMd>}`gLk+-E@?YK>6Rq@^#8|3zO=9>>;ml-Yxk1|MvI^@-@@~BgZ(JqW z3ktQzJ;s-olp(?nxPW%aYz$Bw4ESwpiJ|s-$!9T+@KQC9;^bW9cYht$u|I!`dK+W+ z{;1zN+CTQk&+8iS-ZSk*;PF^e9tujLu%2vU0M*jke zHJ3&s(gUt(MB^%K-0`_wrqV!0C9l%Bm{*6!z$59`2a1i!f+p3TwjZiiBDkgQ**)05+_|NJoGsAFK(hW&LvGSpz=WbpfjB^NXADL*?)wd|D zW9vnYz(>NKp$86aV+fux+rND6P3;;tut=qx>bzbrM{n6)Vo$~@>-i4k@bhI7sbdrQ zGmO%7v2vp5E#D4LMn3i~VHvY+bjs6gTR)r}I9+6Q(mn&;b;Jvw@0Xp-vg4mf?4l=a z^~ObgCES=mOh(Hzk{Fu3O-YwQQCFaU4tl~y^D=>RxRdXSFVOKYG*O$w;=@6ceJH$IWdHAp}$uw&A(aMFbbWT^x@d8Gd+j>-?G}a(FSCdpT(+zZDnv#{tfp7)9=R=~D zi-h}CwsJF*kDhnAQnv~Y(4i~79jwVO=i5=eXTYz!;}801n~cSEBv>UV*GP#!FNRyw z)EF1X^-&RTrdiNhRxxmmz?a8etZ%RNwn#5(vs#L?PjM7+VV6H_?j~sMnGxe0obuP8@ z)7UECk>R`iD&KQ%;mZ>+wOGXEpnvICT~6OR>E}<4%fcp){gaB2$_-;=@383Lah!x?Iy%#pL25cQ6&IQMqJrYy z3584m* z=Xjf}K=%VP%fq}Z6lVb~u=auH*i%cj0Griw4Qh5h1*PnIgJQqV6E98kJ+!xWn|tLr zj@8SsPEX}pC`l(t69pCD7CG3QCT#eg9UrrJMTRS3u{!K~9$mcwBkPYN>Im+?mW-VN zd?FAJQ9E!laqpvMo`Rd0Z?Y;=dv&A_z1S+$loY*Ock3dNrx6kneioRO>j5%;&e@*Z zZ6PTp<~pcGctbUzmYwEq$F0W^;C}TTXVX18XHOa3(0@i*qJwHiG)(1#*f?r-8NWao zjW>S25_FG7BPIjhrdXTQE3v$Mfm?~NhbvtAiHk6xhP%tM%QCYwwxiwy2bj2CK}V}6 z%32c5t>@-JvJ;;ZPJ$-9u~1&CG_*2$H5f6tTD*aN&X6q zq@Oe0P>xhrn{1id`_}|9+3>T2l7J^@rHyzC#lKrU={w=B^(WO{R zRA!r$9yGnS7x%OTXG!JG+v9Nj-sNMhOEJ8%-A1oyx~d)6b-_VfQ{UybKE-fz$R{sRh*QmI&`Pj=JYhwHTFW+OzZ z!o74P1%^{g)U20f6H5jo5TPD`bx~9|A4KtIkh>DZF*MF=Z&Z%EAJ=rmo#^WdETqhG z8NEu`11MxqI_1t5iv%h(u-}W>KcM~dJ)oEGGv+H8f!OdZe1XcdGHm<9mRHOxa&fk` z&Fy_XD=~+kBOxby1J5*sP2XezgIyg{`2q!`_eUj*F=#Rh4*jA%E9xfO68SiN1_#BI zmJk7XQ2{ubahdHY_}|#I*>pc>00IW7Fj#;}?T%|(CxG$U<`_}eLFsi+$+8hZlLH&k zV2XL0(pA!@VNKLm_yn46J0poiht#hUx^cs))Gyie;v^-hvk%pn+jF7dm@BeeAOI}q zT+JQ;#L5lYBuKJlPDvO?z4kNi`_n0z=+=}jvb*W~lI@TkBqnSudM6<(+)W_IJYEvl z6T57Bt#Wy0>YQ7Yq3P_`NH3mTsaPEF#j;JOH!TJAUHhJXYEYewWPy=P<-t^koWA^K zkWBjmRKkQ5UAUHHrlHP@v{qecv+qwsin@My8!bUv^O% zO>Nx4t|vy`5*2NI2?%b!bMOSeaa?3o$z+Qg;U{q6?W}riJ*Jekd4fw~k@W!a4V3H1k*9Yy7YDdZZiRzWr7vsF- zt{dl-{`$&je0Ws|%7;+kpENYlk_FU`K3;$h>DY|5WHhhhyG_S1Mhk58_%4A)-N-Lz!1(y-$nlb9a{2Zr9|1D@j21BBk*(uQ7nE6_IqFO1KrPiYVIm6Uz8_UFZlz^WRR*vtyRu9RQsCTWq4^_2+MVCtmbJA>pK^+KeBLC;3q)I_T^kFC=&4G-ztc2}?Kfb_6sfq;3^mk52I z+#&Dj<5z|Z0y2U6TE9NX3ubJw*4;I6dDM*lsx?MCsi$85CrHzLjBTkC7Cd_tCiCwy zX`naa!U5p8fSUQyB))4_prDw~UGYF$r?sRmcf~5@hlabRxJ)88qg3w7i^an5+s^qJ z30-}^HFkl4m4=opf+i?-R{1_7M&9dIBzc3p*}8|_*h=#xedRZOFD(X6rbXM;KdR?T z9ynV%U&8NQzDN`~`xp7@@NjV&Ta-L-ns<(XoK;^4)o2R>5eGYw1E*p;!DWw~9P2c{ z9ZQBkw4I&pu$V!i_XbXiAguvoq~m{Uc)qdQ#g9dbm}~#1xL`y=4=yX>?3O^3ZTiQ> zC4i3W;c#td9|=?EtRbE$1SLe zTH>FzvRigFm-}v-#XFHQMYIP5O{0jd7^iSD`kHr_-zYW|A@3GIobV56=FeyvQw%LC zDmshV#kK{63oelq5CJDhYQR22J-dW#rdZ&$>r8HX2uCRLene)?NF%$f!)1;~$;4}4 zM2^3SXhQ7IelPVOaYD`}A?LJChpA4-`5ljaI{}|o6glwp_jK*_BYO`6EHn8$Y;0pA zu()~?!wLyoL)7jSSE(mY02R#*-!Z4i@RO)u?zzq0CBV+pi`_o@vmFY#Bh%rT=ZOg~ zRitnJtL z^OIXq&)TuLwwN(A5qV}<7E=N8{O3o*`3Kv&YdEkovlPIx$*ZB1?EZ;s6_7T3hzy{9N0NRVAuhH50$ zTshrOj*H!hU9-8wD_#<#(|b4odYSWxh}!Slyx5E>ZAW3Y5Ci90(MQFfS{xKi)y(B+ z7{I!!uESIeVq(K|bk@Uk-NA-MEaBpunW?-N@nsQDcV>Xup8UtV_l_684Hwn3+vntTzrnWd_P4wwj z1^F>^2>~i)Ee(LQ;N3r=XItw4V>;~o6ul~K%d@#C8A#AzsWgZyajj>(sX|u; zXgJS;n&qubp4!2I4AZ=DNAo>!`S%C^=LHZHUEh5_Ir;jv^(*jUpoXx8G}nxFsW}Oc zH*nIZaW0#2lg&wJ`s17?3>5teuYs9Ur5Z^DPWSfgM zmBS0sD!tU4>>c)`C ze?rMu@JGKyjw55Ys|ODEkvtZJ`CY>HHabU|hsR#cr|OOMddcD|sEkCKXxDpb_a9wr z2i&QPuT+C2hE=UEA4G0%`v>^r`v&^a#EVJD9^||Ra)yuI|2JYesfxm2%cW;UoZ3+F zWbao{$i)Gy|BwJUZ!pO7z)r2GgNe)YmYZO~yegS$o4iW*B!A-ROu=;?`THm(=a(mTsaO)g#2SbtKBU0xmeo0u|Ti^n}ucX<8RfXD}$O zS#q!gmhgm}rcBlatDZcIRUtLQc#+oKf~V2C*wbuZg5 z#$brxqX)vAme3J=X!dTz9~CA{U-0Pc&;n#T;7xjAo$$V11aX?t6UwU0nFSt#1LD4# zXUF!P9(|+H4{r_&t=`DJo}v?{(V8DJD&~{Ct@)oAUf)P;;%Z5D;CC8Y8cE-TbjbuZ zX90W0Rh1b@G!Vvz6Zm*n4uLUv<0rd=0J(FBVK~^o*;fUtq+^H&$J;ECg4M|N2Rj_!v-l3%=YpKlTwOgSm+N{#!{dUUCO_pkr5V}G z#m7H9XlaFtEsI!+X;EH8G9*6PW-tgy$jaiqO!y$Bs&;+a)Gd@jI>kj)3k!-!PR;)P zf{{TI#K-g3(glEXL?+7qO;0cbvo9~RfvxX&J%7slf>BEM{(*;Im5X{>xaK!*?Ku`p zJ61WBg9omT-yd!E{q|5HCdC7MV~O;H1ZMi5AGizou7x<`UFeZ?(x4%Oa&DR)J8lyI zRwXWT`>MI+f^|0hX71Daa+y2x8rW$Su^DrfcG392xg5f)3pm=G-Mld)ET86wf}Q(+5^zO(_=3z&TB4gLXFx-VNTj7n~*51a%}~7hUtr> z3b^b?z>ocFA|QqwaX;y7t{KuT7~AAD$C7h3iMQ@!NNgdk#SP*5G1y5s!mfRF{V5sc zdtJuBv~j2I2@}_ZST>OhX44QxW>rDQs3hex(*&6pP0_{F9S zyYB<-=_U}lu6BvmvrNjo>#?-Z9u-X9l+xviA`%F z8usFw(N_~oIPxPoob9u3cW`mjV4UR=nKb+=a>beTYucGA@20k`bx-eQn-_s9=hw?^ zB=uAOBCZ3)eWb^MV6qsoLr!!xMaC*?He$9M4)u|ZPkl!z&QnvA=Zb3vd}G`;mU{ZR z$hmZYt%Hv2f1IhKnqX7AzED_CR5j zq}~xHoOIOM+@wH zE+r=n6#xhOTuD6;&y(FkDU}5pO{QN{9l~x`fy0W!Gt_`8^gA#e2U2}XOH?EnirBc# zpU+ZKIA-c9wYz(k{cWnl`}+atvtO^B{2oW;mcF3HIB=t=+@^W)U+sq*T+Vd$!5wzZ z5NCZbiyM8N_e5zPPm$AUV%d>tEO`mnAIrmG^z3T;-A($r3}xTW&7&r1lcF{2q0mmO z&>cOiSFN-`O1CfEc%gb;sj$ekpo>l41SxQ&M zhY?w9qiUY))Q4kXS!x}(qo(ibWfRR_QVU>uvF7EG#i=UsN=9*XMl{cp*nXK=%TuUa zrAH&EXe4KVE-SpJ`JC17F`V0U*UHuKr7|h z@mZ}yQg|O1Knl$^kSZ~Che_@ zZpDKq%(TxRjVI#xuJXRqkNZJK6Ymno&M(K7#RhKebp=A@!zAIhWgEK^zW&>DIt>bT9`MB1@}BdIFM72yq`lpHt8OH{k(s)p4sb>M5sqW; z#}b~VLzjKSV((pLFZO6@#x=De$st_#YMC=dR(}TqQ!%Jgx}e4B4q)wy32t_W?(XyH zyLVR0^THE5;<9)Rs{jD^KgF|ev4>^n+no@#K1BD)Ms1P(;YdKt#}tvi?*8b`ld+4h z7Su~8^S$$@htHz(*Z6NP>>h>g?LU#y5YD?GD4zX;>=?#$sFGN#G539{mbJFAL>A7Y z_19~))-O8tFNHk|Ap=EQ{U(+6$^OgDUZm6E+kw#b@Ti;h=Xv%GSp}OsSDiujft5O(qX>&>KVFnndJK-Uz+b)oqn5z*fl0!oabGjNT)xDBF8Ah*q`dLJI@8xHy1rK z6&hHR@nK}|I>4<>Y%5o6op9MB9EWNPia-#@r!T9$iD%nQZvNFl(d`k@h*;G+VpPc4 z;9+#Y@sbFn*5oUA1(eX$m~Alf>`9Bs?*eEV}SUrVeZ z!;#adr#Q!&e?P!wNgwm`W*c-#jsxrs$eoSAQ|wYF8jGOF0|r zd^Vuf*S~qV5WF28Tny=YtVmFAr;bXJdMo2BS)TI4jDwO!Ev9c2C-N@xkcpur5p49U z^fskw7eS{dHnGAfLpNkz&6X|R6iEVX$_YbR=0L6*pti`~k#$ED0zFNcPWSOXGEbyG zDk8j@FNvR{3RRH;-Hgy#wDwc1r$*c;k^z#=JW2`o?R$t*+9l>{?YS-=)#@qXb_dC; zWT0*DT!I|_BX7c%fa)KxBqmS+rl>4B8c%*LlQ$ZzH(!Gi!J#IFNymrZM#e<6FaEy# zU;pH%z6orm}*V(dN% zv7pSPU-c(fmF0%Bs7b=iXt{^Qgj5BkpFb&uicnc%UcI`Tj~)x+XpoB7 zOkSFCjRKJt}! z6NVQ@j(Pg`fNk*C__G7`TM^Gg(1dxcKLsr<(pai9;!z4LgFL!tRJUX%fkqS8OJo*? zVrGdMiw0NcUj<3Nz&+xhJUz#rERk^d?Sl*Q#m>OR*v02qK(e4ryU5I2!p83V9Q}UA zdB<S@&nB(f$e@|L*#LyGudTS=ol`a{`Vc+4tvkshkdzDNL9I3~y?uH(B zmz~?xAP4pXE~K-Yrgbn*h=}O|y3v&!x{gc0&_vfc{>^X!vod$fQ~@w9(JeOqVkS!! zN z(J%fsfc*v(LIeO(ic5C`X?07xuyGukSsSTYNxsDu0ago$N6}?^YWljADK5Q^Z#u1aX$5?_HOk{tKNnF{;=#SuRg6} z8)RVNngtN?Mm}%Ao3g%zdR?iPh|daCuFuk#b{2nn(-(;5o%%aOvzg;j} zBFZbhmCcjgjpGSasZ2&&R=!vzRIb37Q-4DAvcJTuAS8n zz+R)D=3Ds3^b6g~>E)XX?kd}H>x!{T>@gX9%yoH_pSchZ&FAs;9zo5?SF7-nGrDtAz zC!GiSGc2UE%_q>QjXtigzF%4jiPWrdFgGrhIn3O(f+$Z$5H55P(EdhCy%EwV=U0o-&XzPXaO#3_x$cJ zuxG>V$(msx>Bn)P=hjVk$6Eu(|FC`sz6ajC8P$CG-a3GlNG#R*%bb8m9Lpv#;#O(l z!*MvAP61FYEScOj6r>r7rd7>07uN$drzS(cVvCI~!BiJC&E}()?*Wvd=kJ^7@4gc$>h>KQX<^$q2Hg$O274GP=#Bjd6@r z?w}!5#GM+{)A*GuHb~aSrZUb(Lbc|jddzSyc=T@)CyXi_c+9XS=?2QY^t2Rjr?(v0 zf2W$(aoi$~Smc_%iTANy6}!JWq4-ankFCo_F}=NYR`GPv@z8igQ0w_(&1G5&>%%YG zJ|9#Yn)(%%zfY~K*S6%WDe9w5*Pb!mF4JW)-Jxro^GxsP5KZR`J2(tWVvOh+zA-LS zO`5hW-=YO%%nUMWb+Q7j#H-D+9u;&jkgkNiL_Kgi^p6#U{EhL4zy{bUn!zTG8P%2G zQ5&YhjV#|57>flPqex*521Z!E-oGon?6tcbx)8nmxyUFKsz+`%BeIcPkBNMCl>tSm zP+;^HEoi5VEN5Y1V(v;1<}FQ4WrZi8TMS6`{mtWN{jpu{Ikfi0~hUBTB zKtJT4b7h;*6a2XP)9QibHRHJtL&A_e!z_-Z;cMkdc%BYbP+7VmoidxB2LGmUu$6)H!+5RPLgmbyjc= z?^Ev=Ljl7UZW5_jLrZ9#wM@#$HD;z+U34^@^=@>rMhwfgzaQIuD~%`!1^3S$41|vP zrnE#WRtcKa9!`B1>%jW*=RZ_Y`j-P*ki?VK)v^DAR_vNu_T2aPyCTj9 zCJv9U-Il5yO8e<8tUNHtVqTRb7Fc7=pjmLc*kq_)Kv%#Nz z-?^alzL(a0ICaWU^prbG4z7*9f!k^r{-5sLp7F)pB{6U5?C%Pps*u~L!sY#NXTCo9 zN3U(F6=$i!ns==8b)!8*o%C?h6w>yw%IW4i{O67Q?=GM zk=ET2MHr8nybavD`OYp*!Tq4HD^~Oe*ugy9BV|dC^)L+R4>j^)7@RrXs5+SP?c_+< znhM~WvviZX{UooB_b;{ehjO!-(=y^kYbLwdcpCBS`@6mEtB9%5u`qP-Q^zh}rx-91x`N&Ib#L5hKs$3iwogB5;;MFWsvvH$3I1p41 zyFA%$)>hm<^vB@&yzW_XC+>8IoK7xUd32xe5?zF@F{kEHWZ_5 zWn~q9xVPJ)c5Yj^wsi5@rY7$Is8r9UuHLA!vXMC0GwUMZ5(wl+W62fjr^`c(Ck25s z70vDy>${oj!!4((xsQXq5m_+Zli$bh$__|gi*RxH*>oPMLi4oGrc)(<9y`31=@t6L zGccsZW^=Bs2p8_jXYFzE=e9wmO0A?;b(}2IOVgJgvEMkB4HIRfb~&8sufW83$(mmY zI>w|zuPl#H;rIoHs7BJ?_@9vLLMUhH#RVnu)sm6=I2ZnsNkq9%(BAK5P(5>$G_H2` z<1=>9605K1>%G?mfhd4%w<*?tA*}n$f)yH#q^;VB@c&oNTfQ>N2Zm08UHFX!(pmSSA7a^68|X$b`S%fjN84{v%! z*}cAZ$y+|wo`DHcOP!aC4A$KpZEhF?$WJ~!@z5;%0*me+7rlVP!i5H54QBqK=2+H@ zznDf#x8^G^m##vKo+-f+U97ZXw+`-}ZMLYNpI#OgU5wo*Qi<66GIv|58K6#{<$fuZ zFFovG3p)S((ubdJsMF-?&f(6YO*WKJRaG_X&d8lUi0y0)Z&~Wbv|;dDm&-P%QxPQf zGh_A3fwiUq^NodhP?9&=SQvlq!#gOWe|*$19J1(udjBO4{}Ocb8%`hs35jO2kmkM!HGPAvwP(fV5FYzpB=k zb+Mm~Lt;%*$)BC>(LbBzF(xP6UEE41nBY1?3Gdc+z*ikxPdoKr?`=FMf5^MXAy5%5JLm4PK5%M6c|5a)~H$+9>ePWczCYej}Q0s{^$B*H22v}8d(WhfBkQnri`<; z6L6E5;NrA>x#{J_)4NW_hzf?uXg29;pC|tqg;dbz>p|VK;-e{Pqv@|iDKnRSgK!Fi zvK`Gh$TimAU)ZI=U=yuTyW;b+*4a8S%H^$8KC@D^k7FT6bQU1y{P-1Q-{HhYB#-`W zKG{20-xJ9;khEA=`I_J&}Y!!$e2!Lre6YVPF^ zkIO4ZWOFc*a9an)NhL%^_OqNP8-2U*M1-z`*AoZj0w)?_)mLAHqYVXrKg|%?G%XQZ zH4M2!uQ6mj;F2}F<67;)EEX3`{^(X&?MUgT$*&eWv0Vp`Y|f4^*NrbGYQk%lTQ&{? zT24t91?s!bmkTz>`*Z&*TqSL*`}iEhBCF< z!C+as!D%;YXZn9n+M*vNat;gFME48IlP=8)7zD(;`4qgsy2x9C${ zPx|w3zbp5^S2KBKEd>^X`{>#J)*a8S=MUdGd7(>2OzmATFpgUy;D12rerYZ7?$qvg z!d9OAjLgxoQ<(qxu~#_3EA(;-zrDTf%^B}w!RAb%Zf)F>ATm&bIK43c;PbD+2A?Ws zcCPN1*-Ri4IgQL@z4|B{>}?{<#?nC4V3SgFsiEKrcZukS~M`V z^^=Tsh<%t*>rJ7>jHY_ysB4olFN~&AS;iTAmv_x#;4Pzz#xjvJ+;_K+;M=Mi`+AQs z#k!2Q3%}Vd+D=XZv`Ii9vxQP;8c|XS{1~I5AN7QvJtD@>);51V|kf zd<6C@x+|o77imDgwiSA{?ms^OkBvpe@|MbCotYry;izVid&yJpi7b$7{&W}~LFUgO zpwT{-u_e_?@7<*4s_ z#lO4+xl!p94P6(~V!R#Hh20fi`cz0?(i99nz-C5ShJLhBf%PSBkFtlg2ep^329FiS z0|gFzlWjaOg}(+i?N~nDdhGfL+&NZXDGKoqiXqZOjFlNYU;~^W)lG%#{z~NHk<(d= zelFDqg-#X-^qmKpZ=19x_V`N-t172Mltzi`rQckvFQy`X7WtlloAt&1(BrQ-l6*y3 z*l7bp*Xid9+`<0xF-x=M*g%vIrR+E@1r}b}+JGaJvaxP5Tc3HSX<`kTrjh-L=lbx>$t3X*DIQlAMh>L=o>2LxwQ113u$hlFlxNNY+7octpPB zQ}=1?@S4gwqqahAz5=hgld!A6t?HkS7Kv}4FqU~Y&v}o-qoQPYa&8C@=+s{MMA_mU z%S2`VgN=sv+b8br_pj})IjKp1I}KEx|e}X$+UZ$ctAz-!45E`_0iyxQPo(chk*sWlWU9e?gB;Zgrj+(a zW_CUbEw5(|Hla7qR}VwD6N!`EC__Lx7J)vV#4TC(YF z4C}bdEi4wUDt`NW^l~&l`2Kw!sE^975XMe64gKRTX#=-({)u6FV~RMg?rim4xdXqx z{n7d3jGIS`g2e-sVCw55^$zBKtv^S(Lhd{mxkmUREnO5&Fbm(}JJq?ID>@r8m>(KmS7tzfdk}o-UfMx7^Dd%m(-;@4W_(+@ip9tu#^o ztT-}i);f*ISjJ1TSLT8O{VyM&uW*^-zid{3W)rJbApaOa3pPuvtxhvxX%wCvH zS?>HbB>6vGJ63KjTHC6}?Yqh#R}uGLE=iSRe@f}ix=3_&^nORnAdJT2>u^jsnBz*{$K|~dam5mr{Ww^ z$6HeqFf({OwSD4Ce7^W}sy*C4pnS8sY0Y`~z?^ghO?L|m_9MfnE?jppS5pNciW*SH zLrC6mz@_v}p#x7Xf7G0xi2^b}qM3R&!s-Fk{IYXA6;1;TI(P%ELnA59sc~cAbrV_;YByz zYpo4#W%aS5@Vj9DaFsl`GxK!@)pP&J+uHr!P!WwVSSQvGIGgF%h8_yHbo2#){2AZn zLW|nzrf9^`)$Z=$z2(ozpY0zSo9T)pJ;T9#@6f7!% z1qTL2#Rln!erXooo{KbAkO4PTJ!pyt*u7L=jg)zdEM}1o;PlA=2DsR77-%fEeK3iY zIoT)FH~8=qa(pr3;@5JhY+7H4;_VyB2pCfcneM}vckl=bRsj^{FTI`Pw@roNWSBJt z`X0}S&Nj^H-V{#Cy6a@QswEH?wxNohg^CLc@Agn}?WP$qF2hN%W%z_IccEI>(ZK0= zk&05c%2K|^lZ~kow7mnDvMeDg78{_=ss}!6S<7)l12n=_Jl?QEb<)&rbYwAitI?4?NB_J@CXGVH^>I&JADFogiSzmN^ZNhMk>)16>b{n)z? z9=TzhdDDo%@o84Gbn$!8=3*|rJM=%3hh%Bi`eyY(aTX_yI80Q9Q4|uRzy#rP(955V z6!^cv$N#o@{S-J`E}ROAObaf4Wr+e@{L5JNY?E%Jk9Cu_yw1)ipm(+~CYD%uX1eE=49aVunFV9nVX{MOG3M#Rt#Jg9{^ zCHTKUB479skxL+`eNuFZu{rtW%T4t?WakvW6%w}ld+$50s%Bu<-Ri^Qvie6>0?jS_>ymKD-i2J-Wy4-7nur{v+=^n%m%`YEahs2@Du{Ep;9|)b5mSUSn@_P0W1R<*A4k0Dfdmq%bMurzR2;%qVls8 zUi~uEr~aK|`pSEUMqt51;tK4hhaO6f>E~75S^lUv1*Ta>QzvaoTZf7s@X=xzAv&>G zDqQFTW_Cypr5%zze%c8oAbdYpiPg}}ubQxMvv|th{A1RPJPyT{{5hbd26QAY1zj8k z1inFjoT-{Q74or4;Zk z0X!b*#NbtUoV&@xx7s%)-fBkMk;}5v+;y~nJInh*<4!MK=b@&~gWh>1cBQg$?s=X0=DS+leN)%C=@W&?%D{nF!R1#+@}VlV&^vW{ zLcjH>U5~+7vEO}uetD68c_jLx?#O4xx8tE+l}}JRN5tQ$*MhZfv6|H_!#)kht1fO2 zhrc0(qDK&uh$l=5Y5qFLSN)1k$j z?*Z050b;M-XZgMPLt%HYwEzo@OYrbVP%j*)N_Ad%hQmP9%MB>?rsfBuMfRak#^+oi%FX*w6%l;tDF zbY)MWDR_GT0yDq)If;x*8WKY`WS;d5lpSZVX+FJugP_p7m|ut-ADIr>ajBqFDEZqX zCnx4{MKIPlQH+ThnzK(mAkzB{IbI0S`tQgGwy(B(T;#p0!h($TmQHUGZabJ~@s9-= zUFri(s72DC0;LE+DtEPM(8jyh_dE_yABx}?x z5VwUt^v6YIG-B*Up1FY?%MkL%4(HVcRsRN4!8Kh42S1^Q3n?Ol3Z51pUKzY$!zAs4tCVPQ_=^=|wW_9p z*6o7nJTg3?(5Q7S(N}PYq)Bp zJ-Hirrv<#^s*)RscJGH*U~6l%ucvD*XeHS4HxE-@E16saE0oN|FTda=Y-|ShSMG1m zZoP4KeO4$fp&hTkGrM`XfZy6_PMiwqJ624-GAQ&$G+o?)y*LxO*s1-t7oRota$12~ z?0OPWmRB|E%4VG+Z;q(&YL1JO=Oj#0B8#71r(USeyq3N4b$jG>DE+rjjI~ksD7k-< zu_P#mh;ps1dDF|XzL{Mzp=q*zq|NA`-}q}gjX<9FIl7NL?|?(ZT!Mp2aCXs0q1Igb zf!OoZgN#v*>W4aFhL!=Kq-x+*gP-Teu&@{y^YE(!&MP!opyGz`ssW_?tK0$tXG<-r zpPz59m;rZ*Z&NOg`-j?VgeJ_YutA_z;z3^ZY`Tc1r_#V>ycUT$_Q zowgoa{Pb1uFOtkw5Ai!4$|Uk(+EO`(KiiIvsvxQtm2GO+Vq`C~mrjI|ZO#q{d%|04 zlIwWZ5WQuc?U-aaLH6)`xGU(ts7U$8pO3cDjb;XD~ zTb^ZmN1K8RxP`9c{msZI3OMmlI^kWWJ zSrl;+tdyNMn4UFUl~*<8N^X^(+I`-~cRt*GIGiq5rG<_-QdU1ZYsh|hlxlMUn9qA5 zvMGG(ZDM0!K#^k8%t6|u4o4$*@>W*UK`Sz1DeG7u~z0&lFF|To8AaFqOMeN)FZP0vYKS|xK?N`p1 z1G_NhDJ}9XGXMtQ*1b3EoHsRP=4Ib;zUkVb%-waczu+vjxXBQ4wq7LeuSVOw`yDwx zlT26u_u``P{WHwQ`Omzi*0Y~xEu)-|BTRzUXo=r&YkN#b&I`$*pbKC7)DSveW4C|)MU3d-Z*{Ql8Kk^VFS zlo_bnHc{aoBOJR{EamK&A;6JfG!`+$>WuqpgsDBfzU%6QBlXY+@kguup5}tV*!| z?*8uQ%)uMra&7)e2XmjY@ zXvjU*&M|Oeu4AbIXL{!KTgWG2N(wl`C|xu-R7O`fJ8)c zsq=W@w5i(p?v3gLV#5J=m2tIezpXC9$h1fLZ`agYc(rKYWZ;q{|DW zYpF#0ioFglzo#!v+h~+0LmNjwm&C8kR%RQcNL~E)$~K%?5M}5BCzDqe65gW958u$6Pe#Ax5@phL zH2vqzw9hAMYI5rMNODdnXClid`%?K5@4Nm`u@pVdr0H4>e%8moc~V%Cizl2OzmHqV zFuaph|X0~ zu;+;ZOM^%v^YCY?=D?16i}4N~;9rw~m$cFE8|}c0W0b08()I^@EiApThSc@Il@Aos z%Y%qBFC;P1deMC;{NQBg!VI)!oe?erErusK|NbLYc)q)pHnYG!B2ixX^q+ zOi-i5S-(Ej{;|Xjf@|VTV28$|fW8&qPDP{ifzeN!YhmwW1^pmV*Gv(KNDO}NYHB;UB?)4hF6UyEy3|Je*AxUdoumefpN&-~{9<8e z9ZhQFPW+UBnYi6&FPnwK+j+P5=il_GoUJ6QLa&&Q5B?mkvMen|XQ?J`Uz`oS0|!a< z_;^4I?#5ab*!eo{DBVgY3j24xZyDr3#o9}_Zrf=&rJE*%C>W88=ie4_*QpFEq|;2A z_EVj97~ZKq!YXuha_^*JN2|C#Oqr_%`R*QX{&u+G7zfIXRIcg>wBE4*pKU(3WVKw#XqXFx{zNV&5Q{wF0|19rAj%Vl=Nj2#za0=sQZ>tRTj38iG3(oI^F(KWBaKH zrI9|}$U<%@YGQ!jNcaw&Zaot_1@MT1BMJ~ncGnz*s3l_EW65JuYwt5dIlxkFbzCnp z$Tr0o6?>nmlBweI^pvZGV5I5Ssi^~SzQzj{IB!gC9hyL#Z$Vyj zvQK=-N?r$?yMOAB{;^hxm_ET6UK8d>SmsGWQu)~Th|apaGtuQY%9mq$nb`PAZijuz zfXl%MEa0>w$@CoO&21^v6nQJ!Mgg}}pl2bIOfOQ{KbldrX)+Oo`gK(|5<8&6n1OQa z(e7nWD1|bT&d8`$$=r>EjogLZd(ITqd)^d@IOaE_Vui!w>DVd5HDXH>nY|V}SE9BB zsQn=T{OIntb0hrcjY4(I{zdyFXYvDGIf6-c@~aVl5V(3EsXu9Y{p$$A4NjiT+=O=V zBrZG|{v3hu`?H6JFK*O(>yNR&woWRl+(2mL8o zlVA0yVQ}fu5m{z}E_J;u&$=FucwFZC7d>Nl{YVQ54sAx-Z?kys7g{%~t~;+uWNo%I zjvXsXeDeO~ZQK2BG(`vxe^%F%YO41RKKfcu1oood_x_! zYgqY*LGA}{;ZKVLl82#&0pE8i8F*U~?^?|cCt|BZ_i`y1zSp=v(`lW3({^>3Wa4;7Zc zbTP`E_TkC?*eFPXd{;VE#e5G57+ew2T-iSK4#VDg#nvZ1KIoD=uTtcZHLR2EE@#M+ zK;c2v;(+vf5$3)XL$aAPZNY^})|scI2x%6JV*8I3Rp&hGEUMY523{3Te)aw2U;21L z3_9!C*45V0hR-kBz>vh^2vIJ3Q={8K3s%PZwXNEYozx#)9@@ z-=jj0_m(c?FVCC1x5jkrW$D!m#r7+kZfI7Poo#R6Nrg}M+sJLU(v5FV2M*3H+bf0= z?8CYcvlpkA8W**F>f8);X)Kz@EYJqOQ*N zD`_|ak`EBR(=JI2>bTL4bY9i-?yk#Y0`c=){cSU67wfKY40l4q%HFViU|eumvq^t` z=WKpAX6|A_zA#@3aANL~{C8DWb|Q{fu*AWh#tyBOz0H!0FwdpXkbs^Z^2J47wwEP) zArZ=K49OLPZQY^g$2DQ6?>aV=f4FYrf=N|N=hMl`}kF#5Pbc~C_kEgQ5$;bJm zA~vq7pR9GC;=Q_qRM02s7e7F8PUiTu^Kiua4fTuBoy*_5bI0TAm<8VSh@+M4VV{Lj zVsb+=p^@+F@ApgH?L4mHCM^lWI(ekq<5`T}%A)|EmN4yYuN@qo!gnk>QOPsKbyj-XWJ()AUNMAbJS~KRYc>+f2hUxh{Gn+rH=f5qN z!UKY*0lfBL%h?Q}F z4A@D;&XBU4AZsF$$}T3A5#sJAcwwarh$B-VKYt9a$c5@*{#_O|W5Gue)2_JGpcYo1? zmB~~sG0_LiA-1d2cOIEmihTRenm3il7k2o0&892l{18wti&j_fLcq>OVb@r|j$##{ zsNMaHMQw>aN961P!jcbyrnV{fn-3z9RPNi%Nn)N zopn(@4C&{o6t8-_`R##3u`;n(ndUm8u%N#9Tm#ATi+}Yq#k4Z`{2ROXOfR9R|JF#w zDDYCT#;vxU4>72#a+eburU1oSrNz|MK#DE-olLIh|MvoH9eUU#wuK|2bCAHsNlhcYtp|dzijdwQ3k|@ z8UtSJteCgpZd#p0oI+iyH^h`Z+ce~+oT!{=`yd65U)g|~D+b$Vf?McukWA-&+KK7P z!-Y00=A|Q9u`1m`zQHPEGac^=m|o4jdraF(N{fXU-Xv%k(;Dd)2ZB$!#56|E;U`=W zA}Y$3g9hUSDLV5YBa-k6T=PF_5*Z)(kv@aLqjjE-kXCcx2;dlL6fSB76j}ibW5x5BrX=I@?ZhH2^ z+%`1orM=jS0_~!gc%Nxu#he`AQd^=_-oG|<{XAKhvhLz(%x7a|v&2(TiH5q|QP2~z zYhYiuFq9$(!Ild8#vG_HqJk~N!OBE1?NRj$W^U0E{<~x#Mm z^RN$PP1Y|FgLkMPcS~iK#e{j@bKz>^>M&Kl(ivM^l8Ek2pI6 zp#P37Je~cvIB|I$IoDECvz;ThJ$jFOQ1Wsc>3PL{eJs(!gp!l?RfTZc{XG`f0ZL95m9Ju zy$PHK7m1x5@g0P-qs`5&$*iw^J~WAm`_v+6F?ji~#b}2M`+%n03$sd`OMLN2^+vx@ z$MoB0l~KeS?=EcH{!M<4+4|TVzhWYlJ)GTwt9U6t=1IXUn8GA5SNe!*$ee13KaXXI zU1(?(4h|?tOscdkBZ-#%TIr8MK(9y@4*yEUE@ggS+}bF>eKj7!&T?PG+*L!g!)7KG9C5u-eRQM!pGs{*(XWrL%F- z;Uc9B)9y*DYWtqBDl);mt(HN3pPtJOOnyCb}?<%B&k`7^b@gWcaP^zeo1xHD~iu zDI!_PyY3Ai%h2Ck8=PbWqux_gi42Q8Ba8XeidANQ_RHFL)=$OspQ`IjjY-ovH`7?w zoF&Zo=SQ}COgOF@H3#mGwc6H|rY%_ev^?WB{|Izq7_HE@M0P&}!e;yY+pJd`MyUUt z4x{6QbI7}U`gZIJ9JikJb*`+Kp?fn2xdS#C(7g)vR(C$ykt+vSy7yn|uy^*mW|yx$ zy|f__KO7VuE-qc9z4-m{R(8j`W{1QmZk79YgiM4JS#OTmM!%7EV785ArDlqU(+WnJ zIDLs`($%HafHI(7EsOPgTx-Dr@v-WU@;33b%T0AWtnTpQ-+7+-#3hC+#1!SKd)0n^ zeJaFX)E%-X{iAepqRJ;D3kuwAt-{e>VaZb*YJXR<0g|MBuHYM2Q#3nGwci`>wPV@U zfdCzgz7fnl?ja-h``PzxnRW6b?^wJvEVQ*Fr(Xnq5%rw>De4Bol#ZL5IK34yCuI37@A9j@POG z?j3&IVn7U*(-&Hl)J0h+a!it(aakSQHg_ z73F(XOke&;xA|zs#b16N($qfB7nxqP)pd!Tu{(DIZhUL6naf|sT}N9>=Y0+M6Zwd( zhKRF4o3y?oe1&sw#NWNqx+cw?qC)ldPK-r*p4*d}in%TG{+qwb>&QO-Lb@) zl)?t^jq2PsbA)$zi&yMseNO+Z-JDSEZY`w4IUB1!xKXpzd2~h;H6FWM-?{t=vfZuL zuMr*}Z%dWqTCURw%b~hhwK>@jRqg6(JN<5^ ze*VwW>6wm{)YzZDcN)YZ^(PYvcPql0akLW$2mecY^S!7uoaJ@|A=^6ig>qO>yIW2k z;$Q#Yiq7%-qFyy!FT(fE-|1I^`j(8IWK$YjAv@)gehSLwqul!pu=@2mD4V zb&J%M<~-~L=rpgxlTa`iiIKRleV9*E^}q16vzQujqWeigi=O+acm?EvgA;F6>8`dLLQw67D^;xjYz)8xPxxT!d7RE-qkhWIgen90wMu$Flj_O=8=T!YVQx6MP$|<=b~h~ zb!`_}?&v-&(e-nyn)>6d00B1v6;yu=-c#N*c(@G;sf_|RP}W_T zTOt|*7*Qy-XtJFKOgiw+C;rFcy{VpzTKmHMw~Uk~VdQWxTA^yJ(w#R53q#qe>sZ4? zsD!>W4+j-35neqBGe!(jU!kOW7kPbo%&K&9EJVr)2ruZj@Bp%oQQ?i z{nlo@&*lr!yi&|@jfPd%{Jv!*9HqGaI5m&bl0DM8_pz&#P2`z=%ypb0AuZk#2%eVa}!&qSP$;q-(XK|Zv&X5rr*ZHTVr0J`(fMDxH<3K8da|A>@0dizGd6O;G3*w72>OO zbFgPMMq#cC2fi=qE7|TB%>NS86vwpOdi^cjQ&ZA!Bhr>ze|WQ?F0Fc;Aicl1x(N_$ zLHYH8DLwTMl72T!$0r^HsN%O|Jp@>pSFU~Z|4~SJ*gGfdf_Z>dY4H?=g877({R*RPKMdL+9Ud9$^Tvl8 ze1}c@<|A(BV;5>`v6VF&@+p|vArz#)7k+LY$nPycaG3Wz}@*vj~fQ*m6gU|Wu2gmCG`Fb?rEXfe$3$I@Ixyxz zQf&jtiobf$$BGUDzN=J>2`1Ax>@;SH@0EUK8CtGogr4e*f6G)Ko``(O{4js6!8yQP zxZ=7DZH#aQG60t&PEDy>k4J3G6}Z$6jZEiy*m{nlZpsRkpl`VpI!l}Cu39He+?eyY zL$o=W8V7qn-*#N++2+}%KWTgQ@9Huraf>*Rzc>cC=rqvi_F=%T0r5JMM~+$51=LAl zR`+9zqu*-$v=(Am;CbVm4+U+EqKx18-};4pzKFDY4_ep8Oa!10Azb}F0Ole)_x`mK zu;Yj_;&`G>+0AILKanW^haNQQ&aEd!cc^0O@b$RwT!6wc`Bg=Blv{K)2{E^&z}wcL z^~oONbkCFqJF+n|*jE?($Mti_XO+6SdJDfm9b?{tI<-F88#nd`OmgTASqQp2DMH4D z_oJ?Nt*mCP>lz0r3nup7#VTW8^)Y=)zJZ2-yhz7QBU=jO8{0@4athjSKcPBr+FE}s zmyG(U{U-I{`M~ZHUwkXX9CSsLX?ftvT@1xNgcn z!n~^Xt|PJnho^^sMi=H+KVQ@Lu6Jl!4SE~+L@0-r%iJ$Whbe)gBHivvybxvLIo;0U zcU(ud*F`m03z-<{hIL;qCJ#pVC*ZpBjHmlZOAF*r&;Dd)s)zZp+>7@ii#3uz2vt>4 z#iPG@osVDso@?QaIQ)s7ei0lP)c6#*$B(~f>hyf}nO|CP<*7obD=T7Vm&id1_T+}4;cO6p@x zp=a~bI`e2K|M!jC8*64rV;_SMvW7w!lRaB~tQC_j z8C!|$CVRHAWXYDYRFZupYsiwV?9&)Rkr-2rHQVpq_nhD9IQe7h%rTGWx!>1)U9W5S zPMeNM`%Yys@TKY;E@pgNl1iicys_zqgl%msc6+qwgoob0AHL^%kkS!&x9;$BWzz9N z)A0b&XDh#Bdyg`4&L>rrYST9rNv+J$zG?-g*Y>tHa+Sp#r$?Wf=*ej!$@9mb$(D*y zk?`Fgt^tHixp@)y&Tk8TR;rgSY06sLdp9`P-YwG-+Fxt2ubiy0A65_Qn~FG8Kl;07 z>wEOI_(-Hyn*Hexf!~ncTK<)lLr{uxT;JI7*GWp6Q^&%4r@dc9r;xj9S-S%*gVVOv zBO^sz|H&@8jat$3{u303^CIpNyvAGS=O>h}H*G(!K6fcRVw)@_)tDS#6hAd$``me+ z_Q@f|Zt{;$mgzkE^29it1uN?S?L z2Qp+FAizo?`(ZWzFKvlZI@3oG;|PR|2xze7$v^Q3&jhilTv&acxndz2`D=0D#AtC5 zRvr4PEI`2yl4C7F55=^2FqGgYLI4J+1h2vgI+^ZNLH#w%sprnkx3`3Z`fvRl{*WJJ z+qADwB`+6?#c;FJXLM@SsMJ?5XV5L-%?WEO7Nf<$niduj5?CkL2NksPN=%r`^aV8h zJT+vg!`dAoabzJwvY13qVEvrWw0>3M9r>^8{7@8(9h4xZYp;0z%)7VN=Q$D}V`Ykl z3_h^(Vr4DG^G5MO0a@|Ghsl2-h;K=@;7}bD9IiPmKd#fw$SSC~0~ERj2&?=-h7W<|gCP=Qhr6~z&WEjad(0mm zkmiqmeb{?GZvBjG%4(eF*^pWz{YC^YLTiXjA zBaaSN?FLn^OgF_FrkR_{R5f<1R^K^XOaeUm>Xj*z#N$65d-5Vb^xWHn_qlMf$>}wK z(*8l4F=IE5-VuU%4y-E>G15#nH$B`XIW}3cwkDlPjc-w#HQBq<>RGn(6&0ZOdjOhk z23GuEWOF0k6P(^8760w-vC(#rfBo>f&bmOG?lfSCR_w1!-n+*T-Fbk-(c|nPL+U-+ zNukR{s2KwWLjD$o+|JdA7D@woetJSvKIOJE66VRB3vn35>pCab>Sd@%0!%NF#Tf1?SCj4vY!u^B_*w~46gPe(p(X{w3NZbN zW(s$z+Jc_LKAIWl*&~%XS#T*5SQ8KqP58RG$*XG7H>}a#+^%iUd2e($L`#QwG;q4Q z6k-J)Xmf#R8%EOREm#@t2?gN}YShZwE^VCJZLA%>3d~2u7%kw7t{TGYuTw$}B2`H+ZiJqc5 zH=Mal_nGq(xZ&{lokkPT$O(`fm%XxZmt1}zu0DjhjtP|A0tb^f#6ot87Ao}5xJH`gLPULzh9W0js^m%GxnFGGr#Zl)do>i9bSUAr(ml?1A#`hBx0o{gslc94smh|FiG`v)xje6aTWTe#hY!9@aRNz1K#KSfh~1 zlzfuslhLXC%zDach4~48Es=6-RoRD^E}GPc#0#{x%%zXnhBh?z(N6c)QBiBIt8@ROMmT8544qx{KAR>T_>Q{yS6h#7CPJ zQ2&l3%JUeeAVO&m3o0bwJ7+8@2a&U_%ZyS08xtX*s%N*+wNf3#y# zkTuMnAeYqc?#Qmlf@NidNk8DW7XBC_1cZCHkc%VZTAJiqZf*u}Mg|6Y&>1+cw&?ZD zzzPlSml-wV+5Btrz&tV^lRTtENy} zl7F#?4`Pk?ln9}!S)uy#63lX}IV5?ZZ9D6EYECM*F@o57Jl$_j<1ld*Nw8{+l^`LQ z!OfM4&+ZmRe88Y?csfR|6X5NzNhe?gXzmUZgwY*5IcnVGuskLH@OTGha^bitt~2j{ zH(lt5yk2X1b|lh!>6wuS^(92n9V2L&pbFc$j>Px+H|hu#Hj|SRzi4@^b!#*fwN;c- z+^?s&_}(~pXqYzgz!IsO1ljWf#My+{6j7sH9IsexDgNK6e~=t00>Oj3Ym_(e{)p_v z+`iXBqMEXDBj_3ap+H!TqmYllCZ2o8foh%;ienm41@Q0&x@b{4s2DS9R>e8`t%t~r zoP^u<5Xa@1PYh-k3)NzPlTu4@rdKZDq;Xicnlt!G0EN%=52J2|N}oS?0?fVcT~ej& zoM`{Oz6TV{5%sdP^A0R!*L>-c0GX9JGx0^cmL@XT`<| z^aYE=&-f5}{F;hSp)jFEXA&La6a3u0?v3`?WP!lCfA!2po6F7|6e?LN4T`kdcBUNM zAL7i!aleqE<&;(rky47;^Ci_`fRN_40tA%{h2}VYsM1vu`Su8VC`238hAF|}@Hdl{N-vCz?qPgu>M}@kgmF@)YP#6@Y_nwMp zJe_lI6o%tfD6(ddYEhZ#8u}gAonBH$uGLsiPjG&sAz}nZaWqqsr-9mld@dFS$iJ6Sf>@MhcM1J{=Att%G?m+r-x$Y3oJ9zL9!p@Q7EYvUqW zvz)ajQ2$I*lk1;vtQ8iz4VpjsrWCt`r>k$LWD0llGcoOO@TitE?rTp^znayrsH z-k6v9SvHlFG&sMz9!+%``pC+1Mjv`G7sYkOPk+32W?S=37x!|%16xD@<*^N;(<){yYM z&wUD7^M^kuSMEjlh5VU6-Z-gqN!Vh#JLFyl2p_29nkp&7m^bH(E?r=pyWw<+ygo9O zKfm|B_>dC0kmI;ao{$TA+va7sy8M%E#v-VNvP8DqR}KH;s^0xiyvKQ0b>^ryd69d5 zO^`ch_lewR?_W(4Pc0c-s)apY93T?$RpMVKTY^SKebcHA=YW04_ox>%HU0TfnY1?l z*C}!b`}+7}b)=L@a8U40!1>lz^6{_X{OsU%ZQ`jLq80x40_~fsu8jYFv$f}6HJzhA za+ITU>?ckp3!lt8y|4K+JLLDqttOIoXan=dnlX)3NrUenC}HFLqB_qSL7jwX_^^J)AG&dzuw;`*5p8T~zDRypQ>v+x2qPOZP;$JIx-cqn8J7|>j5;~y>DUi{ zj{k&28MS(JvKt$XfNA#W#cRd{6&_9Rq0n9wv;@!1E*78=Q(I`x0XLRbp*LQ#9I*%j zxZS;9dzl^K(21An9lXZ1 zoaSe5+$6WQwT5i{UEFG^BpsG)^{5@ox$rHo7}XVeDkg*mzRS|kBx(hRZ7Iezxb>|fPkZ53WTyxx+v%0@qtp|mQ&`VlhZ@8X}ol{voc5BB~J z=J+bS@kt%WYL1VXY1WgB*vKk3o$R*o+v!&0DZ$7_}(4 zC>ViYg|g`aY0D_;tw(aRM@!a&kchv7#SsUqO*&!QyPxlzpP4C58CTnxP>G#dQ$k5@ zJhpy@E)N~$ZrcI5w<(E9>pO|oNxa(i=qS=G2r+jDXo(bSM_!y-98%9wA1&5~8og_8 zBfYi-@L3R%mPVF#>^mLk>z)j8ryedYS~CpF$>}mM5;_s|%Fd?Fz>)waQbd4!0Rv5Cu_)NW zxt1GVTSE_~`g9O`P7GZ>%{mmykYlZ!={u7O!SSw5ehQ)HNq$^-@a_HTzyO(?l5!YB;rHLdl=~%Vhi$YswC@4b;4bqVtJU&pDAA}7w0nv&Y@uUwuMi+XmOsNwo@1Dh?Wo6#NliKMtu5Z!yJrdp9I>yCloYGoczC4kR+B4K@GvR^fQz=DlQtvAY8%((k}4Y6l0O3HNW@oZsjTQGe<6ruJOy+;TwQ>{W@EumAkF7?gw(-;ou={BcE~0&d+lg~R zC#!ZS8XFbFUeu!uqF>c#`Ns)!A%Er+c~v*nD#q2e2SVI#S5=JnnkO}wTyyhMJ6ZbT znI<4C^d0`TG;zI4colT@&VLt#1R;VZ;0W#zKL_lZB7ZT~@}x!TfgPO*?n+YuRTm5~czX@!7x&@u!2DiyzuWEvsSJIlDhRV=wln8a z@}o@*(^-ZV(4;SsW^UP0m4>`TXTkJ^pGk)TAA94R_wS-kIVKhtK6kO08p*s^Jp}8o z5TR#TL+jcV&5y0u17P6a&Fjyqc*ggu;t9NGBrkAsbbkspi0T5f;6FZ(hwr^i?pNKG zs1Ym>O~l;Z#h6sJ=R6I_P@74$ESIds*9^CnFdL6NZRp zau@p+3)F%PyBSC_6oK=`HA@W`+``PM@G;~UOSukBONe3ETXp+U@EX$|#fhRk?eT0s z0pPIlHiqChQN8S9AmW7NWz)Y{_*K=Y%K#m7C80>fwsQ3WhbR2i@T_Ax@8{5r3s}PV z5f>IH^F$)Q1}~JM6mK^JfUF^%j5>JNdVFWpDR$y6P~&&Chq~0*2h_k@;GUT=kYh43 z7ftP(dcp+31F!!-Gk@ueMhFLhtcHF$C;1F8EGq1cW|oWSSZh+OVkBZZ)pQJj98zOH z!(s|1e&-66t0#dBU#kaO_FD8(gHibv+2xURnp=%@>)5J_ls1PH%1x)4qVm4?H@_RHv!`zAH2A-DDy z^c0Hf$jZY7Hx!HXKT%f;f5QxNJwxx{pd9Q~7?sh@5ml8dS)JU^q{On#&xrM=&#mmo z$9I=ZVP1U5YoXn{beLN-q>|4`>lu6To)k2w#c6A+75eDPOAbb|oJzcSf|P~yN`qs0 zBF0(E`Ri#ie2f|$4}?yvIk8;iFwL;L9rEK=tSMs6F=ifJF{fm zfO&oBc&2Qi=0#VJFZVhkBk$RoaO4kftX@UdS+*MXYLaaZJL=fV$Z)e*G$<1~{8@SkfzqDPaW zVSm!*MIME`-0F_ckNmzbDte3VrjF3Z+T-#Hr{X)UA}94hFw(!~Rqu%s+6oB>C zQ9l99uyhKC8-Ae?+ncvk8iEB(!or%@Zk^oei8Q5ELQ zCH#(Ss>|jg-vapN>Lf8YFkSk75JCRisINQn=j8W;8mH}jr$gDuvbgqxpNGJBTQy8P ztx4UEFK!QE)(Zc#en>g2U#kQt($=t}^k37y^S`9D$lk|)JQSP?QpU$3s4J0gFLc1y zYDkZ%mo5N%*YO*fZw+c?T4q<#TAK57vvUkqKP~3wg+!J+4x)2Tn(mKGPAcsW`yZ`` zO%MP3M#S`jVEi$q+v-IYvIJtoB9>rX$_+QI8x|)aSOse&+QnFL-n?wAz>|rR0`NDN zWK;>AGEZ`hUYIE;)Ml08WsB8K<5s>&ueO+O6T{GNR)vE46Zng7I7Mv#rdc>$I{vnl zR&>)TW$7)E1Nu38Dl`p}-~KTB!8ood%#r`?S1l z{6Y*hdDR$|jC1p(X_2x~mR^aL<+f2^N7miFFjzf*a8L;%81u6_LfKQ{DEFqqz-==} zlu=i&9U`{ptoOgDb|Q};s}6&5CJ#N~y@QyGF+x|&2AJ$Sb;1ARt-UBnxbRt_1_s() zbuSIfjho}q(j$TSqn9F%qJc`XxpeyUibrD>r0P$)$oG#T01gc+0lotcD~4j%(J9iA zqHt;^W!SRM-|n|j*J_b$(^R=<#P0)prjetK8j@P^N^rh>K%^9Rx(s z;Wd&(k+?6RUp#4}=`|k`^`gMhfEAwtHUu+ZZ+!s@7jsE`Je+7ZpuB7W&DBAgb1>Ay z?3_hd|A#K(#DP~xU|I8daLmh&8CZx+=3{_W)T?syq=YqT3RO6)?S1&reMlaYQ?KmT z=Da02sDUzpS3707-xgNv9Afte3( z{5rYT#+k_=qtF0}Qp-z)WWw_yW4#j&Ar{8qQj)xI6`IHY2qJgEyF#8>Z6@SfgAzhF z3*ih;~`!cD^I&F=km}si(+iBerZn-Atuhka!rtf2T>wCBe*4EOhO{M&MPZct(cA zGI2{kf?(=Z(ReHXZwMz^`(>~wfvxg=L*p+f1rA0@&y=~Rs0tgt_EXonwAT66H%ICe zubKE^LH$HO`u$$2CsNZBWnHUbyu|e^d+f;-0aPjfS<}k@+DK7Pui2PyZD2~z6CBG~ z^O=&-tmds`iopuGTkKgtUXk;i550-+Z%G=7Eqz0CFt*V@s!17ER2*h{fdDvH1LPG> z8_$9X`ur)GTQgrvchZWrfpAiJTxWQLSM-L?UNI0ej#dC!t37l}V1LhWI)5o3NPTCm zzH)f?*TQy9K)eIhB}LEw`n!^th}}Pbhbi5|{=p&b7lzvMGrUWZOKyHtl`QJ2eR+|T zjGGtDR_+0XNZZ>Op?J5A)6vV{-Zpsc(pjgkn?>W1h(b8~<4^AJ)WN&8{61+{t&-0# zuQP%Qt~ZTM1pXlJ3#!+mA3BV>>$J?=?;`_##)}~KRhwJMC`Z0QoVE2C?*3b45SciC zc-)l{nt#ZPvh_RRc3*B4*!R>3r|$CuiwpvLsrg+yabA5~CE6^8jwo_!IPpf`-+}R@ zV&IvC_XgbD2=v{FFB((}xb1xPM2bF9G{3d-i-LXWxywCv@xgg^dr)U%t{>%7CHK7z zQ^&8H)T)dhc;>_Ijn+=3I<7TluhrM9H^tZHVhYmwATii!0quc?r*XF&TT6$U54*oc z@H?d~QNl<{Hmu=c!P~U_cxq}`^QQ|+?ryB&#B6-bV{?G?1mDHz<@y?-MjE&?YA)1% ze)L~CGvDP8cei=#gxST|PQJQidKqrzel=9Tnk)d=b@oQd4ay3!^}I4jUb2jT zqz9_d>r^!*O=Jk6)P#hLyr;vKr%W_?XXI5%@!aRnKHHgdNJ@Y)iwy*#Cy+APZWlnG zL_lnhI#7^g0eZl@W>}r6_jR&8XBk#)NrNjc_-1O~1v32y6LTAo$TAWXW71GbL6wR> zoA^;h3h+pTjVW@`4{9k?nW7-_RnsMLbX)(OF=CKow=#i;SoncT0Sg#Y3`)|qX}v4Z zXg8gy-vB;9028%~J)rC%5E4wK@-_rX{vH#J;Y0}=f?gM*zD{B&Q5O%7mf(Q1k`5jM zBmIC@-3OC?1c^aBmJT=WZ2GEf!U2rF+T-Tp{z&>d&Mb%vg7++r67XfD!3w|XV3Xbp zO2zGsAzNnn804dx^dBsamR_EDCTXN$Or&a-?g788Z4SsUG%Tij|Fb-b*nLpkj zW@el;US*+3W5drV-vP-jOe`k7ue7Hx)nUw+NDG4akcI&I}$XfM3pT3SNFrgvL0 zRjaNrFVJKWy$3OVdJ2wgAYw0t>?sYFyyCq7sm2TF^Aadj%r#T`FM*Ws27}TjH0^?k%*lL@vY*Q zcx>J04@rDXw#_q|VIdJi-EVg?5$5W8s2h3Xqney<| zPkASWq#TwG7!onM?~jb~?fF8UOZAD{=4eHZ)PYbFPn&-*m$+6e{k9*SzAj4F?^bT! z_PXfp!r*7;Ln@})8}?iFOQz~8O$mb8s}Jr46)aPH)U%Woymt=xN%AK{)x-z8EN6Uj zPjiKGD>zxIzr9!Rw#CDKhN6pAFDT43W=iJ%#^_zbCy~lS>$=nQ+~!tP7uj*c=OyD( zLP}=+J;G`3PZ~nR8)Ip$As>Es60?U>J>z;9tj><()^|jGOshx~n|%33y7(a9_brs{ zHQ8R=VUec+H@=*!!JO&zN;0El|F_C&{>x4Q zTB9R|Q$o({L>x|9OUo~4RCPQP^iq*i9W4E{el2L1)sX!C2kM?8&hj(S8e6C-m?9@pGNsZ+Gw23I?_e7J(NyejaT)9TP>Xuj2Kk z`V=LToI-v-(=5IwnoTIqXB>nKiESznjHo1>3}PD@{z(tRCf@K5goe{I9 zZr;7zeN6K`uAkpOtUmhEu_>;3%TvFH8g}^3jqCmcg0Ry(`8wszMsI!j7-{UwY`w4e zxt`I;?JZ&^&FN^9NIH2k=d_@69?9RwcfLJx?{j?;1s|9W@2w~2wng68%pnu<-8$xP z-aP#1v`Y&w0wG`0Qo!}>=EiI(aC#>eWq*G=RJGM|h&xs<)@eR4E!OG~SUXfbo*Rw$ zyZON|d{wkVBhq?}+M)UD#d9SPEBlh%ok{t%uzUvjWUY z!P4n}Q0KjRFmEf2D2$9Yk*qSto9p!2Jb+~Jqb>T5yjrC-in}BMCe|6~ZV&_5$es=x zJMrM6@7Vo0Y!R{j&kRpFd3BAfChL-H3`DhClB~eRaTEh%uKkj{Mcn$nb14*f1;P#% ziCaV;&E)Ptm2$FUnqh%P=((zB6>`YQm)Y<*hc&u}Il$onhy)W?Dou5mwk|;_`#wg~ zP^muK^cp8y`8lJ>F5iuVllbtTy^?!Rc{=(e<# z1Up{OCpp3PA-?heD$Z2$gIF*16~r6Ns5^ZX7RA`OCv9yV&GSVR6A;|m5ar4_-Lm)K z;OAhqsf_kv@nKa5qmeS$%|`C}b(=VYV;KO4($_%|(R6~YwJ-*nyqJp(@Zd!09eDP> zmczum+OS}47)l*Xy~t{jXfU74Vc79CVBsT16qEGo@xbn;utNwG+jpqho z8O*(bGU=e4H(Lq9&;97rM{T`)ipDTa!)H18Rhc=>`k}Rnm#}Lqg9Ona!yANIGrTW< zJq3eVLrQ-TC1bO|mFO(z%8kHXwlwuNRpEMB5nF~pR9VX3UlrC=(XT^z8y93*E03G! zCv@8MxC_OV6nXb`W14k@0`vVHzEp=D4N#BXk2(f&_nS+g5H?~VC&WH$Hr~oiWRtmF z!}y#zNRb0Fk@(c6JdsBw)l3EYTFsG*Cjef8>zsJVlQ{L_@m#tc(FpxXps|jmJSr!g zU%Oa(jf?%7-P0&%`siI3<{k)n(|{@O^_~ByjadoGnqcK zgc)TD|Jl45KoKfuO?r&Da$A#YydkOz@zl|eKx!z;M1XaQMK5mdMf6jy`v9@(Zht$4 zoZ1ad9Da*)dvfo^X3v=h+3t)genpm3+58Xx!xf>q3tTfS*<9RwTq~IP^6oczY7dm2 zN7}j7ec>=;UrNY~!R7*SqXS&0g_Q4;@lDi@<8|Wv{(i@P@loIL07&g)0ackewKtjH zlH`$desh^TZ1+)#M{tI>arwiWlA`t*F8T0W()YcMqlFs5!G>>J-#?HSH0(dS=U3#5 zCB1s9O#oB8J8i>9$ESByu`sQytfELkfly6N%XVE?mAx!88n>WmVYpDFFRa!$J9^cM zi7=t!?c4j#<)B9Bl$fl^ea%4Tkt;p3DwN9lEBEqJymB|{-~cX@&6~<7X;;@g1*1FdxVq|I_sn=k>n&QS@Ku&%Qv$U}J}Cd(@o$Pp@)+yO6C}5$-lYKY0e3%xqZ-s10Ny-| z)MmI?k&nE2Gop2gEw#|R-gAwcKseVJO+pb{8XqC=ORbXkd^(CBPCU|C`a5tcuLtRw(x{>{dSf&uhqe76z`p)0E^YlAY< z1xaRrkg(emM1v2BX@*Z4)pbUt(9_X6>zN@~SAe-aP0Kn^s{F@!hca_{WK2 zoyd?jxxeg_Hcr0X?P6WqLr$zSyWxYu0M}Eo3k)nqKWb_sziwxHGDP3A-|kyI9HxY6 z0kxSpS?>YRqXh}pw^I&95|d1`V~19cFp(PTz5e@)7xHnzm=;XE7;x)ID9b!{!`%1R zli?7A++BX)`k!p0pH^Mu)AJv7Wzc?v=Qafh-WZLSmU^Eayp_sqab)PlIb7)Y+AY7+ zgbjjc8w8p(bo)DG*OT)kc!}BhC#fwo;#TI{R@WB|vDP!GF%L8VFLqwEE=Xp?No#4H z!^}|{loUQ`ZtGjd_Kj_e`pmb7+9EF<{jk5F=^_L_J6hDu9Ppzd6gW_Y^W0N;wD(&} z`Ol3KDS)rqBFJTUPT_64d!+MCzdB+K(V4aoXAM^evQ^_Bzul%Ia!17R&&rC?qNB~> zmX5#CX_2ify9?TW;o)1E)lP@NI^VrEsI+DDb*t9i8LC?-hW)0C- zUqQk6#)bx2cxA{uD~VDgd?)RfG9&FpCFZRhGbknVXxeApU0mClp0>3(*L&DaKHmD< zU14hh8maeIzfW%8at!jYZQHS>&Y84pfdX^8CdaPUPc%yQf2N@#(#RqMB|O<>88_|NcFsjQUWIDNg%k z;D@liH_nb2JKn5t(rRvJDk`EzAwBEK-al2Ff>gS{@3rcT1O;^*ctx%r{JBLGz1h)R zm=o-2x@JnvyR_g)n2&gS*lkBSU6HBX$cDe$Q(rl<-2u8Dk6rWJ7ftun~s9HIF7dc?2wfm;@N)a`LVD&hhB-$q3CG?d?}y8%hPP7-_axk;^l^hy!VmiXG##{vimD zk?8bP{L9?A3TSbxMn->Fopoi~F}g-j7(tRgV+<78Ya`WM!Xv`>{_Ksfj23By-@SkM zZSn8G_dp>@{t8xCN3maZn^S+m3en5R3OU{w1Kjdw%OI$;=YiZZt~x&puDtz)e@Q?Z zSc-&%*6WySr*J;_pkTx{@O7x6K8Wp%jt7BlWR4}v zbO*1z#B@AwNfCjkfAhJVRUAfI5^z<=0~4joHs_Sn%^xx1*r6SQ`;z;mFmW?g7 zGj?7#(-g(vW72`W>Nn`-`+MX8zJiLb--uc+8#Wy@!{AV5V3&(|QTgX~3x6QV8$Bd7 zsH(8Dzoaz^y?e%)DaN%%I~f2*o@4_{us?x)54=5iZ-Ry_V2H*_a7*1Zu9L@z$0%mo z=kdstLbm3-+r<>;x$Eoz1W@f*i#1>8j5%Nf*<{y9Cf9&i0BgQ40QA)WZr?EID~J>` zA2M-fVu_IhXNmfZ7$pPHAjE?U1~CUL<3rFfzU1!^BMJTBogLF3AS20JbsilP;sDe| zMB?K@gh>pAyZdckw*8ByK>uL>$Q?_sVXQL`iw80`OU*#py$m8zky0yZ^9TkF_vC}e z(s|Uu9^nUo@}>vj0GwFqbaIAXC8TjmeMw^{&fgt9V}ssins!K0%45y44)I!Y7r%}i z8404zmIuGQyrdYheeiRq>%ECH%d6QDO|Z5}R`Vv#QbusCardIcK96HQbtN z2>+RSO_w6i6zkO#fBgi&kjoxP6nm;)!VwS+H_MmCWy1X`u7%i!sBrZS$K^B1-98a2 z7caYJW6G$9;(ivy1TC#aSbbn+ea45h z6AWFGG9G-k2x$DdMyt%S1L~ zFNCu3RrJH5$q&cBbdIJ^E9itDPgYX3+x}J^(}Iq>=MO+T3Uk9HU^HvqC6Y*|MYRW} zIwB%N8~Ha@&OB@J^%{~ljiIP|xTL^>;#Uu_>Y`Ffx}cS#FZfbvu2iCTkK&Z&Mow}9 zjl6rbZQ1Kzlr0u^X~M_zDp!1S5CBwO>9=Mr1oge~w~5_fz$~2?t9H4sNI!9DOg)-V zd!b=!R^J8PaLG8GI2vD9-16H;C183kb>%!)l6#ZD{d(cl@hpOw@XznWWzd{5$3+!& zcYf`rBcBk3(bPD#VLIrY;_}WTuKD8p+?=TOtCA_uu&f73PFIu_bLHp~dyIKtV_J~n z)Y>c$>vEsUi|MP^4UW=Wk0(tzIS)b|}EYYl_wxEH=iIVIRo5ZR8g|`i6zol|{FoMS1Fl%=P z0&~J+Jp;*JhfzYlzsk(|PM>FycTgtLMe;He;^j^jHd75DUB-rOS~u^Me1vK{FM&`g z>r4d2+RDPXD_<5};qh~I9+}UwlsV3io30UCzM0XaCDyY5>yrag1450wBC)Dh;~2~774F0W6`6oFdKIfERK9Ob#_3F8-~x*Rw&+wZJ#nKJj)*T~MMBzCd~yCsTHEjP6W=Md#%(76}1W zU84rPTr<7*ZN!gH^c=9ajNf51#{bQoRS{SASy`|5T~l6xQ@b5Bk#!&M{@!OzmSF0A zivS#4RQ~gD4>J`v35zewH*yqq7cdx1yV=qqZy(~|Or9H)+=K)_# zy}A{r989YS_3ESy2QO2vO3z2ubsoa6DEs;9-5RZ75r=KQ9mo0ehs)|6+joV^b^c~L z9eizZIwyQtXU65fvjHi#L$UuB%wuku=psb^nzYPBznj~3h*@BAQXtKhtN z#1r@NrzG!-nuo4CJeLmqIvOTJhFhr0T|3uVe24ZRT-X9iKcZ_YvdXH-NLxo6D8D^FFaD7>DQ)>vm%dM)-tB`8RUtD*M; zfBt#HZqPB~nPUgW3Zjlz4uBktXb?tx5DK zYxQ8E<`~#;r;68?7RJGzIC7gdI!|{z<{M7?>F9JEt#cIHv_Ez*2-g$J-PUp}L zhtuX~i>s$1ccqF=+wG>emX%ci%T(aY2jYGC#vN_^GA5$+$w=hV_e$93zhUQl4l(v2 z)a7meNKNXw_^riR;q9FKdrgw1Ij2GE?+IY1ys)Am8rXTcxkKZ4%H1+UC-NQ*+h*@@ z{N1p+dPFU9ZKvZn?NZxbcbbz9so;2O->He_AsW$>*+YuoWJ3Mpxe`29}EtZ$Baq1wsrn0k-V^@u;MQ=&)f-5p0Q z^UXIcj(_!agdDA7EwwhdM8p5?5x@Wa{^0^d+WNJ6zSu?}jqt|$;;arw*+K05KG{=f znX<7>SprLn>?y}l1+aBI3r%Yw8&=O_o#wUf-c`z?)wYHg=ETdyU{OBf`PE8SLATf-%XKkJ*EA|oQ2-W_;NFBKH2 zoL;n_1b@x1b0u!yKNwge;Z5YDco_oF=nENm-V7`B4`Z$0JjPLl+C0x6Ai-k;RA_?w z8)Sg1;B!l~bHy-^Ojt$+5|!a?47SW84f2Uns|~C#vtVLHyRtwbDfw#T>hKISku7a~ z02_e4`n9AWC#^{8q-M@(4}Ezk#{3Q_cR|aUY7Vh$07gUAR(I=+NZ&hw6P8)ZDf;f` zs*Kq@BXhw?DzGIoH1v32MZM!-mp1CNkzFQuP=UuYaK!MI0k99*+!*kyH=!01QI9@hpYp=Ggz~h?3^(~UcrO5ryQpFu@p#?cU`8xVAXU%bo zG42ecguiQYEq!#SvnI$)NIsHq0bN5~hO0cEpiWS!UO41(7TsPVXeE#!<&o7Oj#5#{ z-b|qA1z;{Vcsk)sy&AkZD{Is+n%6v_xdXQ}Q6t54t?K;c3F{ga9!tRBfdACs09xLQ zhf^(?FD_euY1?rt3SE2D4}>>r)eag1B>SP(Rt?81OB6~W>$B@Oi{^E(rYUE`w~6^v z4xOq%hOEDMqOG;5Io0B2EH>_oIOtgt_VcBIv~;WDfbo_!J}h1 zQO@}aFSEe;OYsghHxvIk1H#ThcuEl;xPSlh1$sVYcWqf%E88- z1dmnbBrs<^GZQ>fr^iB+mIy7d8N}pV`*FS@z!XJ*)?I}%1xo;ou@PdgsEBsjs&~)ppzGi;c>>4r6@Jp2Fkbt?w); zHcUyJdRgHjwA@{iaIF^Yq==?>sdo{*xl^do91@KV{Mp%R8G}Bp zW`gWzx_Y(^r#qn=8(hu=%u0C^4#+xrWgyR9ezUI zkP37rCc$A<`w_J21n#_SX&1`IYCmVngO+WTNf)K)PyX5)8`G|@iud1OFDKU7>Jt@i z)Cj~;>L8cpiGS}TtY08imaMO+zL9(_;Bz&rEOf-?w~r&& zo`ynRmVoJ+8pt?y$;>jJM=iIXA8SN!4p|D2AkU*3n5Ef>>78L83__0gCR+fuStKy> zU~qbH>{f!FWL#|{L9RYCiWhY^+fw0!X+_VS#*6ELfoB<9@~d;D)SRqYA49HmFZiD@ zyKHFn^X%f0qM)zMTAzNmH#|Nfx8+*J`TfEq#U;zoGkNTHsm9k|e;fnb3DN6)YtMPV5;z-k!Pix@B{;fbbm8A^=doG}oyCyeupkxD?^dE5^9 z$@mLMO*yKU-atM;=8_(s!tod<;IY%SY$1czU7s8n@5p%Dzh=mC=q=%DjJXx0I+`nP z%!1>*%iYU@HFnMy2f)s7dfq31;R1?Y-pYC3%nrT@IAw{(6_$yJ3CE^%SB}yfF}yG} zPt9=z{+bD5tH?0y@>57YB%}!~J(gV~f6YV!KWy~EgP}}1Q(Ry7AwFg|<3eqfRNxo* zX=Wg;NAI53V*s)`{+kpm&p?P3!>#7rlP>pA+&(+aRR*->^s?Y2ab_1eVFoZMJ~&R# ziOxk(&?q@pZt$T${7x0EuEESq-pWh(&OifwCRl?{2{`kVJeL+T@=&Xg(|rV3VeeU< z(+x5hGCe~JExWjVGT~gN*OckIL2ez790c^u(ZbwwPm`_v>pSLQIv)? zlYKZs$T2dr4waSl?p;P7dxT>pWFB&?vdPGbGI~pn zO&pG_WSpXOj^mg`GEOp1_V4O@yZ!#^AKlL3aJ{bUc|9KYJ8m?yp7Z(wFh)xIreHxh z5(!yr;!bR*UuOTv4&FEL0Vr|&n^pRQrEtwlE6pUpElAuo#a#V2pSC_AEC>Qg0O=1x zpLaoa;XPYQ>94cKY``pOZVx2Lm8p_XA68sgv zvAHZ3F#jwN&*^Cvxd3>#Qldc&^3ksUWTo+6bB?#CKYr)7$qK%8GQln}a1F%2c1u2l zkZ6uqyZ1+FQH!lz^mV$Uj(z%s=+WVey6(>7;qD{+Xn1f-L5ZWI&y`OCiv(mwf}0Te zwZ?s=RH2IGxqAg+k>3uB!a2`$XjNub7v0s5#oCMblWDfK>KzG;ea3p@qS6v~4Zs}e zqIy6UGIlPlm-9eawU^L4iT#T%E1gBeiw4aquNY%@;s8j#Lns=B7#Iuf@uv-#kuEU5pq)k41cz-``C;mhP4V;on1ZKn}j|1 zy|fd8Ys=w_LpWo#QqHk86?9U!^({%T6 zU%kHW(=fkMORw&)C+dE`rwQ&%PQJ_@jMn%^9dTo}pBzvU>4PijI^D7c!ikz(fMwqH zAFIvM_W&CQU6I||*$pmop0iMCacxXWz$!sWy}x6z$@h4j?r?Q&xisp2>xBhDM-2N2 zx0>jT&c-v$?n;zL_ua2MHHQI>ao2Wq|qaLaQFfgSRCq!m{T6>}0Ay&R4CGYj6UXU)#^ zK2bOPsP%Y?yTtJ|=FjHn$>s~uuTad+Da@x1-K+woc7eMsqEXTlXL`s3m$il9|cGkX%%IMlC%tENVuXuIAr;WG{O6uCAb| zkVtFCQA3jyxubD8c{I~773Ph1;9lR6Iw2AV?4(bZui}{?u#~ZFIGeTU5)^gv91>w?ucE$~fFG{eZC)6S7r&=Z?QB@#N<~;&xeR zjl;iOD+V-Cs?O`ml|*`Cppb-%&?(EQF|*PfDH0nR5!=&3xRHT3{mpBEez0I>d^HoO z<*itr*D-)SEvq9=G7xc1njexP&N2X_@G|On_qps`iqL2DQrkW?cgeKldf;GyS0elj`XWhO3ZObuwd&Sd#W@cJPWT`(31Z*G~ z;;8ph$twjRzd;0O>S{fhC!v9~2D)H+9s16KffCO2hn)?bhJd?`@WJC5;JW%!F~zD2 zeK*81+q!1!$@yp=EehN^XB z*`z?fdPD*&&AXYp)Gpt6^VPM(OJd&tKMP=8z8-xtw(}hfhzEUJUvPPPdLA5=QQS_p zv%e-mH$_jDF@vgeb<@+GSN@W=fhY`+G_c^k3A({!83l!76)`5HbMIi-OpXRdQ=l`B zN$Jl7Gb_tipCYD~&Hx{2in}=ieI^4?1T(;>(rHVQT@Xu%(ExP-AXgK^`Wl00l)ck& zPG6=x4j6CxGE+3N2r!;}M?M=To&{+_*0{_tEC~YUVaFVSF0jNhL5T(#6aOcOxC}Qz zL3ViD5Crf;@WE-|O{Jx5^78PiR~YfRVV|7^+A!>>F&6z2r(BG>E{XkSMqx6X(nlmq zYVbccl1es~V@0j>*J|e`xPTy#5PWu^#FHO0mw22C?5>mJg_Z60Eh7)h@UWN@tRn z$jLF8y-Z8t|KmEC5imWad{gd>YJy!)(*QC9{BXE{0c*f6@nG=AyjRiKm})8U44vC) zvS!H5pUfvS&|~U@zww@GRWAEOxWLZ#TtaM#y3A9BZF7N5$uk@YF<6uQvPT+nK&{LX zUm>CI0+-gO#omX#M?9JgTsA5f9I>qb!I^B$pQEypn+zv7y%1B$&2Rjq$0+>N`AW-? zb9FG6A~9ddoLX%CvmuGckL=5D@<_mpFErv_5sWSEzZGNoZIQ8CudBQ^YUzCgVzI_S z;>Za@-r7$B>=Oj%vUA=Qp}8S@3;W$ibte-~{3GkIz?pXh-0ayWbN+|xuQ+OU_BS^- zA{0tbe)U>7;@jS~N7>}&I@$A%$-&LPjW`QTD?fMl8zb&gj>aRBM#KLn;kT@jCyC=T ztp8~#o`Y<2j9&LCjXGQzZx-!H2;0n}MzkcFSgx_CTA7s2(N4zW&n(k%7 zJ5cFaS&-mzgLp2ZZ07Fw{?`flc_q&Y0(UaU)@%jqpWXKD(k`rQ^g8^uag4swb?|$? zN;JAen>ZNmguOTHY6$$oQ|ls)Y6mU?Ugrd_?@JZycF+t|jC^tuEU`=Xb6HD;vmC3cqhgX2h_5JN zN&M~{pvN%Oe=85>?buTLMSAtim)?1dzv{(<1r5Hj){B3pX3gpOuOwWa)hjuWJ@}mK7&JSCW2= zCH-aJx?OY<M8BB30)x!Et8i$V`j!ABfVGGa7}5c#TQLJ z+aaL^mTCs>bEKb>YtqIa|%Tz!+ z9Wiz?y(YQY&=lq{P!{m5?+3eer9G`8r-Gir5)8|&h&A|$x2Tcf?>N#yEtLLR+c&Y` zks656XyD_A!(9ogVgUc2F_IUFRRk|=tfRm1J|+_Ye8kXa;D8O}od9Xnh^<2+Dd>S63{5U&KeI_ocNde?0oD zbpkk+iIZ2%oM3lGn#ZqH2h74ms3_fiB*9t<5Cs3 z#2PXBk2N{|Ae7_NmHu-7C7Aj$Z<%DeNjXh`2ofXeld|s(!>O>(;0lVIZbus)Uvk&C z@=leG5%+!tu150QFIO-PNV*6OR_s`t(6kTklYD2}yY`=mMlK&<=Cu^wj15|YP9Sk6 zBJ9ZGWT};?T2r6vNqnPrCohG$@Ja;;VJhR5)35>eqp$x@KjwM1GT64SDlc$^pj(^V z9IBs+Uw$($1U(0V!JT6m*&uCk+P8k-0vZyySjXV=4D_qh)~B^)7Lbim-vXXXH7nKT zUtB71o?9rgv*r4Xx}}ut1d74@X?CvN%f}*u?ckS`$PIS)gH$pYy!P)chR_2rx*WYv z@)Qz5j;EqoH3z2Z!!dys%Ql-rS&W+jx4b0m#%*;1*-^uuXc` zi6pAGt5@+)p+YJ%2jvao`!X&%UF}`k?9$cAbq4308S=V_hzQt6IaLpPmJ$;UjP!&D z=ND3t-04N7TQjZm8ZePL#>u8rA|kdPT#4UDsiRb?dfHcoS@1<)9xJ5qEkYh8XLFtL zr{$j?Q^Tsu6_vWSVZ;vRUsxQ+V>V~o!h&q{F)jP6-FvB`)XVhJNXWM4(Nh|peu$1b zPNg5$=^pnltA)G{IkF58ueas@iSmO?AyZLy>#-XUL1xX=9 zQ*@{b=iSGqyTXr)XOH(A*QbwXxG}qtcn2_4?==JwM#r6I5?;{+Rj!R?uy#pmv7dcy_-_O5L_J`)M6doIV?2b z-uj}MJDMIkuv2+ydEL+U{t6i|Q&!eOhz|thq{mgbX4~#kkA8b%PNZ~aCjk6tdyMGM z4Yv28j=mQuy8GY$;oSLs_`3DD=d0u4+6xPRkF*46jWa`K{R|$@T6B~h7Yp!u{a?P* z9knS~E^=$FMKJ0A{>3~DYW=+VV!hL$PQnE?n8Co@Qf7EzfDy-;V~vP^=OoAh)*c`< zBv>eAOSOQk5E$NyP0X2jUJTLnWf?GM&QgbJqHeTk0MgC3Y?gTJM`NQH;OaF(kw_pi z!_TW(mTPl!@k>8>c=?XPYsTe@w5DV0N@x&t!40W&xjC$?~0+kA0 zd|@3v@_1oyr?F;h$NOKOWGD$hk|CQ2P;bqwsFvgh4XGFgV+cIM4JT}kMWeS66WUrJ zVrtH07Da^^f>V=jy_pp9_(V zwl@uAo<1PX*nMU~=XK7mgK5Yc1FCOm?M`5`z<{FoZlZzz`kn6mTjSnBCofLcx>e>R z(v-GFNA0`B(y$yb#)i>M9;GC{xQF8ABgq+xj*0_D3-86coFr0MS~A^I;(1zlEl}4! z0f-SPQs0Ti2nG^A8c-XM*U8sSREJ8bT3`uF7VH`7_3}u_$Q_XSNkafXC*0W-h6KK| z3=JhI@PJKrhAo9H89BvC$C5|40%{0ExidSiYp zMn-_$Nn$gGj~g{)X0RAmx2E;+0Ui*A*LiX6bjAMwZoU@IScZetiwr&)-U`!I7>?|w z;)BBKZPV*!XZ*PvU+#n-wW&V0s z^^I0b=SR#!1f*Wvw{K9*HG-3L(F18qCq{#^d^2yjSihxLYQ@*Ud(AG&qSefgdQ%?F zSn}vUhTEJ&ZJYBW$5l8IkMzaGS+wzXb-M>gmZmg~6sbfim$A*bpM&}bLzil~VkjiM z>XvxECo;+IUa>^7guVcKN@^@qGJ~`9Q$>=frRAf^q(^$?{9LDioy=P@+q(RUaTF}z ze*UYo$z}%OCVlD58fyW={%F#=d;*u1M-AJ^AJ$S4Us}>4K+-8e3aKbzL8wz9J7 zD!yU$fqzHcS6qIS)Qu5C4}7J^CMOCHd}}v@MvpoO`5`YHaStPDWpTpI2yPHfeP z>}!#{QCJ^y?tJ@GXLTX27)HTlm9lc9D&GgttaZzLg+DAT12@3f9AM+wowN|9a58A# z7^}`%^1Pcf<6+ujh39Bb43#QLqr@mq8G3LYaI2Q74qZt0Lj@Pmfh@Zq_mZqlHJUCuceJkI>uwuhTPPah8TBcQ z@c`e`FU@JA>pgNjXw2q`R2vW}VQ z=rOkiEFLBaXO4wrF~wXr%hdN023D!ivLx|Lsj)SD6$`f5Xur;hZB8RI zy!5hq{J#x_bQD*<682X!c-7o=3y3t!`z(E4xmSOYGRgteIXhEBH-US#^bu&Fx=69D z$pvp2$=e3CEi|sdo-L119WzQ`V;qoiCZgbfZSaM5vUG$v)2~Z>uW|%Y~`~G)Q4nz5Qx!Ym1zzPfMfcs`h$V$&1gLX}qzvAlIiHRI+S0dmcnG3-H0=k z`_qnq8@%Y_c>LY*Fup3!^B-ZIu)Y1?F7(!ueT7ngwQC}SE5CbKC*G6OG@UXuL^7+N zLf2Ywv78VAgw%~(?Op~}%|zy}YSUEs!&MndsM8}Xt4E|B-(3Q05>Y;YxmAqxNaMns z-VEDiCfg;pF2Kup~{;QT!XGgdCMJJ!=?$DkV@X< z#aQU}H^1&Fzt+1BII8uf1MRI5l}uxQkpARbKo5qTiq*oytu9u7d@o_@>Xn0%nZDa7 zXR{V^*J1p8xTjasz-moLjZgAAS)-TWvG5RaGlXL?#<13H899+%hD_yn>ik?G=N;K~ zic{)cavyblhpwBsaCp@EBX#jz$Z)hp$TS)KL#OkhB4_;exLxfPk&;Hiu+6vB=`VGM zS3N~hdU0CniOeGza>_)VLdQ-tIW%45_b)~YCz$V?PoLv>6L^C!MeO&pqgbBBBtwqr znSiUnsl2nUdpL^uvuL4nwBva4_vhlczn>R<(xLlsZvldyqk!>cdT8Nj1nsafJ^FBH z>kf_cAD_L=FH{fZ$ub8sR#GyWbLHb!M`;(^ZfK(OYYWkhN=*jgap8PfnxE>{LLL6# z+miapF}Fie-k%R0>D~|Kb~iRcb&tP&Uv*91oDUPOTDMGGuB%HQq);~^g(}^9SEIx{~qX&TmOEtx9msb{F3v zqx)&Qd26Mdr;Ji@<-;{Ns?}6$jk{D`M|(*nE$b(ef!xvV`4wE%^_BjE^+iATWXfuj z%0Mv{o>Lx@@mTXej~J4l`Vv&7m?+a*r|WDAMsmKLg`k-W zhD@AhAYQPaAp&E>mh+yJEow+(fp_hq zVyl|Ca2g<=H^?56NZF{K!yKS>d}q|@97I%g(gKp-S~Z&?+4p98OifDafcS~!X*p{p zj(GZUad?Y+CSw2C-a5T!rOjvP# zMJ{)>oU+d?O}R3PXkzYm|K2VdP;}CLy(U7QsQk_J$Ol9;&d#oN-ev%^^QXy_BnR+C)%{)>rL!b)>lPk#Wz=6aItH=gNNfl55oDX&$-(e0g z2TL(k2C9!Ki``~QX_sP^asXZ9AaQVR7;lq5=k+B+QFa)HoQBnNbBTjwE&;NLxhjXUYHcr}5}^HEZAlw#Y#u+HkW8m;@vQAl zGb|y%{2Xc4hq^Tl^Y%3@RUI3fhOwEL6|~ElTA0AKSeTLlMPDn>=7(?(5+?^Ms^DJ( z^R8ODP@+<+&S&S9sA)5|7WcqMsdCqnaph#Us@p{`K_cCqYf;_v)TeAHNd5%6IY6Z2 zOFp9#XEJz5HcrxpmSz{B_h;EP1qm`yX#D4?SnGUG7OVH>0tPHFGp377 z$!3+D!)A$^AGvc*Gr?0Gezvv$b06&#u9UWI&H^YFFWfcHmUn!<2VWZV8>fD<5ZOHB z;sTvDr&EsxGSCTuw)@UYYpsIU0n%O{Q0oxm}VX_kKs$4xJ=l%bV7r1I7uh6aC?`rb?3Xzab& zM_THCe2KBPHOX#TH}cPJDgKb3qf2OTqq8`o7Vc@9Cv8fT{JgG5%4KVpOn{IdO72P%B$+Mev{Ktdy({&`G@yLae|4D zH^NIRka@%RC1VXf75yt&%*LlKX^tKF07Dd7kF|Cb7OrCU>~+Bf_#MptkZDgGb!jR8 zzN3<<)unr>e75gJhzhwK_JU~SLJ0%t+H*n>DJ4a|m738ZN1FL*QPJT#!UEcP9Tkpd z6YJAHna-~R(d{G)Q612unixsD;9U@*U={v$@-1h?Gp?_#FFxd%P-NDAk4zMAq`hjV zKN-!ZDmTp}+AX`+ry>ZKo5h>mGf^aPc|wZpQH9d`Oq@W)A5Mtux!#ZoOaSOJazhs% znVCwWKKd%PS3$&l(TrI@(K5ut+hS|11Q9eeVl#HDOhqI?j8zM$^l`4MT)|g9Lu;%V z*yRZ7`~`2Wm?Sr)Z#Bqq{#_0|r&hL;pL^Q1RjpS9&s%>8^sB)7;!=6uwIC=!q{Z8i zX;aZNc{&Bub0u#1Tu9XX%=kk)Z&E49_L*-ADru(C5LT7SD~1Mjfu5MrejF_*E8rr@!Leg_6|UF!qi~C9bD^ zFB!AP%#<3d&VDG#Rg@;cGOfzhWb+5$2npuOou#G#C^fiXSm}V;hcc)C8zKYndy>lOTb~N7#Q9@D zKk#pAbTZrrY~hzAU9{mC-?|6EN4k=|3EV`q6YMAeWo|Mskze^QYBLglhdjiISCf@3FhkPNYWVOVa z6Z2V*dzL)`XINXrY@8D8xgt!Q+Zgm85iH^A><=N#QVGO4wo64ltPssLG6voCytWN)ywn14Pfj z5AE@Dzl*GY7_;*vGDDkjDkew{p>(6GVJ3P$W`f}oTI`GOH{XBxQX_i!ar{N-Oql{q zMCUonRtjJ8QDAh`6~7zfiIk4F;lE=NJ*U_AHkC#0{;p8yWxHtO#LNtN^P{c}zqoU@ zwH4e5L+?5Sgbi&ojMdad*8Kl0z&wQU)P6}r99war)*JtT`+G5F;hsgX8+MB~h|%k_ z#}T5K?N6=U$Mf0ie^N2)G=}cu)$UDM(W_yd#j3QftwB-D{$}H{*6NB%6um$AmHV@S zQ67SAh`vnVkG(|QF!mzf#5Hnl>*dzum=aDKw&J{ok>klkf6=_%4$Sci85#NO$J${e z6IbgU%&(zg8YcXE{9t;^l@A^fAf~eGhryH4Y7>68Z(?TfwDsD?Q#9SkCc(k>(bCSY zqy34k$*p~LiW^-K|2b=E$xoM^Y9 z3;+vXc>;eXT~egTx8&%P?m>6=2|JGbw6&^HI_}@nwU+a)_`*Ehy-%gxJ7alnx^LBW zMHf%@Cem9yJ@u0F6W$iH&Fxi{f>?-dRN%n_`zq+233uXNTs})$ z8uxDgDh6kqL91~~St*p!f`d%Is@SU>arV-t8Q&+Ribjz7EF1D`V2u&{s13?YzB9j; zGfZS6dkO|%t{hB!ykIK~xcdcwPq}%z(HfvWH`w7UklEh+e?96d)>QF)pDJ+|W@O3E~Et7BK$)lLOs@y6CtF-uVaxhb|@#CQ23u31T~t^`}UK*9oHM1WLF7tLX|qL%z=BD(BpH zzAt&ygo(w$ShAeXwGfocu&KeU>JI@y&=~Bfg)vDC2?ZHgq!VI;Yy|4e1`r%!i8FSu zC_~Xj65#vymf1&$5DqZX*DEu_$^(!aJl^esD+h45sq?~A(tdvR$;qPtRGY(Xd%OQm$og`n~h~V`#_C=&fZafdPmRFzuHonosfDu@* z*d!jn=H4$~GUGvy+`nNV{jo<3nc~EQp1&gX=mU`-M00S(>eCGZr+eSegG#Ug=Pe#} zTTQ(3Z4>uysXi5uY3B&?Cy}<7R}lZ=1^iNZaE3tBnm|y_Rvg*o^ltx#Z4V<6!nu0!`mS>CdPT0co-N zo}70cE)MTS;JGD|Kay|CY_mwftDjCFE3Q5{MgGoXsX&$|T-yxF>lOX?@1jKq53XTf&S7M=+BoeMZ&Fab`)f$Npf3r4{ju z4>7Sn9g;iKn{<=rCJxVBDwaB#>pmfNZ$GU&e4)GFqq|=`ds5qdqIOR{9*i{UwwMyj5xnnVt&$S9Cc^COTjnivO-AcxER-g>s*KHY-%rW_>Cw=3#(@l zhF14Da$P64s7vU`&9w@C|5E?bb^iu<4%ep_pJ(h1N7o#?B3Bdd5N}S+aIv=8-&e*4 zW~PnSG?^xs$lwYd+X>{@NUvRXQZM{)9B|7}&GlcJEvhiEb4qk3A`(ENTR^IMcd~!? zCvK!xUR%G{Mwhg%)78Z$UjTez(xxK*c`a6M9tssZI$(8Z4=${qY!9VmY4FlnJiec9 zPLn_A{$om`ac_wNx|g$;>OhAx;M3K9k_!)FDIoNRbm$6oq%cw-DGagoKzGX|YnYVi z-z};})X|pHsx)w9()u7qv&TfXM1-xyX=a&yZg?qL1iqua3!p?9V}0L4W(WPBxytp6zKy;+d> z3{Ji;SsvH-A?EBm(m5tUmd6?2B49Xi+{DtEznk0!9$D}w4puC&*dCj6NqR=_R3V*E z6i8Hd!jaZrs$$ac}$a7FxcoQm#j{;UZa8Fy7QRxNqNwr=x>u4=0XqnL4^)u)AU`7E6 zNWFa)bmRT0@?4iS6~Ma@7e@e{Q=#1x%Qr>%9qV_Mo|l;H-${uXItlV;8OyoyT$eH; zIRz1!>K+UpG?3@ht1SaXe~P8&&}W6$zJ z&Fg^tgA&7N?-bjN3gI$%>XxnAMi+s+@=RcXh@(QLgilGAS1_YKJU}I3lioL>4YAm8 zfsV9Z%O`VwnAgoQjiEB-eOJ|zseVDBq0+ny3SqzhWcnIUHyTT+zD)$vbzk-jL!%_K zx(7sAf+GVQDGLr2NLkmB52`3o*_|F933E{T#~OS4c?1}F*G^|+!HODbA#2Xj0yg;* zD>*ErTz=k1O~qbG5P07*C=w+Bxp z_f`l^+oJRJlz5Ypk(EzoZTk;8{)7%3JdI?Y>4U!IKGn92-R#EK&jv9}?NSus#v z_p`zOmeX@?`3yC^O!~;4)oGGv7fu^??k-5!dNNG)J1}+JYp|*f?w%zMy5=a+Q>=@} zniyX->nPyecU9)j86?QI=Vt3$nYQQzbIBX^cdb>6B|`~Y{nck@r{ z$&^~9*TaW_(Sd<2TDqRqLY^$VZi4|~J-vy2eM1ZqEJF9{UNPTA#c>Jp+>-w26wA!P zgNqS!!kVfR&g9QAT@spysPW)fgRGt4bs9oE=!@Y}rxjz=y)2&xw0+-^{kzfcaBp-L zB8whnTR6;4JLt3}*^$sI#l6m5o>l9rM7&yZpil?dS8ZZK>T|4JJHBIYt^Jo@Yoqvt zb&i*tR$$10N`QJmFvZ_5uQz(@2P3WXCi~LB{QFHK84l)rcX*$NX)S;KhnFd@i>d>5 z9v_uF2?`P9QXXVhYdYceG1>i8M5 z=-b93-?058D!4&t!+&28N`9gYgKLZ#&hO^d$hHV3#0nT~Bl=V_aB@YC?;y-w&fT7L zhRcLskG|e9M4FGBQLV5(W%BFy{@3Fj%*l<}gPFSMqqwRLudNxa?w#Uv-QyoG{4qzp zQh-@A(}CF?+Dg}nu9Ux9(=BelHJ4JiDU%OOVk2^%88ZK0}w(P98iZX4j1MKA6J*n9fmGrC8ox&#Q*5$7U zyu=W&icyNGdcGL-*08k5+N(XpNmL`eT-d9mDtU%tqZ0 z%I`iP*9@{8F449&KCILnkaLwA~db>)siqm)=F|hVTC5K3>ayaQtVV%u`s^ z5#*$`LIG$ZTc0+25~P+;MDlQ#Ko+b-Jf7n$e9A*Q%weQFkI?ft zo$=S{r3!Vj7h{L_fn=do-t9da@J`}BTgM890y>lBDxas*hmW|_C{+6PF@D#Jd)gJ@>`qWWFP4#lpw{e zpc6@3Nu=SA#wG?k)<5F`VNVa9S?het&4ZW%ZO%=yHj$UKvoMgKU-R{9P<{-LXmPh~ z_!=lQu-P_yGMz{xns&Tx*VfenfvJQ%1;;OT^w5L6x;N;Ps*~>+PkVZbqJl%G(m5D7 zXZYSmK{#C8A$lPnq}{d>2#2f#4H=5LI94MVkY&ayUYBwzYhva7q+Bl<{UO&)0(~2L zom7;>x0PoE+&7>h3taGo7@h{kMu4+}o1=kc3)pknM}RUoHq5|@M@ja{(-c-PnSXBm z9>3;90rbQkEiSoKIF|r9q)g@jXY5v9Bq;_O}5GHhrqGa^`=d5n~~~f{~k0J zS41wohj|Jh;$K?Qym&~jA8=PW3nf%E+tsX3K8s0OyYQ~a5WC)F&`=8@vt1k2@vq!m zI9z*p*W6Am<(h@4!{HqH320IHg6quJL?(95 zOHz!=92rHh)BHR_f9}q^VI^4PEXDNu^o)_5CKaOfAeWQzx{}wx9+?C5@>WA;3^Q+Lb3jp` zJ2Js6A-00|`SW0-@^QXcGbRadbqz{DYgJlPe7#HTim?U6NF0J=FMHQ%c{+d8(Ei6j z@}o)KoN_Ofg#aqcerjO{t}K;|M-{J6Bl@CeeWQN_DVt;K%)fk9Ppi`E90*ynm@EGrvK!*q#N z3aUM1$h7&bNB7U@$^OwPZp=Y?*9ln#zpr~T zh@(+gphd&q4-a>!_430nrLT}u+#OU4=fibr={Lt2wvgT$F6DhrN(e=4xQ|t0L{?q#39vs^fjY^949o&5P3vT`9~ z&bs?PSk3pZKkkc7cy_*bn|%E6_J^?5MCt>)u3utVRXRSo+G@GT9S$;To9#@(xbCAn zIxz7r`p{~6spHx5c3Q&d`u*3Wqy7El^_|qrZ%zHnXdW2if@_AJ%j@qw zy;7h(EZXR+A{4H6={I|HcwpF>aXX07tf0V$7Q62u)7U{hobI(<{`8%wz#4*INkc_}Aw;@Fm z$mnba#Pk~ElNAiHFGre2wJBM+Oe6$cp8cJ{I~m95#}J&rWf{A(9+-5L_#((gB%=Ya zJRrzo%t~Sejz#s!@dj4{T)tL|T9yP>127|a+`DO0o&)uIl09iBe|Ctxip;TW1zcde z)=_QaX+AL-R3{vVFh@(shy#YaAUiWS6nGc-QLUe5CO8vB60A)b`B`}%+qtQHzQm}s zp>3d)QNYH_8*>}iG-IcH*@~e%7Ql_gidG`zYIjP4e9Uh^;KL+XBNQQff^q9HCi;4X zFYTNJ>k{oc!a64Uk}paKQpoSk?_{&KpwGvfmYbkdm=v7}SZFCjGB<$(?vW%ATU{V| z`eHu=PbyZwEry9bu6X5Q@ydhi*`G>+X8dUQ$?%c`7aHBr?RqXoH$~)+bQBfqNwgG$DToe0ZdRvJp(&-RQBEVhOp<5 zG;|z-aup{JXO|HVC&JaesmU*L#5JO@dQ2|~s)pDATFYJ2dij3K#|B|8wfSf>w)1!b&oAq5|>TBTZ*jtxPN&rl;|3 z;4-@s{BM5!%0NT6rG}>L60f+0*s@mDn?WA_+Q0?B$qvQInbM+ca|4_0>eM=p%0B-G zjAQopEWq(reqHf_{kRITg8#YvuygB^kF$r(-M_y^e=jt^_B@`?8y|EDwI* z*ftAT1voxBpOUQ(;HGEb9-Un)pta5Ny5K#U6L`&Z=M0ymPYaXvplailHs&DO%5A6o$gkm9frLo%qY5B+iJ#f-JmuYMtXDM21-u(fEhm_ zuzICV_l4hcLf?@#qVS4UJ09NW-8-%>L`r$Bh9oc~oNis)kdFVtieQ19W|8|yo(&8d zR%sN-Ao*F&qfLF*LPpNWU$|txvGK;SvuG(KEU+tj9~+1;qzP>ttm9wW)RNKdSF5gg z|LVChtfCbpbO~B>#h`!aY9rM;u22vqT`f@yhX5EglI!YQ!>27(w{w%7V+L{Y%aOks zTS4>pYFOWQNpo@1)dXdvP}>2dxBqMbxF&AHUb$s6cMc4fw5=>}H2iZ$wDZsTlZtNo zycX?nNo^+j?f-md!WZes-=t_Kd!;7;lXN&0(j2{-N-vo`TuGn7G^P=ze^U#o9@<>4 zQQ@j3@w*2rANksB_e+oGj=DG3>yGzsD8zoftZK-xA#8KKqFA~6_=$gW3FgN_U3S1XLS2^w3<96IQZVzHXRiTEiya`?pT|!V^dmEOWXV$g!!RRxqGieM&R+E z8pkLV`XNuECl8)!l*TVM0Cr>{ zMSY2L2exqSh&<)K@M{0!+O7jU?dX_0n&owCjnrbeO|h;+ooe&d?pa3N_OQLBRpM?( z@7M0b$tQHo@AAEv7-+pn;up)=qdzZdU0?$Sp8Yx}+$YdESS@J}?O1y*&IoUsl2*-vwNnB%pZg{uE*AcV+ zNstImZ)(lww3fpPmNX(fG(lO%xFZM33m#K;2vGl`HvxUgP>9E_8RZf6_}9wTs)fT{ zS`{k?C@k?>nIuD^7)eN7-kyH|h1VXUi2kGZW`fPHBkE zf3k{U@#Z|-+l0Bllww106!7Ih6@9a!vB{LPSc>z*+2bCHB?C2MWTu7^fJ_9vB*vgY z4oSzAhe;G(mOa;}I$$ms^i87c-j&I(B9753sb3v1>zjMz7VvEX!Tfg+JlB)@48|hz z?m#C{gR&~mk>+jYFY}}Kh3s-|tW@lDbaXf#{>;m8=`@uHsTN+~G)wAV4|z>VX6;M}vHyY(pk8SDyrJK>+R@EJGj0 zex^cxh=)fq+=9|6&W;!dC)TE^*hVUeSqr@t#&h3CSpCVgMAa8I=C_$nOj}xjy6DHlXHQsAzJ( zFmQIPB6JP7diAWIK~3xj?n{SzNJCy``P$aqS@tY+Uuiw~-!9^UcjQX*4G>OKnppI{ zn=7fDX(<)}jW6MNDkD=|axb1wbIS7K-4#Cmgm+oEm_H-Wls=vM@ljt4gxOi-oXk&` zzWNA|K>-F{AYrP+a5ddtG2GJMiX4Ln0D+fFJK!!jYvH29=2HluIob9LcxrW9vp!bXV z%_^8s;GV$5X7KBRguW8k*|S3t=z-YD3$k97@zCuwmw#2%>b@?{1gOU(Kc5u8kyWt` zDKg_rxN*LhYRe8pPm{QSy5Y(=A-q1caNyOm-d?N?88KXdweKynMRPYbFl zYkQr!`>D; z=(@)<+$SBg2acHECx?n-JkD0VODo=O_ETh=Qc(|66aU8>PL|shoIUDXp$B^|+SBqE z+NyYcNSrS!FOZGyy>`}`_R8#KhzLhAvR6p&PgWUO;UEdw zd+(8vT^Xg5eN-GHI}T-K9-*v*la76Geplby?e|~(5vOy`>$;xf@wh)gV;OJ}5w9Az9c`?i ztnAO9B&H^eZMr|?Ju2u_b0e1WEME?)wchj_Mey`bW;>wM90%ipCmotG1Tr&R#2BZ` zlbbiN3jd>I=McwTAIwXVgK{~T2T@75DoHGpVoFH|A!BL!r6>7On@~LUcY;zF9jl;Cwv`Jk(!1k zCoq-5_#Gl)2?z#f{RBt~K!KUw)Z=z8Zx>6^ujRGXvyDuuy?y~?7N@%>`FDpUw;w=u z6x-!(=>XSW+U8%MbQWo^7Un1c-aS68$}Cd@-MV<#Dorl?%(uX%>lbJdH7s$1(6^e= z8*{opVL0b3nK6{a9bdPH+H!S{ysmBo0rl49-7ecXxBQR$!u$b1NVx_dPgDAA`a%LC z%soWk*7~~dbQp_ioDg@7e>XA`Hn|K=H-xF1dz)$&!gQ7X4Z@MebU1G=?`l3{1JEC(>5hxuGobdRl|Xn z8NO^ng<^hQ`P+(EFCUcQ4}~U$Ccl5)BDE>2mv%_OMUSR7+{`8`xnXBw)JXL)M#`NA z!~}#Z))rz%$+x5i9yPOe2H*;_KTWt+`aA}I-IvcYb-N1`t}ZT;DIB;)m$s`~)ML+( z6{WT#$+BvaZxvt#&7TtIgPvjM-pAB~7dLQD-fhAyM&EY?%vzw0GSDow^Vdq+FKv0f z^8V=DWFL6eSka;+ytIS)QaEbu&o%Pk#~7A^&X<{V97vQulMuwWM)acYV!`W{mD7}o z)tb4wxeTW!A^aid^)OpHS<1zh=eJ1@3heJ)f!oe1ZhV@*{@;j$OcIDO+;J3Ng6w3& zwU*S}D4oLJ13#Eu)j|aVhL2@6lF{opA` zug+M^CN2k4cWn+32gO0u!uvz|T}|_!ALKC1lJ=-8sX(S5)C$lsJxG8EQ3>AG!=RhY z8nYZ*iEIB?zy}j|6~fB)*{lgem{9VXzvO4dL84bB-H%K^10!YC&!23zJPDsarqMr8 znZ`b|`WxANxII<=xc&G=^@BUOlP$iJshn$k#s(C#(370J^0wz8=UOO#PlM!wp0+VE z2R(0YR^15M-F4pg&JPTEM*Vw{PxWNRCeVBRFtwHP+GVZn1XJBYUc}~If3<%YnV*Bc zR4pYXJmu1^dz^HJ=~}08@5i}2TMvEr2qU^nzeP;mq*jwwcDh{;{z?TUgDgAWX09)z z)-L(kE)M5(XMz1h?}LbZ=bsnuKy}%zdR$E1{(ZRTinKS^f*MaOeeN-~CeY>&)OX&X znSV~fTm(4;i#4;p;E29B(^wd~-9bscKU2Ac+x>e;R*)J7zSGU|scGkn*XOs&8EPMP zd$<;8LU*mJ94&;CmrzL>@uso2Gx&B02K0#PN!`f|=#&zhpt>pG4;ClFAPyBYblDtb zXJ}{g`srrEHVI0Tmj!neFCpvvW{yP=xkYao0Ug-rTcnyTT|#9Uzhb6T%|rcLt)HJ0 zcPl(wPItbKcl&}3%>4)grS6}%2SC&a?0V8kuSJs7^BC-%Nf^0y(W$^Kw$WI?4t?#X z`rON#F#}YT35*Qkm(E~mB0**(cTM^~g{KUAT3p;fJ)T(oPc83SZvnJL{w_MWiZ`aO zvd#ePzYfT86ns?qKXrK6rlSjPr9~poLU7$g;~jtnI!>cTM{n&De7@Y0+HdZ}&w0GO zSbT(yK!OCV1AJVW1+f@KJt~**-6~+^Wl>3m0^(7U;`;wm zN-$;GQU3u>+glM11d!hJ-u)(mU@f_8=*}#$StefX5<(#r#X0kd>_w{jxW$M${YK3gMtAVURs<1cpSsT7BjK25k~IyF)jAUgCV<&Bygx5_7IUoMM`A{b^6rf2fN_p4SY zf-z599$JQ-kObe^$>nGhPf5W77Y@^#=bs{OPYaYi{0}Nt*93rTUbXn5ru}Aga^=w8 zUcC-T>Xs4KuN}+I6Jk0i3I{1!oniP9{*rd+i`S2C);Q( zbkcaNM5HXO@bzwANGa?4tD~9RjjnTZnUBjv)8DF@e#G#O(l8TyU*F)x(BZBQXHF(jf0LK-;N-8@^j7Z^z+_Y-rnYRo!HSC;DUU~-z*rav~SG+8IyFRg#Ka<7Rd$Mi?l z=G@k`zS69I4(^qs#aE&`UTyC*J}Of`PE^_(#$NEff~Jcx6|@pe0sKn9cg;X$(C0Df zswY7B>y;#>br-|&bl$?!WgPi~tbj?2CaWQe{}u53UJm(E|7?`D2DTDR!ioSq54`g_ zB42d!KoSNGHaf{5ejGI|?7KYja+J7xikGK!X>`N*!p_7q%G(N@3kPL9N0}~aE^q~K6ang2OYG5FFi(tEWrnLHMg;JS z=6V>QZ#DCs7m6rRa|4ng(c83o#JST0|`uNhX0zbhsz06luQ&CV@3-UG_ksu}z zFIAJAuD0ln71>q;R{?j8;s~9}(r_tbSl3Ean(;_R*kHqLu$MezztKR$yPd-%4OnUu z#PRwc^EDVoQ1g;o8p@hHX01{o;v4h%nRpD7!QlQE8^%vqPEEa`#~x{C#fbs^WOZd8;3&HQeN>fG#{&HUCD+kl-5PhJtO zNu_Cdr*06={I(H9p2_0fU#>J*xefi7wdvcuW37LiS<4OM>^We1Ni&L10`o$QIsKC% zB`t)a&_*^3J>;%3Rr%C3!j1Hnja13v#p2wr7Q&O?GfWdFjtR%N4k7Qd$%A z)r0L7M@+b>cr@YgkG*tWl8~9%`}?!APy7Z@e>Nngg{M{vJBv$T;wsh(2I1}i;fJRF+u{QH zc7fVxI~Ka6Ct*s+4(U!P-FwAPj()u!jF0LUPK$OE0RLVD&A*V{$r~Hr{BYhlSLQ## zkDq@n7UU=ZC6J(I*Dijpp<#eb#*g+Uy%;da?!im0Sgp4|Kl|v@@>bDW`z@*Fxf)9^ ze8f%50tGRi(^hcG^t z)}ZO6jbP=L_LKTFpT6yRYDL}Jr~XVmooFI}>9(rRVP>jlap<28z^mWv&G(`#bI&Ah z@|~_Vs~&teZarOH)REd^Rj$|w>+(Dv$-hSo{YxP4I=xs^Jw8L-uUjzL2)31Ny<(z26m8RWgz!l^*n61cJiC_n=?!PI3BF&~IE zVV)rQaHeXvJFi_{wU=KFfkYKo)VQJQ_ML1|GiPiLLDp6P>F{J$hCKEAlXW0=s-UpY z-AqH8*8y!wa#1sVQ{Px7WdQCpUbm?Y&#?JJzSHgc3g?TR<}v?^Us!W`U+Sk4OoP5Q zJjZ@;1fE0cP$1)rimIc|na+0;Rb+fi!@dfbM(?$-XKuRiC4jW7ziZ1{)4C!dQ^2>WrephUm`+cVz7Hg*L!ih% z|5ytt09We)5QH$KeF_w(z>U7NDyFUuSKf4cta=*mGo=f|X*weC2*t0~h0xqe}^dNyfWLwS`Pz3_a*o zJxJVFd0@E`eugFk_7@IG3p1tdiodM`BqSSgX;D%5NJPNj)x}MPV%+vdfA=BaUna2Q z4d^(Y-rQW1zC)h19C#+Kr4A@C!Srw%Q2txy=bZgdAKIwR6kfW2t1cataYJfgbMqvY z56A{|iV1ThS$1x{FnVl3dMwALBGX3)vIl?Lty zTXaP-h7nHlZ<>Nn*Q<~X?$Xl*uZ{+=V!VXAt|EZ1X*t{-O_ud#PS$u>-81fr)Q^V+ zoMC1<6t*Ik5R_2B-3lpu!XY3IN><_VryRzB7rQJKyjf)vLYBsRwjCZhHBXWJnkkV6 zpITZTl&>8oUTmCbo+e-4dJv8(T9ZJ?orpB>@i2!*j_?*{Tro& zmjwuL@(>t5w?mqAPZ)iluegY;yTK%af94-~Sus4l=1>us)YN-;07!0FCf!NjDwv=6YEx#KyNoq(bskV!W;=if*g_cGZa>ZUvhVjO#bXbQ; zX~&s}vj}F$&1XnEnsCMI=#of&0Z#3)^vAr2c#p5`S3b_O(>!W?^wONA!N^VeC+#_! zT+`Eyi_46+U0UpW7&mi(&LiZvm*RF2QD-`6&tHH*#B5h#-%8Zf>?Im{To0tEiEUK8&CxVS zqUTc%^(Qa(s-6~7kJ^GybyO=8oL~aume~`G4V+)`E&p|oQKUlF*6_P?9$Pa$I9xG+ z)6F$lu~j`Bu&Y#T(r`<;qE*&Na0h4ETHeJO`~anJRG`#H`$Ch#@DETxvx$_8Xk`h= zL>82d0F1u+lJuamS9Pi7jV6ha0`czAL~=gm;qawzBRTowb0PZw`!hB5dhW#gHY|~S zkd7(;e-_3kHStfxHCBUotc~uKk6N?sdRVq@FB4;%SN!fYjS7kje9sxi@{xQ+7W*?3 z=URBSSmB@Zv#+>vvJIdmn4pUlN!K9~^eGTNJ4oL<-DdPe9iQiV?+*&zWTmXzseX38 z!d;-|c3*C>kV7~esT%z3lci_1r^@Oms+ludnWH@0%z5V9a`y?@>%E-*z?+r(TUY!B z9vQhZy_Fc?G0kx}S7VQRcej%`_wN3_?@2!pBz*G#%RYP_LLMP6qVM+=D;x*1+H`rQ z)NKtWTLhzj8G=b{0zy7d94ceWVGEiESVY`v9x`0LMKC>Hx=%*CFRcASuFwoEM-SqS zBvYimxEhg{+zvps|7N(0Al(FXJa^s1;o4*w=iwVbFIg(|mpSd@!2{}AM5YaK@3@sn8s6Wxa@!2vQ#78R{qSz~e!<6%7<1tS zFBw5yL$yWKGYm;c?e-*XU0q#hnjn`JR1K>3D&02iwqd)u_U|r~*W%=dr;Yn>14*OB zP6}=(A@gj3#ev0Ezs*~$!48jU=9OkxfN_nmbevE>7FCN+?@DLM`gS83C`u#)CCjn} zwZzx+G4n*ClOe^1PQw>*~!0tq{LDtQzI8(s@lD~s}g=8Eg(!EqjQ&L3#t;qBU z5Mz%7fKymeX4(7mi#$*j)4xgUYoJHu>0&>LsQo+i^kxx8=h6VUR}Y&G4#jr$Y%kp~ zn#kumw&-^C9)6~8l4#gs*PBc~VF77cVIyb;Oh$)QD=HRc5ITiu6qiR3CG5zr9cmF)q+q+{i$24u`eFwSz*H}JgX zDNn>oJe>Lz9Kne+mI$TCNrLd+M2)%@6yR;5V6B z8naCShD=1jYd~JRR0s;}u)2%G;J*-L^uQ4By-CeO~0DBx&51qSrU1R`4`x2k-dcJt>v3v z8aW{GQhIQKc#w?D9R0{eIYro>Nq|WYq<0%PgYAQxERVe+ZfJ_ z!*;x!yItdAkcROd;|O5Y?@cL*ZOz;BOp(N2SoRP34ty_ch6D&LY$SP|EyRA~GBf*U z(Y^I?AV9-y7X2y6;Ibd-saLGbb(>M8h?`HInTvI-!wYURddqa4m$C+dwXNqErDK)v za^B~`f_|jd?m7Kg)|!0nl1;L^$-`L&yf^hX+q@OaZ|ccj{g1$L zm)!-Y=hV}iIg)>-#<%v1aqD?2_a5GwvmVi|s2b-NkcDs0Zi?Hh>cPiR&dPhy3}q-PwFG-{mEk{4_ec zOzH}VXDO!!kkqEjvMjHrxoBvHrGD_l&L0wb+xEelA5S{AZ7S|4d5y4x-lUlUH>Ylx zryg*HYC$;e>M!&{ii@YjN*{`?_frwwPH8Wu3-_SGDk9`XHEDKiRYEDyn&Fm!KYmq#%QbXdUx9fp{j!oHV(8b+#@!rriF zA`Jw=SheT;uv7iZ9v88@)~&dg9D$;1#X+P~wxTvIkbtSk-xPg^Aj0|owE!@eI`*^i zToTEqx{XE;lXxFF48bTjFjK>N3nrx_-;;c^=t1&}Mi7Ogn-mZYSoi&3}H-=Amwo~BgD^mYM{W627GKxze zxg<}Zl1>(;scvt^&&geup@*48W=vln`#OuNV>%^L|Eiw8usL}#e>_y-$%dal$(#ov zD0|fH{5GM*Z%-R9nJqo3S8dR+8n1KE9@n|JqWbZ(|DV;Zr~clJHbdo~=Nc(~!yefd zb7rx>kI`SJW)4ka&tu>cI2!e;+G`lkiBUW#3(Umr9ej#re)yTm@w%^4h$8>}Cuh3v z&i1tdk_Btba_YM*L6}Vhw6)0t z8O6WH=AR&>k4N!M;_l9`t?mkn^>d$(JbP2g>eoJ6?Mulk%#;P{-I{o3>PNwCGV#4n z`|QmXv$g7etuB5`A|qAbB9;B7RYLhDnV4n!PNK7%U>&*cl@&J#dz&XxyQ_H$h39^a^RY4{h$)qkxpa*ORLDo7M2N5*+?0PNs`Bt>T zDbU4p8DLLFdWg^gMyTeAn`1~oWI@%Jt#r-?a_NhQU3ZCe*Xxn_3G&@)*g5K0GB#a+ zJu<;oWw5!EMja$G2`B-eVz@gvFA%^-4=K>2m$yM6`>WQ3-%L!~Sy&P=BB)n@V$)?( zCET8-9O%g;@@fnrmRi7LffX9F(n)yr?e1iDmX1m~2S`!Xe{7LG7qW%3qKy(_)-iSZ zYGj2VO)m2SU>UIL)FgX}p=9Eu952H%Itu!-9a?Qc|HG~~E7JpNU?6RQ$uI~{ftV3a zdo^3NK7KC)TNP&kE!!k_Vf!>`-wDfdyNDP4|?%rcfL0ba{(!2eh@=V`2W@I(8=X&#f+|tP)NAX z0BTex1BL{teKcS;a%LXrW;{5VxZ@yd0^$KA1qG|Q1cW`WzGREN6{467*I|z515jvT z0I$ygIqHKK0kiV5dIF4Jjc2L=HJWjTdj{l$C27!(_)eQcw#!WTW!Sy5e3@|6)4;0w zdH}g$(%mUKc_T@VxRIhEKJH5jE?Swe^u)`nSB}Z>Ezj+Jj&jAw$G}R`pa^9A$L{#+ zUazF`G96toK1-HgUFBFCwZ%AG>`A^9lcK`Hvfb+AMCuotlNBmwg+l)B;nYo*p~D)n zM?CsWips;WiHZ2a#6-&eR?1St44*HhGo&ccc*fnr(o=<2JiBauW6x8n`h&+F!hjfi z`1rOc{JPY@IDTs##MaLR|6Rm`!IUQ(d1S;W-_#ArNP)~Ah=Of^@z?TqwbP zb}pNYpBn9DJ3XqVuD{DxF#Ew3lYNv3W<#;5r2WD18?18It__)0#S@tBUiDGqw-XER z3V7tr;HFz?(*A9m#ocbLKsj3HTl=@tj`KHQNM?VvlJoCT79Gq^=BVqUR>+?!aqOKe z54@jukDp)hGgpoZQzo+-ic2Ibu|Q zOE$zL3C&0fY|Tc7XUY|LJuM0DsjIOb%?!)u#sJir)+CL(%hJbwFUQp zmHcEs!p@1J>(>p0&s%60a}t{AX8@a!iNu3OejV5pvUuc zubMjhW2jQLyXUnr5gZErVq>qCrZ>okybt9+`o&x@(ArCqrva z<@XDYvQ^T_YtnIdF@^aqfq;&+-1Fvh%d_HhgX5B4=A5qZsRq;sK4roF5ail zAF2jChX=Ds3@ngBspD*_%|XXc9=ZkBSgHmFe{!dQlV@9kqEb)FE=yWc-Cr=H(UYq7 zv<3-+^SqY|j2n9oonA61H_y@yUt_CoqEsnVZ`~O@XUwN+fzkKX`QBUYOB}!PLVUAY z+1&3h^)S;j=z?*;~WU zuwC0a*%_r&V`JwjubtZt*h!Mo*>w`YcfN9o#I~~1c|(uC1~7`PK+qAsAJ=)xe`oIm zzjOS1#^$KIn4$IWPDfK4g?anLiNAbz>IhwLeMjS)Q_`lPb5k;^mfe}@jy*^g9cV5J zr|wdZ=Bkx(x$7{Wm+OC?$d#Y;7KbpuCp~~dDn%x6{|ii4u`*BXEX1!rZ3;a7d-$5% z%&5QTI2cqr*Y>;_=jX@HR*Y7q*ony-69Bb+$pl^0652S=w@0xg-WqO4rNFPJ*k?tw zrR9N$S$J7i+Pbu+rqffw_+dSeV^j*$(JnRNk4ifeFEo=U9@YM4G*7K)#}EV!igVnJ zu*#5O?=$2p>-gt)RWlWXi6Zzp1nA^TUPHoZteVpF=`(EqG5kOK?H}WM*?_HdyEAs5 zG^bcxURxnM>MJQAF6(}-KwLaom|mX$>=$3+r6XGrE_8P_xOHs@ZU|63T5MW{z-@t_YBCEY7+J`K>U2& z0H_6LfF6Eyjb7LerYX2`R{p7e$P#gilD7Qsz!Mp{a)xgo;JH-IfUm!5~#cU&# zo|3FPoq)K}89qlY`h+uRd!5H1#^LYkDWfr;a=`P@N-Z(<)^ST4%X4-$UQTW}=i(fv zKp>w#$Nv~)`gOoX3Iz%=<-Mtwg8p;_*7;FRz`si!we|M#86C+d<56SI!z!OXqNu+z zFAj{HW&$}P_=tqUZQ26t^|0OP5?~{(%fkea(oxCoDN$+eYGG&W=)iqhfOG)Cvsk!H zwu3j=;lN!nI(;r_we1Cve}G8`3kaHUT^FRtAEUN~vQc$3;ptuR?%{_SQOUw+A!$`@ zTLRp?FR1@Gt{tj@-&skkp_$2erHM^?HJFu92v5hh=jry8Kv+6ae60NaYULto5x;<3 zAM^@eTtF0pAPfksgmnMo0P&L%Q7)AR2JttH`3TLE@7wk_*tt8Mly{#w*(_(5@2Ake zlY0XoLXJGzTEE~P-ihraFh?Y#VN~|SvcFM17qR7;k^$KI3w&FUp21Wt}34gtNya6%|Q={x`V2BI#(pb;L$8g3~0Y{|PNmUHkT{aO0t*Io{CbsWC3gEbM#Hz3kB zNV^y~YXRiGNiK8a_nV9zP@&gr=X4rv?b)L>o<7orAMEKmxgvqUBE({{9k z-Q{2CGP&wfcb6Fx34@-`F9PD9(Y{;kLhcKdklX5EQ99Fx&rE5m^Ha#t*HYB-E@ts;hvz zYapRqk=_|T9#tyo0PqJ3()Z3`-bS5w(DoGsikeBwwkePFD4=k5cTWBT-}3+U?XJVL z5$t2s2xr3XjTf&7vVqrv#RWP7xLEE*`=)R7VGAG)n>&6v}%jr>0D0EsEO45(WlV3BX;o%>=;x^~XVK#ohK0h9BOehaXKoUu+~z*Zs!{o1O>yl1gXp1(f~BNSDW$v(v(Ow%KiO&3#i9x(qr3P;{2tMj;k-*U9S?D`(A-o^KD-UHxW4ugF$@8MyBLIffK z*fK~Df)+@j$3{aDpyW44h%O7aBUBc^hJ)zxUgNB#n>@4QP2++oAqQcOFVavSF*(^} za%DwFlfLF#IrY*rI#KxF0ff58#S@CG-YVL8d*WU#$b&lnpS>#24Vc=87%qc|h_7)w~Cm;%G6g=ZPCO zxLT%ry-6hVWZ}Dm@FA1dvQ7a{%2Wr5(Z8rjFzUjfWt^X1UePiQd=*jB}RVq8ldC#uWZ%AP@0B_6)ZP zwfIVnnp!k-1k;s`+tTe_da(*SW?Aq{o%FoenpnDl!Ew1f^bnH4wOjkD*pslc+_&A3 zF>qRDi9y*2(>PihCMWB(xQK|(K@Uc4Soocno#CAwI5*tlnh>k3NbXR7UhWh7Hs>Oj z!crM%)Fh#1{vN}`)oFFfonJv3!H|n-e|Tu`+fIg;*5Vd+tzyDOK_Ac=zR4QD%P>@0 zAF9O^lYWvy<+4AwrhlysP6zXZA%KMPRoDhM)&_JKesaQ*W%o0#*SiOjQ%27M$O~Pg8 z-p|aOkkwD>gbCJ@_9g_54oue ze5YHall9>cALdOy99z(mLMY`&=$6~c=pTR*2z}bf{keDdNeGq}RKde;54J8eIm#w0 zJmlSa-xK=BxRpW}rLYbC$lra|IKw7)&2u@wv$XelsGQ;YK&1%T`O>ZDPrddES3IeI zVm*6y59j`O7_Z|O(|79u-MoL}Nl%l?$uVae z%0>x)kJrJ~v9(aRus!#}sl3!y$+Qxa}J|;nac5mVT zo3IHb*)7hWMy7_IUNxSm(kpHH@xx4^I`@*1-!(8-)U_RqKPUhd@O(sSo%>MCZsEe= zKz=bbubReBYAEE-iNcKGPm6t5AFMS-0YqfowRRHK$=gy+jS`H?d?wDNe|$W*z28cK z9)NdSA>{9NVJY;wVU^4+a~1n8e-n-Q8W# zxLoqsx+J#qX<7s zAEYqQ1Ok$FRz$Lq{#!&|yt~JgE?l4=nr} zmbY1`x;14uExKfP>lvmLB2eO7J{LGoV&x0{d(75$xak?ZvXnnZxD4bire}&_0!-ZC zsJ|WdyjLE~nGvK_`XPm?R6^kKcq)PNH5L?yZOw{SI+`yD-au8qd%;u@>^ph9gca*| zZy~@s+(UWA-vz^T{~m9wfFQyV#FotQ60EI*_m0Q^r5#X)Re}Q>-7(zfysiRTJwXz^7QN}2QjWi^UK8B#A^Y4h3FR=>JvkfV@4gu?1;D;4bLzJ+i z3AKgt^5DMvhes|PY+xBP9a10yWBA{3w&K?PU*AEH_1kfy3M;qR&X##T30LvP?9z$S ziSZjT=9WYkG{3uEo`oA{OzEz~h`GHo>vbc^U>~28o&HX*O3ep0b2~dn8yi9Orw2>U z&cxl~APNN>xu+AM)HaYUYd~v_3rYTGW2MiIhAw*3+QU>ISwZZe5E|@R20ieVqz7fa zw5U4vu%LbRiU?YU9THs#Y_3e;a;3kJE5$_91K2q7BnVU&e6$9WKuBB@1qY7VFyY7= z7Fs&mb4gJ&bhJYBNTC$40Vwy1Gc73Ery#Ff-rR^s)d8o&&IHGTA${do2Cjl;AgdHR z(c|@C`7A`>ZAC4MfG{T~+TH-!A2d`4agtWO?mVY!t324>nofXm$d;-dMsOcDb&{BDVmvzT3% zTU-I2n3a|rCD|hZT(sOUd4#%cTJ5OF7qR+ChELGW8!U~iWZ=c|1L~m~iG}0U{z#B( z;p=U@kEq@0(hk?WETSu$48|~NK;M2jmy>~~fvz*`4il@a;~V3eb{cJ1qzj`21o=_+ z2}*j{&@G^@=wnNG6!Y>qIv)N~b@ivFwy%V@9NKBmGpv3SFLe1;V=Dx|eHr%!N^`k{ z9upa-PJ(@d*p;eZ7NwPC7>I~~Skl42XuqPTJy(I&v8$ZiV3TfFPZEae8Pn%YB74#& z(je(QOdYNcGj`#$dKTZ=Ogg^to3r!{CUfyzfQT7NE5w9znj^1Hx%8XV_8ZXyctw%N zxz5}&;BV95EN99stnZeomlz8NP$@CG+zBMJI6a6(cz3pMa2NHs5(EZXTf*hx>N?*8 z2L??O3a8i$&$ygRsyUk>_^R=~+u3Y_K|I<*e^UEp&vo_23nn++#B-{vPxIRjNz_j^ z)T{FcLu_n5&ri79wr!5hsB`#npQg{j`x_g(A$xVg;x{lc_!}&LD?B~viQ}kY1I~3j zh51jR6?n3p>i(A4=Sf4)Ykn)l-Ej}IG7oOy!epO7^YYq3yzhm#6&2=lQ(a`@+}!w+ zdSZ$pt^dQXz83WHHMiSg)6m_g9zScdHHh}(vv2r+20hIAw7WCQTWYE^-I{kZ8Ds>A zYQpo@jlP-pUz&5_$-tL`IAF6;S5;CBqPgtk%a7K-fB$k#GY7Bij(5A>Y6$6*kK?lE zX!8s8#<`izboyGuw9@mm5g`2&nJ8qJbQl40n_aSU7dOz8q`yP1>v=zBG(2%%EaHC{ z7zltaIq47{{z*hyeR;^dNadp+aze_QT0;7&!U7fC6!VfV^4WcK?~&hQw&7l58=H!$ zILRLMOZs@>IZ2&&OOSNmC&ph>TLXOjai4>5=poUkp9sTSYPv4=IhK~j;qG2b-wuf91N{b?oWcQ|`{5mVAaDXa>S; zgq_PJf%v2*{ZtkEQ)C%?qm6X5zaLukPgH>`*e|%ZGWK@;!w27{IpO>0ysn;fCVp+` zdnh8FiB6_J32q8|4NXT%$DI*~(&WgZk)?kG^GZj+r)W8^{+wLhnkjSx2Xn@?IK?wIP%*55-g`fBC|3I=lVMggI{Jni6Jv0nsUfhiY(*tErx z?A88}3l(twfBRFlw4IIrGd?qgAHL)$fzaj6UC=27sbGMc46S2{5G&gs3I|gR!2Xd? zwzS}{!zo|v=l7`_%+j zA1p(?XR3Y|dKTI5tBc!5UBUPj{M=A%^577NS2G~N7Yx5ib8rmYG9LYCUH##MM^`a< zb>XZ{?e!j>RiKegqt6urbZC3<-J{8;)3a@70R0RN-9OOqs(~%^pP0#`%8FN zcyiZ8keHU{aLN;z)}=hNNR6f8mbRt437C_7wn>E(x9Q~(pgqxXKI3N#gvW}U2YR7$7q zYyg2k*xCb)gfNY%!|+MnnB~3!<=0`A>d~Lk(Cyd7AqQ&%&2t`Y^FK^0#;@FY+wFwx zbu0?>1b3%mW#e?i#E6CdCMNblzi6sd>j~bO)V9B6b1>AT5_;I9rQk|N}f18r}1;BPyi6) z5gx;zIo_3u_o5@S9`ncj#x|{=66}upV~bC#+fJJ2 zPYC<1C#Ov^l#rs8GCdGMb4yi8qwb+#fTzF<#F8}s)CD9u);t?)^Rg5W3;eBFfd|E4 zAKWJ{m7UTb%3Zjsa!x{zijQ%sN0Fpr<$#0rZc$8c_3^aLX=msj^`FnyjX9V)`h)V2 zwjzI5inb-aQUA?mk_qvbU`nM|*|6dDGJXEY|*|s~ewzk<4 z5z@O__M!s|rKMe0#UZ|L@1)1?9rMCj@AZp((n zLqlihvM2z&8Y~7nI*>qjk$gIpiI+OLYMj$^JNXXj@Vkx~-|)Gb|Dh-H#~W0p-d9`) zE?}kt4`sF}b=rXsTI3e$)#0Jgzl(Bz*iM_Mpe!d__EwIrN#Dv{_i#}SIh_LL`<00* zmI73`_>N$VzeoP~6Rb7vW6S5yA>=>5ZX3)xTl`y$^JrGqr zUSb223G8_=msbKNvDrjOIGY+jAjdr65_lHYKDn&+)Csfw^BEc7E9alD^f!B|`UB0+ zjT8eS1-Oqgop^B3>+R zJN=ot0zAQo`BnKRvjLZVHTk7g&V+wj5mIB0UMzYuh{nWM1FbwnAX*L6I7r{6>}4Ct zlKXn2kS?B%&x=1g3arHcz||q*g2IQ88d>+N>S683v_I)@EE9yuax)-#MYyJx4C2qh zS?V_*a*QLj>=T-YFM(iYvr*}+(h0++kf{F*Bt_QmUf-G6qxic>j%EZb%Sie8SuJ_- zWL>!6u$MVnKknr19T>R%r^8%7>uGRsrc=RvK#wt2J-qQM==ghYPL3HBA4*j{C(P+> zYuy&od67Qb(SipOC9y>3WlRh7&KB9%8EFmbXaJ=RxB=+2kxVl{+vjDQcAc@)#EOU& zu}exnGnI`3-v!V;kSn4j09gME&>ZXWaN7TqH2}Y^yBGgJ9TdR`S`->E#MACGryT&T z$a~W)<>8^>Y=6RV;u|lXXkNLQ4D9IS8pqcS2#^>3Kbp=xoaz66bLRKzcU|8Iio5B-4qTiIeULAi+>5*$C>A(rNYpg%Ra5Jey!0%Z*Ecp1W@l ze>bS$W)1-4zpAWcBz%H;Ax+^!N&RN`)9-Z#qq*SMwe5+iN}{I{;0P_JR;imF>u}L{ zjSp2)x8~{T^e?5id(8ie3Dl)v>~6xiOzNjKi;Zh|UrV)T6sk0DEV zd3O?dO=&tQ+Y5h5(zZpLrI1I4H3RDCmz0XO;}+J|n6eYpV%+vfpd*8YP(|u0?7DUW z#z8si)!|X=j{nI|+oMrMfsox_)1IT-e?Z$oQae~I;QU?l_Nz;yH8nJB_ul66Xum&E zbw)w*VD(Y2G9AJc?ZC+Tln9u@=Uw52JJfsc21&hK;sAP*pFY-rcEO($^ST$ZU?^a{ zW}$UEudKYBWI&0pc4^8!C*WmQ^R}`#M2gkl+q2n3Ynr6MQJaLSbh{^SNIoiynO_?< z{av?;5lL^By(IG`g=ihY@yYM!NPPAd$MCy;CHH6U7=uAiU=-h9#_=CH<{U4Mj(!aK zMh&aPhWq(8b6*^pZBd$Do42Nn`+MI778ydDWqXEW-?_eLs7X$Sml@U7Jp4OK>c8jC zHF_mZm#M=FeWtJ3MQXO|Ai6Tk83A_33astBv`G=&&U@qi`yQkNzcSDC!2*-|_bJ|PpKCbG z)7xss@POr#hWAFs>?WcB%N9gJ9kTpOk5$kG?_|abRs?7-CL`Fn$V`)VF{!(Wnh{7% zKA4!}iibl?60M+5%t%+76hPCc>cLp*3PCp41m^&()Z)gQ|6XqwWK3ea6_^m1%joaX z8gE5L2F^192Tm<00gJs>N@r)LYvn*RD>TEA7u2qiv|z~d$&#}j3H1DQy!W*$y;YM( z+3nap=>W zLVx0$(D`}!Ut2ISK~IhlNumMT&SWWYDJM8HgV8X$It?=!Wk@ut#jy<;9pfJBh!>9r zhOkskaL=;h!?35hYv^tfK`?d%${CBmKtiCF3=t?USME4k%z~y{^NyS@xG+iXj%->I zwHbufnrdfJ#KW(_bu%37OvqO=R+p-LV~em0GdalKbnF)vk&H31jwhQ>cfGG%IUi3) z+XdkzgVdLpHEz83AlK$8hrV-wHw2bQR}r>V(wx8=CIsN<}O!e&uyWBrN zMI@i5u@`0}RP>Ld?0GvQX?amz$T>P%gc^;YAas}cyCJ{!A`JoW4f4wWHA3tN1_-Kl zrr2wD)OJtgY1@Rx%(Q#({^qmtu)jYp&Y4=d#gDqm8;zJ6NJI*ar~>aDo-{UpbiBXs z+L{;XC2Hm>aq5#HNHoqa$3)ODPBVu}pz}=^Y2b?n7@mi;@5yUet0J#^s)`rEVBTBZ z!cDvv!qaWfv+T+PD*B-2=W$q}iibQ}66{s{FM;gep6{Qw-~N+fXHaucfFI9;_# z#A_ppTwFn5*WCpv7U2Bq@xeXgDBL2-Te59z{fJ&~IT;|$p3H+fVRL`m$$yQy*<*RK zEP2wt)Ps{hEpnG@x#sx<9+s--rY)7EJ;Zy!A2*r^(>J}`fdTYMC2oeIRP)JI_8gUn zZmIUumvpV94DBqx%lnhwDK0|k7b_S#7{#SNh=J7tgkG~vq+XcV4vAvF#b@2Y&&7li zS4w@~{4t?Z%9NRbT|Akr>=&%yHjvj&51AR-`R2||FJ#Gy5>kRYJ{aQEFNA7|+!}h{ zNN;w@+o92k@BRA-M!$;4vn%y`N!y8kudIBJQ}ZVM9_7u5eI$F{#+0b}&;XXfZ%{1x zZ8hNjz%t9VnZL_vx@^N|CaRm}|0d1^?h-cmC)&<)rubF-{+kvJ?6OWQvBf4DcdR8P zZD+x4dD>4t`66Ze&x#mDK5CQ^`plCH?0>f}mz620+BZkp5lMNf;UElndwbdhi0e(l z!O&oPJbZg;q_|YVSW;DXx>|YDvHE;Bqg=}90K8P*)Wm-wC`agPu%zaCeRj5xembC> zH_fh#eCaDC1#$y&E_a+g9{`t9G*3puH)fA#Jddc$8&>7EA>u_~dKA9*`1t#Q^W*a^ zK^uCMjbB?3u7dej&6|IhsXco=9&4ebQ*}J!C0=iTGpHZ`$zE4evo$Hsc3C=F_Omc( zYOso^9Al6V+N%HSV4?2QkNZ09`|evg!p zALTdQ-v4MyZEg+sqCOm)r3qgRUO$qYJxLuJsooSg+4>kfc%Bxd-6||>j!OpXXETf} zUE4Z^vTvKeY>o-((H$QjJP+7KYkRJl#2ocI*yF8&-kQj~m4$056qjafsj*_Vm+9=P zCOUIWwwgH>4jUg@9i@b?9ytp%w?K~@Pmc1Mf~haQihaJXkmBr6KeehJvbp@@V@If4 z^cE=KNBZ~iuN%$F%{RX&l>ERq@2~V{H%Pt)9(HSWGtHfk{KBBBuW1hF>?8EuqVPIKY-X)bpuSkm#C*| z$RBXPgC4IGsD95afL`$J7^G%w!D({++4MJ=8w>%W(qDzW?N;Q-)5m)Y&*53#3Z&b$`HgBb4@0)=4KB7NHRDWD7Yez9o^Ia+#TkrzVUW5`np z4-Kpan1-n?tG61A^SuUYj-@@Dv9-Vq%hY-~2?m(3$$r8pTtUzU<2V&8&Gx(csK zV%N=(YL5_^1d%IzF!A0@VUQNt7nv%@;(MFNE=d#OK&aSDq+!IPcp1sS+iL{QOBi=W z>c18HC(HJE4FtWHBX0~#nr4JMBg?;ouBJ*7=8m z?s}y=*u+(00^27;Pz|QNOwYfiymOExET|uotAP0_D!Uie7NQ9eL-t3q%Fsu$i*~AJ zM-%iJIhrLBpJ$oO22nOG^2h^nApcP}23@Fa=Fj>XgXZQe0R z9%{-nSOX1{%YQ90R6+tQ6Aywj)(h+ZDQAwe!fgOtuaF-7Lk$2wyb zo<81E9Ip0R37^F$KEU{OCd`@E@W$_(nG;^#1e<*La08h7C1%u{F~vdY@8Y=bG5fx5 zR)lsD>TSxYjnk%gYl&40`@equ?zPas#kEK1Ehr_sFJ*B@opK((m0fF1cbDKM}4ZFWaM?sviS1(Ps%C2 zsG`FC*{?O^@85p%55s2Dz^UzPSW+^9MdT$3@b!5FL4-Gk*9!EjFHDQ-FDB6O>aqV* z^H+>yKtP(Upv;qC1t5`mBy9D<^a2Bu)IQ|%3TG8uy%*?CxS??ooteQ9;YewW3=A~* zd}(`8K(%k?b{mxEtS&nhdk8Y2O4 zjR407C5Q(p9{}DUc-oQo6EQv?dT)te<*TM(ailrjufCPZT+0mU=3*(Km!GuF0Ppdv z63DzoI0h*X>g&E9%X}txnu9iRY|~MGb)h-#%{uAlV12-!2s$rEpz(*q5Mod$0Xsp5 zzQL+~3l@m?AOjb(9^WnuWNs0l^9Id3V5W^N)n{z01Kn6k2+hAt?xAyV+v=-?iezcX zridQKn3tKLRKYp{6Kwk)905n~0AT9Kw@p=zd|}6L!D>wbe=fIfJxW|`mIMa1Ctrhk z<7l@ILBW5e-0clw^TQW3Pq(0uevB_i;+7_k2TmlB@>+wc^PXYROtGhFB2fa7Z6I<6 zyy^f)Dsr3-upHdX*F{Hwis<$4t*uvM`)iG}6Ys`bE&}22KTveOD0^C!;tQb2|Dy?+ zGgU0v_z_+0!i9AcjLXl#k6om=y!Neqerv>)uY23|68f)!_$S_3P_{qM&-)$p zER>&oX9)jWkQZ{;v*3xPY*xj{CCz;a)}}2QWeUDMUt_?Bxun_%e z?MfYuF%mNrCXwunO~hi4&=*Fu-@LD$7PM54K8xxLafv*IQ+mh%+*rzs$cbp+;Kkds zMR~(le$dlTeBm_^W||Y``cBW21Z)Gy$=ND0``w&O9jx$~4-^9rkK3gI6zREB9Pb^1 zd#Cy1t7V1YeawwO%+EUJmJyrnhB7v}U0T7uLNyeg<}(y_Vs(RMYDjfRa7<{lv3S03 zu~9pAY@E(*Jz?!i#d2S&jN|U?mv7`ZaIgso_^|X`De{!g>)q#u`uY9Zf>*xtQN{Br zvbisn&sLCYo!-<6nK6$f8s4{=#`}}|gT8=q8$%XGC8V?J&wSd9lKLDK*V4jcab^S- zJLcVbayUvcv28jYHc>ywojvJjrFtIgl+J~2#HS@#|P#^z2}9`w{2wZrUbJ5_3|`px0^$=>YALhH7b z*T%i@gSYn%N5hX4!`4Y*!P~o~2xUp#Sn%U<6|$Mbuk^=Rw& z=<&|UZxfIpb@AfJ{i>`ONl$}DBag@M~j=;0%3mJ&sq-#OnZO-rZNbGVdtK!!>=6L zRMj&9!J-C#e;hl#ZaG<8UHw9|omJ)QrPQnQ85GT4C4&vth|9l0^OD~Tt%-@iVUMmP zP#Mvx1P7=&haWG?c3(3dDBjjbn`2;Jzvx;x1T{W!b!?A*;rRm|30{Nk^=~WZzWbl- zdfQ1F&ArE#DpLA;g5+=2PTOc>fHFun7z1JafC1SRKNVYcjyFqqzY84Ch40_H^UOYp zOS0&P<7*I`t5)A~O;b}@z@#+RYiG&SWh9YMM*UqJ$ zWuP#c1*!9M57};wEDGN$Svqu-HPVuZbiAC)bw5Vvra@{2V~^i@{T5y|xF|U}<~!Bn z;OC}=K*-<2xk0t?jlT~_c_Oqe-FfzUiv}&-=aTl)WRqzHUbWH#qnm;q?~0tQER6A! zVFf{Yo;gu+={z8Oj?nY=C?He791mZ$<1?jn##CGEx;cR`2*+LboqrdtLdG z0ghwG$IXDJnC;~~zBokX?Q;CO|3UV&_?y~W`Wx(iI${$Tzt5R;kC31GG!h=&wI--Sv9t0$+Dq4vkHSsmd$nPam3RZMB zYC6TRi#m{?AO_{ot0} z=~o2VH*@~PcVT~*jI@n``ERgRn-aG5=hyb{RXqt$YADB}WV~>6n|8vRjMb(HeCy7= z%?HIG0HT|+;cJey3Mzk@?&5LqGJgcmR(R=&M$h?jeZ9bUwZ+-fRsxA*Bce~o$4TF3 z4?p@J5AUc)CO+UZnF+i9clgnQ;Pp-qm&n+-AvOMdmf`9Mu4|#H_hze-k@8_P^B$4fH1Q6j{&a<&cZ>qNL6pz|7bVOC6^pAa-mc%Y`{m#RT# z5UMXSEgwwzhN}CJSKpJ9U3Bj~pC{mlAj-8GaWF5~awwp{~KA&-a$EnZwj-mA~FCykw0&Gd#IK1k=mII{!6}Pz@`p}4<^3h75LjdSdK0xvSI~icAfc?uA=YS-r(kXnA zGh#P$bF$B-;}wjl2sDC40=q|ixU|Cx2lzYb(!fH1_wFDt4Wxlk%A|8#1*RC>;G-I} zI0)yhVQ_4yrIrJGY=*h(cx?M*kqd;SkV9`osU^U7s(_&-(x_;--e|mmY>(W|n?F1nguKkg@ z?YHX(0EL=Rab~fhEWL`H{5Y@qFq%zmf7sc?*5(dr3&hrpmdT3hPjyJqj3`ZUvqzwi zBefY=$~Wx5X71c*!GV9+TK0PQ9ItH{rSzd>UNhf9prU->@%DO{o4ilAu3P1Oi9$+a z!ILvklJ=ZpNosq=d1MQXCBlm^3@7EM}b!u@`~?qwL09F=K>>mnS` z`L(3B{(*RMW`FELp;1h-a~TVRnm+u6=Gq1zhL-r`Ov86-hD#T^y=eW@D+;(rytrxk zLE1;E?Q~hb2HP19xXQwEn)4t@alAy?IVbO~CF_=F$7uv^o^|e1wKJc9x1YWup$FG1 z_rOOxoQY0uqK#%j{E#~@bU+CaTOhv)`!LK7M$^Yzd&9%aTWkCc%e@Bt{KLNS)aB)Q zDiv3qY;MtUKkPvbc{Q$}c0^H8G4wxM$~Tql(cz$P`0(A0g_B=-Cq3(-e+q0*wp;PR z)sv%GSBr)Ee(y)7qJY&aluP6*y>+yT^KRxo2ow3bQ@ieltDFBQXXG*--|rV3T0QOI zFF_t2-VbP=N^wY7q`KlxTa(tdW>5N0K=E_JR@7Js{30y}2CZ9-t$W#C3o~o;*UiGe z3b^OqXrx8E4Q)uJ!=|7il#<6`hg&?mTRkN^Yk9nRx$pEBKaRRvd>+L?%Py*0`UVh# zVt)dmhIqb!TD?%f!oWs9jwi)Lku#v7( z1BiQFR&2A^uFi-&!l?xYUNzZNoC&>OgSBo6kRRMEKZ#w(gzQdU%(I!mOA)hqnD(Ft=^x zKiGBkB=50Wu-7J2fDbUUJbCowiTt0Z5B(LqgQ6w)Al^t*NV zYj4BC{Z=pR3xblC1g#2gXA=-a^X~X1`U|%(B!x%$Lg1=5zvBo4L;Zq zkTNZ@Y9PuPlg_PNm34Q1@cnv`rn#8c!pbj-ZQzcT?ZICwwzc!+7S<9a`H$l>-hj+p zzOUE@b6G13^j%{*_vij2@8SbJ$bh*&Pu=&6zWFL6FeIqXX1lPnVcpdN?DbT@N5F#z zRny;E0ydWYs@=)`;YYJaCcw3!u=w-u7ag$bhjLaC0IIGZSs_7Nl?-pk2~Kia!dR+k zdLh}dZNUE?)oA8SmgS%m7>1-x}YBbR<+rP{l#RBL&%vqv=87 z!K0b=?08WcU67>PFmY-h`is=o=C>SUMcx<`Cp})&?91(!eVgJvU>T1QM+w>+K=j4D ztE;bOqiz=B9HZUaaD!=WNGhHV;*E@qt>70FoU4(JN6f+ z6m=q6rQdhcPQ771RXB!c{bZ3!y8bWbz2^r?}WnwZmu`A<-Y2 z%swEcZgPDvebELz#S;&Ak>U#C2#7kZV`*0RT4s=dq~7v5qo5E!_WIPRM;VUM5XLwn zQB@13HQ;D|$(`QblGV|H=u@mT8=E(r?B{fx(iC6G=rTo79lyZ84DF04$rlrZ0NPv3{^>slK;y}=?Frkpf#;O1 zzW~NI)oOjKJBhT}ba}Z*A=)_Z31v0eC5@(I!<7Gbwx_^RkF!N~Kc9$k+?s3ks;kS= z6JP(vT;>(rGrNHr_|4eZTuPaK!;H}j^Us0hzU3y8T|C3S0O3|GG5qY>d=i5S&zT%* z$5(9jgZ4sEw6%ng!W`akK6hj;dsWV;;8!aEARLyr9#nEY_ps>5eYo(Cz@>s0QyAfc zBc-zu%li%4xI$*%IM1-X!=E4f0doHi#Wi&6*U$aqx4|uw922Vs!Wk-c( z#JF=pnEQyJ47Dy5aa5K$dD{Ai`Q%UD@rTSac8$zNOaIOGJBe=Ix)HqY+_De&!DV)w zWb&J# zMVfL|d_V%Sr4Coc>7-n76u8kavdF;TnejAOH*oo38*zKGcxG{_G=gP-2_%|Ipb@l> z8DYHp!_Yv+jv3bTsvq6X8BCAj^uxrP`dF71ri{o9mO7PKORyU|Ty{)n;6uTLV$2fC zI0)L>$o9TcZvD>w)jAHR&5C7GHV~}*yz`#&S&9YpDhE63-|kpHQeQYcWGPUz3}7Qe zVo`V?n_`seYQj1xQv^71l{ zj^3#V+Vu!;hqAx^f$?XXu@v%bC-EHPr9w<4hS!<&`uFh>!@5e4Tdi7RJpNIj2kV=R zYlAnk7l0MRV2L1vUg3TQ6R?~0sJr0?E*%FW95ii~cd@1vUv;o908y$|vf1$gh zS-H4%SJw7`s@U@PPwB%!0d3tid$2}I83(~yJPoH+ShPqymZeInPL|Rs-@a8$ zn?pK0dWD#@9-ql>aUfP^@fO~H5ETW#F-N7>o*m{H>2tmQT*2G#^Tt)a4tBsQMsY!9 zlkBJ|c5#e#Qc?DINe-4BAbgflm|vmT7O$Sj6{14Am#q!Ah2R z_6(YnH=L{41}g?WExejjqcAV!EamL7#!v@T^<92+1nZqP8r?rRgLxJ8PL^IFhHi${ zo^>YbK#KBnw5O-1(KhHIY0b+^Zz;q#G_;!ivqEdb`w5Tk&FUw*o~kc68&WEpL-syT z-U?kZctepty1%)+Yyz?(Jdaw#|7?t$YyI0hdzsxrkyLlk(!2GIr^~PRmXN-fF2$Z} zU(_k*f>~S(1-z6&uL3>hghGVxtnfR)odQZFR^#L71(dNy#0D1 zd{3bD#Q$V$C$#+B-0g7cX6xVP+5Kbn%(aY{V=k7y6tdxq-xq2i#&Mco-jgBfC;dA_ z>y-$X9PIpbwY(`hPqnqd-*4;iC-tu3_qCzeg|SC3Z38GjOnZwZJ=StcBgp-C4u1Sz zrK;3vU{1EWCF2T4gZ)jqrVoeb&RNW5R+gCQcd9HrTUQUDY`wZI&M{c#VPoUjvXd)m zYkP-o4tLO;ce4Msq;;Die1G`k_On3~wTAaZl93F<U=svrG% z>`=$Ac1Be>Y-hNc1eh=3I|HurG$Jo44PlFJ7H)6Y+qDx2UxG*E$X7&Ar;w96Jlz{V z|L$)r44zjHJ>Ko9UXTRUoM*R-F9tk8RGN>QyDaH`!ocO z;C7@`Fyw|?;Lh+-dHCM6F57zft)pSrfP){?$``vQsWP7(-Rl|yi9KWU-0MaX?!8GP z9PEW00yTXZSrW;E>)*KJY<2^h(>`sP6f>)L=m$4>m~_O!}ioyZtP z9@*%mbI;?d(G828h-nXeR_!f4Aj)2;i6nfX$GX)?7sAbu3zOEf2DJ2eI5Qom(uh(r ziZjb4T64na(<_!pl;}Vb{O#n0717_nel5=X$qqh&wbcP_3%`h|qd`t$o6hGxLef=H zb}ftI`cW(kVp5zo%~HFwA7^2Z09)~i11o7qtNiUD^2}=2)n;B@t9G+QP4OnojhBu^ zKm>&DihBLD2KuTrc%j(EvnY@>&7aF>YisS#Eibmf4nwT$=sk(t>N7PCgD`{#EL0A|WHCJDMko$t5jYL3_v@g(~ zvX+v^z!gFVRW`6x(|k?zOYR+b1)Y|L5PR$x45P^w$H?;G?sO%u=6m4%g+Z=y34;D0 zI;#QK68nPg!^GNrM2q~UOZL?T6H?GH#gD| zSy%h33y@>A8K&dDq`9xpf ztdC;B+6pK63CFT@vZB84e>?(co7{DyzDFy7ExcNO)IDCf_j}@7%KoBo|! z?*tYMo5{G)ETKYpiWt8k;>ah+D^$;=WP zvB}Wl8;$07ZAwd{Z@Br?dvX{cu?6q{a>-io8tBLA<2f_(zxs-iz3>lgKYx1=`qlSs zr0vXF%12)Ve#dL*x(~HqU5KYRfhbSmqVXeDVUFur^wB`ytrSn=(590Kqs{6eLgQeQ zU6!9L>0<&qG(_R0+#u=!=(-)?IzTGIsvy&avqZbR&P7iGiB?6|wYNeoUfLC( zxl1DBdbfvz_=?A#3*9pkX=rYkTyY)W7U|6M4hxH;b(3t%R23vR{()4`GG^yhBzLy! z+_g_S_iy!pL`6dD*cqng0RHVXiuUdxS2RteH0UTM?mZsIpJw5LPPk|w)CCh_;lXvZ zWWG$gXcP@c8qynWOpf)~W60p@#zD`^$eXS(R8n%*}ed zHmiCK8@kmqH|>#rPr}MAtJEoqGlKJwL#*Z;vsfiT8u^Ma5>YvV8K_An#L$v5B3dKb zkU0Z}6|7vZ3;nE*rYvU43%UGjt!l=K0zEeGGlbSY>v7t;vm&d#CFEX8cE3js6-Q<_YrOJO6!b!r zVDhG1q=8tL#7H5>i?1?U(Ze-lqQJKQfJw{dsDJBTt)zO;!SL$#>Z)J$^1)APN$YOz z=E#$>G5bXWM$~>}nG6diNqE!n!e)|@!alJKp$UyDE8ui>%E{y{F1|B+KiGhyf$2ij zYDPA%$)=pq(c6Uq>$T}>CO>SPG+wsvQ|Fcc0hS|JaHdefEM*3*9F1Euuc?<2Osz zcR?uF>-#LHu1Vdb+EjvsD;7FMl9Cu&Q;bU?JG#<((XB^~3V!gA^N(Lr(RW`}d@elDp?ukDeA1?SGdn1;kgPj&A>arfXAk1NGc zV^;}Z`mUFG!2u_D`NL|EXS847ZAWrT{JVwoe<^Xl;q7BdMM)1bna!A-^Gvebow%Y< zx*CzOw>Evy-7%zlYQHSFc2YGgaIbfE@AK-mL`8G`(WGbd$@gE2(Su+Ec{m#MTEJ6L zAoTC<%)YS&T|hwH@saa0wiFZX`fu)oaibm$O9p)sw${@VhkeTac{3ii$&xLbi@oYW z`-eaGj7s}tyD#e6*83}bec;!0Obuo`S(rU87?jLYzt%kRY=8IT(|*O-V6OaWCDril z%fb9w6Ug+h8_m{X@58S!DR%joy}$+Kd*; zIHh2&U~aC!*EidrR}5pXeCChPjos0bM<)mV$CKN?F9dNGcfV_#^Hta8*Z;~uX^9Ct zs5Xi4s@~hP-Hm-_VzV{i+3J0~^1J`~qyBF(>p6T*^A8`Zuj>2TT(cXQdRu-@u~DG8 z>3CUrCxSA1+s$RswYGT@k8;APvmi#~XsuTX%d~23nWC|=tX%qHYBW&x4`?PacMbCx zd~`+fIW8%B2?B?i5J)Uxorp*!bQ0T)dFj+>j&8F95egh4S;49U$pM+RkNV^o>cDtY z(0&Gv#@Lx^`}ne#w6q3?{rxkur~G(L{eAe(%CFsD0TS17V^|upuh~lg*M$|68aMVH zJyJjXuG_lvFnk|)?CT3<`)v|bV+lZV6Dib31dwKG(=!E3RJ@(wD*zkY%qg8*J6OBd z9Cm+aYnmj`bo6JYS=qT;wE@`9FVoE_az^Dg zE&G28Ou~1EFA9Vn?tUx*5r^)aKxlnUT>RQX{SZC+}1~7UNr)dOh;?1G3p{UsDDkp;&4(971_1DGOElZ5Cf}a7L zoJr^4h#)#~#<^2nTzTiq1*TgMs2z>|0G?lRe7LpisA@R(b^dlO!fC+g8q~6qAu%5N z2#Ky8GsPsvyAWl;yLHOfWxtG1ptMq?Yx@195vF4(oVwd1*FTu2vX>oxZ~z8sb_b)s zW5pd=5X{vTZJbDZ@qeeyI0_)}CUJs}f=QJGr`ugfDX=z=qy^!;{}cw1fkvOWB55N} zWmKdF^z&KT*__Fw(-ZHDl<1+q4KVu949kB94zJ_wuBHp1=R`vsG%{k7oFWU-Th_b0 zKKEg%evP?;uWE$#8(2ff=e0lAIIf<>$7(16*%2n9Eh3ls4o6zf*h{EdTh&eNsTI9; z6eEJ6y^i260jKTKX)n@-FE_63?-ylcl9R-0m1OmMG9H<~%}tXT;UWmhY651@iny7p z*bO%@l*2|iU4-Xf$>gaM2C+){WhLm+{; z$EW#O^s4lm`S{h`O1E~)UiGN8arf|WjF}DH`aXAY&^@7s$(U2bbciPl>;*XKBR^bd zd(p=Da-GXRU4OQ6a%j6xmRU<|;sNs;ZWe@?l&2i*wG{B#5eP$CbkRstCss0lN1Mk5 z=S90XJ4r64P0R&)mb;R$YRroQwk}qPcI(||QkvjMDiyScr$_bY*ey=-YQlYDb8c@v zT}?61au)go&DWRSG-Sj^fw_-$J}2i$AB!A3IF3oS5S^C58Uyk&(Y7Ce*qfZ*plZr=PK_w{|&1%ga}sM zvM#k2J45sv@p%3Xo8Bhpj4{rC5YzBKEr4!%hS-~Q@WWZ{d2c3Gyo^~59Kfb8W!%=U z@qq~!8?eWjih}pHOykS&IopHU)?)zM_77FbA+|Pz9Iqce44=bI?_B~Sxe9zky^+HD ztm^UZ=mlU|*a;m!R~j6;!~6JnNkD~MWO4p%uspkW{5h|Q$Nk|=ts6yVnqqU7Ps7Lx>|Wo-OZo$xr)Q1bJ-}dh zL{9Pgs_Xw(^3z}id1al*e^oZE@$p*tpC5CV-ifo9I-&pLCx<9(i8N69`(q4V$DPl4 zm*?*1QIj+H@K~{BySDY@N3r5F3+wKU`!Xqw{c_W);QR=zzSQ7;MX*omtGlc>lWzK( zem)q>zlbZOl)8}}Ve2IIl(RIcXen^~Wc)~Fy>V>6=xDXlb$sYQ57KnL5i*s(s}m6) zk(q*s=@f%?YQEy~YDap}!%oAi2n3iAU#50dCvAt=%d@9g9^CDA>AhiLGAh41)uC8c zJM*Jna%Owg+Nk^ZNI$<8due*>*W!$Gd6}`r^g}k|md(i$Tm>yixwE62PiZ@p`^W^W z278lpPqu;AzwZ`AN9k3~tXlofo`;I^^3J#gTg%3W&Gq9yi?3UGE+7&JGG{Q}U&^~& zGVf!qdxg|ZwloA%mZD22sv|yE<(+l3!M@dKF8+0`+ei}2L=%whEA*jXm{-Z8CNrRQ zw9`F?dKekMOEG%cu`&JVPcocbu`!=&V%))gE~z5bast8u^FlI`o9x@@S!lb&!7fga z*HHt*^vlq}pj}5MwR5yX!JLB48TGM(AHI^wxJ_vd7<=zAoFV^0tJLSXau5869Y+5hM@49aT*A)5^Y1q zymx^6LxCrZ1rjqdpv`a?gK80~1oeCcE%>&Ar&6x5hQCxiK_ifXo!uNZKX$wqPJLFH zs-eES`(#?`^g-yG|LzhOjyz8O{OG6=7P6A%WUe*TtEEh-bm!vxk+fL5!OgE&9WnOd zsc+b_aSG7G%q#S#B?%|ymO4p%q^b;>G1Y0dFJ(w@bbZhaihR|V6yHB=<|cufWlzVV zyqurUBLvwI%&8J0*I%a#iLGlx16l=u;%3cHSzA=;eqD`351f5n#h@d;&Kt?z8ZoM(A+0Rm7cVp=E{AT45$M z*y!#^e@jd5XUx%H>(M-=*-mo?79=XA8BH&HQzEj%t{PYSWAw6AX(jo_ zC5fxo=6`4@MM3yi@-^uqvplmdJixiW3sUGF+UWYEV*Xg^bww1fD8V%U=Vci&&*&E) zSk9mho+Syhr$==L(RB}bOLg$12->p+PqeqKW=sKvtH2JCqJHD$H$16Mky4AED6RE+zEFQXA--zzokgexx;7nQU%Z+TSYwmRC-8VP z#LM^J6u%>LY3zZAJ4s;0(f*nFewkJ2{*x!dea!{O>xZkeyOh>_x9RB9Ce9@Qq6EM( z;d8Bfyc;h%MvnUF?B3UN?K|d=AiTcr_%`oX3$$#9ACBp^{@H#=ybOY!iqhYQ*Oi&! z)j|U&apPBt-Z)h)K8g(O2HA_@4<2kOs|Rh&6r9nx^<2_3j?aHRr#!-N_S-=HQj*{J zK_FLnKq&VIq1@Qfxy>`*XXY0lDAGJ59fTid+mhGf{`I9^`}J&j$KS}0)xv#`rXRNk zqzeCOeykoEvj0N#d~Ru^dPv~W?l0}H*)A$e`z7|_=GBGeo^}1lH%tT!=MT>1say+` zd%U-|`E2+TS}trpx0`|`swo}JADA2iYJT&o5(oPiAioS#)RCAC*x8UWDlfBHT0EZL z5*0$lLOFrn|2iL+0|BO&FB!J=u+if1cQ~LcuK#FWS8IfZt@l#?`#+w}J01!@{^M4h zeJ+B9;K|Wy=lDE!rj)ErTVM3JFgvP!H7e+R+e_7<0ORHU z?6UgN{0^oOFZ#;(Rdg*wB&B~;R7-qeEzE2uZA7NKYu46h1jUFI z2C4GmS5HB3zv*FWP=qy>PRQSA`q6W|7M)lf9lA!9*m_Qfhdv$R*17ZyWL3ddp3fQB zE6r9EARUARor48~{G_Q2lJ1V{X@m@#5n+HO>tjJ`G&{C+aVYSzqjyN)$@&@qO{L_A zoP42$mERzPTw+3Hd5ov;D`+Zo`|FwbEB9F+I!f`E3U~^aObRX>)3%$2`?GgLCyZn| zucW9G=>x%cWYxo&V{zxFNB&8D$3aIZJ%hyh;NS(EqTVNFMC`uj($f?su&CzBj?qns zdyn(M%DRF007gy$BCwqW+C*UeRzraWV02zU53eP$#Ys!Xd!AwGbDT0!Oc4hKmAg)c4VDk= z1j2<*@f-hL4rF->!SSt1e?hXx*4d3)fMvf3tPK6qnZ+z)Y83 zb#s9DCKh`ZC2j4>{o)30ARPzif-!-dJ=4Fj(b3GOm`-1R`8`1k&vO0#*p24@f?V3} z@cY+Pv+6>-RQ`r>IhbuO_?(Lo98w;Jeuj7Qe$EP^!xVILEWxe0!&)&{B_IsucK4K7 z^sGbs=-IAM_pmWb3rjHZK0V(e7mw5#H|0qp=>U{x;EVR6Zn3|AjYHP|}ZpwH|m!>viE)=H#__@=D(Mur>B0Tkz zH|!pJj!Z_^5iUN-5D*hvLL;j|2RLc+f#ag{ep1x;c`Elwg|g@i!ge`rxP#_*{NL8p zoM+~NLkG3-k1ef@N)6gNu0BQ!qtr3QX|H!Tg6yky_>P}*gN0mC?n`W9yancmf<5;h zD*SA&Y9!p2a62_K9r#dvgkp7*XLfVBpx%}W*)@0U9o&$X@ez0p0qcE6SN)qhQeukk zfQ6RuaQ|yXH=O+_RPdW?k&u-JGw=2qsf!j$h_M5+|NqY=Thz`!TuZC@XE!Ni7oO5(!r$ls! zmWKRU4Xw|Om#Mv=*szyU`Yh`AM|PQ#CRXt?U`zyK=72Hd<8%`kUn9*LvYI-ATid^G zTG^3UmO)qJbV@)hl_$2b$e7P4f>C@tiH~|q_IBZ$^bkRx z=2?sFBE}++FtZVJxO}>eUW*RKG;OHI=8?sS5nJz-O=jxj`HxA~eMk?C^1xuvjf;sH z(5xDGYJ@+z2o=QL-Tb7K(TjOckd>H`hJ)>S()Xvlsf0de16G{!MtZmBAb+wV)V89S z+>B&*;dw&x)#gb1p|2yuW-vd2eCwaRRQ6M4R7$E}a(Z)bQ6u0LghP*CQxYHd9;()z z0ixrGWKR3;Nd^IVIyoJlcJVUuFRuwoeUM}BQV4(FGpZ2?Q=gW95EKq3%&Bgbpwb=asXp+afveT zDtfry<+}Hax_R=mXU|Ak`=>|9xqw=L0e`XtB7}arPZlKXT>uqxs9O($8OC(-GwSgu zO*88u-WxkWdBQ(V8^T%rT_W{h3~qCO|GE-7deJ7?`MCWjop7CQH2@=WJH!0GT22S% z-h7uakOiEApldhCE3F5+|Dg3i>iE6()a>m-{a(??9a`B>1r9KyTc=R{g-6Nr&ouF? z=5?JY8}DKBIMeh=rP{453I2HcH;&8bSLlkhmUidAAzM>kqE0$sX;=6A%hsE^@IF9! zSEOg*C3$U8vz7JP#GIgw(9WQ_GQgm-!Fp{hh4|vz83P>~=gAmb(>Z#vJ6R<|9A)V> zqGzaR8Nm8vGLB{f8x#|QJTd*tQZ{#Ta!WG2?k_2DRs7U=imzA$+qZ&p4B#&@TdCDyWo>Q7 zo3($6tBK;qjYGCE?f(`!zyI}odV@bcq_L_zFHQXEvsJtGpybn(O`FS0tmbl8sHsGU z5zE!En-@%@rLX36F$=0p>%~Sh^nZT!mD{JiaC0*SNUOV@8GW7%Dnbn zOz~J&4v|2G9@QQ$sYVB1zgtxy`_LhU8dA;t=@-aLSMLUJUw&B-i)Bz&fo{Zyl<@vy z3tiEk;i)z%RvrIHJ8$SuQ%qv5}Q5IbljzsP;*uk@qxmFjDo?u5q+3qjKy0+au zUi(%a<={UDmoZ zo36I$S6STIowy}-nwsV@da->U-8e7#^ZVAXB+$bAaCy~=+AjZaB6IV5vl+D!EL(KF zHtHO|V!qvTBO z4(YivO3)aocvznS>rt5AY<9BUXioU{RN0{c4a$Aq;tbnDeR_^*1Ok`<-D49Vr5knh zrE&lp{QofoEe$5jYz=F%FC!-eD2@T@DA`hoR^GGGi4gz}vaDPiDCGr2`tviC|ok)+TV6dCkq{a|pzm$C?|R_)`% z6W>nb=wv{5u1@A*knP2QEUNvd1`P#v`cxmxDQ2cK41b%5Fci-NK|nWEGE7aO`#UDU zG`SsXAO?Ym5{dkcLO2#w!Jcn`QR}&+xXzc1t`dwT zU_GS%uD6`G3`l~Sqj~!xrUaHeYvdB+e6YzO7VPPkP=1^{gjJ%cSP^nxTIm`>Mk!mC z9nHnt4VTH)>jRr&?m~zr^y}&z z7!5ehrDX?!+Se%2)60{uDdVMs;iotCvIcmKl;m#D#LBfkPgsqzsXIuZ(3|~d4j0Qg zhZV6wqCTY_R+RORHSFcw`M2q zmnu}u#1qejA6Qy~$E5cX>x~A7r;~N@y?XRC$Rgkfs+j&QpwyKk*X0;P2yrE#7eTQ+!%% zG?w9%;M<)N$@tf*Q_B2?TntPpvESgVh%c{h-WyU*vNgUoWlrw^d1LJw9sN9(LAe-y zPr!Ei{1*`s&KAd)W#nmYY3Z&jHf%{vUv9{n>Vpo`2-D1++P8!&mYmWB4ZryNfQR#7 z{l|w4;}?TTW<#MQGUauQN;l6xO4;J+{Bi4$30q_UYW9}bttxf*Idr3raSX~xzr-6s zuoTCvrx&KboDFYYJt^+kA3Rx&+Pl!B)_O@GexvGW;$%O`HEQeQUXo}ec4w|J^80Ai zT5M9L{4sg{xFTu!U*m?+QL8Gypxpg{sHNDB-E8f3wrkmD`ey7e^hN@|vnCb38pao< z!sf)rm14)Fr3@2#SFy7qBq!O`XG_b#`^K2tQk|4zWHr)GZL_k-CAMy^jX$sq=D9Zbx)S{> zG)U0zF^z?L&l#-pn(th*|}9&^XS{hrTq>PoE924R7*ZU2NC7>KH-(>0=gP~ z<90?549)B_UuIpnTXhp_9dHN3nVM|n)tF6OMX6eDw*}8TQFe{yY2QndHWVD#$|jX8 z2yfS@D^(PAuvYHm^WZFU=}V~UqbpAHZehFO_hi>?%Qq&G`o>-rn9lmikUU*BS4JLJ zO=a=!Y0o&Y9fQHWw@9cnlX+R!g>sdpN6avzb$Gs+uW^BfF-vGbhn-eXj{A>wERQ(v?O&OLU;`}uWm&Nw~e?Qsq;YgJLb zW@b$9TX9KFMoew(2J6NictfHP)x0j7_quckuS2#85@XD!GJ4>Ee$9BlMDp%AVA)`3 z$*>2bpegXJ^j9(`s617^qi9hvnJQ-{2dX|+8DRfm(#M@+0(L3_AZ7ZPKx7rzzpFSu z2WkUwY+(r*z1?sDMh25`gYG^J$RPdpjFo>tt*@cC+mjK-JcI$~2f`Fm zjq?FM6fAU_S%k@@6f~TXaLwn|*pytCAt6|*Ph#b`t^22?$*dyVBshT$9Ik@W0Be2S z6e|{!fnS0+_v{Hxt^>B#@&_Kp|Er$2+71s5734`(%AJug}BfxgFH`Nh#Dkwma|78<=--Z85P^GE(-XvbcV-q%9BTNol<^dIdIT?d*pRk zeMa^M|H3a+%RIS@=G8WbMh+s&{VPQFG`Jf6^}mmH1wY{k= z1!mOWpOX(#_6qm?S81;zKdNvpez-jA62>1`SHinwn1$5PD!hKvyZP)tQ2tQJiVKTo zU*a*-+1PJvhA%Zfuw3AGVf@GN1BNZ0fu56tm7XD>`tj9EunQ0_bFMnP|0~t8ovTJh ze=UWXc36!|Klib|j7xA0jd(2f>YN+yGg~PCH;#+1zW?}XR`}|b>e)y-k#*P6%?xP0 zt)*+PIJ5cnS$!sg{yEF$C&MbWNShHC_h5tWEt#FqF5mv7ehhNauFD{3v^LK;-FE7r zj5y5n;jB825&a&rC09LpTbo_@FKL&O`I(&@>-^6zQ|_fSA$}^X2WhUqem#6;l(-RT zIluXseAGqhpq(7G1-I`V6B_4#HD9*a*07Z0)R&8)Me_HRVWVx6fWf-C$|(DvCD50a z2aAMJC&%CiZYDz*UkYg_ZS3{XjU#=mt~uBvs}60wOImEjb~ay!@#RMxiqfbj9}jgo zm)Q8^ZwX(0bH}Odub~^65Y5S`4F-nAZK`Z!YaNvuJ5((T+l$n;)&M-_x#Jo^tp$G5out zG+W-UuV0Gh(a33E@vC-?l^;kD!&HANSe<%A{&Fx~ClaLdX3dm7@_SFIo&3e6kdeyc z13wza%EHgV`LLj^Fz0aAz>7wtUyn#6&;sA=Us5{9*Yl_yNnY~QCcn1$-@<znI!WK)`bjdIzE461(||5q-Ss*BTMo%5eNUsT{DKTY&1U zeB#&2%8&j1AAz+ug(#VP(h3cV4gPaqeYI&_MsnLhjee7~#R{Qt{h4wVrp8{DUU&-LT*>z;))q|T#Kf=w@XLXaVW=Jk zVkkKsmR7{8`b)~s6gvOk5#X~df)VqQv0?iJLZ9r(a@Js(3q)d4qtU|+MbZWUS}!qI z&3o_V`>! zGH2d$)7?$VVyW|$6Yx0QUmSI=%W#n>2)u({7Fm}@!~uC?J+G!u4om8147m<;#xt&a z^GW`Bs`Eq|G(O%G3;W#UCg->9t{iKElY?4eB-L-^Xy+}Hx)d8PQjh>OmorPunA>bp=f(1iLHL<;=AwyzfN`xR|HEhmP*hn3x zUZ1e>OW1QuVnQ6WK^HO9-Oy>wFo1{IPA_$)>NF_AJlQ#TfIhj&O$etamJ3JR*Pn)z zR%osUB2)eK-3O&5i_}KhK#wY`XmQv}eI#2es3(0Kt^AonQ%O-{5Kl93%~^$gQIf>m zFYG*5h#kvt^cql+4!DRYQ=wL{P%ip5`1leuZZ*UuNPjT#^5ihUz7(Q8F&`UW8QZ=R z9HG4@f=5%vVR#x!nH;3QlfCQPvhn$P(lTBJmW0%iu1<7O*9FBm-8Fg}_4U)f1+fB5 zG2Ixz#bg-J)rsxKbiujU%v*0>5ReEKd=AxzSHFM$si+(~{VZKC;r&*80U)WN5L`^R zT;ikuQF+O#fVCh0uMQ#q%8f_47}li_n}~&=1 zlIP8e`7*Q0bFTULV^SuMtGdHC^9$~$86-ehq4tua8T^uCa~7d>?%nd_(xfpm+e{8` z>5-UrDm!Y&>ZI)Cd(@#kMSl6V$cDV{@ov;|)orblKObwoXKtRz zp9FO5h#pBr?RFebIG^N4(WaJ*^!Y{d-}U=D{S&#_V+303nc{QgQh?Oh4eGc^Y9GGA zkIw(9E$~?89@WRR>7rxG2Yl)4%5=g0^5ZnVDXWpuym_v?e#+UMMu&@gC!%imVF9G9 zykJ@sX|#6IckX!2@>*$GU*!{@C;S7(Oh(dAl=KqQqp#>l#470OffqK4LqNeTMk$)7 zhRGPh?Wn6 zswuxlj{0k7de&sauYaqn#_E^ShZ&!eH-kvE#n0ll-4heY0EYon?IPO=11X3&>ccZfq?o&j>oBk5a4$_3I&l@i>b(s#9eN9&`2Ws+L(D$$BQEHJDFLLBJ9%p^$MGpJ41@i(&vv zZV6sW4q}OTUKgcnwsIhlUr2taVnOiLHm{)9GIhW;K-E6)lE!U^WaD1dqpEd{yPrb- zUQIZ~An9ZutXy2RB1;V*)z92yQZwRlg%eW2n!~wb$f>-$CBR4cmlW-1qLjc`D#@YO zH-v?LvTsGWOEpNM&1yLBF*mTzWW;HtV!Ilud81Rnf-WW(-?s|OLbzH5bv=n0?<*sN zypflqU9F_DtI&_wx?-s1s|-N{e9+}wW|#!i^lIgrmw&Bsw| zen;7(c^&&Z+wyv$2frp(XF@9C7~|?lzTQ)EnPza)fgl_n1So4o3fi5gGscyODke3< zUm`m)>+EGq%5*IkubbYI&HP5CQrpR9=|d{cYt6m@ug`zj&LZX>mQ|7fE3iGE+Bq|; z5)$A1u{)?FcQ^=K_dObH&Fzi3s{(Ld$)FZT8A-AA^lmut-e`JHZ3Iz0gygZJxvNi>DY%AU<; zF8+S{>f8#%$LAKpmjVK!vhh;oA7ck=frDNvWasyvh4nDeHizDRGRPsu22(2?b{@7N z4a+_>)%#CpCe%2+xBn~{Kl!Q1**eD6Mesd-;%VCHvG%6OgI}S-{Vz?Deu5YPY4hkP zupVi1p&qWdrg?ZuuIxqHwKwKrrmp-i4QmvWWzXa|bqjn|oEy8b@*Q@0TJL`K&u_dO zoXq#E5jr@W^|y=$4{d0d#`Bbk)JTklnyIU{f`#mvA*5R^!eT@B_HA937?HfsuyZRe za26Q4SvBXohx9c09%nCVaQe*){~x(V>5r|yJzewQ2)hUvf8BBf9nO_c&r3&dRcS;q zh4o!!^XiWrRCtfHu~WDoF|1In<=P}6M4_a=3QWERBx6S(lh(jGz#1{Byj+S~eyY53 z@@Z|r8FmRv`L6I|8J|Mu24V}bg}Pf)RiE@T)wZnb5bF=fK+wTc!P&xnEgQdoZf9yA z59A-`cWkqWhOaG_mz#N5UQ=eNxa0$rWdR)|`DQ^|8A;Rk<1gN*GJ)4c_~FsV*DTzk z+Tj{^OGL&3$B}|!Di+tgEgcHSE7!bqrY0z&PUcfp$4m26tGUPJEZ0AT4E)hO6;sxo zDSt4+^6Yr4bQD9@*1EuBm3M`q(z*R;z@zH8o*Wez6x1wIvN61O6lh~cCq*i}l<(XD z)=`gXl>FAnpy0+97R#xmi0_3v&ze8B|76w*f7CEzA@AGRSxzO%Uv;{FU9ak#L3&FY zCbKcv`{-c9jv)Q5$LLwh(Kd9Ssav1Skv*f873bi5Npx!)w5Iz=t``6!C=XJGXp%wtXPy(eq$C97Uy_EI-paSu!FsY9Guj=aarh9Df{S7L8oo zG69PL>PbmSKOZ1u{@Ru#uuuk&!bC8b7{f6mAanH}%G4;`)~h1v_~%0RU~L=sm4!s(>Wi#j>Jvl~qK zByQqZ!J`LT2dPnu7SeBEoJh*7>ImHfA)hI5hmzG>$|M`;g+%m?@5OV0O-8?B&R+8Z z#-XVkmLb58)~FtKNL|oTYuJ+YnNu)QbJ6rsFoqBCSL02dhv}+Z!}Mf_9^d2Z+#K3Cb1^d_@g>qhKC^|S)$H3s%FnHIYHMz4 znLk?Tk2;z^wmM-4A<*fm#>OF89i=l$8SjBI8A6Xj0dvdWE)*Or$SP)l&l-kPuK@(L zd?GEu78(ftU^%)`=M?-v@<$Z`M$$FVY2#K`Ay(zn_7Jpk8tBUn!4*EC&Y`ig)w-YV zoFhVT8a2b_pX%2}t*m_g{2a`PfO8|4%OF$$x)7ei!yr*BfeO+uBAmH%jte{}IS^>H z1d4gx*38l~8OXY_bY+Tv(!(@(@dKcVDIq4NOdnTsSAY7Oezcw!9{4Kt9>q&6R!(|) z3D0C;Q{08wlmn#K>$(~Ma~njA#jgFu#2_y-3LI7j7F*7U-DwdyY;VX=E6&ImUab@V zp#tHsl~#T)4i-6N3)2}!&;>e(kjb&-wVxZPll@=ohrUE)5>70LO8*+!oZv5fOO|7u zBK^sbsd((17Y5#m%E3X()-p#(zTDuyWG#~aUs*m70yCB>R`BLLHS_YtlLA$?H>oKw zcUYWxM(I~>oI*9STEvy!fosxbTIc7hEe|FD>O2i$Gr)Q#c9yL18$vB5pf4eFZ(jVB zGOlEz_k@$v^)4vr=s*oiBm)%+{<#ZmkZ=p0;lLM@_B&|ChUy;@)9973J@LSFRw-8c z_(66jlJZ)NKlcj*S7Dhhh^)qGLa*;DCN)HfAuF#Yk&(-pTF0d)i&4iR zGF3t4q)adfm_G?~K3dsE2-O`%cWnEeOmacyV52OxI2#?0(*yoa|wwaRC94#t?$OfO#z-Fg( z`-$Bo|LtF!m9N7Wf4xiE|Kl6bA(DWL2#I_U7NCtP0aNXE%F)bP;)7b!r*A4C&M1pf zR7P|%I3zG;t22e)Z}QqBWasv#8+HRdTy%8ZsU^7r%6!Ojx!sgWg!*P4w|%k&4p#e? zUm2tI-;Z~aztV!|BEq|TsjF660KAh}C~sqm4*s`HmA6NQ>2k;A`LFZ4=~UY1;0ZYg z$I!3Er{B~!Ocvp+^}RVi+a!K6Z$FoaM>wSM@(3H~H=xkls=%ME&(xQ8wFPE1=wPh#To9OgH0R4j2h@o8bFY{0dF#dhT6ljFq{C&zye&}EI@I` z&wz%)U90&bHkt)_u6gtKs;Cm>JTmUj+5#YcJNaf(TrQPXEovmRmC?;F1XWs+laZ)? zu9Oy)_ms{gD2C3YuPDVwVrG&9Y!k{h8+0Um_EkqydNeHYoH%!3n;g%UwO<;R_4A1hsAh=32g@U(cBOStS)SN6%P(z5J0RMel7v{$1pf9cSs-3 z2y1x%@>G#THao^e89CNuVx+?$E5gvNaY2 zdKj2eAN?!*5|6#4q?L+=rgjb`=Pt>`&VlPbI_13%tfMm;2)O?67^$&zuLhd3#d+|5 z1`8FIr2$_kQ9tMR2d(nk_7?`LOcST3)XOK%i*eN7T+b#F32A8`AK>whQ<&Pj-kd9k zPIqp$v|C)$rz5Bsd5Bx0IONkGrc@;p!M+=l$V$P??50SO*JXcvq-X7;X<4*s|X>(|Hsb@C5g5gx30xh)-=aF_cxjf zs9tjE|M0kI?K`jKtFE&!!JW^#7-olipW!Y>+0)$XEE!kJ&G-daP}y>X-U9&=o1o7f z)4s$OP6OUAf{vr;wi4}FHckfSSuWk21G9DS_itJ+j=v6~9krY_8ok5{a;4k!DiN~J)_Tapg5_4a8Y8T2Y}RQYY5iD*P# zqzBop8Lq;6jimPWcCB0aS3Wc=74f*6X*zgE_l{>-pe!p8xp_G*nF-wUO@|{r1S>7t zpN`|lCu`aVMkmDTpQXRGSnRmp{QkYzQ5|-?AbPT@{Ehl-bmUA@Qa^XJHXvd;k=7%B z3UP~eP@vCSZp+8vD_Y{d&Fq#Fmom_so534rABF#MS@~zFr}_L?X3x&?Yh~L}Kef&^ zDyfC<)Q8)&cH_q;dk4 zID8x#pl#W4-1cm~<1%&O=LY%YOa5_fRbFL_r^*Oh_(?2fxGQJ}$9l9AbWMWnl)qE{ z?Ba-5VuaxSFgfym8|mcR%rN zqx{3D>!1rZ)4sjg^H?egJVeTqw%f^p(T~hn;9K%=j+KxVwd5<0AoQetl&W$He!iTv3o_~ls~=lD%D3B( zzm=C}3tP!w6irvM*`q#pJsBiBwogB$Skz$BZj45@Hnm7?NAjNyU(3GR5p_6Gd&7=R zE>S)sb7l-KBW9ZT-K8!ff_B*Q} zx2&{jf52+8kdT5OxQq-LfB~`(j>U!dK9>OL6DZFL-F<*YW*`o&rw2A8wL$_9ete1L z24Q~iSa|S$rFk|O0Di|A^7>4`^#qEDS`x_b{z)5cKit_a1zeuT{#nQ#xT_G@iA4#; zqJ&o=)%1+18a12{T&EfU`a_7*sB?d{x5mQmB^wY-r!b^C7vFFx71+k7Bob_SU7!}H@9SN;40XFB!Jh2oE={&5c+-rrfABK zt=QeaVb=^>GnoRUnZElhUXG;XgQ}?04M;VNNry0zqkJwq0vBOhf|3LAKlHn(%B~FYk%x^lwoe}&Zp^=GS;S*4B zadAMZWe01ZfR)-S)K|kHR;aH(|By)H!hKRv7Ha$FIUyaGIn5-yN6gI-u0qfvuqg~= zH%9{CiUIY#8r%&>H*6|Xp(;wpCF8>?q?qQfZ_;SZk7h>)6p5Fn!~uH6pdL((pWRg) zBJRWPV1htt*E!Swvd2}`;_6a_A%1S&6{4T{3i)j3en`WG;=L2 zGB?8Nd&}r3kDXzmmtke+;bCxFK3E+X-k>eA@C6e|zWlkjTF!>$rxB#-W|(u{SQjp+ znOAm=>$sqbU6jjTfF)x6fv@1&ffbK83m75C9&(5~-WBGt$KGSUra5aY$N%D2WldA* z&G_h|ZWYWILGsH9xP{<(35n|pESy8SIx)IXuo25lc(@Ly@G4%2^Sslx;5+z^NfPqB z&k(As>{CddQRPSISj%uqHR&))sKF|8cBBQQWDlRV&@-K`FO{G&#p>dQEHk8V!^DX! zyGCL2aZ}4_=#KZE5LamPt8-L(4!yz*LCF#xF*bsNh0YZHL&4mV@d>Yoj~9>U*dFTy z#?j8cxF=2%D}A2vxmMO(Tv?{ZRX6WlM#EHT>1bXX9hll(GqZVPQQ^FUzw}g`8Pkoo zH8y-}BUz$m07^EX7=p8ALs*G$`c+w*&WeNY2j>reR-N=!(OQ5Si&osRJ4GGdoj)#* zS_U)Y(ID$@U5v+noDVMm8#5RU&qVzeJ^B4u`Jf@!f$EB!X!eu*WU@H1y1Gj%8Na;#SP*Ekch~nKNx{_j zsti`lHdU6B>e&uMu{WYL&E+B*-l$Xk5lR^_s^|Q=L1KG)yL=I8wq|jVilRPfYb8A^ zl}Z{$H9E-#_gEi>26u24R-T!E6z)&`Wr)1e5$S^&KH-MJ!SQ1N8LjRdVgk=&*0SkD zAJjr;l8ZvU^D$e<)X!z28a{(RmN%6%-MX|Uw@=!CZ_DV}#YvyqgQK+3!Sv3Hwa;K( zLE19Bwu9>}hnugrGp(F`(_~l&dYjkC{hWrjGIz7GnAB_&$CSEUghX7j#l_7bZaNV3 zAlw{_Q?3vIUzpEA(M*O5%lh_xYA#^Ww3v>gh~NpTZzzKs!Y!LoR97FUk+5T|z>Ern zxjL!JoDG*0;O@zQmhe~k#gd0XE7$TOUf4EY)T!rnX%Ve{(OJYkrQ^zNoZ|{Ah z`3jft0Hr(81=_b(&3;LgZQyj;WCz@sbxh(AOC?~)xj7jt*2V$#f7e?6$h-%GC6 zVwhR>)I#S?)^%I2gu2qQyO$;0P^mzsMNC!bQ#OhAnS;UU8^B&I6Y89+giy5vpi@E@ zI-{R6(69Ew1K>pXTq+>%V>O_U`kte3zyijh$|k0q%PfvT$MWbIOS=Cs7plgd9*l;j zDkR_~xHu33HL6b~42(hBNpk%wxnHIDP4T~P>!&LvmEK>ok(eDH`!U2Rff%$;B_tTk zb1%9O9y-dsCvxL~SjIi{{R#;8W&rW+$S9BAHvzbe9=wxZS=mK74O~?|PqE<=2v$}` zz!fXd8A5xUGt}dejB$2>8Z(H~FDzq!1G^Ul?C1fwGGi(*ebb8|Tp5=-)m{m(FmI_6 zha}d`LHa29JwX{D>Ny(dhk=Xtu|I%ZQ#z<-^C1U^ORL*_k~@cop-s0ZDlb=9H?+32 zXm)6jsRrH^YnM%?U1UtIFG zXWAjSYtZ2}1j zM|)Yz$#Ry=<&G_ybNdI4sFPpon)8orTbkEfetOM3B!xDuOtP0ehZa{OZO&gyHSw-1 z3JQDyWkaJX5RmT@X|zu&HZha4zUsw%gQ{u~{SUeZo~XdeC1rm{GwBL}=)7uQ;zz*v zVJcVt%D=ZG(qmjU&W15kk~zhe)A@J5iuD|q;RnWlSuPm!4{$a%e*JnssPE&Y^U!2X zC+E{$J^fH96xSNrN0LM6-M$U$x5C;;JvtaV%%vXNU)Xp_cy znU3ElcIzwBcD+Ek|JZJwf({1Xofgek#U*8+WKK`JW_fcx`1btRZhH5Ffsdyia-sry zXd+{Kt4Z?h;h~Kr(pR7S_SS>a4(e-iI3+Wq{HJf@T65(j!}$VQqz(k|{a|0Fe6>>& z#R@G5z?)U?;^A#$T9K{C|dhd7}vqa9eW$CZDD%@*E)ai_w;kmM{t;D4=?#% zkh;IOuf&{Rxe%$&z->8c5W07``|HnozxF}+C+fpn7MC1lt!h_*T z54q(>wL-%$t?yB$8YzqWDU|%9LDBYr7Saizj1uOfj-Rw;UKub zN-F8{`l@C%-_(o@e7Nupz#W{7JGMU#p3t}>|CEFJt16Pxli8Rpvps0n*m2aAmLGob zr|-(GD)Oe5!;HepNH+$EISN7Do4K;&;0ZM04N*xKeyv%{t>_ax1u%9+x&dS`caZCI20 zY<+ZhE?T22SQrx0>4QjWDv=3nsRPXu7KY_|$H)mJhI?IJ32mL|!mVG-^JN$?* zYUA*6$I0W-VDjyEBZo0NGYkKzso4UAP5exxANAuPpN|&|ERIS^d4qer+Ct{;7mB}i zG?3dK1=tRGRlq{rv&BVbn3V{9{Lq?|A47E@k*`0!Bu6yXTF}wam+l<`B|BDv$rwl# zi*$~}5OI<8MlgO&pU)iOSYD&lmora3q48X0K@VprrBZ*t(qyfW-}~ReO*~MT{Q_4F zrg%tB3ME_gWNS1MR0Fhy@=VWui~=)px(_@NcwB`X3K*IAJ!bKF{y_F3p`*>R%E$_J zafoIbM@|lY>?sHG%8(sU6%TIL)&g`DI2u}z>-72p##zT);)WrCYEU2j&Z3-{cPcjsx zr1TD13SmKsE}^6Rsy^OF0m2Joke~;R7i>qLPy?bU!5WL@Rv1yy0%_931Ra*?klyFO zBE}@!{O8A)33cs96p|FTl@;JqrFzK_RA!#qa+J4UD40~zbF4^3o=YWM%f{kLCYc=P z4SF9m;p#{mXKy>1FQzM4ZUnZqwzWhZFH9^uU!loIQ9G!^JK-rNPw8F=rgfO0K1Vb`l(C}?KvlO>q6;FP_mtO)nA z@l4DnE;BNT;{Rf6?i#bE=E$&`fFUqij7cB6F)0WcvXM@HjU@nbQ7p$D6tHFTc*#8n zMl1=mN^Gy*G$cELE=P@7&sKjhol_~pUFc1{Wd$qlHwWvYwXvy?x!Ch)M>Aco3IqMY zn}zP)&#EjzlA%g+%t@}9rhup~lL1^Fhff-MhBJcjM8;SS*8~O&2rKT**ss6{Fvz>S z>O4;_38X_5RQ8srj=A3v=h012EW@0}o(4K3jPA4x#0zIwsBiPABVfF9le&H$|JAR0 zRWqLT#>;BytAnQ5(B#uR$&9}~J+HK7qhh3ovSdom6e>x+c8Tf36gq5&%9Bq+U`!0U+?>o_cfH^W{Fl$fo$oXB zR{0YALuZ~aG^d~w$9z@MnysFBL`FuWMNX+0$H|(#D-f&+xu>9Om09%smh24LUF_?_ zB+o2~6jgr1!&8=CjVgr5{7VIQezdy@$B-|F*f3mjClSbbNl-wQ^G zYj#yg@A{iyU)@NKpfX`=);o^8?43S@#uxJvr@&K?1z-Lhoj`?C5C6AMG=cCn*KlvvUCmY7)+$W$|qE!bimycp8 z>g`x1Pa$l+K#QsI5GQfbkWHV-MnY>o@$Fj*eSMyQm>jXkx^_8KHehsD;oiF@Kf4x3 zn@&Nil%Sw+@HLdHpPVZ8z4`NjCadj-(zxU}YaUYM2SGoiAD+8!D?H0^5C1Zda4e!p2_`K2yjd||bgC9mYk#fFf2;(tvp2oV04 zbj>Ei^uYVLJGx0+L9Z{m69z=a(m%|T6&cD6lYwz*c(@wbvDp3$_-BYBcUK}BL~Py~ zdm#Un3mA1x*vcJ-TsiEXGWcz*`aHoGRr>!ZGm-60x zO$vQ}S`EZs8vFE=(39D;$V~hZGosV}lWa29LO*&~Z$W3wItjro%p*LFa&;K9W?5Vp zK@76rV#|?cT223v@1uNI?GQRsU8Mxpq~qx^~xqfwbAi{`8qzQ6tsSO6z;wEq(<+ zVupadRHckt{H4!*KtsV0!?~h7%{mS9td=ak29cKRL#|nS%T!P%AAG5GqYSAaFv=o` z(&u!Eb&4#hz<38^cauz%^oLiQKX_%J4>^*N5O)=jH--GrOwBQ5o&o89eu=b+2T~Ei#xk}J8 z?h$0mCNFdCE(Hx@ zB>sJOvnR5#yu5zjXLG)V#n`>X!kBII6FibVpkFOGS&{kueZkLSy&^>Lzuqe{-vtK? z1OSQvPGOfVRs`67P$$man*f+7qs4 z%r6huV=v_l@a`b@AI}VhNBBPsXgLiiTIE|$c_Y5ef>hYaH{G)O#+#-Pxx!vO+w_># zw#G@X3eU!nv+?K4C^^fQ^azn}d#aIDwUmTvInQ?Galv9b{MEu}rIy^b-2^%hlyN;T z+^0t&89#$e(tJY4`^90<+@nMUL^$-AhrS|>jq!=OL3>W#oF)Z%PeG$Edzq%f+4I?< zmJ@)0RZWfG6E~_c33qa4;*ewjmS_(M48QKx7S(#(9-L=7RPlHm+45mFa_!>_1O4fz z(h2JVg}ZY|7E@LeJS*rK>gJz$s5ox>p9Y6VsZ@T{;sE!_H@mseM<>A%J7pNAIN+)I|2`#?tA=_C=2V`X8Ro1R4tUjsF?j5Sp1J!etoYMuf(`jcp7ebxV|e z31f@Mk|kp+dr}gzw@vnuW$a6`m91fHQ6$TdW$ga1-~aso=iGCbbI)%KQc7caj*gBY!;b$$tQGs^b&Pnp<-L!uaUT9{7vnAvf1s*DeOtf|#% zUf^?LX7t;-xg?G@;1Ff<<5+K7<}^u6;-j@f=Rl=_;D{!uqc{XUAg9lz24bRA%E`Ze z8DY}CRET@Ci2A+wbP&6wa9ZT`b^P&u@aPB1@~Ej}xurY@0S5i(`Qki@I`a3|`*qis z|7fZ)(u#KuXIaM^JG1ygQ6zL$Jg;0tj|x zCXf0+^YFpJpZyu~DUHLZuBRkPyH7zViK?W#>9A-@n!cz7%oN=_fsSVzK&i zv7bJ`^15cvkL;P*3m8bsO_WoI5YtPpbxzKv&*V6mAKdfb&$kKM-3gfd+5AwWffDlT z)KOc`ety_iuuHf_HUog;p#srX$JcVz37RNx#(H6^T6}+%%&&(E_ru+6u92} zhIcdRrgS0$_?Lsh)4rz?`$t+gm(&@|Z++V(x9}$=hW+@ixzF0Tdw8>P+u1iKNTV@C zePpxfBT&c4G;UHdo|p7l(dsOZnofn35ke1-b~=KeE6R9T>)Cm7++QygKczUkI^%Dt zw}4*l&Gd-b1EO5((4B9yPklbeo~@<|9et_G%su>TFt52zZ#dj*+?Y!W{n5KPaY#N} zGWBpBzPi7^^}SzaN=12LVgCDf^LVHFaazkk$FHU4The+EAAlZ7CJ>qs=C6V4&Vdo3 z5*v9BCKhdHLHyo%oJ#NPTs-4(^r!U{1ClZ0X!ZHg;bvdqb<=8cby?!Ij&By4wcFc{ zRVwF3Xf`Wg>2&RB{_s`l#=k!d$}Au5taUx{SWKJL+irJht%7O`WSU z+qbU10TJ}I3TB5z3<)Q zprp$}F-~ObXXY5>RopG&4K3$KQCz^vkfAOw_6(6*dKI8k`g&Y7Me!#^9$%W)3wkLo zNLcP^1N@J#3Z@|XLKUFQT|*-p<2+Wd@2c$M8N&2aIqmH-r`pi^NFM!EB;al_LAc@8 zj*!Pu(Uv!7y@T#;tR9XobbWIZP+Z*n=1jIuXtgj(vs?@vYdmUR_u3x=Q~kqxo_Bzv zHUdbOB0+P=IhPqM_f9$S%f>P~d|<}PVIebIIRN}7Vv;xlwuFQC62wh~G#{)^Pl7La zj_0zj`$NquH@{Z{J#Wxa>pTsp<92>+hQ5>^L_=jYu*Ih%lkJgqkwnINEPaW1e-?q1 z1aVIZ5hmB-)1ctY8xbMMQbJlN&d9d}Kv4q{!LCGSTw2a!afZ|k*NW04#rFY|pr1PF`rND3P*pzXcA3)GQ&ZJbnWa7m4p?{akdv!O)WNQ+Y1W5%c@kZ=em;<& zoWz5V=I`+0dd_Z1SjPhfDDt9A2@oEjZR1qsVpY*lJD`OJd>LnC1OR^Wq<<3qp%8$w zlLCW$JP)w#8rU+l@W_F1e`!2J1W4hF0k;<9*aL)$JZ=hCz%U^l!VTT}5WHxFHm@uz z1}p`@Ui4G+Tg^;NO)p-&2(Id4519X$t)4C8RUGXKdoeS(+hM%1u|3=pBJyHfD2_*d zX#?_QVhkiBqN6{*sz_4?m!66k%E{6e3jWG~wlyS)*};HJcpT1)Hwwqcq>+T(mdPiL z>`G4?$)$San&X_u_^t+-c9|DkdowZ?)QSEqk(QAwQKd9!Tc_*#Ff@d=-42Mmh4jih zA{a-NW^^hZg&Jkw%!ZdU_`)dQzW8RT*kOCYzT(`VWP7dt;hS_Lii#oSq!Zzam)otv`?3cYbS9^gBcH@1P3f_|+ zd#s`(CT|g81=^0{PmOPgQq^Z;pQ3GBnYxPGw3#EDzvg8o%IzGG$Gf32Vb(Uz=>9T>tv9r(uZ3!N9+3DcS7N(xYu=d>)}!iGmov zG%ro|$9l&FP%N0K_^3!@zmcywo6J=?N`^v=3&hK4LEgKd7=E6a|$`bu$IXzb{ z0QN$zlzrUY1+>&|2GQzq7TtaFHpiq&;pl4%R~ z1vAIiWS4@#dSbw_LXJ(8@1!i0kp*Q3e5@fDffrH0B`39_>vP`17Cw;AYHDLccJr+( z*~L%emfyMae)-t$pN-UUeAG0qsi88}4-);f2beJ_)IU+cbiPMH{3rk8!v`^~wL%79TnoeVAvlSn|+z1n@klW2$pu{%N* ziMxthcgq-<{0fs_k>cSN5LP=Wwv>rf4;TiT8+F!|2OMGiMl)LB+ZTnfa;y-&|6y#9 z4laKs0S%IYvE_Go6bGDvD+*$TFriB7V$ENEsh3{ zk?A$}m(uxK;taV{OO;_K`I4QKVc?0N;=u%oER%9@$c2s)N|nDx47x_1K~M-7ZGV1# z2mGQiib~O9hqowsfL&>p2yL)d0FGL=QZ_qTC`y);lKhGdDha$OVEqar$_5U7Lt#P_ zTDXh#MH_bJG+2A!5~;jZBEtTO{%Y=Rb@q8MTL2B1xe*_INlXXvKG>ayimWm~WMl=Zj>36Mp`nt4HtGXI8Kuh~b z7Sg$R9-B#mD*7s}Y{D|L2+Wr^CygW_I$PK8f)u?)iDCyZ)lh(4a(vG6K|{U&Y@2tac>K67?SBr6aMbf1pvUrujdTO7`3{_WLuXuW2}MH z(*@%8nxU~dWqBh>pzPJYS6k(51y2p{NlVLkKdfZBKC`rB3)q zV*Yob`dYruW*EDwwnuhQQ33&lir3YJe=XJ{-sg=0KKV|AOvN0v-4vnSL&bk4_p+we zcQ)PB#y)h~Q9ih-k9k+x@h1Q7$`gNnb3OFk5(5a76hWUkqfxofE)Z4&60i; zZ47HO#|4U3q@bTgGna{NxF9|wAY|Vy*oPdrpNy7YmJK=dm|^O(HE5Xm)j9NKm^i3n zeHs819_^jtO?=^1Q^TD9nrB2*>~7Y)ke5u!*f_@L;X~kNB?lK5Cke@Mjcev#_XFDW zz~=7fA8x+NzU1-t8DWHv{h9;s8@e6y-0Rs3_=_@Buy)%o)36D?NW+7j1iHp9tIg3| z(&1-X=-;1fp^ae=eFB5)E&u_s5AVo(AAy)aPhWTRN!8%R3{SF)ISxGH(w2Y@6rf6Y zJM09+?C6yuI9;{~E1HQ*5O0h^KOpg}Yp&LGda2DFs?Qw;hwUdFrD$$fh0*(uP!IBH zM{&ndoZX|{Mj;`O?E1Bh#-o!*%?q@h?}s%q;2(*_GS)VeC-rDDC0JZVA4~O z|7fQD*UH{x$i`Z`a%n>tPSDeTFu?j%$yVKc!H@Gd%EM^+1~-YCQ~jnUNhk)Ph6WQ_ zME>w<$LMYlj+60;#jr&FUfrpr(1TyU`VYw^VZVq5i~kw!?F|1nCO&Hz_xE8=n99h# zoj>)}hu=JpW*cXNg|hI6TSo^M&R*N==oI?MQpA-eqyEsp_8*xoc`k=(a^{^F*2<)d z{ZkKDr@wtu!2vSx;k!DJ16RZ4^jkhlcdBA6}PBJ!}~YY_fqs9svExyToL-al>+ z{rvnw>XlU{KMecJXl{e8O2NXUhQs!fum|^5H3e(NuTbA=s;IMATiehlJ5)j!Lyihv zl5zxyBbPNkecF8xu-9L|xgGL7AZudW)A~;6<`YwEJhk_ukXOg1g)8}(C^6QQs}~$uSIhMdy3M(+Ff}tNt>7=v>(*pNjh(o;mHP9F;6STA)tZ<*(=C=15?091FD(vd+*2{C|)VFJLqGrT;@Rn-HDO>!0t%oV(w(>fcjuUt$XlsBr;_76GXC9 z0JR&Fd>-|)(g{XF@gOu#NP1fa$Xx?WIx9d7(l(bs%reI5={gp1iO2(ZHs;>>$CfP= zma@;;bkmXfn^sYB(rmYJw@&@?pOQNb)f>CoGO8V(Y#0ekm49+QI=5Os)^A26p*7r> zJUJx1yuL_$?V_@L4qLF0W&T^R&H2upazb!EH(m}ncGGZ+X&5w4?6fW%?wC65$eaA) zJeuFrlaDAW+=Dg=Lvqo75ug7zLeWTR#VV z?d|L2|L7HKZd7SbL362~;Jk60N-J*L&PGt?s`5-;7ObTxL6`Q)+?ZHceInBiDBlym z4xPLI`m&rIXSDhyS?(=WXa~++cN&ExTsa3}5`-kYxs*2MBL2SY9PX>7M(E$|gHsyk z+@#^YnZf-qVcmWK_vMVy(`-EvAkmEAeP#|Iry!NPQEVn*rs9Fp5G$p5jj%V?PWax# zWggD;9}G8ceLot>*^>`Tx7(IE$`9M49{nVj9OPAT|xuw4MRQyz5KNxASJ<9!1L^5dkM`R$h^xVZQUq#6{smCj6 zmp?Af_nU++x9`x^f>*zFmL!^(fX0!V;{ElF=C>0SzW3`ggA(C;lT&KJ+xxq>bITI< z&@QH`a5)w>t5i;r_%dc^WS4L$oL988X{HI9EXxX9PE=vp@w$KzU$VOTKm9Uvn;K1l z6q?r_bL;t#vK-`qGMCPlXI-H?(EtQs2M4{wwpOk20aN?C)ow}^R{z3@V#racHt(Q; zizU9d+ttMId7jkUe<*vCckRT5ue*B?J<$Ahrq^0cgs{8`v*GI1bADJBDv(YgIq!e& z899gfY;h8s*-zn-yFtLCRJA+g^rtN(g8Zqe+i7|zNy4QO5nUAzHjWly3*rcwKB59_ zdEmuBXn7HJ_3j&;MWV}D1jaTqDp`l&W2>-yFDG7#a7p9DXetMIU&rRjB{~V{>qzUR zuH}u?T9<6?xsLT$*G-I{1JgZZDJR4sgUJyfX)Zw6_&E?*u-MOzZxiQ6MgnLJL-`=D z1Jn_2F8C!#Aja|*7AZ;SS|V;{E1P<_d1Si?i!kxbG_eR3B=m}iG$oU?B(hRDcIIf9EG1ff#TtL5OD%9cRC<&C_r2Co9Tw%ie+>Gi?#g7ZY2y>*sl1DIa3D- zWo9p@JvLvK0`E+ ziwT$RqE9XfR@Ds>^y^PynnPo|O)Eg290*j`Fi@az@6P@_`SF z8q&eS0qkM0DX}g9h*+uwt(EwzQjQflMT$8ZJ1weSMi6i>Rr%2l_BR(*q~4j0kvFN- z%$THq^mP0EoTYRn!F9l0hy@>CQBAtJn+MU55|WpmnxS67#YkFloZH&+e_5o$k;^D7 z0;2TYlcJC}RVU1`J?rDaXWz97zpd)XvJ-G8zMiz&`WPFSEyh`O0uAMlup6UU(J+PS zQS!I2T3F)d$eg)5Z6X6q{g1IvV8{*msaJ#{iQ>G7^uyI3jIH^Do2vc)aCgDP@VL9x zIfrWj*2~U}>@~%hbv1f6{9WPLsHGyf!X@EfT&pLRN8S(1a;1vcUrtP-<){aFZ;3W8 zUTCDVHq!1^{L^W7Inf~V{s;YN9Cx0rL+PkzMKM8ymlf?k*P$Svs4IIN^@^aR9?6~% zm={2@+6tDPeLVbGtzzPI^BSDE{zo9r@*ZGa2{`d~L>Qw$wXbaF+veH7d8SVK2~>8r zX$}7V3=;Lm8&WJA-u%_})J@wrvRV-YHWfdAfbJBCJ;=^QG^-6>;hxK|eDiGhWj-g| zVth%d27o#R75$h*Uo~+Et^c`+stZe#GdNGPyN#r?cW?c1vY;-hc`)Swbq2ixJp zkIxy)FQ!P`WlSLDa|wHvywSb`XYNtB^iL}zuU)h{lfvEl(9lgHP3>rVxOcg?T4Q_r zZ0G`i<3<8Kbje+Ff2W^($GxVuw&7Fl%7S^f*%z~JHvydVo~tLZdSo7y`9}O^cX^{@ z5s-NWQ|fZxoAk##;dxAEMkmPPErvv9KVX>pQ*kY>*o&-}cC^}m6wp8U;4kf9LDRpS z@2EX&=l|CEM{6#J^B_54U@CO*ta0;6<6bW-c&LecsXbi#yZLkzy4Jk-WOlE!ZeruX z?dAEMr8i4+hr7-is@8fr5u2lNF?OoG-~~YMeiHn?H!YA%-ud&?MZW&UT&GK?38PSb zLp0lqAoSjZ%c=QvorLe-_ox$xHrs~*Vt4TLu;ruOLX|`>H5H;>3E27D`d<8=^~ZJ# zV5(<(e(Womn>b9U&Vkqj&VD;uTR-}oYZJJ}?pa)Le==}mqif;Y=6KNAfClnJ?}EXP zhhC>fX1mOyEp5i}jk{Yl>T&}PJu6AR84`t)yoyUR&l}49cq23a z*se7@+k1X@W%iVYw<*{)Ub-eqb@${e1!yVI2J4f)lF;} zgU&fvqmQGd0)$SgHo~@8`z|jlvdKh?-L`tl={!qUM#rq|ak#^>=xjI$rfcagZ3R=u z;V)EyPY{&tZ7u-8V}^ywVlgKjIyQOxVpmP+B``E#HOL&M_W#qkzEz=^tzH}E zZz+N=R=?5n`OLCn&WL4aE|-qFy7KWGX1oZOAo6$T z$<6tjibw6H2h|OX1c;B1k60OCNAd!bij@Fw8^%`DF`kLX_CxaEaX>!#1S1-d?JmVm z8F%a-L3_ke3?yY(dDEOCmIB;~K)Yfzljs4u;1Qs&2Ch8exTs42Rtn*Fw6aAyCO2U^ zp!n0d!%FyoU}<3t(S=x59Syc(F+6=A3N1E9v~AfUr5ti4zGSDjiG!AX<1>P`M4oQt z2p-^cB85fD1Hg(be_T|7AA1A`7QPXk`&(~|Z(%Li<0h}Me>S7MNE4Bd zc^$tv`O;^LN!l%;(p@^qBq`?H)c)!j5pKOP2Of0cS5+2%g>>1Kg*M&fBJs@28MZ}y zI$C@$#G$e;RFdO3B3|DJD(=OPES<+)&vUxz9Cw!u1uJ||ap~*1L0x|ymbi9V+3WtN zGc3O5K6)J~{MuJo7RAKMqQfA1?c|Y=mG@cSTmPR1Gr4#0ruyCc+V^$E!DI5-d`Zn^ zr}21W=p$Yvv^<_*#!XPdU@%RF1yJCWLFz%+xKgyR!mw8sC;=E8Weh7zo|SFxYqOcn zSnH{DsjUNF>fK}#`MYJmug!;p8~07Q*Z1`7vX$ka{JQX~7CgAz>k!L)arVmG01IKZ z6lM;V<|f%|ipJ0C86tSKn-xG2eo?@g2~Jre-R@6L{?PU=eIQtc{e>~gUll)>0dpIDT-u<<@SvSXsa`;8*c)@^m6W_ob+|d4NJ|%Y{dMZUX*#8MpG{ zb>71JOSZh!LJqo~7I&8qsX$HF?P2NH^C~BG)nFD$}BXr=lk^w=S|5lEcWDYYlclz2#g^p_IlMnZ- z8jqG6w`>lokG@YGNXNXI^iynQLh;6&%B(^o-dhD z9v9fP!_}o*#=h+rrXup~{YMZEk~-4;UR)&^0ki@nOFd?!QUtptZohyauk9nfI%QqA>5WFyqIlcp#mD=I+YToJPd94-$a8xqb zJBhl=CnDC>_)D*Pr*;&5-N!GDx@0irK z{uoGlxmDy`9cC3M*p_OrxSxuijeSwvZem8@ATi&KN`STWS;jcs!W+$`FXwVCBx0}_ z#PoBed(K;+`GuZU;wVhdgE|z}O{Ay$FOsXW7b=?}hT*+9WFim)pGKmZ{IPRbC|3M} z1LzW*MkYFPd?pd3<3x>+fU(2kgX*e&peMkGgp>}VFGSqZBf#v%?2?_3sveB!=`*pS zjOf&4CJ}C77fahn?v}Z9%_t8^l(ih84L5y;B&J=o?D;;Ow*$1I5n}RilK?B0Tac$D zl$3)k%PZH4f$|=ri{!W9#8%l}UrDjL{8V)#T^#-5O04G0N;|U!7Ly7{!9b+jB*4bO z%a-|U4F`?5wQwd8G*aNU@m_0^hFAyyLy%Ao9F)0q?F*%-l7Z9{k@6`Rj6t|3-z!&` zCLp;n@!~}pNS9;`LpoduC>UkhuisNN;u2Oj4Ju7+^r!bdZ`_Uoz}$hu)!Aa=yqe6- z=g(V}(#@MN>b_yVzCLtM+5}p5h<(WN1{N*`p7Mi!Z=C+KqLJK*)5Zq6AA?F-Z5dhQ z*1eT_)^EE@i;3W{*rswRa+T$KAlcDEppC4`T?jZyEt;U=UEWR!=E30pC3uDCpGN5hPBjf_{-1V-DT~Rq0NyqzDP*Pb+MnRG}~fSrHleda5?;sNu(t ziNS!W`m=~?xr+49J+zS3jfG(;IGlXndu+X47nGqQz3T(z-}7_Reh-F*y)g051igIB zdnHZPnxnCH(~uo<*srspTUB)dAmfC|1$YFVKNGDMi)LkB7fa@xB*jRXy`_Ako|g{( z>W#H3-Sh8IfkxYqcC?sWxme{!(x_?si ztD1}$FPgD6yv@ufZ+aW?;K7N~ipmDuY z75Q|6>!di9b3LNYr6ON3|?$;cp>;))Bu4EO z9*PDCjjO9J6u!#w%BiOuO)rR1tix;OhsPVY=iJ5oDAfn`YIQ-oPc#pn=8PLR9xk5> zKhLGi^|C)imtay3E#~*TdQ1sfYeM zGpmM?g==#Y-!%g0eYwAeq{?;=dljhDC6mg^)S>r_i*|4Ni+(NFxr8nGo;r*?`t|*2 z}YvPG{iY_6AHbziJy5=G8J6P|70U8Dd+Z-l;%#p*V3u(Q0w!H zYqMuHH-9O5ZLNoTPOjkCWXLkh?Y*0uzkczDEs0Nt-E&CvBX~4zsr72u3&f1<*)>*Y zd0s$9wO!R6vgFA9PZC}S=0Br=Z*LCtI8`@1*|;r%j1e2*?M#~>p}v+&v6RSp6emct zxxRFE(T}ryTo8K#utEm=CI>x@bg+NOC-b-sHS*Hmv>sRb(t=SaYK9>1pYRv+%0Rz` zOmU6tHy#|4_jr|MReSl$lS?wAED>G|EK8N5#{~TNTZWMOmQ>kP92+%tCY@W$`A@nB z>IS+Re*pvJ!u3)lQT7sxH!h9!wSUNraG!Fj;Y@l#toM20E?a)!RV?L91v2xF)a{t< zGbn~*q`n2n-Y|94iws+y$egV6&=6xQbtUS>TA^bt-#1mG)+8Cx7uc+hWhr;tQes<^<260YC>6a z!m}e;$$ZQ<7pg~S@;^s~8di-UQWpH8H|APdH8+zEUx<*XKGma3{+T`XwUaW^?nH-# z;{J;^x2+F;9c?tqQb4Np_s)~Ewo(p;U^7k|w7C*plSsTMsN|1- zv9>oLqIQg!4q@36@J+w!jEgk1EEv`2(5*}r89pTAwvDtAb{^LbW2nyh| znLhy^R;z5!pyTmeK>K~{(j8#AL0GU0%STB)2N9i=f@BY*9;K_8iG`Zla}~QC3k^XD zw`7E)bf7|P$xXtjKxTwVjAK)pWsv*h}{d$t@J{=Ky>!e2y0tqX;P>O!8*hIvAlG3A}F;#FSO-G__OpF(Uu2w>hI!$xj6U1(1*|QMj>$ zibeFCtSaZ5mDSVbXXRoY;B_?V_m=C|E&L!-Q74WdUp=XK`toN-`Emu4)s6L@@mTm} z7>l?VaP&&6BkiJ3T#HiIf1?{mNz9*i3wz*wRArEq9X{w^q^sDX{|J$y6s#{9fwEkL zni1qwKkMI%`!{ew@&*s)i!o}+OjxcWO*T33-hAJ1D9F7|&UTvq?rv{-ezC)DrYn;c zvj2N62ShBdRxWe}H0&uJb~f&+Cgp5Sa?HDcnfhMxV94e~Kz99ut+gkM=PpE?PESWJ zU+kN29Xj=N*-k$3me<%nvZ)*t77sTDE~EL+Vom3&tE#1pz^V2=`)L2>)S+g>+Tp>| zD^$FVz*eBVG_m+e8t-hcQcw3Ir`w8|gL&Nt*WGvGVoDyahV1Z=dePSh(26nVOERVC`&7D`9jcQG~k&L0Ar zg?XWQewxbWNV+qSO-CrFHi4g!$P*4XAYg)b{G)PAK_O}LAWXi;ezyT8KJg?|bnRF_ zxoT}@>Al-veaP(BfU5DHz*@od5qIhJfdQVeZ0qrd^uAgC>cXku)t4VXYJ?tL?fG5| z?yWt$pWpa}6aD|#Bm`Qrv(kgu8qLRQH-R$oL&P`P5 zX-6azOFmRcOjrvP%4n>dtpULcI9{PJ;U8Am%v@47N&Ymbc;lW4rbhLY^3A)JT>}ze zXI|F05&7V=1w^PzGy$A&Z|*l)TQWwgRF2foNMJ~}M$=29V8W`}wuYI#N`mJjo9a;n zCVg8_i}vDLB$ysVMTMIU<(?pJ_EZ9FjS*xNaQF$*z!DDc(=~|B9RW?6z;=vGR#p~- zOwT-+L|>o^=t(x5Nj-s-y+HIXVu*~7vfu+VKW5wb1e6s5Ve23e?kN5_T-sG2dUB9N z0OjU3H13)7Rrkw}p+euN_H6v6oET7ega2zhXe&KJaX?U>aiUZ9VqGLcitJ|$R*uBr zAZmx=0HkNVztRL)GU<~T;RcCeHWpx3MP#ev9T~a0zSdQPGjl>08?G()h#MKfZToox zhXjy&L%}bd07$boT_qHVlOYh^if&&U7#VQlc(vmF@3+-C!9NXG>j zB)%P2Zx4eovKV491{4;<5BR2VX+WHK&V&_aizwsdb+|!_`1;s*F}=AOW6mTTXJsC4 zgRytwf8`1lw9Cw|%woern6Mv=RTvD9{~SzvoqWPU5+rH@>Xvi1 zghDDSHTt`MJvlq;952zQ`=#fgw|63#UQVx!uzW8snm2Mz?1n@TZC&A6EO-WHXUr;{ zAa6>vzcdC#jdLk;;??`sk1E8dX#P zhykOUB-R!gIk}3MXer;@XU`zUG+kJflk>|LJpI0l9u!YL7Rww@&mgO4L~E9BG(4hB>0VHW zny-@gL!I+4Mk?qhqH&TOj4W{?9EjPbQ9hrJt1*x>=YWCm-=0!$znJ_Bi7E=aJ>$Ip z7RvRHkK4-Q?`9dJvKuK=<4gZEH2ZfCd{Poae^vVTlig{?>$_)iLNKP$U)%$7y(y=g zl?I+>S4KfUdVO}R7JHPPJS5y3n)I~p?9i8i-(Ak#YU^F%fe%mD37!qOD`;$mmA`Ua z{BM|`^W@@t|Hut^ZFj#Xh>1c@R)u`U@>pYS>7LIwGoJA7TlQfZ8SL_3>13Hebq zI9NaW71BtN30r791l72E80|Zt;ylm+F4#TLdfEHcxH-KXd`hUHOnriU6eE-!6;98& zljG6p5vO>u&s6c(xWk*}sRi+1phVnh?-;_FibISUGFe!6j3*Ztd@G(1*?Qz7oIY!#0RVt0hNSnunlj?=#sOxafaB*`Jz{ zd)OS4Qy&=W>?+UI?fB%q)9%mRbDzF>1Nwej%1ztZd_3oMH))*&a81PKC4X{qa1bp3 zNDi>ZaMg`C>s+C#tf{W7s;8Nsdkb zmHVpIzn;$D1XBR3pp}Y{AI)UeI_=eE10kWg{V%E|(neO6IsXZ%2W>so-0e6lU7ByF z4kBtbjCFRM!`3(2hqpy-R4Us{tjr1f?A>5aMyC77Z%vL3;Hx!UXpdnWI{y()biFqQ zc{cI7iLNd~;&4W64^y14+~wecxNFS=`q#Pi#5*_!dL`h=XdxuB zF1SD%hJ%FMo~30Re`5*oIe^jK1qCjLadQHyL@u}pWt%;}Bv_!73M-!oS|pneN~LsU zOj}4MbH(V;?!b9fQ%VO7Acibd!0ykqicSVW$ZgSM?)p^>JDEwpyIdH^`w$X<)m-ZP zYl(QO^|hHq&leM+qAs)sX6B3$Je48yS(`L9oGJF1#~}l{y5~ab-y6TL!NZdV^v$ue zN+Lif4ugnxZPiOXXiqsYS~Dfo;S(zX|0``My!yDGB5d{EH1+>w0h)NJudV7GMc4SK z;hemc5Z`Vz#o4J?5MgP@$YNi}t0?OH>x?b`bBWY}4t-k=@N(tFlwab}jq7Q1Ja2)( z=8gOtm1XTj$__8c7F3lF{^yx_a=OzBncAm-F^{8gIK7+$LHfn#hdna;pXlXt$zuRCwQ0xZ8@~0&ph@Py0jWqW4KzfMqMGL9!AfoFc6_fi2&o%Uurui%$&Seh zCm4>Ct+F%e7JS{j$+Ez6FH+Dei+!2y#QUdSVad|o+EP+XJ_^x|PO}sn8(@aYUU&i? z0{Q3;L4GP^wn~vUwb$zvA|6aL z;Y)suo}H5wj4x%&6}~PX+%56N(*TwifI~i2K)e`MDpj}<9easeFHuf9VbYD8nz3O1 zn^T9|EjgU+Dm(Eh8`snDM@yi3zpqskfIy2@-J7tTd!xmwjroCveSM9IU}1a2bd?3? zVx0`r%?;p~kgv8Mw`RlmB*HL5R4)LMnLgn#UW$cU9`Ic3&-o5z# z{ehionrm0ZvbTCbH!4$geqG_0LdwU1iRG11zu$d%c3p)-Fk8Iax5@(DX9F2UiJ6l; zM(q)QO&{(|(A0N+9=LqhTp#Wao2?TPRws`?wJ4Vkd~;b|dNVt~Xv6MBdZEPOTg8hF z75!eCVYq?bQGeh2FTjsksC#vwii}Z^c(nwzcdos6atr1|niyB*%MRVo%fb(-K3;S! zBU2OVB%Uk!=D+6-%I3)I{w4cH_nXCH+QW>qnN|q!ZRue6fumd-ywYW5*m`ib)+rE< z4zTNeZDo9Iv!TON(Ri;$nz+1jr~bQV(BB8&oM^Kay90QSPP>=$>4{%IsfTSBe$N@- z=zdG~r$3tS*En3wm|GmYLe7wz5M#hB#P_1pb*e24Nl^?saWBbwZ%0-0(o#u-yp9!e z7f!|}-!hDV@ycC;_oYDu#9s9oYqekj9|sxJVgiFAA_*R-OI$iCR_^F3Fh&6bOc0O4 zpVASGSqo}>PBbr-zlJQ=Gb0m z)hnlMIcCz8%86DaX11Ahpdf86uk5J=piEnSuQE2;auqGNQ5J9OWq|d>kFcFR*1=rJi79=_wY0sCukP##ueG zyZ~C)Xb}IC1nIh-3kVA+Z)dLV=n4s#*FP_zQ^9^cTo{~FrP6IiByDI}s$-^R3rrwG z6a0-^a8(e z&d(m94rA*AR!*eCrWGgxanH6{M>~XXfHED<9`_ueZ;t(kgkIbS!U^i}76QwM|DYAP z;$)8|v;~xbolTZ9QvB&zM))xe4Ru2U2lj%Pu)MRkM|tC(-2maz6pM_TudH*=@Dd6p zE7G>bL$_RBNvb9OFFkh{NjtEUylVp064wI1xpXZC{xOfgTV$ZA6t{j266wz zA;j=<71AdG))~w+DC-hHNOR#XnUQ#zx~|4(A}WFclt-9UH$)fA&3mPVoFvaAGwJH8 z=;SK>AyY3FI?}N42u>&m%Tgg=8XH#KFzha;e5^{BSnw+<7^VmkNm@;O@FE)56wS6@6vkS4DzJllU7|>CXx#E&JnR zb4SdLE)H&PhRP55$g?Z&)k~%Kfv%^{K{wceKb)NZ2lr*tC(&VoV{>UAucYcwSIAuy z*BVi{IXOS_-xq&*u=v9_nq|hm-s1O~C#Zbt8ha+ZHB__l)3^{9v1-{rI4HEw8FeK> z0i7XL5&SQEfDFa6Oxd_czUu2aUmfSV`~c8T8NQ6J6Ewm1^(m?9L^?iTJq-7p#J%aX`Wbl*0bk-GTc47U|^ae*?F34EQqh7o>3cBahe1Wk?EwH6G zTcQ$eW5dQ-H=%YV##IBHic0_`;*@4K67_ZDeLs+dnt(Aj>9@KDB#5JIrZ3+$?!`KnFDXz0;2J8n)KBpA+`$`{Cpw9jtULSHIj?S`e>t z8e-V)%TH?D9pM+xgp8{SHthZU8=RCqHR@rbDy@aDHWK9W&9Q1c{P|ablJ+TM{_LJh z6NrU$R#SJEoOh=ehPyl;EFSJCHqw7|-c+>NpE-N6&p+vCHBvX}RLqN#>e;UTkRQHm zVe?i~IhJ+4a$_tSL2Ki`L)3)acFF>TSO8hSel#ilSI*9wj7Gih?t7cP37xrWjYIEy zo`1NuzqEco?a6btY8usS`ZGS#&*4-v_@ni2iEgKT4 zFcd^z8TEQd`_@`fL8us99v&9B`f+Sy;}5&iP;Yy?q|B&EMS0ffbLMMq33d`X(pCD` zqi#?rl<*t57T}fqUWH@!(`fdqtR)lE0P)P<{hGVevq=qMpH%h_=#7K-LLba?I;{kU zt{)iKJUG~2=>4(rbH7x|H2Y5I+UELV&09~+Fk0Wi^4F}Xpp7@_y;QmheI4;2?ni!S zf5YEC_wE5txj#z!zk|XkFBT7a2iwJS_Qs!N-ZDS-ylzZdS;-RVB!xETiZVcDEN;Ex zZj_d+kQfOwkn5Y&rIjWkYrAC3FI5n031WRBcBmWX;hLgsZ>rjGf7F|= z;-rWBMuGuedjRi+7KJ^QV1}~2rE6Tdrg90MYelNLUok}mAeDIS7JUc?17g}erwm(4 zUW<*VH=pS=iCH4klfS%^;b$KLrSli>oR~XRX~~NFG%Kw=+GX5^(gCd&}yfC zz_07{>4sa+96k52_9?mnCj|l&zVf+FZGp{64+F5s4}SS9a-3KQ2p7#@F9^$v=@Ak? z723T)PlGZQw2j`TiAZ{AFJ@T*TUGUdfZwB`wst4r=%BI1NFT8}^LGFZO$Nll4{a$s z@l7H6wh?d)8sf;0WFkcYeQtWw2QZ$6fYzWdN*2@}O!|lp-s4#T6KEHq367xm&EExh zd=PhL7LFD)h}N9(1+(r4T^8ZDZXs-eL)J~QZg6n1`z!#Je+N6YF6ri=c*wZJB8k#l z@X!XMbcPOIq+=p*nT?l!OKApm9>^vQrw5LVJ)inD z{?6o1?fZAj{+%5pL_jATb{YdQmpdW;SlB)q7O4wGF;&DeL}HEkL@xb2W!ogIZ3`E% zdhF%1MDeJu8yBpuTfFz@Uf<50tw|s|+6kou-~3OaduH=qDoljHP2L=Sci2)Lx|MS{ zMvHGp?5p#+gTx;}6NB=v%c^VRZ!B%4Jx+LPo?I%-$5LeCkCk|( z!224ml^iEb+K76}2Wk5xMlVPyyP6#L$S0QMczp~L>*M&n>CJ0qac(A8i!v6)x#*K9 zUUr4(Gc~dwVFJ$MWw4=^0X7}8$QoaBVcQ6d-@R%3=~9EJbcr&hcTo-A3LFl6V|Hg} zaid5ybQ%Xr#C-97KhMw(j$0O=JMX3;EpE zwXp5gT@bw&h{@gb3_&>nri3Ip01vQ0@+r`$ve#)AmWt^FPUI*L#R6;QXf<(u1{dnl zdXu!9QEju+-gxMB*bnf=hu;iNX}We>FX#78JDE>iX2q_a_9FlNwr*;(qVn&T!&Q6V ziX1^7^)%{4VytECSG&IM-Uk5|uh95^G{>iCmjwr~L4Gxpw0WKGP1%*_3;pDSS=!<1 zo@)&EfNXl}(8#RWw@8CiVcX3yaIpbFp<(kW5H++9`1GLk;74%Ihwrn%v8?lg={b1( zInmqOadC2|jP`JGtfxvs_wt{A?X0b_cy^XfN28||M`qUxmj~PRYr!7UivJ7PqIuZL z^3AaMV4973AlAJ)=D^bgV02EdB&5Yjz`M(NS)v|yAS%?aoIHBjBw$D}{|vK@EHh6p z1Bh2l$4uKXCKvgPS4iX2gSC4u7T=f1rsU4eVbhJ)iQLBPQt(goYzM)|3NqcV{&8O* zHttl|G+NzT;K(G}sD1buHyOE6?bwyou>m3>3 zDF;-A!^>ROQ8gh_)A!z zv&KSwej1}9F2#z<$4BbAj|M*hm%?Zw)WlKTrHVUhE>Igdvoak0g>lVu_zG(oVsCdm zbGoBdI5#|eFxJl=m57fJ74eAh089vYMs)H33sX7(xnoJp;9z1E(FuNAe=xC-hf(zNMi`hzEh~27VKZ&# zAy(#CS4NQU6fm@nFG$Wy8#!ldHeI+vw>C%`#|jlpZqI~J^FrD(Vnv(A=3nhmKWXgG4^kup+S}Xh zsx8Vh3ate(8~v)FJhXW%6*yMXeI$gF4Nv8EujhsWE(Mdr;6rD_mrYa2P(G*Kff?YS z=#<`FohaupFgL-Q#zd^eN=GJZcPRM0pzE^ExX;z=6L(KUKV9w-NE{GBJuXpo7?!3M zcI_+L&{L%RD_R@vJT)1R1rKkO11GDwXh1e()B2jticYnWTX{wd>&5MXn)ZYJ52JeM zU2$PS`3%{?{`UPL)~sZ0w7n3{A$dumW{5 zw?UaMI_MsEHJ@Xv@#Yaq2FReq;^Gjiq3_R#$2^^F4F)~^o&0`!+Y{%BVB@7fJ_n!nFqKvFfm zIegJ+;*Q582uUgQYeN|E(eYiXa>GoS31_<{@Xx{puxHL9jD1+xJBhVX%nvtN0Q}6z zq3IH14wR!2aC6?XeekDS_#OY4iTg2w3LA$BEkp%V3YpTJJKf)*^!fbEN$m!!QvO4KXXV?>OnabT&ZW39 z^unlR5rT!3NZ^Wje8@P?`i6iloLIa6^s7(*Zuppi6<18|%9Yoz}lBcUJ z$XN&TpQM5}T0@TA+K<*fDKo7h2eXGjwcj0*H}&;x9eCB0rBo-{#8mEBQGlBC&dn}l z*q+%t>Xg4xHTq@}FH5>qmi4x*G(+H?T!#M2VIL;1L|@2M(LCZ&x#pDjUdI3a@J)3O zUr_jP%MJk4e%J+VFNoNNIK7GxDpY;5-?`E5+Y|U!|z8XQn?L7R!zmvv8xqbv2cx_S}jdODpqaUyN ztK2w)&wSvW^Wujcb&i5t;s(ajl@Hf5PkqQUMU#2 zr+FotE$xCH?>xRLPB{5+Wl_pT$ZzIrN8f#%w0iF~m&WnVD zOxB{=Q8=Me8}>ym8&_YDTYVK!a|tcRLiGQ%DGDsVzkp`=nZxTEjDIg^l@vinwqm#wA_fz`R;U&r7?`0T39bSY0Am27`wyf*QbV1r zA4ZmBq$cWwW#n$DR;Iv(dKC}`|Ai=R&lJ3nG7w44MMp+LenLm+9oYDZ&8I-7mK-YQ z?p*i;}u?prDmkjIDX^C_)Z21SWzmt_hsV6YzEU zQzHSv7=oJk*#))`0?O>Lcz_qaj;>g19JJQmH?3-VZBdmv64xsa7GS5MH0{Nb^Ko}d zPJu56&NfW}qJq5*+mFbGF)n?dVUH)1B#~Te!@4c$!QAO?g*Uo)@D|}aO4I_o<2=vz zyRK8Q`rs6il*;mZH#^))X`FslBRLl1mz%u{Oll`IUiXkRQl1`~9ne&OUly;0X#>$q zdZ`~mFHjqm2-D{IN3PEzh9(~569Y{`!C?zQIMAfia08BnW=B@n1^ihiS_pld-05Z| zc79EJ>F$3Q41k(B6{ajl-)q%FFQAE*ka=ZsbVLCBhR>7IOzA8!5#YxMs@2j1hW~AM zk!0Gl1_Dl))X=nA2`|TpNQvI&WWm}3+-I0!B_IVArD@l*C$K4qYCjubfr2`KRJ{e= z4hDhAZnh2umMA&qa@~zMB-q=7PFq?eeh8VrgsKPEr=PiqMKdLKF+=cORe7lnkes2{ z3A3i@_$x?S% zD+62X*RkN)3~n*X!`c^GCn2T;ZwkVru|1#b<)zi)_?a(-kD2kaJ(Rn3=RXEsI4z_6 z^UqL$=b2)~M2Is_@At0!Shn0olj_JGt{kBFm-UgYkFWv1&mrP8*{!dHDHouC?Xzz+;o`*(z9{wpI zczf=CJ4uy%ermyr*_R|chF$N^s{s_8Cwt>MYdVA=KRd$-i>`{X{*{%zLbcYm_icpM zs?Bs;0lPcWYqNek^R7H0V3kXo(n3yIU$0Y!Uk!(nS^4macNx_m`-O!3Ay~`af>l79*YCj96Rp(AbfG(A2isw`l62e!$wcLux-L;0t;X(rPzS z5&7=L_4Q;-G=_zg;r#4*t>m?5PPWoZrfFR+NJww4a>HOY;Kpj7x93D^Dha$&Z2LPz zUHY>?O2M)CUHwW?&EDDl^ysld^{vBOr9G__)z_|%#H(+pDK4hwC0Mo{#-jIbZan&N zVc1jsxNO%?po4!z5{5J4YRO9r_Vy)$jx{l1{|cf4sAmI!N=@C~)qH4TWKv{WWD>&F zop9PG9MYYhpTmy5K5;(2WTrJ1Sx1a5F^g-H2hkMgjFEt4RJu&Jo(mAIKY2l>>L)IB zn1E6ztay)ZWPA$BAQZYda4Qx9imBo0?sz0XKE~B?lrg6h^LtD{P`_-{^;MGz=_^JG z=s&W|@oeBd)||#xFMg#inTfWPtwYT{F$Q}IvjWc*!=`@MO)o$punGJloW+=!X7Ojp zC?Hsek17rIFBl_-@G*h~>6-T3*a#&V5ja~ntquwo;lzaEnM}7>WHVoC-X3#Df@igg z<(yR(9aH+BIHmNuq17&atPmb)f*jEUjUY=sh_Y0si3!xilJ^3t8x7wcm|oxkBtN|myR?$Zo6JY27s?)uWXy>&lCL~IMZ3ZyL3QY_=V6KQD|9z9ch$lM zJa^)WC&kxJ+jvsE`&C=YuZubH*bL+QOKFar@5edn(W4%YU>=9sd6h zoL1g$$S0+cM8m#jv!EfZL9eFi&ulo6wCH^jvKFuEe`S?*wE-|CEh0dxPzi{=D#^mr0i8QT>2i4%7V&Av zwP6}BC8=S25NbKCL@!noKKi_g)NoyVZ$rA5YmG zE;U?enZclH)Rlm_vd!rdPLebyqF^-GN;%T&AJ2DZNV&Knan@!(@kA|@z3K;3Nm6%c5KcUqYR}4Z^fLjN2 z3qix8i)ovMe;Ay>W847#x12)&vefhVUy9b<0CpYpDnV+=8*-#(C7CSkKs{(kT(Tw{ zlxL;!{tNdmDpkk@7^2d0ee?j=7~lv@T_w<=a&jEz9k^#-(IwlfCgcnZB%Y`Xxh7cR zSRqFe)4Xh+n4&G~c*zA+22W^4y7D5!Y}{b;tJQnuJ7cZxc!ns9+Z?Fv!rZ&cV$$LV z+F_rxQ?^G%qMOB2`0l9rZ$I1d@ovpqQefKoeXpVD()9x=>dMJQNGyBY1u4%cj50!dUtR!a2h)r%E3Cdp_+9Rz^*Hh2N(K!26DPE73~OS*7=$3QTp z;0>DT=#jO=ENR-VIIU)7c7CikGK`qRK6##h@;t)pVI3idB?ej$$^p;P?%S3(?UY{1 zCFV~^mN$+G(x%e#z?w#o{b5MBw8F(tw>JiH zTD+frN#Av+7xdU*g`-ULA-jt)*+uW)Tu_gP=XQ^o>pB}wi%HBT$?T)7@NnVQZ^`1(DQQfr1I%`a-|1eQoy-LU3$U9clF}*j9$WN2r@lZrZ z_{lYVnV!B|Pd$B;b#;<~tjz&LsyVS`HEkdFmG)CcJbfB&eCmu?2@WU)u{JHm&JSjYap7pG@DtxMk;7xoI=;vG}83xDmbUH5zZI zpm*Mrx@~&G*M21Fp8FJRj;bvm73P&ytu6VquMA#IZoDl1GNuzL9TJaBEr?GAL2x2{ zSRD-DN)jR6+E4+!x8ns0Ib^Md@~3t7WS+IHy*fMQhq^ib^~>y*_eam}yb2)eLuS@0 z&G43wFj+cVr3pzFRS`AOgFb{JC9}jo zy?S1lIxQz;A}i9}3^f;7H&(8gh$QFdG=M`v+z1%wfD@mFQPW<;4!|4}kq&-WUq`aV z{NnGog6jzkAzgVP;O>^?*qRYumz0l-!<^9?HWp#%K%Blti;n>MyKwdR3hrrOq?YV? zQ1r)XK#w01k7Fm(0{;L3!zt_i^iqU$j}kJKc^{gJ`28PK;}|hrmRC66;wJ=@PPrJm z8Z{6lh4HoJJ*)IlwMt-dFehKn)uwPEL1C`c_~AVpk%?~pWZ9dsLcKnogFa$(t$SGt6<-089u!d#Ld+jQdNV0Eh6ZyH28i{{GKqWEuLm63Z60 z9Wd(v77_T~Bd12P#!524#87m2va3Py9k;Z+kartgLL`h?t4R+n(Hxicb;K3LmWPiY--r!GzsURxmnmF0&xALpusBNBnM)78$Ich@C50F0-oAW}e6kc06$3KZ3YjRn{m zIJeH+!7GycM{AGvBSH>CPS9hcA|c1r(JJ8Fd{CFY*2&s_La0&wM*Z7Be(*^7S|x?L zCX%i3*ym`B+jRELlx@xLY56_Ni{IMzWTq`%$IIiFD7IL8D|gmviMQJn8l`XVkG(^7 zY66cRoQMqDCN=@HT8!iS0VC&KW55Ifb> zdvlLEKloIS;=o95q7x_D^c5`(-e}hyJyEcERk3n_z`gH$k174ofHr!}KOZGpKzsdE z`7Pk$BjZ%q|6HiR$trr`jAgq?%DGq_p^Y{NFkk5nO#njN$)ITTsE>)vYz`d~m zZF&51b>|FiM74|NjZv_PU#js?qDf^8;4FuyfD284vkhjdoP!@(W(L@l9f}uemUjRfbc1B!1GjhUt@W6HMz>G_O4)s-_xZZyTKYQPCR`8`%|nJH+J43OpD*K zwPp91bRlFY268^w34`B` zIl-p_5&Y=t!womI*0Dg8g!s1hyd^GJy&-?#VHo&;u>Cj(O|?XD8{A7R{%6L4u5*2&ne@ zkswpts{l^mw0pwkgP)iLk!Q(eq~s@n$QMbZ`L!CyCd+>z^I;acelL=XhAHZ;h{bT1 zMI?yc6x|8h{tbu(C7@)foL<+B*%AE;k_^qmJ;m7IUHqfi9yn)&`|TxFk%LqQ28YU< zR_RYaLdZ6>m_XSa#T?Ulbsz$4hy<>>#;&U+zMd_ldU2xs4WjHY+VN>>1M8!l<<5^E zqsskooY%I8I+NKR*;^y%{oz_ZhQ;SczCQ4n)mU|vkf80XmrfQx8!jJ>Es=uaN7z1N zL+R;ZVf-o_hHQdQ#*`Ql_R&TaYPhEii;?^)FsnD6&?M7a(H-@bkn-Ax-?U7(3H=Y)axY+5$Y zGok(?DpgQJtin!WwKW&vi?eI_tt?KuN$XLqtwed2hytUHY!?@jRltfO>k-IkY!UW? zQ*$E)SpNU;?rd$$}-3k=a?M75l3n{~Q<*yp?5cjK@%^gYzx3Ay)Z!{jJQP zFG7`N%aZDtW%=aniJ_@Z`agla^Gf@ls`h}L?U%D_&Dk!#d#p_jQxZmEO-<@wbFx8u zpm&RB%ottP!tW79U$s`|dl4bK2^)dS$$amRK_^8253&oFpxyMUXSRiQ&D{b!4W8zv zH%zV59&$-7d#v%U;_~?#y$6!4M_rn6q9Y$49=PrqW|$O3Yl$+750=08Y4-Cu`t!rL zaOTeJEFX)MOYhbX`Ae%y&f>>IRz;wkD%?9Tfwr7kQmgur_|7c#uhdC|-I24eqaCdX zv;t?91wdrYlWTj`>}a^qm=()bBAv5vUHuo>#3e)6M7Oh3UJ9opNRuCn87RQ7rEBj)5)RHhD)rkKe0cHwd-C|2&uZ0f?e-@ZmxQh3 z>B{A7a{0#(UXKp~_ZGTauSW^X#Xfx51+{K*_(hiSSl_MY_Hq=t`1>>Fw1Y)_kNjiA zr?Gd_PE6_2SAeBI@rT)0Ou&jQgI9)6TH**N&-H30EwD$u|1^^WN+aB1|Fb#_$$jqn zyDN;jVC32;UET?KUbbtp;zr!v^Sz6oK(ilEm371} z3Ec~^GK>ptlym=AG(rs*N#SE)q6g{hzYJtHI6ni58_EDIKLxq*Z2L%nbT7LrC`;l8 z&;UfFMW{QF;y*Jiox~)cDnii)(t_E6jC1>F9;ZpW`J7D8AVB5eX80qrpW`0M#>cMU zGeu9+($b=_MLOvtd#V>?gBp~z&R~FWsGAP(tyr_l1l1>}086n;u${^4XeuZ10*I5{-_#y!KX@UL;oK6l6 zKwJbX55EO@tMoxb^l)J=BGSEJ!qKNv?k4=Z%k1OE-0rP4XRa6=kE_Jc`?mr6O`bul z2BNxd5?G#SuWRW+6KfdHXb=4i9FH$6>k$P!pLw`=sMZEyr*Kz3$>2ERWL-n5+?WKu z5SJ@q*eC)0T2jhTcf%d`mhi@&=NEI_wc1?Ku<*j|q3Hq}(gEjDXVtP4i;;@BdoHU$ zg_o*|%9C4y;C{cbnNL|i2-pCKH;-nQMQ5E2fbom}lmg`Vx%I-aH}ASGJwZ?4MWc=a zJUnt)nS@9^O7+v9xpJ^&7Dynncq=`#_hvD*4-1fnAm1)8MLQLXkR@DPbc;C<*wZ#S z^IS}s!Nl$gh!+dDGz3rN8RSu)8#Q_@InhQ(=fku9<}KD5J0;wUC3wykw)NHuyA-y63)#L`m|fNHZTM~WTMB9SaF==^ z_+b2Ge)yzM@nlZrWN4N;-hM1(w+=QmZq-s}Bekn{ZcE6pG*y;nM2_A3^LS3~CiSzQ z>U6gcn-b|{HG-Ri52GO-WbMB)iD@pBnD*a&SP@W>B%J!;m1D2HgGJc3 z#z|3oAm#T`;sNlN@~Nq=Qv0$swx%uj##xW}Kr-n0PE!KxvC;tF-HlW1DTVk+z6s;K zvHES{X;RxPWo|cY_rAGR&|mM3;N^qqGkmro2Xdaq<$-HwJ=^@=0&x9;ue^K6l2p*z zI(44he&YUHezyIcYDl2>1T$%JB@ci%tMpAJ1BQ>LkLTBzKR4VpNpTFK^lt<&9`SuX z8m5%<(aZ!tqz;E{1hoID-XOdcOIQw?rLps;6eQsMa~jCR7^5P0i(Qv!rJBB(PsOYL z)ZGTln?Dm$_?o^yusO?8>v#AaZC=U6W=3zB@|&97YM+YAe+zjbK9MO=|iBt2}NEOZBxe#6@Qj|MyH$B=h; z$(fTi&$|RK^`x6)zwYn;{NYQT`*pA#Gwe}WWwgt>p{{z!b?eWm$|9aW zI)zVJtQ9w^2vhxy&=refH&6!wHQh)K9SOiZk&caJ(?-24pU{Kr)8jR18?W)OG@sK~ zP&YJaZrJNoC8JP)T5yU6cw~a60{ax2wMk0X|NCKjioT2u0m`0=OEGR6YGqhNqGfvi zFCiuvm+N&}e@~2nN}3_ZA4U~dhU>s^e__!KTp-MxTO_W7`A0BxRjmL}Dfy#7gX%N; z=bg@6Qo}7Z8f}5gzZTK*NsIEyaKheE%-yNIBg%W8Zm*nf-1Do`8^FTmam&!S)2hr5 zH?G*yzE`cW|F-DJ#_n+8!f!Lai$2*G$d$nI<>9&Ev9Z?#T8LhHPH$xLfMGh&iR?}A znmsu}2H@w@Y;CZhYoCli4d-XlwpRx}`DQv)PNodFMr6t8YybDi%PTk_z@{&C((TL0 zhyuW5qyuamim{bD>brbLGtvZ5p|>g_S;U+a934FwglSR5r86qDLYlM@kR=pov5{Re z1xInSaysCO^5n7`(1$UD*&daw?Z^dj7PgR0XX@5&jvD9#BT*)sK<;hbGInu6nKyd) zn5Qt}e64u30j;+GR#TOWlx@@3ml;G8Zn3hNfQ)p)+4M{!-HI4&ecrR3Mmdh$EU^5r zZJikSW!bWqUMuD#etR=8C$49;{8npKvb(z3p6ZPPjLoisZYO+>1H<4IhX#>OC#4buI8h>KbLyang}` zJoF);yNTurL)5CVkl1-p4MpU?XV1iP#?{F>wU(3qyiOSXIa(Hb!Ta~*Zk>M?LF8vc zLP)xKoM(J^uOVp|E#QQPcw(x7CSx<6YpcVs}&Wi(mbOYvL zCJ1h=TNq%tcaZz?1cN)P04GIv4y1p!|NdNtxiQMCL@_HlLYh>Y_A_YqT9b!8?nbfx zg=OLG)sJhf8*Mw(06x*4ht7=1axr09IbBmEJ|2plh-|-a-gbBhUUNDPc07l^uUThX zZSVByAGO)sN{D6?yisAz=|KF4JFQEVxdI#oOjZk9o*I;&KayMttr~X89sW_wDm;3ia<*x~kn)**8C;_rsB3k_VW*W+UcShzypO|sm<{|=B^ z*Ipm%8-kYKjZJooGnVxh6%KHcGpeBn1hjT-qh$;~49x@zN@qDS(Qc!(Sgxwr>IWPLii;z~9sD6T>FA`bMAhuVkB6Ql}?2Ye|SQH{D4Oa%X38ITmgG zy=u7a@Aszupaf;*_x^7KyhwXS)pd=+w?;Tcb+U_&R;PX20{q%0*RtO}qEQfdrrTTC zlS?ls=nh`CHg36bsq$a1NuA~IuV-_1x&uO`Ml_NDQq=U-$=bEL`Vj+OsJ0C4>O4FE zPg4M8V<^V=hTtKAgCxsMw_j>&5G_Litb>CHoWA&6S&~FA8+`6u_p8W6o#GNrqZN2_ zd90c9gL|iwq4-jaw!px9@qEzn05~w@e;Bbc1*tjoz0rV{0tIO6SK95ud?-`;DV1`R z%ERx*5nlXc6s-7JOBccjTglNKIG_jTBPk^VJEV(L(><1$w=9oxT_Uu#e{pb$?&|-~ z3-C|FkAo&Ny)5Ss%N_$pvU}%54MQQ-zT|k~QkQ~$dMq%T7hcdrR{-nSN|~;BwNWVW z6oFs%CSB$kvP`FUvFf3x@@@mi{wsXMDI9{Hzk%$?WqqF3p_1lB#&ek7mg-rMz=gu* z%yI_gMdM}VQU&WPwK_tXQCM+{XlZ%~qE;A>b{?!T+6_@@ev zLos(f?-q|Ws8r(Q_;zC`!HC~Ja+#ujf-+L>JZElFQ`%4LuIq~ZSXjVw(F@*BH>i$` zwf~h7)*z9)y6ax(aP=0_;<~PMB3|LEeaqsKPl#{3xSVstG|Tcb00~~vl@W}-uMy&TTyTfeBwYsRJpfpXt|3}NT7Kf^5LIKmC@RK^SN7i&Lg{QUYY!AYg= z?X%%k*6pFSpw`x!6iL6$oEZbe_=l^px z=CnDY1~f|D(IhfU6?!RY-uE*x735dWd-JyZd~{kSHh?}_ZlZ%1DL<8*J)VCfzo?U) z?T&Yj-=n1Y-{F)n%a$17_Pq#~_I;_4l@n^Y9c64IWO%CF_ z+OUE=g1q72ZovEd)^@pj@LyS571n&fGg?#hjFGbKc3Td6GPeA7ElXXBPzfT8E~YI5 zV-1ghJ(1+|w2@@bnVQN(U+FGTtZ8`q(DNkbWQTippECGydws={Z7PMs?{W;$Xp zC5S2~WjpQDFm<)a?uJ*6H`m5Zqv5fJya~SbUAaGNDYkcsF0=l}H9;>0!{s2473c(w0PE=!u zzS!{~nVxbGAP$YHO2N}LVFEy4xs0>`+0W2Ow)BEY6%?%LyjcC7pY>|vUBl`o)Vy(# zXbFf@UvRu+4}FnA+hq>oFd970_a*-BFRX3`sz_}OPV1PuR_Ecq8Iwk`DA=}Hz-L?R z((g5dqfyd;B{e++|L9X8?6fq(RgqDW>b{EZlfPm9vfzkvF&3&WP)qXB%eZ|_hOpN; z{|rjb1@8I8PX1mWT~TfO`xQtc&w*%^U`a-Y!8Id*tuz!va^^E+pj{=JS+_<4S|s99 za&J%N2B{CI-4qm5O7H6P(VYM^Vyz0xYxmAEI;6@-f9>nzm)5_Ri37M9CIG@gm2=!* z$t7GV(FJ&(&;Cy!j>DqnhG2c!7>CC1jRj?(Gth#xJu~M7qO{Sk{uK3;UoFUh68S}8 z%gZiBAbMe`aWce8*g7ojZzyJQaj_Bj)44vsjt#L|QeMXNDfxOTYN!*8K2$VvErF;-)v{UjTf7cM4WVUJ(u$Twj5)mejqVyBRO!V%WiN(R`302#la$ z_a3IjV-1IQn;@}lMgOXG(v|7}y$;y!IYIAiFQNh5r@ECmx) z1xvae&cbo*ahI2deB`D)Buf9Y&4T}3a%2BuUyIV65o=& zu{e`!{$G-x^KIRj!7f?SwY<2o7f~Lv0-SnTCJJDXSAs*};XHFh5%{@pakSBC;-C4! z!O>B8Ej0=E{qqZHDHOi)np8E*fZP?jb<~^GFc$FF=Vll(;FF#dtgrOcge1bbBD%YhEvmC`gGg_+#t^L&>wtds}(QG42 z-M#w;??s=O0qTArSIj)&g5o(TXJ}JG!u)PZKI(%DsO|teSYlU|&A6U6Kk} zFVNVhp4p3Wl4Cx{i*ZYy$qu(|RSF0`IR$N3`GZvj`(*G7jTwe`*8UlAv5`e&lV9g+d)J5@`YHiF}C z_l5Qc`#%XYENl3ll=TJ{KOflmu${N9`=Sbda~?azvd7v#>O7HOG;3?8(I^g+6rJxa z9VQ(4qt~+s$a$8t0nX;Kll7k@al65J)EhANzJ-YZ~-$Y%cTCcoqR^bQ2V^={U6 z0TF@UN<&*(=V`I*>1O}RI^~Du03B>gwqKMMC6d+kvdjEhgGxbhEf94hlaldgCmG=U zLRkDbCSc>=BXS&vE@{cg7y_)`h*X{ONG8Ibu@SUff<~5;u{H?{m=?D8%Kbdd4Tp!) zv^4o0PWwoF{2Y+o)rSzIm3;z7X900zHCKxVz7!**UtC|-{J zY*{Vo5?~y!+|W(0FM-URQ)1^3aDancqyTv`?}lhP({&(jgVxE!g2HUhTCE(vNg%$;rd=$mgX>Sn8Q9y{gXyS#(9r${ z=`*HU4l$O@z{yG&z|b zgb{${7}!Je87A^0GpwA;L8M7nY_7QLz$e`*%i|Wf4uJ;md$!JWI-LK23r-$4&=Pbi zf=CHK&cq_3N-{dJ8eg9RrAgFqg8=R$dEYTB_43vGXA4z>Az)@7Hc%mf8gHev&kSIF z=)nD+mI<|B3T11S0a6o00l+;uic=<0uin#!A(83=(&@x*D?pY}?=?1lQJw`C0D5-1 z@}>b;NR$n1!>%wq{C@jsrWJ!gV7&%Up{oCOL&y&)ss4L5=C*fczs;;6>)-+h!>Pcy zsSWpYRM`V)ZYTN`S&^ateGJAk|OOpRFFzhnu)m6u_`HS2$px;7YVW!O~^1;(;H~4m$_e zC^g63ilFd5J7ht>Bx81eH=xt365BPICF~A{6%}`d>tD$A184FICuJ*f4>q;}p)$!1 z5_GLQEFb|w`fnlR{|no$~P)MMz5!y=#f zEsgeD4i~X5K5U+L8{N`N=-uj{y^943((uF=w zynWbd2of24XM(Q>bkWgU^oQTz$jXg5Ga@RgRXySO;6zjGPQDxykMp{(JyL-^hm9PE z?e9Bd+qOWZp~JnFeDl66|APbDH|+>c1-3>vrp|L)R}~fCztdaTOwVGC-Dc)Cy|#Nq5$LiyqdR;jtGR4AW^<|Hc$>S^js0txlO*Nj zfIs*!X}*cUbwoD1E$=AUHY>|$rMjlxW%r@??!%2q62WB(_g-58H(*Fl##!j0_=S=e z+V?k3DuLHS{f;|v*=1RHg0Q#n#l{kMvFNUT&yi^~zhy_mrTW9evB$<6XXQv$O1V zRopHu3t|VGOS``x9Q_RRZqF;4UGwyjs`U3!05A`Qe}Kph!sDIQgMO*DBZWVTZJTe& z)AQ{Iv%!BWXZ+;8+NrCC9R2=9&c3kcO*>6r*p#moxKMXIc1uwr>$1R><8b1z!NG)zB5l0b{cpH}ELDN6M?x@)sElO@_& zJ1KcI{YH(uTc+=FNk%MOxCF3pn^+bbr)=-4O|kqq2$-E|+ltxlo%$89L$f`vJm^Um-6we!v)0+wE(|%6@&_b)`+G|P7vv|fpgG@Jl~-QT^1OC2LWW6d{J6& zrPVNynSEwD(G3iuniE3<2lve&mm1DSV>tQ-3bVqW#F~M0k~?yBMnweB;&kFZUlwd2 zpO^KSGBZm1eh#EP2EOY8t#O3GaY=Q!S@{bi=V_9XU=#qg8#9>W)TDv)vSLX?1resW;9zg%?EksZ7(5`6r7;rO6`MI=R1a;TZy zur|0e*uT;Wx|zKuj2E3-DSIc2Cn*w22Th)YjrUY)V3AApbitNN`;t#v(wdt}9lJ`> zlb7jc3>}erFVh(fGc@m=I*sgxh10M*AJd_r$ff7EP{ui0X0YqGUzA@J;8`-SE4ceBsaM18Ac7fUixO6!W_$SnxTM6M$oZD{iu(lr;5 z?k0&ylP=yTp&a@9kVQ}|c{)8%AKpw;fIZ!;We-R_Lke*Eup|gQL#;%w0w`Gdhjczp zWKLI-vo`^Cl3kayhvcCGVeUwBsG!xkw@f5?Rvii0%8sjbmLIO>&YF7gu{L8Xh&1?{ ziV=ryiP6i_rHkk535fR&8OLqt_+NNLt zf9hAkF}6|wXkzCKx#OM~`*34K*o}?w7FRGrgRcBoTdR~;mhUIn4a6QhDr=W=sHTVU zJ6}uv`bjQMx!|q^wxfDAB9LB8yJ<1r)RuTKVJ0C%HO%)+At#4-^C^ zmI>v_xfnxIrbS~o~TJy781JWZZ0wb?12IO+*!r6j&luf=GZb1DP z;_X|OcInSD%Bw5h@^@*t7out2eQ4kEXrsDmh4Oc;W#)LUG^Jq&9beGQAElJm5w|e< z=y)^YP5kwUW$TdLhu>_M_G-u^gUFZi@w&P6cw*oXf(-$QtAmvxjURjpb=MA627X^y z>-6ES^ozaoGFc$3Z>hr@y#K{C-pHB7!8+SND92S=#FDjn-015HrNje*>bdj!)5@ai z6frx5I>OiA3Z;Ti9=W}Qt!Vqw{TD!G7@vbxr+=n8iF~ zezE5;RaGpm_MxVIbFM*T*yhsD4?dJl>7B;9$ibJczaYVctYOR$f3T}fX>s`;s{VQW zSb=luq1EV*Hc_PYf4|~jBJ{87r;;NUmX^*7IDkwLy}(f9=VfWVN6%41g#;D$t~jO+ zy-+2RfphXolLKP3$JRFFF-#@o&kRZI%tw03|D);5qoM5IKb|EaVNj8M3q^!bvW;yl z*`A(a6eC+0TZ+tN-(@$^WQ#2I)MOn?W9&<^m1USPLdd=w>-c^8p7Z-hr*q0ObGz@) zbzSf4^%|jx0QJ!|QtQr2JsI=oM};u@{*Tas?Uxh4==0_s#S|w%?bqCU-UZ#wA1Vq+ zy_rNUy|&w5YP**8Z*OjAQ49v*Dm}m#Im=a46CLU4>+pyRI1;r+58z?& zHFCO=$))=<%Kb%{24#r|3q2=)kX{1?ePU#tBWT?+mq>=`@Iv?4Vp9@5WtyZQbZq!y zx%zFh@KY}pn8-3+m!VjhuIeTWkFKZ1;*9hqg85uO;PZM5SR-jd#QkL(aEhFeAx^OHrG(kztn zPYX!ciP*9_@*5$*7A#=p(gO%V7+474nNn&BEd+z^X6)c?@vdxZMzH$k26*L9xt^FC zF)?;n7Y~V6I>SSqQqGArNgXAaHKm;@X@+S_bEV%qRgu^P8|4KafEFehk(=BBY%MTJ zW7wQ&ioZ+vfJ~WOZ9qBkOAYs%j3PXeC~tCA-^N3|kBFDH6odXyIy3^75iGcg%&N&( z+XLgxOo_a(CTeeUe@m<===GcfFUkX)h23N%jb*wkPED8AhCFM>o*T_JYWbxOHZEpT zw7Ik-S=gXlST|b;eU5`8zzvkEr2>Y45jb!srE{ezAS8TUg2C-pB1|G>gGI#YC=-O{ zrN7yz4T{96Ll#Qc_+>iM>dRV~&EF@qY|K@Zgf0}q(U7&dr?=AzLyOzhsVrgkpWgsdfdd2!soxKslm!GrUM zT;+D9^x%YoB)=PS;5Gh0w~BMVMs!9AbaE|rr}Y7}rLp!}ke8g&{g2m;kF`M8_cJN{ zp>YDXp}S453pDD{DIvA;S!sH+wx1j*5d9mzR!|-qXVbP zO4zFmJdmUZ4;Al9RGt1|w|;aJQW%FI6y1$Jqu_g-;PCd@H6b0>y16dy>Wh&I_4OS_ zOWi|@7XO~AoTz}`5e^zhPui{4esL10ZJ6B*-#Pz4JI15_Ei1ouYq&Rgt?T!!9JaP{ zVsExr>)=@HD1_D}Orzz28+m{3QD+F%n|Rz_qbrd7PrqHkkkyy1+N!kUi>t5fgB%|+ zmD!-|QFTAdo=PAyD4Cjao^}US+iq?+SC1e!A}A#Ss&D(&C@m06a@->1#@rIvs+BzT zBAX4q!eEe-?h~4A$i_Pkj+o4~;Qfix#>3r_$-v`~gS-=3duz98!_mRVEFJSwj;4IR z_Yw7Wg0|I9&80?{;fEA(HlJ1dcaMXH^QO(L9Xo}nHy*E3{0RrU{f%3PA=@B+KT&_U zs=n5+A0>S9d&XRA|F!g>dseY)gH1OW+b8JKU0VfDca)kyUi?u@tLh{`Ej)Utg$_K7 zNY*@PxmtSaq))Z+(P88MnG>q2eTcK|&eId}@ElE@TFU-1%!?tJ;L3T@B5%*$R4*$( z_%!(FXk%&Ys?neV+mE$(qSLnafm;#%pYtB9l}{Yj{^Sc@-y0l%NKX~EBLkH)0~4EB z-V`Z&LZh;Vl7UQ=_A=qS|FO52?M4A;qZ?zmz+v(k*y#Se=(9$P7|2|ELG5ntc&qMDn zgTJSb7yw!KqPtPqnnKAqIY48f>)mo9kn%BUyA`rnA{Dgsv%zL8*gG8~KAY(e17Sa2 zV8ackptCV)8fb5~5%|sPtooq8v5d>)QUNc-X?{!}=|agM%OcMCvX$N+i2^;?4|t_t zjZniu-^GTFVR_9jAvf9eef-cKDNoU_gO7dyY~8O2^E|ux9EvS4R;8krxZ=5^=zWR{ zoczb2mIc&h;-Q(|AJ_je6R#BgVRr@72mf8bqLfLS1FL0_a-pT+_Ua5Z({6`1=TnLD zIC&gaDW5w6tTr_TC{~VlnXZm9k=+OwdPRSipM%N{CW;7?%^YdT!YVq~VmTS$BgEY> zjto~{$eusVe9U9v@k%U*%*{5M(I#kQ89&%TCfsq6FA5!y`EH}fGWMFAh4HddvxuHF z&o@e@Go4tAYxZbH3N&p64lV{u;1Fqsq_!!g} zKQk##8UvSFn`TcJYXu)nN#)6U;iCu16N-7aLuf~{fd1Pk+wDcH3-I-=)Vdvfuvrsw zNcE=*1uxwX-k*v9S;f!t)maYjIfNdpczfq*qHiW$EnM-(Pps1Zg3+cyEsEOMgd^Bu zl_Hu#BYOo!%l2ge_l8qM8^PlwMyJ9>A3+D$m?~dIz)By89F^<*1;yzg`T)BD83uWM zqDB8wgws_e%@aHqMwxAo5*X+FzzP5pxauriD1?BU{aYJqbVV3SC1cttT^KCvOC{b8 zdPQ=O3+%mGm|!#XxfY%p1HEVkz|?1318&f0R~!%5XfY;S&!t9O8ROoik6srO*)9S$suqp0@bE6ktD;Y7lvf40n zTKgAp!#J&+)|gmyWx`%z5ly_}T`tlRbWXd59G^4XZe6o6AF>}egE&aBD$>2t7U*Y& zZu+!AgH1KI#6J=^Zn^^1g71V5hkqW~U%{$jU5!Oq2O$xxDmVV*D81AEekb-)Rni?E zPRsW?m$wp{rkw;H(x3(!2b1->_vE+{x(kkKoQK zDj!ShTFG@l*t~y5F$#PC{gR~i>-_haN4D`+k2K9J7nOO~4Hb$~a(a`F&s_m!$j4Np zl%eo6X9of63+_cX>Z8PUeFB>|U>|$9BY4kFm>P;%m#Uc+IvXaMVG8Wd>>dsSTO=|r z-9b;G_qDpXs}eICoe_i;<@)Jq%vY~-8;i52cWFMa=k|M5Cl5Aaw0yy00lx$zSZWQK z{jq-4`;)umim=Abqt%!l7or0H=^Iz>mdPm;Lg>drbr4xfd@W{XZ1iW5NR#X$Ili-; z)tu5#%O}RiJo(23wtTjxfdX#@EgW=jd@iXl{EZxMgyWNqKhp}5BZt=%Vk@~kwpTyi z2Ufwln`ZX=10RKhj*glmUbgmb?5|vRsI)s@pOK5M$R2+y+{pE^*-(*}rO17>VL zUt3%xCl{StR3Y5NyLSSpuIc$5Okk3VewBoS#W4=egYAWlGA$JEy`_(>m9SmEG4`Qf z;v;0lF>5%>KDZKt@_QWtv5uM=mKW^}rgz{8cI;>rX(a=v0_ zP={=lYEEm2idrfsG}PQj4v)VENMK+E7g>|bB?aaWB2n=bQgeFY(rTVpc_LTZ{8{-J znZi6p&GhsN1+8StdtT~W8kKm0G<=2L3i}(Z??8oY2ebo-Mn|)GqngaP#pLvV zvN|}5lMR^p97Q7{i<%0#EttjsHWXY#qd2WCol-WXA_Vz=s}UyDyd9$b@`FSV~%xUfjf zgqH*g#e9){$pf^hURSt6+K)e8RbWOoi2!ZhID}UrjT6i!xujImL_Bk}VX&hFfVmeD z)s!03?pMkJXLZq4W*$*9CpO-)q7(rB^z3_aW(;UzbFtbtTlzD%L?)+N*WL4`kkng@SbOcI(`m@!g}uG5$`bj{ z9ykD68oa$mtyvoW!j9Lo)GKa=i1vv^_Mw(=_*zGGW4i3PNWmgld@P_1iFtW>fhqzh z;!_w$SBViI65uX)YK&L|oK`@VE|Mb&tdQEjAe2xvid)pY?H5birS%P>E_gWPuBB}er!CKE<#oltl|rY zQU6LH<4A*?u98q)TwnHFohy5*g`PKVrvZNMqp##RIxn+Y)>B}~{lW23X2bgA$y`VV zc1GdB1LW#MJ4N>Gq&xn`4mFajTRqD2^?EGslH5{wvGOXFnxdM(T+fkP34q{eQ+}y# zVo-fdZszM$%AmkZ{7(E%w6ja&{ASv4d^%@QS{F^*!}LsX7tZZ{{buY+l459+K(eVJ zqls?8JvOYs?kG|f0exWiL~WDoXhynvk0JIr%U#U{1yF2)w&F{RB-FFR?={|tw{ z6l{fgSM{kqdMzbZTaO@yLDj!sSPX5eSl^u6`@N7}BA+xkeo!&-Y4st}L(o4nbGaIZ zK?LZqe6}A*pUANKlQ=AyP&PlSWb7aixEl^Pvi7bGyr~iNGks-Na;^Rj^Ci_0*~H$A zoeY(&Z8z}H4_LHVwAfWu{kZerIH8l4VMX=~d@ih#l8u|xjhuJ1Dooo4vV;?sHhNelk5UmPaF_PsX(NaA)jmwd9Yp>`@*8-dpdeS~ry| zh19NnIx|vHh4eS)Pw>Yb|K7i`PTpENcQi4%N8->zZ=|~(f-P>3eUHYyA}v~_a6NUe zy>VZ);oLGuCzXQcc)axTf~1nY{KnA%YC&+l-Fda7_36an)Z+9jKwj-=|8I4EKRIN( zx!vXL5zad#NNMO~aqYz39=-i*%H{c&lc(wr8V=W|^7;O#tV>{ZvH_TY?jT!FP*+D94~|eF+4I6d>l;%G zGnw+GA@k;wXjj7O))PEymej~rt&l&1KI+L}Fs=9gWUVzvKL0^4s&ecTX>a#kr-^L_ zKqU{rQMSX1z#A}UgxZS&Wf?VRtQBDYGihfggF*yAziL{~DqF65JVQnPCBp7Pb8zDs zm8=_z3P}->5+$j|GFP1H!hV1cSM$Ldn7d9?a zB$j=%UrD;s)dfg}?=ea%Wjcd^|E)wPDSwPuN=q%Z2V_rc8F(EB0>xO$62UMt6f}m{ zM$^DfC8!ZJY`rB5NIDRDUE7S{Gasl-Fd&cB$1uyFykXSpkEIP;9W@~v9`+!v4OWu* zuo} z{QQ)uwrGCQ4Z5_PB227Ump|^jk4yjOO3RZ@Fo15j)J#-M4#2>Yh2w${@v=JviFKpz-yogFLUS+AE3 zj}7-JzN06ifG5R%?IFGK1Z7fiF%STT^7!{F2Y|QQ2cBl`9=|k87WI~-TKfOm;P07qSmC@;PE#|+<_joptW-6x6nMM^dFEr2YdLIpp z&?Xx9SL_d7d9QzCKsgc(Y=6oLhaBu}xcXg76F2r3o}X<8Jg1eFUYc6(pgV8P$A3MJ z)1~BTKeTABoiad3aq{zB42Rcl%*z#&+e)IUoyXSp@2)Ke0W_-S;fU{%`N_+ZOCXx+ zyE#33qZ;y>Thvh-G~Erp0wkXi;LAy}S#znlf|Ro$T?J^)(=*WfNkLV>;vN%l{YoMk z=j2)V{KU$djyxhctD_{?z_h^?TAixH8{s5t=EQlzmBk$f)s5@*4c?L z4HiHThgM4#337ckYpPz|OOkN3VUB3x<>3N7z_}9SE1!Ppc9plxCGWl(AZ*i=QVSx} zC0@4hmO*%-A~y#O{>Wkg1iGqJrF95}aR>pLh~XG2wdOFZRr%9Bz?FdO@k%(GcR}66 z9VAkqPl_Gh|3GKP=U81|B}a)3DaG6xx8-Q0bx-c$CXZWt>ki28f+KCG9m@Q0MFV)2-` z;U;UofZO{C!|x^k#Sk50>5DI*3{Oj$p~9PnpqEZVhOA9Ib1O;;71=!9Zv3{&a5H!- z!YV_0b(}j4Tg$ErWpDm6piV4@JNRXjy>1G<^l{1fhH9TW)m7HgH30jk1}T;i_=h+{ zs-O6jG?*RgAT4{&^xk6&QAG6lPrP0r$;B$6U&zOlJ@joOR+;qWQp}D*6{)xy#2Wrc z35R58yo($ZyG}I>I?ipN`8=@4vHwHc$`hb;ZyvQLaP!2iTYNk{n$g50nx4%I;5DGS z%m$k$eLaF$MlcxSLeN=7Dh8cwJ_=EzG>&RC)~)>6EVvz_>5Tf6D*CEI;PUV&rSY{_ zQqUVZTP`N!ga!G=Cp*Vd^5a{Sh?l|H_jLnNL8l;BbSH)no`j5k8ZlYAPrU|y(UH~< zpHpfmp_c9`{^Wf$WEf|_3Wn(bAoZCa8!l#q} zQDR0iN{+T@dVa9Z9D7Nb(3tGm`cL5>)>Z7qCEtZW>kP4--x7L>Z=xnCb}b znhrBkf(Br@s#cR#4U~ArQ}@xZA!<* z%Si9YFRH+t(6`QlFsX>+M5v1?`tdTorLJ-}vCwsJvdZL`F^JlEJ@GlR4iu9g238>JsaQYDjra!7$JbcNv&X1Mxo_3PerOW=yf~P3jz8{(a`af zT5q@e4R*X!KV_`lU!Cm+NO3;RzNq`Ng~%@e;Zgx~Wgi*IN=F_`|Ao7Gm1=wu_Cc$$;f-&Z4z2{NNL}EZ zGF^o+i<0O3=<}o_C3SvQKtyz5OT(imZyZ>7jo^uAR(Ow(zRRPLCC8GI^EUs&4CSAA z09wYWgF6nikC85I8Pg^hRUrjsRo4|AQflTB0X$%U_|-q%PEq&pw8luAa`1=t=)@gQ(Cn57_MfD`Stj=Z#h4@KhTSO9pW&rz-FfF z!UX{ba<2RLGjm3f0sVQmvBe+SuwunCcRQPjJKHGYErBFm92hZt3E&Xb=5n1&GCyTP z559~QOr#8GN3JtV&_S8$=p(^y?}h0k&!-unvJ$%sWGpbfNQnsZrfO{ny^)9`l0lQ< zh15z;gyfy>jzLw}ou>aU7{dx9m3Vq1?}Q?i~pmc}bYbtSO`r64On z-YdQLv1iDrO%>RbK60#T1O^{RjR@mObAkIYjnqyez85voJ0A@KaIET;B|lhN6%3?# zI&kFRNIi3WkY|Cu<%4QmEgeR3 zYzz>Q?CnA+{F4ebD32-QWdKQI&fCT~8*E>vt|+%yd!&pRv1V=Y|SiQJ$P-wy5n*#K&5kQ{n%- z`h&ke_t57q?vr7`_e;dXx!tbrrCyZA5UWsUs(gL3!unp<_A+^qcAjvSCqdlP!3`nC z%M=}EB^@=BOX9tsaCI(j%+|}hG_PS)xR?uh?^(dJWUH>iyB(>+VAqV?0`gcr79SW~ zPxn0erB*rdB&c^l%@nrc^LVSuuC#8{_nC0o4(sW=?=5tGE9DY@?S4=0d{XXQ>4J@e zGIH2Qv2xec2(U*!-(#<*3pf9D%7fRTL%zI@?0EfiEz$YCYIrClzQ{#-N1vaiP*y9x|>w}WV;h?kA~ zz4A#nC?QV{H}|JT8uy)l843q)PH<=)FEt+A5&0g_NOgtQ{p@)bh3n~kF)o}O8gMc9 ziCxmx(F+0j#*N*vWdDyJ@FBE!!Z8ec)W+k)ky8K0{YF}zec_jSYS)fnn9~dO%wA=w-k4X+nIO6@)%C2@Cg1X^CXg=ZzsE>R8uJ+&9WG9_ zHiEP9%FM=V(u}LTH?@6@`M1Wnu-vmuG>mM5MPO5je60wOe%`vh8SpQ@xs~I~ zi&}$?f*?1*L+JCknyZ7<#~l|f%QlN8wIr;HzYBu~3-2`o^#<(=F5xf%n8nA^t zGp+1Ge0Gca8+Ot`Hfh@F#t@32eml^2e}3}tmppCp-NpMg5J_VQRYC`Nz0fX~9F2jK zXx-wB1VaNiB&`YSM!;WlA=L(|89T^jlr1 z2M<>=7{2wQ(ifJpCIGvhFu7JzRAXntCx%)xw|@YZ+4edr=kJHC*`E}R*oQnPjOFDb zi`@>k3Er;W{kcT#A1KXwwWZyV?Y!gr0(=un4fXZY_LAUK!^vCL#8ur?FQ!0coaXdd{0drP0Pqus1~p4H_(%MluhqG#Bjo@&h;7=CZ5k-)D-tDEjSzf(odPz9m*S#! z<#Gxlzv0Gm&b%F26MfYQ&Z00Q0Tzg@I`qNPKwo#}}}p zqD6xFRZ(p85w))3WRWuQ_?!;t-vSCN?g*}Aux^>94wNq-`-EJQ#%Mg_nKEq>Q9vv) z7jaueHZ1`3{spU_p-Cy_5@V1>4e=HgDzX43{r3t$tqB;>HG}qw8 zkdu&;GK`f;s)FqI%qV4*qEI98SSWLrGFDH-fm=uJ$Dm2;huU-^x2WkYm8B?g-`74R zcLzq*Qk(Qdxlg}_r=x1W0B62)T}45NJ!Z$NZMSE*dtQMb5Rl;wd*MtC@=GTu`r z?m#BgfFq(J`QuK#Y_&;Sy`3+?k=K0-+w`k0OK7zBN|Ncz#o8pD#=7kD%Suiri9j+a<*-jo%q)PL0Za3D$OYh~YX=v=P zcU3wBO$WMrDrRG9doe}n|EvY{30W!8$~lKOC(u_LrCq9Ai(Nd#@v;>f1^2bHU$+oRF>{;(n2dxS2N@PWz1P?Y@9 zA$#JQ(Crr+zp>Y;K$4}M)Vo@DQ~>pp2UcsHsETt`M+a^{Mt_mZ^2E&o zX0)V9UP+X6hKWCi?zL`fkIOS}^D$YiU?oZ1!BLjS%7wkPtm+;(-dzRSCEPQc3#%-~ za@FO?OyI@gtfre_@wpYDUHTo}N-rMfS*XAVfoc#q4gE0#l`+r)Y6A1vc=;U+)aAn~ zaR!wt5>G`l;D9pAT)!v4BB5X9T>jA5s3ftLTa>@BhfM)=B_f(4ov>}NiaU`xP?(b# znO!C^lFoL(y1UDt2*<&fwg7SbpB8`ODlysdVRFRa{TjlAvLjCmf**PI6&IvvCj$$k zXQS`JLQ>64^YovJTeD4 zjE0ee2>o(y1yHQX$%ti}@yDik0%ma&r`1n{tahlv1$w@21NulVKc}<4644H2#HwgH z7UWgXCUJ(33dls}gG0WpH+fKGj5GeJn3JfsD9R-gsw2&_RgWp?b;sK!n`d_H(4W0T zW`ryiIrkUsI7kC?Rdjll@3$-XQ6|O1)-&^;XS#Nm_Xm>$2oHe~Q&*6EOF}H%*=@%C zL2(hA{*fHVwZ5BaZOOnb2H4Tn<=~^p>gZ8Qsu~xR8M!2cQ1?V?bEWu4rc{)8CM7`e zJVq+4ub9P!9r(*q+EQ1^yp9RU3W$g`2?H)ICr3ax+KAT?=-NB49V+n@vs>S@tZIzHpNMADNj%+xmwRf z1T4kGl+a7D@OY@mC5o%OCJ`Wwr@130@E>7QXXl=gsg}3%8slez@Ze#e@WLL+tqK=n6Z*wonhY zl;2?iR($Q;oq69!4aX11=MUV9iF0;AxBM7jzJ9k_>b=6+^T4ipg?>!SJHw$c(rXt^ z{Rj3BiO=1{>%q|mWT_PIqPA8(Q=J!Xvg^iaJ1v2!Kd$~sg~Kg{0I0Nu&yyAlEPD_4 z{6#i#7Q9tBX>=_X!D|^x{)D~g{UXKE|pWY~%l*1&CTWRV?T9gwUCixQtZY?(33~n)hKk%@)ndpuEYgc@RtC zy<%ydID{bPXX`qkzDWto9Uia$3Rl(QI1To&!y_XF@Aq34-4jz_V{pEcmHT3bgEm_; zdAJ)uIXU(Ynm=3%Ia)hPw-1`Zb-I2$SbZa(yYQRQDZ?p9XGOpZdog1YJZKe{fgGX-hoM82-~u^*U4;v*4{$t3&`HDV~$%oS+~9B9VE*FTZ8%-?ZnJY zygfsn{|AUjVC63;_|ak3T8P4=P-x!aH}j)yb?>80kUigB-6yNhk9})JS(F+9BDnsS$ zA2SIPG2QgHQAfqKj{GbN2tojImHCC#AaO<(lC^VLY_2spq|(FFGSV3As$udmFX6O} zkoC2^+)pK~Lj(PGc9YAyYax5T(ctCpN_SmrJc&4?yQ8c%j`5l>mFsQ)Qk4q=Wg+u} z-a&KIj2jm-M=mA{=OFK84RflhZqe4a$=&gk=SzvLwDsxsS>D;Hh24mc6PYKp5fhmj zLeP@ibU@?ILm5RS31IYl+&!=cN);AsxGnD9sK!O38Fx-dx=w0;nxm|!D$Uhe8GscrW#|_>3d#O-Lr<| z=?ZcZuEm0nfIs>gBU>w{B{D*sHHEB0tf8Rw;w)T#>b1G!(-^&QJCq=f6zD*`?AC3g zE5HSuf(`Gfsw~kF<(Wd0)xkQmWC3P#u5~c)Xn9O)XFovmn8d%P8N9vMYlzpgolDMZ z*vkR45b!4Mw>IuIcWw=c6_74LLYsJje9CaN0}F#V@c$LhFKZ-v;DGB0U|aOASKEN$ zDm^|UHjP}Ag2AQ%-YK*GpQ-(Y`;FV!(xBNb`@NnLGu5o*Jk68Jwczzc?*?iwHP|Px zGM&eAS_r|vu3=P!>A?UOx=gcRm{KL4o%gJ<43^~z7-pfCVDyCmUId|YGG|bs=Mm*M z0z28o&v*dw`uYVuMrJn9@h9*c@fw+UfH}CRe&o3p6-3FPHtt_2mq=6&(G@2t#uMfV zI*Stg>K?d!SV`gSMH}}x<{m*ArFKExxKr*p%YqD6;48>fci8HP7_>hE-K(0DDf#-X zL9MO@K7dvO&J3V?q>S6GcrEfujipnbH0JFNR%I1CcfCvLu-c7T*mR+0HSQ3=Rkk62 zv{_oe@dppKkhVeN%kOZZzka6rK|}qxxrvDuYQ-UdHh6N>xJ#@RAIr?V&lH)UGk!hf z4i_RzSeylUHX*W?1I#xsu>x6?!tGpl1gPLy4PWaC4uyuelk} zA*=bKVR%P@{SmqJXl^a!W3Q)mBDu1zv=gE}xS+gkh5VC4i9_(d23BR{YAhFQ$>FQB zk$O;RhP3_y<&vSPPt5${ z6_s!!3<>Qqg|5hYDm)Tu3oTQCV z;rH^sjwncpyTj-Pb`sso)D@Dp+nCZ7fI(Q$`hqN@S;w~@^&*yMesE$a7z{*@aFet_XRr38 zk^YQsK_Wk$B69?^{dVxma@VYPc6wYSzv1}8_vbY>05WR5hh@7FYL5R;4N3Ut10 zKg#Y3eC(kW)y~Ds5Ps*^ca;}plk)U0LenU4D%qx(cdiWAqgR$0=U*-b$^1Zbov%sv zCHBuwPqkh&&m|kAdHR}%)=GivpUozHZD+t8zA)C7W^M1ihoCy;;Xk;RzBk!CO!#e=Ufg93{=MlW8Au|Ml%$i6iYa+ z!c?qeL<)1PciWmoAF;6CJt+eTGYax&{b5pBJMH^MyR_*8 z7cKl5S1D0tHF(ktR z53f@S$lV(MKy&Cn@|DV|NV%?ua5R*=r3hS>F2+ybEu4@JGm}sEXWRuco$Ii!2Th2K zCw=b+>1&)Y-K=ZmjThNftD>@l+d#rq#-aC`lPt`6JI;hGYUjjitl@1e1bD4mrw zqvG6G;9;cG2cRT=#{|!H4X_GImDrCtCDU}2!lQj4z3;&#B7r9fYpR{>mxkb6=j~GU zeg?hCY*nVNk`8an<1>cUz>X;Mt12{j=yPZVJ_!o)PzPvL+3pv9e&}Fdx+H0c0|6iX z&_mxa6t&ieBqp|6gOW89Z0>jypN)Y9N>P>%AOSE4ejd1oC|`EmT@#~{bY^^YTPl6N zbl)%YaG@u6Mhz4TKyc&%YgK^BnzRB=HPs#WmXuWpXGIXe$)glcU&Iqt?AAvS zF94TY8kEc(h7*5}7o&@5t)d{I6%$I0pp?k*8Ug31po10F%K6I7`;8muNv|!5qhHg_ z13wjp;4!gf6B$KAR*S!S;2uD9<7&W+elx$7zN0L!ac;;;!nkb!G;wbY?YIvQo(zUi z`{$f5MSpqd%|4iq`2tVWmCM@sf`Q^b83;X4`20Arl}@TPG#qYoft`CWvZp0u$8-bFxWdRDRsv08sD6CGA3sxbb*FQ|JV!`CUGNdyuW zz7o9?e^LJZD=VyPl8OiF3BeJ|cSYA3|0uVdk4Yk_&&)S1XH4+^$fx_r8aO?y|D2JD$7_Qvq6`5jkdH=g@N3urslYx7F0P>#r zR?EP19~~91(&pPJZlPvIbpm3RANt#EYT zHkZrOY^?dbVZ;r;vn&wgAn*eV>26JX6BU*Y6*UxdIV1 z&7x*$14+;%e|q7kG&!yrbWjniI=MeouXQ_Ux1wOAzk23kW7(xn_>xzMbw);;YQyn; z?Vo9(J+ehTTiM5Em_ImbJ$G7prFe(0w4{O?P{`}W-5PQb00YH;+*9wG@U0H@2t+&F zNYd`F5`>V^OSp_L@Y0Hs6=p#P2^{HazS|ofOOIYtbz6_uR{ue(%h4`tz5Y0cU+6TH z%dS_+prtYHhEn;vd#-(3*#W3x$zdRagyAu_*k0#?a-%APXvjF)0jQ-w7%Xj!({}0P z1zn3U3k+Psw;$My$CzEcR6hn#UL0?&1uyz}H*WlCCXabH>~?ruEE(I`SzRZDY*J1( zZ5vPKLw0`DEC0=H%37NK1d*@n9fg7cj85k2VWwaPAb8hZ#*zoDSwOJpE%U@NPk@IQ^;HH?inF|HW*jr}( zRc)5VwriT-Kp(~_!SgFcQlIfX=9D5)*3ZR&krSBBMg{oP1tDp`%(Ed*|Fjgi*YqND zRG=O7`oQlgCxbS=B590+oX*w|XS4!?iYTy!UPUt2lR3{;;a3Si9-5z|4L5@BNk@MO zzJ3Qh!^kUJiw6tc-6fgw-#AO8q{L9&6Eq*<*qyEEZFgQ_yKKSYg|5m>Fz(aZf2Rcu z;vpM=m~*({rIll!-S|9ke-CFKfFz=c)gkO=+9Lum>8T4FwWMY1#Zi>>1Q!QTagT9P zNiAj)B2Yu@DpnMX*1#eomxy-Snm)^bh!dNY%N1yKvo)i{SASSn>UF@vSsI3Z5m^cDRJ2dCtGIOt`;{V0hWZ7*soRE zI+wzHr6UJes^cv57I30SyGFGfbU+3CT)(}Y(Z*_t-AQwd`8T!C9UHrI_vpTYqZ0X_ z{GJ5n$icJ$KEMd$l+`Gw)A=b0&8Jjixb}o!tXw^rUwh#v5EJ-D&ij5=>x(Ad1U@E4 zzjqff!R!hOS2I7Lt;JYw#soD6tB}2(pbNtbWEi~J z2@M|;1Sk1N+&Y)Bqs;C_CGM8Hdcf2=x-G%lY9W$IRx#8qN*Zcek;9iMSM%?p2c+NY z@cmKh5|nCX?m&S0q~N={85>dQE-K9+wER7tm^xmOosB`GPLne#JMY- z$B&Be`rk%^1DV#a{cDA8mG<#wtlK=tj;r~Y|~{s z^@*f^Cqtgtv}Z>eyP(S^C<6Yj;4HN>)j1Kj&ktb1iZFUVr>AF_qn4kV7XlVG2_B!4 zBXln?=wGd^;g>IVY1H6Tg~W+Z?1yfIhw>&$@$Ujzw?4cwSIt`bP3+G3Zv8mvx|%Fe z?>Fj!>$PL)rTzV`)-yuUD+>!TA=`KGrxjF&w*0)j28G;h;P%66!kE=MVYeF;dyw-=r3dSVqF4!CcJUzj<>NXIe^8+%rYjT{nfZ+h0CGrT(#tC zoVX~^1BNvPKp~RLkzY*}3;|~uQE9_blGUq5TCU5RgLl&u)=Jze;SaNOrEBZIOql!C zNMn1~WVw>xb2k#50k>V!hDBRd*(6$i z>%C2NGYDf$@O90#Wt@2BwOFc-RdnWN9F-yXfyGIu0Hg2zTJEz$>>} zp!#!-;G!Ef4<2N{6i#&lbsKCtm(DRkt}FB$ZzK>8n9wnUHiY4ySafx&F{a0Bb(>O` z>F>fC4Hq|#WP?>lalS^+otJsqIj;2UT~&@-Q-_EIT|+By{+t^%pdw4SpGGErH5HAT zbKb8B-Vr7vOkfzRNXfat+&SkOEz_7T-~zqH2BDK~S-7tmcyOf9i@Q;n0{0laos(m) zM&Pkz1xuB`^4Zf8bbp}1mIGMTysPIemt^caS0VdXRD4g{%A*&np#-V|pm3u|y5p*q zfau4K^#exRDsm8a<1Oh5ivxk$Fp=xz4JJ2WBnrSr!qo*;-Anfe(1rI_1OyoLQ zIb&wQS735Bz-JiW<3-2-kYG;m^cI1}H4!FgzqhL*QEQM{5Bq(jT)9?{wPK?dyMkzO8qKHe){LmZ6NPAbVLSI$a}7+?HREb+!iT8)a(Xt)S<9?KhWhOqeR+ zELkCXbU$3|8uSd_{@TX)Hu=0}w!F%PD<`yDoGmHI&PIT<>Ql`<5M+UNVV}5=+%2!`dO#q-be(;OlyV?=9WGlglTahm<^$u{9 z<7n7EZ6>4}7PlKtvMEI{Hn+@5*3^6&xm_z_0JHYp!bq9hoKsuq^6z#}RA-K>RQ<(6 zN>OM&_cSS2%T-pytom_ipMxP}t7p(PJNHR2yOG=<`YWd2>y&gNLgh?l&*a+Y8_RuC z8DIVyytTdG+cIMw5~muRb|TE)uX)sbC_G;OqL20jAJVc?IqO5Lq6`veEgrcMcOJlP z;aQoK6_OwL3uS;v%`i0k`t;}Dieb=DL|mAz!$1!-vyJ0o!P!!j%rrnooy<3Gb%IKP zw%q?>Y7^x;Pi;K3^f$EJJxRW<=JDkkag9JbJ}&jZ;i(#$x>^&9IvTJF=k6p)Lpt^5 zVrbM|OZ{dRDIX>t9x1k0s;77idA!4v*q_t+d^K$s^_8^#=aJ1llZn;UlHub7YAuj5 zeW7XXHrS>KnuhjwdfrejyUv@y8Kg>GVOyTtADquT0X;&7*jV9^BLU{^z3ELS4Z6m| z6>ka>yzF@|cDK{#FWMOHwlM^rX33Ky;`_#{w^kJG=|YyW8i8E+;J7n6IeOTmbo?-@ zad*|rjz(RhJto>cyrCJi@rdxCp1QunrTf291S05*NC2ccG>%0GSJIi8Y2w}VL#<)| z8&UX(%+dH{4L5o8jbB)^?nN-3Zrs+AZ3acC;;?Txwc2=m4|l#t9^1o%P6GiYGi)gQ z5#A056oS0bRt0R9P^W8KQYXJ-w2qD{OS5x0O2Ah8$@(OiGggzT|Mm!iD#^jSzrn7_ z!N#Dgyk_807o;p}@^+qCa?+c?ldVkqTYP58q#Wy!so{6SpQ)YrY$057a`E81XO!`t z%!}rE51kHrsgyUR-np7VHf_i6cDAqD^8>N?Gu3{=3bH*Qc-vRCPmdn7QxyCCb{X`Y z)-(oH(EeYH^e}FhBr9Bh;xm||zA1oK(dYXgpSa$*18xkQAdv+PWp|eek|z|xjh7~{ zc#_o>HL-gi@hcNvS9vT4Cfpp^tn@}Roc`c$DjCz2B&Jr$n%v4svXJ?g)!}IhmRRHL zrtLDB{>a=4hsV6>TYi|d`&C3339m}M&E5ThJ({yqEruJ3jASATQ~ zd%d2|$K!s#-Qxcc;+Hj4EIEBHTJY3)@I)=5f*kLCV+R30+FBam&Xd=|K(#~U!+{Zx zhYk*-EW&8i=Zq7p8E;tELm{(pa4ZDt_|wx0zNa&2W~tM6iywC5!2$%DFDMB zfJy3!8-oQ-3D-5b6l4l;$(0@{4E)vO!bim;|AwVGF-^;M9R3SN_46k%*JYi z>%05Db;|_w{Kq%U^9~@dtQ6k4<6dU@^2N)lX*W~WJRZ0mYAwjmJ7+#73*+PdbPw$O z+TD6LzB|7bzxjN3=gxS{Me=k?iXRfH6sTmPX0lyc~OCL8?VgcsRRPxO5@LkQXhLFTP-9jZ+ zaDNK~Zdj(a8i6ViaC{tfynv>v_FFf0Q*oEAvVFzt9wGr9GCKwxsdxhV8M(taYOjHS z{4GQbItBZ9F2MPLyu<1oBjbcS<{||%{OaYa18L)kcQc3n&{!sx7#QF~mypa5GBwbwN(j3!Vpx&Wakt1;dB2!&@eW(7yM{ZoUNL~%#g7=c8UD;PX^ojr>(+B z*xiGO%VP9vG5XrIy4Mmp1^`v!rI}iJ^wem3Vg?VR&qJhM`@y%l0IQsmiHoH3wuwlI z4IOzgfeVlrG`}ECNcmW9QncNL8AxXVb2`(O_wb?|pSdt^l3&WpqY}N!`yM~_W7V5? zim{cGG$E4$*I<%|dZl3~|IWm@#)?y)XP%z!xPE;hDt>J(eudo%Fcv!r1Z?!E!7TmfTXW`k1g^5+x| zgCDCOpyl9PKE||c{K7>xZfq@0+3O59(K4p#vzHNX`uc@_3ns!lf4)>MdwO*kzqEKb z+-mE0wJxqlUrs5a=a%6AWdZUicdo`=UHmgcu4`GDpDnYB-MPUg_wgy%wI8;RWo@95 zbeEwp-|fX=&hGT~?V%f1CckE@j}Ox>4KIDayz*@^=CKhWQM=$;i1E|~HBte1RfwY& zUrrPf4J91koXYhH)9ozxKbbRBb-p!b*B@dX9rsTKpb&%w)=bp&P0n#mj@Ya>QaXKM zFn?9vc3ULu+5?Y-(qdR$rpIWF@Y=hYzRy$mg%#n6#kp>SxyC#uBa8-C&h(}tS;ru< z>~pDT{PpXsrFZ*E5HT2tRyQ08ba+QtrIikNMd!@k#@c+@{->2-5K~a04V)1K>R!7l#3wC()w*muh*L$5Itx-_ z}vgbZ{v6 zDRf4BuTvBI{4DqD_LA+HrV@7Fv%ov;#-|-oj3lX1JwCVn`HTFMwFTr6NxkS> z8O)NSoyU*~U4|g72!{x`u`7wB%%gtk?G*)e5C`*A*{^d6IwE$X5CxF?6cGq;FXVzp z^d&D~VnY^plTy@hJ#Mzb*g#F^g1w=|p=zum9`FQ|@6peNaLY+!2c7-&2|9w)#s@3r zb2DY+*@ZU~Qclc?*e@vO^I+W>b);iX10^qK^!7aKI8}PfVrK3M1k~iUm$D)Mt^|Wa zH^#=w%9<9nu-;RGqfvW9z0}O!!{lhkg6P7+o!`KT)MgLhVr23sO4$p3E|c)T^_erDxEnw4I=k?JXeUDYg1cYxnm(gbZt(yL zpsym|;YV*saZ~kXh{(dwHaB+h`umRb@f~J3>j^}wE<^`1$0UTu(#ArY6#e9nJE=Q6 zEOVlk`tb|vTi^a$IX7v>l>rWm5bpA_p+ThZ*&;zpaQQPL9QxiH?WJ#(^9WSIPG6Q6 zDxqr6XnQ&w?6Sq6^Zn$uVtB3JR*8aLMbwSFl7XqRx9^c4f4f z&80F&3Bm}z?r4|@j=T?AdD;({KO9hLmx7YeqS8?Cc<-E32uvFU%4^S%$f^oWEVx9x zd#5q7q@UOEi|ZRdY|40UX&N=DVMEwhYh9ZdTcr{=etqq@R7?ozFg>PKK23K?k*&O} zi;%@L(P|{RL+y8MHh^>oK*td3lE7gGnj3U1di; zhdoXu8|3CnJA5!#qn{K;;*8JvKp&pc_mV?sruG$0T%euMg4JKm!d|m+kT1_Tb=gb-ZM{>FDntL-LtNQizUIF4zS5=uN z_SmgkcYq>fl^N12RvoArKJ_HjwVUk?SFUw5 z>z%l-wC4i($6_I~?F*IV!@-?l+*qER{k*BK^jfE+414Xm5I^UGTv#|u@px6Dbcuvj zcYjX}PQmevuCB}U^vA>Z%j&GL*WPZxn??5?!FJdsbh%u3JD_aWCiqhQ*fZaT>$$mi zg(P$RdTw^SNZa$`$Erf5UTOX325(J%<)UK!hz$t+^)79;TG!X7rTN9@zR-J}wm zBL8kJewAz%KK^pIvOK%*)W_ai8M3g|UXsA4!?9ky5t+C8s6Y6g1`8g+yK^iE6E)%V z(OQ+8__v$}4*|>Q#q}eKzkVHV)jy$nS69CJrD}NwpaLmNqjT;uYl0~I)6I$hL7e7$ z-Y(ryY2MXPv5viZwWq^(vu}5LVavi~xQYJvg~%RjX7%OS#4c6?V^TMHpGy4l?*c!Q z)(Gp;1GRUS-K}XimTsC`nFm*;aZIgP+FV9C=|HVJlQGkcp^Z(lmZ}GQ0yb)&w;1^P zSjOTDW-5OWc0V_zl^=5miRJV`e-IXIIFuG`G1LcxbnLmw^FYL=zS284_PL&M0+|)G z-`?4R;GE6S8;nq@u9sv4|I_o@@C1k@C6)GP z0nl$STu#vroVSnHL>FCX{a<$`5i6bHXB5qxjz$DcXef1_hz;B#Jas^eqK%EGS3Zt)vkg(JF0 zz{wwgQ48vzFsz~zbv>{^z_`5#C>qoh1i<%kWHOgWM4S&UGGREfWtPagUH4Ko#b0~p zK1e2cXXs}5>SgdJ3kbn4CLV>z`TAyKDM3OrvOXAfgTz=-=wQXT6g${#=*g`kB7EQVcGLA_dwUpBa> zKm_G^oxPPbk$eoo)IK%agiyyX{BX6~5At#R$Qg%rNVa;N?A0m+4%8!PIY`G!iX*g8 zg;d(y%yFIYdoeZ_oC#V^e_l^$K$TRK!5I9GOiQxe$Psi>Js7AG;A;+|B6|L>Kzcdq z-!2lgV5W8FOv~c-nhgsV1$I_b94))qIVXAlV2Rrus1Sc}rjJ0B!z?-koZJE06*JOj zn{$}~rc;go(alcE^ba+@dd-=8ELakBKZZ*6cNvBW*wx~iG`rjcihs;K)df&jpM?~U z59aojMrqEos1Z}UIgvs-W{{8@SWTM^sRCTW$Om%9Vn5FgK8RXHR(SfUo)iU!x}NqM zNJD*AAIgDuk6j2#b|^wAh6-#Q-{eMYFZ~l_ATh0}$y=r2t0yifxYQeSXbIUh6C`f} z{men?{e$1T-%#^|DMZh+TPTUgE;+OQsIKcCTI$4J6J@-#hhO=#AOit)t<=*WT=9rH zC;2m<35NIM9ItO!#;-z4-ffKwV!bj}44IgBLCvq|eJ{stZ0M}MmY}B#T(|y>o_F`c zJw;DU@N|O5qd!g+)#kRqJ83&I-8Ld}wy+dMWf>s5M)}ox6Setdh(S(Yf{ez(@VwSO zjFa6P}*1&yyKzx?~?QFY0AsElvSmBn=im_>!Gx!t+c#6CjPT(+`#5x=l_ zHOw&&IIO=tDx1d}_)5zo<*~9OTlaa`0O#4?XqFFeEIh;b3G7x@rey=ITbJWDzAsf9 zv%HnljCCi1d&BIt)bSQWi=ESqp`Q&aW#{^eGc~h38acA&<`~LL3JG$eX5zRMSyDse zU0K|kFrF_dLUUqc`sd<*#F3C%33a#J;X5XZPZ~MA)#^j#R4N49W}LC|@gtX83-XA$ ztUdb2Y>CnpI^v*&1IXc!!2N3QZo-^b(J7Zuz`7L>0zoLyLG5w{kR0%>5^XS8RneLwr+; z2_6XZhDW&&F`fJ2CnnCOn-6f;fAn=MO$-@=gA1NU)h2ri7z5#%`on525ornz-j#By zQ@qlibvbK5(+*DH)RYq`pCr5c(dh}jIQnsifUC!$ck4T6e!n7K06Py#&LGA`v98tw zl{M|6ks^U|4n(4GdS)vYl zIz>to*bkkd%cL(>0EUqYz8_#JVhfU=yxv(D04UKLj1DrPrIMswE46hT&sx#cN-zkC z3P#P)e`^8P@G;k~UtOHJeW#{=ve_HcvCMfFboNsPVe)JZ=n%Z|y}Ga^p8tlVCW))g z(dqW{mWg^}^EO~W9-{1z`L^$r^Bi`Hq%1m-!4q?kaIEmR9zrP5|2K zWE(Jwl7ExP`&S071QFNgbO=@C*Ewl)o<(bB9~I@AfjdE9$hPnHnH_w9GsIB~RN9MK z81fi~&BgaLh*S30y^F}ubn(7#rppaxY=0UKxko?Y16Asr(LTbLO8=MiXclxDl&gE1Nn%5482KDGmf#kIs zFNnh>6)Awf^j}54_o!)O;c3d6rIF8x5lW%DJ^H$#@;`6Q_Kk0c@AT}y$7FomxbaxM zs-Rrvf=`{-35PHK7|+8?$P7qT!Q6F&0c|n11fgc{M3?2YYu6$pqGO|D@%WgVyVf$b zE0w&?9!`a*RksjCsVP0N{>^=o`DEKY%F;!3~XorS^L~)MX-4l)!8j_{J7tJ zd8#+&k;%h4mWNoRS`r~}aL-x0bP1Y-l^Ld9``o#R*b^ddd1q^1ykc2Kzp}Re))OwX z2FG@K>pMOEclPk4a#g!^($ zkEX-W68HFeZ+4&S;WQ&|QP1Iiw}O`~Rgy|JNhy4a#seZpOA8H#@Ay?g9i(#m?^;aU z`Ep=4zHt^Gxednq?qycvbCW>58+5-j2r{#N>yFLl+){M$uy)7f6I~njn9sA$Czp-@ zI%gB}4hJ;7d(MZ@0|%_uuA390MvFQ83ev^|G{gx7t>pPFmZT{tavNv^UA*y24W(0T zZWwticBA{`KrQL%=!$XrEAh9Tewn%`TL1|wZTj=B?B))W&KTcV?1)k+rN0=xx$_Nw zeuDB(y}-FL8_^lgZ}W6T1Wr-nM_{VoZ6>*WM`Rm8tTa+Y<0W4^3Jzz*3?WG8Mpc=s(NV7%R1VA zv88mH)^-N%@BDiyXc+hLiQCvIJ2$WdhQ8fmJDsho&*N7@7E14r5hhxWJP!|#>S=D2 zve{U62aAQJJO8^CI3FOyb6*^gxHP*(u4bF`S2G^16#5KpY;^yA8y07LqWWFU?UkS3 zFB@eXf|LQaY4Cv1+eF(X%VgE86hw+N(#5+WP%Cke&~);$ z(ob+`ACI2+cl^&NyA>RTYlb$e!Eb@h&TEzJU&-!8l{%qXl@3JLVazJ-4rGGb*!z^? ztS^jTt>gu>c(D(J{pp~ywK@mlky)WI29&qo)xtgtU3s~7#WnHe#lY1SL(5lD#yOEb zqf57Dxu1%dp=$aJ5Z6fpu}U6QRzElevg`;DcpKh)UC=4P6bSZ+Oz!~E%4-8NBxQ)B zIS?uWkZ6&paZ3AHNH?K)5&!_f3`7GY^@D5YoDw7vSpq4q;WB;tEI`{|Pg4D9IWQa192J+l zJ@@v9O59Z0mP-7uwU&(>0FUMnD1g*ut*lb^w5qRfh1*vJL@RE&c{|CiOJy#6;5^{l z-27!qVDb*oVmeXHr0@F5+~rS%CVq1G!mq~C1m!<}$rSKv4{+~lkmchyCQ#oh^YUGT zv6WCGg@39QzbUSnAj8JwxGRgIL3KwD)T4#48 z>-v5XR&KuOba5e0HO(A&4YBU+FyNY+^YY72Q5!EvY1=YmD>;BK*?-_zLmx>t|5*E3 znE+iR%wbh_RJE(I6jal-7Qncz8~7x^@xq~?YtEPe{py-}U;em2ezC0s0BN?(iFiG$ zq%zfT|K>*=>@dyu8I^&y=N-6jMTjQv7k<-+H(_o}@2ub6r;9lbn9FxCPKtpCk;mZK zp(&>TnI?lrzgC*+VXm%lUuzzs#o7LpToVfHr-)#Yhk*-s4WWS5O8KPLFWz7H3`iysr;$fh1g{S-wFP#8cVz=7(4@_lzfG8k}c>aC-E- zcgK7BYSRDQBq1Y_s;z{8&f#M@bZ!{pmI& zM#G`jRExhSI|r*YVx;-ufxh5UF7|=OT|-K~a?((vTli>Fxw@KwC?75@kuzP&5ARAc z*RTArpV27O^C?ET&PxuRe?`10U+Jmc6_+Q=36dhJ_sncA8aJJRq$M6<@|Wl+PkY!t z6)P#0|1Bv9*U#iD6}pJ^noykHiU-sc)60Zn_`m3?An8|QIQQJVXV1czvhGtf%(WIY z+s!EdPg1C@>6rdeKWSlV>Whn7brQxhFm_>m{{8cXcCgGc1Hikv*k(*As$4-6Yn+xo zP34Z<&Ur(sEq^t&PM>(LG*j&!79O?z$3G^5Ot}6k?kZgi=J95v(lgViHGcJd_s2DW zWyKGt=(yD$wtT3%e#xQ2VZrl2DG5wb6tcpbuX2i3-|0TD1^|-bi|X(3G{v7I2E)nE zsA5-iWj`%(c=?f?O0ISMZ_d82(U?tLTwjSa`l7BpIpcB6_03zPX?~jwK%*kAJ zmJkqKAhR&YxBcM#jCpT4Ag3-`6?n*hPs6F01y6^E59cHkr>#=6)3KLpdDCnmY|uEO z?roPBVt!*FD&XMolq*I?UI<&Hs|!-HNqqK?e!=PKdrXT21vJ>*QtDo z#F#3(W9ULSOJ0o2+oFmU15@iHLX`wS+96Yj#Sm=~Hih{3?F@(ECQ@R>DOHdSMZZ_m3QkEg-_ z8Lo;D4wfJ8Y%`*Mc89)hpS92P{(d)=_|>_st?Mk#Y9l$>nW#QCDud22&!&yJZK<#I z5By0INO_|?&Wl@eDYTsv!A@Anr0sV^n@jW)Q#>^hJRoPKCHtNzv+{S4q@3} z4H$UCRE8nI7x;2Qmq$o^MCfM1{78^RXrgRFy(!8YQeSOhTwH3g@62%P&SBr}obavD z25o4&12AD#%9U^kG=?`gg*Q2tuLSD=z4Jm4A#8iVdZ%&lo)sXRgM4Yl?b~~7A3*HA z@09|I3b4ps&!0hyejwy!a4bARf?VwRf_3Oq;GmsWKKQful9w7wPBV$$g06k*m#Lem zf?iPID#$4(&W)`ao)8UfvY5*_i@ALYA&Z%OOGO~R<%077J}k_nk_cvCbCYIZFvdGx zz@w0kFi3UL%9<{|i+0J>g!X(2Ybqf#4A@KhWzVWx7i+@D!>AOd@S0nF{4&G6Wlckc zq*Uvyt7@170~qKQG(C_lD@hl^$X`L1M3vy>zij}YSxK-n9)b=t0j>|%>WgsG^{5wfms_#YO?JFND!Qh^7)5i$D{|XQO zYnx3f-NW;axV;bPd-1RY5{$if zIR`USI+PXhKm)2hzYtW4F=f^HKwlev+|TI!T1TS;wDnQ4REb0fYH}&h`WWWN0W4wk~~ z89#|V*X6(DR;zd(rbz3FLlA!7cg!wc8mXgCbu-5BP0>G~Q`JwI9$%G=^*Z*y@l370 z!Y{J#N&;W$Y~FVF$)Waj1@#v%Z12>mM!mWBC?!E?&DCHt6Vm_ei^L1Ri0ycr?O(6z zGr!)XTbt2degCe$W7A-@d6_iT7tavB1w#z5VoHQ{JRs#=O#J}BcL5xH4v zFof+40F{P->~Yn)ULUQa(Zbbzd{^L6eN1quQ6rj%pYM%Wd%)2TyIUGIin=~AvmaSa zHu2GSH!W0rq@dyVPk(uq9cX650G#5~WwJYIVaiKJ>evf}q9vEKfXC#;(hh5s005~e zH~-TPBQR>5@Z*BP;MnJ#=|@xHxxbggHaT3zyOJfwkdukybrAFWj^cZxJAI{$7%@zPzb;;C}1+%2JJ(UhDg5 zyA)?FBj!X@3R_@o7%S7?4}Kb&vOWCV~j7?W+V1k{SsL4Rk4o3xTiHl`8*r&v9gM#+E{w$ zO=*D7=E_V!WF+1^aA!Gi!5u7fst2C8{7EZ|`y|EK9&BBCzI~V?tAz`1Vn@jD{^90@ z;nR%=f&d6*1uM_JU#&$B9Q`nZ@B!}8&k>h{D+#SYyJVB*O<7t?$(*} z|Ca@@9^^eb$gAWjdo^IRT+`^jGJ!M&?h-I;8(N%Fgi%H8+eRH9$wij}YOU$tQNyT+ ze^sdRTi}}Ozix@DW<<&hELmP!pngQ8VZU_Q0z)c*Q8~!kJ=uHFvZ>|Dfq&6+g9yHh z1X5sTgwje|)ml-I6WxT3q8qVowT?=5Ji2u|Jnl!1@8)~O=b)wioyA?)E{k7&RMsMO zZ%V}Q*=gY5^mEoh)+-6afhFU0oa`v>XRu zMg_zP^ux6y_4|ciTQ(I1F+h!EZO+!=@@vmpd*xu%gO`0vhE5H&jsjxIb){CJs&xey z;FqfY+KdE&44Y~|0Avglh&Ih>SEhhT`h?vq7|JM$u;In2ks!@~pb~WfD^4|QU{t2S z2__B>I+VaBWwf$TNw1_U!!8S}6nY2Z1gJqI`f=I1zgUczkYcmkN3xXy2c7*#0qFp! zEdtUW4hC0q5knYfWki;jyujeYcl)YswpP94C(_5)M@?FKhs@|;U;;jueLHbBK-p_L zYN;Z5vi4DF$?#Q8Q`dHZrl7BeICD7`+Rpa#;CV8-Qdx=^CT52JKEeZ zBRoR^t7Aw=dLnG|pvopH7GOsOYey0p)Q?Cq`nZCl6-64q^ZQ>Ddz+k*I*8ZKF! zHwYmxA_Tk=7ri>Ap>Bu4*t*LN%ua>j*}UE|K)2LRy#a&kQ3X*{L7@tn0(|B)J$Y~9 z?_`gPlc3sS$Cs?vC10M}jS+TYSoS!4{kHsl18JpRo*w-%iBa$F;3p7ttPOtpae-M~{Bex$QG*{U?*+Z2qZN!n` zS+L~?9-ISNrb^S96773?XSysI`^A#|0DR;#XR*CIZ9B32(;kh=!p`oPw_|dmYU26% zdJTy$?KBQ4Yd6?W_;W*EPH7S&6x{nlPUTX71_;4QQ(`t;VrAC|fBvTJXg&r5-!zSBh>=WnH z)`M9Tq~InT8VZy|^PS)V02ow~iXc>LI%k$oV)3&@0zjQ2lI?&Br#Hro9-nF~w0^~E zjj3P%jvtQMj}+ZXI}>`Jc}6$&Td8}QJDn|*Mf_8*`t{X+YtJ+z8hqRtVZqeaolomk zZ}Ldv&(jb$E*ZpKkBwq)|M|Ym*xqKnXc+jh)7DmYf9Tcy`3NUz7}+C5 zF5mde97^6nOWlCiA_s}pfM5ZPmY~UFVTbgo(?b`;fPW3H4hbf{vD)J;swaix$G}qc z$qq0IlP3{@Ybyk%0bozvN=SW7DO{c_1VsZ6+lN;UW~eG6iJE~LHMhu&qLR_E(#tZy@wE!68oRY0jnyQsmnaK-z_ zzS#x1pG3qApsyf7SF5cbxB<>OL|r&8Yw`Ml2P|eGL5&UZlGE>^wgI+Ykc(exN}HRC z6BsxggV%`{hB}R8hG?OIL&ITqj9P)tdcZaf)$2mTSO-HDRJ*H+P>Kask7NUzG9lGD zsSq<|P>e#~w|cldr;nnlA`H~a1&igxwA657`M8UA2T}P{1W({0hy728`GbsNt&4CR z`Eg~oy+V3@U~8%3HQ^AY)0x=$zMxx}EQ0%<#8WZh89lc^-*+Q9k95vDrn$A%DE~j-)F zgy|NybtT+?^7;tBCn(@m9(rh%|99rkBi& zZDVaDJ0`z7$ea~r*BaUSd84%)k!Xh*RwYl&LLvBZJ8PwP*hxbvMTQJRz;e=YYkKLJ z*?S$l2ld0Qg@j55(J@+CsnQ=X_Jf$CwUp~%Oz9lNuxv8Uy*R72bKk=qS=QvH#`(z9;OR zVe$y>>_5!I;`9lDYo=FPtv+)?n`r3SfNT5h`+6~1#)@iHBAGJ1wM~Zja3EW--kR=i zv^nQ8_rkC_q_WVy% z5EkbUv@YEnjUiVJP>phz=KZGrOlL7p_8;*RxHdSlFs=ML_$^n5t&^u>AdZW|Ehq@P z4UEjccqw=d|NgDnCH_5-ek{M>LCDBQYrBW{+sy<%cL)gQicdApj+JfuHAi4mfb)NyY!<_+^thV^BLNUprUe@_AdV;p;BkQGb6xrAYcDB5Vd+5tLmhX| zhTbv}Cd`*ywQ^TR#?SVfF62YdkBK~+=-rK9W4g^-rNhrT>tAN@rV?)x#> z;r`9i+0%OAdE6S!cVlDCCwjdSFth$_j{o`m!^^C9y`P}6HRH~S#m8>W(-!V$4Z9B; zP2FC3QOX{?`1h9Jz#4oNV%EGhjU$^|c$Jkt)pc{1Y2ExD^Ek4JUH#J1X8jL03e+5S znZCPrPt*|!Z1yI2Qh}oPuNXobY4WAR@?4~ReRT(1g@<8zaX~7*FD4YNuPfgHhC^xP z=E|ZlSqd{k2{?J)MW_cU34=ippJvK=XI?2vK!Eap2BEU>d|C8p(lS(9>`CAS#mOK( zSR0ciWdnz8%IQD8*^i7Bv6&C2M#KIt(b_ME;&(QR4%^yBTS-gY;8p>^$J zbx^}v5Gfs-?>~h^Ywi6^cpmw} z4WZRofQ1`Y%io~~hWrIqp~q7q0+{I6{nl3bDgLTYGXQ*0lETNmTr^0?gH#xsOvnfp z&=qeI@0yFNBVvig^gu0mH&vG2G}m|RRt7paAQ0<<{0~4|6Ri6B@D3x)q({A{P+i({ z%X;FXyw(>;2PZJWfEWuL9B{3NYX`)h3K=}fI)kX&Tmc)(6jxw4ESpY3Rq#m59+q$zjz7aCMsc5qW2rrj96G1hA z{X?ew8l7@BZAn zPO}*Fi@NI*xBjtlyeayg`DReu%+E!eb=@6Fs-27}V|dsE>>>X52h2ACtQ}_yK6M7| z@@lv?NHNepNgxBTBGSjHe^nJMp_DewwyjIXe$rBEdaW=yV?MEZ>9bu4+52E3AcVW` z&BvLUnX&Cs=|V;T;m4&j^b_efxLPA1CwIRU#D zVZXGzNS#_qs+uj@ycEzUd02At`L^wrdIH})g#R_2lR`PZGWE7;9g_gqu5H6`=ERh5 z%hs1}@)(vX>&Ks&dgC=76x;t1Ee=BXD>kyS*<5%^s%uiVV~QT!Y!iUJI`hWY>jLla z;cPt)6)(HVI_sIlmFvq6c2`sfQ&KE4n01c@HRLAhFgX_|!)RQQ21ZSUWy)Q}yCl@p z&QB#JJ*M|-&jf+lpG#tA#Ag*rD+5(9RnmIBV=J3At!$rx_5`SM&%?E<88BJVNme04 zrVw#~f*D&_J%qI+eyY|Q4p|jedT~un+Fs9uPkh#h!+q~Lt*quoq=#O9AxvkrJ z^JUc8hHpDNJ93c(NfRuU{=V{Z0>5i?{*Kh?;#vW-)c;#A4qS-&4t@;rb z3~#v_jW=SJad0+PjYDSxzg=6@*z5?_^o(tKCx7!FA@(p`L0TRzr{7uVn);?gFZ){y z1#)_VWyqc6_`H1er((vte*2>_VL(4@vg35e(2sqb<)yN5%UB^k0ImhcQ@L-bFM@@p zhoB=mWa46~$@q=6Z7D1FBTzTd>V0QS%B)q=kCJQMjT!TLYg88QO21Bs^3R($wy&SR zYJOhAhBhAGOy*$`k!cS<>bkq()3vz0#D{76oA;lZ%x>eG%*K>HMJgGcU|{)>&U4>? z56!HMJ)3Ix^Ae3t6qHB0@n?ZHEn7*XSoH}IhlZ-Q!7|BYG8bRQ;tD9kb;0e*6x}t3 z!i(l7a`M?O#HaIe$SfJG{_X4gkfwG=Jf-`u@3+c$46q+5mD2fEI&JVv7_{c6 zpxms%Qa(kvh$AYvHu0fD3MkRa-#(__1-Mm#!uGbuKptKWu2_D3AE+1|dmuBfjNN0d ze_RMx-U$5B#hLqH;v*DdufzN6wI6BfICB19@qvzJWIkYgt0|_aNt+tjeUYiOcw2x3 zXMVef`QL>dKbC&$f&nGlF-e{|A-YM@-6dLm%7h$k@=p(falx8`vI_MR3x zee*Sl?^Bvuw83jvF%3&ZF)$@nTI4m-=C-x7*Yjc4HF;qtf9EW;9&P(?F!dJ154?#N z78ZtQR|3eq0;pn^_bo`9u}82L6jTjBiCU{2@8Caxc1c;K(UIk60W+S$gqV#H@&JA* zK@RrufOuv01P^u_8A9f2rlyt_gJr*ScxYIt{P8(b|6E~1R0XD{6lOOH=LJSHN`#Wy z3W>f3s7wq)UdkKGfgr#j76ki)uImF&!EQp0@^UPEL09+4qc>l#n2tYfSs5}}pwh^U zzL@}>-@9Ag?C{pz?)C2dMDw4uYn%#AaIGFa0;Ld*2OPvZc>Dvj1hqa-1))k(sDn&iMJ9jsWtLj(obK07XwcTNR4JF|z~p5+1xJu@yK9xtAQR+#i9ETSjr%-q(1&9VI)^X29i*Kntm2x+%Y1!~4u0mYrQ3&xl39aG z25N{A?u@~iJLk@O9(xSCY0FO|U>+H{8Jl*0|1KbEb}jz6mIM6j6&|t|nbWpkJS{== z@QZZGy$74^`I|-4yzfr05slQurCm*KZfTWB99a_Z=V$+>Za17q=O;^JP1Jhq@5A+qx6JON;+w zv$eMSx^=ts`OTewSM<(}bFJwu@mFJaC#1@@S({}$9F?(~OPju1AeuiFzEcy=HQD*; z8$H|O8*F6*ZbyGnLGwFd0P}pN2K_#)bv!KU7L&&1;!RGR)Vd^}&ROcdtzn-tVjbch zcfTrdl~lXJG~klvXL{#~txEA#`--V%GGb2UtaqU2M-gtA& zk4xB8TQRkiihRU{#~mIa1>bX(Jv)bj&pq#qm}6}H{4p61jNauJn+b933%)MDm*Q6X z!q2sARKkWk{&ddfwd^o!*xOt4n=0EgdE?ReYil4RgaZY;SVc-sr)FhO z-*G?Bvxzs#ns+AmxeZSQSox4j@0XFpDO=x@-I=p1J9;Os(SRzUwsY>hyrYgfa=2-& zWa#Jd1?%V-@?KX!9l$Jf=p|Kmyzb}hF?HQjH_iniKv!WkJ=g>01tn-97?TG-z|882 zYXBTxjB?gWj6_k2z-8XZ$LbdzQ`Sy93*z{pyu`o3*GAA>Xpru$Cu^t0f4pb~J0Wud^wA{qJEUQ6)fBrwizq`uKaFw%POPiYa7(lL9ndv2js z2MM=NJ@j8q4Sf(Om3jc?=uk4%D{E~t*1Wpta%M_{y}kUkdbo*g@4m)qSj*6)0Ci@j z2NB&ykrZPy3|Hm=OV;$5CgIo{!#+`7W2$!vz&^-o#RM$Gk^&Dn$cp4UtXdCT1J4@C z33*R|oKSqj??i>$-C^V2Sib#40S3x7ntz&ozHR%aQ1Zm@`xk?o?%6p^n6^kvL}LAY&>$v5xsik zNnjBgJc$7juMJc&OY`})LtHv5{B--T zU-;$9kSX|WAcZmY(>uN%w~1bh-}2oVCimQl`=!_#5giv3)vB0&HNJIoYqqRpm4*v7 zS=kkBmqtRej~<`YY=hMSB_GHGgR8(C z$umpMCSPEg6Yb$#PpsAY-sng60kc>8Oq60i!eLAi6h}_ z0#Jmqx;_JR4-@NkeDYI}tdr1UNtAY`un@g@;d)n*LKCmN#~ph8g4ee+AU zMVy2yven!DG-SF9+F)|jy@mgN_ed|7WN%X)3by_%&P`Ne2v8|qMt=Y@2RdJr;HWTc`34!7ewuTp}v;UeKX?X3J})l#%(>TASqP( zA1p>Wz%6dAWH~KMD$69Tpgz6=kE)WsjTWQHWBWz2;h@?4^mJs?!jg7siX)$p_yx^n zNxN|Ii%(An+Sy$LGTDKX1_x8%x6QvefW?4wrO9NjXuw<`E z`$oxm9c9FxOl(`g*9rxJOumxx4*}A%dudkcw#)udI|*?st;7?vM5NSRxT*7FKj~9< zy#zbbXrfJe_8!K|R@r)q3TK`sZ#$eP(=`gubqFYnLiogUR1?t}wkWQv_%W98a(ZnnpFUo`5_X z#V6q7pf#U)1H=P!a#D`|g{r;j{!fy^v)O^W>&>rob|ecTa@YGdpEwGuVfv8A+Sywa zyny>pPIMI_+RF+Ah#8zcP-q+vsyrWei}Okrd_YBU7gHE82c3dqM9e{0d44E7`=}K1 zy&(cj=||9a-xNwaTL7A$j>xe2NYL$KWTs$cN(M(!y0Vd}##`Pshw{rmkpeO~EGX8$ zn%7&&tNj>=ah@!s<*4&Qu@iH0$XmTcK7Cn0{sDg*>SXNaWL%kIpi`g#r7$%wkpgw~ zLxB~;7+ovq2wd2x5u~3>Kk*I!gh#yuC{yW+4^1Ai=o@_X{{BXz0+V4$Apr>u`Wr%B zoI?D-nhCI2pPO4=uP&BEMB# zw<}n@@-q?0E>i~HoNi0hoKXti2ACDBavJdV)*92JfH8rDr)_`zwc8*VUQex@i5}h^ z*o?c_Yc`Bk`7byM#6L~Acm+0h4^@OZ=f_uMTkygTnbF~hkcN0ck(wwJZ#OIqhJ3&G z4(hX?Fxb*VuAj0<`M)dxAJO*8iwp*@hK|asp4cm8Kbze{o>L~3CN??gX2Z`A%BkZE zFmWYGvGTrvJLQ(5CqmIFA74GwefE4jcGuqN(SOG-O%C0vi6%9%YeR7laA&k0cJeHO zfzQXPgF)v{yFBCjFZdotb2Z)mm_rpe;?%zpe5d|#7?h{(#qO(G^D&xaRxz~|96LRI z&#++?pmmn@_~?7ml+&k%r&RBdXZ!yF?|+V90c&_j??mnUp09f0#_)fJcCKV(JfU3j z0&mq=?vMAlA2Ps!{Ljk=myQLXLVUx+!*q3ZRWG*MSiTt9`LhoM>VIzR{8$g8@wROJ z+cX}(wS}YE?f(HNubca!#jGlkJ^zoUGmnP4|KER>G@~@nWEf+KLS>m`i!uCO_xGINzYgaxW?t{>^?Y8}^>`DM zt3|3!Q>h;?%&{m+>2xbDhBOA{+hu&Q6UNNUZ4B<{9A@YPXyc}zuZ?$oOmcR#wf@zg#@@TUhL;g~l_etRcL>SAEW{3(L<; zn}m}I_dmA%`7RTRZ7&*X+s(^s%E@sycF;o<*uXI+?(2+WQ z_B?9kSHd~`;^NccXAo8o_x4EDson@4?z^>Jg}f!-DSk=?!J=H;BVW1rxlXFrmO5=6 z#WuuSi>oB;t4;a%MqFF_%FlfDqNvxKM}P2PH}V!9`-Y7(#Z*QU>@!prihF4#0KT77N*qAXvhr)H&l8! z*?T}Y7YtLp_vpiyhsBSsPm~p=C?CL+SQ09=V6 zOU2;*zf9BHcK_Y;UpEmC{US|8lbn?d!8ykK?qc**$q}#sO|QC_*M}6eO(_6~+*K-b zohE&#L-f{i3J(UBC+<9CvJ5OP9rI%Se-{jS?`l$KDjB$k;sbw8TPPx75`4|#{NG8&OM>ww=Yczf!w-#zTF*2yPZ6qV)ugI%|v z1BO=kkm-D7}xzn$^X; z@8(y99{v`tdGdGd*YYjQmyRtqt=7)07NNJB%X!q+b>tRfa4WHX-K%|{q$%!&%m=b`7r^^aR;<^R~zt}(uTOoYe}rUM^6(kwlzuX7-_kEx}zbN5wZ zqKPWP&own#rB5M7QnG&7GdT{At1=sZOq;uAoEMZ_#MSLDsXXeJ-*7H8_rmLkB3R@t zeWUF;$A2|v>XK4f34}Ro3033(fIp|}*7oFz2#Q-mQsp*q;iH4_UYe@cmlDjaCSafijBpM!l^pjVSF*5C z5Q@Q{lTxv3f+#)vtDiaP&n}~KyIDGWY)kQ2k>2+wG5j#a z>F&$<4c@%g*_pNZ!x?wFi_SrCXuE?rnZBoRTot~eqi6KzV!lqeOEMQf%nuP=o5V_b z36YC&-Qcx~DVN`wX!1R0Fqx=KY}XLC8y ze&ov4A900W!X;ICiVZ%fN74gtBf0j0Kv^jP_(z3L(xoRR(&Xc~s3OKqb=RrG4LWj7 z8fg-C0~;8lUN-Qtj{KJ^^NoW-s;iU|DAbohI2f>^f3R92ZJ^b9y(oy#AfRUqkg`~r zS=b)A3L6_uJxe8s$Z#Rk*W+Lq{W3fNcq4><$0OE;M2h%sPrZ-tev@i7k(gm6@U?e( z4f%qx@JWU6Ypf6S0fh0)4Q;vDDvku6rS2EGD`qvCFyq|a(2MUMptvMf!KN>daf zL9!@V2=g4?j>9jNH~Ne2jjB5xi~;Z=Ez~o=v=0`_MUu#{Fq+a|?718zqsqY^h-~)@ zvOVZXtWP0*^?7|3ZDb_k>6RRvqAc-0B{MnB@#wF$d_Axs)zI_8hM}L*A*>g&)JorN z&xx{Mc&cJ)nR!Fsw?5)URF>SSXCJ#u5{93VZ3GYgms74*k#du@I*U>o-xq1*u+7x- z0r^RzprsX_VewX=kk!Cro5wBprzl=uD4v;>&5!6}DRRekWRxP_AKxbiq9<@&K8fjf zB`WtCzVDxj(gXn&l|GJ3;F7__l71n01;Z{19vQ4dw_b)H{Wop;QgE1klzF^d!x&NT zVo<~B;fEDnN*!C*=IQP8pFdU!a$CnT)GiT}v&b!p*g2Vmhqs93HyQG&ek7&%j<|QBd*c&;MrT=(0Dm#Zo z{9{alyurV)-|1AN`#(9r(U+Gt`tlfo)w?VvBDNged<)7EA$gSd6KxW@%ct3f(o)a( zN-H$CyT?+^+?w_SHW{%6ouP+S7EfFTt-VE|OT7(2_4MttC2he+M|3r|e&nLKb2l=b zPi0Cl5_i09e)L1#NvkXLNyuokdCl4ES6`f`*U5~#{Mg=t@U8LrqYb({)p6oSA9WoS z%UE^an*Ly4qw{xmPrQr%BxtE;pRv9%3x<_@m+sFEQNM)QdJY*+ys%qcN+rQOAA&Qx zuLTFE%Aao0$^&HEs0uE9qXcC(qd%9;R;K~=YQd*A$p_9vBI46r`PjH32T&Zke_jRU zPIlh2cLrCAXbAz#V-OPtsDdmFUugs?bHjPyJUgowg}`aDx`M z{-#?L{w634&PhS_>lrTb8v>{r@YG)(xFwN{D;g>z%D}Hv(s3$91g^z*7XaN}&#(cn z{c!uu^VlUs?z%dG7uy1$<98c`4uz)hMtO8$BUqIEYKuyt4Om&r(Yp*a=MsUG}T_`@5SB} zNLM!G$6{v7WsRHu?fw^{dmFVqm-Zz3#?N!osRsI}B&I3d>r*k&vnqoDnQySdMN)7F z6o-C4)*(R&G3TWYwb)H${7=8a#ZrMPaoyDlZ6pLAGaTO9{(6KpZO85RgwQtjLh^=i z*!=o_)&J$2y{2yHk!gdKoUNKJgq4od_g6AQAb=PJ9;J_a15dJto09A*-B zaze=i<}B>TA#jFT zp=pk{-6C*^+7Ga_pGAbZNjy&8k{B(i5>56`1E+8K8sTA;LD>L0GiSB!p1X$#g$3U6E3#E;rpy(o)$UmrY({MQhamtvN0mIq?oIfL<}gxai{+1s2Oadu1kKa zt*q(t-6yZ;FnYeN)M&TNc)5KYbPA$JU9`?CH=ZKLR$r9? zP3uq$wY77LPA&=Zs)~`cCznwfbARho?(TDjZ_J1J(B{0FUr{YcGc9is8DqAB_R$(|@ebePVe>B1QgW8nqlU`uu|4|OhnH`*MB7C*HrH(D#SdWA z*{oq6(=%yvG;eQj-7Pn-syd2KXW!yM?%Z_zaxCFZ>8(lkj9{e)9jBY1FMhY3l27& z_TPsemWC~w6a+DL@~Bi^?Ze+iDcV=%2EUy96jI|W&Nw(I*;9CsTOu32{e5$Icv#D9 zE2G9bNjAj-Eru>~Sh7F|WUlrDMwdh~BBnU?RJAq$89V9in3zP zX_qa^?{5_=-7|%1b0L2ee&@s%gfs53JlXo`TekWAePVHcJg6*a-TRRS+FPPGUKjPh zSP5#TGzeA`P2OD|%^Uv08w-#O44tF3E_&&4z0R={V=X0Y7kIvTySBzE+GV`0=Kxs@ zIDFQ_H0EDnzb{b^2fKcM1HjY0`J;noo#5b|S=y5itABh{gVwz}HU|=^440kh54>HQ z1F@sk`7;h(Dx>D=XR}wRvuSDO zF1ayVp1nO~fvES?0*#qsGau)|kHvI%?8&;Dyiq0*@>+kmw zisN#26f7n%yCbbB$^HF&cx9Z4tniBx8P)UXGZN*5V4AKGFmD->E)T1rXxIL{Q)?Nw z`*u?wuYAxZ%UoX5kqlmGx8%7ry#dYJt{0Sku|5fEV#EWppNS6rn+~H$r=fl3o|EIX zc8wX=cf{SL+Un4mIkAHuV*Wv4Nb`)i|EyL{2NmIrS9^2Enc>UUqoX6i69Hc8&Gbo~ zt>7w7wQ6r(AThGD&vxz77{SpIK+YEEbjiwb0ur>)Ak4T4)EY@`f_|A+IahqQ2)mpT z=(?7@OJwo`E$l$+JHr7x&1NyVb~p`@jEk24u4@D^uzZW}UP2X1VAxiz=)*MsrE= z_|W`_e9Q=GA6~ANWA1~Aa8uh(i%iNguzu_BCA*(QP2Leda&ep*o5$WRsV% zjNvAozIa*##(whD3k?%5FJ~5}W+=>fcrc2KAJl<2~tsAx1AU&v?qz{1BpFu_XMyT z2ndItYb{jIJ+Is$>h0Sr_T-H}J3BjXDMr6mABI>_PWCpGSFI9KZ=ns0qTzZNdhNP6 zOH(T*RT*5(>?68WAbyBQWkD6gm>8%6y9{eO-%|+X?e`*Ii>51}2~uh+{e2o2td_L~ zw_UHZPX+;D>NJi=oxVjsTl6HPzMvxdd}!Oxb`S38q;3h<!biFYT6DZ`JT$ zjdVrw4sX5#v? zY5u6HYjY%Hrw3U>X8geS2-MvHM)wE#)VzYAbvjM^fjrOPe{AUXuF3C>$3KK?!oaxY z!{n+5uY%WJqNLNzOkrHmbmNuEOYh6l%l-s-4f+^$?BQCguLs27p+ zE`Hdeq&6Y_bCDD!PRiXwccNC~VU7n)BE|s)OjG*b%lM55gt*l2gkC))|JS&(UWLe$ zM$YzcZdq}|CD(kRa2d&oNggBU8|DAKId{XEPqM#X`B^a`owW%Hma(1Ey1y=YyxJDGYmYQg$eXPgZn#!VHnl55PxK4)MDtz&E}zQ?_gqT3j1*x&v)j=)S2oC2QnJ%!QIVU*|ALI~~d{2Zzu zJnF2S{+IS<%;e3mR(yDW1+TbdEq9w`;0aMC{)_xmDCdEbR+K9O2Qa-Q6@ZYg$D*R6 z&CryH;SZ1B#WNM%LP^A*rbd9C$=x;6pF8dGa3j_zv-ssEd5%Ywo`SM?5(X{eSFF$+W?M#LqIf|7AvFBOz<7$ z235`~W7TJiIj=w*O1LYY*%ZfapIU>-;&`XK;$m^!fM=5^rq`0@QR+?w>U- zD%xsxgSYxoSl9^T6wXc3<}5jrO6}CyRwn#fJGv&O?Oc!TD&-~LbkY!kiJr|_YieLC zG)2Gz?2+!D%6rD9_kT;FR{o@yZ!WUsnR34LRMbvQC1IhGyQA7HfgjEmnh}-hQwHGcQK5&Kn(j9uqWi-{DoWTO) zYSyBst|t$#=)PoqJGfPfQ@5(S7VCEJdaUI@C5^jqKD68g-TNF4z9?pCQ_Fe7Zt}kMXG^!qcTz>r1>2Tla z0HbsKW5QZ$ae4V*c5i-uenU#Cn3&z?+diKy`lfuCqsk-v&-TyZ_2Is99`jDxIV?d7 zC7R@m=B6(FF_~J{=Wjc$cM%HLjnHGZ+JzORoWoRxR(7QL(lA!s;x0f=xN5uI%TNO@kh{Ppaj;pbZc!u*DM9HMZ5mBr+)06%7sYLv(Gid=y=UEAu%BkrTq;hP1= zr@D4Mx{ltDcKz82%+L2O5&GxR)O>s3alO;jhC&u&IEr3lH34+J`O#tuBdKdgQ(P-- zw}Teu-8Ih};up#wyX!Q*%3Y^jYYk>B2>o8$Jy30*ZEx++n%@BP`o!6#{f#HhvqS4t zn$9cr|0eb(U03Gw*PG~lDvf2nn!w9e;~D;YdpSg0%R?Rnh4k@bH=sF#zTF$4B2^vp zGc#X)D2yluR;hs@-et24K)ezf7|MbQ$v}m8#kB6{SmqJ`MOYiSfmI#)#%Hb3*F#*7 z4EbB3AV z_>%1nKx3utPyY&C?=Z0d*Ma&0tO-HZI7g_Eup9gD-oFF7Zp`bh%!Fs_vhIUY)|829 z*D?bBc|&DvxfxUgHOgg-`I092Ct2X>ADc8a#>D2GK4dg=`ZgvvIHHMAJO1EqTrZA9srt`S}M1F9v@5ELSOA2zb7M ziCO5nVHMV`es$zTajm?}#uVG=)`eo<7}kfD8HI#{w&{%`dKt&_s-GCBkX5E5x~Wx_ z6bG@c3OzxwLrwXAv8#6s#7Q-hqfdN0hj9#X`=4yKE>yu#Kd%H2!$=ThrCN#r?o?hz zvVzp6AjFQcz!;g1<1dqZ&`n(B53Pdo-KpT>1hrKo47fR3cZ0IG=&Yp^`6WU16xTce zqQa#pM`UdtRO}tqiPL*WLx0A0{cbgXwH^SHc>@*iT)Jjv#PB?^O9A0FlRJM7*L(w; z21#OPyxeSfEibt zCZ-dbpuryqj0N2`&H!YZu4G8k)t@4X!}2aDt;4v%S#Ry8)(6a{9Vu|;2fLm)PSBp%+8Y{9B6 zYura-i;4)!&GK)AA|Y}r<5+9>f3Vo@8H;`rN`=2ERiiEqEMg)A0vgMcv~f|XF(Nf*6osCsAOJKuLzoLt!$}b(avF0C9kORER&91%52S2kkaJb&{DAj$lG# z`KCt5guol9rgE2H8VSAgdk&PYO{PIVPk-p6XSZvBGTb1F^9_`+TDOG3)XA&8=nDvm zV%fZm{>R+i0s1GJpkj9*Mw@;*n`G;`qg^fYYJvrJbnCe%VJzFAstw`9mBYoc(# zNbRAj0rz~DmOXjr=jZEkr}%Q7vs}`*urygye)uIoRg`QY!fwju$th^VEgq z8P7A_sPei>BV4l_XOZrV=E^~?3Nj6Xf=WioLYjo_ey<5~^%zIS6-GP-eKRgGC;U_% zY54iGoEDL|?tD)FsqN55R!**)=Ma_mNlXgkQm6jE7eHOfkJ!z1(*4N>ci8u{LA#!v zo9$Z1sV=U}TxrgxuTwpLv%ltp@MS%RQd?&?_IPPJ{SSb0*dJckRt=;M6L+z;(cQ26 z!SL2uW?e-vZYp@%JFvsZ2tCh}!PM6Or#252nr5 zix>-~P9eYVIffr^o-tf}2LOB0#fhB5c}L%sF+K=ZSZdJ6CwlxGu>s`_l~3-RUdX`+oCBZ)!svAm+ankRJ9i@PMJRPfmm+@cn?2H zyjvOShYWc)o=3%kW|Um}N)I@J<1zthDad?qRb?VJ>BdD29^a3*(4IG&Y+i-k0G~bz z2?jtYQdFbsZoB>vISi}kLk}9v__b6!D;Bu;%{|4$gdW&K1F8l&fSbO`!?6DjYrg^x zq3u>AL!GuZo{GB#BXGcP6<6q;!`32_O-Pgo~dm3t1HBhiF$R!aG83ix5CMODb_BDdU=lEY35@YD#fc^H0Ito0P9! zybTeKer4GQuH4udhx0Lx(%m!4JiWxh+qy!osV9ulS^Z=!QrSS<0zWfi|EB)*`!r8u zw#qnSOgA*L%%bVKbE>N@;J=ez7sU~v3B(wHfzRZW`q(5XZHPh(DREfDoB$IM0`&HE zk$7zs>HxxuJ_$Muq>8&q|5;!Zl_&qt0yD|b@>t*d`-;%E`e}CKS3n>=HTm=#ef@Z5 zBbNv{11`R(I3X53NmKqv0roe1ANe6DA*Bj(Gl+?G@If@F&7`*n)V9x z_eY1u?uD3#)a=acy`QF8W6wSc>yi-2#KM*CV+<4H?&M(CR6w1Q2@${=>mAi3?J}WA zXrTklJ`a*ZP)SY|K(kLfn^-913Azk?DyqS(SEYz_m_r8$A~&Fm{k(|CmAQYF8ml!% zx2_Upd!S|sLu2;R(>9ak=C-X=vlaK!6!B|w7ZtS`-*-1|ezJ27-thd$Rjy+1(LO78 zl-gWyO$}tGn6MZYJuM}O0KZ-f0Vh%M4izW(27=!#5i|Og7e_vKE8xxoH+1?hlaU_S zZnF#5a=T%0Ea`uly=%?Tn(^R@{$FFDEnbLq&famRGeUD zrUn41SzzCzFs@+CW%#a5AxCZ0Prq{Yp|!`XuBiO#)zK|jQ8RMb(yeM0a1eY&jL&H- z2PNNMZEGVoc3K$S%8AA1l(aUw311Q6X;M^BtoXALcAVKP7P{p@dvdt=%Vbo{yrXLM zZ;TV83M*>qfjtdkdXbTFx@j2w`+>eHJ0CT&{MS1GZmDvb#+ws0Fsmg+c-TxG-V#Y5 z3;Rro1IH4Lp?DNia7|M)Z{@*;*+0#Bf$g(1A=GH!O530|>abs)ou=kBVO#NzmV*yE zf4~1aSf)CKAD4z5R+uZ?3|MiuS~~hVpgr0&aqi)ui!IszS7>f75?+#%VL38-MI(wQ zgq+#eyDlpAQ*`L^xTaK&=EaLMGd>}S`rf9m>Q$F>Oi2*kQQHXN2?SEPMh- ziLagWg)X&=W}7<~ZrJj^?R4w<{UiN@_l<=Z)8G#%Zr(3FK5WmTqe(5O9%+KoT7ZaP z_1&%S{0SASZJo)1T|-OR3j$B2qTp|Ou2p{e%EiIV&mjl_0ff=l5^wrfW@dc@{ujcg zIn~Fb;Jo~U$E)ltK679BEw8B8*Hd_wy_&y&=`XbxmkdSNq=eoZ5o=}I|9ATi7M&~m zSwYjxttw}=zfWZ&`%!4%-yiQ+kLk@itN^IN@X-j_Ej{`h7=9R4qZ9nNRbe&JTG88^ z7EBAklG}t^~I1oxqzJEG@)3$er5LlqFwQ%1}{ z8&;mPU7d1u!)jCv2m=D42LCfry(L> zk(2PFLoqhWF{d#(Ehn(KIj89JN_Oe^7bf^8xBQF75aT!ZJs(2Xlj7>@RVDPcv7u z6b^u4`)z&iQ2c+x^?>$_xsc_4)2Lf_lKdO1AfNiV%J;Hzx@{(v$#Wt4H||N9jU%3G zNansnabO%e%oBVv*9liec00_g_C#*zeZD;W6>HlARW{S4=6JX@kwKRM35IT@uB+7J z@QHn*LGA7@s#CyNd6=a;LYa5Sd>BN4z6AQ;;#sdrJCR3$ z0>_P8I{{QUII5BC0`yzBU^o?3u@n60#_GhRV)D69!QNvL#7X~hf?$=oqjUSt#wn;W zkomOJSHz~!SmUZa^3@hX))LDiqZ8wR26ZeTNxPU+;;7sa1igd#sXo^{7 z7SBy@e7|hRLU@R`$gJ`QNE^qL|H1$Tf2DMeUU_#OuWg=OxNY2jck-)UhS|Vm(dOVZfAwH_{$TJJ z&WqUm`aUt64G{?*(>ORrTZ$csAP_W6^3;XkyY(WvMP&4v!04u~?m9n~<(`xh@bVO# z78a^ci}o}Yp)7M#(`%tG0Ej$NLnZDMaMi%0L3VQBjyJU9RY87dTd+Jk^$CfOU$5Wo zG~8Ra-*CciiXa@Pi-&>g=XDnHW!)c#|HuW?~c1vWMaAfy@seGJS z3R2~KP7xnE%Qf#*LaH*BQ|=>D^2^#{|Fc_DCsmwTsthtIQ$|Qz3d)VK0(++!leQ9U5r^G=b zUdn!q@IQFAJtq|{ct_vE6F+8Wamdc^ zHOY%q^0hWL{_gfoPM%Z9sU&+VcwJXe0m1q#h~)P0QFD!9 z_S@+`X0}MU^E1|-hzKTbu4il~pG7=nV}BNp9KS<=^`tq+jEpfqMVbDS5|~=s%Y#oy z^!~l1xV1>D*QxEgVE~G1h51@^Nm{AhF!sFBm@l~_0bBMdBVgmVGqL@niqTJPr}r)R z1p7XGJ1>rll6;qjKwvLOu+z7<5i}3|48e9KH%zi?_wru6RMcNQ1;)~p$`mQU%r4U{ zEcRE`CLNf>UXV!O%yL`LPA(hu z-i`=-qgYTdSM%)~oy8l%1xc-)6~C4|>lJh)gFb|VV%)cHQfuu!Y>{saokDB0kN)m% zxF*!xT{~Jxqz8&QiDm8V&vq0iCf57o9nOw%VTHMfAnJ0<1IjdX_F|CDaedc;_Yp9n zGC*c7fA(&8 za8-ooMZI1=NNg!Zjr*44A-aQ_)|7ow5w> zV}#@82pmy^w~fHNloM!mg9=kl_`5XVqetMxjHX~w;A7dOaT|i+gSpy6^}Z(QC+6pn zB0S-)d8u-g%NA^MwaH~F5)M2cg(KtdSL-pGG~AcEq_@-ytCc!;t6DG(U8S~0yfFYu z@`nRjS>c%}l7$1%g!=)W(Kr?kbS45(x5;LZ!J)~?p4zK`2cdmq7$=oq4~^BlnP^ZxtoMA74IIlPg*83jGkRIMxJE$@HgC|cDgmr} zRXb@FCpaU2S_(^XGsifvMcJ+9u>4oNpklHZnH22uHd7nhn_>thnb2K`{kmy?MTKuBLgihUVp!8k{&Zy}rzFxz2GGS{1k%3zmTT zkj-bF-AFbjW}HcMaw;n}+cC#Tj~~jt`AmI@z=~*$Bikps^%I5~W+fwtOvdn-hIFJ4bvkkD~HH!;zpo4 z<8EdqWzlG?urW?Lq|$>H`YTk_Bl%@u`+a%U?7laR&k$U8lZ}mca;h5V+Fcy2udmKl z4*-+Sk`~Zy7`$(cUS29+b>Bj*rbb%t)DoQ@@^$RnhbC{@M(6IoADlvH>*o1R9b5li z>}X`T?1Qp#`|dAP7|Y3YNxeuA(v~j-f0}|tPPdj>`o>!?p}8f= z9hIvLMrY$+iVpo^k=g>;j<&w-8W`Zq4_^!Vwe@BFSBF{0sAWN*rhUQNCyWm9CvW8j zn|1yOTE|E-oBCjGrS3~u}2~n}W zlLCmD8&N!aO3snOKYpK|>f!ynaNJjsQr;u|`MHq688p6^RN^3ID3nGDpgeF7DmGkJ z@wFwnhz|BMu5RqE?#wO(Y6tIk9UTBKZ_v>YNG}~G`L3-xaBuJ0_dIjIaBizs0&&fkfl7fCTZu_wXhK)mBPsitYJmK%n_?=%0Wyd$}R-A)-rNw_jZs+m$w=rRl8+GzZQ^m}8Qtr~dVO)cl&zHQSMA+OSR_Ox4j?`9d?ZjC;;EFT-SPOt-K z&ZEE(`%HzKqvp#&pPwZ~Xz#?OvI;%~;!s^)5A^hA+#kDn(_D&KPDV1=BeOhij_#FD z|Kf)y448^%dK&A}EFtl87gN`V&VU>EDJ1k)hcUd|Gng}GJ*{X@jKjF;gHih*RVqF2K z1)o(*eX9wVu2ESk_?64etGw+zW&`fHAed~IWT`n1vajDxykAAZ*EPfi&1GJalvVF5 zA*_MD&Z;cvT}e2hr?SkA5x(ECLq7AcDyA4>Ez|3UcgY?W1{T4ov2#k~Gs@=mk}8I1 zW8y~uaZZiVb&l*oE%pO)914fW+Qz9PN|4vW{`~l6uAOur%K!XT&KR>vFH)j>06INY z{XZZWic_bi0QeU{_ICz;C(Ym*IcYv#oFT+jn2$M|n;F3g^|dRk#h>5oMll0fZf(pg zbV`MdHQJ$xVg!P=b&sUE^!W3LOw>hbJ1Yv>2-<6vDd~{)Paj|UAO{oH@4LhhDV^}Y z+eS-Z3*InS|GyGxQ|W+3TP^9~{p=6x;z z_2eZVCBJQL_m*Ftn-AMX7(G}eup_!-7PoMHE-`73m_gu-ZLGSu?-EXRF*LzuGq7}aiifzrcn_ik!Y&m)^ zrv%3hrJZCm7PMiGpLe$hsRm|T(Q6rnkpQPot^E%1Iql$pPCNDHW{fD{i&v^3Nnpfx z!w5YQQea=HG1-!m?1=*ri!F107&x@KUnF@(o_B@b??aJZoC=HB57h%Wx%Arom)Aii zgHKqfnOst?6GAi5IXL3=Lx6@RTN3k@2AmVG#Eb7fJcb}LhgVqHBx@&11A_Utyxu-p zkgMHijtshyK8$*C-!X0J_PcL2+IBjvZLMK+T-XXCj6U(Ect{1dtbxk<@r;1eyB*Yr z>bH4hrI!C>izUCS#dgv=?Az?|ua%?4nkO_6A3GJ!*dNU9p1Jp*&IXL)qXQ1jLKk7{ zi7(Xg(zByF9j^k$iE`CfR~a4SyP2igLyXC=fBgLeFY;}U>>u6}vSs7SJSqDNm;d?s zHS*fER9`M2{VE*tOFFB+tv$XfCsjXvc?qWXm1ys+aXUS!mSVI(4o+^k?#vSUD-(^a zMM9^5HBF#j1&fHnnY?z!bU&N3bNe4rUg>G?3v~p*+zJ=*HT58k^m>;gP1%j7q^)dq z^&=|e*lW|KjAS(hn$Gi$+>@dh8CjsAdeLCvX>hsygt2Y>8F@QaC6Frw2tevRDLo4` zhi>)5u{GJ#9Wmc!h2sHRj0!#{5+9kp1$z0QSd2+arJz98`I8n+%IJr~Xd^hfL=Wp4 z#RY}@D{l|x23XMAS#(SPgl&xH%ojcw!n$!Ta>(WEeT@C>%=0+VK)FVog23a|qwD2# zrsz>oSDmpSmr9157GH z15@OACiF%JI@3`)dX4|N{6`xOB$l0;P(~nYqJQ?{>^yR0ic>wKB?>8|=aw8gkQhB- zDjJz3Utar(#1@$Zd`;~YsYIAY$=sw`X}MX|S%7I&Mj3IS_t#v*cFFdNcjuG(!fbh7 z&(3%jHt*Ep2U_1t2h$dLgI0f9Mt5udX2S@x!=pSS=OCUDmFF-<2}yeCb=^)9@MwsE z2lvO_{>Nt^a2bTI2xSW0G-!z9va&5S09GQho&Jeu1kfPrbRu217l!deupoKyF?eMX zv`$AP?BHVO*1C77$!DU7m$x@>EH)qP?lb0ck*~?>-EGxqHPm$VK-|=NKviR%SY`!L zWs9zJIObv-LVG$?Ntm3R9L?7@Aim1E$^rguaYOI2TxTQ+m8pYLmeO`pJfdigOCcT| z%|HYf0jcT;fWqhiMifwJP}xcl(;M7gJAYFp(}?tc^Psrh;E z#bIQst@HI&$Mg!+g@9E@B^5tBq>)Vj;^~8KT@&mfHCC=tem>BLk*<1ec-?rk|0Auq zolf`eI9{V<80rKc{Q~;^!LLVw;eYLc(1x4Iquk)hU+nZ7fPbD`*vQi`rx)p{7R;J} z6_v7HxpM7V62w%$Va{$fk8c$g7`RvU-u%h855cReHd2?(w!HF3MsF@ZAc%Cl|Dp-0 zi;v3)N+xgY#-`A$sEg|3!%?jM;y`JL$<%3$n2jvc;wMd#a?l%x$$WfV4Y@ep6{ zSADl;)M*>?DxaVGhWE>Sz8ybcDeW?%6B>__(=4=t}e@1pp zaAMbFy4+TL5n^Pf=qrJD*10=p9b zoV{A2haa=-6p|- z_X9@zw}I1Q1vkYq)jjB6?djNp-FkPY&WKna0uPVBXT7KZlP4!-ye|!-B)E(n`X@0{(;)bY74YP!FVU zjnBT{FE6fqXFA@HSGrPjcb>+(XTsP>sdi|su0UXJ(Lx=w3BDjK@&N|s*k~+$`>{IB zts@d=sP6%l$6@TYwaqMPQ1~Mvm1+F)-dyCa?q@CYDI@u5FZCTV&U(Ve+Q7A>!pzR3SwfK|UpAiDT6V)FcpV zwRD+mrZz@rkc}ev{8)-Q3 zad#RYuP1m*D&d^ta5UpJCazTmZcpSD=$i}z0=pQ)=(l#mQA zz*lfU%E1i#SLnb%T&)o1{hiA`9#zeE(Q!e!XX@r@9vKhXL04zW{V_ZJ?<~cFVB(%* zoB29veRd{%ZMHf5PgGzh{j~U#-;H|;3hpNZn**(DyuG}@K!)Z;+sMLdg&h7pbUpPp zIP`e$c#L-VNAYN}`FN_}ANs4n>swkopW3PcN$(?AH>?i3cvdkqkLN}=b@d?s9Q``K ztomR1y|XQeAEm&2(p_ERwjiq%cPjl5RMEJmcH^aGqbDD!iu6T6AjP0 zx3{_<)K-Isx6-gtB`4$ti<-*ymMMpq=9n+UlAe?I)az_B_%KT55)Qb4i};=}b8lA* z1JlQ~%G)IPZ;tmfwt{vy7L8gUX$FuR=i>y8Dp_6xw*RZna|%_bacv=tmz$O4U7D`a z_*pJ~%qL;YslDwSyB|qvKVSL#2&9_6Qpv#uyCbTgw~Wt>52c&-$inzim3lZ%o8C%I zmEc1Z$Q*SGt-ZPN^vw+wr%yxgRmF4`GUmT6pGWsgfJ2gxH(H)g7$gqZ`H)7=92jyLp20?97L5Vi`dVdqHK8;!Uy3sRVv(Vh94t6B5UN(FTE~;Bg z$r%B?@mk)B9?fHvxuh~{o$qC$p*nWeNb+7~003!nwcdj0JgqRT!upskX~Z8XKa zrQ0hgk(0zE#KK$;WyV7dmlIh96G#`vjbI;EIiizAw~Ted35?Pe`eggp zR~ftQ^tS`uy!sNt1^}@D_Lxkbx*XAd4%%1gHOEC=+fGNr$6IHQ_MG@O;BN2^PY%vt&AW3wVd)FK{So`6YkS~uSRDL{lG zg(E|}r8uLy$t>Avp3z7UNHmQ`b~IugBjd{cun9>aZ-25AmhzN}mh5dIMqeSuB==&Y zJ#hvZNz!N8pjTz7OL3{XF2d~t{GjBcscsN-(O6`1v~ne+dJb7ci2gsC&OMq5|NrBe z(cH2jO;eav$X%_QT$aleQCjYqW+Fq#J-18^n_IbyR3Ft`a=+%1%iL2bhD?YqZXv|N z@7?*G?>SEOM^k6E_nz<9>-l^<-)mU{GW?SXoDad^p~|}`CYXO47!Zcz;hk77nuRl2 z0T4zH8A5AJ<5Exk$==p&{Bme;P`hDqbAA2q&SL%GNSg1@kN?enAULFWW~m;D#KPrx zE<<}ecab5u3=GXgR{kLkfjdv^q{{KO(be6lcU8Riied2f5(3W70dqB=m|=|Ir^?L+ zRKrDXc#h2C$hU{1CpK0Ps>&sMBSl)s61dB`n{{-bANmA=$Rz5=EAlat=mIp(KUH2q zTn?LhlnW*cE^-2N4VcN<;9AY2=s9pSO0&>VLNrWqe(;Hrp@IXhYH#ELm7CAN<-Sw{ z#i#l%zcQ!RsDe2uGEA0_#Ejxzbn8(mb3Qf*)uWIXOb*IF)vVH0kl_b2VZSgW z2w-@yUuaiT5KeX$gnO=ig!i`Ok$6|a%S53Vkb2-##f%oMGLQKXsNILCF|;SP$42of zQV6{bVR=N6lU2TcEXfcxsY+sNX& zPC>VA>LK61->bvdYYK}hX)l;$8&AiE;J<@*$q~I!bSCc9y=Nl;lSvzV!hEI`@v9Y)H4qhTJD*;1$_AK@TGAJbA$kN+UFCmO!+ehxl`nKtIeX%M`YiA*o z#$KFxSxuH&e{Q)rA5|?A&YkkQvsj z2c@D^F&Bm2e?MTl_&Y-h_nTGbqwTFd2{7sV_L)9958IOl(8Stz&q51-#nwMJ6(2Z` z2~ex4iRe)O(z%pMo|x3jWz(MtLDS&3+Sb1d?zz>vqQ+hvc8ok#e^2TvyOn3Z*K6ve zsccOIs~-ss_$6KZ_*dHNy1XNfTiEn0HDtc2q?<7Io>DiPLivz#+=$V8DZ}PoQl(3= zdrm63&$fJU`LvHshvstN{tj}s5$Dn1b2ZQKts~|;Ah)Es$7-A#ox3yGF@B}3Crxc} zVL=|qvlN?IWX6x((?bepZm!O!UD?o=N}Dg!5N$Kc{vj+U0Kb7HqL|rPJ}wL}7(`+8 zZcs4WNM5mULAf?}$Vw(d!-drRuSQNd9kA;fT@w2>2jGa22n;s)^xl%85!t758iX_HNPB43+KsG(>!5Ya?K&Lp1970dZ zC<5|L1A9tSOCmIrspNabrJ|haW0M7chu%E4sxw@vTCk+Oh&~1sVg|`(hzYTer*X3K zDi2>t(SD(Xs;2;u7+42zn*A9`_c+hpGRto|NWOg?1CzBCuNaI_vLeUlfnvUSNvAnw zgB0UEdLKR>si(jpy#Dxh8wDem_{z#+n)JC3$NUVhT&-Xi_SD5!mIW^YjFwvqy?ZdT z{9=zuY!FBB3W+YAY&(muiZtHG1(rF^x(;AEg{}AB`Lk`;;CmXBeTI}OPYuUqfjL9( zo!dcvmE+Z%g@uk++nb_0&v%x>x93)Lciwc2L(DA4=kx2Ws>cI&8urU~1p51qe%tW+ zTeJg%%ktcP-k%$HqF3f{7xo4aPk%D?iFP!GUX601vpV$!q!hu1Wobp~XG=x1k#r5P z*M|rdYUxoZ%@k#4csgSkiD^9S#LK_58zx19zaR0;Tv%A-!?Oh|2a|jbB!g>*2`o~d zMHChThpn*5>j_CYw*!DM{_eTJ87-bDS z;3$+~jUcF{hr@kr#E6LuXL(a7whEnS9~~nJ+?H5`&oHu$*Qq(%P$(_LUH*Qb5#See zCwn}pOk{SeDjT?qyij`Q6g$Z6Ouij%-@W~%p&FE=c9q$F#E;S>&uZ;0V@O;kC|)6# zB+e%anir8@+L!IEkyc5hINu<+j}<3A0lRWVY{T)nBq?B$S5Yi)P7cmRJ8KV?xpT~{ z>T4^3zj3xxX8iSa8~oIh6R=3WS-o4ONBZ#jZ+}pUInVu&?0Ht1dh+3JN;lMCs!}QV zM$SnUXEFW5*p=R}4*W&qCznhlEq8yc>uAmwgyx?pYo?&_0|ptc)Xr!9%17_&l){9M zVodFCFD$C7my1#^^6{4nsms5-{`B!1+iX9!+|-%xx4x7HZp5C4soxNRT!pDi+|a_n z#P*cjfBx4r>Mk!v`Q4?CBk3D|>hG+g==vOz+*`^&r07Z}92FTP3$-RZv!?JGv5AQrQsBWP0TfSF zkSrz=%1@O?B1R%K zXGFy`XH2s*hQMQ+VJP?w$@KE?4}2?XdO1^*G3Jh&3!eyqf}WQZv8op$A*l0Wc)2VK zSv{CkR_|(SKWF3Z0T?S6NtoSb5MJcrm-C{kx8>WjBT5r3h7n~VRc=Luy)2)&tAyBQ zERiH}*?@2zX8S&9+& z89kZvvjOuT;*`j}UIQ_tEnri83E~hwl_@uzpa=C8t(F$wN^$+_olw#M^#%LPcM%&RVYz zowdwX?5JsII6Cy8n!_}G+$~l=*0|m{+Lu>8Xy+B`tl9(I@j|9ohvR8S5?<+Ye~pDN zf79K#vHiI}^v}YBF{l3NL-kUv*4|dAi76_b<8cYBV`WY`AzT{xEiwl2AAs@iFH2wdW`Pt|>lBhbSe*j{y_MS$~@ z$L84==hklViQi5q>H$;7FTq&G;=41qc*KR_PzmVmny4EV7TPz9@=xprwhqxXW+MCCvHmW$v9L!Vb_KyK9T6vP?;;8JR-bsQU2N_f{9*9<+<071 zN0kPWsZ>yAUnN8ZDFw?#-wMts)SyB#bMu(_nS`Yx^WyFD#U0QH)DD(1tGPQzcHTH{ zt#7ZbPEVH=KPTV0b*jNHJ)7V@WISG1_j+?VF1NxB7@@e^3n}jQ*Us*VKI$Dh)nL3c zyR$9&#Lpzp3~9Bu>X~sGx1e=lxg_LH=+f8C<&rFa%chfaVSn3K42o9MUM&=>iCU%Y zK9|yQdX2j=SrWcBIX$-Zqh`?S?^{bN;A-q-2IXkF7hWJdx_II0*citpU)B~6iL!O) zZe0|^i6JFoIp9PGFW#n6LwAV4D8eJ>+u-#R{enEjKO2MqU1Z)r42}r>sfh=%$JNHs zc`bK`i-f(1DlKD!-#R9md-Mz{L{MFXjsX*OGjZ$K!6)6br{^FHvza>OV7LkutCt(B zpgDkikfGqea;$#^JU9GN@*|z^pU6qsr@l~%0W4Ech6&8gwMrgG(H*WuhG1S&%P*`-bgo_3NqTd}tx6%vMR zUv(>0!%SFgz1)1x8T@qzW5UIOhZ%Wn_O*_mJ_LqoeQ<@V3c4Bb9*z0LYeMEl6jfKn zM_xIFAxnWXo^oSPv%mH`8_*4yUf328jz2W-IAk7_L-yHb6xZT&pixlEX208gXFk$?^8K0PSr!1K8VzH>M2u7j? z)wx7PZ?abwqz4}g`5uPsB}P#ZpfPC}&sJ!r^s-J1QQm@~4pBaaQL2ogp44(70sM$0 zM9vbawK$XC+3V*ZAV7&L5qb&YEnX$;8sXHF<%v{}W_}FT-(3V)?yDkoz|n1mg3Fe` z(|1>aDn((KO=pD2Wf=X9tZ*c(R)@=N$HT6zEhrkE{I7T6jg|AeXcMe-6s zHkxt)jIO^b=|wo($w>*N9RguWU3mKV5n#uG)%NllQm>Hf>8}DFJe5+K-44VBuXnAk zWSu$ZGJ@xSRx*Y*+FOM~MycZ?n!!exOfEv26dkup5#fKvuA#fC4Epg6duF*-dPf5b zYOyBu`d3#Kb^g)3nnrDDe*ph{_U*(gN#A4H7m3QjM|P(N?d!4i{kDzwqTD-aUmBpR zG8Opb_|>S#j~~A`-CHDHvM2xI{(W-Y#3vf&13wIY6B45|5y)cIz|~l@Tx-evm-%YRenc&clhQzHS2`zm|d?bSPK5)?w22x- zYmJZ+g9sdv2&X-MBN&2*A$u7|5;hvnSj#v=a+gQ4M&Iy&mP3$$BwRrf|y!*9lmc%2=_RW(a+S zL9!yf8QY1JcS__bPXb-^-Y!^H1RM{*iC7jEpT1iX7@#7PN;We8NXc{5QNR+XPkal? z;L~@DRW;+w^!c4_I$h+YN`hq7Z(Nt}NoP>|a&g4%7wP`=>FYbrXE~|~x*wJ+7QCFx z5&Wfy8#v-hCRNA;Cfvf#S*r(FsKK3O$L;4J#N}_lxOa1C2ed|>G0&}}ElbI&Ki*vv zE7`q#%zU;i0?N8uFx%Q8b7yvFdr5asP+@^#)Va9U&*swu3au|<8AuzP%_=yH3#Qzh z@8%D7A2%|hJ}bOgw0f|o?Alzu#?PAgLEBorszXqMb_r&5L~qu^VYevydd~BKCFg76 z$V3QA>PN|_ozJJGKm+KdDloo!;cSUTf(y1<42E zEH}(oRs`Pg72d-S5k|Nc?2F17pE_I_h`ePz(Fo>cY5@qS^*uC=1n7){z{k4@(f=-Hm?)qgEvT~P5`xhVSQaGe z@%n-Y(f%bYjjK(_8IFjg?V^z6BTc&=!ygI>e3l?oxysSHuUJ05q^KuXQd*SQbNVSo zj@le?BEnASoB~s@BuP59@B@FhK_?M~LUq9rf0Umo%QrWyCY_@KBQizklmua~T%rfi z_Gk%kvxzQHCOwHRP?yB%Da_%nle+&)^pL`U;%S&7l(1Kj^cJKsFwNLl$*MQ17(;`r zRj$QK`((if>_oY1=JS`#)c+)SQkzqz6NU2n`EC-!f6l`*a-`?4}nL_nR`JzciM?^Occ>xt@Kpch;b3R7hMEE(Uq5WeI{ zLGYWfi}#aK)Vl#Qw}RanFZ)b$wiA3M=D+j;;h7{T!7m_S2c^5Ik_DWPjiG)arym_W z8-|INAnFN5v+5v-(qeZP5SDn+o%~l8ov7*SFvz@O;MK5tmB1D>{O4z2#=`Uo!$w4- z_(U|I5oEYgzElxfjp*lYEWO&X@ip+ar+RFXZu#ds3}_Q=on zqQAp6`^j=8t53(w!QMH?b`ePDB2bmu(J5V3AV?deRKL5wsJ-337`EBa-?TMsyy)O~ zQ1#WT+SkrG8K(yf4ijol9&}^8w9My2{C?}>>`+=$L#*C?DW=Wkly`Xl`~lLfpf_O& zW_w8`duB3}E_S?b;2nADe$XK)3btqW!osNor-~j*or>?!@!K>wwkIU`d9sqNdS9=W zL`ucu<4?f1n1CE?J-B9ZOQ>Itt!(V+mEls%iQJR#X)Ot@H@5hQgC47)o;6kfvR9b> zM(~WnNxi5DDi4p)zZxR*+E7-3m0I|6{l0zo*Tx*b&gGQ8lR5WBu&dyP_6{QBvknP! zsQX#h6M7#A2E0H&P@cP+blj*|eke)az0ZEgzN1-Len=zrcv@0V=fLUIH8q z{hC=xKh1c3wzz5i_sq`L(u&%}&9_Hn!j}6Ig5B3UNZ>u7ca=QTS$Mmag1&8=dj3Lh z&~tAng;$4{-Zs>h(bmuAA0<<6G|Uv1mG-%x2JVQ=w%m&me?lkCUBIDD=K;xBb_5S^ zRnQj^HgVVzOmPBhvu!Khxl=Haf8^UTc%-8KWO_6ktvLqX2=u_mbSgHzQbvs zDDgCE2tRdp*qj|?wbWJpt+m}cUia^WXyfV+-O_Q#&yB(F(KA7!Uy+Ld-2EUy=g)j@ z7#OfQ?(9ZOumaCPhxT!2!34H_d+AgAYWwzbNxk-*s%X7T_|o67J`Oi7tvW$fbjWI7 zRgcc2)Gg1(*C#&%!}FumOMkmX!+)B}7GQk7YWGjurd28>bXX4mOa3W>SXWSA&P-4^ zTL_L5%UgSFtRV5Pi?BM2M{y=7W@h%_|GWT#ZaGJqvFiQ4px>)+1>~>Z1Ep zy*hpOTjh+4XOlCk-VhGGG`Do`%a6A8QpxPU3HaOc1;Oqh=LVkNPSa7FJ#Nl97khr( z7JhHLPeB4vWj7m|S)wI=jFp^GKNeO!{tYQ_Oy+5*)-ZA}TJL(n1YlS#J18-+jb#)I z1EIKs4_cLxkEfZX)yOT)D5k1NN+)x90>0NZDhv5}6fd|)9NB1*ur8}iR z56XN_yXW9fP8~y2*4=)FCR3eJX^i*$w+@N=P_9ZqOjuyvtMUSvkg?!i9M{`jF89*h zms~V^nIJ|W*H>&!2x~g6EiM0;UqcQ>z>TAT))b=488|6neDljYO=B1sFIlQYUgv&7DwGYH0xPm5f!P8} zyjHFvKuozOP_oIoW`28<|36Wn4iT9qw!DnLzT@SciJgN+(-b&It@|Yia z8p(eQTlzHK;+<2oFr-xw5}EgA&qcVY$zqzE;3rub+*LY|S)aR)F{)W$b?HQ`-9 z4nmC}WjNGI+*H*!ULW00u(=Q(AT)FH*qQ#qNXls!dqsrn@ixF|#d9pVf5Ft_CE^RVo zy-uXSzdC!PmQ;0!5Z$>smC8`3sY;=`CE0%!F-~Cds}A&Uq{ZA<#Qc1yqnd8m($Ai{ zP$v*316~|p;efNX;o#>_<8ZcrEvsz}?0gLWb7E(6Uw_Wq`i=Ja<+PoVrk%-8pmQ^a^ddiGoz)u30G$ld>$EEC9vQc_f zcCfD^{Aiq5Af595N%VX-Zf56(&^4T=*}$<^JFmE5oPeT5?ppPF{DJ56&fcHhg;6Os zgiIA%6+Y}u`Tx!;wDT&Q7dn3H@g8VBBAfPsD4Ko76=-R1i_^b$?J?kU)0fD+$y8A} zTCgmQkSY}&cPm;C&EYOPxG&OrPyY=|?ny4WWWf4X4Otmx#?MJ)%W6U8mv=zc3DwZszja&tu?Y$Zq2bX7aAu^Lb3cXw2RB1(ml6 z!w6IFwCAVA3=gtPa?Q^g9iXaN6NRL%?mr7j&##J zjnk^?#SDqzeCE#v)MZc>@d6OE8uq!;5eSc)E5}ebuqGto(T=Gl(Wdotj|}s_tgWpD zp46^uWC0o?5WwZd7qb6>GWuzQWprvYix~3zy|JhOSb9Q@?@1&{U0!Tp(M%t|#o_2W z&2o_sBOS1Z(alep>!qXf4(AX>l^RAso8Bv;FPW&l?|iTAIc{^DRe)pgqSV?-8W>P} z?KA<;G>cz(m7~v%Ye*b_(VIOp%pwf?{FalhNyxPQ%o!u+&j)Fl1>I9`SqL>ycm|H` z#Kh}bm8nH$;Ir1-;5?;*2UU@01lH1_Q?riS-0+QWO&hDP?)(_LQ9l+>ne(q;dCn}~ z6?TQ zY%N?&+W33?{o=X}?9&Z3ov`hnKOS^&*T<(f5s2TQD%U!G?(n3F z>n)yu?76&FD9`Sn;yNK0WqP#`%0~x!A8OZKw@H6R+^r?70E59zOQQM%S3~nz?IE`! z1g@$J*HB|lNPbs;{HCQ0KH2VjFKDNSxRB%P+h1N?(=au0sK1qpfy zps*|@CX(+8L8h{pG*6ljwHc~R@cUR6UzzYQm6I@Qy=gtz_}kll(|f+-KebS0z;je? z*nIKd>-f45Yn`yL70^4pbmwa>_d|$d@Xi?RljMojv4nmLS!21+%kfB<=Tv3Jd+|Iw;eHzEO~?d%d(PLUoN=c zx^ix(Axm}pXUV0i=5I45^sr@PVb$a{#^!Db>omO+lhS$1pSN<-~ ztoby7CR9FE?)F4Y)(C(k1c=_Bu6gq3%=otJ@AzY^#ACs^GhJ(Sh5l!?r76IV!_dHx z4Qes!S)DbnUmLuZj5X^?&A99gg(%++3QEers_>@In0!$(sUK6d%lcM3Es)zo5306H z=3()p6FD97pjb#oz>K%AE3@|q^FCx9{>{|+H7D~rG z%~gOnpDFwF{rDhYUe!DF@Y6Nsa5YL2(IGNbe6bHwr4a6p=bUb(pfST>qW5g6Ht56< zGFt&XhwBC>OC9tDOD~qDac>^P7-)t2t0H@$gF5!-vS4Y4Kur(mW$ys+&Cyh}UF#JQ zS*->h#a)pOsCsJm0#Lyb4kS8_E^H#D2*!z{$wmx68@+*J!&gLh3=Ey!`>-|SIQj?> z`m-+}Gj2DJJirA;c|2nRszsouh_FE$a<7z>O>yrGb80C)qkgNgyQl78S~SDl)?I-T z#dA(UlNbE2gBQPJ^C+n;(%_Kh5T$eFIjyf!wU7Un#jeo4aKi zch=fp+oi5<-zsEU&~=O!hZ2gv1+DK6|Gl;IvuR`TTb%LupHEF*O<4uNY;&SIKqhP> zsQ+@|vk+^i9uE)8qD&U>3aZ=oLg%UFFKoJJhW)MLKpD-wj z_hBh0jsv5sqa_Gf$s5V15O@$`!suZ;{~0H&`4zQ#rY|L(`o}7ildC;1=I=a+q~JjR zhJ7la_Vro|+RI)ON9_~CBFY%>E2nTq852r{Ot~M|hXyBlKljZ~_nrNIL+8%7DRW2Z zgaRHru&O9G8YW}K;(Imjp?}3l)S#bs7ghQ>oGUwkAYbrFfutpRkc|ieKy`!BoVP-> zhw}Y0ZFN)@%sv%|u)MYP-3PSYv@SW>EG7u0<84Vd3m;8ECPloxBX3?yB{w|{NKH|5 z{%|G>&YN$vSLJ17`{(abe&kH#0lo~gk4x4o@xlk=VQXhtk4-c7_ljo}o;~PLWp%=% zx~cldQ9iMQ!VmQMg+S9~6ko5&-8|X>%S(ndGLMFtGtv7_vk3pOi>IN`+pvo+%bnAE zPaKtgtbad7(T4B9Y3Pw?F`?6%wNqVttE;7jVz=6CpM8JC_Fdhx)j1(A2t;gTbaQs6 zHSuDbQHzT_l}9e>85|`SQ>H=0=-gzcQ%$F4Fj@!H+6&Zi1Prj)8B zFGm~>axktwRf+(8QOZ5COO~L!5*UBWl$-f&fLoFsLG3fgvq4wV#on0a*N2_qs4Ok- z!<36{F?^uC2tyH&ABKSnRug0o-ZW!h{n-4(ukC>&An)UIMNZud09qj6)zqAALe%4T zR#wMrXN-ovnk@_nm|yoiePiYbcy$ut=~{dFsSNsi)=xf4?r-sd-&1?%`4HG&Ox@ zv=i}ETICahTb(kaz%%xqZG^PuFj#1av~+SmGEK)K#H4qiXI zN2N;FB75B>Az4~-)Ll+Oqex64jrqZbU^Y-ud=zcr?r}xR*=ldHhk+4@lCfyC-nj-+ zqN&p(5Lk;YIW)|YrAH~8M_mC?wB!a>0_jzRXiq1HcunKgFFn+7b__$M5PG8ZVDSBUtE56mNHqm&e7y5 zIGIF8YeGJDbka49dgh*D06YF}CqR_oC)@s=ea#4`E1+TuX^g3{N18-nMlbIYyO$U& zBZe}`2JuvEGVW5bh-_E3X$B$sI$c$O7er^p>Te=VQm^>CbSo(VpgqnSRNUkj`8h~T zFcaw@o9T_mf&>PWB816c+)})p>_FhxoF2`Wfgi}3q~yd7e57X%@rUei~~t`%idTj*^0MlODBN3788h~flc0)XV}{BrJnky z=mpPf!v~M6u5+(VE4@RW)jJiVJN@Iqk*Y({ZAKKJRXr^5uu)k9gD>JbR;u)iCBw*i zd%|gbS5mVARl`L-Mx2*ros9(kUY*v5D&R-MmgNCPDuU`hotNUg$zX^qM?FC%HM@NL zb7cF2?*62r|IjSt@vE;DA9pLDp&&CC3Zg4TO6S}kNKBWF4e9g^Xq(BNTWkO=2jd%W zj57p)7sS)c(`XSyfj{nQA3oN{nq5K$l@&MKG%x@p?h=f}Fq;I9Zan!yH$GaEHxaGr za0H(Y>i>9Yz*nUyPLg|RlyU$8{t`1Ypq`ohFrzADvFJF6%O9Y@T7$J+T!z8YGV6I4 z>V?uM0r;O!v38Me{?=g~>sJ|l(M_MOk!?4^L(o3+TN^iWK@Qz6Nls!it!eu|jh`ij zUQMfQAYIb5sS7Cgx!QHmsKW0J7woTHlNwS0e!a~6m))!t?RxvC_pQ0{WpiNm%R9+Q>8q5%y7bBWXLMJ9RW`?s!p>aKrUZ(3!%+WIim z_}5o=W#aFkB|yFbBUeq`6Fxv*9y7T1=1Yf+Z$L*opVwKkgqq_AD^2!1d(ln&z~I}h z1NAYp7Y0+Z&KNEI)>!F9N+%HQ3m@rNl#G{VojMq_lst{61&lj!G|UWcX)ixb@Nxu% zg1QfO=0SJ*DsB{hloj8HorkDS2nvfISubghNb&wMeZg}v{qU1g<$oAGDOh9XSXEtyZC3Iphdf6UM{om8FpP-S;VZs)rZ_a7vi z4)6J%ku;t73yy=0^!K|PZXT$Nx4oa{r!Adke(m#ixXhULA}CSn=Y)Sd0H776mmZ#F zvP@E>NEN_NPI@?jo1Np8Odp~&M>J<=^bh}e*6m+AS5`owfXcVSF$^e8OTha&{Klk6 z)E`ALR8*i@HalC2ms3(I0v0sQ|Gwx+`1Y`yUT5oo@3Ay1leztC$~-c`aje4B1R;i_ z0Qh_(u{^2wn=qS&RiA76#hEVO`q;C>74^EN5+%Npd8$-#)WS%R?BZ;I|J2c%;K{pV zxznw?-LUWe&Yz|~pueP`d(Cm zsjc~)6>j)Ccxu|Ka~kYO(xL%+i=pRrYr`_@XPMps+@GS2TjBCJrcb`=%#W^rGI#4~ z&)EOV+|8epU8~c^xnqC-eA;RcTc7+i@0pXU-PmoB0nkmULEr<~hC6YKQnd9}<_86fn30e7KBc&C7D5cMA%7fayRJ zVdkrg0aS*eCE2trU8eRa-Cg^1|G=di?6q2HUy~CMv zEeoW=9woi~$EhddXiTSi@)`&-)A8pPj}p42NfmDK_>$%-s@cXfW^;xL`u0_Vl+9Y* zL4EJkVb*t$SE;o>ZYHjvb%?S5X~5{p>o|*Hh{-<=Tc0~vLl3_lWFZ?~UGA-SPypx7 z{@CvTDql5vta>m4$nPhWhYhP->eoLJG8Fm5WDQ+vnCp98LGM(Zv~fxS3kh;1REbwV zC=OQGC$9=Hrp}wf7F2atOM*Yy*_o~ZD5?aqYf<08!y-dyeu55bS83@XfX;j#bmAwK z0j*Ke)VlsV{$a+-vArLWNZ>XNjB?-ur&twsn0%&uwQ(dKrl?7}!qB*>Wkk`$l`0N_ zXI;vTJ`S2;uBe)*lrs|}I3akCOeza0hJAW(9uO;RJ|Lf(S+Y#rEeWfQAi$txWpkOz zy!rb$I&skN2cUG6bd=A=d2P2?g{`JFt;IQVyTNkz%ErXRt?-ldOH!rMsbik0lLOyQ z?979gUt>+})}Zb$ck_d~I;wFKzi$2c(z-6=;81wKb$))!`(x9#)lQwqGkS^0>pQF6 zRTz>mOt}<@9bsIRKA6Qd%2Fvpkq9h~#$Y%rQ+c9xks4)7s5}=y_eIjlQvFmps8~3E zy&eV1k1Bx!r3p6Onyx4Mr8E|2fJF?;b|K}_EnZxVfbd|!hi7_A#4bh9aPXrS3*gE< zBc(|tDrN)DL)K?nXpBB!>1>N>jyP3*NUti%Ig8OuGgIh}j&3#r>;jY5E+`Z58&R6N z^v{;d#6;>x%qL1{uo9h7v|gqhAj|^SHxB0Q(u^loV;TGJmJK5XNOI)}>&wHM!zWZN4A;a*c)+a%yHrt;|80Fd=s3U59cy*^@ib>#_pz+_ zn+f~{)?;EO`}l(3EA5b8Ww<0;aP^BmyuLz_qARmZL7~ zw36BUR}n3Ojh$4{1pjz~#+u9Y}q~m0CLjOM9r^Z##YvBjq zK{t-70%}K$T4?IJA!oza!?r@kYlEwLnpRs!v-~3d`Yx*^#nM#&uZb* zOWvFN!lu;z7VLb`4QM*0D$`U0LKDkPtIG>=64N*eB&9FE@_U0`ER3O{S<{n*0fM9J^fw};OG;czulnFd2m6^z{uunu9QN(r{r`3or8AMbncrKC`$B5QfO z1RW!O4y*-|((_-gdwU0M{Q4DfK&nAh*qSJiSlXNl#V=>TTdJOIg#~C!GdwV6mUgKG zx$dM>%r>J4#Yl;1LB7M9!i4A|ST}{rGb&r6!UNVXVyg082pdAxDRCrDlPIA{MBy%} zf?`qc>v%ydBAFe4D-Q+FSGf5(e-HO@=`!7{>>SN z$&F^1SscWA;jbuKQm&8;diFo9oNIV2;kNIvru#z&1P@1c82VTtfnEq&4^L@OsRi&V zY>hC;l_h(q8&Cl&zxnZ{r(|I8O_TqiI-2xje-(gb+;0JRk;FFeHg!flwIC?A`0ql? zzmho{yt>?ete-tC4otuAL!6BadbEpYkxxYdSY8a-2KIRbhLX9*&!-pu)x;p5q9N)v z0CuK4p+v4x?jlIa%5?$Y;~Dwx=p<+LBXTJhh!UMRB8o=S;1}~ZxXS2N9wm$zz`U4+ zFbamJg&;c-l!J)e1XZeV|Ej^E;w$F~SHC~HVZOF6K_+$eQ`|RE(ee}J zZ8tFjhpr)<@q>A(bsBrz0>lpi#Bze^mLq?CzJaxi@@jVf(V2M~oRknRf1+FH_#72M}U%Jc#$kXLshxpL?BsG~%2H@*aQFLS!z;n9Jz4Y;zLA z{suH{wRTvApiG?C{EC=8adCI||M%`NM*mfJr&}icX@c;o&g0E8{FPI73p0xHB4BAu zo~c`dk=wj&pnwHC_HjhpJR2YfVw)8zO2{JFx*$%$L*V={lg-wWt%a z`E^*_mXsr9$iFXSCIdd(;+bz&Q&a!#mUB}_`@BkryjXvZMn6U3^Y{uNO}q)~Z|B>$ z?;UYBPqp+y>9FHtA-FcA6#+f45VRW04KdP)Wv<@JR#nSLK9W##M=**!F_CksHc;lU zH8JwQ?VmX^TZuY>JG`m9>+ALo@X2LCRXthOQS>`;*OC@Ug8r@6gvQpT&QY(VnGMkz zE_KY(QzviVJxxA7EE$Y=8GS4Z!(qZxX2SkyK%!3g?-i(#Nn0%`>>xRAf)VegtJDP< zpo9JXwVwcm><-lM+RtgHSFP?c?ys&@(t}SH=Qh0FT1!~;Vut?Wj4o=2xYND0RcZ8N z*M{DAybw1Z_}Bpoo^aY-hmez|VBd!#fzcC|m8Fzc&`qwt(}GI=b9Wcdq!3P)x@+Y~ zjMh>|jJU5$GYH>cS;)}{kGDWV%RZw+Ytfni^8&Cd*Ib+G>)0MMbcgQ?HFv%}=#MbJ zHdfIKdn79W$I-M_27nuiXEcJbgbAIU7n&O1SlSx1C4z5>&3#bHKnUJmG1lGwS>3qp zzVqePo$086uvy2yJv%)+OCdX79XHnZo=|BeG;N*OVR>y2I`&ZH?qKJt{pYs|9?ee` zoM~A9v^7v2SzEcd{eE%$z#d2L=J?9@_fw6k0o7^_I?@OIxm&BN1EZs9=DCd_;Q=d; z7PlJ>hAn5pPMmH04A|w`b)OyQM!*!fYxUE>Y)^tt$ZA&)x1b>Io0@0-%d@qOna?X$ zmuEb0ZhZfF9cW+~+pMr}qGA8^G4kAp?_f((Q7p7J!YwPjfB*i}QeqNVXL!N{6w#_` zY8a`gXmr{1M_VH*Hd|rx=d##8XS);ViE$AysSkSFJD52?_~G!|;KhvhBNBO_jgUo1 z?j}5iCsUxEc^0q%E+C{A(Ewj!K7b1-Gt8f)nwt(Ggvvn>`~ZN*k^^~zBX$0Ihz#KS zj_;X}D`S8j6_3mtRt$}ZPUO>zMwO|hU4`%!P@H;1s$1)M_vO`h($<-V7&NXXV@LuWRJHtk3QXPq`dW9rlSL0jiI5Vo)tWMrjhlUre=HCUuQr6F;TPqXuwULD`@#DrJ{|FxZXT z%$Q0N6NM*xBUA*`Q~9tc0r}nxzTMyN`k;w*=) zLL4!29Wk@48l0S2<4kuZI)B~ouOD$vzmuTDOO>dh&|q&$_>$b}S-S+X9=P3{9no*W zV^_3O&IX?#$_r2~log4q`$1I7Cf9?T2$ z4_#VbxK*0l@oQ_sl{bT&UI;yQ*OEs+<1)zJ<#!0yzsV+eJXQiKa+{y&{?^ zjr;H-St3sfU80Br_JaQ7_rQicmO(#v`Gt`bG`4U*VnPX>S<~2fXLge*I(}95*Q4{E3HKwdtuQzP zqV>KJ0~u?DT0GNwx7OLfE=qYI*zX|WUsi2S_!|}emAt2rrHaU?q#@8?fDzM%OLHYEtH{bB^i3@YouX7gD zQg1K)K0BE#^LGynu=|W6G-TCjYMs^)A+Q}V>P%-OLK30*|0Vw7hq6%H7+(Gfvs0R1 zm5j5*UR=U<%El=9UQY|C54sY=pgM#qIt$ZI^qM~?0l_s>SR@00lTC>_NB#|Y6Zw!p zFY6i--?pJ<46^?TYfv~y1f195h(nafLsZP=QYrR5rP0_sz@~jf%`yHGEK3bfwBe5= za}t|@(nfXh%cZyHhJW+<(zNoUH4k_aoSR+b^)y-8u=JdT^(cBx*qyV+VZYWsg|Fvs z*Pl2sU%pRGesy+du4&`v+QpU`ktA34UDv?QY-FXj4fm%K{K(ZdPmau<^<>TGK{=(O z9p@PF>X~R^7fYPcmyR^9RY1ptM&&)mM{XjGw%=0)=RJ4!-})_%D^EE6<}jLhukWyY zH)no5biNn?280N#u30ieJsEZdz$NrQw1@573Vfk?T|N=YWWKCqUhXt{(v6ZuvlL>) zw|4HlvFj{y&*ZG`_>K2-iSuqQd6dYG^NYS@Tk`}GBc(hLFlHPB=m+qv9~ybo~}H5^3#D;w7^ z^R2Z%4e z+=P;Eat3x<4hjs*Jh*6HWp#E^ABuiSfmowpXMhQlN6(k3K#lbDA_H52wjbUrh^g26 z0#IXTHSLR;iGm=J0LEJs0XXXw7)7E3 zLNubA!VRjc4_B~DW;n>o;#d$A%0Nkwbb;vug|i~mQtWegE909f>go|5B)A9wpRG^l0& z&F|-P&d+=0o|PYz(}4_i_%@bZL| zg2Qw$HwzNe!?W*kI#ySEzV+wc$ZEFyz8*IJZ@xh2&#}KAzRs2TJIIyMsb%{^AOOv z?jPp=e>9zWIMj>#zb!-77)uQbGe#j~$x_KO$#SAlb7ZG66k~~lBwL15BTGdh6d{VS z%PtIAE4v9HOWCqS_TS@k{k~V{kFKk8Iw9|Q=6PPP`({=BksitWl$%N4u{TB__FnwP z>aRKH(XH*1d*f_tB1uBzpBa*Lj!r>nWg;D>;GhaDxsO1%W zSrEH*uG(8&Tv5gMtZ%^cdhtsL<#$wtLp1H{L-j1jIp@;q%d1+=+0H^feu%?f+e zHcg)1x_IOB=@DhgTa3!zOi$cmbvF6?;uod z-LUo{r3Czw(QOs) z0%1o=mA|O9RzN9Od-%C*EY{-I_|+pTNh`ut-$n{B$#P@R*ol})7FpV<7ATRFP> z!;`YH;-M9M$H(7V^&HLs;DS*@>dHFRejcBDe>}1-8B->C!?S{h+RmOE8i2?}vOx%g zLs9H)?4@>*JJ2*)l4czDLu!3O6%}x!NCeVKi)u6ihjc++XHD@e$tR=#oC#*V>H$ z;3Mx2)&4`q#5XKE?{)93b?t@MZg2nWhPAInfAB^$aU9rw6LKzy zkTTST(wQGJ5ayUVR=_YHp9uW6o&dXeBE^(w-mxNYd3_z;=K7}ydOgDgENVOiSa43x zNqy{vRn5BYQ_)|VQQEFg90H#v#!cNUj5=lPUHTvBON7&*1jWoj{DBIzh=+lm5qa9B zyee_}gLT@l23>{501Fiu640t6x@4^q*|u!OO(}C-iYfdN#p|o+(m0YpqIOhGEJj&y z%vdlQ3w!6u!gH6sbqDa1kekB;ibA8SXdbM&P|rReRd`?Ek3kaKw&exH_cLFPVI%}% zV;|NnRMYdKTwVA*)sNKd3@>T~?v@J9R{Z1Wq&w8d+A12&V0bxSzH9w#f@EO{rTByr z=o#>mH_PaTIZr}QZQ4svC0?%|ba!Jq@w)XRQu=L<0Q#*e;)@a)fxuHc=EwX2+3 z>(5Tsc$dO_o@TD*hrHu;>-1%}r=xqj2liI>*7|pU+3f+wGPibfp>px@h{u9xo_trT zb&8#}t!#6{*w}CCs@8_b?txNC?eB&8`5p+4yBJ4CXz$c%#8GuV#^bIE#ndSsLh(LV zL%3)KZ}H%qJeNA2w|XPf5I_| z|K)(e2!pDb9z~G>!qhl?I5v!W)NBy)i7?s&Aen@9c=AeS?z#k76^swQu5LYbN|KHu z*jv}FIM}ICiUugCcGV@GcG<5G7Bl7?VQj%86|F(U104^1;w}H0%4)5YdEbai5PDW^ zb#_B@b%E!R8^+W4J#^WXUPm()x92d*#PBNlp2pOnLfhga)9V}tDDjp$ zxO9K*4=I!!>|;$V6h!*o!gxN?pkFpW>}+nH;OED4Qhz^^()d+U?=&v_t9;RDhx7Dw zs^jvQ3fGMrlJ-Nl)YBZ5r+ZI5Yp%!(oELmx&xMJdIr`u&`qmKz`+L_9Zl(EC5p-F-$2gv0--Vx8JM_rr`rG_}O=#oT0hU1G^Ctkn zW(hzr3dw@q>dWaP)Bz)%Bq?tVFC}Q>aXIxn&gmp2%KOhIwIA5swIfI!peS|dlF+-6V*+66nfP`6zUT;NQt`kUQ~Kgy5fQ%zzErKF}TYSnz;iA7F1 zQqa=M&Drsx#cSwa^H~XEHC2aM0eF+GDC=<1!3y;ffSR(8K*oXtnH~2`tQ+_~#bGJ8 zbQ@vm8aPk3X5o7tHSNDJo5MyoD{swHH6~DGB(UUG*wnKDPvKDviJ69qab){_410kA zFUf8lE)MnL*u=p9WF5i;$|LJUFjw)hKV?MNAGF`JIn0OwY7Q3UNiMqNdOVUHA5Ol6 znxy<@r5BS_DlppyaZ#`maq3~fRQw&Oahj*uiitU7O667YE;wzOQ0(aWW#( zG16GN&eMx%bdo=GA$O$2MBSUEbajUYB;P`i1FU)p)6Vya^MMAW9FC`Qu3QS_c>{le zxG3^1DTVO!SCL5k`8YRrHtPtJrx*F+7%GkSKNpwDTx>!Y;24rdQ9wRD`j036f?gC9 z9&}jG6&74fgUppeT#k!NqL7@(-(9M>wMyB|pMmZxx6bL&27^Wx*R=k8@YAfSu@M!u zwXt(PW)@XIUyLWJq$oXZ#ZWwH+>*_*I3&Z=_7lWNAPhJtm&sIEE3>n$VwtUP9Z_O)*k0777JY~B{ zFQ-lwDIY3aBMuKe)zq|;whE6`&;)L z#?Wsbt*mT+JnX;eUmhZ%QFj_z$scN`rXnT{1o6c`e#NOeC^#xyb~L%b#x9xE!1zEq zlIA4)gNrfLd|_cAdH$2KI`b_vD(?QdIq~}69FM8@IWHZghOr)qkG}2GF_=;J1ciF;Qwp-b85jf9z3w)7{TQoT$ujCvM_Sj1Si$DH zX={|eI5c>8WNhKQyXKEyHtxZ?Vq6LWC@vyg`=b0Exk~l%A7H|{7GSqO?FMM&K@^$z z({-`!%)w@#(-8YCart@v`aHpgcE)9%aJ07#R@3k!U87xU-LzpLy${A?7>dWIcEzku zs>}nM-%)Kbeo|e}Q09t!LR+Vi3Do!La;u$*S@sgDwC8FRu~0RXM{Azf2Wv3*DHB{H#FZYUm7l$n z!OLPhB4vK--KXGuTf3|Vthklty_Y9z*EQbEn)mNbrfw+*&)993{clNK8d{k3xyVM@ zT1)nk|6*3{+K*4lhQ>?79y>1+{MHw1wni%LZlA=6i7wFYXlQD@tL|C}dNH1Bx3f7v zKhG1qy4x%k9P?^e!)DGeVY>48VQ0XsI-5_MPjC69Xl?xH9WLAdt2?>zC%4i+B@g)j z-ptkIH8&Fz4o@R1sso-+Z}h|Yv$DbT#=I-s_^e!!1@ez<2tBt>-&=6^$aMialtsOP zwr=vvMaf&&U%_4(mZ=ONdP4$`SBVZFHp@1OY`@-(vLvgEM!F$ZNvaU?%)wlLkr^3t zwO3z^@Sg}BIhc7UF8Eyxxb^l6ws#hTp1x;?Eii`xbO$n8xKgj`QZ(n{UPp@}-x~)B zAXO@K9!_}uhi`iq<;EtB={L5sDs5>YA<^uHQpy?GIf|QOo~ZO`2s1PQ3QZMR`o`qO zDmr!$_w-Zza~~TFMp=@mYM3sgI(}P&DOURC=@f9kL)=;~D(-r)?=i=-N?1nZPj0xn zg$_9WBU~NEGGZ@H4fTgB7sXTsE_3n3x2Eu5l1OhwW4_8K6}ql2wLoJ$lP#xJ(ovTE z#(Sb;FZI2N?hyD%DU1d$ri21)`aJ@t>C*|9O;#1D+;aTLSfnDTzaJ|yT(F*7htY`X zyk<^LJiEa|Ht(;6(x*xc&3e_3JZ|$M$MwN+n4v+@^`y~f1j}1D9p93 zstDZL=-$z=u}%@=Nt*cDT)UgK7xz2VQe^CZ% zD5}JZxHz#35&DLOrh2`+xDe}j29XPF*`~1$Ngx&hbzsO+M3nCe>07^TUi>Yef?%J3 z=kOXaJaVqRdv&8MPxJ1rqIbhppsSa@x9sUqLMgnmDq|=<_YsHw;K+K0@$S7wP`#Is z(l7BcB}Iuoi;BWV?iT{dA4%;ZtQ}X*jxMHXeDL(2pEz(ooF3rI-~Dc~1!a3627SKm zTIb1YjSc6HM~q_~6ks_lEcbT&wtemNSY6M+^CvEdp0qP7Tuxl7=!myE0DE9(<*TGs zn1!=2HiVAFSti`Q(8=E^OlCAf<7vWl%^`^w3N)*23uU5mEaPhkGG{ zd>kBzCc}FJEQ6>pnLhHtqm7?Z+RC$+JgrZ}o!n+J@4CI0zx*pciUP&E5b(iZ!5zcu z5cZdyRVa)shfwuszfvg8OG}RAryC4Js#QU_fLYZnB7=cWBE=9X%H7}941~U2ENv2* z64SG{eNtCQVVM%UWFKS{$q#uOafRbdD|;91wOa})NE8Gyq99e5)~}7Tr(&sc8m$rW z8w)GW36;YhL3{VpIS~6DKQ@JZu-=li;eZBoOBf{>OJf-zaCiI+<5f|+pv7U~i7=l0 zEtEWveKx}Pc5DAC*Y1jF{r%h9v67n`JkGQCwn39V|F!x1m3z_?gLy)EV)0E-Cth z#LQQBoF(vrF+wWuKGSIO;To+{%HUk}N;jL#GrYvy- zptPSWL>^c5Ww&61?*n^%-9aX1RS`pR*iRo5jZ&l(VCf;eH~=c>d>~zX7-`A^b|9iG zdkh(Z9}!Wx`?61|*EvdXp>#R=$1~VfBq{P~#6=EzA-5`@f%8g_{`+cX=nm8sx0^N` z(;YOkcb>|YC$jMq-f=ka3M4A#kYbphMZq4xkc1%C8I(4;GI?OIZ)}L1)Cat+(#=DX zQKrZo8FbsLQ#2<6C~OP|;t{Mb#SuL{FC1+CwK^V}QK*;}f6EtQy2D+2zng6AqW#p= zLNYXIL0Ts-mJKV#Yc?(}um0o*_yqtd_y{7gi6J^BrP^`xrpM95VE2_h36FsHz}Y8fI) z6Q-^mYxeySJOC%I& zo<*JN@}6<*foGm{w#=APY-}unG7{hz!l1Kw&dQyJ5{kW5C_Ae!7QEeg)qA%HT-V}xGZ=tu(u|AW&iR~na%wAmtXcA8Whcnu@%;&xZ+lHzbpXSh3mW& zR<*SLeTj3zwB26o;oYUt^*?soQ(bq*+U&*$uPEF<;O_CZqOzvO--kKK%cpnfl%1_t zP-m}TWfrgfrGICREC^kQG`6!a_f1W&ix%J*KdF zT9t!Bxm1xNUUX7%vv5t5Hq?BER=DFEA=p0i~U$KSBlIVuQpu2(V)$}iGTho{Gl$Jd;hV%*xY=}Tny829U zW>7Pw6Xr6+RIJ-?*8y7e|5D2JsFgjZpnHhOQM5w7AubsOC%@)KXCVbv5`2e)Tvx;>Uorv{AutvA1J4eyK{IB9D;s-;n>9_;UzDuk9+9Ric@?eq3% zs39>j(L)qz9#6#>S%H1yWc1!RDPCn;Yxhm?`r5+Z@yXnkqM{os`8&#1;M*KI~%pX6H);L?x`+2D|3mI(BX{T{-zeB1Gj|Hs=qVz#bA-Y%L&12 zFa3gC=4UmCobK-KYn7+H@2o$v3-a*}sH)vK8@%XI*1qFjG0>GTz13DUyb%=S<-hi0 ze9pTo_1lP8@a&eDjcs!ET_4zPZw$KECdK604Ku+T^lpveZzGqxS4C=f>USC}^L#8I z<_V+Rl$XYkik@8C_43N<_c=FRs{LSyz;t$Y0lw~4BL0Z@UUCdLkcXfU%q@f z@9V7#i3ix93Jfj!YPXTzU&t;2vNo+Ho-p4!(BZA??)j&q0s~uQ_Z(QRLiJBgSJyRh zkcNU3_RtmzMrf$FnCd!RzYKJ<5S!Tw4vd+Z?y6#+Pt@mA#wvP=ku!mUN(|#k;3V%`09Kc+^sld$h>B2UgS55@GE28768lqA~-tgQiKzw zFD%+z<4AM4`mAwabwvN!{BnhS><2nTLX;~vE7p8e4ib}&vD4v!H2A_qSBlA+aFtt| z1Dl|H{Y92A!6HHUJV#|bktH)8Ld19Q5j2z;2vd9eeJsph>N*t`2p-Q16);OWW(fI= z%K1o!K22zL#QrR_8Qtvk^L2Lqm!e5ZczFvWt=zima}-}1y5qjS{fP)mO)y~p3waji z#P==(kBy+xGn&c>r>*$O8)u73;?a!699FZoh#xW&F*FqN=A2jQk#wc=t%_#=xYQah zqyqLT?$wbu1F0`dNO*!pJcM)mUSyc6+=-5Chc_G;NAsw{_a@vT&Q35~A532_OSRkH z?h5<~SEn~8gBAvhjweh{JFoL_s!qXMHTRJ~ufUby?Wn!kle_(U!&(~$cHia)&Yy6u z+<20p2E3qRT6u-WS?q!4&>4`ag9B5_WDs&_gGVu7bM7as zLmDL@35a!hik(FyfS!kuPnR5J!-wx=ldvXY1wI8_BDt<48(HdWZRhuskCAJ@vh&UlZ+BO*1 z)xnn@A%t)}r$}*dCcw_^HkMc5M*s59Cy)GHs<+3>MIUoEv#?xA|8+eDA^^{ni)cB+ z8*H(k=F>#$KBq~X+na3z-$0*drm?)grIZ*H* zr|J{p855($weiSZjBjzdLm z*iZAX{n7LB;gGnXBCkdAhw-wtXHmkr0JDLD=qXl&d>fmcbMo%e%c7gRWBRG94z20= zdt`mv3=?^X)*!`WVl#&_oHpjF{Vu=t@)ONgii=M;rw&Uzk9(}M{ zt_n6aZS0PDGT7MIl+QF(9O)ma-5xQo-5TDrLWg2Kp9wyUq%epj2=-XED7rk28qQSJ zGnQ-4_Ig!5P_lKu#QKZnA9rADxpWuHyCQ(jV(=ofG_N}6w!o|5py0dePr3P2IYP<* z1^FIAf;tw@a!7H}37#|09Fz2+4TgI^IaCQd)3zh&F$mQ?9=qRsu5NcS{dR(f*H>y> z-&fb}yv(tN8pi#H^aC$wH!IjV#Iabcy&j@foS8R`jogTh<$GYkgkWvAAG%J~MHmz- zLCE>~%y|x}vxT3+ZQ#G*1)icH&0yd$uO9N7P&!$#5E*A3PK*&JCdepRKQl!5=87V# zHS{jD5Pz5m=WrZB!dm+!cz6v%ZD5`L2x8d^9HFh}5ixHSA?(DRr(_l>1BZ1{Uxr&?)+0$xJf-|HKEC=>I>Q4Z{9F$mQ`FPloT8^WoU9(uVghmB+i zRNkmFk04;J>pwCdPb`QXn2}A(AssP*?X>O(1S=%JyH!yLUm*;+fKeng_Tx3)xL6yS zT#|7wd`%0vl@5tJ=AYC& zx@kmwcftCXOkc~s9gUaqO_L;x^v3+#o_m_&>~QarV`c}p$B6x_{+yg>Q#_iOi4A6~ zq;Nl^n4svoQc8;7+jYGL<>}(&MTU`{M5vN5Faqzag)Llx%}6Xg2di|2&t%dx>?C_r zW;Cp#c7Fyh`{mhHTgFe0FDoq+-~1R7uo(Haq@}Olhf*^-KRqn#7%+b{dwG88##sr= zi_E@Gx{gt|G(@xDld+c0u?4u!oxj~#a64scfZe&M#$6PAp@k)^3KjD&9HT<=TmnqD zOu)@-KY|aO$EO>2WYT7;MJ!#louH5d%s&}%%>Mg{qlUESns;;^v1Yw9t{&Z|E_WB^ z`F3<=jvv+ZC>@xT}0~e_)nMb;<*D7TB5-rv=j1&C} zMx#eO5}MXdb)gyKEcNXAXU$KBsv5_wZB?hWPPS4WHL(1>ZJF7Z!{w;wbiHfk8?>Y` z60kkvk8=};RHGQP29yqKYb(nCZqlQ{k#%?C{^-`)`d*LP%6qkJ9d1Wk8?BAs4c#3b z01_LqveVH?^mhvWJ|=NPHec#Vs6&eVy?QT4mm931bqYH7S-2QkxDUCzzwLCmtg2qu zK8RqpElj?_&7uZ+kRJ$^!@SgwT-;~a_?U#9k6!X5KPa;5Y`kX5JAQk7En@ib&F12; z`!Sx}`S$mO7U~Z&UGn5Ss{rD@hCf}2!YgNEs2`Ds*e{n3Ma#3?O3=EVlmF7~Fzc zont2bj{kgm^sn?jO$c$gJiUJ|Lcdp`A#Yh~eR-(49RkEKjLz6cf0zsuSRzEriIq+&AGup9Sx5jO_!+& zIS-LDVt{0JT>{G(_m{{dLOs1AR2pjHsOwbReiINc=K_|OwKit=I#YMDf?93`F0cA8 z{()zv*0y)>lE>ZYVKrvkmo~LkQ69TP=}%K?Z|^Sm`V6wt2kt%?OM=O5vPsa4e{mgFM>>pa#?0r;_^0+xkYcqXRYi>G* zbBi`}^1j^@2h5w_?EQE$op67rdph58YK&T`K1WWey-VDpj?S-FCgi&-L3(>@b!tFA zifDmI&nbyd1om0U>6eF+W@pXuD#q{gb2p5fjvPENFSX5R~V1cm52C1qtsQowLjX_Mv;2X-aLV*nQuLWkyB z<5|)6^RqL^q2PSUTm+e(f)D0e_KkX@5;AsrwWf8yY_eN*-QZ;W<6V z*wFVaCbF|;1V`62uE|q|rUcp9Pm_JZ_Gf{YwpEdQX|h$dgjCUOc@K-l@SVybhnnJ@ zq{NLRjpPu$TZOW^#W#=fZ8=%=O?+7ka@iUVqS%75+R|6oXeBvOC1SC7zh>yyaLQN+ z%t05PARvYZyJum%U>s(1C~CcO_*6&imw>}(Z$x4K4;9s_) z0vmjKL|eK{F?)tEvq@w0-rweK_vpfP_kgSH0->Bw6HDOVSkvh8&7rfA zT1-mUiwecvPMLnx7BG-CdFoDAdn5yvakgT$=AT%%*2osN3m*`rZxjG2EUZ%epmBi3 z;G=DSlW!&S{>OaCerO)^df#B82b|<-ldDlVaS+O7H0plJcl)X#J8R|LA=#{vt)Tvz zrQT+Ee3%FSewiOU>*`@QTv=7~p^0r_w377xTwu^n?XFnxV(pGqFaTQ~XsuL>-Cg_= zmg{^nZ*;SDA}NW!Wq!E7zbx;J{LbiBZm3EI920<$QJ|Li2$qzN zm7dJC@r{cFLwSAHHP27tLey9UlCejsP3ht9qn%ib*gU2TY80oml}I&n#E!<%%eiED zHS&BGRiJ7=R=7}3;sUPOTbg~kGCc$*K!boO(CHs5VgMh_F2Gpc8mSDBRD8Tbd^lS; zG0{{I$wX&SI#l?;Q&5~-7ynuc-d3vu6;knVr0mKN$^*;BJBsEtWJ{n@DBzP!#BU)-Q@nb zh1hdED?G`HR2Zw+aLqh}an5h`k{}-<_Y>xxW{mVLRmG$)LM-g8VGgYI9QS_64j!Hj zxh`Oo?4y9ieuzAXY+e1S_iVE5?;nAeP7YqHI!36`wTG^? z_c2C3J$p?FQYV6jyZZpEkVzDev1Sb;tsEcRuaGk9+2aMJl(Bk3F}wp$<=C^83QahS z)ILrf1}_UVOB-q56!&=J6liSl{GGbYi{f>jQVAX0|BW5F_*l94RBOelFwr2cON7DM z--)1*NkJGGpsWAc;00JEwq7e1)o_HyV$5Zf1|e4 zPP%&p9KSv~^z*;%BCYMtz2A1b&{8>Yxo>QzX>xQUEET5l-QY7XFA=!VjVNZslzH(@ zVOM=KsiLSaLK2pUGuYQdp9q-pFx?I+k!8j7{#|V>hj{UYF`mJ@yd?dnIcW@v*Sx7#K&r}tcW`e(< z8x;riUUasM8^%RI>6kK!)E5*?9H7Xo1$Z=a!Q3c zq%ex4wNwldO}+RJy*!32AR{6YgIh*PB9Un_VfCth88K~)-dEyB2b#kg-2YLe2_UTJ zhdh%%SFBAp|H+I_UwLwcM;Cv9<$2V65Mgi;rORh%SXB98VPj5HRPZj*pF zu7i@{ZICfR-TxsIrj3N$)KJLa%;UC6m&Ei|*3kE7L7uC>aeFH#nvu^r&RP(#nDJ5A z8&{I7Dr?R;k>Mr7Ks(J#`iE((#pKNw@sk1^I2Apoe}%Yo9f5R}%d1Mm4LoM6qzXW6 zZ;pxUT4a=o0q}YiuKFBC;^L%RS!FT6*csI0aJY!3UqzEHu*u$hs;rdZg+F}-eLel! zon{m~a$od~Ous$4R;ebYb!V~Ra$a7Zt!A*Mi=&em!QDT=noEf3f!)&YdS(EERIYx2 zR0jUpB16R$-zZbOwo?T8N71r#%+uId#@ozDQv$<#V-7}@h$x(hM-C~$1`i7&fkeha z8xUyU(g)CCp3KYeMj8!8sI(6G+_AJKVz;-Mx-ma`M$`kgH5Ex%2t_*+4-{-vSi=NqYra7zc)muY6OUa zna{^2RWoq&@6ts3k@S;U7a-{2qi^QOq@p(%hhc)t;471N)%~b@$u9)j3Mn;urEtM) zFMiKv{(kl$x2_Z>$6AF;-Z_F%Sua5#(Tws%4S=xSz+VE1o>D)N(K(YLd|vpxneJ75 z>C@NiqH(|*YRmg#^SJ%y3!nuJOcu&D(eNC2ix?rac3XvJz}noGbp7geQn$I7-Odm_ zS~F<*Zf(-yXypuH+b;O`gmeDmb@?@Ukw`>eO&`ik>Xh41@#vzpk7c|f?UXU{Q({(o zP2Nen>K5Y+-2I&(m-m3pD_!5(=^46df#DZvf&Z@(Mp*)*tSa;h{6Of?`CEN9;ZLD5 z1?}v!9vYkVm3CX*qkC&SBRjO6GSQ;cPue-_!MmTDQ;me8NA7@>w$)ufk)+^#x2gL$ z<(WS80QsFdInEq8eKtggdY?7opgx;=$aj`+Uh(3ceDdhAh(9d%Y{_h2L_e~8!_~3K zdXCGc>3rl0kh;x!Qa!2O{y7?T`9n2P>&bNs?QF%x@1oYB-wB&1hR)qa1W3&&*oV6g zG@MhY3Sn8OM{plf_wwatG5^cHxTmGzpXwl5Q(qMAsgPD@uP`9s%*s6VxJ|{nFB>M_ zpwh>d(8JnaP6Jcp&3bp?nr+}}Ni_WEhiJzCX62{-ns@STRazmJv6-#-Etj^RTqg2V z8Vxoq;AhXcKhBCy9o77K3oH>U?(@|-7+l^3Oj$P7xUZMPYJdK$BHTjfr5*ysN`RqH?2&j!wnj z8c&r>_Uvs0FZk_#wcAkpaIWxiL7v#%zd!PKoP$^V_HswJI?HPDfz{O?c2(=Viz;ATq-~F?@qYp=z zA64{4p8J&2ysSfteUnXX&SJrm zd}VgFRWGD2k^QQm9}dm_*_oF~X=Qh3%gyEfuoLTDJ=dE7FOF%OxqcX(w{%4g0(Mgu zZw&KJvRh#;plgOs5i^Y)neYC8Zx#1n03`AFBqtr+p@l%X01D%a>A~+s!qt@zBioZLng8tnEP*VG48Rn6M>%qzn@_D`YuUQm9hHn7e7l*{2!y;=pqtuXeAG6lIVC=OI(9n)=8{ zwe%I7FW;+)&co9#_aCH?Gndo*vuBLjz}b7Cxp}2MPrenp1l>a@M-z7Rgsr? z`tp_1#(y34u10;?x@pl@Gc@3{=(W4nKeF9iv)-{-yY)wHLd}S;75YV(+?NQRoIb8 z7KE1(*2VHHeaNz%m6U(23~(<|o9-4!pCg)&;QO=)sN zD2c2ivnB?w+i7@QWQRj=!5Y!VT*qlh)K`2Wk}CK6Wy?DmddR}n)4GWXu5|9*P(r+Da*$2ic2YQDI7_wquvv*OJ;c&6Qj^V zQ&&{Uk$O^(LaB$0AcAom>7Y^E?2P`RyS) zJ5<<9Ytn;1fu@9Gd(-3&oo+6#FICuE!E2V$Cc;j^P+Xs8a0y!5emmiM+J-(U!~1da zTjU$R3#HICekO_U)hHP`@Otj*)s6bz-N`?1=lX_*%qbYEm8+{=IM5V99r3>HdL5sh zvo^i}i9-<#K`qN#U`o~xx(qgMMH-~~dEj=#-8bo|LDAo=0%-D)d5x#h7gn@&I2-TF$Q;;_?Z`{Z} zET(|LFq5jTTx@iqN1gMn(UUBaq~khUe9GAQR*uHDH>8Edtb~ifTNv9TTVETzGw#XI zTdK`nzhorYa#x&tbxhRGXsgHkU^jdgfAu9&uOi2CBLCx-n4mPqGoY)a6D}sPnM*Ux z72cBJWsSx$k(^muGF=SDjgS;mGkYMc(-^~9%z!B5#tgkR3IHWVZvXv0rbP1!P^M91 zm{J*mFDdS6fP_P4S=O5z%xmjXoe+{VMn#VZ^Rd{y*Eok5#Su1i=FJ=#b8d5S0Y345 zDOu)1SklRMSn zrq-p_Otk1Dbr7U5#bZ=D92si%{5_?Q{9hK}%kgzF&5EFn*R32E$c;bC$sY^b#?3YE z{MF|31K*vJsu@Co#z16aTz*+WkS!kb_6=1Vjs#T*9!=!v3b*79>ByHg(9khdK&Z=xl_SUt&|-?1WqZ2NiY zPP9?lTpvU^%<%^Ajq3_!RcH`w2PD8L<3URU)xhCoQkm+r+5apx|NiYJ&JPM}TJ`?{ z6khb`Z4KjqDA&YHY$j0P@F>gh!)=& zS?q)&6lkPQl}Ib)a7@T#v@o~`U%Yyj5h8@#GmT$c72i&gMrNzK>`t1H&7>aV)gsT zq+jhur^g;GfA9AJP*FV7e{ozv?)Jv^<|b=-m0wem-PkU3p55}NE25hA?%%$Nulzmn zo0Y3CdOyFBcooThww&hx@3)V!MeJu}sb0r!#Moa$e~<6xCJIn6O}h-{_UbzIl19nz zf8XoZg4DInxEat60BU7LVPx5e2(BKRNo)Sze@pI91?V0k@IR;x`xyL6XX8m!n;|j|vnr&09VUaY7&60y zvrOJjyvV`jcSP79ziZwN*y~=zEd3bV94G2+NAIA=k`6q$YyI6nS3h|N z|Nj;8Xv(FC!h#K@f`W~{vLJ9RM@H?er0&l2E~%yqE%GGrh-zqBTQB%-4ZGLU=dF@5 z`)oCLPG$X^Ufd%G1r8X)QS-ieg8AVsc=>*`Q?w^6dn6kgDDmwSHc&aRLq?(1SE$nEX$IhQ-sD)iKBT^k zeTYiGF90+-w-?GuHr0McVu2DDT;J#P`7kP7LCQ-gVT%5IX;W3=bAOe+WRLkiBCt27 zCN_7aEYMM^Ns1Y-0)Ip1Y!6zghTC&-CJ=kH<(y+ql|8pILS89tDL36+YU_?p8Q!hF zY|BoYAzXV+#O&viz8JSARlbOVxZz8!H#B+ zLHwnZjoz(F&Ejsk{lbY}hf0UIwl*{xPFrz|%SxoL+Y*ZRDQJ<@2SBkStS)q2z+#HR zuZn;?2_5d(P9qhTuo*HAfDB|plf;vANtC2X$B$>V4 zNzF9#p|F&AcE~~2hJ&DJY5a!bCybH8zrTyjVEsqRS2-)ZAB+1h46V-D$#wKz5o-if zgD&%7iH&dxHems8&s(30T(5mevD;#d-WAZ=Otr8pI4H$CWdsMbP$b)tIL3?Pk9Dra z;%V3TK*%HnJuhumGGBbGafZQXagjs4*r+CxXet4yhGM z7D<83~u0K&RK2j)+9tB+HAkjUti?WELw+s`WBXmEw1+rU1@mas6;qG~3t zU^bYhwrFS5S;>=f&Zh66Dqkr%O1%h*AmA}UL7I_;4MucFLllCQ{leY7%F(|&hs(C- z&ihtgOEB41u3Z_f{ZqNOq@SwcA5>(tvda^^yi~iHuxmLYisW8tUJ~FtGC5k^ zx97h$;<2JKebp{crc7Nj9mRhn5@X;L$%w--u|HsZ{fU8> z*Cmn}`4#w;7{ZU;v&UeX8;R!6a(^YSlz0@auh`8xEv_eDk#FuNhBn2W&Mk;Kf3v?R zsexXpZzVy-^*TYta3JZP9$? z`^(;%ot8=?B;<86Ha_x~ZJ5P5deJbAmtBrMtEi;J{2PZ6V!^#_{Mg2?j^+9w!=Hrk1)i)ysctElw9&WRQ%tY;Gm74$l-^o<4O z5Od*F)B`pnx;^?qksiAC?nXU;eCGeQJYi+0>l6bV1ImUKA2h!W55J1ZUZA}D#Wtv$ zT?vTLTU|=v#S=&@aTAA+7MTXwF_7lcakS(?R`zy&v_ib(hX)KjrR53-KjQcnRAIA^ zYLnX6ItqNT!LbfLq(()tN&dG&XfvBPT}bvpOp?B;UV;r!8II~$wopg*5{ zhu&R_7Z@r{OpH30^_Sna=C*t|*3<49oK+p2v>w1@fOhB}E~U?xHd@eer7TE?-N+6L zr+)y#pLdeB?tf(%(*36d zRB1OWxTuw*n+Y94{)|#gNyq7>jKgjL6vU-0e%`MwS2LD;hlb91p-SDn*LSIQ@x8wI z$tS0?GTJ@MOz458;@WX;FE6lRwdac#el1w`+c^GLX5t5Y)-`_n{r+pc#Kg{4W#!h^ z;jUBe20A4(&D+U@$y^*&dldz8!A!b6R253ExdoU#76T(&lc)7x|i{HLg6SX zlA_Sr9yyoyqNqZt*}d#=-U}on^3|~W#@mzC+iz00XsNqRsT))MHMdvBg}U5h)JG=t zUN>DE6#F}qKEG2rIrSp{?t@!x;r4a3B{^@5qM8ekF8(sOJA{Vlm*3}R;&|*CA|gN1 z5O8BaXK9LmVWjBn@40vv+`AL9;%xG)TsPFe`2DA7`;n1D)Zya~jJSi>86`E}6LiN* zOui@lnNJ+%ztpbJJHc^CUigr~!1qWsE<8!3SwCes&W;>_GO60qB#iwwzTLdI<7T@T zlY6*o3lZmn6_(|VP*RO36$yJ&>ii+;SKcqTPPe{yBU2h~E4R<2T%xPGCVA(+Ck+cayqO&s7fPpPQ})S$k9Mn%z!E>ef$>Ki@6N6saGvl*tBMj44WQv=Sr;eF1$tk_yu=v+|L>v-^Y0ujk+xI|W_KR+(C zF*jJGxctj=V9_tx@Kp;}5*uTsPZY(+0&~R#?@d=y#?UUjzSggj5jnF!w8(88VC}KN z7ts?#k0Q1GL~w;R_=jC=q&YY>TVMw}jqKe;sP8VS4YSN}&AC@ry7{T8A_s&NX-c`+ zC?aD;KmZ>ytwzeTOj+OYKRbwkN>l~o-I5F+q#B--0HltPU`wqC`odvB$;GZ zxUq>pMZYL^Ev*>Ve0Gz{eCFPf|3}lgKr{XSe>_^6OJ$NKmu#a{h^fgXm$@{R=rVV? z%v@p=8FJ4=%(Wu-$d_`zHJ2r#+%HM4GnZT{mq~Ir{_lS0{LkrhJDo7wXRpue{d_(i zh$9saIg$_I?Gfh#Cx>fuKF6{Q$9=aqg4n;=OYbiaA3lRFc+_1)rzqeyb#8fIi^PT9 zXu0i8oJBuTKc=ECzQkIRS4JZh6wt>S3QrKqEMRbkryK2x0|kvmB7MFxY4NouO0Ad( z1pA|R{rVbvo88~F{E$=9%Nzg8GdN?T?fBgfmlnDQBHrB7cHks?uVSj=31%kxD3s!V zt?@&#EvQnNsGizIAkLCE!Y4GFE?^v0=H>KXvC4nBjm8TfH^W<+-kRNqH(=a)xSp0u zcNIKt)0vDw@iAy2#CaLebp#)3m@EB8Uij2h#XPeoX#U*Z#(DoK$NJ6w)B>w6lKtpi z>!pEJCc8;vhjk=qrJh}M{Jc77Ol=idZ+;Cg8UHYTa;>FhD%{#<*puA<%V*~rP?nIk zI!UU6?qeUG@eQTvHv)QW;`Hf+xch{-22+6g579z5OSEAmI1us^7#)fcy(}6W3(o>n zua*D}NZ>pj^i9dH6-%ic+`uS8^R)w+X5o0{8w?mX=>84aKdHH|1T0vZIN^)uuuR!7 zCRcLno4M;=BCiE=nTX*;NV&x=olY~@G2;)bjQ`Wz@QHU5GOzY(%yVXx!rNTfmryem>2lKrSS5AP7`R z*K?eJjvL(_$1xlOyLe5Y+4Os&R(e<{e6K)5#3BLWO=pS$1x2y6{DPz4sPF5o(gSkSqB&4BsUqoc&0Wt!sxsv?x zL}#=cnK$pLZT%moA&HMRdcnyYTu1#zzF1zrBYi(!A5zt`v2ppj>BrH-WA!Z!;r{a` zJ_;M5^-YY}x16?we=FonfkwCtr8ItDh_9XgE5+Z!0;Fqj2%Mi20_9VglKGU(UoI<0 zRWNj=bj2p~GO)AR3>+-sKBGBJ7?_3=TpMm(?e8+=KR)}EAN~OBrvX~yUx50b-5mHu z@+g;%HosI1*(7`l+kD;t?F1PN2u|&v53&@7yGP{+tu7U0&0?WoVVaXPIA}7z)yt@g z^?asa2${Xj2|{!t;At0ZpPDHVM}ag~vKKa2wK|TlSUNp zZLqK~34QZ&2(t++0fmom=5tBWyM!b>JwIM)j zED%*%jy9SCm;@4}S;D?bFo6kZ#tgOPqq;UIClN{X74Q8lW02hydZ_a-wddDUM%q*G zXS(uH;hX)*W_TpFPpKftFRqExo`8l_f zMWX;IeORx#M#rMENRc<2YIP<_DjK?wYcel6e%I>ErB%z5KTO=$2j?%580#lzQwhQ< zoSc^URyP1Bp1=KO6ya4R=^AAe9L@QH7r@!kF^YFcbQEVF{3t?e8!4&#P-Kz@NnqG; zBSI&mP6lo)pDw8t)AHUA3OqqxkFe^M1I1X zIfdrJ6Y)%-_8X1X(Wz#D7dVNZ^BM;Lz|CHVeeY~`1Bv8D!<;xL5euH~(O^kW1ZWux zEVkZPLWpc~OJgV8bSZYm(XcZYJC#x8bn^V+OX)PWN`?kqIfYp0em9`Jt386mc&_hF zP3ylGr7<}Z^&`s&*NU<67lMHsm7lzFK%j3Y zEV5`%`31-f)~r6mO7;vAjZIjj(do4mAYQboS~QZ7lLWaEGQ)lBJ-Z@k*5t$1yOL^E ziRL$EOguATjsA|oGKQF91t^T|CXVWQzaX`A5dQGquFI(*G1BmgsJ}V%A87;`VcSH0+Df^Kxf!wa3#8^SYS8jzZRv#aq z_kPtuWIsklqSt0~lC}TF_gO#Cx1CvG5UHeYaB91I&?-HPOs`uYClk8OE`~&ax@i5l zW6a#h4GZrjashxfUtd^!IC3L4S=l3v)(1{j=P*)nA{70)&6u!XfPby0Gt&L-V2^v?tc&%|jQid~iT^g3pKe>v&YsYMtgnm4 zipExIJuH)3@K&P}*F}vlJup6!7K5|@`iwNSb;7DiTnH?HhhEt>qToWN6ETa&Vo#G* z2lnTwj@1!l)b<1xCZN1f&X{kPYxZk3a-JTV;1b|DmDUgkq7p_nLm%Vm-f1z^={4<* zeUV#;lDjaD#;)?;zi}6PG8IlAiB+S|%qd?u$&ToYAE~bU{#nT;^vN;t3E>Mtzcp4~ zFL|tREU7nVztXaqZ1~bV+xd_{zsaaj>tJT!8HF`n!*yLFv!kf=FpSx)-y+1D@>xT@ud{CM~CM>g8_@@j~8)TD(ld~$~(9h#xJh~3{vk_5zx|I7SnfWv`tIGwo zkGePKnA>0!?m1$zBz{seo+m5^s*m922c2HEcu2xNtNRY!5Mf|gCQz?WFvfQWtT%fC z)58yr)g4rv58BAw?E$RYo#?+{I93;KWR{FE>-;zWtlhI_kk!POPR6dc7^Ec|K0SGq zb7c2d=5Cl*)k$SF!yuqi-<~E?yz_kcb=R;ORdrY4$8UL@6A-m0HbY{7g zYhgLmzq;o;JT8eg!#m*k11vZ161vy4raeV)-mMGwYW9xg7baI{;V@Iv;c8=sXT_nP ze1egZAhzBkO>dmHIth((T zLXwmv=**^7)M|&kF%!5YL(p+Dw#~eeM`8eWrL7!5Y$)U{N=or(MHJ?f7?J~CV&EJ2 zIhi9AVB;2P%Bh}DIDc(xY=G<8?#A5g@V|)|T-X_j5GYLG;dUsn?v9Tw4D^%J-)Vnu zgL6yU2}dCz9pw+J6xL{@O?%@mlHy@qhcsH(TI)16nPbk4(SOlH=TtR=l_&^nmY|dN zgKtUlYX<(9@Jm)>#zmCfv?h+TtA?0^to7?Q;0G2kosj?)l6okK5tG*kU!FOV8MN(K zzqT^IHJ7CRzHX!_oV~TPb_&T72Vb|J#+Li;>|V7DJ!q?kT~iYHi+4S?Wh(6@!%=B) zdv#-D$a7buu1Ijh)tRNoTH$Hk3+00*WP?LW2~^G2%n<#TAOL(3 zuy#f|dJn5I@1MdVdPyKkz0U#`%z)XBl3(Q#-Q3-)NEx(e4_>j|&a98-Gn!4p*}oo+ zIE3)Sev!QaD;C@=SyzI2haqIjLqUeqCB3}pR~)=WLeXFzhS5;BwD7!m6P-%g*KrI8 z_#F3zp|imWGhGYuj`T=)s??%*o!-=M%b4?98XIgvq2ewHaYSS1%d2PKifA34eI>4$ zHWS=vkV@2*Kb>A0`uH*TlLHvAVC8%ALibyI+5MElgF-&lc_z~E`FrtI%P^%wFgCdZbdZa}2pv;|6;h_gI{-kcRbIkaeYoOMHx%1JQg ziv6B#6H4LW)mZKDUv}Bq9sj->TdG{)EN9QpDFUH@WVt0+6hnlD1Wcj&ZY#o}`*^7j z&iWu9oU*;z!oxo%H(k zBc@zW&LVe*t#_06b~LuCatGc0SLdnh@m+fTO3B_x(4P&~l=2VSF*Ie`ZH2(Oat6`h zV>UoiB_3`n7rha?glcrVHuSR7l^T6{z^W&iurP4h*Jpd{U^2iB9_s$$ihf;isQ=hk zv>u+G8h5EL<}WOf@(S<_3JO0|DdLHc7l3;rD3>ZY!n2*PJKVJv z8>_Fsa<}=Cn~0&#&>9_PqdL89#(-Vk*wr~{0Y(~ z5E8FoFEc?NRBZX-B8UUhSkFXBd5Hs+5o=~Z^kEAHdHRaD)Vby&ej(&5S9u|Rfow)R zBJLYr``+^Bzk|g9mgFC`$BGrNI!s6X)Uyfu=GHBvb3Y60A)Y0C)CotSb7z%FU)Q&(!Hg% z=j60;z)w_l2x?|?oZi3VwVrB-kg z@aEpKB;~x|q+13KTOHjH8FxM|uF(pI5l9H8X$ze7#$lkY4P=KCwdM%#Yvt*}%w}VV zjklf*K?2`(R>W~SP0>ztt)px81EEc{M19jI)w4>bBHtl8UeA-k_ubHE^LrQshlSc& z9PeeNC?b6XK%1tG%m@avF_YQw55UYNIUGzE0UKg2bYJkYu+Wg3NG1aDmf@Iy#v%|? z6>i>2h7Us)=bD4HV3AOeGNj+DVz9qvZnY#57uL4R3g^oo4vu0N$;!=NnfMC2i(9`K zB0~8bx}^AUbyc4bkiH_2G}2XEc^&C=6<^rDx26N@-M4-G7g%gJYkVGQKbd|J`2#G0pX5M47M`grbaCi5^HhzV$)?A|wuoxm zb(de36ZnQ9<8`G4!HoQxq@|Pb&X0iseqp9(YQygR2x!n@i(3wQI{j)w70TtkBr>NYrSOAT&>~f<4^XB@|)fmFtHB& zy)%1c_xI}~*6JM*W~=pkYkNvATyBiTrd2PU?)(~(r4O}i{3OVY$H zo~mLe6U*%N@Qxsu{=y(;wCEg&v`p6)$HunI&(BjuQ6XMdtDnd*3TTk)TYo!o zk-i!0Rckm=T_Owr zn0tLTiX9fKg<$gS$tM+s!8w4pSx$`?bS19cBqqOcG;2C zKLmERmmQTda`Wj{i*89)Aoa-vqw;#P!acuKuf5+J%ZzRByNAOIsFnX?>_ZW*`?1#5 z?LYj$73Fu{2${|%z`?0ijl4}NuSjY1gRVJND-{Z;Q_|R56mSt!0OPltr>(lj}4R?5`yBfqou>uzc3o1&%9egd42SZ+jZK!E4=YDqvxsr6v&-tTpdM{NDO zIvJk<aDGiXEyZ^vA)JoZ|3X4KB@?iLpu zQ>l>U?)(8zd%%L{$n(@JOu3^oHFdrdygF4Dyg|N9y$KvICrPz{n5|}44JmK#-$@QO zUYL0obQFXZNH_EeG7?iM;DCS|sfa!>G(lq2`U#`{DBh~vzTRr;WR|Fq$V!+dd+F-n z^#Mu@In|k)@48aMN~FAG3|L8kE#Q7UQPoqr`|IyZE?Gg#WOkTiN7UypQ4iBr9#kC7 zfh;82J;mfHYd`erU&tqs8L+JT`{O+n83sMYa|qY}yo3f!!%yZR5~&eIqm%N4pHWIm zR}Xy#s2`Pqi_gun3}aTA;hTH!YxkH+OCdzFoFUq6aDgxpcHK|Y# z9qc6ybKs~DWye$nA<2)+4-1t+h$@jaLIcdVE@u=sRWM=EP2-ml?$HX1c_eV7X`b<; zf+zJfW`f04D-wsqJ~?8ow%6EkJlV|C_*eoqm|r5UQbQDdMMuJGFjYOn;o`f~8MhS+=jHvEqNNEY^SBv64NAWEY-R0ShW2R;S^ET_GQ zJXdt57xS{Z`a@Mof<6>s)QF+RC)6@Yltn&aul`y&Ph;@zCdTt{(yd|W5^Awo z#YKrG)xAKp(guAi8<8_Wb|TZpZ$kk+I|+Fxq5&>g9q%fb#yxzfJRTeh*^ z5hn>rkuZ6h6xx%KoAIz}pFV<7dCXRXA`-?7)=ZG16XW8XP}qAS5K;#GX$08Sfdgc2 znNM9^2KdWrYEL3;tP>}e@b%* z960uKv1k(L0-n?_5u>wwZ?&Q zJY`LOd966j%&x`F{3=2$MXqQhnXFO{JH_P!yT`kVkV43y{uGcI&vE}bK!CJy8Z zxHk9lc-;csuJvsf2L%lVl)PIHyxaX&B`?3Awt(Kwr1h08P%hbHB{d`T);>Lx*LwVP z1&KgFu#xbC{4niZ4kYChMOZPLPZJxDyU!0%EwiJmvK_p=`jx%zX8aiTE84CNEUYv1 zGCAt4elip!cx3E54WXUK0np=VCPLj2JZ_l8GD(6aRMNE+I3`JP6ouK|)zwwCpslS{ z6)r%7ewk@#1DUm!u;-W1{Ca+;F=_ATi_O1B-+w)UfA6(2zOy>Mb*_H7gvpGJ{jg?B zYqH+y8sB9dVNLeiDy1jBD+Q0`?g7q~+eH^sJq~274Nmz~@^RTBBsKBGQFGn{@*e&h zAH&DlAJ?ZNzch=y^rJqccnD@Gl z$U)~~Z7l>ij}|Fc&7RJ8!xeC`Pi%U=iFde>qvF z&QnAN!MlC?F*X(gG^Bhh@zI5;cAcU3hyz3XFu7~xyg!S;=_WG&&)l4fr%a1i$_Y5g zq?LBy;8jjTO>=c6$>OMUq)^Fg9CyG&CBdCsFyB-zV}==;!G_4(-m}LVc(oBLrSOerj9Y-++0ZePq}>Xs)2m8 zAh6qmPPZiyU@T!@)eI)uPbA~EebwczNgt;FxtRLCcEozih29{zI5vvN$a;tDl>9$vTJ)c+!9=3zPW(R^Kf;OZl@K}KpSKO$hN zU`g#m9e6>h@3#9Hh7iT-SNwt~VhQKT;o9>|2jz6hVJYYO@pWebAQU4M2BeIfO2MX< z$>dG31M82RxpKBL^+)H`K{bP-cfgMTh)9>x6UVmt`)%(rP2DHrxv%%BEs^V1+skCG z8Q%zq3FJ-(I8`W&!yfR>NCnWym>7kFZYL6c${pR8G>lWZK2En*fPNk*q?LIut z`(hi6$g&9w9vmHi;1w+L(HhJD1_pF^7_V!ujJ23^((&7o#;oMsO_a->=)bL^sFv1?o>VV;B0femneeOzwB`uF#ZHyUzjr6P-RoPcsF~T_ zis1Mc_~$Ke;*-f)XC3iCUWx25!;^=JCN&FaF74rt6kzPp2=wg)54f1*Fz_C5mBAdj zvY6k->IWoI5H9!jnR2TcUMi_U2)?2W&=wUOj640ylNY*f&l?2CVUdD7>B5wcWYWUF z5+3i$0Z`(AhUFODt`w5(PQhYt;j#`TV0)1xr?Pb`g?h8~hl<<(s5GaT%@nrB6YOhP z;xRqe^?H!!V#jNtRyw5$BKlCtte!HU@dfN>cUjCH%N;0QcfqXf^RT1qnA!C~jh*_y z^`yWljX=jLH`Wr%{O4NR!LAm=OpWV_*@zqi6Q zHkxv(Du(`I-VOZl9o!oA%iO92a+B?*z@X}&YLWGzouBvies2B#_ha^p#dhBK_QqVP zM$zl1jMRd+RRh~A$4k<@E-lRZ0^9by49Ia87+S0U9aHqA_5z@|`4U++?=u-M+wtf3 z?^2mO-;}(!nTbb5LaXCGi6ofoxEMfNuTr~T=Kk8++5$NZvT9ujKjO^yx%)4FDChWQ zgmjjr-S`JfcTQ=@dXo=w(0)-73SWIv$QYZXD~IWtsh4g?wTcp^FBlZ9LPOf6AVYUs zPDFyML6nh;RRZa0{wS_dLXwzhg>}+)sdF{Cdh^ALr$FAp0Swh6M1szR36b!P{ucJH zg+4g{rA2ee(-R8$oy}So?*FHhj7o}kaTs}_`{~;okL))4#6!j}Qk`%-2qd}a*Bx*V zmG$mydhiwXNAssRjqJnv3*R~~_N{)f?kf70__yM}-C^cdthKm>PE0(WYXPLvaFM)P zi5(XQx^CfbX9|`_KXu~a9#B9R7#@YbxlVVz@~PrSkM(>1&HsSMcXwC40x&|XFbQ*~ z{{c;pXI|E@v;weIj3aQN5YxFO%i=TC19#S@uJDAtIs1hx!bsZOWn#cj=T+RD)Xo9F zsMdT@f|xcxj8rtPYv5VccuF35{XV#d5;g4DUiuIawEiWuem9d1kSSTMizlOoTyD`X{IS;fwMK4S39$jXv%5#Uv@o zkn&r&e^QbBv-}QovIXT=IVoaw>k&jNt$(UtS5!BI%T=-=IJyBe_BaGY7(iWOhXQ>o zdG{eM{WM|8J93n`xS8mDy;*a0ypQG=O28g679JaEg8U z*85Z;0??A>wHkSj7QP{9YlU(=L7q5fWaHHNF*s!c`lQ)R>j5S!tSMuga^M7%%TbKe z7%C3|zxn8(F=!_N}`umh)G&U>wZJO+Wl?p% z%|~~Hps9+WiX#$oKo3MUcoF;2LO3*r$3MVNjLrsf)Hj^Bx7tepl5Qt9X#Ux8-@QNh z#K3ii#;ynmCHebSQOqIpIQ`&5FM%@!d_u{?;^*9G|K6_<}?M? z7Z-rUyP3%tpntr~jQG+VR#wI@qKX6pL5EbLl`BO-uMt+i$ zp4_?02U5_Zve=t1ehHw3?iGb99<-695{-gkXgz^DF9cf=#6&@|E|j2O-JXDr#|r>u zj2;<50e3JCDYZs5`3a4`C%c1K%YU8n#y4Hrul*SL<@unHekdU<9-kO`ME(AjIhiW4+ zMh?m4FcAh0_wn=Y{R8Tk)qM8Tv?d~K2uWQcU#I5hx2MjWTWtL2qBnP!W4LzaQmUb6 zNcuxKa@gbOt}rP}y`f-10Rapx9!LP;1WbZ!Xc_;lp#zlz=_i`u5lIVpsp-D*Vyz&Ty^VEuBhe%^x50 z#YTakc2&d7eb|50hzOyNpH+;hJrO_-4cxWqzz47#$G(+dB;q&9RK69CdaT)SAM6XWyMoffh!g*QwoaS+X0!gUQ|&+#@2=z5vonH~sgAP@UYvzNtNlGtX2!jC_Q>>B^Q?xq9Sg!Qnrfa;+ z<@Q(0c;w=}z8=mlen*p;53G-J>L>??(Bn%|={HU@RzR<)qqD5ovN8&+h5tI=(uolz zkdC)Z-Gpt(C~Bv8tLlRU57;Fcmc+TkGFhoA47bB7c55n!>1;RAzLoVp8E>$K;WZKgBdu&XZd>=)+D@O zfOBK^$`bSL$=&Iep0S`G`ZX+8?B0*106&(2h`e#-*lAsvyxTg#N+1dX;7w^a^1Q5a zomq9~AeBxnQ%%detCRQn%ddS6%&4#|_RW}T#Mo6aiaH`9d^2W!-Fh4F!UFuTqIb?? z27S}*q690GSBB3FjMvmdT56G2i{2*#H`A@zpG$WCT(RE$*|GFteeCv!zlU$1RylIy zZ?oHx&+N;PKuxGg&c)*O*0IK)BhmG%dPZW;-S=C|+KYz= z``$O{@f^Sc8Wq?<)p;v2*El%$bD6xbnlaeqWB7Nc4ZpYLd&x^s(=#@nH$Z6qlo71e z43^{_G&6p&c-GTl|Lk>F%8=91TNEUia(%QzFo;Smo2-HCcViY&5#ZVc8q{=4Jj!Jn z{_a6Wf2+aev>WG_?j|ww*ru@vT}mJqlusJVL-`^MPS9YzNb?K&^}ksFJdjaR0z$~2 zkL>-aXD5wsH7nKl?s)Gq_9jbq^MdA^N&-uZr#^Qa-|KbX^9%YBv_+@4oxl5jbQO+T ziplE)D+lIPp7Lg`o0Z%z1T?8f+8?k29?k-e-5awG!oFG z$@H3cAI7_iy!36(WPf%W(|x0Rz3&cQAOU#Ua-9>tA=}+xWc~b3r+^f1O$S|Y_lZ<2 z5U5~uf&1-b=cBM@M|>ndwX^*>rxS4c+4q^_^3T!-yo$;TvUQ`3$qtWEDT~f2!J-8< zrHAnSNbu5Fmvg=|ti~O*(r&E`&68C#enz%E{^Gwst&QS#Z?oSj#T7Jroaktc*L_uJ zyL!q}8Y^#_L^Z%O^o2ALLPCw5raF{b>dr+bz{;Z*~x<{7Jb){2*Rs-5Dh z!-%7BeNg@GE>oeU)VU5&IT-(X#V;NdO?8r^we#&dJJ5Qj@Sg11 z+X7$>k?;p8*oRtc0+oH%>ceZR@{ENB|pT?UdKZXjo3rG+`fP&djsc&6B@S-sf5R!XfG3}6aBCS!&KW)Fo(;a>zt@F!n1xa}~UXwP#LR&?=8c?P9;T`>U}(;`(t z%~b#3yY|QH1&2O7DlX1aio*_tH|7O5Z#Rkhme=WQ(;Ijxh+7fy6b`{H!Wil`$8*Tu zkw(gsNl0V`7Vg?mo ztJkMuYNDX!2mg}ws)3(B4Y2ejzUZ8DEw5&J2E|6DXjXEZGKdg*{?=}8=(^(i0p5k) zqcEP{|IY$Mnm}K^`f1|N9;^xYlo!-`Bq;MbKS#vb&SWtoEZ8J7Bs6!PAHspyF;$X* zv*Clvw87&Pju$Dt(wpOx>>O$VVEznIs7K>>mJ2pT-4VwLuU7ERnmSObgru>ZSZ}7SliW z#`V55)H3mYub)VAuq0n2<_lOmL;zeNH$#BzVmlQjWE=YCtiC3=0XC4PD#1A9P;nGe zX>4PL@U zyavkA24=KhI$;M6eKmR&CmQlmUynP^HSEmMv-!+r%~E<--Op=v>eLljD?i z0`lL0dFu@O0&(dkYSH|l!OQIz>kQ|?+@KH7E1Woqxj7O0OkO;FTb1A58OKxQWELjd zMwX^>FnY7gD*;(uKUVzmqvb!J1B22D!h~SS_An0M*$fMgaH_lV$wOrruo(fe=Q)JN z!67gh-sG$t-6>=nR^YlHffptX4IRKjY%TFv9#Z~Q94r}yY!`C8HGwprfxb0(23Y;z z721AB3Re6z%t}Jeb$^y7ISX1^5GNm@Xu+dve;5HFXKtB>BTGAC21*ZbRg}e%hWkc; zye%QvD|kT4QhyXQv6i1*nFmMachyGgFp)xa@4UqFh))O3UfVfiI36eh(3i5@kTKjH zF!qLRaO-nf-#I3~S`4Lj%WohhC4t){|N9~CpyKxC$7kIE8bb-rj}>qv(%Uh&aL|y& za*hWM-IM{Z&7Vyr?9TwiLM=PXS=m-r-0}5MruTM!xmZycry6KyGXV5Jpl;ncr5UHc zqQ-$W^HLK}>T}M>8`$ zTdrg*&H9?)Tf(;^2J)P(67y4LYu*8s=I>-3moABKkKBt8vU&gA17m03%}D6*onru7 z9Qmd&{}V^h(2>{ZZmG_Mres;~|U z%E&d$tn*n)uWH|2m|-sMJX;#QyJ$r$mDNps1l%bjekB!YN^~oog3dmVxy4S2x9iTz z=`rgi0EZ`H@%4g%W#`I;Recyu(K98leXi(=1Vu3W9c_H+(R^=8wtmVZ6R2vBo=ycw zlOnTM-Bhn!4cyvT>j_$UZN1rS5;V!q1Ba|htG$D*)4LhO$zQi~Pus8pfxp(4v9vJ} zuq6u@idi4k_;O1=s~CtFKGAm zu=lTA58~zHg+Ps+O2Z#tejm(n^uo(Ysgk=MUK6a0q!Q=vZ59h_qvHz3Yksp9^4{mm zl20|;m__KhS3c>Q{f!w72Gk;9p1XhQ_CimxJ)x3`VTf`~X-$bp8An^`J8!O=qg?D` zzNXx5F&!jYd0MrkpbF0R&3Ht|gB8@30XRX7U?0<|;2~Dy5K~B;E->*fS&E^viw*0p zzvyrzV(`V$Z#{lk;$Skrm~YCx`Gv)bf)+q~Mk)ZfK^x(7<@}P`B$CzXXLJ%zhCA zc6~_mpV7d4`Tk7!Hzk0oO%KBaNB5N9qguA$==tb#6?!x9%~Ji?RiBk<_F(4a+v!N4 zaz;QLj>00p9FUOI1dMkqFuNEQ*Y9?(+76oYE|i|ETm3n>`?X|mac_5tT^F=LcR!g+ zrw@XqTkrVpoGRVRGst@o+tTNuCcC31Ad;$xD0P-q-}#wztZaO7>8}6Qa!Zh_E}$&t zU{=S>Gl99XuQGMLsA^!#Ht3S2)sOil^#K3vf!Fi%Y_;{ZgBm*&CzK11m9>~TZ%%lh zhf2m+Z5?Z6XQ#rX1Mc0j%syEU7<(WySuu+U&v|bvM~?6n@Ck{Znt3iZ zG;^ZHVc5lYNGw)H_qvvHscP|L+#Q~CkCq~ZwEjBiMxC`s7tlSxs`Lg}jR-{?M(D;C z4_I!${qKEhuF%a-MnP}a*dI0g0zOra?PCzDoM4eaca#(s-5`zO(FF$u9(ZufV?ROx zOe1ZcXRkof}N9+mK#fY#YYVLqRZ&OCeT zzR%XcYoi6wtSpmD-VdG@|2QGY?De+d&YNbDMwG>NS6O5VqD7wSHJP1HEwh+U_EkwY zpYQwj!xy|h5{W6f`Q=v0noG}+3+3s_;Os8T3CJ5QUto*8^#Osdxcwnm-48r+coHG> z;$6%|q@@FDMg*U%j8R^@y&VQ%lJBf{N0jQ9KPHWXjArlZn`J=YWQPX*HQd|X+d8tl z>dsaLx7Yur7O)HG;a6haGBQ0Wy0r5#>b5kVCYPI2n0dF_3Waeec9*NZFI9fT&BAat)DMK0s&>{+CC68xe=i zK1;&Tw0awf_gzBH(Ayg$C$jT{BPKfWF+y^LhDd{s_=ML=NfoyscU*2Olfv!h*bh|@ z4;)^tw^gG%pdp7E9bU(^Cz9gqsZXJCR?RPY5tLWvm4z38Sx`jZ5>DVqAn8lEcG#h& z;_|<6iSWzCg}GAV_b~)S&RE76C8DOIpl4EC2(};sA~)YiYuV+`@k#GAi%-R&{I4VX~9DaO^2l6ENyXVn} zf>)7Vaff&k&ch)GeS*c(UTMDyW5*n{(FB0}C)}LIFKy*78hZ{*hA=-}Sl)_pw#yhA z72}rEIUu_$eoc zkRt}nXghoyjnMsi2?|_buNy+7N@AWs@wMv?$7iFV6il#uD_6*##)k>1fdRF;rLFaK zwY_yKm!*Ik>7H|UylNN$4^$V=aZnRpLLYDoE41$W7|bDn#Zg~21WO>$U=D^6KBZ~J z#YqWr;`m-lOxqmbd@5!Aom|BLwF8x^xS6hE}8dKV-zxDIYhW2&A}x3ptRVpODK{T`e(r8_^|C;Lh z5#mK5ct{vE-kw?mbncu4aqfXE*r@vrZh4BGxl+qU&u&xDe92Bn&}4YY5=hbADBPQ^ z-!`dVCvT6fYmofJYP!lfR!-w=WaOb7v$Ja~e|3`{s%S@9cTz4gyH>Li2fNu1>y=Xy z<`^Ok5dRi7y6yb+@fmW!xg`Pnu-+^&l?MRT)zs1kVI&S3qj|dZAA6wiET5gDNZioy z`_tTn&RFO06fS#BE()KWRm+T8v{Xnl?jt5|ANNsVd>DzpT&8l~EeCLZa>!TSkmC4F zgwUk8um(NVTCsQ*_*pjY8^-jO!`8_xezGMI6xph~P~54VrA)UFL8e%IFjFluBGGu` zxV7B*OLZzGdrcNCqmV?YFncAQr_OoK_amR^ktriMN-2n5WEF!1I1Ixi>1)^C0f-!# zHmK6$hF3R)L$fVzi6Gig7toTj@n%Q=PKYPVS(_g_QISz?w$ex9n!{jiB8;jybRQnW zwo2GOgRvY=4l_S~RK8$BDp=wq*nba5L4)3DA4 z3}<(m`&TKI_M_0t%QLvX$!X?qJEs=WpITq9W0><2jj_>`M2u08%D zuZ6Ij_i@h=AQ)X_ z1trM*U1QRNrmXi&7mnVJ_|22w$_$xRDpXIk#GH+S{-hzJBBgxa4>q z{o2%|?Im`krGw_xKY8DXVq;vRiu5sr>gvQ~MbvbyY})%VXq~O1Lr+-Z1Y9|jIl*e~ zRsiS^ylp;@%;#3u?Q-DDMS1c`D00xXU^kgVh_1!6&6h-t84O}nr?R7W$-F>(0zZTJ z462JCE`sV4sKsMlDON>aYKsZf{FDkkhZr!G^t7M{i0|s`cSfs%kSKNb&g!6suNkOx zjqZ(TY@{=$%qvD@Tg#+TsH&Ri>s5?8*5UAoeKb-Bbi!j8?P+E*=)b z5P+dP0UqR7WGiT;XqqQUp_*Is1Bwp{T_dd-m53TR4!$OvwZJ6X|7)F>Cmy%N9Ipql{|Av#k z2iHNTWb)*$2LGt~%&Oy^FJHLK@=pokS-DvTuW9*j*Dh2Hw@E7)J(k zk?iH&b+5;2wJ^mqwZFoz8&m}IX~Pv;{>eW&95m<1B8jz5=)knuf-KB&pwIkBMbO+1+I-N27%(j^CVb!8r)k)jbbdq@T z6@ew;6)A1+)N>rzpJxRlzr2o%d*C%#I5+YRc>chp7aQ?K4qc2!q0nRjo->dHZ&Ils z%2OES9iLqG43c}OxsvW+HJgSfdDHU?TvAv3KYV-S@|kg7{dVTcTGJyR14CULCx<{S z4-l6O>A$+-?Gm`Nur_~w$t@9( z9kvUJQpiDKOKsbu9eGR1&VPDv2K#k=P_jSsss)<2dR(=b79tfiw5;RpOJZfB%JiTHSH2eGe3E;&E@W!K; z6Jg4u_>0V9mU7j#Rqu?#y-x?{!@~osx@r^}9q9|@F2>$nXGiOVbKE*~G>^;GjGFWd z-&r4UOOubH8hHb}iHf1w@QHS6XDiVPeOt#uud&$p-NKw4yT96?Q+To%(EzUCt?82Vuzifk^ig9c;cMO^gK1VkxUtx}uZF%A5Bk_+ zv_*gAP>sL`>lGTS{Y(Da1=ibhQ6OA>S^NliW^G50Z`E0ErUq@F-@O*}Ykqudwj!^} zeW}M#!{^W1ViT^`?=Ed`qJ;fpkqij;IRCZH<1{H@g5)sHQrKP`^s_oq79dO;Mg}cf zec&uUCt|e;1AvT#2Fwz-nGF^$Qc8|UZ;&XJZG-cU=)FJP0T1zAdRF4U11hjtg5-m} zZv6Z(8-3;h4rxJ{RUeR2+-fCP0d^l3pU$aVx*)>73h8vNvZ7ALSH&uhLM>}SkCMH$ zug>Pv!-m2d+^#k1HNwH}638qBxYCqsqt?Od?$s5hEcYZ0i{YG-ppuYIs)CD$8{r@Y z4VK}6S|$$OEJnm&RwN?`2CBr#Ey9a}pql<4P3IoYbpQWx zMhqhpB4j6}J2}?mmeZV5aVsGSId!n*5UUU}SsF$~axSINoN8l}Q$o$5ZnwgWkh4t) zX%4@)?{)pI{&8KEIqdWKyxz~(^Z9sYJZE)JhFKkZXPk4&z&X+XW?0M&4Kz?KJnQ!A zc27DyWZmBDyv@Mc`&Pw4f1iHQr>2Af^OPwxvYwO8rCywW(=(iPhe2nRt+sh}KN_Hk}wtk8m;K9rO!ddXc(H_!(y zdO$cJkb-kdmsXMzRs{8rAW8k%O%eWz{5TW!Y~lr({^5}xLaL(CM)DGswA zdS!U?+vX=P(9}9UEEw9^Q1i|xPkT3GM=N&A3{%n3h3vnuvu$boa42##xF&LSVhQTQ z_(+MkZ(b!ulC~@S9Q?NV`$57^_RZ|{pl&QSz`d<5sFp%d-^qUe{$>#jAIHMy7!CIF z{I$YP>4H40xB2-j^viqyYxPE3*YYQAG)_d?DfYpurW^MuoQYTa=cE!zPhYyw z=_TIqV$r!Ty@&T8S06qdL|l?>pDSxTGzaB8&b{N={Kgtq1}oY9%4RQ9VPM~q?#n0t z&JcERyIH1Jvn$SU+acMMmjo)w0#IL?Q-6WfE%r^59j>*{(d;+4W4r0;OqM_})<6s= zNBCAhKs_yO)2G*d1iZT-`#BgAIe6#;Q!650hci+^;E2w(T8U*WoB{{mZFCKW1F_W1 z2WOZwdE5XBAv&11*&8TD_xRG26^tc!(B4*w03hp=+|A=CZ?PGy{yjPht zCzD{I-%bG49Drk{f%E8ma%wvGXcseT*27CMk~)+j2#xXbO!{)9iLU>Q^&$V~;``mV zTb=%9P@M$Ngu?DflM{zS9=W$ z-;#+@9!!1+2NvVF>0Iyy3b9Hz*5iw}2EEq(3z(RMAN)!!EI_fPPYh!EX`Y#6Ju&BO zm_+9jHj{F~$%>*EEcd~QZ-h(p*E~}DVss}I}&YBe(i+^SK-wa*F;EH=*v34fDXVUC${|AOG z@K_kKCV49_EUrB;6Xago{8uMRkZrcGsJl4LOM?*zH`b8K9iyQmomab5@G|0g$42;f zdqh@O2Zt7a9Q-NIuXz%DH&#LWry}f*bW*7_M6o78ME-=EMexoYjGud85>kf;mww*O zR&nd!+joc)&779KQbVXY7@!04)5Abru$XgnuvwI}SUXaeU_k%iE!25Bt|jxZK;M%4F%s z2eWKP+x#ect~{)lTsjpcZ=66vnK#pHt4sc*4Ug@#FDRvg<4@@BH04*GqzGsbBiW(| zg$5oE)hsxui`V1o8?#D5V6dM~m@o14bx*MTxHrjCIw89Ru(_MYkX+C`;Ie&9{Ya(W2d22dmD^iD$ zL7X4Dz4_tbTz_(Bz713u5?}L|z<79V2k7qkJ-xGDYJKXyW7|g;D@MVlQ7u2Zi4 z(RT=5OPdu}KNeG>ZW;+F-RF1CE@lsJy-`peDdA*~-Es?bVR$v%7L3NTmT%O>9F1Q1 z!@W5>zcJP6bgP_ie&Bf_^PJ1^&Oa_ zC(Aoq4Gs=kwfJ~u`U_>fvV~VtJ}7|$rN44tY-g2r8yMiIBomvI$}=ZrBdk*V`{}Ql zpdZM9RwP8(k*=M&l=J*xMy2NA$+;^$km0qN&<~|pgXw7|f_RN{lS420*Clw|-#w0& z)IqyK46u0-=}IsCbGaQ1HKA@`{mxyt* z6>V>kGcT|0j7atWSXwNr138SHiIxGe;C6IgNP^QgCS8HgoZ*-BOvA)5)?jr4Rk6PA z+S$)dLl^N&__Qk`T^(tb$c{4iYM3u9*u@{b3yR7IY@F{hJzVuBpR){h?aD%iua@=q zR=eY2LQW~ZMZF4M z;N(^#72nd8;peL*fl>C2pr^H@_KU@7^o!xD^uDI#HcA8QU}Yl~2d(JLB*~V|-ZIKp zsA}4G2RsfZ_ocLrp7AIyLBiE@(Pg@=Xt#g+C2cv29oEi`lK)l(3X1&HOR>kc(3iL90- zk@@wkckj;A-FF$IU~u=h_9IwaI?>Ip{qUtgl?P}&5R3}fF$y>d&QNLQa;YHc27hC4 zbZ^FfhGE*m1aE^w+@J7QI=3@zDT@%Qdq26XR+1;gvY&%B4Iz;t0pn>{Y&Z5iEO$^5)??QO${L8o~0DiNIAP=E(Hmr~id zEqU7Ykq?4qkL?My5h{xd2&6V5kTgsjP+zm4mAjP8AV7-)Sie3fg#_Hi=y;*z4vqB) zIX-;{!K2kqsiF~D2A@&eQYTSC!${==i&&vB4f9sqOD=iU4;im(EOnyY#=9dE6C~O? z2b#9UK%WM}Cmux4I=ZmNNGUK)ySIapNX~V_1br_T5HzSHAI}UtmLDQ$s)?qb{IwT-AUW z+6VYZmqTm&z@;Ia9!nXV5CaSkkXUi$*vJ_N2Dms>smLcqpa&IEjT6UPV;lE{ojGaW zS~$h;_(CAIJ)4pA`#}(e?!j0SZiMz6T zLD|hJ3&uQvoHuW_IUaG!z!LA{(e8#J1bX{P1>r(PxlovP!Y8OZ@MzpS2>+bU>P4u? zK~B;j9>_W|H;2}j5v$n4AKk)AJ62Hy>t`eq4VTZhHl2HG<_n| zLj(1cN28T=2wArWWP41sgM0=GV(l7kh>-AOv<%XX4z{@vU6z?NInKCTTAK2JUSK#e zyjUFK+GS(RG+6sWH8hhnq!k)=TOvc&h}Rj<*vS3JzVtbpf6n@--@<@uPE znQvPoI|(~yb9%7Bb+z1yhoFo#T|Z3uS!b1&Q7DK05VbfGCAWtSU7h__evOcV?%__d z{oOOh7QCz3lu9kMZMc1s9i!+@aTOh>aE~9!%uZYPYYmD__gnsbFJZ&aOHZ z87f#B-WUoYWfZ!3VyFk4N?;RN;zogI3o1n z{Xu~6S!-sApW2@n(-<*QL5(-+PiSv?FLAHfksKH-l0PPOt{=aDZKJd<*;oP};O^ZGwcO<&V1#0Np3SD0Tt36Q@`?8KY<&<1%WyX- zofr&QF3XK{?RCvNGFgTvxR{g%^!j(u( z-b`*iWWX3EO=ss-4|C1dHz%+0$A16#D2{Ytm`fsX1!~^ZU%ejuyElK>zFUe^sy0A0 z9+N}t&C==DHgtuE-ja7!MjimTRzA%gysW3$qKvLAndWrmH{6cQ z+8iprmZ3-8yLYdCbqP#4#3(C|sotDD|YnN0#LP}eEFo)l9tn4c5Iq=58jV1vqq|m8O z{6?bXnPnNMr?nM_YZ9t?@oaC-chEoX->J&0&*=sv;mI6AV1OTlUDZdkWmg6J9|#iR zhWBptIBflzaT+F?sj(ya_m()`xOFR|_vO`d`cJVej^^8HNdJrd=LdEXpJ^B1KgN|D znXbEH(yr zN-K@&_HSrIS;L=|QE;<#zV5<8hq~Vdbjq|^iUum6la@qg`_JZ<2e`O`h~^wPt3=NW z8U!P4`9U7x3|pXOtX zj^$S!lFvd~w?4Y4_1-3(HzVU?OmqG>XDP}Q+>&0g()9K9HAq3-Pq;k3ssl0Hh1hMB zjMoqI%&64DW%BeVA6}&V6UG2*tc8sZH4>ZYh!i`Ja2K%msa09#!x?&P&5HLdotN6%f{Ac40NW|@Ka;ZSu z;+WedlhXWbUlg)JSRd0odm{oO81iV}v;ES-T^%%i*Ytsm*S2_HSyws|HPD&@oudmQ zNfvYR$hj(iP*~hAW@X1k_@Rp`q{Vnl=?s$W3_)0~RrVu6>VYvkiM1vKH-Y z$D8Y43Ou3W6A!g!Szg|42j^D-|ML$!*W}8MC-4wr^|2g!_E=%b-c!3d>e0WO0=?>v zoOx8F>f0qPRi@^e4x_{A8a_4?a~HpX@~Rxh{Zc%d3C3jlNeNC8^pc@m2H<<>%8*Fy zN;QGRf>2*usAwPFpmj=Ho-c+mmwc_-c6}F5mH*b~Y;UYRZSZe+8i)KY#`e z=#oVeCw|3>hzbku*dZ)lV{X|bg!V;P=pq|GBXpHEz3AUxe5*QUva~pVJ8$cpU@mOb z>W7C5^AinZrN*#sSCIF2hg+sTUI>vD+4n2Bx%f>BG6RMH7~%~#1Vm~X|rYEs|_H>lozap8-iwLh;T zt&c#m{ryjUeFPm6JJ#s%D>kkP@)oU`C$T5pZ9(S2@?Ex!&f5E!%;l7r&HSZbGFkER zyja=9*LxhiWil#i<=oOMwHhA-{dPEA7vhWbRf9Dn%*pXW_N|b3b0{1Ftmusdv^fN$ ztB8vg_V5O!KMFGa$I*aR7pWc}z1ilmeZGdMe&|pt)gkQ*@yqmea!eXD-{{&6^AtDam#o*l> zPP{8>w*F(Y=}&fdJ%A5xnF&KkdH_c4{aNXNKWmU))3EiEH>)$CFHNohcHf9h`3PTm zxbpNn)pX{@7dEGS$TXbM__73(oOV~fmy#yH#-~uOlwAGs*d?8MK9~JipnX~E{+v4~ zg4Fs*|9$q7du#nk4g?cK1tz3Jmp#AXIYD8v7H+LpElO;m4OgNrMw6m%aMAbiPz8HC{%ss>M3s)7B2Oxe4Q}pi>D=P~N z|J)VwHAZRZN}9VUWF2_zd-KMvmM$10xiOvT0l&UW4;9#{+Ruw`6qoH%#kxF#r~TtX z*XTbhipTMr?Fy-Q3`fa#uA@bXWvtI>RdlurPw?AS2-Mv}!nja|Ih#MBPH(WIs0`Qu^LvV+sp+0Am(#x?dQZvVzO#_MQNnp8IN_f;k6&Wo<3uQ zcpk<4%v*fD20V?rwC4@phhmA0Dkfg zcBAgc3|!NNz=E5u=WQ&%HKo2j+v<$MbLf;~xnKR=V{08Nl2O+c=x{FJ=n?zR5Ibw< z1-JeNq^a5~XF0ULIPf%OF;3W78$?iGO8Et|sO3LRG=F!zS6<$QhTG9wi{k)ONyqaA z)7Q^sSpVD8bK2$5taCN&&(}esQwqgNb0AsI@2)&|gU>Za7-+aCL|FY$f}mMOeMw*) zxlqRSe3aJeY*+Fm3vH0;uPHYbNM~{A@^WFrrID1hEUu@^Ec5siL7uN2B=IRL@DT}M znBcoqw$`!s_W!Jv&Ub(?K{AK$2=aZJ5(zNv40XK_p?%XadwmHyG$nz+9u z&@p2*7ULJwttEHT#%x2Po*lQ|NZ)EK;IkCqGj|P3cg8=jI`|x;$?S5`(AuC1^J3qVvJ6nr1zh-;^1+5tu-dY zQS%R6w?3sdYzZ1RRLnLJmnDC zZohiaZnKtAuh4)K*QJ%XAK4k+>x!it*-g1?0!PH+UjXxlle`y*Co=F(Hk1ys-3KMK z!H~fj1)dP#VAA-}UHJTHU9e@~m=2qmghZOTt0e0&rwQHnS8cDfd4>@)<(scwQNDR0 zla)Ol;F&>z`CGlvzi4l*i7O;KwOSypr(_|%mjw3>9f4@PV0&y=%>9;f+2QmXFQB~Y z`mGK1!69y-UsA*7$Nai?=Rvp(ZGZ|>_H_p=wQe+UqUzcFaLZioE#2w$p?jY2Rlr(u zG~4>a^B)>46Zkh6mltPeN1qLdS{VPPbFG^}Bxd3TA6&0#M{fMOpV$Gr%)wg!mxE7D z3(II+F`XO_y?JBF2Iow)my{5e(|kj_8UR5ipbQj1un3fI8yXtIL&E+(#1@i|D~| z>W^!}+l~osUzl}YYaiYtk(?$%tx&nntX=!{z)}CSvrS*d(K*fwr-0*0?c^Gx*J2z2 z-5#Emu0KXKT8YlCW=3+fL9Z_;4~F|pJ>lY~2q6kt^tjr2PK2KL>)9u1l4>Pah8e&C z^L)a^PpD9-Tfe8`T4wYx%DKSF2I5O;7wXRoD-R`h8m&g>yQDg%3hEusIp^PATr`YX zdZ51XwYXtTWmqjKe`9WT>rcZU^_W@P20`L>twOyKUT}ML^aCA#^$Le>xHENYDCW01 z>opaqI-}LyX5v9I;7M(d2l$DPbd2w|T`$PNyG#Vw5|kX8=@?qjtdOF(^0uU>D87~j zFmJaLf*k4sRb;EckZS>^c`Ho}p_}2DS?q+sb7VRn1)&tu`ndQ;v3RiLejL%GtwoZL zWsx5OYakY?21MH;zM|48-=OLf@i@6NM4LCsCrR8Yc}PEAD@;RK^iC@dJPH++WRY=9 z<03KpSU?VI4L(Ul;<&ALV*O{^@kqaH${Q9QgVY7kDDjWn0+GjocPUc@PExSpl=r!_ z0U0V@_RThSKE|lIR?Rd1z;aOp3URW0K~iPo{t~N=w-Ut+;?!rh5Y28agG=Vq8HEBe z&BognT^(!f`?%+$;rht+(UIH%e8bWFA-ka!m#4Qp#JCT$ zc1RI4?Q{=c`MT@$e>=onr9b#6*Su=o-{;dPBfJYDdS_Q%f~(d%G^9VR($1#`QIV$f zQAR#-8Kx46L?T1Z^;5WnYZ|^ts{n2IH61lTw#8#~CsaleQeQt`ARyTQra)i2 z3p~B)zcU)sf7>vGePraeaALw(IoDQ*mLFgW&{~E8cp?bBAPveAVUG`Tjy-79Z}7Wq zpDyjztcbKusqH>dSilOpsF^u_JxR6t3wD*Vd-{VTcc?UvegGQM$Ce~H(~XqkETZ0v zg~(D1!`*Ms8=9_-nXNf&%EYbhrXKA(XH!?R^?hMsA@rtdRxv9x`sV5z$3gB_g}zT; zj=%xXrp@_nVEKMja0_*MVn+1jhhzS*8GS(jBLRA4iNdlV~3 z5D~PEHBYFd1K6$Lhd1cZfHHs{oZ(-4UK^Z-a}s2cAwLa}Bpf$6?Qp29xaj2;)<^XG^!Q{|o<4)eC2q{~#D&wHxyO7p34^94_(T5)hM!LO@AzV9q);M5nli<*=SvSM7niRB^1)zb&gTRns?{(a$860fpS z9`1r?G@?)mOb5xI!tL$u1}OdJ^n#N0xhT_o0%65HvyFIUKX5hxD^gIsf-*s8_SMQs zRrv!{5+|0MWC`Ivss7qCy)bR>Y;%TzM6;xP$xbBwFjmlA)n}!;?di-kQ1^Dk0ofo9 z39^2pCOIOK4vZsQMF3zCh65KX4r=}RY)OFB!%$@(Es~!xrhp?^3(QR!Ee4i$P(wLn zIMFYHfk)s(@Ay-A`e9QKQq9&EN4RWY@%}wm9j$}VxAnIE?yj+!GJkvW0W~(l^)22+ zBnV9cG`}<;X&}t2q$9v7Mky$f2HO;awCMB$;xXV}6j0?M>p@*r9^FBJkNZ0}Biysit*9c`*UC@u88KL0!ott!60_UeJ9vx# z@cb`Ev(>@71I>82q*gy?obQ zON#9F9j$w;DVB6MR&CFPM%Sq2Fy_sWwpqhBwLx|r$xG4 z)w;;h;23tN$zhJi-XXp8=*g&yS{(uIHv}1f5xNHlpYHrFw(l{+YFe^FiL`72~AR5DT#f5R}>3%>U zNDgrc(P*)7wo7V1>ZginDJ%)-jK0uYSRO}%>e#o;;c z4VRYNl|nv~+nruGev#Q|3xof}N(nf9|p#EGyQzz4E{-YR#HfoQB51Yqg4(XZE$}XZZh6Vy7GNy>26Z zFSEXt^XG4Gj%VwrYfol}vw|3gvpn8S4!D%S|NOHV#f%IwEHxE;_{OU21eA*n@r|#s%6ew7s(*3w=tRd-P_ac>)F5V z#W(gz1NemHD!394ubSBAeO3zDeKFE+|bK}*G&7N&qnq6!_*M;qWL z2CsI}ZDp)~yAvhUR%&gnT!guN8vjCu0`+lN=IF%4zEHbnyBf~F7nTLJ8!P=@ro1rz za4luK$-K12~55%s+nkvK?mxOsJewgOGA*b|4p zS4h6NT*G2{yh+hO$|XA$;pF<>yo?B+7if7zUgMgu`FG!xvJ0r9&PiY0{&OHZ(T{6B zr>J%6^ODBdevakk91VYobnp_Kf?yl6NIWcIT~KOiWBVYg6@vIH{?rF)NcX zx3*?1FLoFS+k-nvEXHi?cprJ`vKk=n5gl-nKtBhiNj|~E0ByE@#)o}4wvt##uZh9a zWRg6vs<}9G_*E8re1(aI=`0IL9>*mBI7IHEa9{ZRCxSQsXy)0^5Q4TpvmnP8ChTl= zJ(H&{c;NT{UI6mLr=|1|ZlXx`uFuKPjEl@xLq#!E@hpz0p48ZSQGeax* zVPX;OrfIUH*}JV=^_Y2L%&&K;7wXsNstvceF#@yb#RcM4Q^Us2?#ZPxfD9JY59fYk z_w>vrw#96zZ|!g8;*Im77e45~aFUcM>@di&X(;r3wuM%8$jx zf&DQ!ypkG`Q0Qyt-JAH{V{w-#sn zo3Vh^-+fQ|hZ5JCV}pbDY7|j9as&$cy6G^uWaN|h*bGs-83Mw987(C5>bVO84xfRq zi{G+aAJ6=4_oM3Kx176_IcaMdke?eJ+oIK-Pu!N2~y8KvEI#)iJbEhG7kDu5>~sR zyN!-ge*6@jBV7&yvu#)4-u$D7jtO@%<*ax2h$;cKIoyXs)xFV35}x1#`QrPyc+|$8 zQ-g=j59#d}9o{1T=Bev%-HBPT{cqPNQVZZjUp%F_@|d=z_<%I8wKp($a(woyf9SKZI>pq6&rhBO3v& z8U|6(ZB|s0$2oJ3RU1L$DL3~CLwtcV1J`=qK1uJ^DU(@(rMZ>e8y+?y#mUb#&Ohtg zNA#$^F_>l0y5az+Z3H|WqI8>?NcDy&=3LBDugKO#@V&^2D<`7bLeDu~8#bk!IK-Zw zSf5z_HiJ!mWHk4xy+qM_SF@Gq#JoZXZQ1tfAM({3qI)(Yf*c?t07Vds zBdE8!m3$)5V8UX6b@CFcBoD9QoE60)0BIXECRf~pnmgeWDsJu*wYfsHi7<3aA{=by zn)}tLSr|sdlkQP-3y1A*uMX|Z{M|#G^=k9iF_h6w|K~H_;k%PJW!JfyLlW84V7DF{ zD=VTe>ZQy_U?j4(!=kGXjf8#?lfY2)#O_-u*}ggWkIKh8bj8Z}Momizxs!QQMi@rY zNs`mcxx5$L+Pa{f-!g&A#qK#?4aNK!|%)}G(1UUCl7 zQeM$%(Tqq$S+B*SMDNfwke3WeMW1ta?SgZ=DAb7@JM3&#P*|HPCa%)Rs^(A#l?ric z8C(TTsU36L@QCbEvTk1nG8i0mC>D}F9@|HPLmyRDk8_|DZW4*`Aj|Xg@q|IXwi?bY z0$tnr$e@P{JrH#XjjTuuKB(lY1s4pxW||Bu4(9NOqBh3qJm_bA8^61PD#rz4)cTji z1=z8`gcge#f-f@I>Nw<&$1SneC`$-%_u8uhNBSdt{rIZ6oH+V`0m!=Tbio_i;kt$F zrzAnkw5T0~$yph%+W7vhVO3>#>j*V8}WdBk+l-d z(T+t8CME?IV8!hP^}af@`mLjZV89IPVvjF=a4l!x&HDDTtMD8aNLYB)cfi2Ea?ooH z-Zrw$GHoWJ_FV>ye40_FzeOkmr5|SM0UVW}Sy~9nR5@U9QxT4J>4~sQYQ&mC)k?su z2}GhNY$X8W(kqc9Q)m~ z*3YwEg8{sim1>G@!mdpgxfhNV~ za-&g^nOR%~=j{g?d5Xr*c$j7G*A;!XvwegQ^t;aY9Dn8Fo&yD}K$n1=YlHzHO!TE# zwvJ3MfQO-N01cg~5w4IPbdV;R+aSt2TaZD}NxV_4_{j+>?^V-&k z`Z|BLLGWd**QETy$izaLQ9t&|;*5qv=<1!{LVF12KcTyxtYuU-5`E%?g;Rfu4Vk}} zlyW6jyl?IOi@l;+)GhII>l-l-%r=V;_vZEb5B&9b{E9>gw?zxgs{8i1u$X~2&vpmohd*|~ zcSisfznUfO@@`&`bEI^|h!G7!Z4=nQPN3NC%mc-W+!uI5tZ6I`Yx>3r3L8}si~8=3 zp<&FsDREf5>ni=*dscD&?S+ZUK<}&%W?(RJ7)&Ag5{u>8 z20rM3%|tt;12})vKv&IM&+5t@&D{e|y`1{_>JrWiR^Yd>p7Ba0oeQP}E%ZND+RZf? zaL{qIaU*Ls{op&(=rpvgCfY{RGApf+(*79=l-qQiE8+ky7DPB`5ngKxRa@#YYfCYU z4VwoLvIv;cy+9oF*WOP~;lnxC%>MlD@pu2W{Oi}xWv{Itj*;$P{gZ)XzLHi9X3I_h zU#5V+CLhb6zW_7}-OY(j{`&oI!0E)wIW-&6Pq_AVX|1mN=HIXLw?=1|m~}NV$b}`H z`k_GJC)!CzA6~V8SxU!yW$cK8zADk-to)fR*8q;uwl+o|w4+IBmom_)Zgp=PqH%KF z`b$w^Z?!}`LR?(v1{Y0U7YY#wr_xuVXCv-@U4EnGK-6J3rgVgx9P%x&>;UC8f< zjx(a(9ta8h&k+obRyWjt+`a;O=?m!^R_XC1&|PUwvSP3}+!vN{G^X@kUq2ZPF)+aD z#8P(U*1Pe=aJ*ycQe7SoA7;XTN4yr+H4x|$d9j=S?vL|{$b%CPY|0^~cAj{rdfDiqJGY5kLWyd$&)j5>@>x zyy=CIVY=SkBDzi{JAY#>pPO^-$k*s$3%Tf*bij~;BIDvX**#1xWgm}j)W!49g+AiP zLfYYQysL{9C59&$HK81Wg{fN&cQIMok6$B&ZV+4JvcUR6h}d zA%YaFB8#(nQJTCHfq)pMAzzg=#qzeTbk0^n$j-mw@Ya3-W@A~E6pem_RKFE8D6Aqa z=-I&m@~Y@WLB}PJ2#(l7Ddr132vuSE4`I&fu$o*3H|cQlYdfMt^FC5jMl)ZmAN~a| zqJNe&c=CL0Nv)(kh_WAw!<~P7NMc(M`VkllIvAN3w0BE5kuGp^!QMyadSrF|O~D(j zwFNdSKYH_sr0!7^%NSkCmW`dVf!KRzZ)IxNOuv2I-NjmG0aifm*P+1tr8<{>+C%*F z94GCAcb#N+$eB}5?K%A0?y#&H$!fP%=Dc})z`0n314+;f>E{niFS1W{C7t5sftEb66GF+Mo$w`dHx?3#J%7& z8%1EW1cWIjD4Z>LehF=Cquo@j9`nZU;YMbD%v&T*i}>SPHFqc zi)QHI6#JqOGF7tk_f}gh_}F=SRf?$C!q#>RhY~3n%;-QR9{m*M;5}4r0a`hNp2^-3 z3!?gKeH81697TK-0~7~kwh|`I_tk(N+=qp?u#@zmaQ#YN7?D0$csC-> z$Gta`KvzalPrC1qSz>qHe(*L2M*)ZwMOG=9;{T3AcOdrH{rO$pRvv@*udP5ed!{{O zB`3%}w)AsSh(j6ts^dMT?!kQ_G*!VYlqH(#=XJVfS?uc`ND`TkYsM;SLO>s$S0dl( zLSDWQ`*D0D`0|8X(<=@w#0lBYRz-ZPpHBiQguZGOEx$<5Onf%7Urkw-k8RbA=VQTl zQRpPfqbr0yvWWF-RD68UbH{HTYUWZVaKbalc;zZIjp8Z$#G|^J{tcFLWY~504MVyA-?To zzRhPud{CpLkA0t*{1=y~0w^m%_RVvU@YA(H?%`y)dxDzHVNHxkRioH-->@m|qNU5E zryNes>SWI?(+@{Y-bD+3{}#(xGnc+(^OO_* zOawtXYNs?NvgHLfNi1e8nfhb321wA4JN{FE3xmSacJ5${wD`UFol1cB);F}W@gViW z#yj;b&&G((etwB5h1@~jep1fR#B!oktd+U>0@r>xYdt?IuV4n23Ck4gB?Fzdj_&n{%j9KXc5rCqe- zFN3)4czI1gvL0$|dfFWY^bac%4h!OdRfm4%mG2=hHahd#}1l zPW_e&V0x?q756;~0y;Qmwc7Fax_Hd2`bOdwe|{@B=KlQcofn!(<&TZ;uv@umw}f|$ zexmBu40y-Kx&}|oNDPhG>Yf8lprVK61+7Y&k3ZDJ3#%L^Z`{*v_2%4&x~QCUR$E1q zKi`jCNmi}90R&$*J*5A}jqlU<${R+aMtcvon#gl@vCV}=M0d?!igW!b+Wy6pSV=ZcyfCQJrOF|Vhp^l*uD5jw zM3v@fD+&`L2XIMFz-}AR`bf8Wa&R>ov>$doafz;|{c@6|j~c$;PH`fE5;FSLv*8@z zPzoWpua0`82NB;U>;C@C{Z6bb$jg7aZsvzZ!T1%*rcfqf$L{PQL zr1Z2$EwN!Xe?32uOit6&2QPUSC#gmyVa!!q9(5Li@;zn=@IrV+FRys5_v^&`Db?8_ zhjqmve55`rh$Fqr|7@#}jt(%KuXgB3tw+=gxg=PA~umwSYGJ)ZKMEE^#xDY+gS zVe4o0OZp`XpzLJel|V}#nAo!Ro+DTTXT1{oIrTqJY|3xKuhh_LM(5jap^Jk|!&{|8 zCCtE{BdgJ;g8MTU&t7LCREg{wv)8MWOZ#=Yh{UTCnu4nN)b7l0j*h9_jxGuJ5c;Pa z^1k^ujob)fdR&pXYIn88JmXW}+zn3Px4}u%$qQkpA~{z~lB>8Ujax44MZ6+8KQXC1 zaU6{qKd8Pdr=>38D90+pFWEt4{MXb_2ai0M0 zqHA)g3U(kidYF0q-&=pzMxKrP296E)dC^_btPb~doO6rPv(g}2%)dFTBJyV>Z6b$n zlLQR{K^k5L4)stn+!I+FP4$cH@&pmwPztTT7k=)mi}UvO-G!Ja)29lo!oYH|Y`R+V zB#aOK%=4+Oa>H9gwhdd1`Ylewvip_wYcaptz|!iE`nv7bcVhk4JD@OjsG?8J{+?k2 z=EKc(ovrMxy%nA=)sjmqTw^3=hv%V>2oB=jK?h+a-}oEdi1?aHi$OQ=q%`*q(}@2K z44K&~a7|Q4lR0B2&fC%sG+hK?fUh#dpCX))QTcT+c|a{o|1+JFfkKyhypg8kZ2G+6 zP>%NrZHLYSAH}u&RNPv1=}mmBh0R_}&|t3bb=U4Ep18Dr7dv)UhY`4w%g+!fjkt_) zC)GwS{u%WeNL^K3^dquvQACxckg^0!qmr!mAb}CC(0({g*bYK8($^>{4Frk@o}^`E zUm+3UB#z+>-~=5 zAH~V*@V}N19UD`0P3zwl;K0BJHtj%#LK#fvJXY=ZbUw4&F2c|53->!6_!QCAgXzq3 za+;{YYWO}|C=$5Z$x~H&&awJUggM{|eSxmxs5jJYO^x5zTkHl|ne{(7N2TC^W4_ho zD=QF-Mp7(EO>WPV(p}JqOR_$#-q{FQsNBBC$ktCw29u92^yL*cQDFwzu{~m6qVSG;;$evvCv@3&PVVb={NXLRZ`NB!OH;P2{YE_L?yjJUV5O7dCg0(rcZ7HU zCN*rO)_V1A-ZA^LziJnV1j_1*Ay?kXx6#VouaexZpWUE3UFJ3PF0ak2{2i;S{Sn zAIbKql4Q4@0JCZ%H&z&YW@SHFv4unNHyph;Pil#}HG?SI7c8zdmb$|R2~(<&#(8f$ zCmbS;YkE59Y*!d>eW9jTr;yj);m(BH-U2*$rL^O~64=XFl zdazrMPPxrIVcw3iq_f`9?$2dhvaP@`^=|x`xJfsbkHr*~q!%QUUXv>+wT_H1Ep9K@ z8)$=J8a^b8)@=j)xy&6Q{q%76i5%=`3Ftd!G}1r2*@Uw^K4T3-o@?6zgXw>Scqc2( zrxS-2L0t&M8nmCQa5N1l-0hm+G+oJXhPmALgN;dG@nQLepbG^IWwkZWUiG|?+?dKk zW+R^Jb5s~qr2;0&QV3NM&43!*EsJ%tlnHudWEUElU(M2>gg`I;NRM^?r@5 z5+gyTO&m`InVP@7pV9T;ev}z(s~Bo@EYjPk;P{iz_Q}uO$%De`>cPloGz^6 zd+#%SK1uevt7fu>OZax#Gpf)6H2qAKwBitcCjz>jywdfiC`i5cC5{g(SS@&|w=ImJl*gO`#$w zhgZE`YUEfO=2%+f*vngCMkFh2DmkBicc0(o`^T$Sb-4($=ks}g-0rvA_2ziL@hja9 zqe6|tgOLMOD%@uqN5#jL-$)D-vd-?uoqmphbASqy7vEn7QVfgur;zT*O-G@&{iu?d zNRN++q8gq`e$Kagc(eOv!uMrgpzrZm+@n{0S@G6U$g%+*0*MmQ0LOs)UlE(B(drS%6Js)|7u7J}aBGjc*`g~yx%lgaWT6yPk3O>HHC*ldd}iR8 z+NPt9v#Q8Hy&%dZTzF^;SIvNa&!@m|NL5dWmd7{Lf1+a)1nA;m9(^xK4i7smEP0(0 z_G~81+8{S5cgP-Mv66|lOp5lt?$x{l0i$jTR$+{b~qYrwOy`70}`QPvVzgr_H8%;I^%Psb-)NWFh-vMA`D*? z#a#JI$j!YxGhHGHbtk+QUGvk?sc`l4--^`vjbcB-mC)l1ffPIhk2iM9-T#qoeS=KN zes%CVp)!Co!JJ@BxO+PmZIVXMT11O&mKIjpY!-j$eXpJ;1Cyxd-si|) zcrCdHmi6oijs8oMX`%mYHaE8n>J$vo-z2quQ`@0H4Z2o0;QZ!NO#3I58lQo4jGjwV zncwA9t%p2nM{cidxH88;aGzg4*V}UOWdQ#Hfe~hZG{2X|*|sa6?>SA~8PPgAn$=}a z^X~!ymM@xqxFCDKtL*XsubE3*s3EtycfpJb=2;At2OAtJRYOa^xbvzsMKSF>E`z5JlpU z*IMslC^9t{pjl7g#(*=x?fUHC?8#_bGM#bXGxkmysSiGsjFg1L7Q`WzoUFOXD!;Oq ziz8grp$uao6-1m+>=1RMO~XQaq*C{nlCnzhI#lv3!A#3o`T3uFS4Ksa6!)K%h~c^Z zwNb!`=-cl8rR`RS9j*~}yBIK7IBgf`vm(Xd3tR4~cMHOLM1|Jnoc#TtM1CuGqNm29 ze+1OZC?I0-bhROUePZs@2YOLId*13rZ^5V1Z(jyKO z7x=mRAM1En#=(U=<*?aoScWYA>Jv3rLI$~VM1jgvC$WYinYWy`?mC#-x;k0K*xUbp zN|2Zc1nbb3B2f%}yz^Y^QD@e7fbVKij3{cJsQ>079a1cz03P;Jh2u(C!hhx#T>hG3 z&pmu_VrnPAX2Cr8`|5`Lu)R>{9JBRYV`3PzjHAo~Xz8m((7h7N8CsiDs^0TZm_`p5 ze48sAE#U<7^P4?Ij1NA?4-C3Ao*_7HOS?TGwGIzn31Ys}Jz>^b@NWc32vWMRCQvwC zB@s}XI?qLg^CDjqFdyaJGL$cC-O1zyMC3p4behQO0c>6Chw9dINAaF7Vo8^KwYrPaNOV$bHOblqHV)zs|r+rNwN0Z;_(i_qTw z+cfQFVoQP4a)#a5f{;zc5uP-@sP@cK7f<#~*GydX^W4=r{jk%5AtmNbhO>Pz-7_Nd zy|@_eKaGvj2aMiZRa&GQ2nvR|!{u+-a7~Q1_!KtOr^Ymn)0ryU?xskTR5<6^s9ftm zEx?8#U3e(6x^Mt-%17Ak5@pb4@BbJKbZpl?h)NJAT z8u(zewYs~NLgcw6#>IF_!3^vf1m=JMgRGBtvM-&gproCf63%2Uk4$AEV*AWl&MYE* zoZDJ|QlW#6jZF!Tp*=|q;?=u-t!rIc5=~B)(M?@l>|-vZiBQ)w_6XA&yh>0GP?4aZ z6jGdo)azDau`LlsK6Pk@DZEkLlW`MkZrLXcxswDBNxqfbD zSi&piy7lKRaD^A85xx$IrST$jrP#u++#E@=^Qeo2qqV-MuY#qt|bJ z<^3R&wVAC>wA*ro@pL5e-^~>LOEZaAktpgR1sI?VzCAjQ&_4S)@+~*`s}jmP=#JeU zEydjmFs=T6^8Jp8g9jgPw6}faeYL!|d_K`;R&)0G#LvYG%d@wKBp>C2DM+-BL906g z6Kv44-ogdiDO~uWwuo`_ghT~il85S#tfb&9NgvU`K#=h_!Bjchu_q&eBQb8m;W zxOwvD$hk6Ygiq!UiVm@qeb3;+@$aQs;+jwk;)pj33^r@P(#ows>HAVCJ8#j^Q|($Y@~U|wB37kWmsPASxrRQNKzE(0Bhk{` z3F-zXZlwIt)kOz!o{xIjj|3M-+%Y zM|{R#o!4=G;_wvP{BpA>z4f{Z$2jrym9o(drAfs&DkDgE!1Ah|Y-o~l?bauN2U$tpTuU4(;`Zoc->XZ_971{f4QRZL%Fp;E>)iJobis!SI~+>a zonzYnN%jqcZ_-Iy2Mm&SpLFFT+P1Mw8)5D4UAMI^Mv~l{W{T(`-H(e$>I+L#)QH}7 zIT&W#`1(?{SGSUB+r|Y*Eo_C5h$4hoyi(fV;C4}``HM^5owgYhZuQ#Q@W~JV?Gu>K zn5AX$ac{gPd-AenXnahvLia5M9fmQCP^50{{VP^BZf|!QO9XaXQg@f}lMY$a5GFY^ zG_=Ba8zIe%&>5rNT}VIbuUl?5+hM-m<*PRYa8}+#FW)vve+~s`5yOq_IE8=tq4HZ< z=k_zYNe>tk4{V2J$gRy^v~m-X`oxmf`AM(E^8_ADY$V3LD(5fBIwW++Ci_x&)SOD80C@Xs2qGA4BkErV=8uBb zzx>$5V)a{bP%@9`6NUNzjLoTx)iof*&wmQTwAg960Q*EY(tyREA5|V$7++cL@rqm; z`7!t7J=!36Wk|LW-uk%7WvMl8Ix3$7K0ZSNxKu4CCZt^VCeTd(Ck=(VFrK81oj4xm zTV>&JOIJ&1eId=>zF_R<&p{|zMmOW0Zr3M(C!oXC&p^?||Kv>H3`e!3VC?3?!ockC z7g*^`s(IO^sZ<1aZX1?^tGUJmyE zIy5w*b#&f2lfXFOn7D&s$}JHI!h|CD#$EZ9{CWLzMe}p;G|yZ4*j}N6Wx;i>uj25p z_es%!P2~Kefp=!d$L4-arPnUbIenJWeeH*_#Iegf7;S%s>^r>4VZ<$M>W-5&zbL!a ze@B{GR+fq8OkRr*xKX{XEM3-_`#Jcg5@yZIlF{twA7MLgrz}{nGlLn%+?fn^1|b)m zq(ZJyGoKkaQX?;*WAM14NbAG)f+V@bL|8+}zH13}2c{^9_bSv*k&bI~B?3nPG2inZ z#n+ycc+h_*rB5_)*p~-=W3mv*JjbJ_`2k@>P7Q9X!mvPLSojsG)X#lar>j*Oa3lQf z&j9C7TxwJ^+M+OW41j7ZZu39}Sv>Gk!MbChfyN zoML;jP2hr`kU!GLE$sC_7EzghlWXu)!^m^p&g9*OJH)Bt7v97M!ZKA11xg zdftMMOVn*Xamz+x=+f+_wui}vZx_d4!{WvDUhBh%Xy*j?=pW5q;|tT@e*};v`CRo? zY+0y+mi|@bWQeN+LMG{@kz`TEtr`+BvDj z1cbgl-04d4RUf(@%;jhiSv6lWqq0Hl{BVXbzypX%8{mYw!YJ#cf#v=H8wl#mwr$Z{ zngcUa`^sGQVr%Wv>*$4v#jpFbujpnBER9q6(Mw|{tIB853V#LleVtZ9d+nks#8qIC zdIO%MU~h|jom38U2U`)!1XiQw#p=1Xx{)$eM?tBP?_+tiyt&2tQlzUAwSTP}xD?$4 zkf(5hSE`nc9Py?;mUoenYdOXj!SOr}A0po^;S%+k7^K_SK29&3Ozb*NH-VUy3P!WX zcNbQ$Yv^IL=CWTqSNhGC8HG!sZPydojqHMVf7+#adYLQ6wDP1}d0I` z+GMbr1+6hqB$6LB*BMiSgfEPPMxH)Mbe0+V+l-3?3TR`&Xc!FiID!Gk9}|m*0ob_G z*dBl=3IJTW7Q(xw7rB^%tGT=|{c(Mf#igq(M}-qghkl=BH?%^nN}Z`) zhkeJ6-A6C})9$8!R&cfTT(Q%6f>IgUF=Hp*rLX_T2#U3N>|J<(J8A2#En`P$cBtk)QO6{Z;&KDBH4eYD!0m8s~X zHc2E5CD;caSDfJqgL_Ibz%6w$*TjOzO!c)ubjb3Ow6&7D9CC_1PNVU*z<&d0Ghsbf zVZ=Mw2d7X@OSXLlr;>d@g$2p78*v1ilA&kw@J#fs_9Znzq`s*Z7wK{~CI6ZE27-e( z@W33rk;>RO1*PEk=E_(NfF^jW4SClA6;=)=(&&V`#r5$1L>m;>rJ8y_Nsd$mKLPX( z!zXXB(}EJediZ2tWwu7v+5V1TYa+o%pf)6rrNqwJ>MAHkSm1CF>jrZU(G3MDOJyTD?E5a2qN_HEsOl@7bI}X5MsBcDu%#;pp( z43r)7V}W++yKXci`D)z32XC~(qfc=bv`buVq!EUt_fTis1Zmng%vr_xR=&j>*CxlS zAAFBy1Qq{f$>fQSob8Ud_52ub+|QF)#$7k+eVp$xn{#mF)biH(bW!eZE{2lq`xv((&vqbJV>7)LQ?|I(UjUn^LZ&{Z<1R25c&HQK?jok#|Z*;CuJxdvu%T8)AEuSbGud z5_ot7eld_jTDciC@D-Dl`*wG~F7SlYO#!4R&PUHej=h1P|zude$@o1&x zBU~AfcYVS6nveIp)q>WcuoLf>jXX>xT!f5RD{O23a{rLo`AozZP#^l6#xvxDl1Ced ziO+IPl~MDzkonm+BE7}_iAC|s?7%{&&2mK1m3hh;(QD(~OAR%X%fLSj{Q|8DD(kx~ zZJ=18Jz&!&Hyg#*`$saO4C4F_Z9y0R5%5zXj#(5wd2NGcfqW*Z4KvZ+H-M_2+!fgW zE9};78(7(AWqliZBj0Sy`26iU%D1@RC7^A;R^C0*&P{d2fF79Cc}=ZZOw~5obgBHy zxzEe8)(OL}kfxt5%&R-KAE*`&-cnqiS;@#d?D4Yw+`GHaex9+)4>;kUcJRTmJ$`Lv z!aw=2;g@W0U)54+%w6JwRYg&{x`kZm6ZeU0TqO&A{*Pv8*^HCSPV)|QGrBm`c8D0m z*1&2AW{a%?Qw0PCa(p79PAL=C0m=>WEPP#KhyTf_saC!heN56yW2!7ERT9bYjBlrZ zR<_XUrdtSH5!*s+N&2yG?orvaUWxn*6Peg2v-(9iO;o8B#JLyXWfofpkY5T%en;J4 zvv0C@Ac>{lV7}#mNqGaM2|#O*n@S~OV>Qs zBAe)?M4X;K@n+y4@R2a7xAC4ESs8D##dqO@8j_FKKpq;}6#MiS+r3 z&Ctidc_)H<6wTI!oSmI5eyA#I@D{r(G(P0Yl`MvXptRs>%ZuvvCGY*3DZ(0>aBd_7 zlkt8kp!o@J@=Rw`nNd4=&sd-5PJZ*Ad}c(L0e}Bhb_bf5kSR>y-_b6sI@TVRPJ8|= zGk1^ti&pDwag9^2{3G1)v+C+c^mh`o>c{^Qik4o`tibvF7UOZ#*;LyChz1wV?`7y*$L-3#IM-YrJo9k%6@>e*?Ql1@8j2P8 z8eG2Tp8WG|b8phUvfA5CY~~6$0L11cDO!i{G-+#5mV%pnVY;TKCyn={q##4KyjI?R zGnX$Yoj(s|0ThD!!2;WBk5J&%L(u`irTls!FdhxMd-#~xV@?74w zE2|m&eyb&mm8F%sd-%ed*`GTcft%G(@9-)HJc3Aq08y}p3Q|#dX-c`){fX|hhI@D_ z#oz~zdW7gro%CQKm3qKKKay;4QA^jQyDp(W8*=OYiAk3|1#tI`9fiRh@2raf-67fQ&@G?CvrljbM?&^Z@P(9NuuJ_xj?}*%cl3x{-z~(p${pJ9 zc#*%_SnvSsjWlS6QhS+l*Ps#}&H=t#0cKfPiVw2bCzEO#@)9VQni&Uk_k0HFJYhi? z*ni;4k6$f)Ju++K-gpBXF6}6%+s9^CgOS5ujrC|5uF|W48WM7{=#_D)k`3 zs2T0JN`^&Xi`BLCNZxEb59L~l!GKB1eZ5?4z5bPh-ZcSrBs%;=$4@G_n!nO-2rNq} zC#=We=uXY~hiWe|3h9&%&McH`Q8MA6KXJBe2X4f$_n^I$W-ItDGJZeFUm4VrD(k5GuuH0(%7ItbuzfMv+^W zu$N?R-9dPC;c|KjORZ6k;fFU>X86H@M41wc61WkSH3(>jvl}TJb#jXaYItTu!D=W7 zmzd~ey)-yhbf&!`NjFcpurw#yEfs9F9XxOQjNa@Z_gE(F>qWFFS2n)#H^764)O*Fc zI-)b_dndX!8|KJn#@Q`illAzov_KdJhZ&@~DxBU8&$Xrc?v&FB@<7DCMc)VRN=eSU zMk0JZky}bVnF)0NN6jvb---=m@sQ18dL&aqc(gimtuWue;@+0_dPeLyt_Yq7^&c&Y8U*Ft67rmYs@zC+Xu-NOMIl{OJse07jq45Qu z8!1!0rr@MNr=+cM$HnNM24@wQd_u+@=;=NqZQUVQMH;bq|xpJwN{0G*!4a zkxlPZjV*Re$WXM~i{KgTzPrAfY3!o+FqgVX+iQj{iw*X{s5LiQHm~kNSlS|WfK>fl z`n)z}j|H_3ZJ=VhzB^S0OHV6tZQpKdu6i~OL5=Twe$atu*5T59%b6^{&%PW}oKo)W zYu|O(*C05^B2|)XR9u_{Wpf5veIl0_Lm00jlS?#mZ;mR#qD_HCHC3%hLL#u0##j|! zi)%=(nZ7Ru>#HHSp+;p}cAxGsps*kMje~#S$5>H+mh||Z8O#0Y-R%*#P&nM1fgg|c zu6%Ii8p_uEcdrPLfynNtLH5L~sv``H@+hC00QnoABFrV$vmFk)EP}j>{Bn-a)}J)= z&Kqvo8*^LwrlBW#aW4AT?UfW~W}K|ouZMb`IQpOyjHjM*MZvD zV($$Jdh_o!6JAxzBjLh&eLg=*CgclU7*kj$(r9w~uMzdPWRzv#<9CweaL%<0-{%X-ZXIsg$X|cIN@hUPLG-_Pql;Tes)?IC@B3MVZHS0gb?@_ zx^y}{Mtb~QcEqsT$32W;v@mQ_#tq-B?5r$*Xo;t&IWn>{%mnwlJolspBaM!XpgsG= zEs5ZxZFX}wWA7lS%z|AQ-MQ<4jg2cAaH3nCslxC!6*SOZTB>TR=c)&m-bc@BE-z;< z{g_x8%w9%iSJ}ThwukXq6wzNB;2!=%E)$t|?~BrJ7FvCE8x!WQek{_dZ%$`pOociY zc^-(fHCI|c8}KZuB4vrOSG{T#4`#!9ZWYHhHao1W$Ef@<>D~-2V4;2k6}5(UXrGsr zgXFKxBnK(0Ut5>;H1N_&L+kaaSV@XWExv)vI8|Z!xqR)Zs5X0PfwAw`nT`7W9PD~`)Q9n_k8GFTDsW?KRlJg`bh`aRgZ2{YIJmT zenVya29*iVl8Hok^Zy(59wb!y>WCSpH@-^sdM8+46?Fi!{BwiX^5~d_4n$~ifBDLo zi{KMEU75+V0L)JKsgEYhtuQo7cw?7uAX?C4ZW?0}kqFK-y8tR=d8T@PRyuvgX{Ej2 z%pt2?_*w*{;=0yvzre^ME?D66H_SkNLb%v{Wn}E_xO02{RhgteK&b!S; zIKVufa>`4FR1n%SO@8k#zLglB%_>5&dRq&?K)elDoOfaNTjgGOQ9T*#FCmrRc4DqK znu#0C&j?Z}F(Z95w1b=nM9WgXxbLkSXKDZYT8voCc@TQ)xD`)4T798td-|LHYKyhF z7q{FF_df*u$VHScPH16 zYgEouqYmx9|9`>k_xVhvS}hns$GX+DC^wB;8{l^YB(J*1L@lZsndiFAHnf4koNr^@@Hr7x~t)-};Hqn&!> zib?>NNVz43vHA1Ku1ubVUiGCxfG(k3_iRbdPz~MxL|VErgAOu(GXa+hR_H$0)NyY0 z&aqaBCkr<358%xd?>sCkzo}X4hUE-Ljw;WsN4ec=ZT^2=fa`yjRjzSFqB73$&x4V8 zGmapKHGRN1d5<6K=WZbHCeYG>Vu;vXYoV8dZmXpafmd1b>O@>UGFSD8NBeLF8pcF1 zPcl1y&IRa2&HreoWkxT#+SrJy!F~QSp?2m@yUqO9FB6f=uThJmH;b}(^LZ;G8|7cJ z`m00eY3SDt_REZu@sXEXqhk<6(ghA9v9y&5g9cGB^tGDoXmhIgnS zUA06b`c3+=X7EMuE!_~*Bd>_|p9FF(_469a7@<}w6jcFKG%lI1LM0N*QRZ@b$-Wkl zBoAn4B|MlNzcM$!G$)xfPa_lml6HpK|2flGussv$(jEVw+iCQX;IEuyHZ1Dm*1hjS z#X@alF!rmNz&bAx(UbN+5#+yK2+?r>oBp#k(Z1s@xHL|IcePj>oZFi4cF1dqjH_9k z_V8!y%|?yCDeXA6j#9tYu*`C6Nv@sq@WzLh?D`KzjvL16>dkX?>V1w^HraP<&aHp= z;UDhCM8BS__EXoy!_r%pO`rU~EUj(MaXMiA`j-Alj?Y!BkAc(Ex}#+pNQV5k>EZ1c z2ba{VMu^BD`2f=2DsE1YWql=HF`YfN@^IZ!EMnfa;{IXR6&wbv zee3iou@%W?|3?B)dv#w^P0m2UO&L<*vO1uE4(->#HVKqjMieZ5r_ouY9K#3sRn9_y zid7$pP?B9w*g#nS%E4PlepQQYxCi87TZDVJ#dYrmcO(-(DCA`wT8h7tlRl z7BVAe4hZcVMK??ll^$}wM%o#k_jFJ?x#uSql(f)ml3*8=(s0Or>tE6n-be@V{G;A? zc{kjPVZX?y<;E3(&+_!PUc==*1MbKx! zW_TPvh+JLZ5M>p!J$nf=tdR`!`wU5HnYvpcGH7IHKBjqga-aYo_%q zzj6moQC-U2c;nv^V6vzAX70e4lJ+`OMtzdMPRAc=q*HWLX|Z-FV0<{f0ED!v@IIo4 z^*^q*Xf57Sn+8HLw&^5^rCCn1y`Rq>=YC5_;4dv6&2s7YZ<5jvT|3Y`G%>q)*k)X6 znFk^iT>7pt^`g@N6cOeoszH7#cu-Rxs&A6&(8VdRaLQ7swyf-^rD>w5|t{W zS0^faw|N&{)YrF|4y*h1Ddd+E!tzvw)vc>HC&K1odurMg{#(@}J_fd~=NQ&Dha241 zj{`GHWXsIvsh3G2x)fwRUji?(%`%@~d7&*&ES|aDo`MCI*h`x5BKozd*xnc4A=1*h z{^y>z=$!Iiaeo&@2X&5LC}Rg71Qmq0{wEvUq3Bwp`m7R)gx*UZbb`pE)2D=&rQls! z-T;mc^*&?d;}nc$mJZ7NDDQ%MhcPX&fYFf zi_g;|AVr z;x)t)$=FAy+qW}7?_w}lZ0%d;W@pExli?9lLszP+MLb&grB7duaFb>x!h_pyMj%lQ zIp&;8leY*ao9;(MPgS13vNV+`6lQM7j%-<4V?D1X9aPBsf__j;ACeGcXMT|ARKJXWYq6UYM%!wXSOfs<>u@PA* zqefnu;=irE@;QN@0JVXM!{GlQ3ifCUo%94Z@0fnN8HOp=)=IUF!GkwH^WuVxh(=-C z>Eh$HGeEOr*u%OX!cS2^kZp4>BsNH;XV@^T|vThFXJd=d@jD_$M(|+M|kE= z=;I^LnqE3-WewwN=vOYE!`m*bE4bVrCh8Ad*R?TaM$_bNDP1g|DYS}db@eq zpWWj8d&WDcIItg$!7D)U1E5_zPYFF;^G~Lb3=O@baSQKg*SFiy76u}J%x@^FZMD_Q zLG;9EkO6hIH2C_alP&0+12xNC>0Zl(x2cwd6E|Q{4J}{1EIQ$^Jt>6(hu!xg$?F=c zH;Y}B?7T@3XhvQXilP{d`T17982&uCygWT3zcfY( z^8uCHQqao}^VI31MYzKQPSx+p6K7o(m~|3LU?Mu_3A1C8$l=BszbCaDQcHkLRCS|+ zkk+D0ad+A>nD`KeDKqO15xJAAol#-2CWP(Z#W~;RX(s(PFms|^QgI5T?gKU_tz2D?bw+g2!-Ob`yI0?HV0Kli zY15|t1GDl1bP#64=P|}ZcPn)&H&U{vW|xCM6j<)Uzu2yH3T58-#hKU5ef3Cs@$hU_ z#0M(Bnbuk6Viv*v$~_ieY$i&w^3aiT=uUrhs{h^z0dXsP%>IKe4;`*K6pppFO8$C+ zy3r~6>0hyw-u@`V;Kaanz_nY8Cp#HTpiBpmB@1WB1DpCICz}GYEjS!Hg~!iN+C@a& zcVFxApG4BS#l$PjBJ38*bx)osg+c1xnEy~0zzqG)3V zID8MWR#}fdEfq{2f1Rwoy}tv#TqxwWLj1|b+U60D0h0d)dj(U1*MYvO$Z||Z?d)99 z!@TSzKzPqAKgwSGzM7hx3t;AbX)d~w1n7yt755z2l+}UTG*y!d6N*Z)I-(^W&-Pnd z@vT2r&t@9=SPg^)l7R|-x13#x1)|n*;W|cRCib>>%km^Exjt%dNvxhZb)k*PPN)d;CHMR<6e}dM_I59-W9;?iNSH|l zU=Wpw4X1$ISyOCm8vQwBU((S}Uw%F?1J|p9TdJ&qZTI~+Gu6R3ZEu_chXd$>QE8(# z(OaIp?!QtaK?nc|@EX^oqe^RYb%84)R5jH}p^Pu=#E9I>lhj{eq2^wIh4!^D&UVfVHbXzmS z3=kV9TcKFuy>cDu&U_n7AACET9K7NB|6%Rd(;#<;suqX_FO z5vbS(qfJhy&5!TMpkfTLJ*_8=-dKkpSo@4!IdokSkx#~<_1&&$bWHfSob7Iz3 z1f-B@!t-r@_;<8g#nQVj_C`l)PFqyy)y#i?5SN~Q;^`(me+!{+c8g%YYVYT7?)CJLy8q#kH~I)4LO!E$ft4^TFP<7t$;B^5@UcA8(SxkV}~15c*K|@ zWVwp#l{54lz2o*ax*_a@MDI1hNc7pm=Wo4z$+O%t^vPU~qP7*MooD-V?4;85{gj4B z6>HJSELt*Bt~X{b1xZNM>w(IL`}<*=N=>#y7el33WU{Y;EceYLSu8~%O`#hB?Fp@z zHSXSVm)6G8lI_g(n-+}$cPIPGfq=lv)*Q6+HfnfO0=rcO_-gLgHtSQ|8{JYdzR3!t zR{}24%gTCru)St^Y9@PmbjIdS16wqUy2jZa{d^Cvr8s1t)fq2qgE|oRu`HoCV}mL_ z=&4Y4z1-uo`x^)X+Q8wFJ~7%dAnMY-sLK_(^5{5RUEyjp?F;r**hsmkaO9IAgIiL< zV7sq1P>Cz9W}D?hFPXOoaVsw1SU<_<6lusijx~XMP17JgaP}H_LBAzMvS0=jiucU#3AC-%h%+vYo6t|{g?gKC;HM%++wEKOGh=n zPrrCwcWOzpjACgs_Anw@l$w-;4TAl$iibfwglF%fpV7AUHrhXpe^9J~qwvTI=Cng$ z6Mw1YdQYf6d-Rt%YI|m!+x{b8l7CP6-@gllBMzCVBO{5IIlw{i%1wky#)TmMAG z@TuRjOd4sFrI%6%O|cYfyF7)C)-DBH<(gy`%lKIm2r5Us;qEC$OAB}Awmj`2p*ZJlaoVJRMe1^D zrG|4c$>0WN6>m(@f;~+jRomN6i1NWeW1$L#*I>sg!JUp*V7=<5eRkH5J?JyI(*nwZ z-_x-g=0hU>+X~v3(+({U7S0$vK9)$!hT(aRY4d!P`{wrlzb6vR*40btKyM~>U#9RS z(ll)>cJi@w2j+zPbJ&NpfRMB?*T_E&`3=auW*#C*3>p@F-FznXdiqj_9 zUPT|H&YU@86TQ4UEmX%~S8UXPmzNiarfH#yBbiXWxw@lgqfm?ih8i_K&F>McrE6fn z`P=z^M>)Kx@MF}#uCvhN@fey{y%_Zy7+QEo=_i z_h`IuG%)(-orJed083ps zb)}@F$j)}qS1q&G?EuMeV{djF#T{QMREl_VmO8~!8R8*unMo5ERw$5k5k7KRV;TyxPO9swZN7qn!&11$-q`mq6p#nP~jW%0& zMIXpM&aSGi3X^Ewz8yJRXFc|1>dVyBmoG2R?=;Zcq=&5>yIAdc#-wYhD`CdT$*J9> zs3`r2{R^v^x!Iu0@MVcRKff*7`zXA+Z)dumwav;jbKrK%%!FR_%90o&&$-NrteT|} z;bwXnmo`8LyJq^>m%+h7e)iHZd?4=5N4?p}XlpO8e^a7F7m7eCPX9K22EYQ5J1FEC z>N`$Y54qaawNujLxoXCx0e6htUMS5f%fE1Pf>AWu(+^`d1o%eX_vGjEqm&6+Q0Wb} zZ4!1HjupT6zMcyEhh5*Cy1oLKtVl63j`}Jh*{=TSxq#Yv5p8KR{xjPi5mj$D`al@A zQ2aGr&mpEHi53YDek5^d;4fc37#5-uCX!jUH(DBXEd`CJeclJgOlN2Vt7&vkk-0Y# zFkF1KCPCOh_y?abCdpE;FU@cD#00IU)pj<-suFeD0(U}a&F5E6yN3l%I(I#HCJ%6* zr%(F+Nx5_>a$mMy{sq1#Awk>H!T*Ze?wz&oR$Fxsv4-@CE?;l$$HYNtur%x?trw>3 z^UO{Vjy=JN#ui&lFBZaetJHY_=PqBvs zsu`UjucifTh63ghve5X6vjYi*t@CGx@HyExWC}&$t0r8^809f4!$RfFS=xK zt^#9_@FZ$re`o$>2PGQj@ZazI>)!Du zzTveHet(vi31eV56_os|bse$M7Mtm{H2+bb%Gly-)P#oYDm)?(NQYMrTKckd5AQJzHmHi3CJIVw z-F=QgbA{{5<5gO53i79HY)XS@F7h3zp}Bbn*N0tD8cYgaaR-tlua{2&z6UxmaIbM=oC$EEOAZzC4=L z#V3}=ZfcQolTs9RuUFbwnQ4L5p(ebdCkNkBds8!kH6A<9=WO~|HSX6bLjBBLnhoMc zn6z6$E5nVB0y*thN*iT_-6`&5a31t-A;t^?+Q8rU&wIGYx_!t-Ce0RgwIyVxK+FEg zRStyOE~<@($(xh7ho1ze8$9N-U6#5Qm=oEXX53AR(!(hJu8$uqR2t<(4WySmbQ-hX zL3HWkdXU7O=RDKZJ#C^nJ;teS@b@#E(P=_yrKlip>c`*#am`DU_9AiT->1*)>ZWS~ zk%j69kC)tlZQV1y+__&N){j0sm|74wC#RQm-|9eTkFS}sq?3&*@V46nzTp^NPjwIg^* z|JR#l*bsP7iY+m=)$c@Oi-|+}$);Lzn7Cr~Qe$wByi!urLbL4pdiqqb z#db(k? z#?ZXo(sd1UEhc`j?6PajQ(Rbr%Iext=qyx9j?YRqa(95wfDc=U$g zKxS^xau_N$x+x+9G6dnwvM0w08Y`R{9<6f0w!V_;vqjKv^`Mdb>PVeH{sDd8d}mAVEMW6zJZ zrHvgUK~b2ejV)0JXH!xMAJVFXFd?#XS2ryVkG!wvDEA{i zS)qJFrrK;)-5e4;K?6F!Eb0QeQPDHMezh-uvpL5k$L}Vjh|J}n1nn-W%-_}TUmQO| zNZ+$21(nm7*!ZBV5-%$^7{{!>=sQ{-F4VO%*`zjr#-+2mnwuE>#kS%$)NKAOll|-NHGKf!f--=H@kU zI|PIK!5h*WBu8$nrFbq9@bF}w=AHo3jjjBVVg014J1^R|ZQCW2DV@gjQ{jBkN5epn z%T&7mNM9i@(RnL_#Id9ud3O|i{TS!7Z0rk31QROYfgj(tG%^-g*`9`tEinF1LRbjF=V<>%L4~9zNeXpPB=SFqqwsV~HOTJ` z^H;5z`wryCC7apDUXe4v&w@dFGUSwj@6+wyC1Fv^i&YbA&$)kqadg`KPTv=u9 z-2CfGHchzmBUJoOTl0N9KPK0Wp%)%%=1rFFysasY8nB7Ja^~YpHja9j^_|8C+E4rF z>r$hS!sWR+ASQvjuzGPeH`20&TpOzc;|!japtNudBA{dWlIE!ojCuXmC|7%4x}V5j z3>ZM^LS#kNUqxf{%Od`ao^|A87vCmn;8wa9O?{eHRDC(S>))e$$}Shx9CP(Rl^w_r z_~YN+F01^RDD&<4y<|_xXcpN4$`f9Sj)k^!ECD^$vuc(2&^Kc#gbt48Frh9>O3by0 z>9PQLKV zLLoSVqFl++v=HIQ`0`}!yd==t%EUkxuJD@sup145nQM5N2n-8+Cj@WmnV%^7Y7fR9t__XUWSYmhe&gN|t^(>{^2Gg{f zs;Vlw1=D13r}C*?Y3S0k0YZBFMI>~&8B_24Z#?TI&+}!%tBun#tbgbnjF0nEJZFm> z(>{>jw`ZZ(>R_RD57sRW`xcGmA8@{Q(R~+%?2v`KXjwEDw9H5gNUGU!NX}*J-yBoX z9hGU&+N z-QaF^$~$2X(pkMN6nh;k$vVl-OP!K1=1aRz^7f6_q>ZluWY(oXZMUS!gAcfoEtOMSuntTB%LcuS zBMJjWLj~@W&FGwu;v<jrkdo5Sn%*TP&9KGD>wY<26N6Rc*X@>f+Bw%V#KDpK| zKW8OD;tK*~_v7&RKJ`+ztYb_G(j`V>4sat|Z)wA$*4quYsT!$ufUHTjlWW0D3P|29 z1A9R@xAL*Eu`!^+p|rFWnzB*{5Y8~46t_NN9kVBma&28IWP?prp@rZuOBS;VaXQHP z|7be zw%nwe$xU@?8MAbV3Y#OjYi@p*KYovM^T&CdqvhCV*ZX?EUeD(Yx5BTMYmL-RcKAi# z9vzUs&jpc;{rKdz>X4FUHl>)!g&I=#L4A9+LpJX)+_l&3NK2C;U~(0qjaJV=6CP?n zH4fUp0GZxC8&k{c@N47@)6aeE^FlR#~_DXazd6M^#6T^%1u z#-`YOwp~*qZhTl86GHPc0+)pcjNHB`(OeQsJ_`pw&D3+-o#2)AWgV87?oJPcUCqSioLTqG+W);0vz-Bn$x1h{ z;KWD9dglmQ%Esmv7JNu)Qu`G|(2 zLiErjiQx@vLr|UI;EnT748i}@F3z!EiqfLNSXuVi?rm5idwWmC^3pCsW$ju4AKm%v z)u*c0grpYH2yA|h!p&%d24s8xl$Io>1pa~Unob8ahK~J+#C#NiH6lu$)Uv`PXkrGc zDPq_06`?XHsA+o%pkWL6iTT#!0)x)mYBiu{z^+5|j<^Z%B4XTW-S972 zEXy2oWT%5(00d;t)BE@fL?pI>f^o%!Dx;P8c>i_$BCDNH}(J3G++C(Z?dUwp(7wnqOL!cMOB{(Q|vrm5(PoL?DDvBPvAswz7e;VU;~i zv~zuxHly&Lpn4+Go6nx;K*tJ)vU3|jB9Zr8qDtCeaCM7wxAn#A4M)3>{RlP1`|5~L zIOyGQjfv)Lh~UtR&9%qlWd`>5#7Ru^vjInQF-D>5z`A-cUzVdDJaFI*#brT2q&k0H zg?mE)Xz4F5B7(p`r4P_b+%=l2cp2!XemvwE-FwSg$JavT80T%1|?<1e=5#%)+>000J+)X>nu`fQV-k;vP;qaCg zD)!2s6$I6OMBWXbyPc1=sr{PJ77-zvqJ>#GMM{dQblYX%X4!LNSOZ6YFM)3;Kgj{f!QcUh zU{7-`QkOn7=RRM%2S=g#VlcdmWMBOM+OtQte{@11p%JZwP#!U;@}RT!Ilnqyol$nj zvLrgb@dRw{3cwOpm^f=8ep)SojjaNLvtHxW+}ap;09jqW0PK~n<;(>7Io<6lU#Ya; zKodGwsQ~vHMLdctWGIy2lxS7h=`MhYa9<8TYhPY|)I86KhXnX!Szs@L2TC+*^YE}XahBJeQz zefHw>y&ttf0YvQVeh zY0*7kS1>1BhTZJ9m_~&np7~|`m#ODC0ed(+Zr>8yK4T4(s)a-&Ew=t}eCm*10Wxu~$=mSn-XACZc0Ul!GCQ5`atO8DzH4A{$SzHM@?B26B)GEgjMa_2Ve7GDoim|V{>V8)+b!%I?X@}6HM)iC zC+)3}S)a)de%+8Oc~}lup~z!h6}K9D%4W(ynh<;}8baN4b(l?y)xZAb;gqJYqM)ce z5~j0Yq=LoRD@JZDUWGkvl-i2pdq~CX<*CH!QrfBI-#5fKXQVObS|t#?;n*$At%{4s z_s_5UPXT)xu4nD_)Ff1h&CIP?r$Jm%I7Kpyjf{;#xv?Mm*GJ|@9@AIT#wV^RT`!}0 z32kR(2wcQ=vY*>nO<4!-yW3sf8-?WRhFVE3g(}xGU75F~6{C$KmS4)c->_eI*v4Ko zsR_E>{bl-xSX9xE%}4ocP=uca`0*5n+3qw-ocqx~ zQ<<>*{acMQQB@r2M(&HRvM_{CS`I7={lqgHe>p&+h=btz!DwZibu^i4?N&22`XfLQ zBJDb4CxLXIo?)aOu9oL`?chho!PK)}JvC)0ov@t1x0|Nc{_<`mZ;C=?0}14+?=|ZV z8R#7J)gudII6EGn8AeN@nTBo5d$BQp7x5f%M@c<;sO2|3j}|XhHje!|(Ot;qj!)r2 z#`?HxtqBkiwzawQt6}AE&u!m}Vc%1bG z_WQgrteq{8kltJkVGp~;(*2H3kAL4DIQ}7f-MgJS!)Li2mY@EY>M;I}KC)er1O3He zN?578(`DQPM&P6L#pSoFca?J=cwf3RafU(b4lA!SiWyH6Fb;k{O3E>wru%Fu3N31S zHkXL*KQF#}=dc(piw!{(dUY2O=bRljd1(FDS)7f+7VNDb0%rBgnfW1ZIV}GpC zYOvYgU;cNsIh(@kA2^k<_`UK{?OGEzYkpP3=AMdC8EbV-S1lAQV`j~_Hfv^Qy%4ND zSKdpad@;qN*w5q%?RrR##JF81mtPT-?FOy7(;Yrq+!PL;n{r*+7j|Gk#`r)rj|IFa zL#-@(TCyblsBltE#rIm>hXUsUV77dnaY0|bE}=RQ&>wsvH;0r9cEBf7K*m7_J0&HF z^o-;->RP_}W$ZXh_>h%hUD-Chw=#0)P`-?P@q7?&;j%mBPirt)~_S zzu3)RFI>F9xDfXg+N95ywV=W4#VM|AS_1Ty8{5I4osS>EhT}v9P&pF!e^o}1bzBGY zRw)eTi4pAv3GQ&!Oz-+78*~Vulfv_})#jF#+_Er@vC9?Wy9e{mdl4xuNruWz=X^Cr z2n&f-S;+Q&Cpu3IoJ|BYsx9un!Wh=F@IEB)?#P=e>(tO@BLNtdfmMo*POA{KHBhV` z%##YD>Qd{?t?=2YYBEba9iTq>*IR!ls2hdU(WRZC95Hy>flb!vD4?r;ct^3BImY{}iE z6Ot2N{x|Bb-mTKoQCW?hUnYgo5%`N=WlzIHb=Cg@#WV4V``2;#M5dv5oy*+hH&sSw z+gNxnUosrgc~LJi)X2!=#7;2;S%j8bERrZ{?WDz}$#V>+QIh9T+C%(dzq_P(T7#2d zroaL(LHs@g$DaF%|7lL-Eq}Iqx_o9?c3YXyiXexY)78%(6>H-ND@rGStea)pnQTax zK_)?r*G7vM?x<_L#@Z*TquU9CN-7-Srr||N4vI=JomyshxrmTDN{aM!Fv#7lX3V#o z+Rva({wI_8a<9IiKp2_%qxX4?O$O%|J{SsAbgSrHF8w#5lGL)oPoOGmqrtDM1oPil zdW(T=6$;Tgp#$UrvRW1C>|hYW<>v{t!9Yi)d7mDK0{5fQ&&?4@L8 ziQ8hCmPHo!vCB*Q5jtl^d|Z>XvLtI^7vH~9va?USUfq(@f_5?EKVnghS`0A%sUTGz zOYl(BM~s79CdFMb#U7RLP#pmT2D2QkS24UDs3IyhnYT74!1lZeZ;d)0k`bI}O$~#` z6xQ;G3n;Q&1{bW4rn@T5*>EC6V0BhYx>sRCI||frY-<%QlqV?_8~V;O=;&WNRo09j z-D!m`GWegdeU14#r|}=ChpjRH+tDBIvMIeq$NGJbB|+g~I?|CPHo^O)DpnmXu45i8 zK3hsMh%Ub5-FI?4cP#v9H;Vm>Y^GzhCnhDKO_nuuQ`5BCLyU0T@AwM*t(#DijFv-c zsftfnUkSMPw=7HI2YOEAtTw?ba&;Y@dafZ+!qq0qqVx?40s<(t3+uBEnWXVW{Q{~A z)4qr`f;~Vljk;EL5)XtVvlZ8$;&%KKloP$!CsiG-rjQ<3{0YlE5y%8xhG-;DE5>N` zUL7UL4zmGGe4M{8s?~%*DBsPF*Pp)-58a}2?ZoGq&2vT1Ed9@OFj%{gf&XlVGCdt<0yE zH532KvFMD`@_O5H>(ykjp#~}o^_C><)ZoqTB}scr?`8m>>dOf>QZ0J1UFFdh+4bLI3V=vb3{DNNiqg z0UMKAf3>s1^F_fsHXZh+HJh^1AaX_#uLd(P_}h(IV*>u?6B5JGDlsPzI(MfI-spw@ zP%e?vjM|1}74D=;+eNLp!FRu&iu)NJ)Q6zyE=Xx%OYL^@+?HKSUo&SYz9GGvjoR4h z=GcbV?%f2Ld~+Tu+5Ar1_WcXFVrST?6BJ|g+p3Rsar1;B6&;pfzC0Unth|LV@zJg+cKK%BG3e4qCHC%=ACodq zKE048U~xA`R&Y1h0z@?9P1D+j!{c&lE%!@7>7{PZuQg$nClfx)tiJ%_Lh;)rJH)pz1vs1@Ox>wcX`^j%2DCY(p#)M z!pQDm#;cRUkn+)!LP9A^ENl!Wm2$m=K6Sw)ULVOOgft8H_vHLD8USWR+N^OYVrnIq zYYyhk>8gn+p>!)h$cdUs%g>yCq?W4J2g0`8b;x9@$DAx82k>8PT)L zwjtm=ITAM#kUucB)@txQoL(62Nk#FBm>&#}0s__g@>g{Ng%#3uv5X8EWyuIuC0v6* zoweZguttRx1B*7%PI;hRdR7S% zjIi5R8ZxjemnV;J-j@-=bEeW}XIq$ZPV*}Rx|E5#p@T_PXQN*9+{ z@=KtYFY)suQM{&I?m-FLZmHC6`L`EotFZHk=;oi}Q(lGfs4VaoOk05@T9_ODzjSj* z1P8%a-vyUCNuAYU@{Zg}KAJQp9PW~r3@z21+L@1i<1^O9YkO@c4;WxioNUe-?16Gy z?2}^Vs~Aog*R2#gj1JjxfX=+fyL0E`HuX{2(9N5a0o)&A%iH!E*)7sehCl$lw)!?S z90(Op>uMHJ#JD4G*gQCO5Lj1O`D+8oSpV)cQV%-rSetBw(brlRdCQ0cl~GL9en0W|Q_Z%c;T1f0+eThfJY-H- zv!x|s6Xy{Tn{qXzX@l=IWF{&(O)h7|v%G4P~f*54OPI-GaO+7_22^~oRTWf_kp5*0dSzq=qAJ)tngvZopkFO~ef0L&k?=xg=siMRN z{cq4ai14Dox$7|#s!u_}S4e~6h%*d+9gD}N-Ka7Ya9E zOyOZ6Y~4&Ij>@bvt#ci|Zn=?Hl*W|$1p1;ekHvl)P}YP3tXTD5&C;<;Hg_^gtiM!0 zqyTQ+ZVbwJL~&0^18Wy;eIW=Sf3>?Xy*2SiZS&$*yV&`+&*g0;D|O=BPUicqx^tsr zVRK3=ORjmFtGXQqsR4}1tJk4CcG}3za&NM^l?Ft3^hHEP5U9AYtz8O26P%G%YOS#gn)HOo!CG*=N<*nunzwA8vg1c_#6(nKS3f9DcBT%+b}2&Vp!W@d8xqQpcxe- zA5pOi8o=Li5SZK(XH(RR&RZ$cDas?W$_NyF(gnVR6$}LcS#QZ!%kEoC{FmxNjQV0p z|KLM}x6aQWTK_x`jE%iLs6^XmVVgMpy`!=@c6wAOpPlGAacE6)3qB_Qx?#Xwu|aW5 zM*M4QFP<}lmCA&yB{THQW$UZdKvf97t^C=s1?TwIZ|iOR@joL}PQzL&fPR1jQMqiE zZtUl?w9B}AVpXZUDgCWZmS z(;h^M_9DdaxJEUUUe&M$47YD4uw!|~J#pcAY$8p%Jh?pg{VXe#L9aI7j2ZIKtA!*k z5Y^dP0Y;taEyR_<&PtK&26*o6YoNCX-CqqzCMP?#dRtPsF!K2KO512%z;TgXbSBM?3nzYUCMO#wrz;~M%}YS)kdrTN zp>{5>hwQa3w0Z^T6tL1R?*byNw<7$CDoC@fx}bdxK>0@+-RaHxmueIWv#T-!UY&{a zjL*tQim5{3U}^;{g9ch%A8CfJQkXobNCvU3%YIE!lC=u6y3^E94gF`PY$9=CbhvPF zw9@Kj8SLOF$@(Ybe#|Z1#u&~lQcvo4>`1A~!e>j^Syjdud!55|Zv_u=Btq<6I&V90LSjB}c%{e)Htq&g|@ z_8#E63XY=&vCl^T&Qd6>OSt#z#Jd5Y7Eg_oeoMW$1*Uc-HWIe6WH-cVxH7?DfeP{F zkgGa46#g@HJoKo;6P-G&yzj~R<1rn34p=EFau~+SmIC!88}{K+mAzUL>>V7)z6c|% z)%c9Nw~hooDlaZNb~e(zoxK5<+S0n znud+G6zTVY-JhdoryI-pxD-JNjD7NFK%X;FWtkhY}gWnQq8+b%Kq> zn{p(a>~QfKiY`&Ug9KDIj|tzHBwlLT`CKQHboYLwUS6GcHaLwzr;I~f)pfbc4qtUvCK90vT18sipCH!NyIabQC%RImHM0&bC^J1yq=fM-G>!tnV!~Mu{L=4I2>sh=mfi{an`GY2ShR%!@kw#izi(fa$}|zypZym@;7WL zs(J(j2Tpy6(B}B5Ef%vK4?bK=%PoxiXXbUn-1jMWTg!?%Lwu`rSM$xtLY%jyj8v7}AoxdP;4 zX-8mT+l!BoQ=O%V`|E;%siq3&U8~PT2XUS?PV5(Q;4}LEAt9_6;>9zIHI)2f*8JSk z;`F7iw2sB+q8NJ=209egj-f`+3>@=!f4SuxdKB{+DTHQ#&^xWKW5~})? z3@h6yAC`4XhxYW@@C8IiQm-tA_Rag_i(92!7xxG!ebr<8~1@=mA;8$Woyu%yB# zY2!p}06d~Myd_aGDPt^-ds`wzxaTXEmoh7XD)gzuyY}g^%F#gmQZHz&RkDjoCxxZw zj&!k3N-uVjN{cp?vcQ|b<9d;NOWpjW-leRO0+Jtu4C+`Nvg_4r@oCqwD}32(LoHRw z`G2lne=)0^cBT~(H>!0y2TW}<>03NKu)9id|WJSK3e>$%mof5eB> zVMPS8CP(ZCpe=xcltOtk%ZL*{0CIbPw-q77uMv~g!D86dy}OjVWBc0}Qt~s&$-2#% z4Xjf6@ecXoyC;V}*Ec8D_uF*trZ~SyXy{1WK~9*`H(v7#l*b_nsLm|PG9N6~d>yA~ zq?__g|9Adn>TJ7A#;V9?`$_&BU6P7tmq)x#LC6sGwn+s=vYQ`jzD|Zdoo(at*r`Px z9v~=~;aZA#VrOn_lto0SJb^|_Oq{Ly@bkw~*U-DC<3lwQ*O=#L$2b#q@*mgZbq5*~ z_VH)(!v^By39AjFX+hAaB6aOHCyQ5D2*lBo?(ShwwUv%df0dczjAkiE==E6vzW<<& z3>{HLlu!*>w>e>*I8UeOLXI^)n8WL8$LGOm&r~H%&?zuy(^$pp|33?04iDU!6BdTp zUhP+mBSA4Vr~g6&wn6vYAfl{pBzzOO-%sXoqB1kmE&sZ-Gt0Fx9SX8D+O zX;;RQc-L(6Y|5{NGV4nBu+5d1=DxnO`7-^jYiN3UXi`|WybvFM@rUK*B3|auqire0 zS*GV0sH{@Akgg3ndA-7xf?6p>3~N)gYT!DW7YQH^ZyNhIi?ucM)6yWlUp`#XX`fs! zs2i~)d}PQh*^gxvfynlU!M(>A>e7lj?r)J#!jy@5N{?6FSDcG$6FfVQBx7>>f~@ zN?}mU4B82359Qb6+PItRAuI*3gx4UL=E8?kv6^@eaYN_Y*CWyNDx*J0VRH7!KPr82 zA#gX|$c!G420R|M7&0uxphgEqCrj0KC#Ps7wxgkjmI z*gm`;Mg2AGX;bX8DWSlFwa59p0@3rhKa~#2gK|xL0aQNt1=~^PZj!nWiZk)eCoAOw z^Y4q(0s$*qxm)nsE`ENjvMGM@`|$Ln&BI`fN@yUV98bg?76PxIS=P^f(KwQQ)G~&c z*T7t2qvm(9J;-#?AscQ?f#2 z%?TE+QSqxq!{gr#-HObDFFxGScU@3eHwijLl8PFD>fFFFfZ-ze&W2leyEmZyg%*o5WV*S8aQ^6$xWyR25SOBqh^i z83*m&t)&hmVePXWJh$CiH(cNxAPRWl{mqOFUdA9DKIwZCyHD0(dw`=J~u7N|qQQ^CH z_r>##Fqu+a+NOQ#AjHaVmx7oa5^=KywI6~bVW}`!L6QXWSbeaM!ADl?{u18V@ByCP zVy>?l|7*pO3?P#=`H_0YCSe*Ij%d&FtmjFs!al~$d@D)9O?LTo%&dr@ejEHYdDzgx z=!*2B9x9pc9RiApqgGYv$rmnhgOowg(vkrg>9qe2rF`%aTPh11(+>mX{%=DjS8Vo$ zJ1$OW5IHG(kV4ASj)%CsI!J@Nr@9Xb4aCvlq4n620#D$bJ*({mdo4*)Bx3I{WT|=- z{BZDEo|z7th0AxA`S+pBQyUZD?E(3+N7V7o8;?l9xR*kR>jHXXcTn=Va04TpllKc5%@$U={m|j~Gq$DyN7eu|!yB(Oh2%;s+ws z9B9ci@w#Hm2qMcT(#-{y!`B3zkdG0(6ZKd4kXC044q|nA8Dr61rZ3qOCWMT|h!W;q zE|>M8Gi|XZv%0+Q&YjI)!WmhR8-6=V;f;3f1pW9Zav=Dt&|%GMo^aPhRC9 z@FEF6v!Xl6PqVur<%vBggclULa|!YxnH9@8jQ7k}955&P554DuK5@XVnH_9+hw zjS-BB+D+Z|*T>{id0V19w>hEjWWv(?uOXWxe>b>*=_91vx-xO0eOR~%xWl#V>U47} z_A{#_b4pdX_|y89g$!(zYAU@r4TX7&!oLkFkA|N;mXDN;I^Oz3A`wQ9!Yb8D{gs|| zM29&W{vZUI;FRf#+aXKEk)JyzmUN}_eE;ZRewC4;%c5^bmtA^#(o5#PhWYQ(zxUy0 zm*oS+ddaY@GeYmw@YIb-K&la;g)l@K{ZUm$*kK(qL%7LIxDeo95 znpEc}{6w0D0drwAe?m56j-zmWzjG_}7soSY`nKJjNzF@tCCZmB0h~h`OCS_$<%tt$ zyAIF^)Z7lgjLE@&575HS2{}enFBgsZ$mB&yKFw}!TqszOO^YdvN>F#@TlFxQUuT9R zs>M?B<~DO)>_ANFNCD8Ncol6tHJ5*9rY}7S8DMwzv$L#~Nfbu976=w~0gc4TDvxpx1L;G8qx{FWpki?dMKON)D5_Uh8P25~R$_@I)(yQivV+WLH@ zCPhcrP6qR)0smkY+5lp7^v+e=>q6^HXkHE5eyg>>Sqv6@>6JHs=t^*NI#%-jgxAma z50Er5g2pLkI86kMNF;vHAUxF7+w^Uxi&3NwR4XN`MG_%ETdh4c2&lW(>-}~9GMpKE zAQnnxWH*h$?rz zxGUGa082M~64<{!^~N6^_4?Hh5bI_W#(NfPCVuT7?wh^FNFEuF{>)}9KKi&-Qu|QV z%lk=|+$m*MIC)6M_OtNtEqjdaJ9K$}ESu+RA7EO#&bOlC;knrDwyGRoVODi{$KHGK zuRJoNi?+RTB?POrMJx}>h9ys9FD!4>Ur1@5`lc~iI*>5^>#2mPGs_=-b$wBpAQzsB zo9~+Vc%nJJ&#`*vteCyj5pqEJpXv!v&h?jj5O#JbLivtcVrUW3eU%QtI+#*@*Xk$) zbC`G?t86}zGw%>YP}YFEYX!_u8UrFw@P6i%{txE-2H)5AP3Jy|Dz7o|8gPOScqp0L z!`&*d%;p(+CNmWVI&YzqtF>e+DFWJ=hj4g&FS%q%AOu7U%aFacL7S%P;kzUHQXth; zLn~V<-;^+3ZWATrI;2rmZq8A>gVaNYnFAI z7Npo_-Uh;21&lZ?%XH6()^QlWPa9z%MN1(=A>U2oxB&Pn_NtG06r-zW20yd0y71fp z0oFm?(=NcoO;Otuag?MiLHy{nd>wk_y@9=kXj7ga#W$(Sm{E1nxiv?z&tSE|kR}2) zXL&k#aP04e*W7S|9q9Cx>pqq7La^}djQ;X)SX12mQmp(P{HSUM?9<9(1=~D7%BeTk z_8ejFltk;jvuvfjLBAc2am8yy?ZYQ%qeR-4VOL?tJ09#fvZ_!y&>8tI#$-HaRoy1l zRIcj2wzIlCvC+F$KMFY~P=VxrkfsEBxV3(iy+)-FkEqT^IykZAH&EBkTcK~D+QOZJ zoHkFjn0%(%tG;{uyKDw+T?&sSl&4ddslp)ktfo~x#f_aczAn{$kCsH+1m7A1Uy%3S zZmG5~Zt3k`rEPZer@2 zx&tzgqXx>i?Nd3adhpoa@iu+cX@+rcj)BHOaAJhInd*qqkq6J4Z!Kaggd4S67MZC!J%Ln;3Z$_W*MzEr1~;z-i2;$Pqf^}6_k{F?McROVtsxew zn9<^l_?i8Nk=uWhwDl*mQz5GTnHq`9u1cpK_oQ$i+%45gc8X$h>$I&p(tC!>0E zK$Y-Yt56kiSX6jHXV%g3FWWcq#3P3n)zrW_p~FlKHBx~LsVgp~4lA}MKxY(AA}Y+# zH7OT@l)4YPz>YA0<`l(QrGm;%i|9a$4V;TZT_vkEzHaIJ+q^H`-G=`t*hO+Xiyjv& zrf3$)P8RRVS%2n*>}T|;xD(dxh|YF{)2?U`ZlNPJ&`yTrlorBZ0Qtb>zMS`drrv_2 z2W1iK4n&`Mv(7@O&d=(tU9Cz>F(>jpFXR5aA0*QL?0+jC=lQ$!J=R}pUTWO4dIE;O zw&U?&D>6NJZ%!}5HPvy8cCd!}*fAT2#D#>VFNr^%ZG=JY`asVrjp%TJn!;SY<;}mTjNCmVdVe zu{{88GJG}EQ3#qi>Frv!g6}nCG{>-iEiUIXRhdwNOqLk9-77T?P0muz?%P4P)&Y&= z;1)yBP+-**)zIxG?VT_>^M`Hpa>%` zCBZ3aPjAIGAPgF`SP_YX&Y=LK!$jizb;)t?KT8YKZn;(biJF3SLtxD6- zU%w<3_a7VP5HTpfOH#6RjB_6}!++Hz;_5ff(7SExfUEA}Lg zRzS@>+PhCW!!4IcWw$J}UVUX3k2MWY#^7`H7}BE9rDlg|@u=>&^_Sy0X{!udV@N6$ z@}2he`wSJtD>|UvXD~T|S@(EV4p~rc|C}&h*>n-&G29AaWBJ%$xx4xnCf)7g<_9Zy ztKna73tyP&s9feOPc5&TTliv^c;Uh$7BYFIFAl#VRh}TJ>@i1hzs(4q$iL71oSgiY zGCL3wD`p3Jhk6MUI-_-u3d@DQ~YK?hghk50gqy6PObM{xpZy(nZGp)n~nX zvYsDDVjlCN@wLI-&w)&ebCmHj4&JxkYL>GbYi96Ne;;%$I%>ezChG|aV(&m@i6P!# zZ<+O$)CTWTjG(&nR!_(9rABx}M=&06Gs&50=Gw__7+Ra@6?*Y4A%OLNr{;L4rdRD? zKAGsb*cmP6ABQu7yeTvP_o&?_ZB>mGzMofZ`3Z90?{+^2Uj`P&Mqg`-?;iE8kddK_ z)))A z39sscD&pW(U%J?>!kQ`4Aw-~yFJbt&zGPSPg|K3E#llqspEP6OS@``bA~cj^J+Dkrx`fD9 z$6(R~X*YcEs`>YS-fV+efhDHU72bg@B6^4_md5x(#!xTM2voAThya3#(Q1r>qJpAD z>E_vUdK&7jGsFi0{nGm*wxv>5!qXG_l(mIN3DK?rokM8{ z@A6oMhWJk-dosL@tD*X~v&f#cE%dqIM9*$RdwfZjPEoYqgBBUp6oR!t(q(GNa+GCM za^CfDCso#Oh8&77rz-}M*0n(#-ab6Mob6-WZBdFpA66LwWlY)NWrAL0b4FmmPRVZm zS)RCdB%!g7k!9~hP&Rlxe#*?QuX&j|GdANcn;5B16z|od7VRT2-o+aR<$Vg&Ho&I$YotM@s)l!^jxbc=dXx0>1LMvPab~>8yODkdR>F0 z&KYQRO0MnV!gb#4snD^ROQFpZ3pCrr<<|hxTV5Ji4(xAS&WFc43-SDN0^y91%z9oEoY7bL6 zvKxR0+sVY!G@CJM3;X=YDy}cw*w9N+k1q?< z@smKmm$#$$81ew|*6wQhVSBOSZ=czB<`J*~W@D)gb9w-LO5D0e*f%cir?(w&#Im4Z2Z;@dDQRwu4Okr_Z$kD69e*3i$mOr9zO?;aj!|$v(IU_ z0$Yv=C{fq0$oKKU3rcuc#4^U+FV!{tJeu|u;%Zh%)4LQh=1y-8KD(NJ$UeHV0~gZg z6!aQLP=5R5&10bPOl5!pRkeS|)wEj{xNpah?@4*&nDm2JS^O=nq-$n~Kqp$=)wBvv zuyOxhO7Aacc5!#KMThDBo--apOLaSao@1XSO0RYd##$jyL-&b!BTIM$dBl&*kp20U z3e(<7y~+)piSO`J&aSa`iWk-z+{F!44*^E@>T@yJaW46#C%S3j%_`8820=YdveMNk1X<$aI zS*wBEsHAv>{$jn_?}DTYZT?1Tc+rUS54EZt0iErZAmPR9JUN%IPp7`(Be8CLOU3&@ zNa!ah2Xm6tM+gyCL{UF{6(j^l#0JS%b-9wYA_IF|PGEAEMe@8-G75L?6V~?9{5{s@ zT|ML+>_Nv*(xrbR8i>~zoq^4^e}dFX9W6#~r>cGRM!MAQHDdjSGZ&G)XBLkW3_qa4 z?yNHtZE^lkmi8hQIP6im#^E(LB$u_1Zzq4NkZGeH-=Y-c8Js7<)Ziho^oJBKCRt+X zDJn-o=<-cF0^`6tlo7?_f#vj8;L7;cia!42mXPV$pw%Po_;PT?nNpA3d(W!+W!*;RJWwzsYoK4?L3bxa= zBHX_Z#Gw+GewuA{g-aW?y{D~^X3*avtKH?LYTb$?IEgU;ONQrw?P;C+oyy!b%A$3U zMz_@PjN)M32nuPsj-vF#k9Z)&H5uo#wLCe`vQ+BVq`+j`4=EHE1vbh+LCQa-EFp@3 zxl3lOCbE+uGTfVSUAad0ECaZ3ZV+zTW6_q~GuFvqyzhZq*Lc6_9M4Vv%Mm-_nYYP-C0(@v161g=YR!ooF%ft1{`f&ho#_ zvuEhsz8I(f4*I)|R;0C{xgne733_8S9|s0rvnJrL2w8yO!M3D?^l;!SXhnjXHCrKo#O%#I&;nU2SY9oQlO zsaXXL*Ghc@`=EjM``6iDi*W{K(TclL(FyTYG)wO8gy(g=t|{J65@XUrWb;%X1NW<# zb&cuKkXyYf=CwDw4GpTt6^E~RPT&ext7(2jCZkF|SdT5qWG_2%MTy_1GTG7JWK8fi zXAaE?Pc6@puSpH)ZFytd=vp1q%I6X^t?1i96osHk>-%Z}E zsUkQyJ|wb;^!@-{m2HNRS@h3r!#|hW5@+V!PiAx+MqTRra@gifuFaWKnZWB3-bvT0 z<@Ukgnzzl}V$7S@C#)Fl^%K^zr0k$*QkU!^t0E?PMKcyXdYPJko#H|SKosOO4U0Vr zl(XN!8P?tosggXeYZ=ySkV>zD8zU^XGris%QFxcTOTI88pI9C|mAGLdaR$WArz+hg zjTJQ2tJlAnf2sau`lYkj5)XS_biY(HM!qR-Fwgv9x;y$ES{)BZ-&M(jH(IledymE* z>w=LHBH!opWfixgMfp|iWmO^Ap-zwb&MWBkJ6X(_EgP-kg)&H0;Ffn z(tLyJZ|kf~u)S^iCf~b;j4hUb@~oPdMyI(u*-)lbp!rqwR8+9i7^vMPTBuQ(cP1)X zB4x>Tx{PtDV;fangz0OE8v*21bR%G&QEp)9*tS%P{cGG6Wrzmi0R`v)iv@en41hmx zDoSIV@r%~`1#fZ(3??x1^435!v=mf&TORR>q4Nb%T32AZSdZ+_Aa_3x@+JTd9HRj{Qs zU~|lFo%+;9FO~l#AL6N5K0NZ9mCBLt=j1O2!^wK)}Ka@i;AT!MyQaQ8$(e0Hh6?4L7`8r16c5>O6>ib#<{+#3s z%<;)pu%J9jDmsF8ek7KC%)HoXWCT|y0WaWGrJQ9N$fM9^nL{@R0R>pJY6t&hW9s&l0N-qiy%q7TkSMsR zn-ZYbowm)0oa|^NAwWn`g^|n%9q@;}5KvIJI1(jmaoStSs8&lv`&X^K(X@=iwP5O* zs`AdMK9$Ma-M2SLhin+-!=L*xv_4^WxCeF4j$eH7u?-^GG) z8ROA5U6(vCEFx6!_`|!6@c#Wu&Yq~Bv|s9X%PI?vdwZ{ z3^3`3VRB7giyK+ag+=#PU5rX$JqkcuGzhMSlR>n>PW=$w=(?#|*7KK?Wtu9n{FG*P z(&?J34*4VM=Jh@8XyuVMAT2ViUHma-uS1iKSN={n#+?2LiOrNbUB05y2=-(3o2%FB z&86Uj5FtJOH>{h$L{Z4P;L}~J=qgY@%$_sXT^+o=Snm$c0TQU{I5z60u7aZLn>~(r z3dbR*x+ST_AixdQ$H}QoilK&D+|0Asfu@97uR>DfAumr`w-*m0dM7 zV!fIXY}Xz5Oyo!`H|Oz5n=~Ftl9cH{I97))jXHn@bRAMwVc=*)6ru4kO8Bib&Ey^L zj~mdd#K+(WyD^n1(a2KL?N8@HQbGx#vLyR?$LLi0T(`4bV+;od?$rnd#Wip*l0yfM zmvI#`B{T(swc6+^WJ^t_OSU=RKo9#yi|?@I;BHlg;H?MgbTRtIAAR4LWp8er&wR3V z?9Dr6)T8kyJ9fX>tP>wW@5d8!%>KP5xE3H&Wf}8{(a;qMg)P!V*yOVgUf8ZFaa*Y| z3zpS+=QM9bF2?3BE%fbPpS(8vAU#y;tqsMk<9Np2oa#@eij8}2QK)RI0IW7& zxD|TQ{zPm^&=`!m$c5VCoc@*KG}dSZ!)foxzcLS}hsBIXthSP^$;BPRo}@8$(C2sW zG-K#)v+HNGj0%$t6~h}(jFfevVM8El+HV69eyPCz-y<}7@o{+GDsWHigyrIb)GKi< z_v9{lLV#07HJBPoN?d7;aq}AQNva31G1FaaiZwsHZ`NEx3)KP>0g~QlbLM4j^>$de zq7?WeKgtkUg?H#4uw?9`kDh-E5X?GEx4{6)hc>Zt-t$BhBArd6qQRU zl36+_e>%dUxCm`BjUb+Hg#Ejbp&*h-z5hn3s`OH0VFb=F-|6l?5I5EJ*RQ)iMBk3I zEjan~{OqsIa~BxnvNwlFo7xtDRwG%Se!aZ1DIv2Sy?=pFyQa*gCfh%8HqDo{;Zm?a3OyfnZ-d_|4nr^W6 zcUaSf>p7Fsv*6BFk5AfA1OxMz{g99YI{zng&ub9)jr5G--8omb+}k|)@Bh*C!fn$`y@L%mq=i8L>2JlxyZ# ziK(eACN*ZeOCp(?nhTnlOS%1?e&>8o|D~rxaCx5B`}KY;E;G~S2PaMo3Qo24y*T*l zRgLGdH%$QcJyRLo#EOq&;VKOV3ci%X4nCnCRo;85ioHRb!{6x5@Tb4&ZX82Hp8bYu zL(epVvDEE@ks%HVlyxacGN~B$#~Ylz1Oj4>&(tY3WbhaG`d+Y`Bv}LszjJ1Wc%^=s z3Z8Au0^>lJ*UYC~KaGV~CzYnyz{zR0gW=Vt>N&OfwGlsxRPXnXO26`ewt|VD{Ugul ztriY#wgXv(pO=My4;_;1E-O<0{VfY2OSgGA`?s+pL;jcb=3{*C?JV)@|LdQg>C?3V zNfpg)rEBjSs(#LSN`Hx-Wtf^+#j=-kSsxet`SE9xOZSi4{b8AI={s} z>VBwv;;m1kL(SxAw5eEjzpEaw08pFUc9=g$1smfD%Y!rpd~!=%hRDPCRR7gK0LYxI!Sw_aLv`Jb4ofU(XS zErn&_Pe*$^MxsBTN%cvYeAeRLoxR*TW_+;3I?L?vG0kRTSnYul{`fu)3aI&dV~IzM zael%IT5t&*ez&XXja2fjmoBPyyszPrpjS*7AMGrt5VB+Q*E%s z6W7*`s&qsjtymSci}MQ~jRgVG9ziJ%<*@c3A1xjhDTZs_`opqzKRcFSk{f4SV1f+Q zczVf`Y(UTrO~yw!nQZ=HMEC^b;)sqZ4~F6V{~iy7IQbW~JYIHazlFH)WugAb$m%uE z%&%v~tJCXD#~QQM=Ft<6Q(b^%chY4hm62JgYmWk>)(7#nAy~vf@dQZ9hNNN-eOfHm zwE+*uiJ4NoEFqmm3QHqUITXT2=lojkQERtv4`;WKC_>^gYDe%H$uzkhj(sE)L@Bc2;c=L)5CneE8l4nbUj3hhq3?s zq-;{y_vlRys0`sHNPuZO6e^-WE;QUvbwmBq_0S&q7VjkYB9Pd#V`b&dV!8&lJ*O4# zPBuLDg!@5AL6Q9SJs*OV-bQ&<6)WtSD8eD(5elA2lIEJsKYn%zL=H{A(&(l-V#Ygb z=Ur;woP$XAwu$2OQ&)wy6c$AsK%|oKc?1Y16p)xCHYK5Ur#k@$bEIT4PsY(h-uFx_|aY%&F+h3U65`A5E}_ zcTLZn*xxxqN+frVq;nXN7Iz>vNld~Ux#7CtjJ;H57mqd!QdEE7;AI>V&k(QAXXxug zoxFs03XOwE4}Dj>8Df9P5W|H=NX1%?f=k=Jufg()s7|E7PL|hSvzeZNo=eCM`a~QY zCxRjJMujLHES4OlWCm4#ySv`mkL#JiaU?!EyhS&*<8t&&QAf<_gX@`v^u|V?H%o`I z;zO!kxz`{|70jwTh{GxHX|E%t0U|$?n73tUdOB-x^SL@_bzpnSy7pw7%GC(-KCuL* z>C1Addsa%=R00vwx9R&=n9W851>iBHX2RuZplI26U^549S0;j_UM5c_6QGdHq{&Po zrk_0oJ1FT88v+RSEP?jK!L+Io;l~ZL5>N7J7OncQ3NeSEPkWKk$Yrr=?F$51cK zIpUgi!0hi7k{Heq2%&~cLDP{RR#~?Yj>8x9XiB;Ufn(X;-#JP2GgTG(Y8~S}9>sC< zBfyW8vSlPj9S1M=d_(+x1L9mLD4D`@%^tQR5SQ}>WJlP25kn{l4kTfAm_!x9D? z#_gA(nYX+quu+h+rvj}EdSNBQeoreJ%N!?EBSBA9UY9QS83$#{Fz@1ZrNuAhntesw z5WBav5gsT5#AsV8F~P$e(XeWN*k|v|4O#K6>cF~#e1+JdPZyeg%kQT5pBako(BKlA zb^kX19aIzx%hzs~@W@D+vGDUg zjY>CtG^tb<(KXnx6J6M4e<|ofa8&esdF@nFYV_2X?(PTC6+@Z}b-JuUlt!s4_tQ*P zSDlR`0wn-e(a3Lfpagw)C`4^$EcDlGR$mM%TvUQrrS+Psb*dC$S)Z!On99$AX>}LG z^ili9e&^!hbrnNZ-f---kS7l14(f}s((cgPtB*VBs^IeUTTYvwYbBFW=E5~TX6n*r zTrd?CK6U6d1*+z8dw-u|_cE_F^~UPJYazax&E*IAzG^XiSKf^;-EG^es)!ip0&vaO zW$ld9A`=dCMe|byE|Gtm`}>q__uNx{)6u&8LEf)UT8B1S+cj1G%I1Aqzoqe^dkS=+ zZT-Vdy25ScsUhuqN`}k!#QR&9Hx8(l+P|+m$PjsEav=^DpyWcb=RZgZWHb|lftPmj z@EEs*0TsZoI2`~1BFBEA{8o@t^Vs;rv~|tQU`N#K=P$bei+NL{+x}9X?WylmtkHe# zE*R~$%a;lunBn<`*VW4F!gC0Sy%h!j$jl;Yi2!1OKl%#2&92&h=M+#AWTg^L?i&oP zQsQ9>C&OFby9ebH0ToVfGPd>MFd)3+z45&}_OnRF=yDCa)w!~yNOvol*PasX{IzJX z^jb*!M8ksz-Psj>YTdb8USQXD>26kccK26(rI@VHK)j)Z-8kM5r|lf~>dP0+#Hi03 zcb?_J@{_o@6&gf-yL!m8I^3)%-BjJ#q?;KY4D*T_OBO7#N}DZknLZX2)7pE%vv%f- z*MZcKH`cbio0wQN`)TU)A5Y9K3cn$Klho8*tD&!_u6#Z6|CNv z919gA zjlg4YOptt=C);UZR}}Hix$?fIJYcRmX7btF=uiDY^&TV6cOvFHwPOwOJ;#py)zCBA znEgzp`zi9kb+4K&wJrpR;Eo14Z>jz=q{}W3D2kbETs5z0F^BbwR{hzrIXLTxfKse! zlwg4VQeP}+@-f@dCAKk;3M{Ochm%Z#7W7_3+I~Pv&;lDmQC3w5hJ))blEdN&Zf~la zalNKN{@Uth6QQ7KUqcGlr+AoWdTbmLWC~Oi`onebZ`IdZvhK>W1sKH76vHe{k)OrC ze*4ipz7ivZ25~W%_nTH7`2K0&-Q~-dYgB`oW<;d|xWYmObfR=qZ)@L-*IY}C6`FYx zR}Pw;S2NKN$cb2jWsoHv2)r;uuX6+OiW^VHkc(Mj4hP4yWb@hE zuG_eFu}PjZeJq2poi3vzP1?v^=y9hsshAvR|GmtBK!N|4FC&pTunZzEBhX~Ms$x(3 z3<3hDi3v?0B!h|nJw>ut3(IgY!CgXwV14@46=%V((V32NTr5X$c$V}+;(0h zKw)$xDXT)M0 zo5c};Vkb>j@Pz6}HaerJ~chD78<0X_37C~k&siGHeF682cah`8B9PD(d~j?NE!i|VhhucZMjyfB#g=${Crls{nHW7#zU%E4UC_*gHlm!iuwMRK z1N-&GSAz_09N9w2hCFGJI~bWyUR_%yYg#He{<^jNOJ}$SW2qdP15MWvJECK9zgu*wX{eZRZ@LG~`MaNVHR zuFW&WX9d$9!7~9I#WV2Ik1K|A-PU8f(;PdxC4Z%DAw!o{jmmxBX; z`ukk1!b2p^^Hz3o_g}i-8|<4G8_?Jk=;doGzX87B>$dbOg3#2z{o(<}9fq;{DQu~f z9-7Qw>DCpxA3`4@R8@MejLb_mq(0V?H(E-t!)x`=$}^4}ctpk{g?acPlLwp0Ru+7W zVVd!q@C{B-N2D`gR)I-=gyApVzvx3`bm%jmpkO5CgWuc#&NwXv*uUrSaN>{k_G269Lb z?y**i#NDCAFI9fFuAowQGI42=!?^d;(@_;E?%JqpWtDvwMLN91Pt&{EdivT9)#~OO5O08<8sd^2FM?_3Yutoni z-`FoR1L5w?HLFof_90Z}xkO9r_f++@gFb|dn$3N;w1fW&CsjIhWrA62Z~H{C_W>`@ z=r0Xk(Gy?#G;+1$+nU)^wFmzBbj;-o6A&pQQKxF=ifX3@Yrkr|4o>LC%;!FQI-&2H z+~gBu>;1$p&c6i&w-5W*$u;tBt%uj_Ou+m^>ih?FKu7c@uaL=oQP+g8F9uy7b}t** zALg-Aq5xH=o74nf%{rUDBv79Oc_f3kN)Dk5|9?nBl>cu2(BOER76GAW!qBjGTUVub zhMT6m`$Ko@WW%fM0&Kvu9N@7}cLJt+I@9Qr17*F&bVOLZz;N|Nz=(MY^{OxILJ;2J z0L_IX4p?*S9t(T?8G)2GM>0$M`aeJ%8R+sWFkeS1pCq(Y63GxPBT7^g%S z7Z{zY4t75^6FzC^p}=`BVm=q_ntynCe(H-VW#UKY11&c^3N+R`R#(2_IjL{JJBqY< zjo#&cuPu&!sXN&gwcr0(v42EJIgoqkevByYsryIEGnIW@43z}$P{NAvt1>Q4Od=>@ z9$g7HAz_g__z*PwIdMc>hfjb75SiThUVh@`MEszxsHFDG!+_}N?Hgh~y^7hQzE$Nd zNUjU=M=o7<*|Ky#KebPaaU-q6RAX3FmVG-dR)oW=E4pE2Fbj1I%*tJn%i(rCda-YC zug~~^zq%l_YDDft;JBf}Cl0PnQoLjGOXHBgZS^F(Sx8)#&`byE-*Z;i{CcSDa)A2A zfC+yy^Pj$a>9xTZO&^=D zf2NAJ%dg+u+uMem`9Cc{Nz7AgNriGdMMh{s)? zIlzZyx3V|ZTPnSuxO0eCs{kNph5DvC9`D#dw_;@sz*Z`Sjce1pOr4Fo@Z~|~(CsW? zQ~?=1y1$Sc^wg$6sztZmujXPl6KXG&zydu{TA<7(t=!9B9qo#~Hb9WxU;O{(+!`)*g)wB|s~!yhN| z)b0_bD5A)&sc!f5SL?z}A#FpN%-vTrl#v=OH;_JhJP_PGz!N!}yfj1%?>^@lhT-TT zhh9s)Epz3BK=Qr@$|WHjcho4ALMh28^h9T1INW zew_pk&gk)__28Erdgng&Kj^lYR`v7@_I1n;gdf<=&rx9fgBt=|!l&QtSPtqSL7m#i z&c5FN(}et5%X^_K0(cN9OJHLd<<740pEbDjL%T+F#{$6XBTva1b&Q z=0<9#mM~a+nW}c~YmS&(x`H5OWI|#$h!-b^8F#o;$;es4=p>xRhVUFR0ndh*czq@y z3rUGAhM?)e(OT^Vzq`Cl2ocj;Z_TZLWVmiStv(JvNqEi{s= zT;r=L;CMZVP2jL|+EA5WD4^iT%iQvPchVl3Wy%?P+b!8f#_U|dAyUCR;~WkZPazwU zkk9`uW3ecVI9}#n%e~Me8zxpq&Xgsb@F1}g6e1i8oD1NdWG0X~Tqyuy$u{9;hKVFr z3cB6YGMO~Q!O1u*sh=jL`=an#ldWrJ<#hi~9kr$m1f|*ZwU&b<7+_e4KUW=Y>xLG2 zC;`mIjG*0D?PKY2Z?{CjU%s9^s6~S5hNeqsl>Y^_>dP72o>PL5{WQpuuo2s{I*#NB zW-FM(lAPJ(nu#|pS}0uRH2nQbOF4yjgNbKWl zu}4-L_6cZl5^^4x`v&*YY2-&*C>54$eWby5r4-gVO zN>31{^Z6vEbcJDu#8Pm@%#HA}(0l*mLheibIJRYA))T+>ltozLyS)(k@n+0qb<|QA zbl5;-@H#mn1_JBDWQCp;MSKD>V78xiVoKR@fXl<|?;g8+=k#P`)i`%`f8NQT7bz3@ zrF+(L6IVz%QqFyIjtG8EQZ0ZDHS+yU@q?wwS9p&Hj>=J3NKKc)o@QpzlI@v-Or&9yQ#jE&{r-K2llWcsF9136!lq;?at(@-pvJDY& zmwmGy>5PMhr>|ptre0Y2Qd6JVujO9g@D&zc`nF9OJ6RDq-sJHum7t4HW44vAw~%h? z6EuC}R--g}M3x$aV56om`EmSmbHKKk0GoP=?>4S&Z^o@=syo`%iV8K8^c=v6T!vC@ zvZ}n3Fq4JUK;OP2P802$tF+g_ddy>3m7}QF1NA$`)qBDgs~ptw($sE(Zto4J91_W^{k(h#Kv&j-J)nf!^-r zS?U5ijjI28C9p{~Jh&>=(VRl?Z6%WbqJ|tf?>muK={*uw+*fn`T9`+=jQW0Z$s3hba<~03pqte@ z5bZ%*7O#%a1aZ9z>YEL#v~H*fd-RwL$}DKa6J7pQ>8*bO=(~_$+8gsVz-4+Bpo-gC ze&02EYx0K2^yvT#v$lR-7>;LJ{Pd)0+cp2S@l8?MEO)0O&F>*4*~9OSgp{aq{KMM+ z@l#h&ENa#gpD(q@anly^fT9&HxyqWkKxT^Uk*+ghJjcFYfYYb2pC)h9 zJewY!&`yIU&GWU95wk;+bB`xozW8>OfU$!dZVli^&tZDK4L+&lDJ=Ka%hge)}(cQ7yc|6H6 z8H9}ci%HL>_ko%r*|cuc(1Di9HA@A`WcKqH)g^NSr(@nm6bql~Iy;*lbQksYS*Wub zwB1E^;s`V0{6A(E`L9E}%7*MWDxjPnt6+*ViB|UW4ul@~SI}x2(Fphc9L$@!Vx}pI zCh zYgdrJBvqJv`ew69P@Qx0v_nziMOf9HWCI?%Y(Zc6rkIy86Y_7aNYR z;JY??6Nlpu7iBbgs$MPAUT}Q;pTWJgN{nHiLN|sA9&ASWzpQPeqe_Z)-6oU6Px-!G zcsjFdle+%m4ZxfBG(DKDojF!pt9681c@uiLKLLZE+$JT>!vd~l?io)YFY7oWeP(rMK6XGypFHvT&xoj2qAX*Sp6 zoA)90#xhWKuZ2N%H2T2*{=hY+c&A2zgS`Wa*?`s-&|X73N{xtu%BgXOe3V zvg-XUE(NU)+N1Pt^@}i@-siXY3ML+I@^M(F()d|utIJ2sJGRtBSDRO-YU`wGA&2!S&bg08KVcz>i?!}>9EW0y5)()Ws%uYiS; z;30*c#Pb_OC9$bQOD3-FS1CvI(QGsaCfr|wM3ShyI9OC?)&A`gCP2BnY9>cpykcH$ zKAd9p+B1}N)x?&h{lSpMM|f=L6V4bUKCvcoSYj^Ul1v=xdi`C=|MrfgN}NxdILNP%b9pocxj3WpqW)pn#m|+O%&c35m2I z6DVY&6kMu%QI@zTX0n@1$)bS zV+vTrwrZcX6m;*EV*2kNUJNSEx6ITFD>|pWYT$rAUi6bU-Xh6Fs){A$Zh{uqS&^BI zFN)H{&{`Qmfw_lrfCJQ)zAW!tE_rxSo?xklK(V;Gn#Ey|C2X)(h)i7mACq0{h}eBsydlOBlMP=RpZ>iH>vH4Xk<5>JMSZmf zF{k~N^YLC==SSuzHSVyy*Da3RF8*vlA{gSKx?c$|OyRUeaH*hkolOSJ!BLm7`M-SI z*{?=OId?lpUM~rSwCQ_Z6Ey#E zW(Mqp@js%_^NiRBgtK~a;N5qE#6WZbo{+_?PNO_M7LiW?1lu>NJ%h1OUv^@x|NUPf z=G1y6`#V53z;Ow&VxZsvE+kxKo@N`r)KLbxF%}YNK_DVB!E)){Km@O-Beo6SxW2$K zt?t(Z7Ng6E9fvox*e)|;i11dKIu0ohjwBPv{`Xx3XiEI&$JwBleYP>~EM zvA|P|SoR1&z(m4A{DDO~7I3$Kp#W+rQ(?Id@X4)?`Zz90Y14(rj$|)~W0TokCOw-i zzye&!zaOwLgG}J)vlqe-T@6_aL4gz6v-xT(x-ij+9E%A;Ev(Q-2n5z6f=svE2#S~^ zCCIRh)uu&U=_+)sD$zZ^Y5|s*b0q2a)l%};zN`c1-VSHgz9=CVyN>jTF}?mB*dU&X!o zo|oWu3r#-d^?Kr?{ny*h)!W+H)I#rHUfLw24wY<&>Iz?MmSB1spee~e$1Zm`YqGHQ zdlu*~1m;em3-**R2^*d^htK`$+*97iBbbr%s@t?iIrcvbg5UhwY?+Lz^2d0vH8Z< zzH4*^kO^sh%m(}Wqkt-*?r0TxValw1vrTVkMb#>T?7-#A&5j$w!m9V7&sw6AMu%so zOKPI`(-dNxdXUBra#%Gof#gtx|LQ|P&IQ0+yuy!1WX1`lI*gA-23;!~nJxs$VSsOV zYNf1Nh(WK7f!%-zJoguO^D~=EEBDL68D8NBH>ABv~;Ty@dvt30l zU;9%%!tPz3=_+|!Q|o!|ZFPiQ{i*Q*6g{{h%jQ_JJ3p+&c=_aV^c%+ZD$#6?SZ`sw zZe!mR$lRP8+BH9BKGSJ_=k!=5ChFdM+C6`bxp`{0p30$Rpz`;m({EG`=d^KvGgWCj zI!~hH5&CI*fG&5hZkKue{EXVg^!@1&CwO|G z=i0>hpV>U$w%`1u+v1x_Zw_tN-KyrRD+9Zp1NL;^p#7fmvmQlVtC|#E9>b*>;7q6Ib~(TGY&4RAx{{NhewC$EX$tH+VTl|p?;T=6 z0}_yznuA>ukj9YnH>>vnnSy6ce`v>TKMOgWDX^|rx}y3xM3^MQxMayHnP{+dVxkZL zVvT)M^yiw&6%0N#6H1w=Y0i4qG8j@E^7`WP<*Cb4OD2UQp853;x_@|{v&XE%v)6PX zqTw|UsAydHxOy42-Co{nX>k@4RKDrG{e&V}707~Q_NCesT~oFH*S!rB;B{yxR)GxG zhnldPiSL`T?OdihcVQqWYIZuHW@cur)~ykwgIXe*JFhRMmUwy%uVJvz{~p&=wR>&Q zsFy#>@>_TMZA-RYs#nZd@%=$Ss|2e*9E+KKsMS{MKwiW*LCc&1Aidfe>tfg2B;wnqOw>2dp9$z#C1r^oFo2fLU8X6q>pAV!P~~bog~|P?eD&Rl(vj&vQ=bYT z#nBI&3^bK=RL6veS8`ACZJlR3Q#XW7f=^V1V)Tw%ek2JV(ICAS={@ho1X}EChnfmTz*qi#$t=Fp^+kstM5~oig*{}pl7pCc{kT|Zvb(y6F zy3$gq3yx0*)AM1AtJyrG)Qa(eI>4iEtY_a?FR2Se`~a&lWN-EUHm1_u7-`WX#*wX< zRK}Ivs4o+U60K}3C2T2_Tc5DvJ62s<-FcV;6Y@k1YG;PX5_wb+%i&TfMxGoPW}-KW zS2+My6?HH~7$T9(_Y7G?u9U1b7TP;YvI+N*m$MIM9WT7w`$Ok=ch8q_-ymo69rreu zy9f5QE#=-{qV&x&!U<4NUn##Ckq24Ou4Ag&$zF)oOw5f?h>e1TSf)X%c-g;n_lt;=Vv2t~K zi)gu);&g!<`b7^Ojb%gG^s`_&ug@gFOsb)QK0=U^*$_b^V^~1=G@wCn6R}AYf1DVW zi^+r^=|lqfbvufPOo&s!94e9Ec02{KZrmyBZcXQ8inB#*)yrW5lZt1`A%;kg35~KK z#QyAR2|mw~MWk|Oc)54=^Yr)&S61jt#3O+81dCUZ8`*{+#p}yB-1~q^{o}Z;9S+ua z=NztEoJciP0R7%zDIU#~?nRI9rou1UU&o)xkl|Q&9xd@C69iSoR=8{;F3K6DiR;Ydas14dEb6%91f6mct}hlpUc7`yQ^Hz$c+brom01K@G}hs(f66z<-ndk4U$ z+L(8EiIhQqvw^`+HXollGGIA>t-ovsB_W$bTIj~$vXC%M?~xFXrqb`@L?jp@g6CVx zJqkE@qy1O+^2tQ{RoAOp&bE`BI01J@Vj9O)iAplrCKOAO%|oRVUvXn?;M&+FA*7_k zA(?T$oO2(3PjT}3DdN~(d%|UAhjf3iXM+8j^?=+VUdwKmaKK^Cz;sU)i zw_lm<&38_@A6S~mA|<*(3hc%~5xo=-+)^}P&qt((Jyuf4zwc+6q?{#-FoNWCn%h}3 zur6#OP!{Qffh^QQUT>_TJtT6JCZ%bD9#1#MN^<$guys(%;8;^i`ss@Al-j|)6adya zT?{FZ%eoOb3?N8{V`Vro32Zy!g?k3GYD(IMpiPmr+*B$|f4=#{| zaHM*H{6`33bUsrr_S^f;xkIvxh3`l+#JdUlm9tYP=11nHIwfB6XBFB$9Ub!N(4eTqxh(@lq%?L=9&{|(#x^L&6t{P!RlNGgy)J40}Sw#f$|LjjSb4Q~jO zEAEhwuZGkJqRVzThSExZjZ4^#idJZZNv%@6!eNK9d7th&=6)t!fQBwrKV!lSWd{j=m%s#$sUL@(LiLm(mBD;l?RaNBx(59^F z%<#wvxVU%<5L(@Pt172KyVdUW^mt3{6mV351_qFx9`N~aag#Q*R}Si}v`gOr!*f}C zSXM)O@6oDuzich60iw{LCjb%r7ibECY%Fs9QcP^U3ju*X_(yBhP?f@D0np;D5d!YS z7<@5cVG@?ss+GxGJ?-KZ4WWVUKFOGk-J{4nI!MKNt3?2_RqR>aT!`6F2JL}K0`q<< zd0hnJ07S5@_fv!nny$*ii(#RER@F{riqK1KQxEXHcFevQoNOr@qHHxE{4=cY%U-jg;DQy|O&4D0Z3}BVUXT;@2HByz)>PyneKFvi z65_2!oErSAocx?rLN#(5xt|RCD_#=wc4rQV86vR&2Q!#gT$iHB?iM+P>2*s2*8+jl z6u_hUOubC8^yD`G6Ms%ue*IDz^QEc9D-vW;g+|Y$y8!j!o#7T>#km!cWK-VoYI@Qo zdaKK&gDeZFUYfl`R~K64SMFrt2{TwcaP(mO{)HT=cy(-DfRzBiVRhy4avi8n@N?qf zWR^{fy9Ku1dXS7e&a$&)lUH_Cmh|Nh!hS)%LGS^O@^q194)W#FL4duG87~k7mH}ce{`J z2W1%fci{o_?7pq>E6MgON(~8~-dp5RKHJa{IUA`h!gMinUUMG*Y|uPZ&)LO{Urv1r zDtv{_&y6*Oqf=k=8+!B+4%K>C)gad#bp{Vpj;?R^)a<}$cKJwK^w_BqO!yb(GCgQ* z9Tui4_gla1-j0qkj^ zKVi6_r~G7hbekI*^b5ihbAi^IuBZd&@AM|MX%MW$;809p4Ug~Bu2%w!M(9pk^)+`8 zRQhphYGXaQbbZ>t;b~7Ql5Jw6YOj~U$u^(~EMYeM;Gi*hWKmS$a%g_jNXdz%C75H> z(vCG>8f`n)oMt-RUFTf$=evTik@*Qwv+(TM{7ISl{M2Ohr)d{r@TAd#U4b4+r+z@) z*~1|RT1snOmPM3B8OO4fR5wly3HQPV@%eeW4R270SmzbeGg$txu4i#)fb z7FLqyuAeRrG-a;usiV-`o7PjBNI`%8^~`zpL*w8Mzg4NaKLNI!xpU0{tSYYZt1oJb zS^}b{rUryZqh`MVt#a4cgPmwT=9;;wH}cff+oG0^h-(7@F|#8j=Xdi_jSAtEnMag> z{xpY?|X$u`(~Al&1B`G?8q0^B6X^)Oez zsD9p9IwGn1Hl|lUS}IK8JG_~kt@N6V3X4e6FO4W(xW%iac4nqU296g!WzGDX<-_J{ zCI&m&gAAFxlsuE?-_r z-Sb^(hF`yC2k0?@N=uxc!KQK$k;tAX#Q_x_pqL84zeeNe(+D`=EXX(^V~NSR@XWU5 z%O`UO#|`S@vPF2Q*eD{Ue@cK->^X9nnc$XLxl~|9 zp(v!1+ra+80p1|L^Q)NK*pdaXY^oSAoxqS|iF}JuRg&JjUbPpwB^z+4r1({b3vnq# zMdLBjCo87T;QIk%u*XHG?w*|;Z;h~Zvp}oPCav@~dKCJ|_-E}h zl$E%YIo{j2dU44t7;;uo*a^U*HhJ*Rq|$IdA=tPHq$*ltMM#Nk&wdzk!|LvkVE4za z3z;%Mgh>A;7$85l8a2+>++!gkSz+RS6R8*?SlHNN0v|JUVPT>|fV6?V9l3S=N`*Hk z*p7&q^!P()4;wa2bF2Gb5UFxM!Ce?!F0&~=RF3ux+qi1-=^H@+U^5Qw#~a>Kn(z(g zM|X|PPsdEWsOk%`pC6nbZ+azL@u-k00V{XCq6G*8?lh`*BS`?=DAb4WMi%5zrbsFh zi8%L1I0pJ!h7pCtf|&>zs5jHEki;zDJGpPg0K0k?g9L_v?SzEgaU_egA~Nm@zyiYW zXxcTJP}3?vS1G8=x_-}owqpzwV@brTASRaqyiy80!5YuxLqwJy7=b8}JE;2bb~c@C zK_aJ#cSCRjFuShExVZWogT3&F#8YV$nm8SnCGpG8kZ|zHwUpy~kjgbXG5VX>jQ>g% zFvBm*`8tjbQ5anSfD>dVAkIlDQ!4&94QFyC=OfEfJnzMdrJt48%ztePad~UL^W(sH zQNiShNBNbCgW(7Bo!`S3uA4&H8UM|DN{hrR!Q1#$hpn1OT7| z(;15%vj6X=On&~$e~f;1eM4Mibe03`yHqYxhAcQC-3_pz7QPtU4c$ooH}r{^@e%-o0+a8nR?tIFM2ID^Un3lzXdQ^-Jz0RaiJ1%+Tql-(v8 zb{XL;uR``b5;Xq^EHFI*-2{wlOgm(%SWdRa>*tX5sYD=7mfM3^A2}l-TLgQ;fT`xO z67J|Z%$3jgdUT(7H}jotOw7;B+4j&j6>rUF$7t*VQ=7YCACo$ah7PI3|M<;Yu0Ua)2Z{->bXx2}5 zUd}b)KO!j1NY3lHk^NkY+SW5pf|wOmpIpW|(Ux;!pAVYJL-Xn2D;KuY;P!qRgN}rO z?LVe(&$Ca_>TFz-sbb%tSIUe-PNAA_U`-Wkvh9%5#(EN&yYSX@|Lks5DL}z`ry~#t zQxNpcI`@@_%ICbEzVmCjVO#z3lcr{VBFj{{ zuX20Z7#cFcxoN@J!*tLu(kj#}5>m|Y&!0cXDU$tjv_@VgvT|Jz`@YQ45-dSV8c ztO9DkXiMh5mPC)9|5m-ZN~8dQ(mUeG=*(w1{#10dW9nFULqko#bWxw?SH8?<;HP>L z<{so9XmPv>!0V>luaAD`7N$993sVlC5geV~lG+_@E*vT^!0v79g14^u2Wt)tF2Mrj zYEZmLIld*s%6s3poJGJL{6e4D+Z&VoBiYG)~_76DlMR;8QxY??gZ15~#S&+66rSzGJW`5qB(CSUQ| z`cu+3uZj)9*GY6+-r+f?NGw9ELMG+% zj~52(qp^CUD`FMywFPwKs{1P9D3?rRF+`^bJVMM40!2R%!tvT1s=S8#!dzxPHkNnH zHZHd=w~hhsg}Ix|!V`N$`d|KfbflTWf=RW^~-Nu8y zsi%JanqHT$CtGVS&wdV`o{OLKDGm#`RPMLt*y7oT9g$VqOR^^pu?~yh+w+v{l%Qk> zZrRhD^@T43@07f_a|1|V``YU-3SS>hiN#k0haGkTz-&UNAN)Uhrmw}5zcs2<8~Dw- zPMLj8-SDvH)tLMYsqm#dy)HD&B5hOOH4M%_*WG#tuzBc8BEF8M^zgHANO=&N?2hex zw?F&hNub<$=nPPC$guXV-qo zcA4u2Uy8*shn$`Y{^1|-SXa}iFR9KH%jDosH~HIiGQ&U_r$pH-6prHV6&M{`tACsdz8lwaJ*FS<4)#L)gDT2C@O_+v@7- zsL9awiPr}jXNO)XKq6QnzsV92`Ubq6ozWh1iK*NgHP!19J!?L%onG#;4}>*@{7*PE zJvOE(d0TzD+-$@pdS=e6I#_1Xtr`jWU-y=0Asf^{a4!bR+mi=SV)geg3k@>7{a1YO zuiDXQW59ViQP>tx&OZxS)B{Co%Ul5kwe`lswEi;ewGPxNcMeOjKqWTnU98ebbY;z> zboPg?_(jo?^PK@TbGn*FyJychNX^v1v0b~KHLMX%JltRv>WcuAfNa>6u5W0tJaB^u ztVR>=<|#xlCr;tsvy)F}v$}>CH9E}C)=rlr!JSOBV`g|Y{sZg&c0RPV_4^oW(gwpW zU^7aHKS6XS)LK}PWt=W5ft;oX>=^)0vZf>k&eJnDM{4Hv&lYmY1v`7#xgG~#<{CKx zhc`Hx#=#QnBnlh)a(lzqKgd$j6S$7d5>lW5_cG<8&_K|nrInejCKBG%b8fVOc9gyf zksnW8xRC-U55e`?ApDDpJzp@;1Ma422B!-D$fJ+GK6a z`82)Y{4&TCTWCwf-Gsp#Diq4N)S}O?cGoB_}3pyTj)|T0BZO8EA9y zFfw2Z11i4`c_3R|REzvT&Z%rXX%hlq1%9g9l(&~oOAf*bYr?fjaY1ZD!5dI%JlC@3 zt!1l%PjMoH6k11v0tVfxrn(d4>4D|)2-b?M3xXzi95u0($m8MB+X-7W!Ac6h^@;+B zqfsHm6)XtJqmzoh(ZH}kL!&b;WZ*e1+d(FNHu+d01*9kw=?4}^%}TEC(xlTVwK-{a zAOQ!Np<9PkK<*8LL@PoTG;K0a138h|cpQyOeW0(4aUu^}K?Kg1L<)#XV>v@xln?~! zW0XxRc5{w8?o2($8fjBhvN;j(I#_AlQ`6g=m;rB}OAOEAGS0rZaYK761&v2Mzub1@ zUx@3VjUbG1Zb15ar+F7t3UqC-t12{9_KPbd`Sgu0K!y}tEfcL?)Kp{M!-X1P9LVUz ztXuYpSdi6YB&!h1?=UB#(o9&wlzXfm`8gpTm?gSjRO0StDG``8)#`79xoD812hnf{ z5CfRVJZwok_~d|d46;;->wx35WsRv>>7IXG)pQ||f$q1}-i~EHC#v|>mt3IH!eOQR z`w~du%naiS5=JNZG4%@0+3EhI$*S)Y^Ex@+>-(Fdzc?wjW1&O^MWxmw8G#S|UXM=y z82*-wB2ckdt3vJD%zqA2laEc7gYy?uUXqsVuwG5cHk5iGyGp#H0&Q{?%jG=7SCPKi z_%7B54Vker;sXV;*nD;z=E}43;omFT;;9hIDx-sPddRlI&NNM+_nfMyMh$CC3`lbCknxT*Eq?r*b!MDTw(hIhO)I5HD&xGfZRfZf>V0|8{(PDeo?hm9Cz) zWn6=g;og9*sehI@5n$V-UJ4yNL~uyl>6CtdD>BJMZ!2{pl}QvNx0lCzskqc|ZYbSr zV=gSt(oYnGLtg76WrWtqIx^H8y7QdN zZD|kg+JMDG_e2yjBv;lPB+{>l>CXt&kfv*SOQZruj)|}ID__i->h6%^r|WlJ%s+Oj zYIRO14Nn_IKUw=$E2x}Y{)#aaa!>nKg@g^wO1*YT`)BH)oBewxM%DyXNq?Aa#J*<7 zM9;U|F^P7M+XCI=QFEntZE(s6E9x}ZR0oQhJ>m9SAs;IZ=_9jA#_$NwSQ$XH#k3x` zsBSTVo;H76IxniP7wsF)49hRQG%rq{9c*UD4oF3;tj=zsytyZOZFu*XSP(%QWH0u| z3X-n{M%1ud0LMDjB)Tf3O2mI|(K#O;gQcy6o{N58boQTpC2B(X~P)Ke_V7N~IB0DYl{uWC}?|gtWF6s2$Ykt$Rp31JU zpV3pzUbvXsbO~Km+JFkAPsYjmg`Lj;M zn{=kP8EfrBoV@y5ZM4Y|iEmA(eA@1CsK9i61a?>5htB@5ofikZ#GCK-g}xVWp7|e0 zEj?-)VAC2|!hc;c31$j3@)u+@6Bn&pL3hG5X(zWHVMa5zSLi#yKwtp*dWuIVqVuk=3z?PE!yIWz*V?%6ub92~v#zUq>V2gFAoCxq_i_If zOiGSMwx02@V>HN-z_zK4)Fi0zScFCXUXLG(=QmhrPLwB%wY@B_eKY*Fc?>j&uPt8F z`ZIsR5nQmA+oJq2Gv$Bh4PyDT^?AVe<4H@)oPN0INY>|=eIq4X>j?dHW00q?E3Rvo;(l(7Y&4fk zKu&I45Hw!S7ESbx^V9FK;sye{e2x>Sc^!H4eDU~egJyMpSGSC{HYZdz5H3rWzkWS0 z(AxC__!|#Nb$Esw{tV0XP7{>CZd0RtXJ&AtDJ^2VQTy9UR_+&7<+QF4 zntE}`fV7EGJM|}2dtlczn$>B@yq@}KR(9|ZI9&z`7)g%SrG|ek z(MH%J5T|1jtJR4>O&vAv8Z}NI)vtj6OJw(fI9xHR1s?tXr^|v(`+wBV&)jHbe1GNUGy?rH~Ag zCz@XTac@UrxPfojiz9oKY}cdGQdzjCGsavK;dXEKa=!q~WA^Z2k#KU|m38^87hK;;PxaHa@Km>XZRMOT2jp6Ev~Jq*XWt zFjYF|L3W%P^19&!EncvWso1v%&l3Gj5`ZJkJ}yTyy2?>BHz5s{$?R0>JQ?*3&!Z9zI^a1<~!c+z0)nKu^gCL;+GSBiUITSDJ#=W9kSFiRyF?SzC5|SL5r;>id^A(LWaXf0DUA#g# zeE;E0u4}IDcI{+nfIrM11u;~K-D3!mY=eGd$TtC>uDp=C5B|A%H|zoVA*-bK>o@zE zhrda?eG4}I_t>s%0E#M;_>y19Lg3nR!f`Y+)W_3M3VUde(w|i>8R7WknI|KeWW8_@ zLblD;XO8?+^WyRr=BD!jxo_Q$wT3^@V0KT;=6g$olRw-DK7n3S%gbM%3DbiHpRm_f z<#}5^27U+1v2KN6og(OINok`+mfvwNkb*b+r&($DHYg+OwCJosCH3)Zlg_#lFdZDN zFQl_Bqn%2Sz*P&6*_d(A(|9!V2n7Vo+QRh@GLgc<_tyI1CqI(?4!zWPM%b)GZ4G~u z;N!dT9uEaDYaT_0aJz9AvB=Rl0U~C@O$yyfcMIQ_GSZIZapOxK2yAJeCF++;Scxb~ zc}cwBGDF=d5_|pIWc|*y`Ibx4NA|=uQOokT*_PT&?jO&s$q3>$F#&@I6es+}VJq;4 zCj&geHxiYG=fvCKR`cQl0g=)1i~S-^;M4$Y|wL93b*YD z%?2c$DAdGnTrlwBO5)KxU^qo@1t76t6^<)rdot&bM_V2R6^n{PA1OjfHaLif3`t>i z&Oa&Gbx-}wPHkoYIGFZfk`ur~+Ab*)m`2{NbFvyhK;NGp(N@_`(AHB^&z%fOXHF;Zm&rwFyb%NQgi+ zrckfHIYKQx`FH$p?V%AM&_!0!u_EI1kq2x|w(I}n^xOrbt7pX%5lS!q?Mib{aqX_T zJ~5y?Wzcgt^yZdZMUEi(m4u?b`Z`AKmu%d$YK%(x=E-eiHyeV-VA@% z)+1)n!x>x8!%lYAw5zCO-6C|h%^1??mEzudk;V1*kF}20FcVLvzHSf)3Onvvkg$K~ z>0wY*Ta^wc)vR|eyaBsWW6lOzQhYr6o?)PoZFJOYP=xv9(vuc08X}NOdEe+c7R5sw zpzQayN-B-UY0gFtXgkQt_Qc4Ub)`xw9572~kq(yfMvNI>M5ih6y?;vGL7z03jbWXsNoC#`1Us-oVCcs z5darDzB2tV0ty;z5-kGv@$DtEE-+kLS^|uS%&eCm6k0H`{NqOn+`YOA>cQmWxuTgx zVcg0MQS&;GeU(O4tA`219G4nLpDM-ICgW#POmto@`VG~CcP}L%6I46(TprJ(7XGrm zqNENWC?=xlcSII2l2E$A)PJAI2oBW~(8xj{T#6+o?Xe=^t#As;=k+g6CmD)QfTH5& zpK3UsCzb7bFk9chCbQ{*Et4Q9_qHjziahdo^fhZJD5ip;m{&8+ zprI1|h6=_HZlS8Lc33_Ji+6rY-c*3j1KICQH)lKSG+ab!m)~C0IBa6t@ip93?8Ulf zHxT^g?c!vhU?%+2A7YlNaqu@{0rwY(fKmR5`hh`LFiK$@5;1~fBAl`r+s(6ngKe95 z3RX-428&XGzAK<9AQ7*RiKgBkZF~7OZ{p|NGa*n>hDBPjOAFUlmkri__*%-Ijm9dc z7_zM4^NY{QH@3ohKR--YYXf2?i}o zBimb6oK3sBg5p*d4|%VR_Y%P-V8Y9Y&kht>)Qi*}`jK(^rO}P%Z~if8fzOzN4XseB zH7gx`^IK*Eg_C=c4kP zTzK$+G#93}tHq0RSQaUcNYju`(6&Gg%by4aAx5=IEf@rQw9oeku~(NL9{5ok@?)ug z-_h@*!`>~kTAlv`qvb&^u9OGzUFu9CFO>TD_!(06@iTvw_4zVCdo-nObshis|GWS> z=?2p9m@3(1PKc`B`I}h9;tNOdOqv&KXUvXkSW~KG^Q4{XLCoIPDsA7mxz7`{)i25| z(b3ULhh5^#dcXd5cmQ@XwrIYzvKsNs1CWVA(a9}_%L$Q;!NmczgibIXpG02BgepxB;yKuw5-6I< z#MG{h7_2tUz;}EUXh77fM}kct8AslZ=6)lYB^5x!+E zeFV76K^SS@*-8s z#rMaNfU;&w>+^cI#0^YP_`hypZ<6`k7}Pjz@}E zJs&=RHi70|HRQyWbdqUETK66myosg}h`>^O0y2SAKl6FCW0I)KMXC9;HC)J;uEyym zm&D_An7e~<4%r&NfB?JbpVC+BxI6$TQoxv&(?Cs{vo0LIBeY6kQH^jKqU{gKd(?i94d;v(Yri z@KqWeX}TT#p5x7K2d!lFsue$4Rtuy#`qw&i5eTbDW05u{hX)K1StwwcCqKcV9PpeA z7%T__0htj3E8@p!K!#0n#o3U-+Z;o^csvpSr|jE~fGfUY(?+$re)&KAk`)@Cg-X5_ zkM}?pE9vnQ$356ebD5Bb4Re$4TnvqjqbVfglZvopGfvCyPt&GY$w3>JhoovxtUZ#@jnJL=r#lLFzh zKkYl8(l06DZQDlY>b`{RBC%`nzx_}!5rOwWq75}s!7~ZW8Q==jB8mFIDL|yalMfGd z4Xu9D1SjshQ};7}o#>fLQUI){73&d#2c)Q^VZ$&wdUpbbp{s;JGnQ7mq?^?LPLZpz z#WwqHypm#xjnCT|60ugrDhWwJ(j&1%3J!y^dU5L;9c)EXV2BI8TYQPJ3Nrf?u97rY zu9D=go@9)}>kv74H;CDstQ(s^o~*sRdmjgnNaf8tlop2W-t<*(d3zA)d9QTYM>14E zMMDD~K>jDAwqk4Atnr8|crq4j3^)MTd=YDyg#JTY4-NLvSk0_ouQu-EpvJ9=sFWhK zmF+9F4A@|(X?f`)^rswDi(XdD)K-7u%b%V!GQb&14+vd}+ zZyTpE65F1Bst>C+oHW}WeM{7wW{Tm#BX(Q`^Y|H%32HqOp9PYO4rqYYXsZNnAHuK{ zg@Djjx@PD$%Q=wc{6<4(fP;$_PKofJEUAwHE{A_P5Lq+w%uX70LXPyAuH2nF0Y!!1x=rXN$p>opp=s9MV@~yG8a8ze+%) zXP;g;>?IL31BV%S4^7LOXX;tG%;K5R)e%1GTxUXP3s9)m*f^SjG-kwP;={~e(P}>Y z5X-cnX1OHR5+}kypx{7<`5>gFB~RENC_({Bw!+U1eDFYT+e=$9rx{&U0H<5(l1-M9 z)lwV~UuY2UOjEvqRPTc=gnG%EXO_kXOqkrwWtT1PtD;m zlWM>Id)46Srgc}@4S_#N8`Um8+fTho-9}@&oH=VV-PEHo8fV^{cHC)w!Gu`gyY<^g z9Bd1guX!*#QvPH3^M^8#{P9q_$;9O9&;M}YY=Ez}WqR@f5h=H~7f88AH0el*kBC<; z<1M1B+CqY@o^CmB^nF;(oL8hd-OU%DX>tQ9q+ z8>U%1|04}N4b}jThCM&rgn8noAotYT9wmuvGqnfELnmT}q~N=F0|fVbzlhd@d@v6` zVt-Q3jz1S9a%k-Cxtd~#dt0*D;brvm=zq}8^&SP)IdV!7?MM}8V71KKd-c0c^QT^q zCZ<<<)Zej9HQjvv-+U1-l>)ZtV5lVye9>*Qc<@_w~gznPnD41M9RjCYgDIz-&A;Qzs#>I%i64dD;G<%P;o!y~pRsWq{!@P89%Vg&fSJk}78q3GGf*hoP54M`nU zk>&As;8*1+v{i2|RO|=B?hR;hYPALxNxu1RnoRAMP#beJ^4^*A%%JHM*YMY4yA36|SUiT2dFC zEUu(IKg+LD#fI+bbXjDrT(gudtH~alHEGU&n3_4W&@pLBB^hbz@Ad%;^3M@*-hb|k z>4f$cvo29pD^xt?tMU&Ejp-d%Y7ZSD89_HbzEA^rHQ*7gm|Ca=cJK~^mY;{T;?^S8 zenhOzYOQ_~l!6b{i}H{BpwWv_(amOT$A~*Y57*uZa}3)*Uqn#A${osv4S~a<-qGml zz>HzKk#EGTO!M(jkce+-Y5B{mo%a5npjVEWUE(wlQYGQXw0Q7qtGp5zVf9K-g-uK~ zQ!kO{oPF^0n+7}aD~}LOA&7Chi3ggZ?~dnz>(uL4*#6kUyhZkXZ?E4>AjC9bG9UEh zg(MTmk=)E-E6o6Vj&tE4+huvC!PFB{9m*w;-VNX^ODN1gc7jV`J zDhYJdXGS(i?aZyq$iy_Vd^)p9TgUDtLRIdixjlxYY)8?|>f!b;lBa69;zZu#R7amm z*huT6WSi|KZJQLd*xZ(|UKNAJh+VpyXPKqzkGIm$n4phdH=sh^R&LUZitL-@R^^TT zi%o)cp!!)CSzeyUBjdBX-{S-^ovPgp1jHP&^vZ-GwY z3Pno$FcqZV#qqq>vjL;xFs;V?wKr! zXDr+)wuNm1j(pDQ^JGH*bZcX19D0u%l#NEz0a*U;Oj6;#GAP9`AfbB~n(!#l2S4Jr zDXq5jz5jVvX1&ralmh{JSDR|$i!%y>-=APc8@;_lIl>=_TN(Y?Q4?e6C0LcNnfYfu zVA`Myd4&%@mqd{Xg%t9$%Xx{Lh9OF1F^Yk6Fd^#F6bw0We^Q@9bh~qr+;|j~e0(q3 zu!svdtqy2qCB$bSTT&skC4=@O!2WR@t9Y7I&{?TL^R|`Xj9X+ z9rMNz@;LGFS1(*o;@TwrN8+*AlBlhX+Dd(jMQ3E9)LWI2o2;%df}LI#?&J^L8Ej=6 zQ8L=rBb;jy2iiZB=g5wi3WR-)JIhZuQ1~ow|G&OER^PVS#7(hra9{o(`7N2`-aYMN z=a+az%6vE0QP8KlT&!1Q?}Tg$RI3Q0F=i zh7unh;T!sm8M`d`#?D=mhkBPm;m)d>)7xNJu!UmeQdDd!Vp$_o)$qevjK-ZD)JN>H zugiNS4mOsN9G{2-KFT1s8M`7Jsq`wg&C#ctiLp^nq&&)`IKQ(~`XZs1{@wvI=)`ic zh!!7nLQGDi6qx_HTwp;PcVnpi89sJk9S)BmQd@UsquRdVG3yT}V>9WmymtKgj=p1^ z;i)!WJ1QkX4Sj`DvfF5X=_98OXWn1!U%Y74&7B9qFJ2@D8Q z`6m2{FT3 zhPr+1UdV6N)YRwn_R8eVE|%t&l~2oYxUE?ykDZd1*%wHprd$+N`)Yv5h3T_X)YqlZO2VnZGMd?xJ4_Zy1^?*T2|&? zI8%bNHGdRXjP&DKUXl*y&RWR9%j!r(oJ?NUvMh^x5;zLpHfqetd62o@DQ=q0fjQ@%_xEO?x{*UiutUT z>2>|}wKKBqvqPn@AOofsg&%TYj@+r7VTs_YV6`>G4{q=f_CYn^XC?CINsM^%i&3$$ zmi%|(r?Cx7f4OQ2-*gZ7Y|N}$UkJkPfxUP9Pk;;_t;$GPKD9u*?f+(UQ0zy{nOaz0 zUcT7C?=+dopT89{BRj}veS9qTN+0#AkY7}^Efvrn37@SGJ#;}s$Y+5qqPzb>Ze5Q& z);+|tx_2UC7G&bL>~DYUp>Ho+@?JB`xl`}+=Ceg)LygbEO!HaM+kqLs#uE=3XDeMl zJQy&EIp5*eGYN>?e&_yZ1cjn?<8J%J)qJf0RU7j1aT~_q*a2!HfWudqDQI&bXa}QSbTcZe@Pa9xlU)S#0N%LT8p*97{~AWv0RmCLH-;Mkvbo zD46w6tugpZKt% zDYNkX)yi`QUFNtWn@$?e;%Gh5^q(yEV^y3^xl_4Lr1lRhW$Mhj0Q(thf6K@Jb?AD8 zRF4|FNI`X}zn(BJPAaeje6#+VwNot?-iybs46WvXAHU4YCxtb=!>FA<+skhG>-sg0 zvpy(Dn3=FV!nzb2{qx)0=UB@@OYfRq`R9dmOEZVG`~>0B<{)lISpAH|#FtFnZ!4a? z*66K2zsduk)7=C4jh_j+_h(J-4aRegTtx|>`o@)n0rw;Kke@Me?6g$P9go59U{-~v zvp}-l@9#PszZM}h3-C{2ZNxfM=a@6kQSdL-+?mN`B|UlC7n(f$Q`n+3lc0KcB7;p^ z`x=}3*-%z$;O*V}P7`#($XCY0cClhk)m6pw9B53iZDKN184q$|)c$<-rr`>Sf2!JO z0{rV^Ez?ZWjkf<_>z`(Te|1SC<_}!4|KfX#+ZE^SQwa}M14y^rZbs2jLI<{^1`GjrM-)CeIy%Dl@ z{u$95YO1=s-~S8)+-HFC{4OsgczLA5a`kK1>c06!<(B0ZP#qd!V4ziz0UPdz!A+FM zSMTbbFc>rke!4(H8H^miLtA9&sO&9+x$5F3&2c`fNnJy9OE~Q%i&b$bgi)cL{f$BH zr0m1VO>Qwm2DG#&09=0xnr!Wgul_pW5rS*)gXv9LQm?8iY_Wq6Uo;2LN#k_t1_oZm+WSRUZW6`c?y0w^b1;w8W-Z2nR^Od zv@D;L6!CXiQz__dI*~Bq(NPB~JtwzuC1+H15PF65=`)E+DJ<*WNhQXw;uGbNs(?jX zN>D0+pF(1<8h0R_8__SZ8|svYPwcm~N_gUk156_{n0}p@Ujyr0>)A>#b?wA-5e>~Z znR|OD-eI@|ilqN)0iw5fj;etJop&(9Z#Zb*K`Cxb0?R=2x2!d7Sh5cI*gm`s_HgLL!@F>V? zdCd{W0NQBovk5lstU+XBh4PAAV)#wskKisxd(Nb@KK{x4XzF2YmLnM{wgV zRllibpDdW6S{`bEb}(}3!e)ai04UopCFzMHA%WAwWl-E|o!6Nr-ywybFCd?HB~L$$k)1$R&zw@}Y+pQ;;jTiKt8j;j=FYe?rD`k-FL)=-|o z+LtN&A@-A9&H@}khk^AuL!H)?^$oGvvZW^Tj=&SzS1NI+-_Bnes1N*WB$?w}zx%gw z8@DLue!kr8<)6UUG+Q(EIEGF_T|}Dffai3WEtW2De0L@6cGNGdOpWPpbVpshH`%Qi zZg;y89#AaEe00jXTUX#%sQ5QYHRBqbw7brYo2f)V;Tlhn5R?H$$9mS37x_#Qjp5*E zZTG%pdi)8t29=3&S8;Hd`&gL(04)cRi#xACE4mnHX+83y658aA34rUYiM-|D*Y^i3 zAJHQFT2j-UUne)vruPs`B*JUTLlIInpPkkqI#q4omD3Rmnt2x1H^;24MmIG#H+TA^ z0j&&Ubg;13Y`k{-Z*?Pn@Bm*D)*?0!yFB97507cU%uL4`vO>Di}=I}M_PpsBVs5>+Obe{ zHLua#RBzf*vD`;Q1?>7}*Hnp1OcktNjOVaKSteyleNEo_A$DOY_rmLepcMQmgTrol zUFYTH#dj1Pgs+-GU%QnXXLB1_GBZicvRv3}Fl6~=6byuUQw!m7(T(eYRLEmhIw}_< z%V}OgN2gq83(`%zy=LQ<7G=r>UV|-h1vc#HSWTZ$kaO}0kjhw~jbx$17R=wDq{l=; zd2Ih7kqp2+3%rI_zHhf|@zT$u;EX_{AMtec9~GjRcD(?wzz^@QcdQFio^6S=Y(FcV zR7_E??7fqDh-qz8&pw(Kr6Jt)*rOUqR3Kg`70vXBK}}QkSTuV89OirTe1_@`-FnS- zfyH=3YE}C|QU!x@5e&+9VT^WN@|8Rn>77av7JtuTXR%Yo2esmHv+>|^T6OPK^p-vY z;EDxH%IJM3homggfL&^iz1Bo9sD^pYXNlP@LybGXNZ>h%SSJ4oDjDhfn?J1-#EHdI z7QJ~*=}$ELtDATE*X^sSWPRQ9l2r{v%RkFZ6-{tqA5RL5hq%KeLb4n&k{6U{pf7C>s$!3jI%DDG8f2 zFfj8TOs@c``1P}NC{`xEX216B!RniWmG5A@=f?!ZI1Mx}|6Kkl?Dc^Ztr9MLKOuE; zACQ1ZeZjPscyV%k!=CIC+(uL;xkODi-ThWl(Rex#%cuaB;U1+Zw(8T(0E7S9&riSzCHDyY{tC*e8*SnrC~b zKJaJ7-~gG>@%iVfJf|sbYQ^ElWHny9(p{j6PJvk;%bi=TiLLAfzZ~uC6jrE+cb{0{ zA!Sv5KjANX%kq!tY8XFXWzs7*9?ugRcFPPc#gerjGt#)9m6lBwaSbfdhlQ{8Ez5CU z-rmxwgTQ!81bzTD(ACi17nO+ut6phG&g@TdSUIpPYFRXCNJqs$scd>Os54eSbm_wM zxuymWeg6}mjW^$Sf)v&<9+rglBln#wdK>;r zpT0`3$J(4h?855u*ORgf?!Z}4O#i}%ao}K3)-lhwEYmNrxFnmgTp3^b=6Sj8?H*Ot zn7TWE)%13_+M62r4OQ#|Tk>{3?dD$(g38o=#{M*GlKs>H%%KQ-@0HP@)ejLZYeM^> z*k@`bPBfsT!;T^~`c3paN%`rYF)Ibec|iZWpT{IU0_lrQ5*)UZ5%O#GDBNRiz5lq z=>GXAh6YY9p)p7sNJq2n34-zOp*Z;=8hH>6HY;o#d6Qw`iY|0dm5`Sej|N95+RYO& zBU|w+qao(-4e9KJo0hj14EGLz3)z-0=HCI*AD!Y=FOZ{C-yY(oHf&Zrfm>3Sbj#+QT@epxib&pd zG1&iCk%q`mVPxZprN3<#JVebRJ}Uygv;~R#jp-;Xm)zX?_rc+d{V_%+_lj=806dNg z6SbE=8B{J2NZGDI^)dc~3iQ+mqQEFBQTtsrNkG7yfcL}tIr4D9!gm|v3ZE2--Kks~ zvnyDVqw^m#3l|%Pl(AT!jk}3D_5=te@MkzqPMWm$R9>NjaDA7Fe~M(V{mUT^O8}s_ z6q1U)PXPJ;KY@iLaeh3P0rcOu;)>RGwYPbsBm39ypV$T4_JhiTw9#_XyYQ5E{-tzx zv`JWm6NfFD6@mc$*T+MRiX1wqE;&$9w~cG_cZvZBwXR+i3~m3~@-u&JKGzYwLp2t{ z|Lb86+bE8u#^;SajDMnnMUpIWNTi|m+W$Ccs}o2BZY%Xv5>|6;EB6`-qeDD@WF4B2 z{K^**wHsyBrlxX_a*PzIZG&o69s?!xdKewVrWeY*j@aA&14V@#pt<2~5Euff466cC zIySWbL`{Uf87Ku&1M{pd!Ybv3HJFKF@tieVe>@(^J6X=Iluag7xK&y?_3iU1$tA1$ z--g*ODPe1m)Mx@w=V;wtUbpQ&OXe2B>5o@Jb6&h86Dv?C`zl1D((dyoiuRm8@s^SB z9jiF@5X#d=lDJsytL0Ea0r*%)48`^>vNV4=&ZLTTvD#1`1Fb^HyMF6rs3M=elPQ&X zW@>ZC9;6pP9RGnzfW$6;T7Qf$h6M=&i(VU04w>Z@eaIuajVGS(8MY#n@r8X3b6Z>W z&ROH%-cd*n$HkWL7$X>4)zekCfx54f$w;j`3*LkuAq(tQlHzsoo(fn3s+L*Tt`)5& zb=cQbuvR~K#61=aD7hcGy{|0^1)W4{DQH_yY%S%IyQh_s-ZdUs0W|7*a#pr118QVaumh^Z^`IUF{ zuv0EC%bnAR=Q6+DR@e5_Q*peD z4|M4-X7_anD&1F}jZ0APuFO2Aqxdy^W22%f#rOz{g5Ax-gRzpB{Hldo^xXit{y z?`{EtB?-HlU9dXlkH-Y@zO^4B!{0bMD8|XoFpX=`{nCyzH8w2PrZUErF5FNdjk@$M zdLCpfz7NTlYozR&tuKMV2L>87pBQH*fL^Sn|1WZ?Zsv9M{0e`t#jw{ccSAPa<>i_F zn*oU6|Eaw=qCbjyaU$@0=H(TR0wVE~n&BxSk9m0O%M*bYXHA5??j671C}CVJ(7`{q z=sIASO!waf9Q2D7$GU?*@gl>SRig^#n#wV#CKuOq&u;(jX<9&8V=2$LYhE^M`TBLR zhCNvI8jZ?EQx0g}s{xs_De2HIp2vU1#*@Q31+lhi1+JAR@p2-E={*Q;@+|z@9 zS9jzSOwxApd|NB~ri?p<>nZ@f_<=LAi%P%vDKKU>T`LY4K>hb6umGa??(IMPX`wa! zzN5l?pj}wwU(FnE7B&eU#1 zL4|W{$q|h~DiJtu_d;HvOK^~yNTM+dqlp+@RH&l7RZ>QS&Nl7(sWTy%Sv}mta*%UjpVa&cx%YKz2(H0ZJ-00 zL&1q^@3zgIS@D~`9efEx_@aYOc#JB6y~Ir5pL)N{!n<}q3`0Efbo%V zcv3R?(-V#-gV!Z9qE|8Ff@K#Jldgij?|CYW6=LTVICVZOIiyQj%TnGQ1bT5k*7l4B zTL$J#NIs9nu0h?w8U^gdBTv$W_4%piYFT6q%2=4>V)E4~2L}y`H`5Y6EQd-sfM=8@ zF}DyNt+#P)iaCrA&O5Fl#Qd|!_w8zsrf5wxNG-b92)_J~cavq>X!`2Qf}-fy=+&8^ z)sbh{r1cZluqe3Fi|Lso3HwA>%uvFDZt#M*zlt|R0*yN_M;>aLA0#v`U;SA*+sTN? zWON6co(o-7|G8>dukL+NZ`@% z%+scCyFE%KdI|5;)J*_5*K%c0?EG4+bRlkaSl$~`;PhXYfxKMM z<7Qw#3tD*B#L5LD3r`P3sdqGj-W?hpv8Mq6d0?B#iIyJu? zNEfmfE}F$aX?3tWFH^$zQO49DdAD{H3MyZ9%I9v~o&;W|i}@3SqT0;)Pw7IR*-ggz z=A$OFWvC)J-N(G;(qCaaH;fpLfsf6ry*gA%Xha3h8%Kw$jrsHI-!U=RCfcbDtvf3~ zw>ym*Oo8NOYfEdiL==kG9JN-ZkX%3<_62?5uZbwEQbt>DwNhKBB9?+rhCCpgJ_Z}B zjfsqkI{)>3oKqgeeStkXtS!czcJ zx#|JZ%_CzV^Mp7|O#Sn+prTzP4B=x_9Ho9EE%5>%Bp^qR+ zv}?%BS4S3}cgzF_GH}S`+qKr{9We_^P})nyl6WMMs8`{301i>Ifd*oRB5HJEz_9v94yT%=-@wR3Yy_oBhei61pi3-UxUi(5N`}Ax;4JNM9f7<0ryneC)sKMJ*PRAu@cAEn`kwOJyVB!zny~_3v zenOsxmN3(IdN`ZXRtewPVdJ{)fHRX1&iDcd&}rVho*aA#N=~gf8poi}oL%K{%P|X< zt1o8+S{D7Qma8{gR)4oks|Hzcdlt#G|E;J+jt0tsX-xHiPyE!iRg_W{X$1xw9*E73tc=B(R6(u zIWeC1?Er?6%-Mofa@bf0e01gU(o=!-BkEGGsD$#`4ZJ-G=SOp?;2hE4}TUf}x z3xb+2awAoXu&enB8Gur6i+*gL@jqJq=+Za2a(!L9SEcaw+`An&eYe2$(%TgzQ(O*6 zEKxk!`O4WETfk4FiK2@i{#_TL{SuUNB{3E0|5JT+h3i1%`rPATG1yijs%Wy0ry%n5 z-1qjiovtcWRJn3ppBRkPQ+@yX%L!LPs!r#mYnmdDPA5k@tu7xf*lgduHeY3N{M0X1 z@1acW>MKZXEuH4m!e738EkMi(nhgK69;~h>)fa>13b?6b}@Y$daW8PStc(;kUN#Rm>s1bQ4D9 zYg^$!1%W-2c=MGef#>Cawy`(gS%pGEx7uMU^3bPttF#hHDubMO6z{$#j0GSAX7_7+ z#up~-dw@Rfo=cP|-4V-BiNs+kSb`2d2?GAiq#Il`mY5N#+PYT-k4}WVh{F*WBra$x z1!{}?oYS&)141Xpt{>ZkUA4mT$h;=s*-d{-Mt>(Nem_8CKF@uED51pTIo#XJ1#4w- zf}T5I7Zzwb@3&42Dji|b!6+gI(>LMM?q3I|*EQy}4Ni>C^-Y9(z+RPtkXq}K#L#-K zdEq2@H(O{;EHO1~M*5zD2EBbE5U!pzAAQ<8^dxRgd`+^LYaCNR#+}@CG(r?>rYUrT zuQ&OAe^n^4NGql@?*e?R=)nAsAHT({BY+VzxEYW-b8@!RhJ9%fU}QVLP|Br0*!5-d zXUwU^H1n5-1K|fg_9IMjrDpmjz^TsbOHdF43niex(LG@DAo*<9hxrdt65(ibbeJo$ z2%c`UJ0<9)zZU}`up^@0V95N6D-i((w3HG^4BoXoG!434Yg42DH8?*;CeyM2C#q-i z;7*idchk+b4befh1#5^m^~J`T z>pjy%gwXu-+h4u9yPJ5g2gTWA#%ZFN^HpcMz(tCg|4R^9uk$n?qJ+$WUWEvgJ}==r z_VM4F@QZD$p`B~rgu;R~KlY{9CKlJ2QPazjS~{CYk7;N?=6qrPuW8Ttz9YZBOwoBA zsbRV$ee|U7bnRVZ)c4&wE09MkaRrd|fYq0XLGic>|2Hl=3&r4uR{AwKd-;}s053#W53=t(Td4LwG8KZCy>Slr*Mpq>< ztoNNl;mp2puYH6^33so3FLM2&ewUe{S$*=XlPHLhx!+#mY05t zf-G02;^d%Q(Y_$IufT#Wua65e8$t>X{~w&HI+n>KGZV>tt*ik2bIDmiKV&tKl}b~zjM2t&h4BdG4H+K&)4($eBAGFn8=VGE0FKECSOFg`;ml9uI4n2*>vP8fxPPet25!0E zVr%v0AKv~J?h-PqanrXg-pIDHTEhq;ZF#k{o6#0K)NlArA3F1Xx@YSB=-s(2#tPh= z^R7|9rj@p)#qs`E$sPJfTa#AfQ)L)lB;s%(=GXsP`EpF|e_~?Ns=G-)cz5UQ;U2fx z4`43GrbvD$MM6#|L9TpG_;466a&`7Z1q!hVyQYI;yWoOCSEm1&i<{Ux z5$(nuB$r5I;-WwHM_bVIE&$Af)+~H-F@aTT9kyykIhi}p!j_bQNyLKUnRt^xTZA=+ zC$>TSN$SZ^%D$oR6f z@oV2$Xk)ZLHw=x=KEji6PIe>&P$&s>Y@*SHbEivK==u+6uod=YBjEVy^00vhCBP2qD>oQ%dIoT`TA6-|#9{ zwkcY7l*YQXy)!>$&0ST5w>G0M5{SLncQ(A99u?uUa}hCMe7MAUc!o!{@mh_ldvmj^4I0|0x$IiDvQm96ZT25m|=G1en~}4<(slf z@|&0Y`bB{A7ISto@h%j`&ek83F(>InDq??9x|5&y;YGBTc-wnsBz}6TYNn`3|1~!j z{^in|KMqy05)$rsPSkCK&<+;Jk~kn^8`D8mIYY&w1ecEriICU%Dx|O}eW`VV1YkvB zt+AmT^t)8_9UQ>j>I9!yeGrqereLTyjj7gxZKiiXHfsIdT4_qmXoeiG)#>##JGvd} z5<(E-jYv})sb4M8bP5Ry9UMd~2slW5({CCrqShh3*~g1_-ppV$d!jpjGBTzu`uu}8 zK`5F7(EVppQCrO+TJ{H!U1@duY#yv3KiPGeuZc|r{itGR5W4yl1MkMNv+>3Vl6Php zv9fNMBqbW)h!1+V5=3f1(BSgkmA@FMG|DEF%x@}Z9#>@sY*DTG#dwB);FF;q1t^iTl5y%L7r;K^8h0?Cq3A z6e&KO6o$sxgyD$UhzieT8jf}dn;+LE5iN)e-wG2YQ}oNe3KIhV@s=#b5}H|5!p1}i zThfq#bYBt?Q^LwiD1Xkh9r|`^vwGZ0tFMX^nJ`H!Q!^9jXh4113k@@B%g?Xi6FgsjvnLhN z*$Eite{@ssfo~I6&ugvXL{}0HS~KwM2bh8Kpvxp+Zf;9}5Ejv!i^C~GX!aVVvTOkC zhn}^@);IwDP?#%!ZM2-edpMggZ{KJ4&~VgAB>B|@%tb~)TOwgS8*;MZQ4%n))WGd9 zu7a8#qJA_3Lpysr@TwDuRIu6bjwq;|{5fFRe5A5NogQ@0c0NTrYea%`nK8VQ>(O)q z1&^V^drU}&92+>h&@>VjjfGR-<$1H&ZeQPx4A^FsyZ~Z#of8SbtOA3{3==k+i()41 zEke36SnNK0-&W}6=z%I!IQ6FKYo@kM-H`QXYyXKXi61;vZQdQQJ&&Pvxy5$zt7@b> z^T@Cnwlh0(?8M`49MoWJ?yz!t85CRl*u3RW$MO`Ro}PSY-7g4#!BsR!kK2?_bjR!3 z+Tkhqtv4w>#}_^&Y}c>xz^qvgJ&^zFUj)4=C}jFVwbQl0i)V{MP-E|%(k?u>2qr+4 zRipmXXKg7b`V_`OIr_1G>;6i^-9c|W*llhPFTN==IIJ$1a))o9H?sH=`3(*sQORuu z!Td@t8h3ChW9oPwENk;e#zsGc;6yC-qh;yFwD0#BuBWH$0+;{?TKz*j8psa{PG+s` zN4Ny^k)7q;9aqUrp_>}oKk;9W&3>Cs+87Zs2ZTpSC1qu0evb;?$o(7vRvBF`9Sid* zzgMR3AF67)5F2;12hyuKO*+2+V{_~aAB~Lx@-V%h z(xGiQR@K%?b*q)xk7 zGCg>OtYRjY8tqmbNsqrg?^sTzLiUOg5TYENn#yu|P^RpUpU!EG{~8_ddMJHon{$MA z@=Go*^Z1c}FYGlxl*eod>*#k_kU0!py4nlPw?|XHw-AXW(M}2hpMyag!5M_K%8*+s zr7glx387!4S&~<3*nr%LD?wvy%2!FX=ULKoNH_^KmvCgWs7`=Mj<_wfR7U0H^(*_Q zw0f)Vc)g~*XZn-sNmcxGYe7gWL#B#I)-7_nA5ph=Vt8YKOBG(SY9BYY{OVQd>sAAprL(z_ z+(_oNjcarfp%;&Cpm5)y8oo@9?bzwu-S3$`CL4hYH7UI;jjgsS1nE_~uXN(^bXd-p zFJGqK9P&Tzwy9NTGx6AYIq4U~K1>Uk>xOgd`x#j2;Jc_RSCtcG5p&ZT{&JyKocnZa zkBloAZ6)A^nTrd*7l#AU+KuUBd5aSPJwLZ;YNFe-bu}Om_B`mBQpWeRwt9ysE3`J; z$eldy94KXR$_%qbL4ykn&k>+uHxv;}y_&DRw!s|Mv zr`yfhiBp+5>kDH?`SAC>{+atrTMI_Nf1x#lyM~<7$Xp)Rw!X(|AbQ2~pNE}3f(wJE zy6{P#1hAZ{oIRBfn`SlB>G7i{Duy2<=}+)=JY9XdY)x8zeu@d!jh!?2Vw&@9xV(^6 zxz;{?%IR!JW*&cdcr3M5KizfV*0SabA2V-rYe8bMU6?4q#kyJO-t6(Ic8-vQ&wT)= zx%e^9nNK&g&&xFQE8Kn3odD7)f<_^8{L84kswsX}1(cn3={2KY1LhTXm`pf9g`89I zsv@m8W_&{$uv(=n%zs11!}chHD+4TBR~JtIszUu z2bV(p-uF9hBRq$|m>%Prxszj$3#AFLBsM&`os0!!Zu>9_9zSRdqt0^Z-MhtKjG$e) z%$^E8E_x!?kb#W4&?tr;9BYx}VJ#G2+&Aa5=+fq*5StEnpl(=al~h=6rrRuF7}jG& zSm;soaS37G(BMKRpQT}wK{L1)L31quf)$BH-#=;14E{YDMb{Z1T2b+FMY9l0eCWMxZRgU)l?`6Ds4A3wR#S5|fFi6EG+g4U62Ph!Q9n zj6{JIvjdXofc0S?HOk~%l*%f37A={Cw?DV_|eX^xR$w*p9>$M&3Mcs?_&I^@41zm0MKKs+wB^^(Q-;i?H{r G z9pRP-MlOGHB>gmUz*FQ^E_HR7I`FPFzPfwk_~Kdrrt$SwysYzL#*!o}04g9T9PRk> z4D2N=z?Z0rH4rU)ig1=;!yJ8L-b-I|Ak&9zrC`uq>N-*KBZm{ot zh=Mc2qX>TX7!=t{9LZ->k9Eg;nIQ|Z$hji&z1{n0WvA+r3*XXADaq0^c+NJiDl=9J z{1I)x((0%+9sWeD7uR^vwSVWM#mPI#hWFlY-|2Gx;M~*Op0)nz&ZhBFw_C%UP9;bd zADJT-&ldjg_{W<6xm+KcN(+T3wX^Ysn`<5by3jjo|7JY#wq-?;)&BKepIReTM_Yj}SWZVX2M+G5a<>UDXE$SHXTfnpV0DDqq_$0>-|t z@at%L92W3o2~rI7Hi)*`&lGI0=@DC~teD3c2}i{SOqiGBdCqSpKlR>ig3#lH|J1qo zO)Xb|+hzWTOpTMNoaugrz%(o5V$j>ogO89)fH!5Rpm% z`V$pFlQ>8LHXL-ij$c_54AW(Hn^W7-7wXkjRkM>ja6q>~`C?;`bER0cBKQ?LB~I37y}Y zM-FPqhJ82pg(`hlSB1uZ8{DB%27>xm)wr#5Lc@769<%*2nfPGr>Ix9CG`1dtr$3lJrp{DyVWA{4ZD9(oSll_$rz6z`7RsKv`@LDCV<0m>{Tm zof~E`N9)e&QhRirkpLsbJ0Rt6Rb2gE*bKL7fU`RZtcz6IhjEPtLhNiQ4di9a;<9YBk8tJuLb$&AdD7(Hkz2nXoe_i&agK zjg^n0WH3Lk@!?gq*(Twi?Ng`j0Eo6N4riV1;RX2|srUCe)weHE+m5oi45GL!c2n?D z{9pQ*E1sb;NCAH;lT|1)|8ok-dGyl!B1;+86|(cc$w{?bSGef;P~n*vEA9d33b_e^ zxs@j-K_D8#l(i+(jA08eBE?(wZjb7z-Qq;nwdPGJG%4$m$t_*?=>Y&R0U9x~k zun@}n8SH?#(R-eo8poep46tdMZR^=B>421XZS{7$qQI1Trc~;^{I91PILv_us4&F= z5nPNlb^;~U-{n`MxruZiRiQMUH zb8RL9RkHqFL&tSfQ;Lz;^Zz+zNI3zPN=?+cl^M^}D4yy(hW>4#TdZ!q+wsnyD*^_> zF9bL3oeux{?tQwf(HX9gfuk08cqQV%l(S8`8wyp6>76T^{fb?aHBnc$7T!FsNNWoX zs&RSdExfTUZ$)^DQ7>kj!+mRYl=TZCozU-R$=KkOw*lt(-`d?~M}OZ}EW1nn8{qNY zw(64@MsbT@|L2L1{g0B|ra$VM+|6uk&bv5-ciqoVEB$t&BKYawd!9JIU*{Q+=7887 zJHQTjoy&Cu0LDmNEbAM;Fn%_@N&n>0Bju7Enz$<`J--fKx-;aZ-H8UhCfZ z{(Z9=C>Pwm8lO~>@U13>A07QMQ-4tBo8Qdj`S)~-Q=C0O$sWs(8@OM4i?`kB-R4< zGn}Ad1cItwE*81*+kOLIEy62?k^Mb8c9?$u&H>X&eUKON20;-##6-+mX`YC9@4XAU z#NnZaLYVoDz^uyz(h2cS-X8($KhRT5y)HW($P~E1pc}uegq0#X+eOOAdRu~+pioFJ z22V>MKtE7ov=larIu>(0aBV+EY%=HN*_4eKP=d~#iD%e+qQ_1 z{En3w_(P9LM{iyAR%{^JP>|9VVz@5%t{O!p(gAMk0Nb|Ww;|2u*V_lR&hGNlXt9M! zs<%j5-7xQT9?M8V4oPzOvkx(w8JL|=kNq^E`7yI~>gp7;cG2SwwoT zDZv_Rn?c0lwIEJ{UlA&n0i)7hC`~d2UQmn@dW=9Q3f<*86O7=%aspB0)yzl$v}5yn z0>$oxEtP;!U6Tbam#`VY9M8g(6Kw^=UXPUOXv?Amy3-cYiEZH6v7$PG9Te`$h9WFG z*-k(pM2Nxgt|ic+PmN>{1;_Ci2DHX$rgp|+MwgA4M!)dmgD6qa8Gt4t^MTfKOyS5% zeXdSW6CD4MgEvVX(k@;3K;#1SQ%hSc35yC7o9-y>Lg9#JP8oDyA|hE>Q3A}hNk*vh z66D0sLIj>}8Pc#f?}x_!At$QAwvHhsVoxW_iKb|=xO#ieTF-zp=Jq!&AH|jgh%n`u zP~nz2TKrPObw|> z$o1eo-0=;8DcW}ncHPGT+3_@_C^Nc3=F+lQQ8AW9!3%J6RTPVC$o2QSO?{aJE0{L= zQ`4;WW!21=+Vd5743>!(mSDZ!QM*o$Ft!jVBlz`QMe63cKOgV#sxHIpoOQc z&BCmk%kfUh2?nHxCD@;gXm{qv#57v8pK`*9mt$}uK`8dLM3B(A?uGuHT2;2F`mz1x zTQG@XaB7$`q6dnKJ=u&!om>KCn3tby$*HeuU88QaqKfGSKW_#`BE2=*TA=Gu_)%#d zM6p46_?;~zyz}CWC3F7b7pex$T-Z2CM=~N|h5t_i?IjGA9Ci)GeUssYyTC|nHl}5q z-O+dOX|HGVqDMozjeP2u#X>6eXEZ9Haa#IUM+lOt26>edB6txp}DQIGv!xVqwneVWDr(CE9A`@oCN%{CXY z${LnmhyZd>Xik77AaFi{c`U!>D8ztk_Hm2d?+gY&FJ>!~h-6O$TdDq3Ms-2MQUaJg zmGBt^gi>nGYbJkb*%dVI>u7W%?e2uRqZI(-$JF1;!lAl+sZ`S+rIO8mphZB&$xuE= z{zJH@kyi`Fz$E5svS)i2>92J8RK1HG)O?WbkzLPAuuPf|F37*pUy|Q;SbpmJFP3v{ zHBQw5M-L1vp!FRUQz!%i?W_B7eBT}viw9B?AULDZ);Qc3FE*eAxuqrmI4_ktoC!=> z5^x?*B2keQyxP0@5p$hvKkrwjX|kPmSM*$!EiBwL{qa#%-0Wxrl#K9d&fDMQx-+%y z=S}bUIo}3)dN9`LX8R~&?dAgmZ*m4IE}Djo4M?eeqFFoeKVe6RO6{l6 zHnjU{Ts+w2pgWYh$ASnAMaG$zg6p&#gG_#jiLGB&^wQi=+%ZshWXJud*W4P_2{}Wf zZ>KHMYW~@#FOUH_f50`VA>trnTVKnV6N2Ys64owpgIYfh}u#y z!-c+(@z!G@SO9Bn3}K?vc=P6oZ=Ytax3119lg7-xIdpPJrSeUZrw4q0FpR!ARG7MZ zLACPKT}_nSFSNGe*b+F|MRt7rw0`7$&rF{(=g|>;)0DO!1WM7Y!tQUiQ?*kuZ~J@y zkYCTMb#cmd0X&ce}lhPLM{ zjQ{%0YW7n4Qk$HvD2rDfn|XOo(d&n%8xKGITa~MFO@&jRBYweC8S;c(-XbX*Xx%hB zJT~-5*)ua8U+&B;1>zY84z?1wce(L(-J`Sm@ol^uBd{3AwsWiDPzegnph&|0wB8ba zzF@8Uk!1}#b!=`q=*!}SYPHR01IgJPi5TQ$$`YnU`Vz+h!yYViYYGB3|9C9my%vxkERxOFZ0RNz6mIX3z}&;Y)tk?)|nU0G*>JHg8@A z(=r?91=wRWQq$ykRi+4T*Z%QeMJ9M6(Tv75L;!sSVkgpVk@Bx z5iN;eD1FJy?77qg3;~#x6keK{_kR*H6f6ri7;i1jqcG{^7~{hg4{Jp%Lh!tNgK~Ve ziEUyExI~Lvo>y=%0uyQ?u{uQMZ9ErSSJHD z3ZrproT(9sg8n{ErJX$snPcc_*b&89rf9Ul?uEOxfQX?v3%!^BrWEtzV}L)_?g-7Gc=WHPUNKxx-|eJn2JqKw8^RJVHZ7 z&H3XZ3fo{S3>&F;*26=Bi(_I~gK*#btt=By4g8Ub(Em9n^{%++bct2^T#MW?H#t}( zAlqPR5b*jQSICm89Uo4BCWTD6wcu<~U_n|xWq-QEPAjfiW?dlh$Tk}X_nMVPgt@;g z4nQ^;H+sLC{d%t9x0U*ei!<&1HCj!@XBHXvo zED9>jD3K_Dr`61Fc4C7q$uJH!>A^2#AMyIv3!vw)z(T?Z&;*g732FcW#Ttx|B_Kk) zlTW`)wq+#(<&qX4QT2L&@SNz%z~71AZjHixSA^SQdZFqU>;Pgl!3zuOQ0Sa8Dc1H= zr}HQnz+htU>`OSvdGiCw1INW$5In3SUOkYWP5mfI8HLPUQy1Fv4dT8rz=67{RB9#YDQPIDkqJWqrao z+GJp<&~UGxpO{}uVw|{yD@o?YfunBaA1(QT08b|E3L4U|{a`=#C{=M}{ z96iJo(G#;In2ro+7a>%3T_(fJ3$Q=Mx<{^8=fY#SzpnhDMvN9yA{NNy`E(mtpy_o#^AMS07P#GK2-3-DWR3q9~2sO*DtFD)_DzbwsHseZ=5 zY9*7Bm@K_>y~VW9XY-kd&{rT3N#u{x-iem9NNl5Q zP)rQNiD_MgfTtAz=ho1eO^)x|>NbU17=84>#gb*mu{_#$e(SLzH<|6F(L@)7JFOQ1tI>F--EB^Gj)j4I%BZJp+yNL{hS?%Y(tRl@Amag)OQ?Zqhm1DEStzxSgO5anL~L@~hbZD_ zL!NFYlpTC}5|m|S+FFytoHnnv{|TYzOD|ah8%XW4cD5!bALLHQx~>LQItQwF<*%!| zDy=CN$^|dt>KSbllD{K56=}utIl!3}zt4jSUDpBzhuha5Rq--cHdG@oguhnhIJg(7 zR9&k)bAZA=dbeFwtI@Bb5K`*7*^Sf6I*+f~7`{%5tPES0FaNqKeKL8fwjKD28BEm(xEsT+#_9LL&A;z(qiY(VgYhqaUX(LikxasCRi$&1_KMS_Lq5v zxj^_i&9kZstbT1^)cd@yFmC3ae??%^&5HmttYxl>nCeT?7o9FK04sxQhb5ygw3#{F z@x=eW20=Gf%Xi~3sssw(Bsqnz1Ks!j;bw?J1uP--N)p~+#l zfjNF)LVH*bmciL$Z)DCWmxwHrThBw?EZU1b{WJ)E=~2RZ2^{tYe}8IkFEo*<)9}q# z9Wb?0TIi<=y4-SO?q>%q9j$Ju*# zcKi4(Y+B{N^LzlmCMV$Sel2TZsqyTm!;PwkQB`+`$W?;0t?Yx5uLp~B_$&FaKF!4^ z-%68``$!>7{H5H#Bb|yZ57)?-zkB;%lr1SFZ*3ijDJS3gPnSGd85wcDc!}c(94u%b z1O{!dI@)`4(&JA|e!E*%HCrTQMCF;}ckE``dYt(({b=3$EA^@MPeN067ke-$iJ2nr zn$+qi!9A4g@2ZEH(-y{#&q#1G#)L3`po)1jVeaH!*^8gp&b!A-x`KLOBr*udmn5dy98D$RUk~-?vx}7Aj-8iFnB$Nf^BJ zlE7JcB_>w>6eth~*gfj!d1raI1v8oW;xj7B0j@LSbh}(PLMq&(FtB+Nd^JS1`Hv*D z$+BiqXSb}rvwm}577U~UB990W;LeA41rvlt8I!3l#>5QIDDw5TM|DQ%w(Pt@o(W)?a5jbH$;})(CEzG+~M6DQ4k#><_3n39_gR?*vo1)3~!hAcM?4zQ! z$`ZLfRB5$L_xUWpZQOvzQ49Ge@w8`8@q`6fS~jM4k49u*L$ZLg02Wk*-#b-U^p0@C zGBM;Ww6Gm+JO?G<)TDxI{BmGNJ{?U@5QH-OOz})ssS!3S(^8aGB4te6jx;ppu#XUl zSc1R+dTcQAv@RjQ%Exf>4iY`_mXHXl?8);6_8_2#QwYiiBr`(ME^KT zw)1%wt+tdv1l)ksVfZH+n%VIK%g8CC*`Aca`P4H#d_8`8XJNX-OnOi3x2CwUcY*UP z-0e|l@SH>Nhy(`D1c8@FOfq4c_bcLMc99c~faPEvwj?HC5!8Z2V(*79vl)i#H=h6F zV|2mDz`mfuyLl!zcs7+bn8>I35eh?9$_80UU7ZX zugjnM4Jj0!2Q#*xZ0G(VJ3+!UC#HnUh=L`7VL%nu60vPY2+ElH_Q0(Yf%oBvu9nGf zQW1u*1Wyx&FJ5k_TS3C(N!He|6Op)NRrwO!Qs9(aOt)$}hxZ~loFV!cB`(c8Ta?e? z%>lM1jmU+Y=|@GyndF4~HfD}c=`o2#;>&FL()n0smH~;YSWgmr=W6p=MN9GbHyb|q457vhWlo0^gXOrP!Iae$T?0vCugA>u;kR!xPB^fj6$Va*O>o6?0X=D;vxm`#9;HY-859{>Bz@K&#gB;@j2cNj ztFH8EGhhC|k3Rx98;EFT)0v;Yd^u*3G~pLC;y7?+NoCMVz#?5$BsjR&)wO>+Uj*?ZVf#2Sss*%^!l*(nsnCzyq z1Z3}9>ZAe@B=;U7!9FY3agbEBB12HfC0}a920V7f8!^nhvb~GNpaP*^I;~C3(N3IG z*Pc~BStNwbgKoY|I}uk<=)$x<72V4sZx}Wry^EGP9y;<$Tkk&b3 zgGMS=63jc56Q%RHtzJlG8jPL`AqlqKKh0?a-FCoJ=fJnAFBCmjA}ST_+PMPJE1OU< z(4;Bh)a|8W2lsuSi{j!GvtPp3?N%YT#)5CkEtPiS*Pg3&g?_CeBf2q&{LFMjy2d)S zE7&01fp6{QK;eWRw;yKN0n4lcom-R!gQV^txEf|=-d1WCiRK~@=n|PvM z=pXy-qjL8+FMfO^-*YUNyJc0tCX3F1w1>xYuLqtuuKQBf6cZ1MCUeIq9{1D9l%~m< zxRBSr{7|{B8;8`Yw})Fqq-2zIAJb_URP%Wiy_Z@TlvRP`>?LM|NZxYw%0;A;MwOy@ zMTzQ4YwL0ccS_~I^3!^8G-_^LvttxKc)hL;q&#U^UwEpdU<}KYj zS?k=oc0XOK{={kMu)S1VjQyyHsj87hZD#z4c#A3jQW=TsR3SmX4c`gzQCV+)`LC=p zShhAy_hx$P*!LZ*Vs+P(e|%IWEr1MDN~D6DBxdT{jwfYSjV}KFjr!H`JBkJ8gGYQm zXkIi@9_^HkYNK8`1uh%w&Fw$Oy0es24py(o#f~AKBcWqoNA)9dW3u=i0soM>K|Q}m2f>7)%%>^TgCbrp1HJSTG4c+>Vyxgk1`5dG=J*^^RM_Sx8K8&2TU z47ysr1NS`SomF|#?WG$3*>V4*xjo3_Op;Yrf-AtF>FCcZnhmUTkf|M{&)1Qnz3?QM zTJ9e|-CJhmcHtSi{MbC7QWfWw_nfX^;w78gwNiF9FngO5g3HLcrlB#sRJ)V4nJlsy ze*}0uMS)+R+0lQ*avha*RoV3XfUAmIM{$z9G&=gv6zJip6H)BFM@-h*<1f$Wn9*RH z>4p2--=DtWUo2t{dtCOacA?g%kg416t-l1QLZ%GIeYZJ@jbnB$FcwKWwzFJtf0N~z z6!;n)&&cly4jv0-psiO>13VzVB6wBt)h?U$ivy6JFf0 z!uzDdnNZ*2l3O=Fh7`Gz_#-!aZ*#^&90Yh)r8mEllKPyV?tG+k#ce2I!6EAK=g2{+(^|)VJ&DO6=#Nga?uh43kpCCfoljhsND}{Et}LaXcg86aKHa)+B4ZXf>L!OprjK zhz-J-qGXieZwU#1V@?~KuZI6}0Gn)_iI!i)Z$5p_x|yZXCX~<~S$N+x*x+8iXTaQ3 zrkWmmV0UUB1l8fTf<70740wsqFX)NiB%1T)5EpHjz?v#f^0TbiXED>61n zN48Vui{@tdFxX~2$Vmx>@zOZ+(~4>r*IbMU=|uK&h*VfxDSDTRL4@cPqC0bGf~<8I zBqi*X1h3|6v>s?w266^-I;0-CMA)(c1J@?8q)$ zE+tD4<5&0$DEjHk&?|^y0aAP5T_WulZta1ROgj|PVLyy_pc;{WGXD$xlLTebEt#_p z$6Ty=mC!HI6P6k?hW{ZatWDheBMNYDXF{ZV&n1v3C3Bc-iAOn4*U=fry}FYhE@Cpg zh&fBXY$$LW9&3F4U@0V_NG0yaba6%%XVx)8Z%Y$9whQnOZX5QIqG1B6W6j^Afs0G+ zYJQezotz8r6m&hdmvr01h|yQ-!Ub{>?ZM{AP!2`FYBn%a?e*Gxx#cGT%Qq9>XBf@6 zjAl|&7!)D}u$bk~#7VWAvoMammpSu40VSok@aw72cyDgPO>fFF=>JNR_nMl0UXyhW zy}}r1(3fsZD?4joQK;DMTjA`JS;Rs~${TobCWTxio#RVUeBe8!-{(> zx=O9kH8yqYy48G6OI~(YYsAPhZm>VOdv0+l@N-b0Rz%y-1f- zx5DH$i-EGH>xl>F-YuzjsQAiQmm)p-m@e!$V!5`lXXLNcB>{GwqG$^!G<&X$VP5+V zS}echNSBcRb8S`p^Z*`-)=+`7BpjU&pvm*`MbZ-RF5RADFn757;wE4&Be^0p* zp;7Glxm?DJobKGwg`P0`&Np;7duqNC(H?oqhg z!~fLkr@Ix=%i+~>5O09j9+2*GpmLc-pvO z;r8}+#Ztjz=fV(~gS(2qQl9w=wg}YI$K+4?f4CB1DVuXmUO{G#D4z1~!0$*snG${D zYJ~Bv?pS~Q>c+~ZukUBVwKe?ULpRq~=@hEhXUSy@{PKC z?yrE_JGRI(TY%X@jrMx3POXg^@hQ@DuSAm)_RG`5N+j{rdmmljh@B~D=Jz*!OT$f=QY+Y^io8ok;=*OXPqng|~AG;IILcOF|djFyidI^K2R%CRm zYw^E~4>Z+HzblO6=d{6Cx(sktTCP@AqX>0d-KtjI(5frcmC<;bl#r}fmHqvo{&fQs zKZP1Y#@6QwxkjN@?BVl@Q+NH&VcTFzUbwJWtJLzgSCqv6LZbM%8*db{FWR3nyZMo2 z?+a%i#V>H)-rlu+-UFBu1iX?U0S8l%SJ<`+x9P88>XD}DCsmo(E*>0-U3aHj5jpZx zZMS>unARuYwd;GQ_ZP#;x2?L#Y?CYj)V<@t%P?27>B8BU{`mtN1KzS7TO`}q+<;e_ ziK*VZ>;0Sf(2f@etWqV9h84-L#xAzUj}v!0CI{P z;W6&oDgybHd8rnFktyB*MHH?kq*U4mrXk24P_2vWfOKQ8)BP^7LKzI%|a zDnQUUKEB{FEX4$*MDyeP$7`JZ zc@=oteM8Cm|GM?<@zd?Sx94FRXJ?X-MAzo^Q+`;iG4q)LE)*ICENkcqQ0Cu1^>DKt z?ZEm6=9`BV4j4x|_)wUf0x6Zh110C|)?c7_H(f1MhRY{BUq{V#zxmMJ^r6)hV)Nx7_x^J=jI zNiQj9$usV9u447Z0mfym;(3c`-ZOQ;k2S$C%wrl=N^3mcQ8T5+w-tND5^kHCYj`7# zEMMb3l3yYpaDBZY$TYnABIb!XNu4jEgUY!4VfVIjvN3i0oh_x(R}O#bYPWNV%kOVV znJycdzOJ+Kdz$g3N#7Ws;{uN4xIq!Ss(c-Z47F{?4y3gZU#Alw;Wza^pjVp^vG7?bGe4tFB1J0LQ#U~)Be*xp;Jka21Y2C5ebDbs@8lQ z8yd=ssN823JfHcMwhS7t#~E1X1==!PlyAjfsSeT7#`XAR&3MdOVmXl}NMITm8iL|6 z8PCijB9w>SZsKnKUIT+y4FjQn+H3p4Sd4Gxu=VDwoe zlF~bWFg+WRS>$8QO8lG7_!qYj1^=`$W%yzjvOBy^pWnsAVmFBrT;C?HwA+6cvy{Ou zZ+;b=znVr#%x^C7`sLC_@|_TDMp6-!_^wE=PWn&O-JMpAaGtlKgP(89X@hdiC;#}d zw)m+TTMCC<{%X)MX!yKWxq?T)qm59#=1Og8A~TXF9sYsVEM=Jo4A<<5UL$3UcXx8$ z%tt5*hzG#Y)P#2JwMTA*k6~R81jIsksiRY0)}}8%xNMERnZ#Rv ztu~6AAEZ&76ph8TzrHGUJ_My~)JQi!Sc5>TdX8j0PQA}j8aOij?OVfBeRuxbkvQEb zR8$(prs*%t*x8wl55g?;+gEi2D-Lf=3mA#*3Snxis<>_XlOm3d+~tAAX0JIk!Y>CO zFYkS!cANP+r(_x15t@Syde_!&z0-pIk53}Q>Y#iP*oZi=C!XG)Fsx|b0QKI=@!U0L z2vh&hzM;phQg@p-`~e#KV~D(B&~-!vji@U%AU_384ZBqF8cyaAy1uo#Y5JF~u<~_P z@iVjZyKdsKbEX}CB<^TR##vuzr(KOK7>aWPw8Gu`iAO{G*bj1{@)~n`1#{@DikOkn zUz8Tgyz&hrWwi}ZDK}1i>Gy>CP0j0p^T^~oJ#R!i@OOkyTXcb7U|@h%sgUz{%bD*j ziU%)-HWnP60)#&3dMpE#u#8NoVxF3 z7I%Ig2_ycr@a^~KEbN;4W9>k7$|+?R2R_~%{om!cD2ep{YQS>LzkFV3&oTKb`Mr=m zTOfC3T^Xc#-4W^1{lo(x(8qvbJrK%fhkGF^3&gT$l46}t| z&aY4;F2>y~&?mL>1SP814uj^AO;u&86C2)_wd*~r${M0TqOMks_=md`bgM_I0#a0? zSqC*^fUfjd;Z%<9%Ou>moGT5`jWa=0^YBzwQv>&MA>y zp?0WI7S6mT&pdH_LllUXPi%TW7EBus`KX1GZ6sUhQ#&Lv@De`lEd>?(jm-qSS zoO8MKYioNv?~mL4cDvpNMbsSE*MPYZ9YGC2V(&zFn)%2;k^1W5tiUX>Qu~;5WbUorxy=}v#lFs<_3g1t0t`cUI zRzP(`Kq2AZbEgN;WQ|952;CEQ588VSi>d55ghX*C8Btp`cB`XS!%Oo0mgDmJ82bk6 zJ0)haR*xJY#HCo?xV=A_jCs*D18SmfNK||3=l+neulI~~Db9}svX51+nS0ar%y54* z^F1ibz5$XgBLXp{(V4yxv|=<|cqUN<-g8|1ai@OqPCIFF6R5XD_dnfR8@coYTsN9} zmY1q}J4Js-7)aa3&L(}T=|r(sXV09v`TkPTQ&R&|ebJ6BDy6F=aweko9#ApBM{)+; zpYbPM+9t6KT2tIF5PgmuUk42?ldp2rfkKERc_o1;sKF7c2+1RXLL7{Ak>tAOkpwK$ zVuUac$W;G~Bkb#{R49*&)C1qWLr~m_1h8WCho^Iq{J-DrgT%rHo+={7d$K6uH^g4Z z2PxEo*y%u2FDP9ylN|d)M7xfQtO6rGEKPizmc2cP*yZ|+Fy6c#s7)e%5;c*bEV{>=MX%dM*N#dO{yck7&9*7N|C7=$utv50I~spl%LvrsYEBXr{2E{d43I zdH}xo8;BsvaF_2Rp_B)M&23}wXWcC){`SmyvPGsCL92gL5|~t?zo>F@aCojDe7shQ zt{ke_LeKjQRzIC_yS(zkSMGeL1lRSfcE&2w^V|nn`lebpAL6O5vaw<7mXJN!Z2DlP zqJ%TS*Zr1x_)Fv@KR;jnK~a=(&Dex6bs@_xsH-HY_K5gK8g z%1D??9n$kJm4=ov>!Qb{gzFDqzB#c40fizake2o&E|&n1N~^K(z8R=Ff)9g3H1PcM zH@O7(lNGRC2rzs;`!NFzzPX2jO2Y(wMG-H4q%p9N3mqRD+6{&-2>^U3*e0dl-hDfk zx6B}JnRpCagXYI``<$XJPM|D#e=n%3Lnm&)a3Hj8%Fl+pCd9=FjI)Vq>iW>eJCvHM z29GeNskzR_~_Bh}*U8r;wYqDL$J6W(}9Y7yqjk(bT zrVu8a^3pjWL2#amN@YnB;E2XQga=SG=rwCrSgAa7rsA;Pk5;xPB0COAa1me{DEJq( zcL1*v#poLynh(v7%m66v~-oh-JJO|gr{wIo?Uw#{x?k6vwbZ8kL{{yJlEjAqN(cJAx z=T<#ZS3e6Q9Z0yjuv{F93KzKkOL%z3b8E-Iaj-%A@U!-xfGmJdxqEs_6UIv7Y(-g8 z;<&^tS3?yAzN7&5oI<~6W9`dR(aSMQv#&-uH@Wt33jO{?-IS*P^8##U=@NOSC!j~iiFs4^RPiz2escpB(Kmnmqlp9N+k0kR<|f*yYUccvgdgpj zar?L;jMlr;^f|xfw&mkFgBgl|-f%o!zB_e9DIW{_zGtkdlC#QwucLav6uN>fw{HH2 zx7!H>RuoYNqoK8R{>}{s;FO;Xu5K6c9lj`W75Q3*x0 z1gk(LXsIs1cznzKf~a25whC;M$26v+N)PV@2q0%eCV)S$kr5|-)T$LFVDJNUIQmq-YUcOpKlf(+cnTAbvq=#Gd2tdwX+6y;Vir?a z?YpaZV4yl)2?~it3d4*XQp4E~6bLbyim)l`4U}G>$>iaFB0^;RLvg3)kO3>aknB_1 z$uTHAf(M!DZ@$9!)y?cbLRNSR#kuwsg<4(u9D~s?$wukMoejC>f*WyJx&1f0i*QK_it zbx5_lAAJWv)bS-6BSxgxBpSQ>3G zdd6pLWF3}(3CD}1BW-}QI5j^8T&GeaM+0}i=*i|FL5+Rwq1Ia6AAcVJ?8m#We5?_W z7dj_FKXdqQ*!PxQ2!6Imap>t`42~`YJwm^i*%ZC(CyS+cKCfGwh~Xa=l03=gISptI z%JEq@=occ1J4SFV>A=nyD6L6~n0zuOo&OObKVlT%6Qq*5-}C*v-90F%s?%~1;SERu zrRPZ+GFoS0Gp3@P>PQ@77gFG+2>vsrbac$y z9Faio*~?aqq>n~#m{QIOawU2kj!|Lfh^!WP9V^DAQxV0~d%mT;OS2c+FHR10K5rYC zQ%tta#4M=paH{Q-sdOG6G!#jI)+Hd;Uz|}ET5PXhcr$5`BcReZRV{uFQnj@W7}eGL zYTX>2>QaDB&Olm{rP!QryDtw90Zor!tB$I`zb&HXfWStkw5(K?FN0c{lkuR(VU4Mx z(7j7RAkp2Ro;IIq+r31zh^c(7@lJ+&P*0Mj4p>&slo=`Zf_Q&rO2v4UebS|s5OwlF z@yO@#_B|mB7BQ1kk}A0%XUf}Zm3MP-)E8A{dH9~6DPAZNUe9%3w#w`fsE_)co#{-M z#cu=N0Dm1hvmy+JEBH1dKAB`HD%eSLJ%c)QX{%g3LW6Xb+>&9t!sKtuXKLAubYbX`yH2-rso-N&TiL~N>$hbo%w8;!SVeFneDft|)zpqvwbhLSJy}&(8u+Nw*2_p5 zUE~_cp*Nrly0*7iS*)qFVu4rRII;rzK%q&dJLQHz^&aW{*xpB@BNR~PY64kfED#uY zg{g}AWyQD}WSnahec1?!C2)B$51_`u6ypZuMii#o3}TE3_MF@5L?wW|A0VIqY>R*J zI`D@H#d$$dJc@x+!WV#Bk-G@p1eQ`T@bmz{&*_f^AOXs zAh&{mtfWdu4kw!j{~~&x+M^|Wf+Big6Kz4R4qrei-OUqaLRYMY@Ur=8eb~h7nlK!~ z<<4R2eWcgtHG!(HHoX#}{4es)bh+%%t;dJV1A6=XxnP6u9|Cc2sDb43M7`lHsB zHn*l(I!I6i@*xrZ6NYt3D!54zk9Y&W0b~%}S_S@z=QCfpR+a3UZHVN?0tZ+&jlgkQUJ$d^+l+ElJ+Yze^6|~|AA@X0*wvB1DG$+0~>w- z`V|)^Ai#DxVZl(SjnFnTzDv*`64X(amp8lecy^nhWK36e&N28?c8KBL)}*GgaU2G! zNd~B~lFmE3kq)bFN?^K7uzy^NL8aZ(_=QG)GI;SY2qHhho+oi7y++1C z{pmGV&!0v;65P`E%*#5t?W&FWqjfX_N!}%dgw13;_LN?DRy^OnSM!aINY7RHh;boz z5G}O@#DrW=_9VCi!~r@xR~K6ebER*&i|I!6(a6~q8eesRmBUa0S%(aN>y<0d$Qx_-^k})H9?>X)Q%I@z$+@5BU@`AQ!yBXIVA2H+T4j$vmVJu zV*5;p1fZU2-^~1xLO@Z;pe1)RJw(|l?;f=Eg0dcwkz$I5^FTibc8{q!ZX=8kG1{2l|z#No(~yVQr?Db~ufqPDHlC z4r{RVp%1kWYTil8Woxcpb9I|=*F!;r3n>7Tc!-{>olM@9NTJfPC#tyI7sBfk)6MIR z{2X{94VVogaW~&(NF+l8)2VQ!HVThH@p1G`A8YUS) ztdV^kR6a&BovHi8o%C(dU?zEc_YxbG49olfl ziQBNj6uMlP1Ug(2NGNw)#z*}vd4j`bDQ+KelsJ9R(O-a^ZnIh0AKxkf zmUt!;pe@8URp77M2M8aG(a%9v4F;RuMjKSp&lZR|Me;FQw~!^J(USazkwe^g%w@-+ z?(KhgGG})T6`d^BnB6g0+41vN=x|suo!&XRWv44W`S#;Z&35z%BS2o+Zw;&`^b125 z3>u|3jD{-lP5~grNGHzz`gvF&Hg+OI6| zgR0RR$^bJ_N|d9x!9aMjSO%s`u^O4ynE6=zWdE9<)?VTDQK~S>asTD{(JF+Zcyqyd zV7JLJ*E>}lsIu-Ds~neJkQk~Ma)Xh3b*i6X@|i`F?Aaee;J3UT^049b;ttoWcFUnt zk|JN}h4+>iRkXy%uXlNNxc##wj)e2;W{0GXcP=_|#6zImLM(er>s3i#(Vq z&m`kcG-mus{tZo8wC0MtDw}HT%tP%!hN)we3!WDjaMj1}N;AQ~zXvRi4Gh#rM$}pb z%qhwigP+xHEE#C+=*ZctF9*2u{WAht$@G~clCHqDdJM@i?XM;isW?9O`b3N1$5A*I zWE2rtM6fv5HQ7Ad6ST_4vA661g>Ua>i_E#8o)v}47TAEl5ZI5B&I0$1`GNABPR6!y zGS@bb#O?Pk98;!`j;V}5v5v&3Zgeg^=4YqXVE0||wcXi)IZORPJ%KXvh10zABfk7V zNoU#GjqOTb(DscJWj^b70;08fz8EB3#N9VTx7@8cQni>3MSuDMBhTCf{^xp5@IU=Kr5s0xXFY+cvXuVCe0QS=hrRW+ijt5(=D{(J zfhsycQ90IpC;TyVVIXAm(^y@~qW6Dg3=Q)nYPya2@U*w$qP(-L#yn@@Su;BYXKzaO zlGNM?Cc`eIG!xT&v=FMhFcL&$)imaDQan4pz23 z*b>PV!Jc1nj$m;`D3vL`(hyb+`C3L1hRnc%cj{WB))7+~%n#KaBY{S&B(~i1>I%Wu zET$TOX)FEC0k`BNry1&%suZKWLIO(SI|l?Zg@Cq&jNi0j9|}`45*<}rcf1r_R2HXe zBED4m%e}tDZ9RH{@P=>hZ78CWpx~1ds~h|L6E{CMVMW9+>*HocSJVA#|Ke*2F* z{w*A8%6L4uyP><1eYc@tW3YGu*65s9nO_xjx3^0bv#45bW#mNfX0@O7@~IsAdrwQp z0vLx3_rI)UhXjJ~7->3cV z!$%W<1Exq;&CE*KMCW!XMk?7@scp@XodVFhIK4P909?!!V^NM>mB$n_{b3R_L}f?{ z&FAjj4R>6M#W*3jUj|lCKYDEhB}!cG_1(eiYxe0({QF8op?Js#u`p8Os~A;$jGD_a zEU3_MoN(8L>Jv3qn>y-%hX7ZN3~J<%m_DFEsNHNixw=C@^G`Uj2N8aAV}Y03+oF-m zPnDW-9Piy3cn3O`X~;ztTfXMP^uDja!f4Nt=4ZE|LyQ%LLdls_+D>sw1!{+G*a1E- zl|kMDWCo}yf|dN&9(VyYYAd2|m+KeB#L=s{Pb7Gn*s8k#dri%@s@kitTjLlBN_~L~ zUJohw>_s0HjRX=70iW5iZ1arD)C4jT>CEE_jfVq;9%i2&UJpbOS-JAV$qZ>kO_IEa z+|CujzG6YC=La!GWG;~!Ja(0X1N3K8co4&9aTrj|bV;+kWIAw^7lf%%gcfhRtED&~SPgUiA2BYCc0OjtNG ziA)T+8$pJpQpDiK=e=LYT-(D5NY@e^!Huqn>vQ`fcx3lqNuLxBYUJ0(R-iamnVahz zn{RoV_I(g%2n?2I-l{(+_R6~><}zAi#f(~4cGu@(Il5jkSbxbbD9fQCrY>676{(H7 zPdrg^U6cvCIryig)1`!WR~EKH)NgaqfOZ3K^nrpFAMgizfV}SEa?6ky7fkVhkinLa z$K`^WmuwM%fA|5+9R@SLcGxBQ7K|^6yLP^urIxDfN~!qn=J6c&ZFl)?d?M0~2-mJY zjL@Dt`ZV=00Ry>t{Ox87?;XOc1(;!d8brczFHr9)t^Q6XKBduvf*d z`}iHM9l6l5%B1lo>M0ya(&Dm5fHl| z1+Ui`3t&Rz1Ee}70eO%@$c^Qt3N+cSvVYwOPm$`r`+_y!qOZ0Cga6WxKJ`$wSR~-3{TCF&~yxSNh;nfF*qky5mxwgajQ@IYzWrLnKXMOdaB9qM@#TT$yFp+0q}KR z#JCdakn3;}VK1f_10#LD(Vq@n%8m=t<>%y{XOSQ#TI2P1j;py;QKKj!CD-_rs-_r^ zLA3XjJgqJBu_Ttq1PUAQ))e*sUiOH^k~g_&-9NvyO+F4T>i;~0v+tgk+op^u9~el> z#v}7;RG{Yd)l`^WN5pdf4fhszdABv*{=JP1tXqzunV)NYwu9$PO>ZE%67)cWn2y6Q z)`|Dk9h&FT4{VGmW-6j)fAkFxBS?S;jb?%lM8H0P=wypuDi~n)Lq8u`i)_dskKC7} z7FD3k@ml8ZZG@v!6`*z35Y!(|d9MO>xdJ)cZ`3=04P4?I{*fD4)kw@^`@M_Dduk&i zqDyA~u3EnX@i71~!ge(Oazp*|jj4%zCD@0oT}+EWLMOH2wb zd*)%oke=y&P=c{Aby*>2&M_UMgz2Mwtn|t-NmU`eW8#~G7f=FOHyp~oehZ{BG^kV? zylH;-h4p+dh%=mgu@NCqo7;d?3X;Us96%M=VaDDEGcN#ZbZ7h-F1K4_fcDlPU#$5r zqT}>fnOEsesA;%$EC;weYtxJO+U_bfmIRj4ACAQ);g5CWNZcq*(`(GwG~cp*7Ie~&8q4zmN@ zC9NBmt^p(P-QH)4|4J*>KW_fF;Dt;X;4{M3 z7mMl)_wG-TsmkDf4vx*#5mu?{CnzjY-KTx)2ppq0T#lHVRJjYkOJkp@M%IT&E-%U~ zRMW$fn1%YFy#S->=^+o>z+{WZP$@E7@1KwkQw~R+x!T3vNgOx(oczWP-sdKua4Xh1 zPPX5Llh59;EU~bVmO0j6DtxlVOfCjDHDFyakiIaZ-mGrcL5eIp%DQ?g53v`gPA#~{ zEbgPPUjF?Qc3c`{Hw(5t-Io4E&a6)3xx^;D6D7gEwg=SrH~^}SgMqZT;uw3!JF@=k z+z0fmlexRdM-n!uzmaXwpuLkM`J3hXTWi>p_CyIf)_s>5u&WN-PzKdqo&ob~wZ(1k zO;$TyL6KmA%6m=UlW)6p$#ed&lSm+a$dh5Bo>0(Ir$@i8+-Ia4Y z+`u!bfVPxJ**P>YJU4bHKYzS_dHO~S5c>X^-`Y>J8oJoE-47VwS*rf#z@Vy8`OqG4 z4AHOTcA`?4vCkP>-i}yFab>c>`&N9r2K4BQc;7AHOa8X|e*#M|TejP#bXdB+v|aaC zZ@5)~W`SoXW6}LdXT+tbYDL%y&iL=|=2#hMQTm^qc$(R4$x3M&Fq>>ek@R+m?IG{p z-UA+Y9_^~=Uxc|C~(TX_>l$YUJSNyCXUPSO_pX6oIc7ooo-<8>wou0eJ$ z@C>q(8v4EcY9s5$wg_*@r(EN1)8al81>lcJ8!=@O_7N_6G^Ivq1 zII!wiUYA>*r@4Q2F;%fy0R6tsxt(@jm_R;TwOM`5lPul|XHTJTAqxij^{;LFBKEHCySyArGdimXGdXQI)UE^gPBg+TYJzMOm%nD~j_m);TG-L*hu_NsUUYnWh6S{apaeNOlW_G#ssT$9;#8{x4 z*wPcvxgGMWr_LxUX@G6_Zc?N;nwTlzZgv7B9`h3@gjXv}ulk&PbTkFI(US>{^?k8U zphg$2+(=1%KL(BLVpiy*TVs(ILw@%61f$3yo+P!VY~JUyG$nw}U^Agae)$CEU!U+R zVB!+|08UL)$V;-zMvxxIa=Z5(l8J0O$Gn)lq8z-_K8>0y+QJhxZ@_l2;ub;ArAXXw zO{wc@h?y@m>hJ)E+OWj$SxKl#_u1G}UW|?4go5F;p`zba*RW*N!7C8U75)SSWhLtG z+=Ile&UBMO9@jX`|IJ4@L^IXY5cCym3paDqi+yM4DEP!tW8#ms16YMUtfwwYH9ve< z-+RkdpO4ycNUOZ8_hK3EFmP+YpeWwR16}YC-^!S049a+?{@Z^yXB1XW`IC6U^QEb4R9zj}R&!W=ooYPk%G21^KC=x5( zJn4$$4`NxN-GfuDuwt}RVW*}y>QSSnCW!mEQC`l7&9&f8t09&=J1n?bxU9iqVA=>v z*l$B0KW0Gcw`dBQh&+h!dw6^JtXizSTC@d1OVNij5jsv-rx-1MTM2MD3xD*@{{rM0 zSw`U6S z;^^qb2+)2T-O8vXbzEVDKS&(?JhKS8iWmKs=7y>kpVrnzPmb*Yf#US0Jh9+Bg_Y!6 zXven`P3)4c{^eXF1F@EZth8$eQsWIF+~JKOnpO>r!pLGKaCILqS^r4atm!a)rYlII zgXG-$KQF+$EA-&>+$XLa(jJd|OZ%VMxGXjEY+R-*-2^Crl-uXaby04&{7n>F$Vc%)=GDM!E6~^UBdKJkSVELu!}u4JpkV-cVi*KI4Er-?QY#jBLQcuxi zpBpd(0Vt<-9z-4DvgvtwU|DfQ*2G?x=g&Cmm#W^CP23%_m{^+1PIaq!EU10#h4LB# zqoUW$r=kxdMIU->tZ<=F7!cl37;i>gCJKt^Jq)2j^z?rG>843%CD$Cb(YOj5a1xCt zQ;icdUy>))z>)re`p&tL5d}uXBllVr;4j&A<1^=MF)iC}OZAvEe7q-SajLU^Ryojo zBxdQ&dO!bUOY+Ls*XrkA4D>GjxW11V2S4Mcc+MznvvCSH$>QtuVYL>hxyZ71bEiUG zZS^_de4XGCH^3TJV`z#*vxEk;m3V8@^C}}>^}-MX!(heWv8?HqwYp<}JGRCV*DSAn#wCeqPMSU=l5 ze!iq4MY1@*Ful@o;itUH?*kQFM3y6GmgJTe9y^D^%vMRnuPyh7m!#)g^c-Ivv8dmA zsP(TTbMnspizAZGAcyZ!lnBG&P@u1x8Uh}b6m8|&NPc3jg>*XDn#eds#}BW4Fu{iz zFn=+=u0`mb)cd9KW~?Z zRi|+kwY_1d0(C}PD(A;zCLaDzWBH!nGnKsbF4|Le@mSGUQVk^M1=qIeC}5&WqXBjC zS6_cV09_h_%T;6}BWrDLu1rY~K=W4oCn5^an*YT12u+byDXZMUGKrK>o8oer9>0WjSFT`CH&gKSfqf zNGP-~ura*_I8NRJ`q2mW2O9w5GjH-du&rWiQ`^(y;Dyck)0UQ&7bQ{kNAs*)ljCg~ zIP&Nppzz&Dvb6~Zy3{*IWnx09@2Hw8kTU~(^Ld+xUAk`=k|OTNGn}^t6i?01mv?|# zPFX;5wU4p{2_pYttpNo9<&xrS_|2E@TwPnIl-^GfyG=)p$9Kxtl#lNZFZBh(5D2I^ zu6>m`IRI?KcSFvlkA5z>zZJqs!h#QbWKt`o^(>I533QOj=7(Arz&v7Qz~;kp190D$ zW_hO;C)PV2iRB_^=fnLr`4b2rFiS*gV~qv8-otPaA8h(Gu5uTAQB{^u%Uavva^%*D zqko6UJ%X#e!o7}?#jb)6#$0;X{!MxS%d4;O889={B%+|3?{EFut{@#{p$1-nClIc$ z1k77^bb@P-`vKOi7fN`TC`6q3M+v+Gd9SX#J1tm?pv2{Q@5_(8PyXnM+5vuGM;V`+ z5z2)bAoqLJKP3eZ1Q zR(R2P3%U@Fpd@6th%9SVb8~b3(i_j^LqoUw72)ICwnbKG%_XfaY-9Kjwaa(k$g#w{ zMk3qKr|V>7^LgU`a%*qZ_-t1UbKnX#9lWyV<_TFVZ2sx{7Ao_OLO#LJ3C+EU10+ktW&*tVO0ec_HSL?+KHW_` zMMd$a|(fWJmF6Ns;omah{KNCG??+IIs) zl?e$*T5EE!rY>3YQOz+8@psv+YG?Q@TD4b;&AWG9GY7xn^0G`BS$L}<`xNF&x3^B# zW^@gMLW_{J9xsza1jKEdYpsTQB!WPM$lC1R>cm_7Ab7-Ojit*~&+Jrlvh`V81l_mt zlHEEoMl0k!;BOofQTCj=>K4ac@pTuAHkC0saLWBZ!$k6`ppyPq0qUq-E~~K=WZI7t zXX4OqPI!Vf8EWbTTB>0@7!95Qv*e}Tc3FJ}<#0F^u8pN`gh5aJ17LQ6Rf@O<0S>%n z;HPIJrMpobWxKNR_unz6Zsae&@&jktdzwriIgbRepDpM%p8p-B-UZN#_+hZGe_Cu;O^V3-Stz32gc9(5F0R=YqQ5XoG zz(?(X5P7dbf?#u%y9FdU1NIuG`7ty5e3EU7EA6EjPjdcr92eVw&StGX6b>#mlYRa1 zxd=@x#TpUw(>`XhYk%nkjnJ5w4cn?iQnS+XN<$5vFagL@ z!^1K2?#s*?nb_8AGW!ENEZ@$;!lJ4(U8&)_{f}WFJZMyowGML($Tf%Yk2(PS*k^mX zTkDtY@~Pk~`HB)w=*)-=r0f{Lrsh;PJF&8J^l)Ql>Z1;TV()reX9Q4dpJ!}_Y&#@c zMgrhD8V3*bvPy-n;v9%fE z<5^-dRAUzcG_cs?z(OI$Eb-kHt>G2zw!lI~CfRPg%Wrk#X4+~cKh$~YeDpb59j;yT zxML(V?g3D@dVCj@i_)e_vvhXY=`>Z@$5wfrk@QnmdgtPv-sstI$3?MS{Sr7r94_mJ zz^BxbZ0?qTA_kik=nUq$^kQ)b<3BWLk1l85IWJK-+;zB&W`ex4qpB+Ai=xpW1i-co z!4R8A=J$K!0*c4V5$>I%>3-2S4_DpVDHR2O04744p^U@8;PcYfP+I1N%ER>y&s_?X zGXi>Nd;J|gK^D4Y%%n$8scl0W71UI%-_?>Bs|Z0g?5Oj7!eW-vE9#fn=e z*8ZBRT#o-acB7%Gr|3iE-QH=H+{q*>^xN0Ud28FJHJ$H1+0-1d29lqj0{fBQV*S>~ z`Yh^&IqYj1a*5z(ZlZ^@hd5+oL{=joP#({9(jE-Ej{Iqu*XRri7d{|7-rZ)JdLhUu zN>D+Qd&H|$HoOa)4Shf-9Hl=D3GJQk2O~9jvsF!{y~X)Pm#1X)2oMFwna<|q|MXk_ z$`%H9Dz4K*L6U>91%dmh6&q>-7P?3%xS(lQw40mlJD`MuAubhZOWu>u&7?h3hdmLe zwd!+FM<$x%J9%!l8|J5nA6%aKX+^&D-#2CMi4@8N_-8c8@p4te)cms!2bLHRFQ@yh zi)wuD4Te>pxBtnaza0Tv3yqL=bcI*U<=U|THj`lM9hPr@6L6&j28K?C16vDqonaNf zIF3E_&#wE`Md{PY4z)@P)%_1*f%5k_*HdZP6SFWo7T?JZEUl7X_-^t`x;&WgI6F~j zGZY=UEb&`>HCjCMv;lx0bHo`;hSgAqLf+kD?-MiKR+V!w?n9dhv_DKW1vxBED^_7~ z3S4a6DoI<#|+mG3@zyyN8@!W_@a8f&4l8Ff@2Hou2q|X+8hPK^jA30~gyYC#!=M;fE55QJME&Lk(?UP-q>7bb8f?sQ;lbL1W zKOt%>T-wnT=huhzSRQ3<3a?l?5#{AplKIUob*;kYc4&BnpAT~(-f_7s<)Q!49P!o{ zhxdvg`-)QYINz(5C)}4mj`BlyV80j6+G${U^)im4`rTbHx9 z7JCjowRfzKimq82Nv{VpQ2hob!z&p`Za)yILP+SQS{+8-&JeR$ybDi z*90VS!helatowMDPZAP)Hi3_t{doTM+qobc~ewUIKk zJPeZ3?_Ha+_<6?gQmq0wdw+k;a_pqGt+maUBx6Cje1 zju>J1Yi@41O`1Mdj?dzUqPFS5b0uP~(#;>Sju-j>|6-(~UHtA!?j1Nxl&S%%iAXZF&u-G5g9ALf`{{8BMBky*NgZrp_8x4&faHblfzAh%S}-SYU~nE9kt;A zOpE$EGAW_a2W3RM{a$}LTC#8kz=E7+>t}j>PMhUpU}*hsvScjo1uhe1g^L9|82Fi| zeaEt49rapq$1mKneBVzvrkIbqIMy&1?OAU5X*wh)qQ_r{S#0- zV0y#^%5$|uz=>IXB8d<7<2TYk^7#Hf-uZOXLcOl3NqIr_g_9$qHG2c2U_Q`hB$36|x8&#%cIv&z) zQPQu-S5Lqaf%ns2O?W;X)PC?ozuw2;s2f*fGr?jK!AleJ04g5jlL&Fa>E~OKW=+b? zeQq{*A`%FR+fcBkk7t2YYI79;cm^{O(y|awNbJw`kHNn1o`OYN^sAqrz0;`<|9Aqf z4MtaZI4c30*?!(6Kif$sZZrD6x<4#!^EG&*8P(16(Ck4?TYDEAnT(;PCLpgOZS-WD zlkrYaGTa#8FLHyy3K`_)ng)WSBBGa<46EBj2#C$Tu@%tcRn?_RmuUAx#OFWq{l7jA zru|c7QMd3yHC}g2(T#v;tA90dpWIWrKj#G97K=}lg zOuDJWb7e2TYFr@mfZX(FV-4Xz&~> zT^c#<-fhIkUf!(7H2za{{xfY%I6<&>Xz2Dxmw*mI(q))OP>E8W9 zY%_#@+(47q)e@foPK_Le0U}XnB^$A2u5{#%(d^lvn#tIqrk{1rCRwm)A#>`&u8W~Y zS(JJ?&mP4r zdxpm&1^n}#X)85g?bK688Fa6LDrT)JbXDkng==k84FO1RAe@mn@aYf{YEYXZUz$?6 z_f9?Yz1vX+o)p8JZn|u0_)=i{>FHHf`un&T1w`PGJTY8eToI@m!Qmd+j+jdBq(W6? zWFUdh3Z9b?{Gv?+zp&M_T3RPI&O=${L;fwK8mO>B-|mCgP!Y0cPZWvSb>h57K_ zbLl2OrlzKV<+E%Ylsfw@er;L)?{uw~us3RPvNUFL62w^T_xhB`cTIr>j@o#EL7W{IB6G=W+c zXy>Ls5WtG4(&*4qacrYcsh$U% zRLOr14-B;ZPP+K|23DoZ$3T*;(X=t^UsD0~of$p&^adIb=))xf0jJ#XAZ(CxP{2c0HhKf>h zuU16(8G2vv+d|$y+$6H-JsxllxCYtG9+`-$#aJ?Xv{jnX*)%EN6Vy?*-0!$h%gCqZ z+pz9TMpQ@7E&Q6X5aF^1PDicheAw_U(EX!UfFaQ7shYeb%T#5>U>G$e$`ABSa3V`-)W#juBr-BWcxTD}TgIi|jVpwL!h_YfHjQZZdeOYPK z3Puyb@$H@YRerl4I`14rhX{%QFPG$UvUuNv6=`B<>+oxx-^om*&6i={AT;>y;wwNUc z>(Vv|lokGWqtA0L<1Mt1Rg8CmpE--FOV7rE2*e7S$J|!_FM~hpSAK<=Lcj>ZUkPHq z`3RG%YS(}-2pFzlR+lYaBOMCGxe#qQ-z5S5n&jjW+Z~I2=L36bmYw(9>$Rr}%TJ*b zO$cP7FsRqw@V8%~B>il2XO#Or|Njck5w95IvbN`nJIz7!>+_a~;xeC(vLN978Qkr7 zd6tkwculaSpk9NCl{g42j%c7JXIKu7mp=bfgRPwl%lQrAwyT(_sh(puJ!M_xzht&j^zBQj=E)ENDW z%a)_eK%CTeH6!b)2G{^j97TQf{Cd(`Vg6$0TX0ePV~KTnZeP#FUk1_`&;|d7Q?vph zpcUW@6fgk+gSh_=X9({*2{%T8050b2u5JX*^f!}(ppj+=CU6wPMI#M|$<=`x6G5&6 zgSm%4gTmVL4tqEgltj=Ru21Cs_~$kkvgS-{&rP>A``I}`wR=Ih=g=w;mA>>i`PgHl zHB>Od5IpQ4X)Xz9hgIRgkI6!Lq-LXbVCvUn8qG3yK{icTz!9Y9T+D8^OWk@5Wb1NF z<-ddb%YVIZnT&EA2j#nTpXMdZX_D3c{pti45Uq?hjP->N@{bph~*i>`5p$YzK#c5s&=>>z-u zr*bw#4n1kl{6|5_wxfj4zEn>W5lmw9#ODRhf4%ztHkoA0GCLWjmba@9iKaJsD!!}E zF%EhF(V^x_Qd#bdGW%-Q<`R}Q*q@Z2bN1^UQb$=@u-YQCr&_BWuXq=i96WHq5PO5>L0balE+0rq1! z2rcg2p+J{Ir;oa3+u=hVUQ^7;UQLwNI~0$WC;ePrm~0!rSM^WH=eX82@H41D8XU_- znk4~vHwEdRzzrtF!GWvKI5_npW{r!cfQ!HB_Ijrw-Vn5NVV%`=4G&tsM&hYZSal+j zuo{D8!u=XW1I>5t)ke*1%Juw6#Ti;MzGjD&-@4VgR}*eZ#+*QDqjYyTIUOiA7M<%{ zgT1^NX4QM|mZR@xJmf*xN)N&B7xUU#m=QWtqz}jinRmP}3i`e?HLP4a;9c2^pkEDh zzj6u$o>0mMu=bNlpZ)_BwxQNQ->ILD=gfs3)H$^bGCMg203at z6r>4pa5%7LAh8C!TzI&P|CU~!8QWtXgAF$jxV>&6&Jqc!YCRgf^Qm?Yt2)Q#&pRwj zmZxI0Sx28oNt7W<`9tI_j;to|2nxPq=IkZgtml>u zzEEV=@2gv)7y!K$42-Vi8uc$hyPvSQ`EA!f*c2Z8T+%rfaTT_`6BGh3SYpo-=||rj z5>x&@DWA!eqy`o?pqt9u(KxI>VOy~!hKGCpeRJR6HT{1=Y;du6A4{qaK#6Kr;e_m6 z3J3}m{W_73ngh22`J?$hz&8V}0-$jehs(MsJxwOOz5iz<%C;EjQ~EZ@;6EkwkLG%_ z^Pq0cK4xm3u7opb!Kpn&J{W0ZEZsTy@w0D%tvp%F~@)( z({dMT%kuUuJ<|Gs4k>Hc>8gsOk7gL(OYeE_Zy7g zSNmC{vn6-khAeO0nQ}pWo+*~3pTa&_c-Rvoyb<~5o%D!`bK^R8!yg}w?Uf82jIVv% z(lgZU9RKA~wbBqu#Tcw^TtA_s#pPbsCRtzPp8vs35Q$EiZA3nx_p~R|)zJg7{7}L+ zY9WkF;u2biaR#uai5930!9+2v{9^O|?l9~%?o0tkJ@?Pk;|i67qeImE5a1H^RoAQD zl-?@KX0ERLri@WF?dg5SsQ9`Wmlf&^-iME8NkpSo?64ZP8;^bQ2Z8Wr!sEIoG%MGx zJ5->|4SD56cy$_rW#n>yFPf?VfQsnZyv+MR>=KIyl<u{<1I}j{V1{Q!DuGgERC=o7dEzcU29Lw71 z3%*ybvDp{BJ5Kp@PDU(EkN#AI`)S)k8bopC%d<-Z_j;m@`z%6D6s8_|9kCKz57rz5 zy;c3!h8)+MYKq#iNc#Ur)49hp-T!Z#ncCcynY!EUkWF)F9i);_jL^19XcG$6(t%JK zB8Sl&Du*?sax8=ikwYwWS2rS*W3|TZb_$si=Irpvfm1htH)njHy~ zZudi@cV6%_q>kho7Pz0DSYF<@U)!d8z{OG+7jz9Ct;j zjy#(w~G1Z473*V#$uNlvI{z4N*j$2Xsng+5tg@$5@(9Qd3Rq zLBG~Ca9}JP^-I#Tls;f|CE)sai6+4&$(8yoEs~uvlR|}9byml&$aU&jMk*W?Wd6M7 zSB8U~7K!+`5#=?6l5*IAnm=YlMu{99?|)kx|J#AIHUMq0de91`4~(_I>-)8~HOF_mq*)vyuaO?hz` zPS;tp!8=m7FnXrcFx*W&-YQyYY4(sa5w(zYbeDHuA*|%qio1xudOY zyEZZq4V&7?gfQI!b!(Ihz=$ ziT{^iZjMw3WFvyHYGB7B!3J~E$d%0)u9URGYXXvckY|Pu{1cDXNAvLd3Sr(Tk~xYH zp}Zx(&bHd4pMI?+jSTI;DTiWg(svl)Grof8IEy8(i}(?aTL)neC{X5TOW!>RhE8Mx zJMd4g&g&SWjf`C1%AvN?sEjCbq%N+@$BST2mCDamdUHziyk=vnbiBQu+f>TUFS~Ws zpClWFx+YL#s#+>zP1POWdp;8!mZ2t;7(Ni8vzZ+!sWKVFY*@RKDgO9J23Z&?YTG}? zHz^w1ZLz#+8FJ4oO+~9<_%400-%JX4_b#}UdOPB47a;`xKijy*T2vsml*3r z(h7FT>NusXJOW$27k-5dWoiCV>P>VcNI3@?M4V2)}`C6YOKebZY? zaB)J&5>ON@M&{v<`JcKAd+SQxeD5h=i`^MPd4?UeKS-fo}>Jcboldd z;PvY-_nSms*&M-^>n*GiDc!mG#OQD358}Pj+aB>EI_%>$MXCklEj-VtPq%i~VIM4% zt~bM?z$;NqdY*{49QWMreRJJ7QbC5pv)YFo$ap-WNmjSaax)LGA|rUGw~WNX3Y_*r zw=aXhQPx9iqoe3;Y`H#5Gw9LVLU@}s_&+I!Zro@l^(daTFRGEik?OgcgFrVN10Ur% z;oj+$+1`~34}n{ZE5YC2zejTP`t|D+?`mhkwOkwgyYI?n`~+7AT0G14iwI_R)Nb5Z zfaATp%5}I`DK}cvBE^*xW0wx3w=f+LBUSmm z&OJXdmXnj?6+ELUT1a8s^Z6vHjwcCjh@TsU1WNiu^+~l0$zH|>TzYCk0#=rTPIt`C zkLkaf3q&Y)xdvSieBoRX)O##vdU~vz=`iClX2pO}NaLF~2OSuvT%3W`8)BRqzbulk zg*KI?WY;xQeSyyP*K1B$4aeJ6by`s%s?3OS-Ny7^8hzxJ(wbv4J^J(NwmZE0Q#BJK ztK6cAqxPP4_I& z9hDOz)o%vzEHg)^?rByqj``qP?+matqq7C*oOX2TLd~|#eN`SKcI!qeC!V)6^y)s8 z9MSgb@;Q*MmgH&^-!tRUTi!l$ib=KA&*Z;2{E*z)J2&GKlG1$Hc<#!VbcCuQ`cy?4 zwe|hEiSN%PpLf3>7_4fA#v5rF?GV$sTdT#$fgMBz>$zJi2;}xAGmAge5u-TZ&+%>k ziOGtW3bsp7XElJVGsCX)?w8(Azxsj0J*b~*_04GA!*%~2%}Z52-O_WR_7vnqf7XWt zE{yagySxktRJE@Qi+Z(J5;85yhYc0YqLO-EOPa^hf7DLUPvy2&DZf6prq9xX{7-tu zV@)C~bh%ma?;q@GfW@qgw6wgBK7W0F$E#niwJl<+#J_zylI!&d1KuJNr$Tf?&x32e zyq2b>rt~!D9X`hCE!TP#9vNK|ixlCxJk`~nTs8BRW`iH$@vMd};|I<-wT#(54nI}V ze9+*6S(^>;5zhNM7YcL6Eboh`+gh6@pT#D5gnXW`>>B>=8Dcx~`MFUs(sDztiec(HoM%THk;LN&K(0P8r?ee7n~Ybh9|Sr)pcnD{L(nW7VwOwQ0j1Xe|zftbF7L%@t7kVHVK@5d)UMkXS zUskx4lZ0G)w}#Nt z!A)y6ZB!r0$QZH9C#}Ytwy&jkYD-#7HTp2(Fir5jBIH8FtKca0G$&@@)b;x`VWCF2 z1n&OY9%qAkXj z!B+Z~hTI7z9S7Z zG3&KM67`E_-A?ikEq$mpGPrP)P303GpdTsXx!j$NEPbL`n96_-b@mpJbp7C7R0eu55%0ZWJN#kvFR00+l9%#o(H7 zyK?kK1FF>toSWCL|C;X;weOBZS`#wZzK2kKc#aNoJ=Qb253>Q#dX;FUou*OnJFwCE z>gnMaIJb5 zjM-`WmeIY(Bcdp;k2+A!8=9{3&N(O%b9gFb82Y9cK<^1Mx`9x9r2Zfp{E>3^mF?>< z3H7tLxj$HlHNdN1N)YfHQ{?0N=lo%-Z{3$)-`?J|x1Dnnbqh1FTZV?CW zz~KEwyXV^LhtJ;gY%gAOC0*GZWoxKtW>XwPz(Y&gDtRI_tlVvd?;!z3(UCuT2@%_x z{BH4aX*b#e3zb z@^Yy!{)pm|{STr{cM17KhTiboWR|-raw2!sKyaMFWkK7UBH7|b3sEm(=Wyu}5ZJl+ zIxd@*@$7GQZsq3FsMAMc!nvMQd>`HveX%W<%8@b~IE_NtVCSfGJUS!%{>A3BC<63I zy|7tstms|bcI$SO90AS!p{VfTt8~xR&0y%;oB;^+9?4wDip$D{e*-{|bO#B$eI8un z{RI;W8DWj0C;ihzl`>Zf+z3wamTV3qK8Oq|;!m^qBwcG})(v4H6wV5d@|61f7I)q& zy8$=i%&Hp#=L(O59iJ5vT%&_#&d?9ko?8CVFM!|mF6+OIR4F~QALDkY__OLOew(f( z9?jvNYkB9y$YaP3Jh1>ojTj&4Y5YqQ%Iy$6EPZ^gH1Eppb&SgAjeM3CLE2ECgyAYr zyr3HD!~f{}$Hgj{Fu9Ig*J!?(pk2iC=_qggHJ6nD#;CyA*`ETh8mp3tYir8ta>vSB z4Gte1G8QcOtt^VGT3v!xp63iFL3U&H1d=pT^+jGsiJcCRy48Fb0Oup zL(&_iU3HIrDr=^`YB)09D2)W#F)!YA?ka2a5GFv3fd}!508y3Tr9rCISb&-C0`&bp z-9@&)r?F3RRF!#o!Fc#7KkJ5X+v+AC2e&l^A-Zm-rKyLla-K8rC{-1`b<_`2-#wqY zK)XW7C*it@Uq7lqrWsu-@i-9w`9W&X`H7wj=e<7%__kU_qM&5(C|P>&j}4rLqvrTq z7vB+nO4+@Ov1V*~m5f*)W@s5x9Bt!zHJ(Mu3>#DhB8fn(V%S&9SpARkx`!X;*6_qb z)=%QEXnje2^L>?J<*7oi-kK#*y7A>4SSk+P$f&bMH>50$_s=f41Rvl_ZJ@3;qqJSq z96>f*7ozjQ2>_=>|081j}|jfg0!8X&$~A!z_HgM)1h(Mntd2IbE2(_8M;&_jr)1>!f zzHbj7CT~;TsiLCaGJK@UNm4oSt907|Nrjs6f&DMdBp!lOMLJ1I208Z_nzgfoUT)i{ z?-zecR(c0%xUrJ7mK+l0X*R#kzGXOaqSkn2aiJSc_*a{dIT|;S9&%l>4TCAWpd~_c zt@XW=@VTKxOccnpFu^IiP;xqHW%=)YsAt)5|nxXphXWq5uU7#NMf zWN45p-c6!GVscA64zvfgr2pBES*JxW)4cU9Q-{Ja0mb+``=8}u}_mYB) zT`F>#rsqn=QzJM@V@$>mGOEz}vy<{1+cNX$@0qiI0POG)X?_5P}d&UyF1XFElk>a@v^Y%n)q5T{O3W!a;u?~1yRa1p~NPWhOxglxHuc&1wZwjIJWDat4+li za6CUdt+p_y;e#kp3PNuC8bf;7x8qSem2D$S95Im2FWnZu_)FeI3Jhtl;z9!M;F!@3 zrew6ADXOn^Jy)3!*e9(%U3%R?2HnwwsQ_d1YW$WMU{s2=F&pTJ11Di=W9C57 z8en4{d*=+TgAQrSPD-msuOc1@MBa+8ahV5sx^92@h{{>7O*L+1qp16cHejyNS8$Kc zQcTFW^@VG$5PyZ6RuG;rX@T8t&XJNfMWM7$GuEj#nEo;1$#ad)rS2TzkPe$72f5sg zP!_k1T=g?H8N*y>zCAVdrUq3@Q+mVE0J?((<@ML{cb5vVx|4y;hAAQ{MjeUR)aKOm z&7j+Li&N6islWpTGVa2?Q?R-?cI;SF$z|a^dzpfs3o)YxNj~EoEBuJATgwiMc=Gbl zMiX$oyumeHa_R}0)&73X@lRGxL0A@;txo5SS~cK0MHdZWgDU3mM>!c$kILZqyvf)= zk>C#dX%(1N{dI89(Kfw%Vrou=`opYv7Cplj<(8C z)}S+5pCsITXKre!>u6?3TOH*HYEQ`Ladb&%#EMwtwx%#vD|Q?4R{zFF=F9%b zsWKsM-QQvNtti7%JZp=GD(nwY4HpO*(gvJ^9K89uh%4}YjC@N{q(?QTHkdA3ARLL4 z7tp+Q4IwAk9AyOq(86agieXZ^Q~FIz1kQRL!P>%)jxC*HIl2p`=0^u7x15e9sQ>5Z z<-9cVCP$N_EYk?6v*j>MA`+%_tM4Wg-CnV!Ww6{I4g>g*?WR~gp6CEIMX(@v@y~X>6I=t(q@sCQ?zJ=OV;i_wBpE4^Li4Oo~T>EfqzB1xw zs|>N=qi#K=%Ao7-En0Z8#;ef{kGj)=MT`Ey`U@I?wNi+>8_zjzP6?Z& zAvCQsdxB^Fk?##*D$8ZP%|PGA7*lsrWzM3w8DO^C0B$}cPcGZtdB?(dL<7}19J4%h zb$PkpnaQ1UBP*d%3=MS}qbeDSS)hkdt2BbQE>Ed#$3J|xm@bu|r;r;+P1sle-I={> z_>&|R-sN<&HMelNbRl*9Wo!m%Z-yCWbI!x(aTX|)Db-e;ce)}F%RP>=f%^agL8SwP zz=oWGJ;o*Nze+Pd^1AltFP)H8U|t;7!kD3ou+DjlM6}6IoeaL&+nk)?koo$RdHIze z>EOW|Onms`N;U6&r9zjZZw~35VXV-@B=%&3Z#5mI@L_4+O)__ZT4#%&y7i z|9Idkv1Id#J%zSIkmWG%OE3=gX=L+4BM%Do}tj; ze4tLM>g2c>@)4Crv6+J5y$56ar6&2~Hb6sgQ_VE{ZM1ifmL5nH<)19bBIO@NMBBLQ zUHN>Tcdt`*_CHa-K)*Zgn2t-(oWCf1W^AHnWiH7j*WKqdpjZ})C2j_v>qlo`EjX54 zyEyqv{#YwakbnX`alFhUsluy=3oLKl3&6Rv09QK0sj%Ba2;ZcwqSVIzerD&sSZGt| z_j3t3P)F%pQ0u7;k_?H26|bfP{9l~%Trjm|N};)Yz?pq3YxeLICP%vS4BVoB&WsCT zB~*4#iSo~%xe%9!Qo|SzAqs*j5X%$IR11bxlE9iMMH{Q>?fP$z!u9HOmdE z&(QUwDW_W;nBOaeO-=2Fb_@l}7+o!{)QEUmj$+GX-<}B;#=rMC-hGvrC-+W8Cf5eo zZ=S58&isk*j6_(&>FN^`#Xd?*WoFi{x+COp7m2=ny(IEtjaWZ@;imZ|(TO5oYQ-T* zae&JXr{<;_JBgbH8=b>BPPT%Acs31%l7=n0H{99;izp&^>)2lzc$2>pp-h4X0SjNO zx4PEA09wIgT-=FB`@#X#F|;Fva#3<&Y~T2-#^XX#&Qs&hBJYZ>`M#yd-ldzTqL10DuD@1VLnMQ5wq@{ns4v>jx@-kTraupf(jE$O(OALXS=dSR91@G@F|EZe z+8mTB+h9Eh#AHhz%{CNcH31cMnS^WWc&%zW!o7i=qWWTvFnIrjyGwOdT>o|d${)Mss#i_vL%pPYQ zD%6w+BxS}gzb_QC*;gL)|J)TfGg9s{bp6HUSHH%uSB)pWtoA(IYa*H{+i@*+KoT)~T7l!SiU5^e&Agn=A(>8B~l70tC7)MXxU9T5@-h zac%JQuX_6DC${jprq?X@&BgVaXqg^oyesZ9yr*@aHP#Gy;Y1n-O&UZ9*_JMFNQ|%N)c>f zJ#~Px`toa@tve3MQQLqHQ zc%xE8mbck6>9sqRPUMRom+r8R%}f$~884n!Tb|jNUhRL1qtwyhG-&S3uu7!apa%*` zb2CD(lmi5rrI-K17bJ6Hh*f5qe^Z?nhh|Vzw zFFupy*N~EF3-P6*L~FfgaX#;LPZSX$fFgkht?4RIPDw!qx8!Jyl(X!6j;kP}~#3awoOky=4;%#eeSPmwWsHjpbcse?Dx?m2QYDji({# zh>L#7+$=tume*wWkwys+-31aRO?LK;SI9{QTP|&Rak_#WmPKBM<_%{Jb#J+6&oBP` ze=h*{M|Z*rDrH|DJa|<`&#F4VCYE|I%2YA8_aI4^sF%avDdZJSjK#3|@IYX^W|>0{w%P8yyOH%VpmZqaJ4QtCYWqmELsbWgyIE0R&jS*^HdK zzAs*E^*W#En?pN#){pcxTZqIwW{1+9%8S1=?S%=tdEXfU4id2aK&OiVD2_PJtMRy+a{LH2UPcXR@ezZJaGkla}VKOt`eiH%b7teed)G= ztGoL46SvXL$nx&rd({_)36d(AcQTlUjo5Qq)V!i0Ha zd33VuTa2~yE%iwVfg0XL{qu_)jA`9SI1k>~Q(-Y>U)d|%%_}PI%4Ir-{$V5e_Ax~W zGmQd9@zFLpy1Eu23fGWF8-%JAIhNa}i1PBoPzH+H2bEF7&K)>6cRUbor>~DBr80f6 z3RK&7{XPq`f$nSXXJop4M)j>nQn*k!yG@NsSnsEG^FMV0kTDbc`rt$ri<)!)@SB-Mw zrOg5%o)TX+YQRzGk zR}I~lg*o^ZH!0`S(&Q0h8Vq=q+0On!$+1Jg@9@jeLz}Oaqmnv(ZIOabsAQ2L>CygC ze9NUzk8c;zFK}z&xsFC5IbR^hHF-OG!(2Sr+v!&8IK_TzO`c!w2$7O%Zd#S0I2K0EyM>QUxuBc778JJ=H*# zf(F@ZLVlg&AwQSGB%5o!UedPpH8R(dgRxyabz*tP+^4BP0nn{zh6@|5^Xhl^ z0djWqOi5Fx3c#BeXTdP46>!1o2;N&q2kE&9M|cMMXA zd}yA+yxn*S!XMu}7sMkYm)_@fZ3R41so-OIC;uv~4MLA~IAZ-(DcBhXdkg)1gyjHf z^7L~qi{CbVh9^;-u&y_*H5ZdTQm*AP@{&q-tuKa{HjbSj}*@h#o z35QZ%-B&E>(ye=Gd}{dq*@=Z;q1LZ|z111zFo3lz-{kcdSoo4@9Xwhwfs02Oc3!uGs&T>L

YZRQ+G-vFVHiltS~JGzygciT{7io1$qW!6^- zecwM&Y%vID7BEe|7{f~s!kG)fWBrs)T>QBLX6)68r)+)XsNKPfF3(Vyq?ovqiPb zlSvbMvq%`Mz$Wa=7t!^|+ak9+7_!A+$U9Z)pgGj9VSdJo?H0kO>6DK~4#xANmB>6k z7eBf%>|{+$@(7%{uA2F_J^1Ma81v3I+Z3pI)i(vJ)Pp51NaFpHb-;LkVOa-}41sU% zW#P>AYUA@dFW*1ReEqK7EzalZy$qKAkGbSAS7n5{uOu=jDNY9%hhr*kW21r`;c`h) zXR0D9E@^z%n7>Q@!q1Xso7eS8Oa3N1uDz_hyx?fEzj}S8r!c){ZfMZ=)DHRoX$g?@ zj*a(|I-9E!&nJ69CGm9Mcug(6(=TLRR3A4H=bL;j+T*z=bse2u}1e;HuGty#yq&0#VzfNT^gL53A|xY<>I+8e$naBAM1&B z6pA&ebb0c*-%5ALq9A&#W%kF^;+yvNdf{^Eyyjp1u;5PF{nvb7q!)NGO>EIritNbH zp4%Ox#$C3^>@x+G7BUNJmjIakYw*II$G4TTCU0k<3}AR3XePe>#Y+c*A}h+( zmkm3Kg-m~zTGd01{2OI@qZ1)NEuuJdcw4pT*5{s>yF)_}pd@-f7;Ksb!DF%H=u}jf zt6TSVXxe-3d*9EMklKnF$GnHkLT4IJ_X5v(D>{d0zvWB;)Yf>Oj=p;$KS`8GbM43_ zjf=x$4M?b6-yowrUMBUJ)}U zsSr)j(laM=ayb+}ay9OieEJR6gkK}0&n=k~4FmF9i$fNlZf%khmW zzu;gd{^#n6)~Qg%;oor6A~@B2DbKfF{D)8y+P5a8yN4|ra}W6aSQF(Z-N znR>#F!C!T5x-IQjNvvvt?vP3%pt$mA8ugB7kvHuFpAgGAr@A%K#=_qH02r!FO#GU* z60~3+eV^}~ic-)8Sr@zct#h7jKC}YEXmNYazitTI&9~WF{9HIm0W9fnFmsX*hWy8| zat!zFAgVCT=<-{R)a*55`+(POu8d=b-NyZh6<9O0(T)%mG5EXK(3F#M`+9dsZMA<= zL@Bh}nc0!q= z{Q9gooD(GJ4zi52tQj==4(u?k*Cw&9O@$zg0R-R8ypo9nzcS}S~spnYHU z(vw*xYK*gFXe<~437PWtfmFW7Ni+swW?K#sNYl4$;?DEaqXzXJCVWeTwtJZL zzL4HrJif5qFS=5-V&fS)`th#1?>^)Mmsu}FO2~xcjGj|EYUwVpch+NEkBkCey>xu; zOF0ykZbj8NyJkb_IOZ*z{wNCf46AqR*^R8;$WWvne23Yq#klF}fTi(i{bgX5Bgr%EG4zyw(e`lN-^PxzVeO zb0fLB-y^R7S7=#j$KQv3bnF+Z9S<)V}57u-N`-=x-eFAOYXU9Bop;8;| zbaZi-S-7s-c150c(Haasg>Ge*plj(KF1C86VFOs@!|@qBqy}D#N|S};6d6X$XRWd} z3^3Rvy%bIqWmdmtey)`pzxeh9_XGf}`?A86yiXARuElRSUC>iLx3X-q;zz2l(aKYT z`rCaoK!8aaPSPC)sREirI*oU+h#3mpvP>Y~F?KUV1bF|`?#P5P^y4?)8}Oy{Zha9^ zyByvA_kIT81^;fAAXMB_o|m<&{-wyXK$yZPn-IV>pG_b7%3dn(&LuMv%3?bY44cFC ze0*VD)-GF*&3|>~Td+VWk}m1aEjGK-EjtAjaj#T5MZJNN<$N8J)s7w&9weQLjVF2H zY?h>Uai;ZJvdPNg_=5bgkmVVH{DjGS1NiZ^jNc1k&P<^=Vy4^!Qp(W^_6y64-c7kp zJ zH`65^N#kHQ%D3I}dP@fw_vXBnx_Q^|-eJpAkm5aAlvyX$Sloy8wt?*>vX5FS|{}z(x z=m>+KB#xR!?)C03qH_3?{&@xXU~il#Bq&hQvm}|Q140n)Q|NSuiJCWuewTx>FK3bnBLrPIJWB#`+VUllEc^w)#{>E zv1L66oY|30NMxA+oJOz=zVT^@Vka4O&iAVS$r7IUg9t2EufpUXfkx#v-5#0>X_6&Z zmunqw_IfS+3^dxbLs$VjOp!dWC3n^B9S-ylHjF*^!dcDzebTU2oU*7}-^)#KO071q zvYOtxw+=exnw!R-d@lF!OyYmp;m7#(tHNt#DBppR8Sx2(Oi^vf@=}G`zDtbqCRuNl zND;ytTaROecj4IO>YS7hbo}XTD<}gKbmKDJP!}b@8z#BjHG;Z8qNv%4yxy7`+yBk8 z?1T(eYT?DHB9IT{iX5nxVSqZ>?$ffRu#6vZx+sf}=u5ah>bWE@|Eu{3vvYQSWafFn zJ>Fm4aLk{C9!iUu6B8_c4cm({&4%p z-jKk65F_Iq1y#=FV|yzcHYc`E&P*;gSA^j1bNOr$X$#@j)W^NjU2Yam;~xvli<6lJ zIz81(y)YZxYW-%7H)(QX;_+-gI|ZMInF8=iYpYtVR`~tgdhdy{_r+DhY@Pb~#qs{$ z;5kpd?L0mxg=?|L8KgwT%FS6M2D9bom7x2~MR7%~jIAG#&)q!1TiJ8KSUjMw=E*IO zH;m21!oNTY4oE}B>x;xm;KscuL&bRL`N`6=tT_9`U3Y4X^0+{y9&Ujz)#}H6Pm17XJl5GXULKpxquc6j>U~)@WdU>S;t30BLL$~i zfmZOFyUag{Xx#F*fR2y@*tx=ZA?@&sru;IcBkEcT4bvsnUp>j#$~#ZwJg7%#1^mt! zA_7j)qlnx@+btL4v9bx)Tl8+(Gj5BhmtzP(9U*c5-D*XhHD5z*6w^Uv?#tsMaZFZ4 z*irRAshy5%HOY{5gf3Zg{1(T%)_NBwxWwxZ;=dlK{mOrQ`C69ujn5irv?x~B{6u^Q zMJ=e(^J$GU2m>#n$~9q6NZ=ErM+Sc#oHZvOY(QsSjV+E%gofd~r~Npg>v#nb$~+l* zX)ey#^UX=Z!=zF(ECJ)qw<(8`ljO!xy`grULi4HGneYq=8fEN6@;)YSoD;bd=VH z2TT-n&857>g*8AQ9V9{N#^?quv>fsC5F8w=khvcvMM$dmaE~K~*ZBlS}Fn#p#7PF(} znh5hptHUxLNlDMI96b8T_AqhlbN>Bw1@U=F+S2I53x7IXHkQXrD}t6FnufB`N_esq ztbFMlGQwOs9>rJ{kHOP7j94RlSLf|Ywb}9BaeovMl&;}XeWA+Mpr>S%jp^gWteZbr z4-OSE!{g;L-4ZGmV(A-D(uY2#inT+<(cV7%?^cPTKIq@mvc=&T`9|jXPq~revFS^_ z6ZTZC190ieXGPO4WFKl4-^@S?x`AlP&^!Ons8B@I2qiK*ez^t*h?FV(QV4syYiKqc zB*(L9zwvm`7N^-q#GBs{XRHEEcO3hHw;%6j2(78X^L`v;*VVj9x2yU?)q)G@DW?^~&CXl*vnm(^kN9R*=7gOU#ddNCf|*}Fqp%ZvCF~q4 zWf>g71`%<5cDETh9J;^tr47Oxl;`|{=YHv2&s>EfXoVpnQl!)S~>Zd#~;@g4L{7yxUue_xlbTL+G@nFxo`6!iAu+*K>OyNUPei(v*4;O}n` z>$C|lg9mGthXfPBvmK&EP>KMo15z*yvnWdYH5}a0)DB|4kq9cj?+eSju6{qn(^cyr zN*2a_1ujKN;#`IW7Go%%?XJp@wcF5^FJbEB*HQc^el9xQ;#GAi3rjuk%005{9mBl1 zENG=|DYL7x@&D$$5FD+`<|{G3PDr>Vb-66FI-L8oV?L~TlzCZyE4c)|m~l+rxT?czWPRR1S@R&{!Gg@BF zn4Wm0(mC{Bbgm5%wn)F1&26w)_mosy0;UksC4pe0q(^=g+A-&;SS*%aggvrZ|^||nCM)Sv@jO`@jDs6w~P5BI0LbVVSh|#zj+op=sgBj;iFzoW%4-A#^jhG$N^Lr{hRL9zL)Mge6_O#^> z@6ET|a?xOzF6ee#`@1h?;d*8Vt~%g%fw5b%@`sUi6~g9op2}ZDBdmu=l^lZ(C>^WW z%8*HACdBH(?%w{L*Vy#NK)<)A%>ra)RA)N#ud#}T?1P>f8x|cZY8hqa#QzKEA_eKY zuqs0|rvE}}ZdOssERzF)EfH$Jl4+9;952|`+Ok#^_=Vm5CR$_#^fBe!3ew3|g3O9_l5DD1a zKDSfYz;h?JU7GwL8d+tSDkfe8TIrNyO(jib}m-x~HhJK#!Fmd|Ec&KeiNC@$zfz@UY+5Cqc44)vw;W zW&DocF_YRt0~#n&Uz3?Kc2jPFx#yuGXZPvpU4X?g7Z|-Oo)^UFEL=S`{H?{%XTrU@ zCoaebOIFQHgROS`l0CIhsKTJU&RM8YbC0cxE>?4oo_muM2UTOK3`5HeS898!7QFof zR{EYVj7+y1#yXG9y@~AKXXn&gyKvbjWae|Lvq{j3NZ)0Afv;Qc|CexYo%Wb_(EQ@_ z){v!e*C7?h1*k`}S^g?vU>8G5Jl-}J?_Avlvo$Ddd?`L8F`Q38 zt~HnC!7cyMyO8Cv+Qshy)!Rc}sF{2p%icZo63}d!tY{_1*{bfP+4*D>m4(B%v^mIv z*R0j2xa*!7{?R77Q{6t&KDy_9b^LJ)4@Pp&Uf2#i**uHv|X+Nio~9G+Bh z1~?vDTPMEU-8uX{s~d4+yx#FF`3L>BG(b`bi^<@o>yhcuJkBXy_I3d98f7*yzz(X~>Z9 z*srvW&=|bB8CK68A#!4*a_Jk;asx3+k9|hVP>e!Py<2d;$Iz~GiR!SRqao1NOj%D$EN^`B*zFTm_ zZadUjtakCzmFO>VVCM-4srEs<<}+ zvbJF29QK@0!N>~(KqWr zCLkY2>+VQuIv$&JB;U9?P#tPuN}uYaRdh2~ST1O<4&*;s;ZkR%m`KD!Jeq{YE{8|3 zvFb?K*T)80Wl^+O$f(9+JbcEYb{`QU5{aREC}g~8)NMJ|*-zzHO?cZtp4r;ym#F_U zirGniY;K{rhtsq-t}H;0fpm@iNG-C+vp{H5yJ%5b)>y051Wjr6I^1h*MFdEHpW0r< zXEc8}sLS2gdP!9881vqH#H*|Yeyt4uhL4(k_}08#?lJxkWL1hJg?tu<_Zw!f<{}P- zesMfU3XOYB&Dj5uin9MeevAQRvf1pdhZi+Wu^58%V@><@zMG!X%wE4!96>2;H`G-p zo?avUJ9Xb{+9s`=ReF%R`dmUPCV2hXXc$`dBrLw1{KxfsJ*_)Q{y9RZm>qXLG(1wE?OhD>J z9EZQSY~p_4YW5wHlh(k)^p=ZM80?*!+n6phD8uElv=B5b-qb(STdvQPdL3hMX%5h} z>B}=-E0MKxaYq9RSWo5N>sECe#zu%Y>CyP4XI*AcM%G!~=ES^MP{t)L1fMH-zn1xz;yiTWXtb#NgF!rBbr7{Sc-Ct_GYrU&^;rV;u9l9U%*MxPaB`St0J( zk;KX*`z0arjYe#ks`Y!d!X8%#^!oX{cQ96QciN#0s!g}9W`epS=?+7b$}v~X#JcS# zewG|SqrGDLt@Gt@%P)_ff4+a#^+-8wqf7UxK<`m&F_c2!m323i^P7~R!ebB&L*fP&5N`uix#Pu^Ka zfyRuod1&=LHqn!<#+P%e?UgJPw2yF5z-Uf!lxM!Lyj9VCOtRqarv(TBYyb8UVhzx2 zJI7x1ih(!Sl+B7p!{jRZFZ@?=g^!9}gdV*o%jg!P@#@o(ZD`3-dGCbWKK^ggZ6?38 z%TQeZ^AG3XS2REm#&&Ksi0v_|AMMT*IHXz`O8+z`XRRl|X#n*1NlUWq zddxOi|7WxwWM~%L6tbZSf#GjPd6&C-kjS%xmxGprC|>|J)K|eO5|9p^Xn&di1&t$1 zEUO=Yf7LP(MI5n8_f~&-xAP-yU)Q`C@|4SdA=gKK=DRFcxd8Mu+&kco;UX5rmNKfktx-R)#RC6Ucny*_I{FGVX zFkL_4T(daTzjrwIE=$YJ;pqRoXpWdtD?9uMYc@WBd5gyy?iiU2T^(-)u)M2Jokf2! z>1zi~+f$*Dl7&E_skLxnYaE{*oSPGU-MayBc^YR5z)_XB=aD62txrLsC#XRxBhUZe zv&&~^K5p^YFmF%U>6rNzOs?>&rT!mHXCKe>{{MfQsZAGVr6Z{}O=)z&Nm60v;%q9R ztx%}sR08=4DPn0Zeox=q?RU-}=iF|m z(=ELBdOu%}=i_mIC_;ObIfqKTmA+v+ZQ_YUKhDw(<@O&l>Qse2wc;b*OTBkiP~m*g zW#qX75J}*4vQBCf`}@}ql}#c)edp@O8Xr9GIKw2zbuI}ECN?_a>B+UPzCLeyak+z`;~27e1{nFnjH} zh@B1%z2>_^w~T?8FIv#(x5}5w{(3AcL~?A76+woNrvpGkH~; zqWvL0v?39GyT%hkK`l4Ys5<1bw`v;~k9|mi4vEAKAJMwn8~@6WpdtlC0y{B%+m%b` z(0eWi(Jnddk4*-52oI@C(!c#>8+7S~4GWvC)o) zPtA@i2%WU`t#Fu#4Zoz1PlO-1C2I_SSUbA#)J848B5#&w*XyvfGewpSwN-sPA`N$= zP)_QDE8?B5e<<9u%gdal(12B#f6~_-#U1%7xuI)Fet|b=YmpUhi2~Kvc1UL z{f`b6=74=dGgJ8GTP9dVaV~=jJqH(B)iN+qGxG~cwy7vtnAR(cJw)I>JZ`r_7>KT%;u-V#IRV~PK|dUek=%u-MRbK z`vqzD+OEB4!@e|`TChK@BE}E}LgEScl#FG$>Zt+6inf(-%iOL|c}gYv#0$@1_rLzK z%hmP!$OH_MdyZ5jbl&jRbTSM}hIjywCW|X1*L)wOy7=m={;7Fe8} z`@ew?4`j@-H<`KWZudZDboR$Nlk69B_yk8hAF<2{NmDa*aWiE9ZM*S3hOJ95qP2c> zMmp%hh<_4udB7GYU>Q)EwtIFsl`vu!@_#r{O z{%SM_HoC6K&>jcjA^SYxHk#7um$J<15heek=Bb^ui}&ow`>N*Os=E;@)~_Z*0f%GN zMH;Y&s!UHiUm$Jjcq|kqyB4=4qA`pAdPS4xs%a!IC7=%$NUz`47-UnsfZXfc88KpKk2B_6x!LuGWfrCZlaK%3QaHn{{6e_ zOxwjTFaU}I)(hY)*?@gskX)weS?(n&r5<8zu!&-N4WF+%Qrxjbm!Wzbr<}?6iT-i- z>VrRJN2E$g0G*&zE&Z(gS~sh>IUo7#of&8LK<{_t9*a+>9}9~+3SmXXRyao{RR$d9 zLFvesi3!8i=C8-c$92C>OoXif$&bMV1A{QaGh=;do zihV_TlJL8bcU0xy1ii!?{wP8{Ujyjz4S&46!&5agu_L^j$iA&Xb8*fDP_-u~Og~I- z-7$$MGKY8WAqaf2b=e`__332Xu_8E3pALN zr-;s1uZjPlbMR!?jkdp(v3=jF6~pc|6y{Dg3;l}r5JzBLop1RWbLR< zbi8JzxyhbFr$yAN6L8kwPUa{``)O5&mzi}b)y^z!QL^IXIY+Kk3px% z4Lx&6?=;-WH|--3GOYVwZoJR4U$Um*_iVz=xd|rN!p_VA8~1L=)pRzN@=f77Et{LI zXkLYZHY&@!Rr{DFI$USUM@xhOkytc#Qs`v=a#_&W0zznPX;rc_dT@7Wg2e8%O6TTqt(Jdtvp>cCB@^hj_y)%|F zZkV!N!#eBznm)4Ju8uu;(a-^DE%e&VEcn_%-h3bgrc>_PvFYjA!9h#u8M$f({EicY zzX$s#S_0~hWOaD1wT|{?NWvqO)6;UBxQW3Qt?|<95sw|)&MT*9BO`vd$-b6OfRpa= zjj)I2jx#^R9X)a51;PP+a)~08ae}ti^;Mbgkpiy`HSruYM<#NnHpo zgu>)f|HaN24tqEM0+GFTBOp>p>Vws_(N(~Jfj73$$pP@~?j$~P;z7$`x|+Fd0SQm| zzII^97m$k+n;SA&uEHIcoU__JXC8eUY1kR2bYjLL2}Dg9>c$u(lh=Ht(_U!qi_A+t%FTHKy)f$Arlmd8Oo@IJ zTIc2cX!33X30lR0as(+Z=3H~nlXe6pfmryYM1OEywW9Dx(CmM*FPf_p!5`7^LO-Yb zJgMBIT%QrrB+Jhadss3%$eiEQy5_(mCj0knsa6Z1xYd+_*{I#xm;lUE`YYCA2h!-%vhDYr~zP0QaBF?wW=N!&kxgYsFIF?8r!D&2a+Tm9pZlAQCnNp70Ro6m?r;&vNtF!Vt!nI@Pf?{ z?78rmAe=1-ehet=;C}z&`Bw>VS?emwmz#BSnwEJvi9T`4m@B$#KH9>IYIZOA`*Oem zC1Tgun+^CSc{aq_tY8~GUW3eolHmtI@?>edQ`HBeUznZ?4VidB7+MHs z`R|Tse?IX7i%7rqJqPPLVo!U%>Vny7vIaMifIimxEfhyiylvjFyFGI$$$-|XaD0h^ zlVCmhemt#^s@HFO3a`CxLnmC|nI+||EIi%SS52wPp0Ars+)`q}d+92*0>>HuIIghx ziT9{V#cZxnZPu51TwiaiQNHWm%Vj5^--=;QIdnZ2BeklyYky?;Jh-ss;XY>!ciZ?h zLPs*9Fg>JubQktGH9pb(UfZqRUJxmZ0=Z|+ydNI=rm#DEZ@21t7`vDY-3u?UlNq#Y zxCZwIy^y|r9)lwPrVoSOg@7hB0_>AOyxeGNZ`b;LbLi ze*%-=4|*@U^wu$$^}11g zE1x}D@}lCXdhOhzN4tNon|pJA!G|v{9=@$zX$WP zQt~UdY{}v#zOqC5ww6GFL+{sNzeDzT`@Qi1uAcHh8o&hPx(sgw9>T@i$Y3B-LG;1} zcCx1W^9aa4%@HpMJpUz5NCBQ0yw%>GDxiN=6HcDSYELcVneEPRCapFOxLYZ(ic(vZ@9XvA$4 zLIV(aTG|GDz%3@QFD4R#x59Yjx@%=biRHG-7tyxDQ-XRU0^WAtdo{!blSb~p@?|^}Iv9(2 zMYy7GuRyYehUIVNlz7Tw+r&3^3^fgnzRj3KL*OM3sVrc%GK-zNxCO3m{it%o{1Cc>mLuDxUI*GX}wlX!KUDF&$oCi0(%-jbc zsLDOh2@CH_@8yy%1fE>9-u&um$H$`?gG!3{=A}lCnT^!A_|g-#<$99 zKNkUC_>?jCO;#AhjeQq~n&e0naBEVNdg-hgNWUPoH3KY({`pT8F%k>8r5Hm0!uUjv zuxm1)sYYT-I?==Ai-RiCJPU*$CevFKowL7Y0b|i61*3R4~B62muHwiYn?=1J{>wKKdb}PU~JS{$9 zat(5GY`-K+Roa$JQB2&MCvFBI&afy6UP*^3l#wuj|53s$D-W|O8t#(H#_#q;Rtgvz>A+M>>PYSQ z0<(_Q_n)C_e52=HXw^;sZ_5G8ELb4RDuQ}0A1SuLQq5%5UL~r}&G`oa=UO{E)JPmI zy&?4TN(L5?K0lyb@!WQ3t0Uvqr-aH;Rr)e|8DU{wl>bfBlrXQ9mQoXyNE-NuISSkE zSL8?YH(7K)<57@>Ta zx)p1DdI_;jO0>#vijiPs<1JO0{>!V6wY5 zFeFRVbPzb6*yjWWJY!TBU~!U@zjN3qbS@W*dxhX?_GO!qU|b|Eq-vhpwZlKjm4W!r zi{WM~&Um7gX0 zvQ&~jYU4E-o_4??)m1&VN-=7&IklrAs19OK1|PS(<m zm_d!B>cs!IyAK`ojF3hZeG zPMTD5RX&&ORzP1mlrHz$(EF!G^qr8dO%&k*ghs1kV1G0V67EmaTef4el`&qadO-a6 zuz+juc(fIsM|2krLEOZP8}9OEqE{UiSj~lKHcybmt65A z3Q5~9)_L&O`cqe_$=A3kt+>LoUG`V$B%V|MpLmWsht3d^9?!_*rV=W>E;**H2ull; z9*&aAN=@dZTk3ER%1-$w>BVKkuNMXjasg}!h{4@9J;h-DoCMclEA*{FLtoNAo^aC) z>aL0S-H_S|ClNhN`I&jl>!3FJZpSsus2|!ih~PpJSvmw{AepGS5vqR2G*<$m1p}F`kUjCm~T|{hb&5_pJM69?$H^iB1 z@G@}9q_22nfb%JX9v@77Sr$(q9$m^HsA@aVOL{pkQ{G<%0uU!Dcsqh;_tdHH3Gp-7 zEv3s!lRjwvOs5Fpn*foc{a3%F)3gH)v`O{3rkbQ|<;Eqp_FyLDR`(7T=GSFr4@?(t z-aqr=>`UZJ{@ztBRrD@}BZvA_Q_mn6%_LnwU1D+1ZM8>H`fSk{NbhmzSnP4_OW#jI zjuz`mM;0OMmfvRuGd&Nvz+wyWQFs0|kFxJOX@Fe^FhX4g5rd#_h4P#pD;s(0{-_Md zGD@gViN_xbEgE-}OuT3)B)Sr8*ARR8@K1X*lJeX(nZ<=^tR6e%@$1molXLkrgKh~c8M(U!c5m8N)<=OW#8x_326vapc@d5)x& zImI0{q~o~^w$ag}Np7AFi(h52S(golt03<^QKpb|gZ#COtM*3sMW&Q%SJe2gT;+B) z*{R;__LmXwdNXlqe`rn3Ltp91mM5f^*w~$QwSiX>grDgB)dLglWXc(snluZ(z&DEc z8ACNN;D9Vj_~HdWvF8`>@%3R)TVsD1hovC}yZh7@NSyRwZ1yxh?LdpqRTC$}>-N(o z8X!1r+4c`_zwxTwm?euW)QlcoFUmmCPAx{z@$hXyQ<0Q->{7~YKCKU*fc+<@X3tM0O3>h2RPGb2PtUFP^JqS#yU@(cjHsL;p5y{1hcVYAAn)t+jfiiG{29B#2wOWJ4#YC?*iPF22K;2+h)G(47Mh*`M0(MAi)&QqwW!j;3rd4NH^)oQJb5ko2#LV!Sw36~6<-TGQ!$g@1D{4APk&|15t!RtsNCEVSHsh(1g5-HNCAi03wA`@6v>BvUG4b>9n%G zjR-y48H+n*WvkrV%Y`F>F|o0F=CCUEgk3R;3jfCwu^Xe80MXd2@$i~38q+!H<<$|E6b~aH?Oi2I zz}&v+Q129|2lG>?Y-YaN2tlCyU&|D1oNcE6`=ckbeIj(Hm6c7F^M;AYnj5A<(y<;{ zxcFVBZ<14+AgFFOlHTsO&kUwwH=dsfN=JvASG+-ya;Jf==AaSq;@u|IzUvT8KV%^dQR4UpbU7grU_{5+~w?R6puzJv^v z6wj4A7(Cl(de=;>926ULhz# zT(F=OGLpU~v`2+b0f$%5XO?l+s~8w3<|y=>#8!5*8vB3GzGxVpXY__IvZRw}ZKplz z1^rLLR_4qzgn?1#;HL3oKjk*uJ{bj1qOxWpD}j2ciu?8Be|kO9Gjd(^_^Uhvc!cK0 zuI0}SmekpEjrdZUn%H4CUv6itWzcPlyUixD^{Fi4^xhw=tJ3Ro&`l0wmjl>E@%AL6 zS5fuuX6j+C>4M+U-aXb?w=V7!_tYH`NhRseMAwpjogTkwv85y{Gpo+MBShKvO#Q~= zB)^#nNhH&4Q1Mi-SCyYSJmO6XYTCmHl*|qWNA29S4iQ)(|C-;Sgtc(hk-#U155HRd z8mPnRDUXv(Nd-=5%kLg!Pg#0JK(o7#&z7~Zzn|K%a)a|ln_+c5Dc8;G4m`Z$XMa^& zaBYC3d!fzj&sc>jZn}ByOvQfLxO`&W_t}IV)B144sUp{h0e{2Io<87ut^N`ch%Zbb)5sb*3h2#K- z5WGB_M!KL6;~`eFS@!2jRV@P9osCM=@@+*BsLwOv5Y&%X(~awjBZk)#PX8I1MHbrO z%EiiQ9d_tZnkH}KX>!4uc2#(@0t21(G?^Hjl}of zQXz+{*Y_8(QJ8|OKr{JNgg(CP^;vPi9chcYR1q@!-*Cz7*PiJi(P)%-)qw(6+7Kt# zt@7e-c)HZa65^)vCH;Aq>@)5ws^m4yy0hc*mZ_4u2#dTt2R9I+=fQ?qd0fE1@`OpI zDSi>E>4Axfv4oykQA*xYNS(mv#Mh%Ee|%gl%a4o97)pnx?H^^C80mV1I7%{!lF$uT z`Vv1Z*qplPL{j#3(W#rJLjN97$FN`1c21Rd5ShXCOvzgV(;GZu1jKVYiW{p-s;Xr& z|J}3tBU7Q8{qeOy88`ipDBPGaHJMtsGb0OO`AMo@CYGSS)XaN!FNeemj{+^m^1e)fc!KO0UoK7#E`g8Z;PR^j@$)?*`^;Og8hlAN~k^7c9007V8*gzpP-{F^*@nfth;s>58qZ2YvO;>6o- zOI^92NmMf*RX~1!$_}Tv&1WZKsQ$#JLEXU>Y~%+&FY)0=s{|x;*;N8*p*cs$?z~TX zPX|UCE&x`H>ey{MZgwgxA7>_8oa-1bEuhdTP$r5J27meUZj%$kAUFQ!+0#aY8&c~$ z<7%#(HvA%#G^^JBowNQF`Je6n!)|TXta>aLU$47vVFa2PkJSbWCGNHw0foiksXCgp zUnc(0%3@?s{dHHfY&FdJ1|NTgT8D{8|3t)V!MYb_Ih$qipB?PUeFS#%^NZoQb1Q-W z+49Ldu1mKuvc_vGYTK22q=}xG@yV>XU-pTbm^XxtTL1n5BJAB$kuzFV%JdI8=%)7vE&ZwHhY&xJ6w^% z>3RN5S03iKgp2RdOVgbjgS!G#VXRLz{95*Kc%mi2WYOP>Rp)jV)hOHlL=Z8%i@pY@ z&0j`9g(Mk4h@|ow7SZqW@*Fgga`{M}zsA&|UT55LDl+j73)s{YdlYw`MWdN}ZoO~Q zU6hMD%8-{xJ-!M&aP(Qo4evNKd$lT@5&geEGPW_gu-a~z?tjpx%cU%bs=WyU3~Hx6 z!cJ}7WxDn$EdqsZy(b>Gji?j0vQadO(V{HBYGlB1-MhpULmb3TjllgR%X zgn3+zXp=U2u6|41%z7;{a}gr`{`y{9?NQIIT37F=y9TKy8-wa*Y-W{n0Uqtd_!tY> zh{AG%XU>3iNyRV-eMwGke#*$5*G-{5+uy?xNWL+5tYEx?nlVU|$W_IFU->N4_oc(y zWLf=1xN{&wCP$zS&9N=5ViZa=cFIJfhby4lhKr2aE}$D0H1?MUNvxqXt6fTqY*G}% z*(ni$l?zVe7>Sz(1US<%IgU6TeP2jf%bQukd#dh$>-R#uy?x*%3;h>Ls9{L3JfK7U z$PA%_%ocoVH81eMyrX%4{y0cr;T6ThBaWBYmCb=?S_L>BSvc^yB0%fmaMeSoZF*5< z0?XsVH)i#<&7w0Vr?~$d;>7fTEA@KmOj`&1a5o2KHs|=aO8X-NB2>|V`-I|%ZMh(-7aa=#~^w{m5Z|%%g$nHP(lwshN(x*HA4D{m3x#& zfRg+3p+dD{W#cP%y!85}?&1#k>UOv4axx*Jy;D}3UkVj*?R3wej^T8b;Gft?;p34I zh2-GZM<`(VV_F6C(&gQknX2$*_3ra!S2WT}U-a|ZfC|Z`bFq;-Gn&j-V0To`4E^3B zb=rG;51aP4xVd|>d$O{k|V8DHQ; z;^i)_EY#zv(>zt#T)z`^L;a!6gszZD(P-+hJh&1Gn%>vp{;GGKq&^p3E{XTBafgW( zjOeakU3`-~{poHw_(Uv?!2+1!rMHTh$p8uTk*FNGwOb{l(OuiQnp#tfsYoIMx7_8W-P*D?#X&l@$|0GPNF^~Y z=)WJ{?o+&~QoY+ME7LjuTz=V1Z+~Rxq{KQowE5}N{kv?uRlmo6gvO3fPdh^4^-EV@ zlYF0QuiBmOhDD=*1Io{1?e93uycm?_jH!@JMoOFV|7Uq2%er=2p=A?$J|e^5l~f>h zEl=9HsZp1q^GXoy`0p~;yCEW~b!_C+;MWErc{!G<%Lsl|WgYWl(j!BPkVV%V$?Az& zG7Eg8e$lOwkhQ+ma{!E;QqFx%^@+Y-+&DJYa&v9m?^-BBsqk5^K2$e1oR9LGOna}j&_dr^S$>=GEGICM&@NbZb85W1vmkjIU? ze_)UQdw}qHW7r=W%ik*wUW5nK%1RClmd*U4aIh+?1Du40FW^h9%OFaCjkVIR*^i%S z*%9++$$@?M_BzauOEJ#!iz0cpZPBMEI*$kt-Gp9)b6s)DVIS-3{b4(u_xpMrFmKPR zfAuPxt9B(grbYqZuZXFigAKRh9R(jed4U1T9uN|xBLU27Pt5N|`Bcc`eo191#&C zR}dL_>ls({M>@NT67lR^0fsaNC#ESg*^Z?qU8XIwu2U(*`?IWX%tPsGe-EU|EJj-u zE5s5zi*9ZF`BY6lU1ya4A0Gux|$5f$wQ@5wSeAFAX~ z)aNIUgG~#w(BbVff$vJ+*3Zg-CLkHxAQ<>d<3L`M9%`z1!AMF#CjRQz~#0Pn{3zWr1#t| z5uJ$6b=pO7<0;l(((J{OcU|FfK-4@;G_Q#`}=w=|{K;y_rx3bfd(FOHchjf^v zpq_LepAuh>krk27mq^Q@PX*ReEiLj$4TK@a#k?v_Z6(i=`Bv91J*3^8=u;B~ZO}hQ zVgiQ;L&brOW>traNG?Cra^55e-%g(Pn#|n(WEWlwk<3RCP>I`J7-Z(5t7@VZ4#(2o z<7lUr5a?|q-VJx81<%FM;dI}KhZQg3eY~tjBDk1Gv#_UW*_WOClPV#B@?mD~hsMc$ zDMvc*X7&UHC_@Yk7OH7*_Ju!L=ycz6{oV54Ze}fWb4#i?cXupb#L(4z^;Y+$%DZIR z9?97EAy@WTd~xN)i%T9GvKW`{S`nVnH$pdFXIJg z><5rRbal*Bc(?_Iw6NS^wZpahBKIrcY_x@%m1-_zOYoP`0A#+}40mpXIuenLvr{u= z8zT_fb~yM@2crr0OHM6<8moXT#^V47jcvAeRKRXM=S^F@OvGRQz6A<$w;l6Hm5j~) zSNc$u{)E}bL1m9kP7YiPi&c$xpEh(|YMaa-+XBUNm$9uV8e2d(LW_5bhaoafK&{GiA^? zeFn!tSrUKfa5%U5j!A^XJN6oGwyi8^B)I^(S)wk7D2Psh3K^;!&vI8UADW)&M@@`L z0oU%K2%2c3_PRbz(~p`M_*nHZ`qG5GX137})@}_C(ZO;dYJP!;LRFGn>_IX-N}eSm zjvGqv*&`x!mTKFvIWI-^cbd>d!OCohVm90E{^g5KxC4F`ee!oxvr~DL3M`?w8M$6N zUT>>Ded$5rW1M)?*1Q37#Rc{P$O@sMx5vJ(85ztYg{>?fO>Ram=zGG7u552uecvsI zqgasahIpLFUw?`ONLA#S+b5blu9QG=UvN~2>ic<{lUo|QLW*TApDp@1SEWvdOLVp# zKXW@*#}I?=72?#3ID9%Uk=0nbx$*a}UsS4lJy#F#Cr+Np-<{9`eJ&Ut(ZDu5mq=x? z2>yv6NF!+PtA|z)ZC})ly$h-Z;vDKQ`TL)XU8i_m@azIEQ#+u+Z1(2dOx)r2a@^L9 z0(cF z;ZW$#TW>8>{RS2C;JXQ#Y>sLDJGp!?6jzn6c~&Lz+Wh*H(rT-$y1JSUl_8Lqg1{k>z;|CG#Qs*q3pNPN>%CwwH{lQo!j3_pPDTw5&DNG z82=*?g?S|pWm-j)Q1b0yHSD%^xrTVt!s~Yn2Q;E_gCXHhQ?^c6q4rLnQ z6>d38L1*vo?h0>)6iR^POzTv%cWPMERB*&p1B{qYVg7-?Vt)_Hw$%Rm?_HXhp3y85 z-h)1?*bwUuT?iU&X>Oj^Ja3p*sT!3*DUTmEa)o4JQ+~*G&Cm+&8{KtB7&`A^(ql!G zGb^M8Zwj4QF$%y$w2v1^SxvS8SgI%=@EkKtv1rF zLEs11e3|gpiIt64=Ix@OBaz1OR)4?oyGqk{aFSSCxEelcmpQ$=C5ezf0m~U(9@M zp<@UMZ?d_OkIYF>jk%}^mud@F?VbOkA1>pyjba)^3rcwRBjF5B9tDZu4J>Sd;1FnR-h+?ynpd!56i&{>9g2-}l4A^WsGg zp2i}!5-dv^PkXo_P_~s;CB2Mz(WDMBYt5RqS!?X9$KmWN6nfU4XD)1$GH9w_KSRd{ z8po#wfDYX|_+z#=+uZkvcVsDG+1f5BrRn#9qo8x8qHqIeE^uBCRQvyTRfK-4}Rr(ucZTtt(4u~dW4Nx%JT z_nM!kT=$FXq$O`WrTjb@@hwn(aCwR6vhO+qDehLG3wcM`tlYw?mlEnfK{n>J83 z`FeGDLK6iJeL5yKI#beJGxwt*sBp#cvqIE?u3nDf+gXEcBdXl{oIV>Uj0m+x|w%k@%ANp2N+-f zXoOY}A>hOFxI2mFLuC&um=(=h`+H(ka`*P6-)HI9T^rq-^3%j=hf{te$ZGs^N=IvL?6mgxKZ|2$r(l0% z@2$bs1+gLe0oIrLFOKr^mjCW7XV~Tx+&Y@}@_8qf@qHH#2J};d=X5EuwA!&^~|N9ozL}Y9eHhw3_jQDlC~60;N1(y z(e14lnWDG?mZ$Hh>zt#j42aVP$N$Co`rG%D(9cpH-ROGIC=iJavsIG=)yk3y~#zC7{%Z(>`BlQD`2eK>n6nIyQ1Pb!?wrn)}uzHuV_P;jl4 zjZGb%=4rdw2t|$8dn62Iu@91=fjS^rFWdjfSH7furE8^1g7@I_t)!hdr1{iJ=JLwpQjw+i2|bb zEtuGB6B7x1eF~fHba}=>`gZx`wHche=n7Vc^yBFkB-{8_AxZ;>THMRi-HP8T+>NK8 zU0<>g5xk?0mO9C5l-67qB*h-brY4iBo#Ov4cm_-SU!@M~uM^2T1k(mb|24xHEG+oP zy+Uqi-~WbVe`QB}Zkj!tMSWh#A0yfKaro@}dL4O_H97{U{$}J2(^gTX6WhK@xYauh zt-<}GLtqR2qgD>5C!bm*DDbS`k<|nr_4mr!vL_*zaU5m zlxejYimvPXxx3ri%0`)f$}yvTe7y01Teuw=4uh#bV0%7xjm6fz9}G-J4(bvXMI>Ai z!Q~^ae@pG`5|^AEiCvn4qlx@6VOt=TLB+bbz`JK|IBsf7-1z8hK%yuB_bl+7$sT{e z{Z9W9c=-y*XAB!lKkX|mJ|m>mo1GP(#A&3%;J~)r^?ESW-(fOFQqc(MGU$Z64sa+~ zKkj;6-DOPcCoeUxcPYI3KIAIL@}yAI__wmQIi`o?k;3=}!O1L}&o&Ihjlk!s24ms( z_g*|9pfRD|od>HA93Pw^4Bm-Jo+rZ}xK#c9P!Fd2B&sRGvxAPPy%z%EeSVZM->*P; z85p!9fzNW$i7v0xpNN|+EapSVo>#i6Ht#uu=fz|Vm6|;55B4}>Y)$(AUVx5r;roCd zV~_n%)77Z!>ycuqw3NB0a7>5Fio=@~E4WV7ls6rtf!3dGs^g;m5V$5JB;?bj(oBQ{ zS>7!>lBy9M8+&@@`(UpYWK=qOqAlxxh0Xz#-(S5;{Vzr!F*gUZn!rcx?h&2NhFY0vZj4&p16 zRg@?BNtDW<(I#1on_Wf-QkItH=TWZ<`>6sU-H=>-)MU}KKuPC;eiB9`eG-=R&(5rl zFe&t}!G_;7MNb{$_CmpKnR-}#BvU5ZvM0zYWVdcohO5$f+U~+w)wwdaQ)RI{Vs$O7Td=VU&rx@cvZrplMXRpS?ogd zQ{&k&T+NZd5T+x>k20@WIfCGp!*aq_wKdk-)E!~XjnDl~&{AsA`t;ebC#MG9Nti)B*B=w1 zuA)^j`(L$MkIA@HCH7mXPsC6wj!az>>CnEv=P0f`&?NL-C1SU-L8n4?-M12-tNx1-%XxienLXVZgd%w8`(|f*qg9H5 z$-u0lnV$ewhmy|JRJv>VX6WykkpYsZkmAOKghs8kSzyhb+S_&Tf)i}ouj~01ke;Wv1X7XqyNLw=UzLwQBRUmk^l%G= zTQ8niaH6RI8RA?HpT>eAg=M}bipw$aO$^EUc_hWq*Yy@LKz)tcCDuZ+wjJ82graAh zU~mM}Ydla|HNZIa|aO<~8f$#{U{|`J$C{#{KZDy=&TM`6sPfH{}Kh6wB%w1D5eX1)13{JuK z-F!CJI}Z$(ZVB`If<~!a+VTQ8^|8BB49(qEhM5cNOVd+Y#rBLpIaDUd+6haR&@OELvza)w@SkfqSTCDS7^U ztem`*fv312yPkkwURrd2Qx}PJ2(EoSvkE5kE<+h&b%bhiCe^1?5rV|TnA_pkV0q0b z3bdb$X|jn&fYehc)O=f8x~rg-p`<^}ikr6eer@|}P^JZ1k-ldHkHz`ENawabOU)MK zH|OEt$|HYUuvuV`L$ZnQLmoIiTY;pxLa!ruz)`^H>whmNU>537IesfCZI4be7a38g zJgIL|u3A93xX|emJx|Qoy8M~3aICX-)ZDSz*@cWoLp_%|!p=zUM6KF|!LNU8h)-bs zUlA|WB|hM~_BTrmmW+XoU^cGrJqz-kI>^hqb}re%s6toG>vmxlg=wq z(}o4n0xo3RM%ezX1@uT^ zjmaLjCmTqY1>`pO&bl2l(4}?SIxaZQ+D3T(%lj@;naP!|u6itT0h)r=d^KkStl~r< z-4Mx3PvMMC7sF1NaQt64d(>W?#Ip59c!NV07WtV0yJW?$3faxAz->lzpcpvu4!(pA zl1?3#gTk5#K>$#-e7)qEQZBO=x3P1pR*khuEWmDgq;#}qG+7N;(O{Be+m#V8Mwo?$ zw)Rvc8lk4C`a4px@ut@i1p$+1JN!O*`F6@iL{~2^BtIvx&oLN?#}aj(Eg4vVBXTnmFF-QI zz+t&x7&zm*`*a%Jt7KKh1FhqwqkrTH9k0hIuuczLzup#;NIP$MnNK{PgxD)Y=8A3Y zi@AJy=RPxGv_>K!A<&jeNz~;!*|i2H3kbKvafk>%TrrTK$!ODhqLCw&{43tHJ#Ev` zxS>rUe=R=6S}r0&O#CGgoY5M{1$m_H_AiN~T(|cmTXiBHbDxN~_~4PY8y@R>S44Pu z&d=@W8Jso_@4q9<`ID;qdJ&v_ngr4z=tL$U5c@P-)QQ_){)a^n4w^|=0IWpyk??b# z=-#c4@~DgYFmh|^9v5g>VD8~*q`^!!c3Bs_m00B9x$L$Ovb95*xZUThv%m}!9gS>o z?^och{wz>t?~mNGFlSm0)WzU8yA z1RgR?kbCK;*8$B0VTX0WW5BFT?8Tlk#Ln{Ib+Hf6I8wl36~RRhHSOTNkz$Hxb1GwwGh0pxVgW%XYN;v?z(I!f-@u=m$c4HU5%wkAk@&*0whAG)yPhz*S_Ps zQlMT+)TYY_tE?uL7oTBdtI{tV+y)Jfhj{7jhOf7u^nW<)-wf9&#Gt~|QCPKWYyJ7k zBP`PeT~c3i+1ii#p`X_w@)IRScv%6}zXvHdi+8aTf^L)75ebY{0A1+mkHax zThZtU(r|6u`RbaQsiDG>D%HC*3qX8H`jNRL8sl9|k8E$Sbp`}tR0EUm> zYq@(uT!l*UgZR&SqB%H9y;Pw)8St3oDC@fFT2j#J`z9Y8dm{ozdBA8xYQPy~P5w6R zR()ZxM&*BpX#e6Wxi+pL|057ehDZcP0o{-XyXQ=S#6KKnv7E|tD3U5q!8KP9kqe|`-^4Wft8BG>G($(&=;o3O~4R9Z&b3YT-vf`#++-%gPv4r}LZEn1)W``dO9lid6w}e378N~9~ z=};TlLsty!=?x1`M1Hwe5yVA@mo!!-{SKXTZv^9Q1+C4!Y_tR-u)EWcDHA_iZrbej z@}3zhg(gtJ+w4QPCPd2zrJq&g@)7+j?=mblLF1=Ibt6mvv@ePi9Gq@!1 z6@uLh#F92*^-y4m%d+A!b4+Ea6^l@GyvB)9?fG3gN!-?X$M-Erg|HOO>YAqtr_f@a~w$wo?V{Mt-ur((PD`N zQqA)zmB!LsQW%wS9dJKY4=rSA7P9ftaQu^#_+vdMxq7~9CSyE0h)=;^?Q3#hT7aMj zSMDB#FR{k(wOIQ)wn8DVye|r9?>* zX5^U4U0X?^l9WQn-Ex0(R#cqUgi~${VMNHpLMI)n6$(kScAV03w~1KH&G+T|`+fg7 zkMqarl&$Uae!Z{Pbv>`r7{RBl-Gok|KO=5& zUiQ7A!mQ3LNx-WE7Y~MLV5#pye;8h;gU`FdNhE5)f$bHxVxo-W_#L)263rEa{N!iO zqPRRJO1(SJIvT{dd_7n4gySl72|D7+GEL+Iw^H-sVBOQnE~?je_&*MpnlAgaEs59} zK*tN!92{3EV<--sP9llzYU!7pj6Lj|7LUYX--6Zslb-4gEE~xyM(Gk0z^iV9b3q$# z;T<9s+IMWR!#Gk@=plK8eCp*Q;^}0x4V?SBsuZ^!yfP9!M5MTkNhF~_3WFSCAo#;c zLlWXDB}%e`%Ew?Aaz(I$8ZQl2ou=syig%CRXXoqL+~&MrYkOOn>Opo1-c&nc;@_UT z&A|jBwfn4tPU6%x=w0@$8kS;>FOsvu>H4=S=U2~5-U@E!NkmOiA#scNR>R^j(Qb%@ zUJZ2}V-o+dNll;Vf%IB8bb3GDF3;vyf6ng6lUQ%#Hvk0o*3YI5u*b^wR1ZtJTeG$F zHJ5S!43X}W7sUq2{Pkke_9tVvh?X5cqjP0yx1cGw%W_T98eP^2$E_O6)_$B{aWz0= z+}doe=jvE`uZP=xgQm9!I{>ZiYrju6_;PrCV&do*=m83(O*4`gB@u#v<8SN5-Arz%y=qG5m zw&IgC(1-qtcR-?OlyfYQj-JIM5$Z@CQoc?w31WI>J7a_u#a)pevtPPQRku8TVx8J1-iC%BG|ov0f-T1gIeG?&&8U^Ge;00B zm7{=kL>o9D0d`G9+y*BvICv2{z?>nU|HFko+~mv;y-jpDk5m7SXKnz+nX)JOFD6Hs zy63j0)p4mN@+iCht+_2rrRWe^*?_5lp)m0%EF{LCVF~&6W%*s#2v1#-v1G*IbQh+r z=4jzA#Qk_jMRW9RqMaAh0K!*cklDtY!8Hqwyvvkg&f(lM!@}7cZ!qmbKi2$%b-|zx zKGzS%;;^>AdYSI~H3mnWo-eK*cl!3n+6$||JXiVA|I7NklDP|CBa{WK$rDImwtC)=rb3Y?a2`sCT-t_VYZQ-Cn47$hdH zl&=B*Wv>XKD?mT~+jb#V2Y~$T^bYKrb60HDmlv79St#K+EkAb+otnZoo zT7KwdV_sf`d~`IYXn0B(>2;LPQ6@G9OwM=tj)Zmu7Gd1aJ?;kPe z*sFJ%$DgAgQ$}SNvqH~ScN;tj>}?Z^CEJ5ouFE4-nURyTUI&r=IqlTXF_RB{8k?is zd%K3BuSUiKsb>~$SbGs4x`bhZg>hb-OSqt^%2FW#;T&n3HTsg=h?{(3{qG9YbT{B{T$VB|+ zkfQIsuMg5fL*S^&Ba&g6weMdIr9SS%myu1Y3pcoQh8Bk?maxtUcJr&_nd=BBwhFCh zPxm4AJ#r>Lm*$K_Ro#ojAgCy zSwB*mq03@&s&f53`8q>mpX5h;vH|!rQrQ%<7)Hl9P}DI7Ko?G81+w4l@YAUguNF1U z@bVTe3&df0y_P#q#+=?*Et7`hcrIi${{NBT82Z%_EeJsq`a< zz-9z;2!_Zb`O-hIs}Q;x zb`1rRm1bGVul1?eTUq0j{R!}QfOApZE38qZD+R0Nr&TVDFHc`rKOm4v52Qgmv)%U+ z^j|0kGD_Xy`Ju;7;=^>y*yzL(Dyp2s^8?TZ-UVxeMo{l7VE~+mq`a`zFRTS{#EbT9 zp^g#KXXUB((g%kNf)#Ms;7*R)P z)Rx~kU>Js=n+F(a?)7e??-Q>{IfLOs)uGLVdY)my@q-8L2Y%S33-XFQ+aHI$uXplAyn9jd zQ2x)0#^-M{-9~qvN&$hD?vkhny6IYu{maqqTZh05X|!UcC#{%Z2c0JG9E-0GIgzQH ztM`?L%x}FQW`zC*m^;4mw)?_uOl*0Uc`=>+#}V8^$uatHHm_Th)8YGeleA)APM+T< zCiZ*hki@V6MnygBYKP~kP^5xI`a``h0;7RcMtsFDS4A`{qBRV78*U8;zPPm6Tmgep zdT&5rGXE-S9bJ#b-O5_B59DJLHCXxm21#}>4U9u=AEYrbZkNF!>T4x2&vp{Wh|*Lb zJF{J84gKTtfr+O<{dNcAbCE%WBhv2fc&2 zj;@DLB*r6^R;k||ryP1j+{oWWh`-+>%sAO#j&@ZAku=$66`%@VuAtiCnd?Z*sub3) zp=)}siAbs)u}ay+ua1nfQr)~f?HAHPC%ZM$%ju2zl#evMFC^oQi!Na~6Rk>6g%=u# zBCG`^kgTBk+OeU4sAb2*Vw<}{IH8J;msPjmNH!1#J!^3A3fks8D=Z~IQUu&FTLr@0 z1s%}}^s(M9tF+IL9ab8jOeDsyJX8$iq-)p(YmBOk3dKQ(DMi}^A{V~Wnnei;{%pwy zPBrhq1{7rv(dN-;;02H&)zVuuieSC3DuU zJOi8mPNhr^{hXUC2gl!?kOL0S6i(yFDmq3uBKb058F4_3Py)%Fb2t=Va%r=u3-wj> zYi=xSZwZ}(!xvgCClBt&U&{}6$>-GtEaoj1FS-uy*Y6!Ef}V{HT0VvH22W~7A7-Qh zmFAV{o1%M0P?0I-&qVJP32#>Y%m#YXBkA$@T`neZmD2r0g z81x0qKd$)lXuHo!(@Tvf*oKfvDd5C6y&9Z}5QLiwdq+N4W`g7AqCn-uc7eQ29}n#( zKD1*AL~=SE4BdjdTuU$(*15KDtlnT~eK|{ua8C%#kaj>TUgh)Zilw-<&oPewu?)^I zWIoee=-;!W1~e3rp=~67j9_@b{(U-hNVtwfa)JfZAj9o%1ZYVs^wPF-rQisNsWkoo zHx_e1X@Iz3u79RIVsBn%)o4<^5#J5mac*p}7(AjrhB>x*nS+zPVvtbt;-;_v!Fswl zetB=6(})`#Bc$#%$^d50((DMH_LijLk(;sO4HnvYxz^E_BcmgSB}XeaWmI(=urf15if`cGXE+5{>CZG^%yjWN z_9CEJFUPhx;~&K%>GUEdi{sJT75lN`NUAY2vZ|v#0QTS{#h-J6L0jVuiee4Sr@Eh=Elc|r`B1|y_=Do@^tov zG`e6=c(i%(ruE{FbwMH`A{uc^TDXDT8RGohCXpySY^R1-CYk9Z*$wW0GE^89UJM){ z6+4tp5|aoXiM}C@TMJ`vM8jxrV-HE{Jkk=epHJD_Cz~Itw)Bz_1y4(V9+iGx{E>B2 zd~|j3(k=)=jnFyuYnuk1@;ES!6S6>$Li)~+XY^O z_d>xoSF}p_x8mPW0PMzBEQ%8E@DG&%i!)3V@8(4_=QvuN*YJs$zqFd_m-1s+5-9Lv zTSrex79^)EH%hvfz?}PJ+0TZe%`(EI3sXT05mB+qqXNCTuf@$zEJXCw4pHpFk9qCb zDSq=}R@`FV!t8J2zEreNcbD(N^vF%>v-c7e*D@07AS2#RiHd#b>&dwquNB!I-~To0 z*&f3ito%?DF|5)^ELLIH*H(@j7Saq<{TI@7Q~PwU%FOzp;>nm)L?|OLUV-%Qijzy1 zKD)qu9N*Q*0aeB{PWRW^$05d zo`NfT?(OP0P|%i~s?LAjT313poqR2<=C*e3ro};7^OoP%6J5>0o=p(i;4E@Fb5sQV zaSLhMi&Hm0d)3vCHNJgwE`91+Si#gax_^X%?J?(@H=E_fi*B{}zs ziP>>!NS^#ehO6nbzNo$a3@qFD>UE^=+gvhZdVa5WXwo`i&Q}=MnqwBnN;p;hmQOiV z7kjs!RHy34i?%-Gn9E|E4DubJ?oR)FEjZvTEzYDM;3W~C@hY2RWpC?bGKP%7fE%W; zr7YAdG}Y$2Q*jUJZ^^Q+7O-hVQ_1BxCJgDP(@(xP3%Q>kKcO>Z1g$BnlfV8`ClwVe zyA6K((B&@XMDjj7iAhEiUU@J4YJ&mvz-o>6zy{ow{`fkUU4lX}^QjJ(@1e?G!$m33 zj{N>lM}x6lIhvaZg_q7=C*ukY%MO0K==fa2SN&0tMWJH}krjISg>5RhS0%zm2Hw+@ zox%wa)mITUbV`J)j!?fpz6%K#y=zDug@%XCGm5rL=zm@uf0}-FGybbW33^qq8gebu z7V3Xdj~$lN$e0JbZiv!s8GEd3a1v_j^0gkb(K)x3zA8{0=wW^-cSDq4p5It=Zk;NO%%4;Et5LS{@I$tMFMU^sMZtx3ROQ=UY&>x)2tRx8kyyYabQ*MKu`R4)Aj|Un# zk=C=pk)n-g!t(byP8qJkp+Z4&K2r)c*m(vRHeQ55)ME^o@yaA4-oyXIYAqL|4IY_e==E%2#s-Qv;k^OVlW!Ja4=EN;kk`D zac}oT#pS!`ZWg?sp)966sW(q_6Z$K+=TmSnl~Q02Y;X;`kGL%#gC&rd8mc(fI)oC8 zKhFuRFaN%@8F596gTkSRHoBp1`;my55K!sxW`uqiGHzp^Ghl`NzHxciJM3_4jFU@5 zSlnV}+>dXW%`+{d09;Ncc*K9Tr~Yz^z%R#Iq!=^%qT=&W=uJDA?!FF;qv?@#6=0h3 z+wh_5e7om`_W9^0=h+6&L(d93#FKk+v_)|j=wW%Hg@0#%v{-><93Xd+g&yCsqs3y` z&7-R99rh0kxG~{sD$opALXLOY&*&z`YdyxJ4z%1;BfmwgG_&8z3WWGjJ{7fweQ7fV zM(_nYB^=fqBvg|RwPKa@U6{Lek2tVq!54NLe{V;yFS(={;HfUO9XT&sB9GF;gIM*R zk&f|pw|9xuUSP3_T8UW2)8|mvA7j_tdM~*~gye{8mEo$IVlvu>luxh&13ZqBsC-R> zV0ZAb#EIYKTc$%mIbfgX8Gt5>$tyVp+Q!xTWhhF1;k`%Kp4^TyOS*&x;-k*haq(>w zEuX^g*H4^L|7zXH&5u;P~FxpM{EO_jX5AKez(fW%iZ*2nM+hV z$}SK&LFw|OQ;OBr7*O$ey|ESOs;>AYdU#4zzbGfqsNDw0t^4V<$2vkseEuEyM1X-Ivt~5UR+d8?x;5`Xt~D|_b0@N z_#V#1VV*rPc{gurQza7V@YxjKzPf<+($FU-a;F2zsvx-a`_fLA0KO1mOhnTiNbc_T zQ{*>PENvCuXO1lVdTQep+M@t>|Bxd+8vFkO$e8aj_+OXu+d6>WD(01yYv#mb|K^zc zv5oDA+S+b{B3RNjbP@14prtG6ruH+l zyhg4+4dHW4BGG0q+Y1c9ijf9Genakb%;x$N+n-gJ7f+V*(ktPSE-n^_c|sLb{Y61X z>}*W{?}&MZFHP6=vC1NcpdpwLrEVTLOn1#EZ(bNhCm6o|T19KF3mZm(h^9?g|E zY!7KCz6Nh-4_Q{uab2RpwE~u5*eMl({^62jyzEkAAcbK&od2x4!k@9#zd@Ys8x~w2 z;S|hZG+E>=o}D=v^scq0@AuX6(MGU1)>vCfd(G<_Wp`9uRj&U+x**c63ns)!6nr_8 zJv<7!-&b=CM_M_--3qs>?Nc?2*o9HkZxWVqh+5njXUfOA`5!YA&2vGE=J?Bh7&(@e zZ}^R#>e2ePdTG;|ex#>FlkaZ7(H;~lS@|FI`^ZFMLdH?|Vu46oo5)y&-B%Bo-=uRa(4?R0e%s zhl=0W5H-yR#_KF!1tPdphm-89y`u`@RaaQ^#TxrC@xarjChMc=noGn>uezXI?j5T) z=0h_BU%I5Cm=o>AyrfR`{;C>mZ)&0Yyu%r3%;mM)uj(Z~~+vfu}j+E4Q1hlsm zix=nkam!+5J!X89*IA@YQW@?nvPA2QXGT~G=|Fvz+DXAQd?d_|tJLd@VZ?D9%k>dS>TU$zxs&6O5%TSG-(Gq4 z{PRE+J)1<37=NR_e>F_anzUd;Hdq06_p5;9+ zGGU!$=)LJ%6(!y~87dTg&a;jS(_XQnwpHI$1tQe`LU#`{0GA%yB+)hz8!ZlGnr7^E zH}${mo9bH7dfv06xXVu_TYQYD_cHp=eHpA9PNl*vJmxR8665!X>6U)+4axLB**jk) zt=5KqQQ_s^W#f)*fP3YTsQS@t{C^s@W1)#hN_CCCjXJFudXt+ZanG2bKqcAYSY5MR zsO@FBFI(D9pX$r1%ed;)YJvj~q08Vsi)j6PmZCY9ZBTSl!Mt#Tr@wo9pJfm$>m&x{ z(6sPH`<>gG?~+PU%$HUF5-_0REj4SYu0}IE3Fpfk_HJ3h#x`i(!+6}oAfDet4dR*1 z&MS1&D9RS2@>8cmB{e(C>|ZrGZ+n~Ia7U$@c2C}v>Cux@cwuFc#eLrfwOv}>4tH$L z?n>Tk<#U4Z1^A4@MyVUw@c8w0^opX_i)NamjAaP?+xl=r|MWemF zQ)2(PedN1B{Y4%*`E%Zf07-~58lR6*rl!6N`O~<4#Nl$oMIU#c6LoK~z*l}Y6W!!h ziLIjETl;>a?$B&pUt-;+SMMkHb;%}UFYLGfz~xb|>k!yiPb${b49qP0g;@Qy*(Zfy zXY+u_ZhXk8;Jit$ZIb1xAKM=g;|b(7%>;>k+xd<3%(ert<7#KX5I~4xc8KOv{k6N!d8V_A1-aC1)lA2 zExH`<6jj1$A=`q+|S=dt?$wF=!x43res)pi!Q;J9s~QCu!`^bNEP)%svU|4G??7 ziWQAky%o2G{5%Z`I)ZoLuf5hs++)*n-e=yaT1nNFH{JSJ;~(1U-1O`87~d>NBuOLY zf6K=~=`tV;Z0qd6Cx@x$&=1%w-&tC7jpM2@(r!h}13a|Gwv4@my#pzwW zxViz+2v7BsEg%2LL<9#&Efz#vSQ zI_+SNrio1cn7%WGWq?Cu_a=Yj4KVVgdx(Io(>6*Oa*_&h0Q`W zPiOri!Q{+|0&ajnhB*@4z&pIj=;qDU+V8|2d3jQ4nY{{qcq&o|O~*X$PI~dwV;Jj< zMm}9XqW)+;ZKU=%4stS95tsWnRc3J?x`4wl1xD=`=i*3og{3gv)yxO(+!u;1mrF?T&hD|$cHB>nCVPfMWIRHtw}GU%Q5vY72=n=dtb z!9}Rra5zkmo6{@r`t|G5%*50UM_p7?)TAW3$>QM!mCou8OP0O>axuMD-HRr)#Ss}8Ad8} z8ZH!spQ)Ts1Qx1T< zS3`0<1r?B2UfkkIAA|UN1vjU=+K`Guqqq3+$vhpxM!F!Ifc|^SCbHc!tuW4O*s5 z$tIs;&c%*sIX7nR*Fa=F5%&MW3b|FLZ^XjfKZ_HiZh?o0jDG@m3yY(8Z$F=nyWC$1 z9B$cpvsGWOYN3;~UP7}Z3&mt^Kma)ZpaWe6(ll;Kg>LC7np4z0(3PQS>Si<6_wZ-J z4if26K-7h=V>jWL9uO|d>lS@HGsr6Gwu28y^z~soAqNbmN#7J#Gb%mxbqR2m_QDeJ z9>*<-#<8c{JSTu;9wHEb`7)^8JU@{1+vgbB+lkQyqqrYsnUzh^^RxWEoOINH$xj6dA!kUXGtdvV(WB$JQ2<_EsC)JZq3|FSSM8D^fa zPj&Q8w+4SmGS_Pz73+0*@$$n*f2KU5J(k6I)y)ICZ`m&>|B;7z;-J-z(~mv7HHlUP zB$HTJYcA;%a zu{4U8Y%0ib?ai@{U5pjfu{1X$5|gP8$W7R>-AN?VQb%~xtKvhPrBOkch+Ab?dW+*Ycx^i24?R^<`t|ts zJ~F+t@2ww2!I*lh&r-Z_Q6$NZ;?>HtJETt2Pv3lg5dKGK*~vWymlbMlQBjd(-Dn&h z<&`as{V_3f*1y~b5>&?a_O}ckY9T+loZ9$B+Pu)!mb99Rz&Haf!cZrmPE9>4KomE1 zBX54t*()eYI(AVL;x&a<2ZY41m-_pWV4PW$i{_7b*uFE#>I>OjBb@pY*7U?;{_Eh* z!-WoRU(!5UOI*`k(;dM`37<2LW^Kw~-+T-`R<=0*XQ4`I)~#Eb1@@_7$0Sb0nc$>k z_^;$87?Uu-D~*vUB={cV3ad$h3a{%QV2VK5JQTaF1Z>{pit_hpQBfskK4@;yxjo&s%STL z_EkM^|ASr-oG*aq1LYIf!uc^U7xS3L_UK0)rT5eSLS4K-V{E-qJ)+-2L*}^;H8X!GXN_jDEL<~C8e}gJcNw}k$i4Y@13UYrFL4vg;h7g47Ih5bWDa>tN@WN zGhX940rFk-+kMs-o!~aAyt49ROPpYmDXl*K@H()1l>y(lX|u!TZP!?=l%H=jh8qk` zTO&P0O%X>iAF(btwv z_0&hEcIDUM_`a==gn{z8QTu>KNqUPia%(o_sJSLTuISR6K4i&8)aXT zlG*~0HmK8R67{?yK(Da6Hmi(*?roT_Hvpx2&d3Si#Viyfm%%364uD&B_^S%=ix(Z) zj-T{wj8QZz>J!zi4mkVwCY-afQKyox`rc0)PSj~zTlxFgsSrRYh5EwyzcxJLG#qj} zm3O$s4>rKJX;)fCor+4t9TID+eQ(UmT0_^e?xoT8*xA{Vb$wD^pFguZb0ppI#l++6 zx{-7^^*Ig4N5*(EHtM+p-Q52~ojLSVkqB4GxY3MwgxYQ5%X_44pWvD0ASgw7+%HWm zDN!x8b3wZzQ7#Dz7<@3RrNn>rQkKi~Uh7_2D$(vM9*@D=IWTYedtiv6X=o)R3H22V zjW1vOG>SdyZt<(v#LWEq-RAe*i%#TRqJa`_^8}S_RhG|+e`y2I`WNs{y+9Fkhy=8& z+KyBf9+Rwr)L@NMb&)zc!RVKV$PO;-5@>wZ3NFb_Bc6_rcin31fq9*$gaT(k9O)$5 z{P9L$T_&r}7~;#%v~cb{q$xQdL!D88O>Otc$W?o8gF$5x@c=;uRngiidKZvj+W$Os zx(f7}JiE;|C^2c{dNybqgc|A~ zY>ilU7-d8P%1#AAeQt9FwJP1<?f_#BJpsGWu{hU! zv#PvU-Jyh&+n&p>)`Lk53QykA0B!K9Vf(Y}!x}z0aurW{sR#UEUcF(42RiyJ>$1v( zq_2`_uZ&s&2W_c8eJZ@eylw=7zD;r5lv`&~bPHzB`foK=eyCaFC!k`h{K_nOWA)Cp zaA3eVwm)JL7L6mzLK)9BR=CiC7Dzvq88(e-*Z}36Ex<78xbyl{O2WC0K2}xA>q8eh zDjapC*3nNa^4c``4fks-Iwv1+;>~3sH~vh;mp-#%*m z$jg_39&@a_&r+77&##8pU$a5IvUinb&XEab2^2VZW%yb?eAyHLYoe}(KzUPud~!0f zu5fB_(vNv*@~te$%PNjrvBC^79is>0ig%?TjMv`h9k;ms)zM1t(VDpE#UEcy%|Mr80el6a)Fr{RwWOvZ;G9I59LQ~C0z}A>73t7 zkgm@Gu;7vD(NMgbRcN~960p@(41I`bhtyj;c(xqnQh3n~J-H!~U8Ty)+uYf>TYY99 zsgHXa)&p}m&teZ8Lyjkpedzuu{v5K*f2E3Ysc+%3Gb!(!?Nhskc4eq%C&hRJFr3W+ z`>Hul9NuWPFM4i#;kU6c&$8;V5D^!K6K^ku`G&jwMtyfL)O36n1Wa>faz6J^U0=xb zMRm7Qm1X?>cBs9Fb7koI0rmJLX58r+rGPufiu;arol#QWU4b(q! zh5F6&JnLvc?=gbn%A+Z{-GtIYk}1SzvOGX0B2As?2F=(J`UK#!3v)7!9!R1Ou&}4v zBZS`ugXd@EW{czBCI)yx!+oGgz4c!FS!~^`9s6rq`>FtDA}jfDQc&|uNAnCn>{+Erevw|OE{EiMuXc;yAcgHW{59);rb>NU)Rd`>E8Iz}7X<_%| zcw3oR48}@@u<3qTlVo!K%T)E4WwGVbd_V0|S!^uM?WP?r)x_+`sH$L?W{9GvMl-z| zKg!SAJrehe?=?qFs{D#ukV`9~ZaUKKtv0(BQ{pvifdS638=DUG;N@5X(>_3y=6QNf z_y4>AwEd8pa^jy8PT%p6fD+a~I~Nff7uUoS$Tt2Ocq>?~ZT+Y5p8wU713F|KUd;<8 zrnx!8Gs4r-#tyiQ&rM4gfBtBoyVwDRvd4R0-1KR4;rxG)uW13wXy4IdaKoni(snk* zPCg3CB184rnlVU0B+&3D>!__J4I4_pUI2NYPAdTE)IB^N$ab_uG;AP5zZY6j-AtcU z3HAZhwmaS}9VQoh-FmMILAYn8F1^$h3S;K)Kr@vDqDhqepo0$Ygyt4Y< z(W8xhlO|DFfBJQ_%OOT^!9qZJY`WVD0K<1)r#?)?9Xw})Bhh-GXgv%%0hgzcRO;*o z_ldy=Z1T%~u{2I5;HEw1I*pwTI$kGf8+q#8o7WV1>Nd-~fw~Jv2}^=82Y~zjC+~<%V)_zt%Szs= zFHBs{WSyZQ1l;)_H{&$vFv|HJ%WJ&+dz1A#f|gssVmTWGyIX%GYwcsb(C`0CUzw1P zG{;h`Z6-kG32ItYLBG^*ikNh=Dl0T4$CDGgzEKa72Gr8-3OhiRHtLnEhdu_oEO>nC zeAGf7TE6RAA-2jbf7^f_>NW?-CgZw~9LH+;yg5(NrCh+ND|J^HBGk`sKt7}$PHhqoY4vn(B4mz)ppo}@Tl?$bqEGhJEa#aN7GcT zZX!~X!pw)cMH%;)^I+rs4;q&GsDt+@IH)vt#$R*0avz4Be3Ts&)pE!xupA*LYv9lC zFT1*%g>rE|P)q9>Z1^JqWDzUpVqZbHE`nwc@w_TANahJAWR?(!S}Jrwexl@aH2>P^ z1Cm*xza&bxutDbQnIo}GAaZ?fyZm(jFcNmW^$Cwx<|-96R{DlIuZB01E7&jGd zqia^QiqZ=9_fP3>xNe{H(nGU0*dB~*SHLVE)I*sP(?5V-P%AFK&b}R^RH;j#6kSzSKwa}*4sO>FfY)i?t$I94Vg?P;N#ZnEc;3YubwJY;6b&A z83Knb;nbSc?!+IUGo(>|o)@f4oI)m|i~OI;f2leo?t7zpWHpU}7On1z~fALnGNF#wYc`m4F7M(w@l^TPRt?Ll#Ksu2A2 zOC%C)T-CajJx+s$@a3tBc;U(0Qv6v%230BuZ)%Qvy6?|!D+Zo^j(+;4@dMW=r?hh< zO`urQazXvN%r0>t33Es)nx{MM@pSWeAqnw3^|c=cd;sVxnzk<-!?N;^+<$QYPv4x7 zV&kj$HC*a#J7^v2hKXUh13B+La}!gPrkn8^BL;dpGI@Kq0NDWF>VR>kk$Hl^USzfm4MZ!ii&v6MmRvECjB6*2}}b)WpxNK(H;I;&92~ zi8@C}bW27urG)g93cW4qckKrAOSNvxCuhF2EvIbbXV*MAuXG^>vU4h%rakpI8dDaW2X?*}DAig+s-k3}OEK^f+Biey{^pheAqzO~53-)E^Md z4D*fl7$gzN?`!-zXjhWCHR9}zV2n+<^*Vc=pSL)Aw0X7+{KRnj&;4_wYp8-W%7R=o@CsnF^uk<2$G#);Qf4LnP)?d!rkkFvp&8KAEP z^g#sj`X|e}k&H9P)~uro&}NJN)FJAWE%anEK@!J@ub2=^VZB@{j-KMrW*K&$2^e zz@gY1W+@Z~^p3Q&{P85k72Y}5(k|i9yub{uTK&SDc*#OnFN}-5&3f<~A6pw3%&7ab zDxV6Sf?W+C3_d|#eXcKt#3+VtKN-Uhc?R}(NA~@!PJ!s%cAuUmaEXR5l~KS1b|)lH z=wpbe9V7Z2BNc_q`o#@~;H!tH`sF##hceK3e4>2!s_TP2c21XKn5_yEJHgbaI6T(} zlXVFhSi~g2>5$CA9PH^1y1-r+t~?2qfC=%+{<3T)hYd$rV5J~d$X&8L2GwkMi6Bvn z*tFE8;SpK{p*yJ6WOxU-BQ(Qy+Cw_IA9CFg#5N~$AWZ5w6fTgBaKVlZ6(K`opt8Yi zG+POf><+0oNh+Q)X2@jTb6*G7fek0gtU2P2A47l5Av%eacWwFOAMv}LNA;E-(NwTw zIXwScG4a!)-G;Gm*foD|c+uA=oy>PjxRlm6|D(E=R=xd8&m_+{Ljlt%lw0xSFg(tG zsTDsK3xEXu^cSp2Pd8gxMPFWCJ2ol&GG+1>z$@^V4$`pq;&5^E>p0jsb0m(s7&^nrHDeGI#CR5nH-EO8~yBWn((G1S( zRT1<5{iD${F+ToFxLTwr&rWyrZ;uJzn!uZ!pA;K8kIYW=2`4AdulJQTdCJCSrx-!8 z^3@{4f=@>jsg0NCdm6H1XD7X_yhTPnwDh}Jhg50oQ*Nj%yT&xkr>=S|3zBFMM(Q}v zGraM!=J0w`4krpZ(y;7P78KhB2;bTqSET=ef_m6J2EeH#0pb@%x8#yc?(hRV``Ih>oaG<6hw;J9O67M$vxI(q2 z_Cqk|&)C5+iv7_EFC)|Y>D*LDoJnogd19#}eUMrd2mx)Fad5crFhWZh@+o%bnLO_9 zH{szyHQIGnsk1kFjSlZ$#fH?iNyhI0;AnwbATIKn;|mX~p|x;WXdad)3?0v-AV zP5jIGKuPe*?TCAW46WOni(a~giew*%U^18eEkN#$#33Ka>;Kh zuL(BPi#8;U^D4_$&b;{8m09T(dwJ33F^@C;jBu~YKr!46;~e}~2no2IoH4SSqeXx@ zk??6i&&TeQo&owE?$Plj(-n+Tw12RifY5Hfh$5{rcH$dlV zkw4d`JNqz|jKS7&o(1;$E`1+czJ#Sf`Hp|Y3ZQm=UG!TaiQ9IdOTIm> zNmldWvpAbGoVh+K#rt=hxs%~n1sw94!`uk|@74GOoKoL&%vK^2#9i}brE6ZFTj0TT&zzVU0mu7$|_Knz6 zDgW6rxibm1N<#-4h}F!|fP%*}K=!mvRA#UVuIDkD#4qtj#J4hm=flO z8Jj&NWF)is06Br^RxrAj=?g5CHRs+UP*c&du#AylFJ9A7Io3Pq=N-E+-*!{_*_u(8 zOknb`w>I43ITpEfXV=)DXKc;yS6aCr?Vs#;UvKK4vdrGG*@YPsH%wCBbyY)9(GK2;Z3?l5lpr!iHx2YfJ^6bh9xLnI%&xU2MsBs^4v8riW^W#k9AsI zTaMV76Oqa&2L%ENMWoxT3%0U8(c2YvtbK?tlV;Y}T4pgF^vT#nN{VVCCE55ir7$g- zaI&Q8&#?ww1Ju_=BLs}3!DxVs2CJzMbSCO>s)rLm z_ly`pNg*Qbpr=3fTa#jGb=LT=@n6x6pF#|a>pSdRuia&45yKUOGf}1qG!@I@9h|TB z`*oQw|4tsj5{kpdEPe;*+4kNQN#J8Jdq<<8b=V53#@949<8*LHNAkiEoYgBt!|~WP z3kgQezp{B)3i=+8j%NJ#bjT5?Z$C$kn&;-gf29rmC^IwbVUjxb!Il$07TI`Wdx#{= z0q*S}uz|zUZDa^lLJSdAWF7!vf;dvmZ8W^lqfll~50G;~;%m}Xg3V5=K`rOgXKq0I z%&&15pO1m^4-3-wy#fULiwH#f%)op7RV6~GCpO_B3w z1u`-;5+XT{z(!0TFQApO0GSkCRuko^(y~E?f(w(R*=qQJKT^Ce=YwOaud6tlUeq45 zJZ)G4ix=E8Nn_AOj04Q3oUfr)WxXJ*-a;vTS~@7E`$AIoj|Ez}o;18Moo#7v^X-%< zt-B<5)pk%v8hDU*(AW&2BKj4VKJI*Rp5?>M51m(wY1k>CzBT6>ioNw|?oWMhuvCb%$?O38|dQ~`G4q+6)Y_^1p>S9D7IgB(sP#%-S zNc=n2mR+|EBpu6Ce?L}IKEm#vii~JF5$Tk0CWW(Rhq#&Gt}F->ZTaO zPg3UJK94tmH8wXuR9Becdx+DzXQ_(j5w9&r_>*Dp9P$`>O%j!^K{97j3~ zHjt2lJ>!zi64KfrbhHIJ=2@=vz$cMhHW2z9WMA7YXa`>h2Hle@Oai4m=s@RxPBQJ z2=&MyqH5jpnxoC_5tYpV#1@!QH$KUN``V6HC>r?L$6p6pSoEHUKHVnDW9H%}%ed%; zn#Er?fT&$GtBQe4w z?AJC*8OCl!NSL5PoW6EW6Y#L3RVwEZ{WXtT~JRKZ{dSayek_dZMy$?wR2Nl>gvC|78Iq;_*}5Y);OEfbjgh3)$2YHSwf*gd zZCU?iGWk2#81vHR8S6pZbRQoKlc7W1)!ln&9RD?#uVffBFLe@|f58$ssJTKDrS5`O zCgJhRT{m3x-ep1g_E1J}vJ%&E(lQhFL!W;&n$lKNg%oUrQ02x&5J@?;H5T_%LWx%J-jH(M} z1XvYDMp!LgAH=^gueF7K$@Q>Zk@s&6`^e=t1-<$xR(aF+Iy)pUsskt#-}<5TU}kEh z(yzler8qOs%tmHD=5&37Ad8H{1(w@#c$K|dq1*<(h?3mp>BLTdJ|P97mTOcB9kF zO=lm^^#1>Uo5`kPR-Ghj(_G}}f|3wsBqNu{6dkD~QKsW+aycv)MQN@ohFpY63X!cS zI#eslMUG}9Az?zUuYOOT-|c(5oqtZ9wDaEHdp}=~=i~9XFN+lEpfgXv{!UgCgO9;B z^LM8XjVPxyW5shHzyOFz;;^>!I=V4cXK*Yj3%YnQ`Bgsri2njj-ypmaz;g7y3rhcC z1K*k|&u=X?;7L#zIrgcvWF*0@xMp0683!g4gfJ@4;*K8&V?o6PN}8uwyoPml5yrw^ z3A8vU27*Q7Wb zyhU6-M_}h^rF2eAmhi{z4D9V_?Cq(mPh_jS}qJA|)@5yKf8jC8n3uj*7l);jZj{&5ETl;ufmTthHYv{?J{!hI(U;eUVOUCEVf8cODp?VE(|wp*HBm$U*!g4oW-q_PND$eeh>R#RRy_@~9S7l<|xi|ND^LA8Y+Vy~huTuddgOXCq=Pi)zN@spI7 zC<=mbK5&x~jE(5G$OCk)0`d!CUluKcU-bK9@)G#$rJ}xM- zKwe!QWCI^6!vR4_(WO79Aivv65Q{ZOvmka;<;_3rKu=~SIk-31o_^$AHlo+~-=h<( z02df2YD?6|bhj%jKv@rk%l4~cZ$|$I%k47;Y|c-v_kR??jgsp#6^qo*%vdRF#{_o# zpuus|s?}h~ute(4qG8Bh_-Us;RH&kj(rfe;R%M4xl?xjE9sG2vgah&jl!+gC@zHU8W4U8T z0Phh$STFn2(9kVG)gC@l*1E85J~VuGM&JW^owYIYXIGhP#1yY?5qQ_bzBK?J-v-s^ z09kcPgPp43a~SuWPOK$e!-EfJ+r+}uexmF&@Uu;S9MbHLvtV&e1kJ)xOfeWoyACA1 zTa)uRw2*8FFlUi?>F#2JDgz*z1X9xi6t&abDeld}z=Q(W;X<9z+8Z?j2VUmLv{y^p z@O=)BMVhIR{F1e}S^cgsNj^G72q%NBo1|1wE1-vAYY5Wj8~ROAp;jBWp;Lk z_uRvjS@UDPX=8>jnrmrOi$f!agcp3;iVtn95uergeN>R065k_*EKZ{XP!v#=Z!B03iox6Gz~$RhF@mGUl7zyB&%E7fHpJH z*8J@6*^%jmUvs}lY=&AI{m@eRQ4FOWF9(yM?T7&dzqNyITFQ zFk(S+HB>_;ul%*FQEkNRGOwCnbYfpt`)dE{!c@dEAcfjmPRGrh6)iqLy|+cMl)d^P zJAD4z#B^uxZ@Ithoz$1q;#==HD1W^VHQHTc2v*TWDs*JF?)eTyQiW|N)iGZde*Z!r z0mD$(;zEXx(Gern4j~D?r#S-?6BDZ0b-@#JP>8S%>elW0a)3gYB8XU>a*+7) zN90z3WF7{>HRO)JS4g2RDmKn7@P=L(_~#``^$;leyi#@L`(6yc<|K!tsz~m3H)f^5 z(C=}$Ypz*zsEs4F8@1M9=wDLr8Gt#^D*@@uRm~=XLE3D0=g5FiF#dUJ-d}G@2iZd; zbj>PKB(AN!xkNxQQ^4fM6r(`=7Wrx6*Yb2jY^iK^_`;=S(O7`s3(BqE%I&$h#B;=x z055Yg$?7oi2)m_jwXJ0zPh;ey8Py%+LEW{!Q7YN?>j&QWYH!`b)kKL@69-$_x70?p z|MLR;BF&keg1Xaz?A4x#wDy!kgSM0c-=gmJv-vBIG`!?wiR;p&Fr)0RPsfEBG>=)s zknyasfSDGMj;XI$eDP z0SN=c9Uivi7L!fVly;FBnj)rcOBIII91$;U)1|5dClZhU5?94kcy<*|ijdbS*T@c= z>FRI0pnHi~uSFRB;4B#Gm{{@sU>x|K_*b^T-X zaRw0|Qv~%ba(Pj>bFb~5W;q6Am;Q0zHaJ`Rorw;{cFUxflN;P#H#2x1*^8iuqBJ zD`q6T>G7y{R`#ugNHZpbr0%JYFTTD9A$yF<3Oj@)7O=s23AN?sxlqYUvi|~oF}X;p zr!nOtim84oiHN7Ou3(WAt`#iTn9=gc^P77Z7C6-3oyu=Vvnr@x{hepSg43DN_cjyA zqbdQ0iMk;Udplp4DRQ4?yr#vSbxEV~RPjWF2{!~X;}!NOA9Jx|8(CZToxTj8$>663 zMwv$i-n~g@ENLGv-f|z-J@rY`EC-$fh(Z5t{k|_i7M41MiA~zvb7d>mA*V6N>Zte8 zWb9>oyH5Fy2J~byPMJh)ank+>tmdSurt+EE0x2}~#vhfCc_{}+G_ABQ{UlW0#s_BV z&0YIhRTSgL9US{)Byx;N-XslYrT4nY9I1~6k#Y1wG?D3RaR{#`7j=iuca?0t zRp=TzT?(6(T&zhuN&+!(3^9L9b#)IPE?`(j+ky*{noqmHoK)pa9x)5 zOI-JjF^yw}eDg}w7}tG`;h<#I7$-a=Y4S`r+q!-$d_T`FFY>3Q{OQo4^K89;j&eLw z1q^+~?>x78_P9Qxkc_wG0UU@QU}-B(DIQ^!KDGLIWf#;arkJW-d}C~ti-vL*=xayxcEHK$wyxN`bc_n151STV)Owr>#v!0#cM z(H6?3fO^IoQyTmE^K*~?sO*IKFU+qwhM_qbePydD-fV-p?5;KSopR0`TEi)};Skv0 zkCHu>*pQIpZIQxtWw51zBnm)IbMUd|6foGzQo#HOR2@jhkd&E4OKMoq32Wz$bQ2M*AaOOFKI}L;)?2U=8?oGb$wWGj zh67RMrUszwbm?#%lf?=Hyg@8->HKU5ru=EJ?HPdeE;MxI;;dZ1zu`VUN5wAEuHbW# z9W3Y8k}vCpL$OoAdc|+1ru@{`SkcbV6zE+-F(0g*%{-TQ?eShq>X_f@ed$n|1BP6e zpzv^5zi#1h1UkJhBw1)LsxrXM%z)hllY%DH?0ytkmqXQS=|~h@l=Gt4jdE`7av=S= zq;u@3z^UgYGlV->33diN92p0sfdqGW{54PeBf+Xy{$BTgaSrfTsV8x2e5mgFL&rPH z6Y^Q_MOlA^z_Ju7DeY44Emi@`21>oZK)}4#=8Qu?brqzdt6H+dR#1@Y<~q;@Gs}9P zFHTOKaN8h)6;7s~AQ1bE2C){`FxXdK4GTW(y%;(*Bkb&bzKsfB-A+{Lp|;&`AyGd6 z3hHAy_{G|N{PL{NnrSsY>3j)W?qcYy5O62qi(_p!wx$9$3-W6#qVbjHw*LMAL8GEA z$g&{QH^T&(&VLHSU082NA-D{t<|`k$L9d*%n}(a1_bqw87OS#3OqHoIvJnmNYZnav zBqOXR2OL%HsEuIq$R7O~+`m^@-*JzrcDfu$!OS18mW(!#vfV3Rbd_=`RL0g@1L}4zDy! z@p`h#KBTnlOrv*(Wr*5FMn??mR)b!wEw258Nd)lbs8hD|Nm8DH^A;W%B(No;Ap>J# z%rO%x6Z#%B%7NU+K`^7=6eVclxZBMoBnC4VYgd=jT@75TA{IR&{&DUkk)=~DK=q@V z2@_x#+ixaxhd~GEa>WUdqJfNKkwYSvLbiuQ`xf(!ED*pxz_`wzUO3_UVmWBqbvb?Y z=Z$@}nZl5vhNdBJ-sMjIN$a|afvwq7hJb}XlguzU1zC#O^1M$?NI!Xc%J}kA;gD5zjW}-RMP1z}iE5CUmTn`Xa1gWKV|>xj!*wWhwr^6j z3XwrGpx$L4yqOH(yQCOdtys$sEs>L_L57?h_1c7y^%yP-%PXhaTh zgS-j^6wD2RQcvaJ%{sRPyDh{mr|c*lo=yh%_%D9%tXKp4&0v9-4gj0-JLTSB!nVLO zbx-LN3Hj<4f|`mkkprl@cGR8$G4kPj?ZwaI(5h2v^=oN8RxGQ+I7undyc7w$hK4q0zpfE!AYia9hUrSSYyNrD?CxKJ&^Q?<2 zyr-RTeld}%Wl{jH~>|{06^Zre;pQ-}jAl&mJWOkyz3G&@R!NE(TQ!S~V z6-egx@jBjof*ns{6X*KoAW|j4EhQ(0hblGwbqu^aTV(6zfBrc>_en6`14eo!fXG?A zM4Ns;_R}VOGTEnY`42RFvtsYtlXgj|VRXEZ4)rbqS=>{gsM))r21l8&_;d>_ksy+l zsoEYU$x_2Too$%Au_6lx95g~&%l5}!7yWF}eS5bw+E)piY3B7>jfSdpbvlKCI%?%>xJOV$O$=+! ze`(hNNnD~+=QP)5#i;h{m`9cNiHZ^NW~Z0vHuRMs92aDk5h^~EVf&6 zsW|i1Hc3Y;4rjNSL^3~@k*}zeD=g^@6xEh_CCtuiat8kvNvAz~R3nMKZGtY=l9m5c zNOIDorZ&%a`5oAI%jPz1$ByQL^pU5$nklgqzi~||mh|;FKUix`M4ke`;9TobL^0IK>kfkEAB0wEM|H@4)4LWv`wr`QOop?!5L$ou9 z#7MwEi6LqeVKoB18|=$Y(?Y*i)XSXSd-U4 z{oI5i;>Xu`Lu!pGzF4sItymyqQm!dLMk6XMuv+IyTF;QL-bUd}DUVX0Sa4r%wJTy? zW~FI$CHwddU0GN&FyfL(iU%dhZz8u7fP%U=+HpX1XiarNiJ=vM=(}VPV+$hG{krymdw8Ig8UEvg3#zJx-8k;(P zEsmJRl(?3{g#ysov(9`yiU-u!V9My(dts@dxu} zD~JYB#Jo{yaz36Zr({ON*i(hO(L{&aC?W=ZyWU~q)iF1xH^*l~xxrU0<9s(oe__(2 zu&LPkL<^iYhD>_@QN+~OjDeP-h@%@MOIj7-uP2-%y~awzi;whWTEB!o^IbZi(lM{7 zn$qg~mPXHp1Y5*eY=~qi#l*#SePCm2RhhHQU)x{Dz4UaM)#d49;s{Hrt=BFGMT5U$ zlb(xoTx-QHHw~4=OmioGIrM~CkjSQZOt5n&2h{P(N0za_M@6mHSaEaD9|wCYj_*1d zMQTj~yC#i^M(o}|wBt0w@*|i_v`dFIrw&*fW`SFO1+DfP3xZ?}V=Y@h`#KH*rxzsj zhATyUP~92vnoY-pe9a@0@$ua8#UZ1GPdisijckqM=oq1a&y1bp#)A}Uq(Up?b&K7c zSV_M#pKsNEo4GvrAwy)CZR4ilSg;uUg2OKtgWiXSzyt80GoUg~9U{2k({LJR${&qt zZXV6x4|qBx26R|(0WWa3qPI4TH!gsO)XBk7s7W5F^@dYgV8rZC@7?4dP=bc8(2sxI z;&SAx70i_%vknLyy#rHmp!t5@pn994AecJ&hPeI~Tq*me%PAdSdVK8Iy+u96e!Va@r zWMqcYd&6db@_;_*M>TNSTLu*??Cg~p$(_%i{ap?Gi@kd7ATnkyPWxUB4T_hBG2w0d=@5_IalPPoJDG%WYX1YkMq4nwLH(obVkaNwCA8*vSrnyUtN={ICkKTl6?9@DKJ)0)>OXfC{23Tf*>HH5L&GueM8Hm3bdYWd0^Z6o^x}ZIbAkJRaPx z;zf)vLZ5vhyY`!fEqyaq?!)SJ4c+&cZ3|c&94K)Oo%eNV>YWot82#e{r-sP3;Uj5J zLr(9t*>^hhKX!KQe>*-a3n?>Ubu@w5a`oz5MAQ=7Xek;t%L7&3lnbgt$^|+J?XRWJ z7$>OV_n&v@*iUG0Xc+FRys5s0b;Xb!IV3X_CaPOl$l$jn(@CUK60XpzMf4u zIxM=9+^p}or{5Mj_-{d@WwXa6pq-C)BitN3b2gEBwo`?}2f-@G)i;I|R|3H7>0))q z?ikb@ad8dn{P61h)tSo?!5i)+srcVxDxl*DBs~mqI0sAKEVDmk^+ij>(zj6Vp}m*( zP@#!Y@36(5rxsRpRlgb6C8N5a<(a4V#Ia-?l7glqaOkA4W}_ux@BG*Ks~N*`GVY4) z_Lh4_8o72QM{?4pCkIOEmgZaR#Ub8@Yh-;WjpkCwnK zis>A?*9=B#Dj1}oTT-aV0#9tMxRV*Erv|1VZs=ISSrO@1iG^HEvS! z-TKXHHzoMcc!3w}0&Qh)XM7yaI-tjSW(mxWH6@(x`xHxK z{40AByCT)D!B?bDM3e$M^An75uheTa^P$ONRGpWRL3F&Ggwl*LvE6hqULKO2nx4}3 zUyNx`NJ&yg>>{dT&QMhqkfs1cH>>=Cx2Pu=N2&DTVb$ilRRk?AzP7$O*HK6$K`E92 z|0&)x744uqgepO$G-Q^tQ0eE|?_kQu|Js(sbm_%76rqtk>ZS&eqAgPL0Jx~>MzT&98aAfBd)ENlZV1@uEP9XBDp zJaM(1>?zN?Y|-h?0pG5a=$vNTdzAx4IDJZC8?dJ=$Wd|5ZwSICti4vM_B%KsDro68 z#O>%L>o}^fs>;ce1|F#u9!?}ZO=dY+?8#fLKi-TU!eE}J0Mx>wNFAM&&*A>niaBgH zw)jXzwn)jLE8hO|=(Z)^KI^;%|JoHn(?EwrfeBsDDfYmywcbW!hZRMo?=OvU%81(; zu)KZl7N_vt46(&wvn@ekvm29XEv^C(d6TwtXopt(WZTYgSXM=>+}L-a8i_>IP?Tb> zq%$MZ<&qdlS5#q2A={cW#M}|Oa3vOl|TD?42`y*Iw#aOD9H z6B7RG)#5^L4pjwv&#~>K%ASJZnJDSHhR=nya5r*BKYMuTheO`hy6^zPNtN4;jK7+cjF=i`ZX;w%*3 zAF4wUI9)mTwCqws;M$35lbxZH6UT%b)q|Rh&G8rn1?fL~W2j|yW#_U%0eJ9g$CH@d z#S}O-dv!A?Ro*4OHBR~)XF%;K9MXyj*dGr?&_l=Tg_*qI7pL2tI-%YB$ZfE^Y22W8 z^4&EocOOnO{*jf=KkCx>*!;2j;l=%B=|F^bvANjlXPv{#-T^Vb5^&dawo$@@gOw2E zDsOPY2PPPc&LrFhMJq?f&oNb=X3RNFKhSoV2+-JeD>CoEKm7#*>c((|vsp z3qHH_=7)$Dd;B;fo>sHmMe4!tC(LF4gS6*P3qj@=vCL zCJ0`Gvh>2HLd(Pq7{q>7?%kJVP+|wv7UvT(ws~m*d)SMAe02Wo?qUPEa4IY7Kz`$$ z#m}CyNayA*o#Aehn$@f!9iHmYbmEpE@xf&nni-w>_aKh+0@?}XV4U{X8+O+aDyrRx z&OgP5OmrzP9cqxokJA(X<>>MNi{S`qnF8yfWm8y)dJ>V4-Efu8mP*Z^l#qZtT5M&pu&X+|yi(SlLpr^|(Wxo-CkKW`d#c9Dy{BIlu1-fx^(OWiElEcFR$cw( zI_4Kh;~wBOKmzR5_I7&_v(?V55+-#g;0vFQMHkDzgub?)(-}JZTetaOA+g7yQ1>J@^2*82cG}Rh%FaKsSqu2QuvUkq z^*eUK$pS}d+drZ#xPCvtKT@!{+*`mOuMInFl$mWb-T;5#in;xOiz1eV)$A3o!C=*V z8r1@t?|xOJv-9=KT*qu~87EIy>;!}JNZ7F-cl>EY3z z6Z!!>-h=y;29I}XqJN9#AKxE)FJ^`S!x9K7RPj50;nUM6_PK_i(l%V0>wl6}*10Dh z$?~V;DJ@P^5^1a#Bzddwv6!zMrm(?wJId!@xKrZpEhf$FxOH4if z9x8W>FCHA{afr9~qvIIwtbR!oy5og@*#{_8&wr9#!zLtRQE2#R)FMqc{1M9(i^rnP z_CQCG~h8qJ5!AOh{N=8tn;F$mwV`>`x*TR7V6?H}eAdSE}sy-q?! zPIg_rx>(6h`$stB=>ifToSWx=MQ`2b`ofXm6_xixVRNadQG6Jymi8p+Jq?!+=isa? z1HoP!;w$%U218RrEjxP+MFt&^a6%QS?}58l&TZznlD1huwQb&DkJ_*p#_>&2IWe$B zG!t`B4OI|*QQ1n4{}rnz^xUH0CP#iL+Qzb`2I$bK1qD#lmTWDiY;Ld3XjX6=*2P>j z_hf1Q;of{V>35M-zQE+}M~V|cqGDIE=HTV?4iX3Gd)^?{+k@%RixnH|A*h|MT2(bV zu61E9xzq1Lu@YOFt#O0Q5*wj+ut<=`-7mj3c1FgFAKiab%pPKT^pz z9r`&TVn)e@90QI}1lv7Z_e6+%<%^p!i3%vrk7hakXz@p85M!XPA>#L~l^?;v)mWny zV1*S})L>+BAZ!BA6d-&I!j{~xK)4|g&s3&qR(UVZ_21%7O?LcwbOYsZ5#zsK-}-+0 zzj(imU=bxJZHG37OTh6m*ppuPXO7B~zZ;RmJ^Czhx}koE@UTDaH7S*;A_06N-ydrD z)_4L6`|%2TKWFgxMqQ?VG};15wA-XXVGz-M1`@A7=9rF}K9*9}`LP!84d7j{)<8qv zChJQ)!R+|6^=LH;^Q+Zu=_KZCJJvQU;;~`K0}O4SYx(%^9as$E96F8^2Qq9i;G~Ty zk8><};wUJr#N$l?0F8L}?iKc$T+}_&+CtQZKC_p^P#Xe@sfMU`Rn_@N!_E4g%LXDO z#>w@@8`dhd`>fG*6ttwWni@u?CCk9j5E#dd4(N&)mJjcbNzBqp>8~Hv}03${u4qa~xKQxqY16YW^|~BRBPJeyXWy zy=mza{}%ChED5Zf7&4ZiMl^@csdL~WHQf+4UX~+CS_&FY3tPSkQ5N*vO8n-#g!X z2%Nno$)ZO*D2d5nG}nZ53Jbt4SERWY@GHp~nrZxL2#D^7CnL!U(1O9u3TL+EwZZZ3 zedO;W{!{`y;5e0owb{}`Q-(v+!=47EZcfSX!-itEk}SB#zw|175}W z;&7l*aIhk>xm3lBU(mKsOY-OpdKLd8o&mXDF%q@J#i1m;$n)}`6-TP@x4uslD{uhIx z+Lo}o%K{j%JG}+%nm_Zlw!DH)%))?nv3AWEWU;*4Hs>B{>OIspH+0;+T8s`=yaLi9 z>2Af5zcVWi%qB($LhR=3%;t9Bygc>t=MHVOcLp~iW*jQqLw4J0w`;Bg_K#mP=gGrM zEj_a?8;MK>bG>5U_QOU;Oe6wCr#ve)N?Kox3o;kESq#7)R{Qik8kzhyzdm?zF?+h! zC3|M2w8b!JsuDm@zU&tt{+^lt>B*x_ac2*O1YY=|fZfgCP8v`ID+==p7Mk}!QI~x3 zZt_K|`mv2N3>|msZV5ZY(|2bReG_mW?cRN;8t)vL&W2*{jZ6Q!u6Q}@{$}Om<>dUC z4Uials$;5K3N_EGT|dnc9`3N|SuhR?OE^_g^tpbR954X>+wW~oP@vzbI9 zn{G}gGerKgqtf5SpoRagXT57pbM58ioGcrDMH}+F0f>lN`aV0edwfOb4UDkYRYv_z zrLEPK=Cui`R=-y4T=^Y+;dGl{@6bT-@INbE>8>j`R+nu&T;!tLa9|Q*Gs90dgY|OY{g=MJSHJ-v2%V zRUE`uEavu-<3A4K--p>~LB_{iPv{rur$hUL7)t{;F+n(-#iX01f)}P%oGCB<1_6+8 zCmd2e2Wj9j6th3=m9TrLWW3gZZ3AC%ssw*|Ik)dRC(}|<$Q|5_@v9B@^(iHJQa&6r zd^{mP`LbYTlGj6LHZM%5!f1(<66*Tnnbw=`nM)tQpf)2>2+Nt8Rgq2jQl3n9UF|5S z)%I>h;BG_qL^3F~b3ZfcmcDJJS~38chVvC?n#`S^8JpzQO|@l*&P*H%X~erzJ*mai z0(Ymi(XvOZfEw_E7O@hs>}g&VMtKW%IG|#_d2#hh)FJw)848cYp7uvKIcXzJys_e-}QUoL2t39I?Y@* zeQ|p4OF8j7!k3wF3rX)EQUC=Tcrdk#Gb3enoJqLn+08BcIxTTqHj|~#;Y3Jgl1Sy% zc09(m2jy#$dd?icTk%qVmvzFZ_b)dq4HD4<{WeAh>>Xs*%mdEx!ZxN!;U;si=b^wM zu2gq_GhF6xR@0+lBFgh(^;hsRfw4FqwkWg&&|E%44(NLduUntMn7K4KJ#x{LYllEw zOG4rH@QLi8AFoN&E+N6aAUZ)_t|;G*+_LT5ZWap3RR83E0&3YOq-D-OXdB@&*rKlM zIvv8{s!_a-+qSSf5V{z805T-WoI(65*WAUBKL<}aGEO&+Xp9CxvB|qn2G_3aipfy{ zT8ZOrF)Bn-zPZrzSTD8A=&waL<@TT3l$wOvcGKD~{d|HZ?;6}=cw=#7{FiQJC8EL+ z(rdAGo1ut&%+wT=-!mIR$~Vk58(Wn>vZQ(odg6(%w!duERdo(FECu_Goc8R=o0>D; z5fk6$1=T*c-Cdv=;h|+LERmq|awd!n57b2(m1Pf3@zA{dSv`}Xm1OT<24((nWAXkwZm!V-OErklzBG5qoy2fC9 zmfIy{LrsaG$}v&&`RBoSWsJkc-7G9=+tbSi8}FRiP1$eCRJhf|;byh0_Dyj!n=<&r zb(z_XKinPYdc)ssJM#6}{>k0e@ z$W}x#A6wR2iJv_|HCp|4Y{+}@!+5PUuw)3N|Neb!`H~1;0eQR{!8DGH)+a1w$tOX( z3<}L6d4g7MP>na;U>B+P;?9tc)E!e4k_C|>V`zCtZA@ZFMY4#m;~1cfp*FlR+PeR% zw0Zqr;~I>n>Gu$cNbE-<5Nn7eTN2X#K{Ec+PoN0_2sb7{`2_`e^ofGeY9Bvhws&=2 zD-8_e*(?340kwZ`)=YYwoP&r$*}en?8f{B8br?Lp<(!|NoMockj++qe)c+I*ZSf?! zhW?Sv9fN^A7tpdeQ3?a0Y`h6yM7;06p|kY1u%YiF^;uTS#v%&yWrc}B=|;3e!Kw8~ z1f2vvh*sPCh&=?nzoe4-MI8RjV|<{z?dvnGfKDJqA!!0--4~TVz!H{u5hF~LYacZwo^_Jmxq3!-$0l>5uvyODAr)BH z(q3b0FlYo5ax#JNrSg!Yt9l3Jz zj_+nh7}KB_=&M$zB|4||qS$@H#QZ;i1R0IH13G00ImiYQpSk7w?3?LR%H+AM!!hgo zwW`I)xhf8rb>@Ex(SNYzn#$jMAKi4YX!Lm0$9U<|Cz;j&)6~&U<0!xQkTt9pk3$`g zDqoM)L_L0o8lweTDCI!^5Y!bY%YFn(=hOgF_R@xbPIWR^IdCapJrF0mNmS3afHH(Q z9PKsipdajq0h{@zZgN=F$eiI%j-tnnwqmXhL9$c;M|PXl@3$;Vr0C+U!kk?9EpNG} zJKS}N5MhCIaf2`IfKVGae@xNX5^Tf;a!(Tq8V@T-1I#bB|C6Flq^<`U#-^U;tfv0H z#|mEE?{(WMyiRIY*F5T+4u0{dWNvi+MtX&2POwF3o41hj~jJ=Evuh+-8u$91{5h z$L*#^Sn z?X|c5r`&oT>e=ZQYJi@>MergToOs&kYv>B`>7l>>Z72`*myekE_ps~dDZSMnO*>x% zKM!9Fg7J(N)-^a%IO0AMFcL8HdH6vx}A9Q z3yK54b_fO99Po=4ygXFRA6S6mL7kUAbqiG-F&|sYQuRHhcGNU@kxq`OPq%BsKGAV^ znnQ=&)9r5U`p#6*ejruc6=bsc0TAVPtvy|Lb^2h)a#!|}pe16m?LLX+eacdizjOIl z|G<(q-a>54TdQbdQU)AGS+hu{3wn4Ry?Y?Kc|1V$gZW&XqBooYonJNg{f?n|)>(T` z#W|+#+i}y2D~_odIUktSoId@_H)e#Zn08iADCjmzZ0LKYa1*jt*`W)0MxmdyTZB_w zU>Q5_Gg@2#BjXeZYy#J%pKto+Cg=KFB7Tp!u3p$6vBlP+MB}I_-d2RZxW`RFhJSV& z6}%kG=b=GjJFE+Jt2=MO1J_A{d%&ZlumRyxy+_#8R$(-^RKeoN=e<)e^@Zl5cfrRV z`flrgtWkiA`!)EXe|4g>Zf?LR^sR6eta^&haEbp@riL#M`a0QpZ8$>{jP8AEVQE)l z0Y2cfTXRfsxSU2cpUFrmroXC?L{D+y>i3D4s{5IwQU_c>QnsGWtPy{>y)+-py<=)N zFlrX_L^IMq{Bi#@S+^By(YxcNw5oMOko=Q@j;Vn(M(D?(sfC|B26=XJ>EG$GQ>jdU zkva1FO%!(%E)a2>opV_*Q?W06DKs89Xv$NV#<9sZ2%Y>?;hbjc*zw;Uw{7F?AVWH((F>@1-L4)sfP%{<$O=JS8Bg;M zAGMNqM~%WKmX#l#wzbJ zS1=2Vl%;s=J6#JZDFgzV@6tjgWtHjOafIPf>_45uS(_fi0@|HG9>?KGaAVQy7F{|{ zru}ndhtbL_nH^aMHb}&tfBorX_yh(rty7rvcQBixp6{XyBLSL46ddBIJ}dE^wQ&u9 z>k<_ey7+-^{2Ci*9EVL|vg6U4?xha?|Z}nIvF8e9)Gq_<+ObpJ-9K@1;kUoFyd{RvUPL>t zXV*^bJ`YW~>~}7e+z_Y6OvN=5MVHek_`fJQ59L!Kn1a=eFUqMg7RNOfG4JX=6qz-I z06gLLN56HP?m=K>H+v5}+WbNK`vr|%Y?r>{DMa@VG)!FDp(N|vi^_yoF1ydnrin#; zd{boHs(8F(a{r{!$`xqkoy_hrT$HRcX#d+RpfI^hS0lA~RFuRh=!U_}iiAG9RdcjH zktMeFofw5I|I65cx&p=#7 z);t$WCJ|y7zMHW1d*iU8`b2DPA(92oInL;7TetUFqmW&BIB`WU6Y4zIDdVvOQqVCp z8u3c$HV-TNF+cvDB$@duD@p8J^wI(Ku77s%h}~*u;@(JNHV5XC8K$Pli?{b*7cpHx z08!tMrfPW-!0+cqN$Ox-leit{%Y-y0CrrTnW@AE1kT)+U|Pw6 zEJEI8mYJ@G<=3tTPvKzO{JAeU^OKEtggFn=`YYUCTs=b9$zg!IoDieN1cqfwPNe$S zd(_-gQ}&CnknrU>qVY>2W8q3s;idH{{-;uDTO?RXMcOf6bds@ZiCA)_Ie7yJeM;+& z=Q2j?U7*HsFSCfC1j%utk~?>x5pIYpN7$_|Xs5W4VU@}^G0uyz#_qzdxf%Dq7PD`~ z?EX{VmUX321@W`5@Aq5PYnT_0I;(vaLLG71q?gz&8#c%ALgVU58?qVG4dPwIk#oq%HSH`Y7 zdEkf$=C4)Dp7lAt=}^FlFMsLSP!pLZELCynN}MTIsIF+o%B*3%gO_Dv_t zPCyURpQdOzyfGS2hUP4*1X-K|jg_Nf_mcR$&}=2O#c<@DS{KD_L z6?#OP$bDN=KPJ+51FM!oo!=p}OM`C?36wXm+VP?t_#Sk` zF;PB`N4b=!*{Y5vipwoOGl!+-yp8J?URnDVE?U-JEfVCt6P@+&Pfb8`K3u$8aNiMYp) zrltjjKE0VnS10zTeR^AR!sj-zo7ypPMU1;Re{3gkoq@y%Q+#=I=SY!WmUV$3nC-W& zr#6gZ*8*!k@8yM(GE!V{&FPZHt*%Swo3s2lfECe$SrF*jO$~j%E@0)9i+0I1)K|1f zch`V<;l_1^G-Vy{M7ACWAg@KRTyG$}9awUpHucMzg6Q*wGF-0k^z(>_#WX$o3YZj9 zZ>(B$I|Gv84BOUF0hd$YsVFUpA8zP-oS+#(8}XvDL`8XC8aK2&9(7)76&}!eud82r z(_NRHr6?UM!W8A16+)romEa&TJrGU^)TaSiprdv-77-1GZe{OTZQIG-k^Km;zmi4^ zKlna7_g!+Wx++}gXqztoFrwFa_kZJHL!v_}QZ%;;#lApG!uDX$*PR_xb#iWU5%0>o zBi)TR@5#x3{Q8R%*C7#7>qlH4Ma-Xw5D%T7ruQJc=1->vxKR^f9ciZzUbO8`+sYj@ zN;#UGcd&0%FRAQK9W`wmJ|FmK1pGju^B0x}dDTPJKH&>ZMyt^+t6%-~Fc({fA2r$- zEzbGR%U_Yqf12dddWIWGBwpm+e!QMe7)4^@x|!Ch-ygNrj5KfDNIWk|5ZK4WGT6A&i;0{E2U!y|1&g?DX>Bc*G*)RR@CRb06Mam%{E&S%)-^zn8Nk{huQm z+7_3#UAtVtM_M;EoJ{}$a&Y3Gz!O_|H?;z_838oK@R_#k_M%qq6OE_W%guzI!VORT z9Td|Vv^b`O+e`h>DSpo{&fnk6iFv#G;hQt>5G=|_up~8?d?u+r?%*ZJkXDKb`zr>4GNu7 z7s|A_ia|^txPuCA;2&3gvKe3mjQ_D&BeN<(z>=h^aSl)KHpd0tEpv70t))`3mgiK{ zPxOA^Uvs&~#Nx<9>&UI~?@_k3s+Xr0T$d+yF8>&q^65FPqL(J0C(@v+^_d0sgiQ%c zT$dL*wf_K0Pf7UHW8HpdI!%rjTckhoq8O0_b_s)&eVuinbo-u zC+c3^`|vsPeRBXDMP?@b0bJz&cjH7*4o9|R&ABDif=nj-x%rR=d2J{qn2PlfF5hrn zQ9{UC#?&5BTs)R7PT`o*Rh`nr&o_G}X6Xdz3?0{M{JNLU;C{Gjm_3wvh6Qa1|Bi4C zLFrx;>eNs8FU%$Hr15mC1IA1p0HCntO-Pc9Dzk`jFCUiu4rm>!iQSqpK%ecm_%pk< z)fo<1Y3Vy7mVPZ=rGLMWfPf=4+jJw3@qHb_uh1bC4FMI;@e7g~*Er;%Lmn;uc()Cu zyh;yX3&u}l2>6|GBs34}D+fRsuJv%&?mx+B_z+)=Llb4`Y%^2KQWmiygMl8- zp=cZ@P&A_bp`CA78n3<)#Kctn{lm~f<99g0I`|O5R2g;9mXd;6A4RX=Rq{I2c_umg zZ`uhmNjP{wn_BAME&_zKsTG!tI=IF=K^CZCStKObr-w`_?Zl#PsG`ObFJ2=7*2gpD zCN7Y$&O+}~R1u{e)XtoDqLe_c#zDVaN@csKI4+Xtod1c~^HGr`TQZvOby=VhkG-vMiB&N5yTs{-B}}y-(g5e0#xV&3Jj=zokd25KZ7WtR+3Pu$L-2MNeg- zOzqt+k5oZO(HqkAZ~Oaq$(A>d1s%z{*#roN=%_VyOLXt7oQA`m_Q)w&~c*S!oT_;;C`Y+wCWaQpG!;5q`chzQHixg33}gp~r{{J*Mz zgrolrKGbYIVC%?j(qjG2WZXl=r4=A5M#Ko$To~8Vk1c5J(qmh1l1Swhk)p7H|Bt3~k7v67 z|G&*>>ni3@NztZ}c8OFH3p0{YPFW6xN>a)prwK7yQBiA{s~ig#CWk0u4yB^3D96ji zxFpu1NeDUpo<85(?~nexF1)w*`~7%5pO44=fgf*-K+5k1nJu5(XRE1OH-Xj4MCeS)|>>ruHdBNe}h6Asn?hWwJ z(UEIEBrg8JCTn64v6O$_NJu}sR-05X&StRTEzq{P%o2jekvccm=675Ot(;+JHz9Tg z8mf5IhD{FZ7%$96PkA>i%)pL1dOpiK6w#;+7CEK{V8+?F?2ozRX3ch&JI!93{Riv6 z|Fv)JW<4~Fna0w$!Cojhs{fqC2FkiqXxN66QOI}dP@+5w^Z1&`>(5QbV+_RGE2 zAly1mccK{%2YjuTQWq4;e-(4Vr6dU%+Yky8e1z8t&W9Kb@T_6Qon?O@P8u)I%`F;W zx`C=(Se>4O1+TA?oqVWTFod%#$nv##{kItefT63AF!&crT?$`+#8A*yjVAf>NLp|l z2@ky%@J|-bY^z!m4Kq9YW8J3{o(adtB{ooZB=R5VkO#YhZK`=FgCmhlXejK@;=* z8aS2huk66k%N2UnH`6j$5-*2EW$ryh`b&FHH=Wb@tk*<&NOvA3_o}b{)>vdqM(w8E zsAO5nS#O5<|I{IqM>bqbM6t1y@L$eN(Q~saX6>XO5yJscAOG0iwLhdyJWyH8t?>lQ z&FCehV{Ad)RSSb!~9|^v?cdd25*yXCI-E#@f{2A zGTaJIvY=mk;OX~tw4VtY@*V+RB;$UK!l%dxp@;nh+kSYN0tGH5zO zgD`8kR!|?82+kA1{uJFCdB@pYtH8RGO-e5+eJf5FW!#}{AQTdV{Z7m(HYpvKtE?{c zx~xCp)9KghUfKh`FIn0DQ>ht`$B0_|0%effgtZ4EI5e=0c&^hUS+)mlf9M0Ekw~S- z4bax))HXA=hCEEto&=-w=O~V4txyOZ1MZ*)=Yuh@vd^WQlotJ zzs%pb6;c(rTway0lnj3;z_3e+I$D{>YjOJyRTi6}&~f{FzX@p3K%5k}D|~N-0L5Le zPu!mY2ejiPscnVY{PuVKl{Tq#y;flb3fAFtLzU*hf4XPDNRYE>SZDb|Mf23}U_sRH zSE&sPzeKgIQ#Eeg^S^7|yRWzi|8?re#NPhZ5p>+dQIw&2P$D`7*Vs&4c6G zCHU;j*;XI{}9NZ@~XBl{5A=IzT z|6H>&n&VhH)~}s<(WLhMD?}j|>LbS>hrBYErCnjNB-*rUGg2|w>Y)n7GY)z%AB>fD z3`qDlG0-tlm+_>-K-f2R#m!04!4>xHLuI)^E~OPvz&OwM&ff$}(c>wuBkPmFaF^0e zxqY@rp(6u&Zg%-k+Q#uj-To!nT`QjQ&b$wI}u>eYC&#bl&7TcL3#P&+6xOy)*H z&HW&a$vfD_HMH%yJgJF)c2TkaxwWl)&stur*d#l6(5=$hvrzYOMt1ohVaGU+zRV2wt^BNN*vi*s zF=atgV5tA7lN)Q?qnG1MmU@L*z7^i+rtoHNJGZ<)#p{Y>Y&Ok{c6FXNxb#bZ#kPRi z+xwxlZ!9tjkox2MxEy=W&CZF=$Ge=HCb|lU{w=ds#mcniSCd22xW%9T(f1i>GdStY zBxU)8v_bh=<4{;7oA#tT5c(Sv@4)V2D;rArIa5S=|y)m(KK@@BgN z4yYRce(7CNkp{Cngo)<&{$ToV4b1sMDNDwHdOy05grg41b+Y{Hmut8-%^l87BA7gk zyBPLgNp;(C0j=~%gM~Zgr>vx>g_tMrUG3%mDI(&GO5(k~{0PQ93-;o%_svK z1dafArrjqN*}c2&56bh&8|HY8^#vIPg!A!=qJn-+*PQeWu?A3?hcE9O69rD*@N3%r zkXLjoIAC*#b5o7q%i@Kh;QmUGZrZ}2HS3=zJn`$B3_IDQN2P`2qjqHoJQHm4kLj^h zX=DAIC+~gh7w1NX)0%DWDhrmzd(FDSA|nY*h#l|0Wp($-rM}REs@kbV8wp=_Z#>m% zO&uJZT}agJaqa3NIVc|T zEl5=8jZw6=(^`X2Q`#NKT1-s;jazAzMjl{%e|W> zwFU*2q4J%txw%i!8(q)L9%)XyfBgJz41W)|X{6l#qrKl#A68bhQp1WMuIg@E^jyzy zey>fDz$i`p_?6AM9T_skd2eZtkch@Mf@PyAb&iybYD`qZ?t=740b_9&291gPC<3Um z3|>=U3gc{@rT+X>1L%3Oy>|`zOLia{NmO$j$^botbJA5KoJX6k2LoJVBISU2JY($; z)-M)?_6cx2`Sz^M7ve+Wh2mh`Dz}J&ra0nE=Uvh0jbMsPz@Nkn5n(uu&}A}Ma6kb6 zEFR7Rgfp+PW)kW?iMrSB3+xRDu6P6ou~^D9B^wDCGEpJdyL?-X}B|)FLvB z56FZch{J^~;2IYA>K{F1AS)&d`J4~DtG!WpoYFS>_ zVC-&@$@e;WZU-WX3>#;Uq@o{H82k9QB)oYE)Aa^)-^gHSB1<1fx{p@SU@cV{ODg1| z(59Gd)a~Hs7+vRQV1IAwnA-bJBpwR9f;1o?l0ktIohX*EEi_0;;jNIAPD12S^xK+D zKq#~A^tAi#2W&SV0n-?KeoO`y(q(9T?Jz<);kZ1wXw{hkALZvGjF-L)pS-M&Y&ja6 zn^Xk^m*K(X@BYza9egkA8t*m(@Pq@X^jPAdT}4(G2_ipJ%%_(12RQcsI*G)&#Senm z(_KgMVJ4?85*rBjL)8eKz9aBd!s*ren5D>i6ub2jzg^ej)Znba0uW&~XV^G&mzONm zw;80qsv$xuIVre}kjmdr>POR%LHmD05URc{Sn@cABLMGID<+sOa^494HSv%ifL`BM zr*^Mr@8Gdlv^ zy4l3*cU8Ojl?`E+O(2~Zd~P=NZkx$$;@vKBiTs#ovXGnEmP$mY`bNx*iYCji{``sf z+A1`;y5R?-MIcad1qe?#-NYg$Xpq6<@w^i9rw&~Wn~Xi%S2=x>Gx=-M;LGyza-eba z^6)mvjCxWA18UXj(Ict5gqNxxR5XLdEW~IR|L0<4RAl&874 zW-|#3>HjHhH{at^fPKd6>JYug-w*QZ8xVyU73Y&?=0%qWXKnI%K@zclAB(dmyA0ph z@{H6H4xDY_6u^B(0&U74kBNdyGj)W``NF~ZUrQ#x=R3x#QuF!Ce+-7r4?Eem^)1(a z5b~FQivkBmy(WBr?cYn<%cMX4DUBVe!vgd(E#v=)DdY`*O1 zpU-60QsYpcm2xp?CGau=pw$XFlmXBOvw8~TOFO9B+NpCV3`JlNGNZ47V4;4C>1!GP ztkx64-7T_W8?)`%?HN~F;ZqxK9kb4t4RYgz80AG|@pf}Yf@`b`xc)1PI*~&0o>?K^ ztFLi>=wS;%6Fq<1Wa;+GSoDgS@$(hI%IIv=Tu=0rQ}m+u@W`6CAMNWU!(JWrO!4fj z(RyLnvD#jIu3aip>LNdR z>%v?T;@j>Ue+A2v)eF#H$a_d4T!`IM;W+At#Ha7`k<0JyLfhbS8~`ySSAKddjoEOa z^{k#^xr1;NxfX2?hT|!d`M8G3mlv+i1ovJ8CFzsA@zLjqY_+vQ{)p|$VnhWU$HLZg zn9xXp!G^(Et$1)T#ba@_IknFFybOF{;3nW$xztMr!bDN;+ij=Pm2VL%`r4QZ-m59E zh7$nv5vS_j=+@Nx_Y?7AXMrx1x+upP7SPlNvhOHEd0&>;qRV5sYxZ1~T|h&^45^{r z2vPx(csS+yI6rgKu8^fd?MYjqV~W!T7`_Y=+$*iyZorXpd|^P~QGaz|UYOYdS8-#wRFS;=p%pgT1o!jkb#UOD_>O)r9H;_AO{Q z28AB7!XgdGY+Z|;`nPE0ws%hLZaFd-fk;fi7DY{8+ZF)WU&w(T2Mqv004(7peATM1 z?&q`%9(|^%6W|oh5|rA2FB~8rn(K(!mj6qnHAb z#TVQI=%KeNho*$R7=5CZJc|&oXEDnpSRwQ97@`&Im}W6dY>6XUS33Ec(gUocZ1W|cmY+JoV)>J<05jS611Bz%2~QTUyX(1Hnj~T zc!qTd1oM$Ha*}+dARE6l%_hAB=UJ|zjhuSXbYQfoXnP_O7E1xwzdc}aDsP#|LSSI}YW zj?H5X>^c31is=_*PH(=BqShQ!e_)f3$yvut?oyFAFXmpgQ8pTft6#m6H9)h9+?I0Z_LN>I>o1kK$|b0b*` z(^q~CF3#<^xt5Y_1^|f!N;zV7LV72HFLH7z#nLoIT^y{gn05>1Xd2uh(}N#C^f!h+elQeRmGjW zuJl4F7Re!CcNtej81=EY?$A&^51OK*o>_4Lek2Q!?qsA z;=2E&EtzE85KezBRr9EGPhLc~Ge@}(s&`QY{vM02?xWsr9F~osxYa;sVF0f}raqT{ zgl$YwlB7Tn*glLCrM7y@@Rh-&w=c2Jo_2hrR63r=uOgpMs&6ISyC(ON2(M-a1N;nn zHy<$M?(K`mn-A!2ee{Syy+)B~p{+YFzkxlM0$u0rMor}tC*W>ck7d54si|R*(w26V z3zqR{^u1t5HVpM!f?vE92t?B#{Cx#0Z|KpJZ7XvoOFwm%8?%<@J)k&CpW-Nkhixk} zKpg;T$v_`B;H8ud$)}>B7W+&|NOmcf1g+np(GUHCKe>8eJmuBAcbR! zc24m->vB9E9jxD8p#b?CpcUPOND~gOt6eo_l0jt!JK|n8Dp|U&J7vDA`{w6z#L}{8 z#Qgm)lOmB*!-8OCyr+Q#n6*lR=Vnm}(7T*%j^7KWw|lzyXnCpBQp2-?#872gt{taq zLCLT3wf()gxGq7LZ9{K#<^TvmG$0(PnAj$M#@6DWp#gpd*uuZAZlisx^lb!;V2uXE zKP(Kdghzgx-qZBzwrrD9h4%yECj!}W^vLh>@1kr7QAhL#=ab;|8q{iok`0j}*w0>_ zFpz}Yud`q3u6NvC5TY|wZ>i6hm`E0Y!M9kGJkJ{xu7=6Byj&Yd1o+ZcYK)3RtzZPVwc|6iCe#g9g zbwjkoXnhDov!PI>Zx%8uZrWKZbIrs6I{jPgn7)71_n!I)*Pg4t5MRaZP`T0pfNx`u z0pofV&x8GgJD>$- z=ybjAc7s_1ArPb6U_F0o6)I#ymoI`%whI*TIO(0Fb(KGU(J|b|A90{vO;Nu6v-W$# zN=8R%q@%y8j&1695X19HJs=1p>&M%KOEXg=wI8PTSG5{f&<(dDX;NX=fXId&_~R{& zvGo8NEf={)md0^~b)f65x2wk#Rjx#yqvmP`BV;pQ6PIySywVrFXcDt+X*y*saUgjD z{9z*xbGhbukmZ0hgA3>Qyv>Ca2-R=SvD!6ebupO(`UON!&atetq*F^EWLlQTGbpBd9AMJeK~8h@M|6puL#y z+9d4lpd5Cg{dDg-5ZtEh>9+B|+LW z!dO&0WMx<6vzfmn5ET3#m~BY4xwjDF(lF)r7GOU|%O@h*4WHi^oa_zKFp5|kQlWLx zvWAwefDAXzn!PI2cn6?T)vQe8g-LHw$_~QFd-EXPC-f6 z8!qJqYnmp{*7vVJ@^dIor&(zXn%ea+tYAX~8(T~?fL9Qnxkc)m6(9`Q!Bz2FYfh9M z`P#YxkIP#65l3d*po(E%Drbj;YaOOzaU@YaP8_eu7NbTiWYo-WeG9HZ@Glp9iaXm% zWvuGncCifG%xS~Ncm4E|$MRI%)~0}jPZ_Nbfq@$;{3sweQz6#kL~Ey|NXU`aDDJ+H z(k?+&(A`Rb*7t$}fvHstBy3^aqOZ?6RnsMbv3ex!D38l6GhMCug$Y=qDV(FSHHIv% zpT}g7(Jz&MT~dEZWWV^>yGsp&eb}@oV$-AGv>h_eUh87=s$!z5m zX$so@FoHHx-xiSaWm%kSoYjW$SyhH$M9h(4%Us$E4T!%CFjQ!3t+&P8`kUuNZZ~BT z70TKxlI%CMXL!NcNGrc1)F3s)usD?;MR%PLPYgm_e!SOI1_BCZ`4cvDc;ae#!b}0O zFYUd;Bac$d4dOFOh6t74S)C5ul6>EiE6r+s$T8g` zd~EMyD2PcY@@lOkVPPmJ#!w5CKfVmMDv(Fx2^k4oGQ76|EbtgVZX~65q4<@tu;wv! zTc`NKF42_+?S{#rWow5&A$Yryb6iD%(|`JIF6{7+4voz5B35*94h)xtn8Ji48OEqcBmbK84dEoqWs>BAo zmS?WeWF^00VIG!xP5z75qNl(T&i7iFPP%Kd{B>k@`CBOo0X!V22U;f=gLP!THGQ*3 zfcamhyLLO1p3H=5R=^+rpo1lW`+_UJ^Y$en@(|i7a03FPgnUbTY^8=+tHuA92e-K; z0I#9p5WNOZgjKa4QffWwrS7Bm^mifT|L+CB*z-<|uuiGRIMVXpn9)JpxQ6OOnkVNfQ8xLyZO1ET6o}=2?qZIh}BNL#{X7 zwTSlydmTh|GP4vTXGWGXC+KHeTsi}QoFNMYfRDf6qT7IoxQ~aSNuvQ-zDF1t7B*KJ zC9IlF%XAwFbhSRli#d)Ez`ps)V7^^WCq!Av^iG4>%)PsXCpq@rtMzXk zqR!RYS{IJE74gmLQ(#{xd*y?n!rZmurp ziCg8=d^JGzu4eU(1cGWb%s4;*t9~k9{ayJw(~OE3D6W=gCwFVg;900WAdc!w@*&fv zXLNDv#(ftiKMFiuEK^IY>kcIPwgTJf$wY+T=(ukdY%CFkLhg&<;f{jv$nbj7uApC2 z^FQZ{s`f_CeMXH}!1{4vad9yqx-`=d4g=Mh-O3kfQ0KfOU2H=i`x)7b1V!fxnPz`T zQqRsux^UD*KtO5#S9r1~&pR4A{Ysa<(I+M*M#mxer-!5I0so{|yDv@OL!1Ac$CK1f z{eErJtn4g(to+N`L*ET9o}?LYMxJJJkDPJK+p_bbQL*bn{gsX&q*dY*D1E+0$hZbX z?x?*&W*Cidd>8-LM93^u3s!!pR`BWEQ!+}^;cG(6-VGW-k7FL3@WlT_zR>vItA6i% z1uM2VSIhh)2arc}Nmm~g#Xa69T6=?RWN8&sYZ?N7&+QvL=r{QL%bO0bmBkOhgNZhr z@Hm*+)^~7Xs{DiRxiq7+QKKS9@}cGEb#W+jOC;c(`q8)6I9iPXg>Qr1P2ejiYRSIP zlvVdiT`1E)c+cda*YI1(cKJFo# z)m=XBC;!EY+O9GHRX=2M;8%$lf~6mW*$X}hGecl|Xs}>bSR|GP6c_T=myh;Uz5bc4 z75M5C&HOl?t~B!+uBsz`v;Bsi{U6x@Mlp=J26@s`>dAuxZKCF z5QNog+p&*9g05BG)3r&_E6vfz*CxB>IT{3O4d2$$xtog7{IBOZtc?*|qQ_XUOh)!r z#SM>%SiBRNohi5(Xo*I!CGyDf+1&1#eHITz1N{;r*an9Km|Wt^!ch*`w!xpix8&=v_zyQQo%v&SW_c783mC ze6NIUOLJ3MQIl^v`kEUSmpvp+=3d^lgS{9?^Y=0ub}h6{e(17y!_?jItkQu@dhoi7 zotk6WoDtH=LbPb{%k3Tz*ArdNF-#USO#*|*IN`rcUS7C1xbR^UJ)b{Nfmt2*B^Ww$ z;vC2?B)zUM+Led-&EP<-SaH;&XrDmpY!i21rriqcz@JZn3uX_;60<~I?o&lYMboDz zo5G$)Yc4I%HhBMD4t8yr5^z7COF#vT?4Cq0<5DAL01Ip@AkoA;7qSZlTssy zf?d^Dn^r2nZ;P6HS+2FJ8k3aRVuFCGTxum}M~3Qzr-}u{Ttz8n@M@L<@J4Ufx8RwJ zbN1l-2NRRPHST<8K}}Fh||sG5;SDVB$UY z%dlJdn`VXZZF@%oT++C95zmaHOs+}IYwbhX=I412nyfZljY{NL31(Ha4#^m>PG4u7 z+M~cFQfY+(x13*_6}~(zF*;!&5M;Co4Q5}nSIHCY0-rWxK{1T)JHPrpgC7;_J+aY> zr%=ca$n&~xbBz^DVZ?9b2ReKNKmxt-Wg|Cp*B4w|VAvbHVCzBb`*hP1Bq8|`EB6UN zAXk+v+B5+zvg5R7HbI>;S$-Ml-!o3-`-(fJfc||ezHV=Y%+ah{eh)0Bapd#w6Igm4 zTE;HFR(xH`jhug-w@^BFes_@1Z^yXDE&U|5?(nQEC-ZX~-k(~i$=z3QsHVdKy8*m$ zNIb((xHTvIZ;O;xad7J5?QNOv-6KU+ve0!Oo_S|zJb3nUf`-xFq*fb6dx(AvT^!Qx zS6X$lK@daJBPrYb5P}{rH~#>pGb|K7_`xg%i;Q8ECH#IlTOU+c(l9q&ai@g@Id*w5 z1+Au`IYD@vK_>fA%##VsfPB=5wmD2km>N3UY{t^ZYUCjG0tMibgmMKmA~*XJAzo=W z;t^y(G)&Fe@#D#;`5P@HJfv3q93hRNF1MYH>b*J6PIlfdVlvqpH@1M&WoJo6-R2-a zyjP)MJq0=jzn$tffBW;tnar#gT5Q?i_Mor`1Q%J)JE zbtpwb?{z$N?%iy|(nR#qn{)-Vl_L()EkeGucxRR{!H8Q2algNN;#{M5_jX}&rVtDrf8x*-rU?044`;S zcCJOp0~XM8PVZnwn;U4wjn$aWJ%Ct?gdCEY_NviP9lDm4DRV2?SY7fX6g9i-dZTXB zIJ8p!B{8%G343xQJp7ZBug2tXUy2P?c^!R!6AH_(S;^q8*$1QweCgdk={iwSTSw|&SYyP)yRQ}^A34NFNT z?maXWz0TZJp3Ur~5SNY5I)Vg9PnY&W?vwuH*32G$h~V$M+8#`9c9OWd25Z6vt5+N7)!uN!2^Q)p% z9htamBy$T|+Xdhnt=@D8wmv^*Ihr2NV80&#vlF~4rQ|~g$S!~v1~y|G2>c)}!2S&S|3AwPCJ`LcDDqoG4$~o=6iQ?nJ^uF+7firGQWsgrn zV1m@qN0x|?VP}rP4m&+oCgkDUz;8Hb>t1L0bM(qm>*2duQCEyh`=&xj9+f?|sZ)kJ zW3_%k87@_s)a}`y*Asc!{qK4j^^t@~Gd${$V@q1N?XC^jYB?lQo=ziQNXet5#6kQ9 z_M{4P9?KsZmfqxhIAVx^)QOUuXi@QjCJ@pybI?&-hob(JJN7)Nx{h$oqvf=mV*CE8 zoB^<9s%`4XHUH@O(Oo~5CYJsK*sDX8?{{&o)W!KPyg?(QrP%jRwDQK=j~9N)(0B;s z94M(EQP8Yt22X;zdo@nePH-<#W6xk(d|bEcidY%O&G+#>)CZ53DhfhkVmNlV_hFlQP5LvFW0 zTWS$aXWKSaTSzkTYM#{Ye5S~?I%E!{MhZW?Ss5&jZYnTs^xXXFk+}*W5mz7h^Td0LC7lb5Y&Qm8L=Ok%26A+bo} z9x0^tO7+Rneu)i_1LNFVh1KrcJZiV{9c~q1;P<;xAQ-Ac^UKeN%RfKNh!-QFaXZyyWu%nRW)iKUOMctK z$OUelHQpRDzqTuBgVwWS`ohFB3EZIqdVk7)GWWLJ`vN$Ik-^2mD{H{f$aKSD@Z&$< zbo}Nu%zrllFg4Tn+#eWcJ$TFzi(2TcjFyuA6tz3{wyFHV#hHfdPi9VfyBnq7iOciT zlB&2Sldbo7(k4+Es)M!^wQNyLc7yxE{h;y5R-wnrqDg&N@8KqJh59$7OyS5`8XzE=g} z2t>#VLz}@4!BGd#czonhb!X0ozz)+dqeZ3l;Zep7VUuA8Rkx{blWAU47Gb@E<<=Z{ z_#YP{j`x~GR>^q^nvG{;Ndr4&yXF;HuT6$aMOiB+zvl{3T$5Kra#n#phGHE?95(`mI5J6t9Bwk$=Gr#@#wD?u7bW z&7uyk5ZCp|!H3adsiXlpNiRcqce2rl6qMBKzppdhF6^LnT}YAfdI+3p%0CzI8X4zP zLiKsEW!A_7NUAe46gS{rW}h*{=Sc5~*yzv|#MzJ6mMj>DY@qnftIH5XBkn^0j1Q#f z=%rJg5Qy~L+!KO?`)wrrN@QeYc$CI?r*2dFmV(@CfeHnu3m#--m>-^nSXEc0U)-zq zvwkOHl>!f{%ES%#SMq0&uJW;LH`+}4Y7VBlv%uiQ>O*|2=7T}CTrB5~?(6#+BENl@ zGRKg7s;S*2*Vi90yhhHyri|7^Aj$9uEagLvqv@JVbOG%Vx$S-~x0B3nhYB*UzWph= z3R)P}?iPZl%L{|5+=sZY0K_2=Ag&#vTS>+={{0fk=bE;eEKLr-0}SU6t9Oh~j0Dp)EXdBig3rC}ej$##Z_ z;DpH>+xm$5lhKnRZZu(DBTtoSt=5z9awja9k_&tLOU_J4Qi(4PltGH^RH4VYFIxBxlS#UMzJmYC^oYBCclNzb3@JB z{KhQW>_`4xrS<8^>Ub!A%xK+T<(rm~p!=9;jfcp>dz(+?giArHvT?fK0_)RNZQk{t zt9f-4jgV)?uSS0FU|~YfKw^~DG~_(jna2OfkoAaK9=&pI4V{B?arbu8_$5O9f`E68!S_)m;as(^)EZ z>Q6dofvGZBKQ56(v7?grUFd|<5{JNG{V0}okNhd{H*wQmfuronCTHO}n19f;`9D8T zPR@+!Y&SO#rAnkgl3Buvfy>=TMgoyY0ja5vFJR%~yhK`kp`$kF)szeJ#)~3J7u8Jd zR00D5L`zuzgPrpMN?p#(ksUA$P795SV=OGBO0X;(qR|A$TyZ*6W|0>Z`8Hf##ZR#S zaGwOmzoJG!qh>#5NdUAQbOs@VRc>jh>H3idp2RdGp{w5GdjmC+Of&{C?fI*`fwgF+ z88D`3i)r2;u{X430rv3B|n8a3NPNnpZ$N-fHw7>4pJ6J5R&)4E{ zYAbIKuR<3Gp8TaxUyy&2+5@b)-SBT2=9jOm0{7g6~K1Fm7=DlYFuuMxeE zNqApPyW%X9k=b_=)XJ!q5fn<-`Tn_)mus<$kB81YS_p^|A;(vC0pSzdqD1SbIRY&OmDo`k!|N z4kfEdn2|D|%lhdx^^Yn+nr*9Ry3LO1NaH_gdQCq+AF#QtqN;kwh}Xg7&nPec=(^oc zqwNq*c{$cyH8xR|?eQgflw{RKUF<4~GYd$Y`j95Hff_SI)w>jd%H8H0uO=ZM4m_Wx z1FE+0PBm7&3#~Gb$DVN?16{+hTNJ$bxx;p{u6L@U&3NTY(nR!+Z(T|`yegoyZ+@1p zdIy?$#(vLlD*ZGZC~Y1Ab3y^CKGs_yoCycm7auNICaXMI@DHt6zlVGI zfNBif#nOD`oU#ECK&eM7jf_l+$7s%+SKtKT5WWrt*umys$;>iV1E@iu!K=nrek84F zw-tUTZOe>W8X1|d$tdlcuc?cw&n)fp%1HGsIZ=8-A0tiEMASbvs9*e6UI$=zct86`{d^TSe4($~w~jl$ zZ>Vd{wyVMeby0dvnsjolH3cR)Z;!sc!y_;yFa&(CVSjEK?>yT8j6G?=bj#mmxTzZ!Jk!#xMOy=6;!gqeLx{K@H$VDjX~ z9#0t_zH9t@h;Put_ahxF;m26DQ^8w1F#3ybvM|!{+hn8kzl(48DL5xj^K@&q-$g?- z{^psKaD%L>v5}$4%L#|Pgh%QAeH`=Rz%?4{9aEIBK8~>fq^-#*i1X?lg__F`^MT8+ z2Is$TTj`dKnyrc|)8fMs3Czb+^O0^@kJq*z# z{dkI9n@|`%dD!I2L9Nokbp2b(FlaCL(>m0DIiG?*-pwM&U*8Qr2kWRbK}4FQP-Vwe(EvHiip`Ad4eH}dJV*&n2A@y^e-axw)*U9gRpV|P28a{w!;G?(y%yYFE~ zwE_}yR&DFeTVe^pkM1bKSYFt6=%*-c*(7>o*zAK%zPHeB!(W06h8G+iS3xP5 zw@2l{47wKh3gy<&p9U3o41KI)@`|fGmE~qhw`8RSc%l=b=>~s<3Rt#u^=%~_js;1JNHa8ULTWWh zfdji88FROJq~^o@E!i!C(_tBk-*mT$z+LiC%c>UTQ1khqx(F*4neNopzpEIZq-MrcrF%8Jsyv9!DWx?^J5G zZ%d`An*t^AxdMcLBwm$pIj@Go>ma^^hg~!SdoTe|kLTKiQ@3uoy~g6va@ADwy7Tdi zbp#(Yhe`B~bBkyF@Q`aeziqc;P^~Cg8f6!E46?XuxY?veghRkD3Z)AX8#mo zDFxgP(esiM@_y+-k|_)-8Ca4EN!i)C3S_DyL4~XibX!XNTWxZqK9jMy9d;b1hGHvm zcxb+G{I1FGAF|OCJM_3PUxXKssZ`9K^Uz{<5rX@2?H$~};PAf6`gcl@k}X^OR;1q- zdNjX9w`nNs;MO}n?MCnl?ajC}7Lo>@H}Bd0N&*=eHY5eh6Cnpw$+7HQZY8fb2{4sj zpP)!0;f;#(q4MG)udcsf8j@KNv{zW`ULt@e9>)vsB8*&!q~cj+XnIuwpOkLRmw z8UD|2Bc7D@3Q3oqqjTRx^CJLzsuWJmboBUhblr_r6)Jr*b;g`QBoZCTe8a7r8zTW& z-a?K0;Y2t3iI9U}G7N7W3s-mS8VTQdb^i04OVdPHwNpt=#q68m3WG;LHG4mgl}#|yMIa7RR!f{vwn;p?m& z=x+Udzb=(l+tVgj(6s%71i^>y5!otf4Q>2JAa|=id$)4O{iKS;J&~0pJPAKa>Z7Qpt3`km-_0V zPrU5*=-)a2R(==NUKPITD0TN}9Sg1Z6NW@A1siz?=WE=ms$1Q?>FZw8$%npdf!+Y- ztRkBn+hUW@AAif$%f*NG&W5joM#|ec(1_W|<$ruTz1jL*24itzrN?$C?<46oJ|!&?zcm5 zzb?%v;#|*=g;b{mRd@sIM`_2LT~h%4j{3H#RjC`oAoChIU#8`GLO36IwPJq0Pblkg zHP|p?w6b{2Wo&3j&bhRQTOR7E6({R{^~by6O5^B|>XOvByP8`e_?7C_TUq@fq;*+j zyYkC_<(rAK<2)o?7bhqKrZR5LjL= z+VBO{0nXDdI~cPRw73m|7W^We%l$`69fSIaM5sg6?f?QNU5IwUg%>=SygTRpN~iw# zyFt38=XF{Q%n$RcWbfYP4{5$P_{9Bo)^E#AFBeh~+A7h?JG6+eB**|dU9Kb*_}9zb zaXJl4Lq#Tw?Mjr&BWc`)q3=G#3Iulv2AB z`fb9w!)_f6aGv0O9~1F?EXp@IkJklrsjC&kIR$0;z}f6^tPRcx z^GSl1!@IKM<^!A^4g1jnYWemjh3emUV33v!>5`AJPqg|fuY*yGVHNvmTpn#nwtPW6 zr}-TUeHdg0Y~=8#?n~@^*3|zuMPBy?aOp@7uN^WBJDh)L-vv+d>i;*Ja;;Wj_sv`K zp)$VgJ4#8?y3V1%`pD2YgXR$IuzD=NlrO<2OU6#hc)IB)v&^poOe#yK043F~Wi5A( z0=b!S-_C!|?J%WYETrWK_j9~X^jvnfgeEa%!FqOyE}P{@i(|F3f;nC;Re;0M_5>wK z>jSSr>*7vkZ;WO)#Sj!M$=9<{_pa6EGf@*e7mZVbN?-#)+)XJ zo+Fg;+&}F{(8{0g@{8XCMLG|DG=l=2Sec~n-XA>~z5HWD@Jl@JHtu(E^S|ofx{dN6 zIb*8eO5B`c5TRuq@avK(+CzSOpl3XiLiR)cltqH3%tpwon~q>{5WoJvO6YqqkzTzr_ybMI)?J)RKk9YB{A|1C!3v3mf5NXbI90YB_wkTBJWHR+CC=t zDJCwSOz!TuFz8JSx4}^_;>eHGP;v$YxggdJ?3s0^$|8zgIWZ@NM-CiJZyOU$|DH*^ zYC}O|vG_9w2>*|!vjJy%|Np-u;p@m0l(VIn~ZmzIc-; zCLx1@$7g^p%%weP4q58CrpWTw<`J^{>6Qeb7 z|8&-7js^11>_-VYc}~f5!scV*jj^`EO~i`Av6tU>9vr6e!vuw202O@qF+*yow``bO zlHUya8AC3VTG3z$$4Lq`ucfdx)#=t%?@eTKSAPt1srEKmQ}79tp$;U@#WAt-k0zn3K2M4HUN zF7tezZAU5C4wJ6b`p_>Ofoiv!LO8Ul#{S*aE#5~5mTdj<>sEdNTpY^11;eh_r=}WJ zBc|VKVUlf?4c9%Q zW5XYiR#%Sph*cs1aIz%U#51IrYN@}nK4g>(<` zPmC=%&7p@~e5R`c_t=wM7d~IVdSh_0w4VRdH7syxaICrckZYl&xf1XywP)apS1)1+ zhkFlc5(jQc5m;tS)&Zy>AnR(nQeHTl;@4XW)pJ=av&}^Ic1yd*Jo0KJ3J2V_>=%Uf z3$AP5iXxU1(xK{CjE`>GMB$P$I5d(guPH2vmM!vgcr3C|v7?Z_7ur?tKHE}vrb=&z zYmHIFN+r+eTIk$pM|Aw~pT!fWTj53Bg4WlZ9J#t`k$Z#z7$+~9qBHJtn0JEl8DEpp z>yMoFY4@q%d&_*OD;tL;*k;PpEwllAO!R$dduL||0Xr!18yC?GQ#u=?A=f|LJm39# ztTJM@|0oQW!L7bElI!888vJTqJeBW*^LDRwd{N!pm0F{Sp#Rlf1)52SO6EM{#=Bl9 zkq7PBWo@!GeAX`{_dIRotM%IA+I;=8W3X|`whBW$ynY^li@8njEior=MhEJpLp+IR zm#a0pKk&^7x(}ML9zC$m?Ov+wcPqal$OlMokq(T*sPA=FR zNJ-rB6Tx9-y*KQ!=v>}d5F>nL351CLDXm;lw-6plPjIGE)s7AL*~=BYzgx{ZEv9Ph$lpKnn1vcTO ze-1pwaGC2xU*@GEpZ{E4onWjOq+efnJ>y~bd#304Se})7E+mTCX7uM~;^Csc)xn5` zF`mMtlq_0v^rxfyO7PmW97GYm57xL=Ra=WIH|e#X1&whL*AEmmbZ!<2HVfCnLl&Fs zmu7f@zenp2NZrY}hG*06Dn%>7@U58XW07r_%Oaxu9NvaFTMr5v<#rYb{rfbY?mcEl zx8=*2HIx!N^u>3xcz6i}@U)Bf=H02y_wwqHs?o5c7f9;zgm)`_y2e0feGO!2068^X zGBm7Px+chx4VSTj5&Xnc+mA+4)hGGmA}F53zKM+Kx2Sa~g1$g7Wj4+LVM{g5XaTQ4 zJ|TNE3y1Ibq2a$i7Knz}?Od|(YJ#4|L)nAS+VGtFxW(uBBm3~Fne_fml$Zq=RilB{ zCXaFK8VqnsPw(r{)XoL)y_x34yLXVe=r8CjQZJqE78K9xgp!{})Bh%1Gt010K`ER- zPLTz;b6nK35!&O6cb)EQU#a#XaxZSkg3ZQtb&Owv+je$OVldw3wo}qJ1+>mCs7WEA zu(AT86`mqc_PcTSjRP(bpck;@@kdf@kmd!iq@!s^WD-$Cg?6%;E&%5Uc;aWjWRyCM z$FIKq7@2q|7-MBxmHUM68BnF$@WThW$>e>ichuAU-)qEwc(&LlFxk;FOMczD=>A$( zTg@4<@NegapCL-kf$0Tb|G3Yf;>o3j%{>?B??Laf`iIDA%qkIx(h9X9X34|(P~th zA4raqDTpuhq^$qaWVG+6rQW&th!*T{M8&;){wERd7pf}|`OBf8nyx6){rePN5O#+_$c|}lKtEEGgNUSIah!+#_6n4$zUyD>msX~h zebzn}CD$`_TD{&^3gEHqUL~xQw_{D79@rHlk3%4&VP)KhCG_us$bzXI?2y+J$gB)M zjSq)V3R)S8Hg6u|Ru>HV9!`HxUoMw#qbnK>u#5)t8d~pz zRz<9LI^9g*L%7W}h0c^yudbFJkdNY^r0*bbHqxdzf)$ocR8GWW)Sw!MyY=1;!dHY% z-BuqW9-OICkDp7Ujw5NG)Kqe9g>fFmttI<~?|k@PzsDHD?}`)*1kd+nD|Xr`C-E2^ zN}vvVVKmbrV!9}Na(2OdI?t6cKmB^fb#1}-6YX)3z>e&LzSp_!N*3<#F#Xh5dKZGF zF;?Vovq9`Rauf=fKsrdj-wvAe9)p-N<#`MlISmy&ck5SX%NUjDz0J7cUNq*OMV7_c z3~#TEkKy!=>`4@Q`&+(%DaV%d=B`x~vf7OB$%>8;Mp5u?WSIe|0L5$T26Vq z;dbh}FA$MI$PCn;Cwd=yk~{6=d|$N4hoA6~tK^G@Dr2E#cpZA+{~V#T9CdP@5oaPC~Iz zFe;M)1|6$qar_BX<0vCvyj;94JXGuvt0i^@?zkDLoT$cO-H?SWkmVCtPxx>q1+TCb z9D5%m^8e3=7|J#48cAsFDt~Rc@27vxcIYmN^>A((ULVMJL4qIu7a=rQn8j;2#rXmt zm5uF+Y;OTALx3-CtsSOW=d`{2ezFR7)3niDFM=GBJoY~SWy}(6<0|Du|5@xS84UH- z<0g;IjSGgWCqPsSZs67l=J#d9D&@@lUi`?+Qg$RQO8WWYYht0o8L zwsX(7bXP7di>7B67OuGPy|>E`0Y=-nJ}e|u*R^V8e5Uz=Z|}a$9n^o6LDZLmcjBPu z#bf)%YVtP}`<~{_duxQ~ro%3sF77EjEha)N;jq!+mFeG%1(hq;jf%!fCuZIYs^a72 zT-TPm8Wn?F3mx8!l&4XLOJadF0hH?AXWinJsi~{KOMk9}ztiBY3v|vKo$4o0ve7~R ztdB7qFSN~-g#*7s7l!Bylh=)Mth_g!n`c1AsvP)^1vwthdB{1DaHi5ZAyx_G#a!ss z0_Wm=+vjzymBT5LO6LOyz&cuT*a%vD0F5JN+=$hJdsnPXaTwp_?_f__Hejsh8D$1Z zJSW(9b5NhFyai&9*qOx?9;}S3pUwVkjE-h`_cbbJ)vbM8r~=Di{pE?mnS`9VWZ%MM zM%@{4Yp;t-Wk~mshoC6TH*CV&YYQHOL2$18c2N067)*@|`}%coeoSK0BVHB{_b$xT zhsWX3d?s%hXtSH_=r#&&H0Ih0a7pv(C70;;Sj2&2wD9dAavU0+G(opZs-dV8qIvCS z+qrPs(C8vkN6on5*z&WP*N=kBB(S&+pZqUxW~4mU(KrCF<2}@KB=>k{wB<`s!UQd z-kN+O*S2U!YfydNd{LiEOAcU^%*NW<*0=iBJ*Z8m%8iA7scZ&hsdaN{TnVHff?Ey< zW`-wf4jbAAp@vhK>wD(ML#tOIKQh`?znahg(}FV*zGh&&+TV9vpQ29B&Ei-!a6M@1 zLaJ}Wsg~h3{nA+dSThwnom?6n;w@_H-)v%&MQ8$~M5^<$Hs{*@4q<+9y!@I0e|M*; z+uNPR!2M>Fek3nYH?3yltpPL*rIc{4XbFbtP<3$I%v5Sm{jZ^W$O35bxnfYsr?)dqgDcg`R8 zm39Uu@MuUPxej^l;sL>YX8j_+c~G6QCxh8!!kF=q99W%GU0KyJ?yU;x9KDl`T=8QN}^FP~Cz9!#Tekrx0|?Rr&=#DK`|W`01xIefSrG%~;hF-yU;1(`L#GIjomI ze^+e&GM-Y#w|&en>S~?~Wz5Vk&a@im@jM*UjFz$JyB&y9w2AiZ$iD7|HDad~p~zdW97`6fL!4VMu`j3s599@jgq4ml?1HBOT9 z-bq()d1R6IBtQr8ahuUfck5QIjPjMGe{^8ncu~5)2*%H!Wv!Np%1pI^55gvg!^9&W z3eDy3E77pU{Qr2czCkK+XcmGWrF%zvG%S74l!J!BTkuT#yIbiuMUws54E+LNMHLC` z0S^%gkr@F^UGocYZF{yFs<_9LZI|KD9&FMwH|M}oF{y}Xa`>#c9=?&b=edeNjk4TpGkjm$Y*)OI}&-p)jFQYuul7tiwng=saJ0x(mD; zUxXyYh^Qo%U3oxo$WCY#jgI8m)o2ipWDot^3KQaqQ2t@YWVtg$zVO3sFrK^Aho|yj zoIDA|IegwLt9w%ODP>0$5KrQGdXfMqS8%3%vy^9F(l9gl?+`r_f|{>99200Vej(LZ z4qKZ2=I8&;(<*|j3)(LIlx$TaCUJ$E25d$SDSX(b=nhR4dSQ;gNeuIlBmj&U-lOGG ziX(X+g=$$JP__x}nimp271HQSQe&l;1-Jf=y>GmHaru$&0biGTNqTr_=*vp`zXhRA z7F7jh-f~(rHVWxygBx&r#a!M-fWX9g9DY5L$VMGxVdb%E>kh-`pDgo=Y06a^g|8mp zI~?xVEie)!p<EP&}vArJhr(ZR}0KXf>QU)5|DxUOk;VSH#@;?WxrL2L1%#%$-N9(crh4{6BF;_`e!;k7U za6exYFHgh%w2CD~A#XN)?qj!A{*jXvKbysbHtAS2x4)LTOA|6bvTu@sM&m;?*^G&i zuihXJAvursyl9|<9}w=!wSC?5uTn7%!=(|3*_&vaV1x?VKvU0s{tMqVJ^t%kiqbJKO(Az_>R>uGPd|QfInT+>N1ZRYOt+ zsAkZXn8{prKWk|*ej@48#`Oq$Z)T!P;c;XF^9N6Y3ahXJu?Fmfc$3v`GB}vL{tk%ZMS7SdK%AbvW92FmL z-P+pvwKT2DdxLC$#9j-c9Y%(a-7kZLkz(rAeg$Ck$>J!0xjT3?_27)^dE&mK+=j+ljL(b%KDi+ob0 z=3|gD(FzURt6UsGV$`8!VW)jdSe;9Q7;w?~z0GwK{(SUzrvSj?c`@)#NsFCm0h3?ujww-a1(v4@3H0 zkp;$|dYa5X?U5eVI{)uI567orVn0TBwG`cbK0m91pA0q=bI8sZ9X<>l`GDYRM~;o4e!`!JI!ZqVs5;s_!y&B2yRR!yg&rk*0c~+ZDU9g-V>mE;1?>rHO?y+i z(XH=7aF=3E+nshrN{s=9KJITH1$Y0-33o?oPJ%FbED-X;kBSSuI97HQ-ly^Opgj7K zKN`qDk^c3e=4wIQ6_$V=*O#BhJ!wGy&mZ?e$JZ5B%ue^u3M&16ba#1&Ri9B+rFMwTfyBO&aK~Ga1egcw9XobF1NOn;9iJ;t_!&Xc#c|u5Ur5RJ z2mZT4Alm-Zp`P}uD`oW2a8=IS?A@Y>0`0ehp*K@}Izd*YN`9#?LD0N0d5{DrN!#}j z@Mb~33Xpv6`{a!V=-*ZPBB@jPz_U^_yx`#B4C9GZ*Z8ibZ-h0WF- zQ+=k_FnscCm7H9B{mj>=;ac}AkXCOH<<%!?w8K}ha_DPay;7cipTEqTeDv|IkTFMt zt0;?XE`QVKf{sm67Oq`yTy)8`aHe#8)366|F7*3iDPwY$$LXGVDQ6raSt`>L&jnoj zT;bXyMFa!UyH~pd?~Zuc?WgvoAFAr z@p74JZMdY8)XcR_LUEOC{)OO4${mm$73sfggV|FIgAh#3o0G(N%zzYyc^$(cZ)WqG zPGpmQ|7Cv!bsyN3U>(_;Ny@dM+>~EkZF5~&v<|<2zE2$JxWBCT*-yj^s2J$bTGx+- zAzkgu#QSdVou2dtMY{XmOi#Be9kN?cUe86rJ~UzZh80g1o2dL;WRHZO27CE6R#eFd z3y};3=o=duX7e~c+as;6y0_}_BbD*Dbq70ME~djnpl@Lzb0R`4P>opd4627FsF``8 z03zkVaEtqQozt%i2&3h8-I@Je-V;!?AfmqJi`F&#!9mXJ^}+Y4*>xq9??aA4?vU!c z0b_>s+Sk*SUDO5+NUd}VltxbP@aqbav{^^YiH+ANcN1ha)zrdQpRJ6kULUp&UkiS~ z5Do>V3wq1O8)$aXR~_iNw9RDZWHwKk^lJf9WVH5eVpZgO-=m-@jOk}HfVCtg@w6;d zEa;;?w7WIU&gv-3V#A2X*ymXB~NI{SG3#Up5hw-1g8+q1>kDy&k{Ao= zq?GZ>TWebHmML&OO7}NlPe$Kk2okJFum3ZvGR;?_Txv}tgCzZQMD*0<;Gy+;@wZ^cBIA^(AkKvWCm{pC&NV9QoVYuK(|#ow;t(NuIub zM}KtFOH{^oKlO#yIJgHZy=ZGQ`#Sfi3hV}9rVtCy;|Xk!;6Kz_H)`@vYG1fPY=+hi z3}v?`N%^uJbKj{X9s<+`ExvbGpn}-j496wk*Md8euy$`=3(upk%EPg}^3n-p0fp>@ zF7f=IzqOst&i{f0!NtI;evIR!Wu4Q}(zfBB>=;)pk;jq#Hx4(k&tjp^mM=<~;}>6C z_KIcoUf4XX%8*Q@GYpIR4zI~Yl*O$tEaQ6{?$Z`@rrp_Rp9CZqu+1@ z@hV`jS@QVJ$nDz=6rz=XCLTDG^w0A5-5N;-!!Ix%Cl${}$|&C6H~#XWf856~N%)9+ zp*rE)VY!7Hsw*9%nwTaE_0}W_Q#6n?O~PxMqdDs$$tH>B7ug8}rbdI=c-8pXpLtzQ zf}XgFPkTrRJ@tz?`6$$$f$2Bnzq6!l$!M795>ONyOb#}Qn1UKeeB;alj7j=QN)(gW zlZ%BW){7du5QD^Z6f8_nhko}Loe-1$;fc1@B-`WARwAomuCVdvL~|sDy)F`x#Q9od z;?(=Ktb`sJtlBxG8inm3`z++?8Q(DK!A5rAUn3|QSw`PGR_l}k2M;dVEl7E5 z6LogQ3(BV8UH#O-L5M+5W|!qr5)8*)1GI`&CsR+lLV@A{MuX4dvSm!6aGLR0bp zQB}q@aGN{@dF|+nOYf@Z4G;1@h{(Tu*Q+aA&hrl|dwtx)x?)Gb#IU7I6Ilte&@f5D zo7e~icw9@=l++`AxvSh;#r#gSw#646bdRa z9*G*PpN67Z1m#*_{@kKQ`f6Lmymj0Pwm~`DltX<6z00;j!zNLRy*QkY(HV zaHxmsZ%@A>ROuSiehX{s1Ifqe1r?zMS&f=rQh9A&fx(;=-5SZM+M3r}GL*dxjq48^ z8%~T_{?T|%JP)|m>3QMy|9Eh__j(*qlWD&x$ziPBOJ%G*b&C!C`Bh~~=)OSLYEiU) z;~PwkfzZ8$(KlEK(@%7C^VNK!Z|`AT8We}5G+t#2Ja#$?Yqyy$xV_VZ|G>SzEXCgw z5u!c3&e3bIu&vhnk^XRJ&aBfOmB3h}m|+dO>;1oFdlE+~KJZ3G0eOvepjW=D_C8${ zn6J(2bV|J}IAjq?iTiGo#|z8O1f9~INYIPB;owhoQJ`&IKs)&P4ayb9yyK2M3hvU5OS9B751nOt|d>cy=+~)LIP%|^sJ~~VBf;8iASWJFk zVxY3Y+mtQpdT}d3e02oNTaf>F*GT!+VEK;~p>v;{#(q@Ti=B=pjTptfRFX?>4(jG8 zH`;b8em~VXH>i$z>g_M6tXQf93|!}R@q0-9%Srkz~s6v~gICi*MuH4?)TN zPRVF(8)ZH6-0eGWC<7BLX49Hn5+D2QrR#GD%ck!+VbiRC*H(joVWZycd6S=D7D;+- zyi}&TIwcqJSHo9o_H}yi<8OH+W6g-dy%Sb>`J{2*YMy+^Gw^zN5S-+{SNgjiyC7Wj#%N5YP$%C7rQk~ zsVs0Kp^2$fjYuNHYH2?uSX5&WJV13UE| z@N3zcZ!mVA9zu#hD98`C$XVH%$o!YS2YwNrac#<(Ll4|z^%_&$X-V5?T7T89Rz-+a z+bcQ;ONBLcA$nkO`{*JZDb?Q;laj^LRUa)8P0M19pKtMaOnkFD6-!-|8c1Xj*>QI+ z(jB!~q6&Ly`?tA$%?dM^-!py>*gyyN$|Y_>a?ZBBQvSkDJ{0eU;R&3XK

GuF21RX;zzHm@2!aW+mc{y9ES*i}+v1~|ds?=;|WPQU8A z$Nxkc^Pw$fg6SXNiw7DMNlkrPh>7PXYr!r_3*m9}FQq;+dnFe>J=j%0Cl}EQbw;9f z?ZhVTM`7M+m0y@d)y9&Eqkyqe%-rIVR4CHB^{I#{vfsjH3C15%-BgZ3S$?g{+K`6v zHr{n{chxt1fWD9^8=!H?#x{~j&n~Q(=DDhC3K5BNexsYYJ=q4X%j3TZDxLQWzJLFI zAwA;QI0_jQ>_)pCV?%GcRNw;7)Qo3&q-K$nX^cjBJ{%N!CLAi7Nca}N`t87VnE9L}l(E1^$Y<@YoA`uIEOiT4sXf(HiTd}rej?3+>r(RP+D;}cc6WCJrmmG1OPFV5@ z19IBxf#CT1PpNuim8u?y`!7oLZ*y$E+-9~^o9GK0O3r;$ zS+Q~JM0glH2-j9KE4&5avz`y@Vn0%Xi*|iL*pj7XSW-xW1+kyL;L%SN;k2L0#$-J4 z!+qQ1vio)l4m%^SkuY?F$ikX8YSygv`>t3dtxX+R^$XOMIU-U+A%S5B1K}|ix_{!I zt*96*_8~fQQMYqyLDxr8S5)!-?!c)%@=7qGuo7Y@w7vpUSkDu|egD83dNPDs>X zZN961MBii!(oZ(#Aep@(K&o zMly)caMEZD_aZ{}bM4b(j(Ml|-1f^E(afeqEQy>os@x}%csPB%PAeT8wpi94pw=i^ zQ{9^xIO@aA*%vQyI-D~r^}^=rwy{pyAW@K<;a%?;n(LCc&>d9j`ZhA1|zqo;D^Gv6%AYN6U(1j9D|7TAx8 z&p7-Tt>X7uJNlkopE;34j3in;;bd?L#IL!0LletyyGLx3wgi(Nx1}8?jiKMd z=Km3(bX`3EUXnBXK`>uzpCgCln4f^%G%T_y>W}ZBUZi4?4_U7N?pjtEhWBM*>J8M#)t7Hene@P*YgJ@8x|yk_R(>)yk3`pNCNS$j+<8 zZm}R-nZEN%zELD$;MK^f#u;#w%rwJ4Gcq!I#+Vrz7c}bl?w}Drcp)gAP9vRa#E%dC zo$T+50!J(Chl6Uf4IW#lYmOKU1PxTGLS-<39s}a_;=WI2j*6Nq3mklV>weent&b=Q za`K9kw-kd%0go9?@qd?F_v{(Wop-f{QtS~Sfz@X?0Xpmf-8j9`zpC~L^CX|;ETIXI z&FG8t7VH(ke$^gb4RS1o04#9*6_mx@1?aGN87IKa@1wQ+Z4ZlTeU5m9ooz`IWsR*`c{ zv)5OaMwS+e-}5?F%8KeJPmoQNGqtatSJlsqSNZlD9X2A3og#~^xLQ`fChFQVu5s?a zbvd~MY&*KBZrQPD-B3zXbMssfADXSg{VykXtSm1>(T{se?wS3`v!Nl?F20hNFFoQ$ zJF37~Isg7pxG<^Lm&Pou)DIwb*WS_fRt?D(- zKObv{VYdzXgm@EvkRv_Xqx+d29jv*)I2BVekEJw^~}UD-0t+ zwa(%d&2g8;tKjAl9NGf2GxUZegolKTRP0byjZ98X2H!T&!<{(+3$Ar*3**tx>UU^2 z%mwwt&6O4<3#K||#%qek>UZJ*<%Lzrys3pD;ZQZh4`+*dRf(AB9&!7UEMeGR#(kl`q>$f28GOW@+AxtgFycMo*=FML*~wd>zdqr---eTVB9*RDOQJ1hfrD5qPk`+5ow_zQrM{_knw{&+#q zW73qt#Qv%SYu`Mcf!Q?GFz9ZH_jX`pWIy@l)EK`u>bv^Aex-hN{6gR2`@V&b5lgng z2Dg?D?#sKnbp_)p6gTG1eI!W(VVxKZB*DC^yoc^_ zdP9o-Fd1@jJmrH;Vr%QQ;rg{LU;V0|DPNx{wYq03gQ}5sY(zNG)6fA`ohg65bvhb6 ztbkV&QuJ@1@)Q#E0@n}h$HZVw;blMdr{$920ZANq<(vd5(xN&r+79P*bh6jlkR<-&)<)`Y6dt8LBA!Syry^1z?V=<6B{=<^8+HLO3Q{z7M>FL-!y z&_l&5aPQ8>y7})m@$R{KVFjD>D?;~`m-F`>gCgxLSH{fh;Nt5os##m86y0otzLidm z`qcvKG@ql&+Cz#Ex8GawOnM-xNH?(8xPEy`ZuR(4=nA#bcJ-->SZoa!I~Xze6EHzY zN_-lf_UyUn7z|%9CGAEo$@)4m*prb#uTX82TV0O!QmI2q`*9L-O1Dn%ntuIqZ+Sd^ za^FcEuQuRYzpS6EQxEHQd!Fp4R8ip{CU6SO@H|uE7=7`z4h|iI(>CtJk4|H{opw!j z&$oOKR;}C@X;q2pT#CF@SR$C`{FEExBc`{+F1)>ve)6c3b%7ekNNcr-*VjBE4|_B2T7d&X{Z52U~ zZJc{*lU3A+)b4i}D-+Qt_zfWPj<2U6V-&erH?`Jrifi=LkxKZItlI=o_S*1n#iUD| z7!v?bKLLY1F45r}x~Lr(4Kr4oET0o&Qcwx&tQCSL@F+{&OX`M4)kk1dpwbIF1c&BpkLlama=cqwI8GzERqpR?e^o)j zwS<{+XSCe@&C5Yf%g3YoSndbYCmhu7SS3@3O~tnu0dKfp;-!~=wpm-%hpr{M__qWq z+vj=}*j9u_3Q{Ec8zXs$5f`@@gjY*R&4|5$eEGu$j|KN^a6-loCCD6QL9E2w$ zA$aX_J23^v!97UbX{DxyvV4VA;BXN*?c2}}y+GDeXDX_}6zTaKHAu(VEUNn@OJTSO z6Ux(LAM{99UNt&4ezXh*i0${!jVXE>-0l^c~wENUW8FjLlbH`GjE#+xBq8w6AzX8d-lv6+hJSW?h+uHHYq-+xDQOC-#>+)E|%($?ty^EkpYD;p}o+(;H4Hc+Y4 z65Sk>Z)8F>C9}+LV%7YT@hGhZMQK?Cj%xaONOO9ms&3}>Z>|AV9L;{>xfpxXi@V7t z6ejhb9FYaV{dkQ5f>zA;veY02IjNIPUlG4PYHS>v`!eD!uum|0`sbx^>WLSrP3tK% z(GyekR8~AloXaUG$QHdYZ9gS{QI#PJg-8lmAghzHn$%k?#bOru)BOOoTLwqWO>;uj z%_)iIi$&L0yD#)7iV{~_*StWOO+RF(WRu&v|w{UcySyn1jU04UZ}6bYf9mTwK!9(&ksVJQxOhYZ>mpPLuiI zbT~I9QoC#&g6a1HicrY2J?~+qLC=<)8e4)K0ntsY87xhyIZf@Z z-1nF-W<)36CsI{x}&Avu!KNIwBeOW}q-KSbO z-+ZX3YiuTPZFFR5{_M#vr!Il~lOUb{rr&>ef1#M!q*bNW`2D*(=t~^YE~2yc{^aJK z%I}|jt4`}<^D6bAvaY$}zJ9}p8W-0z*R+U<;P9|_-o~J|*k_hEC^kLPi5D^$)pZfz zi5o9{?*dzOIXSsx@56@=$HF+=Sh7JNl*#Am9qss0p>N1*NU<-dpm9X>Y~ZXk>UTP2 z&}%#O?d{`v)$gmlo$B=C%(z-ZLI3l=7%0A~9Q8%$r9wz~ zdXVGYC-){r&~qqIYqvkU|G#F|$dpicw!sQQofP zUrKY-QYTIXB_5HnvWN9(Turtur)u^wqDp1hX9NrVx>oBn=&!6aqgUB?9g(9`- zwO_pR7^WYNM$R`K8(42sl(n@YAXcwI^Ja=ZBD6qiLpG4@$(yjZ{X z5~?^8Y7Sp?tYe6WnpM{dlK-(!x;WqQ*7EcQayD(zn(NE%o}HMQfwMK9X={ufPpLhO$Hg!>M(v z&^c>1h|gGgFL5tmN&PW=#!EQAqT8ux1`!)_Ok)8NreBamZB3bcWpbIsz3`f$C~NhthrI{G44f+sgTxc0;|i{IuX%yT&1QH##u zJrs1FEzoZG(a~6v$Chh&K&A_+5^uqw$dUWa4^9ssdJ33T zbP;kS;Nc`m137JiD-KKL(2}ey^#L@2$anZ6gzVeNHy(l=J5-GqXWNt#QqX#VYS(y5 zor=g2YH5u_u>SK0{;{8;q=fPf%5-V=Ntej$AI3IsTwaV=GNE7E9o!Gak8$LzA!R{I z>wyFGmpswVJzH5sE=KlL66+P|Y(e2!(@&&L9*z_?KWj^r$H-`!yOhwDqluv$zPH(w zHFW-?%G}gcNt0l_(%$&+<vm*uf z7lnQkDxwvYWJWe$bD-S7;%_6@9p7uvPp#gt6=lh_($SE2rT+-Pp{#I#v|W$+1>{8~ zUb(;|pT)Cm=!B6gc9@tLxR=qBwkYl;2+3^QvbJ5R@U6ROf+K&@L`YxuS8lZWV5L;t zpgG@B=2@`roVi%mZ!jYX97Hg$h z=7eUGYk;=u;-+w$!glPae&j#DTb|->!XuebN;^%Pw;(uwY28evVRo5RRhz_px2%#y zo@h|?QgJ_iHZWePu_Tjde^1IYc&Oankuav)pji8b^i~Cd&{p9k2E;27YPVT&ZButa z!Kb~Yl=Xn?TFZC!u5=@bZv>~Ypr%Ye+4h9~2sK#Wk7G$tl|h+qG(o}Cjy8t8>yHo17%UYtKu;2;N)dW4byz|~(4Zc(JmR`MXvJiL3`FctV*ZLp1LT;w ztN#X*pr#trp0Vco;_F;@13p}m3o~v;i#w;Gnfgq}N4v>I&7TQE~4y~DkQYSCm>XF&X#x6c5n^5sk zAee+gn4nCh0uv4YT-OL(o9yP3kH?;lCpQYFXmLbO(~GzYUTJ;P)GK|{ENY&HS{g2q zDzzo>r(|L!d2J-`7f&F4C4b=kZ$Bnv1G{qfK`lh^2xe^8$i(EOZ8J@ z$!ODsG1e6TY5%!%7h3UPe^v@^>-3fCeC;hquf7w3rw^-lsXOmK66V2Qi9~FHXef)A zG9YamOF5cHWV7nkFnv(3PTi`1k$muyx(V3~tqL>AW?Xrf?Cw2K=dWdtSzIkz`!Xhm z6?1)hBghP!h(_PHQ(jU1?SRQ+J98Yw(1R)P5;*gY!O1rhca5N+-nN8z6=29_ zzHuhwP{*HRsnGb-psDC}Vk1^lMf;N>f8QpM<7Kf_gr3Y`A{29z(Rh@C&Hm)*u{nrt zqY(r@9Krnf3(5&35Ck;{J-Hd8(~RkYiREuItv8svN{HtFWZihhV`VkpA!^|fxUAx{ zv_PGQBJkKMsR+FUhl;z77emmnKV^>_j6%issxzPG_my-JStl3Bo3v0^+fQ!h_}f4n zhVz?!B?rfrGuES?cei$qMoh=A@dGkvbcIZbyW75s#Sy%Y#6>t}@(fLs$AJMLFaQ{V;!GtU?7 zQqlEkoLdS|j{eo9BYmQ@W>`Nv!7h&jFhk5lU+vn``$u}igQfM?7a>k33a~Hp&g?=O zEzZ7fPLB8Afl1wlsNiLVR_Hg_0G+TXP^P2rJ1ja-TVxno@=nFa(Wu*Nso~KC1(XPvJ{|80jNmn4|~ zbbNbbwdTDI;@k@sCnqNtu5{0P)5ayewe8-Q-36~)dDAp)eMVKMVm1)ICVD$6y&DhL zY`6TB*XFF>unn8<Tlnnc*ERlZdA`-P1~X7p)Tvjxd&bD&c0)nOQ#t5%6lToIBGabQ{!I!UF5Va*<6IO zgWxQry(-uD*;NuU@H?J;S8uc?A5{Rw+=bXxTMk}+YGke}N%QB z8@>d-T-#^^nO9`>rhsNeB*S+d5Lc>bG!fCDsCK@9`sDD;tE12Y!A;XSikRX2qmO(0TRW;+hJDC-t7zlJx7KNCy?JOb1g@o{CkA|zrZsKC zABvf9Yv!!8NYa*4rxaPdg6c)D0v0i1R&`a{#))nTe8XPT=USs}Ap1-=AGrDDmi34_MW;dG^CoQ;+k<#${t| zyT-I`37wUGY?i(J(np^_K5U|^ZlV&{^>#D~br6qn-$+cw%8&TyQP3a1C882f;t)p? z$W5cDgRi8{Aq89h2Z4dIEq za{0&)pEPv@$}7v^Y1thSm#izpj*=o|@oHdxZQ?qqh&UM+HyPIC{p=vI45~`JPruhQ zc~_hkmwC8@`_b@1bVka4x#Y37f;(CbPR@!ySOMOGhh@B)(=vN0S#0WWL8TMPTG!WB zF_YcjUk=W~a;%_X^qqFIr;@V1!?FExa$R7HH#yfa8vBIb);-T?k=`oL*=3RE*X4=y zQ&OVlDtYaD4&HDxzi&jAhz$CK`ei}TFLRU&D8q$Xko~-b^ms_J&oz$lf~!z15()gH9OSIp}>$*}a7x|bj?O(GH~Nty%`xB=I|ciwxu*FMfJ zR>DIj_Mn;-%m5RTn}Ltu^DULcWGRO4CSlnqh(m3(Mc$g+q`;Ysd_&=I4gRuJIQ7r-l*Z4M0hQhcLp@b1PYoSqNGg^ZwpU_{tuR6i0@JJBPyOUX z@T4;&{JzDNi0M96*VX?=)Y*VDz5oB;*2<=0O`YQ?*)%sfN;=6sbCZmdD05e+D61_ka0b*YEmY=eo{0*X8PFHlO$F{d_&2 z&&PQv-xMsGEGO1MMy_8s6G_a2((-*-jN@qa7BdDOfrO!{7jyRxD3ZxotYmrBpHtQ*eftD7tGMaUOsfO_-vEKT`-?jS8)#gZjk|K0-TjzQGi=y#^9(57nM!)4e zdq`T3Jn~}=hh~A8w*+k#>tLn3yCvy>>PBtmHmigYX^UGQee7%z1jJBcV=S#JJJ@U& zXvA6@V17huH8|Ht^khEKL95448D!Q}_kDjrJGvA_Oy6V$O-=C#3n-C^OE3N^>zq_s#?Dyrwj^ikWUcOuaOuHQg>bfV3W$aV=4b zNP1qtMZNXupOyD)?yhO5m~j&Y-^F#SJ;=TgP24`AyOE{;;-N#;53=GM5rk=7D_@5WwSop`KV|TI zv=$iL_rqk5g!bC{?Iag|uBb`u(Q=9n1ZV@abN35sGW`NP4GqWCpZ>GBDNmjNb*=91 zJ9k!ywjrs9QGC~ewuIZ>A+4}&xV&RpC|pkS>!}2Hy0S}wL4-kAb3V(xps^yse@CTf zQTfE;h^9HNBAaQX(+*x8-2L-j+a>&DKg`qGBC&zvv1FDe-qHvd)7AP2fhW1hUHL}Pl* zZ%@Y`d=_AsT5!C62-$Hsp&BTVz(3}NJ4A?2Xo50V8d%UHOBJUU_g@+A$xMC(PiI*7 z)P3qAis_^z*c4&B?u*?k|406FtvsZ+LfdV_smq)?h%pn<~i%{d7X6JRwBq zaPofzM?E(={8y21wiy#&Qlt&>z8v1Q5)fv&$kG%@Y>N*47!0dJB>2|tm&Q_(%%er+gh&q+MFSLRG+t7lK8|HOr` znXf~%`G4goBqhabOoIcMc{G|sWTc0MSkWA5ssiEhg`}L|#;BYi&Y<-Aps)9lzLfk| zq7AUuAJzTtKYRR+X1}o!SPxF_tcb{LyvQ@k&x{x~U;urX%WaHJ?HOwIGcv60t%#VB zGB&O?>|2`u?|N9Fr&p()6cT#AMdklIx7p9NTA7Smb@Esm8y4|WD8=qIb5qlq9Yd!4 z(xy8fOSzUVlRTRdVs$ubF`FY?%+^yTAxjgExcPl>7urfHP#iJZmXr^dd!JP5sXq13Zh&xQ{~^7h zc0E(BHH_El=LnQ!1|2p{G+Wm=pziRZR?lWAo;l%n_eJ>X%7+I!jpG4D9R-#4W*nQwJQ2!K^nC<; zu)8@T$4^t)FURkZeK)TGNzE{>RvuQ^wTinN1*VIRr=aZ^Vt?;7v##;b(3MNm> zgzC0ZjYC7kIF7oWux)0RV>16&#(D<_i#>cU=&Cs>u8|IXlw{5^!vrp^s|R|0mUUKt zC^~N2cjudMA;}i%VDxu_)}|u-2VjcwhgX&UfjDY21eYuIt~~g=rO# zTm+-wt94OTs_xXk?b$pJ%ko*U7i%>D$lEV!%wiKkctv8(2XVH@(N<__!*k-iVt^JH z!~yp~_Vt@+kBFHL;2RBf!webke>|Fq&*5&JbjXlM#GBy<94N+ow^Y~MTr)H~kA!|0 zJ~NWDE^6tpiEY}ccV+O9ctl+rZ+a3ejvUi|oqyxuX2+iz7+8PXrKG>N0V`D~!%?6Nqr4hBd&)^7$sU2sr(W!8$nM$R@oF3Xxl-ToAO?YKr& z;q9-i5KdQgy+)Tgpd`#1$7DNO8cPAAbI!Dxx z3PpnhK~)0jjoO>5H+PNL0wm$M*%?Z4c|r*;IF`kLrwe%Uajf&6&Y_xTWN|UdRpyoO z^O|Guhqf))mhY6zxH4bc#>8bk5do`KOIV8ZY#&*Vq$G=MQ?sdFTa5Eycl`zP=sFgE zwtx1UF1Ft1{DU-hPSGXRjHc-_^C1)vN z_hEc-gfr;4ho-iObvP^m>YE?MNFgaidXo+)RUc7gWN2Ei%VSwq+*W~vqbW0bk7=t~qAox-?PkQ$ zvs*V4osG}WQ0-I%SgaltjJMMG**crV==gnz|6X9 z_9C0-KIZNni+U$tt}y+d*ajE@kvyXtn=oWF7JvFredi7VMm1VVA&blER6-;=9-j$c z?U<-r7^CzDr~m-w-F>9S_p3I@)dD;x3wsx92Zlil(QA)gsI3qhhkx(Gb0+VC z)Mga}?Z!QKWFUYYa4iwTI%nTL;+0I^hf@1t@l;*lkifO&{KeJh*y`qE@ejF7-hYCd zEyzI&^bL7r6Pv}fIAp;uq=v;?{|MOPne2!=U34u)rRw~*d!v$dKWn-so_ItohnPF6 zp6`JSFPcWyCzxI%(xsq0A4j;7gCaA)aC?|$^^9p)CZ$C4r2(Iho`+DJ9f$Zl@;ZIW zG-gTzq+U~7FQc(kapj*h=(tGr?*&Q6OqKyQtc=|VGB9H%@5;Tz77#Ip01xQ-H-p==$5b6E?6z**57-p8EOA2dn>Zy^j zXwj?9wE)9t8&N?d{u+UTpTypP#P~BLsZXyfR*wyyq`h&mQYUNJ@9QF4iW`OlPhx4GcWwz81*U zdsARL@lW+#UY40}eEDzlbhzkiH9-0tRL9M0_dyZFRXX#^tHZ~8YOAk_HdI86HiNyb zBKi7zaP=vJBG>*yMEp_fuk8zei5;F}i?&a>2LwHi{qw(uF78;Yy~t@5fITr{R>-&S z5Hy}7cb0W|)KR!x17}z&^Sw0nzAr6&2)9b^>M?ZNn+mF7#C9-KcmBubd&yuAP_nrh z8Bf@dwY*S84dS^w6}Oi7GrBw?I{ZXEzXd@e#G@v1xn6N;w!$A~#Lb!>FHoJXj&8FN zJ(e^RBQS7QXa!Vm-&Zj{bjwDpKDu`8#}@G;qu=Wx3K&`q6%)X3tq^dv@95njHeO5$ z=&AMCyEs((eUnRBSDKIt#JO+v_5U4w<^4s0QCMF6`@_>kJ3(#qbf7_rW17gn-@G$@ zB>hhz0ED0!aqAKI1z{;?i*n;jT(Y~4Rrs&F3##sNX`r?xt7jafvhj;N|DH?F4IMU9 zpJ)%u-(USDDI=`ixlz}#|NFv%@cGV&2cuySX;dhTVKz2GZPYi{>Hi6d#@AvSe-DiM`K=@&{iZzJZ{2N75r@X%yPGsKUAMH< zzsg@N6W`Kq?_Z2v{o=7Y9W|iZU)sby#+R`!Qdgirh+2@B7~)O2e0W}G0J8;-VtNx9 zHDSj;p1>`&WHZ!Y2qW}+Gc;bE^AAdgXX=vnD2ll$QwvhM{?f%+` za9-c{ld8mb*iTT{798RoqAzUDmt~34xi`JpsLu3YZB=qBrx(7UYF}{u^Sd=;ZEf_Y*^s|SB}<5bLm!QA|;ZULwKjS+zp%Fg+I%E;m+2-@F_ELrGI4w z6akJVeE7SAi>gZX3lizHne*}Xp6z6Q9da;-v2Z_H^8dU5i5no7)B>UHH;%oRt9@d>{VRr+ozpM{rq z1V7<^o{iYP{iATrnm(LPDIX6n{+G<_GJK45q~HZ)N3e+mH^W=;JBXiuXz%oRA(#3) z8>UABJI5RePA0ak&bUsvQMchkuoXCPfWIuuYY`et6 zCXoaT#3yzM907D~hO@~(>l31Lg96m)HzF1LT|uRmpYGRKn-W?D*R>9wnlY0?I&OCJ z3rV_=s!qrk?CaXf%2Lku1>zZG7XPaRnODkn*7b{5zx;PC#l5NDbU%uSn;p6nSd$uy zwKF5OTy>I_KFCk6xYn8k6xL*UFcB1NW>ty<`lG-Tyg%m`58iRnX4zu*%JiiF$u3FI zbMndI-LS?bGq}f2hp7HRxqVke)&FDYKTDclNabh2!?rl)=ZaP^aH7F=rWbT@J_}lkbU06?|Qep{#w@ z*7ZcwjLS*`f!1hdGa#`rm{Ts&ZOh`Q(TUsKC~>2S3;B7XhZHdAAtQ?g*oiWPUTu|B z`JY)8!$U#&K}8`o3fY!K!4_kcgLQ>H^Bq%cgm*9lE0FlG!1*NN4J zu9Zp6mG1wZ+^=%qtGN2BEpz2p+xeCqxTMK#7~DQEO)wb-RT#-+ETlpDaId2h=_oK4 zO28|?u7jS%|3f8{Mb++nos@MI+PB+dqe_Jec{?H}Nbn_TIizAn8(6Lz-=OPS?ZVw5C zyHWc#BpDE(vIKR6NjsyFat!Yq`<5!b_U z_YPnJ^C`leoMWxE@hJhuYv2{`7VmU*WQKJSpCae&P23R1yyhlpJN! zBNaq49Sc&-#P?3J%;%P%KNu7B+Trx@X%1n$iu*dETx6|2zwQY zdF?woGEpdy7j1vn-ee=i3bD(&+9_F9+fh)!Zi?yof7grX9Rld{~FPI(LOA5)e{>Kx? zf~CM05BL-^SDmanS}Fn6!*avZmqiAWN5sx4tx(jyi3Msa)g^^{?34YrJRUK)-~0{S zIzw7S73vBW7S|wIGd*7@3YLVv3R$eVMONFF{nw=!aVZS*Fy2#-5jN(Y+pyU>~^qewt= zFAry4S>W`~XSYF%{k-1f+?<)9;=|OlCzN$TRVRJp+p0xfeyZ9deiL=mjaxA=p|$7{{l%%nB8^ek>{cUS5mTIxaL zQa(52a%8Dt5!AaE$*;ZmzLT0Qqopq{&AU_l7i$5%H$7^z+7p8npo`RFBBC=O@3V{E43N2l*TY6*4B*m1R}tWXwqzvEe*;Eo0nvJ^LuZg2VWk+ zO9osic!Ok(g?m7+UxpK}tEffh&T!lPv;CDKOgz`0S1VrWQiS9=>&GuG~AMRgVISlx{OP8KmN37QT zp1CyU+0`LGl-gwOBXFi<2LOb*s8p0RW!Lw`;1bEgLFC}jhkM1FdfYUS$F+x6JYZ2m zflo=id4hfR4p+05y7|f2)rmV$Hd-WWwfmflHr-a%l43=ZZI`F~CPlzN60U~F=i2L} zF>}JdOT_%P^Ep``P;I+qa@Bxz3f*K#9LxBV4s?$yiT^n_mD_2&SkpLNw=%sd z5=RYJ>bs==glrjXtZM^w)+WKADq{4>j7$)A>f?{e+cl_pHB-Yfp=ty14~LgXl~mh| znAP+44pk*krP*|%^KE%gJz(DB^lSVVhdo||%`AjeYo;!@)J}iszr4DBa{dATU|SyL zo1Is(60$ET)(nSdFOAEr4wPvc%cLJ27Q5HZeVrMtTM|`TR!syyF!F9`9y=iU^Kma=j*bYN9*~vZ%;6;9137v=u$v4EuKp4QPwFlAgdA? z^0~Qr^o6BgzaUr-eUFe&gOAS1PKw2|rUzbb6xO7z4;>Y#Z-01O)h?s$e|XY+QHJsM zJ6NKOSP@lqekE2h2%UnTT>ACwiH&N{L4pn=i>}9f4Wg)o63lQxSUYp;m$p`0V_=T+ zz0cfkdGUv|rkiz7)ov^4Yv&lY3k2-dPF68 z_>(XQKW7S{A!zGd$pz3k$<#Xm=qPL4o=x`agpP^M@&qEan)wjsOn{PIUBg_*nNB~AkK0Bzbc%WXX$<6k<%`5*7}mnt3<>E3yZv0y7C2xtq-E+ zik3gLg;u?|JhQ-AoqGpZHd7rGLXT*6$%afK^rEfMTj~i?_h24-kxj${R$}1KGZLN_ zeVDhVa8Zc9knIsQF~li$Ur&~V1oPIk-{!4J0cLSlJ`i$9mo0h!FdO2+N*n&R6Kw?( zxfyCJ%*trTki(`p=+kE6EmBGz8!+GJ!e?puPSgVXj!D!^W-Ty)?hIGaR4KVs?`90c zyjAZl7=Jg*nPFqnBuwL25<#+A2QYH44a^)~mTCkjHFvWeTqwf#8Fyqx6<7NLm*DqW z`Ce@f-c;-xi3V(~5~Gs4!?Rl~D0#8^bpZT6qjD!&0;E}ZhB-QG2lO5VftXy3Mr?KF z*3S0b%8XjE##>mSwxZt}5R}Nz?>>;QM!tRJRn!>r^Vd@k&A^Pk*nQ*tDOmGi-~|Eyhz=I!nSXCJ!pc{nh$z?t8hN1-8$Ez;Km#60&6jqIiMA)t z9Rp*lIaCaH-|@g38BL15VsD| z7OuGiVC!>+BSWwRl>)60eO)Ea$SkIj-; ztjN#4Y5oJ|l8DS~UzaYehU$!lQW7bP>+trpsEn7G5j>%{PU#VlYm9^;P_{|z31!Dd z9PSEH&LWZ$ym~w2gjN0qD0Xnmn7nq%p+6snKMr?G4KWJYFE$c5EPwwDwzZiTABKw# zUlc%7V^`{U=}gFjuA0j3uI?UV&2ZX}9V8OerQ%*ETq5Bt*3WN4yixB*1ah0E9&;sR zELH*11hqE^*Nfs>O9u1wy_1x-wCRwMKcq+lm z$mI5nVdr#TMAb=g_u?49)eF}u?BV78hRbSb4dxk|gtW8?mnP@V#Q)0!Fp4WsbZ#3O zzxV;AdoH%xmL30zm%}1d(iPp8X0tiVWm9_~Jq&%4Q_6T?ul%64>irsnPqv-`p$@`s zSUZw5Xm!}P2t$YDN6~;?j}#0ix2Zy#bu&1`@3=08UXF|mHa5}lH1x=Tqg&>MxKFaU zZjRbt**5=^8fhhVhT6=LU$qmQ>084swI<>l8p9!adm!T_ko{Qtqj}6R#a>X;;zH@- z46lL}Eo@ZRk`f`#j1q^hiao?(rPnDi0=BA`TPp0x<~FE}Ht6Sh&5usPZLTRnl7txg zf_PC-T3CMpmb0FJ#JWm*YVe&c6S(#%8Vd_EqpQosCNBbd(gndP19)FL-r=%Ut3n-Q zNaRTRzF_AK7C}5bPo9}kR)6FS(B5N5B#M;!7i0GH*xDC@u14(~w|h24T_;fK)> zH;)%r?oST)FVA``327z^bHh=SANu>eR|m6!cp~%;%*d#S2=#8>eLq;Vcu;(wmiMSV zD2bnETTx^nWPBtm2AM-RnL(uL1eXa()U2BcmHsok@r8X z>@U&kP|jV_j`R3BN$ob_4Mr_i zMkVJ!$PRWIR9N0D)8Du#8~ysAVLq(p%IrKGWGmfrorr(i*^8&m zAeTe9ROa8)61h+|Jx_J*0%UdPbQPD*#oe{f=F*AuSatjjuZ}NI4#WmzB~qQXN!i<9 zjK@JGEe(1y4JO5kkx;V(qNdonp};8+X0~LD&A^*`VI$8+9eH#;Cp$O#7>g=-=3T;> zYJ2oP>x++hrhPaR@hNDqV?D;aRIaUE+&wDo#cnGoyuB|wwD(3Y>LW}ERV^qBhnMx~ zMF@kt=IsZpUaQ?jktHFWRlVJiDgEhdDm4wIto9|d%)R?en2gh zrpqvodkgVX$ll;3ceAkT)qS)rZW0++lh$LfEc_z^ik#%Uo_b6QkY~WqwLt3t-9q|B z?i+O?hOBmjGP>_#k63=49EJI-*ZV5j5dU35T^MiAUKhKDPk!@jC-<*IgG^gWuI%yO z^iEM)y+W#iSz#5}W2?o*b$ZzY%b*s3f#9SPR^O4yEtsbEP}S6n?y!d?mN~{mw|3U}gDE z^JrDEKp4-p)z=Y_OeloC=s4}A%*u+_>;*JAJ# zIywh~fk=j&UE}_+=BSm!{cy2bS~giZAG*)%(bQ3t6}?p&w-rr*sPi$YI8O%-`JXeS zf3aDKaQnXwM{PuWu8a>Z@>Qk&9+l1QdDKE{9p~IO!ND7(K|J}5oYGWE?|L+BJS`LB zz@q4JLm7hrx1e$s%mrCH+KD?@r^w!0wSOz}@8|Iv&cGoosK{;5Wp66uoX+IwhpToz z^}Yjo7aTRePpmc%XD(U&$=)uPUHt%XL73mnXj>--hHjZGrbf94x`v0TQFApinZ{8y zE!WX^Y0%w6zn6uEX6DMmvbb4sWo+YN zgn(@U+?;G=6~GJ~wlNR<{3rzDv-eGk%41auH5-9>OTd`TQPdIkn1?_oWJA4o+ME3k zeUsidA6o**;w;Q6tBNb%qH51~i9Kr51!dvj$FRL*!xpe$yhJ0EPr>JPz)1~b4I{2J z1k}+wQui##q=Kz7q!!1*v|!`(hRmgvz|{}ps8%xl0$NfT@kY*^FRm3a~u;*JR>f&S7+tyP7^Y#E}^6WmVW&VFOrMQ+_L{QPahi$t=c4A?g{mw`er&Y2fy+(FRBMui+qG zCj^VI&$z7j5dmF)LVt7;F&tRD0`Yx|LsjGsJJ!kKE~nx?Ln9L?4l@FK5Wtx4O28HJ zmx3MTo9z)APNa_jNM7DCd(pzaKr?vs6BVBMCZUPZ=rT_|ZVVeruVE{IYBfb`b2W0I z>CCB#@NR4agCX&5Z1+y=9!;dvUXH0i59B&w_glHE z%$z3sVufdmTDT3sVG8mZz>qjnSdAZP(01IpDS{<_AW618w0FAi@iS zn%|}3W+Nuf_RIp!u7`HIM?B0oPWf3b?w2j-6-T%^H3rp)2y4U@%Z{0_BK4*M1 z*nO`PKeu5fj17U7FMgV-T9!9L#l5rwP$YbThSshY^zEVbSjJ*4Vl?a+48f^h!0U@2 z9Rk3_CQPiBWx^*xuqfE}bbNGk#BHxU{s&hI{j-1!vZ*RNV4Fak|70}nS9-9+L%Wyh zJ)t$tA}^OlxpQPn$Y0WY76bLD+4y}%nM_$?yjKzgHK0wB=RMaf$NJj z|6pZzaYiM?z=6;bSXS8`_#~VrU+rT?(o>^N*}Pd7guQIjhl_sWL8(11DU-Xy@Dyc_ zXFil3ZzU+{QPCc(obaB5_;=9jV6wzhT)7mV+hE5(wj^~)O(xs=kl}??yP3(kzMwF< zQH)>Da0n1TcE0p-DRfP(caY4%Qq5mn-#=``&ql69{>U&I zF3sqgzS`MaIXcrC>^jqTE44qb%hT9tx4I4)5{@`lGXm-nx9d+(TLp`TRE`Wu6^lh9 zECy9}ATMux%}#OM_BYUWf&~AtYoAjaW2ftd)X(DOd0|MkqN0ad*XR&6^2(}T|E0*V zayQMF!lg_4CXaa_r^#LrJkji5TzGJF<@QzA_G9P7V;N+-Q_VF76m_z`J%8b6|MIfT zDqjq)G)nHwOyG;vPco5)J9ie9a$o!@lS}CofQB0IETHhJYsxB0Nl86xDn;_;y1>g< zUDa>v$8%w}zF4-#YXRP)w04s{rS$Ecm7knd2#HIUCxT(D`9h*JtuHHv#=IoAk$C_< z;0DNJDMJK|BhIwQUj3mp-cCLMLIGi+II6=QXnIcx?w5T{xWP6Cukee=+?nwHrSa8y zSjQ+{nFgI;F0p@ZK@xyXKxp};XtK~<;m?=*QQ=P?463?Es!qh(S?XElR}pCJ_swHD zGF3v`Rw0=)@mxi+`H?YO zu^||pQ(NjT%?Q0S_wsc!oB8#(ZZoNP3?XtinZ{XH6}>}WG9=z?NClGy3UEdn_ZVJ* zU!Ojm2u>HOYifyM?IkFFxAb{;Bul!FVNSBSOOMxju`w2Fr7sj6<1^G>G3|37Pq2O+ zc`IYQ6i&o^WPAPL3JPaOaLU2mHk*H?tM3D3F$yiud_d&O{k28k{u$buW^Jw^w7mMb zvGf-xWiGk^D>p z#}LJz*0HW`+@CVjz8EP8J!DzGZtnlQ0M|B+QjI}ZuWCuk_MIhW<@V;TYgaoxp~qd= zU?qsp_zPx6^2b)Lbyz4`TU~%)*?T@7QXwapdTV(0(5zfyiNS#SPNW`2w8#L9?3{kE z$SlDceb$!SYQF_{$c9};Ai759G&c5$h!--u-O%{H91Ii}hkm)6xcZk6( z7Rs&)lioRPT=|P|QwfPV^83Mf+$Q0Dt~_6V*cfiEDSCbyl=8qXdYZ(RE!wmcpRE>B zRb+iPIj69C>=qnei3r;}J9O;ZS8Ju;M_yv>WDnq>suAGTgr*}TQUK~eH1RRM{n+~~ zmCe4n;b14PDTFIL_)EIvfjUojR53vLk`x z&N^lZM`omIy6b8d7b`sF8jxj~#4IERjagb{ygE_r@8_BUd+EB)Fhy{h?cv@`C@Fb` zSCZYnJzgd*2)mmVWg2;|d6&yg-0r(u9M9}yo^ks3@j-{8^6&q|e+u{OU(A^??ow}} zvqsHsQAwMu9_13*boz!{3?hTrT5Dmb@>1aOu&@~2Cte=n$3`s{ z)cvQua%Xi^W^dPc2mg2N7w+QG8FgLDceP@NR2M9u|T;RhWt07)e4LGm8kI zK-OfXL!S*8p?5zG$QiR&Uv&hy#|J1{Co+17E7!y%LNBo^x2LOH7waVzKa5X_e*RH% z{bSi(b#IyrSTXQto!NQpd(P`YBi&5wyV!++hP_#$Iwkur4C-)l`NRVn`3>>5{E&|k znA3c2qJ)%|#gQ0mGy-)XE5|feaKx@glghW z{0=j;4p6b*NL{!20IQ*vO79D^&xX% zE=&;AM#+V1J_9n0ZHT=+E5ELEizAY{{M{>Sxb8Jq@-uAxD9YX5fs4;hf+kip5?bT1 z`BY}&1^s>!EO7v}mja38%U8tUP*DbkA6365a{4=`c2>wyjQBPCbNA5v6?d2~-MvAr zdiG>A9XcxWC?Pc`*ZojctN}!{S3Fq!{6(@xMSv}I>(aU|HMW?tFCZlcO2flo!>#1f z*(SFu4=B-ju6UA97O%iJ{$XyYn5R>0P@^$gssTKR(kD!+svCvW(hb)p$_L<7SF}`R z*ap2V)u=-J9oF0}@YE|LT+{Xyg{x9_DdaSHY50nPfCz)B>`Sc;gHOj7EBqNm*~n#% z$5Lxo1CRgW>>pL`;z(NelM^0d;IZ@ok>x{Vb@P2{D}jKKJcLH8;U%{qlCQo{ML7h- ze07_5cS%XfO`$2{9XoW}VNcmdbY@axc|-=ay3+sKspWSv?oqQMAw*qFjEs$Hw@v=} zWwS5E6rJL!!GR%d>5LJ(D0&8L44_+xyUBL1?+0Ajjs+va@o$Q&!zP!mh@D6Cn>?1CRzE1NG_Tf#__~1J=(@A%f%;)V zyuHUohh#4o*P){%3&RU`_EpCb>mB;0ufH}|C)WMox>x6q z)qzOR4jgXU^>=KRF!cyZKt;vL0I&^|dp$QFaJCKA_0U9K(U zP-@(t#M-al!n`Vl4nGV@+r;0HWq%n6gb%1XH|UJ_wzPj}`UC-DHUNowyE)}lmahhX ze+q&M@CnW^XAMnX>9P24AX2eLH)`cy-tg%8H}(^drq(zVpd`5`TBN2>EAIaN{_*)A z-|nn@k2TTn_E`J@@Z*0Je_VLlWDXYG9w6T_t-r1T4SE;O6nL@tol+KfkWumr@R_r&_mS;BEoV$kmtDk^xYs+3^Q0 zwR4Y}fMFjwZ+e^rq!%jQ6_{lY167#J9NE+Htx~&fE*FE^sNzO>2|QD}Xyubk)N>6_ zx0Kl5H5*ISDfI@@O@yCz*HUh4E$r)=YJAQ=qMEOsl-2996a7BoC~{B)m7JPynBtY6 zCJR+2OPz`vg%*6S*+#4V!we$yfIDqtT5N19>k8RC*0aGOfr!nm|A^fq%`Uku$`DW; z&c?3?g_}59?RdHBB#+0{_m`*-M>vR(>pM3C+xtGsjaz7q)bKQgf-j(UQ8;Zv;e3_% zF7?<+cX99Vvzs6{&Rp5+Qi1B zokL-Qs^bizBSKJ;V{R|^;|*#@eK#PeVBB|UNEfhK>f-zA_WD*x1_P%toEHi5Z!8gua3-e~`RQ$h~aEu|X~#A(*+ zuP6 zH+zf=bcuPCP>unv2(mqb+fC=2T3aJ*ndWKoIUU^3!?tRF=5Vd#SO4ug3RP=iFV3%y z(w=bIN?UeP2m&f6xb5^Gp&WAu2Kw!hI4tAsE9^=NcJ2E?dWwxcM%uWgosPC(sQ_dc z57FU7GEQWMmUB+Y9bOvBTp65c;N7<$1$b-A9ii=OQw$b;juJL|zObaQDbKnUy7kal z(hw8%v9vWol7%gd$%8K7=TH6wh!fElx9y{~ievR2q1_>pRpI{k&#KdkZXF=1okF6t z8F>Si;GZ)C4j=%IAqdSdkJqx8KlTQ-$rRQ(X7IHgSE+^e!6L{x1{bRrd^ZMb&8?5@ zDv#8e1L3pjuD-3F8i>a&1m&(=(PoY z;OacDva1R-vNQ|y+9!dCkzD&@=ZY~1m@Bn0Q8t?f0&fghV%~-~r7B5QZN$HyJPt6| zc^*`W?%inh==+Aam}F@faO9$~Hd;bdGSSTL^3i}aEG&>wSS|2JI)JI+hO#~MXuNbA@74F#z(#r;M@wwnn`a4ADt<7$xVZD>&634_bPV}_p!|>?9LDk8ys@KSa0}AMl%PTcSZ8$`02;P>6#vfV*mp& zGV##C70|iIQoVKu{?h{Sx`^5N;hu_(gqJ{cJ)|3N-|MWrk6XC*^+VurzzjUm(0-R5 z+%IlyA_ybq;mGikFZst$A{6n1*)_~h()o#W7QsP=Uq>yTy z=`<-6=7)!gq42rFAKn5He`tThCGp(cJ5}%l{%oAs*?*c1L_^_~8utqS6BE_pynv?t z4MT7U8Dw5r8km2P67)6!RM`eOQb!&yq8~7-Q${IX3ZD2^RTE_=+){F3pmQY($ntqw zDJ8Ia5f9B@6oq%l@%J~J>BvKJ3%R1}@AV2Gt73$CI`NkeHU6S88(1Z!6UXzpB%GWTH9qN}+{Uis^j zKnrVyY35!Qv-kiLB&UhRLFUpYnn`##o4>zl;eq0n3E@wLcgB^_e%v_&__!;R1BavG zWcI?qIM1rMkQDHQ zdmC(d#jsF*aY;L6W@_oVo2IABaQe&YjN18_i_3)$c6vkt2`TK2CIFp0xb56}~s`6)c4-8f{W4TNdY+zIGJISSAc}pmRSEKI(76`5{r%J zbl(k4{hItbB>aU$QpKeijm~>hhcj2YGoxlkh9*`;QC4QTzm)@-k29=rHooLZ0Zrhq z$8A?!>JZn?@K*EPBhMwM*ZpksSiQA6e5aA`M5!;;;ESzoM)&z9QM5;lMzbinj+d{- z>BQ0LlG5r~$R^XF=5;AaUV4SFWtXGyPse-x!9U&p{9=-MtYK~VQfAcf9SdswNc~vv zuk^pz*dh>__0hf^_kzC%%#P{FO5bGJ(oU@JOUk9JPb$}_FZEV6jowkc4*k$TQu>i& z@|AZ6r{Q+qlF<<3zOQ)_s-< z>cFYFy8l_U1^K@RL^d_{0Kvj)f1+Oa>}Hz4UVj3y1<{yS5BSaS{$bd~8jI`G*)Oi> zE{~YZ>jP^3LFLh|nv3ULVCdz_4dvU6~e*=aoF+n>sgLJnqp7x#c?K+|E2ThYlWx zf2YrI^?Tj?Oy+z8=WS@!dp!fV`Ni9JRs_D3tAB9pjr@8Ttf;Jjf|pQlGoF^?OD%OP zCJExb-1uhZVY6c{6nLWf_gBMG7=Qv?%6g)`x42?Fupj75(=7n=Y`7(3{OGrfvtuIS zpfn4JvOt*^>^MMpmsk3?Qm0xK)LG}eQs+HDjW>InEZB=9UAyG@VD7vwCoSv_w#~AH z7nO2Ifs(@5zTN>i>K`#=%EOo@w$y!ru=$|@YHpx^32XH{pvPpTDsw*3Wbt6^8!pxi zSNn)@6~#BpY9l;CN|ALPa*scH-+hkNR_dVVJz-Sx_eWwbTOwD}-LPE_nl5{cV><+t zZEa=I>bz*RFNov^dfvO!piP>|>khx*?D@x<^O1)JDE1eE)}YR|t$4 zbgcF(v$qIzmKmv}O&zNiPijSMg_F+?ZF&ub!G3JbDX-3kkfb^jZ+b0n#~|}MT|om) zP%^`xYDXbe9&%eTB~2(a(Ta(R=Hm9?NnbbPi6pzk3+T8s3H$KSEYzPu+nkM!a-?Lk zKJ&n@&Dg3oZd#d*pRRWjaYxKhHTcF;y{bfuavkBC{8plXY2MK)VA3(J@^bZhvQ`}H zpy04eS&OCqDx}GQffw-?;er{O3s?DmF&5{Sa}{fe5DAo{z1oc*FyC-nOEipl!+*Q} ziIH5Vvb#vjA?a+Wcc_J&C*#-oeLhwB@>VSQ`ln)IKH$B1!xe#ej2iqCLlHhHITf}c zD6iDuhg^C4J#dcttlOzBB<^HhRdM_6qmf@c^Sz~CeAQ7aiZaP*v&Dbj+po{(9z9w& zY42__UN>Dob093#vYV_b7$jZqAP@Lsmdei!pNNn- z-%}n(!Lw{z@eq>EW4z59>BgcqTG1%VjJF?33(0koW`(%Iv_*G{uyce;i6;AnxDKj# zZVK;D6FW!~ERHZQV3k;qzgU}_PzP?HOV@$3dLYtUE3u4qAY@aMZskO3tZ(vc-CWw4h z>bvxsQ@rv^GE-+md(NwMSk~>7pdSHPCD$C;Er%F6H+B$9)Dbbvb0JFV?7aoD(ijgM z!Tu%I9Kum(H587kTRf^`GXEoLX}o`--ek3Tb(UABV|inE+UEgST+;ow0SFRM%egfMV7LG~{w{Th?=1-6+A$rM_F4C^IYZEqLHB|GK({iwU)hCcX?6i3UH9GwdA#+~)sB)3?Vnz5nssEH;&9M;%4kW{QyLL@3Q# z+W00p&2o!E9om%Zk}%A%I#aVkg`||4+*T%AF5N_Pi`<%#%AHB>=JI>@d;ESq{EPo-c<|tXgRztENBPzTqk=*l#(h)( z)|?S@nNt8Sjt<{azZ({W1Sch|`EDp6g?FZ#F~Ka1cf()(hzY*s3M9^3@lSX9a5T`v zK_Ck9qn#b8W;bE&EVYXG5E(IU(+%>xJ;zV4i9QZyu zXQLwurL&Vsx>x4=@_8_Q8BmFdZk0}WFwSQ+4j$i*ULz53N>2J4Hr~U5dutrdaIIiM z5h1%AkqV+svYhh#y>c`!%R?u+fP$`iCpjKOoVOo%A33ybukmZT^aQ$2Q0Q+6UL}wU zG>{oj2}FT>f-yx+^2h#PuP#VMg(qbu9J6P450Gcy3Lg$tEe#A09-IysHSajk(KT_e zY_vz(BOM#(&iTmCaoy-V z@%l-ya~zWAl&3w^)jSN`+(&ws$Ect`tyeKMvHWw=obPZR2mPQL}utr8@ES2~Ct zS7ZVvF#(0#xF79KU|+U9Fs2Z4Q2DSLt&p3rHQP?T0t8R0mU#{ITuu#M8_T>pmD&kd9-t`yumMea&b~*JP5oY{%$SHOY;LEk)Ac~60qq{2gT(8 zQ}pL=CxpL`Jr1imn8p@S@txO~V(!zstQ&ksjvsWasiyQvA?fUFnjl9w`TRbQ* z1|o$6Iabp;zQB$&I@Nz{RZ>cX-kqY~61s%ef|bSNW)wqVN4% zOWR1q(&wZ>%L_neUl{eleWcNvV{PC)sZN5P=&H+LfGql$$>MvBy$g~mQIPb*hPL?!$svlAz( zO^>_osl4e{a2Et1$N4JoBwBsr25F zWTy$mJtxv4_ouH0cyIN{Ts3$n)81#Dp%?UkDDeUGNXEmY}3{8e^%jZ5s_&+_@0*T^hSUeW*gt1AQQJ9{ZQ?NKG|B8g{o)OD=Ov-ub@b9QQ@qmfH%VT6?R=SYkWazi^Fv$v~Weu3Ro*u;B}6HxTHlnIy-711{&a2-2KE$UyaC` znz+82+?yv-RpC}lEZB&?F#PX+Sg2kSE?gCt<@}Hhir!g=;w`O|hOIn`ulWQIH9k3g zH8-@?4xO|m;rb)CniW$&OUdO#i@}6`)@LvEtgb&c-n@ejbD?DAYMa4c=>`06PLdR! zT`}f45jn0=!mM{EQZ*oYx8r)2R1DcmGzy4w_C;WloU~kDh!eTtUM9o0mX;z{ z#w3@QUoG|h{V}@H_@Ss3z(d~gw#Xay#GoH&;H%Z*63GeOuv<3deWd%wu+)StCV2JN z;H42M6aNQKf@A&y+WJ6MLcMvK_fk!g>9%c^%QD@{@#@fye@AjbkVQ6di@1Z($~ z?+NgU$OH9z7~o#^;h4SE;Hj%>Sc3+U0-&A;j7-T`kk5(3iB{r|z-oDwoh#i5g^?cI zJ2nX1HbH;Ni2IXrkM8!$^y^0SnGweCj$e=WeY zv(I*iH(I`OFM{Fr^$}o8_UZyPj8hslaSsh-ypopw>0h#pCRl-!-r?{wW`WaNPx6>L zFItj0{tM@-7Ml((*L3K5SM?O8e=zNdnNu9>F6x-ZT_JNIxvG z>WIvaozUvdJU?C`UabE6ziWmgTKimB=&K=2<+aYceyI-bqE_zy1}7+4U4Lr8({sW3 z-)k8=O9h?VQ`+AfJoEXaj~DNqlS|KLB)ogA6^gvA9gOTmUrjKx_vuL~Ub9IHw|mp; z)D$}YjXkQ{CPXJ@_%&Y>Uv$1T0+%EiTRGp$puf)v*OeAf|b(FyysU^Tbra`hk3 z(H~G}viA;Y1$Rj;R1>NPYM^?%(Yq($^~u%ja8A*cU!TrZT{>Wzu|@^MB1DKIkN5;5 zwN8g}FFCSg?sEHSc;ez@z)k38Hh^9SQ8~<)c51zQ&D9_s*r6fVI3f%t zS!e`oS-Wmz7a3D(k|;ybs|mtz_Qg5itaBA(|4oV7;wX5nf}`PmxW#rTOJO2d6%9DN zLHm-Ic*%a+0e%A~XX(leOG};-S!kx#mG&mcD{(v`!OX?L&$0&XXUy@(qg1qWi?zex zbwPS@mnNE4rn652X#v;oXG5m{Tx~Fe5d`vQqkCmp8Y!ET>iKWB>FKr1o=jtdem?1` z_Evu>FiikB$6&)Thm~Z@zkdDt&-=>4z~oT_ku-wn_n1Jy`~BXy`PrX!5Ny?8;$rG7 zRLGqGgUk<1P7Y7z9b6v!O#x;*jowXS&%8Kuwp5(bO_f&q_8#2N!V-MfNrBJMwq!2a zyCcx8F;m&zy_$0_3~WO&0}y(8DhW-BK;b>2y){!`C! z1|gqPxN`$y2nh%~QB>nqcp^))Iy0&)j(xIYLV@-*1zOuFMW_*isr3L#M2!{vIM zm!-yOg}{r2)zb_0qcW((ZL}k-akG}~=5gf{lzur?w-R+ZJa+MCTUN4kJk2lkI|sJ- zH6K2cnj*^QmqiCDUYIP+hjpDJUuzZ_o2I9?4u{1ul2{ME{AL0SiQ$Kd4Z!HUuQw~b z1P%JI#qOw|)AROPpJkL%mmMn01p=z{3pfO*5Ny zGfj_{mQi*0U->ne_T6fbv9huwcHSd< zXoeuxy_CwGjYq%i-SeUL1PhH-vJ;0I&&}y7<+XN25DlPzXymnS9+KC4rup|;{QNDB ztZ1(Eo*nmhYZ8j1%l8+JF0^h)Yh4LF3_}-}tQSIheK;G&^MzumC7n8xS|pOHste5q z4%Ybi(tLM^iA8f2JC9uuHtv_nWH-$C1G50Oo64`%vpvC`{vK^Y+8-v;9t{w`G9C?Z zbJ94zch8?b2V`-v-z}>sp$bOtLN6SXajl;7BD!;N zQ|YVc46%P}^sZF&E;3>lioUN<{B~lePZ{Jo6AiHDK`z10eg@bu_?pWb!tije60i&? z1tSUF@Hq7$BzQitd-Sk-j@a8@FEh8_cFW~oLOp%8krDfIx#PKdXyeYD+Ui2S)j5W? z{eZyu4niP~PSmguVMt|k-?2)8iJ>OR#}Iof#n+E$@W$e$ltM4N07Rqa=H_$;Bb+&8$i&~$LM?pVw#x(9_CwYl8*Vg76vX_Th{ z8GEjzP2Rjkk5EEgi}U}NXi2A)CBLQ*31up@p`A^(N-EMYF`cITSVo^qReUuvbjq7) zQ=O}RJF<7-*UVJEpzKktj$TkMn~UV(p<(z=lHY*EphWUW=IeF~L^aOmd4;l*rgpAT zMHu${tpkFU2}#Wxc}iXoYnoyy3@+=sr8#?<^^$rB=(=uO^vL6^|5QG)<+C zCwDi_^)4nCMgRJgCEk;iTM412Y6_)={QBYskBGB7LwYT9*t=D_?*V18Dx#~=40i2y zXuO@Q;N=^gFJ8~r$=3gdnGucxv!1zykn*Lf?B!P?bD+rhFdXDY&54#%5{p1?X?^kr zJVUBN8?#5bkZLWE)IjfWFaNVdg9rKdw&|9QW3OtHJ59lxyO)l!}tes4GivtuVix;S?DvuDJ~KO1UO^zs8; zAF)0QiNx7V7206}qpQcEy(Yx$X7xwNEYi{7h1LT3ul){zyQk#0$k=uvpo@H7agH;9WKx(uJ!= zUn~o64XPKct9~rbSA%UrL%unK$;;$@>3wJAvR@MwCt3O#& zdF=Gs9QMTw{1cIRODCO!-SU0YHFkaX+``4!KQ}ksIF_6r<<%Z7*9$39L+GM!U2{t{ z{9ib@>+Lf2kfK~VxA{K3D=c?m!DPZQAzp)7_<+xOpNgX$eks-AXntfrxyyt-5tr;~ zb*9|Gtl2%NY49eu2lO${P|)E{6{!w(4>p*ZN;mwUvPOWmE*q&O zd38=t9bl0^?;mRIB-EJOL;Z~XK*OmXo@sRwE`>V!V2U-sZwTzN`qXNzP(ASe)PmXj zXrP*dtl)(-d=h+2u42FIc?3D-VZO+QfIeJ%-OO`O`czD0z(;$gpAAl`(ItCq2da-5 zM{x3g@pDDnVg?Vc=Jk}7PZR>{{?gm;qkne5^!(P5%vJpA4`O$##zEpD9e)G4$YVY| zsN3E<;@;c6(m$PmTleh%1gedrz3%`b(jD2cL0qErB)vd&)DJf zV_#Mi_yx){EZ$tJR^`%h_}fNZDiBnS&N?2=u~P@8f>Re(lbEzny}Biy832aR1YEJ5 zy~b~fp!2R&LZg-zDs|O()}hsfYtsDcJqC8}5#McI2;<*X&_s=+0%|F}S_gc&UwskV zXsvNvNi{(?c7C_?#xc`~1Uu$^I@$h>g-;Lf(gy+Zt20TB^1<-XXW{tmMjfxeH7dWM z5xY03CKTKK`@e7-y>my^3AGV^FFCBEO#d=8malDy)AlWPCcc!yjq4&saNl$pruAmogT5TcJ$F`1xE@}yOSU~S2#f!z_ z+Odq*VHi!CrZFC&P$C5~46x5H!02Md@It^3HXMh)?_5?ACr@MD(ijv!AD3@>xfO*0 zJ0FG~qQ)HCA|vVj?INZ0YmqGyHt-1DW2k?2V{zH9`XBusx;83X*Y%;mG7iHI|Q;PKY6Mty31_ z68)_9nf`u%x3t!Ph7t~7!hlvLz-v8akKS)*-)680KlyJ%YwO>P#5c1sk-?VVipQs3 z>}mq#VCj+zAaBE#kv?)7>d z5Dae(^sFJgf5hT$6T{FST9h@7wPycfMUruL^LiBWj#t~>-#oSQ+}zyg@UwMgd-h=Y zKqYw{Mxn53PSTp9Ex&@10SZqHCN@S}`kiG+3(FanmyAb&$ND6V0R$LonA3c1V@*2- zwRE!9%-&%H;CCMOW+D4FrCRIIHHq!&Xwkyy`oRL$+?k>nATAxLctvd*87w%lnG&O<5$0JCmsTJo?^_+k5h*>JDEjLMz&#jiUR zwyWQYs(|h7T-EYm>CfIe%3hv3xKlK0lwX~#_ zQUurn>wAJzSOQdAw|Kopr^=Pq2!=GMsx=~<5w75ilQ(GjCal+bXSc*Vs!)3>eSX>1 zs>!>uUNQzI$x?qe(Pi=eap|MLZ`XA+%+hAARKD#IN`Pv0YPmn8uH@OM)t>zA*OHQ` z_<{MFyxyg%m6@vDCpPwxHk(RzCXUPRh8_XWI+fbs@{gYbr1qr(#OJ)ev9h8FuDk(H zw7v8aNFZa=@Yvc4Hk|r_Dnmgkj-~CTPTdBop-JlIBzcN&`7G^9oV{k%}Z&U5Fn(N z8z|9A-9qsFWb~gK-?ULJYBWj;^WJJLOi#nEe18}&SES!)lDb-4t2eX1{_>Lt6JTia zef9~Wt=BFPmX+Dob2fUVKO+TYd)Qdw%*thRIE>s{XW|eQ3q##kzW??{%wpGE%>2V} zua|Xj^1mtN#&=TW+crx8VaZ<20d{g zv-4W@y}g6a=wRfI0g50+x84~}iX_0T=}wmyXiOHC$bz(Y*Qjz#5TAn>Q}?hUsm#Ss z#Tkr@`3~1=_l3ntNp7QA8ViR<@Vov5(q<&Ma6IylGh!UuHHPq5@s*FN_t&6(U$l? z#G)Bta|_L>JX+BxN+UhJKn755pi~yQQE1l*#!41zUNq;J{I^LGdgYz zid(^1Cf$Mke&1Oufq%JCMn(GpbB%_VejQqhHr$ghIm)`S2H-W+Z)%AgL%@00Dr9 zi?kD}`8cuq8ggW$mXMR2%u%GslRTXDXW3CZqmR^XK{O`!cy%%`=o%5=t6o@P*1-m$Tc1rg}TWpA+4_ z@M7n;U%%p?jF{Oo{6V$&-=AI_|CiRCwVD2XRA|*z zy9ndTBuVYT#e!q8Q={Gsma&Qo-RPCa#_B?)ICUTJ>MHdrL2*4innY_YrbhsA6clI^ z8NN6g;={?I!k}V+h2V8Ebe#*j3z%l<>d-O!k0kL1E7v~`nCh@-h3`_6t9h52gw?!# zTDyJluk@7#TssRNq!z;C+edR1vd=n{P>+S(`1~=;B!NZKi^DQU)C{p;Oi*Ja(21hmf5*A`f1lHaKPSdKY&r|LPtek5s(w zUG?d;V4PNmDidm$)quz2nn4q)(Yr4o>SHsjJ;|M~^owz!`aOSKKtNQkYR5$yq0{=M zy7#K)y3#XVGxfVv0D<T)!kn|+xlJ4;85Fok{}sLwYY%b zR@=WJSkyohl6&7M;gQBb8aE(=0Wf;Z;WvPeOM7Sj>n0EdElD~Q z78+==J`K0o7oj(Ko!)~|g{bY`FgG~ded=DC|K`5I0@|0Rb(%C{JsQSQL#@!bNAdjN^10A#;RmfqE#;?Y%cT}4HDsw862XIf zE3zCx?2;M!=>}o-?zsaOW}`36nQwXvQVs(fM^2^b z6BM=(JBFhAHQpZEZ9&!eL;*8~uNy(Iox&J1Nmx7d0QeNaooY)%&8cb4eq!-;eLp@rIe zKKuFk%Ehk?bL)a}K<_RR;9!GH!OhP82Y{L3hgtW5#DCYde5*W7@RQ$Y0)cuB zy+b1rrjkWq?xsrt$`lpq`Eouz4&3Dn(kOo?gZp0@&(HQFY2*~!U|-*c=O9VOqgzr! zvuh;DxrI>d8-S4t*sa62G)$XJ@og`n!Ok~)Z%7$>&ugH?;lHdiV`-`(0(vc^dV0Uq zYX8T0xUW9?2uW=#LF3Nm6naOdYz^_OeP_>{Oo*$NC)`p?HtY7HfM|0zTYjA#-76j~ zuo`WOQ3M^W8Z&uSmc1)fdfv22Ua=ogmzm>%RPh&j8Q`a0ztSs&S+nq{sx#FD_*SI# zePwXmXrfR=1I;^|Rl#r7-b2{6oMs44eK}1k)9DrtW_m7oFH5TwNlm?+|B>Mpe`>g} zpuu_wLro~m1T=>o8@H5HXI~siv0MH*EkS(l)RX)$U!_>rI*RjI7Km#`C zV`s-vF4z0RD$~z2(u2~0EdP4{YNPV>b@t%1- z@uG;o_%WzVssjGNS9`Y)7uKo6p3zdD;`2TLM4K9L#Lf zw+hv|Agvsi*6JkvFNd$vB$-`aRjfu%&1?D|*ZFK}`iO0&sYcew$>(ZbW3PK}!QGl6eAyvUn>s=~r2r0Uj!KuwB`Cs>}0pykW9($czcK0u?e*JI|C=^yS zX-Lu=c?28T=0&lvviEaPdpcg;1kY+ZH^wh-3Yc=GbeX`kXbc=$5Wr#D?*Yxo_F7@o=a5aGQm z9Yn29`NxWAcOucH_BY3Qt=V{WdeD3S{wwo!)Pu{@=XGPh8*RYr^4IZdw1i;X8-a#xM5*>F z3H4mwL{P#Rl!eFAJDcwiMnyy-CE-!AmlxsrSqj93IM5B)R7vLFSb{{Lq{vj*nkLa# zzezf796RRA;S>`&CC0pNueO-H{4ZWSn)3K2XqQP{gtSw({-uq1Sc1#~=|a>3T2xDp zI_7`GOs5^>-|x~5q8o3&9mMe-X#WF;VyuYwNTzKATVfz01;lJe~Q#OM`NAKa;!+wl} zyq`a1WSz$t&dI|uhDxTt+BAT*n|RWRyYSxb#akR z=t5)3H?%sBgTrzCFfbA{SIHLu4Wx{YH1|n(Ewiv?C(w|3fUH<;1yO@53yc-{2k%#A z)S8pEOdO}WQw0~iJIxFVtPto>{bIL5x(u*-Sh3WLNndBaNehuc!%0y>T!NAmg{I+(P5kg_{&6XnB=%anNl+TBR*37_ zlSYtjRU@~(x2q+f5mFN7lZ=NI$e?;%H3Oi|xru&=FAoQyy?LBxfqrpz)DzlZCmFG} ztMPx@-2*~5!kyNNj_gbTvGn<|Fr;VNP-~i4(Y2rB18K(#bfomp`&W$8SaC)Y-<(7`xI(t2cICS}r$nY+76rPn@eS?O{ytM+*72ok5m0 z`{0Ksr$ZY<~h_Ks>{w2J7BA~(S9_Ur|Y70UQiZs!7 zE~rA7#x?A%+L3op{(wN=9Yt|(5wQ@~8w~tSDw>&#j3*)ymhnt_UE081N-6NS7SBe% zFUCQayQr@ZfyVEw64_KmzWjWVk^bEJe0Uoi)3<%=hN5yB0}DF}r}B86 zsn1~2;WU}dlZ?eb>D!yGk0V-l1EfmE@Qgh`b;}teh_&;sIFq{c=woM|eoV&U){5TR zCE-R+#XGSGq}+I+NkAc`u+$X=*_4F-bd^WKp{}BJSP#q`0C(l9eI7g#KSP~2N1g8+ zA{CJ~@%;ZYas!VG2U3$hK@yonDES?A-skGg5&!>@7p?|6+aq_L1O61T+ zoPV}c-e9^!ccl*W&dI%HRWUPsKJUcFW`rHqvf3T=s7y9wBuOf7f=(3eec8tb%ba!~ zkd{0yPl-2w4efWT06@26ASv-?ldVVSy{5tOe-lW07{pZ~3QB~M1Z&{ru(>C{nNo0{ zxOruAo^!287?I8L_eK&{-_vNus154f+;8sQSK}}PEe&j^7!R>6NEhE z?%jd5K_vOvWWk0{fmQc}m^JS7Q9nu^1zPA2)WCB+zQgJGUKN#JE_~ML;F@P+q*s6I?EktFeX#m041 ziiI-;T%mT01!1CcHJPG2j@3IqesJ;AxeX!+PQu?Q5$Ff&aan-HA5z&m6cqALP?*0* zM0p^mA)+hV*DI@$k=Gi@Im)Ah{Czw7)&)7X6VbhlB2RsZNMKUOGx4so^j|0S|ToBoZATsYRd+BXq9?Z&PaqGjigN_n6iD$7q> zs`b|2r*Q9F1?UC4Ss+Ij9P;)zA(q2Pg;+OB9t|`vQIpMHIuNY$Gl<`iKtO$?$+S8^ zdv$1HIcp+Dk)gZX4uc~kRwI-=cpIXC4xTX#C$X;07ksUob(C43RR9l!`>{Yo_>c9NgXmg!+^e@A{{{H^Sg@t}| z(@?T4ow7*=^6!N}{_06xLAa@o<^}7gj<%X^TbWiI%p8TH&;B~?bgBAH(3xnZPMptPvr3zP{ z0{JP?(=9w6@Dx+X_Q@bkvV4Mce%q$z05J~4AAqhZ>yvr(=SF^oGrvM2FI~9;bY$Q9 zCIu7c3!NB8T&*ekpSE7T2nz9(Bs#2S49NG-1M@l3$H?# z<&n@SEMQ7O)wv`C)swH3@6ZQMX=%++2DqUha&a&&%USb5uD%;Ie9Q4&KH;rf@wf7+ z58-;eizKd+-3|hV2SpK*P8p#Qa09z{F*s87DdU8Bs|k z|9x%A{O{tUlc!`t{cub4=XcmR9}oSzU4J;^JkAuXK|!Dty$UFg$wHzeaF5V%w}4_; zM8V$Ht;NY>VMJA)nXoj?#O-`xSTT$o=I=Ia?-veGfgSHr`6dF%)fEZr0=dYPe7!`b z=O&kP0W(EQOP3<~tJ9MeO&gk?C&~N@Sh;_LlzmGa>@a8!gtGFP^V(|+@mLrU4&rX1 zbvj`Dx8%*6A_T6Egj{8o)1cZdqC@wwBa3RWS zNl3B|XkBJIYufE2f$%{rye?~drxW2NO0|x>Hj(S2u@x<&+g$B;N>GdH!NKn<5y*H0rgOZLG@#cMGO1sO7r;Bi ze3hYH=Z{KoA>pQVycQ$mrMaxRd*1gh7brTsqatIT4~zxnz)@rfd3aN;Jcx^T-H}Hh z%}<3xUnyR9R82Wn4O#WOr!O3-n$kT-WMEU^Ik+o_fu1;cqaBw0Qq3Dh1fRe!Al^`6 z5EfPwNrlAaBJFUP6eUz2It6C;<3fdE@!_$9Ak-=ZO%U)52)Tb#vJR;_1R8kE-hD3C z@7k_&H&-u(2tQ7#cK=Ts^UhbSqCT7e$CistP*BvHEH=vs;({mdgCkk+92lJBz`Upr z;R}9P?eI42aOk~o`HLQCUQ~s9qrl5ZS|UQ>em7Zg%L4eLF>a83mJDHS1tTs@V13!u}Zs9exP7d|IAU*NxXi0INnKv1^ZF-eZ6WMtzu zgE-iyk&Q@RsjIYcqs!&@`XFY^;jRHFYAe2FbhyNXgzt3Xq6zF;_vaYG@fNPVDr3`q z=3&3Jbtp0(iwW@4cz{IXwr;&|11IeubmKG#Tq0Dn7(mK}qLtQ?tlG8_c`2@`ylC$q zI0$3VCVfLRsit$FJF(`;+l-_SH&%Xqn44n&zL>}4L+zBvJluYeN4P!*cBy8}A*_Ydfq`Yr;6cVUE*XgBEf(Tvpo(z8VrilAeJ zyElEj1i&@0sfQK1hhqErl2TDe=H7onx)s=-@S>~Gc^;O`Ts}b7g-+6*8kMjwf_xgo zvd%p}szOwC>{nk$k5#r1iC1MI-7C})NC?W{Dv>d3mF@j|Rj%;N-@_MazZ}~$3~cpO zu=36LQlpiJZSY zPgKUv?92kk9^Hm61^t9kWCHebOysH1n4c?A4;|7TfgH}<<5ZRt!0`aN1FCImf%9S_ zUA`S=-xl!&KWqz*Sz&md4YQ*F|B&n)_Io}%X~59ci&=kxbo^E7=!yFk3h&we>Wc8jr!`5k!11O z1|6Q$O()f0J&%a4em-5wLMO?EfZCPIPj&fwyxFy&#s#h}zP-pR+&U|&z-o^F#c9yY zDehEg!NN$JI8>g!)OMrgKnK4>R&{wI!#j4at>3hP_bw-t>1h`vvS|hxMN|MZr!lg~ z|G3H^s)h?{wBSfdm(20{DgAsyl(8e*5xylkY_|iZlboZdUQ2?r%moIFsYZ>V=O)qtSKtn#TCkxc=kvPX;zurOH z4o2*N$Li0C)rwXv(7#lq5|y?3buMP&<H!?5}gZqmAN;$|)fISe^f%%fRBHqSmb* z{^a?`z;~`KEY7z_jGup`Xp6LYsb+W;=hz*#BL{Pp!~kU^b$fDL^pt;O56SfKm zE=NX|Xb$~+t?I41@=Y~%GE}!xF)+E%@O{cw`-gRBxNpa6ioZnI^TxVUG`5^@Bj%R8 zZ8YR|zRgx#Zx(2?zI$F>_NN~A z<()f6m8_qYqCQ5H*K|4!j)%=P+Dt6hTlTIl+U%&dAnX1|1BU7W10((Vp|p%T7^Fho%W4J49=$n9CF5~f89})F zv~uv!-DXG9Zo#$|SF~ewSXi{0Ak^22g+nE=ifVzZvN|FN2O%qwae@?>%)~|pK?Ung zy2ih=Lz3`tqBWEF=5+++(eumtY#4B_RST1Y2D7eSe4K18xF?e40|anTY(r)l zsF5IRq?F3~a!TU8{KT7hBs#t!$3_Pi&w{;9GUqmW-bCBTz%(wH!1Rxl26EaQUq*GM zkyJIDhnNP2pb;-s9d#+c)bw3|w!-$v#^Nj|K&5xlxksP$S^Wtf`_op}M>b!7Sp>>M zA0_f%xuS6-4AU8f_lC5)Q#KNcyUFJebg9MQ$SENnpm!7wU)vwucwBy#QxZhedz9xT z^V-{fmxm(JEHPce*1MtphSvzNPpLQc#nfEVrjchb>LY5rdNTrSV9_VfuaR-zQT%sg zm9I=%E-y_lGVX<2ZZmyO4{teo^H3eg%(KS8;&FH`@Ko(%=l^uY=`XSN!89>AJRFjS zM^RCh1XN!U!qt+U?+GD`4xzXtu8{t!(q^@(YRPd`Qngx>e`8Blzsv}$- z9lq>!H6=&PxaY(%dZQ;mT2$l0%!aC|g%7&no4D#~a6d!ULY~SGb2QL?iNUCIcm1Z2 z=uw-4ikSNoT|Oy7Ol_v!z1Uri}=mp6tml8mJB-RL^($q{7@K3|^Z_cTst3yeH( zN+zJS1+F(?X-s- zHh6L4FAf~A)jx{Ivfxl2LGz6V;W!&z>jEHKye8BIT&zYA3=D@-|F$!psg!b2kBu|1 ziNBZ{hFz#&cr!x4s^^u#(^dozjRw5teIycb0RbgYMab(#Vg$>|01!na;r76o^NJ zo7zdWleJDeSQojPSQa|W9by!R!^hu}JK-K>B>3UuhnUuVTo^ZG$OxzBhLF)6oqg-e zcPtT6c6b*!)jaHs_zyf+DMb^j{>_NTV;3z=c`u(U{8Vwd09Vnjl~DlB(;Z&liy;Jz zEP35iKFey*KRa|UHO08j;zzS3sOcU2{{4GKQWAh@bZyY>RcQlS&hmGv*NtpX0rfb9 zo!TU9KseZdSzhS5vNZYO_cFadWV2e{o^We zR+udDukzgGyDr$@!?hfw6S**yzwzxGqFpyOR}8&0jw-MpOJA1DgQONjp8Q!UDAgOZ zVj#qq3)(6MJb~%^oRr4{u?-6UV^Ca4!%<3jkrkC8?GdgIM)K%}SKp0nFSp6ouUPHL zp9;8n%LoS}ftc1UAxf0g+}yzt03MU_2IZc?%@#G_a87q*pf7CO))PIL)lnp;cL_-nYXOB;+5yUUFiyH zkum5O=j;sITQhWuvgV8ZfhtcRmaAMTW$-_us9nONEn44S&?6w^fz15$mjX#YAL4d? zCXhW|l7$=SZUUvttuk4D?oFmTByJpdqfcEv`g%Cbx>uItAZQ;c<%QiPrZrbi4C^Cq z{pCV=w8y?Kjfg*~-kJ8QUF3OcAQOlzC;+0N&}2Qj)c#~>;VEPt=o<3;Jrf8EtN`Ti z*}PCx)paaA(#`O8R?;AtMl!nYJkK7yn^oRYH}=eFhs;fu^-P_N7joa(QJJ`vs_9L< zX2@2Wn=rhXCfSux!0*#0rJJLiW>?b#3NACek9Nw zb#Rc&5+Tmtj4062;Pf7o=wwCj0uLs#ZauaMQL!vrVycgO#hQvA4#5Y!Ui-P=)Gg^aY20?YcBN zSqQL2#Tpd)sx|^iU?(8Iq497G&W$PrY;Z`q`oqG1y;Q}|1h{o=%XzxX^JTH~lOs;5 z#av^f=B+3nKtNMKy~D3VXaE=}fDEyOM*c`v8N{u)_X`JfxS_;zCT6Brz$dKH!V@`;Jx z<;6)KKFHyLnmJFH{$JJ^UE{T{M|$JnG}+ zMwuDt8;*)yQ8r47E-ZI>m9Eh(rN{Ir5Pzppn~?P3pM(%Tqt6KY7Qz zYMPm!S8;<*Z)AaXXs^I2O++1l|-|#|YxZ}umme;NXrLJ%Gjq8y- zFrASv8M#HL5-q#oT$n&VC5$Hz9}@a$bG`gAEaySTYRS}8{{s0}{p34u5+z$oO!s9_|wn!h&Nu z0@=CvuJb19yu(m3R}vp)3HNIac;j&uhr&mo zemkvGxX%8Bn}Wf+X*MQ*)o{bg$B=coDLfK?r%%Be(g-Ub83gMyxe9KlXrtE#U}!g_ zLLJIyqk|rzL&KpkSPBa{Le%*`G@T1L)BXSdZB{lnnst)Irit82I^05-kxb?EwH!(+ zNhx$QR*s_;6aJ1QxP(!?hYy|%BkF%rP5l{CTE8IU;VD@e_dVo)qPzZ)@R%2 z^LoEt&)4Ijk8$#tnvEUg!o4!`LS>z{yk$LaJqGDa@^<;}0GVfy?DS*16ZBFVy^u-h zdoPn-u5y_h?U1}Tl?O^=`t8_d4`tg(`Wsd*WM4?+y79*0VRK23Us=Zw^SUT_x65-ni~ygbRhU$~g%Or51GXSUrNz zcp9Vlvb!OPO1TyB-%_?yJHqKW0#^4fe#npbj~aNSV4U_}Tj0WlsscS-|Ao-L#>sDi zQ$`iLOCpr^QWzQ*q&q1WP(yohcFs@sLqG4=`zKk?>~L^Sz`!&ey~ISr?z1!Y$w3YY zSIGw06@!GMOpCe~&dYlfMz1P93l-8YEod})$eD;{!IL)WtieVM4nx-TvICr^^G+un zqQQ{kAz1Dv-nHWC15*l_%^UcOg2#A$cD&QpcN!_!L=tL+8}72hp(O}?O=dmH4!d}QOh6J_h#KT31CkN`@0ECx+gMsv ztCeX^Yjo2GBC!x_!bg%#=+i$8Hl}Ur7cW6_gDZLkmfp?UEGFyYY0Q%HbE!7vOA&uL z46ztkapQPY0$pJ{-<~inmAqFB)hA3_2^ZTGQ>R;h3FpTEEL-0)X}UPvIyZV@8bUbR zys`wZTKtoU-$%0@U?^udgR#RprbzKp69}VHhf7e>{|FZyoe!bL^j`2a5^YG$@>F?uY5!|&}Gtsv{8XYm< zpxnyc$@qvh{C!i+1S9fq5)z1@%y89zc^`sC-JO`@z%~) zQGD*}dz76_?03hcEQdQ$UN=z=dzFn*Y9Pm=pK#S@b#-`jxS%7qXp$diKDVO&lgQMu z%x)MmMrE#D>6VB}amHylTW0Ee)T`1z=3Zq zwqbIBP~=%#so4>miB;pU$huO}L z7C|QzOduxaznM#BJBbWmpzQ?$T$;aiCvnHp-;|f*9rv=fzpcr7VDj7gv$8tX_;jjS zqixLiKjm>knN$W?vMr5!vTix73n2E3Joi>0d7|NJgWq%ax)2Gk$D2tjdYqS0%snw( zZ359slA!c1gBn-#?d>{ja8F)@Up6Xyhx3c?*XAbXp~qk2Z% z)BSS8vYtR6?$YWoD}Ce+M~DpoUbD@KC;C_)(z>fCqQh({YeL0V{(Ycz;%e35mJw;a zD+F<^o({Zt(ar0y_&>x5csXr0fhVJ&Ic|J01`tA5QrTOwmuMCBO?qaV6NtvFP+DqW z>UCvzcnQE_GWp|nu(wx$2?g>9b^PC+xISP`Pp2KXC@<;fNV~;{s048(kQISLo$I}! z>3`JkTFPM1?y`PomQ6gu4rzqMW9kDizWF>a7Jcj;pLGEjX)Y0Fw8Fn=K7F8rtRz$g zE2L#5^__BoZ&-ooOW@(DhBqUexNoO&V}hbO@6%6AkI+go`o$e18s@rK_XZCV0nU!Q zpD8C5W>bq=KCO0Ck317?Pop#ap5-b1(Vfg9Ops>OD;nvyH2lqTq zAosdy)~;BB+9YW&^T3Nc)KMmpKo_F=I`bOtnYl>BLqofJosvuf9;kY^0Z?G;D!iEa zz=W!NXEUEySz?yma*GOXy_k-4+j)+t7nz z6^AMJglW8pq?rzv*Gt#>re~UhwO< zf$0#S>WdEr__&G!eJ+N?RBH39J1ku3P$^j)mCE0@{Hmymoh;LvpMfeF1JIwbRy3>$dK8;%{*`;hI$wbFMi=p)6tfjin`M7-jUnX^CJv( zXlnx2>}B694`|wzZaXKioq4hNy>+xXVJ0_0Ts7aTn6RDyLnu#f#mwJr9rH>UmMwA= zGeSj#?aWZR4LGygwD{r)fYe4c(CV*v)r`mXH*RYWyf@CvjB>N|Nv4Z3EP=fgmn*UC zi(FFf@xth~eRIIYT-3>zx0hjv*Ner)6folGJfhI2q}*ShpZ`vX$Im>~v$3{qp(jKS ze*0@JKfGtB3I7qe_KGTFOUhx>1iq0IFKic1N;@N@7!HFn)gKe#+xApYeJwE6E*uQ+ zM?uP^Rn!ibvWe@#=Z?|i=Y|4BFwh4Z`P9;tnwpx43{_q3E{5-cdjUTFEwM5H2rtYn zOonFO(PuME0GZzI{N%P{mOfi*5hN^Le#4x)yGw8`D_@0WukC~;;LY{Ji^4}$^L2&S z+)e$PeSd>3X)5eeQWBdb?cZPBd9&q~fFgR!VI7ZJ9;`OJuHhGVJF7UTGe3Bv+ZW&` zw-fBjf~E5A0ds0?h#XqHzuY$ej*g#gvFZ%TtyxC6bLTVF=cN@DYB6Fk^)@jgD#iKH ztDynm9Pa>I@l!D)*})B3QCt4fsPWbQ&Ncd|T_los->}le84Xq9eo{7~hM{)j#~D@s$mo-&c&FD`=N{>|Bb2g?Gd$HRLK@5YTN|P1j_%mJJHtq@ zhRP}Dv!9KH_dE8E9PZl@afwJiZ9vkX+P{LFS&Hw9t&IjA0X}oVm3+&_jHTTXz&I`l zSVItO+%xUz7XIC=k7mA~=}kS5HPB+{&d$ur6`7|K;Ar=y0!xJ~^0 znqZ>($zjsodldU%i@;EU-Qm{7A8dM*KB3*I8D;;Nh30}-wNlDsEC#!!4||mrs%CbFU8yYw#8#pUo=gH@HHOVB zb6@#p1lvv~pR}JiT9F_wP)PL_;m5(&xrH45uwp)@^_{iiNvm8o|E5*m3=e;~BtfFE z5D4NH`$hi-dK%u`21f~#=hCGsAc1iUKFzz&_&Rx#pJA_Kkw!8Ug^9L_dkTbzQ2&?-a>%T*GYnh_52Dn%zZ|Iyi-NJSP?xhkpIcB^Ei-$x0aZ zN%sRdr{9tG=f?V%in|^5AuqAow5fuOBUHRKq5^diKZMuEZt-v;Q;^6H@r{DKUY z_e!HGq-tXEQzNUP4H$FEg=Cl0*InFZA+zJ4ajayoJCl{GeF23oUaJNCc;%AF<}(LV zybbUhhWbjJn)ex~~W2^wmujId<1pUZVI4Ra*s;;#BUNeG#RV4C_D6 zCqLBv4F7GfEQnt`A&df%!`eX#vf&y_}6x^{!iyGkbqmW-3 zR{*;P!97v^QmM>Qy>>bN70)EV2j`2Y}kiEcotJEff;`~XpC1RkC<65Gv%#k1V zrNa51VIdOJqNAgIvzHjPGD;(&aGRVur4QYTx-1Ghoxlu63^1u_bOd8k>$zX|0S;d7 zTpf}_q^`e=#oNVn^hc!bUg8|&j~Kr%%LWTA)1@zRKe_s+)%|ilubg7Z>Ck!#bay>H zJz0kcb{Jz7&(EhiJAvy}J*q3>n-Z~eU~%dvApFK*k^lE}Z(*p0OcJF~_|G4o{pKPe3GISyc!c>o{STI@H!s$WL$w2^d&{*hCW4g$U^{wbsKJvO&8DvVaFVPg#gQ)>Sl8 z9%e`SfqB4d;%<)ZS;g!CzviMk_`u11Tc}G9Q10La^rt- z1#`L#$);8EVy5<2T6zh@(qb!$A*dJ8(3Z5+w7My{%zql=+FcMg-!G;q0NC2aAO8aI zg0LiWN=~mhuF*5Cdp6Vu@b!n^|BpKP5lZzqVc(>b*0M*`689w+w(y4eFlUz~%>9y0 zSW&L@Hy$^6PQdtH(>^)_Y-Yb0r}=9U}RI&Z2PT}N^tA(l8e3~GYZyop@a6Yl-n9kip8>)2cU z+Z?1FxGr_e%NGUB3#|#G-9+89KrmHKatr7&dh#(yuSaB$ z_*~L?MxKh34)i5El$!MfriL}QDEcJH@2iB0BE@GtMc87p;@80{y~Un_1@py@s)e?M zU#k@{pL##p%F`F;m&H$f@n4vfHP4RJdx}R>&mwF)09TrSV!G@LQ4x|ZRfZJNMjb%W!+5e(o`s3!#bUd$f zFo#-#p@)p8wy=;p%&~vtktxxu@GKt|5F3#2%+1eCJ?H1}Pbne7AA7vj=0A~Tp?Cv4eU3f-5f~LaFyEH4?0H2Dfx6~0QVC+^ zK7CB_g{91p#-_OOZxZ25o8-OBx;aiB+c0r7D&?FLQeOqqt}d1wWt7wR;-K}^y9VyF z7Va1*s6z|6_&}c`XEgexopYo7*BeoL%k-Xt*dMob0zL`^Fh`+vmH~zsOaNfdG$T0` zZs!yu%6h8tUXW{Qn2Qt6++r-6D&+ndrFhJ(&@u<7Bc6oF$J#~h9usims&jpe+Q0K8 z1C{ypVI{x15IP7sA?w{U&XJstPOY#&G4EIMXJhLtuR^W^d=vv3LJEo%2qDHj*yyYWv-iCu=a@(lrwoXJ2FP{j|I-ytV? zaac;mu-5PL*qD7b5IRg2DQtW)Gq*=e?5H7DLOMhF6OalaI1f8G(H$cpc9+R35C#h+gSe732tsVxpN1f49yjB7>0X}a?QR$>Sar`1Fw#@+YK*qJ+G zf(_hxjSrPkXhI*DFk%j*fn$;$oO!E1+uF+GmP-l)3Hf;SSNqgOXF@&Csy&DvxC4&f z9hcq;4q-g0Xv{O;Zy%o#;l3#-3La?WV%bvNfY+gBmzS2CefxM>!W)tQ69tuV2gc|! zrHHR3s5tqi|8`=vlchVQT;IKM{L`Gki|#rwQ!6S-jVE)y4ymcMQ z6P-eUhgWJlfs{lh4dcU$3NIQJ;;?QF*O~OM;Ge>6VM?JiC*6-B$jPo5N#evBnc&xfpL%+`C(qeXhCcvdf zR!ShO$@$AWE7Vz=PuuyDN@~Hf%7}OebP7u;7}*BtDl%5z!NACf8hAa>cT9fWa7PGuQ`;7XC|<* zi>Fjy+Nl*T8FF@jp)rbpX$SjaoNv6OyI$w`8ve*lDdU}c!;dan4;Fu$`__Gfj-`4r zOy%%_*Oxve47Fp8c4xTEKZg*kP;S~XHn;HWkJgEUitk_|QL&9bH~XVI-8Qzir(1gW zNBVq3>wHl`?C80MUA8uDV@jNV+%11yk-|j*>Cg7!hgNrou=+>@0Rv+P9ZxbTLuu@q zCXUHqpL<;VboC0&L$3UfqQT}=%L;nuK*p=Q%bMU@e$u%_jbKbs%DF3*N&ydQ2r<*hLCwr@1(!>)Bn~+<9ner-E*L5to`4&r?|XiOPd4Ge zN=s3!oF<0W<1XNt+uFh)eYL57o~uZyflzp-HzF!Lfev%nzDR1u*)Qt;?P*9|p6E9v zsZ$s`@vHa$mazd{K6YZZi&qK6$@LhwzLEYK%_?I-_U9HE$3@@w05ud~nXmR!FQ-_x zx#ffx#Pu7#g*~F6y_*WTkBf5xL51AWkZP9wcf%ntu~-K9ut8##VIqNwvTl>a_io?s z_GPN}K+BuBrB1-pjs^RU3&mOU9S^|rpv;lgbPrS67d&dTXt0_eqZ|74)xuFz*b*ln z9o@nuR{7_>CyG)d1H>LZg%APM+qOMZXUPha8+L?+V{9m&c|ZbP%+f?G)pKX_z}Gy>h?aV zR-1$r?D=!>!S3CQj!vK(O67H%`GL8e1JHAU5+P{W%^D$uzhY-cKM!fRxq`~fgnA)Y zN-4eYd4I!Z@L?i)UufL=yi3$*5Rl6dt`19Js@9=b*p)qi4oD?Ix_giiOO zcF9}l=IG55kG`WOeDjWlpTimEo$~YdN}7c>vVp;vpxm3Bk`O89=Ifiy+cKoDT?_&F z-c5Prj>w`v$x>-4MqWW11)rj(&H1%lpla-0m#j@S@S@&D;#N4p8@ksy(IsJY$k1Q@ zL-M=AG*$fcuQCqfw%cc^kamB?8|(hqQf~YQK`fovcjp|nFDo1Ds?W4*O(ajBUNy^> z-rLOQrW}9`H<=!~rbN|*f4R7uU%fftx3ROR>KiZrefRlB=s~{foC=YE@%@by%7@tL z(XpYSKfjzBDWI-om2LQ{1hsC4g`8C!(F>m@cv-M%C$I}=FkQZl7>n}Ob;=f=4D3yq z`*tdIGSgW5W6NYESA?*H$f*MRmpbvwsZO=*07bK$UpjABp?0x_~lv8^nI^t9uH|=N} z|1uu7_@7YNc-p6Y?we`6Bv~j2i?3y>J2f~fd5l}B6IleElR%%~*@#kxs!<_B$5R7w zCp_T1Qq#sw75~SUZ`&4MSp=1IBkDTnEmK(u!|C&j>A#8pGXQ^@Oc)o= zeJ!zF{2pYxkft~P-F5zS!nfA>tBOsdQ{u6isaacv>teG^@okyn->_K4?Ci!@)%kU~ zaUHa_((0*xWc=;ocCKZ?Dt3v8Z|Thc+_YJ4Q}$y~`tem@fv8*cP#x!*Z?c)C&hIj~ zlz%_h-jJcg?uY`iZIIJ2Y3z4YPMm{4xzs+w)IoI7c`ETkMILkO@ z`I-mxAQpzg6dmK)aUC!rv=SeWI#FUZ$k_4YVXC~_JKN0Uajtt{FC2l-qUCwu;n}hD z+JnKk(F|do>gZCZbB2hOqtG;FqL%F#R9vj;jEgz><_^{ZmE8eZ{)H0(FHrG_>4~jJ&yS2c8H!le=HPHkJ!F8-mq9U)DH+`vABUS1Oo5T&B(q*=bJ=Nt8QoCnk z6X*ro-$q1vs9sVkYV%&oD)dY%rj#2GZ!qV;3^!@+s&L-&Rf{ZPvT8xyEs2O!#T>EV z;->md^`vfP#Zz&OXAX8n{Dm*f4m9AD_GrN;wKTtiz5N`6$S^*R4g@qnW&}j zmi3SjoV3CHKG@*yP^}H|*CKDqUC{1mqsvszhLlX&vD9nrdElsQ27QW5;*n+@KzQAM zWz{S1;B|c7X3F3$8!FWh_6!GJlvGy2u*TW>@Xf9q6S{gv%#=k{9@ z=lu#y*Lsn0&d6XKZo31@p`Dgd$YgPyw+5dz%96hI$$lVsJ`uIGVCgm5|c zN}1Fp?Yh*=5my#1UFXETLd5D{bN7|k`CJ4aOM~pt8tmzwk8m(v?re#$+@#AcWfHZv zbGYPIkNBXtg-7FS&&O2m2Mb-Yi{s6=`_(A79P#=TCCypuCs{+->!w5_bA5dTVzuHB9O)(1W0`c3jRpStqw7*9u^7?*f}MQxnh!2h$nHH z6jm7nYfnl=Kr@MiR#{TMbsf|9#z3`6PF!|WefC=iCy)P_X!k^vXG`H%$3M*ePNgj; zA8wA8y&0&lN*KzqnH7gc%1S>xEX;C9dCN>O5|h$?ta0kavT6Sr55KK}!Dj1t^5Q4o zy;BR~U%&RWF68EvY!Z-gAQ}R$JWQG&gK)BGJqoQ*Fwd?(hRa%u7S zS`?%2MCq>E2;p1oENFXXEgDo&&Sk*`-ORORyGVtNiC8yJNKCTI&T3Eocn+IG7h31V zplp!=X6JKG>v(zsQf-73qKO zyxb7dDQldconJita{-{h4SoVo`=ft`TROS9oiQM!txQ5Ws4l;O{}+VW`?MG=t)hKy z#1)v0YFflKTM|*bw{GJZrR8EVxC>`I0vov_#$NQs2-j(8bDv^5@aJ?-EoWD!)(+93 z_XY>p;l~f3DB6I)WeW8j)HtQPoRA=`PW`)~wMQI!SVkqMqA70necZsm!@w`u#|=+S z%%(ZjUtyV^K6&T=X8~TX`MzcFyodvR#T18OEM8|jCd|k#g`m^(xafuJ6yE@~HOTM? zlVOB%xbhlLd1n9ecDYW9InkMnLv7c2LP#MPGgBxgmx&vHF4e?2TWTt|SC65rK(s-GslSq&xGmV75C!UjV%zd8INWoF1e`Hc-w@%|D0U z1M}-JKPSRPcUSbpNox+9)+s&n9z;gzz%Tj{-oV^-e(bnTaB0Ar(hA;Opru!H3c-wyWkVoR6) z&IA;-hj&n*OVe9jnZsWYK+7z9tIRrX#fQrGE)Gug%7OTXL$a#(={D!1nx(%bG%k{J zlRqX)I&B)Q3WV|UQ{e2mMPo}M_m0gi+JIYLD(w(;N0)Meg9@G8Zj1rV@-o`9cQSh2 zGTwkO`fWtP`_oT`qY>GG_qd(;tvfj`urbnML!Xq!t~xP&%5S=VI%h965`M;u$+VVF zPR`A|6Li<>dS&fwBjI|A_pD4=v6-Jl%Ho zE*_X@BXK7R;##LiMmP{rotE~$F3t#%^(WJCzb)+r|3he=FGMD(x=SMLC7*7?9J-yC z2&TwV6=XXBv4ZfGbSG0MdMfPqVRvfSbg^wZev}?BK6oX2vTale4%X-^*~z?j9`;@P z=afqC_T6{hyM(>Uo(mG@-(&M~iK=nYCCj$&$9r}P1yrgf=%pRJf6vuVr&jaUZiP0n z>%ipP=bCiU$L_d>kEeU9JvT|jaNHKgG{rqz)X^$JrhfaNU*F2D%d8t?OxC}t z3xS-irC)ZWy?4&qW1aamwzEUYLd7?8Yk|d&(XX$*xF*azwd7Q22b4y-@yGrN)dAIH zpK@)_Sbd@j39-^mL!V62Kkm`KIk*xYWn(5e2KgB4sx zU)ts(m%V92r5=0jNSuf$LzLuxWqN+xl(^21+pcmK77u_JvUfLs?e@aS@2>`m&do_- zm$0}|SuB0HGuxf|L#yavM0ZV)d9p*rR>HC$h1rm_79x|#Xd@;>pI@pk3--aIoai%o z)XoBHDdB-D1j#-uoIIaj?ZAwlQQg&th{T-OE((X}<@|6a)4I zZ^Z-zrw+N5BYXO{aiBN;?g-{PM6#<*vf--&o$V?<+>;wMN1H17Jlb~)pb5zL?Xf`b zFUEf)zDr^`Xxb+w9q6JcE!jmJ`d5pex9zeAl?=0{RhO_>oCb1(6V#1aDtC&aT?iyx zD5|2^;vAlU`GnXQy_5hW&{0wf+lX?ikn41!9=X9iLn)YT+|4Z2VP4X|42`0cyPVuE z65FGUmrE=}2J_yb3~oE)Pq9=2e5T?IA6$_J-iwnx*xcN?;qz7yMiYzLagRdfdCR|d zobtoDh`RYXRegc|Q`StCbg8c2=GC91vARVkMBxpk5gqP-{geBtG{2^tWxV{h`;!YN z-{kLb?A$yu0Z-_fMq&IMEeh~4#;6sr5>xQqvhA-R%!kXA`};n{TKZS!vQ+}qLh~Z( zo$(Ie@xgR1imky;AyDtqj@>sth5a5%+U=M|JOaK1X$%fm=9E3zBOVlagSFK&>7S=| zOeN#DpkN5^7Ax_qGo=wx$5a5ithK=h@QLGzY*VS^EY{C3oF zrvqB$VhRYrnW!ZXiQ*G^9sQdnyhHWY7+)CXyM;1|I+;ZLX99l1eiBKy^dob0;%B{W z%;M*({-?v{OnmM!_ts73g_(&3dh1wYg6o^O z#zXmFWPG=*)vDe_+v!P~jsu%PcEEj2q%dEG{h>m@qnM*sFV|j5F>~0jU&uhJ8X=Tb zof!^l2!oeix)rUz!k6EA`;suDWQl>Pz%%3UPgrD%v!U)5qPoL=kN++&+eviQ5s8I5Ph?mP0=z?n2-$FK zy}$njqH)){l{h?_?_q!uY{w#@tLhG&w=~zmXwlq{nx3u*Nhm_yjH#!o32TR1x{vZ@ zE+x;kO>JZPFkz)6Qjd$$MHiC#jY6Ukai}mHeO><@5q@!!f%*oLQkK$X64g>mInZ*K z+i5jW4z)%v1gBmv4oWU1x@Q<+3dczMl2H5f^`Yn`r6Ac3`=2Oh5sjDOh}SP@0;v6u zb=K1mQf#2Rr3BowSnFgC@lu9yH^v;W1NV*BT|^CUfDa)_ZLGmo-kng*&4e6%n^A>! zR`J6&CEK}~487P13VXF_e#vrHZamaAUkqJ;*W`w-`9y2I;(&Y4_je)6J<58tfhrWZ zCZYpe!SQqA8c}CKE99}Hz}#%xil*M}(~>pIr5T3lIE`RDM|xB0;&~*2b*;cY+$sw(&;j1&Bhf>~{x&jXT z@E7{Wk2ea}2EYZYPYhIhI1%0)W$s25jSB#@Oz9b)&BGo7=o7gy$TH>Qp{jvsUss7` zBW8y&C$90Z>FS~IX3s3h-aO|ATE~rEoR*nRV?^T{*YUffZ`H`Ea=7mzTCEB)Qjc}C z9IBsu*rFI52vAErt{cted%K9nx2}Q(AZ!KK-Jp=_QN(y$S{*!4|1)}jN#n&m=>;%& zbMc@;C1l(%^eUsi4I%(_A<~25Xv=hW>uKo$*p*u8WXMFhxr%D~0C)30)Re_^-0E1j z0MK`DxLG5*;L;%)|MDU|JMh&=h%o!_ny`Zx82^J|Yhr!S{!^Z3J_$Zx%Y z!XVk3!MFqtw_${P zm)J!cc_54GYonCGYRi3KLKp3Uih;YUaJcj+mEAZFkJppzNDBmKX`2?Dq+WP)jc>ddAhL0s%pBipy^zk;F~~D^ddc<*k3u#ulCM@CU9rN=`=GYsjKKmbc1IW z*sjE}@vym;2;fS7b?88C5G?Xb#7#2!>Xy-eXCKCYIjuP2(+4|?2YbcMRq#l>7zk&R zjx}8Zs{PN2sAlHL$)i&v=MTRRvRi$-tZKtiARvxs6dQ(zIe_st&_+aXJ zqp%-s?kfD~Pq%xxW9pu6b`F~EgKo2V?aE7-=-}qtk=sIpQ$avp1pke^uX_7sl5Onb z54|{fGPT2n&UHriLC;7~!S)`+zXi4R{pCk`w2GXk<5~}y3Sa|)L^T*{vk=vIRVill z=9?21T@^j12|v9SKl{&05`LsF^d!uLEu3zhul1k3nlN0YxMw@{KSh_`!ac>Dse=C4 zO4cGTSd39j(LpGmQ)LPgfw?!b*pe7>UBBFBy5D{}F6z#KH72M19H;k{j?sLbFG|k~ zzMWsk-^zxsnx}x%cebW8pA)D?p+l6_5*JEa^Ci~zbZT4yU+cgUoKv)LTFSJDiTa}? z5?vEBVE8CCdg80u=*aNG`_^9-oeTYY>@U{{Zst{h;rVEyw7zgb9S_7H`aT*ZQcF+riH;-+O3+_g^GkGlc29| zgQIxF{&V)bcdu~hOxH~qF7u~6I#d-Q4C;in_nt*eUSuW_}Wf+xZRHBiazGoIS zVrng-ws<>*&S1GXk?^PRM^mpmgr0B>-Nk@>@rZ@(%%=m{-Ym% ziNT&}2=wVF>9(1c4F88gQ0_1U6-$N^eGU3b^}Tk3VlEPLHg!qpPdsbe%tyUKyX|Gn~9 z($aE>_4Hu6u3vq~fT%iOmjfoF1RGFkUnq%ekXl_1cl%d*0I}>XSyZ^;0jk(}D*x#% zjKe+{YgLcPTT&nVJg8sTH2D=X_G4JmfhyZ)`0ueb{K$dRp3~bI@ARp)`PuUK?{AD< zdJA0&ofH3b3lh(cBE)O>#hC2h!TPDVWZ3ILdq+qKr@o#jU(aD)80MAdNDMgc$0B__ zqg|R_AsqH;_e^+Sf*GaZ#y>H4ut_8|q;HLvwP{62OUBnxN~R^NjDAXe9Xl(H@5hXN zdQtH8MSi(n^VGrBFUz?%i@RSLWzg{Avo8@nAC;D}E;MN(wYS(2@Q^Vj4LhPdoi*J; z?>x67DI>{%K_la~n{$*f1QlfiS<~eAPQ|Z;A+Pv_#@5l=us;=<#QFa*mD=||L#Z!I z+Avhepk%JS`Vr!^@ZH2YnGe#;c|A9*?bWFK*DgCv0&ZG2U{;{+Uny?eI&FPw2VUhO zF%!kcy2YzJP1}XWvMx}t_L)o-edMt;XW8+M)7*EKL54$)XqE%o+?T@N|BL~1?gLJi z)D4MFiD-7eD>Q#5hv#Nq#dO*(*nCyj!)j29NJ-(?497A@OU^z0OMyPH)Uf#suRY-# zUGc0@7B>{F_%S@5V_MKU12YjQ$I+U<{iOPESR~q!EKq1R+C2l$?8FS!8)0C*AEsIx zPLhTbRS{n|FwYvrN}6_Ao3_sOOE#q#sB9`0IXoubMclR`Bti3a<6Z;t_IF6*%LXh5 zjekVldqh?7vsV>ua0{%O|6v~gb9ch5cs60-V#358#ao$NuK1nE*#RSDgg`|0UaA79HRTwR)fbrdi|3M9};S8@=RTFKe=1w8)^XMA-gs{}S zgT$mTwE~`@5Er!H($>Q=*{l6o7z!8KZ00rFuKW#2tDnvE{P=lsPULmiI;CFk)cA)a284GdSGe}bN*-75TDp`u|7;(1dU@duLgFq)(u;%Prdgt^)x-`U{3n6GO>#I-PpgGi?$&o4*BlC6UlzlJIQKk3HhDl`t%6 zrVbJ&rUioKrCcH-1#0U(68PDp~ zR!2iP_tyTDmsX=hE$L?DZ+U^6V0A8rmlJ5mZOe^zyY&HF^BJ?rUaz6|R=>%_n{^iTZ^O89j;;m0z?qC$RJ zIIn0KzYb6z-{4GD{jq`ABCd%i2~9C1sC$R0xt(8+F~4R8+)}Oe_fv28y}`C=aVnwR zy@zUF4*lTTTWGXXgx+KH6jJScI&S5E~jdQc6PY>=PaFl=~FRjw7 zj^8|7T~6fW%WXv0HuH^oSxI>4Rub=jy5F-KL{%$I>6_gFJ-_Xy>%ok z;mc~s-b^n}VJCJ35H`}}vLI|adF%kli)p@VU{qz2; z13uSse>b`R{@)Ibz?H$8%XzJf3$87bLx$EtbcQtlG9WMYi4X;`IFbgjdy0^msx27j zg$RKA=a$G~hQ-az+s>LRKDsKt>P64acehTwUu-jtUpT1vk}$sdu#IBEbfLEO*HwQ- zUxIwK;)!C^Tp?;*7*`mM7A&YJI<9(ELHqSZ$@uJW*?Zw^2feF%jQ1v_;OkPSX`5}1 zOWLaQ-UkY&yZZg8C6Rf3!_fk1)xcIRt)RIxe(w9k_lIX{DxAN6eYjcvSG~oaUack9 zs+GsS#{xW-tE%Ry&X(R}-IqbWdrhS8(pL+0ogJsvv^UC{Rdzv_mG7^pwTMyM({N2Y z08-Cjx=4eI;n}M-xn8v?c6P2is9=-mg{(>OyfZ&;O#DLFt=T1z{}qJH^bMx^tTH}H zfMf@TdNJ9OBO6paQGo}M9Qxr>dh7UU*i=0C33zIc*+-I=G4NaZx>wuGd=_MEJJ);| z4!%>wQj#Iuh62+;e4E4-75w+v8K8>zn z^Oz6W%nQo~4PWPrY1*%q3q`2wDhE~)#jrIf*1K6_1!MP8&2Vf_N7}M33_K6^K7imp ziFyw#b$8zm)QaZe2Hz>I4(@@L=|EVkUm(4U^UN6e_3dRhs_!{csTrdo3?N!G(jZn- zFLw6AH22DA!n~m1e~GlKn&46w1mkt|+00IHsYiiL-04OsEKe3}qh#rjU;b;~tF`;P z6vcMg;$T2Y8-91b`B0UZrlN^V#8pTujUziSME8e1@GgqKwH22c6HYzz1{}?w81mN* z_-9>=-Ik1kGUFoyQCDAoQ&%@nf}8>YQ%VdrghWC~8Y9qfgFDU)xp4%=RHE)ad8-gf z>FJU_Q~G>+x$@Sw??mf=i6rVUDHRP5XLqxkc=PPnOb2LEGwn&}zS8_Og6AnJnQo8H zrg`4KjIeX!wvB9X%g-^mNv-Y7kEoRRK9V)wrT%a`-Z3J-=Gn_Duksfrdv7S`f0#N? zxAEV+S{K##U<7(BAEx&|(@Yr`%zW8BS4BGs<^DS+1 zS1>HrXcyh@2L6~$bNr;Lq_DrPdBwZi#fCe02h|n_OXRC%*|O$uD!C*&&Qg5*q>2;$ z$$qC}6b%-ZV60#==A9lhbdXCkRg6nhjPNSI7`V`{iG)i)6?h~jX^$y6;kT4m#SU?7 zr!x{hiQ>gx&_>h?cT?U#KwKxzyO1GVV5UzrVkse(e2t*2D0Q!$_M|A)HYRozUfkKJ z9_;kwXzG#-Y4P$+-R=+BAUBY$#b~>A8KKH}F&4s~Iq!||80RENEN{^{<^XhBf({D) zkiq~zd3EpXFW>3+lDhrGb$jj6&Y|ayP;oc|#Py_7ioMTNp0Ua>*0Zn?K8$jnEFe$n zZ~ecYdu!FyatC;y}la@O2ZVb{s(FI z)zz=5pDGDx452rcg;672IL*_(owDhL(eg;{e+SMrKQqMP*;dW+`8PwR_y`^E|DOd= zOt>z*&WS%}6F;v9hSLRGx$ELn*lkr*ExyxRBuvJNBK%?5b-{cv?$?xg>m;XOR6ks9PkS28^IyooZ&$_8Z zW*zzSvKxb;Z^6M*@Hi%sjlP(&Te~KNJ~lBs{vzGqI%aC(X^vi}1rz@gb(2V9++WTt zBjOPHuWDaEXrAn=k;~Hwj7?+_*&~I_aw3JFJeoqfQY=N;p{xBS=YLKgj-L^jbrdol zp;L%xq!W>Wa$j*T-zF|9x~X7GXV3uWt=%CaiO8oc#~(6ELZJ|_v!+QT<0!G@w?oEB z@R~6w1euAYDBUI^&w%gH>Fe2u#?8=iO(b6V`?~}7G0^;pc;+7)?T#64y!>G!$_a>d zYzF*G2n>f06a)g{qq>zU+lU@HeA;U|Ia$#l5_l;g-EHNZOV0CJs8;;w)n~%L1Bfgl?U2%3(IJ{AUaP@i~d*_ zl8RvO*B8I)Hk9y?>?NBIY7~HIy)Aktx-F0IA)xRMu}`>?Jdnk~Yk;i9GeH(hFK41M zLyI4T2>kdE)A**vhRLw;0QK>QzltM$$XymX8k-O13&b~Fx+zvW4RI{MutMvu87CHwcPdqm5^)ne(ozN2fB;L!uXmo0TU#;Jz z{y}=Y<7gxIOwQ?hyCM55R;tNGK~4t(x*-u%{Hwg?O3APLQ7{tMq z?|zTR|B*+JN6Mr5`0V|8zMik=F{aR$35<8F=-VS+zI^Fafoddh1NYd~EL>rw$ z0P#F5c}i=M$P z@tX7ln~Q4)of_)zno~V97`FU#(MbP}nOSdr-psK;6sdOa=(sb-y5JE8=odV@`^F%y zuz9@PH&#-u5ZXD_IU`iRTzSi-?rF7j?A>T=gE^H`o*Q*SaMhrB`_3-`kF^}Ta^7_b za%F@H&Dp%+kvUzV8~x0t=5pU4AL;Z+z~e%mXJ?*&GVoe0*p8iDKrJ82X(~VN z-QtRT{j>zE-;IbGGdy9Cd8ie#1wP^f^5tX%sXbMt36Cl(2=s4UBbWN+fr(5RaexX z@4C*Fh*v-N%`>O!F0al%U5cdm?4&!iIh^5%LQ^u&i_12Di1L9jj; z409I|tjHec6?6`48@2BoSS_}b^mG&i&9j&wqnhT9!Zqf-?Zc5uF~RU#&a_r4XGEnU zR4f*0yee42gLRYXIr&>4pFMIH(@w8jMIudhiJsd#1*-tEFfV-kWN_!i<#acraXUdV z1Uw4=2~)+n)@d2;=Q6NFfOkOlS1<-AM#cw^@ z?q}hIIJf`hDGUWzz&Ihpd$13+L758>;&<0NY~+kAzu2@2vShbP>cOO=Y(*?+t!kxp zPW}yYSTzxll_1YJd{3kwNU%KwPIIh9I(n>Z?+q-jl&^a$*!IvHkV5asNHhR983~6C z0Kwt^pI>Q`n!4DeKdoU zKe^E@RYB$Ip?2%>V#`i!9ODhknPrQ)hbC$l;^OnI$?RK9>>!EC;eGR?kFl|eWfmAh zBAUO29LhfO8;0Ge2O51SPQO|NFd%N;frvL6W5O|-l?M0U-5|YDICS?J-)=)Lu`3pA z)J(P`OhyHNOz7am&wBo473Y65{tu}MgF}k1tnr)STKW%Sd$epB1xkpRvUdt!|7j%$ zqjLq$RX(FLwK@_N%+)}Xs3mSHNS7fH-RP5kM0}#oRW5|7*m=o#dy`+&ev3fPg)xA_>`d{$QOh&2PGmM+upsoMOYH;E7+FKU(?0D+b~yfQU{C zQG@iR^awTiEl3};CzSV6z}u0qY?n$#k^tmpwM|pGzg*xcmM}4uVBec^q?MSl1La>41{Ua zAYm9deC`_}2@WOV2vK9|>w|df`7e^jjvdIgk<_I$Gv$oveNe&zy zk09e6+29Tb=mz$M+R1vg)zStO*+hJu6sIO2%ats+-X=H8wXkG13r_LTFlTR+-E2#Q zT}R4Vfc_*(4@ik+kofEp_mbg&h_J8-p^xP9!Q3Ka&sMVafq3VuTofDGg6M)#C~m1t zESzg?g(oB4p2%eXbhNp%G1+&XTzd_U@!~?veCC9q2F4;TfyshHrQhzL;9`nA8*FPn z=jyN2OblKza(S}SQO&g8jb)%>n6?NO`Ew!@eqOm0gHW_Uo8myk>-TjKph{$h9R@C7 zED}Q==LDpw99j9Y>B`{lft8M-+X#vxiwl$7g|_yk^fY}XvT3F6bZjf16nYHYdbM%3 zWwS4ZLy@4Wq#}CE%74d7=#`;Xm$hsD_3M2=_4wmw-pX6E_1!LOxzQsU>mcr|?or+R zXYsr#sQ;UlKI~s^iv;j>aBMm_GIDw0yNUx+D;}8qZdBWl3WWp=0+yh_At42fp#5iepVPQ{%L0arXE9}V_)RqlOritlpU0|)U~JD{%VApJ zcbkvDxGqDf&;S({!$Z?^v(k(kBpn#%5RT=HP(+{+>^5sfOJa{h`UY6w2>cH71<+Z3ohbvejB!H+!kX^+`}q}p8|r?Pc%QqI1-E3U`B5O4)m4ZoqiPGc zumriWWC-~}l_b<0LxR9x&|rXpE~OyciiEPwLonceF?-S_S(q=9?ck?)ZH<7Eyp>(Ff z#`A^wp<}^r`mNMCfp0~@1do8i7LHmRQcHI4G_>Bdsg=q$G-?6QKGW!*-$G~)m)JEOR-xCLv-3+?scVP3$zz^R_jxUf z%Rkt^nkz#NZclfQGByEnj^?j-Mw^=r3mR*S`RVS93$v@o^j+2#)fcY%8g&{tn-=eW zbG57;giQ#Aj_JdLYvJD{p?+r<=MJw6p{zO&(3?dsU>uY-TY1@{Tv&VEPk-} z(56uX!2XW6c|aAB9XZE3gJS{l8#-u1ftX;Ef;4x!;5kuj17K#$M=^<`Z+W(bHvFTY za)UW?@DG%gCOjc{!~FcF(9mk|`+CEpwNv5tj24kBRu2z)!Y6c4mlPQ|2tIN7`E>{i z`3+CxO9PB!n0&&bWuTZ@JT$23Sf*3t4Xf1{oSSSJ47k;3&8;YMFSjZK6<;$uTXI~J z%5^^EzFRyI_$lCtuqH}6p%L0VacyEYbX*RQ>A<*sC@O6?2V5xYP*0Em00c1=y~Z`+ zOP|*+Er0#c90ZDTfZ41xHpE$1Rwub8MMnzU)!fJ{pTnLMI{1K*q=$3Vp?iq0=I1xb z+d9P)%^qw9(HyOVVL?Hm2i5%j{W~{3dOD-wGU3NHjBG1UoM~f|&l`>Lj)-z9B6q>e zM^yL(LZ`+j`kPa?O zODz$sCc%%6_}TKaB?i0pI|^cOiW36GrM#C_6-8W!C#i1d&hg`-zpu?-nLZGmjbO7L zIt055UkiD^Ais}2{S{*(U0X67Na1Na|K;glF%TXx|0V2TX{*h;l9^rWYvc9A`q|y< zbM;GmtBTuZ1{NIae;kOOSYJtAyB0kKQe5iSyv;VP2-lnH_cR=MI<3(xkyPI?6*sMn z9H`H{Qvq^1a;vw2`{*!(@S`xFl8JeiZ)9JI6xcG(JzGES z@b?=Cp9-?cGhY5UwLZDJ+B&%_*wJOa3~M42`~~xmz)vCJiH%83H6u4rHx{Za|^gkH7w%XIbzL;$H;@ z!wmJPpZ&tABts6d8vo@-(gBWPbIy)eY0jxsLFK=8bey)MOHa>||}@ZEqId?DaYQi!MT^a&0lDG>b|8*#sgdks5|Z=~+? zOiibOZ9kLudrq})M`qH*r1cBcuJbKwuFyEBKY>HzT#g4Q=_xQmo%ifTAy8<03L-^@ zV2;6(V_3H;(J&CEfkA?j!}M%xG#i2FvHY`9kM-*-Ur<9qLh73%7)qZm3UA+uBFiC> zpgM{Kx9AD^v+NI+yg9ScUeaSJ*F)?2N53`D)Sttwx)`i6=J$*ibTdSY9^}!nH6CKS zEeD)dSGVbNrcpw7Vos-L?PcCoit9n)3We^@*wWf-w)c64|8fHp4c&BUu??4;yOUk& zK)M<42H#y4PAg-ZC ze6gV;XL#~xTrP=NwV6Bmj}lSQvJBw`QqoA|ZygHkuYZ%VMnXS(cWbB=!52EBTki5E zt!?b^eZD8pI9u--Z9CGM|D`!^?6&056Mk}XZZPI{F26PimWzht(z{sb7!n)t8IM6> zkw_AtzQ`=%I12(@U`CDz3${4~qT4RJfU;UWGQNuijc=!lTvof1>m!9L^YtsyJ6SL0 zL-2a|%`sd+tew}u-T>X72Ox6{P6q>rKsAqFDZp=M-^S}au*PzN2z1-lt{_Gy86usy z$-L{3Zm=Iltqn=rO`$;SB9Wmr3tKK90~k2yIui5L1|uNkYv_KF2;JLqI%O0l4VaCfhJ*77GJMrT}%`+JjSygK^T)Lo*!J0mrnG%axB2r@|Mr^eweFtGC( z-#00-rj)>affziA!S=Her!Co_iQ?9)*GWYd*oEGi>N`(nMFWxR*IW%zuv#9Z(YJ#_ z@ktE^y`>=jZVda@3!idVUZT>q`X%hKVX@halGzhAg|>J4>w`s)R@bKb`ugj_0_T;? z=B^D~UR+qKe!9A}HkcdQzj{yq$$Sw=$_CTTsW%M`4clkJj7^R2d@X%BHh##Q3gUT5 zDxkd%u%JgYQT}A;^tVQ;2J(TmjyVwKBW0n|;O99h3s0dqexyJL)B0eiteclfe~wK- z=hNlSjsuH+SR!6e$A=JHdDsYfPw7<>x+QKl;N;gQxud-@6!bl71S}o_GL&KQOwwbv zMT|7yV4Pja4mEW%Yy2$`SPMWfxJsM#(jEM!CP9_$sEV|GVsY^4YjYDvJj#fI)yf4u zWFWH{gVwXawBS*S46lw|aR>@zu6YBE0Bxvf3-morCorF474h7m_VV%N<;ZxMT(Tt_ zdzMVZS!}%u#hi6~lZ$4((c8f)zN4#U5$F6EO<|FU`z>%rr4T_;?v*9Ds_AOh8h4$} z7z;B0W@8CtA_fP&ALD)ddj|u5P6PEu!K3<(LW+E2!IeqRE47jED8jbFQb1L8hcMPB z?W3brhlcDQHK}m!m_{y*k5x#7j^?2n2p^b9WSczsMUNgt82btIs+_AJ*)Z7vh%g%( z4r5C1m_!Ony?;r&?7|$Hf!g*?&@LFK=bHta9jpOy*iHKxps5N>+L8{C zZT1YrDab;Don?Q7OD88sMn*21`nwuO&OK3*!q0^(tGJR66-#deau?t|FhY&>0G+M^ z?wLJBq)g=lT4Cm# zbBE-sg5aFQdej#olxY z_0j@}Nkf&zba>G?UN=<2?7daYN^g`Kn*t zwA2-j2{~YJK}X$(+6@k!#Gvd0#b-nxwzjAM^xe$|(vhBs2cG_}HzxpFd3uxdxn8h= zk=fe#<${@T4_y;K6OW^#gT_s5U)6FaZ+48|>c$%#z)SK=Mw-*qu zGMo@^uDhe^p3|5JIGL{_PtlCmMYEV}C*_3k$(r|Yfb%H~I?r9pg?whyZ$fg@c3SJi zgrhV9DU|u;tav539Pwm8P;oah$$%$!FjsAyV?6StF3Q`a|H@o$b@=Mq*l;x)ZX$fw zC!STMVEc000Jvx?_mzwnS9g93SU$M)LAv}2U|s`3JB@t_T$5s{`T4d?H)qjoz(0p_ z4UdJYCxMH2EAj7UQ4rZdbXYgGVR|m?2|fK~X^2VEB~z2$?uf_2$RA(EDnjVioAm3~ zeyjJjKkMW>)0;`8wOIcL37fWqX>81$esvP{IDI@~SJdfE&l-kY4^iLZPd{B>_^=$k zP(^V{xLh8!Vj273GEVp!yi@sZt^VX6)}jtUe;H#Ox(ezu;EmRC2LPG6V0!7^Zcvw% zQRFoIQLJ5$^NxLW5%hSvtoJ=KDMNz%@w5Rps5~&o7)ff+YJi~x0Mu$`)udswSOCJnt@F7p^a63@ne20?t6{ zvMz}pjb46jA3c?~RIYychsY81)(jSP&sXXA*M}*Ft*_486g1C--vrwJ7_K-4J7%5M z9kL@RefO9_(>Xecz17=Ux#70+e)i7>FQd|s&>&4=!?<-%lMF$t=yf_#;8C4#SOHR^ zHowW`cjxOgjT=OkXLJpDZEzBV^fwvhEpGq*W2k$53Q!m1bRxwqO&?-0(tT)j>Th3i ziPU*S-Ara@^!K_cdyIM$0z zQpwO0MKT^R)bKi3#L}G6RMbet`lrzK$-#iIxsJ#)3PCr0B_labAcTg?`;i7QNO8Ge z{SIMvkez4@a;R1MX8wkWR~lpz1JO87f!7*=!xtb7P>(~qvO3+Y-+v{tEi?F#Kum#x zI>xc~SVz$jxEm;=JG}oDXmloAg-la+i%FFE95CF0ejb>(mWZYV`FvX(Y_(S(Fnj-@ zePZHWfz5T`TYxx(TGd-_bUCjMEiJEB|GNoXB^Da0C0YJh40UM}^P|C%`M9PR1^Coh zxwjCuM4S`36vIB7=!+Ha`DR^k9e>M$i2!-?kRnzQ7_6;y_3}DLA&yU{p)BkknUP!*t^2_jR1({@8veY#pK&|u}%av!vLqHU3i zh;k*q$>^=kWp0s4IN+l}@i|+qBTTlVzq{3;+FKz>~U~)vpgW87Tub9K`!(NC^43Ki=u6tAd0N z4*hftuXl$Y0++(lV;b&47hj2`#$VL2o@T^bECW z>3hH%@gY(<+TzxpqoB@;zkwrjDf7(^F+AQ0m$3C4m&a~WvD(s=v-3H|euoZHNQ`T7 z39B_N8V)tJ?MuoG*0aol{-7LY5X+Eb9^J6b}&g(GiJs;^4v#ujLj(uZn17!I4=~aGlOA%v4-GP8iI8w z8tuU2{}SRoN}g9g3|-|2dcB<8kLeKbi84Woj-0E88q`Bu7uUbWRG)EtxALU5e)-Cs z`5mquHT$cir9b{F`J`ZQcDKU0RQ5IG)$_mYM3c^kqCc^xuG)Uu8NftipMxk<6oK*C z`uxzVq+v9Sq4S$$N5sjZTAp{csQ2cyY3KULjv!i%>ya8g@%<5t-Od511vN?EL*h$p32r+Buu?NX;AAI4sdv4iJHqaSTEewGPF6-vDn^-vuK9j+unK zq)4GGP&s}!KT};Ir>3H%FA*^aE*y}-5cx9hZY}|t*444gh@_+2KEJ8JY;pF{Z1`G# za~{}OO%H`HuGTL`hIW?LJasS&50C!XWaMw0o!0PSIvXUEiQ8$ZrdL8bxBEvA=XRQ| z>Y(04=DD8w?|voRff)}2)D??i1iD+31I4KU@N+ZNO z_Z&HGnV-2WYafq=ELjeVnhA)WpHl^n?1p3}Hidj%17#kEwa_%eGSOtj!`ZOZnyM>L z>Z2*_9+dWTO#mec=Ad269L;)hJ?fxZ=JhDkJ`H2b7iJ`UN{?*3GyJ@>h`0D*{>u2! zrU8BF%J;Lfw^#`f@(noWnyt}#EL)^G-h4lb!p?`#STJwt;gK$A3rz&Y*fQpEoGp?J zahAGt{YQ1-oEr!nhk!LggA)belTS1PEzWp74j4QvFl>Z5beI6QfCKRaItC)krQ~RT z$q#qVSdKl3sTMgJ<#i(BEoJC(X)=83CGUM27yz(YSgms!m@}#1?sHi>u-03@m9(d* z={7jZ9H&aEuN>SSF}0~+#%!U^Kgj^}6(~tS41$qbGC4NHL~RozHO;MqUcvLAG1A^& zw%eOVPqi(yV}L?~gSj@A(0cf5~H^FfuIcAxM06^mam24&nECpISWO-QM25^=A1Fg=US;JKZ}e z0s@_s6$E*eXaIX!-A-7{cTHBCfi|JATF*<>kv1!G^rrCS%7yj9j4ufzBM_9veO*F; z{d_go1?*F&g5=9h1O_7){7S0rWa>QRU%XVg#^nLt{RVedq0NBv%KFBe422x)0?=?S zgn?o^^B3M6k9JU?&eC^wafb0BsbW{HUde2JHRu;Et`tG^pYGkdbiZBuHZWW^dDDQV zZusI>6L_D*8JpSY8Wxz8Ea$RU$6gcTG*rTGE4%`i;3t1O~lXz5QWp zU&2o762|HZUhG5(+j&`glM#N$skAClX_9@(yeP-w6qeEsen$Ahs{KV-Ut6g`7d_>9 zmR)?ED0+m81uxJvucIKA=-p9jxd$8W+%0m9!JaJy0u>CHysJh=wsP2ZBx*^O!3daA zM&E6JF#lA?+uNF-+gagJ5$OWHfeoD9i!Gj`yL}&@oH=`Mprf5e_}QP~K8&Av%P&23_@{{AJLKd_u6$bgRIfGS zNv)T16kU`xGdL)kwC}d*51T0oaW-51Dp9Xnh^ju7R-WjaQ~go9f+r(k>b9gE%2SsS z=2Zt#;qN1+to$iDRuKoykeTVHPkiX@kQAs#Er?^)FVOq4#*aJ|Mh?4I>AF;USP39U zzPlqw-;E*&IVXkVDmPI6r!9y-_BjQMo!)?{Eh9+Ug`)AfSNsx>R!lkC@b75pwdAKW z*f>DSvnKLGC&v37h(>JR8hvL>{J6;B`pkaL_D#|m>5x%p>3XC3YWdVG%F*+V`cI12SHWf>Z?PtCb*I^n{`I+;`h_{w zPXF{dk)!|9uxYqq%glj+VDG8=g-?@{4AqmiX_g-D-PyYfEor!xGa2rua@DL$!o3tO z9{2Wdx900bbr^c&3eE*PMfx8_Acgd8u5e7d;C+^C-2sa6#S%JlB7G$DW~LvleP%x~ z%1dB9TE4xMDOrA3ZML9B-t!1G1wB*7ENx&;ct9|%nEvpo*eO4Mv(<$SR7^!6j6*nR#B(7T;cu>r#IPb%Nt z!S&dJd$KD5JRi^;_iXIm<~Q5(>MzfVTkY%SMa#48vO>3xZRko7M`n;@OXHxiR(>0y zR79h4Wd#E@^7Sdkxv$7(m zO7=aH4uVR=o8_ggfYIuJBduVdkiAOq3Tn# zqqOT6=Keu24!0Q~`G-FgKm7?w!lhA#SxuoM(x*t$^3w4uW%Z+6~1N3XzK7?7rlku8qUNa8SEpsi+=@a238I0u_SqULrerp2FPX&Wx}7@0$tRL&6g=eBWn(P$FI^eP zJCz0BLiIXz-I4%`22aaT$V})4GA{b2EixIi#)MdGET`;Obu7k+cK?_i2`X1Yxsc)a zs6;qLkwJOyRH3ulY&KJ{E_7L-p%H-gWrf{hGBsK9mlRnf#GpK<=ej0o9HVw*4}yJ5 z4!fHuXTeU}5hveTu?y3}FRswuM}aenvIME?3Q|YI>D|5^^zvJ;t<#4y!T7;ALi`sA2zv?uH{%@SVG<;(BTJUK zht%eeZ%heZ{W+15cjdM=O6NX!`52!|DXiSSqNBf_RabRr$00PgW$#`Xn5KefRuD@VlYK!nt&t1k$}or&H{|vMip`lHt>-W?nr;PN^ zJXu^>%o!TW2o3V-1SI3)kD1v3Y&q?v%4pUWG)Ym8jlHCJ?|c5Qm&+o*xc=*z4AvK< zxMRPx88R4@(KP6FwMD`u6fDDvszqUmoct8Jn;S;;U5*fuMmX}bK%}M?od|4d$EZl@ zhuOu!$(D-hGf`_4j1?B#9VE?oF7#yAW^*=>qjDRjc^4f_^Q_~>nF#bN-VGp@iAUg= z6YliA)ej3i9J}8&T#JLSS|k>ndVN(3wO7 z-hXZfx{KL%iH6rlwikdJMRlmdGKS57)u{OCvx1@P! zFih5tRxz8E_Sfj`3WzSpZZoXdfU(Vw@CJek++AwnxQq!vwf%klaKUU`H`tUAli68y zrQU>(=Fd)%Fn4(zBK`gRCLxC@PflbBE84PQVaY*p+s3J zzZ!_X#F5@nHCKKhAf$4THM!lgE22Wr!JD?t)iJ#aoWTGT8|)X(im-M15|x3qj?ntG z*+=?T0|MPb@W30I)*PFgn|zY%-QhkK3$n2UiDUgrcZ_Qy0)zUpVZ!*w`#3yoid|YL z27m9O-)IGQHlQr~i>Nn3{xn}lizaYSHW*Qn)(S)sQ+~QF+W`UFZs_acGSH(I)Mh}| zcK7N?;fa*#`&xw}-}!#RVK#>6(ar~Zq)7j|b~>?r+xY_$*AAgjGBftiYlgJ11lA6$ z`N#GYVR&+1=hUOGP<`vFVttcd-`?jjS#7B8Dk{GDy10$^?*DNrj~b2u>51Upf?(xJ z5iB?9K8Ws8rl->)_+5okDeCia4%3)|Qk>1HFvx9RtL?t4F6$)&%Nc7mAcp_SVD}@D z-vN`)BxDRr5A4oajozqa2n-C5P~}QkSYXhU{PU7_!|YtHb1+4~DQ>+ebp9!dkk;|2 zgyn#PdQw=~O%+MN-Zzfj4`#;hjmXg2xen5bk?n^WJkrHej-sLIk0k?6F3#08eOFdM zqQ3Qf=n)L3jhChTs`BOPr{Pbt2NNV9lYe>H5+R6`@|zjfA8sGE-AB-u-kZ3 zMVTYPa`u6Kk?-9q55q!({a5>z_-aY^u?@60f#s(@j14LTA3RgPIA>(zcjxlYwW+9u z&+{p|G(LED9c=$ICg8-rsJCbeVVmonj!nLvoxBl&n!<73F-%~#qhRJCJ}AjRFtIY0 zpj`0oTBN zz3RRGGkNv9{XoRp_|mtAP4$33|KV-6sJ~LU{(WFI^vXpC1$b8-e*U8$L1%}3w((q|5PM-SLbp$`BlUh zg2ZR{szpvTj?X^TE(ga5CA)ljU%v+~RQkl%_0*@wj01Vq;r+Y5e_Q)0?lZZdtcMT~ z1=;SZWqN3i4xNOg$WWV+Zfu)k*E zkzGctvqlsewiYzcijvSsG0L21bhaafi7?=0r6G@8Xg-47;`~?h!`G!4M$K*4?T?c7 zX?zkP{B(spMB_Q<=A3<=gnb$uZ2W}Cfs@IjlLQRE*P}lS!gx7HC#Nl zPlCaEbrjYBCrI>)cy!|JYW(cezcs zu@>5B$29KOx~hJht19f$3EDVDSR*c>gH)CZ9UQ#<4_?h-YT+%2B-N$RD5Y8ZJYgsc z7 z87gs3%cY=?KG}sr!I9IN@r~A9Diu7aO4OvngpjB2^8kBw!8dbX8eCQMGL=q zH*q$VUZodxb5OLmwY|H$dwxE2)YlS8YZo~nQNTq_*L!^dL&J;Qf&9mt2VK|EW+ShY z>p}^#nOk1_1zC%^&^79Hq~>${tF1gk7#&Rvq+NBJ7*PSEM~1JFeY;<$Wn4-xiK_TG zyklD#!_Hj;vI_jbg7^fxLP&5je`GU-;;^)5WGe!RHfp7%?ZAIA)i5u<~dUawkxNqDf5P2V$Zv;bhRr zc8t9lMpdK`1B(p%9~-Xy7Co1@?jOBoe}I7>w1UMTSjae1PkaIy&G^Nr%K>H=YmO!& zVU}rF%-u41<@PL^05idfVL}of*MkndlG9|#FpBJWGA%?ZpQ=b!z?sV-*`-Oxs;@+c z8hHcNGnh+adLv>+v`$DT>-=3iw5^CdkO^T)c&l*T8N)?S+`ymLfb!*lI+KV`L6Bc7 zKq=p4#eRK-I?V-}s`GFU<$83}*ttir@enrNjY#@S31>yyTU%yFL&p@CDbdJ`$hk>j z?9hi^0XT0uX0~s7MBR(kgL8nY9HwRd8IOGm`fINc(dG+>fk5=v=A9Uau!2#>e?fhj za(N_K7IogsXGm(cGBVf-66dxm=!#OglL9VPZA;>2gQl z>d&EMvqQeK{gO_X%L~(eV^8${2n#!C<)C17SXMH2OU4|5Z0A{kmr?kUZh>eD!#Bxv)xQQryOs=0Rw#5<`)^gPFo1(++K(Fcnf%7(1%+&+CID<3I#1k za(@VHWB{L|agG)E7-;hiO}V?8PGo41v^5QI$q7z7z=2c%{dn0U_)f;BYFql^T&*v#lv7g=b&Kb4n-O7|FkId9s_aP@IT_v&mzE8}P%BBPgn7M{IH z*Mi4b=8qKb!2b^{0WMEs4hw%#qXrJ%6$jPQ zJ#8L6N;>9<;$%5KwKcDs%|)~n|0$USn@{g{GDB*W@g6+rr&=u^^4=@6Ip0dA-0a(D z7LBWQTOtnrbT`cH;8yOGo~v>WvJCWofkE*jr|v=}q4(%PNxC?#=MksPM`!3%9!b<- z{$o3^;rfnNWQPWwqK#~?o7XsSfZwdb75MfXKkvMh7j}jBr?>z7=$|xKQNyVRdpr{9 z5BBVS5cp@%DG!4pj}OIm`TU)rb{yAey+R}^-!(&+@X#0?t5+-zoxPA~?Bi`@!p+Lr9@dG;N`gqEbjpUvffdJ zhJuOh7fRHVy8Zh01O!!iS}Cb`8B$d#Ack;6vNAX;iW-1XZ!|Zn#&)TF`D9 zJ4?2ZXBhh>#H6x6=s7ULxy!?YZi+JcBV&N_-tbrjK{($q_$}bc#`NJb9dGLByQu54 z0hgC^L-T-OD%XE)q*?un1`FNOw0~r48rP1*`_BhwfjQezlNcnap`DKelungl(_(O- zWY$+Tw0hG%OE#AZ8a`~EE>8rW^!Dq|b*by(*X|3~FuU0A<=G;DrXWWns~^_PGlwx8 z849y;Ck)1N^_S^*`;OPAjj~MGFrk&wyETP=7Vef92)+ zk9wd7(q9E3j;ia;2l}I@pL;%*O)>^J}y#y0S7xd~a%_o2#n(1-?&f&0u*0 zCdNJ|lQ}XlD*@P1BU>?GJ_Ra^mMx`uPgA}Odkz#FB|m;Bhc%bM5tC(L0D_@8eITc? zuev{CS+YJbm8&*Mt-xUPfQAnVK`98i;@Ba8UuUn)*T>(|rW~-zd(|vPP@e#XDuiE0QfcvE9g9xpuoLJfTf20}KCyOeA_+1MvYQ6a(eL zK8+w_Ed@Z^^>KP>sii#;;@Y{P+>~sQgZD>rXvUoPkr}^>;}amJW04_D0?@1B zL-D{ue*GUQISFuB%(HhI-7&r$zQ4P+^&ACH4z@+>$4F^GY%J6EmK_TXn8S~_+5Ys9 zLOM9jK`kJ#w{m!|+nHRz3_*h_Xi-;&f#83VYA7FHR8!UOSiv=D%6V6k=v$;Mp}@2N z)kelOk=K8JsEv=JyPe3axc^>9Qb@wnMf+fw`vJHX zxVfeq?t@BNTb3NK^?-}d2J0}eLS+*y*kO=G9R8mhwiXn{GYRLn%c6~7uzUTEdOZCE zbh6KkCMub~6G5S+9RoE2RN6H8yt3QGg_2H#-6=gZkjsfZn}Q8l{GE)79^XYETvhpZ4kO&> zz~8o$95LnE5#k)-$ZKk7C={o${;sm5zzO9ke;;dsb1Z`oR=)Eh!=I$?mZdzraRj1b zQS4z$S!jn%;BNM=}1ui@-+%b&}kJlN1zXq7_qgZzZz}h{Ql}O5$`{p8@6Ot z?%kMTZk8%i`yQ|NAAF%)rd_W?;virqsbIkjY z+M}s6eMh&88X}B)>z4jGvwOHr6ahd4#G%mOO`lfh`G1>C z{TRK{A6imZU%>mu`!?2gbDM@ivCOCc*8(W%BtQpuA=uG4%|X zNz_t2`|NH-e`M07*{_S)`lgAtG|JV)XFfWA;lwYG!hLq*ZEFrzm?OFDhk<0e7VgDu zrP;ofh0e=$=|g=JxgVm8zXaOTn9q>Eli{k3N1wQ|4HZ2F;WlRx8xbQWS7oxRZ!5br$$|8Bueg(c1 zQ9r7Z^Q@1DhR*A|)PqE}*&Pbid3BdfIxC9qnAR?h)UV3d&z3}A35lZZJPhiJQnQPW zb(*d{&s&)`o)U#@pPcF{7xtR<4tQ@^PDpUDzpvX0gLJ&yD9E%wI6gCks{|hy+?6eJ zE_yQ1I{b$*%#J|q6-H@89X!VtL5IJFvsq81vXd^N}7%;Hhul}#w?~i?Ymn#)-$szO?1Ut-1khe)*`^Zy`|2UGvtd7z}KKYR1p zY=e#L%*$^akqXU2e1%WqcgcQ!rOx|R^;-rl6*y5D1H@3Z}$ znKem++8w|m#V_5xuFhFlf9oKbn&&XX?+^eXtxbCO_iVqTRPieMbz7XRCf>=9|7mfi zpl+Yh?wP@WmFWcgXSF)?kb`RabIbike|64WsaDdFc17w}NG9f%S1-|*|E6U9r?vOF zo_%6X$Pw-zJ;l;J$15%+m8&HiHa(FXK^|07cvhf)=JJHMOa0@XWP^0~-2Y7H3um{M zs3*6o>_#i=^-B8IC)|iD~t{a#No!S1Di)>+tX~WuD_xCxa(HTi8hR_jjPLm2T zZ^^HJ*6U))tZCH++CEXp%?}J|-5$bhzwgZ=OWU-}s`9$*f;jf=|7vVb4x{eIi5x7X zQ8(gv#k>o;_`ik&(^}(1q^{HUY*Oa75|q}h%(N*n`KH01=HX$2=HAh8p0=%jooxNj z1#;r*`>70vprP0kJH2o1^}bbM{JMGHG1|w>4&FZntxabUQku<^l7 zHY%Gr_~3tS*o~QQ=oZqtYvZ3SKE(;%ZaiW!P?_}JdTFB*y-C=2ByXhO=;*yRM1+)D zxs^EV(WCJ4)s}Y!g?o})&wV>tlRk9LIiqilZ&NYRuc1nDEiTQ8NWE~+;HU?VtnV zr{bNK7@5bIDXkjO4)D|N2H|4cHxxu2jv0t4_j%Z#X z9mi>rvJalngs$7N`gaD$KyOgk_`R^t|6Imi`PTqI<9l(o7T#~cmEAgZ;c(pXSGfP) z_^&?qRD2teaDiM(y7(5l#@FVq_L^M@oJq8~6Fo8H8QU;8mU?VpVaZ;9K2oSK9~!-$ zx6%uaI)%LxMu-&XsaGs{b(?zEn&Y__?xvQW_p&W3k8BjhEmhmxe4s%2Vv zZgeL1!i{Ho5*lzL`5cp11qyI&)!5CL7e_Vz)*|83bT26GY@IW%>U)3qMqKzsTw+SB zyG4StKWz){AC`kZZFX+$`?twgk$Y6+VTWLw?}dVthqw2ucb!wBR_^b5S9#b$VV<@j zfbV)aOe;P7Hf2w9z z@b)|g1!`4WL5v5NjlSLfYA{d=&Wv!q_Yv!}0}IE^EgrWWJ$v)P5%(B~n0?``gSzxk z)7hO@-H#-QmLrVu+vK?cTQK*l)f73ri}bCz;*CDlBK!*m?TB|wh%;eZS@ICY$AvG5Nj%vq^eiD!KLLF2Cbi4{Kw8Q{P9UaYf96g+&+?w=&#nAF z1ds&zds7eg+5U~bK0seCfL+ID^&mk9oVZfdb33uTBk*R3bBc_F^Pd;r`{risUn7kI znR7E0;GxYrSfTrN*$t?3DUXRgM_(WzAG7cuU+3no?4Y0n!prNU|BtP64`=#~|G&** zRLrOr%BGQoq7cF?WXdrsM0{FH~tX5Rinp4hlh~|*9oTU;L5;?R+s$pSrT+HEn z_r0#~AHVDRU6*jVGVi?)_x*gGo{tkNqeB6#Io=2Ml!mKbUd53kYWu~6^At_42ga$; zv3sS)&zi(%sG;TQ$~lQ=@bH%=u>mF(kTX?-Ue)`jE2?&rt|(C%OQZByEBUHUWhP!C zwZMI!$d$c5%JQvR2WznYcf49rjy|PbXEUndXA;1BKZ=luETZOUy6qOi+L%7PMmx4$ z3X?^s*jMu3g+7&a>V=x&V{)rG#sjI%ec>mS}G+S%1Lm|B!q*kxeBPAyoy z?Jxf@IVB;rw0LfQb$k!_%=w2uT)bY!R_Y7|CH+mfzaOjm-IZO?;u zu|*F##@avyeSK6bJ;4~|Fj&KGZcJ^?rsXYP6MyB>;eOyKbn!8jOg$PSz5~@Mv?E4x zF_RKU*$G#%R2h}{aRzBGB(eh@755Id{m+OM>+zjf}ZExfyOTYXvU->nQnmhbkq*e8|8Lc*7(u0BQ$GLAHZ zIOlhNu~U~5H)zj=A;b0g0x*GUaPpg>Y|+Jf4(uZIL=6FFiA?*@)~r0>&e%(1u72nz~FSr)e2J^5JQX zj>K>}dHNJS;C8^q z??=6-5>{IyspU9uS!qU73u}F|v)3_BNfR64Dn*CiXvv7colKE#ZD5Y^KdM*M2>fi- zgfbIHq2oGGSSh+n)IA_VfhvV7U5tqnV46X9XwYIuP*{>DHat~T1d*`Q%+nKr!p6R9 z2Rh%OBl4+$48_w={=Wl9&Dx&D>BJ8Y<4u43__44#4xt{m=&x7VHZ1X9s|>abLJ*=b z(h0+!d1b1exDI0&jUhAt=GEqM%Zr$o0q;#Wzk^!$lZZcW-BT|$g~z9S_z4C&KZY(% zfqGUoRU3uvb8Kj?_iiG7vA@8yy)v<}v5{8mGunJxul@Vk&&MrlAk4_T!LP@yR8#Rf zv^cm4k-SSwrte})eSP|iLq$nHeTQYm7mxEs3)~<6Q$Pa!0|)TPYl4@O*j#RS`pD=U zZ}DU;NN^An=j;X*88vwy(+kvYf-16ZBrpvg{r0VR+T-Ho*kbzAfSb2pO1A4>YPGkVBBfv8ukgpH=!&+^P3%h8o5}5b(rCAZ1x2LR5!My}BAT>Ib*JF##rAjMyD#2m{ zz$?j6VRpNql@hn^-V=*{+tK*?^|Ke9>EO)E?H5bwY$+f7`u_brtZSwl;XrhD^=^sT zChyqJk1bB}sb zK*o#aw8@yG(xhKz+f*I1g0n%wmU>`U=t5!vf5Tv4M=8i!#Q*XoUQNQHvBt!xkn14J z8ct3CY#!5`EbDzNf+@Hl|BUDWkQHDhzZKKDn1vtGn> ze550lQu9U&x`D@Uj^+ij!V5YcO=O?!1$GvF(r$@gz~a!gA9#KuRfFg1O2v7+es8gR z_=XJ=rPih(k9GEk?TLKn7Q+c$Wrq0m$8?+h9F-^ZpQ*X&4!P;<;;!Q3LTMl4Z z>`i%GIe z^epLZ2%C%7%8rpeCDF8e!ks8mdKR5iG7ViaAhPFgO*J+A<7~?EtC({~1_R0;TnkI3 zdla9UKy-DUi&@C&8WqD!MrLRb&dPs!}%ZrGKpSuX~IuUlM;PoYh) zn&~qheHy39E2B|^1&(ZB2L`~oBC41y)GorzMaR(ylTlfm6!)~tJ z{V9*P%c8{OQIKOgLG+#!?Q(9+C!s@9wiL@xK&-=n5?w!zX~vEooA{W0#Kic~?t>-O zaFZ#lJmn2WyYB_dkk1vr=u@JNVP=DfJUlpTwc5=p)39!}tN$Pf`o}htTeh~3t*^SQ z^0pSnR)G(qPw2w>bvZ*lSuxQ0y0!i@Ep7DY7se6rr~|jM$_qi!F6(EuMmOHR1(eB< zh^>~bxzbWKZ?wVd&$+i&ibTEYh`1)nxh{MJj5H^wVPXY~xR5W~742HNoM8eNfUhOmrQKB9 zZ1WFD=V%n&caAKF-1S1>T@h#|TBfW7e(1;VwfPGMtG_E`BbM$OcAdRIXv{r!v^_9M z{o%8fJ$v>f{~F&M|IguxtyxLLZWPh#2<7Qd{v45ojXu(NvRQ zdkRMbPqSbHkE0I0<8sp?8cUS@GUmIK&)bWMwP|!Y-IrI>hV0?(SB7D z!^B{KNI^&lF)5ZJfZDEN`&cU)bdIME$}4 zzB#_tiit0-8ZoA{x*ouk?UMk9Q%Wc6od0sXJ7Q&QP4|-{KP%#=cAOvvQi`ugnc(y- zCl)nq(%b)iooPhvhM*b&p; zI}mT5Q`>`h=u6O$iN@Prtr?}$dEw9{Z5$TAL;o zt?9^+rFjb0CBKVkuoo zQWB^KOD~Q}U|!PmVi49TWS)D)_Fu}_))Z6P-M@#eNP9Q7nqN6rVrCVIt1#xUaR(cD z>(q#l3MCGPqEJUrgc^uZ6if^F(%}Gdfr9vo1`WbER}y%@WXj9qcK*$C!m}j_PkhwI zz8S2~wyZtcnhFZ{>HZ-oXc~E|*E80r!#gl@|boo>-T#l2fBk@0kS?NP~LtdeVhLDKh?h3>~p%L`E zb`Wr&%YgVe@L#2by({+SWf>S;aJPMj22f9K(CrxP$TN#hjluhIYXcwZ4fw|*xS*W! zN;aK<=`cs20jb^o-$BTBq${SF|SfVOqhd5Qs8DYQZ5usJ}BsqLnU+MyXq~PiqeW z3JS4fm<;A{j?yx}IfX9+3T){SgWD^8X+u8E8yRE#dp?`%F6-O3ddB$65eqk*uEje` z{7Sty6d<7bqm#Y9u=1KYCl)Pu!jZXrp6&iS`NGfoT$=8~E;V*7` zm+TW0$M@meh&o;H9nU1AbR>am?66tQ>JX6YtLOeVF-pZ%#7X#~Tg}WWoUa~`l6O}9 zI&itWIL8UPSU}K7x+lOyQ)1PjSW@w|apgmyw)hSq5Pw=?%VM9FK}2K-*{pEGL2@ng z^fZX7)8f2FpTe$^RJ5K81v-SKN;7U&w}L#~xvS^%VeeCnB8@cK;gEJ@4ML_|U8vJm zKuzXMMVwSl7y1{~a|f#IMEucqTGq* z8V?&z0_V0y=joLLp0M2-rtlr$c2q}nTt0APZ|Bs+?}Zia=n47Yx#^0s@?GN^ZD0we zUODQzUFE;Kt(e5_2UsnM@nc?pzx!bE1N+y>3I z?-|Kp-*_Ttc%D+^ymfM~(z7s?83jT3lBxDgz*{FBh*jMa=}erMjKHsyozWS49OG+0P*%%WK`-A3r#! z<=7}jea-GBs}jwhvJN_qRa(otEq>fMA@8I%2^dCAjjsg;0duHoaPs!hML{B&>>(*3 zN@^w6?CJ{<_S@~%zfG&eWbWK_iAGUZpz$NPC!r7Du>y3%`1qyQRv-s$74Jo8;@uu4 zDwrWkAX+7wty;G12iOZE`7!iwvw;%jU_Zf{7@z;|Nr2Hov@tP`+*xjV-Qi0}RuJD> zKr1B9C0uu~xX8Ihf5Pm^!dqR_+j*5938x4D>sEQv$HVi5s%fGpQetB$7Z%xYi%0D>b zewQi_s##RLE&8Y{S{?-bo)lmbM97XA4KWssEeGkPXnDulGY>bsUs)?jsV^ULd@H2! z;pALULm23U#ooK@oIF|(sQ6OjsnaeAS`u675<($DABh2LU7KEL){$?Y*DbwdBd zvDt_Jvd0R3R}@Mu9zRV?^R?*TVfVrrip5YEZrg?*4+f`6(dnZFqXmO{a3^AEYETIC zyL;+~`YRyFP|WG(KVorntQOzD-zECs?S}JtZeX&NLGapCU-#C$)s{_Gy;O>W%mtlF z(~)PzunW6fWhH0=4I108N%W=W$xfr*ro)p0Vyk~m^;LK{JU$><`E88V6gobbTRmKL zVsz9amDGQ^|A%1Hp63>nJRo7y;2SVq(gEN$Y6>rx_;EI}4B~gS?2S@Y)Cu?JF}qde zrRLlPwNCsQSSm3L9toK~CvK9ckhrnl$3FPvmA6`;oFO0nmn*kkG}m%#acup<)@p4y zA9xG@Kg!f)>+9I9(6Hsd^WA$uKsV9NWK0*yh2Ioje;>h1W^DFs0hVJy#2-T^5Fj?K z{@5%_nqHRPdgHRn9{W4iQf=@pV*Rggagp`;n$eQLkf4x_sm}10kona;hHEp6yC1^Q zl{-cSgfK@z7dZ=@4n zSA^O}V;Io^0^pu-(Ktx+oL0$$n^1c2GPn|x7jgKsqouNeQ9ElG?UDBoYH4v;T#b<# z#$u7nS+oLcL-@vT_9LqZd!j3DodP*mBh_Tp?`>!iCYn4Ay6UQYo#j0eY7f zNb+67z+%dyhml@I&#f6TsY2CT$l@g_dP| zw(e5Jm1t&H3nVhwy2oVBnN^MAF^7&Z{*}i1$Ka`#BKt0K;9GUc)hPJP)VQxJ=66xEL9^~zKlUW zwRgPI8eOJ9-evYI?n*;-QVOV%g{AuLXsw}^Q`O-rK**pl+sn(lt!8+8NX4WbIM>bP zfsnKpoEs-lyuoAf$Cz*oXfa~a1O&BgaZ8p-WSNc`Uc0X{gd82k9k)f0~X|=y8cw@q6V?lfC&0Of79e7tQ zAxJyAT)hL$^aMrM5mV1ADxLNnHCP$Yi^PnSavhB?M+}>S6g51@DfE-$2QBs;YEh2n z^DaBriyrN+)Ycj);)vrbY11F?!2gO;74h^_?16#8a2d80-3nmK>M~IyWtJfPH?L}^WZ;U3H8d@$TvcrSP1Dh1RZo1{Jt{a-JD!Ba{( zkd<0UH!Wb3WairMSY&?6Ozm_BiXo-6>C*na)NSZw@ASgtB0p;~V2nq1EUNb)2K6qT zeYg4L)1gsL?&%0iR4OH=96Z6-%7Pw#IWZ)~;XNpH3O zwj}b%WU;SVP$p|EWB=&d-=9xLLnhxBSs9KvsaZWC?d9AsYp=l9PwMq%Mf~mia1E&` zVu-yjfPXCk1z=z~(Q!0I?h)z^A|d+$kz-27emfDLkNtQhp>1@h;?uj-KRUb25MZ}8 zreF(2kjEjmn!X1_JmBN#`=_ii4`|ugNPq*^I5lHbn}W^;xDXvmS|qJwj}#p85bv9-h{M6?9*_HIY9Y-qcq zu)yoH+3S3qI!&$QEs9fIaPGC^Ke!{|k+5r^Px2Y0Pd&53!=D#eH&B=vX8jh!uj$nx zdJlXnB-r6BpyP-?q8&SL7-ZFY{rvDkg%KPP@r0Icc`%^orP{RoWA)!J8lL)tKNT0q zL;VC9TPn}xqyV!fVu1tv$D2lKR6C0DEHRc4!Xm({1CN$dZ z_w1uGR_`p$j4ZMlL76QZfyCwJ-Vx0tfEv^E{Q_D&=(du&`n=n9=@^oODG_IpQynW! zviV>yMi3w~YchA*4E3{6xvwU^@xZA(4=MRsPNyNML;W{=N0SC0R7?C*!I_1Xw;1hC!RtAy9$@V{=!thq`~Q+gFYGL;Vch1*Xte8!>qpU3`OQAbmc2TduxFAM&{#5|ASBCA zPO}V6ynCgmNfMdej?(-@32;s(?_)R;Tbq6KCpX?6!*rrZW3@Uw_4_fI-2L3StdfF; zXt&-EC_?6b7jTAywgy9hkN(P^KTpEhz^wxidANLX!|{@AYS8y+iG+qIn4XmtnT0^W{nTu^qIa~#Gkv2ewpOz_CmTR)1ZK18*LM9lXdRQfNhbv zDx(6{)te}M61^X1Y%C@(%szwpM!{kW3vU%FPapLda8t=YiId-}(G~IMqTFLLppg3T z-@4ykUD;sN%3V4cv9iG8feF~(KB4?QEz1WtKQ6}i%5j_57M#ClZGJV}iW4_jodbSa zE5Pej&u}>|>vg)E;pSBCvj5il`^A=Qd1pxN;G^5JW%% zF|fcdTMx7UwK)zxRiWZ>B8Cd=crBqAbPj;VWy6p(1fq@rC5oAJN#|Ry&3G%M=+`#& z@{Qv^ia8SDBHH`v&yn4cj8nIXWFmx}yrO?T@kdm16g4wL&`@3kV)F*;m_*hO;b*+s z`lVgt#h(Jn--SM2gC60KHbJ*fnzWapF<8`9szM?x{9XF{d-O=;2f2N_8nf(4W zk3eX``CZRohqe>YA{X+<5hXVH+28_(Dsp71JqDEUH11xMCKc-legNF-{H*}RKD$Tf zv`8U<9CO$1PzCd3rXKskwINa0M3Uq`v6#R%1yoRy=&6;EZQFj)=?JK3p=^RR@zTxV z+DG~kTjB=8D>_LxxBko=o@>liG@5Mg)v3lC=h5HkxD~_;_#!yo$bi@i^K`$=UaQ|6 z|Fr`Vf5pEP(&v-6e!GA{c^gwzO~5YJO!&;*Tw1>ViJliPKql_I(&98Qfq43BbL1^B z2EVm9(Osd&nc=@k6g(82PnGdS!=U$NCQ(my$;BCikwpAA{Zt+?@i1&b%dbp z_&W1^$7<+a64k%-1RRbj6cIKuI`xiwDfxN8NT4x}k=pc#0W3Bnbtlh4u^HJkfhgTr zo3E_Plb`gN$SIh-sC|dU=Qv_2%(@{B>zdL7{JlHlP|!lc05;UfB8LX3ql7lM0jx6N z?@jmssvtlos~4+jdJrFU7^425%MD6K8f_a4sB^06w`HFFOeF0K7+JyE<)3?-*`3%{ zp~kO?1~z+G3%I{FJeHg%(*dCfJOI>m?`%>ES12*S`6@4cW2MsVd)kK~5^xe(#XMDh zkU;9mIEABoIG_Hp8X9G_U(A{Ebg_kr{kw6LVOj`Uuh@m^3DbhS6L*f z@?xR-MDvB0U;_-SgPl4;I&^)6-y5#l!ke0#s}4e%>t6hWOEM}^tjec=!` z742djg900=(HSv$`8$YR3h4G{+#9<<6t9E(T-TPDn?JVJ$r}rqUtxu=g^X=vsIC_w z#msSLIRG3AOvI=+tdR*=Wh?}vOc2i+2=oF*k;<1VIZ4C0s3J{6- zY~OfSBQZzJj|vs$x0Z!btMH{aK4)^Em={O0u@por4NQm%@B7Lz2LAT`!WvyEJA^-_ zI8rR1l!Hm{;FZgVY8f?iA+yPhpE92jU@E0f6b)05khew}NTLA{75NTPO1Y66YPnNF zCngmJ`*qq~1f}jIVnnlil^fjC{`gZ6V_~7Bfj3$ou`?n^s zz~U^;tUeMq`1^f&u7$VurQlWVM@F5g0wk*AEhpR|baBEx>l`Hh210#YG1L@LT1(sF zLe-Q+F5m?)N)YgUJ0jeSfDnw4h{EpgqS*KsNNNg80Rtn9GGIi*Fvi>B&r70}u>jHR zeHN-Dg7E&O9EpGs5YT@}*yP3A&Vvon{KbB9LwX|2cnVh4_;P8+^$yl1nVjMm_!U)A z8kC{KbGC>CHzrm>!VDl{WzV)EtR;`y;y>HmB?tLguVOGF#GDkb5!QE%yEP6la{(@| z5P~cNlLM}?9hm3JEDt0OemPbGdS8iBNX!kP0~EAgD&>fK;_;{ciwErB5M!}|e)HF! zX|IdH6~c}yzElS;>)BAkJCrx&hJp~RBrl5Ir~l?~^PkDByM}-lJ#(riY-}ZrSu@hK zPmMW4D5P^oF6b;_n$)I2$-P1i{eZ}Cj#%$IEf=vq&(sFp=EQCO+Avsx00fi+J1l|# z>X@C4{hfYH1cdi0bx8YmBGJL*a^hF*-_1T8G$69~Wh}0`GgrKrc;jsPRo*uquy8yK zR^#7=j!E%nqFXvB1m#D?+eS~G&}VW^B*e*sGQ+d zwLfo|YbR@B$U$^};XR*J(d5$ztQ5>dueZXD61oV96BwiWg z=}gwkng-nk7T_;3Eeq7|=ifq+3R(J--*_dH%_`IOyUTpchx&CrL_X?Zq5%$!?wGXe zGYcOFaViCtS;f=t|IQq(yqM(h@ju17h8CA(_Wb0rmffB~96OP3h?t7O_8U^|~KHG&AH1k0){=ITsdBIcU9>az?_ zHdYrG@S|%7m(@6o)p=i?F;>g+Cf~(*h^^PM#>mg`WY)~_XGZ)#3!g!Yz{(o$Sh{rA zc*xR`Kxp)iu$aw0%x|?LAxY(htfpQ-W!~@7GGe%TgC>0@&W6ZL8`=xLM%&~zXD8)H z0zfR;0m$$tZHIB&67O~xt=foO(80ACL5zybOXz?n8}KJmLD+r#_S3+vb?H&ly3UPR&nP{rJHU3FoEcPFHbOKU#W_? z?C&l?YxXX?L`R|stK8K6wRx{)L4)6Wi#80!T0vVRn@nuls`hEzSb4+^4-H-96v$=u zx*`4b455yL|HXpvz<2A$*CUg6^1hH`x#9Irmzvh9RK)5_3*35LU}ghA>G8s>p!N@i zaU~j50m5tZ6Sp)?6YmhNTD1x;5fkY6eu(cm1+e&HF&wc^EI@q|Lk9-O${U6BaD^nQ z>5=}?MObAKfIdG3^Jz!5Hhb~E-6QKeC}8^*9v;RN61PzfOBik2WgV4Ssj>C_?wnyp zFYzZhPwyY?A#N)KtQLQ(GV{h%e!9L$bY7J7sk63hV#+7|Ba?o#W&gEPV}DJ}f;Kk| z|0dF(C+vErKWX3=Jf=lW!{T4tiscYVv0-EVaTlT*`rVx`00lV0(-*NOQ~lfC$iSsw z2x~lCn_wm_`V<>#8s&dnX|%SSGcfdHm#5&mNbF0GkdLJ zOc<~M{ri6u>O?(|rSAmpyC$+!VU$Qw?D&TliZ=0uxPQPa+&;!L{x4I{97UUC8@_>6 zu3F`;5}Hm!Jc!4=m~(R6OD*AV-xR5PaQ&QzyuhLg2-?57SkZ)3e_Dk~gUs_>ds2^1 zyV(?18JVDN+BRNQ3Swr%zkh_^df;Ev{OP6|MM6g>tM2DD6nQxBX(Km8!mtmLzUo&? zwLO=4VB`+p#C;{J${<@xpv8_Nqckku%YV8 z2x~8ymLkBS>;RdP(01y(NTmEWjFAp}A7a(X8v0Pe2E@xTF(}Qxwn#i~2S*GTG0R3$ z{n1g!g-?@vwx)UkDE03wU>VPaRcXV)7EI}d{i4Ev{?bGv5J(VlwY?F9A==_-6ch=z zkMlqgqT0W+5Znn|lY6orv3cA51gh^E?|{5RRL9$pdRWRxKzk|V2n}Fe-Qfstpe?eo z`SytNe#~WDDNVo}iZ?zB?JzpqmMCl%gNckGSWEbRx?}lCw9nDBdn8EQCu=P94wPks zzn}Qdx97YL*2v6VQr-B`DeY@dVUJFsDFO`C&*UGe6vweB=-f=cD+0k!xYU^b*Q0m$g_(=qB4Ia?%9k6Ut>^)piH)NF#CdAyyD+ffl{ zD%wbrJ|!lPEkvM=Ad(4@RAY-z2q+M2QQ$EnAgGih51##5f3F7+LL>Z&Qpd>;+SSD# zK}Cg53h}UK7K9+WnJ^&6TLyiAlZvB8Ya>PNQhK9MPq8^P0TCs17U2%?Ly*vuD6}O6 z2^+)lvFJc39^_!pQYnYe=t3j}73UQ>-~vk!06P~KgJ7G|>>mQ4#_#mXc6@4{kwO&W z6G9!AqX+@NA~0^w_|DROSHLiF80v5K;)unl%TtXNL~g~)7@y2bJ4FDaaz!xRLkUL! z+iT4So5CW%N5N-)AR#i+uLp~8?Xhg@ep~4VoG>m2MXYxo zs~;0t@pe1EqE?E`>49W(?P%-;R`>7v#jP#!@SR#VDB zqlm{2B+jIkp+E>4GyIli8FcDW^P);8+jn&;e#j>ih-zA6_~QLv`3NKm*^XL;c|7rwB4IXXO@_W)M!JF>rb(r0r? zyY_9f(dRH-7V)-$3#Fl9**{3Toz}C;xfvLwF&WBZ?E&YX6dT~cSP<}tz(jMY>Pd8) zTnbjUsv&+q@qb5P{e@3{4AZmwQlX+;ud=-}-LLMYwB|!tu|_9It~47}wWC}=|2U!Y z$b2eo9G|bgl>752O=qN!XM6`t)3nz~Y+`L5_n8tX7arQ_E=9W5ux(%6eD7 z^lzRXHE^k^@yKcl+Fz^V=5vgn&j0vRi#G!DjF}l>D>EN^(pglPacSFR!l}sY{FuVX zhb}oP)pk{~MDjkU{N=<#96T!W&ch2hVqAGF*(M&Ybkrl8VtlMRO^9wvdW_{YhOB;hRdObbC%2iQ)6g~hTO;KD@i6On z|6aN@X#fRW+F6wiM1<2|Ku=hY19)f`Ih>n4mi>CULZ1K;qr+hGXFvJl>QbMu!=Q9D zU3zlpmD8Yfu2^oQO;)*zkGbj@RYnng;f0jV8OSaP3F|sqZwC>I0rvBMW1;)ID(J->t=^Hfi zvNjJ!j9&y4SC=(Vli1owZr0z+=qN1rN=`OhJ{Iw7a&u~H?ZW2QX)D9&tS%#^SwtD^Ug#Sc905g+(^W!eCup`?PtJJLyKE10POT{m zgV5EwRasIjuz$+$hnvy}Ay%pyN8;0HLH0u9R#-1~|3yIzfx zeq_?hCCqVm4j4b>>Bt&g_H?05A+}*N&)!0P83n-dn&K){P1? zgZb!|5Ty&1#YDO=5LIyyOA>nBd!HC={_Xxr`tlkWJx{)WL>C3!cTP7Igf&4_v7PvS z4;`di36lbZ8U}f#IhL%?de9owvY6qTc=>G5S&&pJ!YP!%M9h&OlPOJNs_BO~Cxxv9 zJA#09mSL~-PPqg*Erjvsg&%9s!J_eZVhD`{fN{DNG;6$L+#GJJSzqw&8Za4CAN<7Gec*Bd!NacC3~WP)HaCjEW%wN;OVt>M z^d6wlEO7+NjXy#(OT+=8`o!(X?&Qoqy^oWG5LD;l1(+g?ty{9uDW z=$~a-G}yl?|1RN+2ztCLG8&ubfw*c_^p2XBkJa?(DYZRpbZ^Gb99dL_6{dUiyo3^p zY1nLh&_N}*(c$B93VEl9hy3ehO6c4ady}IgAmd1%NJkuXiu28KFrD?2J6}-Vj^Z4q zWlvlWT3S5jT>%TT)8dg)}N4;EzW@$$f^xt03il0i}q!h zyl)~J4P=S{MB%}1;WWi-3aURaEZ~W7xnD>MMdIkhi_FL*q~gZ~ zumbSmaYxj`nD8lYH9Zszo=W)&z@$Kt(nb(_86*`CiDaFVJpLe377DXQs>@>&0;R1b z%|B>lxBKcEHk}vyJwu=fcpyz4VP&!VC^y)k?SCcgj4ctvxu!5~N&vA{u5xE{y5(G> ztUk{xee_Mb(dI*|fFD<67Y&N+Oqc7{RrDbF;BAD5;~_2n8h< zTL?y03J(|Q@~z*RxESF0A!M$3vHDf`GT-p;RPrWA{MPynm7f&>Q_=mL_luLs{S2Sx z+Rd-8!hC1}Djlo7Lgu^?CK-5+t}ki%-40&gF#Ic^l+g)F1!@J+i>uweVbgBmbF~qR z%l$RNgvm%p@`r#MBWc+LYYgNL!Wih~e+fX!4MbZq$gJH5m1YbKW8T*C7$GsR9`W(b z#a=J>;4${tTzLDl#jqhq;+F=xN6?Rz7e620LEDx#VmfizeM|;WI_oo&0vy^k+MlubH3}(yP+;pXlWJ@oKf@QB;g5ocL;p;X$KIbD zU)D-k!d%PNW_>B%RX?K-n2i~PY_5-wKNll8Wo8OgyPcw&&mR@~k6EMr%Ej=c!DICS zEX(;}j}9at7Ba)nM4+>nElz(4e5PnaA71=hY^sC;BP~aDS z>qN$2{(4(O??n30^fG&TIv|T#10ggXNC9Q7I2&fo#Y|9&U(E~9%^C`*rZ;@BpGYV8 z3|(iP0Po(cVvcVQ%3gl7nW61BnlAOH_<_k1AR4(oVe4-V*WVI)fvQU3hwGLw>@T(4 zuABpfOZ|+0N{P`=&T2^28RLIzm|PUutC>`uKB!5E_K&`@k{&YoiO@=R0O&5je(~!G z8v~64FQoxbRceHHX~Y0BOwajzw; zK@|==Zi;(12eKBi6~)Sj-FJzbTu!kj{_FqkYzS~JYS-8e0Jvb^suM=wKd1P~FdTOu zH4UhJU3~pZaF7I!J+ehLoahCr4`Qxc? z__+LJ#HQuJAa8Iug`|wx2M45Lw^55!@uC(Rsz;yoB%YWO$v^*h%LPzF!U2xZ$^FD+W=T^enYj ztY*?bjcVG&e!dQ}b@@qbi&b#}iFtv-Zyh`lk!awkjfV%xD<_eO4s45kDn6HU(uMMW zuK&qD5;o5Y8eMHaviW&zGtq_r^i}BJvd2e4H=96a=X;1;*h0VI;xU)C4G^4e{LR{w zj9AaQy*V=y0Wt!>;h(21*IV#C#O3cg+c#`$<4E^3JGptjHe#N%S#7xbD)i4A{#Liu z<^{t=!%eoMWp1%=&n)Z6Mzh@NSGm70w^m^9`$`0P$hHURVb&O4u5w@ceGjG-rIf zOK60C#---a+jWhd5Z|f2P<$0=Feq0MoZ^1e!D>5eqM0>e>zyBniP@#oocZ^UxU!L; zzCdr7Oou>4$POJEyBXg=x_F?1T0zCKIGIERXdMR&x>>T0b)rrwSiguro~5C^6H2Ie zLmm|=i~W&}^$YZ_*GnQpi1%VLEDuuNDdRt%PaIT|80LjBOG&Z)t4^B1Jv}?EQ(=X4 z%SMcmg7y?>fAI$|!K`aJ*%+?he!}o17@x{2vSERj6*jj~=U~r^Fl)NGHo#)p4$&vi z$%N2!c-;M@bh-VKX3eYJKKD^MSmhu`!a<0pH8J5{ATRygj=i}_ znFCn27!|SV0}QsPPWGMrXT}{yI@oUy9xGQXv-r(|)Aay%-Bb8=a)zs1BxD{r!~ZwE zz_Gl8Fvyn$yCA5B1zT!@#;zpIkj&mm5bDi&aLzu;VW;<>+C>N|q9ArbVaD8nZ!f>S zBoue0N72pk$XztJrVu)?H}ZTz^cS7u!uzD3pCirq?MWt!NKqmQD`B937}}+bVKFL9 zCu&Lx`fI!x8Y^Ln<8n{%xcF;;pbFyU9uYfYLEO_j*lQi`&b3~dL-YQu)9#oYzd$7N zxJX&)bdA@vJF9l1F|(#lkTmekE&7u!;o>#|+NLPIl6VJ6Aia#0W;RP=Wx+(-hXDPs z_4(7^pHEhK#O8<4S&}oZ^``FKVJ}c%sr1r=*fbmfwZeNl@i-e~OJJ!I?^Q_&Q34ow|LD=O6$NoO2VocE6Ht2~8FI2BYBnJP2zN%qHo zJF3B=i^}yyM^|{L=m#mV>^+dWhJWQFzO&Ynx8mfs-ULl|4-VX)x+VQ-c|Cz!8;0QiWE?4#+!Y{MPq+Yj^1AR z-QAzHe!zvl7_pHSau6!oVIj;`d=RNP9%S1ZDT_Rg9#?}H8(ZA*g;Qf7P{nU1CZ8oF zs_35yx}AmUA@ar)n6(a!@h!V?mwkK194HB@eyIY<$m211cnr!63SnD%BVlKAXfT94 z<*u)!x`;OZZvw&_{9a5XR!QWaPBMdv9TD`7xELO+9Ef2ox5_HD>qVB|Z|k?9}l1bDQPh%jgf zAmHFxHb^mW4}-qPARFW+22Vl5)G1>YgkP3O7zLqj4EO1@crAJ7AwmoTOF);4`W6@$ z^?Tq(MLR%`BzTp32#U(|>iqaToAD&mFrwLKvEG@0FWd241hQ@5TNG5ZybD{fe7u1d zb|&X>x$#8J%?m&R5)%b6=xp?TN(=~1VE+p3ILJK;U`_q&ZnR7!z$K8ldkCA)M%yTs zzZB8N3PzH!9q7OxJKeppBJ#+~d1zUD%rzoUmW1JC7G?|41U%{mq2xQ!0wUTNm>pbH zykMCV{Ke5~`d_{I&bBD5<0m76Jj_@D2Y;G&;}1?(89tsJI&s~F??{CBSsI`8ub5*l z`*yR^0pmWMm0^4xH0EJBTrB8s%xCGhTfgCg>PrKY4w?cJyg?gUnl4!A(v!&qv()Sy z-vX$4#asw2!1)8}H%f3{?q?kwShuU^K<_m}W5P3=uGjz)|t(#QDOY7bjwvX zmSy0@c0!4d!6*_K&$5of`dMZ-$nBQ{-C3&3+)7ZG9`XVcJoVk9r834QI@qCUt&oQu zZ&#g2fB|JwU0f7^Vl`!2g2lgXj;YmdJruB)@tai{Cse1W3ks%}gD)j7`%5z(UdqZWWfIT!294gHUw?n#- z^H^JYNDx}TA*3f$$6t&X5Pa)ImR!}!##g_=6H*UE{dvt^traR9e@E34X+Vkv@qq*V zp==>Nuiq;rufZr=jFix$)4$Jq;9o(B_}&?5rhEQ56&R*=h7XsL96o47QWiN?nUnN(IbZIjS;_Cn-2_m@#}`mueKgV-07u^DLgknV!|&h zUQy+(l0TZ0a4IpMm;`_LO~J3nW;MRxQmc_BHxR#Lp(9ti>ujj=Q^lmfs zpuX|9gdyT)Ukat81ppev?8|rb4-7||p^@a)d+B3c5u?JfTJ3PB0WW&-t^Hu035Ihj zktkRwjpr3hGwL6!)BJg;?Fg`6dtb;837o1EbYz{o_i>{P^1IoY7nbE0eN7>Qi>*BP zy10NV^f|1~K$Y}A9i4kT)B7LCT^5_d3@1g|*m75tgo9yeQ^%!a6^_)AM7d;U<+@m* zsHIR6Bce$<6fu{sk`?8WG$V~IV%z;Y z?}9`ztw6L+&f>EtWkL2gk@mcpru+`oz)dRkm(buh?YD1T2B1whzo_+sXoZWG#3aPd zhuYi6{~lJ&Xa@s4JWBo8OmyE=Y`?h{d8jU>_+RdsE__1@@%eOI*#SUhsRefmVWNU( zqcWy(B5)!5Jo^4Ch-wn*CIlO-Yem=0(P4gF;%>I@h$ryeGi{IM_>TGk-RMUw9#!7% zwjbxMVoU-1%4?J&l7gj1KDc1WW*+vc2)%8X{IG2#WT{;>@%gPn>E(z-!N^g^oc{+fkfZm9W&*e|Ii(<0QjJOob>OTuiKxf=^%S``|+9 z3h%w8D6EjQ;}M{Zv)sEft=F#)(JGV{T}L#gyLTDZ%TAnzbgi1S%$Z;j$rvP~zKD4n zeWFXz?2s+c!aAnBbAagFal-Aash~Qt4;*w$?FM>YO$d#j8xr=V8R7_Mi^|B#HsvID z7fPQYc}No51VY%IkUcO(3&wgCbWCy^qUjb~rv%di z;|2(?oqqi|<~m)YZiTG|Ht{q#_;YH7f4sK@$L`+;X3e>>xLv zta3oNv9=!nNViYU7Z^e26Bzeg%4sGTv2AO^436|RnD&Jo+={8phN#uU&Ja&id`s*DUwp1YgohQ%qVscnF082xf>_6X0TyHnBd zEV^Bu%tT-F+!`<7PwBvS$5m2G>|M2+DFe~T?SCahpe^^{DxpyPOBq)v!tfchJ4Az~ zKq$_R_8Hz0Vuggzn0Z_@1MNEq_IBo%yS{qAWI#Zyu=cU<*gy%RXkF33O7GA*(S`(X z6f_4*m~g)OOui9L4(x|b)%-?y;BR=SWA)8pZF_wr}rfnvOW$Y+4g=d^0^#T?M7{8ik}F z=qVth)D<)Wpq#OU7wVqjklS|k>1hb`8SL9M>4xUixVuXu&cn@Th0VcLZLQ|2g za5r0>9I}0(Za~Z0uceV|VVox%^*an%m<9FbPb4A>ipTO5YRoGd!uoJ0d~$Z!Q#|p- z3V0a|;ESo?@TzQv&bfj`;0}4>scBGD$sRgRnLcA=h5NOeKr1HzpW6x<`f`9Fi=fRU zgaY_f?F~u+y{}y;19Ky$-^cEwxtrkd&tx{Z87bEUBjoZ<^wy-#-zz)VCE!1swxiL3 zz*O@D3e@xBK?EM4%y;%6uK@3v9o)ROs5{cS`h-QQo0imu)!4ycg|OREWzjsaW{fM^ zwY_I5nO>Jg`M}NzM?8!6$*q>LO5dut9i*@2Y<0nd>~xPZ^%5p_|3-pXz?xrj;)SF_}IRDms<&QSv`ZD#yU-NgD#(I=MGYx z+WJHF6JqwlXw){K#{`R!^~J=|U=Xov#Y?={kYPasat?|8H#-lKHIqX${>()K&|TIW z`C-(3RQ%MG4R)tp-x;CHtOruHbn)x^uhk z;6?E}EvrydHb36ssAf@|Xn>aw)Nuif9<4*MdhFI<2jy3TaHn3<6>rTV-Vn*2rsFg?lKbPN=&|uh*6}BO8)3V6gJ8R= zVuAVJCA|D`KqAQ#0;+Ps7hVdo$J{^F0R)|wwLC!UeR8|23-CzpJODJFt8o9uciDTC z%{%b4*z=pGpOmFq%ZD#@hPs{pi>OCfq=uF$Y#~SwM4alqqa=xmWao;&bHv zUzvG+)46@-XEVKkq}yuM&O8jD>el)8#6NOO)t(&&&GDy8&~ zP#@x;TG2<_&~1w*L#ykjp+Rtcn-hH}R>h9vzj#T*_o}K_-WIObN&6i|2YBnuN5b5P z_es-7la?Y@7h6Iz!$g8U58buqp+3pl8gJ<0YV?w*O8Q+8CfqqF1x*-*%kLr*N6OZI z2514>CuFLCJ3qX{3Rrrjn;5_LGf8q!Dv{3BBni$2tgYn7r3$gYDkkZI`pf&B0deBW z>G&Jc8wpD(s$<~DC`1nsHKT$lWi007WEqmXnb0lk0u{ZTi9Ul6;tm!8z2hZE%uztN zRiGj2M!A4o=zr3eAhZwW{XGCf4PdBNt+BR_aciK5Ka3U5(Y#i|A|bg>uF9jxVnK*i zG^I;bkhf49MyTL|@$b5%nbSVGslhuNcDEXy6&)&`%TWp?Vsw~pqvlv!r^>?{Q46R` z<&D`MpKK)V>?}yzHaY~4w|!;Dh}+R<<$5#P8R39&4refXq77zMJZ%i=E(Q=oE^o(p zxiN#q<7%Zqa5)xCw=IFDfwP|5nSeM&--mMNW9u7ZS5FU#0TolwQqC->Vf6<2zXd%c zaStEFh$qb}!KZDG5qO_7qwq|ngxQt5`ik_C}2YGt&&J)m|GHtEY-LLt zqEtqwfR;%o%v<L0br8lW1yC9xKuSn4fBh8FPwT zGF9P_p;Od@s9cBz1C|B#y40g(&uSl_)9hYZ%4Qk%z`f-{8Vnfd@-!432VL)Sp~l+Y zZ;0dUUGoAcZr|dkd)8-&k4Ww+Fa{&Kxb*%Xx5}ZYlRmi#oX)cEBAxcw*`MbN`SmRq z8y=UDhiYjlu@3jm`!XS00Ff!E&5p6YDyM*hJ@hl-QZZTK#V*c5859F}R;|^YW;L%m zbgc3;KK4U%?tI+J{v0NRWX+FUWQCXfdpjEWmX7VkThmyOgI$592?nXo&g$6GXLbNm zL_zN}O6~1%SR1q<_)h?P8vl@q|GYJDNMsBO7HD)RaK9n=R?C+qaiU{?FnADf3y#D# z9f1*Ut62R~)crj-KRdnlw$Rq>+-}g=CTSEVaN{^U^0dIAuBonrT)1wK6gGVVO@g+t zxwv`HtBOJh4z~g4$-ZaIKFqc?3<3@`H(&?sO3C~*(0kH|mZGO$LWjHIz;dwGjhRlUIV^$MQ9E=0p5*tRn_xLbC%+LH(g`3d}_rdGiKT zspD5Ci0pDOyruJoYG0YPN5o)8_nT|Ms<};t4r`U-=7lxjWIYS(W0$6R<28#~kAWG| zERZ4%8sUx~-`n7H=wD43fGUQ-c`2@Ayc%Q!um^+72r?Btfa%Y`F7IM#n^gdpfhI(M zx=*o*HsBY4c^560=IlZcF3|F0*)DZjhlzw2gc&S09FbKH18rS82qsK=3j) zn-0)uRP?Yp3~&Il7+BA-h$kLZt~?EZ$5X zMPd@(x*zS|hQSw8VX0koc_f2?!=MyAKge3qTrO1XK|7hyXr117wY~AL{fyCS#c5y- zAk~udaF}#O&;(FUcnjZv0c^>sM^2jPkX`BUa^sUj!I`#DZW!SglB-;frQC|vJ2oN> zRaH4|cCgA)MLPJrxv8_Mj@i(FH+a~Psc)gB*r9`0C}!xty7UIWrk+}ybVWT?={iKQ z!xFFX3YUBWf_i9|98ytHF+LtH%+AN`d zh@-VmQ21Ug*u74|Pv^#We*b?--UiBV>`?0%B3TS#txfL+b|^;k06%26^oT0IcIv?LK1CaxGHt)#9L&YA?QmM(qpFu1OB zbIX=3YT%`G**St%@)@<@I&K_&35`af&!ezEgFn8~N~xNW4LFa1#LD}>bHeLkqpobP zol2Fi+zOEPR+av)=XHt`q#!u@$L!`I>6mr%?7Z%uxeGtvwPacVdsjNcjaVH&;Fx&f zLc*XZOtcxqPM&lCIld#CcRF62{cwxLaa`_p zQ;kz3w+xpt2ZM*KbMg&Wp)W;^TLZ_9cWV~OkHanI{>?b~tq$x;Sg7Z?+<5r@j7E@& zb9c)YB+T>Zr~1N9UK@yWeJn`!=i0cs3MB=BxN^Xt085w!YP_|%7BU>*PA|*gnPA6~ z4XnE)WQG#{ski(4@Slwi6!FOW8wE|0J$fw3>@7+Td3Cb4V!f9kMb*I*2fZg$@sF<4 zqY9PwbF$8v{CxJLR=q*#K!M0k!G2sYWn2&@IGBPt&&Y?5B%^9oW;~w+Ai|Pnid5O>vHsJT4yTS8(0& znOoJ#c@Lg7qb4o%Enu{jLt*E)uwe8BAO#MdKC<{`)&5v(#~aYIII`+ z7v;hPPJ{7*WG0hqX_KS#AhaWI%Vz!ePKS@msy(7(_4M>DEfdC%=U{eUV#4q`C3M=a zy)T#z+tk?AxGNQ#z;6`O=af|+SvQrZzO79Mi~HtJ+B#;M9%L%uqt7QLwM20EV|#a3 z?AWKz5$^qomVS?GdQwj;6n_s6tLcpUG*KCQ?|J87g?OT=v9o|!<3Cl)xg)(PV}y== zl`Vq;K}!2*=6cSD$MsaMLW5`;iUibtLk;kD0dGyjH{xRV=AF_BmScXHiu2Wt8x&F4 z&G8*$4C@!W@Km@W$aA9W=>;06;(z(+O$%2EH}8Ig27NkW-+qzZ=AQ zP4w5q4)M%Aag+n&pKHy_^Y#XAGNKA=xnb!~zKhNDG>1ja#8&ukrAM4X?ojRq%K}Mb z6YGsbVZhMfK;m>niz7=PVn*84wnu@4+O_#LUhD1Uddm}#wqtF3rRg%VKar>CzpLIl zwJFFdoX5cA6^OZd1%uo_<3y8hRFk?GpYwyBn$+xk4`P}#}tma3-V?s z)|}LCghvQFIRc3!VoeCfM~Fvv{uw9sOPcSK6PniWaeUIO@aH5usG#$_;7g3rT#BQ3)d0)5Ki{zFhh8Br(Z zveDY-BPkrA3FY2K!X43uV{I`Yt!GzTIEQ+|zLJ!~lHH~UsjUDX*#9=fA5GTwB62$p z5y0T+5;Sr*DC}gQXwdzVVpal1wpv*zs+}rqj$ND^EhBYgv;lrS;}FNjQsXY_ot8~2 z$h*zRxP1!iz4)qCXj8$`lshS3>(r{nIian)Ywx(s8s!UJzk4AN7(O<1ISYH F{{Uc)HwXX# literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/image/mmcv-logo.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/image/mmcv-logo.png new file mode 100644 index 0000000000000000000000000000000000000000..bcc5759f8fe3bc7d191d411c38a9e1d3c1c27a84 GIT binary patch literal 27173 zcmXteWmFtZ)AlazZoygH-QC^YHNoB8-Q6WXaM#5*5Zobna1S1WOFr)BJ>QR+o^xh; zs=Mmys;jCyR!v0~6^RfD005xM%SmYf0KmA9XD|ZX$NjCR7V4uxbdl3{2LMBwNl7&|8)pw^cN=FHa(PKfau+w}FSZV!0RW%%LQQYI^anhV?T63kIufhb z&Djp201#yz!Wf2rDMlK=JOTqtY&bFoNe2fPvp`P!N7xdQTw%;!2_4v4JTAr{UfYQ8 zlI&Myd!XOd#l_3YOYd>P@#~E5EP4ng7ES6=sU3h{BT`6Ul`L6R?#Fmv2o$c|4h%WQ z(d3{t>@Wau4ejd_F61J0Zy^!{_bvq!Nv=+G=-j!%#A1@Qn>keyG7Eq4s9 zG=l;F5I)U+f9DfTIX*hrJ^FI&aP@b%^xgj286-k+v;E$i00jfUP?^12H$6ODhISbR zHhB)%R~rJ>bpSToPsW@Zh$RL{bAC_pzI?A@q(xuV#)L?Sk&uxus4c$svF*o;{Nvnp z-iZ&o|9Jbp;dc#i%@fP5hm?iCxtcq9HE1LqPr^vBJ3SmzzK=!*za`Pn?{PI7G2zDD z=*5E7K+2=OT^gxU6yuqDSf{}pH)L6Fi0R&_fVwDEh)M^1`=kRT=n@DOkEXZa1rQ6m zWlkVOP6c3Cb8+}S008L&Psw78K)`f%`91*9dqQATm4UA`f&c(Wm4q@hiNm9O$Eky$ z6?`Y@h2TS(!%2yuP(g$+B;XE0h>^Y$WQl*$f(Wd_v^PN$mSE=XVzhl{=R-Z-!7>Ux zbHRr*BPbdq=#4^z5g$XqHm4AX!L&$P1Ml)$T{L(<9cP;GeTR`p?^Yoigi_y5yp*_xX*iVp&N%}mDs}Ssvm+kqlIZbz;SxcL z%&!orpyETY&k;-_Fa{mMQc`5~l=LL4sLv_eu(}a+5yKd3QGJ5$h8RMTF@hYmV%1cqbwln_g)G|Dru6u3W&9>RPp=8(uOsZpPrN*imU5(Ad}q38BQvlJ(s;;e*%Ac zd>a1O8wE8AHGEXgg6@<3C;v~C1f8E)bCoJ!7qfH6wAfZSh;prS&~u!%^%(9M0&r6& zurdWQbuxo8k88BF-L*xRd~1-kYPHd8O>_b)WVBn=_Nx(p;?*uylW6x;^EAw8cxxo9 z&8nN0^_#whJzJu-L`BM!M9GzDS$2+mN~FLW;rM)`C$a3N1AWG1pQCJH*z$C)X*VJ*J&WyNb}A$|5|~<48;uUj6X9pvnX@(vR(a``k;E=b-(rg zb&CtP3%rZ7^(#-8La{=o!aD&+fd@~-Zk}%S?#S*9&)MH1i4u{^QQu?5dxN9K+WP#mF<;{ujyDBSLsyj zH<@`zc-g(szIa!b-;@8Ve$Dac=9KVoVC{=COFq%K@sRM9_}}XXy*<~d{ld!p%E8-| zV^$L{6Md7HK2p`z0-B;_Hpj7zABH=9lm2D`BEp}aXHKC-Mns^B{feXeEBZm(!u^y% z%R#w8@UKNLg3pt0$&UlOzJKs;RA9}3-+_m~zEHx@R%m-@GMHSLZ}8l(iLgCztSBP5 z5-5nM`ebhD&Jg@RL{FBSzpR<^=5Z$w3ULjHp4p~olt`B`lcHu3wlRX7E1r~2r#cW~ zc4Qr5z+|?ca`B%6ap)O1YFK`&w`qE~dOR>K*B$7;SobB}Bv&VN32xYRxOrLE**R!9 zSf1yDL%=oQP@m{W>6>gU4{R#Li`au7t3QNe_uZk69r8E}4)V0JJS-ayf0cIOADzxj z7I_QlbL*!B@I~feWw(ePhLcOEu@a~rRyrw@VE>88k5rZJFHI~}Z|(#u2&Ekr>SW&Y zZ3+fTKHEg8%6N`&BC2XI`lfzL>!Q3>){$D?s+(PNU1R3YD99)%(?GS&YGYhs>!j;c z{ldtYj(XsG6f;yMgNvsWe~KrqQ5=hNr|@#pq*5VCVyu>ytD1$+`XI z{r3|kau{AfUrLi2xT$p&?4y6P0~(O-!J~}V#P?=lH`eI3^0B>M2%NN;Y{`04+tbs~ z{$uC+>rawK_`s;!p8XlWu zz(;$!DyB;TcfOA6>stz)6BlQ4XXR&3br1RjjS78s;!AT;*QoVGH;IQtrj80*9$)?J z?vke4rYEMMxy`vR45vEkHvW9&DZBS83^tzBd8@DO>|di_P<37C&3lmy2?23 zZD;h+weOP-ymMN(4BJd5v>@spI11VX%X+I07bW|D^M}8ezB;q>aCZ3BI55zH=%~Sy zNGd1ba+n|DyqFwO$&O3xNIbX&FfdS7t z<}$|;;jevHCkbVRBqk)X{hj}UuGsf2Jx95db&E<0>4a~d4#Lv+E3GPv3ROgff9C%3 zeNcMMwKrBb?z5JhEfU4|xK!#ieHg#pI!-pe?sfSKda&4_?o_N7ZV;9Ya(Ua8YczB| z`}{C@p)1tj@mKjwaQ%bE^zMS}ljbP)4z}Q6aesK0|0)T0RRFy006#on(43%0AQ*iFD0(!vwq&^ z4W>Hw+2c0Uh|T$=Gy@HC6${J7p^qI0No(LxtG77FcUaYvp1B%WOB&dFJBprd zw)eFh-ZiY8wG&9m8ySLZZK>hp6UYfLViJHf7Hk9&vAiCE*8liSJ#`xzYhJdxI5m%b zk-+ZGx}Kh%OTGiQMebXckF*b*Y?dDJLCa*2AMeg6m-rYkLxIv`+|6wKsEoSd?QKVn zJ)y-gA_!B!2cRizKbjEqRPv#*)UOAN@7-65Fc@zG2zssqozI*c0fp^DD^lCu1l`*k z=iB&$Qf6*g6_sBXBURwTPX3X+1y{Cu44h82Qj$OWKjlteq|dEucRKkaW|ap59^)Zr zA*h$$(V^bJ%Frv|1GFhLsTS+Dfqi}ZGSqOQnKM8HB|x-^EC)~os{(*G&S)m`p}Z#D zk>8=a=DTLQrn`<{kvIJBYl9MS(YZFnF!Z5^&f?q4+vlAgNF%hMu~zeD=orwfcH@e} zh1dt+gXA*>oKnxIu=}r%edr!xI|-!L80QA>_;LSBs5^uVC~O9+AWZ^ynFJhVM&m;R zzs*36hFq24ETu!}clf<~Kf2Yo*1YXgJ68%n^u70>nIp}kQ~nq{tUZkP}2-> zxE^B6!m)M|6#T=HOzM_U6}auSbAxjY zZOaD8IQ7gauyoTNM0r*3bWL8ETb;=Zn#s@u$DrIEBN%sr)#$P5n9bNR;h10h_ktH8 zM?DZqoA#w!8>f8@WWxWfLP8#}0UYI>4@z9T)XNUZy|;JzPnQPvPKy=fU-63`Ti6V(m* znjvL_d%ek@tJ2&g-bFA<5+VwJd)T2?^FQRzJCHQNU(~#to2{VwkTjMk`>BRLNhZ{J zaQ%#i^kc6kjlruuUpSX42mYVFR{HA24mq}xvwHjEzWQt@+Tk&0_Q4$S?}$tFCq@ha zj=bu6p;HIqt~=-9`u|TgXA6FiX&c@P}@X~)vM65XmuY`lhyBlE-nr`~1LF%bguYSb8nALpDC-@lS@G(IQQmLNa z&*xYC+=!bhHyOkKCkeL6){OHy95Va$5B^13yPdYEAhJ1GLRSKN@lcMpoZ zA0C-^hJ5s6R%7Z_hI#;q#-m}bhb4g=r$@~zb?-s=7`}j15fCG$R~cvjP;J}0=0EA!`WFo%zhx*OCzYigRDD{Ed4IgC4CM3k67GuLTUqSspz`{1kd$9aKFM|q- zUNEyPdlTV zxgKJnOL`nT#%%bx=~3E#6Y?oBnh0M~<{LW_~dpJ>9vMm!7*n*!hA@fJ4g$YNo(`WH+?bO}(Dc zP;cQ9jEv{J0=>E_3uXhBxBaSwUcfA1+s*7I20Cf6ic4M)tK(xxGG08o(W)j%JoA0f zxDWP@O?r3(E5hzt^p$f@;)eO2U8R_j1>#o7V@}zXd{^jLr5?JKt$LUz7m#G2vpfD7 z9RuqC`bBHk9_X9wJbM#5AX#wE2hpdiZ}cOulxC?SwP_p;`s(##S*f3H8dsStTD@pj zGR2`xT$gST>F~iOYAeC;C5|CVT|%ve<6#xpw(aOa7{h-1e*{MP9i5$7Bd&Gvo;%Zh zF)Q>Y(!%(lPUybu`A;MdT~+(yZPr#Di98>I21f@m27LqPE=uRSfC_?r)%8jAZoMRJ z-@em?2A0CV@%!9Y1$mDoC_GF7l0kn=QXFH}E_6-S6F|ofQhvc-VwE!eTZCu zk4Orfp$jU-uBpRl@B|Mf#&5i3eS9yWygg%kObV)j*kCdr6!7Yn#|OyOJN!^3!2v*; zO1yZ>ON%L;hdK1Vgt;#adyF2j{QD;8Um79R)_=W^i^%Xdu}eXrvy?5csfObHQRr_} zVrDY2HWPKxG&S4D@4dZxN7M^z1jhvcBzw-5=42QJe{Pd^yjCmT9;<@ogtc4s`T>X^DSaOKTEKA!Hr zbP?UVrx+dla?O0{nJfVCn{t#Ti6M4&9{E6EOgULEb~WV&jg%J(P&{ph_JO$T22j4S zG#l`QMJ$R`sXF+VqfchP3{i3iG3CSc^qp1e8J`lDRdnBIL~n$wl!8*OzUfK4^Y7>- z?iaaj;BO9i^Rsnty#2#7!yXggDe<2s&VdhgPEm?8wK3MT=cQ3YS?@tYy8)cTEZcg)RhiQZR}*2XBod+94{2f|5NVFdqK$xm*Gdm(nBKL~pG9Egt zbXH-|a}y!~!(tqAdWgX^hoCrQ$JR*|4kZtV5*rY4AcYr_s`WEfQg=8Q0|}Hx?bO=p zGU>J2!tMKK1fttt-iPyjY)N&m;EFQl*H^6s2PT-f7_Z-4HC_gAz4!;hX4_$hcnPQG zP}{7>k5EAAbrUJ6Lmr~2Aw(ZQSb1QuHf%5!2hjPgGZiP+=GF?%H3CJJkI)lLG6|D(apRtbmXP;TE&1)ZO7*cI; z>@x)xU36-j;jNp~nb`ITQT7<kL-NsLeqRf>Q}3q`1*YcN7;r^O+{ z2+hDOkjI0(sXHF`OwF)%5|_%MqL@|c*o0}R=j(qQVLrh;H1BE|s?%)P z2D(FahJ4xRiv^>qe5e$N-Q-|%QCspR`&-MV`lt`cwjbt}=uPB&9of1lTC>t@I8Gh% z#=o-x=@CPtXki56fY|iu|N7Hj>+EdC1kx_g%hLp*7Vdn7F=JXydS?*}X6c_wrpsY2 zS)0?&y}NBHA?iU~2g=uP?udo@tBus}QaZpbGqNg+NM{7`Q6H0Ov|vq10eyYru&(Ls zo@-Tm5`cBWro8U3I`v^owcLXz+&Yc}F=Li`FHj5>ot&=5VI>Y1P0+Y|FKo;27$h|C zun4XpWKwuv^tOmj4fLZQM{M@3@s^9luqTl%&G|AMct`eSKFAM|aA{8AQgr(UNp|?T zz-TMYY18n&I@h6!kUIhPOW&jL@3izLHtLd=oy*b@qN$m|P{|s^y9;MD?a%q4Ppt^Y zVqWCu5P@A`%DHja5^WpaTiMWJDXUDV5OqR&Xq?Mqh;)6Hp0~Gk&d(W|4pS+29At82 z7QgAEbLw4jgEp5(@?>=GaTpwv*MZ{}eg@BnHA%6gF&rq(GFB zhoF6z6e4xw;-9~T3ccC*(F`Z(OC^>o076Qn1l+L6>>G62itg@Bjzqmrj@Ol@8Voi4 zePIfY#X8UOXeDpZ^U{yNln2T`UcA=+ZgPyn1G=2$d2wzynC-MlVT5Cu1n|V+TXFo} zDy+${@qLhe=~kSCVLk4O~H zCcvTO;yuN5jZsEF(oMJLmhfy)V`^nz&rGUTCzC!pJ8uQ&_SY=3!6Sg{q7pIX0x}^X zYb+&-sPzh>gYz8 z@E_pFIkX6r8|}5LR%OL5!xF;-iHD3!MhonaiJ9*ng|cD<4lq)l|GjO{fj(1fA=WX@ zMdHs>U8GY#rzHT%zP&c+U(nmrE_}Y0cwfX=I(e(vCCoeKvJ;3I=v3gI44^>sv#p^; zr^8xV(3Y3hRx>Yuvy!OujUy+Z$a9hV>Fj^_LH?l3gawvwWSjn=X;t4+pcFgx5)vVt zMV19*8Jpb$H1$<4yWLXvIEeu<2Ob9L&o(rff0Mq3O~XOTq=m)!+$dcAADp$R3)H?6^q%toH8SFJz@C)fRrawSZfx z^0Op6Jw1iEpI%a3TTAVbdUzN=#jXj2tUhp6u|K}C9f}BB9t?W$=l!1exf`>_< zk0lrSPFY5wz0fnin(O^lFja@1q}aGOruW4-M>P;Bi6nYlUi1~qm-HYa22)C@BaL3` zrk}x#;Ikx5Dn8p0pK{fri7K!C-80;Gi78^|`gUq~oDpe6Z(uOu0VTpDM-XF|h6%a@ zcB;}^PAAfxcg$AKO zE2^`s0J?~Mxj&5E9!9Xdpwvi0h}|&(OGlhx5E(Ug;b=}8^*~*_xgS|Lh|IF+yT=!M z)0J4nL>jp8S}46{!kK}eUZ$O1o6y5FY{8#)D?=`%wCO6Om}c2_O$1}nf^4VAxIJwA zAr4;i%I8Ay6Kd{&AC;#w@Ir2sxSA^ZxnZ+RmN7Jb*!#cz8ex!LwjM0rchK3Bh2bg*X_W9$$KfpgMBIM4-X+k8}j$jjf;q1?}HDa_ATmE{p zSZ0=gWUSPPI9JjKtl_}NZ1w+5IMh~kLf6xTvXmb zqsjAono6%OwCHyx(?cbLuIm9Qk?>n%zsHSb-Kl=Bx$dxIulL-!!4Ab$%GJ`N;)JKI zL6xw5S@k9PL3jzb7ZPqqt7tZB<{KtJ?G0*jfK^gDlvQQa9U9hcL#mn9ZSyJw4o71? zecs`wvRiY1#%THQ%WA~smjv>d#<_`UQ+R8M=AK_wiRsOW|DBhG$!01zs2{LPNU;;j zImnJqY(@X(^p(PE709sjTYq>{1tgyxYDcrUl2ntI?pqk9I%#g%CtxEIzY5;uiO9^5 z|3Mfs7hl4=Q^*m!rSlEp&oRPpGpT4l1JM07e;3(lGzZgmQYx0mb)4F8QACG`*1+Px z1y;cocC;665aN$3;Z4NqYK@=;>FXrr-P}mm2BpJNu#HX}bdj z9ac+3Uv4dFL&^{=>V~CorRD=M4PX)Mjj1zU0^7d*E8H45@wTwWd|?7*_tlnXHAb8s zF1c~0Yf654TQ=xHtEwcEX!jDB*c~D60OR)4Pr{+wgt0^!pQPj>->FdUrP}+Cu|x?% z>KGGl9M!2(mnWKBi-rzn%2NJ@mKnS)sC|R*(rj^hs?glvO;=YoOW_)ZY=nIHxQQ~! zvfnLtT~EiM&cGKqP+)j@M?9K?P**W&S*S0M&Av%{`^4Dm}f?N)T$%jZJH1MvRsrwOu(MDiE4P)L6#Z~Q7tHS_NL zcNZcU`|-PTnjSY+<{c6j1#5Ad?{y^^Rw~C>MpA0=Sy@mRu_TS`Y6(o6P9)dc(61{B zB{2mq1Zdv}uii{u#BNey!06pAmi$pC?zuT-XqMU4EJxV>)S!&vX+AMmXp2IGl3-Y!iG(UhEv!w9o_U z?IFnB?Bh2d`nqQlvw{U}N-+Q9yU>`~Cgf@kU<6IR_E;Lrku6s+qBLRd;z{{^yG7u5 ziqT>r@0$I*gC2q%19Lb!MY`2!&*wbaVl+}^Xt`&%^%hLlG;ZI>sGHJrDY5m8R~dY8 z_a4}0aM^|>@4Kxn9>ipPYE|#7dyfK|1-Zdt(g)Xj3g~lFZqZfuIYdI8lm>d%xAR=a zfNHL$>}&ASo?<`P?Y}0dsh}87x0mMt*P-JxDeMtqIGxWu!r zzOY@43sM$Bcb$7@nh>@n`T@tC-?HvJUpHt%`}_v9)Z#{}%15{Qo@ZwR(6W4|mxB-= zNeyhd9i@y?Xk%8*`$wdPqM&4XhXI}`8wde1-%JKwdjBBBR+T?5U$AIY`-;QEl6n1w zoA^*!+|Tq31zjru)uwLhC)jRO$7TPCjeOWm8p-$yO#TG((w1P5u0B=f)bh#<0G*=1 zOilOd>m60~S$b^31cXvVa0pw-jzT)&-OeinfdH-4&tU2A;$N;K!R_IIoA`cmpn=94 z;Mz~CRS`O#ji#?i{>w%Vm2ZJgoTh3=jGqAfk(RF%d6UB@hqYy+f$=B<`p+o6f6{tp zKT`2^=s2xpF<@@d$&89T9u?7uj@gvc!<_%gaSnyCn)7#VaSURaDI8y859v4TwD>4; zgs4f#8)P!4ptU;fET$j@hpK8Z(KE6YSxBbyx#5d!=a}TyZ&aMt*0J|MjC=Ord)%Bq zzbnD#m$_2tNtoaD#1owSguIg*URmu4CvMEG$B?mFt4L!;(LawjOqv0;{TAx#~{^lf<5jBc`^cIcPBwWiEZ zC`08Md>vz6ZbSi!zd=y4gd-Bi1#Z?!LT;OML)k3P^UoMN>5x~J@AMRdbtb_m52fMstw^}gxo?jEN-sjI{PfC>T16pMZo1r_;9 zRi5!_GB??sAp$3h5DasVd=ze;odBbj9gx%R%}lBt3v`zf2B~W_I~6%Q^R)>6(qf zb$}Pnw% z7e5w>DfKlRXAwE_Bfpl5q>4v_yFx-`qOUZXX-_P+t=Hhu<|LyQpp9s8KS zm;!laO~W2|H;Q;=9bv?fi5?jqlaI3%iHYm*?Ds%{=#U{3F--2Q>8YQ)hmvjZ$Hoxl zTx4rUt~){pYXaX-@-%&p3Z=vgZilnjIhv6V2En8{4GS#ixs#tWY<7sZoC1DY?<Nkz&d@#_0czgM=*7DEm}%0ArY%0TZ=nd2Ec8 z?DRN%SbQ(g^jPq3BVGm{8(XCDvW#SXR`7U3c|jE^2rfK=;%#T_3oEc4W zR$LaPvY9`03(Ot)zkHplWDbcc_$_#^@qcwV0+R-aeUdlct=k?C{=tdB6&Qv*Y+Sap zO>|ztzxyBt@;*QfERdJJ8l>QqDZ0OAFxDL1Tn)kRvGrTHogP>D878~<@QEz8YF6_d zvn7uqX69!FTp6uWWzPg3IL@Q<{Cl+mcHXQL%8EWIQ)8)TF5R7-MTjMrwXO^e>aJFG zCF!LXCcbUqIfG^~*RL?6@DU4l%(jj?ZPqTUDnBE;rkh%p{DJEn490qlMux%i^@4fK zu4+2?7aFIRwD_?V=nTG!&R+HYyN~+tqL*Uiny#!Si*8D+v><X*G^WABQG zv`)$-xMz;*A)~&!b)4%~NH~O+L|TC5?R=QK*x&Kt_%FAo^c z{4kih;#!lWvhFgGK`T_CXdfzdJZ*%Cd)T@_Jl0tg+a6*UonXi}Ow6Q39;knq%4`Fc zv4tDS0+2^kS>z;Wy1W1)`|P>)r{<`ax8`5|2T$ak4xCp`(|mk}O%jBBbD89V*Gn3A z!9F~c=fnlc%>4L&3fzy{Kc)^XbaFUFO&we0-?fmmbtG#cf;oh>UqoE!6V3bfbBYvR zMI%GXWo6n5w6!{`L!P1a(;Ubj-)?>SFuvJf6m`*KzR^(AVzMu0foaHn z3LRvJ2(1rz?d{2aAB-6lI0RKxlz6sJCjfAY=i+nwDf0iSm6I*YQK?zcf_Rg2{nq2g z`mM-dhTo8uprUVMh^5ahGa2`PS#E%_8Q_y^?9Y%%+fRC%1@pOCN^?vgL@(-X#ieta zMDozh)Bny9F`BbCOLr9L>z7W&8Vx-!oZL!2?Fh@<<)PCrL;w5q=zS>y#&bZu4h9Zf zm6lZ8-$cCxA}lHNTZJ*z|24gI?E=&V!HZ0m?PCQW?E@JlDPp)eoTpic_L$3hNw%~uxi*;K8xYyyj zPp!Pl7Qr%?!ha?(=&*R*lFG*21AK-2UY-5wj1hW9J0&Wjn^3Lpnto+MiEPu(g22Ax zsw-uoH3gy5GK5_#O#q=0L>!HH_lNfUIgYj8ECTlCZdkrA4_*9=CNs08)Un5mg^jq` zjWLJRdu5tKQp1a`b%Akg=lHZOlEpXQfa}*?&3IIX)dS3^FY-I89;sf+8(-Rt?(hlE zUxcoQrDxC+h6K18`=6!Gqgcxn$5f5*8~iv#x5IQI6XF&0qgNe&lhd*2OS{d`;`4pM zcp?QQ`wM6Ix}(=H)@b-mN)I2Uo>Jp07 zT4?OzY^J8){kpPGwJZ|euAwI)C|HZ?Z816F;2$H5&@#-J7ZcpLQuOAz^G_e@?>M*) z`ITs=m|IVr`&;qW07T0%_YE+O^_(5D9p9Ls!MGNYJt49xtu70PA~qU3!P0i)MBG6F zrhX~%y`-|%E()B7-NBSfI+P)ienZPpcPr9TQojjF2wyRAdACJ1aO#|Sxi#t1zy~Ll zazC{mvVC2dLJ0}gQ})wUky` z^iFX-+a+@0{525Y(_=e0`^z5+_4J*kri%Hg%EK*6-6%12DPJl&YI|IBE0f_{I@Sjz zfd%Fm2QqBl4@V;Vb;q<>jRKY$!b%~u%TUaab`Be|Lrts~-P$qy_DPZU)4KRKMxK@R z+U>^u*Q7FBM*Lb6f@w|#gn#k`@kk+aGiDd;_|iwFFJ1bpJ!Cvi4GTU7qG0s;i(@+M zBj**Jq`gMqKa!QsHFRPeCmf zgNt96`Us5_ngH{OMKn!jzy*%ZJ;+UQPs+Wg6!{O1J{A8i9h%*uWv=huLV0i*0TWXG zO%{q?U3r7u@AY;Dw3A~%V~I4}abOvqrJ`)5h>WPv%&X9_q3L%J%H-c_lqTqe$#nhi zan)1YW86z}H`rA|BZ+3gpB_!~1?C9vC985yE!K-~OQT!8SWsg&fu==1Xd2?JY|&%t zY^)Ym)MHW-opi$1v}>t#s0N^7@g65+Qc+&ZlGTd&q@B!Zk7|u>HG%RIf15;)yHb#( z@h}cxzgstF?`^MWK_DcSpHW=B&=ew@* zJyi{;d*gU`UWt-@9#9se01I`?=Tgdrk6YnJ^27s6EHPy#?45;;Yi#UK#3M(RyqgmoITbKrNC3K`^))rNaZYWg9^E$Ib&1#t0q z!|f{diAwE2;QMNNr8cL|fD(VaS6RdOHZAwEX0Qo7u~-fiJ$#(oD0qgSI?brxYD)nB zp@si}69R4K>7)FGRA%`6j03d}<+2^1}oXq%!z_a)naPg&5o(YujO-@>PiTIRi^j6u1@-cO={_V$SCgRfU+uJ+BK>?Vd7Lm{uskXG= zisFdo7pC3a$+smBz6}zK1@YUKPq$S(zbc$&6_TIX^H!}Dh|8dG1(Q-LsQ7wH-B@MSm{*K*EC{h3C7EJ?_MI3 zKH`1Tx|`>UnRnxp^TgpM^f@KrU6^ZY{SrDyy2axepmfOCP)q@%Gt%UuOjfu9xAnse$~oy56G0HbU|C?lsfe+alw zi--=+4j4Y;D}I0i8bzr8MwZqy{a|i4K^YAq5_6KL!)HC{@VN(a@v@`!#AGdPU4mj= z(Fvbf7-pOCGYQCWsosS=Ckomp{VTrvD>wO|#w+Kai_kxiHuH<^wzf#qt|6QyR@>Ulj_x%uB*I8BD=xnyR`EplAZ-yCwMsVKrBp*_w1UJ|%wF$6IeZ_qT^tOZtWui7146E^eH8^X3l&_Cv0jKl095pfQcKBEnH(CzHbcW zT@090)qFu>(0XdLJHO3G6$iC!+kv+Q<&vLB1_E=waQ-4o_fP(13cxYh9EM{wCc(B# z4(&Apn-(FEwh*72r)Z;+#i7b&jL|4=95g@{0ck!rA3Up~xN?l*nEw^4#uDJA_KU(K z>ni3ARNQahq3_&0yq74{uovV19NCCYQ2$yJ5g$(S8&srZ&2ElU*nEO~kpeHzWm zMyAodw&3It-ku-&W>yJLsNv?=VMtrV{CLPte5@Pt4~}g7F0xs_&F^%`M%Oj>4X!4D zDCs(=_|B)e^w$=AHr<6*jz1zp&9M+R66~pYOFnhvb?FxiAR1Mr4-2?;soeHKacR<*B4ef z2d(>fm(JHaUwp=1A5F}RACXT#c2cMHVmE`610y!WH*xT1e6B7F=%u2J8#t?~R6oCh z9_W?|x$2ycc&Nroc^qcPXw{vI4T?V<3v{TB|BXjLH$gPj4M|6+By_o0MChSc4mc9X z(kAyW3BhL}smnlS&<&}SoBe|~TOg$_tzBIJwhp4aYA*|m0C%AvkCz#)g(JZdsvaAU zBAU30x%MI|5$y8msE}JIR(IWBk9$+x z3D&bvU+@lD={XLd5VO#FK6Ol>@iqA(D$|-&==_nxk}{)(?{UB7@#Bq{tyMWnac@A$ zzruY?P!Y0jXJ^ai7*ujTg=G({Oc7SZFX*kR|=Ndxc6$0 z85?N2=i5UQ*m{W33rHg9omU5<#q-Ud$A7y%Xsph6Mljf)TYob~vFJ1(+GyT&D<+QY zJxmu;M;>xtm^*47Gi7EEiia5pb?!4Nhregjspumee&UBk{g=$Q zuM=}TM{nQH`;YhryR}&E-Kq6RW!#>Z>&GZSBK$+&w>6 zyQ!Ep7n7&p_rW7oktGb5?U49xib`7p@wOToI*B4(FMs}X8KXlZn ze!6`^I&xz(qm*&t(kbUMcn(5GOf|@VeWu@70O)uN<~k)C!~GY`bNMl-LK6}}O zNb4>bs=#MH=I&o}*SjJts6evj(GnQ?q43s&Fq+~+79%_6TwM}drTa}QkIA|h zi?l0bozK?Tt1cgNEqN>gAC>nQ$MDS!2ah?meo<@5yLS8-Nw@)FYWjQJ=Vv_gff$Z6 zPz!P@b3^6Wc(L&!s`nMC`S!s4-VmDzX=o7P@j;JZNI2^KSy`qE--90q>xJz(?@DczfNk_`A)Gwc}~t=kH_cn@ug z#^Xh_WtA5P^?wg~D6xnhZ2(>TmHnV}_(Gt#)!#JvAoEKwLbq7 zT=g_F^6m`ZXb8M#sWUe8Rk^)&xus#2zwoaWGIB%ziK`kDFh8%-!IpP&mqOB+Qe3PE ze)>4{t`HDs5|CH4(ovpM=`W*~^%{?d&v73~g*!lpCK8y;Bb>AnkXQo7&MkjXL|OU{ zMVnfMFYac7%&$R60*}+f@i(0!d1VdQ!v0W^gf2h`rTC6bgE07MTGhwvvEq#}H$X8c zoTPte_Y`+T<1bfKR1Z+@NB%VysxMFn%?c;zmM5I1?IqCkH$76S>epN3fT|jIr$a-d zOiCviuZkC;W@XSlV2nm8%<9(Mc+QwZ?xs8HrO>M&z<%xJ!kh3?FiB|m%-Bj}<;(RH zw`Z$6mRrc+0o3@d!JAdb!2|EXAxna~?4XKN7>Z}Q2Vr{NSk@_1WV$3UbNXk9?~edz z9|~8K5wIqMWIPU^cIadXce)(|=t>}a!C3jEl3h*pCT4LWC3Q;Wc_U;@Wv5mPad0gK zZZY5&3Z~PokBh0;=laP>-rB}#t|oL#CmAM~%Ygd%Pc$@D?+A*G$$K*&r5H5D9^!ku zb=pua@+1UM0svN>N+(+o;er_rm6?2yk=9r2-&Ud#_j`Ib*NPkC7OGUEQ@!S)Z#> zVzytqh2U@jqvHg9E1MIiCd2}J={&oyYao1Fnv6d|DT5qn_)VBQlHDI+N}vf2F>3pp zmda;hlb&y|IPgT54^MdLNEeefmM0xiN$)F!{m#}ARX_Y2WIF$hOv7S?BVQClbxHl) zh6bOx9U$KVN~)^4;7O^kf!C3tie$)DZ$% zXe7(LUy$QDh71Zd934@4zo!Aj)o8b|Y`0m(jZ0oe8yqQmjgGqHd5oxZGg9ipV!Ch9 z3^HHw_RMCUGNeiO?j|uq29rqD^(1ws*y8jY3Y<706b@khvPh1S6H39(aP}Pde)x2g z34&XvC9m~OB5_1%ZQ_a9ht$Ng)E?&*j!n0Xn6Zi<+=(NF@I{AqvHYaE!lkQnoQS_I zjfhaabQeYDG3ZPVOM7LB&NteA+aZ-CmX4-`oWD!+0}Pus)5LNEC*ca0ewIh zf~{Ms%r~ucHL9aqf3$mloNCA;SsDIxDcS$IrIGL1))J^T1x-t@=qDSA4UJSkmj!%b zt0V1C_bfS?16>2|zh#zzyLN+A7Y#Buj~f;*;a-Ap9;3M*a$$nXce{dmXX3-lW$EqT zCjtQ`Vh0XKp>l#X=aMa0d?9SwYCG(qP4PBk{zX|@6>r{^hI8_!rnOM{2Rd2Z4&;rGR+NT=s_u&Tn zyc<~6V864}tX@k21^9RSO0>FrwzR7|MoTl zBEpvtnIGvvER_l`SaX|#MJ|w)yoV`7oO)Z7Y%L$iQ@zEf#5*4>2c+U}bDO0VH+v~)2T z=z@jBfHwk8&nbaR!@3RkJKth}mpwqU`Q1>j%yk9u{>1{bAk#-yIu11V=6M|9x$LOu zRKr%*+unq#R}P~Jef=`5+ySf^=<39m+39BE_;EAQ3@;-*OkUC^$~TlXnI${!@=a$l zXB}r{lwotml)`wMtqh3{>XEmcXu^{0)vy*M+ywUEaKKL)H5S736tZ=*Z-ghPoW~Pn znz^3)XIoZYAR;=ALEaOdqXBeZSDkD3Z(SA!OqG-+EnhrFoLqENr zJZYn9dlqdKs0kEhVRY#;AUZ8h=QnjIcVPGMk7L3g%K| zsjriW+*eK+Rn3~9VD3dtnu>zRE$==2=5*BP&K@yGK~DF(q{pP%VF$a|0AVj8o4u%+ zP$P>PHVb?!XO%mHCb5r|f@k!8<>$2uD+hGp5`knaf~+m$v1BwnF0_7p$rI|>TXz5QegG|jRltb9ekHIMk%{c;*t6_Z|7byu1K;qY zc=A4b0S%Wvhx9+nD5>;*wWj9PrOHwg;Z4ovl*Gp8mD}j^*ch7Ik=CoK7L%vOvX2Gbop2No@f71z-p)yZ1p_gyRvRlv&)_ghYD zzV;|u`v0m1`+lU*XANyF@UF!Kv7l1cx=>y_cH;@hRZq#IawqxlYysBAoSJbH@HTiv zB;}Ian!G-a$kYDwCMcgY=QHD>bS6cW6uQTGT+PioswnUCW-G0>B69m6N8+>j7Z=Ps zE;yZFjf4Yd3Z3;t4|-jVDEjmHTi6E)H#*t$?hyRKRO6hjFVJ}PtDa^X?zgG+|Fu`{ zP3fnqmB)|JEZ6is_uSOBl!Ql~cO!p-mqfMX%(@lag+#s~Pog}#XkLLP3%}?deyv-t z;!y|v3`G;?K!+5SG+otx2#b0lQXg&*sl=MG@-(W7lJap@a2&GZ&7?ANKsuHNNQ)t6 zA{aNMN;sfGdR5(i?)crF?}|H`Pw_mOUXHZBU#4tgSig_#*oti5;>NI=vTL@UptF7W z`K%jgCpq_o2Nh`r!X+``?&XI2ZKJiiK=Er0uk#xy?}BeiJAJ(AhY7q^Gv%x9S+{aO zfgnTP)++*-0ND@XMxDwUL=FvTr@E`Ip_JVmk$_7p1fQ30GD zU?j2)8?H}80-@x5ZtK~LV!?#emw6w%HI>8O*ZTfi_LQSXn^+kTYysZ3_&`zSII9N7 zt4Es!IRrF!DJOa;y=3mRJ?iYVBOuqEF? z7AyzzAK*x^aK171G~mvqxU*VPUDiIY&6{Xf`r1(&?xcV&s<9d@`q(*8@W3WzY1BG>#~2vfp8p4Lj^i zj^{7pQ}Aq}6TFL+eOSB6*D1={)pe%coliv+#r%8UBI|EL)~r;?kn$*QH`eY<(^^BjvU3{{YKS# zl3^EmIxi7L7Wn|O8j)MwtcvRQn(x=Whfkvk?X#5W5rr1ktb&!xbQVT2SoILugRnf= zbq|Ri5^2zFy>#sUhWqVA$8NUfZ@<%Um9PQ${xQ)`pBVK+1lcs= z_pYEC{&FwK4}u&hPUyxTPV&`b)m{X7P|s(C451W63Wch*MfnP{+D;kDDd)H{4xn)K zh>WWBBtro|3A40Ryt*m_Aa)rduff{2t`f>Kdhxasz;|2}Ia`*V7|>jl=3%xWcKeWS zOU-3ZccWjMIf_3UVc%b9eSa-G1^j8ledCfIw*j{{IK~{!=XnNOZ)vi+PDNA>u+(k_QNh`a`|>#?EnYP?%E1wr6@4?l}aCV#gQD7^ADatM)|lVfC4d6=kFR>J%qqo#SW zMFI-B_sD6==5>_Yk2waQHGgZGNd5p2DOCJK!(;p*RVCxzKvCL-?R|s4jL1<$`lU(n z>?TeV=ysQ@pt5?3g7Q@>7LlVM&sXv}<67nUl+`vVr$ty&UD>7QU3#DN5IF$cjFrHL zqOm(R>%=?1$l@vBzdAalM4rOmPJKN3SseuV8ox z;f2D7EC@Wcm`W!7rDr^wbjNkxq`!h|ypW?%A*RDL$`VxaXJ+SiWk)ZItNqFfME0QF zrqxM^uvRDeNw-zsOL5w$_;q`bVEy2_3B#x%2!<2=jJxNoC!J}R%qY~zeh>KNhWq|3 z@ary$YpvRzcTsPXs<9tM^KZKv?0d<5&tm|J#H@sr2%w=HK(d1q&LMIFW7ZC%6%Wgk zW1{finE(>a}ZXZi4N zT}1Yy3A$rmpR(CG=kFAT$d--B@@XAdRD55p#+aS15p*~k8>9D^4U>X^fdh}qnb}Kf z6l!E&L@UOcj7ANB{}Xtf7w}(Q+wHjie|nYAI0vu z4#CQKgeS2wJ3?2rZ(bxXN&XzdlL&S!+^*vsTE42T4>d|n@Wei4UzTvrN3b^CzY5n z;oFb0bf_n}_ee-{Ic(4>#a~_GAh8$t6X2f!fA1=v%cmQH>M9q(HL;J4>*SN_v9?In z)H`eXGRUJKR|-0Hn}bK0Lms~7+0tmDE?5=i9qK9M`Ze~I>PfLglGzfgqN=q|7m>RV z*+v+4E1U1aP=nizYmt@9>Q+IeC?COY*??5%JSGr1L>R6qo(p1=U}5dGoTC8vjS=_% zd#IA>QncI9>aIv@?7s(o?kb+oi)b#bi8UdQUjqJMj6fkCrJ7!wAo2<#k03HrT?qsu z>N%xf`wH+lRkM8?R~401JT;dZ869ZG6`57Zi$@_(V%i(Aj_m@9$~u8Sk#%Tish>Qu zwVKfG1R4>H5=~6@lI5}aTMuh*LuBm`P-6K98&i=@hyi+@+me}El!z*xpm|a|vi}6U zeTjj@+kr2Ul}7)!Xd~Ozvfo<7_xf$LGvSrj>dQ{jkdOPGW-FRc|as zR~e)Cjg?s5f?=+#5-gTvjv})E5qR$i`%ePD5BxA%ig~r|7l40NupkN0Qq^|@pT7#{ z_FvEv?#V@XuTPBgV8ded1Wz8H;auBJp;>;C$4=8(sX41MqzW>WOYYJv{aSgm)HSljj5XMP^0Ct+%$ zepF!$vTC^kMG*KzlIyW{_wd{#_Sw=M=L~x+e6^mCB^OaR`!evk5sxwLB9mXdiU2W* zR$~2|il}wM!sm3=y1~EFqe0VuE<2B$ zv7y7)o&%n8^5Vq~FDh$n{EQa7NNRv;<%`D&6lOe0SDTtYkpKlrfM8d-eQ-g_xgYN4R_2cMX3Z;5m+CcFD z@UO>otPi77K0i(IOoegT3P+uN3%H}^zUzVi54dHKf#UZWQ^{(HeSF*p46;rsEv;NZ ze`FoY9LOUeujKpwRA+UX&o1j|POs30FZm|I(+G3ptpcK4<-F|S&UB4u*|uC&+Hsb~ z8p#psYa%mV02&$1qf{gzd4FRUQe(wwT&`iFi@j-ObyOh&y)JhBYG1Lw04p~k@+#G( zvau??7}aE@Se|^LB*qsvpYac9KBppW8-V|SYH)poX7ioPYz^?&9gFaHMmYWsN4wp$ zh}Zd|1B->Sr_murW3_H_MO+}?ZK|H+g!O@^K+b38NmuPIxxesv?L#_cuOfUN*Mpbn z7_ZsYZb|6_nbePCb`Ft)9))%rbRx&9e8iCIzD_pTMU_$pH@jhw^V)*QULpa>I@dh( zWJg3`KJ@**4X}oeIgCo)$5aPm3z8spE$Xh7MTQgZmZqHt{vz5zJg!LKHZ-Yv68Mjf zmilhPn|um*Gw@NgTX}j+=lCj@H~4-^C1A!*KYe6@j{UKPIA}Mwt2mPzC;$s_tJa{C z{{0Ey`K%K)S>8Ucn8>7YBGtKV;vi-K9tZQHm&cPDjwzE*@BxlIfJ=QyNqwgD=QXAr zd}^mvWK73MX&hBadO)6V;}%`L%a`%#d5K#mz^++N@babn3Mdg|qKm9r?hh(p2!eH3 z*@dB_*W0SAjKI*Cp_4a3_5Dx?6ta|o0yF{okAZu~eB75xOtkZZhe%;>Dd0Sg=p>p-?AEOmPe{O+}zZuPAe0T|c=1&9vY!TmY1}&BS z$uS@I0pNQJ1Qe9hLq5-(5e$9ujB*8)i3o}-^|tNz=${_SJHpJ(){ue$ch1ptbV zFVx9)lTIt=;qoa-%x^e)62o&DpfKsEAg>86PT3SWO#y>N%zcQQ@p=qR4gVoEn&YHq zBb}tFvx0KqaSWYIuk@Q9BM%fv%e=V%TT)80DH#mdh+zlt?MCiX1eu=1%*+oz-$W1T zb=~wjZ*HjL?#}}l>F5F^68v*Hh3KY{V3?a2HKR4C_tN5e-Q1l*mE6&#IK_Y zy5UuL?>|6gHpZDqUofBuhUGXVtI=lm7{Zy%3bU;IPYPDAS!9a-K8J8WaL)TNtR;Ox zNz-2rpj1_=BxV`d{P!vBy=c0POOMEA$AHEqJffd7O`CDy!$H;1O;~%on|jxv3dtLs2av%QF`#M;AGuT^!USc|L?pzU@tOk_WnAFN`Ntegw*%{z%=)8~X(f$$e zOIHabK*utCdW^^WDw^+E;E2MM&@EN>YyN8WStLHtJE!NMN@iP1DJqL_668rR)tV+I zMuB)+iIhf0Y9yX>@QgglUdx#LL^St#q^hSl7}_MIG>9^6Ho6={5Si}uRfP6VU@OA8 z#;4VBax7CZEvI_dt%EUJv1TVm0%8HgAaaVLz97m=$RJlTtbVc{_mN$S@*P!n!hywS z(F&&P!Di9wu8%K)bNM9jGh?LC7RPfRT(tL!3ySLjgB!@Vs8spTW`Cn~teGHZeOre%>bOR3+AohRw=yYb8;DaL`!U zf+paaoz_GzIpVawO=HYX3{%78gQK5ppx4frWR+bIQBfTS9^!W&Elr&#U$A&HI(PXU z*EmQVL)C8YTO#N4$7to>hA}J$7gTUCsAM@9NwxG@L{4W*DJf}WD;WuzbVipD`BOx$ zIOSUZ=D8*_DJm6NO+LL0zco7e1*=6nsX z4zW8CD_MDWnYs3ObVWf4YW2;=iKRT=y-Za|+QhsiWE-k=EB6 ze?(!2Jq|^5OJ&tl;a`rU-JaW%oy_rP)l?rdf9l?OMD9bxuSurU8ErKk?|m?7e#}J} zwjkKZG}4)DvNs)RjKxfhA0H(uiAM}%%VXo?Koh+JIp6|OPr@?99zc_M&FH7ZYQMJi zfL$OvHA)DQUuPis1r*lAzE8osLgJbXCNfU#Z@E?Qe;_O2y;SWA@V9~gZHayh9|wMZ z498ed>sFR(mPw3LNwpj!o?yu|?n$u&kV+cl1e$2`>+WqrJBjD9;y_T;BltHymAL+e7E5ExNrF7CK^7V>2t9q3bvV&(VWi^R|HIqh-HC!=>_7_J@OvL zZ6$x(YD9Kjr3ZA{zz!o4X6wF;1|Hu*|FaNJ?@ErbO`1@*K!>XyP(wB`rl&O=V%r84UN;dXSnrU=Llx z{Ojd$fZPUjGd>TIaBw3XC_^7*3KZPWrhs-bk{gjt1G~^X#Y@dTU*iw83B%T?$zS5v zJ&Z9vo{I6eo+)+M%2Y4;;Lug6u-Dns5xa?Up|L{4tUA)Gx zn`9Q!OU$~c7}l$S9SFM;Cp=tH2~zS@N{K%+oJDox-=Oc8(@d7Z16$@K&mlYl%z69J zk$VVoel|rb?>w1~0!(I{qI)sBr$ zU52YOZ<*OdMG?ioJ z-bEQ5eZ?&VzCvr)EKo#T*L|o++kbLV#cL3G3)-Zz24m(*y;kvGE}~_uSD+vtk`W3l zJ?K*y^T0qqs1hU?J zt)^M5h+^m9syOhIIM|6nZ2Y^7^sHjzba8-Ed2Me9+Nrf004O5sqor04x=`;A(fZ!q zh?w$n)Y1pxG}=_PEc|%~9Mt94l2RY>1B?z7CZq2( zcH4v|JU_n(-|8gFkFUqNKFiq+a@_GwF;VAplIzn1&TZhsrXJWZ|XXa z);PZjWZ7VaHE^;yG6)$74*|myz|*zHnGS~BjEWM*1H~xr;uYWt zgiFA(N@{1YgiAbF^T5LhkJoxXP zd<8L&P*){!ROybo4ymq`x>UXQsAa9!gl94iByK}XB4-wG{jvefuH=lxDvT^-ph>1>w1Ha>IHV7JzYDJ~BPM0b zMC+njyODqbv}xv_BJu^aZvGD75XLOeef~`fXoN>WPB!CT8qziy!M@ZF)}w+eI!0cz zULGJCh9Z2`3tpdP?6q<)E_Xoj@9~!N5TrW|LD$y_PXimVp%|I(W5YQJClDF-_f+Jf z41yTVPZ;;TiVsod4-^5>pf4>QZmqQ&3MgiPKXco5v>W%Z`~Lx8x6Ut)p4Y@O?IOZ= z5II@P@fi~*l^X&@Ixvbklh`PVLdTv<{}d$0)4(xub?nF>;W=z!EH;5sPwRkFUY}k- zCa0k{={Z%9^;lU+*gq#>e}*ueL&D|8&QBV#6G+(8(RFG4mDG1+BRO*Miz@4_S!U4k z^e=M#&Z};%1qv@a=C;ovvI?zuxd(0Y-w&)qWCO#5<7MCx;KjvrmZm&^QZ$2Gj0fOI z7SM{E$tb=)Ql=eSHhaM_W4-(SpK#xKwd0-c!Q_?3Hwv@ z`%_4NId*>1NH~Gmo*UU3q$OC4fXGmq#fvuph!O$Uvyg!6^MH+ zB5yz?Mb=`>QB=C4etu#U)!4%F)G|l!k=yV^fU!)wizx3#k(CAJQZ>D1fq~;LR88}k z*LOQP3CpIcWlD^J`S~gOW)A5bCk#7;GJ%+7gq>y5?M)(flF&{O_9wCP%LwPE40amA zp7M+`h_D9T>el#Wf(q4WGd2&LbX#k!wLnqukURi9hU&@R4BUgr9L5}Lbi~FBX~`ZS z0SFb9Nu}Un#&wbvAHgDK0_k+!M7G-22f1KuIFIx(gjSvApkl}@!2NhPI&A&~US+bL z*G>ewT|*~0PiRlj>2wHX60ys$cAC&mAu@$!O2Y0m;lwmnro{HA3Fjw~a5@O*CXoIV zhR%>4G=cHqHwQ0odnsCLfnr=X>$aECBzVVrHg?=m2P4dO7)@%V96Tz4V@v>I1%eLr zdQBJq7PulJm$0G5h9NebfPNPVJBF}_kxp{SJd$->M6uERY%87rL=UDXA@m3~1;N@E zu=X;c?GefpVyCd-G+{V}uncP_3C$E%mSOD_)=bgwPAf$KI3qh=fldGu-6n?; zjVO2-;Via;gjTS260s9l+eP|4usx*Tg|K51iD1*@GZ-|Py#q~dS9fXmx-i+(*%0M6 zg)oD)r?Ga5&`uD_v;swEN`XSAu`*3)mtn&dSi2nCSx#3hRuJh~LOY8MUm>)8O@_~% zMEYO%|D59FXey7Ly!!FaA($7uOzGl9W*;2a`n zuqGf33|6KPnZ(i+8}_i$L*^%ta01)!8f*_^J6P#JXf%qd1sVp;Q*CgIgz|+zucvv6 z>WIPu=Ll^`7)}$~X{DV8z%Yf#GC~(gh4s<6xi~Td!2VO+v zd8{>bB*4m~uEOad!335`Yl$^=$ASZlD>5{7*OJ4X;+#+nQC zxroR-#>`_(h%q6Uc`*HYkyA@OwblZ~5(z-e=yReA%T}d=qRR9Al2yYU&{+*SzP&zz zg^2(rCcrkLJ9N^R0!5&kIO>T>ke+h-!Gv?N6GC@_4inhE_9fVG0_pc$Zli}t#~6ar zYpBhbyMb>|Rwmo+Vjg=GZas{wTn)2V%D_ilQN$c@nNIgSrqjd91f8&_d3v$*`xX(4 zG11n?&{tq+9Y$*{P+UL31VwaCqXT8JA(M7UcTxu)kx5+9)p$lS^#ckz9nDeLrd3b8 zh{#H;7_99mEu)}-NDmuM(iIn3NDmuKflOdKJwiJnA_^Fxoy7KgNPj~66v9c2?IL2b z`t0T=2Nct#KoJC(=g(--!k&G|>eUeTJrUGcOlKYwUUAdvqy>W3TDwtzVmx${!4Ond zClxBk7L7`~aAhz;a#W7DWna5b%f` za)X8%66Ib%AzJk`(Sd%WWAzbU!AgLbE@G9_7o!n_NDpf!kst;XC@|PyVo*veLC@td zCb4#sfGMq>ViM`jN+_2Rd)`$}^-S1bhMgC%YeA+_nfhXzn8G}JOvjeqaR29wMILktghAvfwd_nV@OIouCy*uOQM_ z>PUK6JAv3qEE+vnJBbhhMGs-h^;t|HqBKzjtvoW5gWWL(tSZJ zFPi?`QSAH!;Mr(76+mYK=I7hHx3$(NeYrA*!&UHr(~PO^-7VoJHi4_D)#m@NtoXOt{~7vBv!#EuR&cauJ1#JOYE25NqcU zxr{aE3FSq^p2PAAp}l~W8H5m_@7{YBUwyA$4^BRZ2}9(zLon9@Mr*CLK(X*<(TbbP zsA}yo;M>4|2DTw`8^+v@3K(w6`1LaIFeN<{X3YH`CQuoVW}~P>jJX2L5(FKBPEVr+ z(WpV}l+sB-6lL^)E@A^hu~^$jY#)(1LOTOirCF?<$Cx<+xk5Mq13Nl0(oT_Ut+f^? zt}19;0iH$0>h1@=gf@lkLFAx|I1XXVesz{*-Pw{HUR0?*+t4~)IC)&FK{s!M{(RHV zZh<}lbBLM2m`e_QCJ}K-?$BT{SSwgW!x_^@f_bdWxke62ZLPJ|S_>4{rG;*L4xQiq z9dtU|W_0k*9S%5l0b7A}rE0N~&Phl?RMNnVftf2XHwV25n4cT>qht+hbWT1|^U;|%aU;A`kijjh0~Aa|qv0h@spz@)m| zXjp+HF=8BUI0)eUdF`dxvJI|WZoj40T5GKZiX~)c(W;>bfiD32fW0ol(42q{7#vv@x>A+kcUU(i>tZWm$t+m!#3lvM#W`T#?1|nO4J2lea0I(Zlb^@#rrfeR#&uuHv>Zx}EM-Vv$W1^ofU4nbDo{+JiD*!dq23p5AM(BeZTMb>$bJGF);L>0`CKU zLNo#R2!ILza1;P=1ON^IAk$QE00OT*mdc-*a` zJd`mW<`y2#Cp}UHPe|ZSn0a|=8hfA0_W>Y$$!UJrBWE0rlGM#e8i)KP#r*Zv{XI(`1Eo$Wcdz;h9mAr-=*$BfTMR)?Lx9e%dt;)TkKk@gX0DiIOU zWQYLS_BfeDBX`P19?_37FpEiSyyO>i>5NDGmE!oP`U%Fi2_8WS7yJ@^LXy*3QsR@S z(|W1a7MZqonP)w--W|;iBIl;u%`ItXdV1z1T+U0#%6GTVFB!T1(xJFL;#Sqv?V|r! z(Fv^bKGyU3vhdSo`H$|_J*z3XS#z(Xwj-i0BmcphiN=a&O{|*c=lw0!*IQbbpC(5? z?fdntzUf)(NZakJZJcLq12Zphc+P)uofWsb8`-_j$NQL9`bK{ZjLc1xq))WeP4qr` z`|)7v{==z-mFbDEGsEL^E4y<$`|t0UynnyN{dTZ0Ke*KMd|6rL^V*-S&d%+&#+}iw zow=E>6R*E5tbg0x`}t}2*O#^5?_d6T^=R+&+x?G2`-b$7XfV5yGmz{p_-?bhNy~ExU&D zp8v$P&(HQZRP^OyEw5ti8}Gg>z#p&mec4#~>N+8C;Ff(;)zD3Y==Ir`P4`~kA<}uJ z9h$30E9?qXPY*QLjNfyuaJcR8sCM$cchmW~fk*e>J|uNrm3DkwH{BF6UVHl0;|K4a zke3E-J3gtOYmNK5KKIJ&OC~|h+t{1a*?Uz=)Yf&Hz2FRyvCwJ*UK%JmY$jWX7u;PK zq6?(!|1e;adY4kQ$QXkyZU;ZwM9Bf|ao0`+%1pJWPQ5tDOp|O`mK=Z5vc1&*b6`u8 z#G!$Q0=waTSgX=<{m%#QiWLyCp z^3m84*#(9L#?sP>;9wfMcWsu&ueZwbHu=V;0zdF5bnyrh&_sYB=`Axr55g`*A0FvQ z7c|)NzaeK&)aw>Pu+f%$(C=hWIPyD51}unSQ$t?_Gdt1*gD6ux$`DdVv=og^OM#`L zK@b50E(IjE#Zp9x#Erfu;#$ZZ&EF`9)uxUtHGuuJ8rQ$rJS07 z*P@kg30k2CY#h6Jc~e>G7&9!@N*0Z;uDaer&9spgbMm5NZASVn1)?&Jro(Rb7)Cs| zE6xK2;aIqInB6Qc4djR@3l{d9N(7n{s&U5-FHVQ@n%pl8d~IBf{y^iK4m!R~G_q^B zs^BPcczrqi;Af7Pj?`zs=h=)6$%%` zYo~C4wH9_USO~KanxH^<+zs47Fqg5@ARZ;VhTY***?EZIe_iSfNYq9XkGVil`D^|3 z>W)E!pcouFsH*sD`Z_q?HO(|FXK&|o%SwH#h2~8o^biIy0z!h>TcBIKzkFR`?UYyt zv=2rd!gk=pfyZ4eFQCB@Y9t~6fe$+cBO6nQfE5#pHRP~DsQLKE2U`jjzEuyXJVvw0 zR(z)}|ElcVKTesuxW8Jml&~~NA(8j+syoPe1jIMbg5K&P zLN(AJfCv?VbuEV2jOH3shJ}7tTMc|CqtTBmC1My|l4)c%~yLF~EBgEYHtIa+P3 zc2nn}vx*ELWC5zOA#uneh$$$(B;LnNmCfIR9JoHTK?|PBNMb>@t%)J84Jp9JLxBE~ zy3qBLc7HF@#R0Saa53)=^y-fn(Q{`hPzF`xD&=3rVNvNv5vYw8FqBKmQ*HyyTpXuM z%?ez->_miOT!F%RJ9)?vYtyZ*PSJfOzLmHhF+@J}68|}@@d%ZeMCv{@vvaM_eDO;a zT27ru;3~hHj5$LAz;`P^EH4gZ-tH|3f#9qxSE&-Cc8@yLNSV_&K$u6iOhaBWB5SZh zb{xuiw#~g5FXaIwVC#*rPB?B`g+bRe;3*IA_F)1}$N_s$Kf}%QDZ?ytB}tj0ypW>W zpk+h9%vWhf-^yY~D~Tb!3_ae3>uyf-A~!-&l z5D*E(2cZ<7dKpnZGgyjgWiTR2m<4vI17Rbh7Wy&0#R>ZTWhanIUoy%ba- zCEs_-j}3;@={cY!bSwn$?qGaS*;R!Rq0kPwexbCUAsU2x1I(cc4vGVAND{9Z7|^83 zi>bFvFWeIt=M>b}_SMz*-8A9?VOye-)B_F&A{yRtoUa@V$Kv=-49U)GpowLEQPB2O z8t4?qR~YYv74YshMY}nOHR={!JOsi`xMcu&?grhrvmW^7FuzlBT}7ER3@Fh905NAF zp1X%_==M`o0!3_gVOS&1Ki#TyB4KJ=$Z}sx98Bh98F+)?NGHj++|_KO>;jmkD+Ppc zdBQ6kBq#&`2sCqHl5Z3M4z9Geml{AQfCxg0fs3}U)kxKEEnFnHEG<5ON@@h9YP#z6 zV_apgxie2ac<1?UohAOsK*aot_ffGsKVQ1$G&=7K6?aTgp!yj=YjvYDD(<80B_l<_ zcz^1ux^`%4&wQvDO<|18IWY9TKMAlau=zu*YJO++VCIKPhv+UZOoPp8L2Bd83pf{4 zLa6W(&am7!XG+mB)yUBm^5_H!YJ}hP{8z^QX55c({iey=u9>|qBhvc5$igtG1H7hb znBj7*vF@C6Sn(Fg3hg#{Q=SYmH5syYbfu+ekxK=vL@R|=-duwOybZSHm7C8RD)Co& z)mQHVU&;&)m$xoOSXbi=vZ{pIKW|*@RDJc~MV2A5q+Z0uTH;6kyHFSPUi@`SZ)79mX7Du5 zwB?52<(tAXaYR(~0Yb!1%ewNKK5IFMmxmvq$+xCr#oI!d>5U!!T6*8=%A2!x3{R$A zsa>d3%Vq}h8Z%Xm*sDTA%p$6M0l9+q%4RYG4QUsYao* zWBAA8*1w<0xvjG+E{FD1%x|2twFP&p7q!9~kJ#ufUP$#-`AiikIrp9VIi06-kFRvvhPi~3GR-Hk=1v!S#? zVqcL^TsH3-6IrW+cOmlckx=hRaNp}_x)ywlgWB6dHf)7kpilo{rRZhQ zjr!>hY=&VAy<`+nfkizbq6q!;w@*U0vHXw@z$pNPpBShaENgFzex?LSOII=C@OKko zK9mGegY=kP(UM@WG>59$5Ml-3-zLHRiBKOBjX;FBYze$4Xz7xX18m-(2W%vh!~eX) zV{Jr$iRF2ZMx7@oBg``gM-a(a{ud+&uN<&|?fDoAD~ij!(UMshl384x=|fEY2|%7> z!G;JZo3BzbBZg@NEfPL$O7!?cx0sNrWDHu}6YG6rjQ1lKcFQ|`%pjXQ3br9biL7)j z&7@E)L`B=r@h$%ZI-J=6UI6d~0gyf9E1_tIzf6Q+IdB2XKYt0Wd=K?v7h>az7Q&wX zy^^yv1>UjC1xVz6HGp|kqaJSA>5`eC28(Jugr5V^<^Y7pPF9tn%YvagM6f3T*QW$A z`oslUYxNMv#5)8ecfuv<07ci$F!Orb)ofg>YQAi-;N;jBPB z7zmaiN4CBm`}Ag8{L%PKtcGa8G_hb=99hkV8mRzHGT~;K0+-3Kk$70j zNW#@_upHSZ8i3pdWHYx51yzcMC2o%$yo7Rp-5NE#U73j(k1PVad!GBA>c3kOEDmg% zMh_S2BjQ}w0erU8H}`+tQKM2NtJ6WxsIKlTNC_2oUN|@vJF5rLXR6%R&soxh=-()4 zCjw0*;KCz(8%)Szhk2edS_2EM9YL5wByxX3w3sTl$f%ncH)t$WBGG0E2jpy(;buU2 z%0L<3a!YKvFOylxmT+MqI{`<9C_Ll3a-bFpv;}CymO+$A$y0C^LY1alr;Io}>tuvJ zgcV>^r5u?aAIGwxq(e%o&N&^_t+HP81gc}MiP&opB=`Ykig+H7G`^e?- zVF~neL3aqK3uqq_i~k1)wL=lOS?nK7Ms2WyELh;5>&QJKYRVNcQ3bw3MDBA?iWwJv zo=5EyP_JAOoxNb;`w#bw{;Qy%8kopE4lJ)?^$eXu{6F(EWgTKi%wAzC~EGUY?2=38ah#)5Sq@STpxe;M@R^5)0zP z#{2K!bzqNU*g=pFR!o~Eq~-_vt}YlvJt1Ri`HPl|8VFgK2NW;iYf8j!*@_CGdPL&stj(tYyAGNy2Rx zw;gTk_G#-)Z0o<-HqhEO_^xgEPn&x$;5Z40IdsS@3?R)?3jsZ!efQj>!$j`@3mB3+ zWcCUKBTBye^n9J~xk_->5ltD%F`N}h%97NA2~fz(1A;g}F$usw73Ti3B&sc7QcyG+{%RIiUZM|KTHq1FFrgU*o?1ueQ@$`Hk*PL;theSU~G8ComXMvBsuXwsA(M=OGn zE$sN_P-E%64iDqDw*}|4HDydY#rt+5B({K%d(cxOx`JB?(j1T!8Q?E|gk*pdELVFh zq2kj9JngG+ils&*=<)$TSl5$f+D4VpMl}^j=pbafYnhy}iTis;OhCD^i7M zfVg9!BvSuHEHp*32Q%B>+19!#C46c_MsO?4m|}B3vYpS>?UdXAm>^dk4!G+CeiA>> zzZa&-1O|o=jd={%7zf=ebP!8NUm`Z#O|Rd_qEcK3p$#3!jR(K^z81v2JY*<0F(ElX zb7rd?9}hosiZEcnQqw_u+}o3XctiRWw|61y&a6(*y=$)D=%7m@@O)Qf?+82_%NxqN zvfbAI!+5OYZ9B|=OgBotH)HH%-O!h^*IJ5zCWS|V2Q^SN^a#HRPCR6!YC~SaK2AVj z*w|zkY8_Pl7)@Y;(~M;-po3qX#$4573#`Ge+LI@oPs02sb*ZmIf4%-FJImhPKrKboeQg5Giu6U}} zF_~IP;U`NyJ82k|w;Y|Vhhjb%U-z}-=d zE97)bdHO6`Y<9wD zUG{yI9n`;@K)w7;V1D=Z``^#s@6Em6|N9;w!v&dgA%0xg6)vKb%iGT7pXVa?xoDXM zA=3pBzlBh@O3~5q0apJYO<++Whifg>tXR6J+PQDe=td0w7TDt`Cl{M zdfByf`BeL|@BFgg{xV7CV}R+$Ais}iuY3$C{dm6pWBB~Xi~ApUhsMaJE5nkVF;`Xs zc;C6?tRxLzNtj=uT)e(4y~^-gO}nxxdw^S+t{qbzT2*=Ao*}a)es2iQ|s`LG#gNg!C}t`%dVkQJ^Sb?8HPKe-gTNR4Vh9ki-`$3-a^nR>0by zZ4kLvZ3`%;h3@EZg*5C;2z(i9!3-U2V@A!lzb(IfJL>F6CfzUxIxbsPa|aVPQ(EzxP8GtY3{feFW%;LI0BgjQ4Z)Z z+Pc79CCTfr`NtnB_Nwg%fw-DR)iJsBP93x?hwmO2o{Z|bipdB0uS9*I?lWlz9MqDe z<^T~1zsVjiQ;cQ_0Q_^`x1Kafi^De^@ywOFGdr{%Wtky!VQ)haqh-}^lOt_%1u`AU zIHUwL{z2;ez{?buG^~v)5c=lo=GIL_^CHo41-l z0To$<2oHe2RzW&Co8VPT8Sm`#Jmeqbu)M3iI+BaXjhYqTEwZJFW;}u?}R_7-WV!)7T zRhyc-m;QA1SPI9#7uW3k9>#-W@Z!{Fl*5~Syx|fNM|KLgayUG;ts<=5uZY!#LL@s>U)}0ealjndye4> zZ!7g69Tr1X7Le5vvVe$}#x15vts20KG>k_qWi1)<7uvPHWd;jI2mGQPcKKctgpf(# z0LMDl*?qD;5k)JgnYxxvVtpFN9}0~pZ6QPUjVX^W$G zBva4G90oCB<1z&F2!>$4$ios4Mnxflisf2N(Exg4Ebu_;>YoTo0Vb{u@ zsu+%>ipG-5miW`oqyy6oizO0Dn=3TBZYMO3_6cir$-db8dZ)mGS3ie+fY9oM*$165 zT<>@{H9-f)5UsS=`kRWI^>Y|Vl%CJ@GLdkthCzjbi{AnCh+uT}#{<320@nIt_r^n5 zHDwilARmRJ2Df0#+X+qO%W){m)-MfD8uV=#(=4TThSSX;0q9f%E4j;qvACNS_K&sN z3Jxg+!z4RJvLdqrw`lQ=A-#zDSZz`96$NDgl@Ha_R2sM85&Vl2yvEd zU%#qu@bo1hEiC4?=6@|tXZ6N!yk?x$u{|!ytc1lm9u$(c0mVQ`EdWsSro^|qZ+pxy z1o7CiI?8&z`AXHP@`t#+dc8z7&lcomj3yOn;Gbg=4uqa??T6G-P~jWO>iSdX%*0-T zMJCEn$sygAQn;%g(p7r$fBNMmrUWru08pyst}h#HoT~#c&ESY`8x1`c*J3qClwQ*?JQQ6r}*veQ*pT-pJS4*b_BQMQ1%KjZV~hPS)O7 zdjo*6G5qyhnEWs7;ik}0o6A8wxmP)Nh8+sm1kW2vnPkBU9l4%UIDQ}265&H+ni#PY zV&%{aKO==F$Ik2o&l* z0gDp>Kte5l4hhJQ_Wj!roiWvT+>P(KzRZlJNXHe^+5i zY?=s^`Upg%Kz}Gg-mQb5XuL$kpxA&1lCeB$s{oL17%<=h6lR3)H6q*;{Z@Ou$tyJ? zY5C}x-=KykDoGqrIENfsLT~F{LjzIrL3f)7|mjdTekM$Rx?0>vt2SX z6o!e3YidY;m+X(?G`T}JnW*YtA$n190N_d%g@4ZWk(CWbL8ExE@)fz+-=7%1sh%PbcG?S7-nQ zzG5eN=POYP>4cAaRRq=6t3u+Q#aZc@SPK^K@ zhNcRKH`eH9`2DlYC<0hPnqJHai`i17UAtUDfl2d-R={&U2ujbXeC(d^TG0+RU zU1Af{>nC5AI4dLG@}N1uV=1SG9_BoHpnl?fKv9XMiswp$p#LWe{dd!^(=Io+7KR{4 z%pC?d5l(trfTcFCnOvMGdg$=F_Awen7ADrY^HkvO}2jUSrOkbU*C)%>^p%kAHv zM_l>&N8XV#GY+f83N#xh#9s{8qYc(&C{PalQKU+qvmU z9~8~v2fXHYuJ(k=rJqT%l-XfEPrvdlRG$&#@&5PQCr7_O zeDOCW=KY`d*RSmML^OPkIM`f%vHx@OAa}d#Z@b#RZr`SQV@7RLV6ZV$&9^M&Bt@=4 z>K8>HQU7b{HV+frzmwHd@?2{h5Q;5HZV}B1;lQ(q-Nl>)3a9p&DcLm@&o&KjkeRVwk)}_AZu*#g348G*4E^8~1w2wKPB7@NegOmkTVDbULQ4OB zdT}5H`d7j(2I{}trktXr8@L(?D>OhA3SiNo! zm8N8ueukTmA;TiMpjeBS7(}|ov-A{hI^w1cj!a7@rp2@%v_^mgZ&(x;&QXJ`a2;Pj zoH{%>X>l1D_^gdGxUU`j3Mt)^d2JYzHYMV`(lU6me{g7H@HM~lLAbbc4wGV!wp`R1 zKB6G14S@ZJPA6ioE*iV+vr^w?4NWsxa~ngkSo-&3@P)1P*}cAF*!09H%S3eQz=X@t zhvDxemleiv%AN}qi=bn#{la9>itWx%0gtzsq6n#P@1{Sw>-@oZ7)?m^oknP~;Xmy~ z_Uc~$e0FS0zJ=gT?!S2fo$tpe=~KYnlg_1}jGDE>fip z;QrivCIz|1LVhAt%NnG|O~Hr;jQ?Kcd|u7@fEpt?gSZX@tG z1Vk4AGyF}nT1I{WpfvtDzKR}})*he5PuS?5z%l!BGfpgG@R#kN_Dq=T+|`pk9?r`i z$0kqUh?5p39{Nmx&Qy8?^PiWLeldiuffovALQdJiFQHT8B|&&Zx`(Nb+u)r7QTXI9!YJCZcEZfOIL#^mfjAOAZb_X{~-DM*Z!j(`t@Ixz(Yx z-z~X&1a@!n-GANdI#ocLLmgcHn8DAGp+Xz^Y>mT!o~TT z%pnGQe8%u|S31z%k1^vh`4WcdOS-S0rw!$!|^bltr;D* zKV}$qhDCAQm1>?$M{Og-nV|Rz_!G0P%8R5#n_9AC8Gzi;0~9>M+SNoFr!k;iov9G>3@mOjDQ= zMKECon}I}`it|se>0Md6`YbS!4r`r62q4nWiG$;IU?-P=|9<}H@bM~1kh#)_LxdoM z`I7oyl1j%VPh7D#nP8Zo!C^ldz(P&8 zWD;xVFk=DC%~B)rwM5=CqnG|&grq07zibl_IpMK z>0!@(Z*FGrBG$|116xyNcedeQ-EKa-Ci^I|!@GTY-6zoX)Ov;KaM0%RSLfr~z_13> ztbcY7jw)O`@_Kkh8h>`L%&pSUt+G#zHg^gy-uZcQgI#*3Pn@bha%(hz z+J?1M&*)f>K8HbC~rB3;K-MSL!dU4(U@$m=k zuhKf1*d-m#08;Of2c`gct2g(yo`L&MbdUGy&jT)r<*fQ&_DqER(thIV<9((D53 zeGr3di78dO&fPF3cCr_YPbtmhRG5gX@zsR%K-ubU+tKeZlcBguFzv@&+AJdQd z>SCR2^dp70nyQKqSh*bZq$%di&n_nJs33*$)bva-mDDo*y0inY-&!}LDlGyycnG>b z=BaY{=ONfu>fd)SDx7C3i`<_yDj3XONK;xgV1J(1_=OvxCa9*_#4&=|slYWV&j>WR zCH?(pM3=Q%C-d;L#=|tokLuCG?K_7#oj%uMH^KfU{v zQugKki?K4+>)+335==|U1Ts8;3pT~l2O#en&Hgl}1GVkoq1aR#E~N6kW21gz^FycV z>j||_60(k-_%{FQTV9%Nwc2Hlf!GK*@n7sLBsH=H?nVNi{K?aDJ@J`W!pm~CS2MCh z59?l)*ac1j7XkY-t9$; zy#DElK0MSr)wKFg@g3BTH(Y-TWRO+zwDx}Mz+v{01gnS1omzFb&(!rM)U7=F`})ko z$kY2D&9eSzsT(aklxi_`>8E`-ps>&xeMX7yW_npYzWi~fbe4NRl90g zA^xdu@9vO1*9?An6tbJUy%o?Yz2MsL($lH4GAT}{T&`f~I>TNrev3k>!I&kC{)kz_ zS6xglzNfx{G6_WgjZ%{fIkWbUR)wktEqp1P z|4mi|KfIE0ZMS=hRA_u+Z8!P&-5|%w`zLWV1y|9v?-}t8=a-F6Wbhq`<@9a`u8TAT z^yc_;$QDkaPlK-}SoqDhteIya-uK@2`MLSNI$h9x^Y~DyNqAxc-kv{G)4=7sMI@~4 z6e9Rlv2Mz?t73`q)c6mCTL9*1)JKPWw|kh zITWCjPE4M&UE^JPh+67p*AkOe6{~9~fjq?<7q*GYH&E+_Rwe3-H}Dn-GeM&j%$?A4 zKIP9RQ8Fo4)9|G>8b(2=EG3ci6`_qi`5|{7$AwlEY1Pn?23+C|)g_T~NOe`?hw=Jk z(~0}nEP}3Q9r1<~NZ&7cTz%f!7<*Na?WNRh$&Y9dQA6#1Zpy5-k}3IkFY||ydTr#j zn(*fF^RF)Cw<>u^AAw@t1v0-oBpzx1wcdK<#oyn5j&S})y#&HzthncsRNERlzyg<~ z2;F}gCAVJ)+t$!UTH*qFl|P9@i*^1)ItpM4f>t>AVt2I%;DhIJ1-%1~kN30+CqspL z*e@r-A_h(V>}ijf^O@+hJBs^vXWRTHHw#V*{cR3mKOX7i)vUu>P1+mdK$@m;u0V+5tjr z3d|S_60YVzwb)c-5*8wl@8EG~(?r{_FzxCNfhaazW)F+7#CHnjvl&XpINsycorfCP zsTxT*{y=<}#27nGuMLNcuI`fFVW*q!;m~w^H%_P_!^T)nsGz!AQL7=-B}q=C0^g(J z-f-2kO-{6_x<@^#;Xl7UIq@!huV#Kj)>&hD$?@u5-NuIOi%IgBC48UZSVPX`HhGz^ z)qN&A4Y^nL^_s0BdZ3;@-H7}i`8VgGI z6!4ZR18(_^g;mCis>f>vPBbsmV+xHX+bd^DW zp{C+qV$wbBBciCVZ z<|@7CDlTvd^#989zXksV{If&;<@q519th zq4$5{2liC#@!E~J{|!G7^8MxZ4?j?k=MCohU--dVXPHZdmb9wJ|HKb;@vrMi!S1Ie z{xAH%j@dQ4y%`n020fUUr6RJMdvWBvOV6fmFX?`_)_*Tfa1pA)5z$y2dYndey4 zu>7i6JIrND5XOIo+t0s%v$DzKkmmIoE(1M_Ur4afP?Jhkz=o^ zmSc{e`{}mQm#TX$i(bEYaWEup$Z|A|YfE=eI#B%XCc3_A?MFk~;Qdbmkr}oq8RwP> z+KNHToiuD3Ud}yA*VWM&de$JoO+T&=On(|f^$$P%CS)mFy{M(%G($XN$@v?Pd4^G{ zg3VH{ol;GZWo=PeZdjrE$>ZmYM4EC!P!2WA*UW0uI`zkQ`zyVS?A&sW7~}Jni^CsF z_}e}d6dIO2!~9s~HU6EB2o0NGTe&kk+6RWr?YZAWPXSfkZAHE{4v8hHsIJ}ZN``>3 zP1Pr7i2AOl+-%*si)mHK3Fp^qYT|=H{KxR4U=%LnfC&*xF8l3jtKQ6l)X2`Pe|mU6 z4_bFRsn%e_@j&7JMq{7eC-(=#Hmwtl6Z^szh{JXN@P@I=QV&9v``OS4flO>CuYvJ4 z#6m1%t6S7)l|nCgS4|v@Rf7Op$?Z`E*kSiYP z9niztT{>TUdgoo0WLcWZipUt$Qbwl(dGrqVASze$hft8O-uny~SbRC8E6b=nM)1sh z;?KXaT={LRwZO(QP=sDSVJP?^>5stfb9r4trfDZLpI4y1~GR#nqs?Y0Lv+VREoHjqIjR6<3!r`OH|Uk9yQOjA79(&(PVCo$ zHNm|*W-`8r=yzOJUyICxsC|u^pz?(_yOJZamN4l*bNQpT@>6zLU&SqeAuM?TM{gRe zGcsF*7sC6IovI?$MaSJZhP}NPgttBEAWg$b&rui(?Sd#>rVFSb1Z8ePNegC{qgsRd zs>|b0`&7%3~j(*quTadTc9Vo;zjg%+n1coXz;N?`(+;pt&Z{+y%?#E05D zoho!Lfh<_4as(np0;H!$D28p@P%4K5ZEwjZ3ePz78s-2n-|=?V4(?YG)v}p*Evur05%Yt1I(NO%qYEMh#zPp|3bX+`U+hWWN-YqFmA-w`XfVh9VMZ*Z8Z$^~OuZU%<>{5du3iN(AV?-Du{ zpW|9s2q>))4>=rmYViEEyE4_F&+h)|ODDSPYg?40B}da*w>b|Fo6H(zEzmIRC8;PK z75?Ux1pSGLR%l+s5HQL|`r`QuUa` z?3mYP&cWcbqhCwpJKe&k7Wm^#yJQv48gXl7ZAuX`xY-aTm7XMHLnaP5!E_TMvJy0Kx)jKd1 z9c&TJD?YSHb#%IvJoVM-@P`FQ*pY`&Ms+&Ag?-=epd@8uyi_D zxQ(_IvnP*#lwfl&5le7AJ$?F~9T~^)fug?s-f=%Q1#BR4h4sUIN~En!vd-$%j@6=AJ%tLB3u#?%NX4E%$X4cx+e~6 z5lbwx(BJvp5E_H~d89znT!EXKOp<@Ww?IX5Sp12*fikbWPX;bt@=4hOCk9KV9UR@< z7I1Ir5Iph>ZEI|Z!h)ayihz)?pj0fnp+9lM-xiLu8+{Vm zWFTC(dR5Zj4^l>v)HcRZK>jRP;?`AGOV-c=&;<<(BO2O7s#|yqkz6JA(jhKtEXI|6K|H-$C3A3-?;z`2V4V zF$XVi*$e;gAnsLir5nzwK=p!M)0&x}&Mw zGAtg*S=Fun?k?kzc34*mx`BpeDcC=j^o=*~E@+a@ZFF*^@QJlw6;t)(*`{T7iF905 z3=<8?Ku24~F3T;_R-fiTuOe`kY5D53>%FI`OPPMDE@1(4L#2F4 z@NEJIy{>m<&q^iIky}7a+23@QvXCx&b8K#7^uW@_#?VqY|E&6&Y4I0xanj}k_bBo* zCbslh+^t($3?1sXjSjG5o=Uf@J8H;37teO?z7;)U-#2fABhltk_px0)gzuz`Ig`iT zL?R+#OFma>+#Z^yvzXWCdQlsyyp*N$PYJsU^_QXa@|j~p1}SWRKbNhd3IXl)jImT7 z0YrH&A^)G0!WubwyA~XEpz)dX#yn<%pK%I$g)BvbJS=1i8;+?33$gS0G=jbgNO%Us zU{UT91P8PDTk#^6aEn6g{4?D!w>(>=rypzuoOTpcYKU5uLT8yfFO_#F^1-U-@hgDC z2U}kU#NFaYAV)WnXs=98%cY^SwB`=*pX!?5oDZ`WTJ2N@>JPf*s-JESEjVLZ$H_D* zW8+*4{%rVL@mt=lMni|$!f<}0=6`CgUI}v6G;~5`DikR>kY?LOz{38HnB)t zhvM!xd+bx#4%|(8CBuEys$25Ey2dP{XD@k;zm3!j>8}DTk)L#;y96BYWxmjnLiyKv zX9};rG)bdWsy}JzxQdqKSmiS=G?dk8y#haN+Ywg3XB<6rWE|5p^zZF~=+}_Fx~A90 zDCw9{gZFLG!}ehHm~k7k=gnhQ+9r?2?aoMFdUN7t6r2dvpu44mdch=A^Ps2IK5=G)V`twh79^L5{F}U+s#S|qH)iHfHxy2TD>?h5bf=B40Yc73FD|eD(r^Rsww2u;# z2&2qE(ukbwr*=}58X7k^Gev8E7rP^ zy6HZ@7NsYWNA+r_(oc50wEgpCV`2$ANwzV3QBhtB$rMU(%>M=nLtgq7XcB~d9u)0N zqnsWJcXl4zJKEYiQJ4y4B`3)bk{Gv`A<{J~^xby{M8yY4h<9Y0UE8?y<0wO)_ua0#9(4 z-2hZ*nFe=8W&O3B3-G>{U<{Z_<(aZexyy7l|h&@lsI;ltQSv4qz>Kx|01 zXslH=I&D`VH;3uMJL0w4rK^soid>7@-D=JF6WTD?OzH29S`%#z zm+Xr(l`2;oED$H1GGyEv4_|0Fe5TRu>h?^theVS%&Y$!cyV^cOpMpQXW8_R zuNQBckZxX_({w2?IV{KUvfZao7Cjedez)%WR}$$WswG)jAi~RL^94XkjOsP~6{m~L ziCsh&bdRWC4omj!3lMuu95qO6OFbI5B>xgSV)m>pon{gwvtBrE^d&4iEG}plZ+61s zuwG8_oFAPd4j4dO@TqR!a+v6vZp~TZ|Fi;fm2Hdw4SdJS{2W&XtjSfbV1JX@MfV;dneUWI?dA{Ff4VQ zml?24_}$gdJ({HJ!vsghS;oKoa=RyLjcnLjEiHpfVmOvIxXse`gBDuNO-={c2GJF{ zcDs>gpD4+WC5y-`qJ{3+ZyAOrOH#b(F;$)Lj9e1|37(jBq?T1;9*2`s0R}byE^Q2Dad!y#16=&p~ zX`bYXR3Z+`#ZgaRsTiRA%zn)AIHHVy2)=*xte!Cel=N!==~}oXox1D<9@MW@uq%>? z6iJX?req$bTO+mBY)v#=+Ma%}l=%?NxSin%hkLB~N{23+8b{&7Y6c>Q4wdO02(~3b z;<=?N`xL5tT^v3DzWs1ES-M&g^C)m^J!3v(Q1I>hc(NJ(lHUx zhNWS|Sr3$IH1f%iz`{V}=C1LtVW2tvEizR4RS55@^Lx=b&w~qh-ve=p3!+h4bfk{& zm7O<=SAO&={x-hK`}^a8E5A-z^EL{u{E(vZ45`2CE(?xd*-@qbT}Oo^QxW4-xEB>| zM-zk6q@YxxdYWiAO<0YF9H-${XcEaZ{1#0zI$l{VUfnKUIyqitC0=7IUK2{!!qOY2 zF5DVLtdQ&>Y`fQNF`5D4eg~#rO6M0)Qi=+Sq(BaHL|Xx&7wh1hBlcZ_h}TSrM6LjY z9eNfmr9u$mP?2gmD%)(BIu7xZD|9~_^Q6=KOB*_i{%3y~87+8)BVo~cYQ);*HA?`t zSFMNb6B`dzvN)Bv7s8*-26YQW@Vt_u3X`(d?LaO<3pVJlSGAxu$rB^VYVmPGm2vRR zvomc`#a*7of59P^;v9z1eV~9$5K&VQ>`zQQ+bXb9U@^}^ej>nA#4USg)9yuE4y>fz z8BZI9rjHZTNp9(rUILGz(+AZuChXE5*kwG%X51%cy!6U=7@hH|FoP44F>jao8k(`R zmGQPd^L>5BJGIP@$(i3)GCx7HJ{M-LMQ5!iXKfT_{n*Ny#WEM_=?dm9oN16D2lAeR zcu^~6QUNw(gA$yPRV)FCK#-EN?1Xzrk_zN=?%5!Yjs-`GNCnHrC_M?o#d^i$jmldR zQskFFAl>9Je_8Dc@C}|j)SGLp!aOw067=CnwcwD$;z=_6eJD%x7!jhv1~sYp9Bvmf zBgoH$AwoG)wXD#DdgOKX=|5Xhwt#^;7`1wAcp2DVk@sXOugM136LFQmy!z1+pg0G` z_gn&hW1@|+C64L_9?jpZ$o;fS;4TLq#Kys<)V5oNbt?!EuIF!M0YNMIEHJVd08PgU zEjXV7xfDdri78NoYnAn0whLTI$=xI!>>;88oZ&RWUdU9@%~094)uPskqTBYx-A2V- z=79E?V$iqZJJKaRbH#(9B_l_R`x;7EtHl#N#SddjCXGrS^^~yfOQ&N>$3shpCrY16 zmp+~=I>su8AQh zpf%2Z_sIM=0WqpTJRrdNTh`xf4fUzRU&Rmff)z&y@IoA7y8?Do7bg^MvV#+$RS16S zjQZIsOd!kq5(Skigce(2pcjZ4O5x2VsS;;o>jj4;4%~@-I&TWS^aDY7QPFCEyMFth z8LV@aTXI!7O7sIE`H=+j7EbsTQ}hZ~KzqAN*SOl7dHQc$O**N@hq()11kNFgCJdUP ztSgUJfKuxhi#>!ov$wN}xt*#ntMB1|Q9Dn;^V zYNy-9Y6nF>l3?BeB1t{hBQ>g%dWzseaTOorD_{6mZ#Pt3Y^+IbtSxG6zSDT)L+o`} zQ=>*xi$l}R#!GFfO}84GI`21i6&3WrntL^x`yHBp^q?Inp=`Wp6-R7x3Nf2~{0UnC zPdf68gM7<{dvm}vx*r7PQlcy{%@OVEhIy0E02tx9OO72#jO;1HuPt^TVw#)b6w;IS!tGZ(1h8%%-|QPY`1pSk0_N?GSx`sY$*u?Brc>Qc&XQl+1Ei?k zi650OSDquuO4jO1#Xk@b9etAb;AJs}Da>2HB+@2Rrz_L4L}<|^LH;BJl8q1UH0Sqc z!o{1?z-AT2vr2b6E2YXDx*$F*!8n#uwql!4E%UCFRR-|)`Bz`=Qz30c|v*RUtB6KgTzRWfp{Z^S1ZvpqfH(ss8B zjruRg*8h)A4#1BO9)MN;Z{vf1JYK8L$$XF3(f^Idivhh=&#e59$BS-!zK{@RF`BOp zu}=1)Elr43>+DI6Zdd*=)988Y?C0$S{A@L3@-~HM$ z=N0HM?_BtlI56t_+NTdQ_O|J`D%j`Juk{UH_&$8-Gt3%X!W|_-p1*ZJwglbk8(qGQJ*uSWKQDA0Vq8m5!b8)t?h^`ZC#Ukp#y8(=+eWY z81n15?{i7>StLRAWu_6@D|6pu{VoS7OXz~R*r(QYVVzBEgv3FeZstS7AQAuFISzWO zyYr45303w`Xxt3WaoqPaD9_a+M)~Bqe09|#BjXCVNvPJ8q_X=^QoJtg~u&NiHV(s3BS~_SjQK;nqgbTb|4jK*h-|GIS z0{Ud5dM&I>S|fW{^3Ry z#`Z0p#^k0Ji>j25S{=5Bygzr&oppTQvvK1i_Qb_^xubQVf)4BohC*sR{MF^Agj(sh z<3lKnPdxIvDqh2xpD^TvvZy_dH>@i&8y~A^a@j-WkogL*h*9&CNra(V<#4$K$u-mD zW!%C??=^lq*I%Wqxxu!2k|0RP-o0>@VXNA|K{}-QH{^+(JxI3%n9eriBLX7q#9r@jgX%&C z+SsGQrnk~xAUM0LMB`PgbHTp-B)%#mOB8pFq3nLbAf=@z+le~$va#I zz9D|^mTuPZZW>OnrVpaY0&hcA6igTJCAR zwaHywHzy?!VbMQ{;Jl!LXAkMwO$ph@(dGBW(_|(G(rq@(vG)jrpP=r&PV;mz->v(O zqh2-zC^h-3eL*T|w#+5kKkeDBrAonAdom`sQ9(v>Zrm1D6T1l*lb&Ix$IOP{8is3B zoTMKdeRc$rNfFYOp{0e*fR9}XH<#WR5ViR`D=fouNy6#cr28mZt2(?wHXSFh>zC~r z9g?|8QRM_2L&kgnSZT^_@dnOB=3d<;{8avB;h6Z{_LA=jl@?O>os-EZkq)~g)2gZD zNfZ4lu@*Hc9SxV%V|hZT&-FG&MN?Uc9W}B7>NciD)4A<=HGA9}?DkrsHDHGiN^la1 zu(r(8AuPGqY-u2w59xeHcLazEo_kSK@};Bh0OG?UDA?6Wc%Z@LySno|lt#0~g(lPZ z$9Fe|RqairCN@PhpMQkY+}Q$IQ2_eUzzQ=sxfn4m|8mlE(yCHhnt(P?Nh%4i zRVkUZ1QfYXK}PaA(4-FyCySxDV?8;~TI;2sn*PS)eFqjbEh})Q#T&hHL4oo{*iYI) zHh{V5XSXGrXT19wpH}>cyumqLA3e6;PsC#%pZF8GFUWpk6`uWH$$OBGieG=fz1jbx z^k(cw**80Do_9AGd#Ib5WS*qgy{(LMhu#xOb^odRDh)vs)e?{S6Kd#tGSsnf(A6~c zEdSvbvW*_RYI!KhNo4Voun6&Q2k=3a9pUiVA%*YtwmJ!^NYIRfuVlE{mC9IhEx=Gs>rY?E zlRNO&d{Ngynod?FXkm5~o9{dlkzi4u(w31MJKT*ntbKUyw=U(4l8?Jrj%Y@Rr4&b< z0n;lWeIz8p!&#ZFJ=y$L5AFN8VywI+bT_)fI538ky+KKK{%i z+%1?=+&VjUCTc%P^jM>N=flqjsuEwle}~xkF{4UfIH~v;`VWHpq~kR%)@L4AbP>Kb z=dL*IJf?YmwD;U|1jQI@@o`?48~+B1_eG4ElE#$6YW$ zj~S_a>9VNhxh%~7DSj__xGcXr9_O0eMZZ~iMM?#>yGNMDx~S$FabeaJmrRRx!|^)dPj zej!L~_cA716>|NA-~EEi51(HMjiO<<#NAm4zB=a?Q_*IarT~q1+8wW$Y^h=wFFQ+9 zg<7d6$7|Kc?^%i0h0=E=qyHOz1*3$+uI}+>V)+Q$2@&J#yG*y}=EQ{6BYRSm{)J9_ zWqX3j3Y}CBQNSgbx$e=)K9Ff62w&PwwoCAL7e{c<=-C8Y0iw4Kd;nDA8m47{T2Hb)X$t4b?&d zBoSl-E0bfRkr{AGP)G4*vmokBL3@C}Q7kNl zDbmB-USSgJ!RaJe>v#BV6!aEYna_dUB;+WCk)tnqmkS~Nz!-UDOI^#Boe-7(nT=0T z(P95#%7?Zg*1YT-$p%quL-x6~99#?|aK-8GB^9~VZ1WV=0cF!aHYm1Da{(Xh!R2Jp z51e!V@~^}kpMM!0xmZ5`#v0@($K>c_U-h25db~#<(=K;kL*6-B$Q#yGK3vBN7+U_z z!fYD|`=aYl;RVXoKxXPU0z8KVSmg>GugLeYhxx@YoMw<0CZJJ0o*0}EpSz84!X7`< zUJM_yUJW2u=4v)%Gbi%%gwrW8xwWCP3~@nW#VfE4dAM<*LT#-^JFbK5 z-?rzUQYm5L5xFYffAE)e{$Ko^!b9*};a@zI@U%+>Pv7E)ZaIWfwnwJA-W9q>rL^Ql zLz#ov5p#ehu2GjM-GKkod;bl+GRFUm7Gw%s8r#vJ`o=~Pb>KA)>E&oe&iBTf_$H8f zQ^Sj_S_l|Ik*)rL>nvjKG=R%!l3okVV;W#SBl}P*Aj0Oozq(4tbjSvu6$g?x+(Z4mPp`!GD-H<9&e8 zRL4bgaZ_LiINSGeU8l2VXJuunXK(4>UE$3Ta~7>bsz!ZguG3vJ1qw9xlkIdpg)O!) z8CfqmtgB`9vg`6r*MV$Yqq*z4S~s55jq}&#L=heRyOU#SL-FlmJ2F(h$1Ap{Fjj8C z8g;a>>)HeAz(8Hxc2AA>o!Zzt^~JQIHDvS4J2#5&w959j@9*tM)4CDc%X9AKd%XHy z_TDWP>)yF@?>`8u`u~^l2w(t>|KV^3R6IJc0tNa%`m`|wyS0k(|MF>T=IdksB5DI+EgD*6M#NA!$(6wD5Q3ean>MNb*q5TtMdo#oEA@@YA@JvIB8f0#KCf zA-B%hO{)v5ZDF9I;I$9eWAhVPs0@W=YW4d)uR4jQd6eY=di>r?J#nXl9(*l7aAmXB z^kKcF5X56`YhfqYD%?hV-YoXF=hr!@PAT7R>deEk{&SIer>E*)x^#_Z1Zx zA9sO88Jtw;A2Z4S*s%H4uTp0&R*UC;|NKOFviEKA#f#sCpEMXJMk6%ywP-rNYz?EE z*`NCzPElw~I5~Yt#31I??QEg`JUU!;WQCp)lYFh}pk~dM64JP3ArT#%mQd}aMLhlN znRXTll%|vzS~G;{pIL&dcKO^&IE7_Y2<4)IHKMQ;(>aaFpTfsJZVD_-%k;d~bZGkC__ zPc@MEwg~g(f`zoj`q5hg(hl=p5*CXW+7m88@mKvK#oIcON^y9rISd3870IKim4|gK{#vH){aMpy)%0Hc$mb*z$_Mp&h(2M$toZcD4-LXUNp@YnDAtH%iU{U- zIb*(ISn>WErCxTmb6|$`%ZwpW+%0kE&E;w|d#E^hF)EN*@thy#uL}H{fRujM8Nb>Fs&UHJgV&=wtpz5AJ-nmf$ZF zW%4AnC&wj1Mb_$I#(c=O{0LweJ9%5r^}az<_qbagyb6_dX=|X*(gA&MBzN-8R%hi=dfGhL3cF|Hd)>Fo5ITHxyn2)(o5Hk&MGUWJwCj9e zj}e1c7W5`Dhj7pXo4=M0hu7Fz0relw2V@<1gH@7i!y51pD+%ubR#zu6s&N8mb+tJa;+qs0AK% zU9dGF03~b>D;cgq{p74%0lLkjWXH0nQ8d|=5W4Mo0Mv#vC^sAemZBJD3m;TcJj10* zo&G+Wc0LR?QBPtIuO82a# z|AMX#DM(@`P;0!-TN#SR_k7N2*yIWT^%*( z;?PFBMZJBtj66Xh;)=JG0~q*MpC!66yiv45!#&lxR`5M4u>{JUso$4_w?tVY4y<2` z-LT9GdewN;G=}c{qUu=i=MR?6`2>Vw2eOm}(Bz#~3^k)E zKsg+%Eij1Kj|y&ve0*Aqq27!hfAox~KKXU7LF@_%Hav<^ljm{{0rn#2&tJTX<+0tg z{ai33%~P3sH6Q_}(`QiQBte)%P=l~Ed91@tBq*KIXaleziUSSa8Ar9jE2V=W1D(2V z9?+Zr}G>su!M3Qu*PM zVslLDo@k8kZP9gl-nL;M;L$8%&^;|oOW&CHS!=90K<9keNncn%=&YMT+4b`lLOUq~ zM`p>3#E}!Vr;W>lqH*`iUh_}(Lz4_@sMR$hgI5xio4gRPJ&*|hL7>hIXuA`Y;*@Ge59Vqi1^Z8)HLaJ`a00_@?ZKE7F6LY;=-6u>@mEW z)M_#+1Y5$f(%-;~yv5Z#K^cYT6wC+xIN2b(%$+tHbbFzy6zrsLohtLOQ(V6V;iPhS zIK%C`^{KPjUF5l9KiW&{jTV<_Ve>CdJ+4`gPgnOVkmzPbc)1iG$9=!K>DsL=XU;xe z$BSXDjaKl5q08oGbvjX9no2b5vy?|`W?hyltketKA;q_?C(^k6pJVDS8bAG+A^%1E zYy8I@{3GzHMf+!N+B>S)*iVGw^b<;iA(gaAEEYbj3*1f zn37B|`@~}GZr;c)nsx(g(QZ6b-V`()&s!Yzi%cE=Nw|B=_@$wLWKxZ3PsGjG8nyL_ z?gyox&Tj@;Ml&}by}tCB`g~_PH*M>7)DOZ*UhmSb!Ke}C8lgG$ISVTs=x~X!iP@ad zQuU7nl0@?tAL0WU2_A~K5~vV%E%|A_V9wn8$z8W^UfL7F%bwr7yxH|N`D++5?$vsk zas*|}v*vPduG9&w`Sn2{K;i^1j6Kc3!^+@_sxe3&9ND1fG?PH>h*E z^kx6Db>m6w)_W)3w%FV3HO~o$&yRV(cX&JimI@+LAzoC$XezXj3hSnd%u+?Ss3`uO z0FlP`X-h`au!S_4ZkpUIO<{|M!^SHS<9B<-t3=1E6~=3H$7{{T>ukjnuyj2lUEhno zFPcs)q#JkBO=jt4TXYgO!D0oi>72md?OGNlXpVav9QSb8N>JTG9w9Q^pbQUUyjvlI zM`8FRqg7FYS}YLX)1*ZPYjUEnx*)e!pe$Dq%`q@R0WJezH#o37sv7hg@En(~cuth7 zWVp{V;)!TI4j4=Tz$t(vEZDgYeUjG=1Oq_m3U$W{;XWMvMk~CXVq(bxh>!tD6gVUr zO(inu(W#j1NLez#N)@b%0*asjKol^Sh&~wt2BM;*xq|IDIE@V^QUu+qE<;%$UH)G? zOo3GapzKZ5bu~skHY4&mSdI+n#)JL2f*JtGL8^cT^#X*F2CP6ySHRjiLM{yO;Gp72 zbh=0wM86{HaW`YyE34o+xG7n77eU}@2*idBly3!%W6_KCC?E@dgOGHC0yAd`?8!xa zCNiOTuniX=#E!t|X8q{SZVbr~Zp)Ix0r+Jhm<8IyPDZ*gg~OOdUP-;J@Hj4{8=Va^ z&z4NdM)NAOWshdbH)MHG1eWXoU=(Bz0EDT`ferxrTH$phK}P_rw*t0{1Abth3!6$e z`kB6eB6n*g8`_rDZ6^&P<=NOX-Kc4TbFg-j@cjW$I}2`K5$Vx@HtxAvKbxy)BybP~ z@X*b-j>$VAooC;Wf4P-(HU_?{6>?3lAiX`^YYufGw1A#maNJ11-yU%JXg-RT2Vnsy z?6e><#JNG(zCs#0PzY&-aG{ym>eoD@L5W0wq!9o_N!&#iD7bcwnv(x{QLv86yw(jr zNxF&(O~=>+_Qe3m?@=wQMb29c{>8;U7Rae9D|W6RsHZr7m0(B)<~b+Tk%1zoJxjh6 zq9#&uQBx(4q%(>N65UupFbb%OiYnLFP02w?b5mrU%L-1QKlGFVUZ75n1La6U=aMgI za0O*isoI>&uy5r+nM&a{$nUN5;tSy4ArQ4|Xp}}J=2$|l5jwOBlx3fKY_-xJ`~SOa z{C`+z9tNxckN`FIV=eXd6=V#He z6`qBnGoewjJ)>YkBb7k|(4z4IQ~(Ur2j~p-Q2rwi7A^;2$bX;N$fEVE5@6a<^02R@jH<+030IzP2E~Nly zbIGg{@FF)G9#W9L}>+s3fNpGNICfZJaHY@Ul9!73z?2oL@mDwpb zH*Z)y#L=^?eFR~dfs+W1`(fkZZ2>-=>a*m)14w*p?{0;C4+1c{Y0G-$ce^R!WB#qo zN*`9PY~R3TH*i92`n$o^66sw6c~(SQ7Fr&QIOPVXp+=2c>Uv3F`+2d z;_R80ef3)z7h*Dx2>{>?Kv`Z!&wmk_9b-6cL_08zRCblkoWfYtQlU#WRJAxQk9_aa zt@AOu0BzV>hA^yq-#Kmhgm1LPE7@G$*sk9e?lDn$7Jt;PtU87EWp|-|=lpVwn$pcx zhj%CG_mZ>sf@b~i5s-ek;Qtbt(nZok>SqpUrKc555axTcI|fc zvw@XxyO^wkf`j|?Lz;|@9~0zuRjiTACTu8%k-+w6mxMQ-g1J@qJPbmPdFdQ8>DDbZ zq-C!F%xDu>z0|1km19(fnyViKKE|@n8@%yNw|R0k)Q3Vld(6zL!3pa&MmPQPI>^<{ zy>Co=l1<7&ujnphnt0BM-`L)KwYpmHo7MI-HvOTI5x7BK(Axuuw{n zc=rV!)*pJvP=zcHr?*YbV}vck>1VhemzJ~YL{0`^1anDhF%&KW+m0piS-{PW_Y zc?}35kP$8z^bU9m)SUQLrFRQ1p(#1$T507Zk5pfL(2w}gxjY)t9YEzumD7JeWz$)^ zcv~NtE;P*D4lwQ z(f0?i$TL4Ujiuy&=A#(JRMB=$Gv_m$F^(s^-9wFkH0@OePSjc@8Iyv)31+zqN+EyE z<~L0!9msiXW@sFV6^+@9e%EqktL`WVBEmU`mVYz0+Yuz3se$|`l!P*V&RQQX6xoC9 zE+zM>t899{cy+cm>X6>H=Ce~lwIpZ5+zTcQEfyU|4>khZRYfo3Faz9 zzbR&bw4b@KaodUTEdSa6wm%lOeU%O8*z_fI;a2hG&Joo|-f5X>I>)?mJ_7OAH$~48 zn;xikINf_l2Xba8+wl)Et;i8VuCw8K5I8`q1(@V4se!x+R9M?0zdz9TlmU`YL~r!@ zvg2HjE|QkJM&>0j={Hd)TUTF6us6OCiV40)Z7n8afiG zrK&S)lYleimJF~0n3nKDn9G;=`h}GNHQQF7)JLRJg@&z9O=z$vkOV=-nW-S$AecqU zs_d*=%D|Q95wWE{H%$iMiqPtoL1Y0 z2DC08{ruOQfuN~*6{Wsh-SLy9G196CAy-#h0pp75f-qtU z)$arexo}7Bj^<{%LPBOU3LWWsp=j<8mwE9XyaAZWx$ynOscoFeo0I$|w_yC3`}HB^ z`t^{`w781;bsQJe_Iwsi3Vg_!C1bha%*H{P%y9U3X@{K$5aFbF>2Z>sQ*v%iP~DoO z>@3Ai!z5GZ4;qzTL*em?Gf zT&(yf^k#WQ$%i~NR>jUgmS^i}_%b=@&V5)HVN$+|6X~RMTKjm~w*_WM1hepcVRZ@2H6FTj>8gC>W0DIuZ|d?;hsc#|`AenZ|0Y1HA~ z9hlfm4j>XcwntJGu1;7o?QlOjDKmBuem;b$Iz^dus}jSCB6AJmA#Y@QXkqJR#`whe zb8lUSYhwCtC%2)3GZ;so8S(e8+y4CD-6$y0IDPU+xODpR+ploIKWVPrgh-8P)t*^M zX@^ijTciyO|JM(!s+@qvo94+5wi^0Eywo_%cm0yXKx{8J48tw9 zlRPgxcV)m|+%9h^uKJTq_+{rqa-U)pYAMe?7p_Yg$~*hspk-hJ>urB;Kh}GFb7!Fe zAVh2`ZZG7jA14h1&=Cf|-btX3GWb&xImRcf$=-OF*4ai6ELndW`i`2MageQX~FvTCxAoF4AW_dGP{Z}a}s)hauKX@##2Sw`{1qS*KE8bhBBGj&Wf8OZr9)0di9ydNC9LF#MD35LCQa~E zwQ&(oazTX|}pH-DYs*Bzn{1XruZk)4sG< z$|_CVdLwoKN7A{=#VpGQ=bzqvQt6iuS92779m^+I`{iTbh$;%H&?_opzUBL?gAYR& zTFFaT5;0!>6@a84(I=66DM!-ty;2_hG4SD!yt`b{%wL?VpCX2-cqWtzwhiu8CfqY; zuNtZ=b>hY7T1}z)C69YP6F=16M>uy9# z$^*>lpqLYp#}5b7*g`>)S5451SiOTOx*e+fd!bM|@pJKGs$q#i?6%KR1BfqXNY5jS6waF z4?%S2)E}lT?zRy|fyECAQ%`dnssFO6(wM5>8I{EM#Iw+@rP^4jQgy*V_(>#3vl8{v zW2K$>%jQ?h^NJwP{msH=F(o{tdNZdf;?MBQMS}A`G1^O3cHba+?~K+3=&)b-21Jf< zFt-@hT42DrMfof?+&}?&W^caHJF@$oiI(VOvPB1Z+Mq@@7Cz(9E@581`!L-Z-k)vf zkT`&Ylct6r@G=V@>SE(V={{rMxv|F54(iEirXJ z9mWbtYV}A@)P+~0`K%!@|BHQFka2f1g+$kI?$jwL<5<3Z{z;k{KKl@v7Zhz-vGDo} zUhQmOr3D?hf^D|XUXP^EHG>lKwq}j!C8Lf8=sH5NMYn(jcY8pI@)jbdJzZepbtKo@ zZP|5rQfW>-x|3a9ndca#qj0ED`>gTTPw3?X52;GSoji*GZSnTYf(ydAjOXUyV$C5H4fy=Q1dc7#Mb_RKdo*W?G!n~s zJEox&2X%1pHHhBR4sI*`WnEwF{ys|`WNVy=IR& zu8<%*^U_bIV_HF(xud7?-!;B3w@L(NynzE;P!NRVkLRYtO6_4k27i*o*jno-GKD=i zS%WV6)|y}3w^hQb=LMf>tVto;c9I~PyurB{m|^WPS17+bXU#{utS7;eLQ0FmbAxT+V<5=mr+vCqp_ev$^ZzX*3{*QO#KhSOZ1>~7!E9NcZ+yLe$ zm*^V7xF>iWx*sB+#{Z-L^Evnlv=;zho&P$tfZDJBJlvf26X%!#aOG~-STOYM|5p6( z#)EKNYU1$#2qT%2D;7YI@uGzyIe_3P*=Gkk2jM*Dl`bGqBeef+`2R(|Dlg_J=TLU+>}@zf9m(x^3l1Be(90Ve z8>4h({7qA)vJQE$X}q8}LWnu9)2?OdM*k0&P33d)6>1J1L#-jL)lL_J-&~g-4Ov~z zZY^p4>x7FKg;TSa@0%uAYrGx_@P+ zrnF^Yw(dNPk#9bdJ4@EhtYV`QPghXG{@x8AP@%%pu1JIU6fZ|1yXS}+GScGEAtj8( zlQD_|@^9v7@FN@1oMNu16Fog*n7wy!?X3c5uZhoA=`2vUvmg+CuKQqq;1wQSr?jsi zttL}Y{`*0~bAN2713CJLUau4#0XUQQQW62B51okQV$Ot7cd9~v`MZ|~YIuw~ql!k{ z;tC~aD{zMp`pQ%{KdLX45YBawy#-Y3!T)r=FL1M@RW(_-jEsCnZTZtOTq+~>h#6QUj=!nFrW z)tk+_FLrt$enYCdav#Z%F@A|dS@E`<@M=~l-DPta$Zk2p8i*yHRF=}V{SYYFJDv=4 zGojHNX^5q02~SvUF@Wv|G)i)Wsn$2Bttz2HTbC8k=+|I6rIG`MEG-Q zJoU$Sog$(47e7iso||{;>xIH0Jzs-2ZqcD|_3O=*h?s~~iBn;ijsI`Uz_o?lmu$A6 zw5Cvu|D!PwV~`wrXEGsuNyea#4^FP}iSi8n)Ai;&HCDme3}9Ae~$H-jOS?NpfHKwD#kY^{0G z#^14VYNtp!jrf7B%$4Axnw^Cx3h5Nvl>sS_%UdVETa4iYwuGH`x)Vy&ot6U&X z72U7I48EFcF&>e0Mx~CW&N`tm#X1&l(*kQ%3wqZ+Y<?f=I0(XRzMF?rAQfL&4q#+qeV{=4xRD?S&n#err;}Sp6`p5R zSD1`eG+0&7ey!!M(wb2=xm#J}d7UoiTt^S|ehog{Yc3;ykx|o*R4S?7o;!yK5g}O;+(&kyqxQp?8?0m=DbGqntiVBZl{fIhQD-SfEcDdW#-9o$d%5r*ViGRDf=>q=Uy6&H zsIhg9s-2dl1D7R-MwuvnEQ{5sEgv(6(Ft7N-=vKPogEy>XOeFS7JGjm+wOVB;w%pv zVhuC5`93wg;z}MY1*z<-ln^SzRPCvTq@^Ja=ZB7?YfRvu`?RRT@N61tM|>j172r)b zS2UloZ;40`_bS#^V5rB3zDNRMG>ULs&WQ-B=pkzGZ09Nz)HBSd085(ICx>fE;5)rt zWe!)Lk{NH=9vST8@O^L6AnbhjOCQ-~uH&}HAzTI@8X!x*%6bJ!IqvGa_`(oBV6AeZ z&y$}R15upxilX1i z!ow5xOM2mbW@Ng7Gv(J8w{NTdkm|vU=8`g+q-G7tgo0afUEpJOEjB_&uDmKSAZ1)Y zhZDmTmR?ZcbVd&g(f4(<7Jo9BLkx&bePJd4k1`nS0lA$2Rb7x8zQ?I}jL4F%`i=BG zU)(JhiRfRhunKgx1No^)BKw6#6aG24v7XR^!za?5qUD1+Mo6V{7N{!`1i?TD3CItY zsrpUZbq&zEq#a#FJyO?4YMD-SC|?BZJT6A0&czwCpOZ^TX;(O2c?Cog^Xx=2G+V5r zb40#lFglh_Io0C=Ty=zxN$Hq43UB3#l7M!{AspjtijVgT<&(LW64d=0wYkL+O=N}EgfWIQb15*6JNtlIv`N()5@d$VvLEfu^1 z%GlH7zJ!)bHvp9ws8FX(M!#sIlT=pC*70qTEO__|nc{O}|)J2V84dh+pn8 z7N5g<7jL|Y7mD;h6+H(mpiSK*?-o~#0cGUHlANOJ@=`uW*G(J3_;RFGx8j2*<){fD%$u1RC)X#8{gfL17)w=dwq!9Ii6ebexmz zdwGqoaEgrqKV}K6gz?FWUP7-Eqw2Dk?v7pLqyO~cE3MTGztT@5F>i>;-n;8~xDj6S z#s$<-MGVMcwy?`f(rO<0rI+(wol^I19uRNMSB!=BLw#;@xtGyCaVgcr|H6+9xWBym zj_><|3}HxY{m9o>sVNK4*5mg@Qp@Z+KapOWnVg&X`&ovuf`ZPTI9AOlcM+UFe- zz@M`V{E7Lzq?!wR15ju_#|w!vz$czz8$T4e&0po`fVUOlW1nm5Upd6kfy-8kf*+=4 z>*}J=`t)BlYD=LOMULX5vg@Xg9u0Zbs&h9c{?#9TegNXGz{>X)+w@cqkkAyxfx^&4 z({pKu%StIpH%+k|hGmr@5W_-eZWCtDILnu*UqL|Eqp}{dvFFr=qV%{_SZJi8&5sIJ zU});)A1H~C>p4C(8UG9R)VT#WPUJ>4w`Ya-64d!W=Ag9)NU8$+c++c(I{ zFRq2EeoZ)vIA~(#GBPc-sy^pBmCn~&u(pBT2Qw+(><;P1gH-msor}O2*w*lbAAih) zXh?7fuYG+J<$@d10A=6SFv~~xl8l@f0rQ&aRS9C&To8uj=N+UL8yy~at6Zv{4950Q z^%FN}HxhU@?;00LRS+6SmH2CMz8;;g@Y0Y}tqh1Ijfq|_Q4U1xCNhp3vfOMLKom~2 zs?3KH91O1QJS{4RKcW|FD$_NckIz)+dd(eKL=e*&aYkFQX;XPj$?oa~v%Q=BItvnH;5?zWw`-4v$=UCW*bgY%tEJS- zeUBKtm(AZwlQ7^ah?+-_(4$=GT{tvmuUm56u+l}3aEo}=!?Ga9jkIZvi>UX~lv5Yh zsh@a1ThcS7K8Mv@UO6Lqol5hR_-7MqRZDAmG-AKj)>i{nsaAyz{UuJCq%2h7Dcmk} z2&oP>NKSj)+vqs8F+s_krBJun=Gz^+3}$S^^d-KD>$vgDi(tht%%%P7JRf$0)k{Z* zDAzw!UdJ6zbg5&9^3KE6*7Zd0s{(-#amTr5kjTf@O#Y;{x#p#MJ?SL^1BqHil2LX+ zQ3ncOIE@!~Os{v^*l2W>yrQQ>@2XRYiEl>`9G8m4>DE*VzjYuM`w`6KVeozD&^6P< zctOhZ4UC~Bgxp#%Uh%=ZMyl9c`7d-?Sg)hpEZH|gtRyg%ECSrSj}*|p(c44UH}KR9 zY{kv1`c3U3UW?LdQ=GY8_uwoD$n!pY@?H<#5maK&GdxQolx5v{yIY%IgMIrGx&a3_ zWs_4iPa-DWUhfOwEEi_kygsTkdf7?(o!(ny%2LlvZBVPzId-bxGw|qAu_9&1{0q#1 zA1@Kte3w?^D)87_iq^uPdfPqvuAi6I$Ow-ZKW0-VJe~G=nWN_v{|x!chWkN}_VB{! zpo&4C^@L+iMhB75%<)lkm^y>=$6z7CiQ7i6*j|YVD;PtMRFt_IHh7dp!NBv{n5+?* zKdj(zxiij(mFp27KDz)aI4_&xc~|#UaXUG;Xn=P;XOR>!6oWdQY8vk|z!qA-d4?^H z8-9quAt65uIRRzjbD$n=tryT7X#M`L9)f*pOJjcJ-q6lFm=ajQ|5hDsK z3yEMzzA z-s)y1Aq5G1tO}`|ja<$!xuNjJ5s2^JJ#TxSc24_txqpG?mekLL`QpmWTzQkKvTy6m z#Z*2%sHO}&SbRlUZHWwgffcF4UwE3s;9L^2Lh+)*9{g^iWE3J8wtVZHge|UFmtGs; zXu%xDP3`x4WiQC4w~TzPZnC>R@VJ9P`SffNWjVh|N$5M3h7ESPG2W38kqbfgX!>h~ z#<7{%!4w}7CMP*Ohjby1`bZla4s$a6NpgalFaP>KDD->i!9R#{4iJZBz!u7Xp;MI@ z6#*;4a$>W!A^IJ|Y>|yIMyNLg(RbBuv`%U}6}#UijfSUCP;tj$&CYqWAsREoR{ zQyPEEVJe5vS+PK`{$t2$=wj<*9?Q7MrwwTTQL_#YDmt7G2g3|EtG*W_PQ*af4#r3G z$|=HG13jN3=EYYw<77KKIVh~DmS^GR+lSgv?+LHf+}6g|W=nvxknq72)U||W-s#@i zR`nH}zi=;2yU-$w!%CdlM8QE47<%Tue>bx&+rI?t^JR?KxaZoq2w-e1Rz%9=AJ3j_ z1_?KNcZy|BD@_t2;;BDcSEPo(?RM)D2oY7n$?*I+gf9rR5qf-Z=}?OQWiUVYnoB4S^p(%~6(oJZc8a@B`?wRv! zj@07Dd`)YX&v!?Q6Qdc(skKK%XYdyZeQCmlpX7w$p^r z>w3)NLF4dpDCNa=!LiHtN)W))9Q=pG@jS+DkPLCz6GaonIv`sSGOez0`N1Xkex2Eu zK(y2_m^{ij1)fmXO^K)xe!bA!u&~i!@{13$EERYD*~)u?!*g|z56a5O?ee{VNZj_^ zKPvcgsUI_{9rUu9y!5=Ua)%YwwOl1M5oZ4ZnJw@vlsa}fULA}aThws~xcZb3nU|hT z;rnZvUz_!3oK&Xz0Ja) zfFos}ZO>968lKxyvpmyK_lqxO@iRaCCK06b311ttEy`$W?n2aEJg%9&O}*Rm*>AVU zUT3aUili zf(X%Ebe`kOd2v^E)s-Tx>9*l*=*@8y2bW!H`JI}_Lr1Ol`h|ZOBm9Kd1dNK`pgBpybsf zTSl8vu5?SI1hZ-3fA(}^h;;8hDCEYH;ZP!^AcR|jbpE7{ajPIOJ7G>~UjlV#EDZ6n zSxyZU>@-PxQK1?}Bwi}qMz)&VK$@n6#m#sN+w>MA4=`5m)b!~r9aOR<5vT(5o0)ng zL%*T&Jm0dbm(3a4DI?pJf48Wd$6ab39@Ests&(_m#fk@j-Tn@)Rr$iUJmIgtZx*V9 zdIjm{J^9;O0_BaKUo8K?Ka=jVFK_sG9vjoP_1MME$w_o1-9s{&Qrl+k&dERaZFyOX z#A*n%V|GDEEec%{ei7^zGr0C?yqT%jIG!cRue@-rtl~Rs+N&OL%Qr6@f7V!`J97^n zPc1hUDW2(y9v+02Tki;?PI&}3i16PbWF*eiUM8<4*zzVJXI??1CX3xP-*k~bdW}>Y zH;PW^1JW>34XK;5GFW50e#jYNq3M&}`qSs=)!8H60`23`{Mbcq4Tqobpl?}CGk;$pzEbVAi-kv|ueB94de zZNP19iFq|!{D|*|HVVe(x`C>SWIQuu)&r|@mxrczaq%u4Kp;eRS}M>P>#-v~r&7}V zS86 NSwTa-TGsN*{{nmy@fZLA literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.gif b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.gif new file mode 100644 index 0000000000000000000000000000000000000000..f2a6208a84c31c09c6448e495fbd4ca769ce833e GIT binary patch literal 100747 zcmWifc{mgPAHZja&Dd;ib8YV1oFT_H_t_jtLhj@yA*D8RpL0}l-^mq1D%IRa$WCk@P-}8L_c>nu(p7-%QulMV1VP&qX=e+>3X8Q?I2gm^c>HvT~6+i?4oNohI z05)7On@uU3F92v33?u_UF<^**D+GgwBn(5S5O!fR4jxMmLkJvY0heTh%K?YYFj z2#4#)_*Rq%8Fk`3${minf<&vu@d|SAD!A}TI`MOn_(N|Bpj8DWxCA|ggm{R;XjS1$ zf*3As3|dr#ms8~OfGC%;7^ksV2p?7xiFGZ;iOETFNk}63rS!$6*~O)yTGAZKvQqrA zQTOD;NpiX#a{kJ4L89_pd;(YbZ{4|CA@|64y z@&18T0cM^T!s>z|8-mFOp$-9|?kQnpr!e>b-i0X7s7nN!=o31Z!(%RAZI2Bph`Znt zm+5?kdNY1bJt6oa#mk&(YMPSOooa5HzM_@oXPZ?#o}F5dbNUSZ;$`}koAm2(`Hoik zw_X%ByB5AOyX||vsP0WM{d#HLqtdZ}vYV~tw=*lkJu4oCR^7T?L(8b^iMbmW-cZ`! zRClMNNnL6zjt>>+3hxk6*06EF6o|-ptv_gh)2iP{o7T0002)7Z?HuKmf}B#en~p z2>`|dq{Bol+ba8LFkVIX(YC6ARFsr;sbzchP^OS((DG<|%}6fRBtz7yqjs!7-l@@j ztfTJ5ZM^Szsnvt}$r9a5pO(iS+cGotj%Fq>F4F>NE$MtLrtjX}l8W9Ao(lbIFi z*>yHf*^nY!(&-P|h1xK7F?mg{$c=5O-SX$IeucIvalpmrH-0k(3`$~J%=mTxdVL;g z6>ZV-HCQY1$vA8HB7iG1u%=n;N%YX3j)QLR(f)>M@x~|>vKV=BJoe|mghl+0{qk-* zYfk6msL&g9*B|y>F=*WW#$?Tjg=O8S%`_IfxVvsu{B9q5U+lz>TG|TY1)42UyQ@;& z%>`vHznXL^^fb51^`v||;|_Wq87;RU$t|(n^AU*`Y}Tm~}j_ouM6%!;(&0(wdFot7zOhF?Q?Gg^F1_bdGk_w8klI zN3H#U(o3(?O>o;-Co8$#X4=RVUPDE>vLdwl#k$)8k3Zf7LmK5OuFnQa<>()<7V3%R z=9o`K+k5%x3P<>$A|Bo}$y4Ih4uL!Eqq3QEE`LlVlX*CY3sT{VbYco&-mMA9A-(6A z!%LXQ4-4_Scf7+*Nt97HQkT>a7vwZehV6N`Luq@pYJr@_?i z0&D)@{i~>cxaLHwi7pdsd%^&|q56=Zy9zDn;~<7UJA^j?;lcAJ<8W=)lVzO0x^0Ku z7V{kh9{OcPg3-L>*-gURm_MOC>p@*vojZy%W;MGx&EZcKm!I^*Ut?^^D3aC;SPC1Q zHS&OD**?yQmX{uU^CiRX2l&>GCdUBqqz3f0b;yb~8r^%~g4R-Io#o8u^={FAb9w7& z?E9_1DyZ`oq7Dz=cs1GK2RTn%yNt>V^cCcgJ)dMzIY(k$XqiBGe7I$KRt@^r;r6^On!wd%>%=F@0Uwh0@k~H#e>3d3!rG zoj=JubjLyXYdu?V+&bbrh^80CX6dks6?ud2ukafgHP=7LyAV?HAkmBM!iE&LWSg1M z5gCl5Fhz#8CB#!IIj@)kxdVf3499Vqwh< zKFeFkYUE`_imoBF#!0vzY+MG-t7lcQU@fu(E8Q0CbXyi^DhC;ZYr!^XjrY!@%+HQH zRkx%f(Nxvn)C>*4D*Oy84c1Y~eYs<(Uu1IDE&icZJ4oP^>wxyWsc{DCv}3YvkmK!m=t22p<#!o-3UM0tY!#uzv6?ZD-{!Q5O+%6nTH_`^Clx_5RGHo( z^Kk>pPBUPctp4a@&VI0IVXCCAJxAjp`21f=&Z#2r_9Nzi-wZm_<28uatwvcoB^`xc z8jyIyr12ET(~YKTMDFaF=q*(lB(r)1x;yH=e4UcZc$%Oo{FP~fjELZpoxv6SMuDHS z;d6YV@h~;70VB)EBuUGc5ZxXisx2UOeD}cA6adnL$CE2$qAz9mH~S8p$jgoyNO~)8 zj?rr5jFUgZF>$%o()b)i!HX)&fYBEdnU0A}3hLv+5P!oXI!G?AFJXQdx0IKCDjpQU zinw}8ips5WL+9HZ*Gy<5zK3cHZt z(sk4xdDt!cm~b@QG-#;tXsF?0u_w&qzXAlt^B48hnz4(5@hIn_d$Y{|;Z8KEuTIIxE%E?|i0aCK$Apk0uqzlvY0-szUr@uOlBVG}4 zY2Vut(3e{lg|NyFMaHYC;g(VhGUv6&Hy;aTJ)v||&IH)Munp;+?d_UlUU~6$9HrnH zbq#nn*nNfH{9j9#_;JsOp?w0fs`}jHdqUZ8(;048X%cq=VdTBD*t`94{;Ia?$)h+- zo@DO?q>Nyp{%-HE;ncB27*fFKnPn1xH+{@V6_1XZPWE$MN4fZ1CBnkv21V5GE{&QX zO84d%$nPVU^@$qexMh(;!fvgY`j$!Em8lPmZko36Ut=-Ep>b?p{jiD$j$DbH*DOz)%|EV?bZ)7(BLvD!O1EavvCH`3FE zwH#t51Z3%Ds6z+vQ;}FT8Htzxw%g~9{}valr7e8DJ|q#se^t&>qN!>~Qu(7sfdEJF zo=rLh`l1S4aqBY3A>pAlK`suNg%X%UE`fYM;` zUX;Fk%sOx4JBogQ6j(J`i18g(Hi*(VLTYVe%-^_LdqHT<*H?xuUTHKjl8?7?GwS>C+HH0x9F8o4 zv1BrL9u|`|oEEZ?MqfBr;0nGOcq7h)V=_@(fX+p70S65jJ0@vi=D;q=muqG$ECj&T zc%2&{`#dIfb1tYmP6qcd6-12d$8x>!(+M;In@xk>V=sJkvS8(F+o6=dGvV?35Wwp| znD^Bxl9aqQM_eGyqb+;IGU^WiZh?hVdkM#-WdqwubAs0iGG`d_S=L3UPYbccSn8VK zncxkMq8@Xmt7Nfd`mccWzej0chg^pS?Pqkys>Dpc_4Ej#JRZHg5S&$7AWF%F`#XhH zupfSi`mZ%XBiamBF2q3VkrSw}-AdV)3#sq!qU4xd;|$4XZQNhUr~6rv?5^KWa`Pdl zra8*U$UVBRf3gU0rodRZ(B#oMj&`5Fbhvn$O7dRbsY)1R#8{WX9y!aAfr5{tIK$fn zICL?%S!8+}u$*jvqu}O8Cg&+SYz==2Kg|A#!Re%t4_wW|D&+g!g#2kk8s0(`KSXrW zIjYFWZvYNoI>>E|%l+d`uSe(iQ1ClsAy~je7{XiM|CaUsTj+CJXZ4T zUJ<6QKvgH8=4^4S7^HP^9}x>7z0BXDE0TYntmjoipcBArZ^9Og_!G zSiZYhK5_w!{04MtL(JgwrR0DHSgylqZV{{e#?=J;CUgQT{)X(q+KP+7XuXLHs7Q|Lzs_w^tnhsz}Mp8v#Hi%_S11 zxuUC(i*%Ttrn`o9jgB>Yp9XiswD4@F*OIB!0)fQZ>pCgLhP&nsDb_)2RSmw327!3T$a^b|T6_9(cZz zyA^B5eGq0kk4lz7&1zPsZn>68gS8?+1J>YIn=)e-;OPwUVD%Po-ZlTo7DT&17K7e+ zMqqYM7sO_2>qwZQWPnKB?{%XgWA9aJ!QGUwjDiTnpxHbD3$! zbbSj(vmLT(`s!1QQd0-~X8Ue_iyF%`6;{Cgu&Bx4?E|jV4iFj~JPm!(X4M|gM^G|~ z-bU^66jbrG8{y1Uqg!%bFt8n57y0 zR0rL`ip|vKE&9S+WNbvI6YgQK4ZjDTlh3)EBGMCUrh?IBkNE5tb{iz*-!nSd2Dt-H?Qsi;<$;Y+l9@k%ee5OxDivT+4cq~KXxrSE# zuFrc7r&e5p%DIY~qdFM!J<-NL;ah#e5aH4NcCst8`bNi-?r*66;71ZOy$jXA)?m$8 zK5+LFOLexV?-jw)D7D{`{3EQZPn3tAzI&poP}Tc1_~~foZM0{Mr(NWnN8~yy(=iaMS#_vDq>y^j~uU^OL=d3@O;1C9q zD0TFfAzjtSk)<-qdmroZ?mS<3@|&i^;F-&P5n!0gBWeI%R* z5?p>F=ic{4WYE|fT3*RfJdIqL=J=chg*T(0IQ*AueJWM{{a#!WXQIP!WGFgHFwn~h zFyv^feqMCQ&K+${LjHXq;2bh^qkl-I8Fk8bSQ$Mc(L+9qh4c03I+BOZxbsHu^d3G! zz9Dn?>gL+E4<}5Zs4RogW&r?u z+eR^O#sq&Ds&F5_<4|2`%ad3*4A&li@MqMgciewRwspdjl^D~Ns#jb3LV9)VelKc9 zo4b}$-3{lj7M(ywPK@=smD+X%y%`FGOf=h$Elu$3MvYA~b^WWNRi$rS!Pj@vO?gSxw4Sk0zB)*rB{fgCCtmU z%sWkc``Q`bGh7f8TZ;6kdwXpegB~5(Q}#!*H32S;z^pF;vNt0VM*!R<{YC2xg!>)D z0xRJjLKad|32n#dG%=9&ig8o}gv#w0}m-8xpq{!M-2 zk{hjr-6U`hF+6cb@8Vu8eieIP%RRTT zl?>*}uSuH~FK93wvCEL+=996W+L+~C51QIy9&bn?83q){bv$<`1?tMYpvS^*9)xcC zQ#aL~ZJLr(#+e-7rjgg%5Fhr~cMf;dy%qc#8ve1;V7dXWg$0imnVHAJ>KAqiqmI!% z4o3t;#yprvcBKTGUgr&ws@vW9hd8UXyLo*#r26v~Gk`PLrt!rpLaqgZF^Uy_r8jM1-}d!W1;lzu#jGW#_Ygz zbU0&uUM1KF=IovEV5<5u}g{J%P2_{>^oU}PRdY^wV71bnegJh)zqoK{0V=@ zD)!cHoBgf+b}WO@`e702=YGNbf+K;fc~i<;UrBKqu)%P*4BU{*Bk(07CPyqEN} z5GL1ZbViscDmYTyEa(zYCV>{QbtDuejYd;H+38oCrlDl4Wi_HVyX%#t@eH@t%B_oqusLZZxo11jcL zC{0TC`aJungip~j4y`bH9H2;@;o<@eq)2rM6 zUKJ0_NRLmm8zvSyn(a=NcX3we*nnHydRLy_fJ%7&jXT(!tgxu?JdXeIWrcPo(Rci@ zuYYmG@_1UQ80pAS8z%{L*kkjP;jBNqefRpO{SV?d{>}unJs*^^sj!S9;kj|B-{!@7 zVCiWF7Y#)+{`VJz*WBQf^63n#)`Wp88%;R*H0=jQ?n!oQhCC{iy~ceXu4a(Yz#r^L zCqi+xCgwrYx-cn`Gg0W_;%i(gX;_$*x!8^6zS<0RUCC2-lXd1R2lQMtX63)%3WDFo zMg`W3$ka;tSeE98?DfGSqpeRyxe`rYkmwE{SQ7Z5jZ0&&On`;~&eY3SVxj(IfeH7b z^asnY@z~T8-qN5AhV9%k--%P{f%B(0_KP1(owRu@Z9!uQ@r_$4JuQT3YR^a8onDa! zIy+eL(<^+iXF*aM*7_eUN_-}V$Is6=^G=_;gy=XI{v2|`J#s|m;WGAn@mC?Ghrci0 z@;>mECpZ-6_n%3Y?qDz0KV+WaCXRZcdpUrM(54ck!G%f5kUtUch@Z*=r9Lkw$C8xv zwL{$WO&Y7K(kqn{^RgzeFIdejI!F88 zU?qNcLSJswYpa?J%5xJ}@02qcdh3Twu4vX$Lt`MR?iQk30hjRS`|YfJ(9lhCjystR zLdtno1HT`<_49q*b0?qs&tyX|vvN|zqv8`O7;1KKuscOTI^R7r0O zs+#|3_r@w3Gz|FbY=3ls zE8#9~{-;O+pBucGiqW*@sS{t=!9#^KO{eQbjizF#TpAMt)a>Z%kJjLVjdCV&*XHFV zVaC(xo5LHo!~Y#IQ`P<*6)$y;NsiQwE-87uTOCLi^&+Nb4|l5+LPiA+m?kd8bjjY) z4}#Av2ZW{zo_@Lf_3G<&*l`fh@T0>^Ry=0f%;10t6fKgZ1ke-BsuQ302%)I(kpAgb zW|Alv$M=yiD75ujY(MYiwQWt%UESN|je9023*CO8ibipu>0Kqhjq;z2k-m@U)kHtK z`{Fd#1hd6V(W|Y7-j5ZxJ{v?bRDS9CCii-_&l%gNhdJMfYbg*mxVjGQab*VjW3hui~T@ z&?xK2CjN@2A6dI}M;UBazqFiMV2_y}K!>}gQ$DRCo&EZS*L4TKO#yO4;;MP7$mXi8 zZ3FCU0LtuwscaTHQ^~dx@tZYjE^B~8hApom9!IAtYxHq>vF9mvcFL#*&ps@MRdEKp znrL-XVFuAvaL}BEHe5Y3vXo4B(;9XBkE5Dyv)y=ir4O@(%Q?BdXK?dcfY#kB5L(+e ztfWwYdhVSGC1*1U27@R&nupd0ua@nXUNBsjBqw6DQj(|H6%|)G!tfv@QYIJHdS@~; z<{Lt^T^{|iEjP$n5eyiuT-!L@+mADHm%oS-BIFaIM=_;G6%Ob z&NQpe8QgsGmOZx7E-aq6A?;7j2Ow0f%%`BmC_(8%;%$fKsOVHHj{(P$-}5ciTrE!< zl}^3=?ewg#>rysbDa-G`EB~6Q54;#VB6FsHHgS!+E%9=Y{F^1G@BoLHR@2a+(@)%9 zKepf?7M;>86zCMRtrA^qlRNm4ml?5KBbq}enIxg0{;0cR(*$t&xKolS?1T6rnO$MkIDSgL0V18F?hY^YfxzXn4un;z6R=d~G`XT4e5xqjiZNd#PHZ5fXMuH4-bZ zp;2c%{JPg|SQ2?ec7lN}_)QY~v2B68bLXzk&bsi1A@`*+PLGe6!QSoA4-uJHbJt~K zmA-!&(eaApw#*_v-MOrGZS%zgRUx51y@@^yJul~jrwQt;=1Z4`V2_=5oBaW&xzn}O zkv9$p(6XLijSE?SEBS4TL|$g^@^_Qm*Cijq|9lB20+g9TFOS4Ownd^kt5+4}ViQA{ zPzA+8KQKLS& z-b!$L!B!p}eEDgx=g;^qB7+T8N(K+@)QQ(N0Lwey8e?3;Wk^nJh`clGT`cQw>1Axr_Tx-a`9yE zyPv~9g}OTTQgU%ny-F%)7#XC&S8O24@w2DQqaeG$du4kO&f(06D0nNf`TFGO3$@)) z12V9&5bk>yQ%EE_6}{4Fs~^po(7KxApemmFT)hmCUb%Nsd-xN9$0Pv|DX zBk*4ze05(x_;Dqr0vXjIvH5ZRR`>V%cl1PwWvnjh>ibC5u+DFyU;TofaK01&`KW;S zQ9c5Q^2s?&deFN)%Wm*U@cy?bUhlorCwlLnejfk&;dOU?F&ObxY7k;N*~cVDZj z0asb6?;hMg4v*-#xi<AI? z{@ugoLU{Hg_qFF^KcA}IYx!&Nr-kGB@5$tUzlV&EzdRiK^ERDt`-a88Rwx6&$6)j0 z=68kMV6v0RavM0*e7|8So&a_xeBkB&7051Wlj_3+`Fy@5S)>mH_o4Xu(9(T8T7A5x zeTQk9mQ{rF=ZMDxIs(fmA=^GoXP?MmpXhv_*hZiDVV?xJAIsN|lkS()>X$O@mv-)# z@#~k3?w3pImoMyBsO?wm>{kL4(bHg=2dS#fsiMUIo9$H9-qcV6L<29E_L=5BO=l@7 z)J4qX^SVMJx1n(h$?BE5wL(HSw)<~1K({{U+#Ue>d8J0v*^RJ3cE#Hq+qCPhsb0UI zhvk(zYlw+ZdsMEesX61t-3D|z#n9V>U6(|gamEK}0Ci~-P16AZzjSi6NkLUviz~$Z zvx#w5vWV9ZHZM19Az7eN+B}W@at~C*ru*i?kf*ZQ;Ah(IL8>dD$Xzto>hFL1Rd$(7 zUgbe^F$1ddHu#ifY8Vr2Z%GqrPl~UE7{ii7wxMS&O={&6d8cbH7np~uD|ir~-h^bI zh2+}BDysU3{dSUbQIZIG@NQ9JL|Y2EGWkkF3az+|qb)hU4SG7zBI=F>YuN!<)|VN& zGaSw}68ZOeY?j4av=x|VNEDUg>sslUH5_Fy674>cF_@m;Ea^raT0{dC+JJW3qhWwi zJE0`Y`5^_S*?D(b#9p%feSvi`+C$5T%guDwl4c~^Ls3XI8bfu=--4nC$_%K6Q1&^6HRQXQke<5N&NVp&%&B~WVYFJ>G7aM zDOa|r5)K?k(z6C&PUVAJ=}96B86tZ*_)=XQ9&#xH?5%zqw3-rKB%On`9Wb>GNbDY1 zel%lh_uK&Sbi=0B30Qa1w)n-#SITy@X`PGf4|nw@hdCeTT>`RO;@<2XKMBe^^ zGY9v?sUAK9e#@zyiIYdo&vqG9Re9@t{5@4&U?v`CK>-04r;*=t;!UX9y50QS_BeoT zUv%&1PI7Oc9b2*;R~f1?-4L#A%gI09&NutIu_PK-mQU}o>PZ~6VvhxY#f6|33A!H( zpt?+Icu%UTsL7cZHm4g@?uu_#AV35l%%hVg&sX=|b z;^b8CBDJ{z_D~9~1@-#0jEjiftV}jVHepu2%+ar5R%y~PWOLT~>AaPg<|j!fO*1D_ zw)6F}%IJ3P9EzjDt5fmGApWA{=%VD9Jry6bGpy78rvnX!1v+5rHxo}!+x{AJ)qks| zx|8~298wXi8FKVSQ$_8v?rXoNpkKk0388ZtVy}1B9pbMpq?Ng1L}x2rX}?Ra%i*AR z7A9ib02eBi&J|^)(DQuc6%2%c9`sa82FO4teXb!j3MCij)$l>MC4$MWi>-^-O*N&r z-yh=SbY%}*fM7nSSfO}-HNkIGLa&mcK?{U{MlKC`8V0}?HC-AtlRqI1{?~Y_#qez> zL^tgPuzn)R){@=pcfAe%T&G#e{a0?Sli>RhT|q23kbcj0)V<@h`^2$Znh*411Nh>2 z(uXU{QEAI#hDj#^g%j59^7_bDoffP%^k5BZ)39{6#xA#JM4hH9bn&M9_#`$eE;R_7 zq%D-9MW#-Rt;}kJUio{xLA=x6W;0Onlyd~u#f#qTaY8R;h~rb;T{9QTJhpD0sxfn` zn*^<1bi>6hHIywiK3!_=a-aI{-qxjb3UzL-Yk6pLd3ds&Jv--S+k3>|`*4bzM@Fi) zd{?+`(vRfj&6X9*39Fh<&s&NBCJU)PM`f?+KvcbE?06zcNZ!DemS?FPs_1n|GUG$` zyN}-&0l(h29xvTm@LKY3E;TEUZ(wpxF|m*(8J9ZtE^g@+D0v%bu;&^SM|=F6TSf>H z6_=C`2d0^(OOC>2rrm6(^S}K9v-0(%jdXpnit7-42}`;}t!3I33P;VwRMEs9(owSA z9>}*LH8_x2YY7Y0O^O+17v4`Xf(Ygk*u#nvNk{TNSJ!3J*7c0w+f*pAh(lQ@)dws5 zVhF5j4%L&*jK{A_So`u+>+rOLqAl00pZUpmU4AkBw(esu>wQj0`>zEXSjelGGOv>iYt8)3@;+lJU0RmMw zQFAgu?BOb~YmPRO_~h_ypTKvU7ytR$4yXSr^ikA-Dh;nSFRrP+=E27VSetF?*!!jp zLUp=pI>h{KT(-WU+*t1)W!`x0qgoI0fb%LafYdl~kA)5UXBWPy4SbIHkF6+)6mc2*M_VDc&N`TH=OQm&W#6RuWVFo(=4}Ul@V1f-2zp!f z%D1Sc`U~kQ(TATeh$&8gZqSU1�`)&iH?wyTj{{0kXk4e+23>Zz%;0DOFd;4l zv6&LsqtN{heJL*ZmrYu5L}Fwx#n07mGUl^h1Dz=UxwD8S7)K=w<*e!EbfuJaZ-vau z3N@ozZyxQirt7IQo*TIrVR`MQy>Xu!biTZG$!W_GeALE19pk`*{i0*a)nf$XkNdKq zljBC9wWxn=2}~=@yHzYSw3wfJc>(fkH0Azo=q@;H${@q3^i$)rpxo)8)*nHsS{&{5 z{2lK?P8ZQ01f)rlKX2^rK4`Bfhtl zczU1fl-&~^%c8;@cgSB@^%2top|b)4lD7mqZv8jwHtM@0or|}5jfUb0kpGsgx_jM< zMZ7nBY1Tzhdj@77i2zy9(#dkpzvw5Tga0!H%5*Pqu-G#Ixh?oI_lAAiG)L$t4HJ>b z=<;E?C?{%qL1n&aG951Iq|)4*GvXtX5r!#|0274|A&Tz{!W&Yr_dpk)ZQWS<*4`dU za$s}VhPqmU4Yz4FeK-s{g%xAFO#x-av#2g;4T}zc}6x~^$(Ac4o`$i1D(b|HmAPZ{v14@e@wtakkZwp zV&U+(DDAV-C(C{)ocQVeJRpY>87cR(?%6&?@HV^H`lywSKq*Ql@U}M{N@z>B<-xHo zp17l6A%tkpsl>McNf{>-sv__HOfr$Q#~3M~K+&U+mic_TMSy`nOr|aIyUeW``9xK0 zk~Jl%W{Io#;g!;_IVZ(T8h2m0jnevOe+=%YSh~_o<>d_mfz`Q(L3j5NM9z)TIIV_^ zL|pgh5?Jk-ctfw>New9*^1!l-IW^cL-KO99ZOLh@%$8HXYcKrHh-!|spjRjYPg&$N zRU|dD^wK24KlETmKf<%HNoPk>36XzVFU0#A#|boZB(vCKFCL|y|FeHRUaKK4=1N)m z?Xto%Se7qynsRL{_DJYdwqzUSs@2~*wb6YBReOP5+bMV8acRQyIByO`k;xydS3iIA zeT+?|7S89wKEQxC1&`KG+`elBd~fGiki%Dif=D4S~#}lL5v5YO(0dz{FTk8kUpraBCQ`%muQXMnWq%Ufu@zDg#w;Uvs<>d9Tf{Itv{a4zhPG_Ll z6brUSI___uZr}^E^eFrdukbEK$c|vjRsmtNxV! zwksx1NeZv-I(!II3BLHgR_eCNGoITy7z~a>syXzDet=DG^EU)$;qC{U1(Km8*X)p! z+(_A@wWIiETi%Ctr|zmMHI_Hg&X2PFx%10!e07O;Ycz5w{nMAV^fa#rYB#;RIz!jZ zU4QPzJ!n7gDOglCnnd^`nH-Ds(7$}?@W;7`((G7lB8OrRmWI$j!X}}ub#ck->2x!> z^4d9sLTRn~Fu203gU?c})Zvt2T2@t(w^|nIlzjX=8#L{4RWb*-f(vy&k?$;Pe;<48J?p$LUwNWOtDa3+p;*)h>N0VL{y)xDI zyn*eyw?gnLa$50qS_O?-UqI-&BSW%ic5)d>)waryAj!9`J*kRJRQV#^ktnzR_j>_d z9D*KH+<`qvml&TXnOFR$sBTv#KO2CXduO|rx^mwOAZ0SjmRQu(nvUQL2 z8Y`2Y;Y`sk3o>4$EPZ_wxeeR+i}fWjzc03`4ePE8Dekqg3oM4zK*b~I#Mj{N38z!a z0d#)FwmM{qr=?_m4?SJJanz^liO zQY~GYv<~Jwm(@NDF}V_v{2%4jnzK83tToTuSUG0QTDWxCFoz;vjg~bw7}A-UPE)&L z05dsdjOO0qK`I{gO&IRDJ6Z6bZk`mW(DR~B82#VBcVzn$?nt#ueib-N|&^V*<2J5o1Ja>{U-vDWA^VCV7u)ek?9^{T5G zUOG$Y4-}BVgyuhk%&)ji)b6+C2Uovd;*vJlXAMi8+Bv##x1}0>&6|4{LB^~*_Je}aiX)GHA!m}h~DwO z^}?`D`<2SX_!YqNFt*2NF)x%TDRl>u5GZ~VC!G{gAhH7f@C<+HSqp}Bmk zI318D9~fvN+Q^<_uhM42zyq^eMY`2RraFq!0;S6 z^_6-WtX~Qp#<-o-V6MgSC<`^JgCX(s(cyi*=p2Aj1IKJmXb5@0RT@mR#}mQnnLMx4 z+AOUdwG%ho9eMNw1XkN~{^PeX?1{rH%LD)Xb9em3dG8dav~(1}^JIvQvl2c}qq6U6 zaj4=z6Ep7lmxzI~q-G72%wg2Y&`v4QO-qZDvQD|znx#rGA74z3^5k)hZHa!iyah{J zv$sR}YsFgGoiKvkMmN@|{1mc_P*o|owz`2!#|u2`EhyVfy5K%|aX49{vkI9YZ(4O_ zO8d}T_!n~k{kMmlu9IEkjbFOUlw=j${s-!oD9# zKA!Hj6hmbn-ll~ijqdiG1Z6)drNuGF?v7hel>;=J7AK>+ACw;}2bw4?&E$7?)*Gq> zIW;Z4>geujO;8E(ReHNP+uhy$R3+?E)7zDU?uXBgRU&9g%d0#Odxi~FqY9dqH#HtU zno3ZOu2EX~==kvQ>!+$Q51LlKL_K`+?pQT$K!S-X9-4eE#oPjRI0;vhnsX*o`7${yTTTOaty&f60L;w*fKOo_>L6 z5f)vQ5Gk#qW@1slM8kA4(zj=jCF>c6nE#Ke88F$5kJxAugFv;~N>J1hgAhbdGA~`@ zYhi%ncz9@r(Ul;st&ee@XV;~h8CimDRIoI~FB$Iz;{dQF^E;Lbbb7HXMeL;yC~qxy zU^zfS43I#?me9$-VKE^Bhtb{y|2CUoPoSBS>}t{>xe^H5W*|ELR-TaruzALGh<4&B z7sS)paPJ6Xod%Hqs1xM8xMsa(%ehf`VK%H3&`m9Z?LUkLbdv4QNJpGc+A4f7m zrSL^CVCGB!m#ngQ>OdomHuMAyq!fLV=o|p zrP!7%@Vs|OU;Z+e{vJhzfSbG(wgA*8uit*L3RI%gHo4y)sWvlmtqCNN7*sNsABEE= zF7e?zogPU^hL79YJIt3=g*p;F5sxN%PQ`q?4^Ij7^ zFzaKJrhxn?Y~=GGA%Kh@1%L;Dbv;D2DAJcJP{^vEVnleH+j26M8^EFjaWS~#?)<2G zul8$20dV#YnyvLC28T$p>>E?+5-QkF9$F-Dh>Al(`gqE{;qruyV+K!DCAZ}r9xQ;% z%hUSrB2N*9D8vp3>BF#7#`VE)pO`I1Gk~ zS(4-mVFOqK_!=;`nHc=8!>2_C1TRVoe20-NjNw{?NmE){CivPaImHQ_Ttt{31BR!F zM6iLS&&zfb_8o|zh&8!ZsgqmI@*NZ&AVI;%yP%G>rkKLV?}qF3TV>+F_gg$j*H%FU zae;pT)ffOU&=V8JM$%ZQ`0r>ikb0y&TcO^k;o=3|z-jVOH5D26aD!L@AMN6#GxCz> zrQfqtC?~8XWfUcDm2o5IMF`zecCR;t63(MXJ=msd(1%MAmN*eBD*A7k<&aN_C3QH# zPikh3;JKu7YZX|!N)j(e^ASIJdrHi%AcTmYHgVR>RgHcdi|e&0%Nm^OEZn08)QLsl zefYSj*5*FCBmjrNnm-fpaJ1TPSLS?<17e#2kOv&Ic~$mFDezEvtE*!Gn~(@#xnY3P zaw5`M%2?5KRm^iO9SXts0kMQk6&3@CCjzp(Rn0e5%U4&^J+mWS5lreQ1tvFxfGo`7 ziS~C@1aofpU63RQ^{2zYq;LKVE;;}-O3@3b22uKSy9wM48z)kHLA?N6gm9D(8;7pr z`GC7Is&*O21bF8{rouUcgW6Lu?7q8fertF99JhwPTddAV2!=s}x`h%Nmz+MWISVX- zC?d3~o4^RdCIT?(RcqeQ$+-;x%6mcE{B6Kac!8!sZAo9MfGpu7afARUHaTB^@myR( z3Pus2QMc_c?RkUD;?)R+NNWofAqG#%q~gBh@i8fA%RWb;zB(8WVi}<9;l%3>$M~y1A4i~Wb8OT(}@_QBk6y{)?H-AX!@%P=t zP=(tGlAX)^z{VP*#=xr6SwRw{UPlB2-Dmv3W|d<#l7rJH^(m#@1cM`#&1*|5I#ZZ)!s-wF@-0iz{`=Hg%{f zJOj0gnK*gOpaJZQ57?Ox8uEOmIc@U~qmdf;-UkC`^6|TA~ zY~GMv+0H?cncW&+QVkTjrtru)KhsC)jE<&k7jbe8*AnfrK) z`-^s#=ftG@Kkg=0%A&-;2}XF z(hx-KArT~erVPCDIs*YGg>v`Cc-?etlfy?!vhpzGdwOl3NPZ%Bv}Dq(XqoVH59!I$W@s z29qYf^SSu1z07A-jeQ-@PEh}$p%FvT2-|R#6g~*`Jz;cLH%RJ4yp(Q+lq@d+HEd=T z004Co1<&9WVjp-vU5}HLHQW^waSBIh0aZu$l_IBFUa8OC`Vh0g>TtsNsmg9#)Q|@1 z`aub`rbvL<(pR&kdi6h57Lr`nKJwA#2iBwuIxm@U`IjNH6hh@Wb~0P-6-{#q0sBuI z3Mai!RiD@UBc*uQgq&Y;jLUXV1Ut%79mgN2<>Rhnu&3SXjund}q8KhqTW10`LS+YC zF^9>dYH3wDchUoqN?(%;gd_ouRCJOKMvk8V;JKi6I``Fi_AM_Y!8_%WPve0LpbiYC zb-4~VM2P=7WsN7iseE2#b*s9E;cqX0OgK4i9@Akq+4FC5;liPQTg zrST15L9~W{cPAz9;x2He9fCYp4HY93ntB4(vPJBD3 zs%f)DKnVf%JtX;V)%npF{U2NW&p))e8K@|XJS%i@s-q#ZIO*vOLn+-{`>lNCM}NI9 zfl-HnlI<|M>^xoIqm-C}fr5h8h!?|=y;e^SgY5|`#b-rA`C-v&BO6$Hup8P7ff3<4R#Mz&z_jRMKf@;%K z>vH1e0u^~Xda_^KK5!guc&D5DvnQ9OONTz9bL-^^{*Sl!3TrCr!avhVfIvd;BsA#) z(u*dcSE&jp7>ZPpPz3}Gy+deH)zFLdCRIX5Kn28tq6P${SO8HG3zP4gf0>(^XD;TM z>vMI^v)4X*ziYj}_oOdZR4eaPU*2i0e2u>Rb6N$)eFf*W3NQ8*UeUVk-FG`stLR2w z(Jigwl)mB|t&*a?l6zXEb$z9+T4fLV%7(Sd#~cPbioH6W5~{a{*b-+(gNDrrtYmot zYg4XEZ-PWsx34i05EpQc##sPJ2%HKu!gE=;r~KrCG>vL~nus8i)t2I~jz{(qt^usB z4Lx)!*L%iPFnVXz>GTTWEhTBXRwGF$4y1luCD>rp9Z)*;r~T(dR_mV2H>}EQ-GBY0zf??uzzb2hyX|zVy!#yU50YkCJ%7Iy zu{nbW$g+e308XSqAlf!ECHaXU_|v5uEOGFzI8E)mH!dgd(ioSVAe#q1ps0(IM&L_2G`f99=Tlnyw&oRYx^1W(TpxBo?dQ;8ssR_ z9q2v|7!kfa>hQBWMco+)L|xu_pLCPCGk5YYdUpcQ|E&D6?+Awk{?YnoMmOJLuFfAW zf+#DH`wx(h3P`sC3~SKD8fg57Km^>D9YU~U0WOy?wqcsdyS(M1JA$w9@A^N#{7GJ} za4|wcI1Wc_I0^3rV6LNJg%#ZNFkF_XZxaJLXLw%yasuPOMvfpzHR;Zs_lG^Z^LAA@ zHTHzGI_ZLdSKXQ%`rCV#L#QgZKJo@;2@KT zJ=!EQbFj8F006+JNJ?H<0?;bPK+FK2ChHE{3KT3L{2FPMfGap9muONlpL}8lmO&Ky z_>9%y(O3uXric+KSp=`dpo&YqCxMFQF)7E)uOX1_HgzJeR!0Ld{1FcJL#4s-($NX& zp_!xxkySS9sO(1I z`{6hy-m~QqK_8}aPl?8^o22KnoJ-sX64%J0zQ&!gd_mo#=|icje(USZWAPe3N(Lpi zSN(U<_k~J)Ka2sS*?BOIZS;}DH2F~_gyhSDh(@_iRuVX)V@rS~UYvu&{XY0zOkxIK6^w3 zNn4FT^W^N0r6pFHo{5o$cD;6}2_;?B?9{FF{tBI1W}*A?SfguzRM?~ROn4oa z+I>TzY7{P6ID9K1<|K#{;ep~kJ2*`#tu5Q)<=o|FhV2;6n`&f*pFqI% z;(Id9jLTz|b?SLEOFTC9@Aeoi!#RCFoziI6X+?o2N*N8QwI z#2^P(S)n6y*JRDQ4|Fub1SLyv$4Q=r1JXsg;FWNJ{;m6P$;z=nI_h3Jb84p%v@)%^ zm!e6SmgI?F>yj#krwGBPY4Z=t+%YI+9z9wXzW_Pnc{)D{oC$-^Vyn}{sGj#sA_mvn z%WvGZN9fN5C1z6x_NqB$8p+PTHcA5D{rXsOl5@95Ae0XW%;(|*4EY0lqu#vecc@Qg zPW6QrU2xup^6Ji9+S0Y=ZXB?l7j(zxFu9t!)$*Iw19R98ABf&7z`zrj$Ns=yBxfOT z03AL&QuhUf)z=3sX#EDFOd~_Os8C-g79fNI09pgVX4Lo9ByyrKxh;+_m38LAjS87h zI2d+m$vxFtAhwzSuNvV;)2N+9G?odEf@yrA3??xg?B8*Z`KoyhWvp`39lF-I6YRih ze{i?hkMOU1Z*(`sG{s)NWC{I2O1JA;$xyfXfil+z>O)K!46Jqw5Wgbb@AP2SVq zgpD+BVjNE=QZiPVr5YM8qA@bnB?OJeAf==~N~uF*c;4~$4B2tz6w7Eap4<|PtBUz0 zk97si3aAhnRukK|$~;GdlvY*CbvZ9AA^JLzkaU?2(!)RXdlB;ZMg22tqLZ1iJqQ~% zBWdI5mNT{4QSdZuJW=Y?6P+X!MAE?PE;5bP>>rFr=175XpTC}v9uCeXXTmd&Cb62} zvi^1O4P*(tzntGTH@l!(Qf<3XBrl$8dKJtXa9)+416&?TFQ0An27iH<$BQvZo+243 zZ;=Se78w4;=>+SO^QHDRiiHi9VLOCsB1GH-7~5?6$UciMFF8m>#U7!85@EphY=Zd1)UcNa-CBIxuD7t=jSa`nl&|BK5l}S zmY>}2>F)j<5L9;Q?H8U0g+reP5?{1dYMDZ1HR1fzL^C=UZy)O~084lWhzG-c833nQ z0dR58sQ{=aSuAiw&~-msqep8xQC?~WHLmU0%?4W`Htk*1gwx7;tZ$p!L)u1cf6w;Ulp^FofSHsoFbn} z5FPRhK(*nr=PlMR$ zDM4_suLY+$3V@Mb%gP*yo@}M)eX?OU$OP(d9~tX)#OWp-(gkOz#v0bj*+KOnWc@fu zWicq{+L9Zq1C6Aw{*lRRB|+pXDG7H<@~Z6V@x|g7s&)70cPs+?pP^9`x;_ipH%~%6 zI2^2zXah3j20)+Ls0zT@0{{$9$RQNeu9`8CT((#6z;s%-*=}>(!Ki@()N&;+SUd z0>aP}EE2(&5FFB$9E8zF7g7zCiDnRoGDj@TxObHQ3n}MR^eR#`q4`cdldjO%dNpGF ztdz25(n=zN*TfXiMSdWpt5YU3KY9yXzKSU(2qlC!_vZfF6pY68=UMif2z*uuP9l4h?=iPFD^6z?aqD)_f3@DrOS5Kr7boiF1L+64y>TjJI|t1H

  • 2?l2DaFHz==2a zM2_oP>EIP2W42rISWd$-v_bFh0xc`Zd+>YtvD5z!69QwjU%fUaw9!-ty}ulS-$JC-hMFLq*^11Ka7n&b%oa}%^Wy>gp0&1yYV zP38AGpLUJ?XJ`%wNfOco6xhMBPg}D?@WTW{xIGPOO=F*N6JDe}Q*D9pj{Y2PV|`3v z{X}A&-D4H38n4D3$L6qwr+I~YVzZk!rNms1PQkC}Us|aVKdWz&M`Bh`e(r5pgTWN@NX|6@L`P&SpSDfexBu-1QiuaZ>p9`SRipCq43s1~t zwN~Wj7-gFS@~N23T=#ymRyPZy&e7)JOUZBx8;Kct%d^z-(QBrlboBfPx@(RTsxmmJ zAp8l>Sz`61z#mgreLb4KV%E+oV#_7TA;v$7RZuZsLi3^U?CF;9ej@S(Mz9CSj;dg3 zB(j7A{yZS3(XoQM6&wUSe{jV}-ahLQP_4iO%8VDZuHev(6Ks>ml=z4?R&a0tBQJAE zUConfCCYdNOZf-yt>Af7;`k?lRUBdtFD%MasfS8k~;Z&g)4eZnJhg{a3;72#7ziZ&%C_->J2F3d!H;uTnzT?XcRJ$5UCN@xq@f zL}8yFe!-tUZ7ncOV_RC~Y$OUMuR@K0B6MQu8g1cAg)kL}E|{htxe2Z*Va1+2-&z%b zR3MDR;fXlT$q~_GASS3&b$eCSu9Mjsq?u%=cA~^PzA7>U5%ODv_o3i|o!Ww3aFqj%SudD=mL(F$olUwTk)O#LvMo{o2mVF-M#2 z8{9eY-0yts!L#qR20ri%C>i%IefA1lJdENmyZ#xLjf0W^eb!=lUph0H%KX|pubhVP z+b{5(f?lV>rfE_-36K+e8g8SRkhM!VW3RT`!&Suj^Fn9>eIsm(acrwpFFcLxeu2;;Qk5J z7DO|I%OYuBt@kSm|B+D_eDCO|OWf~T0r(q%KGjR+-w&%z&I>I9h1b7{e!}yerPls9 zw2t(!bgF`zP?5o_$OA5o2pkt15Q+Y7TQp<#414zTDq>IBa-G%A&_Od*!Zz?j)r$~& zhwtfwmO_^u_&x!7id$UPGlegHzYwH$vHP>4d7z*f9Zb)MGIw7H>vqig?kJvlsBY6w zSQRAzS1?>oCpBTt4c$Grvk&9fz>8SnXSUkV9?2vx@ zx?|CGu1{_{Ol>asUC=s?1x7;`F%d3jp6ifu_#8&O^AQF?#Ty-h+sNkng~WzLlTL}! z@c8m@G0UYhqH-@N^_w6G04$jB+J`#VG3yb&hLPX_Nb>*|B>*?pq^A)L>9bF`YWrk! zcRBFv*|ag9ZaAhI1A5^WcRSthJM6CA6HuF50*_fbHK0qPl%k+;>j@jHDWc=d$2>aG zjL1&JK>sAtjz?pE07g>Dw0;1#fbLs_@w;cvUi$?0gHF5VplDCz+5&R7t%}fBIp^&a zPbxzM!$;J;$Gj61eGxw+*=i7}-K0APv5@4;DdMG!)}c0F*>MNtPCHL&mJX$ZLviey zbf)xpL@|}+T0Fuv9=`qom`8Idzy$Z*4*r&l@QO!J$>%Q6=Nvs$c2n$J<1=RP zLSkP3YM`B*I^-ge`$lBGR7mjyQxgJiGtVqtDp-dI2w%InuXc*j6^a$J1kpUWsUS)` zEPP(8*yEPt%cyo|f>Gqq6kl^xVWF@BJjB z`C1o!UGl4Z25%hvnLN9vf9}Xb`%m)zQ9ao!8*wBZ<4_bP$|w0}6Lc8_Jh9d|&n0yu zj7cS3!X!CS?U)XQc0b)*MVZZ#IW<$l91k%Mz}KjMwd2q4eLOFMv6iZoREfYUk`vIh zglFy~v7adkdmy&yM7sxQhlm?wX_I8QO$3!4j^*rK<&(vuaoD~Cu9O=QS<4Z=nAPQR;x=DQ8sj@YXcUMq zN|Z)QHn5}@=~*~rz3I)@D{*=?8E`?Y;C(Vft_l$P8B|7(ORx@%1^}7iBuEMz6scB! zBw6_rc-Il($S)6v0wZ|x5UH`!eK(xJ`YKM5TEFs3`bwG;gH9w_O2s+icnGEK)hWxT z;c+;my&nZuPyXaBb>I=!_vw7<8bw?=xKj(8PM5O!na({~klvT!RHdxfnc^y5x@VEY zg#$9n6yDLILIpH-jG`PWsh_u~yYPy}$cnlfW}hPN7{_Dg!zlmy;Ep(^!>#izYnP4^ za(<+coiFB&tlf_L1yAJH*l@plMc;=^h5g{MDWGTkOUwYUQkk^t!n7^WJ1#u0s-gty zm#cj9>vkldclihxr$cSO1XJ1kNa?Rj;mnnD@fG*S8^poS!=vu^32dh~-5=3znuuz8 z)Zg^@xM@MV`FT|Ha)0yNvr}uJQ?HD;yDw&w%Vns;ZC=)O zPN&;JM@uPB?39YwmEU5I7dtKv^aKdvhQ29<2tHu4dvNo2Pn=F~P*n$T$prDN_wP58 zq?>&u1ATXX_f_ch*WB!H80c^Q-QTV=(0y~DZ(v~P_rQqG;Ka?rN0+L%dIuKjG4*wb$Mt>jV1<{%%vv*Tye}B`!uL}eTBmD6r z70iWb-O)1shuf*8a)Uuv-;7E|kKN#_XzrIs_E+dLPEJPUW0pd3-vmA5o%JqUo=75mVf3St!AE!gJgU&0 zsfnIx7@TSTGt;g++Z{dIH#j@=XLdw)ZX%k&eVBXvXKq3F@$=}%%Y%>K{&{@IG{ct8 z}5E`jBG`Z?>66`XVvv^`V~>S_noIJO&_s=IO!ZUbhMi8#f?__78T*(Gu1r0Vh=y4Kj zIZa(qSQ0)vAhq#9KX$!PLtPAv>lwnf-M=}%4wibc36l)eWK3WbwMrnE5-SAPC|E^+ zs9ZR-I02Lm0$?uCPgC84&X(HV1}T!|lkBe|qVwWow|*vhXVAzEnqrmP;@2O1ctsS+ zZfEGUpEugx_X*H>D`AZLpF0`Bnn^x6P>ps^=aZ;FkBcLZ&8#+qurGAfk648x&Zsac ztYu<_j@{HZ(i>P-uWtiI-0^x1Z(oPx3wz=flZXdjS4CE^JYCwFqxD$$HTGi6v-=m= zLU93SiR=$eYT(!E&%i`{@RfXG{`r`I2jrUT3=Ev5?t{*pj}O0meHU11S{pGBTgQoT zSNgS6AsrungxqRL#Y7^E*@`iM!#;S>jl7OkflQqD#JxXZFFuC|d`YmE*TOYw0${cg z{=MQ~{ApiH$ejNkVnrTS04vAh1qrEqx~Y^@3ML|XD~}h!E+S)g85N)0Xe;HpMlVL^ zPQ2~5DD-?>d9*fn*7g+Z=h>4QgGVe9yDbils{W3gk_gU5`o2WHwWeqKp~bXVCJ(>} zIjI_4odCjG#sN%6+$J+6P1Ct-#A-%)q=1H7vhTRnpcIz$MCYmv5vKWWw8G znnxnH$4{mxIcD+w5%v4@l1C)&*ul$=YNd zLD70QRNYm=0?mtiD7J!bUb@ne9i2nQY;e3YN zLC6&Pq2vY_0G|kjAcaV{F}zv<@Ex;S^d27NDjbC8Q+qf60neEl{}kgREK!62%ws%V zjZscx5tRrd#|YQkKjVa?AT$sQJd`ZS5>}0(c>@3Jje8mB@^2KtlhmCp+?O#toB*Hp zaVTC|!a#J>U^+h_P0`P&>XoILZ_RDjbl=+2>odM}cVn3wNw0%G-pK=SsnXcLI^l`Lh(xe2T)h5g}5Ix9oJ`ToRG0IXw(toPA^~Y{jP_qfocIM6! z9>#AVU2)>3J+}l#@_X+4ELJ%Qaabiqh8D|FH9^xy6J-vV9jS#0{) z<-nGX8x+XUVf^fi-Y(lLHWh);E3q?3b1H}BkP?edn?$9t=+<5)m@O8gpL1?6n#0cQ z6E(zAudEo~@^*T!O5?rXS1AKFJNmu>uZwP+vB34mK07wXpCa__UL$F76Tt<V)2E=stHcBA00<7z|NbDgsCRz}=j{pYe z*G|!D$)7;>`~cQGs&WnOsRtKB=PIp(K&x>oT(9&Wvw|mIv$m%WMDm}X@vOm|NROn2 z$xi#z$ZQu-Uoe50AB0|}OzG|frI#H9BP0kK-sK=Jw2)SPQRAa5FzYBfo# zx9gy={cyb}VxGwm-pMfvF|Q%cklax>HZ@$DY) zZx!RFJ)bBWTEQAn%LbzY{z(%77ExEQ8!yW|@6OBdz5>Tg8maRE=1(v<=>!~{qntN0 zUZi4PUzj1xalWb)PAkTrnpS?Gl}be|>?Mln?q^?jw9@}gf+FLI@X&Qao$hxT>m+CB zm49Y%TT<4=$~rA^8nKeA2FT(^8GvFiH{?)xya1SuXfYj@VoUgJOCA6eq@0pjHI_}p zH1t|4q@^u^Sz!PGf@o20JLu!uPv%Z_zou#|JvIyj*sv|7wRpG5x!&oR1Y+nwW@{Sj zSwN9!F{ar+fPfE1LEK0m*#7Cj{TyarC(nfUbTu~z1e!Mp)UPthM9{$57ezAizEQs2 zd~TzNV?KVxl;1BSbIUbhIw6(JG)gr-w-cAjazN+%cG7FC$~VGx_YQ{TvCov=77&TI zuV6L^oAAdlGyq-q!418@sFymzpA#qDH{IeyACK_sWfhv!^bvvUvQ65IzcE zhF!zV3p;`wRpD&?m~0pNPs};C14>ZFx`bThBa6GA{oQS!$5Wwhjsb_SK+kDeN54YqnhVoVZvYf_0K}|SaWCv;4q9ZQV zbOk0_GDd#AL60a#A_7JM{-SSQu6*fvFpT_SYC581TkKMjLF5rnEYmh@OO%u zu^isL7MinhJwmRIrIV)bj~)%Y)q0Z-Io&(L9$TPj_$skfXH*CMP6)k8#J{n6f|kYs zm*9w3XZMt>c6f5LXeIFarpo*rCf z&p8^Gi`~x*9Q+{4{%hJi_Mo73aN~5&ulk~H;8hpk$63EGRe=w`-D4Vxm2xoucm(-s_Uw<9-nhjp=YKDcy%Uk!(aUf&`1XS3)={qm=uCFbpY<`$?aA{Gzd6BU zc;1yAEw#q#XV9ZRKE)hqPsRSoJ!#r9e}BAwzVy1?9{4>-<8VATjLGkBDT{O^_hH?M z%%nB+?l_U1@64NHgL$StQoz!J>oafbcPS^)HAds38nGM3@djfcQ-BkD8-U^<@+enCSP39$Enzrs^WFQ_(G(}ctWBJZ z-L!+KNU}#$;>L103^zo(4Z)A5Se*CbkgpO9s2~$Ev=$e~{5=6ImN;XR_(d(oG$NXL zD|+=*Jj^lvs-}$Y!dc4&N!MfnQJMiQNKK1mmU$?WWex2OP5FVf{WJv<*c6negElIJ zU4o$=WRNr_mF*%p$%jh|m8weQW~l^8P!+A~LCY$*d=t>1HJcRxqNW7%AfhC2AXuE_ z@}ij{icgKA(7&3xflj+Pf8yGTPhVRUl%;|sZ7(!OpsIb+<>u1~WRUEhRdK3xH5_7v z;;Yb1uQ7qtnZR1(GUD7aTa_~>wjergS>q;PPf8Yinl+OKee@DA9syZ$7&zG?;^y`oXVLf&hD+xcw4U!AO(3go#Xk6vvfM`EB@#Dzxg1AHU(be(bFw0F*>D)w5AA zNkkdaOh-mwJ5<)gHe|;<+x8yfVjE2RQT|y(!SQWy6%F}QiTyPhZcGF3ShH5blU`Ag zqB=QCZnp%knTt-&Svr`x!-s!e? z$?Y3^0@uhIKdHzRgim&)>mG_Ff4TS-rS$%G($q(AEhQR7WIn{P_>>?idx4y7+1#(P zs{rDXrr+$QqhwX zgcnU4av-2b$1a9*u`Hn2(P++gO?@2OS8HTq8*GdMlO>_~+tI>qFv+M&nf^+{X%0mo zC)@y6Y0bXh28*DvBufQo&s3dduI8MF9aE4cbi^tRDWVLFp|L-wAUc)UwgAjd{Z)F$ zRlYd$U2C=y3gVFxTgn~`gXNHLp4hn@u zbGf1UD$qi!=mh5aQ&>*fh3eA_8mexbn#!zx`O!5PrhY*DPp#zNrp-l*_ugZr)+?f9 zeJ{goK;^`QArgxRom#YhtE*G=FWNO~Fx#Z32Vka>o+LSQTJ5Z!pG)Lgu5NMDvh3WCl7EcFR5$E8S);C*s&jWyOkd zVp5}|9xUcRa*ux_cZZKA3qrJlWsllrM(eV=Da5M7_#$nC6a7}P-*w|h5#2UeU# z%w9*#z*@`_b8nCaNso$Nl#Tu6)O_cr&`UpA;ZE5JhjU$3Olj6ITpQw017WpC9(2F% zp&r96fL+G0o+2Vz^as3%1HA)Ee(mh}RJnNv$g@SZE;87Tf_#ZX4=c-01dC`hvxc;p zJnE2td?4RVhSB5($(!774-{5a6d$62mAJToS|AIT>Z17&lN(UzSR1p4TvB4HT1Wbz zEYm^Exweo`_XVp$ku#293Cam8tE$5DV1*q*?~=R1t4f7-CuRg7erl@zqa0*=7m4TW zp=tHljOux3z?fEO%b@nb3gF%@_klUm$GRc%;7pVC@Cy{}>kF6lb3xHr;qKqc)^Y;774kq?~pam zTuqVdR?gRtK>c85Vt8d)^ap(9S^dkI4$>|4Y&53YkajefoXzOy0kiKne(jkv@DcUv zV2$9hGr>X#y;TjexaO@s!3}dGL>DfS#z_`Zg}Ds_Yk==D$Pg6hTLz3&F-#JeX4-%B zeV+Z%FL};O8aMJ!G+vtaCV!iW?i`=PAo!F<=4joyO*n=NCr`HLzJ8BrQ$us6Mj9t4 z*mF3L$W^xTNa1qNCbglieCDifyH~kVjKw4WXX=5R8d_K9I#)Ej_cY?pXeNbdq=wun z^at6Xnyuw0?B$;hE!-PTGH_mL?)qTiFfU2WWbW&byD6<7`${mN961b_f@RGYv?+<< z+D3PC;1$w|N-V!Hl1xAhpKZ&158Rtf6oV~Ua}71Lf-~I1>3*0W`OW>L7R%p-7e2&G zna8=h0bkIOp+po$VbOr{@TENDp2cw4W#rOt>EHL&wPPOX20Y7cgEf}IBLDVMWFKKA~Oydqu{*Hv_Z=*$_nTvXOhoJ>T1@0_zDFpC%JQMa~c8TFN zi2^(i<%hTgd#=A(fEz5bLGV771l~}X;$ytXI@LAqxd$bB9K%#R%UUWJv#gEV>nqisX7$x(O$MuA`QLp_04SZ|iSwm-*h zug|@UD@6K|AQt6-K}z)HOYEPCE4gR4&)&`-q`=bvcE5N2OE)LJ(0Ojx!R9cP3}%o{ z%ie7t?2HJrjcQSMn!fCKS#e|9*>_PNm5e_se799rvr`MR(}I4sQrrF1jWw>>vf%!F zz7TdGlg+>V0mrsCT5)NxCbrn~=?0gJ#XCdB+vkyh$o^AvVW=lHEe}^;2hPn$Qa0NE z3LvQke<^H__u#LCPsLcXuaSJ1aybG;KEjnSq+tkbjlf zAJgGw{de~yuUMC&HgwqQF>F8Qk@?oC2Ik)kYC*9y)}OQ!1`e5NHwk=t9$`L=tf1F^ z%R*^Vz>YMQ$BS%}N(YBmUAJmn9cVv(NW%N`q7QxP4BV*Y$)SO@Mka>sWlc%U*YB;> z4H%m%*WbSk)&1^p>$}qx=xf&=jKvSHoF9JYVSb$l40!o3CZW@TF0X1_G)`Pr)tG{E zjt;LU5^#s#3|#|mUFmxlmr4J6#J|@qdMyIVQ=ooTO)I8D9pLoBM`aOW`$X1tGQr(w zaHQR*7TRvy;e$MA2ur@`x_T|l3!`U)QZ7MxUFdl7OTbUc3kLFrE@)xbxk7)KT7%%V z+|l3pICaqwtv##k`a{Vj!I*HfJI}cOISNL=PzD7jaIDEV1}!khrNSa*Ty!Q0W3URA z*rSh#88mXqh*hUi#Ec6Qw@V-|E?wt7`^Zrn$YR@S_A$FtQ>OfoWQhXYD z-RBtwkHwcp>!#+_%+z7<%yY#H4I_mJ?jNI6f9#o%lksffGMg=@F5l-ZSKqw&e5p5R z<4Mh>mtR~4Bfo#yc=Ph>``hw^)h5`F`jkqTcTXm^PCrFZ_3nWs;+4uFKBM8fGtvybg8f{P)e-&9TGt@urmP%2Ckzqr%hP z?^b?Yk}=9Osi@#t4;6pfJ%Hp$oMaYQozUs4JaNA;pkKHVWpw+C>wp`nnrb!Vj6Lnj zB3N8{!`tKimxr8zgL3kV<_MY4*V(mixl}gpzmMmyH{u!W6d~0~|aTCV1Q~e=-<~ zg>c9tX5E9$Wbbz!n8|mpWSmvV5wDk!EbVoZsXdl8!HfD9yCuWCq$}by-u#*GIBm|6 zZ=pC4YTm8(KC?4U-M7u=Jb^{+(At30A=Jhwjczh84pA6QHDLpHZx z*5?khw>4LDSf~u0`DXtyR6s`gf=6N41xaWB?(Y{ahdd9v=z8<}_lv{??r=x<47DGQ zp7{>pPF`hU;Unb#OLEvtuqhA-V7P1H5QYm8^1ma+I)F_87hoCV!3lun{~=OL%5%TM zV~Shty7Yp{|B4i|t)Z~5d_j0jeHqIVRQR8fV!VOjLQ}aDmel_dDMrA`U5_?-xer5@ zTXp)qo$2;Bz!Dg#DCy7dFL(MpV_e{fJC3=8rI|bC4-^f>Y$uEY+#j^Q9}eH|f6LO_ zwmN17<#fR+DXvXX#P4%i6t;6r<(=_=$7-|xM#|t-u!v>9>c-Ow^ZTyCzjm0~jRLt4 z3Z>nj--M(s`ItZ7M8570ViA4#{i^281)o^B3`BGP<9xnZ!0v*^9(|$H|3>6Duj#Uv zc7Z3N=kH3q`Z7G0ar)`Q7=!P7Z)fk_Lp_W-KKjPe_4V@btzUndf4(QLL!~isaDq1` z9HE|C7RP2}A{74D)Mqv1nsUTyvQYTeY6>P_+w|cm2qzS)HcrJFQ2KpcSHXC_QZoGD^)J#H!)8)RrN!j zT$o*CRh771tVDvMKS+#H$c(Jq-L^cWMPQ#>wUCWM~gxsn(($sI7a?;`494?#lbm99_oI%KLC zGFI;YiopB7UC94`JorzsIR3vW7KzdJD&wsGoxi6ab=g$nf9CJmiOuGy{h!5hK3+rT zpU{8v_mBxa2LH|9Q%NBFCx6c&Ril+rEMa~xT8Lxm&t<}z7{y|E+j6$2`BL(g_cM2X zt1G@8h!~N5Jo_NkR-McT_JZA4&4)lC}(;Kq;?(x8bukUFIETUF}z55@g^X0BQ8SMM^ zalXp@p4CwQ_uW^W{_md*4gCB{AIo4A%frE6-?pCJzw-3q(C?pnA7<~JAAb1v_tCfA z_fLn1Pfh?ZX*wCg<3o>wOV!ikS=G1b3IEOCWIqfstp!of7vhnesb|QT5actMyFWy#puN>MHmC9YTYc^s!$} z^AlN{rs~(s=$4ipKUC{O!jgX*(*nr=sK%u%-wu@-Y5IS+asdDc01VduZ>rs&IlwhDbQ6jnXcWV~V`0~uto-D94{k;x-tD{qaKFwGUSB(RFrICaTd7MMWz z|AXX_;ZNVnm&>7~vZ@6i9-$_opcKMhQD)_3`)!8Ct^Dm!dAdM5%1|^kT zIvo-wRovq7e@)gQ9dXAbv#uSET8mECI|7nAKjd?}qo>xU7mQc*ZnaNK%XIL5o-2{jB`_F*!IW&xvIS7GF5y_UpCv-Stj&1CjJRkA+~1kyRs?{ z`cQ*q7^;Leqw=!-UNc9{tlVreUJlVMs=-eP|~bqF!4 z7S9m3QD*g*l3klGzD;EfkjA9_cMCqPj!iV$74k6PHl(KJGUJ5WN0~h-`}rtBJ(U1d zRT_U4j#{0cu)d~Tkieok4}hR9UdBuOCmT_plF7gPAqO9R)su46fRfOcpwLiAT%PhP zW@%0QWH2jwSqf#5%OTtQ$Xp8wumMvo&oOMexOV_J{wH zs+@s8zObwi<}pO#<4G!LdWXNrg7->$}mOK$xrfcQcv zBKXVb8&$R$=~Xvb>z6=3Mad5ubRqm0<4TF3LRFz41Ektz<;jMBrH!A;f;hIn46kee zVPA)zv3e|!!WNh)MM^NGZ!HBSeP{gE;wG(X6W(?>}+(Gy!O*L^!0 zKE(SgW}2L8R`oZ4?~ih+iC`xzFbzuP+MQh?=e4rAa;s3+F#6|#uS17CJ#Gzs%vG*L%65-2L3q|KxG^OWjQI$72Td2W$Qly@QnzqV~yQ zeioMly!k&7i)YNvQ6Sp&vaeRaPfv;Lqn@1GI(n9)_ZOp*Y=OAo=li2YP<_CFL9rDVKgg0g0c zhOXz6sOFn4pF+LPVce~JFb4N}lYMaFil4Jcnc_yNREU6Z6|0J0c8GyZPDB%seUM?e z*uuoiZ&d+Gq;V>fL8%&pPo)VIf+R?n@njRw`GRRtyWb^?3(b#UnqEY=AJ#WF+k3S$^-nWtPDENrzFJa*7B{)tlsHzM zh^dtY&oy7qf6-Of3>GltqnO$|v0K>VnH@1qO0Eqo5%BnIM?PaltR6a91lxOK1Sq(; zpCQj^E_z|W^7|tx7|00wR;r=wFQ3cnvOfzeEDSA-@Y%-m6>|N$#v+hVh?sC4|B=3z z%DWLJ?(&b3`V)zf3%?NoFgMWBBYkx24c=XMjXT-xN;(hTyp@aA81$B$(qbmpiPLOF zp{xB$k4Y$IS~7?NdYad5nD=yG9kp9DEZ=Ox{%}9-KgNjobYqdpORj|bMXi>b zU(@U?ythk%vKM>ymC={HEXw(XeZ96=UbW?%^C((0dl+hZMz~8{{y%NRP?2D2ygU>S z562lN@H4xao`%G+P8?+A$ZwfdT^vH34J*B2{@KqXH9LG4 z*BmiNnj~v5lhj$kp`!V{in)Weas6h!@a}4uK)+sUV9HH4dAyNoc|n%H3D&0*HYpU! ziC(m?=w^`B6Md9K8kff37y=Ts?3I~P4d~pHlY4g8G@5Qq{q~nTu{;_TBwP>K&4BDY z(H~!+h#R$~D{8nbPU*jsP|r-@ze59;YTMtdTDmmsI;$bTS81NKyA{sV7;H+4_4oxn zT>qwsn|*4T5SsB@D`Bs6(n*;~s3}ee*E%-;;I3lpQy}qbyEV|21dFL2#qzY>SRAeh zOjV6pwS1IzNw6I0R!-yi1u%G*n;rP@w9AJ0>*HCEv#%B|Z%kG{Ondbh|D$F8?H4_H z+S=FV&|0}08?5|;{LHtG#_!Xi74*sd`TZPc-G3i+zGNo19PCX9-8sx=`n{h2aCF;FAx%O7Q?3! z6SzJym`P+3lvQT8%8Yu^U7Qf)w}RZ{963Ioyv}XRG+Go?o&pp3$=vtyx`j$`At?4Y z3h~%G>X!!RipUT2!7vHv6C`X2~d;$t%_ zfFFN`AJyH8igSZv!uI#C9D&jC9C5rsamx>4PN-MnLBa+~;XdP?}Eq# z8p@)c)2TO!q4;jpg{h_b2EIah`Xm>SlTRzLd;+kfolu!#$ZSbI@uwXDCu;Gc*o64h zSYllYQ$#eCFWuY5*cyx+)=znIiaBUijb|?<6cxk}hySDRl9`qd$nIFsMc&JAE)|=s{!Q6ap?_{wN2QTCSqqA)h3ZN#v&Bi+T0=yO*drYQ zF*MZgN#mQQkeCJ%LYi%x8pySlEUXc>8WH)|2iQ=^WQ&2`Cli<9Xp&Q2?^NcyATF)> z|ESBp6s;vgp_B&pG++JPC4K5P3JoZZoVT^KhSqLpHU84wbn}qlD>JfzD2>6l=x{IV zNW%rLoDxBTl1Ptnobic_=m5VRkQ;FhEviN0?)$|#^s6j$yLeKjnCT*v__5T^6#YE% zPJ?H;<(XndndEFND8`ZFt#8&Q>aIp_zD!W+Cf$Jlmt4CC{+4UtFr4o}CNUCJ+jpbRbSRhAA`&9&L zRfcF)Po@OSq!>ryFaIxrnzj~#tAkfCpT+U94Z|L_Vlauab~+gQK*`! zvGXt2hCu7Zn~y)%prFqwtND%Uq0BcA7Ees%+bQI>}`jwUyp@q>YU*J^gm4 zjxO7R7btT0Ke)OJwyBoxTh@gN-i3&Ix zB?JUSF-8drC@NsPv+whJ&iP%}`6IS#yFd5+ej(!d(Vfo(+F8-}TFn^GCZ*U`P~SY` zO&3&;MV4fx4qCDo(dApcDYp_o-Xd8-S@+t&kD6b~Hila?nVt=eM!4ZCbH0(7GZxrN ziA>ZIuxqE$cMNjk5T0}IuF6XXBP{6uo1VAjfd6Mo{@;+idbHX4caQzqR{Wvn8j7vd z(uSqx)(`v_7* zH~1dK0-Z``8X)Q)6!k`=fEx&W3>S312{c4x=jZC5TI??rd{CMIIzP{P!T3M$kNuX} zqinEzQD5*{-*#N;TD6VUf(>K*ULtskY5qR=%l&_t{#-<#*V#V5J&4GyY`E-zzkuND0K#FFu|+9mH1?ubh(=5C>v#rIVa&UtF>ZSRRxp zobKGaPx{TC^7}DRpX!7v!T*jkOBju4f~a?)-DG$aAh-a=$le*;!>oftU{5eTCyV3w+WLlC3xL zbhvkF1Q@MZt}qKj&v-tG6yurB<((Fjz%NYP3sLq2awjW7Nc-Fbp;;5vr*>p4#{S84 z2*>!qQ_*`4lmVerBNHCq(2Fypp);tKx>?>k4ftwq7=F~~`PtUIp0)xPf2i@D#g#cAjqmRU`9_a;ub1l#N!k1+q|#07!DIp^n$ z&)u`e)dkTvV$R;D8Y1u2+t*GV>K>@F5<9CHBeO+Vk6<&-MR4 z#|kf*CP=S~SK{+?Oh;6`F}-bK1(GxwtSZ!G*1_nnsjmC7YtnPWYs+qLmOcJ1Prk^N zwdNqWulOa6S|qLn4X%W|Sqb~QLKJ=xVeleKiQm)#kn8}^qCrSrlEe+En8s1z8t{3J zcrybtmjixf3W)esBhHH>`9MaKAQP5o#8$k-CUIN$&HUSSZm$uLH}Pu48}ZCp%I~_> znt^4ed1;?R)uP$elED`w_0{yGPVF}@TY(zs1_GPr;FR{~x07(4Y^ynBqKMI|3t=@# zeK|Z$-f2V1$xFVUEw$yEIF2UkIc%p)0%>B^CFourtL{E5?J^Tx(uxtQF|(^O=U(tN zf@(T(f@KDJr+U6VPCX+ zc`a1`2*VaQf2lTUZ8_;>`aJsq307;ltSpWN%<=qU5#gVkjNgKNJVbP~(+&^VzqY^o zb4~GG=0o+BI3+W=8&7xeIug;I~al~(k=;8UAntlc?#hTa`nC-y>_-=x#}JT@;1Dd9qd zRFCc)nu6H^+1{ETu*B`^G_(aCaH~)d9|%{^FJ79+M}L-vztB3YtLGF~WgchJ=phBY ze86bg>wO;2!&1_r80AoA>M%p3(YgbIBZ6b1BpQ^CENnmV<8ZhyAYTAPEw!IQd-YOn?~XQm zQ<0>>-Ot9S`Ny=Ciun)uzJgf8Sv9x!(Xvct03a9&2bjb1?CVbZ8I*(jOBH1QP!Vgy zcN0!`1Mc+g{wC(xGKXylsU3CNE@vM!c zGXdF6V*Nse{dMB}L;6|tE}>vu-nDb_dl6eS>ea)-pKrb0PRAkg=|5`dMEN4735wQ- z!$%d*{tVFnI2{Jd(Ekq`d-&jn!k;nGS7UpzPNf86zE zFJ<|&b?MKfBLtw9CUo2L!>1?bZh*4Y!@uw1&S^B~6k%joL-#5>swFh_NB;hP@vMF@ zK5K%js^rt9!4QYrC^686pq8dlmaA)wGJAoLYZ3p9vsq(_I8&a8mca1hkhwzv*8Bu% zmsK5=gUY6y^$;nF>Y4 z3XsXN==lPa61Mz;NbULiHYlw^=SQG7(%gKb&t>cyoU%X}ftu!(p-efl{?GbtdG9pU|5tTRvPj8fp@#^5>C3*=CzzmzI@#s#>L#q)Pyj5cq-ynaE@Awka-Oj-HZTzxFwRX zTP&R~5i-(F`WyAJ5ssQ_@GDsM+DEINq@hMQBH`60*UcTl_IM8KM1+aZDqm);4c8NB z{pxL@djLgTnw=5zoj5YeTi?E^H014tWQ9VrrCTB!QG4D)o3!$2R1fN=Y$Y8X9c)#$qeNr4HRK9YqNa5C#b=d9k3 zowGIk3n|M3bGq5J%(RS(*M@WiG`6&DJON9SBdWdUl`RZT$()fo+57w$kjvLe zb;lhq4{OS_p)y%CUU!bNt02P1IP%3CbtQqE8%!ew#UM5MS0El9hNuH~fu1ga3%!xi zee({Jx*R=@zT-s`m7>>K-9 z>we;j-8q)k4#tf8N+&JVJ5?os@!Ie(;D(3p$E-vayW1jGc~q~;geJ93db-9(X7Mb$ zMYZgwE`1K-SynH7(=)_>smd(EJ%ES$J;BwZ50bF08zB+m`S#%8LphmJ%T75OTGK14 zp~zGH$rxWu4cR+ypnbu#D7vfRY3*>a4~MkXrq)OO+3yz$+e4nNujj=Fh&i`CxFbs` zeDonp?M@<6&L{^+M*JvQK5(uL>He*nQ_yCQB|`=FRn5v@$Hp2gg1V@g0unU=;#tyV zMSqJxAq>BOt)v)MB;7=l3f1sZ#3B-2=$QsCZ8g`%-pO%IxFbI1ccJoS@Z%)pP=;!z zO%1haA2Q4|e%j+JV?9=JH&x(6Y07by(c`<@>&aCkj;M(Fyo#lEI$V4n-z(dtRqAs& z;V)P?vgV|x#kxJnMZ#pod`gx1sYKEbustKRqJ65ZJ@j#;9#h@Og*(~vk%P65FRVZpiXt5~&(#S6Fm4!PV{_|$? z0Yu0gH$aqxDd+-KWdbwQ4D|j8v-eIJygrcfe;bH=)|O?WEHGPKnASA!;7XEcDh#YZ zWuN)uS?EnABU7JDXg$O*`DuEycC~tn7^aq=jk*;>P=zV%9!hBXn5l&aZ(}+@XPu}> zllZkv%!nUT6u{U)R(zAYfC3U4fO2#N-ngV`2MB%LAT&wGj_4?6HXTF{*Sfc?**6_p z6D<`CbX`+*3)HG2qKuX1!hL~pAI`qsofYKaGJ;gBvz^K^@yFAoo=5zA3hHbG;EG0M z`*DQ{6tFNc^_DWQM*kES26f!YQ>yA~oA|Nx`bnDwY97k0kyV`kQ6kS%RcbzNPD73x zpI6ux{%k+442egZiy5cdrK@uZ(_6*`@x+BZX3t1ha^NWHRbD{#|a%wfkE#w@^>*FL0M1Pp1Z!sN2a=9V&WywylUiZ7WT`WvShEv9$H( zvg=DLYu3+}JzUWH?~o{x8f4h}&{FE!PV35pemJdFa0 zwvy0R;sh3-_C>wBT5KxlVAlyQ9Qa+4>FfP0bJe0$?#eqmnl%ZK+gyMFONUt}M+s=8 zYOqTFUwe@zOjGs1x_N=Ys4cyiUAIc(F=k!G#VO9-k#872$u}txABWg|`ux$36w)bZ zt1uzJL69X`$?Dzt2Gp-<@@9(s?(!y$UK6|dKn@_YDs49p$Gnf5h> z{~RIJ&@H@N+~vpAx7wAkgx?n#EOP(2L0Clf#Oof*=}D8KPsyJ?+}-oLKdSIAY~Wu6 zm*hcJ_KqiqL{_ldmVgNt698}TQ=6&&%vDP^A|%{{nvv8$0xutr(%h4UpoyorYuyW< z(wxs9zdrx4+^{?7LhaOP%bJI!1EC$!2lW;r>+wgU&(KR>Ic7M>^4)xVFkOWVMYJ=XJ2)B=3_U4 zrXJe4`SouERN43L%323Y)~&P2fX)AEIcT{3RFU<)es|LJ5XN%8e9`E?D9_=bEADAz zQM0F-2a~If9!eZ$-TgblPEIv?8c!$@owv_A-|vk|RDLkWJNNAjG-36c#)(c*`~I@3 zQfu(dD?PW=LYG}nkCQ~)9wG8y9DnJLG}4Xfs&og~?|LVw{|#8Nor|1SPWq%WWu)hz zCU=zmOZH>xX6s&+y7&*Fu>FkluNI2F4SNguzsC7E{4#{g0seJAGEMqeU7CtvHCq+E zV0rH8T%|-7m1iRWrZqPia&d~D%AVQqwwoN1kl3=G>`<7_FY7^k&9x3;S~U}XA6(`& zUkg7GXOda!;^l3jF=L51Wby*LdDXDy>I=iYEKG{Mt`dxi!gN|_Saq~};ZjtHMxpA( zG|Ts*a`|k);H*rG-FEDJvkqzqmdhC8rAN@fwL~B<2CUw%jk!1kTPqwVNS~wiv;65$ zvdFyDpQ4aOMfhN0`h^@;dhS>rUMdhNDQEYaWkoP=L^tKdS?XuYoVULXq$u^AiCA&F z;rWLHLsL}!RcrwmhaLbm1+a=hhJcHd=3MBrLssz??O;-R=ppp?g~!lDD#&iwId||U z^Zi$k24AlY#+_HDzsnsF!h<(7hA>#e?MG>#tp1e9M!Bh>gYG+}w{hk2%!)k*ub&%i zZ&aUC0BixF8UQ1B8CIPpJ)?l^BZ6dfZ(HDt9oAq^B$STqv?v+_Gn*Z-1iV__*ezyA zGAd25NkrZOZ>ss&VBh$e-QdNZc8n|7dOq#SZidZN+9`y#b_xO=kQ$GLF@4KDScMU= z5QCx=X;Qza#<=!;X2=x876l9I2SXAc6<)+j(onXCkT8sh8(6@ z!kOs4Q|SsM-TrS_&BF%sDv&iM6Zyv!(}1X{^={LU zCDX7Y)57PY*5}NQN9!I=SK^w^# znRoGB1!TY5g_X{;B{PzHVoFt=l@U`=;@8}TL#F7?%w%fb_CV?&1`@pr(IAuOF!lgkA&t4CAwH>Jf+!dlO?ht6B*bjbeK+Lq-FzP=SkqJKdrPGlImemmv`z9 zD_CHEsvzHkn|m`V@>5h4$ki^hk2k<4d#E_u)mXssO6n3Wt z_F1wrjVY629v$$6hspMfVv3NRY^EI)-=Feb(w?rrkc|Ra!!wgtp|1Uz{u?txvU8h9 znOk@+wgVgX!G&*~Hv46Zz?@W!mOWQ`HcOy|%2Rv3a(i3K!qF3Zdb&Iy-Yx^w4^rMs z*_*N1K1xqG)Uhsss<%uU?PkWbpq2oO9KsIAu5<5~&RExiJ~Yi;t2w9SWFvn(r@#&R zs`>1bBS_HqS!Qv;kqwAewd47j^xETf0*%H(=(?3O+S(TyKu7eTNxy3(Y&+@>@ zl=MBExc#?WrPf^FFZ}y{X0>wb6?_iz?>vs%fr~p|TsTwq+8GA7=u*yeNo$@cFc%^v zz-=og~bGPRHcrPZ@*En zE_Lh0;*)6LhsUqS(qHv%FFz2R$`zhf$wAi>8NYu_X7$BW`lM1V)EwtS&-Wy~8Xr8( zVMp#VkUAu}ztoa><0~9G{(FAm6H6xJ*c1zIz>cl{R1d9I}zaAf;Ib6D7 zez#K19pO|+aA!|_bo!|L(v5rXzQf<%z+Rf)5Q^EmbYiYDUo$_4s44d<_{Y7l4kygy z(2fbTM;t59SKpa+T}lUB`Xcr2SzsZpeHp@2!}^|fD17NcZclO2r6J7vgK65oP)}Gr zO{#U>{SM)eSat8r z^AUXJE`-MTdvOJ%)ldH{x64HK(j%33i0|FAGwf2JyE@G~3_v)_@7+$1e^SNn1C2MN zg83{{>-3DBi_HN=zJbTs7J5JJj^+O-rHiLLX z_WDGE%lrcF+XOsl4sPfOeqi{%EM~9eWTtZ>=(geB&6Qn3`))-{VDZr2eZ&2pPrKtH ze%I!LDtY$DnuCYxKelP>KCR!oRv*&8vfu0H--`Tbb#cGGBd}h1FaE9nU7paf`hgMc zkmR}DlDVFTetXM)2Rw5Jwoo!@Qz^{bNgSM4-QWDCu8(?PY!aGKha_iz8St5M4o?X z>i47K^d0G-?U=A7>8Xz$myg4OzKVpMtQ_puhgQ}5fAkCaPQ5f(9}I=wK9{XE%1@3+L5Pis|LE&SB^w#m{q}0k;0Hlnd6jzns{7<`E6& zsSJ_iCCc9YOjrKGdiC-{^)%wRE{ z$mx@y$)Lmj`(b6*8_zHWOE(}mB&zkgL!`D*MRHQ*7>5&QA4De?Wu z=h_TE5bW5U`&*37_6KArrZUvv9kHxAitT=cmGse}$4BRPk-wlvTI|P$yhj&0B9$H= zDS!TAegA-C@~CkoY8@H%?}RA9ek|mFButO|X&AlVLDaew{e1e})kspAhRK*kn%JFMpzb`W9~+Gg(XIyBm{i7F3J;{`*>l z`6a(C>HV0`-%nrnY;=y*;SGT_$IzKwHlob7vs~gtl?l1G4)fUqF3R}W?Zov?d@C~B z43+s=YW7pN`G;OiWU1{>=3Cz@b%@ose%APJy6kMp#9XP}@vr~>^E&Joh4)v3%&$hB zUpLHtH5K|~Gck7INw;7maSHHTGmRJ-z6Gbfm(n>Jy&w;ErtS} z?!L?9^#jsiki)kMramUeYY23k{pMaphqeRtT~qj5B){8{b+f=+tM3MG|CVtD&g}et zk@9)@?t|m7Q{m!uU!K2 z{P=gW`}bYtrH#uFSwPmgc4<912O6PRf|)Q+Y1qPyWpT)uI!2I3&;ndK5&NrXY6TZ_ z8vF}Q2Re-T&}SW}ae{$)OZMpTjjXCu=HRK}{6{&%cRjvu_?v9nf&*bIYZG zK};+>tNr~IG= zC>d7)%|%8isMZ%3m>g>}6M!2Fq=8eFRE-h15J`yT?KkhK9x52mjR54r$pvVq9>5f= z+_{jFcRH_#7Q68CheQ#MSx>UqMBvI&lWb986l0c`DC11bPXK^SH|Ynk){!MS*c{xPt56luohATlxaSy~r7VtO z9(K%!w$P#U7=v`U?C{quX{sh6i3r>p3ge>+vUJlVV7X4i0YJ!Iwgs%K*~4G*ZTFs@ zQfTkBEc1zWNMCod0RQQHVJw{PB6VZ?TDfmLlVVh=sfP&TQp7vP@jbXp?sqC1Hvr0! z5pHxd4Rkf8*@PJ^dBn@f3t1TRt>dOZeA(aVaac<}1j?O7A-;f`kv)84K&3dETuWG% zJhqiTOUyK=Q94**41HE#ZJhgDo`U;}!7D{~P0i&L%QyKGJi6SJ<2id*ZnqwQ=#Zi8 z7Le^oCli1JyI$VF+=Pwfr);Ca$WPoVp~x26*%bC z{`CpbBu%^Y1)f|3?U%l_Nqsha5=)W*A^O7-(%v?dPt5(0}#R&EIE`j(?xI#>j=;L=(Ra)=n~JzxeYCl+H(aRRot;C18WJ z0c26 zleLiR+|$TA7-x#R5Pd%j(7luu^abnWU|DbScn+Io@!KAQYD*( zMADcd__i?Hb|At1b%X}IROW!dSImfsM05_brOj*5g{K-4;$?BJti9<{D-o>n?20tN+XL=0YK|GB{*)EtWHNw$n;DWzSoyI z^*rzn18=(kBr!^zqjT&S2e@cIARK!#Wz$87)JeW)Cm{D`|`~Rtq8)R4h0K^i$K~v`(znWH_qD>q@MQ|G|5F`JaLVYs zT=(}PX^&nhbwmv8p}$zZc=(^{7+B)|Njz41jr%f?D(L<$rfKjqLv?&NUHpfq^6^(| zhU(aMVRz#G;AZ*fa2X>S$p6J4;zT9nfW`BdrOyaYb0(@x7 zIGxu}Elnq7197>3T=`#crh(ffv<#oP8uVU@OWWqb?YPN5Noqx@b#sDdu48)j2Z>K| zx6t1GlZJh&rGomK0%xu~F&a{@P%!tAzFIZ0?Mp0;oPPZ$MQ>bt;$Eqoo3EVzgV`|C zwTj`_z6zBupPDv*EBl?haq24nY@pw_nsVq|AiDeuxSXClx320O1pzAiolj~ z1W~da%+>i?WK)xo3?LJ}cyCb;lT`}S~IVE)$^%TRk zYNC=7o=aflvwZtOMopCNlwVD7E7y^W>*aM<!TH6lI;2zvm;EGV!BjJM#(fD&^TNSO2+w$`lPu*k2q|5KVQ3jFIIO)`s zC-=v;zZ?y-B>(!F`WWJ;n*PPvi{}Pr68j!ll3jTnbc25`4yt(t%@(L_B)CR1)nQxx z8yc}mdK0w_P&c1lI!RHLcg5HOIgKGY$v-~aa0$IORuI#FWBGpNF-E~0uVB*vm7zo# z)G1LDHcIESSH}(Y-aTXg_3b)j2Bu31=%}=9VOJK!$^lut)aSVMA5NYEL?-!eu|^OsDekY2$#`Mk?k; z+-(K%o$1a=7FBJcCU(=+O$gRDi`po5+LQ%)KKmNVx_ znOhHMk z10G^>9Cn{A>b4THc75G@#P%x$cVB4Yej3YcoauwQX}^}Uzx!DRgoIvJk2S+*fc!I` zdr3=n`BG1d!FeQ>HY{?B6q`lmPqYkvJ@LG*K_2QV@UdVmZpOQTfQJBt--1w%!=oW@ zZGNmjB^G|qN}HL_o29Y#@3R7qW-bA&yI8Foi4I)xj4m*F89xklY;2*i19$7(+%1Dt zNvsTOXK7Zx;Kr4745N$i8tcKl(g>lg<99vZ(%gFY+4?%^Gw(1tG}N4!$efSl+=k|y zud6-Yyg)LdV23m(Wx2j%2ZX3%`TRB=n1INE42H}x#8{DbsC@Mj`H739@O6%z+IY$c z&twi#t^;A6sNA|h_ua;CaUyZ%?8o|~V?yD{4{;jF7LdjMvx@!K{ua2+_BY(;&(!cA z0QPU5Ik(NaCK3mCZIBuw1?yr#t|TzB8sOlnaaAtLnY z9D0|kX6~S3wJ6=$^kxd3RsaO8!(!s{8;a~P`&b5z_Z&fnLsB$-cLG;#1>Gw> zJzT243^0&eHrVF;E(YOrB0y8 zxWE*Pz*jQGC*|j_EL&^Rm(OvpJi^NiwCpklj_X$-E?1Tt%hFu$ahr^lTVtHfI?MeB zS*rSAmCV3+;s?&gwd9++YCC!>u9{R2wN^GVn>3rs->O+@dYe{lAm2P8=#Uk3 ztNvqP`-_I8m&w)qEmG(2;RNoMU+B5Xm)juUQO{Of{jnpWwtIc;x{_eE#cI0Lk^HO+VG}F<1@y=p( z)1dsrR|5SVA8%feFFQ}a_+TZtee8U9%Id?gk1dEhnb-Jk1B0m^Rjv1K4~n!E(-i9Y z@3bK<-VlBnng6nWL81NTonCRp2@%AA_Ue7{)yCf7ZXU&sFRywY?6vzUK7~HHvwdgs zX;q`e-lI=@50N3aZ!*HlQ%}Q!rv>=BYZP0TYo^36%rNiI^0bG;*W%G@bw3s2%6SJ` zKTc_fcAMOpG!h(DR-EU!^IV{9A*Q{(^W*f_z1Z>KA%of%^#>3Gr4{+~*2eZVXyq%8 z_JQ<$Mjs&K$$>*#`UQvX!j$Z{MI^W5h)X0>^{zcBz?3_KM0)Q5TxM=>r1O>Xb7o7b{I0R0vTK8jg%VM zXJUL^1ESs|?SQ-q5F`yN5GxJUyo63v3yXUXC*DKV-2)^_=%!Gixd4uSu&Vj+M?6*P z5G+R=HRuORJCaXB$y|72O~+w`G30R(NZLw-`O#rRpZH0rSu8d{$S93#mn2@5E>MI! zt3LMg<~#SWbddm4*vvbQ7gSFDDT4mgMRzP8>jWU#JS#6ts28vtLWNHODDi54OWxzA zibvr%{=3wh`v71Z2_Q*@Qa<2mjL>EV01n{JBQ;GGYo(Hac>p~YAnzv_HDGKSX5Tc=ZX-je%>94?{R*A<{6!&>;0yqfsK!mgCJRxK_$NEqORf}% z2sagy1u|qcipP94B!QGqfO;gxfe2o-3M@MVv|Psu%^T}Qkxv^%H8rmb^oe!0Y~y5s z07xqKwUI<(l*0A9sU=ZBbLu)P;B@vgm^tGQ3Y1;Sv!}(A?+@Kf@yeL>{b3j{u$6$z zf)Dcpx46`p)9ZIEW4 zssnH;eXn^YN8nwqFvShBYh<{Ea})dODhlB%0xM8(c&pgxb7RJrzf&xGVt-p+$hbeX z1Ypw~k)xz=0_4~0RBSq9DFgR8u2K^(+8U#s)2!%B{*jBx-F+@*MS(gRa2Y-FqZ8(R zM~H6Gsdt@&tJ40I-L|zX5K(sn(#jdjF;-O`;hrm9bAh}u_%x)4qT}#{K08SRv{V->|YL))ih@5=@$+9$icDE zB`wZP5?6CT9GrXFFrs9|p_GQ>HZM~CCGBmS8Sx6h`KN!Pkoq3PRs$mdF+Iwks0W&@Jrm6n)27FrL^lnW^?lBbznRX zK=)@7ijkiovhgMkUwlG$LPia1{}|!UBjZ}AvWKI>`Vg^}QR)59`nEW|ebA;E#C)j;5 zDFCDj3A_ojzyqwt(v0KKx6`f~Zvl{hxNi6FdfQ*IYM|?H0ua6Q9f*Xo47UwTj~^CVXy75=leixJ5*+)6}&9J0qHjJ>D6G^9^B z)EKq#*r}`2_s&YOz9I%Y+9;gcUo-7nItI)6hIxV0Dg2*;#9+)#rfmr*+dLo|Q^%N9Ro^?2O;|Pry z{GeZw*<$R|*YST<$A5h7Z(oY%>I;iFSd{h|q?)58-cKKWT)GG83+&Z;0WynF;XPBI zc;(y9!Yvn3eRC9?6Ek-89ck#>@%Jw~FCJgNdX-LhIkoXfx&YPq00XeH8)o7UnIDFU z<=KrOGM`ld1&U%>z*P%2Tj877d$r3Q}8qP(Y`mqiZl`Ps2N42#wtQFHWlr>wg$y zJuMVD1G4N194nboY|Y{fDb8f)&4!D^JPQI-CMF%RAeM7cTWAwCjh+obyZ1lLvqh~K za-gVHzvq*Zx_vB=30i~&-6^ZWa$Wh_DLZ3tp|pHfe12bTSqq_6>V))wYBSd z`rmWWPR=jWj@MnJk^@(AVcgl7#DBQS>&g2cVCYM?%y+IQcNH6XXfN4k)Q9>6%3QPU zSj}Pc*?nLpX!ek$6&3QS0aowYWWIcnXg{F0bL|DUQQ);JA^{aqeu1}05sU{xwzz-? z!xB=4MXA{d<$SbEnIBS5ED}uE5HO*x2NPM+d>w0_9;ub}&pJPWe84}};NjZLwcrqk z>u1cH)SDktjklXuTqOkg0~H%#5k1*b*P?&9zOU26>v~^{P=6v>9gYMlj)Pu5kS?|K zsWxE_%hruAVl$aC5?!=5`~BC%Ct0I+&|Hj(k3a(e+G@1Z>x^gSk)OY>7oJhibl-mTrf`ny-bMvdLS}J3-`k4D@ns5JCv60gB6tdotAcAi?6TqsUYgTEmiLFE zPqSrXc@I%(P`zCodeulYD8Q2SOuzt>C6Hwckm1ZslS^a;DG9Vuc|wR|`+=SaUM%W| zYP6hrzMq`yhg3a7PiWec!d&+wahu&qvCO}huU;L!MEmjLF=`U0%hnmIv0-4{CA~0vrESdBO7sC;!4IOE}uRD;*?$*rpSic zB%OPUy&aBY+#o}1m=8_QbnS^*4v>UGsDskbbzMtT4!Mj9+rUUP$q8G4Z zGK~d50(C_-29{9(d=xgxA&6gZ4nuW}SIbLUd#9OAP2v9IV=P}Tk>eJBCU-W-tHn#g z@=X8>i^n-*+^$jHsgd^SBv9RB)Q%{-7EW)`MYHT(I6zdl&IGqQ) z{bLD*DSzsS-(7DdxCe<({BpF-=1}4>mlqaMCp*!=C^6<*1fa7C7!t*FKD@OtB2{Hb zn~imsknU+(<2s&f@04#4Xr6^hmyrY#i?1m@vXgu%NjRyV*W6UUbKZqrOx5>I6vqBo z7G$}V%FbAiW73jLlXeul?S6=tan!yiv_(Si67j!-c(ao5pzg55P?0Qx?n~|A-cBtc z9Ru;4`2G=zOR|jDJAR-gYh}0SA@9p5i_~&MeD`@ZigUz+=`R9PsQ1LNA|Am@KUeaJ zQ~C(h(|Iyeo}bf?<<9}X-qYVPmEEzLZwtKRp~@VeX2c#%8s&4Of)#0E0&5rrp()j+ zMiDI-6JMqTH=5aZ45VrTcQ<%i49!I0An92dGFeMm!P)saP8Rp*WCM`X>c7Ysq~KM(W~<(P=1>9bF8 zsI=ky(^J7ip)nd&9~G>NY2Sfx*%w%Kyg!6+GoF1xG~+B!7uy5;#Ml} zKWeeT{ulN@pC7gBZlNMExlEOBjD;rRAYnO&DH;^ladtf%Pt8IB1!s&BelowtCsu$r z9ud={f>a__khb(vvFEj)j&2!fu{&mMioB^x>#q2kA{TW-Ky%7EA}2}`v8APRRhn&Z zq7sC(IxWlhAw@T4p;)J|_BFQvy4vUVOiA0#EN$yg*Dk&4>25ilUu1IM+9b*}epB-S zZ>#x(PNOt&q@-SaV=XYZC9P3uJ2;xrkZCJv0JRs#Bf^ol_aBrs%r9b>y3HYYoXgIB zx_chsEsWbqS#F*~a{r%2#QO-|BCLw&n9}#zaOKB?AMSP)9A%;}mv!0-{ofJVM7?;PH8VB~ z53}$8*=F4L&R(wnR$VDAsPfIF9*}gz|A@*YV#HIX`F!VE?BBiVzdzMh0PJV0$Rx|V z#{=J6;GTpOo*qEu)LyM~Oy=J&#n)Z6yS~KB*&O>6mBQ6Sg+Q99a0OaL zwyfWut-|Yn+}!^0)zTApVKtvr&?#J)2H0=Z8T@o(3+NQ)?Prz9yhRl{9a!X9;{`kg z0CLfQr!Wc1-ZLTupe`0zlAa(!0LgTM=QBW67$y|qyfhK&Y>9x+1JJ4oyElPofF;IG zmOdd1QYMR`u7tO+A}Vumb_e zgJl6wWXCcQdO@m9TB9?9hZ`fk!C7;TvF=k2ljkahw3TT5hpV z0l9XmR^t1J6@p;$I^rQ<^i`;xW)qwl4ZrjG&#OZ8wJ-d@COtTjldiM@m85c@Nr)-{ z_p?m+;@y5#JFrDDtF0Okh*c;_1#MC0ChRZl?}@pp+GSBI9UGbp?y>&?E@Ifseu(YA z4R!MqZi?_i3c&w^xON2Cwu{TDtAF>9 z!!1ID;Xm5q;d6?xKSbWC4S36Bb%`7X#vzxWEKC0xAqUh@jW!lIjZy54VE-7B03{&G zjNl%v06734fC4q7AO%nWNdV9Eg6fVGE3>Me^dVyIEB?aQ7-oR9Z26O>N0`13Wn zCWR>o3v?i8Y!MX}o083KRj+jG$a#ygmBN)V&{fsn&1q_Z2=MV)!AB&h!mPW4DT#rapAyQev?`&VGpOVKeB+?H_4S?5V{zq5-KzYsssCS*>GCtL${&e z4Y@u7OD6^D@sSXPMfPD?Iy0H??EI?2V0&qZvYT+EBhm}-gR4jUYvh@2bA&6F{h^E= z$Pwp+!ZTFAU&R;UIAQJeRJU<)dWc2dTsr_2C4P^@M2m!do5UP+n}#yb?3Bin?VB|l zU_+9;9Ok^_C%CL-Len-p3!^S$nNT8SCPy$^OJ{P$Cd{W;3_cUdCVWO2iSdEXiarzB zF-l-2$OB20$eFWizB-qqtY2z6XB66K1}Nlgimw=LZZ*;uHQ|{m@2HpaJCKrCd9U|# z^jAH0Y`teM6q??+Y|GwjFI?{UwMXXlfxTR>!~gBW_MS61K9{6{{(Pev+v{i@&Ceh0 zxbw~Ne6KarffH;p`H!Qs%VnpF$IiiA&c0064+`j9PWHb!T+)|KqkFA$dTp1ZkYsL^ z%--_}-L4Jgj&zt7V-9QvUp{}Y9DSqwA8QEwanyy@@_${?Zsm)4QRgoI@<%=^d$+{x zG+KWCiI&H;1-E=|ckf>OzKv<_qW)cOkL}}2xkVl~0ttl{`Ek8pjEoDs(tg|)p4Z3#D=3}egP>1ZdV6=$tJAHC0S-y_Q%D|Yg_JQ8fqpDR~; zyX+GfV@>b!3)l9Kj`6?J=bv=qPu31dj|s@`3&=kSDAo=vj|r^q3%qs`*q|MBGbX6D zFR1+_=$>|PZ%pumzTm-=;9>2M@tBY&eIc_aAq(1}%Q2xZ`$FHGgsy9cF}Bh^^o1Rq zgniMzd>nI`{LXRY71Z@!c(c#CIZ#iz7NV{H(7Z|M&3Cj!R;(5pwqs*KuG|=RGH;9CFwlgD@kRVh8rM53Jd#tF&oFO}Y_l@kCs~kYG7o#?%F3;xl^MCUrHN_i_*g zDIFpHEal2FN&Kdiei;T@K<2YtCn$KprIEjp%*Ekcce*2L+=_86%Z8=6c7~=1=L$ky#M$9?=$C_^E~^^-e-n) z4zHZWy4H1lf9qot{`oNa9OBISnXkdn<^y4M2~Ix=vD+GnKVMv}MC-!$+PvJa(7UqU zSy$#Q;|M52%~N9TVqrdC83G(6>ZNU@^2P91gk07l!qy=vWY7*6kQ^_a?F!8$V{M`@ zbgo9=h62K+?oM7pOnUS|(GQDqT4S%)U@rLxQLQ)eF2DPdK>}x#QpTm68N*Q=kTdt;fDkIyuXrne zT)0Stg5Gk1>wkms)6+}J9Z zgyl(06(s91kC9=@LoE5iKCcHka>Y{4m!S#50-l3Rupi`Y;WEifujt?Q4{4?@aUZoD zijkj%k~_}*tXtP& zD%z9GUWF)o(0ymBtRhEjI9fM)hTn|^Rw@J5=|y5Mv;O`lT}A+u^($ShY3 zyy$_mzT?4^Ibdo(nwkby<2_`1*Y`@RRPFFOhGe(5FC= zcRlFmgvzt~g*Q*C$SuT47Z(8d7n%RL-YEWxppS6Y{u;8-5d5PA2{?0s&<%kJ&$~qI zAFmXmLXGG}V!H~V>5T9js1)RVajPp!9(^tOjJGa5P zf|G1IQx5>v%K8{H*M9RiTb+?olg@l~{eb2SZH4t@hq77y=;PuuyMvyYj^s>*o>#sX zU!NO#bZ?bme;p!4WQXaDp8Qp8u=LK>{lz9o=b$pXR+#1W7(10NpZx?@v^s+m7BG}Z zu`U}2h!iVnc-nM#(~BkEC2S*8Ev?YyBZ&sRHob|htYXpz65%NmxYTqyH9ts(Lkt5G z=#&q;^obR4B7sHLLCQE#e`1=&EdpSy8Ax9hnQ=9gAFw%@oQ9J2Z~fBF5RFi=YuSRL z*NH-gb`c~GdhBeSt>c0ciWv8TMb!?=Zo1%u7dLfS=yr^jW0t&b#l(GY2$GtGi&n(F z-zpm!N?_Cf1<`EVn9P=Oewd=!{%*EN`_^wJt&Xj^O0#>X&mJdch?!WSjrTVUQ6)}o zoQqBml;H}e>G9PRsC|Vh?FQtdi8AI9l87zpVB+Ey(X}eXhvq2Ev!C6dJ}ay!C#l=y z=mdH&c+cEb`RTGbfr6cHj$WU<#mXg@>ONuc`q3|i5tOZ>xFfUHFEWMAP*FS%WfVd= z8H_e$Ck(ThExL}dHEVWRp969$mElD?qRwGVb!s@+Z3h^#F}wnVO%6M!zX;D5 zwT>u*Oc!*hdd{-^K0|DcN^@~$;1q}Tq+sbmUPfs#w-|QS>}+~Qlh}-CdQ~bi18H?M zbe7j^i~U{xr4kdg-_?gu@1mf`Cf>z2UMG2bt1Xlnl-}OysNoj^Sz?)j#OnC2J=C+q zNsg?{qo7f4P;QG6my9`{i)~ujZHrAc|I#=Z#Z&0XVanYLX3M^PoQW{=FB|1FlXZwi zuBAE4M}hPkY$!qgtzb@B$xBR?TW*MMcF@B zv_|400tWMvzH{=x#W$)xSB^(XXLQO1`#B=@Xd7WTHbrUdmQ?pD2q{m+GVpw!TODFn zBL&7)YOJotvZ3n8xaZD&fDvZbVUrhNu8tL1xZI=NeVB}o868;8`Pn;EWY>&4ogPK< zvA{d4SQUyO-Rdbo&>css3y;-)H?anF`SVk73kyMSOnK9~*UdTTPQFglZM{OBm1~F# zME`(T#j>_Oxp3x-qeHKk zPP;}Ks?AUz(hIiS8M;gc3PA=TrhA^^P%J>!=wT9p4EjE8!XOD55+RY9dqRg9b-(Jc zVb>TXT4;|tq)@0#YAkszN(!MDPsd4#*H{pS+<}asVS$NfK*&N&mK-lRH zmYK7aSI(1;YMJ}cX)i15l7m=DUyJR>H=k!^uCLUbc~oE;2x~8VdmwT8NfI^owNmlN z6efLey-AeF*HU)zTKyjBf`sRpxpi=7|W~OYaqr~nnDJ`($*&Bj3b^cdAa0+2&Lwgs>hl?<_QQ^;;zGqiC z={A`3)ICoOw=FT;l(ZDrn!nHRyyWVYMh`v6i`pr*Y(h?>-pAfKZ-#F*nt%Cu_w86U zS$)qI8EDXo;`flG@GVMXWJy|iem%Q^26*0`oIioJj27GQv|ZBYn~7xR zcjNsZVhJ3?I)-F)e8YKxl%18!ERp-GWEJ7NbOTWPUajYRwyW?f8+$PrZ2XzugX!9f z7AcyP2hC@OKb-fCXIyj5VL9{BSGuJd2vN*DQfFhZZ_V2c4Wri7ri!hQ6=slBp!A)k%go$oJWBNhHA23oBsckoss zI5#jY+$?_inRMB3gBuvVhSk9w}ch871{6|qdWG*~MJrT$evi|jDB8$`(<<_*v zZ^6PRbchx}!!6GWL`B!{y-VK^_MkPpA<5IaLuY;`CIXGg+@GrETNM*t;PpgTV6ow(=lrfEDCP~nZ#DwsPgdIJ|7%8!U%AD!|-Z4)7 zSR0NBNGdR9nAAw!^+`4LfUU10h4NyYI%9T+*#^F_p0u%NTgIZxAOlFI0V;gRlEH!~ z;(k-QpiNrD5nwj~^QAJ6E7Gy&G191xIFoGS8kU7UIV;86tToVO2X3Y{B%M77CK*6g z0lg!ggr21c$F0#z?TO!TMbs-Ynwl^_c$=M}984>IY|4YPe96(#{kG#0;t~=L8kquS%#gT6uz3zl0X1i1>|`^YLF7L)MbEtG$_FnLD*PXu(@6>S>mTafJN)(8q@xP7*esr;r716X- zwI@aexk&{Lnv7jMJPJ`c+cm0%>baNd3W|L1p;`s6Li2*4g$tU6r&aUGq$1HJFL7y< zBo9C`itp-RW-_b3IDwIX1hN9aO;i|(;EQtO|H6qfWb@IfyHN^YT-t-BEr%}nid9%BR98gsx=|d;0n#YTL-ET$5##rWf9fB+rCB@;%g9cCL0$S%2xFOi226Jv!e7fnWd4=BH`Rh>SU ztH4{~NkzFXS7EsHqnzL&u9^mLcopuY@jFBmXhl;uNGoa}*n7dT@u4ne z61EF_;9MQZp8ycF2iUK%oto#6TsXF5+oy8%$FqI7q%$fX*9-TP9Xd(5S9}~SRgTC zh`?&XL$vIWJ$A^kBK)@$f;$)SM`aHL-VVPho3NmqOk7X7R=1i?uZK*Y8B6QejgR8i&U+-*!`t+Qw^ixEgFw-q))F0$ z*go=AWs@v*X_V_d{^>dX-^a|5`p!hn&Vk-e49m2M$EDwnHS-;Tx zQ^ zxk6@HB0&!anQsyq;+&a7v=LjY`PsLI*_DF#NSGWXY>IX#LJGdM6g(;u>ZqMR%n(W* z6qDHJr*R=+v($T2g3k!hB+6Bl8kTt~IM$VUi!|}gQt*9-U^>$r>)E-Rdki@d19=e) zA|Ih*S5D^b14I;B7`~D;`ek|MlmwoA$va#TXiQmnR~C#o6#SwjBz;9lwuxJ#OTuVj z+Je)soI&b3S}HbL!R_w#CevzJ3bYGwxst$OMAgx7RMj$x6LS00@oC$_JiJF=0bmJ0 zE|pS2ToFqJa^U(hD9ZQ`VAwu@b#0F2V*q0bEd2m^_o0_YDJ!O;ocoK$V;L^_ezZ(o z8^-CCkT6DODqwl;UCtB3;dC-$@c;za7f1Of!819(yp|yJfVU= z=BjqcVJhdr)zO&xAxv{-WV@A2SEfwgyv!q3S!CLqokk^omHM0KU1fpZu_`KR!77@- zMP1Rw6K5bt03G4?^-(3&ufZTA(M%k6h!6}kq6|Cg)5|M{_wR2OE(>W;Ik5mx+znQZ zReIS~(6^gJO&Xs%AY!y#_3T&G$_Z7+7!gf0SPDyT8?1KwHLbf_?UFUvKEPLI+^4X9 zgyF@g18^HP_ui8zB3b4uEnM+{$ zzxN$k+q{Eq+1l}jE<*;g%2drocP+Dk*7{r757jRK)!p^g^S^I(d{VbxRch1MPR49t zbM?k5cqZQhr@zukeqjx9)Bflo^)##D9_n;WnlADScO3BaYn8pJvpml=P&Qk->8bc& z-@^C2JiH30OPJudT^Wl3Eb~a^y~{j2LT7k|P$%uDr$6=yd4AzK5i+0CwX)$Iy}_JQ z!oyjr3(EY8xt0U1_yPmnI&MA?vee^Z-&3TqP(5E-b}~6jSluQtMNm>hMfAlh zKL|WBFxcB-9npW)ci=0ekGhXH$+jw4hmVn&g3ldN(Qq{(-c#rNtj|b>i-E!pScT$w z0~8KJ&K%xIKMXxMd}3|uS89{}RotHSSUu0nl6*Z!bM{=LhBjDVe}N)xE7da+OrPMxUTH)kSa zI4vq2=0vzd$TJQu`J#-Rp1boVY{sOwlhG*IZ|#SBrDuFS?Rq+1>|Y#kIF)R^_4L{+ zVHF&vS8S&Zf)Zh)e>NPFFoP12;t;8FdRG68-oEPU=JGSL-F?o%cyZ_F{?8jcQ1!aB zuQu!(J(uLoolkvq?q|4LG{IV5QbFbjHivr4u{VW1tIU_>#>14o0%rOhMAIBQ!g=8c z`3Q|K>;0HNWG1C+_TrH&31JKbCL zGweK0*;{k;riTW}PE>iLzUwcn&Q6^7|Gw)peAh_pBrqau|3yNct?aZKA1i zy==Qoj-n1Okf*gZQsEk8=~nV$E+)=XTC02tJzw8PX0D!+{3LED*Ur<$iYs%yhFAN)eS8{75N!);MQjP08+m!{e*H<+_afq_$t)VRQ`ffJI zO9dQ5jy_k|j|9V4lMIqu_EYe$Vq!zxs2*w9C9?2DnK*CQ{^Fv0ikf__RfYU)i0wIN z=79d+D>A$`uC|wc^j14^Aa`ne8h-fwpg+hNtZP+AUT*oq_Fc|BH7-P$xmq(JMcEG! z#qZ~XpMwRv2ey*i9L;Wh?0l2<(&(fPKY=U#=lN(@g~kn*Alhe-ggP-c&yfsSddr<8 zZ)Tm)<9A3cJQi1a8B^z(>(tz<@guw1Kg>W}_RF~0r`Dv+Zhrz*YN(h$hUuz#8S)3fPzcUCrc`nt zu>EuVhvKt`wsMO0``YQxbDuw85J6_W{9>`F_27)DdaBP4&DCa$2hu0cKKt6k&7NPd zHMPU-$zB4c7|4dE=~MK1gbAX@42(=_4`d-PwaU~2>dY>*wa9Sx$Fo&05IsXlni@>= z!WWUStNCzRe<+w&kt;){YBom00jQZjm!!2PiyH{1JEPY9P?0c+;R-_J)@%*Zx>MFrdc;%^4O2`H^^Tw3P zeu7>eK1oWm&eWU%UP(7|5o7y9)w${5PFtZgy$aOy*HTB8`^(B34$D?`L@@C%Yg0Ck z(CB1U3GsbuDCoBedNdHFDbixV$?S_{<8-Zi>a$~AQTQZluTAhT^rHHcFSSCpUoVtz zG0L)*C7dQ#a0XNOPXjV)eM3cAG$>I*Q=2TI5hBj+;vaNp3K=h00h!fVW4NS8l<)dK zXduMBCK|}W z<)phwS2xSjL#9Xhn-^ku=Y@r(>b>cPv@Zl_cbRKKaLj&$xTjWPB^eGhnqV2DPJV3R zM@*u|dy=JMzDM&L{@5g0SLSQAUFd&5wRL;+*I(C&at^6LEykoidNlxL+l@@dH$@JUv zmmh|g1_W!rsz3goP5sD`SKMg*!$7WjMxg3iU_H5bowK^aM!xyBlgp>flhM9Y4@XX8 zg;gv)JzM#H6vaBs@Kzj5$HAwhl&kgIg`~b06OrYcCPrMA@8^ zn!9`TpkfeSA=-F&scO?7(m0ojml{Ic#u~+5`M(bmt6!e2qkHM%qVOiW*YWCMmv@{%7@OK-w}N)pYBb_4MMZ>v2o6<7FqGwV2JyG(37qsB<3;4d>76@7 zQ8Ig=kDNuCp|K)tGz_@l7-h^S6o)DaH9Ey#ydPK;ydiEh42R976Lj=Y>k|`P(?*7O z&2?6R3ZcT$rw_`tf0XgO3FXPybbPrgvHrrNRzHs9>f_7w{6?hIr}tj$cPk$xK6^y ziy*xHU$8+8YPb7XhajAGE5w7<{wR#Ia8Mx}tB*YTb^_tdc9RceDrJiJ2KwGZ zceh?>{!?GO@q0b`@Hv?%g*TD~M^~5(SLSqI$EcdsCgs*9U0!Uz^tQqu6>V_~q$QQ5 z)6*_O8R&ak+ekIYG+W5{+ADn{ZFl*F<4y9jHC5usRuR;&2REAJ#LJ ztceoWV2|4$@;AxKl_rV;8j|*gM7oEfsl(8iY~>RjeUFME&3-nH$y!WN%V~Ok1@>fp z9SBoO8kTT6v>RyXi7quA43dFMc;M`RX}5>AwMMnu`y&Lm}q@A`mWEL?dij&+L=|FBzIlmx?S) zT^^S|uXGw*C@b)H0?4UyyE;UxdU6SCGbTcblCyJ@*q2A4y zYZg+!zF-ya&Jt8p9F#o7g+v{8ycL@M#D%H{_J92=E}Z-;FVq)UKsM6*Zu(krem`&4 z{fFXPyzZd#XUJuXQ&}GHkNn$fz?98jgd^=GoEyL*n(?sfGNo`w@el8wryyc#Wt1Dui>ve;ZS^u zGLq8s!bSe(@ks|mK45xAt;7VXj39wAO$MsMv2K6kX9r=PgQ_c)`e*%sv(BFfPB(R( z6JzA#|J1#Sag%V;M3tM1dt}!tPs`t53DQ$|VosQK`BeAyu}<)%23D(G?b<+Hx&~0W zfns!8ZaS+L0o1zzOl-QC51ip2`WFgS|NNQ6{N8w_wFCVpYN0k?9E2BF^jUOT`FY)& za6Ut6vd)N*XnB6l6MvbPSBK@|0^mzi49W*96{(^WoXkfwXjAdVl6TE{BCNeq#Z3D! zdpNWO2e_TC-3p4TMJ7l-)M)ASv$}CAKN^={s~56nB4LZQ??z(b0`jZZ#?Q}DG62pb zq=Na}9_kCTDoC>fFM3X}clxsSr)MV{fno`)2RC01j^Av%XwVXss=G!lALH=kzjFG= zPW$KI$J_VcJY@a+LgCEsgYh?~$93Uk0OMj-_M)keg$&s=fE?{n31sOuF{Ou-qkM~E zm@d`QK_>K=&%QE%=uw7|N1RX{?s|Yc8l+0FOrl5Y^UJX6{Tud4x_8+)kY0aRl*?!u z3OQ+VO>=;l#H)4)BUlW&VD7Ax1S6hwZ zdZPgnz!O1{E)}df`J;-S-$tY?T9dEsIjF&u?gol6YBkjvY0fJ$un3z$9?Ae%FNY5E zd$EYj*D*?zP~*h7=@6c)0>f#R3~`e(kbIF5siQ&NSKuI098)r6QJ>{jZ47UO)KH_> z#DsX^t|!HclhbuB?Y7TbwuE_cg-EEmIHW!A5mPnnM$(MCU{?MsQL<`{$!rF@axAEQ~tD9`>F7EQ{aQmATQWG_QbJRSmJlYV;V z`G*Xa48--yp!Bo;(6Ff(2Ha+x$iFhmnBDt$8(YqGu6uhiN;`qf(l%vvsK}io)5>Vv z9=*Um0RL?#{6+t#XU(C{K46b{7ax7My>HS~?anpr5YLUwh-Rgpv&xJ?yAJYvArALC zDOY>`umASg6ambBDJgFvQ@+NKd{P^ez!9lu7;93)W)Jt34x?2 z!{*=nc-I9pboVp4Ym=m>D?aV$OH zeOI2-mN@5mZMup#561L_rxjQ^q8K!-F_CexuQ&Z{T(g3}{A>9P;uAFFZ3m3++ZQJO zkSM-6qCV#1-8W^6Q+8Ga_H-)sV!*3;bMf#f3EG_XjMo7zBGH<(l)27oojxjh<4e*Z z&s&aD-^Vl_w}M{8%}$uwMQLu~lp6yfs-(nrs4NcrAR~cS!!2eZ6nI&vf_=f_2}L?= zP)daCpU<3RYGqY?MjV=< zynZYc=~z!DIlnXitoaC@v>~u3j%u z`)loZ1Mhf4aZKlkj@j4&vOHhi`QRS$qp$tXWlUmcSJ$g6SDcN>XI$x5S7(FVS0*t}d^T8}CipA(-G)G(j zmcJMrI9uXRZBdru&*-dsxb{rD$$t&9^FW9#&jlyDUIXl$$^a_$PK;ys(fRzFOu{AX zu^LEmMJC>FQ_zLlr^SjMjXQ=W+1yk&!ZRO%?O-`9|BxHYRdP9#NB7X&_t%Gy7;o=I z9BQwE?}LV9e($B8>tEx!|7ptkw)cw}uh}pwZB>h*35$keNv*OE^!QcQp8)Vzd@DDV z4Q6Fm(qTGf!mPCs`>pf5iFfuphzcZx-kU0 ziyv?g{+fC*1N_o@Kt0V;?VNp*Z@U9~5V=+r?6dr7ZthlXUG6w%eKffFoG$aU1-e{v zpoy>C@3z6!kdpwvE2*lkaJm*lm0oCIf)FpvC6om7;@yT{o@q7#|wq; z-kwEt#DTnj&EK3=g@jBX#cOH?X2rR}T(k1A@NahkU zq+}2AN->h&0I25*2|2~+AImZtAT?qOaW{_l(uiCV(f`?kh|QLJmcT_j^uHzkc}4Jt zTj}a)Km_`e5&b75ND?uwlN=|r3cam*+XKW>MuKjxB9LPAw8s8Rq4Bnq#J?;P6Y>*( zE&NTIL?iB6+8EZ#z)?20i7{G>&{D?a>l(?SwZ@Ju36b2F@$O>A`(cHZIz^R%S~t~t zRPJO}yLzLIW5w7dTbRa?urewW)Lo%pD*2`ZILrvB831O`KyLV?F=V8@mqPA#r)@5# zscEDi)N-9CGM^9tG)m(kn)wi?{2IVAM}h33y(CHCSty z=$e?m__n%qQc!Uec#5R4PR#bidX==~(0GuoiSADmO_?mUkBpsvNiq8_E5yr9(V5*w~iSp!X zB?X1qr`Hw~<}%_yUmUO*a;Yj7c7Y)6TvkfZy^ey2VsUhrqc>M>AgqG5=54}XZJ5C} zX-PYfQ;dL%a*?#9VtP>c4}$cW=V*FiGX^ikkz95pn=CIEh#`dba8^BwNDkCy5a^s| zr54EPA!SVgN|U~-rdWm7)&L{G@<mx&a>eN%6?i3nrM0VYI#sP@NBK6*o32@D&+up5Dv`Yo zIy`FDP{ABXz<(hIbpjRX;DA4A2MtJq@Ef;~2V)>?7?+8b zvf%`LvXp;0!Pp>?TSe=?7pk-Ys&v6X=Kor#GK%?kticyXxJdOX54B5?pnf#ZYCxr}oIvjcsHpINS~pAZ6N1xl1wpEg{)sA`NbSbxk;?@XM) za$s60elO0wlze!!{U-^%>$-U7L>jdk1;Y5O5}|F9Yq9L>;)254yR^s88Ma$%321e8 zJeT=^;zf)p$*vTOVIP8P?E}h3BISpqL{k;UG(_*J?Ic#DM#f2PknrKz`bY;2HWq$x zh{Hw}A^KF5`0*Z!)d9cjK!q2gV=Q#SDy5Kl7ow%T=sa)pyz}xcob<}`E8*EJ3VB|j z&o$`~4B^GqI=n9>vObSdqijUs`M!0}$K@U^xy|VO!UB`n&#M0Lsm!vgkFFq@n$}en zd%-Z(*$jR=b!-f%5$I(9S7Ve#`3&YmqX9IKLHp$B>ytCz7qeLS?~S6;bXUk$W8C&) zlCrI1A`QDOqk{JuS*Hy@$UdN|Ys)pQ+_<%z*dL(+E&U#L`BRT9M<7o4h7@i>>f5d| zG$;?X4i~c(8($hY_H!f-9PMZ$DSv(9Yk9OK(b!^(>YsliUyOI52z$!9JbtI%99f5E*p?m5kM zMb&RJ+C^y2=+s#ms(O!8T*-{LN{d!?j1NKqQCuXX)QGN-8f zOlXGaNGgw>6T4%^20mRtw{RgbXmdPQ(YEuyr@bpQ?Typ_m$Zj+FTJw;iGwWBVmh8B zWnKSAdx`2(%dKYiDJ&Tha>4&zXk6ugmXa&!0B){A(H0s{YdHQ>gsV1NL!&t|41Kqm zKXCZ#wR%Cz88P{;(RaZ#VpaFN8^(DhHR`tc*xQeQGFdp%);Lo4_ z((bQvmmG z$qnvpKJ7|B^ZVD2L+Ok+cYZ;)-rS~3t67a^`ZTJq@%<>6S;*8z4 z@JMW-6+qMyAPQR(z(iJHL1KBbENsI)S*9~oBvmOlR5T^rck69B_9}a zWuF*?o`q8I2KP>V;L>%R@@Jg|tC39DD4p=B+H9pU4$6`rOLOmjee8Y8r{xb#J-pho zZG-gVJMGll>h>r+L^xLX-9jd&Y3>G}4f6cn{;XJZW^KL#$!2XA8%u6zuK!rw*Npx0 z(5#^EYk0%whv$k{Q)0&OE`O^F_| zgmHf7U8NzhynZW`WMUh$F1XVA>^0GQvcZNZS&t{PH0|Bx5mA4N(6b%U`AWs#v|C1j z9n6NAV>v$_;KkA;NDDEJ&H$9r7R}{^k3nD<01S|Q0W_hb1JJt3As_%81o|)h!~d-N zmC}U9^q%ddhv*7Eo6J!4&v_B@7ywxuEY9M6c2wBJa@6BO|>v($n#79x- z%G#$jgbLH*ov$OcUL87v^*80tX2r?7xb(Oy?k={uPjad@t1rY zA|qn29{t%Inp@Jqr-^3^g7K1xINTH_RoV*K<~aqDJJ-w~7X0pUKJ>2O*}_jy=P7nM zx%IA&4=-9g`oyd%JB4ZQ3)uVLH)E0Fri-raTxq$5GM@jd$razp`D1d4dO=brtT(Hv zJI~+zF}dD~WVUm^R;P30C0QfE7>;~3|2`Op17+Ug%yNWC9P0^K!!?RgLJA$lAOcy9 zVKS{n$1=9nti|64&yA|L^t)cbfMdtjlBBAStc`SHJ<`v-*s}zj1AYVJ>0WZI=E36j zqSJJUQcB45)AZ7nSp0A94U#S<%#+T9cPTsB#?Em8l)EvU0J$P-5X-vdDE%(qQ+~k` zdBaB8Oly{+$ACMBIEa>*AhVqlG<8+?F24Crnp$#Wy-uIaSF9$Dz{t~}+!!atrT zdY#UzBHyciyK_^}3mC}YQTin78U8?C_Jq6tvOqvrlkThAe9f$H zbK%Y1E8%_ey&ntVEA0n;dqfHt{ zn#m$ZQR7LiqhS9cxk0qOqw^JWZj zhneXEUH)r6_}>xd|BQ3a(d6mzfA&Ec+P0ep1ik~VG?_GRtDO8>o{r=vogs%X0-Hlz z)$BcuKR&3kITqfbb=_2L+c2xdI16)rD%eKFsl=6|J2$=z&Sl@s-CuZJ#;yt66D=;4 zTesBi^YjN(hr&FwFzzZ+xV)1#gPJ87qgX5N*G1{E|6_kKa3P8OMMd|aG#>p6DP3)w z)5fPdbILvC&(Dzc@7~zznQ+qwV|o6cVsxFZzQWh_Y3aeW_i4=ihkLIEBZUNJ`+L5| zh-l2W*QD{5(wmlCeskM?G)eOI-lY>WYXdypKVs~miP81JhnkOU@BeOWW4U-b@~7$Q zdzuA)uMr}yh}V+Oi?HucOWfwRexhb&qqh{z?bXf7vbOm4iCTn|1zzkYFGiC3|vAvx5 ze;K3;=AcAiY-X56m1I0OQjuZdv|WY4Vx+5b-G6LXm;3qomerO|d6!xx(n;~+tLHE> z@ewe~5#$EDNHQ~pcP$5Ox?g`fSwMq#i&lcyR-rP4S<NJ9UY2}Difd6ZM9;5+1^AJ`7Rg?#kFRg@a|jUtWy%c*1I~{eX6GWBpcDZ$+Fi z?hgIB^J@A<9a6_C8wSGul`rb179?K&u3n#>hFd^HnR(;OO>7$SJK zw_|(GAXy6KLbRl_W!N5+L66Gw`F|gpvkH!z*?HM>^YC}7^QmiZOo@C#CH>t2Z#2)D zm6lM4lzsZ$x%5&XF^CMb0-iJM2YCW;KI05*tyePsH z5`#2i53oOf#PN4ZRIY%juh+iC>b%Z>o2H9^dS+-v8?9#&I8f1QKXig(Sue5!X86s$ z>NayNHjyCC$0NY;Fi4c~-wH+enBwEB3;lZw-W7&*NK@~HEIR^90)w_C&+(cAojiCW z-ZJyvk*MD)=iHXP5q`LaPd{E^pUhTv-~P!J0I>Rd4>F$T&-e}?+d~R{A-KD%$Q3lfunviTJWZh1@)i)9ZxZq zA3GPr8$LdGMSuAd9+en|1lm;%s1g0>Zmd$@lNP$Zj10;gOWW>m%%`w$w>!zLB;m(7>+p zl;So2;PaXrM6fb=C2Lkp?v3mL)e?moRQ|qbO*!-Zh&H&&vC4h3eqUvW^*F^&-k{m$ zD^}FRg{Eugr^2tOo7dTfe_!?o{`Uq~HJWBl=>B(_30#9-{{7o`!NK2R^goW&lUd*- zBuZpts4cuX4XJ0+UQP3|vz(fiwOLOr9#W(B^V@6ZDvYyk+f2^WwkJw)vj5ti*fhB} zg+Fk8-VAz#5iq;qj}kVxS{oYJf}bkIG!3^{-5-wqbVo$C~| zU4?bMy0n?+Sg7emcPV*$Ei>Tshz+toB6uRhZmjNoiO4tFH`rn5IR^9di;1LL|2an{ zVy0>D3($(2lwYDoF;(JM^p=)2wkX2w2a-;I4= zl07tI9U}V@5>X`CL!xG}j4gZCWZ#KI6g8HFl1XGxA<`6;t)kTY=CfSi&-XgNbIx`B zuHWyRzvsWX=AQe$pRecrcz$kf)sh_%-aPEffB7#JB}{M^!{yQioBZ=A9#u(;-JjgalQaZO#;% zaf-at-P|6xHi<1NIFgvL^UR>re1vnZlw)^tu_?0yqr1AfYkl*NYIHYqQ~R&Q?LYnG z|IDQK|JbPw`}0>V{H%@hmgpD3eF} zU*ZWGB?hBPwYX5;8XAdTWe$!15KkOx)JHnci**Hk59S$c`k$JUO81uu#GNfpWz(AM zKF_E(%;t3e&eCIf65_&iQm#RpH}C(Qc*4=!W!k$Bpit85p*~ZM&MiKZ3$@5>Ck`36 z#w1SNt1CfGeWsSyU;fjadNSCpxZcEllWzm9Dvofy&exfnc-zGD58-n8*ki`cOXpk2 zs$Y@K4g{Fn!)psB){b}oVFuaVc$lhj+vNA3{ewWs>$}Mff?Njsxi5}03Y@L@T^0S7 zlla_%sxD%4?$5HbN7Vhhym;95{KzslJt%3?dHTor>9md5(_(OqR@Rf6*Q=a1`xdyj#Yz-3D!p*qp zd^NHq;iF0oal-O_v!)yW(I?mX0&ibuX(m=A{9YtX4q6xkqhrW6BTPXPwPsX)YQ(1aNmD*l6w3cW$nN9{ObR&(9&iKdVC#eW}YI{bF>%rcqnHH}y%eGRTPxBp@9@Y;$U=7TYdUVCi`Dcbf zaL_fCGcOX_$oYGlO*Nwp_`LrNamTvC7~lRH_s4vFH>iTjesuV2cWqWLEXeOvzkx-P zkYR<@*dYU8q2(fy5AUW)j?P47@wp;r^8cxHc+9avtCIN63a%vKT|6ksV(|#+&1_gEzM8+R^~qwqc!>dm)4m3wk+bssgJk9C#)N8h5l$# zsEqq{N}iIQ`_1c2=bL%Beb&634OKThn|T^~ zZZ|8pw$}erE{TJo%z5qhcP6FIyC`pVn65Avt>Uk=8l=!a1&t0%TGz|?M#1iBt~J$r z^KADnbr0WNIl*L@JKL*Ud7RjMut_u@VSOfM7W&UcD-8UP&5Bc?R^u_tpG6HU7~cPl zQurQkuD!`eu~Q4EUHm%27v?g;+CqLcW&9p^CHaW|s;fm1#9Cx$T#>h+5o!7U-2di2 z_5WKp`wead*a049Ib8+VJN7X-%jqI|1&9O6mkQ08O_Mjhj=s`^5s*{1s_1|xS=^rx z?<%p57{qHVl`_=3fYI}Gg!7ErunepP;G;4mZ2=w@taSC|C{~_0AOGcVg~x3%A1M?0PP^Y z3%JheC+P-}9vvOT(f>A-{`;ZfUypqM8cL&Xs8(BKpwbMTSxReV|+eLpp{ zaTckE@ULx5b(uXi`eGRKWr;#!zdj*7jt6lIh{09zLQ+9;CQzljrrhe@ZJu_K@B4sc zHiY3D#uo0b1{hin`>h-2apNZFmFTX-SS6ih2XcgWtfM+=_`B+Mj41Qsv9}DrJ6^Qx z#3E3z7~ZJUSec}J5F?r-biQ#VMP3POentt6Hb?o*It;@EjrIm%rfc$U9svhP43|Zw z2T7uK4CF3-QcUVLSTl1@l>JtphY-@rhz~HwR57Dp6;1e1?5Y5UQ0Q=@F^NaTWP})P z5yCv01`>SNVLTKn0em9H{Cx<@e3@__95N%xrSCz(-@-g$9lVWyfFXJE+ExZaWHWIK z_-x@*#WgM133|}o(>T#OwkIh{7X>4gKV{rWG?YxP=8|8kzQ@169MTZ~`D`7cp5fNq zlu>QCQB$`NFVgZLg1&KwGQ?6%&YpEh6+5C?l`JM_`!OgJbk9SY)8&zzdl*}SPLRKa zQ7*I=Cic?8-uTZ*>1o{%sZ=h{kZovp{H7m-_wzzH1m*P^{Zzoy*OABr3$gyjbK>5` zr*OGV5b2co-rm=;Iszu`ys-Y(Q?9sHJVf-E_u*3x9@Zlxk}?@D%^XknI`|6^99B{! zkz!RN<}L3^TP7d;n2=~OcvYHHZ}RX#)1=;U#d|NfUKp+r2RwRh~LSE<)fDzD*wwG;x%G8{0onu?dIxp$A>uZ@?+V(sIBDR?;u)}t_Pd2ycB z9E7@;^E;aN951Hu!;fo%Ffgxh3k`R}Rv|MucL>NL@=tOf27dmf%2Sxi*x>#J~u<`R#doUy;I9eV$)_};X|u|(w0x2vU(ruDCW`TKjTjLEN1V>6FogHRnHIVh}= z=)G{>G4gs0WGYF{D}Kd=b7BiXWsTvi08E##0BIccdNC70CFKEyv*Nb8%u!Wav z#c^>$F+lI#q*eVy*jO2FoQ#3lmBAVw_;1`IeB;1-x916QOa`%i7 zQurnaLpWN%+$Q9d^lX^d1rY3V&znz*4knf1=0F~&a`=P`F{e-#JS_mAL5gEIRyzkJ zptLe+YJM5~h=YC2qv_@eIYfyJ4xf$Kv4zWaTEc?{k)}BWlqQAK8xL$fng_pgtOC97 zSCFvax77cIx)795bL?Y@<()`A?=vtNCbafx>-=to!^Mk1l>*)5zg>=dYc*c4gs9N0 zh&!F&7A*XP2SUol6XrW;3Zgn#wpU&Xt0`PT&~AZ!cS1>0JZaNxJ#6)RaG5Uv7~L?T zM%I;HIduWJhkwkSoXV=7=m(D}ah7Imx`053?=U${&#TzBV9t1XroIe8 z%$>vhKAu=w5z|$*Krg~YFD6NY1T1qnd{MQ&Nqxd!^A@U~`PMG0y-0adgXV8i62wnT zf1N~F?3b_NFZ75CtwcTKGgS}FaAv&Ky}xNxFG>v7pHi%9w5}y+*JwgleR!LZ`&C+; zsU#g=KL^XB8U~+&o9Syr6 ztV-@vuO+RrQ%XA2L4c2n;k;qR=;V+al9mdtO_NCBoga@<39W)G`NTM0S@c>GvjEAf z0wC{G6mT&TaLOwflDGKqPBZZ4?HPc(Qf7tQHwPjT!a5=+&%wTz69gqYWg2lnx3x4O zJen95*FW_T3VK#xkJ5WGIT+%DK}?Q`u*>QXMfDlE8yoI31#|V7+*T`%tKVeWnm*pW z{lkZTR^!6#JO85m!*dC`UXKE~?)Q?2g_5;+6`zvnvj-bXZ)hb5K^m!|YdG+@Lb3Ce zitca{Pf{n`nKVw5)fL8AoZ2yH8(7qwqaQegfW52Ucy!-K7iRX-zm{i)nJ-psKfIZyIk1y^T8-W20lDZ(XUaFZ7S}E*7w9$ne_T0 zIh3anN)F+7!u#8&nE_r~7@u!`hGF>9a($9=!7aUzkG}|WEjQ)K`rf=%O?=_LP$gUy z!V+PMWW$j}_Zy#R79NtJ-}JnzP~M^6XQCIq+=9a9UqX(`G7jl*x390J{{Da~F2u@)uWr}mpmg3LK5t)X_Q*k8@zb8~ zxbOB=kI78Jv&7*8RdX=4w7o!m*_6cYqA|jWd zM~D?%xguRmRPH6J(unH&L`@-*mOe?F&i6$o%B+W=xE*D2KZI|ZXGuZCramDc=2Cba zFZ&M3Kro5FSKA!tu8mTPs!cM&@r;dLHS-{O;;y=rNGIdaoM)3fijy&oNyl(0I=RVb zaXyCoJl1i^ZjJVIejiXTkD3Cn)7YgT+$H|IsrFsT_&6Rt{nQc5sCoBf^;D9rN6NKg zo^VESihFMge-Jsb@p@)2x#lOiNHH~TEMa6W<+?{&CC!!Kk?u`P4(~o!fba=dOf&nb zb6$~rS)Vs|EX}_+JuoQkTVO^$BD8~^-uN+XLN}cpM=lV`s4vd6hz-%4vrNLJ^!HkZ z@gkkaMg3^A#_a7U>7Kd{Q)4NN52VX{S;ljh#`bS$=tqIaU8fpT-qWpm zBW`@8rOXCp@hW8>(zD+wo|jCEI`GJ&kgo!#PId-n*$qdn%4V|Da-RLnLCzC-7->-- zf^y#nWlN0bZv7-LdnEa;WimW+o2=rsn(RN*bDGKNU+9;%wKEW>$ShZgx(4w=23aEH zbfqi#M~m}=>bzu|+>FxFSXtdnP8Ay9vV$()oOZhzc93W>pFSsd<_aw`w%0Y`isjD8 z&Fdva(w{Os4$@>QRQ71 z%GlCMlj%hd=8GC=H%H+4ZLHGXN>&e77~gA#_p`9DFW z4N6uz2d8~|PH*VDwF>9|?(>l{sDSh()x_oeJ(aqybo$hV+fa}4gQoZoNAsOMZmo{T z|17=<6TZbYQ5}(-r5<1ABzzkje~XEm`oULa=T^izU%Z}H{=KQ{%R#|yL@k$mZ5wMf zs;|hWuGaE%G4Zkw>~qEDe40l3O~sNr!T7vi7b>GYYM`Yx6|7ZT7P-d3Wm}&L67~z% z8;hg(%RsaO|AQ*qbo|Gr0AZ1Y=G>DAR{qnv{9lWsdI*K{vnmfd8%7Y7eT=4tr--zf z@5!dLRM=hn9OY=cxQ4v6w9^Do0U-l|P&$@4>e;>?-@ffE_B2=Q*%5-^iWn6nFWAA}hG!2$aoi7w zaqo+t{n#$)CqYLE=|_ORf+P!*+Yx0QY-Lh_Gp@oAoDkC!lF0X{^IY82K z#EBGf;d6R?8}G(yg!+ z1^kWz5quB3;SH+|pomcDvfW!lRq%r#e=x`kY6S9fX1S zNi#_&Dml<_5NmY4<4^fS&ezEIrs{)+D0;Q}=6m%mX^m=s4NwjA*O10vuqL<*2KCoO z)M#?7YMLBFN}Fk2_tjEd1VDfsg#Ga+!{EP}7#zG##g5|Ky+>=jt9FT*(bX(da9H67|Tw;E~1_ zxW5bHf;6%o@nS_n^(n_x?yI#fKK}cxrM<;rzvlR1S8undFB}DVh-c3VhYdXIc{73M zSi`t@AyLc##%QcClZCQ}Z7dLzaWPdWFja9eRfn2E&}QeI%=Bsjg8)h_+{kXv+_AvU zT4&fn)S7_F1XdCn^U0*pP|r zo#rzEc4Inrv(f(Z+9R)LV#@9f+cUI5r?$-XwnlQq#w$dgIIAML3MD)abzzR+dzx)0 zfl-9OpcKgOuar~v=;#|gl-8`12EVgrhm-a>XE{rxf^PqjRu|jCi;jgZCuUvj`CU_N z0l|@8%6D@PDvQPQ$9etFpC8_E{ls&_JQ^@2*YtI(a26W#je}U|IsFk`{n2MGZDSJyaNR;9hNX8Fw8M9 zWBY}0q38T1T_CK-V>)x3&2f?k$q`-^7|*IS_I3uRJbDaGRpk?(fAQzd)46Dyt>|)X)VkF* z_tOH9oXfF#irNgS;L!T4pMu0hzcuX^vN!r6d_5*yPjS*bwlz9-MFFYS6AO76yOW3{ zD4_V>p1^7zwb&ZFuX5$^&)d&mmcsOo`insg@P50TZ;=u!8uSFJJ2J!yIUAceVZ_^X z$oFba{G-~6w8?wC;&ms?Lzv%n=uO_kkJl&d-fK#%wk+Z+SngY)395fVLW-+K?^d(b zrZxSDCMIj_+E1L;=gU!_w&2AFw zXCE~;meyAbSNf`Fbj8)z8Lo%^T@UrhJoO?~X`v$Vb7~lEJ^azfgd6MPYz2NIRqxX( zoqpve{k@dPsGz6cs7*tt;OC28^JYuWU*+wi-@Nu|u*B`gSEj5`b=X&zMJ&kwT3hV% zIn3mo^?ZD}iIlrxcFm0%?}ICE)3WP*HbPC#6*s%KRBQ-&=D>f|wsY0dE^LgP{O~-r zBxIl7%GK~;w$5y#M*h_1^tCnm@W%LyvSN`>UJo*l#z(*U`^DU(K4Rw9P{S8R)^n%R z=*y438gXru{Y{^*xKa5x|8{7|=CyB{?{eq3zI{;tmROs$=kx8|jc-tm7082h&gPFF zc{e)7Gp-t5wUsC`ao^&5OtEpt)}HkF0rty8tIw7glXoWRz(&gz9|&i6 zW&Upu-dW4yvBH?ze%pf)_={_Tj#Bq9K1k_sFgP4=k^JG{2U`NzqNqq4O;9zO`%2}q z|Mdd`t;6$ohr-ZZo<$_TmyCr2Bs~Xln$kJnDV`}cx>P=2m(?Zcu*Y~ScP>xBf&$h- z0_+N=0M&riFA_flIIAp4Q&}A4Lco5JvVbuRsSqy(O^#H2e&#wgOi=&>md!a-20&vB zf6&Q{wqPkRF93RX`_BOZGDPLPutmXT$ckfG0w|NPjw8DiR#(bM-khLj^18LoxAyerGfDW|%3xWBzj5Kyys!xfyuSX7yqH6DUU)ns!iUS@)5 z$M?$gqlvgTiqkSVxrL^8q1Er}xydq)3TzSVb6Mg%JmWt;q2{=gWNfyiKdq*)RXuWu zXeC%}SQd8H(5r@GxZf$r*>Jt5{&{WwM3>qp2!H{;UM=q<0G zq3;F~87vas`{7LEjHFe?n;r~N{&Ia`_ZGXge0s*Qn_DdGbp@AS0aUI}{edSVg2G5o7T>M7=0s)Yzr}-uA$)h8n60gVb zrtIv+=$y;)P2gsPdeg^p^Vb;5@?+2S5gN{81|uB#=K3`ik<&u{79U1syKIk6nIE;& znG5K$(_2brQbIxgshr;7D`pKzIYTPS zA~~kga@xxs2qqLLm($BSoB;Lpa;_djsiIe)U{73*hgXELFI+H)ibe`Ix?<<}Wp82l z5?D|zc)5+i+BEq?44g-qozlV`WpYI3wcrcd$7h>LmY8Cegs?~jlC+xQe;`)ORV0Vu0d#6D`b6spV_Q`_7yjaVmJsY;IRx!=R7OL zf!mI>WA(hQ^BU0WK&UL-L99;9aUJJCr7BgU(F_noB&f2#u|V@dD$8drkqZqO`ryy} znWF%dT~)IZR(n5vxiA4Za$)@PeekfD+d8e0+<&n|=0h7_LT~smx0O-E6T!g#h&R&h zQD*_JYJ-tY{q?UTZe{#?K5um2S!{s|4{uLKHv(8Mzpc1(w(gg+O-A}d_F?0FV!e); z)Pqm}QFnAr`Da7!6D%7jfaaHK66c`N{5JdV0|cZRGs!><3)if!=XGLK+KP7f*@ecuDq9M1=8V<^U>F+^1jh|1xZ^WUz0hGX!l9Hg znQqI~{B3lY`j&&%Ze<{GQ_3%9&p{Gei%~kNh~?a(f=KUMU656$F;x~VaAxL!K{Lp+ z6s^;I$rqxsqR1kYgBQ4mHrMclfS@@5$N>aN>C8ZeW26gx_#j>eXMeb%yII@z;vOnf z9`EO}Np*~-!vKiDTX(z|6f5+m*G!jtNKS*mTJHWN*sc44YrC{L=W$IsB&V9^@{7(J zF@%p;wiDtaIep>8W2$@H@bu>OD$?;Y)7Cq+86-yhIWQiD7&m;1U z`6&SPxIjf7lKo|TKkG3m4_W?lKnAX%5N>&djvr%}GZVS896?St3Xm3@9~;OWimqj7 z4i*axBCO9B^Y}O*jt6Av`z2v+c9(x($pM12V?a^?gHvf^I+)Kx> z^0cC~SHdS_Jl!*D!s{~NA)(e$qM$FTYUG^(+Oa;@ z^k|Qi#s!&SNyhS1aiI_~{(V!?fZ|^Jo{nTW%7l)N1H`#l8ZN4x4PPNY;g{xYi0xX2 ztnO3T+?L-utS+wWJ-ychPK# zjodR>3fN%(91?1&!1~%1Z?j1!fn--$?TZJ^3(#Q4F%tK8IU0UN?OW`e(Z|@QzX$%@ z5+(fhrUBf&cQTy!YJQGCw%U3-amNH?>wMPjsCsJkULrp zWW-&3wu_=ILObrDZTC_9>pMR4Cf6q)We>zwa{tl&`{U}@jKrPmhm0D@A01Z4$RjLG zb*qx!$5?a|-;%-|keP>Ppu!ErS7WDuz301Q(*S_-p`m*jQdlug1r06ENs|RafKk~9)Q5t|(>i_|01b|>O=F1nM zgR7_nIW%J25RnLioi-PmA@#-PkHi&NS$7Q}`TFB$`s`}Sw)dXC#pv35V~2*TPHc9a zC$oeYBG!LH^~X}q`1U6(LpVEF!t^Dj$au!NEfzzev9r7biS!g(3{;x-q4M z9={xmd5)Pad)inqA=P3vKWtTk#@aofXlc#54#mCY9ZT1=a4{bP?++$FXYq@}VGx8c zdTRVu>eVgybt+46sp(mE8B-j~EUh?x=Hj#ana}!KPawlj^cI|WkYIfo z1WhZpPT$KsWhB{HiC0^;?kCqCB5gh%+{=hahxyq&iQYqsAV?hBYF-Xv9MYsvV*1J>pOpBV+G8896T<-@f1T{P0Qdb~`C#B?fNQK_M!2F!*r;B^y(E$***sunWDJL9{?`6RT5py}fQq-h~t<-CnR|Rbz@x8Rn zHgG?AzGRlR^&A$_n;MB{j$w6(d6qN1V5N{WFtt~W0v3qVhTct z8ca#iT?cC%x}O@<*ga!D*D2>U(m6SYL^!6opEiX$bCqix9x^Gos82 zh1r`iR5*4_Hq0(R_NdMz;pyGW?>=5GhCeYMEaSZMoS9JT^KSp)##1KdOM7b5)uv_C*C7uo8G8umAi&blB<-Jtcf={zx~l4QaS|Hzd|>vOC9c#pdo zARWb8jPRFhOuHa%ehk-Iv7c5c#3rXmFvb)3=-l-no zPK9vogMRAgsMGo6dketi5;%_7;6M!e!Cgk>{uKwvL{<@maIzgVU9a(T2<)bSlQ%+|(I|_NI+4ii3496>qldOQA8=ftkUu4Xdh$NFt z15;vx06d+2s|1eZuM1Cq9aj`rQWQTPSdv4uI86%OhZ)hCRp&`V(1|}j-F_{<>$I|l zmT>~v^pg>#E45|g!s%(`ki!j%E9iV;_ zM83qw$ZPhU=jCgs%j&>qB*51}FE3B>YTjUd^}4028Zi^f zyuIarq7H2B6F@XJWHTsj|Dp}srW%^e0J)||nQYDp*vKJ6veohB27&S|)t#a86E_Rp zJ`=C`l(2JMn(q0!q041vL)@o^el@8rrhnB8CAR*3j@w~wGr=c@YQbZd@_j>~`gFKv zh#Wf1Pgn|y7F|n09GO?Ei|1_04JDYc3gH7bb+;ftv(DG+!2(%X8W8a7>(K(CjR05& zePlRZu}PP$uA?NX$LNty;ZlWtIbc(z3bwxxlC$1lOb-hT&UzJ2tB%ilA%q9fRbURl zi1JzJ$8E@C6|h&f)nE(SiVi#2PV(WMQ;%rGpk>#$hMoKcsDwxFFE(H*%MV&eLbHWdbb;8fj7CIFHsZ`fI!EpD#g5Ot;@`Fn6fRZ0&;*z99kUlU%FgF< zT`ESh@7*HDfHYyd>Oel<@uEdjJt==sWU_j6Mdhw_L$pszr_Iwn+qpfvk9#M7?%Bh? zI|zPvRQT?s_uaWD;PET>x36qye1@Mcaq`^Ygt--Ooc8sw`tA+)bA3E;vfLQ{)yDU! zkJo*3KMkQ%VQ0?HeLtt+2sFC99~PKVtRVcQ5~lD)OPV{BUhpytrg=<>z;ghQ&GPe&TWL<>`{5Wki@cVw<^aJ{Ig4)kSyPw@wKf0g#6gN2ISL6EJ4{gd` zUB1M5jB{pzq%n!d}%RFy{%VHSB~kb_UrDfO%xpsGvU$S zd(-Uv@UM7c*X7&yW1X!w50C9{y?^?1;G|~n_Wk;nJGx=9pJTq(y~@86#xVJNXr1+t zTWzT=rd93rnON|7re(YRWrHM%({LZ1B!&9nbN$ui9E~t{>*i_V?5Uv2%cyjH=`^{| zdQu5r#pguuXdVxA3XNZPIla6jPUeQeXL3m@{Jdfj{+(lx?^QFAKEG5fkFakB``3Nh z0!N$i*$h`L>(avMi2c>V<&!6BG)!QP;P1KNvb;0@xV|e>F>*UmG-{R&3SDPOKG3n^M4tJ+!)|dk?uIn zdR4VcMr5&-G%oU8Dd++A>ZNaJVwg5A}T z@5_aYmVF4L3WVnH>Aly?E`|*S>F_ zBoU>p&Pm}p<_?T(0SEH$*?HBp7rjmVYD}Qj( z<(=6oa~mT>v7z4p{uhfCS$7>EX@N>t8P<#~7GD_nb zWSPS4izWb2EGrB|&j@C9KoK!Cp*NV~uy5{l!N%DSVE+sxQ-iR|(sf3b-cbfQK3E5DYa} zz*q+||07VkfudZdzv>t&JqOICx(u@PzzP&@L3qty!sUChutH6c-;5&-}_c5 z9xYn|b6++jWrR3W$s*Xx6zsP^e=n`YnIJG+=^bNW2Vd^qpeK9HdN>$mIaSsX#EPS2 zMCyYOIzq!jkvR~CU@M+Q2MrM}pEKfXtYpzflXy!jp}SRgt~ALG3$dZ0KEHU1hXSlo z=@g=-Z7wM{Gr-hji-0qkzOujp!0AHc(o_nO36a-)kei|`wgz5!Q!nd|$FMn|^Heu*EyG)w^F*~b-o&Y#g8V)9C$;;Rtc%u&Fz1GKBnOn=B(Mf&UDc4?dIW1cVvBqUKcLWi+iN9fAyaG#Zgv*Db zq0krE#qE_z29cduxj2!TIS8{-TXUrM1|=C=@b*iS*~i3IrubnL?0PIzgb4}7sA4!L za)_YTN|uEJzgneVCSMD&wMC%Tv;yg+5LT%2QxDV=1XuQt6d<-HPfZJ)g5owN36 z>Pk=HU2A@D5DB*|P*?10FFFWTsO>~A8vnpaZ>7g!7OIrvu!_Cd?5mZllHGB`zT<A}o+45Wm3ZdgC&2K;uQ5$&|5<_srC+Go37G=IIcX}T}5u)34|_%a0m zI}nM2N!6gKrion;xqLzB{&ow9ozIsjx$k?`sa_vY{R>gbE?L$ZQC#Y#5CC&6KohOc z`|43l^43EDc#Ibd@jd_e%pHWUrj;6FEDrh1-)9%e=qJhgP|paCj5^);8g1|{L$v*G z{wx)H$IisaBH#Q2(PfGK{2-TytSNUQ#%g`)6Fh)A%tWx7@lKLmKe72629v}BG%<)^A= zV}^$q5D0+>o6oZ?pZB;!Mf z@L!Vg^I<8fu&K8=f*%AA7dNG11f%htAjil{*mqJR&{nVsU~1|uX3}K8v~8a?h~eQt z>vW>gP80!ECij2)(*&iL&~lIohQt?F!r`{6^QgpB5yZVmkgoNYtCdm2(e|G#uMgs- zU!LNWWjMeQAfzLoM76lwrkU(o!9d?F?0%V`5+UmC>4W*#qK=qD{@SQ3qGl}RY6ng| z7MSCIWmf$vVIQ(Bgk?G67QZ71JVHbReIhV8kGr{M{XqJ}H7ia!hR+xPD^h?%D%O-J8T%cf!k6a}z*Ez8+~;XGUdqbZCF zE}U^7+U!g5#9W?xE^PZ}0Aw~y4t2bih+9AV_nas@9mK%_066?xsrRZql?4Y3nux{A zAN?;;1%q=XIp7sH|B69>%k?QG0;?1SqKF4Sr@+US#Zc><+JxOT3=#p+do#!-fDZ#V zg!jls>cYPrV%UJ}E##D4Po>)DHM#HB%y2-Z0Qb{E{?=rG8v!xiGc#75W#6J4c|L4x z4w30FTfc=7&^9~f%dd?v<;U0Y=x{^nU=t(a)uD!j>5t*fP;f5K+n0FlPoTG#xZkQ_ zyKYHxm{XViN;!0Sz!W_9K48ERA4sgLTnqA^>w0LfD1w>4EJ(nXLwtUjX<&d>Oi%Mui+`zb_w>af3V z_Z|&3e$HHM>h1;J10*)(uE(K~6ZaqLk$7`&0jxmxIf0$}!+Xr+ByMk?Dak>lG64!I z^MZ{_lYM<|iD!;|b4k+r`y>NynFLbVxm$%I-n_ES9AA|x)SIzcq8xknxX*bUL#IF- z!BrFXw;wRS<$S)G0&KsBiSHVgtlVU%)O-_hv!1e(zzpZ}I81o`gWMD+rfj7>#j0<1 zgi5%@@{;_C!b>~Hu!XjNR=#s{1S(6?&diojR_Ur&zITJnr&+`&_Q6#1Wx6n^fDaTu zKE&Uj#A7RPuBo2Y(B=NMi`LPDswQ_AgKDQGbktP!X-wQ=a>B>ocl`z zY@a+e8lTiusN%&(wXqywWlnmZhtaJT?@cZqDCVw8Fp}Vxa^AdPV=Y0lHRW{2k8JlM zImVF=f7O=R+F@TDiYvalB2XydmnWiUc`k=~7UzCc6XNkDD0#Gd(n3*c>ZbIs@|Th% zwsR%7L+K_HQsP+YOL->PJXuGc&whFGpQKF*^y&!e6@^=BIM z*N4y~%*%?-H{aK2y)Xk2g@Q#tuo-P>eV^8_E*`AoLF!}Ggu_7z9pI07$o()iP{-hr zR~oQ4b{nYtW(pq1F71nHLuB?J!8cgy4RCVKPO;2&SzJsVzhHf z0|OE(@V+?dQ)q(a35SX{lC-G9x?`rtYKIlP2StRmq*b(JYA$kRg7w}E8wEk6#X#JR zW=CY58D~kl6oNU2tE0H9lUgC{3Bhn|NV9g>cx+gF4dZO=>N21b;i)BmQ46;8(LI@8 zMLCJ>xvAlE(}bHOnE+9hhgz!7v`%4Xb>0y8gv#ZOT=gFE@{4iXH?Alrpt!uM!#MY z8U8_0n)mwT*R# zQ;vjN1oMm&r?e5Q{ByHVR3JJhC@m-WW)_a=S2QO^*7b^)qao!>&s&#Xr#u30ywq)da<b+fmt9@0kOoN8Jn>rs)zZ_d1>j-1$3S*c>>f@!Q&~H`@zIjP+j9fSa?uq?H zvi$<#j!~Le-jfnO2M*!lUN2Urh|zrYIINr1-}?{$S~;mJ7ie(RpH;2p zd{6DT7Z|-1l(iJRBK@L+F=SoF>(^hWv!$0L%i;9PXx`<#2AfxDTY4D@yFZwVLd(&n z{D!;?{O#UiYkf>7QZS<1ceBv?GO6T$v9clREPnkG`dHo(VuW*h%(M2`clO#9{bJVn z6z$>67!(K;p=$U}Fr=S5vsGO@zwFece9{Qjaw@-#Di!LbHqNhb!RJ@{evYp?r>_f2 ze8p1pCO=Pa;EAjH`8}XKAd=Y{lS1?u&oYe>waNo2`uN<95Rj6%sa(;O;OHm@roBed0aFwM!f((Ci< z$oyh_M@H4>8XJX5VWxgw`)soI8p`v=AM8U&IsYFhu1p~Oam0pU1nssvtn!|-7s&LP ztqi!I+&bdMp^Mq=>V55c;(k9*d0I4MuX8K0C=N?^V0mhfj~Z)cBWslwpFp3{^^Om& zO?)aKO@7f)Ya^AHIzwGJYoO_3=M8-Xp!VeGUhP6zW6d@=!6C%b6F|x5#4I@OKD2r^ zBdR|GCg~UnSptyrXi)F0O`R6d_g}K?vQ0~@mwk-*oHpGHQ|}YIR#totRC}&s^!!=b z^>_v_RXd7QGepWjNxB#~txfyP?t^sP2QlgJ(H!Todi(KF=bmx4$rZM#){rsDLM+T- zHo13}*MVPTee63IIpnITP3kFcIj{$pwJ3F$9Uc4QK6eX|Ag18Vr-}g5v$?(StzB;= z>k+36;|OY3(%htE=s*oukNlF&ckX zSr0VhP7uF~*&=q|Bna{K-4*MBveY&8(G20tS%2hz z{7u7hHFycwF^xc35~p9}FoYqhm*rmN&my0~lI5!yO*C*= z!LK9OoS~xTeMErJ@%QMNa5YBME6hFmXKE#`ycRHJ0V0PJb)7iAYc_GRJ2SomNiBq^ z|H^%v3b!Jixv!5GOpTQNBATnU+*duKjr-s<^BUDQZdvO`4OaH__v&qDs#BG&PZAlI zl{6{uSx-LQRcCUU6JX#{Bf;;B&T6rSo+L+2h02&&$(_@9Dl zqW)7rqI-+EoW+kx4NV3&b`G!j@0qVB4Gn)GywsVIFK_Q#HY>=`^G#H^Kv^V-w{ak{ zp{7%B;?~D&A(-G}Y3*DCIukwyDa(9pcJR;mLCq+x+NuJnA)Vc5lU;JHR0SN9YsEUj zmdy^J$t$6K%2BA%V6ois8Ft?jxz!hH@8Y*+|NQ=lZIJqCIa}a?&Z?LOZ66x$pZjKj zHgK$?jGPVPqRp)3PEE$Xre3~kFEi9zNvowk%R)sBi65fXQVOnm74ExK7`Q>~_(MI+ zlzhp`6j>f7)|9Lq|1}mUSTwx!%ss!%yts7(S5d2YkY~Als{whn;m@B7JfZ5 z4h&fFXuD~WIAp7A*@)HpG#=*#$I19+dH*vJ^JkCmG`@fmRNUVM~ zipm=k$$o+()3PL%zDAJ1g0Qek&B)x-U2W9!5sXg&9J04bSLHq^$m5F^a_7?%)W17x z9g}S=2=cU`j#f{-M{=LGEDHfl=>=>A6p zOL8kb94f*q>MlP4XPyJ)#RzM%D@5p@egb8v#E2#7joWB;VzQW`kz)H8U3}utxe2L~ z3NB?LTZm6&nR_Nm+~JFV?%2oZ-4g^Il?nW*F)_M=q>(D^t6Cf;wn66?hc1gT7t@ zqd{hA%S(syf6ur%;ZLWS7B+d0*7qPvE=7X$P7hf0Kj}`jV0$&5oRW`6q&-XuXg8fm z=|Sl~!LzR%Px~w(cf=#;a%s}~KP-WNd8OIAHxUW#=a3qf!sIhcNC1} zDdnv7?r8ZCGM~QDk$`sgK=He}2enTB{#y09@9Stuch20JAcEzz{)sm!xJTc3?j|kJ zC&v4frul6yPw-K+L}r>RyM_jXkTH;X#Q9SKJPve8(#I5`RF>ed2@yV&z(h|_vu;@r z%kMP1c!(^p&EV8HrjBxY*&awl=5@Jdk7x?&ndaU0Z%2~YheJq;`Ckq}b z|H+#U{d-&lWOqlw@@K;Nh^RvfoDht-85a4IGR{J{j%@yH1|N|&U-A!~`H{KI?3OC- z^dHfL>~r}Yohl=*ALfylh{{`1$rfr6EOI4~>=$wN_Tdq)@j6z?Lc62%)gy2kOgN=0 zwzc6A_EFUN`BLwc&O7_2h}RfYAB{@@Re1dxo4EWKwR|OQ0X)rx@k%Sc5}1jS@wT($ znPmx3$8>*43oz5IQ{#~7K1=lGBu10C`tXAr3-^t=ZE4TWW5b2_-ObxN=c$%XD(Rtz zO!D@~hM2f&;S}GrH_taIhuepQMGvjY+QHFHvC6wHLvh<449mOPs<{`2G6;e?jJd<| zGas&6y+u33(LC-Fb|-4$!;b89hgN!7k}nSvv@9At>y>i6y@Q~A3lPyRABLG9G$9rL zbRewCiQLY&IIr7@mp!&m{jD@fNbqDUS4gVK1Wi0i8RBaFMuJlEypQ9_S(oZ1HN~5n zV)%`__P2vIiE38m4$X50fdgEww`%zooz-c-mNzx#WAzrtbclx9mtagu=Vs2W?jK^D zPZLwudbD=?SoBdT+G@X$a@LV@@6k!0zEuLa)cUrSBoh5J&yuuFdMO$XyJpu_&bnY} zf6!tfU&}(d?rjW-OSvS4vGpfH(LIV0sv$p2osgi_@on~}a#ja_&PR=imn_Vq5I7{o zXJ8)9rCN$TZx3MgE19?gl2!po!z9eZg{Ap7O?w*!q%MK%VQHmMw4X~@6;QzG1~8X1 z{l5~-HS;v(f-e$(ES9`=0`Kk0BPJC0Xngqa=;8995@4WrWsCN zC{9*v454iV>o`;8*4c!i+1Xqu>uM-o9gvs#Kv?^(M;f{Qkyq9nKn&`5q7dL7;sTXB zh`%uI9xZs%SBSUJ7pbp+ixLq66b{wA<>L%l++-@pfv+bKrmn0zC>BUxRsF3%X=}Sr(I;a?|W*Jzi7#$8lp@$5C5{xiWCVvx# zm(5JE63p>frYvgaXlfQ=Q6{{HFLT)}LoGE+Y8qov8l%}POIsS#D{8hb6ShKMw$?+| z*2B4}S!N0>`x_JXW)qHwX&ep`tltmW>!~?^nQ&Ijax^w`Zq0HY`y!~Gastyi|41O2 z(-Bv*4G=YO)_tzu5UZd+RxPD~1gyC+FVgKkDvFm&^tPrrjg!o6yW0`%mv9>uq^xrd zk90aW>qBG^g6*FRu~9>k2#7p$6LU|O>e{Q|eLTmPUit_%@`dSPV$e&NS`W6Kmv%9O2vo{A zNyZ+9UOtajq3E4#1+8ME znc~ZN#V52%Rqp^b$8$B$tyOLBSIZ?eaQ=-aLgSDtpx1g9$P>fRQ^nU7HlE@i#u6W~~D8l^^m$odUNC1FF zfHK8>=ALL*yiB4-@U+G;KvOGIQ(hfh9?s|{rol{zdHHFoHdh-0$n{3qe%eLFXuC~>#-{0<|g~Md4{j9(JpufX( zmi@lE<9e3kW|qUoC&zhz$KF=JxwO-bh0~$5Gu3;Ct5e4*?VmF@Pi*G>K&(PwA& zgiW)0$OG;7ZsQe5g@NnsKeZ765@W)=0G7?X7kv(-&E4yR;M5@=g3n6M4Q1|I{k?#c zcobzza1wFDO2FmCca3>97wL?m5K9NJWN%B@ zg2EHsHz9;Fcz~6U&0p6b%Ll&(e19-_nmw{LHqo4uA=7d8*+p^u4hMUl1!N%u|ELjE zp8#L0z~I23P{yF>oS>IhfjP3lg>8X}vOyJX!GUeh(Pu$r5I=0D#aegqa^&Ag*Gahw6 zQgI;?WgVs4&W*vcOrc>r4M?^3(b~BWKFSzR!HmkW@rLB=dqC5JD%RUTYL;IJE?16D zAbUP=eJYm9@O&fTJTAkU`9qB%=#;3g!-?>TbcBy7q(6)oW~Mo}}_P(wGxqY>t* zC6vn(e~TZ{jF+%N2M~YTQ_W;8ZRDb!odwCRHk7zC>~05MW4n zmIHJ4{k&|ii!9gR?0DxK-{9;=9a+KhIk6YnFKlw+<#V%`^PXMg;Bz{1n5l9znDYyn zp_TIa$$9xjd9R{ZUcKtb{b=(ll)0eZrl3DBFSY|Pb5W4DQdqlE(0h?PoA-KS<<+~3 ze8QL4eqPb{i=xrsqBi;BtKj0(j^g2qVxVma`SX%rDrwBA5AD^N7|ei zsNtl)U=gyZPo=;1UjBx($<-A6*GE{)ExsvCo zs$g4*mT?3d53E?BI<~WV7+doTSlgOktC-J17?|`X&V=6O!Ux>trtW8Bsv-|lVBX#2 ztbE=n!ez$2X~6TYR;tY?L`&SHw>!m!jRP%3*Z0VYr}FzHRXL)mf-oe_WknSc7#$7| zL9s6YS!jUEQ++KacC9vDEk=s1R;-0?SFMk_S|75$_gZcBP<$Wys?DFZ4gI3+Sr;He zvF*uK+bnrUvf^sCU3-~bM@CnBd{X}{b*|_RCRs4AIs^@I=y__HVy)Fgtrv0oVIB+?D@{&~49IHq!Qb}6?}YYt?-VqwAdu1u7q<8#V|*Ric`(f7tY30%rSP)T19{b z9Oj~Nv$WlF?CW9*g|oC=^P=5S>g#jz%5x^{^G55lHV&U03Kv|vKZ!Xk%HDiZ4&{G* zGvlHB>Dl^{^!kE}!;*)?@=Nw5Y4&BS(51BQ1w1NrIV*IrV?$Tpv9ERAtW7Gf4=b;Y-mETluad9bVJ(FXLu|^MAPoq*B4esou-_RZ<7L=e7>8kU#|R0 z*v_4Kt%GNui^0!(;ZHobt4g+wRL1i7=_$E9(7luaJ>Q(dC^ele3vdSM|Hl6elK23= zWnsi5U;9|#AmPqIFM&HPJ^N?`*dF^GAAM_=Ic%Tp`($c3sRC%DU+bA*Fz;6$4!#l^ z8YKKdcIBrpsi+~G2YREe=X;kUIm98r$%MQI%ZNaaHsEIEHjYu8$UFGsyonP<&QlHi zj3MU<>;7q;$X~0ECtWpvA8wrbemsp=`y0G*ruFhHvgpJN|2H0g7U*=E`tsbS=)%S6 zEC)Xq?sOSlbXoTCtd{et@#SUf$BX)nt1kRSzv|gA=S8a1g$?J8*T?4cjq~}9o28Aj zPan@$@YkC~|Gwe>)z<&pD8d83CJ<&lvqBC@baC_%B$Qm{BQq|2XcCyAz4ak-Fopqn zn@2zs%>687B1CD_I4)D~bx@u#o*aO3x(>A?KG@q!y|&aay0Pz61Km9h_y2i9&!a(p z*hlw^txS_viw+SZk1eLg)BHyrA2Hi3%yNoh@s3Nk)o(q0E%O%sH9q8o8Z`hy@6nD@ zX~9dP9;+8y0}{l?2rYNW6(;HwnbPX5K-DkpTd7o=L8cfD8u=}Z9(2VxO;tsnH=UCt zuPjSh&x1S5VXVD8M=gSmFIS4e96$fm9il3C1B^} z+>`9GY!bb^=WM0}5tN}UKdUQV=l`s!@6jVr@O#Jlj9cBOL^A)bw^Eh=ozvcZOoD@x zDL;@-Gi|Kve2$N*ayTzdQNBUk9;*6KJwNUFQ7(HJNn1v$DJKggVuv-X`=HXj zjJtAYnOkvmT1=FUA0hlVs2fmM0>@^pO@Yqe2Ya6 zjQ_6GNS)AS#QHQ3J67}wjH_JL$+*$YXu{2~^ZMS%-co1>MZn}Ve=AF|RUl94JKqjKe{hi+?-Mx(~AWc(%)W z>BEgllA@wOLQS0i%EO6h4yIrB5vQn}W7ThqxJM9+6kGH}644X#C5GTlur5{u*BXoX z>AJCKTpGa!Xe3pG$64?Nsj%LTdhvz0C}!kL@uy8A0A*c7n}8_$()wL-kUNsL&UAnU z-!dKW{)N+Do@!0Th2jVnb2Q&?Usw=ZpH@o$>QD8D3X3bhpC&72AmafY!_9}@ar!*m zs%H$Eq%;@-6gw~XXvd7NyKlJpHkT^-m~q0>%nLzK=TFovDo3p>Hq(f4uDHsjHvr}( zOi7F&u*w4|3F#R3%f3URgpK3?p-5d+(lahD$`t;@Pp`~oBxf(os5p>y z&V74U3=$O(G{QtHRF^2%Nx8=iRYiy@_?0$BR%;#$PC`sFlNmmJxudGrg_*(O^Bb@D z`B=&4GHF`U>aX0?ZkXj(bZIK`AHUIik}&^b@h8~ik-Onb2!Yx5uhtZ;F-c8WC>Qd7 zqwiH?Rs{J}t><53USDI;nDD92)1S}{T4VJQve=a1U*{%TYcrj&I5*%<{n+afeS>Ab zguM&3kGpyqsBckw!GhePomlQ4WLe`wE8u|~$nFQXBK>JU$7Q=ln~yk&nRpq;E+CpY zq!am{m)U)1ZH0thvbWuapwMN~4|AyG8IDqyZbPlfx5KJGkyH`g4G;LO zqvbAvunA`wRsN=-x0<{)_akjhtbgkanC1USW(~=1AW!UjN21TDwzYH;1`PK;~ zi&i7MEi_9WSVs(7EPTs1)0?QDOT_u9dg+(cgbVD~EiyB3th72RF*uXiPD{;Q;HL@A z4&&wa;q|x*^NTeeOKi8At?1M#8DUBvu zoC~?HbHtbEK^JlQ8ki*M5_0Yf@#I5ev8=iX9>4HHx+vp!h}?+9=Tk6)0SOAWvrAE- zd$UyPPa~J#=y1NN?hDit?WtZ@BN1!ABhR+e`2pt&*D6MFPEhAAp`4kI00UH+&XA`{ zrHc(_(zP9BUF6O)D_sE~5ThUH4u*UBA1Ij&an&ku z?7v%IsUP-QqUU{n6S;MUK5=NR&qTPdTzgRJL#Mox1Ty|1(@!ef$kJ*(2E8J zQ&XC(RdQN{fLBYaxI4%}@5_s3xB+wRC&H?h9E$if8{ZO#0?NJ&2@kg=5^laSh_9=xB!vl~ij+>RqGZ0FL zOp&A`+HI;$QQdWc`Ij>!H9iw16fQJ+hcu2iXFNzOPNorhN6cVk9ohQl;Dj<7$ND84 z1D`XblJcPqY*@q+S{7n%F91N>#iXFfmA@|Iq1W4Dc#93^A6jmER1XAnUz|69qN++7 z48SK`zqx+sPJfzvKGqUpa!q|COIjKLdPV~El)?u`ngt6|gL1SL<9f)D847I1ebs89Hf(7C=9O2Kj&X0q(_4jZ6wWIJ$*2bf6aQoM~@0MnWe*bNayNg(Qd{-eVOAfUU&QBpE-AYcFQ zKH!65%JJ`1mhFNa^U<>c$@A9cLHy1E_mdM$JWjs``oKX3YNRQDgD8D{vxcqqsXbm+ zK!Qi$FV3kc1pFXi11hNqG^%Q^HjhD;gp7CA`B z1bwP~)g{6$n!q?L9+GHG@}4U^o`$=eA$5o^4k~~`iEBUFPDQDu|2Y6NT~NogXO9j? zX^9hdn!QnZwx?T;x)13dR;2XE@d7~Bs-6=TEGvX0%>W`vFu9NOIPderLS{r64ya&K z8li%DZ{tAc2b8E{RGLQ)iBFQ8d;Y|ke|hj-rWKO-84_hRXk%`+|0r^L*Ykc3Y^n@o zIpc47CsQ;pvtPGhP*4$S>9dv_W*|;F8XV(M4N4fY+|q$t+K>ccJ@R5=omSw#v_;o8gu$anYlpd)f}XAq~- zeyAVJ9JrdK9Qa%2A%O#eBXVaL_)t zFFB(JOI4QleXVag@CN`0RiNbJ^yv?2dVSeSKd?Y`PatwE`rwR5aJmgtIrDuM{=cv2t2$7~!YCoas=K)0H zK9nVJ$fWZ<^0&%p&#H?}+D#lK-UND}7U|*gCeoHgGnb4@POGHmp~Eq35<^~S3_VuE zOJ&(sl_qFD#!+B|-gJZ~yzQ*+qOElOO#XZH!B=OhLN$t3U&hB|$?9WulVf$7pPe3} z%XOc7BrQ6PJoLTN_S@I4$d<7NQD;+{gxkf3hYO^>Ar-=hL-EeAiX&2!ex_3&N*_RJ z1vPN|!14Vz5s(e%Lqy|=g1tW4~ZpRnd z1e9D5q|4n*^@1LQb_~j-%D^<;TsCrCG0dF3?%Zvp9JgO!fXoa+S1{oHW(51Vy<9kG z77IPY5=!Y@%F*xsJm=QG}V7fcp7Klh!2i}$&UW~)f^Upr2RQ3)%YZN8el5?sR}>Xj?G(S%c6Ww%2WWJL3-_!E zE8vq62f!B(?D7wN%5zaf*>A=bGe(}F>J zkzv%{U^DShcIJ>y*6?kMA*cIBK5N5ft;7H5M#9;KpCygRtQqNC%llssyV;L8T@Trw zj_^y2JXRX5@EuKhHWI%#D)m9Zr9elDcg#Uw=Sji98-4jueTAAm{8;STSmWN{+k&wO zw=wNK`Fr-Gp8Dgj9*=fYPUx|X7U@rP)+!{1n3jJSDexQZRZ_@j8=p!Vj|q{R`!Ke+ zH}WZIIAdXCUVpMTNq$*>{GR>9H>JMM_G6nkGF=5=4#z%@*;VDzI)|u_uRzwI&ObLi+#;pdHKuDa%=b6 zFR$eW`^EOq!Nv7O{TuBoo|U`%UxFv5qRnUKCs)?kzcfwaxvxamvKBVp8LSQ|Pg!*@ zS51C_{d<^Ps1Vj7_k14*3)QVMoug(U?`q!WDOl;`LgYj;$%u?;Ut;+AS^@wbXtL9yIy4H$<&tHKl2f- z?<4oW8CB?fU*8d}`0n%jyOij6LyPbJVc%bR@5cVy$u=YQ#1N?-0AL5issN?tej-N< z5j%p6bH+d&4zTrs5GtsXF{Dan0Es3t_8A~HV~0`#zw76?8#nc-%YJoH^fTA`+>*f; zV(+z(wNXaz;kz7qn$V46x*7H8i5CVS5e$e}8~|$qOsM>5GW)?U4&Xfi2Gr7|t5FuG z5E8c`AQX^39Kh~FECpAr_x|4WW!o0I@!snTwqd2iaimA(ll;_<7W7*==uc?9(L2#! zf`h;Jq1?95L4x6c_}kiyK0w0!CZ`WjJ$+EX^oI%@ATQp@h#*_ggy(JVaIrMtqi2Bcw%%>x9{E@Kgaron7rj+B$kYk0SW9g}5)j!9m)Fn05 z6ZMTvZO&sUvE#dqCuiQq-i6CEUNh)hf57bc-HZJ%@51)V9oB!V;3T?NzA0}%G57;^ z+&JLa8%Ul8Jvjh7kv)YI>lc$eH6{wUGNt)LLRTa}C^&7O0m}jiLCpm118xZ72X~f& z)&WRYe3l=5gfBiiEc~8<9|$zM2noALce==Pnl0QoFPa{I&3Re;alPWtX4R96SB;ms zA20K#FB|_{Hj7M7%OmkoR2u%>T>2zmY)zbxCI+NPxb|$l>#J7v!*hG8zIl*J|*KuQ*=1QEB*L2Uq%SQym*spiug$99ARxv+6>YMod7g1|BM4W=G~ z-~YBMD`tu%9M|&MFCVxJ#M6u2v0v~t$xu{;Oy>D*Z{?@)JIaim?`ltJIxvLfwfN!2 zh|P=^^{E9P6x3QY4%xqQ)4{@XWI`blH86k+*>!F+(e`kI(<%c{?XNkDV6sovQ`2(r zK&`BMHN)I`r(tC1AigUM|6IoFxKglDcJ#I1W$c0EM{TDK<@3K6KQ>gSow~!W{}MNS z1mbBAumD;fcrVG1cl*63-mV5!3pm9;5;NkE`gi9+>66$M_*d|I@~w9>lGMV9_K6-Rwf*($C}Dgc@^yi{%+st2t@1KLS)?syw>k=O?amL$Y|Nf6d7>0?c8 ztQT2$d*_zf$y+^fUy9>yu|cVf2?}pGffzq!D$tgv#f@UpM zdC+7pN|sGX3uU)jXVkkhZ)QUNuydw_mf{6@f0j6XnxPc_By(sj^PZ4)oHdxZog>~3 zU4s19iJ;?o(oRH*xA*pqDBgQ792ZUhZ|>JvcZim+^}R&tzt(OU7TI$~UXds527;hg z&3T?g{V6rZ^>-+k!~Cv|_H@+ZpdLA`!4%{!*W`dZZ`OMogPSC(;V%hsdK4V-OjB`= z9Y+Z|Xn|$oobNSqB#frka`zB|9+*ThAx!&~VB%2)*d$3V2DzpvsxW-{jAaj8S8I-z z7}9JFrMsV{%_lV<_>EScpZ?K%-xl5V`+^Ss`@&LoSq79=t;N=)1RKk%1{DjWYr2aD zwn)-jgj#fG$60as{`L9KjE^zuTWxUU_#N zHw1WhNAJA&gYN_m+a2^c$b{_ndzcqI9K!!qJQyZRW!o)FOOf9#d~)mfs6_Y6d)vJ9 zeYS^X+Gn{HdC$s3{Q8+1*Z2oLjkjXyID&9w?e4iOfVjW=jDBfvZ($W`c_i-A2#iz{ zEv*&NfW5jtlm(Zz;g1;31K)`Szu4~bveUA&ovOF zCUF`(_YSCm=N~60hLv)=7JllH(WDjdB;2AcYPI~UqN3F-T|~~fw>V!ReD4tHYEDj< z#?*3m5TJpYZqimi?@xs*YQ4znYL05$_XaYwA4|LA5ep`HP+p)W#e00_$go}@bbL$oS2f<5Z`XA#`8_C(ePCJyc9?L4LRAc{N&0O47T~pU*O^rd| z{{OF;lSI|EA0pX%S*1*g{)^xhsk^6KHAQG86HzeSx`0QG%r`psCluObdZKTWDA1{4 z+(@VzT?sPt_;LRN48THKOaNn@QYBU5uEe=Z)45*K3Ojyis)G(;xP={^bDV+XFqSzr zk&buYD>A(r&M^V#IRY5_hw=tZl1P+iG5-4Itwv~?_M+_D7@xA2Nve-p{DGuGo&l?r~VMOl0Q97DJ zBsXn&XPQgI6XXmIcc)>|v)(1QiSp86=k#27Q`6L+P9y9|hnqofLU=_v&jE-iaAF@= zBsQctS~l%nYZ+7|)G|1SUn)W10?zl7Xo)w14VJO?J(47Y0!%HauKa6h&MEbSNQ7Vg z56u4-m!$zh0C4~d@V~pXT&MXS2^EX9`~TUcGUmm&NUcO^Z*ba3Gxq?O%q^dH{7LLx zFj?;)`;Oap$P>42)!4VERT#txtCU|geZ7O{`NSTFOL_(tgO)TW4_wR%3<=e(9gws zGsf^qTbcdOHBY(>4eVt4zw|uphxYi$`EK>5U0MEPY4=*6exe;1rU14eoDmN2P5qZO z?oVvxH0t@kyY%YpU~9a{=wr`+UE_`Ek00>_iB$j>4q|Y}p}~CBxCly_U0fvm4#5v6 zu*RFw|D_t)0(LiJ5itT^<9M>&zs3txR)0+pdB6KLQGDn>66>P-Rf7Bh7f<+bn-*+q=Ypyu#1)scuD%rOFDgzfHmgZ(g2< zJYN9jO)%f9yZOuyvS1{j|NDI-4WI<#PZ zJvaSm&Y{z-i^dhB@~_JhHxKvt24P?4N?r*~a804<-|4lUfl6)SomGAA4jbeuTQi8> zyH+q2ZKKg$33kwF^KPLRQHgrX_|t8p6K-X#pEFgPUMnjZa~T^wm`q4H)Zy&5G`_`Y z_ukSMbSwE5ol70V5pP-kYpKa~{Ix;X`+XvIg_&YxRNRv^0;pNM*(FCEt4W7t^1g1< zAW;oCyQOjvq_H!Ij!T;A3QE2WgO{VEsxd*n$XyDVZI$&-oxLg9w^hGcdamM+w-hzS z-*){g__w}r!$W;C{hj{1J%sC=|)LYk^Zk6`~SQILx4CC_TNkJ26$W_%Qhi; zBc&2%4z$Y%zc7^a|7cB%33e);@HFcjejSV>QhZ*Q>szLp#*H#$i#Orc&Zf60J+VIG zB|xtf3rcyk{1b(es(h4rwC>X-!Y@0wgK0fxviXXJ*na*g?u|He7ht|@delcmSRTdy E4-8=HEC2ui literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/progress.png new file mode 100644 index 0000000000000000000000000000000000000000..a4070e0052427373c59967ed07bb9f936ca8df59 GIT binary patch literal 20918 zcma&Nbx>SE7cYoIaCdhnxVwAs;1gU12=4AKL4t=sAovXK?ize>x8OE7Y`*W+d$s#& z>+POD`rN*K>v#IJ{BBqG>DW&iiWsP*s4y@v7|Kd=+AuKi5EvL(6%_b?Z)OIOY5yq% zTWNJ^7#MIe+RGQje|cDUZABTFnkn*Q7#KM0PingI3~;1O@OTn1aNIChe-e2DT0qT$-P{DGu!qdRe!r&qBydO+r zB1(}XVc;OMP{A?76T{%6!NZ2Zu3fyLVZ&`*zn|Yeyb1OR$!HdIK!XV;m(ONTe@KbVQu%u*9M9azy&b~BP)H`XJ zf6_EIq~%*(-Dkj{o5_t?*ng)NcC_NBg5iK+{UH0%fT6E6PlDTSbF|5mk9VpC^mKe< z<51!iQ0MF9Dx<@jxF&GdS1(7&_kM9xRM0?1M9XQxOaw&FcQ8Yv(vhT5q^Bf+#bZY` zMPXK>yVyIIVWx66v6bf)pPgPR4GQFDAm;ce%R}_+SGJ?GW4H3Vp0G4F34$RlnTLdmjjUO3gomV<-{sDzoOSij ztnXE&IV}U{GJ-lfa_%tdxisz-7e_BwE9-aN6(&?x&@Q49-sx=m+1%@og3dUx=Owy$iy*$jOl)=}dg#Q%RJ z`^_=Co4=Ig#MoP^l#2J44u#b=H`a2Wj5?0ov$dKeR z^GkocK+(}Z6E*h{r&EYBK_Hn}{n{RG7C51Rd-%)%X!5bBTF36>!H4r~P!5+}V*c36>x8tUU285?*4Cay8x0n2OCoK-@ z$3srkXS3lCL5sWKG;IuBk6p$F`O6gRf1Vl!mI#8_kOj@;j$Z4|q>9b@U0M8{aCevEVqn9?Ln zJ2au*a)WK|-3R-txGZHcO2RO>YEUL-s@^6#y}9D7(AM2dw3XBcv8n5|mW7F16U1T~>Li;q zPH}PGYYQX)gM0WaDLz$+MVqv^r|a2t%|{&uo2o0zhS4&J5hSRS;^_yKvs2HK6K$Gm zJ;4^3)lyioTVViPSgWuZgzLa$y$&TjSfUs86s%IPw9?(weEpRdiV~+0v*n_M(G{Qu z8_(9WG1-DBY*Sp{l|2EMYpJ$0a}}T~{zQMUtqgCf_QDf^9R{}3YjIrQ)S3})D)8m* z;uX5k;$Q}l{2_r~^&!uNWcHNbRh_3?>o-zp*oY_aadl#rF}+*Et)^2ZOga~c?>?m3 zlJ}wQ##1)=xHxheAP~B)#U139`!U+=Zz7cGtY(YYBCe0?|AG}UB^Z}f+009_cQ~D_ zAKkBLNppA5)}W)3-MRzCGEs%y48|2kbg2<0=_H~j z!U$m{2_l-3K|UugGmGvwt3*mV>j)ecBCHlr)X&_gfW^-502D9=qQ648E^CZBGGRyB zw)a$*s9w?FnJDMMA^6WnTGl+Z>+nN8^ ztwxI*l-yZFh)(Rz;8ra1kLUChaiyEji?DaBVSLz9FNxN3eU5CG=!%6=%%ErDKC>?+0R-oycfui@k9o%wZOc*yZeqVrjR`p!= zs>s7t(42$eO?KEuE30(&ehaNv4Fd9U21)*gGrsQlu}pJUZPD)QbuR7WbSXC` zxrl6TtUf023k^h<8q>~4LRa-JPq%HHeT$dFS>UeZP=MHp04wMhHErgG!jVuo62Nlo zv2gsnTl|-~Oux#Gh9tn6#%%>6t7uCSI*|DVg+520-gWM)+qJ8C@DVPq9s2MyOCkd$ z*SxJ`HCue6W~q~N_8Yiy_oIxL$7Fq*>|f(Sfi5OO%FbyNdRBAoELQ8V z1{0YX0W^6(3f)>VXU*mKE%moD_v9^mosyRW9i*B#|CcRL4|NYl7ZaOteyfGaf&JrWTJJl&$lTW zTuWg7VZ-n0EvP9)8hHJYFItIal*HAl3Hg(HMj864ALYIPA34M)_~5E)!Tj7h(31;q zk=n)@lyH~pCYnDHimC*hXj33UAwA?W?0jQBgt<(JY+=6sw|v98x}vPO?D9w>i(BEgTTn$=xr@JfS$&kNVZ z`U)1n&9`B<%E9IN@7!kr-HFFJW-t3+c=bktU+vMn#o$4LsO2w7O&1iuwd(x_Z16s;FQ=U)GKizO!_@;mntVy*DRgxb#^-ft4gzpWcSl z3RPzc1!iLnbIvHrazo9js^h52j5&=VWjVqh+ zER}5raZ{|XCAW01%J##31TjQ^e|}uATTYQiFdZK4IiIj;aCFcORguL$k>x}Mn$y;w z@`XC7G&kW|>@^Vo?GU{UCrU%J!FH>zS9`~{q#}#}n>ue>427*2T{>lr>C)vhDqHLS z+S87U{LJpbBbh#^A@>`Ot(;w5lG_Q{7^Uw_341r9Plt3amIQY{?|gu6c}nI4@c~P@ z!2Two!qXgV*t!|QeXcvSBD9}_XlYL|5~hbHb7GzVTB~_r2;o7fFw=x{vkp(-)#8N!9H4SPHP9s|%CW;N|wW z!rx#HGdp`1M?i>1RM8|_>ZlwcZf44l33T=W>;Y*eoCnxP>jy%3Y5Ew2l#a+yxx}{Q zn3NvYXWT^6UCCDQ=D7mViF}^@@g4u;Wh+_GeSpN_E#;Jx|8#2?NuC04_|>Bxy zM*4_8a6j6Ih079ucelwW=_#P?Z0 zWs?2s1D~c5XYQ$x5C;)Utqa7*6WfAENN{3*T*NuyP3`HFA-%m^h$NQ>^Ff{SH?E~P z<%YJN%kMVrDs{cA#!Xw7bu_oW(t5Ll>^(h$D(IW}f1#sOp)38}N*vjt9WrEhQ;;Lv zZ6pkibjb}4j4WzeBTG(R%6rer9iEpYb#I;m_)-(m`d6NuM5F19?kPRq%Tp2Ohz0_> z$=Cu8Wzp303fE;YUH(DN@0YH6M)d9z#6L7MOUk4wW}b_*FU0?+l5Xb~)lUann>LpO<^%8Wer_E*IP4a(3ioj+AA+uFIyLVGn1QfOX{(C+Hr8(Ov%EcnA z2lD|5^iZ=BQS;|#6kBJ2Kg+b2bPO!|!)y65hJQ*h`;JW5Sl%<c534lX|A-xf2Z`x@7`!XA-d`edVA!G6VSW&r3K58m>)(Ooj@txV_|VjYU5nGa zDdIze<;Y7%#>g#o+afUw zJ3lLLYXlWWn^JB26DEPdg*2&Pmtwm&a-2y37 zP+M`84oil=l!(Z)o(1gZ@qMhbYS(p9*c&^Wmd&Msfrze7QXnHI3@3r^1P&WohH?kwQrEVb}X}!7W z^y3#pGS#Fo=^gx3{Ji;wI~eehpr}axx8e53o*o7CAudiL=G%FEpAFqGKBiWS(Is%BqFgAfBc^9}IqE z8ZTu>S08)0c&R|@e9Y)tdbw06HQk@EANB2AR*2irT_VoyZ;Bj(Y`S(9Qn|+j{j-Cx z2Kzs+Z!?)b?3C}?!{ddY`u8HF&10AwT+>ALz3zGu>?bu99aT7b@IwTY{@C9(t+z;n z%R)AL6p&&<^I&CvP#EG95pi2R?jDA>+~JR`Ps9rqc1o#f}2#f5~OMjf5QC63IrrGx!uonA8xP7}@&q}uw<75R0s4a<_7;niSobUruQ+$?lJ^C49oOqB3IdnSyhPl!!(Ns}F7PvY| z8W0UuMMc=Z${Hyn&{+f^n7CY6=rC(?Mv}B2iAY3^;|E^E4q4nT=tcxPNf1IF6DB9Z zsX@VE3F@11{WQXz(SJb5IY=yh8w*!sNA*S6p`FHSuS!oBe?Ahu@%z25lvoHddHrJ} z(cG0n`6GN#!I(&4btJlbWvdW~Er}rT1m4~K*VLK}(!ik9RQ~iEI?0na8l4)s$v_P8 zPDgeya*yF&J0VNWfp#+drkSh@4{ff8U%x8%(!W97khYT(a&l%0MBSepoGR5~%e}7I z{X(s?cyDGGb5-)3oZ|e5zrrk1&~Rs8QOa{ejdEH@YdI&`G4syXEJeh@CbYyedQWzj zF=NbjywIFIAmn|0@}z$gZRJ*_S2ae(^aqJ+da>!7K@~Wz604r&IOn@h>Iup5?B&-G zOL4_v|I&U$00o|6=YJjGj0(#uP9`0?v%F8=5={vOo4>^p(wvTR2u)-ZOAqN>%BPAqGoy^ z3NPgb`c6jnHjBgocMPGr{BwSU7ttB6F9N2u3xu_!1-1(-kJ zCf6T9tS)I;?p><$3-hkN8)>fnLpGE;}3RlVr?c&Myj*MdEM@p*y8l1}+WYez7K0VTJ&-+mYvc}HqcZrGEHgnw9}5@^<&rN!P!cOV|>UO}tuEB*>oV8jEuLC1y{ zUX6Y+l#GvwCoW|n(Y92NO^MvEbi#4q1nlk<28yz&%7e@HZa=zrRPPoze=wJmhXLSOv$8*8{O2fmdayqTp?Q0As-e-rRL z*|fHK~*)>|U8%%2O1e=Dy4F1!9`@=g}J z;@R>wZ#sX*M=W!E9zSo3*pw1$dH7Gpy^MNhaiO20!2v`zpn|d&R)B-5Z^H97C6Apv zO-Ev>Vt*#zk7`qXd_TY>$f?V8^d@EODjrL-o$i`UMAIUe^S&QPMq=_9HTMcHY5@CL35;)izg`KUSjH zyc}C1SG##b1Tme?*|fGfTtS6vxAu4Vd!-(mjd>vD;%)Q%o9mPbRNFl8N>1)S)}x1iaJ;&lgAmm1nhnY zh-_>(>|>08#yLPzde;sr6fu(dwZBIfG0V`(u}&yr2=ZUAFG+(m+idIpWJE@zk#Scf zgJq^l?R8ZXL7`z3j-+Yx8=P@MiyO0PVRbl2OIO%Q^4-7BKSNk)QMCEj2T~Pf(aDR( z749}qOOGscW zjdo}>V+{JCSG%!$wf25BH4!ucgfxT+-@A!j+~`0)-bg%8bv#c2Z3;+8ii))Co=844 z#!x;zK(~_FqE)-G&L5xKm*a*cd3aHAUL9B%KcClZjMF9YmXnRwZzYb)%kp+MRlLyB zR1f1D<0;{^zv|di;*_d}ZI|w6>ctV0bwHfIN1{#P{+-c2%f|yrzYmDa7DEfzH;ZLt z2-ZlOx$~LlR6o%al`zgV1bh)~%_VZtoidw%EZbo@zAXqGT|b4@+u9mfP@GOJaes{& za~?=~*R!`w$`>K~rl)fL1GVfwZqg$)jb1u|-KHWd&rH$oEI*|3 zu2z6QZ5kKSrSmtJ0z|R0ty|4yqTh?Mem#$u=IHAXv4)lMJIiXUx4PzMQhz(q{rkJg zK1~b(r%jg9IS;nZ<}}$k`4&vliDg#!?DJw+QPwQHnF&kL!!_Y3oq&Bci5UAql4NP( zy`t;7VM|SOELoUn@D>S6H?$rwi2|HLbo0{xRIW;ggG^O^?yJ}KT`}j-Kf&e9?>p1D z+MB}9Wv(}qOtPQddo7LPz+M2@C&@KX4MVCTnAOPNc2htg49b&YCT%+Vx|u+>qA^s8}+yW@zn-+iDHuVTUZ}Fv)85v8nK!AGB$O{neEO z!ff7{z+62>R@~26Qj&FWchgo;M71oiZ5E=5FY{4dWce0NZ_PH5 z(IOdVzJ|+_npFFqqqxe8nxktZ3%vXY#LzC;ljJ!hdZ5UV zDr2xmDQo^u;14UG7tKbh5oR^JIKJ;DQ*Y0{i%NGL0{gMg?}}Cyrq{zvuAed>HhRm-?bL>% z7B`_b%VD886K=^5@J|o-U4Mt0$@0Cto^y9ci9eJIX9SN6BPTQ29!A&5-|xk4y1~*F zv!A7T9Ju6L=2GIGk_K^)AGjKZjV=GSPgE5&jEGQpr9XZQNWN%FGl}LV_&7@pxT^Lc zT1$|0{=YtxvkkD)D62gm z(w#plIdD#+Nk}U3%!xIcC1?Kjg0X;;MUGcxZ=KB=Ph8KB3-K6k3`(p>XMIp9m(S5G zH#7B-)WpMkr=QO&k?dEv|Lx_aoaLZADTsN8vICpP`^|yY)FHV?Sgx+T&&%klZspzH zLPdbG&aTrgXlAVR;8>b9ioG|&K5=!6q2(ja(2|OQZS7$^I>f3o>u)`nsQ8(tZ4OiGGT+ z&YVFxYJ`Y1G72r@yZn;M*}lt&dvhdavr-SM+ufuzBlVH3(JH;k@ANRQ#IZS*x7``K z%uNYv9@s(36DD4!rKBlAG5Z(+Yo8xtI-}Hh+jpUz@m?kJdPB8Up@A)1X>*#4AL7gw zlg07&@JiKgfZ|pJu495{X+L@?Ibr0h_F0aEMj>lRTt)T~Ps<_^>5s5p3iPU))5W+&ctI=l430fbg&hOaD`76n zwy6IKvqGQH$Zu^ykI3ccq@77Inl91>K?&CWD)7MUCQ)@xokUx4% zUM@5-j`|0kf-Z{ppXX(=tAZ)M-EEd;R0rgown0*2;$&TWWy4JSxg?6&M`sk0elBWY zXg^Xrhi9Q^ltm?PQ2Z@&!CvEcbbb2CLOXBa%hq)a{rHlX30_rK#?YtwPqoRTd8p+PINTY@1Ama*FjBgjWWS%9uGE+s%oGP$qM)j(pc!ETEH8cUyT(Mc z?VgsVtU9z#m3pI`z;@5VehKmFA@Whf7T{tI4`usbi(;szR-~$VS~#MaQjR>?oGhkq zmkhr~t}1T7Q0lOYUe_m@np?Fr^ES=0{S8GGv7Ad5wY=vth9fKLvpoFf=$R-SnY!IJ z^*Jp4?$Mdi;?TC(Vu(*~*ce@yXo{hv( z3;R247HMrxCz}=bpZe`qJ-PJN87BfFb*jOVeFMq zD%T0c_}i@~T4+~Nu~b#v8Ng(JXh0F*)11StQaBR;Rc$7Y_E>Dut@PizujEs!2Hr+y zoD=3ggG5d=1(qD|pOymqn;P+>qoLSVU!|d^u(?soZf<{9Wsy-!zX7?5Tc; z3w$suWVCAJ2W7MbRP^60LmvE@#CRkZpj&r{wg#;99eU?(Ctn|RMYTVYd-b6oesjVy zqng8A=kad!Z21=n^8ZI-w}E2+GZx_g^!-+Fl2p(BSOL2!JrDP`XQ%;e$U9ehR~Nh? zIzOSoiZ%Yf6lBunYONY6?f4T!BO`fxh z{zRs%ifi3@(uCO|!|>RC#)SYsZHParo8QAbo|lA9b}?)}Uhm)Foc%rTeEMY4DwLvc z>}g&oFkEn206d{Qa%?|hrKII=_S9@6C&uzG#XXo8MyxKdE*nGbANVeg7 z_@X#qBK-cz=EUbw7d{AG`WdDdGTFs~pMPQ<)#feICRHx^C{ha@#7tN$W;guxk>Y3^ zaMCh~@ch%F_Pt7f)tzBu!@k+npgPu`1qIXOp4v{;&~v@%$-z&5V*wSkhz+(PFK%1W~f;>h+R2vfuR_4SsMf zq7VtNr`2&Epq>x19G*q6`nH@1SxbPJWN9O>TK)P_qJNPAqRFpdE5UbOc6V^5XR9%8 zYC&zf{3UkPVZngSa6Hk$>Hp$0OLCu_{K1d|sGhd>5d#V;Okm14bG&YL4L8@PrXT2q(B@T+}MgLKAFvrbTeLV ztdRX>0NGNw_*mGaK%q$uc(d|9Shwl;`UXp1S5bQ?dP~h(Q;|fQ2y4Lh5{td1Hw2== z5UX)Es0S;joLc0cRl9B2SkDqe5dw2kU@4ox0@qM|T)xI&VX4m5uCk)~-0|Of0|ZrI zNaSg$xm$6X=Exbr>SIm8Q?)&5^I4pz6HaRlsw+b^WDbBPh|diU#xD9A{tCCvOVIux zV~WFXyZH&SE2zvvc~R|@f9&g>1|+v7FjgNl&VBz|!em~Z&AbeQ7XB)RQg5un72erm zA==mqFxNf3J89q1jf5;TvAGk7#+hi*4m7Dg(S0;G=1^W-dLtro>*R@KIM@Uvk|cZ+cEB zi|()D$GdOB)BE4M;B;I=YJY}NEOx9}Kh2)5zo}9S{s9`iY`6%`og61l&!f|mZefiM zy9NafjoalVU)&vB7A+1U3G_5KqBgT+cYDt9o%wS(#}}kCgJCvb+Fmy19QH{6PkjBq z%HH_2abL8wL*98CW@2!FA@2;&zQk4>L4=ZK0VHub!{2qD1B@hJUkCQQ`O!a4e&VZs zenHn*y1%kjgME`5EWK#&yU#*4eqb_75~)48o14?@7XQ@iRpNYQ$&TTLf40sAX^bkA zjYWRAxvWa$Tu6i^S5%q)vJ}>7%JNAeezTJr8twO5s3;OT{%l#BtF1rF-}G(vfKS{@N?{5rgGNn^Fos5CL5yw=MzLBGk zAk1e8PYtro)oI6duVODAb5X8#rw;+cS+oovX|zGFO?&uy@6fZfi|yGztGU4x z2|+8=9`}=))nco}0h@j?Bw{^hz0k33X>zL5>HE@76t9(}Y5S#0{JpzjM^_pC&P%ez%C~pHXA~T;BkfCPqL&yrc}HE%h^P zA}ecZX;tiKCu6C`p~j0e06)O$KyC78NPt$~;_8Bd=8rW?=ZdV@qHR!MJ@YLh%b>aXlg zkMtxif#mnxILIx$kU@4x?+$?Itidc7sjwO%=sjo~M)4b<$b-=ogAyyJr%zhs@;%i~ zRG8rO8VIV@JH2O}nv2V)bP7}(S~Mz>QcChnduzF;Bp~}o>^ik;O5qg7@r#hb?j_A! zMVo@_*0_90VBJ1}zX$;lZK=$WQ^RG*fXFO+ejFE8Q^lMgT#z1k4$xhXI&IPC)<0!f z=AE#*3X=)S4H`{Uk)UZd0KU)Jn?B#C7GQF15_qrBx|tH}s2G9EdI_DGEiB%tWww!? z5&LXey{;nLXdR3^f)ewGgsa!>2izaEn6xlCrWnKNm+i72F5o}oo*qhnU)S~{IUOWe zeb+6-`1k)Y>+WLH(2Fs3YUeQk7mpAy$N<|*B;jrr80veS75WIG3AY7HcZdj#H3!jJ zN3+N7zFyEmG&R3AllJf=xE9z>{Fonc7S7gG{T~EJ{AGYoy~6TLXlAf;=U-zAFBSTp ztUFGz%otlt{K>U_Dqp@_HVl{KDOe-6G%S1i8EGxL@QvddC zPHgfxKkxKQek?ag2oYPJ5~yzeY;Nr&E6rsQ>~hZotkRPa6yo(xs1_7PLnUWZb?616RH)oqPMEyZZ)JqDw0fn0$0)N0^)C8q9-W zR_+L~#gp%yZ)$aLbp+s6)0M4~nX@^WT*IagUD zQOO_H#q)9#NjNu4Qo4Y&b@lW@2*1y2n~bi$oz=tZSK}oW+ZQn1=l-@!=Lq0Rgia>P zJzYC|wyAVd(Wa*69v`3f1l8YxrNwew1Qpw!4?IA{f$OQC(ziQ_NK@OXVh7X#2IATO z!Wt_^BOPJul0D*0J%KBOA(62k;r!h!B>2VU4nq>}UlXF>=AFMtEP$16QdHH-4hnb7 zn4eouyh+fZk{WqW(={hp+(Tae)3#qIPMdN`24Z94P=UgGRG87x@0=eadlZJV(i`92 zkUB44k?z2O0tv24Q0flFHm9cF?1`AQj{$Uat~#(>(3yBW@7%V(xR*^xO_)Mz8W^aP zANaGC)RMB>ZJ1`dl=(S6p3?DCNL1ADpyz%vz&kWM>QsCA6T5>D_uBCG7Vd6<#h<>_ zyLC^I!O%i<2!7hdAkmk5B ztZZ7J?Wdhs1HIA?Xz~DuWV?Daf+KkzF^f%@fanK2{22`XrbWmrhs57F;fbs3fxijk z*#&XDPp$R~gAH4OdPZC!XX~aPJV1pv0mD<0e4sK%%FHcuCkcJ^9!6FTkg>cHOJX?O zy9Vg_y~Bdr`1I}$oH4Y>$(GoYnZaMkVORh7wRQuW5@w>P6Z1;NfgQ<5KN+k}xEkca znr|{13x3R)mq{qSBry^tZ8lbBh_I8yxnE55J*1XBOI3G%aoR5(x!)%4p6reEm@s&Wbh>w~97j{b~SEc!9E8l== z1Wf-LGL$^d4iFtF!`xBCn%Vpza;=XQPxNU+e< z_wEY-J;vsQ=L{aKI0qer(%RK^>C=9yRC9f<{5TOsNEYML@PYLeUYHyDRMm117gzNv zvALDT2e_d#Un4ZyK{YxhsvIq8W2HHDmFoocNZn=wl{M@~>pgg~^E9uAg#Q$Ln$h6@ z5He~lS@F{>tn`lUQBt2m8!D#SNzUq7s>RP` zXqs~JU`xB!q4XPq1DB=rxfH`Y4mr}{S~oLS{c4mDXp?MK^$LL?9w;_W1^c=K-nR}y z#F=7sZFbF8ht7fwlTtT}-c&@X`H|NkAW&b-Um`q3j+^5ttb2~SHk;7EmUrPdMKK1J z*dF)-gT;e(@6(TbcfvNf7|ksT@~+P>&pvI;)4VHmLP~*wC3W=o7LeFwjX<$beDyk8 zIXOnqYamaSw3?=*(;Mzc=~zgoYw^9RmF&^Wab?_ErA6?oH;J#8x?F=<(pO08b00Fo z7sUrI=$N47ag0+z$wA9tf(2&_Nm0+;t#d*BI&>XI`8y5{K|&ux&mOJP9PW*Qzmv09 z>v#3h19El4M5n*BFwLuJqRr@SBy8E#8gdPKwch?=&()uyRa==k{mE{>(owRC@_mGc$KIm)YXNmViCKLLdxrKcR1}<9aHTkvKR`Xb|LcBVK?g zbkmm$RJ)kb?F?BNW7e|`VjJZ6N4)Drc}vD6Gbq}dMmJ#^8>-bRe3VoJsU7wA9wfexmBjKJ z7*8<(*(A)4`mU(^i?|k_2}{XiSi|Es4w-EX-IRuYu#+8DcMxKyV7>vf}h;E zy?ytaDU-A5t`DkBufPh4G4P_kz5A5(qQQuIUu{j~Wb3MpbDb7Bz45pGnXXt_4I7@f zdy@Zs)c^^XjB=d;U?g#xh{BotjT#in%k6crcy#o8(4sjx@$U9Bb}!n$1`B|y4(C4; zKwVtSU+RhvpF#%t3|`jGDkP`7q(@f;*u< z*l^RP32;D7WUZBMg0QkV(3W84VY_{0Nx)i6Z&6gO_OTk^wfwE# zn&TNW3wGqqqowcbVE(s-U1UscVF1}#0tbeTQ2oV6B>#)5MU7L+(GaJW9b67B->fhJ zWXz66hV+qj4u$y6o1bz(sMi=mlMNULB8m-3#(`wWDt7&@UDY$VH;zng+-oW8eycoR zbSD?J{cq2-Whel$u5`Ux>9OF*`f3_eS|vUV)Gwzi1Zr8qd4Y{i^Y^`DCf}3*we=9$ zX9=>-klR2OmmSd9{$HUt+3*ZO!&9KBW&BxnjR(Lui32*mz5*9rfP-(jd$)G2uf9Z- z*>j}1)PM(ypR>ry+GOh!5|vuAx!xdi2_%N_6(CNv;z0B_#!d)VW7(T-hOT&G4#P8c z5b@0@dTQNtTiFfP*2-^?ImGt!d|t)P`X}scfknj6q(6dcgpGf;p5_ZhU~UbYZv2o; zI5&spbeb7vic3qHIg_}VUx+Ey?Z`7LOS}g|&xe}rd6VIN)`%s8+`NqJO#aS8I|Q!0 z_(mHY+{hw5+C5p&6?9Z`p$-f`u5q!$Vrlk~Vq_856O$b9m{PpjI+d8#i!67cTpKq+ z%K5hp4PWw%o?ex7sBlF+>w<3lUj}>&gjAcV14G*uF&{8bbV%#6{0J)^Bdjzplmx1xxkc^i15Lwj9qzbe&@{{Pa zroXgn*r7@Ce7&tPP}}BU^&z{sw;&r9IySWXjw1O8)v`P8`;(uWkMlUX{S7|2P>6Jg z%3j=<6g^dHv#+rpo{6bzhss;|I^RFQ+}=~vw{fs-=Vm!{R}w5W9+>@$BuHN5ij$?& zDlN)VfT-{g^;g}PCUTU7M38V;SSQmo_~OogbiZ=}YFm9oFX3=9CK<;9XIrdT#17 zE0|4jD}i=s4p**`VIpaxvqY?S=;?R#)LV;^xxe=95VFiG1~KJrN&;V*kLR2y?PGL% zsQ=X|^qngjB|Bej7+PYH0O)uBx_^Cq&3%8bNN&A1d;S4$fN?PymoI*jar$6sELZ2v zLkW~@ovA&%@8$#VLCfL4+z#B^4chc3WjSFkC0-Qtrg8)ZD`KL=+-;PsE(4*iFJ09+ ztgHe(WYE_zspsNU)xsd!1w2f+H*!a!;;XQuRuObD?-V-s#fl zZ=tCZp=q3m&ogy$YH4sMVUxHVE8aUNKShvz1(3TYl?jX1(hLLwSSnz{9=0WOzX;e)HqmEW@^rAWVJ) zGJ#Lkcr-Yz&J96DT4^dQS`wZ6j@TLfV7`JF`Ld_w!L-CRwtZ}w2sa(HV zwk~IZ1Q-?Hzr?A#Y(6;OzHI6z1>iadO-qAdNgsAMs*P8%ygVJG4}JS+B7zU3UI6tq zJ`Q)}tE)+VU$B@@1zep#n+_;V?8t4r23+G-P6lwjNOnTj9PQWoMoylCzM$d4WOP+n zZXLqPUg!a{y0x-14zTpuk`R~>2M?V3@8s*YD4SyVR>f6Q zVo0=VVzqw##ejdBMPKWRRiNBSF(IIut>%d+#fcoqQtweD3`rN60ujVdt`NTdov zFM=ebZHnt&7oSkXqOG5higM0#P-Up&#=e`aYd?-dnI*sGgBNYl=U6Kvc@QjI;(z_r z^s@65!S7>YKua;2%jJn&XVQl1FjlVWF=-dcIiKW5ND`<1AwY(F`RIxBzwHb3P^RPN zH7yMzg;1yvtK$FL<|LF?A(tlwAL|6Z>@c+BH|2+>Ccs1eqVi+62>>SYT%U!4jZUg+YokIh@Clwh|I$jm{wL|GaLwiszN zzt0K|YVBV4RIYeNm8r5b{5e83$ijG#=NgLy7aZ{ZN%7A0m9QttrY*^mC8^#QL}0s| z2{ErHf80MTCkj6mkR{U>Se20S3l8?117LvxE-vL9mk`V4T0mz|BlNCzdb(BqIKek#Dsv^qW>c0AwtgDPs<>csmM|D;{|T&5^5ZdNzWfE-PUI|s-3j12 zT=$^KY90h@a~iZ*;qFKZs<1tpl&4YQRVKUHXH$iAa|O>?^p<*c4TPQ1kBLFnnHYyE zdd-|*PtyRa$5yVuDxtDCGDPDgbF~bGN>kTvi&|qUuJBJmWFJZ*q5$8>u4;tl?tq^l zKP+@uV-|XOU!7;QJah9O@wS6c^J8`JmIb2=k z#M+(b?@Wrh%+sDBNHRX7Ql>p;@RZ`^9>zRhXKhVu_c=j{Ek&lqHl;Y=q|^{!v@InJWH7xx6Fs2tzlSjmE(zHfFl;|6^8Z^EweaZ*%T zM1>_;l@rW{*b{qqjsA$g1AY<6$Ju8pE7Z^8wF%ir3+U?KUt}S5#m8}~w7*;L$ZsEQ zHY)IyQGv-NnT@+iB**Q=Ap(j6S3z>q?$)M9t0E7cuSto&A0_Gh>Un0V#Xs=T`Qn4U z#Bgj-cZvDvM@p$TjO26PpONY=A<*sH>?U`MOv9v=9K1@~6B4(hb zwLwNk%m4RZfcs111L&;R|9qbSh%>0=e1h^ltw8xE&rWZtlneI`UyH*Vr=yR5pS6q` zDY0+n!>RhCwY6W8hd#WwS^i2KV4n;oE`l>Zpxwi;s*Ve)`f)T)7&J3n6{70G4`}Bt z{^w%OzK%5WBBOQwIfrjfmVRVGq6a%*n8K<7)%Aj>1HgA@ji_J9LNI+_X@Gy-#t-p| z8?b2j+hRFk6%>)`HT)gwG-Y>rA;2s5p>-7AxFXH3j>!Skfo^qigo2!t9BH$HIB}tq-?B4wq%4C4>TSu1MhsGY1by6*iq?foOYA zkwL2wrFP9L>s?%HX;nWw`&+Uh{WZDqSpb1EEcEXoK(M%$54eAMI_ zR+%#>%573CAIn}n7d$jlQU7Ff602|Yw974PD3bLO0UY$stAj_?IYW+xGnk{rtbO|`l=UoMAVi7Zg{t+^Q+?9&+}^@-hFiFZp%?C z=`1WIfATX8_Qzl@sEHjiL6uaemQQodVM#-4TFj06735SYqxcH-%l|qe{SwVJm93wM zh=MtMjd}TuwmqI*d{5s!-4MY>yT~x4y_cC^LYN|pG5##E%y4-RJvIjpW=Rq2sqd`g zwictpf>xi2K4aZO$8vhf(*J~berpk-nY@=*O?FNZi%KUruPUh9*=}dGD(q1E^3ZOW zKeg?L{Jbhot(Yo)1SL{d%5+REb0`rW97H#8aeK*zS@3MW+@tfy4^`gS-JTGE%F904 zbJP_UYdpIbP&KnV;RXbTS(vCACzf%@4$@8Q=k5KenFUIy^K9*{ow@e50vQn#xqx$O zVXtG3*xJj$*u@r;BtB5gH-5<(WIB~Zkh0ktZ;)Lk1ROKw+#9IP=moAZ9?bo>BKhAj z#Pa%FkkWA{lypqV%H>63TJIhErIvCBOGHaZA${mGY#GAvadrbpE2X)>?wi(c~SzDp+GN7t(wod&) z^1RCkkC}_02nwsy#K9S=8#lU#-9=xZQe7+rv+Y90ZczY_*ux)bPQvwLW$bur0r_I|^YrSuOy+~8H zRUt3P-4KTAOd}m+e>B$8j(4T)aa_R^1>Nv%1?W=*hSTmmIAk;FPQ0Uqff&MvN?6_j zH<5`!-f7CVmwnJ=b4W@_$&!?`(4I7KC#^GV`sP%s{#I?u9#-2oxpk77f~R4SkwsdX z(xv#83c4)-q@=GwZDe>ndXT~g{@3@PLM8h5GC4Ii_i$^ovq7q+ZoMxC0c!Yx<|Ss= z))VVLo=X;hm5ur;w zu`*SVG~b7tvH^9eE4H?J7Klj-g0jpOBDAj<0V@Ra)nkOI@4>F*an8yT@Z+}dlqp^L zYQ-uPv^PXdVCvCO?gapM&S(QayK@O;1fXheJ7 zYJr_S1H2(8fjb@fA=)GH^s$P&rJF^YhM-En_V_oOo+J+6^PrPML1Ho$M_wn}8nu`` zwxw(?!zBTsTdm<*G})+*U#~|tETYr$w6*^TsN5HrGPAX7Xtjkt4c4)$6wj1x+rTN| zznf7sl|Rai?;R_tVVir^vArI;zixsvDeSh(b&p-anHi+TM z)P=iM?|0P=-28LRA3yok@8qZz`G6@Qy`@le3;S;`SQaatARuAq`X=4mj-(v6(PA$9 z9XRmXBHmQ){-zYVSM$UuMBtKNo)BCC9kQ?1X#u+<+n8lvHV6G~Z(m-`?>jSOgBe_zM?xQSOrBwn`eAyI4?pde&2ZMuq3q6rri3?Xcp2>Q2j z9*rz!x27=v-}Qx$qdlLCKpQf2OW}Z>59SfKMvh~nN0C3o<8E9RuzNx?A zILm7zazAuc&Z|4mLXX#laimD?y*^{~0o%5BMG3^kEpYvL;4drQUa!Td`#|jv?{26* z&a6EA{>;{-cpAcr_4*li!(> z8e6JdtHg*uxiK)1wtQA&OTOynWv$=2f^L@mS-dSVWEPz3Ryl@@=ttd_DZP#nQiggu zD{*|y{TAaYp;lJ{aFV3XrPRwpB{AO|))CJb;e7h~^+ilj&S6W_;V>gCcZ6*QD;UzS zu@^^JK?)M@Q($Vkd^yjUgNng*;ZDA)qCwQ<7M2l~W%>$SUVut0AD~j|jev+3%$?_OD4Y~wjhBTMyor~+a{Uk>H5aT-&PW#Jx>TXem2a|`r7!micp zy<-OEQNqo7WgU!I?BVD`LxFS`h-a<=ZUKL zxqsp7nK{@AI)uj4d4^2#U3P3+-&et<9i92qs`xr+Kv*waT-QpC!#ovy^pG_6^G`UxFmYbLi&Wii?cp7W=PMXk+~q+^>9}iOmXv|C5vJ3akj&6d)$|VE!J_`> zz*hoz3%>Yzk=-`OOw3mIqkoHICf+5j3vQl)=coi(K>suUo!uB`4j~5O z7YPQxRetVx&!zRXJo@Q3x+&2M8NtorheJ=%$!5!^A4RGXwwA|f%oyRLb?R#o@w-J> zJz4>uJ?al5nEr}4`Dhw8OWx(NmBR>Sb}j_aEAiX3->A^gaANRD;K+dsM08)bM4`nz z6RZ{QBUp5Lx=h_^Q}S$+p7vA>vFsYky{AthKZetQ;0zTCD*8-S-6Yr@0GM7f`Fa7I~W=(yOWq!M|&omY56-YSo_Hk9{YY5N<1cS1paF}Dn*(r=I$mJ?FsT~50?g=7mtBwf{` zm0E6MOTI8Aa#;1E46&Kl92EU=q%+(_yR((s5+y{(RMO8kM42LUK(sVkw6~ zO_OPgJHRlNTahiziN-hxR?z4;;<>9&{6qE4zVDTXgpwohzE8D8qdd(}TX+sp(?PqO zElT+jAb5_vKskTsfOXWT!oX3IX;P@^p54Vk;(DV8d&`lDSa@m;UDI`4-=$xM6N=zn zwMTqmX^$sPqb2r;%wbTYJ5~-YHuVwTeuK(NC#=rMIRec}eqw(3aU4l&(xCTs<1974 zQ1XD;#XB(!AlzQWCyDzFvkID!D2X3wZCiO{k67je*7y+NpwF70QwLK?TLW8Kg^)bl z*5JlN-;5xQ^W?B~9c71_E+rO25bV}^lO_;GS2WW;SoMr#sq7%|)6?(fjLA)gj^LC} e|8M!P>?okc4mnXavMYZ@v8I}yDoXjqyZ-?H)#2L! literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/version.json b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/version.json new file mode 100644 index 000000000..fb07faeb7 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/version.json @@ -0,0 +1,2101 @@ +{ + "Linux": [ + { + "cuda": "11.7", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "11.6", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "11.6", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "11.5", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "11.3", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "11.3", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "11.3", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.18", + "1.3.17", + "1.3.16" + ] + }, + { + "cuda": "11.1", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.18", + "1.3.17", + "1.3.16" + ] + }, + { + "cuda": "11.1", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10" + ] + }, + { + "cuda": "11.1", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0" + ] + }, + { + "cuda": "11.0", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "10.2", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.18", + "1.3.17", + "1.3.16" + ] + }, + { + "cuda": "10.2", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10" + ] + }, + { + "cuda": "10.2", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5" + ] + }, + { + "cuda": "10.2", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5" + ] + }, + { + "cuda": "10.1", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.4.x", + "mmcv": [ + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.3.x", + "mmcv": [ + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.1", + "1.0.0" + ] + }, + { + "cuda": "10.0", + "torch": "1.4.x", + "mmcv": [ + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "10.0", + "torch": "1.3.x", + "mmcv": [ + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.1", + "1.0.0" + ] + }, + { + "cuda": "9.2", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0" + ] + }, + { + "cuda": "9.2", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5" + ] + }, + { + "cuda": "9.2", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "9.2", + "torch": "1.4.x", + "mmcv": [ + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "9.2", + "torch": "1.3.x", + "mmcv": [ + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.1", + "1.0.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "cpu", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.18", + "1.3.17", + "1.3.16" + ] + }, + { + "cuda": "cpu", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10" + ] + }, + { + "cuda": "cpu", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5" + ] + }, + { + "cuda": "cpu", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.18", + "1.3.17", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.2", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.4.x", + "mmcv": [ + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.3.x", + "mmcv": [ + "1.3.9", + "1.3.8", + "1.3.7", + "1.3.6", + "1.3.5", + "1.3.4", + "1.3.3", + "1.3.2", + "1.3.16", + "1.3.15", + "1.3.14", + "1.3.13", + "1.3.12", + "1.3.11", + "1.3.10", + "1.3.1", + "1.3.0", + "1.2.7", + "1.2.6", + "1.2.5", + "1.2.4", + "1.2.3", + "1.2.1", + "1.2.0", + "1.1.6", + "1.1.5", + "1.1.4", + "1.1.3", + "1.1.2", + "1.1.1", + "1.1.0", + "1.0.5", + "1.0.4", + "1.0.3", + "1.0.2", + "1.0.1", + "1.0.0" + ] + } + ], + "Windows": [ + { + "cuda": "11.7", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "11.6", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "11.6", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "11.5", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "11.3", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "11.3", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "11.3", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "11.1", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "11.1", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "11.1", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.7.x", + "mmcv": [ + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.2", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.1.5", + "1.1.3" + ] + }, + { + "cuda": "10.2", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.7.x", + "mmcv": [ + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "10.1", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.1.5", + "1.1.3" + ] + }, + { + "cuda": "10.1", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.12.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.11.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7" + ] + }, + { + "cuda": "cpu", + "torch": "1.10.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.9.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.8.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.7.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.6.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0", + "1.1.5", + "1.1.3" + ] + }, + { + "cuda": "cpu", + "torch": "1.5.x", + "mmcv": [ + "1.7.0", + "1.6.2", + "1.6.1", + "1.6.0", + "1.5.3", + "1.5.2", + "1.5.1", + "1.5.0", + "1.4.8", + "1.4.7", + "1.4.6", + "1.4.5", + "1.4.4", + "1.4.3", + "1.4.2", + "1.4.1", + "1.4.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.4.x", + "mmcv": [ + "1.1.5" + ] + } + ], + "macOS": [ + { + "cuda": "cpu", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "mps", + "torch": "1.13.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.12.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.11.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.10.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.9.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.8.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.7.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.6.x", + "mmcv": [ + "1.7.0" + ] + }, + { + "cuda": "cpu", + "torch": "1.5.x", + "mmcv": [ + "1.7.0" + ] + } + ] +} diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/api.rst b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/api.rst new file mode 100644 index 000000000..5d3e62303 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/api.rst @@ -0,0 +1,49 @@ +fileio +------- +.. automodule:: mmcv.fileio + :members: + +image +------ +.. automodule:: mmcv.image + :members: + +video +------ +.. automodule:: mmcv.video + :members: + +arraymisc +--------- +.. automodule:: mmcv.arraymisc + :members: + +visualization +-------------- +.. automodule:: mmcv.visualization + :members: + +utils +----- +.. automodule:: mmcv.utils + :members: + +cnn +---- +.. automodule:: mmcv.cnn + :members: + +runner +------ +.. automodule:: mmcv.runner + :members: + +engine +------ +.. automodule:: mmcv.engine + :members: + +ops +------ +.. automodule:: mmcv.ops + :members: diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/contributing.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/contributing.md new file mode 100644 index 000000000..778301f73 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/contributing.md @@ -0,0 +1,267 @@ +## Contributing to OpenMMLab + +Welcome to the MMCV community, we are committed to building a cutting-edge computer vision foundational library and all kinds of contributions are welcomed, including but not limited to + +**Fix bug** + +You can directly post a Pull Request to fix typos in code or documents + +The steps to fix the bug of code implementation are as follows. + +1. If the modification involves significant changes, you should create an issue first and describe the error information and how to trigger the bug. Other developers will discuss it with you and propose a proper solution. + +2. Posting a pull request after fixing the bug and adding corresponding unit test. + +**New Feature or Enhancement** + +1. If the modification involves significant changes, you should create an issue to discuss with our developers to propose a proper design. +2. Post a Pull Request after implementing the new feature or enhancement and add the corresponding unit test. + +**Document** + +You can directly post a pull request to fix documents. If you want to add a document, you should first create an issue to check if it is reasonable. + +### Pull Request Workflow + +If you're not familiar with Pull Request, don't worry! The following guidance will tell you how to create a Pull Request step by step. If you want to dive into the development mode of Pull Request, you can refer to the [official documents](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests) + +#### 1. Fork and clone + +If you are posting a pull request for the first time, you should fork the OpenMMLab repositories by clicking the **Fork** button in the top right corner of the GitHub page, and the forked repositories will appear under your GitHub profile. + + + +Then, you can clone the repositories to local: + +```shell +git clone git@github.com:{username}/mmcv.git +``` + +After that, you should add the official repository as the upstream repository. + +```bash +git remote add upstream git@github.com:open-mmlab/mmcv +``` + +Check whether the remote repository has been added successfully by `git remote -v` + +```bash +origin git@github.com:{username}/mmcv.git (fetch) +origin git@github.com:{username}/mmcv.git (push) +upstream git@github.com:open-mmlab/mmcv (fetch) +upstream git@github.com:open-mmlab/mmcv (push) +``` + +```{note} +Here's a brief introduction to origin and upstream. When we use "git clone", we create an "origin" remote by default, which points to the repository cloned from. As for "upstream", we add it ourselves to point to the target repository. Of course, if you don't like the name "upstream", you could name it as you wish. Usually, we'll push the code to "origin". If the pushed code conflicts with the latest code in official("upstream"), we should pull the latest code from upstream to resolve the conflicts, and then push to "origin" again. The posted Pull Request will be updated automatically. +``` + +#### 2. Configure pre-commit + +You should configure [pre-commit](https://pre-commit.com/#intro) in the local development environment to make sure the code style matches that of OpenMMLab. **Note**: The following code should be executed under the MMCV directory. + +```shell +pip install -U pre-commit +pre-commit install +``` + +Check that pre-commit is configured successfully, and install the hooks defined in `.pre-commit-config.yaml`. + +```shell +pre-commit run --all-files +``` + + + + + +```{note} +Chinese users may fail to download the pre-commit hooks due to the network issue. In this case, you could download these hooks from gitee by setting the .pre-commit-config-zh-cn.yaml + +pre-commit install -c .pre-commit-config-zh-cn.yaml +pre-commit run --all-files -c .pre-commit-config-zh-cn.yaml +``` + +If the installation process is interrupted, you can repeatedly run `pre-commit run ... ` to continue the installation. + +If the code does not conform to the code style specification, pre-commit will raise a warning and fixes some of the errors automatically. + + + +If we want to commit our code bypassing the pre-commit hook, we can use the `--no-verify` option(**only for temporary committing**. + +```shell +git commit -m "xxx" --no-verify +``` + +#### 3. Create a development branch + +After configuring the pre-commit, we should create a branch based on the master branch to develop the new feature or fix the bug. The proposed branch name is `username/pr_name` + +```shell +git checkout -b yhc/refactor_contributing_doc +``` + +In subsequent development, if the master branch of the local repository is behind the master branch of "upstream", we need to pull the upstream for synchronization, and then execute the above command: + +```shell +git pull upstream master +``` + +#### 4. Commit the code and pass the unit test + +- MMCV introduces mypy to do static type checking to increase the robustness of the code. Therefore, we need to add Type Hints to our code and pass the mypy check. If you are not familiar with Type Hints, you can refer to [this tutorial](https://docs.python.org/3/library/typing.html). + +- The committed code should pass through the unit test + + ```shell + # Pass all unit tests + pytest tests + + # Pass the unit test of runner + pytest tests/test_runner/test_runner.py + ``` + + If the unit test fails for lack of dependencies, you can install the dependencies referring to the [guidance](#unit-test) + +- If the documents are modified/added, we should check the rendering result referring to [guidance](#document-rendering) + +#### 5. Push the code to remote + +We could push the local commits to remote after passing through the check of unit test and pre-commit. You can associate the local branch with remote branch by adding `-u` option. + +```shell +git push -u origin {branch_name} +``` + +This will allow you to use the `git push` command to push code directly next time, without having to specify a branch or the remote repository. + +#### 6. Create a Pull Request + +(1) Create a pull request in GitHub's Pull request interface + + + +(2) Modify the PR description according to the guidelines so that other developers can better understand your changes + + + +Find more details about Pull Request description in [pull request guidelines](#pr-specs). + +**note** + +(a) The Pull Request description should contain the reason for the change, the content of the change, and the impact of the change, and be associated with the relevant Issue (see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue) + +(b) If it is your first contribution, please sign the CLA + + + +(c) Check whether the Pull Request pass through the CI + + + +MMCV will run unit test for the posted Pull Request on different platforms (Linux, Window, Mac), based on different versions of Python, PyTorch, CUDA to make sure the code is correct. We can see the specific test information by clicking `Details` in the above image so that we can modify the code. + +(3) If the Pull Request passes the CI, then you can wait for the review from other developers. You'll modify the code based on the reviewer's comments, and repeat the steps [4](#4-commit-the-code-and-pass-the-unit-test)-[5](#5-push-the-code-to-remote) until all reviewers approve it. Then, we will merge it ASAP. + + + +#### 7. Resolve conflicts + +If your local branch conflicts with the latest master branch of "upstream", you'll need to resolove them. There are two ways to do this: + +```shell +git fetch --all --prune +git rebase upstream/master +``` + +or + +```shell +git fetch --all --prune +git merge upstream/master +``` + +If you are very good at handling conflicts, then you can use rebase to resolve conflicts, as this will keep your commit logs tidy. If you are not familiar with `rebase`, then you can use `merge` to resolve conflicts. + +### Guidance + +#### Unit test + +If you cannot run the unit test of some modules for lacking of some dependencies, such as [video](https://github.com/open-mmlab/mmcv/tree/master/mmcv/video) module, you can try to install the following dependencies: + +```shell +# Linux +sudo apt-get update -y +sudo apt-get install -y libturbojpeg +sudo apt-get install -y ffmpeg + +# Windows +conda install ffmpeg +``` + +We should also make sure the committed code will not decrease the coverage of unit test, we could run the following command to check the coverage of unit test: + +```shell +python -m coverage run -m pytest /path/to/test_file +python -m coverage html +# check file in htmlcov/index.html +``` + +#### Document rendering + +If the documents are modified/added, we should check the rendering result. We could install the dependencies and run the following command to render the documents and check the results: + +```shell +pip install -r requirements/docs.txt +cd docs/zh_cn/ +# or docs/en +make html +# check file in ./docs/zh_cn/_build/html/index.html +``` + +### Code style + +#### Python + +We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style. + +We use the following tools for linting and formatting: + +- [flake8](https://github.com/PyCQA/flake8): A wrapper around some linter tools. +- [isort](https://github.com/timothycrosley/isort): A Python utility to sort imports. +- [yapf](https://github.com/google/yapf): A formatter for Python files. +- [codespell](https://github.com/codespell-project/codespell): A Python utility to fix common misspellings in text files. +- [mdformat](https://github.com/executablebooks/mdformat): Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files. +- [docformatter](https://github.com/myint/docformatter): A formatter to format docstring. + +Style configurations of yapf and isort can be found in [setup.cfg](./setup.cfg). + +We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`, `markdown files`, +fixes `end-of-files`, `double-quoted-strings`, `python-encoding-pragma`, `mixed-line-ending`, sorts `requirments.txt` automatically on every commit. +The config for a pre-commit hook is stored in [.pre-commit-config](./.pre-commit-config.yaml). + +#### C++ and CUDA + +We follow the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html). + +### PR Specs + +1. Use [pre-commit](https://pre-commit.com) hook to avoid issues of code style + +2. One short-time branch should be matched with only one PR + +3. Accomplish a detailed change in one PR. Avoid large PR + + - Bad: Support Faster R-CNN + - Acceptable: Add a box head to Faster R-CNN + - Good: Add a parameter to box head to support custom conv-layer number + +4. Provide clear and significant commit message + +5. Provide clear and meaningful PR description + + - Task name should be clarified in title. The general format is: \[Prefix\] Short description of the PR (Suffix) + - Prefix: add new feature \[Feature\], fix bug \[Fix\], related to documents \[Docs\], in developing \[WIP\] (which will not be reviewed temporarily) + - Introduce main changes, results and influences on other modules in short description + - Associate related issues and pull requests with a milestone diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/pr.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/pr.md new file mode 100644 index 000000000..1bdd90f2b --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/community/pr.md @@ -0,0 +1,3 @@ +## Pull Request (PR) + +Content has been migrated to [contributing guidance](contributing.md). diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/compatibility.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/compatibility.md new file mode 100644 index 000000000..fc8516c49 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/compatibility.md @@ -0,0 +1,226 @@ +### v2.0.0rc1 + +The OpenMMLab team released a new generation of training engine [MMEngine](https://github.com/open-mmlab/mmengine) at the World Artificial Intelligence Conference on September 1, 2022. It is a foundational library for training deep learning models. Compared with MMCV, it provides a universal and powerful runner, an open architecture with a more unified interface, and a more customizable training process. + +At the same time, MMCV released [2.x](https://github.com/open-mmlab/mmcv/tree/2.x) release candidate version and will release 2.x official version on January 1, 2023. In version 2.x, it has the following changes: + +(1) It removed the following components: + +- `mmcv.fileio` module, removed in PR [#2179](https://github.com/open-mmlab/mmcv/pull/2179). FileIO module from mmengine will be used wherever required. +- `mmcv.runner`, `mmcv.parallel`, `mmcv. engine` and `mmcv.device`, removed in PR [#2216](https://github.com/open-mmlab/mmcv/pull/2216). +- All classes in `mmcv.utils` (eg `Config` and `Registry`) and many functions, removed in PR [#2217](https://github.com/open-mmlab/mmcv/pull/2217). Only a few functions related to mmcv are reserved. +- `mmcv.onnex`, `mmcv.tensorrt` modules and related functions, removed in PR [#2225](https://github.com/open-mmlab/mmcv/pull/2225). + +(2) It added the [`mmcv.transforms`](https://github.com/open-mmlab/mmcv/tree/2.x/mmcv/transforms) data transformation module. + +(3) It renamed the package name **mmcv** to **mmcv-lite** and **mmcv-full** to **mmcv** in PR [#2235](https://github.com/open-mmlab/mmcv/pull/2235). Also, change the default value of the environment variable `MMCV_WITH_OPS` from 0 to 1. + + + + + + + + + + + + +
    MMCV < 2.0MMCV >= 2.0
    + +```bash +# Contains ops, because the highest version of mmcv-full is less than 2.0.0, so there is no need to add version restrictions +pip install mmcv-full -f xxxx + +# do not contain ops +pip install "mmcv < 2.0.0" +``` + + + +```bash +# Contains ops +pip install "mmcv>=2.0.0rc1" -f xxxx + +# Ops are not included, because the starting version of mmcv-lite is 2.0.0rc1, so there is no need to add version restrictions +pip install mmcv-lite +``` + +
    + +### v1.3.18 + +Some ops have different implementations on different devices. Lots of macros and type checks are scattered in several files, which makes the code hard to maintain. For example: + +```c++ + if (input.device().is_cuda()) { +#ifdef MMCV_WITH_CUDA + CHECK_CUDA_INPUT(input); + CHECK_CUDA_INPUT(rois); + CHECK_CUDA_INPUT(output); + CHECK_CUDA_INPUT(argmax_y); + CHECK_CUDA_INPUT(argmax_x); + + roi_align_forward_cuda(input, rois, output, argmax_y, argmax_x, + aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); +#else + AT_ERROR("RoIAlign is not compiled with GPU support"); +#endif + } else { + CHECK_CPU_INPUT(input); + CHECK_CPU_INPUT(rois); + CHECK_CPU_INPUT(output); + CHECK_CPU_INPUT(argmax_y); + CHECK_CPU_INPUT(argmax_x); + roi_align_forward_cpu(input, rois, output, argmax_y, argmax_x, + aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); + } +``` + +Registry and dispatcher are added to manage these implementations. + +```c++ + +void ROIAlignForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned); + +void roi_align_forward_cuda(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned) { + ROIAlignForwardCUDAKernelLauncher( + input, rois, output, argmax_y, argmax_x, aligned_height, aligned_width, + spatial_scale, sampling_ratio, pool_mode, aligned); +} + +// register cuda implementation +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned); +REGISTER_DEVICE_IMPL(roi_align_forward_impl, CUDA, roi_align_forward_cuda); + +// roi_align.cpp +// use the dispatcher to invoke different implementation depending on device type of input tensors. +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned) { + DISPATCH_DEVICE_IMPL(roi_align_forward_impl, input, rois, output, argmax_y, + argmax_x, aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); +} + +``` + +### v1.3.11 + +In order to flexibly support more backends and hardwares like `NVIDIA GPUs` and `AMD GPUs`, the directory of `mmcv/ops/csrc` is refactored. Note that this refactoring will not affect the usage in API. For related information, please refer to [PR1206](https://github.com/open-mmlab/mmcv/pull/1206). + +The original directory was organized as follows. + +``` +. +├── common_cuda_helper.hpp +├── ops_cuda_kernel.cuh +├── pytorch_cpp_helper.hpp +├── pytorch_cuda_helper.hpp +├── parrots_cpp_helper.hpp +├── parrots_cuda_helper.hpp +├── parrots_cudawarpfunction.cuh +├── onnxruntime +│   ├── onnxruntime_register.h +│   ├── onnxruntime_session_options_config_keys.h +│   ├── ort_mmcv_utils.h +│   ├── ... +│   ├── onnx_ops.h +│   └── cpu +│ ├── onnxruntime_register.cpp +│      ├── ... +│      └── onnx_ops_impl.cpp +├── parrots +│   ├── ... +│   ├── ops.cpp +│   ├── ops_cuda.cu +│   ├── ops_parrots.cpp +│   └── ops_pytorch.h +├── pytorch +│   ├── ... +│   ├── ops.cpp +│   ├── ops_cuda.cu +│   ├── pybind.cpp +└── tensorrt + ├── trt_cuda_helper.cuh + ├── trt_plugin_helper.hpp + ├── trt_plugin.hpp + ├── trt_serialize.hpp + ├── ... + ├── trt_ops.hpp + └── plugins +    ├── trt_cuda_helper.cu +    ├── trt_plugin.cpp +    ├── ... +    ├── trt_ops.cpp +    └── trt_ops_kernel.cu +``` + +After refactored, it is organized as follows. + +``` +. +├── common +│ ├── box_iou_rotated_utils.hpp +│ ├── parrots_cpp_helper.hpp +│ ├── parrots_cuda_helper.hpp +│ ├── pytorch_cpp_helper.hpp +│ ├── pytorch_cuda_helper.hpp +│   └── cuda +│   ├── common_cuda_helper.hpp +│   ├── parrots_cudawarpfunction.cuh +│   ├── ... +│   └── ops_cuda_kernel.cuh +├── onnxruntime +│   ├── onnxruntime_register.h +│   ├── onnxruntime_session_options_config_keys.h +│   ├── ort_mmcv_utils.h +│   ├── ... +│   ├── onnx_ops.h +│   └── cpu +│ ├── onnxruntime_register.cpp +│      ├── ... +│      └── onnx_ops_impl.cpp +├── parrots +│   ├── ... +│   ├── ops.cpp +│   ├── ops_parrots.cpp +│   └── ops_pytorch.h +├── pytorch +│   ├── info.cpp +│   ├── pybind.cpp +│   ├── ... +│   ├── ops.cpp +│   └── cuda +│      ├── ... +│      └── ops_cuda.cu +└── tensorrt + ├── trt_cuda_helper.cuh + ├── trt_plugin_helper.hpp + ├── trt_plugin.hpp + ├── trt_serialize.hpp + ├── ... + ├── trt_ops.hpp + └── plugins +    ├── trt_cuda_helper.cu +    ├── trt_plugin.cpp +    ├── ... +    ├── trt_ops.cpp +    └── trt_ops_kernel.cu +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/conf.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/conf.py new file mode 100644 index 000000000..08f5f7eb7 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/conf.py @@ -0,0 +1,205 @@ +# +# Configuration file for the Sphinx documentation builder. +# +# This file does only contain a selection of the most common options. For a +# full list see the documentation: +# http://www.sphinx-doc.org/en/master/config + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import os +import sys + +import pytorch_sphinx_theme +from sphinx.builders.html import StandaloneHTMLBuilder + +sys.path.insert(0, os.path.abspath('../..')) + +version_file = '../../mmcv/version.py' +with open(version_file) as f: + exec(compile(f.read(), version_file, 'exec')) +__version__ = locals()['__version__'] + +# -- Project information ----------------------------------------------------- + +project = 'mmcv' +copyright = '2018-2022, OpenMMLab' +author = 'MMCV Authors' + +# The short X.Y version +version = __version__ +# The full version, including alpha/beta/rc tags +release = __version__ + +# -- General configuration --------------------------------------------------- + +# If your documentation needs a minimal Sphinx version, state it here. +# +# needs_sphinx = '1.0' + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. + +extensions = [ + 'sphinx.ext.autodoc', + 'sphinx.ext.napoleon', + 'sphinx.ext.viewcode', + 'sphinx_markdown_tables', + 'myst_parser', + 'sphinx_copybutton', +] # yapf: disable + +myst_heading_anchors = 4 + +myst_enable_extensions = ['colon_fence'] + +autodoc_mock_imports = ['mmcv._ext', 'mmcv.utils.ext_loader', 'torchvision'] + +# Add any paths that contain templates here, relative to this directory. +templates_path = ['_templates'] + +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +source_suffix = { + '.rst': 'restructuredtext', + '.md': 'markdown', +} + +# The master toctree document. +master_doc = 'index' + +# The language for content autogenerated by Sphinx. Refer to documentation +# for a list of supported languages. +# +# This is also used if you do content translation via gettext catalogs. +# Usually you set "language" from the command line for these cases. +language = None + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + +# The name of the Pygments (syntax highlighting) style to use. +pygments_style = 'sphinx' + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +# html_theme = 'sphinx_rtd_theme' +html_theme = 'pytorch_sphinx_theme' +html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + 'menu': [ + { + 'name': 'GitHub', + 'url': 'https://github.com/open-mmlab/mmcv' + }, + ], + # Specify the language of shared menu + 'menu_lang': 'en', +} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ['_static'] +html_css_files = ['css/readthedocs.css'] + +# Custom sidebar templates, must be a dictionary that maps document names +# to template names. +# +# The default sidebars (for documents that don't match any pattern) are +# defined by theme itself. Builtin themes are using these templates by +# default: ``['localtoc.html', 'relations.html', 'sourcelink.html', +# 'searchbox.html']``. +# +# html_sidebars = {} + +# -- Options for HTMLHelp output --------------------------------------------- + +# Output file base name for HTML help builder. +htmlhelp_basename = 'mmcvdoc' + +# -- Options for LaTeX output ------------------------------------------------ + +latex_elements = { + # The paper size ('letterpaper' or 'a4paper'). + # + # 'papersize': 'letterpaper', + + # The font size ('10pt', '11pt' or '12pt'). + # + # 'pointsize': '10pt', + + # Additional stuff for the LaTeX preamble. + # + # 'preamble': '', + + # Latex figure (float) alignment + # + # 'figure_align': 'htbp', +} + +# Grouping the document tree into LaTeX files. List of tuples +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + (master_doc, 'mmcv.tex', 'mmcv Documentation', 'MMCV Contributors', + 'manual'), +] + +# -- Options for manual page output ------------------------------------------ + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [(master_doc, 'mmcv', 'mmcv Documentation', [author], 1)] + +# -- Options for Texinfo output ---------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + (master_doc, 'mmcv', 'mmcv Documentation', author, 'mmcv', + 'One line description of project.', 'Miscellaneous'), +] + +# -- Options for Epub output ------------------------------------------------- + +# Bibliographic Dublin Core info. +epub_title = project + +# The unique identifier of the text. This can be a ISBN number +# or the project homepage. +# +# epub_identifier = '' + +# A unique identification for the text. +# +# epub_uid = '' + +# A list of files that should not be packed into the epub file. +epub_exclude_files = ['search.html'] + +# set priority when building html +StandaloneHTMLBuilder.supported_image_types = [ + 'image/svg+xml', 'image/gif', 'image/png', 'image/jpeg' +] +# -- Extension configuration ------------------------------------------------- +# Ignore >>> when copying code +copybutton_prompt_text = r'>>> |\.\.\. ' +copybutton_prompt_is_regexp = True diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/mmcv_ops_definition.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/mmcv_ops_definition.md new file mode 100644 index 000000000..d7eabb33f --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/mmcv_ops_definition.md @@ -0,0 +1,686 @@ +# MMCV Operators + +To make custom operators in MMCV more standard, precise definitions of each operator are listed in this document. + + + +- [MMCV Operators](#mmcv-operators) + - [MMCVBorderAlign](#mmcvborderalign) + - [Description](#description) + - [Parameters](#parameters) + - [Inputs](#inputs) + - [Outputs](#outputs) + - [Type Constraints](#type-constraints) + - [MMCVCARAFE](#mmcvcarafe) + - [Description](#description-1) + - [Parameters](#parameters-1) + - [Inputs](#inputs-1) + - [Outputs](#outputs-1) + - [Type Constraints](#type-constraints-1) + - [MMCVCAWeight](#mmcvcaweight) + - [Description](#description-2) + - [Parameters](#parameters-2) + - [Inputs](#inputs-2) + - [Outputs](#outputs-2) + - [Type Constraints](#type-constraints-2) + - [MMCVCAMap](#mmcvcamap) + - [Description](#description-3) + - [Parameters](#parameters-3) + - [Inputs](#inputs-3) + - [Outputs](#outputs-3) + - [Type Constraints](#type-constraints-3) + - [MMCVCornerPool](#mmcvcornerpool) + - [Description](#description-4) + - [Parameters](#parameters-4) + - [Inputs](#inputs-4) + - [Outputs](#outputs-4) + - [Type Constraints](#type-constraints-4) + - [MMCVDeformConv2d](#mmcvdeformconv2d) + - [Description](#description-5) + - [Parameters](#parameters-5) + - [Inputs](#inputs-5) + - [Outputs](#outputs-5) + - [Type Constraints](#type-constraints-5) + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) + - [Description](#description-6) + - [Parameters](#parameters-6) + - [Inputs](#inputs-6) + - [Outputs](#outputs-6) + - [Type Constraints](#type-constraints-6) + - [MMCVDeformRoIPool](#mmcvdeformroipool) + - [Description](#description-7) + - [Parameters](#parameters-7) + - [Inputs](#inputs-7) + - [Outputs](#outputs-7) + - [Type Constraints](#type-constraints-7) + - [MMCVMaskedConv2d](#mmcvmaskedconv2d) + - [Description](#description-8) + - [Parameters](#parameters-8) + - [Inputs](#inputs-8) + - [Outputs](#outputs-8) + - [Type Constraints](#type-constraints-8) + - [MMCVPSAMask](#mmcvpsamask) + - [Description](#description-9) + - [Parameters](#parameters-9) + - [Inputs](#inputs-9) + - [Outputs](#outputs-9) + - [Type Constraints](#type-constraints-9) + - [NonMaxSuppression](#nonmaxsuppression) + - [Description](#description-10) + - [Parameters](#parameters-10) + - [Inputs](#inputs-10) + - [Outputs](#outputs-10) + - [Type Constraints](#type-constraints-10) + - [MMCVRoIAlign](#mmcvroialign) + - [Description](#description-11) + - [Parameters](#parameters-11) + - [Inputs](#inputs-11) + - [Outputs](#outputs-11) + - [Type Constraints](#type-constraints-11) + - [MMCVRoIAlignRotated](#mmcvroialignrotated) + - [Description](#description-12) + - [Parameters](#parameters-12) + - [Inputs](#inputs-12) + - [Outputs](#outputs-12) + - [Type Constraints](#type-constraints-12) + - [grid_sampler\*](#grid_sampler) + - [Description](#description-13) + - [Parameters](#parameters-13) + - [Inputs](#inputs-13) + - [Outputs](#outputs-13) + - [Type Constraints](#type-constraints-13) + - [cummax\*](#cummax) + - [Description](#description-14) + - [Parameters](#parameters-14) + - [Inputs](#inputs-14) + - [Outputs](#outputs-14) + - [Type Constraints](#type-constraints-14) + - [cummin\*](#cummin) + - [Description](#description-15) + - [Parameters](#parameters-15) + - [Inputs](#inputs-15) + - [Outputs](#outputs-15) + - [Type Constraints](#type-constraints-15) + - [Reminders](#reminders) + + + +## MMCVBorderAlign + +### Description + +Applies `border_align` over the input feature based on predicted bboxes. + +For each border line (e.g. top, left, bottom or right) of each box, +border_align does the following: + +- uniformly samples `pool_size`+1 positions on this line, involving the start and end points. +- the corresponding features on these points are computed by bilinear interpolation. +- max pooling over all the `pool_size`+1 positions are used for computing pooled feature. + +Read [BorderDet: Border Feature for Dense Object Detection](ttps://arxiv.org/abs/2007.11056) for more detailed information. + +### Parameters + +| Type | Parameter | Description | +| ----- | ----------- | ----------------------------------------------------------------------------------- | +| `int` | `pool_size` | number of positions sampled over the boxes' borders(e.g. top, bottom, left, right). | + +### Inputs + +
    +
    input: T
    +
    Features with shape [N,4C,H,W]. Channels ranged in [0,C), [C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, right features respectively
    +
    boxes: T
    +
    Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2).
    +
    + +### Outputs + +
    +
    output: T
    +
    Pooled features with shape [N,C,H*W,4]. The order is(top,left,bottom,right) for the last dimension.
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVCARAFE + +### Description + +CARAFE operator performs feature upsampling. + +Read [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188) for more detailed information. + +### Parameters + +| Type | Parameter | Description | +| ------- | -------------- | --------------------------------------------- | +| `int` | `kernel_size` | reassemble kernel size, should be odd integer | +| `int` | `group_size` | reassemble group size | +| `float` | `scale_factor` | upsample ratio(>=1) | + +### Inputs + +
    +
    features: T
    +
    Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.
    +
    masks: T
    +
    The input mask
    +
    + +### Outputs + +
    +
    output: T
    +
    The upsampled features. 4-D tensor of shape (N, C, H * scale_factor, W * scale_factor). N is the batch size.
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVCAWeight + +### Description + +Operator for Criss-Cross Attention +Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information. + +### Parameters + +None + +### Inputs + +
    +
    t: T
    +
    The query matrix of shape (N, C', H, W).
    +
    f: T
    +
    The key matrix of shape (N, C', H, W).
    +
    + +### Outputs + +
    +
    weight: T
    +
    The attention map of shape (N, H+W-1, H, W).
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVCAMap + +### Description + +Operator for Criss-Cross Attention +Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information. + +### Parameters + +None + +### Inputs + +
    +
    weight: T
    +
    Output from the operator MMCVCAWeight.
    +
    value: T
    +
    The value matrix of shape (N, C, H, W).
    +
    + +### Outputs + +
    +
    output: T
    +
    Output tensor of aggregated contextual information
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVCornerPool + +### Description + +Perform CornerPool on `input` features. Read [CornerNet -- Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244) for more details. + +### Parameters + +| Type | Parameter | Description | +| ----- | --------- | ---------------------------------------------------------------- | +| `int` | `mode` | corner pool mode, (0: `top`, 1: `bottom`, 2: `left`, 3: `right`) | + +### Inputs + +
    +
    input: T
    +
    Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.
    +
    + +### Outputs + +
    +
    output: T
    +
    The pooled features. 4-D tensor of shape (N, C, H, W).
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVDeformConv2d + +### Description + +Applies a deformable 2D convolution over an input signal composed of several input planes. + +Read [Deformable Convolutional Networks](https://arxiv.org/pdf/1703.06211.pdf) for detail. + +### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel, (sH, sW). Defaults to `(1, 1)`. | +| `list of ints` | `padding` | Paddings on both sides of the input, (padH, padW). Defaults to `(0, 0)`. | +| `list of ints` | `dilation` | The spacing between kernel elements (dH, dW). Defaults to `(1, 1)`. | +| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. Defaults to `1`. | +| `int` | `deformable_groups` | Groups of deformable offset. Defaults to `1`. | +| `int` | `bias` | Whether to add a learnable bias to the output. `0` stands for `False` and `1` stands for `True`. Defaults to `0`. | +| `int` | `im2col_step` | Groups of deformable offset. Defaults to `32`. | + +### Inputs + +
    +
    input: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
    +
    offset: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW is the height and width of offset and output.
    +
    weight: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    + +### Outputs + +
    +
    output: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +### Type Constraints + +- T:tensor(float32, Linear) + +## MMCVModulatedDeformConv2d + +### Description + +Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. + +### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------- | ------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | +| `int` | `deformable_groups` | Groups of deformable offset. | +| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. | + +### Inputs + +
    +
    feature: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
    +
    offset: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
    +
    mask: T
    +
    Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
    +
    weight]: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    bias: T, optional
    +
    Input bias; 1-D tensor of shape (output_channel).
    +
    + +### Outputs + +
    +
    output: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +### Type Constraints + +- T:tensor(float32, Linear) + +## MMCVDeformRoIPool + +### Description + +Deformable roi pooling layer + +### Parameters + +| Type | Parameter | Description | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | +| `int` | `output_height` | height of output roi | +| `int` | `output_width` | width of output roi | +| `float` | `spatial_scale` | used to scale the input boxes | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | +| `float` | `gamma` | gamma | + +### Inputs + +
    +
    input: T
    +
    Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    rois: T
    +
    RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.
    +
    offset: T
    +
    offset of height and width. Defaults to a tensor of zero
    +
    + +### Outputs + +
    +
    feat: T
    +
    RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVMaskedConv2d + +### Description + +Performs a masked 2D convolution from PixelRNN +Read [Pixel Recurrent Neural Networks](https://arxiv.org/abs/1601.06759) for more detailed information. + +### Parameters + +| Type | Parameter | Description | +| -------------- | --------- | -------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW). **Only support stride=1 in mmcv** | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW). Defaults to `(0, 0)`. | + +### Inputs + +
    +
    features: T
    +
    Input features; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    mask: T
    +
    Input mask; 3D tensor of shape (N, H, W)
    +
    weight: T
    +
    The learnable weights of the module
    +
    bias: T
    +
    The learnable bias of the module
    +
    + +### Outputs + +
    +
    output: T
    +
    The output convolved feature
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVPSAMask + +### Description + +An operator from PSANet. + +Read [PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://hszhao.github.io/papers/eccv18_psanet.pdf) for more detailed information. + +### Parameters + +| Type | Parameter | Description | +| -------------- | ----------- | -------------------------------------------- | +| `int` | `psa_type` | `0` means collect and `1` means `distribute` | +| `list of ints` | `mask_size` | The size of mask | + +### Inputs + +
    +
    input: T
    +
    Input feature; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    + +### Outputs + +
    +
    output: T
    +
    Output tensor of shape (N, H * W, H, W)
    +
    + +### Type Constraints + +- T:tensor(float32) + +## NonMaxSuppression + +### Description + +Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. + +Note this definition is slightly different with [onnx: NonMaxSuppression](https://github.com/onnx/onnx/blob/master/docs/Operators.md#nonmaxsuppression) + +### Parameters + +| Type | Parameter | Description | +| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ | +| `int` | `center_point_box` | 0 - the box data is supplied as \[y1, x1, y2, x2\], 1-the box data is supplied as \[x_center, y_center, width, height\]. | +| `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. | +| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range \[0, 1\]. Default to 0. | +| `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. | +| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). | + +### Inputs + +
    +
    boxes: T
    +
    Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).
    +
    scores: T
    +
    Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).
    +
    + +### Outputs + +
    +
    indices: tensor(int32, Linear)
    +
    Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].
    +
    num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).
    +
    All invalid indices will be filled with -1.
    +
    + +### Type Constraints + +- T:tensor(float32, Linear) + +## MMCVRoIAlign + +### Description + +Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors. + +### Parameters + +| Type | Parameter | Description | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | +| `int` | `output_height` | height of output roi | +| `int` | `output_width` | width of output roi | +| `float` | `spatial_scale` | used to scale the input boxes | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | +| `str` | `mode` | pooling mode in each bin. `avg` or `max` | +| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | + +### Inputs + +
    +
    input: T
    +
    Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    rois: T
    +
    RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.
    +
    + +### Outputs + +
    +
    feat: T
    +
    RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].
    +
    + +### Type Constraints + +- T:tensor(float32) + +## MMCVRoIAlignRotated + +### Description + +Perform RoI align pooling for rotated proposals + +### Parameters + +| Type | Parameter | Description | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | +| `int` | `output_height` | height of output roi | +| `int` | `output_width` | width of output roi | +| `float` | `spatial_scale` | used to scale the input boxes | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | +| `str` | `mode` | pooling mode in each bin. `avg` or `max` | +| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | +| `int` | `clockwise` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | + +### Inputs + +
    +
    features: T
    +
    Input feature map; 4D tensor of shape (N, C, H, W)
    +
    rois: T
    +
    RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.
    +
    + +### Outputs + +
    +
    RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].
    +
    + +### Type Constraints + +- T:tensor(float32) + +## grid_sampler\* + +### Description + +Perform sample from `input` with pixel locations from `grid`. + +Check [torch.nn.functional.grid_sample](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html?highlight=grid_sample#torch.nn.functional.grid_sample) for more information. + +### Parameters + +| Type | Parameter | Description | +| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | +| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | +| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | + +### Inputs + +
    +
    input: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
    +
    grid: T
    +
    Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output.
    +
    + +### Outputs + +
    +
    output: T
    +
    Output feature; 4-D tensor of shape (N, C, outH, outW).
    +
    + +### Type Constraints + +- T:tensor(float32, Linear) + +## cummax\* + +### Description + +Returns a tuple (`values`, `indices`) where `values` is the cumulative maximum elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. Read [torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html) for more details. + +### Parameters + +| Type | Parameter | Description | +| ----- | --------- | -------------------------------------- | +| `int` | `dim` | the dimension to do the operation over | + +### Inputs + +
    +
    input: T
    +
    The input tensor with various shapes. Tensor with empty element is also supported.
    +
    + +### Outputs + +
    +
    output: T
    +
    Output the cumulative maximum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
    +
    indices: tensor(int64)
    +
    Output the index location of each cumulative maximum value found in the dimension `dim`, with the same shape as `input`.
    +
    + +### Type Constraints + +- T:tensor(float32) + +## cummin\* + +### Description + +Returns a tuple (`values`, `indices`) where `values` is the cumulative minimum elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. Read [torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html) for more details. + +### Parameters + +| Type | Parameter | Description | +| ----- | --------- | -------------------------------------- | +| `int` | `dim` | the dimension to do the operation over | + +### Inputs + +
    +
    input: T
    +
    The input tensor with various shapes. Tensor with empty element is also supported.
    +
    + +### Outputs + +
    +
    output: T
    +
    Output the cumulative minimum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
    +
    indices: tensor(int64)
    +
    Output the index location of each cumulative minimum value found in the dimension `dim`, with the same shape as `input`.
    +
    + +### Type Constraints + +- T:tensor(float32) + +## Reminders + +- Operators endwith `*` are defined in Torch and are included here for the conversion to ONNX. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnx.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnx.md new file mode 100644 index 000000000..528a9fdb9 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnx.md @@ -0,0 +1,28 @@ +## Introduction of mmcv.onnx module + +### DeprecationWarning + +ONNX support will be deprecated in the future. +Welcome to use the unified model deployment toolbox MMDeploy: https://github.com/open-mmlab/mmdeploy + +### register_extra_symbolics + +Some extra symbolic functions need to be registered before exporting PyTorch model to ONNX. + +#### Example + +```python +import mmcv +from mmcv.onnx import register_extra_symbolics + +opset_version = 11 +register_extra_symbolics(opset_version) +``` + +#### Reminder + +- *Please note that this feature is experimental and may change in the future.* + +#### FAQs + +- None diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_custom_ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_custom_ops.md new file mode 100644 index 000000000..85df4e2a2 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_custom_ops.md @@ -0,0 +1,378 @@ +## ONNX Runtime Custom Ops + + + +- [ONNX Runtime Custom Ops](#onnx-runtime-custom-ops) + - [SoftNMS](#softnms) + - [Description](#description) + - [Parameters](#parameters) + - [Inputs](#inputs) + - [Outputs](#outputs) + - [Type Constraints](#type-constraints) + - [RoIAlign](#roialign) + - [Description](#description-1) + - [Parameters](#parameters-1) + - [Inputs](#inputs-1) + - [Outputs](#outputs-1) + - [Type Constraints](#type-constraints-1) + - [NMS](#nms) + - [Description](#description-2) + - [Parameters](#parameters-2) + - [Inputs](#inputs-2) + - [Outputs](#outputs-2) + - [Type Constraints](#type-constraints-2) + - [grid_sampler](#grid_sampler) + - [Description](#description-3) + - [Parameters](#parameters-3) + - [Inputs](#inputs-3) + - [Outputs](#outputs-3) + - [Type Constraints](#type-constraints-3) + - [CornerPool](#cornerpool) + - [Description](#description-4) + - [Parameters](#parameters-4) + - [Inputs](#inputs-4) + - [Outputs](#outputs-4) + - [Type Constraints](#type-constraints-4) + - [cummax](#cummax) + - [Description](#description-5) + - [Parameters](#parameters-5) + - [Inputs](#inputs-5) + - [Outputs](#outputs-5) + - [Type Constraints](#type-constraints-5) + - [cummin](#cummin) + - [Description](#description-6) + - [Parameters](#parameters-6) + - [Inputs](#inputs-6) + - [Outputs](#outputs-6) + - [Type Constraints](#type-constraints-6) + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) + - [Description](#description-7) + - [Parameters](#parameters-7) + - [Inputs](#inputs-7) + - [Outputs](#outputs-7) + - [Type Constraints](#type-constraints-7) + - [MMCVDeformConv2d](#mmcvdeformconv2d) + - [Description](#description-8) + - [Parameters](#parameters-8) + - [Inputs](#inputs-8) + - [Outputs](#outputs-8) + - [Type Constraints](#type-constraints-8) + + + +### SoftNMS + +#### Description + +Perform soft NMS on `boxes` with `scores`. Read [Soft-NMS -- Improving Object Detection With One Line of Code](https://arxiv.org/abs/1704.04503) for detail. + +#### Parameters + +| Type | Parameter | Description | +| ------- | --------------- | -------------------------------------------------------------- | +| `float` | `iou_threshold` | IoU threshold for NMS | +| `float` | `sigma` | hyperparameter for gaussian method | +| `float` | `min_score` | score filter threshold | +| `int` | `method` | method to do the nms, (0: `naive`, 1: `linear`, 2: `gaussian`) | +| `int` | `offset` | `boxes` width or height is (x2 - x1 + offset). (0 or 1) | + +#### Inputs + +
    +
    boxes: T
    +
    Input boxes. 2-D tensor of shape (N, 4). N is the number of boxes.
    +
    scores: T
    +
    Input scores. 1-D tensor of shape (N, ).
    +
    + +#### Outputs + +
    +
    dets: T
    +
    Output boxes and scores. 2-D tensor of shape (num_valid_boxes, 5), [[x1, y1, x2, y2, score], ...]. num_valid_boxes is the number of valid boxes.
    +
    indices: tensor(int64)
    +
    Output indices. 1-D tensor of shape (num_valid_boxes, ).
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### RoIAlign + +#### Description + +Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors. + +#### Parameters + +| Type | Parameter | Description | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | +| `int` | `output_height` | height of output roi | +| `int` | `output_width` | width of output roi | +| `float` | `spatial_scale` | used to scale the input boxes | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | +| `str` | `mode` | pooling mode in each bin. `avg` or `max` | +| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | + +#### Inputs + +
    +
    input: T
    +
    Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    rois: T
    +
    RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.
    +
    + +#### Outputs + +
    +
    feat: T
    +
    RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### NMS + +#### Description + +Filter out boxes has high IoU overlap with previously selected boxes. + +#### Parameters + +| Type | Parameter | Description | +| ------- | --------------- | ------------------------------------------------------------------------------------------------------------------ | +| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range \[0, 1\]. Default to 0. | +| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). | + +#### Inputs + +
    +
    bboxes: T
    +
    Input boxes. 2-D tensor of shape (num_boxes, 4). num_boxes is the number of input boxes.
    +
    scores: T
    +
    Input scores. 1-D tensor of shape (num_boxes, ).
    +
    + +#### Outputs + +
    +
    indices: tensor(int32, Linear)
    +
    Selected indices. 1-D tensor of shape (num_valid_boxes, ). num_valid_boxes is the number of valid boxes.
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### grid_sampler + +#### Description + +Perform sample from `input` with pixel locations from `grid`. + +#### Parameters + +| Type | Parameter | Description | +| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | +| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | +| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | + +#### Inputs + +
    +
    input: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
    +
    grid: T
    +
    Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
    +
    + +#### Outputs + +
    +
    output: T
    +
    Output feature; 4-D tensor of shape (N, C, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### CornerPool + +#### Description + +Perform CornerPool on `input` features. Read [CornerNet -- Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244) for more details. + +#### Parameters + +| Type | Parameter | Description | +| ----- | --------- | ---------------------------------------------------------------- | +| `int` | `mode` | corner pool mode, (0: `top`, 1: `bottom`, 2: `left`, 3: `right`) | + +#### Inputs + +
    +
    input: T
    +
    Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.
    +
    + +#### Outputs + +
    +
    output: T
    +
    Output the pooled features. 4-D tensor of shape (N, C, H, W).
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### cummax + +#### Description + +Returns a tuple (`values`, `indices`) where `values` is the cumulative maximum elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. Read [torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html) for more details. + +#### Parameters + +| Type | Parameter | Description | +| ----- | --------- | -------------------------------------- | +| `int` | `dim` | the dimension to do the operation over | + +#### Inputs + +
    +
    input: T
    +
    The input tensor with various shapes. Tensor with empty element is also supported.
    +
    + +#### Outputs + +
    +
    output: T
    +
    Output the cumulative maximum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
    +
    indices: tensor(int64)
    +
    Output the index location of each cumulative maximum value found in the dimension `dim`, with the same shape as `input`.
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### cummin + +#### Description + +Returns a tuple (`values`, `indices`) where `values` is the cumulative minimum elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. Read [torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html) for more details. + +#### Parameters + +| Type | Parameter | Description | +| ----- | --------- | -------------------------------------- | +| `int` | `dim` | the dimension to do the operation over | + +#### Inputs + +
    +
    input: T
    +
    The input tensor with various shapes. Tensor with empty element is also supported.
    +
    + +#### Outputs + +
    +
    output: T
    +
    Output the cumulative minimum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
    +
    indices: tensor(int64)
    +
    Output the index location of each cumulative minimum value found in the dimension `dim`, with the same shape as `input`.
    +
    + +#### Type Constraints + +- T:tensor(float32) + +### MMCVModulatedDeformConv2d + +#### Description + +Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. + +#### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------- | ------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | +| `int` | `deformable_groups` | Groups of deformable offset. | +| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
    +
    inputs[1]: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[2]: T
    +
    Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[3]: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    inputs[4]: T, optional
    +
    Input bias; 1-D tensor of shape (output_channel).
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### MMCVDeformConv2d + +#### Description + +Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail. + +#### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | +| `int` | `deformable_group` | Groups of deformable offset. | +| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. | +| `int` | `im2col_step` | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
    +
    inputs[1]: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[2]: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_op.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_op.md new file mode 100644 index 000000000..2778ba344 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/onnxruntime_op.md @@ -0,0 +1,136 @@ +## ONNX Runtime Deployment + +### DeprecationWarning + +ONNX support will be deprecated in the future. +Welcome to use the unified model deployment toolbox MMDeploy: https://github.com/open-mmlab/mmdeploy + +### Introduction of ONNX Runtime + +**ONNX Runtime** is a cross-platform inferencing and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information. + +### Introduction of ONNX + +**ONNX** stands for **Open Neural Network Exchange**, which acts as *Intermediate Representation(IR)* for ML/DNN models from many frameworks. Check its [github](https://github.com/onnx/onnx) for more information. + +### Why include custom operators for ONNX Runtime in MMCV + +- To verify the correctness of exported ONNX models in ONNX Runtime. +- To ease the deployment of ONNX models with custom operators from `mmcv.ops` in ONNX Runtime. + +### List of operators for ONNX Runtime supported in MMCV + +| Operator | CPU | GPU | MMCV Releases | +| :----------------------------------------------------- | :-: | :-: | :-----------: | +| [SoftNMS](onnxruntime_custom_ops.md#softnms) | Y | N | 1.2.3 | +| [RoIAlign](onnxruntime_custom_ops.md#roialign) | Y | N | 1.2.5 | +| [NMS](onnxruntime_custom_ops.md#nms) | Y | N | 1.2.7 | +| [grid_sampler](onnxruntime_custom_ops.md#grid_sampler) | Y | N | 1.3.1 | +| [CornerPool](onnxruntime_custom_ops.md#cornerpool) | Y | N | 1.3.4 | +| [cummax](onnxruntime_custom_ops.md#cummax) | Y | N | 1.3.4 | +| [cummin](onnxruntime_custom_ops.md#cummin) | Y | N | 1.3.4 | + +### How to build custom operators for ONNX Runtime + +*Please be noted that only **onnxruntime>=1.8.1** of CPU version on Linux platform is tested by now.* + +#### Prerequisite + +- Clone repository + +```bash +git clone https://github.com/open-mmlab/mmcv.git +``` + +- Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below: + +```bash +wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz + +tar -zxvf onnxruntime-linux-x64-1.8.1.tgz +cd onnxruntime-linux-x64-1.8.1 +export ONNXRUNTIME_DIR=$(pwd) +export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH +``` + +#### Build on Linux + +```bash +cd mmcv ## to MMCV root directory +MMCV_WITH_OPS=1 MMCV_WITH_ORT=1 python setup.py develop +``` + +### How to do inference using exported ONNX models with custom operators in ONNX Runtime in python + +Install ONNX Runtime with `pip` + +```bash +pip install onnxruntime==1.8.1 +``` + +Inference Demo + +```python +import os + +import numpy as np +import onnxruntime as ort + +from mmcv.ops import get_onnxruntime_op_path + +ort_custom_op_path = get_onnxruntime_op_path() +assert os.path.exists(ort_custom_op_path) +session_options = ort.SessionOptions() +session_options.register_custom_ops_library(ort_custom_op_path) +## exported ONNX model with custom operators +onnx_file = 'sample.onnx' +input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) +sess = ort.InferenceSession(onnx_file, session_options) +onnx_results = sess.run(None, {'input' : input_data}) +``` + +### How to add a new custom operator for ONNX Runtime in MMCV + +#### Reminder + +- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.* + +- The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime. + +- The custom operator should be able to be exported to ONNX. + +#### Main procedures + +Take custom operator `soft_nms` for example. + +1. Add header `soft_nms.h` to ONNX Runtime include directory `mmcv/ops/csrc/onnxruntime/` + +2. Add source `soft_nms.cpp` to ONNX Runtime source directory `mmcv/ops/csrc/onnxruntime/cpu/` + +3. Register `soft_nms` operator in [onnxruntime_register.cpp](../../../mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp) + + ```c++ + #include "soft_nms.h" + + SoftNmsOp c_SoftNmsOp; + + if (auto status = ortApi->CustomOpDomain_Add(domain, &c_SoftNmsOp)) { + return status; + } + ``` + +4. Add unit test into `tests/test_ops/test_onnx.py` + Check [here](../../tests/test_ops/test_onnx.py) for examples. + +**Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMCV.** :nerd_face: + +### Known Issues + +- "RuntimeError: tuple appears in op that does not forward tuples, unsupported kind: `prim::PythonOp`." + 1. Note generally `cummax` or `cummin` is exportable to ONNX as long as the torch version >= 1.5.0, since `torch.cummax` is only supported with torch >= 1.5.0. But when `cummax` or `cummin` serves as an intermediate component whose outputs is used as inputs for another modules, it's expected that torch version must be >= 1.7.0. Otherwise the above error might arise, when running exported ONNX model with onnxruntime. + 2. Solution: update the torch version to 1.7.0 or higher. + +### References + +- [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md) +- [How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_custom_ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_custom_ops.md new file mode 100644 index 000000000..37ebb27bf --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_custom_ops.md @@ -0,0 +1,395 @@ +## TensorRT Custom Ops + + + +- [TensorRT Custom Ops](#tensorrt-custom-ops) + - [MMCVRoIAlign](#mmcvroialign) + - [Description](#description) + - [Parameters](#parameters) + - [Inputs](#inputs) + - [Outputs](#outputs) + - [Type Constraints](#type-constraints) + - [ScatterND](#scatternd) + - [Description](#description-1) + - [Parameters](#parameters-1) + - [Inputs](#inputs-1) + - [Outputs](#outputs-1) + - [Type Constraints](#type-constraints-1) + - [NonMaxSuppression](#nonmaxsuppression) + - [Description](#description-2) + - [Parameters](#parameters-2) + - [Inputs](#inputs-2) + - [Outputs](#outputs-2) + - [Type Constraints](#type-constraints-2) + - [MMCVDeformConv2d](#mmcvdeformconv2d) + - [Description](#description-3) + - [Parameters](#parameters-3) + - [Inputs](#inputs-3) + - [Outputs](#outputs-3) + - [Type Constraints](#type-constraints-3) + - [grid_sampler](#grid_sampler) + - [Description](#description-4) + - [Parameters](#parameters-4) + - [Inputs](#inputs-4) + - [Outputs](#outputs-4) + - [Type Constraints](#type-constraints-4) + - [cummax](#cummax) + - [Description](#description-5) + - [Parameters](#parameters-5) + - [Inputs](#inputs-5) + - [Outputs](#outputs-5) + - [Type Constraints](#type-constraints-5) + - [cummin](#cummin) + - [Description](#description-6) + - [Parameters](#parameters-6) + - [Inputs](#inputs-6) + - [Outputs](#outputs-6) + - [Type Constraints](#type-constraints-6) + - [MMCVInstanceNormalization](#mmcvinstancenormalization) + - [Description](#description-7) + - [Parameters](#parameters-7) + - [Inputs](#inputs-7) + - [Outputs](#outputs-7) + - [Type Constraints](#type-constraints-7) + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) + - [Description](#description-8) + - [Parameters](#parameters-8) + - [Inputs](#inputs-8) + - [Outputs](#outputs-8) + - [Type Constraints](#type-constraints-8) + + + +### MMCVRoIAlign + +#### Description + +Perform RoIAlign on output feature, used in bbox_head of most two stage +detectors. + +#### Parameters + +| Type | Parameter | Description | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | +| `int` | `output_height` | height of output roi | +| `int` | `output_width` | width of output roi | +| `float` | `spatial_scale` | used to scale the input boxes | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | +| `str` | `mode` | pooling mode in each bin. `avg` or `max` | +| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
    +
    inputs[1]: T
    +
    RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### ScatterND + +#### Description + +ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape\[-1\] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported. + +The `output` is calculated via the following equation: + +```python + output = np.copy(data) + update_indices = indices.shape[:-1] + for idx in np.ndindex(update_indices): + output[indices[idx]] = updates[idx] +``` + +#### Parameters + +None + +#### Inputs + +
    +
    inputs[0]: T
    +
    Tensor of rank r>=1.
    + +
    inputs[1]: tensor(int32, Linear)
    +
    Tensor of rank q>=1.
    + +
    inputs[2]: T
    +
    Tensor of rank q + r - indices_shape[-1] - 1.
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Tensor of rank r >= 1.
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear), tensor(int32, Linear) + +### NonMaxSuppression + +#### Description + +Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. Indices of invalid boxes will be filled with -1. + +#### Parameters + +| Type | Parameter | Description | +| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ | +| `int` | `center_point_box` | 0 - the box data is supplied as \[y1, x1, y2, x2\], 1-the box data is supplied as \[x_center, y_center, width, height\]. | +| `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. | +| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range \[0, 1\]. Default to 0. | +| `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. | +| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).
    +
    inputs[1]: T
    +
    Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).
    +
    + +#### Outputs + +
    +
    outputs[0]: tensor(int32, Linear)
    +
    Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].
    +
    num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).
    +
    All invalid indices will be filled with -1.
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### MMCVDeformConv2d + +#### Description + +Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail. + +#### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | +| `int` | `deformable_group` | Groups of deformable offset. | +| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. | +| `int` | `im2col_step` | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
    +
    inputs[1]: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[2]: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### grid_sampler + +#### Description + +Perform sample from `input` with pixel locations from `grid`. + +#### Parameters + +| Type | Parameter | Description | +| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | +| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | +| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
    +
    inputs[1]: T
    +
    Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output feature; 4-D tensor of shape (N, C, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### cummax + +#### Description + +Returns a namedtuple (`values`, `indices`) where `values` is the cumulative maximum of elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. + +#### Parameters + +| Type | Parameter | Description | +| ----- | --------- | --------------------------------------- | +| `int` | `dim` | The dimension to do the operation over. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    The input tensor.
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output values.
    +
    outputs[1]: (int32, Linear)
    +
    Output indices.
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### cummin + +#### Description + +Returns a namedtuple (`values`, `indices`) where `values` is the cumulative minimum of elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. + +#### Parameters + +| Type | Parameter | Description | +| ----- | --------- | --------------------------------------- | +| `int` | `dim` | The dimension to do the operation over. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    The input tensor.
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output values.
    +
    outputs[1]: (int32, Linear)
    +
    Output indices.
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### MMCVInstanceNormalization + +#### Description + +Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022. + +y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel. + +#### Parameters + +| Type | Parameter | Description | +| ------- | --------- | -------------------------------------------------------------------- | +| `float` | `epsilon` | The epsilon value to use to avoid division by zero. Default is 1e-05 | + +#### Inputs + +
    +
    input: T
    +
    Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
    +
    scale: T
    +
    The input 1-dimensional scale tensor of size C.
    +
    B: T
    +
    The input 1-dimensional bias tensor of size C.
    +
    + +#### Outputs + +
    +
    output: T
    +
    The output tensor of the same shape as input.
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) + +### MMCVModulatedDeformConv2d + +#### Description + +Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. + +#### Parameters + +| Type | Parameter | Description | +| -------------- | ------------------ | ------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | +| `int` | `deformable_group` | Groups of deformable offset. | +| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. | + +#### Inputs + +
    +
    inputs[0]: T
    +
    Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
    +
    inputs[1]: T
    +
    Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[2]: T
    +
    Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
    +
    inputs[3]: T
    +
    Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
    +
    inputs[4]: T, optional
    +
    Input weight; 1-D tensor of shape (output_channel).
    +
    + +#### Outputs + +
    +
    outputs[0]: T
    +
    Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
    +
    + +#### Type Constraints + +- T:tensor(float32, Linear) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_plugin.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_plugin.md new file mode 100644 index 000000000..de7809b6a --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/deployment/tensorrt_plugin.md @@ -0,0 +1,193 @@ +## TensorRT Deployment + +### DeprecationWarning + +TensorRT support will be deprecated in the future. +Welcome to use the unified model deployment toolbox MMDeploy: https://github.com/open-mmlab/mmdeploy + + + +- [TensorRT Deployment](#tensorrt-deployment) + - [DeprecationWarning](#deprecationwarning) + - [Introduction](#introduction) + - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv) + - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv) + - [Prerequisite](#prerequisite) + - [Build on Linux](#build-on-linux) + - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python) + - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv) + - [Main procedures](#main-procedures) + - [Reminders](#reminders) + - [Known Issues](#known-issues) + - [References](#references) + + + +### Introduction + +**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information. +To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV. + +### List of TensorRT plugins supported in MMCV + +| ONNX Operator | TensorRT Plugin | MMCV Releases | +| :------------------------ | :------------------------------------------------------------------------------ | :-----------: | +| MMCVRoiAlign | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign) | 1.2.6 | +| ScatterND | [ScatterND](./tensorrt_custom_ops.md#scatternd) | 1.2.6 | +| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) | 1.3.0 | +| MMCVDeformConv2d | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d) | 1.3.0 | +| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | 1.3.1 | +| cummax | [cummax](./tensorrt_custom_ops.md#cummax) | 1.3.5 | +| cummin | [cummin](./tensorrt_custom_ops.md#cummin) | 1.3.5 | +| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) | 1.3.5 | +| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) | 1.3.8 | + +Notes + +- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0 + +### How to build TensorRT plugins in MMCV + +#### Prerequisite + +- Clone repository + +```bash +git clone https://github.com/open-mmlab/mmcv.git +``` + +- Install TensorRT + +Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download). + +For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`. + +Then, install as below: + +```bash +cd ~/Downloads +tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz +export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6 +export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib +``` + +Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon + +```bash +pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl +pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl +pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl +``` + +For more detailed information of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar). + +- Install cuDNN + +Install cuDNN 8 following [Nvidia' website](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar). + +#### Build on Linux + +```bash +cd mmcv ## to MMCV root directory +MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e . +``` + +### Create TensorRT engine and run inference in python + +Here is an example. + +```python +import torch +import onnx + +from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine, + is_tensorrt_plugin_loaded) + +assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv' + +onnx_file = 'sample.onnx' +trt_file = 'sample.trt' +onnx_model = onnx.load(onnx_file) + +## Model input +inputs = torch.rand(1, 3, 224, 224).cuda() +## Model input shape info +opt_shape_dict = { + 'input': [list(inputs.shape), + list(inputs.shape), + list(inputs.shape)] +} + +## Create TensorRT engine +max_workspace_size = 1 << 30 +trt_engine = onnx2trt( + onnx_model, + opt_shape_dict, + max_workspace_size=max_workspace_size) + +## Save TensorRT engine +save_trt_engine(trt_engine, trt_file) + +## Run inference with TensorRT +trt_model = TRTWrapper(trt_file, ['input'], ['output']) + +with torch.no_grad(): + trt_outputs = trt_model({'input': inputs}) + output = trt_outputs['output'] + +``` + +### How to add a TensorRT plugin for custom op in MMCV + +#### Main procedures + +Below are the main steps: + +1. Add c++ header file +2. Add c++ source file +3. Add cuda kernel file +4. Register plugin in `trt_plugin.cpp` +5. Add unit test in `tests/test_ops/test_tensorrt.py` + +**Take RoIAlign plugin `roi_align` for example.** + +1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/` + +2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/` + +3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/` + +4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp) + + ```c++ + #include "trt_plugin.hpp" + + #include "trt_roi_align.hpp" + + REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator); + + extern "C" { + bool initLibMMCVInferPlugins() { return true; } + } // extern "C" + ``` + +5. Add unit test into `tests/test_ops/test_tensorrt.py` + Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples. + +#### Reminders + +- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.* + +- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be referred. + +### Known Issues + +- None + +### References + +- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html) +- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT) +- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt) +- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html) +- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/faq.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/faq.md new file mode 100644 index 000000000..02d31c233 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/faq.md @@ -0,0 +1,93 @@ +## Frequently Asked Questions + +We list some common troubles faced by many users and their corresponding solutions here. +Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. + +### Installation + +- KeyError: "xxx: 'yyy is not in the zzz registry'" + + The registry mechanism will be triggered only when the file of the module is imported. + So you need to import that file somewhere. More details can be found at [KeyError: "MaskRCNN: 'RefineRoIHead is not in the models registry'"](https://github.com/open-mmlab/mmdetection/issues/5974). + +- "No module named 'mmcv.ops'"; "No module named 'mmcv.\_ext'" + + 1. Uninstall existing mmcv in the environment using `pip uninstall mmcv` + 2. Install mmcv-full following the [installation instruction](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) or [Build MMCV from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html) + +- "invalid device function" or "no kernel image is available for execution" + + 1. Check the CUDA compute capability of you GPU + 2. Run `python mmdet/utils/collect_env.py` to check whether PyTorch, torchvision, and MMCV are built for the correct GPU architecture. You may need to set `TORCH_CUDA_ARCH_LIST` to reinstall MMCV. The compatibility issue could happen when using old GPUS, e.g., Tesla K80 (3.7) on colab. + 3. Check whether the running environment is the same as that when mmcv/mmdet is compiled. For example, you may compile mmcv using CUDA 10.0 bug run it on CUDA9.0 environments + +- "undefined symbol" or "cannot open xxx.so" + + 1. If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check + whether the CUDA/GCC runtimes are the same as those used for compiling mmcv + 2. If those symbols are Pytorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the Pytorch version is the same as that used for compiling mmcv + 3. Run `python mmdet/utils/collect_env.py` to check whether PyTorch, torchvision, and MMCV are built by and running on the same environment + +- "RuntimeError: CUDA error: invalid configuration argument" + + This error may be caused by the poor performance of GPU. Try to decrease the value of [THREADS_PER_BLOCK](https://github.com/open-mmlab/mmcv/blob/cac22f8cf5a904477e3b5461b1cc36856c2793da/mmcv/ops/csrc/common_cuda_helper.hpp#L10) + and recompile mmcv. + +- "RuntimeError: nms is not compiled with GPU support" + + This error is because your CUDA environment is not installed correctly. + You may try to re-install your CUDA environment and then delete the build/ folder before re-compile mmcv. + +- "Segmentation fault" + + 1. Check your GCC version and use GCC >= 5.4. This usually caused by the incompatibility between PyTorch and the environment (e.g., GCC \< 4.9 for PyTorch). We also recommend the users to avoid using GCC 5.5 because many feedbacks report that GCC 5.5 will cause "segmentation fault" and simply changing it to GCC 5.4 could solve the problem + 2. Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command in your terminal and see whether they could correctly output results + ```shell + python -c 'import torch; print(torch.cuda.is_available())' + ``` + 3. If PyTorch is correctly installed, check whether MMCV is correctly installed. If MMCV is correctly installed, then there will be no issue of the command + ```shell + python -c 'import mmcv; import mmcv.ops' + ``` + 4. If MMCV and PyTorch are correctly installed, you can use `ipdb` to set breakpoints or directly add `print` to debug and see which part leads the `segmentation fault` + +- "libtorch_cuda_cu.so: cannot open shared object file" + + `mmcv-full` depends on the share object but it can not be found. We can check whether the object exists in `~/miniconda3/envs/{environment-name}/lib/python3.7/site-packages/torch/lib` or try to re-install the PyTorch. + +- "fatal error C1189: #error: -- unsupported Microsoft Visual Studio version!" + + If you are building mmcv-full on Windows and the version of CUDA is 9.2, you will probably encounter the error `"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include\crt/host_config.h(133): fatal error C1189: #error: -- unsupported Microsoft Visual Studio version! Only the versions 2012, 2013, 2015 and 2017 are supported!"`, in which case you can use a lower version of Microsoft Visual Studio like vs2017. + +- "error: member "torch::jit::detail::ModulePolicy::all_slots" may not be initialized" + + If your version of PyTorch is 1.5.0 and you are building mmcv-full on Windows, you will probably encounter the error `- torch/csrc/jit/api/module.h(474): error: member "torch::jit::detail::ModulePolicy::all_slots" may not be initialized`. The way to solve the error is to replace all the `static constexpr bool all_slots = false;` with `static bool all_slots = false;` at this file `https://github.com/pytorch/pytorch/blob/v1.5.0/torch/csrc/jit/api/module.h`. More details can be found at [member "torch::jit::detail::AttributePolicy::all_slots" may not be initialized](https://github.com/pytorch/pytorch/issues/39394). + +- "error: a member with an in-class initializer must be const" + + If your version of PyTorch is 1.6.0 and you are building mmcv-full on Windows, you will probably encounter the error `"- torch/include\torch/csrc/jit/api/module.h(483): error: a member with an in-class initializer must be const"`. The way to solve the error is to replace all the `CONSTEXPR_EXCEPT_WIN_CUDA ` with `const` at `torch/include\torch/csrc/jit/api/module.h`. More details can be found at [Ninja: build stopped: subcommand failed](https://github.com/open-mmlab/mmcv/issues/575). + +- "error: member "torch::jit::ProfileOptionalOp::Kind" may not be initialized" + + If your version of PyTorch is 1.7.0 and you are building mmcv-full on Windows, you will probably encounter the error `torch/include\torch/csrc/jit/ir/ir.h(1347): error: member "torch::jit::ProfileOptionalOp::Kind" may not be initialized`. The way to solve the error needs to modify several local files of PyTorch: + + - delete `static constexpr Symbol Kind = ::c10::prim::profile;` and `tatic constexpr Symbol Kind = ::c10::prim::profile_optional;` at `torch/include\torch/csrc/jit/ir/ir.h` + - replace `explicit operator type&() { return *(this->value); }` with `explicit operator type&() { return *((type*)this->value); }` at `torch\include\pybind11\cast.h` + - replace all the `CONSTEXPR_EXCEPT_WIN_CUDA` with `const` at `torch/include\torch/csrc/jit/api/module.h` + + More details can be found at [Ensure default extra_compile_args](https://github.com/pytorch/pytorch/pull/45956). + +- Compatibility issue between MMCV and MMDetection; "ConvWS is already registered in conv layer" + + Please install the correct version of MMCV for the version of your MMDetection following the [installation instruction](https://mmdetection.readthedocs.io/en/latest/get_started.html#installation). + +### Usage + +- "RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one" + + 1. This error indicates that your module has parameters that were not used in producing loss. This phenomenon may be caused by running different branches in your code in DDP mode. More datails at [Expected to have finished reduction in the prior iteration before starting a new one](https://github.com/pytorch/pytorch/issues/55582). + 2. You can set ` find_unused_parameters = True` in the config to solve the above problems or find those unused parameters manually + +- "RuntimeError: Trying to backward through the graph a second time" + + `GradientCumulativeOptimizerHook` and `OptimizerHook` are both set which causes the `loss.backward()` to be called twice so `RuntimeError` was raised. We can only use one of these. More datails at [Trying to backward through the graph a second time](https://github.com/open-mmlab/mmcv/issues/1379). diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/build.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/build.md new file mode 100644 index 000000000..091bde838 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/build.md @@ -0,0 +1,377 @@ +## Build MMCV from source + +### Build mmcv-full + +Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command + +```bash +python -c 'import torch;print(torch.__version__)' +``` + +If version information is output, then PyTorch is installed. + +```{note} +- To compile ONNX Runtime custom operators, please refer to [How to build custom operators for ONNX Runtime](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html#how-to-build-custom-operators-for-onnx-runtime) +- To compile TensorRT customization, please refer to [How to build TensorRT plugins in MMCV](https://mmcv.readthedocs.io/en/latest/deployment/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv) +``` + +```{note} +If you would like to use `opencv-python-headless` instead of `opencv-python`, +e.g., in a minimum container environment or servers without GUI, +you can first install it before installing MMCV to skip the installation of `opencv-python`. +``` + +#### Build on Linux + +1. Clone the repo + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. Install `ninja` and `psutil` to speed up the compilation + + ```bash + pip install -r requirements/optional.txt + ``` + +3. Check the nvcc version (requires 9.2+. Skip if no GPU available.) + + ```bash + nvcc --version + ``` + + If the above command outputs the following message, it means that the nvcc setting is OK, otherwise you need to set CUDA_HOME. + + ``` + nvcc: NVIDIA (R) Cuda compiler driver + Copyright (c) 2005-2020 NVIDIA Corporation + Built on Mon_Nov_30_19:08:53_PST_2020 + Cuda compilation tools, release 11.2, V11.2.67 + Build cuda_11.2.r11.2/compiler.29373293_0 + ``` + + :::{note} + If you want to support ROCm, you can refer to [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) to install ROCm. + ::: + +4. Check the gcc version (requires 5.4+) + + ```bash + gcc --version + ``` + +5. Start building (takes 10+ min) + + ```bash + MMCV_WITH_OPS=1 pip install -e . -v + ``` + +6. Validate the installation + + ```bash + python .dev_scripts/check_installation.py + ``` + + If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution. + + If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues). + +#### Build on macOS + +```{note} +If you are using a mac with an M1 chip, install the nightly version of PyTorch, otherwise you will encounter the problem in [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218). +``` + +1. Clone the repo + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. Install `ninja` and `psutil` to speed up the compilation + + ```bash + pip install -r requirements/optional.txt + ``` + +3. Start building + + ```bash + MMCV_WITH_OPS=1 pip install -e . + ``` + +4. Validate the installation + + ```bash + python .dev_scripts/check_installation.py + ``` + + If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution. + + If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues). + +#### Build on Windows + +Building MMCV on Windows is a bit more complicated than that on Linux. +The following instructions show how to get this accomplished. + +##### Prerequisite + +The following software is required for building MMCV on windows. +Install them first. + +- [Git](https://git-scm.com/download/win) + - During installation, tick **add git to Path**. +- [Visual Studio Community 2019](https://visualstudio.microsoft.com) + - A compiler for C++ and CUDA codes. +- [Miniconda](https://docs.conda.io/en/latest/miniconda.html) + - Official distributions of Python should work too. +- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive) + - Not required for building CPU version. + - Customize the installation if necessary. As a recommendation, skip the driver installation if a newer version is already installed. + +```{note} +You should know how to set up environment variables, especially `Path`, on Windows. The following instruction relies heavily on this skill. +``` + +##### Common steps + +1. Launch Anaconda prompt from Windows Start menu + + Do not use raw `cmd.exe` s instruction is based on PowerShell syntax. + +2. Create a new conda environment + + ```powershell + (base) PS C:\Users\xxx> conda create --name mmcv python=3.7 + (base) PS C:\Users\xxx> conda activate mmcv # make sure to activate environment before any operation + ``` + +3. Install PyTorch. Choose a version based on your need. + + ```powershell + # CUDA version + (mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch + # CPU version + (mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch + ``` + +4. Clone the repo + + ```powershell + (mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git + (mmcv) PS C:\Users\xxx\mmcv> cd mmcv + ``` + +5. Install `ninja` and `psutil` to speed up the compilation + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt + ``` + +6. Install required Python packages + + ```shell + (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/runtime.txt + ``` + +7. Set up MSVC compiler + + Set Environment variable, add `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` to `PATH`, so that `cl.exe` will be available in prompt, as shown below. + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> cl + Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64 + Copyright (C) Microsoft Corporation. All rights reserved. + + usage: cl [ option... ] filename... [ / link linkoption... ] + ``` + + For compatibility, we use the x86-hosted and x64-targeted compiler. note `Hostx86\x64` in the path. + + You may want to change the system language to English because pytorch will parse text output from `cl.exe` to check its version. However only utf-8 is recognized. Navigate to Control Panel -> Region -> Administrative -> Language for Non-Unicode programs and change it to English. + +##### Build and install MMCV + +mmcv-full can be built in two ways: + +1. Full version (CPU ops) + + Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only. + +2. Full version (CUDA ops) + + Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented). + +###### CPU version + +1. Set up environment variables + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1 + ``` + +2. Build and install + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext + (mmcv) PS C:\Users\xxx\mmcv> python setup.py develop + ``` + +###### GPU version + +2. Make sure `CUDA_PATH` or `CUDA_HOME` is already set in `envs` via `ls env:`, desired output is shown as below: + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> ls env: + + Name Value + ---- ----- + CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 + CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 + CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 + ``` + + This should already be done by CUDA installer. If not, or you have multiple version of CUDA toolkit installed, set it with + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" + # OR + (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs: + ``` + +3. Set CUDA target arch + + ```shell + # Here you need to change to the target architecture corresponding to your GPU + (mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5" + ``` + + :::{note} + Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus). + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe" + Device 0: "NVIDIA GeForce GTX 1660 SUPER" + CUDA Driver Version / Runtime Version 11.7 / 11.1 + CUDA Capability Major/Minor version number: 7.5 + ``` + + The 7.5 above indicates the target architecture. Note: You need to replace v10.2 with your CUDA version in the above command. + ::: + +4. Build and install + + ```powershell + # build + python setup.py build_ext # if success, cl will be launched to compile ops + # install + python setup.py develop + ``` + + ```{note} + If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation. + ``` + +##### Validate installation + +```powershell +(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py +``` + +If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution. +If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues). + +### Build mmcv + +If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). + +1. Clone the repo + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. Start building + + ```bash + pip install -e . -v + ``` + +3. Validate installation + + ```bash + python -c 'import mmcv;print(mmcv.__version__)' + ``` + +### Build mmcv-full on IPU machine + +Firstly, you need to apply for an IPU cloud machine, see [here](https://www.graphcore.ai/ipus-in-the-cloud). + +#### Option 1: Docker + +1. Pull docker + + ```bash + docker pull graphcore/pytorch + ``` + +2. Build MMCV under same python environment + +#### Option 2: Install from SDK + +1. Build MMCV + +2. Use pip to install sdk according to [IPU PyTorch document](https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/installation.html). Also, you need to apply for machine and sdk to Graphcore. + +### Build mmcv-full on Ascend NPU machine + +Before building mmcv-full, `torch_npu` should be installed. See the complete installation tutorial [PyTorch Installation Guide](https://gitee.com/ascend/pytorch/blob/master/docs/en/PyTorch%20Installation%20Guide/PyTorch%20Installation%20Guide.md) + +#### Option 1: Install mmcv-full with pip + +The Ascend compiled version of mmcv-full is already supported when the version of mmcv >= 1.7.0, we can pip install directly + +```bash +pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/ascend/torch1.8.0/index.html +``` + +#### Option 2: Build mmcv-full NPU (Ascend) from Source + +- Pull the source code + +```bash +git pull https://github.com/open-mmlab/mmcv/tree/master +``` + +- Build + +```bash +MMCV_WITH_OPS=1 MAX_JOBS=8 FORCE_NPU=1 python setup.py build_ext +``` + +- Install + +```bash +MMCV_WITH_OPS=1 FORCE_NPU=1 python setup.py develop +``` + +#### Test Case + +```python +import torch +import torch_npu +from mmcv.ops import softmax_focal_loss + +# Init tensor to the NPU +x = torch.randn(3, 10).npu() +y = torch.tensor([1, 5, 3]).npu() +w = torch.ones(10).float().npu() + +output = softmax_focal_loss(x, y, 2.0, 0.25, w, 'none') +print(output) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/installation.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/installation.md new file mode 100644 index 000000000..81ffc16aa --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/installation.md @@ -0,0 +1,379 @@ +## Installation + +There are two versions of MMCV: + +- **mmcv-full**: comprehensive, with full features and various CPU and CUDA ops out of box. It takes longer time to build. +- **mmcv**: lite, without CPU and CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops. + +```{warning} +Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is avaliable`. +``` + +### Install mmcv-full + +```{note} +- To compile ONNX Runtime custom operators, please refer to [How to build custom operators for ONNX Runtime](../deployment/onnxruntime_op.md#how-to-build-custom-operators-for-onnx-runtime) +- To compile TensorRT customization, please refer to [How to build TensorRT plugins in MMCV](../deployment/tensorrt_plugin.md#how-to-build-tensorrt-plugins-in-mmcv) +``` + +Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command + +```bash +python -c 'import torch;print(torch.__version__)' +``` + +If version information is output, then PyTorch is installed. + +#### Install with mim (recommended) + +[mim](https://github.com/open-mmlab/mim) is the package management tool for the OpenMMLab projects, which makes it easy to install mmcv-full + +```bash +pip install -U openmim +mim install mmcv-full +``` + +If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv-full version, in which case you can [build mmcv-full from source](build.md). + +
    +Installation log using pre-built packages + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
    +Collecting mmcv-full
    +Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl + +
    + +
    +Installation log using source packages + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
    +Collecting mmcv-full==1.6.0
    +Downloading mmcv-full-1.6.0.tar.gz + +
    + +To install a specific version of mmcv-full, for example, mmcv-full version 1.7.0, you can use the following command + +```bash +mim install mmcv-full==1.7.0 +``` + +:::{note} +If you would like to use `opencv-python-headless` instead of `opencv-python`, +e.g., in a minimum container environment or servers without GUI, +you can first install it before installing MMCV to skip the installation of `opencv-python`. + +Alternatively, if it takes too long to install a dependency library, you can specify the pypi source + +```bash +mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple +``` + +::: + +You can run [check_installation.py](https://github.com/open-mmlab/mmcv/.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands. + +#### Install with pip + +Use the following command to check the version of CUDA and PyTorch + +```bash +python -c 'import torch;print(torch.__version__);print(torch.version.cuda)' +``` + +Select the appropriate installation command depending on the type of system, CUDA version, PyTorch version, and MMCV version + + + + +
    + + + + +
    +
    
    +
    +
    +
    +
    +If you do not find a corresponding version in the dropdown box above, you probably do not have a pre-built package corresponding to the PyTorch or CUDA or mmcv-full version, at which point you can [build mmcv-full from source](build.md).
    +
    +:::{note}
    +mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility
    +usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you
    +can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
    +For example, if your PyTorch version is 1.8.1, you can feel free to choose 1.8.x.
    +:::
    +
    +:::{note}
    +If you would like to use `opencv-python-headless` instead of `opencv-python`,
    +e.g., in a minimum container environment or servers without GUI,
    +you can first install it before installing MMCV to skip the installation of `opencv-python`.
    +
    +Alternatively, if it takes too long to install a dependency library, you can specify the pypi source
    +
    +```bash
    +mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple
    +```
    +
    +:::
    +
    +You can run [check_installation.py](https://github.com/open-mmlab/mmcv/.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
    +
    +#### Using mmcv-full with Docker
    +
    +Build with local repository
    +
    +```bash
    +git clone https://github.com/open-mmlab/mmcv.git && cd mmcv
    +docker build -t mmcv -f docker/release/Dockerfile .
    +```
    +
    +Or build with remote repository
    +
    +```bash
    +docker build -t mmcv https://github.com/open-mmlab/mmcv.git#master:docker/release
    +```
    +
    +The [Dockerfile](release/Dockerfile) installs latest released version of mmcv-full by default, but you can specify mmcv versions to install expected versions.
    +
    +```bash
    +docker image build -t mmcv -f docker/release/Dockerfile --build-arg MMCV=1.5.0 .
    +```
    +
    +If you also want to use other versions of PyTorch and CUDA, you can also pass them when building docker images.
    +
    +An example to build an image with PyTorch 1.11 and CUDA 11.3.
    +
    +```bash
    +docker build -t mmcv -f docker/release/Dockerfile \
    +    --build-arg PYTORCH=1.9.0 \
    +    --build-arg CUDA=11.1 \
    +    --build-arg CUDNN=8 \
    +    --build-arg MMCV=1.5.0 .
    +```
    +
    +More available versions of PyTorch and CUDA can be found at [dockerhub/pytorch](https://hub.docker.com/r/pytorch/pytorch/tags).
    +
    +### Install mmcv
    +
    +If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
    +
    +```python
    +pip install mmcv
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/introduction.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/introduction.md
    new file mode 100644
    index 000000000..711d731c4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/introduction.md
    @@ -0,0 +1,43 @@
    +## Introduction
    +
    +MMCV is a foundational library for computer vision research and supports many
    +research projects as below:
    +
    +- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
    +- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
    +- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
    +- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
    +- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
    +- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
    +- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
    +- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
    +- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
    +- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
    +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
    +- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
    +- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
    +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
    +- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
    +- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
    +- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
    +- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
    +
    +It provides the following functionalities:
    +
    +- [Universal IO APIs](https://mmcv.readthedocs.io/en/latest/understand_mmcv/io.html)
    +- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
    +- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
    +- [Useful utilities (progress bar, timer, ...)](https://mmcv.readthedocs.io/en/latest/understand_mmcv/utils.html)
    +- [PyTorch runner with hooking mechanism](https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html)
    +- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
    +- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
    +
    +It supports the following systems:
    +
    +- Linux
    +- Windows
    +- macOS
    +
    +```{note}
    +MMCV requires Python 3.6+.
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/previous_versions.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/previous_versions.md
    new file mode 100644
    index 000000000..a9c371766
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/get_started/previous_versions.md
    @@ -0,0 +1,47 @@
    +## OTHER VERSIONS OF PYTORCH BUILT FOR MMCV-FULL
    +
    +We no longer provide `mmcv-full` packages compiled under lower versions of `PyTorch`, but for your convenience, you can find them below.
    +
    +### PyTorch 1.4
    +
    +| 1.0.0 \<= mmcv_version \<= 1.2.1
    +
    +#### CUDA 10.1
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.4.0/index.html
    +```
    +
    +#### CUDA 9.2
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.4.0/index.html
    +```
    +
    +#### CPU
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.4.0/index.html
    +```
    +
    +### PyTorch v1.3
    +
    +| 1.0.0 \<= mmcv_version \<= 1.3.16
    +
    +#### CUDA 10.1
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.3.0/index.html
    +```
    +
    +#### CUDA 9.2
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.3.0/index.html
    +```
    +
    +#### CPU
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.3.0/index.html
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/index.rst b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/index.rst
    new file mode 100644
    index 000000000..f036e689e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/index.rst
    @@ -0,0 +1,73 @@
    +Welcome to MMCV's documentation!
    +================================
    +
    +You can switch between Chinese and English documents in the lower-left corner of the layout.
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: Get Started
    +
    +   get_started/introduction.md
    +   get_started/installation.md
    +   get_started/build.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: Understand MMCV
    +
    +   understand_mmcv/config.md
    +   understand_mmcv/registry.md
    +   understand_mmcv/runner.md
    +   understand_mmcv/io.md
    +   understand_mmcv/data_process.md
    +   understand_mmcv/visualization.md
    +   understand_mmcv/cnn.md
    +   understand_mmcv/ops.md
    +   understand_mmcv/utils.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: Deployment
    +
    +   deployment/mmcv_ops_definition.md
    +   deployment/onnx.md
    +   deployment/onnxruntime_custom_ops.md
    +   deployment/onnxruntime_op.md
    +   deployment/tensorrt_custom_ops.md
    +   deployment/tensorrt_plugin.md
    +
    +.. toctree::
    +   :caption: Switch Language
    +
    +   switch_language.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: Compatibility
    +
    +   compatibility.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: FAQ
    +
    +   faq.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: Community
    +
    +   community/contributing.md
    +   community/pr.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: API Reference
    +
    +   api.rst
    +
    +Indices and tables
    +==================
    +
    +* :ref:`genindex`
    +* :ref:`search`
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/make.bat b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/make.bat
    new file mode 100644
    index 000000000..7893348a1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/make.bat
    @@ -0,0 +1,35 @@
    +@ECHO OFF
    +
    +pushd %~dp0
    +
    +REM Command file for Sphinx documentation
    +
    +if "%SPHINXBUILD%" == "" (
    +	set SPHINXBUILD=sphinx-build
    +)
    +set SOURCEDIR=.
    +set BUILDDIR=_build
    +
    +if "%1" == "" goto help
    +
    +%SPHINXBUILD% >NUL 2>NUL
    +if errorlevel 9009 (
    +	echo.
    +	echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
    +	echo.installed, then set the SPHINXBUILD environment variable to point
    +	echo.to the full path of the 'sphinx-build' executable. Alternatively you
    +	echo.may add the Sphinx directory to PATH.
    +	echo.
    +	echo.If you don't have Sphinx installed, grab it from
    +	echo.http://sphinx-doc.org/
    +	exit /b 1
    +)
    +
    +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
    +goto end
    +
    +:help
    +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
    +
    +:end
    +popd
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/mmcv-logo.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/mmcv-logo.png
    new file mode 100644
    index 0000000000000000000000000000000000000000..bcc5759f8fe3bc7d191d411c38a9e1d3c1c27a84
    GIT binary patch
    literal 27173
    zcmXteWmFtZ)AlazZoygH-QC^YHNoB8-Q6WXaM#5*5Zobna1S1WOFr)BJ>QR+o^xh;
    zs=Mmys;jCyR!v0~6^RfD005xM%SmYf0KmA9XD|ZX$NjCR7V4uxbdl3{2LMBwNl7&|8)pw^cN=FHa(PKfau+w}FSZV!0RW%%LQQYI^anhV?T63kIufhb
    z&Djp201#yz!Wf2rDMlK=JOTqtY&bFoNe2fPvp`P!N7xdQTw%;!2_4v4JTAr{UfYQ8
    zlI&Myd!XOd#l_3YOYd>P@#~E5EP4ng7ES6=sU3h{BT`6Ul`L6R?#Fmv2o$c|4h%WQ
    z(d3{t>@Wau4ejd_F61J0Zy^!{_bvq!Nv=+G=-j!%#A1@Qn>keyG7Eq4s9
    zG=l;F5I)U+f9DfTIX*hrJ^FI&aP@b%^xgj286-k+v;E$i00jfUP?^12H$6ODhISbR
    zHhB)%R~rJ>bpSToPsW@Zh$RL{bAC_pzI?A@q(xuV#)L?Sk&uxus4c$svF*o;{Nvnp
    z-iZ&o|9Jbp;dc#i%@fP5hm?iCxtcq9HE1LqPr^vBJ3SmzzK=!*za`Pn?{PI7G2zDD
    z=*5E7K+2=OT^gxU6yuqDSf{}pH)L6Fi0R&_fVwDEh)M^1`=kRT=n@DOkEXZa1rQ6m
    zWlkVOP6c3Cb8+}S008L&Psw78K)`f%`91*9dqQATm4UA`f&c(Wm4q@hiNm9O$Eky$
    z6?`Y@h2TS(!%2yuP(g$+B;XE0h>^Y$WQl*$f(Wd_v^PN$mSE=XVzhl{=R-Z-!7>Ux
    zbHRr*BPbdq=#4^z5g$XqHm4AX!L&$P1Ml)$T{L(<9cP;GeTR`p?^Yoigi_y5yp*_xX*iVp&N%}mDs}Ssvm+kqlIZbz;SxcL
    z%&!orpyETY&k;-_Fa{mMQc`5~l=LL4sLv_eu(}a+5yKd3QGJ5$h8RMTF@hYmV%1cqbwln_g)G|Dru6u3W&9>RPp=8(uOsZpPrN*imU5(Ad}q38BQvlJ(s;;e*%Ac
    zd>a1O8wE8AHGEXgg6@<3C;v~C1f8E)bCoJ!7qfH6wAfZSh;prS&~u!%^%(9M0&r6&
    zurdWQbuxo8k88BF-L*xRd~1-kYPHd8O>_b)WVBn=_Nx(p;?*uylW6x;^EAw8cxxo9
    z&8nN0^_#whJzJu-L`BM!M9GzDS$2+mN~FLW;rM)`C$a3N1AWG1pQCJH*z$C)X*VJ*J&WyNb}A$|5|~<48;uUj6X9pvnX@(vR(a``k;E=b-(rg
    zb&CtP3%rZ7^(#-8La{=o!aD&+fd@~-Zk}%S?#S*9&)MH1i4u{^QQu?5dxN9K+WP#mF<;{ujyDBSLsyj
    zH<@`zc-g(szIa!b-;@8Ve$Dac=9KVoVC{=COFq%K@sRM9_}}XXy*<~d{ld!p%E8-|
    zV^$L{6Md7HK2p`z0-B;_Hpj7zABH=9lm2D`BEp}aXHKC-Mns^B{feXeEBZm(!u^y%
    z%R#w8@UKNLg3pt0$&UlOzJKs;RA9}3-+_m~zEHx@R%m-@GMHSLZ}8l(iLgCztSBP5
    z5-5nM`ebhD&Jg@RL{FBSzpR<^=5Z$w3ULjHp4p~olt`B`lcHu3wlRX7E1r~2r#cW~
    zc4Qr5z+|?ca`B%6ap)O1YFK`&w`qE~dOR>K*B$7;SobB}Bv&VN32xYRxOrLE**R!9
    zSf1yDL%=oQP@m{W>6>gU4{R#Li`au7t3QNe_uZk69r8E}4)V0JJS-ayf0cIOADzxj
    z7I_QlbL*!B@I~feWw(ePhLcOEu@a~rRyrw@VE>88k5rZJFHI~}Z|(#u2&Ekr>SW&Y
    zZ3+fTKHEg8%6N`&BC2XI`lfzL>!Q3>){$D?s+(PNU1R3YD99)%(?GS&YGYhs>!j;c
    z{ldtYj(XsG6f;yMgNvsWe~KrqQ5=hNr|@#pq*5VCVyu>ytD1$+`XI
    z{r3|kau{AfUrLi2xT$p&?4y6P0~(O-!J~}V#P?=lH`eI3^0B>M2%NN;Y{`04+tbs~
    z{$uC+>rawK_`s;!p8XlWu
    zz(;$!DyB;TcfOA6>stz)6BlQ4XXR&3br1RjjS78s;!AT;*QoVGH;IQtrj80*9$)?J
    z?vke4rYEMMxy`vR45vEkHvW9&DZBS83^tzBd8@DO>|di_P<37C&3lmy2?23
    zZD;h+weOP-ymMN(4BJd5v>@spI11VX%X+I07bW|D^M}8ezB;q>aCZ3BI55zH=%~Sy
    zNGd1ba+n|DyqFwO$&O3xNIbX&FfdS7t
    z<}$|;;jevHCkbVRBqk)X{hj}UuGsf2Jx95db&E<0>4a~d4#Lv+E3GPv3ROgff9C%3
    zeNcMMwKrBb?z5JhEfU4|xK!#ieHg#pI!-pe?sfSKda&4_?o_N7ZV;9Ya(Ua8YczB|
    z`}{C@p)1tj@mKjwaQ%bE^zMS}ljbP)4z}Q6aesK0|0)T0RRFy006#on(43%0AQ*iFD0(!vwq&^
    z4W>Hw+2c0Uh|T$=Gy@HC6${J7p^qI0No(LxtG77FcUaYvp1B%WOB&dFJBprd
    zw)eFh-ZiY8wG&9m8ySLZZK>hp6UYfLViJHf7Hk9&vAiCE*8liSJ#`xzYhJdxI5m%b
    zk-+ZGx}Kh%OTGiQMebXckF*b*Y?dDJLCa*2AMeg6m-rYkLxIv`+|6wKsEoSd?QKVn
    zJ)y-gA_!B!2cRizKbjEqRPv#*)UOAN@7-65Fc@zG2zssqozI*c0fp^DD^lCu1l`*k
    z=iB&$Qf6*g6_sBXBURwTPX3X+1y{Cu44h82Qj$OWKjlteq|dEucRKkaW|ap59^)Zr
    zA*h$$(V^bJ%Frv|1GFhLsTS+Dfqi}ZGSqOQnKM8HB|x-^EC)~os{(*G&S)m`p}Z#D
    zk>8=a=DTLQrn`<{kvIJBYl9MS(YZFnF!Z5^&f?q4+vlAgNF%hMu~zeD=orwfcH@e}
    zh1dt+gXA*>oKnxIu=}r%edr!xI|-!L80QA>_;LSBs5^uVC~O9+AWZ^ynFJhVM&m;R
    zzs*36hFq24ETu!}clf<~Kf2Yo*1YXgJ68%n^u70>nIp}kQ~nq{tUZkP}2->
    zxE^B6!m)M|6#T=HOzM_U6}auSbAxjY
    zZOaD8IQ7gauyoTNM0r*3bWL8ETb;=Zn#s@u$DrIEBN%sr)#$P5n9bNR;h10h_ktH8
    zM?DZqoA#w!8>f8@WWxWfLP8#}0UYI>4@z9T)XNUZy|;JzPnQPvPKy=fU-63`Ti6V(m*
    znjvL_d%ek@tJ2&g-bFA<5+VwJd)T2?^FQRzJCHQNU(~#to2{VwkTjMk`>BRLNhZ{J
    zaQ%#i^kc6kjlruuUpSX42mYVFR{HA24mq}xvwHjEzWQt@+Tk&0_Q4$S?}$tFCq@ha
    zj=bu6p;HIqt~=-9`u|TgXA6FiX&c@P}@X~)vM65XmuY`lhyBlE-nr`~1LF%bguYSb8nALpDC-@lS@G(IQQmLNa
    z&*xYC+=!bhHyOkKCkeL6){OHy95Va$5B^13yPdYEAhJ1GLRSKN@lcMpoZ
    zA0C-^hJ5s6R%7Z_hI#;q#-m}bhb4g=r$@~zb?-s=7`}j15fCG$R~cvjP;J}0=0EA!`WFo%zhx*OCzYigRDD{Ed4IgC4CM3k67GuLTUqSspz`{1kd$9aKFM|q-
    zUNEyPdlTV
    zxgKJnOL`nT#%%bx=~3E#6Y?oBnh0M~<{LW_~dpJ>9vMm!7*n*!hA@fJ4g$YNo(`WH+?bO}(Dc
    zP;cQ9jEv{J0=>E_3uXhBxBaSwUcfA1+s*7I20Cf6ic4M)tK(xxGG08o(W)j%JoA0f
    zxDWP@O?r3(E5hzt^p$f@;)eO2U8R_j1>#o7V@}zXd{^jLr5?JKt$LUz7m#G2vpfD7
    z9RuqC`bBHk9_X9wJbM#5AX#wE2hpdiZ}cOulxC?SwP_p;`s(##S*f3H8dsStTD@pj
    zGR2`xT$gST>F~iOYAeC;C5|CVT|%ve<6#xpw(aOa7{h-1e*{MP9i5$7Bd&Gvo;%Zh
    zF)Q>Y(!%(lPUybu`A;MdT~+(yZPr#Di98>I21f@m27LqPE=uRSfC_?r)%8jAZoMRJ
    z-@em?2A0CV@%!9Y1$mDoC_GF7l0kn=QXFH}E_6-S6F|ofQhvc-VwE!eTZCu
    zk4Orfp$jU-uBpRl@B|Mf#&5i3eS9yWygg%kObV)j*kCdr6!7Yn#|OyOJN!^3!2v*;
    zO1yZ>ON%L;hdK1Vgt;#adyF2j{QD;8Um79R)_=W^i^%Xdu}eXrvy?5csfObHQRr_}
    zVrDY2HWPKxG&S4D@4dZxN7M^z1jhvcBzw-5=42QJe{Pd^yjCmT9;<@ogtc4s`T>X^DSaOKTEKA!Hr
    zbP?UVrx+dla?O0{nJfVCn{t#Ti6M4&9{E6EOgULEb~WV&jg%J(P&{ph_JO$T22j4S
    zG#l`QMJ$R`sXF+VqfchP3{i3iG3CSc^qp1e8J`lDRdnBIL~n$wl!8*OzUfK4^Y7>-
    z?iaaj;BO9i^Rsnty#2#7!yXggDe<2s&VdhgPEm?8wK3MT=cQ3YS?@tYy8)cTEZcg)RhiQZR}*2XBod+94{2f|5NVFdqK$xm*Gdm(nBKL~pG9Egt
    zbXH-|a}y!~!(tqAdWgX^hoCrQ$JR*|4kZtV5*rY4AcYr_s`WEfQg=8Q0|}Hx?bO=p
    zGU>J2!tMKK1fttt-iPyjY)N&m;EFQl*H^6s2PT-f7_Z-4HC_gAz4!;hX4_$hcnPQG
    zP}{7>k5EAAbrUJ6Lmr~2Aw(ZQSb1QuHf%5!2hjPgGZiP+=GF?%H3CJJkI)lLG6|D(apRtbmXP;TE&1)ZO7*cI;
    z>@x)xU36-j;jNp~nb`ITQT7<kL-NsLeqRf>Q}3q`1*YcN7;r^O+{
    z2+hDOkjI0(sXHF`OwF)%5|_%MqL@|c*o0}R=j(qQVLrh;H1BE|s?%)P
    z2D(FahJ4xRiv^>qe5e$N-Q-|%QCspR`&-MV`lt`cwjbt}=uPB&9of1lTC>t@I8Gh%
    z#=o-x=@CPtXki56fY|iu|N7Hj>+EdC1kx_g%hLp*7Vdn7F=JXydS?*}X6c_wrpsY2
    zS)0?&y}NBHA?iU~2g=uP?udo@tBus}QaZpbGqNg+NM{7`Q6H0Ov|vq10eyYru&(Ls
    zo@-Tm5`cBWro8U3I`v^owcLXz+&Yc}F=Li`FHj5>ot&=5VI>Y1P0+Y|FKo;27$h|C
    zun4XpWKwuv^tOmj4fLZQM{M@3@s^9luqTl%&G|AMct`eSKFAM|aA{8AQgr(UNp|?T
    zz-TMYY18n&I@h6!kUIhPOW&jL@3izLHtLd=oy*b@qN$m|P{|s^y9;MD?a%q4Ppt^Y
    zVqWCu5P@A`%DHja5^WpaTiMWJDXUDV5OqR&Xq?Mqh;)6Hp0~Gk&d(W|4pS+29At82
    z7QgAEbLw4jgEp5(@?>=GaTpwv*MZ{}eg@BnHA%6gF&rq(GFB
    zhoF6z6e4xw;-9~T3ccC*(F`Z(OC^>o076Qn1l+L6>>G62itg@Bjzqmrj@Ol@8Voi4
    zePIfY#X8UOXeDpZ^U{yNln2T`UcA=+ZgPyn1G=2$d2wzynC-MlVT5Cu1n|V+TXFo}
    zDy+${@qLhe=~kSCVLk4O~H
    zCcvTO;yuN5jZsEF(oMJLmhfy)V`^nz&rGUTCzC!pJ8uQ&_SY=3!6Sg{q7pIX0x}^X
    zYb+&-sPzh>gYz8
    z@E_pFIkX6r8|}5LR%OL5!xF;-iHD3!MhonaiJ9*ng|cD<4lq)l|GjO{fj(1fA=WX@
    zMdHs>U8GY#rzHT%zP&c+U(nmrE_}Y0cwfX=I(e(vCCoeKvJ;3I=v3gI44^>sv#p^;
    zr^8xV(3Y3hRx>Yuvy!OujUy+Z$a9hV>Fj^_LH?l3gawvwWSjn=X;t4+pcFgx5)vVt
    zMV19*8Jpb$H1$<4yWLXvIEeu<2Ob9L&o(rff0Mq3O~XOTq=m)!+$dcAADp$R3)H?6^q%toH8SFJz@C)fRrawSZfx
    z^0Op6Jw1iEpI%a3TTAVbdUzN=#jXj2tUhp6u|K}C9f}BB9t?W$=l!1exf`>_<
    zk0lrSPFY5wz0fnin(O^lFja@1q}aGOruW4-M>P;Bi6nYlUi1~qm-HYa22)C@BaL3`
    zrk}x#;Ikx5Dn8p0pK{fri7K!C-80;Gi78^|`gUq~oDpe6Z(uOu0VTpDM-XF|h6%a@
    zcB;}^PAAfxcg$AKO
    zE2^`s0J?~Mxj&5E9!9Xdpwvi0h}|&(OGlhx5E(Ug;b=}8^*~*_xgS|Lh|IF+yT=!M
    z)0J4nL>jp8S}46{!kK}eUZ$O1o6y5FY{8#)D?=`%wCO6Om}c2_O$1}nf^4VAxIJwA
    zAr4;i%I8Ay6Kd{&AC;#w@Ir2sxSA^ZxnZ+RmN7Jb*!#cz8ex!LwjM0rchK3Bh2bg*X_W9$$KfpgMBIM4-X+k8}j$jjf;q1?}HDa_ATmE{p
    zSZ0=gWUSPPI9JjKtl_}NZ1w+5IMh~kLf6xTvXmb
    zqsjAono6%OwCHyx(?cbLuIm9Qk?>n%zsHSb-Kl=Bx$dxIulL-!!4Ab$%GJ`N;)JKI
    zL6xw5S@k9PL3jzb7ZPqqt7tZB<{KtJ?G0*jfK^gDlvQQa9U9hcL#mn9ZSyJw4o71?
    zecs`wvRiY1#%THQ%WA~smjv>d#<_`UQ+R8M=AK_wiRsOW|DBhG$!01zs2{LPNU;;j
    zImnJqY(@X(^p(PE709sjTYq>{1tgyxYDcrUl2ntI?pqk9I%#g%CtxEIzY5;uiO9^5
    z|3Mfs7hl4=Q^*m!rSlEp&oRPpGpT4l1JM07e;3(lGzZgmQYx0mb)4F8QACG`*1+Px
    z1y;cocC;665aN$3;Z4NqYK@=;>FXrr-P}mm2BpJNu#HX}bdj
    z9ac+3Uv4dFL&^{=>V~CorRD=M4PX)Mjj1zU0^7d*E8H45@wTwWd|?7*_tlnXHAb8s
    zF1c~0Yf654TQ=xHtEwcEX!jDB*c~D60OR)4Pr{+wgt0^!pQPj>->FdUrP}+Cu|x?%
    z>KGGl9M!2(mnWKBi-rzn%2NJ@mKnS)sC|R*(rj^hs?glvO;=YoOW_)ZY=nIHxQQ~!
    zvfnLtT~EiM&cGKqP+)j@M?9K?P**W&S*S0M&Av%{`^4Dm}f?N)T$%jZJH1MvRsrwOu(MDiE4P)L6#Z~Q7tHS_NL
    zcNZcU`|-PTnjSY+<{c6j1#5Ad?{y^^Rw~C>MpA0=Sy@mRu_TS`Y6(o6P9)dc(61{B
    zB{2mq1Zdv}uii{u#BNey!06pAmi$pC?zuT-XqMU4EJxV>)S!&vX+AMmXp2IGl3-Y!iG(UhEv!w9o_U
    z?IFnB?Bh2d`nqQlvw{U}N-+Q9yU>`~Cgf@kU<6IR_E;Lrku6s+qBLRd;z{{^yG7u5
    ziqT>r@0$I*gC2q%19Lb!MY`2!&*wbaVl+}^Xt`&%^%hLlG;ZI>sGHJrDY5m8R~dY8
    z_a4}0aM^|>@4Kxn9>ipPYE|#7dyfK|1-Zdt(g)Xj3g~lFZqZfuIYdI8lm>d%xAR=a
    zfNHL$>}&ASo?<`P?Y}0dsh}87x0mMt*P-JxDeMtqIGxWu!r
    zzOY@43sM$Bcb$7@nh>@n`T@tC-?HvJUpHt%`}_v9)Z#{}%15{Qo@ZwR(6W4|mxB-=
    zNeyhd9i@y?Xk%8*`$wdPqM&4XhXI}`8wde1-%JKwdjBBBR+T?5U$AIY`-;QEl6n1w
    zoA^*!+|Tq31zjru)uwLhC)jRO$7TPCjeOWm8p-$yO#TG((w1P5u0B=f)bh#<0G*=1
    zOilOd>m60~S$b^31cXvVa0pw-jzT)&-OeinfdH-4&tU2A;$N;K!R_IIoA`cmpn=94
    z;Mz~CRS`O#ji#?i{>w%Vm2ZJgoTh3=jGqAfk(RF%d6UB@hqYy+f$=B<`p+o6f6{tp
    zKT`2^=s2xpF<@@d$&89T9u?7uj@gvc!<_%gaSnyCn)7#VaSURaDI8y859v4TwD>4;
    zgs4f#8)P!4ptU;fET$j@hpK8Z(KE6YSxBbyx#5d!=a}TyZ&aMt*0J|MjC=Ord)%Bq
    zzbnD#m$_2tNtoaD#1owSguIg*URmu4CvMEG$B?mFt4L!;(LawjOqv0;{TAx#~{^lf<5jBc`^cIcPBwWiEZ
    zC`08Md>vz6ZbSi!zd=y4gd-Bi1#Z?!LT;OML)k3P^UoMN>5x~J@AMRdbtb_m52fMstw^}gxo?jEN-sjI{PfC>T16pMZo1r_;9
    zRi5!_GB??sAp$3h5DasVd=ze;odBbj9gx%R%}lBt3v`zf2B~W_I~6%Q^R)>6(qf
    zb$}Pnw%
    z7e5w>DfKlRXAwE_Bfpl5q>4v_yFx-`qOUZXX-_P+t=Hhu<|LyQpp9s8KS
    zm;!laO~W2|H;Q;=9bv?fi5?jqlaI3%iHYm*?Ds%{=#U{3F--2Q>8YQ)hmvjZ$Hoxl
    zTx4rUt~){pYXaX-@-%&p3Z=vgZilnjIhv6V2En8{4GS#ixs#tWY<7sZoC1DY?<Nkz&d@#_0czgM=*7DEm}%0ArY%0TZ=nd2Ec8
    z?DRN%SbQ(g^jPq3BVGm{8(XCDvW#SXR`7U3c|jE^2rfK=;%#T_3oEc4W
    zR$LaPvY9`03(Ot)zkHplWDbcc_$_#^@qcwV0+R-aeUdlct=k?C{=tdB6&Qv*Y+Sap
    zO>|ztzxyBt@;*QfERdJJ8l>QqDZ0OAFxDL1Tn)kRvGrTHogP>D878~<@QEz8YF6_d
    zvn7uqX69!FTp6uWWzPg3IL@Q<{Cl+mcHXQL%8EWIQ)8)TF5R7-MTjMrwXO^e>aJFG
    zCF!LXCcbUqIfG^~*RL?6@DU4l%(jj?ZPqTUDnBE;rkh%p{DJEn490qlMux%i^@4fK
    zu4+2?7aFIRwD_?V=nTG!&R+HYyN~+tqL*Uiny#!Si*8D+v><X*G^WABQG
    zv`)$-xMz;*A)~&!b)4%~NH~O+L|TC5?R=QK*x&Kt_%FAo^c
    z{4kih;#!lWvhFgGK`T_CXdfzdJZ*%Cd)T@_Jl0tg+a6*UonXi}Ow6Q39;knq%4`Fc
    zv4tDS0+2^kS>z;Wy1W1)`|P>)r{<`ax8`5|2T$ak4xCp`(|mk}O%jBBbD89V*Gn3A
    z!9F~c=fnlc%>4L&3fzy{Kc)^XbaFUFO&we0-?fmmbtG#cf;oh>UqoE!6V3bfbBYvR
    zMI%GXWo6n5w6!{`L!P1a(;Ubj-)?>SFuvJf6m`*KzR^(AVzMu0foaHn
    z3LRvJ2(1rz?d{2aAB-6lI0RKxlz6sJCjfAY=i+nwDf0iSm6I*YQK?zcf_Rg2{nq2g
    z`mM-dhTo8uprUVMh^5ahGa2`PS#E%_8Q_y^?9Y%%+fRC%1@pOCN^?vgL@(-X#ieta
    zMDozh)Bny9F`BbCOLr9L>z7W&8Vx-!oZL!2?Fh@<<)PCrL;w5q=zS>y#&bZu4h9Zf
    zm6lZ8-$cCxA}lHNTZJ*z|24gI?E=&V!HZ0m?PCQW?E@JlDPp)eoTpic_L$3hNw%~uxi*;K8xYyyj
    zPp!Pl7Qr%?!ha?(=&*R*lFG*21AK-2UY-5wj1hW9J0&Wjn^3Lpnto+MiEPu(g22Ax
    zsw-uoH3gy5GK5_#O#q=0L>!HH_lNfUIgYj8ECTlCZdkrA4_*9=CNs08)Un5mg^jq`
    zjWLJRdu5tKQp1a`b%Akg=lHZOlEpXQfa}*?&3IIX)dS3^FY-I89;sf+8(-Rt?(hlE
    zUxcoQrDxC+h6K18`=6!Gqgcxn$5f5*8~iv#x5IQI6XF&0qgNe&lhd*2OS{d`;`4pM
    zcp?QQ`wM6Ix}(=H)@b-mN)I2Uo>Jp07
    zT4?OzY^J8){kpPGwJZ|euAwI)C|HZ?Z816F;2$H5&@#-J7ZcpLQuOAz^G_e@?>M*)
    z`ITs=m|IVr`&;qW07T0%_YE+O^_(5D9p9Ls!MGNYJt49xtu70PA~qU3!P0i)MBG6F
    zrhX~%y`-|%E()B7-NBSfI+P)ienZPpcPr9TQojjF2wyRAdACJ1aO#|Sxi#t1zy~Ll
    zazC{mvVC2dLJ0}gQ})wUky`
    z^iFX-+a+@0{525Y(_=e0`^z5+_4J*kri%Hg%EK*6-6%12DPJl&YI|IBE0f_{I@Sjz
    zfd%Fm2QqBl4@V;Vb;q<>jRKY$!b%~u%TUaab`Be|Lrts~-P$qy_DPZU)4KRKMxK@R
    z+U>^u*Q7FBM*Lb6f@w|#gn#k`@kk+aGiDd;_|iwFFJ1bpJ!Cvi4GTU7qG0s;i(@+M
    zBj**Jq`gMqKa!QsHFRPeCmf
    zgNt96`Us5_ngH{OMKn!jzy*%ZJ;+UQPs+Wg6!{O1J{A8i9h%*uWv=huLV0i*0TWXG
    zO%{q?U3r7u@AY;Dw3A~%V~I4}abOvqrJ`)5h>WPv%&X9_q3L%J%H-c_lqTqe$#nhi
    zan)1YW86z}H`rA|BZ+3gpB_!~1?C9vC985yE!K-~OQT!8SWsg&fu==1Xd2?JY|&%t
    zY^)Ym)MHW-opi$1v}>t#s0N^7@g65+Qc+&ZlGTd&q@B!Zk7|u>HG%RIf15;)yHb#(
    z@h}cxzgstF?`^MWK_DcSpHW=B&=ew@*
    zJyi{;d*gU`UWt-@9#9se01I`?=Tgdrk6YnJ^27s6EHPy#?45;;Yi#UK#3M(RyqgmoITbKrNC3K`^))rNaZYWg9^E$Ib&1#t0q
    z!|f{diAwE2;QMNNr8cL|fD(VaS6RdOHZAwEX0Qo7u~-fiJ$#(oD0qgSI?brxYD)nB
    zp@si}69R4K>7)FGRA%`6j03d}<+2^1}oXq%!z_a)naPg&5o(YujO-@>PiTIRi^j6u1@-cO={_V$SCgRfU+uJ+BK>?Vd7Lm{uskXG=
    zisFdo7pC3a$+smBz6}zK1@YUKPq$S(zbc$&6_TIX^H!}Dh|8dG1(Q-LsQ7wH-B@MSm{*K*EC{h3C7EJ?_MI3
    zKH`1Tx|`>UnRnxp^TgpM^f@KrU6^ZY{SrDyy2axepmfOCP)q@%Gt%UuOjfu9xAnse$~oy56G0HbU|C?lsfe+alw
    zi--=+4j4Y;D}I0i8bzr8MwZqy{a|i4K^YAq5_6KL!)HC{@VN(a@v@`!#AGdPU4mj=
    z(Fvbf7-pOCGYQCWsosS=Ckomp{VTrvD>wO|#w+Kai_kxiHuH<^wzf#qt|6QyR@>Ulj_x%uB*I8BD=xnyR`EplAZ-yCwMsVKrBp*_w1UJ|%wF$6IeZ_qT^tOZtWui7146E^eH8^X3l&_Cv0jKl095pfQcKBEnH(CzHbcW
    zT@090)qFu>(0XdLJHO3G6$iC!+kv+Q<&vLB1_E=waQ-4o_fP(13cxYh9EM{wCc(B#
    z4(&Apn-(FEwh*72r)Z;+#i7b&jL|4=95g@{0ck!rA3Up~xN?l*nEw^4#uDJA_KU(K
    z>ni3ARNQahq3_&0yq74{uovV19NCCYQ2$yJ5g$(S8&srZ&2ElU*nEO~kpeHzWm
    zMyAodw&3It-ku-&W>yJLsNv?=VMtrV{CLPte5@Pt4~}g7F0xs_&F^%`M%Oj>4X!4D
    zDCs(=_|B)e^w$=AHr<6*jz1zp&9M+R66~pYOFnhvb?FxiAR1Mr4-2?;soeHKacR<*B4ef
    z2d(>fm(JHaUwp=1A5F}RACXT#c2cMHVmE`610y!WH*xT1e6B7F=%u2J8#t?~R6oCh
    z9_W?|x$2ycc&Nroc^qcPXw{vI4T?V<3v{TB|BXjLH$gPj4M|6+By_o0MChSc4mc9X
    z(kAyW3BhL}smnlS&<&}SoBe|~TOg$_tzBIJwhp4aYA*|m0C%AvkCz#)g(JZdsvaAU
    zBAU30x%MI|5$y8msE}JIR(IWBk9$+x
    z3D&bvU+@lD={XLd5VO#FK6Ol>@iqA(D$|-&==_nxk}{)(?{UB7@#Bq{tyMWnac@A$
    zzruY?P!Y0jXJ^ai7*ujTg=G({Oc7SZFX*kR|=Ndxc6$0
    z85?N2=i5UQ*m{W33rHg9omU5<#q-Ud$A7y%Xsph6Mljf)TYob~vFJ1(+GyT&D<+QY
    zJxmu;M;>xtm^*47Gi7EEiia5pb?!4Nhregjspumee&UBk{g=$Q
    zuM=}TM{nQH`;YhryR}&E-Kq6RW!#>Z>&GZSBK$+&w>6
    zyQ!Ep7n7&p_rW7oktGb5?U49xib`7p@wOToI*B4(FMs}X8KXlZn
    ze!6`^I&xz(qm*&t(kbUMcn(5GOf|@VeWu@70O)uN<~k)C!~GY`bNMl-LK6}}O
    zNb4>bs=#MH=I&o}*SjJts6evj(GnQ?q43s&Fq+~+79%_6TwM}drTa}QkIA|h
    zi?l0bozK?Tt1cgNEqN>gAC>nQ$MDS!2ah?meo<@5yLS8-Nw@)FYWjQJ=Vv_gff$Z6
    zPz!P@b3^6Wc(L&!s`nMC`S!s4-VmDzX=o7P@j;JZNI2^KSy`qE--90q>xJz(?@DczfNk_`A)Gwc}~t=kH_cn@ug
    z#^Xh_WtA5P^?wg~D6xnhZ2(>TmHnV}_(Gt#)!#JvAoEKwLbq7
    zT=g_F^6m`ZXb8M#sWUe8Rk^)&xus#2zwoaWGIB%ziK`kDFh8%-!IpP&mqOB+Qe3PE
    ze)>4{t`HDs5|CH4(ovpM=`W*~^%{?d&v73~g*!lpCK8y;Bb>AnkXQo7&MkjXL|OU{
    zMVnfMFYac7%&$R60*}+f@i(0!d1VdQ!v0W^gf2h`rTC6bgE07MTGhwvvEq#}H$X8c
    zoTPte_Y`+T<1bfKR1Z+@NB%VysxMFn%?c;zmM5I1?IqCkH$76S>epN3fT|jIr$a-d
    zOiCviuZkC;W@XSlV2nm8%<9(Mc+QwZ?xs8HrO>M&z<%xJ!kh3?FiB|m%-Bj}<;(RH
    zw`Z$6mRrc+0o3@d!JAdb!2|EXAxna~?4XKN7>Z}Q2Vr{NSk@_1WV$3UbNXk9?~edz
    z9|~8K5wIqMWIPU^cIadXce)(|=t>}a!C3jEl3h*pCT4LWC3Q;Wc_U;@Wv5mPad0gK
    zZZY5&3Z~PokBh0;=laP>-rB}#t|oL#CmAM~%Ygd%Pc$@D?+A*G$$K*&r5H5D9^!ku
    zb=pua@+1UM0svN>N+(+o;er_rm6?2yk=9r2-&Ud#_j`Ib*NPkC7OGUEQ@!S)Z#>
    zVzytqh2U@jqvHg9E1MIiCd2}J={&oyYao1Fnv6d|DT5qn_)VBQlHDI+N}vf2F>3pp
    zmda;hlb&y|IPgT54^MdLNEeefmM0xiN$)F!{m#}ARX_Y2WIF$hOv7S?BVQClbxHl)
    zh6bOx9U$KVN~)^4;7O^kf!C3tie$)DZ$%
    zXe7(LUy$QDh71Zd934@4zo!Aj)o8b|Y`0m(jZ0oe8yqQmjgGqHd5oxZGg9ipV!Ch9
    z3^HHw_RMCUGNeiO?j|uq29rqD^(1ws*y8jY3Y<706b@khvPh1S6H39(aP}Pde)x2g
    z34&XvC9m~OB5_1%ZQ_a9ht$Ng)E?&*j!n0Xn6Zi<+=(NF@I{AqvHYaE!lkQnoQS_I
    zjfhaabQeYDG3ZPVOM7LB&NteA+aZ-CmX4-`oWD!+0}Pus)5LNEC*ca0ewIh
    zf~{Ms%r~ucHL9aqf3$mloNCA;SsDIxDcS$IrIGL1))J^T1x-t@=qDSA4UJSkmj!%b
    zt0V1C_bfS?16>2|zh#zzyLN+A7Y#Buj~f;*;a-Ap9;3M*a$$nXce{dmXX3-lW$EqT
    zCjtQ`Vh0XKp>l#X=aMa0d?9SwYCG(qP4PBk{zX|@6>r{^hI8_!rnOM{2Rd2Z4&;rGR+NT=s_u&Tn
    zyc<~6V864}tX@k21^9RSO0>FrwzR7|MoTl
    zBEpvtnIGvvER_l`SaX|#MJ|w)yoV`7oO)Z7Y%L$iQ@zEf#5*4>2c+U}bDO0VH+v~)2T
    z=z@jBfHwk8&nbaR!@3RkJKth}mpwqU`Q1>j%yk9u{>1{bAk#-yIu11V=6M|9x$LOu
    zRKr%*+unq#R}P~Jef=`5+ySf^=<39m+39BE_;EAQ3@;-*OkUC^$~TlXnI${!@=a$l
    zXB}r{lwotml)`wMtqh3{>XEmcXu^{0)vy*M+ywUEaKKL)H5S736tZ=*Z-ghPoW~Pn
    znz^3)XIoZYAR;=ALEaOdqXBeZSDkD3Z(SA!OqG-+EnhrFoLqENr
    zJZYn9dlqdKs0kEhVRY#;AUZ8h=QnjIcVPGMk7L3g%K|
    zsjriW+*eK+Rn3~9VD3dtnu>zRE$==2=5*BP&K@yGK~DF(q{pP%VF$a|0AVj8o4u%+
    zP$P>PHVb?!XO%mHCb5r|f@k!8<>$2uD+hGp5`knaf~+m$v1BwnF0_7p$rI|>TXz5QegG|jRltb9ekHIMk%{c;*t6_Z|7byu1K;qY
    zc=A4b0S%Wvhx9+nD5>;*wWj9PrOHwg;Z4ovl*Gp8mD}j^*ch7Ik=CoK7L%vOvX2Gbop2No@f71z-p)yZ1p_gyRvRlv&)_ghYD
    zzV;|u`v0m1`+lU*XANyF@UF!Kv7l1cx=>y_cH;@hRZq#IawqxlYysBAoSJbH@HTiv
    zB;}Ian!G-a$kYDwCMcgY=QHD>bS6cW6uQTGT+PioswnUCW-G0>B69m6N8+>j7Z=Ps
    zE;yZFjf4Yd3Z3;t4|-jVDEjmHTi6E)H#*t$?hyRKRO6hjFVJ}PtDa^X?zgG+|Fu`{
    zP3fnqmB)|JEZ6is_uSOBl!Ql~cO!p-mqfMX%(@lag+#s~Pog}#XkLLP3%}?deyv-t
    z;!y|v3`G;?K!+5SG+otx2#b0lQXg&*sl=MG@-(W7lJap@a2&GZ&7?ANKsuHNNQ)t6
    zA{aNMN;sfGdR5(i?)crF?}|H`Pw_mOUXHZBU#4tgSig_#*oti5;>NI=vTL@UptF7W
    z`K%jgCpq_o2Nh`r!X+``?&XI2ZKJiiK=Er0uk#xy?}BeiJAJ(AhY7q^Gv%x9S+{aO
    zfgnTP)++*-0ND@XMxDwUL=FvTr@E`Ip_JVmk$_7p1fQ30GD
    zU?j2)8?H}80-@x5ZtK~LV!?#emw6w%HI>8O*ZTfi_LQSXn^+kTYysZ3_&`zSII9N7
    zt4Es!IRrF!DJOa;y=3mRJ?iYVBOuqEF?
    z7AyzzAK*x^aK171G~mvqxU*VPUDiIY&6{Xf`r1(&?xcV&s<9d@`q(*8@W3WzY1BG>#~2vfp8p4Lj^i
    zj^{7pQ}Aq}6TFL+eOSB6*D1={)pe%coliv+#r%8UBI|EL)~r;?kn$*QH`eY<(^^BjvU3{{YKS#
    zl3^EmIxi7L7Wn|O8j)MwtcvRQn(x=Whfkvk?X#5W5rr1ktb&!xbQVT2SoILugRnf=
    zbq|Ri5^2zFy>#sUhWqVA$8NUfZ@<%Um9PQ${xQ)`pBVK+1lcs=
    z_pYEC{&FwK4}u&hPUyxTPV&`b)m{X7P|s(C451W63Wch*MfnP{+D;kDDd)H{4xn)K
    zh>WWBBtro|3A40Ryt*m_Aa)rduff{2t`f>Kdhxasz;|2}Ia`*V7|>jl=3%xWcKeWS
    zOU-3ZccWjMIf_3UVc%b9eSa-G1^j8ledCfIw*j{{IK~{!=XnNOZ)vi+PDNA>u+(k_QNh`a`|>#?EnYP?%E1wr6@4?l}aCV#gQD7^ADatM)|lVfC4d6=kFR>J%qqo#SW
    zMFI-B_sD6==5>_Yk2waQHGgZGNd5p2DOCJK!(;p*RVCxzKvCL-?R|s4jL1<$`lU(n
    z>?TeV=ysQ@pt5?3g7Q@>7LlVM&sXv}<67nUl+`vVr$ty&UD>7QU3#DN5IF$cjFrHL
    zqOm(R>%=?1$l@vBzdAalM4rOmPJKN3SseuV8ox
    z;f2D7EC@Wcm`W!7rDr^wbjNkxq`!h|ypW?%A*RDL$`VxaXJ+SiWk)ZItNqFfME0QF
    zrqxM^uvRDeNw-zsOL5w$_;q`bVEy2_3B#x%2!<2=jJxNoC!J}R%qY~zeh>KNhWq|3
    z@ary$YpvRzcTsPXs<9tM^KZKv?0d<5&tm|J#H@sr2%w=HK(d1q&LMIFW7ZC%6%Wgk
    zW1{finE(>a}ZXZi4N
    zT}1Yy3A$rmpR(CG=kFAT$d--B@@XAdRD55p#+aS15p*~k8>9D^4U>X^fdh}qnb}Kf
    z6l!E&L@UOcj7ANB{}Xtf7w}(Q+wHjie|nYAI0vu
    z4#CQKgeS2wJ3?2rZ(bxXN&XzdlL&S!+^*vsTE42T4>d|n@Wei4UzTvrN3b^CzY5n
    z;oFb0bf_n}_ee-{Ic(4>#a~_GAh8$t6X2f!fA1=v%cmQH>M9q(HL;J4>*SN_v9?In
    z)H`eXGRUJKR|-0Hn}bK0Lms~7+0tmDE?5=i9qK9M`Ze~I>PfLglGzfgqN=q|7m>RV
    z*+v+4E1U1aP=nizYmt@9>Q+IeC?COY*??5%JSGr1L>R6qo(p1=U}5dGoTC8vjS=_%
    zd#IA>QncI9>aIv@?7s(o?kb+oi)b#bi8UdQUjqJMj6fkCrJ7!wAo2<#k03HrT?qsu
    z>N%xf`wH+lRkM8?R~401JT;dZ869ZG6`57Zi$@_(V%i(Aj_m@9$~u8Sk#%Tish>Qu
    zwVKfG1R4>H5=~6@lI5}aTMuh*LuBm`P-6K98&i=@hyi+@+me}El!z*xpm|a|vi}6U
    zeTjj@+kr2Ul}7)!Xd~Ozvfo<7_xf$LGvSrj>dQ{jkdOPGW-FRc|as
    zR~e)Cjg?s5f?=+#5-gTvjv})E5qR$i`%ePD5BxA%ig~r|7l40NupkN0Qq^|@pT7#{
    z_FvEv?#V@XuTPBgV8ded1Wz8H;auBJp;>;C$4=8(sX41MqzW>WOYYJv{aSgm)HSljj5XMP^0Ct+%$
    zepF!$vTC^kMG*KzlIyW{_wd{#_Sw=M=L~x+e6^mCB^OaR`!evk5sxwLB9mXdiU2W*
    zR$~2|il}wM!sm3=y1~EFqe0VuE<2B$
    zv7y7)o&%n8^5Vq~FDh$n{EQa7NNRv;<%`D&6lOe0SDTtYkpKlrfM8d-eQ-g_xgYN4R_2cMX3Z;5m+CcFD
    z@UO>otPi77K0i(IOoegT3P+uN3%H}^zUzVi54dHKf#UZWQ^{(HeSF*p46;rsEv;NZ
    ze`FoY9LOUeujKpwRA+UX&o1j|POs30FZm|I(+G3ptpcK4<-F|S&UB4u*|uC&+Hsb~
    z8p#psYa%mV02&$1qf{gzd4FRUQe(wwT&`iFi@j-ObyOh&y)JhBYG1Lw04p~k@+#G(
    zvau??7}aE@Se|^LB*qsvpYac9KBppW8-V|SYH)poX7ioPYz^?&9gFaHMmYWsN4wp$
    zh}Zd|1B->Sr_murW3_H_MO+}?ZK|H+g!O@^K+b38NmuPIxxesv?L#_cuOfUN*Mpbn
    z7_ZsYZb|6_nbePCb`Ft)9))%rbRx&9e8iCIzD_pTMU_$pH@jhw^V)*QULpa>I@dh(
    zWJg3`KJ@**4X}oeIgCo)$5aPm3z8spE$Xh7MTQgZmZqHt{vz5zJg!LKHZ-Yv68Mjf
    zmilhPn|um*Gw@NgTX}j+=lCj@H~4-^C1A!*KYe6@j{UKPIA}Mwt2mPzC;$s_tJa{C
    z{{0Ey`K%K)S>8Ucn8>7YBGtKV;vi-K9tZQHm&cPDjwzE*@BxlIfJ=QyNqwgD=QXAr
    zd}^mvWK73MX&hBadO)6V;}%`L%a`%#d5K#mz^++N@babn3Mdg|qKm9r?hh(p2!eH3
    z*@dB_*W0SAjKI*Cp_4a3_5Dx?6ta|o0yF{okAZu~eB75xOtkZZhe%;>Dd0Sg=p>p-?AEOmPe{O+}zZuPAe0T|c=1&9vY!TmY1}&BS
    z$uS@I0pNQJ1Qe9hLq5-(5e$9ujB*8)i3o}-^|tNz=${_SJHpJ(){ue$ch1ptbV
    zFVx9)lTIt=;qoa-%x^e)62o&DpfKsEAg>86PT3SWO#y>N%zcQQ@p=qR4gVoEn&YHq
    zBb}tFvx0KqaSWYIuk@Q9BM%fv%e=V%TT)80DH#mdh+zlt?MCiX1eu=1%*+oz-$W1T
    zb=~wjZ*HjL?#}}l>F5F^68v*Hh3KY{V3?a2HKR4C_tN5e-Q1l*mE6&#IK_Y
    zy5UuL?>|6gHpZDqUofBuhUGXVtI=lm7{Zy%3bU;IPYPDAS!9a-K8J8WaL)TNtR;Ox
    zNz-2rpj1_=BxV`d{P!vBy=c0POOMEA$AHEqJffd7O`CDy!$H;1O;~%on|jxv3dtLs2av%QF`#M;AGuT^!USc|L?pzU@tOk_WnAFN`Ntegw*%{z%=)8~X(f$$e
    zOIHabK*utCdW^^WDw^+E;E2MM&@EN>YyN8WStLHtJE!NMN@iP1DJqL_668rR)tV+I
    zMuB)+iIhf0Y9yX>@QgglUdx#LL^St#q^hSl7}_MIG>9^6Ho6={5Si}uRfP6VU@OA8
    z#;4VBax7CZEvI_dt%EUJv1TVm0%8HgAaaVLz97m=$RJlTtbVc{_mN$S@*P!n!hywS
    z(F&&P!Di9wu8%K)bNM9jGh?LC7RPfRT(tL!3ySLjgB!@Vs8spTW`Cn~teGHZeOre%>bOR3+AohRw=yYb8;DaL`!U
    zf+paaoz_GzIpVawO=HYX3{%78gQK5ppx4frWR+bIQBfTS9^!W&Elr&#U$A&HI(PXU
    z*EmQVL)C8YTO#N4$7to>hA}J$7gTUCsAM@9NwxG@L{4W*DJf}WD;WuzbVipD`BOx$
    zIOSUZ=D8*_DJm6NO+LL0zco7e1*=6nsX
    z4zW8CD_MDWnYs3ObVWf4YW2;=iKRT=y-Za|+QhsiWE-k=EB6
    ze?(!2Jq|^5OJ&tl;a`rU-JaW%oy_rP)l?rdf9l?OMD9bxuSurU8ErKk?|m?7e#}J}
    zwjkKZG}4)DvNs)RjKxfhA0H(uiAM}%%VXo?Koh+JIp6|OPr@?99zc_M&FH7ZYQMJi
    zfL$OvHA)DQUuPis1r*lAzE8osLgJbXCNfU#Z@E?Qe;_O2y;SWA@V9~gZHayh9|wMZ
    z498ed>sFR(mPw3LNwpj!o?yu|?n$u&kV+cl1e$2`>+WqrJBjD9;y_T;BltHymAL+e7E5ExNrF7CK^7V>2t9q3bvV&(VWi^R|HIqh-HC!=>_7_J@OvL
    zZ6$x(YD9Kjr3ZA{zz!o4X6wF;1|Hu*|FaNJ?@ErbO`1@*K!>XyP(wB`rl&O=V%r84UN;dXSnrU=Llx
    z{Ojd$fZPUjGd>TIaBw3XC_^7*3KZPWrhs-bk{gjt1G~^X#Y@dTU*iw83B%T?$zS5v
    zJ&Z9vo{I6eo+)+M%2Y4;;Lug6u-Dns5xa?Up|L{4tUA)Gx
    zn`9Q!OU$~c7}l$S9SFM;Cp=tH2~zS@N{K%+oJDox-=Oc8(@d7Z16$@K&mlYl%z69J
    zk$VVoel|rb?>w1~0!(I{qI)sBr$
    zU52YOZ<*OdMG?ioJ
    z-bEQ5eZ?&VzCvr)EKo#T*L|o++kbLV#cL3G3)-Zz24m(*y;kvGE}~_uSD+vtk`W3l
    zJ?K*y^T0qqs1hU?J
    zt)^M5h+^m9syOhIIM|6nZ2Y^7^sHjzba8-Ed2Me9+Nrf004O5sqor04x=`;A(fZ!q
    zh?w$n)Y1pxG}=_PEc|%~9Mt94l2RY>1B?z7CZq2(
    zcH4v|JU_n(-|8gFkFUqNKFiq+a@_GwF;VAplIzn1&TZhsrXJWZ|XXa
    z);PZjWZ7VaHE^;yG6)$74*|myz|*zHnGS~BjEWM*1H~xr;uYWt
    zgiFA(N@{1YgiAbF^T5LhkJoxXP
    zd<8L&P*){!ROybo4ymq`x>UXQsAa9!gl94iByK}XB4-wG{jvefuH=lxDvT^-ph>1>w1Ha>IHV7JzYDJ~BPM0b
    zMC+njyODqbv}xv_BJu^aZvGD75XLOeef~`fXoN>WPB!CT8qziy!M@ZF)}w+eI!0cz
    zULGJCh9Z2`3tpdP?6q<)E_Xoj@9~!N5TrW|LD$y_PXimVp%|I(W5YQJClDF-_f+Jf
    z41yTVPZ;;TiVsod4-^5>pf4>QZmqQ&3MgiPKXco5v>W%Z`~Lx8x6Ut)p4Y@O?IOZ=
    z5II@P@fi~*l^X&@Ixvbklh`PVLdTv<{}d$0)4(xub?nF>;W=z!EH;5sPwRkFUY}k-
    zCa0k{={Z%9^;lU+*gq#>e}*ueL&D|8&QBV#6G+(8(RFG4mDG1+BRO*Miz@4_S!U4k
    z^e=M#&Z};%1qv@a=C;ovvI?zuxd(0Y-w&)qWCO#5<7MCx;KjvrmZm&^QZ$2Gj0fOI
    z7SM{E$tb=)Ql=eSHhaM_W4-(SpK#xKwd0-c!Q_?3Hwv@
    z`%_4NId*>1NH~Gmo*UU3q$OC4fXGmq#fvuph!O$Uvyg!6^MH+
    zB5yz?Mb=`>QB=C4etu#U)!4%F)G|l!k=yV^fU!)wizx3#k(CAJQZ>D1fq~;LR88}k
    z*LOQP3CpIcWlD^J`S~gOW)A5bCk#7;GJ%+7gq>y5?M)(flF&{O_9wCP%LwPE40amA
    zp7M+`h_D9T>el#Wf(q4WGd2&LbX#k!wLnqukURi9hU&@R4BUgr9L5}Lbi~FBX~`ZS
    z0SFb9Nu}Un#&wbvAHgDK0_k+!M7G-22f1KuIFIx(gjSvApkl}@!2NhPI&A&~US+bL
    z*G>ewT|*~0PiRlj>2wHX60ys$cAC&mAu@$!O2Y0m;lwmnro{HA3Fjw~a5@O*CXoIV
    zhR%>4G=cHqHwQ0odnsCLfnr=X>$aECBzVVrHg?=m2P4dO7)@%V96Tz4V@v>I1%eLr
    zdQBJq7PulJm$0G5h9NebfPNPVJBF}_kxp{SJd$->M6uERY%87rL=UDXA@m3~1;N@E
    zu=X;c?GefpVyCd-G+{V}uncP_3C$E%mSOD_)=bgwPAf$KI3qh=fldGu-6n?;
    zjVO2-;Via;gjTS260s9l+eP|4usx*Tg|K51iD1*@GZ-|Py#q~dS9fXmx-i+(*%0M6
    zg)oD)r?Ga5&`uD_v;swEN`XSAu`*3)mtn&dSi2nCSx#3hRuJh~LOY8MUm>)8O@_~%
    zMEYO%|D59FXey7Ly!!FaA($7uOzGl9W*;2a`n
    zuqGf33|6KPnZ(i+8}_i$L*^%ta01)!8f*_^J6P#JXf%qd1sVp;Q*CgIgz|+zucvv6
    z>WIPu=Ll^`7)}$~X{DV8z%Yf#GC~(gh4s<6xi~Td!2VO+v
    zd8{>bB*4m~uEOad!335`Yl$^=$ASZlD>5{7*OJ4X;+#+nQC
    zxroR-#>`_(h%q6Uc`*HYkyA@OwblZ~5(z-e=yReA%T}d=qRR9Al2yYU&{+*SzP&zz
    zg^2(rCcrkLJ9N^R0!5&kIO>T>ke+h-!Gv?N6GC@_4inhE_9fVG0_pc$Zli}t#~6ar
    zYpBhbyMb>|Rwmo+Vjg=GZas{wTn)2V%D_ilQN$c@nNIgSrqjd91f8&_d3v$*`xX(4
    zG11n?&{tq+9Y$*{P+UL31VwaCqXT8JA(M7UcTxu)kx5+9)p$lS^#ckz9nDeLrd3b8
    zh{#H;7_99mEu)}-NDmuM(iIn3NDmuKflOdKJwiJnA_^Fxoy7KgNPj~66v9c2?IL2b
    z`t0T=2Nct#KoJC(=g(--!k&G|>eUeTJrUGcOlKYwUUAdvqy>W3TDwtzVmx${!4Ond
    zClxBk7L7`~aAhz;a#W7DWna5b%f`
    za)X8%66Ib%AzJk`(Sd%WWAzbU!AgLbE@G9_7o!n_NDpf!kst;XC@|PyVo*veLC@td
    zCb4#sfGMq>ViM`jN+_2Rd)`$}^-S1bhMgC%YeA+_nfhXzn8G}JOvjeqaR29wMILktghAvfwd_nV@OIouCy*uOQM_
    z>PUK6JAv3qEE+vnJBbhhMGs-h^;t|HqBKzjtvoW5gWWL(tSZJ
    zFPi?`QSAH!;Mr(76+mYK=I7hHx3$(NeYrA*!&UHr(~PO^-7VoJHi4_D)#m@NtoXOt{~7vBv!#EuR&cauJ1#JOYE25NqcU
    zxr{aE3FSq^p2PAAp}l~W8H5m_@7{YBUwyA$4^BRZ2}9(zLon9@Mr*CLK(X*<(TbbP
    zsA}yo;M>4|2DTw`8^+v@3K(w6`1LaIFeN<{X3YH`CQuoVW}~P>jJX2L5(FKBPEVr+
    z(WpV}l+sB-6lL^)E@A^hu~^$jY#)(1LOTOirCF?<$Cx<+xk5Mq13Nl0(oT_Ut+f^?
    zt}19;0iH$0>h1@=gf@lkLFAx|I1XXVesz{*-Pw{HUR0?*+t4~)IC)&FK{s!M{(RHV
    zZh<}lbBLM2m`e_QCJ}K-?$BT{SSwgW!x_^@f_bdWxke62ZLPJ|S_>4{rG;*L4xQiq
    z9dtU|W_0k*9S%5l0b7A}rE0N~&Phl?RMNnVftf2XHwV25n4cT>qht+hbWT1|^U;|%aU;A`kijjh0~Aa|qv0h@spz@)m|
    zXjp+HF=8BUI0)eUdF`dxvJI|WZoj40T5GKZiX~)c(W;>bfiD32fW0ol(42q{7#vv@x>A+kcUU(i>tZWm$t+m!#3lvM#W`T#?1|nO4J2lea0I(Zlb^@#rrfeR#&uuHv>Zx}EM-Vv$W1^ofU4nEnglish
    + +## 简体中文 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/cnn.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/cnn.md new file mode 100644 index 000000000..0c401c6b6 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/cnn.md @@ -0,0 +1,583 @@ +## CNN + +We provide some building bricks for CNNs, including layer building, module bundles and weight initialization. + +### Layer building + +We may need to try different layers of the same type when running experiments, +but do not want to modify the code from time to time. +Here we provide some layer building methods to construct layers from a dict, +which can be written in configs or specified via command line arguments. + +#### Usage + +A simplest example is + +```python +cfg = dict(type='Conv3d') +layer = build_conv_layer(cfg, in_channels=3, out_channels=8, kernel_size=3) +``` + +- `build_conv_layer`: Supported types are Conv1d, Conv2d, Conv3d, Conv (alias for Conv2d). +- `build_norm_layer`: Supported types are BN1d, BN2d, BN3d, BN (alias for BN2d), SyncBN, GN, LN, IN1d, IN2d, IN3d, IN (alias for IN2d). +- `build_activation_layer`: Supported types are ReLU, LeakyReLU, PReLU, RReLU, ReLU6, ELU, Sigmoid, Tanh, GELU. +- `build_upsample_layer`: Supported types are nearest, bilinear, deconv, pixel_shuffle. +- `build_padding_layer`: Supported types are zero, reflect, replicate. + +#### Extension + +We also allow extending the building methods with custom layers and operators. + +1. Write and register your own module. + + ```python + from mmcv.cnn import UPSAMPLE_LAYERS + + @UPSAMPLE_LAYERS.register_module() + class MyUpsample: + + def __init__(self, scale_factor): + pass + + def forward(self, x): + pass + ``` + +2. Import `MyUpsample` somewhere (e.g., in `__init__.py`) and then use it. + + ```python + cfg = dict(type='MyUpsample', scale_factor=2) + layer = build_upsample_layer(cfg) + ``` + +### Module bundles + +We also provide common module bundles to facilitate the network construction. +`ConvModule` is a bundle of convolution, normalization and activation layers, +please refer to the [api](api.html#mmcv.cnn.ConvModule) for details. + +```python +# conv + bn + relu +conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN')) +# conv + gn + relu +conv = ConvModule(3, 8, 2, norm_cfg=dict(type='GN', num_groups=2)) +# conv + relu +conv = ConvModule(3, 8, 2) +# conv +conv = ConvModule(3, 8, 2, act_cfg=None) +# conv + leaky relu +conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU')) +# bn + conv + relu +conv = ConvModule( + 3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act')) +``` + +### Weight initialization + +> Implementation details are available at [mmcv/cnn/utils/weight_init.py](../../mmcv/cnn/utils/weight_init.py) + +During training, a proper initialization strategy is beneficial to speed up the +training or obtain a higher performance. In MMCV, we provide some commonly used +methods for initializing modules like `nn.Conv2d`. Of course, we also provide +high-level APIs for initializing models containing one or more +modules. + +#### Initialization functions + +Initialize a `nn.Module` such as `nn.Conv2d`, `nn.Linear` in a functional way. + +We provide the following initialization methods. + +- constant_init + + Initialize module parameters with constant values. + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import constant_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # constant_init(module, val, bias=0) + >>> constant_init(conv1, 1, 0) + >>> conv1.weight + ``` + +- xavier_init + + Initialize module parameters with values according to the method + described in [Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf) + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import xavier_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # xavier_init(module, gain=1, bias=0, distribution='normal') + >>> xavier_init(conv1, distribution='normal') + ``` + +- normal_init + + Initialize module parameters with the values drawn from a normal distribution. + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import normal_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # normal_init(module, mean=0, std=1, bias=0) + >>> normal_init(conv1, std=0.01, bias=0) + ``` + +- uniform_init + + Initialize module parameters with values drawn from a uniform distribution. + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import uniform_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # uniform_init(module, a=0, b=1, bias=0) + >>> uniform_init(conv1, a=0, b=1) + ``` + +- kaiming_init + + Initialize module parameters with the values according to the method + described in [Delving deep into rectifiers: Surpassing human-level + performance on ImageNet classification - He, K. et al. (2015)](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf) + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import kaiming_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal') + >>> kaiming_init(conv1) + ``` + +- caffe2_xavier_init + + The xavier initialization is implemented in caffe2, which corresponds to `kaiming_uniform_` in PyTorch. + + ```python + >>> import torch.nn as nn + >>> from mmcv.cnn import caffe2_xavier_init + >>> conv1 = nn.Conv2d(3, 3, 1) + >>> # caffe2_xavier_init(module, bias=0) + >>> caffe2_xavier_init(conv1) + ``` + +- bias_init_with_prob + + Initialize conv/fc bias value according to a given probability, as proposed in [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf). + + ```python + >>> from mmcv.cnn import bias_init_with_prob + >>> # bias_init_with_prob is proposed in Focal Loss + >>> bias = bias_init_with_prob(0.01) + >>> bias + -4.59511985013459 + ``` + +#### Initializers and configs + +On the basis of the initialization methods, we define the corresponding initialization classes and register them to `INITIALIZERS`, so we can +use the configuration to initialize the model. + +We provide the following initialization classes. + +- ConstantInit +- XavierInit +- NormalInit +- UniformInit +- KaimingInit +- Caffe2XavierInit +- PretrainedInit + +Let us introduce the usage of `initialize` in detail. + +1. Initialize model by `layer` key + + If we only define `layer`, it just initialize the layer in `layer` key. + + NOTE: Value of `layer` key is the class name with attributes weights and bias of Pytorch, so `MultiheadAttention layer` is not supported. + +- Define `layer` key for initializing module with same configuration. + + ```python + import torch.nn as nn + from mmcv.cnn import initialize + + class FooNet(nn.Module): + def __init__(self): + super().__init__() + self.feat = nn.Conv1d(3, 1, 3) + self.reg = nn.Conv2d(3, 3, 3) + self.cls = nn.Linear(1, 2) + + model = FooNet() + init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1) + # initialize whole module with same configuration + initialize(model, init_cfg) + # model.feat.weight + # Parameter containing: + # tensor([[[1., 1., 1.], + # [1., 1., 1.], + # [1., 1., 1.]]], requires_grad=True) + ``` + +- Define `layer` key for initializing layer with different configurations. + + ```python + import torch.nn as nn + from mmcv.cnn.utils import initialize + + class FooNet(nn.Module): + def __init__(self): + super().__init__() + self.feat = nn.Conv1d(3, 1, 3) + self.reg = nn.Conv2d(3, 3, 3) + self.cls = nn.Linear(1,2) + + model = FooNet() + init_cfg = [dict(type='Constant', layer='Conv1d', val=1), + dict(type='Constant', layer='Conv2d', val=2), + dict(type='Constant', layer='Linear', val=3)] + # nn.Conv1d will be initialized with dict(type='Constant', val=1) + # nn.Conv2d will be initialized with dict(type='Constant', val=2) + # nn.Linear will be initialized with dict(type='Constant', val=3) + initialize(model, init_cfg) + # model.reg.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + ``` + +2. Initialize model by `override` key + +- When initializing some specific part with its attribute name, we can use `override` key, and the value in `override` will ignore the value in init_cfg. + + ```python + import torch.nn as nn + from mmcv.cnn import initialize + + class FooNet(nn.Module): + def __init__(self): + super().__init__() + self.feat = nn.Conv1d(3, 1, 3) + self.reg = nn.Conv2d(3, 3, 3) + self.cls = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2)) + + # if we would like to initialize model's weights as 1 and bias as 2 + # but weight in `reg` as 3 and bias 4, we can use override key + model = FooNet() + init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2, + override=dict(type='Constant', name='reg', val=3, bias=4)) + # self.feat and self.cls will be initialized with dict(type='Constant', val=1, bias=2) + # The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4) + initialize(model, init_cfg) + # model.reg.weight + # Parameter containing: + # tensor([[[[3., 3., 3.], + # [3., 3., 3.], + # [3., 3., 3.]], + # ..., + # [[3., 3., 3.], + # [3., 3., 3.], + # [3., 3., 3.]]]], requires_grad=True) + ``` + +- If `layer` is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted. + + ```python + model = FooNet() + init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg')) + # self.feat and self.cls will be initialized by Pytorch + # The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2) + initialize(model, init_cfg) + # model.reg.weight + # Parameter containing: + # tensor([[[[1., 1., 1.], + # [1., 1., 1.], + # [1., 1., 1.]], + # ..., + # [[1., 1., 1.], + # [1., 1., 1.], + # [1., 1., 1.]]]], requires_grad=True) + ``` + +- If we don't define `layer` key or `override` key, it will not initialize anything. + +- Invalid usage + + ```python + # It is invalid that override don't have name key + init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], + val=1, bias=2, + override=dict(type='Constant', val=3, bias=4)) + + # It is also invalid that override has name and other args except type + init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], + val=1, bias=2, + override=dict(name='reg', val=3, bias=4)) + ``` + +3. Initialize model with the pretrained model + + ```python + import torch.nn as nn + import torchvision.models as models + from mmcv.cnn import initialize + + # initialize model with pretrained model + model = models.resnet50() + # model.conv1.weight + # Parameter containing: + # tensor([[[[-6.7435e-03, -2.3531e-02, -9.0143e-03, ..., -2.1245e-03, + # -1.8077e-03, 3.0338e-03], + # [-1.2603e-02, -2.7831e-02, 2.3187e-02, ..., -1.5793e-02, + # 1.1655e-02, 4.5889e-03], + # [-3.7916e-02, 1.2014e-02, 1.3815e-02, ..., -4.2651e-03, + # 1.7314e-02, -9.9998e-03], + # ..., + + init_cfg = dict(type='Pretrained', + checkpoint='torchvision://resnet50') + initialize(model, init_cfg) + # model.conv1.weight + # Parameter containing: + # tensor([[[[ 1.3335e-02, 1.4664e-02, -1.5351e-02, ..., -4.0896e-02, + # -4.3034e-02, -7.0755e-02], + # [ 4.1205e-03, 5.8477e-03, 1.4948e-02, ..., 2.2060e-03, + # -2.0912e-02, -3.8517e-02], + # [ 2.2331e-02, 2.3595e-02, 1.6120e-02, ..., 1.0281e-01, + # 6.2641e-02, 5.1977e-02], + # ..., + + # initialize weights of a sub-module with the specific part of a pretrained model by using 'prefix' + model = models.resnet50() + url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\ + 'retinanet_r50_fpn_1x_coco/'\ + 'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth' + init_cfg = dict(type='Pretrained', + checkpoint=url, prefix='backbone.') + initialize(model, init_cfg) + ``` + +4. Initialize model inherited from BaseModule, Sequential, ModuleList, ModuleDict + + `BaseModule` is inherited from `torch.nn.Module`, and the only different between them is that `BaseModule` implements `init_weights()`. + + `Sequential` is inherited from `BaseModule` and `torch.nn.Sequential`. + + `ModuleList` is inherited from `BaseModule` and `torch.nn.ModuleList`. + + `ModuleDict` is inherited from `BaseModule` and `torch.nn.ModuleDict`. + + ```python + import torch.nn as nn + from mmcv.runner import BaseModule, Sequential, ModuleList, ModuleDict + + class FooConv1d(BaseModule): + + def __init__(self, init_cfg=None): + super().__init__(init_cfg) + self.conv1d = nn.Conv1d(4, 1, 4) + + def forward(self, x): + return self.conv1d(x) + + class FooConv2d(BaseModule): + + def __init__(self, init_cfg=None): + super().__init__(init_cfg) + self.conv2d = nn.Conv2d(3, 1, 3) + + def forward(self, x): + return self.conv2d(x) + + # BaseModule + init_cfg = dict(type='Constant', layer='Conv1d', val=0., bias=1.) + model = FooConv1d(init_cfg) + model.init_weights() + # model.conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + + # Sequential + init_cfg1 = dict(type='Constant', layer='Conv1d', val=0., bias=1.) + init_cfg2 = dict(type='Constant', layer='Conv2d', val=2., bias=3.) + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + seq_model = Sequential(model1, model2) + seq_model.init_weights() + # seq_model[0].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # seq_model[1].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + + # inner init_cfg has higher priority + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.) + seq_model = Sequential(model1, model2, init_cfg=init_cfg) + seq_model.init_weights() + # seq_model[0].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # seq_model[1].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + + # ModuleList + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + modellist = ModuleList([model1, model2]) + modellist.init_weights() + # modellist[0].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # modellist[1].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + + # inner init_cfg has higher priority + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.) + modellist = ModuleList([model1, model2], init_cfg=init_cfg) + modellist.init_weights() + # modellist[0].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # modellist[1].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + + # ModuleDict + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + modeldict = ModuleDict(dict(model1=model1, model2=model2)) + modeldict.init_weights() + # modeldict['model1'].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # modeldict['model2'].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + + # inner init_cfg has higher priority + model1 = FooConv1d(init_cfg1) + model2 = FooConv2d(init_cfg2) + init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.) + modeldict = ModuleDict(dict(model1=model1, model2=model2), init_cfg=init_cfg) + modeldict.init_weights() + # modeldict['model1'].conv1d.weight + # Parameter containing: + # tensor([[[0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.], + # [0., 0., 0., 0.]]], requires_grad=True) + # modeldict['model2'].conv2d.weight + # Parameter containing: + # tensor([[[[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]], + # ..., + # [[2., 2., 2.], + # [2., 2., 2.], + # [2., 2., 2.]]]], requires_grad=True) + ``` + +### Model Zoo + +Besides torchvision pre-trained models, we also provide pre-trained models of following CNN: + +- VGG Caffe +- ResNet Caffe +- ResNeXt +- ResNet with Group Normalization +- ResNet with Group Normalization and Weight Standardization +- HRNetV2 +- Res2Net +- RegNet + +#### Model URLs in JSON + +The model zoo links in MMCV are managed by JSON files. +The json file consists of key-value pair of model name and its url or path. +An example json file could be like: + +```json +{ + "model_a": "https://example.com/models/model_a_9e5bac.pth", + "model_b": "pretrain/model_b_ab3ef2c.pth" +} +``` + +The default links of the pre-trained models hosted on OpenMMLab AWS could be found [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json). + +You may override default links by putting `open-mmlab.json` under `MMCV_HOME`. If `MMCV_HOME` is not find in the environment, `~/.cache/mmcv` will be used by default. You may `export MMCV_HOME=/your/path` to use your own path. + +The external json files will be merged into default one. If the same key presents in both external json and default json, the external one will be used. + +#### Load Checkpoint + +The following types are supported for `filename` argument of `mmcv.load_checkpoint()`. + +- filepath: The filepath of the checkpoint. +- `http://xxx` and `https://xxx`: The link to download the checkpoint. The `SHA256` postfix should be contained in the filename. +- `torchvision://xxx`: The model links in `torchvision.models`.Please refer to [torchvision](https://pytorch.org/docs/stable/torchvision/models.html) for details. +- `open-mmlab://xxx`: The model links or filepath provided in default and additional json files. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/config.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/config.md new file mode 100644 index 000000000..9626dbe2c --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/config.md @@ -0,0 +1,200 @@ +## Config + +`Config` class is used for manipulating config and config files. It supports +loading configs from multiple file formats including **python**, **json** and **yaml**. +It provides dict-like apis to get and set values. + +Here is an example of the config file `test.py`. + +```python +a = 1 +b = dict(b1=[0, 1, 2], b2=None) +c = (1, 2) +d = 'string' +``` + +To load and use configs + +```python +>>> cfg = Config.fromfile('test.py') +>>> print(cfg) +>>> dict(a=1, +... b=dict(b1=[0, 1, 2], b2=None), +... c=(1, 2), +... d='string') +``` + +For all format configs, some predefined variables are supported. It will convert the variable in `{{ var }}` with its real value. + +Currently, it supports four predefined variables: + +`{{ fileDirname }}` - the current opened file's dirname, e.g. /home/your-username/your-project/folder + +`{{ fileBasename }}` - the current opened file's basename, e.g. file.ext + +`{{ fileBasenameNoExtension }}` - the current opened file's basename with no file extension, e.g. file + +`{{ fileExtname }}` - the current opened file's extension, e.g. .ext + +These variable names are referred from [VS Code](https://code.visualstudio.com/docs/editor/variables-reference). + +Here is one examples of config with predefined variables. + +`config_a.py` + +```python +a = 1 +b = './work_dir/{{ fileBasenameNoExtension }}' +c = '{{ fileExtname }}' +``` + +```python +>>> cfg = Config.fromfile('./config_a.py') +>>> print(cfg) +>>> dict(a=1, +... b='./work_dir/config_a', +... c='.py') +``` + +For all format configs, inheritance is supported. To reuse fields in other config files, +specify `_base_='./config_a.py'` or a list of configs `_base_=['./config_a.py', './config_b.py']`. +Here are 4 examples of config inheritance. + +`config_a.py` + +```python +a = 1 +b = dict(b1=[0, 1, 2], b2=None) +``` + +### Inherit from base config without overlapped keys + +`config_b.py` + +```python +_base_ = './config_a.py' +c = (1, 2) +d = 'string' +``` + +```python +>>> cfg = Config.fromfile('./config_b.py') +>>> print(cfg) +>>> dict(a=1, +... b=dict(b1=[0, 1, 2], b2=None), +... c=(1, 2), +... d='string') +``` + +New fields in `config_b.py` are combined with old fields in `config_a.py` + +### Inherit from base config with overlapped keys + +`config_c.py` + +```python +_base_ = './config_a.py' +b = dict(b2=1) +c = (1, 2) +``` + +```python +>>> cfg = Config.fromfile('./config_c.py') +>>> print(cfg) +>>> dict(a=1, +... b=dict(b1=[0, 1, 2], b2=1), +... c=(1, 2)) +``` + +`b.b2=None` in `config_a` is replaced with `b.b2=1` in `config_c.py`. + +### Inherit from base config with ignored fields + +`config_d.py` + +```python +_base_ = './config_a.py' +b = dict(_delete_=True, b2=None, b3=0.1) +c = (1, 2) +``` + +```python +>>> cfg = Config.fromfile('./config_d.py') +>>> print(cfg) +>>> dict(a=1, +... b=dict(b2=None, b3=0.1), +... c=(1, 2)) +``` + +You may also set `_delete_=True` to ignore some fields in base configs. All old keys `b1, b2, b3` in `b` are replaced with new keys `b2, b3`. + +### Inherit from multiple base configs (the base configs should not contain the same keys) + +`config_e.py` + +```python +c = (1, 2) +d = 'string' +``` + +`config_f.py` + +```python +_base_ = ['./config_a.py', './config_e.py'] +``` + +```python +>>> cfg = Config.fromfile('./config_f.py') +>>> print(cfg) +>>> dict(a=1, +... b=dict(b1=[0, 1, 2], b2=None), +... c=(1, 2), +... d='string') +``` + +### Reference variables from base + +You can reference variables defined in base using the following grammar. + +`base.py` + +```python +item1 = 'a' +item2 = dict(item3 = 'b') +``` + +`config_g.py` + +```python +_base_ = ['./base.py'] +item = dict(a = {{ _base_.item1 }}, b = {{ _base_.item2.item3 }}) +``` + +```python +>>> cfg = Config.fromfile('./config_g.py') +>>> print(cfg.pretty_text) +item1 = 'a' +item2 = dict(item3='b') +item = dict(a='a', b='b') +``` + +### Add deprecation information in configs + +Deprecation information can be added in a config file, which will trigger a `UserWarning` when this config file is loaded. + +`deprecated_cfg.py` + +```python +_base_ = 'expected_cfg.py' + +_deprecation_ = dict( + expected = 'expected_cfg.py', # optional to show expected config path in the warning information + reference = 'url to related PR' # optional to show reference link in the warning information +) +``` + +```python +>>> cfg = Config.fromfile('./deprecated_cfg.py') + +UserWarning: The config file deprecated_cfg.py will be deprecated in the future. Please use expected_cfg.py instead. More information can be found at https://github.com/open-mmlab/mmcv/pull/1275 +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/data_process.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/data_process.md new file mode 100644 index 000000000..0255c43d2 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/data_process.md @@ -0,0 +1,286 @@ +## Data Process + +### Image + +This module provides some image processing methods, which requires `opencv` to be installed. + +#### Read/Write/Show + +To read or write images files, use `imread` or `imwrite`. + +```python +import mmcv + +img = mmcv.imread('test.jpg') +img = mmcv.imread('test.jpg', flag='grayscale') +img_ = mmcv.imread(img) # nothing will happen, img_ = img +mmcv.imwrite(img, 'out.jpg') +``` + +To read images from bytes + +```python +with open('test.jpg', 'rb') as f: + data = f.read() +img = mmcv.imfrombytes(data) +``` + +To show an image file or a loaded image + +```python +mmcv.imshow('tests/data/color.jpg') +# this is equivalent to + +for i in range(10): + img = np.random.randint(256, size=(100, 100, 3), dtype=np.uint8) + mmcv.imshow(img, win_name='test image', wait_time=200) +``` + +#### Color space conversion + +Supported conversion methods: + +- bgr2gray +- gray2bgr +- bgr2rgb +- rgb2bgr +- bgr2hsv +- hsv2bgr + +```python +img = mmcv.imread('tests/data/color.jpg') +img1 = mmcv.bgr2rgb(img) +img2 = mmcv.rgb2gray(img1) +img3 = mmcv.bgr2hsv(img) +``` + +#### Resize + +There are three resize methods. All `imresize_*` methods have an argument `return_scale`, +if this argument is `False`, then the return value is merely the resized image, otherwise +is a tuple `(resized_img, scale)`. + +```python +# resize to a given size +mmcv.imresize(img, (1000, 600), return_scale=True) + +# resize to the same size of another image +mmcv.imresize_like(img, dst_img, return_scale=False) + +# resize by a ratio +mmcv.imrescale(img, 0.5) + +# resize so that the max edge no longer than 1000, short edge no longer than 800 +# without changing the aspect ratio +mmcv.imrescale(img, (1000, 800)) +``` + +#### Rotate + +To rotate an image by some angle, use `imrotate`. The center can be specified, +which is the center of original image by default. There are two modes of rotating, +one is to keep the image size unchanged so that some parts of the image will be +cropped after rotating, the other is to extend the image size to fit the rotated +image. + +```python +img = mmcv.imread('tests/data/color.jpg') + +# rotate the image clockwise by 30 degrees. +img_ = mmcv.imrotate(img, 30) + +# rotate the image counterclockwise by 90 degrees. +img_ = mmcv.imrotate(img, -90) + +# rotate the image clockwise by 30 degrees, and rescale it by 1.5x at the same time. +img_ = mmcv.imrotate(img, 30, scale=1.5) + +# rotate the image clockwise by 30 degrees, with (100, 100) as the center. +img_ = mmcv.imrotate(img, 30, center=(100, 100)) + +# rotate the image clockwise by 30 degrees, and extend the image size. +img_ = mmcv.imrotate(img, 30, auto_bound=True) +``` + +#### Flip + +To flip an image, use `imflip`. + +```python +img = mmcv.imread('tests/data/color.jpg') + +# flip the image horizontally +mmcv.imflip(img) + +# flip the image vertically +mmcv.imflip(img, direction='vertical') +``` + +#### Crop + +`imcrop` can crop the image with one or some regions, represented as (x1, y1, x2, y2). + +```python +import mmcv +import numpy as np + +img = mmcv.imread('tests/data/color.jpg') + +# crop the region (10, 10, 100, 120) +bboxes = np.array([10, 10, 100, 120]) +patch = mmcv.imcrop(img, bboxes) + +# crop two regions (10, 10, 100, 120) and (0, 0, 50, 50) +bboxes = np.array([[10, 10, 100, 120], [0, 0, 50, 50]]) +patches = mmcv.imcrop(img, bboxes) + +# crop two regions, and rescale the patches by 1.2x +patches = mmcv.imcrop(img, bboxes, scale=1.2) +``` + +#### Padding + +There are two methods `impad` and `impad_to_multiple` to pad an image to the +specific size with given values. + +```python +img = mmcv.imread('tests/data/color.jpg') + +# pad the image to (1000, 1200) with all zeros +img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=0) + +# pad the image to (1000, 1200) with different values for three channels. +img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=(100, 50, 200)) + +# pad the image on left, right, top, bottom borders with all zeros +img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=0) + +# pad the image on left, right, top, bottom borders with different values +# for three channels. +img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=(100, 50, 200)) + +# pad an image so that each edge is a multiple of some value. +img_ = mmcv.impad_to_multiple(img, 32) +``` + +### Video + +This module provides the following functionalities. + +- A `VideoReader` class with friendly apis to read and convert videos. +- Some methods for editing (cut, concat, resize) videos. +- Optical flow read/write/warp. + +#### VideoReader + +The `VideoReader` class provides sequence like apis to access video frames. +It will internally cache the frames which have been visited. + +```python +video = mmcv.VideoReader('test.mp4') + +# obtain basic information +print(len(video)) +print(video.width, video.height, video.resolution, video.fps) + +# iterate over all frames +for frame in video: + print(frame.shape) + +# read the next frame +img = video.read() + +# read a frame by index +img = video[100] + +# read some frames +img = video[5:10] +``` + +To convert a video to images or generate a video from a image directory. + +```python +# split a video into frames and save to a folder +video = mmcv.VideoReader('test.mp4') +video.cvt2frames('out_dir') + +# generate video from frames +mmcv.frames2video('out_dir', 'test.avi') +``` + +#### Editing utils + +There are also some methods for editing videos, which wraps the commands of ffmpeg. + +```python +# cut a video clip +mmcv.cut_video('test.mp4', 'clip1.mp4', start=3, end=10, vcodec='h264') + +# join a list of video clips +mmcv.concat_video(['clip1.mp4', 'clip2.mp4'], 'joined.mp4', log_level='quiet') + +# resize a video with the specified size +mmcv.resize_video('test.mp4', 'resized1.mp4', (360, 240)) + +# resize a video with a scaling ratio of 2 +mmcv.resize_video('test.mp4', 'resized2.mp4', ratio=2) +``` + +#### Optical flow + +`mmcv` provides the following methods to operate on optical flows. + +- IO +- Visualization +- Flow warping + +We provide two options to dump optical flow files: uncompressed and compressed. +The uncompressed way just dumps the floating numbers to a binary file. It is +lossless but the dumped file has a larger size. +The compressed way quantizes the optical flow to 0-255 and dumps it as a +jpeg image. The flow of x-dim and y-dim will be concatenated into a single image. + +1. IO + +```python +flow = np.random.rand(800, 600, 2).astype(np.float32) +# dump the flow to a flo file (~3.7M) +mmcv.flowwrite(flow, 'uncompressed.flo') +# dump the flow to a jpeg file (~230K) +# the shape of the dumped image is (800, 1200) +mmcv.flowwrite(flow, 'compressed.jpg', quantize=True, concat_axis=1) + +# read the flow file, the shape of loaded flow is (800, 600, 2) for both ways +flow = mmcv.flowread('uncompressed.flo') +flow = mmcv.flowread('compressed.jpg', quantize=True, concat_axis=1) +``` + +2. Visualization + +It is possible to visualize optical flows with `mmcv.flowshow()`. + +```python +mmcv.flowshow(flow) +``` + +![progress](../_static/flow_visualization.png) + +3. Flow warpping + +```python +img1 = mmcv.imread('img1.jpg') +flow = mmcv.flowread('flow.flo') +warpped_img2 = mmcv.flow_warp(img1, flow) +``` + +img1 (left) and img2 (right) + +![raw images](../_static/flow_raw_images.png) + +optical flow (img2 -> img1) + +![optical flow](../_static/flow_img2toimg1.png) + +warpped image and difference with ground truth + +![warpped image](../_static/flow_warp_diff.png) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/io.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/io.md new file mode 100644 index 000000000..64fbc8b8e --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/io.md @@ -0,0 +1,247 @@ +## File IO + +This module provides two universal API to load and dump files of different formats. + +```{note} +Since v1.3.16, the IO modules support loading (dumping) data from (to) different backends, respectively. More details are in PR [#1330](https://github.com/open-mmlab/mmcv/pull/1330). +``` + +### Load and dump data + +`mmcv` provides a universal api for loading and dumping data, currently +supported formats are json, yaml and pickle. + +#### Load from disk or dump to disk + +```python +import mmcv + +# load data from a file +data = mmcv.load('test.json') +data = mmcv.load('test.yaml') +data = mmcv.load('test.pkl') +# load data from a file-like object +with open('test.json', 'r') as f: + data = mmcv.load(f, file_format='json') + +# dump data to a string +json_str = mmcv.dump(data, file_format='json') + +# dump data to a file with a filename (infer format from file extension) +mmcv.dump(data, 'out.pkl') + +# dump data to a file with a file-like object +with open('test.yaml', 'w') as f: + data = mmcv.dump(data, f, file_format='yaml') +``` + +#### Load from other backends or dump to other backends + +```python +import mmcv + +# load data from a file +data = mmcv.load('s3://bucket-name/test.json') +data = mmcv.load('s3://bucket-name/test.yaml') +data = mmcv.load('s3://bucket-name/test.pkl') + +# dump data to a file with a filename (infer format from file extension) +mmcv.dump(data, 's3://bucket-name/out.pkl') +``` + +It is also very convenient to extend the api to support more file formats. +All you need to do is to write a file handler inherited from `BaseFileHandler` +and register it with one or several file formats. + +You need to implement at least 3 methods. + +```python +import mmcv + +# To register multiple file formats, a list can be used as the argument. +# @mmcv.register_handler(['txt', 'log']) +@mmcv.register_handler('txt') +class TxtHandler1(mmcv.BaseFileHandler): + + def load_from_fileobj(self, file): + return file.read() + + def dump_to_fileobj(self, obj, file): + file.write(str(obj)) + + def dump_to_str(self, obj, **kwargs): + return str(obj) +``` + +Here is an example of `PickleHandler`. + +```python +import pickle + +class PickleHandler(mmcv.BaseFileHandler): + + def load_from_fileobj(self, file, **kwargs): + return pickle.load(file, **kwargs) + + def load_from_path(self, filepath, **kwargs): + return super(PickleHandler, self).load_from_path( + filepath, mode='rb', **kwargs) + + def dump_to_str(self, obj, **kwargs): + kwargs.setdefault('protocol', 2) + return pickle.dumps(obj, **kwargs) + + def dump_to_fileobj(self, obj, file, **kwargs): + kwargs.setdefault('protocol', 2) + pickle.dump(obj, file, **kwargs) + + def dump_to_path(self, obj, filepath, **kwargs): + super(PickleHandler, self).dump_to_path( + obj, filepath, mode='wb', **kwargs) +``` + +### Load a text file as a list or dict + +For example `a.txt` is a text file with 5 lines. + +``` +a +b +c +d +e +``` + +#### Load from disk + +Use `list_from_file` to load the list from a.txt. + +```python +>>> mmcv.list_from_file('a.txt') +['a', 'b', 'c', 'd', 'e'] +>>> mmcv.list_from_file('a.txt', offset=2) +['c', 'd', 'e'] +>>> mmcv.list_from_file('a.txt', max_num=2) +['a', 'b'] +>>> mmcv.list_from_file('a.txt', prefix='/mnt/') +['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e'] +``` + +For example `b.txt` is a text file with 3 lines. + +``` +1 cat +2 dog cow +3 panda +``` + +Then use `dict_from_file` to load the dict from `b.txt`. + +```python +>>> mmcv.dict_from_file('b.txt') +{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'} +>>> mmcv.dict_from_file('b.txt', key_type=int) +{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'} +``` + +#### Load from other backends + +Use `list_from_file` to load the list from `s3://bucket-name/a.txt`. + +```python +>>> mmcv.list_from_file('s3://bucket-name/a.txt') +['a', 'b', 'c', 'd', 'e'] +>>> mmcv.list_from_file('s3://bucket-name/a.txt', offset=2) +['c', 'd', 'e'] +>>> mmcv.list_from_file('s3://bucket-name/a.txt', max_num=2) +['a', 'b'] +>>> mmcv.list_from_file('s3://bucket-name/a.txt', prefix='/mnt/') +['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e'] +``` + +Use `dict_from_file` to load the dict from `s3://bucket-name/b.txt`. + +```python +>>> mmcv.dict_from_file('s3://bucket-name/b.txt') +{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'} +>>> mmcv.dict_from_file('s3://bucket-name/b.txt', key_type=int) +{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'} +``` + +### Load and dump checkpoints + +#### Load checkpoints from disk or save to disk + +We can read the checkpoints from disk or save to disk in the following way. + +```python +import torch + +filepath1 = '/path/of/your/checkpoint1.pth' +filepath2 = '/path/of/your/checkpoint2.pth' +# read from filepath1 +checkpoint = torch.load(filepath1) +# save to filepath2 +torch.save(checkpoint, filepath2) +``` + +MMCV provides many backends. `HardDiskBackend` is one of them and we can use it to read or save checkpoints. + +```python +import io +from mmcv.fileio.file_client import HardDiskBackend + +disk_backend = HardDiskBackend() +with io.BytesIO(disk_backend.get(filepath1)) as buffer: + checkpoint = torch.load(buffer) +with io.BytesIO() as buffer: + torch.save(checkpoint, buffer) + disk_backend.put(buffer.getvalue(), filepath2) +``` + +If we want to implement an interface which automatically select the corresponding +backend based on the file path, we can use the `FileClient`. +For example, we want to implement two methods for reading checkpoints as well as saving checkpoints, +which need to support different types of file paths, either disk paths, network paths or other paths. + +```python +from mmcv.fileio.file_client import FileClient + +def load_checkpoint(path): + file_client = FileClient.infer(uri=path) + with io.BytesIO(file_client.get(path)) as buffer: + checkpoint = torch.load(buffer) + return checkpoint + +def save_checkpoint(checkpoint, path): + with io.BytesIO() as buffer: + torch.save(checkpoint, buffer) + file_client.put(buffer.getvalue(), path) + +file_client = FileClient.infer_client(uri=filepath1) +checkpoint = load_checkpoint(filepath1) +save_checkpoint(checkpoint, filepath2) +``` + +#### Load checkpoints from the Internet + +```{note} +Currently, it only supports reading checkpoints from the Internet, and does not support saving checkpoints to the Internet. +``` + +```python +import io +import torch +from mmcv.fileio.file_client import HTTPBackend, FileClient + +filepath = 'http://path/of/your/checkpoint.pth' +checkpoint = torch.utils.model_zoo.load_url(filepath) + +http_backend = HTTPBackend() +with io.BytesIO(http_backend.get(filepath)) as buffer: + checkpoint = torch.load(buffer) + +file_client = FileClient.infer_client(uri=filepath) +with io.BytesIO(file_client.get(filepath)) as buffer: + checkpoint = torch.load(buffer) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/ops.md new file mode 100644 index 000000000..262711d21 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/ops.md @@ -0,0 +1,62 @@ +## ops + +We implement common ops used in detection, segmentation, etc. + +| Device | CPU | CUDA | MLU | MPS | Ascend | +| ---------------------------- | --- | ---- | --- | --- | ------ | +| ActiveRotatedFilter | √ | √ | | | | +| AssignScoreWithK | | √ | | | | +| BallQuery | | √ | | | | +| BBoxOverlaps | | √ | √ | √ | | +| BorderAlign | | √ | | | | +| BoxIouRotated | √ | √ | | | | +| BoxIouQuadri | √ | √ | | | | +| CARAFE | | √ | √ | | | +| ChamferDistance | | √ | | | | +| CrissCrossAttention | | √ | | | | +| ContourExpand | √ | | | | | +| ConvexIoU | | √ | | | | +| CornerPool | | √ | | | | +| Correlation | | √ | | | | +| Deformable Convolution v1/v2 | √ | √ | | | | +| Deformable RoIPool | | √ | √ | | √ | +| DiffIoURotated | | √ | | | | +| DynamicScatter | | √ | | | | +| FurthestPointSample | | √ | | | | +| FurthestPointSampleWithDist | | √ | | | | +| FusedBiasLeakyrelu | | √ | | | √ | +| GatherPoints | | √ | | | | +| GroupPoints | | √ | | | | +| Iou3d | | √ | √ | | | +| KNN | | √ | | | | +| MaskedConv | | √ | √ | | √ | +| MergeCells | | √ | | | | +| MinAreaPolygon | | √ | | | | +| ModulatedDeformConv2d | √ | √ | √ | | √ | +| MultiScaleDeformableAttn | | √ | √ | | | +| NMS | √ | √ | √ | | √ | +| NMSRotated | √ | √ | | | | +| NMSQuadri | √ | √ | | | | +| PixelGroup | √ | | | | | +| PointsInBoxes | √ | √ | | | | +| PointsInPolygons | | √ | | | | +| PSAMask | √ | √ | √ | | | +| RotatedFeatureAlign | √ | √ | | | | +| RoIPointPool3d | | √ | √ | | | +| RoIPool | | √ | √ | | | +| RoIAlignRotated | √ | √ | √ | | | +| RiRoIAlignRotated | | √ | | | | +| RoIAlign | √ | √ | √ | | | +| RoIAwarePool3d | | √ | √ | | | +| SAConv2d | | √ | | | | +| SigmoidFocalLoss | | √ | √ | | √ | +| SoftmaxFocalLoss | | √ | | | √ | +| SoftNMS | | √ | | | | +| Sparse Convolution | | √ | | | | +| Synchronized BatchNorm | | √ | | | | +| ThreeInterpolate | | √ | | | | +| ThreeNN | | √ | √ | | | +| TINShift | | √ | √ | | | +| UpFirDn2d | | √ | | | | +| Voxelization | √ | √ | | | | +| PrRoIPool | | √ | | | | diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/registry.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/registry.md new file mode 100644 index 000000000..824e0295a --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/registry.md @@ -0,0 +1,179 @@ +## Registry + +MMCV implements [registry](https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/registry.py) to manage different modules that share similar functionalities, e.g., backbones, head, and necks, in detectors. +Most projects in OpenMMLab use registry to manage modules of datasets and models, such as [MMDetection](https://github.com/open-mmlab/mmdetection), [MMDetection3D](https://github.com/open-mmlab/mmdetection3d), [MMClassification](https://github.com/open-mmlab/mmclassification), [MMEditing](https://github.com/open-mmlab/mmediting), etc. + +```{note} +In v1.5.1 and later, the Registry supports registering functions and calling them. +``` + +### What is registry + +In MMCV, registry can be regarded as a mapping that maps a class or function to a string. +These classes or functions contained by a single registry usually have similar APIs but implement different algorithms or support different datasets. +With the registry, users can find the class or function through its corresponding string, and instantiate the corresponding module or call the function to obtain the result according to needs. +One typical example is the config systems in most OpenMMLab projects, which use the registry to create hooks, runners, models, and datasets, through configs. +The API reference could be found [here](https://mmcv.readthedocs.io/en/latest/api.html?highlight=registry#mmcv.utils.Registry). + +To manage your modules in the codebase by `Registry`, there are three steps as below. + +1. Create a build method (optional, in most cases you can just use the default one). +2. Create a registry. +3. Use this registry to manage the modules. + +`build_func` argument of `Registry` is to customize how to instantiate the class instance or how to call the function to obtain the result, the default one is `build_from_cfg` implemented [here](https://mmcv.readthedocs.io/en/latest/api.html?highlight=registry#mmcv.utils.build_from_cfg). + +### A Simple Example + +Here we show a simple example of using registry to manage modules in a package. +You can find more practical examples in OpenMMLab projects. + +Assuming we want to implement a series of Dataset Converter for converting different formats of data to the expected data format. +We create a directory as a package named `converters`. +In the package, we first create a file to implement builders, named `converters/builder.py`, as below + +```python +from mmcv.utils import Registry +# create a registry for converters +CONVERTERS = Registry('converters') +``` + +Then we can implement different converters that is class or function in the package. For example, implement `Converter1` in `converters/converter1.py`, and `converter2` in `converters/converter2.py`. + +```python + +from .builder import CONVERTERS + +# use the registry to manage the module +@CONVERTERS.register_module() +class Converter1(object): + def __init__(self, a, b): + self.a = a + self.b = b +``` + +```python +# converter2.py +from .builder import CONVERTERS +from .converter1 import Converter1 + +# 使用注册器管理模块 +@CONVERTERS.register_module() +def converter2(a, b) + return Converter1(a, b) +``` + +The key step to use registry for managing the modules is to register the implemented module into the registry `CONVERTERS` through +`@CONVERTERS.register_module()` when you are creating the module. By this way, a mapping between a string and the class (function) is built and maintained by `CONVERTERS` as below + +```python +'Converter1' -> +'converter2' -> +``` + +```{note} +The registry mechanism will be triggered only when the file where the module is located is imported. +So you need to import that file somewhere. More details can be found at https://github.com/open-mmlab/mmdetection/issues/5974. +``` + +If the module is successfully registered, you can use this converter through configs as + +```python +converter1_cfg = dict(type='Converter1', a=a_value, b=b_value) +converter2_cfg = dict(type='converter2', a=a_value, b=b_value) +converter1 = CONVERTERS.build(converter1_cfg) +# returns the calling result +result = CONVERTERS.build(converter2_cfg) +``` + +### Customize Build Function + +Suppose we would like to customize how `converters` are built, we could implement a customized `build_func` and pass it into the registry. + +```python +from mmcv.utils import Registry + +# create a build function +def build_converter(cfg, registry, *args, **kwargs): + cfg_ = cfg.copy() + converter_type = cfg_.pop('type') + if converter_type not in registry: + raise KeyError(f'Unrecognized converter type {converter_type}') + else: + converter_cls = registry.get(converter_type) + + converter = converter_cls(*args, **kwargs, **cfg_) + return converter + +# create a registry for converters and pass ``build_converter`` function +CONVERTERS = Registry('converter', build_func=build_converter) +``` + +```{note} +In this example, we demonstrate how to use the `build_func` argument to customize the way to build a class instance. +The functionality is similar to the default `build_from_cfg`. In most cases, default one would be sufficient. +`build_model_from_cfg` is also implemented to build PyTorch module in `nn.Sequential`, you may directly use them instead of implementing by yourself. +``` + +### Hierarchy Registry + +You could also build modules from more than one OpenMMLab frameworks, e.g. you could use all backbones in [MMClassification](https://github.com/open-mmlab/mmclassification) for object detectors in [MMDetection](https://github.com/open-mmlab/mmdetection), you may also combine an object detection model in [MMDetection](https://github.com/open-mmlab/mmdetection) and semantic segmentation model in [MMSegmentation](https://github.com/open-mmlab/mmsegmentation). + +All `MODELS` registries of downstream codebases are children registries of MMCV's `MODELS` registry. +Basically, there are two ways to build a module from child or sibling registries. + +1. Build from children registries. + + For example: + + In MMDetection we define: + + ```python + from mmcv.utils import Registry + from mmcv.cnn import MODELS as MMCV_MODELS + MODELS = Registry('model', parent=MMCV_MODELS) + + @MODELS.register_module() + class NetA(nn.Module): + def forward(self, x): + return x + ``` + + In MMClassification we define: + + ```python + from mmcv.utils import Registry + from mmcv.cnn import MODELS as MMCV_MODELS + MODELS = Registry('model', parent=MMCV_MODELS) + + @MODELS.register_module() + class NetB(nn.Module): + def forward(self, x): + return x + 1 + ``` + + We could build two net in either MMDetection or MMClassification by: + + ```python + from mmdet.models import MODELS + net_a = MODELS.build(cfg=dict(type='NetA')) + net_b = MODELS.build(cfg=dict(type='mmcls.NetB')) + ``` + + or + + ```python + from mmcls.models import MODELS + net_a = MODELS.build(cfg=dict(type='mmdet.NetA')) + net_b = MODELS.build(cfg=dict(type='NetB')) + ``` + +2. Build from parent registry. + + The shared `MODELS` registry in MMCV is the parent registry for all downstream codebases (root registry): + + ```python + from mmcv.cnn import MODELS as MMCV_MODELS + net_a = MMCV_MODELS.build(cfg=dict(type='mmdet.NetA')) + net_b = MMCV_MODELS.build(cfg=dict(type='mmcls.NetB')) + ``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/runner.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/runner.md new file mode 100644 index 000000000..eeeb859ee --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/runner.md @@ -0,0 +1,163 @@ +## Runner + +The runner class is designed to manage the training. It eases the training process with less code demanded from users while staying flexible and configurable. The main features are as listed: + +- Support `EpochBasedRunner` and `IterBasedRunner` for different scenarios. Implementing customized runners is also allowed to meet customized needs. +- Support customized workflow to allow switching between different modes while training. Currently, supported modes are train and val. +- Enable extensibility through various hooks, including hooks defined in MMCV and customized ones. + +### EpochBasedRunner + +As its name indicates, workflow in `EpochBasedRunner` should be set based on epochs. For example, \[('train', 2), ('val', 1)\] means running 2 epochs for training and 1 epoch for validation, iteratively. And each epoch may contain multiple iterations. Currently, MMDetection uses `EpochBasedRunner` by default. + +Let's take a look at its core logic: + +```python +# the condition to stop training +while curr_epoch < max_epochs: + # traverse the workflow. + # e.g. workflow = [('train', 2), ('val', 1)] + for i, flow in enumerate(workflow): + # mode(e.g. train) determines which function to run + mode, epochs = flow + # epoch_runner will be either self.train() or self.val() + epoch_runner = getattr(self, mode) + # execute the corresponding function + for _ in range(epochs): + epoch_runner(data_loaders[i], **kwargs) +``` + +Currently, we support 2 modes: train and val. Let's take a train function for example and have a look at its core logic: + +```python +# Currently, epoch_runner could be either train or val +def train(self, data_loader, **kwargs): + # traverse the dataset and get batch data for 1 epoch + for i, data_batch in enumerate(data_loader): + # it will execute all before_train_iter function in the hooks registered. You may want to watch out for the order. + self.call_hook('before_train_iter') + # set train_mode as False in val function + self.run_iter(data_batch, train_mode=True, **kwargs) + self.call_hook('after_train_iter') + self.call_hook('after_train_epoch') +``` + +### IterBasedRunner + +Different from `EpochBasedRunner`, workflow in `IterBasedRunner` should be set based on iterations. For example, \[('train', 2), ('val', 1)\] means running 2 iters for training and 1 iter for validation, iteratively. Currently, MMSegmentation uses `IterBasedRunner` by default. + +Let's take a look at its core logic: + +```python +# Although we set workflow by iters here, we might also need info on the epochs in some using cases. That can be provided by IterLoader. +iter_loaders = [IterLoader(x) for x in data_loaders] +# the condition to stop training +while curr_iter < max_iters: + # traverse the workflow. + # e.g. workflow = [('train', 2), ('val', 1)] + for i, flow in enumerate(workflow): + # mode(e.g. train) determines which function to run + mode, iters = flow + # iter_runner will be either self.train() or self.val() + iter_runner = getattr(self, mode) + # execute the corresponding function + for _ in range(iters): + iter_runner(iter_loaders[i], **kwargs) +``` + +Currently, we support 2 modes: train and val. Let's take a val function for example and have a look at its core logic: + +```python +# Currently, iter_runner could be either train or val +def val(self, data_loader, **kwargs): + # get batch data for 1 iter + data_batch = next(data_loader) + # it will execute all before_val_iter function in the hooks registered. You may want to watch out for the order. + self.call_hook('before_val_iter') + outputs = self.model.val_step(data_batch, self.optimizer, **kwargs) + self.outputs = outputs + self.call_hook('after_val_iter') +``` + +Other than the basic functionalities explained above, `EpochBasedRunner` and `IterBasedRunner` provide methods such as `resume`, `save_checkpoint` and `register_hook`. In case you are not familiar with the term Hook mentioned earlier, we will also provide a tutorial about it.(coming soon...) Essentially, a hook is functionality to alter or augment the code behaviors through predefined api. It allows users to have their own code called under certain circumstances. It makes code extensible in a non-intrusive manner. + +### A Simple Example + +We will walk you through the usage of runner with a classification task. The following code only contains essential steps for demonstration purposes. The following steps are necessary for any training tasks. + +**(1) Initialize dataloader, model, optimizer, etc.** + +```python +# initialize model +model=... +# initialize optimizer, typically, we set: cfg.optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) +optimizer = build_optimizer(model, cfg.optimizer) +# initialize the dataloader corresponding to the workflow(train/val) +data_loaders = [ + build_dataloader( + ds, + cfg.data.samples_per_gpu, + cfg.data.workers_per_gpu, + ...) for ds in dataset + ] +``` + +**(2) Initialize runner** + +```python +runner = build_runner( + # cfg.runner is typically set as: + # runner = dict(type='EpochBasedRunner', max_epochs=200) + cfg.runner, + default_args=dict( + model=model, + batch_processor=None, + optimizer=optimizer, + logger=logger)) +``` + +**(3) Register training hooks and customized hooks.** + +```python +# register default hooks necessary for training +runner.register_training_hooks( + # configs of learning rate, it is typically set as: + # lr_config = dict(policy='step', step=[100, 150]) + cfg.lr_config, + # configuration of optimizer, e.g. grad_clip + optimizer_config, + # configuration of saving checkpoints, it is typically set as: + # checkpoint_config = dict(interval=1), saving checkpoints every epochs + cfg.checkpoint_config, + # configuration of logs + cfg.log_config, + ...) + +# register customized hooks +# say we want to enable ema, then we could set custom_hooks=[dict(type='EMAHook')] +if cfg.get('custom_hooks', None): + custom_hooks = cfg.custom_hooks + for hook_cfg in cfg.custom_hooks: + hook_cfg = hook_cfg.copy() + priority = hook_cfg.pop('priority', 'NORMAL') + hook = build_from_cfg(hook_cfg, HOOKS) + runner.register_hook(hook, priority=priority) +``` + +Then, we can use `resume` or `load_checkpoint` to load existing weights. + +**(4) Start training** + +```python +# workflow is typically set as: workflow = [('train', 1)] +# here the training begins. +runner.run(data_loaders, cfg.workflow) +``` + +Let's take `EpochBasedRunner` for example and go a little bit into details about setting workflow: + +- Say we only want to put train in the workflow, then we can set: workflow = \[('train', 1)\]. The runner will only execute train iteratively in this case. +- Say we want to put both train and val in the workflow, then we can set: workflow = \[('train', 3), ('val',1)\]. The runner will first execute train for 3 epochs and then switch to val mode and execute val for 1 epoch. The workflow will be repeated until the current epoch hit the max_epochs. +- Workflow is highly flexible. Therefore, you can set workflow = \[('val', 1), ('train',1)\] if you would like the runner to validate first and train after. + +The code we demonstrated above is already in `train.py` in MM repositories. Simply modify the corresponding keys in the configuration files and the script will execute the expected workflow automatically. diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/utils.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/utils.md new file mode 100644 index 000000000..5d5e0adf9 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/utils.md @@ -0,0 +1,74 @@ +## Utils + +### ProgressBar + +If you want to apply a method to a list of items and track the progress, `track_progress` +is a good choice. It will display a progress bar to tell the progress and ETA. + +```python +import mmcv + +def func(item): + # do something + pass + +tasks = [item_1, item_2, ..., item_n] + +mmcv.track_progress(func, tasks) +``` + +The output is like the following. + +![progress](../_static/progress.*) + +There is another method `track_parallel_progress`, which wraps multiprocessing and +progress visualization. + +```python +mmcv.track_parallel_progress(func, tasks, 8) # 8 workers +``` + +![progress](../_static/parallel_progress.*) + +If you want to iterate or enumerate a list of items and track the progress, `track_iter_progress` +is a good choice. It will display a progress bar to tell the progress and ETA. + +```python +import mmcv + +tasks = [item_1, item_2, ..., item_n] + +for task in mmcv.track_iter_progress(tasks): + # do something like print + print(task) + +for i, task in enumerate(mmcv.track_iter_progress(tasks)): + # do something like print + print(i) + print(task) +``` + +### Timer + +It is convenient to compute the runtime of a code block with `Timer`. + +```python +import time + +with mmcv.Timer(): + # simulate some code block + time.sleep(1) +``` + +or try with `since_start()` and `since_last_check()`. This former can +return the runtime since the timer starts and the latter will return the time +since the last time checked. + +```python +timer = mmcv.Timer() +# code block 1 here +print(timer.since_start()) +# code block 2 here +print(timer.since_last_check()) +print(timer.since_start()) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/visualization.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/visualization.md new file mode 100644 index 000000000..968e35058 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/understand_mmcv/visualization.md @@ -0,0 +1,24 @@ +## Visualization + +`mmcv` can show images and annotations (currently supported types include bounding boxes). + +```python +# show an image file +mmcv.imshow('a.jpg') + +# show a loaded image +img = np.random.rand(100, 100, 3) +mmcv.imshow(img) + +# show image with bounding boxes +img = np.random.rand(100, 100, 3) +bboxes = np.array([[0, 0, 50, 50], [20, 20, 60, 60]]) +mmcv.imshow_bboxes(img, bboxes) +``` + +`mmcv` can also visualize special images such as optical flows. + +```python +flow = mmcv.flowread('test.flo') +mmcv.flowshow(flow) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/Makefile b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/Makefile new file mode 100644 index 000000000..51285967a --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/Makefile @@ -0,0 +1,19 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = sphinx-build +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/css/readthedocs.css b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/css/readthedocs.css new file mode 100644 index 000000000..3f425fc1e --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/css/readthedocs.css @@ -0,0 +1,6 @@ +.header-logo { + background-image: url("../image/mmcv-logo.png"); + background-size: 85px 40px; + height: 40px; + width: 85px; +} diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/image/mmcv-logo.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/_static/image/mmcv-logo.png new file mode 100644 index 0000000000000000000000000000000000000000..bcc5759f8fe3bc7d191d411c38a9e1d3c1c27a84 GIT binary patch literal 27173 zcmXteWmFtZ)AlazZoygH-QC^YHNoB8-Q6WXaM#5*5Zobna1S1WOFr)BJ>QR+o^xh; zs=Mmys;jCyR!v0~6^RfD005xM%SmYf0KmA9XD|ZX$NjCR7V4uxbdl3{2LMBwNl7&|8)pw^cN=FHa(PKfau+w}FSZV!0RW%%LQQYI^anhV?T63kIufhb z&Djp201#yz!Wf2rDMlK=JOTqtY&bFoNe2fPvp`P!N7xdQTw%;!2_4v4JTAr{UfYQ8 zlI&Myd!XOd#l_3YOYd>P@#~E5EP4ng7ES6=sU3h{BT`6Ul`L6R?#Fmv2o$c|4h%WQ z(d3{t>@Wau4ejd_F61J0Zy^!{_bvq!Nv=+G=-j!%#A1@Qn>keyG7Eq4s9 zG=l;F5I)U+f9DfTIX*hrJ^FI&aP@b%^xgj286-k+v;E$i00jfUP?^12H$6ODhISbR zHhB)%R~rJ>bpSToPsW@Zh$RL{bAC_pzI?A@q(xuV#)L?Sk&uxus4c$svF*o;{Nvnp z-iZ&o|9Jbp;dc#i%@fP5hm?iCxtcq9HE1LqPr^vBJ3SmzzK=!*za`Pn?{PI7G2zDD z=*5E7K+2=OT^gxU6yuqDSf{}pH)L6Fi0R&_fVwDEh)M^1`=kRT=n@DOkEXZa1rQ6m zWlkVOP6c3Cb8+}S008L&Psw78K)`f%`91*9dqQATm4UA`f&c(Wm4q@hiNm9O$Eky$ z6?`Y@h2TS(!%2yuP(g$+B;XE0h>^Y$WQl*$f(Wd_v^PN$mSE=XVzhl{=R-Z-!7>Ux zbHRr*BPbdq=#4^z5g$XqHm4AX!L&$P1Ml)$T{L(<9cP;GeTR`p?^Yoigi_y5yp*_xX*iVp&N%}mDs}Ssvm+kqlIZbz;SxcL z%&!orpyETY&k;-_Fa{mMQc`5~l=LL4sLv_eu(}a+5yKd3QGJ5$h8RMTF@hYmV%1cqbwln_g)G|Dru6u3W&9>RPp=8(uOsZpPrN*imU5(Ad}q38BQvlJ(s;;e*%Ac zd>a1O8wE8AHGEXgg6@<3C;v~C1f8E)bCoJ!7qfH6wAfZSh;prS&~u!%^%(9M0&r6& zurdWQbuxo8k88BF-L*xRd~1-kYPHd8O>_b)WVBn=_Nx(p;?*uylW6x;^EAw8cxxo9 z&8nN0^_#whJzJu-L`BM!M9GzDS$2+mN~FLW;rM)`C$a3N1AWG1pQCJH*z$C)X*VJ*J&WyNb}A$|5|~<48;uUj6X9pvnX@(vR(a``k;E=b-(rg zb&CtP3%rZ7^(#-8La{=o!aD&+fd@~-Zk}%S?#S*9&)MH1i4u{^QQu?5dxN9K+WP#mF<;{ujyDBSLsyj zH<@`zc-g(szIa!b-;@8Ve$Dac=9KVoVC{=COFq%K@sRM9_}}XXy*<~d{ld!p%E8-| zV^$L{6Md7HK2p`z0-B;_Hpj7zABH=9lm2D`BEp}aXHKC-Mns^B{feXeEBZm(!u^y% z%R#w8@UKNLg3pt0$&UlOzJKs;RA9}3-+_m~zEHx@R%m-@GMHSLZ}8l(iLgCztSBP5 z5-5nM`ebhD&Jg@RL{FBSzpR<^=5Z$w3ULjHp4p~olt`B`lcHu3wlRX7E1r~2r#cW~ zc4Qr5z+|?ca`B%6ap)O1YFK`&w`qE~dOR>K*B$7;SobB}Bv&VN32xYRxOrLE**R!9 zSf1yDL%=oQP@m{W>6>gU4{R#Li`au7t3QNe_uZk69r8E}4)V0JJS-ayf0cIOADzxj z7I_QlbL*!B@I~feWw(ePhLcOEu@a~rRyrw@VE>88k5rZJFHI~}Z|(#u2&Ekr>SW&Y zZ3+fTKHEg8%6N`&BC2XI`lfzL>!Q3>){$D?s+(PNU1R3YD99)%(?GS&YGYhs>!j;c z{ldtYj(XsG6f;yMgNvsWe~KrqQ5=hNr|@#pq*5VCVyu>ytD1$+`XI z{r3|kau{AfUrLi2xT$p&?4y6P0~(O-!J~}V#P?=lH`eI3^0B>M2%NN;Y{`04+tbs~ z{$uC+>rawK_`s;!p8XlWu zz(;$!DyB;TcfOA6>stz)6BlQ4XXR&3br1RjjS78s;!AT;*QoVGH;IQtrj80*9$)?J z?vke4rYEMMxy`vR45vEkHvW9&DZBS83^tzBd8@DO>|di_P<37C&3lmy2?23 zZD;h+weOP-ymMN(4BJd5v>@spI11VX%X+I07bW|D^M}8ezB;q>aCZ3BI55zH=%~Sy zNGd1ba+n|DyqFwO$&O3xNIbX&FfdS7t z<}$|;;jevHCkbVRBqk)X{hj}UuGsf2Jx95db&E<0>4a~d4#Lv+E3GPv3ROgff9C%3 zeNcMMwKrBb?z5JhEfU4|xK!#ieHg#pI!-pe?sfSKda&4_?o_N7ZV;9Ya(Ua8YczB| z`}{C@p)1tj@mKjwaQ%bE^zMS}ljbP)4z}Q6aesK0|0)T0RRFy006#on(43%0AQ*iFD0(!vwq&^ z4W>Hw+2c0Uh|T$=Gy@HC6${J7p^qI0No(LxtG77FcUaYvp1B%WOB&dFJBprd zw)eFh-ZiY8wG&9m8ySLZZK>hp6UYfLViJHf7Hk9&vAiCE*8liSJ#`xzYhJdxI5m%b zk-+ZGx}Kh%OTGiQMebXckF*b*Y?dDJLCa*2AMeg6m-rYkLxIv`+|6wKsEoSd?QKVn zJ)y-gA_!B!2cRizKbjEqRPv#*)UOAN@7-65Fc@zG2zssqozI*c0fp^DD^lCu1l`*k z=iB&$Qf6*g6_sBXBURwTPX3X+1y{Cu44h82Qj$OWKjlteq|dEucRKkaW|ap59^)Zr zA*h$$(V^bJ%Frv|1GFhLsTS+Dfqi}ZGSqOQnKM8HB|x-^EC)~os{(*G&S)m`p}Z#D zk>8=a=DTLQrn`<{kvIJBYl9MS(YZFnF!Z5^&f?q4+vlAgNF%hMu~zeD=orwfcH@e} zh1dt+gXA*>oKnxIu=}r%edr!xI|-!L80QA>_;LSBs5^uVC~O9+AWZ^ynFJhVM&m;R zzs*36hFq24ETu!}clf<~Kf2Yo*1YXgJ68%n^u70>nIp}kQ~nq{tUZkP}2-> zxE^B6!m)M|6#T=HOzM_U6}auSbAxjY zZOaD8IQ7gauyoTNM0r*3bWL8ETb;=Zn#s@u$DrIEBN%sr)#$P5n9bNR;h10h_ktH8 zM?DZqoA#w!8>f8@WWxWfLP8#}0UYI>4@z9T)XNUZy|;JzPnQPvPKy=fU-63`Ti6V(m* znjvL_d%ek@tJ2&g-bFA<5+VwJd)T2?^FQRzJCHQNU(~#to2{VwkTjMk`>BRLNhZ{J zaQ%#i^kc6kjlruuUpSX42mYVFR{HA24mq}xvwHjEzWQt@+Tk&0_Q4$S?}$tFCq@ha zj=bu6p;HIqt~=-9`u|TgXA6FiX&c@P}@X~)vM65XmuY`lhyBlE-nr`~1LF%bguYSb8nALpDC-@lS@G(IQQmLNa z&*xYC+=!bhHyOkKCkeL6){OHy95Va$5B^13yPdYEAhJ1GLRSKN@lcMpoZ zA0C-^hJ5s6R%7Z_hI#;q#-m}bhb4g=r$@~zb?-s=7`}j15fCG$R~cvjP;J}0=0EA!`WFo%zhx*OCzYigRDD{Ed4IgC4CM3k67GuLTUqSspz`{1kd$9aKFM|q- zUNEyPdlTV zxgKJnOL`nT#%%bx=~3E#6Y?oBnh0M~<{LW_~dpJ>9vMm!7*n*!hA@fJ4g$YNo(`WH+?bO}(Dc zP;cQ9jEv{J0=>E_3uXhBxBaSwUcfA1+s*7I20Cf6ic4M)tK(xxGG08o(W)j%JoA0f zxDWP@O?r3(E5hzt^p$f@;)eO2U8R_j1>#o7V@}zXd{^jLr5?JKt$LUz7m#G2vpfD7 z9RuqC`bBHk9_X9wJbM#5AX#wE2hpdiZ}cOulxC?SwP_p;`s(##S*f3H8dsStTD@pj zGR2`xT$gST>F~iOYAeC;C5|CVT|%ve<6#xpw(aOa7{h-1e*{MP9i5$7Bd&Gvo;%Zh zF)Q>Y(!%(lPUybu`A;MdT~+(yZPr#Di98>I21f@m27LqPE=uRSfC_?r)%8jAZoMRJ z-@em?2A0CV@%!9Y1$mDoC_GF7l0kn=QXFH}E_6-S6F|ofQhvc-VwE!eTZCu zk4Orfp$jU-uBpRl@B|Mf#&5i3eS9yWygg%kObV)j*kCdr6!7Yn#|OyOJN!^3!2v*; zO1yZ>ON%L;hdK1Vgt;#adyF2j{QD;8Um79R)_=W^i^%Xdu}eXrvy?5csfObHQRr_} zVrDY2HWPKxG&S4D@4dZxN7M^z1jhvcBzw-5=42QJe{Pd^yjCmT9;<@ogtc4s`T>X^DSaOKTEKA!Hr zbP?UVrx+dla?O0{nJfVCn{t#Ti6M4&9{E6EOgULEb~WV&jg%J(P&{ph_JO$T22j4S zG#l`QMJ$R`sXF+VqfchP3{i3iG3CSc^qp1e8J`lDRdnBIL~n$wl!8*OzUfK4^Y7>- z?iaaj;BO9i^Rsnty#2#7!yXggDe<2s&VdhgPEm?8wK3MT=cQ3YS?@tYy8)cTEZcg)RhiQZR}*2XBod+94{2f|5NVFdqK$xm*Gdm(nBKL~pG9Egt zbXH-|a}y!~!(tqAdWgX^hoCrQ$JR*|4kZtV5*rY4AcYr_s`WEfQg=8Q0|}Hx?bO=p zGU>J2!tMKK1fttt-iPyjY)N&m;EFQl*H^6s2PT-f7_Z-4HC_gAz4!;hX4_$hcnPQG zP}{7>k5EAAbrUJ6Lmr~2Aw(ZQSb1QuHf%5!2hjPgGZiP+=GF?%H3CJJkI)lLG6|D(apRtbmXP;TE&1)ZO7*cI; z>@x)xU36-j;jNp~nb`ITQT7<kL-NsLeqRf>Q}3q`1*YcN7;r^O+{ z2+hDOkjI0(sXHF`OwF)%5|_%MqL@|c*o0}R=j(qQVLrh;H1BE|s?%)P z2D(FahJ4xRiv^>qe5e$N-Q-|%QCspR`&-MV`lt`cwjbt}=uPB&9of1lTC>t@I8Gh% z#=o-x=@CPtXki56fY|iu|N7Hj>+EdC1kx_g%hLp*7Vdn7F=JXydS?*}X6c_wrpsY2 zS)0?&y}NBHA?iU~2g=uP?udo@tBus}QaZpbGqNg+NM{7`Q6H0Ov|vq10eyYru&(Ls zo@-Tm5`cBWro8U3I`v^owcLXz+&Yc}F=Li`FHj5>ot&=5VI>Y1P0+Y|FKo;27$h|C zun4XpWKwuv^tOmj4fLZQM{M@3@s^9luqTl%&G|AMct`eSKFAM|aA{8AQgr(UNp|?T zz-TMYY18n&I@h6!kUIhPOW&jL@3izLHtLd=oy*b@qN$m|P{|s^y9;MD?a%q4Ppt^Y zVqWCu5P@A`%DHja5^WpaTiMWJDXUDV5OqR&Xq?Mqh;)6Hp0~Gk&d(W|4pS+29At82 z7QgAEbLw4jgEp5(@?>=GaTpwv*MZ{}eg@BnHA%6gF&rq(GFB zhoF6z6e4xw;-9~T3ccC*(F`Z(OC^>o076Qn1l+L6>>G62itg@Bjzqmrj@Ol@8Voi4 zePIfY#X8UOXeDpZ^U{yNln2T`UcA=+ZgPyn1G=2$d2wzynC-MlVT5Cu1n|V+TXFo} zDy+${@qLhe=~kSCVLk4O~H zCcvTO;yuN5jZsEF(oMJLmhfy)V`^nz&rGUTCzC!pJ8uQ&_SY=3!6Sg{q7pIX0x}^X zYb+&-sPzh>gYz8 z@E_pFIkX6r8|}5LR%OL5!xF;-iHD3!MhonaiJ9*ng|cD<4lq)l|GjO{fj(1fA=WX@ zMdHs>U8GY#rzHT%zP&c+U(nmrE_}Y0cwfX=I(e(vCCoeKvJ;3I=v3gI44^>sv#p^; zr^8xV(3Y3hRx>Yuvy!OujUy+Z$a9hV>Fj^_LH?l3gawvwWSjn=X;t4+pcFgx5)vVt zMV19*8Jpb$H1$<4yWLXvIEeu<2Ob9L&o(rff0Mq3O~XOTq=m)!+$dcAADp$R3)H?6^q%toH8SFJz@C)fRrawSZfx z^0Op6Jw1iEpI%a3TTAVbdUzN=#jXj2tUhp6u|K}C9f}BB9t?W$=l!1exf`>_< zk0lrSPFY5wz0fnin(O^lFja@1q}aGOruW4-M>P;Bi6nYlUi1~qm-HYa22)C@BaL3` zrk}x#;Ikx5Dn8p0pK{fri7K!C-80;Gi78^|`gUq~oDpe6Z(uOu0VTpDM-XF|h6%a@ zcB;}^PAAfxcg$AKO zE2^`s0J?~Mxj&5E9!9Xdpwvi0h}|&(OGlhx5E(Ug;b=}8^*~*_xgS|Lh|IF+yT=!M z)0J4nL>jp8S}46{!kK}eUZ$O1o6y5FY{8#)D?=`%wCO6Om}c2_O$1}nf^4VAxIJwA zAr4;i%I8Ay6Kd{&AC;#w@Ir2sxSA^ZxnZ+RmN7Jb*!#cz8ex!LwjM0rchK3Bh2bg*X_W9$$KfpgMBIM4-X+k8}j$jjf;q1?}HDa_ATmE{p zSZ0=gWUSPPI9JjKtl_}NZ1w+5IMh~kLf6xTvXmb zqsjAono6%OwCHyx(?cbLuIm9Qk?>n%zsHSb-Kl=Bx$dxIulL-!!4Ab$%GJ`N;)JKI zL6xw5S@k9PL3jzb7ZPqqt7tZB<{KtJ?G0*jfK^gDlvQQa9U9hcL#mn9ZSyJw4o71? zecs`wvRiY1#%THQ%WA~smjv>d#<_`UQ+R8M=AK_wiRsOW|DBhG$!01zs2{LPNU;;j zImnJqY(@X(^p(PE709sjTYq>{1tgyxYDcrUl2ntI?pqk9I%#g%CtxEIzY5;uiO9^5 z|3Mfs7hl4=Q^*m!rSlEp&oRPpGpT4l1JM07e;3(lGzZgmQYx0mb)4F8QACG`*1+Px z1y;cocC;665aN$3;Z4NqYK@=;>FXrr-P}mm2BpJNu#HX}bdj z9ac+3Uv4dFL&^{=>V~CorRD=M4PX)Mjj1zU0^7d*E8H45@wTwWd|?7*_tlnXHAb8s zF1c~0Yf654TQ=xHtEwcEX!jDB*c~D60OR)4Pr{+wgt0^!pQPj>->FdUrP}+Cu|x?% z>KGGl9M!2(mnWKBi-rzn%2NJ@mKnS)sC|R*(rj^hs?glvO;=YoOW_)ZY=nIHxQQ~! zvfnLtT~EiM&cGKqP+)j@M?9K?P**W&S*S0M&Av%{`^4Dm}f?N)T$%jZJH1MvRsrwOu(MDiE4P)L6#Z~Q7tHS_NL zcNZcU`|-PTnjSY+<{c6j1#5Ad?{y^^Rw~C>MpA0=Sy@mRu_TS`Y6(o6P9)dc(61{B zB{2mq1Zdv}uii{u#BNey!06pAmi$pC?zuT-XqMU4EJxV>)S!&vX+AMmXp2IGl3-Y!iG(UhEv!w9o_U z?IFnB?Bh2d`nqQlvw{U}N-+Q9yU>`~Cgf@kU<6IR_E;Lrku6s+qBLRd;z{{^yG7u5 ziqT>r@0$I*gC2q%19Lb!MY`2!&*wbaVl+}^Xt`&%^%hLlG;ZI>sGHJrDY5m8R~dY8 z_a4}0aM^|>@4Kxn9>ipPYE|#7dyfK|1-Zdt(g)Xj3g~lFZqZfuIYdI8lm>d%xAR=a zfNHL$>}&ASo?<`P?Y}0dsh}87x0mMt*P-JxDeMtqIGxWu!r zzOY@43sM$Bcb$7@nh>@n`T@tC-?HvJUpHt%`}_v9)Z#{}%15{Qo@ZwR(6W4|mxB-= zNeyhd9i@y?Xk%8*`$wdPqM&4XhXI}`8wde1-%JKwdjBBBR+T?5U$AIY`-;QEl6n1w zoA^*!+|Tq31zjru)uwLhC)jRO$7TPCjeOWm8p-$yO#TG((w1P5u0B=f)bh#<0G*=1 zOilOd>m60~S$b^31cXvVa0pw-jzT)&-OeinfdH-4&tU2A;$N;K!R_IIoA`cmpn=94 z;Mz~CRS`O#ji#?i{>w%Vm2ZJgoTh3=jGqAfk(RF%d6UB@hqYy+f$=B<`p+o6f6{tp zKT`2^=s2xpF<@@d$&89T9u?7uj@gvc!<_%gaSnyCn)7#VaSURaDI8y859v4TwD>4; zgs4f#8)P!4ptU;fET$j@hpK8Z(KE6YSxBbyx#5d!=a}TyZ&aMt*0J|MjC=Ord)%Bq zzbnD#m$_2tNtoaD#1owSguIg*URmu4CvMEG$B?mFt4L!;(LawjOqv0;{TAx#~{^lf<5jBc`^cIcPBwWiEZ zC`08Md>vz6ZbSi!zd=y4gd-Bi1#Z?!LT;OML)k3P^UoMN>5x~J@AMRdbtb_m52fMstw^}gxo?jEN-sjI{PfC>T16pMZo1r_;9 zRi5!_GB??sAp$3h5DasVd=ze;odBbj9gx%R%}lBt3v`zf2B~W_I~6%Q^R)>6(qf zb$}Pnw% z7e5w>DfKlRXAwE_Bfpl5q>4v_yFx-`qOUZXX-_P+t=Hhu<|LyQpp9s8KS zm;!laO~W2|H;Q;=9bv?fi5?jqlaI3%iHYm*?Ds%{=#U{3F--2Q>8YQ)hmvjZ$Hoxl zTx4rUt~){pYXaX-@-%&p3Z=vgZilnjIhv6V2En8{4GS#ixs#tWY<7sZoC1DY?<Nkz&d@#_0czgM=*7DEm}%0ArY%0TZ=nd2Ec8 z?DRN%SbQ(g^jPq3BVGm{8(XCDvW#SXR`7U3c|jE^2rfK=;%#T_3oEc4W zR$LaPvY9`03(Ot)zkHplWDbcc_$_#^@qcwV0+R-aeUdlct=k?C{=tdB6&Qv*Y+Sap zO>|ztzxyBt@;*QfERdJJ8l>QqDZ0OAFxDL1Tn)kRvGrTHogP>D878~<@QEz8YF6_d zvn7uqX69!FTp6uWWzPg3IL@Q<{Cl+mcHXQL%8EWIQ)8)TF5R7-MTjMrwXO^e>aJFG zCF!LXCcbUqIfG^~*RL?6@DU4l%(jj?ZPqTUDnBE;rkh%p{DJEn490qlMux%i^@4fK zu4+2?7aFIRwD_?V=nTG!&R+HYyN~+tqL*Uiny#!Si*8D+v><X*G^WABQG zv`)$-xMz;*A)~&!b)4%~NH~O+L|TC5?R=QK*x&Kt_%FAo^c z{4kih;#!lWvhFgGK`T_CXdfzdJZ*%Cd)T@_Jl0tg+a6*UonXi}Ow6Q39;knq%4`Fc zv4tDS0+2^kS>z;Wy1W1)`|P>)r{<`ax8`5|2T$ak4xCp`(|mk}O%jBBbD89V*Gn3A z!9F~c=fnlc%>4L&3fzy{Kc)^XbaFUFO&we0-?fmmbtG#cf;oh>UqoE!6V3bfbBYvR zMI%GXWo6n5w6!{`L!P1a(;Ubj-)?>SFuvJf6m`*KzR^(AVzMu0foaHn z3LRvJ2(1rz?d{2aAB-6lI0RKxlz6sJCjfAY=i+nwDf0iSm6I*YQK?zcf_Rg2{nq2g z`mM-dhTo8uprUVMh^5ahGa2`PS#E%_8Q_y^?9Y%%+fRC%1@pOCN^?vgL@(-X#ieta zMDozh)Bny9F`BbCOLr9L>z7W&8Vx-!oZL!2?Fh@<<)PCrL;w5q=zS>y#&bZu4h9Zf zm6lZ8-$cCxA}lHNTZJ*z|24gI?E=&V!HZ0m?PCQW?E@JlDPp)eoTpic_L$3hNw%~uxi*;K8xYyyj zPp!Pl7Qr%?!ha?(=&*R*lFG*21AK-2UY-5wj1hW9J0&Wjn^3Lpnto+MiEPu(g22Ax zsw-uoH3gy5GK5_#O#q=0L>!HH_lNfUIgYj8ECTlCZdkrA4_*9=CNs08)Un5mg^jq` zjWLJRdu5tKQp1a`b%Akg=lHZOlEpXQfa}*?&3IIX)dS3^FY-I89;sf+8(-Rt?(hlE zUxcoQrDxC+h6K18`=6!Gqgcxn$5f5*8~iv#x5IQI6XF&0qgNe&lhd*2OS{d`;`4pM zcp?QQ`wM6Ix}(=H)@b-mN)I2Uo>Jp07 zT4?OzY^J8){kpPGwJZ|euAwI)C|HZ?Z816F;2$H5&@#-J7ZcpLQuOAz^G_e@?>M*) z`ITs=m|IVr`&;qW07T0%_YE+O^_(5D9p9Ls!MGNYJt49xtu70PA~qU3!P0i)MBG6F zrhX~%y`-|%E()B7-NBSfI+P)ienZPpcPr9TQojjF2wyRAdACJ1aO#|Sxi#t1zy~Ll zazC{mvVC2dLJ0}gQ})wUky` z^iFX-+a+@0{525Y(_=e0`^z5+_4J*kri%Hg%EK*6-6%12DPJl&YI|IBE0f_{I@Sjz zfd%Fm2QqBl4@V;Vb;q<>jRKY$!b%~u%TUaab`Be|Lrts~-P$qy_DPZU)4KRKMxK@R z+U>^u*Q7FBM*Lb6f@w|#gn#k`@kk+aGiDd;_|iwFFJ1bpJ!Cvi4GTU7qG0s;i(@+M zBj**Jq`gMqKa!QsHFRPeCmf zgNt96`Us5_ngH{OMKn!jzy*%ZJ;+UQPs+Wg6!{O1J{A8i9h%*uWv=huLV0i*0TWXG zO%{q?U3r7u@AY;Dw3A~%V~I4}abOvqrJ`)5h>WPv%&X9_q3L%J%H-c_lqTqe$#nhi zan)1YW86z}H`rA|BZ+3gpB_!~1?C9vC985yE!K-~OQT!8SWsg&fu==1Xd2?JY|&%t zY^)Ym)MHW-opi$1v}>t#s0N^7@g65+Qc+&ZlGTd&q@B!Zk7|u>HG%RIf15;)yHb#( z@h}cxzgstF?`^MWK_DcSpHW=B&=ew@* zJyi{;d*gU`UWt-@9#9se01I`?=Tgdrk6YnJ^27s6EHPy#?45;;Yi#UK#3M(RyqgmoITbKrNC3K`^))rNaZYWg9^E$Ib&1#t0q z!|f{diAwE2;QMNNr8cL|fD(VaS6RdOHZAwEX0Qo7u~-fiJ$#(oD0qgSI?brxYD)nB zp@si}69R4K>7)FGRA%`6j03d}<+2^1}oXq%!z_a)naPg&5o(YujO-@>PiTIRi^j6u1@-cO={_V$SCgRfU+uJ+BK>?Vd7Lm{uskXG= zisFdo7pC3a$+smBz6}zK1@YUKPq$S(zbc$&6_TIX^H!}Dh|8dG1(Q-LsQ7wH-B@MSm{*K*EC{h3C7EJ?_MI3 zKH`1Tx|`>UnRnxp^TgpM^f@KrU6^ZY{SrDyy2axepmfOCP)q@%Gt%UuOjfu9xAnse$~oy56G0HbU|C?lsfe+alw zi--=+4j4Y;D}I0i8bzr8MwZqy{a|i4K^YAq5_6KL!)HC{@VN(a@v@`!#AGdPU4mj= z(Fvbf7-pOCGYQCWsosS=Ckomp{VTrvD>wO|#w+Kai_kxiHuH<^wzf#qt|6QyR@>Ulj_x%uB*I8BD=xnyR`EplAZ-yCwMsVKrBp*_w1UJ|%wF$6IeZ_qT^tOZtWui7146E^eH8^X3l&_Cv0jKl095pfQcKBEnH(CzHbcW zT@090)qFu>(0XdLJHO3G6$iC!+kv+Q<&vLB1_E=waQ-4o_fP(13cxYh9EM{wCc(B# z4(&Apn-(FEwh*72r)Z;+#i7b&jL|4=95g@{0ck!rA3Up~xN?l*nEw^4#uDJA_KU(K z>ni3ARNQahq3_&0yq74{uovV19NCCYQ2$yJ5g$(S8&srZ&2ElU*nEO~kpeHzWm zMyAodw&3It-ku-&W>yJLsNv?=VMtrV{CLPte5@Pt4~}g7F0xs_&F^%`M%Oj>4X!4D zDCs(=_|B)e^w$=AHr<6*jz1zp&9M+R66~pYOFnhvb?FxiAR1Mr4-2?;soeHKacR<*B4ef z2d(>fm(JHaUwp=1A5F}RACXT#c2cMHVmE`610y!WH*xT1e6B7F=%u2J8#t?~R6oCh z9_W?|x$2ycc&Nroc^qcPXw{vI4T?V<3v{TB|BXjLH$gPj4M|6+By_o0MChSc4mc9X z(kAyW3BhL}smnlS&<&}SoBe|~TOg$_tzBIJwhp4aYA*|m0C%AvkCz#)g(JZdsvaAU zBAU30x%MI|5$y8msE}JIR(IWBk9$+x z3D&bvU+@lD={XLd5VO#FK6Ol>@iqA(D$|-&==_nxk}{)(?{UB7@#Bq{tyMWnac@A$ zzruY?P!Y0jXJ^ai7*ujTg=G({Oc7SZFX*kR|=Ndxc6$0 z85?N2=i5UQ*m{W33rHg9omU5<#q-Ud$A7y%Xsph6Mljf)TYob~vFJ1(+GyT&D<+QY zJxmu;M;>xtm^*47Gi7EEiia5pb?!4Nhregjspumee&UBk{g=$Q zuM=}TM{nQH`;YhryR}&E-Kq6RW!#>Z>&GZSBK$+&w>6 zyQ!Ep7n7&p_rW7oktGb5?U49xib`7p@wOToI*B4(FMs}X8KXlZn ze!6`^I&xz(qm*&t(kbUMcn(5GOf|@VeWu@70O)uN<~k)C!~GY`bNMl-LK6}}O zNb4>bs=#MH=I&o}*SjJts6evj(GnQ?q43s&Fq+~+79%_6TwM}drTa}QkIA|h zi?l0bozK?Tt1cgNEqN>gAC>nQ$MDS!2ah?meo<@5yLS8-Nw@)FYWjQJ=Vv_gff$Z6 zPz!P@b3^6Wc(L&!s`nMC`S!s4-VmDzX=o7P@j;JZNI2^KSy`qE--90q>xJz(?@DczfNk_`A)Gwc}~t=kH_cn@ug z#^Xh_WtA5P^?wg~D6xnhZ2(>TmHnV}_(Gt#)!#JvAoEKwLbq7 zT=g_F^6m`ZXb8M#sWUe8Rk^)&xus#2zwoaWGIB%ziK`kDFh8%-!IpP&mqOB+Qe3PE ze)>4{t`HDs5|CH4(ovpM=`W*~^%{?d&v73~g*!lpCK8y;Bb>AnkXQo7&MkjXL|OU{ zMVnfMFYac7%&$R60*}+f@i(0!d1VdQ!v0W^gf2h`rTC6bgE07MTGhwvvEq#}H$X8c zoTPte_Y`+T<1bfKR1Z+@NB%VysxMFn%?c;zmM5I1?IqCkH$76S>epN3fT|jIr$a-d zOiCviuZkC;W@XSlV2nm8%<9(Mc+QwZ?xs8HrO>M&z<%xJ!kh3?FiB|m%-Bj}<;(RH zw`Z$6mRrc+0o3@d!JAdb!2|EXAxna~?4XKN7>Z}Q2Vr{NSk@_1WV$3UbNXk9?~edz z9|~8K5wIqMWIPU^cIadXce)(|=t>}a!C3jEl3h*pCT4LWC3Q;Wc_U;@Wv5mPad0gK zZZY5&3Z~PokBh0;=laP>-rB}#t|oL#CmAM~%Ygd%Pc$@D?+A*G$$K*&r5H5D9^!ku zb=pua@+1UM0svN>N+(+o;er_rm6?2yk=9r2-&Ud#_j`Ib*NPkC7OGUEQ@!S)Z#> zVzytqh2U@jqvHg9E1MIiCd2}J={&oyYao1Fnv6d|DT5qn_)VBQlHDI+N}vf2F>3pp zmda;hlb&y|IPgT54^MdLNEeefmM0xiN$)F!{m#}ARX_Y2WIF$hOv7S?BVQClbxHl) zh6bOx9U$KVN~)^4;7O^kf!C3tie$)DZ$% zXe7(LUy$QDh71Zd934@4zo!Aj)o8b|Y`0m(jZ0oe8yqQmjgGqHd5oxZGg9ipV!Ch9 z3^HHw_RMCUGNeiO?j|uq29rqD^(1ws*y8jY3Y<706b@khvPh1S6H39(aP}Pde)x2g z34&XvC9m~OB5_1%ZQ_a9ht$Ng)E?&*j!n0Xn6Zi<+=(NF@I{AqvHYaE!lkQnoQS_I zjfhaabQeYDG3ZPVOM7LB&NteA+aZ-CmX4-`oWD!+0}Pus)5LNEC*ca0ewIh zf~{Ms%r~ucHL9aqf3$mloNCA;SsDIxDcS$IrIGL1))J^T1x-t@=qDSA4UJSkmj!%b zt0V1C_bfS?16>2|zh#zzyLN+A7Y#Buj~f;*;a-Ap9;3M*a$$nXce{dmXX3-lW$EqT zCjtQ`Vh0XKp>l#X=aMa0d?9SwYCG(qP4PBk{zX|@6>r{^hI8_!rnOM{2Rd2Z4&;rGR+NT=s_u&Tn zyc<~6V864}tX@k21^9RSO0>FrwzR7|MoTl zBEpvtnIGvvER_l`SaX|#MJ|w)yoV`7oO)Z7Y%L$iQ@zEf#5*4>2c+U}bDO0VH+v~)2T z=z@jBfHwk8&nbaR!@3RkJKth}mpwqU`Q1>j%yk9u{>1{bAk#-yIu11V=6M|9x$LOu zRKr%*+unq#R}P~Jef=`5+ySf^=<39m+39BE_;EAQ3@;-*OkUC^$~TlXnI${!@=a$l zXB}r{lwotml)`wMtqh3{>XEmcXu^{0)vy*M+ywUEaKKL)H5S736tZ=*Z-ghPoW~Pn znz^3)XIoZYAR;=ALEaOdqXBeZSDkD3Z(SA!OqG-+EnhrFoLqENr zJZYn9dlqdKs0kEhVRY#;AUZ8h=QnjIcVPGMk7L3g%K| zsjriW+*eK+Rn3~9VD3dtnu>zRE$==2=5*BP&K@yGK~DF(q{pP%VF$a|0AVj8o4u%+ zP$P>PHVb?!XO%mHCb5r|f@k!8<>$2uD+hGp5`knaf~+m$v1BwnF0_7p$rI|>TXz5QegG|jRltb9ekHIMk%{c;*t6_Z|7byu1K;qY zc=A4b0S%Wvhx9+nD5>;*wWj9PrOHwg;Z4ovl*Gp8mD}j^*ch7Ik=CoK7L%vOvX2Gbop2No@f71z-p)yZ1p_gyRvRlv&)_ghYD zzV;|u`v0m1`+lU*XANyF@UF!Kv7l1cx=>y_cH;@hRZq#IawqxlYysBAoSJbH@HTiv zB;}Ian!G-a$kYDwCMcgY=QHD>bS6cW6uQTGT+PioswnUCW-G0>B69m6N8+>j7Z=Ps zE;yZFjf4Yd3Z3;t4|-jVDEjmHTi6E)H#*t$?hyRKRO6hjFVJ}PtDa^X?zgG+|Fu`{ zP3fnqmB)|JEZ6is_uSOBl!Ql~cO!p-mqfMX%(@lag+#s~Pog}#XkLLP3%}?deyv-t z;!y|v3`G;?K!+5SG+otx2#b0lQXg&*sl=MG@-(W7lJap@a2&GZ&7?ANKsuHNNQ)t6 zA{aNMN;sfGdR5(i?)crF?}|H`Pw_mOUXHZBU#4tgSig_#*oti5;>NI=vTL@UptF7W z`K%jgCpq_o2Nh`r!X+``?&XI2ZKJiiK=Er0uk#xy?}BeiJAJ(AhY7q^Gv%x9S+{aO zfgnTP)++*-0ND@XMxDwUL=FvTr@E`Ip_JVmk$_7p1fQ30GD zU?j2)8?H}80-@x5ZtK~LV!?#emw6w%HI>8O*ZTfi_LQSXn^+kTYysZ3_&`zSII9N7 zt4Es!IRrF!DJOa;y=3mRJ?iYVBOuqEF? z7AyzzAK*x^aK171G~mvqxU*VPUDiIY&6{Xf`r1(&?xcV&s<9d@`q(*8@W3WzY1BG>#~2vfp8p4Lj^i zj^{7pQ}Aq}6TFL+eOSB6*D1={)pe%coliv+#r%8UBI|EL)~r;?kn$*QH`eY<(^^BjvU3{{YKS# zl3^EmIxi7L7Wn|O8j)MwtcvRQn(x=Whfkvk?X#5W5rr1ktb&!xbQVT2SoILugRnf= zbq|Ri5^2zFy>#sUhWqVA$8NUfZ@<%Um9PQ${xQ)`pBVK+1lcs= z_pYEC{&FwK4}u&hPUyxTPV&`b)m{X7P|s(C451W63Wch*MfnP{+D;kDDd)H{4xn)K zh>WWBBtro|3A40Ryt*m_Aa)rduff{2t`f>Kdhxasz;|2}Ia`*V7|>jl=3%xWcKeWS zOU-3ZccWjMIf_3UVc%b9eSa-G1^j8ledCfIw*j{{IK~{!=XnNOZ)vi+PDNA>u+(k_QNh`a`|>#?EnYP?%E1wr6@4?l}aCV#gQD7^ADatM)|lVfC4d6=kFR>J%qqo#SW zMFI-B_sD6==5>_Yk2waQHGgZGNd5p2DOCJK!(;p*RVCxzKvCL-?R|s4jL1<$`lU(n z>?TeV=ysQ@pt5?3g7Q@>7LlVM&sXv}<67nUl+`vVr$ty&UD>7QU3#DN5IF$cjFrHL zqOm(R>%=?1$l@vBzdAalM4rOmPJKN3SseuV8ox z;f2D7EC@Wcm`W!7rDr^wbjNkxq`!h|ypW?%A*RDL$`VxaXJ+SiWk)ZItNqFfME0QF zrqxM^uvRDeNw-zsOL5w$_;q`bVEy2_3B#x%2!<2=jJxNoC!J}R%qY~zeh>KNhWq|3 z@ary$YpvRzcTsPXs<9tM^KZKv?0d<5&tm|J#H@sr2%w=HK(d1q&LMIFW7ZC%6%Wgk zW1{finE(>a}ZXZi4N zT}1Yy3A$rmpR(CG=kFAT$d--B@@XAdRD55p#+aS15p*~k8>9D^4U>X^fdh}qnb}Kf z6l!E&L@UOcj7ANB{}Xtf7w}(Q+wHjie|nYAI0vu z4#CQKgeS2wJ3?2rZ(bxXN&XzdlL&S!+^*vsTE42T4>d|n@Wei4UzTvrN3b^CzY5n z;oFb0bf_n}_ee-{Ic(4>#a~_GAh8$t6X2f!fA1=v%cmQH>M9q(HL;J4>*SN_v9?In z)H`eXGRUJKR|-0Hn}bK0Lms~7+0tmDE?5=i9qK9M`Ze~I>PfLglGzfgqN=q|7m>RV z*+v+4E1U1aP=nizYmt@9>Q+IeC?COY*??5%JSGr1L>R6qo(p1=U}5dGoTC8vjS=_% zd#IA>QncI9>aIv@?7s(o?kb+oi)b#bi8UdQUjqJMj6fkCrJ7!wAo2<#k03HrT?qsu z>N%xf`wH+lRkM8?R~401JT;dZ869ZG6`57Zi$@_(V%i(Aj_m@9$~u8Sk#%Tish>Qu zwVKfG1R4>H5=~6@lI5}aTMuh*LuBm`P-6K98&i=@hyi+@+me}El!z*xpm|a|vi}6U zeTjj@+kr2Ul}7)!Xd~Ozvfo<7_xf$LGvSrj>dQ{jkdOPGW-FRc|as zR~e)Cjg?s5f?=+#5-gTvjv})E5qR$i`%ePD5BxA%ig~r|7l40NupkN0Qq^|@pT7#{ z_FvEv?#V@XuTPBgV8ded1Wz8H;auBJp;>;C$4=8(sX41MqzW>WOYYJv{aSgm)HSljj5XMP^0Ct+%$ zepF!$vTC^kMG*KzlIyW{_wd{#_Sw=M=L~x+e6^mCB^OaR`!evk5sxwLB9mXdiU2W* zR$~2|il}wM!sm3=y1~EFqe0VuE<2B$ zv7y7)o&%n8^5Vq~FDh$n{EQa7NNRv;<%`D&6lOe0SDTtYkpKlrfM8d-eQ-g_xgYN4R_2cMX3Z;5m+CcFD z@UO>otPi77K0i(IOoegT3P+uN3%H}^zUzVi54dHKf#UZWQ^{(HeSF*p46;rsEv;NZ ze`FoY9LOUeujKpwRA+UX&o1j|POs30FZm|I(+G3ptpcK4<-F|S&UB4u*|uC&+Hsb~ z8p#psYa%mV02&$1qf{gzd4FRUQe(wwT&`iFi@j-ObyOh&y)JhBYG1Lw04p~k@+#G( zvau??7}aE@Se|^LB*qsvpYac9KBppW8-V|SYH)poX7ioPYz^?&9gFaHMmYWsN4wp$ zh}Zd|1B->Sr_murW3_H_MO+}?ZK|H+g!O@^K+b38NmuPIxxesv?L#_cuOfUN*Mpbn z7_ZsYZb|6_nbePCb`Ft)9))%rbRx&9e8iCIzD_pTMU_$pH@jhw^V)*QULpa>I@dh( zWJg3`KJ@**4X}oeIgCo)$5aPm3z8spE$Xh7MTQgZmZqHt{vz5zJg!LKHZ-Yv68Mjf zmilhPn|um*Gw@NgTX}j+=lCj@H~4-^C1A!*KYe6@j{UKPIA}Mwt2mPzC;$s_tJa{C z{{0Ey`K%K)S>8Ucn8>7YBGtKV;vi-K9tZQHm&cPDjwzE*@BxlIfJ=QyNqwgD=QXAr zd}^mvWK73MX&hBadO)6V;}%`L%a`%#d5K#mz^++N@babn3Mdg|qKm9r?hh(p2!eH3 z*@dB_*W0SAjKI*Cp_4a3_5Dx?6ta|o0yF{okAZu~eB75xOtkZZhe%;>Dd0Sg=p>p-?AEOmPe{O+}zZuPAe0T|c=1&9vY!TmY1}&BS z$uS@I0pNQJ1Qe9hLq5-(5e$9ujB*8)i3o}-^|tNz=${_SJHpJ(){ue$ch1ptbV zFVx9)lTIt=;qoa-%x^e)62o&DpfKsEAg>86PT3SWO#y>N%zcQQ@p=qR4gVoEn&YHq zBb}tFvx0KqaSWYIuk@Q9BM%fv%e=V%TT)80DH#mdh+zlt?MCiX1eu=1%*+oz-$W1T zb=~wjZ*HjL?#}}l>F5F^68v*Hh3KY{V3?a2HKR4C_tN5e-Q1l*mE6&#IK_Y zy5UuL?>|6gHpZDqUofBuhUGXVtI=lm7{Zy%3bU;IPYPDAS!9a-K8J8WaL)TNtR;Ox zNz-2rpj1_=BxV`d{P!vBy=c0POOMEA$AHEqJffd7O`CDy!$H;1O;~%on|jxv3dtLs2av%QF`#M;AGuT^!USc|L?pzU@tOk_WnAFN`Ntegw*%{z%=)8~X(f$$e zOIHabK*utCdW^^WDw^+E;E2MM&@EN>YyN8WStLHtJE!NMN@iP1DJqL_668rR)tV+I zMuB)+iIhf0Y9yX>@QgglUdx#LL^St#q^hSl7}_MIG>9^6Ho6={5Si}uRfP6VU@OA8 z#;4VBax7CZEvI_dt%EUJv1TVm0%8HgAaaVLz97m=$RJlTtbVc{_mN$S@*P!n!hywS z(F&&P!Di9wu8%K)bNM9jGh?LC7RPfRT(tL!3ySLjgB!@Vs8spTW`Cn~teGHZeOre%>bOR3+AohRw=yYb8;DaL`!U zf+paaoz_GzIpVawO=HYX3{%78gQK5ppx4frWR+bIQBfTS9^!W&Elr&#U$A&HI(PXU z*EmQVL)C8YTO#N4$7to>hA}J$7gTUCsAM@9NwxG@L{4W*DJf}WD;WuzbVipD`BOx$ zIOSUZ=D8*_DJm6NO+LL0zco7e1*=6nsX z4zW8CD_MDWnYs3ObVWf4YW2;=iKRT=y-Za|+QhsiWE-k=EB6 ze?(!2Jq|^5OJ&tl;a`rU-JaW%oy_rP)l?rdf9l?OMD9bxuSurU8ErKk?|m?7e#}J} zwjkKZG}4)DvNs)RjKxfhA0H(uiAM}%%VXo?Koh+JIp6|OPr@?99zc_M&FH7ZYQMJi zfL$OvHA)DQUuPis1r*lAzE8osLgJbXCNfU#Z@E?Qe;_O2y;SWA@V9~gZHayh9|wMZ z498ed>sFR(mPw3LNwpj!o?yu|?n$u&kV+cl1e$2`>+WqrJBjD9;y_T;BltHymAL+e7E5ExNrF7CK^7V>2t9q3bvV&(VWi^R|HIqh-HC!=>_7_J@OvL zZ6$x(YD9Kjr3ZA{zz!o4X6wF;1|Hu*|FaNJ?@ErbO`1@*K!>XyP(wB`rl&O=V%r84UN;dXSnrU=Llx z{Ojd$fZPUjGd>TIaBw3XC_^7*3KZPWrhs-bk{gjt1G~^X#Y@dTU*iw83B%T?$zS5v zJ&Z9vo{I6eo+)+M%2Y4;;Lug6u-Dns5xa?Up|L{4tUA)Gx zn`9Q!OU$~c7}l$S9SFM;Cp=tH2~zS@N{K%+oJDox-=Oc8(@d7Z16$@K&mlYl%z69J zk$VVoel|rb?>w1~0!(I{qI)sBr$ zU52YOZ<*OdMG?ioJ z-bEQ5eZ?&VzCvr)EKo#T*L|o++kbLV#cL3G3)-Zz24m(*y;kvGE}~_uSD+vtk`W3l zJ?K*y^T0qqs1hU?J zt)^M5h+^m9syOhIIM|6nZ2Y^7^sHjzba8-Ed2Me9+Nrf004O5sqor04x=`;A(fZ!q zh?w$n)Y1pxG}=_PEc|%~9Mt94l2RY>1B?z7CZq2( zcH4v|JU_n(-|8gFkFUqNKFiq+a@_GwF;VAplIzn1&TZhsrXJWZ|XXa z);PZjWZ7VaHE^;yG6)$74*|myz|*zHnGS~BjEWM*1H~xr;uYWt zgiFA(N@{1YgiAbF^T5LhkJoxXP zd<8L&P*){!ROybo4ymq`x>UXQsAa9!gl94iByK}XB4-wG{jvefuH=lxDvT^-ph>1>w1Ha>IHV7JzYDJ~BPM0b zMC+njyODqbv}xv_BJu^aZvGD75XLOeef~`fXoN>WPB!CT8qziy!M@ZF)}w+eI!0cz zULGJCh9Z2`3tpdP?6q<)E_Xoj@9~!N5TrW|LD$y_PXimVp%|I(W5YQJClDF-_f+Jf z41yTVPZ;;TiVsod4-^5>pf4>QZmqQ&3MgiPKXco5v>W%Z`~Lx8x6Ut)p4Y@O?IOZ= z5II@P@fi~*l^X&@Ixvbklh`PVLdTv<{}d$0)4(xub?nF>;W=z!EH;5sPwRkFUY}k- zCa0k{={Z%9^;lU+*gq#>e}*ueL&D|8&QBV#6G+(8(RFG4mDG1+BRO*Miz@4_S!U4k z^e=M#&Z};%1qv@a=C;ovvI?zuxd(0Y-w&)qWCO#5<7MCx;KjvrmZm&^QZ$2Gj0fOI z7SM{E$tb=)Ql=eSHhaM_W4-(SpK#xKwd0-c!Q_?3Hwv@ z`%_4NId*>1NH~Gmo*UU3q$OC4fXGmq#fvuph!O$Uvyg!6^MH+ zB5yz?Mb=`>QB=C4etu#U)!4%F)G|l!k=yV^fU!)wizx3#k(CAJQZ>D1fq~;LR88}k z*LOQP3CpIcWlD^J`S~gOW)A5bCk#7;GJ%+7gq>y5?M)(flF&{O_9wCP%LwPE40amA zp7M+`h_D9T>el#Wf(q4WGd2&LbX#k!wLnqukURi9hU&@R4BUgr9L5}Lbi~FBX~`ZS z0SFb9Nu}Un#&wbvAHgDK0_k+!M7G-22f1KuIFIx(gjSvApkl}@!2NhPI&A&~US+bL z*G>ewT|*~0PiRlj>2wHX60ys$cAC&mAu@$!O2Y0m;lwmnro{HA3Fjw~a5@O*CXoIV zhR%>4G=cHqHwQ0odnsCLfnr=X>$aECBzVVrHg?=m2P4dO7)@%V96Tz4V@v>I1%eLr zdQBJq7PulJm$0G5h9NebfPNPVJBF}_kxp{SJd$->M6uERY%87rL=UDXA@m3~1;N@E zu=X;c?GefpVyCd-G+{V}uncP_3C$E%mSOD_)=bgwPAf$KI3qh=fldGu-6n?; zjVO2-;Via;gjTS260s9l+eP|4usx*Tg|K51iD1*@GZ-|Py#q~dS9fXmx-i+(*%0M6 zg)oD)r?Ga5&`uD_v;swEN`XSAu`*3)mtn&dSi2nCSx#3hRuJh~LOY8MUm>)8O@_~% zMEYO%|D59FXey7Ly!!FaA($7uOzGl9W*;2a`n zuqGf33|6KPnZ(i+8}_i$L*^%ta01)!8f*_^J6P#JXf%qd1sVp;Q*CgIgz|+zucvv6 z>WIPu=Ll^`7)}$~X{DV8z%Yf#GC~(gh4s<6xi~Td!2VO+v zd8{>bB*4m~uEOad!335`Yl$^=$ASZlD>5{7*OJ4X;+#+nQC zxroR-#>`_(h%q6Uc`*HYkyA@OwblZ~5(z-e=yReA%T}d=qRR9Al2yYU&{+*SzP&zz zg^2(rCcrkLJ9N^R0!5&kIO>T>ke+h-!Gv?N6GC@_4inhE_9fVG0_pc$Zli}t#~6ar zYpBhbyMb>|Rwmo+Vjg=GZas{wTn)2V%D_ilQN$c@nNIgSrqjd91f8&_d3v$*`xX(4 zG11n?&{tq+9Y$*{P+UL31VwaCqXT8JA(M7UcTxu)kx5+9)p$lS^#ckz9nDeLrd3b8 zh{#H;7_99mEu)}-NDmuM(iIn3NDmuKflOdKJwiJnA_^Fxoy7KgNPj~66v9c2?IL2b z`t0T=2Nct#KoJC(=g(--!k&G|>eUeTJrUGcOlKYwUUAdvqy>W3TDwtzVmx${!4Ond zClxBk7L7`~aAhz;a#W7DWna5b%f` za)X8%66Ib%AzJk`(Sd%WWAzbU!AgLbE@G9_7o!n_NDpf!kst;XC@|PyVo*veLC@td zCb4#sfGMq>ViM`jN+_2Rd)`$}^-S1bhMgC%YeA+_nfhXzn8G}JOvjeqaR29wMILktghAvfwd_nV@OIouCy*uOQM_ z>PUK6JAv3qEE+vnJBbhhMGs-h^;t|HqBKzjtvoW5gWWL(tSZJ zFPi?`QSAH!;Mr(76+mYK=I7hHx3$(NeYrA*!&UHr(~PO^-7VoJHi4_D)#m@NtoXOt{~7vBv!#EuR&cauJ1#JOYE25NqcU zxr{aE3FSq^p2PAAp}l~W8H5m_@7{YBUwyA$4^BRZ2}9(zLon9@Mr*CLK(X*<(TbbP zsA}yo;M>4|2DTw`8^+v@3K(w6`1LaIFeN<{X3YH`CQuoVW}~P>jJX2L5(FKBPEVr+ z(WpV}l+sB-6lL^)E@A^hu~^$jY#)(1LOTOirCF?<$Cx<+xk5Mq13Nl0(oT_Ut+f^? zt}19;0iH$0>h1@=gf@lkLFAx|I1XXVesz{*-Pw{HUR0?*+t4~)IC)&FK{s!M{(RHV zZh<}lbBLM2m`e_QCJ}K-?$BT{SSwgW!x_^@f_bdWxke62ZLPJ|S_>4{rG;*L4xQiq z9dtU|W_0k*9S%5l0b7A}rE0N~&Phl?RMNnVftf2XHwV25n4cT>qht+hbWT1|^U;|%aU;A`kijjh0~Aa|qv0h@spz@)m| zXjp+HF=8BUI0)eUdF`dxvJI|WZoj40T5GKZiX~)c(W;>bfiD32fW0ol(42q{7#vv@x>A+kcUU(i>tZWm$t+m!#3lvM#W`T#?1|nO4J2lea0I(Zlb^@#rrfeR#&uuHv>Zx}EM-Vv$W1^ofU4n num_blocks,in_nc -> in_channels + +### docstring 规范 + +#### 为什么要写 docstring + +docstring 是对一个类、一个函数功能与 API 接口的详细描述,有两个功能,一是帮助其他开发者了解代码功能,方便 debug 和复用代码;二是在 Readthedocs 文档中自动生成相关的 API reference 文档,帮助不了解源代码的社区用户使用相关功能。 + +#### 如何写 docstring + +与注释不同,一份规范的 docstring 有着严格的格式要求,以便于 Python 解释器以及 sphinx 进行文档解析,详细的 docstring 约定参见 [PEP 257](https://www.python.org/dev/peps/pep-0257/)。此处以例子的形式介绍各种文档的标准格式,参考格式为 [Google 风格](https://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/python_style_rules/#comments)。 + +1. 模块文档 + + 代码风格规范推荐为每一个模块(即 Python 文件)编写一个 docstring,但目前 OpenMMLab 项目大部分没有此类 docstring,因此不做硬性要求。 + + ```python + """A one line summary of the module or program, terminated by a period. + + Leave one blank line. The rest of this docstring should contain an + overall description of the module or program. Optionally, it may also + contain a brief description of exported classes and functions and/or usage + examples. + + Typical usage example: + + foo = ClassFoo() + bar = foo.FunctionBar() + """ + ``` + +2. 类文档 + + 类文档是我们最常需要编写的,此处,按照 OpenMMLab 的惯例,我们使用了与 Google 风格不同的写法。如下例所示,文档中没有使用 Attributes 描述类属性,而是使用 Args 描述 __init__ 函数的参数。 + + 在 Args 中,遵照 `parameter (type): Description.` 的格式,描述每一个参数类型和功能。其中,多种类型可使用 `(float or str)` 的写法,可以为 None 的参数可以写为 `(int, optional)`。 + + ```python + class BaseRunner(metaclass=ABCMeta): + """The base class of Runner, a training helper for PyTorch. + + All subclasses should implement the following APIs: + + - ``run()`` + - ``train()`` + - ``val()`` + - ``save_checkpoint()`` + + Args: + model (:obj:`torch.nn.Module`): The model to be run. + batch_processor (callable, optional): A callable method that process + a data batch. The interface of this method should be + ``batch_processor(model, data, train_mode) -> dict``. + Defaults to None. + optimizer (dict or :obj:`torch.optim.Optimizer`, optional): It can be + either an optimizer (in most cases) or a dict of optimizers + (in models that requires more than one optimizer, e.g., GAN). + Defaults to None. + work_dir (str, optional): The working directory to save checkpoints + and logs. Defaults to None. + logger (:obj:`logging.Logger`): Logger used during training. + Defaults to None. (The default value is just for backward + compatibility) + meta (dict, optional): A dict records some import information such as + environment info and seed, which will be logged in logger hook. + Defaults to None. + max_epochs (int, optional): Total training epochs. Defaults to None. + max_iters (int, optional): Total training iterations. Defaults to None. + """ + + def __init__(self, + model, + batch_processor=None, + optimizer=None, + work_dir=None, + logger=None, + meta=None, + max_iters=None, + max_epochs=None): + ... + ``` + + 另外,在一些算法实现的主体类中,建议加入原论文的链接;如果参考了其他开源代码的实现,则应加入 modified from,而如果是直接复制了其他代码库的实现,则应加入 copied from ,并注意源码的 License。如有必要,也可以通过 .. math:: 来加入数学公式 + + ```python + # 参考实现 + # This func is modified from `detectron2 + # `_. + + # 复制代码 + # This code was copied from the `ubelt + # library`_. + + # 引用论文 & 添加公式 + class LabelSmoothLoss(nn.Module): + r"""Initializer for the label smoothed cross entropy loss. + + Refers to `Rethinking the Inception Architecture for Computer Vision + `_. + + This decreases gap between output scores and encourages generalization. + Labels provided to forward can be one-hot like vectors (NxC) or class + indices (Nx1). + And this accepts linear combination of one-hot like labels from mixup or + cutmix except multi-label task. + + Args: + label_smooth_val (float): The degree of label smoothing. + num_classes (int, optional): Number of classes. Defaults to None. + mode (str): Refers to notes, Options are "original", "classy_vision", + "multi_label". Defaults to "classy_vision". + reduction (str): The method used to reduce the loss. + Options are "none", "mean" and "sum". Defaults to 'mean'. + loss_weight (float): Weight of the loss. Defaults to 1.0. + + Note: + if the ``mode`` is "original", this will use the same label smooth + method as the original paper as: + + .. math:: + (1-\epsilon)\delta_{k, y} + \frac{\epsilon}{K} + + where :math:`\epsilon` is the ``label_smooth_val``, :math:`K` is + the ``num_classes`` and :math:`\delta_{k,y}` is Dirac delta, + which equals 1 for k=y and 0 otherwise. + + if the ``mode`` is "classy_vision", this will use the same label + smooth method as the `facebookresearch/ClassyVision + `_ repo as: + + .. math:: + \frac{\delta_{k, y} + \epsilon/K}{1+\epsilon} + + if the ``mode`` is "multi_label", this will accept labels from + multi-label task and smoothing them as: + + .. math:: + (1-2\epsilon)\delta_{k, y} + \epsilon + ``` + +```{note} +注意 \`\`here\`\`、\`here\`、"here" 三种引号功能是不同。 + +在 reStructured 语法中,\`\`here\`\` 表示一段代码;\`here\` 表示斜体;"here" 无特殊含义,一般可用来表示字符串。其中 \`here\` 的用法与 Markdown 中不同,需要多加留意。 +另外还有 :obj:\`type\` 这种更规范的表示类的写法,但鉴于长度,不做特别要求,一般仅用于表示非常用类型。 +``` + +3. 方法(函数)文档 + + 函数文档与类文档的结构基本一致,但需要加入返回值文档。对于较为复杂的函数和类,可以使用 Examples 字段加入示例;如果需要对参数加入一些较长的备注,可以加入 Note 字段进行说明。 + + 对于使用较为复杂的类或函数,比起看大段大段的说明文字和参数文档,添加合适的示例更能帮助用户迅速了解其用法。需要注意的是,这些示例最好是能够直接在 Python 交互式环境中运行的,并给出一些相对应的结果。如果存在多个示例,可以使用注释简单说明每段示例,也能起到分隔作用。 + + ```python + def import_modules_from_strings(imports, allow_failed_imports=False): + """Import modules from the given list of strings. + + Args: + imports (list | str | None): The given module names to be imported. + allow_failed_imports (bool): If True, the failed imports will return + None. Otherwise, an ImportError is raise. Defaults to False. + + Returns: + List[module] | module | None: The imported modules. + All these three lines in docstring will be compiled into the same + line in readthedocs. + + Examples: + >>> osp, sys = import_modules_from_strings( + ... ['os.path', 'sys']) + >>> import os.path as osp_ + >>> import sys as sys_ + >>> assert osp == osp_ + >>> assert sys == sys_ + """ + ... + ``` + + 如果函数接口在某个版本发生了变化,需要在 docstring 中加入相关的说明,必要时添加 Note 或者 Warning 进行说明,例如: + + ```python + class CheckpointHook(Hook): + """Save checkpoints periodically. + + Args: + out_dir (str, optional): The root directory to save checkpoints. If + not specified, ``runner.work_dir`` will be used by default. If + specified, the ``out_dir`` will be the concatenation of + ``out_dir`` and the last level directory of ``runner.work_dir``. + Defaults to None. `Changed in version 1.3.15.` + file_client_args (dict, optional): Arguments to instantiate a + FileClient. See :class:`mmcv.fileio.FileClient` for details. + Defaults to None. `New in version 1.3.15.` + + Warning: + Before v1.3.15, the ``out_dir`` argument indicates the path where the + checkpoint is stored. However, in v1.3.15 and later, ``out_dir`` + indicates the root directory and the final path to save checkpoint is + the concatenation of out_dir and the last level directory of + ``runner.work_dir``. Suppose the value of ``out_dir`` is + "/path/of/A" and the value of ``runner.work_dir`` is "/path/of/B", + then the final path will be "/path/of/A/B". + ``` + + 如果参数或返回值里带有需要展开描述字段的 dict,则应该采用如下格式: + + ```python + def func(x): + r""" + Args: + x (None): A dict with 2 keys, ``padded_targets``, and ``targets``. + + - ``targets`` (list[Tensor]): A list of tensors. + Each tensor has the shape of :math:`(T_i)`. Each + element is the index of a character. + - ``padded_targets`` (Tensor): A tensor of shape :math:`(N)`. + Each item is the length of a word. + + Returns: + dict: A dict with 2 keys, ``padded_targets``, and ``targets``. + + - ``targets`` (list[Tensor]): A list of tensors. + Each tensor has the shape of :math:`(T_i)`. Each + element is the index of a character. + - ``padded_targets`` (Tensor): A tensor of shape :math:`(N)`. + Each item is the length of a word. + """ + return x + ``` + +```{important} +为了生成 readthedocs 文档,文档的编写需要按照 ReStructrued 文档格式,否则会产生文档渲染错误,在提交 PR 前,最好生成并预览一下文档效果。 +语法规范参考: + +- [reStructuredText Primer - Sphinx documentation](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#) +- [Example Google Style Python Docstrings ‒ napoleon 0.7 documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html#example-google) +``` + +### 注释规范 + +#### 为什么要写注释 + +对于一个开源项目,团队合作以及社区之间的合作是必不可少的,因而尤其要重视合理的注释。不写注释的代码,很有可能过几个月自己也难以理解,造成额外的阅读和修改成本。 + +#### 如何写注释 + +最需要写注释的是代码中那些技巧性的部分。如果你在下次代码审查的时候必须解释一下,那么你应该现在就给它写注释。对于复杂的操作,应该在其操作开始前写上若干行注释。对于不是一目了然的代码,应在其行尾添加注释。 +—— Google 开源项目风格指南 + +```python +# We use a weighted dictionary search to find out where i is in +# the array. We extrapolate position based on the largest num +# in the array and the array size and then do binary search to +# get the exact number. +if i & (i-1) == 0: # True if i is 0 or a power of 2. +``` + +为了提高可读性, 注释应该至少离开代码2个空格. +另一方面, 绝不要描述代码. 假设阅读代码的人比你更懂Python, 他只是不知道你的代码要做什么. +—— Google 开源项目风格指南 + +```python +# Wrong: +# Now go through the b array and make sure whenever i occurs +# the next element is i+1 + +# Wrong: +if i & (i-1) == 0: # True if i bitwise and i-1 is 0. +``` + +在注释中,可以使用 Markdown 语法,因为开发人员通常熟悉 Markdown 语法,这样可以便于交流理解,如可使用单反引号表示代码和变量(注意不要和 docstring 中的 ReStructured 语法混淆) + +```python +# `_reversed_padding_repeated_twice` is the padding to be passed to +# `F.pad` if needed (e.g., for non-zero padding types that are +# implemented as two ops: padding + conv). `F.pad` accepts paddings in +# reverse order than the dimension. +self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2) +``` + +#### 注释示例 + +1. 出自 `mmcv/utils/registry.py`,对于较为复杂的逻辑结构,通过注释,明确了优先级关系。 + + ```python + # self.build_func will be set with the following priority: + # 1. build_func + # 2. parent.build_func + # 3. build_from_cfg + if build_func is None: + if parent is not None: + self.build_func = parent.build_func + else: + self.build_func = build_from_cfg + else: + self.build_func = build_func + ``` + +2. 出自 `mmcv/runner/checkpoint.py`,对于 bug 修复中的一些特殊处理,可以附带相关的 issue 链接,帮助其他人了解 bug 背景。 + + ```python + def _save_ckpt(checkpoint, file): + # The 1.6 release of PyTorch switched torch.save to use a new + # zipfile-based file format. It will cause RuntimeError when a + # checkpoint was saved in high version (PyTorch version>=1.6.0) but + # loaded in low version (PyTorch version<1.6.0). More details at + # https://github.com/open-mmlab/mmpose/issues/904 + if digit_version(TORCH_VERSION) >= digit_version('1.6.0'): + torch.save(checkpoint, file, _use_new_zipfile_serialization=False) + else: + torch.save(checkpoint, file) + ``` + +### 类型注解 + +#### 为什么要写类型注解 + +类型注解是对函数中变量的类型做限定或提示,为代码的安全性提供保障、增强代码的可读性、避免出现类型相关的错误。 +Python 没有对类型做强制限制,类型注解只起到一个提示作用,通常你的 IDE 会解析这些类型注解,然后在你调用相关代码时对类型做提示。另外也有类型注解检查工具,这些工具会根据类型注解,对代码中可能出现的问题进行检查,减少 bug 的出现。 +需要注意的是,通常我们不需要注释模块中的所有函数: + +1. 公共的 API 需要注释 +2. 在代码的安全性,清晰性和灵活性上进行权衡是否注释 +3. 对于容易出现类型相关的错误的代码进行注释 +4. 难以理解的代码请进行注释 +5. 若代码中的类型已经稳定,可以进行注释. 对于一份成熟的代码,多数情况下,即使注释了所有的函数,也不会丧失太多的灵活性. + +#### 如何写类型注解 + +1. 函数 / 方法类型注解,通常不对 self 和 cls 注释。 + + ```python + from typing import Optional, List, Tuple + + # 全部位于一行 + def my_method(self, first_var: int) -> int: + pass + + # 另起一行 + def my_method( + self, first_var: int, + second_var: float) -> Tuple[MyLongType1, MyLongType1, MyLongType1]: + pass + + # 单独成行(具体的应用场合与行宽有关,建议结合 yapf 自动化格式使用) + def my_method( + self, first_var: int, second_var: float + ) -> Tuple[MyLongType1, MyLongType1, MyLongType1]: + pass + + # 引用尚未被定义的类型 + class MyClass: + def __init__(self, + stack: List["MyClass"]) -> None: + pass + ``` + + 注:类型注解中的类型可以是 Python 内置类型,也可以是自定义类,还可以使用 Python 提供的 wrapper 类对类型注解进行装饰,一些常见的注解如下: + + ```python + # 数值类型 + from numbers import Number + + # 可选类型,指参数可以为 None + from typing import Optional + def foo(var: Optional[int] = None): + pass + + # 联合类型,指同时接受多种类型 + from typing import Union + def foo(var: Union[float, str]): + pass + + from typing import Sequence # 序列类型 + from typing import Iterable # 可迭代类型 + from typing import Any # 任意类型 + from typing import Callable # 可调用类型 + + from typing import List, Dict # 列表和字典的泛型类型 + from typing import Tuple # 元组的特殊格式 + # 虽然在 Python 3.9 中,list, tuple 和 dict 本身已支持泛型,但为了支持之前的版本 + # 我们在进行类型注解时还是需要使用 List, Tuple, Dict 类型 + # 另外,在对参数类型进行注解时,尽量使用 Sequence & Iterable & Mapping + # List, Tuple, Dict 主要用于返回值类型注解 + # 参见 https://docs.python.org/3/library/typing.html#typing.List + ``` + +2. 变量类型注解,一般用于难以直接推断其类型时 + + ```python + # Recommend: 带类型注解的赋值 + a: Foo = SomeUndecoratedFunction() + a: List[int]: [1, 2, 3] # List 只支持单一类型泛型,可使用 Union + b: Tuple[int, int] = (1, 2) # 长度固定为 2 + c: Tuple[int, ...] = (1, 2, 3) # 变长 + d: Dict[str, int] = {'a': 1, 'b': 2} + + # Not Recommend:行尾类型注释 + # 虽然这种方式被写在了 Google 开源指南中,但这是一种为了支持 Python 2.7 版本 + # 而补充的注释方式,鉴于我们只支持 Python 3, 为了风格统一,不推荐使用这种方式。 + a = SomeUndecoratedFunction() # type: Foo + a = [1, 2, 3] # type: List[int] + b = (1, 2, 3) # type: Tuple[int, ...] + c = (1, "2", 3.5) # type: Tuple[int, Text, float] + ``` + +3. 泛型 + + 上文中我们知道,typing 中提供了 list 和 dict 的泛型类型,那么我们自己是否可以定义类似的泛型呢? + + ```python + from typing import TypeVar, Generic + + KT = TypeVar('KT') + VT = TypeVar('VT') + + class Mapping(Generic[KT, VT]): + def __init__(self, data: Dict[KT, VT]): + self._data = data + + def __getitem__(self, key: KT) -> VT: + return self._data[key] + ``` + + 使用上述方法,我们定义了一个拥有泛型能力的映射类,实际用法如下: + + ```python + mapping = Mapping[str, float]({'a': 0.5}) + value: float = example['a'] + ``` + + 另外,我们也可以利用 TypeVar 在函数签名中指定联动的多个类型: + + ```python + from typing import TypeVar, List + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + + def repeat(x: T, n: int) -> List[T]: + """Return a list containing n references to x.""" + return [x]*n + + + def longest(x: A, y: A) -> A: + """Return the longest of two strings.""" + return x if len(x) >= len(y) else y + ``` + +更多关于类型注解的写法请参考 [typing](https://docs.python.org/3/library/typing.html)。 + +#### 类型注解检查工具 + +[mypy](https://mypy.readthedocs.io/en/stable/) 是一个 Python 静态类型检查工具。根据你的类型注解,mypy 会检查传参、赋值等操作是否符合类型注解,从而避免可能出现的 bug。 + +例如如下的一个 Python 脚本文件 test.py: + +```python +def foo(var: int) -> float: + return float(var) + +a: str = foo('2.0') +b: int = foo('3.0') # type: ignore +``` + +运行 mypy test.py 可以得到如下检查结果,分别指出了第 4 行在函数调用和返回值赋值两处类型错误。而第 5 行同样存在两个类型错误,由于使用了 type: ignore 而被忽略了,只有部分特殊情况可能需要此类忽略。 + +``` +test.py:4: error: Incompatible types in assignment (expression has type "float", variable has type "int") +test.py:4: error: Argument 1 to "foo" has incompatible type "str"; expected "int" +Found 2 errors in 1 file (checked 1 source file) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/contributing.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/contributing.md new file mode 100644 index 000000000..e3aa781a5 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/contributing.md @@ -0,0 +1,278 @@ +## 贡献代码 + +欢迎加入 MMCV 社区,我们致力于打造最前沿的计算机视觉基础库,我们欢迎任何类型的贡献,包括但不限于 + +**修复错误** + +修复代码实现错误的步骤如下: + +1. 如果提交的代码改动较大,建议先提交 issue,并正确描述 issue 的现象、原因和复现方式,讨论后确认修复方案。 +2. 修复错误并补充相应的单元测试,提交拉取请求。 + +**新增功能或组件** + +1. 如果新功能或模块涉及较大的代码改动,建议先提交 issue,确认功能的必要性。 +2. 实现新增功能并添单元测试,提交拉取请求。 + +**文档补充** + +修复文档可以直接提交拉取请求 + +添加文档或将文档翻译成其他语言步骤如下 + +1. 提交 issue,确认添加文档的必要性。 +2. 添加文档,提交拉取请求。 + +### 拉取请求工作流 + +如果你对拉取请求不了解,没关系,接下来的内容将会从零开始,一步一步地指引你如何创建一个拉取请求。如果你想深入了解拉取请求的开发模式,可以参考 github [官方文档](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests) + +#### 1. 复刻仓库 + +当你第一次提交拉取请求时,先复刻 OpenMMLab 原代码库,点击 GitHub 页面右上角的 **Fork** 按钮,复刻后的代码库将会出现在你的 GitHub 个人主页下。 + + + +将代码克隆到本地 + +```shell +git clone git@github.com:{username}/mmcv.git +``` + +添加原代码库为上游代码库 + +```bash +git remote add upstream git@github.com:open-mmlab/mmcv +``` + +检查 remote 是否添加成功,在终端输入 `git remote -v` + +```bash +origin git@github.com:{username}/mmcv.git (fetch) +origin git@github.com:{username}/mmcv.git (push) +upstream git@github.com:open-mmlab/mmcv (fetch) +upstream git@github.com:open-mmlab/mmcv (push) +``` + +```{note} +这里对 origin 和 upstream 进行一个简单的介绍,当我们使用 git clone 来克隆代码时,会默认创建一个 origin 的 remote,它指向我们克隆的代码库地址,而 upstream 则是我们自己添加的,用来指向原始代码库地址。当然如果你不喜欢他叫 upstream,也可以自己修改,比如叫 open-mmlab。我们通常向 origin 提交代码(即 fork 下来的远程仓库),然后向 upstream 提交一个 pull request。如果提交的代码和最新的代码发生冲突,再从 upstream 拉取最新的代码,和本地分支解决冲突,再提交到 origin。 +``` + +#### 2. 配置 pre-commit + +在本地开发环境中,我们使用 [pre-commit](https://pre-commit.com/#intro) 来检查代码风格,以确保代码风格的统一。在提交代码,需要先安装 pre-commit(需要在 MMCV 目录下执行): + +```shell +pip install -U pre-commit +pre-commit install +``` + +检查 pre-commit 是否配置成功,并安装 `.pre-commit-config.yaml` 中的钩子: + +```shell +pre-commit run --all-files +``` + + + + + +```{note} +如果你是中国用户,由于网络原因,可能会出现安装失败的情况,这时可以使用国内源 + +pre-commit install -c .pre-commit-config-zh-cn.yaml + +pre-commit run --all-files -c .pre-commit-config-zh-cn.yaml +``` + +如果安装过程被中断,可以重复执行 `pre-commit run ...` 继续安装。 + +如果提交的代码不符合代码风格规范,pre-commit 会发出警告,并自动修复部分错误。 + + + +如果我们想临时绕开 pre-commit 的检查提交一次代码,可以在 `git commit` 时加上 `--no-verify`(需要保证最后推送至远程仓库的代码能够通过 pre-commit 检查)。 + +```shell +git commit -m "xxx" --no-verify +``` + +#### 3. 创建开发分支 + +安装完 pre-commit 之后,我们需要基于 master 创建开发分支,建议的分支命名规则为 `username/pr_name`。 + +```shell +git checkout -b yhc/refactor_contributing_doc +``` + +在后续的开发中,如果本地仓库的 master 分支落后于 upstream 的 master 分支,我们需要先拉取 upstream 的代码进行同步,再执行上面的命令 + +```shell +git pull upstream master +``` + +#### 4. 提交代码并在本地通过单元测试 + +- MMCV 引入了 mypy 来做静态类型检查,以增加代码的鲁棒性。因此我们在提交代码时,需要补充 Type Hints。具体规则可以参考[教程](https://zhuanlan.zhihu.com/p/519335398)。 + +- 提交的代码同样需要通过单元测试 + + ```shell + # 通过全量单元测试 + pytest tests + + # 我们需要保证提交的代码能够通过修改模块的单元测试,以 runner 为例 + pytest tests/test_runner/test_runner.py + ``` + + 如果你由于缺少依赖无法运行修改模块的单元测试,可以参考[指引-单元测试](#单元测试) + +- 如果修改/添加了文档,参考[指引](#文档渲染)确认文档渲染正常。 + +#### 5. 推送代码到远程 + +代码通过单元测试和 pre-commit 检查后,将代码推送到远程仓库,如果是第一次推送,可以在 `git push` 后加上 `-u` 参数以关联远程分支 + +```shell +git push -u origin {branch_name} +``` + +这样下次就可以直接使用 `git push` 命令推送代码了,而无需指定分支和远程仓库。 + +#### 6. 提交拉取请求(PR) + +(1) 在 GitHub 的 Pull request 界面创建拉取请求 + + +(2) 根据指引修改 PR 描述,以便于其他开发者更好地理解你的修改 + + + +描述规范详见[拉取请求规范](#拉取请求规范) + +  + +**注意事项** + +(a) PR 描述应该包含修改理由、修改内容以及修改后带来的影响,并关联相关 Issue(具体方式见[文档](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue)) + +(b) 如果是第一次为 OpenMMLab 做贡献,需要签署 CLA + + + +(c) 检查提交的 PR 是否通过 CI(集成测试) + + + +MMCV 会在不同的平台(Linux、Window、Mac),基于不同版本的 Python、PyTorch、CUDA 对提交的代码进行单元测试,以保证代码的正确性,如果有任何一个没有通过,我们可点击上图中的 `Details` 来查看具体的测试信息,以便于我们修改代码。 + +(3) 如果 PR 通过了 CI,那么就可以等待其他开发者的 review,并根据 reviewer 的意见,修改代码,并重复 [4](#4-提交代码并本地通过单元测试)-[5](#5-推送代码到远程) 步骤,直到 reviewer 同意合入 PR。 + + + +所有 reviewer 同意合入 PR 后,我们会尽快将 PR 合并到主分支。 + +#### 7. 解决冲突 + +随着时间的推移,我们的代码库会不断更新,这时候,如果你的 PR 与主分支存在冲突,你需要解决冲突,解决冲突的方式有两种: + +```shell +git fetch --all --prune +git rebase upstream/master +``` + +或者 + +```shell +git fetch --all --prune +git merge upstream/master +``` + +如果你非常善于处理冲突,那么可以使用 rebase 的方式来解决冲突,因为这能够保证你的 commit log 的整洁。如果你不太熟悉 `rebase` 的使用,那么可以使用 `merge` 的方式来解决冲突。 + +### 指引 + +#### 单元测试 + +如果你无法正常执行部分模块的单元测试,例如 [video](https://github.com/open-mmlab/mmcv/tree/master/mmcv/video) 模块,可能是你的当前环境没有安装以下依赖 + +```shell +# Linux +sudo apt-get update -y +sudo apt-get install -y libturbojpeg +sudo apt-get install -y ffmpeg + +# Windows +conda install ffmpeg +``` + +在提交修复代码错误或新增特性的拉取请求时,我们应该尽可能的让单元测试覆盖所有提交的代码,计算单元测试覆盖率的方法如下 + +```shell +python -m coverage run -m pytest /path/to/test_file +python -m coverage html +# check file in htmlcov/index.html +``` + +#### 文档渲染 + +在提交修复代码错误或新增特性的拉取请求时,可能会需要修改/新增模块的 docstring。我们需要确认渲染后的文档样式是正确的。 +本地生成渲染后的文档的方法如下 + +```shell +pip install -r requirements/docs.txt +cd docs/zh_cn/ +# or docs/en +make html +# check file in ./docs/zh_cn/_build/html/index.html +``` + +### 代码风格 + +#### Python + +[PEP8](https://www.python.org/dev/peps/pep-0008/) 作为 OpenMMLab 算法库首选的代码规范,我们使用以下工具检查和格式化代码 + +- [flake8](https://github.com/PyCQA/flake8): Python 官方发布的代码规范检查工具,是多个检查工具的封装 +- [isort](https://github.com/timothycrosley/isort): 自动调整模块导入顺序的工具 +- [yapf](https://github.com/google/yapf): Google 发布的代码规范检查工具 +- [codespell](https://github.com/codespell-project/codespell): 检查单词拼写是否有误 +- [mdformat](https://github.com/executablebooks/mdformat): 检查 markdown 文件的工具 +- [docformatter](https://github.com/myint/docformatter): 格式化 docstring 的工具 + +yapf 和 isort 的配置可以在 [setup.cfg](./setup.cfg) 找到 + +通过配置 [pre-commit hook](https://pre-commit.com/) ,我们可以在提交代码时自动检查和格式化 `flake8`、`yapf`、`isort`、`trailing whitespaces`、`markdown files`, +修复 `end-of-files`、`double-quoted-strings`、`python-encoding-pragma`、`mixed-line-ending`,调整 `requirments.txt` 的包顺序。 +pre-commit 钩子的配置可以在 [.pre-commit-config](./.pre-commit-config.yaml) 找到。 + +pre-commit 具体的安装使用方式见[拉取请求](#2-配置-pre-commit)。 + +更具体的规范请参考 [OpenMMLab 代码规范](code_style.md)。 + +#### C++ and CUDA + +C++ 和 CUDA 的代码规范遵从 [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html) + +### 拉取请求规范 + +1. 使用 [pre-commit hook](https://pre-commit.com),尽量减少代码风格相关问题 + +2. 一个`拉取请求`对应一个短期分支 + +3. 粒度要细,一个`拉取请求`只做一件事情,避免超大的`拉取请求` + + - Bad:实现 Faster R-CNN + - Acceptable:给 Faster R-CNN 添加一个 box head + - Good:给 box head 增加一个参数来支持自定义的 conv 层数 + +4. 每次 Commit 时需要提供清晰且有意义 commit 信息 + +5. 提供清晰且有意义的`拉取请求`描述 + + - 标题写明白任务名称,一般格式:\[Prefix\] Short description of the pull request (Suffix) + - prefix: 新增功能 \[Feature\], 修 bug \[Fix\], 文档相关 \[Docs\], 开发中 \[WIP\] (暂时不会被review) + - 描述里介绍`拉取请求`的主要修改内容,结果,以及对其他部分的影响, 参考`拉取请求`模板 + - 关联相关的`议题` (issue) 和其他`拉取请求` + +6. 如果引入了其他三方库,或借鉴了三方库的代码,请确认他们的许可证和 mmcv 兼容,并在借鉴的代码上补充 `This code is inspired from http://` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/pr.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/pr.md new file mode 100644 index 000000000..427fdf9e4 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/community/pr.md @@ -0,0 +1,3 @@ +## 拉取请求 + +本文档的内容已迁移到[贡献指南](contributing.md)。 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/compatibility.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/compatibility.md new file mode 100644 index 000000000..9f8bbfa93 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/compatibility.md @@ -0,0 +1,226 @@ +### v2.0.0rc1 + +OpenMMLab 团队于 2022 年 9 月 1 日在世界人工智能大会发布了新一代训练引擎 [MMEngine](https://github.com/open-mmlab/mmengine),它是一个用于训练深度学习模型的基础库。相比于 MMCV,它提供了更高级且通用的训练器、接口更加统一的开放架构以及可定制化程度更高的训练流程。 + +与此同时,MMCV 发布了 [2.x](https://github.com/open-mmlab/mmcv/tree/2.x) 预发布版本并将于 2023 年 1 月 1 日发布 2.x 正式版本。在 2.x 版本中,它有以下变化: + +(1)删除了以下组件: + +- `mmcv.fileio` 模块,删除于 PR [#2179](https://github.com/open-mmlab/mmcv/pull/2179)。在需要使用 FileIO 的地方使用 mmengine 中的 FileIO 模块 +- `mmcv.runner`、`mmcv.parallel`、`mmcv.engine` 和 `mmcv.device`,删除于 PR [#2216](https://github.com/open-mmlab/mmcv/pull/2216) +- `mmcv.utils` 的所有类(例如 `Config` 和 `Registry`)和大部分函数,删除于 PR [#2217](https://github.com/open-mmlab/mmcv/pull/2217),只保留少数和 mmcv 相关的函数 +- `mmcv.onnex`、`mmcv.tensorrt` 模块以及相关的函数,删除于 PR [#2225](https://github.com/open-mmlab/mmcv/pull/2225) + +(2)新增了 [`mmcv.transforms`](https://github.com/open-mmlab/mmcv/tree/2.x/mmcv/transforms) 数据变换模块 + +(3)在 PR [#2235](https://github.com/open-mmlab/mmcv/pull/2235) 中将包名 **mmcv** 重命名为 **mmcv-lite**、 **mmcv-full** 重命名为 **mmcv**。此外,将环境变量 `MMCV_WITH_OPS` 的默认值从 0 改为 1 + + + + + + + + + + + + +
    MMCV < 2.0MMCV >= 2.0
    + +```bash +# 包含算子,因为 mmcv-full 的最高版本小于 2.0.0,所以无需加版本限制 +pip install mmcv-full -f xxxx + +# 不包含算子 +pip install "mmcv < 2.0.0" +``` + + + +```bash +# 包含算子 +pip install "mmcv>=2.0.0rc1" -f xxxx + +# 不包含算子,因为 mmcv-lite 的起始版本为 2.0.0rc1,所以无需加版本限制 +pip install mmcv-lite +``` + +
    + +### v1.3.18 + +部分自定义算子对于不同的设备有不同实现,为此添加的大量宏命令与类型检查使得代码变得难以维护。例如: + +```c++ + if (input.device().is_cuda()) { +#ifdef MMCV_WITH_CUDA + CHECK_CUDA_INPUT(input); + CHECK_CUDA_INPUT(rois); + CHECK_CUDA_INPUT(output); + CHECK_CUDA_INPUT(argmax_y); + CHECK_CUDA_INPUT(argmax_x); + + roi_align_forward_cuda(input, rois, output, argmax_y, argmax_x, + aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); +#else + AT_ERROR("RoIAlign is not compiled with GPU support"); +#endif + } else { + CHECK_CPU_INPUT(input); + CHECK_CPU_INPUT(rois); + CHECK_CPU_INPUT(output); + CHECK_CPU_INPUT(argmax_y); + CHECK_CPU_INPUT(argmax_x); + roi_align_forward_cpu(input, rois, output, argmax_y, argmax_x, + aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); + } +``` + +为此我们设计了注册与分发的机制以更好的管理这些算子实现。 + +```c++ + +void ROIAlignForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned); + +void roi_align_forward_cuda(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned) { + ROIAlignForwardCUDAKernelLauncher( + input, rois, output, argmax_y, argmax_x, aligned_height, aligned_width, + spatial_scale, sampling_ratio, pool_mode, aligned); +} + +// 注册算子的cuda实现 +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned); +REGISTER_DEVICE_IMPL(roi_align_forward_impl, CUDA, roi_align_forward_cuda); + +// roi_align.cpp +// 使用dispatcher根据参数中的Tensor device类型对实现进行分发 +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output, + Tensor argmax_y, Tensor argmax_x, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, + int pool_mode, bool aligned) { + DISPATCH_DEVICE_IMPL(roi_align_forward_impl, input, rois, output, argmax_y, + argmax_x, aligned_height, aligned_width, spatial_scale, + sampling_ratio, pool_mode, aligned); +} + +``` + +### v1.3.11 + +为了灵活地支持更多的后端和硬件,例如 `NVIDIA GPUs` 、`AMD GPUs`,我们重构了 `mmcv/ops/csrc` 目录。注意,这次重构不会影响 API 的使用。更多相关信息,请参考 [PR1206](https://github.com/open-mmlab/mmcv/pull/1206)。 + +原始的目录结构如下所示 + +``` +. +├── common_cuda_helper.hpp +├── ops_cuda_kernel.cuh +├── pytorch_cpp_helper.hpp +├── pytorch_cuda_helper.hpp +├── parrots_cpp_helper.hpp +├── parrots_cuda_helper.hpp +├── parrots_cudawarpfunction.cuh +├── onnxruntime +│   ├── onnxruntime_register.h +│   ├── onnxruntime_session_options_config_keys.h +│   ├── ort_mmcv_utils.h +│   ├── ... +│   ├── onnx_ops.h +│   └── cpu +│ ├── onnxruntime_register.cpp +│      ├── ... +│      └── onnx_ops_impl.cpp +├── parrots +│   ├── ... +│   ├── ops.cpp +│   ├── ops_cuda.cu +│   ├── ops_parrots.cpp +│   └── ops_pytorch.h +├── pytorch +│   ├── ... +│   ├── ops.cpp +│   ├── ops_cuda.cu +│   ├── pybind.cpp +└── tensorrt + ├── trt_cuda_helper.cuh + ├── trt_plugin_helper.hpp + ├── trt_plugin.hpp + ├── trt_serialize.hpp + ├── ... + ├── trt_ops.hpp + └── plugins +    ├── trt_cuda_helper.cu +    ├── trt_plugin.cpp +    ├── ... +    ├── trt_ops.cpp +    └── trt_ops_kernel.cu +``` + +重构之后,它的结构如下所示 + +``` +. +├── common +│ ├── box_iou_rotated_utils.hpp +│ ├── parrots_cpp_helper.hpp +│ ├── parrots_cuda_helper.hpp +│ ├── pytorch_cpp_helper.hpp +│ ├── pytorch_cuda_helper.hpp +│   └── cuda +│   ├── common_cuda_helper.hpp +│   ├── parrots_cudawarpfunction.cuh +│   ├── ... +│   └── ops_cuda_kernel.cuh +├── onnxruntime +│   ├── onnxruntime_register.h +│   ├── onnxruntime_session_options_config_keys.h +│   ├── ort_mmcv_utils.h +│   ├── ... +│   ├── onnx_ops.h +│   └── cpu +│ ├── onnxruntime_register.cpp +│      ├── ... +│      └── onnx_ops_impl.cpp +├── parrots +│   ├── ... +│   ├── ops.cpp +│   ├── ops_parrots.cpp +│   └── ops_pytorch.h +├── pytorch +│   ├── info.cpp +│   ├── pybind.cpp +│   ├── ... +│   ├── ops.cpp +│   └── cuda +│      ├── ... +│      └── ops_cuda.cu +└── tensorrt + ├── trt_cuda_helper.cuh + ├── trt_plugin_helper.hpp + ├── trt_plugin.hpp + ├── trt_serialize.hpp + ├── ... + ├── trt_ops.hpp + └── plugins +    ├── trt_cuda_helper.cu +    ├── trt_plugin.cpp +    ├── ... +    ├── trt_ops.cpp +    └── trt_ops_kernel.cu +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/conf.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/conf.py new file mode 100644 index 000000000..be355b3fe --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/conf.py @@ -0,0 +1,207 @@ +# +# Configuration file for the Sphinx documentation builder. +# +# This file does only contain a selection of the most common options. For a +# full list see the documentation: +# http://www.sphinx-doc.org/en/master/config + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import os +import sys + +import pytorch_sphinx_theme +from sphinx.builders.html import StandaloneHTMLBuilder + +sys.path.insert(0, os.path.abspath('../..')) + +version_file = '../../mmcv/version.py' +with open(version_file) as f: + exec(compile(f.read(), version_file, 'exec')) +__version__ = locals()['__version__'] + +# -- Project information ----------------------------------------------------- + +project = 'mmcv' +copyright = '2018-2022, OpenMMLab' +author = 'MMCV Authors' + +# The short X.Y version +version = __version__ +# The full version, including alpha/beta/rc tags +release = __version__ + +# -- General configuration --------------------------------------------------- + +# If your documentation needs a minimal Sphinx version, state it here. +# +# needs_sphinx = '1.0' + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. + +extensions = [ + 'sphinx.ext.autodoc', + 'sphinx.ext.napoleon', + 'sphinx.ext.viewcode', + 'sphinx.ext.autosectionlabel', + 'sphinx_markdown_tables', + 'myst_parser', + 'sphinx_copybutton', +] # yapf: disable + +myst_heading_anchors = 4 + +myst_enable_extensions = ['colon_fence'] + +autodoc_mock_imports = ['mmcv._ext', 'mmcv.utils.ext_loader', 'torchvision'] +autosectionlabel_prefix_document = True + +# Add any paths that contain templates here, relative to this directory. +templates_path = ['_templates'] + +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +source_suffix = { + '.rst': 'restructuredtext', + '.md': 'markdown', +} + +# The master toctree document. +master_doc = 'index' + +# The language for content autogenerated by Sphinx. Refer to documentation +# for a list of supported languages. +# +# This is also used if you do content translation via gettext catalogs. +# Usually you set "language" from the command line for these cases. +language = 'zh_CN' + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + +# The name of the Pygments (syntax highlighting) style to use. +pygments_style = 'sphinx' + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +# html_theme = 'sphinx_rtd_theme' +html_theme = 'pytorch_sphinx_theme' +html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + 'menu': [ + { + 'name': 'GitHub', + 'url': 'https://github.com/open-mmlab/mmcv' + }, + ], + # Specify the language of shared menu + 'menu_lang': 'cn', +} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ['_static'] +html_css_files = ['css/readthedocs.css'] + +# Custom sidebar templates, must be a dictionary that maps document names +# to template names. +# +# The default sidebars (for documents that don't match any pattern) are +# defined by theme itself. Builtin themes are using these templates by +# default: ``['localtoc.html', 'relations.html', 'sourcelink.html', +# 'searchbox.html']``. +# +# html_sidebars = {} + +# -- Options for HTMLHelp output --------------------------------------------- + +# Output file base name for HTML help builder. +htmlhelp_basename = 'mmcvdoc' + +# -- Options for LaTeX output ------------------------------------------------ + +latex_elements = { + # The paper size ('letterpaper' or 'a4paper'). + # + # 'papersize': 'letterpaper', + + # The font size ('10pt', '11pt' or '12pt'). + # + # 'pointsize': '10pt', + + # Additional stuff for the LaTeX preamble. + # + # 'preamble': '', + + # Latex figure (float) alignment + # + # 'figure_align': 'htbp', +} + +# Grouping the document tree into LaTeX files. List of tuples +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + (master_doc, 'mmcv.tex', 'mmcv Documentation', 'MMCV Contributors', + 'manual'), +] + +# -- Options for manual page output ------------------------------------------ + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [(master_doc, 'mmcv', 'mmcv Documentation', [author], 1)] + +# -- Options for Texinfo output ---------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + (master_doc, 'mmcv', 'mmcv Documentation', author, 'mmcv', + 'One line description of project.', 'Miscellaneous'), +] + +# -- Options for Epub output ------------------------------------------------- + +# Bibliographic Dublin Core info. +epub_title = project + +# The unique identifier of the text. This can be a ISBN number +# or the project homepage. +# +# epub_identifier = '' + +# A unique identification for the text. +# +# epub_uid = '' + +# A list of files that should not be packed into the epub file. +epub_exclude_files = ['search.html'] + +# set priority when building html +StandaloneHTMLBuilder.supported_image_types = [ + 'image/svg+xml', 'image/gif', 'image/png', 'image/jpeg' +] +# -- Extension configuration ------------------------------------------------- +# Ignore >>> when copying code +copybutton_prompt_text = r'>>> |\.\.\. ' +copybutton_prompt_is_regexp = True diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnx.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnx.md new file mode 100644 index 000000000..c4e00417f --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnx.md @@ -0,0 +1,19 @@ +## MMCV中ONNX模块简介 (实验性) + +### register_extra_symbolics + +在将PyTorch模型导出成ONNX时,需要注册额外的符号函数 + +#### 范例 + +```python +import mmcv +from mmcv.onnx import register_extra_symbolics + +opset_version = 11 +register_extra_symbolics(opset_version) +``` + +#### 常见问题 + +- 无 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_custom_ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_custom_ops.md new file mode 100644 index 000000000..1150f919e --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_custom_ops.md @@ -0,0 +1,333 @@ +## ONNX Runtime自定义算子 + + + +- [ONNX Runtime自定义算子](#onnx-runtime自定义算子) + - [SoftNMS](#softnms) + - [描述](#描述) + - [模型参数](#模型参数) + - [输入](#输入) + - [输出](#输出) + - [类型约束](#类型约束) + - [RoIAlign](#roialign) + - [描述](#描述-1) + - [模型参数](#模型参数-1) + - [输入](#输入-1) + - [输出](#输出-1) + - [类型约束](#类型约束-1) + - [NMS](#nms) + - [描述](#描述-2) + - [模型参数](#模型参数-2) + - [输入](#输入-2) + - [输出](#输出-2) + - [类型约束](#类型约束-2) + - [grid_sampler](#grid_sampler) + - [描述](#描述-3) + - [模型参数](#模型参数-3) + - [输入](#输入-3) + - [输出](#输出-3) + - [类型约束](#类型约束-3) + - [CornerPool](#cornerpool) + - [描述](#描述-4) + - [模型参数](#模型参数-4) + - [输入](#输入-4) + - [输出](#输出-4) + - [类型约束](#类型约束-4) + - [cummax](#cummax) + - [描述](#描述-5) + - [模型参数](#模型参数-5) + - [输入](#输入-5) + - [输出](#输出-5) + - [类型约束](#类型约束-5) + - [cummin](#cummin) + - [描述](#描述-6) + - [模型参数](#模型参数-6) + - [输入](#输入-6) + - [输出](#输出-6) + - [类型约束](#类型约束-6) + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) + - [描述](#描述-7) + - [模型参数](#模型参数-7) + - [输入](#输入-7) + - [输出](#输出-7) + - [类型约束](#类型约束-7) + + + +### SoftNMS + +#### 描述 + +根据`scores`计算`boxes`的soft NMS。 请阅读[Soft-NMS -- Improving Object Detection With One Line of Code](https://arxiv.org/abs/1704.04503)了解细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | --------------- | ------------------------------------------------------- | +| `float` | `iou_threshold` | 用来判断候选框重合度的阈值,取值范围\[0, 1\]。默认值为0 | +| `float` | `sigma` | 高斯方法的超参数 | +| `float` | `min_score` | NMS的score阈值 | +| `int` | `method` | NMS的计算方式, (0: `naive`, 1: `linear`, 2: `gaussian`) | +| `int` | `offset` | 用来计算候选框的宽高(x2 - x1 + offset)。可选值0或1 | + +#### 输入 + +
    +
    boxes: T
    +
    输入候选框。形状为(N, 4)的二维张量,N为候选框数量。
    +
    scores: T
    +
    输入得分。形状为(N, )的一维张量。
    +
    + +#### 输出 + +
    +
    dets: T
    +
    输出的检测框与得分。形状为(num_valid_boxes, 5)的二维张量,内容为[[x1, y1, x2, y2, score], ...]。num_valid_boxes是合法的检测框数量。
    +
    indices: tensor(int64)
    +
    输出序号。形状为(num_valid_boxes, )的一维张量。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### RoIAlign + +#### 描述 + +在特征图上计算RoIAlign,通常在双阶段目标检测模型的bbox_head中使用 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | ---------------- | ------------------------------------------------------- | +| `int` | `output_height` | roi特征的输出高度 | +| `int` | `output_width` | roi特征的输出宽度 | +| `float` | `spatial_scale` | 输入检测框的缩放系数 | +| `int` | `sampling_ratio` | 输出的采样率。`0`表示使用密集采样 | +| `str` | `mode` | 池化方式。 `avg`或`max` | +| `int` | `aligned` | 如果`aligned=1`,则像素会进行-0.5的偏移以达到更好的对齐 | + +#### 输入 + +
    +
    input: T
    +
    输入特征图;形状为(N, C, H, W)的四维张量,其中N为batch大小,C为输入通道数,H和W为输入特征图的高和宽。
    +
    rois: T
    +
    需要进行池化的感兴趣区域;形状为(num_rois, 5)的二维张量,内容为[[batch_index, x1, y1, x2, y2], ...]。rois的坐标为输入特征图的坐标系。
    +
    + +#### 输出 + +
    +
    feat: T
    +
    池化的输出;形状为(num_rois, C, output_height, output_width)的四维张量。每个输出特征feat[i]都与输入感兴趣区域rois[i]一一对应。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### NMS + +#### 描述 + +根据IoU阈值对候选框进行非极大值抑制。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | --------------- | ------------------------------------------------------- | +| `float` | `iou_threshold` | 用来判断候选框重合度的阈值,取值范围\[0, 1\]。默认值为0 | +| `int` | `offset` | 用来计算候选框的宽高(x2 - x1 + offset)。可选值0或1 | + +#### 输入 + +
    +
    boxes: T
    +
    输入候选框。形状为(N, 4)的二维张量,N为候选框数量。
    +
    scores: T
    +
    输入得分。形状为(N, )的一维张量。
    +
    + +#### 输出 + +
    +
    indices: tensor(int32, Linear)
    +
    被选中的候选框索引。形状为(num_valid_boxes, )的一维张量,num_valid_boxes表示被选上的候选框数量。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### grid_sampler + +#### 描述 + +根据`grid`的像素位置对`input`进行网格采样。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- | +| `int` | `interpolation_mode` | 计算输出使用的插值模式。(0: `bilinear` , 1: `nearest`) | +| `int` | `padding_mode` | 边缘填充模式。(0: `zeros`, 1: `border`, 2: `reflection`) | +| `int` | `align_corners` | 如果`align_corners=1`,则极值(`-1`和`1`)会被当做输入边缘像素的中心点。如果`align_corners=0`,则它们会被看做是边缘像素的边缘点,减小分辨率对采样的影响 | + +#### 输入 + +
    +
    input: T
    +
    输入特征;形状为(N, C, inH, inW)的四维张量,其中N为batch大小,C为输入通道数,inH和inW为输入特征图的高和宽。
    +
    grid: T
    +
    输入网格;形状为(N, outH, outW, 2)的四维张量,outH和outW为输出的高和宽。
    +
    + +#### 输出 + +
    +
    output: T
    +
    输出特征;形状为(N, C, outH, outW)的四维张量。
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### CornerPool + +#### 描述 + +对`input`计算CornerPool。请阅读[CornerNet -- Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | ------ | -------------------------------------------------------- | +| `int` | `mode` | 池化模式。(0: `top`, 1: `bottom`, 2: `left`, 3: `right`) | + +#### 输入 + +
    +
    input: T
    +
    输入特征;形状为(N, C, H, W)的四维张量,其中N为batch大小,C为输入通道数,H和W为输入特征图的高和宽。
    +
    + +#### 输出 + +
    +
    output: T
    +
    输出特征;形状为(N, C, H, W)的四维张量。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### cummax + +#### 描述 + +返回一个元组(`values`, `indices`),其中`values`为`input`第`dim`维的累计最大值,`indices`为第`dim`维最大值位置。请阅读[torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | ------ | ------------------ | +| `int` | `dim` | 进行累计计算的维度 | + +#### 输入 + +
    +
    input: T
    +
    输入张量;可以使任意形状;也支持空Tensor
    +
    + +#### 输出 + +
    +
    output: T
    +
    `input`第`dim`维的累计最大值,形状与`input`相同。类型和`input`一致
    +
    indices: tensor(int64)
    +
    第`dim`维最大值位置,形状与`input`相同。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### cummin + +#### 描述 + +返回一个元组(`values`, `indices`),其中`values`为`input`第`dim`维的累计最小值,`indices`为第`dim`维最小值位置。请阅读[torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | ------ | ------------------ | +| `int` | `dim` | 进行累计计算的维度 | + +#### 输入 + +
    +
    input: T
    +
    输入张量;可以是任意形状;也支持空Tensor
    +
    + +#### 输出 + +
    +
    output: T
    +
    `input`第`dim`维的累计最小值,形状与`input`相同。类型和`input`一致
    +
    indices: tensor(int64)
    +
    第`dim`维最小值位置,形状与`input`相同。
    +
    + +#### 类型约束 + +- T:tensor(float32) + +### MMCVModulatedDeformConv2d + +#### 描述 + +在输入特征上计算Modulated Deformable Convolution,请阅读[Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| -------------- | ------------------- | ------------------------------------------------------------- | +| `list of ints` | `stride` | 卷积的步长 (sH, sW) | +| `list of ints` | `padding` | 输入特征填充大小 (padH, padW) | +| `list of ints` | `dilation` | 卷积核各元素间隔 (dH, dW) | +| `int` | `deformable_groups` | 可变偏移量的分组,通常置位1即可 | +| `int` | `groups` | 卷积分组数,`input_channel`会根据这个值被分为数个分组进行计算 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征;形状为(N, C, inH, inW)的四维张量,其中N为batch大小,C为输入通道数,inH和inW为输入特征图的高和宽。
    +
    inputs[1]: T
    +
    输入偏移量;形状为(N, deformable_group* 2* kH* kW, outH, outW)的四维张量,kH和kW为输入特征图的高和宽,outH和outW为输入特征图的高和宽。
    +
    inputs[2]: T
    +
    输入掩码;形状为(N, deformable_group* kH* kW, outH, outW)的四维张量。
    +
    inputs[3]: T
    +
    输入权重;形状为(output_channel, input_channel, kH, kW)的四维张量。
    +
    inputs[4]: T, optional
    +
    输入偏移量;形状为(output_channel)的一维张量。
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    输出特征;形状为(N, output_channel, outH, outW)的四维张量。
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_op.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_op.md new file mode 100644 index 000000000..e55993072 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/onnxruntime_op.md @@ -0,0 +1,129 @@ +## MMCV中的ONNX Runtime自定义算子 + +### ONNX Runtime介绍 + +**ONNX Runtime**是一个跨平台的推理与训练加速器,适配许多常用的机器学习/深度神经网络框架。请访问[github](https://github.com/microsoft/onnxruntime)了解更多信息。 + +### ONNX介绍 + +**ONNX**是**Open Neural Network Exchange**的缩写,是许多机器学习/深度神经网络框架使用的*中间表示(IR)*。请访问[github](https://github.com/onnx/onnx)了解更多信息。 + +### 为什么要在MMCV中添加ONNX自定义算子? + +- 为了验证ONNX模型在ONNX Runtime下的推理的正确性。 +- 为了方便使用了`mmcv.ops`自定义算子的模型的部署工作。 + +### MMCV已支持的算子 + +| 算子 | CPU | GPU | MMCV版本 | +| :------------------------------------------------------------------------------: | :-: | :-: | :------: | +| [SoftNMS](onnxruntime_custom_ops.md#softnms) | Y | N | 1.2.3 | +| [RoIAlign](onnxruntime_custom_ops.md#roialign) | Y | N | 1.2.5 | +| [NMS](onnxruntime_custom_ops.md#nms) | Y | N | 1.2.7 | +| [grid_sampler](onnxruntime_custom_ops.md#grid_sampler) | Y | N | 1.3.1 | +| [CornerPool](onnxruntime_custom_ops.md#cornerpool) | Y | N | 1.3.4 | +| [cummax](onnxruntime_custom_ops.md#cummax) | Y | N | 1.3.4 | +| [cummin](onnxruntime_custom_ops.md#cummin) | Y | N | 1.3.4 | +| [MMCVModulatedDeformConv2d](onnxruntime_custom_ops.md#mmcvmodulateddeformconv2d) | Y | N | 1.3.12 | + +### 如何编译ONNX Runtime自定义算子? + +*请注意我们仅在**onnxruntime>=1.8.1**的Linux x86-64 cpu平台上进行过测试* + +#### 准备工作 + +- 克隆代码仓库 + +```bash +git clone https://github.com/open-mmlab/mmcv.git +``` + +- 从ONNX Runtime下载`onnxruntime-linux`:[releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1),解压缩,根据路径创建变量`ONNXRUNTIME_DIR`并把路径下的lib目录添加到`LD_LIBRARY_PATH`,步骤如下: + +```bash +wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz + +tar -zxvf onnxruntime-linux-x64-1.8.1.tgz +cd onnxruntime-linux-x64-1.8.1 +export ONNXRUNTIME_DIR=$(pwd) +export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH +``` + +#### Linux系统下编译 + +```bash +cd mmcv ## to MMCV root directory +MMCV_WITH_OPS=1 MMCV_WITH_ORT=1 python setup.py develop +``` + +### 如何在python下使用ONNX Runtime对导出的ONNX模型做编译 + +使用`pip`安装ONNX Runtime + +```bash +pip install onnxruntime==1.8.1 +``` + +推理范例 + +```python +import os + +import numpy as np +import onnxruntime as ort + +from mmcv.ops import get_onnxruntime_op_path + +ort_custom_op_path = get_onnxruntime_op_path() +assert os.path.exists(ort_custom_op_path) +session_options = ort.SessionOptions() +session_options.register_custom_ops_library(ort_custom_op_path) +## exported ONNX model with custom operators +onnx_file = 'sample.onnx' +input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) +sess = ort.InferenceSession(onnx_file, session_options) +onnx_results = sess.run(None, {'input' : input_data}) +``` + +### 如何为MMCV添加ONNX Runtime的自定义算子 + +#### 开发前提醒 + +- 该算子的ONNX Runtime实现尚未在MMCV中支持[已实现算子列表](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md)。 +- 确保该自定义算子可以被ONNX导出。 + +#### 添加方法 + +以`soft_nms`为例: + +1. 在ONNX Runtime头文件目录`mmcv/ops/csrc/onnxruntime/`下添加头文件`soft_nms.h` + +2. 在ONNX Runtime源码目录`mmcv/ops/csrc/onnxruntime/cpu/`下添加算子实现`soft_nms.cpp` + +3. 在[onnxruntime_register.cpp](../../../mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp)中注册实现的算子`soft_nms` + + ```c++ + #include "soft_nms.h" + + SoftNmsOp c_SoftNmsOp; + + if (auto status = ortApi->CustomOpDomain_Add(domain, &c_SoftNmsOp)) { + return status; + } + ``` + +4. 在`tests/test_ops/test_onnx.py`添加单元测试, + 可以参考[here](../../tests/test_ops/test_onnx.py)。 + +**最后,欢迎为MMCV添加ONNX Runtime自定义算子** :nerd_face: + +### 已知问题 + +- "RuntimeError: tuple appears in op that does not forward tuples, unsupported kind: `prim::PythonOp`." + 1. 请注意`cummax`和`cummin`算子是在torch >= 1.5.0被添加的。但他们需要在torch version >= 1.7.0才能正确导出。否则会在导出时发生上面的错误。 + 2. 解决方法:升级PyTorch到1.7.0以上版本 + +### 引用 + +- [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md) +- [How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_custom_ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_custom_ops.md new file mode 100644 index 000000000..d77315483 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_custom_ops.md @@ -0,0 +1,391 @@ +## TensorRT自定义算子 + + + +- [TensorRT自定义算子](#tensorrt自定义算子) + - [MMCVRoIAlign](#mmcvroialign) + - [描述](#描述) + - [模型参数](#模型参数) + - [输入](#输入) + - [输出](#输出) + - [类型约束](#类型约束) + - [ScatterND](#scatternd) + - [描述](#描述-1) + - [模型参数](#模型参数-1) + - [输入](#输入-1) + - [输出](#输出-1) + - [类型约束](#类型约束-1) + - [NonMaxSuppression](#nonmaxsuppression) + - [描述](#描述-2) + - [模型参数](#模型参数-2) + - [输入](#输入-2) + - [输出](#输出-2) + - [类型约束](#类型约束-2) + - [MMCVDeformConv2d](#mmcvdeformconv2d) + - [描述](#描述-3) + - [模型参数](#模型参数-3) + - [输入](#输入-3) + - [输出](#输出-3) + - [类型约束](#类型约束-3) + - [grid_sampler](#grid_sampler) + - [描述](#描述-4) + - [模型参数](#模型参数-4) + - [输入](#输入-4) + - [输出](#输出-4) + - [类型约束](#类型约束-4) + - [cummax](#cummax) + - [描述](#描述-5) + - [模型参数](#模型参数-5) + - [输入](#输入-5) + - [输出](#输出-5) + - [类型约束](#类型约束-5) + - [cummin](#cummin) + - [描述](#描述-6) + - [模型参数](#模型参数-6) + - [输入](#输入-6) + - [输出](#输出-6) + - [类型约束](#类型约束-6) + - [MMCVInstanceNormalization](#mmcvinstancenormalization) + - [描述](#描述-7) + - [模型参数](#模型参数-7) + - [输入](#输入-7) + - [输出](#输出-7) + - [类型约束](#类型约束-7) + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) + - [描述](#描述-8) + - [模型参数](#模型参数-8) + - [输入](#输入-8) + - [输出](#输出-8) + - [类型约束](#类型约束-8) + + + +### MMCVRoIAlign + +#### 描述 + +在特征图上计算RoIAlign,在多数双阶段目标检测模型的bbox_head中使用 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | ---------------- | ------------------------------------------------------- | +| `int` | `output_height` | roi特征的输出高度 | +| `int` | `output_width` | roi特征的输出宽度 | +| `float` | `spatial_scale` | 输入检测框的缩放系数 | +| `int` | `sampling_ratio` | 输出的采样率。`0`表示使用密集采样 | +| `str` | `mode` | 池化方式。 `avg`或`max` | +| `int` | `aligned` | 如果`aligned=1`,则像素会进行-0.5的偏移以达到更好的对齐 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征图;形状为(N, C, H, W)的四维张量,其中N为batch大小,C为输入通道数,H和W为输入特征图的高和宽。
    +
    inputs[1]: T
    +
    需要进行池化的感兴趣区域;形状为(num_rois, 5)的二维张量,内容为[[batch_index, x1, y1, x2, y2], ...]。rois的坐标为输入特征图的坐标系。
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    池化的输出;形状为(num_rois, C, output_height, output_width)的四维张量。每个输出特征feat[i]都与输入感兴趣区域rois[i]一一对应。
    +
    +#### 类型约束 + +- T:tensor(float32, Linear) + +### ScatterND + +#### 描述 + +ScatterND接收三个输入,分别为秩为r >= 1的`data`,秩为q >= 1的`indices`以及秩为 q + r - indices.shape\[-1\] -1 的`update`。输出的计算方式为:首先创建一个`data`的拷贝,然后根据`indces`的值使用`update`对拷贝的`data`进行更新。注意`indices`中不应该存在相同的条目,也就是说对同一个位置进行一次以上的更新是不允许的。 + +输出的计算方式可以参考如下代码: + +```python + output = np.copy(data) + update_indices = indices.shape[:-1] + for idx in np.ndindex(update_indices): + output[indices[idx]] = updates[idx] +``` + +#### 模型参数 + +无 + +#### 输入 + +
    +
    inputs[0]: T
    +
    秩为r >= 1的输入`data`
    + +
    inputs[1]: tensor(int32, Linear)
    +
    秩为q >= 1的输入`update`
    + +
    inputs[2]: T
    +
    秩为 q + r - indices.shape[-1] -1 的输入`update`
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    秩为r >= 1的输出张量
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear), tensor(int32, Linear) + +### NonMaxSuppression + +#### 描述 + +根据IoU阈值对候选框进行非极大值抑制。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | ---------------------------- | -------------------------------------------------------------------------------------------- | +| `int` | `center_point_box` | 0 - 候选框的格式为\[y1, x1, y2, x2\], 1-候选框的格式为\[x_center, y_center, width, height\] | +| `int` | `max_output_boxes_per_class` | 每一类最大的输出检测框个数。默认为0,输出检测框个数等于输入候选框数 | +| `float` | `iou_threshold` | 用来判断候选框重合度的阈值,取值范围\[0, 1\]。默认值为0 | +| `float` | `score_threshold` | 用来判断候选框是否合法的阈值 | +| `int` | `offset` | 检测框长宽计算方式为(x2 - x1 + offset),可选值0或1 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入候选框。形状为(num_batches, spatial_dimension, 4)的三维张量
    +
    inputs[1]: T
    +
    输入得分。形状为(num_batches, num_classes, spatial_dimension)的三维张量
    +
    + +#### 输出 + +
    +
    outputs[0]: tensor(int32, Linear)
    +
    被选中的候选框索引。形状为(num_selected_indices, 3)的二维张量。每一行内容为[batch_index, class_index, box_index]。
    +
    其中 num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension)。
    +
    所有未被选中的候选框索引都会被填充为-1
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### MMCVDeformConv2d + +#### 描述 + +在输入特征上计算Deformable Convolution,请阅读[Deformable Convolutional Network](https://arxiv.org/abs/1703.06211)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| -------------- | ------------------ | --------------------------------------------------------------------------------------------- | +| `list of ints` | `stride` | 卷积的步长 (sH, sW) | +| `list of ints` | `padding` | 输入特征填充大小 (padH, padW) | +| `list of ints` | `dilation` | 卷积核各元素间隔 (dH, dW) | +| `int` | `deformable_group` | 可变偏移量的分组 | +| `int` | `group` | 卷积分组数,`input_channel`会根据这个值被分为数个分组进行计算 | +| `int` | `im2col_step` | 可变卷积使用im2col计算卷积。输入与偏移量会以im2col_step为步长分块计算,减少临时空间的使用量。 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征;形状为(N, C, inH, inW)的四维张量,其中N为batch大小,C为输入通道数,inH和inW为输入特征图的高和宽
    +
    inputs[1]: T
    +
    输入偏移量;形状为(N, deformable_group* 2* kH* kW, outH, outW)的四维张量,kH和kW为输入特征图的高和宽,outH和outW为输入特征图的高和宽
    +
    inputs[2]: T
    +
    输入权重;形状为(output_channel, input_channel, kH, kW)的四维张量
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    输出特征;形状为(N, output_channel, outH, outW)的四维张量
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### grid_sampler + +#### 描述 + +根据`grid`的像素位置对`input`进行网格采样。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- | +| `int` | `interpolation_mode` | 计算输出使用的插值模式。(0: `bilinear` , 1: `nearest`) | +| `int` | `padding_mode` | 边缘填充模式。(0: `zeros`, 1: `border`, 2: `reflection`) | +| `int` | `align_corners` | 如果`align_corners=1`,则极值(`-1`和`1`)会被当做输入边缘像素的中心点。如果`align_corners=0`,则它们会被看做是边缘像素的边缘点,减小分辨率对采样的影响 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征;形状为(N, C, inH, inW)的四维张量,其中N为batch大小,C为输入通道数,inH和inW为输入特征图的高和宽
    +
    inputs[1]: T
    +
    输入网格;形状为(N, outH, outW, 2)的四维张量,outH和outW为输出的高和宽
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    输出特征;形状为(N, C, outH, outW)的四维张量
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### cummax + +#### 描述 + +返回一个元组(`values`, `indices`),其中`values`为`input`第`dim`维的累计最大值,`indices`为第`dim`维最大值位置。请阅读[torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | ------ | ------------------ | +| `int` | `dim` | 进行累计计算的维度 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入张量;可以使任意形状
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    `input`第`dim`维的累计最大值,形状与`input`相同。类型和`input`一致
    +
    outputs[1]: (int32, Linear)
    +
    第`dim`维最大值位置,形状与`input`相同
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### cummin + +#### 描述 + +返回一个元组(`values`, `indices`),其中`values`为`input`第`dim`维的累计最小值,`indices`为第`dim`维最小值位置。请阅读[torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ----- | ------ | ------------------ | +| `int` | `dim` | 进行累计计算的维度 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入张量;可以使任意形状
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    `input`第`dim`维的累计最小值,形状与`input`相同。类型和`input`一致
    +
    outputs[1]: (int32, Linear)
    +
    第`dim`维最小值位置,形状与`input`相同
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### MMCVInstanceNormalization + +#### 描述 + +对特征计算instance normalization,请阅读[Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022)了解更多详细信息。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| ------- | --------- | ---------------------------- | +| `float` | `epsilon` | 用来避免除0错误。默认为1e-05 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征。形状为(N, C, H, W)的四维张量,其中N为batch大小,C为输入通道数,H和W为输入特征图的高和宽
    +
    inputs[1]: T
    +
    输入缩放系数。形状为(C,)的一维张量
    +
    inputs[2]: T
    +
    输入偏移量。形状为(C,)的一维张量
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    输出特征。形状为(N, C, H, W)的四维张量
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) + +### MMCVModulatedDeformConv2d + +#### 描述 + +在输入特征上计算Modulated Deformable Convolution,请阅读[Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline)了解更多细节。 + +#### 模型参数 + +| 类型 | 参数名 | 描述 | +| -------------- | ------------------- | ------------------------------------------------------------- | +| `list of ints` | `stride` | 卷积的步长 (sH, sW) | +| `list of ints` | `padding` | 输入特征填充大小 (padH, padW) | +| `list of ints` | `dilation` | 卷积核各元素间隔 (dH, dW) | +| `int` | `deformable_groups` | 可变偏移量的分组,通常置位1即可 | +| `int` | `groups` | 卷积分组数,`input_channel`会根据这个值被分为数个分组进行计算 | + +#### 输入 + +
    +
    inputs[0]: T
    +
    输入特征;形状为(N, C, inH, inW)的四维张量,其中N为batch大小,C为输入通道数,inH和inW为输入特征图的高和宽
    +
    inputs[1]: T
    +
    输入偏移量;形状为(N, deformable_group* 2* kH* kW, outH, outW)的四维张量,kH和kW为输入特征图的高和宽,outH和outW为输入特征图的高和宽
    +
    inputs[2]: T
    +
    输入掩码;形状为(N, deformable_group* kH* kW, outH, outW)的四维张量
    +
    inputs[3]: T
    +
    输入权重;形状为(output_channel, input_channel, kH, kW)的四维张量
    +
    inputs[4]: T, optional
    +
    输入偏移量;形状为(output_channel)的一维张量
    +
    + +#### 输出 + +
    +
    outputs[0]: T
    +
    输出特征;形状为(N, output_channel, outH, outW)的四维张量
    +
    + +#### 类型约束 + +- T:tensor(float32, Linear) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_plugin.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_plugin.md new file mode 100644 index 000000000..0c29f14b1 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/deployment/tensorrt_plugin.md @@ -0,0 +1,184 @@ +## MMCV中的TensorRT自定义算子 (实验性) + + + +- [MMCV中的TensorRT自定义算子 (实验性)](#mmcv%E4%B8%AD%E7%9A%84tensorrt%E8%87%AA%E5%AE%9A%E4%B9%89%E7%AE%97%E5%AD%90-%E5%AE%9E%E9%AA%8C%E6%80%A7) + - [介绍](#%E4%BB%8B%E7%BB%8D) + - [MMCV中的TensorRT插件列表](#mmcv%E4%B8%AD%E7%9A%84tensorrt%E6%8F%92%E4%BB%B6%E5%88%97%E8%A1%A8) + - [如何编译MMCV中的TensorRT插件](#%E5%A6%82%E4%BD%95%E7%BC%96%E8%AF%91mmcv%E4%B8%AD%E7%9A%84tensorrt%E6%8F%92%E4%BB%B6) + - [准备](#%E5%87%86%E5%A4%87) + - [在Linux上编译](#%E5%9C%A8linux%E4%B8%8A%E7%BC%96%E8%AF%91) + - [创建TensorRT推理引擎并在python下进行推理](#%E5%88%9B%E5%BB%BAtensorrt%E6%8E%A8%E7%90%86%E5%BC%95%E6%93%8E%E5%B9%B6%E5%9C%A8python%E4%B8%8B%E8%BF%9B%E8%A1%8C%E6%8E%A8%E7%90%86) + - [如何在MMCV中添加新的TensorRT自定义算子](#%E5%A6%82%E4%BD%95%E5%9C%A8mmcv%E4%B8%AD%E6%B7%BB%E5%8A%A0%E6%96%B0%E7%9A%84tensorrt%E8%87%AA%E5%AE%9A%E4%B9%89%E7%AE%97%E5%AD%90) + - [主要流程](#%E4%B8%BB%E8%A6%81%E6%B5%81%E7%A8%8B) + - [注意](#%E6%B3%A8%E6%84%8F) + - [已知问题](#%E5%B7%B2%E7%9F%A5%E9%97%AE%E9%A2%98) + - [引用](#%E5%BC%95%E7%94%A8) + + + +### 介绍 + +**NVIDIA TensorRT**是一个为深度学习模型高性能推理准备的软件开发工具(SDK)。它包括深度学习推理优化器和运行时,可为深度学习推理应用提供低延迟和高吞吐量。请访问[developer's website](https://developer.nvidia.com/tensorrt)了解更多信息。 +为了简化TensorRT部署带有MMCV自定义算子的模型的流程,MMCV中添加了一系列TensorRT插件。 + +### MMCV中的TensorRT插件列表 + +| ONNX算子 | TensorRT插件 | MMCV版本 | +| :-----------------------: | :-----------------------------------------------------------------------------: | :------: | +| MMCVRoiAlign | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign) | 1.2.6 | +| ScatterND | [ScatterND](./tensorrt_custom_ops.md#scatternd) | 1.2.6 | +| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) | 1.3.0 | +| MMCVDeformConv2d | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d) | 1.3.0 | +| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | 1.3.1 | +| cummax | [cummax](./tensorrt_custom_ops.md#cummax) | 1.3.5 | +| cummin | [cummin](./tensorrt_custom_ops.md#cummin) | 1.3.5 | +| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) | 1.3.5 | +| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) | master | + +注意 + +- 以上所有算子均在 TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0 环境下开发。 + +### 如何编译MMCV中的TensorRT插件 + +#### 准备 + +- 克隆代码仓库 + +```bash +git clone https://github.com/open-mmlab/mmcv.git +``` + +- 安装TensorRT + +从 [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download) 下载合适的TensorRT版本。 + +比如,对安装了cuda-10.2的x86-64的Ubuntu 16.04,下载文件为`TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`. + +然后使用下面方式安装并配置环境 + +```bash +cd ~/Downloads +tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz +export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6 +export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib +``` + +安装python依赖: tensorrt, graphsurgeon, onnx-graphsurgeon + +```bash +pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl +pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl +pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl +``` + +想了解更多通过tar包安装TensorRT,请访问[Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar). + +- 安装 cuDNN + +参考[Nvidia' website](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar)安装 cuDNN 8。 + +#### 在Linux上编译 + +```bash +cd mmcv ## to MMCV root directory +MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e . +``` + +### 创建TensorRT推理引擎并在python下进行推理 + +范例如下: + +```python +import torch +import onnx + +from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine, + is_tensorrt_plugin_loaded) + +assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv' + +onnx_file = 'sample.onnx' +trt_file = 'sample.trt' +onnx_model = onnx.load(onnx_file) + +## Model input +inputs = torch.rand(1, 3, 224, 224).cuda() +## Model input shape info +opt_shape_dict = { + 'input': [list(inputs.shape), + list(inputs.shape), + list(inputs.shape)] +} + +## Create TensorRT engine +max_workspace_size = 1 << 30 +trt_engine = onnx2trt( + onnx_model, + opt_shape_dict, + max_workspace_size=max_workspace_size) + +## Save TensorRT engine +save_trt_engine(trt_engine, trt_file) + +## Run inference with TensorRT +trt_model = TRTWrapper(trt_file, ['input'], ['output']) + +with torch.no_grad(): + trt_outputs = trt_model({'input': inputs}) + output = trt_outputs['output'] + +``` + +### 如何在MMCV中添加新的TensorRT自定义算子 + +#### 主要流程 + +下面是主要的步骤: + +1. 添加c++头文件 +2. 添加c++源文件 +3. 添加cuda kernel文件 +4. 在`trt_plugin.cpp`中注册插件 +5. 在`tests/test_ops/test_tensorrt.py`中添加单元测试 + +**以RoIAlign算子插件`roi_align`举例。** + +1. 在TensorRT包含目录`mmcv/ops/csrc/tensorrt/`中添加头文件`trt_roi_align.hpp` + +2. 在TensorRT源码目录`mmcv/ops/csrc/tensorrt/plugins/`中添加头文件`trt_roi_align.cpp` + +3. 在TensorRT源码目录`mmcv/ops/csrc/tensorrt/plugins/`中添加cuda kernel文件`trt_roi_align_kernel.cu` + +4. 在[trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)中注册`roi_align`插件 + + ```c++ + #include "trt_plugin.hpp" + + #include "trt_roi_align.hpp" + + REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator); + + extern "C" { + bool initLibMMCVInferPlugins() { return true; } + } // extern "C" + ``` + +5. 在`tests/test_ops/test_tensorrt.py`中添加单元测试 + +#### 注意 + +- 部分MMCV中的自定义算子存在对应的cuda实现,在进行TensorRT插件开发的时候可以参考。 + +### 已知问题 + +- 无 + +### 引用 + +- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html) +- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT) +- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt) +- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html) +- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/faq.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/faq.md new file mode 100644 index 000000000..6cfb100c6 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/faq.md @@ -0,0 +1,91 @@ +## 常见问题 + +在这里我们列出了用户经常遇到的问题以及对应的解决方法。如果您遇到了其他常见的问题,并且知道可以帮到大家的解决办法, +欢迎随时丰富这个列表。 + +### 安装问题 + +- KeyError: "xxx: 'yyy is not in the zzz registry'" + + 只有模块所在的文件被导入时,注册机制才会被触发,所以您需要在某处导入该文件,更多详情请查看 [KeyError: "MaskRCNN: 'RefineRoIHead is not in the models registry'"](https://github.com/open-mmlab/mmdetection/issues/5974)。 + +- "No module named 'mmcv.ops'"; "No module named 'mmcv.\_ext'" + + 1. 使用 `pip uninstall mmcv` 卸载您环境中的 mmcv + 2. 参考 [installation instruction](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) 或者 [Build MMCV from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html) 安装 mmcv-full + +- "invalid device function" 或者 "no kernel image is available for execution" + + 1. 检查 GPU 的 CUDA 计算能力 + 2. 运行 `python mmdet/utils/collect_env.py` 来检查 PyTorch、torchvision 和 MMCV 是否是针对正确的 GPU 架构构建的,您可能需要去设置 `TORCH_CUDA_ARCH_LIST` 来重新安装 MMCV。兼容性问题可能会出现在使用旧版的 GPUs,如:colab 上的 Tesla K80 (3.7) + 3. 检查运行环境是否和 mmcv/mmdet 编译时的环境相同。例如,您可能使用 CUDA 10.0 编译 mmcv,但在 CUDA 9.0 的环境中运行它 + +- "undefined symbol" 或者 "cannot open xxx.so" + + 1. 如果符号和 CUDA/C++ 相关(例如:libcudart.so 或者 GLIBCXX),请检查 CUDA/GCC 运行时的版本是否和编译 mmcv 的一致 + 2. 如果符号和 PyTorch 相关(例如:符号包含 caffe、aten 和 TH),请检查 PyTorch 运行时的版本是否和编译 mmcv 的一致 + 3. 运行 `python mmdet/utils/collect_env.py` 以检查 PyTorch、torchvision 和 MMCV 构建和运行的环境是否相同 + +- "RuntimeError: CUDA error: invalid configuration argument" + + 这个错误可能是由于您的 GPU 性能不佳造成的。尝试降低 [THREADS_PER_BLOCK](https://github.com/open-mmlab/mmcv/blob/cac22f8cf5a904477e3b5461b1cc36856c2793da/mmcv/ops/csrc/common_cuda_helper.hpp#L10) + 的值并重新编译 mmcv。 + +- "RuntimeError: nms is not compiled with GPU support" + + 这个错误是由于您的 CUDA 环境没有正确安装。 + 您可以尝试重新安装您的 CUDA 环境,然后删除 mmcv/build 文件夹并重新编译 mmcv。 + +- "Segmentation fault" + + 1. 检查 GCC 的版本,通常是因为 PyTorch 版本与 GCC 版本不匹配 (例如 GCC \< 4.9 ),我们推荐用户使用 GCC 5.4,我们也不推荐使用 GCC 5.5, 因为有反馈 GCC 5.5 会导致 "segmentation fault" 并且切换到 GCC 5.4 就可以解决问题 + 2. 检查是否正确安装 CUDA 版本的 PyTorc。输入以下命令并检查是否返回 True + ```shell + python -c 'import torch; print(torch.cuda.is_available())' + ``` + 3. 如果 `torch` 安装成功,那么检查 MMCV 是否安装成功。输入以下命令,如果没有报错说明 mmcv-full 安装成。 + ```shell + python -c 'import mmcv; import mmcv.ops' + ``` + 4. 如果 MMCV 与 PyTorch 都安装成功了,则可以使用 `ipdb` 设置断点或者使用 `print` 函数,分析是哪一部分的代码导致了 `segmentation fault` + +- "libtorch_cuda_cu.so: cannot open shared object file" + + `mmcv-full` 依赖 `libtorch_cuda_cu.so` 文件,但程序运行时没能找到该文件。我们可以检查该文件是否存在 `~/miniconda3/envs/{environment-name}/lib/python3.7/site-packages/torch/lib` 也可以尝试重装 PyTorch。 + +- "fatal error C1189: #error: -- unsupported Microsoft Visual Studio version!" + + 如果您在 Windows 上编译 mmcv-full 并且 CUDA 的版本是 9.2,您很可能会遇到这个问题 `"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include\crt/host_config.h(133): fatal error C1189: #error: -- unsupported Microsoft Visual Studio version! Only the versions 2012, 2013, 2015 and 2017 are supported!"`,您可以尝试使用低版本的 Microsoft Visual Studio,例如 vs2017。 + +- "error: member "torch::jit::detail::ModulePolicy::all_slots" may not be initialized" + + 如果您在 Windows 上编译 mmcv-full 并且 PyTorch 的版本是 1.5.0,您很可能会遇到这个问题 `- torch/csrc/jit/api/module.h(474): error: member "torch::jit::detail::ModulePolicy::all_slots" may not be initialized`。解决这个问题的方法是将 `torch/csrc/jit/api/module.h` 文件中所有 `static constexpr bool all_slots = false;` 替换为 `static bool all_slots = false;`。更多细节可以查看 [member "torch::jit::detail::AttributePolicy::all_slots" may not be initialized](https://github.com/pytorch/pytorch/issues/39394)。 + +- "error: a member with an in-class initializer must be const" + + 如果您在 Windows 上编译 mmcv-full 并且 PyTorch 的版本是 1.6.0,您很可能会遇到这个问题 `"- torch/include\torch/csrc/jit/api/module.h(483): error: a member with an in-class initializer must be const"`. 解决这个问题的方法是将 `torch/include\torch/csrc/jit/api/module.h` 文件中的所有 `CONSTEXPR_EXCEPT_WIN_CUDA ` 替换为 `const`。更多细节可以查看 [Ninja: build stopped: subcommand failed](https://github.com/open-mmlab/mmcv/issues/575)。 + +- "error: member "torch::jit::ProfileOptionalOp::Kind" may not be initialized" + + 如果您在 Windows 上编译 mmcv-full 并且 PyTorch 的版本是 1.7.0,您很可能会遇到这个问题 `torch/include\torch/csrc/jit/ir/ir.h(1347): error: member "torch::jit::ProfileOptionalOp::Kind" may not be initialized`. 解决这个问题的方法是修改 PyTorch 中的几个文件: + + - 删除 `torch/include\torch/csrc/jit/ir/ir.h` 文件中的 `static constexpr Symbol Kind = ::c10::prim::profile;` 和 `tatic constexpr Symbol Kind = ::c10::prim::profile_optional;` + - 将 `torch\include\pybind11\cast.h` 文件中的 `explicit operator type&() { return *(this->value); }` 替换为 `explicit operator type&() { return *((type*)this->value); }` + - 将 `torch/include\torch/csrc/jit/api/module.h` 文件中的 所有 `CONSTEXPR_EXCEPT_WIN_CUDA` 替换为 `const` + + 更多细节可以查看 [Ensure default extra_compile_args](https://github.com/pytorch/pytorch/pull/45956)。 + +- MMCV 和 MMDetection 的兼容性问题;"ConvWS is already registered in conv layer" + + 请参考 [installation instruction](https://mmdetection.readthedocs.io/en/latest/get_started.html#installation) 为您的 MMDetection 版本安装正确版本的 MMCV。 + +### 使用问题 + +- "RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one" + + 1. 这个错误是因为有些参数没有参与 loss 的计算,可能是代码中存在多个分支,导致有些分支没有参与 loss 的计算。更多细节见 [Expected to have finished reduction in the prior iteration before starting a new one](https://github.com/pytorch/pytorch/issues/55582)。 + 2. 你可以设置 DDP 中的 `find_unused_parameters` 为 `True`,或者手动查找哪些参数没有用到。 + +- "RuntimeError: Trying to backward through the graph a second time" + + 不能同时设置 `GradientCumulativeOptimizerHook` 和 `OptimizerHook`,这会导致 `loss.backward()` 被调用两次,于是程序抛出 `RuntimeError`。我们只需设置其中的一个。更多细节见 [Trying to backward through the graph a second time](https://github.com/open-mmlab/mmcv/issues/1379)。 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/article.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/article.md new file mode 100644 index 000000000..96768502c --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/article.md @@ -0,0 +1,63 @@ +## 解读文章汇总 + +这篇文章汇总了 [OpenMMLab](https://www.zhihu.com/people/openmmlab) 解读的部分文章(更多文章和视频见 [OpenMMLabCourse](https://github.com/open-mmlab/OpenMMLabCourse)),如果您有推荐的文章(不一定是 OpenMMLab 发布的文章,可以是自己写的文章),非常欢迎提 [Pull Request](http://127.0.0.1:5501/mmcv/docs/zh_cn/_build/html/community/pr.html) 添加到这里。 + +### MMCV 解读文章 + +#### 框架解读 + +- [MMCV 核心组件分析(一):整体概述](https://zhuanlan.zhihu.com/p/336081587) +- [MMCV 核心组件分析(二):FileHandler](https://zhuanlan.zhihu.com/p/336097883) +- [MMCV 核心组件分析(三): FileClient](https://zhuanlan.zhihu.com/p/339190576) +- [MMCV 核心组件分析(四): Config](https://zhuanlan.zhihu.com/p/346203167) +- [MMCV 核心组件分析(五): Registry](https://zhuanlan.zhihu.com/p/355271993) +- [MMCV 核心组件分析(六): Hook](https://zhuanlan.zhihu.com/p/355272220) +- [MMCV 核心组件分析(七): Runner](https://zhuanlan.zhihu.com/p/355272459) +- [MMCV Hook 食用指南](https://zhuanlan.zhihu.com/p/448600739) +- [PyTorch & MMCV Dispatcher 机制解析](https://zhuanlan.zhihu.com/p/451671838) + +#### 工具解读 + +- [训练可视化工具哪款是你的菜?MMCV一行代码随你挑](https://zhuanlan.zhihu.com/p/387078211) + +#### 安装指南 + +- [久等了!Windows 平台 MMCV 的预编译包终于来了!](https://zhuanlan.zhihu.com/p/441653536) +- [Windows 环境从零安装 mmcv-full](https://zhuanlan.zhihu.com/p/434491590) + +#### 知乎问答 + +- [深度学习科研,如何高效进行代码和实验管理?](https://www.zhihu.com/question/269707221/answer/2480772257) +- [深度学习方面的科研工作中的实验代码有什么规范和写作技巧?如何妥善管理实验数据?](https://www.zhihu.com/question/268193800/answer/2586000037) + +### 下游算法库解读文章 + +- [MMDetection](https://mmdetection.readthedocs.io/zh_CN/latest/article.html) + +### PyTorch 解读文章 + +- [PyTorch1.11 亮点一览:TorchData、functorch、DDP 静态图](https://zhuanlan.zhihu.com/p/486222256) +- [PyTorch1.12 亮点一览:DataPipe + TorchArrow 新的数据加载与处理范式](https://zhuanlan.zhihu.com/p/537868554) +- [PyTorch 源码解读之 nn.Module:核心网络模块接口详解](https://zhuanlan.zhihu.com/p/340453841) +- [PyTorch 源码解读之 torch.autograd:梯度计算详解](https://zhuanlan.zhihu.com/p/321449610) +- [PyTorch 源码解读之 torch.utils.data:解析数据处理全流程](https://zhuanlan.zhihu.com/p/337850513) +- [PyTorch 源码解读之 torch.optim:优化算法接口详解](https://zhuanlan.zhihu.com/p/346205754) +- [PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析](https://zhuanlan.zhihu.com/p/343951042) +- [PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解](https://zhuanlan.zhihu.com/p/337732517) +- [PyTorch 源码解读之 torch.cuda.amp: 自动混合精度详解](https://zhuanlan.zhihu.com/p/348554267) +- [PyTorch 源码解读之 cpp_extension:揭秘 C++/CUDA 算子实现和调用全流程](https://zhuanlan.zhihu.com/p/348555597) +- [PyTorch 源码解读之即时编译篇](https://zhuanlan.zhihu.com/p/361101354) +- [PyTorch 源码解读之分布式训练了解一下?](https://zhuanlan.zhihu.com/p/361314953) +- [PyTorch 源码解读之 torch.serialization & torch.hub](https://zhuanlan.zhihu.com/p/364239544) + +### 其他 + +- [困扰我 48 小时的深拷贝,今天终于...](https://zhuanlan.zhihu.com/p/470892209) +- [拿什么拯救我的 4G 显卡](https://zhuanlan.zhihu.com/p/430123077) +- [是谁偷偷动了我的 logger](https://zhuanlan.zhihu.com/p/481383590) +- [三句话,让 logger 言听计从](https://zhuanlan.zhihu.com/p/487524917) +- [Logging 不为人知的二三事](https://zhuanlan.zhihu.com/p/502610682) +- [Type Hints 入门教程,让代码更加规范整洁](https://zhuanlan.zhihu.com/p/519335398) +- [手把手教你如何高效地在 MMCV 中贡献算子](https://zhuanlan.zhihu.com/p/464492627) +- [OpenMMLab 支持 IPU 训练芯片](https://zhuanlan.zhihu.com/p/517527926) +- [基于 MMCV 走上开源大佬之路?](https://zhuanlan.zhihu.com/p/391144979) diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/build.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/build.md new file mode 100644 index 000000000..2098faa71 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/build.md @@ -0,0 +1,391 @@ +## 从源码编译 MMCV + +### 编译 mmcv-full + +在编译 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。可使用以下命令验证 + +```bash +python -c 'import torch;print(torch.__version__)' +``` + +```{note} +- 如需编译 ONNX Runtime 自定义算子,请参考[如何编译ONNX Runtime自定义算子](https://mmcv.readthedocs.io/zh_CN/latest/deployment/onnxruntime_op.html#id1) +- 如需编译 TensorRT 自定义,请参考[如何编译MMCV中的TensorRT插件](https://mmcv.readthedocs.io/zh_CN/latest/deployment/tensorrt_plugin.html#id3) +``` + +:::{note} + +- 如果克隆代码仓库的速度过慢,可以使用以下命令克隆(注意:gitee 的 mmcv 不一定和 github 的保持一致,因为每天只同步一次) + +```bash +git clone https://gitee.com/open-mmlab/mmcv.git +``` + +- 如果打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`。 + +- 如果编译过程安装依赖库的时间过长,可以[设置 pypi 源](https://mirrors.tuna.tsinghua.edu.cn/help/pypi/) + +```bash +pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple +``` + +::: + +#### 在 Linux 上编译 mmcv-full + +| TODO: 视频教程 + +1. 克隆代码仓库 + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. 安装 `ninja` 和 `psutil` 以加快编译速度 + + ```bash + pip install -r requirements/optional.txt + ``` + +3. 检查 nvcc 的版本(要求大于等于 9.2,如果没有 GPU,可以跳过) + + ```bash + nvcc --version + ``` + + 上述命令如果输出以下信息,表示 nvcc 的设置没有问题,否则需要设置 CUDA_HOME + + ``` + nvcc: NVIDIA (R) Cuda compiler driver + Copyright (c) 2005-2020 NVIDIA Corporation + Built on Mon_Nov_30_19:08:53_PST_2020 + Cuda compilation tools, release 11.2, V11.2.67 + Build cuda_11.2.r11.2/compiler.29373293_0 + ``` + + :::{note} + 如果想要支持 ROCm,可以参考 [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) 安装 ROCm。 + ::: + +4. 检查 gcc 的版本(要求大于等于**5.4**) + + ```bash + gcc --version + ``` + +5. 开始编译(预估耗时 10 分钟) + + ```bash + MMCV_WITH_OPS=1 pip install -e . -v + ``` + +6. 验证安装 + + ```bash + python .dev_scripts/check_installation.py + ``` + + 如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](https://mmcv.readthedocs.io/zh_CN/latest/faq.html)是否已经有解决方案。 + + 如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)。 + +#### 在 macOS 上编译 mmcv-full + +| TODO: 视频教程 + +```{note} +如果你使用的 mac 是 M1 芯片,请安装 PyTorch 的 nightly 版本,否则会遇到 [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218) 中的问题。 +``` + +1. 克隆代码仓库 + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. 安装 `ninja` 和 `psutil` 以加快编译速度 + + ```bash + pip install -r requirements/optional.txt + ``` + +3. 开始编译 + + ```bash + MMCV_WITH_OPS=1 pip install -e . + ``` + +4. 验证安装 + + ```bash + python .dev_scripts/check_installation.py + ``` + + 如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。 + + 如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)。 + +#### 在 Windows 上编译 mmcv-full + +| TODO: 视频教程 + +在 Windows 上编译 mmcv-full 比 Linux 复杂,本节将一步步介绍如何在 Windows 上编译 mmcv-full。 + +##### 依赖项 + +请先安装以下的依赖项: + +- [Git](https://git-scm.com/download/win):安装期间,请选择 **add git to Path** +- [Visual Studio Community 2019](https://visualstudio.microsoft.com):用于编译 C++ 和 CUDA 代码 +- [Miniconda](https://docs.conda.io/en/latest/miniconda.html):包管理工具 +- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive):如果只需要 CPU 版本可以不安装 CUDA,安装 CUDA 时,可根据需要进行自定义安装。如果已经安装新版本的显卡驱动,建议取消驱动程序的安装 + +```{note} +如果不清楚如何安装以上依赖,请参考[Windows 环境从零安装 mmcv-full](https://zhuanlan.zhihu.com/p/434491590)。 +另外,你需要知道如何在 Windows 上设置变量环境,尤其是 "PATH" 的设置,以下安装过程都会用到。 +``` + +##### 通用步骤 + +1. 从 Windows 菜单启动 Anaconda 命令行 + + 如 Miniconda 安装程序建议,不要使用原始的 `cmd.exe` 或是 `powershell.exe`。命令行有两个版本,一个基于 PowerShell,一个基于传统的 `cmd.exe`。请注意以下说明都是使用的基于 PowerShell + +2. 创建一个新的 Conda 环境 + + ```powershell + (base) PS C:\Users\xxx> conda create --name mmcv python=3.7 + (base) PS C:\Users\xxx> conda activate mmcv # 确保做任何操作前先激活环境 + ``` + +3. 安装 PyTorch 时,可以根据需要安装支持 CUDA 或不支持 CUDA 的版本 + + ```powershell + # CUDA version + (mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch + # CPU version + (mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch + ``` + +4. 克隆代码仓库 + + ```powershell + (mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git + (mmcv) PS C:\Users\xxx> cd mmcv + ``` + +5. 安装 `ninja` 和 `psutil` 以加快编译速度 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt + ``` + +6. 安装 mmcv 依赖 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/runtime.txt + ``` + +7. 设置 MSVC 编译器 + + 设置环境变量。添加 `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` 到 `PATH`,则 `cl.exe` 可以在命令行中运行,如下所示。 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> cl + Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64 + Copyright (C) Microsoft Corporation. All rights reserved. + + usage: cl [ option... ] filename... [ / link linkoption... ] + ``` + + 为了兼容性,我们使用 x86-hosted 以及 x64-targeted 版本,即路径中的 `Hostx86\x64` 。 + + 因为 PyTorch 将解析 `cl.exe` 的输出以检查其版本,只有 utf-8 将会被识别,你可能需要将系统语言更改为英语。控制面板 -> 地区-> 管理-> 非 Unicode 来进行语言转换。 + +##### 编译与安装 mmcv-full + +mmcv-full 有两个版本: + +- 只包含 CPU 算子的版本 + + 编译 CPU 算子,但只有 x86 将会被编译,并且编译版本只能在 CPU only 情况下运行 + +- 既包含 CPU 算子,又包含 CUDA 算子的版本 + + 同时编译 CPU 和 CUDA 算子,`ops` 模块的 x86 与 CUDA 的代码都可以被编译。同时编译的版本可以在 CUDA 上调用 GPU + +###### CPU 版本 + +1. 设置环境变量 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1 + ``` + +2. 编译安装 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子 + (mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装 + ``` + +###### GPU 版本 + +1. 设置环境变量 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1 + ``` + +2. 检查 `CUDA_PATH` 或者 `CUDA_HOME` 环境变量已经存在在 `envs` 之中 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> ls env: + + Name Value + ---- ----- + CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 + CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 + CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 + ``` + + 如果没有,你可以按照下面的步骤设置 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" + # 或者 + (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # CUDA_PATH_V10_2 已经在环境变量中 + ``` + +3. 设置 CUDA 的目标架构 + + ```powershell + # 这里需要改成你的显卡对应的目标架构 + (mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5" + ``` + + :::{note} + 可以点击 [cuda-gpus](https://developer.nvidia.com/cuda-gpus) 查看 GPU 的计算能力,也可以通过 CUDA 目录下的 deviceQuery.exe 工具查看 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe" + Device 0: "NVIDIA GeForce GTX 1660 SUPER" + CUDA Driver Version / Runtime Version 11.7 / 11.1 + CUDA Capability Major/Minor version number: 7.5 + ``` + + 上面的 7.5 表示目标架构。注意:需把上面命令的 v10.2 换成你的 CUDA 版本。 + ::: + +4. 编译安装 + + ```powershell + (mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子 + (mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装 + ``` + + ```{note} + 如果你的 PyTorch 版本是 1.6.0,你可能会遇到一些 [issue](https://github.com/pytorch/pytorch/issues/42467) 提到的错误,你可以参考这个 [pull request](https://github.com/pytorch/pytorch/pull/43380/files) 修改本地环境的 PyTorch 源代码 + ``` + +##### 验证安装 + +```powershell +(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py +``` + +如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。 +如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)。 + +### 编译 mmcv + +如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。 + +1. 克隆代码仓库 + + ```bash + git clone https://github.com/open-mmlab/mmcv.git + cd mmcv + ``` + +2. 开始编译 + + ```bash + pip install -e . -v + ``` + +3. 验证安装 + + ```bash + python -c 'import mmcv;print(mmcv.__version__)' + ``` + +### 在 IPU 机器编译 mmcv + +首先你需要有可用的 IPU 云机器,可以查看[这里](https://www.graphcore.ai/ipus-in-the-cloud)。 + +#### 选项1: 使用 Docker + +1. 拉取镜像 + + ```bash + docker pull graphcore/pytorch + ``` + +2. 编译 mmcv + +#### 选项2: 使用 SDK + +1. 编译 mmcv + +2. 参考 [IPU PyTorch document](https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/installation.html) 安装 sdk。 + +### 在昇腾 NPU 机器编译 mmcv-full + +在编译 mmcv-full 前,需要安装 torch_npu,完整安装教程详见 [PyTorch 安装指南](https://gitee.com/ascend/pytorch/blob/master/docs/zh/PyTorch%E5%AE%89%E8%A3%85%E6%8C%87%E5%8D%97/PyTorch%E5%AE%89%E8%A3%85%E6%8C%87%E5%8D%97.md#pytorch%E5%AE%89%E8%A3%85%E6%8C%87%E5%8D%97) + +#### 选项 1: 使用 pip 安装 Ascend 编译版本的 mmcv-full + +Ascend 编译版本的 mmcv-full 在 mmcv >= 1.7.0 时已经支持直接 pip 安装 + +```bash +pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/ascend/torch1.8.0/index.html +``` + +#### 选项 2: 使用 NPU 设备源码编译安装 mmcv-full + +- 拉取 [MMCV 源码](https://github.com/open-mmlab/mmcv/tree/master) + +```bash +git pull https://github.com/open-mmlab/mmcv/tree/master +``` + +- 编译 + +```bash +MMCV_WITH_OPS=1 MAX_JOBS=8 FORCE_NPU=1 python setup.py build_ext +``` + +- 安装 + +```bash +MMCV_WITH_OPS=1 FORCE_NPU=1 python setup.py develop +``` + +#### 验证 + +```python +import torch +import torch_npu +from mmcv.ops import softmax_focal_loss + +# Init tensor to the NPU +x = torch.randn(3, 10).npu() +y = torch.tensor([1, 5, 3]).npu() +w = torch.ones(10).float().npu() + +output = softmax_focal_loss(x, y, 2.0, 0.25, w, 'none') +print(output) +``` diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/installation.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/installation.md new file mode 100644 index 000000000..8701c0ae2 --- /dev/null +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/installation.md @@ -0,0 +1,374 @@ +## 安装 MMCV + +MMCV 有两个版本: + +- **mmcv-full**: 完整版,包含所有的特性以及丰富的开箱即用的 CPU 和 CUDA 算子。注意,完整版本可能需要更长时间来编译。 +- **mmcv**: 精简版,不包含 CPU 和 CUDA 算子但包含其余所有特性和功能,类似 MMCV 1.0 之前的版本。如果你不需要使用算子的话,精简版可以作为一个考虑选项。 + +```{warning} +请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。`如果CUDA可用,强烈推荐安装mmcv-full`。 +``` + +### 安装 mmcv-full + +```{note} +- 如需编译 ONNX Runtime 自定义算子,请参考[如何编译ONNX Runtime自定义算子](../deployment/onnxruntime_op.md#如何编译onnx-runtime自定义算子) +- 如需编译 TensorRT 自定义,请参考[如何编译MMCV中的TensorRT插件](../deployment/tensorrt_plugin.md#如何编译mmcv中的tensorrt插件) +``` + +在安装 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。可使用以下命令验证 + +```bash +python -c 'import torch;print(torch.__version__)' +``` + +如果输出版本信息,则表示 PyTorch 已安装。 + +#### 使用 mim 安装(推荐) + +[mim](https://github.com/open-mmlab/mim) 是 OpenMMLab 项目的包管理工具,使用它可以很方便地安装 mmcv-full。 + +```bash +pip install -U openmim +mim install mmcv-full +``` + +如果发现上述的安装命令没有使用预编译包(以 `.whl` 结尾)而是使用源码包(以 `.tar.gz` 结尾)安装,则有可能是我们没有提供和当前环境的 PyTorch 版本、CUDA 版本相匹配的 mmcv-full 预编译包,此时,你可以[源码安装 mmcv-full](build.md)。 + +
    +使用预编译包的安装日志 + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
    +Collecting mmcv-full
    +Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl + +
    + +
    +使用源码包的安装日志 + +Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
    +Collecting mmcv-full==1.6.0
    +Downloading mmcv-full-1.6.0.tar.gz + +
    + +如需安装指定版本的 mmcv-full,例如安装 1.7.0 版本的 mmcv-full,可使用以下命令 + +```bash +mim install mmcv-full==1.7.0 +``` + +:::{note} +如果你打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`。 + +另外,如果安装依赖库的时间过长,可以指定 pypi 源 + +```bash +mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple +``` + +::: + +安装完成后可以运行 [check_installation.py](https://github.com/open-mmlab/mmcv/.dev_scripts/check_installation.py) 脚本检查 mmcv-full 是否安装成功。 + +#### 使用 pip 安装 + +使用以下命令查看 CUDA 和 PyTorch 的版本 + +```bash +python -c 'import torch;print(torch.__version__);print(torch.version.cuda)' +``` + +根据系统的类型、CUDA 版本、PyTorch 版本以及 MMCV 版本选择相应的安装命令 + + + + +
    + + + + +
    +
    
    +
    +
    +
    +
    +如果在上面的下拉框中没有找到对应的版本,则可能是没有对应 PyTorch 或者 CUDA 或者 mmcv-full 版本的预编译包,此时,你可以[源码安装 mmcv-full](../faq.md)。
    +
    +:::{note}
    +PyTorch 在 1.x.0 和 1.x.1 之间通常是兼容的,故 mmcv-full 只提供 1.x.0 的编译包。如果你
    +的 PyTorch 版本是 1.x.1,你可以放心地安装在 1.x.0 版本编译的 mmcv-full。例如,如果你的
    +PyTorch 版本是 1.8.1,你可以放心选择 1.8.x。
    +:::
    +
    +:::{note}
    +如果你打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`。
    +
    +另外,如果安装依赖库的时间过长,可以指定 pypi 源
    +
    +```bash
    +pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html -i https://pypi.tuna.tsinghua.edu.cn/simple
    +```
    +
    +:::
    +
    +安装完成后可以运行 [check_installation.py](https://github.com/open-mmlab/mmcv/.dev_scripts/check_installation.py) 脚本检查 mmcv-full 是否安装成功。
    +
    +#### 使用 docker 镜像
    +
    +先将算法库克隆到本地再构建镜像
    +
    +```bash
    +git clone https://github.com/open-mmlab/mmcv.git && cd mmcv
    +docker build -t mmcv -f docker/release/Dockerfile .
    +```
    +
    +也可以直接使用下面的命令构建镜像
    +
    +```bash
    +docker build -t mmcv https://github.com/open-mmlab/mmcv.git#master:docker/release
    +```
    +
    +[Dockerfile](release/Dockerfile) 默认安装最新的 mmcv-full,如果你想要指定版本,可以使用下面的命令
    +
    +```bash
    +docker image build -t mmcv -f docker/release/Dockerfile --build-arg MMCV=1.5.0 .
    +```
    +
    +如果你想要使用其他版本的 PyTorch 和 CUDA,你可以在构建镜像时指定它们的版本。
    +
    +例如指定 PyTorch 的版本是 1.11,CUDA 的版本是 11.3
    +
    +```bash
    +docker build -t mmcv -f docker/release/Dockerfile \
    +    --build-arg PYTORCH=1.11.0 \
    +    --build-arg CUDA=11.3 \
    +    --build-arg CUDNN=8 \
    +    --build-arg MMCV=1.5.0 .
    +```
    +
    +更多 PyTorch 和 CUDA 镜像可以点击 [dockerhub/pytorch](https://hub.docker.com/r/pytorch/pytorch/tags) 查看。
    +
    +### 安装 mmcv
    +
    +如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。
    +
    +```python
    +pip install mmcv
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/introduction.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/introduction.md
    new file mode 100644
    index 000000000..0fe46d054
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/introduction.md
    @@ -0,0 +1,44 @@
    +## 介绍 MMCV
    +
    +MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目,例如:
    +
    +- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
    +- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
    +- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
    +- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
    +- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
    +- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
    +- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
    +- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
    +- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
    +- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
    +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
    +- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
    +- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
    +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
    +- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
    +- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
    +- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
    +- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
    +
    +MMCV 提供了以下功能:
    +
    +- [通用的 IO 接口](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/io.html)
    +- [图像和视频处理](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/data_process.html)
    +- [图像和标注结果可视化](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/visualization.html)
    +- [常用小工具(进度条,计时器等)](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/utils.html)
    +- [基于 PyTorch 的通用训练框架](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/runner.html)
    +- [多种 CNN 网络结构](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/cnn.html)
    +- [高质量实现的 CPU 和 CUDA 算子](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/ops.html)
    +
    +MMCV 支持以下的系统:
    +
    +- Linux
    +- Windows
    +- macOS
    +
    +欢迎查看[文档](http://mmcv.readthedocs.io/zh_CN/latest)了解更多特性和用法。
    +
    +```{note}
    +MMCV 需要 Python 3.6 以上版本。
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/previous_versions.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/previous_versions.md
    new file mode 100644
    index 000000000..d54381875
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/get_started/previous_versions.md
    @@ -0,0 +1,47 @@
    +## 其他版本的 PyTorch
    +
    +我们不再提供在较低的 `PyTorch` 版本下编译的 `mmcv-full` 包,但为了您的方便,您可以在下面找到它们。
    +
    +### PyTorch 1.4
    +
    +| 1.0.0 \<= mmcv_version \<= 1.2.1
    +
    +#### CUDA 10.1
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.4.0/index.html
    +```
    +
    +#### CUDA 9.2
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.4.0/index.html
    +```
    +
    +#### CPU
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.4.0/index.html
    +```
    +
    +### PyTorch v1.3
    +
    +| 1.0.0 \<= mmcv_version \<= 1.3.16
    +
    +#### CUDA 10.1
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.3.0/index.html
    +```
    +
    +#### CUDA 9.2
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.3.0/index.html
    +```
    +
    +#### CPU
    +
    +```bash
    +pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.3.0/index.html
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/index.rst b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/index.rst
    new file mode 100644
    index 000000000..d03488c2a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/index.rst
    @@ -0,0 +1,75 @@
    +欢迎来到 MMCV 的中文文档!
    +=============================
    +
    +您可以在页面左下角切换中英文文档。
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 介绍与安装
    +
    +   get_started/introduction.md
    +   get_started/installation.md
    +   get_started/build.md
    +   get_started/article.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 深入理解 MMCV
    +
    +   understand_mmcv/config.md
    +   understand_mmcv/registry.md
    +   understand_mmcv/runner.md
    +   understand_mmcv/io.md
    +   understand_mmcv/data_process.md
    +   understand_mmcv/visualization.md
    +   understand_mmcv/cnn.md
    +   understand_mmcv/ops.md
    +   understand_mmcv/utils.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 部署
    +
    +   deployment/onnx.md
    +   deployment/onnxruntime_op.md
    +   deployment/onnxruntime_custom_ops.md
    +   deployment/tensorrt_plugin.md
    +   deployment/tensorrt_custom_ops.md
    +
    +.. toctree::
    +   :caption: 语言切换
    +
    +   switch_language.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 兼容性
    +
    +   compatibility.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 常见问题
    +
    +   faq.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: 社区
    +
    +   community/contributing.md
    +   community/pr.md
    +   community/code_style.md
    +
    +.. toctree::
    +   :maxdepth: 2
    +   :caption: API 文档
    +
    +   api.rst
    +
    +
    +Indices and tables
    +==================
    +
    +* :ref:`genindex`
    +* :ref:`search`
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/make.bat b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/make.bat
    new file mode 100644
    index 000000000..7893348a1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/make.bat
    @@ -0,0 +1,35 @@
    +@ECHO OFF
    +
    +pushd %~dp0
    +
    +REM Command file for Sphinx documentation
    +
    +if "%SPHINXBUILD%" == "" (
    +	set SPHINXBUILD=sphinx-build
    +)
    +set SOURCEDIR=.
    +set BUILDDIR=_build
    +
    +if "%1" == "" goto help
    +
    +%SPHINXBUILD% >NUL 2>NUL
    +if errorlevel 9009 (
    +	echo.
    +	echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
    +	echo.installed, then set the SPHINXBUILD environment variable to point
    +	echo.to the full path of the 'sphinx-build' executable. Alternatively you
    +	echo.may add the Sphinx directory to PATH.
    +	echo.
    +	echo.If you don't have Sphinx installed, grab it from
    +	echo.http://sphinx-doc.org/
    +	exit /b 1
    +)
    +
    +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
    +goto end
    +
    +:help
    +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
    +
    +:end
    +popd
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/mmcv-logo.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/mmcv-logo.png
    new file mode 120000
    index 000000000..7dcca035f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/mmcv-logo.png
    @@ -0,0 +1 @@
    +../docs/mmcv-logo.png
    \ No newline at end of file
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/switch_language.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/switch_language.md
    new file mode 100644
    index 000000000..9dc7b34b4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/switch_language.md
    @@ -0,0 +1,3 @@
    +## English
    +
    +## 简体中文
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/cnn.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/cnn.md
    new file mode 100644
    index 000000000..aa8584f72
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/cnn.md
    @@ -0,0 +1,570 @@
    +## 卷积神经网络
    +
    +我们为卷积神经网络提供了一些构建模块,包括层构建、模块组件和权重初始化。
    +
    +### 网络层的构建
    +
    +在运行实验时,我们可能需要尝试同属一种类型但不同配置的层,但又不希望每次都修改代码。于是我们提供一些层构建方法,可以从字典构建层,字典可以在配置文件中配置,也可以通过命令行参数指定。
    +
    +#### 用法
    +
    +一个简单的例子:
    +
    +```python
    +cfg = dict(type='Conv3d')
    +layer = build_conv_layer(cfg, in_channels=3, out_channels=8, kernel_size=3)
    +```
    +
    +- `build_conv_layer`: 支持的类型包括 Conv1d、Conv2d、Conv3d、Conv (Conv是Conv2d的别名)
    +- `build_norm_layer`: 支持的类型包括 BN1d、BN2d、BN3d、BN (alias for BN2d)、SyncBN、GN、LN、IN1d、IN2d、IN3d、IN(IN是IN2d的别名)
    +- `build_activation_layer`:支持的类型包括 ReLU、LeakyReLU、PReLU、RReLU、ReLU6、ELU、Sigmoid、Tanh、GELU
    +- `build_upsample_layer`: 支持的类型包括 nearest、bilinear、deconv、pixel_shuffle
    +- `build_padding_layer`: 支持的类型包括 zero、reflect、replicate
    +
    +#### 拓展
    +
    +我们还允许自定义层和算子来扩展构建方法。
    +
    +1. 编写和注册自己的模块:
    +
    +   ```python
    +   from mmcv.cnn import UPSAMPLE_LAYERS
    +
    +   @UPSAMPLE_LAYERS.register_module()
    +   class MyUpsample:
    +
    +       def __init__(self, scale_factor):
    +           pass
    +
    +       def forward(self, x):
    +           pass
    +   ```
    +
    +2. 在某处导入 `MyUpsample` (例如 `__init__.py` )然后使用它:
    +
    +   ```python
    +   cfg = dict(type='MyUpsample', scale_factor=2)
    +   layer = build_upsample_layer(cfg)
    +   ```
    +
    +### 模块组件
    +
    +我们还提供了常用的模块组件,以方便网络构建。
    +卷积组件 `ConvModule` 由 convolution、normalization以及activation layers 组成,更多细节请参考 [ConvModule api](api.html#mmcv.cnn.ConvModule)。
    +
    +```python
    +# conv + bn + relu
    +conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +# conv + gn + relu
    +conv = ConvModule(3, 8, 2, norm_cfg=dict(type='GN', num_groups=2))
    +# conv + relu
    +conv = ConvModule(3, 8, 2)
    +# conv
    +conv = ConvModule(3, 8, 2, act_cfg=None)
    +# conv + leaky relu
    +conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
    +# bn + conv + relu
    +conv = ConvModule(
    +    3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act'))
    +```
    +
    +### Weight initialization
    +
    +> 实现细节可以在 [mmcv/cnn/utils/weight_init.py](../../mmcv/cnn/utils/weight_init.py)中找到
    +
    +在训练过程中,适当的初始化策略有利于加快训练速度或者获得更高的性能。 在MMCV中,我们提供了一些常用的方法来初始化模块,比如 `nn.Conv2d` 模块。当然,我们也提供了一些高级API,可用于初始化包含一个或多个模块的模型。
    +
    +#### Initialization functions
    +
    +以函数的方式初始化 `nn.Module` ,例如 `nn.Conv2d` 、 `nn.Linear` 等。
    +
    +我们提供以下初始化方法,
    +
    +- constant_init
    +
    +  使用给定常量值初始化模型参数
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import constant_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # constant_init(module, val, bias=0)
    +  >>> constant_init(conv1, 1, 0)
    +  >>> conv1.weight
    +  ```
    +
    +- xavier_init
    +
    +  按照 [Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf) 描述的方法初始化模型参数
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import xavier_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # xavier_init(module, gain=1, bias=0, distribution='normal')
    +  >>> xavier_init(conv1, distribution='normal')
    +  ```
    +
    +- normal_init
    +
    +  使用正态分布(高斯分布)初始化模型参数
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import normal_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # normal_init(module, mean=0, std=1, bias=0)
    +  >>> normal_init(conv1, std=0.01, bias=0)
    +  ```
    +
    +- uniform_init
    +
    +  使用均匀分布初始化模型参数
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import uniform_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # uniform_init(module, a=0, b=1, bias=0)
    +  >>> uniform_init(conv1, a=0, b=1)
    +  ```
    +
    +- kaiming_init
    +
    +  按照 [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015)](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf) 描述的方法来初始化模型参数。
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import kaiming_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal')
    +  >>> kaiming_init(conv1)
    +  ```
    +
    +- caffe2_xavier_init
    +
    +  caffe2中实现的 `xavier initialization`,对应于 PyTorch中的 `kaiming_uniform_`
    +
    +  ```python
    +  >>> import torch.nn as nn
    +  >>> from mmcv.cnn import caffe2_xavier_init
    +  >>> conv1 = nn.Conv2d(3, 3, 1)
    +  >>> # caffe2_xavier_init(module, bias=0)
    +  >>> caffe2_xavier_init(conv1)
    +  ```
    +
    +- bias_init_with_prob
    +
    +  根据给定的概率初始化 `conv/fc`, 这在 [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf) 提出。
    +
    +  ```python
    +  >>> from mmcv.cnn import bias_init_with_prob
    +  >>> # bias_init_with_prob is proposed in Focal Loss
    +  >>> bias = bias_init_with_prob(0.01)
    +  >>> bias
    +  -4.59511985013459
    +  ```
    +
    +#### Initializers and configs
    +
    +在初始化方法的基础上,我们定义了相应的初始化类,并将它们注册到 `INITIALIZERS` 中,这样我们就可以使用 `config` 配置来初始化模型了。
    +
    +我们提供以下初始化类:
    +
    +- ConstantInit
    +- XavierInit
    +- NormalInit
    +- UniformInit
    +- KaimingInit
    +- Caffe2XavierInit
    +- PretrainedInit
    +
    +接下来详细介绍 `initialize` 的使用方法
    +
    +1. 通过关键字 `layer` 来初始化模型
    +
    +   如果我们只定义了关键字 `layer` ,那么只初始化 `layer` 中包含的层。
    +
    +   注意: 关键字 `layer` 支持的模块是带有 weights 和 bias 属性的 PyTorch 模块,所以不支持 `MultiheadAttention layer`
    +
    +- 定义关键字 `layer` 列表并使用相同相同配置初始化模块
    +
    +  ```python
    +  import torch.nn as nn
    +  from mmcv.cnn import initialize
    +
    +  class FooNet(nn.Module):
    +      def __init__(self):
    +          super().__init__()
    +          self.feat = nn.Conv1d(3, 1, 3)
    +          self.reg = nn.Conv2d(3, 3, 3)
    +          self.cls = nn.Linear(1, 2)
    +
    +  model = FooNet()
    +  init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
    +  # 使用相同的配置初始化整个模块
    +  initialize(model, init_cfg)
    +  # model.feat.weight
    +  # Parameter containing:
    +  # tensor([[[1., 1., 1.],
    +  #          [1., 1., 1.],
    +  #          [1., 1., 1.]]], requires_grad=True)
    +  ```
    +
    +- 定义关键字 `layer` 用于初始化不同配置的层
    +
    +  ```python
    +  import torch.nn as nn
    +  from mmcv.cnn.utils import initialize
    +
    +  class FooNet(nn.Module):
    +      def __init__(self):
    +          super().__init__()
    +          self.feat = nn.Conv1d(3, 1, 3)
    +          self.reg = nn.Conv2d(3, 3, 3)
    +          self.cls = nn.Linear(1,2)
    +
    +  model = FooNet()
    +  init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
    +              dict(type='Constant', layer='Conv2d', val=2),
    +              dict(type='Constant', layer='Linear', val=3)]
    +  # nn.Conv1d 使用 dict(type='Constant', val=1) 初始化
    +  # nn.Conv2d 使用 dict(type='Constant', val=2) 初始化
    +  # nn.Linear 使用 dict(type='Constant', val=3) 初始化
    +  initialize(model, init_cfg)
    +  # model.reg.weight
    +  # Parameter containing:
    +  # tensor([[[[2., 2., 2.],
    +  #           [2., 2., 2.],
    +  #           [2., 2., 2.]],
    +  #          ...,
    +  #          [[2., 2., 2.],
    +  #           [2., 2., 2.],
    +  #           [2., 2., 2.]]]], requires_grad=True)
    +  ```
    +
    +2. 定义关键字`override`初始化模型
    +
    +- 当用属性名初始化某个特定部分时, 我们可以使用关键字 `override`, 关键字 `override` 对应的Value会替代init_cfg中相应的值
    +
    +  ```python
    +  import torch.nn as nn
    +  from mmcv.cnn import initialize
    +
    +  class FooNet(nn.Module):
    +      def __init__(self):
    +          super().__init__()
    +          self.feat = nn.Conv1d(3, 1, 3)
    +          self.reg = nn.Conv2d(3, 3, 3)
    +          self.cls = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2))
    +
    +  # 如果我们想将模型的权重初始化为 1,将偏差初始化为 2
    +  # 但希望 `reg` 中的权重为 3,偏差为 4,则我们可以使用关键字override
    +
    +  model = FooNet()
    +  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
    +                  override=dict(type='Constant', name='reg', val=3, bias=4))
    +  #  使用 dict(type='Constant', val=1, bias=2)来初始化 self.feat and self.cls
    +  # 使用dict(type='Constant', val=3, bias=4)来初始化‘reg’模块。
    +  initialize(model, init_cfg)
    +  # model.reg.weight
    +  # Parameter containing:
    +  # tensor([[[[3., 3., 3.],
    +  #           [3., 3., 3.],
    +  #           [3., 3., 3.]],
    +  #           ...,
    +  #           [[3., 3., 3.],
    +  #            [3., 3., 3.],
    +  #            [3., 3., 3.]]]], requires_grad=True)
    +  ```
    +
    +- 如果 init_cfg 中的关键字`layer`为None,则只初始化在关键字override中的子模块,并且省略override中的 type 和其他参数
    +
    +  ```python
    +  model = FooNet()
    +  init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg'))
    +  # self.feat 和 self.cls 使用pyTorch默认的初始化
    +  # 将使用 dict(type='Constant', val=1, bias=2) 初始化名为 'reg' 的模块
    +  initialize(model, init_cfg)
    +  # model.reg.weight
    +  # Parameter containing:
    +  # tensor([[[[1., 1., 1.],
    +  #           [1., 1., 1.],
    +  #           [1., 1., 1.]],
    +  #           ...,
    +  #           [[1., 1., 1.],
    +  #            [1., 1., 1.],
    +  #            [1., 1., 1.]]]], requires_grad=True)
    +  ```
    +
    +- 如果我们没有定义关键字`layer`或`override` , 将不会初始化任何东西
    +
    +- 关键字`override`的无效用法
    +
    +  ```python
    +  # 没有重写任何子模块
    +  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'],
    +                  val=1, bias=2,
    +                  override=dict(type='Constant', val=3, bias=4))
    +
    +  # 没有指定type,即便有其他参数,也是无效的。
    +  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'],
    +                  val=1, bias=2,
    +                  override=dict(name='reg', val=3, bias=4))
    +  ```
    +
    +3. 用预训练模型初始化
    +
    +   ```python
    +   import torch.nn as nn
    +   import torchvision.models as models
    +   from mmcv.cnn import initialize
    +
    +   # 使用预训练模型来初始化
    +   model = models.resnet50()
    +   # model.conv1.weight
    +   # Parameter containing:
    +   # tensor([[[[-6.7435e-03, -2.3531e-02, -9.0143e-03,  ..., -2.1245e-03,
    +   #            -1.8077e-03,  3.0338e-03],
    +   #           [-1.2603e-02, -2.7831e-02,  2.3187e-02,  ..., -1.5793e-02,
    +   #             1.1655e-02,  4.5889e-03],
    +   #           [-3.7916e-02,  1.2014e-02,  1.3815e-02,  ..., -4.2651e-03,
    +   #             1.7314e-02, -9.9998e-03],
    +   #           ...,
    +
    +   init_cfg = dict(type='Pretrained',
    +                   checkpoint='torchvision://resnet50')
    +   initialize(model, init_cfg)
    +   # model.conv1.weight
    +   # Parameter containing:
    +   # tensor([[[[ 1.3335e-02,  1.4664e-02, -1.5351e-02,  ..., -4.0896e-02,
    +   #            -4.3034e-02, -7.0755e-02],
    +   #           [ 4.1205e-03,  5.8477e-03,  1.4948e-02,  ...,  2.2060e-03,
    +   #            -2.0912e-02, -3.8517e-02],
    +   #           [ 2.2331e-02,  2.3595e-02,  1.6120e-02,  ...,  1.0281e-01,
    +   #             6.2641e-02,  5.1977e-02],
    +   #           ...,
    +
    +   # 使用关键字'prefix'用预训练模型的特定部分来初始化子模块权重
    +   model = models.resnet50()
    +   url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\
    +         'retinanet_r50_fpn_1x_coco/'\
    +         'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth'
    +   init_cfg = dict(type='Pretrained',
    +                   checkpoint=url, prefix='backbone.')
    +   initialize(model, init_cfg)
    +   ```
    +
    +4. 初始化继承自BaseModule、Sequential、ModuleList、ModuleDict的模型
    +
    +   `BaseModule` 继承自 `torch.nn.Module`, 它们之间唯一的不同是 `BaseModule` 实现了 `init_weight`
    +
    +   `Sequential` 继承自 `BaseModule` 和 `torch.nn.Sequential`
    +
    +   `ModuleList` 继承自 `BaseModule` 和 `torch.nn.ModuleList`
    +
    +   `ModuleDict` 继承自 `BaseModule` 和 `torch.nn.ModuleDict`
    +
    +   ```python
    +   import torch.nn as nn
    +   from mmcv.runner import BaseModule, Sequential, ModuleList, ModuleDict
    +
    +   class FooConv1d(BaseModule):
    +
    +       def __init__(self, init_cfg=None):
    +           super().__init__(init_cfg)
    +           self.conv1d = nn.Conv1d(4, 1, 4)
    +
    +       def forward(self, x):
    +           return self.conv1d(x)
    +
    +   class FooConv2d(BaseModule):
    +
    +       def __init__(self, init_cfg=None):
    +           super().__init__(init_cfg)
    +           self.conv2d = nn.Conv2d(3, 1, 3)
    +
    +       def forward(self, x):
    +           return self.conv2d(x)
    +
    +   # BaseModule
    +   init_cfg = dict(type='Constant', layer='Conv1d', val=0., bias=1.)
    +   model = FooConv1d(init_cfg)
    +   model.init_weights()
    +   # model.conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #        [0., 0., 0., 0.],
    +   #        [0., 0., 0., 0.],
    +   #        [0., 0., 0., 0.]]], requires_grad=True)
    +
    +   # Sequential
    +   init_cfg1 = dict(type='Constant', layer='Conv1d', val=0., bias=1.)
    +   init_cfg2 = dict(type='Constant', layer='Conv2d', val=2., bias=3.)
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   seq_model = Sequential(model1, model2)
    +   seq_model.init_weights()
    +   # seq_model[0].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # seq_model[1].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +
    +   # inner init_cfg has higher priority
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
    +   seq_model = Sequential(model1, model2, init_cfg=init_cfg)
    +   seq_model.init_weights()
    +   # seq_model[0].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # seq_model[1].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +
    +   # ModuleList
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   modellist = ModuleList([model1, model2])
    +   modellist.init_weights()
    +   # modellist[0].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # modellist[1].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +
    +   # inner init_cfg has higher priority
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
    +   modellist = ModuleList([model1, model2], init_cfg=init_cfg)
    +   modellist.init_weights()
    +   # modellist[0].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # modellist[1].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +
    +   # ModuleDict
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   modeldict = ModuleDict(dict(model1=model1, model2=model2))
    +   modeldict.init_weights()
    +   # modeldict['model1'].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # modeldict['model2'].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +
    +   # inner init_cfg has higher priority
    +   model1 = FooConv1d(init_cfg1)
    +   model2 = FooConv2d(init_cfg2)
    +   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
    +   modeldict = ModuleDict(dict(model1=model1, model2=model2), init_cfg=init_cfg)
    +   modeldict.init_weights()
    +   # modeldict['model1'].conv1d.weight
    +   # Parameter containing:
    +   # tensor([[[0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.],
    +   #         [0., 0., 0., 0.]]], requires_grad=True)
    +   # modeldict['model2'].conv2d.weight
    +   # Parameter containing:
    +   # tensor([[[[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]],
    +   #         ...,
    +   #          [[2., 2., 2.],
    +   #           [2., 2., 2.],
    +   #           [2., 2., 2.]]]], requires_grad=True)
    +   ```
    +
    +### Model Zoo
    +
    +除了`torchvision`的预训练模型,我们还提供以下 CNN 的预训练模型:
    +
    +- VGG Caffe
    +- ResNet Caffe
    +- ResNeXt
    +- ResNet with Group Normalization
    +- ResNet with Group Normalization and Weight Standardization
    +- HRNetV2
    +- Res2Net
    +- RegNet
    +
    +#### Model URLs in JSON
    +
    +MMCV中的Model Zoo Link 由 JSON 文件管理。 json 文件由模型名称及其url或path的键值对组成,一个json文件可能类似于:
    +
    +```json
    +{
    +    "model_a": "https://example.com/models/model_a_9e5bac.pth",
    +    "model_b": "pretrain/model_b_ab3ef2c.pth"
    +}
    +```
    +
    +可以在[此处](https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json)找到托管在 OpenMMLab AWS 上的预训练模型的默认链接。
    +
    +你可以通过将 `open-mmlab.json` 放在 `MMCV_HOME`下来覆盖默认链接,如果在环境中找不到`MMCV_HOME`,则默认使用 `~/.cache/mmcv`。当然你也可以使用命令 `export MMCV_HOME=/your/path`来设置自己的路径。
    +
    +外部的json文件将被合并为默认文件,如果相同的键出现在外部`json`和默认`json`中,则将使用外部`json`。
    +
    +#### Load Checkpoint
    +
    +`mmcv.load_checkpoint()`的参数`filename`支持以下类型:
    +
    +- filepath: `checkpoint`路径
    +- `http://xxx` and `https://xxx`: 下载checkpoint的链接,文件名中必需包含`SHA256`后缀
    +- `torchvision://xxx`: `torchvision.models`中的模型链接,更多细节参考 [torchvision](https://pytorch.org/docs/stable/torchvision/models.html)
    +- `open-mmlab://xxx`: 默认和其他 json 文件中提供的模型链接或文件路径
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/config.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/config.md
    new file mode 100644
    index 000000000..52d7ab37b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/config.md
    @@ -0,0 +1,179 @@
    +## 配置
    +
    +`Config` 类用于操作配置文件,它支持从多种文件格式中加载配置,包括 **python**, **json** 和 **yaml**。
    +它提供了类似字典对象的接口来获取和设置值。
    +
    +以配置文件 `test.py` 为例
    +
    +```python
    +a = 1
    +b = dict(b1=[0, 1, 2], b2=None)
    +c = (1, 2)
    +d = 'string'
    +```
    +
    +加载与使用配置文件
    +
    +```python
    +>>> cfg = Config.fromfile('test.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b=dict(b1=[0, 1, 2], b2=None),
    +...      c=(1, 2),
    +...      d='string')
    +```
    +
    +对于所有格式的配置文件,都支持一些预定义变量。它会将 `{{ var }}` 替换为实际值。
    +
    +目前支持以下四个预定义变量:
    +
    +`{{ fileDirname }}` - 当前打开文件的目录名,例如 /home/your-username/your-project/folder
    +
    +`{{ fileBasename }}` - 当前打开文件的文件名,例如 file.ext
    +
    +`{{ fileBasenameNoExtension }}` - 当前打开文件不包含扩展名的文件名,例如 file
    +
    +`{{ fileExtname }}` - 当前打开文件的扩展名,例如 .ext
    +
    +这些变量名引用自 [VS Code](https://code.visualstudio.com/docs/editor/variables-reference)。
    +
    +这里是一个带有预定义变量的配置文件的例子。
    +
    +`config_a.py`
    +
    +```python
    +a = 1
    +b = './work_dir/{{ fileBasenameNoExtension }}'
    +c = '{{ fileExtname }}'
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_a.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b='./work_dir/config_a',
    +...      c='.py')
    +```
    +
    +对于所有格式的配置文件, 都支持继承。为了重用其他配置文件的字段,
    +需要指定 `_base_='./config_a.py'` 或者一个包含配置文件的列表 `_base_=['./config_a.py', './config_b.py']`。
    +
    +这里有 4 个配置继承关系的例子。
    +
    +`config_a.py` 作为基类配置文件
    +
    +```python
    +a = 1
    +b = dict(b1=[0, 1, 2], b2=None)
    +```
    +
    +### 不含重复键值对从基类配置文件继承
    +
    +`config_b.py`
    +
    +```python
    +_base_ = './config_a.py'
    +c = (1, 2)
    +d = 'string'
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_b.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b=dict(b1=[0, 1, 2], b2=None),
    +...      c=(1, 2),
    +...      d='string')
    +```
    +
    +在`config_b.py`里的新字段与在`config_a.py`里的旧字段拼接
    +
    +### 含重复键值对从基类配置文件继承
    +
    +`config_c.py`
    +
    +```python
    +_base_ = './config_a.py'
    +b = dict(b2=1)
    +c = (1, 2)
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_c.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b=dict(b1=[0, 1, 2], b2=1),
    +...      c=(1, 2))
    +```
    +
    +在基类配置文件:`config_a` 里的 `b.b2=None`被配置文件:`config_c.py`里的 `b.b2=1`替代。
    +
    +### 从具有忽略字段的配置文件继承
    +
    +`config_d.py`
    +
    +```python
    +_base_ = './config_a.py'
    +b = dict(_delete_=True, b2=None, b3=0.1)
    +c = (1, 2)
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_d.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b=dict(b2=None, b3=0.1),
    +...      c=(1, 2))
    +```
    +
    +您还可以设置 `_delete_=True`忽略基类配置文件中的某些字段。所有在`b`中的旧键 `b1, b2, b3` 将会被新键 `b2, b3` 所取代。
    +
    +### 从多个基类配置文件继承(基类配置文件不应包含相同的键)
    +
    +`config_e.py`
    +
    +```python
    +c = (1, 2)
    +d = 'string'
    +```
    +
    +`config_f.py`
    +
    +```python
    +_base_ = ['./config_a.py', './config_e.py']
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_f.py')
    +>>> print(cfg)
    +>>> dict(a=1,
    +...      b=dict(b1=[0, 1, 2], b2=None),
    +...      c=(1, 2),
    +...      d='string')
    +```
    +
    +### 从基类引用变量
    +
    +您可以使用以下语法引用在基类中定义的变量。
    +
    +`base.py`
    +
    +```python
    +item1 = 'a'
    +item2 = dict(item3 = 'b')
    +```
    +
    +`config_g.py`
    +
    +```python
    +_base_ = ['./base.py']
    +item = dict(a = {{ _base_.item1 }}, b = {{ _base_.item2.item3 }})
    +```
    +
    +```python
    +>>> cfg = Config.fromfile('./config_g.py')
    +>>> print(cfg.pretty_text)
    +item1 = 'a'
    +item2 = dict(item3='b')
    +item = dict(a='a', b='b')
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/data_process.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/data_process.md
    new file mode 100644
    index 000000000..6abf91397
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/data_process.md
    @@ -0,0 +1,275 @@
    +## 数据处理
    +
    +### 图像
    +
    +图像模块提供了一些图像预处理的函数,该模块依赖 `opencv` 。
    +
    +#### 读取/保存/显示
    +
    +使用 `imread` 和 `imwrite` 函数可以读取和保存图像。
    +
    +```python
    +import mmcv
    +
    +img = mmcv.imread('test.jpg')
    +img = mmcv.imread('test.jpg', flag='grayscale')
    +img_ = mmcv.imread(img)  # 相当于什么也没做
    +mmcv.imwrite(img, 'out.jpg')
    +```
    +
    +从二进制中读取图像
    +
    +```python
    +with open('test.jpg', 'rb') as f:
    +    data = f.read()
    +img = mmcv.imfrombytes(data)
    +```
    +
    +显示图像文件或已读取的图像
    +
    +```python
    +mmcv.imshow('tests/data/color.jpg')
    +
    +for i in range(10):
    +    img = np.random.randint(256, size=(100, 100, 3), dtype=np.uint8)
    +    mmcv.imshow(img, win_name='test image', wait_time=200)
    +```
    +
    +#### 色彩空间转换
    +
    +支持的转换函数:
    +
    +- bgr2gray
    +- gray2bgr
    +- bgr2rgb
    +- rgb2bgr
    +- bgr2hsv
    +- hsv2bgr
    +
    +```python
    +img = mmcv.imread('tests/data/color.jpg')
    +img1 = mmcv.bgr2rgb(img)
    +img2 = mmcv.rgb2gray(img1)
    +img3 = mmcv.bgr2hsv(img)
    +```
    +
    +#### 缩放
    +
    +有三种缩放图像的方法。所有以 `imresize_*` 开头的函数都有一个 `return_scale` 参数,如果
    +该参数为 `False` ,函数的返回值只有调整之后的图像,否则是一个元组 `(resized_img, scale)` 。
    +
    +```python
    +# 缩放图像至给定的尺寸
    +mmcv.imresize(img, (1000, 600), return_scale=True)
    +
    +# 缩放图像至与给定的图像同样的尺寸
    +mmcv.imresize_like(img, dst_img, return_scale=False)
    +
    +# 以一定的比例缩放图像
    +mmcv.imrescale(img, 0.5)
    +
    +# 缩放图像至最长的边不大于1000、最短的边不大于800并且没有改变图像的长宽比
    +mmcv.imrescale(img, (1000, 800))
    +```
    +
    +#### 旋转
    +
    +我们可以使用 `imrotate` 旋转图像一定的角度。旋转的中心需要指定,默认值是原始图像的中心。有
    +两种旋转的模式,一种保持图像的尺寸不变,因此旋转后原始图像中的某些部分会被裁剪,另一种是扩大
    +图像的尺寸进而保留完整的原始图像。
    +
    +```python
    +img = mmcv.imread('tests/data/color.jpg')
    +
    +# 顺时针旋转图像30度
    +img_ = mmcv.imrotate(img, 30)
    +
    +# 逆时针旋转图像90度
    +img_ = mmcv.imrotate(img, -90)
    +
    +# 顺时针旋转图像30度并且缩放图像为原始图像的1.5倍
    +img_ = mmcv.imrotate(img, 30, scale=1.5)
    +
    +# 以坐标(100, 100)为中心顺时针旋转图像30度
    +img_ = mmcv.imrotate(img, 30, center=(100, 100))
    +
    +# 顺时针旋转图像30度并扩大图像的尺寸
    +img_ = mmcv.imrotate(img, 30, auto_bound=True)
    +```
    +
    +#### 翻转
    +
    +我们可以使用 `imflip` 翻转图像。
    +
    +```python
    +img = mmcv.imread('tests/data/color.jpg')
    +
    +# 水平翻转图像
    +mmcv.imflip(img)
    +
    +# 垂直翻转图像
    +mmcv.imflip(img, direction='vertical')
    +```
    +
    +#### 裁剪
    +
    +`imcrop` 可以裁剪图像的一个或多个区域,每个区域用左上角和右下角坐标表示,形如(x1, y1, x2, y2)
    +
    +```python
    +import mmcv
    +import numpy as np
    +
    +img = mmcv.imread('tests/data/color.jpg')
    +
    +# 裁剪区域 (10, 10, 100, 120)
    +bboxes = np.array([10, 10, 100, 120])
    +patch = mmcv.imcrop(img, bboxes)
    +
    +# 裁剪两个区域,分别是 (10, 10, 100, 120) 和 (0, 0, 50, 50)
    +bboxes = np.array([[10, 10, 100, 120], [0, 0, 50, 50]])
    +patches = mmcv.imcrop(img, bboxes)
    +
    +# 裁剪两个区域并且缩放区域1.2倍
    +patches = mmcv.imcrop(img, bboxes, scale=1.2)
    +```
    +
    +#### 填充
    +
    +`impad` and `impad_to_multiple` 可以用给定的值将图像填充至给定的尺寸。
    +
    +```python
    +img = mmcv.imread('tests/data/color.jpg')
    +
    +# 用给定值将图像填充至 (1000, 1200)
    +img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=0)
    +
    +# 用给定值分别填充图像的3个通道至 (1000, 1200)
    +img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=(100, 50, 200))
    +
    +# 用给定值填充图像的左、右、上、下四条边
    +img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=0)
    +
    +# 用3个值分别填充图像的左、右、上、下四条边的3个通道
    +img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=(100, 50, 200))
    +
    +# 将图像的四条边填充至能够被给定值整除
    +img_ = mmcv.impad_to_multiple(img, 32)
    +```
    +
    +### 视频
    +
    +视频模块提供了以下的功能:
    +
    +- 一个 `VideoReader` 类,具有友好的 API 接口可以读取和转换视频
    +- 一些编辑视频的方法,包括 `cut` , `concat` , `resize`
    +- 光流的读取/保存/变换
    +
    +#### VideoReader
    +
    +`VideoReader` 类提供了和序列一样的接口去获取视频帧。该类会缓存所有被访问过的帧。
    +
    +```python
    +video = mmcv.VideoReader('test.mp4')
    +
    +# 获取基本的信息
    +print(len(video))
    +print(video.width, video.height, video.resolution, video.fps)
    +
    +# 遍历所有的帧
    +for frame in video:
    +    print(frame.shape)
    +
    +# 读取下一帧
    +img = video.read()
    +
    +# 使用索引获取帧
    +img = video[100]
    +
    +# 获取指定范围的帧
    +img = video[5:10]
    +```
    +
    +将视频切成帧并保存至给定目录或者从给定目录中生成视频。
    +
    +```python
    +# 将视频切成帧并保存至目录
    +video = mmcv.VideoReader('test.mp4')
    +video.cvt2frames('out_dir')
    +
    +# 从给定目录中生成视频
    +mmcv.frames2video('out_dir', 'test.avi')
    +```
    +
    +#### 编辑函数
    +
    +有几个用于编辑视频的函数,这些函数是对 `ffmpeg` 的封装。
    +
    +```python
    +# 裁剪视频
    +mmcv.cut_video('test.mp4', 'clip1.mp4', start=3, end=10, vcodec='h264')
    +
    +# 将多个视频拼接成一个视频
    +mmcv.concat_video(['clip1.mp4', 'clip2.mp4'], 'joined.mp4', log_level='quiet')
    +
    +# 将视频缩放至给定的尺寸
    +mmcv.resize_video('test.mp4', 'resized1.mp4', (360, 240))
    +
    +# 将视频缩放至给定的倍率
    +mmcv.resize_video('test.mp4', 'resized2.mp4', ratio=2)
    +```
    +
    +#### 光流
    +
    +`mmcv` 提供了以下用于操作光流的函数:
    +
    +- 读取/保存
    +- 可视化
    +- 流变换
    +
    +我们提供了两种将光流dump到文件的方法,分别是非压缩和压缩的方法。非压缩的方法直接将浮点数值的光流
    +保存至二进制文件,虽然光流无损但文件会比较大。而压缩的方法先量化光流至 0-255 整形数值再保存为
    +jpeg图像。光流的x维度和y维度会被拼接到图像中。
    +
    +1. 读取/保存
    +
    +```python
    +flow = np.random.rand(800, 600, 2).astype(np.float32)
    +# 保存光流到flo文件 (~3.7M)
    +mmcv.flowwrite(flow, 'uncompressed.flo')
    +# 保存光流为jpeg图像 (~230K),图像的尺寸为 (800, 1200)
    +mmcv.flowwrite(flow, 'compressed.jpg', quantize=True, concat_axis=1)
    +
    +# 读取光流文件,以下两种方式读取的光流尺寸均为 (800, 600, 2)
    +flow = mmcv.flowread('uncompressed.flo')
    +flow = mmcv.flowread('compressed.jpg', quantize=True, concat_axis=1)
    +```
    +
    +2. 可视化
    +
    +使用 `mmcv.flowshow()` 可视化光流
    +
    +```python
    +mmcv.flowshow(flow)
    +```
    +
    +![progress](../../en/_static/flow_visualization.png)
    +
    +1. 流变换
    +
    +```python
    +img1 = mmcv.imread('img1.jpg')
    +flow = mmcv.flowread('flow.flo')
    +warpped_img2 = mmcv.flow_warp(img1, flow)
    +```
    +
    +img1 (左) and img2 (右)
    +
    +![raw images](../../en/_static/flow_raw_images.png)
    +
    +光流 (img2 -> img1)
    +
    +![optical flow](../../en/_static/flow_img2toimg1.png)
    +
    +变换后的图像和真实图像的差异
    +
    +![warpped image](../../en/_static/flow_warp_diff.png)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/io.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/io.md
    new file mode 100644
    index 000000000..eb4fe14ba
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/io.md
    @@ -0,0 +1,241 @@
    +## 文件输入输出
    +
    +文件输入输出模块提供了两个通用的 API 接口用于读取和保存不同格式的文件。
    +
    +```{note}
    +在 v1.3.16 及之后的版本中,IO 模块支持从不同后端读取数据并支持将数据至不同后端。更多细节请访问 PR [#1330](https://github.com/open-mmlab/mmcv/pull/1330)。
    +```
    +
    +### 读取和保存数据
    +
    +`mmcv` 提供了一个通用的 api 用于读取和保存数据,目前支持的格式有 json、yaml 和 pickle。
    +
    +#### 从硬盘读取数据或者将数据保存至硬盘
    +
    +```python
    +import mmcv
    +
    +# 从文件中读取数据
    +data = mmcv.load('test.json')
    +data = mmcv.load('test.yaml')
    +data = mmcv.load('test.pkl')
    +# 从文件对象中读取数据
    +with open('test.json', 'r') as f:
    +    data = mmcv.load(f, file_format='json')
    +
    +# 将数据序列化为字符串
    +json_str = mmcv.dump(data, file_format='json')
    +
    +# 将数据保存至文件 (根据文件名后缀反推文件类型)
    +mmcv.dump(data, 'out.pkl')
    +
    +# 将数据保存至文件对象
    +with open('test.yaml', 'w') as f:
    +    data = mmcv.dump(data, f, file_format='yaml')
    +```
    +
    +#### 从其他后端加载或者保存至其他后端
    +
    +```python
    +import mmcv
    +
    +# 从 s3 文件读取数据
    +data = mmcv.load('s3://bucket-name/test.json')
    +data = mmcv.load('s3://bucket-name/test.yaml')
    +data = mmcv.load('s3://bucket-name/test.pkl')
    +
    +# 将数据保存至 s3 文件 (根据文件名后缀反推文件类型)
    +mmcv.dump(data, 's3://bucket-name/out.pkl')
    +```
    +
    +我们提供了易于拓展的方式以支持更多的文件格式。我们只需要创建一个继承自 `BaseFileHandler` 的
    +文件句柄类并将其注册到 `mmcv` 中即可。句柄类至少需要重写三个方法。
    +
    +```python
    +import mmcv
    +
    +# 支持为文件句柄类注册多个文件格式
    +# @mmcv.register_handler(['txt', 'log'])
    +@mmcv.register_handler('txt')
    +class TxtHandler1(mmcv.BaseFileHandler):
    +
    +    def load_from_fileobj(self, file):
    +        return file.read()
    +
    +    def dump_to_fileobj(self, obj, file):
    +        file.write(str(obj))
    +
    +    def dump_to_str(self, obj, **kwargs):
    +        return str(obj)
    +```
    +
    +以 `PickleHandler` 为例
    +
    +```python
    +import pickle
    +
    +class PickleHandler(mmcv.BaseFileHandler):
    +
    +    def load_from_fileobj(self, file, **kwargs):
    +        return pickle.load(file, **kwargs)
    +
    +    def load_from_path(self, filepath, **kwargs):
    +        return super(PickleHandler, self).load_from_path(
    +            filepath, mode='rb', **kwargs)
    +
    +    def dump_to_str(self, obj, **kwargs):
    +        kwargs.setdefault('protocol', 2)
    +        return pickle.dumps(obj, **kwargs)
    +
    +    def dump_to_fileobj(self, obj, file, **kwargs):
    +        kwargs.setdefault('protocol', 2)
    +        pickle.dump(obj, file, **kwargs)
    +
    +    def dump_to_path(self, obj, filepath, **kwargs):
    +        super(PickleHandler, self).dump_to_path(
    +            obj, filepath, mode='wb', **kwargs)
    +```
    +
    +### 读取文件并返回列表或字典
    +
    +例如, `a.txt` 是文本文件,一共有5行内容。
    +
    +```
    +a
    +b
    +c
    +d
    +e
    +```
    +
    +#### 从硬盘读取
    +
    +使用 `list_from_file` 读取 `a.txt`
    +
    +```python
    +>>> mmcv.list_from_file('a.txt')
    +['a', 'b', 'c', 'd', 'e']
    +>>> mmcv.list_from_file('a.txt', offset=2)
    +['c', 'd', 'e']
    +>>> mmcv.list_from_file('a.txt', max_num=2)
    +['a', 'b']
    +>>> mmcv.list_from_file('a.txt', prefix='/mnt/')
    +['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']
    +```
    +
    +同样, `b.txt` 也是文本文件,一共有3行内容
    +
    +```
    +1 cat
    +2 dog cow
    +3 panda
    +```
    +
    +使用 `dict_from_file` 读取 `b.txt`
    +
    +```python
    +>>> mmcv.dict_from_file('b.txt')
    +{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +>>> mmcv.dict_from_file('b.txt', key_type=int)
    +{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}
    +```
    +
    +#### 从其他后端读取
    +
    +使用 `list_from_file` 读取 `s3://bucket-name/a.txt`
    +
    +```python
    +>>> mmcv.list_from_file('s3://bucket-name/a.txt')
    +['a', 'b', 'c', 'd', 'e']
    +>>> mmcv.list_from_file('s3://bucket-name/a.txt', offset=2)
    +['c', 'd', 'e']
    +>>> mmcv.list_from_file('s3://bucket-name/a.txt', max_num=2)
    +['a', 'b']
    +>>> mmcv.list_from_file('s3://bucket-name/a.txt', prefix='/mnt/')
    +['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']
    +```
    +
    +使用 `dict_from_file` 读取 `b.txt`
    +
    +```python
    +>>> mmcv.dict_from_file('s3://bucket-name/b.txt')
    +{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +>>> mmcv.dict_from_file('s3://bucket-name/b.txt', key_type=int)
    +{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}
    +```
    +
    +### 读取和保存权重文件
    +
    +#### 从硬盘读取权重文件或者将权重文件保存至硬盘
    +
    +我们可以通过下面的方式从磁盘读取权重文件或者将权重文件保存至磁盘
    +
    +```python
    +import torch
    +
    +filepath1 = '/path/of/your/checkpoint1.pth'
    +filepath2 = '/path/of/your/checkpoint2.pth'
    +# 从 filepath1 读取权重文件
    +checkpoint = torch.load(filepath1)
    +# 将权重文件保存至 filepath2
    +torch.save(checkpoint, filepath2)
    +```
    +
    +MMCV 提供了很多后端,`HardDiskBackend` 是其中一个,我们可以通过它来读取或者保存权重文件。
    +
    +```python
    +import io
    +from mmcv.fileio.file_client import HardDiskBackend
    +
    +disk_backend = HardDiskBackend()
    +with io.BytesIO(disk_backend.get(filepath1)) as buffer:
    +    checkpoint = torch.load(buffer)
    +with io.BytesIO() as buffer:
    +    torch.save(checkpoint, f)
    +    disk_backend.put(f.getvalue(), filepath2)
    +```
    +
    +如果我们想在接口中实现根据文件路径自动选择对应的后端,我们可以使用 `FileClient`。
    +例如,我们想实现两个方法,分别是读取权重以及保存权重,它们需支持不同类型的文件路径,可以是磁盘路径,也可以是网络路径或者其他路径。
    +
    +```python
    +from mmcv.fileio.file_client import FileClient
    +
    +def load_checkpoint(path):
    +    file_client = FileClient.infer(uri=path)
    +    with io.BytesIO(file_client.get(path)) as buffer:
    +        checkpoint = torch.load(buffer)
    +    return checkpoint
    +
    +def save_checkpoint(checkpoint, path):
    +    with io.BytesIO() as buffer:
    +        torch.save(checkpoint, buffer)
    +        file_client.put(buffer.getvalue(), path)
    +
    +file_client = FileClient.infer_client(uri=filepath1)
    +checkpoint = load_checkpoint(filepath1)
    +save_checkpoint(checkpoint, filepath2)
    +```
    +
    +#### 从网络远端读取权重文件
    +
    +```{note}
    +目前只支持从网络远端读取权重文件,暂不支持将权重文件写入网络远端
    +```
    +
    +```python
    +import io
    +import torch
    +from mmcv.fileio.file_client import HTTPBackend, FileClient
    +
    +filepath = 'http://path/of/your/checkpoint.pth'
    +checkpoint = torch.utils.model_zoo.load_url(filepath)
    +
    +http_backend = HTTPBackend()
    +with io.BytesIO(http_backend.get(filepath)) as buffer:
    +    checkpoint = torch.load(buffer)
    +
    +file_client = FileClient.infer_client(uri=filepath)
    +with io.BytesIO(file_client.get(filepath)) as buffer:
    +    checkpoint = torch.load(buffer)
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/ops.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/ops.md
    new file mode 100644
    index 000000000..a15392e18
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/ops.md
    @@ -0,0 +1,62 @@
    +## 算子
    +
    +MMCV 提供了检测、分割等任务中常用的算子
    +
    +| Device                       | CPU | CUDA | MLU | MPS | Ascend |
    +| ---------------------------- | --- | ---- | --- | --- | ------ |
    +| ActiveRotatedFilter          | √   | √    |     |     |        |
    +| AssignScoreWithK             |     | √    |     |     |        |
    +| BallQuery                    |     | √    |     |     |        |
    +| BBoxOverlaps                 |     | √    | √   | √   |        |
    +| BorderAlign                  |     | √    |     |     |        |
    +| BoxIouRotated                | √   | √    |     |     |        |
    +| BoxIouQuadri                 | √   | √    |     |     |        |
    +| CARAFE                       |     | √    | √   |     |        |
    +| ChamferDistance              |     | √    |     |     |        |
    +| CrissCrossAttention          |     | √    |     |     |        |
    +| ContourExpand                | √   |      |     |     |        |
    +| ConvexIoU                    |     | √    |     |     |        |
    +| CornerPool                   |     | √    |     |     |        |
    +| Correlation                  |     | √    |     |     |        |
    +| Deformable Convolution v1/v2 | √   | √    |     |     |        |
    +| Deformable RoIPool           |     | √    | √   |     | √      |
    +| DiffIoURotated               |     | √    |     |     |        |
    +| DynamicScatter               |     | √    |     |     |        |
    +| FurthestPointSample          |     | √    |     |     |        |
    +| FurthestPointSampleWithDist  |     | √    |     |     |        |
    +| FusedBiasLeakyrelu           |     | √    |     |     | √      |
    +| GatherPoints                 |     | √    |     |     |        |
    +| GroupPoints                  |     | √    |     |     |        |
    +| Iou3d                        |     | √    | √   |     |        |
    +| KNN                          |     | √    |     |     |        |
    +| MaskedConv                   |     | √    | √   |     | √      |
    +| MergeCells                   |     | √    |     |     |        |
    +| MinAreaPolygon               |     | √    |     |     |        |
    +| ModulatedDeformConv2d        | √   | √    | √   |     | √      |
    +| MultiScaleDeformableAttn     |     | √    | √   |     |        |
    +| NMS                          | √   | √    | √   |     | √      |
    +| NMSRotated                   | √   | √    |     |     |        |
    +| NMSQuadri                    | √   | √    |     |     |        |
    +| PixelGroup                   | √   |      |     |     |        |
    +| PointsInBoxes                | √   | √    |     |     |        |
    +| PointsInPolygons             |     | √    |     |     |        |
    +| PSAMask                      | √   | √    | √   |     |        |
    +| RotatedFeatureAlign          | √   | √    |     |     |        |
    +| RoIPointPool3d               |     | √    | √   |     |        |
    +| RoIPool                      |     | √    | √   |     |        |
    +| RoIAlignRotated              | √   | √    | √   |     |        |
    +| RiRoIAlignRotated            |     | √    |     |     |        |
    +| RoIAlign                     | √   | √    | √   |     |        |
    +| RoIAwarePool3d               |     | √    | √   |     |        |
    +| SAConv2d                     |     | √    |     |     |        |
    +| SigmoidFocalLoss             |     | √    | √   |     | √      |
    +| SoftmaxFocalLoss             |     | √    |     |     | √      |
    +| SoftNMS                      |     | √    |     |     |        |
    +| Sparse Convolution           |     | √    |     |     |        |
    +| Synchronized BatchNorm       |     | √    |     |     |        |
    +| ThreeInterpolate             |     | √    |     |     |        |
    +| ThreeNN                      |     | √    | √   |     |        |
    +| TINShift                     |     | √    | √   |     |        |
    +| UpFirDn2d                    |     | √    |     |     |        |
    +| Voxelization                 | √   | √    |     |     |        |
    +| PrRoIPool                    |     | √    |     |     |        |
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/registry.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/registry.md
    new file mode 100644
    index 000000000..f27fbc75c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/registry.md
    @@ -0,0 +1,176 @@
    +## 注册器
    +
    +MMCV 使用 [注册器](https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/registry.py) 来管理具有相似功能的不同模块, 例如, 检测器中的主干网络、头部、和模型颈部。
    +在 OpenMMLab 家族中的绝大部分开源项目使用注册器去管理数据集和模型的模块,例如 [MMDetection](https://github.com/open-mmlab/mmdetection), [MMDetection3D](https://github.com/open-mmlab/mmdetection3d), [MMClassification](https://github.com/open-mmlab/mmclassification), [MMEditing](https://github.com/open-mmlab/mmediting) 等。
    +
    +```{note}
    +在 v1.5.1 版本开始支持注册函数的功能。
    +```
    +
    +### 什么是注册器
    +
    +在MMCV中,注册器可以看作类或函数到字符串的映射。
    +一个注册器中的类或函数通常有相似的接口,但是可以实现不同的算法或支持不同的数据集。
    +借助注册器,用户可以通过使用相应的字符串查找类或函数,并根据他们的需要实例化对应模块或调用函数获取结果。
    +一个典型的案例是,OpenMMLab 中的大部分开源项目的配置系统,这些系统通过配置文件来使用注册器创建钩子、执行器、模型和数据集。
    +可以在[这里](https://mmcv.readthedocs.io/en/latest/api.html?highlight=registry#mmcv.utils.Registry)找到注册器接口使用文档。
    +
    +使用 `registry`(注册器)管理代码库中的模型,需要以下三个步骤。
    +
    +1. 创建一个构建方法(可选,在大多数情况下您可以只使用默认方法)
    +2. 创建注册器
    +3. 使用此注册器来管理模块
    +
    +`Registry`(注册器)的参数 `build_func`(构建函数) 用来自定义如何实例化类的实例或如何调用函数获取结果,默认使用 [这里](https://mmcv.readthedocs.io/en/latest/api.html?highlight=registry#mmcv.utils.build_from_cfg) 实现的`build_from_cfg`。
    +
    +### 一个简单的例子
    +
    +这里是一个使用注册器管理包中模块的简单示例。您可以在 OpenMMLab 开源项目中找到更多实例。
    +
    +假设我们要实现一系列数据集转换器(Dataset Converter),用于将不同格式的数据转换为标准数据格式。我们先创建一个名为converters的目录作为包,在包中我们创建一个文件来实现构建器(builder),命名为converters/builder.py,如下
    +
    +```python
    +from mmcv.utils import Registry
    +# 创建转换器(converter)的注册器(registry)
    +CONVERTERS = Registry('converter')
    +```
    +
    +然后我们在包中可以实现不同的转换器(converter),其可以为类或函数。例如,在 `converters/converter1.py` 中实现 `Converter1`,在 `converters/converter2.py` 中实现 `converter2`。
    +
    +```python
    +# converter1.py
    +from .builder import CONVERTERS
    +
    +# 使用注册器管理模块
    +@CONVERTERS.register_module()
    +class Converter1(object):
    +    def __init__(self, a, b):
    +        self.a = a
    +        self.b = b
    +```
    +
    +```python
    +# converter2.py
    +from .builder import CONVERTERS
    +from .converter1 import Converter1
    +
    +# 使用注册器管理模块
    +@CONVERTERS.register_module()
    +def converter2(a, b):
    +    return Converter1(a, b)
    +```
    +
    +使用注册器管理模块的关键步骤是,将实现的模块注册到注册表 `CONVERTERS` 中。通过 `@CONVERTERS.register_module()` 装饰所实现的模块,字符串到类或函数之间的映射就可以由 `CONVERTERS` 构建和维护,如下所示:
    +
    +通过这种方式,就可以通过 `CONVERTERS` 建立字符串与类或函数之间的映射,如下所示:
    +
    +```python
    +'Converter1' -> 
    +'converter2' -> 
    +```
    +
    +```{note}
    +只有模块所在的文件被导入时,注册机制才会被触发,所以您需要在某处导入该文件。更多详情请查看 https://github.com/open-mmlab/mmdetection/issues/5974。
    +```
    +
    +如果模块被成功注册了,你可以通过配置文件使用这个转换器(converter),如下所示:
    +
    +```python
    +converter1_cfg = dict(type='Converter1', a=a_value, b=b_value)
    +converter2_cfg = dict(type='converter2', a=a_value, b=b_value)
    +converter1 = CONVERTERS.build(converter1_cfg)
    +# returns the calling result
    +result = CONVERTERS.build(converter2_cfg)
    +```
    +
    +### 自定义构建函数
    +
    +假设我们想自定义 `converters` 的构建流程,我们可以实现一个自定义的 `build_func` (构建函数)并将其传递到注册器中。
    +
    +```python
    +from mmcv.utils import Registry
    +
    +# 创建一个构建函数
    +def build_converter(cfg, registry, *args, **kwargs):
    +    cfg_ = cfg.copy()
    +    converter_type = cfg_.pop('type')
    +    if converter_type not in registry:
    +        raise KeyError(f'Unrecognized converter type {converter_type}')
    +    else:
    +        converter_cls = registry.get(converter_type)
    +
    +    converter = converter_cls(*args, **kwargs, **cfg_)
    +    return converter
    +
    +# 创建一个用于转换器(converters)的注册器,并传递(registry)``build_converter`` 函数
    +CONVERTERS = Registry('converter', build_func=build_converter)
    +```
    +
    +```{note}
    +注:在这个例子中,我们演示了如何使用参数:`build_func` 自定义构建类的实例的方法。
    +该功能类似于默认的`build_from_cfg`。在大多数情况下,默认就足够了。
    +```
    +
    +`build_model_from_cfg`也实现了在`nn.Sequential`中构建PyTorch模块,你可以直接使用它们。
    +
    +### 注册器层结构
    +
    +你也可以从多个 OpenMMLab 开源框架中构建模块,例如,你可以把所有 [MMClassification](https://github.com/open-mmlab/mmclassification) 中的主干网络(backbone)用到 [MMDetection](https://github.com/open-mmlab/mmdetection) 的目标检测中,你也可以融合 [MMDetection](https://github.com/open-mmlab/mmdetection) 中的目标检测模型 和 [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) 语义分割模型。
    +
    +下游代码库中所有 `MODELS` 注册器都是MMCV `MODELS` 注册器的子注册器。基本上,使用以下两种方法从子注册器或相邻兄弟注册器构建模块。
    +
    +1. 从子注册器中构建
    +
    +   例如:
    +
    +   我们在 MMDetection 中定义:
    +
    +   ```python
    +   from mmcv.utils import Registry
    +   from mmcv.cnn import MODELS as MMCV_MODELS
    +   MODELS = Registry('model', parent=MMCV_MODELS)
    +
    +   @MODELS.register_module()
    +   class NetA(nn.Module):
    +       def forward(self, x):
    +           return x
    +   ```
    +
    +   我们在 MMClassification 中定义:
    +
    +   ```python
    +   from mmcv.utils import Registry
    +   from mmcv.cnn import MODELS as MMCV_MODELS
    +   MODELS = Registry('model', parent=MMCV_MODELS)
    +
    +   @MODELS.register_module()
    +   class NetB(nn.Module):
    +       def forward(self, x):
    +           return x + 1
    +   ```
    +
    +   我们可以通过以下代码在 MMDetection 或 MMClassification 中构建两个网络:
    +
    +   ```python
    +   from mmdet.models import MODELS
    +   net_a = MODELS.build(cfg=dict(type='NetA'))
    +   net_b = MODELS.build(cfg=dict(type='mmcls.NetB'))
    +   ```
    +
    +   或
    +
    +   ```python
    +   from mmcls.models import MODELS
    +   net_a = MODELS.build(cfg=dict(type='mmdet.NetA'))
    +   net_b = MODELS.build(cfg=dict(type='NetB'))
    +   ```
    +
    +2. 从父注册器中构建
    +
    +   MMCV中的共享`MODELS`注册器是所有下游代码库的父注册器(根注册器):
    +
    +   ```python
    +   from mmcv.cnn import MODELS as MMCV_MODELS
    +   net_a = MMCV_MODELS.build(cfg=dict(type='mmdet.NetA'))
    +   net_b = MMCV_MODELS.build(cfg=dict(type='mmcls.NetB'))
    +   ```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/runner.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/runner.md
    new file mode 100644
    index 000000000..7098eb977
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/runner.md
    @@ -0,0 +1,159 @@
    +## 执行器
    +
    +执行器模块负责模型训练过程调度,主要目的是让用户使用更少的代码以及灵活可配置方式开启训练。其具备如下核心特性:
    +
    +- 支持以 `EpochBasedRunner` 和 `IterBasedRunner` 为单位的迭代模式以满足不同场景
    +- 支持定制工作流以满足训练过程中各状态自由切换,目前支持训练和验证两个工作流。工作流可以简单理解为一个完成的训练和验证迭代过程。
    +- 配合各类默认和自定义 Hook,对外提供了灵活扩展能力
    +
    +### EpochBasedRunner
    +
    +顾名思义,`EpochBasedRunner` 是指以 epoch 为周期的工作流,例如设置 workflow = \[('train', 2), ('val', 1)\] 表示循环迭代地训练 2 个 epoch,然后验证 1 个 epoch。MMDetection 目标检测框架默认采用的是 `EpochBasedRunner`。
    +
    +其抽象逻辑如下所示:
    +
    +```python
    +# 训练终止条件
    +while curr_epoch < max_epochs:
    +    # 遍历用户设置的工作流,例如 workflow = [('train', 2),('val', 1)]
    +    for i, flow in enumerate(workflow):
    +        # mode 是工作流函数,例如 train, epochs 是迭代次数
    +        mode, epochs = flow
    +        # 要么调用 self.train(),要么调用 self.val()
    +        epoch_runner = getattr(self, mode)
    +        # 运行对应工作流函数
    +        for _ in range(epochs):
    +            epoch_runner(data_loaders[i], **kwargs)
    +```
    +
    +目前支持训练和验证两个工作流,以训练函数为例,其抽象逻辑是:
    +
    +```python
    +# epoch_runner 目前可以是 train 或者 val
    +def train(self, data_loader, **kwargs):
    +    # 遍历 dataset,共返回一个 epoch 的 batch 数据
    +    for i, data_batch in enumerate(data_loader):
    +        self.call_hook('before_train_iter')
    +        # 验证时候 train_mode=False
    +        self.run_iter(data_batch, train_mode=True, **kwargs)
    +        self.call_hook('after_train_iter')
    +   self.call_hook('after_train_epoch')
    +```
    +
    +### IterBasedRunner
    +
    +不同于 `EpochBasedRunner`,`IterBasedRunner` 是指以 iter 为周期的工作流,例如设置 workflow = \[('train', 2), ('val', 1)\] 表示循环迭代的训练 2 个 iter,然后验证 1 个 iter,MMSegmentation 语义分割框架默认采用的是  `IterBasedRunner`。
    +
    +其抽象逻辑如下所示:
    +
    +```python
    +# 虽然是 iter 单位,但是某些场合需要 epoch 信息,由 IterLoader 提供
    +iter_loaders = [IterLoader(x) for x in data_loaders]
    +# 训练终止条件
    +while curr_iter < max_iters:
    +    # 遍历用户设置的工作流,例如 workflow = [('train', 2), ('val', 1)]
    +    for i, flow in enumerate(workflow):
    +        # mode 是工作流函数,例如 train, iters 是迭代次数
    +        mode, iters = flow
    +        # 要么调用 self.train(),要么调用 self.val()
    +        iter_runner = getattr(self, mode)
    +        # 运行对应工作流函数
    +        for _ in range(iters):
    +            iter_runner(iter_loaders[i], **kwargs)
    +```
    +
    +目前支持训练和验证两个工作流,以验证函数为例,其抽象逻辑是:
    +
    +```python
    +# iter_runner 目前可以是 train 或者 val
    +def val(self, data_loader, **kwargs):
    +    # 获取 batch 数据,用于一次迭代
    +    data_batch = next(data_loader)
    +    self.call_hook('before_val_iter')
    +    outputs = self.model.val_step(data_batch, self.optimizer, **kwargs)
    +    self.outputs = outputs
    +    self.call_hook('after_val_iter')
    +```
    +
    +除了上述基础功能外,`EpochBasedRunner` 和 `IterBasedRunner` 还提供了 resume 、 save_checkpoint 和注册 hook 功能。
    +
    +### 一个简单例子
    +
    +以最常用的分类任务为例详细说明 `runner` 的使用方法。 开启任何一个训练任务,都需要包括如下步骤:
    +
    +**(1) dataloader、model 和优化器等类初始化**
    +
    +```python
    +# 模型类初始化
    +model=...
    +# 优化器类初始化,典型值 cfg.optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
    +optimizer = build_optimizer(model, cfg.optimizer)
    +# 工作流对应的 dataloader 初始化
    +data_loaders = [
    +        build_dataloader(
    +            ds,
    +            cfg.data.samples_per_gpu,
    +            cfg.data.workers_per_gpu,
    +            ...) for ds in dataset
    +    ]
    +```
    +
    +**(2) runner 类初始化**
    +
    +```python
    +runner = build_runner(
    +    # cfg.runner 典型配置为
    +    # runner = dict(type='EpochBasedRunner', max_epochs=200)
    +    cfg.runner,
    +    default_args=dict(
    +        model=model,
    +        batch_processor=None,
    +        optimizer=optimizer,
    +        logger=logger))
    +```
    +
    +**(3) 注册默认训练所必须的 hook,和用户自定义 hook**
    +
    +```python
    +# 注册定制必需的 hook
    +runner.register_training_hooks(
    +    # lr相关配置,典型为
    +    # lr_config = dict(policy='step', step=[100, 150])
    +    cfg.lr_config,
    +    # 优化相关配置,例如 grad_clip 等
    +    optimizer_config,
    +    # 权重保存相关配置,典型为
    +    # checkpoint_config = dict(interval=1),每个单位都保存权重
    +    cfg.checkpoint_config,
    +    # 日志相关配置
    +    cfg.log_config,
    +    ...)
    +
    +# 注册用户自定义 hook
    +# 例如想使用 ema 功能,则可以设置 custom_hooks=[dict(type='EMAHook')]
    +if cfg.get('custom_hooks', None):
    +    custom_hooks = cfg.custom_hooks
    +    for hook_cfg in cfg.custom_hooks:
    +        hook_cfg = hook_cfg.copy()
    +        priority = hook_cfg.pop('priority', 'NORMAL')
    +        hook = build_from_cfg(hook_cfg, HOOKS)
    +        runner.register_hook(hook, priority=priority)
    +```
    +
    +然后可以进行 resume 或者 load_checkpoint 对权重进行加载。
    +
    +**(4) 开启训练流**
    +
    +```python
    +# workflow 典型为 workflow = [('train', 1)]
    +# 此时就真正开启了训练
    +runner.run(data_loaders, cfg.workflow)
    +```
    +
    +关于 workflow 设置,以 `EpochBasedRunner` 为例,详情如下:
    +
    +- 假设只想运行训练工作流,则可以设置 workflow = \[('train', 1)\],表示只进行迭代训练
    +- 假设想运行训练和验证工作流,则可以设置 workflow = \[('train',  3), ('val', 1)\],表示先训练 3 个 epoch ,然后切换到 val 工作流,运行 1 个 epoch,然后循环,直到训练 epoch 次数达到指定值
    +- 工作流设置还自由定制,例如你可以先验证再训练 workflow = \[('val', 1), ('train', 1)\]
    +
    +上述代码都已经封装到了各个代码库的 train.py 中,用户只需要设置相应的配置即可,上述流程会自动运行。
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/utils.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/utils.md
    new file mode 100644
    index 000000000..c02e5203a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/utils.md
    @@ -0,0 +1,68 @@
    +## 辅助函数
    +
    +### 进度条
    +
    +如果你想跟踪函数批处理任务的进度,可以使用 `track_progress` 。它能以进度条的形式展示任务的完成情况以及剩余任务所需的时间(内部实现为for循环)。
    +
    +```python
    +import mmcv
    +
    +def func(item):
    +    # 执行相关操作
    +    pass
    +
    +tasks = [item_1, item_2, ..., item_n]
    +
    +mmcv.track_progress(func, tasks)
    +```
    +
    +效果如下
    +![progress](../../en/_static/progress.*)
    +
    +如果你想可视化多进程任务的进度,你可以使用 `track_parallel_progress` 。
    +
    +```python
    +mmcv.track_parallel_progress(func, tasks, 8)  # 8 workers
    +```
    +
    +![progress](../../_static/parallel_progress.*)
    +
    +如果你想要迭代或枚举数据列表并可视化进度,你可以使用 `track_iter_progress` 。
    +
    +```python
    +import mmcv
    +
    +tasks = [item_1, item_2, ..., item_n]
    +
    +for task in mmcv.track_iter_progress(tasks):
    +    # do something like print
    +    print(task)
    +
    +for i, task in enumerate(mmcv.track_iter_progress(tasks)):
    +    # do something like print
    +    print(i)
    +    print(task)
    +```
    +
    +### 计时器
    +
    +mmcv提供的 `Timer` 可以很方便地计算代码块的执行时间。
    +
    +```python
    +import time
    +
    +with mmcv.Timer():
    +    # simulate some code block
    +    time.sleep(1)
    +```
    +
    +你也可以使用 `since_start()` 和 `since_last_check()` 。前者返回计时器启动后的运行时长,后者返回最近一次查看计时器后的运行时长。
    +
    +```python
    +timer = mmcv.Timer()
    +# code block 1 here
    +print(timer.since_start())
    +# code block 2 here
    +print(timer.since_last_check())
    +print(timer.since_start())
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/visualization.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/visualization.md
    new file mode 100644
    index 000000000..9ad26c6a8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/zh_cn/understand_mmcv/visualization.md
    @@ -0,0 +1,24 @@
    +## 可视化
    +
    +`mmcv` 可以展示图像以及标注(目前只支持标注框)
    +
    +```python
    +# 展示图像文件
    +mmcv.imshow('a.jpg')
    +
    +# 展示已加载的图像
    +img = np.random.rand(100, 100, 3)
    +mmcv.imshow(img)
    +
    +# 展示带有标注框的图像
    +img = np.random.rand(100, 100, 3)
    +bboxes = np.array([[0, 0, 50, 50], [20, 20, 60, 60]])
    +mmcv.imshow_bboxes(img, bboxes)
    +```
    +
    +`mmcv` 也可以展示特殊的图像,例如光流
    +
    +```python
    +flow = mmcv.flowread('test.flo')
    +mmcv.flowshow(flow)
    +```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/examples/train.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/examples/train.py
    new file mode 100644
    index 000000000..b08d36bf6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/examples/train.py
    @@ -0,0 +1,84 @@
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +import torch.optim as optim
    +import torchvision.transforms as transforms
    +from torch.utils.data import DataLoader
    +from torchvision.datasets import CIFAR10
    +
    +from mmcv.parallel import MMDataParallel
    +from mmcv.runner import EpochBasedRunner
    +from mmcv.utils import get_logger
    +
    +
    +class Model(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv1 = nn.Conv2d(3, 6, 5)
    +        self.pool = nn.MaxPool2d(2, 2)
    +        self.conv2 = nn.Conv2d(6, 16, 5)
    +        self.fc1 = nn.Linear(16 * 5 * 5, 120)
    +        self.fc2 = nn.Linear(120, 84)
    +        self.fc3 = nn.Linear(84, 10)
    +        self.loss_fn = nn.CrossEntropyLoss()
    +
    +    def forward(self, x):
    +        x = self.pool(F.relu(self.conv1(x)))
    +        x = self.pool(F.relu(self.conv2(x)))
    +        x = x.view(-1, 16 * 5 * 5)
    +        x = F.relu(self.fc1(x))
    +        x = F.relu(self.fc2(x))
    +        x = self.fc3(x)
    +        return x
    +
    +    def train_step(self, data, optimizer):
    +        images, labels = data
    +        predicts = self(images)  # -> self.__call__() -> self.forward()
    +        loss = self.loss_fn(predicts, labels)
    +        return {'loss': loss}
    +
    +
    +if __name__ == '__main__':
    +    model = Model()
    +    if torch.cuda.is_available():
    +        # only use gpu:0 to train
    +        # Solved issue https://github.com/open-mmlab/mmcv/issues/1470
    +        model = MMDataParallel(model.cuda(), device_ids=[0])
    +
    +    # dataset and dataloader
    +    transform = transforms.Compose([
    +        transforms.ToTensor(),
    +        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    +    ])
    +    trainset = CIFAR10(
    +        root='data', train=True, download=True, transform=transform)
    +    trainloader = DataLoader(
    +        trainset, batch_size=128, shuffle=True, num_workers=2)
    +
    +    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    +    logger = get_logger('mmcv')
    +    # runner is a scheduler to manage the training
    +    runner = EpochBasedRunner(
    +        model,
    +        optimizer=optimizer,
    +        work_dir='./work_dir',
    +        logger=logger,
    +        max_epochs=4)
    +
    +    # learning rate scheduler config
    +    lr_config = dict(policy='step', step=[2, 3])
    +    # configuration of optimizer
    +    optimizer_config = dict(grad_clip=None)
    +    # configuration of saving checkpoints periodically
    +    checkpoint_config = dict(interval=1)
    +    # save log periodically and multiple hooks can be used simultaneously
    +    log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
    +    # register hooks to runner and those hooks will be invoked automatically
    +    runner.register_training_hooks(
    +        lr_config=lr_config,
    +        optimizer_config=optimizer_config,
    +        checkpoint_config=checkpoint_config,
    +        log_config=log_config)
    +
    +    runner.run([trainloader], [('train', 1)])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/install_mmcv.sh b/toolbox/MMDetection/patch/mmcv/v1.7.1/install_mmcv.sh
    new file mode 100644
    index 000000000..27a69fcb7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/install_mmcv.sh
    @@ -0,0 +1,33 @@
    +#!/bin/bash
    +
    +TARGET_DIR=${TARGET_DIR:-}
    +
    +PYTHON_PATH=$(which python3)
    +PYTHON_DIST_PATH=${TARGET_DIR}/lib/python3/dist-packages
    +
    +PKG_DIR="build_pip"
    +PKG_NAME="mmcv"
    +
    +if [[ ! -d ${PKG_DIR} ]]; then
    +  echo "ERROR: Package directory ${PKG_DIR} doesn't exist"
    +  exit 1
    +fi
    +
    +latest_pkg="$(ls -t ${PKG_DIR} | grep ${PKG_NAME} | head -1)"
    +if [[ "${latest_pkg}" == "" ]]; then
    +  echo "ERROR: Cannot find latest ${PKG_NAME} package"
    +  exit 1
    +else
    +  echo "INFO: Found latest package ${latest_pkg} in directory ${PKG_DIR}"
    +fi
    +
    +if [[ "${TARGET_DIR}" != ""  ]]; then
    +  ${PYTHON_PATH} -m pip install --upgrade --no-deps -t ${PYTHON_DIST_PATH} ${PKG_DIR}/${latest_pkg} || exit
    +  echo "Mmcv installed in ${PYTHON_DIST_PATH}; please add it to your PYTHONPATH."
    +else
    +  ${PYTHON_PATH} -m pip uninstall ${PKG_NAME} -y
    +  ${PYTHON_PATH} -m pip install --no-deps ${PKG_DIR}/${latest_pkg} || exit
    +fi
    +
    +# Return 0 status if all finished
    +exit 0
    \ No newline at end of file
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/__init__.py
    new file mode 100644
    index 000000000..e87858c59
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/__init__.py
    @@ -0,0 +1,26 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# flake8: noqa
    +import warnings
    +
    +from .arraymisc import *
    +from .fileio import *
    +from .image import *
    +from .utils import *
    +from .version import *
    +from .video import *
    +from .visualization import *
    +
    +# The following modules are not imported to this level, so mmcv may be used
    +# without PyTorch.
    +# - runner
    +# - parallel
    +# - op
    +# - device
    +
    +warnings.warn(
    +    'On January 1, 2023, MMCV will release v2.0.0, in which it will remove '
    +    'components related to the training process and add a data transformation '
    +    'module. In addition, it will rename the package names mmcv to mmcv-lite '
    +    'and mmcv-full to mmcv. '
    +    'See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md '
    +    'for more details.')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/__init__.py
    new file mode 100644
    index 000000000..4b4700d61
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/__init__.py
    @@ -0,0 +1,4 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .quantization import dequantize, quantize
    +
    +__all__ = ['quantize', 'dequantize']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/quantization.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/quantization.py
    new file mode 100644
    index 000000000..6182710d5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/arraymisc/quantization.py
    @@ -0,0 +1,65 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Union
    +
    +import numpy as np
    +
    +
    +def quantize(arr: np.ndarray,
    +             min_val: Union[int, float],
    +             max_val: Union[int, float],
    +             levels: int,
    +             dtype=np.int64) -> tuple:
    +    """Quantize an array of (-inf, inf) to [0, levels-1].
    +
    +    Args:
    +        arr (ndarray): Input array.
    +        min_val (int or float): Minimum value to be clipped.
    +        max_val (int or float): Maximum value to be clipped.
    +        levels (int): Quantization levels.
    +        dtype (np.type): The type of the quantized array.
    +
    +    Returns:
    +        tuple: Quantized array.
    +    """
    +    if not (isinstance(levels, int) and levels > 1):
    +        raise ValueError(
    +            f'levels must be a positive integer, but got {levels}')
    +    if min_val >= max_val:
    +        raise ValueError(
    +            f'min_val ({min_val}) must be smaller than max_val ({max_val})')
    +
    +    arr = np.clip(arr, min_val, max_val) - min_val
    +    quantized_arr = np.minimum(
    +        np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)
    +
    +    return quantized_arr
    +
    +
    +def dequantize(arr: np.ndarray,
    +               min_val: Union[int, float],
    +               max_val: Union[int, float],
    +               levels: int,
    +               dtype=np.float64) -> tuple:
    +    """Dequantize an array.
    +
    +    Args:
    +        arr (ndarray): Input array.
    +        min_val (int or float): Minimum value to be clipped.
    +        max_val (int or float): Maximum value to be clipped.
    +        levels (int): Quantization levels.
    +        dtype (np.type): The type of the dequantized array.
    +
    +    Returns:
    +        tuple: Dequantized array.
    +    """
    +    if not (isinstance(levels, int) and levels > 1):
    +        raise ValueError(
    +            f'levels must be a positive integer, but got {levels}')
    +    if min_val >= max_val:
    +        raise ValueError(
    +            f'min_val ({min_val}) must be smaller than max_val ({max_val})')
    +
    +    dequantized_arr = (arr + 0.5).astype(dtype) * (max_val -
    +                                                   min_val) / levels + min_val
    +
    +    return dequantized_arr
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/__init__.py
    new file mode 100644
    index 000000000..6478332ca
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/__init__.py
    @@ -0,0 +1,43 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .alexnet import AlexNet
    +# yapf: disable
    +from .bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
    +                     PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS,
    +                     ContextBlock, Conv2d, Conv3d, ConvAWS2d, ConvModule,
    +                     ConvTranspose2d, ConvTranspose3d, ConvWS2d,
    +                     DepthwiseSeparableConvModule, GeneralizedAttention,
    +                     HSigmoid, HSwish, Linear, MaxPool2d, MaxPool3d,
    +                     NonLocal1d, NonLocal2d, NonLocal3d, Scale, Swish,
    +                     build_activation_layer, build_conv_layer,
    +                     build_norm_layer, build_padding_layer, build_plugin_layer,
    +                     build_upsample_layer, conv_ws_2d, is_norm)
    +from .builder import MODELS, build_model_from_cfg
    +# yapf: enable
    +from .resnet import ResNet, make_res_layer
    +from .rfsearch import Conv2dRFSearchOp, RFSearchHook
    +from .utils import (INITIALIZERS, Caffe2XavierInit, ConstantInit, KaimingInit,
    +                    NormalInit, PretrainedInit, TruncNormalInit, UniformInit,
    +                    XavierInit, bias_init_with_prob, caffe2_xavier_init,
    +                    constant_init, fuse_conv_bn, get_model_complexity_info,
    +                    initialize, kaiming_init, normal_init, trunc_normal_init,
    +                    uniform_init, xavier_init)
    +from .vgg import VGG, make_vgg_layer
    +
    +__all__ = [
    +    'AlexNet', 'VGG', 'make_vgg_layer', 'ResNet', 'make_res_layer',
    +    'constant_init', 'xavier_init', 'normal_init', 'trunc_normal_init',
    +    'uniform_init', 'kaiming_init', 'caffe2_xavier_init',
    +    'bias_init_with_prob', 'ConvModule', 'build_activation_layer',
    +    'build_conv_layer', 'build_norm_layer', 'build_padding_layer',
    +    'build_upsample_layer', 'build_plugin_layer', 'is_norm', 'NonLocal1d',
    +    'NonLocal2d', 'NonLocal3d', 'ContextBlock', 'HSigmoid', 'Swish', 'HSwish',
    +    'GeneralizedAttention', 'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS',
    +    'PADDING_LAYERS', 'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale',
    +    'get_model_complexity_info', 'conv_ws_2d', 'ConvAWS2d', 'ConvWS2d',
    +    'fuse_conv_bn', 'DepthwiseSeparableConvModule', 'Linear', 'Conv2d',
    +    'ConvTranspose2d', 'MaxPool2d', 'ConvTranspose3d', 'MaxPool3d', 'Conv3d',
    +    'initialize', 'INITIALIZERS', 'ConstantInit', 'XavierInit', 'NormalInit',
    +    'TruncNormalInit', 'UniformInit', 'KaimingInit', 'PretrainedInit',
    +    'Caffe2XavierInit', 'MODELS', 'build_model_from_cfg', 'Conv2dRFSearchOp',
    +    'RFSearchHook'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/alexnet.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/alexnet.py
    new file mode 100644
    index 000000000..4d45d96d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/alexnet.py
    @@ -0,0 +1,63 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +from typing import Optional
    +
    +import torch
    +import torch.nn as nn
    +
    +
    +class AlexNet(nn.Module):
    +    """AlexNet backbone.
    +
    +    Args:
    +        num_classes (int): number of classes for classification.
    +    """
    +
    +    def __init__(self, num_classes: int = -1):
    +        super().__init__()
    +        self.num_classes = num_classes
    +        self.features = nn.Sequential(
    +            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
    +            nn.ReLU(inplace=True),
    +            nn.MaxPool2d(kernel_size=3, stride=2),
    +            nn.Conv2d(64, 192, kernel_size=5, padding=2),
    +            nn.ReLU(inplace=True),
    +            nn.MaxPool2d(kernel_size=3, stride=2),
    +            nn.Conv2d(192, 384, kernel_size=3, padding=1),
    +            nn.ReLU(inplace=True),
    +            nn.Conv2d(384, 256, kernel_size=3, padding=1),
    +            nn.ReLU(inplace=True),
    +            nn.Conv2d(256, 256, kernel_size=3, padding=1),
    +            nn.ReLU(inplace=True),
    +            nn.MaxPool2d(kernel_size=3, stride=2),
    +        )
    +        if self.num_classes > 0:
    +            self.classifier = nn.Sequential(
    +                nn.Dropout(),
    +                nn.Linear(256 * 6 * 6, 4096),
    +                nn.ReLU(inplace=True),
    +                nn.Dropout(),
    +                nn.Linear(4096, 4096),
    +                nn.ReLU(inplace=True),
    +                nn.Linear(4096, num_classes),
    +            )
    +
    +    def init_weights(self, pretrained: Optional[str] = None) -> None:
    +        if isinstance(pretrained, str):
    +            logger = logging.getLogger()
    +            from ..runner import load_checkpoint
    +            load_checkpoint(self, pretrained, strict=False, logger=logger)
    +        elif pretrained is None:
    +            # use default initializer
    +            pass
    +        else:
    +            raise TypeError('pretrained must be a str or None')
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +
    +        x = self.features(x)
    +        if self.num_classes > 0:
    +            x = x.view(x.size(0), 256 * 6 * 6)
    +            x = self.classifier(x)
    +
    +        return x
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/__init__.py
    new file mode 100644
    index 000000000..0f33124ed
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/__init__.py
    @@ -0,0 +1,35 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .activation import build_activation_layer
    +from .context_block import ContextBlock
    +from .conv import build_conv_layer
    +from .conv2d_adaptive_padding import Conv2dAdaptivePadding
    +from .conv_module import ConvModule
    +from .conv_ws import ConvAWS2d, ConvWS2d, conv_ws_2d
    +from .depthwise_separable_conv_module import DepthwiseSeparableConvModule
    +from .drop import Dropout, DropPath
    +from .generalized_attention import GeneralizedAttention
    +from .hsigmoid import HSigmoid
    +from .hswish import HSwish
    +from .non_local import NonLocal1d, NonLocal2d, NonLocal3d
    +from .norm import build_norm_layer, is_norm
    +from .padding import build_padding_layer
    +from .plugin import build_plugin_layer
    +from .registry import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
    +                       PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS)
    +from .scale import Scale
    +from .swish import Swish
    +from .upsample import build_upsample_layer
    +from .wrappers import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
    +                       Linear, MaxPool2d, MaxPool3d)
    +
    +__all__ = [
    +    'ConvModule', 'build_activation_layer', 'build_conv_layer',
    +    'build_norm_layer', 'build_padding_layer', 'build_upsample_layer',
    +    'build_plugin_layer', 'is_norm', 'HSigmoid', 'HSwish', 'NonLocal1d',
    +    'NonLocal2d', 'NonLocal3d', 'ContextBlock', 'GeneralizedAttention',
    +    'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS', 'PADDING_LAYERS',
    +    'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale', 'ConvAWS2d', 'ConvWS2d',
    +    'conv_ws_2d', 'DepthwiseSeparableConvModule', 'Swish', 'Linear',
    +    'Conv2dAdaptivePadding', 'Conv2d', 'ConvTranspose2d', 'MaxPool2d',
    +    'ConvTranspose3d', 'MaxPool3d', 'Conv3d', 'Dropout', 'DropPath'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/activation.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/activation.py
    new file mode 100644
    index 000000000..cc61ba694
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/activation.py
    @@ -0,0 +1,114 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from mmcv.utils import TORCH_VERSION, build_from_cfg, digit_version
    +from .registry import ACTIVATION_LAYERS
    +
    +for module in [
    +        nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU,
    +        nn.Sigmoid, nn.Tanh
    +]:
    +    ACTIVATION_LAYERS.register_module(module=module)
    +
    +if digit_version(torch.__version__) >= digit_version('1.7.0'):
    +    ACTIVATION_LAYERS.register_module(module=nn.SiLU, name='SiLU')
    +else:
    +
    +    class SiLU(nn.Module):
    +        """Sigmoid Weighted Liner Unit."""
    +
    +        def __init__(self, inplace=False):
    +            super().__init__()
    +            self.inplace = inplace
    +
    +        def forward(self, inputs) -> torch.Tensor:
    +            if self.inplace:
    +                return inputs.mul_(torch.sigmoid(inputs))
    +            else:
    +                return inputs * torch.sigmoid(inputs)
    +
    +    ACTIVATION_LAYERS.register_module(module=SiLU, name='SiLU')
    +
    +
    +@ACTIVATION_LAYERS.register_module(name='Clip')
    +@ACTIVATION_LAYERS.register_module()
    +class Clamp(nn.Module):
    +    """Clamp activation layer.
    +
    +    This activation function is to clamp the feature map value within
    +    :math:`[min, max]`. More details can be found in ``torch.clamp()``.
    +
    +    Args:
    +        min (Number | optional): Lower-bound of the range to be clamped to.
    +            Default to -1.
    +        max (Number | optional): Upper-bound of the range to be clamped to.
    +            Default to 1.
    +    """
    +
    +    def __init__(self, min: float = -1., max: float = 1.):
    +        super().__init__()
    +        self.min = min
    +        self.max = max
    +
    +    def forward(self, x) -> torch.Tensor:
    +        """Forward function.
    +
    +        Args:
    +            x (torch.Tensor): The input tensor.
    +
    +        Returns:
    +            torch.Tensor: Clamped tensor.
    +        """
    +        return torch.clamp(x, min=self.min, max=self.max)
    +
    +
    +class GELU(nn.Module):
    +    r"""Applies the Gaussian Error Linear Units function:
    +
    +    .. math::
    +        \text{GELU}(x) = x * \Phi(x)
    +    where :math:`\Phi(x)` is the Cumulative Distribution Function for
    +    Gaussian Distribution.
    +
    +    Shape:
    +        - Input: :math:`(N, *)` where `*` means, any number of additional
    +          dimensions
    +        - Output: :math:`(N, *)`, same shape as the input
    +
    +    .. image:: scripts/activation_images/GELU.png
    +
    +    Examples::
    +
    +        >>> m = nn.GELU()
    +        >>> input = torch.randn(2)
    +        >>> output = m(input)
    +    """
    +
    +    def forward(self, input: torch.Tensor) -> torch.Tensor:
    +        return F.gelu(input)
    +
    +
    +if (TORCH_VERSION == 'parrots'
    +        or digit_version(TORCH_VERSION) < digit_version('1.4')):
    +    ACTIVATION_LAYERS.register_module(module=GELU)
    +else:
    +    ACTIVATION_LAYERS.register_module(module=nn.GELU)
    +
    +
    +def build_activation_layer(cfg: Dict) -> nn.Module:
    +    """Build activation layer.
    +
    +    Args:
    +        cfg (dict): The activation layer config, which should contain:
    +
    +            - type (str): Layer type.
    +            - layer args: Args needed to instantiate an activation layer.
    +
    +    Returns:
    +        nn.Module: Created activation layer.
    +    """
    +    return build_from_cfg(cfg, ACTIVATION_LAYERS)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/context_block.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/context_block.py
    new file mode 100644
    index 000000000..15669cab3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/context_block.py
    @@ -0,0 +1,127 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Union
    +
    +import torch
    +from torch import nn
    +
    +from ..utils import constant_init, kaiming_init
    +from .registry import PLUGIN_LAYERS
    +
    +
    +def last_zero_init(m: Union[nn.Module, nn.Sequential]) -> None:
    +    if isinstance(m, nn.Sequential):
    +        constant_init(m[-1], val=0)
    +    else:
    +        constant_init(m, val=0)
    +
    +
    +@PLUGIN_LAYERS.register_module()
    +class ContextBlock(nn.Module):
    +    """ContextBlock module in GCNet.
    +
    +    See 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond'
    +    (https://arxiv.org/abs/1904.11492) for details.
    +
    +    Args:
    +        in_channels (int): Channels of the input feature map.
    +        ratio (float): Ratio of channels of transform bottleneck
    +        pooling_type (str): Pooling method for context modeling.
    +            Options are 'att' and 'avg', stand for attention pooling and
    +            average pooling respectively. Default: 'att'.
    +        fusion_types (Sequence[str]): Fusion method for feature fusion,
    +            Options are 'channels_add', 'channel_mul', stand for channelwise
    +            addition and multiplication respectively. Default: ('channel_add',)
    +    """
    +
    +    _abbr_ = 'context_block'
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 ratio: float,
    +                 pooling_type: str = 'att',
    +                 fusion_types: tuple = ('channel_add', )):
    +        super().__init__()
    +        assert pooling_type in ['avg', 'att']
    +        assert isinstance(fusion_types, (list, tuple))
    +        valid_fusion_types = ['channel_add', 'channel_mul']
    +        assert all([f in valid_fusion_types for f in fusion_types])
    +        assert len(fusion_types) > 0, 'at least one fusion should be used'
    +        self.in_channels = in_channels
    +        self.ratio = ratio
    +        self.planes = int(in_channels * ratio)
    +        self.pooling_type = pooling_type
    +        self.fusion_types = fusion_types
    +        if pooling_type == 'att':
    +            self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size=1)
    +            self.softmax = nn.Softmax(dim=2)
    +        else:
    +            self.avg_pool = nn.AdaptiveAvgPool2d(1)
    +        if 'channel_add' in fusion_types:
    +            self.channel_add_conv = nn.Sequential(
    +                nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
    +                nn.LayerNorm([self.planes, 1, 1]),
    +                nn.ReLU(inplace=True),  # yapf: disable
    +                nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
    +        else:
    +            self.channel_add_conv = None
    +        if 'channel_mul' in fusion_types:
    +            self.channel_mul_conv = nn.Sequential(
    +                nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
    +                nn.LayerNorm([self.planes, 1, 1]),
    +                nn.ReLU(inplace=True),  # yapf: disable
    +                nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
    +        else:
    +            self.channel_mul_conv = None
    +        self.reset_parameters()
    +
    +    def reset_parameters(self):
    +        if self.pooling_type == 'att':
    +            kaiming_init(self.conv_mask, mode='fan_in')
    +            self.conv_mask.inited = True
    +
    +        if self.channel_add_conv is not None:
    +            last_zero_init(self.channel_add_conv)
    +        if self.channel_mul_conv is not None:
    +            last_zero_init(self.channel_mul_conv)
    +
    +    def spatial_pool(self, x: torch.Tensor) -> torch.Tensor:
    +        batch, channel, height, width = x.size()
    +        if self.pooling_type == 'att':
    +            input_x = x
    +            # [N, C, H * W]
    +            input_x = input_x.view(batch, channel, height * width)
    +            # [N, 1, C, H * W]
    +            input_x = input_x.unsqueeze(1)
    +            # [N, 1, H, W]
    +            context_mask = self.conv_mask(x)
    +            # [N, 1, H * W]
    +            context_mask = context_mask.view(batch, 1, height * width)
    +            # [N, 1, H * W]
    +            context_mask = self.softmax(context_mask)
    +            # [N, 1, H * W, 1]
    +            context_mask = context_mask.unsqueeze(-1)
    +            # [N, 1, C, 1]
    +            context = torch.matmul(input_x, context_mask)
    +            # [N, C, 1, 1]
    +            context = context.view(batch, channel, 1, 1)
    +        else:
    +            # [N, C, 1, 1]
    +            context = self.avg_pool(x)
    +
    +        return context
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        # [N, C, 1, 1]
    +        context = self.spatial_pool(x)
    +
    +        out = x
    +        if self.channel_mul_conv is not None:
    +            # [N, C, 1, 1]
    +            channel_mul_term = torch.sigmoid(self.channel_mul_conv(context))
    +            out = out * channel_mul_term
    +        if self.channel_add_conv is not None:
    +            # [N, C, 1, 1]
    +            channel_add_term = self.channel_add_conv(context)
    +            out = out + channel_add_term
    +
    +        return out
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv.py
    new file mode 100644
    index 000000000..147517ef4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv.py
    @@ -0,0 +1,46 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict, Optional
    +
    +from torch import nn
    +
    +from .registry import CONV_LAYERS
    +
    +CONV_LAYERS.register_module('Conv1d', module=nn.Conv1d)
    +CONV_LAYERS.register_module('Conv2d', module=nn.Conv2d)
    +CONV_LAYERS.register_module('Conv3d', module=nn.Conv3d)
    +CONV_LAYERS.register_module('Conv', module=nn.Conv2d)
    +
    +
    +def build_conv_layer(cfg: Optional[Dict], *args, **kwargs) -> nn.Module:
    +    """Build convolution layer.
    +
    +    Args:
    +        cfg (None or dict): The conv layer config, which should contain:
    +            - type (str): Layer type.
    +            - layer args: Args needed to instantiate an conv layer.
    +        args (argument list): Arguments passed to the `__init__`
    +            method of the corresponding conv layer.
    +        kwargs (keyword arguments): Keyword arguments passed to the `__init__`
    +            method of the corresponding conv layer.
    +
    +    Returns:
    +        nn.Module: Created conv layer.
    +    """
    +    if cfg is None:
    +        cfg_ = dict(type='Conv2d')
    +    else:
    +        if not isinstance(cfg, dict):
    +            raise TypeError('cfg must be a dict')
    +        if 'type' not in cfg:
    +            raise KeyError('the cfg dict must contain the key "type"')
    +        cfg_ = cfg.copy()
    +
    +    layer_type = cfg_.pop('type')
    +    if layer_type not in CONV_LAYERS:
    +        raise KeyError(f'Unrecognized layer type {layer_type}')
    +    else:
    +        conv_layer = CONV_LAYERS.get(layer_type)
    +
    +    layer = conv_layer(*args, **kwargs, **cfg_)
    +
    +    return layer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv2d_adaptive_padding.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv2d_adaptive_padding.py
    new file mode 100644
    index 000000000..6a7a1d284
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv2d_adaptive_padding.py
    @@ -0,0 +1,64 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +from typing import Tuple, Union
    +
    +import torch
    +from torch import nn
    +from torch.nn import functional as F
    +
    +from .registry import CONV_LAYERS
    +
    +
    +@CONV_LAYERS.register_module()
    +class Conv2dAdaptivePadding(nn.Conv2d):
    +    """Implementation of 2D convolution in tensorflow with `padding` as "same",
    +    which applies padding to input (if needed) so that input image gets fully
    +    covered by filter and stride you specified. For stride 1, this will ensure
    +    that output image size is same as input. For stride of 2, output dimensions
    +    will be half, for example.
    +
    +    Args:
    +        in_channels (int): Number of channels in the input image
    +        out_channels (int): Number of channels produced by the convolution
    +        kernel_size (int or tuple): Size of the convolving kernel
    +        stride (int or tuple, optional): Stride of the convolution. Default: 1
    +        padding (int or tuple, optional): Zero-padding added to both sides of
    +            the input. Default: 0
    +        dilation (int or tuple, optional): Spacing between kernel elements.
    +            Default: 1
    +        groups (int, optional): Number of blocked connections from input
    +            channels to output channels. Default: 1
    +        bias (bool, optional): If ``True``, adds a learnable bias to the
    +            output. Default: ``True``
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, int]],
    +                 stride: Union[int, Tuple[int, int]] = 1,
    +                 padding: Union[int, Tuple[int, int]] = 0,
    +                 dilation: Union[int, Tuple[int, int]] = 1,
    +                 groups: int = 1,
    +                 bias: bool = True):
    +        super().__init__(in_channels, out_channels, kernel_size, stride, 0,
    +                         dilation, groups, bias)
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        img_h, img_w = x.size()[-2:]
    +        kernel_h, kernel_w = self.weight.size()[-2:]
    +        stride_h, stride_w = self.stride
    +        output_h = math.ceil(img_h / stride_h)
    +        output_w = math.ceil(img_w / stride_w)
    +        pad_h = (
    +            max((output_h - 1) * self.stride[0] +
    +                (kernel_h - 1) * self.dilation[0] + 1 - img_h, 0))
    +        pad_w = (
    +            max((output_w - 1) * self.stride[1] +
    +                (kernel_w - 1) * self.dilation[1] + 1 - img_w, 0))
    +        if pad_h > 0 or pad_w > 0:
    +            x = F.pad(x, [
    +                pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
    +            ])
    +        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
    +                        self.dilation, self.groups)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_module.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_module.py
    new file mode 100644
    index 000000000..b5d4a8c27
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_module.py
    @@ -0,0 +1,212 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Dict, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.utils import _BatchNorm, _InstanceNorm
    +from ..utils import constant_init, kaiming_init
    +from .activation import build_activation_layer
    +from .conv import build_conv_layer
    +from .norm import build_norm_layer
    +from .padding import build_padding_layer
    +from .registry import PLUGIN_LAYERS
    +
    +
    +@PLUGIN_LAYERS.register_module()
    +class ConvModule(nn.Module):
    +    """A conv block that bundles conv/norm/activation layers.
    +
    +    This block simplifies the usage of convolution layers, which are commonly
    +    used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
    +    It is based upon three build methods: `build_conv_layer()`,
    +    `build_norm_layer()` and `build_activation_layer()`.
    +
    +    Besides, we add some additional features in this module.
    +    1. Automatically set `bias` of the conv layer.
    +    2. Spectral norm is supported.
    +    3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
    +    supports zero and circular padding, and we add "reflect" padding mode.
    +
    +    Args:
    +        in_channels (int): Number of channels in the input feature map.
    +            Same as that in ``nn._ConvNd``.
    +        out_channels (int): Number of channels produced by the convolution.
    +            Same as that in ``nn._ConvNd``.
    +        kernel_size (int | tuple[int]): Size of the convolving kernel.
    +            Same as that in ``nn._ConvNd``.
    +        stride (int | tuple[int]): Stride of the convolution.
    +            Same as that in ``nn._ConvNd``.
    +        padding (int | tuple[int]): Zero-padding added to both sides of
    +            the input. Same as that in ``nn._ConvNd``.
    +        dilation (int | tuple[int]): Spacing between kernel elements.
    +            Same as that in ``nn._ConvNd``.
    +        groups (int): Number of blocked connections from input channels to
    +            output channels. Same as that in ``nn._ConvNd``.
    +        bias (bool | str): If specified as `auto`, it will be decided by the
    +            norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
    +            False. Default: "auto".
    +        conv_cfg (dict): Config dict for convolution layer. Default: None,
    +            which means using conv2d.
    +        norm_cfg (dict): Config dict for normalization layer. Default: None.
    +        act_cfg (dict): Config dict for activation layer.
    +            Default: dict(type='ReLU').
    +        inplace (bool): Whether to use inplace mode for activation.
    +            Default: True.
    +        with_spectral_norm (bool): Whether use spectral norm in conv module.
    +            Default: False.
    +        padding_mode (str): If the `padding_mode` has not been supported by
    +            current `Conv2d` in PyTorch, we will use our own padding layer
    +            instead. Currently, we support ['zeros', 'circular'] with official
    +            implementation and ['reflect'] with our own implementation.
    +            Default: 'zeros'.
    +        order (tuple[str]): The order of conv/norm/activation layers. It is a
    +            sequence of "conv", "norm" and "act". Common examples are
    +            ("conv", "norm", "act") and ("act", "conv", "norm").
    +            Default: ('conv', 'norm', 'act').
    +    """
    +
    +    _abbr_ = 'conv_block'
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, int]],
    +                 stride: Union[int, Tuple[int, int]] = 1,
    +                 padding: Union[int, Tuple[int, int]] = 0,
    +                 dilation: Union[int, Tuple[int, int]] = 1,
    +                 groups: int = 1,
    +                 bias: Union[bool, str] = 'auto',
    +                 conv_cfg: Optional[Dict] = None,
    +                 norm_cfg: Optional[Dict] = None,
    +                 act_cfg: Optional[Dict] = dict(type='ReLU'),
    +                 inplace: bool = True,
    +                 with_spectral_norm: bool = False,
    +                 padding_mode: str = 'zeros',
    +                 order: tuple = ('conv', 'norm', 'act')):
    +        super().__init__()
    +        assert conv_cfg is None or isinstance(conv_cfg, dict)
    +        assert norm_cfg is None or isinstance(norm_cfg, dict)
    +        assert act_cfg is None or isinstance(act_cfg, dict)
    +        official_padding_mode = ['zeros', 'circular']
    +        self.conv_cfg = conv_cfg
    +        self.norm_cfg = norm_cfg
    +        self.act_cfg = act_cfg
    +        self.inplace = inplace
    +        self.with_spectral_norm = with_spectral_norm
    +        self.with_explicit_padding = padding_mode not in official_padding_mode
    +        self.order = order
    +        assert isinstance(self.order, tuple) and len(self.order) == 3
    +        assert set(order) == {'conv', 'norm', 'act'}
    +
    +        self.with_norm = norm_cfg is not None
    +        self.with_activation = act_cfg is not None
    +        # if the conv layer is before a norm layer, bias is unnecessary.
    +        if bias == 'auto':
    +            bias = not self.with_norm
    +        self.with_bias = bias
    +
    +        if self.with_explicit_padding:
    +            pad_cfg = dict(type=padding_mode)
    +            self.padding_layer = build_padding_layer(pad_cfg, padding)
    +
    +        # reset padding to 0 for conv module
    +        conv_padding = 0 if self.with_explicit_padding else padding
    +        # build convolution layer
    +        self.conv = build_conv_layer(
    +            conv_cfg,
    +            in_channels,
    +            out_channels,
    +            kernel_size,
    +            stride=stride,
    +            padding=conv_padding,
    +            dilation=dilation,
    +            groups=groups,
    +            bias=bias)
    +        # export the attributes of self.conv to a higher level for convenience
    +        self.in_channels = self.conv.in_channels
    +        self.out_channels = self.conv.out_channels
    +        self.kernel_size = self.conv.kernel_size
    +        self.stride = self.conv.stride
    +        self.padding = padding
    +        self.dilation = self.conv.dilation
    +        self.transposed = self.conv.transposed
    +        self.output_padding = self.conv.output_padding
    +        self.groups = self.conv.groups
    +
    +        if self.with_spectral_norm:
    +            self.conv = nn.utils.spectral_norm(self.conv)
    +
    +        # build normalization layers
    +        if self.with_norm:
    +            # norm layer is after conv layer
    +            if order.index('norm') > order.index('conv'):
    +                norm_channels = out_channels
    +            else:
    +                norm_channels = in_channels
    +            self.norm_name, norm = build_norm_layer(
    +                norm_cfg, norm_channels)  # type: ignore
    +            self.add_module(self.norm_name, norm)
    +            if self.with_bias:
    +                if isinstance(norm, (_BatchNorm, _InstanceNorm)):
    +                    warnings.warn(
    +                        'Unnecessary conv bias before batch/instance norm')
    +        else:
    +            self.norm_name = None  # type: ignore
    +
    +        # build activation layer
    +        if self.with_activation:
    +            act_cfg_ = act_cfg.copy()  # type: ignore
    +            # nn.Tanh has no 'inplace' argument
    +            if act_cfg_['type'] not in [
    +                    'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU'
    +            ]:
    +                act_cfg_.setdefault('inplace', inplace)
    +            self.activate = build_activation_layer(act_cfg_)
    +
    +        # Use msra init by default
    +        self.init_weights()
    +
    +    @property
    +    def norm(self):
    +        if self.norm_name:
    +            return getattr(self, self.norm_name)
    +        else:
    +            return None
    +
    +    def init_weights(self):
    +        # 1. It is mainly for customized conv layers with their own
    +        #    initialization manners by calling their own ``init_weights()``,
    +        #    and we do not want ConvModule to override the initialization.
    +        # 2. For customized conv layers without their own initialization
    +        #    manners (that is, they don't have their own ``init_weights()``)
    +        #    and PyTorch's conv layers, they will be initialized by
    +        #    this method with default ``kaiming_init``.
    +        # Note: For PyTorch's conv layers, they will be overwritten by our
    +        #    initialization implementation using default ``kaiming_init``.
    +        if not hasattr(self.conv, 'init_weights'):
    +            if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
    +                nonlinearity = 'leaky_relu'
    +                a = self.act_cfg.get('negative_slope', 0.01)
    +            else:
    +                nonlinearity = 'relu'
    +                a = 0
    +            kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
    +        if self.with_norm:
    +            constant_init(self.norm, 1, bias=0)
    +
    +    def forward(self,
    +                x: torch.Tensor,
    +                activate: bool = True,
    +                norm: bool = True) -> torch.Tensor:
    +        for layer in self.order:
    +            if layer == 'conv':
    +                if self.with_explicit_padding:
    +                    x = self.padding_layer(x)
    +                x = self.conv(x)
    +            elif layer == 'norm' and norm and self.with_norm:
    +                x = self.norm(x)
    +            elif layer == 'act' and activate and self.with_activation:
    +                x = self.activate(x)
    +        return x
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_ws.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_ws.py
    new file mode 100644
    index 000000000..6569f920f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/conv_ws.py
    @@ -0,0 +1,154 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from collections import OrderedDict
    +from typing import Dict, List, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from .registry import CONV_LAYERS
    +
    +
    +def conv_ws_2d(input: torch.Tensor,
    +               weight: torch.Tensor,
    +               bias: Optional[torch.Tensor] = None,
    +               stride: Union[int, Tuple[int, int]] = 1,
    +               padding: Union[int, Tuple[int, int]] = 0,
    +               dilation: Union[int, Tuple[int, int]] = 1,
    +               groups: int = 1,
    +               eps: float = 1e-5) -> torch.Tensor:
    +    c_in = weight.size(0)
    +    weight_flat = weight.view(c_in, -1)
    +    mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
    +    std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
    +    weight = (weight - mean) / (std + eps)
    +    return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
    +
    +
    +@CONV_LAYERS.register_module('ConvWS')
    +class ConvWS2d(nn.Conv2d):
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, int]],
    +                 stride: Union[int, Tuple[int, int]] = 1,
    +                 padding: Union[int, Tuple[int, int]] = 0,
    +                 dilation: Union[int, Tuple[int, int]] = 1,
    +                 groups: int = 1,
    +                 bias: bool = True,
    +                 eps: float = 1e-5):
    +        super().__init__(
    +            in_channels,
    +            out_channels,
    +            kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            groups=groups,
    +            bias=bias)
    +        self.eps = eps
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        return conv_ws_2d(x, self.weight, self.bias, self.stride, self.padding,
    +                          self.dilation, self.groups, self.eps)
    +
    +
    +@CONV_LAYERS.register_module(name='ConvAWS')
    +class ConvAWS2d(nn.Conv2d):
    +    """AWS (Adaptive Weight Standardization)
    +
    +    This is a variant of Weight Standardization
    +    (https://arxiv.org/pdf/1903.10520.pdf)
    +    It is used in DetectoRS to avoid NaN
    +    (https://arxiv.org/pdf/2006.02334.pdf)
    +
    +    Args:
    +        in_channels (int): Number of channels in the input image
    +        out_channels (int): Number of channels produced by the convolution
    +        kernel_size (int or tuple): Size of the conv kernel
    +        stride (int or tuple, optional): Stride of the convolution. Default: 1
    +        padding (int or tuple, optional): Zero-padding added to both sides of
    +            the input. Default: 0
    +        dilation (int or tuple, optional): Spacing between kernel elements.
    +            Default: 1
    +        groups (int, optional): Number of blocked connections from input
    +            channels to output channels. Default: 1
    +        bias (bool, optional): If set True, adds a learnable bias to the
    +            output. Default: True
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, int]],
    +                 stride: Union[int, Tuple[int, int]] = 1,
    +                 padding: Union[int, Tuple[int, int]] = 0,
    +                 dilation: Union[int, Tuple[int, int]] = 1,
    +                 groups: int = 1,
    +                 bias: bool = True):
    +        super().__init__(
    +            in_channels,
    +            out_channels,
    +            kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            groups=groups,
    +            bias=bias)
    +        self.register_buffer('weight_gamma',
    +                             torch.ones(self.out_channels, 1, 1, 1))
    +        self.register_buffer('weight_beta',
    +                             torch.zeros(self.out_channels, 1, 1, 1))
    +
    +    def _get_weight(self, weight: torch.Tensor) -> torch.Tensor:
    +        weight_flat = weight.view(weight.size(0), -1)
    +        mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
    +        std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
    +        weight = (weight - mean) / std
    +        weight = self.weight_gamma * weight + self.weight_beta
    +        return weight
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        weight = self._get_weight(self.weight)
    +        return F.conv2d(x, weight, self.bias, self.stride, self.padding,
    +                        self.dilation, self.groups)
    +
    +    def _load_from_state_dict(self, state_dict: OrderedDict, prefix: str,
    +                              local_metadata: Dict, strict: bool,
    +                              missing_keys: List[str],
    +                              unexpected_keys: List[str],
    +                              error_msgs: List[str]) -> None:
    +        """Override default load function.
    +
    +        AWS overrides the function _load_from_state_dict to recover
    +        weight_gamma and weight_beta if they are missing. If weight_gamma and
    +        weight_beta are found in the checkpoint, this function will return
    +        after super()._load_from_state_dict. Otherwise, it will compute the
    +        mean and std of the pretrained weights and store them in weight_beta
    +        and weight_gamma.
    +        """
    +
    +        self.weight_gamma.data.fill_(-1)
    +        local_missing_keys: List = []
    +        super()._load_from_state_dict(state_dict, prefix, local_metadata,
    +                                      strict, local_missing_keys,
    +                                      unexpected_keys, error_msgs)
    +        if self.weight_gamma.data.mean() > 0:
    +            for k in local_missing_keys:
    +                missing_keys.append(k)
    +            return
    +        weight = self.weight.data
    +        weight_flat = weight.view(weight.size(0), -1)
    +        mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
    +        std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
    +        self.weight_beta.data.copy_(mean)
    +        self.weight_gamma.data.copy_(std)
    +        missing_gamma_beta = [
    +            k for k in local_missing_keys
    +            if k.endswith('weight_gamma') or k.endswith('weight_beta')
    +        ]
    +        for k in missing_gamma_beta:
    +            local_missing_keys.remove(k)
    +        for k in local_missing_keys:
    +            missing_keys.append(k)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/depthwise_separable_conv_module.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/depthwise_separable_conv_module.py
    new file mode 100644
    index 000000000..cf1fe4cad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/depthwise_separable_conv_module.py
    @@ -0,0 +1,99 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +
    +from .conv_module import ConvModule
    +
    +
    +class DepthwiseSeparableConvModule(nn.Module):
    +    """Depthwise separable convolution module.
    +
    +    See https://arxiv.org/pdf/1704.04861.pdf for details.
    +
    +    This module can replace a ConvModule with the conv block replaced by two
    +    conv block: depthwise conv block and pointwise conv block. The depthwise
    +    conv block contains depthwise-conv/norm/activation layers. The pointwise
    +    conv block contains pointwise-conv/norm/activation layers. It should be
    +    noted that there will be norm/activation layer in the depthwise conv block
    +    if `norm_cfg` and `act_cfg` are specified.
    +
    +    Args:
    +        in_channels (int): Number of channels in the input feature map.
    +            Same as that in ``nn._ConvNd``.
    +        out_channels (int): Number of channels produced by the convolution.
    +            Same as that in ``nn._ConvNd``.
    +        kernel_size (int | tuple[int]): Size of the convolving kernel.
    +            Same as that in ``nn._ConvNd``.
    +        stride (int | tuple[int]): Stride of the convolution.
    +            Same as that in ``nn._ConvNd``. Default: 1.
    +        padding (int | tuple[int]): Zero-padding added to both sides of
    +            the input. Same as that in ``nn._ConvNd``. Default: 0.
    +        dilation (int | tuple[int]): Spacing between kernel elements.
    +            Same as that in ``nn._ConvNd``. Default: 1.
    +        norm_cfg (dict): Default norm config for both depthwise ConvModule and
    +            pointwise ConvModule. Default: None.
    +        act_cfg (dict): Default activation config for both depthwise ConvModule
    +            and pointwise ConvModule. Default: dict(type='ReLU').
    +        dw_norm_cfg (dict): Norm config of depthwise ConvModule. If it is
    +            'default', it will be the same as `norm_cfg`. Default: 'default'.
    +        dw_act_cfg (dict): Activation config of depthwise ConvModule. If it is
    +            'default', it will be the same as `act_cfg`. Default: 'default'.
    +        pw_norm_cfg (dict): Norm config of pointwise ConvModule. If it is
    +            'default', it will be the same as `norm_cfg`. Default: 'default'.
    +        pw_act_cfg (dict): Activation config of pointwise ConvModule. If it is
    +            'default', it will be the same as `act_cfg`. Default: 'default'.
    +        kwargs (optional): Other shared arguments for depthwise and pointwise
    +            ConvModule. See ConvModule for ref.
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, int]],
    +                 stride: Union[int, Tuple[int, int]] = 1,
    +                 padding: Union[int, Tuple[int, int]] = 0,
    +                 dilation: Union[int, Tuple[int, int]] = 1,
    +                 norm_cfg: Optional[Dict] = None,
    +                 act_cfg: Dict = dict(type='ReLU'),
    +                 dw_norm_cfg: Union[Dict, str] = 'default',
    +                 dw_act_cfg: Union[Dict, str] = 'default',
    +                 pw_norm_cfg: Union[Dict, str] = 'default',
    +                 pw_act_cfg: Union[Dict, str] = 'default',
    +                 **kwargs):
    +        super().__init__()
    +        assert 'groups' not in kwargs, 'groups should not be specified'
    +
    +        # if norm/activation config of depthwise/pointwise ConvModule is not
    +        # specified, use default config.
    +        dw_norm_cfg = dw_norm_cfg if dw_norm_cfg != 'default' else norm_cfg  # type: ignore # noqa E501
    +        dw_act_cfg = dw_act_cfg if dw_act_cfg != 'default' else act_cfg
    +        pw_norm_cfg = pw_norm_cfg if pw_norm_cfg != 'default' else norm_cfg  # type: ignore # noqa E501
    +        pw_act_cfg = pw_act_cfg if pw_act_cfg != 'default' else act_cfg
    +
    +        # depthwise convolution
    +        self.depthwise_conv = ConvModule(
    +            in_channels,
    +            in_channels,
    +            kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            groups=in_channels,
    +            norm_cfg=dw_norm_cfg,  # type: ignore
    +            act_cfg=dw_act_cfg,  # type: ignore
    +            **kwargs)
    +
    +        self.pointwise_conv = ConvModule(
    +            in_channels,
    +            out_channels,
    +            1,
    +            norm_cfg=pw_norm_cfg,  # type: ignore
    +            act_cfg=pw_act_cfg,  # type: ignore
    +            **kwargs)
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        x = self.depthwise_conv(x)
    +        x = self.pointwise_conv(x)
    +        return x
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/drop.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/drop.py
    new file mode 100644
    index 000000000..ea05221d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/drop.py
    @@ -0,0 +1,69 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, Dict, Optional
    +
    +import torch
    +import torch.nn as nn
    +
    +from mmcv import build_from_cfg
    +from .registry import DROPOUT_LAYERS
    +
    +
    +def drop_path(x: torch.Tensor,
    +              drop_prob: float = 0.,
    +              training: bool = False) -> torch.Tensor:
    +    """Drop paths (Stochastic Depth) per sample (when applied in main path of
    +    residual blocks).
    +
    +    We follow the implementation
    +    https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py  # noqa: E501
    +    """
    +    if drop_prob == 0. or not training:
    +        return x
    +    keep_prob = 1 - drop_prob
    +    # handle tensors with different dimensions, not just 4D tensors.
    +    shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
    +    random_tensor = keep_prob + torch.rand(
    +        shape, dtype=x.dtype, device=x.device)
    +    output = x.div(keep_prob) * random_tensor.floor()
    +    return output
    +
    +
    +@DROPOUT_LAYERS.register_module()
    +class DropPath(nn.Module):
    +    """Drop paths (Stochastic Depth) per sample  (when applied in main path of
    +    residual blocks).
    +
    +    We follow the implementation
    +    https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py  # noqa: E501
    +
    +    Args:
    +        drop_prob (float): Probability of the path to be zeroed. Default: 0.1
    +    """
    +
    +    def __init__(self, drop_prob: float = 0.1):
    +        super().__init__()
    +        self.drop_prob = drop_prob
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        return drop_path(x, self.drop_prob, self.training)
    +
    +
    +@DROPOUT_LAYERS.register_module()
    +class Dropout(nn.Dropout):
    +    """A wrapper for ``torch.nn.Dropout``, We rename the ``p`` of
    +    ``torch.nn.Dropout`` to ``drop_prob`` so as to be consistent with
    +    ``DropPath``
    +
    +    Args:
    +        drop_prob (float): Probability of the elements to be
    +            zeroed. Default: 0.5.
    +        inplace (bool):  Do the operation inplace or not. Default: False.
    +    """
    +
    +    def __init__(self, drop_prob: float = 0.5, inplace: bool = False):
    +        super().__init__(p=drop_prob, inplace=inplace)
    +
    +
    +def build_dropout(cfg: Dict, default_args: Optional[Dict] = None) -> Any:
    +    """Builder for drop out layers."""
    +    return build_from_cfg(cfg, DROPOUT_LAYERS, default_args)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/generalized_attention.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/generalized_attention.py
    new file mode 100644
    index 000000000..118e39c7e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/generalized_attention.py
    @@ -0,0 +1,412 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from ..utils import kaiming_init
    +from .registry import PLUGIN_LAYERS
    +
    +
    +@PLUGIN_LAYERS.register_module()
    +class GeneralizedAttention(nn.Module):
    +    """GeneralizedAttention module.
    +
    +    See 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks'
    +    (https://arxiv.org/abs/1711.07971) for details.
    +
    +    Args:
    +        in_channels (int): Channels of the input feature map.
    +        spatial_range (int): The spatial range. -1 indicates no spatial range
    +            constraint. Default: -1.
    +        num_heads (int): The head number of empirical_attention module.
    +            Default: 9.
    +        position_embedding_dim (int): The position embedding dimension.
    +            Default: -1.
    +        position_magnitude (int): A multiplier acting on coord difference.
    +            Default: 1.
    +        kv_stride (int): The feature stride acting on key/value feature map.
    +            Default: 2.
    +        q_stride (int): The feature stride acting on query feature map.
    +            Default: 1.
    +        attention_type (str): A binary indicator string for indicating which
    +            items in generalized empirical_attention module are used.
    +            Default: '1111'.
    +
    +            - '1000' indicates 'query and key content' (appr - appr) item,
    +            - '0100' indicates 'query content and relative position'
    +              (appr - position) item,
    +            - '0010' indicates 'key content only' (bias - appr) item,
    +            - '0001' indicates 'relative position only' (bias - position) item.
    +    """
    +
    +    _abbr_ = 'gen_attention_block'
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 spatial_range: int = -1,
    +                 num_heads: int = 9,
    +                 position_embedding_dim: int = -1,
    +                 position_magnitude: int = 1,
    +                 kv_stride: int = 2,
    +                 q_stride: int = 1,
    +                 attention_type: str = '1111'):
    +
    +        super().__init__()
    +
    +        # hard range means local range for non-local operation
    +        self.position_embedding_dim = (
    +            position_embedding_dim
    +            if position_embedding_dim > 0 else in_channels)
    +
    +        self.position_magnitude = position_magnitude
    +        self.num_heads = num_heads
    +        self.in_channels = in_channels
    +        self.spatial_range = spatial_range
    +        self.kv_stride = kv_stride
    +        self.q_stride = q_stride
    +        self.attention_type = [bool(int(_)) for _ in attention_type]
    +        self.qk_embed_dim = in_channels // num_heads
    +        out_c = self.qk_embed_dim * num_heads
    +
    +        if self.attention_type[0] or self.attention_type[1]:
    +            self.query_conv = nn.Conv2d(
    +                in_channels=in_channels,
    +                out_channels=out_c,
    +                kernel_size=1,
    +                bias=False)
    +            self.query_conv.kaiming_init = True
    +
    +        if self.attention_type[0] or self.attention_type[2]:
    +            self.key_conv = nn.Conv2d(
    +                in_channels=in_channels,
    +                out_channels=out_c,
    +                kernel_size=1,
    +                bias=False)
    +            self.key_conv.kaiming_init = True
    +
    +        self.v_dim = in_channels // num_heads
    +        self.value_conv = nn.Conv2d(
    +            in_channels=in_channels,
    +            out_channels=self.v_dim * num_heads,
    +            kernel_size=1,
    +            bias=False)
    +        self.value_conv.kaiming_init = True
    +
    +        if self.attention_type[1] or self.attention_type[3]:
    +            self.appr_geom_fc_x = nn.Linear(
    +                self.position_embedding_dim // 2, out_c, bias=False)
    +            self.appr_geom_fc_x.kaiming_init = True
    +
    +            self.appr_geom_fc_y = nn.Linear(
    +                self.position_embedding_dim // 2, out_c, bias=False)
    +            self.appr_geom_fc_y.kaiming_init = True
    +
    +        if self.attention_type[2]:
    +            stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
    +            appr_bias_value = -2 * stdv * torch.rand(out_c) + stdv
    +            self.appr_bias = nn.Parameter(appr_bias_value)
    +
    +        if self.attention_type[3]:
    +            stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
    +            geom_bias_value = -2 * stdv * torch.rand(out_c) + stdv
    +            self.geom_bias = nn.Parameter(geom_bias_value)
    +
    +        self.proj_conv = nn.Conv2d(
    +            in_channels=self.v_dim * num_heads,
    +            out_channels=in_channels,
    +            kernel_size=1,
    +            bias=True)
    +        self.proj_conv.kaiming_init = True
    +        self.gamma = nn.Parameter(torch.zeros(1))
    +
    +        if self.spatial_range >= 0:
    +            # only works when non local is after 3*3 conv
    +            if in_channels == 256:
    +                max_len = 84
    +            elif in_channels == 512:
    +                max_len = 42
    +
    +            max_len_kv = int((max_len - 1.0) / self.kv_stride + 1)
    +            local_constraint_map = np.ones(
    +                (max_len, max_len, max_len_kv, max_len_kv), dtype=int)
    +            for iy in range(max_len):
    +                for ix in range(max_len):
    +                    local_constraint_map[
    +                        iy, ix,
    +                        max((iy - self.spatial_range) //
    +                            self.kv_stride, 0):min((iy + self.spatial_range +
    +                                                    1) // self.kv_stride +
    +                                                   1, max_len),
    +                        max((ix - self.spatial_range) //
    +                            self.kv_stride, 0):min((ix + self.spatial_range +
    +                                                    1) // self.kv_stride +
    +                                                   1, max_len)] = 0
    +
    +            self.local_constraint_map = nn.Parameter(
    +                torch.from_numpy(local_constraint_map).byte(),
    +                requires_grad=False)
    +
    +        if self.q_stride > 1:
    +            self.q_downsample = nn.AvgPool2d(
    +                kernel_size=1, stride=self.q_stride)
    +        else:
    +            self.q_downsample = None
    +
    +        if self.kv_stride > 1:
    +            self.kv_downsample = nn.AvgPool2d(
    +                kernel_size=1, stride=self.kv_stride)
    +        else:
    +            self.kv_downsample = None
    +
    +        self.init_weights()
    +
    +    def get_position_embedding(self,
    +                               h,
    +                               w,
    +                               h_kv,
    +                               w_kv,
    +                               q_stride,
    +                               kv_stride,
    +                               device,
    +                               dtype,
    +                               feat_dim,
    +                               wave_length=1000):
    +        # the default type of Tensor is float32, leading to type mismatch
    +        # in fp16 mode. Cast it to support fp16 mode.
    +        h_idxs = torch.linspace(0, h - 1, h).to(device=device, dtype=dtype)
    +        h_idxs = h_idxs.view((h, 1)) * q_stride
    +
    +        w_idxs = torch.linspace(0, w - 1, w).to(device=device, dtype=dtype)
    +        w_idxs = w_idxs.view((w, 1)) * q_stride
    +
    +        h_kv_idxs = torch.linspace(0, h_kv - 1, h_kv).to(
    +            device=device, dtype=dtype)
    +        h_kv_idxs = h_kv_idxs.view((h_kv, 1)) * kv_stride
    +
    +        w_kv_idxs = torch.linspace(0, w_kv - 1, w_kv).to(
    +            device=device, dtype=dtype)
    +        w_kv_idxs = w_kv_idxs.view((w_kv, 1)) * kv_stride
    +
    +        # (h, h_kv, 1)
    +        h_diff = h_idxs.unsqueeze(1) - h_kv_idxs.unsqueeze(0)
    +        h_diff *= self.position_magnitude
    +
    +        # (w, w_kv, 1)
    +        w_diff = w_idxs.unsqueeze(1) - w_kv_idxs.unsqueeze(0)
    +        w_diff *= self.position_magnitude
    +
    +        feat_range = torch.arange(0, feat_dim / 4).to(
    +            device=device, dtype=dtype)
    +
    +        dim_mat = torch.Tensor([wave_length]).to(device=device, dtype=dtype)
    +        dim_mat = dim_mat**((4. / feat_dim) * feat_range)
    +        dim_mat = dim_mat.view((1, 1, -1))
    +
    +        embedding_x = torch.cat(
    +            ((w_diff / dim_mat).sin(), (w_diff / dim_mat).cos()), dim=2)
    +
    +        embedding_y = torch.cat(
    +            ((h_diff / dim_mat).sin(), (h_diff / dim_mat).cos()), dim=2)
    +
    +        return embedding_x, embedding_y
    +
    +    def forward(self, x_input: torch.Tensor) -> torch.Tensor:
    +        num_heads = self.num_heads
    +
    +        # use empirical_attention
    +        if self.q_downsample is not None:
    +            x_q = self.q_downsample(x_input)
    +        else:
    +            x_q = x_input
    +        n, _, h, w = x_q.shape
    +
    +        if self.kv_downsample is not None:
    +            x_kv = self.kv_downsample(x_input)
    +        else:
    +            x_kv = x_input
    +        _, _, h_kv, w_kv = x_kv.shape
    +
    +        if self.attention_type[0] or self.attention_type[1]:
    +            proj_query = self.query_conv(x_q).view(
    +                (n, num_heads, self.qk_embed_dim, h * w))
    +            proj_query = proj_query.permute(0, 1, 3, 2)
    +
    +        if self.attention_type[0] or self.attention_type[2]:
    +            proj_key = self.key_conv(x_kv).view(
    +                (n, num_heads, self.qk_embed_dim, h_kv * w_kv))
    +
    +        if self.attention_type[1] or self.attention_type[3]:
    +            position_embed_x, position_embed_y = self.get_position_embedding(
    +                h, w, h_kv, w_kv, self.q_stride, self.kv_stride,
    +                x_input.device, x_input.dtype, self.position_embedding_dim)
    +            # (n, num_heads, w, w_kv, dim)
    +            position_feat_x = self.appr_geom_fc_x(position_embed_x).\
    +                view(1, w, w_kv, num_heads, self.qk_embed_dim).\
    +                permute(0, 3, 1, 2, 4).\
    +                repeat(n, 1, 1, 1, 1)
    +
    +            # (n, num_heads, h, h_kv, dim)
    +            position_feat_y = self.appr_geom_fc_y(position_embed_y).\
    +                view(1, h, h_kv, num_heads, self.qk_embed_dim).\
    +                permute(0, 3, 1, 2, 4).\
    +                repeat(n, 1, 1, 1, 1)
    +
    +            position_feat_x /= math.sqrt(2)
    +            position_feat_y /= math.sqrt(2)
    +
    +        # accelerate for saliency only
    +        if (np.sum(self.attention_type) == 1) and self.attention_type[2]:
    +            appr_bias = self.appr_bias.\
    +                view(1, num_heads, 1, self.qk_embed_dim).\
    +                repeat(n, 1, 1, 1)
    +
    +            energy = torch.matmul(appr_bias, proj_key).\
    +                view(n, num_heads, 1, h_kv * w_kv)
    +
    +            h = 1
    +            w = 1
    +        else:
    +            # (n, num_heads, h*w, h_kv*w_kv), query before key, 540mb for
    +            if not self.attention_type[0]:
    +                energy = torch.zeros(
    +                    n,
    +                    num_heads,
    +                    h,
    +                    w,
    +                    h_kv,
    +                    w_kv,
    +                    dtype=x_input.dtype,
    +                    device=x_input.device)
    +
    +            # attention_type[0]: appr - appr
    +            # attention_type[1]: appr - position
    +            # attention_type[2]: bias - appr
    +            # attention_type[3]: bias - position
    +            if self.attention_type[0] or self.attention_type[2]:
    +                if self.attention_type[0] and self.attention_type[2]:
    +                    appr_bias = self.appr_bias.\
    +                        view(1, num_heads, 1, self.qk_embed_dim)
    +                    energy = torch.matmul(proj_query + appr_bias, proj_key).\
    +                        view(n, num_heads, h, w, h_kv, w_kv)
    +
    +                elif self.attention_type[0]:
    +                    energy = torch.matmul(proj_query, proj_key).\
    +                        view(n, num_heads, h, w, h_kv, w_kv)
    +
    +                elif self.attention_type[2]:
    +                    appr_bias = self.appr_bias.\
    +                        view(1, num_heads, 1, self.qk_embed_dim).\
    +                        repeat(n, 1, 1, 1)
    +
    +                    energy += torch.matmul(appr_bias, proj_key).\
    +                        view(n, num_heads, 1, 1, h_kv, w_kv)
    +
    +            if self.attention_type[1] or self.attention_type[3]:
    +                if self.attention_type[1] and self.attention_type[3]:
    +                    geom_bias = self.geom_bias.\
    +                        view(1, num_heads, 1, self.qk_embed_dim)
    +
    +                    proj_query_reshape = (proj_query + geom_bias).\
    +                        view(n, num_heads, h, w, self.qk_embed_dim)
    +
    +                    energy_x = torch.matmul(
    +                        proj_query_reshape.permute(0, 1, 3, 2, 4),
    +                        position_feat_x.permute(0, 1, 2, 4, 3))
    +                    energy_x = energy_x.\
    +                        permute(0, 1, 3, 2, 4).unsqueeze(4)
    +
    +                    energy_y = torch.matmul(
    +                        proj_query_reshape,
    +                        position_feat_y.permute(0, 1, 2, 4, 3))
    +                    energy_y = energy_y.unsqueeze(5)
    +
    +                    energy += energy_x + energy_y
    +
    +                elif self.attention_type[1]:
    +                    proj_query_reshape = proj_query.\
    +                        view(n, num_heads, h, w, self.qk_embed_dim)
    +                    proj_query_reshape = proj_query_reshape.\
    +                        permute(0, 1, 3, 2, 4)
    +                    position_feat_x_reshape = position_feat_x.\
    +                        permute(0, 1, 2, 4, 3)
    +                    position_feat_y_reshape = position_feat_y.\
    +                        permute(0, 1, 2, 4, 3)
    +
    +                    energy_x = torch.matmul(proj_query_reshape,
    +                                            position_feat_x_reshape)
    +                    energy_x = energy_x.permute(0, 1, 3, 2, 4).unsqueeze(4)
    +
    +                    energy_y = torch.matmul(proj_query_reshape,
    +                                            position_feat_y_reshape)
    +                    energy_y = energy_y.unsqueeze(5)
    +
    +                    energy += energy_x + energy_y
    +
    +                elif self.attention_type[3]:
    +                    geom_bias = self.geom_bias.\
    +                        view(1, num_heads, self.qk_embed_dim, 1).\
    +                        repeat(n, 1, 1, 1)
    +
    +                    position_feat_x_reshape = position_feat_x.\
    +                        view(n, num_heads, w * w_kv, self.qk_embed_dim)
    +
    +                    position_feat_y_reshape = position_feat_y.\
    +                        view(n, num_heads, h * h_kv, self.qk_embed_dim)
    +
    +                    energy_x = torch.matmul(position_feat_x_reshape, geom_bias)
    +                    energy_x = energy_x.view(n, num_heads, 1, w, 1, w_kv)
    +
    +                    energy_y = torch.matmul(position_feat_y_reshape, geom_bias)
    +                    energy_y = energy_y.view(n, num_heads, h, 1, h_kv, 1)
    +
    +                    energy += energy_x + energy_y
    +
    +            energy = energy.view(n, num_heads, h * w, h_kv * w_kv)
    +
    +        if self.spatial_range >= 0:
    +            cur_local_constraint_map = \
    +                self.local_constraint_map[:h, :w, :h_kv, :w_kv].\
    +                contiguous().\
    +                view(1, 1, h*w, h_kv*w_kv)
    +
    +            energy = energy.masked_fill_(cur_local_constraint_map,
    +                                         float('-inf'))
    +
    +        attention = F.softmax(energy, 3)
    +
    +        proj_value = self.value_conv(x_kv)
    +        proj_value_reshape = proj_value.\
    +            view((n, num_heads, self.v_dim, h_kv * w_kv)).\
    +            permute(0, 1, 3, 2)
    +
    +        out = torch.matmul(attention, proj_value_reshape).\
    +            permute(0, 1, 3, 2).\
    +            contiguous().\
    +            view(n, self.v_dim * self.num_heads, h, w)
    +
    +        out = self.proj_conv(out)
    +
    +        # output is downsampled, upsample back to input size
    +        if self.q_downsample is not None:
    +            out = F.interpolate(
    +                out,
    +                size=x_input.shape[2:],
    +                mode='bilinear',
    +                align_corners=False)
    +
    +        out = self.gamma * out + x_input
    +        return out
    +
    +    def init_weights(self):
    +        for m in self.modules():
    +            if hasattr(m, 'kaiming_init') and m.kaiming_init:
    +                kaiming_init(
    +                    m,
    +                    mode='fan_in',
    +                    nonlinearity='leaky_relu',
    +                    bias=0,
    +                    distribution='uniform',
    +                    a=1)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hsigmoid.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hsigmoid.py
    new file mode 100644
    index 000000000..5eb97e8ab
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hsigmoid.py
    @@ -0,0 +1,51 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +
    +import torch
    +import torch.nn as nn
    +
    +from .registry import ACTIVATION_LAYERS
    +
    +
    +@ACTIVATION_LAYERS.register_module()
    +class HSigmoid(nn.Module):
    +    """Hard Sigmoid Module. Apply the hard sigmoid function:
    +    Hsigmoid(x) = min(max((x + bias) / divisor, min_value), max_value)
    +    Default: Hsigmoid(x) = min(max((x + 3) / 6, 0), 1)
    +
    +    Note:
    +        In MMCV v1.4.4, we modified the default value of args to align with
    +        PyTorch official.
    +
    +    Args:
    +        bias (float): Bias of the input feature map. Default: 3.0.
    +        divisor (float): Divisor of the input feature map. Default: 6.0.
    +        min_value (float): Lower bound value. Default: 0.0.
    +        max_value (float): Upper bound value. Default: 1.0.
    +
    +    Returns:
    +        Tensor: The output tensor.
    +    """
    +
    +    def __init__(self,
    +                 bias: float = 3.0,
    +                 divisor: float = 6.0,
    +                 min_value: float = 0.0,
    +                 max_value: float = 1.0):
    +        super().__init__()
    +        warnings.warn(
    +            'In MMCV v1.4.4, we modified the default value of args to align '
    +            'with PyTorch official. Previous Implementation: '
    +            'Hsigmoid(x) = min(max((x + 1) / 2, 0), 1). '
    +            'Current Implementation: '
    +            'Hsigmoid(x) = min(max((x + 3) / 6, 0), 1).')
    +        self.bias = bias
    +        self.divisor = divisor
    +        assert self.divisor != 0
    +        self.min_value = min_value
    +        self.max_value = max_value
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        x = (x + self.bias) / self.divisor
    +
    +        return x.clamp_(self.min_value, self.max_value)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hswish.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hswish.py
    new file mode 100644
    index 000000000..6f6cc276c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/hswish.py
    @@ -0,0 +1,39 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.utils import TORCH_VERSION, digit_version
    +from .registry import ACTIVATION_LAYERS
    +
    +
    +class HSwish(nn.Module):
    +    """Hard Swish Module.
    +
    +    This module applies the hard swish function:
    +
    +    .. math::
    +        Hswish(x) = x * ReLU6(x + 3) / 6
    +
    +    Args:
    +        inplace (bool): can optionally do the operation in-place.
    +            Default: False.
    +
    +    Returns:
    +        Tensor: The output tensor.
    +    """
    +
    +    def __init__(self, inplace: bool = False):
    +        super().__init__()
    +        self.act = nn.ReLU6(inplace)
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        return x * self.act(x + 3) / 6
    +
    +
    +if (TORCH_VERSION == 'parrots'
    +        or digit_version(TORCH_VERSION) < digit_version('1.7')):
    +    # Hardswish is not supported when PyTorch version < 1.6.
    +    # And Hardswish in PyTorch 1.6 does not support inplace.
    +    ACTIVATION_LAYERS.register_module(module=HSwish)
    +else:
    +    ACTIVATION_LAYERS.register_module(module=nn.Hardswish, name='HSwish')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/non_local.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/non_local.py
    new file mode 100644
    index 000000000..159db245e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/non_local.py
    @@ -0,0 +1,308 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from abc import ABCMeta
    +from typing import Dict, Optional
    +
    +import torch
    +import torch.nn as nn
    +
    +from ..utils import constant_init, normal_init
    +from .conv_module import ConvModule
    +from .registry import PLUGIN_LAYERS
    +
    +
    +class _NonLocalNd(nn.Module, metaclass=ABCMeta):
    +    """Basic Non-local module.
    +
    +    This module is proposed in
    +    "Non-local Neural Networks"
    +    Paper reference: https://arxiv.org/abs/1711.07971
    +    Code reference: https://github.com/AlexHex7/Non-local_pytorch
    +
    +    Args:
    +        in_channels (int): Channels of the input feature map.
    +        reduction (int): Channel reduction ratio. Default: 2.
    +        use_scale (bool): Whether to scale pairwise_weight by
    +            `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`.
    +            Default: True.
    +        conv_cfg (None | dict): The config dict for convolution layers.
    +            If not specified, it will use `nn.Conv2d` for convolution layers.
    +            Default: None.
    +        norm_cfg (None | dict): The config dict for normalization layers.
    +            Default: None. (This parameter is only applicable to conv_out.)
    +        mode (str): Options are `gaussian`, `concatenation`,
    +            `embedded_gaussian` and `dot_product`. Default: embedded_gaussian.
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 reduction: int = 2,
    +                 use_scale: bool = True,
    +                 conv_cfg: Optional[Dict] = None,
    +                 norm_cfg: Optional[Dict] = None,
    +                 mode: str = 'embedded_gaussian',
    +                 **kwargs):
    +        super().__init__()
    +        self.in_channels = in_channels
    +        self.reduction = reduction
    +        self.use_scale = use_scale
    +        self.inter_channels = max(in_channels // reduction, 1)
    +        self.mode = mode
    +
    +        if mode not in [
    +                'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation'
    +        ]:
    +            raise ValueError("Mode should be in 'gaussian', 'concatenation', "
    +                             f"'embedded_gaussian' or 'dot_product', but got "
    +                             f'{mode} instead.')
    +
    +        # g, theta, phi are defaulted as `nn.ConvNd`.
    +        # Here we use ConvModule for potential usage.
    +        self.g = ConvModule(
    +            self.in_channels,
    +            self.inter_channels,
    +            kernel_size=1,
    +            conv_cfg=conv_cfg,
    +            act_cfg=None)  # type: ignore
    +        self.conv_out = ConvModule(
    +            self.inter_channels,
    +            self.in_channels,
    +            kernel_size=1,
    +            conv_cfg=conv_cfg,
    +            norm_cfg=norm_cfg,
    +            act_cfg=None)
    +
    +        if self.mode != 'gaussian':
    +            self.theta = ConvModule(
    +                self.in_channels,
    +                self.inter_channels,
    +                kernel_size=1,
    +                conv_cfg=conv_cfg,
    +                act_cfg=None)
    +            self.phi = ConvModule(
    +                self.in_channels,
    +                self.inter_channels,
    +                kernel_size=1,
    +                conv_cfg=conv_cfg,
    +                act_cfg=None)
    +
    +        if self.mode == 'concatenation':
    +            self.concat_project = ConvModule(
    +                self.inter_channels * 2,
    +                1,
    +                kernel_size=1,
    +                stride=1,
    +                padding=0,
    +                bias=False,
    +                act_cfg=dict(type='ReLU'))
    +
    +        self.init_weights(**kwargs)
    +
    +    def init_weights(self, std: float = 0.01, zeros_init: bool = True) -> None:
    +        if self.mode != 'gaussian':
    +            for m in [self.g, self.theta, self.phi]:
    +                normal_init(m.conv, std=std)
    +        else:
    +            normal_init(self.g.conv, std=std)
    +        if zeros_init:
    +            if self.conv_out.norm_cfg is None:
    +                constant_init(self.conv_out.conv, 0)
    +            else:
    +                constant_init(self.conv_out.norm, 0)
    +        else:
    +            if self.conv_out.norm_cfg is None:
    +                normal_init(self.conv_out.conv, std=std)
    +            else:
    +                normal_init(self.conv_out.norm, std=std)
    +
    +    def gaussian(self, theta_x: torch.Tensor,
    +                 phi_x: torch.Tensor) -> torch.Tensor:
    +        # NonLocal1d pairwise_weight: [N, H, H]
    +        # NonLocal2d pairwise_weight: [N, HxW, HxW]
    +        # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
    +        pairwise_weight = torch.matmul(theta_x, phi_x)
    +        pairwise_weight = pairwise_weight.softmax(dim=-1)
    +        return pairwise_weight
    +
    +    def embedded_gaussian(self, theta_x: torch.Tensor,
    +                          phi_x: torch.Tensor) -> torch.Tensor:
    +        # NonLocal1d pairwise_weight: [N, H, H]
    +        # NonLocal2d pairwise_weight: [N, HxW, HxW]
    +        # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
    +        pairwise_weight = torch.matmul(theta_x, phi_x)
    +        if self.use_scale:
    +            # theta_x.shape[-1] is `self.inter_channels`
    +            pairwise_weight /= theta_x.shape[-1]**0.5
    +        pairwise_weight = pairwise_weight.softmax(dim=-1)
    +        return pairwise_weight
    +
    +    def dot_product(self, theta_x: torch.Tensor,
    +                    phi_x: torch.Tensor) -> torch.Tensor:
    +        # NonLocal1d pairwise_weight: [N, H, H]
    +        # NonLocal2d pairwise_weight: [N, HxW, HxW]
    +        # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
    +        pairwise_weight = torch.matmul(theta_x, phi_x)
    +        pairwise_weight /= pairwise_weight.shape[-1]
    +        return pairwise_weight
    +
    +    def concatenation(self, theta_x: torch.Tensor,
    +                      phi_x: torch.Tensor) -> torch.Tensor:
    +        # NonLocal1d pairwise_weight: [N, H, H]
    +        # NonLocal2d pairwise_weight: [N, HxW, HxW]
    +        # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
    +        h = theta_x.size(2)
    +        w = phi_x.size(3)
    +        theta_x = theta_x.repeat(1, 1, 1, w)
    +        phi_x = phi_x.repeat(1, 1, h, 1)
    +
    +        concat_feature = torch.cat([theta_x, phi_x], dim=1)
    +        pairwise_weight = self.concat_project(concat_feature)
    +        n, _, h, w = pairwise_weight.size()
    +        pairwise_weight = pairwise_weight.view(n, h, w)
    +        pairwise_weight /= pairwise_weight.shape[-1]
    +
    +        return pairwise_weight
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        # Assume `reduction = 1`, then `inter_channels = C`
    +        # or `inter_channels = C` when `mode="gaussian"`
    +
    +        # NonLocal1d x: [N, C, H]
    +        # NonLocal2d x: [N, C, H, W]
    +        # NonLocal3d x: [N, C, T, H, W]
    +        n = x.size(0)
    +
    +        # NonLocal1d g_x: [N, H, C]
    +        # NonLocal2d g_x: [N, HxW, C]
    +        # NonLocal3d g_x: [N, TxHxW, C]
    +        g_x = self.g(x).view(n, self.inter_channels, -1)
    +        g_x = g_x.permute(0, 2, 1)
    +
    +        # NonLocal1d theta_x: [N, H, C], phi_x: [N, C, H]
    +        # NonLocal2d theta_x: [N, HxW, C], phi_x: [N, C, HxW]
    +        # NonLocal3d theta_x: [N, TxHxW, C], phi_x: [N, C, TxHxW]
    +        if self.mode == 'gaussian':
    +            theta_x = x.view(n, self.in_channels, -1)
    +            theta_x = theta_x.permute(0, 2, 1)
    +            if self.sub_sample:
    +                phi_x = self.phi(x).view(n, self.in_channels, -1)
    +            else:
    +                phi_x = x.view(n, self.in_channels, -1)
    +        elif self.mode == 'concatenation':
    +            theta_x = self.theta(x).view(n, self.inter_channels, -1, 1)
    +            phi_x = self.phi(x).view(n, self.inter_channels, 1, -1)
    +        else:
    +            theta_x = self.theta(x).view(n, self.inter_channels, -1)
    +            theta_x = theta_x.permute(0, 2, 1)
    +            phi_x = self.phi(x).view(n, self.inter_channels, -1)
    +
    +        pairwise_func = getattr(self, self.mode)
    +        # NonLocal1d pairwise_weight: [N, H, H]
    +        # NonLocal2d pairwise_weight: [N, HxW, HxW]
    +        # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
    +        pairwise_weight = pairwise_func(theta_x, phi_x)
    +
    +        # NonLocal1d y: [N, H, C]
    +        # NonLocal2d y: [N, HxW, C]
    +        # NonLocal3d y: [N, TxHxW, C]
    +        y = torch.matmul(pairwise_weight, g_x)
    +        # NonLocal1d y: [N, C, H]
    +        # NonLocal2d y: [N, C, H, W]
    +        # NonLocal3d y: [N, C, T, H, W]
    +        y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels,
    +                                                    *x.size()[2:])
    +
    +        output = x + self.conv_out(y)
    +
    +        return output
    +
    +
    +class NonLocal1d(_NonLocalNd):
    +    """1D Non-local module.
    +
    +    Args:
    +        in_channels (int): Same as `NonLocalND`.
    +        sub_sample (bool): Whether to apply max pooling after pairwise
    +            function (Note that the `sub_sample` is applied on spatial only).
    +            Default: False.
    +        conv_cfg (None | dict): Same as `NonLocalND`.
    +            Default: dict(type='Conv1d').
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 sub_sample: bool = False,
    +                 conv_cfg: Dict = dict(type='Conv1d'),
    +                 **kwargs):
    +        super().__init__(in_channels, conv_cfg=conv_cfg, **kwargs)
    +
    +        self.sub_sample = sub_sample
    +
    +        if sub_sample:
    +            max_pool_layer = nn.MaxPool1d(kernel_size=2)
    +            self.g = nn.Sequential(self.g, max_pool_layer)
    +            if self.mode != 'gaussian':
    +                self.phi = nn.Sequential(self.phi, max_pool_layer)
    +            else:
    +                self.phi = max_pool_layer
    +
    +
    +@PLUGIN_LAYERS.register_module()
    +class NonLocal2d(_NonLocalNd):
    +    """2D Non-local module.
    +
    +    Args:
    +        in_channels (int): Same as `NonLocalND`.
    +        sub_sample (bool): Whether to apply max pooling after pairwise
    +            function (Note that the `sub_sample` is applied on spatial only).
    +            Default: False.
    +        conv_cfg (None | dict): Same as `NonLocalND`.
    +            Default: dict(type='Conv2d').
    +    """
    +
    +    _abbr_ = 'nonlocal_block'
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 sub_sample: bool = False,
    +                 conv_cfg: Dict = dict(type='Conv2d'),
    +                 **kwargs):
    +        super().__init__(in_channels, conv_cfg=conv_cfg, **kwargs)
    +
    +        self.sub_sample = sub_sample
    +
    +        if sub_sample:
    +            max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
    +            self.g = nn.Sequential(self.g, max_pool_layer)
    +            if self.mode != 'gaussian':
    +                self.phi = nn.Sequential(self.phi, max_pool_layer)
    +            else:
    +                self.phi = max_pool_layer
    +
    +
    +class NonLocal3d(_NonLocalNd):
    +    """3D Non-local module.
    +
    +    Args:
    +        in_channels (int): Same as `NonLocalND`.
    +        sub_sample (bool): Whether to apply max pooling after pairwise
    +            function (Note that the `sub_sample` is applied on spatial only).
    +            Default: False.
    +        conv_cfg (None | dict): Same as `NonLocalND`.
    +            Default: dict(type='Conv3d').
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 sub_sample: bool = False,
    +                 conv_cfg: Dict = dict(type='Conv3d'),
    +                 **kwargs):
    +        super().__init__(in_channels, conv_cfg=conv_cfg, **kwargs)
    +        self.sub_sample = sub_sample
    +
    +        if sub_sample:
    +            max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
    +            self.g = nn.Sequential(self.g, max_pool_layer)
    +            if self.mode != 'gaussian':
    +                self.phi = nn.Sequential(self.phi, max_pool_layer)
    +            else:
    +                self.phi = max_pool_layer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/norm.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/norm.py
    new file mode 100644
    index 000000000..b6281a7c6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/norm.py
    @@ -0,0 +1,148 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import inspect
    +from typing import Dict, Tuple, Union
    +
    +import torch.nn as nn
    +
    +from mmcv.utils import is_tuple_of
    +from mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm, _InstanceNorm
    +from .registry import NORM_LAYERS
    +
    +NORM_LAYERS.register_module('BN', module=nn.BatchNorm2d)
    +NORM_LAYERS.register_module('BN1d', module=nn.BatchNorm1d)
    +NORM_LAYERS.register_module('BN2d', module=nn.BatchNorm2d)
    +NORM_LAYERS.register_module('BN3d', module=nn.BatchNorm3d)
    +NORM_LAYERS.register_module('SyncBN', module=SyncBatchNorm)
    +NORM_LAYERS.register_module('GN', module=nn.GroupNorm)
    +NORM_LAYERS.register_module('LN', module=nn.LayerNorm)
    +NORM_LAYERS.register_module('IN', module=nn.InstanceNorm2d)
    +NORM_LAYERS.register_module('IN1d', module=nn.InstanceNorm1d)
    +NORM_LAYERS.register_module('IN2d', module=nn.InstanceNorm2d)
    +NORM_LAYERS.register_module('IN3d', module=nn.InstanceNorm3d)
    +
    +
    +def infer_abbr(class_type):
    +    """Infer abbreviation from the class name.
    +
    +    When we build a norm layer with `build_norm_layer()`, we want to preserve
    +    the norm type in variable names, e.g, self.bn1, self.gn. This method will
    +    infer the abbreviation to map class types to abbreviations.
    +
    +    Rule 1: If the class has the property "_abbr_", return the property.
    +    Rule 2: If the parent class is _BatchNorm, GroupNorm, LayerNorm or
    +    InstanceNorm, the abbreviation of this layer will be "bn", "gn", "ln" and
    +    "in" respectively.
    +    Rule 3: If the class name contains "batch", "group", "layer" or "instance",
    +    the abbreviation of this layer will be "bn", "gn", "ln" and "in"
    +    respectively.
    +    Rule 4: Otherwise, the abbreviation falls back to "norm".
    +
    +    Args:
    +        class_type (type): The norm layer type.
    +
    +    Returns:
    +        str: The inferred abbreviation.
    +    """
    +    if not inspect.isclass(class_type):
    +        raise TypeError(
    +            f'class_type must be a type, but got {type(class_type)}')
    +    if hasattr(class_type, '_abbr_'):
    +        return class_type._abbr_
    +    if issubclass(class_type, _InstanceNorm):  # IN is a subclass of BN
    +        return 'in'
    +    elif issubclass(class_type, _BatchNorm):
    +        return 'bn'
    +    elif issubclass(class_type, nn.GroupNorm):
    +        return 'gn'
    +    elif issubclass(class_type, nn.LayerNorm):
    +        return 'ln'
    +    else:
    +        class_name = class_type.__name__.lower()
    +        if 'batch' in class_name:
    +            return 'bn'
    +        elif 'group' in class_name:
    +            return 'gn'
    +        elif 'layer' in class_name:
    +            return 'ln'
    +        elif 'instance' in class_name:
    +            return 'in'
    +        else:
    +            return 'norm_layer'
    +
    +
    +def build_norm_layer(cfg: Dict,
    +                     num_features: int,
    +                     postfix: Union[int, str] = '') -> Tuple[str, nn.Module]:
    +    """Build normalization layer.
    +
    +    Args:
    +        cfg (dict): The norm layer config, which should contain:
    +
    +            - type (str): Layer type.
    +            - layer args: Args needed to instantiate a norm layer.
    +            - requires_grad (bool, optional): Whether stop gradient updates.
    +        num_features (int): Number of input channels.
    +        postfix (int | str): The postfix to be appended into norm abbreviation
    +            to create named layer.
    +
    +    Returns:
    +        tuple[str, nn.Module]: The first element is the layer name consisting
    +        of abbreviation and postfix, e.g., bn1, gn. The second element is the
    +        created norm layer.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError('cfg must be a dict')
    +    if 'type' not in cfg:
    +        raise KeyError('the cfg dict must contain the key "type"')
    +    cfg_ = cfg.copy()
    +
    +    layer_type = cfg_.pop('type')
    +    if layer_type not in NORM_LAYERS:
    +        raise KeyError(f'Unrecognized norm type {layer_type}')
    +
    +    norm_layer = NORM_LAYERS.get(layer_type)
    +    abbr = infer_abbr(norm_layer)
    +
    +    assert isinstance(postfix, (int, str))
    +    name = abbr + str(postfix)
    +
    +    requires_grad = cfg_.pop('requires_grad', True)
    +    cfg_.setdefault('eps', 1e-5)
    +    if layer_type != 'GN':
    +        layer = norm_layer(num_features, **cfg_)
    +        if layer_type == 'SyncBN' and hasattr(layer, '_specify_ddp_gpu_num'):
    +            layer._specify_ddp_gpu_num(1)
    +    else:
    +        assert 'num_groups' in cfg_
    +        layer = norm_layer(num_channels=num_features, **cfg_)
    +
    +    for param in layer.parameters():
    +        param.requires_grad = requires_grad
    +
    +    return name, layer
    +
    +
    +def is_norm(layer: nn.Module,
    +            exclude: Union[type, tuple, None] = None) -> bool:
    +    """Check if a layer is a normalization layer.
    +
    +    Args:
    +        layer (nn.Module): The layer to be checked.
    +        exclude (type | tuple[type]): Types to be excluded.
    +
    +    Returns:
    +        bool: Whether the layer is a norm layer.
    +    """
    +    if exclude is not None:
    +        if not isinstance(exclude, tuple):
    +            exclude = (exclude, )
    +        if not is_tuple_of(exclude, type):
    +            raise TypeError(
    +                f'"exclude" must be either None or type or a tuple of types, '
    +                f'but got {type(exclude)}: {exclude}')
    +
    +    if exclude and isinstance(layer, exclude):
    +        return False
    +
    +    all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm)
    +    return isinstance(layer, all_norm_bases)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/padding.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/padding.py
    new file mode 100644
    index 000000000..8412b0c65
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/padding.py
    @@ -0,0 +1,38 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict
    +
    +import torch.nn as nn
    +
    +from .registry import PADDING_LAYERS
    +
    +PADDING_LAYERS.register_module('zero', module=nn.ZeroPad2d)
    +PADDING_LAYERS.register_module('reflect', module=nn.ReflectionPad2d)
    +PADDING_LAYERS.register_module('replicate', module=nn.ReplicationPad2d)
    +
    +
    +def build_padding_layer(cfg: Dict, *args, **kwargs) -> nn.Module:
    +    """Build padding layer.
    +
    +    Args:
    +        cfg (dict): The padding layer config, which should contain:
    +            - type (str): Layer type.
    +            - layer args: Args needed to instantiate a padding layer.
    +
    +    Returns:
    +        nn.Module: Created padding layer.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError('cfg must be a dict')
    +    if 'type' not in cfg:
    +        raise KeyError('the cfg dict must contain the key "type"')
    +
    +    cfg_ = cfg.copy()
    +    padding_type = cfg_.pop('type')
    +    if padding_type not in PADDING_LAYERS:
    +        raise KeyError(f'Unrecognized padding type {padding_type}.')
    +    else:
    +        padding_layer = PADDING_LAYERS.get(padding_type)
    +
    +    layer = padding_layer(*args, **kwargs, **cfg_)
    +
    +    return layer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/plugin.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/plugin.py
    new file mode 100644
    index 000000000..095ef9234
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/plugin.py
    @@ -0,0 +1,94 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import inspect
    +import platform
    +from typing import Dict, Tuple, Union
    +
    +import torch.nn as nn
    +
    +from .registry import PLUGIN_LAYERS
    +
    +if platform.system() == 'Windows':
    +    import regex as re  # type: ignore
    +else:
    +    import re  # type: ignore
    +
    +
    +def infer_abbr(class_type: type) -> str:
    +    """Infer abbreviation from the class name.
    +
    +    This method will infer the abbreviation to map class types to
    +    abbreviations.
    +
    +    Rule 1: If the class has the property "abbr", return the property.
    +    Rule 2: Otherwise, the abbreviation falls back to snake case of class
    +    name, e.g. the abbreviation of ``FancyBlock`` will be ``fancy_block``.
    +
    +    Args:
    +        class_type (type): The norm layer type.
    +
    +    Returns:
    +        str: The inferred abbreviation.
    +    """
    +
    +    def camel2snack(word):
    +        """Convert camel case word into snack case.
    +
    +        Modified from `inflection lib
    +        `_.
    +
    +        Example::
    +
    +            >>> camel2snack("FancyBlock")
    +            'fancy_block'
    +        """
    +
    +        word = re.sub(r'([A-Z]+)([A-Z][a-z])', r'\1_\2', word)
    +        word = re.sub(r'([a-z\d])([A-Z])', r'\1_\2', word)
    +        word = word.replace('-', '_')
    +        return word.lower()
    +
    +    if not inspect.isclass(class_type):
    +        raise TypeError(
    +            f'class_type must be a type, but got {type(class_type)}')
    +    if hasattr(class_type, '_abbr_'):
    +        return class_type._abbr_  # type: ignore
    +    else:
    +        return camel2snack(class_type.__name__)
    +
    +
    +def build_plugin_layer(cfg: Dict,
    +                       postfix: Union[int, str] = '',
    +                       **kwargs) -> Tuple[str, nn.Module]:
    +    """Build plugin layer.
    +
    +    Args:
    +        cfg (dict): cfg should contain:
    +
    +            - type (str): identify plugin layer type.
    +            - layer args: args needed to instantiate a plugin layer.
    +        postfix (int, str): appended into norm abbreviation to
    +            create named layer. Default: ''.
    +
    +    Returns:
    +        tuple[str, nn.Module]: The first one is the concatenation of
    +        abbreviation and postfix. The second is the created plugin layer.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError('cfg must be a dict')
    +    if 'type' not in cfg:
    +        raise KeyError('the cfg dict must contain the key "type"')
    +    cfg_ = cfg.copy()
    +
    +    layer_type = cfg_.pop('type')
    +    if layer_type not in PLUGIN_LAYERS:
    +        raise KeyError(f'Unrecognized plugin type {layer_type}')
    +
    +    plugin_layer = PLUGIN_LAYERS.get(layer_type)
    +    abbr = infer_abbr(plugin_layer)
    +
    +    assert isinstance(postfix, (int, str))
    +    name = abbr + str(postfix)
    +
    +    layer = plugin_layer(**kwargs, **cfg_)
    +
    +    return name, layer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/registry.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/registry.py
    new file mode 100644
    index 000000000..c29279776
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/registry.py
    @@ -0,0 +1,16 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.utils import Registry
    +
    +CONV_LAYERS = Registry('conv layer')
    +NORM_LAYERS = Registry('norm layer')
    +ACTIVATION_LAYERS = Registry('activation layer')
    +PADDING_LAYERS = Registry('padding layer')
    +UPSAMPLE_LAYERS = Registry('upsample layer')
    +PLUGIN_LAYERS = Registry('plugin layer')
    +
    +DROPOUT_LAYERS = Registry('drop out layers')
    +POSITIONAL_ENCODING = Registry('position encoding')
    +ATTENTION = Registry('attention')
    +FEEDFORWARD_NETWORK = Registry('feed-forward Network')
    +TRANSFORMER_LAYER = Registry('transformerLayer')
    +TRANSFORMER_LAYER_SEQUENCE = Registry('transformer-layers sequence')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/scale.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/scale.py
    new file mode 100644
    index 000000000..dbd07c6a4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/scale.py
    @@ -0,0 +1,21 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +
    +class Scale(nn.Module):
    +    """A learnable scale parameter.
    +
    +    This layer scales the input by a learnable factor. It multiplies a
    +    learnable scale parameter of shape (1,) with input of any shape.
    +
    +    Args:
    +        scale (float): Initial value of scale factor. Default: 1.0
    +    """
    +
    +    def __init__(self, scale: float = 1.0):
    +        super().__init__()
    +        self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        return x * self.scale
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/swish.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/swish.py
    new file mode 100644
    index 000000000..b297adff0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/swish.py
    @@ -0,0 +1,25 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +from .registry import ACTIVATION_LAYERS
    +
    +
    +@ACTIVATION_LAYERS.register_module()
    +class Swish(nn.Module):
    +    """Swish Module.
    +
    +    This module applies the swish function:
    +
    +    .. math::
    +        Swish(x) = x * Sigmoid(x)
    +
    +    Returns:
    +        Tensor: The output tensor.
    +    """
    +
    +    def __init__(self):
    +        super().__init__()
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        return x * torch.sigmoid(x)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/transformer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/transformer.py
    new file mode 100644
    index 000000000..f7ba4d9f8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/transformer.py
    @@ -0,0 +1,944 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import math
    +import warnings
    +from typing import Sequence
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer,
    +                      build_norm_layer)
    +from mmcv.runner.base_module import BaseModule, ModuleList, Sequential
    +from mmcv.utils import (ConfigDict, build_from_cfg, deprecated_api_warning,
    +                        to_2tuple)
    +from .drop import build_dropout
    +from .registry import (ATTENTION, FEEDFORWARD_NETWORK, POSITIONAL_ENCODING,
    +                       TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE)
    +
    +# Avoid BC-breaking of importing MultiScaleDeformableAttention from this file
    +try:
    +    from mmcv.ops.multi_scale_deform_attn import \
    +        MultiScaleDeformableAttention  # noqa F401
    +    warnings.warn(
    +        ImportWarning(
    +            '``MultiScaleDeformableAttention`` has been moved to '
    +            '``mmcv.ops.multi_scale_deform_attn``, please change original path '  # noqa E501
    +            '``from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention`` '  # noqa E501
    +            'to ``from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention`` '  # noqa E501
    +        ))
    +
    +except ImportError:
    +    warnings.warn('Fail to import ``MultiScaleDeformableAttention`` from '
    +                  '``mmcv.ops.multi_scale_deform_attn``, '
    +                  'You should install ``mmcv-full`` if you need this module. ')
    +
    +
    +def build_positional_encoding(cfg, default_args=None):
    +    """Builder for Position Encoding."""
    +    return build_from_cfg(cfg, POSITIONAL_ENCODING, default_args)
    +
    +
    +def build_attention(cfg, default_args=None):
    +    """Builder for attention."""
    +    return build_from_cfg(cfg, ATTENTION, default_args)
    +
    +
    +def build_feedforward_network(cfg, default_args=None):
    +    """Builder for feed-forward network (FFN)."""
    +    return build_from_cfg(cfg, FEEDFORWARD_NETWORK, default_args)
    +
    +
    +def build_transformer_layer(cfg, default_args=None):
    +    """Builder for transformer layer."""
    +    return build_from_cfg(cfg, TRANSFORMER_LAYER, default_args)
    +
    +
    +def build_transformer_layer_sequence(cfg, default_args=None):
    +    """Builder for transformer encoder and transformer decoder."""
    +    return build_from_cfg(cfg, TRANSFORMER_LAYER_SEQUENCE, default_args)
    +
    +
    +class AdaptivePadding(nn.Module):
    +    """Applies padding adaptively to the input.
    +
    +    This module can make input get fully covered by filter
    +    you specified. It support two modes "same" and "corner". The
    +    "same" mode is same with "SAME" padding mode in TensorFlow, pad
    +    zero around input. The "corner"  mode would pad zero
    +    to bottom right.
    +
    +    Args:
    +        kernel_size (int | tuple): Size of the kernel. Default: 1.
    +        stride (int | tuple): Stride of the filter. Default: 1.
    +        dilation (int | tuple): Spacing between kernel elements.
    +            Default: 1.
    +        padding (str): Support "same" and "corner", "corner" mode
    +            would pad zero to bottom right, and "same" mode would
    +            pad zero around input. Default: "corner".
    +
    +    Example:
    +        >>> kernel_size = 16
    +        >>> stride = 16
    +        >>> dilation = 1
    +        >>> input = torch.rand(1, 1, 15, 17)
    +        >>> adap_pad = AdaptivePadding(
    +        >>>     kernel_size=kernel_size,
    +        >>>     stride=stride,
    +        >>>     dilation=dilation,
    +        >>>     padding="corner")
    +        >>> out = adap_pad(input)
    +        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
    +        >>> input = torch.rand(1, 1, 16, 17)
    +        >>> out = adap_pad(input)
    +        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
    +    """
    +
    +    def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):
    +        super().__init__()
    +        assert padding in ('same', 'corner')
    +
    +        kernel_size = to_2tuple(kernel_size)
    +        stride = to_2tuple(stride)
    +        dilation = to_2tuple(dilation)
    +
    +        self.padding = padding
    +        self.kernel_size = kernel_size
    +        self.stride = stride
    +        self.dilation = dilation
    +
    +    def get_pad_shape(self, input_shape):
    +        """Calculate the padding size of input.
    +
    +        Args:
    +            input_shape (:obj:`torch.Size`): arrange as (H, W).
    +
    +        Returns:
    +            Tuple[int]: The padding size along the
    +            original H and W directions
    +        """
    +        input_h, input_w = input_shape
    +        kernel_h, kernel_w = self.kernel_size
    +        stride_h, stride_w = self.stride
    +        output_h = math.ceil(input_h / stride_h)
    +        output_w = math.ceil(input_w / stride_w)
    +        pad_h = max((output_h - 1) * stride_h +
    +                    (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
    +        pad_w = max((output_w - 1) * stride_w +
    +                    (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
    +        return pad_h, pad_w
    +
    +    def forward(self, x):
    +        """Add padding to `x`
    +
    +        Args:
    +            x (Tensor): Input tensor has shape (B, C, H, W).
    +
    +        Returns:
    +            Tensor: The tensor with adaptive padding
    +        """
    +        pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
    +        if pad_h > 0 or pad_w > 0:
    +            if self.padding == 'corner':
    +                x = F.pad(x, [0, pad_w, 0, pad_h])
    +            elif self.padding == 'same':
    +                x = F.pad(x, [
    +                    pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
    +                    pad_h - pad_h // 2
    +                ])
    +        return x
    +
    +
    +class PatchEmbed(BaseModule):
    +    """Image to Patch Embedding.
    +
    +    We use a conv layer to implement PatchEmbed.
    +
    +    Args:
    +        in_channels (int): The num of input channels. Default: 3
    +        embed_dims (int): The dimensions of embedding. Default: 768
    +        conv_type (str): The type of convolution
    +            to generate patch embedding. Default: "Conv2d".
    +        kernel_size (int): The kernel_size of embedding conv. Default: 16.
    +        stride (int): The slide stride of embedding conv.
    +            Default: 16.
    +        padding (int | tuple | string): The padding length of
    +            embedding conv. When it is a string, it means the mode
    +            of adaptive padding, support "same" and "corner" now.
    +            Default: "corner".
    +        dilation (int): The dilation rate of embedding conv. Default: 1.
    +        bias (bool): Bias of embed conv. Default: True.
    +        norm_cfg (dict, optional): Config dict for normalization layer.
    +            Default: None.
    +        input_size (int | tuple | None): The size of input, which will be
    +            used to calculate the out size. Only works when `dynamic_size`
    +            is False. Default: None.
    +        init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 in_channels=3,
    +                 embed_dims=768,
    +                 conv_type='Conv2d',
    +                 kernel_size=16,
    +                 stride=16,
    +                 padding='corner',
    +                 dilation=1,
    +                 bias=True,
    +                 norm_cfg=None,
    +                 input_size=None,
    +                 init_cfg=None):
    +        super().__init__(init_cfg=init_cfg)
    +
    +        self.embed_dims = embed_dims
    +        if stride is None:
    +            stride = kernel_size
    +
    +        kernel_size = to_2tuple(kernel_size)
    +        stride = to_2tuple(stride)
    +        dilation = to_2tuple(dilation)
    +
    +        if isinstance(padding, str):
    +            self.adaptive_padding = AdaptivePadding(
    +                kernel_size=kernel_size,
    +                stride=stride,
    +                dilation=dilation,
    +                padding=padding)
    +            # disable the padding of conv
    +            padding = 0
    +        else:
    +            self.adaptive_padding = None
    +        padding = to_2tuple(padding)
    +
    +        self.projection = build_conv_layer(
    +            dict(type=conv_type),
    +            in_channels=in_channels,
    +            out_channels=embed_dims,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        if norm_cfg is not None:
    +            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
    +        else:
    +            self.norm = None
    +
    +        if input_size:
    +            input_size = to_2tuple(input_size)
    +            # `init_out_size` would be used outside to
    +            # calculate the num_patches
    +            # e.g. when `use_abs_pos_embed` outside
    +            self.init_input_size = input_size
    +            if self.adaptive_padding:
    +                pad_h, pad_w = self.adaptive_padding.get_pad_shape(input_size)
    +                input_h, input_w = input_size
    +                input_h = input_h + pad_h
    +                input_w = input_w + pad_w
    +                input_size = (input_h, input_w)
    +
    +            # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
    +            h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
    +                     (kernel_size[0] - 1) - 1) // stride[0] + 1
    +            w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
    +                     (kernel_size[1] - 1) - 1) // stride[1] + 1
    +            self.init_out_size = (h_out, w_out)
    +        else:
    +            self.init_input_size = None
    +            self.init_out_size = None
    +
    +    def forward(self, x):
    +        """
    +        Args:
    +            x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
    +
    +        Returns:
    +            tuple: Contains merged results and its spatial shape.
    +
    +            - x (Tensor): Has shape (B, out_h * out_w, embed_dims)
    +            - out_size (tuple[int]): Spatial shape of x, arrange as
    +              (out_h, out_w).
    +        """
    +
    +        if self.adaptive_padding:
    +            x = self.adaptive_padding(x)
    +
    +        x = self.projection(x)
    +        out_size = (x.shape[2], x.shape[3])
    +        x = x.flatten(2).transpose(1, 2)
    +        if self.norm is not None:
    +            x = self.norm(x)
    +        return x, out_size
    +
    +
    +class PatchMerging(BaseModule):
    +    """Merge patch feature map.
    +
    +    This layer groups feature map by kernel_size, and applies norm and linear
    +    layers to the grouped feature map ((used in Swin Transformer)).
    +    Our implementation uses `nn.Unfold` to
    +    merge patches, which is about 25% faster than the original
    +    implementation. However, we need to modify pretrained
    +    models for compatibility.
    +
    +    Args:
    +        in_channels (int): The num of input channels.
    +            to gets fully covered by filter and stride you specified.
    +        out_channels (int): The num of output channels.
    +        kernel_size (int | tuple, optional): the kernel size in the unfold
    +            layer. Defaults to 2.
    +        stride (int | tuple, optional): the stride of the sliding blocks in the
    +            unfold layer. Default: None. (Would be set as `kernel_size`)
    +        padding (int | tuple | string ): The padding length of
    +            embedding conv. When it is a string, it means the mode
    +            of adaptive padding, support "same" and "corner" now.
    +            Default: "corner".
    +        dilation (int | tuple, optional): dilation parameter in the unfold
    +            layer. Default: 1.
    +        bias (bool, optional): Whether to add bias in linear layer or not.
    +            Defaults: False.
    +        norm_cfg (dict, optional): Config dict for normalization layer.
    +            Default: dict(type='LN').
    +        init_cfg (dict, optional): The extra config for initialization.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 in_channels,
    +                 out_channels,
    +                 kernel_size=2,
    +                 stride=None,
    +                 padding='corner',
    +                 dilation=1,
    +                 bias=False,
    +                 norm_cfg=dict(type='LN'),
    +                 init_cfg=None):
    +        super().__init__(init_cfg=init_cfg)
    +        self.in_channels = in_channels
    +        self.out_channels = out_channels
    +        if stride:
    +            stride = stride
    +        else:
    +            stride = kernel_size
    +
    +        kernel_size = to_2tuple(kernel_size)
    +        stride = to_2tuple(stride)
    +        dilation = to_2tuple(dilation)
    +
    +        if isinstance(padding, str):
    +            self.adaptive_padding = AdaptivePadding(
    +                kernel_size=kernel_size,
    +                stride=stride,
    +                dilation=dilation,
    +                padding=padding)
    +            # disable the padding of unfold
    +            padding = 0
    +        else:
    +            self.adaptive_padding = None
    +
    +        padding = to_2tuple(padding)
    +        self.sampler = nn.Unfold(
    +            kernel_size=kernel_size,
    +            dilation=dilation,
    +            padding=padding,
    +            stride=stride)
    +
    +        sample_dim = kernel_size[0] * kernel_size[1] * in_channels
    +
    +        if norm_cfg is not None:
    +            self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
    +        else:
    +            self.norm = None
    +
    +        self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
    +
    +    def forward(self, x, input_size):
    +        """
    +        Args:
    +            x (Tensor): Has shape (B, H*W, C_in).
    +            input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
    +                Default: None.
    +
    +        Returns:
    +            tuple: Contains merged results and its spatial shape.
    +
    +            - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
    +            - out_size (tuple[int]): Spatial shape of x, arrange as
    +              (Merged_H, Merged_W).
    +        """
    +        B, L, C = x.shape
    +        assert isinstance(input_size, Sequence), f'Expect ' \
    +                                                 f'input_size is ' \
    +                                                 f'`Sequence` ' \
    +                                                 f'but get {input_size}'
    +
    +        H, W = input_size
    +        assert L == H * W, 'input feature has wrong size'
    +
    +        x = x.view(B, H, W, C).permute([0, 3, 1, 2])  # B, C, H, W
    +
    +        if self.adaptive_padding:
    +            x = self.adaptive_padding(x)
    +            H, W = x.shape[-2:]
    +
    +        # Use nn.Unfold to merge patch. About 25% faster than original method,
    +        # but need to modify pretrained model for compatibility
    +        # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
    +        x = self.sampler(x)
    +
    +        out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
    +                 (self.sampler.kernel_size[0] - 1) -
    +                 1) // self.sampler.stride[0] + 1
    +        out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
    +                 (self.sampler.kernel_size[1] - 1) -
    +                 1) // self.sampler.stride[1] + 1
    +
    +        output_size = (out_h, out_w)
    +        x = x.transpose(1, 2)  # B, H/2*W/2, 4*C
    +        x = self.norm(x) if self.norm else x
    +        x = self.reduction(x)
    +        return x, output_size
    +
    +
    +@ATTENTION.register_module()
    +class MultiheadAttention(BaseModule):
    +    """A wrapper for ``torch.nn.MultiheadAttention``.
    +
    +    This module implements MultiheadAttention with identity connection,
    +    and positional encoding  is also passed as input.
    +
    +    Args:
    +        embed_dims (int): The embedding dimension.
    +        num_heads (int): Parallel attention heads.
    +        attn_drop (float): A Dropout layer on attn_output_weights.
    +            Default: 0.0.
    +        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
    +            Default: 0.0.
    +        dropout_layer (obj:`ConfigDict`): The dropout_layer used
    +            when adding the shortcut.
    +        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
    +            Default: None.
    +        batch_first (bool): When it is True,  Key, Query and Value are shape of
    +            (batch, n, embed_dim), otherwise (n, batch, embed_dim).
    +             Default to False.
    +    """
    +
    +    def __init__(self,
    +                 embed_dims,
    +                 num_heads,
    +                 attn_drop=0.,
    +                 proj_drop=0.,
    +                 dropout_layer=dict(type='Dropout', drop_prob=0.),
    +                 init_cfg=None,
    +                 batch_first=False,
    +                 **kwargs):
    +        super().__init__(init_cfg)
    +        if 'dropout' in kwargs:
    +            warnings.warn(
    +                'The arguments `dropout` in MultiheadAttention '
    +                'has been deprecated, now you can separately '
    +                'set `attn_drop`(float), proj_drop(float), '
    +                'and `dropout_layer`(dict) ', DeprecationWarning)
    +            attn_drop = kwargs['dropout']
    +            dropout_layer['drop_prob'] = kwargs.pop('dropout')
    +
    +        self.embed_dims = embed_dims
    +        self.num_heads = num_heads
    +        self.batch_first = batch_first
    +
    +        self.attn = nn.MultiheadAttention(embed_dims, num_heads, attn_drop,
    +                                          **kwargs)
    +
    +        self.proj_drop = nn.Dropout(proj_drop)
    +        self.dropout_layer = build_dropout(
    +            dropout_layer) if dropout_layer else nn.Identity()
    +
    +    @deprecated_api_warning({'residual': 'identity'},
    +                            cls_name='MultiheadAttention')
    +    def forward(self,
    +                query,
    +                key=None,
    +                value=None,
    +                identity=None,
    +                query_pos=None,
    +                key_pos=None,
    +                attn_mask=None,
    +                key_padding_mask=None,
    +                **kwargs):
    +        """Forward function for `MultiheadAttention`.
    +
    +        **kwargs allow passing a more general data flow when combining
    +        with other operations in `transformerlayer`.
    +
    +        Args:
    +            query (Tensor): The input query with shape [num_queries, bs,
    +                embed_dims] if self.batch_first is False, else
    +                [bs, num_queries embed_dims].
    +            key (Tensor): The key tensor with shape [num_keys, bs,
    +                embed_dims] if self.batch_first is False, else
    +                [bs, num_keys, embed_dims] .
    +                If None, the ``query`` will be used. Defaults to None.
    +            value (Tensor): The value tensor with same shape as `key`.
    +                Same in `nn.MultiheadAttention.forward`. Defaults to None.
    +                If None, the `key` will be used.
    +            identity (Tensor): This tensor, with the same shape as x,
    +                will be used for the identity link.
    +                If None, `x` will be used. Defaults to None.
    +            query_pos (Tensor): The positional encoding for query, with
    +                the same shape as `x`. If not None, it will
    +                be added to `x` before forward function. Defaults to None.
    +            key_pos (Tensor): The positional encoding for `key`, with the
    +                same shape as `key`. Defaults to None. If not None, it will
    +                be added to `key` before forward function. If None, and
    +                `query_pos` has the same shape as `key`, then `query_pos`
    +                will be used for `key_pos`. Defaults to None.
    +            attn_mask (Tensor): ByteTensor mask with shape [num_queries,
    +                num_keys]. Same in `nn.MultiheadAttention.forward`.
    +                Defaults to None.
    +            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
    +                Defaults to None.
    +
    +        Returns:
    +            Tensor: forwarded results with shape
    +            [num_queries, bs, embed_dims]
    +            if self.batch_first is False, else
    +            [bs, num_queries embed_dims].
    +        """
    +
    +        if key is None:
    +            key = query
    +        if value is None:
    +            value = key
    +        if identity is None:
    +            identity = query
    +        if key_pos is None:
    +            if query_pos is not None:
    +                # use query_pos if key_pos is not available
    +                if query_pos.shape == key.shape:
    +                    key_pos = query_pos
    +                else:
    +                    warnings.warn(f'position encoding of key is'
    +                                  f'missing in {self.__class__.__name__}.')
    +        if query_pos is not None:
    +            query = query + query_pos
    +        if key_pos is not None:
    +            key = key + key_pos
    +
    +        # Because the dataflow('key', 'query', 'value') of
    +        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
    +        # embed_dims), We should adjust the shape of dataflow from
    +        # batch_first (batch, num_query, embed_dims) to num_query_first
    +        # (num_query ,batch, embed_dims), and recover ``attn_output``
    +        # from num_query_first to batch_first.
    +        if self.batch_first:
    +            query = query.transpose(0, 1)
    +            key = key.transpose(0, 1)
    +            value = value.transpose(0, 1)
    +
    +        out = self.attn(
    +            query=query,
    +            key=key,
    +            value=value,
    +            attn_mask=attn_mask,
    +            key_padding_mask=key_padding_mask)[0]
    +
    +        if self.batch_first:
    +            out = out.transpose(0, 1)
    +
    +        return identity + self.dropout_layer(self.proj_drop(out))
    +
    +
    +@FEEDFORWARD_NETWORK.register_module()
    +class FFN(BaseModule):
    +    """Implements feed-forward networks (FFNs) with identity connection.
    +
    +    Args:
    +        embed_dims (int): The feature dimension. Same as
    +            `MultiheadAttention`. Defaults: 256.
    +        feedforward_channels (int): The hidden dimension of FFNs.
    +            Defaults: 1024.
    +        num_fcs (int, optional): The number of fully-connected layers in
    +            FFNs. Default: 2.
    +        act_cfg (dict, optional): The activation config for FFNs.
    +            Default: dict(type='ReLU')
    +        ffn_drop (float, optional): Probability of an element to be
    +            zeroed in FFN. Default 0.0.
    +        add_identity (bool, optional): Whether to add the
    +            identity connection. Default: `True`.
    +        dropout_layer (obj:`ConfigDict`): The dropout_layer used
    +            when adding the shortcut.
    +        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
    +            Default: None.
    +    """
    +
    +    @deprecated_api_warning(
    +        {
    +            'dropout': 'ffn_drop',
    +            'add_residual': 'add_identity'
    +        },
    +        cls_name='FFN')
    +    def __init__(self,
    +                 embed_dims=256,
    +                 feedforward_channels=1024,
    +                 num_fcs=2,
    +                 act_cfg=dict(type='ReLU', inplace=True),
    +                 ffn_drop=0.,
    +                 dropout_layer=None,
    +                 add_identity=True,
    +                 init_cfg=None,
    +                 **kwargs):
    +        super().__init__(init_cfg)
    +        assert num_fcs >= 2, 'num_fcs should be no less ' \
    +            f'than 2. got {num_fcs}.'
    +        self.embed_dims = embed_dims
    +        self.feedforward_channels = feedforward_channels
    +        self.num_fcs = num_fcs
    +        self.act_cfg = act_cfg
    +        self.activate = build_activation_layer(act_cfg)
    +
    +        layers = []
    +        in_channels = embed_dims
    +        for _ in range(num_fcs - 1):
    +            layers.append(
    +                Sequential(
    +                    Linear(in_channels, feedforward_channels), self.activate,
    +                    nn.Dropout(ffn_drop)))
    +            in_channels = feedforward_channels
    +        layers.append(Linear(feedforward_channels, embed_dims))
    +        layers.append(nn.Dropout(ffn_drop))
    +        self.layers = Sequential(*layers)
    +        self.dropout_layer = build_dropout(
    +            dropout_layer) if dropout_layer else torch.nn.Identity()
    +        self.add_identity = add_identity
    +
    +    @deprecated_api_warning({'residual': 'identity'}, cls_name='FFN')
    +    def forward(self, x, identity=None):
    +        """Forward function for `FFN`.
    +
    +        The function would add x to the output tensor if residue is None.
    +        """
    +        out = self.layers(x)
    +        if not self.add_identity:
    +            return self.dropout_layer(out)
    +        if identity is None:
    +            identity = x
    +        return identity + self.dropout_layer(out)
    +
    +
    +@TRANSFORMER_LAYER.register_module()
    +class BaseTransformerLayer(BaseModule):
    +    """Base `TransformerLayer` for vision transformer.
    +
    +    It can be built from `mmcv.ConfigDict` and support more flexible
    +    customization, for example, using any number of `FFN or LN ` and
    +    use different kinds of `attention` by specifying a list of `ConfigDict`
    +    named `attn_cfgs`. It is worth mentioning that it supports `prenorm`
    +    when you specifying `norm` as the first element of `operation_order`.
    +    More details about the `prenorm`: `On Layer Normalization in the
    +    Transformer Architecture `_ .
    +
    +    Args:
    +        attn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
    +            Configs for `self_attention` or `cross_attention` modules,
    +            The order of the configs in the list should be consistent with
    +            corresponding attentions in operation_order.
    +            If it is a dict, all of the attention modules in operation_order
    +            will be built with this config. Default: None.
    +        ffn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
    +            Configs for FFN, The order of the configs in the list should be
    +            consistent with corresponding ffn in operation_order.
    +            If it is a dict, all of the attention modules in operation_order
    +            will be built with this config.
    +        operation_order (tuple[str]): The execution order of operation
    +            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
    +            Support `prenorm` when you specifying first element as `norm`.
    +            Default:None.
    +        norm_cfg (dict): Config dict for normalization layer.
    +            Default: dict(type='LN').
    +        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
    +            Default: None.
    +        batch_first (bool): Key, Query and Value are shape
    +            of (batch, n, embed_dim)
    +            or (n, batch, embed_dim). Default to False.
    +    """
    +
    +    def __init__(self,
    +                 attn_cfgs=None,
    +                 ffn_cfgs=dict(
    +                     type='FFN',
    +                     embed_dims=256,
    +                     feedforward_channels=1024,
    +                     num_fcs=2,
    +                     ffn_drop=0.,
    +                     act_cfg=dict(type='ReLU', inplace=True),
    +                 ),
    +                 operation_order=None,
    +                 norm_cfg=dict(type='LN'),
    +                 init_cfg=None,
    +                 batch_first=False,
    +                 **kwargs):
    +
    +        deprecated_args = dict(
    +            feedforward_channels='feedforward_channels',
    +            ffn_dropout='ffn_drop',
    +            ffn_num_fcs='num_fcs')
    +        for ori_name, new_name in deprecated_args.items():
    +            if ori_name in kwargs:
    +                warnings.warn(
    +                    f'The arguments `{ori_name}` in BaseTransformerLayer '
    +                    f'has been deprecated, now you should set `{new_name}` '
    +                    f'and other FFN related arguments '
    +                    f'to a dict named `ffn_cfgs`. ', DeprecationWarning)
    +                ffn_cfgs[new_name] = kwargs[ori_name]
    +
    +        super().__init__(init_cfg)
    +
    +        self.batch_first = batch_first
    +
    +        assert set(operation_order) & {
    +            'self_attn', 'norm', 'ffn', 'cross_attn'} == \
    +            set(operation_order), f'The operation_order of' \
    +            f' {self.__class__.__name__} should ' \
    +            f'contains all four operation type ' \
    +            f"{['self_attn', 'norm', 'ffn', 'cross_attn']}"
    +
    +        num_attn = operation_order.count('self_attn') + operation_order.count(
    +            'cross_attn')
    +        if isinstance(attn_cfgs, dict):
    +            attn_cfgs = [copy.deepcopy(attn_cfgs) for _ in range(num_attn)]
    +        else:
    +            assert num_attn == len(attn_cfgs), f'The length ' \
    +                f'of attn_cfg {num_attn} is ' \
    +                f'not consistent with the number of attention' \
    +                f'in operation_order {operation_order}.'
    +
    +        self.num_attn = num_attn
    +        self.operation_order = operation_order
    +        self.norm_cfg = norm_cfg
    +        self.pre_norm = operation_order[0] == 'norm'
    +        self.attentions = ModuleList()
    +
    +        index = 0
    +        for operation_name in operation_order:
    +            if operation_name in ['self_attn', 'cross_attn']:
    +                if 'batch_first' in attn_cfgs[index]:
    +                    assert self.batch_first == attn_cfgs[index]['batch_first']
    +                else:
    +                    attn_cfgs[index]['batch_first'] = self.batch_first
    +                attention = build_attention(attn_cfgs[index])
    +                # Some custom attentions used as `self_attn`
    +                # or `cross_attn` can have different behavior.
    +                attention.operation_name = operation_name
    +                self.attentions.append(attention)
    +                index += 1
    +
    +        self.embed_dims = self.attentions[0].embed_dims
    +
    +        self.ffns = ModuleList()
    +        num_ffns = operation_order.count('ffn')
    +        if isinstance(ffn_cfgs, dict):
    +            ffn_cfgs = ConfigDict(ffn_cfgs)
    +        if isinstance(ffn_cfgs, dict):
    +            ffn_cfgs = [copy.deepcopy(ffn_cfgs) for _ in range(num_ffns)]
    +        assert len(ffn_cfgs) == num_ffns
    +        for ffn_index in range(num_ffns):
    +            if 'embed_dims' not in ffn_cfgs[ffn_index]:
    +                ffn_cfgs[ffn_index]['embed_dims'] = self.embed_dims
    +            else:
    +                assert ffn_cfgs[ffn_index]['embed_dims'] == self.embed_dims
    +            self.ffns.append(
    +                build_feedforward_network(ffn_cfgs[ffn_index],
    +                                          dict(type='FFN')))
    +
    +        self.norms = ModuleList()
    +        num_norms = operation_order.count('norm')
    +        for _ in range(num_norms):
    +            self.norms.append(build_norm_layer(norm_cfg, self.embed_dims)[1])
    +
    +    def forward(self,
    +                query,
    +                key=None,
    +                value=None,
    +                query_pos=None,
    +                key_pos=None,
    +                attn_masks=None,
    +                query_key_padding_mask=None,
    +                key_padding_mask=None,
    +                **kwargs):
    +        """Forward function for `TransformerDecoderLayer`.
    +
    +        **kwargs contains some specific arguments of attentions.
    +
    +        Args:
    +            query (Tensor): The input query with shape
    +                [num_queries, bs, embed_dims] if
    +                self.batch_first is False, else
    +                [bs, num_queries embed_dims].
    +            key (Tensor): The key tensor with shape [num_keys, bs,
    +                embed_dims] if self.batch_first is False, else
    +                [bs, num_keys, embed_dims] .
    +            value (Tensor): The value tensor with same shape as `key`.
    +            query_pos (Tensor): The positional encoding for `query`.
    +                Default: None.
    +            key_pos (Tensor): The positional encoding for `key`.
    +                Default: None.
    +            attn_masks (List[Tensor] | None): 2D Tensor used in
    +                calculation of corresponding attention. The length of
    +                it should equal to the number of `attention` in
    +                `operation_order`. Default: None.
    +            query_key_padding_mask (Tensor): ByteTensor for `query`, with
    +                shape [bs, num_queries]. Only used in `self_attn` layer.
    +                Defaults to None.
    +            key_padding_mask (Tensor): ByteTensor for `query`, with
    +                shape [bs, num_keys]. Default: None.
    +
    +        Returns:
    +            Tensor: forwarded results with shape [num_queries, bs, embed_dims].
    +        """
    +
    +        norm_index = 0
    +        attn_index = 0
    +        ffn_index = 0
    +        identity = query
    +        if attn_masks is None:
    +            attn_masks = [None for _ in range(self.num_attn)]
    +        elif isinstance(attn_masks, torch.Tensor):
    +            attn_masks = [
    +                copy.deepcopy(attn_masks) for _ in range(self.num_attn)
    +            ]
    +            warnings.warn(f'Use same attn_mask in all attentions in '
    +                          f'{self.__class__.__name__} ')
    +        else:
    +            assert len(attn_masks) == self.num_attn, f'The length of ' \
    +                        f'attn_masks {len(attn_masks)} must be equal ' \
    +                        f'to the number of attention in ' \
    +                        f'operation_order {self.num_attn}'
    +
    +        for layer in self.operation_order:
    +            if layer == 'self_attn':
    +                temp_key = temp_value = query
    +                query = self.attentions[attn_index](
    +                    query,
    +                    temp_key,
    +                    temp_value,
    +                    identity if self.pre_norm else None,
    +                    query_pos=query_pos,
    +                    key_pos=query_pos,
    +                    attn_mask=attn_masks[attn_index],
    +                    key_padding_mask=query_key_padding_mask,
    +                    **kwargs)
    +                attn_index += 1
    +                identity = query
    +
    +            elif layer == 'norm':
    +                query = self.norms[norm_index](query)
    +                norm_index += 1
    +
    +            elif layer == 'cross_attn':
    +                query = self.attentions[attn_index](
    +                    query,
    +                    key,
    +                    value,
    +                    identity if self.pre_norm else None,
    +                    query_pos=query_pos,
    +                    key_pos=key_pos,
    +                    attn_mask=attn_masks[attn_index],
    +                    key_padding_mask=key_padding_mask,
    +                    **kwargs)
    +                attn_index += 1
    +                identity = query
    +
    +            elif layer == 'ffn':
    +                query = self.ffns[ffn_index](
    +                    query, identity if self.pre_norm else None)
    +                ffn_index += 1
    +
    +        return query
    +
    +
    +@TRANSFORMER_LAYER_SEQUENCE.register_module()
    +class TransformerLayerSequence(BaseModule):
    +    """Base class for TransformerEncoder and TransformerDecoder in vision
    +    transformer.
    +
    +    As base-class of Encoder and Decoder in vision transformer.
    +    Support customization such as specifying different kind
    +    of `transformer_layer` in `transformer_coder`.
    +
    +    Args:
    +        transformerlayer (list[obj:`mmcv.ConfigDict`] |
    +            obj:`mmcv.ConfigDict`): Config of transformerlayer
    +            in TransformerCoder. If it is obj:`mmcv.ConfigDict`,
    +             it would be repeated `num_layer` times to a
    +             list[`mmcv.ConfigDict`]. Default: None.
    +        num_layers (int): The number of `TransformerLayer`. Default: None.
    +        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
    +            Default: None.
    +    """
    +
    +    def __init__(self, transformerlayers=None, num_layers=None, init_cfg=None):
    +        super().__init__(init_cfg)
    +        if isinstance(transformerlayers, dict):
    +            transformerlayers = [
    +                copy.deepcopy(transformerlayers) for _ in range(num_layers)
    +            ]
    +        else:
    +            assert isinstance(transformerlayers, list) and \
    +                   len(transformerlayers) == num_layers
    +        self.num_layers = num_layers
    +        self.layers = ModuleList()
    +        for i in range(num_layers):
    +            self.layers.append(build_transformer_layer(transformerlayers[i]))
    +        self.embed_dims = self.layers[0].embed_dims
    +        self.pre_norm = self.layers[0].pre_norm
    +
    +    def forward(self,
    +                query,
    +                key,
    +                value,
    +                query_pos=None,
    +                key_pos=None,
    +                attn_masks=None,
    +                query_key_padding_mask=None,
    +                key_padding_mask=None,
    +                **kwargs):
    +        """Forward function for `TransformerCoder`.
    +
    +        Args:
    +            query (Tensor): Input query with shape
    +                `(num_queries, bs, embed_dims)`.
    +            key (Tensor): The key tensor with shape
    +                `(num_keys, bs, embed_dims)`.
    +            value (Tensor): The value tensor with shape
    +                `(num_keys, bs, embed_dims)`.
    +            query_pos (Tensor): The positional encoding for `query`.
    +                Default: None.
    +            key_pos (Tensor): The positional encoding for `key`.
    +                Default: None.
    +            attn_masks (List[Tensor], optional): Each element is 2D Tensor
    +                which is used in calculation of corresponding attention in
    +                operation_order. Default: None.
    +            query_key_padding_mask (Tensor): ByteTensor for `query`, with
    +                shape [bs, num_queries]. Only used in self-attention
    +                Default: None.
    +            key_padding_mask (Tensor): ByteTensor for `query`, with
    +                shape [bs, num_keys]. Default: None.
    +
    +        Returns:
    +            Tensor:  results with shape [num_queries, bs, embed_dims].
    +        """
    +        for layer in self.layers:
    +            query = layer(
    +                query,
    +                key,
    +                value,
    +                query_pos=query_pos,
    +                key_pos=key_pos,
    +                attn_masks=attn_masks,
    +                query_key_padding_mask=query_key_padding_mask,
    +                key_padding_mask=key_padding_mask,
    +                **kwargs)
    +        return query
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/upsample.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/upsample.py
    new file mode 100644
    index 000000000..d86c5f54a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/upsample.py
    @@ -0,0 +1,87 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from ..utils import xavier_init
    +from .registry import UPSAMPLE_LAYERS
    +
    +UPSAMPLE_LAYERS.register_module('nearest', module=nn.Upsample)
    +UPSAMPLE_LAYERS.register_module('bilinear', module=nn.Upsample)
    +
    +
    +@UPSAMPLE_LAYERS.register_module(name='pixel_shuffle')
    +class PixelShufflePack(nn.Module):
    +    """Pixel Shuffle upsample layer.
    +
    +    This module packs `F.pixel_shuffle()` and a nn.Conv2d module together to
    +    achieve a simple upsampling with pixel shuffle.
    +
    +    Args:
    +        in_channels (int): Number of input channels.
    +        out_channels (int): Number of output channels.
    +        scale_factor (int): Upsample ratio.
    +        upsample_kernel (int): Kernel size of the conv layer to expand the
    +            channels.
    +    """
    +
    +    def __init__(self, in_channels: int, out_channels: int, scale_factor: int,
    +                 upsample_kernel: int):
    +        super().__init__()
    +        self.in_channels = in_channels
    +        self.out_channels = out_channels
    +        self.scale_factor = scale_factor
    +        self.upsample_kernel = upsample_kernel
    +        self.upsample_conv = nn.Conv2d(
    +            self.in_channels,
    +            self.out_channels * scale_factor * scale_factor,
    +            self.upsample_kernel,
    +            padding=(self.upsample_kernel - 1) // 2)
    +        self.init_weights()
    +
    +    def init_weights(self):
    +        xavier_init(self.upsample_conv, distribution='uniform')
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        x = self.upsample_conv(x)
    +        x = F.pixel_shuffle(x, self.scale_factor)
    +        return x
    +
    +
    +def build_upsample_layer(cfg: Dict, *args, **kwargs) -> nn.Module:
    +    """Build upsample layer.
    +
    +    Args:
    +        cfg (dict): The upsample layer config, which should contain:
    +
    +            - type (str): Layer type.
    +            - scale_factor (int): Upsample ratio, which is not applicable to
    +              deconv.
    +            - layer args: Args needed to instantiate a upsample layer.
    +        args (argument list): Arguments passed to the ``__init__``
    +            method of the corresponding conv layer.
    +        kwargs (keyword arguments): Keyword arguments passed to the
    +            ``__init__`` method of the corresponding conv layer.
    +
    +    Returns:
    +        nn.Module: Created upsample layer.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
    +    if 'type' not in cfg:
    +        raise KeyError(
    +            f'the cfg dict must contain the key "type", but got {cfg}')
    +    cfg_ = cfg.copy()
    +
    +    layer_type = cfg_.pop('type')
    +    if layer_type not in UPSAMPLE_LAYERS:
    +        raise KeyError(f'Unrecognized upsample type {layer_type}')
    +    else:
    +        upsample = UPSAMPLE_LAYERS.get(layer_type)
    +
    +    if upsample is nn.Upsample:
    +        cfg_['mode'] = layer_type
    +    layer = upsample(*args, **kwargs, **cfg_)
    +    return layer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/wrappers.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/wrappers.py
    new file mode 100644
    index 000000000..a07eff00e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/bricks/wrappers.py
    @@ -0,0 +1,180 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py  # noqa: E501
    +
    +Wrap some nn modules to support empty tensor input. Currently, these wrappers
    +are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask
    +heads are trained on only positive RoIs.
    +"""
    +import math
    +
    +import torch
    +import torch.nn as nn
    +from torch.nn.modules.utils import _pair, _triple
    +
    +from .registry import CONV_LAYERS, UPSAMPLE_LAYERS
    +
    +if torch.__version__ == 'parrots':
    +    TORCH_VERSION = torch.__version__
    +else:
    +    # torch.__version__ could be 1.3.1+cu92, we only need the first two
    +    # for comparison
    +    TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
    +
    +
    +def obsolete_torch_version(torch_version, version_threshold) -> bool:
    +    return torch_version == 'parrots' or torch_version <= version_threshold
    +
    +
    +class NewEmptyTensorOp(torch.autograd.Function):
    +
    +    @staticmethod
    +    def forward(ctx, x: torch.Tensor, new_shape: tuple) -> torch.Tensor:
    +        ctx.shape = x.shape
    +        return x.new_empty(new_shape)
    +
    +    @staticmethod
    +    def backward(ctx, grad: torch.Tensor) -> tuple:
    +        shape = ctx.shape
    +        return NewEmptyTensorOp.apply(grad, shape), None
    +
    +
    +@CONV_LAYERS.register_module('Conv', force=True)
    +class Conv2d(nn.Conv2d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
    +            out_shape = [x.shape[0], self.out_channels]
    +            for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
    +                                     self.padding, self.stride, self.dilation):
    +                o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
    +                out_shape.append(o)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            if self.training:
    +                # produce dummy gradient to avoid DDP warning.
    +                dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
    +                return empty + dummy
    +            else:
    +                return empty
    +
    +        return super().forward(x)
    +
    +
    +@CONV_LAYERS.register_module('Conv3d', force=True)
    +class Conv3d(nn.Conv3d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
    +            out_shape = [x.shape[0], self.out_channels]
    +            for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size,
    +                                     self.padding, self.stride, self.dilation):
    +                o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
    +                out_shape.append(o)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            if self.training:
    +                # produce dummy gradient to avoid DDP warning.
    +                dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
    +                return empty + dummy
    +            else:
    +                return empty
    +
    +        return super().forward(x)
    +
    +
    +@CONV_LAYERS.register_module()
    +@CONV_LAYERS.register_module('deconv')
    +@UPSAMPLE_LAYERS.register_module('deconv', force=True)
    +class ConvTranspose2d(nn.ConvTranspose2d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
    +            out_shape = [x.shape[0], self.out_channels]
    +            for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
    +                                         self.padding, self.stride,
    +                                         self.dilation, self.output_padding):
    +                out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            if self.training:
    +                # produce dummy gradient to avoid DDP warning.
    +                dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
    +                return empty + dummy
    +            else:
    +                return empty
    +
    +        return super().forward(x)
    +
    +
    +@CONV_LAYERS.register_module()
    +@CONV_LAYERS.register_module('deconv3d')
    +@UPSAMPLE_LAYERS.register_module('deconv3d', force=True)
    +class ConvTranspose3d(nn.ConvTranspose3d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
    +            out_shape = [x.shape[0], self.out_channels]
    +            for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size,
    +                                         self.padding, self.stride,
    +                                         self.dilation, self.output_padding):
    +                out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            if self.training:
    +                # produce dummy gradient to avoid DDP warning.
    +                dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
    +                return empty + dummy
    +            else:
    +                return empty
    +
    +        return super().forward(x)
    +
    +
    +class MaxPool2d(nn.MaxPool2d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        # PyTorch 1.9 does not support empty tensor inference yet
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
    +            out_shape = list(x.shape[:2])
    +            for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
    +                                     _pair(self.padding), _pair(self.stride),
    +                                     _pair(self.dilation)):
    +                o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
    +                o = math.ceil(o) if self.ceil_mode else math.floor(o)
    +                out_shape.append(o)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            return empty
    +
    +        return super().forward(x)
    +
    +
    +class MaxPool3d(nn.MaxPool3d):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        # PyTorch 1.9 does not support empty tensor inference yet
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
    +            out_shape = list(x.shape[:2])
    +            for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size),
    +                                     _triple(self.padding),
    +                                     _triple(self.stride),
    +                                     _triple(self.dilation)):
    +                o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
    +                o = math.ceil(o) if self.ceil_mode else math.floor(o)
    +                out_shape.append(o)
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            return empty
    +
    +        return super().forward(x)
    +
    +
    +class Linear(torch.nn.Linear):
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        # empty tensor forward of Linear layer is supported in Pytorch 1.6
    +        if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)):
    +            out_shape = [x.shape[0], self.out_features]
    +            empty = NewEmptyTensorOp.apply(x, out_shape)
    +            if self.training:
    +                # produce dummy gradient to avoid DDP warning.
    +                dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
    +                return empty + dummy
    +            else:
    +                return empty
    +
    +        return super().forward(x)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/builder.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/builder.py
    new file mode 100644
    index 000000000..7567316c5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/builder.py
    @@ -0,0 +1,30 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from ..runner import Sequential
    +from ..utils import Registry, build_from_cfg
    +
    +
    +def build_model_from_cfg(cfg, registry, default_args=None):
    +    """Build a PyTorch model from config dict(s). Different from
    +    ``build_from_cfg``, if cfg is a list, a ``nn.Sequential`` will be built.
    +
    +    Args:
    +        cfg (dict, list[dict]): The config of modules, is is either a config
    +            dict or a list of config dicts. If cfg is a list, a
    +            the built modules will be wrapped with ``nn.Sequential``.
    +        registry (:obj:`Registry`): A registry the module belongs to.
    +        default_args (dict, optional): Default arguments to build the module.
    +            Defaults to None.
    +
    +    Returns:
    +        nn.Module: A built nn module.
    +    """
    +    if isinstance(cfg, list):
    +        modules = [
    +            build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg
    +        ]
    +        return Sequential(*modules)
    +    else:
    +        return build_from_cfg(cfg, registry, default_args)
    +
    +
    +MODELS = Registry('model', build_func=build_model_from_cfg)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/resnet.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/resnet.py
    new file mode 100644
    index 000000000..fb29e6256
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/resnet.py
    @@ -0,0 +1,322 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +from typing import Optional, Sequence, Tuple, Union
    +
    +import torch.nn as nn
    +import torch.utils.checkpoint as cp
    +from torch import Tensor
    +
    +from .utils import constant_init, kaiming_init
    +
    +
    +def conv3x3(in_planes: int,
    +            out_planes: int,
    +            stride: int = 1,
    +            dilation: int = 1):
    +    """3x3 convolution with padding."""
    +    return nn.Conv2d(
    +        in_planes,
    +        out_planes,
    +        kernel_size=3,
    +        stride=stride,
    +        padding=dilation,
    +        dilation=dilation,
    +        bias=False)
    +
    +
    +class BasicBlock(nn.Module):
    +    expansion = 1
    +
    +    def __init__(self,
    +                 inplanes: int,
    +                 planes: int,
    +                 stride: int = 1,
    +                 dilation: int = 1,
    +                 downsample: Optional[nn.Module] = None,
    +                 style: str = 'pytorch',
    +                 with_cp: bool = False):
    +        super().__init__()
    +        assert style in ['pytorch', 'caffe']
    +        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
    +        self.bn1 = nn.BatchNorm2d(planes)
    +        self.relu = nn.ReLU(inplace=True)
    +        self.conv2 = conv3x3(planes, planes)
    +        self.bn2 = nn.BatchNorm2d(planes)
    +        self.downsample = downsample
    +        self.stride = stride
    +        self.dilation = dilation
    +        assert not with_cp
    +
    +    def forward(self, x: Tensor) -> Tensor:
    +        residual = x
    +
    +        out = self.conv1(x)
    +        out = self.bn1(out)
    +        out = self.relu(out)
    +
    +        out = self.conv2(out)
    +        out = self.bn2(out)
    +
    +        if self.downsample is not None:
    +            residual = self.downsample(x)
    +
    +        out += residual
    +        out = self.relu(out)
    +
    +        return out
    +
    +
    +class Bottleneck(nn.Module):
    +    expansion = 4
    +
    +    def __init__(self,
    +                 inplanes: int,
    +                 planes: int,
    +                 stride: int = 1,
    +                 dilation: int = 1,
    +                 downsample: Optional[nn.Module] = None,
    +                 style: str = 'pytorch',
    +                 with_cp: bool = False):
    +        """Bottleneck block.
    +
    +        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
    +        it is "caffe", the stride-two layer is the first 1x1 conv layer.
    +        """
    +        super().__init__()
    +        assert style in ['pytorch', 'caffe']
    +        if style == 'pytorch':
    +            conv1_stride = 1
    +            conv2_stride = stride
    +        else:
    +            conv1_stride = stride
    +            conv2_stride = 1
    +        self.conv1 = nn.Conv2d(
    +            inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False)
    +        self.conv2 = nn.Conv2d(
    +            planes,
    +            planes,
    +            kernel_size=3,
    +            stride=conv2_stride,
    +            padding=dilation,
    +            dilation=dilation,
    +            bias=False)
    +
    +        self.bn1 = nn.BatchNorm2d(planes)
    +        self.bn2 = nn.BatchNorm2d(planes)
    +        self.conv3 = nn.Conv2d(
    +            planes, planes * self.expansion, kernel_size=1, bias=False)
    +        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
    +        self.relu = nn.ReLU(inplace=True)
    +        self.downsample = downsample
    +        self.stride = stride
    +        self.dilation = dilation
    +        self.with_cp = with_cp
    +
    +    def forward(self, x: Tensor) -> Tensor:
    +
    +        def _inner_forward(x):
    +            residual = x
    +
    +            out = self.conv1(x)
    +            out = self.bn1(out)
    +            out = self.relu(out)
    +
    +            out = self.conv2(out)
    +            out = self.bn2(out)
    +            out = self.relu(out)
    +
    +            out = self.conv3(out)
    +            out = self.bn3(out)
    +
    +            if self.downsample is not None:
    +                residual = self.downsample(x)
    +
    +            out += residual
    +
    +            return out
    +
    +        if self.with_cp and x.requires_grad:
    +            out = cp.checkpoint(_inner_forward, x)
    +        else:
    +            out = _inner_forward(x)
    +
    +        out = self.relu(out)
    +
    +        return out
    +
    +
    +def make_res_layer(block: nn.Module,
    +                   inplanes: int,
    +                   planes: int,
    +                   blocks: int,
    +                   stride: int = 1,
    +                   dilation: int = 1,
    +                   style: str = 'pytorch',
    +                   with_cp: bool = False) -> nn.Module:
    +    downsample = None
    +    if stride != 1 or inplanes != planes * block.expansion:
    +        downsample = nn.Sequential(
    +            nn.Conv2d(
    +                inplanes,
    +                planes * block.expansion,
    +                kernel_size=1,
    +                stride=stride,
    +                bias=False),
    +            nn.BatchNorm2d(planes * block.expansion),
    +        )
    +
    +    layers = []
    +    layers.append(
    +        block(
    +            inplanes,
    +            planes,
    +            stride,
    +            dilation,
    +            downsample,
    +            style=style,
    +            with_cp=with_cp))
    +    inplanes = planes * block.expansion
    +    for _ in range(1, blocks):
    +        layers.append(
    +            block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))
    +
    +    return nn.Sequential(*layers)
    +
    +
    +class ResNet(nn.Module):
    +    """ResNet backbone.
    +
    +    Args:
    +        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
    +        num_stages (int): Resnet stages, normally 4.
    +        strides (Sequence[int]): Strides of the first block of each stage.
    +        dilations (Sequence[int]): Dilation of each stage.
    +        out_indices (Sequence[int]): Output from which stages.
    +        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
    +            layer is the 3x3 conv layer, otherwise the stride-two layer is
    +            the first 1x1 conv layer.
    +        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
    +            not freezing any parameters.
    +        bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
    +            running stats (mean and var).
    +        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
    +        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
    +            memory while slowing down the training speed.
    +    """
    +
    +    arch_settings = {
    +        18: (BasicBlock, (2, 2, 2, 2)),
    +        34: (BasicBlock, (3, 4, 6, 3)),
    +        50: (Bottleneck, (3, 4, 6, 3)),
    +        101: (Bottleneck, (3, 4, 23, 3)),
    +        152: (Bottleneck, (3, 8, 36, 3))
    +    }
    +
    +    def __init__(self,
    +                 depth: int,
    +                 num_stages: int = 4,
    +                 strides: Sequence[int] = (1, 2, 2, 2),
    +                 dilations: Sequence[int] = (1, 1, 1, 1),
    +                 out_indices: Sequence[int] = (0, 1, 2, 3),
    +                 style: str = 'pytorch',
    +                 frozen_stages: int = -1,
    +                 bn_eval: bool = True,
    +                 bn_frozen: bool = False,
    +                 with_cp: bool = False):
    +        super().__init__()
    +        if depth not in self.arch_settings:
    +            raise KeyError(f'invalid depth {depth} for resnet')
    +        assert num_stages >= 1 and num_stages <= 4
    +        block, stage_blocks = self.arch_settings[depth]
    +        stage_blocks = stage_blocks[:num_stages]  # type: ignore
    +        assert len(strides) == len(dilations) == num_stages
    +        assert max(out_indices) < num_stages
    +
    +        self.out_indices = out_indices
    +        self.style = style
    +        self.frozen_stages = frozen_stages
    +        self.bn_eval = bn_eval
    +        self.bn_frozen = bn_frozen
    +        self.with_cp = with_cp
    +
    +        self.inplanes: int = 64
    +        self.conv1 = nn.Conv2d(
    +            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
    +        self.bn1 = nn.BatchNorm2d(64)
    +        self.relu = nn.ReLU(inplace=True)
    +        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    +
    +        self.res_layers = []
    +        for i, num_blocks in enumerate(stage_blocks):
    +            stride = strides[i]
    +            dilation = dilations[i]
    +            planes = 64 * 2**i
    +            res_layer = make_res_layer(
    +                block,
    +                self.inplanes,
    +                planes,
    +                num_blocks,
    +                stride=stride,
    +                dilation=dilation,
    +                style=self.style,
    +                with_cp=with_cp)
    +            self.inplanes = planes * block.expansion  # type: ignore
    +            layer_name = f'layer{i + 1}'
    +            self.add_module(layer_name, res_layer)
    +            self.res_layers.append(layer_name)
    +
    +        self.feat_dim = block.expansion * 64 * 2**(  # type: ignore
    +            len(stage_blocks) - 1)
    +
    +    def init_weights(self, pretrained: Optional[str] = None) -> None:
    +        if isinstance(pretrained, str):
    +            logger = logging.getLogger()
    +            from ..runner import load_checkpoint
    +            load_checkpoint(self, pretrained, strict=False, logger=logger)
    +        elif pretrained is None:
    +            for m in self.modules():
    +                if isinstance(m, nn.Conv2d):
    +                    kaiming_init(m)
    +                elif isinstance(m, nn.BatchNorm2d):
    +                    constant_init(m, 1)
    +        else:
    +            raise TypeError('pretrained must be a str or None')
    +
    +    def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor]]:
    +        x = self.conv1(x)
    +        x = self.bn1(x)
    +        x = self.relu(x)
    +        x = self.maxpool(x)
    +        outs = []
    +        for i, layer_name in enumerate(self.res_layers):
    +            res_layer = getattr(self, layer_name)
    +            x = res_layer(x)
    +            if i in self.out_indices:
    +                outs.append(x)
    +        if len(outs) == 1:
    +            return outs[0]
    +        else:
    +            return tuple(outs)
    +
    +    def train(self, mode: bool = True) -> None:
    +        super().train(mode)
    +        if self.bn_eval:
    +            for m in self.modules():
    +                if isinstance(m, nn.BatchNorm2d):
    +                    m.eval()
    +                    if self.bn_frozen:
    +                        for params in m.parameters():
    +                            params.requires_grad = False
    +        if mode and self.frozen_stages >= 0:
    +            for param in self.conv1.parameters():
    +                param.requires_grad = False
    +            for param in self.bn1.parameters():
    +                param.requires_grad = False
    +            self.bn1.eval()
    +            self.bn1.weight.requires_grad = False
    +            self.bn1.bias.requires_grad = False
    +            for i in range(1, self.frozen_stages + 1):
    +                mod = getattr(self, f'layer{i}')
    +                mod.eval()
    +                for param in mod.parameters():
    +                    param.requires_grad = False
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/__init__.py
    new file mode 100644
    index 000000000..04d45725d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/__init__.py
    @@ -0,0 +1,5 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .operator import BaseConvRFSearchOp, Conv2dRFSearchOp
    +from .search import RFSearchHook
    +
    +__all__ = ['BaseConvRFSearchOp', 'Conv2dRFSearchOp', 'RFSearchHook']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/operator.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/operator.py
    new file mode 100644
    index 000000000..33c6dfe0a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/operator.py
    @@ -0,0 +1,170 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +from torch import Tensor
    +
    +from mmcv.runner import BaseModule
    +from mmcv.utils.logging import get_logger
    +from .utils import expand_rates, get_single_padding
    +
    +logger = get_logger('mmcv')
    +
    +
    +class BaseConvRFSearchOp(BaseModule):
    +    """Based class of ConvRFSearchOp.
    +
    +    Args:
    +        op_layer (nn.Module): pytorch module, e,g, Conv2d
    +        global_config (dict): config dict.
    +    """
    +
    +    def __init__(self, op_layer: nn.Module, global_config: dict):
    +        super().__init__()
    +        self.op_layer = op_layer
    +        self.global_config = global_config
    +
    +    def normlize(self, weights: nn.Parameter) -> nn.Parameter:
    +        """Normalize weights.
    +
    +        Args:
    +            weights (nn.Parameter): Weights to be normalized.
    +
    +        Returns:
    +            nn.Parameters: Normalized weights.
    +        """
    +        abs_weights = torch.abs(weights)
    +        normalized_weights = abs_weights / torch.sum(abs_weights)
    +        return normalized_weights
    +
    +
    +class Conv2dRFSearchOp(BaseConvRFSearchOp):
    +    """Enable Conv2d with receptive field searching ability.
    +
    +    Args:
    +        op_layer (nn.Module): pytorch module, e,g, Conv2d
    +        global_config (dict): config dict. Defaults to None.
    +            By default this must include:
    +
    +            - "init_alphas": The value for initializing weights of each branch.
    +            - "num_branches": The controller of the size of
    +              search space (the number of branches).
    +            - "exp_rate": The controller of the sparsity of search space.
    +            - "mmin": The minimum dilation rate.
    +            - "mmax": The maximum dilation rate.
    +
    +            Extra keys may exist, but are used by RFSearchHook, e.g., "step",
    +            "max_step", "search_interval", and "skip_layer".
    +        verbose (bool): Determines whether to print rf-next
    +            related logging messages.
    +            Defaults to True.
    +    """
    +
    +    def __init__(self,
    +                 op_layer: nn.Module,
    +                 global_config: dict,
    +                 verbose: bool = True):
    +        super().__init__(op_layer, global_config)
    +        assert global_config is not None, 'global_config is None'
    +        self.num_branches = global_config['num_branches']
    +        assert self.num_branches in [2, 3]
    +        self.verbose = verbose
    +        init_dilation = op_layer.dilation
    +        self.dilation_rates = expand_rates(init_dilation, global_config)
    +        if self.op_layer.kernel_size[
    +                0] == 1 or self.op_layer.kernel_size[0] % 2 == 0:
    +            self.dilation_rates = [(op_layer.dilation[0], r[1])
    +                                   for r in self.dilation_rates]
    +        if self.op_layer.kernel_size[
    +                1] == 1 or self.op_layer.kernel_size[1] % 2 == 0:
    +            self.dilation_rates = [(r[0], op_layer.dilation[1])
    +                                   for r in self.dilation_rates]
    +
    +        self.branch_weights = nn.Parameter(torch.Tensor(self.num_branches))
    +        if self.verbose:
    +            logger.info(f'Expand as {self.dilation_rates}')
    +        nn.init.constant_(self.branch_weights, global_config['init_alphas'])
    +
    +    def forward(self, input: Tensor) -> Tensor:
    +        norm_w = self.normlize(self.branch_weights[:len(self.dilation_rates)])
    +        if len(self.dilation_rates) == 1:
    +            outputs = [
    +                nn.functional.conv2d(
    +                    input,
    +                    weight=self.op_layer.weight,
    +                    bias=self.op_layer.bias,
    +                    stride=self.op_layer.stride,
    +                    padding=self.get_padding(self.dilation_rates[0]),
    +                    dilation=self.dilation_rates[0],
    +                    groups=self.op_layer.groups,
    +                )
    +            ]
    +        else:
    +            outputs = [
    +                nn.functional.conv2d(
    +                    input,
    +                    weight=self.op_layer.weight,
    +                    bias=self.op_layer.bias,
    +                    stride=self.op_layer.stride,
    +                    padding=self.get_padding(r),
    +                    dilation=r,
    +                    groups=self.op_layer.groups,
    +                ) * norm_w[i] for i, r in enumerate(self.dilation_rates)
    +            ]
    +        output = outputs[0]
    +        for i in range(1, len(self.dilation_rates)):
    +            output += outputs[i]
    +        return output
    +
    +    def estimate_rates(self):
    +        """Estimate new dilation rate based on trained branch_weights."""
    +        norm_w = self.normlize(self.branch_weights[:len(self.dilation_rates)])
    +        if self.verbose:
    +            logger.info('Estimate dilation {} with weight {}.'.format(
    +                self.dilation_rates,
    +                norm_w.detach().cpu().numpy().tolist()))
    +
    +        sum0, sum1, w_sum = 0, 0, 0
    +        for i in range(len(self.dilation_rates)):
    +            sum0 += norm_w[i].item() * self.dilation_rates[i][0]
    +            sum1 += norm_w[i].item() * self.dilation_rates[i][1]
    +            w_sum += norm_w[i].item()
    +        estimated = [
    +            np.clip(
    +                int(round(sum0 / w_sum)), self.global_config['mmin'],
    +                self.global_config['mmax']).item(),
    +            np.clip(
    +                int(round(sum1 / w_sum)), self.global_config['mmin'],
    +                self.global_config['mmax']).item()
    +        ]
    +        self.op_layer.dilation = tuple(estimated)
    +        self.op_layer.padding = self.get_padding(self.op_layer.dilation)
    +        self.dilation_rates = [tuple(estimated)]
    +        if self.verbose:
    +            logger.info(f'Estimate as {tuple(estimated)}')
    +
    +    def expand_rates(self):
    +        """Expand dilation rate."""
    +        dilation = self.op_layer.dilation
    +        dilation_rates = expand_rates(dilation, self.global_config)
    +        if self.op_layer.kernel_size[
    +                0] == 1 or self.op_layer.kernel_size[0] % 2 == 0:
    +            dilation_rates = [(dilation[0], r[1]) for r in dilation_rates]
    +        if self.op_layer.kernel_size[
    +                1] == 1 or self.op_layer.kernel_size[1] % 2 == 0:
    +            dilation_rates = [(r[0], dilation[1]) for r in dilation_rates]
    +
    +        self.dilation_rates = copy.deepcopy(dilation_rates)
    +        if self.verbose:
    +            logger.info(f'Expand as {self.dilation_rates}')
    +        nn.init.constant_(self.branch_weights,
    +                          self.global_config['init_alphas'])
    +
    +    def get_padding(self, dilation):
    +        padding = (get_single_padding(self.op_layer.kernel_size[0],
    +                                      self.op_layer.stride[0], dilation[0]),
    +                   get_single_padding(self.op_layer.kernel_size[1],
    +                                      self.op_layer.stride[1], dilation[1]))
    +        return padding
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/search.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/search.py
    new file mode 100644
    index 000000000..1de06f8bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/search.py
    @@ -0,0 +1,238 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +from typing import Dict, Optional
    +
    +import torch  # noqa
    +import torch.nn as nn
    +
    +import mmcv
    +from mmcv.cnn.rfsearch.utils import get_single_padding, write_to_json
    +from mmcv.runner import HOOKS, Hook
    +from mmcv.utils import get_logger
    +from .operator import BaseConvRFSearchOp, Conv2dRFSearchOp  # noqa
    +
    +logger = get_logger('mmcv')
    +
    +
    +@HOOKS.register_module()
    +class RFSearchHook(Hook):
    +    """Rcecptive field search via dilation rates.
    +
    +    Please refer to `RF-Next: Efficient Receptive Field
    +    Search for Convolutional Neural Networks
    +    `_ for more details.
    +
    +
    +    Args:
    +        mode (str, optional): It can be set to the following types:
    +            'search', 'fixed_single_branch', or 'fixed_multi_branch'.
    +            Defaults to 'search'.
    +        config (Dict, optional): config dict of search.
    +            By default this config contains "search",
    +            and config["search"] must include:
    +
    +            - "step": recording the current searching step.
    +            - "max_step": The maximum number of searching steps
    +              to update the structures.
    +            - "search_interval": The interval (epoch/iteration)
    +              between two updates.
    +            - "exp_rate": The controller of the sparsity of search space.
    +            - "init_alphas": The value for initializing weights of each branch.
    +            - "mmin": The minimum dilation rate.
    +            - "mmax": The maximum dilation rate.
    +            - "num_branches": The controller of the size of
    +              search space (the number of branches).
    +            - "skip_layer": The modules in skip_layer will be ignored
    +              during the receptive field search.
    +        rfstructure_file (str, optional): Path to load searched receptive
    +            fields of the model. Defaults to None.
    +        by_epoch (bool, optional): Determine to perform step by epoch or
    +            by iteration. If set to True, it will step by epoch. Otherwise, by
    +            iteration. Defaults to True.
    +        verbose (bool): Determines whether to print rf-next related logging
    +            messages. Defaults to True.
    +    """
    +
    +    def __init__(self,
    +                 mode: str = 'search',
    +                 config: Dict = {},
    +                 rfstructure_file: Optional[str] = None,
    +                 by_epoch: bool = True,
    +                 verbose: bool = True):
    +        assert mode in ['search', 'fixed_single_branch', 'fixed_multi_branch']
    +        assert config is not None
    +        self.config = config
    +        self.config['structure'] = {}
    +        self.verbose = verbose
    +        if rfstructure_file is not None:
    +            rfstructure = mmcv.load(rfstructure_file)['structure']
    +            self.config['structure'] = rfstructure
    +        self.mode = mode
    +        self.num_branches = self.config['search']['num_branches']
    +        self.by_epoch = by_epoch
    +
    +    def init_model(self, model: nn.Module):
    +        """init model with search ability.
    +
    +        Args:
    +            model (nn.Module): pytorch model
    +
    +        Raises:
    +            NotImplementedError: only support three modes:
    +                search/fixed_single_branch/fixed_multi_branch
    +        """
    +        if self.verbose:
    +            logger.info('RFSearch init begin.')
    +        if self.mode == 'search':
    +            if self.config['structure']:
    +                self.set_model(model, search_op='Conv2d')
    +            self.wrap_model(model, search_op='Conv2d')
    +        elif self.mode == 'fixed_single_branch':
    +            self.set_model(model, search_op='Conv2d')
    +        elif self.mode == 'fixed_multi_branch':
    +            self.set_model(model, search_op='Conv2d')
    +            self.wrap_model(model, search_op='Conv2d')
    +        else:
    +            raise NotImplementedError
    +        if self.verbose:
    +            logger.info('RFSearch init end.')
    +
    +    def after_train_epoch(self, runner):
    +        """Performs a dilation searching step after one training epoch."""
    +        if self.by_epoch and self.mode == 'search':
    +            self.step(runner.model, runner.work_dir)
    +
    +    def after_train_iter(self, runner):
    +        """Performs a dilation searching step after one training iteration."""
    +        if not self.by_epoch and self.mode == 'search':
    +            self.step(runner.model, runner.work_dir)
    +
    +    def step(self, model: nn.Module, work_dir: str):
    +        """Performs a dilation searching step.
    +
    +        Args:
    +            model (nn.Module): pytorch model
    +            work_dir (str): Directory to save the searching results.
    +        """
    +        self.config['search']['step'] += 1
    +        if (self.config['search']['step']
    +            ) % self.config['search']['search_interval'] == 0 and (self.config[
    +                'search']['step']) < self.config['search']['max_step']:
    +            self.estimate_and_expand(model)
    +            for name, module in model.named_modules():
    +                if isinstance(module, BaseConvRFSearchOp):
    +                    self.config['structure'][name] = module.op_layer.dilation
    +
    +            write_to_json(
    +                self.config,
    +                os.path.join(
    +                    work_dir,
    +                    'local_search_config_step%d.json' %
    +                    self.config['search']['step'],
    +                ),
    +            )
    +
    +    def estimate_and_expand(self, model: nn.Module):
    +        """estimate and search for RFConvOp.
    +
    +        Args:
    +            model (nn.Module): pytorch model
    +        """
    +        for module in model.modules():
    +            if isinstance(module, BaseConvRFSearchOp):
    +                module.estimate_rates()
    +                module.expand_rates()
    +
    +    def wrap_model(self,
    +                   model: nn.Module,
    +                   search_op: str = 'Conv2d',
    +                   prefix: str = ''):
    +        """wrap model to support searchable conv op.
    +
    +        Args:
    +            model (nn.Module): pytorch model
    +            search_op (str): The module that uses RF search.
    +                Defaults to 'Conv2d'.
    +            init_rates (int, optional): Set to other initial dilation rates.
    +                Defaults to None.
    +            prefix (str): Prefix for function recursion. Defaults to ''.
    +        """
    +        op = 'torch.nn.' + search_op
    +        for name, module in model.named_children():
    +            if prefix == '':
    +                fullname = 'module.' + name
    +            else:
    +                fullname = prefix + '.' + name
    +            if self.config['search']['skip_layer'] is not None:
    +                if any(layer in fullname
    +                       for layer in self.config['search']['skip_layer']):
    +                    continue
    +            if isinstance(module, eval(op)):
    +                if 1 < module.kernel_size[0] and \
    +                    0 != module.kernel_size[0] % 2 or \
    +                    1 < module.kernel_size[1] and \
    +                        0 != module.kernel_size[1] % 2:
    +                    moduleWrap = eval(search_op + 'RFSearchOp')(
    +                        module, self.config['search'], self.verbose)
    +                    moduleWrap = moduleWrap.to(module.weight.device)
    +                    if self.verbose:
    +                        logger.info('Wrap model %s to %s.' %
    +                                    (str(module), str(moduleWrap)))
    +                    setattr(model, name, moduleWrap)
    +            elif not isinstance(module, BaseConvRFSearchOp):
    +                self.wrap_model(module, search_op, fullname)
    +
    +    def set_model(self,
    +                  model: nn.Module,
    +                  search_op: str = 'Conv2d',
    +                  init_rates: Optional[int] = None,
    +                  prefix: str = ''):
    +        """set model based on config.
    +
    +        Args:
    +            model (nn.Module): pytorch model
    +            config (Dict): config file
    +            search_op (str): The module that uses RF search.
    +                Defaults to 'Conv2d'.
    +            init_rates (int, optional):  Set to other initial dilation rates.
    +                Defaults to None.
    +            prefix (str): Prefix for function recursion. Defaults to ''.
    +        """
    +        op = 'torch.nn.' + search_op
    +        for name, module in model.named_children():
    +            if prefix == '':
    +                fullname = 'module.' + name
    +            else:
    +                fullname = prefix + '.' + name
    +            if self.config['search']['skip_layer'] is not None:
    +                if any(layer in fullname
    +                       for layer in self.config['search']['skip_layer']):
    +                    continue
    +            if isinstance(module, eval(op)):
    +                if 1 < module.kernel_size[0] and \
    +                    0 != module.kernel_size[0] % 2 or \
    +                    1 < module.kernel_size[1] and \
    +                        0 != module.kernel_size[1] % 2:
    +                    if isinstance(self.config['structure'][fullname], int):
    +                        self.config['structure'][fullname] = [
    +                            self.config['structure'][fullname],
    +                            self.config['structure'][fullname]
    +                        ]
    +                    module.dilation = (
    +                        self.config['structure'][fullname][0],
    +                        self.config['structure'][fullname][1],
    +                    )
    +                    module.padding = (
    +                        get_single_padding(
    +                            module.kernel_size[0], module.stride[0],
    +                            self.config['structure'][fullname][0]),
    +                        get_single_padding(
    +                            module.kernel_size[1], module.stride[1],
    +                            self.config['structure'][fullname][1]))
    +                    setattr(model, name, module)
    +                    if self.verbose:
    +                        logger.info(
    +                            'Set module %s dilation as: [%d %d]' %
    +                            (fullname, module.dilation[0], module.dilation[1]))
    +            elif not isinstance(module, BaseConvRFSearchOp):
    +                self.set_model(module, search_op, init_rates, fullname)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/utils.py
    new file mode 100644
    index 000000000..4f71646b6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/rfsearch/utils.py
    @@ -0,0 +1,69 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +
    +import mmcv
    +
    +
    +def write_to_json(config: dict, filename: str):
    +    """save config to json file.
    +
    +    Args:
    +        config (dict): Config to be saved.
    +        filename (str): Path to save config.
    +    """
    +
    +    with open(filename, 'w', encoding='utf-8') as f:
    +        mmcv.dump(config, f, file_format='json')
    +
    +
    +def expand_rates(dilation: tuple, config: dict) -> list:
    +    """expand dilation rate according to config.
    +
    +    Args:
    +        dilation (int): _description_
    +        config (dict): config dict
    +
    +    Returns:
    +        list: list of expanded dilation rates
    +    """
    +    exp_rate = config['exp_rate']
    +
    +    large_rates = []
    +    small_rates = []
    +    for _ in range(config['num_branches'] // 2):
    +        large_rates.append(
    +            tuple([
    +                np.clip(
    +                    int(round((1 + exp_rate) * dilation[0])), config['mmin'],
    +                    config['mmax']).item(),
    +                np.clip(
    +                    int(round((1 + exp_rate) * dilation[1])), config['mmin'],
    +                    config['mmax']).item()
    +            ]))
    +        small_rates.append(
    +            tuple([
    +                np.clip(
    +                    int(round((1 - exp_rate) * dilation[0])), config['mmin'],
    +                    config['mmax']).item(),
    +                np.clip(
    +                    int(round((1 - exp_rate) * dilation[1])), config['mmin'],
    +                    config['mmax']).item()
    +            ]))
    +
    +    small_rates.reverse()
    +
    +    if config['num_branches'] % 2 == 0:
    +        rate_list = small_rates + large_rates
    +    else:
    +        rate_list = small_rates + [dilation] + large_rates
    +
    +    unique_rate_list = list(set(rate_list))
    +    unique_rate_list.sort(key=rate_list.index)
    +    return unique_rate_list
    +
    +
    +def get_single_padding(kernel_size: int,
    +                       stride: int = 1,
    +                       dilation: int = 1) -> int:
    +    padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
    +    return padding
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/__init__.py
    new file mode 100644
    index 000000000..a263e31c1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/__init__.py
    @@ -0,0 +1,19 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .flops_counter import get_model_complexity_info
    +from .fuse_conv_bn import fuse_conv_bn
    +from .sync_bn import revert_sync_batchnorm
    +from .weight_init import (INITIALIZERS, Caffe2XavierInit, ConstantInit,
    +                          KaimingInit, NormalInit, PretrainedInit,
    +                          TruncNormalInit, UniformInit, XavierInit,
    +                          bias_init_with_prob, caffe2_xavier_init,
    +                          constant_init, initialize, kaiming_init, normal_init,
    +                          trunc_normal_init, uniform_init, xavier_init)
    +
    +__all__ = [
    +    'get_model_complexity_info', 'bias_init_with_prob', 'caffe2_xavier_init',
    +    'constant_init', 'kaiming_init', 'normal_init', 'trunc_normal_init',
    +    'uniform_init', 'xavier_init', 'fuse_conv_bn', 'initialize',
    +    'INITIALIZERS', 'ConstantInit', 'XavierInit', 'NormalInit',
    +    'TruncNormalInit', 'UniformInit', 'KaimingInit', 'PretrainedInit',
    +    'Caffe2XavierInit', 'revert_sync_batchnorm'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/flops_counter.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/flops_counter.py
    new file mode 100644
    index 000000000..00db2d85e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/flops_counter.py
    @@ -0,0 +1,602 @@
    +# Modified from flops-counter.pytorch by Vladislav Sovrasov
    +# original repo: https://github.com/sovrasov/flops-counter.pytorch
    +
    +# MIT License
    +
    +# Copyright (c) 2018 Vladislav Sovrasov
    +
    +# Permission is hereby granted, free of charge, to any person obtaining a copy
    +# of this software and associated documentation files (the "Software"), to deal
    +# in the Software without restriction, including without limitation the rights
    +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    +# copies of the Software, and to permit persons to whom the Software is
    +# furnished to do so, subject to the following conditions:
    +
    +# The above copyright notice and this permission notice shall be included in
    +# all copies or substantial portions of the Software.
    +
    +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    +# SOFTWARE.
    +
    +import sys
    +import warnings
    +from functools import partial
    +from typing import Any, Callable, Dict, Optional, TextIO, Tuple
    +
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +
    +import mmcv
    +
    +
    +def get_model_complexity_info(model: nn.Module,
    +                              input_shape: tuple,
    +                              print_per_layer_stat: bool = True,
    +                              as_strings: bool = True,
    +                              input_constructor: Optional[Callable] = None,
    +                              flush: bool = False,
    +                              ost: TextIO = sys.stdout) -> tuple:
    +    """Get complexity information of a model.
    +
    +    This method can calculate FLOPs and parameter counts of a model with
    +    corresponding input shape. It can also print complexity information for
    +    each layer in a model.
    +
    +    Supported layers are listed as below:
    +        - Convolutions: ``nn.Conv1d``, ``nn.Conv2d``, ``nn.Conv3d``.
    +        - Activations: ``nn.ReLU``, ``nn.PReLU``, ``nn.ELU``,
    +          ``nn.LeakyReLU``, ``nn.ReLU6``.
    +        - Poolings: ``nn.MaxPool1d``, ``nn.MaxPool2d``, ``nn.MaxPool3d``,
    +          ``nn.AvgPool1d``, ``nn.AvgPool2d``, ``nn.AvgPool3d``,
    +          ``nn.AdaptiveMaxPool1d``, ``nn.AdaptiveMaxPool2d``,
    +          ``nn.AdaptiveMaxPool3d``, ``nn.AdaptiveAvgPool1d``,
    +          ``nn.AdaptiveAvgPool2d``, ``nn.AdaptiveAvgPool3d``.
    +        - BatchNorms: ``nn.BatchNorm1d``, ``nn.BatchNorm2d``,
    +          ``nn.BatchNorm3d``, ``nn.GroupNorm``, ``nn.InstanceNorm1d``,
    +          ``InstanceNorm2d``, ``InstanceNorm3d``, ``nn.LayerNorm``.
    +        - Linear: ``nn.Linear``.
    +        - Deconvolution: ``nn.ConvTranspose2d``.
    +        - Upsample: ``nn.Upsample``.
    +
    +    Args:
    +        model (nn.Module): The model for complexity calculation.
    +        input_shape (tuple): Input shape used for calculation.
    +        print_per_layer_stat (bool): Whether to print complexity information
    +            for each layer in a model. Default: True.
    +        as_strings (bool): Output FLOPs and params counts in a string form.
    +            Default: True.
    +        input_constructor (None | callable): If specified, it takes a callable
    +            method that generates input. otherwise, it will generate a random
    +            tensor with input shape to calculate FLOPs. Default: None.
    +        flush (bool): same as that in :func:`print`. Default: False.
    +        ost (stream): same as ``file`` param in :func:`print`.
    +            Default: sys.stdout.
    +
    +    Returns:
    +        tuple[float | str]: If ``as_strings`` is set to True, it will return
    +        FLOPs and parameter counts in a string format. otherwise, it will
    +        return those in a float number format.
    +    """
    +    assert type(input_shape) is tuple
    +    assert len(input_shape) >= 1
    +    assert isinstance(model, nn.Module)
    +    flops_model = add_flops_counting_methods(model)
    +    flops_model.eval()
    +    flops_model.start_flops_count()
    +    if input_constructor:
    +        input = input_constructor(input_shape)
    +        _ = flops_model(**input)
    +    else:
    +        try:
    +            batch = torch.ones(()).new_empty(
    +                (1, *input_shape),
    +                dtype=next(flops_model.parameters()).dtype,
    +                device=next(flops_model.parameters()).device)
    +        except StopIteration:
    +            # Avoid StopIteration for models which have no parameters,
    +            # like `nn.Relu()`, `nn.AvgPool2d`, etc.
    +            batch = torch.ones(()).new_empty((1, *input_shape))
    +
    +        _ = flops_model(batch)
    +
    +    flops_count, params_count = flops_model.compute_average_flops_cost()
    +    if print_per_layer_stat:
    +        print_model_with_flops(
    +            flops_model, flops_count, params_count, ost=ost, flush=flush)
    +    flops_model.stop_flops_count()
    +
    +    if as_strings:
    +        return flops_to_string(flops_count), params_to_string(params_count)
    +
    +    return flops_count, params_count
    +
    +
    +def flops_to_string(flops: float,
    +                    units: Optional[str] = 'GFLOPs',
    +                    precision: int = 2) -> str:
    +    """Convert FLOPs number into a string.
    +
    +    Note that Here we take a multiply-add counts as one FLOP.
    +
    +    Args:
    +        flops (float): FLOPs number to be converted.
    +        units (str | None): Converted FLOPs units. Options are None, 'GFLOPs',
    +            'MFLOPs', 'KFLOPs', 'FLOPs'. If set to None, it will automatically
    +            choose the most suitable unit for FLOPs. Default: 'GFLOPs'.
    +        precision (int): Digit number after the decimal point. Default: 2.
    +
    +    Returns:
    +        str: The converted FLOPs number with units.
    +
    +    Examples:
    +        >>> flops_to_string(1e9)
    +        '1.0 GFLOPs'
    +        >>> flops_to_string(2e5, 'MFLOPs')
    +        '0.2 MFLOPs'
    +        >>> flops_to_string(3e-9, None)
    +        '3e-09 FLOPs'
    +    """
    +    if units is None:
    +        if flops // 10**9 > 0:
    +            return str(round(flops / 10.**9, precision)) + ' GFLOPs'
    +        elif flops // 10**6 > 0:
    +            return str(round(flops / 10.**6, precision)) + ' MFLOPs'
    +        elif flops // 10**3 > 0:
    +            return str(round(flops / 10.**3, precision)) + ' KFLOPs'
    +        else:
    +            return str(flops) + ' FLOPs'
    +    else:
    +        if units == 'GFLOPs':
    +            return str(round(flops / 10.**9, precision)) + ' ' + units
    +        elif units == 'MFLOPs':
    +            return str(round(flops / 10.**6, precision)) + ' ' + units
    +        elif units == 'KFLOPs':
    +            return str(round(flops / 10.**3, precision)) + ' ' + units
    +        else:
    +            return str(flops) + ' FLOPs'
    +
    +
    +def params_to_string(num_params: float,
    +                     units: Optional[str] = None,
    +                     precision: int = 2) -> str:
    +    """Convert parameter number into a string.
    +
    +    Args:
    +        num_params (float): Parameter number to be converted.
    +        units (str | None): Converted FLOPs units. Options are None, 'M',
    +            'K' and ''. If set to None, it will automatically choose the most
    +            suitable unit for Parameter number. Default: None.
    +        precision (int): Digit number after the decimal point. Default: 2.
    +
    +    Returns:
    +        str: The converted parameter number with units.
    +
    +    Examples:
    +        >>> params_to_string(1e9)
    +        '1000.0 M'
    +        >>> params_to_string(2e5)
    +        '200.0 k'
    +        >>> params_to_string(3e-9)
    +        '3e-09'
    +    """
    +    if units is None:
    +        if num_params // 10**6 > 0:
    +            return str(round(num_params / 10**6, precision)) + ' M'
    +        elif num_params // 10**3:
    +            return str(round(num_params / 10**3, precision)) + ' k'
    +        else:
    +            return str(num_params)
    +    else:
    +        if units == 'M':
    +            return str(round(num_params / 10.**6, precision)) + ' ' + units
    +        elif units == 'K':
    +            return str(round(num_params / 10.**3, precision)) + ' ' + units
    +        else:
    +            return str(num_params)
    +
    +
    +def print_model_with_flops(model: nn.Module,
    +                           total_flops: float,
    +                           total_params: float,
    +                           units: Optional[str] = 'GFLOPs',
    +                           precision: int = 3,
    +                           ost: TextIO = sys.stdout,
    +                           flush: bool = False) -> None:
    +    """Print a model with FLOPs for each layer.
    +
    +    Args:
    +        model (nn.Module): The model to be printed.
    +        total_flops (float): Total FLOPs of the model.
    +        total_params (float): Total parameter counts of the model.
    +        units (str | None): Converted FLOPs units. Default: 'GFLOPs'.
    +        precision (int): Digit number after the decimal point. Default: 3.
    +        ost (stream): same as `file` param in :func:`print`.
    +            Default: sys.stdout.
    +        flush (bool): same as that in :func:`print`. Default: False.
    +
    +    Example:
    +        >>> class ExampleModel(nn.Module):
    +
    +        >>> def __init__(self):
    +        >>>     super().__init__()
    +        >>>     self.conv1 = nn.Conv2d(3, 8, 3)
    +        >>>     self.conv2 = nn.Conv2d(8, 256, 3)
    +        >>>     self.conv3 = nn.Conv2d(256, 8, 3)
    +        >>>     self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
    +        >>>     self.flatten = nn.Flatten()
    +        >>>     self.fc = nn.Linear(8, 1)
    +
    +        >>> def forward(self, x):
    +        >>>     x = self.conv1(x)
    +        >>>     x = self.conv2(x)
    +        >>>     x = self.conv3(x)
    +        >>>     x = self.avg_pool(x)
    +        >>>     x = self.flatten(x)
    +        >>>     x = self.fc(x)
    +        >>>     return x
    +
    +        >>> model = ExampleModel()
    +        >>> x = (3, 16, 16)
    +        to print the complexity information state for each layer, you can use
    +        >>> get_model_complexity_info(model, x)
    +        or directly use
    +        >>> print_model_with_flops(model, 4579784.0, 37361)
    +        ExampleModel(
    +          0.037 M, 100.000% Params, 0.005 GFLOPs, 100.000% FLOPs,
    +          (conv1): Conv2d(0.0 M, 0.600% Params, 0.0 GFLOPs, 0.959% FLOPs, 3, 8, kernel_size=(3, 3), stride=(1, 1))  # noqa: E501
    +          (conv2): Conv2d(0.019 M, 50.020% Params, 0.003 GFLOPs, 58.760% FLOPs, 8, 256, kernel_size=(3, 3), stride=(1, 1))
    +          (conv3): Conv2d(0.018 M, 49.356% Params, 0.002 GFLOPs, 40.264% FLOPs, 256, 8, kernel_size=(3, 3), stride=(1, 1))
    +          (avg_pool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.017% FLOPs, output_size=(1, 1))
    +          (flatten): Flatten(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.000% FLOPs, )
    +          (fc): Linear(0.0 M, 0.024% Params, 0.0 GFLOPs, 0.000% FLOPs, in_features=8, out_features=1, bias=True)
    +        )
    +    """
    +
    +    def accumulate_params(self):
    +        if is_supported_instance(self):
    +            return self.__params__
    +        else:
    +            sum = 0
    +            for m in self.children():
    +                sum += m.accumulate_params()
    +            return sum
    +
    +    def accumulate_flops(self):
    +        if is_supported_instance(self):
    +            return self.__flops__ / model.__batch_counter__
    +        else:
    +            sum = 0
    +            for m in self.children():
    +                sum += m.accumulate_flops()
    +            return sum
    +
    +    def flops_repr(self):
    +        accumulated_num_params = self.accumulate_params()
    +        accumulated_flops_cost = self.accumulate_flops()
    +        return ', '.join([
    +            params_to_string(
    +                accumulated_num_params, units='M', precision=precision),
    +            f'{accumulated_num_params / total_params:.3%} Params',
    +            flops_to_string(
    +                accumulated_flops_cost, units=units, precision=precision),
    +            f'{accumulated_flops_cost / total_flops:.3%} FLOPs',
    +            self.original_extra_repr()
    +        ])
    +
    +    def add_extra_repr(m):
    +        m.accumulate_flops = accumulate_flops.__get__(m)
    +        m.accumulate_params = accumulate_params.__get__(m)
    +        flops_extra_repr = flops_repr.__get__(m)
    +        if m.extra_repr != flops_extra_repr:
    +            m.original_extra_repr = m.extra_repr
    +            m.extra_repr = flops_extra_repr
    +            assert m.extra_repr != m.original_extra_repr
    +
    +    def del_extra_repr(m):
    +        if hasattr(m, 'original_extra_repr'):
    +            m.extra_repr = m.original_extra_repr
    +            del m.original_extra_repr
    +        if hasattr(m, 'accumulate_flops'):
    +            del m.accumulate_flops
    +
    +    model.apply(add_extra_repr)
    +    print(model, file=ost, flush=flush)
    +    model.apply(del_extra_repr)
    +
    +
    +def get_model_parameters_number(model: nn.Module) -> float:
    +    """Calculate parameter number of a model.
    +
    +    Args:
    +        model (nn.module): The model for parameter number calculation.
    +
    +    Returns:
    +        float: Parameter number of the model.
    +    """
    +    num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    +    return num_params
    +
    +
    +def add_flops_counting_methods(net_main_module: nn.Module) -> nn.Module:
    +    # adding additional methods to the existing module object,
    +    # this is done this way so that each function has access to self object
    +    net_main_module.start_flops_count = start_flops_count.__get__(  # type: ignore # noqa E501
    +        net_main_module)
    +    net_main_module.stop_flops_count = stop_flops_count.__get__(  # type: ignore # noqa E501
    +        net_main_module)
    +    net_main_module.reset_flops_count = reset_flops_count.__get__(  # type: ignore # noqa E501
    +        net_main_module)
    +    net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(  # type: ignore # noqa E501
    +        net_main_module)
    +
    +    net_main_module.reset_flops_count()
    +
    +    return net_main_module
    +
    +
    +def compute_average_flops_cost(self) -> Tuple[float, float]:
    +    """Compute average FLOPs cost.
    +
    +    A method to compute average FLOPs cost, which will be available after
    +    `add_flops_counting_methods()` is called on a desired net object.
    +
    +    Returns:
    +        float: Current mean flops consumption per image.
    +    """
    +    batches_count = self.__batch_counter__
    +    flops_sum = 0
    +    for module in self.modules():
    +        if is_supported_instance(module):
    +            flops_sum += module.__flops__
    +    params_sum = get_model_parameters_number(self)
    +    return flops_sum / batches_count, params_sum
    +
    +
    +def start_flops_count(self) -> None:
    +    """Activate the computation of mean flops consumption per image.
    +
    +    A method to activate the computation of mean flops consumption per image.
    +    which will be available after ``add_flops_counting_methods()`` is called on
    +    a desired net object. It should be called before running the network.
    +    """
    +    add_batch_counter_hook_function(self)
    +
    +    def add_flops_counter_hook_function(module: nn.Module) -> None:
    +        if is_supported_instance(module):
    +            if hasattr(module, '__flops_handle__'):
    +                return
    +
    +            else:
    +                handle = module.register_forward_hook(
    +                    get_modules_mapping()[type(module)])
    +
    +            module.__flops_handle__ = handle
    +
    +    self.apply(partial(add_flops_counter_hook_function))
    +
    +
    +def stop_flops_count(self) -> None:
    +    """Stop computing the mean flops consumption per image.
    +
    +    A method to stop computing the mean flops consumption per image, which will
    +    be available after ``add_flops_counting_methods()`` is called on a desired
    +    net object. It can be called to pause the computation whenever.
    +    """
    +    remove_batch_counter_hook_function(self)
    +    self.apply(remove_flops_counter_hook_function)
    +
    +
    +def reset_flops_count(self) -> None:
    +    """Reset statistics computed so far.
    +
    +    A method to Reset computed statistics, which will be available after
    +    `add_flops_counting_methods()` is called on a desired net object.
    +    """
    +    add_batch_counter_variables_or_reset(self)
    +    self.apply(add_flops_counter_variable_or_reset)
    +
    +
    +# ---- Internal functions
    +def empty_flops_counter_hook(module: nn.Module, input: tuple,
    +                             output: Any) -> None:
    +    module.__flops__ += 0
    +
    +
    +def upsample_flops_counter_hook(module: nn.Module, input: tuple,
    +                                output: torch.Tensor) -> None:
    +    output_size = output[0]
    +    batch_size = output_size.shape[0]
    +    output_elements_count = batch_size
    +    for val in output_size.shape[1:]:
    +        output_elements_count *= val
    +    module.__flops__ += int(output_elements_count)
    +
    +
    +def relu_flops_counter_hook(module: nn.Module, input: tuple,
    +                            output: torch.Tensor) -> None:
    +    active_elements_count = output.numel()
    +    module.__flops__ += int(active_elements_count)
    +
    +
    +def linear_flops_counter_hook(module: nn.Module, input: tuple,
    +                              output: torch.Tensor) -> None:
    +    output_last_dim = output.shape[
    +        -1]  # pytorch checks dimensions, so here we don't care much
    +    module.__flops__ += int(np.prod(input[0].shape) * output_last_dim)
    +
    +
    +def pool_flops_counter_hook(module: nn.Module, input: tuple,
    +                            output: torch.Tensor) -> None:
    +    module.__flops__ += int(np.prod(input[0].shape))
    +
    +
    +def norm_flops_counter_hook(module: nn.Module, input: tuple,
    +                            output: torch.Tensor) -> None:
    +    batch_flops = np.prod(input[0].shape)
    +    if (getattr(module, 'affine', False)
    +            or getattr(module, 'elementwise_affine', False)):
    +        batch_flops *= 2
    +    module.__flops__ += int(batch_flops)
    +
    +
    +def deconv_flops_counter_hook(conv_module: nn.Module, input: tuple,
    +                              output: torch.Tensor) -> None:
    +    # Can have multiple inputs, getting the first one
    +    batch_size = input[0].shape[0]
    +    input_height, input_width = input[0].shape[2:]
    +
    +    kernel_height, kernel_width = conv_module.kernel_size
    +    in_channels = conv_module.in_channels
    +    out_channels = conv_module.out_channels
    +    groups = conv_module.groups
    +
    +    filters_per_channel = out_channels // groups
    +    conv_per_position_flops = (
    +        kernel_height * kernel_width * in_channels * filters_per_channel)
    +
    +    active_elements_count = batch_size * input_height * input_width
    +    overall_conv_flops = conv_per_position_flops * active_elements_count
    +    bias_flops = 0
    +    if conv_module.bias is not None:
    +        output_height, output_width = output.shape[2:]
    +        bias_flops = out_channels * batch_size * output_height * output_width
    +    overall_flops = overall_conv_flops + bias_flops
    +
    +    conv_module.__flops__ += int(overall_flops)
    +
    +
    +def conv_flops_counter_hook(conv_module: nn.Module, input: tuple,
    +                            output: torch.Tensor) -> None:
    +    # Can have multiple inputs, getting the first one
    +    batch_size = input[0].shape[0]
    +    output_dims = list(output.shape[2:])
    +
    +    kernel_dims = list(conv_module.kernel_size)
    +    in_channels = conv_module.in_channels
    +    out_channels = conv_module.out_channels
    +    groups = conv_module.groups
    +
    +    filters_per_channel = out_channels // groups
    +    conv_per_position_flops = int(
    +        np.prod(kernel_dims)) * in_channels * filters_per_channel
    +
    +    active_elements_count = batch_size * int(np.prod(output_dims))
    +
    +    overall_conv_flops = conv_per_position_flops * active_elements_count
    +
    +    bias_flops = 0
    +
    +    if conv_module.bias is not None:
    +
    +        bias_flops = out_channels * active_elements_count
    +
    +    overall_flops = overall_conv_flops + bias_flops
    +
    +    conv_module.__flops__ += int(overall_flops)
    +
    +
    +def batch_counter_hook(module: nn.Module, input: tuple, output: Any) -> None:
    +    batch_size = 1
    +    if len(input) > 0:
    +        # Can have multiple inputs, getting the first one
    +        batch_size = len(input[0])
    +    else:
    +        warnings.warn('No positional inputs found for a module, '
    +                      'assuming batch size is 1.')
    +    module.__batch_counter__ += batch_size
    +
    +
    +def add_batch_counter_variables_or_reset(module: nn.Module) -> None:
    +    module.__batch_counter__ = 0
    +
    +
    +def add_batch_counter_hook_function(module: nn.Module) -> None:
    +    if hasattr(module, '__batch_counter_handle__'):
    +        return
    +
    +    handle = module.register_forward_hook(batch_counter_hook)
    +    module.__batch_counter_handle__ = handle
    +
    +
    +def remove_batch_counter_hook_function(module: nn.Module) -> None:
    +    if hasattr(module, '__batch_counter_handle__'):
    +        module.__batch_counter_handle__.remove()
    +        del module.__batch_counter_handle__
    +
    +
    +def add_flops_counter_variable_or_reset(module: nn.Module) -> None:
    +    if is_supported_instance(module):
    +        if hasattr(module, '__flops__') or hasattr(module, '__params__'):
    +            warnings.warn('variables __flops__ or __params__ are already '
    +                          'defined for the module' + type(module).__name__ +
    +                          ' ptflops can affect your code!')
    +        module.__flops__ = 0
    +        module.__params__ = get_model_parameters_number(module)
    +
    +
    +def is_supported_instance(module: nn.Module) -> bool:
    +    if type(module) in get_modules_mapping():
    +        return True
    +    return False
    +
    +
    +def remove_flops_counter_hook_function(module: nn.Module) -> None:
    +    if is_supported_instance(module):
    +        if hasattr(module, '__flops_handle__'):
    +            module.__flops_handle__.remove()
    +            del module.__flops_handle__
    +
    +
    +def get_modules_mapping() -> Dict:
    +    return {
    +        # convolutions
    +        nn.Conv1d: conv_flops_counter_hook,
    +        nn.Conv2d: conv_flops_counter_hook,
    +        mmcv.cnn.bricks.Conv2d: conv_flops_counter_hook,
    +        nn.Conv3d: conv_flops_counter_hook,
    +        mmcv.cnn.bricks.Conv3d: conv_flops_counter_hook,
    +        # activations
    +        nn.ReLU: relu_flops_counter_hook,
    +        nn.PReLU: relu_flops_counter_hook,
    +        nn.ELU: relu_flops_counter_hook,
    +        nn.LeakyReLU: relu_flops_counter_hook,
    +        nn.ReLU6: relu_flops_counter_hook,
    +        # poolings
    +        nn.MaxPool1d: pool_flops_counter_hook,
    +        nn.AvgPool1d: pool_flops_counter_hook,
    +        nn.AvgPool2d: pool_flops_counter_hook,
    +        nn.MaxPool2d: pool_flops_counter_hook,
    +        mmcv.cnn.bricks.MaxPool2d: pool_flops_counter_hook,
    +        nn.MaxPool3d: pool_flops_counter_hook,
    +        mmcv.cnn.bricks.MaxPool3d: pool_flops_counter_hook,
    +        nn.AvgPool3d: pool_flops_counter_hook,
    +        nn.AdaptiveMaxPool1d: pool_flops_counter_hook,
    +        nn.AdaptiveAvgPool1d: pool_flops_counter_hook,
    +        nn.AdaptiveMaxPool2d: pool_flops_counter_hook,
    +        nn.AdaptiveAvgPool2d: pool_flops_counter_hook,
    +        nn.AdaptiveMaxPool3d: pool_flops_counter_hook,
    +        nn.AdaptiveAvgPool3d: pool_flops_counter_hook,
    +        # normalizations
    +        nn.BatchNorm1d: norm_flops_counter_hook,
    +        nn.BatchNorm2d: norm_flops_counter_hook,
    +        nn.BatchNorm3d: norm_flops_counter_hook,
    +        nn.GroupNorm: norm_flops_counter_hook,
    +        nn.InstanceNorm1d: norm_flops_counter_hook,
    +        nn.InstanceNorm2d: norm_flops_counter_hook,
    +        nn.InstanceNorm3d: norm_flops_counter_hook,
    +        nn.LayerNorm: norm_flops_counter_hook,
    +        # FC
    +        nn.Linear: linear_flops_counter_hook,
    +        mmcv.cnn.bricks.Linear: linear_flops_counter_hook,
    +        # Upscale
    +        nn.Upsample: upsample_flops_counter_hook,
    +        # Deconvolution
    +        nn.ConvTranspose2d: deconv_flops_counter_hook,
    +        mmcv.cnn.bricks.ConvTranspose2d: deconv_flops_counter_hook,
    +    }
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/fuse_conv_bn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/fuse_conv_bn.py
    new file mode 100644
    index 000000000..6ccaab3bf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/fuse_conv_bn.py
    @@ -0,0 +1,59 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +
    +def _fuse_conv_bn(conv: nn.Module, bn: nn.Module) -> nn.Module:
    +    """Fuse conv and bn into one module.
    +
    +    Args:
    +        conv (nn.Module): Conv to be fused.
    +        bn (nn.Module): BN to be fused.
    +
    +    Returns:
    +        nn.Module: Fused module.
    +    """
    +    conv_w = conv.weight
    +    conv_b = conv.bias if conv.bias is not None else torch.zeros_like(
    +        bn.running_mean)
    +
    +    factor = bn.weight / torch.sqrt(bn.running_var + bn.eps)
    +    conv.weight = nn.Parameter(conv_w *
    +                               factor.reshape([conv.out_channels, 1, 1, 1]))
    +    conv.bias = nn.Parameter((conv_b - bn.running_mean) * factor + bn.bias)
    +    return conv
    +
    +
    +def fuse_conv_bn(module: nn.Module) -> nn.Module:
    +    """Recursively fuse conv and bn in a module.
    +
    +    During inference, the functionary of batch norm layers is turned off
    +    but only the mean and var alone channels are used, which exposes the
    +    chance to fuse it with the preceding conv layers to save computations and
    +    simplify network structures.
    +
    +    Args:
    +        module (nn.Module): Module to be fused.
    +
    +    Returns:
    +        nn.Module: Fused module.
    +    """
    +    last_conv = None
    +    last_conv_name = None
    +
    +    for name, child in module.named_children():
    +        if isinstance(child,
    +                      (nn.modules.batchnorm._BatchNorm, nn.SyncBatchNorm)):
    +            if last_conv is None:  # only fuse BN that is after Conv
    +                continue
    +            fused_conv = _fuse_conv_bn(last_conv, child)
    +            module._modules[last_conv_name] = fused_conv
    +            # To reduce changes, set BN as Identity instead of deleting it.
    +            module._modules[name] = nn.Identity()
    +            last_conv = None
    +        elif isinstance(child, nn.Conv2d):
    +            last_conv = child
    +            last_conv_name = name
    +        else:
    +            fuse_conv_bn(child)
    +    return module
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/sync_bn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/sync_bn.py
    new file mode 100644
    index 000000000..c534fc0e1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/sync_bn.py
    @@ -0,0 +1,61 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +import mmcv
    +
    +
    +class _BatchNormXd(nn.modules.batchnorm._BatchNorm):
    +    """A general BatchNorm layer without input dimension check.
    +
    +    Reproduced from @kapily's work:
    +    (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
    +    The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
    +    is `_check_input_dim` that is designed for tensor sanity checks.
    +    The check has been bypassed in this class for the convenience of converting
    +    SyncBatchNorm.
    +    """
    +
    +    def _check_input_dim(self, input: torch.Tensor):
    +        return
    +
    +
    +def revert_sync_batchnorm(module: nn.Module) -> nn.Module:
    +    """Helper function to convert all `SyncBatchNorm` (SyncBN) and
    +    `mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to
    +    `BatchNormXd` layers.
    +
    +    Adapted from @kapily's work:
    +    (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
    +
    +    Args:
    +        module (nn.Module): The module containing `SyncBatchNorm` layers.
    +
    +    Returns:
    +        module_output: The converted module with `BatchNormXd` layers.
    +    """
    +    module_output = module
    +    module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm]
    +    if hasattr(mmcv, 'ops'):
    +        module_checklist.append(mmcv.ops.SyncBatchNorm)
    +    if isinstance(module, tuple(module_checklist)):
    +        module_output = _BatchNormXd(module.num_features, module.eps,
    +                                     module.momentum, module.affine,
    +                                     module.track_running_stats)
    +        if module.affine:
    +            # no_grad() may not be needed here but
    +            # just to be consistent with `convert_sync_batchnorm()`
    +            with torch.no_grad():
    +                module_output.weight = module.weight
    +                module_output.bias = module.bias
    +        module_output.running_mean = module.running_mean
    +        module_output.running_var = module.running_var
    +        module_output.num_batches_tracked = module.num_batches_tracked
    +        module_output.training = module.training
    +        # qconfig exists in quantized models
    +        if hasattr(module, 'qconfig'):
    +            module_output.qconfig = module.qconfig
    +    for name, child in module.named_children():
    +        module_output.add_module(name, revert_sync_batchnorm(child))
    +    del module
    +    return module_output
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/weight_init.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/weight_init.py
    new file mode 100644
    index 000000000..484024113
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/utils/weight_init.py
    @@ -0,0 +1,708 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import math
    +import warnings
    +from typing import Dict, List, Optional, Union
    +
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +from torch import Tensor
    +
    +from mmcv.utils import Registry, build_from_cfg, get_logger, print_log
    +
    +INITIALIZERS = Registry('initializer')
    +
    +
    +def update_init_info(module: nn.Module, init_info: str) -> None:
    +    """Update the `_params_init_info` in the module if the value of parameters
    +    are changed.
    +
    +    Args:
    +        module (obj:`nn.Module`): The module of PyTorch with a user-defined
    +            attribute `_params_init_info` which records the initialization
    +            information.
    +        init_info (str): The string that describes the initialization.
    +    """
    +    assert hasattr(
    +        module,
    +        '_params_init_info'), f'Can not find `_params_init_info` in {module}'
    +    for name, param in module.named_parameters():
    +
    +        assert param in module._params_init_info, (
    +            f'Find a new :obj:`Parameter` '
    +            f'named `{name}` during executing the '
    +            f'`init_weights` of '
    +            f'`{module.__class__.__name__}`. '
    +            f'Please do not add or '
    +            f'replace parameters during executing '
    +            f'the `init_weights`. ')
    +
    +        # The parameter has been changed during executing the
    +        # `init_weights` of module
    +        mean_value = param.data.mean()
    +        if module._params_init_info[param]['tmp_mean_value'] != mean_value:
    +            module._params_init_info[param]['init_info'] = init_info
    +            module._params_init_info[param]['tmp_mean_value'] = mean_value
    +
    +
    +def constant_init(module: nn.Module, val: float, bias: float = 0) -> None:
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        nn.init.constant_(module.weight, val)
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)
    +
    +
    +def xavier_init(module: nn.Module,
    +                gain: float = 1,
    +                bias: float = 0,
    +                distribution: str = 'normal') -> None:
    +    assert distribution in ['uniform', 'normal']
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        if distribution == 'uniform':
    +            nn.init.xavier_uniform_(module.weight, gain=gain)
    +        else:
    +            nn.init.xavier_normal_(module.weight, gain=gain)
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)
    +
    +
    +def normal_init(module: nn.Module,
    +                mean: float = 0,
    +                std: float = 1,
    +                bias: float = 0) -> None:
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        nn.init.normal_(module.weight, mean, std)
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)
    +
    +
    +def trunc_normal_init(module: nn.Module,
    +                      mean: float = 0,
    +                      std: float = 1,
    +                      a: float = -2,
    +                      b: float = 2,
    +                      bias: float = 0) -> None:
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        trunc_normal_(module.weight, mean, std, a, b)  # type: ignore
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)  # type: ignore
    +
    +
    +def uniform_init(module: nn.Module,
    +                 a: float = 0,
    +                 b: float = 1,
    +                 bias: float = 0) -> None:
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        nn.init.uniform_(module.weight, a, b)
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)
    +
    +
    +def kaiming_init(module: nn.Module,
    +                 a: float = 0,
    +                 mode: str = 'fan_out',
    +                 nonlinearity: str = 'relu',
    +                 bias: float = 0,
    +                 distribution: str = 'normal') -> None:
    +    assert distribution in ['uniform', 'normal']
    +    if hasattr(module, 'weight') and module.weight is not None:
    +        if distribution == 'uniform':
    +            nn.init.kaiming_uniform_(
    +                module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
    +        else:
    +            nn.init.kaiming_normal_(
    +                module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        nn.init.constant_(module.bias, bias)
    +
    +
    +def caffe2_xavier_init(module: nn.Module, bias: float = 0) -> None:
    +    # `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
    +    # Acknowledgment to FAIR's internal code
    +    kaiming_init(
    +        module,
    +        a=1,
    +        mode='fan_in',
    +        nonlinearity='leaky_relu',
    +        bias=bias,
    +        distribution='uniform')
    +
    +
    +def bias_init_with_prob(prior_prob: float) -> float:
    +    """initialize conv/fc bias value according to a given probability value."""
    +    bias_init = float(-np.log((1 - prior_prob) / prior_prob))
    +    return bias_init
    +
    +
    +def _get_bases_name(m: nn.Module) -> List[str]:
    +    return [b.__name__ for b in m.__class__.__bases__]
    +
    +
    +class BaseInit:
    +
    +    def __init__(self,
    +                 *,
    +                 bias: float = 0,
    +                 bias_prob: Optional[float] = None,
    +                 layer: Union[str, List, None] = None):
    +        self.wholemodule = False
    +        if not isinstance(bias, (int, float)):
    +            raise TypeError(f'bias must be a number, but got a {type(bias)}')
    +
    +        if bias_prob is not None:
    +            if not isinstance(bias_prob, float):
    +                raise TypeError(f'bias_prob type must be float, \
    +                    but got {type(bias_prob)}')
    +
    +        if layer is not None:
    +            if not isinstance(layer, (str, list)):
    +                raise TypeError(f'layer must be a str or a list of str, \
    +                    but got a {type(layer)}')
    +        else:
    +            layer = []
    +
    +        if bias_prob is not None:
    +            self.bias = bias_init_with_prob(bias_prob)
    +        else:
    +            self.bias = bias
    +        self.layer = [layer] if isinstance(layer, str) else layer
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Constant')
    +class ConstantInit(BaseInit):
    +    """Initialize module parameters with constant values.
    +
    +    Args:
    +        val (int | float): the value to fill the weights in the module with
    +        bias (int | float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self, val: Union[int, float], **kwargs):
    +        super().__init__(**kwargs)
    +        self.val = val
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                constant_init(m, self.val, self.bias)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    constant_init(m, self.val, self.bias)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: val={self.val}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Xavier')
    +class XavierInit(BaseInit):
    +    r"""Initialize module parameters with values according to the method
    +    described in `Understanding the difficulty of training deep feedforward.
    +
    +    neural networks - Glorot, X. & Bengio, Y. (2010).
    +    `_
    +
    +    Args:
    +        gain (int | float): an optional scaling factor. Defaults to 1.
    +        bias (int | float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        distribution (str): distribution either be ``'normal'``
    +            or ``'uniform'``. Defaults to ``'normal'``.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self,
    +                 gain: float = 1,
    +                 distribution: str = 'normal',
    +                 **kwargs):
    +        super().__init__(**kwargs)
    +        self.gain = gain
    +        self.distribution = distribution
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                xavier_init(m, self.gain, self.bias, self.distribution)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    xavier_init(m, self.gain, self.bias, self.distribution)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: gain={self.gain}, ' \
    +               f'distribution={self.distribution}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Normal')
    +class NormalInit(BaseInit):
    +    r"""Initialize module parameters with the values drawn from the normal
    +    distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.
    +
    +    Args:
    +        mean (int | float):the mean of the normal distribution. Defaults to 0.
    +        std (int | float): the standard deviation of the normal distribution.
    +            Defaults to 1.
    +        bias (int | float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self, mean: float = 0, std: float = 1, **kwargs):
    +        super().__init__(**kwargs)
    +        self.mean = mean
    +        self.std = std
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                normal_init(m, self.mean, self.std, self.bias)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    normal_init(m, self.mean, self.std, self.bias)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: mean={self.mean},' \
    +               f' std={self.std}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='TruncNormal')
    +class TruncNormalInit(BaseInit):
    +    r"""Initialize module parameters with the values drawn from the normal
    +    distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values
    +    outside :math:`[a, b]`.
    +
    +    Args:
    +        mean (float): the mean of the normal distribution. Defaults to 0.
    +        std (float):  the standard deviation of the normal distribution.
    +            Defaults to 1.
    +        a (float): The minimum cutoff value.
    +        b ( float): The maximum cutoff value.
    +        bias (float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self,
    +                 mean: float = 0,
    +                 std: float = 1,
    +                 a: float = -2,
    +                 b: float = 2,
    +                 **kwargs) -> None:
    +        super().__init__(**kwargs)
    +        self.mean = mean
    +        self.std = std
    +        self.a = a
    +        self.b = b
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                trunc_normal_init(m, self.mean, self.std, self.a, self.b,
    +                                  self.bias)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    trunc_normal_init(m, self.mean, self.std, self.a, self.b,
    +                                      self.bias)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self):
    +        info = f'{self.__class__.__name__}: a={self.a}, b={self.b},' \
    +               f' mean={self.mean}, std={self.std}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Uniform')
    +class UniformInit(BaseInit):
    +    r"""Initialize module parameters with values drawn from the uniform
    +    distribution :math:`\mathcal{U}(a, b)`.
    +
    +    Args:
    +        a (int | float): the lower bound of the uniform distribution.
    +            Defaults to 0.
    +        b (int | float): the upper bound of the uniform distribution.
    +            Defaults to 1.
    +        bias (int | float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self, a: float = 0., b: float = 1., **kwargs):
    +        super().__init__(**kwargs)
    +        self.a = a
    +        self.b = b
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                uniform_init(m, self.a, self.b, self.bias)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    uniform_init(m, self.a, self.b, self.bias)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: a={self.a},' \
    +               f' b={self.b}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Kaiming')
    +class KaimingInit(BaseInit):
    +    r"""Initialize module parameters with the values according to the method
    +    described in `Delving deep into rectifiers: Surpassing human-level.
    +
    +    performance on ImageNet classification - He, K. et al. (2015).
    +    `_
    +
    +    Args:
    +        a (int | float): the negative slope of the rectifier used after this
    +            layer (only used with ``'leaky_relu'``). Defaults to 0.
    +        mode (str):  either ``'fan_in'`` or ``'fan_out'``. Choosing
    +            ``'fan_in'`` preserves the magnitude of the variance of the weights
    +            in the forward pass. Choosing ``'fan_out'`` preserves the
    +            magnitudes in the backwards pass. Defaults to ``'fan_out'``.
    +        nonlinearity (str): the non-linear function (`nn.functional` name),
    +            recommended to use only with ``'relu'`` or ``'leaky_relu'`` .
    +            Defaults to 'relu'.
    +        bias (int | float): the value to fill the bias. Defaults to 0.
    +        bias_prob (float, optional): the probability for bias initialization.
    +            Defaults to None.
    +        distribution (str): distribution either be ``'normal'`` or
    +            ``'uniform'``. Defaults to ``'normal'``.
    +        layer (str | list[str], optional): the layer will be initialized.
    +            Defaults to None.
    +    """
    +
    +    def __init__(self,
    +                 a: float = 0,
    +                 mode: str = 'fan_out',
    +                 nonlinearity: str = 'relu',
    +                 distribution: str = 'normal',
    +                 **kwargs):
    +        super().__init__(**kwargs)
    +        self.a = a
    +        self.mode = mode
    +        self.nonlinearity = nonlinearity
    +        self.distribution = distribution
    +
    +    def __call__(self, module: nn.Module) -> None:
    +
    +        def init(m):
    +            if self.wholemodule:
    +                kaiming_init(m, self.a, self.mode, self.nonlinearity,
    +                             self.bias, self.distribution)
    +            else:
    +                layername = m.__class__.__name__
    +                basesname = _get_bases_name(m)
    +                if len(set(self.layer) & set([layername] + basesname)):
    +                    kaiming_init(m, self.a, self.mode, self.nonlinearity,
    +                                 self.bias, self.distribution)
    +
    +        module.apply(init)
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: a={self.a}, mode={self.mode}, ' \
    +               f'nonlinearity={self.nonlinearity}, ' \
    +               f'distribution ={self.distribution}, bias={self.bias}'
    +        return info
    +
    +
    +@INITIALIZERS.register_module(name='Caffe2Xavier')
    +class Caffe2XavierInit(KaimingInit):
    +    # `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
    +    # Acknowledgment to FAIR's internal code
    +    def __init__(self, **kwargs):
    +        super().__init__(
    +            a=1,
    +            mode='fan_in',
    +            nonlinearity='leaky_relu',
    +            distribution='uniform',
    +            **kwargs)
    +
    +    def __call__(self, module: nn.Module) -> None:
    +        super().__call__(module)
    +
    +
    +@INITIALIZERS.register_module(name='Pretrained')
    +class PretrainedInit:
    +    """Initialize module by loading a pretrained model.
    +
    +    Args:
    +        checkpoint (str): the checkpoint file of the pretrained model should
    +            be load.
    +        prefix (str, optional): the prefix of a sub-module in the pretrained
    +            model. it is for loading a part of the pretrained model to
    +            initialize. For example, if we would like to only load the
    +            backbone of a detector model, we can set ``prefix='backbone.'``.
    +            Defaults to None.
    +        map_location (str): map tensors into proper locations.
    +    """
    +
    +    def __init__(self,
    +                 checkpoint: str,
    +                 prefix: Optional[str] = None,
    +                 map_location: Optional[str] = None):
    +        self.checkpoint = checkpoint
    +        self.prefix = prefix
    +        self.map_location = map_location
    +
    +    def __call__(self, module: nn.Module) -> None:
    +        from mmcv.runner import (_load_checkpoint_with_prefix, load_checkpoint,
    +                                 load_state_dict)
    +        logger = get_logger('mmcv')
    +        if self.prefix is None:
    +            print_log(f'load model from: {self.checkpoint}', logger=logger)
    +            load_checkpoint(
    +                module,
    +                self.checkpoint,
    +                map_location=self.map_location,
    +                strict=False,
    +                logger=logger)
    +        else:
    +            print_log(
    +                f'load {self.prefix} in model from: {self.checkpoint}',
    +                logger=logger)
    +            state_dict = _load_checkpoint_with_prefix(
    +                self.prefix, self.checkpoint, map_location=self.map_location)
    +            load_state_dict(module, state_dict, strict=False, logger=logger)
    +
    +        if hasattr(module, '_params_init_info'):
    +            update_init_info(module, init_info=self._get_init_info())
    +
    +    def _get_init_info(self) -> str:
    +        info = f'{self.__class__.__name__}: load from {self.checkpoint}'
    +        return info
    +
    +
    +def _initialize(module: nn.Module,
    +                cfg: Dict,
    +                wholemodule: bool = False) -> None:
    +    func = build_from_cfg(cfg, INITIALIZERS)
    +    # wholemodule flag is for override mode, there is no layer key in override
    +    # and initializer will give init values for the whole module with the name
    +    # in override.
    +    func.wholemodule = wholemodule
    +    func(module)
    +
    +
    +def _initialize_override(module: nn.Module, override: Union[Dict, List],
    +                         cfg: Dict) -> None:
    +    if not isinstance(override, (dict, list)):
    +        raise TypeError(f'override must be a dict or a list of dict, \
    +                but got {type(override)}')
    +
    +    override = [override] if isinstance(override, dict) else override
    +
    +    for override_ in override:
    +
    +        cp_override = copy.deepcopy(override_)
    +        name = cp_override.pop('name', None)
    +        if name is None:
    +            raise ValueError('`override` must contain the key "name",'
    +                             f'but got {cp_override}')
    +        # if override only has name key, it means use args in init_cfg
    +        if not cp_override:
    +            cp_override.update(cfg)
    +        # if override has name key and other args except type key, it will
    +        # raise error
    +        elif 'type' not in cp_override.keys():
    +            raise ValueError(
    +                f'`override` need "type" key, but got {cp_override}')
    +
    +        if hasattr(module, name):
    +            _initialize(getattr(module, name), cp_override, wholemodule=True)
    +        else:
    +            raise RuntimeError(f'module did not have attribute {name}, '
    +                               f'but init_cfg is {cp_override}.')
    +
    +
    +def initialize(module: nn.Module, init_cfg: Union[Dict, List[dict]]) -> None:
    +    r"""Initialize a module.
    +
    +    Args:
    +        module (``torch.nn.Module``): the module will be initialized.
    +        init_cfg (dict | list[dict]): initialization configuration dict to
    +            define initializer. OpenMMLab has implemented 6 initializers
    +            including ``Constant``, ``Xavier``, ``Normal``, ``Uniform``,
    +            ``Kaiming``, and ``Pretrained``.
    +
    +    Example:
    +        >>> module = nn.Linear(2, 3, bias=True)
    +        >>> init_cfg = dict(type='Constant', layer='Linear', val =1 , bias =2)
    +        >>> initialize(module, init_cfg)
    +
    +        >>> module = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2))
    +        >>> # define key ``'layer'`` for initializing layer with different
    +        >>> # configuration
    +        >>> init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
    +                dict(type='Constant', layer='Linear', val=2)]
    +        >>> initialize(module, init_cfg)
    +
    +        >>> # define key``'override'`` to initialize some specific part in
    +        >>> # module
    +        >>> class FooNet(nn.Module):
    +        >>>     def __init__(self):
    +        >>>         super().__init__()
    +        >>>         self.feat = nn.Conv2d(3, 16, 3)
    +        >>>         self.reg = nn.Conv2d(16, 10, 3)
    +        >>>         self.cls = nn.Conv2d(16, 5, 3)
    +        >>> model = FooNet()
    +        >>> init_cfg = dict(type='Constant', val=1, bias=2, layer='Conv2d',
    +        >>>     override=dict(type='Constant', name='reg', val=3, bias=4))
    +        >>> initialize(model, init_cfg)
    +
    +        >>> model = ResNet(depth=50)
    +        >>> # Initialize weights with the pretrained model.
    +        >>> init_cfg = dict(type='Pretrained',
    +                checkpoint='torchvision://resnet50')
    +        >>> initialize(model, init_cfg)
    +
    +        >>> # Initialize weights of a sub-module with the specific part of
    +        >>> # a pretrained model by using "prefix".
    +        >>> url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\
    +        >>>     'retinanet_r50_fpn_1x_coco/'\
    +        >>>     'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth'
    +        >>> init_cfg = dict(type='Pretrained',
    +                checkpoint=url, prefix='backbone.')
    +    """
    +    if not isinstance(init_cfg, (dict, list)):
    +        raise TypeError(f'init_cfg must be a dict or a list of dict, \
    +                but got {type(init_cfg)}')
    +
    +    if isinstance(init_cfg, dict):
    +        init_cfg = [init_cfg]
    +
    +    for cfg in init_cfg:
    +        # should deeply copy the original config because cfg may be used by
    +        # other modules, e.g., one init_cfg shared by multiple bottleneck
    +        # blocks, the expected cfg will be changed after pop and will change
    +        # the initialization behavior of other modules
    +        cp_cfg = copy.deepcopy(cfg)
    +        override = cp_cfg.pop('override', None)
    +        _initialize(module, cp_cfg)
    +
    +        if override is not None:
    +            cp_cfg.pop('layer', None)
    +            _initialize_override(module, override, cp_cfg)
    +        else:
    +            # All attributes in module have same initialization.
    +            pass
    +
    +
    +def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float,
    +                           b: float) -> Tensor:
    +    # Method based on
    +    # https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    +    # Modified from
    +    # https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
    +    def norm_cdf(x):
    +        # Computes standard normal cumulative distribution function
    +        return (1. + math.erf(x / math.sqrt(2.))) / 2.
    +
    +    if (mean < a - 2 * std) or (mean > b + 2 * std):
    +        warnings.warn(
    +            'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
    +            'The distribution of values may be incorrect.',
    +            stacklevel=2)
    +
    +    with torch.no_grad():
    +        # Values are generated by using a truncated uniform distribution and
    +        # then using the inverse CDF for the normal distribution.
    +        # Get upper and lower cdf values
    +        lower = norm_cdf((a - mean) / std)
    +        upper = norm_cdf((b - mean) / std)
    +
    +        # Uniformly fill tensor with values from [lower, upper], then translate
    +        # to [2lower-1, 2upper-1].
    +        tensor.uniform_(2 * lower - 1, 2 * upper - 1)
    +
    +        # Use inverse cdf transform for normal distribution to get truncated
    +        # standard normal
    +        tensor.erfinv_()
    +
    +        # Transform to proper mean, std
    +        tensor.mul_(std * math.sqrt(2.))
    +        tensor.add_(mean)
    +
    +        # Clamp to ensure it's in the proper range
    +        tensor.clamp_(min=a, max=b)
    +        return tensor
    +
    +
    +def trunc_normal_(tensor: Tensor,
    +                  mean: float = 0.,
    +                  std: float = 1.,
    +                  a: float = -2.,
    +                  b: float = 2.) -> Tensor:
    +    r"""Fills the input Tensor with values drawn from a truncated normal
    +    distribution. The values are effectively drawn from the normal distribution
    +    :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside
    +    :math:`[a, b]` redrawn until they are within the bounds. The method used
    +    for generating the random values works best when :math:`a \leq \text{mean}
    +    \leq b`.
    +
    +    Modified from
    +    https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
    +
    +    Args:
    +        tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`.
    +        mean (float): the mean of the normal distribution.
    +        std (float): the standard deviation of the normal distribution.
    +        a (float): the minimum cutoff value.
    +        b (float): the maximum cutoff value.
    +    """
    +    return _no_grad_trunc_normal_(tensor, mean, std, a, b)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/vgg.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/vgg.py
    new file mode 100644
    index 000000000..a1d9ba211
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/cnn/vgg.py
    @@ -0,0 +1,177 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +from typing import List, Optional, Sequence, Tuple, Union
    +
    +import torch.nn as nn
    +from torch import Tensor
    +
    +from .utils import constant_init, kaiming_init, normal_init
    +
    +
    +def conv3x3(in_planes: int, out_planes: int, dilation: int = 1) -> nn.Module:
    +    """3x3 convolution with padding."""
    +    return nn.Conv2d(
    +        in_planes,
    +        out_planes,
    +        kernel_size=3,
    +        padding=dilation,
    +        dilation=dilation)
    +
    +
    +def make_vgg_layer(inplanes: int,
    +                   planes: int,
    +                   num_blocks: int,
    +                   dilation: int = 1,
    +                   with_bn: bool = False,
    +                   ceil_mode: bool = False) -> List[nn.Module]:
    +    layers = []
    +    for _ in range(num_blocks):
    +        layers.append(conv3x3(inplanes, planes, dilation))
    +        if with_bn:
    +            layers.append(nn.BatchNorm2d(planes))
    +        layers.append(nn.ReLU(inplace=True))
    +        inplanes = planes
    +    layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode))
    +
    +    return layers
    +
    +
    +class VGG(nn.Module):
    +    """VGG backbone.
    +
    +    Args:
    +        depth (int): Depth of vgg, from {11, 13, 16, 19}.
    +        with_bn (bool): Use BatchNorm or not.
    +        num_classes (int): number of classes for classification.
    +        num_stages (int): VGG stages, normally 5.
    +        dilations (Sequence[int]): Dilation of each stage.
    +        out_indices (Sequence[int]): Output from which stages.
    +        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
    +            not freezing any parameters.
    +        bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
    +            running stats (mean and var).
    +        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
    +    """
    +
    +    arch_settings = {
    +        11: (1, 1, 2, 2, 2),
    +        13: (2, 2, 2, 2, 2),
    +        16: (2, 2, 3, 3, 3),
    +        19: (2, 2, 4, 4, 4)
    +    }
    +
    +    def __init__(self,
    +                 depth: int,
    +                 with_bn: bool = False,
    +                 num_classes: int = -1,
    +                 num_stages: int = 5,
    +                 dilations: Sequence[int] = (1, 1, 1, 1, 1),
    +                 out_indices: Sequence[int] = (0, 1, 2, 3, 4),
    +                 frozen_stages: int = -1,
    +                 bn_eval: bool = True,
    +                 bn_frozen: bool = False,
    +                 ceil_mode: bool = False,
    +                 with_last_pool: bool = True):
    +        super().__init__()
    +        if depth not in self.arch_settings:
    +            raise KeyError(f'invalid depth {depth} for vgg')
    +        assert num_stages >= 1 and num_stages <= 5
    +        stage_blocks = self.arch_settings[depth]
    +        self.stage_blocks = stage_blocks[:num_stages]
    +        assert len(dilations) == num_stages
    +        assert max(out_indices) <= num_stages
    +
    +        self.num_classes = num_classes
    +        self.out_indices = out_indices
    +        self.frozen_stages = frozen_stages
    +        self.bn_eval = bn_eval
    +        self.bn_frozen = bn_frozen
    +
    +        self.inplanes = 3
    +        start_idx = 0
    +        vgg_layers = []
    +        self.range_sub_modules = []
    +        for i, num_blocks in enumerate(self.stage_blocks):
    +            num_modules = num_blocks * (2 + with_bn) + 1
    +            end_idx = start_idx + num_modules
    +            dilation = dilations[i]
    +            planes = 64 * 2**i if i < 4 else 512
    +            vgg_layer = make_vgg_layer(
    +                self.inplanes,
    +                planes,
    +                num_blocks,
    +                dilation=dilation,
    +                with_bn=with_bn,
    +                ceil_mode=ceil_mode)
    +            vgg_layers.extend(vgg_layer)
    +            self.inplanes = planes
    +            self.range_sub_modules.append([start_idx, end_idx])
    +            start_idx = end_idx
    +        if not with_last_pool:
    +            vgg_layers.pop(-1)
    +            self.range_sub_modules[-1][1] -= 1
    +        self.module_name = 'features'
    +        self.add_module(self.module_name, nn.Sequential(*vgg_layers))
    +
    +        if self.num_classes > 0:
    +            self.classifier = nn.Sequential(
    +                nn.Linear(512 * 7 * 7, 4096),
    +                nn.ReLU(True),
    +                nn.Dropout(),
    +                nn.Linear(4096, 4096),
    +                nn.ReLU(True),
    +                nn.Dropout(),
    +                nn.Linear(4096, num_classes),
    +            )
    +
    +    def init_weights(self, pretrained: Optional[str] = None) -> None:
    +        if isinstance(pretrained, str):
    +            logger = logging.getLogger()
    +            from ..runner import load_checkpoint
    +            load_checkpoint(self, pretrained, strict=False, logger=logger)
    +        elif pretrained is None:
    +            for m in self.modules():
    +                if isinstance(m, nn.Conv2d):
    +                    kaiming_init(m)
    +                elif isinstance(m, nn.BatchNorm2d):
    +                    constant_init(m, 1)
    +                elif isinstance(m, nn.Linear):
    +                    normal_init(m, std=0.01)
    +        else:
    +            raise TypeError('pretrained must be a str or None')
    +
    +    def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, ...]]:
    +        outs = []
    +        vgg_layers = getattr(self, self.module_name)
    +        for i in range(len(self.stage_blocks)):
    +            for j in range(*self.range_sub_modules[i]):
    +                vgg_layer = vgg_layers[j]
    +                x = vgg_layer(x)
    +            if i in self.out_indices:
    +                outs.append(x)
    +        if self.num_classes > 0:
    +            x = x.view(x.size(0), -1)
    +            x = self.classifier(x)
    +            outs.append(x)
    +        if len(outs) == 1:
    +            return outs[0]
    +        else:
    +            return tuple(outs)
    +
    +    def train(self, mode: bool = True) -> None:
    +        super().train(mode)
    +        if self.bn_eval:
    +            for m in self.modules():
    +                if isinstance(m, nn.BatchNorm2d):
    +                    m.eval()
    +                    if self.bn_frozen:
    +                        for params in m.parameters():
    +                            params.requires_grad = False
    +        vgg_layers = getattr(self, self.module_name)
    +        if mode and self.frozen_stages >= 0:
    +            for i in range(self.frozen_stages):
    +                for j in range(*self.range_sub_modules[i]):
    +                    mod = vgg_layers[j]
    +                    mod.eval()
    +                    for param in mod.parameters():
    +                        param.requires_grad = False
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/__init__.py
    new file mode 100644
    index 000000000..996f0ed39
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/__init__.py
    @@ -0,0 +1,8 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from . import ipu, mlu, mps, npu
    +from .scatter_gather import scatter, scatter_kwargs
    +from .utils import get_device
    +
    +__all__ = [
    +    'npu', 'mlu', 'ipu', 'mps', 'get_device', 'scatter', 'scatter_kwargs'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/_functions.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/_functions.py
    new file mode 100644
    index 000000000..462a7e4dd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/_functions.py
    @@ -0,0 +1,30 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Union
    +
    +import torch
    +
    +from mmcv.utils import deprecated_api_warning
    +from .utils import get_device
    +
    +
    +def scatter(input: Union[List, torch.Tensor], devices: List) -> List:
    +    """scatter copies tensor to devices directly."""
    +    current_device = get_device()
    +    if isinstance(input, list):
    +        outputs = [scatter(_input, devices) for _input in input]
    +        return outputs
    +    elif isinstance(input, torch.Tensor):
    +        output = input.contiguous()
    +        return output.to(current_device) if devices != [-1] else output
    +    else:
    +        raise Exception(f'Unknown type {type(input)}.')
    +
    +
    +class Scatter:
    +
    +    @staticmethod
    +    @deprecated_api_warning({'target_mlus': 'target_devices'},
    +                            cls_name='Scatter')
    +    def forward(target_devices, input):
    +        outputs = scatter(input, target_devices)
    +        return tuple(outputs) if isinstance(outputs, list) else (outputs, )
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/__init__.py
    new file mode 100755
    index 000000000..d550865ad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/__init__.py
    @@ -0,0 +1,14 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from .dataloader import IPUDataLoader
    +    from .hook_wrapper import IPUFp16OptimizerHook
    +    from .model_wrapper import ipu_model_wrapper
    +    from .runner import IPUBaseRunner, IPUEpochBasedRunner, IPUIterBasedRunner
    +    from .utils import cfg2options
    +    __all__ = [
    +        'cfg2options', 'ipu_model_wrapper', 'IPUFp16OptimizerHook',
    +        'IPUDataLoader', 'IPUBaseRunner', 'IPUEpochBasedRunner',
    +        'IPUIterBasedRunner'
    +    ]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/dataloader.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/dataloader.py
    new file mode 100755
    index 000000000..1485df2f3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/dataloader.py
    @@ -0,0 +1,157 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from collections.abc import Mapping, Sequence
    +from functools import partial
    +
    +import poptorch
    +from torch.utils.data.dataloader import default_collate
    +
    +from mmcv.parallel import DataContainer
    +
    +
    +def collate(batch, samples_per_gpu=1):
    +    """Put each data field into a tensor/DataContainer with outer dimension
    +    batch size.
    +
    +    TODO support for
    +    :type:`~mmcv.parallel.DataContainer`. Currently, it will be ignored.
    +    There are 3 cases.
    +
    +    1. cpu_only = True, e.g., meta data.
    +    2. cpu_only = False, stack = True, e.g., images tensors.
    +    3. cpu_only = False, stack = False, e.g., gt bboxes.
    +    """
    +
    +    if not isinstance(batch, Sequence):
    +        raise TypeError(
    +            f'`batch` should be a sequence, but got {type(batch)}.')
    +
    +    if isinstance(batch[0], DataContainer):
    +        # TODO `DataContainer` will be supported in the future.
    +        raise TypeError('DataContainer is not supported in ipu data loader.')
    +    elif isinstance(batch[0], Sequence):
    +        transposed = zip(*batch)
    +        collated_batch = []
    +        for samples in transposed:
    +            if not isinstance(samples[0], DataContainer):
    +                # At present, we will skip the processing of datacontainer,
    +                # which will reduce the performance of IPU DataLoder
    +                collated_batch.append(collate(samples, samples_per_gpu))
    +        return collated_batch
    +    elif isinstance(batch[0], Mapping):
    +        collated_batch = {}
    +        for key in batch[0]:
    +            if not isinstance(batch[0][key], DataContainer):
    +                # At present, we will skip the processing of datacontainer,
    +                # which will reduce the performance of IPU DataLoder
    +                collated_batch[key] = collate([d[key] for d in batch])
    +        return collated_batch
    +    else:
    +        return default_collate(batch)
    +
    +
    +class IPUDataLoader(poptorch.DataLoader):
    +    """Thin wrapper of `torch.utils.data.DataLoader`.
    +
    +    Compared with the pytorch DataLoder, this DataLoder changes the way of
    +    calculation of batch size and adds the AsynchronousDataAccessor to
    +    load and release data faster in cpu mode.
    +
    +    If this data loader is used in a distributed execution environment, it will
    +    ensure that each process uses a different subset of the dataset, providing
    +    you first call ``options.randomSeed(N)`` with an integer N which is the
    +    same across all hosts.
    +
    +    Args:
    +        dataset (torch.utils.data.Dataset): The dataset to get the data from.
    +        options (poptorch.Options): Options that will be used to compile
    +            and run the model.
    +        batch_size (int, optional): This is the batch size in the conventional
    +            sense of being the size that runs through an operation in the model
    +            at any given time.
    +        shuffle (bool, optional): set to ``True`` to have the data reshuffled
    +            at every epoch (default: ``False``).
    +        num_workers (int, optional): how many subprocesses to use for data
    +            loading. ``0`` means that the data will be loaded in the main
    +            process. (default: ``0``)
    +        drop_last (bool, optional): If True and the number of elements in the
    +            dataset is not a multiple of the combined batch size then the
    +            incomplete batch at the end will be dropped.
    +        persistent_workers (bool, optional): Re-use workers between
    +            iterations if True.
    +        auto_distributed_partitioning (bool, optional): If True, partitions the
    +            dataset for distributed execution automatically. Otherwise, it is
    +            assumed that partitioning has been handled manually.
    +        mode (poptorch.DataLoaderMode, optional): If `DataLoaderMode.Async`,
    +            uses an :py:class:`~poptorch.AsynchronousDataAccessor` to access
    +            the dataset. If `DataLoaderMode.Sync`, accesses the dataset
    +            synchronously.
    +        async_options (Dict[str, Any], optional): Options to pass to
    +            :py:class:`~poptorch.AsynchronousDataAccessor`.
    +        rebatched_worker_size (int, optional): When using AsyncRebatched: batch
    +            size of the tensors loaded by the workers.
    +            Default to the combined batch size.
    +            If specified the ``rebatched_worker_size`` must be less than
    +            or equal to the combined batch size.
    +        kwargs (Dict[str, Any], optional): Other options to pass to PyTorch's
    +            ``DataLoader`` constructor.
    +    """
    +
    +    def __init__(self,
    +                 dataset,
    +                 options,
    +                 batch_size=1,
    +                 shuffle=False,
    +                 num_workers=0,
    +                 drop_last=True,
    +                 persistent_workers=True,
    +                 auto_distributed_partitioning=True,
    +                 mode='sync',
    +                 async_options=None,
    +                 rebatched_worker_size=None,
    +                 **kwargs):
    +        """Lazy init:
    +
    +        In many frameworks, the dataloader will be constructed before the
    +        initialization of the ipu options, so the lazy init method is used
    +        here, and the real initialization will not be done until the dataloader
    +        needs to be used and the options are input.
    +        """
    +        # lazy init: sometimes, we cannot get IPU options when build data
    +        #            loader
    +        self.kwargs = {
    +            'dataset': dataset,
    +            'batch_size': batch_size,
    +            'shuffle': shuffle,
    +            'num_workers': num_workers,
    +            'drop_last': drop_last,
    +            'persistent_workers': persistent_workers,
    +            'auto_distributed_partitioning': auto_distributed_partitioning,
    +            'mode': mode,
    +            'collate_fn': partial(collate, samples_per_gpu=batch_size),
    +            'async_options': async_options,
    +            'rebatched_worker_size': rebatched_worker_size,
    +            **kwargs
    +        }
    +        self.dataset = dataset
    +        self.initialized = False
    +        if options:
    +            self.init(options=options)
    +
    +    def init(self, options, **kwargs):
    +        if not self.initialized:
    +            kwargs = {**self.kwargs, **kwargs, 'options': options}
    +            if kwargs['mode'] == 'sync':
    +                kwargs['mode'] = poptorch.DataLoaderMode.Sync
    +            elif kwargs['mode'] == 'async':
    +                kwargs['mode'] = poptorch.DataLoaderMode.AsyncRebatched
    +                if kwargs['async_options'] is None:
    +                    kwargs['async_options'] = {
    +                        'load_indefinitely': True,
    +                        'buffer_size': 8
    +                    }
    +                if kwargs['rebatched_worker_size'] is None:
    +                    kwargs['rebatched_worker_size'] = 128
    +            super().__init__(**kwargs)
    +            self.initialized = True
    +
    +        return self
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hierarchical_data_manager.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hierarchical_data_manager.py
    new file mode 100755
    index 000000000..a6f3b3cd2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hierarchical_data_manager.py
    @@ -0,0 +1,243 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +
    +import numpy as np
    +import torch
    +
    +from mmcv.parallel import DataContainer
    +
    +# A customized None type for HierarchicalDataManager
    +HierarchicalDataNone = object()
    +
    +
    +class HierarchicalDataManager:
    +    """A class manage all the tensors in the hierarchical data.
    +
    +    At present, the input data structure accepted by IPU is limited,
    +    when the input data structure of mmcv varies.
    +    Here, an intermediate class is needed to get and update tensors
    +    from the original data.
    +
    +    HierarchicalDataManager will record a hierarchical input/output data in
    +    self._hierarchical_data. For example, we have an input data:
    +    {'img': tensorA, 'label': tensorB, 'img_metas': [tensorC, tensorD]}
    +    To enable IPU to use the input, HierarchicalDataManager will collect
    +    the torch tensors from self._hierarchical_data into a tuple like:
    +    (tensorA, tensorB, tensorC, tensorD).
    +    Meanwhile, the return of IPU is a tuple of tensors, HierarchicalDataManager
    +    also have a function named update_all_tensors to update tensors in
    +    self._hierarchical_data which is the output for upper calls.
    +
    +    Args:
    +        logger (:obj:`logging.Logger`): Logger used during running.
    +             Defaults to None.
    +    """
    +
    +    def __init__(self, logger=None):
    +        self.atomic_types = (int, str, float, np.ndarray, type(None))
    +        self.warning = warnings.warn if logger is None else logger.warning
    +        # enable or disable input data's shape and value check
    +        self.quick_mode = False
    +        self._hierarchical_data = None
    +
    +    def quick(self):
    +        self.quick_mode = True
    +
    +    def compare_atomic_type(self, a, b):
    +        """Compare data, supported datatypes are numpy array and python basic
    +        types."""
    +        if isinstance(a, np.ndarray):
    +            return np.all(a == b)
    +        else:
    +            return a == b
    +
    +    def record_hierarchical_data(self, data):
    +        """Record a hierarchical data."""
    +        if self._hierarchical_data is not None:
    +            if isinstance(data, torch.Tensor):
    +                assert isinstance(self._hierarchical_data, torch.Tensor), \
    +                    'original hierarchical data is not torch.tensor'
    +                self._hierarchical_data = data
    +            else:
    +                self.update_hierarchical_data(data)
    +        else:
    +            self._hierarchical_data = data
    +
    +    @property
    +    def hierarchical_data(self):
    +        return self._hierarchical_data
    +
    +    def update_hierarchical_data(self,
    +                                 dataA,
    +                                 dataB=HierarchicalDataNone,
    +                                 strict=True,
    +                                 address='data'):
    +        """Update dataB with dataA in-place.
    +
    +        Args:
    +            dataA (list or dict or tuple): New hierarchical data.
    +            dataB (list or dict or tuple): hierarchical data to update.
    +                if not specified, self.hierarchical_data will be updated then.
    +            strict (bool, optional): If true, an error will be reported
    +                when the following conditions occur:
    +                1. Non-torch.Tensor data changed.
    +                2. Torch.Tensor data shape changed.
    +            address (str): Record the address of current data to be updated.
    +                Default: 'data'.
    +        """
    +        if dataB is HierarchicalDataNone:
    +            dataB = self.hierarchical_data
    +
    +        # Update with a da ta with the same structure
    +        # but different values(tensors and basic python data types)
    +        if isinstance(dataA, (tuple, list)):
    +            for idx, node in enumerate(dataA):
    +                new_address = ''
    +                if not self.quick_mode:
    +                    new_address = address + f'[{str(idx)}]'
    +                    assert isinstance(node, type(dataB[idx])),\
    +                        f'data structure changed: {new_address}'
    +                if isinstance(node, torch.Tensor):
    +                    dataB[idx] = node
    +                else:
    +                    self.update_hierarchical_data(
    +                        node, dataB[idx], strict, address=new_address)
    +        elif isinstance(dataA, dict):
    +            for k, v in dataA.items():
    +                new_address = ''
    +                if not self.quick_mode:
    +                    new_address = address + f'[{str(k)}]'
    +                    assert isinstance(v, type(dataB[k])),\
    +                        f'data structure changed: {new_address}'
    +                if isinstance(v, torch.Tensor):
    +                    dataB[k] = v
    +                else:
    +                    self.update_hierarchical_data(
    +                        v, dataB[k], strict, address=new_address)
    +        elif isinstance(dataA, self.atomic_types):
    +            if not self.quick_mode:
    +                is_equal = self.compare_atomic_type(dataA, dataB)
    +                if not is_equal:
    +                    if strict:
    +                        raise ValueError(
    +                            'all data except torch.Tensor should be same, '
    +                            f'but data({address}) is changed.')
    +                    else:
    +                        self.warning(
    +                            f'find a non-torch.Tensor data({type(dataA)}) '
    +                            f'changed, and the address is {address}')
    +        elif isinstance(dataA, DataContainer):
    +            if not self.quick_mode:
    +                assert isinstance(dataB, DataContainer)
    +                new_address = address + '.data'
    +                self.update_hierarchical_data(
    +                    dataA.data, dataB.data, False, address=new_address)
    +        else:
    +            raise NotImplementedError(
    +                f'not supported datatype:{type(dataA)}, address is {address}')
    +
    +    def collect_all_tensors(self, hierarchical_data=None):
    +        """Collect torch.Tensor data from self.hierarchical_data to a list and
    +        return."""
    +        # get a list of tensor from self._hierarchical_data
    +        if hierarchical_data is None:
    +            hierarchical_data = self._hierarchical_data
    +        tensors = []
    +        if isinstance(hierarchical_data, torch.Tensor):
    +            tensors = [hierarchical_data]
    +        else:
    +            self._collect_tensors(hierarchical_data, tensors)
    +        return tensors
    +
    +    def _collect_tensors(self, data, tensors):
    +        if isinstance(data, (tuple, list)):
    +            for node in data:
    +                if isinstance(node, torch.Tensor):
    +                    tensors.append(node)
    +                else:
    +                    self._collect_tensors(node, tensors)
    +        elif isinstance(data, dict):
    +            for v in data.values():
    +                if isinstance(v, torch.Tensor):
    +                    tensors.append(v)
    +                else:
    +                    self._collect_tensors(v, tensors)
    +        elif isinstance(data, self.atomic_types):
    +            pass
    +        elif isinstance(data, DataContainer):
    +            self._collect_tensors(data.data, tensors)
    +        else:
    +            raise NotImplementedError(f'not supported datatype:{type(data)}')
    +
    +    def update_all_tensors(self, tensors):
    +        """Put tensors from tuple back to self.hierarchical_data."""
    +        if isinstance(self._hierarchical_data, torch.Tensor):
    +            print(tensors, len(tensors))
    +            assert len(tensors) == 1
    +            assert isinstance(tensors[0], torch.Tensor)
    +            self._hierarchical_data = tensors[0]
    +        else:
    +            # convert to list if tensors is tuple
    +            tensors = list(tensors)
    +            self._set_tensors(self._hierarchical_data, tensors)
    +        return self.hierarchical_data
    +
    +    def _set_tensors(self, data, tensors):
    +        if isinstance(data, tuple):
    +            data = list(data)
    +            for idx in range(len(data)):
    +                if isinstance(data[idx], torch.Tensor):
    +                    data[idx] = tensors.pop(0)
    +                else:
    +                    self._set_tensors(data[idx], tensors)
    +            data = tuple(data)
    +        elif isinstance(data, list):
    +            for idx in range(len(data)):
    +                if isinstance(data[idx], torch.Tensor):
    +                    data[idx] = tensors.pop(0)
    +                else:
    +                    self._set_tensors(data[idx], tensors)
    +        elif isinstance(data, dict):
    +            for k, v in data.items():
    +                if isinstance(v, torch.Tensor):
    +                    data[k] = tensors.pop(0)
    +                else:
    +                    self._set_tensors(v, tensors)
    +        elif isinstance(data, self.atomic_types):
    +            pass
    +        elif isinstance(data, DataContainer):
    +            self._set_tensors(data.data, tensors)
    +        else:
    +            raise NotImplementedError(f'not supported datatype:{type(data)}')
    +
    +    def clean_all_tensors(self):
    +        """Delete tensors from self.hierarchical_data."""
    +        self._clean_tensors(self._hierarchical_data)
    +
    +    def _clean_tensors(self, data):
    +        if isinstance(data, tuple):
    +            data = list(data)
    +            for idx in range(len(data)):
    +                if isinstance(data[idx], torch.Tensor):
    +                    data[idx] = None
    +                else:
    +                    self._clean_tensors(data[idx])
    +            data = tuple(data)
    +        elif isinstance(data, list):
    +            for idx in range(len(data)):
    +                if isinstance(data[idx], torch.Tensor):
    +                    data[idx] = None
    +                else:
    +                    self._clean_tensors(data[idx])
    +        elif isinstance(data, dict):
    +            for k, v in data.items():
    +                if isinstance(v, torch.Tensor):
    +                    data[k] = None
    +                else:
    +                    self._clean_tensors(v)
    +        elif isinstance(data, self.atomic_types):
    +            pass
    +        elif isinstance(data, DataContainer):
    +            self._clean_tensors(data.data)
    +        else:
    +            raise NotImplementedError(f'not supported datatype:{type(data)}')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hook_wrapper.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hook_wrapper.py
    new file mode 100755
    index 000000000..141afb86d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/hook_wrapper.py
    @@ -0,0 +1,105 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.runner import HOOKS, LrUpdaterHook, OptimizerHook
    +from mmcv.utils import TORCH_VERSION, digit_version
    +
    +
    +def wrap_lr_updater_hook(lr_hook_class):
    +    """A wrapper function to wrap any subclass of LrUpdaterHook.
    +
    +    IPU needs extra operations to upload optimizer settings. This wrapper will
    +    override function(_set_lr) of a subclass of LrUpdaterHook.
    +    """
    +    assert issubclass(lr_hook_class, LrUpdaterHook)
    +
    +    class ipu_lr_hook_class(lr_hook_class):
    +
    +        def _set_lr(self, runner, *args, **kwargs):
    +            super()._set_lr(runner, *args, **kwargs)
    +            # convert torch optimizer to poptorch optimizer
    +            runner.model.setOptimizer(runner.optimizer)
    +
    +    return ipu_lr_hook_class
    +
    +
    +def wrap_optimizer_hook(optimizer_hook_class):
    +    """A wrapper function to wrap OptimizerHook.
    +
    +    This is an non-intrusive implementation of wrapping optimizer hook (or you
    +    need to change every config file to use IPU optimizer hook) IPU's clip-norm
    +    implementation is different from pytorch, so there should be an error
    +    raised when using clip-norm.
    +    """
    +
    +    class ipu_optimizer_hook_class(OptimizerHook):
    +
    +        def __init__(self, **kwargs):
    +            super().__init__(**kwargs)
    +            if self.grad_clip is not None:
    +                raise NotImplementedError('IPU does not support gradient clip')
    +
    +    return ipu_optimizer_hook_class
    +
    +
    +if (TORCH_VERSION != 'parrots'
    +        and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +
    +    @HOOKS.register_module()
    +    class IPUFp16OptimizerHook(OptimizerHook):
    +        """FP16 optimizer hook (using PyTorch's implementation).
    +
    +        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
    +        to take care of the optimization procedure.
    +
    +        Args:
    +            loss_scale (float | str | dict): Scale factor configuration.
    +                If loss_scale is a float, static loss scaling will be used with
    +                the specified scale. If loss_scale is a string, it must be
    +                'dynamic', then dynamic loss scaling will be used.
    +                It can also be a dict containing arguments of GradScalar.
    +                Defaults to 512. For Pytorch >= 1.6, mmcv uses official
    +                implementation of GradScaler. If you use a dict version of
    +                loss_scale to create GradScaler, please refer to:
    +                https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
    +                for the parameters.
    +
    +        Examples:
    +            >>> loss_scale = dict(
    +            ...     init_scale=65536.0,
    +            ...     growth_factor=2.0,
    +            ...     backoff_factor=0.5,
    +            ...     growth_interval=2000
    +            ... )
    +            >>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale)
    +        """
    +
    +        def __init__(self,
    +                     grad_clip=None,
    +                     coalesce=True,
    +                     bucket_size_mb=-1,
    +                     loss_scale=512.,
    +                     distributed=True):
    +            assert grad_clip is None,\
    +                'IPU mode does not support `grad_clip` currently'
    +            assert coalesce,\
    +                'implemented all reduce in distributed training currently'
    +            assert bucket_size_mb == -1,\
    +                '`bucket_size_mb` should not be set in IPU mode'
    +            self.distributed = distributed
    +            self._scale_update_param = None
    +            if loss_scale == 'dynamic':
    +                raise NotImplementedError(
    +                    'IPU mode does not support dynamic loss scale currently')
    +            elif isinstance(loss_scale, float):
    +                self.loss_scale = loss_scale
    +            elif isinstance(loss_scale, dict):
    +                raise NotImplementedError(
    +                    'IPU mode supports single scale currently')
    +            else:
    +                raise ValueError(
    +                    f'loss_scale should be float, but got {loss_scale} ')
    +
    +        def after_train_iter(self, runner):
    +            pass
    +
    +else:
    +    raise RuntimeError('The IPU mode only supports torch 1.6 and above')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/model_wrapper.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/model_wrapper.py
    new file mode 100755
    index 000000000..c345537e2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/model_wrapper.py
    @@ -0,0 +1,721 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import inspect
    +from collections import OrderedDict
    +from typing import Optional, Union
    +
    +import poptorch
    +import torch
    +import torch.nn as nn
    +from poptorch import PoplarExecutor, __version__, identity_loss
    +from poptorch._args_parser import ArgsParser
    +
    +from mmcv.runner import auto_fp16
    +from .hierarchical_data_manager import HierarchicalDataManager
    +from .utils import compare_ndarray, model_sharding, recomputation_checkpoint
    +
    +
    +class DictArgsParser(ArgsParser):
    +    """A helper class for handling model input.
    +
    +    Args:
    +        inputs (list): Inputs of model.
    +    """
    +
    +    def __init__(self, inputs):
    +        # Combine args and kwargs:
    +        self._has_variadic_arguments = True
    +        self._varnames = list(inputs.keys())
    +        self._defaults = [inspect.Parameter.empty for _ in self._varnames]
    +        self._warned_not_contiguous_input = False
    +
    +
    +class WrappedNet(nn.Module):
    +    """A net wrapper for model conversion.
    +
    +    This wrapper will make some changes and add some extra functions to
    +    training/inference model.
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model to run.
    +        inputs_manager (:obj:`HierarchicalDataManager`): A parser
    +            converting inputs from tuple to dictionary.
    +        outputs_manager (:obj:`HierarchicalDataManager`): A parser
    +            converting outputs from dictionary to tuple.
    +        inter_outputs_in_cpu (dict): Specify the features to be
    +            recorded.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +    """
    +
    +    def __init__(self,
    +                 model,
    +                 inputs_manager,
    +                 outputs_manager,
    +                 inter_outputs_in_cpu,
    +                 modules_to_record=None):
    +        super().__init__()
    +        self.model = model
    +        self.inputs_manager = inputs_manager
    +        self.outputs_manager = outputs_manager
    +        self.training = model.training
    +        # Register a hook function to capture the intermediate features
    +        # generated by the network to align the outputs between ipu and cpu
    +        # Used to confirm whether the implementation of CPU is consistent
    +        # with the implementation of IPU
    +        self.inter_outputs_in_cpu = inter_outputs_in_cpu
    +        if modules_to_record is None:
    +            modules_to_record = []
    +
    +        for idx, (name, module) in enumerate(model.named_modules()):
    +            if name in modules_to_record or idx in modules_to_record:
    +                features_hook = self.get_input_output_hook(
    +                    name, idx, self.inter_outputs_in_cpu)
    +                module.register_forward_hook(hook=features_hook)
    +
    +    def get_input_output_hook(self, name, idx, save_dict):
    +
    +        def input_output_hook(module, fea_in, fea_out):
    +            if isinstance(fea_in, tuple):
    +                fea_in = list(fea_in)
    +            if isinstance(fea_out, tuple):
    +                fea_out = list(fea_out)
    +            save_dict[name] = {
    +                'fea_in': fea_in,
    +                'fea_out': fea_out,
    +                'idx': idx
    +            }
    +            return None
    +
    +        return input_output_hook
    +
    +    def forward(self, inputs_tuple):
    +        """This function is used to be compiled to ipu, the inputs and outputs
    +        need to be tuples, so here we need to restore the input back to a
    +        dictionary and convert the output to a tuple."""
    +        self.inputs_manager.update_all_tensors(inputs_tuple)
    +        kwargs = {**(self.inputs_manager.hierarchical_data)}
    +        if self.training:
    +            outputs = self.forward_train(kwargs)
    +            # tell poptorch which loss will be used finally
    +            identity_loss(outputs['loss'], reduction='none')
    +        else:
    +            outputs = self.forward_eval(kwargs)
    +
    +        if isinstance(outputs, torch.Tensor):
    +            # currently not support single tensor output,
    +            # need to wrap it with a dictionary,
    +            # use a keyword to identify this case
    +            outputs = {'output of WrappedNet: single tensor': outputs}
    +
    +        # if there are some features need to be record, add extra outputs
    +        for name in self.inter_outputs_in_cpu:
    +            outputs[name] = self.inter_outputs_in_cpu[name]
    +
    +        # record all the places of return tensors in the converting stage
    +        # while in the real run stage, all the tensor are changed in-place
    +        # that means the output can be obtained directly outside this function
    +        self.outputs_manager.record_hierarchical_data(outputs)
    +        plain_outputs = self.outputs_manager.collect_all_tensors()
    +        return plain_outputs
    +
    +    def forward_train(self, kwargs):
    +        optimizer = kwargs.pop('optimizer')
    +        outputs = self.train_step(kwargs, optimizer)
    +        return outputs
    +
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        """The iteration step during training.
    +
    +        This method defines an iteration step during training, except for the
    +        back propagation and optimizer updating, which are done in an optimizer
    +        hook. Note that in some complicated cases or models, the whole process
    +        including back propagation and optimizer updating are also defined in
    +        this method, such as GAN.
    +
    +        Args:
    +            data (dict): The output of dataloader.
    +            optimizer (:obj:`torch.optim.Optimizer`, optional): The
    +                optimizer of runner is passed to ``train_step()``. This
    +                argument is unused and reserved.
    +
    +        Returns:
    +            dict: Dict of outputs. The following fields are contained.
    +                - loss (torch.Tensor): A tensor for back propagation, which \
    +                    can be a weighted sum of multiple losses.
    +                - log_vars (dict): Dict contains all the variables to be sent \
    +                    to the logger.
    +                - num_samples (int): Indicates the batch size (when the model \
    +                    is DDP, it means the batch size on each GPU), which is \
    +                    used for averaging the logs.
    +        """
    +        losses = self.model(**data)
    +        loss, log_vars = self._parse_losses(losses)
    +
    +        outputs = dict(
    +            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
    +
    +        return outputs
    +
    +    def _parse_losses(self, losses):
    +        log_vars = OrderedDict()
    +        for loss_name, loss_value in losses.items():
    +            if isinstance(loss_value, torch.Tensor):
    +                log_vars[loss_name] = loss_value.mean()
    +            elif isinstance(loss_value, list):
    +                log_vars[loss_name] = sum(loss.mean() for loss in loss_value)
    +            elif isinstance(loss_value, dict):
    +                for name, value in loss_value.items():
    +                    log_vars[name] = value
    +            else:
    +                raise TypeError(
    +                    f'{loss_name} is not a tensor or list of tensors')
    +
    +        loss = sum(value for key, value in log_vars.items() if 'loss' in key)
    +        log_vars['loss'] = loss
    +
    +        return loss, log_vars
    +
    +    def forward_eval(self, kwargs):
    +        img = kwargs.pop('img')
    +        img_metas = kwargs.pop('img_metas', None)
    +        return_loss = kwargs.pop('return_loss')
    +        assert not return_loss
    +        # TODO Temporarily hard-code to close post_process,
    +        # otherwise, in the third trace(_check_trace),
    +        # post_process will convert output tensor to numpy array automatically,
    +        # resulting in _check_trace failure
    +        outputs = self.model(
    +            img,
    +            img_metas=img_metas,
    +            return_loss=return_loss,
    +            post_process=False)
    +        return outputs
    +
    +
    +class MMPoplarExecutor(PoplarExecutor):
    +    """An executor for inputs/outputs parsing, model compilation, data
    +    alignment and IPU upload/download.
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model to be compiled.
    +        logger (:obj:`logging.Logger`): Logger used during running.
    +             Defaults to None.
    +        training (bool): Model in training mode or eval mode.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +        args (argument list): Arguments passed to the `__init__`
    +            method of PoplarExecutor.
    +        kwargs (keyword arguments): Keyword arguments passed to the `__init__`
    +            method of PoplarExecutor.
    +    """
    +
    +    def __init__(self,
    +                 model,
    +                 logger=None,
    +                 training=True,
    +                 modules_to_record=None,
    +                 *args,
    +                 **kwargs):
    +        # self.model == self._user_model: input pytorch model
    +        # self._model: wrapped model which is used to compile
    +        # and update weights, these two models use same weights
    +        # wrapped model only accept and output tuple, so
    +        # HierarchicalDataManager will convert dictionary
    +        # to tuple and convert them back
    +        self.inputs_manager = HierarchicalDataManager(logger=logger)
    +        self.outputs_manager = HierarchicalDataManager(logger=logger)
    +        self.logger = logger
    +        # the features calculated by CPU
    +        self.inter_outputs_in_cpu = {}
    +        # the features calculated by IPU
    +        self.inter_outputs_in_ipu = {}
    +        if modules_to_record is None:
    +            # It is possible that the IPU implementation of some operators
    +            # is inconsistent with the expected (CPU), here you can use
    +            # this method to confirm whether there is a problem
    +            self.compare_with_cpu = False
    +        else:
    +            self.compare_with_cpu = True
    +        # move model.fp16_enabled to self.fp16_enabled,
    +        # modify the position where the input is automatically casted to half
    +        if getattr(model, 'fp16_enabled', False):
    +            model.fp16_enabled = False
    +            self.fp16_enabled = True
    +        # make torch.jit.trace convert self._model
    +        model = WrappedNet(
    +            model,
    +            self.inputs_manager,
    +            self.outputs_manager,
    +            self.inter_outputs_in_cpu,
    +            modules_to_record=modules_to_record)
    +        super().__init__(model, training=training, *args, **kwargs)
    +        # overwrite self._args_parser in train_step or val_step
    +        self._args_parser = None
    +        if training:
    +            assert self.training
    +        else:
    +            assert not self.training
    +
    +    @property
    +    def training(self):
    +        # If trying to get the attribute(training) of self,
    +        # since the class has no training attribute,
    +        # it will automatically look for the training attribute of self.model.
    +        # However, the real attribute we want to check is self._training,
    +        # self.model.training  and self._training are often inconsistent.
    +        # It is not clear whether it is a Poptorch bug or a special design,
    +        # temporarily use this function to fix the problem
    +        return self._training  # comes from self.model._training
    +
    +    @auto_fp16(supported_types=(PoplarExecutor, ))
    +    def run_model(self, data_dict):
    +        # this function is used to parse input_dict
    +        # and convert to output_dict
    +        if self.isCompiled():
    +            self.inputs_manager.record_hierarchical_data(data_dict)
    +            inputs_tuple = tuple(self.inputs_manager.collect_all_tensors())
    +        else:
    +            # get tensors out of data and put them in a tuple
    +            self.inputs_manager.record_hierarchical_data(data_dict)
    +            inputs_tuple = tuple(self.inputs_manager.collect_all_tensors())
    +            # turn logger in data manager off after compilation
    +            self.inputs_manager.quick()
    +            self.outputs_manager.quick()
    +
    +        # parser args in the first iter
    +        if self._args_parser is None:
    +            self._args_parser = DictArgsParser({'args': inputs_tuple})
    +
    +        # run or convert model
    +        # the plain_outputs will be used in converting stage
    +        plain_outputs = self(inputs_tuple)
    +
    +        self.inputs_manager.clean_all_tensors()
    +
    +        # put list of tensors back to the output dict
    +        # according to the same order
    +        self.outputs_manager.update_all_tensors(plain_outputs)
    +        # get the real output dictionary from self.outputs_manager
    +        output_dict = self.outputs_manager.hierarchical_data
    +
    +        # split output_dict into inter_outputs_in_ipu
    +        # and output of the torch model
    +        torch_model_output = {}
    +        for name in output_dict:
    +            if name in self.inter_outputs_in_cpu:
    +                self.inter_outputs_in_ipu[name] = output_dict[name]
    +            else:
    +                torch_model_output[name] = output_dict[name]
    +
    +        if 'output of WrappedNet: single tensor' in output_dict:
    +            assert len(torch_model_output) == 1
    +            assert isinstance(
    +                torch_model_output['output of WrappedNet: single tensor'],
    +                torch.Tensor)
    +            torch_model_output = \
    +                torch_model_output['output of WrappedNet: single tensor']
    +
    +        return torch_model_output
    +
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        # arguments from mmcls/models/classifiers/base.py:
    +        # BaseClassifier.train_step
    +        assert self.training
    +        assert len(kwargs) == 0  # TODO, support later if necessary
    +
    +        # TODO support datacontainer as input
    +        # currently, auto_fp16 and HierarchicalDataManager take too much
    +        # time on traversing datacontainer
    +        data['img_metas'] = None
    +        num_samples = len(data['img'].data)
    +
    +        # TODO we will ignore optimizer because it will not be used in model,
    +        # support later if necessary
    +        data['optimizer'] = None
    +        output_dict = self.run_model(data)
    +
    +        # outputs contained loss, log_vars, num_samples,
    +        # only loss(torch.tensor) has been updated
    +        # remove all unchanged vars, left torch.tensor
    +        neat_output_dict = {'loss': output_dict['loss']}
    +
    +        # re-parse outputs, get back log_vars and num_samples
    +        loss, log_vars = self.model._parse_losses(neat_output_dict)
    +        final_output_dict = dict(
    +            loss=loss, log_vars=log_vars, num_samples=num_samples)
    +        return final_output_dict
    +
    +    def eval_call(self, img, img_metas=None, return_loss=True, **kwargs):
    +        # arguments from mmdet/models/detectors/base.py:BaseDetector.forward
    +        # tmp usssage for eval mode
    +        assert not self.training
    +        assert len(kwargs) == 0  # TODO, support later if necessary
    +        assert not return_loss
    +        data = {'img': img, 'img_metas': img_metas, 'return_loss': return_loss}
    +
    +        output_dict = self.run_model(data)
    +
    +        return output_dict
    +
    +    def detachFromDevice(self):
    +        if self.isCompiled() and self._is_attached:
    +            super().detachFromDevice()
    +
    +    def attachToDevice(self):
    +        if self.isCompiled() and not self._is_attached:
    +            super().attachToDevice()
    +
    +
    +class TrainEvalModel:
    +    """A class maintaining training MMPoplarExecutor and inference
    +    MMPoplarExecutor.
    +
    +    Args:
    +        train_model (:obj:`nn.Module`): The training model to be compiled.
    +            ``train_model`` can be None if only executing validation.
    +        eval_model (:obj:`nn.Module`): The inference model to be compiled.
    +        options (mmcv.Config, dict): Options that will be used to compile
    +            and run the model.
    +        optimizer (:obj:`torch.optim.Optimizer`, optional): torch
    +            optimizer, necessary if in training mode
    +        logger (:obj:`logging.Logger`): Logger used during running.
    +             Defaults to None.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +    """
    +
    +    def __init__(self,
    +                 train_model,
    +                 eval_model,
    +                 options,
    +                 optimizer,
    +                 modules_to_record=None,
    +                 logger=None):
    +        if train_model is None:
    +            self._train_executor = None
    +            self.training = False
    +        else:
    +            self._train_executor = get_training_model(
    +                train_model,
    +                options=options['training'],
    +                optimizer=optimizer,
    +                logger=logger,
    +                modules_to_record=modules_to_record)
    +            self.training = True
    +        self._eval_executor = get_inference_model(
    +            eval_model, options=options['inference'], logger=logger)
    +
    +    @property
    +    def executor(self):
    +        if self.training:
    +            return self._train_executor
    +        else:
    +            return self._eval_executor
    +
    +    def train(self, mode: bool = True):
    +        """Sets the module in training mode.
    +
    +        This has any effect only on certain modules. See documentations of
    +        particular modules for details of their behaviors in
    +        training/evaluation mode, if they are affected,
    +        e.g. :class:`Dropout`, :class:`BatchNorm`, etc.
    +
    +        Args:
    +            mode (bool): whether to set training mode (``True``) or evaluation
    +                mode (``False``). Default: ``True``.
    +
    +        Returns:
    +            Module: self
    +        """
    +        if not isinstance(mode, bool):
    +            raise ValueError('training mode is expected to be boolean, '
    +                             f'but got {type(mode)}')
    +        if self._train_executor is None and mode:
    +            raise RuntimeError(
    +                'The train_executor is not initialized.'
    +                'If you want to initialize train_executor,'
    +                'you need to input optimizer when converting pytorch model')
    +
    +        if mode == self.training:
    +            self.model.train(mode)
    +            return self
    +        else:
    +            if self.isCompiled():
    +                # copy weights from IPU to cpu before off-load current session
    +                self.copyWeightsToHost()
    +                # detach the current session before change the mode,
    +                # if is training mode and weights are updated,
    +                # poptorch will copy weights from IPU to host
    +                self.detachFromDevice()
    +
    +            self.training = mode  # session will changed with mode changing
    +            self.model.train(mode)
    +
    +            # after changing mode, attach the current new session,
    +            # and this function will copy weights of model to device
    +            self.attachToDevice()
    +            return self
    +
    +    def eval(self):
    +        """Sets the module in evaluation mode.
    +
    +        This has any effect only on certain modules.
    +        See documentations of particular modules
    +        for details of their behaviors in training/evaluation mode,
    +        if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc.
    +
    +        This is equivalent with :meth:`self.train(False)
    +        `.
    +
    +        See :ref:`locally-disable-grad-doc` for a comparison between
    +        `.eval()` and several similar mechanisms that may be confused with it.
    +
    +        Returns:
    +            Module: self
    +        """
    +        return self.train(False)
    +
    +    def compare_data_between_ipu_and_cpu(self, inter_outputs_in_cpu,
    +                                         inter_outputs_in_ipu):
    +        for key, val in inter_outputs_in_cpu.items():
    +            is_tensor = isinstance(val['fea_in'], torch.Tensor)
    +            fea_in_cpu = val['fea_in']
    +            fea_in_cpu_list = [fea_in_cpu] if is_tensor else fea_in_cpu
    +            fea_in_ipu = inter_outputs_in_ipu[key]['fea_in']
    +            fea_in_ipu_list = [fea_in_ipu] if is_tensor else fea_in_ipu
    +
    +            is_tensor = isinstance(val['fea_out'], torch.Tensor)
    +            fea_out_cpu = val['fea_out']
    +            fea_out_cpu_list = [fea_out_cpu] if is_tensor else fea_out_cpu
    +            fea_out_ipu = inter_outputs_in_ipu[key]['fea_out']
    +            fea_out_ipu_list = [fea_out_ipu] if is_tensor else fea_out_ipu
    +
    +            print('comparing layer:', key)
    +            for idx, (featA, featB) in \
    +                    enumerate(zip(fea_in_cpu_list, fea_in_ipu_list)):
    +                print('fea_in, tensor ', idx)
    +                compare_ndarray(featA.detach().numpy(), featB.detach().numpy())
    +            for idx, (featA, featB) in \
    +                    enumerate(zip(fea_out_cpu_list, fea_out_ipu_list)):
    +                print('fea_out, tensor', idx)
    +                compare_ndarray(featA.detach().numpy(), featB.detach().numpy())
    +
    +    # TODO Unified training and eval interface,
    +    # merge train_step(train) and __call__(eval) together
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        assert self.training, 'not supported train_step on eval mode'
    +        inter_outputs_in_cpu = {}
    +        if (self._train_executor.isCompiled()
    +                and self._train_executor.compare_with_cpu):
    +            self.copyWeightsToHost()
    +            # run in CPU mode
    +            self._train_executor.model.train_step(data, optimizer, **kwargs)
    +            inter_outputs_in_cpu = {
    +                **(self._train_executor.inter_outputs_in_cpu)
    +            }
    +        # run in IPU mode
    +        result = self._train_executor.train_step(data, optimizer, **kwargs)
    +        if (self._train_executor.isCompiled()
    +                and self._train_executor.compare_with_cpu
    +                and len(inter_outputs_in_cpu) > 0):
    +            self.compare_data_between_ipu_and_cpu(
    +                inter_outputs_in_cpu,
    +                self._train_executor.inter_outputs_in_ipu)
    +        return result
    +
    +    # TODO Unified training and eval interface,
    +    # merge train_step(train) and __call__(eval) together
    +    def __call__(self, *args, **kwargs):
    +        if self.training:
    +            raise NotImplementedError('use train_step rather than __call__')
    +        else:
    +            return self._eval_executor.eval_call(*args, **kwargs)
    +
    +    def __getattr__(self, attr):
    +        return getattr(self.executor, attr)
    +
    +
    +def get_training_model(model: nn.Module,
    +                       options: Optional[poptorch.Options] = None,
    +                       optimizer: Optional[torch.optim.Optimizer] = None,
    +                       logger=None,
    +                       modules_to_record=None) -> poptorch.PoplarExecutor:
    +    """Create a PopTorch training model from a PyTorch model, running on IPU
    +    hardware in training mode.
    +
    +    Note:
    +        PopTorch makes a shallow copy of the model. Changes to the
    +        parameters in the returned training model affect the original model
    +        and vice versa. However, primitive variable types are not synced: for
    +        example calling ``model.train()`` on the original model, which
    +        changes the ``training`` bool of the model instance, will not alter the
    +        model returned by this function. You may need to call ``model.train()``
    +        on your model before you call this function for correct behavior.
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model to run.
    +        options (poptorch.Options): Options that will be used to compile
    +            and run the model.
    +        optimizer (:obj:`torch.optim.Optimizer`, optional): The optimizers
    +            to apply during training.
    +        logger (:obj:`logging.Logger`): Logger used during running.
    +             Defaults to None.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +
    +    Returns:
    +        The :class:`poptorch.PoplarExecutor` wrapper to use in place
    +        of ``model``.
    +    """
    +    # Create a copy of the original model in case it needs to be wrapped
    +    maybe_wrapped_model = copy.copy(model)
    +
    +    return MMPoplarExecutor(
    +        model=maybe_wrapped_model,
    +        logger=logger,
    +        options=options,
    +        training=True,
    +        optimizer=optimizer,
    +        user_model=model,
    +        modules_to_record=modules_to_record,
    +        poptorch_version=__version__)
    +
    +
    +def get_inference_model(model: Union[nn.Module, poptorch.PoplarExecutor],
    +                        options: Optional[poptorch.Options] = None,
    +                        logger=None) -> poptorch.PoplarExecutor:
    +    """Create a PopTorch inference model from a PyTorch model, running on IPU
    +    hardware in inference mode.
    +
    +    Note:
    +        PopTorch makes a shallow copy of the model. Changes to the
    +        parameters in the returned inference model affect the original model
    +        and vice versa. However, primitive variable types are not synced: for
    +        example calling ``model.eval()`` on the original model will not alter
    +        the model returned by this function. You may need to call
    +        ``model.eval()`` on your model before you call this function for
    +        correct behavior.
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model to run.
    +        options (poptorch.Options): Options that will be used to compile
    +            and run the model.
    +        logger (:obj:`logging.Logger`): Logger used during running.
    +             Defaults to None.
    +
    +    Returns:
    +        The :class:`poptorch.PoplarExecutor` wrapper to use in place of
    +        ``model``.
    +    """
    +
    +    return MMPoplarExecutor(
    +        model=copy.copy(model),
    +        logger=logger,
    +        options=options,
    +        training=False,
    +        poptorch_version=__version__)
    +
    +
    +def ipu_model_wrapper(model,
    +                      options,
    +                      optimizer=None,
    +                      logger=None,
    +                      modules_to_record=None,
    +                      ipu_model_cfg=None,
    +                      fp16_cfg=None):
    +    """Convert torch model to IPU model.
    +
    +    Args:
    +        model (nn.Module): The target model to be converted.
    +        options (dict[str, poptorch.Options]): IPU options, generated
    +            by :func:`cfg2options`.
    +        optimizer (:obj:`torch.optim.Optimizer`, optional): torch
    +            optimizer, necessary if in training mode
    +        logger (:obj:`logging.Logger`): Logger used during training.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +        ipu_model_cfg (dict): A dictionary contains train_split_edges and
    +            train_ckpt_nodes, See details in :func:`model_sharding` and
    +            :func:`recomputation_checkpoint` functions.
    +        fp16_cfg (dict): Config for IPU fp16 training. Currently supports
    +            configs: `loss_scale`, `velocity_accum_type` and `accum_type`.
    +            See details in
    +            https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/index.html
    +
    +    Returns:
    +        TrainEvalModel: IPU wrapped model.
    +    """
    +    if ipu_model_cfg is None:
    +        ipu_model_cfg = {}
    +    training = model.training if optimizer is not None else False
    +    # set mixed-precision
    +    if fp16_cfg is not None:
    +        from mmcv.runner import wrap_fp16_model
    +        loss_scale = fp16_cfg['loss_scale']
    +        wrap_fp16_model(model)
    +        model.half()
    +        # TODO tmp ussage to set loss scaling for torch original optimizer
    +        if optimizer is not None:
    +            optimizer.loss_scaling = loss_scale
    +            if fp16_cfg.get('velocity_accum_type', False):
    +                if fp16_cfg['velocity_accum_type'] == 'half':
    +                    optimizer.velocity_accum_type = torch.half
    +                else:
    +                    optimizer.velocity_accum_type = torch.float32
    +            if fp16_cfg.get('accum_type', False):
    +                if fp16_cfg['accum_type'] == 'half':
    +                    optimizer.accum_type = torch.half
    +                else:
    +                    optimizer.accum_type = torch.float32
    +        # TODO support feature alignment for fp16
    +        if modules_to_record is not None:
    +            raise NotImplementedError(
    +                'Feature alignment for fp16 is not implemented')
    +
    +    # set model partition
    +    if optimizer is None:
    +        train_model = None
    +    else:
    +        # split model into multi-IPUs if specified
    +        train_model = model_sharding(
    +            copy.copy(model).train(),
    +            ipu_model_cfg.get('train_split_edges', []))
    +
    +        recomputation_checkpoint(train_model,
    +                                 ipu_model_cfg.get('train_ckpt_nodes', []))
    +
    +        # TODO support feature alignment for gradient accumulation mode
    +        gradient_accumulation = \
    +            getattr(options['training'].Training, 'gradient_accumulation', 1)
    +        if gradient_accumulation > 1:
    +            assert modules_to_record is None, \
    +                'Feature alignment for grad-accumulation mode not implemented'
    +
    +        # TODO support feature alignment for multi-replica mode
    +        replication_factor = \
    +            getattr(options['training'], 'replication_factor', 1)
    +        if replication_factor > 1:
    +            assert modules_to_record is None, \
    +                'Feature alignment for multi-replica mode not implemented'
    +
    +    # TODO supports different model partitions between train and eval mode
    +    assert len(ipu_model_cfg.get('eval_split_edges', [])) == 0,\
    +        'Currently, BeginBlock can only be used once on the same model'
    +    eval_model = copy.copy(model).eval()
    +
    +    # wrap model for compilation
    +    model = TrainEvalModel(
    +        train_model,
    +        eval_model,
    +        options=options,
    +        optimizer=optimizer,
    +        logger=logger,
    +        modules_to_record=modules_to_record)
    +    model.train(training)
    +    return model
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/runner.py
    new file mode 100755
    index 000000000..e2d492267
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/runner.py
    @@ -0,0 +1,142 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +from mmcv.runner import (HOOKS, RUNNERS, BaseRunner, EpochBasedRunner,
    +                         IterBasedRunner)
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from .dataloader import IPUDataLoader
    +    from .hook_wrapper import (IPUFp16OptimizerHook, wrap_lr_updater_hook,
    +                               wrap_optimizer_hook)
    +    from .model_wrapper import ipu_model_wrapper
    +    from .utils import build_from_cfg_with_wrapper, cfg2options
    +
    +
    +class IPUBaseRunner(BaseRunner):
    +    """A base runner for IPU.
    +
    +    This runner has some extra processes for IPU which are shown below:
    +
    +    1. Parse options for IPU
    +    2. wrap pytorch model for IPU
    +    3. Raise errors while encountering illegal usage
    +    4. Input IPU options and initialize dataloader if finding an instance
    +       of IPUDataLoader
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model to run.
    +        options_cfg (mmcv.Config, dict): Options that will be used to compile
    +            and run the model.
    +        modules_to_record (mmcv.Config, list): Index or name of modules which
    +            will be recorded for output. It is necessary to specify output for
    +            static graph of model training or inference.
    +        ipu_model_cfg (mmcv.Config, dict): Config of model partition and
    +            recomputing checkpoint
    +        fp16_cfg (mmcv.Config): Config for fp16 training.
    +        batch_processor (callable): A callable method that process a data
    +            batch. Should be None for IPU runner
    +        kwargs (Dict[str, Any], optional): Keyword arguments will be passed to
    +        ``base_runner.BaseRunner``.
    +    """
    +
    +    def __init__(self,
    +                 model,
    +                 options_cfg=None,
    +                 modules_to_record=None,
    +                 ipu_model_cfg=None,
    +                 fp16_cfg=None,
    +                 batch_processor=None,
    +                 **kwargs):
    +        assert hasattr(model, 'train_step') and batch_processor is None,\
    +            'only support model with train_step'
    +
    +        if options_cfg is None:
    +            options_cfg = {}
    +        # call BaseRunner.__init__() here
    +        super().__init__(model, **kwargs)
    +
    +        # process options of ipu
    +        if IS_IPU_AVAILABLE:
    +            self.options = cfg2options(options_cfg)
    +            self.model = ipu_model_wrapper(
    +                self.model,
    +                self.options,
    +                self.optimizer,
    +                self.logger,
    +                modules_to_record=modules_to_record,
    +                ipu_model_cfg=ipu_model_cfg,
    +                fp16_cfg=fp16_cfg)
    +        else:
    +            raise NotImplementedError('cpu mode on IPURunner is not supported')
    +
    +    def register_lr_hook(self, lr_config):
    +        if lr_config is None:
    +            return
    +        assert isinstance(lr_config, dict)
    +        assert 'policy' in lr_config
    +        policy_type = lr_config.pop('policy')
    +        # If the type of policy is all in lower case,
    +        # e.g., 'cyclic', then its first letter will be capitalized,
    +        # e.g., to be 'Cyclic'.
    +        # This is for the convenient usage of Lr updater.
    +        # Since this is not applicable for `
    +        # CosineAnnealingLrUpdater`, the string will not be changed
    +        # if it contains capital letters.
    +        if policy_type == policy_type.lower():
    +            policy_type = policy_type.title()
    +        hook_type = policy_type + 'LrUpdaterHook'
    +        lr_config['type'] = hook_type
    +        hook = build_from_cfg_with_wrapper(lr_config, HOOKS,
    +                                           wrap_lr_updater_hook)
    +        self.register_hook(hook, priority='VERY_HIGH')
    +
    +    def register_optimizer_hook(self, optimizer_config):
    +        if optimizer_config is None:
    +            return
    +        assert isinstance(optimizer_config, (dict, IPUFp16OptimizerHook))
    +        if isinstance(optimizer_config, dict):
    +            optimizer_config.setdefault('type', 'OptimizerHook')
    +            hook = build_from_cfg_with_wrapper(optimizer_config, HOOKS,
    +                                               wrap_optimizer_hook)
    +        else:
    +            hook = optimizer_config
    +        self.register_hook(hook, priority='ABOVE_NORMAL')
    +
    +    def run(self, data_loaders, workflow, *args, **kwargs):
    +        for i, flow in enumerate(workflow):
    +            mode, _ = flow
    +            # initialize IPU dataloader if not initialized
    +            assert isinstance(data_loaders[i], IPUDataLoader),\
    +                'IPU runner can only work with `IPUDataLoader`'
    +            data_loaders[i].init(options=self.get_options(mode))
    +
    +        super().run(data_loaders, workflow, *args, **kwargs)
    +
    +    def get_options(self, mode):
    +        if mode == 'train':
    +            return self.options['training']
    +        elif mode == 'val':
    +            return self.options['inference']
    +        else:
    +            raise ValueError(f'mode should be train or val but got {mode}')
    +
    +
    +@RUNNERS.register_module()
    +class IPUEpochBasedRunner(IPUBaseRunner, EpochBasedRunner):
    +    """Epoch-based Runner for IPU.
    +
    +    The Inheritance order(MRO) is: IPUEpochBasedRunner -> IPUBaseRunner ->
    +    EpochBasedRunner -> BaseRunner This runner train models epoch by epoch.
    +    """
    +    pass
    +
    +
    +@RUNNERS.register_module()
    +class IPUIterBasedRunner(IPUBaseRunner, IterBasedRunner):
    +    """Iteration-based Runner for IPU.
    +
    +    The Inheritance order(MRO) is: IPUIterBasedRunner -> IPUBaseRunner ->
    +    IterBasedRunner -> BaseRunner This runner train models iteration by
    +    iteration.
    +    """
    +    pass
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/utils.py
    new file mode 100755
    index 000000000..79709db1e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/ipu/utils.py
    @@ -0,0 +1,244 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import inspect
    +
    +import numpy as np
    +import popart
    +import poptorch
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.utils import Registry
    +
    +
    +def _options_assigner(cfg, options_node):
    +    # set popart.options by config
    +    # cfg: dict, python data type
    +    # options_node: python module or function
    +    if isinstance(cfg, dict):
    +        for key in cfg:
    +            _options_assigner(cfg[key], getattr(options_node, key))
    +    elif isinstance(cfg, (int, float, str, list)):
    +        if callable(options_node):
    +            options_node(cfg)
    +        else:
    +            error_msg = f'options_node type {type(options_node)} not supported'
    +            raise NotImplementedError(error_msg)
    +    else:
    +        error_msg = f'cfg type {type(cfg)} not supported'
    +        raise NotImplementedError(error_msg)
    +
    +
    +def cfg2options(cfg):
    +    """Parse dictionary to ipu options.
    +
    +    Args:
    +        cfg (dict): A dictionary of ipu settings.
    +
    +    Returns:
    +        dict[str, poptorch.Options]: Training options and inference options
    +        of IPU.
    +    """
    +    # set ipu options for inference and training by config
    +    train_cfg = cfg.pop('train_cfg', {})
    +    eval_cfg = cfg.pop('eval_cfg', {})
    +    eval_cfg['replicationFactor'] = 1  # eval mode only use one replica
    +    eval_cfg['executionStrategy'] = 'ShardedExecution'
    +    # overwrite default ipu cfg with specified train cfgs
    +    training_ipu_cfg = {**cfg, **train_cfg}
    +    # overwrite default ipu cfg with specified eval cfgs
    +    inference_ipu_cfg = {**cfg, **eval_cfg}
    +
    +    ipu_options = {
    +        'training': _cast_to_options(training_ipu_cfg),
    +        'inference': _cast_to_options(inference_ipu_cfg)
    +    }
    +
    +    # TODO configure these codes
    +    ipu_options['training']._Popart.set('disableGradAccumulationTensorStreams',
    +                                        True)
    +    ipu_options['training']._Popart.set(
    +        'accumulateOuterFragmentSettings.schedule',
    +        int(popart.AccumulateOuterFragmentSchedule.OverlapMemoryOptimized))
    +    ipu_options['training'].Precision.enableStochasticRounding(True)
    +
    +    return ipu_options
    +
    +
    +def _cast_to_options(cfg):
    +    # If it cannot be directly assigned, use if statement to parse it,
    +    # and if it can be directly assigned, use _options_assigner to assign
    +    options = poptorch.Options()
    +
    +    if 'availableMemoryProportion' in cfg:
    +        available_memory_proportion = cfg.pop('availableMemoryProportion')
    +        mem_props = {}
    +        for i, mem_prop in enumerate(available_memory_proportion):
    +            mem_props[f'IPU{i}'] = mem_prop
    +        options.setAvailableMemoryProportion(mem_props)
    +
    +    if 'executionStrategy' in cfg:
    +        execution_strategy = cfg.pop('executionStrategy')
    +        if execution_strategy == 'SameAsIpu':
    +            options.setExecutionStrategy(
    +                poptorch.PipelinedExecution(
    +                    getattr(poptorch.AutoStage, execution_strategy)))
    +        elif execution_strategy == 'ShardedExecution':
    +            options.setExecutionStrategy(poptorch.ShardedExecution())
    +        else:
    +            raise NotImplementedError(
    +                'executionStrategy should be "SameAsIpu" or "ShardedExecution"'
    +                f', but got {execution_strategy}')
    +
    +    if 'partialsType' in cfg:
    +        partials_type = cfg.pop('partialsType')
    +        options.Precision.setPartialsType(getattr(
    +            torch, partials_type))  # half or float
    +
    +    _options_assigner(cfg, options)
    +    return options
    +
    +
    +def model_sharding(model, split_edges):
    +    """split models in-place into multi-IPUs.
    +
    +    Args:
    +        model (nn.Module): The target model to be split.
    +        split_edges (list of dict): Model layer names or layer numbers
    +            of split edge. Each item of ``split_edges`` is a dictionary,
    +            which may contain the following key-pairs:
    +
    +            - layer_to_call: PyTorch module to assign to the block
    +            - user_id (optional): A user defined identifier for the block.
    +            - ipu_id: The id of the IPU to run on.
    +
    +        Examples:
    +            >>> split_edges = [
    +            ...     dict(layer_to_call='model.conv1', ipu_id=0),
    +            ...     dict(layer_to_call='model.conv3', ipu_id=1)]
    +            >>> sharding_model = model_sharding(torch_model, split_edges)
    +
    +    Returns:
    +        nn.Module: Split model.
    +    """
    +    if len(split_edges) == 0:
    +        return model
    +    assert isinstance(split_edges, list)
    +    spilt_edges_dict = {edge['layer_to_call']: edge for edge in split_edges}
    +
    +    for idx, (name, module) in enumerate(model.named_modules()):
    +        if idx in spilt_edges_dict and name in spilt_edges_dict:
    +            raise ValueError(
    +                'The same layer is referenced twice while doing model'
    +                f' partition: idx is {idx} and name is {name}')
    +
    +        edge = spilt_edges_dict.pop(name, None)
    +        edge = spilt_edges_dict.pop(idx, edge)
    +        if edge is not None:
    +            poptorch.BeginBlock(module, edge.get('user_id', name),
    +                                edge['ipu_id'])
    +
    +    # ensure all split_edges are used
    +    if len(spilt_edges_dict) > 0:
    +        split_edge_names = list(spilt_edges_dict.keys())
    +        raise RuntimeError(
    +            f'split_edges: {split_edge_names} are not contained in the model')
    +    return model
    +
    +
    +def recomputation_checkpoint(model: nn.Module, module_names: list):
    +    """Annotates the output of a module to be checkpointed instead of
    +    recomputed.
    +
    +    If recomputation mode is enabled, ipu will release the activations of
    +    the middle layers to save memory. During the backward of gradient,
    +    the activation of the middle layer will be recalculated again.
    +    This function is used to declare the activations of some intermediate
    +    layers that need to be saved in order to skip the recomputation of
    +    some layers.
    +
    +    Args:
    +        model (nn.Module): The target model to apply recomputation
    +            checkpoint.
    +        module_names (list): Layer names of module.
    +    """
    +
    +    def recompute_outputs(module, inputs, outputs):
    +        if isinstance(outputs, tuple):
    +            return tuple(poptorch.recomputationCheckpoint(y) for y in outputs)
    +        else:
    +            return poptorch.recomputationCheckpoint(outputs)
    +
    +    for name, module in model.named_modules():
    +        if name in module_names:
    +            module.register_forward_hook(recompute_outputs)
    +            module_names.remove(name)
    +
    +    # check all module_names are used
    +    assert len(module_names) == 0,\
    +        f'recomputed nodes: {module_names} are not contained in the model'
    +
    +
    +def compare_ndarray(featA, featB, rtol=1e-3, atol=1e-5):
    +    """Align data between two activations or weights."""
    +    try:
    +        np.testing.assert_allclose(featA, featB, rtol=rtol, atol=atol)
    +    except AssertionError as e:
    +        print(e)
    +
    +
    +def build_from_cfg_with_wrapper(cfg,
    +                                registry,
    +                                wrapper_func=None,
    +                                default_args=None):
    +    """Build a module from config dict and wrap module with "wrapper_func".
    +
    +    Args:
    +        cfg (dict): Config dict. It should at least contain the key "type".
    +        registry (:obj:`Registry`): The registry to search the type from.
    +        default_args (dict, optional): Default initialization arguments.
    +        wrapper_func (function): Used to wrap class
    +
    +    Returns:
    +        object: The constructed object.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
    +    if 'type' not in cfg:
    +        if default_args is None or 'type' not in default_args:
    +            raise KeyError(
    +                '`cfg` or `default_args` must contain the key "type", '
    +                f'but got {cfg}\n{default_args}')
    +    if not isinstance(registry, Registry):
    +        raise TypeError('registry must be an mmcv.Registry object, '
    +                        f'but got {type(registry)}')
    +    if not (isinstance(default_args, dict) or default_args is None):
    +        raise TypeError('default_args must be a dict or None, '
    +                        f'but got {type(default_args)}')
    +
    +    args = cfg.copy()
    +
    +    if default_args is not None:
    +        for name, value in default_args.items():
    +            args.setdefault(name, value)
    +
    +    obj_type = args.pop('type')
    +    if isinstance(obj_type, str):
    +        obj_cls = registry.get(obj_type)
    +        if obj_cls is None:
    +            raise KeyError(
    +                f'{obj_type} is not in the {registry.name} registry')
    +    elif inspect.isclass(obj_type):
    +        obj_cls = obj_type
    +    else:
    +        raise TypeError(
    +            f'type must be a str or valid type, but got {type(obj_type)}')
    +
    +    if wrapper_func is None:
    +        wrapped_obj_cls = obj_cls
    +    else:
    +        wrapped_obj_cls = wrapper_func(obj_cls)
    +    try:
    +        return wrapped_obj_cls(**args)
    +    except Exception as e:
    +        # Normal TypeError does not print class name.
    +        raise type(e)(f'{wrapped_obj_cls.__name__}: {e}')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/__init__.py
    new file mode 100644
    index 000000000..77c71ccf3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/__init__.py
    @@ -0,0 +1,5 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .data_parallel import MLUDataParallel
    +from .distributed import MLUDistributedDataParallel
    +
    +__all__ = ['MLUDataParallel', 'MLUDistributedDataParallel']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/_functions.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/_functions.py
    new file mode 100644
    index 000000000..75660fa9b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/_functions.py
    @@ -0,0 +1,24 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Union
    +
    +import torch
    +
    +
    +def scatter(input: Union[List, torch.Tensor], devices: List) -> List:
    +    """scatter copies tensor to MLU directly."""
    +    if isinstance(input, list):
    +        outputs = [scatter(_input, devices) for _input in input]
    +        return outputs
    +    elif isinstance(input, torch.Tensor):
    +        output = input.contiguous()
    +        return output.to('mlu') if devices != [-1] else output
    +    else:
    +        raise Exception(f'Unknown type {type(input)}.')
    +
    +
    +class Scatter:
    +
    +    @staticmethod
    +    def forward(target_mlus, input):
    +        outputs = scatter(input, target_mlus)
    +        return tuple(outputs) if isinstance(outputs, list) else (outputs, )
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/data_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/data_parallel.py
    new file mode 100644
    index 000000000..ebe14c0a5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/data_parallel.py
    @@ -0,0 +1,41 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +import torch
    +
    +from mmcv.parallel import MMDataParallel
    +from .scatter_gather import scatter_kwargs
    +
    +
    +class MLUDataParallel(MMDataParallel):
    +    """The MLUDataParallel module that supports DataContainer.
    +
    +    MLUDataParallel is a class inherited from MMDataParall, which supports
    +    MLU training and inference only.
    +
    +    The main differences with MMDataParallel:
    +
    +    - It only supports single-card of MLU, and only use first card to
    +      run training and inference.
    +
    +    - It uses direct host-to-device copy instead of stream-background
    +      scatter.
    +
    +    .. warning::
    +        MLUDataParallel only supports single MLU training, if you need to
    +        train with multiple MLUs, please use MLUDistributedDataParallel
    +        instead. If you have multiple MLUs, you can set the environment
    +        variable ``MLU_VISIBLE_DEVICES=0`` (or any other card number(s))
    +        to specify the running device.
    +
    +    Args:
    +        module (:class:`nn.Module`): Module to be encapsulated.
    +        dim (int): Dimension used to scatter the data. Defaults to 0.
    +    """
    +
    +    def __init__(self, *args, dim=0, **kwargs):
    +        super().__init__(*args, dim=dim, **kwargs)
    +        self.device_ids = [0]
    +        self.src_device_obj = torch.device('mlu:0')
    +
    +    def scatter(self, inputs, kwargs, device_ids):
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/distributed.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/distributed.py
    new file mode 100644
    index 000000000..3768c754c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/distributed.py
    @@ -0,0 +1,20 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +from mmcv.parallel import MMDistributedDataParallel
    +from .scatter_gather import scatter_kwargs
    +
    +
    +class MLUDistributedDataParallel(MMDistributedDataParallel):
    +    """The DDP module supports DataContainer.
    +
    +    MLUDDP has one difference from MMDDP which moves data to MLU with coping
    +    instead of scattering.
    +    """
    +
    +    def to_kwargs(self, inputs, kwargs, device_id):
    +        # Use `self.to_kwargs` instead of `self.scatter` in pytorch1.8
    +        # to move all tensors to device_id
    +        return scatter_kwargs(inputs, kwargs, [device_id], dim=self.dim)
    +
    +    def scatter(self, inputs, kwargs, device_ids):
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/scatter_gather.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/scatter_gather.py
    new file mode 100644
    index 000000000..0b0c9b96f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mlu/scatter_gather.py
    @@ -0,0 +1,59 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.parallel.data_container import DataContainer
    +from ._functions import Scatter
    +
    +
    +def scatter(inputs, target_mlus, dim=0):
    +    """Scatter inputs to target mlu.
    +
    +    The only difference from original :func:`scatter` is to add support for
    +    :type:`~mmcv.parallel.DataContainer`.
    +    """
    +
    +    def scatter_map(obj):
    +        if isinstance(obj, torch.Tensor):
    +            if target_mlus != [-1]:
    +                obj = obj.to('mlu')
    +                return [obj]
    +            else:
    +                # for CPU inference we use self-implemented scatter
    +                return Scatter.forward(target_mlus, obj)
    +        if isinstance(obj, DataContainer):
    +            if obj.cpu_only:
    +                return obj.data
    +            else:
    +                return Scatter.forward(target_mlus, obj.data)
    +        if isinstance(obj, tuple) and len(obj) > 0:
    +            return list(zip(*map(scatter_map, obj)))
    +        if isinstance(obj, list) and len(obj) > 0:
    +            out = list(map(list, zip(*map(scatter_map, obj))))
    +            return out
    +        if isinstance(obj, dict) and len(obj) > 0:
    +            out = list(map(type(obj), zip(*map(scatter_map, obj.items()))))
    +            return out
    +        return [obj for targets in target_mlus]
    +
    +    # After scatter_map is called, a scatter_map cell will exist. This cell
    +    # has a reference to the actual function scatter_map, which has references
    +    # to a closure that has a reference to the scatter_map cell (because the
    +    # fn is recursive). To avoid this reference cycle, we set the function to
    +    # None, clearing the cell
    +    try:
    +        return scatter_map(inputs)
    +    finally:
    +        scatter_map = None
    +
    +
    +def scatter_kwargs(inputs, kwargs, target_mlus, dim=0):
    +    """Scatter with support for kwargs dictionary."""
    +    inputs = scatter(inputs, target_mlus, dim) if inputs else []
    +    kwargs = scatter(kwargs, target_mlus, dim) if kwargs else []
    +    if len(inputs) < len(kwargs):
    +        inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
    +    elif len(kwargs) < len(inputs):
    +        kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
    +    inputs = tuple(inputs)
    +    kwargs = tuple(kwargs)
    +    return inputs, kwargs
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/__init__.py
    new file mode 100644
    index 000000000..e28144ef0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/__init__.py
    @@ -0,0 +1,4 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .data_parallel import MPSDataParallel
    +
    +__all__ = ['MPSDataParallel']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/data_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/data_parallel.py
    new file mode 100644
    index 000000000..7ae5396d2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/mps/data_parallel.py
    @@ -0,0 +1,34 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +import torch
    +
    +from mmcv.parallel import MMDataParallel
    +from ..scatter_gather import scatter_kwargs
    +
    +
    +class MPSDataParallel(MMDataParallel):
    +    """The MPSDataParallel module that supports DataContainer.
    +
    +    MPSDataParallel is a class inherited from MMDataParall, which supports
    +    MPS training and inference only.
    +
    +    The main differences with MMDataParallel:
    +
    +    - It only supports single-card of MPS, and only use first card to
    +      run training and inference.
    +
    +    - It uses direct host-to-device copy instead of stream-background
    +      scatter.
    +
    +    Args:
    +        module (:class:`nn.Module`): Module to be encapsulated.
    +        dim (int): Dimension used to scatter the data. Defaults to 0.
    +    """
    +
    +    def __init__(self, *args, dim=0, **kwargs):
    +        super().__init__(*args, dim=dim, **kwargs)
    +        self.device_ids = [0]
    +        self.src_device_obj = torch.device('mps:0')
    +
    +    def scatter(self, inputs, kwargs, device_ids):
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/__init__.py
    new file mode 100644
    index 000000000..1a93b3967
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/__init__.py
    @@ -0,0 +1,6 @@
    +# Copyright Huawei Technologies Co., Ltd. All rights reserved.
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .data_parallel import NPUDataParallel
    +from .distributed import NPUDistributedDataParallel
    +
    +__all__ = ['NPUDataParallel', 'NPUDistributedDataParallel']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/data_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/data_parallel.py
    new file mode 100644
    index 000000000..c107b2240
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/data_parallel.py
    @@ -0,0 +1,59 @@
    +# Copyright Huawei Technologies Co., Ltd. All rights reserved.
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +import sys
    +
    +import torch
    +
    +from mmcv.device.scatter_gather import scatter_kwargs
    +from mmcv.parallel import MMDataParallel
    +
    +
    +def _check_balance(*args, **kwargs):
    +    return
    +
    +
    +# Since we do not have a similar hardware unit multi_processor
    +# on the NPU, the corresponding# devices_properties does not
    +# have this property and cannot be checked. So we masked the
    +# _check_balance function in DataParallel to make initialization pass.
    +for m in sys.modules:
    +    if m.startswith('torch') or 'mmcv' in m:
    +        if hasattr(sys.modules[m], '_check_balance'):
    +            setattr(sys.modules[m], '_check_balance', _check_balance)
    +
    +
    +class NPUDataParallel(MMDataParallel):
    +    """The NPUDataParallel module that supports DataContainer.
    +
    +    NPUDataParallel is a class inherited from MMDataParall, which supports
    +    NPU training and inference only.
    +
    +    The main differences with MMDataParallel:
    +
    +    - It only supports single-card of NPU, and only use first card to
    +      run training and inference.
    +
    +    - It uses direct host-to-device copy instead of stream-background
    +      scatter.
    +
    +    .. warning::
    +        NPUDataParallel only supports single NPU training, if you need to
    +        train with multiple NPUs, please use NPUDistributedDataParallel
    +        instead. If you have multiple NPUs, you can toggle device_ids
    +        parameters passed in for this function to specify the running device.
    +
    +    Args:
    +        module (:class:`nn.Module`): Module to be encapsulated.
    +        dim (int): Dimension used to scatter the data. Defaults to 0.
    +    """
    +
    +    def __init__(self, *args, dim=0, **kwargs):
    +        super().__init__(*args, dim=dim, **kwargs)
    +        device_id = kwargs.get('device_ids', [0])[0]
    +        self.device_ids = [device_id]
    +        self.src_device_obj = torch.device(f'npu:{device_id}')
    +        torch.npu.set_device(self.src_device_obj)
    +
    +    def scatter(self, inputs, kwargs, device_ids):
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/distributed.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/distributed.py
    new file mode 100644
    index 000000000..5e4468be5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/npu/distributed.py
    @@ -0,0 +1,33 @@
    +# Copyright Huawei Technologies Co., Ltd. All rights reserved.
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +from mmcv.device.scatter_gather import scatter_kwargs
    +from mmcv.parallel import MMDistributedDataParallel
    +
    +
    +class NPUDistributedDataParallel(MMDistributedDataParallel):
    +    """The DDP module supports DataContainer.
    +
    +    NPUDDP has one difference from MMDDP which moves data to NPU with coping
    +    instead of scattering.
    +    """
    +
    +    def to_kwargs(self, inputs, kwargs, device_id):
    +        # Use `self.to_kwargs` instead of `self.scatter` in pytorch1.8
    +        # to move all tensors to device_id
    +        return scatter_kwargs(inputs, kwargs, [device_id], dim=self.dim)
    +
    +    def scatter(self, inputs, kwargs, device_ids):
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    +
    +    def forward(self, *inputs, **kwargs):
    +        # Since the scatter method is not supported on the NPU
    +        # and the DDP class is rewritten, when the forward of DDP
    +        # is used, the NPU will mask the scatter branch,
    +        # resulting in the input not being placed on the device side.
    +        # So, forward has been rewritten here primarily to circumvent
    +        # this situation that would cause the device misalignment.
    +        if self.device_ids:
    +            inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
    +            return super().forward(*inputs[0], **kwargs[0])
    +        return super().forward(*inputs, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/scatter_gather.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/scatter_gather.py
    new file mode 100644
    index 000000000..744b0ca51
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/scatter_gather.py
    @@ -0,0 +1,64 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.parallel.data_container import DataContainer
    +from mmcv.utils import deprecated_api_warning
    +from ._functions import Scatter
    +from .utils import get_device
    +
    +
    +@deprecated_api_warning({'target_mlus': 'target_devices'})
    +def scatter(inputs, target_devices, dim=0):
    +    """Scatter inputs to target devices.
    +
    +    The only difference from original :func:`scatter` is to add support for
    +    :type:`~mmcv.parallel.DataContainer`.
    +    """
    +    current_device = get_device()
    +
    +    def scatter_map(obj):
    +        if isinstance(obj, torch.Tensor):
    +            if target_devices != [-1]:
    +                obj = obj.to(current_device)
    +                return [obj]
    +            else:
    +                # for CPU inference we use self-implemented scatter
    +                return Scatter.forward(target_devices, obj)
    +        if isinstance(obj, DataContainer):
    +            if obj.cpu_only:
    +                return obj.data
    +            else:
    +                return Scatter.forward(target_devices, obj.data)
    +        if isinstance(obj, tuple) and len(obj) > 0:
    +            return list(zip(*map(scatter_map, obj)))
    +        if isinstance(obj, list) and len(obj) > 0:
    +            out = list(map(list, zip(*map(scatter_map, obj))))
    +            return out
    +        if isinstance(obj, dict) and len(obj) > 0:
    +            out = list(map(type(obj), zip(*map(scatter_map, obj.items()))))
    +            return out
    +        return [obj for _ in target_devices]
    +
    +    # After scatter_map is called, a scatter_map cell will exist. This cell
    +    # has a reference to the actual function scatter_map, which has references
    +    # to a closure that has a reference to the scatter_map cell (because the
    +    # fn is recursive). To avoid this reference cycle, we set the function to
    +    # None, clearing the cell
    +    try:
    +        return scatter_map(inputs)
    +    finally:
    +        scatter_map = None
    +
    +
    +@deprecated_api_warning({'target_mlus': 'target_devices'})
    +def scatter_kwargs(inputs, kwargs, target_devices, dim=0):
    +    """Scatter with support for kwargs dictionary."""
    +    inputs = scatter(inputs, target_devices, dim) if inputs else []
    +    kwargs = scatter(kwargs, target_devices, dim) if kwargs else []
    +    if len(inputs) < len(kwargs):
    +        inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
    +    elif len(kwargs) < len(inputs):
    +        kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
    +    inputs = tuple(inputs)
    +    kwargs = tuple(kwargs)
    +    return inputs, kwargs
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/utils.py
    new file mode 100644
    index 000000000..acdb473bc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/device/utils.py
    @@ -0,0 +1,26 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.utils import (IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE,
    +                        IS_NPU_AVAILABLE)
    +
    +
    +def get_device() -> str:
    +    """Returns the currently existing device type.
    +
    +    .. note::
    +        Since npu provides tools to automatically convert cuda functions,
    +        we need to make judgments on npu first to avoid entering
    +        the cuda branch when using npu.
    +
    +    Returns:
    +        str: cuda | mlu | mps | cpu.
    +    """
    +    if IS_NPU_AVAILABLE:
    +        return 'npu'
    +    elif IS_CUDA_AVAILABLE:
    +        return 'cuda'
    +    elif IS_MLU_AVAILABLE:
    +        return 'mlu'
    +    elif IS_MPS_AVAILABLE:
    +        return 'mps'
    +    else:
    +        return 'cpu'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/__init__.py
    new file mode 100644
    index 000000000..3193b7f66
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/__init__.py
    @@ -0,0 +1,8 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .test import (collect_results_cpu, collect_results_gpu, multi_gpu_test,
    +                   single_gpu_test)
    +
    +__all__ = [
    +    'collect_results_cpu', 'collect_results_gpu', 'multi_gpu_test',
    +    'single_gpu_test'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/test.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/test.py
    new file mode 100644
    index 000000000..83546caec
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/engine/test.py
    @@ -0,0 +1,213 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import pickle
    +import shutil
    +import tempfile
    +import time
    +from typing import Optional
    +
    +import torch
    +import torch.distributed as dist
    +import torch.nn as nn
    +from torch.utils.data import DataLoader
    +
    +import mmcv
    +from mmcv.runner import get_dist_info
    +
    +
    +def single_gpu_test(model: nn.Module, data_loader: DataLoader) -> list:
    +    """Test model with a single gpu.
    +
    +    This method tests model with a single gpu and displays test progress bar.
    +
    +    Args:
    +        model (nn.Module): Model to be tested.
    +        data_loader (nn.Dataloader): Pytorch data loader.
    +
    +    Returns:
    +        list: The prediction results.
    +    """
    +    model.eval()
    +    results = []
    +    dataset = data_loader.dataset
    +    prog_bar = mmcv.ProgressBar(len(dataset))
    +    for data in data_loader:
    +        with torch.no_grad():
    +            result = model(return_loss=False, **data)
    +        results.extend(result)
    +
    +        # Assume result has the same length of batch_size
    +        # refer to https://github.com/open-mmlab/mmcv/issues/985
    +        batch_size = len(result)
    +        for _ in range(batch_size):
    +            prog_bar.update()
    +    return results
    +
    +
    +def multi_gpu_test(model: nn.Module,
    +                   data_loader: DataLoader,
    +                   tmpdir: Optional[str] = None,
    +                   gpu_collect: bool = False) -> Optional[list]:
    +    """Test model with multiple gpus.
    +
    +    This method tests model with multiple gpus and collects the results
    +    under two different modes: gpu and cpu modes. By setting
    +    ``gpu_collect=True``, it encodes results to gpu tensors and use gpu
    +    communication for results collection. On cpu mode it saves the results on
    +    different gpus to ``tmpdir`` and collects them by the rank 0 worker.
    +
    +    Args:
    +        model (nn.Module): Model to be tested.
    +        data_loader (nn.Dataloader): Pytorch data loader.
    +        tmpdir (str): Path of directory to save the temporary results from
    +            different gpus under cpu mode.
    +        gpu_collect (bool): Option to use either gpu or cpu to collect results.
    +
    +    Returns:
    +        list: The prediction results.
    +    """
    +    model.eval()
    +    results = []
    +    dataset = data_loader.dataset
    +    rank, world_size = get_dist_info()
    +    if rank == 0:
    +        prog_bar = mmcv.ProgressBar(len(dataset))
    +    time.sleep(2)  # This line can prevent deadlock problem in some cases.
    +    for i, data in enumerate(data_loader):
    +        with torch.no_grad():
    +            result = model(return_loss=False, **data)
    +        results.extend(result)
    +
    +        if rank == 0:
    +            batch_size = len(result)
    +            batch_size_all = batch_size * world_size
    +            if batch_size_all + prog_bar.completed > len(dataset):
    +                batch_size_all = len(dataset) - prog_bar.completed
    +            for _ in range(batch_size_all):
    +                prog_bar.update()
    +
    +    # collect results from all ranks
    +    if gpu_collect:
    +        result_from_ranks = collect_results_gpu(results, len(dataset))
    +    else:
    +        result_from_ranks = collect_results_cpu(results, len(dataset), tmpdir)
    +    return result_from_ranks
    +
    +
    +def collect_results_cpu(result_part: list,
    +                        size: int,
    +                        tmpdir: Optional[str] = None) -> Optional[list]:
    +    """Collect results under cpu mode.
    +
    +    On cpu mode, this function will save the results on different gpus to
    +    ``tmpdir`` and collect them by the rank 0 worker.
    +
    +    Args:
    +        result_part (list): Result list containing result parts
    +            to be collected.
    +        size (int): Size of the results, commonly equal to length of
    +            the results.
    +        tmpdir (str | None): temporal directory for collected results to
    +            store. If set to None, it will create a random temporal directory
    +            for it.
    +
    +    Returns:
    +        list: The collected results.
    +    """
    +    rank, world_size = get_dist_info()
    +    # create a tmp dir if it is not specified
    +    if tmpdir is None:
    +        MAX_LEN = 512
    +        # 32 is whitespace
    +        dir_tensor = torch.full((MAX_LEN, ),
    +                                32,
    +                                dtype=torch.uint8,
    +                                device='cuda')
    +        if rank == 0:
    +            mmcv.mkdir_or_exist('.dist_test')
    +            tmpdir = tempfile.mkdtemp(dir='.dist_test')
    +            tmpdir = torch.tensor(
    +                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
    +            dir_tensor[:len(tmpdir)] = tmpdir
    +        dist.broadcast(dir_tensor, 0)
    +        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    +    else:
    +        mmcv.mkdir_or_exist(tmpdir)
    +    # dump the part result to the dir
    +    part_file = osp.join(tmpdir, f'part_{rank}.pkl')  # type: ignore
    +    mmcv.dump(result_part, part_file)
    +    dist.barrier()
    +    # collect all parts
    +    if rank != 0:
    +        return None
    +    else:
    +        # load results of all parts from tmp dir
    +        part_list = []
    +        for i in range(world_size):
    +            part_file = osp.join(tmpdir, f'part_{i}.pkl')  # type: ignore
    +            part_result = mmcv.load(part_file)
    +            # When data is severely insufficient, an empty part_result
    +            # on a certain gpu could makes the overall outputs empty.
    +            if part_result:
    +                part_list.append(part_result)
    +        # sort the results
    +        ordered_results = []
    +        for res in zip(*part_list):
    +            ordered_results.extend(list(res))
    +        # the dataloader may pad some samples
    +        ordered_results = ordered_results[:size]
    +        # remove tmp dir
    +        shutil.rmtree(tmpdir)  # type: ignore
    +        return ordered_results
    +
    +
    +def collect_results_gpu(result_part: list, size: int) -> Optional[list]:
    +    """Collect results under gpu mode.
    +
    +    On gpu mode, this function will encode results to gpu tensors and use gpu
    +    communication for results collection.
    +
    +    Args:
    +        result_part (list): Result list containing result parts
    +            to be collected.
    +        size (int): Size of the results, commonly equal to length of
    +            the results.
    +
    +    Returns:
    +        list: The collected results.
    +    """
    +    rank, world_size = get_dist_info()
    +    # dump result part to tensor with pickle
    +    part_tensor = torch.tensor(
    +        bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
    +    # gather all result part tensor shape
    +    shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
    +    shape_list = [shape_tensor.clone() for _ in range(world_size)]
    +    dist.all_gather(shape_list, shape_tensor)
    +    # padding result part tensor to max length
    +    shape_max = torch.tensor(shape_list).max()
    +    part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
    +    part_send[:shape_tensor[0]] = part_tensor
    +    part_recv_list = [
    +        part_tensor.new_zeros(shape_max) for _ in range(world_size)
    +    ]
    +    # gather all result part
    +    dist.all_gather(part_recv_list, part_send)
    +
    +    if rank == 0:
    +        part_list = []
    +        for recv, shape in zip(part_recv_list, shape_list):
    +            part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())
    +            # When data is severely insufficient, an empty part_result
    +            # on a certain gpu could makes the overall outputs empty.
    +            if part_result:
    +                part_list.append(part_result)
    +        # sort the results
    +        ordered_results = []
    +        for res in zip(*part_list):
    +            ordered_results.extend(list(res))
    +        # the dataloader may pad some samples
    +        ordered_results = ordered_results[:size]
    +        return ordered_results
    +    else:
    +        return None
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/__init__.py
    new file mode 100644
    index 000000000..2051b85f7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/__init__.py
    @@ -0,0 +1,11 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .file_client import BaseStorageBackend, FileClient
    +from .handlers import BaseFileHandler, JsonHandler, PickleHandler, YamlHandler
    +from .io import dump, load, register_handler
    +from .parse import dict_from_file, list_from_file
    +
    +__all__ = [
    +    'BaseStorageBackend', 'FileClient', 'load', 'dump', 'register_handler',
    +    'BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler',
    +    'list_from_file', 'dict_from_file'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/file_client.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/file_client.py
    new file mode 100644
    index 000000000..809661b5c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/file_client.py
    @@ -0,0 +1,1176 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import inspect
    +import os
    +import os.path as osp
    +import re
    +import tempfile
    +import warnings
    +from abc import ABCMeta, abstractmethod
    +from contextlib import contextmanager
    +from pathlib import Path
    +from typing import Any, Generator, Iterator, Optional, Tuple, Union
    +from urllib.request import urlopen
    +
    +import mmcv
    +from mmcv.utils.misc import has_method
    +from mmcv.utils.path import is_filepath
    +
    +
    +class BaseStorageBackend(metaclass=ABCMeta):
    +    """Abstract class of storage backends.
    +
    +    All backends need to implement two apis: ``get()`` and ``get_text()``.
    +    ``get()`` reads the file as a byte stream and ``get_text()`` reads the file
    +    as texts.
    +    """
    +
    +    # a flag to indicate whether the backend can create a symlink for a file
    +    _allow_symlink = False
    +
    +    @property
    +    def name(self):
    +        return self.__class__.__name__
    +
    +    @property
    +    def allow_symlink(self):
    +        return self._allow_symlink
    +
    +    @abstractmethod
    +    def get(self, filepath):
    +        pass
    +
    +    @abstractmethod
    +    def get_text(self, filepath):
    +        pass
    +
    +
    +class CephBackend(BaseStorageBackend):
    +    """Ceph storage backend (for internal use).
    +
    +    Args:
    +        path_mapping (dict|None): path mapping dict from local path to Petrel
    +            path. When ``path_mapping={'src': 'dst'}``, ``src`` in ``filepath``
    +            will be replaced by ``dst``. Default: None.
    +
    +    .. warning::
    +        :class:`mmcv.fileio.file_client.CephBackend` will be deprecated,
    +        please use :class:`mmcv.fileio.file_client.PetrelBackend` instead.
    +    """
    +
    +    def __init__(self, path_mapping=None):
    +        try:
    +            import ceph
    +        except ImportError:
    +            raise ImportError('Please install ceph to enable CephBackend.')
    +
    +        warnings.warn(
    +            'CephBackend will be deprecated, please use PetrelBackend instead',
    +            DeprecationWarning)
    +        self._client = ceph.S3Client()
    +        assert isinstance(path_mapping, dict) or path_mapping is None
    +        self.path_mapping = path_mapping
    +
    +    def get(self, filepath):
    +        filepath = str(filepath)
    +        if self.path_mapping is not None:
    +            for k, v in self.path_mapping.items():
    +                filepath = filepath.replace(k, v, 1)
    +        value = self._client.Get(filepath)
    +        value_buf = memoryview(value)
    +        return value_buf
    +
    +    def get_text(self, filepath, encoding=None):
    +        raise NotImplementedError
    +
    +
    +class PetrelBackend(BaseStorageBackend):
    +    """Petrel storage backend (for internal use).
    +
    +    PetrelBackend supports reading and writing data to multiple clusters.
    +    If the file path contains the cluster name, PetrelBackend will read data
    +    from specified cluster or write data to it. Otherwise, PetrelBackend will
    +    access the default cluster.
    +
    +    Args:
    +        path_mapping (dict, optional): Path mapping dict from local path to
    +            Petrel path. When ``path_mapping={'src': 'dst'}``, ``src`` in
    +            ``filepath`` will be replaced by ``dst``. Default: None.
    +        enable_mc (bool, optional): Whether to enable memcached support.
    +            Default: True.
    +        conf_path (str, optional): Config path of Petrel client. Default: None.
    +            `New in version 1.7.1`.
    +
    +    Examples:
    +        >>> filepath1 = 's3://path/of/file'
    +        >>> filepath2 = 'cluster-name:s3://path/of/file'
    +        >>> client = PetrelBackend()
    +        >>> client.get(filepath1)  # get data from default cluster
    +        >>> client.get(filepath2)  # get data from 'cluster-name' cluster
    +    """
    +
    +    def __init__(self,
    +                 path_mapping: Optional[dict] = None,
    +                 enable_mc: bool = True,
    +                 conf_path: str = None):
    +        try:
    +            from petrel_client import client
    +        except ImportError:
    +            raise ImportError('Please install petrel_client to enable '
    +                              'PetrelBackend.')
    +
    +        self._client = client.Client(conf_path=conf_path, enable_mc=enable_mc)
    +        assert isinstance(path_mapping, dict) or path_mapping is None
    +        self.path_mapping = path_mapping
    +
    +    def _map_path(self, filepath: Union[str, Path]) -> str:
    +        """Map ``filepath`` to a string path whose prefix will be replaced by
    +        :attr:`self.path_mapping`.
    +
    +        Args:
    +            filepath (str): Path to be mapped.
    +        """
    +        filepath = str(filepath)
    +        if self.path_mapping is not None:
    +            for k, v in self.path_mapping.items():
    +                filepath = filepath.replace(k, v, 1)
    +        return filepath
    +
    +    def _format_path(self, filepath: str) -> str:
    +        """Convert a ``filepath`` to standard format of petrel oss.
    +
    +        If the ``filepath`` is concatenated by ``os.path.join``, in a Windows
    +        environment, the ``filepath`` will be the format of
    +        's3://bucket_name\\image.jpg'. By invoking :meth:`_format_path`, the
    +        above ``filepath`` will be converted to 's3://bucket_name/image.jpg'.
    +
    +        Args:
    +            filepath (str): Path to be formatted.
    +        """
    +        return re.sub(r'\\+', '/', filepath)
    +
    +    def get(self, filepath: Union[str, Path]) -> memoryview:
    +        """Read data from a given ``filepath`` with 'rb' mode.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +
    +        Returns:
    +            memoryview: A memory view of expected bytes object to avoid
    +                copying. The memoryview object can be converted to bytes by
    +                ``value_buf.tobytes()``.
    +        """
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        value = self._client.Get(filepath)
    +        value_buf = memoryview(value)
    +        return value_buf
    +
    +    def get_text(self,
    +                 filepath: Union[str, Path],
    +                 encoding: str = 'utf-8') -> str:
    +        """Read data from a given ``filepath`` with 'r' mode.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +            encoding (str): The encoding format used to open the ``filepath``.
    +                Default: 'utf-8'.
    +
    +        Returns:
    +            str: Expected text reading from ``filepath``.
    +        """
    +        return str(self.get(filepath), encoding=encoding)
    +
    +    def put(self, obj: bytes, filepath: Union[str, Path]) -> None:
    +        """Save data to a given ``filepath``.
    +
    +        Args:
    +            obj (bytes): Data to be saved.
    +            filepath (str or Path): Path to write data.
    +        """
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        self._client.put(filepath, obj)
    +
    +    def put_text(self,
    +                 obj: str,
    +                 filepath: Union[str, Path],
    +                 encoding: str = 'utf-8') -> None:
    +        """Save data to a given ``filepath``.
    +
    +        Args:
    +            obj (str): Data to be written.
    +            filepath (str or Path): Path to write data.
    +            encoding (str): The encoding format used to encode the ``obj``.
    +                Default: 'utf-8'.
    +        """
    +        self.put(bytes(obj, encoding=encoding), filepath)
    +
    +    def remove(self, filepath: Union[str, Path]) -> None:
    +        """Remove a file.
    +
    +        Args:
    +            filepath (str or Path): Path to be removed.
    +        """
    +        if not has_method(self._client, 'delete'):
    +            raise NotImplementedError(
    +                'Current version of Petrel Python SDK has not supported '
    +                'the `delete` method, please use a higher version or dev'
    +                ' branch instead.')
    +
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        self._client.delete(filepath)
    +
    +    def exists(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path exists.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether exists.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` exists, ``False`` otherwise.
    +        """
    +        if not (has_method(self._client, 'contains')
    +                and has_method(self._client, 'isdir')):
    +            raise NotImplementedError(
    +                'Current version of Petrel Python SDK has not supported '
    +                'the `contains` and `isdir` methods, please use a higher'
    +                'version or dev branch instead.')
    +
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        return self._client.contains(filepath) or self._client.isdir(filepath)
    +
    +    def isdir(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a directory.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a
    +                directory.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a directory,
    +            ``False`` otherwise.
    +        """
    +        if not has_method(self._client, 'isdir'):
    +            raise NotImplementedError(
    +                'Current version of Petrel Python SDK has not supported '
    +                'the `isdir` method, please use a higher version or dev'
    +                ' branch instead.')
    +
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        return self._client.isdir(filepath)
    +
    +    def isfile(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a file.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a file.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a file, ``False``
    +            otherwise.
    +        """
    +        if not has_method(self._client, 'contains'):
    +            raise NotImplementedError(
    +                'Current version of Petrel Python SDK has not supported '
    +                'the `contains` method, please use a higher version or '
    +                'dev branch instead.')
    +
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        return self._client.contains(filepath)
    +
    +    def join_path(self, filepath: Union[str, Path],
    +                  *filepaths: Union[str, Path]) -> str:
    +        """Concatenate all file paths.
    +
    +        Args:
    +            filepath (str or Path): Path to be concatenated.
    +
    +        Returns:
    +            str: The result after concatenation.
    +        """
    +        filepath = self._format_path(self._map_path(filepath))
    +        if filepath.endswith('/'):
    +            filepath = filepath[:-1]
    +        formatted_paths = [filepath]
    +        for path in filepaths:
    +            formatted_paths.append(self._format_path(self._map_path(path)))
    +        return '/'.join(formatted_paths)
    +
    +    @contextmanager
    +    def get_local_path(
    +            self,
    +            filepath: Union[str,
    +                            Path]) -> Generator[Union[str, Path], None, None]:
    +        """Download a file from ``filepath`` and return a temporary path.
    +
    +        ``get_local_path`` is decorated by :meth:`contxtlib.contextmanager`. It
    +        can be called with ``with`` statement, and when exists from the
    +        ``with`` statement, the temporary path will be released.
    +
    +        Args:
    +            filepath (str | Path): Download a file from ``filepath``.
    +
    +        Examples:
    +            >>> client = PetrelBackend()
    +            >>> # After existing from the ``with`` clause,
    +            >>> # the path will be removed
    +            >>> with client.get_local_path('s3://path/of/your/file') as path:
    +            ...     # do something here
    +
    +        Yields:
    +            Iterable[str]: Only yield one temporary path.
    +        """
    +        filepath = self._map_path(filepath)
    +        filepath = self._format_path(filepath)
    +        assert self.isfile(filepath)
    +        try:
    +            f = tempfile.NamedTemporaryFile(delete=False)
    +            f.write(self.get(filepath))
    +            f.close()
    +            yield f.name
    +        finally:
    +            os.remove(f.name)
    +
    +    def list_dir_or_file(self,
    +                         dir_path: Union[str, Path],
    +                         list_dir: bool = True,
    +                         list_file: bool = True,
    +                         suffix: Optional[Union[str, Tuple[str]]] = None,
    +                         recursive: bool = False) -> Iterator[str]:
    +        """Scan a directory to find the interested directories or files in
    +        arbitrary order.
    +
    +        Note:
    +            Petrel has no concept of directories but it simulates the directory
    +            hierarchy in the filesystem through public prefixes. In addition,
    +            if the returned path ends with '/', it means the path is a public
    +            prefix which is a logical directory.
    +
    +        Note:
    +            :meth:`list_dir_or_file` returns the path relative to ``dir_path``.
    +            In addition, the returned path of directory will not contains the
    +            suffix '/' which is consistent with other backends.
    +
    +        Args:
    +            dir_path (str | Path): Path of the directory.
    +            list_dir (bool): List the directories. Default: True.
    +            list_file (bool): List the path of files. Default: True.
    +            suffix (str or tuple[str], optional):  File suffix
    +                that we are interested in. Default: None.
    +            recursive (bool): If set to True, recursively scan the
    +                directory. Default: False.
    +
    +        Yields:
    +            Iterable[str]: A relative path to ``dir_path``.
    +        """
    +        if not has_method(self._client, 'list'):
    +            raise NotImplementedError(
    +                'Current version of Petrel Python SDK has not supported '
    +                'the `list` method, please use a higher version or dev'
    +                ' branch instead.')
    +
    +        dir_path = self._map_path(dir_path)
    +        dir_path = self._format_path(dir_path)
    +        if list_dir and suffix is not None:
    +            raise TypeError(
    +                '`list_dir` should be False when `suffix` is not None')
    +
    +        if (suffix is not None) and not isinstance(suffix, (str, tuple)):
    +            raise TypeError('`suffix` must be a string or tuple of strings')
    +
    +        # Petrel's simulated directory hierarchy assumes that directory paths
    +        # should end with `/`
    +        if not dir_path.endswith('/'):
    +            dir_path += '/'
    +
    +        root = dir_path
    +
    +        def _list_dir_or_file(dir_path, list_dir, list_file, suffix,
    +                              recursive):
    +            for path in self._client.list(dir_path):
    +                # the `self.isdir` is not used here to determine whether path
    +                # is a directory, because `self.isdir` relies on
    +                # `self._client.list`
    +                if path.endswith('/'):  # a directory path
    +                    next_dir_path = self.join_path(dir_path, path)
    +                    if list_dir:
    +                        # get the relative path and exclude the last
    +                        # character '/'
    +                        rel_dir = next_dir_path[len(root):-1]
    +                        yield rel_dir
    +                    if recursive:
    +                        yield from _list_dir_or_file(next_dir_path, list_dir,
    +                                                     list_file, suffix,
    +                                                     recursive)
    +                else:  # a file path
    +                    absolute_path = self.join_path(dir_path, path)
    +                    rel_path = absolute_path[len(root):]
    +                    if (suffix is None
    +                            or rel_path.endswith(suffix)) and list_file:
    +                        yield rel_path
    +
    +        return _list_dir_or_file(dir_path, list_dir, list_file, suffix,
    +                                 recursive)
    +
    +
    +class MemcachedBackend(BaseStorageBackend):
    +    """Memcached storage backend.
    +
    +    Attributes:
    +        server_list_cfg (str): Config file for memcached server list.
    +        client_cfg (str): Config file for memcached client.
    +        sys_path (str | None): Additional path to be appended to `sys.path`.
    +            Default: None.
    +    """
    +
    +    def __init__(self, server_list_cfg, client_cfg, sys_path=None):
    +        if sys_path is not None:
    +            import sys
    +            sys.path.append(sys_path)
    +        try:
    +            import mc
    +        except ImportError:
    +            raise ImportError(
    +                'Please install memcached to enable MemcachedBackend.')
    +
    +        self.server_list_cfg = server_list_cfg
    +        self.client_cfg = client_cfg
    +        self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg,
    +                                                      self.client_cfg)
    +        # mc.pyvector servers as a point which points to a memory cache
    +        self._mc_buffer = mc.pyvector()
    +
    +    def get(self, filepath):
    +        filepath = str(filepath)
    +        import mc
    +        self._client.Get(filepath, self._mc_buffer)
    +        value_buf = mc.ConvertBuffer(self._mc_buffer)
    +        return value_buf
    +
    +    def get_text(self, filepath, encoding=None):
    +        raise NotImplementedError
    +
    +
    +class LmdbBackend(BaseStorageBackend):
    +    """Lmdb storage backend.
    +
    +    Args:
    +        db_path (str): Lmdb database path.
    +        readonly (bool, optional): Lmdb environment parameter. If True,
    +            disallow any write operations. Default: True.
    +        lock (bool, optional): Lmdb environment parameter. If False, when
    +            concurrent access occurs, do not lock the database. Default: False.
    +        readahead (bool, optional): Lmdb environment parameter. If False,
    +            disable the OS filesystem readahead mechanism, which may improve
    +            random read performance when a database is larger than RAM.
    +            Default: False.
    +
    +    Attributes:
    +        db_path (str): Lmdb database path.
    +    """
    +
    +    def __init__(self,
    +                 db_path,
    +                 readonly=True,
    +                 lock=False,
    +                 readahead=False,
    +                 **kwargs):
    +        try:
    +            import lmdb  # NOQA
    +        except ImportError:
    +            raise ImportError('Please install lmdb to enable LmdbBackend.')
    +
    +        self.db_path = str(db_path)
    +        self.readonly = readonly
    +        self.lock = lock
    +        self.readahead = readahead
    +        self.kwargs = kwargs
    +        self._client = None
    +
    +    def get(self, filepath):
    +        """Get values according to the filepath.
    +
    +        Args:
    +            filepath (str | obj:`Path`): Here, filepath is the lmdb key.
    +        """
    +        if self._client is None:
    +            self._client = self._get_client()
    +
    +        with self._client.begin(write=False) as txn:
    +            value_buf = txn.get(str(filepath).encode('utf-8'))
    +        return value_buf
    +
    +    def get_text(self, filepath, encoding=None):
    +        raise NotImplementedError
    +
    +    def _get_client(self):
    +        import lmdb
    +
    +        return lmdb.open(
    +            self.db_path,
    +            readonly=self.readonly,
    +            lock=self.lock,
    +            readahead=self.readahead,
    +            **self.kwargs)
    +
    +    def __del__(self):
    +        self._client.close()
    +
    +
    +class HardDiskBackend(BaseStorageBackend):
    +    """Raw hard disks storage backend."""
    +
    +    _allow_symlink = True
    +
    +    def get(self, filepath: Union[str, Path]) -> bytes:
    +        """Read data from a given ``filepath`` with 'rb' mode.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +
    +        Returns:
    +            bytes: Expected bytes object.
    +        """
    +        with open(filepath, 'rb') as f:
    +            value_buf = f.read()
    +        return value_buf
    +
    +    def get_text(self,
    +                 filepath: Union[str, Path],
    +                 encoding: str = 'utf-8') -> str:
    +        """Read data from a given ``filepath`` with 'r' mode.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +            encoding (str): The encoding format used to open the ``filepath``.
    +                Default: 'utf-8'.
    +
    +        Returns:
    +            str: Expected text reading from ``filepath``.
    +        """
    +        with open(filepath, encoding=encoding) as f:
    +            value_buf = f.read()
    +        return value_buf
    +
    +    def put(self, obj: bytes, filepath: Union[str, Path]) -> None:
    +        """Write data to a given ``filepath`` with 'wb' mode.
    +
    +        Note:
    +            ``put`` will create a directory if the directory of ``filepath``
    +            does not exist.
    +
    +        Args:
    +            obj (bytes): Data to be written.
    +            filepath (str or Path): Path to write data.
    +        """
    +        mmcv.mkdir_or_exist(osp.dirname(filepath))
    +        with open(filepath, 'wb') as f:
    +            f.write(obj)
    +
    +    def put_text(self,
    +                 obj: str,
    +                 filepath: Union[str, Path],
    +                 encoding: str = 'utf-8') -> None:
    +        """Write data to a given ``filepath`` with 'w' mode.
    +
    +        Note:
    +            ``put_text`` will create a directory if the directory of
    +            ``filepath`` does not exist.
    +
    +        Args:
    +            obj (str): Data to be written.
    +            filepath (str or Path): Path to write data.
    +            encoding (str): The encoding format used to open the ``filepath``.
    +                Default: 'utf-8'.
    +        """
    +        mmcv.mkdir_or_exist(osp.dirname(filepath))
    +        with open(filepath, 'w', encoding=encoding) as f:
    +            f.write(obj)
    +
    +    def remove(self, filepath: Union[str, Path]) -> None:
    +        """Remove a file.
    +
    +        Args:
    +            filepath (str or Path): Path to be removed.
    +        """
    +        os.remove(filepath)
    +
    +    def exists(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path exists.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether exists.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` exists, ``False`` otherwise.
    +        """
    +        return osp.exists(filepath)
    +
    +    def isdir(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a directory.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a
    +                directory.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a directory,
    +            ``False`` otherwise.
    +        """
    +        return osp.isdir(filepath)
    +
    +    def isfile(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a file.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a file.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a file, ``False``
    +            otherwise.
    +        """
    +        return osp.isfile(filepath)
    +
    +    def join_path(self, filepath: Union[str, Path],
    +                  *filepaths: Union[str, Path]) -> str:
    +        """Concatenate all file paths.
    +
    +        Join one or more filepath components intelligently. The return value
    +        is the concatenation of filepath and any members of *filepaths.
    +
    +        Args:
    +            filepath (str or Path): Path to be concatenated.
    +
    +        Returns:
    +            str: The result of concatenation.
    +        """
    +        return osp.join(filepath, *filepaths)
    +
    +    @contextmanager
    +    def get_local_path(
    +            self,
    +            filepath: Union[str,
    +                            Path]) -> Generator[Union[str, Path], None, None]:
    +        """Only for unified API and do nothing."""
    +        yield filepath
    +
    +    def list_dir_or_file(self,
    +                         dir_path: Union[str, Path],
    +                         list_dir: bool = True,
    +                         list_file: bool = True,
    +                         suffix: Optional[Union[str, Tuple[str]]] = None,
    +                         recursive: bool = False) -> Iterator[str]:
    +        """Scan a directory to find the interested directories or files in
    +        arbitrary order.
    +
    +        Note:
    +            :meth:`list_dir_or_file` returns the path relative to ``dir_path``.
    +
    +        Args:
    +            dir_path (str | Path): Path of the directory.
    +            list_dir (bool): List the directories. Default: True.
    +            list_file (bool): List the path of files. Default: True.
    +            suffix (str or tuple[str], optional):  File suffix
    +                that we are interested in. Default: None.
    +            recursive (bool): If set to True, recursively scan the
    +                directory. Default: False.
    +
    +        Yields:
    +            Iterable[str]: A relative path to ``dir_path``.
    +        """
    +        if list_dir and suffix is not None:
    +            raise TypeError('`suffix` should be None when `list_dir` is True')
    +
    +        if (suffix is not None) and not isinstance(suffix, (str, tuple)):
    +            raise TypeError('`suffix` must be a string or tuple of strings')
    +
    +        root = dir_path
    +
    +        def _list_dir_or_file(dir_path, list_dir, list_file, suffix,
    +                              recursive):
    +            for entry in os.scandir(dir_path):
    +                if not entry.name.startswith('.') and entry.is_file():
    +                    rel_path = osp.relpath(entry.path, root)
    +                    if (suffix is None
    +                            or rel_path.endswith(suffix)) and list_file:
    +                        yield rel_path
    +                elif osp.isdir(entry.path):
    +                    if list_dir:
    +                        rel_dir = osp.relpath(entry.path, root)
    +                        yield rel_dir
    +                    if recursive:
    +                        yield from _list_dir_or_file(entry.path, list_dir,
    +                                                     list_file, suffix,
    +                                                     recursive)
    +
    +        return _list_dir_or_file(dir_path, list_dir, list_file, suffix,
    +                                 recursive)
    +
    +
    +class HTTPBackend(BaseStorageBackend):
    +    """HTTP and HTTPS storage bachend."""
    +
    +    def get(self, filepath):
    +        value_buf = urlopen(filepath).read()
    +        return value_buf
    +
    +    def get_text(self, filepath, encoding='utf-8'):
    +        value_buf = urlopen(filepath).read()
    +        return value_buf.decode(encoding)
    +
    +    @contextmanager
    +    def get_local_path(
    +            self, filepath: str) -> Generator[Union[str, Path], None, None]:
    +        """Download a file from ``filepath``.
    +
    +        ``get_local_path`` is decorated by :meth:`contxtlib.contextmanager`. It
    +        can be called with ``with`` statement, and when exists from the
    +        ``with`` statement, the temporary path will be released.
    +
    +        Args:
    +            filepath (str): Download a file from ``filepath``.
    +
    +        Examples:
    +            >>> client = HTTPBackend()
    +            >>> # After existing from the ``with`` clause,
    +            >>> # the path will be removed
    +            >>> with client.get_local_path('http://path/of/your/file') as path:
    +            ...     # do something here
    +        """
    +        try:
    +            f = tempfile.NamedTemporaryFile(delete=False)
    +            f.write(self.get(filepath))
    +            f.close()
    +            yield f.name
    +        finally:
    +            os.remove(f.name)
    +
    +
    +class FileClient:
    +    """A general file client to access files in different backends.
    +
    +    The client loads a file or text in a specified backend from its path
    +    and returns it as a binary or text file. There are two ways to choose a
    +    backend, the name of backend and the prefix of path. Although both of them
    +    can be used to choose a storage backend, ``backend`` has a higher priority
    +    that is if they are all set, the storage backend will be chosen by the
    +    backend argument. If they are all `None`, the disk backend will be chosen.
    +    Note that It can also register other backend accessor with a given name,
    +    prefixes, and backend class. In addition, We use the singleton pattern to
    +    avoid repeated object creation. If the arguments are the same, the same
    +    object will be returned.
    +
    +    Args:
    +        backend (str, optional): The storage backend type. Options are "disk",
    +            "ceph", "memcached", "lmdb", "http" and "petrel". Default: None.
    +        prefix (str, optional): The prefix of the registered storage backend.
    +            Options are "s3", "http", "https". Default: None.
    +
    +    Examples:
    +        >>> # only set backend
    +        >>> file_client = FileClient(backend='petrel')
    +        >>> # only set prefix
    +        >>> file_client = FileClient(prefix='s3')
    +        >>> # set both backend and prefix but use backend to choose client
    +        >>> file_client = FileClient(backend='petrel', prefix='s3')
    +        >>> # if the arguments are the same, the same object is returned
    +        >>> file_client1 = FileClient(backend='petrel')
    +        >>> file_client1 is file_client
    +        True
    +
    +    Attributes:
    +        client (:obj:`BaseStorageBackend`): The backend object.
    +    """
    +
    +    _backends = {
    +        'disk': HardDiskBackend,
    +        'ceph': CephBackend,
    +        'memcached': MemcachedBackend,
    +        'lmdb': LmdbBackend,
    +        'petrel': PetrelBackend,
    +        'http': HTTPBackend,
    +    }
    +
    +    _prefix_to_backends = {
    +        's3': PetrelBackend,
    +        'http': HTTPBackend,
    +        'https': HTTPBackend,
    +    }
    +
    +    _instances: dict = {}
    +
    +    client: Any
    +
    +    def __new__(cls, backend=None, prefix=None, **kwargs):
    +        if backend is None and prefix is None:
    +            backend = 'disk'
    +        if backend is not None and backend not in cls._backends:
    +            raise ValueError(
    +                f'Backend {backend} is not supported. Currently supported ones'
    +                f' are {list(cls._backends.keys())}')
    +        if prefix is not None and prefix not in cls._prefix_to_backends:
    +            raise ValueError(
    +                f'prefix {prefix} is not supported. Currently supported ones '
    +                f'are {list(cls._prefix_to_backends.keys())}')
    +
    +        # concatenate the arguments to a unique key for determining whether
    +        # objects with the same arguments were created
    +        arg_key = f'{backend}:{prefix}'
    +        for key, value in kwargs.items():
    +            arg_key += f':{key}:{value}'
    +
    +        if arg_key in cls._instances:
    +            _instance = cls._instances[arg_key]
    +        else:
    +            # create a new object and put it to _instance
    +            _instance = super().__new__(cls)
    +            if backend is not None:
    +                _instance.client = cls._backends[backend](**kwargs)
    +            else:
    +                _instance.client = cls._prefix_to_backends[prefix](**kwargs)
    +
    +            cls._instances[arg_key] = _instance
    +
    +        return _instance
    +
    +    @property
    +    def name(self):
    +        return self.client.name
    +
    +    @property
    +    def allow_symlink(self):
    +        return self.client.allow_symlink
    +
    +    @staticmethod
    +    def parse_uri_prefix(uri: Union[str, Path]) -> Optional[str]:
    +        """Parse the prefix of a uri.
    +
    +        Args:
    +            uri (str | Path): Uri to be parsed that contains the file prefix.
    +
    +        Examples:
    +            >>> FileClient.parse_uri_prefix('s3://path/of/your/file')
    +            's3'
    +
    +        Returns:
    +            str | None: Return the prefix of uri if the uri contains '://' else
    +            ``None``.
    +        """
    +        assert is_filepath(uri)
    +        uri = str(uri)
    +        if '://' not in uri:
    +            return None
    +        else:
    +            prefix, _ = uri.split('://')
    +            # In the case of PetrelBackend, the prefix may contains the cluster
    +            # name like clusterName:s3
    +            if ':' in prefix:
    +                _, prefix = prefix.split(':')
    +            return prefix
    +
    +    @classmethod
    +    def infer_client(cls,
    +                     file_client_args: Optional[dict] = None,
    +                     uri: Optional[Union[str, Path]] = None) -> 'FileClient':
    +        """Infer a suitable file client based on the URI and arguments.
    +
    +        Args:
    +            file_client_args (dict, optional): Arguments to instantiate a
    +                FileClient. Default: None.
    +            uri (str | Path, optional): Uri to be parsed that contains the file
    +                prefix. Default: None.
    +
    +        Examples:
    +            >>> uri = 's3://path/of/your/file'
    +            >>> file_client = FileClient.infer_client(uri=uri)
    +            >>> file_client_args = {'backend': 'petrel'}
    +            >>> file_client = FileClient.infer_client(file_client_args)
    +
    +        Returns:
    +            FileClient: Instantiated FileClient object.
    +        """
    +        assert file_client_args is not None or uri is not None
    +        if file_client_args is None:
    +            file_prefix = cls.parse_uri_prefix(uri)  # type: ignore
    +            return cls(prefix=file_prefix)
    +        else:
    +            return cls(**file_client_args)
    +
    +    @classmethod
    +    def _register_backend(cls, name, backend, force=False, prefixes=None):
    +        if not isinstance(name, str):
    +            raise TypeError('the backend name should be a string, '
    +                            f'but got {type(name)}')
    +        if not inspect.isclass(backend):
    +            raise TypeError(
    +                f'backend should be a class but got {type(backend)}')
    +        if not issubclass(backend, BaseStorageBackend):
    +            raise TypeError(
    +                f'backend {backend} is not a subclass of BaseStorageBackend')
    +        if not force and name in cls._backends:
    +            raise KeyError(
    +                f'{name} is already registered as a storage backend, '
    +                'add "force=True" if you want to override it')
    +
    +        if name in cls._backends and force:
    +            for arg_key, instance in list(cls._instances.items()):
    +                if isinstance(instance.client, cls._backends[name]):
    +                    cls._instances.pop(arg_key)
    +        cls._backends[name] = backend
    +
    +        if prefixes is not None:
    +            if isinstance(prefixes, str):
    +                prefixes = [prefixes]
    +            else:
    +                assert isinstance(prefixes, (list, tuple))
    +            for prefix in prefixes:
    +                if prefix not in cls._prefix_to_backends:
    +                    cls._prefix_to_backends[prefix] = backend
    +                elif (prefix in cls._prefix_to_backends) and force:
    +                    overridden_backend = cls._prefix_to_backends[prefix]
    +                    if isinstance(overridden_backend, list):
    +                        overridden_backend = tuple(overridden_backend)
    +                    for arg_key, instance in list(cls._instances.items()):
    +                        if isinstance(instance.client, overridden_backend):
    +                            cls._instances.pop(arg_key)
    +                    cls._prefix_to_backends[prefix] = backend
    +                else:
    +                    raise KeyError(
    +                        f'{prefix} is already registered as a storage backend,'
    +                        ' add "force=True" if you want to override it')
    +
    +    @classmethod
    +    def register_backend(cls, name, backend=None, force=False, prefixes=None):
    +        """Register a backend to FileClient.
    +
    +        This method can be used as a normal class method or a decorator.
    +
    +        .. code-block:: python
    +
    +            class NewBackend(BaseStorageBackend):
    +
    +                def get(self, filepath):
    +                    return filepath
    +
    +                def get_text(self, filepath):
    +                    return filepath
    +
    +            FileClient.register_backend('new', NewBackend)
    +
    +        or
    +
    +        .. code-block:: python
    +
    +            @FileClient.register_backend('new')
    +            class NewBackend(BaseStorageBackend):
    +
    +                def get(self, filepath):
    +                    return filepath
    +
    +                def get_text(self, filepath):
    +                    return filepath
    +
    +        Args:
    +            name (str): The name of the registered backend.
    +            backend (class, optional): The backend class to be registered,
    +                which must be a subclass of :class:`BaseStorageBackend`.
    +                When this method is used as a decorator, backend is None.
    +                Defaults to None.
    +            force (bool, optional): Whether to override the backend if the name
    +                has already been registered. Defaults to False.
    +            prefixes (str or list[str] or tuple[str], optional): The prefixes
    +                of the registered storage backend. Default: None.
    +                `New in version 1.3.15.`
    +        """
    +        if backend is not None:
    +            cls._register_backend(
    +                name, backend, force=force, prefixes=prefixes)
    +            return
    +
    +        def _register(backend_cls):
    +            cls._register_backend(
    +                name, backend_cls, force=force, prefixes=prefixes)
    +            return backend_cls
    +
    +        return _register
    +
    +    def get(self, filepath: Union[str, Path]) -> Union[bytes, memoryview]:
    +        """Read data from a given ``filepath`` with 'rb' mode.
    +
    +        Note:
    +            There are two types of return values for ``get``, one is ``bytes``
    +            and the other is ``memoryview``. The advantage of using memoryview
    +            is that you can avoid copying, and if you want to convert it to
    +            ``bytes``, you can use ``.tobytes()``.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +
    +        Returns:
    +            bytes | memoryview: Expected bytes object or a memory view of the
    +            bytes object.
    +        """
    +        return self.client.get(filepath)
    +
    +    def get_text(self, filepath: Union[str, Path], encoding='utf-8') -> str:
    +        """Read data from a given ``filepath`` with 'r' mode.
    +
    +        Args:
    +            filepath (str or Path): Path to read data.
    +            encoding (str): The encoding format used to open the ``filepath``.
    +                Default: 'utf-8'.
    +
    +        Returns:
    +            str: Expected text reading from ``filepath``.
    +        """
    +        return self.client.get_text(filepath, encoding)
    +
    +    def put(self, obj: bytes, filepath: Union[str, Path]) -> None:
    +        """Write data to a given ``filepath`` with 'wb' mode.
    +
    +        Note:
    +            ``put`` should create a directory if the directory of ``filepath``
    +            does not exist.
    +
    +        Args:
    +            obj (bytes): Data to be written.
    +            filepath (str or Path): Path to write data.
    +        """
    +        self.client.put(obj, filepath)
    +
    +    def put_text(self, obj: str, filepath: Union[str, Path]) -> None:
    +        """Write data to a given ``filepath`` with 'w' mode.
    +
    +        Note:
    +            ``put_text`` should create a directory if the directory of
    +            ``filepath`` does not exist.
    +
    +        Args:
    +            obj (str): Data to be written.
    +            filepath (str or Path): Path to write data.
    +            encoding (str, optional): The encoding format used to open the
    +                `filepath`. Default: 'utf-8'.
    +        """
    +        self.client.put_text(obj, filepath)
    +
    +    def remove(self, filepath: Union[str, Path]) -> None:
    +        """Remove a file.
    +
    +        Args:
    +            filepath (str, Path): Path to be removed.
    +        """
    +        self.client.remove(filepath)
    +
    +    def exists(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path exists.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether exists.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` exists, ``False`` otherwise.
    +        """
    +        return self.client.exists(filepath)
    +
    +    def isdir(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a directory.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a
    +                directory.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a directory,
    +            ``False`` otherwise.
    +        """
    +        return self.client.isdir(filepath)
    +
    +    def isfile(self, filepath: Union[str, Path]) -> bool:
    +        """Check whether a file path is a file.
    +
    +        Args:
    +            filepath (str or Path): Path to be checked whether it is a file.
    +
    +        Returns:
    +            bool: Return ``True`` if ``filepath`` points to a file, ``False``
    +            otherwise.
    +        """
    +        return self.client.isfile(filepath)
    +
    +    def join_path(self, filepath: Union[str, Path],
    +                  *filepaths: Union[str, Path]) -> str:
    +        """Concatenate all file paths.
    +
    +        Join one or more filepath components intelligently. The return value
    +        is the concatenation of filepath and any members of *filepaths.
    +
    +        Args:
    +            filepath (str or Path): Path to be concatenated.
    +
    +        Returns:
    +            str: The result of concatenation.
    +        """
    +        return self.client.join_path(filepath, *filepaths)
    +
    +    @contextmanager
    +    def get_local_path(
    +            self,
    +            filepath: Union[str,
    +                            Path]) -> Generator[Union[str, Path], None, None]:
    +        """Download data from ``filepath`` and write the data to local path.
    +
    +        ``get_local_path`` is decorated by :meth:`contxtlib.contextmanager`. It
    +        can be called with ``with`` statement, and when exists from the
    +        ``with`` statement, the temporary path will be released.
    +
    +        Note:
    +            If the ``filepath`` is a local path, just return itself.
    +
    +        .. warning::
    +            ``get_local_path`` is an experimental interface that may change in
    +            the future.
    +
    +        Args:
    +            filepath (str or Path): Path to be read data.
    +
    +        Examples:
    +            >>> file_client = FileClient(prefix='s3')
    +            >>> with file_client.get_local_path('s3://bucket/abc.jpg') as path:
    +            ...     # do something here
    +
    +        Yields:
    +            Iterable[str]: Only yield one path.
    +        """
    +        with self.client.get_local_path(str(filepath)) as local_path:
    +            yield local_path
    +
    +    def list_dir_or_file(self,
    +                         dir_path: Union[str, Path],
    +                         list_dir: bool = True,
    +                         list_file: bool = True,
    +                         suffix: Optional[Union[str, Tuple[str]]] = None,
    +                         recursive: bool = False) -> Iterator[str]:
    +        """Scan a directory to find the interested directories or files in
    +        arbitrary order.
    +
    +        Note:
    +            :meth:`list_dir_or_file` returns the path relative to ``dir_path``.
    +
    +        Args:
    +            dir_path (str | Path): Path of the directory.
    +            list_dir (bool): List the directories. Default: True.
    +            list_file (bool): List the path of files. Default: True.
    +            suffix (str or tuple[str], optional):  File suffix
    +                that we are interested in. Default: None.
    +            recursive (bool): If set to True, recursively scan the
    +                directory. Default: False.
    +
    +        Yields:
    +            Iterable[str]: A relative path to ``dir_path``.
    +        """
    +        yield from self.client.list_dir_or_file(dir_path, list_dir, list_file,
    +                                                suffix, recursive)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/__init__.py
    new file mode 100644
    index 000000000..aa24d9197
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/__init__.py
    @@ -0,0 +1,7 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .base import BaseFileHandler
    +from .json_handler import JsonHandler
    +from .pickle_handler import PickleHandler
    +from .yaml_handler import YamlHandler
    +
    +__all__ = ['BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/base.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/base.py
    new file mode 100644
    index 000000000..0c9cc15b6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/base.py
    @@ -0,0 +1,30 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from abc import ABCMeta, abstractmethod
    +
    +
    +class BaseFileHandler(metaclass=ABCMeta):
    +    # `str_like` is a flag to indicate whether the type of file object is
    +    # str-like object or bytes-like object. Pickle only processes bytes-like
    +    # objects but json only processes str-like object. If it is str-like
    +    # object, `StringIO` will be used to process the buffer.
    +    str_like = True
    +
    +    @abstractmethod
    +    def load_from_fileobj(self, file, **kwargs):
    +        pass
    +
    +    @abstractmethod
    +    def dump_to_fileobj(self, obj, file, **kwargs):
    +        pass
    +
    +    @abstractmethod
    +    def dump_to_str(self, obj, **kwargs):
    +        pass
    +
    +    def load_from_path(self, filepath: str, mode: str = 'r', **kwargs):
    +        with open(filepath, mode) as f:
    +            return self.load_from_fileobj(f, **kwargs)
    +
    +    def dump_to_path(self, obj, filepath: str, mode: str = 'w', **kwargs):
    +        with open(filepath, mode) as f:
    +            self.dump_to_fileobj(obj, f, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/json_handler.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/json_handler.py
    new file mode 100644
    index 000000000..18d4f15f7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/json_handler.py
    @@ -0,0 +1,36 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import json
    +
    +import numpy as np
    +
    +from .base import BaseFileHandler
    +
    +
    +def set_default(obj):
    +    """Set default json values for non-serializable values.
    +
    +    It helps convert ``set``, ``range`` and ``np.ndarray`` data types to list.
    +    It also converts ``np.generic`` (including ``np.int32``, ``np.float32``,
    +    etc.) into plain numbers of plain python built-in types.
    +    """
    +    if isinstance(obj, (set, range)):
    +        return list(obj)
    +    elif isinstance(obj, np.ndarray):
    +        return obj.tolist()
    +    elif isinstance(obj, np.generic):
    +        return obj.item()
    +    raise TypeError(f'{type(obj)} is unsupported for json dump')
    +
    +
    +class JsonHandler(BaseFileHandler):
    +
    +    def load_from_fileobj(self, file):
    +        return json.load(file)
    +
    +    def dump_to_fileobj(self, obj, file, **kwargs):
    +        kwargs.setdefault('default', set_default)
    +        json.dump(obj, file, **kwargs)
    +
    +    def dump_to_str(self, obj, **kwargs):
    +        kwargs.setdefault('default', set_default)
    +        return json.dumps(obj, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/pickle_handler.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/pickle_handler.py
    new file mode 100644
    index 000000000..073856fd2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/pickle_handler.py
    @@ -0,0 +1,26 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pickle
    +
    +from .base import BaseFileHandler
    +
    +
    +class PickleHandler(BaseFileHandler):
    +
    +    str_like = False
    +
    +    def load_from_fileobj(self, file, **kwargs):
    +        return pickle.load(file, **kwargs)
    +
    +    def load_from_path(self, filepath, **kwargs):
    +        return super().load_from_path(filepath, mode='rb', **kwargs)
    +
    +    def dump_to_str(self, obj, **kwargs):
    +        kwargs.setdefault('protocol', 2)
    +        return pickle.dumps(obj, **kwargs)
    +
    +    def dump_to_fileobj(self, obj, file, **kwargs):
    +        kwargs.setdefault('protocol', 2)
    +        pickle.dump(obj, file, **kwargs)
    +
    +    def dump_to_path(self, obj, filepath, **kwargs):
    +        super().dump_to_path(obj, filepath, mode='wb', **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/yaml_handler.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/yaml_handler.py
    new file mode 100644
    index 000000000..1c1b07794
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/handlers/yaml_handler.py
    @@ -0,0 +1,25 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import yaml
    +
    +try:
    +    from yaml import CDumper as Dumper
    +    from yaml import CLoader as Loader
    +except ImportError:
    +    from yaml import Loader, Dumper  # type: ignore
    +
    +from .base import BaseFileHandler  # isort:skip
    +
    +
    +class YamlHandler(BaseFileHandler):
    +
    +    def load_from_fileobj(self, file, **kwargs):
    +        kwargs.setdefault('Loader', Loader)
    +        return yaml.load(file, **kwargs)
    +
    +    def dump_to_fileobj(self, obj, file, **kwargs):
    +        kwargs.setdefault('Dumper', Dumper)
    +        yaml.dump(obj, file, **kwargs)
    +
    +    def dump_to_str(self, obj, **kwargs):
    +        kwargs.setdefault('Dumper', Dumper)
    +        return yaml.dump(obj, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/io.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/io.py
    new file mode 100644
    index 000000000..91192103c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/io.py
    @@ -0,0 +1,163 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from io import BytesIO, StringIO
    +from pathlib import Path
    +from typing import Any, Callable, Dict, List, Optional, TextIO, Union
    +
    +from ..utils import is_list_of
    +from .file_client import FileClient
    +from .handlers import BaseFileHandler, JsonHandler, PickleHandler, YamlHandler
    +
    +FileLikeObject = Union[TextIO, StringIO, BytesIO]
    +
    +file_handlers = {
    +    'json': JsonHandler(),
    +    'yaml': YamlHandler(),
    +    'yml': YamlHandler(),
    +    'pickle': PickleHandler(),
    +    'pkl': PickleHandler()
    +}
    +
    +
    +def load(file: Union[str, Path, FileLikeObject],
    +         file_format: Optional[str] = None,
    +         file_client_args: Optional[Dict] = None,
    +         **kwargs):
    +    """Load data from json/yaml/pickle files.
    +
    +    This method provides a unified api for loading data from serialized files.
    +
    +    Note:
    +        In v1.3.16 and later, ``load`` supports loading data from serialized
    +        files those can be storaged in different backends.
    +
    +    Args:
    +        file (str or :obj:`Path` or file-like object): Filename or a file-like
    +            object.
    +        file_format (str, optional): If not specified, the file format will be
    +            inferred from the file extension, otherwise use the specified one.
    +            Currently supported formats include "json", "yaml/yml" and
    +            "pickle/pkl".
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Examples:
    +        >>> load('/path/of/your/file')  # file is storaged in disk
    +        >>> load('https://path/of/your/file')  # file is storaged in Internet
    +        >>> load('s3://path/of/your/file')  # file is storaged in petrel
    +
    +    Returns:
    +        The content from the file.
    +    """
    +    if isinstance(file, Path):
    +        file = str(file)
    +    if file_format is None and isinstance(file, str):
    +        file_format = file.split('.')[-1]
    +    if file_format not in file_handlers:
    +        raise TypeError(f'Unsupported format: {file_format}')
    +
    +    handler = file_handlers[file_format]
    +    f: FileLikeObject
    +    if isinstance(file, str):
    +        file_client = FileClient.infer_client(file_client_args, file)
    +        if handler.str_like:
    +            with StringIO(file_client.get_text(file)) as f:
    +                obj = handler.load_from_fileobj(f, **kwargs)
    +        else:
    +            with BytesIO(file_client.get(file)) as f:
    +                obj = handler.load_from_fileobj(f, **kwargs)
    +    elif hasattr(file, 'read'):
    +        obj = handler.load_from_fileobj(file, **kwargs)
    +    else:
    +        raise TypeError('"file" must be a filepath str or a file-object')
    +    return obj
    +
    +
    +def dump(obj: Any,
    +         file: Optional[Union[str, Path, FileLikeObject]] = None,
    +         file_format: Optional[str] = None,
    +         file_client_args: Optional[Dict] = None,
    +         **kwargs):
    +    """Dump data to json/yaml/pickle strings or files.
    +
    +    This method provides a unified api for dumping data as strings or to files,
    +    and also supports custom arguments for each file format.
    +
    +    Note:
    +        In v1.3.16 and later, ``dump`` supports dumping data as strings or to
    +        files which is saved to different backends.
    +
    +    Args:
    +        obj (any): The python object to be dumped.
    +        file (str or :obj:`Path` or file-like object, optional): If not
    +            specified, then the object is dumped to a str, otherwise to a file
    +            specified by the filename or file-like object.
    +        file_format (str, optional): Same as :func:`load`.
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Examples:
    +        >>> dump('hello world', '/path/of/your/file')  # disk
    +        >>> dump('hello world', 's3://path/of/your/file')  # ceph or petrel
    +
    +    Returns:
    +        bool: True for success, False otherwise.
    +    """
    +    if isinstance(file, Path):
    +        file = str(file)
    +    if file_format is None:
    +        if isinstance(file, str):
    +            file_format = file.split('.')[-1]
    +        elif file is None:
    +            raise ValueError(
    +                'file_format must be specified since file is None')
    +    if file_format not in file_handlers:
    +        raise TypeError(f'Unsupported format: {file_format}')
    +    f: FileLikeObject
    +    handler = file_handlers[file_format]
    +    if file is None:
    +        return handler.dump_to_str(obj, **kwargs)
    +    elif isinstance(file, str):
    +        file_client = FileClient.infer_client(file_client_args, file)
    +        if handler.str_like:
    +            with StringIO() as f:
    +                handler.dump_to_fileobj(obj, f, **kwargs)
    +                file_client.put_text(f.getvalue(), file)
    +        else:
    +            with BytesIO() as f:
    +                handler.dump_to_fileobj(obj, f, **kwargs)
    +                file_client.put(f.getvalue(), file)
    +    elif hasattr(file, 'write'):
    +        handler.dump_to_fileobj(obj, file, **kwargs)
    +    else:
    +        raise TypeError('"file" must be a filename str or a file-object')
    +
    +
    +def _register_handler(handler: BaseFileHandler,
    +                      file_formats: Union[str, List[str]]) -> None:
    +    """Register a handler for some file extensions.
    +
    +    Args:
    +        handler (:obj:`BaseFileHandler`): Handler to be registered.
    +        file_formats (str or list[str]): File formats to be handled by this
    +            handler.
    +    """
    +    if not isinstance(handler, BaseFileHandler):
    +        raise TypeError(
    +            f'handler must be a child of BaseFileHandler, not {type(handler)}')
    +    if isinstance(file_formats, str):
    +        file_formats = [file_formats]
    +    if not is_list_of(file_formats, str):
    +        raise TypeError('file_formats must be a str or a list of str')
    +    for ext in file_formats:
    +        file_handlers[ext] = handler
    +
    +
    +def register_handler(file_formats: Union[str, list], **kwargs) -> Callable:
    +
    +    def wrap(cls):
    +        _register_handler(cls(**kwargs), file_formats)
    +        return cls
    +
    +    return wrap
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/parse.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/parse.py
    new file mode 100644
    index 000000000..f28e59119
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/fileio/parse.py
    @@ -0,0 +1,99 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +from io import StringIO
    +from pathlib import Path
    +from typing import Dict, List, Optional, Union
    +
    +from .file_client import FileClient
    +
    +
    +def list_from_file(filename: Union[str, Path],
    +                   prefix: str = '',
    +                   offset: int = 0,
    +                   max_num: int = 0,
    +                   encoding: str = 'utf-8',
    +                   file_client_args: Optional[Dict] = None) -> List:
    +    """Load a text file and parse the content as a list of strings.
    +
    +    Note:
    +        In v1.3.16 and later, ``list_from_file`` supports loading a text file
    +        which can be storaged in different backends and parsing the content as
    +        a list for strings.
    +
    +    Args:
    +        filename (str): Filename.
    +        prefix (str): The prefix to be inserted to the beginning of each item.
    +        offset (int): The offset of lines.
    +        max_num (int): The maximum number of lines to be read,
    +            zeros and negatives mean no limitation.
    +        encoding (str): Encoding used to open the file. Default utf-8.
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Examples:
    +        >>> list_from_file('/path/of/your/file')  # disk
    +        ['hello', 'world']
    +        >>> list_from_file('s3://path/of/your/file')  # ceph or petrel
    +        ['hello', 'world']
    +
    +    Returns:
    +        list[str]: A list of strings.
    +    """
    +    cnt = 0
    +    item_list = []
    +    file_client = FileClient.infer_client(file_client_args, filename)
    +    with StringIO(file_client.get_text(filename, encoding)) as f:
    +        for _ in range(offset):
    +            f.readline()
    +        for line in f:
    +            if 0 < max_num <= cnt:
    +                break
    +            item_list.append(prefix + line.rstrip('\n\r'))
    +            cnt += 1
    +    return item_list
    +
    +
    +def dict_from_file(filename: Union[str, Path],
    +                   key_type: type = str,
    +                   encoding: str = 'utf-8',
    +                   file_client_args: Optional[Dict] = None) -> Dict:
    +    """Load a text file and parse the content as a dict.
    +
    +    Each line of the text file will be two or more columns split by
    +    whitespaces or tabs. The first column will be parsed as dict keys, and
    +    the following columns will be parsed as dict values.
    +
    +    Note:
    +        In v1.3.16 and later, ``dict_from_file`` supports loading a text file
    +        which can be storaged in different backends and parsing the content as
    +        a dict.
    +
    +    Args:
    +        filename(str): Filename.
    +        key_type(type): Type of the dict keys. str is user by default and
    +            type conversion will be performed if specified.
    +        encoding (str): Encoding used to open the file. Default utf-8.
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Examples:
    +        >>> dict_from_file('/path/of/your/file')  # disk
    +        {'key1': 'value1', 'key2': 'value2'}
    +        >>> dict_from_file('s3://path/of/your/file')  # ceph or petrel
    +        {'key1': 'value1', 'key2': 'value2'}
    +
    +    Returns:
    +        dict: The parsed contents.
    +    """
    +    mapping = {}
    +    file_client = FileClient.infer_client(file_client_args, filename)
    +    with StringIO(file_client.get_text(filename, encoding)) as f:
    +        for line in f:
    +            items = line.rstrip('\n').split()
    +            assert len(items) >= 2
    +            key = key_type(items[0])
    +            val = items[1:] if len(items) > 2 else items[1]
    +            mapping[key] = val
    +    return mapping
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/__init__.py
    new file mode 100644
    index 000000000..92ecec404
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/__init__.py
    @@ -0,0 +1,29 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .colorspace import (bgr2gray, bgr2hls, bgr2hsv, bgr2rgb, bgr2ycbcr,
    +                         gray2bgr, gray2rgb, hls2bgr, hsv2bgr, imconvert,
    +                         rgb2bgr, rgb2gray, rgb2ycbcr, ycbcr2bgr, ycbcr2rgb)
    +from .geometric import (cutout, imcrop, imflip, imflip_, impad,
    +                        impad_to_multiple, imrescale, imresize, imresize_like,
    +                        imresize_to_multiple, imrotate, imshear, imtranslate,
    +                        rescale_size)
    +from .io import imfrombytes, imread, imwrite, supported_backends, use_backend
    +from .misc import tensor2imgs
    +from .photometric import (adjust_brightness, adjust_color, adjust_contrast,
    +                          adjust_hue, adjust_lighting, adjust_sharpness,
    +                          auto_contrast, clahe, imdenormalize, imequalize,
    +                          iminvert, imnormalize, imnormalize_, lut_transform,
    +                          posterize, solarize)
    +
    +__all__ = [
    +    'bgr2gray', 'bgr2hls', 'bgr2hsv', 'bgr2rgb', 'gray2bgr', 'gray2rgb',
    +    'hls2bgr', 'hsv2bgr', 'imconvert', 'rgb2bgr', 'rgb2gray', 'imrescale',
    +    'imresize', 'imresize_like', 'imresize_to_multiple', 'rescale_size',
    +    'imcrop', 'imflip', 'imflip_', 'impad', 'impad_to_multiple', 'imrotate',
    +    'imfrombytes', 'imread', 'imwrite', 'supported_backends', 'use_backend',
    +    'imdenormalize', 'imnormalize', 'imnormalize_', 'iminvert', 'posterize',
    +    'solarize', 'rgb2ycbcr', 'bgr2ycbcr', 'ycbcr2rgb', 'ycbcr2bgr',
    +    'tensor2imgs', 'imshear', 'imtranslate', 'adjust_color', 'imequalize',
    +    'adjust_brightness', 'adjust_contrast', 'lut_transform', 'clahe',
    +    'adjust_sharpness', 'auto_contrast', 'cutout', 'adjust_lighting',
    +    'adjust_hue'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/colorspace.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/colorspace.py
    new file mode 100644
    index 000000000..fe3cdc52a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/colorspace.py
    @@ -0,0 +1,308 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Callable, Union
    +
    +import cv2
    +import numpy as np
    +
    +
    +def imconvert(img: np.ndarray, src: str, dst: str) -> np.ndarray:
    +    """Convert an image from the src colorspace to dst colorspace.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        src (str): The source colorspace, e.g., 'rgb', 'hsv'.
    +        dst (str): The destination colorspace, e.g., 'rgb', 'hsv'.
    +
    +    Returns:
    +        ndarray: The converted image.
    +    """
    +    code = getattr(cv2, f'COLOR_{src.upper()}2{dst.upper()}')
    +    out_img = cv2.cvtColor(img, code)
    +    return out_img
    +
    +
    +def bgr2gray(img: np.ndarray, keepdim: bool = False) -> np.ndarray:
    +    """Convert a BGR image to grayscale image.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        keepdim (bool): If False (by default), then return the grayscale image
    +            with 2 dims, otherwise 3 dims.
    +
    +    Returns:
    +        ndarray: The converted grayscale image.
    +    """
    +    out_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    +    if keepdim:
    +        out_img = out_img[..., None]
    +    return out_img
    +
    +
    +def rgb2gray(img: np.ndarray, keepdim: bool = False) -> np.ndarray:
    +    """Convert a RGB image to grayscale image.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        keepdim (bool): If False (by default), then return the grayscale image
    +            with 2 dims, otherwise 3 dims.
    +
    +    Returns:
    +        ndarray: The converted grayscale image.
    +    """
    +    out_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    +    if keepdim:
    +        out_img = out_img[..., None]
    +    return out_img
    +
    +
    +def gray2bgr(img: np.ndarray) -> np.ndarray:
    +    """Convert a grayscale image to BGR image.
    +
    +    Args:
    +        img (ndarray): The input image.
    +
    +    Returns:
    +        ndarray: The converted BGR image.
    +    """
    +    img = img[..., None] if img.ndim == 2 else img
    +    out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    +    return out_img
    +
    +
    +def gray2rgb(img: np.ndarray) -> np.ndarray:
    +    """Convert a grayscale image to RGB image.
    +
    +    Args:
    +        img (ndarray): The input image.
    +
    +    Returns:
    +        ndarray: The converted RGB image.
    +    """
    +    img = img[..., None] if img.ndim == 2 else img
    +    out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    +    return out_img
    +
    +
    +def _convert_input_type_range(img: np.ndarray) -> np.ndarray:
    +    """Convert the type and range of the input image.
    +
    +    It converts the input image to np.float32 type and range of [0, 1].
    +    It is mainly used for pre-processing the input image in colorspace
    +    conversion functions such as rgb2ycbcr and ycbcr2rgb.
    +
    +    Args:
    +        img (ndarray): The input image. It accepts:
    +            1. np.uint8 type with range [0, 255];
    +            2. np.float32 type with range [0, 1].
    +
    +    Returns:
    +        (ndarray): The converted image with type of np.float32 and range of
    +            [0, 1].
    +    """
    +    img_type = img.dtype
    +    img = img.astype(np.float32)
    +    if img_type == np.float32:
    +        pass
    +    elif img_type == np.uint8:
    +        img /= 255.
    +    else:
    +        raise TypeError('The img type should be np.float32 or np.uint8, '
    +                        f'but got {img_type}')
    +    return img
    +
    +
    +def _convert_output_type_range(
    +        img: np.ndarray, dst_type: Union[np.uint8, np.float32]) -> np.ndarray:
    +    """Convert the type and range of the image according to dst_type.
    +
    +    It converts the image to desired type and range. If `dst_type` is np.uint8,
    +    images will be converted to np.uint8 type with range [0, 255]. If
    +    `dst_type` is np.float32, it converts the image to np.float32 type with
    +    range [0, 1].
    +    It is mainly used for post-processing images in colorspace conversion
    +    functions such as rgb2ycbcr and ycbcr2rgb.
    +
    +    Args:
    +        img (ndarray): The image to be converted with np.float32 type and
    +            range [0, 255].
    +        dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
    +            converts the image to np.uint8 type with range [0, 255]. If
    +            dst_type is np.float32, it converts the image to np.float32 type
    +            with range [0, 1].
    +
    +    Returns:
    +        (ndarray): The converted image with desired type and range.
    +    """
    +    if dst_type not in (np.uint8, np.float32):
    +        raise TypeError('The dst_type should be np.float32 or np.uint8, '
    +                        f'but got {dst_type}')
    +    if dst_type == np.uint8:
    +        img = img.round()
    +    else:
    +        img /= 255.
    +    return img.astype(dst_type)
    +
    +
    +def rgb2ycbcr(img: np.ndarray, y_only: bool = False) -> np.ndarray:
    +    """Convert a RGB image to YCbCr image.
    +
    +    This function produces the same results as Matlab's `rgb2ycbcr` function.
    +    It implements the ITU-R BT.601 conversion for standard-definition
    +    television. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
    +
    +    It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
    +    In OpenCV, it implements a JPEG conversion. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
    +
    +    Args:
    +        img (ndarray): The input image. It accepts:
    +            1. np.uint8 type with range [0, 255];
    +            2. np.float32 type with range [0, 1].
    +        y_only (bool): Whether to only return Y channel. Default: False.
    +
    +    Returns:
    +        ndarray: The converted YCbCr image. The output image has the same type
    +        and range as input image.
    +    """
    +    img_type = img.dtype
    +    img = _convert_input_type_range(img)
    +    if y_only:
    +        out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
    +    else:
    +        out_img = np.matmul(
    +            img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
    +                  [24.966, 112.0, -18.214]]) + [16, 128, 128]
    +    out_img = _convert_output_type_range(out_img, img_type)
    +    return out_img
    +
    +
    +def bgr2ycbcr(img: np.ndarray, y_only: bool = False) -> np.ndarray:
    +    """Convert a BGR image to YCbCr image.
    +
    +    The bgr version of rgb2ycbcr.
    +    It implements the ITU-R BT.601 conversion for standard-definition
    +    television. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
    +
    +    It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
    +    In OpenCV, it implements a JPEG conversion. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
    +
    +    Args:
    +        img (ndarray): The input image. It accepts:
    +            1. np.uint8 type with range [0, 255];
    +            2. np.float32 type with range [0, 1].
    +        y_only (bool): Whether to only return Y channel. Default: False.
    +
    +    Returns:
    +        ndarray: The converted YCbCr image. The output image has the same type
    +        and range as input image.
    +    """
    +    img_type = img.dtype
    +    img = _convert_input_type_range(img)
    +    if y_only:
    +        out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
    +    else:
    +        out_img = np.matmul(
    +            img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
    +                  [65.481, -37.797, 112.0]]) + [16, 128, 128]
    +    out_img = _convert_output_type_range(out_img, img_type)
    +    return out_img
    +
    +
    +def ycbcr2rgb(img: np.ndarray) -> np.ndarray:
    +    """Convert a YCbCr image to RGB image.
    +
    +    This function produces the same results as Matlab's ycbcr2rgb function.
    +    It implements the ITU-R BT.601 conversion for standard-definition
    +    television. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
    +
    +    It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
    +    In OpenCV, it implements a JPEG conversion. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
    +
    +    Args:
    +        img (ndarray): The input image. It accepts:
    +            1. np.uint8 type with range [0, 255];
    +            2. np.float32 type with range [0, 1].
    +
    +    Returns:
    +        ndarray: The converted RGB image. The output image has the same type
    +        and range as input image.
    +    """
    +    img_type = img.dtype
    +    img = _convert_input_type_range(img) * 255
    +    out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621],
    +                              [0, -0.00153632, 0.00791071],
    +                              [0.00625893, -0.00318811, 0]]) * 255.0 + [
    +                                  -222.921, 135.576, -276.836
    +                              ]
    +    out_img = _convert_output_type_range(out_img, img_type)
    +    return out_img
    +
    +
    +def ycbcr2bgr(img: np.ndarray) -> np.ndarray:
    +    """Convert a YCbCr image to BGR image.
    +
    +    The bgr version of ycbcr2rgb.
    +    It implements the ITU-R BT.601 conversion for standard-definition
    +    television. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
    +
    +    It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
    +    In OpenCV, it implements a JPEG conversion. See more details in
    +    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
    +
    +    Args:
    +        img (ndarray): The input image. It accepts:
    +            1. np.uint8 type with range [0, 255];
    +            2. np.float32 type with range [0, 1].
    +
    +    Returns:
    +        ndarray: The converted BGR image. The output image has the same type
    +        and range as input image.
    +    """
    +    img_type = img.dtype
    +    img = _convert_input_type_range(img) * 255
    +    out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621],
    +                              [0.00791071, -0.00153632, 0],
    +                              [0, -0.00318811, 0.00625893]]) * 255.0 + [
    +                                  -276.836, 135.576, -222.921
    +                              ]
    +    out_img = _convert_output_type_range(out_img, img_type)
    +    return out_img
    +
    +
    +def convert_color_factory(src: str, dst: str) -> Callable:
    +    code = getattr(cv2, f'COLOR_{src.upper()}2{dst.upper()}')
    +
    +    def convert_color(img: np.ndarray) -> np.ndarray:
    +        out_img = cv2.cvtColor(img, code)
    +        return out_img
    +
    +    convert_color.__doc__ = f"""Convert a {src.upper()} image to {dst.upper()}
    +        image.
    +
    +    Args:
    +        img (ndarray or str): The input image.
    +
    +    Returns:
    +        ndarray: The converted {dst.upper()} image.
    +    """
    +
    +    return convert_color
    +
    +
    +bgr2rgb = convert_color_factory('bgr', 'rgb')
    +
    +rgb2bgr = convert_color_factory('rgb', 'bgr')
    +
    +bgr2hsv = convert_color_factory('bgr', 'hsv')
    +
    +hsv2bgr = convert_color_factory('hsv', 'bgr')
    +
    +bgr2hls = convert_color_factory('bgr', 'hls')
    +
    +hls2bgr = convert_color_factory('hls', 'bgr')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/geometric.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/geometric.py
    new file mode 100644
    index 000000000..b8a3cb106
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/geometric.py
    @@ -0,0 +1,785 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numbers
    +from typing import List, Optional, Tuple, Union, no_type_check
    +
    +import cv2
    +import numpy as np
    +
    +from ..utils import to_2tuple
    +from .io import imread_backend
    +
    +try:
    +    from PIL import Image
    +except ImportError:
    +    Image = None
    +
    +
    +def _scale_size(
    +    size: Tuple[int, int],
    +    scale: Union[float, int, tuple],
    +) -> Tuple[int, int]:
    +    """Rescale a size by a ratio.
    +
    +    Args:
    +        size (tuple[int]): (w, h).
    +        scale (float | tuple(float)): Scaling factor.
    +
    +    Returns:
    +        tuple[int]: scaled size.
    +    """
    +    if isinstance(scale, (float, int)):
    +        scale = (scale, scale)
    +    w, h = size
    +    return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5)
    +
    +
    +cv2_interp_codes = {
    +    'nearest': cv2.INTER_NEAREST,
    +    'bilinear': cv2.INTER_LINEAR,
    +    'bicubic': cv2.INTER_CUBIC,
    +    'area': cv2.INTER_AREA,
    +    'lanczos': cv2.INTER_LANCZOS4
    +}
    +
    +cv2_border_modes = {
    +    'constant': cv2.BORDER_CONSTANT,
    +    'replicate': cv2.BORDER_REPLICATE,
    +    'reflect': cv2.BORDER_REFLECT,
    +    'wrap': cv2.BORDER_WRAP,
    +    'reflect_101': cv2.BORDER_REFLECT_101,
    +    'transparent': cv2.BORDER_TRANSPARENT,
    +    'isolated': cv2.BORDER_ISOLATED
    +}
    +
    +# Pillow >=v9.1.0 use a slightly different naming scheme for filters.
    +# Set pillow_interp_codes according to the naming scheme used.
    +if Image is not None:
    +    if hasattr(Image, 'Resampling'):
    +        pillow_interp_codes = {
    +            'nearest': Image.Resampling.NEAREST,
    +            'bilinear': Image.Resampling.BILINEAR,
    +            'bicubic': Image.Resampling.BICUBIC,
    +            'box': Image.Resampling.BOX,
    +            'lanczos': Image.Resampling.LANCZOS,
    +            'hamming': Image.Resampling.HAMMING
    +        }
    +    else:
    +        pillow_interp_codes = {
    +            'nearest': Image.NEAREST,
    +            'bilinear': Image.BILINEAR,
    +            'bicubic': Image.BICUBIC,
    +            'box': Image.BOX,
    +            'lanczos': Image.LANCZOS,
    +            'hamming': Image.HAMMING
    +        }
    +
    +
    +def imresize(
    +    img: np.ndarray,
    +    size: Tuple[int, int],
    +    return_scale: bool = False,
    +    interpolation: str = 'bilinear',
    +    out: Optional[np.ndarray] = None,
    +    backend: Optional[str] = None
    +) -> Union[Tuple[np.ndarray, float, float], np.ndarray]:
    +    """Resize image to a given size.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        size (tuple[int]): Target size (w, h).
    +        return_scale (bool): Whether to return `w_scale` and `h_scale`.
    +        interpolation (str): Interpolation method, accepted values are
    +            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
    +            backend, "nearest", "bilinear" for 'pillow' backend.
    +        out (ndarray): The output destination.
    +        backend (str | None): The image resize backend type. Options are `cv2`,
    +            `pillow`, `None`. If backend is None, the global imread_backend
    +            specified by ``mmcv.use_backend()`` will be used. Default: None.
    +
    +    Returns:
    +        tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
    +        `resized_img`.
    +    """
    +    h, w = img.shape[:2]
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in ['cv2', 'pillow']:
    +        raise ValueError(f'backend: {backend} is not supported for resize.'
    +                         f"Supported backends are 'cv2', 'pillow'")
    +
    +    if backend == 'pillow':
    +        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
    +        pil_image = Image.fromarray(img)
    +        pil_image = pil_image.resize(size, pillow_interp_codes[interpolation])
    +        resized_img = np.array(pil_image)
    +    else:
    +        resized_img = cv2.resize(
    +            img, size, dst=out, interpolation=cv2_interp_codes[interpolation])
    +    if not return_scale:
    +        return resized_img
    +    else:
    +        w_scale = size[0] / w
    +        h_scale = size[1] / h
    +        return resized_img, w_scale, h_scale
    +
    +
    +@no_type_check
    +def imresize_to_multiple(
    +    img: np.ndarray,
    +    divisor: Union[int, Tuple[int, int]],
    +    size: Union[int, Tuple[int, int], None] = None,
    +    scale_factor: Union[float, Tuple[float, float], None] = None,
    +    keep_ratio: bool = False,
    +    return_scale: bool = False,
    +    interpolation: str = 'bilinear',
    +    out: Optional[np.ndarray] = None,
    +    backend: Optional[str] = None
    +) -> Union[Tuple[np.ndarray, float, float], np.ndarray]:
    +    """Resize image according to a given size or scale factor and then rounds
    +    up the the resized or rescaled image size to the nearest value that can be
    +    divided by the divisor.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        divisor (int | tuple): Resized image size will be a multiple of
    +            divisor. If divisor is a tuple, divisor should be
    +            (w_divisor, h_divisor).
    +        size (None | int | tuple[int]): Target size (w, h). Default: None.
    +        scale_factor (None | float | tuple[float]): Multiplier for spatial
    +            size. Should match input size if it is a tuple and the 2D style is
    +            (w_scale_factor, h_scale_factor). Default: None.
    +        keep_ratio (bool): Whether to keep the aspect ratio when resizing the
    +            image. Default: False.
    +        return_scale (bool): Whether to return `w_scale` and `h_scale`.
    +        interpolation (str): Interpolation method, accepted values are
    +            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
    +            backend, "nearest", "bilinear" for 'pillow' backend.
    +        out (ndarray): The output destination.
    +        backend (str | None): The image resize backend type. Options are `cv2`,
    +            `pillow`, `None`. If backend is None, the global imread_backend
    +            specified by ``mmcv.use_backend()`` will be used. Default: None.
    +
    +    Returns:
    +        tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
    +        `resized_img`.
    +    """
    +    h, w = img.shape[:2]
    +    if size is not None and scale_factor is not None:
    +        raise ValueError('only one of size or scale_factor should be defined')
    +    elif size is None and scale_factor is None:
    +        raise ValueError('one of size or scale_factor should be defined')
    +    elif size is not None:
    +        size = to_2tuple(size)
    +        if keep_ratio:
    +            size = rescale_size((w, h), size, return_scale=False)
    +    else:
    +        size = _scale_size((w, h), scale_factor)
    +
    +    divisor = to_2tuple(divisor)
    +    size = tuple(int(np.ceil(s / d)) * d for s, d in zip(size, divisor))
    +    resized_img, w_scale, h_scale = imresize(
    +        img,
    +        size,
    +        return_scale=True,
    +        interpolation=interpolation,
    +        out=out,
    +        backend=backend)
    +    if return_scale:
    +        return resized_img, w_scale, h_scale
    +    else:
    +        return resized_img
    +
    +
    +def imresize_like(
    +    img: np.ndarray,
    +    dst_img: np.ndarray,
    +    return_scale: bool = False,
    +    interpolation: str = 'bilinear',
    +    backend: Optional[str] = None
    +) -> Union[Tuple[np.ndarray, float, float], np.ndarray]:
    +    """Resize image to the same size of a given image.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        dst_img (ndarray): The target image.
    +        return_scale (bool): Whether to return `w_scale` and `h_scale`.
    +        interpolation (str): Same as :func:`resize`.
    +        backend (str | None): Same as :func:`resize`.
    +
    +    Returns:
    +        tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
    +        `resized_img`.
    +    """
    +    h, w = dst_img.shape[:2]
    +    return imresize(img, (w, h), return_scale, interpolation, backend=backend)
    +
    +
    +def rescale_size(old_size: tuple,
    +                 scale: Union[float, int, tuple],
    +                 return_scale: bool = False) -> tuple:
    +    """Calculate the new size to be rescaled to.
    +
    +    Args:
    +        old_size (tuple[int]): The old size (w, h) of image.
    +        scale (float | tuple[int]): The scaling factor or maximum size.
    +            If it is a float number, then the image will be rescaled by this
    +            factor, else if it is a tuple of 2 integers, then the image will
    +            be rescaled as large as possible within the scale.
    +        return_scale (bool): Whether to return the scaling factor besides the
    +            rescaled image size.
    +
    +    Returns:
    +        tuple[int]: The new rescaled image size.
    +    """
    +    w, h = old_size
    +    if isinstance(scale, (float, int)):
    +        if scale <= 0:
    +            raise ValueError(f'Invalid scale {scale}, must be positive.')
    +        scale_factor = scale
    +    elif isinstance(scale, tuple):
    +        max_long_edge = max(scale)
    +        max_short_edge = min(scale)
    +        scale_factor = min(max_long_edge / max(h, w),
    +                           max_short_edge / min(h, w))
    +    else:
    +        raise TypeError(
    +            f'Scale must be a number or tuple of int, but got {type(scale)}')
    +
    +    new_size = _scale_size((w, h), scale_factor)
    +
    +    if return_scale:
    +        return new_size, scale_factor
    +    else:
    +        return new_size
    +
    +
    +def imrescale(
    +    img: np.ndarray,
    +    scale: Union[float, Tuple[int, int]],
    +    return_scale: bool = False,
    +    interpolation: str = 'bilinear',
    +    backend: Optional[str] = None
    +) -> Union[np.ndarray, Tuple[np.ndarray, float]]:
    +    """Resize image while keeping the aspect ratio.
    +
    +    Args:
    +        img (ndarray): The input image.
    +        scale (float | tuple[int]): The scaling factor or maximum size.
    +            If it is a float number, then the image will be rescaled by this
    +            factor, else if it is a tuple of 2 integers, then the image will
    +            be rescaled as large as possible within the scale.
    +        return_scale (bool): Whether to return the scaling factor besides the
    +            rescaled image.
    +        interpolation (str): Same as :func:`resize`.
    +        backend (str | None): Same as :func:`resize`.
    +
    +    Returns:
    +        ndarray: The rescaled image.
    +    """
    +    h, w = img.shape[:2]
    +    new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
    +    rescaled_img = imresize(
    +        img, new_size, interpolation=interpolation, backend=backend)
    +    if return_scale:
    +        return rescaled_img, scale_factor
    +    else:
    +        return rescaled_img
    +
    +
    +def imflip(img: np.ndarray, direction: str = 'horizontal') -> np.ndarray:
    +    """Flip an image horizontally or vertically.
    +
    +    Args:
    +        img (ndarray): Image to be flipped.
    +        direction (str): The flip direction, either "horizontal" or
    +            "vertical" or "diagonal".
    +
    +    Returns:
    +        ndarray: The flipped image.
    +    """
    +    assert direction in ['horizontal', 'vertical', 'diagonal']
    +    if direction == 'horizontal':
    +        return np.flip(img, axis=1)
    +    elif direction == 'vertical':
    +        return np.flip(img, axis=0)
    +    else:
    +        return np.flip(img, axis=(0, 1))
    +
    +
    +def imflip_(img: np.ndarray, direction: str = 'horizontal') -> np.ndarray:
    +    """Inplace flip an image horizontally or vertically.
    +
    +    Args:
    +        img (ndarray): Image to be flipped.
    +        direction (str): The flip direction, either "horizontal" or
    +            "vertical" or "diagonal".
    +
    +    Returns:
    +        ndarray: The flipped image (inplace).
    +    """
    +    assert direction in ['horizontal', 'vertical', 'diagonal']
    +    if direction == 'horizontal':
    +        return cv2.flip(img, 1, img)
    +    elif direction == 'vertical':
    +        return cv2.flip(img, 0, img)
    +    else:
    +        return cv2.flip(img, -1, img)
    +
    +
    +def imrotate(img: np.ndarray,
    +             angle: float,
    +             center: Optional[Tuple[float, float]] = None,
    +             scale: float = 1.0,
    +             border_value: int = 0,
    +             interpolation: str = 'bilinear',
    +             auto_bound: bool = False,
    +             border_mode: str = 'constant') -> np.ndarray:
    +    """Rotate an image.
    +
    +    Args:
    +        img (np.ndarray): Image to be rotated.
    +        angle (float): Rotation angle in degrees, positive values mean
    +            clockwise rotation.
    +        center (tuple[float], optional): Center point (w, h) of the rotation in
    +            the source image. If not specified, the center of the image will be
    +            used.
    +        scale (float): Isotropic scale factor.
    +        border_value (int): Border value used in case of a constant border.
    +            Defaults to 0.
    +        interpolation (str): Same as :func:`resize`.
    +        auto_bound (bool): Whether to adjust the image size to cover the whole
    +            rotated image.
    +        border_mode (str): Pixel extrapolation method. Defaults to 'constant'.
    +
    +    Returns:
    +        np.ndarray: The rotated image.
    +    """
    +    if center is not None and auto_bound:
    +        raise ValueError('`auto_bound` conflicts with `center`')
    +    h, w = img.shape[:2]
    +    if center is None:
    +        center = ((w - 1) * 0.5, (h - 1) * 0.5)
    +    assert isinstance(center, tuple)
    +
    +    matrix = cv2.getRotationMatrix2D(center, -angle, scale)
    +    if auto_bound:
    +        cos = np.abs(matrix[0, 0])
    +        sin = np.abs(matrix[0, 1])
    +        new_w = h * sin + w * cos
    +        new_h = h * cos + w * sin
    +        matrix[0, 2] += (new_w - w) * 0.5
    +        matrix[1, 2] += (new_h - h) * 0.5
    +        w = int(np.round(new_w))
    +        h = int(np.round(new_h))
    +    rotated = cv2.warpAffine(
    +        img,
    +        matrix, (w, h),
    +        flags=cv2_interp_codes[interpolation],
    +        borderMode=cv2_border_modes[border_mode],
    +        borderValue=border_value)
    +    return rotated
    +
    +
    +def bbox_clip(bboxes: np.ndarray, img_shape: Tuple[int, int]) -> np.ndarray:
    +    """Clip bboxes to fit the image shape.
    +
    +    Args:
    +        bboxes (ndarray): Shape (..., 4*k)
    +        img_shape (tuple[int]): (height, width) of the image.
    +
    +    Returns:
    +        ndarray: Clipped bboxes.
    +    """
    +    assert bboxes.shape[-1] % 4 == 0
    +    cmin = np.empty(bboxes.shape[-1], dtype=bboxes.dtype)
    +    cmin[0::2] = img_shape[1] - 1
    +    cmin[1::2] = img_shape[0] - 1
    +    clipped_bboxes = np.maximum(np.minimum(bboxes, cmin), 0)
    +    return clipped_bboxes
    +
    +
    +def bbox_scaling(bboxes: np.ndarray,
    +                 scale: float,
    +                 clip_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
    +    """Scaling bboxes w.r.t the box center.
    +
    +    Args:
    +        bboxes (ndarray): Shape(..., 4).
    +        scale (float): Scaling factor.
    +        clip_shape (tuple[int], optional): If specified, bboxes that exceed the
    +            boundary will be clipped according to the given shape (h, w).
    +
    +    Returns:
    +        ndarray: Scaled bboxes.
    +    """
    +    if float(scale) == 1.0:
    +        scaled_bboxes = bboxes.copy()
    +    else:
    +        w = bboxes[..., 2] - bboxes[..., 0] + 1
    +        h = bboxes[..., 3] - bboxes[..., 1] + 1
    +        dw = (w * (scale - 1)) * 0.5
    +        dh = (h * (scale - 1)) * 0.5
    +        scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1)
    +    if clip_shape is not None:
    +        return bbox_clip(scaled_bboxes, clip_shape)
    +    else:
    +        return scaled_bboxes
    +
    +
    +def imcrop(
    +    img: np.ndarray,
    +    bboxes: np.ndarray,
    +    scale: float = 1.0,
    +    pad_fill: Union[float, list, None] = None
    +) -> Union[np.ndarray, List[np.ndarray]]:
    +    """Crop image patches.
    +
    +    3 steps: scale the bboxes -> clip bboxes -> crop and pad.
    +
    +    Args:
    +        img (ndarray): Image to be cropped.
    +        bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes.
    +        scale (float, optional): Scale ratio of bboxes, the default value
    +            1.0 means no padding.
    +        pad_fill (Number | list[Number]): Value to be filled for padding.
    +            Default: None, which means no padding.
    +
    +    Returns:
    +        list[ndarray] | ndarray: The cropped image patches.
    +    """
    +    chn = 1 if img.ndim == 2 else img.shape[2]
    +    if pad_fill is not None:
    +        if isinstance(pad_fill, (int, float)):
    +            pad_fill = [pad_fill for _ in range(chn)]
    +        assert len(pad_fill) == chn
    +
    +    _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes
    +    scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32)
    +    clipped_bbox = bbox_clip(scaled_bboxes, img.shape)
    +
    +    patches = []
    +    for i in range(clipped_bbox.shape[0]):
    +        x1, y1, x2, y2 = tuple(clipped_bbox[i, :])
    +        if pad_fill is None:
    +            patch = img[y1:y2 + 1, x1:x2 + 1, ...]
    +        else:
    +            _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :])
    +            patch_h = _y2 - _y1 + 1
    +            patch_w = _x2 - _x1 + 1
    +            if chn == 1:
    +                patch_shape = (patch_h, patch_w)
    +            else:
    +                patch_shape = (patch_h, patch_w, chn)  # type: ignore
    +            patch = np.array(
    +                pad_fill, dtype=img.dtype) * np.ones(
    +                    patch_shape, dtype=img.dtype)
    +            x_start = 0 if _x1 >= 0 else -_x1
    +            y_start = 0 if _y1 >= 0 else -_y1
    +            w = x2 - x1 + 1
    +            h = y2 - y1 + 1
    +            patch[y_start:y_start + h, x_start:x_start + w,
    +                  ...] = img[y1:y1 + h, x1:x1 + w, ...]
    +        patches.append(patch)
    +
    +    if bboxes.ndim == 1:
    +        return patches[0]
    +    else:
    +        return patches
    +
    +
    +def impad(img: np.ndarray,
    +          *,
    +          shape: Optional[Tuple[int, int]] = None,
    +          padding: Union[int, tuple, None] = None,
    +          pad_val: Union[float, List] = 0,
    +          padding_mode: str = 'constant') -> np.ndarray:
    +    """Pad the given image to a certain shape or pad on all sides with
    +    specified padding mode and padding value.
    +
    +    Args:
    +        img (ndarray): Image to be padded.
    +        shape (tuple[int]): Expected padding shape (h, w). Default: None.
    +        padding (int or tuple[int]): Padding on each border. If a single int is
    +            provided this is used to pad all borders. If tuple of length 2 is
    +            provided this is the padding on left/right and top/bottom
    +            respectively. If a tuple of length 4 is provided this is the
    +            padding for the left, top, right and bottom borders respectively.
    +            Default: None. Note that `shape` and `padding` can not be both
    +            set.
    +        pad_val (Number | Sequence[Number]): Values to be filled in padding
    +            areas when padding_mode is 'constant'. Default: 0.
    +        padding_mode (str): Type of padding. Should be: constant, edge,
    +            reflect or symmetric. Default: constant.
    +            - constant: pads with a constant value, this value is specified
    +              with pad_val.
    +            - edge: pads with the last value at the edge of the image.
    +            - reflect: pads with reflection of image without repeating the last
    +              value on the edge. For example, padding [1, 2, 3, 4] with 2
    +              elements on both sides in reflect mode will result in
    +              [3, 2, 1, 2, 3, 4, 3, 2].
    +            - symmetric: pads with reflection of image repeating the last value
    +              on the edge. For example, padding [1, 2, 3, 4] with 2 elements on
    +              both sides in symmetric mode will result in
    +              [2, 1, 1, 2, 3, 4, 4, 3]
    +
    +    Returns:
    +        ndarray: The padded image.
    +    """
    +
    +    assert (shape is not None) ^ (padding is not None)
    +    if shape is not None:
    +        width = max(shape[1] - img.shape[1], 0)
    +        height = max(shape[0] - img.shape[0], 0)
    +        padding = (0, 0, width, height)
    +
    +    # check pad_val
    +    if isinstance(pad_val, tuple):
    +        assert len(pad_val) == img.shape[-1]
    +    elif not isinstance(pad_val, numbers.Number):
    +        raise TypeError('pad_val must be a int or a tuple. '
    +                        f'But received {type(pad_val)}')
    +
    +    # check padding
    +    if isinstance(padding, tuple) and len(padding) in [2, 4]:
    +        if len(padding) == 2:
    +            padding = (padding[0], padding[1], padding[0], padding[1])
    +    elif isinstance(padding, numbers.Number):
    +        padding = (padding, padding, padding, padding)
    +    else:
    +        raise ValueError('Padding must be a int or a 2, or 4 element tuple.'
    +                         f'But received {padding}')
    +
    +    # check padding mode
    +    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
    +
    +    border_type = {
    +        'constant': cv2.BORDER_CONSTANT,
    +        'edge': cv2.BORDER_REPLICATE,
    +        'reflect': cv2.BORDER_REFLECT_101,
    +        'symmetric': cv2.BORDER_REFLECT
    +    }
    +    img = cv2.copyMakeBorder(
    +        img,
    +        padding[1],
    +        padding[3],
    +        padding[0],
    +        padding[2],
    +        border_type[padding_mode],
    +        value=pad_val)
    +
    +    return img
    +
    +
    +def impad_to_multiple(img: np.ndarray,
    +                      divisor: int,
    +                      pad_val: Union[float, List] = 0) -> np.ndarray:
    +    """Pad an image to ensure each edge to be multiple to some number.
    +
    +    Args:
    +        img (ndarray): Image to be padded.
    +        divisor (int): Padded image edges will be multiple to divisor.
    +        pad_val (Number | Sequence[Number]): Same as :func:`impad`.
    +
    +    Returns:
    +        ndarray: The padded image.
    +    """
    +    pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
    +    pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
    +    return impad(img, shape=(pad_h, pad_w), pad_val=pad_val)
    +
    +
    +def cutout(img: np.ndarray,
    +           shape: Union[int, Tuple[int, int]],
    +           pad_val: Union[int, float, tuple] = 0) -> np.ndarray:
    +    """Randomly cut out a rectangle from the original img.
    +
    +    Args:
    +        img (ndarray): Image to be cutout.
    +        shape (int | tuple[int]): Expected cutout shape (h, w). If given as a
    +            int, the value will be used for both h and w.
    +        pad_val (int | float | tuple[int | float]): Values to be filled in the
    +            cut area. Defaults to 0.
    +
    +    Returns:
    +        ndarray: The cutout image.
    +    """
    +
    +    channels = 1 if img.ndim == 2 else img.shape[2]
    +    if isinstance(shape, int):
    +        cut_h, cut_w = shape, shape
    +    else:
    +        assert isinstance(shape, tuple) and len(shape) == 2, \
    +            f'shape must be a int or a tuple with length 2, but got type ' \
    +            f'{type(shape)} instead.'
    +        cut_h, cut_w = shape
    +    if isinstance(pad_val, (int, float)):
    +        pad_val = tuple([pad_val] * channels)
    +    elif isinstance(pad_val, tuple):
    +        assert len(pad_val) == channels, \
    +            'Expected the num of elements in tuple equals the channels' \
    +            'of input image. Found {} vs {}'.format(
    +                len(pad_val), channels)
    +    else:
    +        raise TypeError(f'Invalid type {type(pad_val)} for `pad_val`')
    +
    +    img_h, img_w = img.shape[:2]
    +    y0 = np.random.uniform(img_h)
    +    x0 = np.random.uniform(img_w)
    +
    +    y1 = int(max(0, y0 - cut_h / 2.))
    +    x1 = int(max(0, x0 - cut_w / 2.))
    +    y2 = min(img_h, y1 + cut_h)
    +    x2 = min(img_w, x1 + cut_w)
    +
    +    if img.ndim == 2:
    +        patch_shape = (y2 - y1, x2 - x1)
    +    else:
    +        patch_shape = (y2 - y1, x2 - x1, channels)  # type: ignore
    +
    +    img_cutout = img.copy()
    +    patch = np.array(
    +        pad_val, dtype=img.dtype) * np.ones(
    +            patch_shape, dtype=img.dtype)
    +    img_cutout[y1:y2, x1:x2, ...] = patch
    +
    +    return img_cutout
    +
    +
    +def _get_shear_matrix(magnitude: Union[int, float],
    +                      direction: str = 'horizontal') -> np.ndarray:
    +    """Generate the shear matrix for transformation.
    +
    +    Args:
    +        magnitude (int | float): The magnitude used for shear.
    +        direction (str): The flip direction, either "horizontal"
    +            or "vertical".
    +
    +    Returns:
    +        ndarray: The shear matrix with dtype float32.
    +    """
    +    if direction == 'horizontal':
    +        shear_matrix = np.float32([[1, magnitude, 0], [0, 1, 0]])
    +    elif direction == 'vertical':
    +        shear_matrix = np.float32([[1, 0, 0], [magnitude, 1, 0]])
    +    return shear_matrix
    +
    +
    +def imshear(img: np.ndarray,
    +            magnitude: Union[int, float],
    +            direction: str = 'horizontal',
    +            border_value: Union[int, Tuple[int, int]] = 0,
    +            interpolation: str = 'bilinear') -> np.ndarray:
    +    """Shear an image.
    +
    +    Args:
    +        img (ndarray): Image to be sheared with format (h, w)
    +            or (h, w, c).
    +        magnitude (int | float): The magnitude used for shear.
    +        direction (str): The flip direction, either "horizontal"
    +            or "vertical".
    +        border_value (int | tuple[int]): Value used in case of a
    +            constant border.
    +        interpolation (str): Same as :func:`resize`.
    +
    +    Returns:
    +        ndarray: The sheared image.
    +    """
    +    assert direction in ['horizontal',
    +                         'vertical'], f'Invalid direction: {direction}'
    +    height, width = img.shape[:2]
    +    if img.ndim == 2:
    +        channels = 1
    +    elif img.ndim == 3:
    +        channels = img.shape[-1]
    +    if isinstance(border_value, int):
    +        border_value = tuple([border_value] * channels)  # type: ignore
    +    elif isinstance(border_value, tuple):
    +        assert len(border_value) == channels, \
    +            'Expected the num of elements in tuple equals the channels' \
    +            'of input image. Found {} vs {}'.format(
    +                len(border_value), channels)
    +    else:
    +        raise ValueError(
    +            f'Invalid type {type(border_value)} for `border_value`')
    +    shear_matrix = _get_shear_matrix(magnitude, direction)
    +    sheared = cv2.warpAffine(
    +        img,
    +        shear_matrix,
    +        (width, height),
    +        # Note case when the number elements in `border_value`
    +        # greater than 3 (e.g. shearing masks whose channels large
    +        # than 3) will raise TypeError in `cv2.warpAffine`.
    +        # Here simply slice the first 3 values in `border_value`.
    +        borderValue=border_value[:3],  # type: ignore
    +        flags=cv2_interp_codes[interpolation])
    +    return sheared
    +
    +
    +def _get_translate_matrix(offset: Union[int, float],
    +                          direction: str = 'horizontal') -> np.ndarray:
    +    """Generate the translate matrix.
    +
    +    Args:
    +        offset (int | float): The offset used for translate.
    +        direction (str): The translate direction, either
    +            "horizontal" or "vertical".
    +
    +    Returns:
    +        ndarray: The translate matrix with dtype float32.
    +    """
    +    if direction == 'horizontal':
    +        translate_matrix = np.float32([[1, 0, offset], [0, 1, 0]])
    +    elif direction == 'vertical':
    +        translate_matrix = np.float32([[1, 0, 0], [0, 1, offset]])
    +    return translate_matrix
    +
    +
    +def imtranslate(img: np.ndarray,
    +                offset: Union[int, float],
    +                direction: str = 'horizontal',
    +                border_value: Union[int, tuple] = 0,
    +                interpolation: str = 'bilinear') -> np.ndarray:
    +    """Translate an image.
    +
    +    Args:
    +        img (ndarray): Image to be translated with format
    +            (h, w) or (h, w, c).
    +        offset (int | float): The offset used for translate.
    +        direction (str): The translate direction, either "horizontal"
    +            or "vertical".
    +        border_value (int | tuple[int]): Value used in case of a
    +            constant border.
    +        interpolation (str): Same as :func:`resize`.
    +
    +    Returns:
    +        ndarray: The translated image.
    +    """
    +    assert direction in ['horizontal',
    +                         'vertical'], f'Invalid direction: {direction}'
    +    height, width = img.shape[:2]
    +    if img.ndim == 2:
    +        channels = 1
    +    elif img.ndim == 3:
    +        channels = img.shape[-1]
    +    if isinstance(border_value, int):
    +        border_value = tuple([border_value] * channels)
    +    elif isinstance(border_value, tuple):
    +        assert len(border_value) == channels, \
    +            'Expected the num of elements in tuple equals the channels' \
    +            'of input image. Found {} vs {}'.format(
    +                len(border_value), channels)
    +    else:
    +        raise ValueError(
    +            f'Invalid type {type(border_value)} for `border_value`.')
    +    translate_matrix = _get_translate_matrix(offset, direction)
    +    translated = cv2.warpAffine(
    +        img,
    +        translate_matrix,
    +        (width, height),
    +        # Note case when the number elements in `border_value`
    +        # greater than 3 (e.g. translating masks whose channels
    +        # large than 3) will raise TypeError in `cv2.warpAffine`.
    +        # Here simply slice the first 3 values in `border_value`.
    +        borderValue=border_value[:3],
    +        flags=cv2_interp_codes[interpolation])
    +    return translated
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/io.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/io.py
    new file mode 100644
    index 000000000..64924603a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/io.py
    @@ -0,0 +1,321 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import io
    +import os.path as osp
    +import warnings
    +from pathlib import Path
    +from typing import Optional, Union
    +
    +import cv2
    +import numpy as np
    +from cv2 import (IMREAD_COLOR, IMREAD_GRAYSCALE, IMREAD_IGNORE_ORIENTATION,
    +                 IMREAD_UNCHANGED)
    +
    +from mmcv.fileio import FileClient
    +from mmcv.utils import is_filepath, is_str
    +
    +try:
    +    from turbojpeg import TJCS_RGB, TJPF_BGR, TJPF_GRAY, TurboJPEG
    +except ImportError:
    +    TJCS_RGB = TJPF_GRAY = TJPF_BGR = TurboJPEG = None
    +
    +try:
    +    from PIL import Image, ImageOps
    +except ImportError:
    +    Image = None
    +
    +try:
    +    import tifffile
    +except ImportError:
    +    tifffile = None
    +
    +jpeg = None
    +supported_backends = ['cv2', 'turbojpeg', 'pillow', 'tifffile']
    +
    +imread_flags = {
    +    'color': IMREAD_COLOR,
    +    'grayscale': IMREAD_GRAYSCALE,
    +    'unchanged': IMREAD_UNCHANGED,
    +    'color_ignore_orientation': IMREAD_IGNORE_ORIENTATION | IMREAD_COLOR,
    +    'grayscale_ignore_orientation':
    +    IMREAD_IGNORE_ORIENTATION | IMREAD_GRAYSCALE
    +}
    +
    +imread_backend = 'cv2'
    +
    +
    +def use_backend(backend: str) -> None:
    +    """Select a backend for image decoding.
    +
    +    Args:
    +        backend (str): The image decoding backend type. Options are `cv2`,
    +        `pillow`, `turbojpeg` (see https://github.com/lilohuang/PyTurboJPEG)
    +        and `tifffile`. `turbojpeg` is faster but it only supports `.jpeg`
    +        file format.
    +    """
    +    assert backend in supported_backends
    +    global imread_backend
    +    imread_backend = backend
    +    if imread_backend == 'turbojpeg':
    +        if TurboJPEG is None:
    +            raise ImportError('`PyTurboJPEG` is not installed')
    +        global jpeg
    +        if jpeg is None:
    +            jpeg = TurboJPEG()
    +    elif imread_backend == 'pillow':
    +        if Image is None:
    +            raise ImportError('`Pillow` is not installed')
    +    elif imread_backend == 'tifffile':
    +        if tifffile is None:
    +            raise ImportError('`tifffile` is not installed')
    +
    +
    +def _jpegflag(flag: str = 'color', channel_order: str = 'bgr'):
    +    channel_order = channel_order.lower()
    +    if channel_order not in ['rgb', 'bgr']:
    +        raise ValueError('channel order must be either "rgb" or "bgr"')
    +
    +    if flag == 'color':
    +        if channel_order == 'bgr':
    +            return TJPF_BGR
    +        elif channel_order == 'rgb':
    +            return TJCS_RGB
    +    elif flag == 'grayscale':
    +        return TJPF_GRAY
    +    else:
    +        raise ValueError('flag must be "color" or "grayscale"')
    +
    +
    +def _pillow2array(img,
    +                  flag: str = 'color',
    +                  channel_order: str = 'bgr') -> np.ndarray:
    +    """Convert a pillow image to numpy array.
    +
    +    Args:
    +        img (:obj:`PIL.Image.Image`): The image loaded using PIL
    +        flag (str): Flags specifying the color type of a loaded image,
    +            candidates are 'color', 'grayscale' and 'unchanged'.
    +            Default to 'color'.
    +        channel_order (str): The channel order of the output image array,
    +            candidates are 'bgr' and 'rgb'. Default to 'bgr'.
    +
    +    Returns:
    +        np.ndarray: The converted numpy array
    +    """
    +    channel_order = channel_order.lower()
    +    if channel_order not in ['rgb', 'bgr']:
    +        raise ValueError('channel order must be either "rgb" or "bgr"')
    +
    +    if flag == 'unchanged':
    +        array = np.array(img)
    +        if array.ndim >= 3 and array.shape[2] >= 3:  # color image
    +            array[:, :, :3] = array[:, :, (2, 1, 0)]  # RGB to BGR
    +    else:
    +        # Handle exif orientation tag
    +        if flag in ['color', 'grayscale']:
    +            img = ImageOps.exif_transpose(img)
    +        # If the image mode is not 'RGB', convert it to 'RGB' first.
    +        if img.mode != 'RGB':
    +            if img.mode != 'LA':
    +                # Most formats except 'LA' can be directly converted to RGB
    +                img = img.convert('RGB')
    +            else:
    +                # When the mode is 'LA', the default conversion will fill in
    +                #  the canvas with black, which sometimes shadows black objects
    +                #  in the foreground.
    +                #
    +                # Therefore, a random color (124, 117, 104) is used for canvas
    +                img_rgba = img.convert('RGBA')
    +                img = Image.new('RGB', img_rgba.size, (124, 117, 104))
    +                img.paste(img_rgba, mask=img_rgba.split()[3])  # 3 is alpha
    +        if flag in ['color', 'color_ignore_orientation']:
    +            array = np.array(img)
    +            if channel_order != 'rgb':
    +                array = array[:, :, ::-1]  # RGB to BGR
    +        elif flag in ['grayscale', 'grayscale_ignore_orientation']:
    +            img = img.convert('L')
    +            array = np.array(img)
    +        else:
    +            raise ValueError(
    +                'flag must be "color", "grayscale", "unchanged", '
    +                f'"color_ignore_orientation" or "grayscale_ignore_orientation"'
    +                f' but got {flag}')
    +    return array
    +
    +
    +def imread(img_or_path: Union[np.ndarray, str, Path],
    +           flag: str = 'color',
    +           channel_order: str = 'bgr',
    +           backend: Optional[str] = None,
    +           file_client_args: Optional[dict] = None) -> np.ndarray:
    +    """Read an image.
    +
    +    Note:
    +        In v1.4.1 and later, add `file_client_args` parameters.
    +
    +    Args:
    +        img_or_path (ndarray or str or Path): Either a numpy array or str or
    +            pathlib.Path. If it is a numpy array (loaded image), then
    +            it will be returned as is.
    +        flag (str): Flags specifying the color type of a loaded image,
    +            candidates are `color`, `grayscale`, `unchanged`,
    +            `color_ignore_orientation` and `grayscale_ignore_orientation`.
    +            By default, `cv2` and `pillow` backend would rotate the image
    +            according to its EXIF info unless called with `unchanged` or
    +            `*_ignore_orientation` flags. `turbojpeg` and `tifffile` backend
    +            always ignore image's EXIF info regardless of the flag.
    +            The `turbojpeg` backend only supports `color` and `grayscale`.
    +        channel_order (str): Order of channel, candidates are `bgr` and `rgb`.
    +        backend (str | None): The image decoding backend type. Options are
    +            `cv2`, `pillow`, `turbojpeg`, `tifffile`, `None`.
    +            If backend is None, the global imread_backend specified by
    +            ``mmcv.use_backend()`` will be used. Default: None.
    +        file_client_args (dict | None): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Returns:
    +        ndarray: Loaded image array.
    +
    +    Examples:
    +        >>> import mmcv
    +        >>> img_path = '/path/to/img.jpg'
    +        >>> img = mmcv.imread(img_path)
    +        >>> img = mmcv.imread(img_path, flag='color', channel_order='rgb',
    +        ...     backend='cv2')
    +        >>> img = mmcv.imread(img_path, flag='color', channel_order='bgr',
    +        ...     backend='pillow')
    +        >>> s3_img_path = 's3://bucket/img.jpg'
    +        >>> # infer the file backend by the prefix s3
    +        >>> img = mmcv.imread(s3_img_path)
    +        >>> # manually set the file backend petrel
    +        >>> img = mmcv.imread(s3_img_path, file_client_args={
    +        ...     'backend': 'petrel'})
    +        >>> http_img_path = 'http://path/to/img.jpg'
    +        >>> img = mmcv.imread(http_img_path)
    +        >>> img = mmcv.imread(http_img_path, file_client_args={
    +        ...     'backend': 'http'})
    +    """
    +
    +    if isinstance(img_or_path, Path):
    +        img_or_path = str(img_or_path)
    +
    +    if isinstance(img_or_path, np.ndarray):
    +        return img_or_path
    +    elif is_str(img_or_path):
    +        file_client = FileClient.infer_client(file_client_args, img_or_path)
    +        img_bytes = file_client.get(img_or_path)
    +        return imfrombytes(img_bytes, flag, channel_order, backend)
    +    else:
    +        raise TypeError('"img" must be a numpy array or a str or '
    +                        'a pathlib.Path object')
    +
    +
    +def imfrombytes(content: bytes,
    +                flag: str = 'color',
    +                channel_order: str = 'bgr',
    +                backend: Optional[str] = None) -> np.ndarray:
    +    """Read an image from bytes.
    +
    +    Args:
    +        content (bytes): Image bytes got from files or other streams.
    +        flag (str): Same as :func:`imread`.
    +        channel_order (str): The channel order of the output, candidates
    +            are 'bgr' and 'rgb'. Default to 'bgr'.
    +        backend (str | None): The image decoding backend type. Options are
    +            `cv2`, `pillow`, `turbojpeg`, `tifffile`, `None`. If backend is
    +            None, the global imread_backend specified by ``mmcv.use_backend()``
    +            will be used. Default: None.
    +
    +    Returns:
    +        ndarray: Loaded image array.
    +
    +    Examples:
    +        >>> img_path = '/path/to/img.jpg'
    +        >>> with open(img_path, 'rb') as f:
    +        >>>     img_buff = f.read()
    +        >>> img = mmcv.imfrombytes(img_buff)
    +        >>> img = mmcv.imfrombytes(img_buff, flag='color', channel_order='rgb')
    +        >>> img = mmcv.imfrombytes(img_buff, backend='pillow')
    +        >>> img = mmcv.imfrombytes(img_buff, backend='cv2')
    +    """
    +
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in supported_backends:
    +        raise ValueError(
    +            f'backend: {backend} is not supported. Supported '
    +            "backends are 'cv2', 'turbojpeg', 'pillow', 'tifffile'")
    +    if backend == 'turbojpeg':
    +        img = jpeg.decode(  # type: ignore
    +            content, _jpegflag(flag, channel_order))
    +        if img.shape[-1] == 1:
    +            img = img[:, :, 0]
    +        return img
    +    elif backend == 'pillow':
    +        with io.BytesIO(content) as buff:
    +            img = Image.open(buff)
    +            img = _pillow2array(img, flag, channel_order)
    +        return img
    +    elif backend == 'tifffile':
    +        with io.BytesIO(content) as buff:
    +            img = tifffile.imread(buff)
    +        return img
    +    else:
    +        img_np = np.frombuffer(content, np.uint8)
    +        flag = imread_flags[flag] if is_str(flag) else flag
    +        img = cv2.imdecode(img_np, flag)
    +        if flag == IMREAD_COLOR and channel_order == 'rgb':
    +            cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
    +        return img
    +
    +
    +def imwrite(img: np.ndarray,
    +            file_path: str,
    +            params: Optional[list] = None,
    +            auto_mkdir: Optional[bool] = None,
    +            file_client_args: Optional[dict] = None) -> bool:
    +    """Write image to file.
    +
    +    Note:
    +        In v1.4.1 and later, add `file_client_args` parameters.
    +
    +    Warning:
    +        The parameter `auto_mkdir` will be deprecated in the future and every
    +        file clients will make directory automatically.
    +
    +    Args:
    +        img (ndarray): Image array to be written.
    +        file_path (str): Image file path.
    +        params (None or list): Same as opencv :func:`imwrite` interface.
    +        auto_mkdir (bool): If the parent folder of `file_path` does not exist,
    +            whether to create it automatically. It will be deprecated.
    +        file_client_args (dict | None): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +
    +    Returns:
    +        bool: Successful or not.
    +
    +    Examples:
    +        >>> # write to hard disk client
    +        >>> ret = mmcv.imwrite(img, '/path/to/img.jpg')
    +        >>> # infer the file backend by the prefix s3
    +        >>> ret = mmcv.imwrite(img, 's3://bucket/img.jpg')
    +        >>> # manually set the file backend petrel
    +        >>> ret = mmcv.imwrite(img, 's3://bucket/img.jpg', file_client_args={
    +        ...     'backend': 'petrel'})
    +    """
    +    assert is_filepath(file_path)
    +    file_path = str(file_path)
    +    if auto_mkdir is not None:
    +        warnings.warn(
    +            'The parameter `auto_mkdir` will be deprecated in the future and '
    +            'every file clients will make directory automatically.')
    +    file_client = FileClient.infer_client(file_client_args, file_path)
    +    img_ext = osp.splitext(file_path)[-1]
    +    # Encode image according to image suffix.
    +    # For example, if image path is '/path/your/img.jpg', the encode
    +    # format is '.jpg'.
    +    flag, img_buff = cv2.imencode(img_ext, img, params)
    +    file_client.put(img_buff.tobytes(), file_path)
    +    return flag
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/misc.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/misc.py
    new file mode 100644
    index 000000000..e923cad4e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/misc.py
    @@ -0,0 +1,58 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional
    +
    +import numpy as np
    +
    +import mmcv
    +
    +try:
    +    import torch
    +except ImportError:
    +    torch = None
    +
    +
    +def tensor2imgs(tensor,
    +                mean: Optional[tuple] = None,
    +                std: Optional[tuple] = None,
    +                to_rgb: bool = True) -> list:
    +    """Convert tensor to 3-channel images or 1-channel gray images.
    +
    +    Args:
    +        tensor (torch.Tensor): Tensor that contains multiple images, shape (
    +            N, C, H, W). :math:`C` can be either 3 or 1.
    +        mean (tuple[float], optional): Mean of images. If None,
    +            (0, 0, 0) will be used for tensor with 3-channel,
    +            while (0, ) for tensor with 1-channel. Defaults to None.
    +        std (tuple[float], optional): Standard deviation of images. If None,
    +            (1, 1, 1) will be used for tensor with 3-channel,
    +            while (1, ) for tensor with 1-channel. Defaults to None.
    +        to_rgb (bool, optional): Whether the tensor was converted to RGB
    +            format in the first place. If so, convert it back to BGR.
    +            For the tensor with 1 channel, it must be False. Defaults to True.
    +
    +    Returns:
    +        list[np.ndarray]: A list that contains multiple images.
    +    """
    +
    +    if torch is None:
    +        raise RuntimeError('pytorch is not installed')
    +    assert torch.is_tensor(tensor) and tensor.ndim == 4
    +    channels = tensor.size(1)
    +    assert channels in [1, 3]
    +    if mean is None:
    +        mean = (0, ) * channels
    +    if std is None:
    +        std = (1, ) * channels
    +    assert (channels == len(mean) == len(std) == 3) or \
    +        (channels == len(mean) == len(std) == 1 and not to_rgb)
    +
    +    num_imgs = tensor.size(0)
    +    mean = np.array(mean, dtype=np.float32)
    +    std = np.array(std, dtype=np.float32)
    +    imgs = []
    +    for img_id in range(num_imgs):
    +        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
    +        img = mmcv.imdenormalize(
    +            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
    +        imgs.append(np.ascontiguousarray(img))
    +    return imgs
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/photometric.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/photometric.py
    new file mode 100644
    index 000000000..2f2cfd094
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/image/photometric.py
    @@ -0,0 +1,561 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Optional
    +
    +import cv2
    +import numpy as np
    +from PIL import Image, ImageEnhance
    +
    +from ..utils import is_tuple_of
    +from .colorspace import bgr2gray, gray2bgr
    +from .io import imread_backend
    +
    +
    +def imnormalize(img, mean, std, to_rgb=True):
    +    """Normalize an image with mean and std.
    +
    +    Args:
    +        img (ndarray): Image to be normalized.
    +        mean (ndarray): The mean to be used for normalize.
    +        std (ndarray): The std to be used for normalize.
    +        to_rgb (bool): Whether to convert to rgb.
    +
    +    Returns:
    +        ndarray: The normalized image.
    +    """
    +    img = img.copy().astype(np.float32)
    +    return imnormalize_(img, mean, std, to_rgb)
    +
    +
    +def imnormalize_(img, mean, std, to_rgb=True):
    +    """Inplace normalize an image with mean and std.
    +
    +    Args:
    +        img (ndarray): Image to be normalized.
    +        mean (ndarray): The mean to be used for normalize.
    +        std (ndarray): The std to be used for normalize.
    +        to_rgb (bool): Whether to convert to rgb.
    +
    +    Returns:
    +        ndarray: The normalized image.
    +    """
    +    # cv2 inplace normalization does not accept uint8
    +    assert img.dtype != np.uint8
    +    mean = np.float64(mean.reshape(1, -1))
    +    stdinv = 1 / np.float64(std.reshape(1, -1))
    +    if to_rgb:
    +        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)  # inplace
    +    cv2.subtract(img, mean, img)  # inplace
    +    cv2.multiply(img, stdinv, img)  # inplace
    +    return img
    +
    +
    +def imdenormalize(img, mean, std, to_bgr=True):
    +    assert img.dtype != np.uint8
    +    mean = mean.reshape(1, -1).astype(np.float64)
    +    std = std.reshape(1, -1).astype(np.float64)
    +    img = cv2.multiply(img, std)  # make a copy
    +    cv2.add(img, mean, img)  # inplace
    +    if to_bgr:
    +        cv2.cvtColor(img, cv2.COLOR_RGB2BGR, img)  # inplace
    +    return img
    +
    +
    +def iminvert(img):
    +    """Invert (negate) an image.
    +
    +    Args:
    +        img (ndarray): Image to be inverted.
    +
    +    Returns:
    +        ndarray: The inverted image.
    +    """
    +    return np.full_like(img, 255) - img
    +
    +
    +def solarize(img, thr=128):
    +    """Solarize an image (invert all pixel values above a threshold)
    +
    +    Args:
    +        img (ndarray): Image to be solarized.
    +        thr (int): Threshold for solarizing (0 - 255).
    +
    +    Returns:
    +        ndarray: The solarized image.
    +    """
    +    img = np.where(img < thr, img, 255 - img)
    +    return img
    +
    +
    +def posterize(img, bits):
    +    """Posterize an image (reduce the number of bits for each color channel)
    +
    +    Args:
    +        img (ndarray): Image to be posterized.
    +        bits (int): Number of bits (1 to 8) to use for posterizing.
    +
    +    Returns:
    +        ndarray: The posterized image.
    +    """
    +    shift = 8 - bits
    +    img = np.left_shift(np.right_shift(img, shift), shift)
    +    return img
    +
    +
    +def adjust_color(img, alpha=1, beta=None, gamma=0, backend=None):
    +    r"""It blends the source image and its gray image:
    +
    +    .. math::
    +        output = img * alpha + gray\_img * beta + gamma
    +
    +    Args:
    +        img (ndarray): The input source image.
    +        alpha (int | float): Weight for the source image. Default 1.
    +        beta (int | float): Weight for the converted gray image.
    +            If None, it's assigned the value (1 - `alpha`).
    +        gamma (int | float): Scalar added to each sum.
    +            Same as :func:`cv2.addWeighted`. Default 0.
    +        backend (str | None): The image processing backend type. Options are
    +            `cv2`, `pillow`, `None`. If backend is None, the global
    +            ``imread_backend`` specified by ``mmcv.use_backend()`` will be
    +            used. Defaults to None.
    +
    +    Returns:
    +        ndarray: Colored image which has the same size and dtype as input.
    +    """
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in ['cv2', 'pillow']:
    +        raise ValueError(f'backend: {backend} is not supported.'
    +                         f"Supported backends are 'cv2', 'pillow'")
    +
    +    if backend == 'pillow':
    +        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
    +        warnings.warn("Only use 'alpha' for pillow backend.")
    +        # Image.fromarray defaultly supports RGB, not BGR.
    +        pil_image = Image.fromarray(img[..., ::-1], mode='RGB')
    +        enhancer = ImageEnhance.Color(pil_image)
    +        pil_image = enhancer.enhance(alpha)
    +        return np.array(pil_image, dtype=img.dtype)[..., ::-1]
    +    else:
    +        gray_img = bgr2gray(img)
    +        gray_img = np.tile(gray_img[..., None], [1, 1, 3])
    +        if beta is None:
    +            beta = 1 - alpha
    +        colored_img = cv2.addWeighted(img, alpha, gray_img, beta, gamma)
    +        if not colored_img.dtype == np.uint8:
    +            # Note when the dtype of `img` is not the default `np.uint8`
    +            # (e.g. np.float32), the value in `colored_img` got from cv2
    +            # is not guaranteed to be in range [0, 255], so here clip
    +            # is needed.
    +            colored_img = np.clip(colored_img, 0, 255)
    +        return colored_img.astype(img.dtype)
    +
    +
    +def imequalize(img):
    +    """Equalize the image histogram.
    +
    +    This function applies a non-linear mapping to the input image,
    +    in order to create a uniform distribution of grayscale values
    +    in the output image.
    +
    +    Args:
    +        img (ndarray): Image to be equalized.
    +
    +    Returns:
    +        ndarray: The equalized image.
    +    """
    +
    +    def _scale_channel(im, c):
    +        """Scale the data in the corresponding channel."""
    +        im = im[:, :, c]
    +        # Compute the histogram of the image channel.
    +        histo = np.histogram(im, 256, (0, 255))[0]
    +        # For computing the step, filter out the nonzeros.
    +        nonzero_histo = histo[histo > 0]
    +        step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
    +        if not step:
    +            lut = np.array(range(256))
    +        else:
    +            # Compute the cumulative sum, shifted by step // 2
    +            # and then normalized by step.
    +            lut = (np.cumsum(histo) + (step // 2)) // step
    +            # Shift lut, prepending with 0.
    +            lut = np.concatenate([[0], lut[:-1]], 0)
    +            # handle potential integer overflow
    +            lut[lut > 255] = 255
    +        # If step is zero, return the original image.
    +        # Otherwise, index from lut.
    +        return np.where(np.equal(step, 0), im, lut[im])
    +
    +    # Scales each channel independently and then stacks
    +    # the result.
    +    s1 = _scale_channel(img, 0)
    +    s2 = _scale_channel(img, 1)
    +    s3 = _scale_channel(img, 2)
    +    equalized_img = np.stack([s1, s2, s3], axis=-1)
    +    return equalized_img.astype(img.dtype)
    +
    +
    +def adjust_brightness(img, factor=1., backend=None):
    +    """Adjust image brightness.
    +
    +    This function controls the brightness of an image. An
    +    enhancement factor of 0.0 gives a black image.
    +    A factor of 1.0 gives the original image. This function
    +    blends the source image and the degenerated black image:
    +
    +    .. math::
    +        output = img * factor + degenerated * (1 - factor)
    +
    +    Args:
    +        img (ndarray): Image to be brightened.
    +        factor (float): A value controls the enhancement.
    +            Factor 1.0 returns the original image, lower
    +            factors mean less color (brightness, contrast,
    +            etc), and higher values more. Default 1.
    +        backend (str | None): The image processing backend type. Options are
    +            `cv2`, `pillow`, `None`. If backend is None, the global
    +            ``imread_backend`` specified by ``mmcv.use_backend()`` will be
    +            used. Defaults to None.
    +
    +    Returns:
    +        ndarray: The brightened image.
    +    """
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in ['cv2', 'pillow']:
    +        raise ValueError(f'backend: {backend} is not supported.'
    +                         f"Supported backends are 'cv2', 'pillow'")
    +
    +    if backend == 'pillow':
    +        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
    +        # Image.fromarray defaultly supports RGB, not BGR.
    +        pil_image = Image.fromarray(img[..., ::-1], mode='RGB')
    +        enhancer = ImageEnhance.Brightness(pil_image)
    +        pil_image = enhancer.enhance(factor)
    +        return np.array(pil_image, dtype=img.dtype)[..., ::-1]
    +    else:
    +        degenerated = np.zeros_like(img)
    +        # Note manually convert the dtype to np.float32, to
    +        # achieve as close results as PIL.ImageEnhance.Brightness.
    +        # Set beta=1-factor, and gamma=0
    +        brightened_img = cv2.addWeighted(
    +            img.astype(np.float32), factor, degenerated.astype(np.float32),
    +            1 - factor, 0)
    +        brightened_img = np.clip(brightened_img, 0, 255)
    +        return brightened_img.astype(img.dtype)
    +
    +
    +def adjust_contrast(img, factor=1., backend=None):
    +    """Adjust image contrast.
    +
    +    This function controls the contrast of an image. An
    +    enhancement factor of 0.0 gives a solid grey
    +    image. A factor of 1.0 gives the original image. It
    +    blends the source image and the degenerated mean image:
    +
    +    .. math::
    +        output = img * factor + degenerated * (1 - factor)
    +
    +    Args:
    +        img (ndarray): Image to be contrasted. BGR order.
    +        factor (float): Same as :func:`mmcv.adjust_brightness`.
    +        backend (str | None): The image processing backend type. Options are
    +            `cv2`, `pillow`, `None`. If backend is None, the global
    +            ``imread_backend`` specified by ``mmcv.use_backend()`` will be
    +            used. Defaults to None.
    +
    +    Returns:
    +        ndarray: The contrasted image.
    +    """
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in ['cv2', 'pillow']:
    +        raise ValueError(f'backend: {backend} is not supported.'
    +                         f"Supported backends are 'cv2', 'pillow'")
    +
    +    if backend == 'pillow':
    +        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
    +        # Image.fromarray defaultly supports RGB, not BGR.
    +        pil_image = Image.fromarray(img[..., ::-1], mode='RGB')
    +        enhancer = ImageEnhance.Contrast(pil_image)
    +        pil_image = enhancer.enhance(factor)
    +        return np.array(pil_image, dtype=img.dtype)[..., ::-1]
    +    else:
    +        gray_img = bgr2gray(img)
    +        hist = np.histogram(gray_img, 256, (0, 255))[0]
    +        mean = round(np.sum(gray_img) / np.sum(hist))
    +        degenerated = (np.ones_like(img[..., 0]) * mean).astype(img.dtype)
    +        degenerated = gray2bgr(degenerated)
    +        contrasted_img = cv2.addWeighted(
    +            img.astype(np.float32), factor, degenerated.astype(np.float32),
    +            1 - factor, 0)
    +        contrasted_img = np.clip(contrasted_img, 0, 255)
    +        return contrasted_img.astype(img.dtype)
    +
    +
    +def auto_contrast(img, cutoff=0):
    +    """Auto adjust image contrast.
    +
    +    This function maximize (normalize) image contrast by first removing cutoff
    +    percent of the lightest and darkest pixels from the histogram and remapping
    +    the image so that the darkest pixel becomes black (0), and the lightest
    +    becomes white (255).
    +
    +    Args:
    +        img (ndarray): Image to be contrasted. BGR order.
    +        cutoff (int | float | tuple): The cutoff percent of the lightest and
    +            darkest pixels to be removed. If given as tuple, it shall be
    +            (low, high). Otherwise, the single value will be used for both.
    +            Defaults to 0.
    +
    +    Returns:
    +        ndarray: The contrasted image.
    +    """
    +
    +    def _auto_contrast_channel(im, c, cutoff):
    +        im = im[:, :, c]
    +        # Compute the histogram of the image channel.
    +        histo = np.histogram(im, 256, (0, 255))[0]
    +        # Remove cut-off percent pixels from histo
    +        histo_sum = np.cumsum(histo)
    +        cut_low = histo_sum[-1] * cutoff[0] // 100
    +        cut_high = histo_sum[-1] - histo_sum[-1] * cutoff[1] // 100
    +        histo_sum = np.clip(histo_sum, cut_low, cut_high) - cut_low
    +        histo = np.concatenate([[histo_sum[0]], np.diff(histo_sum)], 0)
    +
    +        # Compute mapping
    +        low, high = np.nonzero(histo)[0][0], np.nonzero(histo)[0][-1]
    +        # If all the values have been cut off, return the origin img
    +        if low >= high:
    +            return im
    +        scale = 255.0 / (high - low)
    +        offset = -low * scale
    +        lut = np.array(range(256))
    +        lut = lut * scale + offset
    +        lut = np.clip(lut, 0, 255)
    +        return lut[im]
    +
    +    if isinstance(cutoff, (int, float)):
    +        cutoff = (cutoff, cutoff)
    +    else:
    +        assert isinstance(cutoff, tuple), 'cutoff must be of type int, ' \
    +            f'float or tuple, but got {type(cutoff)} instead.'
    +    # Auto adjusts contrast for each channel independently and then stacks
    +    # the result.
    +    s1 = _auto_contrast_channel(img, 0, cutoff)
    +    s2 = _auto_contrast_channel(img, 1, cutoff)
    +    s3 = _auto_contrast_channel(img, 2, cutoff)
    +    contrasted_img = np.stack([s1, s2, s3], axis=-1)
    +    return contrasted_img.astype(img.dtype)
    +
    +
    +def adjust_sharpness(img, factor=1., kernel=None):
    +    """Adjust image sharpness.
    +
    +    This function controls the sharpness of an image. An
    +    enhancement factor of 0.0 gives a blurred image. A
    +    factor of 1.0 gives the original image. And a factor
    +    of 2.0 gives a sharpened image. It blends the source
    +    image and the degenerated mean image:
    +
    +    .. math::
    +        output = img * factor + degenerated * (1 - factor)
    +
    +    Args:
    +        img (ndarray): Image to be sharpened. BGR order.
    +        factor (float): Same as :func:`mmcv.adjust_brightness`.
    +        kernel (np.ndarray, optional): Filter kernel to be applied on the img
    +            to obtain the degenerated img. Defaults to None.
    +
    +    Note:
    +        No value sanity check is enforced on the kernel set by users. So with
    +        an inappropriate kernel, the ``adjust_sharpness`` may fail to perform
    +        the function its name indicates but end up performing whatever
    +        transform determined by the kernel.
    +
    +    Returns:
    +        ndarray: The sharpened image.
    +    """
    +
    +    if kernel is None:
    +        # adopted from PIL.ImageFilter.SMOOTH
    +        kernel = np.array([[1., 1., 1.], [1., 5., 1.], [1., 1., 1.]]) / 13
    +    assert isinstance(kernel, np.ndarray), \
    +        f'kernel must be of type np.ndarray, but got {type(kernel)} instead.'
    +    assert kernel.ndim == 2, \
    +        f'kernel must have a dimension of 2, but got {kernel.ndim} instead.'
    +
    +    degenerated = cv2.filter2D(img, -1, kernel)
    +    sharpened_img = cv2.addWeighted(
    +        img.astype(np.float32), factor, degenerated.astype(np.float32),
    +        1 - factor, 0)
    +    sharpened_img = np.clip(sharpened_img, 0, 255)
    +    return sharpened_img.astype(img.dtype)
    +
    +
    +def adjust_lighting(img, eigval, eigvec, alphastd=0.1, to_rgb=True):
    +    """AlexNet-style PCA jitter.
    +
    +    This data augmentation is proposed in `ImageNet Classification with Deep
    +    Convolutional Neural Networks
    +    `_.
    +
    +    Args:
    +        img (ndarray): Image to be adjusted lighting. BGR order.
    +        eigval (ndarray): the eigenvalue of the convariance matrix of pixel
    +            values, respectively.
    +        eigvec (ndarray): the eigenvector of the convariance matrix of pixel
    +            values, respectively.
    +        alphastd (float): The standard deviation for distribution of alpha.
    +            Defaults to 0.1
    +        to_rgb (bool): Whether to convert img to rgb.
    +
    +    Returns:
    +        ndarray: The adjusted image.
    +    """
    +    assert isinstance(eigval, np.ndarray) and isinstance(eigvec, np.ndarray), \
    +        f'eigval and eigvec should both be of type np.ndarray, got ' \
    +        f'{type(eigval)} and {type(eigvec)} instead.'
    +
    +    assert eigval.ndim == 1 and eigvec.ndim == 2
    +    assert eigvec.shape == (3, eigval.shape[0])
    +    n_eigval = eigval.shape[0]
    +    assert isinstance(alphastd, float), 'alphastd should be of type float, ' \
    +        f'got {type(alphastd)} instead.'
    +
    +    img = img.copy().astype(np.float32)
    +    if to_rgb:
    +        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)  # inplace
    +
    +    alpha = np.random.normal(0, alphastd, n_eigval)
    +    alter = eigvec \
    +        * np.broadcast_to(alpha.reshape(1, n_eigval), (3, n_eigval)) \
    +        * np.broadcast_to(eigval.reshape(1, n_eigval), (3, n_eigval))
    +    alter = np.broadcast_to(alter.sum(axis=1).reshape(1, 1, 3), img.shape)
    +    img_adjusted = img + alter
    +    return img_adjusted
    +
    +
    +def lut_transform(img, lut_table):
    +    """Transform array by look-up table.
    +
    +    The function lut_transform fills the output array with values from the
    +    look-up table. Indices of the entries are taken from the input array.
    +
    +    Args:
    +        img (ndarray): Image to be transformed.
    +        lut_table (ndarray): look-up table of 256 elements; in case of
    +            multi-channel input array, the table should either have a single
    +            channel (in this case the same table is used for all channels) or
    +            the same number of channels as in the input array.
    +
    +    Returns:
    +        ndarray: The transformed image.
    +    """
    +    assert isinstance(img, np.ndarray)
    +    assert 0 <= np.min(img) and np.max(img) <= 255
    +    assert isinstance(lut_table, np.ndarray)
    +    assert lut_table.shape == (256, )
    +
    +    return cv2.LUT(np.array(img, dtype=np.uint8), lut_table)
    +
    +
    +def clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)):
    +    """Use CLAHE method to process the image.
    +
    +    See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J].
    +    Graphics Gems, 1994:474-485.` for more information.
    +
    +    Args:
    +        img (ndarray): Image to be processed.
    +        clip_limit (float): Threshold for contrast limiting. Default: 40.0.
    +        tile_grid_size (tuple[int]): Size of grid for histogram equalization.
    +            Input image will be divided into equally sized rectangular tiles.
    +            It defines the number of tiles in row and column. Default: (8, 8).
    +
    +    Returns:
    +        ndarray: The processed image.
    +    """
    +    assert isinstance(img, np.ndarray)
    +    assert img.ndim == 2
    +    assert isinstance(clip_limit, (float, int))
    +    assert is_tuple_of(tile_grid_size, int)
    +    assert len(tile_grid_size) == 2
    +
    +    clahe = cv2.createCLAHE(clip_limit, tile_grid_size)
    +    return clahe.apply(np.array(img, dtype=np.uint8))
    +
    +
    +def adjust_hue(img: np.ndarray,
    +               hue_factor: float,
    +               backend: Optional[str] = None) -> np.ndarray:
    +    """Adjust hue of an image.
    +
    +    The image hue is adjusted by converting the image to HSV and cyclically
    +    shifting the intensities in the hue channel (H). The image is then
    +    converted back to original image mode.
    +
    +    `hue_factor` is the amount of shift in H channel and must be in the
    +    interval `[-0.5, 0.5]`.
    +
    +    Modified from
    +    https://github.com/pytorch/vision/blob/main/torchvision/
    +    transforms/functional.py
    +
    +    Args:
    +        img (ndarray): Image to be adjusted.
    +        hue_factor (float):  How much to shift the hue channel. Should be in
    +            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
    +            HSV space in positive and negative direction respectively.
    +            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
    +            with complementary colors while 0 gives the original image.
    +        backend (str | None): The image processing backend type. Options are
    +            `cv2`, `pillow`, `None`. If backend is None, the global
    +            ``imread_backend`` specified by ``mmcv.use_backend()`` will be
    +            used. Defaults to None.
    +
    +    Returns:
    +        ndarray: Hue adjusted image.
    +    """
    +    if backend is None:
    +        backend = imread_backend
    +    if backend not in ['cv2', 'pillow']:
    +        raise ValueError(f'backend: {backend} is not supported.'
    +                         f"Supported backends are 'cv2', 'pillow'")
    +
    +    if not (-0.5 <= hue_factor <= 0.5):
    +        raise ValueError(f'hue_factor:{hue_factor} is not in [-0.5, 0.5].')
    +    if not (isinstance(img, np.ndarray) and (img.ndim in {2, 3})):
    +        raise TypeError('img should be ndarray with dim=[2 or 3].')
    +
    +    if backend == 'pillow':
    +        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
    +        # Image.fromarray defaultly supports RGB, not BGR.
    +        pil_image = Image.fromarray(img[..., ::-1], mode='RGB')
    +        input_mode = pil_image.mode
    +        if input_mode in {'L', '1', 'I', 'F'}:
    +            return pil_image
    +
    +        h, s, v = pil_image.convert('HSV').split()
    +
    +        np_h = np.array(h, dtype=np.uint8)
    +        # uint8 addition take cares of rotation across boundaries
    +        with np.errstate(over='ignore'):
    +            np_h += np.uint8(hue_factor * 255)
    +        h = Image.fromarray(np_h, 'L')
    +
    +        pil_image = Image.merge('HSV', (h, s, v)).convert(input_mode)
    +        return np.array(pil_image, dtype=img.dtype)[..., ::-1]
    +    else:
    +        dtype = img.dtype
    +        img = img.astype(np.uint8)
    +        hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
    +        h, s, v = cv2.split(hsv_img)
    +        h = h.astype(np.uint8)
    +        # uint8 addition take cares of rotation across boundaries
    +        with np.errstate(over='ignore'):
    +            h += np.uint8(hue_factor * 255)
    +        hsv_img = cv2.merge([h, s, v])
    +        return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/deprecated.json b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/deprecated.json
    new file mode 100644
    index 000000000..25cf6f28c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/deprecated.json
    @@ -0,0 +1,6 @@
    +{
    +  "resnet50_caffe": "detectron/resnet50_caffe",
    +  "resnet50_caffe_bgr": "detectron2/resnet50_caffe_bgr",
    +  "resnet101_caffe": "detectron/resnet101_caffe",
    +  "resnet101_caffe_bgr": "detectron2/resnet101_caffe_bgr"
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/mmcls.json b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/mmcls.json
    new file mode 100644
    index 000000000..c073a41d0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/mmcls.json
    @@ -0,0 +1,59 @@
    +{
    +  "vgg11": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth",
    +  "vgg13": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth",
    +  "vgg16": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth",
    +  "vgg19": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth",
    +  "vgg11_bn": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth",
    +  "vgg13_bn": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth",
    +  "vgg16_bn": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth",
    +  "vgg19_bn": "https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth",
    +  "resnet18": "https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth",
    +  "resnet34": "https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_8xb32_in1k_20210831-f257d4e6.pth",
    +  "resnet50": "https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth",
    +  "resnet101": "https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_8xb32_in1k_20210831-539c63f8.pth",
    +  "resnet152": "https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_8xb32_in1k_20210901-4d7582fa.pth",
    +  "resnet50_v1d": "https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth",
    +  "resnet101_v1d": "https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth",
    +  "resnet152_v1d": "https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth",
    +  "resnext50_32x4d": "https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth",
    +  "resnext101_32x4d": "https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth",
    +  "resnext101_32x8d": "https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth",
    +  "resnext152_32x4d": "https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth",
    +  "se-resnet50": "https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth",
    +  "se-resnet101": "https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth",
    +  "resnest50": "https://download.openmmlab.com/mmclassification/v0/resnest/resnest50_imagenet_converted-1ebf0afe.pth",
    +  "resnest101": "https://download.openmmlab.com/mmclassification/v0/resnest/resnest101_imagenet_converted-032caa52.pth",
    +  "resnest200": "https://download.openmmlab.com/mmclassification/v0/resnest/resnest200_imagenet_converted-581a60f2.pth",
    +  "resnest269": "https://download.openmmlab.com/mmclassification/v0/resnest/resnest269_imagenet_converted-59930960.pth",
    +  "shufflenet_v1": "https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth",
    +  "shufflenet_v2": "https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth",
    +  "mobilenet_v2": "https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth",
    +  "mobilenet_v3_small": "https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth",
    +  "mobilenet_v3_large": "https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_large-3ea3c186.pth",
    +  "repvgg_A0": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth",
    +  "repvgg_A1": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth",
    +  "repvgg_A2": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth",
    +  "repvgg_B0": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth",
    +  "repvgg_B1": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth",
    +  "repvgg_B1g2": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth",
    +  "repvgg_B1g4": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth",
    +  "repvgg_B2": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth",
    +  "repvgg_B2g4": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth",
    +  "repvgg_B3": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth",
    +  "repvgg_B3g4": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth",
    +  "repvgg_D2se": "https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth",
    +  "res2net101_w26": "https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth",
    +  "res2net50_w14": "https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth",
    +  "res2net50_w26": "https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth",
    +  "swin_tiny": "https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth",
    +  "swin_small": "https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth",
    +  "swin_base": "https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window7_224_22kto1k-f967f799.pth",
    +  "swin_large": "https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_large_patch4_window7_224_22kto1k-5f0996db.pth",
    +  "t2t_vit_t_14": "https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-14_3rdparty_8xb64_in1k_20210928-b7c09b62.pth",
    +  "t2t_vit_t_19": "https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-19_3rdparty_8xb64_in1k_20210928-7f1478d5.pth",
    +  "t2t_vit_t_24": "https://download.openmmlab.com/mmclassification/v0/t2t-vit/t2t-vit-t-24_3rdparty_8xb64_in1k_20210928-fe95a61b.pth",
    +  "tnt_small": "https://download.openmmlab.com/mmclassification/v0/tnt/tnt-small-p16_3rdparty_in1k_20210903-c56ee7df.pth",
    +  "vit_base_p16": "https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth",
    +  "vit_base_p32": "https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth",
    +  "vit_large_p16": "https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth"
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/open_mmlab.json b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/open_mmlab.json
    new file mode 100644
    index 000000000..8311db4fe
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/open_mmlab.json
    @@ -0,0 +1,50 @@
    +{
    +  "vgg16_caffe": "https://download.openmmlab.com/pretrain/third_party/vgg16_caffe-292e1171.pth",
    +  "detectron/resnet50_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet50_caffe-788b5fa3.pth",
    +  "detectron2/resnet50_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet50_msra-5891d200.pth",
    +  "detectron/resnet101_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet101_caffe-3ad79236.pth",
    +  "detectron2/resnet101_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet101_msra-6cc46731.pth",
    +  "detectron2/resnext101_32x8d": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x8d-1516f1aa.pth",
    +  "resnext50_32x4d": "https://download.openmmlab.com/pretrain/third_party/resnext50-32x4d-0ab1a123.pth",
    +  "resnext101_32x4d": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d-a5af3160.pth",
    +  "resnext101_64x4d": "https://download.openmmlab.com/pretrain/third_party/resnext101_64x4d-ee2c6f71.pth",
    +  "contrib/resnet50_gn": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn_thangvubk-ad1730dd.pth",
    +  "detectron/resnet50_gn": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn-9186a21c.pth",
    +  "detectron/resnet101_gn": "https://download.openmmlab.com/pretrain/third_party/resnet101_gn-cac0ab98.pth",
    +  "jhu/resnet50_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn_ws-15beedd8.pth",
    +  "jhu/resnet101_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnet101_gn_ws-3e3c308c.pth",
    +  "jhu/resnext50_32x4d_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnext50_32x4d_gn_ws-0d87ac85.pth",
    +  "jhu/resnext101_32x4d_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d_gn_ws-34ac1a9e.pth",
    +  "jhu/resnext50_32x4d_gn": "https://download.openmmlab.com/pretrain/third_party/resnext50_32x4d_gn-c7e8b754.pth",
    +  "jhu/resnext101_32x4d_gn": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d_gn-ac3bb84e.pth",
    +  "msra/hrnetv2_w18_small": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w18_small-b5a04e21.pth",
    +  "msra/hrnetv2_w18": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w18-00eb2006.pth",
    +  "msra/hrnetv2_w32": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w32-dc9eeb4f.pth",
    +  "msra/hrnetv2_w40": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w40-ed0b031c.pth",
    +  "msra/hrnetv2_w48": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w48-d2186c55.pth",
    +  "bninception_caffe": "https://download.openmmlab.com/pretrain/third_party/bn_inception_caffe-ed2e8665.pth",
    +  "kin400/i3d_r50_f32s2_k400": "https://download.openmmlab.com/pretrain/third_party/i3d_r50_f32s2_k400-2c57e077.pth",
    +  "kin400/nl3d_r50_f32s2_k400": "https://download.openmmlab.com/pretrain/third_party/nl3d_r50_f32s2_k400-fa7e7caa.pth",
    +  "res2net101_v1d_26w_4s": "https://download.openmmlab.com/pretrain/third_party/res2net101_v1d_26w_4s_mmdetv2-f0a600f9.pth",
    +  "regnetx_400mf": "https://download.openmmlab.com/pretrain/third_party/regnetx_400mf-a5b10d96.pth",
    +  "regnetx_800mf": "https://download.openmmlab.com/pretrain/third_party/regnetx_800mf-1f4be4c7.pth",
    +  "regnetx_1.6gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_1.6gf-5791c176.pth",
    +  "regnetx_3.2gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_3.2gf-c2599b0f.pth",
    +  "regnetx_4.0gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_4.0gf-a88f671e.pth",
    +  "regnetx_6.4gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_6.4gf-006af45d.pth",
    +  "regnetx_8.0gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_8.0gf-3c68abe7.pth",
    +  "regnetx_12gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_12gf-4c2a3350.pth",
    +  "resnet18_v1c": "https://download.openmmlab.com/pretrain/third_party/resnet18_v1c-b5776b93.pth",
    +  "resnet50_v1c": "https://download.openmmlab.com/pretrain/third_party/resnet50_v1c-2cccc1ad.pth",
    +  "resnet101_v1c": "https://download.openmmlab.com/pretrain/third_party/resnet101_v1c-e67eebb6.pth",
    +  "mmedit/vgg16": "https://download.openmmlab.com/mmediting/third_party/vgg_state_dict.pth",
    +  "mmedit/res34_en_nomixup": "https://download.openmmlab.com/mmediting/third_party/model_best_resnet34_En_nomixup.pth",
    +  "mmedit/mobilenet_v2": "https://download.openmmlab.com/mmediting/third_party/mobilenet_v2.pth",
    +  "contrib/mobilenet_v3_large": "https://download.openmmlab.com/pretrain/third_party/mobilenet_v3_large-bc2c3fd3.pth",
    +  "contrib/mobilenet_v3_small": "https://download.openmmlab.com/pretrain/third_party/mobilenet_v3_small-47085aa1.pth",
    +  "resnest50": "https://download.openmmlab.com/pretrain/third_party/resnest50_d2-7497a55b.pth",
    +  "resnest101": "https://download.openmmlab.com/pretrain/third_party/resnest101_d2-f3b931b2.pth",
    +  "resnest200": "https://download.openmmlab.com/pretrain/third_party/resnest200_d2-ca88e41f.pth",
    +  "darknet53": "https://download.openmmlab.com/pretrain/third_party/darknet53-a628ea1b.pth",
    +  "mmdet/mobilenet_v2": "https://download.openmmlab.com/mmdetection/v2.0/third_party/mobilenet_v2_batch256_imagenet-ff34753d.pth"
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/torchvision_0.12.json b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/torchvision_0.12.json
    new file mode 100644
    index 000000000..06defe674
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/model_zoo/torchvision_0.12.json
    @@ -0,0 +1,57 @@
    +{
    +    "alexnet": "https://download.pytorch.org/models/alexnet-owt-7be5be79.pth",
    +    "densenet121": "https://download.pytorch.org/models/densenet121-a639ec97.pth",
    +    "densenet169": "https://download.pytorch.org/models/densenet169-b2777c0a.pth",
    +    "densenet201": "https://download.pytorch.org/models/densenet201-c1103571.pth",
    +    "densenet161": "https://download.pytorch.org/models/densenet161-8d451a50.pth",
    +    "efficientnet_b0": "https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth",
    +    "efficientnet_b1": "https://download.pytorch.org/models/efficientnet_b1_rwightman-533bc792.pth",
    +    "efficientnet_b2": "https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth",
    +    "efficientnet_b3": "https://download.pytorch.org/models/efficientnet_b3_rwightman-cf984f9c.pth",
    +    "efficientnet_b4": "https://download.pytorch.org/models/efficientnet_b4_rwightman-7eb33cd5.pth",
    +    "efficientnet_b5": "https://download.pytorch.org/models/efficientnet_b5_lukemelas-b6417697.pth",
    +    "efficientnet_b6": "https://download.pytorch.org/models/efficientnet_b6_lukemelas-c76e70fd.pth",
    +    "efficientnet_b7": "https://download.pytorch.org/models/efficientnet_b7_lukemelas-dcc49843.pth",
    +    "googlenet": "https://download.pytorch.org/models/googlenet-1378be20.pth",
    +    "inception_v3_google": "https://download.pytorch.org/models/inception_v3_google-0cc3c7bd.pth",
    +    "mobilenet_v2": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
    +    "mobilenet_v3_large": "https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
    +    "mobilenet_v3_small": "https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
    +    "regnet_y_400mf": "https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth",
    +    "regnet_y_800mf": "https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth",
    +    "regnet_y_1_6gf": "https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth",
    +    "regnet_y_3_2gf": "https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth",
    +    "regnet_y_8gf": "https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth",
    +    "regnet_y_16gf": "https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth",
    +    "regnet_y_32gf": "https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth",
    +    "regnet_x_400mf": "https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth",
    +    "regnet_x_800mf": "https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth",
    +    "regnet_x_1_6gf": "https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth",
    +    "regnet_x_3_2gf": "https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth",
    +    "regnet_x_8gf": "https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth",
    +    "regnet_x_16gf": "https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth",
    +    "regnet_x_32gf": "https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth",
    +    "resnet18": "https://download.pytorch.org/models/resnet18-f37072fd.pth",
    +    "resnet34": "https://download.pytorch.org/models/resnet34-b627a593.pth",
    +    "resnet50": "https://download.pytorch.org/models/resnet50-0676ba61.pth",
    +    "resnet101": "https://download.pytorch.org/models/resnet101-63fe2227.pth",
    +    "resnet152": "https://download.pytorch.org/models/resnet152-394f9c45.pth",
    +    "resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
    +    "resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
    +    "wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
    +    "wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
    +    "shufflenetv2_x0.5": "https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth",
    +    "shufflenetv2_x1.0": "https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth",
    +    "shufflenetv2_x1.5": null,
    +    "shufflenetv2_x2.0": null,
    +    "squeezenet1_0": "https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
    +    "squeezenet1_1": "https://download.pytorch.org/models/squeezenet1_1-b8a52dc0.pth",
    +    "vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth",
    +    "vgg13": "https://download.pytorch.org/models/vgg13-19584684.pth",
    +    "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
    +    "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
    +    "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
    +    "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
    +    "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
    +    "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth"
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/__init__.py
    new file mode 100644
    index 000000000..0d7eb5b0d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/__init__.py
    @@ -0,0 +1,5 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .info import is_custom_op_loaded
    +from .symbolic import register_extra_symbolics
    +
    +__all__ = ['register_extra_symbolics', 'is_custom_op_loaded']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/info.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/info.py
    new file mode 100644
    index 000000000..542a54660
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/info.py
    @@ -0,0 +1,34 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import warnings
    +
    +import torch
    +
    +
    +def is_custom_op_loaded() -> bool:
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    flag = False
    +    try:
    +        from ..tensorrt import is_tensorrt_plugin_loaded
    +        flag = is_tensorrt_plugin_loaded()
    +    except (ImportError, ModuleNotFoundError):
    +        pass
    +    if not flag:
    +        try:
    +            from ..ops import get_onnxruntime_op_path
    +            ort_lib_path = get_onnxruntime_op_path()
    +            flag = os.path.exists(ort_lib_path)
    +        except (ImportError, ModuleNotFoundError):
    +            pass
    +    return flag or torch.__version__ == 'parrots'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/__init__.py
    new file mode 100644
    index 000000000..ef101fec6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/__init__.py
    @@ -0,0 +1 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/symbolic_helper.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/symbolic_helper.py
    new file mode 100644
    index 000000000..cc9e96f8f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/onnx_utils/symbolic_helper.py
    @@ -0,0 +1,331 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""Modified from https://github.com/pytorch/pytorch."""
    +import warnings
    +from functools import wraps
    +from sys import maxsize
    +
    +import torch
    +import torch.onnx
    +# This import monkey-patches graph manipulation methods on Graph, used for the
    +# ONNX symbolics
    +import torch.onnx.utils
    +from torch._C import ListType
    +
    +# ---------------------------------------------------------------------------------
    +# Helper functions
    +# ---------------------------------------------------------------------------------
    +
    +# Save some builtins as locals, because we'll shadown them below
    +_sum = sum
    +
    +
    +def _parse_arg(value, desc):
    +    if desc == 'none':
    +        return value
    +    if desc == 'v' or not _is_value(value):
    +        return value
    +    if value.node().mustBeNone():
    +        return None
    +    if value.node().kind() == 'onnx::Constant':
    +        tval = value.node()['value']
    +        if desc == 'i':
    +            return int(tval)
    +        elif desc == 'f':
    +            return float(tval)
    +        elif desc == 'b':
    +            return bool(tval)
    +        elif desc == 's':
    +            return str(tval)
    +        elif desc == 't':
    +            return tval
    +        elif desc == 'is':
    +            return [int(v) for v in tval]
    +        elif desc == 'fs':
    +            return [float(v) for v in tval]
    +        else:
    +            raise RuntimeError(
    +                "ONNX symbolic doesn't know to interpret Constant node")
    +    elif value.node().kind() == 'prim::ListConstruct':
    +        if desc == 'is':
    +            for v in value.node().inputs():
    +                if v.node().kind() != 'onnx::Constant':
    +                    raise RuntimeError(
    +                        "Failed to export an ONNX attribute '" +
    +                        v.node().kind() +
    +                        "', since it's not constant, please try to make "
    +                        'things (e.g., kernel size) static if possible')
    +            return [int(v.node()['value']) for v in value.node().inputs()]
    +        else:
    +            raise RuntimeError(
    +                "ONNX symbolic doesn't know to interpret ListConstruct node")
    +
    +    raise RuntimeError(f'Unexpected node type: {value.node().kind()}')
    +
    +
    +def _maybe_get_const(value, desc):
    +    if _is_value(value) and value.node().kind() == 'onnx::Constant':
    +        return _parse_arg(value, desc)
    +    return value
    +
    +
    +def _maybe_get_scalar(value):
    +    value_t = _maybe_get_const(value, 't')
    +    if isinstance(value_t, torch.Tensor) and value_t.shape == ():
    +        return value_t
    +    return value
    +
    +
    +def _get_const(value, desc, arg_name):
    +    if _is_value(value) and value.node().kind() not in ('onnx::Constant',
    +                                                        'prim::Constant'):
    +        raise RuntimeError('ONNX symbolic expected a constant'
    +                           ' value of the {} argument, got `{}`'.format(
    +                               arg_name, value))
    +    return _parse_arg(value, desc)
    +
    +
    +def _unpack_list(list_value):
    +    list_node = list_value.node()
    +    assert list_node.kind() == 'prim::ListConstruct'
    +    return list(list_node.inputs())
    +
    +
    +# Check if list_value is output from prim::ListConstruct
    +# This is usually called before _unpack_list to ensure the list can be
    +# unpacked.
    +def _is_packed_list(list_value):
    +    return _is_value(
    +        list_value) and list_value.node().kind() == 'prim::ListConstruct'
    +
    +
    +def parse_args(*arg_descriptors):
    +
    +    def decorator(fn):
    +        fn._arg_descriptors = arg_descriptors
    +
    +        def wrapper(g, *args):
    +            # some args may be optional, so the length may be smaller
    +            assert len(arg_descriptors) >= len(args)
    +            args = [
    +                _parse_arg(arg, arg_desc)
    +                for arg, arg_desc in zip(args, arg_descriptors)
    +            ]
    +            return fn(g, *args)
    +
    +        # In Python 2 functools.wraps chokes on partially applied functions, so
    +        # we need this as a workaround
    +        try:
    +            wrapper = wraps(fn)(wrapper)
    +        except Exception:
    +            pass
    +        return wrapper
    +
    +    return decorator
    +
    +
    +def _scalar(x):
    +    """Convert a scalar tensor into a Python value."""
    +    assert x.numel() == 1
    +    return x.item()
    +
    +
    +def _if_scalar_type_as(g, self, tensor):
    +    """Convert self into the same type of tensor, as necessary."""
    +    if isinstance(self, torch._C.Value):
    +        return self
    +
    +    scalar_type = tensor.type().scalarType()
    +    if scalar_type:
    +        ty = scalar_type.lower()
    +        return getattr(self, ty)()
    +
    +    return self
    +
    +
    +def _is_none(x):
    +    return x.node().mustBeNone()
    +
    +
    +def _is_value(x):
    +    return isinstance(x, torch._C.Value)
    +
    +
    +def _is_tensor_list(x):
    +    return x.type().isSubtypeOf(ListType.ofTensors())
    +
    +
    +def _unimplemented(op, msg):
    +    warnings.warn('ONNX export failed on ' + op + ' because ' + msg +
    +                  ' not supported')
    +
    +
    +def _try_get_scalar_type(*args):
    +    for arg in args:
    +        try:
    +            return arg.type().scalarType()
    +        except RuntimeError:
    +            pass
    +    return None
    +
    +
    +def _topk_helper(g, input, k, dim, largest=True, sorted=False, out=None):
    +    if out is not None:
    +        _unimplemented('TopK', 'Out parameter is not supported')
    +    if not _is_value(k):
    +        k = g.op('Constant', value_t=torch.tensor([k], dtype=torch.int64))
    +    else:
    +        k = g.op('Reshape', k, g.op('Constant', value_t=torch.tensor([1])))
    +    return g.op(
    +        'TopK',
    +        input,
    +        k,
    +        axis_i=dim,
    +        largest_i=largest,
    +        sorted_i=sorted,
    +        outputs=2)
    +
    +
    +def _slice_helper(g,
    +                  input,
    +                  axes,
    +                  starts,
    +                  ends,
    +                  steps=None,
    +                  dynamic_slice=False):
    +    # TODO(ruobing): add support for opset<10
    +    from torch.onnx.symbolic_opset10 import _slice
    +    return _slice(g, input, axes, starts, ends, steps, dynamic_slice)
    +
    +
    +def _unsqueeze_helper(g, input, dim):
    +    from torch.onnx.symbolic_opset9 import unsqueeze
    +    return unsqueeze(g, input, dim)
    +
    +
    +def _interpolate_size_to_scales(g, input, output_size, dim):
    +    output_size = _maybe_get_const(output_size, 'is')
    +    if _is_value(output_size):
    +        offset = 2
    +        offsets = g.op(
    +            'Constant', value_t=torch.ones(offset, dtype=torch.float32))
    +        dividend = g.op(
    +            'Cast', output_size, to_i=cast_pytorch_to_onnx['Float'])
    +        divisor = _slice_helper(
    +            g, g.op('Shape', input), axes=[0], ends=[maxsize], starts=[offset])
    +        divisor = g.op('Cast', divisor, to_i=cast_pytorch_to_onnx['Float'])
    +        scale_dims = g.op('Div', dividend, divisor)
    +        scales = g.op('Concat', offsets, scale_dims, axis_i=0)
    +    else:
    +        scales_constant = [
    +            1. if i < 2 else float(output_size[-(dim - i)]) /
    +            float(input.type().sizes()[-(dim - i)]) for i in range(0, dim)
    +        ]
    +        scales = g.op(
    +            'Constant',
    +            value_t=torch.tensor(scales_constant, dtype=torch.float32))
    +    return scales
    +
    +
    +def _interpolate_get_scales_if_available(g, scales):
    +    if len(scales) == 0:
    +        return None
    +    # scales[0] is NoneType in Pytorch == 1.5.1
    +    # scales[0] is TensorType with sizes = [] in Pytorch == 1.6.0
    +    # scales[0] is ListType in Pytorch == 1.7.0
    +    # scales[0] is TensorType with sizes = [2] in Pytorch == 1.8.0
    +    scale_desc = 'fs' if scales[0].type().kind() == 'ListType' or (
    +        scales[0].type().kind() == 'TensorType' and
    +        (sum(scales[0].type().sizes()) > 1)) else 'f'
    +    available_scales = _maybe_get_const(
    +        scales[0], scale_desc) != -1 and not _is_none(scales[0])
    +
    +    if not available_scales:
    +        return None
    +
    +    offsets = g.op('Constant', value_t=torch.ones(2, dtype=torch.float32))
    +    if scale_desc == 'fs':
    +        scales_list = g.op(
    +            'Constant',
    +            value_t=torch.tensor(_maybe_get_const(scales[0], scale_desc)))
    +        # modify to support PyTorch==1.7.0
    +        # https://github.com/pytorch/pytorch/blob/75ee5756715e7161314ce037474843b68f69fc04/torch/onnx/symbolic_helper.py#L375 # noqa: E501
    +        scales = g.op('Concat', offsets, scales_list, axis_i=0)
    +    else:
    +        # for PyTorch < 1.7.0
    +        scales_list = []
    +        for scale in scales:
    +            unsqueezed_scale = _unsqueeze_helper(g, scale, 0)
    +            # ONNX only supports float for the scales. double -> float.
    +            unsqueezed_scale = g.op(
    +                'Cast', unsqueezed_scale, to_i=cast_pytorch_to_onnx['Float'])
    +            scales_list.append(unsqueezed_scale)
    +        scales = g.op('Concat', offsets, *scales_list, axis_i=0)
    +    return scales
    +
    +
    +def _get_interpolate_attributes(g, mode, args):
    +    if mode == 'nearest':
    +        align_corners = None
    +        scales = args[0:]
    +    else:
    +        align_corners = args[0]
    +        scales = args[1:]
    +    scales = _interpolate_get_scales_if_available(g, scales)
    +    return scales, align_corners
    +
    +
    +def _interpolate_get_scales(g, scale_factor, dim):
    +    offsets = g.op('Constant', value_t=torch.ones(2, dtype=torch.float32))
    +    if isinstance(scale_factor.type(), torch._C.ListType):
    +        return g.op('Concat', offsets, scale_factor, axis_i=0)
    +    else:
    +        scale_factor = _unsqueeze_helper(g, scale_factor, 0)
    +        scale_factor = g.op(
    +            'Cast', scale_factor, to_i=cast_pytorch_to_onnx['Float'])
    +        scales = [scale_factor for i in range(dim - 2)]
    +    scale_factor = g.op('Concat', offsets, *scales, axis_i=0)
    +    return scale_factor
    +
    +
    +def _size_helper(g, self, dim):
    +    full_shape = g.op('Shape', self)
    +    from torch.onnx.symbolic_opset9 import select
    +    return select(g, full_shape, g.op('Constant', value_t=torch.tensor([0])),
    +                  dim)
    +
    +
    +def _avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override,
    +                    name):
    +    if divisor_override and divisor_override.node().kind() != 'prim::Constant':
    +        return _unimplemented(name, 'divisor_override')
    +    if not stride:
    +        stride = kernel_size
    +    padding = tuple(tuple_fn(padding))
    +    return padding
    +
    +
    +# Metaprogram symbolics for each ATen native specialized cast operator.
    +# For e.g. we specify a function named `_cast_uint8_t` that instantiates an
    +# ONNX cast node with `to` attribute 'UINT8'
    +#
    +# TODO: remove these once we support Type's in the JIT IR and we can once again
    +# use the unified toType operator
    +cast_pytorch_to_onnx = {
    +    'Byte': torch.onnx.TensorProtoDataType.UINT8,
    +    'Char': torch.onnx.TensorProtoDataType.INT8,
    +    'Double': torch.onnx.TensorProtoDataType.DOUBLE,
    +    'Float': torch.onnx.TensorProtoDataType.FLOAT,
    +    'Half': torch.onnx.TensorProtoDataType.FLOAT16,
    +    'Int': torch.onnx.TensorProtoDataType.INT32,
    +    'Long': torch.onnx.TensorProtoDataType.INT64,
    +    'Short': torch.onnx.TensorProtoDataType.INT16,
    +    'Bool': torch.onnx.TensorProtoDataType.BOOL,
    +    'ComplexFloat': torch.onnx.TensorProtoDataType.COMPLEX64,
    +    'ComplexDouble': torch.onnx.TensorProtoDataType.COMPLEX128,
    +    'Undefined': torch.onnx.TensorProtoDataType.UNDEFINED,
    +}
    +
    +# Global set to store the list of quantized operators in the network.
    +# This is currently only used in the conversion of quantized ops from PT
    +# -> C2 via ONNX.
    +_quantized_ops: set = set()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/symbolic.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/symbolic.py
    new file mode 100644
    index 000000000..77eca3b79
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/onnx/symbolic.py
    @@ -0,0 +1,519 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""Modified from https://github.com/pytorch/pytorch."""
    +import os
    +import warnings
    +
    +import numpy as np
    +import torch
    +from torch.nn.modules.utils import _pair, _single, _triple
    +from torch.onnx import register_custom_op_symbolic
    +from torch.onnx.symbolic_helper import parse_args
    +
    +from .onnx_utils import symbolic_helper as sym_help
    +
    +
    +def _interpolate(name, dim, interpolate_mode):
    +
    +    def symbolic_fn(g, input, output_size, *args):
    +        scales, align_corners = sym_help._get_interpolate_attributes(
    +            g, interpolate_mode, args)
    +        align_corners = sym_help._maybe_get_scalar(align_corners)
    +        transformation_mode = 'asymmetric' \
    +            if interpolate_mode == 'nearest' \
    +            else 'align_corners' if align_corners else 'pytorch_half_pixel'
    +        empty_tensor = g.op(
    +            'Constant', value_t=torch.tensor([], dtype=torch.float32))
    +
    +        if scales is None:
    +            if 'ONNX_BACKEND' in os.environ and os.environ[
    +                    'ONNX_BACKEND'] == 'TensorRT':
    +                input_size = input.type().sizes()
    +                # slice the first two dim
    +                input_size = input_size[:2]
    +                # convert output_size to int type
    +                output_size = sym_help._maybe_get_const(output_size, 'is')
    +                input_size.extend(output_size)
    +                output_size = g.op(
    +                    'Constant',
    +                    value_t=torch.tensor(input_size, dtype=torch.int64))
    +            else:
    +                input_size = g.op('Shape', input)
    +                input_size_beg = sym_help._slice_helper(
    +                    g, input_size, axes=[0], ends=[2], starts=[0])
    +                output_size = g.op(
    +                    'Cast',
    +                    output_size,
    +                    to_i=sym_help.cast_pytorch_to_onnx['Long'])
    +                output_size = g.op(
    +                    'Concat', input_size_beg, output_size, axis_i=0)
    +            scales = g.op(
    +                'Constant', value_t=torch.tensor([], dtype=torch.float32))
    +            return g.op(
    +                'Resize',
    +                input,
    +                empty_tensor,
    +                # roi only takes effect with
    +                # coordinate_transformation_mode="tf_crop_and_resize"
    +                scales,  # scales is not needed since we are sending out_size
    +                output_size,
    +                coordinate_transformation_mode_s=transformation_mode,
    +                cubic_coeff_a_f=-0.75,  # only valid when mode="cubic"
    +                mode_s=interpolate_mode,  # nearest, linear, or cubic
    +                nearest_mode_s='floor')  # only valid when mode="nearest"
    +        else:
    +            return g.op(
    +                'Resize',
    +                input,
    +                empty_tensor,
    +                # roi only takes effect with
    +                # coordinate_transformation_mode="tf_crop_and_resize"
    +                scales,  # scales is not needed since we are sending out_size
    +                coordinate_transformation_mode_s=transformation_mode,
    +                cubic_coeff_a_f=-0.75,  # only valid when mode="cubic"
    +                mode_s=interpolate_mode,  # nearest, linear, or cubic
    +                nearest_mode_s='floor')  # only valid when mode="nearest"
    +
    +    return symbolic_fn
    +
    +
    +upsample_nearest1d = _interpolate('upsample_nearest1d', 3, 'nearest')
    +upsample_nearest2d = _interpolate('upsample_nearest2d', 4, 'nearest')
    +upsample_nearest3d = _interpolate('upsample_nearest3d', 5, 'nearest')
    +upsample_linear1d = _interpolate('upsample_linear1d', 3, 'linear')
    +upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, 'linear')
    +upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, 'linear')
    +upsample_bicubic2d = _interpolate('upsample_bicubic2d', 4, 'cubic')
    +
    +
    +@parse_args('v', 'v', 'i', 'i', 'i', 'none')
    +def topk(g, self, k, dim, largest, sorted, out=None):
    +    return sym_help._topk_helper(
    +        g, self, k, dim, largest=largest, sorted=sorted, out=out)
    +
    +
    +def masked_select(g, self, mask):
    +    from torch.onnx.symbolic_opset9 import expand_as, nonzero
    +    index = nonzero(g, expand_as(g, mask, self))
    +    return g.op('GatherND', self, index)
    +
    +
    +def _prepare_onnx_paddings(g, dim, pad):
    +    pad_len = torch.onnx.symbolic_opset9.size(
    +        g, pad, g.op('Constant', value_t=torch.tensor([0])))
    +    # Set extension = [0] * (dim * 2 - len(pad))
    +    extension = g.op(
    +        'Sub',
    +        g.op('Mul',
    +             g.op('Constant', value_t=torch.tensor(dim, dtype=torch.int64)),
    +             g.op('Constant', value_t=torch.tensor(2, dtype=torch.int64))),
    +        pad_len)
    +    pad = g.op('Cast', pad, to_i=sym_help.cast_pytorch_to_onnx['Long'])
    +    paddings = g.op(
    +        'Concat',
    +        pad,
    +        g.op(
    +            'ConstantOfShape',
    +            extension,
    +            value_t=torch.tensor([0], dtype=torch.int64)),
    +        axis_i=0)
    +    paddings = g.op('Reshape', paddings,
    +                    g.op('Constant', value_t=torch.tensor([-1, 2])))
    +    paddings = g.op(
    +        'Transpose',
    +        torch.onnx.symbolic_opset10.flip(g, paddings, [0]),
    +        perm_i=[1, 0])
    +    paddings = g.op('Reshape', paddings,
    +                    g.op('Constant', value_t=torch.tensor([-1])))
    +    padding_c = g.op(
    +        'Cast', paddings, to_i=sym_help.cast_pytorch_to_onnx['Long'])
    +    return padding_c
    +
    +
    +def constant_pad_nd(g, input, padding, value=None):
    +    mode = 'constant'
    +    value = sym_help._maybe_get_scalar(value)
    +    value = sym_help._if_scalar_type_as(g, value, input)
    +    pad = _prepare_onnx_paddings(g, input.type().dim(), padding)
    +    return g.op('Pad', input, pad, value, mode_s=mode)
    +
    +
    +def reflection_pad(g, input, padding):
    +    mode = 'reflect'
    +    paddings = _prepare_onnx_paddings(g, input.type().dim(), padding)
    +    return g.op('Pad', input, paddings, mode_s=mode)
    +
    +
    +reflection_pad1d = reflection_pad
    +reflection_pad2d = reflection_pad
    +reflection_pad3d = reflection_pad
    +
    +
    +def _avg_pool(name, tuple_fn):
    +
    +    @parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none')
    +    def symbolic_fn(g,
    +                    input,
    +                    kernel_size,
    +                    stride,
    +                    padding,
    +                    ceil_mode,
    +                    count_include_pad,
    +                    divisor_override=None):
    +        padding = sym_help._avgpool_helper(tuple_fn, padding, kernel_size,
    +                                           stride, divisor_override, name)
    +        if not stride:
    +            stride = kernel_size
    +        if count_include_pad:
    +            input = g.op(
    +                'Pad',
    +                input,
    +                g.op(
    +                    'Constant',
    +                    value_t=torch.tensor(((0, ) * 2 + padding) * 2)),
    +                mode_s='constant')
    +            padding = (0, ) * len(padding)
    +        output = g.op(
    +            'AveragePool',
    +            input,
    +            kernel_shape_i=tuple_fn(kernel_size),
    +            strides_i=tuple_fn(stride),
    +            pads_i=padding * 2,
    +            ceil_mode_i=ceil_mode)
    +        return output
    +
    +    return symbolic_fn
    +
    +
    +avg_pool1d = _avg_pool('avg_pool1d', _single)
    +avg_pool2d = _avg_pool('avg_pool2d', _pair)
    +avg_pool3d = _avg_pool('avg_pool3d', _triple)
    +
    +
    +def _get_im2col_indices_along_dim(g, input_d, kernel_size_d, dilation_d,
    +                                  padding_d, stride_d):
    +    # Input is always 4-D (N, C, H, W)
    +    # Calculate indices of sliding blocks along spatial dimension
    +    # Slide kernel over input each dim d:
    +    # each dimension d ranges from 0 to
    +    # input[d]+2xpadding[d]-dilation[d]x(kernel_size[d]-1)
    +    # with steps = stride
    +
    +    blocks_d = g.op('Add', input_d,
    +                    g.op('Constant', value_t=torch.tensor(padding_d * 2)))
    +    blocks_d = g.op(
    +        'Sub', blocks_d,
    +        g.op(
    +            'Constant',
    +            value_t=torch.tensor(dilation_d * (kernel_size_d - 1))))
    +
    +    # Stride kernel over input and find starting indices along dim d
    +    blocks_d_indices = g.op('Range', g.op('Constant', value_t=torch.tensor(0)),
    +                            blocks_d,
    +                            g.op('Constant', value_t=torch.tensor(stride_d)))
    +
    +    # Apply dilation on kernel and find its indices along dim d
    +    kernel_grid = np.arange(0, kernel_size_d * dilation_d, dilation_d)
    +    kernel_grid = g.op('Constant', value_t=torch.tensor([kernel_grid]))
    +
    +    # Broadcast and add kernel staring positions (indices) with
    +    # kernel_grid along dim d, to get block indices along dim d
    +    blocks_d_indices = g.op(
    +        'Unsqueeze', blocks_d_indices, axes_i=[0])  # Reshape to [1, -1]
    +    kernel_mask = g.op('Reshape', kernel_grid,
    +                       g.op('Constant', value_t=torch.tensor([-1, 1])))
    +    block_mask = g.op('Add', blocks_d_indices, kernel_mask)
    +
    +    return block_mask
    +
    +
    +def _get_im2col_padded_input(g, input, padding_h, padding_w):
    +    # Input is always 4-D tensor (N, C, H, W)
    +    # Padding tensor has the following format: (padding_h, padding_w)
    +    # Reshape the padding to follow ONNX format:
    +    # (dim1_begin, dim2_begin,...,dim1_end, dim2_end,...)
    +    pad = g.op(
    +        'Constant', value_t=torch.LongTensor([0, 0, padding_h, padding_w] * 2))
    +    return g.op('Pad', input, pad)
    +
    +
    +def _get_im2col_output_shape(g, input, kernel_h, kernel_w):
    +    batch_dim = size(g, input, g.op('Constant', value_t=torch.tensor(0)))
    +    channel_dim = size(g, input, g.op('Constant', value_t=torch.tensor(1)))
    +    channel_unfolded = g.op(
    +        'Mul', channel_dim,
    +        g.op('Constant', value_t=torch.tensor(kernel_h * kernel_w)))
    +
    +    return g.op(
    +        'Concat',
    +        g.op('Unsqueeze', batch_dim, axes_i=[0]),
    +        g.op('Unsqueeze', channel_unfolded, axes_i=[0]),
    +        g.op('Constant', value_t=torch.tensor([-1])),
    +        axis_i=0)
    +
    +
    +def size(g, self, dim=None):
    +    if dim is None:
    +        return g.op('Shape', self)
    +    return sym_help._size_helper(g, self, dim)
    +
    +
    +@parse_args('v', 'is', 'is', 'is', 'is')
    +def im2col(g, input, kernel_size, dilation, padding, stride):
    +    # Input is always 4-D tensor (N, C, H, W)
    +    # All other args are int[2]
    +
    +    input_h = size(g, input, g.op('Constant', value_t=torch.tensor(2)))
    +    input_w = size(g, input, g.op('Constant', value_t=torch.tensor(3)))
    +
    +    stride_h, stride_w = stride[0], stride[1]
    +    padding_h, padding_w = padding[0], padding[1]
    +    dilation_h, dilation_w = dilation[0], dilation[1]
    +    kernel_h, kernel_w = kernel_size[0], kernel_size[1]
    +
    +    blocks_row_indices = _get_im2col_indices_along_dim(g, input_h, kernel_h,
    +                                                       dilation_h, padding_h,
    +                                                       stride_h)
    +    blocks_col_indices = _get_im2col_indices_along_dim(g, input_w, kernel_w,
    +                                                       dilation_w, padding_w,
    +                                                       stride_w)
    +
    +    output_shape = _get_im2col_output_shape(g, input, kernel_h, kernel_w)
    +    padded_input = _get_im2col_padded_input(g, input, padding_h, padding_w)
    +
    +    output = g.op('Gather', padded_input, blocks_row_indices, axis_i=2)
    +    output = g.op('Gather', output, blocks_col_indices, axis_i=4)
    +    output = g.op('Transpose', output, perm_i=[0, 1, 2, 4, 3, 5])
    +    return g.op('Reshape', output, output_shape)
    +
    +
    +@parse_args('v', 'i')
    +def one_hot(g, self, num_classes):
    +    values = g.op('Constant', value_t=torch.LongTensor([0, 1]))
    +    depth = g.op('Constant', value_t=torch.LongTensor([num_classes]))
    +    return g.op('OneHot', self, depth, values, axis_i=-1)
    +
    +
    +@parse_args('v', 'i', 'none')
    +def softmax(g, input, dim, dtype=None):
    +    input_dim = input.type().dim()
    +    if input_dim:
    +        # TODO: remove this as onnx opset 11 spec allows negative axes
    +        if dim < 0:
    +            dim = input_dim + dim
    +        if input_dim == dim + 1:
    +            softmax = g.op('Softmax', input, axis_i=dim)
    +            if dtype and dtype.node().kind() != 'prim::Constant':
    +                parsed_dtype = sym_help._get_const(dtype, 'i', 'dtype')
    +                softmax = g.op(
    +                    'Cast',
    +                    softmax,
    +                    to_i=sym_help.scalar_type_to_onnx[parsed_dtype])
    +            return softmax
    +
    +    max_value = g.op('ReduceMax', input, axes_i=[dim], keepdims_i=1)
    +    input = g.op('Sub', input, max_value)
    +    exp = g.op('Exp', input)
    +    sum = g.op('ReduceSum', exp, axes_i=[dim])
    +    softmax = g.op('Div', exp, sum)
    +    if dtype and dtype.node().kind() != 'prim::Constant':
    +        parsed_dtype = sym_help._get_const(dtype, 'i', 'dtype')
    +        softmax = g.op(
    +            'Cast', softmax, to_i=sym_help.scalar_type_to_onnx[parsed_dtype])
    +    return softmax
    +
    +
    +def _adaptive_pool(name, type, tuple_fn, fn=None):
    +
    +    @parse_args('v', 'is')
    +    def symbolic_fn(g, input, output_size):
    +        if output_size == [1] * len(output_size) and type == 'AveragePool':
    +            return g.op('GlobalAveragePool', input)
    +        if not input.isCompleteTensor():
    +            if output_size == [1] * len(output_size):
    +                return g.op('GlobalMaxPool', input), None
    +            raise NotImplementedError(
    +                '[Adaptive pool]:input size not accessible')
    +        dim = input.type().sizes()[2:]
    +        if output_size == [1] * len(output_size) and type == 'MaxPool':
    +            return g.op('GlobalMaxPool', input), None
    +
    +        # compute stride = floor(input_size / output_size)
    +        s = [int(dim[i] / output_size[i]) for i in range(0, len(dim))]
    +
    +        # compute kernel_size = input_size - (output_size - 1) * stride
    +        k = [dim[i] - (output_size[i] - 1) * s[i] for i in range(0, len(dim))]
    +
    +        # call max_poolxd_with_indices to get indices in the output
    +        if type == 'MaxPool':
    +            return fn(g, input, k, k, (0, ) * len(dim), (1, ) * len(dim),
    +                      False)
    +        output = g.op(
    +            type,
    +            input,
    +            kernel_shape_i=tuple_fn(k),
    +            strides_i=tuple_fn(s),
    +            ceil_mode_i=False)
    +        return output
    +
    +    return symbolic_fn
    +
    +
    +adaptive_avg_pool1d = _adaptive_pool('adaptive_avg_pool1d', 'AveragePool',
    +                                     _single)
    +adaptive_avg_pool2d = _adaptive_pool('adaptive_avg_pool2d', 'AveragePool',
    +                                     _pair)
    +adaptive_avg_pool3d = _adaptive_pool('adaptive_avg_pool3d', 'AveragePool',
    +                                     _triple)
    +
    +
    +def new_full(g,
    +             self,
    +             size,
    +             fill_value,
    +             dtype,
    +             layout,
    +             device,
    +             pin_memory=False):
    +    from torch.onnx.symbolic_opset9 import full
    +    if dtype is None and self.isCompleteTensor():
    +        dtype = self.type().scalarType()
    +        dtype = sym_help.scalar_type_to_onnx.index(
    +            sym_help.cast_pytorch_to_onnx[dtype])
    +    return full(g, size, fill_value, dtype, layout, device, pin_memory)
    +
    +
    +@parse_args('v', 'v', 'i', 'i', 'i')
    +def grid_sampler(g,
    +                 input,
    +                 grid,
    +                 interpolation_mode,
    +                 padding_mode,
    +                 align_corners=False):
    +    return g.op(
    +        'mmcv::grid_sampler',
    +        input,
    +        grid,
    +        interpolation_mode_i=interpolation_mode,
    +        padding_mode_i=padding_mode,
    +        align_corners_i=align_corners)
    +
    +
    +@parse_args('v', 'i')
    +def cummax(g, input, dim):
    +    return g.op('mmcv::cummax', input, dim_i=dim, outputs=2)
    +
    +
    +@parse_args('v', 'i')
    +def cummin(g, input, dim):
    +    return g.op('mmcv::cummin', input, dim_i=dim, outputs=2)
    +
    +
    +@parse_args('v', 'v', 'is')
    +def roll(g, input, shifts, dims):
    +    from packaging import version
    +    from torch.onnx.symbolic_opset9 import squeeze
    +    input_shape = g.op('Shape', input)
    +
    +    need_flatten = len(dims) == 0
    +    # If dims is not specified, the tensor will be flattened before
    +    # rolling and then restored to the original shape.
    +    if need_flatten:
    +        resize_shape = input_shape
    +        input = g.op('Reshape', input,
    +                     g.op('Constant', value_t=torch.LongTensor([1, -1])))
    +        input_shape = g.op('Shape', input)
    +        dims = [1]
    +
    +    for index, dim in enumerate(dims):
    +        end_size = sym_help._slice_helper(
    +            g, input_shape, axes=[0], ends=[dim + 1], starts=[dim])
    +        shift_size = sym_help._slice_helper(
    +            g, shifts, axes=[0], ends=[index + 1], starts=[index])
    +        slice_size = g.op('Sub', end_size, shift_size)
    +
    +        # Can not use Mod because tensorrt does not support
    +        div_size = g.op('Div', slice_size, end_size)
    +        slice_size = g.op('Sub', slice_size, g.op('Mul', end_size, div_size))
    +
    +        if version.parse(torch.__version__) >= version.parse('1.7.0'):
    +            # add dim=0 for pytorch 1.9.0
    +            end_size = squeeze(g, end_size, 0)
    +            slice_size = squeeze(g, slice_size, 0)
    +        else:
    +            end_size = g.op('Squeeze', end_size)
    +            slice_size = g.op('Squeeze', slice_size)
    +            dim = torch.LongTensor([dim])
    +
    +        input_slice0 = sym_help._slice_helper(
    +            g,
    +            input,
    +            axes=dim,
    +            starts=torch.LongTensor([0]),
    +            ends=slice_size,
    +            dynamic_slice=True)
    +        input_slice1 = sym_help._slice_helper(
    +            g,
    +            input,
    +            axes=dim,
    +            ends=end_size,
    +            starts=slice_size,
    +            dynamic_slice=True)
    +
    +        input = g.op('Concat', input_slice1, input_slice0, axis_i=dim)
    +
    +    if need_flatten:
    +        input = g.op('Reshape', input, resize_shape)
    +
    +    return input
    +
    +
    +def register_extra_symbolics(opset=11):
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    register_custom_op_symbolic('::one_hot', one_hot, opset)
    +    register_custom_op_symbolic('::im2col', im2col, opset)
    +    register_custom_op_symbolic('::topk', topk, opset)
    +    register_custom_op_symbolic('::softmax', softmax, opset)
    +    register_custom_op_symbolic('::constant_pad_nd', constant_pad_nd, opset)
    +    register_custom_op_symbolic('::reflection_pad1d', reflection_pad1d, opset)
    +    register_custom_op_symbolic('::reflection_pad2d', reflection_pad2d, opset)
    +    register_custom_op_symbolic('::reflection_pad3d', reflection_pad3d, opset)
    +    register_custom_op_symbolic('::avg_pool1d', avg_pool1d, opset)
    +    register_custom_op_symbolic('::avg_pool2d', avg_pool2d, opset)
    +    register_custom_op_symbolic('::avg_pool3d', avg_pool3d, opset)
    +    register_custom_op_symbolic('::adaptive_avg_pool1d', adaptive_avg_pool1d,
    +                                opset)
    +    register_custom_op_symbolic('::adaptive_avg_pool2d', adaptive_avg_pool2d,
    +                                opset)
    +    register_custom_op_symbolic('::adaptive_avg_pool3d', adaptive_avg_pool3d,
    +                                opset)
    +    register_custom_op_symbolic('::masked_select', masked_select, opset)
    +    register_custom_op_symbolic('::upsample_nearest1d', upsample_nearest1d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_nearest2d', upsample_nearest2d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_nearest3d', upsample_nearest3d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_linear1d', upsample_linear1d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_bilinear2d', upsample_bilinear2d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_trilinear3d', upsample_trilinear3d,
    +                                opset)
    +    register_custom_op_symbolic('::upsample_bicubic2d', upsample_bicubic2d,
    +                                opset)
    +    register_custom_op_symbolic('::new_full', new_full, opset)
    +    register_custom_op_symbolic('::grid_sampler', grid_sampler, opset)
    +    register_custom_op_symbolic('::cummax', cummax, opset)
    +    register_custom_op_symbolic('::cummin', cummin, opset)
    +    register_custom_op_symbolic('::roll', roll, opset)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/__init__.py
    new file mode 100755
    index 000000000..c4ec75d80
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/__init__.py
    @@ -0,0 +1,104 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.utils import IS_MLU_AVAILABLE
    +from .active_rotated_filter import active_rotated_filter
    +from .assign_score_withk import assign_score_withk
    +from .ball_query import ball_query
    +from .bbox import bbox_overlaps
    +from .border_align import BorderAlign, border_align
    +from .box_iou_quadri import box_iou_quadri
    +from .box_iou_rotated import box_iou_rotated
    +from .carafe import CARAFE, CARAFENaive, CARAFEPack, carafe, carafe_naive
    +from .cc_attention import CrissCrossAttention
    +from .chamfer_distance import chamfer_distance
    +from .contour_expand import contour_expand
    +from .convex_iou import convex_giou, convex_iou
    +from .corner_pool import CornerPool
    +from .correlation import Correlation
    +from .deform_conv import DeformConv2d, DeformConv2dPack, deform_conv2d
    +from .deform_roi_pool import (DeformRoIPool, DeformRoIPoolPack,
    +                              ModulatedDeformRoIPoolPack, deform_roi_pool)
    +from .deprecated_wrappers import Conv2d_deprecated as Conv2d
    +from .deprecated_wrappers import ConvTranspose2d_deprecated as ConvTranspose2d
    +from .deprecated_wrappers import Linear_deprecated as Linear
    +from .deprecated_wrappers import MaxPool2d_deprecated as MaxPool2d
    +from .diff_iou_rotated import diff_iou_rotated_2d, diff_iou_rotated_3d
    +from .focal_loss import (SigmoidFocalLoss, SoftmaxFocalLoss,
    +                         sigmoid_focal_loss, softmax_focal_loss)
    +from .furthest_point_sample import (furthest_point_sample,
    +                                    furthest_point_sample_with_dist)
    +from .fused_bias_leakyrelu import FusedBiasLeakyReLU, fused_bias_leakyrelu
    +from .gather_points import gather_points
    +from .group_points import GroupAll, QueryAndGroup, grouping_operation
    +from .info import (get_compiler_version, get_compiling_cuda_version,
    +                   get_onnxruntime_op_path)
    +from .iou3d import (boxes_iou3d, boxes_iou_bev, boxes_overlap_bev, nms3d,
    +                    nms3d_normal, nms_bev, nms_normal_bev)
    +from .knn import knn
    +from .masked_conv import MaskedConv2d, masked_conv2d
    +from .min_area_polygons import min_area_polygons
    +from .modulated_deform_conv import (ModulatedDeformConv2d,
    +                                    ModulatedDeformConv2dPack,
    +                                    modulated_deform_conv2d)
    +from .multi_scale_deform_attn import MultiScaleDeformableAttention
    +from .nms import batched_nms, nms, nms_match, nms_quadri, nms_rotated, soft_nms
    +from .pixel_group import pixel_group
    +from .point_sample import (SimpleRoIAlign, point_sample,
    +                           rel_roi_point_to_rel_img_point)
    +from .points_in_boxes import (points_in_boxes_all, points_in_boxes_cpu,
    +                              points_in_boxes_part)
    +from .points_in_polygons import points_in_polygons
    +from .points_sampler import PointsSampler
    +from .prroi_pool import PrRoIPool, prroi_pool
    +from .psa_mask import PSAMask
    +from .riroi_align_rotated import RiRoIAlignRotated, riroi_align_rotated
    +from .roi_align import RoIAlign, roi_align
    +from .roi_align_rotated import RoIAlignRotated, roi_align_rotated
    +from .roi_pool import RoIPool, roi_pool
    +from .roiaware_pool3d import RoIAwarePool3d
    +from .roipoint_pool3d import RoIPointPool3d
    +from .rotated_feature_align import rotated_feature_align
    +from .saconv import SAConv2d
    +from .scatter_points import DynamicScatter, dynamic_scatter
    +from .sync_bn import SyncBatchNorm
    +from .three_interpolate import three_interpolate
    +from .three_nn import three_nn
    +from .tin_shift import TINShift, tin_shift
    +from .upfirdn2d import upfirdn2d
    +from .voxelize import Voxelization, voxelization
    +
    +__all__ = [
    +    'bbox_overlaps', 'CARAFE', 'CARAFENaive', 'CARAFEPack', 'carafe',
    +    'carafe_naive', 'CornerPool', 'DeformConv2d', 'DeformConv2dPack',
    +    'deform_conv2d', 'DeformRoIPool', 'DeformRoIPoolPack',
    +    'ModulatedDeformRoIPoolPack', 'deform_roi_pool', 'SigmoidFocalLoss',
    +    'SoftmaxFocalLoss', 'sigmoid_focal_loss', 'softmax_focal_loss',
    +    'get_compiler_version', 'get_compiling_cuda_version',
    +    'get_onnxruntime_op_path', 'MaskedConv2d', 'masked_conv2d',
    +    'ModulatedDeformConv2d', 'ModulatedDeformConv2dPack',
    +    'modulated_deform_conv2d', 'batched_nms', 'nms', 'soft_nms', 'nms_match',
    +    'RoIAlign', 'roi_align', 'RoIPool', 'roi_pool', 'SyncBatchNorm', 'Conv2d',
    +    'ConvTranspose2d', 'Linear', 'MaxPool2d', 'CrissCrossAttention', 'PSAMask',
    +    'point_sample', 'rel_roi_point_to_rel_img_point', 'SimpleRoIAlign',
    +    'SAConv2d', 'TINShift', 'tin_shift', 'assign_score_withk',
    +    'box_iou_rotated', 'box_iou_quadri', 'RoIPointPool3d', 'nms_rotated',
    +    'knn', 'ball_query', 'upfirdn2d', 'FusedBiasLeakyReLU',
    +    'fused_bias_leakyrelu', 'rotated_feature_align', 'RiRoIAlignRotated',
    +    'riroi_align_rotated', 'RoIAlignRotated', 'roi_align_rotated',
    +    'pixel_group', 'QueryAndGroup', 'GroupAll', 'grouping_operation',
    +    'contour_expand', 'three_nn', 'three_interpolate',
    +    'MultiScaleDeformableAttention', 'BorderAlign', 'border_align',
    +    'gather_points', 'furthest_point_sample', 'nms_quadri',
    +    'furthest_point_sample_with_dist', 'PointsSampler', 'Correlation',
    +    'boxes_iou3d', 'boxes_iou_bev', 'boxes_overlap_bev', 'nms_bev',
    +    'nms_normal_bev', 'nms3d', 'nms3d_normal', 'Voxelization', 'voxelization',
    +    'dynamic_scatter', 'DynamicScatter', 'RoIAwarePool3d', 'points_in_boxes_part',
    +    'points_in_boxes_cpu', 'points_in_boxes_all', 'points_in_polygons',
    +    'min_area_polygons', 'active_rotated_filter', 'convex_iou', 'convex_giou',
    +    'diff_iou_rotated_2d', 'diff_iou_rotated_3d', 'chamfer_distance',
    +    'PrRoIPool', 'prroi_pool'
    +]
    +
    +if IS_MLU_AVAILABLE:
    +    from .modulated_deform_conv import \
    +        ModulatedDeformConv2dPack_MLU  # noqa:F401
    +    __all__.append('ModulatedDeformConv2dPack_MLU')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/active_rotated_filter.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/active_rotated_filter.py
    new file mode 100644
    index 000000000..b8ba43dd4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/active_rotated_filter.py
    @@ -0,0 +1,64 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Tuple
    +
    +import torch
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext',
    +    ['active_rotated_filter_forward', 'active_rotated_filter_backward'])
    +
    +
    +class ActiveRotatedFilterFunction(Function):
    +    """Encoding the orientation information and generating orientation-
    +    sensitive features.
    +
    +    The details are described in the paper `Align Deep Features for Oriented
    +    Object Detection  _`.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx, input: torch.Tensor,
    +                indices: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            input (torch.Tensor): Input features with shape
    +                [num_output_planes, num_input_planes, num_orientations, H, W].
    +            indices (torch.Tensor): Indices with shape
    +                [num_orientations, H, W, num_rotations].
    +
    +        Returns:
    +            torch.Tensor: Refined features with shape [num_output_planes *
    +            num_rotations, num_input_planes * num_orientations, H, W].
    +        """
    +        ctx.save_for_backward(input, indices)
    +        op, ip, o, h, w = input.size()
    +        o, h, w, r = indices.size()
    +        output = input.new_zeros((op * r, ip * o, h, w))
    +        ext_module.active_rotated_filter_forward(input, indices, output)
    +
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, None]:
    +        """
    +        Args:
    +            grad_output (torch.Tensor): The gradient of output features
    +                with shape [num_output_planes * num_rotations,
    +                num_input_planes * num_orientations, H, W].
    +
    +        Returns:
    +            torch.Tensor: The gradient of input features with shape
    +            [num_output_planes, num_input_planes, num_orientations, H, W].
    +        """
    +        input, indices = ctx.saved_tensors
    +        grad_in = torch.zeros_like(input)
    +        ext_module.active_rotated_filter_backward(grad_out, indices, grad_in)
    +        return grad_in, None
    +
    +
    +active_rotated_filter = ActiveRotatedFilterFunction.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/assign_score_withk.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/assign_score_withk.py
    new file mode 100644
    index 000000000..deca0892b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/assign_score_withk.py
    @@ -0,0 +1,131 @@
    +from typing import Tuple
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['assign_score_withk_forward', 'assign_score_withk_backward'])
    +
    +
    +class AssignScoreWithK(Function):
    +    r"""Perform weighted sum to generate output features according to scores.
    +    Modified from `PAConv `_.
    +
    +    This is a memory-efficient CUDA implementation of assign_scores operation,
    +    which first transform all point features with weight bank, then assemble
    +    neighbor features with ``knn_idx`` and perform weighted sum of ``scores``.
    +
    +    See the `paper `_ appendix Sec. D for
    +        more detailed descriptions.
    +
    +    Note:
    +        This implementation assumes using ``neighbor`` kernel input, which is
    +            (point_features - center_features, point_features).
    +        See https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/model/
    +        pointnet2/paconv.py#L128 for more details.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx,
    +                scores: torch.Tensor,
    +                point_features: torch.Tensor,
    +                center_features: torch.Tensor,
    +                knn_idx: torch.Tensor,
    +                aggregate: str = 'sum') -> torch.Tensor:
    +        """
    +        Args:
    +            scores (torch.Tensor): (B, npoint, K, M), predicted scores to
    +                aggregate weight matrices in the weight bank.
    +                ``npoint`` is the number of sampled centers.
    +                ``K`` is the number of queried neighbors.
    +                ``M`` is the number of weight matrices in the weight bank.
    +            point_features (torch.Tensor): (B, N, M, out_dim)
    +                Pre-computed point features to be aggregated.
    +            center_features (torch.Tensor): (B, N, M, out_dim)
    +                Pre-computed center features to be aggregated.
    +            knn_idx (torch.Tensor): (B, npoint, K), index of sampled kNN.
    +                We assume the first idx in each row is the idx of the center.
    +            aggregate (str, optional): Aggregation method.
    +                Can be 'sum', 'avg' or 'max'. Defaults: 'sum'.
    +
    +        Returns:
    +            torch.Tensor: (B, out_dim, npoint, K), the aggregated features.
    +        """
    +        agg = {'sum': 0, 'avg': 1, 'max': 2}
    +
    +        B, N, M, out_dim = point_features.size()
    +        _, npoint, K, _ = scores.size()
    +
    +        output = point_features.new_zeros((B, out_dim, npoint, K))
    +        ext_module.assign_score_withk_forward(
    +            point_features.contiguous(),
    +            center_features.contiguous(),
    +            scores.contiguous(),
    +            knn_idx.contiguous(),
    +            output,
    +            B=B,
    +            N0=N,
    +            N1=npoint,
    +            M=M,
    +            K=K,
    +            O=out_dim,
    +            aggregate=agg[aggregate])
    +
    +        ctx.save_for_backward(output, point_features, center_features, scores,
    +                              knn_idx)
    +        ctx.agg = agg[aggregate]
    +
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +        ctx, grad_out: torch.Tensor
    +    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, None, None]:
    +        """
    +        Args:
    +            grad_out (torch.Tensor): (B, out_dim, npoint, K)
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains five elements. The first one
    +            is the gradient of ``scores`` whose shape is (B, npoint, K, M). The
    +            second is the gradient of ``point_features`` whose shape is
    +            (B, N, M, out_dim). The third is the gradient of
    +            ``center_features`` with the shape of (B, N, M, out_dim). The last
    +            two are ``None``.
    +        """
    +        _, point_features, center_features, scores, knn_idx = ctx.saved_tensors
    +
    +        agg = ctx.agg
    +
    +        B, N, M, out_dim = point_features.size()
    +        _, npoint, K, _ = scores.size()
    +
    +        grad_point_features = point_features.new_zeros(point_features.shape)
    +        grad_center_features = center_features.new_zeros(center_features.shape)
    +        grad_scores = scores.new_zeros(scores.shape)
    +
    +        ext_module.assign_score_withk_backward(
    +            grad_out.contiguous(),
    +            point_features.contiguous(),
    +            center_features.contiguous(),
    +            scores.contiguous(),
    +            knn_idx.contiguous(),
    +            grad_point_features,
    +            grad_center_features,
    +            grad_scores,
    +            B=B,
    +            N0=N,
    +            N1=npoint,
    +            M=M,
    +            K=K,
    +            O=out_dim,
    +            aggregate=agg)
    +
    +        return grad_scores, grad_point_features, \
    +            grad_center_features, None, None
    +
    +
    +assign_score_withk = AssignScoreWithK.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/ball_query.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/ball_query.py
    new file mode 100644
    index 000000000..a89b36b52
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/ball_query.py
    @@ -0,0 +1,87 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Tuple
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['ball_query_forward', 'stack_ball_query_forward'])
    +
    +
    +class BallQuery(Function):
    +    """Find nearby points in spherical space."""
    +
    +    @staticmethod
    +    def forward(
    +            ctx,
    +            min_radius: float,
    +            max_radius: float,
    +            sample_num: int,
    +            xyz: torch.Tensor,
    +            center_xyz: torch.Tensor,
    +            xyz_batch_cnt: Optional[torch.Tensor] = None,
    +            center_xyz_batch_cnt: Optional[torch.Tensor] = None
    +    ) -> torch.Tensor:
    +        """
    +        Args:
    +            min_radius (float): minimum radius of the balls.
    +            max_radius (float): maximum radius of the balls.
    +            sample_num (int): maximum number of features in the balls.
    +            xyz (torch.Tensor): (B, N, 3) xyz coordinates of the features,
    +                or staked input (N1 + N2 ..., 3).
    +            center_xyz (torch.Tensor): (B, npoint, 3) centers of the ball
    +                query, or staked input (M1 + M2 ..., 3).
    +            xyz_batch_cnt: (batch_size): Stacked input xyz coordinates nums in
    +                each batch, just like (N1, N2, ...). Defaults to None.
    +                New in version 1.7.0.
    +            center_xyz_batch_cnt: (batch_size): Stacked centers coordinates
    +                nums in each batch, just line (M1, M2, ...). Defaults to None.
    +                New in version 1.7.0.
    +
    +        Returns:
    +            torch.Tensor: (B, npoint, nsample) tensor with the indices of the
    +            features that form the query balls.
    +        """
    +        assert center_xyz.is_contiguous()
    +        assert xyz.is_contiguous()
    +        assert min_radius < max_radius
    +        if xyz_batch_cnt is not None and center_xyz_batch_cnt is not None:
    +            assert xyz_batch_cnt.dtype == torch.int
    +            assert center_xyz_batch_cnt.dtype == torch.int
    +            idx = center_xyz.new_zeros((center_xyz.shape[0], sample_num),
    +                                       dtype=torch.int32)
    +            ext_module.stack_ball_query_forward(
    +                center_xyz,
    +                center_xyz_batch_cnt,
    +                xyz,
    +                xyz_batch_cnt,
    +                idx,
    +                max_radius=max_radius,
    +                nsample=sample_num,
    +            )
    +        else:
    +            B, N, _ = xyz.size()
    +            npoint = center_xyz.size(1)
    +            idx = xyz.new_zeros(B, npoint, sample_num, dtype=torch.int32)
    +            ext_module.ball_query_forward(
    +                center_xyz,
    +                xyz,
    +                idx,
    +                b=B,
    +                n=N,
    +                m=npoint,
    +                min_radius=min_radius,
    +                max_radius=max_radius,
    +                nsample=sample_num)
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(idx)
    +        return idx
    +
    +    @staticmethod
    +    def backward(ctx, a=None) -> Tuple[None, None, None, None]:
    +        return None, None, None, None
    +
    +
    +ball_query = BallQuery.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/bbox.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/bbox.py
    new file mode 100644
    index 000000000..bf6bd43bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/bbox.py
    @@ -0,0 +1,130 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps'])
    +
    +
    +def _bbox_overlaps_cpu(bboxes1: torch.Tensor,
    +                       bboxes2: torch.Tensor,
    +                       mode: str = 'iou',
    +                       aligned: bool = False,
    +                       offset: int = 0) -> torch.Tensor:
    +    assert mode in ['iou', 'iof']
    +
    +    if aligned:
    +        lt = torch.max(bboxes1[:, :2], bboxes2[:, :2])  # [rows, 2]
    +        rb = torch.min(bboxes1[:, 2:], bboxes2[:, 2:])  # [rows, 2]
    +
    +        wh = (rb - lt + offset).clamp(min=0)  # [rows, 2]
    +        overlap = wh[:, 0] * wh[:, 1]
    +        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + offset) * (
    +            bboxes1[:, 3] - bboxes1[:, 1] + offset)
    +
    +        if mode == 'iou':
    +            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + offset) * (
    +                bboxes2[:, 3] - bboxes2[:, 1] + offset)
    +            ious = overlap / (area1 + area2 - overlap)
    +        else:
    +            ious = overlap / area1
    +    else:
    +        lt = torch.max(bboxes1[:, None, :2], bboxes2[:, :2])  # [rows, cols, 2]
    +        rb = torch.min(bboxes1[:, None, 2:], bboxes2[:, 2:])  # [rows, cols, 2]
    +
    +        wh = (rb - lt + offset).clamp(min=0)  # [rows, cols, 2]
    +        overlap = wh[:, :, 0] * wh[:, :, 1]
    +        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + offset) * (
    +            bboxes1[:, 3] - bboxes1[:, 1] + offset)
    +
    +        if mode == 'iou':
    +            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + offset) * (
    +                bboxes2[:, 3] - bboxes2[:, 1] + offset)
    +            ious = overlap / (area1[:, None] + area2 - overlap)
    +        else:
    +            ious = overlap / (area1[:, None])
    +
    +    return ious
    +
    +
    +def bbox_overlaps(bboxes1: torch.Tensor,
    +                  bboxes2: torch.Tensor,
    +                  mode: str = 'iou',
    +                  aligned: bool = False,
    +                  offset: int = 0) -> torch.Tensor:
    +    """Calculate overlap between two set of bboxes.
    +
    +    If ``aligned`` is ``False``, then calculate the ious between each bbox
    +    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    +    bboxes1 and bboxes2.
    +
    +    Args:
    +        bboxes1 (torch.Tensor): shape (m, 4) in  format or
    +            empty.
    +        bboxes2 (torch.Tensor): shape (n, 4) in  format or
    +            empty. If aligned is ``True``, then m and n must be equal.
    +        mode (str): "iou" (intersection over union) or iof (intersection over
    +            foreground).
    +
    +    Returns:
    +        torch.Tensor: Return the ious betweens boxes. If ``aligned`` is
    +        ``False``, the shape of ious is (m, n) else (m, 1).
    +
    +    Example:
    +        >>> bboxes1 = torch.FloatTensor([
    +        >>>     [0, 0, 10, 10],
    +        >>>     [10, 10, 20, 20],
    +        >>>     [32, 32, 38, 42],
    +        >>> ])
    +        >>> bboxes2 = torch.FloatTensor([
    +        >>>     [0, 0, 10, 20],
    +        >>>     [0, 10, 10, 19],
    +        >>>     [10, 10, 20, 20],
    +        >>> ])
    +        >>> bbox_overlaps(bboxes1, bboxes2)
    +        tensor([[0.5000, 0.0000, 0.0000],
    +                [0.0000, 0.0000, 1.0000],
    +                [0.0000, 0.0000, 0.0000]])
    +
    +    Example:
    +        >>> empty = torch.FloatTensor([])
    +        >>> nonempty = torch.FloatTensor([
    +        >>>     [0, 0, 10, 9],
    +        >>> ])
    +        >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
    +        >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
    +        >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
    +    """
    +
    +    mode_dict = {'iou': 0, 'iof': 1}
    +    assert mode in mode_dict.keys()
    +    mode_flag = mode_dict[mode]
    +    # Either the boxes are empty or the length of boxes' last dimension is 4
    +    assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0)
    +    assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0)
    +    assert offset == 1 or offset == 0
    +
    +    rows = bboxes1.size(0)
    +    cols = bboxes2.size(0)
    +    if aligned:
    +        assert rows == cols
    +
    +    if rows * cols == 0:
    +        return bboxes1.new(rows, 1) if aligned else bboxes1.new(rows, cols)
    +
    +    if bboxes1.device.type == 'cpu':
    +        return _bbox_overlaps_cpu(
    +            bboxes1, bboxes2, mode=mode, aligned=aligned, offset=offset)
    +    else:
    +        if aligned:
    +            ious = bboxes1.new_zeros(rows)
    +        else:
    +            ious = bboxes1.new_zeros((rows, cols))
    +        ext_module.bbox_overlaps(
    +            bboxes1,
    +            bboxes2,
    +            ious,
    +            mode=mode_flag,
    +            aligned=aligned,
    +            offset=offset)
    +        return ious
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/border_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/border_align.py
    new file mode 100644
    index 000000000..c09501b96
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/border_align.py
    @@ -0,0 +1,114 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# modified from
    +# https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/layers/border_align.py
    +
    +from typing import Tuple
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['border_align_forward', 'border_align_backward'])
    +
    +
    +class BorderAlignFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, boxes, pool_size):
    +        return g.op(
    +            'mmcv::MMCVBorderAlign', input, boxes, pool_size_i=pool_size)
    +
    +    @staticmethod
    +    def forward(ctx, input: torch.Tensor, boxes: torch.Tensor,
    +                pool_size: int) -> torch.Tensor:
    +        ctx.pool_size = pool_size
    +        ctx.input_shape = input.size()
    +
    +        assert boxes.ndim == 3, 'boxes must be with shape [B, H*W, 4]'
    +        assert boxes.size(2) == 4, \
    +            'the last dimension of boxes must be (x1, y1, x2, y2)'
    +        assert input.size(1) % 4 == 0, \
    +            'the channel for input feature must be divisible by factor 4'
    +
    +        # [B, C//4, H*W, 4]
    +        output_shape = (input.size(0), input.size(1) // 4, boxes.size(1), 4)
    +        output = input.new_zeros(output_shape)
    +        # `argmax_idx` only used for backward
    +        argmax_idx = input.new_zeros(output_shape).to(torch.int)
    +
    +        ext_module.border_align_forward(
    +            input, boxes, output, argmax_idx, pool_size=ctx.pool_size)
    +
    +        ctx.save_for_backward(boxes, argmax_idx)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx,
    +                 grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
    +        boxes, argmax_idx = ctx.saved_tensors
    +        grad_input = grad_output.new_zeros(ctx.input_shape)
    +        # complex head architecture may cause grad_output uncontiguous
    +        grad_output = grad_output.contiguous()
    +        ext_module.border_align_backward(
    +            grad_output,
    +            boxes,
    +            argmax_idx,
    +            grad_input,
    +            pool_size=ctx.pool_size)
    +        return grad_input, None, None
    +
    +
    +border_align = BorderAlignFunction.apply
    +
    +
    +class BorderAlign(nn.Module):
    +    r"""Border align pooling layer.
    +
    +    Applies border_align over the input feature based on predicted bboxes.
    +    The details were described in the paper
    +    `BorderDet: Border Feature for Dense Object Detection
    +    `_.
    +
    +    For each border line (e.g. top, left, bottom or right) of each box,
    +    border_align does the following:
    +
    +    1. uniformly samples ``pool_size`` +1 positions on this line, involving
    +       the start and end points.
    +    2. the corresponding features on these points are computed by bilinear
    +       interpolation.
    +    3. max pooling over all the ``pool_size`` +1 positions are used for
    +       computing pooled feature.
    +
    +    Args:
    +        pool_size (int): number of positions sampled over the boxes' borders
    +            (e.g. top, bottom, left, right).
    +    """
    +
    +    def __init__(self, pool_size: int):
    +        super().__init__()
    +        self.pool_size = pool_size
    +
    +    def forward(self, input: torch.Tensor,
    +                boxes: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            input: Features with shape [N,4C,H,W]. Channels ranged in [0,C),
    +                [C,2C), [2C,3C), [3C,4C) represent the top, left, bottom,
    +                right features respectively.
    +            boxes: Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2).
    +
    +        Returns:
    +            torch.Tensor: Pooled features with shape [N,C,H*W,4]. The order is
    +            (top,left,bottom,right) for the last dimension.
    +        """
    +        return border_align(input, boxes, self.pool_size)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(pool_size={self.pool_size})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_quadri.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_quadri.py
    new file mode 100644
    index 000000000..89747fdf1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_quadri.py
    @@ -0,0 +1,49 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['box_iou_quadri'])
    +
    +
    +def box_iou_quadri(bboxes1: torch.Tensor,
    +                   bboxes2: torch.Tensor,
    +                   mode: str = 'iou',
    +                   aligned: bool = False) -> torch.Tensor:
    +    """Return intersection-over-union (Jaccard index) of boxes.
    +
    +    Both sets of boxes are expected to be in
    +    (x1, y1, ..., x4, y4) format.
    +
    +    If ``aligned`` is ``False``, then calculate the ious between each bbox
    +    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    +    bboxes1 and bboxes2.
    +
    +    Args:
    +        bboxes1 (torch.Tensor): quadrilateral bboxes 1. It has shape (N, 8),
    +            indicating (x1, y1, ..., x4, y4) for each row.
    +        bboxes2 (torch.Tensor): quadrilateral bboxes 2. It has shape (M, 8),
    +            indicating (x1, y1, ..., x4, y4) for each row.
    +        mode (str): "iou" (intersection over union) or iof (intersection over
    +            foreground).
    +
    +    Returns:
    +        torch.Tensor: Return the ious betweens boxes. If ``aligned`` is
    +        ``False``, the shape of ious is (N, M) else (N,).
    +    """
    +    assert mode in ['iou', 'iof']
    +    mode_dict = {'iou': 0, 'iof': 1}
    +    mode_flag = mode_dict[mode]
    +    rows = bboxes1.size(0)
    +    cols = bboxes2.size(0)
    +    if aligned:
    +        ious = bboxes1.new_zeros(rows)
    +    else:
    +        ious = bboxes1.new_zeros(rows * cols)
    +    bboxes1 = bboxes1.contiguous()
    +    bboxes2 = bboxes2.contiguous()
    +    ext_module.box_iou_quadri(
    +        bboxes1, bboxes2, ious, mode_flag=mode_flag, aligned=aligned)
    +    if not aligned:
    +        ious = ious.view(rows, cols)
    +    return ious
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_rotated.py
    new file mode 100644
    index 000000000..2443af27c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/box_iou_rotated.py
    @@ -0,0 +1,148 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['box_iou_rotated'])
    +
    +
    +def box_iou_rotated(bboxes1: torch.Tensor,
    +                    bboxes2: torch.Tensor,
    +                    mode: str = 'iou',
    +                    aligned: bool = False,
    +                    clockwise: bool = True) -> torch.Tensor:
    +    """Return intersection-over-union (Jaccard index) of boxes.
    +
    +    Both sets of boxes are expected to be in
    +    (x_center, y_center, width, height, angle) format.
    +
    +    If ``aligned`` is ``False``, then calculate the ious between each bbox
    +    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    +    bboxes1 and bboxes2.
    +
    +    .. note::
    +        The operator assumes:
    +
    +        1) The positive direction along x axis is left -> right.
    +
    +        2) The positive direction along y axis is top -> down.
    +
    +        3) The w border is in parallel with x axis when angle = 0.
    +
    +        However, there are 2 opposite definitions of the positive angular
    +        direction, clockwise (CW) and counter-clockwise (CCW). MMCV supports
    +        both definitions and uses CW by default.
    +
    +        Please set ``clockwise=False`` if you are using the CCW definition.
    +
    +        The coordinate system when ``clockwise`` is ``True`` (default)
    +
    +            .. code-block:: none
    +
    +                0-------------------> x (0 rad)
    +                |  A-------------B
    +                |  |             |
    +                |  |     box     h
    +                |  |   angle=0   |
    +                |  D------w------C
    +                v
    +                y (pi/2 rad)
    +
    +            In such coordination system the rotation matrix is
    +
    +            .. math::
    +                \\begin{pmatrix}
    +                \\cos\\alpha & -\\sin\\alpha \\\\
    +                \\sin\\alpha & \\cos\\alpha
    +                \\end{pmatrix}
    +
    +            The coordinates of the corner point A can be calculated as:
    +
    +            .. math::
    +                P_A=
    +                \\begin{pmatrix} x_A \\\\ y_A\\end{pmatrix}
    +                =
    +                \\begin{pmatrix} x_{center} \\\\ y_{center}\\end{pmatrix} +
    +                \\begin{pmatrix}\\cos\\alpha & -\\sin\\alpha \\\\
    +                \\sin\\alpha & \\cos\\alpha\\end{pmatrix}
    +                \\begin{pmatrix} -0.5w \\\\ -0.5h\\end{pmatrix} \\\\
    +                =
    +                \\begin{pmatrix} x_{center}-0.5w\\cos\\alpha+0.5h\\sin\\alpha
    +                \\\\
    +                y_{center}-0.5w\\sin\\alpha-0.5h\\cos\\alpha\\end{pmatrix}
    +
    +
    +        The coordinate system when ``clockwise`` is ``False``
    +
    +            .. code-block:: none
    +
    +                0-------------------> x (0 rad)
    +                |  A-------------B
    +                |  |             |
    +                |  |     box     h
    +                |  |   angle=0   |
    +                |  D------w------C
    +                v
    +                y (-pi/2 rad)
    +
    +            In such coordination system the rotation matrix is
    +
    +            .. math::
    +                \\begin{pmatrix}
    +                \\cos\\alpha & \\sin\\alpha \\\\
    +                -\\sin\\alpha & \\cos\\alpha
    +                \\end{pmatrix}
    +
    +            The coordinates of the corner point A can be calculated as:
    +
    +            .. math::
    +                P_A=
    +                \\begin{pmatrix} x_A \\\\ y_A\\end{pmatrix}
    +                =
    +                \\begin{pmatrix} x_{center} \\\\ y_{center}\\end{pmatrix} +
    +                \\begin{pmatrix}\\cos\\alpha & \\sin\\alpha \\\\
    +                -\\sin\\alpha & \\cos\\alpha\\end{pmatrix}
    +                \\begin{pmatrix} -0.5w \\\\ -0.5h\\end{pmatrix} \\\\
    +                =
    +                \\begin{pmatrix} x_{center}-0.5w\\cos\\alpha-0.5h\\sin\\alpha
    +                \\\\
    +                y_{center}+0.5w\\sin\\alpha-0.5h\\cos\\alpha\\end{pmatrix}
    +
    +    Args:
    +        boxes1 (torch.Tensor): rotated bboxes 1. It has shape (N, 5),
    +            indicating (x, y, w, h, theta) for each row. Note that theta is in
    +            radian.
    +        boxes2 (torch.Tensor): rotated bboxes 2. It has shape (M, 5),
    +            indicating (x, y, w, h, theta) for each row. Note that theta is in
    +            radian.
    +        mode (str): "iou" (intersection over union) or iof (intersection over
    +            foreground).
    +        clockwise (bool): flag indicating whether the positive angular
    +            orientation is clockwise. default True.
    +            `New in version 1.4.3.`
    +
    +    Returns:
    +        torch.Tensor: Return the ious betweens boxes. If ``aligned`` is
    +        ``False``, the shape of ious is (N, M) else (N,).
    +    """
    +    assert mode in ['iou', 'iof']
    +    mode_dict = {'iou': 0, 'iof': 1}
    +    mode_flag = mode_dict[mode]
    +    rows = bboxes1.size(0)
    +    cols = bboxes2.size(0)
    +    if aligned:
    +        ious = bboxes1.new_zeros(rows)
    +    else:
    +        ious = bboxes1.new_zeros(rows * cols)
    +    if not clockwise:
    +        flip_mat = bboxes1.new_ones(bboxes1.shape[-1])
    +        flip_mat[-1] = -1
    +        bboxes1 = bboxes1 * flip_mat
    +        bboxes2 = bboxes2 * flip_mat
    +    bboxes1 = bboxes1.contiguous()
    +    bboxes2 = bboxes2.contiguous()
    +    ext_module.box_iou_rotated(
    +        bboxes1, bboxes2, ious, mode_flag=mode_flag, aligned=aligned)
    +    if not aligned:
    +        ious = ious.view(rows, cols)
    +    return ious
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/carafe.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/carafe.py
    new file mode 100644
    index 000000000..cb2d34645
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/carafe.py
    @@ -0,0 +1,299 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Tuple
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from torch import Tensor
    +from torch.autograd import Function
    +from torch.nn.modules.module import Module
    +
    +from ..cnn import UPSAMPLE_LAYERS, normal_init, xavier_init
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'carafe_naive_forward', 'carafe_naive_backward', 'carafe_forward',
    +    'carafe_backward'
    +])
    +
    +
    +class CARAFENaiveFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, features: Tensor, masks: Tensor, kernel_size: int,
    +                 group_size: int, scale_factor: int) -> Tensor:
    +        return g.op(
    +            'mmcv::MMCVCARAFENaive',
    +            features,
    +            masks,
    +            kernel_size_i=kernel_size,
    +            group_size_i=group_size,
    +            scale_factor_f=scale_factor)
    +
    +    @staticmethod
    +    def forward(ctx, features: Tensor, masks: Tensor, kernel_size: int,
    +                group_size: int, scale_factor: int) -> Tensor:
    +        assert scale_factor >= 1
    +        assert masks.size(1) == kernel_size * kernel_size * group_size
    +        assert masks.size(-1) == features.size(-1) * scale_factor
    +        assert masks.size(-2) == features.size(-2) * scale_factor
    +        assert features.size(1) % group_size == 0
    +        assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
    +        ctx.kernel_size = kernel_size
    +        ctx.group_size = group_size
    +        ctx.scale_factor = scale_factor
    +        ctx.feature_size = features.size()
    +        ctx.mask_size = masks.size()
    +
    +        n, c, h, w = features.size()
    +        output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
    +        ext_module.carafe_naive_forward(
    +            features,
    +            masks,
    +            output,
    +            kernel_size=kernel_size,
    +            group_size=group_size,
    +            scale_factor=scale_factor)
    +
    +        if features.requires_grad or masks.requires_grad or \
    +                torch.__version__ == 'parrots':
    +            ctx.save_for_backward(features, masks)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +            ctx,
    +            grad_output: Tensor) -> Tuple[Tensor, Tensor, None, None, None]:
    +        assert grad_output.is_cuda
    +
    +        features, masks = ctx.saved_tensors
    +        kernel_size = ctx.kernel_size
    +        group_size = ctx.group_size
    +        scale_factor = ctx.scale_factor
    +
    +        grad_input = torch.zeros_like(features)
    +        grad_masks = torch.zeros_like(masks)
    +        ext_module.carafe_naive_backward(
    +            grad_output.contiguous(),
    +            features,
    +            masks,
    +            grad_input,
    +            grad_masks,
    +            kernel_size=kernel_size,
    +            group_size=group_size,
    +            scale_factor=scale_factor)
    +
    +        return grad_input, grad_masks, None, None, None
    +
    +
    +carafe_naive = CARAFENaiveFunction.apply
    +
    +
    +class CARAFENaive(Module):
    +
    +    def __init__(self, kernel_size: int, group_size: int, scale_factor: int):
    +        super().__init__()
    +
    +        assert isinstance(kernel_size, int) and isinstance(
    +            group_size, int) and isinstance(scale_factor, int)
    +        self.kernel_size = kernel_size
    +        self.group_size = group_size
    +        self.scale_factor = scale_factor
    +
    +    def forward(self, features: Tensor, masks: Tensor) -> Tensor:
    +        return carafe_naive(features, masks, self.kernel_size, self.group_size,
    +                            self.scale_factor)
    +
    +
    +class CARAFEFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, features: Tensor, masks: Tensor, kernel_size: int,
    +                 group_size: int, scale_factor: int) -> Tensor:
    +        return g.op(
    +            'mmcv::MMCVCARAFE',
    +            features,
    +            masks,
    +            kernel_size_i=kernel_size,
    +            group_size_i=group_size,
    +            scale_factor_f=scale_factor)
    +
    +    @staticmethod
    +    def forward(ctx, features: Tensor, masks: Tensor, kernel_size: int,
    +                group_size: int, scale_factor: int) -> Tensor:
    +        assert scale_factor >= 1
    +        assert masks.size(1) == kernel_size * kernel_size * group_size
    +        assert masks.size(-1) == features.size(-1) * scale_factor
    +        assert masks.size(-2) == features.size(-2) * scale_factor
    +        assert features.size(1) % group_size == 0
    +        assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
    +        ctx.kernel_size = kernel_size
    +        ctx.group_size = group_size
    +        ctx.scale_factor = scale_factor
    +        ctx.feature_size = features.size()
    +        ctx.mask_size = masks.size()
    +
    +        n, c, h, w = features.size()
    +        output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
    +        routput = features.new_zeros(output.size(), requires_grad=False)
    +        rfeatures = features.new_zeros(features.size(), requires_grad=False)
    +        rmasks = masks.new_zeros(masks.size(), requires_grad=False)
    +        ext_module.carafe_forward(
    +            features,
    +            masks,
    +            rfeatures,
    +            routput,
    +            rmasks,
    +            output,
    +            kernel_size=kernel_size,
    +            group_size=group_size,
    +            scale_factor=scale_factor)
    +
    +        if features.requires_grad or masks.requires_grad or \
    +                torch.__version__ == 'parrots':
    +            ctx.save_for_backward(features, masks, rfeatures)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +            ctx,
    +            grad_output: Tensor) -> Tuple[Tensor, Tensor, None, None, None]:
    +        features, masks, rfeatures = ctx.saved_tensors
    +        kernel_size = ctx.kernel_size
    +        group_size = ctx.group_size
    +        scale_factor = ctx.scale_factor
    +
    +        rgrad_output = torch.zeros_like(grad_output, requires_grad=False)
    +        rgrad_input_hs = torch.zeros_like(grad_output, requires_grad=False)
    +        rgrad_input = torch.zeros_like(features, requires_grad=False)
    +        rgrad_masks = torch.zeros_like(masks, requires_grad=False)
    +        grad_input = torch.zeros_like(features, requires_grad=False)
    +        grad_masks = torch.zeros_like(masks, requires_grad=False)
    +        ext_module.carafe_backward(
    +            grad_output.contiguous(),
    +            rfeatures,
    +            masks,
    +            rgrad_output,
    +            rgrad_input_hs,
    +            rgrad_input,
    +            rgrad_masks,
    +            grad_input,
    +            grad_masks,
    +            kernel_size=kernel_size,
    +            group_size=group_size,
    +            scale_factor=scale_factor)
    +        return grad_input, grad_masks, None, None, None
    +
    +
    +carafe = CARAFEFunction.apply
    +
    +
    +class CARAFE(Module):
    +    """ CARAFE: Content-Aware ReAssembly of FEatures
    +
    +    Please refer to `CARAFE: Content-Aware ReAssembly of FEatures
    +    `_ for more details.
    +
    +    Args:
    +        kernel_size (int): reassemble kernel size
    +        group_size (int): reassemble group size
    +        scale_factor (int): upsample ratio
    +
    +    Returns:
    +        upsampled feature map
    +    """
    +
    +    def __init__(self, kernel_size: int, group_size: int, scale_factor: int):
    +        super().__init__()
    +
    +        assert isinstance(kernel_size, int) and isinstance(
    +            group_size, int) and isinstance(scale_factor, int)
    +        self.kernel_size = kernel_size
    +        self.group_size = group_size
    +        self.scale_factor = scale_factor
    +
    +    def forward(self, features: Tensor, masks: Tensor) -> Tensor:
    +        return carafe(features, masks, self.kernel_size, self.group_size,
    +                      self.scale_factor)
    +
    +
    +@UPSAMPLE_LAYERS.register_module(name='carafe')
    +class CARAFEPack(nn.Module):
    +    """A unified package of CARAFE upsampler that contains: 1) channel
    +    compressor 2) content encoder 3) CARAFE op.
    +
    +    Official implementation of ICCV 2019 paper
    +    `CARAFE: Content-Aware ReAssembly of FEatures
    +    `_.
    +
    +    Args:
    +        channels (int): input feature channels
    +        scale_factor (int): upsample ratio
    +        up_kernel (int): kernel size of CARAFE op
    +        up_group (int): group size of CARAFE op
    +        encoder_kernel (int): kernel size of content encoder
    +        encoder_dilation (int): dilation of content encoder
    +        compressed_channels (int): output channels of channels compressor
    +
    +    Returns:
    +        upsampled feature map
    +    """
    +
    +    def __init__(self,
    +                 channels: int,
    +                 scale_factor: int,
    +                 up_kernel: int = 5,
    +                 up_group: int = 1,
    +                 encoder_kernel: int = 3,
    +                 encoder_dilation: int = 1,
    +                 compressed_channels: int = 64):
    +        super().__init__()
    +        self.channels = channels
    +        self.scale_factor = scale_factor
    +        self.up_kernel = up_kernel
    +        self.up_group = up_group
    +        self.encoder_kernel = encoder_kernel
    +        self.encoder_dilation = encoder_dilation
    +        self.compressed_channels = compressed_channels
    +        self.channel_compressor = nn.Conv2d(channels, self.compressed_channels,
    +                                            1)
    +        self.content_encoder = nn.Conv2d(
    +            self.compressed_channels,
    +            self.up_kernel * self.up_kernel * self.up_group *
    +            self.scale_factor * self.scale_factor,
    +            self.encoder_kernel,
    +            padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
    +            dilation=self.encoder_dilation,
    +            groups=1)
    +        self.init_weights()
    +
    +    def init_weights(self):
    +        for m in self.modules():
    +            if isinstance(m, nn.Conv2d):
    +                xavier_init(m, distribution='uniform')
    +        normal_init(self.content_encoder, std=0.001)
    +
    +    def kernel_normalizer(self, mask: Tensor) -> Tensor:
    +        mask = F.pixel_shuffle(mask, self.scale_factor)
    +        n, mask_c, h, w = mask.size()
    +        # use float division explicitly,
    +        # to void inconsistency while exporting to onnx
    +        mask_channel = int(mask_c / float(self.up_kernel**2))
    +        mask = mask.view(n, mask_channel, -1, h, w)
    +
    +        mask = F.softmax(mask, dim=2, dtype=mask.dtype)
    +        mask = mask.view(n, mask_c, h, w).contiguous()
    +
    +        return mask
    +
    +    def feature_reassemble(self, x: Tensor, mask: Tensor) -> Tensor:
    +        x = carafe(x, mask, self.up_kernel, self.up_group, self.scale_factor)
    +        return x
    +
    +    def forward(self, x: Tensor) -> Tensor:
    +        compressed_x = self.channel_compressor(x)
    +        mask = self.content_encoder(compressed_x)
    +        mask = self.kernel_normalizer(mask)
    +
    +        x = self.feature_reassemble(x, mask)
    +        return x
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/cc_attention.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/cc_attention.py
    new file mode 100644
    index 000000000..9e5d33252
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/cc_attention.py
    @@ -0,0 +1,84 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from mmcv.cnn import PLUGIN_LAYERS, Scale
    +
    +
    +def NEG_INF_DIAG(n: int, device: torch.device) -> torch.Tensor:
    +    """Returns a diagonal matrix of size [n, n].
    +
    +    The diagonal are all "-inf". This is for avoiding calculating the
    +    overlapped element in the Criss-Cross twice.
    +    """
    +    return torch.diag(torch.tensor(float('-inf')).to(device).repeat(n), 0)
    +
    +
    +@PLUGIN_LAYERS.register_module()
    +class CrissCrossAttention(nn.Module):
    +    """Criss-Cross Attention Module.
    +
    +    .. note::
    +        Before v1.3.13, we use a CUDA op. Since v1.3.13, we switch
    +        to a pure PyTorch and equivalent implementation. For more
    +        details, please refer to https://github.com/open-mmlab/mmcv/pull/1201.
    +
    +        Speed comparison for one forward pass
    +
    +        - Input size: [2,512,97,97]
    +        - Device: 1 NVIDIA GeForce RTX 2080 Ti
    +
    +        +-----------------------+---------------+------------+---------------+
    +        |                       |PyTorch version|CUDA version|Relative speed |
    +        +=======================+===============+============+===============+
    +        |with torch.no_grad()   |0.00554402 s   |0.0299619 s |5.4x           |
    +        +-----------------------+---------------+------------+---------------+
    +        |no with torch.no_grad()|0.00562803 s   |0.0301349 s |5.4x           |
    +        +-----------------------+---------------+------------+---------------+
    +
    +    Args:
    +        in_channels (int): Channels of the input feature map.
    +    """
    +
    +    def __init__(self, in_channels: int) -> None:
    +        super().__init__()
    +        self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
    +        self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
    +        self.value_conv = nn.Conv2d(in_channels, in_channels, 1)
    +        self.gamma = Scale(0.)
    +        self.in_channels = in_channels
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +        """forward function of Criss-Cross Attention.
    +
    +        Args:
    +            x (torch.Tensor): Input feature with the shape of
    +                (batch_size, in_channels, height, width).
    +
    +        Returns:
    +            torch.Tensor: Output of the layer, with the shape of
    +            (batch_size, in_channels, height, width)
    +        """
    +        B, C, H, W = x.size()
    +        query = self.query_conv(x)
    +        key = self.key_conv(x)
    +        value = self.value_conv(x)
    +        energy_H = torch.einsum('bchw,bciw->bwhi', query, key) + NEG_INF_DIAG(
    +            H, query.device)
    +        energy_H = energy_H.transpose(1, 2)
    +        energy_W = torch.einsum('bchw,bchj->bhwj', query, key)
    +        attn = F.softmax(
    +            torch.cat([energy_H, energy_W], dim=-1), dim=-1)  # [B,H,W,(H+W)]
    +        out = torch.einsum('bciw,bhwi->bchw', value, attn[..., :H])
    +        out += torch.einsum('bchj,bhwj->bchw', value, attn[..., H:])
    +
    +        out = self.gamma(out) + x
    +        out = out.contiguous()
    +
    +        return out
    +
    +    def __repr__(self) -> str:
    +        s = self.__class__.__name__
    +        s += f'(in_channels={self.in_channels})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/chamfer_distance.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/chamfer_distance.py
    new file mode 100644
    index 000000000..1f908a5bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/chamfer_distance.py
    @@ -0,0 +1,93 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Sequence, Tuple
    +
    +import torch
    +from torch import Tensor
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['chamfer_distance_forward', 'chamfer_distance_backward'])
    +
    +
    +class ChamferDistanceFunction(Function):
    +    """This is an implementation of the 2D Chamfer Distance.
    +
    +    It has been used in the paper `Oriented RepPoints for Aerial Object
    +    Detection (CVPR 2022) _`.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx, xyz1: Tensor, xyz2: Tensor) -> Sequence[Tensor]:
    +        """
    +        Args:
    +            xyz1 (Tensor): Point set with shape (B, N, 2).
    +            xyz2 (Tensor): Point set with shape (B, N, 2).
    +
    +        Returns:
    +            Sequence[Tensor]:
    +
    +                - dist1 (Tensor): Chamfer distance (xyz1 to xyz2) with
    +                    shape (B, N).
    +                - dist2 (Tensor): Chamfer distance (xyz2 to xyz1) with
    +                    shape (B, N).
    +                - idx1 (Tensor): Index of chamfer distance (xyz1 to xyz2)
    +                    with shape (B, N), which be used in compute gradient.
    +                - idx2 (Tensor): Index of chamfer distance (xyz2 to xyz2)
    +                    with shape (B, N), which be used in compute gradient.
    +        """
    +        batch_size, n, _ = xyz1.size()
    +        _, m, _ = xyz2.size()
    +        device = xyz1.device
    +        xyz1 = xyz1.contiguous()
    +        xyz2 = xyz2.contiguous()
    +
    +        dist1 = torch.zeros(batch_size, n).to(device)
    +        dist2 = torch.zeros(batch_size, m).to(device)
    +        idx1 = torch.zeros(batch_size, n).type(torch.IntTensor).to(device)
    +        idx2 = torch.zeros(batch_size, m).type(torch.IntTensor).to(device)
    +
    +        ext_module.chamfer_distance_forward(xyz1, xyz2, dist1, dist2, idx1,
    +                                            idx2)
    +        ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
    +        return dist1, dist2, idx1, idx2
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx,
    +                 grad_dist1: Tensor,
    +                 grad_dist2: Tensor,
    +                 grad_idx1=None,
    +                 grad_idx2=None) -> Tuple[Tensor, Tensor]:
    +        """
    +
    +        Args:
    +            grad_dist1 (Tensor): Gradient of chamfer distance
    +                (xyz1 to xyz2) with shape (B, N).
    +            grad_dist2 (Tensor): Gradient of chamfer distance
    +                (xyz2 to xyz1) with shape (B, N).
    +
    +        Returns:
    +            Tuple[Tensor, Tensor]:
    +
    +            - grad_xyz1 (Tensor): Gradient of the point set with shape \
    +                (B, N, 2).
    +            - grad_xyz2 (Tensor):Gradient of the point set with shape \
    +                (B, N, 2).
    +        """
    +        xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
    +        device = grad_dist1.device
    +        grad_dist1 = grad_dist1.contiguous()
    +        grad_dist2 = grad_dist2.contiguous()
    +        grad_xyz1 = torch.zeros(xyz1.size()).to(device)
    +        grad_xyz2 = torch.zeros(xyz2.size()).to(device)
    +
    +        ext_module.chamfer_distance_backward(xyz1, xyz2, idx1, idx2,
    +                                             grad_dist1, grad_dist2, grad_xyz1,
    +                                             grad_xyz2)
    +        return grad_xyz1, grad_xyz2
    +
    +
    +chamfer_distance = ChamferDistanceFunction.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/contour_expand.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/contour_expand.py
    new file mode 100644
    index 000000000..7184609ad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/contour_expand.py
    @@ -0,0 +1,52 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Union
    +
    +import numpy as np
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['contour_expand'])
    +
    +
    +def contour_expand(kernel_mask: Union[np.array, torch.Tensor],
    +                   internal_kernel_label: Union[np.array, torch.Tensor],
    +                   min_kernel_area: int, kernel_num: int) -> list:
    +    """Expand kernel contours so that foreground pixels are assigned into
    +    instances.
    +
    +    Args:
    +        kernel_mask (np.array or torch.Tensor): The instance kernel mask with
    +            size hxw.
    +        internal_kernel_label (np.array or torch.Tensor): The instance internal
    +            kernel label with size hxw.
    +        min_kernel_area (int): The minimum kernel area.
    +        kernel_num (int): The instance kernel number.
    +
    +    Returns:
    +        list: The instance index map with size hxw.
    +    """
    +    assert isinstance(kernel_mask, (torch.Tensor, np.ndarray))
    +    assert isinstance(internal_kernel_label, (torch.Tensor, np.ndarray))
    +    assert isinstance(min_kernel_area, int)
    +    assert isinstance(kernel_num, int)
    +
    +    if isinstance(kernel_mask, np.ndarray):
    +        kernel_mask = torch.from_numpy(kernel_mask)
    +    if isinstance(internal_kernel_label, np.ndarray):
    +        internal_kernel_label = torch.from_numpy(internal_kernel_label)
    +
    +    if torch.__version__ == 'parrots':
    +        if kernel_mask.shape[0] == 0 or internal_kernel_label.shape[0] == 0:
    +            label = []
    +        else:
    +            label = ext_module.contour_expand(
    +                kernel_mask,
    +                internal_kernel_label,
    +                min_kernel_area=min_kernel_area,
    +                kernel_num=kernel_num)
    +            label = label.tolist()  # type: ignore
    +    else:
    +        label = ext_module.contour_expand(kernel_mask, internal_kernel_label,
    +                                          min_kernel_area, kernel_num)
    +    return label
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/convex_iou.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/convex_iou.py
    new file mode 100644
    index 000000000..50050363a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/convex_iou.py
    @@ -0,0 +1,52 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Tuple
    +
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['convex_iou', 'convex_giou'])
    +
    +
    +def convex_giou(pointsets: torch.Tensor,
    +                polygons: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    +    """Return generalized intersection-over-union (Jaccard index) between point
    +    sets and polygons.
    +
    +    Args:
    +        pointsets (torch.Tensor): It has shape (N, 18),
    +            indicating (x1, y1, x2, y2, ..., x9, y9) for each row.
    +        polygons (torch.Tensor): It has shape (N, 8),
    +            indicating (x1, y1, x2, y2, x3, y3, x4, y4) for each row.
    +
    +    Returns:
    +        tuple[torch.Tensor, torch.Tensor]: The first element is the gious
    +        between point sets and polygons with the shape (N,). The second
    +        element is the gradient of point sets with the shape (N, 18).
    +    """
    +    output = pointsets.new_zeros((pointsets.size(0), 19))
    +    ext_module.convex_giou(pointsets, polygons, output)
    +    convex_giou = output[:, -1]
    +    points_grad = output[:, 0:-1]
    +    return convex_giou, points_grad
    +
    +
    +def convex_iou(pointsets: torch.Tensor,
    +               polygons: torch.Tensor) -> torch.Tensor:
    +    """Return intersection-over-union (Jaccard index) between point sets and
    +    polygons.
    +
    +    Args:
    +        pointsets (torch.Tensor): It has shape (N, 18),
    +            indicating (x1, y1, x2, y2, ..., x9, y9) for each row.
    +        polygons (torch.Tensor): It has shape (K, 8),
    +            indicating (x1, y1, x2, y2, x3, y3, x4, y4) for each row.
    +
    +    Returns:
    +        torch.Tensor: Return the ious between point sets and polygons with the
    +        shape (N, K).
    +    """
    +    N, K = pointsets.size(0), polygons.size(0)
    +    ious = pointsets.new_zeros((N, K))
    +    ext_module.convex_iou(pointsets, polygons, ious)
    +    return ious
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/corner_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/corner_pool.py
    new file mode 100644
    index 000000000..17ce24952
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/corner_pool.py
    @@ -0,0 +1,156 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +from torch import Tensor, nn
    +from torch.autograd import Function
    +
    +_mode_dict = {'top': 0, 'bottom': 1, 'left': 2, 'right': 3}
    +
    +
    +def _corner_pool(x: Tensor, dim: int, flip: bool) -> Tensor:
    +    size = x.size(dim)
    +    output = x.clone()
    +
    +    ind = 1
    +    while ind < size:
    +        if flip:
    +            cur_start = 0
    +            cur_len = size - ind
    +            next_start = ind
    +            next_len = size - ind
    +        else:
    +            cur_start = ind
    +            cur_len = size - ind
    +            next_start = 0
    +            next_len = size - ind
    +
    +        # max_temp should be cloned for backward computation
    +        max_temp = output.narrow(dim, cur_start, cur_len).clone()
    +        cur_temp = output.narrow(dim, cur_start, cur_len)
    +        next_temp = output.narrow(dim, next_start, next_len)
    +
    +        cur_temp[...] = torch.where(max_temp > next_temp, max_temp, next_temp)
    +
    +        ind = ind << 1
    +
    +    return output
    +
    +
    +class TopPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: Tensor) -> Tensor:
    +        output = g.op(
    +            'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['top']))
    +        return output
    +
    +    @staticmethod
    +    def forward(ctx, input: Tensor) -> Tensor:
    +        return _corner_pool(input, 2, True)
    +
    +
    +class BottomPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: Tensor) -> Tensor:
    +        output = g.op(
    +            'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['bottom']))
    +        return output
    +
    +    @staticmethod
    +    def forward(ctx, input: Tensor) -> Tensor:
    +        return _corner_pool(input, 2, False)
    +
    +
    +class LeftPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: Tensor) -> Tensor:
    +        output = g.op(
    +            'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['left']))
    +        return output
    +
    +    @staticmethod
    +    def forward(ctx, input: Tensor) -> Tensor:
    +        return _corner_pool(input, 3, True)
    +
    +
    +class RightPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: Tensor) -> Tensor:
    +        output = g.op(
    +            'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['right']))
    +        return output
    +
    +    @staticmethod
    +    def forward(ctx, input: Tensor) -> Tensor:
    +        return _corner_pool(input, 3, False)
    +
    +
    +class CornerPool(nn.Module):
    +    """Corner Pooling.
    +
    +    Corner Pooling is a new type of pooling layer that helps a
    +    convolutional network better localize corners of bounding boxes.
    +
    +    Please refer to `CornerNet: Detecting Objects as Paired Keypoints
    +    `_ for more details.
    +
    +    Code is modified from https://github.com/princeton-vl/CornerNet-Lite.
    +
    +    Args:
    +        mode (str): Pooling orientation for the pooling layer
    +
    +            - 'bottom': Bottom Pooling
    +            - 'left': Left Pooling
    +            - 'right': Right Pooling
    +            - 'top': Top Pooling
    +
    +    Returns:
    +        Feature map after pooling.
    +    """
    +
    +    pool_functions = {
    +        'bottom': BottomPoolFunction,
    +        'left': LeftPoolFunction,
    +        'right': RightPoolFunction,
    +        'top': TopPoolFunction,
    +    }
    +
    +    cummax_dim_flip = {
    +        'bottom': (2, False),
    +        'left': (3, True),
    +        'right': (3, False),
    +        'top': (2, True),
    +    }
    +
    +    def __init__(self, mode: str):
    +        super().__init__()
    +        assert mode in self.pool_functions
    +        self.mode = mode
    +        self.corner_pool: Function = self.pool_functions[mode]
    +
    +    def forward(self, x: Tensor) -> Tensor:
    +        if torch.__version__ != 'parrots' and torch.__version__ >= '1.5.0':
    +            if torch.onnx.is_in_onnx_export():
    +                assert torch.__version__ >= '1.7.0', \
    +                    'When `cummax` serves as an intermediate component whose '\
    +                    'outputs is used as inputs for another modules, it\'s '\
    +                    'expected that pytorch version must be >= 1.7.0, '\
    +                    'otherwise Error appears like: `RuntimeError: tuple '\
    +                    'appears in op that does not forward tuples, unsupported '\
    +                    'kind: prim::PythonOp`.'
    +
    +            dim, flip = self.cummax_dim_flip[self.mode]
    +            if flip:
    +                x = x.flip(dim)
    +            pool_tensor, _ = torch.cummax(x, dim=dim)
    +            if flip:
    +                pool_tensor = pool_tensor.flip(dim)
    +            return pool_tensor
    +        else:
    +            if torch.onnx.is_in_onnx_export():
    +                return self.corner_pool.apply(x)
    +            else:
    +                dim, flip = self.cummax_dim_flip[self.mode]
    +                return _corner_pool(x, dim, flip)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/correlation.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/correlation.py
    new file mode 100644
    index 000000000..9524610d4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/correlation.py
    @@ -0,0 +1,200 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Tuple
    +
    +import torch
    +from torch import Tensor, nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['correlation_forward', 'correlation_backward'])
    +
    +
    +class CorrelationFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input1: Tensor,
    +                input2: Tensor,
    +                kernel_size: int = 1,
    +                max_displacement: int = 1,
    +                stride: int = 1,
    +                padding: int = 1,
    +                dilation: int = 1,
    +                dilation_patch: int = 1) -> Tensor:
    +
    +        ctx.save_for_backward(input1, input2)
    +
    +        kH, kW = ctx.kernel_size = _pair(kernel_size)
    +        patch_size = max_displacement * 2 + 1
    +        ctx.patch_size = patch_size
    +        dH, dW = ctx.stride = _pair(stride)
    +        padH, padW = ctx.padding = _pair(padding)
    +        dilationH, dilationW = ctx.dilation = _pair(dilation)
    +        dilation_patchH, dilation_patchW = ctx.dilation_patch = _pair(
    +            dilation_patch)
    +
    +        output_size = CorrelationFunction._output_size(ctx, input1)
    +
    +        output = input1.new_zeros(output_size)
    +
    +        ext_module.correlation_forward(
    +            input1,
    +            input2,
    +            output,
    +            kH=kH,
    +            kW=kW,
    +            patchH=patch_size,
    +            patchW=patch_size,
    +            padH=padH,
    +            padW=padW,
    +            dilationH=dilationH,
    +            dilationW=dilationW,
    +            dilation_patchH=dilation_patchH,
    +            dilation_patchW=dilation_patchW,
    +            dH=dH,
    +            dW=dW)
    +
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(
    +        ctx, grad_output: Tensor
    +    ) -> Tuple[Tensor, Tensor, None, None, None, None, None, None]:
    +        input1, input2 = ctx.saved_tensors
    +
    +        kH, kW = ctx.kernel_size
    +        patch_size = ctx.patch_size
    +        padH, padW = ctx.padding
    +        dilationH, dilationW = ctx.dilation
    +        dilation_patchH, dilation_patchW = ctx.dilation_patch
    +        dH, dW = ctx.stride
    +        grad_input1 = torch.zeros_like(input1)
    +        grad_input2 = torch.zeros_like(input2)
    +
    +        ext_module.correlation_backward(
    +            grad_output,
    +            input1,
    +            input2,
    +            grad_input1,
    +            grad_input2,
    +            kH=kH,
    +            kW=kW,
    +            patchH=patch_size,
    +            patchW=patch_size,
    +            padH=padH,
    +            padW=padW,
    +            dilationH=dilationH,
    +            dilationW=dilationW,
    +            dilation_patchH=dilation_patchH,
    +            dilation_patchW=dilation_patchW,
    +            dH=dH,
    +            dW=dW)
    +        return grad_input1, grad_input2, None, None, None, None, None, None
    +
    +    @staticmethod
    +    def _output_size(ctx, input1):
    +        iH, iW = input1.size(2), input1.size(3)
    +        batch_size = input1.size(0)
    +        kH, kW = ctx.kernel_size
    +        patch_size = ctx.patch_size
    +        dH, dW = ctx.stride
    +        padH, padW = ctx.padding
    +        dilationH, dilationW = ctx.dilation
    +        dilatedKH = (kH - 1) * dilationH + 1
    +        dilatedKW = (kW - 1) * dilationW + 1
    +
    +        oH = int((iH + 2 * padH - dilatedKH) / dH + 1)
    +        oW = int((iW + 2 * padW - dilatedKW) / dW + 1)
    +
    +        output_size = (batch_size, patch_size, patch_size, oH, oW)
    +        return output_size
    +
    +
    +class Correlation(nn.Module):
    +    r"""Correlation operator.
    +
    +    This correlation operator works for optical flow correlation computation.
    +
    +    There are two batched tensors with shape :math:`(N, C, H, W)`,
    +    and the correlation output's shape is :math:`(N, max\_displacement \times
    +    2 + 1, max\_displacement * 2 + 1, H_{out}, W_{out})`
    +
    +    where
    +
    +    .. math::
    +        H_{out} = \left\lfloor\frac{H_{in}  + 2 \times padding -
    +            dilation \times (kernel\_size - 1) - 1}
    +            {stride} + 1\right\rfloor
    +
    +    .. math::
    +        W_{out} = \left\lfloor\frac{W_{in}  + 2 \times padding - dilation
    +            \times (kernel\_size - 1) - 1}
    +            {stride} + 1\right\rfloor
    +
    +    the correlation item :math:`(N_i, dy, dx)` is formed by taking the sliding
    +    window convolution between input1 and shifted input2,
    +
    +    .. math::
    +        Corr(N_i, dx, dy) =
    +        \sum_{c=0}^{C-1}
    +        input1(N_i, c) \star
    +        \mathcal{S}(input2(N_i, c), dy, dx)
    +
    +    where :math:`\star` is the valid 2d sliding window convolution operator,
    +    and :math:`\mathcal{S}` means shifting the input features (auto-complete
    +    zero marginal), and :math:`dx, dy` are shifting distance, :math:`dx, dy \in
    +    [-max\_displacement \times dilation\_patch, max\_displacement \times
    +    dilation\_patch]`.
    +
    +    Args:
    +        kernel_size (int): The size of sliding window i.e. local neighborhood
    +            representing the center points and involved in correlation
    +            computation. Defaults to 1.
    +        max_displacement (int): The radius for computing correlation volume,
    +            but the actual working space can be dilated by dilation_patch.
    +            Defaults to 1.
    +        stride (int): The stride of the sliding blocks in the input spatial
    +            dimensions. Defaults to 1.
    +        padding (int): Zero padding added to all four sides of the input1.
    +            Defaults to 0.
    +        dilation (int): The spacing of local neighborhood that will involved
    +            in correlation. Defaults to 1.
    +        dilation_patch (int): The spacing between position need to compute
    +            correlation.  Defaults to 1.
    +    """
    +
    +    def __init__(self,
    +                 kernel_size: int = 1,
    +                 max_displacement: int = 1,
    +                 stride: int = 1,
    +                 padding: int = 0,
    +                 dilation: int = 1,
    +                 dilation_patch: int = 1) -> None:
    +        super().__init__()
    +        self.kernel_size = kernel_size
    +        self.max_displacement = max_displacement
    +        self.stride = stride
    +        self.padding = padding
    +        self.dilation = dilation
    +        self.dilation_patch = dilation_patch
    +
    +    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
    +        return CorrelationFunction.apply(input1, input2, self.kernel_size,
    +                                         self.max_displacement, self.stride,
    +                                         self.padding, self.dilation,
    +                                         self.dilation_patch)
    +
    +    def __repr__(self) -> str:
    +        s = self.__class__.__name__
    +        s += f'(kernel_size={self.kernel_size}, '
    +        s += f'max_displacement={self.max_displacement}, '
    +        s += f'stride={self.stride}, '
    +        s += f'padding={self.padding}, '
    +        s += f'dilation={self.dilation}, '
    +        s += f'dilation_patch={self.dilation_patch})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/README.md b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/README.md
    new file mode 100644
    index 000000000..dbc82b534
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/README.md
    @@ -0,0 +1,189 @@
    +# Code Structure of CUDA operators
    +
    +This folder contains all non-python code for MMCV custom ops. Please follow the same architecture if you want to add new ops.
    +
    +## Directories Tree
    +
    +```folder
    +.
    +├── common
    +│   ├── box_iou_rotated_utils.hpp
    +│   ├── parrots_cpp_helper.hpp
    +│   ├── parrots_cuda_helper.hpp
    +│   ├── pytorch_cpp_helper.hpp
    +│   ├── pytorch_cuda_helper.hpp
    +│   ├── pytorch_device_registry.hpp
    +│   ├── cuda
    +│   │   ├── common_cuda_helper.hpp
    +│   │   ├── parrots_cudawarpfunction.cuh
    +│   │   ├── ...
    +│   │   └── ops_cuda_kernel.cuh
    +|   ├── mps
    +│   │   ├── MPSLibrary.h
    +│   │   ├── ...
    +│   │   └── MPSUtils.h
    +|   ├── mlu
    +│   │   └── ...
    +|   └── utils
    +│   │   └── ...
    +├── onnxruntime
    +│   ├── onnxruntime_register.h
    +│   ├── onnxruntime_session_options_config_keys.h
    +│   ├── ort_mmcv_utils.h
    +│   ├── ...
    +│   ├── onnx_ops.h
    +│   └── cpu
    +│       ├── onnxruntime_register.cpp
    +│       ├── ...
    +│       └── onnx_ops_impl.cpp
    +├── parrots
    +│   ├── ...
    +│   ├── ops.cpp
    +│   ├── ops_parrots.cpp
    +│   └── ops_pytorch.h
    +├── pytorch
    +│   ├── info.cpp
    +│   ├── pybind.cpp
    +│   ├── ...
    +│   ├── ops.cpp
    +│   ├── cuda
    +│   │   ├── ...
    +│   │   └── ops_cuda.cu
    +│   ├── cpu
    +│   │   ├── ...
    +│   │   └── ops.cpp
    +│   ├── mps
    +│   │   ├── ...
    +│   |   └── op_mps.mm
    +│   └── mlu
    +│       ├── ...
    +│       └── op_mlu.cpp
    +└── tensorrt
    +    ├── trt_cuda_helper.cuh
    +    ├── trt_plugin_helper.hpp
    +    ├── trt_plugin.hpp
    +    ├── trt_serialize.hpp
    +    ├── ...
    +    ├── trt_ops.hpp
    +    └── plugins
    +        ├── trt_cuda_helper.cu
    +        ├── trt_plugin.cpp
    +        ├── ...
    +        ├── trt_ops.cpp
    +        └── trt_ops_kernel.cu
    +```
    +
    +## Components
    +
    +- `common`: This directory contains all tools and shared codes.
    +  - `cuda`: The cuda kernels which can be shared by all backends. **HIP** kernel is also here since they have similar syntax.
    +  - `mps`: The tools used to support MPS ops. **NOTE** that MPS support is **experimental**.
    +  - `mlu`: The MLU kernels used to support [Cambricon](https://www.cambricon.com/) device.
    +  - `utils`: The kernels and utils of spconv.
    +- `onnxruntime`: **ONNX Runtime** support for custom ops. Has been deprecated, please try the latest custom ops in [MMDeploy](https://github.com/open-mmlab/mmdeploy).
    +  - `cpu`: CPU implementation of supported ops.
    +- `parrots`: **Parrots** is a deep learning frame for model training and inference. Parrots custom ops are placed in this directory.
    +- `pytorch`: **PyTorch** custom ops are supported by binding C++ to Python with **pybind11**. The ops implementation and binding codes are placed in this directory.
    +  - `cuda`: This directory contains cuda kernel launchers, which feed memory pointers of tensor to the cuda kernel in `common/cuda`. The launchers provide c++ interface of cuda implementation of corresponding custom ops.
    +  - `cpu`: This directory contain cpu implementations of corresponding custom ops.
    +  - `mlu`: This directory contain launchers of each MLU kernels.
    +  - `mps`: MPS ops implementation and launchers.
    +- `tensorrt`: **TensorRT** support for custom ops. Has been deprecated, please try the latest custom ops in [MMDeploy](https://github.com/open-mmlab/mmdeploy).
    +  - `plugins`: This directory contains the implementation of the supported custom ops. Some ops might also use shared cuda kernel in `common/cuda`.
    +
    +## How to add new PyTorch ops?
    +
    +1. (Optional) Add shared kernel in `common` to support special hardware platform.
    +
    +   ```c++
    +   // src/common/cuda/new_ops_cuda_kernel.cuh
    +
    +   template 
    +   __global__ void new_ops_forward_cuda_kernel(const T* input, T* output, ...) {
    +       // forward here
    +   }
    +
    +   ```
    +
    +   Add cuda kernel launcher in `pytorch/cuda`.
    +
    +   ```c++
    +   // src/pytorch/cuda
    +   #include 
    +
    +   void NewOpsForwardCUDAKernelLauncher(Tensor input, Tensor output, ...){
    +       // initialize
    +       at::cuda::CUDAGuard device_guard(input.device());
    +       cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +       ...
    +       AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +           input.scalar_type(), "new_ops_forward_cuda_kernel", ([&] {
    +               new_ops_forward_cuda_kernel
    +                   <<>>(
    +                       input.data_ptr(), output.data_ptr(),...);
    +           }));
    +       AT_CUDA_CHECK(cudaGetLastError());
    +   }
    +   ```
    +
    +2. Register implementation for different devices.
    +
    +   ```c++
    +   // src/pytorch/cuda/cudabind.cpp
    +   ...
    +
    +   Tensor new_ops_forward_cuda(Tensor input, Tensor output, ...){
    +       // implement cuda forward here
    +       // use `NewOpsForwardCUDAKernelLauncher` here
    +   }
    +   // declare interface here.
    +   Tensor new_ops_forward_impl(Tensor input, Tensor output, ...);
    +   // register the implementation for given device (CUDA here).
    +   REGISTER_DEVICE_IMPL(new_ops_forward_impl, CUDA, new_ops_forward_cuda);
    +   ```
    +
    +3. Add ops implementation in `pytorch` directory. Select different implementations according to device type.
    +
    +   ```c++
    +   // src/pytorch/new_ops.cpp
    +   Tensor new_ops_forward_impl(Tensor input, Tensor output, ...){
    +       // dispatch the implementation according to the device type of input.
    +       DISPATCH_DEVICE_IMPL(new_ops_forward_impl, input, output, ...);
    +   }
    +   ...
    +
    +   Tensor new_ops_forward(Tensor input, Tensor output, ...){
    +       return new_ops_forward_impl(input, output, ...);
    +   }
    +   ```
    +
    +4. Binding the implementation in `pytorch/pybind.cpp`
    +
    +   ```c++
    +   // src/pytorch/pybind.cpp
    +
    +   ...
    +
    +   Tensor new_ops_forward(Tensor input, Tensor output, ...);
    +
    +   ...
    +
    +   // bind with pybind11
    +   m.def("new_ops_forward", &new_ops_forward, "new_ops_forward",
    +           py::arg("input"), py::arg("output"), ...);
    +
    +   ...
    +
    +   ```
    +
    +5. Build MMCV again. Enjoy new ops in python
    +
    +   ```python
    +   from ..utils import ext_loader
    +   ext_module = ext_loader.load_ext('_ext', ['new_ops_forward'])
    +
    +   ...
    +
    +   ext_module.new_ops_forward(input, output, ...)
    +
    +   ```
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp
    new file mode 100644
    index 000000000..f9bacf722
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp
    @@ -0,0 +1,431 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h
    +#pragma once
    +#include 
    +#include 
    +
    +#ifdef __CUDACC__
    +// Designates functions callable from the host (CPU) and the device (GPU)
    +#define HOST_DEVICE __host__ __device__
    +#define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
    +#else
    +#include 
    +#define HOST_DEVICE
    +#define HOST_DEVICE_INLINE HOST_DEVICE inline
    +#endif
    +
    +namespace {
    +
    +template 
    +struct RotatedBox {
    +  T x_ctr, y_ctr, w, h, a;
    +};
    +
    +template 
    +struct Point {
    +  T x, y;
    +  HOST_DEVICE_INLINE Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
    +  HOST_DEVICE_INLINE Point operator+(const Point& p) const {
    +    return Point(x + p.x, y + p.y);
    +  }
    +  HOST_DEVICE_INLINE Point& operator+=(const Point& p) {
    +    x += p.x;
    +    y += p.y;
    +    return *this;
    +  }
    +  HOST_DEVICE_INLINE Point operator-(const Point& p) const {
    +    return Point(x - p.x, y - p.y);
    +  }
    +  HOST_DEVICE_INLINE Point operator*(const T coeff) const {
    +    return Point(x * coeff, y * coeff);
    +  }
    +};
    +
    +template 
    +HOST_DEVICE_INLINE T dot_2d(const Point& A, const Point& B) {
    +  return A.x * B.x + A.y * B.y;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T cross_2d(const Point& A, const Point& B) {
    +  return A.x * B.y - B.x * A.y;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE void get_rotated_vertices(const RotatedBox& box,
    +                                             Point (&pts)[4]) {
    +  // M_PI / 180. == 0.01745329251
    +  // double theta = box.a * 0.01745329251;
    +  // MODIFIED
    +  // double theta = box.a;
    +#if defined(__ILUVATAR__)
    +  float theta = box.a;
    +#else
    +  double theta = box.a;
    +#endif
    +  T cosTheta2 = (T)cos(theta) * 0.5f;
    +  T sinTheta2 = (T)sin(theta) * 0.5f;
    +
    +  // y: top --> down; x: left --> right
    +  pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w;
    +  pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
    +  pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w;
    +  pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
    +  pts[2].x = 2 * box.x_ctr - pts[0].x;
    +  pts[2].y = 2 * box.y_ctr - pts[0].y;
    +  pts[3].x = 2 * box.x_ctr - pts[1].x;
    +  pts[3].y = 2 * box.y_ctr - pts[1].y;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE int get_intersection_points(const Point (&pts1)[4],
    +                                               const Point (&pts2)[4],
    +                                               Point (&intersections)[24]) {
    +  // Line vector
    +  // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
    +  Point vec1[4], vec2[4];
    +  for (int i = 0; i < 4; i++) {
    +    vec1[i] = pts1[(i + 1) % 4] - pts1[i];
    +    vec2[i] = pts2[(i + 1) % 4] - pts2[i];
    +  }
    +
    +  // Line test - test all line combos for intersection
    +  int num = 0;  // number of intersections
    +  for (int i = 0; i < 4; i++) {
    +    for (int j = 0; j < 4; j++) {
    +      // Solve for 2x2 Ax=b
    +      T det = cross_2d(vec2[j], vec1[i]);
    +
    +      // This takes care of parallel lines
    +      if (fabs(det) <= 1e-14) {
    +        continue;
    +      }
    +
    +      auto vec12 = pts2[j] - pts1[i];
    +
    +      T t1 = cross_2d(vec2[j], vec12) / det;
    +      T t2 = cross_2d(vec1[i], vec12) / det;
    +
    +      if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
    +        intersections[num++] = pts1[i] + vec1[i] * t1;
    +      }
    +    }
    +  }
    +
    +  // Check for vertices of rect1 inside rect2
    +  {
    +    const auto& AB = vec2[0];
    +    const auto& DA = vec2[3];
    +    auto ABdotAB = dot_2d(AB, AB);
    +    auto ADdotAD = dot_2d(DA, DA);
    +    for (int i = 0; i < 4; i++) {
    +      // assume ABCD is the rectangle, and P is the point to be judged
    +      // P is inside ABCD iff. P's projection on AB lies within AB
    +      // and P's projection on AD lies within AD
    +
    +      auto AP = pts1[i] - pts2[0];
    +
    +      auto APdotAB = dot_2d(AP, AB);
    +      auto APdotAD = -dot_2d(AP, DA);
    +
    +      if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
    +          (APdotAD <= ADdotAD)) {
    +        intersections[num++] = pts1[i];
    +      }
    +    }
    +  }
    +
    +  // Reverse the check - check for vertices of rect2 inside rect1
    +  {
    +    const auto& AB = vec1[0];
    +    const auto& DA = vec1[3];
    +    auto ABdotAB = dot_2d(AB, AB);
    +    auto ADdotAD = dot_2d(DA, DA);
    +    for (int i = 0; i < 4; i++) {
    +      auto AP = pts2[i] - pts1[0];
    +
    +      auto APdotAB = dot_2d(AP, AB);
    +      auto APdotAD = -dot_2d(AP, DA);
    +
    +      if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
    +          (APdotAD <= ADdotAD)) {
    +        intersections[num++] = pts2[i];
    +      }
    +    }
    +  }
    +
    +  return num;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE int convex_hull_graham(const Point (&p)[24],
    +                                          const int& num_in, Point (&q)[24],
    +                                          bool shift_to_zero = false) {
    +  assert(num_in >= 2);
    +
    +  // Step 1:
    +  // Find point with minimum y
    +  // if more than 1 points have the same minimum y,
    +  // pick the one with the minimum x.
    +  int t = 0;
    +  for (int i = 1; i < num_in; i++) {
    +    if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
    +      t = i;
    +    }
    +  }
    +  auto& start = p[t];  // starting point
    +
    +  // Step 2:
    +  // Subtract starting point from every points (for sorting in the next step)
    +  for (int i = 0; i < num_in; i++) {
    +    q[i] = p[i] - start;
    +  }
    +
    +  // Swap the starting point to position 0
    +  auto tmp = q[0];
    +  q[0] = q[t];
    +  q[t] = tmp;
    +
    +  // Step 3:
    +  // Sort point 1 ~ num_in according to their relative cross-product values
    +  // (essentially sorting according to angles)
    +  // If the angles are the same, sort according to their distance to origin
    +  T dist[24];
    +  for (int i = 0; i < num_in; i++) {
    +    dist[i] = dot_2d(q[i], q[i]);
    +  }
    +
    +#ifdef __CUDACC__
    +  // CUDA version
    +  // In the future, we can potentially use thrust
    +  // for sorting here to improve speed (though not guaranteed)
    +  for (int i = 1; i < num_in - 1; i++) {
    +    for (int j = i + 1; j < num_in; j++) {
    +      T crossProduct = cross_2d(q[i], q[j]);
    +      if ((crossProduct < -1e-6) ||
    +          (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
    +        auto q_tmp = q[i];
    +        q[i] = q[j];
    +        q[j] = q_tmp;
    +        auto dist_tmp = dist[i];
    +        dist[i] = dist[j];
    +        dist[j] = dist_tmp;
    +      }
    +    }
    +  }
    +#else
    +  // CPU version
    +  std::sort(q + 1, q + num_in,
    +            [](const Point& A, const Point& B) -> bool {
    +              T temp = cross_2d(A, B);
    +              if (fabs(temp) < 1e-6) {
    +                return dot_2d(A, A) < dot_2d(B, B);
    +              } else {
    +                return temp > 0;
    +              }
    +            });
    +  // compute distance to origin after sort, since the points are now different.
    +  for (int i = 0; i < num_in; i++) {
    +    dist[i] = dot_2d(q[i], q[i]);
    +  }
    +#endif
    +
    +  // Step 4:
    +  // Make sure there are at least 2 points (that don't overlap with each other)
    +  // in the stack
    +  int k;  // index of the non-overlapped second point
    +  for (k = 1; k < num_in; k++) {
    +    if (dist[k] > 1e-8) {
    +      break;
    +    }
    +  }
    +  if (k == num_in) {
    +    // We reach the end, which means the convex hull is just one point
    +    q[0] = p[t];
    +    return 1;
    +  }
    +  q[1] = q[k];
    +  int m = 2;  // 2 points in the stack
    +  // Step 5:
    +  // Finally we can start the scanning process.
    +  // When a non-convex relationship between the 3 points is found
    +  // (either concave shape or duplicated points),
    +  // we pop the previous point from the stack
    +  // until the 3-point relationship is convex again, or
    +  // until the stack only contains two points
    +  for (int i = k + 1; i < num_in; i++) {
    +    while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
    +      m--;
    +    }
    +    q[m++] = q[i];
    +  }
    +
    +  // Step 6 (Optional):
    +  // In general sense we need the original coordinates, so we
    +  // need to shift the points back (reverting Step 2)
    +  // But if we're only interested in getting the area/perimeter of the shape
    +  // We can simply return.
    +  if (!shift_to_zero) {
    +    for (int i = 0; i < m; i++) {
    +      q[i] += start;
    +    }
    +  }
    +
    +  return m;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T quadri_box_area(const Point (&q)[4]) {
    +  T area = 0;
    +#pragma unroll
    +  for (int i = 1; i < 3; i++) {
    +    area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
    +  }
    +
    +  return area / 2.0;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T polygon_area(const Point (&q)[24], const int& m) {
    +  if (m <= 2) {
    +    return 0;
    +  }
    +
    +  T area = 0;
    +  for (int i = 1; i < m - 1; i++) {
    +    area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
    +  }
    +
    +  return area / 2.0;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T rotated_boxes_intersection(const RotatedBox& box1,
    +                                                const RotatedBox& box2) {
    +  // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
    +  // from rotated_rect_intersection_pts
    +  Point intersectPts[24], orderedPts[24];
    +
    +  Point pts1[4];
    +  Point pts2[4];
    +  get_rotated_vertices(box1, pts1);
    +  get_rotated_vertices(box2, pts2);
    +
    +  int num = get_intersection_points(pts1, pts2, intersectPts);
    +
    +  if (num <= 2) {
    +    return 0.0;
    +  }
    +
    +  // Convex Hull to order the intersection points in clockwise order and find
    +  // the contour area.
    +  int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true);
    +  return polygon_area(orderedPts, num_convex);
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T quadri_boxes_intersection(const Point (&pts1)[4],
    +                                               const Point (&pts2)[4]) {
    +  // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
    +  // from rotated_rect_intersection_pts
    +  Point intersectPts[24], orderedPts[24];
    +
    +  int num = get_intersection_points(pts1, pts2, intersectPts);
    +
    +  if (num <= 2) {
    +    return 0.0;
    +  }
    +
    +  // Convex Hull to order the intersection points in clockwise order and find
    +  // the contour area.
    +  int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true);
    +  return polygon_area(orderedPts, num_convex);
    +}
    +
    +}  // namespace
    +
    +template 
    +HOST_DEVICE_INLINE T single_box_iou_rotated(T const* const box1_raw,
    +                                            T const* const box2_raw,
    +                                            const int mode_flag) {
    +  // shift center to the middle point to achieve higher precision in result
    +  RotatedBox box1, box2;
    +  auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0;
    +  auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0;
    +  box1.x_ctr = box1_raw[0] - center_shift_x;
    +  box1.y_ctr = box1_raw[1] - center_shift_y;
    +  box1.w = box1_raw[2];
    +  box1.h = box1_raw[3];
    +  box1.a = box1_raw[4];
    +  box2.x_ctr = box2_raw[0] - center_shift_x;
    +  box2.y_ctr = box2_raw[1] - center_shift_y;
    +  box2.w = box2_raw[2];
    +  box2.h = box2_raw[3];
    +  box2.a = box2_raw[4];
    +
    +  const T area1 = box1.w * box1.h;
    +  const T area2 = box2.w * box2.h;
    +  if (area1 < 1e-14 || area2 < 1e-14) {
    +    return 0.f;
    +  }
    +
    +  const T intersection = rotated_boxes_intersection(box1, box2);
    +  T baseS = 1.0;
    +  if (mode_flag == 0) {
    +    baseS = (area1 + area2 - intersection);
    +  } else if (mode_flag == 1) {
    +    baseS = area1;
    +  }
    +  const T iou = intersection / baseS;
    +  return iou;
    +}
    +
    +template 
    +HOST_DEVICE_INLINE T single_box_iou_quadri(T const* const pts1_raw,
    +                                           T const* const pts2_raw,
    +                                           const int mode_flag) {
    +  // shift center to the middle point to achieve higher precision in result
    +  Point pts1[4], pts2[4];
    +
    +  auto center_shift_x =
    +      (pts1_raw[0] + pts2_raw[0] + pts1_raw[2] + pts2_raw[2] + pts1_raw[4] +
    +       pts2_raw[4] + pts1_raw[6] + pts2_raw[6]) /
    +      8.0;
    +  auto center_shift_y =
    +      (pts1_raw[1] + pts2_raw[1] + pts1_raw[3] + pts2_raw[3] + pts1_raw[5] +
    +       pts2_raw[5] + pts1_raw[7] + pts2_raw[7]) /
    +      8.0;
    +  pts1[0].x = pts1_raw[0] - center_shift_x;
    +  pts1[0].y = pts1_raw[1] - center_shift_y;
    +  pts1[1].x = pts1_raw[2] - center_shift_x;
    +  pts1[1].y = pts1_raw[3] - center_shift_y;
    +  pts1[2].x = pts1_raw[4] - center_shift_x;
    +  pts1[2].y = pts1_raw[5] - center_shift_y;
    +  pts1[3].x = pts1_raw[6] - center_shift_x;
    +  pts1[3].y = pts1_raw[7] - center_shift_y;
    +  pts2[0].x = pts2_raw[0] - center_shift_x;
    +  pts2[0].y = pts2_raw[1] - center_shift_y;
    +  pts2[1].x = pts2_raw[2] - center_shift_x;
    +  pts2[1].y = pts2_raw[3] - center_shift_y;
    +  pts2[2].x = pts2_raw[4] - center_shift_x;
    +  pts2[2].y = pts2_raw[5] - center_shift_y;
    +  pts2[3].x = pts2_raw[6] - center_shift_x;
    +  pts2[3].y = pts2_raw[7] - center_shift_y;
    +
    +  const T area1 = quadri_box_area(pts1);
    +  const T area2 = quadri_box_area(pts2);
    +  if (area1 < 1e-14 || area2 < 1e-14) {
    +    return 0.f;
    +  }
    +
    +  const T intersection = quadri_boxes_intersection(pts1, pts2);
    +  T baseS = 1.0;
    +  if (mode_flag == 0) {
    +    baseS = (area1 + area2 - intersection);
    +  } else if (mode_flag == 1) {
    +    baseS = area1;
    +  }
    +  const T iou = intersection / baseS;
    +  return iou;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/active_rotated_filter_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/active_rotated_filter_cuda_kernel.cuh
    new file mode 100644
    index 000000000..36e41107e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/active_rotated_filter_cuda_kernel.cuh
    @@ -0,0 +1,59 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/csuhan/s2anet/blob/master/mmdet/ops/orn/src/cuda/ActiveRotatingFilter_cuda.cu
    +#ifndef ACTIVE_ROTATED_FILTER_CUDA_KERNEL_CUH
    +#define ACTIVE_ROTATED_FILTER_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void active_rotated_filter_forward_cuda_kernel(
    +    const int nthreads, const scalar_t* weight_data, const int* indices_data,
    +    const int num_input_planes, const int num_output_planes,
    +    const int num_orientations, const int num_rotations, const int nEntry,
    +    scalar_t* output_data) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int l = index % nEntry;
    +    int j = (index / nEntry) % num_input_planes;
    +    int i = index / nEntry / num_input_planes;
    +    int k;
    +    scalar_t val = *(weight_data + index);
    +    for (k = 0; k < num_rotations; k++) {
    +      int idx = (int)(*(indices_data + l * num_rotations + k)) - 1;
    +      scalar_t* target = output_data +
    +                         i * (num_rotations * num_input_planes * nEntry) +
    +                         k * (num_input_planes * nEntry) + j * (nEntry) + idx;
    +      *target = val;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void active_rotated_filter_backward_cuda_kernel(
    +    const int nthreads, const scalar_t* gradWeight_data,
    +    const int* indices_data, const int num_input_planes,
    +    const int num_output_planes, const int num_orientations,
    +    const int num_rotations, const int nEntry, scalar_t* weight_data) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int l = index % nEntry;
    +    int j = (index / nEntry) % num_input_planes;
    +    int i = index / nEntry / num_input_planes;
    +    int k;
    +    scalar_t* val = weight_data + index;
    +    *val = 0;
    +    scalar_t tmp = 0;
    +    for (k = 0; k < num_rotations; k++) {
    +      int idx = (int)(*(indices_data + l * num_rotations + k)) - 1;
    +      scalar_t target =
    +          *(gradWeight_data + i * (num_rotations * num_input_planes * nEntry) +
    +            k * (num_input_planes * nEntry) + j * (nEntry) + idx);
    +      tmp = tmp + target;
    +    }
    +    *val = tmp;
    +  }
    +}
    +#endif  // ACTIVE_ROTATED_FILTER_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/assign_score_withk_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/assign_score_withk_cuda_kernel.cuh
    new file mode 100644
    index 000000000..9f9250844
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/assign_score_withk_cuda_kernel.cuh
    @@ -0,0 +1,116 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ASSIGN_SCORE_WITHK_CUDA_KERNEL_CUH
    +#define ASSIGN_SCORE_WITHK_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +// input: points(B,N0,M,O), centers(B,N0,M,O), scores(B,N1,K,M), knn_idx(B,N1,K)
    +// output: fout(B,O,N)
    +// algo: fout(b,i,k,j) = s(b,i,k,m)*p(b,c(i),k,m,j) =  s(b,i,k,m)*p(b,i(k),m,j)
    +//       i(k) = idx(b,i,k)
    +//      sum: fout(b,i,j) = fout(b,i,j) + s(b,i,k,m)*p(b,i,k,m,j)
    +//      avg: fout(b,i,j) = sum(fout(b,i,k,j)) / k
    +//      max: fout(b,i,j) = max(fout(b,i,k,j), sum(s(b,i,k,m)*p(b,i,k,m,j)))
    +
    +template 
    +__global__ void assign_score_withk_forward_cuda_kernel(
    +    const int B, const int N0, const int N1, const int M, const int K,
    +    const int O, const int aggregate, const T* points, const T* centers,
    +    const T* scores, const int64_t* knn_idx, T* output) {
    +  // ----- parallel loop for B, N1, K and O ---------
    +  CUDA_1D_KERNEL_LOOP(i, B * O * N1 * K) {
    +    // ------- loop for M ----------
    +    const int b = (int)(i / (O * N1 * K));
    +    const int o = (int)(i % (O * N1 * K) / (N1 * K));
    +    const int n = (int)(i % (N1 * K) / K);
    +    const int k = (int)(i % K);
    +    const int cn = (int)knn_idx[b * K * N1 + n * K +
    +                                0];  // The first neighbor is the center point
    +    const int kn = (int)knn_idx[b * K * N1 + n * K + k];
    +    if (kn >= N0 ||
    +        kn < 0) {  // if index overflows, it is out of the neighborhood range
    +      return;
    +    }
    +    assert(b < B);
    +    assert(kn < N0);
    +    assert(cn < N0);
    +    assert(o < O);
    +    assert(n < N1);
    +    const int out_idx = b * N1 * O * K + o * N1 * K + n * K + k;
    +    T val = output[out_idx];
    +    for (int m = 0; m < M; m++) {
    +      val += points[b * N0 * M * O + kn * M * O + m * O + o] *
    +                 scores[b * N1 * K * M + n * K * M + k * M + m] -
    +             centers[b * N0 * M * O + cn * M * O + m * O + o] *
    +                 scores[b * N1 * K * M + n * K * M + k * M + m];
    +    }
    +    output[out_idx] = val;
    +  }
    +}
    +
    +template 
    +__global__ void assign_score_withk_points_backward_cuda_kernel(
    +    const int B, const int N0, const int N, const int M, const int K,
    +    const int O, const int aggregate, const T* grad_out, const T* scores,
    +    const int64_t* knn_idx, T* grad_points, T* grad_centers) {
    +  // ----- parallel loop for B, M, O ---------
    +  CUDA_1D_KERNEL_LOOP(i, B * M * O) {
    +    int b = (int)(i / (M * O));
    +    int m = (int)(i % (M * O) / O);
    +    int o = (int)(i % O);
    +
    +    // ----- loop for N,K ---------
    +    for (int n = 0; n < N; n++) {
    +      for (int k = 0; k < K; k++) {
    +        int kn = knn_idx[b * N * K + n * K + k];
    +        int cn = knn_idx[b * N * K + n * K + 0];
    +        if (kn >= N0 || kn < 0) {  // if index overflows, it is out of the
    +                                   // neighborhood range
    +          continue;
    +        }
    +        atomicAdd(grad_points + b * N0 * M * O + kn * M * O + m * O + o,
    +                  scores[b * N * K * M + n * K * M + k * M + m] *
    +                      grad_out[b * O * N * K + o * N * K + n * K + k]);
    +        atomicAdd(grad_centers + b * N0 * M * O + cn * M * O + m * O + o,
    +                  -scores[b * N * K * M + n * K * M + k * M + m] *
    +                      grad_out[b * O * N * K + o * N * K + n * K + k]);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void assign_score_withk_scores_backward_cuda_kernel(
    +    const int B, const int N0, const int N, const int M, const int K,
    +    const int O, const int aggregate, const T* grad_out, const T* points,
    +    const T* centers, const int64_t* knn_idx, T* grad_scores) {
    +  // ----- parallel loop for B, N, K, M ---------
    +  CUDA_1D_KERNEL_LOOP(i, B * N * K * M) {
    +    const int b = (int)(i / (N * M * K));
    +    const int n = (int)(i % (N * M * K) / M / K);
    +    const int k = (int)(i % (M * K) / M);
    +    const int m = (int)(i % M);
    +    const int cn = knn_idx[b * N * K + n * K + 0];
    +    const int kn = knn_idx[b * N * K + n * K + k];
    +    if (kn >= N0 ||
    +        kn < 0) {  // if index overflows, it is out of the neighborhood range
    +      return;
    +    }
    +
    +    // -------------- loop for O ------------------------
    +    const int out_idx = b * N * K * M + n * K * M + k * M + m;
    +    T val = grad_scores[out_idx];
    +    for (int o = 0; o < O; o++) {
    +      val += (points[b * N0 * M * O + kn * M * O + m * O + o] -
    +              centers[b * N0 * M * O + cn * M * O + m * O + o]) *
    +             grad_out[b * O * N * K + o * N * K + n * K + k];
    +    }
    +    grad_scores[out_idx] = val;
    +  }
    +}
    +
    +#endif  // ASSIGN_SCORE_WITHK_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ball_query_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ball_query_cuda_kernel.cuh
    new file mode 100644
    index 000000000..632b5c494
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ball_query_cuda_kernel.cuh
    @@ -0,0 +1,58 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query_gpu.cu
    +#ifndef BALL_QUERY_CUDA_KERNEL_CUH
    +#define BALL_QUERY_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void ball_query_forward_cuda_kernel(int b, int n, int m,
    +                                               float min_radius,
    +                                               float max_radius, int nsample,
    +                                               const T* new_xyz, const T* xyz,
    +                                               int* idx) {
    +  // new_xyz: (B, M, 3)
    +  // xyz: (B, N, 3)
    +  // output:
    +  //      idx: (B, M, nsample)
    +  int bs_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, m) {
    +    if (bs_idx >= b) return;
    +
    +    new_xyz += bs_idx * m * 3 + pt_idx * 3;
    +    xyz += bs_idx * n * 3;
    +    idx += bs_idx * m * nsample + pt_idx * nsample;
    +
    +    float max_radius2 = max_radius * max_radius;
    +    float min_radius2 = min_radius * min_radius;
    +    T new_x = new_xyz[0];
    +    T new_y = new_xyz[1];
    +    T new_z = new_xyz[2];
    +
    +    int cnt = 0;
    +    for (int k = 0; k < n; ++k) {
    +      T x = xyz[k * 3 + 0];
    +      T y = xyz[k * 3 + 1];
    +      T z = xyz[k * 3 + 2];
    +      T d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) +
    +             (new_z - z) * (new_z - z);
    +      if (d2 == 0 || (d2 >= min_radius2 && d2 < max_radius2)) {
    +        if (cnt == 0) {
    +          for (int l = 0; l < nsample; ++l) {
    +            idx[l] = k;
    +          }
    +        }
    +        idx[cnt] = k;
    +        ++cnt;
    +        if (cnt >= nsample) break;
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // BALL_QUERY_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/bbox_overlaps_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/bbox_overlaps_cuda_kernel.cuh
    new file mode 100644
    index 000000000..15bd91eca
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/bbox_overlaps_cuda_kernel.cuh
    @@ -0,0 +1,147 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef BBOX_OVERLAPS_CUDA_KERNEL_CUH
    +#define BBOX_OVERLAPS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__device__ __forceinline__ void load_bbox(const T* bbox, const int base, T& x1,
    +                                          T& y1, T& x2, T& y2) {
    +  x1 = bbox[base];
    +  y1 = bbox[base + 1];
    +  x2 = bbox[base + 2];
    +  y2 = bbox[base + 3];
    +}
    +
    +template <>
    +__device__ __forceinline__ void load_bbox(const float* bbox,
    +                                                 const int base, float& x1,
    +                                                 float& y1, float& x2,
    +                                                 float& y2) {
    +  const float4 bbox_offset = reinterpret_cast(bbox + base)[0];
    +  x1 = bbox_offset.x;
    +  y1 = bbox_offset.y;
    +  x2 = bbox_offset.z;
    +  y2 = bbox_offset.w;
    +}
    +
    +template 
    +__global__ void bbox_overlaps_cuda_kernel(const T* bbox1, const T* bbox2,
    +                                          T* ious, const int num_bbox1,
    +                                          const int num_bbox2, const int mode,
    +                                          const bool aligned,
    +                                          const int offset) {
    +  if (aligned) {
    +    CUDA_1D_KERNEL_LOOP(index, num_bbox1) {
    +      const int b1 = index;
    +      const int b2 = index;
    +
    +      const int base1 = b1 << 2;  // b1 * 4
    +      T b1_x1, b1_y1, b1_x2, b1_y2;
    +      load_bbox(bbox1, base1, b1_x1, b1_y1, b1_x2, b1_y2);
    +      const T b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset);
    +
    +      const int base2 = b2 << 2;  // b2 * 4
    +      T b2_x1, b2_y1, b2_x2, b2_y2;
    +      load_bbox(bbox2, base2, b2_x1, b2_y1, b2_x2, b2_y2);
    +      const T b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset);
    +
    +      const T left = fmaxf(b1_x1, b2_x1), right = fminf(b1_x2, b2_x2);
    +      const T top = fmaxf(b1_y1, b2_y1), bottom = fminf(b1_y2, b2_y2);
    +      const T width = fmaxf(right - left + offset, 0.f);
    +      const T height = fmaxf(bottom - top + offset, 0.f);
    +      const T interS = width * height;
    +
    +      const T baseS =
    +          fmaxf(mode == 0 ? b1_area + b2_area - interS : b1_area, T(offset));
    +      ious[index] = interS / baseS;
    +    }
    +  } else {
    +    CUDA_1D_KERNEL_LOOP(index, num_bbox1 * num_bbox2) {
    +      const int b1 = index / num_bbox2;
    +      const int b2 = index % num_bbox2;
    +
    +      const int base1 = b1 << 2;  // b1 * 4
    +      T b1_x1, b1_y1, b1_x2, b1_y2;
    +      load_bbox(bbox1, base1, b1_x1, b1_y1, b1_x2, b1_y2);
    +      const T b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset);
    +
    +      const int base2 = b2 << 2;  // b2 * 4
    +      T b2_x1, b2_y1, b2_x2, b2_y2;
    +      load_bbox(bbox2, base2, b2_x1, b2_y1, b2_x2, b2_y2);
    +      const T b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset);
    +
    +      const T left = fmaxf(b1_x1, b2_x1), right = fminf(b1_x2, b2_x2);
    +      const T top = fmaxf(b1_y1, b2_y1), bottom = fminf(b1_y2, b2_y2);
    +      const T width = fmaxf(right - left + offset, 0.f);
    +      const T height = fmaxf(bottom - top + offset, 0.f);
    +      const T interS = width * height;
    +
    +      const T baseS =
    +          fmaxf(mode == 0 ? b1_area + b2_area - interS : b1_area, T(offset));
    +      ious[index] = interS / baseS;
    +    }
    +  }
    +}
    +
    +#if __CUDA_ARCH__ >= 530
    +__device__ __forceinline__ __half __half_area(const __half x1, const __half y1,
    +                                              const __half x2, const __half y2,
    +                                              const __half offset) {
    +  const __half half_w = __hadd(__hsub(x2, x1), offset);
    +  const __half half_h = __hadd(__hsub(y2, y1), offset);
    +  return __hmul(half_w, half_h);
    +}
    +
    +__device__ __forceinline__ __half __half_max(const __half a, const __half b) {
    +  return __hge(a, b) ? a : b;
    +}
    +
    +__device__ __forceinline__ __half __half_min(const __half a, const __half b) {
    +  return __hle(a, b) ? a : b;
    +}
    +
    +// fp16 won't provide much increase when aligned==true. It is useful when
    +// aligned==false, which would give you ~40% bonus.
    +__device__ void bbox_overlaps_cuda_kernel_half(
    +    const __half* bbox1, const __half* bbox2, __half* ious, const int num_bbox1,
    +    const int num_bbox2, const int mode, const bool aligned, const int offset) {
    +  const int num_output = aligned ? num_bbox1 : num_bbox1 * num_bbox2;
    +  const __half h_offset = __int2half_rn(offset);
    +  CUDA_1D_KERNEL_LOOP(index, num_output) {
    +    const int b1 = aligned ? index : index / num_bbox2;
    +    const int b2 = aligned ? index : index % num_bbox2;
    +
    +    const int base1 = b1 << 2;
    +    __half b1_x1, b1_y1, b1_x2, b1_y2;
    +    load_bbox<__half>(bbox1, base1, b1_x1, b1_y1, b1_x2, b1_y2);
    +    const __half b1_area = __half_area(b1_x1, b1_y1, b1_x2, b1_y2, h_offset);
    +
    +    const int base2 = b2 << 2;
    +    __half b2_x1, b2_y1, b2_x2, b2_y2;
    +    load_bbox<__half>(bbox2, base2, b2_x1, b2_y1, b2_x2, b2_y2);
    +    const __half b2_area = __half_area(b2_x1, b2_y1, b2_x2, b2_y2, h_offset);
    +
    +    const __half left = __half_max(b1_x1, b2_x1),
    +                 right = __half_min(b1_x2, b2_x2);
    +    const __half top = __half_max(b1_y1, b2_y1),
    +                 bottom = __half_min(b1_y2, b2_y2);
    +    const __half width =
    +        __half_max(__hadd(__hsub(right, left), h_offset), __float2half(0.f));
    +    const __half height =
    +        __half_max(__hadd(__hsub(bottom, top), h_offset), __float2half(0.f));
    +    const __half interS = __hmul(width, height);
    +
    +    const __half baseS = __half_max(
    +        mode == 0 ? __hsub(__hadd(b1_area, b2_area), interS) : b1_area,
    +        h_offset);
    +    ious[index] = __hdiv(interS, baseS);
    +  }
    +}
    +#endif  // __CUDA_ARCH__ >= 530
    +
    +#endif  // BBOX_OVERLAPS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/border_align_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/border_align_cuda_kernel.cuh
    new file mode 100644
    index 000000000..1d2a2197b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/border_align_cuda_kernel.cuh
    @@ -0,0 +1,200 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/layers/csrc/border_align/border_align_kernel.cu.
    +// the main difference: (1) use `argmax_idx` for fast computing of gradient
    +// during the backward. (2) `wh` is directly computed by `boxes`, rather than
    +// passing it as argument to forward or backward functions.
    +
    +#ifndef BORDER_ALIGN_CUDA_KERNEL_CUH
    +#define BORDER_ALIGN_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +enum BorderMode { Top = 0, Left = 1, Bottom = 2, Right = 3 };
    +
    +/*** Forward ***/
    +template 
    +__global__ void border_align_forward_cuda_kernel(
    +    const int nthreads, const T* input, const T* boxes, T* output,
    +    int* argmax_idx, const int channels, const int box_size, const int height,
    +    const int width, const int pool_size) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (batch_idx, c_idx, box_idx) is an element paralleled for computing
    +    // output, and `extreme_idx` is in range [0,3]
    +    int batch_idx, c_idx, box_idx, extreme_idx, maxidx, *offset_argmax_idx;
    +    const T *offset_box, *offset_input, *offset_box_x;
    +    T *offset_output, box_width, box_height, stride, x_stride, y_stride, x, y,
    +        val, maxval;
    +
    +    extreme_idx = threadIdx.y;
    +    // shape (N, C, box_size, 4) for output
    +    batch_idx = index / channels / box_size;
    +    // shape (N, box_size, 4) for boxes
    +    box_idx = index % box_size + batch_idx * box_size;
    +    c_idx = (index / box_size) % channels;
    +
    +    offset_box = boxes + box_idx * 4;
    +    box_width = *(offset_box + 2) - *offset_box;
    +    box_height = *(offset_box + 3) - *(offset_box + 1);
    +    offset_output = output + index * 4 + extreme_idx;
    +    offset_argmax_idx = argmax_idx + index * 4 + extreme_idx;
    +    // shape (N, 4C, h, w) for input.
    +    // [0,C) for top feature, [C,2C) for left feature,
    +    // [2C,3C) for bottom feature, [3C,4C) for right feature
    +    offset_input =
    +        input + (batch_idx * channels * 4 + extreme_idx * channels + c_idx) *
    +                    height * width;
    +
    +    // extreme_idx in [0,1] -> offset_box_x indexed at x1
    +    // extreme_idx in [2,3] -> offset_box_x indexed at x2
    +    offset_box_x = offset_box + extreme_idx / 2 * 2;
    +
    +    // (x1,y1) or (x2,y2) for (x,y)
    +    x = *offset_box_x;
    +    y = *(offset_box_x + 1);
    +
    +    switch (extreme_idx) {
    +      // top
    +      case BorderMode::Top:
    +        stride = box_width / pool_size;
    +        x_stride = stride;
    +        y_stride = 0;
    +        break;
    +      // left
    +      case BorderMode::Left:
    +        stride = box_height / pool_size;
    +        x_stride = 0;
    +        y_stride = stride;
    +        break;
    +      // bottom
    +      case BorderMode::Bottom:
    +        stride = box_width / pool_size;
    +        x_stride = -stride;
    +        y_stride = 0;
    +        break;
    +      // right
    +      case BorderMode::Right:
    +        stride = box_height / pool_size;
    +        x_stride = 0;
    +        y_stride = -stride;
    +        break;
    +    }
    +
    +    // initialize maxval and maxidx with the start position (e.g. (x1,y1) or
    +    // (x2,y2))
    +    maxval = bilinear_interpolate(offset_input, height, width, y, x, index);
    +    maxidx = 0;
    +
    +    // do max_pool along the border
    +    for (int i = 1; i <= pool_size; i++) {
    +      x += x_stride;
    +      y += y_stride;
    +      val = bilinear_interpolate(offset_input, height, width, y, x, index);
    +      if (val > maxval) {
    +        maxval = val;
    +        maxidx = i;
    +      }
    +    }
    +
    +    // update output and argmax_idx
    +    *offset_output = maxval;
    +    *offset_argmax_idx = maxidx;
    +  }
    +}
    +
    +/*** Backward ***/
    +template 
    +__global__ void border_align_backward_cuda_kernel(
    +    const int nthreads, const T* grad_output, const T* boxes,
    +    const int* argmax_idx, T* grad_input, const int channels,
    +    const int box_size, const int height, const int width,
    +    const int pool_size) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (batch_idx, c_idx, box_idx) is an element paralleled for computing
    +    // output, and `extreme_idx` is in range [0,3]
    +    int batch_idx, c_idx, box_idx, extreme_idx;
    +    const int* offset_argmax_idx;
    +    const T *offset_grad_output, *offset_box, *offset_box_x;
    +    T *offset_grad_input, box_width, box_height, stride, x_stride, y_stride, x,
    +        y;
    +
    +    extreme_idx = threadIdx.y;
    +    batch_idx = index / channels / box_size;
    +    box_idx = index % box_size + batch_idx * box_size;
    +    c_idx = (index / box_size) % channels;
    +
    +    offset_box = boxes + box_idx * 4;
    +    box_width = *(offset_box + 2) - *offset_box;
    +    box_height = *(offset_box + 3) - *(offset_box + 1);
    +    offset_grad_output = grad_output + index * 4 + extreme_idx;
    +    offset_argmax_idx = argmax_idx + index * 4 + extreme_idx;
    +    // [0,C) for top feature grad, [C,2C) for left feature grad,
    +    // [2C,3C) for bottom feature grad, [3C,4C) for right feature grad
    +    offset_grad_input = grad_input + (batch_idx * channels * 4 +
    +                                      extreme_idx * channels + c_idx) *
    +                                         height * width;
    +
    +    // extreme_idx in [0,1] -> offset_box_x indexed at x1
    +    // extreme_idx in [2,3] -> offset_box_x indexed at x2
    +    offset_box_x = offset_box + extreme_idx / 2 * 2;
    +
    +    switch (extreme_idx) {
    +      // top
    +      case BorderMode::Top:
    +        stride = box_width / pool_size;
    +        x_stride = stride;
    +        y_stride = 0;
    +        break;
    +      // left
    +      case BorderMode::Left:
    +        stride = box_height / pool_size;
    +        x_stride = 0;
    +        y_stride = stride;
    +        break;
    +      // bottom
    +      case BorderMode::Bottom:
    +        stride = box_width / pool_size;
    +        x_stride = -stride;
    +        y_stride = 0;
    +        break;
    +      // right
    +      case BorderMode::Right:
    +        stride = box_height / pool_size;
    +        x_stride = 0;
    +        y_stride = -stride;
    +        break;
    +    }
    +
    +    // get position (x,y) which has maximum value during forward
    +    x = *offset_box_x;
    +    y = *(offset_box_x + 1);
    +    x += x_stride * (T)(*offset_argmax_idx);
    +    y += y_stride * (T)(*offset_argmax_idx);
    +
    +    T w1, w2, w3, w4;
    +    int x_low, x_high, y_low, y_high;
    +    bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4, x_low,
    +                                  x_high, y_low, y_high, index);
    +
    +    // update grad_output
    +    atomicAdd(offset_grad_input + y_low * width + x_low,
    +              *offset_grad_output * w1);
    +    atomicAdd(offset_grad_input + y_low * width + x_high,
    +              *offset_grad_output * w2);
    +    atomicAdd(offset_grad_input + y_high * width + x_low,
    +              *offset_grad_output * w3);
    +    atomicAdd(offset_grad_input + y_high * width + x_high,
    +              *offset_grad_output * w4);
    +  }
    +}
    +
    +#endif  // BORDER_ALIGN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_quadri_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_quadri_cuda.cuh
    new file mode 100644
    index 000000000..cf8ad5e1a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_quadri_cuda.cuh
    @@ -0,0 +1,91 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#ifndef BOX_IOU_QUADRI_CUDA_CUH
    +#define BOX_IOU_QUADRI_CUDA_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +#include "box_iou_rotated_utils.hpp"
    +
    +// 2D block with 32 * 16 = 512 threads per block
    +const int BLOCK_DIM_X = 32;
    +const int BLOCK_DIM_Y = 16;
    +
    +inline int divideUP(const int x, const int y) { return (((x) + (y)-1) / (y)); }
    +
    +template 
    +__global__ void box_iou_quadri_cuda_kernel(
    +    const int n_boxes1, const int n_boxes2, const T* dev_boxes1,
    +    const T* dev_boxes2, T* dev_ious, const int mode_flag, const bool aligned) {
    +  if (aligned) {
    +    CUDA_1D_KERNEL_LOOP(index, n_boxes1) {
    +      int b1 = index;
    +      int b2 = index;
    +
    +      int base1 = b1 * 8;
    +
    +      float block_boxes1[8];
    +      float block_boxes2[8];
    +
    +      block_boxes1[0] = dev_boxes1[base1 + 0];
    +      block_boxes1[1] = dev_boxes1[base1 + 1];
    +      block_boxes1[2] = dev_boxes1[base1 + 2];
    +      block_boxes1[3] = dev_boxes1[base1 + 3];
    +      block_boxes1[4] = dev_boxes1[base1 + 4];
    +      block_boxes1[5] = dev_boxes1[base1 + 5];
    +      block_boxes1[6] = dev_boxes1[base1 + 6];
    +      block_boxes1[7] = dev_boxes1[base1 + 7];
    +
    +      int base2 = b2 * 8;
    +
    +      block_boxes2[0] = dev_boxes2[base2 + 0];
    +      block_boxes2[1] = dev_boxes2[base2 + 1];
    +      block_boxes2[2] = dev_boxes2[base2 + 2];
    +      block_boxes2[3] = dev_boxes2[base2 + 3];
    +      block_boxes2[4] = dev_boxes2[base2 + 4];
    +      block_boxes2[5] = dev_boxes2[base2 + 5];
    +      block_boxes2[6] = dev_boxes2[base2 + 6];
    +      block_boxes2[7] = dev_boxes2[base2 + 7];
    +
    +      dev_ious[index] =
    +          single_box_iou_quadri(block_boxes1, block_boxes2, mode_flag);
    +    }
    +  } else {
    +    CUDA_1D_KERNEL_LOOP(index, n_boxes1 * n_boxes2) {
    +      int b1 = index / n_boxes2;
    +      int b2 = index % n_boxes2;
    +
    +      int base1 = b1 * 8;
    +
    +      float block_boxes1[8];
    +      float block_boxes2[8];
    +
    +      block_boxes1[0] = dev_boxes1[base1 + 0];
    +      block_boxes1[1] = dev_boxes1[base1 + 1];
    +      block_boxes1[2] = dev_boxes1[base1 + 2];
    +      block_boxes1[3] = dev_boxes1[base1 + 3];
    +      block_boxes1[4] = dev_boxes1[base1 + 4];
    +      block_boxes1[5] = dev_boxes1[base1 + 5];
    +      block_boxes1[6] = dev_boxes1[base1 + 6];
    +      block_boxes1[7] = dev_boxes1[base1 + 7];
    +
    +      int base2 = b2 * 8;
    +
    +      block_boxes2[0] = dev_boxes2[base2 + 0];
    +      block_boxes2[1] = dev_boxes2[base2 + 1];
    +      block_boxes2[2] = dev_boxes2[base2 + 2];
    +      block_boxes2[3] = dev_boxes2[base2 + 3];
    +      block_boxes2[4] = dev_boxes2[base2 + 4];
    +      block_boxes2[5] = dev_boxes2[base2 + 5];
    +      block_boxes2[6] = dev_boxes2[base2 + 6];
    +      block_boxes2[7] = dev_boxes2[base2 + 7];
    +
    +      dev_ious[index] =
    +          single_box_iou_quadri(block_boxes1, block_boxes2, mode_flag);
    +    }
    +  }
    +}
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_rotated_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_rotated_cuda.cuh
    new file mode 100644
    index 000000000..abd47cd85
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/box_iou_rotated_cuda.cuh
    @@ -0,0 +1,81 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu
    +#ifndef BOX_IOU_ROTATED_CUDA_CUH
    +#define BOX_IOU_ROTATED_CUDA_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +#include "box_iou_rotated_utils.hpp"
    +
    +// 2D block with 32 * 16 = 512 threads per block
    +const int BLOCK_DIM_X = 32;
    +const int BLOCK_DIM_Y = 16;
    +
    +inline int divideUP(const int x, const int y) { return (((x) + (y)-1) / (y)); }
    +
    +template 
    +__global__ void box_iou_rotated_cuda_kernel(
    +    const int n_boxes1, const int n_boxes2, const T* dev_boxes1,
    +    const T* dev_boxes2, T* dev_ious, const int mode_flag, const bool aligned) {
    +  if (aligned) {
    +    CUDA_1D_KERNEL_LOOP(index, n_boxes1) {
    +      int b1 = index;
    +      int b2 = index;
    +
    +      int base1 = b1 * 5;
    +
    +      float block_boxes1[5];
    +      float block_boxes2[5];
    +
    +      block_boxes1[0] = dev_boxes1[base1 + 0];
    +      block_boxes1[1] = dev_boxes1[base1 + 1];
    +      block_boxes1[2] = dev_boxes1[base1 + 2];
    +      block_boxes1[3] = dev_boxes1[base1 + 3];
    +      block_boxes1[4] = dev_boxes1[base1 + 4];
    +
    +      int base2 = b2 * 5;
    +
    +      block_boxes2[0] = dev_boxes2[base2 + 0];
    +      block_boxes2[1] = dev_boxes2[base2 + 1];
    +      block_boxes2[2] = dev_boxes2[base2 + 2];
    +      block_boxes2[3] = dev_boxes2[base2 + 3];
    +      block_boxes2[4] = dev_boxes2[base2 + 4];
    +
    +      dev_ious[index] =
    +          single_box_iou_rotated(block_boxes1, block_boxes2, mode_flag);
    +    }
    +  } else {
    +    CUDA_1D_KERNEL_LOOP(index, n_boxes1 * n_boxes2) {
    +      int b1 = index / n_boxes2;
    +      int b2 = index % n_boxes2;
    +
    +      int base1 = b1 * 5;
    +
    +      float block_boxes1[5];
    +      float block_boxes2[5];
    +
    +      block_boxes1[0] = dev_boxes1[base1 + 0];
    +      block_boxes1[1] = dev_boxes1[base1 + 1];
    +      block_boxes1[2] = dev_boxes1[base1 + 2];
    +      block_boxes1[3] = dev_boxes1[base1 + 3];
    +      block_boxes1[4] = dev_boxes1[base1 + 4];
    +
    +      int base2 = b2 * 5;
    +
    +      block_boxes2[0] = dev_boxes2[base2 + 0];
    +      block_boxes2[1] = dev_boxes2[base2 + 1];
    +      block_boxes2[2] = dev_boxes2[base2 + 2];
    +      block_boxes2[3] = dev_boxes2[base2 + 3];
    +      block_boxes2[4] = dev_boxes2[base2 + 4];
    +
    +      dev_ious[index] =
    +          single_box_iou_rotated(block_boxes1, block_boxes2, mode_flag);
    +    }
    +  }
    +}
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_cuda_kernel.cuh
    new file mode 100644
    index 000000000..48dd118a8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_cuda_kernel.cuh
    @@ -0,0 +1,332 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CARAFE_CUDA_KERNEL_CUH
    +#define CARAFE_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#if defined(MMCV_WITH_HIP) || defined(__ILUVATAR__)
    +#define WARP_SIZE 64
    +#else
    +#define WARP_SIZE 32
    +#endif
    +#define THREADS_PER_PIXEL 32
    +#define MAX_SHARED_MEMORY 49152
    +#define MAX_SHARED_SCALAR_T 6144  // 49152 / 8 = 6144
    +#define MAXIMIZE_KERNEL_SIZE true
    +#define kTileDim 32
    +#define kBlockRows 8
    +#define FULL_MASK 0xffffffff
    +
    +inline int divideUP(const int x, const int y) { return (((x) + (y)-1) / (y)); }
    +
    +__device__ inline int Loc2Index(const int n, const int c, const int h,
    +                                const int w, const int channel_num,
    +                                const int height, const int width) {
    +  int index = w + (h + (c + n * channel_num) * height) * width;
    +  return index;
    +}
    +#ifndef MMCV_WITH_HIP
    +/* TODO: move this to a common place */
    +template 
    +__device__ inline scalar_t min(scalar_t a, scalar_t b) {
    +  return a < b ? a : b;
    +}
    +
    +template 
    +__device__ inline scalar_t max(scalar_t a, scalar_t b) {
    +  return a > b ? a : b;
    +}
    +#endif
    +template 
    +__device__ __forceinline__ scalar_t warpReduceSum(scalar_t val) {
    +  for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2)
    +#ifdef MMCV_WITH_HIP
    +    val += __shfl_down(val, offset);
    +#else
    +    val += __shfl_down_sync(FULL_MASK, val, offset);
    +#endif
    +  return val;
    +}
    +
    +template <>
    +__device__ __forceinline__ phalf warpReduceSum(phalf val) {
    +  for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2)
    +#ifdef MMCV_WITH_HIP
    +    __PHALF(val) += __shfl_down(val, offset);
    +#else
    +    __PHALF(val) +=
    +        __shfl_down_sync(FULL_MASK, static_cast<__half>(__PHALF(val)), offset);
    +#endif
    +  return val;
    +}
    +
    +// Splits the original matrix into submatrices with size 32 * 32.
    +// Each block transposes one submatrix by loading it into shared memory.
    +// Reference https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
    +template 
    +__global__ void BatchTranspose2DCUDAKernel(const int N, const int H,
    +                                           const int W, const int dh,
    +                                           const int dw,
    +                                           const scalar_t *__restrict__ X,
    +                                           scalar_t *__restrict__ Y) {
    +  __shared__ scalar_t tile[kTileDim][kTileDim + 1];
    +  const int n = blockIdx.x / (dh * dw);
    +  const int k = blockIdx.x % (dh * dw);
    +  const int r = k / dw;
    +  const int c = k % dw;
    +  const int offset = n * H * W;
    +  int x = c * kTileDim + threadIdx.x;
    +  int y = r * kTileDim + threadIdx.y;
    +  if (x < W) {
    +    for (int i = 0; threadIdx.y + i < kTileDim && y + i < H; i += kBlockRows) {
    +      tile[threadIdx.y + i][threadIdx.x] = X[offset + (y + i) * W + x];
    +    }
    +  }
    +  __syncthreads();
    +  x = r * kTileDim + threadIdx.x;
    +  y = c * kTileDim + threadIdx.y;
    +  if (x < H) {
    +    for (int i = 0; threadIdx.y + i < kTileDim && y + i < W; i += kBlockRows) {
    +      Y[offset + (y + i) * H + x] = tile[threadIdx.x][threadIdx.y + i];
    +    }
    +  }
    +}
    +template 
    +__global__ void CARAFEForward(
    +    const int num_kernels, const scalar_t *__restrict__ bottom_data,
    +    const scalar_t *__restrict__ bottom_masks, const int kernel_size,
    +    const int group_size, const int scale_factor, const int channels,
    +    const int down_height, const int down_width, const int height,
    +    const int width, const int mask_channels, scalar_t *__restrict__ top_data) {
    +#if MAXIMIZE_KERNEL_SIZE
    +  __shared__ float shared_mask[MAX_SHARED_SCALAR_T * 2];
    +#else
    +  __shared__ scalar_t shared_mask[MAX_SHARED_SCALAR_T];
    +#endif
    +
    +  int index = threadIdx.x + blockIdx.x * blockDim.x;
    +  if (index > num_kernels - 1) {
    +    return;
    +  }
    +  const int pixel_id = threadIdx.x / THREADS_PER_PIXEL;
    +  const int split_id = threadIdx.x % THREADS_PER_PIXEL;
    +  index = index / THREADS_PER_PIXEL;
    +  const int pw = index % width;
    +  const int ph = (index / width) % height;
    +  const int n = index / width / height;
    +
    +  const int down_pw = pw / scale_factor;
    +  const int down_ph = ph / scale_factor;
    +
    +  const int start_w = down_pw - (kernel_size - 1) / 2;
    +  const int end_w = down_pw + (kernel_size - 1) / 2 + 1;
    +  const int start_h = down_ph - (kernel_size - 1) / 2;
    +  const int end_h = down_ph + (kernel_size - 1) / 2 + 1;
    +  for (int c = split_id; c < mask_channels; c += THREADS_PER_PIXEL) {
    +    int mask_index = Loc2Index(n, ph, pw, c, height, width, mask_channels);
    +    shared_mask[c * WARP_SIZE + pixel_id] = bottom_masks[mask_index];
    +  }
    +  __syncthreads();
    +
    +  const int channels_per_group = ceilf(channels / (float)group_size);
    +#pragma unroll
    +  for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
    +    int mask_group = c / channels_per_group;
    +    scalar_t output_val = 0;
    +#pragma unroll
    +    for (int iy = start_h; iy < end_h; iy++) {
    +#pragma unroll
    +      for (int ix = start_w; ix < end_w; ix++) {
    +        if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
    +          continue;
    +        }
    +        int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
    +        int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
    +        int mask_c =
    +            (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
    +        int feat_index =
    +            Loc2Index(n, iy, ix, c, down_height, down_width, channels);
    +
    +        output_val += bottom_data[feat_index] *
    +                      shared_mask[mask_c * WARP_SIZE + pixel_id];
    +      }
    +    }
    +
    +    int top_index = Loc2Index(n, ph, pw, c, height, width, channels);
    +    top_data[top_index] = output_val;
    +  }
    +}
    +
    +template 
    +__global__ void CARAFEBackward_Feature(
    +    const int num_kernels, const scalar_t *__restrict__ top_diff,
    +    const scalar_t *__restrict__ bottom_masks, const int kernel_size,
    +    const int group_size, const int scale_factor, const int channels,
    +    const int down_height, const int down_width, const int height,
    +    const int width, const int mask_channels,
    +    scalar_t *__restrict__ bottom_diff) {
    +#if MAXIMIZE_KERNEL_SIZE
    +  __shared__ float shared_mask[MAX_SHARED_SCALAR_T * 2];
    +#else
    +  __shared__ scalar_t shared_mask[MAX_SHARED_SCALAR_T];
    +#endif
    +
    +  int index = threadIdx.x + blockIdx.x * blockDim.x;
    +  if (index > num_kernels - 1) {
    +    return;
    +  }
    +
    +  const int pixel_id = threadIdx.x / THREADS_PER_PIXEL;
    +  const int split_id = threadIdx.x % THREADS_PER_PIXEL;
    +  // (n, c, ph, pw) is an element in the bottom_data
    +  index = index / THREADS_PER_PIXEL;
    +  const int pw = index % width;
    +  const int ph = (index / width) % height;
    +  const int n = index / width / height;
    +
    +  const int start_w = pw - (kernel_size - 1) * scale_factor / 2;
    +  const int end_w = pw + (kernel_size - 1) * scale_factor / 2 + 1;
    +  const int start_h = ph - (kernel_size - 1) * scale_factor / 2;
    +  const int end_h = ph + (kernel_size - 1) * scale_factor / 2 + 1;
    +  for (int c = split_id; c < mask_channels; c += THREADS_PER_PIXEL) {
    +    const int mask_w = (c % kernel_size) * scale_factor;
    +    const int mask_h = (c / kernel_size % kernel_size) * scale_factor;
    +    const int mask_x = start_w + mask_w;
    +    const int mask_y = start_h + mask_h;
    +    if (mask_y < 0 || mask_y > height - 1 || mask_x < 0 || mask_x > width - 1) {
    +      shared_mask[c * WARP_SIZE + pixel_id] = 0;
    +      continue;
    +    }
    +    const int mask_group = c / (kernel_size * kernel_size);
    +    const int mask_c = (2 * mask_group + 1) * kernel_size * kernel_size - c - 1;
    +    int mask_index =
    +        Loc2Index(n, mask_c, mask_y, mask_x, mask_channels, height, width);
    +    shared_mask[c * WARP_SIZE + pixel_id] = bottom_masks[mask_index];
    +  }
    +  __syncthreads();
    +  const int channels_per_group = ceilf(channels / (float)group_size);
    +#pragma unroll
    +  for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
    +    int mask_group = c / channels_per_group;
    +    int top_index = Loc2Index(n, ph, pw, c, height, width, channels);
    +    scalar_t output_val = 0;
    +#pragma unroll
    +    for (int iy = start_h; iy < end_h; iy += scale_factor) {
    +#pragma unroll
    +      for (int ix = start_w; ix < end_w; ix += scale_factor) {
    +        if (iy < 0 || iy > height - 1 || ix < 0 || ix > width - 1) {
    +          continue;
    +        }
    +        int mask_iy =
    +            (iy - ph + (kernel_size - 1) * scale_factor / 2) / scale_factor;
    +        int mask_ix =
    +            (ix - pw + (kernel_size - 1) * scale_factor / 2) / scale_factor;
    +        int mask_c =
    +            (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
    +        int feat_index = Loc2Index(n, iy, ix, c, height, width, channels);
    +        output_val +=
    +            shared_mask[mask_c * WARP_SIZE + pixel_id] * top_diff[feat_index];
    +      }
    +    }
    +    bottom_diff[top_index] = output_val;
    +  }
    +}
    +
    +template 
    +__global__ void FeatureSum(const int num_kernels,
    +                           const scalar_t *__restrict__ input_data,
    +                           const int scale_factor, const int channels,
    +                           const int height, const int width,
    +                           scalar_t *__restrict__ output_data) {
    +  int index = threadIdx.x + blockIdx.x * blockDim.x;
    +  if (index > num_kernels - 1) {
    +    return;
    +  }
    +  const int split_id = threadIdx.x % THREADS_PER_PIXEL;
    +  index = index / THREADS_PER_PIXEL;
    +  const int pw = index % width;
    +  const int ph = (index / width) % height;
    +  const int n = index / width / height;
    +  for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
    +    scalar_t output_val = 0;
    +    for (int iy = ph * scale_factor; iy < (ph + 1) * scale_factor; iy++) {
    +      for (int ix = pw * scale_factor; ix < (pw + 1) * scale_factor; ix++) {
    +        int input_id = Loc2Index(n, iy, ix, c, height * scale_factor,
    +                                 width * scale_factor, channels);
    +        output_val += input_data[input_id];
    +      }
    +    }
    +    const int output_id = Loc2Index(n, ph, pw, c, height, width, channels);
    +    output_data[output_id] = output_val;
    +  }
    +}
    +
    +template 
    +__global__ void CARAFEBackward_Mask(const int num_kernels,
    +                                    const scalar_t *__restrict__ top_diff,
    +                                    const scalar_t *__restrict__ bottom_data,
    +                                    const int kernel_size, const int group_size,
    +                                    const int scale_factor, const int channels,
    +                                    const int down_height, const int down_width,
    +                                    const int height, const int width,
    +                                    const int mask_channels,
    +                                    scalar_t *__restrict__ mask_diff) {
    +  int index = threadIdx.x + blockIdx.x * blockDim.x;
    +  if (index > num_kernels - 1) {
    +    return;
    +  }
    +
    +  const int lane_id = index % WARP_SIZE;
    +  index = index / WARP_SIZE;
    +  const int mask_c = index % mask_channels;
    +  // (n, c, ph, pw) is an element in the bottom_data
    +  index = index / mask_channels;
    +  const int pw = index % width;
    +  const int ph = (index / width) % height;
    +  const int n = index / width / height;
    +
    +  const int down_pw = pw / scale_factor;
    +  const int down_ph = ph / scale_factor;
    +
    +  const int mask_group = mask_c / (kernel_size * kernel_size);
    +  const int mask_loc = mask_c % (kernel_size * kernel_size);
    +
    +  const int offset_x = mask_loc % kernel_size - (kernel_size - 1) / 2;
    +  const int offset_y =
    +      mask_loc / kernel_size % kernel_size - (kernel_size - 1) / 2;
    +
    +  const int down_x = down_pw + offset_x;
    +  const int down_y = down_ph + offset_y;
    +
    +  scalar_t output_val = 0;
    +
    +  if (down_y >= 0 && down_y <= down_height - 1 && down_x >= 0 &&
    +      down_x <= down_width - 1) {
    +    const int channels_per_mask = ceilf(channels / (float)group_size);
    +    const int start = channels_per_mask * mask_group;
    +    const int end = min(channels_per_mask * (mask_group + 1), channels);
    +    for (int c = start + lane_id; c < end; c += WARP_SIZE) {
    +      int bottom_id =
    +          Loc2Index(n, down_y, down_x, c, down_height, down_width, channels);
    +      int top_id = Loc2Index(n, ph, pw, c, height, width, channels);
    +      output_val += top_diff[top_id] * bottom_data[bottom_id];
    +    }
    +  }
    +#if defined(MMCV_WITH_HIP) || defined(__ILUVATAR__)
    +  __syncthreads();
    +#else
    +  __syncwarp();
    +#endif
    +  output_val = warpReduceSum(output_val);
    +  if (lane_id == 0) {
    +    const int mask_id =
    +        Loc2Index(n, ph, pw, mask_c, height, width, mask_channels);
    +    mask_diff[mask_id] = output_val;
    +  }
    +}
    +
    +#endif  // CARAFE_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_naive_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_naive_cuda_kernel.cuh
    new file mode 100644
    index 000000000..48230c632
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/carafe_naive_cuda_kernel.cuh
    @@ -0,0 +1,111 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CARAFE_NAIVE_CUDA_KERNEL_CUH
    +#define CARAFE_NAIVE_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +__device__ inline int Loc2Index(const int n, const int c, const int h,
    +                                const int w, const int channel_num,
    +                                const int height, const int width) {
    +  int index = w + (h + (c + n * channel_num) * height) * width;
    +  return index;
    +}
    +
    +template 
    +__global__ void carafe_naive_forward_cuda_kernel(
    +    const int nthreads, const scalar_t *bottom_data,
    +    const scalar_t *bottom_masks, scalar_t *top_data, const int kernel_size,
    +    const int group_size, const int scale_factor, const int channels,
    +    const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the bottom_data
    +    int pw = index % width;
    +    int ph = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    int mask_channels = kernel_size * kernel_size * group_size;
    +    int mask_group = c / (channels / group_size);
    +
    +    int down_pw = pw / scale_factor;
    +    int down_ph = ph / scale_factor;
    +    int down_width = width / scale_factor;
    +    int down_height = height / scale_factor;
    +    int start_w = down_pw - (kernel_size - 1) / 2;
    +    int end_w = down_pw + (kernel_size - 1) / 2 + 1;
    +    int start_h = down_ph - (kernel_size - 1) / 2;
    +    int end_h = down_ph + (kernel_size - 1) / 2 + 1;
    +
    +    scalar_t output_val = 0;
    +    for (int iy = start_h; iy < end_h; iy++) {
    +      for (int ix = start_w; ix < end_w; ix++) {
    +        if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
    +          continue;
    +        }
    +        int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
    +        int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
    +        int mask_c =
    +            (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
    +        int feat_index =
    +            Loc2Index(n, c, iy, ix, channels, down_height, down_width);
    +        int mask_index =
    +            Loc2Index(n, mask_c, ph, pw, mask_channels, height, width);
    +        output_val += bottom_data[feat_index] * bottom_masks[mask_index];
    +      }
    +    }
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +template 
    +__global__ void carafe_naive_backward_cuda_kernel(
    +    const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_data,
    +    const scalar_t *bottom_masks, scalar_t *bottom_diff, scalar_t *mask_diff,
    +    const int kernel_size, const int group_size, const int scale_factor,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the bottom_data
    +    int pw = index % width;
    +    int ph = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    int mask_channels = kernel_size * kernel_size * group_size;
    +    int mask_group = c / (channels / group_size);
    +
    +    int down_pw = pw / scale_factor;
    +    int down_ph = ph / scale_factor;
    +    int down_width = width / scale_factor;
    +    int down_height = height / scale_factor;
    +    int start_w = down_pw - (kernel_size - 1) / 2;
    +    int end_w = down_pw + (kernel_size - 1) / 2 + 1;
    +    int start_h = down_ph - (kernel_size - 1) / 2;
    +    int end_h = down_ph + (kernel_size - 1) / 2 + 1;
    +
    +    for (int iy = start_h; iy < end_h; iy++) {
    +      for (int ix = start_w; ix < end_w; ix++) {
    +        if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
    +          continue;
    +        }
    +        int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
    +        int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
    +        int mask_c =
    +            (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
    +        int feat_index =
    +            Loc2Index(n, c, iy, ix, channels, down_height, down_width);
    +        int mask_index =
    +            Loc2Index(n, mask_c, ph, pw, mask_channels, height, width);
    +        atomicAdd(bottom_diff + feat_index,
    +                  bottom_masks[mask_index] * top_diff[index]);
    +        atomicAdd(mask_diff + mask_index,
    +                  bottom_data[feat_index] * top_diff[index]);
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // CARAFE_NAIVE_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/chamfer_distance_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/chamfer_distance_cuda_kernel.cuh
    new file mode 100644
    index 000000000..89feea4a5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/chamfer_distance_cuda_kernel.cuh
    @@ -0,0 +1,101 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/chrdiller/pyTorchChamferDistance/blob/master/chamfer_distance/chamfer_distance.cu
    +#ifndef CHAMFER_DISTANCE_CUDA_KERNEL_CUH
    +#define CHAMFER_DISTANCE_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#define MAX_SHARED_SCALAR_T 6144  // 49152 / 8 = 6144
    +
    +template 
    +__global__ void chamfer_distance_forward_cuda_kernel(int b, int n,
    +                                                     const scalar_t* xyz, int m,
    +                                                     const scalar_t* xyz2,
    +                                                     scalar_t* result,
    +                                                     int* result_i) {
    +  __shared__ scalar_t buf[MAX_SHARED_SCALAR_T];
    +  for (int i = blockIdx.x; i < b; i += gridDim.x) {
    +    for (int k2 = 0; k2 < m; k2 += THREADS_PER_BLOCK) {
    +      int end_k = min(m, k2 + THREADS_PER_BLOCK) - k2;
    +      for (int j = threadIdx.x; j < end_k * 2; j += blockDim.x) {
    +        buf[j] = xyz2[(i * m + k2) * 2 + j];
    +      }
    +      __syncthreads();
    +      for (int j = threadIdx.x; j < n; j += blockDim.x * gridDim.y) {
    +        scalar_t x1 = xyz[(i * n + j) * 2 + 0];
    +        scalar_t y1 = xyz[(i * n + j) * 2 + 1];
    +        int best_i = 0;
    +        scalar_t best = 1e10;
    +        int end_ka = end_k & (~2);
    +        if (end_ka == THREADS_PER_BLOCK) {
    +          for (int k = 0; k < THREADS_PER_BLOCK; k += 4) {
    +#pragma unroll
    +            for (int j = 0; j < 4; ++j) {
    +              scalar_t x2 = buf[(k + j) * 2] - x1;
    +              scalar_t y2 = buf[(k + j) * 2 + 1] - y1;
    +              scalar_t d = x2 * x2 + y2 * y2;
    +              if (d < best) {
    +                best = d;
    +                best_i = k + k2 + j;
    +              }
    +            }
    +          }
    +        } else {
    +          for (int k = 0; k < end_ka; k += 4) {
    +#pragma unroll
    +            for (int j = 0; j < 4; ++j) {
    +              scalar_t x2 = buf[(k + j) * 2] - x1;
    +              scalar_t y2 = buf[(k + j) * 2 + 1] - y1;
    +              scalar_t d = x2 * x2 + y2 * y2;
    +              if (d < best) {
    +                best = d;
    +                best_i = k + k2 + j;
    +              }
    +            }
    +          }
    +        }
    +        for (int k = end_ka; k < end_k; k++) {
    +          scalar_t x2 = buf[k * 2 + 0] - x1;
    +          scalar_t y2 = buf[k * 2 + 1] - y1;
    +          scalar_t d = x2 * x2 + y2 * y2;
    +          if (k == 0 || d < best) {
    +            best = d;
    +            best_i = k + k2;
    +          }
    +        }
    +        if (k2 == 0 || result[(i * n + j)] > best) {
    +          result[(i * n + j)] = best;
    +          result_i[(i * n + j)] = best_i;
    +        }
    +      }
    +      __syncthreads();
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void chamfer_distance_backward_cuda_kernel(
    +    int b, int n, const scalar_t* xyz1, int m, const scalar_t* xyz2,
    +    const scalar_t* grad_dist1, const int* idx1, scalar_t* grad_xyz1,
    +    scalar_t* grad_xyz2) {
    +  for (int i = blockIdx.x; i < b; i += gridDim.x) {
    +    for (int j = threadIdx.x; j < n; j += blockDim.x * gridDim.y) {
    +      scalar_t x1 = xyz1[(i * n + j) * 2 + 0];
    +      scalar_t y1 = xyz1[(i * n + j) * 2 + 1];
    +      int j2 = idx1[i * n + j];
    +      scalar_t x2 = xyz2[(i * m + j2) * 2 + 0];
    +      scalar_t y2 = xyz2[(i * m + j2) * 2 + 1];
    +      scalar_t g = grad_dist1[i * n + j] * 2;
    +      atomicAdd(&(grad_xyz1[(i * n + j) * 2 + 0]), g * (x1 - x2));
    +      atomicAdd(&(grad_xyz1[(i * n + j) * 2 + 1]), g * (y1 - y2));
    +      atomicAdd(&(grad_xyz2[(i * m + j2) * 2 + 0]), -(g * (x1 - x2)));
    +      atomicAdd(&(grad_xyz2[(i * m + j2) * 2 + 1]), -(g * (y1 - y2)));
    +    }
    +  }
    +}
    +#endif  // CHAMFER_DISTANCE_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/common_cuda_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/common_cuda_helper.hpp
    new file mode 100644
    index 000000000..e18036bac
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/common_cuda_helper.hpp
    @@ -0,0 +1,120 @@
    +#ifndef COMMON_CUDA_HELPER
    +#define COMMON_CUDA_HELPER
    +
    +#include 
    +
    +#define CUDA_1D_KERNEL_LOOP(i, n)                              \
    +  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
    +       i += blockDim.x * gridDim.x)
    +
    +#define CUDA_2D_KERNEL_LOOP(i, n, j, m)                             \
    +  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n);   \
    +       i += blockDim.x * gridDim.x)                                 \
    +    for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); \
    +         j += blockDim.y * gridDim.y)
    +
    +#define CUDA_2D_KERNEL_BLOCK_LOOP(i, n, j, m)          \
    +  for (size_t i = blockIdx.x; i < (n); i += gridDim.x) \
    +    for (size_t j = blockIdx.y; j < (m); j += gridDim.y)
    +
    +#define THREADS_PER_BLOCK 512
    +
    +inline int GET_BLOCKS(const int N, const int num_threads = THREADS_PER_BLOCK) {
    +  int optimal_block_num = (N + num_threads - 1) / num_threads;
    +  int max_block_num = 4096;
    +  return std::min(optimal_block_num, max_block_num);
    +}
    +
    +template 
    +__device__ T bilinear_interpolate(const T* input, const int height,
    +                                  const int width, T y, T x,
    +                                  const int index /* index for debug only*/) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) return 0;
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  int y_low = (int)y;
    +  int x_low = (int)x;
    +  int y_high;
    +  int x_high;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +  // do bilinear interpolation
    +  T v1 = input[y_low * width + x_low];
    +  T v2 = input[y_low * width + x_high];
    +  T v3 = input[y_high * width + x_low];
    +  T v4 = input[y_high * width + x_high];
    +  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +
    +  return val;
    +}
    +
    +template 
    +__device__ void bilinear_interpolate_gradient(
    +    const int height, const int width, T y, T x, T& w1, T& w2, T& w3, T& w4,
    +    int& x_low, int& x_high, int& y_low, int& y_high,
    +    const int index /* index for debug only*/) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +    // empty
    +    w1 = w2 = w3 = w4 = 0.;
    +    x_low = x_high = y_low = y_high = -1;
    +    return;
    +  }
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  y_low = (int)y;
    +  x_low = (int)x;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +
    +  // reference in forward
    +  // T v1 = input[y_low * width + x_low];
    +  // T v2 = input[y_low * width + x_high];
    +  // T v3 = input[y_high * width + x_low];
    +  // T v4 = input[y_high * width + x_high];
    +  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +
    +  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  return;
    +}
    +#endif  // COMMON_CUDA_HELPER
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/convex_iou_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/convex_iou_cuda_kernel.cuh
    new file mode 100644
    index 000000000..9dc42bad6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/convex_iou_cuda_kernel.cuh
    @@ -0,0 +1,831 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CONVEX_IOU_CUDA_KERNEL_CUH
    +#define CONVEX_IOU_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#define MAXN 100
    +#define NMAX 512
    +__device__ const float EPS = 1E-8;
    +
    +__device__ inline int sig(float d) { return (d > EPS) - (d < -EPS); }
    +
    +struct Point {
    +  float x, y;
    +  __device__ Point() {}
    +  __device__ Point(float x, float y) : x(x), y(y) {}
    +};
    +
    +__device__ inline bool point_same(Point& a, Point& b) {
    +  return sig(a.x - b.x) == 0 && sig(a.y - b.y) == 0;
    +}
    +
    +__device__ inline void swap1(Point* a, Point* b) {
    +  Point temp;
    +  temp.x = a->x;
    +  temp.y = a->y;
    +
    +  a->x = b->x;
    +  a->y = b->y;
    +
    +  b->x = temp.x;
    +  b->y = temp.y;
    +}
    +
    +__device__ inline void reverse1(Point* a, const int n) {
    +  for (int i = 0; i < (n - 1) / 2.0; i++) {
    +    Point* j = &(a[i]);
    +    Point* k = &(a[n - 1 - i]);
    +    swap1(j, k);
    +  }
    +}
    +
    +__device__ inline float cross(Point o, Point a, Point b) {
    +  return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
    +}
    +
    +__device__ inline float dis(Point a, Point b) {
    +  return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
    +}
    +__device__ inline float area(Point* ps, int n) {
    +  ps[n] = ps[0];
    +  float res = 0;
    +  for (int i = 0; i < n; i++) {
    +    res += ps[i].x * ps[i + 1].y - ps[i].y * ps[i + 1].x;
    +  }
    +  return res / 2.0;
    +}
    +__device__ inline float polygon_area_grad(Point* ps, int n,
    +                                           int* polygon_to_pred_index,
    +                                           int n_pred, float* grad_C) {
    +  ps[n] = ps[0];
    +  float partion_grad[4 * 30 + 2];
    +  float res = 0;
    +  for (int i = 0; i < n; i++) {
    +    res += ps[i].x * ps[i + 1].y - ps[i].y * ps[i + 1].x;
    +    partion_grad[i * 4 + 2] = ps[i + 1].y;
    +    partion_grad[i * 4 + 3] = -ps[i + 1].x;
    +    if (i != n - 1) {
    +      partion_grad[i * 4 + 4] = -ps[i].y;
    +      partion_grad[i * 4 + 5] = ps[i].x;
    +    } else {
    +      partion_grad[0] = -ps[i].y;
    +      partion_grad[1] = ps[i].x;
    +    }
    +  }
    +  for (int i = 0; i < n; i++) {
    +    for (int j = 0; j < n_pred; j++) {
    +      if (i == polygon_to_pred_index[j]) {
    +        grad_C[2 * polygon_to_pred_index[j + n_pred]] =
    +            (partion_grad[i * 4] + partion_grad[i * 4 + 2]) / 2;
    +        break;
    +      }
    +    }
    +    for (int j = 0; j < n_pred; j++) {
    +      if (i == polygon_to_pred_index[j]) {
    +        grad_C[2 * polygon_to_pred_index[j + n_pred] + 1] =
    +            (partion_grad[i * 4 + 1] + partion_grad[i * 4 + 1 + 2]) / 2;
    +        break;
    +      }
    +    }
    +  }
    +
    +  return res / 2.0;
    +}
    +
    +__device__ inline int lineCross(Point a, Point b, Point c, Point d, Point& p,
    +                                float* cut_grad, int m, int n, int i) {
    +  float s1, s2;
    +  float s2_s1_2;
    +  float ds1_dxc, ds1_dyc, ds2_dxd, ds2_dyd;
    +  float dxp_dxc, dxp_dyc, dxp_dxd, dxp_dyd, dyp_dxc, dyp_dyc, dyp_dxd, dyp_dyd;
    +  s1 = cross(a, b, c);
    +  s2 = cross(a, b, d);
    +
    +  ds1_dxc = -(b.y - a.y);
    +  ds1_dyc = b.x - a.x;
    +  ds2_dxd = ds1_dxc;
    +  ds2_dyd = ds1_dyc;
    +  s2_s1_2 = (s2 - s1) * (s2 - s1);
    +
    +  if (sig(s1) == 0 && sig(s2) == 0) return 2;
    +  if (sig(s2 - s1) == 0) return 0;
    +
    +  dxp_dxc =
    +      ((s2 - d.x * ds1_dxc) * (s2 - s1) - (c.x * s2 - d.x * s1) * (-ds1_dxc)) /
    +      (s2_s1_2);
    +  dxp_dyc =
    +      ((0 - d.x * ds1_dyc) * (s2 - s1) - (c.x * s2 - d.x * s1) * (-ds1_dyc)) /
    +      (s2_s1_2);
    +  dxp_dxd =
    +      ((c.x * ds2_dxd - s1) * (s2 - s1) - (c.x * s2 - d.x * s1) * (ds2_dxd)) /
    +      (s2_s1_2);
    +  dxp_dyd =
    +      ((c.x * ds2_dyd - 0) * (s2 - s1) - (c.x * s2 - d.x * s1) * (ds2_dyd)) /
    +      (s2_s1_2);
    +
    +  dyp_dxc =
    +      ((0 - d.y * ds1_dxc) * (s2 - s1) - (c.y * s2 - d.y * s1) * (-ds1_dxc)) /
    +      (s2_s1_2);
    +  dyp_dyc =
    +      ((s2 - d.y * ds1_dyc) * (s2 - s1) - (c.y * s2 - d.y * s1) * (-ds1_dyc)) /
    +      (s2_s1_2);
    +  dyp_dxd =
    +      ((c.y * ds2_dxd - 0) * (s2 - s1) - (c.y * s2 - d.y * s1) * (ds2_dxd)) /
    +      (s2_s1_2);
    +  dyp_dyd =
    +      ((c.y * ds2_dyd - s1) * (s2 - s1) - (c.y * s2 - d.y * s1) * (ds2_dyd)) /
    +      (s2_s1_2);
    +
    +  p.x = (c.x * s2 - d.x * s1) / (s2 - s1);
    +  p.y = (c.y * s2 - d.y * s1) / (s2 - s1);
    +  if (i == n - 1) {
    +    cut_grad[4 * n * m + 4 * i] = dxp_dxc;  // + dyp_dxc;
    +    cut_grad[4 * n * m + 4 * i + 1] = dyp_dxc;
    +    cut_grad[4 * n * m + 4 * i + 2] = dxp_dyc;  // + dyp_dyc;
    +    cut_grad[4 * n * m + 4 * i + 3] = dyp_dyc;
    +    cut_grad[4 * n * m + 0] = dxp_dxd;  // + dyp_dxd;
    +    cut_grad[4 * n * m + 1] = dyp_dxd;
    +    cut_grad[4 * n * m + 2] = dxp_dyd;  // + dyp_dyd;
    +    cut_grad[4 * n * m + 3] = dyp_dyd;
    +  } else {
    +    cut_grad[4 * n * m + 4 * i] = dxp_dxc;  // + dyp_dxc;
    +    cut_grad[4 * n * m + 4 * i + 1] = dyp_dxc;
    +    cut_grad[4 * n * m + 4 * i + 2] = dxp_dyc;  // + dyp_dyc;
    +    cut_grad[4 * n * m + 4 * i + 3] = dyp_dyc;
    +    cut_grad[4 * n * m + 4 * (i + 1)] = dxp_dxd;  // + dyp_dxd;
    +    cut_grad[4 * n * m + 4 * (i + 1) + 1] = dyp_dxd;
    +    cut_grad[4 * n * m + 4 * (i + 1) + 2] = dxp_dyd;  // + dyp_dyd;
    +    cut_grad[4 * n * m + 4 * (i + 1) + 3] = dyp_dyd;
    +  }
    +
    +  return 1;
    +}
    +__device__ inline void polygon_cut(Point* p, int& n, Point a, Point b,
    +                                   float* cut_grad) {
    +  Point pp[MAXN];
    +  float ccur_grad[MAXN] = {};
    +  int m = 0;
    +  p[n] = p[0];
    +  int k = n;
    +  for (int i = 0; i < n; i++) {
    +    if (sig(cross(a, b, p[i])) > 0) {
    +      pp[m] = p[i];
    +      ccur_grad[4 * n * m + 4 * i] = 1.0;
    +      ccur_grad[4 * n * m + 4 * i + 3] = 1.0;
    +      m++;
    +    }
    +    if (sig(cross(a, b, p[i])) != sig(cross(a, b, p[i + 1]))) {
    +      lineCross(a, b, p[i], p[i + 1], pp[m], ccur_grad, m, n, i);
    +      m++;
    +    }
    +  }
    +
    +  n = 0;
    +  for (int i = 0; i < m; i++) {
    +    if (!i || !(point_same(pp[i], pp[i - 1]))) {
    +      p[n] = pp[i];
    +      for (int j = 0; j < 4 * k; j++) {
    +        cut_grad[4 * k * n + j] = ccur_grad[4 * k * i + j];
    +      }
    +      n++;
    +    }
    +  }
    +
    +  while (n > 1 && point_same(p[n - 1], p[0])) n--;
    +}
    +
    +__device__ inline float intersectArea(Point a, Point b, Point c, Point d,
    +                                       float* grad_AB, int order,
    +                                       int convex_n) {
    +  Point o(0, 0);
    +  int res_flag = 0;
    +  int s1 = sig(cross(o, a, b));
    +  int s2 = sig(cross(o, c, d));
    +  if (s1 == 0 || s2 == 0) return 0.0;
    +  if (s1 == -1) {
    +    Point* i = &a;
    +    Point* j = &b;
    +    swap1(i, j);
    +    res_flag = 1;
    +  }
    +  if (s2 == -1) {
    +    Point* i = &c;
    +    Point* j = &d;
    +    swap1(i, j);
    +  }
    +  Point p[10] = {o, a, b};
    +  int n = 3, n0 = 3, n1, n2, n3;
    +  float cut_grad1[MAXN] = {};
    +  float cut_grad2[MAXN] = {};
    +  float cut_grad3[MAXN] = {};
    +  float p1_p_grad[10][10] = {};
    +  float p2_p1_grad[10][10] = {};
    +  float p3_p2_grad[10][10] = {};
    +
    +  float p3_p1_grad[10][10] = {};
    +  float p3_p_grad[10][10] = {};
    +
    +  // 1
    +  polygon_cut(p, n, o, c, cut_grad1);
    +  n1 = n;
    +  for (int i = 0; i < n; i++) {
    +    for (int j = 0; j < 4 * n0; j++) {
    +      if (!(j % 2)) {
    +        p1_p_grad[2 * i][j / 2] = cut_grad1[4 * n0 * i + j];
    +      } else {
    +        p1_p_grad[2 * i + 1][j / 2] = cut_grad1[4 * n0 * i + j];
    +      }
    +    }
    +  }
    +
    +  // 2
    +  polygon_cut(p, n, c, d, cut_grad2);
    +  n2 = n;
    +  for (int i = 0; i < n; i++) {
    +    for (int j = 0; j < 4 * n1; j++) {
    +      if (!(j % 2)) {
    +        p2_p1_grad[2 * i][j / 2] = cut_grad2[4 * n1 * i + j];
    +      } else {
    +        p2_p1_grad[2 * i + 1][j / 2] = cut_grad2[4 * n1 * i + j];
    +      }
    +    }
    +  }
    +  // 3
    +  polygon_cut(p, n, d, o, cut_grad3);
    +  n3 = n;
    +  for (int i = 0; i < n; i++) {
    +    for (int j = 0; j < 4 * n2; j++) {
    +      if (!(j % 2)) {
    +        p3_p2_grad[2 * i][j / 2] = cut_grad3[4 * n2 * i + j];
    +      } else {
    +        p3_p2_grad[2 * i + 1][j / 2] = cut_grad3[4 * n2 * i + j];
    +      }
    +    }
    +  }
    +
    +  // mul
    +  //  p3_p2(n3 * n2) * p2_p1(n2 * n1) = p3_p1 (n3 * n1)
    +  for (int i = 0; i < 2 * n3; i++) {
    +    for (int j = 0; j < 2 * n1; j++) {
    +      float sum = 0.0;
    +      for (int m = 0; m < 2 * n2; m++) {
    +        sum = sum + p3_p2_grad[i][m] * p2_p1_grad[m][j];
    +      }
    +      p3_p1_grad[i][j] = sum;
    +    }
    +  }
    +
    +  // p3_p1 (n3 * n1) * p1_p (n1 * n0) = p3_p (n3 * n0)
    +  for (int i = 0; i < 2 * n3; i++) {
    +    for (int j = 0; j < 2 * n0; j++) {
    +      float sum = 0.0;
    +      for (int m = 0; m < 2 * n1; m++) {
    +        sum = sum + p3_p1_grad[i][m] * p1_p_grad[m][j];
    +      }
    +      p3_p_grad[i][j] = sum;
    +    }
    +  }
    +
    +  // calculate S_grad
    +  int polygon_index_box_index[20];
    +  float grad_polygon[20];
    +  float S_grad[6];
    +
    +  for (int i = 0; i < n3; i++) {
    +    polygon_index_box_index[i] = i;
    +    polygon_index_box_index[i + n3] = i;
    +  }
    +
    +  float res =
    +      polygon_area_grad(p, n3, polygon_index_box_index, n3, grad_polygon);
    +
    +  if (s1 * s2 == -1) {
    +    for (int j = 0; j < 2 * 3; j++) {
    +      float sum = 0.0;
    +      for (int m = 0; m < 2 * n3; m++) {
    +        sum = sum - grad_polygon[m] * p3_p_grad[m][j];
    +      }
    +      S_grad[j] = sum;
    +    }
    +
    +    if (order != convex_n - 1) {
    +      if (res_flag) {
    +        grad_AB[2 * order] += S_grad[4];
    +        grad_AB[2 * order + 1] += S_grad[5];
    +        grad_AB[2 * order + 2] += S_grad[2];
    +        grad_AB[2 * order + 3] += S_grad[3];
    +
    +      } else {
    +        grad_AB[2 * order] += S_grad[2];
    +        grad_AB[2 * order + 1] += S_grad[3];
    +        grad_AB[2 * order + 2] += S_grad[4];
    +        grad_AB[2 * order + 3] += S_grad[5];
    +      }
    +    } else {
    +      if (res_flag) {
    +        grad_AB[2 * order] += S_grad[4];
    +        grad_AB[2 * order + 1] += S_grad[5];
    +        grad_AB[0] += S_grad[2];
    +        grad_AB[1] += S_grad[3];
    +
    +      } else {
    +        grad_AB[2 * order] += S_grad[2];
    +        grad_AB[2 * order + 1] += S_grad[3];
    +        grad_AB[0] += S_grad[4];
    +        grad_AB[1] += S_grad[5];
    +      }
    +    }
    +    res = -res;
    +  } else {
    +    for (int j = 0; j < 2 * 3; j++) {
    +      float sum = 0.0;
    +      for (int m = 0; m < 2 * n3; m++) {
    +        sum = sum + grad_polygon[m] * p3_p_grad[m][j];
    +      }
    +      S_grad[j] = sum;
    +    }
    +
    +    if (order != convex_n - 1) {
    +      if (res_flag) {
    +        grad_AB[2 * order] += S_grad[4];
    +        grad_AB[2 * order + 1] += S_grad[5];
    +        grad_AB[2 * order + 2] += S_grad[2];
    +        grad_AB[2 * order + 3] += S_grad[3];
    +      } else {
    +        grad_AB[2 * order] += S_grad[2];
    +        grad_AB[2 * order + 1] += S_grad[3];
    +        grad_AB[2 * order + 2] += S_grad[4];
    +        grad_AB[2 * order + 3] += S_grad[5];
    +      }
    +    } else {
    +      if (res_flag) {
    +        grad_AB[2 * order] += S_grad[4];
    +        grad_AB[2 * order + 1] += S_grad[5];
    +        grad_AB[0] += S_grad[2];
    +        grad_AB[1] += S_grad[3];
    +      } else {
    +        grad_AB[2 * order] += S_grad[2];
    +        grad_AB[2 * order + 1] += S_grad[3];
    +        grad_AB[0] += S_grad[4];
    +        grad_AB[1] += S_grad[5];
    +      }
    +    }
    +  }
    +  return res;
    +}
    +
    +__device__ inline float intersectAreaO(Point* ps1, int n1, Point* ps2, int n2,
    +                                        float* grad_AB) {
    +  if (area(ps1, n1) < 0) reverse1(ps1, n1);
    +  if (area(ps2, n2) < 0) reverse1(ps2, n2);
    +  ps1[n1] = ps1[0];
    +  ps2[n2] = ps2[0];
    +  float res = 0;
    +  for (int i = 0; i < n1; i++) {
    +    for (int j = 0; j < n2; j++) {
    +      res +=
    +          intersectArea(ps1[i], ps1[i + 1], ps2[j], ps2[j + 1], grad_AB, i, n1);
    +    }
    +  }
    +  return res;
    +}
    +
    +__device__ inline void Jarvis(Point* in_poly, int& n_poly) {
    +  Point p_max, p_k;
    +  int max_index, k_index;
    +  int Stack[NMAX] = {}, top1, top2;
    +  float sign;
    +  Point right_point[10], left_point[10];
    +
    +  for (int i = 0; i < n_poly; i++) {
    +    if (in_poly[i].y < in_poly[0].y ||
    +        in_poly[i].y == in_poly[0].y && in_poly[i].x < in_poly[0].x) {
    +      Point* j = &(in_poly[0]);
    +      Point* k = &(in_poly[i]);
    +      swap1(j, k);
    +    }
    +    if (i == 0) {
    +      p_max = in_poly[0];
    +      max_index = 0;
    +    }
    +    if (in_poly[i].y > p_max.y ||
    +        in_poly[i].y == p_max.y && in_poly[i].x > p_max.x) {
    +      p_max = in_poly[i];
    +      max_index = i;
    +    }
    +  }
    +
    +  if (max_index == 0) {
    +    max_index = 1;
    +    p_max = in_poly[max_index];
    +  }
    +
    +  k_index = 0, Stack[0] = 0, top1 = 0;
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top1]], in_poly[i], p_k);
    +      if ((sign > 0) || ((sign == 0) && (dis(in_poly[Stack[top1]], in_poly[i]) >
    +                                         dis(in_poly[Stack[top1]], p_k)))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top1++;
    +    Stack[top1] = k_index;
    +  }
    +  for (int i = 0; i <= top1; i++) right_point[i] = in_poly[Stack[i]];
    +
    +  k_index = 0, Stack[0] = 0, top2 = 0;
    +
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top2]], in_poly[i], p_k);
    +      if ((sign < 0) || (sign == 0) && (dis(in_poly[Stack[top2]], in_poly[i]) >
    +                                        dis(in_poly[Stack[top2]], p_k))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top2++;
    +    Stack[top2] = k_index;
    +  }
    +  for (int i = top2 - 1; i >= 0; i--) left_point[i] = in_poly[Stack[i]];
    +
    +  for (int i = 0; i < top1 + top2; i++) {
    +    if (i <= top1) {
    +      in_poly[i] = right_point[i];
    +    } else {
    +      in_poly[i] = left_point[top2 - (i - top1)];
    +    }
    +  }
    +  n_poly = top1 + top2;
    +}
    +
    +__device__ inline float intersectAreaPoly(Point* ps1, int n1, Point* ps2,
    +                                           int n2, float* grad_C) {
    +  Point polygon[MAXN];
    +  int n = n1 + n2, n_poly = 0;
    +  for (int i = 0; i < n1; i++) {
    +    for (int j = 0; j < n - n1; j++) {
    +      if (point_same(ps1[i], ps2[j])) {
    +        for (int k = j; k < n - n1 - 1; k++) {
    +          ps2[k] = ps2[k + 1];
    +        }
    +        n2--;
    +        break;
    +      }
    +    }
    +  }
    +  n_poly = n1 + n2;
    +  for (int i = 0; i < n_poly; i++) {
    +    if (i < n1) {
    +      polygon[i] = ps1[i];
    +    } else {
    +      polygon[i] = ps2[i - n1];
    +    }
    +  }
    +
    +  Jarvis(polygon, n_poly);
    +
    +  int polygon_to_pred_index[18] = {-1, -1, -1, -1, -1, -1, -1, -1, -1,
    +                                   -1, -1, -1, -1, -1, -1, -1, -1, -1};
    +  int n_pred = 0;
    +  for (int i = 0; i < n_poly; i++) {
    +    for (int j = 0; j < n1; j++) {
    +      if (polygon[i].x == ps1[j].x && polygon[i].y == ps1[j].y) {
    +        polygon_to_pred_index[n_pred] = i;
    +        polygon_to_pred_index[n_pred + n1] = j;
    +        n_pred += 1;
    +        break;
    +      }
    +    }
    +  }
    +  if (n_pred == 0) {
    +    float polygon_area = fabs(area(polygon, n_poly));
    +    for (int i = 0; i < 18; i++) {
    +      grad_C[i] = 0.0;
    +    }
    +    return polygon_area;
    +  } else {
    +    float polygon_area =
    +        polygon_area_grad(polygon, n_poly, polygon_to_pred_index, n1, grad_C);
    +    if (polygon_area < 0) {
    +      for (int i = 0; i < 18; i++) {
    +        grad_C[i] = -grad_C[i];
    +      }
    +    }
    +    return fabs(polygon_area);
    +  }
    +}
    +
    +// convex_find and get the polygon_index_box_index
    +__device__ inline void Jarvis_and_index(Point* in_poly, int& n_poly,
    +                                        int* points_to_convex_ind) {
    +  int n_input = n_poly;
    +  Point input_poly[20];
    +  for (int i = 0; i < n_input; i++) {
    +    input_poly[i].x = in_poly[i].x;
    +    input_poly[i].y = in_poly[i].y;
    +  }
    +  Point p_max, p_k;
    +  int max_index, k_index;
    +  int Stack[20], top1, top2;
    +  float sign;
    +  Point right_point[10], left_point[10];
    +
    +  for (int i = 0; i < n_poly; i++) {
    +    if (in_poly[i].y < in_poly[0].y ||
    +        in_poly[i].y == in_poly[0].y && in_poly[i].x < in_poly[0].x) {
    +      Point* j = &(in_poly[0]);
    +      Point* k = &(in_poly[i]);
    +      swap1(j, k);
    +    }
    +    if (i == 0) {
    +      p_max = in_poly[0];
    +      max_index = 0;
    +    }
    +    if (in_poly[i].y > p_max.y ||
    +        in_poly[i].y == p_max.y && in_poly[i].x > p_max.x) {
    +      p_max = in_poly[i];
    +      max_index = i;
    +    }
    +  }
    +  if (max_index == 0) {
    +    max_index = 1;
    +    p_max = in_poly[max_index];
    +  }
    +
    +  k_index = 0, Stack[0] = 0, top1 = 0;
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top1]], in_poly[i], p_k);
    +      if ((sign > 0) || ((sign == 0) && (dis(in_poly[Stack[top1]], in_poly[i]) >
    +                                         dis(in_poly[Stack[top1]], p_k)))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top1++;
    +    Stack[top1] = k_index;
    +  }
    +  for (int i = 0; i <= top1; i++) {
    +    right_point[i] = in_poly[Stack[i]];
    +  }
    +
    +  k_index = 0, Stack[0] = 0, top2 = 0;
    +
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top2]], in_poly[i], p_k);
    +      if ((sign < 0) || (sign == 0) && (dis(in_poly[Stack[top2]], in_poly[i]) >
    +                                        dis(in_poly[Stack[top2]], p_k))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top2++;
    +    Stack[top2] = k_index;
    +  }
    +
    +  for (int i = top2 - 1; i >= 0; i--) {
    +    left_point[i] = in_poly[Stack[i]];
    +  }
    +
    +  for (int i = 0; i < top1 + top2; i++) {
    +    if (i <= top1) {
    +      in_poly[i] = right_point[i];
    +    } else {
    +      in_poly[i] = left_point[top2 - (i - top1)];
    +    }
    +  }
    +  n_poly = top1 + top2;
    +  for (int i = 0; i < n_poly; i++) {
    +    for (int j = 0; j < n_input; j++) {
    +      if (point_same(in_poly[i], input_poly[j])) {
    +        points_to_convex_ind[i] = j;
    +        break;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__device__ inline float devrIoU(T const* const p, T const* const q,
    +                                T* point_grad, const int idx) {
    +  Point ps1[MAXN], ps2[MAXN];
    +
    +  Point convex[MAXN];
    +  for (int i = 0; i < 9; i++) {
    +    convex[i].x = (float)p[i * 2];
    +    convex[i].y = (float)p[i * 2 + 1];
    +  }
    +  int n_convex = 9;
    +  int points_to_convex_ind[9] = {-1, -1, -1, -1, -1, -1, -1, -1, -1};
    +  Jarvis_and_index(convex, n_convex, points_to_convex_ind);
    +
    +  int n1 = n_convex;
    +  int n2 = 4;
    +
    +  for (int i = 0; i < n1; i++) {
    +    ps1[i].x = (float)convex[i].x;
    +    ps1[i].y = (float)convex[i].y;
    +  }
    +
    +  for (int i = 0; i < n2; i++) {
    +    ps2[i].x = (float)q[i * 2];
    +    ps2[i].y = (float)q[i * 2 + 1];
    +  }
    +
    +  int polygon_index_box_index[18];
    +  for (int i = 0; i < n1; i++) {
    +    polygon_index_box_index[i] = i;
    +    polygon_index_box_index[i + n1] = i;
    +  }
    +
    +  float grad_A[18] = {};
    +  float grad_AB[18] = {};
    +  float grad_C[18] = {};
    +
    +  float inter_area = intersectAreaO(ps1, n1, ps2, n2, grad_AB);
    +  float S_pred =
    +      polygon_area_grad(ps1, n1, polygon_index_box_index, n1, grad_A);
    +  if (S_pred < 0) {
    +    for (int i = 0; i < n_convex * 2; i++) {
    +      grad_A[i] = -grad_A[i];
    +    }
    +  }
    +  float union_area = fabs(S_pred) + fabs(area(ps2, n2)) - inter_area;
    +
    +  float iou = inter_area / union_area;
    +  float polygon_area = intersectAreaPoly(ps1, n1, ps2, n2, grad_C);
    +
    +  //    printf("%d:live\n", idx);
    +  float rot_giou = iou - (polygon_area - union_area) / polygon_area;
    +
    +  float grad_point_temp[18] = {};
    +
    +  for (int i = 0; i < n_convex; i++) {
    +    int grad_point = points_to_convex_ind[i];
    +    grad_point_temp[2 * grad_point] =
    +        (float)((union_area + inter_area) / (union_area * union_area) *
    +                    grad_AB[2 * i] -
    +                iou / union_area * grad_A[2 * i] -
    +                1 / polygon_area * (grad_AB[2 * i] - grad_A[2 * i]) -
    +                (union_area) / polygon_area / polygon_area * grad_C[2 * i]);
    +    grad_point_temp[2 * grad_point + 1] =
    +        (float)((union_area + inter_area) / (union_area * union_area) *
    +                    grad_AB[2 * i + 1] -
    +                iou / union_area * grad_A[2 * i + 1] -
    +                1 / polygon_area * (grad_AB[2 * i + 1] - grad_A[2 * i + 1]) -
    +                (union_area) / polygon_area / polygon_area * grad_C[2 * i + 1]);
    +  }
    +
    +  for (int i = 0; i < 9; i++) {
    +    point_grad[2 * i] = grad_point_temp[2 * i];
    +    point_grad[2 * i + 1] = grad_point_temp[2 * i + 1];
    +  }
    +  return (float)rot_giou;
    +}
    +
    +template 
    +__global__ void convex_giou_cuda_kernel(const int ex_n_boxes,
    +                                        const int gt_n_boxes, const T* ex_boxes,
    +                                        const T* gt_boxes, T* point_grad) {
    +  CUDA_1D_KERNEL_LOOP(index, ex_n_boxes) {
    +    const T* cur_box = ex_boxes + index * 18;
    +    const T* cur_gt_box = gt_boxes + index * 8;
    +    T* cur_grad = point_grad + index * 19;
    +    T giou = devrIoU(cur_box, cur_gt_box, cur_grad, threadIdx.x);
    +    cur_grad[18] = giou;
    +  }
    +}
    +
    +__device__ inline int lineCross(Point a, Point b, Point c, Point d, Point& p) {
    +  float s1, s2;
    +  s1 = cross(a, b, c);
    +  s2 = cross(a, b, d);
    +  if (sig(s1) == 0 && sig(s2) == 0) return 2;
    +  if (sig(s2 - s1) == 0) return 0;
    +  p.x = (c.x * s2 - d.x * s1) / (s2 - s1);
    +  p.y = (c.y * s2 - d.y * s1) / (s2 - s1);
    +  return 1;
    +}
    +
    +__device__ inline void polygon_cut(Point* p, int& n, Point a, Point b) {
    +  Point pp[MAXN];
    +  int m = 0;
    +  p[n] = p[0];
    +  for (int i = 0; i < n; i++) {
    +    if (sig(cross(a, b, p[i])) > 0) {
    +      pp[m] = p[i];
    +      m++;
    +    }
    +    if (sig(cross(a, b, p[i])) != sig(cross(a, b, p[i + 1]))) {
    +      lineCross(a, b, p[i], p[i + 1], pp[m]);
    +      m++;
    +    }
    +  }
    +  n = 0;
    +  for (int i = 0; i < m; i++) {
    +    if (!i || !(point_same(pp[i], pp[i - 1]))) {
    +      p[n] = pp[i];
    +      n++;
    +    }
    +  }
    +
    +  while (n > 1 && point_same(p[n - 1], p[0])) n--;
    +}
    +
    +__device__ inline float intersectArea(Point a, Point b, Point c, Point d) {
    +  Point o(0, 0);
    +  int s1 = sig(cross(o, a, b));
    +  int s2 = sig(cross(o, c, d));
    +  if (s1 == 0 || s2 == 0) return 0.0;
    +  if (s1 == -1) {
    +    Point* i = &a;
    +    Point* j = &b;
    +    swap1(i, j);
    +  }
    +  if (s2 == -1) {
    +    Point* i = &c;
    +    Point* j = &d;
    +    swap1(i, j);
    +  }
    +  Point p[10] = {o, a, b};
    +  int n = 3;
    +
    +  polygon_cut(p, n, o, c);
    +  polygon_cut(p, n, c, d);
    +  polygon_cut(p, n, d, o);
    +  float res = area(p, n);
    +  if (s1 * s2 == -1) res = -res;
    +  return res;
    +}
    +__device__ inline float intersectAreaO(Point* ps1, int n1, Point* ps2,
    +                                        int n2) {
    +  if (area(ps1, n1) < 0) reverse1(ps1, n1);
    +  if (area(ps2, n2) < 0) reverse1(ps2, n2);
    +  ps1[n1] = ps1[0];
    +  ps2[n2] = ps2[0];
    +  float res = 0;
    +  for (int i = 0; i < n1; i++) {
    +    for (int j = 0; j < n2; j++) {
    +      res += intersectArea(ps1[i], ps1[i + 1], ps2[j], ps2[j + 1]);
    +    }
    +  }
    +  return res;
    +}
    +
    +template 
    +__device__ inline float devrIoU(T const* const p, T const* const q) {
    +  Point ps1[MAXN], ps2[MAXN];
    +  Point convex[MAXN];
    +  for (int i = 0; i < 9; i++) {
    +    convex[i].x = (float)p[i * 2];
    +    convex[i].y = (float)p[i * 2 + 1];
    +  }
    +  int n_convex = 9;
    +  int points_to_convex_ind[9] = {-1, -1, -1, -1, -1, -1, -1, -1, -1};
    +  Jarvis_and_index(convex, n_convex, points_to_convex_ind);
    +  int n1 = n_convex;
    +  for (int i = 0; i < n1; i++) {
    +    ps1[i].x = (float)convex[i].x;
    +    ps1[i].y = (float)convex[i].y;
    +  }
    +  int n2 = 4;
    +  for (int i = 0; i < n2; i++) {
    +    ps2[i].x = (float)q[i * 2];
    +    ps2[i].y = (float)q[i * 2 + 1];
    +  }
    +  float inter_area = intersectAreaO(ps1, n1, ps2, n2);
    +  float S_pred = area(ps1, n1);
    +  float union_area = fabs(S_pred) + fabs(area(ps2, n2)) - inter_area;
    +  float iou = inter_area / union_area;
    +  return (float)iou;
    +}
    +
    +template 
    +__global__ void convex_iou_cuda_kernel(const int ex_n_boxes,
    +                                       const int gt_n_boxes, const T* ex_boxes,
    +                                       const T* gt_boxes, T* iou) {
    +  CUDA_1D_KERNEL_LOOP(index, ex_n_boxes) {
    +    const T* cur_box = ex_boxes + index * 18;
    +    for (int i = 0; i < gt_n_boxes; i++) {
    +      iou[index * gt_n_boxes + i] = devrIoU(cur_box, gt_boxes + i * 8);
    +    }
    +  }
    +}
    +#endif  // CONVEX_IOU_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/correlation_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/correlation_cuda.cuh
    new file mode 100644
    index 000000000..f910561ec
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/correlation_cuda.cuh
    @@ -0,0 +1,231 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/ClementPinard/Pytorch-Correlation-extension/blob/master/Correlation_Module/correlation_cuda_kernel.cu
    +// Original licence: Under MIT License
    +
    +#ifndef CORRELATION_CUDA
    +#define CORRELATION_CUDA
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#include 
    +#include 
    +// Using  is recommended in the official documentation in
    +// https://pytorch.org/tutorials/advanced/cpp_extension.html#writing-the-c-op.
    +// However, we use  for compatibility with CUDA 9.0
    +// Read https://github.com/pytorch/extension-cpp/issues/35 for more details.
    +#include 
    +
    +#include 
    +#include 
    +
    +using namespace torch;
    +
    +#define TensorAcc4R PackedTensorAccessor32
    +#define TensorAcc5R PackedTensorAccessor32
    +#define WITHIN_BOUNDS(x, y, H, W) (x >= 0 && x < H && y >= 0 && y < W)
    +
    +#define WARP_SIZE 32
    +#define FULL_MASK 0xffffffff
    +
    +template 
    +__global__ void correlation_forward_cuda_kernel(
    +    const TensorAcc4R rInput1, const TensorAcc4R rInput2, TensorAcc5R output,
    +    int kH, int kW, int patchH, int patchW, int padH, int padW, int dilationH,
    +    int dilationW, int dilation_patchH, int dilation_patchW, int dH, int dW,
    +    int oH, int oW) {
    +  const int iH = rInput1.size(1);
    +  const int iW = rInput1.size(2);
    +  const int C = rInput1.size(3);
    +
    +  const int n = blockIdx.x;
    +  const int h = blockIdx.y * blockDim.y + threadIdx.y;
    +  const int w = blockIdx.z * blockDim.z + threadIdx.z;
    +
    +  if (h >= oH || w >= oW) return;
    +
    +  const int thread = threadIdx.x;
    +
    +  const int start_i = -padH + h * dH;
    +  const int start_j = -padW + w * dW;
    +
    +  const int patchRadH = dilation_patchH * (patchH - 1) / 2;
    +  const int patchRadW = dilation_patchW * (patchW - 1) / 2;
    +
    +  for (int ph = 0; ph < patchH; ++ph) {
    +    int ph_dilated = ph * dilation_patchH - patchRadH;
    +    for (int pw = 0; pw < patchW; ++pw) {
    +      int pw_dilated = pw * dilation_patchW - patchRadW;
    +      scalar_t prod_sum = 0.0f;
    +      for (int i = 0; i < kH; ++i) {
    +        int i1 = start_i + i * dilationH;
    +        int i2 = i1 + ph_dilated;
    +        if (WITHIN_BOUNDS(i1, i2, iH, iH)) {
    +          for (int j = 0; j < kW; ++j) {
    +            int j1 = start_j + j * dilationW;
    +            int j2 = j1 + pw_dilated;
    +            if (WITHIN_BOUNDS(j1, j2, iW, iW)) {
    +              for (int c = thread; c < C; c += WARP_SIZE) {
    +                scalar_t v1 = rInput1[n][i1][j1][c];
    +                scalar_t v2 = rInput2[n][i2][j2][c];
    +                prod_sum += v1 * v2;
    +              }
    +            }
    +          }
    +        }
    +      }
    +      // accumulate
    +      for (int offset = 16; offset > 0; offset /= 2)
    +#ifdef MMCV_WITH_HIP
    +        prod_sum += __shfl_down(float(prod_sum), offset);
    +#else
    +        prod_sum += __shfl_down_sync(FULL_MASK, float(prod_sum), offset);
    +#endif
    +      if (thread == 0) {
    +        output[n][ph][pw][h][w] = prod_sum;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void correlation_backward_cuda_kernel_input1(
    +    const TensorAcc5R grad_output, const TensorAcc4R input2,
    +    TensorAcc4R grad_input1, const int kH, const int kW, const int patchH,
    +    const int patchW, const int padH, const int padW, const int dilationH,
    +    const int dilationW, const int dilation_patchH, const int dilation_patchW,
    +    const int dH, const int dW) {
    +  const int iH = input2.size(1);
    +  const int iW = input2.size(2);
    +  const int C = input2.size(3);
    +
    +  const int H = grad_output.size(3);
    +  const int W = grad_output.size(4);
    +
    +  const int patchRadH = (patchH - 1) / 2;
    +  const int patchRadW = (patchW - 1) / 2;
    +
    +  const int n = blockIdx.x;
    +  const int h = blockIdx.y;
    +  const int w = blockIdx.z;
    +
    +  const int h_2 = h + padH;
    +  const int w_2 = w + padW;
    +  const int min_h = h_2 - kH * dilationH;
    +  const int min_w = w_2 - kW * dilationW;
    +
    +  extern __shared__ __align__(sizeof(4)) unsigned char grad_cache_char[];
    +  scalar_t *grad_cache = reinterpret_cast(grad_cache_char);
    +  for (int i = threadIdx.x; i < patchH * patchW; i += blockDim.x) {
    +    const int ph = i / patchW;
    +    const int pw = i % patchW;
    +    int i1 = h + dilation_patchH * (ph - patchRadH);
    +    int j1 = w + dilation_patchW * (pw - patchRadW);
    +
    +    if (WITHIN_BOUNDS(i1, j1, iH, iW)) {
    +      scalar_t grad_val = 0.0f;
    +      for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH) {
    +        int i2 = (h_3) / dH;
    +        if (i2 * dH != h_3) continue;
    +        for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW) {
    +          int j2 = (w_3) / dW;
    +          if (j2 * dW != w_3) continue;
    +          if (WITHIN_BOUNDS(i2, j2, H, W)) {
    +            grad_val += grad_output[n][ph][pw][i2][j2];
    +          }
    +        }
    +      }
    +      grad_cache[i] = grad_val;
    +    }
    +  }
    +  __syncthreads();
    +
    +  for (int c = threadIdx.x; c < C; c += blockDim.x) {
    +    scalar_t grad_input_val = 0.0f;
    +    for (int ph = 0; ph < patchH; ++ph) {
    +      int i1 = h + dilation_patchH * (ph - patchRadH);
    +      for (int pw = 0; pw < patchW; ++pw) {
    +        int j1 = w + dilation_patchW * (pw - patchRadW);
    +        if (WITHIN_BOUNDS(i1, j1, iH, iW)) {
    +          grad_input_val += input2[n][i1][j1][c] * grad_cache[ph * patchW + pw];
    +        }
    +      }
    +    }
    +    grad_input1[n][c][h][w] = grad_input_val;
    +  }
    +}
    +
    +template 
    +__global__ void correlation_backward_cuda_kernel_input2(
    +    const TensorAcc5R grad_output, const TensorAcc4R input1,
    +    TensorAcc4R grad_input2, int kH, int kW, int patchH, int patchW, int padH,
    +    int padW, int dilationH, int dilationW, int dilation_patchH,
    +    int dilation_patchW, int dH, int dW) {
    +  const int iH = input1.size(1);
    +  const int iW = input1.size(2);
    +  const int C = input1.size(3);
    +
    +  const int patchRadH = (patchH - 1) / 2;
    +  const int patchRadW = (patchW - 1) / 2;
    +
    +  const int H = grad_output.size(3);
    +  const int W = grad_output.size(4);
    +
    +  const int dilatedKH = kH * dilationH;
    +  const int dilatedKW = kW * dilationW;
    +
    +  const int n = blockIdx.x;
    +  const int h = blockIdx.y;
    +  const int w = blockIdx.z;
    +
    +  extern __shared__ __align__(sizeof(4)) unsigned char grad_cache_char[];
    +  scalar_t *grad_cache = reinterpret_cast(grad_cache_char);
    +  for (int i = threadIdx.x; i < patchH * patchW; i += blockDim.x) {
    +    const int ph = i / patchW;
    +    const int pw = i % patchW;
    +    int i1 = h - dilation_patchH * (ph - patchRadH);
    +    int j1 = w - dilation_patchW * (pw - patchRadW);
    +
    +    if (WITHIN_BOUNDS(i1, j1, iH, iW)) {
    +      scalar_t grad_val = 0.0f;
    +
    +      const int h_2 = i1 + padH;
    +      const int w_2 = j1 + padW;
    +      const int min_h = h_2 - dilatedKH;
    +      const int min_w = w_2 - dilatedKW;
    +
    +      for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH) {
    +        int i2 = (h_3) / dH;
    +        if (i2 * dH != h_3) continue;
    +        for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW) {
    +          int j2 = (w_3) / dW;
    +          if (j2 * dW != w_3) continue;
    +          if (WITHIN_BOUNDS(i2, j2, H, W)) {
    +            grad_val += grad_output[n][ph][pw][i2][j2];
    +          }
    +        }
    +      }
    +      grad_cache[i] = grad_val;
    +    }
    +  }
    +  __syncthreads();
    +
    +  for (int c = threadIdx.x; c < C; c += blockDim.x) {
    +    scalar_t grad_input_val = 0.0f;
    +    for (int ph = 0; ph < patchH; ++ph) {
    +      int i1 = h - dilation_patchH * (ph - patchRadH);
    +      for (int pw = 0; pw < patchW; ++pw) {
    +        int j1 = w - dilation_patchW * (pw - patchRadW);
    +        if (WITHIN_BOUNDS(i1, j1, iH, iW)) {
    +          grad_input_val += input1[n][i1][j1][c] * grad_cache[ph * patchW + pw];
    +        }
    +      }
    +    }
    +    grad_input2[n][c][h][w] = grad_input_val;
    +  }
    +}
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_conv_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_conv_cuda_kernel.cuh
    new file mode 100644
    index 000000000..6b4d1bbd8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_conv_cuda_kernel.cuh
    @@ -0,0 +1,367 @@
    +/*!
    + ******************* BEGIN Caffe Copyright Notice and Disclaimer
    + *****************
    + *
    + * COPYRIGHT
    + *
    + * All contributions by the University of California:
    + * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
    + * All rights reserved.
    + *
    + * All other contributions:
    + * Copyright (c) 2014-2017, the respective contributors
    + * All rights reserved.
    + *
    + * Caffe uses a shared copyright model: each contributor holds copyright over
    + * their contributions to Caffe. The project versioning records all such
    + * contribution and copyright details. If a contributor wants to further mark
    + * their specific copyright on a particular contribution, they should indicate
    + * their copyright solely in the commit message of the change when it is
    + * committed.
    + *
    + * LICENSE
    + *
    + * Redistribution and use in source and binary forms, with or without
    + * modification, are permitted provided that the following conditions are met:
    + *
    + * 1. Redistributions of source code must retain the above copyright notice,
    + *this list of conditions and the following disclaimer.
    + * 2. Redistributions in binary form must reproduce the above copyright notice,
    + * this list of conditions and the following disclaimer in the documentation
    + * and/or other materials provided with the distribution.
    + *
    + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    + *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    + *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
    + *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    + *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    + *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    + *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    + *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    + *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    + *
    + * CONTRIBUTION AGREEMENT
    + *
    + * By contributing to the BVLC/caffe repository through pull-request, comment,
    + * or otherwise, the contributor releases their content to the
    + * license and copyright terms herein.
    + *
    + ***************** END Caffe Copyright Notice and Disclaimer
    + *********************
    + *
    + * Copyright (c) 2018 Microsoft
    + * Licensed under The MIT License [see LICENSE for details]
    + * \file modulated_deformable_im2col.cuh
    + * \brief Function definitions of converting an image to
    + * column matrix based on kernel, padding, dilation, and offset.
    + * These functions are mainly used in deformable convolution operators.
    + * \ref: https://arxiv.org/abs/1703.06211
    + * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
    + */
    +
    +// modified from
    +// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
    +
    +#ifndef DEFORM_CONV_CUDA_KERNEL_CUH
    +#define DEFORM_CONV_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +template 
    +__device__ T deformable_im2col_bilinear(const T *input, const int data_width,
    +                                        const int height, const int width, T h,
    +                                        T w) {
    +  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    +    return 0;
    +  }
    +
    +  int h_low = floorf(h);
    +  int w_low = floorf(w);
    +  int h_high = h_low + 1;
    +  int w_high = w_low + 1;
    +
    +  T lh = h - h_low;
    +  T lw = w - w_low;
    +  T hh = 1 - lh, hw = 1 - lw;
    +
    +  T v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
    +  T v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1)
    +    v2 = input[h_low * data_width + w_high];
    +  T v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0)
    +    v3 = input[h_high * data_width + w_low];
    +  T v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1)
    +    v4 = input[h_high * data_width + w_high];
    +
    +  T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +template 
    +__device__ T get_gradient_weight(T argmax_h, T argmax_w, const int h,
    +                                 const int w, const int height,
    +                                 const int width) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +  if (h == argmax_h_low && w == argmax_w_low)
    +    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_low && w == argmax_w_high)
    +    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
    +  if (h == argmax_h_high && w == argmax_w_low)
    +    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_high && w == argmax_w_high)
    +    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
    +  return weight;
    +}
    +
    +template 
    +__device__ T get_coordinate_weight(T argmax_h, T argmax_w, const int height,
    +                                   const int width, const T *im_data,
    +                                   const int data_width, const int bp_dir) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +
    +  if (bp_dir == 0) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += -1 * (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  } else if (bp_dir == 1) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  }
    +
    +  return weight;
    +}
    +
    +template 
    +__global__ void deformable_im2col_gpu_kernel(
    +    const int n, const T *data_im, const T *data_offset, const int height,
    +    const int width, const int kernel_h, const int kernel_w, const int pad_h,
    +    const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int num_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *data_col) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    // index index of output matrix
    +    const int w_col = index % width_col;
    +    const int h_col = (index / width_col) % height_col;
    +    const int b_col = (index / width_col / height_col) % batch_size;
    +    const int c_im = (index / width_col / height_col) / batch_size;
    +    const int c_col = c_im * kernel_h * kernel_w;
    +
    +    // compute deformable group index
    +    const int deformable_group_index = c_im / channel_per_deformable_group;
    +
    +    const int h_in = h_col * stride_h - pad_h;
    +    const int w_in = w_col * stride_w - pad_w;
    +    T *data_col_ptr =
    +        data_col +
    +        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    +    const T *data_im_ptr =
    +        data_im + (b_col * num_channels + c_im) * height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    for (int i = 0; i < kernel_h; ++i) {
    +      for (int j = 0; j < kernel_w; ++j) {
    +        const int data_offset_h_ptr =
    +            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
    +        const int data_offset_w_ptr =
    +            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
    +            w_col;
    +        const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +        const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +        T val = static_cast(0);
    +        const T h_im = h_in + i * dilation_h + offset_h;
    +        const T w_im = w_in + j * dilation_w + offset_w;
    +        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
    +          val = deformable_im2col_bilinear(data_im_ptr, width, height, width,
    +                                           h_im, w_im);
    +        *data_col_ptr = val;
    +        data_col_ptr += batch_size * height_col * width_col;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void deformable_col2im_gpu_kernel(
    +    const int n, const T *data_col, const T *data_offset, const int channels,
    +    const int height, const int width, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int deformable_group, const int height_col, const int width_col,
    +    T *grad_im) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    const int j = (index / width_col / height_col / batch_size) % kernel_w;
    +    const int i =
    +        (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +    const int c =
    +        index / width_col / height_col / batch_size / kernel_w / kernel_h;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / channel_per_deformable_group;
    +
    +    int w_out = index % width_col;
    +    int h_out = (index / width_col) % height_col;
    +    int b = (index / width_col / height_col) % batch_size;
    +    int w_in = w_out * stride_w - pad_w;
    +    int h_in = h_out * stride_h - pad_h;
    +
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const int data_offset_h_ptr =
    +        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    +    const int data_offset_w_ptr =
    +        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    +    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    +    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
    +
    +    const T cur_top_grad = data_col[index];
    +    const int cur_h = (int)cur_inv_h_data;
    +    const int cur_w = (int)cur_inv_w_data;
    +    for (int dy = -2; dy <= 2; dy++) {
    +      for (int dx = -2; dx <= 2; dx++) {
    +        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
    +            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
    +            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
    +          int cur_bottom_grad_pos =
    +              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
    +          T weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data,
    +                                         cur_h + dy, cur_w + dx, height, width);
    +          atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void deformable_col2im_coord_gpu_kernel(
    +    const int n, const T *data_col, const T *data_im, const T *data_offset,
    +    const int channels, const int height, const int width, const int kernel_h,
    +    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    +    const int stride_w, const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int offset_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *grad_offset) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    T val = 0;
    +    int w = index % width_col;
    +    int h = (index / width_col) % height_col;
    +    int c = (index / width_col / height_col) % offset_channels;
    +    int b = (index / width_col / height_col) / offset_channels;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    +    const int col_step = kernel_h * kernel_w;
    +    int cnt = 0;
    +    const T *data_col_ptr = data_col + deformable_group_index *
    +                                           channel_per_deformable_group *
    +                                           batch_size * width_col * height_col;
    +    const T *data_im_ptr =
    +        data_im + (b * deformable_group + deformable_group_index) *
    +                      channel_per_deformable_group / kernel_h / kernel_w *
    +                      height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
    +
    +    for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
    +         col_c += col_step) {
    +      const int col_pos =
    +          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
    +      const int bp_dir = offset_c % 2;
    +
    +      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
    +      int i =
    +          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +      int w_out = col_pos % width_col;
    +      int h_out = (col_pos / width_col) % height_col;
    +      int w_in = w_out * stride_w - pad_w;
    +      int h_in = h_out * stride_h - pad_h;
    +      const int data_offset_h_ptr =
    +          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
    +      const int data_offset_w_ptr =
    +          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
    +           w_out);
    +      const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +      const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +      T inv_h = h_in + i * dilation_h + offset_h;
    +      T inv_w = w_in + j * dilation_w + offset_w;
    +      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
    +        inv_h = inv_w = -2;
    +      const T weight = get_coordinate_weight(inv_h, inv_w, height, width,
    +                                             data_im_ptr + cnt * height * width,
    +                                             width, bp_dir);
    +      val += weight * data_col_ptr[col_pos];
    +      cnt += 1;
    +    }
    +
    +    grad_offset[index] = val;
    +  }
    +}
    +
    +#endif  // DEFORM_CONV_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_roi_pool_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_roi_pool_cuda_kernel.cuh
    new file mode 100644
    index 000000000..86c4bc66d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/deform_roi_pool_cuda_kernel.cuh
    @@ -0,0 +1,186 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef DEFORM_ROI_POOL_CUDA_KERNEL_CUH
    +#define DEFORM_ROI_POOL_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void deform_roi_pool_forward_cuda_kernel(
    +    const int nthreads, const T* input, const T* rois, const T* offset,
    +    T* output, const int pooled_height, const int pooled_width,
    +    const T spatial_scale, const int sampling_ratio, const T gamma,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    // Do not using rounding; this implementation detail is critical
    +    T roi_start_w = offset_rois[1] * spatial_scale - 0.5;
    +    T roi_start_h = offset_rois[2] * spatial_scale - 0.5;
    +    T roi_end_w = offset_rois[3] * spatial_scale - 0.5;
    +    T roi_end_h = offset_rois[4] * spatial_scale - 0.5;
    +
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    const T* offset_input =
    +        input + (roi_batch_ind * channels + c) * height * width;
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_height / pooled_height));
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_width / pooled_width));
    +
    +    // Compute roi offset
    +    if (offset != NULL) {
    +      const T* offset_cur_w = offset + n * pooled_width * pooled_height * 2 +
    +                              ph * pooled_width + pw;
    +      T offset_roi_w = gamma * roi_width * offset_cur_w[0];
    +      T offset_roi_h =
    +          gamma * roi_height * offset_cur_w[pooled_width * pooled_height];
    +      roi_start_w += offset_roi_w;
    +      roi_start_h += offset_roi_h;
    +    }
    +
    +    // We do average pooling inside a bin
    +    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1);
    +    T output_val = 0.;
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +      const T y = roi_start_h + ph * bin_size_h +
    +                  static_cast(iy + .5f) * bin_size_h /
    +                      static_cast(roi_bin_grid_h);
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const T x = roi_start_w + pw * bin_size_w +
    +                    static_cast(ix + .5f) * bin_size_w /
    +                        static_cast(roi_bin_grid_w);
    +        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
    +        output_val += val;
    +      }
    +    }
    +    output[index] = output_val / count;
    +  }
    +}
    +
    +template 
    +__global__ void deform_roi_pool_backward_cuda_kernel(
    +    const int nthreads, const T* grad_output, const T* input, const T* rois,
    +    const T* offset, T* grad_input, T* grad_offset, const int pooled_height,
    +    const int pooled_width, const T spatial_scale, const int sampling_ratio,
    +    const T gamma, const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +    const T* offset_input =
    +        input + ((roi_batch_ind * channels + c) * height * width);
    +    T* offset_grad_input =
    +        grad_input + ((roi_batch_ind * channels + c) * height * width);
    +
    +    // Do not using rounding; this implementation detail is critical
    +    T roi_start_w = offset_rois[1] * spatial_scale - 0.5;
    +    T roi_start_h = offset_rois[2] * spatial_scale - 0.5;
    +    T roi_end_w = offset_rois[3] * spatial_scale - 0.5;
    +    T roi_end_h = offset_rois[4] * spatial_scale - 0.5;
    +
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_height / pooled_height));
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_width / pooled_width));
    +
    +    // Compute roi offset
    +    if (offset != NULL) {
    +      const T* offset_cur_w = offset + n * pooled_width * pooled_height * 2 +
    +                              ph * pooled_width + pw;
    +      T offset_roi_w = gamma * roi_width * offset_cur_w[0];
    +      T offset_roi_h =
    +          gamma * roi_height * offset_cur_w[pooled_width * pooled_height];
    +      roi_start_w += offset_roi_w;
    +      roi_start_h += offset_roi_h;
    +    }
    +
    +    // We do average (integral) pooling inside a bin
    +    const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +    const T grad_output_this_bin = grad_output[index] / count;
    +
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +      const T y = roi_start_h + ph * bin_size_h +
    +                  static_cast(iy + .5f) * bin_size_h /
    +                      static_cast(roi_bin_grid_h);
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const T x = roi_start_w + pw * bin_size_w +
    +                    static_cast(ix + .5f) * bin_size_w /
    +                        static_cast(roi_bin_grid_w);
    +
    +        T w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                      x_low, x_high, y_low, y_high, index);
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          atomicAdd(offset_grad_input + y_low * width + x_low,
    +                    grad_output_this_bin * w1);
    +          atomicAdd(offset_grad_input + y_low * width + x_high,
    +                    grad_output_this_bin * w2);
    +          atomicAdd(offset_grad_input + y_high * width + x_low,
    +                    grad_output_this_bin * w3);
    +          atomicAdd(offset_grad_input + y_high * width + x_high,
    +                    grad_output_this_bin * w4);
    +          if (offset != NULL) {
    +            T input_00 = offset_input[y_low * width + x_low];
    +            T input_10 = offset_input[y_low * width + x_high];
    +            T input_01 = offset_input[y_high * width + x_low];
    +            T input_11 = offset_input[y_high * width + x_high];
    +            T ogx = gamma * roi_width * grad_output_this_bin *
    +                    (input_11 * (y - y_low) + input_10 * (y_high - y) +
    +                     input_01 * (y_low - y) + input_00 * (y - y_high));
    +            T ogy = gamma * roi_height * grad_output_this_bin *
    +                    (input_11 * (x - x_low) + input_01 * (x_high - x) +
    +                     input_10 * (x_low - x) + input_00 * (x - x_high));
    +            atomicAdd(grad_offset + n * pooled_width * pooled_height * 2 +
    +                          ph * pooled_width + pw,
    +                      ogx);
    +            atomicAdd(grad_offset + n * pooled_width * pooled_height * 2 +
    +                          pooled_width * pooled_height + ph * pooled_width + pw,
    +                      ogy);
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // DEFORM_ROI_POOL_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/diff_iou_rotated_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/diff_iou_rotated_cuda_kernel.cuh
    new file mode 100644
    index 000000000..b2b071bc8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/diff_iou_rotated_cuda_kernel.cuh
    @@ -0,0 +1,137 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Adapted from
    +// https://github.com/lilanxiao/Rotated_IoU/cuda_op/sort_vert_kernel.cu  # noqa
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#define MAX_NUM_VERT_IDX 9
    +#define INTERSECTION_OFFSET 8
    +#define EPSILON 1e-8
    +
    +inline int opt_n_thread(int work_size) {
    +  const int pow_2 = std::log(static_cast(work_size)) / std::log(2.0);
    +  return std::max(std::min(1 << pow_2, THREADS_PER_BLOCK), 1);
    +}
    +
    +/*
    +compare normalized vertices (vertices around (0,0))
    +if vertex1 < vertex2 return true.
    +order: minimum at x-aixs, become larger in anti-clockwise direction
    +*/
    +__device__ bool compare_vertices(float x1, float y1, float x2, float y2) {
    +  if (fabs(x1 - x2) < EPSILON && fabs(y2 - y1) < EPSILON)
    +    return false;  // if equal, return false
    +
    +  if (y1 > 0 && y2 < 0) return true;
    +  if (y1 < 0 && y2 > 0) return false;
    +
    +  float n1 = x1 * x1 + y1 * y1 + EPSILON;
    +  float n2 = x2 * x2 + y2 * y2 + EPSILON;
    +  float diff = fabs(x1) * x1 / n1 - fabs(x2) * x2 / n2;
    +
    +  if (y1 > 0 && y2 > 0) {
    +    if (diff > EPSILON)
    +      return true;
    +    else
    +      return false;
    +  }
    +  if (y1 < 0 && y2 < 0) {
    +    if (diff < EPSILON)
    +      return true;
    +    else
    +      return false;
    +  }
    +  return false;
    +}
    +
    +__global__ void diff_iou_rotated_sort_vertices_forward_cuda_kernel(
    +    int b, int n, int m, const float *__restrict__ vertices,
    +    const bool *__restrict__ mask, const int *__restrict__ num_valid,
    +    int *__restrict__ idx) {
    +  int batch_idx = blockIdx.x;
    +  vertices += batch_idx * n * m * 2;
    +  mask += batch_idx * n * m;
    +  num_valid += batch_idx * n;
    +  idx += batch_idx * n * MAX_NUM_VERT_IDX;
    +
    +  int index = threadIdx.x;  // index of polygon
    +  int stride = blockDim.x;
    +  for (int i = index; i < n; i += stride) {
    +    int pad;  // index of arbitrary invalid intersection point (not box corner!)
    +    for (int j = INTERSECTION_OFFSET; j < m; ++j) {
    +      if (!mask[i * m + j]) {
    +        pad = j;
    +        break;
    +      }
    +    }
    +    if (num_valid[i] < 3) {
    +      // not enough vertices, take an invalid intersection point
    +      // (zero padding)
    +      for (int j = 0; j < MAX_NUM_VERT_IDX; ++j) {
    +        idx[i * MAX_NUM_VERT_IDX + j] = pad;
    +      }
    +    } else {
    +      // sort the valid vertices
    +      // note the number of valid vertices is known
    +      // note: check that num_valid[i] < MAX_NUM_VERT_IDX
    +      for (int j = 0; j < num_valid[i]; ++j) {
    +        // initialize with a "big" value
    +        float x_min = 1;
    +        float y_min = -EPSILON;
    +        int i_take = 0;
    +        int i2;
    +        float x2, y2;
    +        if (j != 0) {
    +          i2 = idx[i * MAX_NUM_VERT_IDX + j - 1];
    +          x2 = vertices[i * m * 2 + i2 * 2 + 0];
    +          y2 = vertices[i * m * 2 + i2 * 2 + 1];
    +        }
    +        for (int k = 0; k < m; ++k) {
    +          float x = vertices[i * m * 2 + k * 2 + 0];
    +          float y = vertices[i * m * 2 + k * 2 + 1];
    +          if (mask[i * m + k] && compare_vertices(x, y, x_min, y_min)) {
    +            if ((j == 0) || (j != 0 && compare_vertices(x2, y2, x, y))) {
    +              x_min = x;
    +              y_min = y;
    +              i_take = k;
    +            }
    +          }
    +        }
    +        idx[i * MAX_NUM_VERT_IDX + j] = i_take;
    +      }
    +      // duplicate the first idx
    +      idx[i * MAX_NUM_VERT_IDX + num_valid[i]] = idx[i * MAX_NUM_VERT_IDX + 0];
    +
    +      // pad zeros
    +      for (int j = num_valid[i] + 1; j < MAX_NUM_VERT_IDX; ++j) {
    +        idx[i * MAX_NUM_VERT_IDX + j] = pad;
    +      }
    +
    +      // for corner case: the two boxes are exactly the same.
    +      // in this case, idx would have duplicate elements, which makes the
    +      // shoelace formula broken because of the definition, the duplicate
    +      // elements only appear in the first 8 positions (they are "corners in
    +      // box", not "intersection of edges")
    +      if (num_valid[i] == 8) {
    +        int counter = 0;
    +        for (int j = 0; j < 4; ++j) {
    +          int check = idx[i * MAX_NUM_VERT_IDX + j];
    +          for (int k = 4; k < INTERSECTION_OFFSET; ++k) {
    +            if (idx[i * MAX_NUM_VERT_IDX + k] == check) counter++;
    +          }
    +        }
    +        if (counter == 4) {
    +          idx[i * MAX_NUM_VERT_IDX + 4] = idx[i * MAX_NUM_VERT_IDX + 0];
    +          for (int j = 5; j < MAX_NUM_VERT_IDX; ++j) {
    +            idx[i * MAX_NUM_VERT_IDX + j] = pad;
    +          }
    +        }
    +      }
    +
    +      // TODO: still might need to cover some other corner cases :(
    +    }
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/furthest_point_sample_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/furthest_point_sample_cuda_kernel.cuh
    new file mode 100644
    index 000000000..d3801a02c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/furthest_point_sample_cuda_kernel.cuh
    @@ -0,0 +1,152 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef FURTHEST_POINT_SAMPLE_CUDA_KERNEL_CUH
    +#define FURTHEST_POINT_SAMPLE_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i,
    +                         int idx1, int idx2) {
    +  const float v1 = dists[idx1], v2 = dists[idx2];
    +  const int i1 = dists_i[idx1], i2 = dists_i[idx2];
    +  dists[idx1] = max(v1, v2);
    +  dists_i[idx1] = v2 > v1 ? i2 : i1;
    +}
    +
    +template 
    +__global__ void furthest_point_sampling_forward_cuda_kernel(
    +    int b, int n, int m, const float *__restrict__ dataset,
    +    float *__restrict__ temp, int *__restrict__ idxs) {
    +  // dataset: (B, N, 3)
    +  // tmp: (B, N)
    +  // output:
    +  //      idx: (B, M)
    +
    +  if (m <= 0) return;
    +  __shared__ float dists[block_size];
    +  __shared__ int dists_i[block_size];
    +
    +  int batch_index = blockIdx.x;
    +  dataset += batch_index * n * 3;
    +  temp += batch_index * n;
    +  idxs += batch_index * m;
    +
    +  int tid = threadIdx.x;
    +  const int stride = block_size;
    +
    +  int old = 0;
    +  if (threadIdx.x == 0) idxs[0] = old;
    +
    +  __syncthreads();
    +  for (int j = 1; j < m; j++) {
    +    int besti = 0;
    +    float best = -1;
    +    float x1 = dataset[old * 3 + 0];
    +    float y1 = dataset[old * 3 + 1];
    +    float z1 = dataset[old * 3 + 2];
    +    for (int k = tid; k < n; k += stride) {
    +      float x2, y2, z2;
    +      x2 = dataset[k * 3 + 0];
    +      y2 = dataset[k * 3 + 1];
    +      z2 = dataset[k * 3 + 2];
    +      // float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
    +      // if (mag <= 1e-3)
    +      // continue;
    +
    +      float d =
    +          (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
    +      float d2 = min(d, temp[k]);
    +      temp[k] = d2;
    +      besti = d2 > best ? k : besti;
    +      best = d2 > best ? d2 : best;
    +    }
    +    dists[tid] = best;
    +    dists_i[tid] = besti;
    +    __syncthreads();
    +
    +#pragma unroll
    +    for (int block_size_thres = 1024; block_size_thres >= 2;
    +         block_size_thres >>= 1) {
    +      const int tid_thres = block_size_thres / 2;
    +      if (block_size >= block_size_thres && tid < tid_thres) {
    +        __update(dists, dists_i, tid, tid + tid_thres);
    +      }
    +      __syncthreads();
    +    }
    +
    +    old = dists_i[0];
    +    if (tid == 0) idxs[j] = old;
    +  }
    +}
    +
    +// Modified from
    +// https://github.com/qiqihaer/3DSSD-pytorch/blob/master/lib/pointnet2/src/sampling_gpu.cu
    +template 
    +__global__ void furthest_point_sampling_with_dist_forward_cuda_kernel(
    +    int b, int n, int m, const float *__restrict__ dataset,
    +    float *__restrict__ temp, int *__restrict__ idxs) {
    +  // dataset: (B, N, N)
    +  // tmp: (B, N)
    +  // output:
    +  //      idx: (B, M)
    +
    +  if (m <= 0) return;
    +  __shared__ float dists[block_size];
    +  __shared__ int dists_i[block_size];
    +
    +  int batch_index = blockIdx.x;
    +  dataset += batch_index * n * n;
    +  temp += batch_index * n;
    +  idxs += batch_index * m;
    +
    +  int tid = threadIdx.x;
    +  const int stride = block_size;
    +
    +  int old = 0;
    +  if (threadIdx.x == 0) idxs[0] = old;
    +
    +  __syncthreads();
    +  for (int j = 1; j < m; j++) {
    +    int besti = 0;
    +    float best = -1;
    +    // float x1 = dataset[old * 3 + 0];
    +    // float y1 = dataset[old * 3 + 1];
    +    // float z1 = dataset[old * 3 + 2];
    +    for (int k = tid; k < n; k += stride) {
    +      // float x2, y2, z2;
    +      // x2 = dataset[k * 3 + 0];
    +      // y2 = dataset[k * 3 + 1];
    +      // z2 = dataset[k * 3 + 2];
    +
    +      // float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) *
    +      // (z2 - z1);
    +      float d = dataset[old * n + k];
    +
    +      float d2 = min(d, temp[k]);
    +      temp[k] = d2;
    +      besti = d2 > best ? k : besti;
    +      best = d2 > best ? d2 : best;
    +    }
    +    dists[tid] = best;
    +    dists_i[tid] = besti;
    +    __syncthreads();
    +
    +#pragma unroll
    +    for (int block_size_thres = 1024; block_size_thres >= 2;
    +         block_size_thres >>= 1) {
    +      const int tid_thres = block_size_thres / 2;
    +      if (block_size >= block_size_thres && tid < tid_thres) {
    +        __update(dists, dists_i, tid, tid + tid_thres);
    +      }
    +      __syncthreads();
    +    }
    +
    +    old = dists_i[0];
    +    if (tid == 0) idxs[j] = old;
    +  }
    +}
    +
    +#endif  // FURTHEST_POINT_SAMPLE_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/gather_points_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/gather_points_cuda_kernel.cuh
    new file mode 100644
    index 000000000..6d932434c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/gather_points_cuda_kernel.cuh
    @@ -0,0 +1,58 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef GATHER_POINTS_CUDA_KERNEL_CUH
    +#define GATHER_POINTS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#define TOTAL_THREADS 1024
    +
    +template 
    +__global__ void gather_points_forward_cuda_kernel(int b, int c, int n, int m,
    +                                                  const T *points,
    +                                                  const int *__restrict__ idx,
    +                                                  T *out) {
    +  // points: (B, C, N)
    +  // idx: (B, M)
    +  // output:
    +  //      out: (B, C, M)
    +
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, m) {
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    out += bs_idx * c * m + c_idx * m + pt_idx;
    +    idx += bs_idx * m + pt_idx;
    +    points += bs_idx * c * n + c_idx * n;
    +    out[0] = points[idx[0]];
    +  }
    +}
    +
    +template 
    +__global__ void gather_points_backward_cuda_kernel(int b, int c, int n, int m,
    +                                                   const T *grad_out,
    +                                                   const int *__restrict__ idx,
    +                                                   T *grad_points) {
    +  // grad_out: (B, C, M)
    +  // idx: (B, M)
    +  // output:
    +  //      grad_points: (B, C, N)
    +
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, m) {
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    grad_out += bs_idx * c * m + c_idx * m + pt_idx;
    +    idx += bs_idx * m + pt_idx;
    +    grad_points += bs_idx * c * n + c_idx * n;
    +
    +    atomicAdd(grad_points + idx[0], grad_out[0]);
    +  }
    +}
    +
    +#endif  // GATHER_POINTS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/group_points_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/group_points_cuda_kernel.cuh
    new file mode 100644
    index 000000000..dfad66fc1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/group_points_cuda_kernel.cuh
    @@ -0,0 +1,65 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points_gpu.cu
    +#ifndef GROUP_POINTS_CUDA_KERNEL_CUH
    +#define GROUP_POINTS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void group_points_forward_cuda_kernel(int b, int c, int n,
    +                                                 int npoints, int nsample,
    +                                                 const T *points,
    +                                                 const int *__restrict__ idx,
    +                                                 T *out) {
    +  // points: (B, C, N)
    +  // idx: (B, npoints, nsample)
    +  // output:
    +  //      out: (B, C, npoints, nsample)
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(index, npoints * nsample) {
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    int pt_idx = index / nsample;
    +    int sample_idx = index % nsample;
    +
    +    idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
    +    int in_idx = bs_idx * c * n + c_idx * n + idx[0];
    +    int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample +
    +                  pt_idx * nsample + sample_idx;
    +
    +    out[out_idx] = points[in_idx];
    +  }
    +}
    +
    +template 
    +__global__ void group_points_backward_cuda_kernel(int b, int c, int n,
    +                                                  int npoints, int nsample,
    +                                                  const T *grad_out,
    +                                                  const int *__restrict__ idx,
    +                                                  T *grad_points) {
    +  // grad_out: (B, C, npoints, nsample)
    +  // idx: (B, npoints, nsample)
    +  // output:
    +  //      grad_points: (B, C, N)
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(index, npoints * nsample) {
    +    int pt_idx = index / nsample;
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    int sample_idx = index % nsample;
    +    grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample +
    +                pt_idx * nsample + sample_idx;
    +    idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
    +
    +    atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0], grad_out[0]);
    +  }
    +}
    +
    +#endif  // GROUP_POINTS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/iou3d_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/iou3d_cuda_kernel.cuh
    new file mode 100644
    index 000000000..46e7c7d0a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/iou3d_cuda_kernel.cuh
    @@ -0,0 +1,367 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef IOU3D_CUDA_KERNEL_CUH
    +#define IOU3D_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +const int THREADS_PER_BLOCK_IOU3D = 16;
    +const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
    +__device__ const float EPS = 1e-8;
    +
    +struct Point {
    +  float x, y;
    +  __device__ Point() {}
    +  __device__ Point(float _x, float _y) { x = _x, y = _y; }
    +
    +  __device__ void set(float _x, float _y) {
    +    x = _x;
    +    y = _y;
    +  }
    +
    +  __device__ Point operator+(const Point &b) const {
    +    return Point(x + b.x, y + b.y);
    +  }
    +
    +  __device__ Point operator-(const Point &b) const {
    +    return Point(x - b.x, y - b.y);
    +  }
    +};
    +
    +__device__ inline float cross(const Point &a, const Point &b) {
    +  return a.x * b.y - a.y * b.x;
    +}
    +
    +__device__ inline float cross(const Point &p1, const Point &p2,
    +                              const Point &p0) {
    +  return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
    +}
    +
    +__device__ int check_rect_cross(const Point &p1, const Point &p2,
    +                                const Point &q1, const Point &q2) {
    +  int ret = min(p1.x, p2.x) <= max(q1.x, q2.x) &&
    +            min(q1.x, q2.x) <= max(p1.x, p2.x) &&
    +            min(p1.y, p2.y) <= max(q1.y, q2.y) &&
    +            min(q1.y, q2.y) <= max(p1.y, p2.y);
    +  return ret;
    +}
    +
    +__device__ inline int check_in_box2d(const float *box, const Point &p) {
    +  // params: box (7) [x, y, z, dx, dy, dz, heading]
    +  const float MARGIN = 1e-2;
    +
    +  float center_x = box[0], center_y = box[1];
    +  // rotate the point in the opposite direction of box
    +  float angle_cos = cos(-box[6]), angle_sin = sin(-box[6]);
    +  float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin);
    +  float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
    +
    +  return (fabs(rot_x) < box[3] / 2 + MARGIN &&
    +          fabs(rot_y) < box[4] / 2 + MARGIN);
    +}
    +
    +__device__ inline int intersection(const Point &p1, const Point &p0,
    +                                   const Point &q1, const Point &q0,
    +                                   Point &ans_point) {
    +  // fast exclusion
    +  if (check_rect_cross(p0, p1, q0, q1) == 0) return 0;
    +
    +  // check cross standing
    +  float s1 = cross(q0, p1, p0);
    +  float s2 = cross(p1, q1, p0);
    +  float s3 = cross(p0, q1, q0);
    +  float s4 = cross(q1, p1, q0);
    +
    +  if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
    +
    +  // calculate intersection of two lines
    +  float s5 = cross(q1, p1, p0);
    +  if (fabs(s5 - s1) > EPS) {
    +    ans_point.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
    +    ans_point.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
    +
    +  } else {
    +    float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
    +    float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
    +    float D = a0 * b1 - a1 * b0;
    +
    +    ans_point.x = (b0 * c1 - b1 * c0) / D;
    +    ans_point.y = (a1 * c0 - a0 * c1) / D;
    +  }
    +
    +  return 1;
    +}
    +
    +__device__ inline void rotate_around_center(const Point ¢er,
    +                                            const float angle_cos,
    +                                            const float angle_sin, Point &p) {
    +  float new_x =
    +      (p.x - center.x) * angle_cos - (p.y - center.y) * angle_sin + center.x;
    +  float new_y =
    +      (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
    +  p.set(new_x, new_y);
    +}
    +
    +__device__ inline int point_cmp(const Point &a, const Point &b,
    +                                const Point ¢er) {
    +  return atan2(a.y - center.y, a.x - center.x) >
    +         atan2(b.y - center.y, b.x - center.x);
    +}
    +
    +__device__ inline float box_overlap(const float *box_a, const float *box_b) {
    +  // params box_a: [x, y, z, dx, dy, dz, heading]
    +  // params box_b: [x, y, z, dx, dy, dz, heading]
    +
    +  float a_angle = box_a[6], b_angle = box_b[6];
    +  float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2,
    +        a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2;
    +  float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half;
    +  float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half;
    +  float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half;
    +  float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
    +
    +  Point center_a(box_a[0], box_a[1]);
    +  Point center_b(box_b[0], box_b[1]);
    +
    +  Point box_a_corners[5];
    +  box_a_corners[0].set(a_x1, a_y1);
    +  box_a_corners[1].set(a_x2, a_y1);
    +  box_a_corners[2].set(a_x2, a_y2);
    +  box_a_corners[3].set(a_x1, a_y2);
    +
    +  Point box_b_corners[5];
    +  box_b_corners[0].set(b_x1, b_y1);
    +  box_b_corners[1].set(b_x2, b_y1);
    +  box_b_corners[2].set(b_x2, b_y2);
    +  box_b_corners[3].set(b_x1, b_y2);
    +
    +  // get oriented corners
    +  float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
    +  float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
    +
    +  for (int k = 0; k < 4; k++) {
    +    rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
    +    rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
    +  }
    +
    +  box_a_corners[4] = box_a_corners[0];
    +  box_b_corners[4] = box_b_corners[0];
    +
    +  // get intersection of lines
    +  Point cross_points[16];
    +  Point poly_center;
    +  int cnt = 0, flag = 0;
    +
    +  poly_center.set(0, 0);
    +  for (int i = 0; i < 4; i++) {
    +    for (int j = 0; j < 4; j++) {
    +      flag = intersection(box_a_corners[i + 1], box_a_corners[i],
    +                          box_b_corners[j + 1], box_b_corners[j],
    +                          cross_points[cnt]);
    +      if (flag) {
    +        poly_center = poly_center + cross_points[cnt];
    +        cnt++;
    +      }
    +    }
    +  }
    +
    +  // check corners
    +  for (int k = 0; k < 4; k++) {
    +    if (check_in_box2d(box_a, box_b_corners[k])) {
    +      poly_center = poly_center + box_b_corners[k];
    +      cross_points[cnt] = box_b_corners[k];
    +      cnt++;
    +    }
    +    if (check_in_box2d(box_b, box_a_corners[k])) {
    +      poly_center = poly_center + box_a_corners[k];
    +      cross_points[cnt] = box_a_corners[k];
    +      cnt++;
    +    }
    +  }
    +
    +  poly_center.x /= cnt;
    +  poly_center.y /= cnt;
    +
    +  // sort the points of polygon
    +  Point temp;
    +  for (int j = 0; j < cnt - 1; j++) {
    +    for (int i = 0; i < cnt - j - 1; i++) {
    +      if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)) {
    +        temp = cross_points[i];
    +        cross_points[i] = cross_points[i + 1];
    +        cross_points[i + 1] = temp;
    +      }
    +    }
    +  }
    +
    +  // get the overlap areas
    +  float area = 0;
    +  for (int k = 0; k < cnt - 1; k++) {
    +    area += cross(cross_points[k] - cross_points[0],
    +                  cross_points[k + 1] - cross_points[0]);
    +  }
    +
    +  return fabs(area) / 2.0;
    +}
    +
    +__device__ inline float iou_bev(const float *box_a, const float *box_b) {
    +  // params box_a: [x, y, z, dx, dy, dz, heading]
    +  // params box_b: [x, y, z, dx, dy, dz, heading]
    +  float sa = box_a[3] * box_a[4];
    +  float sb = box_b[3] * box_b[4];
    +  float s_overlap = box_overlap(box_a, box_b);
    +  return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
    +}
    +
    +__global__ void iou3d_boxes_overlap_bev_forward_cuda_kernel(
    +    const int num_a, const float *boxes_a, const int num_b,
    +    const float *boxes_b, float *ans_overlap) {
    +  // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
    +  CUDA_2D_KERNEL_LOOP(b_idx, num_b, a_idx, num_a) {
    +    if (a_idx >= num_a || b_idx >= num_b) {
    +      return;
    +    }
    +
    +    const float *cur_box_a = boxes_a + a_idx * 7;
    +    const float *cur_box_b = boxes_b + b_idx * 7;
    +    float cur_overlap = box_overlap(cur_box_a, cur_box_b);
    +    ans_overlap[a_idx * num_b + b_idx] = cur_overlap;
    +  }
    +}
    +
    +__global__ void iou3d_nms3d_forward_cuda_kernel(const int boxes_num,
    +                                                const float nms_overlap_thresh,
    +                                                const float *boxes,
    +                                                unsigned long long *mask) {
    +  // params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params: mask (N, N/THREADS_PER_BLOCK_NMS)
    +  const int blocks =
    +      (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +  CUDA_2D_KERNEL_BLOCK_LOOP(col_start, blocks, row_start, blocks) {
    +    // if (row_start > col_start) return;
    +
    +    const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS,
    +                               THREADS_PER_BLOCK_NMS);
    +    const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS,
    +                               THREADS_PER_BLOCK_NMS);
    +
    +    __shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
    +
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 7 + 0] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
    +      block_boxes[threadIdx.x * 7 + 1] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
    +      block_boxes[threadIdx.x * 7 + 2] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
    +      block_boxes[threadIdx.x * 7 + 3] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
    +      block_boxes[threadIdx.x * 7 + 4] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
    +      block_boxes[threadIdx.x * 7 + 5] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
    +      block_boxes[threadIdx.x * 7 + 6] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
    +      const float *cur_box = boxes + cur_box_idx * 7;
    +
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        if (iou_bev(cur_box, block_boxes + i * 7) > nms_overlap_thresh) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks =
    +          (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +      mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  }
    +}
    +
    +__device__ inline float iou_normal(float const *const a, float const *const b) {
    +  // params: a: [x, y, z, dx, dy, dz, heading]
    +  // params: b: [x, y, z, dx, dy, dz, heading]
    +
    +  float left = fmaxf(a[0] - a[3] / 2, b[0] - b[3] / 2),
    +        right = fminf(a[0] + a[3] / 2, b[0] + b[3] / 2);
    +  float top = fmaxf(a[1] - a[4] / 2, b[1] - b[4] / 2),
    +        bottom = fminf(a[1] + a[4] / 2, b[1] + b[4] / 2);
    +  float width = fmaxf(right - left, 0.f), height = fmaxf(bottom - top, 0.f);
    +  float interS = width * height;
    +  float Sa = a[3] * a[4];
    +  float Sb = b[3] * b[4];
    +  return interS / fmaxf(Sa + Sb - interS, EPS);
    +}
    +
    +__global__ void iou3d_nms3d_normal_forward_cuda_kernel(
    +    const int boxes_num, const float nms_overlap_thresh, const float *boxes,
    +    unsigned long long *mask) {
    +  // params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params: mask (N, N/THREADS_PER_BLOCK_NMS)
    +
    +  const int blocks =
    +      (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +  CUDA_2D_KERNEL_BLOCK_LOOP(col_start, blocks, row_start, blocks) {
    +    // if (row_start > col_start) return;
    +
    +    const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS,
    +                               THREADS_PER_BLOCK_NMS);
    +    const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS,
    +                               THREADS_PER_BLOCK_NMS);
    +
    +    __shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
    +
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 7 + 0] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
    +      block_boxes[threadIdx.x * 7 + 1] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
    +      block_boxes[threadIdx.x * 7 + 2] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
    +      block_boxes[threadIdx.x * 7 + 3] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
    +      block_boxes[threadIdx.x * 7 + 4] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
    +      block_boxes[threadIdx.x * 7 + 5] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
    +      block_boxes[threadIdx.x * 7 + 6] =
    +          boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
    +      const float *cur_box = boxes + cur_box_idx * 7;
    +
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        if (iou_normal(cur_box, block_boxes + i * 7) > nms_overlap_thresh) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks =
    +          (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +      mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  }
    +}
    +
    +#endif  // IOU3D_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/knn_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/knn_cuda_kernel.cuh
    new file mode 100644
    index 000000000..3cf52bb90
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/knn_cuda_kernel.cuh
    @@ -0,0 +1,92 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/pointops/src/knnquery_heap
    +#ifndef KNN_CUDA_KERNEL_CUH
    +#define KNN_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +inline __device__ void swap_float(float *x, float *y) {
    +  float tmp = *x;
    +  *x = *y;
    +  *y = tmp;
    +}
    +
    +inline __device__ void swap_int(int *x, int *y) {
    +  int tmp = *x;
    +  *x = *y;
    +  *y = tmp;
    +}
    +
    +__device__ void reheap(float *dist, int *idx, int k) {
    +  int root = 0;
    +  int child = root * 2 + 1;
    +  while (child < k) {
    +    if (child + 1 < k && dist[child + 1] > dist[child]) child++;
    +    if (dist[root] > dist[child]) return;
    +    swap_float(&dist[root], &dist[child]);
    +    swap_int(&idx[root], &idx[child]);
    +    root = child;
    +    child = root * 2 + 1;
    +  }
    +}
    +
    +__device__ void heap_sort(float *dist, int *idx, int k) {
    +  int i;
    +  for (i = k - 1; i > 0; i--) {
    +    swap_float(&dist[0], &dist[i]);
    +    swap_int(&idx[0], &idx[i]);
    +    reheap(dist, idx, i);
    +  }
    +}
    +
    +// input: xyz (b, n, 3) new_xyz (b, m, 3)
    +// output: idx (b, m, nsample) dist2 (b, m, nsample)
    +template 
    +__global__ void knn_forward_cuda_kernel(int b, int n, int m, int nsample,
    +                                        const T *xyz, const T *new_xyz,
    +                                        int *__restrict__ idx, T *dist2) {
    +  int bs_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, m) {
    +    if (bs_idx >= b) return;
    +
    +    new_xyz += bs_idx * m * 3 + pt_idx * 3;
    +    xyz += bs_idx * n * 3;
    +    idx += bs_idx * m * nsample + pt_idx * nsample;
    +    dist2 += bs_idx * m * nsample + pt_idx * nsample;
    +
    +    T new_x = new_xyz[0];
    +    T new_y = new_xyz[1];
    +    T new_z = new_xyz[2];
    +
    +    float best_dist[100];
    +    int best_idx[100];
    +    for (int i = 0; i < nsample; i++) {
    +      best_dist[i] = 1e10;
    +      best_idx[i] = 0;
    +    }
    +    for (int i = 0; i < n; i++) {
    +      T x = xyz[i * 3 + 0];
    +      T y = xyz[i * 3 + 1];
    +      T z = xyz[i * 3 + 2];
    +      T d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) +
    +             (new_z - z) * (new_z - z);
    +      if (d2 < best_dist[0]) {
    +        best_dist[0] = d2;
    +        best_idx[0] = i;
    +        reheap(best_dist, best_idx, nsample);
    +      }
    +    }
    +    heap_sort(best_dist, best_idx, nsample);
    +    for (int i = 0; i < nsample; i++) {
    +      idx[i] = best_idx[i];
    +      dist2[i] = best_dist[i];
    +    }
    +  }
    +}
    +
    +#endif  // KNN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/masked_conv2d_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/masked_conv2d_cuda_kernel.cuh
    new file mode 100644
    index 000000000..1a0bd040e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/masked_conv2d_cuda_kernel.cuh
    @@ -0,0 +1,62 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef MASKED_CONV2D_CUDA_KERNEL_CUH
    +#define MASKED_CONV2D_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void MaskedIm2colForward(const int n, const scalar_t *data_im,
    +                                    const int height, const int width,
    +                                    const int kernel_h, const int kernel_w,
    +                                    const int pad_h, const int pad_w,
    +                                    const int64_t *mask_h_idx,
    +                                    const int64_t *mask_w_idx,
    +                                    const int mask_cnt, scalar_t *data_col) {
    +  // mask_cnt * channels
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    const int m_index = index % mask_cnt;
    +    const int h_col = mask_h_idx[m_index];
    +    const int w_col = mask_w_idx[m_index];
    +    const int c_im = index / mask_cnt;
    +    const int c_col = c_im * kernel_h * kernel_w;
    +    const int h_offset = h_col - pad_h;
    +    const int w_offset = w_col - pad_w;
    +    scalar_t *data_col_ptr = data_col + c_col * mask_cnt + m_index;
    +    for (int i = 0; i < kernel_h; ++i) {
    +      int h_im = h_offset + i;
    +      for (int j = 0; j < kernel_w; ++j) {
    +        int w_im = w_offset + j;
    +        if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
    +          *data_col_ptr =
    +              (scalar_t)data_im[(c_im * height + h_im) * width + w_im];
    +        } else {
    +          *data_col_ptr = 0.0;
    +        }
    +        data_col_ptr += mask_cnt;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void MaskedCol2imForward(const int n, const scalar_t *data_col,
    +                                    const int height, const int width,
    +                                    const int channels,
    +                                    const int64_t *mask_h_idx,
    +                                    const int64_t *mask_w_idx,
    +                                    const int mask_cnt, scalar_t *data_im) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    const int m_index = index % mask_cnt;
    +    const int h_im = mask_h_idx[m_index];
    +    const int w_im = mask_w_idx[m_index];
    +    const int c_im = index / mask_cnt;
    +    // compute the start and end of the output
    +    data_im[(c_im * height + h_im) * width + w_im] = data_col[index];
    +  }
    +}
    +
    +#endif  // MASKED_CONV2D_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/min_area_polygons_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/min_area_polygons_cuda.cuh
    new file mode 100644
    index 000000000..b8e3b426d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/min_area_polygons_cuda.cuh
    @@ -0,0 +1,300 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef MIN_AREA_POLYGONS_CUDA_KERNEL_CUH
    +#define MIN_AREA_POLYGONS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +#define MAXN 20
    +__device__ const float PI = 3.1415926;
    +
    +struct Point {
    +  float x, y;
    +  __device__ Point() {}
    +  __device__ Point(float x, float y) : x(x), y(y) {}
    +};
    +
    +__device__ inline void swap1(Point *a, Point *b) {
    +  Point temp;
    +  temp.x = a->x;
    +  temp.y = a->y;
    +
    +  a->x = b->x;
    +  a->y = b->y;
    +
    +  b->x = temp.x;
    +  b->y = temp.y;
    +}
    +__device__ inline float cross(Point o, Point a, Point b) {
    +  return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
    +}
    +
    +__device__ inline float dis(Point a, Point b) {
    +  return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
    +}
    +__device__ inline void minBoundingRect(Point *ps, int n_points, float *minbox) {
    +  float convex_points[2][MAXN];
    +  for (int j = 0; j < n_points; j++) {
    +    convex_points[0][j] = ps[j].x;
    +  }
    +  for (int j = 0; j < n_points; j++) {
    +    convex_points[1][j] = ps[j].y;
    +  }
    +
    +  Point edges[MAXN];
    +  float edges_angles[MAXN];
    +  float unique_angles[MAXN];
    +  int n_edges = n_points - 1;
    +  int n_unique = 0;
    +  int unique_flag = 0;
    +
    +  for (int i = 0; i < n_edges; i++) {
    +    edges[i].x = ps[i + 1].x - ps[i].x;
    +    edges[i].y = ps[i + 1].y - ps[i].y;
    +  }
    +  for (int i = 0; i < n_edges; i++) {
    +    edges_angles[i] = atan2((float)edges[i].y, (float)edges[i].x);
    +    if (edges_angles[i] >= 0) {
    +      edges_angles[i] = fmod((float)edges_angles[i], (float)PI / 2);
    +    } else {
    +      edges_angles[i] =
    +          edges_angles[i] - (int)(edges_angles[i] / (PI / 2) - 1) * (PI / 2);
    +    }
    +  }
    +  unique_angles[0] = edges_angles[0];
    +  n_unique += 1;
    +  for (int i = 1; i < n_edges; i++) {
    +    for (int j = 0; j < n_unique; j++) {
    +      if (edges_angles[i] == unique_angles[j]) {
    +        unique_flag += 1;
    +      }
    +    }
    +    if (unique_flag == 0) {
    +      unique_angles[n_unique] = edges_angles[i];
    +      n_unique += 1;
    +      unique_flag = 0;
    +    } else {
    +      unique_flag = 0;
    +    }
    +  }
    +
    +  float minarea = 1e12;
    +  for (int i = 0; i < n_unique; i++) {
    +    float R[2][2];
    +    float rot_points[2][MAXN];
    +    R[0][0] = cos(unique_angles[i]);
    +    R[0][1] = sin(unique_angles[i]);
    +    R[1][0] = -sin(unique_angles[i]);
    +    R[1][1] = cos(unique_angles[i]);
    +    // R x Points
    +    for (int m = 0; m < 2; m++) {
    +      for (int n = 0; n < n_points; n++) {
    +        float sum = 0.0;
    +        for (int k = 0; k < 2; k++) {
    +          sum = sum + R[m][k] * convex_points[k][n];
    +        }
    +        rot_points[m][n] = sum;
    +      }
    +    }
    +
    +    // xmin;
    +    float xmin, ymin, xmax, ymax;
    +    xmin = 1e12;
    +    for (int j = 0; j < n_points; j++) {
    +      if (isinf(rot_points[0][j]) || isnan(rot_points[0][j])) {
    +        continue;
    +      } else {
    +        if (rot_points[0][j] < xmin) {
    +          xmin = rot_points[0][j];
    +        }
    +      }
    +    }
    +    // ymin
    +    ymin = 1e12;
    +    for (int j = 0; j < n_points; j++) {
    +      if (isinf(rot_points[1][j]) || isnan(rot_points[1][j])) {
    +        continue;
    +      } else {
    +        if (rot_points[1][j] < ymin) {
    +          ymin = rot_points[1][j];
    +        }
    +      }
    +    }
    +    // xmax
    +    xmax = -1e12;
    +    for (int j = 0; j < n_points; j++) {
    +      if (isinf(rot_points[0][j]) || isnan(rot_points[0][j])) {
    +        continue;
    +      } else {
    +        if (rot_points[0][j] > xmax) {
    +          xmax = rot_points[0][j];
    +        }
    +      }
    +    }
    +    // ymax
    +    ymax = -1e12;
    +    for (int j = 0; j < n_points; j++) {
    +      if (isinf(rot_points[1][j]) || isnan(rot_points[1][j])) {
    +        continue;
    +      } else {
    +        if (rot_points[1][j] > ymax) {
    +          ymax = rot_points[1][j];
    +        }
    +      }
    +    }
    +    float area = (xmax - xmin) * (ymax - ymin);
    +    if (area < minarea) {
    +      minarea = area;
    +      minbox[0] = unique_angles[i];
    +      minbox[1] = xmin;
    +      minbox[2] = ymin;
    +      minbox[3] = xmax;
    +      minbox[4] = ymax;
    +    }
    +  }
    +}
    +
    +// convex_find
    +__device__ inline void Jarvis(Point *in_poly, int &n_poly) {
    +  int n_input = n_poly;
    +  Point input_poly[20];
    +  for (int i = 0; i < n_input; i++) {
    +    input_poly[i].x = in_poly[i].x;
    +    input_poly[i].y = in_poly[i].y;
    +  }
    +  Point p_max, p_k;
    +  int max_index, k_index;
    +  int Stack[20], top1, top2;
    +  // float sign;
    +  float sign;
    +  Point right_point[10], left_point[10];
    +
    +  for (int i = 0; i < n_poly; i++) {
    +    if (in_poly[i].y < in_poly[0].y ||
    +        in_poly[i].y == in_poly[0].y && in_poly[i].x < in_poly[0].x) {
    +      Point *j = &(in_poly[0]);
    +      Point *k = &(in_poly[i]);
    +      swap1(j, k);
    +    }
    +    if (i == 0) {
    +      p_max = in_poly[0];
    +      max_index = 0;
    +    }
    +    if (in_poly[i].y > p_max.y ||
    +        in_poly[i].y == p_max.y && in_poly[i].x > p_max.x) {
    +      p_max = in_poly[i];
    +      max_index = i;
    +    }
    +  }
    +  if (max_index == 0) {
    +    max_index = 1;
    +    p_max = in_poly[max_index];
    +  }
    +
    +  k_index = 0, Stack[0] = 0, top1 = 0;
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top1]], in_poly[i], p_k);
    +      if ((sign > 0) || ((sign == 0) && (dis(in_poly[Stack[top1]], in_poly[i]) >
    +                                         dis(in_poly[Stack[top1]], p_k)))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top1++;
    +    Stack[top1] = k_index;
    +  }
    +
    +  for (int i = 0; i <= top1; i++) {
    +    right_point[i] = in_poly[Stack[i]];
    +  }
    +
    +  k_index = 0, Stack[0] = 0, top2 = 0;
    +
    +  while (k_index != max_index) {
    +    p_k = p_max;
    +    k_index = max_index;
    +    for (int i = 1; i < n_poly; i++) {
    +      sign = cross(in_poly[Stack[top2]], in_poly[i], p_k);
    +      if ((sign < 0) || (sign == 0) && (dis(in_poly[Stack[top2]], in_poly[i]) >
    +                                        dis(in_poly[Stack[top2]], p_k))) {
    +        p_k = in_poly[i];
    +        k_index = i;
    +      }
    +    }
    +    top2++;
    +    Stack[top2] = k_index;
    +  }
    +
    +  for (int i = top2 - 1; i >= 0; i--) {
    +    left_point[i] = in_poly[Stack[i]];
    +  }
    +
    +  for (int i = 0; i < top1 + top2; i++) {
    +    if (i <= top1) {
    +      in_poly[i] = right_point[i];
    +    } else {
    +      in_poly[i] = left_point[top2 - (i - top1)];
    +    }
    +  }
    +  n_poly = top1 + top2;
    +}
    +
    +template 
    +__device__ inline void Findminbox(T const *const p, T *minpoints) {
    +  Point ps1[MAXN];
    +  Point convex[MAXN];
    +  for (int i = 0; i < 9; i++) {
    +    convex[i].x = p[i * 2];
    +    convex[i].y = p[i * 2 + 1];
    +  }
    +  int n_convex = 9;
    +  Jarvis(convex, n_convex);
    +  int n1 = n_convex;
    +  for (int i = 0; i < n1; i++) {
    +    ps1[i].x = convex[i].x;
    +    ps1[i].y = convex[i].y;
    +  }
    +  ps1[n1].x = convex[0].x;
    +  ps1[n1].y = convex[0].y;
    +
    +  float minbbox[5] = {0};
    +  minBoundingRect(ps1, n1 + 1, minbbox);
    +  float angle = minbbox[0];
    +  float xmin = minbbox[1];
    +  float ymin = minbbox[2];
    +  float xmax = minbbox[3];
    +  float ymax = minbbox[4];
    +  float R[2][2];
    +
    +  R[0][0] = cos(angle);
    +  R[0][1] = sin(angle);
    +  R[1][0] = -sin(angle);
    +  R[1][1] = cos(angle);
    +
    +  minpoints[0] = xmax * R[0][0] + ymin * R[1][0];
    +  minpoints[1] = xmax * R[0][1] + ymin * R[1][1];
    +  minpoints[2] = xmin * R[0][0] + ymin * R[1][0];
    +  minpoints[3] = xmin * R[0][1] + ymin * R[1][1];
    +  minpoints[4] = xmin * R[0][0] + ymax * R[1][0];
    +  minpoints[5] = xmin * R[0][1] + ymax * R[1][1];
    +  minpoints[6] = xmax * R[0][0] + ymax * R[1][0];
    +  minpoints[7] = xmax * R[0][1] + ymax * R[1][1];
    +}
    +
    +template 
    +__global__ void min_area_polygons_cuda_kernel(const int ex_n_boxes,
    +                                              const T *ex_boxes, T *minbox) {
    +  CUDA_1D_KERNEL_LOOP(index, ex_n_boxes) {
    +    const T *cur_box = ex_boxes + index * 18;
    +    T *cur_min_box = minbox + index * 8;
    +    Findminbox(cur_box, cur_min_box);
    +  }
    +}
    +
    +#endif  // MIN_AREA_POLYGONS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/modulated_deform_conv_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/modulated_deform_conv_cuda_kernel.cuh
    new file mode 100644
    index 000000000..ca0e91a25
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/modulated_deform_conv_cuda_kernel.cuh
    @@ -0,0 +1,399 @@
    +/*!
    + ******************* BEGIN Caffe Copyright Notice and Disclaimer
    + *****************
    + *
    + * COPYRIGHT
    + *
    + * All contributions by the University of California:
    + * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
    + * All rights reserved.
    + *
    + * All other contributions:
    + * Copyright (c) 2014-2017, the respective contributors
    + * All rights reserved.
    + *
    + * Caffe uses a shared copyright model: each contributor holds copyright over
    + * their contributions to Caffe. The project versioning records all such
    + * contribution and copyright details. If a contributor wants to further mark
    + * their specific copyright on a particular contribution, they should indicate
    + * their copyright solely in the commit message of the change when it is
    + * committed.
    + *
    + * LICENSE
    + *
    + * Redistribution and use in source and binary forms, with or without
    + * modification, are permitted provided that the following conditions are met:
    + *
    + * 1. Redistributions of source code must retain the above copyright notice,
    + *this list of conditions and the following disclaimer.
    + * 2. Redistributions in binary form must reproduce the above copyright notice,
    + * this list of conditions and the following disclaimer in the documentation
    + * and/or other materials provided with the distribution.
    + *
    + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    + *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    + *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
    + *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    + *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    + *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    + *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    + *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    + *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    + *
    + * CONTRIBUTION AGREEMENT
    + *
    + * By contributing to the BVLC/caffe repository through pull-request, comment,
    + * or otherwise, the contributor releases their content to the
    + * license and copyright terms herein.
    + *
    + ***************** END Caffe Copyright Notice and Disclaimer
    + *********************
    + *
    + * Copyright (c) 2018 Microsoft
    + * Licensed under The MIT License [see LICENSE for details]
    + * \file modulated_deformable_im2col.cuh
    + * \brief Function definitions of converting an image to
    + * column matrix based on kernel, padding, dilation, and offset.
    + * These functions are mainly used in deformable convolution operators.
    + * \ref: https://arxiv.org/abs/1703.06211
    + * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
    + */
    +
    +// modified from
    +// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
    +
    +#ifndef MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
    +#define MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +template 
    +__device__ T dmcn_im2col_bilinear(const T *input, const int data_width,
    +                                  const int height, const int width, T h, T w) {
    +  int h_low = floorf(h);
    +  int w_low = floorf(w);
    +  int h_high = h_low + 1;
    +  int w_high = w_low + 1;
    +
    +  T lh = h - h_low;
    +  T lw = w - w_low;
    +  T hh = 1 - lh, hw = 1 - lw;
    +
    +  T v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
    +  T v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1)
    +    v2 = input[h_low * data_width + w_high];
    +  T v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0)
    +    v3 = input[h_high * data_width + w_low];
    +  T v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1)
    +    v4 = input[h_high * data_width + w_high];
    +
    +  T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +template 
    +__device__ T dmcn_get_gradient_weight(T argmax_h, T argmax_w, const int h,
    +                                      const int w, const int height,
    +                                      const int width) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +  if (h == argmax_h_low && w == argmax_w_low)
    +    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_low && w == argmax_w_high)
    +    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
    +  if (h == argmax_h_high && w == argmax_w_low)
    +    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_high && w == argmax_w_high)
    +    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
    +  return weight;
    +}
    +
    +template 
    +__device__ T dmcn_get_coordinate_weight(T argmax_h, T argmax_w,
    +                                        const int height, const int width,
    +                                        const T *im_data, const int data_width,
    +                                        const int bp_dir) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +
    +  if (bp_dir == 0) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += -1 * (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  } else if (bp_dir == 1) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  }
    +
    +  return weight;
    +}
    +
    +template 
    +__global__ void modulated_deformable_im2col_gpu_kernel(
    +    const int n, const T *data_im, const T *data_offset, const T *data_mask,
    +    const int height, const int width, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int num_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *data_col) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    // index index of output matrix
    +    const int w_col = index % width_col;
    +    const int h_col = (index / width_col) % height_col;
    +    const int b_col = (index / width_col / height_col) % batch_size;
    +    const int c_im = (index / width_col / height_col) / batch_size;
    +    const int c_col = c_im * kernel_h * kernel_w;
    +
    +    // compute deformable group index
    +    const int deformable_group_index = c_im / channel_per_deformable_group;
    +
    +    const int h_in = h_col * stride_h - pad_h;
    +    const int w_in = w_col * stride_w - pad_w;
    +
    +    T *data_col_ptr =
    +        data_col +
    +        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    +    const T *data_im_ptr =
    +        data_im + (b_col * num_channels + c_im) * height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    const T *data_mask_ptr =
    +        data_mask + (b_col * deformable_group + deformable_group_index) *
    +                        kernel_h * kernel_w * height_col * width_col;
    +
    +    for (int i = 0; i < kernel_h; ++i) {
    +      for (int j = 0; j < kernel_w; ++j) {
    +        const int data_offset_h_ptr =
    +            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
    +        const int data_offset_w_ptr =
    +            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
    +            w_col;
    +        const int data_mask_hw_ptr =
    +            ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
    +        const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +        const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +        const T mask = data_mask_ptr[data_mask_hw_ptr];
    +        T val = static_cast(0);
    +        const T h_im = h_in + i * dilation_h + offset_h;
    +        const T w_im = w_in + j * dilation_w + offset_w;
    +        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
    +          val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im,
    +                                     w_im);
    +        *data_col_ptr = val * mask;
    +        data_col_ptr += batch_size * height_col * width_col;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void modulated_deformable_col2im_gpu_kernel(
    +    const int n, const T *data_col, const T *data_offset, const T *data_mask,
    +    const int channels, const int height, const int width, const int kernel_h,
    +    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    +    const int stride_w, const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int deformable_group, const int height_col, const int width_col,
    +    T *grad_im) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    const int j = (index / width_col / height_col / batch_size) % kernel_w;
    +    const int i =
    +        (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +    const int c =
    +        index / width_col / height_col / batch_size / kernel_w / kernel_h;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / channel_per_deformable_group;
    +
    +    int w_out = index % width_col;
    +    int h_out = (index / width_col) % height_col;
    +    int b = (index / width_col / height_col) % batch_size;
    +    int w_in = w_out * stride_w - pad_w;
    +    int h_in = h_out * stride_h - pad_h;
    +
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const T *data_mask_ptr =
    +        data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
    +                        kernel_w * height_col * width_col;
    +    const int data_offset_h_ptr =
    +        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    +    const int data_offset_w_ptr =
    +        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    +    const int data_mask_hw_ptr =
    +        ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    +    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +    const T mask = data_mask_ptr[data_mask_hw_ptr];
    +    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    +    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
    +
    +    const T cur_top_grad = data_col[index] * mask;
    +    const int cur_h = (int)cur_inv_h_data;
    +    const int cur_w = (int)cur_inv_w_data;
    +    for (int dy = -2; dy <= 2; dy++) {
    +      for (int dx = -2; dx <= 2; dx++) {
    +        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
    +            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
    +            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
    +          int cur_bottom_grad_pos =
    +              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
    +          T weight =
    +              dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data,
    +                                       cur_h + dy, cur_w + dx, height, width);
    +          atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void modulated_deformable_col2im_coord_gpu_kernel(
    +    const int n, const T *data_col, const T *data_im, const T *data_offset,
    +    const T *data_mask, const int channels, const int height, const int width,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int channel_per_deformable_group,
    +    const int batch_size, const int offset_channels, const int deformable_group,
    +    const int height_col, const int width_col, T *grad_offset, T *grad_mask) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    T val = 0, mval = 0;
    +    int w = index % width_col;
    +    int h = (index / width_col) % height_col;
    +    int c = (index / width_col / height_col) % offset_channels;
    +    int b = (index / width_col / height_col) / offset_channels;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    +    const int col_step = kernel_h * kernel_w;
    +    int cnt = 0;
    +    const T *data_col_ptr = data_col + deformable_group_index *
    +                                           channel_per_deformable_group *
    +                                           batch_size * width_col * height_col;
    +    const T *data_im_ptr =
    +        data_im + (b * deformable_group + deformable_group_index) *
    +                      channel_per_deformable_group / kernel_h / kernel_w *
    +                      height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const T *data_mask_ptr =
    +        data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
    +                        kernel_w * height_col * width_col;
    +
    +    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
    +
    +    for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
    +         col_c += col_step) {
    +      const int col_pos =
    +          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
    +      const int bp_dir = offset_c % 2;
    +
    +      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
    +      int i =
    +          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +      int w_out = col_pos % width_col;
    +      int h_out = (col_pos / width_col) % height_col;
    +      int w_in = w_out * stride_w - pad_w;
    +      int h_in = h_out * stride_h - pad_h;
    +      const int data_offset_h_ptr =
    +          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
    +      const int data_offset_w_ptr =
    +          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
    +           w_out);
    +      const int data_mask_hw_ptr =
    +          (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
    +      const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +      const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +      const T mask = data_mask_ptr[data_mask_hw_ptr];
    +      T inv_h = h_in + i * dilation_h + offset_h;
    +      T inv_w = w_in + j * dilation_w + offset_w;
    +      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
    +        inv_h = inv_w = -2;
    +      else
    +        mval += data_col_ptr[col_pos] *
    +                dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width,
    +                                     height, width, inv_h, inv_w);
    +      const T weight = dmcn_get_coordinate_weight(
    +          inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
    +          width, bp_dir);
    +      val += weight * data_col_ptr[col_pos] * mask;
    +      cnt += 1;
    +    }
    +    // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
    +    grad_offset[index] = val;
    +    if (offset_c % 2 == 0)
    +      // KERNEL_ASSIGN(grad_mask[(((b * deformable_group +
    +      // deformable_group_index) * kernel_h * kernel_w + offset_c / 2) *
    +      // height_col + h) * width_col + w], mask_req, mval);
    +      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
    +                      kernel_w +
    +                  offset_c / 2) *
    +                     height_col +
    +                 h) *
    +                    width_col +
    +                w] = mval;
    +  }
    +}
    +
    +#endif  // MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ms_deform_attn_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ms_deform_attn_cuda_kernel.cuh
    new file mode 100644
    index 000000000..12225ffdb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/ms_deform_attn_cuda_kernel.cuh
    @@ -0,0 +1,801 @@
    +/*!
    +**************************************************************************************************
    +* Deformable DETR
    +* Copyright (c) 2020 SenseTime. All Rights Reserved.
    +* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
    +**************************************************************************************************
    +* Modified from
    +*https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
    +**************************************************************************************************
    +*/
    +#ifndef DEFORM_ATTN_CUDA_KERNEL
    +#define DEFORM_ATTN_CUDA_KERNEL
    +
    +#include "common_cuda_helper.hpp"
    +#include "pytorch_cuda_helper.hpp"
    +
    +template 
    +__device__ scalar_t ms_deform_attn_im2col_bilinear(
    +    const scalar_t *&bottom_data, const int &height, const int &width,
    +    const int &nheads, const int &channels, const scalar_t &h,
    +    const scalar_t &w, const int &m, const int &c) {
    +  const int h_low = floorf(h);
    +  const int w_low = floorf(w);
    +  const int h_high = h_low + 1;
    +  const int w_high = w_low + 1;
    +
    +  const scalar_t lh = h - h_low;
    +  const scalar_t lw = w - w_low;
    +  const scalar_t hh = 1 - lh, hw = 1 - lw;
    +
    +  const int w_stride = nheads * channels;
    +  const int h_stride = width * w_stride;
    +  const int h_low_ptr_offset = h_low * h_stride;
    +  const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
    +  const int w_low_ptr_offset = w_low * w_stride;
    +  const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
    +  const int base_ptr = m * channels + c;
    +
    +  scalar_t v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) {
    +    const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v1 = bottom_data[ptr1];
    +  }
    +  scalar_t v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v2 = bottom_data[ptr2];
    +  }
    +  scalar_t v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v3 = bottom_data[ptr3];
    +  }
    +  scalar_t v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v4 = bottom_data[ptr4];
    +  }
    +
    +  const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +template 
    +__device__ void ms_deform_attn_col2im_bilinear(
    +    const scalar_t *&bottom_data, const int &height, const int &width,
    +    const int &nheads, const int &channels, const scalar_t &h,
    +    const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad,
    +    const scalar_t &attn_weight, scalar_t *&grad_value,
    +    scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) {
    +  const int h_low = floorf(h);
    +  const int w_low = floorf(w);
    +  const int h_high = h_low + 1;
    +  const int w_high = w_low + 1;
    +
    +  const scalar_t lh = h - h_low;
    +  const scalar_t lw = w - w_low;
    +  const scalar_t hh = 1 - lh, hw = 1 - lw;
    +
    +  const int w_stride = nheads * channels;
    +  const int h_stride = width * w_stride;
    +  const int h_low_ptr_offset = h_low * h_stride;
    +  const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
    +  const int w_low_ptr_offset = w_low * w_stride;
    +  const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
    +  const int base_ptr = m * channels + c;
    +
    +  const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +  const scalar_t top_grad_value = top_grad * attn_weight;
    +  scalar_t grad_h_weight = 0, grad_w_weight = 0;
    +
    +  scalar_t v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) {
    +    const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v1 = bottom_data[ptr1];
    +    grad_h_weight -= hw * v1;
    +    grad_w_weight -= hh * v1;
    +    atomicAdd(grad_value + ptr1, w1 * top_grad_value);
    +  }
    +  scalar_t v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v2 = bottom_data[ptr2];
    +    grad_h_weight -= lw * v2;
    +    grad_w_weight += hh * v2;
    +    atomicAdd(grad_value + ptr2, w2 * top_grad_value);
    +  }
    +  scalar_t v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v3 = bottom_data[ptr3];
    +    grad_h_weight += hw * v3;
    +    grad_w_weight -= lh * v3;
    +    atomicAdd(grad_value + ptr3, w3 * top_grad_value);
    +  }
    +  scalar_t v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v4 = bottom_data[ptr4];
    +    grad_h_weight += lw * v4;
    +    grad_w_weight += lh * v4;
    +    atomicAdd(grad_value + ptr4, w4 * top_grad_value);
    +  }
    +
    +  const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  *grad_attn_weight = top_grad * val;
    +  *grad_sampling_loc = width * grad_w_weight * top_grad_value;
    +  *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
    +}
    +
    +template 
    +__device__ void ms_deform_attn_col2im_bilinear_gm(
    +    const scalar_t *&bottom_data, const int &height, const int &width,
    +    const int &nheads, const int &channels, const scalar_t &h,
    +    const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad,
    +    const scalar_t &attn_weight, scalar_t *&grad_value,
    +    scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) {
    +  const int h_low = floorf(h);
    +  const int w_low = floorf(w);
    +  const int h_high = h_low + 1;
    +  const int w_high = w_low + 1;
    +
    +  const scalar_t lh = h - h_low;
    +  const scalar_t lw = w - w_low;
    +  const scalar_t hh = 1 - lh, hw = 1 - lw;
    +
    +  const int w_stride = nheads * channels;
    +  const int h_stride = width * w_stride;
    +  const int h_low_ptr_offset = h_low * h_stride;
    +  const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
    +  const int w_low_ptr_offset = w_low * w_stride;
    +  const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
    +  const int base_ptr = m * channels + c;
    +
    +  const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +  const scalar_t top_grad_value = top_grad * attn_weight;
    +  scalar_t grad_h_weight = 0, grad_w_weight = 0;
    +
    +  scalar_t v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) {
    +    const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v1 = bottom_data[ptr1];
    +    grad_h_weight -= hw * v1;
    +    grad_w_weight -= hh * v1;
    +    atomicAdd(grad_value + ptr1, w1 * top_grad_value);
    +  }
    +  scalar_t v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v2 = bottom_data[ptr2];
    +    grad_h_weight -= lw * v2;
    +    grad_w_weight += hh * v2;
    +    atomicAdd(grad_value + ptr2, w2 * top_grad_value);
    +  }
    +  scalar_t v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
    +    v3 = bottom_data[ptr3];
    +    grad_h_weight += hw * v3;
    +    grad_w_weight -= lh * v3;
    +    atomicAdd(grad_value + ptr3, w3 * top_grad_value);
    +  }
    +  scalar_t v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
    +    v4 = bottom_data[ptr4];
    +    grad_h_weight += lw * v4;
    +    grad_w_weight += lh * v4;
    +    atomicAdd(grad_value + ptr4, w4 * top_grad_value);
    +  }
    +
    +  const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  atomicAdd(grad_attn_weight, top_grad * val);
    +  atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
    +  atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
    +}
    +
    +template 
    +__global__ void ms_deformable_im2col_gpu_kernel(
    +    const int n, const scalar_t *data_value, const int64_t *data_spatial_shapes,
    +    const int64_t *data_level_start_index, const scalar_t *data_sampling_loc,
    +    const scalar_t *data_attn_weight, const int batch_size,
    +    const int spatial_size, const int num_heads, const int channels,
    +    const int num_levels, const int num_query, const int num_point,
    +    scalar_t *data_col) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    scalar_t *data_col_ptr = data_col + index;
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +    scalar_t col = 0;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const scalar_t *data_value_ptr =
    +          data_value +
    +          (data_value_ptr_init_offset + level_start_id * qid_stride);
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h,
    +                                                spatial_w, num_heads, channels,
    +                                                h_im, w_im, m_col, c_col) *
    +                 weight;
    +        }
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +      }
    +    }
    +    *data_col_ptr = col;
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
    +  __shared__ scalar_t cache_grad_attn_weight[blockSize];
    +  unsigned int tid = threadIdx.x;
    +  const int qid_stride = num_heads * channels;
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        *(cache_grad_sampling_loc + (threadIdx.x << 1)) = 0;
    +        *(cache_grad_sampling_loc + ((threadIdx.x << 1) + 1)) = 0;
    +        *(cache_grad_attn_weight + threadIdx.x) = 0;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              cache_grad_sampling_loc + (threadIdx.x << 1),
    +              cache_grad_attn_weight + threadIdx.x);
    +        }
    +
    +        __syncthreads();
    +        if (tid == 0) {
    +          scalar_t _grad_w = cache_grad_sampling_loc[0],
    +                   _grad_h = cache_grad_sampling_loc[1],
    +                   _grad_a = cache_grad_attn_weight[0];
    +          int sid = 2;
    +          for (unsigned int _tid = 1; _tid < blockSize; ++_tid) {
    +            _grad_w += cache_grad_sampling_loc[sid];
    +            _grad_h += cache_grad_sampling_loc[sid + 1];
    +            _grad_a += cache_grad_attn_weight[_tid];
    +            sid += 2;
    +          }
    +
    +          *grad_sampling_loc_out = _grad_w;
    +          *(grad_sampling_loc_out + 1) = _grad_h;
    +          *grad_attn_weight_out = _grad_a;
    +        }
    +        __syncthreads();
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
    +  __shared__ scalar_t cache_grad_attn_weight[blockSize];
    +  unsigned int tid = threadIdx.x;
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        *(cache_grad_sampling_loc + (threadIdx.x << 1)) = 0;
    +        *(cache_grad_sampling_loc + ((threadIdx.x << 1) + 1)) = 0;
    +        *(cache_grad_attn_weight + threadIdx.x) = 0;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              cache_grad_sampling_loc + (threadIdx.x << 1),
    +              cache_grad_attn_weight + threadIdx.x);
    +        }
    +
    +        __syncthreads();
    +
    +        for (unsigned int s = blockSize / 2; s > 0; s >>= 1) {
    +          if (tid < s) {
    +            const unsigned int xid1 = tid << 1;
    +            const unsigned int xid2 = (tid + s) << 1;
    +            cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
    +            cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
    +            cache_grad_sampling_loc[xid1 + 1] +=
    +                cache_grad_sampling_loc[xid2 + 1];
    +          }
    +          __syncthreads();
    +        }
    +
    +        if (tid == 0) {
    +          *grad_sampling_loc_out = cache_grad_sampling_loc[0];
    +          *(grad_sampling_loc_out + 1) = cache_grad_sampling_loc[1];
    +          *grad_attn_weight_out = cache_grad_attn_weight[0];
    +        }
    +        __syncthreads();
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  extern __shared__ int _s[];
    +  scalar_t *cache_grad_sampling_loc = reinterpret_cast(_s);
    +  scalar_t *cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
    +  unsigned int tid = threadIdx.x;
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        *(cache_grad_sampling_loc + (threadIdx.x << 1)) = 0;
    +        *(cache_grad_sampling_loc + ((threadIdx.x << 1) + 1)) = 0;
    +        *(cache_grad_attn_weight + threadIdx.x) = 0;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              cache_grad_sampling_loc + (threadIdx.x << 1),
    +              cache_grad_attn_weight + threadIdx.x);
    +        }
    +
    +        __syncthreads();
    +        if (tid == 0) {
    +          scalar_t _grad_w = cache_grad_sampling_loc[0],
    +                   _grad_h = cache_grad_sampling_loc[1],
    +                   _grad_a = cache_grad_attn_weight[0];
    +          int sid = 2;
    +          for (unsigned int _tid = 1; _tid < blockDim.x; ++_tid) {
    +            _grad_w += cache_grad_sampling_loc[sid];
    +            _grad_h += cache_grad_sampling_loc[sid + 1];
    +            _grad_a += cache_grad_attn_weight[_tid];
    +            sid += 2;
    +          }
    +
    +          *grad_sampling_loc_out = _grad_w;
    +          *(grad_sampling_loc_out + 1) = _grad_h;
    +          *grad_attn_weight_out = _grad_a;
    +        }
    +        __syncthreads();
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  extern __shared__ int _s[];
    +  scalar_t *cache_grad_sampling_loc = reinterpret_cast(_s);
    +  scalar_t *cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
    +  unsigned int tid = threadIdx.x;
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        *(cache_grad_sampling_loc + (threadIdx.x << 1)) = 0;
    +        *(cache_grad_sampling_loc + ((threadIdx.x << 1) + 1)) = 0;
    +        *(cache_grad_attn_weight + threadIdx.x) = 0;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              cache_grad_sampling_loc + (threadIdx.x << 1),
    +              cache_grad_attn_weight + threadIdx.x);
    +        }
    +
    +        __syncthreads();
    +
    +        for (unsigned int s = blockDim.x / 2, spre = blockDim.x; s > 0;
    +             s >>= 1, spre >>= 1) {
    +          if (tid < s) {
    +            const unsigned int xid1 = tid << 1;
    +            const unsigned int xid2 = (tid + s) << 1;
    +            cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
    +            cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
    +            cache_grad_sampling_loc[xid1 + 1] +=
    +                cache_grad_sampling_loc[xid2 + 1];
    +            if (tid + (s << 1) < spre) {
    +              cache_grad_attn_weight[tid] +=
    +                  cache_grad_attn_weight[tid + (s << 1)];
    +              cache_grad_sampling_loc[xid1] +=
    +                  cache_grad_sampling_loc[xid2 + (s << 1)];
    +              cache_grad_sampling_loc[xid1 + 1] +=
    +                  cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
    +            }
    +          }
    +          __syncthreads();
    +        }
    +
    +        if (tid == 0) {
    +          *grad_sampling_loc_out = cache_grad_sampling_loc[0];
    +          *(grad_sampling_loc_out + 1) = cache_grad_sampling_loc[1];
    +          *grad_attn_weight_out = cache_grad_attn_weight[0];
    +        }
    +        __syncthreads();
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  extern __shared__ int _s[];
    +  scalar_t *cache_grad_sampling_loc = reinterpret_cast(_s);
    +  scalar_t *cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
    +  unsigned int tid = threadIdx.x;
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        *(cache_grad_sampling_loc + (threadIdx.x << 1)) = 0;
    +        *(cache_grad_sampling_loc + ((threadIdx.x << 1) + 1)) = 0;
    +        *(cache_grad_attn_weight + threadIdx.x) = 0;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              cache_grad_sampling_loc + (threadIdx.x << 1),
    +              cache_grad_attn_weight + threadIdx.x);
    +        }
    +
    +        __syncthreads();
    +
    +        for (unsigned int s = blockDim.x / 2, spre = blockDim.x; s > 0;
    +             s >>= 1, spre >>= 1) {
    +          if (tid < s) {
    +            const unsigned int xid1 = tid << 1;
    +            const unsigned int xid2 = (tid + s) << 1;
    +            cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
    +            cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
    +            cache_grad_sampling_loc[xid1 + 1] +=
    +                cache_grad_sampling_loc[xid2 + 1];
    +            if (tid + (s << 1) < spre) {
    +              cache_grad_attn_weight[tid] +=
    +                  cache_grad_attn_weight[tid + (s << 1)];
    +              cache_grad_sampling_loc[xid1] +=
    +                  cache_grad_sampling_loc[xid2 + (s << 1)];
    +              cache_grad_sampling_loc[xid1 + 1] +=
    +                  cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
    +            }
    +          }
    +          __syncthreads();
    +        }
    +
    +        if (tid == 0) {
    +          atomicAdd(grad_sampling_loc_out, cache_grad_sampling_loc[0]);
    +          atomicAdd(grad_sampling_loc_out + 1, cache_grad_sampling_loc[1]);
    +          atomicAdd(grad_attn_weight_out, cache_grad_attn_weight[0]);
    +        }
    +        __syncthreads();
    +
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void ms_deformable_col2im_gpu_kernel_gm(
    +    const int n, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int _temp = index;
    +    const int c_col = _temp % channels;
    +    _temp /= channels;
    +    const int sampling_index = _temp;
    +    const int m_col = _temp % num_heads;
    +    _temp /= num_heads;
    +    _temp /= num_query;
    +    const int b_col = _temp;
    +
    +    const scalar_t top_grad = grad_col[index];
    +
    +    int data_weight_ptr = sampling_index * num_levels * num_point;
    +    int data_loc_w_ptr = data_weight_ptr << 1;
    +    const int grad_sampling_ptr = data_weight_ptr;
    +    scalar_t *grad_sampling_loc_out =
    +        grad_sampling_loc + (grad_sampling_ptr << 1);
    +    scalar_t *grad_attn_weight_out = grad_attn_weight + grad_sampling_ptr;
    +    const int grad_weight_stride = 1;
    +    const int grad_loc_stride = 2;
    +    const int qid_stride = num_heads * channels;
    +    const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
    +
    +    for (int l_col = 0; l_col < num_levels; ++l_col) {
    +      const int level_start_id = data_level_start_index[l_col];
    +      const int spatial_h_ptr = l_col << 1;
    +      const int spatial_h = data_spatial_shapes[spatial_h_ptr];
    +      const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
    +      const int value_ptr_offset =
    +          data_value_ptr_init_offset + level_start_id * qid_stride;
    +      const scalar_t *data_value_ptr = data_value + value_ptr_offset;
    +      scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
    +
    +      for (int p_col = 0; p_col < num_point; ++p_col) {
    +        const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
    +        const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
    +        const scalar_t weight = data_attn_weight[data_weight_ptr];
    +
    +        const scalar_t h_im = loc_h * spatial_h - 0.5;
    +        const scalar_t w_im = loc_w * spatial_w - 0.5;
    +        if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +          ms_deform_attn_col2im_bilinear_gm(
    +              data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im,
    +              w_im, m_col, c_col, top_grad, weight, grad_value_ptr,
    +              grad_sampling_loc_out, grad_attn_weight_out);
    +        }
    +        data_weight_ptr += 1;
    +        data_loc_w_ptr += 2;
    +        grad_attn_weight_out += grad_weight_stride;
    +        grad_sampling_loc_out += grad_loc_stride;
    +      }
    +    }
    +  }
    +}
    +#endif  // DEFORM_ATTN_CUDA_KERNEL
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_cuda_kernel.cuh
    new file mode 100644
    index 000000000..281d9f0b4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_cuda_kernel.cuh
    @@ -0,0 +1,117 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef NMS_CUDA_KERNEL_CUH
    +#define NMS_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +int const threadsPerBlock = sizeof(unsigned long long int) * 8;
    +
    +__device__ inline bool devIoU(float const *const a, float const *const b,
    +                              const int offset, const float threshold) {
    +  float left = fmaxf(a[0], b[0]), right = fminf(a[2], b[2]);
    +  float top = fmaxf(a[1], b[1]), bottom = fminf(a[3], b[3]);
    +  float width = fmaxf(right - left + offset, 0.f),
    +        height = fmaxf(bottom - top + offset, 0.f);
    +  float interS = width * height;
    +  float Sa = (a[2] - a[0] + offset) * (a[3] - a[1] + offset);
    +  float Sb = (b[2] - b[0] + offset) * (b[3] - b[1] + offset);
    +  return interS > threshold * (Sa + Sb - interS);
    +}
    +
    +__global__ static void nms_cuda(const int n_boxes, const float iou_threshold,
    +                                const int offset, const float *dev_boxes,
    +                                unsigned long long *dev_mask) {
    +  int blocks = (n_boxes + threadsPerBlock - 1) / threadsPerBlock;
    +  CUDA_2D_KERNEL_BLOCK_LOOP(col_start, blocks, row_start, blocks) {
    +    const int tid = threadIdx.x;
    +
    +    if (row_start > col_start) return;
    +
    +    const int row_size =
    +        fminf(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    +    const int col_size =
    +        fminf(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
    +
    +    __shared__ float block_boxes[threadsPerBlock * 4];
    +    if (tid < col_size) {
    +      block_boxes[tid * 4 + 0] =
    +          dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 0];
    +      block_boxes[tid * 4 + 1] =
    +          dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 1];
    +      block_boxes[tid * 4 + 2] =
    +          dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 2];
    +      block_boxes[tid * 4 + 3] =
    +          dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 3];
    +    }
    +    __syncthreads();
    +
    +    if (tid < row_size) {
    +      const int cur_box_idx = threadsPerBlock * row_start + tid;
    +      const float *cur_box = dev_boxes + cur_box_idx * 4;
    +      int i = 0;
    +      unsigned long long int t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = tid + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        if (devIoU(cur_box, block_boxes + i * 4, offset, iou_threshold)) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      dev_mask[cur_box_idx * gridDim.y + col_start] = t;
    +    }
    +  }
    +}
    +
    +__global__ static void gather_keep_from_mask(bool *keep,
    +                                             const unsigned long long *dev_mask,
    +                                             const int n_boxes) {
    +  const int col_blocks = (n_boxes + threadsPerBlock - 1) / threadsPerBlock;
    +  const int tid = threadIdx.x;
    +
    +  // mark the bboxes which have been removed.
    +  extern __shared__ unsigned long long removed[];
    +
    +  // initialize removed.
    +  for (int i = tid; i < col_blocks; i += blockDim.x) {
    +    removed[i] = 0;
    +  }
    +  __syncthreads();
    +
    +  for (int nblock = 0; nblock < col_blocks; ++nblock) {
    +    auto removed_val = removed[nblock];
    +    __syncthreads();
    +    const int i_offset = nblock * threadsPerBlock;
    +#pragma unroll
    +    for (int inblock = 0; inblock < threadsPerBlock; ++inblock) {
    +      const int i = i_offset + inblock;
    +      if (i >= n_boxes) break;
    +      // select a candidate, check if it should kept.
    +      if (!(removed_val & (1ULL << inblock))) {
    +        if (tid == 0) {
    +          // mark the output.
    +          keep[i] = true;
    +        }
    +        auto p = dev_mask + i * col_blocks;
    +        // remove all bboxes which overlap the candidate.
    +        for (int j = tid; j < col_blocks; j += blockDim.x) {
    +          if (j >= nblock) removed[j] |= p[j];
    +        }
    +        __syncthreads();
    +        removed_val = removed[nblock];
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // NMS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_quadri_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_quadri_cuda.cuh
    new file mode 100644
    index 000000000..bba3b8258
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_quadri_cuda.cuh
    @@ -0,0 +1,141 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#ifndef NMS_QUADRI_CUDA_CUH
    +#define NMS_QUADRI_CUDA_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +#include "box_iou_rotated_utils.hpp"
    +
    +__host__ __device__ inline int divideUP(const int x, const int y) {
    +  return (((x) + (y)-1) / (y));
    +}
    +
    +namespace {
    +int const threadsPerBlock = sizeof(unsigned long long) * 8;
    +}
    +
    +template 
    +__global__ void nms_quadri_cuda_kernel(const int n_boxes,
    +                                       const float iou_threshold,
    +                                       const T* dev_boxes,
    +                                       unsigned long long* dev_mask,
    +                                       const int multi_label) {
    +  if (multi_label == 1) {
    +    const int row_start = blockIdx.y;
    +    const int col_start = blockIdx.x;
    +
    +    // if (row_start > col_start) return;
    +
    +    const int row_size =
    +        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    +    const int col_size =
    +        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
    +
    +    // Compared to nms_cuda_kernel, where each box is represented with 4 values
    +    // (x1, y1, x2, y2), each rotated box is represented with 8 values
    +    // (x1, y1, ..., x4, y4) here.
    +    __shared__ T block_boxes[threadsPerBlock * 8];
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 8 + 0] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 0];
    +      block_boxes[threadIdx.x * 8 + 1] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 1];
    +      block_boxes[threadIdx.x * 8 + 2] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 2];
    +      block_boxes[threadIdx.x * 8 + 3] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 3];
    +      block_boxes[threadIdx.x * 8 + 4] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 4];
    +      block_boxes[threadIdx.x * 8 + 5] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 5];
    +      block_boxes[threadIdx.x * 8 + 6] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 6];
    +      block_boxes[threadIdx.x * 8 + 7] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 9 + 7];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    +      const T* cur_box = dev_boxes + cur_box_idx * 9;
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        // Instead of devIoU used by original horizontal nms, here
    +        // we use the single_box_iou_quadri function from
    +        // box_iou_rotated_utils.h
    +        if (single_box_iou_quadri(cur_box, block_boxes + i * 8, 0) >
    +            iou_threshold) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks = divideUP(n_boxes, threadsPerBlock);
    +      dev_mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  } else {
    +    const int row_start = blockIdx.y;
    +    const int col_start = blockIdx.x;
    +
    +    // if (row_start > col_start) return;
    +
    +    const int row_size =
    +        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    +    const int col_size =
    +        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
    +
    +    // Compared to nms_cuda_kernel, where each box is represented with 4 values
    +    // (x1, y1, x2, y2), each rotated box is represented with 8 values
    +    // (x1, y1, , ..., x4, y4) here.
    +    __shared__ T block_boxes[threadsPerBlock * 8];
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 8 + 0] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 0];
    +      block_boxes[threadIdx.x * 8 + 1] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 1];
    +      block_boxes[threadIdx.x * 8 + 2] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 2];
    +      block_boxes[threadIdx.x * 8 + 3] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 3];
    +      block_boxes[threadIdx.x * 8 + 4] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 4];
    +      block_boxes[threadIdx.x * 8 + 5] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 5];
    +      block_boxes[threadIdx.x * 8 + 6] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 6];
    +      block_boxes[threadIdx.x * 8 + 7] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 8 + 7];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    +      const T* cur_box = dev_boxes + cur_box_idx * 8;
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        // Instead of devIoU used by original horizontal nms, here
    +        // we use the single_box_iou_quadri function from
    +        // box_iou_rotated_utils.h
    +        if (single_box_iou_quadri(cur_box, block_boxes + i * 8, 0) >
    +            iou_threshold) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks = divideUP(n_boxes, threadsPerBlock);
    +      dev_mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  }
    +}
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_rotated_cuda.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_rotated_cuda.cuh
    new file mode 100644
    index 000000000..747327afb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/nms_rotated_cuda.cuh
    @@ -0,0 +1,133 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/nms_rotated/nms_rotated_cuda.cu
    +#ifndef NMS_ROTATED_CUDA_CUH
    +#define NMS_ROTATED_CUDA_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +#include "box_iou_rotated_utils.hpp"
    +
    +__host__ __device__ inline int divideUP(const int x, const int y) {
    +  return (((x) + (y)-1) / (y));
    +}
    +
    +namespace {
    +int const threadsPerBlock = sizeof(unsigned long long) * 8;
    +}
    +
    +template 
    +__global__ void nms_rotated_cuda_kernel(const int n_boxes,
    +                                        const float iou_threshold,
    +                                        const T* dev_boxes,
    +                                        unsigned long long* dev_mask,
    +                                        const int multi_label) {
    +  // nms_rotated_cuda_kernel is modified from torchvision's nms_cuda_kernel
    +
    +  if (multi_label == 1) {
    +    const int row_start = blockIdx.y;
    +    const int col_start = blockIdx.x;
    +
    +    // if (row_start > col_start) return;
    +
    +    const int row_size =
    +        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    +    const int col_size =
    +        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
    +
    +    // Compared to nms_cuda_kernel, where each box is represented with 4 values
    +    // (x1, y1, x2, y2), each rotated box is represented with 5 values
    +    // (x_center, y_center, width, height, angle_degrees) here.
    +    __shared__ T block_boxes[threadsPerBlock * 5];
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 5 + 0] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 0];
    +      block_boxes[threadIdx.x * 5 + 1] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 1];
    +      block_boxes[threadIdx.x * 5 + 2] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 2];
    +      block_boxes[threadIdx.x * 5 + 3] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 3];
    +      block_boxes[threadIdx.x * 5 + 4] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 4];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    +      const T* cur_box = dev_boxes + cur_box_idx * 6;
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        // Instead of devIoU used by original horizontal nms, here
    +        // we use the single_box_iou_rotated function from
    +        // box_iou_rotated_utils.h
    +        if (single_box_iou_rotated(cur_box, block_boxes + i * 5, 0) >
    +            iou_threshold) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks = divideUP(n_boxes, threadsPerBlock);
    +      dev_mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  } else {
    +    const int row_start = blockIdx.y;
    +    const int col_start = blockIdx.x;
    +
    +    // if (row_start > col_start) return;
    +
    +    const int row_size =
    +        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    +    const int col_size =
    +        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
    +
    +    // Compared to nms_cuda_kernel, where each box is represented with 4 values
    +    // (x1, y1, x2, y2), each rotated box is represented with 5 values
    +    // (x_center, y_center, width, height, angle_degrees) here.
    +    __shared__ T block_boxes[threadsPerBlock * 5];
    +    if (threadIdx.x < col_size) {
    +      block_boxes[threadIdx.x * 5 + 0] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
    +      block_boxes[threadIdx.x * 5 + 1] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
    +      block_boxes[threadIdx.x * 5 + 2] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
    +      block_boxes[threadIdx.x * 5 + 3] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
    +      block_boxes[threadIdx.x * 5 + 4] =
    +          dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
    +    }
    +    __syncthreads();
    +
    +    if (threadIdx.x < row_size) {
    +      const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    +      const T* cur_box = dev_boxes + cur_box_idx * 5;
    +      int i = 0;
    +      unsigned long long t = 0;
    +      int start = 0;
    +      if (row_start == col_start) {
    +        start = threadIdx.x + 1;
    +      }
    +      for (i = start; i < col_size; i++) {
    +        // Instead of devIoU used by original horizontal nms, here
    +        // we use the single_box_iou_rotated function from
    +        // box_iou_rotated_utils.h
    +        if (single_box_iou_rotated(cur_box, block_boxes + i * 5, 0) >
    +            iou_threshold) {
    +          t |= 1ULL << i;
    +        }
    +      }
    +      const int col_blocks = divideUP(n_boxes, threadsPerBlock);
    +      dev_mask[cur_box_idx * col_blocks + col_start] = t;
    +    }
    +  }
    +}
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/parrots_cudawarpfunction.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/parrots_cudawarpfunction.cuh
    new file mode 100644
    index 000000000..7918a5745
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/parrots_cudawarpfunction.cuh
    @@ -0,0 +1,109 @@
    +/*
    + * Copyright (c) 2019, SenseTime.
    + */
    +
    +#ifndef INCLUDE_PARROTS_DARRAY_CUDAWARPFUNCTION_CUH_
    +#define INCLUDE_PARROTS_DARRAY_CUDAWARPFUNCTION_CUH_
    +
    +#ifndef __CUDACC__
    +#error cudawarpfunction.cuh should only be included by .cu files
    +#endif
    +#include 
    +
    +#include 
    +
    +#ifdef PARROTS_USE_HALF
    +#include 
    +#endif
    +#ifdef __CUDA_ARCH__
    +#define CUDA_INTRINSIC_FUNC(Expr) Expr
    +#else
    +#define CUDA_INTRINSIC_FUNC(Expr)
    +#endif
    +
    +#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
    +
    +#ifdef PARROTS_USE_HALF
    +
    +#if CUDA_VERSION < 9000
    +
    +__device__ inline float16 __shfl(float16 var, int srcLane, int width) {
    +  CUDA_INTRINSIC_FUNC(return __shfl(var.y, srcLane, width););
    +}
    +
    +__device__ inline float16 __shfl_up(float16 var, unsigned delta, int width) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_up(var.y, delta, width););
    +}
    +
    +__device__ inline float16 __shfl_down(float16 var, unsigned delta, int width) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_down(var.y, delta, width););
    +}
    +
    +__device__ inline float16 __shfl_xor(float16 var, int laneMask, int width) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_xor(var.y, laneMask, width););
    +}
    +
    +#else  // CUDA_VERSION >= 9000
    +
    +__device__ inline float16 __shfl_sync(unsigned mask, float16 var, int srcLane,
    +                                      int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(float16 r; r.y = __shfl_sync(mask, var.y, srcLane, width);
    +                      return r;);
    +}
    +
    +__device__ inline float16 __shfl_up_sync(unsigned mask, float16 var,
    +                                         unsigned delta, int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(
    +      float16 r; r.y = __shfl_up_sync(mask, var.y, delta, width); return r;);
    +}
    +
    +__device__ inline float16 __shfl_down_sync(unsigned mask, float16 var,
    +                                           unsigned delta,
    +                                           int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(
    +      float16 r; r.y = __shfl_down_sync(mask, var.y, delta, width); return r;);
    +}
    +
    +__device__ inline float16 __shfl_xor_sync(unsigned mask, float16 var,
    +                                          int laneMask, int width) {
    +  CUDA_INTRINSIC_FUNC(float16 r;
    +                      r.y = __shfl_xor_sync(mask, var.y, laneMask, width);
    +                      return r;);
    +}
    +
    +#endif  // CUDA_VERSION < 9000
    +
    +#endif  // PARROTS_USE_HALF
    +
    +// warp shuffle interface with a dummy mask
    +#if CUDA_VERSION < 9000
    +
    +template 
    +__device__ inline T __shfl_sync(unsigned mask, T var, int srcLane,
    +                                int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(return __shfl(var, srcLane, width););
    +}
    +
    +template 
    +__device__ inline T __shfl_up_sync(unsigned mask, T var, unsigned delta,
    +                                   int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_up(var, delta, width););
    +}
    +
    +template 
    +__device__ inline T __shfl_down_sync(unsigned mask, T var, unsigned delta,
    +                                     int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_down(var, delta, width););
    +}
    +
    +template 
    +__device__ inline T __shfl_xor_sync(unsigned mask, T var, int laneMask,
    +                                    int width = warpSize) {
    +  CUDA_INTRINSIC_FUNC(return __shfl_xor(var, laneMask, width););
    +}
    +
    +#endif  // CUDA_VERSION < 9000
    +
    +#endif  // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
    +
    +#endif  // INCLUDE_PARROTS_DARRAY_CUDAWARPFUNCTION_CUH_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_boxes_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_boxes_cuda_kernel.cuh
    new file mode 100644
    index 000000000..342362079
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_boxes_cuda_kernel.cuh
    @@ -0,0 +1,95 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef POINT_IN_BOXES_CUDA_KERNEL_CUH
    +#define POINT_IN_BOXES_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__device__ inline void lidar_to_local_coords(T shift_x, T shift_y, T rz,
    +                                             T &local_x, T &local_y) {
    +  T cosa = cos(-rz), sina = sin(-rz);
    +  local_x = shift_x * cosa + shift_y * (-sina);
    +  local_y = shift_x * sina + shift_y * cosa;
    +}
    +
    +template 
    +__device__ inline int check_pt_in_box3d(const T *pt, const T *box3d, T &local_x,
    +                                        T &local_y) {
    +  // param pt: (x, y, z)
    +  // param box3d: (cx, cy, cz, x_size, y_size, z_size, rz) in LiDAR coordinate,
    +  // cz in the bottom center
    +  T x = pt[0], y = pt[1], z = pt[2];
    +  T cx = box3d[0], cy = box3d[1], cz = box3d[2];
    +  T x_size = box3d[3], y_size = box3d[4], z_size = box3d[5], rz = box3d[6];
    +  cz += z_size /
    +        2.0;  // shift to the center since cz in box3d is the bottom center
    +
    +  if (fabsf(z - cz) > z_size / 2.0) return 0;
    +  lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y);
    +  float in_flag = (local_x > -x_size / 2.0) & (local_x < x_size / 2.0) &
    +                  (local_y > -y_size / 2.0) & (local_y < y_size / 2.0);
    +  return in_flag;
    +}
    +
    +template 
    +__global__ void points_in_boxes_part_forward_cuda_kernel(
    +    int batch_size, int boxes_num, int pts_num, const T *boxes, const T *pts,
    +    int *box_idx_of_points) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box DO NOT overlaps params pts:
    +  // (B, npoints, 3) [x, y, z] in LiDAR coordinate params boxes_idx_of_points:
    +  // (B, npoints), default -1
    +
    +  int bs_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, pts_num) {
    +    if (bs_idx >= batch_size) return;
    +
    +    boxes += bs_idx * boxes_num * 7;
    +    pts += bs_idx * pts_num * 3 + pt_idx * 3;
    +    box_idx_of_points += bs_idx * pts_num + pt_idx;
    +
    +    T local_x = 0, local_y = 0;
    +    int cur_in_flag = 0;
    +    for (int k = 0; k < boxes_num; k++) {
    +      cur_in_flag = check_pt_in_box3d(pts, boxes + k * 7, local_x, local_y);
    +      if (cur_in_flag) {
    +        box_idx_of_points[0] = k;
    +        break;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void points_in_boxes_all_forward_cuda_kernel(
    +    int batch_size, int boxes_num, int pts_num, const T *boxes, const T *pts,
    +    int *box_idx_of_points) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box DO NOT overlaps params pts:
    +  // (B, npoints, 3) [x, y, z] in LiDAR coordinate params boxes_idx_of_points:
    +  // (B, npoints), default -1
    +
    +  int bs_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, pts_num) {
    +    if (bs_idx >= batch_size) return;
    +
    +    boxes += bs_idx * boxes_num * 7;
    +    pts += bs_idx * pts_num * 3 + pt_idx * 3;
    +    box_idx_of_points += bs_idx * pts_num * boxes_num + pt_idx * boxes_num;
    +
    +    T local_x = 0, local_y = 0;
    +    for (int k = 0; k < boxes_num; k++) {
    +      const int cur_in_flag =
    +          check_pt_in_box3d(pts, boxes + k * 7, local_x, local_y);
    +      if (cur_in_flag) {
    +        box_idx_of_points[k] = 1;
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // POINT_IN_BOXES_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_polygons_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_polygons_cuda_kernel.cuh
    new file mode 100644
    index 000000000..a0769d75a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/points_in_polygons_cuda_kernel.cuh
    @@ -0,0 +1,79 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef POINTS_IN_POLYGONS_CUDA_KERNEL_CUH
    +#define POINTS_IN_POLYGONS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +struct point {
    +  float x, y;
    +};
    +
    +template 
    +__global__ void points_in_polygons_forward_cuda_kernel(
    +    const int nthreads, const scalar_t *vertex1, const scalar_t *vertex2,
    +    const int rows, const int cols, scalar_t *inside_flag) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int row = index / cols;
    +    int col = index % cols;
    +
    +    const scalar_t *offset_vertex1 = vertex1 + row * 2;
    +    const scalar_t *offset_vertex2 = vertex2 + col * 8;
    +
    +    point point_[1];
    +    point polygon[4];
    +
    +    point_[0].x = offset_vertex1[0];
    +    point_[0].y = offset_vertex1[1];
    +
    +    polygon[0].x = offset_vertex2[0];
    +    polygon[0].y = offset_vertex2[1];
    +    polygon[1].x = offset_vertex2[2];
    +    polygon[1].y = offset_vertex2[3];
    +    polygon[2].x = offset_vertex2[4];
    +    polygon[2].y = offset_vertex2[5];
    +    polygon[3].x = offset_vertex2[6];
    +    polygon[3].y = offset_vertex2[7];
    +
    +    int nCross = 0;
    +    int i, j;
    +    float sx, sy, tx, ty, px, py, x;
    +    for (i = 0, j = 3; i < 4; j = i, i++) {
    +      sx = polygon[i].x;
    +      sy = polygon[i].y;
    +      tx = polygon[j].x;
    +      ty = polygon[j].y;
    +
    +      px = point_[0].x;
    +      py = point_[0].y;
    +
    +      if (py < min(sy, ty)) continue;
    +      if (py > max(sy, ty)) continue;
    +
    +      if ((sx == px && sy == py) || (tx == px && ty == py)) {
    +        break;
    +      } else {
    +        if ((sy < py && ty >= py) || (sy >= py && ty < py)) {
    +          x = sx + (py - sy) * (tx - sx) / (ty - sy);
    +          if (x == px) {
    +            break;
    +          }
    +          if (x > px) {
    +            nCross++;
    +          }
    +        }
    +      }
    +    }
    +    if (nCross % 2 == 1) {
    +      inside_flag[index] = 1.0;
    +    } else {
    +      inside_flag[index] = 0.0;
    +    }
    +    return;
    +  }
    +}
    +
    +#endif  // POINTS_IN_POLYGONS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/prroi_pool_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/prroi_pool_cuda_kernel.cuh
    new file mode 100644
    index 000000000..e2f5a11b8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/prroi_pool_cuda_kernel.cuh
    @@ -0,0 +1,381 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/vacancy/PreciseRoIPooling/blob/master/src/prroi_pooling_gpu_impl.cu
    +// Distributed under terms of the MIT license.
    +#ifndef PRROI_POOL_CUDA_KERNEL_CUH
    +#define PRROI_POOL_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__device__ static __forceinline__ T PrRoIPoolingGetData(const T *data,
    +                                                        const int h,
    +                                                        const int w,
    +                                                        const int height,
    +                                                        const int width) {
    +  bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
    +  T retVal = overflow ? 0.0f : data[h * width + w];
    +  return retVal;
    +}
    +
    +template 
    +__device__ static __forceinline__ T PrRoIPoolingGetCoeff(T dh, T dw) {
    +  return (1.0f - abs(dh)) * (1.0f - abs(dw));
    +}
    +
    +template 
    +__device__ static __forceinline__ T PrRoIPoolingSingleCoorIntegral(T s, T t,
    +                                                                   T c1, T c2) {
    +  return 0.5 * (t * t - s * s) * (c2 - c1) + (t - s) * c1;
    +}
    +
    +template 
    +__device__ static T PrRoIPoolingInterpolation(const T *data, const T h,
    +                                              const T w, const int height,
    +                                              const int width) {
    +  T retVal = 0.0f;
    +  int h1 = floorf(h);
    +  int w1 = floorf(w);
    +  retVal += PrRoIPoolingGetData(data, h1, w1, height, width) *
    +            PrRoIPoolingGetCoeff(h - T(h1), w - T(w1));
    +  h1 = floorf(h) + 1;
    +  w1 = floorf(w);
    +  retVal += PrRoIPoolingGetData(data, h1, w1, height, width) *
    +            PrRoIPoolingGetCoeff(h - T(h1), w - T(w1));
    +  h1 = floorf(h);
    +  w1 = floorf(w) + 1;
    +  retVal += PrRoIPoolingGetData(data, h1, w1, height, width) *
    +            PrRoIPoolingGetCoeff(h - T(h1), w - T(w1));
    +  h1 = floorf(h) + 1;
    +  w1 = floorf(w) + 1;
    +  retVal += PrRoIPoolingGetData(data, h1, w1, height, width) *
    +            PrRoIPoolingGetCoeff(h - T(h1), w - T(w1));
    +  return retVal;
    +}
    +
    +template 
    +__device__ static T PrRoIPoolingMatCalculation(const T *this_data,
    +                                               const int s_h, const int s_w,
    +                                               const int e_h, const int e_w,
    +                                               const T y0, const T x0,
    +                                               const T y1, const T x1,
    +                                               const int h0, const int w0) {
    +  T alpha, beta, lim_alpha, lim_beta, tmp;
    +  T sum_out = 0;
    +
    +  alpha = x0 - T(s_w);
    +  beta = y0 - T(s_h);
    +  lim_alpha = x1 - T(s_w);
    +  lim_beta = y1 - T(s_h);
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  sum_out += PrRoIPoolingGetData(this_data, s_h, s_w, h0, w0) * tmp;
    +
    +  alpha = T(e_w) - x1;
    +  lim_alpha = T(e_w) - x0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  sum_out += PrRoIPoolingGetData(this_data, s_h, e_w, h0, w0) * tmp;
    +
    +  alpha = x0 - T(s_w);
    +  beta = T(e_h) - y1;
    +  lim_alpha = x1 - T(s_w);
    +  lim_beta = T(e_h) - y0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  sum_out += PrRoIPoolingGetData(this_data, e_h, s_w, h0, w0) * tmp;
    +
    +  alpha = T(e_w) - x1;
    +  lim_alpha = T(e_w) - x0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  sum_out += PrRoIPoolingGetData(this_data, e_h, e_w, h0, w0) * tmp;
    +
    +  return sum_out;
    +}
    +
    +template 
    +__device__ static void PrRoIPoolingDistributeDiff(T *diff, const T top_diff,
    +                                                  const int h, const int w,
    +                                                  const int height,
    +                                                  const int width,
    +                                                  const T coeff) {
    +  bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
    +  if (!overflow) atomicAdd(diff + h * width + w, top_diff * coeff);
    +}
    +
    +template 
    +__device__ static void PrRoIPoolingMatDistributeDiff(
    +    T *diff, const T top_diff, const int s_h, const int s_w, const int e_h,
    +    const int e_w, const T y0, const T x0, const T y1, const T x1, const int h0,
    +    const int w0) {
    +  T alpha, beta, lim_alpha, lim_beta, tmp;
    +
    +  alpha = x0 - T(s_w);
    +  beta = y0 - T(s_h);
    +  lim_alpha = x1 - T(s_w);
    +  lim_beta = y1 - T(s_h);
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  PrRoIPoolingDistributeDiff(diff, top_diff, s_h, s_w, h0, w0, tmp);
    +
    +  alpha = T(e_w) - x1;
    +  lim_alpha = T(e_w) - x0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  PrRoIPoolingDistributeDiff(diff, top_diff, s_h, e_w, h0, w0, tmp);
    +
    +  alpha = x0 - T(s_w);
    +  beta = T(e_h) - y1;
    +  lim_alpha = x1 - T(s_w);
    +  lim_beta = T(e_h) - y0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  PrRoIPoolingDistributeDiff(diff, top_diff, e_h, s_w, h0, w0, tmp);
    +
    +  alpha = T(e_w) - x1;
    +  lim_alpha = T(e_w) - x0;
    +  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
    +         0.5f * alpha * alpha) *
    +        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    +  PrRoIPoolingDistributeDiff(diff, top_diff, e_h, e_w, h0, w0, tmp);
    +}
    +
    +template 
    +__global__ void prroi_pool_forward_cuda_kernel(
    +    const int nthreads, const T *input, const T *rois, T *output,
    +    const int pooled_height, const int pooled_width, const T spatial_scale,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T *offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    T roi_x1 = offset_rois[1] * spatial_scale;
    +    T roi_y1 = offset_rois[2] * spatial_scale;
    +    T roi_x2 = offset_rois[3] * spatial_scale;
    +    T roi_y2 = offset_rois[4] * spatial_scale;
    +
    +    T roi_width = max(roi_x2 - roi_x1, ((T)0.0));
    +    T roi_height = max(roi_y2 - roi_y1, ((T)0.0));
    +    T bin_size_h = roi_height / static_cast(pooled_height);
    +    T bin_size_w = roi_width / static_cast(pooled_width);
    +
    +    const T *this_data =
    +        input + (roi_batch_ind * channels + c) * height * width;
    +    T *this_out = output + index;
    +
    +    T bin_x1 = roi_x1 + bin_size_w * pw;
    +    T bin_y1 = roi_y1 + bin_size_h * ph;
    +    T bin_x2 = bin_x1 + bin_size_w;
    +    T bin_y2 = bin_y1 + bin_size_h;
    +
    +    T bin_size = max(T(0.0), bin_size_w * bin_size_h);
    +    if (bin_size == 0) {
    +      *this_out = 0;
    +      continue;
    +    }
    +
    +    T sum_out = 0;
    +
    +    int start_x, start_y, end_x, end_y;
    +
    +    start_x = floorf(bin_x1);
    +    end_x = ceilf(bin_x2);
    +    start_y = floorf(bin_y1);
    +    end_y = ceilf(bin_y2);
    +
    +    for (int bin_x = start_x; bin_x < end_x; ++bin_x)
    +      for (int bin_y = start_y; bin_y < end_y; ++bin_y)
    +        sum_out += PrRoIPoolingMatCalculation(
    +            this_data, bin_y, bin_x, bin_y + 1, bin_x + 1,
    +            max(bin_y1, T(bin_y)), max(bin_x1, T(bin_x)),
    +            min(bin_y2, T(bin_y) + 1.0f), min(bin_x2, T(bin_x + 1.0f)), height,
    +            width);
    +    *this_out = sum_out / bin_size;
    +  }
    +}
    +
    +template 
    +__global__ void prroi_pool_backward_cuda_kernel(
    +    const int nthreads, const T *grad_output, const T *rois, T *grad_input,
    +    const int pooled_height, const int pooled_width, const T spatial_scale,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +    auto rois_cur = rois + n * 5;
    +
    +    int roi_batch_ind = rois_cur[0];
    +    T roi_x1 = rois_cur[1] * spatial_scale;
    +    T roi_y1 = rois_cur[2] * spatial_scale;
    +    T roi_x2 = rois_cur[3] * spatial_scale;
    +    T roi_y2 = rois_cur[4] * spatial_scale;
    +
    +    T roi_width = max(roi_x2 - roi_x1, (T)0);
    +    T roi_height = max(roi_y2 - roi_y1, (T)0);
    +    T bin_size_h = roi_height / static_cast(pooled_height);
    +    T bin_size_w = roi_width / static_cast(pooled_width);
    +
    +    const T *this_out_grad = grad_output + index;
    +    T *this_data_grad =
    +        grad_input + (roi_batch_ind * channels + c) * height * width;
    +
    +    T bin_x1 = roi_x1 + bin_size_w * pw;
    +    T bin_y1 = roi_y1 + bin_size_h * ph;
    +    T bin_x2 = bin_x1 + bin_size_w;
    +    T bin_y2 = bin_y1 + bin_size_h;
    +
    +    T bin_size = max(T(0.0), bin_size_w * bin_size_h);
    +
    +    T sum_out = bin_size == T(0) ? T(0) : *this_out_grad / bin_size;
    +
    +    int start_x, start_y, end_x, end_y;
    +
    +    start_x = floorf(bin_x1);
    +    end_x = ceilf(bin_x2);
    +    start_y = floorf(bin_y1);
    +    end_y = ceilf(bin_y2);
    +
    +    for (int bin_x = start_x; bin_x < end_x; ++bin_x)
    +      for (int bin_y = start_y; bin_y < end_y; ++bin_y)
    +        PrRoIPoolingMatDistributeDiff(
    +            this_data_grad, sum_out, bin_y, bin_x, bin_y + 1, bin_x + 1,
    +            max(bin_y1, T(bin_y)), max(bin_x1, T(bin_x)),
    +            min(bin_y2, T(bin_y) + 1.0f), min(bin_x2, T(bin_x + 1.0f)), height,
    +            width);
    +  }
    +}
    +
    +template 
    +__global__ void prroi_pool_coor_backward_cuda_kernel(
    +    const int nthreads, const T *output, const T *grad_output, const T *input,
    +    const T *rois, T *grad_rois, const int pooled_height,
    +    const int pooled_width, const T spatial_scale, const int channels,
    +    const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +    auto rois_cur = rois + n * 5;
    +
    +    int roi_batch_ind = rois_cur[0];
    +    T roi_x1 = rois_cur[1] * spatial_scale;
    +    T roi_y1 = rois_cur[2] * spatial_scale;
    +    T roi_x2 = rois_cur[3] * spatial_scale;
    +    T roi_y2 = rois_cur[4] * spatial_scale;
    +
    +    T roi_width = max(roi_x2 - roi_x1, (T)0);
    +    T roi_height = max(roi_y2 - roi_y1, (T)0);
    +    T bin_size_h = roi_height / static_cast(pooled_height);
    +    T bin_size_w = roi_width / static_cast(pooled_width);
    +
    +    const T output_grad_val = grad_output[index];
    +    const T *this_input_data =
    +        input + (roi_batch_ind * channels + c) * height * width;
    +    const T output_val = output[index];
    +    T *this_rois_grad = grad_rois + n * 5;
    +
    +    T bin_x1 = roi_x1 + bin_size_w * pw;
    +    T bin_y1 = roi_y1 + bin_size_h * ph;
    +    T bin_x2 = bin_x1 + bin_size_w;
    +    T bin_y2 = bin_y1 + bin_size_h;
    +
    +    T bin_size = max(T(0.0), bin_size_w * bin_size_h);
    +
    +    T sum_out = bin_size == T(0) ? T(0) : output_grad_val / bin_size;
    +
    +    // WARNING: to be discussed
    +    if (sum_out == 0) continue;
    +
    +    int start_x, start_y, end_x, end_y;
    +
    +    start_x = floorf(bin_x1);
    +    end_x = ceilf(bin_x2);
    +    start_y = floorf(bin_y1);
    +    end_y = ceilf(bin_y2);
    +
    +    T grad_x1_y = 0, grad_x2_y = 0, grad_x_y1 = 0, grad_x_y2 = 0;
    +    for (int bin_y = start_y; bin_y < end_y; ++bin_y) {
    +      grad_x1_y += PrRoIPoolingSingleCoorIntegral(
    +          max(bin_y1, T(bin_y)) - bin_y, min(bin_y2, T(bin_y + 1)) - bin_y,
    +          PrRoIPoolingInterpolation(this_input_data, float(bin_y), bin_x1,
    +                                    height, width),
    +          PrRoIPoolingInterpolation(this_input_data, float(bin_y + 1), bin_x1,
    +                                    height, width));
    +
    +      grad_x2_y += PrRoIPoolingSingleCoorIntegral(
    +          max(bin_y1, T(bin_y)) - bin_y, min(bin_y2, T(bin_y + 1)) - bin_y,
    +          PrRoIPoolingInterpolation(this_input_data, float(bin_y), bin_x2,
    +                                    height, width),
    +          PrRoIPoolingInterpolation(this_input_data, float(bin_y + 1), bin_x2,
    +                                    height, width));
    +    }
    +
    +    for (int bin_x = start_x; bin_x < end_x; ++bin_x) {
    +      grad_x_y1 += PrRoIPoolingSingleCoorIntegral(
    +          max(bin_x1, T(bin_x)) - bin_x, min(bin_x2, T(bin_x + 1)) - bin_x,
    +          PrRoIPoolingInterpolation(this_input_data, bin_y1, float(bin_x),
    +                                    height, width),
    +          PrRoIPoolingInterpolation(this_input_data, bin_y1, float(bin_x + 1),
    +                                    height, width));
    +
    +      grad_x_y2 += PrRoIPoolingSingleCoorIntegral(
    +          max(bin_x1, T(bin_x)) - bin_x, min(bin_x2, T(bin_x + 1)) - bin_x,
    +          PrRoIPoolingInterpolation(this_input_data, bin_y2, float(bin_x),
    +                                    height, width),
    +          PrRoIPoolingInterpolation(this_input_data, bin_y2, float(bin_x + 1),
    +                                    height, width));
    +    }
    +
    +    T partial_x1 = -grad_x1_y + (bin_y2 - bin_y1) * output_val;
    +    T partial_y1 = -grad_x_y1 + (bin_x2 - bin_x1) * output_val;
    +    T partial_x2 = grad_x2_y - (bin_y2 - bin_y1) * output_val;
    +    T partial_y2 = grad_x_y2 - (bin_x2 - bin_x1) * output_val;
    +
    +    partial_x1 = partial_x1 / bin_size * spatial_scale;
    +    partial_x2 = partial_x2 / bin_size * spatial_scale;
    +    partial_y1 = partial_y1 / bin_size * spatial_scale;
    +    partial_y2 = partial_y2 / bin_size * spatial_scale;
    +
    +    // (index, x1, y1, x2, y2)
    +    this_rois_grad[0] = 0;
    +    atomicAdd(this_rois_grad + 1,
    +              (partial_x1 * (1.0f - T(pw) / pooled_width) +
    +               partial_x2 * (1.0f - T(pw + 1) / pooled_width)) *
    +                  output_grad_val);
    +    atomicAdd(this_rois_grad + 2,
    +              (partial_y1 * (1.0f - T(ph) / pooled_height) +
    +               partial_y2 * (1.0f - T(ph + 1) / pooled_height)) *
    +                  output_grad_val);
    +    atomicAdd(this_rois_grad + 3, (partial_x2 * T(pw + 1) / pooled_width +
    +                                   partial_x1 * T(pw) / pooled_width) *
    +                                      output_grad_val);
    +    atomicAdd(this_rois_grad + 4, (partial_y2 * T(ph + 1) / pooled_height +
    +                                   partial_y1 * T(ph) / pooled_height) *
    +                                      output_grad_val);
    +  }
    +}
    +
    +#endif  // ROI_POOL_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/psamask_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/psamask_cuda_kernel.cuh
    new file mode 100644
    index 000000000..5d946686b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/psamask_cuda_kernel.cuh
    @@ -0,0 +1,141 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef PSAMASK_CUDA_KERNEL_CUH
    +#define PSAMASK_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +// CUDA: grid stride looping
    +#ifndef CUDA_KERNEL_LOOP
    +#define CUDA_KERNEL_LOOP(i, n)                                 \
    +  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
    +       i += blockDim.x * gridDim.x)
    +#endif
    +
    +template 
    +__global__ void psamask_collect_forward_cuda(
    +    const int nthreads, const int h_feature, const int w_feature,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask, const T* mask_data, T* buffer_data) {
    +  CUDA_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % w_feature;
    +    const int h = (index / w_feature) % h_feature;
    +    const int n = index / w_feature / h_feature;
    +    // effective mask region : [hstart, hend) x [wstart, wend) with mask-indexed
    +    const int hstart = max(0, half_h_mask - h);
    +    const int hend = min(h_mask, h_feature + half_h_mask - h);
    +    const int wstart = max(0, half_w_mask - w);
    +    const int wend = min(w_mask, w_feature + half_w_mask - w);
    +    // (hidx,                    widx                   ) with mask-indexed
    +    // (hidx + h - half_h_mask, widx + w - half_w_mask) with feature-indexed
    +    for (int hidx = hstart; hidx < hend; hidx++) {
    +      for (int widx = wstart; widx < wend; widx++) {
    +        buffer_data[(n * h_feature * w_feature +
    +                     (hidx + h - half_h_mask) * w_feature +
    +                     (widx + w - half_w_mask)) *
    +                        h_feature * w_feature +
    +                    h * w_feature + w] = mask_data
    +            [((n * h_mask * w_mask + hidx * w_mask + widx) * h_feature + h) *
    +                 w_feature +
    +             w];
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void psamask_distribute_forward_cuda(
    +    const int nthreads, const int h_feature, const int w_feature,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask, const T* mask_data, T* buffer_data) {
    +  CUDA_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % w_feature;
    +    const int h = (index / w_feature) % h_feature;
    +    const int n = index / w_feature / h_feature;
    +    // effective mask region : [hstart, hend) x [wstart, wend) with mask-indexed
    +    const int hstart = max(0, half_h_mask - h);
    +    const int hend = min(h_mask, h_feature + half_h_mask - h);
    +    const int wstart = max(0, half_w_mask - w);
    +    const int wend = min(w_mask, w_feature + half_w_mask - w);
    +    // (hidx,                    widx                   ) with mask-indexed
    +    // (hidx + h - half_h_mask, widx + w - half_w_mask) with feature-indexed
    +    for (int hidx = hstart; hidx < hend; hidx++) {
    +      for (int widx = wstart; widx < wend; widx++) {
    +        buffer_data[(n * h_feature * w_feature + h * w_feature + w) *
    +                        h_feature * w_feature +
    +                    (hidx + h - half_h_mask) * w_feature +
    +                    (widx + w - half_w_mask)] = mask_data
    +            [((n * h_mask * w_mask + hidx * w_mask + widx) * h_feature + h) *
    +                 w_feature +
    +             w];
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void psamask_collect_backward_cuda(
    +    const int nthreads, const int h_feature, const int w_feature,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask, const T* buffer_diff, T* mask_diff) {
    +  CUDA_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % w_feature;
    +    const int h = (index / w_feature) % h_feature;
    +    const int n = index / w_feature / h_feature;
    +    // effective mask region : [hstart, hend) x [wstart, wend) with mask-indexed
    +    const int hstart = max(0, half_h_mask - h);
    +    const int hend = min(h_mask, h_feature + half_h_mask - h);
    +    const int wstart = max(0, half_w_mask - w);
    +    const int wend = min(w_mask, w_feature + half_w_mask - w);
    +    // (hidx,                    widx                   ) with mask-indexed
    +    // (hidx + h - half_h_mask, widx + w - half_w_mask) with feature-indexed
    +    for (int hidx = hstart; hidx < hend; hidx++) {
    +      for (int widx = wstart; widx < wend; widx++) {
    +        mask_diff[((n * h_mask * w_mask + hidx * w_mask + widx) * h_feature +
    +                   h) *
    +                      w_feature +
    +                  w] = buffer_diff[(n * h_feature * w_feature +
    +                                    (hidx + h - half_h_mask) * w_feature +
    +                                    (widx + w - half_w_mask)) *
    +                                       h_feature * w_feature +
    +                                   h * w_feature + w];
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void psamask_distribute_backward_cuda(
    +    const int nthreads, const int h_feature, const int w_feature,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask, const T* buffer_diff, T* mask_diff) {
    +  CUDA_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % w_feature;
    +    const int h = (index / w_feature) % h_feature;
    +    const int n = index / w_feature / h_feature;
    +    // effective mask region : [hstart, hend) x [wstart, wend) with mask-indexed
    +    const int hstart = max(0, half_h_mask - h);
    +    const int hend = min(h_mask, h_feature + half_h_mask - h);
    +    const int wstart = max(0, half_w_mask - w);
    +    const int wend = min(w_mask, w_feature + half_w_mask - w);
    +    // (hidx,                    widx                   ) with mask-indexed
    +    // (hidx + h - half_h_mask, widx + w - half_w_mask) with feature-indexed
    +    for (int hidx = hstart; hidx < hend; hidx++) {
    +      for (int widx = wstart; widx < wend; widx++) {
    +        mask_diff[((n * h_mask * w_mask + hidx * w_mask + widx) * h_feature +
    +                   h) *
    +                      w_feature +
    +                  w] =
    +            buffer_diff[(n * h_feature * w_feature + h * w_feature + w) *
    +                            h_feature * w_feature +
    +                        (hidx + h - half_h_mask) * w_feature +
    +                        (widx + w - half_w_mask)];
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // PSAMASK_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/riroi_align_rotated_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/riroi_align_rotated_cuda_kernel.cuh
    new file mode 100644
    index 000000000..4383d9e82
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/riroi_align_rotated_cuda_kernel.cuh
    @@ -0,0 +1,242 @@
    +// Modified from
    +// https://github.com/csuhan/ReDet/blob/master/mmdet/ops/riroi_align/src/riroi_align_kernel.cu
    +#ifndef RIROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    +#define RIROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +
    +/*** Forward ***/
    +template 
    +__global__ void riroi_align_rotated_forward_cuda_kernel(
    +    const int nthreads, const scalar_t *bottom_data,
    +    const scalar_t *bottom_rois, const scalar_t spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int pooled_height,
    +    const int pooled_width, const int num_orientations, scalar_t *top_data) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int o = (index / pooled_width / pooled_height) % num_orientations;
    +    int c =
    +        (index / pooled_width / pooled_height / num_orientations) % channels;
    +    int n = index / pooled_width / pooled_height / num_orientations / channels;
    +
    +    const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
    +    int roi_batch_ind = offset_bottom_rois[0];
    +
    +    // Do not using rounding; this implementation detail is critical
    +    scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale;
    +    scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale;
    +    scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
    +    scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
    +    // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
    +    scalar_t theta = offset_bottom_rois[5];
    +    // Force malformed ROIs to be 1x1
    +    roi_width = max(roi_width, (scalar_t)1.);
    +    roi_height = max(roi_height, (scalar_t)1.);
    +    scalar_t bin_size_h = static_cast(roi_height) /
    +                          static_cast(pooled_height);
    +    scalar_t bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // find aligned index
    +    scalar_t ind_float = theta * num_orientations / (2 * M_PI);
    +    int ind = floorf(ind_float);
    +    scalar_t l_var = ind_float - (scalar_t)ind;
    +    scalar_t r_var = 1.0 - l_var;
    +    // correct start channel
    +    ind = (ind + num_orientations) % num_orientations;
    +    // rotated channel
    +    int ind_rot = (o - ind + num_orientations) % num_orientations;
    +    int ind_rot_plus = (ind_rot + 1 + num_orientations) % num_orientations;
    +    const scalar_t *offset_bottom_data =
    +        bottom_data + (roi_batch_ind * channels * num_orientations +
    +                       c * num_orientations + ind_rot) *
    +                          height * width;
    +
    +    const scalar_t *offset_bottom_data_plus =
    +        bottom_data + (roi_batch_ind * channels * num_orientations +
    +                       c * num_orientations + ind_rot_plus) *
    +                          height * width;
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (num_samples > 0)
    +                             ? num_samples
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (num_samples > 0) ? num_samples : ceilf(roi_width / pooled_width);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    scalar_t roi_start_h = -roi_height / 2.0;
    +    scalar_t roi_start_w = -roi_width / 2.0;
    +    scalar_t cosscalar_theta = cos(theta);
    +    scalar_t sinscalar_theta = sin(theta);
    +
    +    // We do average (integral) pooling inside a bin
    +    const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    scalar_t output_val = 0.;
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
    +      const scalar_t yy =
    +          roi_start_h + ph * bin_size_h +
    +          static_cast(iy + .5f) * bin_size_h /
    +              static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const scalar_t xx = roi_start_w + pw * bin_size_w +
    +                            static_cast(ix + .5f) * bin_size_w /
    +                                static_cast(roi_bin_grid_w);
    +
    +        // Rotate by theta (counterclockwise) around the center and translate
    +        scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h;
    +        scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w;
    +
    +        scalar_t val = bilinear_interpolate(
    +            offset_bottom_data, height, width, y, x, index);
    +        scalar_t val_plus = bilinear_interpolate(
    +            offset_bottom_data_plus, height, width, y, x, index);
    +        output_val += r_var * val + l_var * val_plus;
    +      }
    +    }
    +    output_val /= count;
    +
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +/*** Backward ***/
    +template 
    +__global__ void riroi_align_rotated_backward_cuda_kernel(
    +    const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois,
    +    const scalar_t spatial_scale, const int num_samples, const bool clockwise,
    +    const int channels, const int height, const int width,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    scalar_t *bottom_diff) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int o = (index / pooled_width / pooled_height) % num_orientations;
    +    int c =
    +        (index / pooled_width / pooled_height / num_orientations) % channels;
    +    int n = index / pooled_width / pooled_height / num_orientations / channels;
    +
    +    const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
    +    int roi_batch_ind = offset_bottom_rois[0];
    +
    +    // Do not round
    +    scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale;
    +    scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale;
    +    scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
    +    scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
    +    // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
    +    scalar_t theta = offset_bottom_rois[5];
    +    // Force malformed ROIs to be 1x1
    +    roi_width = max(roi_width, (scalar_t)1.);
    +    roi_height = max(roi_height, (scalar_t)1.);
    +
    +    scalar_t bin_size_h = static_cast(roi_height) /
    +                          static_cast(pooled_height);
    +    scalar_t bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // find aligned index
    +    scalar_t ind_float = theta * num_orientations / (2 * M_PI);
    +    int ind = floorf(ind_float);
    +    scalar_t l_var = ind_float - (scalar_t)ind;
    +    scalar_t r_var = 1.0 - l_var;
    +    // correct start channel
    +    ind = (ind + num_orientations) % num_orientations;
    +    // rotated channel
    +    int ind_rot = (o - ind + num_orientations) % num_orientations;
    +    int ind_rot_plus = (ind_rot + 1 + num_orientations) % num_orientations;
    +    scalar_t *offset_bottom_diff =
    +        bottom_diff + (roi_batch_ind * channels * num_orientations +
    +                       c * num_orientations + ind_rot) *
    +                          height * width;
    +    scalar_t *offset_bottom_diff_plus =
    +        bottom_diff + (roi_batch_ind * channels * num_orientations +
    +                       c * num_orientations + ind_rot_plus) *
    +                          height * width;
    +    int top_offset =
    +        (n * channels * num_orientations + c * num_orientations + o) *
    +        pooled_height * pooled_width;
    +    const scalar_t *offset_top_diff = top_diff + top_offset;
    +    const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (num_samples > 0)
    +                             ? num_samples
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (num_samples > 0) ? num_samples : ceilf(roi_width / pooled_width);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    scalar_t roi_start_h = -roi_height / 2.0;
    +    scalar_t roi_start_w = -roi_width / 2.0;
    +    scalar_t cosTheta = cos(theta);
    +    scalar_t sinTheta = sin(theta);
    +
    +    // We do average (integral) pooling inside a bin
    +    const scalar_t count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
    +      const scalar_t yy =
    +          roi_start_h + ph * bin_size_h +
    +          static_cast(iy + .5f) * bin_size_h /
    +              static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const scalar_t xx = roi_start_w + pw * bin_size_w +
    +                            static_cast(ix + .5f) * bin_size_w /
    +                                static_cast(roi_bin_grid_w);
    +
    +        // Rotate by theta around the center and translate
    +        scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h;
    +        scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w;
    +
    +        scalar_t w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3,
    +                                                w4, x_low, x_high, y_low,
    +                                                y_high, index);
    +
    +        scalar_t g1 = top_diff_this_bin * w1 / count;
    +        scalar_t g2 = top_diff_this_bin * w2 / count;
    +        scalar_t g3 = top_diff_this_bin * w3 / count;
    +        scalar_t g4 = top_diff_this_bin * w4 / count;
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          atomicAdd(offset_bottom_diff + y_low * width + x_low, g1 * r_var);
    +          atomicAdd(offset_bottom_diff + y_low * width + x_high, g2 * r_var);
    +          atomicAdd(offset_bottom_diff + y_high * width + x_low, g3 * r_var);
    +          atomicAdd(offset_bottom_diff + y_high * width + x_high, g4 * r_var);
    +
    +          atomicAdd(offset_bottom_diff_plus + y_low * width + x_low,
    +                    g1 * l_var);
    +          atomicAdd(offset_bottom_diff_plus + y_low * width + x_high,
    +                    g2 * l_var);
    +          atomicAdd(offset_bottom_diff_plus + y_high * width + x_low,
    +                    g3 * l_var);
    +          atomicAdd(offset_bottom_diff_plus + y_high * width + x_high,
    +                    g4 * l_var);
    +
    +        }  // if
    +      }    // ix
    +    }      // iy
    +  }        // CUDA_1D_KERNEL_LOOP
    +}  // RiRoIAlignBackward
    +
    +#endif  // RIROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_cuda_kernel.cuh
    new file mode 100644
    index 000000000..4541462af
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_cuda_kernel.cuh
    @@ -0,0 +1,212 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROI_ALIGN_CUDA_KERNEL_CUH
    +#define ROI_ALIGN_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +/*** Forward ***/
    +template 
    +__global__ void roi_align_forward_cuda_kernel(
    +    const int nthreads, const T* input, const T* rois, T* output, T* argmax_y,
    +    T* argmax_x, const int pooled_height, const int pooled_width,
    +    const T spatial_scale, const int sampling_ratio,
    +    const int pool_mode,  // 0 - max pool, 1 - avg pool
    +    const bool aligned, const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    // Do not using rounding; this implementation detail is critical
    +    T offset = aligned ? (T)0.5 : (T)0.0;
    +    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    +    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    +    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    +    T roi_end_h = offset_rois[4] * spatial_scale - offset;
    +
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +    if (!aligned) {  // for backward-compatibility only
    +      roi_width = max(roi_width, (T)1.);
    +      roi_height = max(roi_height, (T)1.);
    +    }
    +
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    const T* offset_input =
    +        input + (roi_batch_ind * channels + c) * height * width;
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_height / pooled_height));
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_width / pooled_width));
    +
    +    if (pool_mode == 0) {
    +      // We do max pooling inside a bin
    +      T maxval = -FLT_MAX;
    +      T maxidx_y = -1.f, maxidx_x = -1.f;
    +      for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +        const T y = roi_start_h + ph * bin_size_h +
    +                    static_cast(iy + .5f) * bin_size_h /
    +                        static_cast(roi_bin_grid_h);
    +        for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +          const T x = roi_start_w + pw * bin_size_w +
    +                      static_cast(ix + .5f) * bin_size_w /
    +                          static_cast(roi_bin_grid_w);
    +          T val =
    +              bilinear_interpolate(offset_input, height, width, y, x, index);
    +          if (val > maxval) {
    +            maxval = val;
    +            maxidx_y = y;
    +            maxidx_x = x;
    +          }
    +        }
    +      }
    +      output[index] = maxval;
    +      argmax_y[index] = maxidx_y;
    +      argmax_x[index] = maxidx_x;
    +    } else if (pool_mode == 1) {
    +      // We do average pooling inside a bin
    +      const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1);
    +      T output_val = 0.;
    +      for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +        const T y = roi_start_h + ph * bin_size_h +
    +                    static_cast(iy + .5f) * bin_size_h /
    +                        static_cast(roi_bin_grid_h);
    +        for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +          const T x = roi_start_w + pw * bin_size_w +
    +                      static_cast(ix + .5f) * bin_size_w /
    +                          static_cast(roi_bin_grid_w);
    +          T val =
    +              bilinear_interpolate(offset_input, height, width, y, x, index);
    +          output_val += val;
    +        }
    +      }
    +      output[index] = output_val / count;
    +    }
    +  }
    +}
    +
    +/*** Backward ***/
    +template 
    +__global__ void roi_align_backward_cuda_kernel(
    +    const int nthreads, const T* grad_output, const T* rois, const T* argmax_y,
    +    const T* argmax_x, T* grad_input, const int pooled_height,
    +    const int pooled_width, const T spatial_scale, const int sampling_ratio,
    +    const int pool_mode,  // 0 - max pool, 1 - avg pool
    +    const bool aligned, const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T grad_output_this_bin = grad_output[index];
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +    T* offset_grad_input =
    +        grad_input + ((roi_batch_ind * channels + c) * height * width);
    +
    +    if (pool_mode == 0) {
    +      T y = argmax_y[index], x = argmax_x[index];
    +      if (y != -1.f) {
    +        T w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                      x_low, x_high, y_low, y_high, index);
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          atomicAdd(offset_grad_input + y_low * width + x_low,
    +                    grad_output_this_bin * w1);
    +          atomicAdd(offset_grad_input + y_low * width + x_high,
    +                    grad_output_this_bin * w2);
    +          atomicAdd(offset_grad_input + y_high * width + x_low,
    +                    grad_output_this_bin * w3);
    +          atomicAdd(offset_grad_input + y_high * width + x_high,
    +                    grad_output_this_bin * w4);
    +        }
    +      }
    +    } else if (pool_mode == 1) {
    +      // Do not using rounding; this implementation detail is critical
    +      T offset = aligned ? (T)0.5 : (T)0.0;
    +      T roi_start_w = offset_rois[1] * spatial_scale - offset;
    +      T roi_start_h = offset_rois[2] * spatial_scale - offset;
    +      T roi_end_w = offset_rois[3] * spatial_scale - offset;
    +      T roi_end_h = offset_rois[4] * spatial_scale - offset;
    +
    +      T roi_width = roi_end_w - roi_start_w;
    +      T roi_height = roi_end_h - roi_start_h;
    +      if (!aligned) {  // for backward-compatibility only
    +        roi_width = max(roi_width, (T)1.);
    +        roi_height = max(roi_height, (T)1.);
    +      }
    +
    +      T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +      T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +      // We use roi_bin_grid to sample the grid and mimic integral
    +      int roi_bin_grid_h =
    +          (sampling_ratio > 0)
    +              ? sampling_ratio
    +              : static_cast(ceilf(roi_height / pooled_height));
    +      int roi_bin_grid_w =
    +          (sampling_ratio > 0)
    +              ? sampling_ratio
    +              : static_cast(ceilf(roi_width / pooled_width));
    +
    +      // We do average (integral) pooling inside a bin
    +      const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +
    +      for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +        const T y = roi_start_h + ph * bin_size_h +
    +                    static_cast(iy + .5f) * bin_size_h /
    +                        static_cast(roi_bin_grid_h);
    +        for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +          const T x = roi_start_w + pw * bin_size_w +
    +                      static_cast(ix + .5f) * bin_size_w /
    +                          static_cast(roi_bin_grid_w);
    +
    +          T w1, w2, w3, w4;
    +          int x_low, x_high, y_low, y_high;
    +          bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                        x_low, x_high, y_low, y_high, index);
    +
    +          if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +            atomicAdd(offset_grad_input + y_low * width + x_low,
    +                      grad_output_this_bin * w1 / count);
    +            atomicAdd(offset_grad_input + y_low * width + x_high,
    +                      grad_output_this_bin * w2 / count);
    +            atomicAdd(offset_grad_input + y_high * width + x_low,
    +                      grad_output_this_bin * w3 / count);
    +            atomicAdd(offset_grad_input + y_high * width + x_high,
    +                      grad_output_this_bin * w4 / count);
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // ROI_ALIGN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh
    new file mode 100644
    index 000000000..8274dc50c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh
    @@ -0,0 +1,202 @@
    +// Modified from
    +// https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlignRotated
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#ifndef ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    +#define ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    +
    +#include 
    +#ifdef MMCV_WITH_TRT
    +#include "common_cuda_helper.hpp"
    +#else  // MMCV_WITH_TRT
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else  // MMCV_USE_PARROTS
    +#include "pytorch_cuda_helper.hpp"
    +#endif  // MMCV_USE_PARROTS
    +#endif  // MMCV_WITH_TRT
    +
    +/*** Forward ***/
    +template 
    +__global__ void roi_align_rotated_forward_cuda_kernel(
    +    const int nthreads, const scalar_t *bottom_data,
    +    const scalar_t *bottom_rois, const scalar_t spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width,
    +    const int pooled_height, const int pooled_width, scalar_t *top_data) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
    +    int roi_batch_ind = offset_bottom_rois[0];
    +
    +    // Do not using rounding; this implementation detail is critical
    +    scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
    +    scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
    +    scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
    +    scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
    +    scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
    +    // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
    +    scalar_t theta = offset_bottom_rois[5];
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    if (!aligned) {  // for backward-compatibility only
    +      // Force malformed ROIs to be 1x1
    +      roi_width = max(roi_width, (scalar_t)1.);
    +      roi_height = max(roi_height, (scalar_t)1.);
    +    }
    +    scalar_t bin_size_h = static_cast(roi_height) /
    +                          static_cast(pooled_height);
    +    scalar_t bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    const scalar_t *offset_bottom_data =
    +        bottom_data + (roi_batch_ind * channels + c) * height * width;
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    scalar_t roi_start_h = -roi_height / 2.0;
    +    scalar_t roi_start_w = -roi_width / 2.0;
    +    scalar_t cosscalar_theta = cos(theta);
    +    scalar_t sinscalar_theta = sin(theta);
    +
    +    // We do average (integral) pooling inside a bin
    +    const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    scalar_t output_val = 0.;
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
    +      const scalar_t yy =
    +          roi_start_h + ph * bin_size_h +
    +          static_cast(iy + .5f) * bin_size_h /
    +              static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const scalar_t xx = roi_start_w + pw * bin_size_w +
    +                            static_cast(ix + .5f) * bin_size_w /
    +                                static_cast(roi_bin_grid_w);
    +
    +        // Rotate by theta (counterclockwise) around the center and translate
    +        scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h;
    +        scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w;
    +
    +        scalar_t val = bilinear_interpolate(
    +            offset_bottom_data, height, width, y, x, index);
    +        output_val += val;
    +      }
    +    }
    +    output_val /= count;
    +
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +/*** Backward ***/
    +template 
    +__global__ void roi_align_rotated_backward_cuda_kernel(
    +    const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois,
    +    const scalar_t spatial_scale, const int sampling_ratio, const bool aligned,
    +    const bool clockwise, const int channels, const int height, const int width,
    +    const int pooled_height, const int pooled_width, scalar_t *bottom_diff) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
    +    int roi_batch_ind = offset_bottom_rois[0];
    +
    +    // Do not round
    +    scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
    +    scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
    +    scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
    +    scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
    +    scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
    +    // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
    +    scalar_t theta = offset_bottom_rois[5];
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    if (!aligned) {  // for backward-compatibility only
    +      // Force malformed ROIs to be 1x1
    +      roi_width = max(roi_width, (scalar_t)1.);
    +      roi_height = max(roi_height, (scalar_t)1.);
    +    }
    +    scalar_t bin_size_h = static_cast(roi_height) /
    +                          static_cast(pooled_height);
    +    scalar_t bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    scalar_t *offset_bottom_diff =
    +        bottom_diff + (roi_batch_ind * channels + c) * height * width;
    +
    +    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    +    const scalar_t *offset_top_diff = top_diff + top_offset;
    +    const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    scalar_t roi_start_h = -roi_height / 2.0;
    +    scalar_t roi_start_w = -roi_width / 2.0;
    +    scalar_t cosTheta = cos(theta);
    +    scalar_t sinTheta = sin(theta);
    +
    +    // We do average (integral) pooling inside a bin
    +    const scalar_t count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
    +      const scalar_t yy =
    +          roi_start_h + ph * bin_size_h +
    +          static_cast(iy + .5f) * bin_size_h /
    +              static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const scalar_t xx = roi_start_w + pw * bin_size_w +
    +                            static_cast(ix + .5f) * bin_size_w /
    +                                static_cast(roi_bin_grid_w);
    +
    +        // Rotate by theta around the center and translate
    +        scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h;
    +        scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w;
    +
    +        scalar_t w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3,
    +                                                w4, x_low, x_high, y_low,
    +                                                y_high, index);
    +
    +        scalar_t g1 = top_diff_this_bin * w1 / count;
    +        scalar_t g2 = top_diff_this_bin * w2 / count;
    +        scalar_t g3 = top_diff_this_bin * w3 / count;
    +        scalar_t g4 = top_diff_this_bin * w4 / count;
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          atomicAdd(offset_bottom_diff + y_low * width + x_low, g1);
    +          atomicAdd(offset_bottom_diff + y_low * width + x_high, g2);
    +          atomicAdd(offset_bottom_diff + y_high * width + x_low, g3);
    +          atomicAdd(offset_bottom_diff + y_high * width + x_high, g4);
    +        }  // if
    +      }    // ix
    +    }      // iy
    +  }        // CUDA_1D_KERNEL_LOOP
    +}  // RoIAlignBackward
    +
    +#endif  // ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_pool_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_pool_cuda_kernel.cuh
    new file mode 100644
    index 000000000..3d7eae66b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roi_pool_cuda_kernel.cuh
    @@ -0,0 +1,93 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROI_POOL_CUDA_KERNEL_CUH
    +#define ROI_POOL_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void roi_pool_forward_cuda_kernel(
    +    const int nthreads, const T* input, const T* rois, T* output, int* argmax,
    +    const int pooled_height, const int pooled_width, const T spatial_scale,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +    // calculate the roi region on feature maps
    +    T roi_x1 = offset_rois[1] * spatial_scale;
    +    T roi_y1 = offset_rois[2] * spatial_scale;
    +    T roi_x2 = (offset_rois[3] + 1) * spatial_scale;
    +    T roi_y2 = (offset_rois[4] + 1) * spatial_scale;
    +
    +    // force malformed rois to be 1x1
    +    T roi_w = roi_x2 - roi_x1;
    +    T roi_h = roi_y2 - roi_y1;
    +    if (roi_w <= 0 || roi_h <= 0) continue;
    +
    +    T bin_size_w = roi_w / static_cast(pooled_width);
    +    T bin_size_h = roi_h / static_cast(pooled_height);
    +
    +    // the corresponding bin region
    +    int bin_x1 = floorf(static_cast(pw) * bin_size_w + roi_x1);
    +    int bin_y1 = floorf(static_cast(ph) * bin_size_h + roi_y1);
    +    int bin_x2 = ceilf(static_cast(pw + 1) * bin_size_w + roi_x1);
    +    int bin_y2 = ceilf(static_cast(ph + 1) * bin_size_h + roi_y1);
    +
    +    // add roi offsets and clip to input boundaries
    +    bin_x1 = min(max(bin_x1, 0), width);
    +    bin_y1 = min(max(bin_y1, 0), height);
    +    bin_x2 = min(max(bin_x2, 0), width);
    +    bin_y2 = min(max(bin_y2, 0), height);
    +    bool is_empty = (bin_y2 <= bin_y1) || (bin_x2 <= bin_x1);
    +
    +    const T* offset_input =
    +        input + (roi_batch_ind * channels + c) * height * width;
    +    // Define an empty pooling region to be zero
    +    // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
    +    T max_val = is_empty ? 0 : -FLT_MAX;
    +    int max_idx = -1;
    +    for (int h = bin_y1; h < bin_y2; ++h) {
    +      for (int w = bin_x1; w < bin_x2; ++w) {
    +        int offset = h * width + w;
    +        if (offset_input[offset] > max_val) {
    +          max_val = offset_input[offset];
    +          max_idx = offset;
    +        }
    +      }
    +    }
    +    output[index] = max_val;
    +    if (argmax != NULL) argmax[index] = max_idx;
    +  }
    +}
    +
    +template 
    +__global__ void roi_pool_backward_cuda_kernel(
    +    const int nthreads, const T* grad_output, const T* rois, const int* argmax,
    +    T* grad_input, const int pooled_height, const int pooled_width,
    +    const int channels, const int height, const int width) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    // (n, c) is an element in the pooled output
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    int roi_batch_ind = rois[n * 5];
    +    T* grad_input_offset =
    +        grad_input + ((roi_batch_ind * channels + c) * height * width);
    +    int argmax_index = argmax[index];
    +
    +    if (argmax_index != -1) {
    +      atomicAdd(grad_input_offset + argmax_index, grad_output[index]);
    +    }
    +  }
    +}
    +
    +#endif  // ROI_POOL_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roiaware_pool3d_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roiaware_pool3d_cuda_kernel.cuh
    new file mode 100644
    index 000000000..fc0aacf14
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roiaware_pool3d_cuda_kernel.cuh
    @@ -0,0 +1,260 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROIAWARE_POOL3D_CUDA_KERNEL_CUH
    +#define ROIAWARE_POOL3D_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__device__ inline void lidar_to_local_coords(T shift_x, T shift_y, T rz,
    +                                             T &local_x, T &local_y) {
    +  T cosa = cos(-rz), sina = sin(-rz);
    +  local_x = shift_x * cosa + shift_y * (-sina);
    +  local_y = shift_x * sina + shift_y * cosa;
    +}
    +
    +template 
    +__device__ inline int check_pt_in_box3d(const T *pt, const T *box3d, T &local_x,
    +                                        T &local_y) {
    +  // param pt: (x, y, z)
    +  // param box3d: (cx, cy, cz, x_size, y_size, z_size, rz) in LiDAR coordinate,
    +  // cz in the bottom center
    +  T x = pt[0], y = pt[1], z = pt[2];
    +  T cx = box3d[0], cy = box3d[1], cz = box3d[2];
    +  T x_size = box3d[3], y_size = box3d[4], z_size = box3d[5], rz = box3d[6];
    +  cz += z_size /
    +        2.0;  // shift to the center since cz in box3d is the bottom center
    +
    +  if (fabsf(z - cz) > z_size / 2.0) return 0;
    +  lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y);
    +  float in_flag = (local_x > -x_size / 2.0) & (local_x < x_size / 2.0) &
    +                  (local_y > -y_size / 2.0) & (local_y < y_size / 2.0);
    +  return in_flag;
    +}
    +
    +template 
    +__global__ void generate_pts_mask_for_box3d(int boxes_num, int pts_num,
    +                                            int out_x, int out_y, int out_z,
    +                                            const T *rois, const T *pts,
    +                                            int *pts_mask) {
    +  // params rois: (N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate params pts: (npoints, 3) [x, y, z] params pts_mask: (N,
    +  // npoints): -1 means point does not in this box, otherwise: encode (x_idxs,
    +  // y_idxs, z_idxs) by binary bit
    +  int box_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, pts_num) {
    +    if (box_idx >= boxes_num) return;
    +
    +    pts += pt_idx * 3;
    +    rois += box_idx * 7;
    +    pts_mask += box_idx * pts_num + pt_idx;
    +
    +    T local_x = 0, local_y = 0;
    +    int cur_in_flag = check_pt_in_box3d(pts, rois, local_x, local_y);
    +
    +    pts_mask[0] = -1;
    +    if (cur_in_flag > 0) {
    +      T local_z = pts[2] - rois[2];
    +      T x_size = rois[3], y_size = rois[4], z_size = rois[5];
    +
    +      T x_res = x_size / out_x;
    +      T y_res = y_size / out_y;
    +      T z_res = z_size / out_z;
    +
    +      unsigned int x_idx = int((local_x + x_size / 2) / x_res);
    +      unsigned int y_idx = int((local_y + y_size / 2) / y_res);
    +      unsigned int z_idx = int(local_z / z_res);
    +
    +      x_idx = min(max(x_idx, 0), out_x - 1);
    +      y_idx = min(max(y_idx, 0), out_y - 1);
    +      z_idx = min(max(z_idx, 0), out_z - 1);
    +
    +      unsigned int idx_encoding = (x_idx << 16) + (y_idx << 8) + z_idx;
    +
    +      pts_mask[0] = idx_encoding;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void collect_inside_pts_for_box3d(int boxes_num, int pts_num,
    +                                             int max_pts_each_voxel, int out_x,
    +                                             int out_y, int out_z,
    +                                             const int *pts_mask,
    +                                             T *pts_idx_of_voxels) {
    +  // params pts_mask: (N, npoints)  0 or 1
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  CUDA_1D_KERNEL_LOOP(box_idx, boxes_num) {
    +    int max_num_pts = max_pts_each_voxel - 1;  // index 0 is the counter
    +    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel;
    +
    +    for (int k = 0; k < pts_num; k++) {
    +      if (pts_mask[box_idx * pts_num + k] != -1) {
    +        unsigned int idx_encoding = pts_mask[box_idx * pts_num + k];
    +        unsigned int x_idx = (idx_encoding >> 16) & 0xFF;
    +        unsigned int y_idx = (idx_encoding >> 8) & 0xFF;
    +        unsigned int z_idx = idx_encoding & 0xFF;
    +        unsigned int base_offset = x_idx * out_y * out_z * max_pts_each_voxel +
    +                                   y_idx * out_z * max_pts_each_voxel +
    +                                   z_idx * max_pts_each_voxel;
    +        unsigned int cnt = pts_idx_of_voxels[base_offset];
    +        if (cnt < max_num_pts) {
    +          pts_idx_of_voxels[base_offset + cnt + 1] = k;
    +          pts_idx_of_voxels[base_offset]++;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void roiaware_maxpool3d(int boxes_num, int pts_num, int channels,
    +                                   int max_pts_each_voxel, int out_x, int out_y,
    +                                   int out_z, const T *pts_feature,
    +                                   const int *pts_idx_of_voxels,
    +                                   T *pooled_features, int *argmax) {
    +  // params pts_feature: (npoints, C)
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel),
    +  // index 0 is the counter params pooled_features: (N, out_x, out_y, out_z, C)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +
    +  int box_idx = blockIdx.z;
    +  int channel_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(voxel_idx_flat, out_x * out_y * out_z) {
    +    int x_idx = voxel_idx_flat / (out_y * out_z);
    +    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    +    int z_idx = voxel_idx_flat % out_z;
    +    if (box_idx >= boxes_num || channel_idx >= channels) return;
    +
    +    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    +    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel +
    +                         offset_base * max_pts_each_voxel;
    +    pooled_features += box_idx * out_x * out_y * out_z * channels +
    +                       offset_base * channels + channel_idx;
    +    argmax += box_idx * out_x * out_y * out_z * channels +
    +              offset_base * channels + channel_idx;
    +
    +    int argmax_idx = -1;
    +    float max_val = -1e50;
    +
    +    int total_pts = pts_idx_of_voxels[0];
    +
    +    for (int k = 1; k <= total_pts; k++) {
    +      if (pts_feature[pts_idx_of_voxels[k] * channels + channel_idx] >
    +          max_val) {
    +        max_val = pts_feature[pts_idx_of_voxels[k] * channels + channel_idx];
    +        argmax_idx = pts_idx_of_voxels[k];
    +      }
    +    }
    +
    +    if (argmax_idx != -1) {
    +      pooled_features[0] = max_val;
    +    }
    +    argmax[0] = argmax_idx;
    +  }
    +}
    +
    +template 
    +__global__ void roiaware_avgpool3d(int boxes_num, int pts_num, int channels,
    +                                   int max_pts_each_voxel, int out_x, int out_y,
    +                                   int out_z, const T *pts_feature,
    +                                   const int *pts_idx_of_voxels,
    +                                   T *pooled_features) {
    +  // params pts_feature: (npoints, C)
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel),
    +  // index 0 is the counter params pooled_features: (N, out_x, out_y, out_z, C)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +
    +  int box_idx = blockIdx.z;
    +  int channel_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(voxel_idx_flat, out_x * out_y * out_z) {
    +    int x_idx = voxel_idx_flat / (out_y * out_z);
    +    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    +    int z_idx = voxel_idx_flat % out_z;
    +    if (box_idx >= boxes_num || channel_idx >= channels) return;
    +
    +    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    +    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel +
    +                         offset_base * max_pts_each_voxel;
    +    pooled_features += box_idx * out_x * out_y * out_z * channels +
    +                       offset_base * channels + channel_idx;
    +
    +    float sum_val = 0;
    +    int total_pts = pts_idx_of_voxels[0];
    +
    +    for (int k = 1; k <= total_pts; k++) {
    +      sum_val += pts_feature[pts_idx_of_voxels[k] * channels + channel_idx];
    +    }
    +
    +    if (total_pts > 0) {
    +      pooled_features[0] = sum_val / total_pts;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void roiaware_maxpool3d_backward(int boxes_num, int channels,
    +                                            int out_x, int out_y, int out_z,
    +                                            const int *argmax,
    +                                            const T *grad_out, T *grad_in) {
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params grad_out: (N, out_x, out_y, out_z, C)
    +  // params grad_in: (npoints, C), return value
    +
    +  int box_idx = blockIdx.z;
    +  int channel_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(voxel_idx_flat, out_x * out_y * out_z) {
    +    int x_idx = voxel_idx_flat / (out_y * out_z);
    +    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    +    int z_idx = voxel_idx_flat % out_z;
    +    if (box_idx >= boxes_num || channel_idx >= channels) return;
    +
    +    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    +    argmax += box_idx * out_x * out_y * out_z * channels +
    +              offset_base * channels + channel_idx;
    +    grad_out += box_idx * out_x * out_y * out_z * channels +
    +                offset_base * channels + channel_idx;
    +
    +    if (argmax[0] == -1) return;
    +
    +    atomicAdd(grad_in + argmax[0] * channels + channel_idx, grad_out[0] * 1);
    +  }
    +}
    +
    +template 
    +__global__ void roiaware_avgpool3d_backward(int boxes_num, int channels,
    +                                            int out_x, int out_y, int out_z,
    +                                            int max_pts_each_voxel,
    +                                            const int *pts_idx_of_voxels,
    +                                            const T *grad_out, T *grad_in) {
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params grad_out: (N, out_x, out_y, out_z, C)
    +  // params grad_in: (npoints, C), return value
    +
    +  int box_idx = blockIdx.z;
    +  int channel_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(voxel_idx_flat, out_x * out_y * out_z) {
    +    int x_idx = voxel_idx_flat / (out_y * out_z);
    +    int y_idx = (voxel_idx_flat - x_idx * (out_y * out_z)) / out_z;
    +    int z_idx = voxel_idx_flat % out_z;
    +    if (box_idx >= boxes_num || channel_idx >= channels) return;
    +
    +    int offset_base = x_idx * out_y * out_z + y_idx * out_z + z_idx;
    +    pts_idx_of_voxels += box_idx * out_x * out_y * out_z * max_pts_each_voxel +
    +                         offset_base * max_pts_each_voxel;
    +    grad_out += box_idx * out_x * out_y * out_z * channels +
    +                offset_base * channels + channel_idx;
    +
    +    int total_pts = pts_idx_of_voxels[0];
    +    float cur_grad = 1 / fmaxf(float(total_pts), 1.0);
    +    for (int k = 1; k <= total_pts; k++) {
    +      atomicAdd(grad_in + pts_idx_of_voxels[k] * channels + channel_idx,
    +                grad_out[0] * cur_grad);
    +    }
    +  }
    +}
    +
    +#endif  // ROIAWARE_POOL3D_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roipoint_pool3d_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roipoint_pool3d_cuda_kernel.cuh
    new file mode 100644
    index 000000000..545f6ffa0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/roipoint_pool3d_cuda_kernel.cuh
    @@ -0,0 +1,134 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROIPOINT_POOL3D_CUDA_KERNEL_CUH
    +#define ROIPOINT_POOL3D_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__device__ inline void lidar_to_local_coords(T shift_x, T shift_y, T rz,
    +                                             T &local_x, T &local_y) {
    +  T cosa = cos(-rz), sina = sin(-rz);
    +  local_x = shift_x * cosa + shift_y * (-sina);
    +  local_y = shift_x * sina + shift_y * cosa;
    +}
    +
    +template 
    +__device__ inline int check_pt_in_box3d(const T *pt, const T *box3d, T &local_x,
    +                                        T &local_y) {
    +  // param pt: (x, y, z)
    +  // param box3d: (cx, cy, cz, dx, dy, dz, rz) in LiDAR coordinate, cz in the
    +  // bottom center
    +  T x = pt[0], y = pt[1], z = pt[2];
    +  T cx = box3d[0], cy = box3d[1], cz = box3d[2];
    +  T dx = box3d[3], dy = box3d[4], dz = box3d[5], rz = box3d[6];
    +  cz += dz / 2.0;  // shift to the center since cz in box3d is the bottom center
    +
    +  if (fabsf(z - cz) > dz / 2.0) return 0;
    +  lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y);
    +  T in_flag = (local_x > -dx / 2.0) & (local_x < dx / 2.0) &
    +              (local_y > -dy / 2.0) & (local_y < dy / 2.0);
    +  return in_flag;
    +}
    +
    +template 
    +__global__ void assign_pts_to_box3d(int batch_size, int pts_num, int boxes_num,
    +                                    const T *xyz, const T *boxes3d,
    +                                    int *pts_assign) {
    +  // params xyz: (B, N, 3)
    +  // params boxes3d: (B, M, 7)
    +  // params pts_assign: (B, N, M): idx of the corresponding box3d, -1 means
    +  // background points
    +  int box_idx = blockIdx.y;
    +  int bs_idx = blockIdx.z;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, pts_num) {
    +    if (box_idx >= boxes_num || bs_idx >= batch_size) return;
    +
    +    int assign_idx =
    +        bs_idx * pts_num * boxes_num + pt_idx * boxes_num + box_idx;
    +    pts_assign[assign_idx] = 0;
    +
    +    int box_offset = bs_idx * boxes_num * 7 + box_idx * 7;
    +    int pt_offset = bs_idx * pts_num * 3 + pt_idx * 3;
    +
    +    T local_x = 0, local_y = 0;
    +    int cur_in_flag = check_pt_in_box3d(xyz + pt_offset, boxes3d + box_offset,
    +                                        local_x, local_y);
    +    pts_assign[assign_idx] = cur_in_flag;
    +  }
    +}
    +
    +__global__ void get_pooled_idx(int batch_size, int pts_num, int boxes_num,
    +                               int sampled_pts_num, const int *pts_assign,
    +                               int *pts_idx, int *pooled_empty_flag) {
    +  // params xyz: (B, N, 3)
    +  // params pts_feature: (B, N, C)
    +  // params pts_assign: (B, N)
    +  // params pts_idx: (B, M, 512)
    +  // params pooled_empty_flag: (B, M)
    +  CUDA_1D_KERNEL_LOOP(boxes_idx, boxes_num) {
    +    int bs_idx = blockIdx.y;
    +
    +    int cnt = 0;
    +    for (int k = 0; k < pts_num; k++) {
    +      if (pts_assign[bs_idx * pts_num * boxes_num + k * boxes_num +
    +                     boxes_idx]) {
    +        if (cnt < sampled_pts_num) {
    +          pts_idx[bs_idx * boxes_num * sampled_pts_num +
    +                  boxes_idx * sampled_pts_num + cnt] = k;
    +          cnt++;
    +        } else
    +          break;
    +      }
    +    }
    +
    +    if (cnt == 0) {
    +      pooled_empty_flag[bs_idx * boxes_num + boxes_idx] = 1;
    +    } else if (cnt < sampled_pts_num) {
    +      // duplicate same points for sampling
    +      for (int k = cnt; k < sampled_pts_num; k++) {
    +        int duplicate_idx = k % cnt;
    +        int base_offset =
    +            bs_idx * boxes_num * sampled_pts_num + boxes_idx * sampled_pts_num;
    +        pts_idx[base_offset + k] = pts_idx[base_offset + duplicate_idx];
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void roipoint_pool3d_forward(
    +    int batch_size, int pts_num, int boxes_num, int feature_in_len,
    +    int sampled_pts_num, const T *xyz, const int *pts_idx, const T *pts_feature,
    +    T *pooled_features, int *pooled_empty_flag) {
    +  // params xyz: (B, N, 3)
    +  // params pts_idx: (B, M, 512)
    +  // params pts_feature: (B, N, C)
    +  // params pooled_features: (B, M, 512, 3+C)
    +  // params pooled_empty_flag: (B, M)
    +  int box_idx = blockIdx.y;
    +  int bs_idx = blockIdx.z;
    +  CUDA_1D_KERNEL_LOOP(sample_pt_idx, sampled_pts_num) {
    +    if (box_idx >= boxes_num || bs_idx >= batch_size) return;
    +    if (pooled_empty_flag[bs_idx * boxes_num + box_idx]) return;
    +
    +    int temp_idx = bs_idx * boxes_num * sampled_pts_num +
    +                   box_idx * sampled_pts_num + sample_pt_idx;
    +    int src_pt_idx = pts_idx[temp_idx];
    +    int dst_feature_offset = temp_idx * (3 + feature_in_len);
    +
    +    for (int j = 0; j < 3; j++)
    +      pooled_features[dst_feature_offset + j] =
    +          xyz[bs_idx * pts_num * 3 + src_pt_idx * 3 + j];
    +
    +    int src_feature_offset =
    +        bs_idx * pts_num * feature_in_len + src_pt_idx * feature_in_len;
    +    memcpy(pooled_features + dst_feature_offset + 3,
    +           pts_feature + src_feature_offset, feature_in_len * sizeof(T));
    +  }
    +}
    +
    +#endif  // ROIPOINT_POOL3D_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/rotated_feature_align_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/rotated_feature_align_cuda_kernel.cuh
    new file mode 100644
    index 000000000..ffcc658cc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/rotated_feature_align_cuda_kernel.cuh
    @@ -0,0 +1,129 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_kernel.cu
    +#ifndef ROTATED_FEATURE_ALIGN_CUDA_KERNEL_CUH
    +#define ROTATED_FEATURE_ALIGN_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void rotated_feature_align_forward_kernel(
    +    const int nthreads, const int points, const scalar_t* bottom_data,
    +    const scalar_t* best_bboxes, const scalar_t spatial_scale,
    +    const int channels, const int height, const int width, scalar_t* top_data) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int w = index % width;
    +    int h = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    const scalar_t* bbox_offset =
    +        best_bboxes + ((n * height + h) * width + w) * 5;
    +    scalar_t roi_y = bbox_offset[0] * spatial_scale;
    +    scalar_t roi_x = bbox_offset[1] * spatial_scale;
    +
    +    scalar_t px[5] = {roi_x, 0, 0, 0, 0};
    +    scalar_t py[5] = {roi_y, 0, 0, 0, 0};
    +
    +    if (points > 1) {
    +      scalar_t roi_w = bbox_offset[2] * spatial_scale;
    +      scalar_t roi_h = bbox_offset[3] * spatial_scale;
    +      scalar_t roi_a = bbox_offset[4];
    +
    +      scalar_t w_2 = roi_w / 2, h_2 = roi_h / 2;
    +      scalar_t cosa = cosf(roi_a), sina = sinf(roi_a);
    +      scalar_t wx = cosa * w_2, wy = sina * w_2;
    +      scalar_t hx = -sina * h_2, hy = cosa * h_2;
    +
    +      px[1] = roi_x + wx + hx;
    +      py[1] = roi_y + wy + hy;
    +      px[2] = roi_x - wx + hx;
    +      py[2] = roi_y - wy + hy;
    +      px[3] = roi_x - wx - hx;
    +      py[3] = roi_y - wy - hy;
    +      px[4] = roi_x + wx - hx;
    +      py[4] = roi_y + wy - hy;
    +    }
    +
    +    const scalar_t* offset_bottom_data =
    +        bottom_data + (n * channels + c) * height * width;
    +
    +    scalar_t output_val = bottom_data[index];
    +    for (int i = 0; i < points; i++) {
    +      output_val += bilinear_interpolate(offset_bottom_data, height,
    +                                                   width, py[i], px[i], i);
    +    }
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +template 
    +__global__ void rotated_feature_align_backward_kernel(
    +    const int nthreads, const int points, const scalar_t* top_diff,
    +    const scalar_t* best_bboxes, const scalar_t spatial_scale,
    +    const int channels, const int height, const int width,
    +    scalar_t* bottom_diff) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int w = index % width;
    +    int h = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    const scalar_t* bbox_offset =
    +        best_bboxes + ((n * height + h) * width + w) * 5;
    +    scalar_t roi_y = bbox_offset[0] * spatial_scale;
    +    scalar_t roi_x = bbox_offset[1] * spatial_scale;
    +
    +    scalar_t px[5] = {roi_x, 0, 0, 0, 0};
    +    scalar_t py[5] = {roi_y, 0, 0, 0, 0};
    +
    +    if (points > 1) {
    +      scalar_t roi_w = bbox_offset[2] * spatial_scale;
    +      scalar_t roi_h = bbox_offset[3] * spatial_scale;
    +      scalar_t roi_a = bbox_offset[4];
    +
    +      scalar_t w_2 = roi_w / 2, h_2 = roi_h / 2;
    +      scalar_t cosa = cosf(roi_a), sina = sinf(roi_a);
    +      scalar_t wx = cosa * w_2, wy = sina * w_2;
    +      scalar_t hx = -sina * h_2, hy = cosa * h_2;
    +
    +      px[1] = roi_x + wx + hx;
    +      py[1] = roi_y + wy + hy;
    +      px[2] = roi_x - wx + hx;
    +      py[2] = roi_y - wy + hy;
    +      px[3] = roi_x - wx - hx;
    +      py[3] = roi_y - wy - hy;
    +      px[4] = roi_x + wx - hx;
    +      py[4] = roi_y + wy - hy;
    +    }
    +
    +    scalar_t* offset_bottom_diff =
    +        bottom_diff + (n * channels + c) * height * width;
    +    scalar_t value_top_diff = top_diff[index];
    +
    +    atomicAdd(bottom_diff + index, value_top_diff);
    +    for (int i = 0; i < points; i++) {
    +      scalar_t w1, w2, w3, w4;
    +      int x_low, x_high, y_low, y_high;
    +
    +      bilinear_interpolate_gradient(height, width, py[i], px[i], w1,
    +                                              w2, w3, w4, x_low, x_high, y_low,
    +                                              y_high, i);
    +      scalar_t g1 = value_top_diff * w1;
    +      scalar_t g2 = value_top_diff * w2;
    +      scalar_t g3 = value_top_diff * w3;
    +      scalar_t g4 = value_top_diff * w4;
    +      if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +        atomicAdd(offset_bottom_diff + y_low * width + x_low, g1);
    +        atomicAdd(offset_bottom_diff + y_low * width + x_high, g2);
    +        atomicAdd(offset_bottom_diff + y_high * width + x_low, g3);
    +        atomicAdd(offset_bottom_diff + y_high * width + x_high, g4);
    +      }
    +    }
    +  }
    +}
    +#endif  // ROTATED_FEATURE_ALIGN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/scatter_points_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/scatter_points_cuda_kernel.cuh
    new file mode 100644
    index 000000000..bc2f7a587
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/scatter_points_cuda_kernel.cuh
    @@ -0,0 +1,189 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef SCATTER_POINTS_CUDA_KERNEL_CUH
    +#define SCATTER_POINTS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;
    +int const maxGridDim = 50000;
    +
    +__device__ __forceinline__ static void reduceMax(float *address, float val) {
    +  int *address_as_i = reinterpret_cast(address);
    +  int old = *address_as_i, assumed;
    +  do {
    +    assumed = old;
    +    old = atomicCAS(address_as_i, assumed,
    +                    __float_as_int(fmaxf(val, __int_as_float(assumed))));
    +  } while (assumed != old || __int_as_float(old) < val);
    +}
    +
    +__device__ __forceinline__ static void reduceMax(double *address, double val) {
    +  unsigned long long *address_as_ull =
    +      reinterpret_cast(address);
    +  unsigned long long old = *address_as_ull, assumed;
    +  do {
    +    assumed = old;
    +    old = atomicCAS(
    +        address_as_ull, assumed,
    +        __double_as_longlong(fmax(val, __longlong_as_double(assumed))));
    +  } while (assumed != old || __longlong_as_double(old) < val);
    +}
    +
    +// get rid of meaningless warnings when compiling host code
    +// #ifdef MMCV_WITH_HIP
    +#if defined(MMCV_WITH_HIP) || defined(__ILUVATAR__)
    +
    +__device__ __forceinline__ static void reduceAdd(float *address, float val) {
    +  atomicAdd(address, val);
    +}
    +__device__ __forceinline__ static void reduceAdd(double *address, double val) {
    +  atomicAdd(address, val);
    +}
    +#else
    +// #ifdef __CUDA_ARCH__
    +__device__ __forceinline__ static void reduceAdd(float *address, float val) {
    +#if (__CUDA_ARCH__ < 200)
    +#ifdef _MSC_VER
    +#pragma message( \
    +    "compute capability lower than 2.x. fall back to use CAS version of atomicAdd for float32")
    +#else
    +#warning \
    +    "compute capability lower than 2.x. fall back to use CAS version of atomicAdd for float32"
    +#endif
    +  int *address_as_i = reinterpret_cast(address);
    +  int old = *address_as_i, assumed;
    +  do {
    +    assumed = old;
    +    old = atomicCAS(address_as_i, assumed,
    +                    __float_as_int(val + __int_as_float(assumed)));
    +  } while (assumed != old);
    +#else
    +  atomicAdd(address, val);
    +#endif
    +}
    +
    +__device__ __forceinline__ static void reduceAdd(double *address, double val) {
    +#if (__CUDA_ARCH__ < 600)
    +#ifdef _MSC_VER
    +#pragma message( \
    +    "compute capability lower than 6.x. fall back to use CAS version of atomicAdd for float64")
    +#else
    +#warning \
    +    "compute capability lower than 6.x. fall back to use CAS version of atomicAdd for float64"
    +#endif
    +  unsigned long long *address_as_ull =
    +      reinterpret_cast(address);
    +  unsigned long long old = *address_as_ull, assumed;
    +  do {
    +    assumed = old;
    +    old = atomicCAS(address_as_ull, assumed,
    +                    __double_as_longlong(val + __longlong_as_double(assumed)));
    +  } while (assumed != old);
    +#else
    +  atomicAdd(address, val);
    +#endif
    +}
    +// #endif  // __CUDA_ARCH__
    +#endif  // MMCV_WITH_HIP
    +
    +template 
    +__global__ void feats_reduce_kernel(
    +    const T *feats, const int32_t *coors_map,
    +    T *reduced_feats,  // shall be 0 at initialization
    +    const int num_input, const int num_feats, const reduce_t reduce_type) {
    +  CUDA_1D_KERNEL_LOOP(x, num_input) {
    +    int32_t reduce_to = coors_map[x];
    +    if (reduce_to == -1) continue;
    +
    +    const T *feats_offset = feats + x * num_feats;
    +    T *reduced_feats_offset = reduced_feats + reduce_to * num_feats;
    +    if (reduce_type == reduce_t::MAX) {
    +      for (int i = 0; i < num_feats; i++) {
    +        reduceMax(&reduced_feats_offset[i], feats_offset[i]);
    +      }
    +    } else {
    +      for (int i = 0; i < num_feats; i++) {
    +        reduceAdd(&reduced_feats_offset[i], feats_offset[i]);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void add_reduce_traceback_grad_kernel(
    +    T *grad_feats, const T *grad_reduced_feats, const int32_t *coors_map,
    +    const int32_t *reduce_count, const int num_input, const int num_feats,
    +    const reduce_t reduce_type) {
    +  CUDA_1D_KERNEL_LOOP(x, num_input) {
    +    int32_t reduce_to = coors_map[x];
    +    if (reduce_to == -1) {
    +      continue;
    +    }
    +
    +    const int input_offset = x * num_feats;
    +    T *grad_feats_offset = grad_feats + input_offset;
    +    const int reduced_offset = reduce_to * num_feats;
    +    const T *grad_reduced_feats_offset = grad_reduced_feats + reduced_offset;
    +
    +    if (reduce_type == reduce_t::SUM) {
    +      for (int i = 0; i < num_feats; i++) {
    +        grad_feats_offset[i] = grad_reduced_feats_offset[i];
    +      }
    +    } else if (reduce_type == reduce_t::MEAN) {
    +      for (int i = 0; i < num_feats; i++) {
    +        grad_feats_offset[i] = grad_reduced_feats_offset[i] /
    +                               static_cast(reduce_count[reduce_to]);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void max_reduce_traceback_scatter_idx_kernel(
    +    const T *feats, const T *reduced_feats, int32_t *reduce_from,
    +    const int32_t *coors_map, const int num_input, const int num_feats) {
    +  CUDA_1D_KERNEL_LOOP(x, num_input) {
    +    int32_t reduce_to = coors_map[x];
    +
    +    const int input_offset = x * num_feats;
    +    const T *feats_offset = feats + input_offset;
    +
    +    if (reduce_to == -1) {
    +      continue;
    +    }
    +
    +    const int reduced_offset = reduce_to * num_feats;
    +    const T *reduced_feats_offset = reduced_feats + reduced_offset;
    +    int32_t *reduce_from_offset = reduce_from + reduced_offset;
    +
    +    for (int i = 0; i < num_feats; i++) {
    +      if (feats_offset[i] == reduced_feats_offset[i]) {
    +        atomicMin(&reduce_from_offset[i], static_cast(x));
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void max_reduce_scatter_grad_kernel(T *grad_feats,
    +                                               const T *grad_reduced_feats,
    +                                               const int32_t *reduce_from,
    +                                               const int num_reduced,
    +                                               const int num_feats) {
    +  CUDA_1D_KERNEL_LOOP(x, num_reduced) {
    +    const int reduced_offset = x * num_feats;
    +    const int32_t *scatter_to_offset = reduce_from + reduced_offset;
    +    const T *grad_reduced_feats_offset = grad_reduced_feats + reduced_offset;
    +
    +    for (int i = 0; i < num_feats; i++) {
    +      grad_feats[scatter_to_offset[i] * num_feats + i] =
    +          grad_reduced_feats_offset[i];
    +    }
    +  }
    +}
    +
    +#endif  // SCATTER_POINTS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sigmoid_focal_loss_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sigmoid_focal_loss_cuda_kernel.cuh
    new file mode 100644
    index 000000000..1896b1d03
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sigmoid_focal_loss_cuda_kernel.cuh
    @@ -0,0 +1,71 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef SIGMOID_FOCAL_LOSS_CUDA_KERNEL_CUH
    +#define SIGMOID_FOCAL_LOSS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void sigmoid_focal_loss_forward_cuda_kernel(
    +    const int nthreads, const T* input, const int32_t* target, const T* weight,
    +    T* output, const T gamma, const T alpha, const int num_classes) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int n = index / num_classes;
    +    int c = index % num_classes;
    +
    +    int32_t t = target[n];
    +    T flag_p = (t == c);
    +    T flag_n = (t != c);
    +
    +    // p = sigmoid(x) = 1. / 1. + expf(-x)
    +    T p = (T)1. / ((T)1. + expf(-input[index]));
    +
    +    // (1 - p)**gamma * log(p)
    +    T term_p = pow(((T)1. - p), gamma) * log(max(p, (T)FLT_MIN));
    +    // p**gamma * log(1 - p)
    +    T term_n = pow(p, gamma) * log(max((T)1. - p, (T)FLT_MIN));
    +
    +    output[index] = (T)0.;
    +    output[index] += -flag_p * alpha * term_p;
    +    output[index] += -flag_n * ((T)1. - alpha) * term_n;
    +    if (weight != NULL) {
    +      output[index] *= weight[t];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void sigmoid_focal_loss_backward_cuda_kernel(
    +    const int nthreads, const T* input, const int32_t* target, const T* weight,
    +    T* grad_input, const T gamma, const T alpha, const int num_classes) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int n = index / num_classes;
    +    int c = index % num_classes;
    +
    +    int32_t t = target[n];
    +    T flag_p = (t == c);
    +    T flag_n = (t != c);
    +
    +    // p = sigmoid(x) = 1. / 1. + expf(-x)
    +    T p = (T)1. / ((T)1. + exp(-input[index]));
    +
    +    // (1 - p)**gamma * (1 - p - gamma*p*log(p))
    +    T term_p = pow(((T)1. - p), gamma) *
    +               ((T)1. - p - (gamma * p * log(max(p, (T)FLT_MIN))));
    +    // p**gamma * (gamma * (1 - p) * log(1 - p) - p)
    +    T term_n = pow(p, gamma) *
    +               (gamma * ((T)1. - p) * log(max((T)1. - p, (T)FLT_MIN)) - p);
    +
    +    grad_input[index] = (T)0.;
    +    grad_input[index] += -flag_p * alpha * term_p;
    +    grad_input[index] += -flag_n * ((T)1. - alpha) * term_n;
    +    if (weight != NULL) {
    +      grad_input[index] *= weight[t];
    +    }
    +  }
    +}
    +
    +#endif  // SIGMOID_FOCAL_LOSS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/softmax_focal_loss_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/softmax_focal_loss_cuda_kernel.cuh
    new file mode 100644
    index 000000000..58a07431e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/softmax_focal_loss_cuda_kernel.cuh
    @@ -0,0 +1,72 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef SOFTMAX_FOCAL_LOSS_CUDA_KERNEL_CUH
    +#define SOFTMAX_FOCAL_LOSS_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void softmax_focal_loss_forward_cuda_kernel(
    +    const int nthreads, const T* softmax, const int32_t* target,
    +    const T* weight, T* output, const T gamma, const T alpha,
    +    const int num_classes) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int32_t label = target[index];
    +    T pred = softmax[index * num_classes + label];
    +
    +    if (label >= 0) {
    +      output[index] =
    +          -alpha * pow((T)1. - pred, gamma) * log(max(pred, (T)FLT_MIN));
    +    } else {
    +      output[index] = 0;
    +    }
    +    if (weight != NULL) {
    +      output[index] *= weight[label];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void softmax_focal_loss_backward_cuda1_kernel(
    +    const int nthreads, const T* softmax, const int32_t* target,
    +    const T* weight, T* buff, const T gamma, const T alpha,
    +    const int num_classes) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int32_t label = target[index];
    +    T pred = softmax[index * num_classes + label];
    +
    +    if (label >= 0) {
    +      buff[index] = alpha * (-pow((T)1. - pred, gamma) +
    +                             gamma * pow((T)1. - pred, gamma - 1) * pred *
    +                                 log(max(pred, (T)FLT_MIN)));
    +    } else {
    +      buff[index] = 0;
    +    }
    +    if (weight != NULL) {
    +      buff[index] *= weight[label];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void softmax_focal_loss_backward_cuda2_kernel(
    +    const int nthreads, const T* softmax, const int32_t* target, const T* buff,
    +    T* grad_input, const int num_classes) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int n = index / num_classes;
    +    int c = index % num_classes;
    +    int32_t label = target[n];
    +
    +    if (label >= 0) {
    +      T flag = (label == c ? (T)1. : (T)0.);
    +      grad_input[index] = buff[n] * (flag - softmax[index]);
    +    } else {
    +      grad_input[index] = 0;
    +    }
    +  }
    +}
    +
    +#endif  // SOFTMAX_FOCAL_LOSS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_ball_query_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_ball_query_cuda_kernel.cuh
    new file mode 100644
    index 000000000..06caefa18
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_ball_query_cuda_kernel.cuh
    @@ -0,0 +1,68 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query_gpu.cu
    +#ifndef STACK_BALL_QUERY_CUDA_KERNEL_CUH
    +#define STACK_BALL_QUERY_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void stack_ball_query_forward_cuda_kernel(
    +    int B, int M, float radius, int nsample, const T *new_xyz,
    +    const int *new_xyz_batch_cnt, const T *xyz, const int *xyz_batch_cnt,
    +    int *idx) {
    +  // :param xyz: (N1 + N2 ..., 3) xyz coordinates of the features
    +  // :param xyz_batch_cnt: (batch_size), [N1, N2, ...]
    +  // :param new_xyz: (M1 + M2 ..., 3) centers of the ball query
    +  // :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
    +  // output:
    +  //      idx: (M, nsample)
    +  const T *cur_xyz = xyz;
    +  int *cur_idx = idx;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, M) {
    +    int bs_idx = 0;
    +    for (int pt_cnt = 0; bs_idx < B; bs_idx++) {
    +      pt_cnt += new_xyz_batch_cnt[bs_idx];
    +      if (pt_idx < pt_cnt) break;
    +    }
    +
    +    int xyz_batch_start_idx = 0;
    +    for (int k = 0; k < bs_idx; k++) xyz_batch_start_idx += xyz_batch_cnt[k];
    +
    +    const T *new_xyz_p = new_xyz + pt_idx * 3;
    +    cur_xyz += xyz_batch_start_idx * 3;
    +    cur_idx += pt_idx * nsample;
    +
    +    float radius2 = radius * radius;
    +    T new_x = new_xyz_p[0];
    +    T new_y = new_xyz_p[1];
    +    T new_z = new_xyz_p[2];
    +    int n = xyz_batch_cnt[bs_idx];
    +
    +    int cnt = 0;
    +    for (int k = 0; k < n; ++k) {
    +      T x = cur_xyz[k * 3 + 0];
    +      T y = cur_xyz[k * 3 + 1];
    +      T z = cur_xyz[k * 3 + 2];
    +      T d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) +
    +             (new_z - z) * (new_z - z);
    +      if (d2 < radius2) {
    +        if (cnt == 0) {
    +          for (int l = 0; l < nsample; ++l) {
    +            cur_idx[l] = k;
    +          }
    +        }
    +        cur_idx[cnt] = k;
    +        ++cnt;
    +        if (cnt >= nsample) break;
    +      }
    +    }
    +    if (cnt == 0) cur_idx[0] = -1;
    +  }
    +}
    +
    +#endif  // STACK_BALL_QUERY_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_group_points_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_group_points_cuda_kernel.cuh
    new file mode 100644
    index 000000000..4ef3663d0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/stack_group_points_cuda_kernel.cuh
    @@ -0,0 +1,97 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points_gpu.cu
    +#ifndef STACK_GROUP_POINTS_CUDA_KERNEL_CUH
    +#define STACK_GROUP_POINTS_CUDA_KERNEL_CUH
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +#include 
    +template 
    +__global__ void stack_group_points_forward_cuda_kernel(
    +    int b, int c, int m, int nsample, const T *features,
    +    const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt,
    +    T *out) {
    +  // :param features: (N1 + N2 ..., C) tensor of features to group
    +  // :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the
    +  // indices of features to group with :param idx: (M1 + M2 ..., nsample) tensor
    +  // containing the indices of features to group with :param idx_batch_cnt:
    +  // (batch_size) [M1 + M2 ...] tensor containing the indices of features to
    +  // group with :return:
    +  //     output: (M1 + M2, C, nsample) tensor
    +  CUDA_1D_KERNEL_LOOP(index, m * c * nsample) {
    +    const T *cur_features = features;
    +    const int *cur_idx = idx;
    +    int sample_idx = index % nsample;
    +    int c_idx = (index / nsample) % c;
    +    int pt_idx = (index / nsample / c);
    +
    +    if (pt_idx >= m || c_idx >= c || sample_idx >= nsample) return;
    +    int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
    +    for (int k = 1; k < b; k++) {
    +      if (pt_idx < pt_cnt) break;
    +      pt_cnt += idx_batch_cnt[k];
    +      bs_idx = k;
    +    }
    +
    +    int features_batch_start_idx = 0;
    +    int features_batch_end_idx = features_batch_cnt[0];
    +    for (int k = 0; k < bs_idx; k++) {
    +      features_batch_start_idx += features_batch_cnt[k];
    +      features_batch_end_idx =
    +          features_batch_start_idx + features_batch_cnt[k + 1];
    +    }
    +    cur_features += features_batch_start_idx * c;
    +
    +    cur_idx += pt_idx * nsample + sample_idx;
    +    int in_idx = cur_idx[0] * c + c_idx;
    +    int out_idx = pt_idx * c * nsample + c_idx * nsample + sample_idx;
    +    if (in_idx < features_batch_end_idx * c) {
    +      out[out_idx] = cur_features[in_idx];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void stack_group_points_backward_cuda_kernel(
    +    int b, int c, int m, int n, int nsample, const T *grad_out, const int *idx,
    +    const int *idx_batch_cnt, const int *features_batch_cnt, T *grad_features) {
    +  // :param grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the
    +  // output from forward :param idx: (M1 + M2 ..., nsample) tensor containing
    +  // the indices of features to group with :param idx_batch_cnt: (batch_size)
    +  // [M1 + M2 ...] tensor containing the indices of features to group with
    +  // :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the
    +  // indices of features to group with :return:
    +  //     grad_features: (N1 + N2 ..., C) gradient of the features
    +  CUDA_1D_KERNEL_LOOP(index, m * c * nsample) {
    +    const T *cur_grad_out = grad_out;
    +    const int *cur_idx = idx;
    +    T *cur_grad_features = grad_features;
    +    int sample_idx = index % nsample;
    +    int c_idx = (index / nsample) % c;
    +    int pt_idx = (index / nsample / c);
    +
    +    if (pt_idx >= m || c_idx >= c || sample_idx >= nsample) return;
    +
    +    int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
    +    for (int k = 1; k < b; k++) {
    +      if (pt_idx < pt_cnt) break;
    +      pt_cnt += idx_batch_cnt[k];
    +      bs_idx = k;
    +    }
    +
    +    int features_batch_start_idx = 0;
    +    for (int k = 0; k < bs_idx; k++)
    +      features_batch_start_idx += features_batch_cnt[k];
    +
    +    cur_grad_out += pt_idx * c * nsample + c_idx * nsample + sample_idx;
    +    cur_idx += pt_idx * nsample + sample_idx;
    +    cur_grad_features += (features_batch_start_idx + cur_idx[0]) * c + c_idx;
    +
    +    atomicAdd(cur_grad_features, cur_grad_out[0]);
    +  }
    +}
    +
    +#endif  // GROUP_POINTS_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sync_bn_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sync_bn_cuda_kernel.cuh
    new file mode 100644
    index 000000000..4ec6a4668
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/sync_bn_cuda_kernel.cuh
    @@ -0,0 +1,331 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef SYNCBN_CUDA_KERNEL_CUH
    +#define SYNCBN_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void sync_bn_forward_mean_cuda_kernel(const T *input, float *mean,
    +                                                 int num, int channels,
    +                                                 int spatial) {
    +  __shared__ float buffer[THREADS_PER_BLOCK];
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    buffer[tid] += input[index];
    +  }
    +  __syncthreads();
    +
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer[tid] += buffer[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  int total = num * spatial;
    +  if (tid == 0) {
    +    mean[c] = buffer[0] / total;
    +  }
    +}
    +
    +template <>
    +__global__ void sync_bn_forward_mean_cuda_kernel(const phalf *input,
    +                                                 float *mean, int num,
    +                                                 int channels, int spatial) {
    +  __shared__ float buffer[THREADS_PER_BLOCK];
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    buffer[tid] += static_cast(input[index]);
    +  }
    +  __syncthreads();
    +
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer[tid] += buffer[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  int total = num * spatial;
    +  if (tid == 0) {
    +    mean[c] = buffer[0] / total;
    +  }
    +}
    +
    +template 
    +__global__ void sync_bn_forward_var_cuda_kernel(const T *input,
    +                                                const float *mean, float *var,
    +                                                int num, int channels,
    +                                                int spatial) {
    +  __shared__ float buffer[THREADS_PER_BLOCK];
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    float td = input[index] - mean[c];
    +    buffer[tid] += td * td;
    +  }
    +  __syncthreads();
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer[tid] += buffer[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  int total = num * spatial;
    +  if (tid == 0) {
    +    var[c] = buffer[0] / total;
    +  }
    +}
    +
    +template <>
    +__global__ void sync_bn_forward_var_cuda_kernel(const phalf *input,
    +                                                const float *mean, float *var,
    +                                                int num, int channels,
    +                                                int spatial) {
    +  __shared__ float buffer[THREADS_PER_BLOCK];
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    float td = static_cast(input[index]) - mean[c];
    +    buffer[tid] += td * td;
    +  }
    +  __syncthreads();
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer[tid] += buffer[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  int total = num * spatial;
    +  if (tid == 0) {
    +    var[c] = buffer[0] / total;
    +  }
    +}
    +
    +template 
    +__global__ void sync_bn_forward_output_cuda_kernel(
    +    const T *input, const float *mean, const float *var, float *running_mean,
    +    float *running_var, const float *weight, const float *bias, float *norm,
    +    float *std, T *output, int num, int channels, int spatial, float eps,
    +    float momentum, int group_size) {
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  float mean_value = mean[c];
    +  float std_value = sqrt(var[c] + eps);
    +
    +  if (weight != nullptr) {
    +    float weight_value = weight[c];
    +    float bias_value = bias[c];
    +    if (norm != nullptr) {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        norm[index] = (input[index] - mean_value) / std_value;
    +        output[index] = norm[index] * weight_value + bias_value;
    +      }
    +    } else {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        output[index] =
    +            (input[index] - mean_value) / std_value * weight_value + bias_value;
    +      }
    +    }
    +  } else {
    +    if (norm != nullptr) {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        output[index] = norm[index] = (input[index] - mean_value) / std_value;
    +      }
    +    } else {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        output[index] = (input[index] - mean_value) / std_value;
    +      }
    +    }
    +  }
    +  if (tid == 0) {
    +    if (std != nullptr) std[c] = std_value;
    +    if (running_mean != nullptr) {
    +      running_mean[c] =
    +          momentum * mean_value + (1 - momentum) * running_mean[c];
    +      int count = num * spatial * group_size;
    +      float var_unbias = count > 1 ? var[c] * count / (count - 1) : var[c];
    +      running_var[c] = momentum * var_unbias + (1 - momentum) * running_var[c];
    +    }
    +  }
    +}
    +
    +template <>
    +__global__ void sync_bn_forward_output_cuda_kernel(
    +    const phalf *input, const float *mean, const float *var,
    +    float *running_mean, float *running_var, const float *weight,
    +    const float *bias, float *norm, float *std, phalf *output, int num,
    +    int channels, int spatial, float eps, float momentum, int group_size) {
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  float mean_value = mean[c];
    +  float std_value = sqrt(var[c] + eps);
    +  if (weight != nullptr) {
    +    float weight_value = weight[c];
    +    float bias_value = bias[c];
    +    if (norm != nullptr) {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        norm[index] =
    +            (static_cast(input[index]) - mean_value) / std_value;
    +        output[index] =
    +            static_cast(norm[index] * weight_value + bias_value);
    +      }
    +    } else {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        output[index] =
    +            static_cast((static_cast(input[index]) - mean_value) /
    +                                   std_value * weight_value +
    +                               bias_value);
    +      }
    +    }
    +  } else {
    +    if (norm != nullptr) {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        norm[index] =
    +            (static_cast(input[index]) - mean_value) / std_value;
    +        output[index] = static_cast(norm[index]);
    +      }
    +    } else {
    +      for (int i = tid; i < num * spatial; i += blockDim.x) {
    +        int index =
    +            (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +        output[index] = static_cast(
    +            (static_cast(input[index]) - mean_value) / std_value);
    +      }
    +    }
    +  }
    +  if (tid == 0) {
    +    if (std != nullptr) std[c] = std_value;
    +    if (running_mean != nullptr) {
    +      running_mean[c] =
    +          momentum * mean_value + (1 - momentum) * running_mean[c];
    +      int count = num * spatial * group_size;
    +      float var_unbias = count > 1 ? var[c] * count / (count - 1) : var[c];
    +      running_var[c] = momentum * var_unbias + (1 - momentum) * running_var[c];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void sync_bn_backward_param_cuda_kernel(const T *grad_output,
    +                                                   const float *norm,
    +                                                   float *grad_weight,
    +                                                   float *grad_bias, int num,
    +                                                   int channels, int spatial) {
    +  __shared__ float buffer1[THREADS_PER_BLOCK];
    +  __shared__ float buffer2[THREADS_PER_BLOCK];
    +
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer1[tid] = buffer2[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    buffer1[tid] += grad_output[index] * norm[index];
    +    buffer2[tid] += grad_output[index];
    +  }
    +  __syncthreads();
    +
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer1[tid] += buffer1[tid + s];
    +      buffer2[tid] += buffer2[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  if (tid == 0) {
    +    grad_weight[c] = buffer1[0];
    +    grad_bias[c] = buffer2[0];
    +  }
    +}
    +
    +template <>
    +__global__ void sync_bn_backward_param_cuda_kernel(const phalf *grad_output,
    +                                                   const float *norm,
    +                                                   float *grad_weight,
    +                                                   float *grad_bias, int num,
    +                                                   int channels, int spatial) {
    +  __shared__ float buffer1[THREADS_PER_BLOCK];
    +  __shared__ float buffer2[THREADS_PER_BLOCK];
    +
    +  int tid = threadIdx.x;
    +  int c = blockIdx.x;
    +  buffer1[tid] = buffer2[tid] = 0;
    +  for (int i = tid; i < num * spatial; i += blockDim.x) {
    +    int index = (i / spatial) * channels * spatial + c * spatial + i % spatial;
    +    buffer1[tid] += static_cast(grad_output[index]) * norm[index];
    +    buffer2[tid] += static_cast(grad_output[index]);
    +  }
    +  __syncthreads();
    +
    +  for (int s = blockDim.x / 2; s > 0; s >>= 1) {
    +    if (tid < s) {
    +      buffer1[tid] += buffer1[tid + s];
    +      buffer2[tid] += buffer2[tid + s];
    +    }
    +    __syncthreads();
    +  }
    +  if (tid == 0) {
    +    grad_weight[c] = buffer1[0];
    +    grad_bias[c] = buffer2[0];
    +  }
    +}
    +
    +template 
    +__global__ void sync_bn_backward_data_cuda_kernel(
    +    int output_size, const T *grad_output, const float *weight,
    +    const float *grad_weight, const float *grad_bias, const float *norm,
    +    const float *std, T *grad_input, int num, int channels, int spatial) {
    +  int factor = num * spatial;
    +  CUDA_1D_KERNEL_LOOP(index, output_size) {
    +    int c = (index / spatial) % channels;
    +    grad_input[index] =
    +        weight[c] *
    +        (grad_output[index] -
    +         (grad_weight[c] * norm[index] + grad_bias[c]) / factor) /
    +        std[c];
    +  }
    +}
    +
    +template <>
    +__global__ void sync_bn_backward_data_cuda_kernel(
    +    int output_size, const phalf *grad_output, const float *weight,
    +    const float *grad_weight, const float *grad_bias, const float *norm,
    +    const float *std, phalf *grad_input, int num, int channels, int spatial) {
    +  int factor = num * spatial;
    +  CUDA_1D_KERNEL_LOOP(index, output_size) {
    +    int c = (index / spatial) % channels;
    +    grad_input[index] = static_cast(
    +        weight[c] *
    +        (static_cast(grad_output[index]) -
    +         (grad_weight[c] * norm[index] + grad_bias[c]) / factor) /
    +        std[c]);
    +  }
    +}
    +
    +#endif  // SYNCBN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_interpolate_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_interpolate_cuda_kernel.cuh
    new file mode 100644
    index 000000000..971b496e5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_interpolate_cuda_kernel.cuh
    @@ -0,0 +1,61 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef THREE_INTERPOLATE_CUDA_KERNEL_CUH
    +#define THREE_INTERPOLATE_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void three_interpolate_forward_cuda_kernel(
    +    int b, int c, int m, int n, const T *points, const int *__restrict__ idx,
    +    const T *weight, T *out) {
    +  // points: (B, C, M)
    +  // idx: (B, N, 3)
    +  // weight: (B, N, 3)
    +  // output:
    +  //      out: (B, C, N)
    +
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, n) {
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    weight += bs_idx * n * 3 + pt_idx * 3;
    +    points += bs_idx * c * m + c_idx * m;
    +    idx += bs_idx * n * 3 + pt_idx * 3;
    +    out += bs_idx * c * n + c_idx * n;
    +
    +    out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] +
    +                  weight[2] * points[idx[2]];
    +  }
    +}
    +
    +template 
    +__global__ void three_interpolate_backward_cuda_kernel(
    +    int b, int c, int n, int m, const T *grad_out, const int *__restrict__ idx,
    +    const T *weight, T *grad_points) {
    +  // grad_out: (B, C, N)
    +  // weight: (B, N, 3)
    +  // output:
    +  //      grad_points: (B, C, M)
    +
    +  int bs_idx = blockIdx.z;
    +  int c_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, n) {
    +    if (bs_idx >= b || c_idx >= c) return;
    +
    +    grad_out += bs_idx * c * n + c_idx * n + pt_idx;
    +    weight += bs_idx * n * 3 + pt_idx * 3;
    +    grad_points += bs_idx * c * m + c_idx * m;
    +    idx += bs_idx * n * 3 + pt_idx * 3;
    +
    +    atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
    +    atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
    +    atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
    +  }
    +}
    +
    +#endif  // THREE_INTERPOLATE_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_nn_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_nn_cuda_kernel.cuh
    new file mode 100644
    index 000000000..b0434dc37
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/three_nn_cuda_kernel.cuh
    @@ -0,0 +1,72 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef THREE_NN_CUDA_KERNEL_CUH
    +#define THREE_NN_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void three_nn_forward_cuda_kernel(int b, int n, int m,
    +                                             const T *unknown, const T *known,
    +                                             T *dist2, int *__restrict__ idx) {
    +  // unknown: (B, N, 3)
    +  // known: (B, M, 3)
    +  // output:
    +  //      dist2: (B, N, 3)
    +  //      idx: (B, N, 3)
    +
    +  int bs_idx = blockIdx.y;
    +  CUDA_1D_KERNEL_LOOP(pt_idx, n) {
    +    if (bs_idx >= b) return;
    +
    +    unknown += bs_idx * n * 3 + pt_idx * 3;
    +    known += bs_idx * m * 3;
    +    dist2 += bs_idx * n * 3 + pt_idx * 3;
    +    idx += bs_idx * n * 3 + pt_idx * 3;
    +
    +    T ux = unknown[0];
    +    T uy = unknown[1];
    +    T uz = unknown[2];
    +
    +#if defined(__ILUVATAR__)
    +  //float max: 3.4e38
    +  float best1 = 3e38, best2 = 3e38, best3 = 3e38;
    +#else
    +  float best1 = 1e40, best2 = 1e40, best3 = 1e40;
    +#endif
    +    int besti1 = 0, besti2 = 0, besti3 = 0;
    +    for (int k = 0; k < m; ++k) {
    +      T x = known[k * 3 + 0];
    +      T y = known[k * 3 + 1];
    +      T z = known[k * 3 + 2];
    +      T d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
    +      if (d < best1) {
    +        best3 = best2;
    +        besti3 = besti2;
    +        best2 = best1;
    +        besti2 = besti1;
    +        best1 = d;
    +        besti1 = k;
    +      } else if (d < best2) {
    +        best3 = best2;
    +        besti3 = besti2;
    +        best2 = d;
    +        besti2 = k;
    +      } else if (d < best3) {
    +        best3 = d;
    +        besti3 = k;
    +      }
    +    }
    +    dist2[0] = best1;
    +    dist2[1] = best2;
    +    dist2[2] = best3;
    +    idx[0] = besti1;
    +    idx[1] = besti2;
    +    idx[2] = besti3;
    +  }
    +}
    +
    +#endif  // THREE_NN_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/tin_shift_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/tin_shift_cuda_kernel.cuh
    new file mode 100644
    index 000000000..4d1159a51
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/tin_shift_cuda_kernel.cuh
    @@ -0,0 +1,61 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef TIN_SHIFT_CUDA_KERNEL_CUH
    +#define TIN_SHIFT_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +template 
    +__global__ void tin_shift_forward_cuda_kernel(
    +    const int nthreads, const T* input, const int* shift, T* output,
    +    const int batch_size, const int channels, const int t_size,
    +    const int hw_size, const int group_size, const int group_channel) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    const int hw_index = index % hw_size;
    +    const int j = (index / hw_size) % channels;
    +
    +    const int n_index = (index / hw_size / channels) % batch_size;
    +    int group_id = j / group_channel;
    +    int t_shift = shift[n_index * group_size + group_id];
    +    int offset = n_index * t_size * hw_size * channels + hw_size * j + hw_index;
    +    for (int i = 0; i < t_size; i++) {
    +      int now_t = i + t_shift;
    +      int data_id = i * hw_size * channels + offset;
    +      if (now_t < 0 || now_t >= t_size) {
    +        continue;
    +      }
    +      int out_id = now_t * hw_size * channels + offset;
    +      output[out_id] = input[data_id];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void tin_shift_backward_cuda_kernel(
    +    const int nthreads, const T* input, const int* shift, T* output,
    +    const int batch_size, const int channels, const int t_size,
    +    const int hw_size, const int group_size, const int group_channel) {
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    const int hw_index = index % hw_size;
    +    const int j = (index / hw_size) % channels;
    +
    +    const int n_index = (index / hw_size / channels) % batch_size;
    +    int group_id = j / group_channel;
    +    int t_shift = shift[n_index * group_size + group_id];
    +    int offset = n_index * t_size * hw_size * channels + hw_size * j + hw_index;
    +    for (int i = 0; i < t_size; i++) {
    +      int now_t = i + t_shift;
    +      int data_id = i * hw_size * channels + offset;
    +      if (now_t < 0 || now_t >= t_size) {
    +        continue;
    +      }
    +      int out_id = now_t * hw_size * channels + offset;
    +      output[out_id] = input[data_id];
    +    }
    +  }
    +}
    +
    +#endif  // TIN_SHIFT_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/voxelization_cuda_kernel.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/voxelization_cuda_kernel.cuh
    new file mode 100644
    index 000000000..021b488d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/cuda/voxelization_cuda_kernel.cuh
    @@ -0,0 +1,216 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#ifndef VOXELIZATION_CUDA_KERNEL_CUH
    +#define VOXELIZATION_CUDA_KERNEL_CUH
    +
    +#ifdef MMCV_USE_PARROTS
    +#include "parrots_cuda_helper.hpp"
    +#else
    +#include "pytorch_cuda_helper.hpp"
    +#endif
    +
    +typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;
    +
    +template 
    +__global__ void dynamic_voxelize_kernel(
    +    const T* points, T_int* coors, const float voxel_x, const float voxel_y,
    +    const float voxel_z, const float coors_x_min, const float coors_y_min,
    +    const float coors_z_min, const float coors_x_max, const float coors_y_max,
    +    const float coors_z_max, const int grid_x, const int grid_y,
    +    const int grid_z, const int num_points, const int num_features,
    +    const int NDim) {
    +  //   const int index = blockIdx.x * threadsPerBlock + threadIdx.x;
    +  CUDA_1D_KERNEL_LOOP(index, num_points) {
    +    // To save some computation
    +    auto points_offset = points + index * num_features;
    +    auto coors_offset = coors + index * NDim;
    +    int c_x = floorf((points_offset[0] - coors_x_min) / voxel_x);
    +    if (c_x < 0 || c_x >= grid_x) {
    +      coors_offset[0] = -1;
    +      continue;
    +    }
    +
    +    int c_y = floorf((points_offset[1] - coors_y_min) / voxel_y);
    +    if (c_y < 0 || c_y >= grid_y) {
    +      coors_offset[0] = -1;
    +      coors_offset[1] = -1;
    +      continue;
    +    }
    +
    +    int c_z = floorf((points_offset[2] - coors_z_min) / voxel_z);
    +    if (c_z < 0 || c_z >= grid_z) {
    +      coors_offset[0] = -1;
    +      coors_offset[1] = -1;
    +      coors_offset[2] = -1;
    +    } else {
    +      coors_offset[0] = c_z;
    +      coors_offset[1] = c_y;
    +      coors_offset[2] = c_x;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void assign_point_to_voxel(const int nthreads, const T* points,
    +                                      T_int* point_to_voxelidx,
    +                                      T_int* coor_to_voxelidx, T* voxels,
    +                                      const int max_points,
    +                                      const int num_features,
    +                                      const int num_points, const int NDim) {
    +  CUDA_1D_KERNEL_LOOP(thread_idx, nthreads) {
    +    // const int index = blockIdx.x * threadsPerBlock + threadIdx.x;
    +    int index = thread_idx / num_features;
    +
    +    int num = point_to_voxelidx[index];
    +    int voxelidx = coor_to_voxelidx[index];
    +    if (num > -1 && voxelidx > -1) {
    +      auto voxels_offset =
    +          voxels + voxelidx * max_points * num_features + num * num_features;
    +
    +      int k = thread_idx % num_features;
    +      voxels_offset[k] = points[thread_idx];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void assign_voxel_coors(const int nthreads, T_int* coor,
    +                                   T_int* point_to_voxelidx,
    +                                   T_int* coor_to_voxelidx, T_int* voxel_coors,
    +                                   const int num_points, const int NDim) {
    +  CUDA_1D_KERNEL_LOOP(thread_idx, nthreads) {
    +    // const int index = blockIdx.x * threadsPerBlock + threadIdx.x;
    +    // if (index >= num_points) return;
    +    int index = thread_idx / NDim;
    +    int num = point_to_voxelidx[index];
    +    int voxelidx = coor_to_voxelidx[index];
    +    if (num == 0 && voxelidx > -1) {
    +      auto coors_offset = voxel_coors + voxelidx * NDim;
    +      int k = thread_idx % NDim;
    +      coors_offset[k] = coor[thread_idx];
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void point_to_voxelidx_kernel(const T_int* coor,
    +                                         T_int* point_to_voxelidx,
    +                                         T_int* point_to_pointidx,
    +                                         const int max_points,
    +                                         const int max_voxels,
    +                                         const int num_points, const int NDim) {
    +  CUDA_1D_KERNEL_LOOP(index, num_points) {
    +    auto coor_offset = coor + index * NDim;
    +    // skip invalid points
    +    if (coor_offset[0] == -1) continue;
    +
    +    int num = 0;
    +    int coor_x = coor_offset[0];
    +    int coor_y = coor_offset[1];
    +    int coor_z = coor_offset[2];
    +    // only calculate the coors before this coor[index]
    +    for (int i = 0; i < index; ++i) {
    +      auto prev_coor = coor + i * NDim;
    +      if (prev_coor[0] == -1) continue;
    +
    +      // Find all previous points that have the same coors
    +      // if find the same coor, record it
    +      if ((prev_coor[0] == coor_x) && (prev_coor[1] == coor_y) &&
    +          (prev_coor[2] == coor_z)) {
    +        num++;
    +        if (num == 1) {
    +          // point to the same coor that first show up
    +          point_to_pointidx[index] = i;
    +        } else if (num >= max_points) {
    +          // out of boundary
    +          break;
    +        }
    +      }
    +    }
    +    if (num == 0) {
    +      point_to_pointidx[index] = index;
    +    }
    +    if (num < max_points) {
    +      point_to_voxelidx[index] = num;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void determin_voxel_num(
    +    // const T_int* coor,
    +    T_int* num_points_per_voxel, T_int* point_to_voxelidx,
    +    T_int* point_to_pointidx, T_int* coor_to_voxelidx, T_int* voxel_num,
    +    const int max_points, const int max_voxels, const int num_points) {
    +  // only calculate the coors before this coor[index]
    +  for (int i = 0; i < num_points; ++i) {
    +    int point_pos_in_voxel = point_to_voxelidx[i];
    +    // record voxel
    +    if (point_pos_in_voxel == -1) {
    +      // out of max_points or invalid point
    +      continue;
    +    } else if (point_pos_in_voxel == 0) {
    +      // record new voxel
    +      int voxelidx = voxel_num[0];
    +      if (voxel_num[0] >= max_voxels) continue;
    +      voxel_num[0] += 1;
    +      coor_to_voxelidx[i] = voxelidx;
    +      num_points_per_voxel[voxelidx] = 1;
    +    } else {
    +      int point_idx = point_to_pointidx[i];
    +      int voxelidx = coor_to_voxelidx[point_idx];
    +      if (voxelidx != -1) {
    +        coor_to_voxelidx[i] = voxelidx;
    +        num_points_per_voxel[voxelidx] += 1;
    +      }
    +    }
    +  }
    +}
    +
    +__global__ void nondeterministic_get_assign_pos(
    +    const int nthreads, const int32_t* coors_map, int32_t* pts_id,
    +    int32_t* coors_count, int32_t* reduce_count, int32_t* coors_order) {
    +  CUDA_1D_KERNEL_LOOP(thread_idx, nthreads) {
    +    int coors_idx = coors_map[thread_idx];
    +    if (coors_idx > -1) {
    +      int32_t coors_pts_pos = atomicAdd(&reduce_count[coors_idx], 1);
    +      pts_id[thread_idx] = coors_pts_pos;
    +      if (coors_pts_pos == 0) {
    +        coors_order[coors_idx] = atomicAdd(coors_count, 1);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void nondeterministic_assign_point_voxel(
    +    const int nthreads, const T* points, const int32_t* coors_map,
    +    const int32_t* pts_id, const int32_t* coors_in, const int32_t* reduce_count,
    +    const int32_t* coors_order, T* voxels, int32_t* coors, int32_t* pts_count,
    +    const int max_voxels, const int max_points, const int num_features,
    +    const int NDim) {
    +  CUDA_1D_KERNEL_LOOP(thread_idx, nthreads) {
    +    int coors_idx = coors_map[thread_idx];
    +    int coors_pts_pos = pts_id[thread_idx];
    +    if (coors_idx > -1 && coors_pts_pos < max_points) {
    +      int coors_pos = coors_order[coors_idx];
    +      if (coors_pos < max_voxels) {
    +        auto voxels_offset =
    +            voxels + (coors_pos * max_points + coors_pts_pos) * num_features;
    +        auto points_offset = points + thread_idx * num_features;
    +        for (int k = 0; k < num_features; k++) {
    +          voxels_offset[k] = points_offset[k];
    +        }
    +        if (coors_pts_pos == 0) {
    +          pts_count[coors_pos] = min(reduce_count[coors_idx], max_points);
    +          auto coors_offset = coors + coors_pos * NDim;
    +          auto coors_in_offset = coors_in + coors_idx * NDim;
    +          for (int k = 0; k < NDim; k++) {
    +            coors_offset[k] = coors_in_offset[k];
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +#endif  // VOXELIZATION_CUDA_KERNEL_CUH
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/bbox_overlaps_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/bbox_overlaps_mlu_kernel.mlu
    new file mode 100644
    index 000000000..0f273d250
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/bbox_overlaps_mlu_kernel.mlu
    @@ -0,0 +1,322 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include 
    +
    +#include "common_mlu_helper.hpp"
    +
    +#define COORD_NUM 4
    +
    +__nram__ char nmem_buf[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void computeDiv(void *nram_dst, void *nram_src0, void *nram_src1,
    +                             void *nram_addition, const int32_t deal_num) {
    +  __bang_active_reciphp((T *)nram_dst, (T *)nram_src1, deal_num);
    +  __bang_mul((T *)nram_dst, (T *)nram_src0, (T *)nram_dst, deal_num);
    +}
    +
    +template <>
    +__mlu_func__ void computeDiv(void *nram_dst, void *nram_src0,
    +                                   void *nram_src1, void *nram_addition,
    +                                   const int32_t deal_num) {
    +  __bang_half2float((float *)nram_addition, (half *)nram_src1, deal_num);
    +  __bang_active_reciphp((float *)nram_addition, (float *)nram_addition,
    +                        deal_num);
    +  __bang_float2half_rd((half *)nram_src1, (float *)nram_addition, deal_num);
    +  __bang_mul((half *)nram_dst, (half *)nram_src0, (half *)nram_src1, deal_num);
    +}
    +
    +template 
    +__mlu_func__ void bboxOverlapsWorkflow(
    +    T *vec_b1_x1, T *vec_b1_y1, T *vec_b1_x2, T *vec_b1_y2, T *vec_b2_x1,
    +    T *vec_b2_y1, T *vec_b2_x2, T *vec_b2_y2, T *vec_left, T *vec_right,
    +    T *vec_top, T *vec_bottom, const T *bbox1, const T *bbox2, void *ious,
    +    const int32_t offset, const int32_t mode, const int32_t batches_stride,
    +    const int32_t num_bbox1, const int32_t num_bbox2, const bool aligned) {
    +  int32_t task_batch_stride = (num_bbox1 + taskDim - 1) / taskDim;
    +  int32_t batch_start = taskId * task_batch_stride;
    +  int32_t batch_per_task = batch_start + task_batch_stride < num_bbox1
    +                               ? task_batch_stride
    +                               : num_bbox1 - batch_start;
    +  batch_per_task = batch_per_task > 0 ? batch_per_task : (0);
    +
    +  if (aligned) {
    +    int32_t num_loop_cpy = batch_per_task / batches_stride;
    +    int32_t num_rem_cpy_batches = batch_per_task % batches_stride;
    +    num_loop_cpy = num_rem_cpy_batches > 0 ? num_loop_cpy + 1 : num_loop_cpy;
    +    for (int32_t i = 0; i < num_loop_cpy; i++) {
    +      int32_t index = batch_start + i * batches_stride;
    +      int32_t handle_batches = index + batches_stride > num_bbox1
    +                                   ? num_rem_cpy_batches
    +                                   : batches_stride;
    +      int32_t b1 = index;
    +      int32_t b2 = index;
    +
    +      int32_t base1 = b1 * COORD_NUM;
    +      __memcpy(vec_b1_x1, &bbox1[base1], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b1_y1, &bbox1[base1 + 1], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b1_x2, &bbox1[base1 + 2], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b1_y2, &bbox1[base1 + 3], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +
    +      int32_t base2 = b2 * COORD_NUM;
    +      __memcpy(vec_b2_x1, &bbox2[base2], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b2_y1, &bbox2[base2 + 1], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b2_x2, &bbox2[base2 + 2], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      __memcpy(vec_b2_y2, &bbox2[base2 + 3], sizeof(T), GDRAM2NRAM, sizeof(T),
    +               COORD_NUM * sizeof(T), handle_batches - 1);
    +      // get the width and height
    +      __bang_maxequal(vec_left, vec_b1_x1, vec_b2_x1, batches_stride);
    +      __bang_minequal(vec_right, vec_b1_x2, vec_b2_x2, batches_stride);
    +      __bang_maxequal(vec_top, vec_b1_y1, vec_b2_y1, batches_stride);
    +      __bang_minequal(vec_bottom, vec_b1_y2, vec_b2_y2, batches_stride);
    +
    +      // right - left + offset ---> left
    +      __bang_sub(vec_left, vec_right, vec_left, batches_stride);
    +      __bang_add_scalar(vec_left, vec_left, (T)offset, batches_stride);
    +
    +      // bottom - top + offset ---> right
    +      __bang_sub(vec_right, vec_bottom, vec_top, batches_stride);
    +      __bang_add_scalar(vec_right, vec_right, (T)offset, batches_stride);
    +
    +      // zero vector ---> bottom
    +      __bang_write_value(vec_bottom, batches_stride, 0.f);
    +
    +      // width --> vec_left
    +      __bang_maxequal(vec_left, vec_bottom, vec_left, batches_stride);
    +      T *width = vec_left;
    +      // height --> vec_right
    +      __bang_maxequal(vec_right, vec_bottom, vec_right, batches_stride);
    +      T *height = vec_right;
    +
    +      // get the b1_area
    +      // (b1_x2 - b1_x1 + offset)  --->  vec_top
    +      __bang_sub(vec_top, vec_b1_x2, vec_b1_x1, batches_stride);
    +      __bang_add_scalar(vec_top, vec_top, (T)offset, batches_stride);
    +
    +      // (b1_y2 - b1_y1 + offset)  --->  vec_bottom
    +      __bang_sub(vec_bottom, vec_b1_y2, vec_b1_y1, batches_stride);
    +      __bang_add_scalar(vec_bottom, vec_bottom, (T)offset, batches_stride);
    +
    +      // b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset)
    +      // --->  vec_top;
    +      __bang_mul(vec_top, vec_top, vec_bottom, batches_stride);
    +      T *b1_area = vec_top;
    +
    +      // get the b2_area
    +      // (b2_x2 - b2_x1 + offset)  --->  b2_x1
    +      __bang_sub(vec_b2_x1, vec_b2_x2, vec_b2_x1, batches_stride);
    +      __bang_add_scalar(vec_b2_x1, vec_b2_x1, (T)offset, batches_stride);
    +
    +      // (b2_y2 - b2_y1 + offset)  --->  b2_y1
    +      __bang_sub(vec_b2_y1, vec_b2_y2, vec_b2_y1, batches_stride);
    +      __bang_add_scalar(vec_b2_y1, vec_b2_y1, (T)offset, batches_stride);
    +
    +      // b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset)
    +      // --->  b2_x1;
    +      __bang_mul(vec_b2_x1, vec_b2_x1, vec_b2_y1, batches_stride);
    +      T *b2_area = vec_b2_x1;
    +
    +      // inter_s = width * height
    +      __bang_mul(height, width, height, batches_stride);
    +      T *inter_s = height;
    +
    +      // offset vector ---> vec_b2_y1
    +      __bang_write_value(vec_b2_y1, batches_stride, T(offset));
    +      T *vec_offset = vec_b2_y1;
    +
    +      if (mode == 0) {
    +        __bang_add(b1_area, b1_area, b2_area, batches_stride);
    +        __bang_sub(b1_area, b1_area, inter_s, batches_stride);
    +        __bang_maxequal(b1_area, vec_offset, b1_area, batches_stride);
    +      } else {
    +        __bang_maxequal(b1_area, vec_offset, b1_area, batches_stride);
    +      }
    +      T *base_s = b1_area;
    +
    +      // ious = inter_s / base_s
    +      computeDiv(width, inter_s, base_s, vec_b2_x2, batches_stride);
    +      __memcpy((T *)ious + index, width, handle_batches * sizeof(T),
    +               NRAM2GDRAM);
    +    }
    +  } else {
    +    int32_t num_loop_cpy = num_bbox2 / batches_stride;
    +    int32_t num_rem_cpy_batches = num_bbox2 % batches_stride;
    +    num_loop_cpy = num_rem_cpy_batches > 0 ? num_loop_cpy + 1 : num_loop_cpy;
    +    for (int32_t i = 0; i < batch_per_task; i++) {
    +      int32_t index1 = batch_start + i;
    +      int32_t b1 = index1;
    +      int32_t base1 = b1 * COORD_NUM;
    +
    +      // set bbox1 and bbox2 to nram
    +      __bang_write_value(vec_b1_x1, batches_stride, bbox1[base1]);
    +      __bang_write_value(vec_b1_y1, batches_stride, bbox1[base1 + 1]);
    +      __bang_write_value(vec_b1_x2, batches_stride, bbox1[base1 + 2]);
    +      __bang_write_value(vec_b1_y2, batches_stride, bbox1[base1 + 3]);
    +
    +      for (int32_t j = 0; j < num_loop_cpy; j++) {
    +        int32_t index2 = j * batches_stride;
    +        int32_t handle_batches = index2 + batches_stride > num_bbox2
    +                                     ? num_rem_cpy_batches
    +                                     : batches_stride;
    +        int32_t b2 = index2;
    +        int32_t base2 = b2 * COORD_NUM;
    +
    +        // copy bbox2 to nram
    +        __memcpy(vec_b2_x1, &bbox2[base2], sizeof(T), GDRAM2NRAM, sizeof(T),
    +                 COORD_NUM * sizeof(T), handle_batches - 1);
    +        __memcpy(vec_b2_y1, &bbox2[base2 + 1], sizeof(T), GDRAM2NRAM, sizeof(T),
    +                 COORD_NUM * sizeof(T), handle_batches - 1);
    +        __memcpy(vec_b2_x2, &bbox2[base2 + 2], sizeof(T), GDRAM2NRAM, sizeof(T),
    +                 COORD_NUM * sizeof(T), handle_batches - 1);
    +        __memcpy(vec_b2_y2, &bbox2[base2 + 3], sizeof(T), GDRAM2NRAM, sizeof(T),
    +                 COORD_NUM * sizeof(T), handle_batches - 1);
    +
    +        // get the width and height
    +        __bang_maxequal(vec_left, vec_b1_x1, vec_b2_x1, batches_stride);
    +        __bang_minequal(vec_right, vec_b1_x2, vec_b2_x2, batches_stride);
    +        __bang_maxequal(vec_top, vec_b1_y1, vec_b2_y1, batches_stride);
    +        __bang_minequal(vec_bottom, vec_b1_y2, vec_b2_y2, batches_stride);
    +
    +        // right - left + offset ---> left
    +        __bang_sub(vec_left, vec_right, vec_left, batches_stride);
    +        __bang_add_scalar(vec_left, vec_left, (T)offset, batches_stride);
    +        // bottom - top + offset ---> right
    +        __bang_sub(vec_right, vec_bottom, vec_top, batches_stride);
    +        __bang_add_scalar(vec_right, vec_right, (T)offset, batches_stride);
    +
    +        // zero vector ---> bottom
    +        __bang_write_value(vec_bottom, batches_stride, (T)0);
    +
    +        // width --> vec_left
    +        __bang_maxequal(vec_left, vec_bottom, vec_left, batches_stride);
    +        T *width = vec_left;
    +        // height --> vec_right
    +        __bang_maxequal(vec_right, vec_bottom, vec_right, batches_stride);
    +        T *height = vec_right;
    +
    +        // get the b1_area
    +        // (b1_x2 - b1_x1 + offset)  --->  vec_top
    +        __bang_sub(vec_top, vec_b1_x2, vec_b1_x1, batches_stride);
    +        __bang_add_scalar(vec_top, vec_top, (T)offset, batches_stride);
    +        // (b1_y2 - b1_y1 + offset)  --->  vec_bottom
    +        __bang_sub(vec_bottom, vec_b1_y2, vec_b1_y1, batches_stride);
    +        __bang_add_scalar(vec_bottom, vec_bottom, (T)offset, batches_stride);
    +        // b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset)
    +        // --->  vec_top;
    +        __bang_mul(vec_top, vec_top, vec_bottom, batches_stride);
    +        T *b1_area = vec_top;
    +
    +        // get the b2_area
    +        // (b2_x2 - b2_x1 + offset)  --->  b2_x1
    +        __bang_sub(vec_b2_x1, vec_b2_x2, vec_b2_x1, batches_stride);
    +        __bang_add_scalar(vec_b2_x1, vec_b2_x1, (T)offset, batches_stride);
    +        // (b2_y2 - b2_y1 + offset)  --->  b2_y1
    +        __bang_sub(vec_b2_y1, vec_b2_y2, vec_b2_y1, batches_stride);
    +        __bang_add_scalar(vec_b2_y1, vec_b2_y1, (T)offset, batches_stride);
    +        // b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset)
    +        // --->  b2_x1;
    +        __bang_mul(vec_b2_x1, vec_b2_x1, vec_b2_y1, batches_stride);
    +        T *b2_area = vec_b2_x1;
    +
    +        // inter_s = width * height
    +        __bang_mul(height, width, height, batches_stride);
    +        T *inter_s = height;
    +
    +        // offset vector ---> vec_b2_y1
    +        __bang_write_value(vec_b2_y1, batches_stride, T(offset));
    +        T *vec_offset = vec_b2_y1;
    +
    +        if (mode == 0) {
    +          __bang_add(b1_area, b1_area, b2_area, batches_stride);
    +          __bang_sub(b1_area, b1_area, inter_s, batches_stride);
    +          __bang_maxequal(b1_area, vec_offset, b1_area, batches_stride);
    +        } else {
    +          __bang_maxequal(b1_area, vec_offset, b1_area, batches_stride);
    +        }
    +        T *base_s = b1_area;
    +
    +        // ious = inter_s / base_s
    +        computeDiv(width, inter_s, base_s, vec_b2_x2, batches_stride);
    +        int32_t gdram_offset = index1 * num_bbox2 + index2;
    +        __memcpy((T *)ious + gdram_offset, width, handle_batches * sizeof(T),
    +                 NRAM2GDRAM);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelBBoxOverlaps(
    +    const void *bbox1, const void *bbox2, void *ious, const int32_t num_bbox1,
    +    const int32_t num_bbox2, const int32_t mode, const bool aligned,
    +    const int32_t offset) {
    +  /*
    +   * NRAM partition
    +   *  |-------------------------------------------------------------|
    +   *  |   vec_b1_x1   |  vec_b1_y1   |   vec_b1_x2  |   vec_b1_y2   |
    +   *  |-------------------------------------------------------------|
    +   *  |   vec_b2_x1   |  vec_b2_y1   |   vec_b2_x2  |   vec_b2_y2   |
    +   *  |-------------------------------------------------------------|
    +   *  |    vec_left   |  vec_right   |    vec_top   |   vec_bottom  |
    +   *  |-------------------------------------------------------------|
    +   *
    +  */
    +  const int32_t align_bytes = PAD_DOWN(MAX_NRAM_SIZE, NFU_ALIGN_SIZE);
    +  const int32_t split_nram_num = 12;
    +  const int32_t nram_stride =
    +      align_bytes / NFU_ALIGN_SIZE / split_nram_num * NFU_ALIGN_SIZE;
    +
    +  void *vec_b1_x1 = nmem_buf;
    +  void *vec_b1_y1 = nmem_buf + nram_stride;
    +  void *vec_b1_x2 = nmem_buf + 2 * nram_stride;
    +  void *vec_b1_y2 = nmem_buf + 3 * nram_stride;
    +
    +  void *vec_b2_x1 = nmem_buf + 4 * nram_stride;
    +  void *vec_b2_y1 = nmem_buf + 5 * nram_stride;
    +  void *vec_b2_x2 = nmem_buf + 6 * nram_stride;
    +  void *vec_b2_y2 = nmem_buf + 7 * nram_stride;
    +
    +  void *vec_left = nmem_buf + 8 * nram_stride;
    +  void *vec_right = nmem_buf + 9 * nram_stride;
    +  void *vec_top = nmem_buf + 10 * nram_stride;
    +  void *vec_bottom = nmem_buf + 11 * nram_stride;
    +
    +  const int32_t vec_length = nram_stride / sizeof(T);
    +  bboxOverlapsWorkflow((T *)vec_b1_x1, (T *)vec_b1_y1, (T *)vec_b1_x2,
    +                       (T *)vec_b1_y2, (T *)vec_b2_x1, (T *)vec_b2_y1,
    +                       (T *)vec_b2_x2, (T *)vec_b2_y2, (T *)vec_left,
    +                       (T *)vec_right, (T *)vec_top, (T *)vec_bottom,
    +                       (T *)bbox1, (T *)bbox2, (T *)ious, offset, mode,
    +                       vec_length, num_bbox1, num_bbox2, aligned);
    +}
    +
    +void KernelBBoxOverlaps(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                        cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                        const void *bbox1, const void *bbox2, void *ious,
    +                        const int32_t num_bbox1, const int32_t num_bbox2,
    +                        const int32_t mode, const bool aligned,
    +                        const int32_t offset) {
    +  if (d_type == CNRT_FLOAT16) {
    +    MLUUnion1KernelBBoxOverlaps<<>>(
    +        bbox1, bbox2, ious, num_bbox1, num_bbox2, mode, aligned, offset);
    +  } else {
    +    MLUUnion1KernelBBoxOverlaps<<>>(
    +        bbox1, bbox2, ious, num_bbox1, num_bbox2, mode, aligned, offset);
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu
    new file mode 100644
    index 000000000..8dd6a8e58
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu
    @@ -0,0 +1,552 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "carafe_utils.hpp"
    +#include "common_mlu_helper.hpp"
    +
    +#define INDEX3(n, h, w, c, strN, strH, strW) \
    +  (strN) * (n) + (strH) * (h) + (strW) * (w) + (c)
    +
    +#define NRAM_BLOCK PAD_DOWN(MAX_NRAM_SIZE / 5, NRAM_ALIGN_SIZE)
    +
    +__nram__ char nram_buf[MAX_NRAM_SIZE];
    +
    +namespace forward {
    +struct BlockId {
    +  int Ho;
    +  int Wo;
    +  int G;
    +  int Cg;
    +  int Kh;
    +  int Kw;
    +  int Hi;
    +  int Wi;
    +};
    +
    +// start indices of block
    +struct BlockStart {
    +  int Ho;
    +  int Wo;
    +  int G;
    +  int Cg;
    +  int Kh;
    +  int Kw;
    +  int Hi;
    +  int Wi;
    +  int C;
    +};
    +
    +struct BlockEnd {
    +  int Ho;
    +  int Wo;
    +  int Kh;
    +  int Kw;
    +  int Hi;
    +  int Wi;
    +};
    +
    +struct BlockSize {
    +  int Ho;
    +  int Wo;
    +  int G;
    +  int Cg;
    +  int Kh;
    +  int Kw;
    +  int Hi;
    +  int Wi;
    +};
    +
    +template 
    +__mlu_func__ void carafeForwardBLOCK(T *input, T *mask,
    +                                     const CarafeForwardParam param,
    +                                     const CarafeForwardBlockDim block_dim,
    +                                     const CarafeForwardGridDim grid_dim,
    +                                     T *output) {
    +  // data block info
    +  BlockId blkId;
    +  BlockStart blkStart;
    +  BlockEnd blkEnd;
    +  BlockSize blkSize;
    +
    +  // set pointers on NRAM arrays
    +
    +  // input_nram[blkDim_(Hi+Kh)-1, blkDim_(Wi+Kw)-1, blkDim_(G*Cg)]
    +  T *input_nram = (T *)nram_buf;
    +
    +  // mask_nram[blkDim_Ho, blkDim_Wo, blkDim_(G*Kh*Kw)]
    +  T *mask_nram = input_nram + param.input_nram_size;
    +
    +  // output_nram[blkDim_Ho, blkDim_Wo, blkDim_(G*Cg)]
    +  T *output_nram = mask_nram + param.mask_nram_size;
    +
    +  // sum_array[blkDim_(G*Cg)]
    +  T *sum_array = output_nram + param.output_nram_size;
    +
    +  /* ===== loop over N, grid_dim(Ho,Wo,G,Cg)
    +   * iterations are distributed over computing cores
    +   */
    +  for (int loop_index = taskId; loop_index < param.job_num;
    +       loop_index += taskDim) {
    +    // block idx
    +    blkId.Cg = loop_index;
    +    blkId.G = blkId.Cg / grid_dim.Cg;
    +    blkId.Wo = blkId.G / grid_dim.G;
    +    blkId.Ho = blkId.Wo / grid_dim.Wo;
    +    int sample_idx = blkId.Ho / grid_dim.Ho;
    +
    +    blkId.Cg %= grid_dim.Cg;
    +    blkId.G %= grid_dim.G;
    +    blkId.Wo %= grid_dim.Wo;
    +    blkId.Ho %= grid_dim.Ho;
    +
    +    // block starting indices
    +    blkStart.Ho = blkId.Ho * block_dim.Ho;
    +    blkStart.Wo = blkId.Wo * block_dim.Wo;
    +    blkStart.G = blkId.G * block_dim.G;
    +    blkStart.Cg = blkId.Cg * block_dim.Cg;
    +    blkStart.C = blkStart.G * param.Cg + blkStart.Cg;
    +
    +    // block size
    +    blkSize.Ho = block_dim.Ho;
    +    blkSize.Wo = block_dim.Wo;
    +    blkSize.G = block_dim.G;
    +    blkSize.Cg = block_dim.Cg;
    +
    +    // take care of blocks near the end of each dimension
    +    if (blkId.Ho == (grid_dim.Ho - 1)) {
    +      blkSize.Ho = param.Ho - (grid_dim.Ho - 1) * block_dim.Ho;
    +    }
    +    if (blkId.Wo == (grid_dim.Wo - 1)) {
    +      blkSize.Wo = param.Wo - (grid_dim.Wo - 1) * block_dim.Wo;
    +    }
    +    if (blkId.G == (grid_dim.G - 1)) {
    +      blkSize.G = param.group_size - (grid_dim.G - 1) * block_dim.G;
    +    }
    +    if (blkId.Cg == (grid_dim.Cg - 1)) {
    +      blkSize.Cg = param.Cg - (grid_dim.Cg - 1) * block_dim.Cg;
    +    }
    +
    +    // block end indices
    +    blkEnd.Ho = blkStart.Ho + blkSize.Ho - 1;
    +    blkEnd.Wo = blkStart.Wo + blkSize.Wo - 1;
    +
    +    // set output_nram to zero
    +    __bang_write_value(output_nram, param.output_nram_size, T(0));
    +
    +    // loop blocks of kernel window: grid_dim.(Kh, Kw)
    +    for (blkId.Kh = 0; blkId.Kh < grid_dim.Kh; ++blkId.Kh) {
    +      blkStart.Kh = blkId.Kh * block_dim.Kh;
    +      blkSize.Kh = block_dim.Kh;
    +      if (blkId.Kh == (grid_dim.Kh - 1)) {
    +        blkSize.Kh = param.kernel_size - (grid_dim.Kh - 1) * block_dim.Kh;
    +      }
    +      blkEnd.Kh = blkStart.Kh + blkSize.Kh - 1;
    +
    +      blkStart.Hi = blkStart.Ho / param.scale_factor - param.kernel_size_half +
    +                    blkStart.Kh;
    +      blkEnd.Hi =
    +          blkEnd.Ho / param.scale_factor - param.kernel_size_half + blkEnd.Kh;
    +      blkSize.Hi = blkEnd.Hi - blkStart.Hi + 1;
    +
    +      for (blkId.Kw = 0; blkId.Kw < grid_dim.Kw; ++blkId.Kw) {
    +        blkStart.Kw = blkId.Kw * block_dim.Kw;
    +        blkSize.Kw = block_dim.Kw;
    +        if (blkId.Kw == (grid_dim.Kw - 1)) {
    +          blkSize.Kw = param.kernel_size - (grid_dim.Kw - 1) * block_dim.Kw;
    +        }
    +        blkEnd.Kw = blkStart.Kw + blkSize.Kw - 1;
    +
    +        blkStart.Wi = blkStart.Wo / param.scale_factor -
    +                      param.kernel_size_half + blkStart.Kw;
    +        blkEnd.Wi =
    +            blkEnd.Wo / param.scale_factor - param.kernel_size_half + blkEnd.Kw;
    +        blkSize.Wi = blkEnd.Wi - blkStart.Wi + 1;
    +
    +        // load input block from gdram2nram
    +        //
    +        // input_nram[            | input[ sample_idx,
    +        //   0:blkSize.Hi-1,      |   blkStart.Hi + 0:blkSize.Hi-1,
    +        //   0:blkSize.Wi-1,      |   blkStart.Wi + 0:blkSize.Wi-1,
    +        //   0:blkSize.G-1        |   blkStart.G + 0:blkSize.G-1
    +        //   0:blkSize.Cg-1]      |   blkStart.Cg + 0:blkSize.Cg-1]
    +        //
    +        // To skip out of bound indices:
    +        //
    +        // input_nram[
    +        //    hi_start_local:hi_end_local,
    +        //    wi_start_local:wi_end_local, ...]
    +        // = input[n,
    +        //    hi_start_global:hi_end_global,
    +        //    wi_start_global:wi_end_global, ...]
    +        //
    +        int hi_start_local = 0;
    +        int hi_start_global = blkStart.Hi;
    +        if (blkStart.Hi < 0) {
    +          hi_start_local = -blkStart.Hi;
    +          hi_start_global = 0;
    +        }
    +        int wi_start_local = 0;
    +        int wi_start_global = blkStart.Wi;
    +        if (blkStart.Wi < 0) {
    +          wi_start_local = -blkStart.Wi;
    +          wi_start_global = 0;
    +        }
    +        int hi_end_local = blkSize.Hi - 1;
    +        int hi_end_global = blkEnd.Hi;
    +        if (blkEnd.Hi > param.Hi - 1) {
    +          hi_end_global = param.Hi - 1;
    +          hi_end_local -= blkEnd.Hi - hi_end_global;
    +        }
    +        int wi_end_local = blkSize.Wi - 1;
    +        int wi_end_global = blkEnd.Wi;
    +        if (blkEnd.Wi > param.Wi - 1) {
    +          wi_end_global = param.Wi - 1;
    +          wi_end_local -= blkEnd.Wi - wi_end_global;
    +        }
    +
    +        int dst_offset = param.input_nram_stride_h * hi_start_local +
    +                         param.input_nram_stride_w * wi_start_local;
    +        T *dst = input_nram + dst_offset;
    +
    +        int src_offset = INDEX3(sample_idx, hi_start_global, wi_start_global,
    +                                blkStart.C, param.input_stride_n,
    +                                param.input_stride_h, param.input_stride_w);
    +        T *src = input + src_offset;
    +
    +        int input_seg_num_h = hi_end_local - hi_start_local + 1;
    +        int input_seg_num_w = wi_end_local - wi_start_local + 1;
    +        for (int i = 0; i < input_seg_num_h; ++i) {
    +          loadStr3D(dst, src, blkSize.Cg, blkSize.G, input_seg_num_w,
    +                    param.input_nram_stride_g, param.input_nram_stride_w,
    +                    param.input_stride_g, param.input_stride_w);
    +          dst += param.input_nram_stride_h;
    +          src += param.input_stride_h;
    +        }
    +
    +        /* load mask block from gdram2nram
    +         *
    +         * mask_nram[          |  mask[sample_idx,
    +         *   0:blkSize.Ho-1 ,  |    blkStart.Ho + 0:blkSize.Ho-1,
    +         *   0:blkSize.Wo-1,   |    blkStart.Wo + 0:blkSize.Wo-1,
    +         *   0:blkSize.G-1,    |    blkStart.G  + 0:blkSize.G-1,
    +         *   0:blkSize.Kh-1,   |    blkStart.Kh + 0:blkSize.Kh-1,
    +         *   0:blkSize.Kw-1]   |    blkStart.Kw + 0:blkSize.Kw-1]
    +         */
    +        src_offset = INDEX3(blkStart.Wo, blkStart.G, blkStart.Kh, blkStart.Kw,
    +                            param.mask_stride_w, param.mask_stride_g,
    +                            param.mask_stride_kh);
    +        src_offset += sample_idx * param.mask_stride_n +
    +                      blkStart.Ho * param.mask_stride_h;
    +
    +        for (int ho = 0; ho < blkSize.Ho; ++ho) {
    +          dst = mask_nram + ho * param.mask_nram_stride_h;
    +          src = mask + src_offset + ho * param.mask_stride_h;
    +
    +          for (int wo = 0; wo < blkSize.Wo; ++wo) {
    +            loadStr3D(dst, src, blkSize.Kw, blkSize.Kh, blkSize.G,
    +                      param.mask_nram_stride_kh, param.mask_nram_stride_g,
    +                      param.mask_stride_kh, param.mask_stride_g);
    +            dst += param.mask_nram_stride_w;
    +            src += param.mask_stride_w;
    +          }
    +        }
    +
    +        // loop each pixel of the output block
    +        for (int ho = 0; ho < blkSize.Ho; ++ho) {
    +          int kernel_hi_start_global = (blkStart.Ho + ho) / param.scale_factor -
    +                                       param.kernel_size_half + blkStart.Kh;
    +          int kernel_hi_start_local = kernel_hi_start_global - blkStart.Hi;
    +
    +          // int kernel_hi_end_global = kernel_hi_start_global + blkSize.Kh - 1;
    +          // int kernel_hi_end_local = kernel_hi_end_global - blkStart.Hi;
    +
    +          // exclude out of bound indices which should be ignored
    +          int kh_min = hi_start_local - kernel_hi_start_local > 0
    +                           ? hi_start_local - kernel_hi_start_local
    +                           : 0;
    +          int kh_max = hi_end_local - kernel_hi_start_local < blkSize.Kh - 1
    +                           ? hi_end_local - kernel_hi_start_local
    +                           : blkSize.Kh - 1;
    +
    +          for (int wo = 0; wo < blkSize.Wo; ++wo) {
    +            int kernel_wi_start_global =
    +                (blkStart.Wo + wo) / param.scale_factor -
    +                param.kernel_size_half + blkStart.Kw;
    +            int kernel_wi_start_local = kernel_wi_start_global - blkStart.Wi;
    +
    +            // exclude out of bound indices wwich should be ignored
    +            int kw_min = wi_start_local - kernel_wi_start_local > 0
    +                             ? wi_start_local - kernel_wi_start_local
    +                             : 0;
    +            int kw_max = wi_end_local - kernel_wi_start_local < blkSize.Kw - 1
    +                             ? wi_end_local - kernel_wi_start_local
    +                             : blkSize.Kw - 1;
    +
    +            // output_nram[ho, wo, g, c] = sum(mask_nram[ho, wo, g, kh, kw]
    +            //     * input_nram[hi+kh, wi+kw, g, c],
    +            //  for (kh,kw) in [0:blkSize.Kw-1] x [0:blkSize.Kh-1])
    +            //
    +            // sum(mask_nram[ho, wo, g, kh, kw]
    +            //     * input_nram[hi+kh, wi+kw, g, c], (kh,kw))
    +            //
    +            T *mask_array = mask_nram + param.mask_nram_stride_h * ho +
    +                            param.mask_nram_stride_w * wo;
    +
    +            for (int kh = kh_min; kh <= kh_max; ++kh) {
    +              for (int kw = kw_min; kw <= kw_max; ++kw) {
    +                T *src =
    +                    input_nram +
    +                    param.input_nram_stride_h * (kernel_hi_start_local + kh) +
    +                    param.input_nram_stride_w * (kernel_wi_start_local + kw);
    +
    +                int mask_index = param.mask_nram_stride_kh * kh + kw;
    +
    +                // mlutiply mask weight with channels for each channel group
    +                T *sum = sum_array;
    +
    +                for (int g = 0; g < blkSize.G; ++g) {
    +                  __bang_mul_scalar(sum, src, mask_array[mask_index],
    +                                    param.block_Cg_NFU);
    +                  //
    +                  // NOTE: Since block_Cg_NFU >= block_Cg_stride,
    +                  // overlapped writing may occur on sum_array.
    +                  // So this loop must be executed in order to
    +                  // avoid data contamination, as shown below.
    +                  //
    +                  // |-----block_Cg_NFU---------|
    +                  // xxxxxxxxxxxxxxxxxxxxyyyzzzzz------------
    +                  // |---block_Cg_stride---|^^^^^will be overwritten
    +                  //                             in the next iteration.
    +                  //
    +                  // x: actual data used, y: not used, z: overwritten
    +                  //
    +                  sum += param.input_nram_stride_g;
    +                  src += param.input_nram_stride_g;
    +                  mask_index += param.mask_nram_stride_g;
    +                }  // loop blk_G
    +
    +                // add array[blk_G * blk_C] to output_nram
    +                dst = output_nram + param.output_nram_stride_h * ho +
    +                      param.output_nram_stride_w * wo;
    +
    +                __bang_add(dst, dst, sum_array, param.output_nram_stride_w);
    +              }  // end loop blk_Kw
    +            }    // end loop blk_Kh
    +          }      // end loop blk_Wo
    +        }        // end loop blk_Ho
    +      }          // end loop grid_dim.Kw
    +    }            // end loop grid_dim.Kh
    +
    +    /* write output from nram2gdram
    +     *
    +     * output_nram[          |   output[sample_idx,
    +     *   0:blkSize.Ho-1,     |     blkStart.Ho + 0:blkSize.Ho-1,
    +     *   0:blkSize.Wo-1,     |     blkStart.Wo + 0:blkSize.Wo-1,
    +     *   0:blkSize.G-1,      |     blkStart.G  + 0:blkSize.G-1,
    +     *   0:blkSize.Cg-1]     |     blkStart.Cg + 0:blkSize.Cg-1]
    +     */
    +    int dst_offset = INDEX3(sample_idx, blkStart.Ho, blkStart.Wo, blkStart.C,
    +                            param.output_stride_n, param.output_stride_h,
    +                            param.output_stride_w);
    +    T *dst = output + dst_offset;
    +    T *src = output_nram;
    +    for (int i = 0; i < blkSize.Ho; ++i) {
    +      storeStr3D(dst, src, blkSize.Cg, blkSize.G, blkSize.Wo,
    +                 param.output_stride_g, param.output_stride_w,
    +                 param.output_nram_stride_g, param.output_nram_stride_w);
    +      dst += param.output_stride_h;
    +      src += param.output_nram_stride_h;
    +    }
    +  }  // end loop N, grid_dim.(Hi,Wi,G,Cg)
    +}
    +
    +template 
    +__mlu_global__ void MLUBLOCKKernelCarafeForward(
    +    const void *input, const void *mask, const CarafeForwardParam param,
    +    const CarafeForwardBlockDim block_dim, const CarafeForwardGridDim grid_dim,
    +    void *output) {
    +  carafeForwardBLOCK((T *)input, (T *)mask, param, block_dim, grid_dim,
    +                     (T *)output);
    +}
    +}  // namespace forward
    +
    +namespace backward {
    +template 
    +__mlu_func__ void CarafeCompute(T *input, T *mask, T *grad_output,
    +                                T *grad_input, T *grad_mask, const int n,
    +                                const int hi, const int wi, const int c,
    +                                const int k_up, const int group,
    +                                const int scale) {
    +  char *input_buff = nram_buf;
    +  char *mask_buff = input_buff + NRAM_BLOCK;
    +  char *grad_input_buff = mask_buff + NRAM_BLOCK;
    +  char *grad_output_buff = grad_input_buff + NRAM_BLOCK;
    +  char *grad_mask_buff = grad_output_buff + NRAM_BLOCK;
    +
    +  int wo = wi * scale;
    +  int ho = hi * scale;
    +  int out_num = n * ho * wo * group;
    +  int group_size = c / group;
    +  int repeat = out_num / taskDim + (int)(taskId < out_num % taskDim);
    +  int num_align = PAD_DOWN(NRAM_BLOCK / sizeof(T), NFU_ALIGN_SIZE / sizeof(T));
    +  int num_per_loop = group_size / num_align;
    +  int rem_for_loop = group_size % num_align;
    +  int rem_for_loop_align = PAD_UP(rem_for_loop, NFU_ALIGN_SIZE / sizeof(T));
    +  for (int k = 0; k < repeat; k++) {
    +    int iter = k * taskDim + taskId;
    +    int group_k = iter % group;
    +    int w_k = (iter / group) % wo;
    +    int h_k = (iter / wo / group) % ho;
    +    int n_k = (iter / ho / wo / group) % n;
    +    int h_i = h_k / scale;
    +    int w_i = w_k / scale;
    +    int start_h = h_i - ((k_up - 1) / 2);
    +    int end_h = h_i + ((k_up - 1) / 2) + 1;
    +    int start_w = w_i - ((k_up - 1) / 2);
    +    int end_w = w_i + ((k_up - 1) / 2) + 1;
    +    T *base_mask = (T *)mask + n_k * ho * wo * group * k_up * k_up +
    +                   h_k * wo * group * k_up * k_up + w_k * group * k_up * k_up +
    +                   group_k * k_up * k_up;
    +    T *base_grad_mask = (T *)grad_mask + n_k * ho * wo * group * k_up * k_up +
    +                        h_k * wo * group * k_up * k_up +
    +                        w_k * group * k_up * k_up + group_k * k_up * k_up;
    +
    +    __bang_write_zero((T *)grad_input_buff, NRAM_BLOCK / sizeof(T));
    +    __bang_write_zero((T *)grad_mask_buff, NRAM_BLOCK / sizeof(T));
    +    __bang_write_zero((T *)grad_output_buff, NRAM_BLOCK / sizeof(T));
    +
    +    __memcpy((T *)mask_buff, (T *)base_mask, k_up * k_up * sizeof(T),
    +             GDRAM2NRAM);
    +    for (int i = 0; i < num_per_loop; i++) {
    +      __bang_write_zero((T *)input_buff, NRAM_BLOCK / sizeof(T));
    +      T *base_grad_output = (T *)grad_output + n_k * ho * wo * c +
    +                            h_k * wo * c + w_k * c + group_k * group_size +
    +                            i * num_align;
    +      __memcpy((T *)grad_output_buff, (T *)base_grad_output,
    +               num_align * sizeof(T), GDRAM2NRAM);
    +      for (int ih = start_h; ih < end_h; ih++) {
    +        for (int iw = start_w; iw < end_w; iw++) {
    +          if (ih < 0 || ih > hi - 1 || iw < 0 || iw > wi - 1) {
    +            continue;
    +          }
    +          int mask_ih = ih - h_i + (k_up - 1) / 2;
    +          int mask_iw = iw - w_i + (k_up - 1) / 2;
    +          int mask_index = mask_ih * k_up + mask_iw;
    +          int input_index = n_k * hi * wi * c + ih * wi * c + iw * c +
    +                            group_k * group_size + i * num_align;
    +          T *base_input = (T *)input + input_index;
    +          T *base_grad_input = (T *)grad_input + input_index;
    +          __memcpy((T *)input_buff, (T *)base_input, num_align * sizeof(T),
    +                   GDRAM2NRAM);
    +          __bang_mul_scalar((T *)grad_input_buff, (T *)grad_output_buff,
    +                            ((T *)mask_buff)[mask_index], num_align);
    +          __bang_atomic_add((T *)grad_input_buff, (T *)base_grad_input,
    +                            (T *)grad_input_buff, num_align);
    +          __bang_mul((T *)input_buff, (T *)grad_output_buff, (T *)input_buff,
    +                     num_align);
    +
    +          __bang_sumpool((T *)input_buff, (T *)input_buff,
    +                         NFU_ALIGN_SIZE / sizeof(T),
    +                         num_align / (NFU_ALIGN_SIZE / sizeof(T)), 1,
    +                         num_align / (NFU_ALIGN_SIZE / sizeof(T)), 1, 1, 1);
    +
    +          __bang_reduce_sum((T *)input_buff, (T *)input_buff,
    +                            NFU_ALIGN_SIZE / sizeof(T));
    +          ((T *)grad_mask_buff)[mask_index] += ((T *)input_buff)[0];
    +        }
    +      }
    +    }
    +    if (rem_for_loop) {
    +      __bang_write_zero((T *)input_buff, NRAM_BLOCK / sizeof(T));
    +      T *base_grad_output = (T *)grad_output + n_k * ho * wo * c +
    +                            h_k * wo * c + w_k * c + group_k * group_size +
    +                            num_per_loop * num_align;
    +      __memcpy((T *)grad_output_buff, (T *)base_grad_output,
    +               rem_for_loop * sizeof(T), GDRAM2NRAM);
    +      for (int ih = start_h; ih < end_h; ih++) {
    +        for (int iw = start_w; iw < end_w; iw++) {
    +          if (ih < 0 || ih > hi - 1 || iw < 0 || iw > wi - 1) {
    +            continue;
    +          }
    +          int mask_ih = ih - h_i + (k_up - 1) / 2;
    +          int mask_iw = iw - w_i + (k_up - 1) / 2;
    +          int mask_index = mask_ih * k_up + mask_iw;
    +          int input_index = n_k * hi * wi * c + ih * wi * c + iw * c +
    +                            group_k * group_size + num_per_loop * num_align;
    +          T *base_input = (T *)input + input_index;
    +          T *base_grad_input = (T *)grad_input + input_index;
    +          __memcpy((T *)input_buff, (T *)base_input, rem_for_loop * sizeof(T),
    +                   GDRAM2NRAM);
    +          __bang_mul_scalar((T *)grad_input_buff, (T *)grad_output_buff,
    +                            ((T *)mask_buff)[mask_index], rem_for_loop_align);
    +          __bang_atomic_add((T *)grad_input_buff, (T *)base_grad_input,
    +                            (T *)grad_input_buff, rem_for_loop);
    +          __bang_mul((T *)input_buff, (T *)grad_output_buff, (T *)input_buff,
    +                     rem_for_loop_align);
    +
    +          __bang_sumpool(
    +              (T *)input_buff, (T *)input_buff, NFU_ALIGN_SIZE / sizeof(T),
    +              rem_for_loop_align / (NFU_ALIGN_SIZE / sizeof(T)), 1,
    +              rem_for_loop_align / (NFU_ALIGN_SIZE / sizeof(T)), 1, 1, 1);
    +          __bang_reduce_sum((T *)input_buff, (T *)input_buff,
    +                            NFU_ALIGN_SIZE / sizeof(T));
    +
    +          ((T *)grad_mask_buff)[mask_index] += ((T *)input_buff)[0];
    +        }
    +      }
    +    }
    +    __memcpy((T *)base_grad_mask, (T *)grad_mask_buff, k_up * k_up * sizeof(T),
    +             NRAM2GDRAM);
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelCarafeBackward(
    +    const void *input, const void *mask, const void *grad_output,
    +    void *grad_input, void *grad_mask, const int n, const int hi, const int wi,
    +    const int c, const int k_up, const int group, const int scale) {
    +  CarafeCompute((T *)input, (T *)mask, (T *)grad_output, (T *)grad_input,
    +                (T *)grad_mask, n, hi, wi, c, k_up, group, scale);
    +}
    +}  // namespace backward
    +
    +void KernelCarafeForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                         cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                         const void *input, const void *mask,
    +                         const CarafeForwardParam ¶m,
    +                         const CarafeForwardBlockDim &block_dim,
    +                         const CarafeForwardGridDim &grid_dim, void *output) {
    +  if (d_type == CNRT_FLOAT16) {
    +    forward::MLUBLOCKKernelCarafeForward<<>>(
    +        input, mask, param, block_dim, grid_dim, output);
    +  } else {
    +    forward::MLUBLOCKKernelCarafeForward<<>>(
    +        input, mask, param, block_dim, grid_dim, output);
    +  }
    +}
    +
    +void KernelCarafeBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t dtype,
    +                          const void *input, const void *mask,
    +                          const void *grad_output, void *grad_input,
    +                          void *grad_mask, const int n, const int hi,
    +                          const int wi, const int c, const int k_up,
    +                          const int group, const int scale) {
    +  if (dtype == CNRT_FLOAT16) {
    +    backward::MLUUnion1KernelCarafeBackward<<>>(
    +        input, mask, grad_output, grad_input, grad_mask, n, hi, wi, c, k_up,
    +        group, scale);
    +  } else {
    +    backward::MLUUnion1KernelCarafeBackward<<>>(
    +        input, mask, grad_output, grad_input, grad_mask, n, hi, wi, c, k_up,
    +        group, scale);
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_utils.hpp
    new file mode 100644
    index 000000000..09ca60ab1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/carafe_utils.hpp
    @@ -0,0 +1,95 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef CARAFE_UTILS_HPP_
    +#define CARAFE_UTILS_HPP_
    +
    +#define NRAM_ALIGN_SIZE 64
    +
    +struct CarafeForwardParam {
    +  int N;   // batch size
    +  int Hi;  // input height
    +  int Wi;  // input width
    +  int Ci;  // input channels
    +  int Ho;  // output height
    +  int Wo;  // output width
    +  int Cg;  // channels per group
    +
    +  int kernel_size;       // kernel_size
    +  int group_size;        // group_size
    +  int scale_factor;      // scale_factor
    +  int kernel_size_half;  // kernel half size (K-1)/2
    +  int kernel_size_sq;    // square of kernel size
    +
    +  int dtype_size;  // size of tensor data type
    +
    +  // Host arrays' geometry
    +  int input_stride_g;
    +  int input_stride_w;
    +  int input_stride_h;
    +  int input_stride_n;
    +  int input_size;
    +  int mask_stride_kh;
    +  int mask_stride_g;
    +  int mask_stride_w;
    +  int mask_stride_h;
    +  int mask_stride_n;
    +  int mask_size;
    +  int output_stride_g;
    +  int output_stride_w;
    +  int output_stride_h;
    +  int output_stride_n;
    +  int output_size;
    +
    +  // NRAM arrays' geometry
    +  int input_nram_stride_g;
    +  int input_nram_stride_w;
    +  int input_nram_stride_h;
    +  int input_nram_size;
    +  int mask_nram_stride_kh;
    +  int mask_nram_stride_g;
    +  int mask_nram_stride_w;
    +  int mask_nram_stride_h;
    +  int mask_nram_size;
    +  int output_nram_stride_g;
    +  int output_nram_stride_w;
    +  int output_nram_stride_h;
    +  int output_nram_size;
    +
    +  // for address/compute alignment
    +  int align_size_NRAM;  // for addressing on NRAM
    +  int align_size_NFU;   // for NFU operation length
    +  int block_Cg_NFU;     // for bang_mul_const
    +
    +  int job_num;  // total job number
    +};
    +
    +struct CarafeForwardBlockDim {
    +  int Ho;  // block size of output height
    +  int Wo;  // block size of output width
    +  int Kh;  // block size of kernel height
    +  int Kw;  // block size of kernel width
    +  int G;   // block size of groups
    +  int Cg;  // block size of channels within a group
    +  int Hi;  // block size of input height
    +  int Wi;  // block size of input width
    +};
    +
    +struct CarafeForwardGridDim {
    +  int Ho;  // number of blocks of output height
    +  int Wo;
    +  int Kh;
    +  int Kw;
    +  int G;
    +  int Cg;
    +};
    +
    +#endif  // CARAFE_UTILS_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp
    new file mode 100644
    index 000000000..88805ba8e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp
    @@ -0,0 +1,398 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef COMMON_MLU_HELPER_HPP_
    +#define COMMON_MLU_HELPER_HPP_
    +
    +#define NFU_ALIGN_SIZE 128          // Byte
    +#define REM_FOR_STACK (128 * 1024)  // 128KB reserved for cncc
    +
    +#ifdef __BANG_ARCH__
    +#define MAX_NRAM_SIZE \
    +  (__MLU_NRAM_SIZE__ * 1024 - REM_FOR_STACK)  // 128KB reserved for cncc
    +#define MAX_SRAM_SIZE \
    +  (__MLU_SRAM_SIZE__ * 1024 - REM_FOR_STACK)  // 128KB reserved for cncc
    +#else
    +#define MAX_NRAM_SIZE (384 * 1024)   // 384KB,  initialization value
    +#define MAX_SRAM_SIZE (1920 * 1024)  // 1920KB, initialization value
    +#endif
    +
    +#ifndef PAD_UP
    +#define PAD_UP(x, y) (((x) / (y) + (int)((x) % (y) > 0)) * (y))
    +#endif
    +
    +#ifndef PAD_DOWN
    +#define PAD_DOWN(x, y) (((x) / (y)) * (y))
    +#endif
    +
    +#define CEIL_ALIGN(x, y) (((x) + (y)-1) / (y) * (y))
    +
    +template 
    +__mlu_func__ inline scalar_t min(scalar_t a, scalar_t b) {
    +  return a < b ? a : b;
    +}
    +
    +template 
    +__mlu_func__ inline scalar_t max(scalar_t a, scalar_t b) {
    +  return a > b ? a : b;
    +}
    +
    +/*!
    + * @brief loads data from global DRAM to NRAM with 2D pattern.
    + *
    + * @param[out] dst
    + *   Pointer to NRAM that stores dst data.
    + * @param[in] src
    + *   Pointer to global DRAM that stores src data.
    + * @param[in] size
    + *   The byte size of segment in the lower dimension.
    + * @param[in] dst_str
    + *   The data stride in bytes between segments in the lower dimension of dst.
    + * @param[in] src_str
    + *   The data stride in bytes between segments in the lower dimension of src.
    + * @param[in] seg_num
    + *   The total count of data segments in the lower dimension.
    + */
    +template 
    +__mlu_func__ void loadStr2D(T *dst, T *src, const int size, const int dst_str,
    +                            const int src_str, const int seg_num) {
    +  if (dst_str == src_str && size == src_str) {
    +    __memcpy(dst, src, src_str * seg_num * sizeof(T), GDRAM2NRAM);
    +  } else if ((size == src_str || src_str <= dst_str) &&
    +             src_str * sizeof(T) <= 512) {
    +    // gather data less than 512Bytes to improve IO efficiency
    +    T *tmp = (T *)dst + (dst_str - src_str) * seg_num;
    +    __memcpy(tmp, src, (src_str * (seg_num - 1) + size) * sizeof(T),
    +             GDRAM2NRAM);
    +    if (dst_str != src_str) {
    +      __memcpy(dst, tmp, size * sizeof(T), NRAM2NRAM, dst_str * sizeof(T),
    +               src_str * sizeof(T), seg_num - 1);
    +    }
    +  } else {
    +    __memcpy(dst, src, size * sizeof(T), GDRAM2NRAM, dst_str * sizeof(T),
    +             src_str * sizeof(T), seg_num - 1);
    +  }
    +}
    +
    +/*!
    + * @brief loads data from global DRAM to NRAM with 3D pattern.
    + *
    + * @param[out] dst
    + *   Pointer to NRAM that stores dst data.
    + * @param[in] src
    + *   Pointer to global DRAM that stores src data.
    + * @param[in] size
    + *   The byte size of segment in the lowest dimension.
    + * @param[in] seg_num_in
    + *   The total count of data segments in the lowest dimension.
    + * @param[in] seg_num_out
    + *   The total count of data segments in the middle dimension.
    + * @param[in] dst_str_in
    + *   The data stride in bytes between segments in the lowest dimension of dst.
    + * @param[in] dst_str_out
    + *   The data stride in bytes between segments in the middle dimension of dst.
    + * @param[in] src_str_in
    + *   The data stride in bytes between segments in the lowest dimension of src.
    + * @param[in] src_str_out
    + *   The data stride in bytes between segments in the middle dimension of src.
    + */
    +template 
    +__mlu_func__ void loadStr3D(T *dst, T *src, const int size,
    +                            const int seg_num_in, const int seg_num_out,
    +                            const int dst_str_in, const int dst_str_out,
    +                            const int src_str_in, const int src_str_out) {
    +  T *tmp_dst = dst;
    +  T *tmp_src = src;
    +
    +  for (int i = 0; i < seg_num_out; ++i) {
    +    loadStr2D(tmp_dst, tmp_src, size, dst_str_in, src_str_in, seg_num_in);
    +    tmp_src += src_str_out;
    +    tmp_dst += dst_str_out;
    +  }
    +}
    +
    +/*!
    + * @brief stores data from NRAM to global DRAM with 2D pattern.
    + *
    + * @param[out] dst
    + *   Pointer to global DRAM that stores dst data.
    + * @param[in] src
    + *   Pointer to NRAM that stores src data.
    + * @param[in] size
    + *   The byte size of segment in the lower dimension.
    + * @param[in] dst_str
    + *   The data stride in bytes between segments in the lower dimension of dst.
    + * @param[in] src_str
    + *   The data stride in bytes between segments in the lower dimension of src.
    + * @param[in] seg_num
    + *   The total count of data segments in the lower dimension.
    + */
    +template 
    +__mlu_func__ void storeStr2D(T *dst, T *src, const int size, const int seg_num,
    +                             const int dst_str, const int src_str) {
    +  if ((size == dst_str && dst_str <= src_str) && dst_str * sizeof(T) <= 512) {
    +    // gather data less than 512Bytes to improve IO efficiency
    +    if (dst_str != src_str) {
    +      __memcpy(src, src, size * sizeof(T), NRAM2NRAM, dst_str * sizeof(T),
    +               src_str * sizeof(T), seg_num - 1);
    +    }
    +    __memcpy(dst, src, size * seg_num * sizeof(T), NRAM2GDRAM);
    +  } else {
    +    __memcpy(dst, src, size * sizeof(T), NRAM2GDRAM, dst_str * sizeof(T),
    +             src_str * sizeof(T), seg_num - 1);
    +  }
    +}
    +
    +/*!
    + * @brief stores data from NRAM to global DRAM with 3D pattern.
    + *
    + * @param[out] dst
    + *   Pointer to global DRAM that stores dst data.
    + * @param[in] src
    + *   Pointer to NRAM that stores src data.
    + * @param[in] size
    + *   The byte size of segment in the lowest dimension.
    + * @param[in] seg_num_in
    + *   The total count of data segments in the lowest dimension.
    + * @param[in] seg_num_out
    + *   The total count of data segments in the middle dimension.
    + * @param[in] dst_str_in
    + *   The data stride in bytes between segments in the lowest dimension of dst.
    + * @param[in] dst_str_out
    + *   The data stride in bytes between segments in the middle dimension of dst.
    + * @param[in] src_str_in
    + *   The data stride in bytes between segments in the lowest dimension of src.
    + * @param[in] src_str_out
    + *   The data stride in bytes between segments in the middle dimension of src.
    + */
    +template 
    +__mlu_func__ void storeStr3D(T *dst, T *src, const int size,
    +                             const int seg_num_in, const int seg_num_out,
    +                             const int dst_str_in, const int dst_str_out,
    +                             const int src_str_in, const int src_str_out) {
    +  T *tmp_dst = dst;
    +  T *tmp_src = src;
    +  for (int i = 0; i < seg_num_out; ++i) {
    +    storeStr2D(tmp_dst, tmp_src, size, seg_num_in, dst_str_in, src_str_in);
    +    tmp_src += src_str_out;
    +    tmp_dst += dst_str_out;
    +  }
    +}
    +
    +/*!
    + * @brief Converts int32 to float32 data type.
    + *
    + * @param[out] dst
    + *   Pointer to NRAM that stores int32 type data.
    + * @param[in,out] dst_addition
    + *   Pointer to NRAM as the workspace of dst, which has the same size as dst.
    + *   It allows empty pointer on MLU300 series.
    + * @param[in] src
    + *   Pointer to NRAM that stores float32 type data.
    + * @param[in,out] src_addition
    + *   Pointer to NRAM as the workspace of src, which has a size of 128 Bytes.
    + *   It allows empty pointer on MLU300 series.
    + * @param[in] src_count
    + *   The count of elements in src.
    + */
    +__mlu_func__ void convertInt2Float(float *dst, float *dst_addition, int *src,
    +                                   float *src_addition, const int src_count) {
    +#if __BANG_ARCH__ >= 300
    +  __bang_int2float((float *)dst, (int32_t *)src, src_count, 0);
    +#else
    +  // get sign bit
    +  const float move_23bit = 8388608.0;
    +  // 0x80000000 = 1,000000000,0000000000000000000000000000
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x80000000);
    +  __bang_cycle_band((char *)dst_addition, (char *)src, (char *)src_addition,
    +                    src_count * sizeof(float), NFU_ALIGN_SIZE);
    +  // get 1 or 0 from sign bit
    +  // judg is Odd
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x00000001);
    +  __bang_cycle_bor((char *)dst_addition, (char *)dst_addition,
    +                   (char *)src_addition, src_count * sizeof(float),
    +                   NFU_ALIGN_SIZE);
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x80000001);
    +  __bang_cycle_eq(dst_addition, dst_addition, src_addition, src_count,
    +                  NFU_ALIGN_SIZE / sizeof(float));
    +  // minus xor, positive num invariant
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0xffffffff);
    +  __bang_cycle_mul(dst, dst_addition, src_addition, src_count,
    +                   NFU_ALIGN_SIZE / sizeof(float));
    +  __bang_bxor((char *)dst, (char *)src, (char *)dst, src_count * sizeof(float));
    +  // convert int32 to float32
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x7fffff);
    +  __bang_cycle_band((char *)dst, (char *)dst, (char *)src_addition,
    +                    src_count * sizeof(float), NFU_ALIGN_SIZE);
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x4b000000);
    +  __bang_cycle_bor((char *)dst, (char *)dst, (char *)src_addition,
    +                   src_count * sizeof(float), NFU_ALIGN_SIZE);
    +  __bang_sub_scalar(dst, dst, move_23bit, src_count);
    +  // add one
    +  __bang_add(dst, dst, dst_addition, src_count);
    +  // set sign for float32
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0xffffffff);
    +  __bang_cycle_mul(dst_addition, dst_addition, src_addition, src_count,
    +                   NFU_ALIGN_SIZE / sizeof(float));
    +
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x00000001);
    +  __bang_cycle_add(dst_addition, dst_addition, src_addition, src_count,
    +                   NFU_ALIGN_SIZE / sizeof(float));
    +
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0x80000000);
    +  __bang_cycle_band((char *)dst_addition, (char *)dst_addition,
    +                    (char *)src_addition, src_count * 4, 128);
    +  __bang_bor((char *)dst, (char *)dst, (char *)dst_addition, src_count * 4);
    +#endif  // __BANG_ARCH__ >= 300
    +}
    +
    +/*!
    + * @brief Converts float32 to int32 data type with to_zero round mode.
    + *
    + * @param[out] dst
    + *   Pointer to NRAM that stores float32 type data.
    + * @param[in,out] dst_addition
    + *   Pointer to NRAM as the workspace of dst, which has the same size as dst.
    + *   It allows empty pointer on MLU300 series.
    + * @param[in] src
    + *   Pointer to NRAM that stores int32 type data.
    + * @param[in,out] src_addition
    + *   Pointer to NRAM as the workspace of src, which has a size of 128 Bytes.
    + *   It allows empty pointer on MLU300 series.
    + * @param[in] src_count
    + *   The count of elements in src.
    + */
    +__mlu_func__ void convertFloat2Int(int *dst, float *dst_addition, float *src,
    +                                   float *src_addition, const int src_count) {
    +#if __BANG_ARCH__ >= 300
    +  __bang_float2int_tz((int32_t *)dst, (float *)src, src_count, 0);
    +#else
    +  // sign ===> src_addition
    +  // dst=-1.0 : when src[i] is a negative number
    +  // dst=+1.0 : when src[i] is a positive number
    +  const int floatDchar = sizeof(float) / sizeof(char);
    +  __bang_active_sign((float *)dst, src, src_count);
    +  // dst_addition = abs(src)
    +  __bang_mul(dst_addition, src, (float *)dst, src_count);
    +  // if dst_addition < 1.0 , then src_addition + 1, to fix add error.
    +  __bang_write_value((float *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     1.0f);
    +  __bang_cycle_lt(dst_addition, dst_addition, (float *)src_addition, src_count,
    +                  NFU_ALIGN_SIZE / sizeof(float));
    +  __bang_add_tz((float *)dst, (float *)dst, (float *)dst_addition, src_count);
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     0xbf800000);
    +  // set negative flag -1.0 = 0xbf80000
    +  __bang_cycle_eq(
    +      (float *)dst, (float *)dst, (float *)src_addition, src_count,
    +      NFU_ALIGN_SIZE / sizeof(float));  //  to mark all src in [x<-1.0]
    +  __bang_active_abs(dst_addition, src, src_count);
    +  __bang_write_value((float *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     8388608.0f);
    +  // mask shift move 23
    +  __bang_cycle_add_tz(
    +      dst_addition, dst_addition, src_addition, src_count,
    +      NFU_ALIGN_SIZE / sizeof(float));  // right shift move 23bit
    +  // two`s complement for negatibe
    +  // dst=1.0 , when src <-1.0
    +  // dst=0.0 , when src >=-1.0
    +  __bang_sub(dst_addition, dst_addition, (float *)dst, src_count);
    +  // to fix max value
    +  // 0 1001 0110 111 1111 1111 1111 1111 1111 <=> 0xcb7fffff <=> 16777215.0,
    +  // means max value.
    +  __bang_mul_scalar((float *)dst, (float *)dst, 16777215.0, src_count);
    +  __bang_bxor((char *)dst_addition, (char *)dst_addition, (char *)dst,
    +              src_count * floatDchar);
    +  // get low 23bit
    +  __bang_write_value((unsigned *)src_addition, NFU_ALIGN_SIZE / sizeof(float),
    +                     (unsigned)0x007fffff);
    +  // mask low 23bit is 1
    +  __bang_cycle_band((char *)dst_addition, (char *)dst_addition,
    +                    (char *)src_addition, src_count * floatDchar,
    +                    NFU_ALIGN_SIZE / sizeof(char));
    +  // set 9 high bit ===> dst
    +  // -2.0 <=> 0xc0000000 <=> 1100 0000 0000 0000 0000 0000 0000 0000
    +  //  1.0 <=> 0x3f800000 <=> 0011 1111 1000 0000 0000 0000 0000 0000
    +  __bang_write_value(src_addition, NFU_ALIGN_SIZE / sizeof(float), 0x3f800000);
    +  __bang_cycle_and((float *)dst, (float *)dst, src_addition, src_count,
    +                   NFU_ALIGN_SIZE / sizeof(float));
    +  // src or dst_addition
    +  __bang_bor((char *)dst_addition, (char *)dst, (char *)dst_addition,
    +             src_count * floatDchar);
    +  __bang_mul_scalar((float *)dst, (float *)dst, -2.0, src_count);
    +  __bang_bor((char *)dst, (char *)dst, (char *)dst_addition,
    +             src_count * floatDchar);
    +#endif  // __BANG_ARCH__ >= 300
    +}
    +
    +/*!
    + * @brief Converts float32 to half data type,
    + * the rounding mode on MLU200 is rd, on MLU300 is rn.
    + *
    + * @param[out] dst
    + *   Pointer to NRAM that stores half type data.
    + * @param[in] src
    + *   Pointer to NRAM that stores float32 type data.
    + * @param[in] src_count
    + *   The count of elements in src.
    + */
    +__mlu_func__ inline void convertFloat2half(half *dst, float *src,
    +                                           int src_count) {
    +#if __BANG_ARCH__ >= 300
    +  __bang_float2half_rn(dst, src, src_count);
    +#else
    +  __bang_float2half_rd(dst, src, src_count);
    +#endif
    +}
    +
    +/*!
    + * @brief recursiveSumPool.
    + * @param[in,out] dst
    + *     Pointer to NRAM that stores the input and output data.
    + * @param[in] low_dim
    + *     Which is the number of low dim.
    + * @param[in] high_dim
    + *     Which is the number of high dim.
    + * @param[in] kernel_limit
    + *     Which is the high_dim of sumpool per time.
    + ******************************************************************************/
    +template 
    +__mlu_func__ void recursiveSumPool(T *dst, int low_dim, int high_dim,
    +                                   int kernel_limit) {
    +  for (; high_dim > 1;) {
    +    int repeat_s = high_dim / kernel_limit;
    +    int remain_s = high_dim % kernel_limit;
    +
    +    if (remain_s) {
    +      __bang_sumpool((T *)dst, (T *)dst, low_dim, 1, remain_s, 1, remain_s, 1,
    +                     1);
    +    }
    +    if (repeat_s) {
    +      __bang_sumpool((T *)dst + (remain_s > 0 ? low_dim : 0),
    +                     (T *)dst + remain_s * low_dim, low_dim,
    +                     kernel_limit * repeat_s, 1, kernel_limit, 1, 1,
    +                     kernel_limit);
    +    }
    +    high_dim = repeat_s + (bool)remain_s;
    +  }
    +  return;
    +}
    +
    +#endif  // COMMON_MLU_HELPER_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/deform_roi_pool_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/deform_roi_pool_mlu_kernel.mlu
    new file mode 100644
    index 000000000..6c765e3ea
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/deform_roi_pool_mlu_kernel.mlu
    @@ -0,0 +1,712 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include 
    +
    +#include "common_mlu_helper.hpp"
    +
    +#define ROI_OFFSET 5
    +#define FOURSPLIT 4
    +#define FIVESPLIT 5
    +#define NINESPLIT 9
    +#define THIRTEENSPLIT 13
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +static __mlu_func__ void bilinearInterpolate(const int input_width, T y, T x,
    +                                             T *w1, T *w2, T *w3, T *w4,
    +                                             int *x_low, int *x_high,
    +                                             const int y_low, bool *is_empty) {
    +  if (x < -1.0 || x > input_width) {
    +    *is_empty = true;
    +    return;
    +  }
    +
    +  if (x <= 0) x = 0;
    +
    +  *x_low = int(x);
    +
    +  if (*x_low >= input_width - 1) {
    +    *x_high = *x_low = input_width - 1;
    +    x = T(*x_low);
    +  } else {
    +    *x_high = *x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - *x_low;
    +  T hy = 1.0 - ly;
    +  T hx = 1.0 - lx;
    +  *w1 = hy * hx;
    +  *w2 = hy * lx;
    +  *w3 = ly * hx;
    +  *w4 = ly * lx;
    +}
    +
    +template 
    +__mlu_func__ void MLUUnion1DeformRoIPoolForward(
    +    const T *input, const T *rois, const T *offset, T *output,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const T spatial_scale,
    +    const int sampling_ratio, const T gamma) {
    +  for (int bin_index = taskId;
    +       bin_index < num_rois * pooled_width * pooled_height;
    +       bin_index += taskDim) {
    +    int out_batch = bin_index / pooled_width / pooled_height;
    +    int out_height = bin_index / pooled_width % pooled_height;
    +    int out_width = bin_index % pooled_width;
    +    const T *cur_roi = rois + out_batch * ROI_OFFSET;
    +    T *nram_rois = (T *)nram_buffer;
    +    __memcpy((void *)nram_rois, (void *)cur_roi, ROI_OFFSET * sizeof(T),
    +             GDRAM2NRAM);
    +    const int roi_batch = nram_rois[0];
    +    T roi_x_min = nram_rois[1] * spatial_scale - 0.5;
    +    T roi_y_min = nram_rois[2] * spatial_scale - 0.5;
    +    const T roi_x_max = nram_rois[3] * spatial_scale - 0.5;
    +    const T roi_y_max = nram_rois[4] * spatial_scale - 0.5;
    +    const T roi_width = roi_x_max - roi_x_min;
    +    const T roi_height = roi_y_max - roi_y_min;
    +    const T bin_width = roi_width / static_cast(pooled_width);
    +    const T bin_height = roi_height / static_cast(pooled_height);
    +    const T *offset_input = input + roi_batch * height * width * channels;
    +    int roi_bin_grid_height =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_height / pooled_height));
    +    int roi_bin_grid_width =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_width / pooled_width));
    +    if (offset != NULL) {
    +      const T *offset_cur = offset +
    +                            out_batch * pooled_width * pooled_height * 2 +
    +                            out_height * pooled_width + out_width;
    +      roi_x_min += gamma * roi_width * offset_cur[0];
    +      roi_y_min +=
    +          gamma * roi_height * offset_cur[pooled_width * pooled_height];
    +    }
    +    int type_align = NFU_ALIGN_SIZE / sizeof(T);
    +    int channels_max_num_nram = MAX_NRAM_SIZE / sizeof(T);
    +    int channels_nram_split =
    +        channels_max_num_nram / NINESPLIT / type_align * type_align;
    +    int channel_rem = channels % channels_nram_split;
    +    int channel_loops =
    +        channels / channels_nram_split + (channel_rem != 0 ? 1 : 0);
    +    for (int channel_loop_index = 0; channel_loop_index < channel_loops;
    +         ++channel_loop_index) {
    +      int channels_num =
    +          channels_nram_split >= channels ? channels : channels_nram_split;
    +      const int channel_offset = channel_loop_index * channels_num;
    +      if (channel_loop_index + 1 == channel_loops && channel_rem != 0) {
    +        channels_num = channel_rem;
    +      }
    +      int channels_align = CEIL_ALIGN(channels_num, type_align);
    +      int nram_limit = (MAX_NRAM_SIZE / sizeof(T) - channels_align) >> 1;
    +      int c_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +      int c_slice_align = 0;
    +
    +      /* NRAM partition
    +       *
    +       * |          |       ping        |       pong        |
    +       * |----------|-------------------|-------------------|
    +       * | nram_out | p1 | p2 | p3 | p4 | p1 | p2 | p3 | p4 |
    +       *
    +       */
    +
    +      T *nram_out = (T *)nram_buffer;
    +      T *nram_ping = nram_out + channels_align;
    +      T *nram_pong = nram_ping + nram_limit;
    +      __bang_write_value((T *)nram_out, channels_align, (T)0);
    +      __bang_write_value((T *)nram_ping, FOURSPLIT * c_slice, (T)0);
    +      __bang_write_value((T *)nram_pong, FOURSPLIT * c_slice, (T)0);
    +      const T num_bins =
    +          static_cast(max(roi_bin_grid_height * roi_bin_grid_width, 1));
    +      const T value_div = 1.0f / num_bins;
    +      bool is_ping_empty = true;
    +      for (int iy = 0; iy < roi_bin_grid_height; ++iy) {
    +        T y = roi_y_min + out_height * bin_height +
    +              static_cast(iy + .5f) * bin_height /
    +                  static_cast(roi_bin_grid_height);
    +        if (y < -1.0 || y > height) {
    +          is_ping_empty = true;
    +          continue;
    +        }
    +        if (y <= 0) {
    +          y = 0;
    +        }
    +        int y_low = 0, y_high = 0;
    +        y_low = int(y);
    +        if (y_low >= height - 1) {
    +          y_high = y_low = height - 1;
    +          y = T(y_low);
    +        } else {
    +          y_high = y_low + 1;
    +        }
    +        for (int ix = 0; ix < roi_bin_grid_width; ++ix) {
    +          T x = roi_x_min + out_width * bin_width +
    +                static_cast(ix + .5f) * bin_width /
    +                    static_cast(roi_bin_grid_width);
    +          const int sample_index = iy * roi_bin_grid_width + ix;
    +          int c_rem = channels_num;
    +          c_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +          c_slice_align = 0;
    +          bool is_empty = false;
    +          T w1, w2, w3, w4;
    +          int x_low = 0, x_high = 0;
    +          bilinearInterpolate(width, y, x, &w1, &w2, &w3, &w4, &x_low, &x_high,
    +                              y_low, &is_empty);
    +          if (is_empty) {
    +            is_ping_empty = true;
    +            continue;
    +          }
    +          if (is_ping_empty) {
    +            c_slice = c_slice > c_rem ? c_rem : c_slice;
    +            c_slice_align = CEIL_ALIGN(c_slice, type_align);
    +            __bang_write_value(nram_ping, FOURSPLIT * c_slice_align, (T)0);
    +            __asm__ volatile("sync;");
    +            __memcpy(nram_ping,
    +                     offset_input + y_low * width * channels +
    +                         x_low * channels + channel_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            __memcpy(nram_ping + c_slice_align,
    +                     offset_input + y_low * width * channels +
    +                         x_high * channels + channel_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            __memcpy(nram_ping + 2 * c_slice_align,
    +                     offset_input + y_high * width * channels +
    +                         x_low * channels + channel_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            __memcpy(nram_ping + 3 * c_slice_align,
    +                     offset_input + y_high * width * channels +
    +                         x_high * channels + channel_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            is_ping_empty = false;
    +          }
    +          int c_offset = 0;
    +          int pongc_slice = 0;
    +          int pongc_slice_align = 0;
    +          while (c_rem > 0) {
    +            c_slice = c_slice > c_rem ? c_rem : c_slice;
    +            c_slice_align = CEIL_ALIGN(c_slice, type_align);
    +            if (sample_index + 1 < roi_bin_grid_height * roi_bin_grid_width) {
    +              int iy_tmp = (sample_index + 1) / roi_bin_grid_width;
    +              int ix_tmp = (sample_index + 1) % roi_bin_grid_width;
    +              y = roi_y_min + out_height * bin_height +
    +                  static_cast(iy_tmp + .5f) * bin_height /
    +                      static_cast(roi_bin_grid_height);
    +              x = roi_x_min + out_width * bin_width +
    +                  static_cast(ix_tmp + .5f) * bin_width /
    +                      static_cast(roi_bin_grid_width);
    +              if (y < -1.0 || y > height) {
    +                is_empty = true;
    +              } else {
    +                T w1_tmp, w2_tmp, w3_tmp, w4_tmp;
    +                if (y <= 0) {
    +                  y = 0;
    +                }
    +                y_low = int(y);
    +                if (y_low >= height - 1) {
    +                  y_high = y_low = height - 1;
    +                  y = T(y_low);
    +                } else {
    +                  y_high = y_low + 1;
    +                }
    +                bilinearInterpolate(width, y, x, &w1_tmp, &w2_tmp, &w3_tmp,
    +                                    &w4_tmp, &x_low, &x_high, y_low, &is_empty);
    +              }
    +              pongc_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +              pongc_slice =
    +                  pongc_slice > channels_num ? channels_num : pongc_slice;
    +              pongc_slice_align = CEIL_ALIGN(pongc_slice, type_align);
    +              __bang_write_value(nram_pong, FOURSPLIT * pongc_slice_align,
    +                                 (T)0);
    +              __asm__ volatile("sync;");
    +              if (!is_empty) {
    +                __memcpy_async(nram_pong,
    +                               offset_input + y_low * width * channels +
    +                                   x_low * channels + channel_offset,
    +                               pongc_slice * sizeof(T), GDRAM2NRAM);
    +                __memcpy_async(nram_pong + pongc_slice_align,
    +                               offset_input + y_low * width * channels +
    +                                   x_high * channels + channel_offset,
    +                               pongc_slice * sizeof(T), GDRAM2NRAM);
    +                __memcpy_async(nram_pong + 2 * pongc_slice_align,
    +                               offset_input + y_high * width * channels +
    +                                   x_low * channels + channel_offset,
    +                               pongc_slice * sizeof(T), GDRAM2NRAM);
    +                __memcpy_async(nram_pong + 3 * pongc_slice_align,
    +                               offset_input + y_high * width * channels +
    +                                   x_high * channels + channel_offset,
    +                               pongc_slice * sizeof(T), GDRAM2NRAM);
    +              }
    +            }
    +            __bang_mul_scalar(nram_ping, nram_ping, w1, c_slice_align);
    +            __bang_mul_scalar(nram_ping + c_slice_align,
    +                              nram_ping + c_slice_align, w2, c_slice_align);
    +            __bang_add(nram_ping, nram_ping, nram_ping + c_slice_align,
    +                       c_slice_align);
    +            __bang_mul_scalar(nram_ping + 2 * c_slice_align,
    +                              nram_ping + 2 * c_slice_align, w3, c_slice_align);
    +            __bang_add(nram_ping, nram_ping, nram_ping + 2 * c_slice_align,
    +                       c_slice_align);
    +            __bang_mul_scalar(nram_ping + 3 * c_slice_align,
    +                              nram_ping + 3 * c_slice_align, w4, c_slice_align);
    +            __bang_add(nram_ping, nram_ping, nram_ping + 3 * c_slice_align,
    +                       c_slice_align);
    +            __bang_add(nram_out + c_offset, nram_out + c_offset, nram_ping,
    +                       c_slice_align);
    +            T *nram_tmp = nram_ping;
    +            nram_ping = nram_pong;
    +            nram_pong = nram_tmp;
    +            c_rem -= c_slice;
    +            c_offset += c_slice;
    +            __asm__ volatile("sync;");
    +          }
    +        }
    +      }
    +      __bang_mul_scalar(nram_out, nram_out, value_div, channels_align);
    +      __memcpy(output + channels * bin_index + channel_offset, nram_out,
    +               channels_num * sizeof(T), NRAM2GDRAM);
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelDeformRoIPoolForward(
    +    cnrtDataType_t data_type, const void *input, const void *rois,
    +    const void *offset, void *output, const int channels, const int height,
    +    const int width, const int num_rois, const int pooled_height,
    +    const int pooled_width, const float spatial_scale, const int sampling_ratio,
    +    const float gamma) {
    +  switch (data_type) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1DeformRoIPoolForward((half *)input, (half *)rois, (half *)offset,
    +                                    (half *)output, channels, height, width,
    +                                    num_rois, pooled_height, pooled_width,
    +                                    static_cast(spatial_scale),
    +                                    sampling_ratio, static_cast(gamma));
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1DeformRoIPoolForward(
    +          (float *)input, (float *)rois, (float *)offset, (float *)output,
    +          channels, height, width, num_rois, pooled_height, pooled_width,
    +          static_cast(spatial_scale), sampling_ratio,
    +          static_cast(gamma));
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +void KernelDeformRoIPoolForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                cnrtQueue_t queue, cnrtDataType_t data_type,
    +                                const void *input, const void *rois,
    +                                const void *offset, void *output,
    +                                const int channels, const int height,
    +                                const int width, const int num_rois,
    +                                const int pooled_height, const int pooled_width,
    +                                const float spatial_scale,
    +                                const int sampling_ratio, const float gamma) {
    +  MLUKernelDeformRoIPoolForward<<>>(
    +      data_type, input, rois, offset, output, channels, height, width, num_rois,
    +      pooled_height, pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +template 
    +__mlu_func__ void MLUUnion1DeformRoIPoolBackward(
    +    const T *grad_output, const T *input, const T *rois, const T *offset,
    +    T *grad_input, T *grad_offset, const int channels, const int height,
    +    const int width, const int num_rois, const int pooled_height,
    +    const int pooled_width, const T spatial_scale, const int sampling_ratio,
    +    const T gamma) {
    +  for (int bin_index = taskId;
    +       bin_index < num_rois * pooled_width * pooled_height;
    +       bin_index += taskDim) {
    +    int out_batch = bin_index / pooled_width / pooled_height;
    +    int out_height = bin_index / pooled_width % pooled_height;
    +    int out_width = bin_index % pooled_width;
    +    const T *cur_roi = rois + out_batch * ROI_OFFSET;
    +    T *nram_rois = (T *)nram_buffer;
    +    __memcpy((void *)nram_rois, (void *)cur_roi, ROI_OFFSET * sizeof(T),
    +             GDRAM2NRAM);
    +    const int roi_batch = nram_rois[0];
    +    T roi_x_min = nram_rois[1] * spatial_scale - 0.5;
    +    T roi_y_min = nram_rois[2] * spatial_scale - 0.5;
    +    const T roi_x_max = nram_rois[3] * spatial_scale - 0.5;
    +    const T roi_y_max = nram_rois[4] * spatial_scale - 0.5;
    +    const T roi_width = roi_x_max - roi_x_min;
    +    const T roi_height = roi_y_max - roi_y_min;
    +    const T bin_width = roi_width / static_cast(pooled_width);
    +    const T bin_height = roi_height / static_cast(pooled_height);
    +    const T *offset_input = input + roi_batch * height * width * channels;
    +    T *offset_grad_input = grad_input + roi_batch * height * width * channels;
    +    int roi_bin_grid_height =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_height / pooled_height));
    +    int roi_bin_grid_width =
    +        (sampling_ratio > 0)
    +            ? sampling_ratio
    +            : static_cast(ceilf(roi_width / pooled_width));
    +    if (offset != NULL) {
    +      const T *offset_cur = offset +
    +                            out_batch * pooled_width * pooled_height * 2 +
    +                            out_height * pooled_width + out_width;
    +      roi_x_min += gamma * roi_width * offset_cur[0];
    +      roi_y_min +=
    +          gamma * roi_height * offset_cur[pooled_width * pooled_height];
    +    }
    +
    +    /* NRAM partition
    +     *
    +     * If offset != NULL, NRAM partition belows.
    +     * |                                                                     |
    +     * ping   |    pong   |
    +     * |---------------------------------------------------------------------|-----------|-----------|
    +     * |nram_tmp1|nram_tmp2|nram_tmp3|nram_tmp4|nram_grad_output|nram_sum_tmp|p1|p2|p3|p4|p1|p2|p3|p4|
    +     *
    +     * If offset == NULL, ping and pang will not be needed.
    +     * | |
    +     * |----------------------------------------------------------------------------------|
    +     * | nram_tmp1 | nram_tmp2 | nram_tmp3 |  nram_tmp4 | nram_grad_output |
    +     *
    +     */
    +
    +    int type_align = NFU_ALIGN_SIZE / sizeof(T);
    +    int channels_max_num_nram = MAX_NRAM_SIZE / sizeof(T);
    +    int channels_nram_split =
    +        channels_max_num_nram / FIVESPLIT / type_align * type_align;
    +    int channel_rem = channels % channels_nram_split;
    +    int channel_loops =
    +        channels / channels_nram_split + (channel_rem != 0 ? 1 : 0);
    +    if (offset != NULL) {
    +      channels_nram_split =
    +          channels_max_num_nram / THIRTEENSPLIT / type_align * type_align;
    +      channel_rem = channels % channels_nram_split;
    +      channel_loops =
    +          channels / channels_nram_split + (channel_rem != 0 ? 1 : 0);
    +    }
    +
    +    for (int channel_loop_index = 0; channel_loop_index < channel_loops;
    +         ++channel_loop_index) {
    +      int channels_num =
    +          channels_nram_split >= channels ? channels : channels_nram_split;
    +      const int channel_offset = channel_loop_index * channels_num;
    +      if (channel_loop_index + 1 == channel_loops && channel_rem != 0) {
    +        channels_num = channel_rem;
    +      }
    +      int channels_align = CEIL_ALIGN(channels_num, type_align);
    +      const int32_t nram_sum_tmp_channel = NFU_ALIGN_SIZE / sizeof(T);
    +      int nram_limit = (MAX_NRAM_SIZE / sizeof(T) - 5 * channels_align -
    +                        nram_sum_tmp_channel) >>
    +                       1;
    +      int c_slice = 0;
    +      int c_slice_align = 0;
    +      T *nram_tmp1 = (T *)nram_buffer;
    +      T *nram_tmp2 = (T *)nram_buffer + channels_align;
    +      T *nram_tmp3 = (T *)nram_buffer + 2 * channels_align;
    +      T *nram_tmp4 = (T *)nram_buffer + 3 * channels_align;
    +      T *nram_grad_output = nram_tmp4 + channels_align;
    +      T *nram_sum_tmp = NULL;
    +      T *nram_ping_input = NULL;
    +      T *nram_pong_input = NULL;
    +      __bang_write_value((T *)nram_grad_output, channels_align, (T)0);
    +      __asm__ volatile("sync;");
    +
    +      if (offset != NULL) {
    +        c_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +        nram_sum_tmp = nram_grad_output + channels_align;
    +        nram_ping_input = nram_sum_tmp + nram_sum_tmp_channel;
    +        nram_pong_input = nram_ping_input + FOURSPLIT * c_slice;
    +        __bang_write_value((T *)nram_sum_tmp, nram_sum_tmp_channel, (T)0);
    +        __bang_write_value((T *)nram_ping_input, FOURSPLIT * c_slice, (T)0);
    +        __bang_write_value((T *)nram_pong_input, FOURSPLIT * c_slice, (T)0);
    +        __asm__ volatile("sync;");
    +      }
    +      const T num_bins =
    +          static_cast(max(roi_bin_grid_height * roi_bin_grid_width, 1));
    +      const T value_div = 1.0f / num_bins;
    +      bool is_ping_empty = true;
    +      __memcpy(nram_grad_output,
    +               grad_output + channels * bin_index + channel_offset,
    +               channels_num * sizeof(T), GDRAM2NRAM);
    +      __bang_mul_scalar(nram_grad_output, nram_grad_output, value_div,
    +                        channels_align);
    +      for (int iy = 0; iy < roi_bin_grid_height; ++iy) {
    +        T y = roi_y_min + out_height * bin_height +
    +              static_cast(iy + .5f) * bin_height /
    +                  static_cast(roi_bin_grid_height);
    +        T y_tmp = y;
    +        if (y_tmp < -1.0 || y_tmp > height) {
    +          is_ping_empty = true;
    +          continue;
    +        }
    +        if (y_tmp <= 0) {
    +          y_tmp = 0;
    +        }
    +        int y_low = 0, y_high = 0;
    +        y_low = int(y_tmp);
    +        if (y_low >= height - 1) {
    +          y_high = y_low = height - 1;
    +          y_tmp = T(y_low);
    +        } else {
    +          y_high = y_low + 1;
    +        }
    +        for (int ix = 0; ix < roi_bin_grid_width; ++ix) {
    +          T x = roi_x_min + out_width * bin_width +
    +                static_cast(ix + .5f) * bin_width /
    +                    static_cast(roi_bin_grid_width);
    +          const int sample_index = iy * roi_bin_grid_width + ix;
    +          int c_rem = channels_num;
    +          bool is_empty = false;
    +          T w1, w2, w3, w4;
    +          int x_low = 0, x_high = 0;
    +          bilinearInterpolate(width, y_tmp, x, &w1, &w2, &w3, &w4, &x_low,
    +                              &x_high, y_low, &is_empty);
    +          if (is_empty) {
    +            is_ping_empty = true;
    +            continue;
    +          }
    +          __bang_mul_scalar((T *)nram_tmp1, (T *)nram_grad_output, w1,
    +                            channels_align);
    +          __bang_mul_scalar((T *)nram_tmp2, (T *)nram_grad_output, w2,
    +                            channels_align);
    +          __bang_mul_scalar((T *)nram_tmp3, (T *)nram_grad_output, w3,
    +                            channels_align);
    +          __bang_mul_scalar((T *)nram_tmp4, (T *)nram_grad_output, w4,
    +                            channels_align);
    +          __asm__ volatile("sync;");
    +          __bang_atomic_add(
    +              (T *)nram_tmp1,
    +              (T *)(offset_grad_input + (y_low * width + x_low) * channels +
    +                    channel_offset),
    +              (T *)nram_tmp1, channels_num);
    +          __bang_atomic_add(
    +              (T *)nram_tmp2,
    +              (T *)(offset_grad_input + (y_low * width + x_high) * channels +
    +                    channel_offset),
    +              (T *)nram_tmp2, channels_num);
    +          __bang_atomic_add(
    +              (T *)nram_tmp3,
    +              (T *)(offset_grad_input + (y_high * width + x_low) * channels +
    +                    channel_offset),
    +              (T *)nram_tmp3, channels_num);
    +          __bang_atomic_add(
    +              (T *)nram_tmp4,
    +              (T *)(offset_grad_input + (y_high * width + x_high) * channels +
    +                    channel_offset),
    +              (T *)nram_tmp4, channels_num);
    +          if (offset != NULL) {
    +            c_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +            c_slice_align = 0;
    +            if (is_ping_empty) {
    +              c_slice = c_slice > c_rem ? c_rem : c_slice;
    +              c_slice_align = CEIL_ALIGN(c_slice, type_align);
    +              __bang_write_value(nram_ping_input, FOURSPLIT * c_slice_align,
    +                                 (T)0);
    +              __asm__ volatile("sync;");
    +              const T *src_offset1 = offset_input + y_low * width * channels +
    +                                     x_low * channels + channel_offset;
    +              const T *src_offset2 = offset_input + y_low * width * channels +
    +                                     x_high * channels + channel_offset;
    +              const T *src_offset3 = offset_input + y_high * width * channels +
    +                                     x_low * channels + channel_offset;
    +              const T *src_offset4 = offset_input + y_high * width * channels +
    +                                     x_high * channels + channel_offset;
    +              __memcpy(nram_ping_input, src_offset1, c_slice * sizeof(T),
    +                       GDRAM2NRAM);
    +              __memcpy(nram_ping_input + c_slice_align, src_offset2,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              __memcpy(nram_ping_input + 2 * c_slice_align, src_offset3,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              __memcpy(nram_ping_input + 3 * c_slice_align, src_offset4,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              is_ping_empty = false;
    +            }
    +            int c_offset = 0;
    +            int pongc_slice = 0;
    +            int pongc_slice_align = 0;
    +            while (c_rem > 0) {
    +              c_slice = c_slice > c_rem ? c_rem : c_slice;
    +              c_slice_align = CEIL_ALIGN(c_slice, type_align);
    +              if (sample_index + 1 < roi_bin_grid_height * roi_bin_grid_width) {
    +                int iy_tmp = (sample_index + 1) / roi_bin_grid_width;
    +                int ix_tmp = (sample_index + 1) % roi_bin_grid_width;
    +                T y_tmp = roi_y_min + out_height * bin_height +
    +                          static_cast(iy_tmp + .5f) * bin_height /
    +                              static_cast(roi_bin_grid_height);
    +                T x_tmp = roi_x_min + out_width * bin_width +
    +                          static_cast(ix_tmp + .5f) * bin_width /
    +                              static_cast(roi_bin_grid_width);
    +                int x_low_tmp = 0, x_high_tmp = 0, y_low_tmp = 0,
    +                    y_high_tmp = 0;
    +                if (y_tmp < -1.0 || y_tmp > height) {
    +                  is_empty = true;
    +                } else {
    +                  T w1_tmp, w2_tmp, w3_tmp, w4_tmp;
    +                  if (y_tmp <= 0) {
    +                    y_tmp = 0;
    +                  }
    +                  y_low_tmp = int(y_tmp);
    +                  if (y_low_tmp >= height - 1) {
    +                    y_high_tmp = y_low_tmp = height - 1;
    +                    y_tmp = T(y_low_tmp);
    +                  } else {
    +                    y_high_tmp = y_low_tmp + 1;
    +                  }
    +                  bilinearInterpolate(width, y_tmp, x_tmp, &w1_tmp, &w2_tmp,
    +                                      &w3_tmp, &w4_tmp, &x_low_tmp, &x_high_tmp,
    +                                      y_low_tmp, &is_empty);
    +                }
    +                pongc_slice = nram_limit / FOURSPLIT / type_align * type_align;
    +                pongc_slice =
    +                    pongc_slice > channels_num ? channels_num : pongc_slice;
    +                pongc_slice_align = CEIL_ALIGN(pongc_slice, type_align);
    +                __bang_write_value(nram_pong_input,
    +                                   FOURSPLIT * pongc_slice_align, (T)0);
    +                __asm__ volatile("sync;");
    +                if (!is_empty) {
    +                  const T *src_offset1 = offset_input +
    +                                         y_low_tmp * width * channels +
    +                                         x_low_tmp * channels + channel_offset;
    +                  const T *src_offset2 = offset_input +
    +                                         y_low_tmp * width * channels +
    +                                         x_high_tmp * channels + channel_offset;
    +                  const T *src_offset3 = offset_input +
    +                                         y_high_tmp * width * channels +
    +                                         x_low_tmp * channels + channel_offset;
    +                  const T *src_offset4 = offset_input +
    +                                         y_high_tmp * width * channels +
    +                                         x_high_tmp * channels + channel_offset;
    +                  __memcpy_async(nram_pong_input, src_offset1,
    +                                 pongc_slice * sizeof(T), GDRAM2NRAM);
    +                  __memcpy_async(nram_pong_input + pongc_slice_align,
    +                                 src_offset2, pongc_slice * sizeof(T),
    +                                 GDRAM2NRAM);
    +                  __memcpy_async(nram_pong_input + 2 * pongc_slice_align,
    +                                 src_offset3, pongc_slice * sizeof(T),
    +                                 GDRAM2NRAM);
    +                  __memcpy_async(nram_pong_input + 3 * pongc_slice_align,
    +                                 src_offset4, pongc_slice * sizeof(T),
    +                                 GDRAM2NRAM);
    +                }
    +              }
    +
    +              __bang_mul_scalar(nram_tmp1, nram_ping_input + 3 * c_slice_align,
    +                                y - y_low, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input + c_slice_align,
    +                                y_high - y, c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input + 2 * c_slice_align,
    +                                y_low - y, c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input, y - y_high,
    +                                c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp1, nram_tmp1, gamma * roi_width,
    +                                c_slice_align);
    +              __bang_mul(nram_tmp1, nram_grad_output, nram_tmp1, c_slice_align);
    +              const int32_t kernel_width =
    +                  c_slice_align / nram_sum_tmp_channel +
    +                  (int32_t)(c_slice_align % nram_sum_tmp_channel > 0);
    +              __bang_sumpool(nram_sum_tmp, nram_tmp1, nram_sum_tmp_channel, 1,
    +                             kernel_width, 1, kernel_width, kernel_width, 1);
    +              __bang_reduce_sum(nram_sum_tmp, nram_sum_tmp,
    +                                nram_sum_tmp_channel);
    +              __bang_atomic_add(
    +                  (T *)nram_sum_tmp,
    +                  (T *)(grad_offset +
    +                        out_batch * pooled_width * pooled_height * 2 +
    +                        out_height * pooled_width + out_width),
    +                  (T *)nram_sum_tmp, 1);
    +              __bang_write_value((T *)nram_sum_tmp, nram_sum_tmp_channel, (T)0);
    +              __bang_mul_scalar(nram_tmp1, nram_ping_input + 3 * c_slice_align,
    +                                x - x_low, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input + 2 * c_slice_align,
    +                                x_high - x, c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input + c_slice_align,
    +                                x_low - x, c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp2, nram_ping_input, x - x_high,
    +                                c_slice_align);
    +              __bang_add(nram_tmp1, nram_tmp1, nram_tmp2, c_slice_align);
    +              __bang_mul_scalar(nram_tmp1, nram_tmp1, gamma * roi_height,
    +                                c_slice_align);
    +              __bang_mul(nram_tmp1, nram_grad_output, nram_tmp1, c_slice_align);
    +              __bang_sumpool(nram_sum_tmp, nram_tmp1, nram_sum_tmp_channel, 1,
    +                             kernel_width, 1, kernel_width, kernel_width, 1);
    +              __bang_reduce_sum(nram_sum_tmp, nram_sum_tmp,
    +                                NFU_ALIGN_SIZE / sizeof(T));
    +              __bang_atomic_add(
    +                  (T *)nram_sum_tmp,
    +                  (T *)(grad_offset +
    +                        out_batch * pooled_width * pooled_height * 2 +
    +                        pooled_width * pooled_height +
    +                        out_height * pooled_width + out_width),
    +                  (T *)nram_sum_tmp, 1);
    +
    +              T *nram_tmp = nram_ping_input;
    +              nram_ping_input = nram_pong_input;
    +              nram_pong_input = nram_tmp;
    +              c_rem -= c_slice;
    +              c_offset += c_slice;
    +              __asm__ volatile("sync;");
    +            }
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelDeformRoIPoolBackward(
    +    cnrtDataType_t data_type, const void *grad_output, const void *input,
    +    const void *rois, const void *offset, void *grad_input, void *grad_offset,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const float spatial_scale,
    +    const int sampling_ratio, const float gamma) {
    +  switch (data_type) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1DeformRoIPoolBackward(
    +          (half *)grad_output, (half *)input, (half *)rois, (half *)offset,
    +          (half *)grad_input, (half *)grad_offset, channels, height, width,
    +          num_rois, pooled_height, pooled_width,
    +          static_cast(spatial_scale), sampling_ratio,
    +          static_cast(gamma));
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1DeformRoIPoolBackward(
    +          (float *)grad_output, (float *)input, (float *)rois, (float *)offset,
    +          (float *)grad_input, (float *)grad_offset, channels, height, width,
    +          num_rois, pooled_height, pooled_width,
    +          static_cast(spatial_scale), sampling_ratio,
    +          static_cast(gamma));
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +void KernelDeformRoIPoolBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    cnrtDataType_t data_type, const void *grad_output, const void *input,
    +    const void *rois, const void *offset, void *grad_input, void *grad_offset,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const float spatial_scale,
    +    const int sampling_ratio, const float gamma) {
    +  MLUKernelDeformRoIPoolBackward<<>>(
    +      data_type, grad_output, input, rois, offset, grad_input, grad_offset,
    +      channels, height, width, num_rois, pooled_height, pooled_width,
    +      spatial_scale, sampling_ratio, gamma);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/focal_loss_sigmoid_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/focal_loss_sigmoid_mlu_kernel.mlu
    new file mode 100644
    index 000000000..7624379b6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/focal_loss_sigmoid_mlu_kernel.mlu
    @@ -0,0 +1,888 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include 
    +
    +#include "common_mlu_helper.hpp"
    +
    +#define PING 0
    +#define PONG 1
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +namespace forward {
    +template 
    +__mlu_func__ void loadInput(char *nram_input, T *dram_input, const int32_t size,
    +                            const int32_t dst_stride = 0,
    +                            const int32_t src_stride = 0,
    +                            const int32_t count = 1) {
    +  if (dst_stride == src_stride) {
    +    __memcpy_async(nram_input, dram_input, size * count, GDRAM2NRAM);
    +  } else {
    +    __memcpy_async(nram_input, dram_input, size, GDRAM2NRAM, dst_stride,
    +                   src_stride, count - 1);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void loadWeight(char *nram_input, T *dram_input, const int32_t t,
    +                             const int32_t c, const int32_t has_weight,
    +                             const int32_t partition_nc) {
    +  if (has_weight && partition_nc && t >= 0 && t < c) {
    +    __memcpy_async(nram_input, (T *)dram_input + t, sizeof(T), GDRAM2NRAM);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void storeOutput(T *dram_output, char *nram_output,
    +                              const int32_t size, const int32_t dst_stride = 0,
    +                              const int32_t src_stride = 0,
    +                              const int32_t count = 1) {
    +  if (dst_stride == src_stride) {
    +    __memcpy_async(dram_output, nram_output, size * count, NRAM2GDRAM);
    +  } else {
    +    __memcpy_async(dram_output, nram_output, size, NRAM2GDRAM, dst_stride,
    +                   src_stride, count - 1);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void compute(T *input, const int32_t *target, const T *weight,
    +                          const int32_t has_weight, const int32_t partition_nc,
    +                          const int32_t deal_num, const int32_t n_seg,
    +                          const int32_t c, const int32_t c_seg,
    +                          const int32_t c_start_index, const float alpha,
    +                          const float gamma, T *compute_a, T *compute_b,
    +                          T *output) {
    +  // set params
    +  const int32_t c_num =
    +      has_weight ? PAD_UP(c_seg, NFU_ALIGN_SIZE / sizeof(T)) : c_seg;
    +  const int32_t c_end_index = c_start_index + c_seg;
    +  const int32_t half_epsilon = 0x0400;
    +  const T epsilon_f =
    +      sizeof(T) == sizeof(float) ? FLT_MIN : *((half *)&half_epsilon);
    +
    +  // 0. alpha_t * p_t^r = alpha * (1 - p) ^ gamma  if t == c_i
    +  //                    = (1 - alpha) * p ^ gamma  if t != c_i
    +  __nramset((T *)output, deal_num, (T)(1 - alpha));
    +  __bang_active_sigmoid((T *)compute_b, (T *)input, deal_num);
    +  for (int32_t i = 0; i < n_seg; ++i) {
    +    const int32_t t = *((uint32_t *)target + i);
    +    if (t >= c_start_index && t < c_end_index) {
    +      const uint32_t index = i * c_num + t - c_start_index;
    +      *((T *)input + index) = -1.0 * (*((T *)input + index));
    +      *((T *)compute_b + index) = 1.0 - (*((T *)compute_b + index)) + epsilon_f;
    +      *((T *)output + index) = alpha;
    +    }
    +  }
    +  if (sizeof(T) == sizeof(half)) {
    +    __bang_half2float((float *)compute_a, (half *)compute_b, deal_num);
    +    __bang_active_loghp((float *)compute_a, (float *)compute_a, deal_num);
    +    __bang_mul_const((float *)compute_a, (float *)compute_a, (float)gamma,
    +                     deal_num);
    +    __bang_active_exphp((float *)compute_a, (float *)compute_a, deal_num);
    +    __bang_float2half_rd((half *)compute_a, (float *)compute_a, deal_num);
    +  } else {
    +    __bang_active_loghp((T *)compute_a, (T *)compute_b, deal_num);
    +    __bang_mul_const((T *)compute_a, (T *)compute_a, (T)gamma, deal_num);
    +    __bang_active_exphp((T *)compute_a, (T *)compute_a, deal_num);
    +  }
    +  __bang_mul((T *)output, (T *)compute_a, (T *)output, deal_num);
    +
    +  // 1. max = max(0, -x)  if t == c_i
    +  //        = max(0, x)   if t != c_i
    +  __nramset((T *)compute_b, deal_num, (T)0);
    +  __bang_maxequal((T *)compute_b, (T *)compute_b, (T *)input, deal_num);
    +
    +  // 2. -log(p_t) = ln(e^(-max)+ e^(-max-x) + max   if t == c_i
    +  //              = ln(e^(-max)+ e^(-max+x) + max   if t != c_i
    +  __bang_mul_const((T *)compute_a, (T *)compute_b, (T)-1.0, deal_num);
    +  __bang_add((T *)input, (T *)compute_a, (T *)input, deal_num);
    +
    +  __bang_active_exphp((T *)compute_a, (T *)compute_a, deal_num);
    +  __bang_active_exphp((T *)input, (T *)input, deal_num);
    +  __bang_add((T *)compute_a, (T *)compute_a, (T *)input, deal_num);
    +  __bang_active_loghp((T *)compute_a, (T *)compute_a, deal_num);
    +  __bang_add((T *)input, (T *)compute_a, (T *)compute_b, deal_num);
    +
    +  // 3. output = alpha_t * p_t^r * [-log(p_t)]
    +  __bang_mul((T *)output, (T *)output, (T *)input, deal_num);
    +
    +  // 4. with weight
    +  if (has_weight) {
    +    for (int32_t i = 0; i < n_seg; ++i) {
    +      int32_t t = *((int32_t *)target + i);
    +      if (t >= 0 && t < c) {
    +        t = partition_nc ? 0 : t;
    +        __bang_mul_const((T *)output + i * c_num, (T *)output + i * c_num,
    +                         *((T *)weight + t), c_num);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_func__ void startPipeline(
    +    const T *input, const int32_t *target, const T *weight,
    +    char *nram_compute_a, char *nram_compute_b, char *nram_input,
    +    char *nram_target, char *nram_weight, char *nram_output,
    +    const int32_t has_weight, const int32_t partition_nc,
    +    const int32_t pingpong_offset, const int32_t pingpong_weight_offset,
    +    const int32_t c_offset_num, const int32_t n, const int32_t n_seg,
    +    const int32_t c, const int32_t c_seg, const float alpha, const float gamma,
    +    T *output) {
    +  // with offset
    +  input = (T *)((char *)input + c_offset_num * sizeof(T));
    +  output = (T *)((char *)output + c_offset_num * sizeof(T));
    +
    +  const int32_t c_seg_align_num = PAD_UP(c_seg, NFU_ALIGN_SIZE / sizeof(T));
    +  const int32_t c_num = has_weight ? c_seg_align_num : c_seg;
    +  const int32_t deal_num = PAD_UP(n_seg * c_num, NFU_ALIGN_SIZE / sizeof(T));
    +  const int32_t load_size = c_seg * sizeof(T);
    +  const int32_t dram_stride = c * sizeof(T);
    +  const int32_t nram_stride = c_num * sizeof(T);
    +
    +  if (has_weight && !partition_nc) {
    +    loadInput(nram_weight, (T *)weight, load_size, nram_stride, dram_stride,
    +                 1);
    +    __asm__ volatile("sync;\n\t");
    +  }
    +  const int32_t repeat = n / n_seg;
    +  const int32_t remain = n % n_seg;
    +
    +  /*
    +   * Pipeline: The pipeline is processed in three stages: Load, Compute, Store.
    +   *           The allocated memory space of NRAM is divided into two parts:
    +   *           PING and Pong. In a single time slice, PING is used to process
    +   *           IO stream and PONG is used for computation. Both of them are
    +   *           processed synchronously until finished.
    +   *
    +   * diagram of PINGPONG:
    +   * |------|-----------------------------------------------------------------|
    +   * |      |                              space                              |
    +   * |------|-----------------------------------------------------------------|
    +   * | time |   Ping   |   Pong   |   Ping   |   Pong   |   Ping   |   Pong   |
    +   * |------|-----------------------------------------------------------------|
    +   * |  0   |    L0    |          |          |          |          |          |
    +   * |  1   |    C0    |    L1    |          |          |          |          |
    +   * |  2   |    S0    |    C1    |    L2    |          |          |          |
    +   * |  3   |          |    S1    |    C2    |    L3    |          |          |
    +   * |  4   |          |          |    S2    |    C3    |    L4    |          |
    +   * |  5   |          |          |          |    S3    |    C4    |    L5    |
    +   * |  6   |          |          |          |          |    S4    |    C5    |
    +   * |  7   |          |          |          |          |          |    S5    |
    +   * |------|-----------------------------------------------------------------|
    +   */
    +
    +  // diagram of PINGPONG: L0
    +  if (repeat > 0) {
    +    loadInput(nram_input, (T *)input, load_size, nram_stride, dram_stride,
    +                 n_seg);
    +    loadInput(nram_target, (int32_t *)target, n_seg * sizeof(int32_t));
    +    loadWeight(nram_weight, (T *)weight, *((int32_t *)target), c, has_weight,
    +                  partition_nc);
    +    __asm__ volatile("sync;\n\t");
    +  }
    +
    +  // diagram of PINGPONG: C0 and L1
    +  if (repeat > 1) {
    +    compute((T *)nram_input, (int32_t *)nram_target, (T *)nram_weight,
    +            has_weight, partition_nc, deal_num, n_seg, c, c_seg, c_offset_num,
    +            alpha, gamma, (T *)nram_compute_a, (T *)nram_compute_b,
    +            (T *)nram_output);
    +    loadInput((char *)nram_input + pingpong_offset, (T *)input + c * n_seg,
    +                 load_size, nram_stride, dram_stride, n_seg);
    +    loadInput((char *)nram_target + pingpong_offset,
    +                       (int32_t *)target + n_seg, n_seg * sizeof(int32_t));
    +    loadWeight((char *)nram_weight + pingpong_weight_offset, (T *)weight,
    +                  *((int32_t *)target + n_seg), c, has_weight, partition_nc);
    +    __asm__ volatile("sync;\n\t");
    +  }
    +
    +  for (int32_t i = 0; i < repeat - 2; ++i) {
    +    storeOutput((T *)output + i * c * n_seg,
    +                   nram_output + (i % 2) * pingpong_offset, load_size,
    +                   dram_stride, nram_stride, n_seg);
    +    loadInput((char *)nram_input + (i % 2) * pingpong_offset,
    +                 (T *)(input) + (i + 2) * c * n_seg, load_size, nram_stride,
    +                 dram_stride, n_seg);
    +    loadInput((char *)nram_target + (i % 2) * pingpong_offset,
    +                       (int32_t *)target + (i + 2) * n_seg,
    +                       n_seg * sizeof(int32_t));
    +    loadWeight((char *)nram_weight + (i % 2) * pingpong_weight_offset,
    +                  (T *)weight, *((int32_t *)target + (i + 2) * n_seg), c,
    +                  has_weight, partition_nc);
    +    compute((T *)(nram_input + ((i + 1) % 2) * pingpong_offset),
    +            (int32_t *)(nram_target + ((i + 1) % 2) * pingpong_offset),
    +            (T *)(nram_weight +
    +                  partition_nc * ((i + 1) % 2) * pingpong_weight_offset),
    +            has_weight, partition_nc, deal_num, n_seg, c, c_seg, c_offset_num,
    +            alpha, gamma, (T *)nram_compute_a, (T *)nram_compute_b,
    +            (T *)(nram_output + ((i + 1) % 2) * pingpong_offset));
    +    __asm__ volatile("sync;\n\t");
    +  }
    +
    +  if (repeat > 1) {
    +    storeOutput((T *)output + (repeat - 2) * c * n_seg,
    +                   (char *)nram_output + (repeat % 2) * pingpong_offset,
    +                   load_size, dram_stride, nram_stride, n_seg);
    +  }
    +
    +  if (remain > 0) {
    +    loadInput((char *)nram_input + (repeat % 2) * pingpong_offset,
    +                 (T *)input + repeat * c * n_seg, load_size, nram_stride,
    +                 dram_stride, remain);
    +    loadInput((char *)nram_target + (repeat % 2) * pingpong_offset,
    +                       (int32_t *)target + repeat * n_seg,
    +                       remain * sizeof(int32_t));
    +    loadWeight((char *)nram_weight + (repeat % 2) * pingpong_weight_offset,
    +                  (T *)weight, *((int32_t *)target + repeat * n_seg), c,
    +                  has_weight, partition_nc);
    +  }
    +
    +  if (repeat > 0) {
    +    compute((T *)(nram_input + ((repeat - 1) % 2) * pingpong_offset),
    +            (int32_t *)(nram_target + ((repeat - 1) % 2) * pingpong_offset),
    +            (T *)(nram_weight +
    +                  partition_nc * ((repeat - 1) % 2) * pingpong_weight_offset),
    +            has_weight, partition_nc, deal_num, n_seg, c, c_seg, c_offset_num,
    +            alpha, gamma, (T *)nram_compute_a, (T *)nram_compute_b,
    +            (T *)(nram_output + ((repeat - 1) % 2) * pingpong_offset));
    +  }
    +  __asm__ volatile("sync;\n\t");
    +
    +  if (repeat > 0) {
    +    storeOutput((T *)output + (repeat - 1) * c * n_seg,
    +                   (char *)nram_output + ((repeat - 1) % 2) * pingpong_offset,
    +                   load_size, dram_stride, nram_stride, n_seg);
    +  }
    +
    +  if (remain > 0) {
    +    int32_t rem_num = PAD_UP(remain * c_num, NFU_ALIGN_SIZE / sizeof(T));
    +    compute((T *)(nram_input + (repeat % 2) * pingpong_offset),
    +            (int32_t *)(nram_target + (repeat % 2) * pingpong_offset),
    +            (T *)(nram_weight +
    +                  partition_nc * (repeat % 2) * pingpong_weight_offset),
    +            has_weight, partition_nc, rem_num, remain, c, c_seg, c_offset_num,
    +            alpha, gamma, (T *)nram_compute_a, (T *)nram_compute_b,
    +            (T *)(nram_output + (repeat % 2) * pingpong_offset));
    +    __asm__ volatile("sync;\n\t");
    +
    +    storeOutput((T *)output + repeat * c * n_seg,
    +                   (char *)nram_output + (repeat % 2) * pingpong_offset,
    +                   load_size, dram_stride, nram_stride, remain);
    +  }
    +  __asm__ volatile("sync;\n\t");
    +}
    +
    +template 
    +__mlu_func__ void focalLossSigmoidForwardBlock(
    +    const T *input, const int32_t *target, const T *weight, const int32_t n,
    +    const int32_t c, const float alpha, const float gamma, T *output) {
    +  /*
    +   * NRAM partition
    +   *  |-----------------------------------------------------------------------|
    +   *  |                                weight                                 |
    +   *  |------------------------------- COMPUTE -------------------------------|
    +   *  |                                   |                                   |
    +   *  |              computeA             |               computeB            |
    +   *  |                                   |                                   |
    +   *  |------------- PING ------------------------------- PONG ---------------|
    +   *  |                                   |                                   |
    +   *  |              input                |               input               |
    +   *  |                                   |                                   |
    +   *  |-----------------------------------|-----------------------------------|
    +   *  |                                   |                                   |
    +   *  |              output               |               output              |
    +   *  |                                   |                                   |
    +   *  |-----------------------------------|-----------------------------------|
    +   *  |              target               |               target              |
    +   *  |-----------------------------------|-----------------------------------|
    +   *
    +   * split_pipeline_num is 6: COMPUTE(computeA,computeB), PING(input,output),
    +   * PONG(input,output).
    +   * split_target_num is 2: PING(target), PONG(target).
    +   * weight is not NULL:
    +   *   The nram-size of weight is equal to c_align_size when partition input-N.
    +   *   The nram-size of weight is equal to NFU_ALIGN_SIZE when partition
    +   * input-NC.
    +  */
    +
    +  // calculate threshold of c
    +  const int32_t split_pipeline_num = 6;
    +  const int32_t split_target_num = 2;
    +  const int32_t has_weight = weight != NULL;
    +  const int32_t threshold_c =
    +      PAD_DOWN((MAX_NRAM_SIZE - split_target_num * sizeof(int32_t)) /
    +                   (split_pipeline_num + has_weight),
    +               NFU_ALIGN_SIZE) /
    +      sizeof(T);
    +  const int32_t c_align = PAD_UP(c, NFU_ALIGN_SIZE / sizeof(T));
    +  const int32_t c_align_size = c_align * sizeof(T);
    +
    +  if (c <= threshold_c) {
    +    // partition inputN
    +    int32_t c_num = c;
    +    int32_t reservered_align_size =
    +        (split_target_num + split_pipeline_num) * NFU_ALIGN_SIZE;
    +    int32_t weight_size = 0;
    +    if (has_weight) {
    +      c_num = c_align;
    +      reservered_align_size = split_target_num * NFU_ALIGN_SIZE;
    +      weight_size = c_align_size;
    +    }
    +
    +    const int32_t remain_size =
    +        MAX_NRAM_SIZE - weight_size - reservered_align_size;
    +    const int32_t n_seg =
    +        remain_size / (split_pipeline_num * c_num * sizeof(T) +
    +                       split_target_num * sizeof(int32_t));
    +    const int32_t split_pipeline_size =
    +        PAD_UP(c_num * n_seg * sizeof(T), NFU_ALIGN_SIZE);
    +    const int32_t compute_size = 2 * split_pipeline_size;
    +    const int32_t pingpong_offset = (MAX_NRAM_SIZE - weight_size - compute_size) / 2;
    +
    +    char *nram_weight = (char *)nram_buffer;
    +    char *nram_compute_a = nram_weight + has_weight * c_align_size;
    +    char *nram_compute_b = nram_compute_a + split_pipeline_size;
    +    char *nram_input = nram_compute_b + split_pipeline_size;
    +    char *nram_output = nram_input + split_pipeline_size;
    +    char *nram_target = nram_output + split_pipeline_size;
    +
    +    startPipeline(input, target, weight, nram_compute_a, nram_compute_b,
    +                     nram_input, nram_target, nram_weight, nram_output,
    +                     has_weight, 0, pingpong_offset, 0, 0, n, n_seg, c, c,
    +                     alpha, gamma, output);
    +  } else {
    +    // partition inputNC
    +    const int32_t weight_size = has_weight * NFU_ALIGN_SIZE;
    +    const int32_t remain_size = MAX_NRAM_SIZE - weight_size;
    +    const int32_t split_pipeline_size = PAD_DOWN(
    +        (remain_size - split_target_num * NFU_ALIGN_SIZE) / split_pipeline_num,
    +        NFU_ALIGN_SIZE);
    +    const int32_t c_seg = split_pipeline_size / sizeof(T);
    +    const int32_t n_seg = 1;
    +    const int32_t compute_size = 2 * split_pipeline_size;
    +    const int32_t pingpong_offset = (MAX_NRAM_SIZE - weight_size - compute_size) / 2;
    +    const int32_t pingpong_weight_offset = weight_size / 2;
    +
    +    char *nram_weight = (char *)nram_buffer;
    +    char *nram_compute_a = nram_weight + weight_size;
    +    char *nram_compute_b = nram_compute_a + split_pipeline_size;
    +    char *nram_input = nram_compute_b + split_pipeline_size;
    +    char *nram_output = nram_input + split_pipeline_size;
    +    char *nram_target = nram_output + split_pipeline_size;
    +
    +    const int32_t loop_num = (c + c_seg - 1) / c_seg;
    +    const int32_t partition_nc = 1;
    +    for (int32_t i = 0; i < loop_num; ++i) {
    +      const int32_t c_index = i * c_seg;
    +      const int32_t c_seg_curr = i == (loop_num - 1) ? c - c_index : c_seg;
    +      startPipeline(input, target, weight, nram_compute_a, nram_compute_b,
    +                       nram_input, nram_target, nram_weight, nram_output,
    +                       has_weight, partition_nc, pingpong_offset,
    +                       pingpong_weight_offset, c_index, n, n_seg, c, c_seg_curr,
    +                       alpha, gamma, output);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelFocalLossSigmoidForward(
    +    const void *input, const void *target, const void *weight, const int32_t N,
    +    const int32_t C, const float alpha, const float gamma, void *output) {
    +  const int32_t n_seg = N / taskDim + (taskId == taskDim - 1) * (N % taskDim);
    +  const T *input_offset = (T *)input + N / taskDim * taskId * C;
    +  const int32_t *target_offset = (int32_t *)target + N / taskDim * taskId;
    +  T *output_offset = (T *)output + N / taskDim * taskId * C;
    +
    +  focalLossSigmoidForwardBlock((T *)input_offset, (int32_t *)target_offset,
    +                               (T *)weight, n_seg, C, alpha, gamma,
    +                               (T *)output_offset);
    +}
    +}  // namespace forward
    +
    +namespace backward {
    +template 
    +__mlu_func__ void loadInput(char *nram_input, char *nram_target,
    +                            const T *gdram_input, const int32_t *gdram_target,
    +                            const int32_t deal_n, const int32_t total_c,
    +                            const bool pingping_flag, const bool has_weight,
    +                            const int32_t nram_offset,
    +                            const int32_t gdram_offset) {
    +  if (pingping_flag == PONG) {
    +    nram_input += nram_offset;
    +    nram_target += nram_offset;
    +  }
    +
    +  __memcpy_async(nram_target, gdram_target + gdram_offset / total_c,
    +                 deal_n * sizeof(int32_t), GDRAM2NRAM);
    +
    +  char *nram_input_load = nram_input;
    +  int32_t compute_align_size = 2 * NFU_ALIGN_SIZE;
    +  if (has_weight) {
    +    if (sizeof(T) == sizeof(half)) {
    +      int32_t compute_align_num = compute_align_size / sizeof(float);
    +      int32_t align_c = PAD_UP(total_c, compute_align_num);
    +      int32_t compute_size = deal_n * align_c * sizeof(float);
    +      nram_input_load += compute_size / 2;
    +    }
    +    int32_t align_c = PAD_UP(total_c, NFU_ALIGN_SIZE / sizeof(T));
    +    int32_t total_c_size = total_c * sizeof(T);
    +    int32_t align_c_size = align_c * sizeof(T);
    +    __memcpy_async(nram_input_load, gdram_input + gdram_offset, total_c_size,
    +                   GDRAM2NRAM, align_c_size, total_c_size, deal_n - 1);
    +  } else {
    +    if (sizeof(T) == sizeof(half)) {
    +      int32_t compute_size =
    +          PAD_UP(deal_n * total_c * sizeof(float), compute_align_size);
    +      nram_input_load += compute_size / 2;
    +    }
    +    int32_t load_size = deal_n * total_c * sizeof(T);
    +    __memcpy_async(nram_input_load, gdram_input + gdram_offset, load_size,
    +                   GDRAM2NRAM);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void sigmoid(T *dst_data, const T *src_data,
    +                          const int32_t elem_count) {
    +  __bang_mul_const(dst_data, (T *)src_data, T(-1), elem_count);
    +  __bang_active_exphp(dst_data, dst_data, elem_count);
    +  __bang_add_const(dst_data, dst_data, T(1), elem_count);
    +  __bang_active_reciphp(dst_data, dst_data, elem_count);
    +}
    +
    +template 
    +__mlu_func__ void coreCompute(char *nram_input, const T *nram_weight,
    +                              const float *nram_flt_min, char *nram_pt,
    +                              char *nram_alpha_t, char *nram_temp,
    +                              char *nram_target, const float *nram_gamma,
    +                              char *nram_output, const float alpha,
    +                              const int32_t compute_num, const int32_t deal_n,
    +                              const int32_t total_c, const bool pingpong_flag,
    +                              const int32_t nram_offset,
    +                              const bool has_weight) {
    +  if (pingpong_flag == PONG) {
    +    nram_input += nram_offset;
    +    nram_pt += nram_offset;
    +    nram_alpha_t += nram_offset;
    +    nram_temp += nram_offset;
    +    nram_output += nram_offset;
    +    nram_target += nram_offset;
    +  }
    +
    +  if (sizeof(T) == sizeof(half)) {
    +    const int32_t compute_size = compute_num * sizeof(float);
    +    char *nram_input_load = nram_input + compute_size / 2;
    +    __bang_half2float((float *)nram_input, (half *)nram_input_load,
    +                      compute_num);
    +  }
    +
    +  // 0. alpha_t = alpha - 1
    +  __nramset((float *)nram_alpha_t, compute_num, (float)(alpha - 1.0));
    +
    +  // 1. pt = 1 - sigmoid(x)
    +  sigmoid((float *)nram_pt, (float *)nram_input, compute_num);
    +  __bang_mul_const((float *)nram_pt, (float *)nram_pt, (float)(-1),
    +                   compute_num);
    +  __bang_add_const((float *)nram_pt, (float *)nram_pt, (float)1, compute_num);
    +
    +  // 2. pt      = target[n] == c ? sigmoid(x) : 1 - sigmoid(x)
    +  //    alpha_t = target[n] == c ? alpha      : alpha - 1
    +  const int32_t nfu_align_num = NFU_ALIGN_SIZE / sizeof(float);
    +  for (int n = 0; n < deal_n; n++) {
    +    const int32_t target_value = ((int32_t *)nram_target)[n];
    +    if (target_value >= total_c || target_value < 0) continue;
    +    int32_t c_offset = 0;
    +    if (has_weight) {
    +      int32_t c_align_num = nfu_align_num;
    +      if (sizeof(T) == sizeof(half)) {
    +        c_align_num += nfu_align_num;
    +      }
    +      c_offset = PAD_UP(total_c, c_align_num);
    +    } else {
    +      c_offset = total_c;
    +    }
    +    int32_t idx = n * c_offset + target_value;
    +    *((float *)nram_pt + idx) = 1.0 - *((float *)nram_pt + idx);
    +    *((float *)nram_alpha_t + idx) = alpha;
    +  }
    +
    +  // 3. temp = -alpha_t * e^(gamma * log(max(1 - pt, FLT_MIN))
    +  __bang_mul_const((float *)nram_temp, (float *)nram_pt, (float)(-1),
    +                   compute_num);
    +  __bang_add_const((float *)nram_temp, (float *)nram_temp, (float)(1),
    +                   compute_num);
    +  __bang_cycle_maxequal((float *)nram_temp, (float *)nram_temp,
    +                        (float *)nram_flt_min, compute_num, nfu_align_num);
    +  __bang_active_loghp((float *)nram_temp, (float *)nram_temp, compute_num);
    +  __bang_cycle_mul((float *)nram_temp, (float *)nram_temp, (float *)nram_gamma,
    +                   compute_num, nfu_align_num);
    +  __bang_active_exphp((float *)nram_temp, (float *)nram_temp, compute_num);
    +  __bang_mul((float *)nram_temp, (float *)nram_temp, (float *)nram_alpha_t,
    +             compute_num);
    +  __bang_mul_const((float *)nram_temp, (float *)nram_temp, (float)(-1),
    +                   compute_num);
    +
    +  // 4. output = 1 - pt - gamma * pt * log(max(pt, FLT_MIN))
    +  __bang_cycle_maxequal((float *)nram_output, (float *)nram_pt,
    +                        (float *)nram_flt_min, compute_num, nfu_align_num);
    +  __bang_active_loghp((float *)nram_output, (float *)nram_output, compute_num);
    +  __bang_mul((float *)nram_output, (float *)nram_output, (float *)nram_pt,
    +             compute_num);
    +  __bang_cycle_mul((float *)nram_output, (float *)nram_output,
    +                   (float *)nram_gamma, compute_num, nfu_align_num);
    +  __bang_add((float *)nram_output, (float *)nram_output, (float *)nram_pt,
    +             compute_num);
    +  __bang_mul_const((float *)nram_output, (float *)nram_output, (float)(-1),
    +                   compute_num);
    +  __bang_add_const((float *)nram_output, (float *)nram_output, (float)(1),
    +                   compute_num);
    +
    +  // 5. output = output * temp
    +  __bang_mul((float *)nram_output, (float *)nram_output, (float *)nram_temp,
    +             compute_num);
    +
    +  if (sizeof(T) == sizeof(half)) {
    +    __bang_float2half_rd((half *)nram_output, (float *)nram_output,
    +                         compute_num);
    +  }
    +
    +  if (has_weight) {
    +    // with weight
    +    for (int n = 0; n < deal_n; n++) {
    +      int32_t c_align_num = nfu_align_num;
    +      if (sizeof(T) == sizeof(half)) {
    +        c_align_num += nfu_align_num;
    +      }
    +      int32_t align_c = PAD_UP(total_c, c_align_num);
    +      int32_t target_value = ((int32_t *)nram_target)[n];
    +      T weight_value = nram_weight[target_value];
    +      __bang_mul_const((T *)nram_output + n * align_c,
    +                       (T *)nram_output + n * align_c, weight_value, align_c);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_func__ void storeOutput(T *gdram_output, const char *nram_output,
    +                              const int32_t deal_n, const int32_t total_c,
    +                              const bool pingpong_flag, const bool has_weight,
    +                              const int32_t nram_offset,
    +                              const int32_t gdram_offset) {
    +  if (pingpong_flag == PONG) {
    +    nram_output += nram_offset;
    +  }
    +  const int32_t store_size = deal_n * total_c * sizeof(T);
    +  if (has_weight) {
    +    int32_t align_c = PAD_UP(total_c, NFU_ALIGN_SIZE / sizeof(T));
    +    int32_t total_c_size = total_c * sizeof(T);
    +    int32_t align_c_size = align_c * sizeof(T);
    +    __memcpy_async(gdram_output + gdram_offset, nram_output, total_c_size,
    +                   NRAM2GDRAM, total_c_size, align_c_size, deal_n - 1);
    +  } else {
    +    __memcpy_async(gdram_output + gdram_offset, nram_output, store_size,
    +                   NRAM2GDRAM);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void focalLossSigmoidBackwardBlock(
    +    const T *input, const int32_t *target, const T *weight, const float gamma,
    +    const float alpha, const int32_t total_n, const int32_t deal_n,
    +    const int32_t total_c, T *output) {
    +  // params per time slice
    +  int32_t deal_num = deal_n * total_c;
    +  int32_t deal_size = deal_num * sizeof(float);
    +  int32_t compute_num = 0;
    +  int32_t compute_size = 0;
    +  int32_t compute_align_size = NFU_ALIGN_SIZE;
    +  const int32_t nfu_align_num = NFU_ALIGN_SIZE / sizeof(T);
    +  if (sizeof(T) == sizeof(half)) {
    +    compute_align_size += NFU_ALIGN_SIZE;
    +  }
    +  const int32_t compute_align_num = compute_align_size / sizeof(float);
    +  bool has_weight = false;
    +  if (weight != NULL) {
    +    has_weight = true;
    +    int32_t align_c = PAD_UP(total_c, compute_align_num);
    +    compute_num = deal_n * align_c;
    +    compute_size = compute_num * sizeof(float);
    +  } else {
    +    compute_size = PAD_UP(deal_size, compute_align_size);
    +    compute_num = compute_size / sizeof(float);
    +  }
    +
    +  // params per core
    +  int32_t total_num = total_n * total_c;
    +  int32_t num_per_core = PAD_DOWN(total_num / taskDim, deal_num);
    +  int32_t loop_per_core = num_per_core / deal_num;
    +
    +  /* NRAM partition:
    +   *
    +   * |-----------------ping pong--------------------|
    +   * |input | pt | alpha_t | temp | output | target | flt_min | gamma | weight|
    +   *
    +   * split_pipeline_num is 5: input, pt, alpha_t, temp, output.
    +   * nram_reserved_line_num is 2: flt_min, gamma.
    +   */
    +  const int32_t split_pipeline_num = 5;
    +  const int32_t nram_reserved_line_num = 2;
    +  int32_t target_deal_size = deal_n * sizeof(int32_t);
    +  int32_t target_deal_size_align = PAD_UP(target_deal_size, NFU_ALIGN_SIZE);
    +  // nram PING/PONG offset
    +  int32_t ping_pong_offset =
    +      compute_size * split_pipeline_num + target_deal_size_align;
    +
    +  // gdram addr
    +  int32_t *base_addr_target =
    +      (int32_t *)target + taskId * loop_per_core * deal_n;
    +  T *base_addr_input = (T *)input + taskId * num_per_core;
    +  T *base_addr_output = output + taskId * num_per_core;
    +
    +  // nram addr
    +  char *nram_input = (char *)nram_buffer;
    +  char *nram_pt = nram_input + compute_size;
    +  char *nram_alpha_t = nram_pt + compute_size;
    +  char *nram_temp = nram_alpha_t + compute_size;
    +  char *nram_output = nram_temp + compute_size;
    +  char *nram_target = nram_output + compute_size;
    +  float *nram_flt_min = NULL;
    +  float *nram_gamma = NULL;
    +  T *nram_weight = NULL;
    +
    +  if (!has_weight) {
    +    nram_flt_min = (float *)(nram_buffer + MAX_NRAM_SIZE -
    +                             nram_reserved_line_num * NFU_ALIGN_SIZE);
    +    nram_gamma = nram_flt_min + nfu_align_num;
    +  } else {
    +    int32_t weight_space = PAD_UP(total_c * sizeof(T), NFU_ALIGN_SIZE);
    +    nram_flt_min =
    +        (float *)(nram_buffer + MAX_NRAM_SIZE -
    +                  nram_reserved_line_num * NFU_ALIGN_SIZE - weight_space);
    +    nram_gamma = nram_flt_min + nfu_align_num;
    +    nram_weight = (T *)(nram_gamma + nfu_align_num);
    +    __memcpy_async(nram_weight, weight, total_c * sizeof(T), GDRAM2NRAM);
    +  }
    +
    +  // nram set gamma and FLT_MIN
    +  __nramset(nram_gamma, nfu_align_num, gamma);
    +  __nramset(nram_flt_min, nfu_align_num, FLT_MIN);
    +
    +  /*
    +   * Pipeline: The pipeline is processed in three stages: Load, Compute, Store.
    +   *           The allocated memory space of NRAM is divided into two parts:
    +   *           PING and Pong. In a single time slice, PING is used to process
    +   *           IO stream and PONG is used for computation. Both of them are
    +   *           processed synchronously until finished.
    +   *
    +   * diagram of PINGPONG:
    +   * |------|-----------------------------------------------------------------|
    +   * |      |                              space                              |
    +   * |------|-----------------------------------------------------------------|
    +   * | time |   Ping   |   Pong   |   Ping   |   Pong   |   Ping   |   Pong   |
    +   * |------|-----------------------------------------------------------------|
    +   * |  0   |    L0    |          |          |          |          |          |
    +   * |  1   |    C0    |    L1    |          |          |          |          |
    +   * |  2   |    S0    |    C1    |    L2    |          |          |          |
    +   * |  3   |          |    S1    |    C2    |    L3    |          |          |
    +   * |  4   |          |          |    S2    |    C3    |    L4    |          |
    +   * |  5   |          |          |          |    S3    |    C4    |    L5    |
    +   * |  6   |          |          |          |          |    S4    |    C5    |
    +   * |  7   |          |          |          |          |          |    S5    |
    +   * |------|-----------------------------------------------------------------|
    +   */
    +
    +  // diagram of PINGPONG: L0
    +  if (loop_per_core > 0) {
    +    loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +              deal_n, total_c, PING, has_weight, ping_pong_offset, 0);
    +    __asm__ volatile("sync;");
    +  }
    +
    +  // diagram of PINGPONG: C0 and L1
    +  if (loop_per_core > 1) {
    +    coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                compute_num, deal_n, total_c, PING, ping_pong_offset,
    +                has_weight);
    +    loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +              deal_n, total_c, PONG, has_weight, ping_pong_offset, deal_num);
    +    __asm__ volatile("sync;");
    +  }
    +
    +  for (int i = 0; i < loop_per_core - 2; ++i) {
    +    if (i % 2 == PING) {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PING,
    +                  has_weight, ping_pong_offset, i * deal_num);
    +      coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                  nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                  compute_num, deal_n, total_c, PONG, ping_pong_offset,
    +                  has_weight);
    +      loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +                deal_n, total_c, PING, has_weight, ping_pong_offset,
    +                (i + 2) * deal_num);
    +    } else {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PONG,
    +                  has_weight, ping_pong_offset, i * deal_num);
    +      coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                  nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                  compute_num, deal_n, total_c, PING, ping_pong_offset,
    +                  has_weight);
    +      loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +                deal_n, total_c, PONG, has_weight, ping_pong_offset,
    +                (i + 2) * deal_num);
    +    }
    +    __asm__ volatile("sync;");
    +  }
    +
    +  if (loop_per_core > 1) {
    +    if ((loop_per_core - 2) % 2 == PING) {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PING,
    +                  has_weight, ping_pong_offset, (loop_per_core - 2) * deal_num);
    +      coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                  nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                  compute_num, deal_n, total_c, PONG, ping_pong_offset,
    +                  has_weight);
    +    } else {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PONG,
    +                  has_weight, ping_pong_offset, (loop_per_core - 2) * deal_num);
    +      coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                  nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                  compute_num, deal_n, total_c, PING, ping_pong_offset,
    +                  has_weight);
    +    }
    +    __asm__ volatile("sync;");
    +  }
    +
    +  if (loop_per_core > 0) {
    +    if (loop_per_core == 1) {
    +      coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                  nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                  compute_num, deal_n, total_c, PING, ping_pong_offset,
    +                  has_weight);
    +      __asm__ volatile("sync;");
    +    }
    +    if ((loop_per_core - 1) % 2 == PING) {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PING,
    +                  has_weight, ping_pong_offset, (loop_per_core - 1) * deal_num);
    +    } else {
    +      storeOutput(base_addr_output, nram_output, deal_n, total_c, PONG,
    +                  has_weight, ping_pong_offset, (loop_per_core - 1) * deal_num);
    +    }
    +  }
    +
    +  // process the remaining data which N remainder per core is less than deal_n
    +  int32_t rem_for_all = total_num - num_per_core * taskDim;
    +  if (rem_for_all == 0) return;
    +  int32_t rem_n_for_all = rem_for_all / total_c;
    +  int32_t rem_n_per_core = (rem_n_for_all + taskDim - 1) / taskDim;
    +  int32_t rem_num_per_core = rem_n_per_core * total_c;
    +  int32_t rem_num_per_core_align = 0;
    +  int32_t rem_core_num = rem_for_all / rem_num_per_core;
    +
    +  int32_t rem_n_for_last = rem_n_for_all % rem_n_per_core;
    +  int32_t rem_num_for_last = rem_n_for_last * total_c;
    +  int32_t rem_num_for_last_align = 0;
    +
    +  if (has_weight) {
    +    int32_t align_c = PAD_UP(total_c, compute_align_num);
    +    rem_num_per_core_align = rem_n_per_core * align_c;
    +    rem_num_for_last_align = rem_n_for_last * align_c;
    +  } else {
    +    rem_num_per_core_align = PAD_UP(rem_num_per_core, compute_align_num);
    +    rem_num_for_last_align = PAD_UP(rem_num_for_last, compute_align_num);
    +  }
    +
    +  int32_t rem_addr_base = num_per_core * taskDim;
    +  int32_t rem_target_addr_base = loop_per_core * deal_n * taskDim;
    +  base_addr_target = (int32_t *)target + rem_target_addr_base;
    +  base_addr_input = (T *)input + rem_addr_base;
    +  base_addr_output = output + rem_addr_base;
    +
    +  if (taskId < rem_core_num) {
    +    loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +              rem_n_per_core, total_c, PING, has_weight, ping_pong_offset,
    +              taskId * rem_num_per_core);
    +    __asm__ volatile("sync;");
    +    coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                rem_num_per_core_align, rem_n_per_core, total_c, PING,
    +                ping_pong_offset, has_weight);
    +    __asm__ volatile("sync;");
    +    storeOutput(base_addr_output, nram_output, rem_n_per_core, total_c, PING,
    +                has_weight, ping_pong_offset, taskId * rem_num_per_core);
    +  } else if (taskId == rem_core_num) {
    +    if (rem_num_for_last == 0) return;
    +    loadInput(nram_input, nram_target, base_addr_input, base_addr_target,
    +              rem_n_for_last, total_c, PING, has_weight, ping_pong_offset,
    +              taskId * rem_num_per_core);
    +    __asm__ volatile("sync;");
    +    coreCompute(nram_input, nram_weight, nram_flt_min, nram_pt, nram_alpha_t,
    +                nram_temp, nram_target, nram_gamma, nram_output, alpha,
    +                rem_num_for_last_align, rem_n_for_last, total_c, PING,
    +                ping_pong_offset, has_weight);
    +    __asm__ volatile("sync;");
    +    storeOutput(base_addr_output, nram_output, rem_n_for_last, total_c, PING,
    +                has_weight, ping_pong_offset, taskId * rem_num_per_core);
    +  } else {
    +    return;
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelFocalLossSigmoidBackward(
    +    const void *input, const void *target, const void *weight,
    +    const float gamma, const float alpha, const int32_t total_n,
    +    const int32_t deal_n, const int32_t total_c, void *output) {
    +  focalLossSigmoidBackwardBlock((T *)input, (int32_t *)target, (T *)weight,
    +                                gamma, alpha, total_n, deal_n, total_c,
    +                                (T *)output);
    +}
    +}  // namespace backward
    +
    +void KernelFocalLossSigmoidForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                   cnrtQueue_t queue,
    +                                   const cnrtDataType_t d_type,
    +                                   const void *input, const void *target,
    +                                   const void *weight, const int32_t N,
    +                                   const int32_t C, const float alpha,
    +                                   const float gamma, void *output) {
    +  if (d_type == CNRT_FLOAT16) {
    +    forward::MLUUnion1KernelFocalLossSigmoidForward<
    +        half><<>>(input, target, weight, N, C, alpha,
    +                                        gamma, output);
    +  } else {
    +    forward::MLUUnion1KernelFocalLossSigmoidForward<
    +        float><<>>(input, target, weight, N, C, alpha,
    +                                         gamma, output);
    +  }
    +}
    +
    +void KernelFocalLossSigmoidBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                    cnrtQueue_t queue,
    +                                    const cnrtDataType_t d_type,
    +                                    const void *input, const void *target,
    +                                    const void *weight, const float gamma,
    +                                    const float alpha, const int32_t dim_n,
    +                                    const int32_t deal_n, const int32_t dim_c,
    +                                    void *output) {
    +  if (d_type == CNRT_FLOAT16) {
    +    backward::MLUUnion1KernelFocalLossSigmoidBackward<
    +        half><<>>(input, target, weight, gamma, alpha,
    +                                        dim_n, deal_n, dim_c, output);
    +  } else {
    +    backward::MLUUnion1KernelFocalLossSigmoidBackward<
    +        float><<>>(input, target, weight, gamma, alpha,
    +                                         dim_n, deal_n, dim_c, output);
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_mlu_kernel.mlu
    new file mode 100644
    index 000000000..84e53aa1f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_mlu_kernel.mlu
    @@ -0,0 +1,431 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "common_mlu_helper.hpp"
    +#include "iou3d_utils.hpp"
    +
    +#define SIZE_SRAM_BUF (MAX_SRAM_SIZE)
    +
    +/* NRAM buffer
    + * Suppose deal N boxes once time.
    +----------------------------------------------------------------
    +| Basic |score (1N)+       |intersect_pts(48N)|                |
    +|       |valid_box(1N)     |+ ordered_pts(48N)| temp_long(72N) |
    +|       |+ temp_buffer(10N)|                  |                |
    +|--------------------------|------------------|----------------|
    +| Reuse |     null         |     null         |rotated_pts(16N)|
    +|-------|------------------|------------------|----------------|
    +
    +---------------------------------------------------------------------------
    +| Basic |  dist_ram(24N)   | valid_pts(24N)  |box1(5N)  |box1_buffer(5KB) |
    +|       |                  |+ nums_in_ram(1N)|+ box2(5N)|+nram_save(5KB)  |
    +|--------------------------|-----------------|----------|-----------------|
    +| Reuse |  vec_buffer(5N)  |    null         |   null   |      null       |
    +|-------|------------------|-----------------|----------|-----------------|
    +Total Basic Memory Size = 239N * sizeof(float) + 10KB
    +*/
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +__mlu_shared__ char sram_buffer[SIZE_SRAM_BUF];
    +
    +template 
    +__mlu_func__ void iou3D_detection(int32_t &result_box_num, int32_t *output_data,
    +                                  const T *boxes_data, float *scores_data,
    +                                  const int core_limit, const int input_box_num,
    +                                  const float iou_threshold,
    +                                  mluMemcpyDirection_t scores_load_dir,
    +                                  mluMemcpyDirection_t scores_store_dir,
    +                                  mluMemcpyDirection_t boxes_load_dir) {
    +  // NRAM divide by (2+4*COMPUTE_COUNT_ALIGN) copies of NRAM, counted by bytes
    +  const int nram_save_limit_count = 256;
    +  int box_read_limit_count = 256;
    +  float div_thresh_iou = 1.0 / iou_threshold;
    +  // every box require 239 * sizeof(float) space in nram;
    +  const int32_t copies_of_nram = 239 * sizeof(float);
    +  const int32_t limit = (MAX_NRAM_SIZE - 5 * box_read_limit_count * sizeof(T) -
    +                         nram_save_limit_count * sizeof(int32_t)) /
    +                        copies_of_nram;
    +
    +  // x,y,z,dx,dy,dz,angle
    +  const T *input_x_ptr = boxes_data;
    +  const T *input_y_ptr = input_x_ptr + input_box_num;
    +  const T *input_dx_ptr = input_y_ptr + 2 * input_box_num;
    +  const T *input_dy_ptr = input_dx_ptr + input_box_num;
    +  const T *input_angle_ptr = input_dy_ptr + 2 * input_box_num;
    +  float *input_score_ptr = scores_data;
    +
    +  // data split
    +  int avg_cluster = 0;
    +  int rem_cluster = 0;
    +  int len_cluster = 0;
    +  int cluster_offset = 0;
    +  if (clusterDim > 0) {
    +    // union
    +    avg_cluster = input_box_num / clusterDim;
    +    rem_cluster = input_box_num % clusterDim;
    +    len_cluster = avg_cluster + (clusterId < rem_cluster ? 1 : 0);
    +    cluster_offset = avg_cluster * clusterId +
    +                     (clusterId <= rem_cluster ? clusterId : rem_cluster);
    +  } else {
    +    // block
    +    len_cluster = input_box_num;
    +    cluster_offset = 0;
    +  }
    +  int len_core = input_box_num;
    +  int input_offset = 0;
    +  if (core_limit > 1) {
    +    int avg_core = len_cluster / coreDim;
    +    int rem_core = len_cluster % coreDim;
    +    len_core = avg_core + (coreId < rem_core ? 1 : 0);
    +    int core_offset =
    +        avg_core * coreId + (coreId <= rem_core ? coreId : rem_core);
    +    input_offset = cluster_offset + core_offset;
    +  }
    +
    +  int32_t max_seg_pad = IOU3D_DOWN(limit, IOU3D_SIZE);
    +  int repeat_iou_compute = len_core / max_seg_pad;
    +  int remain_iou_compute = len_core % max_seg_pad;
    +
    +  // basic consistent memory layout
    +  void *score = ((char *)nram_buffer);
    +  void *valid_box = ((char *)score) + 1 * max_seg_pad * sizeof(float);
    +  void *temp_buffer = ((char *)valid_box) + 1 * max_seg_pad * sizeof(float);
    +  void *intersect_pts_x =
    +      ((char *)temp_buffer) + 10 * max_seg_pad * sizeof(float);
    +  void *intersect_pts_y =
    +      ((char *)intersect_pts_x) + 24 * max_seg_pad * sizeof(float);
    +  void *ordered_pts_x =
    +      ((char *)intersect_pts_y) + 24 * max_seg_pad * sizeof(float);
    +  void *ordered_pts_y =
    +      ((char *)ordered_pts_x) + 24 * max_seg_pad * sizeof(float);
    +  void *temp_long_1 =
    +      ((char *)ordered_pts_y) + 24 * max_seg_pad * sizeof(float);
    +  void *temp_long_2 = ((char *)temp_long_1) + 24 * max_seg_pad * sizeof(float);
    +  void *temp_long_3 = ((char *)temp_long_2) + 24 * max_seg_pad * sizeof(float);
    +  void *dist_ram = ((char *)temp_long_3) + 24 * max_seg_pad * sizeof(float);
    +  void *valid_pts = ((char *)dist_ram) + 24 * max_seg_pad * sizeof(float);
    +  void *nums_in_ram = ((char *)valid_pts) + 24 * max_seg_pad * sizeof(float);
    +  T *box1 = (T *)(((char *)nums_in_ram) + 1 * max_seg_pad * sizeof(float));
    +  T *box2 = (T *)(((char *)box1) + 5 * max_seg_pad * sizeof(float));
    +  void *box1_buffer = ((char *)box2) + 5 * max_seg_pad * sizeof(float);
    +  int32_t *nram_save =
    +      (int32_t *)(((char *)box1_buffer) + 5 * box_read_limit_count * sizeof(T));
    +  // nram_save ~ nram_save_limit_count * sizeof(int32_t)
    +  int nram_save_count = 0;
    +
    +  // reuse memory
    +  void *rotated_pts1_x = ((char *)dist_ram);
    +  void *rotated_pts1_y =
    +      ((char *)rotated_pts1_x) + 4 * max_seg_pad * sizeof(float);
    +  void *rotated_pts2_x =
    +      ((char *)rotated_pts1_y) + 4 * max_seg_pad * sizeof(float);
    +  void *rotated_pts2_y =
    +      ((char *)rotated_pts2_x) + 4 * max_seg_pad * sizeof(float);
    +  void *vec_buffer = ((char *)temp_long_1) + 5 * max_seg_pad * sizeof(float);
    +  // vec_buffer ~ 16 * max_seg_pad * sizeof(float)
    +
    +  // First, initialize ram with all 0, or could cause nan/inf unexcepted results
    +  __bang_write_zero((unsigned char *)nram_buffer, copies_of_nram * max_seg_pad);
    +  // number 8 and 0xff relay on box_read_limit_count initial as 256
    +  const int max_box_seg_id = (input_box_num - 1) >> 8;
    +  const int last_rem_box_number = ((input_box_num - 1) & 0xff) + 1;
    +  for (int32_t cur_box = 0; cur_box < input_box_num; ++cur_box) {
    +    __sync_all();
    +    int box_seg_id = cur_box >> 8, box_id = cur_box & 0xff;
    +    box_read_limit_count = box_seg_id == max_box_seg_id ? last_rem_box_number
    +                                                        : box_read_limit_count;
    +    if (box_id == 0) {
    +      // x,y,z,dx,dy,dz,angle
    +      int offset_num = box_seg_id << 8;
    +      // x
    +      __memcpy((char *)box1_buffer, input_x_ptr + offset_num,
    +               box_read_limit_count * 1 * sizeof(T), boxes_load_dir,
    +               box_read_limit_count * 1 * sizeof(T),
    +               box_read_limit_count * 1 * sizeof(T), 0);
    +      // y
    +      __memcpy((char *)box1_buffer + box_read_limit_count * 1 * sizeof(T),
    +               input_y_ptr + offset_num, box_read_limit_count * 1 * sizeof(T),
    +               boxes_load_dir, box_read_limit_count * 1 * sizeof(T),
    +               box_read_limit_count * 1 * sizeof(T), 0);
    +      // dx
    +      __memcpy((char *)box1_buffer + box_read_limit_count * 2 * sizeof(T),
    +               input_dx_ptr + offset_num, box_read_limit_count * 1 * sizeof(T),
    +               boxes_load_dir, box_read_limit_count * 1 * sizeof(T),
    +               box_read_limit_count * 1 * sizeof(T), 0);
    +      // dy
    +      __memcpy((char *)box1_buffer + box_read_limit_count * 3 * sizeof(T),
    +               input_dy_ptr + offset_num, box_read_limit_count * 1 * sizeof(T),
    +               boxes_load_dir, box_read_limit_count * 1 * sizeof(T),
    +               box_read_limit_count * 1 * sizeof(T), 0);
    +      // angle
    +      __memcpy((char *)box1_buffer + box_read_limit_count * 4 * sizeof(T),
    +               input_angle_ptr + offset_num,
    +               box_read_limit_count * 1 * sizeof(T), boxes_load_dir,
    +               box_read_limit_count * 1 * sizeof(T),
    +               box_read_limit_count * 1 * sizeof(T), 0);
    +    }
    +    if (((float *)input_score_ptr)[cur_box] == 0) {
    +      continue;
    +    }
    +    // save result
    +    nram_save[nram_save_count] = cur_box;
    +    result_box_num++;
    +    nram_save_count++;
    +    if (clusterId == 0 && coreId == 0 &&
    +        nram_save_count == nram_save_limit_count) {
    +      pvLock();
    +      __memcpy(output_data, nram_save, nram_save_count * sizeof(int32_t),
    +               NRAM2GDRAM);
    +      pvUnlock();
    +      output_data += nram_save_count;
    +      nram_save_count = 0;
    +    }
    +    // prepare box1
    +    // x
    +    __bang_write_value((float *)box1, max_seg_pad,
    +                       float(((T *)box1_buffer)[box_id]));
    +    // y
    +    __bang_write_value(
    +        (float *)box1 + max_seg_pad, max_seg_pad,
    +        float(((T *)box1_buffer)[box_id + 1 * box_read_limit_count]));
    +    // dx
    +    __bang_write_value(
    +        (float *)box1 + max_seg_pad * 2, max_seg_pad,
    +        float(((T *)box1_buffer)[box_id + 2 * box_read_limit_count]));
    +    // dy
    +    __bang_write_value(
    +        (float *)box1 + max_seg_pad * 3, max_seg_pad,
    +        float(((T *)box1_buffer)[box_id + 3 * box_read_limit_count]));
    +    // angle
    +    __bang_write_value(
    +        (float *)box1 + max_seg_pad * 4, max_seg_pad,
    +        float(((T *)box1_buffer)[box_id + 4 * box_read_limit_count]));
    +
    +    float max_area = 1.0f *
    +                     ((T *)box1_buffer)[box_id + 2 * box_read_limit_count] *
    +                     ((T *)box1_buffer)[box_id + 3 * box_read_limit_count];
    +    // update score
    +
    +    for (int i = 0; i <= repeat_iou_compute; i++) {
    +      if (i == repeat_iou_compute && remain_iou_compute == 0) {
    +        break;
    +      }
    +      int seg_len = max_seg_pad;
    +      int cpy_len =
    +          (i == repeat_iou_compute) ? remain_iou_compute : max_seg_pad;
    +      // int half_offset = std::is_same::value ? max_seg_pad * 5 : 0;
    +      int half_offset = (sizeof(T) == sizeof(half)) ? max_seg_pad * 5 : 0;
    +      // score
    +      __memcpy(score, input_score_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * sizeof(float), scores_load_dir,
    +               cpy_len * sizeof(float), cpy_len * sizeof(float), 0);
    +      // x
    +      __memcpy(box2 + half_offset, input_x_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * 1 * sizeof(T), boxes_load_dir, cpy_len * 1 * sizeof(T),
    +               cpy_len * 1 * sizeof(T), 0);
    +      // y
    +      __memcpy(box2 + half_offset + seg_len * 1,
    +               input_y_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * 1 * sizeof(T), boxes_load_dir, cpy_len * 1 * sizeof(T),
    +               cpy_len * 1 * sizeof(T), 0);
    +      // dx
    +      __memcpy(box2 + half_offset + seg_len * 2,
    +               input_dx_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * 1 * sizeof(T), boxes_load_dir, cpy_len * 1 * sizeof(T),
    +               cpy_len * 1 * sizeof(T), 0);
    +      // dy
    +      __memcpy(box2 + half_offset + seg_len * 3,
    +               input_dy_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * 1 * sizeof(T), boxes_load_dir, cpy_len * 1 * sizeof(T),
    +               cpy_len * 1 * sizeof(T), 0);
    +      // angle
    +      __memcpy(box2 + half_offset + seg_len * 4,
    +               input_angle_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * 1 * sizeof(T), boxes_load_dir, cpy_len * 1 * sizeof(T),
    +               cpy_len * 1 * sizeof(T), 0);
    +      // if (std::is_same::value) {
    +      if (sizeof(T) == sizeof(half)) {
    +        __bang_half2float((float *)box2, (half *)(box2 + half_offset),
    +                          seg_len * 5);
    +      }
    +
    +      // Calculate rotated vertices
    +      void *temp1_ram = ((char *)temp_buffer);
    +      void *temp2_ram = ((char *)temp_buffer) + seg_len * sizeof(float);
    +      void *temp3_ram = ((char *)temp_buffer) + 2 * seg_len * sizeof(float);
    +      void *temp4_ram = ((char *)temp_buffer) + 3 * seg_len * sizeof(float);
    +      getRotatedVertices((float *)rotated_pts1_x, (float *)rotated_pts1_y,
    +                         (float *)box1, (float *)temp1_ram, (float *)temp2_ram,
    +                         (float *)temp3_ram, (float *)temp4_ram, seg_len);
    +      getRotatedVertices((float *)rotated_pts2_x, (float *)rotated_pts2_y,
    +                         (float *)box2, (float *)temp1_ram, (float *)temp2_ram,
    +                         (float *)temp3_ram, (float *)temp4_ram, seg_len);
    +
    +      __bang_write_zero((float *)valid_pts, 24 * seg_len);
    +      __bang_write_zero((float *)nums_in_ram, seg_len);
    +      __bang_write_value(((float *)valid_box), seg_len, 1.0f);
    +      void *vec1_x = ((char *)vec_buffer);
    +      void *vec1_y = ((char *)vec1_x) + 4 * seg_len * sizeof(float);
    +      void *vec2_x = ((char *)vec1_y) + 4 * seg_len * sizeof(float);
    +      void *vec2_y = ((char *)vec2_x) + 4 * seg_len * sizeof(float);
    +      void *temp5_ram = ((char *)temp_buffer) + 4 * seg_len * sizeof(float);
    +      void *temp6_ram = ((char *)temp_buffer) + 5 * seg_len * sizeof(float);
    +      void *temp7_ram = ((char *)temp_buffer) + 6 * seg_len * sizeof(float);
    +      void *temp8_ram = ((char *)temp_buffer) + 7 * seg_len * sizeof(float);
    +      void *temp9_ram = ((char *)temp_buffer) + 8 * seg_len * sizeof(float);
    +      void *temp10_ram = ((char *)temp_buffer) + 9 * seg_len * sizeof(float);
    +
    +      // Get all intersection points
    +      getIntersectPts(
    +          (float *)rotated_pts1_x, (float *)rotated_pts1_y,
    +          (float *)rotated_pts2_x, (float *)rotated_pts2_y, (float *)vec1_x,
    +          (float *)vec1_y, (float *)vec2_x, (float *)vec2_y,
    +          (float *)intersect_pts_x, (float *)intersect_pts_y,
    +          (float *)valid_pts, (float *)nums_in_ram, (float *)temp1_ram,
    +          (float *)temp2_ram, (float *)temp3_ram, (float *)temp4_ram,
    +          (float *)temp5_ram, (float *)temp6_ram, (float *)temp7_ram,
    +          (float *)temp8_ram, (float *)temp9_ram, (float *)temp10_ram, seg_len);
    +
    +      // Where nums_in <= 2, set valid_box to false
    +      __bang_write_value((float *)temp9_ram, COMPUTE_COUNT_ALIGN, (float)2);
    +      __bang_cycle_gt((float *)temp1_ram, (float *)nums_in_ram,
    +                      (float *)temp9_ram, seg_len, COMPUTE_COUNT_ALIGN);
    +      __bang_and((float *)valid_box, (float *)valid_box, (float *)temp1_ram,
    +                 seg_len);
    +      __bang_cycle_and((float *)valid_pts, (float *)valid_pts,
    +                       (float *)valid_box, 24 * seg_len, seg_len);
    +
    +      // Convex-hull-graham to order the intersection points in clockwise order
    +      // and find the contour area
    +
    +      convexHullGraham(
    +          (float *)intersect_pts_x, (float *)intersect_pts_y,
    +          (float *)ordered_pts_x, (float *)ordered_pts_y, (float *)dist_ram,
    +          (float *)valid_box, (float *)valid_pts, (float *)nums_in_ram,
    +          (float *)temp7_ram, (float *)temp8_ram, (float *)temp9_ram,
    +          (float *)temp_long_1, (float *)temp_long_2, (float *)temp_long_3,
    +          seg_len, seg_len);
    +      // Calculate polygon area
    +      // set temp1 = intersection part area
    +      polygonArea((float *)ordered_pts_x, (float *)ordered_pts_y,
    +                  (float *)valid_box, (float *)valid_pts, (float *)nums_in_ram,
    +                  (float *)temp1_ram, (float *)temp2_ram, (float *)temp3_ram,
    +                  (float *)temp4_ram, (float *)temp5_ram, (float *)temp6_ram,
    +                  (float *)temp7_ram, (float *)temp8_ram, (float *)temp9_ram,
    +                  seg_len);
    +      // area
    +      __bang_mul((float *)temp2_ram, (float *)box2 + seg_len * 2,
    +                 (float *)box2 + seg_len * 3, seg_len);
    +      // get the area_U: area + max_area - area_I
    +      __bang_add_scalar((float *)temp2_ram, (float *)temp2_ram, float(max_area),
    +                        seg_len);
    +      __bang_sub((float *)temp2_ram, (float *)temp2_ram, (float *)temp1_ram,
    +                 seg_len);  // area_U
    +      if (iou_threshold > 0.0) {
    +        __bang_mul_scalar((float *)temp1_ram, (float *)temp1_ram,
    +                          div_thresh_iou, seg_len);
    +      } else {
    +        __bang_mul_scalar((float *)temp2_ram, (float *)temp2_ram, iou_threshold,
    +                          seg_len);
    +      }
    +      __bang_ge((float *)temp1_ram, (float *)temp2_ram, (float *)temp1_ram,
    +                seg_len);
    +      __bang_mul((float *)score, (float *)score, (float *)temp1_ram, seg_len);
    +
    +      pvLock();
    +      __memcpy(input_score_ptr + input_offset + i * max_seg_pad, score,
    +               cpy_len * sizeof(float), scores_store_dir,
    +               cpy_len * sizeof(float), cpy_len * sizeof(float), 0);
    +      pvUnlock();
    +    }
    +  }
    +  if (clusterId == 0 && coreId == 0 && nram_save_count) {
    +    pvLock();
    +    __memcpy(output_data, nram_save, nram_save_count * sizeof(int32_t),
    +             NRAM2GDRAM);
    +    pvUnlock();
    +  }
    +}
    +__mlu_global__ void MLUBlockorUnionIKernelOU3D(
    +    const void *input_boxes, const int input_box_num, const float iou_threshold,
    +    const cnrtDataType_t data_type_input, void *workspace, void *result_num,
    +    void *output) {
    +  int input_dwidth = (data_type_input == CNRT_FLOAT32) ? 4 : 2;
    +  mluMemcpyDirection_t scores_load_dir = GDRAM2NRAM;
    +  mluMemcpyDirection_t scores_store_dir = NRAM2GDRAM;
    +  mluMemcpyDirection_t boxes_load_dir = GDRAM2NRAM;
    +  float *scores_data = (float *)workspace;
    +  float *boxes_data = (float *)input_boxes;
    +  const int cluster_score_size = input_box_num * sizeof(float);
    +  const int cluster_boxes_size = input_box_num * 7 * input_dwidth;
    +  char *sram_score = (char *)sram_buffer;
    +  char *sram_boxes = (char *)sram_buffer + cluster_score_size;
    +  if (clusterDim == 1 && SIZE_SRAM_BUF > cluster_score_size) {
    +    scores_data = (float *)sram_score;
    +    scores_load_dir = SRAM2NRAM;
    +    scores_store_dir = NRAM2SRAM;
    +    if (coreId == 0x80) {
    +      __sramset((void *)sram_buffer, input_box_num, 1.0f);
    +    }
    +  } else {
    +    if (coreId == 0) {
    +      __gdramset(scores_data, input_box_num, 1.0f);
    +    }
    +  }
    +  if (clusterDim == 1 &&
    +      SIZE_SRAM_BUF - cluster_score_size >= cluster_boxes_size) {
    +    boxes_load_dir = SRAM2NRAM;
    +    boxes_data = (float *)sram_boxes;
    +    if (coreId == 0x80) {
    +      __memcpy((char *)boxes_data, (char *)input_boxes, cluster_boxes_size,
    +               GDRAM2SRAM);
    +    }
    +  }
    +  __sync_cluster();
    +
    +  int32_t result_box_num = 0;
    +  int32_t *out_data = (int32_t *)output;
    +
    +  switch (data_type_input) {
    +    default: { return; }
    +    case CNRT_FLOAT16: {
    +      iou3D_detection(result_box_num, out_data, (half *)boxes_data, scores_data,
    +                      taskDim, input_box_num, iou_threshold, scores_load_dir,
    +                      scores_store_dir, boxes_load_dir);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      iou3D_detection(result_box_num, out_data, boxes_data, scores_data,
    +                      taskDim, input_box_num, iou_threshold, scores_load_dir,
    +                      scores_store_dir, boxes_load_dir);
    +    }; break;
    +  }
    +  ((int32_t *)result_num)[0] = result_box_num;
    +}
    +
    +void KernelIou3d(cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +                 const cnrtDataType_t data_type_input, const void *boxes_dram,
    +                 const int input_box_num, const float iou_threshold,
    +                 void *workspace, void *output_size, void *output) {
    +  switch (k_type) {
    +    default: { return; }
    +    case CNRT_FUNC_TYPE_BLOCK:
    +    case CNRT_FUNC_TYPE_UNION1:
    +    case CNRT_FUNC_TYPE_UNION2:
    +    case CNRT_FUNC_TYPE_UNION4:
    +    case CNRT_FUNC_TYPE_UNION8:
    +    case CNRT_FUNC_TYPE_UNION16: {
    +      MLUBlockorUnionIKernelOU3D<<>>(
    +          (void *)boxes_dram, input_box_num, iou_threshold, data_type_input,
    +          workspace, output_size, output);
    +    }; break;
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_utils.hpp
    new file mode 100644
    index 000000000..b98ffe2fc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/iou3d_utils.hpp
    @@ -0,0 +1,695 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#ifndef IOU3D_UTILS_HPP_
    +#define IOU3D_UTILS_HPP_
    +#include "common_mlu_helper.hpp"
    +
    +#define IOU3D_SIZE 64
    +#define IOU3D_UP(x, y) (x / y + (int)(x % y > 0)) * y
    +#define IOU3D_DOWN(x, y) (x / y) * y
    +#define SIZE_NRAM_BUF (MAX_NRAM_SIZE)
    +#define SIZE_SRAM_BUF (MAX_SRAM_SIZE)
    +#define COMPUTE_COUNT_ALIGN 64
    +#define INFO_NUM (5)  // score, x1, y1, x2, y2
    +#define REDUCE_NUM \
    +  (7)  // score, x1, y1, x2, y2, max_index (reserve 2 num for half-type input)
    +#define SINGLE_BOX_DIM 5
    +#define MEMORY_CORE (0x80)
    +__mlu_func__ void pvLock() {
    +#if __BANG_ARCH__ == 270
    +  if (coreId != MEMORY_CORE) {
    +    __bang_lock(0, 0);
    +  }
    +#endif
    +}
    +
    +__mlu_func__ void pvUnlock() {
    +#if __BANG_ARCH__ == 270
    +  if (coreId != MEMORY_CORE) {
    +    __bang_unlock(0, 0);
    +  }
    +#endif
    +}
    +
    +// cross2d(A, B) = A.x * B.y - A.y * B.x;
    +template 
    +inline __mlu_func__ void cross2d(T *result, const T *p1_x, const T *p1_y,
    +                                 const T *p2_x, const T *p2_y,
    +                                 const int &length, T *temp_ram) {
    +  __bang_mul((T *)temp_ram, (T *)p1_x, (T *)p2_y, length);
    +  __bang_mul((T *)result, (T *)p1_y, (T *)p2_x, length);
    +  __bang_sub((T *)result, (T *)temp_ram, (T *)result, length);
    +}
    +
    +// dot2d(A, B) =  A.x * B.x + A.y * B.y
    +template 
    +inline __mlu_func__ void dot2d(T *result, const T *p1_x, const T *p1_y,
    +                               const T *p2_x, const T *p2_y, const int &length,
    +                               T *temp_ram) {
    +  __bang_mul((T *)temp_ram, (T *)p1_x, (T *)p2_x, length);
    +  __bang_mul((T *)result, (T *)p1_y, (T *)p2_y, length);
    +  __bang_add((T *)result, (T *)temp_ram, (T *)result, length);
    +}
    +
    +template 
    +__mlu_func__ void getRotatedVertices(T *pts_x, T *pts_y, T *box, T *temp1,
    +                                     T *temp2, T *temp3, T *temp4,
    +                                     const uint32_t &actual_compute_box_num) {
    +// T cosTheta2 = (T)cos(theta) * 0.5f; -- temp1
    +// T sinTheta2 = (T)sin(theta) * 0.5f; -- temp2
    +// theta is the box's 5th data: a, rotated radian;
    +#if __BANG_ARCH__ >= 300
    +  __bang_cos((float *)temp1, ((float *)box) + 4 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  __bang_sin((float *)temp2, ((float *)box) + 4 * actual_compute_box_num,
    +             actual_compute_box_num);
    +#else
    +  __bang_taylor4_cos((T *)temp1, ((T *)box) + 4 * actual_compute_box_num,
    +                     (T *)temp3, (T *)temp4, actual_compute_box_num);
    +  __bang_taylor4_sin((T *)temp2, ((T *)box) + 4 * actual_compute_box_num,
    +                     (T *)temp3, (T *)temp4, actual_compute_box_num);
    +#endif
    +  __bang_mul_scalar((T *)temp1, (T *)temp1, (T)0.5, actual_compute_box_num);
    +  __bang_mul_scalar((T *)temp2, (T *)temp2, (T)0.5, actual_compute_box_num);
    +
    +  // Temp3 = sinTheta2 * box.h;
    +  // Temp4 = cosTheta2 * box.w;
    +  __bang_mul((T *)temp3, (T *)temp2, ((T *)box) + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  __bang_mul((T *)temp4, (T *)temp1, ((T *)box) + 2 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  // pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w;
    +  // pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w;
    +  __bang_sub((T *)pts_x, (T *)box, (T *)temp3, actual_compute_box_num);
    +  __bang_sub((T *)pts_x, (T *)pts_x, (T *)temp4, actual_compute_box_num);
    +  __bang_add((T *)pts_x + 1 * actual_compute_box_num, (T *)box, (T *)temp3,
    +             actual_compute_box_num);
    +  __bang_sub((T *)pts_x + 1 * actual_compute_box_num,
    +             (T *)pts_x + 1 * actual_compute_box_num, (T *)temp4,
    +             actual_compute_box_num);
    +  // Temp3 = cosTheta2 * box.h;
    +  // Temp4 = sinTheta2 * box.w;
    +  __bang_mul((T *)temp3, (T *)temp1, box + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  __bang_mul((T *)temp4, (T *)temp2, box + 2 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  // pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
    +  // pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
    +  __bang_add((T *)pts_y, (T *)box + 1 * actual_compute_box_num, (T *)temp3,
    +             actual_compute_box_num);
    +  __bang_sub((T *)pts_y, (T *)pts_y, (T *)temp4, actual_compute_box_num);
    +  __bang_sub((T *)pts_y + 1 * actual_compute_box_num,
    +             (T *)box + 1 * actual_compute_box_num, (T *)temp3,
    +             actual_compute_box_num);
    +  __bang_sub((T *)pts_y + 1 * actual_compute_box_num,
    +             (T *)pts_y + 1 * actual_compute_box_num, (T *)temp4,
    +             actual_compute_box_num);
    +  // pts[2].x = 2 * box.x_ctr - pts[0].x;
    +  // pts[3].x = 2 * box.x_ctr - pts[1].x;
    +  __bang_add((T *)pts_x + 2 * actual_compute_box_num, (T *)box, (T *)box,
    +             actual_compute_box_num);
    +  __bang_sub((T *)pts_x + 2 * actual_compute_box_num,
    +             (T *)pts_x + 2 * actual_compute_box_num, (T *)pts_x,
    +             actual_compute_box_num);
    +  __bang_add((T *)pts_x + 3 * actual_compute_box_num, (T *)box, (T *)box,
    +             actual_compute_box_num);
    +  __bang_sub((T *)pts_x + 3 * actual_compute_box_num,
    +             (T *)pts_x + 3 * actual_compute_box_num,
    +             (T *)pts_x + 1 * actual_compute_box_num, actual_compute_box_num);
    +  // pts[2].y = 2 * box.y_ctr - pts[0].y;
    +  // pts[3].y = 2 * box.y_ctr - pts[1].y;
    +  __bang_add((T *)pts_y + 2 * actual_compute_box_num,
    +             (T *)box + 1 * actual_compute_box_num,
    +             (T *)box + 1 * actual_compute_box_num, actual_compute_box_num);
    +  __bang_sub((T *)pts_y + 2 * actual_compute_box_num,
    +             (T *)pts_y + 2 * actual_compute_box_num, (T *)pts_y,
    +             actual_compute_box_num);
    +  __bang_add((T *)pts_y + 3 * actual_compute_box_num,
    +             (T *)box + 1 * actual_compute_box_num,
    +             (T *)box + 1 * actual_compute_box_num, actual_compute_box_num);
    +  __bang_sub((T *)pts_y + 3 * actual_compute_box_num,
    +             (T *)pts_y + 3 * actual_compute_box_num,
    +             (T *)pts_y + 1 * actual_compute_box_num, actual_compute_box_num);
    +}
    +
    +template 
    +__mlu_func__ void getIntersectPts(T *rotated_pts1_x, T *rotated_pts1_y,
    +                                  T *rotated_pts2_x, T *rotated_pts2_y,
    +                                  T *vec1_x, T *vec1_y, T *vec2_x, T *vec2_y,
    +                                  T *intersect_pts_x, T *intersect_pts_y,
    +                                  T *valid_pts, T *nums_in_ram, T *temp1_ram,
    +                                  T *temp2_ram, T *temp3_ram, T *temp4_ram,
    +                                  T *temp5_ram, T *temp6_ram, T *temp7_ram,
    +                                  T *temp8_ram, T *temp9_ram, T *temp10_ram,
    +                                  const uint32_t &actual_compute_box_num) {
    +// Initialize const data to ram
    +// temp3 = const 1e-14(@float), length = COMPUTE_COUNT_ALIGN
    +#if __BANG_ARCH__ >= 300
    +  __bang_write_value((T *)temp3_ram, COMPUTE_COUNT_ALIGN, (T)1e-14);
    +#else
    +  // NOTE: Since active_reciphp function has strict value range,
    +  //       [2.2205e-16, 2e6]@float, [0.00391, 65504]@half
    +  __bang_write_value((T *)temp3_ram, COMPUTE_COUNT_ALIGN, (float)1e-14);
    +#endif
    +  // temp4 = const T(0), length = COMPUTE_COUNT_ALIGN
    +  __bang_write_value((T *)temp4_ram, COMPUTE_COUNT_ALIGN, (T)0);
    +  // temp5 = const T(1), length = COMPUTE_COUNT_ALIGN
    +  __bang_write_value((T *)temp5_ram, COMPUTE_COUNT_ALIGN, (T)1);
    +
    +  // Line vector, from p1 to p2 is: p1+(p2-p1)*t, t=[0,1]
    +  // for i = 0~3, vec[i] = pts[(i+1)%4] - pts[i]
    +  __bang_sub((T *)vec1_x, (T *)rotated_pts1_x + actual_compute_box_num,
    +             (T *)rotated_pts1_x, 3 * actual_compute_box_num);
    +  __bang_sub((T *)vec1_x + 3 * actual_compute_box_num, (T *)rotated_pts1_x,
    +             (T *)rotated_pts1_x + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  __bang_sub((T *)vec1_y, (T *)rotated_pts1_y + actual_compute_box_num,
    +             (T *)rotated_pts1_y, 3 * actual_compute_box_num);
    +  __bang_sub((T *)vec1_y + 3 * actual_compute_box_num, (T *)rotated_pts1_y,
    +             (T *)rotated_pts1_y + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +
    +  __bang_sub((T *)vec2_x, (T *)rotated_pts2_x + actual_compute_box_num,
    +             (T *)rotated_pts2_x, 3 * actual_compute_box_num);
    +  __bang_sub((T *)vec2_x + 3 * actual_compute_box_num, (T *)rotated_pts2_x,
    +             (T *)rotated_pts2_x + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +  __bang_sub((T *)vec2_y, (T *)rotated_pts2_y + actual_compute_box_num,
    +             (T *)rotated_pts2_y, 3 * actual_compute_box_num);
    +  __bang_sub((T *)vec2_y + 3 * actual_compute_box_num, (T *)rotated_pts2_y,
    +             (T *)rotated_pts2_y + 3 * actual_compute_box_num,
    +             actual_compute_box_num);
    +
    +  // First, line test - test all line combos for intersection, 4x4 possible
    +  for (int i = 0; i < 4; i++) {
    +    for (int j = 0; j < 4; j++) {
    +      // T det = cross2d(vec2[j], vec1[i]) -- temp2
    +      cross2d((T *)temp2_ram, (T *)vec2_x + j * actual_compute_box_num,
    +                 (T *)vec2_y + j * actual_compute_box_num,
    +                 (T *)vec1_x + i * actual_compute_box_num,
    +                 (T *)vec1_y + i * actual_compute_box_num,
    +                 actual_compute_box_num, (T *)temp1_ram);
    +      // temp8 = sign(det), since active_reciphp only receive positive values
    +      __bang_active_sign((T *)temp8_ram, (T *)temp2_ram,
    +                         actual_compute_box_num);
    +      // deal with parallel lines, temp2 = fabs(det), temp1 = temp2 > 1e-14
    +      __bang_active_abs((T *)temp2_ram, (T *)temp2_ram, actual_compute_box_num);
    +      __bang_cycle_gt((T *)temp1_ram, (T *)temp2_ram, (T *)temp3_ram,
    +                      actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +      // Where temp1 = false, set recip input to 1, avoiding recip(0), cause inf
    +      __bang_not((T *)temp9_ram, (T *)temp1_ram, actual_compute_box_num);
    +      __bang_mul((T *)temp2_ram, (T *)temp2_ram, (T *)temp1_ram,
    +                 actual_compute_box_num);
    +      __bang_add((T *)temp2_ram, (T *)temp2_ram, (T *)temp9_ram,
    +                 actual_compute_box_num);
    +// temp2 = 1/temp2, use mult (1/temp2) instead of div temp2
    +#if __BANG_ARCH__ >= 300
    +      __bang_recip((float *)temp2_ram, (float *)temp2_ram,
    +                   actual_compute_box_num);
    +#else
    +      // NOTE: active_reciphp function has strict value range:
    +      //       [2.2205e-16, 2e6]@float, [0.00391, 65504]@half
    +      __bang_active_reciphp((T *)temp2_ram, (T *)temp2_ram,
    +                            actual_compute_box_num);
    +#endif
    +      // Restore temp2 invalid box value 1 and sign-bit
    +      __bang_mul((T *)temp2_ram, (T *)temp2_ram, (T *)temp1_ram,
    +                 actual_compute_box_num);
    +      __bang_mul((T *)temp2_ram, (T *)temp2_ram, (T *)temp8_ram,
    +                 actual_compute_box_num);
    +
    +      // auto vec12 = pts2[j] - pts1[i], (temp6, temp7) = (x, y)
    +      __bang_sub((T *)temp6_ram,
    +                 (T *)rotated_pts2_x + j * actual_compute_box_num,
    +                 (T *)rotated_pts1_x + i * actual_compute_box_num,
    +                 actual_compute_box_num);
    +      __bang_sub((T *)temp7_ram,
    +                 (T *)rotated_pts2_y + j * actual_compute_box_num,
    +                 (T *)rotated_pts1_y + i * actual_compute_box_num,
    +                 actual_compute_box_num);
    +
    +      // T t1 = cross2d(vec2[j], vec12) mult (1/det)  -- temp8
    +      cross2d((T *)temp8_ram, (T *)vec2_x + j * actual_compute_box_num,
    +                 (T *)vec2_y + j * actual_compute_box_num, (T *)temp6_ram,
    +                 (T *)temp7_ram, actual_compute_box_num, (T *)temp9_ram);
    +      __bang_mul((T *)temp8_ram, (T *)temp8_ram, (T *)temp2_ram,
    +                 actual_compute_box_num);
    +
    +      // temp1 &= (t1 >= 0.0f && t1 <= 1.0f)  -- temp9
    +      __bang_cycle_ge((T *)temp9_ram, (T *)temp8_ram, (T *)temp4_ram,
    +                      actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +      __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp9_ram,
    +                 actual_compute_box_num);
    +      __bang_cycle_le((T *)temp9_ram, (T *)temp8_ram, (T *)temp5_ram,
    +                      actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +      __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp9_ram,
    +                 actual_compute_box_num);
    +
    +      // T t2 = cross2d(vec1[i], vec12) mult temp2  -- temp9
    +      // NOTE: temp8(t1) is used after, reuse temp7(p2_y) as cross2d temp ram
    +      cross2d((T *)temp9_ram, (T *)vec1_x + i * actual_compute_box_num,
    +                 (T *)vec1_y + i * actual_compute_box_num, (T *)temp6_ram,
    +                 (T *)temp7_ram, actual_compute_box_num, (T *)temp7_ram);
    +      __bang_mul((T *)temp9_ram, (T *)temp9_ram, (T *)temp2_ram,
    +                 actual_compute_box_num);
    +
    +      // temp1 &= (t2 >= 0.0f && t2 <= 1.0f)  -- temp9
    +      __bang_cycle_ge((T *)temp7_ram, (T *)temp9_ram, (T *)temp4_ram,
    +                      actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +      __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp7_ram,
    +                 actual_compute_box_num);
    +      __bang_cycle_le((T *)temp7_ram, (T *)temp9_ram, (T *)temp5_ram,
    +                      actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +      __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp7_ram,
    +                 actual_compute_box_num);
    +
    +      // intersections = (pts1[i] + vec1[i] * t1) * temp1
    +      __bang_mul((T *)temp9_ram, (T *)vec1_x + i * actual_compute_box_num,
    +                 (T *)temp8_ram, actual_compute_box_num);
    +      __bang_add((T *)temp9_ram,
    +                 (T *)rotated_pts1_x + i * actual_compute_box_num,
    +                 (T *)temp9_ram, actual_compute_box_num);
    +      __bang_mul((T *)intersect_pts_x + (4 * i + j) * actual_compute_box_num,
    +                 (T *)temp9_ram, (T *)temp1_ram, actual_compute_box_num);
    +      __bang_mul((T *)temp9_ram, (T *)vec1_y + i * actual_compute_box_num,
    +                 (T *)temp8_ram, actual_compute_box_num);
    +      __bang_add((T *)temp9_ram,
    +                 (T *)rotated_pts1_y + i * actual_compute_box_num,
    +                 (T *)temp9_ram, actual_compute_box_num);
    +      __bang_mul((T *)intersect_pts_y + (4 * i + j) * actual_compute_box_num,
    +                 (T *)temp9_ram, (T *)temp1_ram, actual_compute_box_num);
    +
    +      // Assign `valid_pts` bit and accumulate `nums_in` of valid points of each
    +      // box pair
    +      __bang_or((T *)valid_pts + (4 * i + j) * actual_compute_box_num,
    +                (T *)valid_pts + (4 * i + j) * actual_compute_box_num,
    +                (T *)temp1_ram, actual_compute_box_num);
    +      __bang_add((T *)nums_in_ram, (T *)nums_in_ram, (T *)temp1_ram,
    +                 actual_compute_box_num);
    +    }
    +  }
    +
    +  // Check for vertices of rect1 inside rect2
    +  // temp5 = ABdotAB
    +  dot2d((T *)temp5_ram, (T *)vec2_x, (T *)vec2_y, (T *)vec2_x, (T *)vec2_y,
    +           actual_compute_box_num, (T *)temp9_ram);
    +  // temp6 = ADdotAD
    +  dot2d((T *)temp6_ram, (T *)vec2_x + 3 * actual_compute_box_num,
    +           (T *)vec2_y + 3 * actual_compute_box_num,
    +           (T *)vec2_x + 3 * actual_compute_box_num,
    +           (T *)vec2_y + 3 * actual_compute_box_num, actual_compute_box_num,
    +           (T *)temp9_ram);
    +  // assume ABCD is the rectangle, and P is the point to be judged
    +  // P is inside ABCD iff. P's projection on AB lines within AB
    +  // and P's projection on AD lies within AD
    +  for (int i = 0; i < 4; i++) {
    +    // AP = pts1[i] - pts2[0] = (temp7, temp8)
    +    __bang_sub((T *)temp7_ram, (T *)rotated_pts1_x + i * actual_compute_box_num,
    +               (T *)rotated_pts2_x, actual_compute_box_num);
    +    __bang_sub((T *)temp8_ram, (T *)rotated_pts1_y + i * actual_compute_box_num,
    +               (T *)rotated_pts2_y, actual_compute_box_num);
    +
    +    // temp9 = APdotAB = dot2d(AP, AB)
    +    dot2d((T *)temp9_ram, (T *)temp7_ram, (T *)temp8_ram, (T *)vec2_x,
    +             (T *)vec2_y, actual_compute_box_num, (T *)temp2_ram);
    +    // temp10 = APdotAD = -dot2d(AP, DA)
    +    dot2d((T *)temp10_ram, (T *)temp7_ram, (T *)temp8_ram,
    +             (T *)vec2_x + 3 * actual_compute_box_num,
    +             (T *)vec2_y + 3 * actual_compute_box_num, actual_compute_box_num,
    +             (T *)temp2_ram);
    +    __bang_mul_scalar((T *)temp10_ram, (T *)temp10_ram, (T)-1,
    +                      actual_compute_box_num);
    +
    +    // ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <=
    +    // ADdotAD))
    +    __bang_cycle_ge((T *)temp1_ram, (T *)temp9_ram, (T *)temp4_ram,
    +                    actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +    __bang_cycle_ge((T *)temp2_ram, (T *)temp10_ram, (T *)temp4_ram,
    +                    actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +    __bang_le((T *)temp2_ram, (T *)temp9_ram, (T *)temp5_ram,
    +              actual_compute_box_num);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +    __bang_le((T *)temp2_ram, (T *)temp10_ram, (T *)temp6_ram,
    +              actual_compute_box_num);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +
    +    // 16 means the 4x4 possible intersection points above
    +    __bang_mul((T *)intersect_pts_x + (16 + i) * actual_compute_box_num,
    +               (T *)temp1_ram, (T *)rotated_pts1_x + i * actual_compute_box_num,
    +               actual_compute_box_num);
    +    __bang_mul((T *)intersect_pts_y + (16 + i) * actual_compute_box_num,
    +               (T *)temp1_ram, (T *)rotated_pts1_y + i * actual_compute_box_num,
    +               actual_compute_box_num);
    +
    +    // assign valid_pts bit and accumulate nums of valid points of each box pair
    +    __bang_or((T *)valid_pts + (16 + i) * actual_compute_box_num,
    +              (T *)valid_pts + (16 + i) * actual_compute_box_num,
    +              (T *)temp1_ram, actual_compute_box_num);
    +    __bang_add((T *)nums_in_ram, (T *)nums_in_ram, (T *)temp1_ram,
    +               actual_compute_box_num);
    +  }
    +
    +  // Reverse the check - check for vertices of rect2 inside rect1
    +  // temp5 = ABdotAB
    +  dot2d((T *)temp5_ram, (T *)vec1_x, (T *)vec1_y, (T *)vec1_x, (T *)vec1_y,
    +           actual_compute_box_num, (T *)temp9_ram);
    +  // temp6 = ADdotAD
    +  dot2d((T *)temp6_ram, (T *)vec1_x + 3 * actual_compute_box_num,
    +           (T *)vec1_y + 3 * actual_compute_box_num,
    +           (T *)vec1_x + 3 * actual_compute_box_num,
    +           (T *)vec1_y + 3 * actual_compute_box_num, actual_compute_box_num,
    +           (T *)temp9_ram);
    +  for (int i = 0; i < 4; i++) {
    +    // AP = pts2[i] - pts1[0] = (temp7, temp8)
    +    __bang_sub((T *)temp7_ram, (T *)rotated_pts2_x + i * actual_compute_box_num,
    +               (T *)rotated_pts1_x, actual_compute_box_num);
    +    __bang_sub((T *)temp8_ram, (T *)rotated_pts2_y + i * actual_compute_box_num,
    +               (T *)rotated_pts1_y, actual_compute_box_num);
    +
    +    // temp9 = APdotAB = dot2d(AP, AB)
    +    dot2d((T *)temp9_ram, (T *)temp7_ram, (T *)temp8_ram, (T *)vec1_x,
    +             (T *)vec1_y, actual_compute_box_num, (T *)temp2_ram);
    +    // temp10 = APdotAD = -dot2d(AP, DA)
    +    dot2d((T *)temp10_ram, (T *)temp7_ram, (T *)temp8_ram,
    +             (T *)vec1_x + 3 * actual_compute_box_num,
    +             (T *)vec1_y + 3 * actual_compute_box_num, actual_compute_box_num,
    +             (T *)temp2_ram);
    +    __bang_mul_scalar((T *)temp10_ram, (T *)temp10_ram, (T)-1,
    +                      actual_compute_box_num);
    +
    +    // ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <=
    +    // ADdotAD))
    +    __bang_cycle_ge((T *)temp1_ram, (T *)temp9_ram, (T *)temp4_ram,
    +                    actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +    __bang_cycle_ge((T *)temp2_ram, (T *)temp10_ram, (T *)temp4_ram,
    +                    actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +    __bang_le((T *)temp2_ram, (T *)temp9_ram, (T *)temp5_ram,
    +              actual_compute_box_num);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +    __bang_le((T *)temp2_ram, (T *)temp10_ram, (T *)temp6_ram,
    +              actual_compute_box_num);
    +    __bang_and((T *)temp1_ram, (T *)temp1_ram, (T *)temp2_ram,
    +               actual_compute_box_num);
    +
    +    // 20 means the (4x4+4) possible intersection points above
    +    __bang_mul((T *)intersect_pts_x + (20 + i) * actual_compute_box_num,
    +               (T *)temp1_ram, (T *)rotated_pts2_x + i * actual_compute_box_num,
    +               actual_compute_box_num);
    +    __bang_mul((T *)intersect_pts_y + (20 + i) * actual_compute_box_num,
    +               (T *)temp1_ram, (T *)rotated_pts2_y + i * actual_compute_box_num,
    +               actual_compute_box_num);
    +
    +    // assign valid_pts bit and accumulate nums of valid points of each box pair
    +    __bang_or((T *)valid_pts + (20 + i) * actual_compute_box_num,
    +              (T *)valid_pts + (20 + i) * actual_compute_box_num,
    +              (T *)temp1_ram, actual_compute_box_num);
    +    __bang_add((T *)nums_in_ram, (T *)nums_in_ram, (T *)temp1_ram,
    +               actual_compute_box_num);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void convexHullGraham(
    +    T *intersect_pts_x, T *intersect_pts_y, T *ordered_pts_x, T *ordered_pts_y,
    +    T *dist_ram, T *valid_box, T *valid_pts, T *nums_in_ram, T *temp1_ram,
    +    T *temp2_ram, T *temp3_ram, T *temp_long_1, T *temp_long_2, T *temp_long_3,
    +    const uint32_t &actual_box_num, const uint32_t &actual_compute_box_num) {
    +  // Step1. Find the point with minimum y, if more than 1 points have the same
    +  // minimum y,
    +  //        pick the one with the minimum x.
    +  // set p[i].y to max_y_value if not valid_pts, to avoid invalid result
    +  // 24 means all possible intersection points
    +  __bang_max((T *)temp2_ram, (T *)intersect_pts_y, 24 * actual_compute_box_num);
    +  __bang_write_value((T *)temp3_ram, COMPUTE_COUNT_ALIGN, ((T *)temp2_ram)[0]);
    +  __bang_not((T *)temp_long_1, (T *)valid_pts, 24 * actual_compute_box_num);
    +  __bang_cycle_mul((T *)temp_long_1, (T *)temp_long_1, (T *)temp3_ram,
    +                   24 * actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +  __bang_mul((T *)temp_long_2, (T *)intersect_pts_y, (T *)valid_pts,
    +             24 * actual_compute_box_num);
    +  __bang_add((T *)temp_long_2, (T *)temp_long_2, (T *)temp_long_1,
    +             24 * actual_compute_box_num);
    +  // temp2 = min_y_value(temp_long_2), use min_pool, channel=box_num, h=1, w=24
    +  __bang_minpool((T *)temp2_ram, (T *)temp_long_2, actual_compute_box_num, 1,
    +                 24, 1, 24, 1, 24);
    +  __bang_mul((T *)temp2_ram, (T *)temp2_ram, (T *)valid_box,
    +             actual_compute_box_num);
    +
    +  // set p[i].x to max_x_value if not min_y point
    +  __bang_max((T *)temp1_ram, (T *)intersect_pts_x, 24 * actual_compute_box_num);
    +  __bang_write_value((T *)temp3_ram, COMPUTE_COUNT_ALIGN, ((T *)temp1_ram)[0]);
    +  __bang_cycle_eq((T *)temp_long_1, (T *)temp_long_2, (T *)temp2_ram,
    +                  24 * actual_compute_box_num, actual_compute_box_num);
    +  __bang_and((T *)temp_long_1, (T *)temp_long_1, (T *)valid_pts,
    +             24 * actual_compute_box_num);
    +  __bang_not((T *)temp_long_3, (T *)temp_long_1, 24 * actual_compute_box_num);
    +  __bang_cycle_mul((T *)temp_long_3, (T *)temp_long_3, (T *)temp3_ram,
    +                   24 * actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +  __bang_mul((T *)temp_long_1, (T *)intersect_pts_x, (T *)temp_long_1,
    +             24 * actual_compute_box_num);
    +  __bang_add((T *)temp_long_1, (T *)temp_long_1, (T *)temp_long_3,
    +             24 * actual_compute_box_num);
    +  // temp3 = min_x_value(temp_long_1), use min_pool, channel=box_num, h=1, w=24
    +  __bang_minpool((T *)temp3_ram, (T *)temp_long_1, actual_compute_box_num, 1,
    +                 24, 1, 24, 1, 24);
    +  __bang_mul((T *)temp3_ram, (T *)temp3_ram, (T *)valid_box,
    +             actual_compute_box_num);
    +
    +  // Step2. All points subtract starting-point (for sorting in the next step)
    +  __bang_cycle_sub((T *)ordered_pts_x, (T *)intersect_pts_x, (T *)temp3_ram,
    +                   24 * actual_compute_box_num, actual_compute_box_num);
    +  __bang_cycle_sub((T *)ordered_pts_y, (T *)intersect_pts_y, (T *)temp2_ram,
    +                   24 * actual_compute_box_num, actual_compute_box_num);
    +  __bang_mul((T *)ordered_pts_x, (T *)ordered_pts_x, (T *)valid_pts,
    +             24 * actual_compute_box_num);
    +  __bang_mul((T *)ordered_pts_y, (T *)ordered_pts_y, (T *)valid_pts,
    +             24 * actual_compute_box_num);
    +
    +  // Step3. Sort every intersection point according to their relative
    +  //        cross-product values (essentially sorting according to angles)
    +  //        If the angles are the same, sort according to distance to origin
    +  dot2d((T *)dist_ram, (T *)ordered_pts_x, (T *)ordered_pts_y,
    +           (T *)ordered_pts_x, (T *)ordered_pts_y, 24 * actual_compute_box_num,
    +           (T *)temp_long_3);
    +
    +  T temp, temp_nums_in, temp_dist_1, temp_dist_2;
    +  T temp1_x, temp1_y;
    +  T temp2_x, temp2_y;
    +  for (int i = 0; i < actual_box_num; i++) {
    +    if (((T *)valid_box)[i]) {
    +      // make sure all nums_in[i] points are at the front
    +      for (int ii = 0; ii < 23; ii++) {
    +        for (int jj = ii + 1; jj < 24; jj++) {
    +          int ii_index = ii * actual_compute_box_num + i;
    +          int jj_index = jj * actual_compute_box_num + i;
    +          // ii point is not valid and jj point is valid, swap jj for ii
    +          if ((!((T *)valid_pts)[ii_index]) && ((T *)valid_pts)[jj_index]) {
    +            ((T *)ordered_pts_x)[ii_index] = ((T *)ordered_pts_x)[jj_index];
    +            ((T *)ordered_pts_y)[ii_index] = ((T *)ordered_pts_y)[jj_index];
    +            ((T *)dist_ram)[ii_index] = ((T *)dist_ram)[jj_index];
    +            ((T *)valid_pts)[ii_index] = true;
    +            ((T *)ordered_pts_x)[jj_index] = 0;
    +            ((T *)ordered_pts_y)[jj_index] = 0;
    +            ((T *)dist_ram)[jj_index] = 0;
    +            ((T *)valid_pts)[jj_index] = false;
    +            break;
    +          }
    +        }
    +      }
    +      temp_nums_in = ((T *)nums_in_ram)[i];
    +      // make original q[0] = min_x, min_y before sort
    +      for (int ii = 1; ii < temp_nums_in; ii++) {
    +        int ii_index = ii * actual_compute_box_num + i;
    +        if (((T *)dist_ram)[ii_index] == 0) {
    +          // swap q[ii_index] and q[0]
    +          ((T *)ordered_pts_x)[ii_index] = ((T *)ordered_pts_x)[i];
    +          ((T *)ordered_pts_y)[ii_index] = ((T *)ordered_pts_y)[i];
    +          ((T *)dist_ram)[ii_index] = ((T *)dist_ram)[i];
    +          ((T *)ordered_pts_x)[i] = 0;
    +          ((T *)ordered_pts_y)[i] = 0;
    +          ((T *)dist_ram)[i] = 0;
    +          break;
    +        }
    +      }
    +      for (int ii = 1; ii < temp_nums_in - 1; ii++) {
    +        for (int jj = ii + 1; jj < temp_nums_in; jj++) {
    +          int ii_index = ii * actual_compute_box_num + i;
    +          int jj_index = jj * actual_compute_box_num + i;
    +          temp1_x = ((T *)ordered_pts_x)[ii_index];
    +          temp1_y = ((T *)ordered_pts_y)[ii_index];
    +          temp2_x = ((T *)ordered_pts_x)[jj_index];
    +          temp2_y = ((T *)ordered_pts_y)[jj_index];
    +          // calculate cross product and sort q (ordered_pts)
    +          temp = (temp1_x * temp2_y) - (temp1_y * temp2_x);
    +          temp_dist_1 = ((T *)dist_ram)[ii_index];
    +          temp_dist_2 = ((T *)dist_ram)[jj_index];
    +          if ((temp < (T)-1e-6) ||
    +              ((fabs(temp) < (T)1e-6) && (temp_dist_1 > temp_dist_2))) {
    +            ((T *)ordered_pts_x)[ii_index] = temp2_x;
    +            ((T *)ordered_pts_y)[ii_index] = temp2_y;
    +            ((T *)ordered_pts_x)[jj_index] = temp1_x;
    +            ((T *)ordered_pts_y)[jj_index] = temp1_y;
    +            ((T *)dist_ram)[ii_index] = temp_dist_2;
    +            ((T *)dist_ram)[jj_index] = temp_dist_1;
    +          }
    +        }
    +      }
    +
    +      // Step4:
    +      // Make sure there are at least 2 points(that don't overlap with each
    +      // other) in the stack
    +      int k;  // index of the non-overlapped second point
    +      for (k = 1; k < temp_nums_in; k++) {
    +        if (((T *)dist_ram)[k * actual_compute_box_num + i] > (T)1e-8) {
    +          break;
    +        }
    +      }
    +      if (k == temp_nums_in) {
    +        // We reach the end, which means the convex hull is just one point
    +        // set valid_box = 0, to get ious = 0
    +        ((T *)valid_box)[i] = 0;
    +        continue;
    +      }
    +      // q[1] = q[k];
    +      ((T *)ordered_pts_x)[actual_compute_box_num + i] =
    +          ((T *)ordered_pts_x)[k * actual_compute_box_num + i];
    +      ((T *)ordered_pts_y)[actual_compute_box_num + i] =
    +          ((T *)ordered_pts_y)[k * actual_compute_box_num + i];
    +
    +      // Step 5:
    +      // Finally we can start the scanning process.
    +      // When a non-convex relationship between the 3 points is found
    +      // (either concave shape or duplicated points),
    +      // we pop the previous point from the stack
    +      // until the 3-point relationship is convex again, or
    +      // until the stack only contains two points
    +      int m = 2;  // 2 points in the stack
    +      for (int j = k + 1; j < temp_nums_in; j++) {
    +        // while (m > 1 && cross2d(q[j] - q[m - 2], q[m - 1] - q[m - 2]) >=
    +        // 0) {
    +        //   m--;
    +        // }
    +        temp1_x = ((T *)ordered_pts_x)[j * actual_compute_box_num + i] -
    +                  ((T *)ordered_pts_x)[(m - 2) * actual_compute_box_num + i];
    +        temp1_y = ((T *)ordered_pts_y)[j * actual_compute_box_num + i] -
    +                  ((T *)ordered_pts_y)[(m - 2) * actual_compute_box_num + i];
    +        temp2_x = ((T *)ordered_pts_x)[(m - 1) * actual_compute_box_num + i] -
    +                  ((T *)ordered_pts_x)[(m - 2) * actual_compute_box_num + i];
    +        temp2_y = ((T *)ordered_pts_y)[(m - 1) * actual_compute_box_num + i] -
    +                  ((T *)ordered_pts_y)[(m - 2) * actual_compute_box_num + i];
    +        temp = (temp1_x * temp2_y) - (temp1_y * temp2_x);
    +        while ((m > 1) && (temp >= 0)) {
    +          m--;
    +          if (m > 1) {
    +            temp1_x =
    +                ((T *)ordered_pts_x)[j * actual_compute_box_num + i] -
    +                ((T *)ordered_pts_x)[(m - 2) * actual_compute_box_num + i];
    +            temp1_y =
    +                ((T *)ordered_pts_y)[j * actual_compute_box_num + i] -
    +                ((T *)ordered_pts_y)[(m - 2) * actual_compute_box_num + i];
    +            temp2_x =
    +                ((T *)ordered_pts_x)[(m - 1) * actual_compute_box_num + i] -
    +                ((T *)ordered_pts_x)[(m - 2) * actual_compute_box_num + i];
    +            temp2_y =
    +                ((T *)ordered_pts_y)[(m - 1) * actual_compute_box_num + i] -
    +                ((T *)ordered_pts_y)[(m - 2) * actual_compute_box_num + i];
    +            temp = (temp1_x * temp2_y) - (temp1_y * temp2_x);
    +          }
    +        }
    +        // q[m++] = q[j];
    +        ((T *)ordered_pts_x)[m * actual_compute_box_num + i] =
    +            ((T *)ordered_pts_x)[j * actual_compute_box_num + i];
    +        ((T *)ordered_pts_y)[m * actual_compute_box_num + i] =
    +            ((T *)ordered_pts_y)[j * actual_compute_box_num + i];
    +        m++;
    +      }
    +      // set last(24-m) valid_pts to false, to erase invalid q in polygon area
    +      for (int j = m; j < temp_nums_in; j++) {
    +        ((T *)valid_pts)[j * actual_compute_box_num + i] = 0;
    +      }
    +      ((T *)nums_in_ram)[i] = m;
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_func__ void polygonArea(T *ordered_pts_x, T *ordered_pts_y, T *valid_box,
    +                              T *valid_pts, T *nums_in_ram, T *temp1_ram,
    +                              T *temp2_ram, T *temp3_ram, T *temp4_ram,
    +                              T *temp5_ram, T *temp6_ram, T *temp7_ram,
    +                              T *temp8_ram, T *temp9_ram,
    +                              const uint32_t &actual_compute_box_num) {
    +  // Set where nums_in <= 2, valid_box = false
    +  __bang_write_value((T *)temp9_ram, COMPUTE_COUNT_ALIGN, (T)2);
    +  __bang_cycle_gt((T *)temp1_ram, (T *)nums_in_ram, (T *)temp9_ram,
    +                  actual_compute_box_num, COMPUTE_COUNT_ALIGN);
    +  __bang_and((T *)valid_box, (T *)valid_box, (T *)temp1_ram,
    +             actual_compute_box_num);
    +
    +  // temp1 = area, initialize with all 0
    +  __bang_write_zero((T *)temp1_ram, actual_compute_box_num);
    +  __bang_max((T *)temp7_ram, (T *)nums_in_ram, actual_compute_box_num);
    +
    +  // temp_nums_in = max(nums_in)
    +  T temp_nums_in = ((T *)temp7_ram)[0];
    +  for (int i = 1; i < temp_nums_in - 1; i++) {
    +    // q[i] - q[0]: (temp6, temp7)
    +    __bang_sub((T *)temp6_ram, (T *)ordered_pts_x + i * actual_compute_box_num,
    +               (T *)ordered_pts_x, actual_compute_box_num);
    +    __bang_sub((T *)temp7_ram, (T *)ordered_pts_y + i * actual_compute_box_num,
    +               (T *)ordered_pts_y, actual_compute_box_num);
    +    __bang_mul((T *)temp6_ram, (T *)temp6_ram,
    +               (T *)valid_pts + (i + 1) * actual_compute_box_num,
    +               actual_compute_box_num);
    +    __bang_mul((T *)temp7_ram, (T *)temp7_ram,
    +               (T *)valid_pts + (i + 1) * actual_compute_box_num,
    +               actual_compute_box_num);
    +    // q[i + 1] - q[0]: (temp8, temp9)
    +    __bang_sub((T *)temp8_ram,
    +               (T *)ordered_pts_x + (i + 1) * actual_compute_box_num,
    +               (T *)ordered_pts_x, actual_compute_box_num);
    +    __bang_sub((T *)temp9_ram,
    +               (T *)ordered_pts_y + (i + 1) * actual_compute_box_num,
    +               (T *)ordered_pts_y, actual_compute_box_num);
    +    __bang_mul((T *)temp8_ram, (T *)temp8_ram,
    +               (T *)valid_pts + (i + 1) * actual_compute_box_num,
    +               actual_compute_box_num);
    +    __bang_mul((T *)temp9_ram, (T *)temp9_ram,
    +               (T *)valid_pts + (i + 1) * actual_compute_box_num,
    +               actual_compute_box_num);
    +    // area += fabs(cross2d(q[i] - q[0], q[i + 1] - q[0]));
    +    __bang_mul((T *)temp4_ram, (T *)temp6_ram, (T *)temp9_ram,
    +               actual_compute_box_num);
    +    __bang_mul((T *)temp5_ram, (T *)temp7_ram, (T *)temp8_ram,
    +               actual_compute_box_num);
    +    __bang_sub((T *)temp3_ram, (T *)temp4_ram, (T *)temp5_ram,
    +               actual_compute_box_num);
    +    __bang_active_abs((T *)temp3_ram, (T *)temp3_ram, actual_compute_box_num);
    +    __bang_add((T *)temp1_ram, (T *)temp1_ram, (T *)temp3_ram,
    +               actual_compute_box_num);
    +  }
    +  //  Set where valid_box = false, intersection = 0
    +  __bang_mul((T *)temp1_ram, (T *)temp1_ram, (T *)valid_box,
    +             actual_compute_box_num);
    +  //  area = area / 2.0
    +  __bang_mul_scalar((T *)temp1_ram, (T *)temp1_ram, (T)0.5,
    +                    actual_compute_box_num);
    +}
    +
    +#endif  // IOU3D_UTILS_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/masked_conv2d_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/masked_conv2d_mlu_kernel.mlu
    new file mode 100755
    index 000000000..1356a799a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/masked_conv2d_mlu_kernel.mlu
    @@ -0,0 +1,181 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void MLUUnion1MaskedIm2colForward(
    +    const T *feature, const int height, const int width, const int channels,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int32_t *mask_h_idx, const int32_t *mask_w_idx, const int mask_cnt,
    +    T *data_col) {
    +  for (int index = taskId; index < mask_cnt; index += taskDim) {
    +    const int h_col = mask_h_idx[index];
    +    const int w_col = mask_w_idx[index];
    +    const int h_offset = h_col - pad_h;
    +    const int w_offset = w_col - pad_w;
    +    int h_start = h_offset;
    +    int h_end = h_offset + kernel_h - 1;
    +    int w_start = w_offset;
    +    int w_end = w_start + kernel_w - 1;
    +    if (h_start >= height || w_start >= width || h_end < 0 || w_end < 0) {
    +      continue;
    +    } else {
    +      int h_start_valid = max(0, h_start);
    +      int h_end_valid = min(height - 1, h_end);
    +      int w_start_valid = max(0, w_start);
    +      int w_end_valid = min(width - 1, w_end);
    +      __memcpy(
    +          data_col + index * kernel_h * kernel_w * channels +
    +              ((h_start_valid - h_start) * kernel_w +
    +               (w_start_valid - w_start)) *
    +                  channels,
    +          feature + h_start_valid * width * channels + w_start_valid * channels,
    +          (w_end_valid - w_start_valid + 1) * channels * sizeof(T), GDRAM2GDRAM,
    +          kernel_w * channels * sizeof(T), width * channels * sizeof(T),
    +          h_end_valid - h_start_valid);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_func__ void MLUUnion1MaskedCol2imForward(const T *col, const int height,
    +                                               const int width,
    +                                               const int channels,
    +                                               const int32_t *mask_h_idx,
    +                                               const int32_t *mask_w_idx,
    +                                               const int mask_cnt, T *im) {
    +  const int channels_max_num_nram = MAX_NRAM_SIZE / sizeof(T);
    +  if (channels <= channels_max_num_nram) {
    +    const int deal_num = channels_max_num_nram / channels;
    +    int mask_per_core = mask_cnt / taskDim;
    +    const int mask_remain = mask_cnt % taskDim;
    +    mask_per_core += taskId < mask_remain ? 1 : 0;
    +    int index_start = taskId < mask_remain
    +                          ? taskId * mask_per_core
    +                          : taskId * mask_per_core + mask_remain;
    +    int loop = mask_per_core / deal_num;
    +    int remain_num = mask_per_core % deal_num;
    +    T *nram_col = (T *)nram_buffer;
    +    for (int index = 0; index < loop; ++index) {
    +      int cur_index = index_start + index * deal_num;
    +      __memcpy(nram_col, col + cur_index * channels,
    +               deal_num * channels * sizeof(T), GDRAM2NRAM);
    +      for (int i = 0; i < deal_num; ++i) {
    +        int mask_index = cur_index + i;
    +        const int h_im = mask_h_idx[mask_index];
    +        const int w_im = mask_w_idx[mask_index];
    +        // if(h_im>=height || w_im>=width) continue;
    +        __memcpy(im + (h_im * width + w_im) * channels, nram_col + i * channels,
    +                 channels * sizeof(T), NRAM2GDRAM);
    +      }
    +    }
    +    if (remain_num > 0) {
    +      int cur_index = index_start + loop * deal_num;
    +      __memcpy(nram_col, col + cur_index * channels,
    +               remain_num * channels * sizeof(T), GDRAM2NRAM);
    +      for (int i = 0; i < remain_num; ++i) {
    +        int mask_index = cur_index + i;
    +        const int h_im = mask_h_idx[mask_index];
    +        const int w_im = mask_w_idx[mask_index];
    +        // if(h_im>=height || w_im>=width) continue;
    +        __memcpy(im + (h_im * width + w_im) * channels, nram_col + i * channels,
    +                 channels * sizeof(T), NRAM2GDRAM);
    +      }
    +    }
    +  } else {
    +    for (int index = taskId; index < mask_cnt; index += taskDim) {
    +      const int m_index = index % mask_cnt;
    +      const int h_im = mask_h_idx[m_index];
    +      const int w_im = mask_w_idx[m_index];
    +      // if(h_im>=height || w_im>=width) continue;
    +      __memcpy(im + (h_im * width + w_im) * channels, col + index * channels,
    +               channels * sizeof(T), GDRAM2GDRAM);
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelMaskedIm2colForward(
    +    const void *feature, const int height, const int width, const int channels,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const void *mask_h_idx, const void *mask_w_idx, const int mask_cnt,
    +    void *data_col, const cnrtDataType_t data_dtype) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +
    +  switch (data_dtype) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1MaskedIm2colForward((half *)feature, height, width, channels,
    +                                   kernel_h, kernel_w, pad_h, pad_w,
    +                                   (int32_t *)mask_h_idx, (int32_t *)mask_w_idx,
    +                                   mask_cnt, (half *)data_col);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1MaskedIm2colForward((float *)feature, height, width, channels,
    +                                   kernel_h, kernel_w, pad_h, pad_w,
    +                                   (int32_t *)mask_h_idx, (int32_t *)mask_w_idx,
    +                                   mask_cnt, (float *)data_col);
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelMaskedCol2imForward(
    +    const void *col, const int height, const int width, const int channels,
    +    const void *mask_h_idx, const void *mask_w_idx, const int mask_cnt,
    +    void *im, const cnrtDataType_t data_dtype) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  switch (data_dtype) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1MaskedCol2imForward((half *)col, height, width, channels,
    +                                   (int32_t *)mask_h_idx, (int32_t *)mask_w_idx,
    +                                   mask_cnt, (half *)im);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1MaskedCol2imForward((float *)col, height, width, channels,
    +                                   (int32_t *)mask_h_idx, (int32_t *)mask_w_idx,
    +                                   mask_cnt, (float *)im);
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +void KernelMaskedIm2colForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    cnrtDataType_t k_dtype, const void *im_ptr, const int height,
    +    const int width, const int channels, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const void *mask_h_idx_ptr,
    +    const void *mask_w_idx_ptr, const int mask_cnt, void *col_ptr) {
    +  MLUKernelMaskedIm2colForward<<>>(
    +      im_ptr, height, width, channels, kernel_h, kernel_w, pad_h, pad_w,
    +      mask_h_idx_ptr, mask_w_idx_ptr, mask_cnt, col_ptr, k_dtype);
    +}
    +
    +void KernelMaskedCol2imForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                               cnrtQueue_t queue, cnrtDataType_t k_dtype,
    +                               const void *col_ptr, const int height,
    +                               const int width, const int channels,
    +                               const void *mask_h_idx_ptr,
    +                               const void *mask_w_idx_ptr, const int mask_cnt,
    +                               void *im_ptr) {
    +  MLUKernelMaskedCol2imForward<<>>(
    +      col_ptr, height, width, channels, mask_h_idx_ptr, mask_w_idx_ptr,
    +      mask_cnt, im_ptr, k_dtype);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/ms_deform_attn_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/ms_deform_attn_mlu_kernel.mlu
    new file mode 100644
    index 000000000..7899e52cd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/ms_deform_attn_mlu_kernel.mlu
    @@ -0,0 +1,853 @@
    +/*************************************************************************
    + * Copyright (C) 2022 by Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "common_mlu_helper.hpp"
    +#include 
    +
    +/****************************************************************************************
    + *
    + * NRAM partition forward:
    + * | spatial_shapes     | data_value_p1_ping | data_value_p2_ping |
    + * | data_value_p3_ping | data_value_p4_ping | data_col_ping      |
    + * | data_value_p1_pong | data_value_p2_pong | data_value_p3_pong |
    + * | data_value_p4_pong | data_col_pong      | auxiliary_a        |
    + * | auxiliary_b        |
    + * | 128bytes           | deal_size          | deal_size          |
    + * | deal_size          | deal_size          | deal_size          |
    + * | deal_size          | deal_size          | deal_size          |
    + * | deal_size          | deal_size          | deal_size          |
    + * | deal_size          |
    + *
    + ****************************************************************************************/
    +
    +/****************************************************************************************
    + *
    + * NRAM partition backward:
    + * | grad_output_nram   | grad_output_nram_temp | grad_weight       |
    + * | grad_h_weight      | grad_w_weight         | top_grad          |
    + * | top_grad_temp      | spatial_shapes_nram   | sampling_loc_nram |
    + * | deal_size          | deal_size             | deal_size         |
    + * | deal_size          | deal_size             | deal_size         |
    + * | deal_size          | deal_size             | 64bytes           |
    + *
    + ****************************************************************************************/
    +
    +#define TWELVE_SPLIT 12
    +#define ALIGN_NUM 64
    +#define ALIGN_NUM_FOR_REDUCE 32
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void loadNeighborPointsData(
    +    const T *data_value_gdram, T *data_value_p1_nram, T *data_value_p2_nram,
    +    T *data_value_p3_nram, T *data_value_p4_nram, const size_t deal_num,
    +    const int32_t &width, const int32_t &height, const int32_t &num_heads,
    +    const int32_t &channels, const T &x, const T &y, const int32_t &head_idx) {
    +  const int32_t w_low = floorf(x);
    +  const int32_t h_low = floorf(y);
    +  const int32_t w_high = w_low + 1;
    +  const int32_t h_high = h_low + 1;
    +
    +  const int32_t w_stride = num_heads * channels;
    +  const int32_t h_stride = width * w_stride;
    +  const int32_t h_low_ptr_offset = h_low * h_stride;
    +  const int32_t h_high_ptr_offset = h_low_ptr_offset + h_stride;
    +  const int32_t w_low_ptr_offset = w_low * w_stride;
    +  const int32_t w_high_ptr_offset = w_low_ptr_offset + w_stride;
    +  const int32_t base_ptr_offset = head_idx * channels;
    +
    +  // top-left point
    +  if (h_low >= 0 && w_low >= 0) {
    +    const int32_t v1_offset =
    +        h_low_ptr_offset + w_low_ptr_offset + base_ptr_offset;
    +    __memcpy_async(data_value_p1_nram, data_value_gdram + v1_offset,
    +                   deal_num * sizeof(T), GDRAM2NRAM);
    +  }
    +
    +  // top-right point
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    const int32_t v2_offset =
    +        h_low_ptr_offset + w_high_ptr_offset + base_ptr_offset;
    +    __memcpy_async(data_value_p2_nram, data_value_gdram + v2_offset,
    +                   deal_num * sizeof(T), GDRAM2NRAM);
    +  }
    +
    +  // bottom-left point
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    const int32_t v3_offset =
    +        h_high_ptr_offset + w_low_ptr_offset + base_ptr_offset;
    +    __memcpy_async(data_value_p3_nram, data_value_gdram + v3_offset,
    +                   deal_num * sizeof(T), GDRAM2NRAM);
    +  }
    +
    +  // bottom-right point
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    const int32_t v4_offset =
    +        h_high_ptr_offset + w_high_ptr_offset + base_ptr_offset;
    +    __memcpy_async(data_value_p4_nram, data_value_gdram + v4_offset,
    +                   deal_num * sizeof(T), GDRAM2NRAM);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void bilinearInterpolation(
    +    T *data_value_p1_nram, T *data_value_p2_nram, T *data_value_p3_nram,
    +    T *data_value_p4_nram, T *sample_point_value, T *auxiliary_b,
    +    const size_t deal_num, const int32_t &width, const int32_t &height,
    +    const T &x, const T &y) {
    +  const int32_t w_low = floorf(x);
    +  const int32_t h_low = floorf(y);
    +  const int32_t w_high = w_low + 1;
    +  const int32_t h_high = h_low + 1;
    +
    +  const T lw = x - w_low;
    +  const T lh = y - h_low;
    +  const T hw = 1 - lw;
    +  const T hh = 1 - lh;
    +  const T w1 = hh * hw;
    +  const T w2 = hh * lw;
    +  const T w3 = lh * hw;
    +  const T w4 = lh * lw;
    +
    +  __bang_write_value((T *)sample_point_value, deal_num, (T)0);
    +
    +  // top-left point
    +  if (h_low >= 0 && w_low >= 0) {
    +    // sample_point_value += v1 * w1
    +    __bang_mul_scalar((T *)auxiliary_b, (T *)data_value_p1_nram, (T)w1,
    +                      deal_num);
    +    __bang_add((T *)sample_point_value, (T *)sample_point_value,
    +               (T *)auxiliary_b, deal_num);
    +  }
    +
    +  // top-right point
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    // sample_point_value += v2 * w2
    +    __bang_mul_scalar((T *)auxiliary_b, (T *)data_value_p2_nram, (T)w2,
    +                      deal_num);
    +    __bang_add((T *)sample_point_value, (T *)sample_point_value,
    +               (T *)auxiliary_b, deal_num);
    +  }
    +
    +  // bottom-left point
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    // sample_point_value += v3 * w3
    +    __bang_mul_scalar((T *)auxiliary_b, (T *)data_value_p3_nram, (T)w3,
    +                      deal_num);
    +    __bang_add((T *)sample_point_value, (T *)sample_point_value,
    +               (T *)auxiliary_b, deal_num);
    +  }
    +
    +  // bottom-right point
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    // sample_point_value += v4 * w4
    +    __bang_mul_scalar((T *)auxiliary_b, (T *)data_value_p4_nram, (T)w4,
    +                      deal_num);
    +    __bang_add((T *)sample_point_value, (T *)sample_point_value,
    +               (T *)auxiliary_b, deal_num);
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUKernelMsDeformAttnForward(
    +    const char *data_value_gdram, const char *data_spatial_shapes_gdram,
    +    const char *data_level_start_index_gdram,
    +    const char *data_sampling_loc_gdram, const char *data_attn_weight_gdram,
    +    const int32_t batch_size, const int32_t num_keys, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_queries,
    +    const int32_t num_points, char *data_col_gdram) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +
    +  const size_t spatial_size = PAD_UP(2 * sizeof(int32_t), NFU_ALIGN_SIZE);
    +  const size_t span_num_deal =
    +      PAD_DOWN((MAX_NRAM_SIZE - spatial_size) / TWELVE_SPLIT / sizeof(T),
    +               NFU_ALIGN_SIZE);
    +  const size_t align_num = NFU_ALIGN_SIZE;
    +  const int32_t channels_seg_num = channels / span_num_deal;
    +  const size_t channels_rem = channels % span_num_deal;
    +  const size_t channels_align_rem = CEIL_ALIGN(channels_rem, align_num);
    +  char *data_spatial_shapes_nram = nram_buffer;
    +  char *ping_data_value_p1_nram = data_spatial_shapes_nram + spatial_size;
    +  char *ping_data_value_p2_nram =
    +      ping_data_value_p1_nram + span_num_deal * sizeof(T);
    +  char *ping_data_value_p3_nram =
    +      ping_data_value_p2_nram + span_num_deal * sizeof(T);
    +  char *ping_data_value_p4_nram =
    +      ping_data_value_p3_nram + span_num_deal * sizeof(T);
    +  char *ping_data_col_nram =
    +      ping_data_value_p4_nram + span_num_deal * sizeof(T);
    +  char *pong_data_value_p1_nram =
    +      ping_data_col_nram + span_num_deal * sizeof(T);
    +  char *pong_data_value_p2_nram =
    +      pong_data_value_p1_nram + span_num_deal * sizeof(T);
    +  char *pong_data_value_p3_nram =
    +      pong_data_value_p2_nram + span_num_deal * sizeof(T);
    +  char *pong_data_value_p4_nram =
    +      pong_data_value_p3_nram + span_num_deal * sizeof(T);
    +  char *pong_data_col_nram =
    +      pong_data_value_p4_nram + span_num_deal * sizeof(T);
    +  char *auxiliary_a = pong_data_col_nram + span_num_deal * sizeof(T);
    +  char *auxiliary_b = auxiliary_a + span_num_deal * sizeof(T);
    +  const size_t ping_pong_gap = 5 * span_num_deal * sizeof(T);
    +  size_t data_col_ping_pong_idx = 0;
    +
    +  int32_t block_num_per_core = (batch_size * num_queries * num_heads) / taskDim;
    +  const int32_t block_num_rem =
    +      (batch_size * num_queries * num_heads) % taskDim;
    +  const int32_t idx_start = taskId < (block_num_rem + 1)
    +                                ? taskId * (block_num_per_core + 1)
    +                                : taskId * block_num_per_core + block_num_rem;
    +  block_num_per_core =
    +      taskId < block_num_rem
    +          ? (batch_size * num_queries * num_heads) / taskDim + 1
    +          : (batch_size * num_queries * num_heads) / taskDim;
    +
    +  for (int32_t cur_idx = idx_start; cur_idx < idx_start + block_num_per_core;
    +       ++cur_idx) {
    +    // cur_idx = batch_idx * num_queries * num_heads + query_idx * num_heads +
    +    // head_idx
    +    const int32_t head_idx = cur_idx % num_heads;
    +    const int32_t batch_idx = (cur_idx / num_heads) / num_queries;
    +
    +    const char *data_value_gdram_start =
    +        data_value_gdram +
    +        batch_idx * num_keys * num_heads * channels * sizeof(T);
    +    const char *data_sampling_loc_gdram_start =
    +        data_sampling_loc_gdram +
    +        cur_idx * num_levels * num_points * 2 * sizeof(T);
    +    const char *data_attn_weight_gdram_start =
    +        data_attn_weight_gdram + cur_idx * num_levels * num_points * sizeof(T);
    +    char *data_col_gdram_start =
    +        data_col_gdram + cur_idx * channels * sizeof(T);
    +
    +    for (int32_t c_seg_idx = 0; c_seg_idx < channels_seg_num; ++c_seg_idx) {
    +      __bang_write_value(
    +          (T *)(ping_data_col_nram + data_col_ping_pong_idx * ping_pong_gap),
    +          span_num_deal, (T)0);
    +      // load data
    +      // level_idx = 0, point_idx = 0
    +      __memcpy(data_spatial_shapes_nram, data_spatial_shapes_gdram,
    +               2 * sizeof(int32_t), GDRAM2NRAM);
    +      int32_t spatial_h = ((int32_t *)data_spatial_shapes_nram)[0];
    +      int32_t spatial_w = ((int32_t *)data_spatial_shapes_nram)[1];
    +      const char *data_value_ptr =
    +          data_value_gdram_start + c_seg_idx * span_num_deal * sizeof(T);
    +      T loc_w = ((T *)data_sampling_loc_gdram_start)[0];
    +      T loc_h = ((T *)data_sampling_loc_gdram_start)[1];
    +      T weight = ((T *)data_attn_weight_gdram_start)[0];
    +      T x = loc_w * spatial_w - 0.5;
    +      T y = loc_h * spatial_h - 0.5;
    +      if (y > -1 && x > -1 && y < spatial_h && x < spatial_w) {
    +        loadNeighborPointsData(
    +            (T *)data_value_ptr, (T *)ping_data_value_p1_nram,
    +            (T *)ping_data_value_p2_nram, (T *)ping_data_value_p3_nram,
    +            (T *)ping_data_value_p4_nram, span_num_deal, spatial_w, spatial_h,
    +            num_heads, channels, x, y, head_idx);
    +      }
    +      T spatial_h_next_point = 0;
    +      T spatial_w_next_point = 0;
    +      T weight_next_point = 0;
    +      T x_next_point = 0;
    +      T y_next_point = 0;
    +      __asm__ volatile("sync;");
    +
    +      for (int32_t level_idx = 0; level_idx < num_levels; ++level_idx) {
    +        for (int32_t point_idx = 0; point_idx < num_points; ++point_idx) {
    +          // load data
    +          if (point_idx == num_points - 1 && level_idx == num_levels - 1) {
    +            // last point no need to load data, continue to compute
    +          } else if (point_idx == num_points - 1) {
    +            const int32_t level_start_id =
    +                ((int32_t *)data_level_start_index_gdram)[level_idx + 1];
    +            const int32_t spatial_h_ptr = (level_idx + 1) << 1;
    +            __memcpy(
    +                data_spatial_shapes_nram,
    +                data_spatial_shapes_gdram + spatial_h_ptr * sizeof(int32_t),
    +                2 * sizeof(int32_t), GDRAM2NRAM);
    +            spatial_h_next_point = ((int32_t *)data_spatial_shapes_nram)[0];
    +            spatial_w_next_point = ((int32_t *)data_spatial_shapes_nram)[1];
    +            data_value_ptr = data_value_gdram_start +
    +                             (level_start_id * num_heads * channels +
    +                              c_seg_idx * span_num_deal) *
    +                                 sizeof(T);
    +            loc_w = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2];
    +            loc_h = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2 + 1];
    +            weight_next_point =
    +                ((T *)data_attn_weight_gdram_start)[level_idx * num_points +
    +                                                    point_idx + 1];
    +            x_next_point = loc_w * spatial_w_next_point - 0.5;
    +            y_next_point = loc_h * spatial_h_next_point - 0.5;
    +            if (y_next_point > -1 && x_next_point > -1 &&
    +                y_next_point < spatial_h_next_point &&
    +                x_next_point < spatial_w_next_point) {
    +              loadNeighborPointsData(
    +                  (T *)data_value_ptr,
    +                  (T *)(ping_data_value_p1_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p2_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p3_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p4_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  span_num_deal, spatial_w_next_point, spatial_h_next_point,
    +                  num_heads, channels, x_next_point, y_next_point, head_idx);
    +            }
    +          } else {
    +            spatial_h_next_point = spatial_h;
    +            spatial_w_next_point = spatial_w;
    +            loc_w = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2];
    +            loc_h = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2 + 1];
    +            weight_next_point =
    +                ((T *)data_attn_weight_gdram_start)[level_idx * num_points +
    +                                                    point_idx + 1];
    +            x_next_point = loc_w * spatial_w - 0.5;
    +            y_next_point = loc_h * spatial_h - 0.5;
    +            if (y_next_point > -1 && x_next_point > -1 &&
    +                y_next_point < spatial_h && x_next_point < spatial_w) {
    +              loadNeighborPointsData(
    +                  (T *)data_value_ptr,
    +                  (T *)(ping_data_value_p1_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p2_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p3_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p4_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  span_num_deal, spatial_w, spatial_h, num_heads, channels,
    +                  x_next_point, y_next_point, head_idx);
    +            }
    +          }
    +
    +          // compute
    +          if (y > -1 && x > -1 && y < spatial_h && x < spatial_w) {
    +            bilinearInterpolation(
    +                (T *)(ping_data_value_p1_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p2_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p3_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p4_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)auxiliary_a, (T *)auxiliary_b, span_num_deal, spatial_w,
    +                spatial_h, x, y);
    +            __bang_mul_scalar((T *)auxiliary_a, (T *)auxiliary_a, (T)weight,
    +                              span_num_deal);
    +            __bang_add((T *)(ping_data_col_nram +
    +                             data_col_ping_pong_idx * ping_pong_gap),
    +                       (T *)(ping_data_col_nram +
    +                             data_col_ping_pong_idx * ping_pong_gap),
    +                       (T *)auxiliary_a, span_num_deal);
    +          }
    +
    +          spatial_w = spatial_w_next_point;
    +          spatial_h = spatial_h_next_point;
    +          weight = weight_next_point;
    +          x = x_next_point;
    +          y = y_next_point;
    +          __asm__ volatile("sync;");
    +        }
    +      }
    +      // store
    +      __memcpy_async(
    +          data_col_gdram_start + c_seg_idx * span_num_deal * sizeof(T),
    +          ping_data_col_nram + data_col_ping_pong_idx * ping_pong_gap,
    +          span_num_deal * sizeof(T), NRAM2GDRAM);
    +      data_col_ping_pong_idx = (data_col_ping_pong_idx + 1) % 2;
    +    }
    +
    +    if (channels_rem > 0) {
    +      __bang_write_value(
    +          (T *)(ping_data_col_nram + data_col_ping_pong_idx * ping_pong_gap),
    +          channels_align_rem, (T)0);
    +      // load data
    +      // level_idx = 0, point_idx = 0
    +      __memcpy(data_spatial_shapes_nram, data_spatial_shapes_gdram,
    +               2 * sizeof(int32_t), GDRAM2NRAM);
    +      int32_t spatial_h = ((int32_t *)data_spatial_shapes_nram)[0];
    +      int32_t spatial_w = ((int32_t *)data_spatial_shapes_nram)[1];
    +      const char *data_value_ptr =
    +          data_value_gdram_start + channels_seg_num * span_num_deal * sizeof(T);
    +      T loc_w = ((T *)data_sampling_loc_gdram_start)[0];
    +      T loc_h = ((T *)data_sampling_loc_gdram_start)[1];
    +      T weight = ((T *)data_attn_weight_gdram_start)[0];
    +      T x = loc_w * spatial_w - 0.5;
    +      T y = loc_h * spatial_h - 0.5;
    +      if (y > -1 && x > -1 && y < spatial_h && x < spatial_w) {
    +        loadNeighborPointsData(
    +            (T *)data_value_ptr, (T *)ping_data_value_p1_nram,
    +            (T *)ping_data_value_p2_nram, (T *)ping_data_value_p3_nram,
    +            (T *)ping_data_value_p4_nram, channels_rem, spatial_w, spatial_h,
    +            num_heads, channels, x, y, head_idx);
    +      }
    +      T spatial_h_next_point = 0;
    +      T spatial_w_next_point = 0;
    +      T weight_next_point = 0;
    +      T x_next_point = 0;
    +      T y_next_point = 0;
    +      __asm__ volatile("sync;");
    +
    +      for (int32_t level_idx = 0; level_idx < num_levels; ++level_idx) {
    +        for (int32_t point_idx = 0; point_idx < num_points; ++point_idx) {
    +          // load data
    +          if (point_idx == num_points - 1 && level_idx == num_levels - 1) {
    +            // last point no need to load data, continue to compute
    +          } else if (point_idx == num_points - 1) {
    +            const int32_t level_start_id =
    +                ((int32_t *)data_level_start_index_gdram)[level_idx + 1];
    +            const int32_t spatial_h_ptr = (level_idx + 1) << 1;
    +            __memcpy(
    +                data_spatial_shapes_nram,
    +                data_spatial_shapes_gdram + spatial_h_ptr * sizeof(int32_t),
    +                2 * sizeof(int32_t), GDRAM2NRAM);
    +            spatial_h_next_point = ((int32_t *)data_spatial_shapes_nram)[0];
    +            spatial_w_next_point = ((int32_t *)data_spatial_shapes_nram)[1];
    +            data_value_ptr = data_value_gdram_start +
    +                             (level_start_id * num_heads * channels +
    +                              channels_seg_num * span_num_deal) *
    +                                 sizeof(T);
    +            loc_w = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2];
    +            loc_h = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2 + 1];
    +            weight_next_point =
    +                ((T *)data_attn_weight_gdram_start)[level_idx * num_points +
    +                                                    point_idx + 1];
    +            x_next_point = loc_w * spatial_w_next_point - 0.5;
    +            y_next_point = loc_h * spatial_h_next_point - 0.5;
    +            if (y_next_point > -1 && x_next_point > -1 &&
    +                y_next_point < spatial_h_next_point &&
    +                x_next_point < spatial_w_next_point) {
    +              loadNeighborPointsData(
    +                  (T *)data_value_ptr,
    +                  (T *)(ping_data_value_p1_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p2_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p3_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p4_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  channels_rem, spatial_w_next_point, spatial_h_next_point,
    +                  num_heads, channels, x_next_point, y_next_point, head_idx);
    +            }
    +          } else {
    +            spatial_w_next_point = spatial_w;
    +            spatial_h_next_point = spatial_h;
    +            loc_w = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2];
    +            loc_h = ((T *)data_sampling_loc_gdram_start)
    +                [(level_idx * num_points + point_idx + 1) * 2 + 1];
    +            weight_next_point =
    +                ((T *)data_attn_weight_gdram_start)[level_idx * num_points +
    +                                                    point_idx + 1];
    +            x_next_point = loc_w * spatial_w - 0.5;
    +            y_next_point = loc_h * spatial_h - 0.5;
    +            if (y_next_point > -1 && x_next_point > -1 &&
    +                y_next_point < spatial_h && x_next_point < spatial_w) {
    +              loadNeighborPointsData(
    +                  (T *)data_value_ptr,
    +                  (T *)(ping_data_value_p1_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p2_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p3_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  (T *)(ping_data_value_p4_nram +
    +                        ((level_idx * num_points + point_idx + 1) % 2) *
    +                            ping_pong_gap),
    +                  channels_rem, spatial_w, spatial_h, num_heads, channels,
    +                  x_next_point, y_next_point, head_idx);
    +            }
    +          }
    +
    +          // compute
    +          if (y > -1 && x > -1 && y < spatial_h && x < spatial_w) {
    +            bilinearInterpolation(
    +                (T *)(ping_data_value_p1_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p2_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p3_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)(ping_data_value_p4_nram +
    +                      ((level_idx * num_points + point_idx) % 2) *
    +                          ping_pong_gap),
    +                (T *)auxiliary_a, (T *)auxiliary_b, channels_align_rem,
    +                spatial_w, spatial_h, x, y);
    +            __bang_mul_scalar((T *)auxiliary_a, (T *)auxiliary_a, (T)weight,
    +                              channels_align_rem);
    +            __bang_add((T *)(ping_data_col_nram +
    +                             data_col_ping_pong_idx * ping_pong_gap),
    +                       (T *)(ping_data_col_nram +
    +                             data_col_ping_pong_idx * ping_pong_gap),
    +                       (T *)auxiliary_a, channels_align_rem);
    +          }
    +
    +          spatial_w = spatial_w_next_point;
    +          spatial_h = spatial_h_next_point;
    +          weight = weight_next_point;
    +          x = x_next_point;
    +          y = y_next_point;
    +          __asm__ volatile("sync;");
    +        }
    +      }
    +      // store
    +      __memcpy_async(
    +          data_col_gdram_start + channels_seg_num * span_num_deal * sizeof(T),
    +          ping_data_col_nram + data_col_ping_pong_idx * ping_pong_gap,
    +          channels_rem * sizeof(T), NRAM2GDRAM);
    +      data_col_ping_pong_idx = (data_col_ping_pong_idx + 1) % 2;
    +    }
    +  }
    +  __asm__ volatile("sync;");
    +  return;
    +}
    +
    +template __mlu_global__ void MLUKernelMsDeformAttnForward(
    +    const char *data_value_gdram, const char *data_spatial_shapes_gdram,
    +    const char *data_level_start_index_gdram,
    +    const char *data_sampling_loc_gdram, const char *data_attn_weight_gdram,
    +    const int32_t batch_size, const int32_t num_keys, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_queries,
    +    const int32_t num_points, char *data_col_gdram);
    +
    +void KernelMsDeformAttnForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const char *data_value_gdram,
    +    const char *data_spatial_shapes_gdram,
    +    const char *data_level_start_index_gdram,
    +    const char *data_sampling_loc_gdram, const char *data_attn_weight_gdram,
    +    const int32_t batch_size, const int32_t num_keys, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_queries,
    +    const int32_t num_points, char *data_col_gdram) {
    +  MLUKernelMsDeformAttnForward<<>>(
    +      data_value_gdram, data_spatial_shapes_gdram, data_level_start_index_gdram,
    +      data_sampling_loc_gdram, data_attn_weight_gdram, batch_size, num_keys,
    +      num_heads, channels, num_levels, num_queries, num_points, data_col_gdram);
    +}
    +
    +template 
    +void __mlu_func__ msDeformAttnCol2imBilinear(
    +    T *top_grad_temp, const int32_t &height, const int32_t &width, const T &w1,
    +    const T &w2, const T &w3, const T &w4, const int32_t &h_low,
    +    const int32_t &w_low, const int32_t &h_high, const int32_t &w_high,
    +    const int32_t &base_ptr, const int32_t &h_low_ptr_offset,
    +    const int32_t &w_low_ptr_offset, const int32_t &h_high_ptr_offset,
    +    const int32_t &w_high_ptr_offset, const T &hh, const T &hw, const T &lh,
    +    const T &lw, T *top_grad, const T &data_attn_weight, T *grad_h_weight,
    +    T *grad_w_weight, T *grad_value, T *grad_output_nram, T *grad_weight,
    +    T *grad_sampling_loc, T *grad_attn_weight, T *grad_output_nram_temp,
    +    const int32_t &deal_num, const int32_t &deal_num_real,
    +    const T *data_value_ptr) {
    +  if (h_low >= 0 && w_low >= 0) {
    +    int32_t offset1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
    +    __memcpy(grad_output_nram, data_value_ptr + offset1,
    +             deal_num_real * sizeof(T), GDRAM2NRAM);
    +    __bang_mul_scalar(grad_weight, grad_output_nram, hw, deal_num);
    +    __bang_sub(grad_h_weight, grad_h_weight, grad_weight, deal_num);
    +    __bang_mul_scalar(grad_weight, grad_output_nram, hh, deal_num);
    +    __bang_sub(grad_w_weight, grad_w_weight, grad_weight, deal_num);
    +
    +    __bang_mul_scalar(top_grad_temp, top_grad, data_attn_weight, deal_num);
    +    __bang_mul_scalar(top_grad_temp, top_grad_temp, w1, deal_num);
    +    // for calc grad_attn_weight
    +    __bang_mul_scalar(grad_output_nram, grad_output_nram, w1, deal_num);
    +    __bang_atomic_add((T *)top_grad_temp, (T *)(grad_value + offset1),
    +                      (T *)top_grad_temp, deal_num_real);
    +  }
    +  if (h_low >= 0 && w_high <= width - 1) {
    +    int32_t offset2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
    +    __memcpy(grad_output_nram_temp, data_value_ptr + offset2,
    +             deal_num_real * sizeof(T), GDRAM2NRAM);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, lw, deal_num);
    +    __bang_sub(grad_h_weight, grad_h_weight, grad_weight, deal_num);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, hh, deal_num);
    +    __bang_add(grad_w_weight, grad_w_weight, grad_weight, deal_num);
    +
    +    __bang_mul_scalar(top_grad_temp, top_grad, data_attn_weight, deal_num);
    +    __bang_mul_scalar(top_grad_temp, top_grad_temp, w2, deal_num);
    +
    +    __bang_mul_scalar(grad_output_nram_temp, grad_output_nram_temp, w2,
    +                      deal_num);
    +    __bang_add(grad_output_nram, grad_output_nram, grad_output_nram_temp,
    +               deal_num);
    +    __bang_atomic_add((T *)top_grad_temp, (T *)(grad_value + offset2),
    +                      (T *)top_grad_temp, deal_num_real);
    +  }
    +  if (h_high <= height - 1 && w_low >= 0) {
    +    int32_t offset3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
    +    __memcpy(grad_output_nram_temp, data_value_ptr + offset3,
    +             deal_num_real * sizeof(T), GDRAM2NRAM);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, hw, deal_num);
    +    __bang_add(grad_h_weight, grad_h_weight, grad_weight, deal_num);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, lh, deal_num);
    +    __bang_sub(grad_w_weight, grad_w_weight, grad_weight, deal_num);
    +
    +    __bang_mul_scalar(top_grad_temp, top_grad, data_attn_weight, deal_num);
    +    __bang_mul_scalar(top_grad_temp, top_grad_temp, w3, deal_num);
    +    // for calc grad_attn_weight
    +    __bang_mul_scalar(grad_output_nram_temp, grad_output_nram_temp, w3,
    +                      deal_num);
    +    __bang_add(grad_output_nram, grad_output_nram, grad_output_nram_temp,
    +               deal_num);
    +    __bang_atomic_add((T *)top_grad_temp, (T *)(grad_value + offset3),
    +                      (T *)top_grad_temp, deal_num_real);
    +  }
    +  if (h_high <= height - 1 && w_high <= width - 1) {
    +    int32_t offset4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
    +    __memcpy(grad_output_nram_temp, data_value_ptr + offset4,
    +             deal_num_real * sizeof(T), GDRAM2NRAM);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, lw, deal_num);
    +    __bang_add(grad_h_weight, grad_h_weight, grad_weight, deal_num);
    +    __bang_mul_scalar(grad_weight, grad_output_nram_temp, lh, deal_num);
    +    __bang_add(grad_w_weight, grad_w_weight, grad_weight, deal_num);
    +
    +    __bang_mul_scalar(top_grad_temp, top_grad, data_attn_weight, deal_num);
    +    __bang_mul_scalar(top_grad_temp, top_grad_temp, w4, deal_num);
    +    // for calc grad_attn_weight
    +    __bang_mul_scalar(grad_output_nram_temp, grad_output_nram_temp, w4,
    +                      deal_num);
    +    __bang_add(grad_output_nram, grad_output_nram, grad_output_nram_temp,
    +               deal_num);
    +
    +    __bang_atomic_add((T *)top_grad_temp, (T *)(grad_value + offset4),
    +                      (T *)top_grad_temp, deal_num_real);
    +  }
    +  __bang_mul(grad_output_nram, grad_output_nram, top_grad, deal_num);
    +#if __BANG_ARCH__ >= 322
    +  recursiveSumPool(grad_output_nram, 1, deal_num_real, ALIGN_NUM_FOR_REDUCE);
    +#else
    +  const int32_t align_num_on_200 = NFU_ALIGN_SIZE / sizeof(float);
    +  recursiveSumPool(grad_output_nram, align_num_on_200,
    +                   deal_num / align_num_on_200, ALIGN_NUM_FOR_REDUCE);
    +  __bang_reduce_sum(grad_output_nram, grad_output_nram,
    +                    NFU_ALIGN_SIZE / sizeof(float));
    +#endif
    +  __bang_atomic_add((T *)grad_output_nram, (T *)grad_attn_weight,
    +                    (T *)grad_output_nram, 1);
    +  __bang_mul_scalar(grad_w_weight, grad_w_weight, width, deal_num);
    +  __bang_mul_scalar(top_grad_temp, top_grad, data_attn_weight, deal_num);
    +  __bang_mul(grad_w_weight, grad_w_weight, top_grad_temp, deal_num);
    +#if __BANG_ARCH__ >= 322
    +  recursiveSumPool(grad_w_weight, 1, deal_num_real, ALIGN_NUM_FOR_REDUCE);
    +#else
    +  recursiveSumPool(grad_w_weight, align_num_on_200, deal_num / align_num_on_200,
    +                   ALIGN_NUM_FOR_REDUCE);
    +  __bang_reduce_sum(grad_w_weight, grad_w_weight,
    +                    NFU_ALIGN_SIZE / sizeof(float));
    +#endif
    +  __bang_atomic_add((T *)grad_w_weight, (T *)(grad_sampling_loc),
    +                    (T *)grad_w_weight, 1);
    +
    +  __bang_mul_scalar(grad_h_weight, grad_h_weight, height, deal_num);
    +  __bang_mul(grad_h_weight, grad_h_weight, top_grad_temp, deal_num);
    +#if __BANG_ARCH__ >= 322
    +  recursiveSumPool(grad_h_weight, 1, deal_num_real, ALIGN_NUM_FOR_REDUCE);
    +#else
    +  recursiveSumPool(grad_h_weight, align_num_on_200, deal_num / align_num_on_200,
    +                   ALIGN_NUM_FOR_REDUCE);
    +  __bang_reduce_sum(grad_h_weight, grad_h_weight,
    +                    NFU_ALIGN_SIZE / sizeof(float));
    +#endif
    +  __bang_atomic_add((T *)grad_h_weight, (T *)(grad_sampling_loc + 1),
    +                    (T *)grad_h_weight, 1);
    +}
    +
    +__mlu_global__ void MLUUnion1KernelMsDeformAttnBackward(
    +    const float *data_value, const int32_t *spatial_shapes,
    +    const int32_t *data_level_start_index, const float *data_sampling_loc,
    +    const float *data_attn_weight, const float *grad_output,
    +    const int32_t batch, const int32_t spatial_size, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_query,
    +    const int32_t num_points, float *grad_value, float *grad_sampling_loc,
    +    float *grad_attn_weight) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  const int32_t split_num = 8;
    +  const int32_t spatial_shapes_size = 64;
    +  int32_t deal_num = PAD_DOWN(
    +      (MAX_NRAM_SIZE - spatial_shapes_size) / split_num / sizeof(float),
    +      ALIGN_NUM);
    +  float *grad_output_nram = (float *)nram_buffer;
    +  float *grad_output_nram_temp = (float *)nram_buffer + deal_num;
    +  float *grad_weight = (float *)nram_buffer + 2 * deal_num;
    +  float *grad_h_weight = (float *)nram_buffer + 3 * deal_num;
    +  float *grad_w_weight = (float *)nram_buffer + 4 * deal_num;
    +  float *top_grad = (float *)nram_buffer + 5 * deal_num;
    +  float *top_grad_temp = (float *)nram_buffer + 6 * deal_num;
    +  int32_t *spatial_shapes_nram =
    +      (int32_t *)((float *)nram_buffer + 7 * deal_num);
    +  float *sampling_loc_nram =
    +      (float *)nram_buffer + 7 * deal_num + 2 * sizeof(int32_t);
    +  const int32_t total_num = batch * num_query * num_heads * num_levels;
    +  int32_t num_per_core = total_num / taskDim;
    +  int32_t num_rem = total_num % taskDim;
    +  num_per_core = num_per_core + int32_t(taskId < num_rem);
    +  int32_t start_per_core =
    +      num_rem > taskId
    +          ? (taskId * num_per_core)
    +          : ((num_per_core + 1) * num_rem + (taskId - num_rem) * num_per_core);
    +  int32_t end_per_core = start_per_core + num_per_core;
    +  const int32_t C_repeat = channels / deal_num;
    +  const int32_t C_tail = channels % deal_num;
    +  const int32_t qid_stride = num_heads * channels;
    +  int32_t base_ptr = 0;
    +  for (int32_t num_loop = start_per_core; num_loop < end_per_core; ++num_loop) {
    +    const int32_t l_col = num_loop % num_levels;
    +    const int32_t m_col = num_loop / num_levels % num_heads;
    +    const int32_t q_col = num_loop / num_levels / num_heads % num_query;
    +    const int32_t b_col = num_loop / num_query / num_heads / num_levels;
    +    int32_t data_weight_ptr = num_loop * num_points;
    +    int32_t data_loc_w_ptr = data_weight_ptr << 1;
    +    const int32_t value_offset = b_col * spatial_size * num_heads * channels;
    +    const int32_t level_start_id = data_level_start_index[l_col];
    +    int32_t spatial_h_ptr = l_col << 1;
    +    int32_t grad_output_offset = b_col * num_query * num_heads * channels +
    +                                 q_col * num_heads * channels +
    +                                 m_col * channels;
    +    __memcpy(spatial_shapes_nram, spatial_shapes + spatial_h_ptr,
    +             2 * sizeof(int32_t), GDRAM2NRAM);
    +    const int32_t spatial_h = spatial_shapes_nram[0];
    +    const int32_t spatial_w = spatial_shapes_nram[1];
    +    const int32_t value_ptr_offset = value_offset + level_start_id * qid_stride;
    +    const float *data_value_ptr = data_value + value_ptr_offset;
    +    float *grad_value_ptr = grad_value + value_ptr_offset;
    +    const int32_t grad_attn_weight_out = num_loop * num_points;
    +    const int32_t grad_sampling_loc_out = num_loop * num_points * 2;
    +    for (int32_t p_col = 0; p_col < num_points; ++p_col) {
    +      __memcpy(sampling_loc_nram, data_sampling_loc + data_loc_w_ptr,
    +               2 * sizeof(float), GDRAM2NRAM);
    +      const float loc_w = sampling_loc_nram[0];
    +      const float loc_h = sampling_loc_nram[1];
    +      const float weight = data_attn_weight[data_weight_ptr];
    +      const float h_im = loc_h * spatial_h - 0.5;
    +      const float w_im = loc_w * spatial_w - 0.5;
    +      if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) {
    +        const int32_t h_low = floorf(h_im);
    +        const int32_t w_low = floorf(w_im);
    +        const int32_t h_high = h_low + 1;
    +        const int32_t w_high = w_low + 1;
    +
    +        const float lh = h_im - h_low;
    +        const float lw = w_im - w_low;
    +        const float hh = 1.0 - lh;
    +        const float hw = 1.0 - lw;
    +
    +        const int32_t w_stride = num_heads * channels;
    +        const int32_t h_stride = spatial_w * w_stride;
    +        const int32_t h_low_ptr_offset = h_low * h_stride;
    +        const int32_t h_high_ptr_offset = h_low_ptr_offset + h_stride;
    +        const int32_t w_low_ptr_offset = w_low * w_stride;
    +        const int32_t w_high_ptr_offset = w_low_ptr_offset + w_stride;
    +
    +        float w1 = hh * hw;
    +        float w2 = hh * lw;
    +        float w3 = lh * hw;
    +        float w4 = lh * lw;
    +
    +        for (int32_t C_loop = 0; C_loop < C_repeat; ++C_loop) {
    +          base_ptr = m_col * channels + C_loop * deal_num;
    +          __bang_write_zero(grad_weight, 3 * deal_num);
    +          __bang_write_zero(grad_output_nram, deal_num);
    +          __memcpy(top_grad,
    +                   grad_output + grad_output_offset + C_loop * deal_num,
    +                   deal_num * sizeof(float), GDRAM2NRAM);
    +          msDeformAttnCol2imBilinear(
    +              top_grad_temp, spatial_h, spatial_w, w1, w2, w3, w4, h_low, w_low,
    +              h_high, w_high, base_ptr, h_low_ptr_offset, w_low_ptr_offset,
    +              h_high_ptr_offset, w_high_ptr_offset, hh, hw, lh, lw, top_grad,
    +              weight, grad_h_weight, grad_w_weight, grad_value_ptr,
    +              grad_output_nram, grad_weight,
    +              grad_sampling_loc + grad_sampling_loc_out + p_col * 2,
    +              grad_attn_weight + grad_attn_weight_out + p_col,
    +              grad_output_nram_temp, deal_num, deal_num, data_value_ptr);
    +        }
    +        if (C_tail != 0) {
    +          base_ptr = m_col * channels + C_repeat * deal_num;
    +          __bang_write_zero(grad_output_nram, 8 * deal_num);
    +          __memcpy(top_grad,
    +                   grad_output + grad_output_offset + C_repeat * deal_num,
    +                   C_tail * sizeof(float), GDRAM2NRAM);
    +          msDeformAttnCol2imBilinear(
    +              top_grad_temp, spatial_h, spatial_w, w1, w2, w3, w4, h_low, w_low,
    +              h_high, w_high, base_ptr, h_low_ptr_offset, w_low_ptr_offset,
    +              h_high_ptr_offset, w_high_ptr_offset, hh, hw, lh, lw, top_grad,
    +              weight, grad_h_weight, grad_w_weight, grad_value_ptr,
    +              grad_output_nram, grad_weight,
    +              grad_sampling_loc + grad_sampling_loc_out + p_col * 2,
    +              grad_attn_weight + grad_attn_weight_out + p_col,
    +              grad_output_nram_temp, deal_num, C_tail, data_value_ptr);
    +        }
    +      }
    +      data_weight_ptr += 1;
    +      data_loc_w_ptr += 2;
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUUnion1KernelMsDeformAttnBackward(
    +    const float *data_value, const int32_t *spatial_shapes,
    +    const int32_t *data_level_start_index, const float *data_sampling_loc,
    +    const float *data_attn_weight, const float *grad_output,
    +    const int32_t batch, const int32_t spatial_size, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_query,
    +    const int32_t num_points, float *grad_value, float *grad_sampling_loc,
    +    float *grad_attn_weight);
    +
    +void KernelMsDeformAttnBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const float *data_value,
    +    const int32_t *spatial_shapes, const int32_t *data_level_start_index,
    +    const float *data_sampling_loc, const float *data_attn_weight,
    +    const float *grad_output, const int32_t batch, const int32_t spatial_size,
    +    const int32_t num_heads, const int32_t channels, const int32_t num_levels,
    +    const int32_t num_query, const int32_t num_points, float *grad_value,
    +    float *grad_sampling_loc, float *grad_attn_weight) {
    +  MLUUnion1KernelMsDeformAttnBackward<<>>(
    +      data_value, spatial_shapes, data_level_start_index, data_sampling_loc,
    +      data_attn_weight, grad_output, batch, spatial_size, num_heads, channels,
    +      num_levels, num_query, num_points, grad_value, grad_sampling_loc,
    +      grad_attn_weight);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_mlu_kernel.mlu
    new file mode 100644
    index 000000000..dcc722d85
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_mlu_kernel.mlu
    @@ -0,0 +1,483 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "nms_utils.hpp"
    +
    +#define COORD_DIM (4)
    +
    +#define SIZE_NRAM_BUF (MAX_NRAM_SIZE + REM_FOR_STACK - 62 * 1024)
    +#define SIZE_SRAM_BUF (MAX_SRAM_SIZE)
    +
    +__nram__ int8_t nram_buffer[SIZE_NRAM_BUF];
    +__mlu_shared__ int8_t sram_buffer[SIZE_SRAM_BUF];
    +
    +enum Addr { SRAM, GDRAM };
    +
    +template 
    +__mlu_func__ void nms_detection(
    +    uint32_t &output_box_num, const int output_mode, OUT_DT *output_dram,
    +    IN_DT *input_data_score, const IN_DT *input_data_box, const Addr input_ram,
    +    IN_DT *sram, const int core_limit, const int input_num_boxes,
    +    const int max_output_size, const float thresh_iou, const float thresh_score,
    +    const float offset, const int algo) {
    +  // global value
    +  int32_t *exit_flag = (int32_t *)(sram + 28);
    +  exit_flag[0] = 0;
    +  // score, x1, y1, x2, y2, inter_x1, inter_y1, inter_x2, inter_y2
    +  int nms_buffer_count1 = 9;
    +  // temp nram buffer to store selected target.
    +  int nram_save_limit_count = 256;
    +  float div_thresh_iou = 1.0 / thresh_iou;
    +
    +  // input data ptr
    +  const IN_DT *input_x1_ptr = input_data_box;
    +  const IN_DT *input_y1_ptr = input_x1_ptr + input_num_boxes;
    +  const IN_DT *input_x2_ptr = input_y1_ptr + input_num_boxes;
    +  const IN_DT *input_y2_ptr = input_x2_ptr + input_num_boxes;
    +
    +  int limit = 0;        // find limit when GDRAM or SRAM
    +  int max_seg_pad = 0;  // the max length every repeat
    +  int repeat = 0;
    +  int remain = 0;
    +  int remain_pad = 0;
    +  int input_offset = 0;  // offset of input_data for current core
    +  int nram_save_count = 0;
    +
    +  if (output_mode == 0) {
    +    limit = (SIZE_NRAM_BUF - NFU_ALIGN_SIZE /*for max_box*/ * sizeof(IN_DT) -
    +             nram_save_limit_count * sizeof(OUT_DT)) /
    +            (nms_buffer_count1 * sizeof(IN_DT));
    +  } else {
    +    // 5 maens: score, x1, y1, x2, y2
    +    limit = (SIZE_NRAM_BUF - NFU_ALIGN_SIZE /*for max_box*/ * sizeof(IN_DT) -
    +             nram_save_limit_count * 5 * sizeof(OUT_DT)) /
    +            (nms_buffer_count1 * sizeof(IN_DT));
    +  }
    +
    +  int max_seg_iou_compute = 0;
    +  int repeat_iou_compute = 0;
    +  int remain_iou_compute = 0;
    +  int remain_pad_iou_compute = 0;
    +
    +  getComputeParamsBlockOrU1(sizeof(IN_DT), input_num_boxes, limit, core_limit,
    +                            input_offset, max_seg_pad, repeat, remain,
    +                            remain_pad, max_seg_iou_compute, repeat_iou_compute,
    +                            remain_iou_compute, remain_pad_iou_compute);
    +
    +  // init the data ptr
    +  IN_DT *score = (IN_DT *)nram_buffer;
    +  IN_DT *x1 = score + max_seg_pad;
    +  IN_DT *y1 = x1 + max_seg_pad;
    +  IN_DT *x2 = y1 + max_seg_pad;
    +  IN_DT *y2 = x2 + max_seg_pad;
    +  IN_DT *inter_x1 = y2 + max_seg_pad;
    +  IN_DT *inter_y1 = inter_x1 + max_seg_pad;
    +  IN_DT *inter_x2 = inter_y1 + max_seg_pad;
    +  IN_DT *inter_y2 = inter_x2 + max_seg_pad;
    +  IN_DT *max_box = inter_y2 + max_seg_pad;  // the max score, x1, y1, x2, y2
    +  OUT_DT *nram_save =
    +      (OUT_DT *)((char *)max_box +
    +                 NFU_ALIGN_SIZE);  // offset two line from max_box
    +
    +#if __BANG_ARCH__ >= 300
    +  float max_box_x1 = 0;
    +  float max_box_y1 = 0;
    +  float max_box_x2 = 0;
    +  float max_box_y2 = 0;
    +#endif
    +  mluMemcpyDirection_t load_dir = SRAM2NRAM;
    +  mluMemcpyDirection_t store_dir = NRAM2SRAM;
    +  load_dir = (input_ram == SRAM) ? SRAM2NRAM : GDRAM2NRAM;
    +  store_dir = (input_ram == SRAM) ? NRAM2SRAM : NRAM2GDRAM;
    +
    +  for (int keep = 0; keep < max_output_size;
    +       keep++) {  // loop until the max_score <= 0
    +    if (core_limit != 1) {
    +      __sync_cluster();  // sync before current loop
    +    }
    +
    +    /******FIND MAX START******/
    +    int max_index = 0;         // the max score index
    +    int global_max_index = 0;  // for U1
    +    float max_area = 0;        // the max socre area
    +    max_box[0] = 0;            // init 0
    +    findCoreMaxBox(input_data_score, score, inter_x1, max_box, input_x1_ptr,
    +                   input_y1_ptr, input_x2_ptr, input_y2_ptr, load_dir,
    +                   input_offset, repeat, remain, remain_pad, max_seg_pad,
    +                   max_index);
    +
    +    if (core_limit == 1) {
    +#if __BANG_ARCH__ >= 300
    +      calMaxArea(max_box, algo, offset, max_area, max_box_x1, max_box_y1,
    +                 max_box_x2, max_box_y2);
    +#else
    +      calMaxArea(max_box, algo, offset, max_area);
    +#endif
    +      input_data_score[max_index] = 0;
    +      global_max_index = max_index;
    +    } else if (core_limit == 4) {
    +      __sync_cluster();
    +      findClusterMaxBox(sram, max_box, inter_x1, input_data_score, core_limit);
    +
    +#if __BANG_ARCH__ >= 300
    +      calMaxArea(max_box, algo, offset, max_area, max_box_x1, max_box_y1,
    +                 max_box_x2, max_box_y2);
    +#else
    +      calMaxArea(max_box, algo, offset, max_area);
    +#endif
    +      global_max_index = ((uint32_t *)(max_box + 5))[0];
    +      input_data_score[global_max_index] = 0;
    +    }
    +    // by now, we get: max_score|max_index|max_box|max_area
    +    /******FIND MAX END******/
    +
    +    storeResult(max_box, nram_save, output_dram, keep, nram_save_limit_count,
    +                max_output_size, thresh_score, output_mode, nram_save_count,
    +                output_box_num);
    +
    +    // if the max score <= 0, end
    +    if (core_limit == 1) {
    +      if (float(max_box[0]) <= thresh_score) {
    +        break;
    +      }
    +    } else {
    +      if (float(max_box[0]) <= thresh_score) {
    +        if (coreId == 0) {
    +          exit_flag[0] = 1;
    +        }
    +      }
    +      __sync_cluster();
    +      if (exit_flag[0] == 1) {
    +        break;
    +      }
    +    }
    +/******NMS STORE END******/
    +#if __BANG_ARCH__ >= 300
    +    scoreUpdate(input_data_score, load_dir, store_dir, input_x1_ptr,
    +                input_y1_ptr, input_x2_ptr, input_y2_ptr, x1, y1, x2, y2, score,
    +                inter_x1, inter_y1, inter_x2, inter_y2, max_box, max_box_x1,
    +                max_box_y1, max_box_x2, max_box_y2, nram_save,
    +                repeat_iou_compute, remain_iou_compute, remain_pad_iou_compute,
    +                max_seg_iou_compute, max_seg_pad, thresh_iou, div_thresh_iou,
    +                input_offset, offset, max_area, input_num_boxes, algo);
    +#else
    +    scoreUpdate(input_data_score, load_dir, store_dir, input_x1_ptr,
    +                input_y1_ptr, input_x2_ptr, input_y2_ptr, x1, y1, x2, y2, score,
    +                inter_x1, inter_y1, inter_x2, inter_y2, max_box, max_box[1],
    +                max_box[2], max_box[3], max_box[4], nram_save,
    +                repeat_iou_compute, remain_iou_compute, remain_pad_iou_compute,
    +                max_seg_iou_compute, max_seg_pad, thresh_iou, div_thresh_iou,
    +                input_offset, offset, max_area, input_num_boxes, algo);
    +#endif
    +  }  // for max_output_size
    +}
    +
    +__mlu_global__ void MLUUnion1KernelNMS(
    +    const void *input_boxes, const void *input_confidence,
    +    const int input_num_boxes, const int max_output_size,
    +    const float iou_threshold, const float confidence_threshold,
    +    const int output_mode, void *workspace, void *result_num, void *output,
    +    const cnrtDataType_t data_type_input, const float offset, const int algo) {
    +  if (data_type_input == CNRT_FLOAT16) {
    +    __memcpy(workspace, input_confidence, input_num_boxes * sizeof(half),
    +             GDRAM2GDRAM);
    +  } else if (data_type_input == CNRT_FLOAT32) {
    +    __memcpy(workspace, input_confidence, input_num_boxes * sizeof(float),
    +             GDRAM2GDRAM);
    +  } else {
    +  }
    +
    +  uint32_t output_box_num = 0;
    +  float *score_data = (float *)workspace;
    +  float *boxes_data = (float *)input_boxes;
    +  float *sram = (float *)sram_buffer;
    +
    +  if (output_mode == 0) {
    +    if (data_type_input == CNRT_FLOAT32) {
    +      nms_detection(output_box_num, output_mode, (uint32_t *)output, score_data,
    +                    boxes_data, GDRAM, sram, taskDim, input_num_boxes,
    +                    max_output_size, iou_threshold, confidence_threshold,
    +                    offset, algo);
    +    } else {
    +      nms_detection(output_box_num, output_mode, (uint32_t *)output,
    +                    (half *)score_data, (half *)boxes_data, GDRAM, (half *)sram,
    +                    taskDim, input_num_boxes, max_output_size, iou_threshold,
    +                    confidence_threshold, offset, algo);
    +    }
    +  } else {
    +    if (data_type_input == CNRT_FLOAT32) {
    +      nms_detection(output_box_num, output_mode, (float *)output, score_data,
    +                    boxes_data, GDRAM, sram, taskDim, input_num_boxes,
    +                    max_output_size, iou_threshold, confidence_threshold,
    +                    offset, algo);
    +    } else {
    +      nms_detection(output_box_num, output_mode, (half *)output,
    +                    (half *)score_data, (half *)boxes_data, GDRAM, (half *)sram,
    +                    taskDim, input_num_boxes, max_output_size, iou_threshold,
    +                    confidence_threshold, offset, algo);
    +    }
    +  }
    +  ((uint32_t *)result_num)[0] = output_box_num;
    +}
    +
    +template 
    +__mlu_func__ void nms_detection_ux(
    +    int32_t *exit_flag, uint32_t &output_box_num, OUT_DT *output_dram,
    +    IN_DT *score_data, const IN_DT *boxes_data, const Addr input_ram,
    +    const int input_num_boxes, const int max_output_size,
    +    const float thresh_iou, const float thresh_score, const float offset,
    +    const int output_mode, const int algo, char *cdma_gdram) {
    +  exit_flag[0] = 0;
    +
    +  IN_DT *sram = (IN_DT *)sram_buffer;
    +
    +  // score, x1, y1, x2, y2, inter_x1, inter_y1, inter_x2, inter_y2
    +  int nms_buffer_count1 = 9;
    +  // temp nram buffer to store selected target.
    +  int nram_save_limit_count = 256;
    +  float div_thresh_iou = 1.0 / thresh_iou;
    +
    +  // input data ptr
    +  const IN_DT *input_x1_ptr = boxes_data;
    +  const IN_DT *input_y1_ptr = input_x1_ptr + input_num_boxes;
    +  const IN_DT *input_x2_ptr = input_y1_ptr + input_num_boxes;
    +  const IN_DT *input_y2_ptr = input_x2_ptr + input_num_boxes;
    +
    +  int limit = 0;        // find limit when GDRAM or SRAM
    +  int max_seg_pad = 0;  // the max length every repeat
    +  int repeat = 0;
    +  int remain = 0;
    +  int remain_pad = 0;
    +  int nram_save_count = 0;
    +
    +  if (output_mode == 0) {
    +    limit = (SIZE_NRAM_BUF - NFU_ALIGN_SIZE /*for max_box*/ * sizeof(IN_DT) -
    +             nram_save_limit_count * sizeof(OUT_DT)) /
    +            (nms_buffer_count1 * sizeof(IN_DT));
    +  } else {
    +    limit = (SIZE_NRAM_BUF - NFU_ALIGN_SIZE /*for max_box*/ * sizeof(IN_DT) -
    +             nram_save_limit_count * INFO_NUM * sizeof(OUT_DT)) /
    +            (nms_buffer_count1 * sizeof(IN_DT));
    +  }
    +
    +  int input_offset = 0;
    +  int max_seg_iou_compute = 0;
    +  int repeat_iou_compute = 0;
    +  int remain_iou_compute = 0;
    +  int remain_pad_iou_compute = 0;
    +
    +  getComputeParamsUx(sizeof(IN_DT), input_num_boxes, limit, input_offset,
    +                     max_seg_pad, repeat, remain, remain_pad,
    +                     max_seg_iou_compute, repeat_iou_compute,
    +                     remain_iou_compute, remain_pad_iou_compute);
    +  // init the nram ptr
    +  IN_DT *score = (IN_DT *)nram_buffer;
    +  IN_DT *x1 = score + max_seg_pad;
    +  IN_DT *y1 = x1 + max_seg_pad;
    +  IN_DT *x2 = y1 + max_seg_pad;
    +  IN_DT *y2 = x2 + max_seg_pad;
    +  IN_DT *inter_x1 = y2 + max_seg_pad;
    +  IN_DT *inter_y1 = inter_x1 + max_seg_pad;
    +  IN_DT *inter_x2 = inter_y1 + max_seg_pad;
    +  IN_DT *inter_y2 = inter_x2 + max_seg_pad;
    +  IN_DT *max_box = inter_y2 + max_seg_pad;  // the max score, x1, y1, x2, y2
    +  OUT_DT *nram_save =
    +      (OUT_DT *)((char *)max_box +
    +                 NFU_ALIGN_SIZE);  // offset two line from max_box
    +#if __BANG_ARCH__ >= 300
    +  float max_box_x1 = 0;
    +  float max_box_y1 = 0;
    +  float max_box_x2 = 0;
    +  float max_box_y2 = 0;
    +#endif
    +  mluMemcpyDirection_t load_dir = SRAM2NRAM;
    +  mluMemcpyDirection_t store_dir = NRAM2SRAM;
    +  load_dir = (input_ram == SRAM) ? SRAM2NRAM : GDRAM2NRAM;
    +  store_dir = (input_ram == SRAM) ? NRAM2SRAM : NRAM2GDRAM;
    +
    +  for (int keep = 0; keep < max_output_size;
    +       keep++) {  // loop until the max_score <= 0
    +    __sync_all();
    +
    +    int max_index = 0;
    +    int global_max_index = 0;  // for Ux
    +    float max_area = 0;        // the max socre area
    +    max_box[0] = 0;            // init 0
    +
    +    if (coreId == 0) {
    +      findCoreMaxBox(score_data, score, inter_x1, max_box, input_x1_ptr,
    +                     input_y1_ptr, input_x2_ptr, input_y2_ptr, load_dir,
    +                     input_offset, repeat, remain, remain_pad, max_seg_pad,
    +                     max_index);
    +      // copy max box info to sram
    +      __memcpy(sram, max_box, REDUCE_NUM * sizeof(IN_DT), NRAM2SRAM);
    +    }
    +    __sync_all();
    +#if __BANG_ARCH__ >= 590
    +    __memcpy((char *)cdma_gdram + REDUCE_NUM * clusterId * sizeof(IN_DT), sram,
    +             REDUCE_NUM * sizeof(IN_DT), SRAM2GDRAM);
    +    __sync_all();
    +    if (clusterId == 0 && coreId == 0) {
    +      __bang_write_zero(inter_x1, NMS_SIZE);
    +      __memcpy((char *)inter_x1, (char *)cdma_gdram, sizeof(IN_DT), GDRAM2NRAM,
    +               sizeof(IN_DT), REDUCE_NUM * sizeof(IN_DT), clusterDim - 1);
    +      __bang_max(max_box, inter_x1, NMS_SIZE);
    +      int max_cluster = (sizeof(IN_DT) == sizeof(half))
    +                            ? ((uint16_t *)max_box)[1]
    +                            : ((uint32_t *)max_box)[1];
    +      __memcpy((char *)cdma_gdram,
    +               (char *)cdma_gdram + max_cluster * REDUCE_NUM * sizeof(IN_DT),
    +               REDUCE_NUM * sizeof(IN_DT), GDRAM2GDRAM);
    +    }
    +    __sync_all();
    +    __memcpy(max_box, cdma_gdram, REDUCE_NUM * sizeof(IN_DT), GDRAM2NRAM);
    +#else
    +    findGlobalMaxBox(max_box, sram, inter_x1);
    +#endif
    +
    +#if __BANG_ARCH__ >= 300
    +    calMaxArea(max_box, algo, offset, max_area, max_box_x1, max_box_y1,
    +               max_box_x2, max_box_y2);
    +#else
    +    calMaxArea(max_box, algo, offset, max_area);
    +#endif
    +    global_max_index = ((uint32_t *)(max_box + 5))[0];
    +    if (coreId != MEMORY_CORE) {
    +      score_data[global_max_index] = 0;
    +    }
    +
    +    storeResult(max_box, nram_save, output_dram, keep, nram_save_limit_count,
    +                max_output_size, thresh_score, output_mode, nram_save_count,
    +                output_box_num);
    +
    +    if (float(max_box[0]) <= thresh_score) {
    +      if (clusterId == 0 && coreId == 0) {
    +        exit_flag[0] = 1;  // dram
    +      }
    +    }
    +    __sync_all();
    +    if (exit_flag[0] == 1) {
    +      break;
    +    }
    +/******NMS STORE END******/
    +#if __BANG_ARCH__ >= 300
    +    scoreUpdate(score_data, load_dir, store_dir, input_x1_ptr, input_y1_ptr,
    +                input_x2_ptr, input_y2_ptr, x1, y1, x2, y2, score, inter_x1,
    +                inter_y1, inter_x2, inter_y2, max_box, max_box_x1, max_box_y1,
    +                max_box_x2, max_box_y2, nram_save, repeat_iou_compute,
    +                remain_iou_compute, remain_pad_iou_compute, max_seg_iou_compute,
    +                max_seg_pad, thresh_iou, div_thresh_iou, input_offset, offset,
    +                max_area, input_num_boxes, algo);
    +#else
    +    scoreUpdate(score_data, load_dir, store_dir, input_x1_ptr, input_y1_ptr,
    +                input_x2_ptr, input_y2_ptr, x1, y1, x2, y2, score, inter_x1,
    +                inter_y1, inter_x2, inter_y2, max_box, max_box[1], max_box[2],
    +                max_box[3], max_box[4], nram_save, repeat_iou_compute,
    +                remain_iou_compute, remain_pad_iou_compute, max_seg_iou_compute,
    +                max_seg_pad, thresh_iou, div_thresh_iou, input_offset, offset,
    +                max_area, input_num_boxes, algo);
    +#endif
    +  }  // for max_output_size
    +}
    +
    +__mlu_global__ void MLUUionXKernelNMS(
    +    const void *input_boxes, const void *input_confidence,
    +    const int input_num_boxes, const int max_output_size,
    +    const float iou_threshold, const float confidence_threshold,
    +    const float offset, const cnrtDataType_t data_type_input,
    +    const int output_mode, const int algo, void *workspace, void *result_num,
    +    void *output) {
    +  int input_dwidth = (data_type_input == CNRT_FLOAT32) ? 4 : 2;
    +  int32_t *exit_flag = (int32_t *)((char *)workspace +
    +                                   INFO_NUM * input_num_boxes * input_dwidth);
    +  char *cdma_addr = (char *)exit_flag + sizeof(int32_t);
    +  int reduce_sram_size = NFU_ALIGN_SIZE * REDUCE_NUM * input_dwidth;
    +  int availbale_sram_size = SIZE_SRAM_BUF - reduce_sram_size;
    +
    +  int cluster_score_size = input_num_boxes * input_dwidth;
    +  int cluster_boxes_size = input_num_boxes * 4 * input_dwidth;
    +  char *sram_score = (char *)sram_buffer + reduce_sram_size;
    +  char *sram_boxes =
    +      (char *)sram_buffer + reduce_sram_size + cluster_score_size;
    +  Addr input_ram = GDRAM;
    +  if ((cluster_score_size + cluster_boxes_size) < availbale_sram_size) {
    +    input_ram = SRAM;
    +    __memcpy(sram_score, input_confidence, cluster_score_size, GDRAM2SRAM);
    +    __memcpy(sram_boxes, input_boxes, cluster_boxes_size, GDRAM2SRAM);
    +  } else {
    +    __memcpy(workspace, input_confidence, cluster_score_size, GDRAM2GDRAM);
    +  }
    +  __sync_cluster();
    +
    +  uint32_t output_box_num = 0;
    +  float *score_data;
    +  float *boxes_data;
    +  score_data = (input_ram == SRAM) ? (float *)sram_score : (float *)workspace;
    +  boxes_data = (input_ram == SRAM) ? (float *)sram_boxes : (float *)input_boxes;
    +
    +  if (output_mode == 0) {
    +    if (data_type_input == CNRT_FLOAT32) {
    +      nms_detection_ux(exit_flag, output_box_num, (uint32_t *)output,
    +                       score_data, boxes_data, input_ram, input_num_boxes,
    +                       max_output_size, iou_threshold, confidence_threshold,
    +                       offset, output_mode, algo, cdma_addr);
    +    } else {
    +      nms_detection_ux(exit_flag, output_box_num, (uint32_t *)output,
    +                       (half *)score_data, (half *)boxes_data, input_ram,
    +                       input_num_boxes, max_output_size, iou_threshold,
    +                       confidence_threshold, offset, output_mode, algo,
    +                       cdma_addr);
    +    }
    +  } else {
    +    if (data_type_input == CNRT_FLOAT32) {
    +      nms_detection_ux(exit_flag, output_box_num, (float *)output, score_data,
    +                       boxes_data, input_ram, input_num_boxes, max_output_size,
    +                       iou_threshold, confidence_threshold, offset, output_mode,
    +                       algo, cdma_addr);
    +    } else {
    +      nms_detection_ux(exit_flag, output_box_num, (half *)output,
    +                       (half *)score_data, (half *)boxes_data, input_ram,
    +                       input_num_boxes, max_output_size, iou_threshold,
    +                       confidence_threshold, offset, output_mode, algo,
    +                       cdma_addr);
    +    }
    +  }
    +  ((uint32_t *)result_num)[0] = output_box_num;
    +}
    +
    +void KernelNms(cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +               const cnrtDataType_t data_type_input, const void *boxes_ptr,
    +               const void *scores_ptr, const int input_num_boxes,
    +               const int max_output_boxes, const float iou_threshold,
    +               const float offset, void *workspace_ptr, void *output_size_ptr,
    +               void *output_ptr) {
    +  switch (k_type) {
    +    default: { return; }
    +    case CNRT_FUNC_TYPE_BLOCK:
    +    case CNRT_FUNC_TYPE_UNION1: {
    +      MLUUnion1KernelNMS<<>>(
    +          (void *)boxes_ptr, (void *)scores_ptr, input_num_boxes,
    +          max_output_boxes, iou_threshold, /*confidence_threshold=*/0.0,
    +          /*output_mode=*/0, workspace_ptr, output_size_ptr, output_ptr,
    +          data_type_input, offset, /*algo=*/1);
    +    }; break;
    +    case CNRT_FUNC_TYPE_UNION2:
    +    case CNRT_FUNC_TYPE_UNION4:
    +    case CNRT_FUNC_TYPE_UNION8:
    +    case CNRT_FUNC_TYPE_UNION16: {
    +      MLUUionXKernelNMS<<>>(
    +          (void *)boxes_ptr, (void *)scores_ptr, input_num_boxes,
    +          max_output_boxes, iou_threshold, /*confidence_threshold=*/0.0, offset,
    +          data_type_input, /*output_mode=*/0, /*algo=*/1, workspace_ptr,
    +          output_size_ptr, output_ptr);
    +    }; break;
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_utils.hpp
    new file mode 100644
    index 000000000..61f5ba95d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/nms_utils.hpp
    @@ -0,0 +1,553 @@
    +/*************************************************************************
    + * Copyright (C) [2019-2022] by Cambricon, Inc.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef NMS_UTILS_HPP_
    +#define NMS_UTILS_HPP_
    +#include "common_mlu_helper.hpp"
    +
    +#define NMS_SIZE (64)
    +#define NMS_UP(x, y) (x / y + (int)(x % y > 0)) * y
    +#define NMS_DOWN(x, y) (x / y) * y
    +#define INFO_NUM (5)  // 5 means x1, x2, y1, y2 and score
    +#define MEMORY_CORE (0x80)
    +#define REDUCE_NUM \
    +  (7)  // score, x1, y1, x2, y2, max_index (reserve 2 num for half-type input)
    +
    +__mlu_func__ void pvLock() {
    +#if __BANG_ARCH__ == 270
    +  if (coreId != MEMORY_CORE) {
    +    __bang_lock(0, 0);
    +  }
    +#endif
    +}
    +
    +__mlu_func__ void pvUnlock() {
    +#if __BANG_ARCH__ == 270
    +  if (coreId != MEMORY_CORE) {
    +    __bang_unlock(0, 0);
    +  }
    +#endif
    +}
    +
    +template 
    +static __mlu_func__ void computeReluN(T *nram_dst, T *nram_src, void *nram_tmp,
    +                                      const int deal_num,
    +                                      const T threshold = 0) {
    +  if (threshold < 0) {
    +    return;
    +  }
    +  if (threshold) {
    +#if __BANG_ARCH__ >= 300
    +    __bang_relun(nram_dst, nram_src, deal_num, threshold);
    +#else
    +    int align_num = NFU_ALIGN_SIZE / sizeof(T);
    +    T *nram_aux_a = (T *)nram_tmp;
    +    T *nram_aux_b = nram_aux_a + deal_num;
    +    T *nram_zero = nram_aux_b + align_num;
    +    __bang_write_value(nram_aux_b, align_num, threshold);
    +    __bang_write_zero(nram_zero, align_num);
    +    __bang_cycle_lt((T *)nram_aux_a, nram_src, (T *)nram_aux_b, deal_num,
    +                    align_num);
    +    __bang_mul(nram_dst, nram_src, (T *)nram_aux_a, deal_num);
    +    __bang_cycle_eq((T *)nram_aux_a, (T *)nram_aux_a, (T *)nram_zero, deal_num,
    +                    align_num);
    +    __bang_cycle_mul((T *)nram_aux_a, (T *)nram_aux_a, (T *)nram_aux_b,
    +                     deal_num, align_num);
    +    __bang_add(nram_dst, nram_dst, (T *)nram_aux_a, deal_num);
    +    __bang_cycle_gt((T *)nram_aux_a, nram_dst, (T *)nram_zero, deal_num,
    +                    align_num);
    +    __bang_mul(nram_dst, nram_dst, (T *)nram_aux_a, deal_num);
    +#endif
    +  } else {
    +#if __BANG_ARCH__ >= 300
    +    __bang_relu(nram_dst, nram_src, deal_num);
    +#else
    +    __bang_active_relu(nram_dst, nram_src, deal_num);
    +#endif
    +  }
    +}
    +
    +__mlu_func__ void getComputeParamsBlockOrU1(
    +    const int input_dwidth, const int input_box_num, const int limit,
    +    const int core_limit, int &input_offset, int &max_seg_pad, int &repeat,
    +    int &remain, int &remain_pad, int &max_seg_iou_compute,
    +    int &repeat_iou_compute, int &remain_iou_compute,
    +    int &remain_pad_iou_compute) {
    +  int avg_core = input_box_num / core_limit;
    +  int rem = input_box_num % core_limit;
    +  int len_core = avg_core + (coreId < rem ? 1 : 0);
    +  input_offset = avg_core * coreId + (coreId <= rem ? coreId : rem);
    +  max_seg_pad = NMS_DOWN(limit, NMS_SIZE);
    +  repeat = len_core / max_seg_pad;
    +  remain = len_core % max_seg_pad;
    +  remain_pad = NMS_UP(remain, NMS_SIZE);
    +
    +  // if datatype is fp16, we should cvt to fp32 when compute iou
    +  max_seg_iou_compute = NMS_DOWN(max_seg_pad / (4 / input_dwidth), NMS_SIZE);
    +  repeat_iou_compute = len_core / max_seg_iou_compute;
    +  remain_iou_compute = len_core % max_seg_iou_compute;
    +  remain_pad_iou_compute = NMS_UP(remain_iou_compute, NMS_SIZE);
    +}
    +
    +__mlu_func__ void getComputeParamsUx(
    +    const int input_dwidth, const int input_num_boxes, const int limit,
    +    int &input_offset, int &max_seg_pad, int &repeat, int &remain,
    +    int &remain_pad, int &max_seg_iou_compute, int &repeat_iou_compute,
    +    int &remain_iou_compute, int &remain_pad_iou_compute) {
    +  // data split
    +  int avg_cluster = input_num_boxes / clusterDim;
    +  int rem_cluster = input_num_boxes % clusterDim;
    +  int len_cluster = avg_cluster + (clusterId < rem_cluster);
    +  int cluster_offset = avg_cluster * clusterId +
    +                       (clusterId <= rem_cluster ? clusterId : rem_cluster);
    +
    +  int avg_core = len_cluster / coreDim;
    +  int rem_core = len_cluster % coreDim;
    +  int len_core = avg_core + (coreId < rem_core);
    +  int core_offset =
    +      avg_core * coreId + (coreId <= rem_core ? coreId : rem_core);
    +  input_offset = cluster_offset + core_offset;
    +
    +  max_seg_pad = NMS_DOWN(limit, NMS_SIZE);
    +
    +  // core 0 of each cluster calculate the max score index
    +  int max_index_len_core = avg_cluster + (clusterId < rem_cluster);
    +  repeat = max_index_len_core / max_seg_pad;
    +  remain = max_index_len_core % max_seg_pad;
    +  remain_pad = NMS_UP(remain, NMS_SIZE);
    +  // if datatype is fp16, we should cvt to fp32 when compute iou
    +  max_seg_iou_compute =
    +      NMS_DOWN(max_seg_pad / (sizeof(float) / input_dwidth), NMS_SIZE);
    +  repeat_iou_compute = len_core / max_seg_iou_compute;
    +  remain_iou_compute = len_core % max_seg_iou_compute;
    +  remain_pad_iou_compute = NMS_UP(remain_iou_compute, NMS_SIZE);
    +}
    +
    +template 
    +__mlu_func__ void findGlobalMaxBox(IN_DT *max_box, IN_DT *sram,
    +                                   IN_DT *inter_x1) {
    +  // copy all partial max to the sram of cluster 0
    +  if (clusterId != 0) {
    +    __memcpy(sram + REDUCE_NUM * clusterId, sram, REDUCE_NUM * sizeof(IN_DT),
    +             SRAM2SRAM, 0);
    +  }
    +  __sync_all();
    +
    +  // reduce between clusters to get the global max box
    +  if (clusterId == 0) {
    +    if (coreId == 0) {
    +      __bang_write_zero(inter_x1, NMS_SIZE);
    +      __memcpy(inter_x1, sram, sizeof(IN_DT), SRAM2NRAM, sizeof(IN_DT),
    +               REDUCE_NUM * sizeof(IN_DT), clusterDim - 1);
    +      __bang_max(max_box, inter_x1, NMS_SIZE);
    +      int max_cluster = (sizeof(IN_DT) == sizeof(half))
    +                            ? ((uint16_t *)max_box)[1]
    +                            : ((uint32_t *)max_box)[1];
    +      __memcpy(max_box, sram + max_cluster * REDUCE_NUM,
    +               REDUCE_NUM * sizeof(IN_DT), SRAM2NRAM);
    +      __memcpy(sram, max_box, REDUCE_NUM * sizeof(IN_DT), NRAM2SRAM);
    +    }
    +    __sync_cluster();
    +    if (coreId == 0x80 && clusterDim > 1) {
    +      // broadcast global max box to each cluster's sram
    +      for (int cluster_idx = 1; cluster_idx < clusterDim; ++cluster_idx) {
    +        __memcpy(sram, sram, REDUCE_NUM * sizeof(IN_DT), SRAM2SRAM,
    +                 cluster_idx);
    +      }
    +    }
    +    __sync_cluster();
    +  }
    +  __sync_all();
    +
    +  // copy the global max box to max_box
    +  __memcpy(max_box, sram, REDUCE_NUM * sizeof(IN_DT), SRAM2NRAM);
    +}
    +
    +template 
    +__mlu_func__ void findCoreMaxBox(
    +    IN_DT *input_score_ptr, IN_DT *score, IN_DT *inter_x1, IN_DT *max_box,
    +    const IN_DT *input_x1_ptr, const IN_DT *input_y1_ptr,
    +    const IN_DT *input_x2_ptr, const IN_DT *input_y2_ptr,
    +    const mluMemcpyDirection_t load_dir, const int input_offset,
    +    const int repeat, const int remain, const int remain_pad,
    +    const int max_seg_pad, int &max_index) {
    +  if (coreId != 0x80) {
    +    for (int i = 0; i <= repeat; i++) {
    +      if (i == repeat && remain == 0) {
    +        break;
    +      }
    +      int seg_len = 0;  // the length every nms compute
    +      int cpy_len = 0;  // the length every nms memcpy
    +      i == repeat ? seg_len = remain_pad : seg_len = max_seg_pad;
    +      i == repeat ? cpy_len = remain : cpy_len = max_seg_pad;
    +      /******NMS LOAD START******/
    +      __bang_write_zero(score, seg_len);
    +      __memcpy(score, input_score_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * sizeof(IN_DT), load_dir, cpy_len * sizeof(IN_DT),
    +               cpy_len * sizeof(IN_DT), 0);
    +
    +      /******NMS LOAD END******/
    +
    +      __bang_max(inter_x1, score, seg_len);
    +      if (inter_x1[0] > max_box[0]) {
    +        max_box[0] = inter_x1[0];
    +        if (sizeof(IN_DT) == sizeof(half)) {
    +          max_index = ((uint16_t *)inter_x1)[1] + input_offset +
    +                      i * max_seg_pad;  // offset start from head of input_data
    +        } else if (sizeof(IN_DT) == sizeof(float)) {
    +          max_index = ((uint32_t *)inter_x1)[1] + input_offset +
    +                      i * max_seg_pad;  // offset start from head of input_data
    +        }
    +      }
    +    }  // for repeat
    +    // the max box's x1, y1, x2, y2 on every core
    +    max_box[1] = input_x1_ptr[max_index];
    +    max_box[2] = input_y1_ptr[max_index];
    +    max_box[3] = input_x2_ptr[max_index];
    +    max_box[4] = input_y2_ptr[max_index];
    +    ((uint32_t *)(max_box + 5))[0] = max_index;
    +  }
    +}
    +
    +template 
    +__mlu_func__ void findClusterMaxBox(IN_DT *sram, IN_DT *max_box,
    +                                    IN_DT *inter_x1, IN_DT *input_data_score,
    +                                    const int core_limit) {
    +  // find the max with sram
    +  // copy every core's box info to sram, form: score---x1---y1---x2---y2---
    +  __memcpy(sram + REDUCE_NUM * coreId, max_box, REDUCE_NUM * sizeof(IN_DT),
    +           NRAM2SRAM);  // int32_t datatype
    +  __sync_cluster();
    +
    +  // copy score from sram to nram and find the max
    +  __bang_write_zero(inter_x1, 64);
    +  __memcpy(inter_x1, sram, sizeof(IN_DT), SRAM2NRAM, sizeof(IN_DT),
    +           REDUCE_NUM * sizeof(IN_DT), coreDim - 1);
    +  __bang_max(max_box, inter_x1, 64);
    +  int max_core = sizeof(IN_DT) == sizeof(half) ? ((uint16_t *)max_box)[1]
    +                                               : ((uint32_t *)max_box)[1];
    +  // copy the max box to max_box
    +  __memcpy(max_box, sram + max_core * REDUCE_NUM, REDUCE_NUM * sizeof(IN_DT),
    +           SRAM2NRAM);
    +}
    +
    +/*****************************************************************************/
    +/*******************************CALCULATE MAX AREA****************************/
    +/*****************************************************************************/
    +
    +template 
    +__mlu_func__ void calMaxArea(IN_DT *max_box, const int algo, float offset,
    +                             float &max_area) {
    +  if (algo == 0 || offset == 0.0) {
    +    max_area = ((float)max_box[3] - (float)max_box[1]) *
    +               ((float)max_box[4] - (float)max_box[2]);
    +  } else {
    +    max_area = ((float)max_box[3] - (float)max_box[1] + offset) *
    +               ((float)max_box[4] - (float)max_box[2] + offset);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void calMaxArea(IN_DT *max_box, const int algo, float offset,
    +                             float &max_area, float &max_box_x1,
    +                             float &max_box_y1, float &max_box_x2,
    +                             float &max_box_y2) {
    +  // the case of random inf will break the requirement of x1<=x2, y1<=y2
    +  // so exchange it if it happens.
    +  max_box_x1 = float(max_box[1]);
    +  max_box_x2 = float(max_box[3]);
    +  if (max_box[1] > max_box[3]) {
    +    max_box_x1 = float(max_box[3]);
    +    max_box_x2 = float(max_box[1]);
    +  }
    +  max_box_y1 = float(max_box[2]);
    +  max_box_y2 = float(max_box[4]);
    +  if (max_box[2] > max_box[4]) {
    +    max_box_y1 = float(max_box[4]);
    +    max_box_y2 = float(max_box[2]);
    +  }
    +  if (algo == 0 || offset == 0.0) {
    +    max_area = (max_box_x2 - max_box_x1) * (max_box_y2 - max_box_y1);
    +  } else {
    +    max_area =
    +        (max_box_x2 - max_box_x1 + offset) * (max_box_y2 - max_box_y1 + offset);
    +  }
    +}
    +
    +/***********************************************************************/
    +/*******************************STORE RESULT****************************/
    +/***********************************************************************/
    +template 
    +__mlu_func__ void storeResult(IN_DT *max_box, OUT_DT *nram_save,
    +                              OUT_DT *&output_dram, const int keep,
    +                              const int nram_save_limit_count,
    +                              const int max_output_size,
    +                              const float thresh_score, const int output_mode,
    +                              int &nram_save_count, uint32_t &output_box_num) {
    +  /******NMS STORE START******/
    +  // store to nram
    +  if (float(max_box[0]) > thresh_score) {
    +    OUT_DT *save_ptr;
    +    int save_offset = 0;
    +    int save_str_num = 0;
    +    save_ptr = nram_save;
    +    save_offset = nram_save_count;
    +    save_str_num = nram_save_limit_count;
    +    if (clusterId == 0 && coreId == 0) {
    +      if (output_mode == 0) {  // index1, index2, ...
    +        save_ptr[save_offset] = ((uint32_t *)(max_box + INFO_NUM))[0];
    +      } else if (output_mode == 1) {  // score, x1, y1, x2, y2
    +        __memcpy(save_ptr + save_offset * INFO_NUM, max_box,
    +                 INFO_NUM * sizeof(IN_DT), NRAM2NRAM, INFO_NUM * sizeof(IN_DT),
    +                 INFO_NUM * sizeof(IN_DT), 0);
    +      } else if (output_mode == 2) {  // score---, x1---, y1---, x2---, y2---
    +        __memcpy(save_ptr + save_offset, max_box, 1 * sizeof(IN_DT), NRAM2NRAM,
    +                 save_str_num * sizeof(IN_DT), 1 * sizeof(IN_DT), 4);
    +      }
    +    }
    +    nram_save_count++;
    +    output_box_num++;
    +  }
    +
    +  // store to sram/gdram
    +  if (output_box_num != 0) {
    +    if ((nram_save_count == nram_save_limit_count) ||
    +        (float(max_box[0]) <= thresh_score) || keep == max_output_size - 1) {
    +      if (nram_save_count != 0) {
    +        if (clusterId == 0 && coreId == 0) {
    +          if (output_mode == 0) {  // index1, index2, ...
    +            pvLock();
    +            __memcpy(output_dram, nram_save, nram_save_count * sizeof(uint32_t),
    +                     NRAM2GDRAM);
    +            pvUnlock();
    +            output_dram += nram_save_count;
    +          } else if (output_mode == 1) {  // score, x1, y1, x2, y2
    +            pvLock();
    +            __memcpy(output_dram, nram_save,
    +                     nram_save_count * INFO_NUM * sizeof(IN_DT), NRAM2GDRAM);
    +            pvUnlock();
    +            output_dram += nram_save_count * INFO_NUM;
    +          } else if (output_mode ==
    +                     2) {  // score---, x1---, y1---, x2---, y2---
    +            pvLock();
    +            __memcpy(output_dram, nram_save, nram_save_count * sizeof(IN_DT),
    +                     NRAM2GDRAM, max_output_size * sizeof(IN_DT),
    +                     nram_save_limit_count * sizeof(IN_DT), 4);
    +            pvUnlock();
    +            output_dram += nram_save_count;
    +          }
    +          nram_save_count = 0;
    +        }
    +      }
    +    }  // if move data nram->sram/gdram
    +  }    // if dst
    +}
    +
    +template 
    +__mlu_func__ void scoreUpdate(
    +    IN_DT *input_score_ptr, const mluMemcpyDirection_t load_dir,
    +    const mluMemcpyDirection_t store_dir, const IN_DT *input_x1_ptr,
    +    const IN_DT *input_y1_ptr, const IN_DT *input_x2_ptr,
    +    const IN_DT *input_y2_ptr, IN_DT *x1, IN_DT *y1, IN_DT *x2, IN_DT *y2,
    +    IN_DT *score, IN_DT *inter_x1, IN_DT *inter_y1, IN_DT *inter_x2,
    +    IN_DT *inter_y2, IN_DT *max_box, const float max_box_x1,
    +    const float max_box_y1, const float max_box_x2, const float max_box_y2,
    +    OUT_DT *nram_save, int repeat_iou_compute, int remain_iou_compute,
    +    int remain_pad_iou_compute, int max_seg_iou_compute, int max_seg_pad,
    +    const float thresh_iou, const float div_thresh_iou, const int input_offset,
    +    const float offset, const float max_area, const int input_num_boxes,
    +    const int algo) {
    +  for (int i = 0; i <= repeat_iou_compute; i++) {
    +    if (i == repeat_iou_compute && remain_iou_compute == 0) {
    +      break;
    +    }
    +    int seg_len = (i == repeat_iou_compute) ? remain_pad_iou_compute
    +                                            : max_seg_iou_compute;
    +    int cpy_len =
    +        (i == repeat_iou_compute) ? remain_iou_compute : max_seg_iou_compute;
    +    /******NMS LOAD START******/
    +    int dt_offset = 0;
    +    if (sizeof(IN_DT) == sizeof(float)) {
    +      __memcpy(score, input_score_ptr + input_offset + i * max_seg_pad,
    +               cpy_len * sizeof(IN_DT), load_dir, cpy_len * sizeof(IN_DT),
    +               cpy_len * sizeof(IN_DT), 0);
    +      dt_offset = 0;
    +    } else if (sizeof(IN_DT) == sizeof(half)) {
    +      __memcpy(x1, input_score_ptr + input_offset + i * max_seg_iou_compute,
    +               cpy_len * sizeof(IN_DT), load_dir, cpy_len * sizeof(IN_DT),
    +               cpy_len * sizeof(IN_DT), 0);
    +      __bang_half2float((float *)score, (half *)x1, seg_len);
    +      dt_offset = max_seg_iou_compute;
    +    }
    +#if __BANG_ARCH__ >= 300
    +    __memcpy(inter_x1 + dt_offset,
    +             input_x1_ptr + input_offset + i * max_seg_iou_compute,
    +             cpy_len * sizeof(IN_DT), load_dir, max_seg_pad * sizeof(IN_DT),
    +             input_num_boxes * sizeof(IN_DT), 3);
    +
    +    if (sizeof(IN_DT) == sizeof(half)) {
    +      __bang_half2float((float *)inter_x1,
    +                        (half *)inter_x1 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)inter_y1,
    +                        (half *)inter_y1 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)inter_x2,
    +                        (half *)inter_x2 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)inter_y2,
    +                        (half *)inter_y2 + max_seg_iou_compute, seg_len);
    +    }
    +    // box transfer
    +    __bang_minequal((float *)x1, (float *)inter_x1, (float *)inter_x2, seg_len);
    +    __bang_maxequal((float *)x2, (float *)inter_x1, (float *)inter_x2, seg_len);
    +    __bang_minequal((float *)y1, (float *)inter_y1, (float *)inter_y2, seg_len);
    +    __bang_maxequal((float *)y2, (float *)inter_y1, (float *)inter_y2, seg_len);
    +    // 1、 compute IOU
    +    // get the area_I
    +    __bang_maxeq_scalar((float *)inter_x1, (float *)x1, max_box_x1,
    +                        seg_len);  // inter_x1
    +    __bang_mineq_scalar((float *)inter_x2, (float *)x2, max_box_x2,
    +                        seg_len);  // inter_x2
    +    __bang_sub((float *)inter_x1, (float *)inter_x2, (float *)inter_x1,
    +               seg_len);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_add_scalar((float *)inter_x1, (float *)inter_x1, offset, seg_len);
    +    }
    +    computeReluN((float *)inter_x1, (float *)inter_x1, NULL,
    +                 seg_len);  // inter_w
    +    __bang_maxeq_scalar((float *)inter_y1, (float *)y1, float(max_box_y1),
    +                        seg_len);  // inter_y1
    +    __bang_mineq_scalar((float *)inter_y2, (float *)y2, float(max_box_y2),
    +                        seg_len);  // inter_y2
    +    __bang_sub((float *)inter_y1, (float *)inter_y2, (float *)inter_y1,
    +               seg_len);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_add_scalar((float *)inter_y1, (float *)inter_y1, offset, seg_len);
    +    }
    +    computeReluN((float *)inter_y1, (float *)inter_y1, NULL,
    +                 seg_len);  // inter_h
    +    __bang_mul((float *)inter_x1, (float *)inter_x1, (float *)inter_y1,
    +               seg_len);  // area_I
    +    // get the area of input_box: area = (x2 - x1) * (y2 - y1);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_fusion(FUSION_FSA, (float *)inter_y1, (float *)x2, (float *)x1,
    +                    offset, seg_len, seg_len);
    +      __bang_fusion(FUSION_FSA, (float *)inter_y2, (float *)y2, (float *)y1,
    +                    offset, seg_len, seg_len);
    +      __bang_mul((float *)inter_x2, (float *)inter_y1, (float *)inter_y2,
    +                 seg_len);  // area
    +    } else {
    +      __bang_sub((float *)inter_y1, (float *)x2, (float *)x1, seg_len);
    +      __bang_fusion(FUSION_FSM, (float *)inter_x2, (float *)y2, (float *)y1,
    +                    (float *)inter_y1, seg_len, seg_len);
    +    }
    +    // get the area_U: area + max_area - area_I
    +    __bang_fusion(FUSION_FAS, (float *)inter_x2, (float *)inter_x2, max_area,
    +                  (float *)inter_x1, seg_len, seg_len);
    +    // 2、 select the box
    +    // if IOU greater than thres, set the score to zero, abort it: area_U >
    +    // area_I * (1 / thresh)?
    +    if (thresh_iou > 0.0) {
    +      __bang_mul_scalar((float *)inter_x1, (float *)inter_x1, div_thresh_iou,
    +                        seg_len);
    +    } else {
    +      __bang_mul_scalar((float *)inter_x2, (float *)inter_x2, thresh_iou,
    +                        seg_len);
    +    }
    +    // process for nan
    +    __bang_lt((float *)inter_x1, (float *)inter_x2, (float *)inter_x1, seg_len);
    +    __bang_not((float *)inter_x1, (float *)inter_x1, seg_len);
    +    __bang_mul((float *)score, (float *)score, (float *)inter_x1, seg_len);
    +/******NMS COMPUTE END******/
    +#else
    +    __memcpy(x1 + dt_offset,
    +             input_x1_ptr + input_offset + i * max_seg_iou_compute,
    +             cpy_len * sizeof(IN_DT), load_dir, max_seg_pad * sizeof(IN_DT),
    +             input_num_boxes * sizeof(IN_DT), 3);
    +    if (sizeof(IN_DT) == sizeof(half)) {
    +      __bang_half2float((float *)x1, (half *)x1 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)y1, (half *)y1 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)x2, (half *)x2 + max_seg_iou_compute, seg_len);
    +      __bang_half2float((float *)y2, (half *)y2 + max_seg_iou_compute, seg_len);
    +    }
    +    // 1、 compute IOU
    +    // get the area_I
    +    __bang_write_value((float *)inter_y1, seg_len,
    +                       float(max_box[1]));  // max_x1
    +    __bang_maxequal((float *)inter_x1, (float *)x1, (float *)inter_y1,
    +                    seg_len);  // inter_x1
    +    __bang_write_value((float *)inter_y2, seg_len,
    +                       float(max_box[3]));  // max_x2
    +    __bang_minequal((float *)inter_x2, (float *)x2, (float *)inter_y2,
    +                    seg_len);  // inter_x2
    +    __bang_sub((float *)inter_x1, (float *)inter_x2, (float *)inter_x1,
    +               seg_len);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_add_scalar((float *)inter_x1, (float *)inter_x1, offset, seg_len);
    +    }
    +    computeReluN((float *)inter_x1, (float *)inter_x1, NULL,
    +                 seg_len);  // inter_w
    +    __bang_write_value((float *)inter_x2, seg_len,
    +                       float(max_box[2]));  // max_y1
    +    __bang_maxequal((float *)inter_y1, (float *)y1, (float *)inter_x2,
    +                    seg_len);  // inter_y1
    +    __bang_write_value((float *)inter_x2, seg_len,
    +                       float(max_box[4]));  // max_y2
    +    __bang_minequal((float *)inter_y2, (float *)y2, (float *)inter_x2,
    +                    seg_len);  // inter_y2
    +    __bang_sub((float *)inter_y1, (float *)inter_y2, (float *)inter_y1,
    +               seg_len);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_add_scalar((float *)inter_y1, (float *)inter_y1, offset, seg_len);
    +    }
    +    computeReluN((float *)inter_y1, (float *)inter_y1, NULL,
    +                 seg_len);  // inter_h
    +    __bang_mul((float *)inter_x1, (float *)inter_x1, (float *)inter_y1,
    +               seg_len);  // area_I
    +    // get the area of input_box: area = (x2 - x1) * (y2 - y1);
    +    __bang_sub((float *)inter_y1, (float *)x2, (float *)x1, seg_len);
    +    __bang_sub((float *)inter_y2, (float *)y2, (float *)y1, seg_len);
    +    if (algo == 1 && offset != 0.0) {
    +      __bang_add_scalar((float *)inter_y1, (float *)inter_y1, offset, seg_len);
    +      __bang_add_scalar((float *)inter_y2, (float *)inter_y2, offset, seg_len);
    +    }
    +    __bang_mul((float *)inter_x2, (float *)inter_y1, (float *)inter_y2,
    +               seg_len);  // area
    +    // get the area_U: area + max_area - area_I
    +    __bang_add_scalar((float *)inter_x2, (float *)inter_x2, float(max_area),
    +                      seg_len);
    +    __bang_sub((float *)inter_x2, (float *)inter_x2, (float *)inter_x1,
    +               seg_len);  // area_U
    +    // 2、 select the box
    +    // if IOU greater than thresh, set the score to zero, abort it: area_U >
    +    // area_I * (1 / thresh)?
    +    if (thresh_iou > 0.0) {
    +      __bang_mul_scalar((float *)inter_x1, (float *)inter_x1, div_thresh_iou,
    +                        seg_len);
    +    } else {
    +      __bang_mul_scalar((float *)inter_x2, (float *)inter_x2, thresh_iou,
    +                        seg_len);
    +    }
    +    __bang_ge((float *)inter_x1, (float *)inter_x2, (float *)inter_x1, seg_len);
    +    __bang_mul((float *)score, (float *)score, (float *)inter_x1, seg_len);
    +/******NMS COMPUTE END******/
    +#endif
    +    // update the score
    +    if (sizeof(IN_DT) == sizeof(half)) {
    +      convertFloat2half((half *)score, (float *)score, seg_len);
    +    }
    +    pvLock();
    +    __memcpy(input_score_ptr + input_offset + i * max_seg_iou_compute, score,
    +             cpy_len * sizeof(IN_DT), store_dir, cpy_len * sizeof(IN_DT),
    +             cpy_len * sizeof(IN_DT), 0);
    +    pvUnlock();
    +  }
    +}
    +
    +#endif  // NMS_UTILS_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_mlu_kernel.mlu
    new file mode 100644
    index 000000000..055ee4f4d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_mlu_kernel.mlu
    @@ -0,0 +1,615 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +#include "psamask_utils.hpp"
    +
    +#define COMPUTE_COUNT_ALIGN 64
    +
    +__nram__ char buf[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void swap(T &a, T &b) {
    +  T tmp = a;
    +  a = b;
    +  b = tmp;
    +}
    +
    +template 
    +__mlu_func__ void storeDataFromNramToDram(T *dst, const T *src,
    +                                          const PositionInCore &position,
    +                                          const Shape &shape_full) {
    +  int n_offset = shape_full.h * shape_full.w * shape_full.c;
    +  int h_offset = shape_full.w * shape_full.c;
    +  int w_offset = shape_full.c;
    +  int n_seg = position.n_end - position.n_start;
    +  int h_seg = position.h_end - position.h_start;
    +  int w_seg = position.w_end - position.w_start;
    +  int size = h_seg * w_seg * shape_full.c;
    +
    +  __memcpy(dst + position.n_start * n_offset + position.h_start * h_offset +
    +               position.w_start * w_offset,
    +           src, size * sizeof(T), NRAM2GDRAM, n_offset * sizeof(T),
    +           size * sizeof(T), n_seg - 1);
    +}
    +
    +template 
    +__mlu_func__ void loadDataFromDramToNram(T *dst, const T *src,
    +                                         const PositionInCore &position,
    +                                         const Shape &shape_full) {
    +  int n_offset = shape_full.h * shape_full.w * shape_full.c;
    +  int h_offset = shape_full.w * shape_full.c;
    +  int w_offset = shape_full.c;
    +  int n_seg = position.n_end - position.n_start;
    +  int h_seg = position.h_end - position.h_start;
    +  int w_seg = position.w_end - position.w_start;
    +  int size = h_seg * w_seg * shape_full.c;
    +
    +  __memcpy(dst, src + position.n_start * n_offset +
    +                    position.h_start * h_offset + position.w_start * w_offset,
    +           size * sizeof(T), GDRAM2NRAM, size * sizeof(T), n_offset * sizeof(T),
    +           n_seg - 1);
    +}
    +
    +// transpose the data from A*B*C*(D*E) to A*D*E*(B*C)
    +template 
    +__mlu_func__ void transposeData(T *dst, T *src, const Shape &shape_seg) {
    +  int align_c = CEIL_ALIGN(shape_seg.c, COMPUTE_COUNT_ALIGN / sizeof(T));
    +  int align_hw =
    +      CEIL_ALIGN(shape_seg.h * shape_seg.w, COMPUTE_COUNT_ALIGN / sizeof(T));
    +  for (int i = 0; i < shape_seg.n; ++i) {
    +    __bang_transpose(dst, src, align_hw, align_c);
    +    dst += align_hw * align_c;
    +    src += align_hw * align_c;
    +  }
    +}
    +
    +template 
    +__mlu_func__ void psamaskCollectForward(
    +    const T *x_dram, T *y_dram, const PositionInCore &position,
    +    const Shape &x_full, const Shape &y_full, const Shape &shape_seg,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask) {
    +  T *x_nram = (T *)buf;
    +  T *y_nram =
    +      x_nram + CEIL_ALIGN(shape_seg.n * shape_seg.h * shape_seg.w * x_full.c,
    +                          COMPUTE_COUNT_ALIGN / sizeof(T));
    +  loadDataFromDramToNram(x_nram, x_dram, position, x_full);
    +
    +  // fill zeros to output
    +  int elem_count =
    +      CEIL_ALIGN(shape_seg.n * shape_seg.h * shape_seg.w * y_full.c,
    +                 NFU_ALIGN_SIZE / sizeof(T));
    +  __bang_write_value(y_nram, elem_count, (T)0);
    +
    +  int y_n_offset = shape_seg.h * shape_seg.w * shape_seg.c;
    +  int y_h_offset = shape_seg.w * shape_seg.c;
    +  int y_w_offset = shape_seg.c;
    +  int x_n_offset = shape_seg.h * shape_seg.w * x_full.c;
    +  int y_c_offset = 1;
    +  int x_h_offset = shape_seg.w * x_full.c;
    +  int x_w_offset = x_full.c;
    +  int x_c_offset = 1;
    +  int x_start = 0;
    +  int y_start = 0;
    +  for (int nidx = 0; nidx < shape_seg.n; ++nidx) {
    +    for (int hidx = 0; hidx < shape_seg.h; ++hidx) {
    +      for (int widx = 0; widx < shape_seg.w; ++widx) {
    +        int h_abs = hidx + position.h_start;
    +        int w_abs = widx + position.w_start;
    +        int y_offset = y_start;
    +        int x_offset = x_start;
    +        y_offset += hidx * y_h_offset + widx * y_w_offset;
    +        x_offset += hidx * x_h_offset + widx * x_w_offset;
    +
    +        const int hstart = half_h_mask - h_abs > 0 ? half_h_mask - h_abs : 0;
    +        const int hend = x_full.h + half_h_mask - h_abs < h_mask
    +                             ? x_full.h + half_h_mask - h_abs
    +                             : h_mask;
    +        const int wstart = half_w_mask - w_abs > 0 ? half_w_mask - w_abs : 0;
    +        const int wend = x_full.w + half_w_mask - w_abs < w_mask
    +                             ? x_full.w + half_w_mask - w_abs
    +                             : w_mask;
    +        // (h,                      w                  ) with mask-indexed
    +        // (h + hidx - half_h_mask, w + widx - half_w_mask) with feature-indexed
    +        y_offset += ((hstart + h_abs - half_h_mask) * x_full.w + wstart +
    +                     w_abs - half_w_mask) *
    +                    y_c_offset;
    +        x_offset += (hstart * w_mask + wstart) * x_c_offset;
    +        int count = wend - wstart;
    +        __memcpy(y_nram + y_offset, x_nram + x_offset, count * sizeof(T),
    +                 NRAM2NRAM, y_c_offset * x_full.w * sizeof(T),
    +                 x_c_offset * w_mask * sizeof(T), hend - hstart - 1);
    +      }
    +    }
    +    y_start += y_n_offset;
    +    x_start += x_n_offset;
    +  }
    +  storeDataFromNramToDram(y_dram, y_nram, position, y_full);
    +}
    +
    +template 
    +__mlu_func__ void psamaskDistributeForward(
    +    const T *x_dram, T *y_dram, const PositionInCore &position,
    +    const Shape &x_full, const Shape &y_full, const Shape &shape_seg,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask) {
    +  T *x_nram = (T *)buf;
    +  T *y_nram_temp =
    +      x_nram + CEIL_ALIGN(shape_seg.n * shape_seg.h * shape_seg.w * x_full.c,
    +                          COMPUTE_COUNT_ALIGN / sizeof(T));
    +  loadDataFromDramToNram(x_nram, x_dram, position, x_full);
    +
    +  // fill zeros to output
    +  int align_c = CEIL_ALIGN(y_full.c, COMPUTE_COUNT_ALIGN / sizeof(T));
    +  int align_hw =
    +      CEIL_ALIGN(shape_seg.h * shape_seg.w, COMPUTE_COUNT_ALIGN / sizeof(T));
    +  int elem_count =
    +      CEIL_ALIGN(shape_seg.n * align_c * align_hw, NFU_ALIGN_SIZE / sizeof(T));
    +  __bang_write_value(y_nram_temp, elem_count, (T)0);
    +
    +  int y_n_offset = align_hw * align_c;
    +  int y_h_offset = shape_seg.w * align_c;
    +  int y_w_offset = align_c;
    +  int y_c_offset = 1;
    +  int x_n_offset = shape_seg.h * shape_seg.w * x_full.c;
    +  int x_h_offset = shape_seg.w * x_full.c;
    +  int x_w_offset = x_full.c;
    +  int x_c_offset = 1;
    +  int h_feature = y_full.h;
    +  int w_feature = y_full.w;
    +
    +  int y_start = 0;
    +  int x_start = 0;
    +  for (int nidx = 0; nidx < shape_seg.n; ++nidx) {
    +    for (int hidx = 0; hidx < shape_seg.h; ++hidx) {
    +      for (int widx = 0; widx < shape_seg.w; ++widx) {
    +        int h_abs = hidx + position.h_start;
    +        int w_abs = widx + position.w_start;
    +        int y_offset = y_start;
    +        int x_offset = x_start;
    +        y_offset += hidx * y_h_offset + widx * y_w_offset;
    +        x_offset += hidx * x_h_offset + widx * x_w_offset;
    +        const int hstart = half_h_mask - h_abs > 0 ? half_h_mask - h_abs : 0;
    +        const int hend = h_feature + half_h_mask - h_abs < h_mask
    +                             ? h_feature + half_h_mask - h_abs
    +                             : h_mask;
    +        const int wstart = half_w_mask - w_abs > 0 ? half_w_mask - w_abs : 0;
    +        const int wend = w_feature + half_w_mask - w_abs < w_mask
    +                             ? w_feature + half_w_mask - w_abs
    +                             : w_mask;
    +        // (h,                      w                     ) with mask-indexed
    +        // (h + hidx - half_h_mask, w + widx - half_w_mask) with feature-indexed
    +        y_offset += ((hstart + h_abs - half_h_mask) * x_full.w + wstart +
    +                     w_abs - half_w_mask) *
    +                    y_c_offset;
    +        x_offset += (hstart * w_mask + wstart) * x_c_offset;
    +        int count = wend - wstart;
    +        __memcpy(y_nram_temp + y_offset, x_nram + x_offset, count * sizeof(T),
    +                 NRAM2NRAM, y_c_offset * w_feature * sizeof(T),
    +                 x_c_offset * w_mask * sizeof(T), hend - hstart - 1);
    +      }
    +    }
    +    y_start += y_n_offset;
    +    x_start += x_n_offset;
    +  }
    +  // transpose y
    +  T *y_nram = y_nram_temp + shape_seg.n * align_hw * align_c;
    +  Shape y_seg{shape_seg.n, shape_seg.h, shape_seg.w, y_full.c};
    +  transposeData(y_nram, y_nram_temp, y_seg);
    +  swap(align_c, align_hw);
    +  // store y from nram to dram
    +  int y_n_offset_full = y_full.h * y_full.w * y_full.c;
    +  int y_w_offset_full = y_full.c;
    +  int y_c_offset_full = 1;
    +
    +  int y_dram_start =
    +      position.n_start * y_n_offset_full +
    +      (position.h_start * y_full.w + position.w_start) * y_c_offset_full;
    +  int y_nram_start = 0;
    +  for (int nidx = 0; nidx < shape_seg.n; ++nidx) {
    +    int y_dram_offset = y_dram_start + nidx * y_n_offset_full;
    +    int y_nram_offset = y_nram_start + nidx * align_hw * align_c;
    +    __memcpy(y_dram + y_dram_offset, y_nram + y_nram_offset,
    +             shape_seg.h * shape_seg.w * sizeof(T), NRAM2GDRAM,
    +             y_w_offset_full * sizeof(T), align_c * sizeof(T),
    +             h_feature * w_feature - 1);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void psamaskCollectBackward(
    +    const T *dy_dram, T *dx_dram, const PositionInCore &position,
    +    const Shape &dy_full, const Shape &dx_full, const Shape &shape_seg,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask) {
    +  T *dy_nram = (T *)buf;
    +  T *dx_nram =
    +      dy_nram + CEIL_ALIGN(shape_seg.n * shape_seg.h * shape_seg.w * dy_full.c,
    +                           COMPUTE_COUNT_ALIGN / sizeof(T));
    +  loadDataFromDramToNram(dy_nram, dy_dram, position, dy_full);
    +
    +  // fill zeros to output
    +  int elem_count =
    +      CEIL_ALIGN(shape_seg.n * shape_seg.h * shape_seg.w * shape_seg.c,
    +                 NFU_ALIGN_SIZE / sizeof(T));
    +  __bang_write_value(dx_nram, elem_count, (T)0);
    +
    +  int dy_n_offset = shape_seg.h * shape_seg.w * dy_full.c;
    +  int dy_h_offset = shape_seg.w * dy_full.c;
    +  int dy_w_offset = dy_full.c;
    +  int dy_c_offset = 1;
    +  int dx_n_offset = shape_seg.h * shape_seg.w * dx_full.c;
    +  int dx_h_offset = shape_seg.w * dx_full.c;
    +  int dx_w_offset = dx_full.c;
    +  int dx_c_offset = 1;
    +  int h_feature = dy_full.h;
    +  int w_feature = dy_full.w;
    +
    +  int dy_start = 0;
    +  int dx_start = 0;
    +  for (int nidx = 0; nidx < shape_seg.n; ++nidx) {
    +    for (int hidx = 0; hidx < shape_seg.h; ++hidx) {
    +      for (int widx = 0; widx < shape_seg.w; ++widx) {
    +        int h_abs = hidx + position.h_start;
    +        int w_abs = widx + position.w_start;
    +        int dy_offset = dy_start;
    +        int dx_offset = dx_start;
    +        dy_offset += hidx * dy_h_offset + widx * dy_w_offset;
    +        dx_offset += hidx * dx_h_offset + widx * dx_w_offset;
    +
    +        const int hstart = half_h_mask - h_abs > 0 ? half_h_mask - h_abs : 0;
    +        const int hend = h_feature + half_h_mask - h_abs < h_mask
    +                             ? h_feature + half_h_mask - h_abs
    +                             : h_mask;
    +        const int wstart = half_w_mask - w_abs > 0 ? half_w_mask - w_abs : 0;
    +        const int wend = w_feature + half_w_mask - w_abs < w_mask
    +                             ? w_feature + half_w_mask - w_abs
    +                             : w_mask;
    +        // (h,                       w                      ) with mask-indexed
    +        // (h + h_abs - half_h_mask, w + w_abs - half_w_mask) with
    +        // feature-indexed
    +        dy_offset += ((hstart + h_abs - half_h_mask) * w_feature + wstart +
    +                      w_abs - half_w_mask) *
    +                     dy_c_offset;
    +        dx_offset += (hstart * w_mask + wstart) * dx_c_offset;
    +        int count = wend - wstart;
    +        __memcpy(dx_nram + dx_offset, dy_nram + dy_offset, count * sizeof(T),
    +                 NRAM2NRAM, dx_c_offset * w_mask * sizeof(T),
    +                 dy_c_offset * w_feature * sizeof(T), hend - hstart - 1);
    +      }
    +    }
    +    dy_start += dy_n_offset;
    +    dx_start += dx_n_offset;
    +  }
    +  storeDataFromNramToDram(dx_dram, dx_nram, position, dx_full);
    +}
    +
    +template 
    +__mlu_func__ void psamaskDistributeBackward(
    +    const T *dy_dram, T *dx_dram, const PositionInCore &position,
    +    const Shape &dy_full, const Shape &dx_full, const Shape &shape_seg,
    +    const int h_mask, const int w_mask, const int half_h_mask,
    +    const int half_w_mask) {
    +  // load dy from dram to nram
    +  T *dy_nram_temp = (T *)buf;
    +  int dy_n_offset_full = dy_full.h * dy_full.w * dy_full.c;
    +  int dy_c_offset_full = 1;
    +  int h_feature = dy_full.h;
    +  int w_feature = dy_full.w;
    +  int align_c =
    +      CEIL_ALIGN(shape_seg.h * shape_seg.w, COMPUTE_COUNT_ALIGN / sizeof(T));
    +  int align_hw =
    +      CEIL_ALIGN(h_feature * w_feature, COMPUTE_COUNT_ALIGN / sizeof(T));
    +
    +  int dy_dram_start =
    +      position.n_start * dy_n_offset_full +
    +      (position.h_start * w_feature + position.w_start) * dy_c_offset_full;
    +  int dy_nram_start = 0;
    +  for (int i = 0; i < shape_seg.n; ++i) {
    +    int dy_nram_offset = dy_nram_start + i * (align_hw * align_c);
    +    int dy_dram_offset = dy_dram_start + i * dy_n_offset_full;
    +    __memcpy(dy_nram_temp + dy_nram_offset, dy_dram + dy_dram_offset,
    +             shape_seg.h * shape_seg.w * sizeof(T), GDRAM2NRAM,
    +             align_c * sizeof(T), dy_full.c * sizeof(T),
    +             h_feature * w_feature - 1);
    +  }
    +  T *dy_nram = dy_nram_temp + shape_seg.n * align_hw * align_c;
    +  Shape dy_seg{shape_seg.n, h_feature, w_feature, shape_seg.h * shape_seg.w};
    +  transposeData(dy_nram, dy_nram_temp, dy_seg);
    +  swap(align_c, align_hw);
    +
    +  // fill zeros to dx
    +  T *dx_nram = dy_nram + shape_seg.n * align_hw * align_c;
    +  int dx_size = shape_seg.n * shape_seg.h * shape_seg.w * dx_full.c;
    +  __bang_write_value(dx_nram, CEIL_ALIGN(dx_size, NFU_ALIGN_SIZE / sizeof(T)),
    +                     (T)0);
    +
    +  int dy_n_offset_seg = align_hw * align_c;
    +  int dy_h_offset_seg = shape_seg.w * align_c;
    +  int dy_w_offset_seg = align_c;
    +  int dy_c_offset_seg = 1;
    +  int dx_n_offset_seg = shape_seg.h * shape_seg.w * shape_seg.c;
    +  int dx_h_offset_seg = shape_seg.w * shape_seg.c;
    +  int dx_w_offset_seg = shape_seg.c;
    +  int dx_c_offset_seg = 1;
    +
    +  int dy_start = 0;
    +  int dx_start = 0;
    +  for (int nidx = 0; nidx < shape_seg.n; ++nidx) {
    +    for (int hidx = 0; hidx < shape_seg.h; ++hidx) {
    +      for (int widx = 0; widx < shape_seg.w; ++widx) {
    +        int h_abs = hidx + position.h_start;
    +        int w_abs = widx + position.w_start;
    +        int dy_offset = dy_start;
    +        int dx_offset = dx_start;
    +        dy_offset += hidx * dy_h_offset_seg + widx * dy_w_offset_seg;
    +        dx_offset += hidx * dx_h_offset_seg + widx * dx_w_offset_seg;
    +        const int hstart = half_h_mask - h_abs > 0 ? half_h_mask - h_abs : 0;
    +        const int hend = h_feature + half_h_mask - h_abs < h_mask
    +                             ? h_feature + half_h_mask - h_abs
    +                             : h_mask;
    +        const int wstart = half_w_mask - w_abs > 0 ? half_w_mask - w_abs : 0;
    +        const int wend = w_feature + half_w_mask - w_abs < w_mask
    +                             ? w_feature + half_w_mask - w_abs
    +                             : w_mask;
    +        // (h,                       w                      ) with mask-indexed
    +        // (h + h_abs - half_h_mask, w + w_abs - half_w_mask) with
    +        // feature-indexed
    +        dy_offset += ((hstart + h_abs - half_h_mask) * w_feature + wstart +
    +                      w_abs - half_w_mask) *
    +                     dy_c_offset_seg;
    +        dx_offset += (hstart * w_mask + wstart) * dx_c_offset_seg;
    +        int count = wend - wstart;
    +        __memcpy(dx_nram + dx_offset, dy_nram + dy_offset, count * sizeof(T),
    +                 NRAM2NRAM, w_mask * dx_c_offset_seg * sizeof(T),
    +                 w_feature * dy_c_offset_seg * sizeof(T), hend - hstart - 1);
    +      }
    +    }
    +    dy_start += dy_n_offset_seg;
    +    dx_start += dx_n_offset_seg;
    +  }
    +  storeDataFromNramToDram(dx_dram, dx_nram, position, dx_full);
    +}
    +
    +template 
    +__mlu_func__ void psamaskBase(const T *input_dram, T *output_dram,
    +                              const Shape &input_full, const Shape &output_full,
    +                              LimitParam &limit, const PsamaskType psa_type,
    +                              const DimPartitionType core_partition,
    +                              const DimPartitionType cluster_partition,
    +                              const bool is_forward, const int h_mask,
    +                              const int w_mask, const int half_h_mask,
    +                              const int half_w_mask, const int n_per_core,
    +                              const int h_per_core, const int n_per_cluster,
    +                              const int h_per_cluster) {
    +  PositionInCore position_full;
    +  PositionInCore position_seg;
    +  position_full.w_start = 0;
    +  position_full.w_end = output_full.w;
    +  int n_num_in_cluster = n_per_cluster;
    +  int h_num_in_cluster = h_per_cluster;
    +
    +  switch (cluster_partition) {
    +    case PARTITION_N: {
    +      position_full.h_start = 0;
    +      position_full.h_end = input_full.h;
    +      position_full.n_start = taskIdY * n_per_cluster;
    +      int cluster_need = (input_full.n + n_per_cluster - 1) / n_per_cluster;
    +      if (taskIdY >= cluster_need) return;
    +      int n_remainder = input_full.n - (cluster_need - 1) * n_per_cluster;
    +      n_num_in_cluster =
    +          (taskIdY == cluster_need - 1) ? n_remainder : n_per_cluster;
    +      position_full.n_end = position_full.n_start + n_num_in_cluster;
    +    }; break;
    +    case PARTITION_H: {
    +      position_full.n_start = 0;
    +      position_full.n_end = input_full.n;
    +      position_full.h_start = taskIdY * h_per_cluster;
    +      int cluster_need = (input_full.h + h_per_cluster - 1) / h_per_cluster;
    +      if (taskIdY >= cluster_need) return;
    +      int h_remainder = input_full.h - (cluster_need - 1) * h_per_cluster;
    +      h_num_in_cluster =
    +          (taskIdY == cluster_need - 1) ? h_remainder : h_per_cluster;
    +      position_full.h_end = position_full.h_start + h_num_in_cluster;
    +    }; break;
    +  }
    +  switch (core_partition) {
    +    case PARTITION_N: {
    +      position_full.n_start += taskIdX * n_per_core;
    +      int core_need = (n_num_in_cluster + n_per_core - 1) / n_per_core;
    +      if (taskIdX >= core_need) return;
    +      int n_remainder = n_num_in_cluster - (core_need - 1) * n_per_core;
    +      position_full.n_end =
    +          position_full.n_start +
    +          ((taskIdX == core_need - 1) ? n_remainder : n_per_core);
    +    }; break;
    +    case PARTITION_H: {
    +      position_full.h_start += taskIdX * h_per_core;
    +      int core_need = (h_num_in_cluster + h_per_core - 1) / h_per_core;
    +      if (taskIdX >= core_need) return;
    +      int h_remainder = h_num_in_cluster - (core_need - 1) * h_per_core;
    +      position_full.h_end =
    +          position_full.h_start +
    +          ((taskIdX == core_need - 1) ? h_remainder : h_per_core);
    +    }; break;
    +  }
    +  // the count of n ,h and w need to be processed in the current core
    +  int shape_core_n = position_full.n_end - position_full.n_start;
    +  int shape_core_h = position_full.h_end - position_full.h_start;
    +  int shape_core_w = input_full.w;
    +
    +  limit.n = limit.n < shape_core_n ? limit.n : shape_core_n;
    +  limit.h = limit.h < shape_core_h ? limit.h : shape_core_h;
    +  limit.w = limit.w < shape_core_w ? limit.w : shape_core_w;
    +
    +  // load the data to nram according to the limit
    +  for (int nidx = position_full.n_start; nidx < position_full.n_end;
    +       nidx += limit.n) {
    +    position_seg.n_start = nidx;
    +    position_seg.n_end =
    +        position_seg.n_start + (position_full.n_end - nidx < limit.n
    +                                    ? position_full.n_end - nidx
    +                                    : limit.n);
    +    for (int hidx = position_full.h_start; hidx < position_full.h_end;
    +         hidx += limit.h) {
    +      position_seg.h_start = hidx;
    +      position_seg.h_end =
    +          position_seg.h_start + (position_full.h_end - hidx < limit.h
    +                                      ? position_full.h_end - hidx
    +                                      : limit.h);
    +      for (int widx = position_full.w_start; widx < position_full.w_end;
    +           widx += limit.w) {
    +        position_seg.w_start = widx;
    +        position_seg.w_end =
    +            position_seg.w_start + (position_full.w_end - widx < limit.w
    +                                        ? position_full.w_end - widx
    +                                        : limit.w);
    +
    +        // record the segment of output except the size of channel
    +        // channel segments of output and input are the same
    +        Shape shape_seg;
    +        shape_seg.n = position_seg.n_end - position_seg.n_start;
    +        shape_seg.h = position_seg.h_end - position_seg.h_start;
    +        shape_seg.w = position_seg.w_end - position_seg.w_start;
    +        shape_seg.c = output_full.c;
    +
    +        switch (psa_type) {
    +          case COLLECT: {
    +            if (is_forward) {
    +              psamaskCollectForward(input_dram, output_dram, position_seg,
    +                                    input_full, output_full, shape_seg, h_mask,
    +                                    w_mask, half_h_mask, half_w_mask);
    +            } else {
    +              psamaskCollectBackward(input_dram, output_dram, position_seg,
    +                                     input_full, output_full, shape_seg, h_mask,
    +                                     w_mask, half_h_mask, half_w_mask);
    +            }
    +          } break;
    +          case DISTRIBUTE: {
    +            if (is_forward) {
    +              psamaskDistributeForward(input_dram, output_dram, position_seg,
    +                                       input_full, output_full, shape_seg,
    +                                       h_mask, w_mask, half_h_mask,
    +                                       half_w_mask);
    +            } else {
    +              psamaskDistributeBackward(input_dram, output_dram, position_seg,
    +                                        input_full, output_full, shape_seg,
    +                                        h_mask, w_mask, half_h_mask,
    +                                        half_w_mask);
    +            }
    +          } break;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelPsamaskForward(
    +    const T *x, T *y, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int x_c, const int y_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  Shape x_full, y_full;
    +  x_full.n = batch;
    +  x_full.h = h_feature;
    +  x_full.w = w_feature;
    +  x_full.c = x_c;
    +  y_full.n = batch;
    +  y_full.h = h_feature;
    +  y_full.w = w_feature;
    +  y_full.c = y_c;
    +
    +  LimitParam limit;
    +  limit.n = limit_n_seg;
    +  limit.h = limit_h_seg;
    +  limit.w = limit_w_seg;
    +
    +  psamaskBase(x, y, x_full, y_full, limit, psa_type, core_partition,
    +              cluster_partition, true, h_mask, w_mask, half_h_mask, half_w_mask,
    +              n_per_core, h_per_core, n_per_cluster, h_per_cluster);
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelPsamaskBackward(
    +    const T *dy, T *dx, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int dx_c, const int dy_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  Shape dy_full, dx_full;
    +  dx_full.n = batch;
    +  dx_full.h = h_feature;
    +  dx_full.w = w_feature;
    +  dx_full.c = dx_c;
    +  dy_full.n = batch;
    +  dy_full.h = h_feature;
    +  dy_full.w = w_feature;
    +  dy_full.c = dy_c;
    +
    +  LimitParam limit;
    +  limit.n = limit_n_seg;
    +  limit.h = limit_h_seg;
    +  limit.w = limit_w_seg;
    +
    +  psamaskBase(dy, dx, dy_full, dx_full, limit, psa_type, core_partition,
    +              cluster_partition, false, h_mask, w_mask, half_h_mask,
    +              half_w_mask, n_per_core, h_per_core, n_per_cluster,
    +              h_per_cluster);
    +}
    +
    +void KernelPsamaskForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *x, void *y, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int x_c, const int y_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg) {
    +  MLUUnion1KernelPsamaskForward<<>>(
    +      static_cast(x), static_cast(y), psa_type,
    +      core_partition, cluster_partition, batch, h_feature, w_feature, h_mask,
    +      w_mask, x_c, y_c, half_h_mask, half_w_mask, n_per_core, h_per_core,
    +      n_per_cluster, h_per_cluster, limit_n_seg, limit_h_seg, limit_w_seg);
    +}
    +
    +void KernelPsamaskBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *dy, void *dx, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int dx_c, const int dy_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg) {
    +  MLUUnion1KernelPsamaskBackward<<>>(
    +      static_cast(dy), static_cast(dx), psa_type,
    +      core_partition, cluster_partition, batch, h_feature, w_feature, h_mask,
    +      w_mask, dx_c, dy_c, half_h_mask, half_w_mask, n_per_core, h_per_core,
    +      n_per_cluster, h_per_cluster, limit_n_seg, limit_h_seg, limit_w_seg);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_utils.hpp
    new file mode 100644
    index 000000000..30ec38849
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/psamask_utils.hpp
    @@ -0,0 +1,55 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef PSAMASK_UTILS_HPP_
    +#define PSAMASK_UTILS_HPP_
    +
    +typedef enum {
    +  COLLECT = 0,
    +  DISTRIBUTE = 1,
    +} PsamaskType;
    +
    +typedef enum {
    +  PARTITION_N = 0,
    +  PARTITION_H = 1,
    +} DimPartitionType;
    +
    +struct PartitionSeg {
    +  int h_per_cluster;
    +  int n_per_cluster;
    +  int h_per_core;
    +  int n_per_core;
    +  DimPartitionType cluster_partition;
    +  DimPartitionType core_partition;
    +};
    +
    +struct Shape {
    +  int n;
    +  int h;
    +  int w;
    +  int c;
    +};
    +
    +struct LimitParam {
    +  int n;
    +  int h;
    +  int w;
    +};
    +
    +struct PositionInCore {
    +  int n_start;
    +  int n_end;
    +  int h_start;
    +  int h_end;
    +  int w_start;
    +  int w_end;
    +};
    +#endif  // PSAMASK_UTILS_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_mlu_kernel.mlu
    new file mode 100644
    index 000000000..c99176ab2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_mlu_kernel.mlu
    @@ -0,0 +1,493 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +
    +#define ROI_OFFSET 5
    +
    +__nram__ char buffer[MAX_NRAM_SIZE];
    +
    +namespace forward {
    +template 
    +__mlu_func__ void bilinearInterpolate(const int input_height,
    +                                      const int input_width, T y, T x, T *w1,
    +                                      T *w2, T *w3, T *w4, int *x_low,
    +                                      int *x_high, int *y_low, int *y_high,
    +                                      bool *empty) {
    +  // deal with cases that inverse elements are of feature map boundary
    +  if (y < -1.0 || y > input_height || x < -1.0 || x > input_width) {
    +    *empty = true;
    +    return;
    +  }
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  int y_low_ = int(y);
    +  int x_low_ = int(x);
    +
    +  if (y_low_ >= input_height - 1) {
    +    *y_high = y_low_ = input_height - 1;
    +    y = (T)y_low_;
    +  } else {
    +    *y_high = y_low_ + 1;
    +  }
    +
    +  if (x_low_ >= input_width - 1) {
    +    *x_high = x_low_ = input_width - 1;
    +    x = T(x_low_);
    +  } else {
    +    *x_high = x_low_ + 1;
    +  }
    +
    +  *y_low = y_low_;
    +  *x_low = x_low_;
    +
    +  T ly = y - y_low_;
    +  T lx = x - x_low_;
    +  T hy = 1.0 - ly;
    +  T hx = 1.0 - lx;
    +  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
    +  return;
    +}
    +
    +template 
    +__mlu_func__ void computeChannel(T *input_core, T *nram_in, T *output_core,
    +                                 T *nram_out, const int roi_bin_grid_h,
    +                                 const int roi_bin_grid_w, const T roi_start_h,
    +                                 const T roi_start_w, const int ph,
    +                                 const int pw, const T bin_size_h,
    +                                 const T bin_size_w, const float count,
    +                                 const int input_height, const int input_width,
    +                                 const int channels, const int cyc_num,
    +                                 const int max_elements) {
    +  int cyc_channel = max_elements;
    +
    +  for (int i = 0; i < cyc_num; i++) {
    +    int real_channel =
    +        (i == cyc_num - 1) ? channels - i * cyc_channel : cyc_channel;
    +    int align_channel = PAD_UP(real_channel, NFU_ALIGN_SIZE / sizeof(T));
    +    __bang_write_zero(nram_out, align_channel);
    +    uint32_t real_size = real_channel * sizeof(T);
    +
    +    int iy, ix;
    +    for (iy = 0; iy < roi_bin_grid_h; iy++) {
    +      // 1. compute the coordinates of the y axis in the current roi_bin_grid_h
    +      T y = roi_start_h + ph * bin_size_h +
    +            (T)(iy + 0.5) * bin_size_h / (T)(roi_bin_grid_h);
    +      for (ix = 0; ix < roi_bin_grid_w; ix++) {
    +        // 2. compute the coordinates of the x axis in the current
    +        //    roi_bin_grid_w
    +        T x = roi_start_w + pw * bin_size_w +
    +              (T)(ix + 0.5) * bin_size_w / (T)(roi_bin_grid_w);
    +
    +        // 3. compute the four weights (w1, w2, w3 and w4), the height (y_low
    +        //    and y_high) and weight (x_low and x_high) of input feature map in
    +        //    the current roi bin grid, and the flag (empty) which shows if x, y
    +        //    are out of input feature map ranges
    +        T w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +        bool empty = false;
    +
    +        bilinearInterpolate(input_height, input_width, y, x, &w1, &w2, &w3, &w4,
    +                            &x_low, &x_high, &y_low, &y_high, &empty);
    +
    +        // 4. compute interpolation of the current roi bin grid
    +        //    tmp_cyc1, temp_cyc2, tmp_cyc3 and tmp_cyc4 store the input values
    +        //    to compute the interpolation, and then reused to compute
    +        //    the argmax_x and argmax_y.
    +        T *tmp_cyc1 = nram_in + cyc_channel;
    +        T *tmp_cyc2 = nram_in + cyc_channel * 2;
    +        T *tmp_cyc3 = nram_in + cyc_channel * 3;
    +        T *tmp_cyc4 = nram_in + cyc_channel * 4;
    +
    +        if (empty) {  // exits abnormal values
    +          __bang_write_zero(nram_in, align_channel);
    +        } else {
    +          __bang_write_zero(nram_in, align_channel);
    +          uint32_t offset1 = (y_low * input_width + x_low) * channels;
    +          uint32_t offset2 = (y_low * input_width + x_high) * channels;
    +          uint32_t offset3 = (y_high * input_width + x_low) * channels;
    +          uint32_t offset4 = (y_high * input_width + x_high) * channels;
    +          T *input1 = (T *)input_core + offset1 + i * cyc_channel;
    +          T *input2 = (T *)input_core + offset2 + i * cyc_channel;
    +          T *input3 = (T *)input_core + offset3 + i * cyc_channel;
    +          T *input4 = (T *)input_core + offset4 + i * cyc_channel;
    +
    +          // load the four pixels (p1, p2, p3 and p4) of input feature map to
    +          // compute interpolation
    +          __memcpy(tmp_cyc1, input1, real_size, GDRAM2NRAM);
    +          __memcpy(tmp_cyc2, input2, real_size, GDRAM2NRAM);
    +          __memcpy(tmp_cyc3, input3, real_size, GDRAM2NRAM);
    +          __memcpy(tmp_cyc4, input4, real_size, GDRAM2NRAM);
    +
    +          // interpolation value = w1 * p1 + w2 * p2 + w3 * p3 + w4 * p4
    +          __bang_mul_scalar(tmp_cyc1, tmp_cyc1, w1, align_channel);
    +          __bang_mul_scalar(tmp_cyc2, tmp_cyc2, w2, align_channel);
    +          __bang_mul_scalar(tmp_cyc3, tmp_cyc3, w3, align_channel);
    +          __bang_mul_scalar(tmp_cyc4, tmp_cyc4, w4, align_channel);
    +
    +          __bang_add(nram_in, tmp_cyc1, nram_in, align_channel);
    +          __bang_add(nram_in, tmp_cyc2, nram_in, align_channel);
    +          __bang_add(nram_in, tmp_cyc3, nram_in, align_channel);
    +          __bang_add(nram_in, tmp_cyc4, nram_in, align_channel);
    +        }
    +        // 5. compute sum value and corresponding coordinates of x axis and y
    +        //    axis. Update the sum value.
    +        __bang_add(nram_out, nram_in, nram_out, align_channel);
    +      }  // loop_roi_grid_w
    +    }    // loop_roi_grid_h
    +    T count_value = (T)(1.0 / count);
    +    __bang_mul_scalar(nram_out, nram_out, count_value, align_channel);
    +    __memcpy(output_core + i * cyc_channel, nram_out, real_size, NRAM2GDRAM);
    +  }  // loop_cyc_num
    +}
    +
    +template 
    +__mlu_func__ void roialignForwardAvg(
    +    T *input, T *rois, T *output, const bool aligned, const int channels,
    +    const int pooled_height, const int pooled_width, const int input_height,
    +    const int input_width, const int sampling_ratio, const T spatial_scale,
    +    const int num_rois) {
    +  // find limit for channel, the nram space is divided to 6 parts that are
    +  // input, 4 weights to compute the interpolation (w1, w2, w3, w4), output
    +
    +  // max_elements : 300 : float datatype : 27296, half datatype : 54592
    +  // max_elements : 200 : float datatype : 16384, half datatype : 32768
    +  int max_elements = (PAD_DOWN(MAX_NRAM_SIZE / 6, NFU_ALIGN_SIZE)) / sizeof(T);
    +  int cyc_num = channels / max_elements + (int)(channels % max_elements != 0);
    +  T offset = aligned ? (T)0.5 : (T)0.0;
    +  int task_num = num_rois * pooled_height * pooled_width;
    +  T *nram_out = (T *)buffer;
    +  T *nram_in = nram_out + max_elements;
    +  if (task_num < taskDim) {
    +    if (taskId >= task_num) {
    +      return;
    +    }
    +  }
    +
    +  for (int bin_idx = taskId; bin_idx < task_num; bin_idx = bin_idx + taskDim) {
    +    if (bin_idx >= task_num) {
    +      return;
    +    }
    +
    +    // (n,ph.pw) is a c in the pooled output
    +    int pw = bin_idx % pooled_width;
    +    int ph = (bin_idx / pooled_width) % pooled_height;
    +    int n = bin_idx / pooled_width / pooled_height;
    +
    +    T *roi_id_tmp = rois + n * ROI_OFFSET;
    +    // 1. compute width and height of roi region.
    +    int batch_idx = (int)roi_id_tmp[0];
    +    T roi_x1 = roi_id_tmp[1];
    +    T roi_y1 = roi_id_tmp[2];
    +    T roi_x2 = roi_id_tmp[3];
    +    T roi_y2 = roi_id_tmp[4];
    +    T roi_start_w = roi_x1 * spatial_scale - offset;
    +    T roi_start_h = roi_y1 * spatial_scale - offset;
    +    T roi_end_w = roi_x2 * spatial_scale - offset;
    +    T roi_end_h = roi_y2 * spatial_scale - offset;
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +
    +    if (!aligned) {
    +      roi_width = roi_width > (T)(1.0) ? roi_width : (T)(1.0);
    +      roi_height = roi_height > (T)(1.0) ? roi_height : (T)(1.0);
    +    }
    +
    +    // 2. compute float-type width and height of roi bin region.
    +    T bin_size_w = (T)roi_width / (T)pooled_width;
    +    T bin_size_h = (T)roi_height / (T)pooled_height;
    +
    +    // 3. compute int-type width and height of roi bin region.
    +    int roi_bin_grid_h, roi_bin_grid_w;
    +    roi_bin_grid_h = (sampling_ratio > 0)
    +                         ? sampling_ratio
    +                         : int(ceilf(roi_height / pooled_height));
    +    roi_bin_grid_w = (sampling_ratio > 0)
    +                         ? sampling_ratio
    +                         : int(ceilf(roi_width / pooled_width));
    +    float count = (float)((roi_bin_grid_h * roi_bin_grid_w) > 1
    +                              ? roi_bin_grid_h * roi_bin_grid_w
    +                              : 1.0);
    +    T *input_core = input + batch_idx * channels * input_width * input_height;
    +    T *output_core = output + bin_idx * channels;
    +    // 4. compute avg value and corresponding coordinates of x axis and y axis.
    +    computeChannel(input_core, nram_in, output_core, nram_out, roi_bin_grid_h,
    +                   roi_bin_grid_w, roi_start_h, roi_start_w, ph, pw, bin_size_h,
    +                   bin_size_w, count, input_height, input_width, channels,
    +                   cyc_num, max_elements);
    +  }
    +}
    +
    +__mlu_global__ void MLUUnion1KernelRoiAlignAvg(
    +    const void *input, const void *rois, const int channels, const bool aligned,
    +    const int pooled_height, const int pooled_width, const int input_height,
    +    const int input_width, const int sampling_ratio, const float spatial_scale,
    +    const int num_rois, const cnrtDataType_t data_type, void *output) {
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +
    +  switch (data_type) {
    +    case CNRT_FLOAT16: {
    +      roialignForwardAvg((half *)input, (half *)rois, (half *)output, aligned,
    +                         channels, pooled_height, pooled_width, input_height,
    +                         input_width, sampling_ratio, (half)spatial_scale,
    +                         num_rois);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      roialignForwardAvg((float *)input, (float *)rois, (float *)output,
    +                         aligned, channels, pooled_height, pooled_width,
    +                         input_height, input_width, sampling_ratio,
    +                         (float)spatial_scale, num_rois);
    +    }; break;
    +    default:
    +      break;
    +  }
    +
    +  return;
    +}
    +}  // namespace forward
    +
    +namespace backward {
    +__mlu_func__ void bilinearInterpolateGradient(int height, int width, float y,
    +                                              float x, float *w1, float *w2,
    +                                              float *w3, float *w4, int *x_low,
    +                                              int *x_high, int *y_low,
    +                                              int *y_high) {
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +    *w1 = 0.0, *w2 = 0.0, *w3 = 0.0, *w4 = 0.0;
    +    *x_low = -1, *x_high = -1, *y_low = -1, *y_high = -1;
    +    return;
    +  }
    +  if (y <= 0) {
    +    y = 0;
    +  }
    +  if (x <= 0) {
    +    x = 0;
    +  }
    +  *y_low = (int)y;
    +  *x_low = (int)x;
    +  if (*y_low >= height - 1) {
    +    *y_high = height - 1, *y_low = height - 1;
    +    y = (float)(*y_low);
    +  } else {
    +    *y_high = *y_low + 1;
    +  }
    +  if (*x_low >= width - 1) {
    +    *x_high = width - 1, *x_low = width - 1;
    +    x = (float)(*x_low);
    +  } else {
    +    *x_high = *x_low + 1;
    +  }
    +  float ly = y - *y_low, lx = x - *x_low;
    +  float hy = 1.0 - ly, hx = 1.0 - lx;
    +  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
    +  return;
    +}
    +
    +template 
    +__mlu_func__ void unionRoiAlignBp(
    +    T *grads, T *boxes, T *grads_image, const int boxes_num, const int hi,
    +    const int wi, const int c, const int no, const int ho, const int wo,
    +    const float spatial_scale, const int sampling_ratio, const bool aligned) {
    +  int c_align = PAD_UP(c, NFU_ALIGN_SIZE / sizeof(T));
    +  int deal_all = boxes_num * hi * wi;
    +  int deal_this_core = deal_all / taskDim + (int)(taskId < deal_all % taskDim);
    +  for (int i = 0; i < deal_this_core; ++i) {
    +    int bhw_id = i * taskDim + taskId;
    +    int box_id = bhw_id / (hi * wi);
    +    int ih = (bhw_id / wi) % hi;
    +    int iw = bhw_id % wi;
    +    T *box = boxes + box_id * 5;
    +    int image_id = (int)box[0];
    +    T *image_offset = grads_image + image_id * ho * wo * c;
    +    T *grads_ = grads + box_id * hi * wi * c + ih * wi * c + iw * c;
    +
    +    float offset = aligned ? 0.5 : 0.0;
    +    float x1 = box[1] * spatial_scale - offset;
    +    float y1 = box[2] * spatial_scale - offset;
    +    float x2 = box[3] * spatial_scale - offset;
    +    float y2 = box[4] * spatial_scale - offset;
    +    float roi_width = x2 - x1;
    +    float roi_height = y2 - y1;
    +    if (!aligned) {
    +      roi_width = (roi_width > 1.0) ? roi_width : 1.0;
    +      roi_height = (roi_height > 1.0) ? roi_height : 1.0;
    +    }
    +    float bin_size_h = roi_height / hi;
    +    float bin_size_w = roi_width / wi;
    +
    +    int roi_grid_h =
    +        (sampling_ratio > 0) ? sampling_ratio : std::ceil(roi_height / hi);
    +    int roi_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : std::ceil(roi_width / wi);
    +    const T count = roi_grid_h * roi_grid_w;
    +    if (c_align * sizeof(T) * 2 <= MAX_NRAM_SIZE) {
    +      for (int iy = 0; iy < roi_grid_h; ++iy) {
    +        const float y =
    +            y1 + ih * bin_size_h + (iy + 0.5) * bin_size_h / roi_grid_h;
    +        for (int ix = 0; ix < roi_grid_w; ++ix) {
    +          const float x =
    +              x1 + iw * bin_size_w + (ix + 0.5) * bin_size_w / roi_grid_w;
    +          float w1, w2, w3, w4;
    +          int x_low, x_high, y_low, y_high;
    +          bilinearInterpolateGradient(ho, wo, y, x, &w1, &w2, &w3, &w4, &x_low,
    +                                      &x_high, &y_low, &y_high);
    +          if (x_low >= 0 && y_low >= 0) {
    +            __memcpy(buffer, grads_, c * sizeof(T), GDRAM2NRAM);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer, (T)w1,
    +                              c_align);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer + c_align,
    +                              1 / count, c_align);
    +            __bang_atomic_add((T *)buffer + c_align,
    +                              image_offset + y_low * wo * c + x_low * c,
    +                              (T *)buffer + c_align, c);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer, (T)w2,
    +                              c_align);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer + c_align,
    +                              1 / count, c_align);
    +            __bang_atomic_add((T *)buffer + c_align,
    +                              image_offset + y_low * wo * c + x_high * c,
    +                              (T *)buffer + c_align, c);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer, (T)w3,
    +                              c_align);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer + c_align,
    +                              1 / count, c_align);
    +            __bang_atomic_add((T *)buffer + c_align,
    +                              image_offset + y_high * wo * c + x_low * c,
    +                              (T *)buffer + c_align, c);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer, (T)w4,
    +                              c_align);
    +            __bang_mul_scalar((T *)buffer + c_align, (T *)buffer + c_align,
    +                              1 / count, c_align);
    +            __bang_atomic_add((T *)buffer + c_align,
    +                              image_offset + y_high * wo * c + x_high * c,
    +                              (T *)buffer + c_align, c);
    +          }  // x_low && y_low
    +        }    // ix
    +      }      // iy
    +    } else {
    +      for (int iy = 0; iy < roi_grid_h; ++iy) {
    +        const float y =
    +            y1 + ih * bin_size_h + (iy + 0.5) * bin_size_h / roi_grid_h;
    +        for (int ix = 0; ix < roi_grid_w; ++ix) {
    +          const float x =
    +              x1 + iw * bin_size_w + (ix + 0.5) * bin_size_w / roi_grid_w;
    +          float w1, w2, w3, w4;
    +          int x_low, x_high, y_low, y_high;
    +          bilinearInterpolateGradient(ho, wo, y, x, &w1, &w2, &w3, &w4, &x_low,
    +                                      &x_high, &y_low, &y_high);
    +          if (x_low >= 0 && y_low >= 0) {
    +            int deal_once =
    +                PAD_DOWN(MAX_NRAM_SIZE / 2, NFU_ALIGN_SIZE) / sizeof(T);
    +            int c_repeat = c / deal_once + (int)(c % deal_once != 0);
    +            for (int i = 0; i < c_repeat; ++i) {
    +              int deal_c = deal_once;
    +              int align_c = deal_once;
    +              if (i == c_repeat - 1) {
    +                deal_c = c - i * deal_once;
    +                align_c = c_align - i * deal_once;
    +              }
    +              __memcpy(buffer, grads_ + i * deal_once, deal_c * sizeof(T),
    +                       GDRAM2NRAM);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer, (T)w1,
    +                                align_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer + align_c,
    +                                1 / count, align_c);
    +              __bang_atomic_add(
    +                  (T *)buffer + align_c,
    +                  image_offset + y_low * wo * c + x_low * c + i * deal_once,
    +                  (T *)buffer + align_c, deal_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer, (T)w2,
    +                                align_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer + align_c,
    +                                1 / count, align_c);
    +              __bang_atomic_add(
    +                  (T *)buffer + align_c,
    +                  image_offset + y_low * wo * c + x_high * c + i * deal_once,
    +                  (T *)buffer + align_c, deal_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer, (T)w3,
    +                                align_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer + align_c,
    +                                1 / count, align_c);
    +              __bang_atomic_add(
    +                  (T *)buffer + align_c,
    +                  image_offset + y_high * wo * c + x_low * c + i * deal_once,
    +                  (T *)buffer + align_c, deal_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer, (T)w4,
    +                                align_c);
    +              __bang_mul_scalar((T *)buffer + align_c, (T *)buffer + align_c,
    +                                1 / count, align_c);
    +              __bang_atomic_add(
    +                  (T *)buffer + align_c,
    +                  image_offset + y_high * wo * c + x_high * c + i * deal_once,
    +                  (T *)buffer + align_c, deal_c);
    +            }  // for c_repeat
    +          }    // x_low >= 0 && y_low >= 0
    +        }      // ix
    +      }        // iy
    +    }          // if c
    +  }            // i
    +}
    +
    +__mlu_global__ void MLUUnion1KernelRoiAlignBackward(
    +    const void *grads, const void *boxes, void *grads_image,
    +    const cnrtDataType_t dtype, const int boxes_num, const int hi, const int wi,
    +    const int c, const int no, const int ho, const int wo,
    +    const float spatial_scale, const int sampling_ratio, const bool aligned) {
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  switch (dtype) {
    +    case CNRT_FLOAT16: {
    +      unionRoiAlignBp((half *)grads, (half *)boxes, (half *)grads_image,
    +                      boxes_num, hi, wi, c, no, ho, wo, spatial_scale,
    +                      sampling_ratio, aligned);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      unionRoiAlignBp((float *)grads, (float *)boxes, (float *)grads_image,
    +                      boxes_num, hi, wi, c, no, ho, wo, spatial_scale,
    +                      sampling_ratio, aligned);
    +    }; break;
    +    default: { return; }
    +  }
    +}
    +}  // namespace backward
    +
    +void KernelRoiAlign(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                    cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                    const void *input, const void *rois, const int channels,
    +                    const bool aligned, const int pooled_height,
    +                    const int pooled_width, const int input_height,
    +                    const int input_width, const int sampling_ratio,
    +                    const float spatial_scale, const int num_rois,
    +                    void *output) {
    +  forward::MLUUnion1KernelRoiAlignAvg<<>>(
    +      input, rois, channels, aligned, pooled_height, pooled_width, input_height,
    +      input_width, sampling_ratio, spatial_scale, num_rois, d_type, output);
    +}
    +
    +void KernelRoiAlignBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                            cnrtQueue_t queue, const cnrtDataType_t dtype,
    +                            const void *grads, const void *boxes,
    +                            void *grads_image, const int boxes_num,
    +                            const int hi, const int wi, const int c,
    +                            const int no, const int ho, const int wo,
    +                            const float spatial_scale, const int sampling_ratio,
    +                            const bool aligned) {
    +  backward::MLUUnion1KernelRoiAlignBackward<<>>(
    +      grads, boxes, grads_image, dtype, boxes_num, hi, wi, c, no, ho, wo,
    +      spatial_scale, sampling_ratio, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_mlu_kernel.mlu
    new file mode 100644
    index 000000000..9356776c5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_mlu_kernel.mlu
    @@ -0,0 +1,490 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * OR IMPLIED, INCLUDING BUvoid NOKType LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENvoid SHALL THE AUTHORS OR COPYRIGHKType HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORvoid OR OTHERWISE, ARISING FROM, OUKType OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +#include "roi_align_rotated_utils.hpp"
    +
    +#define ROI_OFFSET 6
    +#define SAMPLING_NUM 4
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void swap(T &a, T &b) {
    +  T tmp = a;
    +  a = b;
    +  b = tmp;
    +}
    +
    +template 
    +__mlu_func__ void bilinearInterpolate(const int input_height,
    +                                      const int input_width, T x, T y, T *w1,
    +                                      T *w2, T *w3, T *w4, int *x_low,
    +                                      int *x_high, int *y_low, int *y_high,
    +                                      bool *empty) {
    +  // deal with case that the point is out of feature map boundary
    +  if (y < -1.0 || y > input_height || x < -1.0 || x > input_width) {
    +    *empty = true;
    +    return;
    +  }
    +
    +  if (y <= 0) y = (T)0;
    +  if (x <= 0) x = (T)0;
    +
    +  *y_low = int(y);
    +  *x_low = int(x);
    +
    +  if (*y_low >= input_height - 1) {
    +    *y_high = *y_low = input_height - 1;
    +    y = (T)(*y_low);
    +  } else {
    +    *y_high = *y_low + 1;
    +  }
    +
    +  if (*x_low >= input_width - 1) {
    +    *x_high = *x_low = input_width - 1;
    +    x = T(*x_low);
    +  } else {
    +    *x_high = *x_low + 1;
    +  }
    +  T ly = y - *y_low;
    +  T lx = x - *x_low;
    +  T hy = 1.0 - ly;
    +  T hx = 1.0 - lx;
    +  *w1 = hy * hx;
    +  *w2 = hy * lx;
    +  *w3 = ly * hx;
    +  *w4 = ly * lx;
    +  return;
    +}
    +
    +template 
    +__mlu_func__ void getRoiBinInfo(const T *rois_dram, const int bin_i,
    +                                const RoiAlignRotatedParams ¶ms,
    +                                int *batch_idx, int *roi_n, int *pw, int *ph,
    +                                T *roi_center_x, T *roi_center_y, T *roi_width,
    +                                T *roi_height, T *theta) {
    +  T offset = params.aligned ? (T)0.5 : (T)0.0;
    +  *pw = bin_i % params.pooled_width;
    +  *ph = (bin_i / params.pooled_width) % params.pooled_height;
    +  *roi_n = bin_i / params.pooled_width / params.pooled_height;
    +  const T *roi_info = rois_dram + (*roi_n) * ROI_OFFSET;
    +  *batch_idx = (int)roi_info[0];
    +  *roi_center_x = roi_info[1] * (T)params.spatial_scale - offset;
    +  *roi_center_y = roi_info[2] * (T)params.spatial_scale - offset;
    +  *roi_width = roi_info[3] * (T)params.spatial_scale;
    +  *roi_height = roi_info[4] * (T)params.spatial_scale;
    +  *theta = roi_info[5];
    +  if (params.clockwise) {
    +    *theta = -(*theta);
    +  }
    +  if (!params.aligned) {
    +    *roi_width = *roi_width > (T)1.0 ? *roi_width : (T)1.0;
    +    *roi_height = *roi_height > (T)1.0 ? *roi_height : (T)1.0;
    +  }
    +}
    +
    +template 
    +__mlu_func__ void roiAlignRotatedForward(const T *input_dram,
    +                                         const T *rois_dram, const int batch,
    +                                         const int height, const int width,
    +                                         const int channel, const int rois_num,
    +                                         const RoiAlignRotatedParams ¶ms,
    +                                         T *output_dram) {
    +  int align_base_128 = NFU_ALIGN_SIZE / sizeof(T);
    +  int channel_max_cap = MAX_NRAM_SIZE / sizeof(T) / (2 * SAMPLING_NUM + 1);
    +  channel_max_cap = channel_max_cap / align_base_128 * align_base_128;
    +  int channel_align = channel < channel_max_cap ? channel : channel_max_cap;
    +  channel_align = CEIL_ALIGN(channel_align, align_base_128);
    +
    +  T *nram_out = (T *)nram_buffer;
    +  T *nram_ping = nram_out + channel_align;
    +  T *nram_pong = nram_ping + channel_align * SAMPLING_NUM;
    +
    +  int bin_first = taskId;
    +  int bin_end = rois_num * params.pooled_height * params.pooled_width;
    +
    +  for (int bin_i = bin_first; bin_i < bin_end; bin_i += taskDim) {
    +    T roi_center_x, roi_center_y, roi_width, roi_height, theta;
    +    int batch_idx, roi_n, pw, ph;
    +    getRoiBinInfo(rois_dram, bin_i, params, &batch_idx, &roi_n, &pw, &ph,
    +                  &roi_center_x, &roi_center_y, &roi_width, &roi_height,
    +                  &theta);
    +    T bin_size_h = roi_height / params.pooled_height;
    +    T bin_size_w = roi_width / params.pooled_width;
    +
    +    int roi_bin_grid_h =
    +        (params.sample_ratio > 0)
    +            ? params.sample_ratio
    +            : __float2int_up((float)roi_height / params.pooled_height);
    +    int roi_bin_grid_w =
    +        (params.sample_ratio > 0)
    +            ? params.sample_ratio
    +            : __float2int_up((float)roi_width / params.pooled_width);
    +    T roi_start_y = -roi_height / 2;
    +    T roi_start_x = -roi_width / 2;
    +    const int bin_dim = roi_bin_grid_h * roi_bin_grid_w > 1
    +                            ? roi_bin_grid_h * roi_bin_grid_w
    +                            : 1;
    +    T cos_theta = std::cos(theta);
    +    T sin_theta = std::sin(theta);
    +    T zero_sign = 1.0f / bin_dim;
    +
    +    bool is_first_sample = true;
    +    int src_offset = 0;
    +    int dst_offset = 0;
    +    int c_rem, c_slice, c_slice_align, pongc_slice, pongc_slice_align;
    +    for (int c_offset = 0; c_offset < channel; c_offset += channel_align) {
    +      __bang_write_value(nram_out, channel_align, (T)0);
    +      c_rem = channel - c_offset;
    +      c_slice = channel_align > c_rem ? c_rem : channel_align;
    +      c_slice_align = CEIL_ALIGN(c_slice, align_base_128);
    +      is_first_sample = true;
    +      for (int iy = 0; iy < roi_bin_grid_h; ++iy) {
    +        const T yy = roi_start_y + ph * bin_size_h +
    +                     T(iy + 0.5) * bin_size_h / roi_bin_grid_h;
    +        for (int ix = 0; ix < roi_bin_grid_w; ++ix) {
    +          const T xx = roi_start_x + pw * bin_size_w +
    +                       T(ix + 0.5) * bin_size_w / roi_bin_grid_w;
    +          int sample_i = iy * roi_bin_grid_w + ix;
    +
    +          T y = yy * cos_theta - xx * sin_theta + roi_center_y;
    +          T x = yy * sin_theta + xx * cos_theta + roi_center_x;
    +          T w1, w2, w3, w4;
    +          bool empty = false;
    +          int x_low, x_high, y_low, y_high;
    +          bilinearInterpolate(height, width, x, y, &w1, &w2, &w3, &w4, &x_low,
    +                              &x_high, &y_low, &y_high, &empty);
    +          /*******************************************************
    +                 |          ping         |          pong         |
    +          |------|-----|-----|-----|-----|-----|-----|-----|-----|
    +          |output|  p1 |  p2 |  p3 |  p4 |  p1 |  p2 |  p3 |  p4 |
    +          |------|-----|-----|-----|-----|-----|-----|-----|-----|
    +          ********************************************************/
    +          if (is_first_sample && !empty) {
    +            // load input data from dram to nram
    +            __bang_write_value(nram_ping, SAMPLING_NUM * c_slice_align, (T)0);
    +            src_offset =
    +                (batch_idx * height * width + y_low * width + x_low) * channel +
    +                c_offset;
    +            dst_offset = 0;
    +            __memcpy(nram_ping + dst_offset, input_dram + src_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            src_offset = (batch_idx * height * width + y_low * width + x_high) *
    +                             channel +
    +                         c_offset;
    +            dst_offset = c_slice_align;
    +            __memcpy(nram_ping + dst_offset, input_dram + src_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            src_offset = (batch_idx * height * width + y_high * width + x_low) *
    +                             channel +
    +                         c_offset;
    +            dst_offset = c_slice_align * 2;
    +            __memcpy(nram_ping + dst_offset, input_dram + src_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +            src_offset =
    +                (batch_idx * height * width + y_high * width + x_high) *
    +                    channel +
    +                c_offset;
    +            dst_offset = c_slice_align * 3;
    +            __memcpy(nram_ping + dst_offset, input_dram + src_offset,
    +                     c_slice * sizeof(T), GDRAM2NRAM);
    +          }
    +          // load next input data to nram
    +          if (sample_i + 1 < bin_dim) {
    +            int p_iy = (sample_i + 1) / roi_bin_grid_w;
    +            int p_ix = (sample_i + 1) % roi_bin_grid_w;
    +            const T p_yy = roi_start_y + ph * bin_size_h +
    +                           T(p_iy + 0.5) * bin_size_h / roi_bin_grid_h;
    +            const T p_xx = roi_start_x + pw * bin_size_w +
    +                           T(p_ix + 0.5) * bin_size_w / roi_bin_grid_w;
    +            T p_y = p_yy * cos_theta - p_xx * sin_theta + roi_center_y;
    +            T p_x = p_yy * sin_theta + p_xx * cos_theta + roi_center_x;
    +            T p_w1, p_w2, p_w3, p_w4;
    +            bool p_empty = false;
    +            int p_x_low, p_x_high, p_y_low, p_y_high;
    +            bilinearInterpolate(height, width, p_x, p_y, &p_w1, &p_w2, &p_w3,
    +                                &p_w4, &p_x_low, &p_x_high, &p_y_low, &p_y_high,
    +                                &p_empty);
    +            pongc_slice = c_slice;
    +            pongc_slice_align = c_slice_align;
    +            if (!p_empty) {
    +              __bang_write_value(nram_pong, SAMPLING_NUM * pongc_slice_align,
    +                                 (T)0);
    +              src_offset =
    +                  (batch_idx * height * width + p_y_low * width + p_x_low) *
    +                      channel +
    +                  c_offset;
    +              dst_offset = 0;
    +              __memcpy(nram_pong + dst_offset, input_dram + src_offset,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              src_offset =
    +                  (batch_idx * height * width + p_y_low * width + p_x_high) *
    +                      channel +
    +                  c_offset;
    +              dst_offset = pongc_slice_align;
    +              __memcpy(nram_pong + dst_offset, input_dram + src_offset,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              src_offset =
    +                  (batch_idx * height * width + p_y_high * width + p_x_low) *
    +                      channel +
    +                  c_offset;
    +              dst_offset = pongc_slice_align * 2;
    +              __memcpy(nram_pong + dst_offset, input_dram + src_offset,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +              src_offset =
    +                  (batch_idx * height * width + p_y_high * width + p_x_high) *
    +                      channel +
    +                  c_offset;
    +              dst_offset = pongc_slice_align * 3;
    +              __memcpy(nram_pong + dst_offset, input_dram + src_offset,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +            }
    +          }
    +          T *tmp_sum = nram_ping + 3 * c_slice_align;
    +          if (empty) {
    +            __bang_write_value(tmp_sum, c_slice_align, T(0));
    +          } else {
    +            __bang_mul_scalar(nram_ping, nram_ping, w1, c_slice_align);
    +            __bang_mul_scalar(nram_ping + c_slice_align,
    +                              nram_ping + c_slice_align, w2, c_slice_align);
    +            __bang_mul_scalar(nram_ping + 2 * c_slice_align,
    +                              nram_ping + 2 * c_slice_align, w3, c_slice_align);
    +            __bang_mul_scalar(nram_ping + 3 * c_slice_align,
    +                              nram_ping + 3 * c_slice_align, w4, c_slice_align);
    +            __bang_sumpool(tmp_sum, nram_ping, c_slice_align, 1, SAMPLING_NUM,
    +                           1, SAMPLING_NUM, 1, 1);
    +          }
    +          __bang_add(nram_out, nram_out, tmp_sum, c_slice_align);
    +          swap(nram_ping, nram_pong);
    +          __asm__ volatile("sync;");
    +          is_first_sample = false;
    +        }
    +      }
    +      __bang_mul_scalar(nram_out, nram_out, zero_sign, c_slice_align);
    +      // store the result to dram
    +      int output_offset =
    +          ((roi_n * params.pooled_height + ph) * params.pooled_width + pw) *
    +              channel +
    +          c_offset;
    +      __memcpy(output_dram + output_offset, nram_out, c_slice * sizeof(T),
    +               NRAM2GDRAM);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_func__ void roiAlignRotatedBackward(const T *top_grad_dram,
    +                                          const T *rois_dram, const int batch,
    +                                          const int height, const int width,
    +                                          const int channel, const int rois_num,
    +                                          const RoiAlignRotatedParams ¶ms,
    +                                          T *bottom_grad_dram) {
    +  int align_base_128 = NFU_ALIGN_SIZE / sizeof(T);
    +  int channel_align = CEIL_ALIGN(channel, align_base_128);
    +
    +  unsigned int max_element = MAX_NRAM_SIZE / sizeof(T);
    +  int c_limit = max_element >> 2;
    +  c_limit = c_limit > channel_align ? channel_align : c_limit;
    +
    +  T *nram_ping = (T *)nram_buffer;
    +  T *nram_pong = nram_ping + 2 * c_limit;
    +  T *nram_output = nullptr;
    +
    +  int bin_first = taskId;
    +  int bin_end = rois_num * params.pooled_height * params.pooled_width;
    +  bool is_first_bin = true;
    +  T roi_center_x, roi_center_y, roi_width, roi_height, theta;
    +  int batch_idx, roi_n, pw, ph;
    +  T pong_roi_center_x, pong_roi_center_y, pong_roi_width, pong_roi_height,
    +      pong_theta;
    +  int pong_batch_idx, pong_roi_n, pong_pw, pong_ph;
    +  for (int bin_i = bin_first; bin_i < bin_end; bin_i += taskDim) {
    +    getRoiBinInfo(rois_dram, bin_i, params, &batch_idx, &roi_n, &pw, &ph,
    +                  &roi_center_x, &roi_center_y, &roi_width, &roi_height,
    +                  &theta);
    +    T bin_size_h = roi_height / params.pooled_height;
    +    T bin_size_w = roi_width / params.pooled_width;
    +
    +    int roi_bin_grid_h =
    +        (params.sample_ratio > 0)
    +            ? params.sample_ratio
    +            : __float2int_up((float)roi_height / params.pooled_height);
    +    int roi_bin_grid_w =
    +        (params.sample_ratio > 0)
    +            ? params.sample_ratio
    +            : __float2int_up((float)roi_width / params.pooled_width);
    +    T roi_start_y = -roi_height / 2;
    +    T roi_start_x = -roi_width / 2;
    +    const int bin_dim = roi_bin_grid_h * roi_bin_grid_w > 1
    +                            ? roi_bin_grid_h * roi_bin_grid_w
    +                            : 1;
    +    T cos_theta = std::cos(theta);
    +    T sin_theta = std::sin(theta);
    +    T zero_sign = 1.0f / bin_dim;
    +    int c_rem, c_slice, pongc_slice, c_offset;
    +    c_rem = channel;
    +    c_offset = 0;
    +    /****************************************
    +    |        ping       |        pong       |
    +    |---------|---------|---------|---------|
    +    |  input  |  output |  input  |  output |
    +    |---------|---------|---------|---------|
    +    *****************************************/
    +    if (is_first_bin) {
    +      // load the first top_grad to nram
    +      c_slice = c_limit < c_rem ? c_limit : c_rem;
    +      int top_grad_offset =
    +          ((roi_n * params.pooled_height + ph) * params.pooled_width + pw) *
    +          channel;
    +      __memcpy(nram_ping, top_grad_dram + top_grad_offset, c_slice * sizeof(T),
    +               GDRAM2NRAM);
    +    }
    +    nram_output = nram_ping + c_limit;
    +    while (c_rem > 0) {
    +      c_slice = c_slice < c_rem ? c_slice : c_rem;
    +      // load the next top_grad to nram
    +      if (c_rem - c_slice > 0) {
    +        // load the rest channels to nram
    +        pongc_slice = (c_rem - c_slice > c_slice) ? c_slice : c_rem - c_slice;
    +        int top_grad_offset =
    +            ((roi_n * params.pooled_height + ph) * params.pooled_width + pw) *
    +                channel +
    +            c_offset + c_slice;
    +        __memcpy_async(nram_pong, top_grad_dram + top_grad_offset,
    +                       pongc_slice * sizeof(T), GDRAM2NRAM);
    +      } else if (bin_i + taskDim < bin_end) {
    +        // load next bin's data to nram
    +        getRoiBinInfo(rois_dram, bin_i + taskDim, params, &pong_batch_idx,
    +                      &pong_roi_n, &pong_pw, &pong_ph, &pong_roi_center_x,
    +                      &pong_roi_center_y, &pong_roi_width, &pong_roi_height,
    +                      &pong_theta);
    +        pongc_slice = c_limit < channel ? c_limit : channel;
    +        int top_grad_offset = ((pong_roi_n * params.pooled_height + pong_ph) *
    +                                   params.pooled_width +
    +                               pong_pw) *
    +                              channel;
    +        __memcpy_async(nram_pong, top_grad_dram + top_grad_offset,
    +                       c_slice * sizeof(T), GDRAM2NRAM);
    +      }
    +      // comput the output in a single bin
    +
    +      for (int iy = 0; iy < roi_bin_grid_h; ++iy) {
    +        const T yy = roi_start_y + ph * bin_size_h +
    +                     T(iy + 0.5) * bin_size_h / roi_bin_grid_h;
    +        for (int ix = 0; ix < roi_bin_grid_w; ++ix) {
    +          const T xx = roi_start_x + pw * bin_size_w +
    +                       T(ix + 0.5) * bin_size_w / roi_bin_grid_w;
    +          T y = yy * cos_theta - xx * sin_theta + roi_center_y;
    +          T x = yy * sin_theta + xx * cos_theta + roi_center_x;
    +          T w1, w2, w3, w4;
    +          bool empty = false;
    +          int x_low, x_high, y_low, y_high;
    +          bilinearInterpolate(height, width, x, y, &w1, &w2, &w3, &w4, &x_low,
    +                              &x_high, &y_low, &y_high, &empty);
    +          if (empty) {
    +            continue;
    +          } else {
    +            __bang_mul_scalar(nram_output, nram_ping, w1 * zero_sign, c_limit);
    +            __bang_atomic_add(
    +                (T *)nram_output,
    +                bottom_grad_dram + batch_idx * height * width * channel +
    +                    y_low * width * channel + x_low * channel + c_offset,
    +                (T *)nram_output, c_slice);
    +            __bang_mul_scalar(nram_output, nram_ping, w2 * zero_sign, c_limit);
    +            __bang_atomic_add(
    +                (T *)nram_output,
    +                bottom_grad_dram + batch_idx * height * width * channel +
    +                    y_low * width * channel + x_high * channel + c_offset,
    +                (T *)nram_output, c_slice);
    +            __bang_mul_scalar(nram_output, nram_ping, w3 * zero_sign, c_limit);
    +            __bang_atomic_add(
    +                (T *)nram_output,
    +                bottom_grad_dram + batch_idx * height * width * channel +
    +                    y_high * width * channel + x_low * channel + c_offset,
    +                (T *)nram_output, c_slice);
    +            __bang_mul_scalar(nram_output, nram_ping, w4 * zero_sign, c_limit);
    +            __bang_atomic_add(
    +                (T *)nram_output,
    +                bottom_grad_dram + batch_idx * height * width * channel +
    +                    y_high * width * channel + x_high * channel + c_offset,
    +                (T *)nram_output, c_slice);
    +          }
    +        }
    +      }
    +      swap(nram_ping, nram_pong);
    +      c_rem -= c_slice;
    +      c_offset += c_slice;
    +      __asm__ volatile("sync;");
    +    }
    +    is_first_bin = false;
    +  }
    +}
    +
    +__mlu_global__ void MLUUnion1KernelRoiAlignRotatedForward(
    +    const void *features, const void *rois, void *output, const int batch,
    +    const int height, const int width, const int channel, const int rois_num,
    +    const RoiAlignRotatedParams rroiAlignParams,
    +    const cnrtDataType_t data_type) {
    +  if (0x80 == coreId) {
    +    return;
    +  }
    +
    +  if (data_type == CNRT_FLOAT32) {
    +    roiAlignRotatedForward((float *)features, (float *)rois, batch, height,
    +                           width, channel, rois_num, rroiAlignParams,
    +                           (float *)output);
    +  } else {
    +    roiAlignRotatedForward((half *)features, (half *)rois, batch, height, width,
    +                           channel, rois_num, rroiAlignParams, (half *)output);
    +  }
    +}
    +
    +__mlu_global__ void MLUUnion1KernelRoiAlignRotatedBackward(
    +    const void *top_grad, const void *rois, void *bottom_grad, const int batch,
    +    const int height, const int width, const int channel, const int rois_num,
    +    const RoiAlignRotatedParams rroiAlignParams,
    +    const cnrtDataType_t data_type) {
    +  if (0x80 == coreId) {
    +    return;
    +  }
    +
    +  if (data_type == CNRT_FLOAT32) {
    +    roiAlignRotatedBackward((float *)top_grad, (float *)rois, batch, height,
    +                            width, channel, rois_num, rroiAlignParams,
    +                            (float *)bottom_grad);
    +  } else {
    +    roiAlignRotatedBackward((half *)top_grad, (half *)rois, batch, height,
    +                            width, channel, rois_num, rroiAlignParams,
    +                            (half *)bottom_grad);
    +  }
    +}
    +
    +void KernelRoiAlignRotatedForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const void *features, const void *rois,
    +    void *output, const int batch, const int height, const int width,
    +    const int channel, const int rois_num,
    +    const RoiAlignRotatedParams roiAlignRotatedParams) {
    +  MLUUnion1KernelRoiAlignRotatedForward<<>>(
    +      features, rois, output, batch, height, width, channel, rois_num,
    +      roiAlignRotatedParams, d_type);
    +}
    +
    +void KernelRoiAlignRotatedBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const void *top_grad, const void *rois,
    +    void *bottom_grad, const int batch, const int height, const int width,
    +    const int channel, const int rois_num,
    +    const RoiAlignRotatedParams roiAlignRotatedParams) {
    +  MLUUnion1KernelRoiAlignRotatedBackward<<>>(
    +      top_grad, rois, bottom_grad, batch, height, width, channel, rois_num,
    +      roiAlignRotatedParams, d_type);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_utils.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_utils.hpp
    new file mode 100644
    index 000000000..cd0ec0248
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_align_rotated_utils.hpp
    @@ -0,0 +1,24 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef ROI_ALIGN_ROTATED_UTILS_HPP_
    +#define ROI_ALIGN_ROTATED_UTILS_HPP_
    +
    +struct RoiAlignRotatedParams {
    +  int pooled_height;
    +  int pooled_width;
    +  int sample_ratio;
    +  float spatial_scale;
    +  bool aligned;
    +  bool clockwise;
    +};
    +
    +#endif  // ROI_ALIGN_ROTATED_UTILS_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_pool_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_pool_mlu_kernel.mlu
    new file mode 100644
    index 000000000..3a6d2d3ba
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roi_pool_mlu_kernel.mlu
    @@ -0,0 +1,747 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +
    +#define ALIGN_SIZE 64
    +#define PIPELINE_COMMON_NUM 2
    +#define PIPELINE_PINGPONG_NUM 10
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +namespace forward {
    +template 
    +__mlu_func__ void getRoiBinInfo(T *input_v, T *rois_v, int bin_i, int height,
    +                                int width, int channels, int p_height,
    +                                int p_width, T spatial_scale, int *bin_x1,
    +                                int *bin_y1, int *bin_x2, int *bin_y2,
    +                                int *bin_wdim, int *bin_hdim, int *bin_dims,
    +                                T **input_base, bool *is_empty) {
    +  int pw = bin_i % p_width;
    +  int ph = (bin_i / p_width) % p_height;
    +  int roi_n = bin_i / p_width / p_height;
    +
    +  /*roi*/
    +  const T *roi_info = rois_v + roi_n * 5;  // {{batch, x1, y1, x2, y2},,,}
    +  int batch_index = (int)roi_info[0];
    +  int roi_x1 = round(roi_info[1] * spatial_scale);
    +  int roi_y1 = round(roi_info[2] * spatial_scale);
    +  int roi_x2 = round(roi_info[3] * spatial_scale);
    +  int roi_y2 = round(roi_info[4] * spatial_scale);
    +  int roi_w = roi_x2 - roi_x1 + 1 > 1 ? roi_x2 - roi_x1 + 1 : 1;
    +  int roi_h = roi_y2 - roi_y1 + 1 > 1 ? roi_y2 - roi_y1 + 1 : 1;
    +
    +  /*bin*/
    +  T bin_w = (T)roi_w / (T)p_width;
    +  T bin_h = (T)roi_h / (T)p_height;
    +
    +  *bin_x1 = (int)floor((T)pw * bin_w) + roi_x1;
    +  *bin_x1 = *bin_x1 > 0 ? *bin_x1 : 0;
    +  *bin_x1 = *bin_x1 < width ? *bin_x1 : width;
    +
    +  *bin_y1 = (int)floor((T)ph * bin_h) + roi_y1;
    +  *bin_y1 = *bin_y1 > 0 ? *bin_y1 : 0;
    +  *bin_y1 = *bin_y1 < height ? *bin_y1 : height;
    +
    +  *bin_x2 = (int)ceil((T)(pw + 1) * bin_w) + roi_x1;
    +  *bin_x2 = *bin_x2 > 0 ? *bin_x2 : 0;
    +  *bin_x2 = *bin_x2 < width ? *bin_x2 : width;
    +
    +  *bin_y2 = (int)ceil((T)(ph + 1) * bin_h) + roi_y1;
    +  *bin_y2 = *bin_y2 > 0 ? *bin_y2 : 0;
    +  *bin_y2 = *bin_y2 < height ? *bin_y2 : height;
    +
    +  *input_base = input_v + batch_index * height * width * channels;
    +  *bin_wdim = *bin_x2 - *bin_x1;
    +  *bin_hdim = *bin_y2 - *bin_y1;
    +  *bin_dims = (*bin_hdim) * (*bin_wdim);
    +  *is_empty = (*bin_y2 <= *bin_y1) || (*bin_x2 <= *bin_x1);
    +}
    +
    +template 
    +__mlu_func__ void MLUUnion1Roipool(T *input_v, T *rois_v, int batch,
    +                                   int channels, int height, int width,
    +                                   int p_height, int p_width, int rois_num,
    +                                   T spatial_scale, T *output_v, int *argmax) {
    +  /*
    +   * NRAM partition
    +   *  |---------------------------------------------------|
    +   *  |                        ping                       |
    +   *  |---------------------------------------------------|
    +   *  |                        pong                       |
    +   *  |---------------------------------------------------|
    +   *  |                        out                        |
    +   *  |---------------------------------------------------|
    +   *  |                        argmax                     |
    +   *  |---------------------------------------------------|
    +   *  |                        a                          |
    +   *  |---------------------------------------------------|
    +   *  |                        b                          |
    +   *  |---------------------------------------------------|
    +   */
    +  uint32_t is_half = sizeof(T) == sizeof(half) ? true : false;
    +  uint32_t t_size = sizeof(T);
    +  uint32_t float_div = NFU_ALIGN_SIZE / sizeof(float);
    +  uint32_t half_div = NFU_ALIGN_SIZE / sizeof(half);
    +
    +  uint32_t channels_align = PAD_UP(channels, float_div);
    +  uint32_t nram_limit = PAD_DOWN(
    +      (MAX_NRAM_SIZE / sizeof(float) - 4 * channels_align) / 2, half_div);
    +
    +  // nram PING/PONG, output, argamx, a, b
    +  float *nram_ping = (float *)nram_buffer;
    +  float *nram_pong = (float *)nram_buffer + nram_limit;
    +  float *nram_out = (float *)nram_buffer + 2 * nram_limit;
    +  float *nram_argmax = nram_out + channels_align;
    +  float *nram_a = nram_out + 2 * channels_align;
    +  float *nram_b = nram_out + 3 * channels_align;
    +
    +  uint32_t c_bins_num = rois_num * p_height * p_width;
    +  uint32_t task_bins = c_bins_num / taskDim;
    +  uint32_t rem_bins = c_bins_num % taskDim;
    +  if (taskId < rem_bins) {
    +    task_bins += 1;
    +  }
    +  int bin_first =
    +      (c_bins_num / taskDim) * taskId + (taskId > rem_bins ? rem_bins : taskId);
    +  int bins_loop = bin_first + task_bins;
    +
    +  T *input_base = NULL;
    +  T *output_base = output_v + bin_first * channels;
    +  int *argmax_base = NULL != argmax ? argmax + bin_first * channels : NULL;
    +  int bin_x1, bin_y1, bin_x2, bin_y2, bin_wdim, bin_hdim, bin_dims;
    +  int pbin_x1, pbin_y1, pbin_x2, pbin_y2, pbin_wdim, pbin_hdim, pbin_dims;
    +  bool is_empty = false;
    +  bool pong_is_empty = false;
    +  bool is_first_bin = true;
    +  uint32_t src_offset = 0;
    +  uint32_t dst_offset = 0;
    +  uint32_t nram_offset = 0;
    +  uint32_t half_offset =
    +      is_half ? (nram_limit / 2 / half_div * half_div) * 2 : 0;
    +  float *nram_tmp = NULL;
    +
    +  uint32_t c_slice = 0;
    +  uint32_t c_slice_align = 0;
    +  uint32_t pongc_slice = 0;
    +  uint32_t pongc_slice_align = 0;
    +  for (int bin_i = bin_first; bin_i < bins_loop; bin_i++) {
    +    getRoiBinInfo((T *)input_v, (T *)rois_v, bin_i, height, width, channels,
    +                  p_height, p_width, (T)spatial_scale, &bin_x1, &bin_y1,
    +                  &bin_x2, &bin_y2, &bin_wdim, &bin_hdim, &bin_dims,
    +                  &input_base, &is_empty);
    +    uint32_t c_rem = channels;
    +    c_slice = nram_limit / bin_dims / float_div * float_div;
    +
    +    if (is_first_bin && !is_empty) {
    +      c_slice = c_slice > c_rem ? c_rem : c_slice;
    +      c_slice_align = PAD_UP(c_slice, float_div);
    +      for (int h = bin_y1; h < bin_y2; h++) {
    +        src_offset = (h * width + bin_x1) * channels;
    +        nram_offset = (h - bin_y1) * bin_wdim * c_slice_align + half_offset;
    +        if (c_slice_align == channels) {
    +          __memcpy((T *)nram_ping + nram_offset, (T *)input_base + src_offset,
    +                   bin_wdim * c_slice * t_size, GDRAM2NRAM);
    +        } else {
    +          __memcpy((T *)nram_ping + nram_offset, (T *)input_base + src_offset,
    +                   c_slice * t_size, GDRAM2NRAM, c_slice_align * t_size,
    +                   channels * t_size, bin_wdim - 1);
    +        }
    +      }
    +    }
    +    uint32_t c_offset = 0;
    +    while (c_rem > 0) {
    +      c_slice = c_slice > c_rem ? c_rem : c_slice;
    +      c_slice_align = PAD_UP(c_slice, float_div);
    +
    +      /*__memcpy_async*/
    +      if (c_rem - c_slice > 0 && !is_empty) {
    +        pongc_slice = c_rem - c_slice > c_slice ? c_slice : c_rem - c_slice;
    +        pongc_slice_align = PAD_UP(pongc_slice, float_div);
    +        for (int h = bin_y1; h < bin_y2; h++) {
    +          src_offset = (h * width + bin_x1) * channels + c_offset;
    +          nram_offset =
    +              (h - bin_y1) * bin_wdim * pongc_slice_align + half_offset;
    +          __memcpy_async((T *)nram_pong + nram_offset,
    +                         (T *)input_base + src_offset + c_slice,
    +                         pongc_slice * t_size, GDRAM2NRAM,
    +                         pongc_slice_align * t_size, channels * t_size,
    +                         bin_wdim - 1);
    +        }
    +      } else if (bin_i + 1 < bins_loop) {
    +        getRoiBinInfo((T *)input_v, (T *)rois_v, bin_i + 1, height, width,
    +                      channels, p_height, p_width, (T)spatial_scale, &pbin_x1,
    +                      &pbin_y1, &pbin_x2, &pbin_y2, &pbin_wdim, &pbin_hdim,
    +                      &pbin_dims, &input_base, &pong_is_empty);
    +        pongc_slice = PAD_DOWN(nram_limit / pbin_dims, float_div);
    +        pongc_slice = pongc_slice > channels ? channels : pongc_slice;
    +        pongc_slice_align = PAD_UP(pongc_slice, float_div);
    +        if (!pong_is_empty) {
    +          for (int h = pbin_y1; h < pbin_y2; h++) {
    +            src_offset = (h * width + pbin_x1) * channels;
    +            nram_offset =
    +                (h - pbin_y1) * pbin_wdim * pongc_slice_align + half_offset;
    +            if (pongc_slice_align == channels) {
    +              __memcpy_async((T *)nram_pong + nram_offset,
    +                             (T *)input_base + src_offset,
    +                             pbin_wdim * pongc_slice * t_size, GDRAM2NRAM);
    +            } else {
    +              __memcpy_async((T *)nram_pong + nram_offset,
    +                             (T *)input_base + src_offset, pongc_slice * t_size,
    +                             GDRAM2NRAM, pongc_slice_align * t_size,
    +                             channels * t_size, pbin_wdim - 1);
    +            }
    +          }
    +        }
    +      }
    +
    +      if (is_empty) {
    +        __bang_write_value((T *)nram_out, c_slice_align, (T)0);
    +        __memcpy((T *)output_base + dst_offset + c_offset, (T *)nram_out,
    +                 c_slice * t_size, NRAM2GDRAM);
    +        if (NULL != argmax) {
    +          __bang_write_value((int32_t *)nram_out, c_slice_align, (int32_t)(-1));
    +          __memcpy((int32_t *)argmax_base + dst_offset + c_offset,
    +                   (int32_t *)nram_out, c_slice * sizeof(int32_t), NRAM2GDRAM);
    +        }
    +      } else {
    +        if (is_half) {
    +          uint32_t bin_align64 = PAD_UP(bin_dims * c_slice_align, half_div);
    +          __bang_half2float((float *)nram_ping, (half *)nram_ping + half_offset,
    +                            bin_align64);
    +        }
    +        __bang_maxpool((float *)nram_out, (float *)nram_ping, c_slice_align,
    +                       bin_hdim, bin_wdim, bin_hdim, bin_wdim, 1, 1);
    +        if (is_half) {
    +          uint32_t c_align64 = PAD_UP(c_slice_align, half_div);
    +          __bang_float2half_rd((half *)nram_out, (float *)nram_out, c_align64);
    +        }
    +        __memcpy((T *)output_base + dst_offset + c_offset, (T *)nram_out,
    +                 c_slice * t_size, NRAM2GDRAM);
    +        if (NULL != argmax) {
    +          /*compute max_index*/
    +          __bang_maxpool_index((uint32_t *)nram_out, (float *)nram_ping,
    +                               c_slice_align, bin_hdim, bin_wdim, bin_hdim,
    +                               bin_wdim, 1, 1);
    +          convertInt2Float((float *)nram_argmax, (float *)nram_a,
    +                           (int32_t *)nram_out, (float *)nram_b, c_slice_align);
    +
    +          /*compute input_h*/
    +          for (int i = 0; i < c_slice; i++) {
    +            nram_out[i] = (float)(((uint32_t *)nram_out)[i] / bin_wdim);
    +          }
    +          __bang_add_scalar((float *)nram_a, (float *)nram_out, (float)bin_y1,
    +                            c_slice_align);
    +          __bang_mul_scalar((float *)nram_ping, (float *)nram_a, (float)width,
    +                            c_slice_align);
    +
    +          /*compute input_w*/
    +          __bang_mul_scalar((float *)nram_a, (float *)nram_out, (float)bin_wdim,
    +                            c_slice_align);
    +          __bang_sub((float *)nram_a, (float *)nram_argmax, (float *)nram_a,
    +                     c_slice_align);
    +          __bang_add_scalar((float *)nram_a, (float *)nram_a, (float)bin_x1,
    +                            c_slice_align);
    +          __bang_add((float *)nram_out, (float *)nram_ping, (float *)nram_a,
    +                     c_slice_align);
    +          convertFloat2Int((int32_t *)nram_argmax, (float *)nram_a,
    +                           (float *)nram_out, (float *)nram_b, c_slice_align);
    +          __memcpy((int32_t *)argmax_base + dst_offset + c_offset,
    +                   (int32_t *)nram_argmax, c_slice * sizeof(int32_t),
    +                   NRAM2GDRAM);
    +        }
    +      }
    +      nram_tmp = nram_ping;
    +      nram_ping = nram_pong;
    +      nram_pong = nram_tmp;
    +      c_offset += c_slice;
    +      c_rem -= c_slice;
    +      __asm__ volatile("sync;");
    +    }
    +    dst_offset += channels;
    +    is_first_bin = false;
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelRoiPool(cnrtDataType_t data_type,
    +                                     const void *input_data,
    +                                     const void *input_rois, int batch,
    +                                     int channels, int height, int width,
    +                                     int pooled_height, int pooled_width,
    +                                     int rois_num, float spatial_scale,
    +                                     void *output_data, int *argmax) {
    +  switch (data_type) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1Roipool((half *)input_data, (half *)input_rois, batch, channels,
    +                       height, width, pooled_height, pooled_width, rois_num,
    +                       (half)spatial_scale, (half *)output_data, argmax);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1Roipool((float *)input_data, (float *)input_rois, batch,
    +                       channels, height, width, pooled_height, pooled_width,
    +                       rois_num, (float)spatial_scale, (float *)output_data,
    +                       argmax);
    +    }; break;
    +    default: { break; }
    +  }
    +}
    +}  // namespace forward
    +
    +namespace backward {
    +// Convert index of argmax from global grads_image to local bin in RoI. Vector
    +// operations do not support int type, so conversion from int to float is
    +// performed here.
    +__mlu_func__ void convertIndex(
    +    int32_t *nram_argmax, int32_t *nram_argmax_fp, int32_t *nram_argmax_fp_bk1,
    +    int32_t *nram_argmax_fp_bk2, int32_t *nram_argmax_int,
    +    int32_t *nram_argmax_int_h, int32_t *nram_argmax_int_w,
    +    int32_t *nram_argmax_fp_h, int32_t *nram_argmax_fp_w,
    +    float *nram_atomic_add, float *nram_grads_image, int width, int height,
    +    int wstart, int hstart, int w_compute, int h_compute, int align_c,
    +    int channels, int loop_flag, int loop_id, int true_limit) {
    +  convertInt2Float((float *)nram_argmax_fp, (float *)nram_argmax_fp_bk1,
    +                   (int *)nram_argmax, (float *)nram_argmax_fp_bk2, align_c);
    +
    +  // This step uses scalar division, because the above vector division causes
    +  // rounding accuracy problem.
    +  for (int i = 0; i < channels; ++i) {
    +    *((float *)nram_argmax_fp + i) = *((float *)nram_argmax_fp + i) / width;
    +  }
    +
    +  // Use 'float2int_tz' to perform '*((int32_t*)nram_argmax + i) / width'
    +  // operation.
    +  convertFloat2Int((int *)nram_argmax_int_h, (float *)nram_argmax_fp_bk1,
    +                   (float *)nram_argmax_fp, (float *)nram_argmax_fp_bk2,
    +                   align_c);
    +  convertInt2Float((float *)nram_argmax_fp, (float *)nram_argmax_fp_bk1,
    +                   (int *)nram_argmax_int_h, (float *)nram_argmax_fp_bk2,
    +                   align_c);
    +
    +  // Perform 'temp_result - hstart' operation
    +  __bang_sub_scalar((float *)nram_argmax_fp_h, (float *)nram_argmax_fp, hstart,
    +                    align_c);
    +
    +  // Perform 'temp_result1 - temp_result2 * width' operation
    +  __bang_mul_scalar((float *)nram_argmax_fp_w, (float *)nram_argmax_fp, width,
    +                    align_c);
    +  convertInt2Float((float *)nram_argmax_fp, (float *)nram_argmax_fp_bk1,
    +                   (int *)nram_argmax, (float *)nram_argmax_fp_bk2, align_c);
    +  __bang_sub((float *)nram_argmax_fp_w, (float *)nram_argmax_fp,
    +             (float *)nram_argmax_fp_w, align_c);
    +
    +  // Perform 'temp_result - wstart' operation
    +  __bang_sub_scalar((float *)nram_argmax_fp_w, (float *)nram_argmax_fp_w,
    +                    wstart, align_c);
    +
    +  // Perform 'temp_result = h * w_compute + w' operation
    +  __bang_mul_scalar((float *)nram_argmax_fp_h, (float *)nram_argmax_fp_h,
    +                    w_compute, align_c);
    +  __bang_add((float *)nram_argmax_fp_h, (float *)nram_argmax_fp_h,
    +             (float *)nram_argmax_fp_w, align_c);
    +
    +  if (loop_flag == 1) {
    +    __bang_sub_scalar((float *)nram_argmax_fp_h, (float *)nram_argmax_fp_h,
    +                      (loop_id * true_limit), align_c);
    +  }
    +  convertFloat2Int((int *)nram_argmax_int, (float *)nram_argmax_fp_bk1,
    +                   (float *)nram_argmax_fp_h, (float *)nram_argmax_fp_bk2,
    +                   align_c);
    +}
    +
    +template 
    +__mlu_func__ void MLUUnion1Roipool(const T *rois, const T *grads,
    +                                   const int32_t *argmax, T *grads_image,
    +                                   int channels, int height, int width,
    +                                   int pooled_height, int pooled_width,
    +                                   int rois_num, const T spatial_scale,
    +                                   int high_precision) {
    +  // Calculate the number of rois processed by each core
    +  int bin_num = rois_num * pooled_height * pooled_width;
    +  int loop =
    +      (bin_num % taskDim) ? (bin_num / taskDim + 1) : (bin_num / taskDim);
    +  int tid = taskId * loop;
    +  if (bin_num % taskDim != 0) {
    +    if (tid >= bin_num) {
    +      return;
    +    } else {
    +      // last part is (bin_num - tid).
    +      loop = bin_num - tid < loop ? bin_num - tid : loop;
    +    }
    +  }
    +  int align_c = PAD_UP(channels, ALIGN_SIZE);
    +  // Common part has 2: grads, argmax; ping-pong each is PIPELINE_PINGPONG_NUM.
    +  int data_size =
    +      PAD_DOWN(((MAX_NRAM_SIZE / sizeof(float) - PIPELINE_COMMON_NUM * align_c -
    +                 (PIPELINE_PINGPONG_NUM - 1) * align_c * 2) /
    +                2),
    +               ALIGN_SIZE);
    +  int hw_limit = data_size / align_c;
    +  float *nram_grads = (float *)nram_buffer;
    +  for (int idx = tid; idx < tid + loop; ++idx) {
    +    // (n, ph, pw) is a C in the pooled output
    +    int pw = idx % pooled_width;
    +    int ph = (idx / pooled_width) % pooled_height;
    +    int n = idx / pooled_width / pooled_height;
    +
    +    const T *offset_rois = (const T *)(rois + n * 5);
    +    int roi_batch_ind = int(offset_rois[0]);
    +    // Calculate the roi region on feature maps
    +    int roi_start_w = round(offset_rois[1] * spatial_scale);
    +    int roi_start_h = round(offset_rois[2] * spatial_scale);
    +    int roi_end_w = round(offset_rois[3] * spatial_scale);
    +    int roi_end_h = round(offset_rois[4] * spatial_scale);
    +    // Force malformed rois to 1x1
    +    int roi_width =
    +        roi_end_w - roi_start_w + 1 > 1 ? roi_end_w - roi_start_w + 1 : 1;
    +    int roi_height =
    +        roi_end_h - roi_start_h + 1 > 1 ? roi_end_h - roi_start_h + 1 : 1;
    +    T bin_size_h = (T)roi_height / (T)pooled_height;
    +    T bin_size_w = (T)roi_width / (T)pooled_width;
    +
    +    // The corresponding bin region
    +    int hstart = int(floor((T)ph * bin_size_h));
    +    int wstart = int(floor((T)pw * bin_size_w));
    +    int hend = int(ceil((T)(ph + 1) * bin_size_h));
    +    int wend = int(ceil((T)(pw + 1) * bin_size_w));
    +
    +    // Add roi offsets and clip to input boundaries, min(max(A, B), C);
    +    hstart = hstart + roi_start_h > 0 ? hstart + roi_start_h : 0;
    +    hstart = hstart < height ? hstart : height;
    +    hend = hend + roi_start_h > 0 ? hend + roi_start_h : 0;
    +    hend = hend < height ? hend : height;
    +    wstart = wstart + roi_start_w > 0 ? wstart + roi_start_w : 0;
    +    wstart = wstart < width ? wstart : width;
    +    wend = wend + roi_start_w > 0 ? wend + roi_start_w : 0;
    +    wend = wend < width ? wend : width;
    +
    +    bool is_empty = (hend <= hstart) || (wend <= wstart);
    +    if (!is_empty) {
    +      int h_compute = hend - hstart;
    +      int w_compute = wend - wstart;
    +      int true_limit =
    +          hw_limit < h_compute * w_compute ? hw_limit : h_compute * w_compute;
    +      int loop_int = (h_compute * w_compute) / true_limit;
    +      int rem = (h_compute * w_compute) % true_limit;
    +      int32_t *nram_argmax = (int32_t *)nram_grads + align_c;
    +      int32_t *nram_argmax_fp = (int32_t *)nram_argmax + align_c;
    +      int32_t *nram_argmax_fp_bk1 = (int32_t *)nram_argmax_fp + align_c;
    +      int32_t *nram_argmax_fp_bk2 = (int32_t *)nram_argmax_fp_bk1 + align_c;
    +      int32_t *nram_argmax_int = (int32_t *)nram_argmax_fp_bk2 + align_c;
    +      int32_t *nram_argmax_int_h = (int32_t *)nram_argmax_int + align_c;
    +      int32_t *nram_argmax_int_w = (int32_t *)nram_argmax_int_h + align_c;
    +      int32_t *nram_argmax_fp_h = (int32_t *)nram_argmax_int_w + align_c;
    +      int32_t *nram_argmax_fp_w = (int32_t *)nram_argmax_fp_h + align_c;
    +      float *nram_atomic_add = (float *)nram_argmax_fp_w + align_c;
    +      float *nram_grads_image = (float *)nram_atomic_add + align_c;
    +      if (true_limit == h_compute * w_compute) {
    +        /*
    +         * NRAM partition
    +         *  |---------------------------------------------------|
    +         *  |                     grads                         |
    +         *  |---------------------------------------------------|
    +         *  |                     argmax                        |
    +         *  |---------------------------------------------------|
    +         *  |                     argmax_temp                   |
    +         *  |---------------------------------------------------|
    +         *  |                     atomic_add                    |
    +         *  |---------------------------------------------------|
    +         *  |                     grads_image                   |
    +         *  |---------------------------------------------------|
    +         */
    +
    +        // Load the data from GDRAM to NRAM.
    +        __memcpy(
    +            (T *)nram_grads + align_c * high_precision,
    +            (const T *)grads +
    +                (n * pooled_height * pooled_width + ph * pooled_width + pw) *
    +                    channels,
    +            channels * sizeof(T), GDRAM2NRAM);
    +        if (high_precision) {
    +          __bang_half2float((float *)nram_grads,
    +                            (half *)nram_grads + align_c * high_precision,
    +                            align_c);
    +        }
    +
    +        __memcpy((int32_t *)nram_argmax, (const int32_t *)argmax +
    +                                             (n * pooled_height * pooled_width +
    +                                              ph * pooled_width + pw) *
    +                                                 channels,
    +                 channels * sizeof(int32_t), GDRAM2NRAM);
    +
    +        // Perform pooling operation on NRAM.
    +        convertIndex(nram_argmax, nram_argmax_fp, nram_argmax_fp_bk1,
    +                     nram_argmax_fp_bk2, nram_argmax_int, nram_argmax_int_h,
    +                     nram_argmax_int_w, nram_argmax_fp_h, nram_argmax_fp_w,
    +                     nram_atomic_add, nram_grads_image, width, height, wstart,
    +                     hstart, w_compute, h_compute, align_c, channels, 0, 0, 0);
    +        __bang_maxpool_bp((float *)nram_grads_image, (float *)nram_grads,
    +                          (int32_t *)nram_argmax_int, align_c, h_compute,
    +                          w_compute, h_compute, w_compute, h_compute,
    +                          w_compute);
    +        if (high_precision) {
    +          __bang_float2half_rd((half *)nram_grads_image,
    +                               (float *)nram_grads_image,
    +                               h_compute * w_compute * align_c);
    +        }
    +
    +        // Store the result on NRAM back to GDRAM.
    +        for (int hc = 0; hc < h_compute; ++hc) {
    +          for (int wc = 0; wc < w_compute; ++wc) {
    +            T *dst = (T *)nram_atomic_add;
    +            int grad_image_offset = (roi_batch_ind * height * width +
    +                                     (hc + hstart) * width + wc + wstart) *
    +                                    channels;
    +            T *src1 = (T *)grads_image + grad_image_offset;
    +            int nram_grads_image_offset = (hc * w_compute + wc) * align_c;
    +            T *src2 = (T *)nram_grads_image + nram_grads_image_offset;
    +            __bang_atomic_add(dst, src1, src2, channels);
    +          }
    +        }
    +      } else if (true_limit > 0) {
    +        /*
    +         * NRAM partition
    +         *  |---------------------------------------------------|
    +         *  |                     grads                         |
    +         *  |---------------------------------------------------|
    +         *  |                     argmax                        |
    +         *  |--------------------ping_pong----------------------|
    +         *  |       argmax_temp      |       argmax_temp        |
    +         *  |------------------------|--------------------------|
    +         *  |       atomic_add       |       atomic_add         |
    +         *  |------------------------|--------------------------|
    +         *  |       grads_image      |       grads_image        |
    +         *  |---------------------------------------------------|
    +         */
    +
    +        // Load the data from GDRAM to NRAM.
    +        __memcpy(
    +            (T *)nram_grads + align_c * high_precision,
    +            (const T *)grads +
    +                (n * pooled_height * pooled_width + ph * pooled_width + pw) *
    +                    channels,
    +            channels * sizeof(T), GDRAM2NRAM);
    +        if (high_precision) {
    +          __bang_half2float((float *)nram_grads,
    +                            (half *)nram_grads + align_c * high_precision,
    +                            align_c);
    +        }
    +        __memcpy((int32_t *)nram_argmax, (const int32_t *)argmax +
    +                                             (n * pooled_height * pooled_width +
    +                                              ph * pooled_width + pw) *
    +                                                 channels,
    +                 channels * sizeof(int32_t), GDRAM2NRAM);
    +
    +        int ping_pong = 0;
    +        int ping_pong_offset =
    +            (MAX_NRAM_SIZE / sizeof(float) - align_c * PIPELINE_COMMON_NUM) / 2;
    +        for (int loop_id = 0; loop_id <= loop_int; ++loop_id) {
    +          int size = (loop_id == loop_int) ? rem : true_limit;
    +          if (size == 0) {
    +            break;
    +          }
    +          // Perform pooling operation on NRAM.
    +          nram_argmax_fp =
    +              (int32_t *)nram_argmax + align_c + ping_pong * ping_pong_offset;
    +          nram_argmax_fp_bk1 = (int32_t *)nram_argmax_fp + align_c;
    +          nram_argmax_fp_bk2 = (int32_t *)nram_argmax_fp_bk1 + align_c;
    +          nram_argmax_int = (int32_t *)nram_argmax_fp_bk2 + align_c;
    +          nram_argmax_int_h = (int32_t *)nram_argmax_int + align_c;
    +          nram_argmax_int_w = (int32_t *)nram_argmax_int_h + align_c;
    +          nram_argmax_fp_h = (int32_t *)nram_argmax_int_w + align_c;
    +          nram_argmax_fp_w = (int32_t *)nram_argmax_fp_h + align_c;
    +          nram_atomic_add = (float *)nram_argmax_fp_w + align_c;
    +          nram_grads_image = (float *)nram_atomic_add + align_c;
    +          int loop_id_1 = loop_id;
    +          int size_1 = ((loop_id_1) == loop_int) ? rem : true_limit;
    +          if (size_1 == 0) {
    +            break;
    +          }
    +          convertIndex(nram_argmax, nram_argmax_fp, nram_argmax_fp_bk1,
    +                       nram_argmax_fp_bk2, nram_argmax_int, nram_argmax_int_h,
    +                       nram_argmax_int_w, nram_argmax_fp_h, nram_argmax_fp_w,
    +                       nram_atomic_add, nram_grads_image, width, height, wstart,
    +                       hstart, w_compute, h_compute, align_c, channels, 1,
    +                       loop_id_1, true_limit);
    +          __bang_maxpool_bp((float *)nram_grads_image, (float *)nram_grads,
    +                            (int32_t *)nram_argmax_int, align_c, size_1, 1,
    +                            size_1, 1, size_1, 1);
    +          if (high_precision) {
    +            __bang_float2half_rd((half *)nram_grads_image,
    +                                 (float *)nram_grads_image, size_1 * align_c);
    +          }
    +
    +          // Store the result on NRAM back to GDRAM.
    +          for (int index_size = 0; index_size < size; ++index_size) {
    +            int h = (loop_id * true_limit + index_size) / w_compute;
    +            int w = (loop_id * true_limit + index_size) % w_compute;
    +            T *dst = (T *)nram_atomic_add;
    +            T *grads_image_n =
    +                (T *)grads_image + roi_batch_ind * height * width * channels;
    +            T *src1 = (T *)grads_image_n +
    +                      ((h + hstart) * width + (w + wstart)) * channels;
    +            T *src2 = (T *)nram_grads_image + index_size * align_c;
    +            __bang_atomic_add(dst, src1, src2, channels);
    +          }
    +          ping_pong = 1 - ping_pong;
    +        }
    +      } else {
    +        /*
    +         * NRAM partition
    +         *  |---------------------------------------------------|
    +         *  |                     grads                         |
    +         *  |---------------------------------------------------|
    +         *  |                     argmax                        |
    +         *  |--------------------ping_pong----------------------|
    +         *  |       argmax_temp      |       argmax_temp        |
    +         *  |------------------------|--------------------------|
    +         *  |       atomic_add       |       atomic_add         |
    +         *  |------------------------|--------------------------|
    +         *  |       grads_image      |       grads_image        |
    +         *  |---------------------------------------------------|
    +         */
    +
    +        int c_limit =
    +            PAD_DOWN(MAX_NRAM_SIZE / sizeof(float) /
    +                         (PIPELINE_COMMON_NUM + PIPELINE_PINGPONG_NUM * 2),
    +                     ALIGN_SIZE);
    +        int loop_int = channels / c_limit;
    +        int rem = channels % c_limit;
    +        int ping_pong = 0;
    +        int ping_pong_offset =
    +            (MAX_NRAM_SIZE / sizeof(float) - c_limit * PIPELINE_COMMON_NUM) / 2;
    +        for (int loop_id = 0; loop_id <= loop_int; ++loop_id) {
    +          int size = (loop_id == loop_int) ? rem : c_limit;
    +          if (size == 0) {
    +            break;
    +          }
    +          nram_argmax_fp =
    +              (int32_t *)nram_argmax + c_limit + ping_pong * ping_pong_offset;
    +          nram_argmax_fp_bk1 = (int32_t *)nram_argmax_fp + c_limit;
    +          nram_argmax_fp_bk2 = (int32_t *)nram_argmax_fp_bk1 + c_limit;
    +          nram_argmax_int = (int32_t *)nram_argmax_fp_bk2 + c_limit;
    +          nram_argmax_int_h = (int32_t *)nram_argmax_int + c_limit;
    +          nram_argmax_int_w = (int32_t *)nram_argmax_int_h + c_limit;
    +          nram_argmax_fp_h = (int32_t *)nram_argmax_int_w + c_limit;
    +          nram_argmax_fp_w = (int32_t *)nram_argmax_fp_h + c_limit;
    +          nram_atomic_add = (float *)nram_argmax_fp_w + c_limit;
    +          nram_grads_image = (float *)nram_atomic_add + c_limit;
    +
    +          // This pipeline loads the data from GDRAM to NRAM.
    +          __memcpy((T *)nram_grads + c_limit * high_precision,
    +                   (const T *)grads +
    +                       n * pooled_height * pooled_width * channels +
    +                       ph * pooled_width * channels + pw * channels +
    +                       loop_id * c_limit,
    +                   size * sizeof(T), GDRAM2NRAM);
    +          if (high_precision) {
    +            __bang_half2float((float *)nram_grads,
    +                              (half *)nram_grads + c_limit * high_precision,
    +                              c_limit);
    +          }
    +          __memcpy((int32_t *)nram_argmax,
    +                   (const int32_t *)argmax +
    +                       n * pooled_height * pooled_width * channels +
    +                       ph * pooled_width * channels + pw * channels +
    +                       loop_id * c_limit,
    +                   size * sizeof(int32_t), GDRAM2NRAM);
    +
    +          for (int hc = 0; hc < h_compute; ++hc) {
    +            for (int wc = 0; wc < w_compute; ++wc) {
    +              // This pipeline performs pooling operation on NRAM.
    +              convertIndex(
    +                  nram_argmax, nram_argmax_fp, nram_argmax_fp_bk1,
    +                  nram_argmax_fp_bk2, nram_argmax_int, nram_argmax_int_h,
    +                  nram_argmax_int_w, nram_argmax_fp_h, nram_argmax_fp_w,
    +                  nram_atomic_add, nram_grads_image, width, height, wstart + wc,
    +                  hstart + hc, h_compute, w_compute, c_limit, size, 0, 0, 0);
    +              __bang_maxpool_bp((float *)nram_grads_image, (float *)nram_grads,
    +                                (int32_t *)nram_argmax_int, c_limit, 1, 1, 1, 1,
    +                                1, 1);
    +              if (high_precision) {
    +                __bang_float2half_rd((half *)nram_grads_image,
    +                                     (float *)nram_grads_image, c_limit);
    +              }
    +              // This pipeline stores the result on NRAM back to GDRAM.
    +              T *dst = (T *)nram_atomic_add;
    +              T *grads_image_n =
    +                  (T *)grads_image + roi_batch_ind * height * width * channels;
    +              T *src1 = (T *)grads_image_n +
    +                        ((hc + hstart) * width + (wc + wstart)) * channels +
    +                        loop_id * c_limit;
    +              T *src2 = (T *)nram_grads_image;
    +              __bang_atomic_add(dst, src1, src2, size);
    +            }
    +          }
    +          ping_pong = 1 - ping_pong;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +__mlu_global__ void MLUKernelRoiPoolBackward(
    +    const void *grads, const void *rois, const int *argmax, void *grads_image,
    +    int rois_num, int pooled_height, int pooled_width, int channels, int no,
    +    int height, int width, const float spatial_scale,
    +    const cnrtDataType_t k_dtype) {
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  switch (k_dtype) {
    +    case CNRT_FLOAT16: {
    +      // Using the float type '__bang_max_pool_bp' instruction to increase the
    +      // bit width.
    +      const int high_precision = 1;
    +      MLUUnion1Roipool((const half *)rois, (const half *)grads,
    +                       (const int32_t *)argmax, (half *)grads_image, channels,
    +                       height, width, pooled_height, pooled_width, rois_num,
    +                       (const half)spatial_scale, high_precision);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      const int high_precision = 0;
    +      MLUUnion1Roipool((const float *)rois, (const float *)grads,
    +                       (const int32_t *)argmax, (float *)grads_image, channels,
    +                       height, width, pooled_height, pooled_width, rois_num,
    +                       (const float)spatial_scale, high_precision);
    +    }; break;
    +    default: { break; }
    +  }
    +}
    +}  // namespace backward
    +
    +void KernelRoiPoolForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t data_type,
    +                          const void *input_data, const void *input_rois,
    +                          const int batch, const int channels, const int height,
    +                          const int width, const int pooled_height,
    +                          const int pooled_width, const int rois_num,
    +                          const float spatial_scale, void *output_data,
    +                          int *argmax) {
    +  forward::MLUKernelRoiPool<<>>(
    +      data_type, input_data, input_rois, batch, channels, height, width,
    +      pooled_height, pooled_width, rois_num, spatial_scale, output_data,
    +      argmax);
    +}
    +
    +void KernelRoiPoolBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                           cnrtQueue_t queue, cnrtDataType_t k_dtype,
    +                           const void *grad_output_ptr, const void *rois_ptr,
    +                           const int *argmax_ptr, void *grad_input_ptr,
    +                           const int box_num, const int pooled_height,
    +                           const int pooled_width, const int channels,
    +                           const int batch, const int height, const int width,
    +                           const float spatial_scale) {
    +  backward::MLUKernelRoiPoolBackward<<>>(
    +      grad_output_ptr, rois_ptr, argmax_ptr, grad_input_ptr, box_num,
    +      pooled_height, pooled_width, channels, batch, height, width,
    +      spatial_scale, k_dtype);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roiaware_pool3d_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roiaware_pool3d_mlu_kernel.mlu
    new file mode 100644
    index 000000000..4c1edf0bf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roiaware_pool3d_mlu_kernel.mlu
    @@ -0,0 +1,747 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "common_mlu_helper.hpp"
    +
    +#define ROI_OFFSET 7
    +#define FLOAT_NRAM_BUFFER_NUM 14
    +#define HALF_NRAM_BUFFER_NUM 25
    +#define ALIGN_NUM 64
    +
    +__nram__ char data_nram[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelPtsIdxOfVoxels(
    +    const int pool_method, const int boxes_num, const int pts_num,
    +    const int max_pts_each_voxel, const int out_x, const int out_y,
    +    const int out_z, const T *rois, const T *pts, int *pts_idx_of_voxels) {
    +  // params (T)rois: (boxes_num, 7)
    +  // params (T)pts: (3, pts_num)
    +  // params (int)pts_idx_of_voxels: (boxes_num, out_x, out_y, out_z,
    +  // max_pts_each_voxel)
    +
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  int nram_pts_num = 0;
    +  if (sizeof(T) == sizeof(float)) {
    +    nram_pts_num = PAD_DOWN(
    +        (MAX_NRAM_SIZE / sizeof(float) / FLOAT_NRAM_BUFFER_NUM), ALIGN_NUM);
    +  } else {
    +    nram_pts_num = PAD_DOWN(
    +        (MAX_NRAM_SIZE / sizeof(half) / HALF_NRAM_BUFFER_NUM), ALIGN_NUM);
    +  }
    +
    +  char *X = NULL;
    +  char *Y = NULL;
    +  char *Z = NULL;
    +  char *local_X = NULL;
    +  char *local_Y = NULL;
    +  char *local_Z = NULL;
    +  char *nram_pts_in_flag = NULL;
    +  float *temp_buffer1 = NULL;
    +  float *temp_buffer2 = NULL;
    +  float *temp_buffer3 = NULL;
    +  float *temp_buffer4 = NULL;
    +  float *temp_buffer5 = NULL;
    +  float *nram_voxel_offset = NULL;
    +  int *nram_pts_idx_seq = NULL;
    +  float *fp_local_X = NULL;
    +  float *fp_local_Y = NULL;
    +  float *fp_local_Z = NULL;
    +  float *fp_nram_pts_in_flag = NULL;
    +  if (sizeof(T) == sizeof(float)) {
    +    X = (char *)((float *)data_nram);
    +    Y = (char *)((float *)data_nram + nram_pts_num);
    +    Z = (char *)((float *)data_nram + nram_pts_num * 2);
    +    local_X = (char *)((float *)data_nram + nram_pts_num * 3);
    +    local_Y = (char *)((float *)data_nram + nram_pts_num * 4);
    +    local_Z = (char *)((float *)data_nram + nram_pts_num * 5);
    +    nram_pts_in_flag = (char *)((float *)data_nram + nram_pts_num * 6);
    +    temp_buffer1 = (float *)data_nram + nram_pts_num * 7;
    +    temp_buffer2 = (float *)data_nram + nram_pts_num * 8;
    +    temp_buffer3 = (float *)data_nram + nram_pts_num * 9;
    +    temp_buffer4 = (float *)data_nram + nram_pts_num * 10;
    +    temp_buffer5 = (float *)data_nram + nram_pts_num * 11;
    +    nram_voxel_offset = (float *)data_nram + nram_pts_num * 12;
    +    nram_pts_idx_seq = (int *)((float *)data_nram + nram_pts_num * 13);
    +    fp_local_X = (float *)local_X;
    +    fp_local_Y = (float *)local_Y;
    +    fp_local_Z = (float *)local_Z;
    +    fp_nram_pts_in_flag = (float *)nram_pts_in_flag;
    +  } else {
    +    X = (char *)((half *)data_nram);
    +    Y = (char *)((half *)data_nram + nram_pts_num);
    +    Z = (char *)((half *)data_nram + nram_pts_num * 2);
    +    local_X = (char *)((half *)data_nram + nram_pts_num * 4);
    +    local_Y = (char *)((half *)data_nram + nram_pts_num * 6);
    +    local_Z = (char *)((half *)data_nram + nram_pts_num * 8);
    +    nram_pts_in_flag = (char *)((half *)data_nram + nram_pts_num * 10);
    +    temp_buffer1 = (float *)((half *)data_nram + nram_pts_num * 11);
    +    temp_buffer2 = (float *)((half *)data_nram + nram_pts_num * 13);
    +    temp_buffer3 = (float *)((half *)data_nram + nram_pts_num * 15);
    +    temp_buffer4 = (float *)((half *)data_nram + nram_pts_num * 17);
    +    temp_buffer5 = (float *)((half *)data_nram + nram_pts_num * 19);
    +    nram_voxel_offset = (float *)((half *)data_nram + nram_pts_num * 21);
    +    nram_pts_idx_seq = (int *)((half *)data_nram + nram_pts_num * 23);
    +    fp_local_X = (float *)((half *)local_X - nram_pts_num);
    +    fp_local_Y = (float *)((half *)local_Y - nram_pts_num);
    +    fp_local_Z = (float *)((half *)local_Z - nram_pts_num);
    +    fp_nram_pts_in_flag = (float *)((half *)nram_pts_in_flag - nram_pts_num);
    +  }
    +
    +  for (int i = 0; i < nram_pts_num; i++) {
    +    nram_pts_idx_seq[i] = i;
    +  }
    +
    +  int nram_pts_loop_times = pts_num / nram_pts_num;
    +  int rem_nram_num = pts_num % nram_pts_num;
    +
    +  for (int roi_index = taskId; roi_index < boxes_num; roi_index += taskDim) {
    +    const T *cur_roi = rois + roi_index * ROI_OFFSET;
    +    T cx = cur_roi[0];
    +    T cy = cur_roi[1];
    +    T cz = cur_roi[2];
    +    T dx = cur_roi[3];
    +    T dy = cur_roi[4];
    +    T dz = cur_roi[5];
    +    T rz = cur_roi[6];
    +
    +    T dx_2 = dx / 2.0;
    +    T dy_2 = dy / 2.0;
    +    T dz_2 = dz / 2.0;
    +
    +    for (int loop_idx = 0; loop_idx <= nram_pts_loop_times; loop_idx++) {
    +      int load_pts_num =
    +          (loop_idx == nram_pts_loop_times) ? rem_nram_num : nram_pts_num;
    +      if (load_pts_num == 0) {
    +        break;
    +      }
    +      int pts_offset_cur_loop = nram_pts_num * loop_idx;
    +      int compute_pts_num = (loop_idx == nram_pts_loop_times)
    +                                ? PAD_UP(rem_nram_num, ALIGN_NUM)
    +                                : nram_pts_num;
    +      // load pts
    +      __memcpy((void *)X, (T *)pts + pts_offset_cur_loop,
    +               load_pts_num * sizeof(T), GDRAM2NRAM);
    +      __memcpy((void *)Y, (T *)pts + pts_num + pts_offset_cur_loop,
    +               load_pts_num * sizeof(T), GDRAM2NRAM);
    +      __memcpy((void *)Z, (T *)pts + pts_num * 2 + pts_offset_cur_loop,
    +               load_pts_num * sizeof(T), GDRAM2NRAM);
    +      // fabs(local_z)
    +      __bang_sub_scalar((T *)local_Z, (T *)Z, (T)cz, compute_pts_num);
    +      __bang_sub_scalar((T *)temp_buffer1, (T *)Z, (T)(cz + dz_2),
    +                        compute_pts_num);
    +      __bang_active_abs((T *)temp_buffer1, (T *)temp_buffer1, compute_pts_num);
    +#if __BANG_ARCH__ >= 322
    +      __bang_le_scalar((T *)nram_pts_in_flag, (T *)temp_buffer1, (T)(dz_2),
    +                       compute_pts_num);
    +#else
    +      __bang_write_value((void *)temp_buffer2, compute_pts_num, (T)(dz_2));
    +      __bang_le((T *)nram_pts_in_flag, (T *)temp_buffer1, (T *)temp_buffer2,
    +                compute_pts_num);
    +#endif
    +      T cosa = std::cos(-rz);
    +      T sina = std::sin(-rz);
    +      __bang_sub_scalar((T *)temp_buffer3, (T *)X, (T)cx, compute_pts_num);
    +      __bang_sub_scalar((T *)temp_buffer4, (T *)Y, (T)cy, compute_pts_num);
    +      __bang_mul_scalar((T *)temp_buffer1, (T *)temp_buffer3, (T)cosa,
    +                        compute_pts_num);
    +      __bang_mul_scalar((T *)temp_buffer2, (T *)temp_buffer4, (T)sina,
    +                        compute_pts_num);
    +      // local_x
    +      __bang_sub((T *)local_X, (T *)temp_buffer1, (T *)temp_buffer2,
    +                 compute_pts_num);
    +      // fabs(local_x)
    +      __bang_active_abs((T *)temp_buffer1, (T *)local_X, compute_pts_num);
    +      // fabs(local_x) < dx/2 ? 1 : 0
    +#if __BANG_ARCH__ >= 322
    +      __bang_lt_scalar((T *)temp_buffer1, (T *)temp_buffer1, (T)(dx_2),
    +                       compute_pts_num);
    +#else
    +      __bang_write_value((void *)temp_buffer2, compute_pts_num, (T)(dx_2));
    +      __bang_lt((T *)temp_buffer1, (T *)temp_buffer1, (T *)temp_buffer2,
    +                compute_pts_num);
    +#endif
    +      __bang_and((T *)nram_pts_in_flag, (T *)nram_pts_in_flag,
    +                 (T *)temp_buffer1,
    +                 compute_pts_num);  // flush res
    +
    +      __bang_mul_scalar((T *)temp_buffer1, (T *)temp_buffer3, (T)sina,
    +                        compute_pts_num);
    +      __bang_mul_scalar((T *)temp_buffer2, (T *)temp_buffer4, (T)cosa,
    +                        compute_pts_num);
    +      // local_y
    +      __bang_add((T *)local_Y, (T *)temp_buffer1, (T *)temp_buffer2,
    +                 compute_pts_num);
    +      // fabs(local_y)
    +      __bang_active_abs((T *)temp_buffer1, (T *)local_Y, compute_pts_num);
    +      // fabs(local_y) < dy/2 ? 1 : 0
    +#if __BANG_ARCH__ >= 322
    +      __bang_lt_scalar((T *)temp_buffer1, (T *)temp_buffer1, (T)(dy_2),
    +                       compute_pts_num);
    +#else
    +      __bang_write_value((void *)temp_buffer2, compute_pts_num, (T)(dy_2));
    +      __bang_lt((T *)temp_buffer1, (T *)temp_buffer1, (T *)temp_buffer2,
    +                compute_pts_num);
    +#endif
    +      __bang_and((T *)nram_pts_in_flag, (T *)nram_pts_in_flag,
    +                 (T *)temp_buffer1,
    +                 compute_pts_num);  // flush res
    +      T x_res = dx / out_x;
    +      T y_res = dy / out_y;
    +      T z_res = dz / out_z;
    +      __bang_add_scalar((T *)local_X, (T *)local_X, (T)(dx_2), compute_pts_num);
    +      __bang_add_scalar((T *)local_Y, (T *)local_Y, (T)(dy_2), compute_pts_num);
    +      // local_Z do not need to add dz/2.0
    +
    +#if (__BANG_ARCH__ >= 322) && (__BANG_ARCH__ != 372)
    +      __bang_div((T *)local_X, (T *)local_X, (T)x_res, compute_pts_num);
    +      __bang_div((T *)local_Y, (T *)local_Y, (T)y_res, compute_pts_num);
    +      __bang_div((T *)local_Z, (T *)local_Z, (T)z_res, compute_pts_num);
    +#else
    +      __bang_mul_scalar((T *)local_X, (T *)local_X, (T)(1 / x_res),
    +                        compute_pts_num);
    +      __bang_mul_scalar((T *)local_Y, (T *)local_Y, (T)(1 / y_res),
    +                        compute_pts_num);
    +      __bang_mul_scalar((T *)local_Z, (T *)local_Z, (T)(1 / z_res),
    +                        compute_pts_num);
    +#endif
    +      // float = float2int + int2float, half = half2int + int2float
    +      if (sizeof(T) == sizeof(float)) {
    +#if __BANG_ARCH__ >= 322
    +        __bang_float2int32_tz((int *)temp_buffer1, (float *)local_X,
    +                              compute_pts_num, 0);
    +        __bang_float2int32_tz((int *)temp_buffer2, (float *)local_Y,
    +                              compute_pts_num, 0);
    +        __bang_float2int32_tz((int *)temp_buffer3, (float *)local_Z,
    +                              compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_X, (int *)temp_buffer1,
    +                              compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_Y, (int *)temp_buffer2,
    +                              compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_Z, (int *)temp_buffer3,
    +                              compute_pts_num, 0);
    +#else
    +        convertFloat2Int((int *)temp_buffer1, (float *)temp_buffer2,
    +                         (float *)fp_local_X, (float *)temp_buffer3,
    +                         compute_pts_num);
    +        convertFloat2Int((int *)temp_buffer2, (float *)temp_buffer3,
    +                         (float *)fp_local_Y, (float *)temp_buffer4,
    +                         compute_pts_num);
    +        convertFloat2Int((int *)temp_buffer3, (float *)temp_buffer4,
    +                         (float *)fp_local_Z, (float *)temp_buffer5,
    +                         compute_pts_num);
    +        convertInt2Float((float *)fp_local_X, (float *)temp_buffer4,
    +                         (int *)temp_buffer1, (float *)temp_buffer5,
    +                         compute_pts_num);
    +        convertInt2Float((float *)fp_local_Y, (float *)temp_buffer4,
    +                         (int *)temp_buffer2, (float *)temp_buffer5,
    +                         compute_pts_num);
    +        convertInt2Float((float *)fp_local_Z, (float *)temp_buffer4,
    +                         (int *)temp_buffer3, (float *)temp_buffer5,
    +                         compute_pts_num);
    +#endif
    +      } else {
    +        __bang_half2float((float *)temp_buffer4, (half *)nram_pts_in_flag,
    +                          compute_pts_num);
    +        __bang_move((void *)fp_nram_pts_in_flag, (void *)temp_buffer4,
    +                    compute_pts_num * sizeof(float));
    +#if __BANG_ARCH__ >= 322
    +        __bang_half2int32_tz((int *)temp_buffer1, (half *)local_X,
    +                             compute_pts_num, 0);
    +        __bang_half2int32_tz((int *)temp_buffer2, (half *)local_Y,
    +                             compute_pts_num, 0);
    +        __bang_half2int32_tz((int *)temp_buffer3, (half *)local_Z,
    +                             compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_X, (int *)temp_buffer1,
    +                              compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_Y, (int *)temp_buffer2,
    +                              compute_pts_num, 0);
    +        __bang_int322float_rn((float *)fp_local_Z, (int *)temp_buffer3,
    +                              compute_pts_num, 0);
    +#else
    +        __bang_half2int16_tz((int16_t *)temp_buffer1, (half *)local_X,
    +                             compute_pts_num, 0);
    +        __bang_half2int16_tz((int16_t *)temp_buffer2, (half *)local_Y,
    +                             compute_pts_num, 0);
    +        __bang_half2int16_tz((int16_t *)temp_buffer3, (half *)local_Z,
    +                             compute_pts_num, 0);
    +        __bang_int162float((float *)fp_local_X, (int16_t *)temp_buffer1,
    +                           compute_pts_num, 0);
    +        __bang_int162float((float *)fp_local_Y, (int16_t *)temp_buffer2,
    +                           compute_pts_num, 0);
    +        __bang_int162float((float *)fp_local_Z, (int16_t *)temp_buffer3,
    +                           compute_pts_num, 0);
    +#endif
    +      }
    +      // process index >= 0
    +      __bang_write_value((float *)temp_buffer4, compute_pts_num, (float)0.0f);
    +      __bang_maxequal((float *)fp_local_X, (float *)fp_local_X,
    +                      (float *)temp_buffer4, compute_pts_num);
    +      __bang_maxequal((float *)fp_local_Y, (float *)fp_local_Y,
    +                      (float *)temp_buffer4, compute_pts_num);
    +      __bang_maxequal((float *)fp_local_Z, (float *)fp_local_Z,
    +                      (float *)temp_buffer4, compute_pts_num);
    +      // process index <= (out_x - 1)
    +      __bang_write_value((float *)temp_buffer5, compute_pts_num,
    +                         (float)(out_x - 1));
    +      __bang_minequal((float *)fp_local_X, (float *)fp_local_X,
    +                      (float *)temp_buffer5, compute_pts_num);
    +      __bang_write_value((float *)temp_buffer5, compute_pts_num,
    +                         (float)(out_y - 1));
    +      __bang_minequal((float *)fp_local_Y, (float *)fp_local_Y,
    +                      (float *)temp_buffer5, compute_pts_num);
    +      __bang_write_value((float *)temp_buffer5, compute_pts_num,
    +                         (float)(out_z - 1));
    +      __bang_minequal((float *)fp_local_Z, (float *)fp_local_Z,
    +                      (float *)temp_buffer5, compute_pts_num);
    +      __bang_mul_scalar((float *)temp_buffer1, (float *)fp_local_X,
    +                        (float)(out_y * out_z), compute_pts_num);
    +      __bang_mul_scalar((float *)temp_buffer2, (float *)fp_local_Y,
    +                        (float)out_z, compute_pts_num);
    +      __bang_mul_scalar((float *)temp_buffer3, (float *)fp_local_Z, (float)1.0,
    +                        compute_pts_num);
    +      __bang_add((float *)nram_voxel_offset, (float *)temp_buffer1,
    +                 (float *)temp_buffer2, compute_pts_num);
    +      __bang_add((float *)nram_voxel_offset, (float *)nram_voxel_offset,
    +                 (float *)temp_buffer3, compute_pts_num);
    +      __bang_mul_scalar((float *)nram_voxel_offset, (float *)nram_voxel_offset,
    +                        (float)max_pts_each_voxel, compute_pts_num);
    +      if (compute_pts_num != load_pts_num) {
    +        __memset_nram((float *)fp_nram_pts_in_flag + load_pts_num,
    +                      compute_pts_num - load_pts_num, (float)0.0);
    +      }
    +      __bang_collect((float *)temp_buffer4, (float *)nram_pts_idx_seq,
    +                     (float *)fp_nram_pts_in_flag, compute_pts_num);
    +      int pts_num_in_cur_roi =
    +          (int)__bang_count((float *)fp_nram_pts_in_flag, compute_pts_num);
    +      int *pts_idx_cur_voxels =
    +          (int *)pts_idx_of_voxels +
    +          roi_index * out_x * out_y * out_z * max_pts_each_voxel;
    +      for (int idx = 0; idx < pts_num_in_cur_roi; idx++) {
    +        int cur_pts_idx = *((int *)temp_buffer4 + idx);
    +        int offset = (int)(*((float *)nram_voxel_offset + cur_pts_idx));
    +        int cnt = pts_idx_cur_voxels[offset];
    +        if (cnt < max_pts_each_voxel - 1) {
    +          pts_idx_cur_voxels[offset + cnt + 1] =
    +              cur_pts_idx + loop_idx * nram_pts_num;
    +          pts_idx_cur_voxels[offset]++;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelRoiawarePool3dForward(
    +    const int pool_method, const int boxes_num, const int pts_num,
    +    const int channels, const int max_pts_each_voxel, const int out_x,
    +    const int out_y, const int out_z, const T *pts_feature,
    +    const int *pts_idx_of_voxels, T *pooled_features, int *argmax) {
    +  // params (T)pts_feature: (channels, pts_num)
    +  // params (int)pts_idx_of_voxels: (boxes_num, out_x, out_y, out_z,
    +  // max_pts_each_voxel) params (int)argmax: (boxes_num, out_x, out_y, out_z,
    +  // channels) params (T)pooled_features: (boxes_num, out_x, out_y, out_z,
    +  // channels)
    +
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  int align_num = NFU_ALIGN_SIZE / sizeof(T);
    +  int align_max_pts_each_voxel = PAD_UP(max_pts_each_voxel, align_num);
    +  int nram_channels_limit =
    +      PAD_DOWN((MAX_NRAM_SIZE - 128 -
    +                align_max_pts_each_voxel * (sizeof(int) + sizeof(T))) /
    +                   ((align_max_pts_each_voxel + 1) * sizeof(T) + sizeof(int)),
    +               align_num);
    +  int *nram_pts_idx_cur_voxel = (int *)data_nram;
    +  // nram_pts_idx_cur_voxel [align_max_pts_each_voxel]
    +  T *nram_max_pts_feature_tmp =
    +      (T *)((int *)nram_pts_idx_cur_voxel + align_max_pts_each_voxel);
    +  // nram_max_pts_feature_tmp [align_max_pts_each_voxel]
    +  T *nram_pts_feature_in_voxel =
    +      ((T *)nram_max_pts_feature_tmp + align_max_pts_each_voxel);
    +  // nram_pts_feature_in_voxel [nram_channels_limit, align_max_pts_each_voxel]
    +  T *nram_pooled_features_cur_voxel =
    +      ((T *)nram_pts_feature_in_voxel +
    +       nram_channels_limit * align_max_pts_each_voxel);
    +  // nram_pooled_features_cur_voxel [nram_channels_limit]
    +  int *nram_argmax_cur_voxel =
    +      (int *)((T *)nram_pooled_features_cur_voxel + nram_channels_limit);
    +  // nram_argmax_cur_voxel [nram_channels_limit]
    +  char *one_pooled_feature =
    +      (char *)((int *)nram_argmax_cur_voxel + nram_channels_limit);
    +  // one_pooled_feature [128]
    +  int channels_loop_times = channels / nram_channels_limit;
    +  int rem_channels = channels % nram_channels_limit;
    +  for (int voxel_index = taskId;
    +       voxel_index < boxes_num * out_x * out_y * out_z;
    +       voxel_index += taskDim) {
    +    int *pts_idx_cur_voxels =
    +        (int *)pts_idx_of_voxels + voxel_index * max_pts_each_voxel;
    +    __memcpy((void *)nram_pts_idx_cur_voxel, (void *)pts_idx_cur_voxels,
    +             max_pts_each_voxel * sizeof(int), GDRAM2NRAM);
    +    int pts_num_cur_voxel = nram_pts_idx_cur_voxel[0];
    +    if (pts_num_cur_voxel == 0) {
    +      continue;
    +    }
    +    for (int channels_loop_idx = 0; channels_loop_idx <= channels_loop_times;
    +         channels_loop_idx++) {
    +      int actual_channels_num = (channels_loop_idx == channels_loop_times)
    +                                    ? rem_channels
    +                                    : nram_channels_limit;
    +      if (actual_channels_num == 0) {
    +        break;
    +      }
    +      int channels_offset = nram_channels_limit * channels_loop_idx;
    +
    +#if ((__BANG_ARCH__ >= 200) && (__BANG_ARCH__ < 300))
    +      int compute_channels_num = (channels_loop_idx == channels_loop_times)
    +                                     ? PAD_UP(rem_channels, align_num)
    +                                     : nram_channels_limit;
    +      if (pool_method == 0) {
    +        __bang_write_value((void *)nram_pts_feature_in_voxel,
    +                           compute_channels_num * align_max_pts_each_voxel,
    +                           (T)-INFINITY);
    +      }
    +#endif
    +
    +      T *pts_feature_cur_loop = (T *)pts_feature + channels_offset * pts_num;
    +      for (int idx = 0; idx < pts_num_cur_voxel; idx++) {
    +        __memcpy((T *)nram_pts_feature_in_voxel + idx,
    +                 (T *)pts_feature_cur_loop + nram_pts_idx_cur_voxel[idx + 1],
    +                 sizeof(T), GDRAM2NRAM, align_max_pts_each_voxel * sizeof(T),
    +                 pts_num * sizeof(T), actual_channels_num - 1);
    +      }
    +      for (int channel_idx = 0; channel_idx < actual_channels_num;
    +           channel_idx++) {
    +        if (pool_method == 0) {
    +#if __BANG_ARCH__ >= 322
    +          __bang_argmax((T *)one_pooled_feature,
    +                        (T *)nram_pts_feature_in_voxel +
    +                            channel_idx * align_max_pts_each_voxel,
    +                        pts_num_cur_voxel);
    +          T max_val = ((T *)one_pooled_feature)[0];
    +          int max_idx = (int)(*(uint32_t *)((T *)one_pooled_feature + 1));
    +          nram_pooled_features_cur_voxel[channel_idx] =
    +              (max_val == -INFINITY) ? 0 : max_val;
    +          nram_argmax_cur_voxel[channel_idx] =
    +              (max_val == -INFINITY) ? -1 : nram_pts_idx_cur_voxel[max_idx + 1];
    +#else
    +          // __bang_max need align num on mlu200 series
    +          if (sizeof(T) == sizeof(float)) {
    +            __bang_max((float *)one_pooled_feature,
    +                       (float *)nram_pts_feature_in_voxel +
    +                           channel_idx * align_max_pts_each_voxel,
    +                       align_max_pts_each_voxel);
    +            float max_val = ((float *)one_pooled_feature)[0];
    +            __bang_write_value((void *)nram_max_pts_feature_tmp,
    +                               align_max_pts_each_voxel, (float)max_val);
    +            __bang_eq((float *)nram_max_pts_feature_tmp,
    +                      (float *)nram_pts_feature_in_voxel +
    +                          channel_idx * align_max_pts_each_voxel,
    +                      (float *)nram_max_pts_feature_tmp,
    +                      align_max_pts_each_voxel);
    +            int max_idx = (int)__bang_findfirst1(
    +                (float *)nram_max_pts_feature_tmp, align_max_pts_each_voxel);
    +            nram_pooled_features_cur_voxel[channel_idx] =
    +                (max_val == -INFINITY) ? 0 : max_val;
    +            nram_argmax_cur_voxel[channel_idx] =
    +                (max_val == -INFINITY) ? -1
    +                                       : nram_pts_idx_cur_voxel[max_idx + 1];
    +          } else {
    +            int max_idx = -1;
    +            float max_val = -INFINITY;
    +            for (int k = 0; k < pts_num_cur_voxel; k++) {
    +              float pts_feature_cur_channel = __half2float_rd(
    +                  *((half *)nram_pts_feature_in_voxel +
    +                    channel_idx * align_max_pts_each_voxel + k));
    +              if (pts_feature_cur_channel > max_val) {
    +                max_val = pts_feature_cur_channel;
    +                max_idx = k;
    +              }
    +            }
    +            nram_pooled_features_cur_voxel[channel_idx] =
    +                (max_idx == -1) ? 0 : max_val;
    +            nram_argmax_cur_voxel[channel_idx] =
    +                (max_idx == -1) ? -1 : nram_pts_idx_cur_voxel[max_idx + 1];
    +          }
    +#endif
    +        } else if (pool_method == 1) {
    +          float sum_val_cur_channel = 0;
    +          for (int k = 0; k < pts_num_cur_voxel; k++) {
    +            sum_val_cur_channel += static_cast(
    +                ((T *)nram_pts_feature_in_voxel)[channel_idx *
    +                                                     align_max_pts_each_voxel +
    +                                                 k]);
    +          }
    +          nram_pooled_features_cur_voxel[channel_idx] =
    +              (T)(sum_val_cur_channel / pts_num_cur_voxel);
    +        }
    +      }
    +      // store
    +      __memcpy((T *)pooled_features + voxel_index * channels + channels_offset,
    +               (void *)nram_pooled_features_cur_voxel,
    +               actual_channels_num * sizeof(T), NRAM2GDRAM);
    +      if (pool_method == 0) {
    +        __memcpy((int *)argmax + voxel_index * channels + channels_offset,
    +                 (void *)nram_argmax_cur_voxel,
    +                 actual_channels_num * sizeof(int), NRAM2GDRAM);
    +      }
    +    }
    +  }
    +}
    +
    +void KernelPtsIdxOfVoxels(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                          const int pool_method, const int boxes_num,
    +                          const int pts_num, const int max_pts_each_voxel,
    +                          const int out_x, const int out_y, const int out_z,
    +                          const void *rois, const void *pts,
    +                          int *pts_idx_of_voxels) {
    +  switch (d_type) {
    +    case CNRT_FLOAT32: {
    +      MLUUnion1KernelPtsIdxOfVoxels<<>>(
    +          pool_method, boxes_num, pts_num, max_pts_each_voxel, out_x, out_y,
    +          out_z, (float *)rois, (float *)pts, (int *)pts_idx_of_voxels);
    +    }; break;
    +    case CNRT_FLOAT16: {
    +      MLUUnion1KernelPtsIdxOfVoxels<<>>(
    +          pool_method, boxes_num, pts_num, max_pts_each_voxel, out_x, out_y,
    +          out_z, (half *)rois, (half *)pts, (int *)pts_idx_of_voxels);
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +void KernelRoiawarePool3dForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const int pool_method, const int boxes_num,
    +    const int pts_num, const int channels, const int max_pts_each_voxel,
    +    const int out_x, const int out_y, const int out_z, const void *pts_feature,
    +    const int *pts_idx_of_voxels, void *pooled_features, int *argmax) {
    +  switch (d_type) {
    +    case CNRT_FLOAT32: {
    +      MLUUnion1KernelRoiawarePool3dForward<<>>(
    +          pool_method, boxes_num, pts_num, channels, max_pts_each_voxel, out_x,
    +          out_y, out_z, (float *)pts_feature, (int *)pts_idx_of_voxels,
    +          (float *)pooled_features, (int *)argmax);
    +    }; break;
    +    case CNRT_FLOAT16: {
    +      MLUUnion1KernelRoiawarePool3dForward<<>>(
    +          pool_method, boxes_num, pts_num, channels, max_pts_each_voxel, out_x,
    +          out_y, out_z, (half *)pts_feature, (int *)pts_idx_of_voxels,
    +          (half *)pooled_features, (int *)argmax);
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelRoiawareMaxPool3dBackward(
    +    const int boxes_num, const int out_x, const int out_y, const int out_z,
    +    const int channels, const int *argmax, const T *grad_out, T *grad_in) {
    +  // params (int)argmax: (boxes_num, out_x, out_y, out_z, channels)
    +  // params (T)grad_out: (boxes_num, out_x, out_y, out_z, channels)
    +  // params (T)grad_in: (pts_num, channels)
    +
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  int nram_channels_limit =
    +      (MAX_NRAM_SIZE - sizeof(T) * 1) / (sizeof(T) + sizeof(int));
    +  int *nram_argmax_cur_loop = (int *)data_nram;
    +  // nram_argmax_cur_loop [nram_channels_limit]
    +  T *nram_grad_out_cur_loop =
    +      (T *)((int *)nram_argmax_cur_loop + nram_channels_limit);
    +  // nram_grad_out_cur_loop [nram_channels_limit]
    +  T *nram_grad_in_cur_channel =
    +      (T *)nram_grad_out_cur_loop + nram_channels_limit;
    +  // nram_grad_in_cur_channel [1]
    +  int channels_loop_times = channels / nram_channels_limit;
    +  int rem_channels = channels % nram_channels_limit;
    +  int voxels_num = boxes_num * out_x * out_y * out_z;
    +
    +  for (int voxel_index = taskId; voxel_index < voxels_num;
    +       voxel_index += taskDim) {
    +    const int *argmax_cur_voxel = argmax + voxel_index * channels;
    +    const T *grad_out_cur_voxel = grad_out + voxel_index * channels;
    +
    +    for (int channels_loop_idx = 0; channels_loop_idx <= channels_loop_times;
    +         channels_loop_idx++) {
    +      int actual_channels_num = (channels_loop_idx == channels_loop_times)
    +                                    ? rem_channels
    +                                    : nram_channels_limit;
    +      if (actual_channels_num == 0) {
    +        break;
    +      }
    +      const int *argmax_cur_loop =
    +          argmax_cur_voxel + nram_channels_limit * channels_loop_idx;
    +      const T *grad_out_cur_loop =
    +          grad_out_cur_voxel + nram_channels_limit * channels_loop_idx;
    +      __memcpy((void *)nram_argmax_cur_loop, (void *)argmax_cur_loop,
    +               actual_channels_num * sizeof(int), GDRAM2NRAM);
    +      __memcpy((void *)nram_grad_out_cur_loop, (void *)grad_out_cur_loop,
    +               actual_channels_num * sizeof(T), GDRAM2NRAM);
    +
    +      for (int channel_idx = 0; channel_idx < actual_channels_num;
    +           channel_idx++) {
    +        int *nram_argmax_cur_channel = nram_argmax_cur_loop + channel_idx;
    +        T *nram_grad_out_cur_channel = nram_grad_out_cur_loop + channel_idx;
    +        if (nram_argmax_cur_channel[0] == -1) {
    +          continue;
    +        }
    +        T *grad_in_cur_channel =
    +            grad_in + nram_argmax_cur_channel[0] * channels +
    +            nram_channels_limit * channels_loop_idx + channel_idx;
    +        __bang_atomic_add((T *)nram_grad_in_cur_channel,
    +                          (T *)grad_in_cur_channel,
    +                          (T *)(nram_grad_out_cur_channel), 1);
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelRoiawareAvgPool3dBackward(
    +    const int boxes_num, const int out_x, const int out_y, const int out_z,
    +    const int channels, const int max_pts_each_voxel,
    +    const int *pts_idx_of_voxels, const T *grad_out, T *grad_in) {
    +  // params (int)pts_idx_of_voxels: (boxes_num, out_x, out_y, out_z,
    +  // max_pts_each_voxel) params (T)grad_out: (boxes_num, out_x, out_y, out_z,
    +  // channels) params (T)grad_in: (pts_num, channels)
    +
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  int align_num = NFU_ALIGN_SIZE / sizeof(T);
    +  int align_max_pts_each_voxel = PAD_UP(max_pts_each_voxel, align_num);
    +  int nram_channels_limit = PAD_DOWN(
    +      (MAX_NRAM_SIZE - align_max_pts_each_voxel * sizeof(int)) / 2 / sizeof(T),
    +      align_num);
    +  int *nram_pts_idx_cur_voxel = (int *)data_nram;
    +  // nram_pts_idx_cur_voxel [align_max_pts_each_voxel]
    +  T *nram_grad_out_cur_loop =
    +      (T *)((int *)nram_pts_idx_cur_voxel + align_max_pts_each_voxel);
    +  // nram_grad_out_cur_loop [nram_channels_limit]
    +  T *nram_grad_in_cur_loop = (T *)nram_grad_out_cur_loop + nram_channels_limit;
    +  // nram_grad_in_cur_loop [nram_channels_limit]
    +  int channels_loop_times = channels / nram_channels_limit;
    +  int rem_channels = channels % nram_channels_limit;
    +  int voxels_num = boxes_num * out_x * out_y * out_z;
    +
    +  for (int voxel_index = taskId; voxel_index < voxels_num;
    +       voxel_index += taskDim) {
    +    const T *grad_out_cur_voxel = grad_out + voxel_index * channels;
    +    const int *pts_idx_cur_voxel =
    +        pts_idx_of_voxels + voxel_index * max_pts_each_voxel;
    +    __memcpy((void *)nram_pts_idx_cur_voxel, (void *)pts_idx_cur_voxel,
    +             max_pts_each_voxel * sizeof(int), GDRAM2NRAM);
    +    int total_pts_of_voxel = nram_pts_idx_cur_voxel[0];
    +    if (total_pts_of_voxel <= 0) {
    +      continue;
    +    }
    +    float cur_grad = 1.0 / ((float)total_pts_of_voxel);
    +
    +    for (int channels_loop_idx = 0; channels_loop_idx <= channels_loop_times;
    +         channels_loop_idx++) {
    +      int actual_channels_num = (channels_loop_idx == channels_loop_times)
    +                                    ? rem_channels
    +                                    : nram_channels_limit;
    +      if (actual_channels_num == 0) {
    +        break;
    +      }
    +      const T *grad_out_cur_loop =
    +          grad_out_cur_voxel + nram_channels_limit * channels_loop_idx;
    +      __memcpy((void *)nram_grad_in_cur_loop, (void *)grad_out_cur_loop,
    +               actual_channels_num * sizeof(T), GDRAM2NRAM);
    +
    +      int align_actual_channels_num = PAD_UP(actual_channels_num, align_num);
    +
    +      if (sizeof(T) == sizeof(half)) {
    +        __bang_half2float((float *)nram_grad_out_cur_loop,
    +                          (half *)nram_grad_in_cur_loop,
    +                          align_actual_channels_num);
    +        __bang_mul_scalar((float *)nram_grad_out_cur_loop,
    +                          (float *)nram_grad_out_cur_loop, (float)cur_grad,
    +                          align_actual_channels_num);
    +        convertFloat2half((half *)nram_grad_out_cur_loop,
    +                          (float *)nram_grad_out_cur_loop,
    +                          align_actual_channels_num);
    +      } else {
    +        __bang_mul_scalar((float *)nram_grad_out_cur_loop,
    +                          (float *)nram_grad_in_cur_loop, (float)cur_grad,
    +                          align_actual_channels_num);
    +      }
    +      for (int k = 1; k <= total_pts_of_voxel; k++) {
    +        T *grad_in_cur_loop = grad_in + nram_pts_idx_cur_voxel[k] * channels +
    +                              nram_channels_limit * channels_loop_idx;
    +        __bang_atomic_add((T *)nram_grad_in_cur_loop, (T *)grad_in_cur_loop,
    +                          (T *)nram_grad_out_cur_loop, actual_channels_num);
    +      }
    +    }
    +  }
    +}
    +
    +void KernelRoiawarePool3dBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const int pool_method, const int boxes_num,
    +    const int out_x, const int out_y, const int out_z, const int channels,
    +    const int max_pts_each_voxel, const int *pts_idx_of_voxels,
    +    const int *argmax, const void *grad_out, void *grad_in) {
    +  if (pool_method == 0) {
    +    switch (d_type) {
    +      case CNRT_FLOAT32: {
    +        MLUUnion1KernelRoiawareMaxPool3dBackward
    +            <<>>(boxes_num, out_x, out_y, out_z, channels,
    +                                       (int *)argmax, (float *)grad_out,
    +                                       (float *)grad_in);
    +      }; break;
    +      case CNRT_FLOAT16: {
    +        MLUUnion1KernelRoiawareMaxPool3dBackward
    +            <<>>(boxes_num, out_x, out_y, out_z, channels,
    +                                       (int *)argmax, (half *)grad_out,
    +                                       (half *)grad_in);
    +      }; break;
    +      default: {
    +        break;
    +      }
    +    }
    +  } else {
    +    switch (d_type) {
    +      case CNRT_FLOAT32: {
    +        MLUUnion1KernelRoiawareAvgPool3dBackward
    +            <<>>(
    +                boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
    +                (int *)pts_idx_of_voxels, (float *)grad_out, (float *)grad_in);
    +      }; break;
    +      case CNRT_FLOAT16: {
    +        MLUUnion1KernelRoiawareAvgPool3dBackward
    +            <<>>(
    +                boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
    +                (int *)pts_idx_of_voxels, (half *)grad_out, (half *)grad_in);
    +      }; break;
    +      default: {
    +        break;
    +      }
    +    }
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_large_boxes_num_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_large_boxes_num_mlu_kernel.mlu
    new file mode 100644
    index 000000000..58a15d876
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_large_boxes_num_mlu_kernel.mlu
    @@ -0,0 +1,536 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * OR IMPLIED, INCLUDING BUvoid NOKType LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENvoid SHALL THE AUTHORS OR COPYRIGHKType HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORvoid OR OTHERWISE, ARISING FROM, OUKType OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "common_mlu_helper.hpp"
    +
    +/*************************************************************************
    + *
    + * NRAM partition:
    + * | boxes3d       | ping points + pong points | aux_a ~ aux_f            |
    + * | 7 * sizeof(T) | 6 * deal_num * sizeof(T)  | 6 * deal_num * sizeof(T) |
    + *
    + *************************************************************************/
    +#define TWELVE_SPLIT 12
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void checkPointsInBox3d(const T *boxes3d,
    +                                     const size_t deal_num,
    +                                     T *x,
    +                                     T *y,
    +                                     T *z,
    +                                     T *auxiliary_a,
    +                                     T *auxiliary_b,
    +                                     T *auxiliary_c,
    +                                     T *auxiliary_d,
    +                                     T *auxiliary_e,
    +                                     T *auxiliary_f,
    +                                     T *pts_assign) {
    +  // param box3d: (cx, cy, cz, dx, dy, dz, rz) in LiDAR coordinate
    +  T cx = boxes3d[0];
    +  T cy = boxes3d[1];
    +  T cz = boxes3d[2];
    +  T dx = boxes3d[3];
    +  T dy = boxes3d[4];
    +  T dz = boxes3d[5];
    +  T rz = boxes3d[6];
    +  // shift to the center since cz in box3d is the bottom center
    +  cz += 0.5 * dz;
    +
    +  T cosa = (T)std::cos(-rz);
    +  T sina = (T)std::sin(-rz);
    +
    +  // x - cx
    +  __bang_sub_scalar((T *)auxiliary_a, (T *)x, (T)cx, deal_num);
    +  // y - cy
    +  __bang_sub_scalar((T *)auxiliary_b, (T *)y, (T)cy, deal_num);
    +  // z - cz
    +  __bang_sub_scalar((T *)auxiliary_c, (T *)z, (T)cz, deal_num);
    +  // |z - cz|
    +  __bang_active_abs((T *)auxiliary_c, (T *)auxiliary_c, deal_num);
    +  // |z - cz| > dz / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_gt_scalar((T *)auxiliary_c, (T *)auxiliary_c, (T)(0.5 * dz), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_d, deal_num, (T)(0.5 * dz));
    +  __bang_lt((T *)auxiliary_c, (T *)auxiliary_d, (T *)auxiliary_c, deal_num);
    +#endif
    +  // !(|z - cz| > dz / 2.0)
    +  __bang_not((T *)auxiliary_c, (T *)auxiliary_c, deal_num);
    +  // (x - cx) * cos(-rz)
    +  __bang_mul_scalar((T *)auxiliary_d, (T *)auxiliary_a, (T)cosa, deal_num);
    +  // (y - cy) * sin(-rz)
    +  __bang_mul_scalar((T *)auxiliary_e, (T *)auxiliary_b, (T)sina, deal_num);
    +  // local_x = (x - cx) * cos(-rz) + (y - cy) * -sin(-rz)
    +  __bang_sub((T *)auxiliary_d, (T *)auxiliary_d, (T *)auxiliary_e, deal_num);
    +  // |local_x|
    +  __bang_active_abs((T *)auxiliary_d, (T *)auxiliary_d, deal_num);
    +  // |local_x| < dx / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_lt_scalar(auxiliary_d, auxiliary_d, (T)(0.5 * dx), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_e, deal_num, (T)(0.5 * dx));
    +  __bang_gt((T *)auxiliary_d, (T *)auxiliary_e, (T *)auxiliary_d, deal_num);
    +#endif
    +  // (x - cx) * sin(-rz)
    +  __bang_mul_scalar((T *)auxiliary_e, (T *)auxiliary_a, (T)sina, deal_num);
    +  // (y - cy) * cos(-rz)
    +  __bang_mul_scalar((T *)auxiliary_f, (T *)auxiliary_b, (T)cosa, deal_num);
    +  // local_y = (x - cx) * sin(-rz) + (y - cy) * cos(-rz)
    +  __bang_add((T *)auxiliary_e, (T *)auxiliary_e, (T *)auxiliary_f, deal_num);
    +  // |local_y|
    +  __bang_active_abs((T *)auxiliary_e, (T *)auxiliary_e, deal_num);
    +  // |local_y| < dy / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_lt_scalar(auxiliary_e, auxiliary_e, (T)(0.5 * dy), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_f, deal_num, (T)(0.5 * dy));
    +  __bang_gt((T *)auxiliary_e, (T *)auxiliary_f, (T *)auxiliary_e, deal_num);
    +#endif
    +  // pts_assign = |x - cx| < dx / 2.0 && |y - cy| < dy / 2.0 && |z - cz| <= dz / 2.0
    +  __bang_mul((T *)pts_assign, (T *)auxiliary_c, (T *)auxiliary_d, deal_num);
    +  __bang_mul((T *)pts_assign, (T *)pts_assign, (T *)auxiliary_e, deal_num);
    +}
    +
    +template 
    +__mlu_func__ void computeStoreRoipointPool3d(char *boxes3d,
    +                                             int  *cnt,
    +                                             char *points_x,
    +                                             char *points_y,
    +                                             char *points_z,
    +                                             const char *point_features,
    +                                             char *auxiliary_a,
    +                                             char *auxiliary_b,
    +                                             char *auxiliary_c,
    +                                             char *auxiliary_d,
    +                                             char *auxiliary_e,
    +                                             char *auxiliary_f,
    +                                             const int box_idx,
    +                                             const int pts_num,
    +                                             const int feature_in_len,
    +                                             const int sampled_pts_num,
    +                                             const size_t span_num_deal,
    +                                             char *pooled_features_gdram,
    +                                             char *pooled_empty_flag_gdram) {
    +  char *pts_assign = auxiliary_a;
    +  if (*cnt >= sampled_pts_num) {
    +    return;
    +  }
    +  checkPointsInBox3d((T *)boxes3d, span_num_deal, (T *)points_x, (T *)points_y, (T *)points_z,
    +                     (T *)auxiliary_a, (T *)auxiliary_b, (T *)auxiliary_c, (T *)auxiliary_d,
    +                     (T *)auxiliary_e, (T *)auxiliary_f, (T *)pts_assign);
    +
    +  // __bang_select returns selected elements vector and the number of selected elements
    +  __bang_select((T *)auxiliary_b, (T *)points_x, (T *)pts_assign, span_num_deal);
    +  uint32_t select_num = *((uint32_t *)auxiliary_b);
    +
    +  if (select_num == 0) {
    +    return;
    +  }
    +  int sampled_pts_num_rem = sampled_pts_num - *cnt;
    +  int segnum = min((int)select_num, sampled_pts_num_rem) - 1;
    +
    +  // copy x to pooled_features_gdram
    +  // The result of __bang_select is composed of three parts:
    +  // The first 4-byte is the number of selected element, whose data type is unsigned int.
    +  // The next 124-byte is zero. The rest bytes are the selected elements.
    +  int select_num_size = 128;
    +  __memcpy(
    +      pooled_features_gdram + (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T),
    +      (T *)((int8_t *)auxiliary_b + select_num_size), sizeof(T), NRAM2GDRAM,
    +      (3 + feature_in_len) * sizeof(T), sizeof(T), segnum);
    +
    +  // copy y to pooled_features_gdram
    +  __bang_collect((T *)auxiliary_d, (T *)points_y, (T *)pts_assign, span_num_deal);
    +  __memcpy(pooled_features_gdram +
    +               (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +               1 * sizeof(T),
    +           (T *)auxiliary_d, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +           segnum);
    +
    +  // copy z to pooled_features_gdram
    +  __bang_collect((T *)auxiliary_e, (T *)points_z, (T *)pts_assign, span_num_deal);
    +  __memcpy(pooled_features_gdram +
    +               (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +               2 * sizeof(T),
    +           (T *)auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +           segnum);
    +
    +  // copy features to pooled_features_gdram
    +  for (int c_idx = 0; c_idx < feature_in_len; c_idx++) {
    +    __memcpy(auxiliary_d, point_features + c_idx * pts_num * sizeof(T), span_num_deal * sizeof(T),
    +             GDRAM2NRAM);
    +    __bang_collect((T *)auxiliary_e, (T *)auxiliary_d, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +                 (3 + c_idx) * sizeof(T),
    +             auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +  }
    +
    +  *cnt += select_num;
    +}
    +
    +template 
    +__mlu_func__ void computeStoreLastBlockRoipointPool3d(char *boxes3d,
    +                                                      int  *cnt,
    +                                                      char *points_x,
    +                                                      char *points_y,
    +                                                      char *points_z,
    +                                                      const char *point_features,
    +                                                      char *auxiliary_a,
    +                                                      char *auxiliary_b,
    +                                                      char *auxiliary_c,
    +                                                      char *auxiliary_d,
    +                                                      char *auxiliary_e,
    +                                                      char *auxiliary_f,
    +                                                      const int box_idx,
    +                                                      const int pts_num,
    +                                                      const int feature_in_len,
    +                                                      const int sampled_pts_num,
    +                                                      const size_t span_num_deal,
    +                                                      const size_t auxiliary_num_deal,
    +                                                      char *pooled_features_gdram,
    +                                                      char *pooled_empty_flag_gdram) {
    +  char *pts_assign = auxiliary_a;
    +  if (*cnt >= sampled_pts_num) {
    +    // pooled_empty_flag_gdram set 0
    +    *((int *)auxiliary_a) = 0;
    +    __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +    return;
    +  }
    +  checkPointsInBox3d((T *)boxes3d, span_num_deal, (T *)points_x, (T *)points_y, (T *)points_z,
    +                     (T *)auxiliary_a, (T *)auxiliary_b, (T *)auxiliary_c, (T *)auxiliary_d,
    +                     (T *)auxiliary_e, (T *)auxiliary_f, (T *)pts_assign);
    +
    +  // __bang_select returns selected elements vector and the number of selected elements
    +  __bang_select((T *)auxiliary_b, (T *)points_x, (T *)pts_assign, span_num_deal);
    +  uint32_t select_num = *((uint32_t *)auxiliary_b);
    +
    +  if (*cnt + select_num == 0) {
    +    // pooled_empty_flag_gdram set 1
    +    *((int *)auxiliary_a) = 1;
    +    __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +
    +    // pooled_features_gdram set 0
    +    int repeat = (sampled_pts_num * (3 + feature_in_len)) / (auxiliary_num_deal * 6);
    +    int rem = (sampled_pts_num * (3 + feature_in_len)) % (auxiliary_num_deal * 6);
    +    // use auxiliary_a to auxiliary_f
    +    __bang_write_zero((T *)auxiliary_a, PAD_UP(auxiliary_num_deal * 6, NFU_ALIGN_SIZE));
    +    if (repeat > 0) {
    +      __memcpy(pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +               auxiliary_a, auxiliary_num_deal * 6 * sizeof(T), NRAM2GDRAM,
    +               auxiliary_num_deal * 6 * sizeof(T), 0, repeat - 1);
    +    }
    +    if (rem > 0) {
    +      __memcpy(pooled_features_gdram +
    +                   box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T) +
    +                   repeat * auxiliary_num_deal * 6 * sizeof(T),
    +               auxiliary_a, rem * sizeof(T), NRAM2GDRAM);
    +    }
    +    return;
    +  }
    +
    +  if (select_num > 0) {
    +    int sampled_pts_num_rem = sampled_pts_num - *cnt;
    +    int segnum = min((int)select_num, sampled_pts_num_rem) - 1;
    +
    +    // copy x to pooled_features_gdram
    +    // The result of __bang_select is composed of three parts:
    +    // The first 4-byte is the number of selected element, whose data type is unsigned int.
    +    // The next 124-byte is zero. The rest bytes are the selected elements.
    +    int select_num_size = 128;
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T),
    +             (T *)((int8_t *)auxiliary_b + select_num_size), sizeof(T), NRAM2GDRAM,
    +             (3 + feature_in_len) * sizeof(T), sizeof(T), segnum);
    +
    +    // copy y to pooled_features_gdram
    +    __bang_collect((T *)auxiliary_d, (T *)points_y, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +                 1 * sizeof(T),
    +             (T *)auxiliary_d, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +
    +    // copy z to pooled_features_gdram
    +    __bang_collect((T *)auxiliary_e, (T *)points_z, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +                 2 * sizeof(T),
    +             (T *)auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +
    +    // copy features to pooled_features_gdram
    +    for (int c_idx = 0; c_idx < feature_in_len; c_idx++) {
    +      __memcpy(auxiliary_d, point_features + c_idx * pts_num * sizeof(T), span_num_deal * sizeof(T),
    +               GDRAM2NRAM);
    +      __bang_collect((T *)auxiliary_e, (T *)auxiliary_d, (T *)pts_assign, span_num_deal);
    +      __memcpy(pooled_features_gdram +
    +                   (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T) +
    +                   (3 + c_idx) * sizeof(T),
    +               auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +               segnum);
    +    }
    +  }
    +
    +  // pooled_empty_flag_gdram set 0
    +  *((int *)auxiliary_a) = 0;
    +  __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +
    +  *cnt += select_num;
    +  if (*cnt < sampled_pts_num) {
    +    // duplicate same points for sampling
    +    int repeat = sampled_pts_num / (*cnt) - 1;
    +    int rem = sampled_pts_num % (*cnt);
    +    if (repeat > 0) {
    +      __memcpy(pooled_features_gdram +
    +                   (box_idx * sampled_pts_num + *cnt) * (3 + feature_in_len) * sizeof(T),
    +               pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +               (*cnt) * (3 + feature_in_len) * sizeof(T), GDRAM2GDRAM,
    +               (*cnt) * (3 + feature_in_len) * sizeof(T), 0, repeat - 1);
    +    }
    +    if (rem > 0) {
    +      __memcpy(
    +          pooled_features_gdram +
    +              (box_idx * sampled_pts_num + (repeat + 1) * (*cnt)) * (3 + feature_in_len) *
    +              sizeof(T),
    +          pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +          rem * (3 + feature_in_len) * sizeof(T), GDRAM2GDRAM);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelRoiPointPool3dLargeBoxesNumForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  size_t boxes_per_core = (batch_size * boxes_num) / taskDim;
    +  size_t boxes_rem = (batch_size * boxes_num) % taskDim;
    +  // calc batch_start, batch_end, first_batch_box_start, last batch_box_end for each core
    +  int32_t batch_start = taskId < (boxes_rem + 1) ?
    +                        (taskId * (boxes_per_core + 1)) / boxes_num :
    +                        (taskId * boxes_per_core + boxes_rem) / boxes_num;
    +  int32_t batch_end = taskId < boxes_rem ?
    +                      ((taskId + 1) * (boxes_per_core + 1) - 1) / boxes_num :
    +                      ((taskId + 1) * boxes_per_core + boxes_rem - 1) / boxes_num;
    +  size_t first_batch_box_start = taskId < (boxes_rem + 1) ?
    +                                 (taskId * (boxes_per_core + 1)) - batch_start * boxes_num :
    +                                 taskId * boxes_per_core + boxes_rem - batch_start * boxes_num;
    +  size_t last_batch_box_end = taskId < boxes_rem ?
    +                              (taskId + 1) * (boxes_per_core + 1) - batch_end * boxes_num :
    +                              ((taskId + 1) * boxes_per_core + boxes_rem) - batch_end * boxes_num;
    +
    +  // points_xyz : [3, B, N]
    +  const char *points_x_gdram = points_xyz_gdram;
    +  const char *points_y_gdram = points_xyz_gdram + (1 * batch_size * pts_num) * sizeof(T);
    +  const char *points_z_gdram = points_xyz_gdram + (2 * batch_size * pts_num) * sizeof(T);
    +
    +  size_t boxes3d_size = PAD_UP(7, NFU_ALIGN_SIZE) * sizeof(T);
    +  size_t span_num_deal = PAD_DOWN(MAX_NRAM_SIZE / TWELVE_SPLIT / sizeof(T), NFU_ALIGN_SIZE);
    +  size_t align_num = NFU_ALIGN_SIZE;
    +  int32_t repeat = pts_num / span_num_deal;
    +  size_t rem = pts_num % span_num_deal;
    +  size_t align_rem = CEIL_ALIGN(rem, align_num);
    +  char *boxes3d = nram_buffer;
    +  char *ping_points_x = nram_buffer + boxes3d_size;
    +  char *ping_points_y = ping_points_x + span_num_deal * sizeof(T);
    +  char *ping_points_z = ping_points_y + span_num_deal * sizeof(T);
    +  size_t ping_pong_gap = 3 * span_num_deal * sizeof(T);
    +  char *auxiliary_a = ping_points_x + 2 * ping_pong_gap;
    +  char *auxiliary_b = auxiliary_a + span_num_deal * sizeof(T);
    +  char *auxiliary_c = auxiliary_b + span_num_deal * sizeof(T);
    +  char *auxiliary_d = auxiliary_c + span_num_deal * sizeof(T);
    +  char *auxiliary_e = auxiliary_d + span_num_deal * sizeof(T);
    +  char *auxiliary_f = auxiliary_e + span_num_deal * sizeof(T);
    +  size_t span_load_input1_size = span_num_deal * sizeof(T);
    +  size_t span_load_input2_size = span_num_deal * sizeof(T);
    +  size_t span_load_input3_size = span_num_deal * sizeof(T);
    +  size_t span_load_input4_size = span_num_deal * sizeof(T);
    +  int cnt = 0;
    +
    +  for (int bs_idx = batch_start; bs_idx <= batch_end; bs_idx++) {
    +    const char *points_x_start = points_x_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *points_y_start = points_y_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *points_z_start = points_z_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *point_features_start =
    +        point_features_gdram + bs_idx * feature_in_len * pts_num * sizeof(T);
    +    char *pooled_features_start =
    +        pooled_features_gdram +
    +        (bs_idx * boxes_num * sampled_pts_num * (3 + feature_in_len)) * sizeof(T);
    +    char *pooled_empty_flag_start = pooled_empty_flag_gdram + bs_idx * boxes_num * sizeof(int);
    +    size_t box_start = bs_idx == batch_start ? first_batch_box_start : 0;
    +    size_t box_end = bs_idx == batch_end ? last_batch_box_end : boxes_num;
    +
    +    for (int box_idx = box_start; box_idx < box_end; box_idx++) {
    +      __memcpy_async(boxes3d,
    +                     boxes3d_gdram + bs_idx * boxes_num * 7 * sizeof(T) + box_idx * 7 * sizeof(T),
    +                     7 * sizeof(T), GDRAM2NRAM);
    +      cnt = 0;
    +      if (repeat > 0) {
    +        __memcpy_async(ping_points_x, points_x_start, span_load_input1_size, GDRAM2NRAM);
    +        __memcpy_async(ping_points_y, points_y_start, span_load_input2_size, GDRAM2NRAM);
    +        __memcpy_async(ping_points_z, points_z_start, span_load_input3_size, GDRAM2NRAM);
    +        __asm__ volatile("sync;");
    +      }
    +
    +      for (int i = 0; i < repeat - 1; i++) {
    +        __memcpy_async(ping_points_x + ((i + 1) % 2) * ping_pong_gap,
    +                       points_x_start + (i + 1) * span_load_input1_size, span_load_input1_size,
    +                       GDRAM2NRAM);
    +        __memcpy_async(ping_points_y + ((i + 1) % 2) * ping_pong_gap,
    +                       points_y_start + (i + 1) * span_load_input2_size, span_load_input2_size,
    +                       GDRAM2NRAM);
    +        __memcpy_async(ping_points_z + ((i + 1) % 2) * ping_pong_gap,
    +                       points_z_start + (i + 1) * span_load_input3_size, span_load_input3_size,
    +                       GDRAM2NRAM);
    +        computeStoreRoipointPool3d(
    +            boxes3d, &cnt, ping_points_x + (i % 2) * ping_pong_gap,
    +            ping_points_y + (i % 2) * ping_pong_gap, ping_points_z + (i % 2) * ping_pong_gap,
    +            point_features_start + i * span_load_input4_size, auxiliary_a, auxiliary_b, auxiliary_c,
    +            auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, pooled_features_start, pooled_empty_flag_start);
    +        __asm__ volatile("sync;");
    +      }
    +
    +      if (rem > 0) {
    +        if (sizeof(T) == sizeof(float)) {
    +          __bang_write_value((T *)(ping_points_x + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +          __bang_write_value((T *)(ping_points_y + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +          __bang_write_value((T *)(ping_points_z + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +        } else {
    +          __bang_write_value((T *)(ping_points_x + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +          __bang_write_value((T *)(ping_points_y + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +          __bang_write_value((T *)(ping_points_z + (repeat % 2) * ping_pong_gap +
    +                                   PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                             NFU_ALIGN_SIZE, (T)NAN);
    +        }
    +        __memcpy_async(ping_points_x + (repeat % 2) * ping_pong_gap,
    +                       points_x_start + repeat * span_load_input1_size, rem * sizeof(T),
    +                       GDRAM2NRAM);
    +        __memcpy_async(ping_points_y + (repeat % 2) * ping_pong_gap,
    +                       points_y_start + repeat * span_load_input2_size, rem * sizeof(T),
    +                       GDRAM2NRAM);
    +        __memcpy_async(ping_points_z + (repeat % 2) * ping_pong_gap,
    +                       points_z_start + repeat * span_load_input3_size, rem * sizeof(T),
    +                       GDRAM2NRAM);
    +      }
    +
    +      if (repeat > 0 && rem > 0) {
    +        computeStoreRoipointPool3d(
    +            boxes3d, &cnt, ping_points_x + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_y + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_z + ((repeat - 1) % 2) * ping_pong_gap,
    +            point_features_start + (repeat - 1) * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, pooled_features_start, pooled_empty_flag_start);
    +      } else if (repeat > 0 && rem == 0) {
    +        computeStoreLastBlockRoipointPool3d(
    +            boxes3d, &cnt, ping_points_x + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_y + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_z + ((repeat - 1) % 2) * ping_pong_gap,
    +            point_features_start + (repeat - 1) * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, span_num_deal, pooled_features_start,
    +            pooled_empty_flag_start);
    +      }
    +
    +      if (rem > 0) {
    +        __asm__ volatile("sync;");
    +        computeStoreLastBlockRoipointPool3d(
    +            boxes3d, &cnt, ping_points_x + (repeat % 2) * ping_pong_gap,
    +            ping_points_y + (repeat % 2) * ping_pong_gap,
    +            ping_points_z + (repeat % 2) * ping_pong_gap,
    +            point_features_start + repeat * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, align_rem, span_num_deal, pooled_features_start,
    +            pooled_empty_flag_start);
    +      }
    +    }
    +  }
    +}
    +
    +template __mlu_global__ void MLUUnion1KernelRoiPointPool3dLargeBoxesNumForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram);
    +
    +template __mlu_global__ void MLUUnion1KernelRoiPointPool3dLargeBoxesNumForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram);
    +
    +void KernelRoiPointPool3dLargeBoxesNumForward(cnrtDim3_t k_dim,
    +                                              cnrtFunctionType_t k_type,
    +                                              cnrtQueue_t queue,
    +                                              const cnrtDataType_t d_type,
    +                                              const int batch_size,
    +                                              const int pts_num,
    +                                              const int boxes_num,
    +                                              const int feature_in_len,
    +                                              const int sampled_pts_num,
    +                                              const void *points_xyz,
    +                                              const void *boxes3d,
    +                                              const void *point_features,
    +                                              void *pooled_features,
    +                                              int *pooled_empty_flag) {
    +  switch (d_type) {
    +    default: { break; }
    +    case CNRT_FLOAT32: {
    +      MLUUnion1KernelRoiPointPool3dLargeBoxesNumForward<<>>(
    +          batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
    +          (char *)points_xyz, (char *)point_features, (char *)boxes3d,
    +          (char *)pooled_features, (char *)pooled_empty_flag);
    +    }; break;
    +    case CNRT_FLOAT16: {
    +      MLUUnion1KernelRoiPointPool3dLargeBoxesNumForward<<>>(
    +          batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
    +          (char *)points_xyz, (char *)point_features, (char *)boxes3d,
    +          (char *)pooled_features, (char *)pooled_empty_flag);
    +    }; break;
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_mlu_kernel.mlu
    new file mode 100644
    index 000000000..f16d84047
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/roipoint_pool3d_mlu_kernel.mlu
    @@ -0,0 +1,544 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * OR IMPLIED, INCLUDING BUvoid NOKType LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENvoid SHALL THE AUTHORS OR COPYRIGHKType HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORvoid OR OTHERWISE, ARISING FROM, OUKType OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "common_mlu_helper.hpp"
    +
    +/**************************************************************************************
    + *
    + * NRAM partition:
    + * | boxes3d                   | cnt                      |
    + * | boxes_num * 7 * sizeof(T) | boxes_num * sizeof(int)  |
    + *
    + * | ping points               | pong points              | aux_a ~ aux_f            |
    + * | 3 * deal_num * sizeof(T)  | 3 * deal_num * sizeof(T) | 6 * deal_num * sizeof(T) |
    + *
    + ***************************************************************************************/
    +#define TWELVE_SPLIT 12
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void checkPointsInBox3d(const T *boxes3d,
    +                                     const size_t deal_num,
    +                                     T *x,
    +                                     T *y,
    +                                     T *z,
    +                                     T *auxiliary_a,
    +                                     T *auxiliary_b,
    +                                     T *auxiliary_c,
    +                                     T *auxiliary_d,
    +                                     T *auxiliary_e,
    +                                     T *auxiliary_f,
    +                                     T *pts_assign) {
    +  // param box3d: (cx, cy, cz, dx, dy, dz, rz) in LiDAR coordinate
    +  T cx = boxes3d[0];
    +  T cy = boxes3d[1];
    +  T cz = boxes3d[2];
    +  T dx = boxes3d[3];
    +  T dy = boxes3d[4];
    +  T dz = boxes3d[5];
    +  T rz = boxes3d[6];
    +  // shift to the center since cz in box3d is the bottom center
    +  cz += 0.5 * dz;
    +
    +  T cosa = (T)std::cos(-rz);
    +  T sina = (T)std::sin(-rz);
    +
    +  // x - cx
    +  __bang_sub_scalar((T *)auxiliary_a, (T *)x, (T)cx, deal_num);
    +  // y - cy
    +  __bang_sub_scalar((T *)auxiliary_b, (T *)y, (T)cy, deal_num);
    +  // z - cz
    +  __bang_sub_scalar((T *)auxiliary_c, (T *)z, (T)cz, deal_num);
    +  // |z - cz|
    +  __bang_active_abs((T *)auxiliary_c, (T *)auxiliary_c, deal_num);
    +  // |z - cz| > dz / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_gt_scalar((T *)auxiliary_c, (T *)auxiliary_c, (T)(0.5 * dz), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_d, deal_num, (T)(0.5 * dz));
    +  __bang_lt((T *)auxiliary_c, (T *)auxiliary_d, (T *)auxiliary_c, deal_num);
    +#endif
    +  // !(|z - cz| > dz / 2.0)
    +  __bang_not((T *)auxiliary_c, (T *)auxiliary_c, deal_num);
    +  // (x - cx) * cos(-rz)
    +  __bang_mul_scalar((T *)auxiliary_d, (T *)auxiliary_a, (T)cosa, deal_num);
    +  // (y - cy) * sin(-rz)
    +  __bang_mul_scalar((T *)auxiliary_e, (T *)auxiliary_b, (T)sina, deal_num);
    +  // local_x = (x - cx) * cos(-rz) + (y - cy) * -sin(-rz)
    +  __bang_sub((T *)auxiliary_d, (T *)auxiliary_d, (T *)auxiliary_e, deal_num);
    +  // |local_x|
    +  __bang_active_abs((T *)auxiliary_d, (T *)auxiliary_d, deal_num);
    +  // |local_x| < dx / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_lt_scalar(auxiliary_d, auxiliary_d, (T)(0.5 * dx), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_e, deal_num, (T)(0.5 * dx));
    +  __bang_gt((T *)auxiliary_d, (T *)auxiliary_e, (T *)auxiliary_d, deal_num);
    +#endif
    +  // (x - cx) * sin(-rz)
    +  __bang_mul_scalar((T *)auxiliary_e, (T *)auxiliary_a, (T)sina, deal_num);
    +  // (y - cy) * cos(-rz)
    +  __bang_mul_scalar((T *)auxiliary_f, (T *)auxiliary_b, (T)cosa, deal_num);
    +  // local_y = (x - cx) * sin(-rz) + (y - cy) * cos(-rz)
    +  __bang_add((T *)auxiliary_e, (T *)auxiliary_e, (T *)auxiliary_f, deal_num);
    +  // |local_y|
    +  __bang_active_abs((T *)auxiliary_e, (T *)auxiliary_e, deal_num);
    +  // |local_y| < dy / 2.0
    +#if __BANG_ARCH__ >= 322
    +  __bang_lt_scalar(auxiliary_e, auxiliary_e, (T)(0.5 * dy), deal_num);
    +#else
    +  __bang_write_value((T *)auxiliary_f, deal_num, (T)(0.5 * dy));
    +  __bang_gt((T *)auxiliary_e, (T *)auxiliary_f, (T *)auxiliary_e, deal_num);
    +#endif
    +  // pts_assign = |x - cx| < dx / 2.0 && |y - cy| < dy / 2.0 && |z - cz| <= dz / 2.0
    +  __bang_mul((T *)pts_assign, (T *)auxiliary_c, (T *)auxiliary_d, deal_num);
    +  __bang_mul((T *)pts_assign, (T *)pts_assign, (T *)auxiliary_e, deal_num);
    +}
    +
    +template 
    +__mlu_func__ void computeStoreRoipointPool3d(char *boxes3d,
    +                                             int  *cnt,
    +                                             char *points_x,
    +                                             char *points_y,
    +                                             char *points_z,
    +                                             const char *point_features,
    +                                             char *auxiliary_a,
    +                                             char *auxiliary_b,
    +                                             char *auxiliary_c,
    +                                             char *auxiliary_d,
    +                                             char *auxiliary_e,
    +                                             char *auxiliary_f,
    +                                             const int box_idx,
    +                                             const int pts_num,
    +                                             const int feature_in_len,
    +                                             const int sampled_pts_num,
    +                                             const size_t span_num_deal,
    +                                             char *pooled_features_gdram,
    +                                             char *pooled_empty_flag_gdram) {
    +  char *pts_assign = auxiliary_a;
    +  if (cnt[box_idx] >= sampled_pts_num) {
    +    return;
    +  }
    +  checkPointsInBox3d((T *)(boxes3d + box_idx * 7 * sizeof(T)), span_num_deal, (T *)points_x,
    +                     (T *)points_y, (T *)points_z, (T *)auxiliary_a, (T *)auxiliary_b,
    +                     (T *)auxiliary_c, (T *)auxiliary_d, (T *)auxiliary_e, (T *)auxiliary_f,
    +                     (T *)pts_assign);
    +
    +  // __bang_select returns selected elements vector and the number of selected elements
    +  __bang_select((T *)auxiliary_b, (T *)points_x, (T *)pts_assign, span_num_deal);
    +  uint32_t select_num = *((uint32_t *)auxiliary_b);
    +
    +  if (select_num == 0) {
    +    return;
    +  }
    +  int sampled_pts_num_rem = sampled_pts_num - cnt[box_idx];
    +  int segnum = min((int)select_num, sampled_pts_num_rem) - 1;
    +
    +  // copy x to pooled_features_gdram
    +  // The result of __bang_select is composed of three parts:
    +  // The first 4-byte is the number of selected element, whose data type is unsigned int.
    +  // The next 124-byte is zero. The rest bytes are the selected elements.
    +  int select_num_size = 128;
    +  __memcpy(pooled_features_gdram +
    +               (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T),
    +           (T *)((int8_t *)auxiliary_b + select_num_size), sizeof(T), NRAM2GDRAM,
    +           (3 + feature_in_len) * sizeof(T), sizeof(T), segnum);
    +
    +  // copy y to pooled_features_gdram
    +  __bang_collect((T *)auxiliary_d, (T *)points_y, (T *)pts_assign, span_num_deal);
    +  __memcpy(pooled_features_gdram +
    +               (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +               1 * sizeof(T),
    +           (T *)auxiliary_d, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +           segnum);
    +
    +  // copy z to pooled_features_gdram
    +  __bang_collect((T *)auxiliary_e, (T *)points_z, (T *)pts_assign, span_num_deal);
    +  __memcpy(pooled_features_gdram +
    +               (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +               2 * sizeof(T),
    +           (T *)auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +           segnum);
    +
    +  // copy features to pooled_features_gdram
    +  for (int c_idx = 0; c_idx < feature_in_len; c_idx++) {
    +    __memcpy(auxiliary_d, point_features + c_idx * pts_num * sizeof(T), span_num_deal * sizeof(T),
    +             GDRAM2NRAM);
    +    __bang_collect((T *)auxiliary_e, (T *)auxiliary_d, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +                 (3 + c_idx) * sizeof(T),
    +             auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +  }
    +
    +  cnt[box_idx] += select_num;
    +}
    +
    +template 
    +__mlu_func__ void computeStoreLastBlockRoipointPool3d(char *boxes3d,
    +                                                      int  *cnt,
    +                                                      char *points_x,
    +                                                      char *points_y,
    +                                                      char *points_z,
    +                                                      const char *point_features,
    +                                                      char *auxiliary_a,
    +                                                      char *auxiliary_b,
    +                                                      char *auxiliary_c,
    +                                                      char *auxiliary_d,
    +                                                      char *auxiliary_e,
    +                                                      char *auxiliary_f,
    +                                                      const int box_idx,
    +                                                      const int pts_num,
    +                                                      const int feature_in_len,
    +                                                      const int sampled_pts_num,
    +                                                      const size_t span_num_deal,
    +                                                      const size_t auxiliary_num_deal,
    +                                                      char *pooled_features_gdram,
    +                                                      char *pooled_empty_flag_gdram) {
    +  char *pts_assign = auxiliary_a;
    +  if (cnt[box_idx] >= sampled_pts_num) {
    +    // pooled_empty_flag_gdram set 0
    +    *((int *)auxiliary_a) = 0;
    +    __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +    return;
    +  }
    +  checkPointsInBox3d((T *)(boxes3d + box_idx * 7 * sizeof(T)), span_num_deal, (T *)points_x,
    +                     (T *)points_y, (T *)points_z, (T *)auxiliary_a, (T *)auxiliary_b,
    +                     (T *)auxiliary_c, (T *)auxiliary_d, (T *)auxiliary_e, (T *)auxiliary_f,
    +                     (T *)pts_assign);
    +
    +  // __bang_select returns selected elements vector and the number of selected elements
    +  __bang_select((T *)auxiliary_b, (T *)points_x, (T *)pts_assign, span_num_deal);
    +  uint32_t select_num = *((uint32_t *)auxiliary_b);
    +
    +  if (cnt[box_idx] + select_num == 0) {
    +    // pooled_empty_flag_gdram set 1
    +    *((int *)auxiliary_a) = 1;
    +    __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +
    +    // pooled_features_gdram set 0
    +    int repeat = (sampled_pts_num * (3 + feature_in_len)) / (auxiliary_num_deal * 6);
    +    int rem = (sampled_pts_num * (3 + feature_in_len)) % (auxiliary_num_deal * 6);
    +    // use auxiliary_a to auxiliary_f
    +    __bang_write_zero((T *)auxiliary_a, PAD_UP(auxiliary_num_deal * 6, NFU_ALIGN_SIZE));
    +    if (repeat > 0) {
    +      __memcpy(pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +               auxiliary_a, auxiliary_num_deal * 6 * sizeof(T), NRAM2GDRAM,
    +               auxiliary_num_deal * 6 * sizeof(T), 0, repeat - 1);
    +    }
    +    if (rem > 0) {
    +      __memcpy(pooled_features_gdram +
    +                   box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T) +
    +                   repeat * auxiliary_num_deal * 6 * sizeof(T),
    +               auxiliary_a, rem * sizeof(T), NRAM2GDRAM);
    +    }
    +    return;
    +  }
    +
    +  if (select_num > 0) {
    +    int sampled_pts_num_rem = sampled_pts_num - cnt[box_idx];
    +    int segnum = min((int)select_num, sampled_pts_num_rem) - 1;
    +
    +    // copy x to pooled_features_gdram
    +    // The result of __bang_select is composed of three parts:
    +    // The first 4-byte is the number of selected element, whose data type is unsigned int.
    +    // The next 124-byte is zero. The rest bytes are the selected elements.
    +    int select_num_size = 128;
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T),
    +             (T *)((int8_t *)auxiliary_b + select_num_size), sizeof(T), NRAM2GDRAM,
    +             (3 + feature_in_len) * sizeof(T), sizeof(T), segnum);
    +
    +    // copy y to pooled_features_gdram
    +    __bang_collect((T *)auxiliary_d, (T *)points_y, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +                 1 * sizeof(T),
    +             (T *)auxiliary_d, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +
    +    // copy z to pooled_features_gdram
    +    __bang_collect((T *)auxiliary_e, (T *)points_z, (T *)pts_assign, span_num_deal);
    +    __memcpy(pooled_features_gdram +
    +                 (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +                 2 * sizeof(T),
    +             (T *)auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +             segnum);
    +
    +    // copy features to pooled_features_gdram
    +    for (int c_idx = 0; c_idx < feature_in_len; c_idx++) {
    +      __memcpy(auxiliary_d, point_features + c_idx * pts_num * sizeof(T), span_num_deal * sizeof(T),
    +               GDRAM2NRAM);
    +      __bang_collect((T *)auxiliary_e, (T *)auxiliary_d, (T *)pts_assign, span_num_deal);
    +      __memcpy(pooled_features_gdram +
    +                   (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T) +
    +                   (3 + c_idx) * sizeof(T),
    +               auxiliary_e, sizeof(T), NRAM2GDRAM, (3 + feature_in_len) * sizeof(T), sizeof(T),
    +               segnum);
    +    }
    +  }
    +
    +  // pooled_empty_flag_gdram set 0
    +  *((int *)auxiliary_a) = 0;
    +  __memcpy(pooled_empty_flag_gdram + box_idx * sizeof(int), auxiliary_a, sizeof(int), NRAM2GDRAM);
    +
    +  cnt[box_idx] += select_num;
    +  if (cnt[box_idx] < sampled_pts_num) {
    +    // duplicate same points for sampling
    +    int repeat = sampled_pts_num / cnt[box_idx] - 1;
    +    int rem = sampled_pts_num % cnt[box_idx];
    +    if (repeat > 0) {
    +      __memcpy(pooled_features_gdram +
    +                   (box_idx * sampled_pts_num + cnt[box_idx]) * (3 + feature_in_len) * sizeof(T),
    +               pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +               cnt[box_idx] * (3 + feature_in_len) * sizeof(T), GDRAM2GDRAM,
    +               cnt[box_idx] * (3 + feature_in_len) * sizeof(T), 0, repeat - 1);
    +    }
    +    if (rem > 0) {
    +      __memcpy(pooled_features_gdram + (box_idx * sampled_pts_num + (repeat + 1) * cnt[box_idx]) *
    +                   (3 + feature_in_len) * sizeof(T),
    +               pooled_features_gdram + box_idx * sampled_pts_num * (3 + feature_in_len) * sizeof(T),
    +               rem * (3 + feature_in_len) * sizeof(T), GDRAM2GDRAM);
    +    }
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelRoiPointPool3dForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  size_t boxes_per_core = (batch_size * boxes_num) / taskDim;
    +  size_t boxes_rem = (batch_size * boxes_num) % taskDim;
    +  // calc batch_start, batch_end, first_batch_box_start, last batch_box_end for each core
    +  int32_t batch_start = taskId < (boxes_rem + 1) ?
    +                        (taskId * (boxes_per_core + 1)) / boxes_num :
    +                        (taskId * boxes_per_core + boxes_rem) / boxes_num;
    +  int32_t batch_end = taskId < boxes_rem ?
    +                      ((taskId + 1) * (boxes_per_core + 1) - 1) / boxes_num :
    +                      ((taskId + 1) * boxes_per_core + boxes_rem - 1) / boxes_num;
    +  size_t first_batch_box_start = taskId < (boxes_rem + 1) ?
    +                                 (taskId * (boxes_per_core + 1)) - batch_start * boxes_num :
    +                                 taskId * boxes_per_core + boxes_rem - batch_start * boxes_num;
    +  size_t last_batch_box_end = taskId < boxes_rem ?
    +                              (taskId + 1) * (boxes_per_core + 1) - batch_end * boxes_num :
    +                              ((taskId + 1) * boxes_per_core + boxes_rem) - batch_end * boxes_num;
    +
    +  // points_xyz : [3, B, N]
    +  const char *points_x_gdram = points_xyz_gdram;
    +  const char *points_y_gdram = points_xyz_gdram + (1 * batch_size * pts_num) * sizeof(T);
    +  const char *points_z_gdram = points_xyz_gdram + (2 * batch_size * pts_num) * sizeof(T);
    +
    +  size_t boxes3d_size = PAD_UP(boxes_num * 7, NFU_ALIGN_SIZE) * sizeof(T);
    +  size_t cnt_size = PAD_UP(boxes_num, NFU_ALIGN_SIZE) * sizeof(int);
    +  size_t span_num_deal = PAD_DOWN(
    +      (MAX_NRAM_SIZE - boxes3d_size - cnt_size) / TWELVE_SPLIT / sizeof(T), NFU_ALIGN_SIZE);
    +  size_t align_num = NFU_ALIGN_SIZE;
    +  int32_t repeat = pts_num / span_num_deal;
    +  size_t rem = pts_num % span_num_deal;
    +  size_t align_rem = CEIL_ALIGN(rem, align_num);
    +  char *boxes3d = nram_buffer;
    +  char *cnt = nram_buffer + boxes3d_size;
    +  char *ping_points_x = cnt + cnt_size;
    +  char *ping_points_y = ping_points_x + span_num_deal * sizeof(T);
    +  char *ping_points_z = ping_points_y + span_num_deal * sizeof(T);
    +  size_t ping_pong_gap = 3 * span_num_deal * sizeof(T);
    +  char *auxiliary_a = ping_points_x + 2 * ping_pong_gap;
    +  char *auxiliary_b = auxiliary_a + span_num_deal * sizeof(T);
    +  char *auxiliary_c = auxiliary_b + span_num_deal * sizeof(T);
    +  char *auxiliary_d = auxiliary_c + span_num_deal * sizeof(T);
    +  char *auxiliary_e = auxiliary_d + span_num_deal * sizeof(T);
    +  char *auxiliary_f = auxiliary_e + span_num_deal * sizeof(T);
    +  size_t span_load_input1_size = span_num_deal * sizeof(T);
    +  size_t span_load_input2_size = span_num_deal * sizeof(T);
    +  size_t span_load_input3_size = span_num_deal * sizeof(T);
    +  size_t span_load_input4_size = span_num_deal * sizeof(T);
    +
    +  for (int bs_idx = batch_start; bs_idx <= batch_end; bs_idx++) {
    +    __memcpy_async(boxes3d, boxes3d_gdram + bs_idx * boxes_num * 7 * sizeof(T),
    +                   boxes_num * 7 * sizeof(T), GDRAM2NRAM);
    +    __bang_write_zero((int *)cnt, PAD_UP(boxes_num, NFU_ALIGN_SIZE));
    +
    +    const char *points_x_start = points_x_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *points_y_start = points_y_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *points_z_start = points_z_gdram + bs_idx * pts_num * sizeof(T);
    +    const char *point_features_start =
    +        point_features_gdram + bs_idx * feature_in_len * pts_num * sizeof(T);
    +    char *pooled_features_start =
    +        pooled_features_gdram +
    +        (bs_idx * boxes_num * sampled_pts_num * (3 + feature_in_len)) * sizeof(T);
    +    char *pooled_empty_flag_start = pooled_empty_flag_gdram + bs_idx * boxes_num * sizeof(int);
    +    size_t box_start = bs_idx == batch_start ? first_batch_box_start : 0;
    +    size_t box_end = bs_idx == batch_end ? last_batch_box_end : boxes_num;
    +
    +    if (repeat > 0) {
    +      __memcpy_async(ping_points_x, points_x_start, span_load_input1_size, GDRAM2NRAM);
    +      __memcpy_async(ping_points_y, points_y_start, span_load_input2_size, GDRAM2NRAM);
    +      __memcpy_async(ping_points_z, points_z_start, span_load_input3_size, GDRAM2NRAM);
    +      __asm__ volatile("sync;");
    +    }
    +
    +    for (int i = 0; i < repeat - 1; i++) {
    +      __memcpy_async(ping_points_x + ((i + 1) % 2) * ping_pong_gap,
    +                     points_x_start + (i + 1) * span_load_input1_size, span_load_input1_size,
    +                     GDRAM2NRAM);
    +      __memcpy_async(ping_points_y + ((i + 1) % 2) * ping_pong_gap,
    +                     points_y_start + (i + 1) * span_load_input2_size, span_load_input2_size,
    +                     GDRAM2NRAM);
    +      __memcpy_async(ping_points_z + ((i + 1) % 2) * ping_pong_gap,
    +                     points_z_start + (i + 1) * span_load_input3_size, span_load_input3_size,
    +                     GDRAM2NRAM);
    +      for (int box_idx = box_start; box_idx < box_end; box_idx++) {
    +        computeStoreRoipointPool3d(
    +            boxes3d, (int *)cnt, ping_points_x + (i % 2) * ping_pong_gap,
    +            ping_points_y + (i % 2) * ping_pong_gap, ping_points_z + (i % 2) * ping_pong_gap,
    +            point_features_start + i * span_load_input4_size, auxiliary_a, auxiliary_b, auxiliary_c,
    +            auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, pooled_features_start, pooled_empty_flag_start);
    +      }
    +      __asm__ volatile("sync;");
    +    }
    +
    +    if (rem > 0) {
    +      if (sizeof(T) == sizeof(float)) {
    +        __bang_write_value((T *)(ping_points_x + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +        __bang_write_value((T *)(ping_points_y + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +        __bang_write_value((T *)(ping_points_z + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +      } else {
    +        __bang_write_value((T *)(ping_points_x + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +        __bang_write_value((T *)(ping_points_y + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +        __bang_write_value((T *)(ping_points_z + (repeat % 2) * ping_pong_gap +
    +                                 PAD_DOWN(rem, NFU_ALIGN_SIZE) * sizeof(T)),
    +                           NFU_ALIGN_SIZE, (T)NAN);
    +      }
    +      __memcpy_async(ping_points_x + (repeat % 2) * ping_pong_gap,
    +                     points_x_start + repeat * span_load_input1_size, rem * sizeof(T), GDRAM2NRAM);
    +      __memcpy_async(ping_points_y + (repeat % 2) * ping_pong_gap,
    +                     points_y_start + repeat * span_load_input2_size, rem * sizeof(T), GDRAM2NRAM);
    +      __memcpy_async(ping_points_z + (repeat % 2) * ping_pong_gap,
    +                     points_z_start + repeat * span_load_input3_size, rem * sizeof(T), GDRAM2NRAM);
    +    }
    +
    +    if (repeat > 0 && rem > 0) {
    +      for (int box_idx = box_start; box_idx < box_end; box_idx++) {
    +        computeStoreRoipointPool3d(
    +            boxes3d, (int *)cnt, ping_points_x + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_y + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_z + ((repeat - 1) % 2) * ping_pong_gap,
    +            point_features_start + (repeat - 1) * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, pooled_features_start, pooled_empty_flag_start);
    +      }
    +    } else if (repeat > 0 && rem == 0) {
    +      for (int box_idx = box_start; box_idx < box_end; box_idx++) {
    +        computeStoreLastBlockRoipointPool3d(
    +            boxes3d, (int *)cnt, ping_points_x + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_y + ((repeat - 1) % 2) * ping_pong_gap,
    +            ping_points_z + ((repeat - 1) % 2) * ping_pong_gap,
    +            point_features_start + (repeat - 1) * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, span_num_deal, span_num_deal, pooled_features_start,
    +            pooled_empty_flag_start);
    +      }
    +    }
    +
    +    if (rem > 0) {
    +      __asm__ volatile("sync;");
    +      for (int box_idx = box_start; box_idx < box_end; box_idx++) {
    +        computeStoreLastBlockRoipointPool3d(
    +            boxes3d, (int *)cnt, ping_points_x + (repeat % 2) * ping_pong_gap,
    +            ping_points_y + (repeat % 2) * ping_pong_gap,
    +            ping_points_z + (repeat % 2) * ping_pong_gap,
    +            point_features_start + repeat * span_load_input4_size, auxiliary_a, auxiliary_b,
    +            auxiliary_c, auxiliary_d, auxiliary_e, auxiliary_f, box_idx, pts_num, feature_in_len,
    +            sampled_pts_num, align_rem, span_num_deal, pooled_features_start,
    +            pooled_empty_flag_start);
    +      }
    +    }
    +  }
    +}
    +
    +template __mlu_global__ void MLUUnion1KernelRoiPointPool3dForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram);
    +
    +template __mlu_global__ void MLUUnion1KernelRoiPointPool3dForward(
    +    const int batch_size,
    +    const int pts_num,
    +    const int boxes_num,
    +    const int feature_in_len,
    +    const int sampled_pts_num,
    +    const char *points_xyz_gdram,
    +    const char *point_features_gdram,
    +    const char *boxes3d_gdram,
    +    char *pooled_features_gdram,
    +    char *pooled_empty_flag_gdram);
    +
    +void KernelRoiPointPool3dForward(cnrtDim3_t k_dim,
    +                                 cnrtFunctionType_t k_type,
    +                                 cnrtQueue_t queue,
    +                                 const cnrtDataType_t d_type,
    +                                 const int batch_size,
    +                                 const int pts_num,
    +                                 const int boxes_num,
    +                                 const int feature_in_len,
    +                                 const int sampled_pts_num,
    +                                 const void *points_xyz,
    +                                 const void *boxes3d,
    +                                 const void *point_features,
    +                                 void *pooled_features,
    +                                 int *pooled_empty_flag) {
    +  switch (d_type) {
    +    default: { break; }
    +    case CNRT_FLOAT32: {
    +      MLUUnion1KernelRoiPointPool3dForward<<>>(
    +          batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
    +          (char *)points_xyz, (char *)point_features, (char *)boxes3d,
    +          (char *)pooled_features, (char *)pooled_empty_flag);
    +    }; break;
    +    case CNRT_FLOAT16: {
    +      MLUUnion1KernelRoiPointPool3dForward<<>>(
    +          batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
    +          (char *)points_xyz, (char *)point_features, (char *)boxes3d,
    +          (char *)pooled_features, (char *)pooled_empty_flag);
    +    }; break;
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/three_nn_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/three_nn_mlu_kernel.mlu
    new file mode 100644
    index 000000000..792738510
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/three_nn_mlu_kernel.mlu
    @@ -0,0 +1,466 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +#include 
    +
    +__nram__ char nram_buffer[MAX_NRAM_SIZE];
    +
    +#if __BANG_ARCH__ >= 322
    +/**
    + * returns the index of ret, which is stored at the 1st position of the `ret`,
    + * used after bang_min
    + */
    +__mlu_func__ uint32_t getIndice(half *ret) {
    +  uint32_t indice = *((uint32_t *)((uint16_t *)ret + 1));
    +  return indice;
    +}
    +
    +/**
    + * returns the index of ret, which is stored at the 1st position of the `ret`,
    + * used after bang_min
    + */
    +__mlu_func__ uint32_t getIndice(float *ret) {
    +  uint32_t indice = ((uint32_t *)ret)[1];
    +  return indice;
    +}
    +#endif
    +
    +template 
    +__mlu_func__ void auxArgmin(T *nram_dst, T *nram_src, const int num_deal,
    +                            T *value, int *index) {
    +  __bang_min(nram_dst, nram_src, num_deal);
    +  *value = nram_dst[0];
    +  __bang_write_value(nram_dst, num_deal, *value);
    +  __bang_eq(nram_dst, nram_src, nram_dst, num_deal);
    +  __bang_findfirst1((uint32_t *)nram_dst, nram_dst, num_deal);
    +  *index = *((int *)nram_dst);
    +}
    +
    +template 
    +__mlu_func__ void auxFuncFind3Min(T *nram_aux_a, const int auxa_offset,
    +                                  int *nram_aux_b, const int auxb_offset,
    +                                  T *nram_dest, T *nram_aux_sort_a,
    +                                  int *nram_aux_sort_b, const int deal_offset) {
    +  __bang_write_value(nram_aux_sort_a, auxa_offset, (T)(INFINITY));
    +  __bang_write_value(nram_aux_sort_b, auxb_offset, (int)0);
    +  int index = 0;
    +  for (int i = 0; i < 3; i++) {
    +#if __BANG_ARCH__ >= 322
    +    __bang_argmin(nram_dest, nram_aux_a, auxa_offset);
    +    nram_aux_sort_a[i] = nram_dest[0];
    +    index = getIndice(nram_dest);
    +#else
    +    T value = 0;
    +    auxArgmin(nram_dest, nram_aux_a, auxa_offset, &value, &index);
    +    nram_aux_sort_a[i] = value;
    +#endif
    +    nram_aux_sort_b[i] = nram_aux_b[index];
    +    __memset_nram(nram_aux_a + index, 1, (T)(INFINITY));
    +  }
    +  __memcpy((char *)nram_aux_a, (char *)nram_aux_sort_a, auxa_offset * sizeof(T),
    +           NRAM2NRAM);
    +  __memcpy((char *)nram_aux_b, (char *)nram_aux_sort_b,
    +           auxb_offset * sizeof(int), NRAM2NRAM);
    +}
    +
    +template 
    +__mlu_func__ void auxFuncSort(T *nram_aux_a, const int auxa_offset,
    +                              int *nram_aux_b, const int auxb_offset,
    +                              T *nram_dest, T *nram_help_value,
    +                              int *nram_help_idx, const int num_deal,
    +                              const int deal_offset) {
    +  for (int k = 0; k < num_deal; ++k) {
    +    auxFuncFind3Min(nram_aux_a + k * auxa_offset, auxa_offset,
    +                    nram_aux_b + k * auxb_offset, auxb_offset, nram_dest,
    +                    nram_help_value, nram_help_idx, deal_offset);
    +  }
    +}
    +
    +template 
    +__mlu_func__ void auxFuncNN(
    +    size_t *output_aux_sort_a_gap, size_t *output_aux_sort_b_gap,
    +    size_t *output_aux_dest_gap, size_t *output_unknown_gap,
    +    size_t *output_known_gap, size_t *output_dist_gap, size_t *auxillary_a_gap,
    +    size_t *auxillary_b_gap, size_t *known_num_deal, size_t *unknown_num_deal,
    +    size_t *align_num, size_t *auxa_offset, size_t *auxb_offset) {
    +  /*
    +   * nram partition:
    +   *        |-NFU_ALIGN_SIZE-|-2*NFU_ALIGN_SIZE-|-X*3*sizeof(T)-|
    +   * space: |   aux_sort_a   |  aux_sort_b      |  nram_unknown |
    +   *
    +   *        | ------        (Y * 7 *sizeof(T)) ---------------- |
    +   *        |   nram_known   |    nram_dist     |   nram_dest   |
    +   *
    +   *        | -X * NFU_ALIGN_SIZE ---|---X * 2 * NFU_ALIGN_SIZE-|
    +   *        |  output_dist(aux_a)    |    output_dist(aux_b)    |
    +   *  200 series
    +   *  X = (MAX_NRAM - 3 * NFU_ALIGN_SIZE) * (2/3) / (3 * sizeof(T) + 3 *
    +   *  NFU_ALIGN_SIZE)
    +   *  Y = (MAX_NRAM - 3 * NFU_ALIGN_SIZE) * (1/3) / (7 * sizeof(T))
    +   *  300 series
    +   *  X = (MAX_NRAM - 3 * NFU_ALIGN_SIZE) * (4/5) / (3 *
    +   *  sizeof(T) + 3 * NFU_ALIGN_SIZE)
    +   *  Y = (MAX_NRAM - 3 * NFU_ALIGN_SIZE) *
    +   *  (1/5) / (7 * sizeof(T))
    +   *
    +   */
    +
    +  *align_num = NFU_ALIGN_SIZE / sizeof(T);
    +  *auxa_offset = NFU_ALIGN_SIZE / sizeof(T);
    +  *auxb_offset = 2 * NFU_ALIGN_SIZE / sizeof(int);
    +#if __BANG_ARCH__ >= 322
    +  *known_num_deal = PAD_DOWN(
    +      (MAX_NRAM_SIZE - 3 * NFU_ALIGN_SIZE) / 5 / (7 * sizeof(T)), *align_num);
    +  *unknown_num_deal = PAD_DOWN((MAX_NRAM_SIZE - 3 * NFU_ALIGN_SIZE) / 5 * 4 /
    +                                   (3 * sizeof(T) + 3 * NFU_ALIGN_SIZE),
    +                               *align_num);
    +#else
    +  *known_num_deal = PAD_DOWN(
    +      (MAX_NRAM_SIZE - 3 * NFU_ALIGN_SIZE) / 3 / (7 * sizeof(T)), *align_num);
    +  *unknown_num_deal = PAD_DOWN((MAX_NRAM_SIZE - 3 * NFU_ALIGN_SIZE) / 3 * 2 /
    +                                   (3 * sizeof(T) + 3 * NFU_ALIGN_SIZE),
    +                               *align_num);
    +#endif
    +
    +  *output_aux_sort_a_gap = 0;
    +  *output_aux_sort_b_gap = *output_aux_sort_a_gap + NFU_ALIGN_SIZE;
    +  *output_aux_dest_gap = *output_aux_sort_b_gap + 2 * NFU_ALIGN_SIZE;
    +
    +  *output_unknown_gap = *output_aux_dest_gap + *known_num_deal * sizeof(T);
    +  *output_known_gap = *output_unknown_gap + *unknown_num_deal * 3 * sizeof(T);
    +  *output_dist_gap = *output_known_gap + *known_num_deal * 3 * sizeof(T);
    +  *auxillary_a_gap = *output_dist_gap + *known_num_deal * 3 * sizeof(T);
    +  *auxillary_b_gap = *auxillary_a_gap + *unknown_num_deal * NFU_ALIGN_SIZE;
    +}
    +
    +#if __BANG_ARCH__ >= 322
    +template 
    +__mlu_func__ bool containNanInf(T *nram_unknown) {
    +  if (std::isnan(nram_unknown[0]) || std::isnan(nram_unknown[1]) ||
    +      std::isnan(nram_unknown[2]) || std::isinf(nram_unknown[0]) ||
    +      std::isinf(nram_unknown[1]) || std::isinf(nram_unknown[2]))
    +    return true;
    +  else
    +    return false;
    +}
    +#endif
    +
    +template 
    +__mlu_func__ void computeThreeNN(T *nram_unknown, T *nram_known, T *nram_dist,
    +                                 T *nram_dest, T *nram_aux_a,
    +                                 T *nram_aux_sort_a, int *nram_aux_b,
    +                                 int *nram_aux_sort_b, const int known_num_deal,
    +                                 const int known_seg_num, const int deal_offset,
    +                                 const int known_count,
    +                                 const int known_count_align) {
    +  __bang_write_value(nram_dist, 3 * known_num_deal, (T)(INFINITY));
    +#if __BANG_ARCH__ >= 322
    +  if (!containNanInf(nram_unknown)) {
    +#endif
    +    // x1 - x2
    +    __bang_sub_scalar(nram_dist, nram_known, nram_unknown[0],
    +                      known_count_align);
    +    // y1 - y2
    +    __bang_sub_scalar(nram_dist + known_count_align,
    +                      nram_known + known_count_align, nram_unknown[1],
    +                      known_count_align);
    +    // z1 - z2
    +    __bang_sub_scalar(nram_dist + 2 * known_count_align,
    +                      nram_known + 2 * known_count_align, nram_unknown[2],
    +                      known_count_align);
    +    __bang_square(nram_dist, nram_dist, 3 * known_count_align);
    +    __bang_add(nram_dist, nram_dist, nram_dist + known_count_align,
    +               known_count_align);
    +    __bang_add(nram_dist, nram_dist, nram_dist + 2 * known_count_align,
    +               known_count_align);
    +#if __BANG_ARCH__ >= 322
    +  }
    +#endif
    +
    +  int index = 0;
    +  for (int i = 0; i < 3; i++) {
    +#if __BANG_ARCH__ >= 322
    +    __bang_argmin(nram_dest, nram_dist, known_count_align);
    +    nram_aux_a[i + deal_offset] = nram_dest[0];
    +    index = getIndice(nram_dest);
    +#else
    +    T value = 0;
    +    auxArgmin(nram_dest, nram_dist, known_count_align, &value, &index);
    +    nram_aux_a[i + deal_offset] = value;
    +#endif
    +    nram_aux_b[i + deal_offset] = index + known_seg_num * known_num_deal;
    +    __memset_nram(nram_dist + index, 1, (T)(INFINITY));
    +  }
    +}
    +
    +template 
    +__mlu_func__ void loadTransposedKnownTensor(
    +    char *nram_known, char *nram_dist, const char *known_gdram,
    +    const int known_num_deal, const int batch_id, const int m,
    +    const int known_seg_num, const int count, const int count_align_num) {
    +  __bang_write_value(nram_known, 3 * known_num_deal, (T)(INFINITY));
    +#if __BANG_ARCH__ >= 322
    +  __bang_write_value(nram_dist, 3 * known_num_deal, (T)(INFINITY));
    +  __memcpy(nram_dist,
    +           known_gdram +
    +               (batch_id * m * 3 + known_seg_num * known_num_deal) * sizeof(T),
    +           count * sizeof(T), GDRAM2NRAM, count_align_num * sizeof(T),
    +           m * sizeof(T), 2);
    +  __bang_minequal((T *)nram_known, (T *)nram_known, (T *)nram_dist,
    +                  3 * count_align_num);
    +#else
    +  __memcpy(nram_known,
    +           known_gdram +
    +               (batch_id * m * 3 + known_seg_num * known_num_deal) * sizeof(T),
    +           count * sizeof(T), GDRAM2NRAM, count_align_num * sizeof(T),
    +           m * sizeof(T), 2);
    +#endif
    +}
    +
    +template 
    +__mlu_func__ void loadUnknownTensor(char *nram_unknown,
    +                                    const char *unknown_gdram,
    +                                    const int unknown_num_deal,
    +                                    const int unknown_seg_num, const int count,
    +                                    const int count_align_num) {
    +  __memcpy(nram_unknown,
    +           unknown_gdram + unknown_seg_num * unknown_num_deal * 3 * sizeof(T),
    +           count * 3 * sizeof(T), GDRAM2NRAM);
    +}
    +
    +template 
    +__mlu_func__ void auxProcessSegment(
    +    const int m, const int n, T *nram_unknown, T *nram_known, T *nram_dist,
    +    T *nram_dest, T *known_gdram, T *nram_aux_a, const int auxa_offset,
    +    int *nram_aux_b, const int auxb_offset, T *nram_aux_sort_a,
    +    int *nram_aux_sort_b, const int unknown_num_deal, const int known_num_deal,
    +    const int known_seg_num, const int unknown_seg_num, const int unknown_count,
    +    const int known_count, const int known_count_align, const int start_idx,
    +    int *deal_offset) {
    +  int pre_batch_id = -1;
    +  int cur_batch_id = -1;
    +  pre_batch_id = start_idx / n;
    +
    +  // if aux_a space is not enough, get the first 3 min among aux_a and clear.
    +  if (*deal_offset >= PAD_DOWN(auxa_offset, 3)) {
    +    auxFuncSort(nram_aux_a, auxa_offset, nram_aux_b, auxb_offset, nram_dest,
    +                nram_aux_sort_a, nram_aux_sort_b, unknown_count, *deal_offset);
    +    *deal_offset = 3;
    +  }
    +
    +  // load i'th segment of known batch data.
    +  loadTransposedKnownTensor((char *)nram_known, (char *)nram_dist,
    +                               (char *)known_gdram, known_num_deal,
    +                               pre_batch_id, m, known_seg_num, known_count,
    +                               known_count_align);
    +
    +  for (int k = 0; k < unknown_count; ++k) {
    +    cur_batch_id = (start_idx + k) / n;
    +    if (cur_batch_id != pre_batch_id) {  // if batch id of unknown data changed,
    +                                         // load corresponding known batch data
    +      pre_batch_id = cur_batch_id;
    +      loadTransposedKnownTensor((char *)nram_known, (char *)nram_dist,
    +                                   (char *)known_gdram, known_num_deal,
    +                                   pre_batch_id, m, known_seg_num, known_count,
    +                                   known_count_align);
    +    }
    +    computeThreeNN(nram_unknown + 3 * k, nram_known, nram_dist, nram_dest,
    +                   nram_aux_a + k * auxa_offset, nram_aux_sort_a,
    +                   nram_aux_b + k * auxb_offset, nram_aux_sort_b,
    +                   known_num_deal, known_seg_num, *deal_offset, known_count,
    +                   known_count_align);
    +  }
    +}
    +
    +template 
    +__mlu_global__ void MLUUnion1KernelThreeNN(const int b, const int n,
    +                                           const int m, char *unknown_gdram,
    +                                           char *known_gdram, char *dist2_gdram,
    +                                           int *idx_gdram) {
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +
    +  size_t output_aux_sort_a_gap = 0, output_aux_sort_b_gap = 0,
    +         output_dest_gap = 0, output_unknown_gap = 0, output_known_gap = 0,
    +         output_dist_gap = 0, auxillary_a_gap = 0, auxillary_b_gap = 0,
    +         known_num_deal = 0, unknown_num_deal = 0, align_num = 0,
    +         auxa_offset = 0, auxb_offset = 0;
    +  auxFuncNN(&output_aux_sort_a_gap, &output_aux_sort_b_gap, &output_dest_gap,
    +               &output_unknown_gap, &output_known_gap, &output_dist_gap,
    +               &auxillary_a_gap, &auxillary_b_gap, &known_num_deal,
    +               &unknown_num_deal, &align_num, &auxa_offset, &auxb_offset);
    +
    +  int num_per_core = b * n / taskDim;
    +  const int core_offset = num_per_core;
    +
    +  char *unknown_gdram_start =
    +      unknown_gdram + taskId * 3 * core_offset * sizeof(T);
    +  char *known_gdram_start = known_gdram;
    +  char *output_dist_start = dist2_gdram + taskId * 3 * core_offset * sizeof(T);
    +  int *output_idx_start = idx_gdram + taskId * 3 * core_offset;
    +
    +  const int rem = (b * n) % taskDim;
    +  if (taskId == taskDim - 1) {
    +    num_per_core += rem;
    +  }
    +
    +  const int unknown_repeat =
    +      num_per_core / unknown_num_deal;  // if unknown number is big, process it
    +                                        // by unknown_repeat times.
    +  const int unknown_rem = num_per_core % unknown_num_deal;  // unknown reminder
    +  const int unknown_rem_align = PAD_UP(unknown_rem, align_num);
    +
    +  const int known_repeat =
    +      m / known_num_deal;  // if known number is big, process it by
    +                           // unknown_repeat times.
    +  const int known_rem = m % known_num_deal;  // known reminder
    +  const int known_rem_align = PAD_UP(known_rem, align_num);
    +
    +  char *nram_aux_sort_a = nram_buffer;
    +  int *nram_aux_sort_b = (int *)(nram_buffer + output_aux_sort_b_gap);
    +  char *nram_dest = nram_buffer + output_dest_gap;
    +  char *nram_unknown = nram_buffer + output_unknown_gap;
    +  char *nram_known = nram_buffer + output_known_gap;
    +  char *nram_dist = nram_buffer + output_dist_gap;
    +  char *nram_aux_a = nram_buffer + auxillary_a_gap;
    +  int *nram_aux_b = (int *)(nram_buffer + auxillary_b_gap);
    +  int deal_offset = 0;
    +  int start_idx = -1;
    +
    +  for (int j = 0; j < unknown_repeat;
    +       ++j) {  // process data within a unknown_repeat
    +    // if unknown need to be process segmentally, use a aux_a and aux_b
    +    // space to find first 3 minimum dist.
    +    __bang_write_value(nram_aux_a, unknown_num_deal * auxa_offset,
    +                       (T)(INFINITY));
    +    __bang_write_value(nram_aux_b, unknown_num_deal * auxb_offset, (int)0);
    +    loadUnknownTensor(nram_unknown, unknown_gdram_start, unknown_num_deal, j,
    +                         unknown_num_deal, unknown_num_deal);
    +
    +    deal_offset = 0;
    +    start_idx = taskId * core_offset + j * unknown_num_deal;
    +
    +    for (int i = 0; i < known_repeat;
    +         ++i) {  // process known data in segmentally.
    +      auxProcessSegment(
    +          m, n, (T *)nram_unknown, (T *)nram_known, (T *)nram_dist,
    +          (T *)nram_dest, (T *)known_gdram_start, (T *)nram_aux_a, auxa_offset,
    +          nram_aux_b, auxb_offset, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +          unknown_num_deal, known_num_deal, i, j, unknown_num_deal,
    +          known_num_deal, known_num_deal, start_idx, &deal_offset);
    +      deal_offset += 3;
    +    }
    +
    +    if (known_rem > 0) {  // process known rem
    +      __bang_write_value(nram_known, 3 * known_num_deal, (T)(INFINITY));
    +      auxProcessSegment(
    +          m, n, (T *)nram_unknown, (T *)nram_known, (T *)nram_dist,
    +          (T *)nram_dest, (T *)known_gdram_start, (T *)nram_aux_a, auxa_offset,
    +          nram_aux_b, auxb_offset, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +          unknown_num_deal, known_num_deal, known_repeat, j, unknown_num_deal,
    +          known_rem, known_rem_align, start_idx, &deal_offset);
    +    }
    +
    +    deal_offset += 3;
    +
    +    if (deal_offset > 3) {
    +      auxFuncSort((T *)nram_aux_a, auxa_offset, nram_aux_b, auxb_offset,
    +                  (T *)nram_dest, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +                  unknown_num_deal, deal_offset);
    +      deal_offset = 0;
    +    }
    +
    +    __memcpy((char *)output_dist_start + j * unknown_num_deal * 3 * sizeof(T),
    +             (char *)nram_aux_a, 3 * sizeof(T), NRAM2GDRAM, 3 * sizeof(T),
    +             auxa_offset * sizeof(T), unknown_num_deal - 1);
    +    __memcpy((char *)output_idx_start + j * unknown_num_deal * 3 * sizeof(int),
    +             (char *)nram_aux_b, 3 * sizeof(int), NRAM2GDRAM, 3 * sizeof(int),
    +             auxb_offset * sizeof(int), unknown_num_deal - 1);
    +  }
    +
    +  if (unknown_rem > 0) {  // process unknown rem
    +    deal_offset = 0;
    +    __bang_write_value(nram_aux_a, unknown_num_deal * auxa_offset,
    +                       (T)(INFINITY));
    +    __bang_write_value(nram_aux_b, unknown_num_deal * auxb_offset, (int)0);
    +    loadUnknownTensor(nram_unknown, unknown_gdram_start, unknown_num_deal,
    +                         unknown_repeat, unknown_rem, unknown_rem_align);
    +    start_idx = taskId * core_offset + unknown_repeat * unknown_num_deal;
    +
    +    for (int i = 0; i < known_repeat; ++i) {
    +      auxProcessSegment(
    +          m, n, (T *)nram_unknown, (T *)nram_known, (T *)nram_dist,
    +          (T *)nram_dest, (T *)known_gdram_start, (T *)nram_aux_a, auxa_offset,
    +          nram_aux_b, auxb_offset, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +          unknown_num_deal, known_num_deal, i, unknown_repeat, unknown_rem,
    +          known_num_deal, known_num_deal, start_idx, &deal_offset);
    +      deal_offset += 3;
    +    }
    +
    +    if (known_rem > 0) {
    +      __bang_write_value(nram_known, 3 * known_num_deal, (T)(INFINITY));
    +      start_idx = taskId * core_offset + unknown_repeat * unknown_num_deal;
    +
    +      auxProcessSegment(
    +          m, n, (T *)nram_unknown, (T *)nram_known, (T *)nram_dist,
    +          (T *)nram_dest, (T *)known_gdram_start, (T *)nram_aux_a, auxa_offset,
    +          nram_aux_b, auxb_offset, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +          unknown_num_deal, known_num_deal, known_repeat, unknown_repeat,
    +          unknown_rem, known_rem, known_rem_align, start_idx, &deal_offset);
    +
    +      deal_offset += 3;
    +    }
    +    if (deal_offset > 3) {
    +      auxFuncSort((T *)nram_aux_a, auxa_offset, nram_aux_b, auxb_offset,
    +                  (T *)nram_dest, (T *)nram_aux_sort_a, nram_aux_sort_b,
    +                  unknown_rem, deal_offset);
    +      deal_offset = 0;
    +    }
    +
    +    __memcpy((char *)output_dist_start +
    +                 unknown_repeat * unknown_num_deal * 3 * sizeof(T),
    +             (char *)nram_aux_a, 3 * sizeof(T), NRAM2GDRAM, 3 * sizeof(T),
    +             auxa_offset * sizeof(T), unknown_rem - 1);
    +    __memcpy((char *)output_idx_start +
    +                 unknown_repeat * unknown_num_deal * 3 * sizeof(int),
    +             (char *)nram_aux_b, 3 * sizeof(int), NRAM2GDRAM, 3 * sizeof(int),
    +             auxb_offset * sizeof(int), unknown_rem - 1);
    +  }
    +}
    +
    +template __mlu_global__ void MLUUnion1KernelThreeNN(
    +    const int b, const int n, const int m, char *unknown_gdram,
    +    char *known_gdram, char *dist2_gdram, int *idx_gdram);
    +
    +template __mlu_global__ void MLUUnion1KernelThreeNN(
    +    const int b, const int n, const int m, char *unknown_gdram,
    +    char *known_gdram, char *dist2_gdram, int *idx_gdram);
    +
    +void KernelThreeNNForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t data_type,
    +                          const void *unknown, const void *known, void *dist2,
    +                          int *idx, const int b, const int n, const int m) {
    +  switch (data_type) {
    +    case CNRT_FLOAT16: {
    +      MLUUnion1KernelThreeNN<<>>(
    +          b, n, m, (char *)unknown, (char *)known, (char *)dist2, idx);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      MLUUnion1KernelThreeNN<<>>(
    +          b, n, m, (char *)unknown, (char *)known, (char *)dist2, idx);
    +    }; break;
    +    default: {
    +      break;
    +    }
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/tin_shift_mlu_kernel.mlu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/tin_shift_mlu_kernel.mlu
    new file mode 100644
    index 000000000..ed64c2b68
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mlu/tin_shift_mlu_kernel.mlu
    @@ -0,0 +1,307 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "common_mlu_helper.hpp"
    +
    +__nram__ char data_nram[MAX_NRAM_SIZE];
    +
    +template 
    +__mlu_func__ void mluMultiKernelTinShift(
    +    const T *input, const int *shifts, T *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel) {
    +  for (int cur_channel_index = taskId;
    +       cur_channel_index < batch_size * channel_size;
    +       cur_channel_index += taskDim) {
    +    int n_index = cur_channel_index / channel_size;
    +    int group_id = cur_channel_index % channel_size / group_channel;
    +    int t_shift = shifts[n_index * group_size + group_id];
    +    int index = cur_channel_index % channel_size * hw_size +
    +                n_index * time_size * channel_size * hw_size;
    +    __bang_write_value(data_nram, MAX_NRAM_SIZE, (char)0);
    +    __asm__ volatile("sync;");
    +    if (abs(t_shift) >= time_size) {
    +      __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +               channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +               time_size - 1);
    +    } else {
    +      if (t_shift > 0) {
    +        __memcpy(data_nram + t_shift * hw_size * sizeof(T), input + index,
    +                 hw_size * sizeof(T), GDRAM2NRAM, hw_size * sizeof(T),
    +                 channel_size * hw_size * sizeof(T), time_size - 1 - t_shift);
    +        __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                 channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                 time_size - 1);
    +      } else {
    +        __memcpy(data_nram, input + (index - t_shift * channel_size * hw_size),
    +                 hw_size * sizeof(T), GDRAM2NRAM, hw_size * sizeof(T),
    +                 channel_size * hw_size * sizeof(T), time_size - 1 + t_shift);
    +        __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                 channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                 time_size - 1);
    +      }
    +    }
    +    __asm__ volatile("sync;");
    +  }
    +}
    +
    +template 
    +__mlu_func__ void mluHwSplit(const T *input, const int t_shift,
    +                             const int time_size, const int hw_size,
    +                             const int channel_size, const int index,
    +                             const int cur_sequence_index,
    +                             const int max_length_per_core, T *output) {
    +  for (int cur_index = index; cur_index < index + hw_size;
    +       cur_index += max_length_per_core) {
    +    int memcpy_size = max_length_per_core;
    +    if (cur_index + max_length_per_core > index + hw_size) {
    +      memcpy_size = index + hw_size - cur_index;
    +    }
    +    if (cur_sequence_index - t_shift < 0 ||
    +        cur_sequence_index - t_shift >= time_size) {
    +      __memcpy(output + cur_index, data_nram, memcpy_size * sizeof(T),
    +               NRAM2GDRAM);
    +    } else {
    +      __memcpy(data_nram, input + cur_index - t_shift * channel_size * hw_size,
    +               memcpy_size * sizeof(T), GDRAM2NRAM);
    +      __memcpy(output + cur_index, data_nram, memcpy_size * sizeof(T),
    +               NRAM2GDRAM);
    +    }
    +    __asm__ volatile("sync;");
    +  }
    +}
    +
    +template 
    +__mlu_func__ void mluMultiKernelTinShiftSplitSequence(
    +    const T *input, const int *shifts, T *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel,
    +    const int max_number_hw_per_core, const int max_length_per_core) {
    +  const int tmp_max_number_hw_per_core =
    +      max_number_hw_per_core > 0 ? max_number_hw_per_core : 1;
    +  const int loop_time = time_size / tmp_max_number_hw_per_core +
    +                        ((time_size % tmp_max_number_hw_per_core) > 0 ? 1 : 0);
    +  int segmentime_size = tmp_max_number_hw_per_core;
    +  int res_segment = time_size % tmp_max_number_hw_per_core;
    +
    +  for (int cur_segment_index = taskId;
    +       cur_segment_index < loop_time * batch_size * channel_size;
    +       cur_segment_index += taskDim) {
    +    int n_index = cur_segment_index / loop_time / channel_size;
    +    int group_id = cur_segment_index / loop_time % channel_size / group_channel;
    +    int t_shift = shifts[n_index * group_size + group_id];
    +    int index = n_index * time_size * channel_size * hw_size +
    +                (cur_segment_index / loop_time % channel_size) * hw_size +
    +                cur_segment_index % loop_time * segmentime_size * hw_size *
    +                    channel_size;
    +    char *dst_gdram2nram = data_nram;
    +    const T *src_gdram2nram = input + index;
    +    int count_gdram2nram = -1;
    +    int count_nram2gdram = -1;
    +    int next_sequence_index =
    +        index / hw_size / channel_size % time_size + segmentime_size;
    +    int cur_sequence_index = index / hw_size / channel_size % time_size;
    +    __bang_write_value(data_nram, MAX_NRAM_SIZE, (char)0);
    +    __asm__ volatile("sync;");
    +    if (max_number_hw_per_core == 0) {
    +      mluHwSplit(input, t_shift, time_size, hw_size, channel_size, index,
    +                 cur_sequence_index, max_length_per_core, output);
    +      continue;
    +    }
    +    if (abs(t_shift) >= time_size) {
    +      if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
    +        __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                 channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                 res_segment - 1);
    +      } else {
    +        __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                 channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                 segmentime_size - 1);
    +      }
    +      continue;
    +    }
    +    if (t_shift == 0) {
    +      if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
    +        dst_gdram2nram = data_nram;
    +        src_gdram2nram = input + index;
    +        count_gdram2nram = res_segment - 1;
    +        count_nram2gdram = res_segment - 1;
    +      } else {
    +        dst_gdram2nram = data_nram;
    +        src_gdram2nram = input + index;
    +        count_gdram2nram = segmentime_size - 1;
    +        count_nram2gdram = segmentime_size - 1;
    +      }
    +    } else if (t_shift > 0) {
    +      int first_index_cur_channel =
    +          n_index * time_size * channel_size * hw_size +
    +          (cur_segment_index / loop_time % channel_size) * hw_size;
    +      if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
    +        dst_gdram2nram = data_nram;
    +        src_gdram2nram =
    +            input +
    +            (index - t_shift * channel_size * hw_size < first_index_cur_channel
    +                 ? first_index_cur_channel
    +                 : index - t_shift * channel_size * hw_size);
    +        count_gdram2nram = res_segment - 1;
    +        count_nram2gdram = res_segment - 1;
    +        if (cur_sequence_index < t_shift && t_shift < next_sequence_index) {
    +          dst_gdram2nram =
    +              data_nram + t_shift % segmentime_size * hw_size * sizeof(T);
    +          count_gdram2nram = res_segment - (t_shift - cur_sequence_index) - 1;
    +        }
    +      } else {
    +        if (t_shift >= next_sequence_index) {
    +          __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                   channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                   segmentime_size - 1);
    +          continue;
    +        } else if (cur_sequence_index < t_shift &&
    +                   t_shift < next_sequence_index) {
    +          dst_gdram2nram =
    +              data_nram + t_shift % segmentime_size * hw_size * sizeof(T);
    +          src_gdram2nram = input + first_index_cur_channel;
    +          count_gdram2nram = segmentime_size - (t_shift % segmentime_size) - 1;
    +          count_nram2gdram = segmentime_size - 1;
    +        } else {
    +          dst_gdram2nram = data_nram;
    +          src_gdram2nram = input + index - t_shift * channel_size * hw_size;
    +          count_gdram2nram = segmentime_size - 1;
    +          count_nram2gdram = segmentime_size - 1;
    +        }
    +      }
    +    } else {
    +      int offset_index = time_size + t_shift;
    +      if (cur_sequence_index >= offset_index) {
    +        if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
    +          __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                   channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                   res_segment - 1);
    +          continue;
    +        } else {
    +          __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +                   channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +                   segmentime_size - 1);
    +          continue;
    +        }
    +      } else {
    +        dst_gdram2nram = data_nram;
    +        src_gdram2nram = input + index - t_shift * channel_size * hw_size;
    +        if (cur_sequence_index - t_shift + segmentime_size < time_size) {
    +          count_gdram2nram = segmentime_size - 1;
    +          count_nram2gdram = segmentime_size - 1;
    +        } else {
    +          count_gdram2nram = time_size - (cur_sequence_index - t_shift) - 1;
    +          count_nram2gdram =
    +              (segmentime_size - 1) < (time_size - cur_sequence_index - 1)
    +                  ? (segmentime_size - 1)
    +                  : (time_size - cur_sequence_index - 1);
    +        }
    +      }
    +    }
    +    __memcpy(dst_gdram2nram, src_gdram2nram, hw_size * sizeof(T), GDRAM2NRAM,
    +             hw_size * sizeof(T), channel_size * hw_size * sizeof(T),
    +             count_gdram2nram);
    +    __memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
    +             channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
    +             count_nram2gdram);
    +    __asm__ volatile("sync;");
    +  }
    +}
    +
    +__mlu_entry__ void MLUUnion1KernelTinShift(
    +    const void *input, const void *shifts, void *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel,
    +    const cnrtDataType_t data_dtype) {
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  switch (data_dtype) {
    +    case CNRT_FLOAT16: {
    +      mluMultiKernelTinShift((half *)input, (const int *)shifts, (half *)output,
    +                             batch_size, time_size, channel_size, hw_size,
    +                             group_size, group_channel);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      mluMultiKernelTinShift((float *)input, (const int *)shifts,
    +                             (float *)output, batch_size, time_size,
    +                             channel_size, hw_size, group_size, group_channel);
    +    }; break;
    +    default: { return; }
    +  }
    +}
    +
    +__mlu_entry__ void MLUUnion1KernelTinShiftSplitSequence(
    +    const void *input, const void *shifts, void *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel,
    +    const int max_number_hw_per_core, const int max_length_per_core,
    +    const cnrtDataType_t data_dtype) {
    +  // make sure that memcore is not used
    +  if (coreId == 0x80) {
    +    return;
    +  }
    +  switch (data_dtype) {
    +    case CNRT_FLOAT16: {
    +      mluMultiKernelTinShiftSplitSequence(
    +          (half *)input, (const int *)shifts, (half *)output, batch_size,
    +          time_size, channel_size, hw_size, group_size, group_channel,
    +          max_number_hw_per_core, max_length_per_core);
    +    }; break;
    +    case CNRT_FLOAT32: {
    +      mluMultiKernelTinShiftSplitSequence(
    +          (float *)input, (const int *)shifts, (float *)output, batch_size,
    +          time_size, channel_size, hw_size, group_size, group_channel,
    +          max_number_hw_per_core, max_length_per_core);
    +    }; break;
    +    default: { return; }
    +  }
    +}
    +
    +void KernelTinShiftForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *input, const void *shifts, void *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel,
    +    const cnrtDataType_t data_dtype, const int channel_per_core,
    +    const int max_number_hw_per_core, const int max_length_per_core) {
    +  if (channel_per_core >= 1) {
    +    MLUUnion1KernelTinShift<<>>(
    +        input, shifts, output, batch_size, time_size, channel_size, hw_size,
    +        group_size, group_channel, data_dtype);
    +  } else {
    +    MLUUnion1KernelTinShiftSplitSequence<<>>(
    +        input, shifts, output, batch_size, time_size, channel_size, hw_size,
    +        group_size, group_channel, max_number_hw_per_core, max_length_per_core,
    +        data_dtype);
    +  }
    +}
    +
    +void KernelTinShiftBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *grad_output, const void *shifts, void *grad_input,
    +    const int batch_size, const int time_size, const int channel_size,
    +    const int hw_size, const int group_size, const int group_channel,
    +    const cnrtDataType_t data_dtype, const int channel_per_core,
    +    const int max_number_hw_per_core, const int max_length_per_core) {
    +  if (channel_per_core >= 1) {
    +    MLUUnion1KernelTinShift<<>>(
    +        grad_output, shifts, grad_input, batch_size, time_size, channel_size,
    +        hw_size, group_size, group_channel, data_dtype);
    +  } else {
    +    MLUUnion1KernelTinShiftSplitSequence<<>>(
    +        grad_output, shifts, grad_input, batch_size, time_size, channel_size,
    +        hw_size, group_size, group_channel, max_number_hw_per_core,
    +        max_length_per_core, data_dtype);
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSDevice.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSDevice.h
    new file mode 100644
    index 000000000..e1d9d4961
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSDevice.h
    @@ -0,0 +1,64 @@
    +//  Copyright © 2022 Apple Inc.
    +
    +// This file is modify from:
    +// https://github.com/pytorch/pytorch/blob/a85d1f0bcdd02cf18d3b0517337458cb51a18cdb/aten/src/ATen/mps/MPSDevice.h
    +
    +#pragma once
    +#include 
    +#include 
    +#include 
    +
    +#ifdef __OBJC__
    +#include 
    +#include 
    +#include 
    +typedef id MTLDevice_t;
    +#else
    +typedef void* MTLDevice;
    +typedef void* MTLDevice_t;
    +#endif
    +
    +using namespace std;
    +
    +namespace at {
    +namespace mps {
    +
    +//-----------------------------------------------------------------
    +//  MPSDevice
    +//
    +// MPSDevice is a singleton class that returns the default device
    +//-----------------------------------------------------------------
    +
    +class TORCH_API MPSDevice {
    + public:
    +  /**
    +   * MPSDevice should not be cloneable.
    +   */
    +  MPSDevice(MPSDevice& other) = delete;
    +  /**
    +   * MPSDevice should not be assignable.
    +   */
    +  void operator=(const MPSDevice&) = delete;
    +  /**
    +   * Gets single instance of the Device.
    +   */
    +  static MPSDevice* getInstance();
    +  /**
    +   * Returns the single device.
    +   */
    +  MTLDevice_t device() { return _mtl_device; }
    +
    +  ~MPSDevice();
    +
    + private:
    +  static MPSDevice* _device;
    +  MTLDevice_t _mtl_device;
    +  MPSDevice();
    +};
    +
    +TORCH_API bool is_available();
    +
    +TORCH_API at::Allocator* GetMPSAllocator(bool useSharedAllocator = false);
    +
    +}  // namespace mps
    +}  // namespace at
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.h
    new file mode 100644
    index 000000000..41c33fba8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.h
    @@ -0,0 +1,61 @@
    +#ifndef _MPS_LIBRARY_H_
    +#define _MPS_LIBRARY_H_
    +
    +#include 
    +#include 
    +
    +#ifdef __OBJC__
    +#include 
    +#include 
    +#include 
    +
    +typedef id MTLComputePipelineState_t;
    +typedef id MTLLibrary_t;
    +#else
    +typedef void* MTLComputePipelineState;
    +typedef void* MTLComputePipelineState_t;
    +typedef void* MTLLibrary;
    +typedef void* MTLLibrary_t;
    +#endif
    +
    +class MPSLibrary {
    + public:
    +  // disable constructor for singleton
    +  static MPSLibrary* createFromUrl(const std::string& library_url);
    +  static MPSLibrary* createFromSource(const std::string& source);
    +  ~MPSLibrary();
    +
    +  MTLLibrary_t library() { return _library; }
    +
    +  MTLComputePipelineState_t getComputePipelineState(
    +      const std::string& function_name);
    +
    + private:
    +  MTLLibrary_t _library;
    +  std::unordered_map _pso_map;
    +};
    +
    +class MPSLibraryManager {
    + public:
    +  // disable constructor for singleton
    +  MPSLibraryManager(const MPSLibraryManager&) = delete;
    +  MPSLibraryManager& operator=(const MPSLibraryManager&) = delete;
    +  MPSLibraryManager(MPSLibraryManager&&) = delete;
    +  MPSLibraryManager& operator=(MPSLibraryManager&&) = delete;
    +
    +  static MPSLibraryManager* getInstance();
    +
    +  bool hasLibrary(const std::string& name);
    +
    +  MPSLibrary* getLibrary(const std::string& library_url);
    +
    +  MPSLibrary* createLibraryFromSouce(const std::string& name,
    +                                     const std::string& sources);
    +
    +  ~MPSLibraryManager();
    +
    + private:
    +  MPSLibraryManager();
    +  std::unordered_map> _library_map;
    +};
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.mm b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.mm
    new file mode 100644
    index 000000000..99addc7e2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSLibrary.mm
    @@ -0,0 +1,107 @@
    +#include "MPSLibrary.h"
    +#include "MPSDevice.h"
    +
    +static std::unique_ptr mps_library_manager=nullptr;
    +
    +MPSLibraryManager* MPSLibraryManager::getInstance() {
    +  if(!mps_library_manager)
    +    mps_library_manager = std::unique_ptr(new MPSLibraryManager());
    +  return mps_library_manager.get();
    +}
    +
    +MPSLibraryManager::~MPSLibraryManager() {}
    +
    +MPSLibraryManager::MPSLibraryManager() {}
    +
    +bool MPSLibraryManager::hasLibrary(const std::string& name) {
    +  return _library_map.find(name) != _library_map.end();
    +}
    +
    +MPSLibrary* MPSLibraryManager::getLibrary(const std::string& library_url) {
    +  if (_library_map.find(library_url) != _library_map.end()) {
    +    return _library_map[library_url].get();
    +  }
    +  _library_map.emplace(std::make_pair(
    +      library_url, std::unique_ptr(MPSLibrary::createFromUrl(library_url))));
    +  return _library_map[library_url].get();
    +}
    +
    +MPSLibrary* MPSLibraryManager::createLibraryFromSouce(const std::string& name,
    +                                                      const std::string& source) {
    +  NSString* ns_name = [NSString stringWithCString:name.c_str()];
    +  if (_library_map.find(name) != _library_map.end()) {
    +    NSLog(@"Library %@ already exist.", ns_name);
    +    return nullptr;
    +  }
    +
    +  _library_map.emplace(
    +      std::make_pair(name, std::unique_ptr(MPSLibrary::createFromSource(source))));
    +  return _library_map[name].get();
    +}
    +
    +MPSLibrary* MPSLibrary::createFromUrl(const std::string& library_url) {
    +  MPSLibrary* library = new MPSLibrary();
    +  @autoreleasepool {
    +    NSError* error = nil;
    +
    +    // load library and func
    +    NSString* utl_str = [NSString stringWithCString:library_url.c_str()];
    +    NSURL* metal_url = [NSURL fileURLWithPath:utl_str];
    +    library->_library = [at::mps::MPSDevice::getInstance()->device() newLibraryWithURL:metal_url
    +                                                                                 error:&error];
    +    if (library->_library == nil) {
    +      NSLog(@"Failed to find library, error %@.", error);
    +      exit(1);
    +    }
    +  }
    +
    +  return library;
    +}
    +
    +MPSLibrary* MPSLibrary::createFromSource(const std::string& sources) {
    +  MPSLibrary* library = new MPSLibrary();
    +  @autoreleasepool {
    +    NSError* error = nil;
    +
    +    // load library and func
    +    NSString* code_str = [NSString stringWithCString:sources.c_str()];
    +    library->_library = [at::mps::MPSDevice::getInstance()->device() newLibraryWithSource:code_str
    +                                                                                  options:nil
    +                                                                                    error:&error];
    +    if (library->_library == nil) {
    +      NSLog(@"Failed to find library, error %@.", error);
    +      exit(1);
    +    }
    +  }
    +
    +  return library;
    +}
    +
    +MPSLibrary::~MPSLibrary() {
    +  [_library release];
    +  _library = nil;
    +}
    +
    +MTLComputePipelineState_t MPSLibrary::getComputePipelineState(const std::string& function_name) {
    +  if (_pso_map.find(function_name) != _pso_map.end()) {
    +    return _pso_map[function_name];
    +  }
    +
    +  MTLComputePipelineState_t pso;
    +  @autoreleasepool {
    +    NSError* error = nil;
    +
    +    // create function
    +    NSString* function_name_str = [NSString stringWithCString:function_name.c_str()];
    +    id func = [_library newFunctionWithName:function_name_str];
    +    if (func == nil) {
    +      NSLog(@"Failed to created pipeline state object, error %@.", error);
    +      exit(1);
    +    }
    +    // create pipeline
    +    pso = [at::mps::MPSDevice::getInstance()->device() newComputePipelineStateWithFunction:func
    +                                                                                     error:&error];
    +    _pso_map.emplace(std::make_pair(function_name, pso));
    +  }
    +  return _pso_map[function_name];
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSStream.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSStream.h
    new file mode 100644
    index 000000000..54cd38849
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSStream.h
    @@ -0,0 +1,132 @@
    +//  Copyright © 2022 Apple Inc.
    +
    +// This file is modify from:
    +// https://github.com/pytorch/pytorch/blob/a85d1f0bcdd02cf18d3b0517337458cb51a18cdb/aten/src/ATen/mps/MPSStream.h
    +
    +#pragma once
    +
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include "MPSDevice.h"
    +
    +#ifdef __OBJC__
    +#include 
    +#include 
    +#include 
    +#include 
    +typedef id MTLCommandQueue_t;
    +typedef id MTLCommandBuffer_t;
    +typedef id MTLSharedEvent_t;
    +typedef id MTLDevice_t;
    +#else
    +typedef void* MTLCommandQueue_t;
    +typedef void* MTLCommandQueue;
    +typedef void* MTLCommandBuffer_t;
    +typedef void* MTLCommandBuffer;
    +typedef void* MTLSharedEvent_t;
    +typedef void* dispatch_queue_t;
    +typedef void* MTLDevice_t;
    +#define nil NULL;
    +#endif
    +
    +namespace at {
    +namespace mps {
    +
    +//-----------------------------------------------------------------
    +//  MPSStream
    +//-----------------------------------------------------------------
    +
    +class TORCH_API MPSStream {
    + public:
    +  enum Unchecked { UNCHECKED };
    +  /// Construct a MPSStream from a Stream.  This construction is checked,
    +  /// and will raise an error if the Stream is not, in fact, a MPS stream.
    +  explicit MPSStream(Stream stream);
    +
    +  ~MPSStream();
    +  MTLCommandQueue_t commandQueue() const { return _commandQueue; };
    +  dispatch_queue_t queue() const { return _serialQueue; }
    +
    +  MTLCommandBuffer_t commandBuffer();
    +  void commit(bool flush);
    +  void commitAndWait();
    +  void synchronize();
    +
    +  void flush();
    +
    +  /// Get the MPS device index that this stream is associated with.
    +  c10::DeviceIndex device_index() const { return _stream.device_index(); }
    +
    +  MTLCommandQueue_t stream() const { return _commandQueue; };
    +
    +  MTLDevice_t device() const { return [_commandQueue device]; }
    +
    +  /// Explicit conversion to Stream.
    +  Stream unwrap() const { return _stream; }
    +
    + private:
    +  Stream _stream;
    +  MTLCommandQueue_t _commandQueue = nil;
    +  MTLCommandBuffer_t _commandBuffer = nil;
    +  void _flush(bool commitAndWait) const;
    +
    +  dispatch_queue_t _serialQueue = nullptr;
    +};
    +
    +/**
    + * Get the current MPS stream
    + */
    +TORCH_API MPSStream* getCurrentMPSStream();
    +
    +/**
    + * Get the default MPS stream
    + */
    +TORCH_API MPSStream* getDefaultMPSStream();
    +
    +//-----------------------------------------------------------------
    +//  MPSStreamImpl
    +//-----------------------------------------------------------------
    +
    +class TORCH_API MPSStreamImpl {
    + public:
    +  /**
    +   * Gets single instance of the MPSStream.
    +   */
    +  static MPSStream* getInstance();
    +
    + private:
    +  static MPSStream* _stream;
    +  MPSStreamImpl();
    +};
    +
    +//-----------------------------------------------------------------
    +//  MPSEvent
    +//-----------------------------------------------------------------
    +
    +struct TORCH_API MPSEvent {
    +  MPSEvent();
    +  // MPSEvent(id device);
    +
    +  ~MPSEvent();
    +  MTLSharedEvent_t event() const { return _event; }
    +
    +  void recordEvent(MPSStream* stream);
    +  void waitForEvent(MPSStream* queue);  // waits on the cpu
    +  bool queryEvent();
    +  uint64_t getCurrentValue() { return _currentValue; }
    +  void setCurrentValue(uint64_t currValue) { _currentValue = currValue; }
    +
    + private:
    +  bool _isRecorded = false;
    +  uint64_t _currentValue = 0;
    +  MTLSharedEvent_t _event;
    +};
    +
    +typedef MPSEvent* mpsEvent_t;
    +
    +}  // namespace mps
    +}  // namespace at
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSUtils.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSUtils.h
    new file mode 100644
    index 000000000..2a4ce6d79
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/mps/MPSUtils.h
    @@ -0,0 +1,51 @@
    +#ifndef _MPS_UTILS_H_
    +#define _MPS_UTILS_H_
    +#include 
    +#ifdef __OBJC__
    +#include 
    +#include 
    +#include 
    +
    +typedef id MTLBuffer_t;
    +typedef id MTLComputeCommandEncoder_t;
    +#else
    +typedef void* MTLBuffer;
    +typedef void* MTLBuffer_t;
    +typedef void* MTLComputeCommandEncoder;
    +typedef void* MTLComputeCommandEncoder_t;
    +#endif
    +
    +// utils
    +static inline MTLBuffer_t getMTLBufferStorage(const at::Tensor& tensor) {
    +  return __builtin_bit_cast(MTLBuffer_t, tensor.storage().data());
    +}
    +
    +template , at::Tensor>::value, bool> = true>
    +void setMTLArg(MTLComputeCommandEncoder_t encoder, int index, T&& t);
    +
    +template , at::Tensor>::value, bool> = true>
    +void setMTLArg(MTLComputeCommandEncoder_t encoder, int index, T&& t) {
    +  [encoder setBuffer:getMTLBufferStorage(t) offset:0 atIndex:index];
    +}
    +
    +template , at::Tensor>::value, bool>>
    +void setMTLArg(MTLComputeCommandEncoder_t encoder, int index, T&& t) {
    +  [encoder setBytes:&t length:sizeof(t) atIndex:index];
    +}
    +
    +inline void setMTLArgsImpl(MTLComputeCommandEncoder_t, int) {}
    +
    +template 
    +void setMTLArgsImpl(MTLComputeCommandEncoder_t encoder, int index, T&& t, Args&&... args) {
    +  setMTLArg(encoder, index, std::forward(t));
    +  setMTLArgsImpl(encoder, index + 1, std::forward(args)...);
    +}
    +
    +template 
    +void setMTLArgs(MTLComputeCommandEncoder_t encoder, MTLComputePipelineState_t pso, Args&&... args) {
    +  [encoder setComputePipelineState:pso];
    +  setMTLArgsImpl(encoder, 0, std::forward(args)...);
    +}
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cpp_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cpp_helper.hpp
    new file mode 100644
    index 000000000..72701890d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cpp_helper.hpp
    @@ -0,0 +1,40 @@
    +#ifndef PARROTS_CPP_HELPER
    +#define PARROTS_CPP_HELPER
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +using namespace parrots;
    +
    +#define PARROTS_PRIVATE_CASE_TYPE(prim_type, type, ...) \
    +  case prim_type: {                                     \
    +    using scalar_t = type;                              \
    +    return __VA_ARGS__();                               \
    +  }
    +
    +#define PARROTS_DISPATCH_FLOATING_TYPES(TYPE, ...)                  \
    +  [&] {                                                             \
    +    const auto& the_type = TYPE;                                    \
    +    switch (the_type) {                                             \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, double, __VA_ARGS__) \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__)  \
    +      default:                                                      \
    +        PARROTS_NOTSUPPORTED;                                       \
    +    }                                                               \
    +  }()
    +
    +#define PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(TYPE, ...)          \
    +  [&] {                                                              \
    +    const auto& the_type = TYPE;                                     \
    +    switch (the_type) {                                              \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, double, __VA_ARGS__)  \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__)   \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float16, float16, __VA_ARGS__) \
    +      default:                                                       \
    +        PARROTS_NOTSUPPORTED;                                        \
    +    }                                                                \
    +  }()
    +
    +#endif  // PARROTS_CPP_HELPER
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cuda_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cuda_helper.hpp
    new file mode 100644
    index 000000000..45aea02eb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/parrots_cuda_helper.hpp
    @@ -0,0 +1,111 @@
    +#ifndef PARROTS_CUDA_HELPER
    +#define PARROTS_CUDA_HELPER
    +
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "parrots_cudawarpfunction.cuh"
    +
    +using namespace parrots;
    +using phalf = float16;
    +
    +#define __PHALF(x) (x.y)
    +
    +#define PARROTS_CUDA_CHECK(exp)                         \
    +  do {                                                  \
    +    cudaError_t err = exp;                              \
    +    if (err != cudaSuccess) {                           \
    +      fprintf(stderr, "cudaCheckError() failed : %s\n", \
    +              cudaGetErrorString(err));                 \
    +      exit(-1);                                         \
    +    }                                                   \
    +  } while (0)
    +
    +#define PARROTS_PRIVATE_CASE_TYPE(prim_type, type, ...) \
    +  case prim_type: {                                     \
    +    using scalar_t = type;                              \
    +    return __VA_ARGS__();                               \
    +  }
    +
    +#define PARROTS_DISPATCH_FLOATING_TYPES(TYPE, ...)                  \
    +  [&] {                                                             \
    +    const auto& the_type = TYPE;                                    \
    +    switch (the_type) {                                             \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, float, __VA_ARGS__) \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__)  \
    +      default:                                                      \
    +        PARROTS_NOTSUPPORTED;                                       \
    +    }                                                               \
    +  }()
    +
    +#define PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(TYPE, ...)          \
    +  [&] {                                                              \
    +    const auto& the_type = TYPE;                                     \
    +    switch (the_type) {                                              \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, float, __VA_ARGS__)  \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__)   \
    +      PARROTS_PRIVATE_CASE_TYPE(Prim::Float16, float16, __VA_ARGS__) \
    +      default:                                                       \
    +        PARROTS_NOTSUPPORTED;                                        \
    +    }                                                                \
    +  }()
    +
    +/** atomicAdd **/
    +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600
    +
    +static __inline__ __device__ float atomicAdd(float* address, float val) {
    +  unsigned long long int* address_as_ull = (unsigned long long int*)address;
    +  unsigned long long int old = *address_as_ull, assumed;
    +  if (val == 0.0) return __longlong_as_float(old);
    +  do {
    +    assumed = old;
    +    old = atomicCAS(address_as_ull, assumed,
    +                    __float_as_longlong(val + __longlong_as_float(assumed)));
    +  } while (assumed != old);
    +  return __longlong_as_float(old);
    +}
    +
    +#endif
    +
    +static __inline__ __device__ float16 atomicAdd(float16* address, float16 val) {
    +  unsigned int* aligned =
    +      (unsigned int*)((size_t)address - ((size_t)address & 2));
    +  unsigned int old = *aligned;
    +  unsigned int assumed;
    +  unsigned short old_as_us;
    +  do {
    +    assumed = old;
    +    old_as_us =
    +        (unsigned short)((size_t)address & 2 ? old >> 16 : old & 0xffff);
    +
    +#if __CUDACC_VER_MAJOR__ >= 9
    +    float16 tmp;
    +    tmp.x = old_as_us;
    +    float16 sum = tmp + val;
    +    unsigned short sum_as_us = sum.x;
    +//         half sum = __float2half_rn(__half2float(__ushort_as_half(old_as_us))
    +//         + (float)(val)); unsigned short sum_as_us = __half_as_ushort(sum);
    +#else
    +    unsigned short sum_as_us =
    +        __float2half_rn(__half2float(old_as_us) + (float)(val));
    +#endif
    +
    +    unsigned int sum_as_ui = (size_t)address & 2
    +                                 ? (sum_as_us << 16) | (old & 0xffff)
    +                                 : (old & 0xffff0000) | sum_as_us;
    +    old = atomicCAS(aligned, assumed, sum_as_ui);
    +  } while (assumed != old);
    +  //__half_raw raw = {old_as_us};
    +  // return float16(raw);
    +  return *reinterpret_cast(&old_as_us);
    +}
    +#endif  // PARROTS_CUDA_HELPER
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cpp_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cpp_helper.hpp
    new file mode 100644
    index 000000000..f68e87405
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cpp_helper.hpp
    @@ -0,0 +1,27 @@
    +#ifndef PYTORCH_CPP_HELPER
    +#define PYTORCH_CPP_HELPER
    +#include 
    +
    +#include 
    +
    +using namespace at;
    +
    +#define CHECK_CUDA(x) \
    +  TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
    +#define CHECK_MLU(x) \
    +  TORCH_CHECK(x.device().type() == at::kMLU, #x " must be a MLU tensor")
    +#define CHECK_CPU(x) \
    +  TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")
    +#define CHECK_CONTIGUOUS(x) \
    +  TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
    +#define CHECK_CUDA_INPUT(x) \
    +  CHECK_CUDA(x);            \
    +  CHECK_CONTIGUOUS(x)
    +#define CHECK_MLU_INPUT(x) \
    +  CHECK_MLU(x);            \
    +  CHECK_CONTIGUOUS(x)
    +#define CHECK_CPU_INPUT(x) \
    +  CHECK_CPU(x);            \
    +  CHECK_CONTIGUOUS(x)
    +
    +#endif  // PYTORCH_CPP_HELPER
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cuda_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cuda_helper.hpp
    new file mode 100644
    index 000000000..52e512695
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_cuda_helper.hpp
    @@ -0,0 +1,20 @@
    +#ifndef PYTORCH_CUDA_HELPER
    +#define PYTORCH_CUDA_HELPER
    +
    +#include 
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +
    +using at::Half;
    +using at::Tensor;
    +using phalf = at::Half;
    +
    +#define __PHALF(x) (x)
    +#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
    +
    +#endif  // PYTORCH_CUDA_HELPER
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_device_registry.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_device_registry.hpp
    new file mode 100644
    index 000000000..2a32b7270
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_device_registry.hpp
    @@ -0,0 +1,141 @@
    +#ifndef PYTORCH_DEVICE_REGISTRY_H
    +#define PYTORCH_DEVICE_REGISTRY_H
    +
    +// Using  is recommended in the official documentation in
    +// https://pytorch.org/tutorials/advanced/cpp_extension.html#writing-the-c-op.
    +// However, we use  for compatibility with CUDA 9.0
    +// Read https://github.com/pytorch/extension-cpp/issues/35 for more details.
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +inline std::string GetDeviceStr(const at::Device& device) {
    +  std::string str = DeviceTypeName(device.type(), true);
    +  if (device.has_index()) {
    +    str.push_back(':');
    +    str.append(std::to_string(device.index()));
    +  }
    +  return str;
    +}
    +
    +// Registry
    +template 
    +class DeviceRegistry;
    +
    +template 
    +class DeviceRegistry {
    + public:
    +  using FunctionType = Ret (*)(Args...);
    +  static const int MAX_DEVICE_TYPES =
    +      int8_t(at::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES);
    +
    +  void Register(at::DeviceType device, FunctionType function) {
    +    funcs_[int8_t(device)] = function;
    +  }
    +
    +  FunctionType Find(at::DeviceType device) const {
    +    return funcs_[int8_t(device)];
    +  }
    +
    +  static DeviceRegistry& instance() {
    +    static DeviceRegistry inst;
    +    return inst;
    +  }
    +
    + private:
    +  DeviceRegistry() {
    +    for (size_t i = 0; i < MAX_DEVICE_TYPES; ++i) {
    +      funcs_[i] = nullptr;
    +    }
    +  };
    +  FunctionType funcs_[MAX_DEVICE_TYPES];
    +};
    +
    +// get device of first tensor param
    +
    +template , at::Tensor>::value,
    +                           bool> = true>
    +at::Device GetFirstTensorDevice(T&& t, Args&&... args) {
    +  return std::forward(t).device();
    +}
    +template , at::Tensor>::value,
    +                           bool> = true>
    +at::Device GetFirstTensorDevice(T&& t, Args&&... args) {
    +  return GetFirstTensorDevice(std::forward(args)...);
    +}
    +
    +// check device consistency
    +
    +inline std::pair CheckDeviceConsistency(
    +    const at::Device& device, int index) {
    +  return {index, device};
    +}
    +
    +template , at::Tensor>::value,
    +                           bool> = true>
    +std::pair CheckDeviceConsistency(const at::Device& device,
    +                                                  int index, T&& t,
    +                                                  Args&&... args);
    +
    +template , at::Tensor>::value,
    +                           bool> = true>
    +std::pair CheckDeviceConsistency(const at::Device& device,
    +                                                  int index, T&& t,
    +                                                  Args&&... args) {
    +  auto new_device = std::forward(t).device();
    +  if (new_device.type() != device.type() ||
    +      new_device.index() != device.index()) {
    +    return {index, new_device};
    +  }
    +  return CheckDeviceConsistency(device, index + 1, std::forward(args)...);
    +}
    +
    +template <
    +    typename T, typename... Args,
    +    std::enable_if_t, at::Tensor>::value, bool>>
    +std::pair CheckDeviceConsistency(const at::Device& device,
    +                                                  int index, T&& t,
    +                                                  Args&&... args) {
    +  return CheckDeviceConsistency(device, index + 1, std::forward(args)...);
    +}
    +
    +// dispatch
    +
    +template 
    +auto Dispatch(const R& registry, const char* name, Args&&... args) {
    +  auto device = GetFirstTensorDevice(std::forward(args)...);
    +  auto inconsist =
    +      CheckDeviceConsistency(device, 0, std::forward(args)...);
    +  TORCH_CHECK(inconsist.first >= int(sizeof...(Args)), name, ": at param ",
    +              inconsist.first,
    +              ", inconsistent device: ", GetDeviceStr(inconsist.second).c_str(),
    +              " vs ", GetDeviceStr(device).c_str(), "\n")
    +  auto f_ptr = registry.Find(device.type());
    +  TORCH_CHECK(f_ptr != nullptr, name, ": implementation for device ",
    +              GetDeviceStr(device).c_str(), " not found.\n")
    +  return f_ptr(std::forward(args)...);
    +}
    +
    +// helper macro
    +
    +#define DEVICE_REGISTRY(key) DeviceRegistry::instance()
    +
    +#define REGISTER_DEVICE_IMPL(key, device, value)           \
    +  struct key##_##device##_registerer {                     \
    +    key##_##device##_registerer() {                        \
    +      DEVICE_REGISTRY(key).Register(at::k##device, value); \
    +    }                                                      \
    +  };                                                       \
    +  static key##_##device##_registerer _##key##_##device##_registerer;
    +
    +#define DISPATCH_DEVICE_IMPL(key, ...) \
    +  Dispatch(DEVICE_REGISTRY(key), #key, __VA_ARGS__)
    +
    +#endif  // PYTORCH_DEVICE_REGISTRY
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_mlu_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_mlu_helper.hpp
    new file mode 100644
    index 000000000..e49572ca8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_mlu_helper.hpp
    @@ -0,0 +1,61 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#ifndef PYTORCH_MLU_HELPER_HPP_
    +#define PYTORCH_MLU_HELPER_HPP_
    +
    +#ifdef MMCV_WITH_MLU
    +#include "aten.h"
    +
    +#define NFU_ALIGN_SIZE 128
    +
    +#define PAD_UP(x, y) (((x) / (y) + (int)((x) % (y) > 0)) * (y))
    +
    +#define PAD_DOWN(x, y) (((x) / (y)) * (y))
    +
    +#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
    +
    +#define CEIL_ALIGN(x, y) (((x) + (y)-1) / (y) * (y))
    +
    +inline int32_t getJobLimitCapability() {
    +  CNcontext drv_ctx;
    +  TORCH_CHECK(CN_SUCCESS == cnCtxGetCurrent(&drv_ctx), "cnCtxGetCurrent fails");
    +  CNctxConfigParam ctx_conf_param;
    +  TORCH_CHECK(
    +      CN_SUCCESS == cnGetCtxConfigParam(drv_ctx, CN_CTX_CONFIG_UNION_LIMIT,
    +                                        &ctx_conf_param),
    +      "cnGetCtxConfigParam fails.");
    +  return (int32_t)ctx_conf_param.unionLimit;
    +}
    +
    +inline int32_t getCoreNumOfJobLimitCapability() {
    +  switch (getJobLimitCapability()) {
    +    default:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster) *
    +             getJobLimitCapability();
    +    case CN_KERNEL_CLASS_BLOCK:
    +      return 1;
    +    case CN_KERNEL_CLASS_UNION:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +    case CN_KERNEL_CLASS_UNION2:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster) * 2;
    +    case CN_KERNEL_CLASS_UNION4:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster) * 4;
    +    case CN_KERNEL_CLASS_UNION8:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster) * 8;
    +    case CN_KERNEL_CLASS_UNION16:
    +      return torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster) * 16;
    +  }
    +}
    +
    +#endif  // MMCV_WITH_MLU
    +
    +#endif  // PYTORCH_MLU_HELPER_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_npu_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_npu_helper.hpp
    new file mode 100644
    index 000000000..88607d23b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/common/pytorch_npu_helper.hpp
    @@ -0,0 +1,35 @@
    +/******************************************************************************
    + * Copyright (c) 2022 Huawei Technologies Co., Ltd
    + * All rights reserved.
    + *
    + * Licensed under the BSD 3-Clause License  (the "License");
    + * you may not use this file except in compliance with the License.
    + * You may obtain a copy of the License at
    + *
    + * https://opensource.org/licenses/BSD-3-Clause
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + ******************************************************************************/
    +
    +#ifndef PYTORCH_NPU_HELPER_HPP_
    +#define PYTORCH_NPU_HELPER_HPP_
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +#define NPU_NAME_SPACE at_npu::native
    +
    +#define REGISTER_NPU_IMPL(key, value) REGISTER_DEVICE_IMPL(key, XLA, value)
    +
    +#define CHECK_NPU(x) \
    +  TORCH_CHECK(x.device().type() == at::kXLA, #x " must be a NPU tensor")
    +
    +#endif  // PYTORCH_NPU_HELPER_HPP_
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/corner_pool.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/corner_pool.h
    new file mode 100644
    index 000000000..b40867925
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/corner_pool.h
    @@ -0,0 +1,46 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_CORNER_POOL_H
    +#define ONNXRUNTIME_CORNER_POOL_H
    +
    +#include 
    +#include 
    +
    +struct MMCVCornerPoolKernel {
    + public:
    +  MMCVCornerPoolKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    mode_ = ort_.KernelInfoGetAttribute(info, "mode");
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +
    +  int64_t mode_;
    +};
    +
    +struct MMCVCornerPoolCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVCornerPoolKernel(api, info);
    +  }
    +
    +  const char* GetName() const { return "MMCVCornerPool"; }
    +
    +  size_t GetInputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetOutputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  }
    +};
    +#endif  // ONNXRUNTIME_CORNER_POOL_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/corner_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/corner_pool.cpp
    new file mode 100644
    index 000000000..397fe10e7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/corner_pool.cpp
    @@ -0,0 +1,123 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "corner_pool.h"
    +
    +#include "../ort_mmcv_utils.h"
    +
    +void TopPoolForwardCPU(const float *input, float *output, const int batch_size,
    +                       const int channels, const int height, const int width) {
    +  for (int n = 0; n < batch_size; n++) {
    +    int index_n = n * channels * width * height;
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * width * height;
    +      for (int w = 0; w < width; w++) {
    +        // directly copy the most bottom value from input to output
    +        output[index_n_c + (height - 1) * width + w] =
    +            input[index_n_c + (height - 1) * width + w];
    +        // do top_pool
    +        for (int h = height - 2; h >= 0; h--) {
    +          output[index_n_c + h * width + w] =
    +              std::max(output[index_n_c + (h + 1) * width + w],
    +                       input[index_n_c + h * width + w]);
    +        }  // for h
    +      }    // for w
    +    }      // for c
    +  }        // for n
    +}
    +
    +void BottomPoolForwardCPU(const float *input, float *output,
    +                          const int batch_size, const int channels,
    +                          const int height, const int width) {
    +  for (int n = 0; n < batch_size; n++) {
    +    int index_n = n * channels * width * height;
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * width * height;
    +      for (int w = 0; w < width; w++) {
    +        // directly copy the most top value from input to output
    +        output[index_n_c + w] = input[index_n_c + w];
    +        // do top_pool
    +        for (int h = 1; h < height; h++) {
    +          output[index_n_c + h * width + w] =
    +              std::max(output[index_n_c + (h - 1) * width + w],
    +                       input[index_n_c + h * width + w]);
    +        }  // for h
    +      }    // for w
    +    }      // for c
    +  }        // for n
    +}
    +
    +void LeftPoolForwardCPU(const float *input, float *output, const int batch_size,
    +                        const int channels, const int height, const int width) {
    +  for (int n = 0; n < batch_size; n++) {
    +    int index_n = n * channels * width * height;
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * width * height;
    +      for (int h = 0; h < height; h++) {
    +        // directly copy the most right value from input to output
    +        output[index_n_c + h * width + width - 1] =
    +            input[index_n_c + h * width + width - 1];
    +        // do left_pool
    +        for (int w = width - 2; w >= 0; w--) {
    +          output[index_n_c + h * width + w] =
    +              std::max(output[index_n_c + h * width + w + 1],
    +                       input[index_n_c + h * width + w]);
    +        }  // for w
    +      }    // for h
    +    }      // for c
    +  }        // for n
    +}
    +
    +void RightPoolForwardCPU(const float *input, float *output,
    +                         const int batch_size, const int channels,
    +                         const int height, const int width) {
    +  for (int n = 0; n < batch_size; n++) {
    +    int index_n = n * channels * width * height;
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * width * height;
    +      for (int h = 0; h < height; h++) {
    +        // directly copy the most left value from input to output
    +        output[index_n_c + h * width] = input[index_n_c + h * width];
    +        // do right_pool
    +        for (int w = 1; w < width; w++) {
    +          output[index_n_c + h * width + w] =
    +              std::max(output[index_n_c + h * width + w - 1],
    +                       input[index_n_c + h * width + w]);
    +        }  // for w
    +      }    // for h
    +    }      // for c
    +  }        // for n
    +}
    +
    +void MMCVCornerPoolKernel::Compute(OrtKernelContext *context) {
    +  const int mode = int(mode_);
    +  typedef float T;
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const T *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  // get output memory
    +  OrtTensorDimensions out_dimensions(ort_, input);
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  T *output_data = ort_.GetTensorMutableData(output);
    +
    +  // 'top': 0, 'bottom': 1, 'left': 2, 'right':3
    +  assert(mode == 0 || mode == 1 || mode == 2 || mode == 3);
    +
    +  // do corner_pool
    +  int batch_size = out_dimensions.data()[0];
    +  int input_channels = out_dimensions.data()[1];
    +  int input_height = out_dimensions.data()[2];
    +  int input_width = out_dimensions.data()[3];
    +  if (mode == 0)
    +    TopPoolForwardCPU(input_data, output_data, batch_size, input_channels,
    +                      input_height, input_width);
    +  else if (mode == 1)
    +    BottomPoolForwardCPU(input_data, output_data, batch_size, input_channels,
    +                         input_height, input_width);
    +  else if (mode == 2)
    +    LeftPoolForwardCPU(input_data, output_data, batch_size, input_channels,
    +                       input_height, input_width);
    +  else
    +    RightPoolForwardCPU(input_data, output_data, batch_size, input_channels,
    +                        input_height, input_width);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/deform_conv.cpp
    new file mode 100644
    index 000000000..db1f08b51
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/deform_conv.cpp
    @@ -0,0 +1,263 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "deform_conv.h"
    +
    +#include 
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +
    +void gemm_ref_fp32_deform(const float *A, const float *B, const float *V,
    +                          const float *H, const int32_t trans_A,
    +                          const int32_t trans_B, const int32_t M,
    +                          const int32_t N, const int32_t K, const float alpha,
    +                          const float beta, float *Y) {
    +  if (!trans_A && !trans_B) {  // MK, KN; NN
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[m * K + k] * B[k * N + n];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (trans_A && !trans_B) {  // KM, KN; TN
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[k * M + m] * B[k * N + n];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (trans_A && trans_B) {  // KM, NK; TT
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[k * M + m] * B[n * K + k];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (!trans_A && trans_B) {  // MK, NK; NT
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[m * K + k] * B[n * K + k];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +}
    +
    +float bilinear_interpolate(const float *src, const int64_t src_h,
    +                           const int64_t src_w, const float h, const float w) {
    +  if (h <= -1 || src_h <= h || w <= -1 || src_w <= w) {
    +    return 0;
    +  }
    +
    +  int64_t h_low = floor(h);
    +  int64_t w_low = floor(w);
    +  int64_t h_high = h_low + 1;
    +  int64_t w_high = w_low + 1;
    +
    +  float lh = h - h_low;
    +  float lw = w - w_low;
    +  float hh = 1 - lh;
    +  float hw = 1 - lw;
    +
    +  float v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = src[h_low * src_w + w_low];
    +  float v2 = 0;
    +  if (h_low >= 0 && w_high <= src_w - 1) v2 = src[h_low * src_w + w_high];
    +  float v3 = 0;
    +  if (h_high <= src_h - 1 && w_low >= 0) v3 = src[h_high * src_w + w_low];
    +  float v4 = 0;
    +  if (h_high <= src_h - 1 && w_high <= src_w - 1)
    +    v4 = src[h_high * src_w + w_high];
    +
    +  float w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  float val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +void deformable_im2col(const float *input, const float *offset,
    +                       const int64_t src_h, const int64_t src_w,
    +                       const int64_t kernel_h, const int64_t kernel_w,
    +                       const int64_t pad_h, const int64_t pad_w,
    +                       const int64_t stride_h, const int64_t stride_w,
    +                       const int64_t dilation_h, const int64_t dilation_w,
    +                       const int64_t channels, const int64_t offset_groups,
    +                       const int64_t dst_h, const int64_t dst_w,
    +                       float *columns) {
    +  const int64_t indices = channels * dst_h * dst_w;
    +  for (int64_t index = 0; index != indices; ++index) {
    +    const int64_t w_col = index % dst_w;
    +    const int64_t h_col = (index / dst_w) % dst_h;
    +    const int64_t c_im = index / (dst_w * dst_h);
    +    const int64_t c_col = c_im * kernel_h * kernel_w;
    +
    +    int64_t c_per_offset_grp = channels / offset_groups;
    +    const int64_t grp_idx = c_im / c_per_offset_grp;
    +    auto columns_ptr =
    +        columns + (c_col * (dst_h * dst_w) + h_col * dst_w + w_col);
    +    auto input_ptr = input + c_im * (src_h * src_w);
    +    auto offset_ptr =
    +        offset + grp_idx * 2 * kernel_h * kernel_w * dst_h * dst_w;
    +
    +    for (int64_t kh = 0; kh < kernel_h; ++kh) {
    +      for (int64_t kw = 0; kw < kernel_w; ++kw) {
    +        const int data_offset_h_ptr =
    +            ((2 * (kh * kernel_w + kw)) * dst_h + h_col) * dst_w + w_col;
    +        const int data_offset_w_ptr =
    +            ((2 * (kh * kernel_w + kw) + 1) * dst_h + h_col) * dst_w + w_col;
    +
    +        const float offset_h = offset_ptr[data_offset_h_ptr];
    +        const float offset_w = offset_ptr[data_offset_w_ptr];
    +        const float ih =
    +            (h_col * stride_h - pad_h) + kh * dilation_h + offset_h;
    +        const float iw =
    +            (w_col * stride_w - pad_w) + kw * dilation_w + offset_w;
    +        *columns_ptr = bilinear_interpolate(input_ptr, src_h, src_w, ih, iw);
    +        columns_ptr += dst_h * dst_w;
    +      }
    +    }
    +  }
    +}
    +
    +void deformable_conv_forward(
    +    const float *src, const float *offset, const float *filter,
    +    const int64_t batch, const int64_t src_c, const int64_t src_h,
    +    const int64_t src_w, const int64_t dst_c, const int64_t dst_h,
    +    const int64_t dst_w, const int64_t group, const int64_t offset_group,
    +    const int64_t channels, const int64_t num_output, const int64_t kernel_h,
    +    const int64_t kernel_w, const int64_t stride_h, const int64_t stride_w,
    +    const int64_t pad_h, const int64_t pad_w, const int64_t dilation_h,
    +    const int64_t dilation_w, float *columns, float *dst) {
    +  const int64_t ic_per_gp = channels / group;
    +  const int64_t oc_per_gp = num_output / group;
    +  for (int64_t b = 0; b < batch; ++b) {
    +    for (int64_t g = 0; g < group; ++g) {
    +      deformable_im2col(
    +          src + b * src_c * src_h * src_w + g * ic_per_gp * src_h * src_w,
    +          offset + b * offset_group * 2 * kernel_h * kernel_w * dst_h * dst_w,
    +          src_h, src_w, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +          dilation_h, dilation_w, ic_per_gp, offset_group, dst_h, dst_w,
    +          columns);
    +      float *dst_ptr =
    +          dst + b * dst_c * dst_h * dst_w + g * oc_per_gp * dst_h * dst_w;
    +
    +      memset(dst_ptr, 0.0f, sizeof(float) * oc_per_gp * dst_h * dst_w);
    +
    +      gemm_ref_fp32_deform(
    +          filter + g * oc_per_gp * ic_per_gp * kernel_h * kernel_w, columns,
    +          nullptr, dst_ptr, 0, 0, oc_per_gp, dst_h * dst_w,
    +          ic_per_gp * kernel_h * kernel_w, 1.0f, 1.0f, dst_ptr);
    +    }
    +  }
    +}
    +
    +MMCVDeformConvKernel::MMCVDeformConvKernel(OrtApi api,
    +                                           const OrtKernelInfo *info)
    +    : api_(api), ort_(api_), info_(info) {
    +  std::vector stride =
    +      ort_.KernelInfoGetAttribute>(info, "stride");
    +  stride_height_ = stride[0];
    +  stride_width_ = stride[1];
    +  std::vector padding =
    +      ort_.KernelInfoGetAttribute>(info, "padding");
    +  padding_height_ = padding[0];
    +  padding_width_ = padding[1];
    +  std::vector dilation =
    +      ort_.KernelInfoGetAttribute>(info, "dilation");
    +  dilation_height_ = dilation[0];
    +  dilation_width_ = dilation[1];
    +  deformable_group_ =
    +      ort_.KernelInfoGetAttribute(info, "deform_groups");
    +  group_ = ort_.KernelInfoGetAttribute(info, "groups");
    +
    +  // create allocator
    +  allocator_ = Ort::AllocatorWithDefaultOptions();
    +}
    +
    +void MMCVDeformConvKernel::Compute(OrtKernelContext *context) {
    +  const int64_t stride_height = stride_height_;
    +  const int64_t stride_width = stride_width_;
    +  const int64_t padding_height = padding_height_;
    +  const int64_t padding_width = padding_width_;
    +  const int64_t dilation_height = dilation_height_;
    +  const int64_t dilation_width = dilation_width_;
    +  const int64_t deformable_group = deformable_group_;
    +  const int64_t group = group_;
    +
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const float *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  const OrtValue *offset = ort_.KernelContext_GetInput(context, 1);
    +  const float *offset_data =
    +      reinterpret_cast(ort_.GetTensorData(offset));
    +
    +  const OrtValue *filter = ort_.KernelContext_GetInput(context, 2);
    +  const float *filter_data =
    +      reinterpret_cast(ort_.GetTensorData(filter));
    +
    +  OrtTensorDimensions input_dims(ort_, input);
    +  OrtTensorDimensions filter_dims(ort_, filter);
    +
    +  int64_t batch_size = input_dims[0];
    +  int64_t in_channels = input_dims[1];
    +  int64_t in_height = input_dims[2];
    +  int64_t in_width = input_dims[3];
    +  int64_t out_channels = filter_dims[0];
    +  int64_t kernel_height = filter_dims[2];
    +  int64_t kernel_width = filter_dims[3];
    +
    +  // get output memory
    +  int64_t out_height = floor((in_height + 2 * padding_height -
    +                              dilation_height * (kernel_height - 1) - 1) /
    +                                 stride_height +
    +                             1);
    +  int64_t out_width = floor(
    +      (in_width + 2 * padding_width - dilation_width * (kernel_width - 1) - 1) /
    +          stride_width +
    +      1);
    +
    +  std::vector output_dims = {batch_size, out_channels, out_height,
    +                                      out_width};
    +
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, output_dims.data(), output_dims.size());
    +  float *out_ptr = ort_.GetTensorMutableData(output);
    +
    +  // allocate tmp memory
    +  int64_t column_len = (in_channels / group) * kernel_height * kernel_width *
    +                       out_height * out_width;
    +  float *columns = (float *)allocator_.Alloc(sizeof(float) * column_len);
    +  deformable_conv_forward(
    +      input_data, offset_data, filter_data, batch_size, in_channels, in_height,
    +      in_width, out_channels, out_height, out_width, group, deformable_group,
    +      in_channels, out_channels, kernel_height, kernel_width, stride_height,
    +      stride_width, padding_height, padding_width, dilation_height,
    +      dilation_width, columns, out_ptr);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/gridSample.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/gridSample.cpp
    new file mode 100644
    index 000000000..ca150cd7a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/gridSample.cpp
    @@ -0,0 +1,314 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +#include "grid_sample.h"
    +
    +#define MIN(a, b) (((a) < (b)) ? (a) : (b))
    +#define MAX(a, b) (((a) < (b)) ? (b) : (a))
    +#define CLIP_COORDINATES(in, out, clip_limit) \
    +  out = MIN((clip_limit - 1), MAX(in, 0))
    +
    +// modified from
    +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/GridSampler.cpp
    +
    +GridSampleKernel::GridSampleKernel(OrtApi api, const OrtKernelInfo *info)
    +    : api_(api), ort_(api_), info_(info) {
    +  align_corners_ = ort_.KernelInfoGetAttribute(info, "align_corners");
    +  interpolation_mode_ =
    +      ort_.KernelInfoGetAttribute(info, "interpolation_mode");
    +  padding_mode_ = ort_.KernelInfoGetAttribute(info, "padding_mode");
    +
    +  allocator_ = Ort::AllocatorWithDefaultOptions();
    +}
    +
    +enum GridSamplerInterpolation { Bilinear = 0, Nearest = 1, Bicubic = 2 };
    +enum GridSamplerPadding { Zeros = 0, Border = 1, Reflection = 2 };
    +
    +template 
    +static inline scalar_t grid_sampler_unnormalize(scalar_t coord, int64_t size,
    +                                                bool align_corners) {
    +  if (align_corners) {
    +    return ((coord + 1) / 2) * (size - 1);
    +  } else {
    +    return ((coord + 1) * size - 1) / 2;
    +  }
    +}
    +
    +// Clips coordinates to between 0 and clip_limit - 1
    +template 
    +static inline scalar_t clip_coordinates(scalar_t in, int64_t clip_limit) {
    +  return std::min(static_cast(clip_limit - 1),
    +                  std::max(in, static_cast(0)));
    +}
    +
    +// Reflects coordinates until they fall between low and high (inclusive).
    +// The bounds are passed as twice their value so that half-integer values
    +// can be represented as ints.
    +template 
    +static inline scalar_t reflect_coordinates(scalar_t in, int64_t twice_low,
    +                                           int64_t twice_high) {
    +  if (twice_low == twice_high) {
    +    return static_cast(0);
    +  }
    +  scalar_t min = static_cast(twice_low) / 2;
    +  scalar_t span = static_cast(twice_high - twice_low) / 2;
    +  in = std::fabs(in - min);
    +  // `fmod` returns same sign as `in`, which is positive after the `fabs` above.
    +  scalar_t extra = std::fmod(in, span);
    +  int flips = static_cast(std::floor(in / span));
    +  if (flips % 2 == 0) {
    +    return extra + min;
    +  } else {
    +    return span - extra + min;
    +  }
    +}
    +
    +template 
    +static inline scalar_t compute_coordinates(scalar_t coord, int64_t size,
    +                                           int64_t padding_mode,
    +                                           bool align_corners) {
    +  if (padding_mode == GridSamplerPadding::Border) {
    +    coord = clip_coordinates(coord, size);
    +  } else if (padding_mode == GridSamplerPadding::Reflection) {
    +    if (align_corners) {
    +      coord = reflect_coordinates(coord, 0, 2 * (size - 1));
    +    } else {
    +      coord = reflect_coordinates(coord, -1, 2 * size - 1);
    +    }
    +    coord = clip_coordinates(coord, size);
    +  }
    +  return coord;
    +}
    +
    +// Computes the pixel source index value for a grid coordinate
    +template 
    +static inline scalar_t grid_sampler_compute_source_index(scalar_t coord,
    +                                                         int64_t size,
    +                                                         int64_t padding_mode,
    +                                                         bool align_corners) {
    +  coord = grid_sampler_unnormalize(coord, size, align_corners);
    +  coord = compute_coordinates(coord, size, padding_mode, align_corners);
    +  return coord;
    +}
    +
    +static inline bool within_bounds_2d(int64_t h, int64_t w, int64_t H,
    +                                    int64_t W) {
    +  return h >= 0 && h < H && w >= 0 && w < W;
    +}
    +
    +template 
    +static inline scalar_t get_value_bounded(const scalar_t *data, scalar_t x,
    +                                         scalar_t y, int64_t W, int64_t H,
    +                                         int64_t sW, int64_t sH,
    +                                         int64_t padding_mode,
    +                                         bool align_corners) {
    +  x = compute_coordinates(x, W, padding_mode, align_corners);
    +  y = compute_coordinates(y, H, padding_mode, align_corners);
    +
    +  int64_t ix = static_cast(x);
    +  int64_t iy = static_cast(y);
    +
    +  if (within_bounds_2d(iy, ix, H, W)) {
    +    return data[iy * sH + ix * sW];
    +  }
    +  return static_cast(0);
    +}
    +
    +template 
    +static inline scalar_t cubic_convolution1(scalar_t x, scalar_t A) {
    +  return ((A + 2) * x - (A + 3)) * x * x + 1;
    +}
    +
    +template 
    +static inline scalar_t cubic_convolution2(scalar_t x, scalar_t A) {
    +  return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A;
    +}
    +
    +template 
    +static inline void get_cubic_upsample_coefficients(scalar_t coeffs[4],
    +                                                   scalar_t t) {
    +  scalar_t A = -0.75;
    +
    +  scalar_t x1 = t;
    +  coeffs[0] = cubic_convolution2(x1 + 1.0, A);
    +  coeffs[1] = cubic_convolution1(x1, A);
    +
    +  // opposite coefficients
    +  scalar_t x2 = 1.0 - t;
    +  coeffs[2] = cubic_convolution1(x2, A);
    +  coeffs[3] = cubic_convolution2(x2 + 1.0, A);
    +}
    +
    +template 
    +static inline scalar_t cubic_interp1d(scalar_t x0, scalar_t x1, scalar_t x2,
    +                                      scalar_t x3, scalar_t t) {
    +  scalar_t coeffs[4];
    +  get_cubic_upsample_coefficients(coeffs, t);
    +
    +  return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3];
    +}
    +
    +void GridSampleKernel::Compute(OrtKernelContext *context) {
    +  const bool align_corners = align_corners_;
    +  const int64_t padding_mode = padding_mode_;
    +  const int64_t interpolation_mode = interpolation_mode_;
    +
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const float *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  const OrtValue *grid = ort_.KernelContext_GetInput(context, 1);
    +  const float *grid_data =
    +      reinterpret_cast(ort_.GetTensorData(grid));
    +
    +  OrtTensorDimensions input_dims(ort_, input);
    +  OrtTensorDimensions grid_dims(ort_, grid);
    +  int64_t N = input_dims[0];
    +  int64_t C = input_dims[1];
    +  int64_t inp_H = input_dims[2];
    +  int64_t inp_W = input_dims[3];
    +  int64_t out_H = grid_dims[1];
    +  int64_t out_W = grid_dims[2];
    +
    +  std::vector output_dims = {N, C, out_H, out_W};
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, output_dims.data(), output_dims.size());
    +  float *out_ptr = ort_.GetTensorMutableData(output);
    +
    +  int64_t inp_sN = input_dims[1] * input_dims[2] * input_dims[3];
    +  int64_t inp_sC = input_dims[2] * input_dims[3];
    +  int64_t inp_sH = input_dims[3];
    +  int64_t inp_sW = 1;
    +  int64_t grid_sN = grid_dims[1] * grid_dims[2] * grid_dims[3];
    +  int64_t grid_sH = grid_dims[2] * grid_dims[3];
    +  int64_t grid_sW = grid_dims[3];
    +  int64_t grid_sCoor = 1;
    +  int64_t out_sN = output_dims[1] * output_dims[2] * output_dims[3];
    +  int64_t out_sC = output_dims[2] * output_dims[3];
    +  int64_t out_sH = output_dims[3];
    +  int64_t out_sW = 1;
    +
    +  // loop over each output pixel
    +  for (int64_t n = 0; n < N; ++n) {
    +    const float *grid_ptr_N = grid_data + n * grid_sN;
    +    const float *inp_ptr_N = input_data + n * inp_sN;
    +    for (int64_t h = 0; h < out_H; ++h) {
    +      for (int64_t w = 0; w < out_W; ++w) {
    +        const float *grid_ptr_NHW = grid_ptr_N + h * grid_sH + w * grid_sW;
    +        float x = *grid_ptr_NHW;
    +        float y = grid_ptr_NHW[grid_sCoor];
    +
    +        float ix = grid_sampler_compute_source_index(x, inp_W, padding_mode,
    +                                                     align_corners);
    +        float iy = grid_sampler_compute_source_index(y, inp_H, padding_mode,
    +                                                     align_corners);
    +
    +        if (interpolation_mode == GridSamplerInterpolation::Bilinear) {
    +          // get corner pixel values from (x, y)
    +          // for 4d, we use north-east-south-west
    +          int64_t ix_nw = static_cast(std::floor(ix));
    +          int64_t iy_nw = static_cast(std::floor(iy));
    +
    +          int64_t ix_ne = ix_nw + 1;
    +          int64_t iy_ne = iy_nw;
    +
    +          int64_t ix_sw = ix_nw;
    +          int64_t iy_sw = iy_nw + 1;
    +
    +          int64_t ix_se = ix_nw + 1;
    +          int64_t iy_se = iy_nw + 1;
    +
    +          // get surfaces to each neighbor:
    +          float nw = (ix_se - ix) * (iy_se - iy);
    +          float ne = (ix - ix_sw) * (iy_sw - iy);
    +          float sw = (ix_ne - ix) * (iy - iy_ne);
    +          float se = (ix - ix_nw) * (iy - iy_nw);
    +
    +          // calculate bilinear weighted pixel value and set output pixel
    +          const float *inp_ptr_NC = inp_ptr_N;
    +          float *out_ptr_NCHW = out_ptr + n * out_sN + h * out_sH + w * out_sW;
    +          for (int64_t c = 0; c < C;
    +               ++c, out_ptr_NCHW += out_sC, inp_ptr_NC += inp_sC) {
    +            auto res = static_cast(0);
    +            if (within_bounds_2d(iy_nw, ix_nw, inp_H, inp_W)) {
    +              res += inp_ptr_NC[iy_nw * inp_sH + ix_nw * inp_sW] * nw;
    +            }
    +            if (within_bounds_2d(iy_ne, ix_ne, inp_H, inp_W)) {
    +              res += inp_ptr_NC[iy_ne * inp_sH + ix_ne * inp_sW] * ne;
    +            }
    +            if (within_bounds_2d(iy_sw, ix_sw, inp_H, inp_W)) {
    +              res += inp_ptr_NC[iy_sw * inp_sH + ix_sw * inp_sW] * sw;
    +            }
    +            if (within_bounds_2d(iy_se, ix_se, inp_H, inp_W)) {
    +              res += inp_ptr_NC[iy_se * inp_sH + ix_se * inp_sW] * se;
    +            }
    +            *out_ptr_NCHW = res;
    +          }
    +        } else if (interpolation_mode == GridSamplerInterpolation::Nearest) {
    +          int64_t ix_nearest = static_cast(std::nearbyint(ix));
    +          int64_t iy_nearest = static_cast(std::nearbyint(iy));
    +
    +          // assign nearest neighbor pixel value to output pixel
    +          float *out_ptr_NCHW = out_ptr + n * out_sN + h * out_sH + w * out_sW;
    +          const float *inp_ptr_NC = inp_ptr_N;
    +          for (int64_t c = 0; c < C;
    +               ++c, out_ptr_NCHW += out_sC, inp_ptr_NC += inp_sC) {
    +            if (within_bounds_2d(iy_nearest, ix_nearest, inp_H, inp_W)) {
    +              *out_ptr_NCHW =
    +                  inp_ptr_NC[iy_nearest * inp_sH + ix_nearest * inp_sW];
    +            } else {
    +              *out_ptr_NCHW = static_cast(0);
    +            }
    +          }
    +        } else if (interpolation_mode == GridSamplerInterpolation::Bicubic) {
    +          // grid_sampler_compute_source_index will "clip the value" of idx
    +          // depends on the padding,
    +          // which would cause calculation to be wrong,
    +          // for example x = -0.1 -> ix = 0 for zero padding, but in bicubic ix
    +          // = floor(x) = -1
    +          // There would be more problem in reflection padding, since the -1 and
    +          // +1 direction is not fixed in boundary condition
    +          ix = grid_sampler_unnormalize(x, inp_W, align_corners);
    +          iy = grid_sampler_unnormalize(y, inp_H, align_corners);
    +
    +          float ix_nw = std::floor(ix);
    +          float iy_nw = std::floor(iy);
    +
    +          const float tx = ix - ix_nw;
    +          const float ty = iy - iy_nw;
    +
    +          const float *inp_ptr_NC = inp_ptr_N;
    +          float *out_ptr_NCHW = out_ptr + n * out_sN + h * out_sH + w * out_sW;
    +          for (int64_t c = 0; c < C;
    +               ++c, out_ptr_NCHW += out_sC, inp_ptr_NC += inp_sC) {
    +            float coefficients[4];
    +
    +            // Interpolate 4 values in the x direction
    +            for (int64_t i = 0; i < 4; ++i) {
    +              coefficients[i] = cubic_interp1d(
    +                  get_value_bounded(inp_ptr_NC, ix_nw - 1, iy_nw - 1 + i,
    +                                           inp_W, inp_H, inp_sW, inp_sH,
    +                                           padding_mode, align_corners),
    +                  get_value_bounded(inp_ptr_NC, ix_nw + 0, iy_nw - 1 + i,
    +                                           inp_W, inp_H, inp_sW, inp_sH,
    +                                           padding_mode, align_corners),
    +                  get_value_bounded(inp_ptr_NC, ix_nw + 1, iy_nw - 1 + i,
    +                                           inp_W, inp_H, inp_sW, inp_sH,
    +                                           padding_mode, align_corners),
    +                  get_value_bounded(inp_ptr_NC, ix_nw + 2, iy_nw - 1 + i,
    +                                           inp_W, inp_H, inp_sW, inp_sH,
    +                                           padding_mode, align_corners),
    +                  tx);
    +            }
    +
    +            // Interpolate in the y direction
    +            *out_ptr_NCHW =
    +                cubic_interp1d(coefficients[0], coefficients[1],
    +                                      coefficients[2], coefficients[3], ty);
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/modulated_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/modulated_deform_conv.cpp
    new file mode 100644
    index 000000000..cd8f0d061
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/modulated_deform_conv.cpp
    @@ -0,0 +1,292 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "modulated_deform_conv.h"
    +
    +#include 
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +
    +float bilinear_interpolate_2d(const float *src, const int64_t src_h,
    +                              const int64_t src_w, const float h,
    +                              const float w) {
    +  if (h <= -1 || src_h <= h || w <= -1 || src_w <= w) {
    +    return 0;
    +  }
    +
    +  int64_t h_low = floor(h);
    +  int64_t w_low = floor(w);
    +  int64_t h_high = h_low + 1;
    +  int64_t w_high = w_low + 1;
    +
    +  float lh = h - h_low;
    +  float lw = w - w_low;
    +  float hh = 1 - lh;
    +  float hw = 1 - lw;
    +
    +  float v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = src[h_low * src_w + w_low];
    +  float v2 = 0;
    +  if (h_low >= 0 && w_high <= src_w - 1) v2 = src[h_low * src_w + w_high];
    +  float v3 = 0;
    +  if (h_high <= src_h - 1 && w_low >= 0) v3 = src[h_high * src_w + w_low];
    +  float v4 = 0;
    +  if (h_high <= src_h - 1 && w_high <= src_w - 1)
    +    v4 = src[h_high * src_w + w_high];
    +
    +  float w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  float val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +// output: (channels * kernel_h * kernel_w, dst_h * dst_w)
    +void deformable_im2col_2d(const float *input, const float *offset,
    +                          const float *mask, const int64_t src_h,
    +                          const int64_t src_w, const int64_t kernel_h,
    +                          const int64_t kernel_w, const int64_t pad_h,
    +                          const int64_t pad_w, const int64_t stride_h,
    +                          const int64_t stride_w, const int64_t dilation_h,
    +                          const int64_t dilation_w, const int64_t channels,
    +                          const int64_t offset_groups, const int64_t dst_h,
    +                          const int64_t dst_w, const bool use_mask,
    +                          float *columns) {
    +  const int64_t workload = channels * dst_h * dst_w;
    +  for (int64_t index = 0; index != workload; ++index) {
    +    const int64_t ow = index % dst_w;
    +    const int64_t oh = (index / dst_w) % dst_h;
    +    const int64_t ic = index / (dst_w * dst_h);
    +    const int64_t oc = ic * kernel_h * kernel_w;
    +
    +    int64_t c_per_offset_grp = channels / offset_groups;
    +    const int64_t grp_idx = ic / c_per_offset_grp;
    +
    +    auto columns_ptr = columns + (oc * (dst_h * dst_w) + oh * dst_w + ow);
    +    auto input_ptr = input + ic * (src_h * src_w);
    +    auto offset_ptr =
    +        offset + grp_idx * 2 * kernel_h * kernel_w * dst_h * dst_w;
    +    auto mask_ptr = mask;
    +    if (use_mask) {
    +      mask_ptr += grp_idx * kernel_h * kernel_w * dst_h * dst_w;
    +    }
    +
    +    for (int64_t kh = 0; kh < kernel_h; ++kh) {
    +      for (int64_t kw = 0; kw < kernel_w; ++kw) {
    +        const int64_t mask_idx = kh * kernel_w + kw;
    +        const int64_t offset_idx = 2 * mask_idx;
    +
    +        float mask_value = 1;
    +        if (use_mask) {
    +          mask_value = mask_ptr[mask_idx * (dst_h * dst_w) + oh * dst_w + ow];
    +        }
    +
    +        const float offset_h =
    +            offset_ptr[offset_idx * (dst_h * dst_w) + oh * dst_w + ow];
    +        const float offset_w =
    +            offset_ptr[(offset_idx + 1) * (dst_h * dst_w) + oh * dst_w + ow];
    +        const float ih = (oh * stride_h - pad_h) + kh * dilation_h + offset_h;
    +        const float iw = (ow * stride_w - pad_w) + kw * dilation_w + offset_w;
    +        *columns_ptr = mask_value *
    +                       bilinear_interpolate_2d(input_ptr, src_h, src_w, ih, iw);
    +        columns_ptr += dst_h * dst_w;
    +      }
    +    }
    +  }
    +}
    +
    +void gemm_ref_fp32(const float *A, const float *B, const float *V,
    +                   const float *H, const int32_t trans_A, const int32_t trans_B,
    +                   const int32_t M, const int32_t N, const int32_t K,
    +                   const float alpha, const float beta, float *Y) {
    +  if (!trans_A && !trans_B) {  // MK, KN; NN
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[m * K + k] * B[k * N + n];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (trans_A && !trans_B) {  // KM, KN; TN
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[k * M + m] * B[k * N + n];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (trans_A && trans_B) {  // KM, NK; TT
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[k * M + m] * B[n * K + k];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +  if (!trans_A && trans_B) {  // MK, NK; NT
    +    for (int64_t m = 0; m < M; ++m) {
    +      for (int64_t n = 0; n < N; ++n) {
    +        float y = 0.0f;
    +        for (int64_t k = 0; k < K; ++k) {
    +          y += A[m * K + k] * B[n * K + k];
    +        }
    +        y *= alpha;
    +        if (V) y += beta * V[n];
    +        if (H) y += beta * H[m * N + n];
    +        Y[m * N + n] = y;
    +      }
    +    }
    +  }
    +}
    +
    +void deformable_conv2d_ref_fp32(
    +    const float *src, const float *offset, const float *mask,
    +    const float *filter, const float *bias, const int64_t batch,
    +    const int64_t src_c, const int64_t src_h, const int64_t src_w,
    +    const int64_t dst_c, const int64_t dst_h, const int64_t dst_w,
    +    const int64_t group, const int64_t offset_group, const int64_t channels,
    +    const int64_t num_output, const int64_t kernel_h, const int64_t kernel_w,
    +    const int64_t stride_h, const int64_t stride_w, const int64_t pad_h,
    +    const int64_t pad_w, const int64_t dilation_h, const int64_t dilation_w,
    +    float *columns, float *dst) {
    +  const int64_t ic_per_gp = channels / group;
    +  const int64_t oc_per_gp = num_output / group;
    +
    +  for (int64_t b = 0; b < batch; ++b) {
    +    for (int64_t g = 0; g < group; ++g) {
    +      deformable_im2col_2d(
    +          src + b * src_c * src_h * src_w + g * ic_per_gp * src_h * src_w,
    +          offset + b * offset_group * 2 * kernel_h * kernel_w * dst_h * dst_w,
    +          mask + b * offset_group * kernel_h * kernel_w * dst_h * dst_w, src_h,
    +          src_w, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +          dilation_h, dilation_w, ic_per_gp, offset_group, dst_h, dst_w,
    +          mask != nullptr, columns);
    +      float *dst_ptr =
    +          dst + b * dst_c * dst_h * dst_w + g * oc_per_gp * dst_h * dst_w;
    +      if (bias != nullptr) {
    +        const float *bias_ptr = bias + g * oc_per_gp;
    +        for (int64_t oc = 0; oc < oc_per_gp; ++oc) {
    +          for (int64_t hw = 0; hw < dst_h * dst_w; ++hw) {
    +            dst_ptr[oc * dst_h * dst_w + hw] = bias_ptr[oc];
    +          }
    +        }
    +      } else {
    +        memset(dst_ptr, 0.0f, sizeof(float) * oc_per_gp * dst_h * dst_w);
    +      }
    +      gemm_ref_fp32(filter + g * oc_per_gp * ic_per_gp * kernel_h * kernel_w,
    +                    columns, nullptr, dst_ptr, 0, 0, oc_per_gp, dst_h * dst_w,
    +                    ic_per_gp * kernel_h * kernel_w, 1.0f, 1.0f, dst_ptr);
    +    }
    +  }
    +}
    +
    +MMCVModulatedDeformConvKernel::MMCVModulatedDeformConvKernel(
    +    OrtApi api, const OrtKernelInfo *info)
    +    : api_(api), ort_(api_), info_(info) {
    +  std::vector stride =
    +      ort_.KernelInfoGetAttribute>(info, "stride");
    +  stride_height_ = stride[0];
    +  stride_width_ = stride[1];
    +  std::vector padding =
    +      ort_.KernelInfoGetAttribute>(info, "padding");
    +  padding_height_ = padding[0];
    +  padding_width_ = padding[1];
    +  std::vector dilation =
    +      ort_.KernelInfoGetAttribute>(info, "dilation");
    +  dilation_height_ = dilation[0];
    +  dilation_width_ = dilation[1];
    +  deformable_group_ =
    +      ort_.KernelInfoGetAttribute(info, "deform_groups");
    +  group_ = ort_.KernelInfoGetAttribute(info, "groups");
    +
    +  // create allocator
    +  allocator_ = Ort::AllocatorWithDefaultOptions();
    +}
    +
    +void MMCVModulatedDeformConvKernel::Compute(OrtKernelContext *context) {
    +  const int64_t stride_height = stride_height_;
    +  const int64_t stride_width = stride_width_;
    +  const int64_t padding_height = padding_height_;
    +  const int64_t padding_width = padding_width_;
    +  const int64_t dilation_height = dilation_height_;
    +  const int64_t dilation_width = dilation_width_;
    +  const int64_t deformable_group = deformable_group_;
    +  const int64_t group = group_;
    +
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const float *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  const OrtValue *offset = ort_.KernelContext_GetInput(context, 1);
    +  const float *offset_data =
    +      reinterpret_cast(ort_.GetTensorData(offset));
    +
    +  const OrtValue *mask = ort_.KernelContext_GetInput(context, 2);
    +  const float *mask_data =
    +      reinterpret_cast(ort_.GetTensorData(mask));
    +
    +  const OrtValue *filter = ort_.KernelContext_GetInput(context, 3);
    +  const float *filter_data =
    +      reinterpret_cast(ort_.GetTensorData(filter));
    +
    +  const OrtValue *bias = ort_.KernelContext_GetInput(context, 4);
    +  const float *bias_data =
    +      (bias != nullptr)
    +          ? reinterpret_cast(ort_.GetTensorData(bias))
    +          : nullptr;
    +  // const float *bias_data = nullptr;
    +
    +  OrtTensorDimensions input_dims(ort_, input);
    +  OrtTensorDimensions filter_dims(ort_, filter);
    +
    +  int64_t batch = input_dims[0];
    +  int64_t channels = input_dims[1];
    +  int64_t in_height = input_dims[2];
    +  int64_t in_width = input_dims[3];
    +  int64_t num_output = filter_dims[0];
    +  int64_t kernel_height = filter_dims[2];
    +  int64_t kernel_width = filter_dims[3];
    +
    +  // get output memory
    +  int64_t out_height = floor((in_height + 2 * padding_height -
    +                              dilation_height * (kernel_height - 1) - 1) /
    +                                 stride_height +
    +                             1);
    +  int64_t out_width = floor(
    +      (in_width + 2 * padding_width - dilation_width * (kernel_width - 1) - 1) /
    +          stride_width +
    +      1);
    +
    +  std::vector output_dims = {batch, num_output, out_height, out_width};
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, output_dims.data(), output_dims.size());
    +  float *out_ptr = ort_.GetTensorMutableData(output);
    +
    +  // allocate tmp memory
    +  int64_t column_len = (channels / group) * kernel_height * kernel_width *
    +                       out_height * out_width;
    +  float *columns = (float *)allocator_.Alloc(sizeof(float) * column_len);
    +
    +  deformable_conv2d_ref_fp32(
    +      input_data, offset_data, mask_data, filter_data, bias_data, batch,
    +      channels, in_height, in_width, num_output, out_height, out_width, group,
    +      deformable_group, channels, num_output, kernel_height, kernel_width,
    +      stride_height, stride_width, padding_height, padding_width,
    +      dilation_height, dilation_width, columns, out_ptr);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/nms.cpp
    new file mode 100644
    index 000000000..b38a76e11
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/nms.cpp
    @@ -0,0 +1,108 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "nms.h"
    +
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +#include   // std::iota
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +
    +NmsKernel::NmsKernel(OrtApi api, const OrtKernelInfo *info)
    +    : api_(api), ort_(api_), info_(info) {
    +  iou_threshold_ = ort_.KernelInfoGetAttribute(info, "iou_threshold");
    +  offset_ = ort_.KernelInfoGetAttribute(info, "offset");
    +
    +  // create allocator
    +  allocator_ = Ort::AllocatorWithDefaultOptions();
    +}
    +
    +void NmsKernel::Compute(OrtKernelContext *context) {
    +  const float iou_threshold = iou_threshold_;
    +  const int64_t offset = offset_;
    +
    +  const OrtValue *boxes = ort_.KernelContext_GetInput(context, 0);
    +  const float *boxes_data =
    +      reinterpret_cast(ort_.GetTensorData(boxes));
    +  const OrtValue *scores = ort_.KernelContext_GetInput(context, 1);
    +  const float *scores_data =
    +      reinterpret_cast(ort_.GetTensorData(scores));
    +
    +  OrtTensorDimensions boxes_dim(ort_, boxes);
    +  OrtTensorDimensions scores_dim(ort_, scores);
    +
    +  int64_t nboxes = boxes_dim[0];
    +  assert(boxes_dim[1] == 4);
    +
    +  // allocate tmp memory
    +  float *tmp_boxes = (float *)allocator_.Alloc(sizeof(float) * nboxes * 4);
    +  float *sc = (float *)allocator_.Alloc(sizeof(float) * nboxes);
    +  float *areas = (float *)allocator_.Alloc(sizeof(float) * nboxes);
    +  bool *select = (bool *)allocator_.Alloc(sizeof(bool) * nboxes);
    +  for (int64_t i = 0; i < nboxes; i++) {
    +    select[i] = true;
    +  }
    +
    +  memcpy(tmp_boxes, boxes_data, sizeof(float) * nboxes * 4);
    +  memcpy(sc, scores_data, sizeof(float) * nboxes);
    +
    +  // sort scores
    +  std::vector tmp_sc;
    +  for (int i = 0; i < nboxes; i++) {
    +    tmp_sc.push_back(sc[i]);
    +  }
    +  std::vector order(tmp_sc.size());
    +  std::iota(order.begin(), order.end(), 0);
    +  std::sort(order.begin(), order.end(), [&tmp_sc](int64_t id1, int64_t id2) {
    +    return tmp_sc[id1] > tmp_sc[id2];
    +  });
    +
    +  // area = (x2 - x1 + offset) * (y2 - y1 + offset)
    +  for (int64_t i = 0; i < nboxes; i++) {
    +    areas[i] = (tmp_boxes[i * 4 + 2] - tmp_boxes[i * 4 + 0] + offset) *
    +               (tmp_boxes[i * 4 + 3] - tmp_boxes[i * 4 + 1] + offset);
    +  }
    +
    +  for (int64_t _i = 0; _i < nboxes; _i++) {
    +    if (select[_i] == false) continue;
    +    auto i = order[_i];
    +    auto ix1 = tmp_boxes[i * 4 + 0];
    +    auto iy1 = tmp_boxes[i * 4 + 1];
    +    auto ix2 = tmp_boxes[i * 4 + 2];
    +    auto iy2 = tmp_boxes[i * 4 + 3];
    +    auto iarea = areas[i];
    +
    +    for (int64_t _j = _i + 1; _j < nboxes; _j++) {
    +      if (select[_j] == false) continue;
    +      auto j = order[_j];
    +      auto xx1 = std::max(ix1, tmp_boxes[j * 4 + 0]);
    +      auto yy1 = std::max(iy1, tmp_boxes[j * 4 + 1]);
    +      auto xx2 = std::min(ix2, tmp_boxes[j * 4 + 2]);
    +      auto yy2 = std::min(iy2, tmp_boxes[j * 4 + 3]);
    +
    +      auto w = std::max(0.f, xx2 - xx1 + offset);
    +      auto h = std::max(0.f, yy2 - yy1 + offset);
    +      auto inter = w * h;
    +      auto ovr = inter / (iarea + areas[j] - inter);
    +      if (ovr > iou_threshold) select[_j] = false;
    +    }
    +  }
    +  std::vector res_order;
    +  for (int i = 0; i < nboxes; i++) {
    +    if (select[i]) {
    +      res_order.push_back(order[i]);
    +    }
    +  }
    +
    +  std::vector inds_dims({res_order.size()});
    +
    +  OrtValue *res = ort_.KernelContext_GetOutput(context, 0, inds_dims.data(),
    +                                               inds_dims.size());
    +  int64_t *res_data = ort_.GetTensorMutableData(res);
    +
    +  memcpy(res_data, res_order.data(), sizeof(int64_t) * res_order.size());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp
    new file mode 100644
    index 000000000..840eed82e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/onnxruntime_register.cpp
    @@ -0,0 +1,88 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "onnxruntime_register.h"
    +
    +#include "corner_pool.h"
    +#include "deform_conv.h"
    +#include "grid_sample.h"
    +#include "modulated_deform_conv.h"
    +#include "nms.h"
    +#include "ort_mmcv_utils.h"
    +#include "reduce_ops.h"
    +#include "roi_align.h"
    +#include "roi_align_rotated.h"
    +#include "rotated_feature_align.h"
    +#include "soft_nms.h"
    +
    +const char *c_MMCVOpDomain = "mmcv";
    +SoftNmsOp c_SoftNmsOp;
    +NmsOp c_NmsOp;
    +MMCVRoiAlignCustomOp c_MMCVRoiAlignCustomOp;
    +MMCVRoIAlignRotatedCustomOp c_MMCVRoIAlignRotatedCustomOp;
    +MMCVRotatedFeatureAlignCustomOp c_MMCVRotatedFeatureAlignCustomOp;
    +GridSampleOp c_GridSampleOp;
    +MMCVCumMaxCustomOp c_MMCVCumMaxCustomOp;
    +MMCVCumMinCustomOp c_MMCVCumMinCustomOp;
    +MMCVCornerPoolCustomOp c_MMCVCornerPoolCustomOp;
    +MMCVModulatedDeformConvOp c_MMCVModulatedDeformConvOp;
    +MMCVDeformConvOp c_MMCVDeformConvOp;
    +
    +OrtStatus *ORT_API_CALL RegisterCustomOps(OrtSessionOptions *options,
    +                                          const OrtApiBase *api) {
    +  OrtCustomOpDomain *domain = nullptr;
    +  const OrtApi *ortApi = api->GetApi(ORT_API_VERSION);
    +
    +  if (auto status = ortApi->CreateCustomOpDomain(c_MMCVOpDomain, &domain)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_SoftNmsOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_NmsOp)) {
    +    return status;
    +  }
    +
    +  if (auto status =
    +          ortApi->CustomOpDomain_Add(domain, &c_MMCVRoiAlignCustomOp)) {
    +    return status;
    +  }
    +
    +  if (auto status =
    +          ortApi->CustomOpDomain_Add(domain, &c_MMCVRoIAlignRotatedCustomOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_GridSampleOp)) {
    +    return status;
    +  }
    +
    +  if (auto status =
    +          ortApi->CustomOpDomain_Add(domain, &c_MMCVCornerPoolCustomOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_MMCVCumMaxCustomOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_MMCVCumMinCustomOp)) {
    +    return status;
    +  }
    +
    +  if (auto status =
    +          ortApi->CustomOpDomain_Add(domain, &c_MMCVModulatedDeformConvOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(domain, &c_MMCVDeformConvOp)) {
    +    return status;
    +  }
    +
    +  if (auto status = ortApi->CustomOpDomain_Add(
    +          domain, &c_MMCVRotatedFeatureAlignCustomOp)) {
    +    return status;
    +  }
    +
    +  return ortApi->AddCustomOpDomain(options, domain);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/reduce_ops.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/reduce_ops.cpp
    new file mode 100644
    index 000000000..81aef3906
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/reduce_ops.cpp
    @@ -0,0 +1,188 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "reduce_ops.h"
    +
    +#include 
    +
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +
    +// modified from
    +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/ReduceOps.cpp
    +
    +static inline int64_t maybe_wrap_dim(int64_t dim, int64_t ndims) {
    +  int64_t min = -ndims;
    +  int64_t max = ndims - 1;
    +  assert(dim >= min && dim <= max);
    +  if (dim < 0) dim += ndims;
    +  return dim;
    +}
    +
    +static inline int64_t get_dim_stride(const int64_t dim, const int64_t ndims,
    +                                     const int64_t *reversed_dim_cumprod) {
    +  return dim == ndims - 1 ? 1 : reversed_dim_cumprod[dim + 1];
    +}
    +
    +static inline int64_t get_dim_size(const int64_t dim, const int64_t ndims,
    +                                   const int64_t *reversed_dim_cumprod) {
    +  return dim == ndims - 1
    +             ? reversed_dim_cumprod[dim]
    +             : reversed_dim_cumprod[dim] / reversed_dim_cumprod[dim + 1];
    +}
    +
    +template 
    +void cummax_cummin_helper(const T1 *input, T1 *output, T2 *indices,
    +                          const int64_t input_dim_size, const int64_t stride) {
    +  Operation op;
    +  T1 out = input[0];
    +  int64_t idx = 0;
    +  for (int64_t i = 0; i < input_dim_size; i++) {
    +    T1 curr_elem = input[i * stride];
    +    if (op(curr_elem, out)) {
    +      out = curr_elem;
    +      idx = i;
    +    }
    +    output[i * stride] = out;
    +    indices[i * stride] = idx;
    +  }
    +}
    +
    +// modified `tensor_dim_apply3` from
    +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorDimApply.h.
    +// the difference is that: (1) use `reversed_dim_cumprod` for fast computing of
    +// tensor `size` and `stride`. (2) the same `stride` is used for input, output,
    +// and indices, since it's unnecessary to use separate values. currently
    +// `tensor_dim_apply3` is only used for `cummax` and `cummin`, according to the
    +// official pytorch projects: https://github.com/pytorch/pytorch.
    +template 
    +void tensor_dim_apply3(const T1 *input, T1 *output, T2 *indices,
    +                       const int64_t dim, const int64_t ndims,
    +                       const int64_t *reversed_dim_cumprod, Function func) {
    +  int dim_apply_finished = 0;
    +  int64_t input_dim_size = get_dim_size(dim, ndims, reversed_dim_cumprod);
    +  // the same stride is used for input, output and indices
    +  int64_t stride = get_dim_stride(dim, ndims, reversed_dim_cumprod);
    +  std::vector counter(ndims, 0);
    +
    +  while (!dim_apply_finished) {
    +    // call `func` once to update output and indices
    +    func(input, output, indices, input_dim_size, stride);
    +    if (ndims == 1) break;
    +    for (int64_t dim_i = 0; dim_i < ndims; dim_i++) {
    +      if (dim_i == dim) {
    +        if (dim_i == (ndims - 1)) {
    +          dim_apply_finished = 1;
    +          break;
    +        }
    +        continue;
    +      }
    +      counter[dim_i]++;
    +
    +      // the same stride is used for input, output, and indices
    +      int64_t stride_dim_i = get_dim_stride(dim_i, ndims, reversed_dim_cumprod);
    +      input += stride_dim_i;
    +      output += stride_dim_i;
    +      indices += stride_dim_i;
    +
    +      if (counter[dim_i] == get_dim_size(dim_i, ndims, reversed_dim_cumprod)) {
    +        if (dim_i == ndims - 1) {
    +          dim_apply_finished = 1;
    +          break;
    +        } else {
    +          input -= counter[dim_i] * stride_dim_i;
    +          output -= counter[dim_i] * stride_dim_i;
    +          indices -= counter[dim_i] * stride_dim_i;
    +          counter[dim_i] = 0;
    +        }
    +      } else {
    +        break;
    +      }  // if
    +    }    // for
    +  }      // while
    +}
    +
    +template 
    +void CumMax_CumMin_CPU(const T1 *input, T1 *output, T2 *indices,
    +                       int64_t *reversed_dim_cumprod, const int64_t dim,
    +                       const OrtTensorDimensions &out_dimensions) {
    +  // calculate numel
    +  const int64_t ndims = out_dimensions.size();
    +  int64_t numel = 1;
    +  for (int64_t dim_i = 0; dim_i < ndims; dim_i++) {
    +    numel *= out_dimensions.data()[dim_i];
    +  }
    +
    +  // cummax is only applied to input which is non-zero dim and non-empty
    +  if (numel) {
    +    // compute the cumulative production on dimension size,
    +    // which is then used for computing the stride or size of a specific `dim`.
    +    reversed_dim_cumprod[ndims - 1] = out_dimensions.data()[ndims - 1];
    +    for (int64_t dim_i = ndims - 2; dim_i >= 0; dim_i--) {
    +      reversed_dim_cumprod[dim_i] =
    +          reversed_dim_cumprod[dim_i + 1] * out_dimensions.data()[dim_i];
    +    }
    +
    +    // do cummax or cummin based on `Operation` type
    +    tensor_dim_apply3(
    +        input, output, indices, dim, ndims, reversed_dim_cumprod,
    +        cummax_cummin_helper);
    +  }
    +}
    +
    +void MMCVCumMaxKernel::Compute(OrtKernelContext *context) {
    +  // get input
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const float *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  // get output
    +  OrtTensorDimensions out_dimensions(ort_, input);
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  float *output_data = ort_.GetTensorMutableData(output);
    +  OrtValue *indices = ort_.KernelContext_GetOutput(
    +      context, 1, out_dimensions.data(), out_dimensions.size());
    +  int64_t *indices_data = ort_.GetTensorMutableData(indices);
    +
    +  // allocate tmp memory for computing the cumulative production on dimension
    +  // size
    +  const int64_t ndims = out_dimensions.size();
    +  assert(ndims > 0);
    +  int64_t *reversed_dim_cumprod =
    +      (int64_t *)allocator_.Alloc(sizeof(int64_t) * ndims);
    +
    +  // dim should be wrapped if it's negative (e.g. -1)
    +  const int64_t dim = maybe_wrap_dim(dim_, ndims);
    +  CumMax_CumMin_CPU>(
    +      input_data, output_data, indices_data, reversed_dim_cumprod, dim,
    +      out_dimensions);
    +}
    +
    +void MMCVCumMinKernel::Compute(OrtKernelContext *context) {
    +  // get input
    +  const OrtValue *input = ort_.KernelContext_GetInput(context, 0);
    +  const float *input_data =
    +      reinterpret_cast(ort_.GetTensorData(input));
    +
    +  // get output
    +  OrtTensorDimensions out_dimensions(ort_, input);
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  float *output_data = ort_.GetTensorMutableData(output);
    +  OrtValue *indices = ort_.KernelContext_GetOutput(
    +      context, 1, out_dimensions.data(), out_dimensions.size());
    +  int64_t *indices_data = ort_.GetTensorMutableData(indices);
    +
    +  // allocate tmp memory for computing the cumulative production on dimension
    +  // size
    +  const int64_t ndims = out_dimensions.size();
    +  assert(ndims > 0);
    +  int64_t *reversed_dim_cumprod =
    +      (int64_t *)allocator_.Alloc(sizeof(int64_t) * ndims);
    +
    +  // dim should be wrapped if it's negative (e.g. -1)
    +  const int64_t dim = maybe_wrap_dim(dim_, ndims);
    +  CumMax_CumMin_CPU>(
    +      input_data, output_data, indices_data, reversed_dim_cumprod, dim,
    +      out_dimensions);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align.cpp
    new file mode 100644
    index 000000000..2151d2ac6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align.cpp
    @@ -0,0 +1,265 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "roi_align.h"
    +
    +#include "../ort_mmcv_utils.h"
    +
    +// implementation taken from Caffe2
    +struct PreCalc {
    +  int pos1;
    +  int pos2;
    +  int pos3;
    +  int pos4;
    +  float w1;
    +  float w2;
    +  float w3;
    +  float w4;
    +};
    +
    +void pre_calc_for_bilinear_interpolate(
    +    const int height, const int width, const int pooled_height,
    +    const int pooled_width, const int iy_upper, const int ix_upper,
    +    float roi_start_h, float roi_start_w, float bin_size_h, float bin_size_w,
    +    int roi_bin_grid_h, int roi_bin_grid_w, std::vector &pre_calc) {
    +  int pre_calc_index = 0;
    +  for (int ph = 0; ph < pooled_height; ph++) {
    +    for (int pw = 0; pw < pooled_width; pw++) {
    +      for (int iy = 0; iy < iy_upper; iy++) {
    +        const float yy =
    +            roi_start_h + ph * bin_size_h +
    +            static_cast(iy + .5f) * bin_size_h /
    +                static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +        for (int ix = 0; ix < ix_upper; ix++) {
    +          const float xx = roi_start_w + pw * bin_size_w +
    +                           static_cast(ix + .5f) * bin_size_w /
    +                               static_cast(roi_bin_grid_w);
    +
    +          float x = xx;
    +          float y = yy;
    +          // deal with: inverse elements are out of feature map boundary
    +          if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +            // empty
    +            PreCalc pc;
    +            pc.pos1 = 0;
    +            pc.pos2 = 0;
    +            pc.pos3 = 0;
    +            pc.pos4 = 0;
    +            pc.w1 = 0;
    +            pc.w2 = 0;
    +            pc.w3 = 0;
    +            pc.w4 = 0;
    +            pre_calc[pre_calc_index] = pc;
    +            pre_calc_index += 1;
    +            continue;
    +          }
    +
    +          if (y <= 0) {
    +            y = 0;
    +          }
    +          if (x <= 0) {
    +            x = 0;
    +          }
    +
    +          int y_low = (int)y;
    +          int x_low = (int)x;
    +          int y_high;
    +          int x_high;
    +
    +          if (y_low >= height - 1) {
    +            y_high = y_low = height - 1;
    +            y = (float)y_low;
    +          } else {
    +            y_high = y_low + 1;
    +          }
    +
    +          if (x_low >= width - 1) {
    +            x_high = x_low = width - 1;
    +            x = (float)x_low;
    +          } else {
    +            x_high = x_low + 1;
    +          }
    +
    +          float ly = y - y_low;
    +          float lx = x - x_low;
    +          float hy = 1. - ly, hx = 1. - lx;
    +          float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +          // save weights and indices
    +          PreCalc pc;
    +          pc.pos1 = y_low * width + x_low;
    +          pc.pos2 = y_low * width + x_high;
    +          pc.pos3 = y_high * width + x_low;
    +          pc.pos4 = y_high * width + x_high;
    +          pc.w1 = w1;
    +          pc.w2 = w2;
    +          pc.w3 = w3;
    +          pc.w4 = w4;
    +          pre_calc[pre_calc_index] = pc;
    +
    +          pre_calc_index += 1;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void ROIAlignForwardCPU(const int nthreads, const float *input,
    +                        const float *rois, float *output, float *argmax_y,
    +                        float *argmax_x, const int pooled_height,
    +                        const int pooled_width, const float spatial_scale,
    +                        const int sampling_ratio,
    +                        const int pool_mode,  // 0 - max pool, 1 - avg pool
    +                        const bool aligned, const int channels,
    +                        const int height, const int width) {
    +  int n_rois = nthreads / channels / pooled_width / pooled_height;
    +  // (n, c, ph, pw) is an element in the pooled output
    +  // can be parallelized using omp
    +  // #pragma omp parallel for num_threads(32)
    +  for (int n = 0; n < n_rois; n++) {
    +    int index_n = n * channels * pooled_width * pooled_height;
    +
    +    const float *offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    float offset = aligned ? (float)0.5 : (float)0.0;
    +    float roi_start_w = offset_rois[1] * spatial_scale - offset;
    +    float roi_start_h = offset_rois[2] * spatial_scale - offset;
    +    float roi_end_w = offset_rois[3] * spatial_scale - offset;
    +    float roi_end_h = offset_rois[4] * spatial_scale - offset;
    +
    +    float roi_width = roi_end_w - roi_start_w;
    +    float roi_height = roi_end_h - roi_start_h;
    +    if (aligned) {
    +      /*AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
    +                 "ROIs in ROIAlign cannot have non-negative size!");*/
    +      assert(roi_width >= 0 && roi_height >= 0);
    +    } else {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (float)1.);
    +      roi_height = std::max(roi_height, (float)1.);
    +    }
    +    float bin_size_h =
    +        static_cast(roi_height) / static_cast(pooled_height);
    +    float bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceil(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    +
    +    // When the grid is empty, output zeros == 0/1, instead of NaN.
    +    const float count =
    +        std::max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    // we want to precalculate indices and weights shared by all channels,
    +    // this is the key point of optimization
    +    std::vector pre_calc(roi_bin_grid_h * roi_bin_grid_w *
    +                                  pooled_width * pooled_height);
    +    pre_calc_for_bilinear_interpolate(
    +        height, width, pooled_height, pooled_width, roi_bin_grid_h,
    +        roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
    +        roi_bin_grid_h, roi_bin_grid_w, pre_calc);
    +
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * pooled_width * pooled_height;
    +      const float *offset_input =
    +          input + (roi_batch_ind * channels + c) * height * width;
    +      int pre_calc_index = 0;
    +
    +      for (int ph = 0; ph < pooled_height; ph++) {
    +        for (int pw = 0; pw < pooled_width; pw++) {
    +          int index = index_n_c + ph * pooled_width + pw;
    +
    +          float output_val = 0.;
    +          float maxval = -10000;
    +          float maxidx_y = -1.f, maxidx_x = -1.f;
    +          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +            const float y = roi_start_h + ph * bin_size_h +
    +                            static_cast(iy + .5f) * bin_size_h /
    +                                static_cast(roi_bin_grid_h);
    +            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +              const float x = roi_start_w + pw * bin_size_w +
    +                              static_cast(ix + .5f) * bin_size_w /
    +                                  static_cast(roi_bin_grid_w);
    +              PreCalc pc = pre_calc[pre_calc_index];
    +              float val = pc.w1 * offset_input[pc.pos1] +
    +                          pc.w2 * offset_input[pc.pos2] +
    +                          pc.w3 * offset_input[pc.pos3] +
    +                          pc.w4 * offset_input[pc.pos4];
    +              if (val > maxval) {
    +                maxval = val;
    +                maxidx_y = y;
    +                maxidx_x = x;
    +              }
    +              output_val += val;
    +              pre_calc_index += 1;
    +            }
    +          }
    +          if (pool_mode == 0) {
    +            // We do max pooling inside a bin
    +            output[index] = maxval;
    +            argmax_y[index] = maxidx_y;
    +            argmax_x[index] = maxidx_x;
    +          } else if (pool_mode == 1) {
    +            // We do average (integral) pooling inside a bin
    +            output[index] = output_val / count;
    +          }  // if
    +        }    // for pw
    +      }      // for ph
    +    }        // for c
    +  }          // for n
    +}
    +
    +void MMCVRoiAlignKernel::Compute(OrtKernelContext *context) {
    +  // Setup inputs
    +  const OrtValue *input_X = ort_.KernelContext_GetInput(context, 0);
    +  const float *X_data =
    +      reinterpret_cast(ort_.GetTensorData(input_X));
    +  const OrtValue *input_rois = ort_.KernelContext_GetInput(context, 1);
    +  const float *rois = reinterpret_cast(
    +      ort_.GetTensorData(input_rois));
    +
    +  // Setup output
    +  OrtTensorDimensions out_dimensions(ort_, input_X);
    +  OrtTensorDimensions roi_dimensions(ort_, input_rois);
    +
    +  int batch_size = out_dimensions.data()[0];
    +  int input_channels = out_dimensions.data()[1];
    +  int input_height = out_dimensions.data()[2];
    +  int input_width = out_dimensions.data()[3];
    +
    +  out_dimensions.data()[0] = roi_dimensions.data()[0];
    +  out_dimensions.data()[2] = aligned_height_;
    +  out_dimensions.data()[3] = aligned_width_;
    +
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  float *out = ort_.GetTensorMutableData(output);
    +  OrtTensorTypeAndShapeInfo *output_info = ort_.GetTensorTypeAndShape(output);
    +  ort_.ReleaseTensorTypeAndShapeInfo(output_info);
    +
    +  // TODO: forward here
    +  int output_size = out_dimensions.data()[0];
    +  for (auto i = 1; i < out_dimensions.size(); ++i) {
    +    output_size *= out_dimensions.data()[i];
    +  }
    +
    +  int poolMod = 1;
    +  if (pool_mode_ == "max") poolMod = 0;
    +
    +  float *argmax_x = nullptr, *argmax_y = nullptr;
    +  if (poolMod == 0) {
    +    argmax_y = new float[output_size];
    +    argmax_x = new float[output_size];
    +  }
    +
    +  ROIAlignForwardCPU(output_size, X_data, rois, out, argmax_y, argmax_x,
    +                     aligned_height_, aligned_width_, spatial_scale_,
    +                     sampling_ratio_, poolMod, aligned_, input_channels,
    +                     input_height, input_width);
    +
    +  if (argmax_x) delete argmax_x;
    +  if (argmax_y) delete argmax_y;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align_rotated.cpp
    new file mode 100644
    index 000000000..ce0b22029
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/roi_align_rotated.cpp
    @@ -0,0 +1,247 @@
    +// Modified from
    +// https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlignRotated
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "roi_align_rotated.h"
    +
    +#include "../ort_mmcv_utils.h"
    +
    +struct PreCalc {
    +  int pos1;
    +  int pos2;
    +  int pos3;
    +  int pos4;
    +  float w1;
    +  float w2;
    +  float w3;
    +  float w4;
    +};
    +
    +void pre_calc_for_bilinear_interpolate(
    +    const int height, const int width, const int pooled_height,
    +    const int pooled_width, const int iy_upper, const int ix_upper,
    +    float roi_start_h, float roi_start_w, float bin_size_h, float bin_size_w,
    +    int roi_bin_grid_h, int roi_bin_grid_w, float roi_center_h,
    +    float roi_center_w, float cos_theta, float sin_theta,
    +    std::vector &pre_calc) {
    +  int pre_calc_index = 0;
    +  for (int ph = 0; ph < pooled_height; ph++) {
    +    for (int pw = 0; pw < pooled_width; pw++) {
    +      for (int iy = 0; iy < iy_upper; iy++) {
    +        const float yy =
    +            roi_start_h + ph * bin_size_h +
    +            static_cast(iy + .5f) * bin_size_h /
    +                static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +        for (int ix = 0; ix < ix_upper; ix++) {
    +          const float xx = roi_start_w + pw * bin_size_w +
    +                           static_cast(ix + .5f) * bin_size_w /
    +                               static_cast(roi_bin_grid_w);
    +
    +          // Rotate by theta around the center and translate
    +          // In image space, (y, x) is the order for Right Handed System,
    +          // and this is essentially multiplying the point by a rotation matrix
    +          // to rotate it counterclockwise through angle theta.
    +          float y = yy * cos_theta - xx * sin_theta + roi_center_h;
    +          float x = yy * sin_theta + xx * cos_theta + roi_center_w;
    +          // deal with: inverse elements are out of feature map boundary
    +          if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +            // empty
    +            PreCalc pc;
    +            pc.pos1 = 0;
    +            pc.pos2 = 0;
    +            pc.pos3 = 0;
    +            pc.pos4 = 0;
    +            pc.w1 = 0;
    +            pc.w2 = 0;
    +            pc.w3 = 0;
    +            pc.w4 = 0;
    +            pre_calc[pre_calc_index] = pc;
    +            pre_calc_index += 1;
    +            continue;
    +          }
    +
    +          if (y < 0) {
    +            y = 0;
    +          }
    +          if (x < 0) {
    +            x = 0;
    +          }
    +
    +          int y_low = (int)y;
    +          int x_low = (int)x;
    +          int y_high;
    +          int x_high;
    +
    +          if (y_low >= height - 1) {
    +            y_high = y_low = height - 1;
    +            y = (float)y_low;
    +          } else {
    +            y_high = y_low + 1;
    +          }
    +
    +          if (x_low >= width - 1) {
    +            x_high = x_low = width - 1;
    +            x = (float)x_low;
    +          } else {
    +            x_high = x_low + 1;
    +          }
    +
    +          float ly = y - y_low;
    +          float lx = x - x_low;
    +          float hy = 1. - ly, hx = 1. - lx;
    +          float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +          // save weights and indices
    +          PreCalc pc;
    +          pc.pos1 = y_low * width + x_low;
    +          pc.pos2 = y_low * width + x_high;
    +          pc.pos3 = y_high * width + x_low;
    +          pc.pos4 = y_high * width + x_high;
    +          pc.w1 = w1;
    +          pc.w2 = w2;
    +          pc.w3 = w3;
    +          pc.w4 = w4;
    +          pre_calc[pre_calc_index] = pc;
    +
    +          pre_calc_index += 1;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void ROIAlignRotatedForwardCPU(const int nthreads, const float *input,
    +                               const float *rois, float *output,
    +                               const float &spatial_scale, const int aligned,
    +                               const int clockwise, const int channels,
    +                               const int height, const int width,
    +                               const int pooled_height, const int pooled_width,
    +                               const int sampling_ratio) {
    +  int n_rois = nthreads / channels / pooled_width / pooled_height;
    +  // (n, c, ph, pw) is an element in the pooled output
    +  // can be parallelized using omp
    +  // #pragma omp parallel for num_threads(32)
    +  for (int n = 0; n < n_rois; n++) {
    +    int index_n = n * channels * pooled_width * pooled_height;
    +
    +    const float *current_roi = rois + n * 6;
    +    int roi_batch_ind = current_roi[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    float offset = aligned ? (float)0.5 : (float)0.0;
    +    float roi_center_w = current_roi[1] * spatial_scale - offset;
    +    float roi_center_h = current_roi[2] * spatial_scale - offset;
    +    float roi_width = current_roi[3] * spatial_scale;
    +    float roi_height = current_roi[4] * spatial_scale;
    +    // float theta = current_roi[5] * M_PI / 180.0;
    +    float theta = current_roi[5];  // Radian angle by default
    +    if (clockwise) {
    +      theta = -theta;
    +    }
    +    float cos_theta = cos(theta);
    +    float sin_theta = sin(theta);
    +    if (!aligned) {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (float)1.);
    +      roi_height = std::max(roi_height, (float)1.);
    +    }
    +
    +    float bin_size_h =
    +        static_cast(roi_height) / static_cast(pooled_height);
    +    float bin_size_w =
    +        static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceil(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    +
    +    // We do average (integral) pooling inside a bin
    +    const float count =
    +        std::max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    // we want to precalculate indices and weights shared by all channels,
    +    // this is the key point of optimization
    +    std::vector pre_calc(roi_bin_grid_h * roi_bin_grid_w *
    +                                  pooled_width * pooled_height);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    float roi_start_h = -roi_height / 2.0;
    +    float roi_start_w = -roi_width / 2.0;
    +
    +    pre_calc_for_bilinear_interpolate(
    +        height, width, pooled_height, pooled_width, roi_bin_grid_h,
    +        roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
    +        roi_bin_grid_h, roi_bin_grid_w, roi_center_h, roi_center_w, cos_theta,
    +        sin_theta, pre_calc);
    +
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * pooled_width * pooled_height;
    +      const float *offset_input =
    +          input + (roi_batch_ind * channels + c) * height * width;
    +      int pre_calc_index = 0;
    +
    +      for (int ph = 0; ph < pooled_height; ph++) {
    +        for (int pw = 0; pw < pooled_width; pw++) {
    +          int index = index_n_c + ph * pooled_width + pw;
    +
    +          float output_val = 0.;
    +          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +              PreCalc pc = pre_calc[pre_calc_index];
    +              output_val += pc.w1 * offset_input[pc.pos1] +
    +                            pc.w2 * offset_input[pc.pos2] +
    +                            pc.w3 * offset_input[pc.pos3] +
    +                            pc.w4 * offset_input[pc.pos4];
    +
    +              pre_calc_index += 1;
    +            }
    +          }
    +          output_val /= count;
    +
    +          output[index] = output_val;
    +        }  // for pw
    +      }    // for ph
    +    }      // for c
    +  }        // for n
    +}
    +
    +void MMCVRoIAlignRotatedKernel::Compute(OrtKernelContext *context) {
    +  // Setup inputs
    +  const OrtValue *input_X = ort_.KernelContext_GetInput(context, 0);
    +  const float *X_data =
    +      reinterpret_cast(ort_.GetTensorData(input_X));
    +  const OrtValue *input_rois = ort_.KernelContext_GetInput(context, 1);
    +  const float *rois = reinterpret_cast(
    +      ort_.GetTensorData(input_rois));
    +
    +  // Setup output
    +  OrtTensorDimensions out_dimensions(ort_, input_X);
    +  OrtTensorDimensions roi_dimensions(ort_, input_rois);
    +
    +  int batch_size = out_dimensions.data()[0];
    +  int input_channels = out_dimensions.data()[1];
    +  int input_height = out_dimensions.data()[2];
    +  int input_width = out_dimensions.data()[3];
    +
    +  out_dimensions.data()[0] = roi_dimensions.data()[0];
    +  out_dimensions.data()[2] = aligned_height_;
    +  out_dimensions.data()[3] = aligned_width_;
    +
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  float *out = ort_.GetTensorMutableData(output);
    +  OrtTensorTypeAndShapeInfo *output_info = ort_.GetTensorTypeAndShape(output);
    +  ort_.ReleaseTensorTypeAndShapeInfo(output_info);
    +
    +  // TODO: forward here
    +  int output_size = out_dimensions.data()[0];
    +  for (auto i = 1; i < out_dimensions.size(); ++i) {
    +    output_size *= out_dimensions.data()[i];
    +  }
    +  ROIAlignRotatedForwardCPU(output_size, X_data, rois, out, spatial_scale_,
    +                            aligned_, clockwise_, input_channels, input_height,
    +                            input_width, aligned_height_, aligned_width_,
    +                            sampling_ratio_);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/rotated_feature_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/rotated_feature_align.cpp
    new file mode 100644
    index 000000000..b8d073763
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/rotated_feature_align.cpp
    @@ -0,0 +1,132 @@
    +// Modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_kernel.cu
    +#include "rotated_feature_align.h"
    +
    +#include "../ort_mmcv_utils.h"
    +
    +template 
    +T bilinear_interpolate(const T *input, const int height, const int width, T y,
    +                       T x, const int index /* index for debug only*/) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) return 0;
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  int y_low = (int)y;
    +  int x_low = (int)x;
    +  int y_high;
    +  int x_high;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +  // do bilinear interpolation
    +  T v1 = input[int(fma(y_low, width, x_low))];
    +  T v2 = input[int(fma(y_low, width, x_high))];
    +  T v3 = input[int(fma(y_high, width, x_low))];
    +  T v4 = input[int(fma(y_high, width, x_high))];
    +  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +
    +  return val;
    +}
    +
    +template 
    +void rotated_feature_align_forward_cpu_kernel(
    +    const int nthreads, const int points, const scalar_t *bottom_data,
    +    const scalar_t *best_bboxes, const scalar_t spatial_scale,
    +    const int channels, const int height, const int width, scalar_t *top_data) {
    +  for (int index = 0; index < nthreads; index++) {
    +    int w = index % width;
    +    int h = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    const scalar_t *bbox_offset =
    +        best_bboxes + ((n * height + h) * width + w) * 5;
    +    scalar_t roi_y = bbox_offset[0] * spatial_scale;
    +    scalar_t roi_x = bbox_offset[1] * spatial_scale;
    +
    +    scalar_t px[5] = {roi_x, 0, 0, 0, 0};
    +    scalar_t py[5] = {roi_y, 0, 0, 0, 0};
    +
    +    if (points > 1) {
    +      scalar_t roi_w = bbox_offset[2] * spatial_scale;
    +      scalar_t roi_h = bbox_offset[3] * spatial_scale;
    +      scalar_t roi_a = bbox_offset[4];
    +
    +      scalar_t w_2 = roi_w / 2, h_2 = roi_h / 2;
    +      scalar_t cosa = cosf(roi_a), sina = sinf(roi_a);
    +      scalar_t wx = cosa * w_2, wy = sina * w_2;
    +      scalar_t hx = -sina * h_2, hy = cosa * h_2;
    +
    +      px[1] = roi_x + wx + hx;
    +      py[1] = roi_y + wy + hy;
    +      px[2] = roi_x - wx + hx;
    +      py[2] = roi_y - wy + hy;
    +      px[3] = roi_x - wx - hx;
    +      py[3] = roi_y - wy - hy;
    +      px[4] = roi_x + wx - hx;
    +      py[4] = roi_y + wy - hy;
    +    }
    +
    +    const scalar_t *offset_bottom_data =
    +        bottom_data + (n * channels + c) * height * width;
    +
    +    scalar_t output_val = bottom_data[index];
    +    for (int i = 0; i < points; i++) {
    +      output_val += bilinear_interpolate(offset_bottom_data, height,
    +                                                   width, py[i], px[i], i);
    +    }
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +void MMCVRotatedFeatureAlignKernel::Compute(OrtKernelContext *context) {
    +  // Setup inputs
    +  const OrtValue *input_features = ort_.KernelContext_GetInput(context, 0);
    +  const float *features_data = reinterpret_cast(
    +      ort_.GetTensorData(input_features));
    +  const OrtValue *input_best_rbboxes = ort_.KernelContext_GetInput(context, 1);
    +  const float *best_rbboxes = reinterpret_cast(
    +      ort_.GetTensorData(input_best_rbboxes));
    +
    +  // Setup output
    +  OrtTensorDimensions out_dimensions(ort_, input_features);
    +
    +  int batch_size = out_dimensions.data()[0];
    +  int input_channels = out_dimensions.data()[1];
    +  int input_height = out_dimensions.data()[2];
    +  int input_width = out_dimensions.data()[3];
    +
    +  OrtValue *output = ort_.KernelContext_GetOutput(
    +      context, 0, out_dimensions.data(), out_dimensions.size());
    +  float *out = ort_.GetTensorMutableData(output);
    +  OrtTensorTypeAndShapeInfo *output_info = ort_.GetTensorTypeAndShape(output);
    +  ort_.ReleaseTensorTypeAndShapeInfo(output_info);
    +
    +  // TODO: forward here
    +  int output_size = out_dimensions.data()[0];
    +  for (auto i = 1; i < out_dimensions.size(); ++i) {
    +    output_size *= out_dimensions.data()[i];
    +  }
    +  rotated_feature_align_forward_cpu_kernel(
    +      output_size, points_, features_data, best_rbboxes, spatial_scale_,
    +      input_channels, input_height, input_width, out);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/soft_nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/soft_nms.cpp
    new file mode 100644
    index 000000000..8bb4ce336
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/cpu/soft_nms.cpp
    @@ -0,0 +1,156 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "soft_nms.h"
    +
    +#include 
    +
    +#include 
    +#include 
    +
    +#include "../ort_mmcv_utils.h"
    +
    +SoftNmsKernel::SoftNmsKernel(OrtApi api, const OrtKernelInfo *info)
    +    : api_(api), ort_(api_), info_(info) {
    +  iou_threshold_ = ort_.KernelInfoGetAttribute(info, "iou_threshold");
    +  sigma_ = ort_.KernelInfoGetAttribute(info, "sigma");
    +  min_score_ = ort_.KernelInfoGetAttribute(info, "min_score");
    +  method_ = ort_.KernelInfoGetAttribute(info, "method");
    +  offset_ = ort_.KernelInfoGetAttribute(info, "offset");
    +
    +  // create allocator
    +  allocator_ = Ort::AllocatorWithDefaultOptions();
    +}
    +
    +void SoftNmsKernel::Compute(OrtKernelContext *context) {
    +  typedef float T;
    +
    +  const T iou_threshold = T(iou_threshold_);
    +  const T sigma = T(sigma_);
    +  const T min_score = T(min_score_);
    +  const int method = int(method_);
    +  const T offset = T(offset_);
    +
    +  const OrtValue *boxes = ort_.KernelContext_GetInput(context, 0);
    +  const T *boxes_data =
    +      reinterpret_cast(ort_.GetTensorData(boxes));
    +  const OrtValue *scores = ort_.KernelContext_GetInput(context, 1);
    +  const T *scores_data =
    +      reinterpret_cast(ort_.GetTensorData(scores));
    +
    +  OrtTensorDimensions boxes_dim(ort_, boxes);
    +  OrtTensorDimensions scores_dim(ort_, scores);
    +
    +  int64_t nboxes = boxes_dim[0];
    +  assert(boxes_dim[1] == 4);
    +
    +  // allocate tmp memory
    +  T *tmp_boxes = (T *)allocator_.Alloc(sizeof(T) * nboxes * 4);
    +  T *x1 = tmp_boxes;
    +  T *y1 = tmp_boxes + 1;
    +  T *x2 = tmp_boxes + 2;
    +  T *y2 = tmp_boxes + 3;
    +  T *sc = (T *)allocator_.Alloc(sizeof(T) * nboxes);
    +  T *areas = (T *)allocator_.Alloc(sizeof(T) * nboxes);
    +  T *de = (T *)allocator_.Alloc(sizeof(T) * nboxes * 5);
    +  int64_t *inds = (int64_t *)allocator_.Alloc(sizeof(int64_t) * nboxes);
    +
    +  memcpy(tmp_boxes, boxes_data, sizeof(T) * nboxes * 4);
    +  memcpy(sc, scores_data, sizeof(T) * nboxes);
    +
    +  // init inds as arange(nboxes)
    +  std::generate(inds, inds + nboxes, [n = 0]() mutable { return n++; });
    +
    +  // area = (x2-x1+offset)*(y2-y1+offset)
    +  for (int64_t i = 0; i < nboxes; i++) {
    +    areas[i] =
    +        (x2[i * 4] - x1[i * 4] + offset) * (y2[i * 4] - y1[i * 4] + offset);
    +  }
    +
    +  int64_t pos = 0;
    +
    +  for (int64_t i = 0; i < nboxes; i++) {
    +    auto max_score = sc[i];
    +    auto max_pos = i;
    +
    +    pos = i + 1;
    +    // get max box
    +    while (pos < nboxes) {
    +      if (max_score < sc[pos]) {
    +        max_score = sc[pos];
    +        max_pos = pos;
    +      }
    +      pos = pos + 1;
    +    }
    +    // swap
    +    auto ix1 = de[i * 5 + 0] = x1[max_pos * 4];
    +    auto iy1 = de[i * 5 + 1] = y1[max_pos * 4];
    +    auto ix2 = de[i * 5 + 2] = x2[max_pos * 4];
    +    auto iy2 = de[i * 5 + 3] = y2[max_pos * 4];
    +    auto iscore = de[i * 5 + 4] = sc[max_pos];
    +    auto iarea = areas[max_pos];
    +    auto iind = inds[max_pos];
    +    x1[max_pos * 4] = x1[i * 4];
    +    y1[max_pos * 4] = y1[i * 4];
    +    x2[max_pos * 4] = x2[i * 4];
    +    y2[max_pos * 4] = y2[i * 4];
    +    sc[max_pos] = sc[i];
    +    areas[max_pos] = areas[i];
    +    inds[max_pos] = inds[i];
    +    x1[i * 4] = ix1;
    +    y1[i * 4] = iy1;
    +    x2[i * 4] = ix2;
    +    y2[i * 4] = iy2;
    +    sc[i] = iscore;
    +    areas[i] = iarea;
    +    inds[i] = iind;
    +
    +    pos = i + 1;
    +    while (pos < nboxes) {
    +      auto xx1 = std::max(ix1, x1[pos * 4]);
    +      auto yy1 = std::max(iy1, y1[pos * 4]);
    +      auto xx2 = std::min(ix2, x2[pos * 4]);
    +      auto yy2 = std::min(iy2, y2[pos * 4]);
    +
    +      auto w = std::max(0.f, xx2 - xx1 + offset);
    +      auto h = std::max(0.f, yy2 - yy1 + offset);
    +      auto inter = w * h;
    +      auto ovr = inter / (iarea + areas[pos] - inter);
    +
    +      float weight = 1.;
    +      if (method == 0) {
    +        if (ovr >= iou_threshold) weight = 0;
    +      } else if (method == 1) {
    +        if (ovr >= iou_threshold) weight = 1 - ovr;
    +      } else if (method == 2) {
    +        weight = std::exp(-(ovr * ovr) / sigma);
    +      }
    +      sc[pos] *= weight;
    +      // if box score falls below threshold, discard the box by
    +      // swapping with last box update N
    +      if (sc[pos] < min_score) {
    +        x1[pos * 4] = x1[(nboxes - 1) * 4];
    +        y1[pos * 4] = y1[(nboxes - 1) * 4];
    +        x2[pos * 4] = x2[(nboxes - 1) * 4];
    +        y2[pos * 4] = y2[(nboxes - 1) * 4];
    +        sc[pos] = sc[nboxes - 1];
    +        areas[pos] = areas[nboxes - 1];
    +        inds[pos] = inds[nboxes - 1];
    +        nboxes = nboxes - 1;
    +        pos = pos - 1;
    +      }
    +      pos = pos + 1;
    +    }
    +  }
    +
    +  std::vector dets_dim({nboxes, 5});
    +  OrtValue *dets = ort_.KernelContext_GetOutput(context, 0, dets_dim.data(),
    +                                                dets_dim.size());
    +  T *dets_data = ort_.GetTensorMutableData(dets);
    +
    +  std::vector inds_dim({nboxes});
    +  OrtValue *inds_ov = ort_.KernelContext_GetOutput(context, 1, inds_dim.data(),
    +                                                   inds_dim.size());
    +  int64_t *inds_data = ort_.GetTensorMutableData(inds_ov);
    +
    +  memcpy(dets_data, de, sizeof(T) * nboxes * 5);
    +  memcpy(inds_data, inds, sizeof(int64_t) * nboxes);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/deform_conv.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/deform_conv.h
    new file mode 100644
    index 000000000..05f324a7d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/deform_conv.h
    @@ -0,0 +1,57 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_DEFORM_CONV_H
    +#define ONNXRUNTIME_DEFORM_CONV_H
    +
    +#include 
    +
    +struct MMCVDeformConvKernel {
    +  MMCVDeformConvKernel(OrtApi api, const OrtKernelInfo *info);
    +
    +  void Compute(OrtKernelContext *context);
    +
    + protected:
    +  OrtApi api_;
    +  Ort::CustomOpApi ort_;
    +  const OrtKernelInfo *info_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  int64_t stride_height_;
    +  int64_t stride_width_;
    +  int64_t padding_height_;
    +  int64_t padding_width_;
    +  int64_t dilation_height_;
    +  int64_t dilation_width_;
    +  int64_t deformable_group_;
    +  int64_t group_;
    +  int64_t im2col_step_;
    +};
    +
    +struct MMCVDeformConvOp
    +    : Ort::CustomOpBase {
    +  void *CreateKernel(OrtApi api, const OrtKernelInfo *info) const {
    +    return new MMCVDeformConvKernel(api, info);
    +  }
    +
    +  const char *GetName() const { return "MMCVDeformConv2d"; };
    +
    +  size_t GetInputTypeCount() const { return 3; };
    +  ONNXTensorElementDataType GetInputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(
    +      size_t index) const {
    +    return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; };
    +  ONNXTensorElementDataType GetOutputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  // force cpu
    +  const char *GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/grid_sample.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/grid_sample.h
    new file mode 100644
    index 000000000..6be15146b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/grid_sample.h
    @@ -0,0 +1,44 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_GRIDSAMPLE_H
    +#define ONNXRUNTIME_GRIDSAMPLE_H
    +
    +#include 
    +
    +struct GridSampleKernel {
    +  GridSampleKernel(OrtApi api, const OrtKernelInfo *info);
    +
    +  void Compute(OrtKernelContext *context);
    +
    + protected:
    +  OrtApi api_;
    +  Ort::CustomOpApi ort_;
    +  const OrtKernelInfo *info_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  int64_t align_corners_;
    +  int64_t interpolation_mode_;
    +  int64_t padding_mode_;
    +};
    +
    +struct GridSampleOp : Ort::CustomOpBase {
    +  void *CreateKernel(OrtApi api, const OrtKernelInfo *info) const {
    +    return new GridSampleKernel(api, info);
    +  };
    +
    +  const char *GetName() const { return "grid_sampler"; };
    +
    +  size_t GetInputTypeCount() const { return 2; };
    +  ONNXTensorElementDataType GetInputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  size_t GetOutputTypeCount() const { return 1; };
    +  ONNXTensorElementDataType GetOutputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  const char *GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/modulated_deform_conv.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/modulated_deform_conv.h
    new file mode 100644
    index 000000000..09d9d1f85
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/modulated_deform_conv.h
    @@ -0,0 +1,61 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_MODULATED_DEFORM_CONV_H
    +#define ONNXRUNTIME_MODULATED_DEFORM_CONV_H
    +
    +#include 
    +
    +struct MMCVModulatedDeformConvKernel {
    +  MMCVModulatedDeformConvKernel(OrtApi api, const OrtKernelInfo *info);
    +
    +  void Compute(OrtKernelContext *context);
    +
    + protected:
    +  OrtApi api_;
    +  Ort::CustomOpApi ort_;
    +  const OrtKernelInfo *info_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  int64_t stride_height_;
    +  int64_t stride_width_;
    +  int64_t padding_height_;
    +  int64_t padding_width_;
    +  int64_t dilation_height_;
    +  int64_t dilation_width_;
    +  int64_t deformable_group_;
    +  int64_t group_;
    +};
    +
    +struct MMCVModulatedDeformConvOp
    +    : Ort::CustomOpBase {
    +  void *CreateKernel(OrtApi api, const OrtKernelInfo *info) const {
    +    return new MMCVModulatedDeformConvKernel(api, info);
    +  }
    +
    +  const char *GetName() const { return "MMCVModulatedDeformConv2d"; };
    +
    +  size_t GetInputTypeCount() const { return 5; };
    +  ONNXTensorElementDataType GetInputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(
    +      size_t index) const {
    +    // The last input (index == 4) is optional, which is bias
    +    if (index == 4)
    +      return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_OPTIONAL;
    +
    +    return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; };
    +  ONNXTensorElementDataType GetOutputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  // force cpu
    +  const char *GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/nms.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/nms.h
    new file mode 100644
    index 000000000..ddb208de4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/nms.h
    @@ -0,0 +1,45 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_NMS_H
    +#define ONNXRUNTIME_NMS_H
    +
    +#include 
    +
    +struct NmsKernel {
    +  NmsKernel(OrtApi api, const OrtKernelInfo *info);
    +
    +  void Compute(OrtKernelContext *context);
    +
    + protected:
    +  OrtApi api_;
    +  Ort::CustomOpApi ort_;
    +  const OrtKernelInfo *info_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  float iou_threshold_;
    +  int64_t offset_;
    +};
    +
    +struct NmsOp : Ort::CustomOpBase {
    +  void *CreateKernel(OrtApi api, const OrtKernelInfo *info) const {
    +    return new NmsKernel(api, info);
    +  };
    +
    +  const char *GetName() const { return "NonMaxSuppression"; };
    +
    +  size_t GetInputTypeCount() const { return 2; };
    +  ONNXTensorElementDataType GetInputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  size_t GetOutputTypeCount() const { return 1; };
    +  ONNXTensorElementDataType GetOutputType(size_t index) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
    +  }
    +
    +  // force cpu
    +  const char *GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  }
    +};
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_register.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_register.h
    new file mode 100644
    index 000000000..84d201455
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_register.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_REGISTER_H
    +#define ONNXRUNTIME_REGISTER_H
    +#include 
    +
    +#ifdef __cplusplus
    +extern "C" {
    +#endif
    +
    +OrtStatus *ORT_API_CALL RegisterCustomOps(OrtSessionOptions *options,
    +                                          const OrtApiBase *api);
    +
    +#ifdef __cplusplus
    +}
    +#endif
    +#endif  // ONNXRUNTIME_REGISTER_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_session_options_config_keys.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_session_options_config_keys.h
    new file mode 100644
    index 000000000..8e8dbf4bd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/onnxruntime_session_options_config_keys.h
    @@ -0,0 +1,44 @@
    +// Copyright (c) Microsoft Corporation. All rights reserved.
    +// Licensed under the MIT License.
    +
    +#ifndef ONNXRUNTIME_SESSION_OPTIONS_CONFIG_KEYS_H
    +#define ONNXRUNTIME_SESSION_OPTIONS_CONFIG_KEYS_H
    +
    +/*
    + * This file defines SessionOptions Config Keys and format of the Config Values.
    + *
    + * The Naming Convention for a SessionOptions Config Key,
    + * "[Area][.[SubArea1].[SubArea2]...].[Keyname]"
    + * Such as "ep.cuda.use_arena"
    + * The Config Key cannot be empty
    + * The maximum length of the Config Key is 128
    + *
    + * The string format of a SessionOptions Config Value is defined individually
    + * for each Config. The maximum length of the Config Value is 1024
    + */
    +
    +// Key for disable PrePacking,
    +// If the config value is set to "1" then the prepacking is disabled, otherwise
    +// prepacking is enabled (default value)
    +static const char* const kOrtSessionOptionsConfigDisablePrepacking =
    +    "session.disable_prepacking";
    +
    +// A value of "1" means allocators registered in the env will be used. "0" means
    +// the allocators created in the session will be used. Use this to override the
    +// usage of env allocators on a per session level.
    +static const char* const kOrtSessionOptionsConfigUseEnvAllocators =
    +    "session.use_env_allocators";
    +
    +// Set to 'ORT' (case sensitive) to load an ORT format model.
    +// If unset, model type will default to ONNX unless inferred from filename
    +// ('.ort' == ORT format) or bytes to be ORT
    +static const char* const kOrtSessionOptionsConfigLoadModelFormat =
    +    "session.load_model_format";
    +
    +// Set to 'ORT' (case sensitive) to save optimized model in ORT format when
    +// SessionOptions.optimized_model_path is set. If unset, format will default to
    +// ONNX unless optimized_model_filepath ends in '.ort'.
    +static const char* const kOrtSessionOptionsConfigSaveModelFormat =
    +    "session.save_model_format";
    +
    +#endif  // ONNXRUNTIME_SESSION_OPTIONS_CONFIG_KEYS_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/ort_mmcv_utils.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/ort_mmcv_utils.h
    new file mode 100644
    index 000000000..b3d6d3da7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/ort_mmcv_utils.h
    @@ -0,0 +1,15 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ORT_MMCV_UTILS_H
    +#define ORT_MMCV_UTILS_H
    +#include 
    +
    +#include 
    +
    +struct OrtTensorDimensions : std::vector {
    +  OrtTensorDimensions(Ort::CustomOpApi ort, const OrtValue* value) {
    +    OrtTensorTypeAndShapeInfo* info = ort.GetTensorTypeAndShape(value);
    +    std::vector::operator=(ort.GetTensorShape(info));
    +    ort.ReleaseTensorTypeAndShapeInfo(info);
    +  }
    +};
    +#endif  // ORT_MMCV_UTILS_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/reduce_ops.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/reduce_ops.h
    new file mode 100644
    index 000000000..996a84e1f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/reduce_ops.h
    @@ -0,0 +1,95 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_REDUCE_OPS_H
    +#define ONNXRUNTIME_REDUCE_OPS_H
    +
    +#include 
    +
    +struct MMCVCumMaxKernel {
    + public:
    +  MMCVCumMaxKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    dim_ = ort_.KernelInfoGetAttribute(info, "dim");
    +
    +    // create allocator
    +    allocator_ = Ort::AllocatorWithDefaultOptions();
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  int64_t dim_;
    +};
    +
    +struct MMCVCumMinKernel {
    + public:
    +  MMCVCumMinKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    dim_ = ort_.KernelInfoGetAttribute(info, "dim");
    +
    +    // create allocator
    +    allocator_ = Ort::AllocatorWithDefaultOptions();
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  int64_t dim_;
    +};
    +
    +struct MMCVCumMaxCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVCumMaxKernel(api, info);
    +  }
    +
    +  const char* GetName() const { return "cummax"; }
    +
    +  size_t GetInputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  size_t GetOutputTypeCount() const { return 2; }
    +  ONNXTensorElementDataType GetOutputType(size_t index) const {
    +    if (index == 1) return ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +
    +struct MMCVCumMinCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVCumMinKernel(api, info);
    +  }
    +
    +  const char* GetName() const { return "cummin"; }
    +
    +  size_t GetInputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  size_t GetOutputTypeCount() const { return 2; }
    +  ONNXTensorElementDataType GetOutputType(size_t index) const {
    +    if (index == 1) return ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +
    +#endif  // ONNXRUNTIME_REDUCE_OPS_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align.h
    new file mode 100644
    index 000000000..bacc11cf9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align.h
    @@ -0,0 +1,62 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_ROI_ALIGN_H
    +#define ONNXRUNTIME_ROI_ALIGN_H
    +
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +struct MMCVRoiAlignKernel {
    + public:
    +  MMCVRoiAlignKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    aligned_ = ort_.KernelInfoGetAttribute(info, "aligned");
    +    aligned_height_ =
    +        ort_.KernelInfoGetAttribute(info, "output_height");
    +    aligned_width_ = ort_.KernelInfoGetAttribute(info, "output_width");
    +    pool_mode_ = ort_.KernelInfoGetAttribute(info, "mode");
    +    sampling_ratio_ =
    +        ort_.KernelInfoGetAttribute(info, "sampling_ratio");
    +    spatial_scale_ = ort_.KernelInfoGetAttribute(info, "spatial_scale");
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +
    +  int aligned_height_;
    +  int aligned_width_;
    +  float spatial_scale_;
    +  int sampling_ratio_;
    +  std::string pool_mode_;
    +  int aligned_;
    +};
    +
    +struct MMCVRoiAlignCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVRoiAlignKernel(api, info);
    +  }
    +  const char* GetName() const { return "MMCVRoiAlign"; }
    +
    +  size_t GetInputTypeCount() const { return 2; }
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetOutputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  }
    +};
    +#endif  // ONNXRUNTIME_ROI_ALIGN_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align_rotated.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align_rotated.h
    new file mode 100644
    index 000000000..b9ba2895c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/roi_align_rotated.h
    @@ -0,0 +1,62 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_ROI_ALIGN_ROTATED_H
    +#define ONNXRUNTIME_ROI_ALIGN_ROTATED_H
    +
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +struct MMCVRoIAlignRotatedKernel {
    + public:
    +  MMCVRoIAlignRotatedKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    aligned_height_ =
    +        ort_.KernelInfoGetAttribute(info, "output_height");
    +    aligned_width_ = ort_.KernelInfoGetAttribute(info, "output_width");
    +    sampling_ratio_ =
    +        ort_.KernelInfoGetAttribute(info, "sampling_ratio");
    +    spatial_scale_ = ort_.KernelInfoGetAttribute(info, "spatial_scale");
    +    aligned_ = ort_.KernelInfoGetAttribute(info, "aligned");
    +    clockwise_ = ort_.KernelInfoGetAttribute(info, "clockwise");
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +  int aligned_height_;
    +  int aligned_width_;
    +  float spatial_scale_;
    +  int sampling_ratio_;
    +  int aligned_;
    +  int clockwise_;
    +};
    +
    +struct MMCVRoIAlignRotatedCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVRoIAlignRotatedKernel(api, info);
    +  }
    +  const char* GetName() const { return "MMCVRoIAlignRotated"; }
    +
    +  size_t GetInputTypeCount() const { return 2; }
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; }
    +  ONNXTensorElementDataType GetOutputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  }
    +};
    +#endif  // ONNXRUNTIME_ROI_ALIGN_ROTATED_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/rotated_feature_align.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/rotated_feature_align.h
    new file mode 100644
    index 000000000..0fc03d84d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/rotated_feature_align.h
    @@ -0,0 +1,50 @@
    +#ifndef ONNXRUNTIME_ROTATED_FEATURE_ALIGN_H
    +#define ONNXRUNTIME_ROTATED_FEATURE_ALIGN_H
    +
    +#include 
    +
    +#include 
    +
    +struct MMCVRotatedFeatureAlignKernel {
    + public:
    +  MMCVRotatedFeatureAlignKernel(Ort::CustomOpApi ort, const OrtKernelInfo* info)
    +      : ort_(ort) {
    +    spatial_scale_ = ort_.KernelInfoGetAttribute(info, "spatial_scale");
    +    points_ = ort_.KernelInfoGetAttribute(info, "points");
    +  }
    +
    +  void Compute(OrtKernelContext* context);
    +
    + private:
    +  Ort::CustomOpApi ort_;
    +  float spatial_scale_;
    +  int points_;
    +};
    +
    +struct MMCVRotatedFeatureAlignCustomOp
    +    : Ort::CustomOpBase {
    +  void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) const {
    +    return new MMCVRotatedFeatureAlignKernel(api, info);
    +  }
    +
    +  const char* GetName() const { return "MMCVRotatedFeatureAlign"; }
    +
    +  size_t GetInputTypeCount() const { return 2; }
    +
    +  ONNXTensorElementDataType GetInputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  size_t GetOutputTypeCount() const { return 1; }
    +
    +  ONNXTensorElementDataType GetOutputType(size_t) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  }
    +
    +  // force cpu
    +  const char* GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  }
    +};
    +#endif  // ONNXRUNTIME_ROTATED_FEATURE_ALIGN_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/soft_nms.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/soft_nms.h
    new file mode 100644
    index 000000000..7f9f8e625
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/onnxruntime/soft_nms.h
    @@ -0,0 +1,49 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ONNXRUNTIME_SOFT_NMS_H
    +#define ONNXRUNTIME_SOFT_NMS_H
    +#include 
    +
    +struct SoftNmsKernel {
    +  SoftNmsKernel(OrtApi api, const OrtKernelInfo *info);
    +
    +  void Compute(OrtKernelContext *context);
    +
    + protected:
    +  OrtApi api_;
    +  Ort::CustomOpApi ort_;
    +  const OrtKernelInfo *info_;
    +  Ort::AllocatorWithDefaultOptions allocator_;
    +
    +  float iou_threshold_;
    +  float sigma_;
    +  float min_score_;
    +  int64_t method_;
    +  int64_t offset_;
    +};
    +
    +struct SoftNmsOp : Ort::CustomOpBase {
    +  void *CreateKernel(OrtApi api, const OrtKernelInfo *info) const {
    +    return new SoftNmsKernel(api, info);
    +  };
    +
    +  const char *GetName() const { return "SoftNonMaxSuppression"; };
    +
    +  size_t GetInputTypeCount() const { return 2; };
    +  ONNXTensorElementDataType GetInputType(size_t /*index*/) const {
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  size_t GetOutputTypeCount() const { return 2; };
    +  ONNXTensorElementDataType GetOutputType(size_t index) const {
    +    if (index == 1) {
    +      return ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
    +    }
    +    return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
    +  };
    +
    +  // force cpu
    +  const char *GetExecutionProviderType() const {
    +    return "CPUExecutionProvider";
    +  };
    +};
    +#endif  // ONNXRUNTIME_SOFT_NMS_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter.cpp
    new file mode 100644
    index 000000000..e1ead1f8e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter.cpp
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/csuhan/s2anet/blob/master/mmdet/ops/orn/src/ActiveRotatingFilter.h
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void active_rotated_filter_forward_impl(const Tensor input,
    +                                        const Tensor indices, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(active_rotated_filter_forward_impl, input, indices,
    +                       output);
    +}
    +
    +void active_rotated_filter_backward_impl(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in) {
    +  DISPATCH_DEVICE_IMPL(active_rotated_filter_backward_impl, grad_out, indices,
    +                       grad_in);
    +}
    +
    +void active_rotated_filter_forward(const Tensor input, const Tensor indices,
    +                                   Tensor output) {
    +  active_rotated_filter_forward_impl(input, indices, output);
    +}
    +
    +void active_rotated_filter_backward(const Tensor grad_out, const Tensor indices,
    +                                    Tensor grad_in) {
    +  active_rotated_filter_backward_impl(grad_out, indices, grad_in);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_parrots.cpp
    new file mode 100644
    index 000000000..9097f7e0a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_parrots.cpp
    @@ -0,0 +1,63 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "active_rotated_filter_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void active_rotated_filter_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto input = buildATensor(ctx, ins[0]);
    +  auto indices = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  active_rotated_filter_forward(input, indices, output);
    +}
    +
    +void active_rotated_filter_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto grad_out = buildATensor(ctx, ins[0]);
    +  auto indices = buildATensor(ctx, ins[1]);
    +  auto grad_in = buildATensor(ctx, outs[0]);
    +  active_rotated_filter_backward(grad_out, indices, grad_in);
    +}
    +#endif
    +
    +void active_rotated_filter_forward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto input = buildATensor(ctx, ins[0]);
    +  auto indices = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  active_rotated_filter_forward(input, indices, output);
    +}
    +
    +void active_rotated_filter_backward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto grad_out = buildATensor(ctx, ins[0]);
    +  auto indices = buildATensor(ctx, ins[1]);
    +  auto grad_in = buildATensor(ctx, outs[0]);
    +  active_rotated_filter_backward(grad_out, indices, grad_in);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(active_rotated_filter_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(active_rotated_filter_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(active_rotated_filter_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(active_rotated_filter_backward)
    +    .input(2)
    +    .output(1)
    +    .apply(active_rotated_filter_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(active_rotated_filter_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_pytorch.h
    new file mode 100644
    index 000000000..9a4d2ce96
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/active_rotated_filter_pytorch.h
    @@ -0,0 +1,13 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ACTIVE_ROTATED_FILTER_PYTORCH_H
    +#define ACTIVE_ROTATED_FILTER_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void active_rotated_filter_forward(const Tensor input, const Tensor indices,
    +                                   Tensor output);
    +
    +void active_rotated_filter_backward(const Tensor grad_out, const Tensor indices,
    +                                    Tensor grad_in);
    +
    +#endif  // ACTIVE_ROTATED_FILTER_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk.cpp
    new file mode 100644
    index 000000000..907627718
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk.cpp
    @@ -0,0 +1,42 @@
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/paconv_lib/src/gpu
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output) {
    +  DISPATCH_DEVICE_IMPL(assign_score_withk_forward_impl, B, N0, N1, M, K, O,
    +                       aggregate, points, centers, scores, knn_idx, output);
    +}
    +
    +void assign_score_withk_backward_impl(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores) {
    +  DISPATCH_DEVICE_IMPL(assign_score_withk_backward_impl, B, N0, N1, M, K, O,
    +                       aggregate, grad_out, points, centers, scores, knn_idx,
    +                       grad_points, grad_centers, grad_scores);
    +}
    +
    +void assign_score_withk_forward(const Tensor& points, const Tensor& centers,
    +                                const Tensor& scores, const Tensor& knn_idx,
    +                                Tensor& output, int B, int N0, int N1, int M,
    +                                int K, int O, int aggregate) {
    +  assign_score_withk_forward_impl(B, N0, N1, M, K, O, aggregate, points,
    +                                  centers, scores, knn_idx, output);
    +}
    +
    +void assign_score_withk_backward(const Tensor& grad_out, const Tensor& points,
    +                                 const Tensor& centers, const Tensor& scores,
    +                                 const Tensor& knn_idx, Tensor& grad_points,
    +                                 Tensor& grad_centers, Tensor& grad_scores,
    +                                 int B, int N0, int N1, int M, int K, int O,
    +                                 int aggregate) {
    +  assign_score_withk_backward_impl(B, N0, N1, M, K, O, aggregate, grad_out,
    +                                   points, centers, scores, knn_idx,
    +                                   grad_points, grad_centers, grad_scores);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_parrots.cpp
    new file mode 100644
    index 000000000..5729c7163
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_parrots.cpp
    @@ -0,0 +1,89 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "assign_score_withk_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void assign_score_withk_forward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  int B, N0, N1, M, K, O, aggregate;
    +  SSAttrs(attr)
    +      .get("B", B)
    +      .get("N0", N0)
    +      .get("N1", N1)
    +      .get("M", M)
    +      .get("K", K)
    +      .get("O", O)
    +      .get("aggregate", aggregate)
    +      .done();
    +
    +  const auto& points = buildATensor(ctx, ins[0]);
    +  const auto& centers = buildATensor(ctx, ins[1]);
    +  const auto& scores = buildATensor(ctx, ins[2]);
    +  const auto& knn_idx = buildATensor(ctx, ins[3]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  assign_score_withk_forward(points, centers, scores, knn_idx, output, B, N0,
    +                             N1, M, K, O, aggregate);
    +}
    +
    +void assign_score_withk_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int B, N0, N1, M, K, O, aggregate;
    +  SSAttrs(attr)
    +      .get("B", B)
    +      .get("N0", N0)
    +      .get("N1", N1)
    +      .get("M", M)
    +      .get("K", K)
    +      .get("O", O)
    +      .get("aggregate", aggregate)
    +      .done();
    +
    +  const auto& grad_out = buildATensor(ctx, ins[0]);
    +  const auto& points = buildATensor(ctx, ins[1]);
    +  const auto& centers = buildATensor(ctx, ins[2]);
    +  const auto& scores = buildATensor(ctx, ins[3]);
    +  const auto& knn_idx = buildATensor(ctx, ins[4]);
    +
    +  auto grad_points = buildATensor(ctx, outs[0]);
    +  auto grad_centers = buildATensor(ctx, outs[1]);
    +  auto grad_scores = buildATensor(ctx, outs[2]);
    +  assign_score_withk_backward(grad_out, points, centers, scores, knn_idx,
    +                              grad_points, grad_centers, grad_scores, B, N0, N1,
    +                              M, K, O, aggregate);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(assign_score_withk_forward)
    +    .attr("B")
    +    .attr("N0")
    +    .attr("N1")
    +    .attr("M")
    +    .attr("K")
    +    .attr("O")
    +    .attr("aggregate")
    +    .input(4)
    +    .output(1)
    +    .apply(assign_score_withk_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(assign_score_withk_backward)
    +    .attr("B")
    +    .attr("N0")
    +    .attr("N1")
    +    .attr("M")
    +    .attr("K")
    +    .attr("O")
    +    .attr("aggregate")
    +    .input(5)
    +    .output(3)
    +    .apply(assign_score_withk_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_pytorch.h
    new file mode 100644
    index 000000000..660594fee
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/assign_score_withk_pytorch.h
    @@ -0,0 +1,19 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ASSIGN_SCORE_WITHK_PYTORCH_H
    +#define ASSIGN_SCORE_WITHK_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void assign_score_withk_forward(const Tensor& points, const Tensor& centers,
    +                                const Tensor& scores, const Tensor& knn_idx,
    +                                Tensor& output, int B, int N0, int N1, int M,
    +                                int K, int O, int aggregate);
    +
    +void assign_score_withk_backward(const Tensor& grad_out, const Tensor& points,
    +                                 const Tensor& centers, const Tensor& scores,
    +                                 const Tensor& knn_idx, Tensor& grad_points,
    +                                 Tensor& grad_centers, Tensor& grad_scores,
    +                                 int B, int N0, int N1, int M, int K, int O,
    +                                 int aggregate);
    +
    +#endif  // ASSIGN_SCORE_WITHK_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query._parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query._parrots.cpp
    new file mode 100644
    index 000000000..01ab9739b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query._parrots.cpp
    @@ -0,0 +1,43 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "ball_query_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void ball_query_parrots(CudaContext& ctx, const SSElement& attr,
    +                        const OperatorBase::in_list_t& ins,
    +                        OperatorBase::out_list_t& outs) {
    +  int b, n, m, nsample;
    +  float min_radius, max_radius;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("n", n)
    +      .get("m", m)
    +      .get("nsample", nsample)
    +      .get("min_radius", min_radius)
    +      .get("max_radius", max_radius)
    +      .done();
    +
    +  const auto& center_xyz = buildATensor(ctx, ins[0]);
    +  const auto& xyz = buildATensor(ctx, ins[1]);
    +  auto idx = buildATensor(ctx, outs[0]);
    +  ball_query_forward(center_xyz, xyz, idx, b, n, m, min_radius, max_radius,
    +                     nsample);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(ball_query_forward)
    +    .attr("b")
    +    .attr("n")
    +    .attr("m")
    +    .attr("nsample")
    +    .attr("min_radius")
    +    .attr("max_radius")
    +    .input(2)
    +    .output(1)
    +    .apply(ball_query_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query.cpp
    new file mode 100644
    index 000000000..1c9e7a207
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query.cpp
    @@ -0,0 +1,20 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void ball_query_forward_impl(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx) {
    +  DISPATCH_DEVICE_IMPL(ball_query_forward_impl, b, n, m, min_radius, max_radius,
    +                       nsample, new_xyz, xyz, idx);
    +}
    +
    +void ball_query_forward(Tensor new_xyz_tensor, Tensor xyz_tensor,
    +                        Tensor idx_tensor, int b, int n, int m,
    +                        float min_radius, float max_radius, int nsample) {
    +  ball_query_forward_impl(b, n, m, min_radius, max_radius, nsample,
    +                          new_xyz_tensor, xyz_tensor, idx_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query_pytorch.h
    new file mode 100644
    index 000000000..70026f315
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ball_query_pytorch.h
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef BALL_QUERY_PYTORCH_H
    +#define BALL_QUERY_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void ball_query_forward(const Tensor new_xyz, const Tensor xyz, Tensor idx,
    +                        int b, int n, int m, float min_radius, float max_radius,
    +                        int nsample);
    +
    +#endif  // BALL_QUERY_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps.cpp
    new file mode 100644
    index 000000000..187216fb0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps.cpp
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset) {
    +  DISPATCH_DEVICE_IMPL(bbox_overlaps_impl, bboxes1, bboxes2, ious, mode,
    +                       aligned, offset);
    +}
    +
    +void bbox_overlaps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                   const int mode, const bool aligned, const int offset) {
    +  bbox_overlaps_impl(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_parrots.cpp
    new file mode 100644
    index 000000000..5f6264d3c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_parrots.cpp
    @@ -0,0 +1,40 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "bbox_overlaps_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +/*
    + * void bbox_overlaps_cuda(const Tensor bboxes1, const Tensor bboxes2, Tensor
    + * ious, const int mode, const bool aligned, const int offset);
    + */
    +void bbox_overlaps_parrots(CudaContext& ctx, const SSElement& attr,
    +                           const OperatorBase::in_list_t& ins,
    +                           OperatorBase::out_list_t& outs) {
    +  int mode, offset;
    +  bool aligned;
    +  SSAttrs(attr)
    +      .get("mode", mode)
    +      .get("aligned", aligned)
    +      .get("offset", offset)
    +      .done();
    +
    +  const auto& bboxes1 = buildATensor(ctx, ins[0]);
    +  const auto& bboxes2 = buildATensor(ctx, ins[1]);
    +  auto ious = buildATensor(ctx, outs[0]);
    +  bbox_overlaps_cuda(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(bbox_overlaps)
    +    .attr("mode")
    +    .attr("aligned")
    +    .attr("offset")
    +    .input(2)
    +    .output(1)
    +    .apply(bbox_overlaps_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_pytorch.h
    new file mode 100644
    index 000000000..4f68aa339
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/bbox_overlaps_pytorch.h
    @@ -0,0 +1,10 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef BBOX_OVERLAPS_PYTORCH_H
    +#define BBOX_OVERLAPS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void bbox_overlaps_cuda(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset);
    +
    +#endif  // BBOX_OVERLAPS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align.cpp
    new file mode 100644
    index 000000000..565de6899
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align.cpp
    @@ -0,0 +1,30 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void border_align_forward_impl(const Tensor &input, const Tensor &boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size) {
    +  DISPATCH_DEVICE_IMPL(border_align_forward_impl, input, boxes, output,
    +                       argmax_idx, pool_size);
    +}
    +
    +void border_align_backward_impl(const Tensor &grad_output, const Tensor &boxes,
    +                                const Tensor &argmax_idx, Tensor grad_input,
    +                                const int pool_size) {
    +  DISPATCH_DEVICE_IMPL(border_align_backward_impl, grad_output, boxes,
    +                       argmax_idx, grad_input, pool_size);
    +}
    +
    +void border_align_forward(const Tensor &input, const Tensor &boxes,
    +                          Tensor output, Tensor argmax_idx,
    +                          const int pool_size) {
    +  border_align_forward_impl(input, boxes, output, argmax_idx, pool_size);
    +}
    +
    +void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
    +                           const Tensor &argmax_idx, Tensor grad_input,
    +                           const int pool_size) {
    +  border_align_backward_impl(grad_output, boxes, argmax_idx, grad_input,
    +                             pool_size);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_parrots.cpp
    new file mode 100644
    index 000000000..9a075a109
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_parrots.cpp
    @@ -0,0 +1,51 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "border_align_pytorch.h"
    +
    +using namespace parrots;
    +
    +void border_align_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  int pool_size;
    +  SSAttrs(attr).get("pool_size", pool_size).done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& boxes = buildATensor(ctx, ins[1]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto argmax_idx = buildATensor(ctx, outs[1]);
    +  border_align_forward_cuda(input, boxes, output, argmax_idx, pool_size);
    +}
    +
    +void border_align_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  int pool_size;
    +  SSAttrs(attr).get("pool_size", pool_size).done();
    +
    +  const auto& top_grad = buildATensor(ctx, ins[0]);
    +  const auto& boxes = buildATensor(ctx, ins[1]);
    +  const auto& argmax_idx = buildATensor(ctx, ins[2]);
    +
    +  auto bottom_grad = buildATensor(ctx, outs[0]);
    +  border_align_backward_cuda(top_grad, boxes, argmax_idx, bottom_grad,
    +                             pool_size);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(border_align_forward)
    +    .attr("pool_size")
    +    .input(2)
    +    .output(2)
    +    .apply(border_align_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(border_align_backward)
    +    .attr("pool_size")
    +    .input(3)
    +    .output(1)
    +    .apply(border_align_backward_cuda_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_pytorch.h
    new file mode 100644
    index 000000000..cb031e572
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/border_align_pytorch.h
    @@ -0,0 +1,17 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef BORDER_ALIGN_PYTORCH_H
    +#define BORDER_ALIGN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +#ifdef MMCV_WITH_CUDA
    +void border_align_forward_cuda(const Tensor &input, const Tensor &boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size);
    +
    +void border_align_backward_cuda(const Tensor &grad_output, const Tensor &boxes,
    +                                const Tensor &argmax_idx, Tensor grad_input,
    +                                const int pool_size);
    +#endif
    +
    +#endif  // BORDER_ALIGN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated.cpp
    new file mode 100644
    index 000000000..a2a4e0953
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated.cpp
    @@ -0,0 +1,19 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void box_iou_rotated_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned) {
    +  DISPATCH_DEVICE_IMPL(box_iou_rotated_impl, boxes1, boxes2, ious, mode_flag,
    +                       aligned);
    +}
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +void box_iou_rotated(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                     const int mode_flag, const bool aligned) {
    +  box_iou_rotated_impl(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_parrots.cpp
    new file mode 100644
    index 000000000..a90d64045
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_parrots.cpp
    @@ -0,0 +1,61 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "box_iou_rotated_pytorch.h"
    +
    +using namespace parrots;
    +
    +/*
    + * void box_iou_rotated_cpu(const Tensor boxes1, const Tensor boxes2, Tensor
    + * ious, const int mode_flag, const bool aligned);
    + */
    +void box_iou_rotated_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                 const OperatorBase::in_list_t& ins,
    +                                 OperatorBase::out_list_t& outs) {
    +  bool aligned;
    +  int mode_flag;
    +  SSAttrs(attr)
    +      .get("aligned", aligned)
    +      .get("mode_flag", mode_flag)
    +      .done();
    +
    +  const auto& boxes1 = buildATensor(ctx, ins[0]);
    +  const auto& boxes2 = buildATensor(ctx, ins[1]);
    +  auto ious = buildATensor(ctx, outs[0]);
    +  box_iou_rotated_cpu(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    +
    +#ifdef MMCV_WITH_CUDA
    +/*
    + * void box_iou_rotated_cuda(const Tensor boxes1, const Tensor boxes2, Tensor
    + * ious, const int mode_flag, const bool aligned);
    + */
    +void box_iou_rotated_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                  const OperatorBase::in_list_t& ins,
    +                                  OperatorBase::out_list_t& outs) {
    +  bool aligned;
    +  int mode_flag;
    +  SSAttrs(attr)
    +      .get("aligned", aligned)
    +      .get("mode_flag", mode_flag)
    +      .done();
    +
    +  const auto& boxes1 = buildATensor(ctx, ins[0]);
    +  const auto& boxes2 = buildATensor(ctx, ins[1]);
    +  auto ious = buildATensor(ctx, outs[0]);
    +  box_iou_rotated_cuda(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    +#endif
    +
    +PARROTS_EXTENSION_REGISTER(box_iou_rotated)
    +    .attr("aligned")
    +    .attr("mode_flag")
    +    .input(2)
    +    .output(1)
    +    .apply(box_iou_rotated_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(box_iou_rotated_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_pytorch.h
    new file mode 100644
    index 000000000..afab70318
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/box_iou_rotated_pytorch.h
    @@ -0,0 +1,15 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef BOX_IOU_ROTATED_PYTORCH_H
    +#define BOX_IOU_ROTATED_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void box_iou_rotated_cpu(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned);
    +
    +#ifdef MMCV_WITH_CUDA
    +void box_iou_rotated_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +#endif
    +
    +#endif  // BOX_IOU_ROTATED_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe.cpp
    new file mode 100644
    index 000000000..a563aed94
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe.cpp
    @@ -0,0 +1,38 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void carafe_forward_impl(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_forward_impl, features, masks, rfeatures, routput,
    +                       rmasks, output, kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_backward_impl(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_backward_impl, top_grad, rfeatures, masks,
    +                       rtop_grad, rbottom_grad_hs, rbottom_grad, rmask_grad,
    +                       bottom_grad, mask_grad, kernel_size, group_size,
    +                       scale_factor);
    +}
    +
    +void carafe_forward(Tensor features, Tensor masks, Tensor rfeatures,
    +                    Tensor routput, Tensor rmasks, Tensor output,
    +                    int kernel_size, int group_size, int scale_factor) {
    +  carafe_forward_impl(features, masks, rfeatures, routput, rmasks, output,
    +                      kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_backward(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                     Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                     Tensor rbottom_grad, Tensor rmask_grad, Tensor bottom_grad,
    +                     Tensor mask_grad, int kernel_size, int group_size,
    +                     int scale_factor) {
    +  carafe_backward_impl(top_grad, rfeatures, masks, rtop_grad, rbottom_grad_hs,
    +                       rbottom_grad, rmask_grad, bottom_grad, mask_grad,
    +                       kernel_size, group_size, scale_factor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive.cpp
    new file mode 100644
    index 000000000..6e8917a61
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive.cpp
    @@ -0,0 +1,32 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void carafe_naive_forward_impl(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_naive_forward_impl, features, masks, output,
    +                       kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_naive_backward_impl(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_naive_backward_impl, top_grad, features, masks,
    +                       bottom_grad, mask_grad, kernel_size, group_size,
    +                       scale_factor);
    +}
    +
    +void carafe_naive_forward(Tensor features, Tensor masks, Tensor output,
    +                          int kernel_size, int group_size, int scale_factor) {
    +  carafe_naive_forward_impl(features, masks, output, kernel_size, group_size,
    +                            scale_factor);
    +}
    +
    +void carafe_naive_backward(Tensor top_grad, Tensor features, Tensor masks,
    +                           Tensor bottom_grad, Tensor mask_grad,
    +                           int kernel_size, int group_size, int scale_factor) {
    +  carafe_naive_backward_impl(top_grad, features, masks, bottom_grad, mask_grad,
    +                             kernel_size, group_size, scale_factor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_parrots.cpp
    new file mode 100644
    index 000000000..9c16a3707
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_parrots.cpp
    @@ -0,0 +1,74 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "carafe_naive_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +/*void carafe_naive_forward_cuda(Tensor features, Tensor masks, Tensor output,
    + *                                int kernel_size, int group_size,
    + *                                int scale_factor)
    + */
    +void carafe_naive_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  int kernel_size, group_size, scale_factor;
    +  SSAttrs(attr)
    +      .get("kernel_size", kernel_size)
    +      .get("group_size", group_size)
    +      .get("scale_factor", scale_factor)
    +      .done();
    +
    +  const auto& features = buildATensor(ctx, ins[0]);
    +  const auto& masks = buildATensor(ctx, ins[1]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  carafe_naive_forward_cuda(features, masks, output, kernel_size, group_size,
    +                            scale_factor);
    +}
    +
    +/*void carafe_naive_backward_cuda(Tensor top_grad, Tensor features, Tensor
    + * masks, Tensor bottom_grad, Tensor mask_grad, int kernel_size, int group_size,
    + *                                int scale_factor);
    + */
    +void carafe_naive_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  int kernel_size, group_size, scale_factor;
    +  SSAttrs(attr)
    +      .get("kernel_size", kernel_size)
    +      .get("group_size", group_size)
    +      .get("scale_factor", scale_factor)
    +      .done();
    +
    +  const auto& top_grad = buildATensor(ctx, ins[0]);
    +  const auto& features = buildATensor(ctx, ins[1]);
    +  const auto& masks = buildATensor(ctx, ins[2]);
    +
    +  auto bottom_grad = buildATensor(ctx, outs[0]);
    +  auto mask_grad = buildATensor(ctx, outs[1]);
    +  carafe_naive_backward_cuda(top_grad, features, masks, bottom_grad, mask_grad,
    +                             kernel_size, group_size, scale_factor);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(carafe_naive_forward)
    +    .attr("kernel_size")
    +    .attr("group_size")
    +    .attr("scale_factor")
    +    .input(2)
    +    .output(1)
    +    .apply(carafe_naive_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(carafe_naive_backward)
    +    .attr("kernel_size")
    +    .attr("group_size")
    +    .attr("scale_factor")
    +    .input(3)
    +    .output(2)
    +    .apply(carafe_naive_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_pytorch.h
    new file mode 100644
    index 000000000..6df9b88c2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_naive_pytorch.h
    @@ -0,0 +1,15 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CARAFE_NAIVE_PYTORCH_H
    +#define CARAFE_NAIVE_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void carafe_naive_forward_cuda(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor);
    +
    +void carafe_naive_backward_cuda(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor);
    +#endif  // CARAFE_NAIVE_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_parrots.cpp
    new file mode 100644
    index 000000000..e99f59ef2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_parrots.cpp
    @@ -0,0 +1,88 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "carafe_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +/*
    + * void carafe_forward_cuda(Tensor features, Tensor masks, Tensor rfeatures,
    + *                          Tensor routput, Tensor rmasks, Tensor output,
    + *                          int kernel_size, int group_size, int scale_factor);
    + */
    +void carafe_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                 const OperatorBase::in_list_t& ins,
    +                                 OperatorBase::out_list_t& outs) {
    +  int kernel_size, group_size, scale_factor;
    +  SSAttrs(attr)
    +      .get("kernel_size", kernel_size)
    +      .get("group_size", group_size)
    +      .get("scale_factor", scale_factor)
    +      .done();
    +
    +  const auto& features = buildATensor(ctx, ins[0]);
    +  const auto& masks = buildATensor(ctx, ins[1]);
    +
    +  auto rfeatures = buildATensor(ctx, outs[0]);
    +  auto routput = buildATensor(ctx, outs[1]);
    +  auto rmasks = buildATensor(ctx, outs[2]);
    +  auto output = buildATensor(ctx, outs[3]);
    +
    +  carafe_forward_cuda(features, masks, rfeatures, routput, rmasks, output,
    +                      kernel_size, group_size, scale_factor);
    +}
    +
    +/*
    + * void carafe_backward_cuda(Tensor top_grad, Tensor rfeatures, Tensor masks,
    + *                           Tensor rtop_grad, Tensor rbottom_grad_hs,
    + *                           Tensor rbottom_grad, Tensor rmask_grad,
    + *                           Tensor bottom_grad, Tensor mask_grad, int
    + * kernel_size, int group_size, int scale_factor);
    + */
    +void carafe_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                  const OperatorBase::in_list_t& ins,
    +                                  OperatorBase::out_list_t& outs) {
    +  int kernel_size, group_size, scale_factor;
    +  SSAttrs(attr)
    +      .get("kernel_size", kernel_size)
    +      .get("group_size", group_size)
    +      .get("scale_factor", scale_factor)
    +      .done();
    +
    +  const auto& top_grad = buildATensor(ctx, ins[0]);
    +  const auto& rfeatures = buildATensor(ctx, ins[1]);
    +  const auto& masks = buildATensor(ctx, ins[2]);
    +
    +  auto rtop_grad = buildATensor(ctx, outs[0]);
    +  auto rbottom_grad_hs = buildATensor(ctx, outs[1]);
    +  auto rbottom_grad = buildATensor(ctx, outs[2]);
    +  auto rmask_grad = buildATensor(ctx, outs[3]);
    +  auto bottom_grad = buildATensor(ctx, outs[4]);
    +  auto mask_grad = buildATensor(ctx, outs[5]);
    +
    +  carafe_backward_cuda(top_grad, rfeatures, masks, rtop_grad, rbottom_grad_hs,
    +                       rbottom_grad, rmask_grad, bottom_grad, mask_grad,
    +                       kernel_size, group_size, scale_factor);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(carafe_forward)
    +    .attr("kernel_size")
    +    .attr("group_size")
    +    .attr("scale_factor")
    +    .input(2)
    +    .output(4)
    +    .apply(carafe_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(carafe_backward)
    +    .attr("kernel_size")
    +    .attr("group_size")
    +    .attr("scale_factor")
    +    .input(3)
    +    .output(6)
    +    .apply(carafe_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_pytorch.h
    new file mode 100644
    index 000000000..2b94d44d3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/carafe_pytorch.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CARAFE_PYTORCH_H
    +#define CARAFE_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void carafe_forward_cuda(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_backward_cuda(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor);
    +#endif  // CARAFE_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance.cpp
    new file mode 100644
    index 000000000..dcff69893
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance.cpp
    @@ -0,0 +1,35 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/chrdiller/pyTorchChamferDistance/blob/master/chamfer_distance/chamfer_distance.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void chamfer_distance_forward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2) {
    +  DISPATCH_DEVICE_IMPL(chamfer_distance_forward_impl, xyz1, xyz2, dist1, dist2,
    +                       idx1, idx2);
    +}
    +
    +void chamfer_distance_backward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2) {
    +  DISPATCH_DEVICE_IMPL(chamfer_distance_backward_impl, xyz1, xyz2, idx1, idx2,
    +                       graddist1, graddist2, gradxyz1, gradxyz2);
    +}
    +
    +void chamfer_distance_forward(const Tensor xyz1, const Tensor xyz2,
    +                              const Tensor dist1, const Tensor dist2,
    +                              const Tensor idx1, const Tensor idx2) {
    +  chamfer_distance_forward_impl(xyz1, xyz2, dist1, dist2, idx1, idx2);
    +}
    +
    +void chamfer_distance_backward(const Tensor xyz1, const Tensor xyz2,
    +                               Tensor idx1, Tensor idx2, Tensor graddist1,
    +                               Tensor graddist2, Tensor gradxyz1,
    +                               Tensor gradxyz2) {
    +  chamfer_distance_backward_impl(xyz1, xyz2, idx1, idx2, graddist1, graddist2,
    +                                 gradxyz1, gradxyz2);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_parrots.cpp
    new file mode 100644
    index 000000000..db8eff1d6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_parrots.cpp
    @@ -0,0 +1,51 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "chamfer_distance_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void chamfer_distance_forward_cuda_parrots(CudaContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  auto xyz1 = buildATensor(ctx, ins[0]);
    +  auto xyz2 = buildATensor(ctx, ins[1]);
    +  auto dist1 = buildATensor(ctx, outs[0]);
    +  auto dist2 = buildATensor(ctx, outs[1]);
    +  auto idx1 = buildATensor(ctx, outs[2]);
    +  auto idx2 = buildATensor(ctx, outs[3]);
    +  chamfer_distance_forward(xyz1, xyz2, dist1, dist2, idx1, idx2);
    +}
    +
    +void chamfer_distance_backward_cuda_parrots(CudaContext& ctx,
    +                                            const SSElement& attr,
    +                                            const OperatorBase::in_list_t& ins,
    +                                            OperatorBase::out_list_t& outs) {
    +  auto xyz1 = buildATensor(ctx, ins[0]);
    +  auto xyz2 = buildATensor(ctx, ins[1]);
    +  auto idx1 = buildATensor(ctx, ins[2]);
    +  auto idx2 = buildATensor(ctx, ins[3]);
    +  auto graddist1 = buildATensor(ctx, ins[4]);
    +  auto graddist2 = buildATensor(ctx, ins[5]);
    +  auto gradxyz1 = buildATensor(ctx, outs[0]);
    +  auto gradxyz2 = buildATensor(ctx, outs[1]);
    +  chamfer_distance_backward(xyz1, xyz2, idx1, idx2, graddist1, graddist2,
    +                            gradxyz1, gradxyz2);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(chamfer_distance_forward)
    +    .input(2)
    +    .output(4)
    +    .apply(chamfer_distance_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(chamfer_distance_backward)
    +    .input(6)
    +    .output(2)
    +    .apply(chamfer_distance_backward_cuda_parrots)
    +    .done();
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_pytorch.h
    new file mode 100644
    index 000000000..6405526b0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/chamfer_distance_pytorch.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ACTIVE_CHAMFER_DISTANCE_PYTORCH_H
    +#define ACTIVE_CHAMFER_DISTANCE_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void chamfer_distance_forward(const Tensor xyz1, const Tensor xyz2,
    +                              const Tensor dist1, const Tensor dist2,
    +                              const Tensor idx1, const Tensor idx);
    +
    +void chamfer_distance_backward(const Tensor xyz1, const Tensor xyz2,
    +                               Tensor idx1, Tensor idx2, Tensor graddist1,
    +                               Tensor graddist2, Tensor gradxyz1,
    +                               Tensor gradxyz2);
    +
    +#endif  // ACTIVE_CHAMFER_DISTANCE_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand.cpp
    new file mode 100644
    index 000000000..586c48ee4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand.cpp
    @@ -0,0 +1,111 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// It is modified from https://github.com/whai362/PSENet
    +#include 
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +
    +using namespace std;
    +
    +class Point2d {
    + public:
    +  int x;
    +  int y;
    +
    +  Point2d() : x(0), y(0) {}
    +  Point2d(int _x, int _y) : x(_x), y(_y) {}
    +};
    +
    +void kernel_dilate(const uint8_t *data, IntArrayRef data_shape,
    +                   const int *label_map, int &label_num, int &min_area,
    +                   vector> &text_line) {
    +  std::vector area(label_num + 1);
    +  int kernel_num = data_shape[0];
    +  int height = data_shape[1];
    +  int width = data_shape[2];
    +
    +  for (int x = 0; x < height; ++x) {
    +    for (int y = 0; y < width; ++y) {
    +      int label = label_map[x * width + y];
    +      if (label == 0) continue;
    +      area[label] += 1;
    +    }
    +  }
    +
    +  queue queue, next_queue;
    +  for (int x = 0; x < height; ++x) {
    +    vector row(width);
    +    for (int y = 0; y < width; ++y) {
    +      int label = label_map[x * width + y];
    +      if (label == 0) continue;
    +      if (area[label] < min_area) continue;
    +
    +      Point2d point(x, y);
    +      queue.push(point);
    +      row[y] = label;
    +    }
    +    text_line.emplace_back(row);
    +  }
    +
    +  int dx[] = {-1, 1, 0, 0};
    +  int dy[] = {0, 0, -1, 1};
    +  vector kernel_step(kernel_num);
    +  std::for_each(kernel_step.begin(), kernel_step.end(),
    +                [=](int &k) { return k * height * width; });
    +
    +  for (int kernel_id = kernel_num - 2; kernel_id >= 0; --kernel_id) {
    +    while (!queue.empty()) {
    +      Point2d point = queue.front();
    +      queue.pop();
    +      int x = point.x;
    +      int y = point.y;
    +      int label = text_line[x][y];
    +
    +      bool is_edge = true;
    +      for (int d = 0; d < 4; ++d) {
    +        int tmp_x = x + dx[d];
    +        int tmp_y = y + dy[d];
    +
    +        if (tmp_x < 0 || tmp_x >= height) continue;
    +        if (tmp_y < 0 || tmp_y >= width) continue;
    +        int kernel_value = data[kernel_step[kernel_id] + tmp_x * width + tmp_y];
    +        if (kernel_value == 0) continue;
    +        if (text_line[tmp_x][tmp_y] > 0) continue;
    +
    +        Point2d point(tmp_x, tmp_y);
    +        queue.push(point);
    +        text_line[tmp_x][tmp_y] = label;
    +        is_edge = false;
    +      }
    +
    +      if (is_edge) {
    +        next_queue.push(point);
    +      }
    +    }
    +    swap(queue, next_queue);
    +  }
    +}
    +
    +std::vector> contour_expand(Tensor kernel_mask,
    +                                             Tensor internal_kernel_label,
    +                                             int min_kernel_area,
    +                                             int kernel_num) {
    +  kernel_mask = kernel_mask.contiguous();
    +  internal_kernel_label = internal_kernel_label.contiguous();
    +  assert(kernel_mask.dim() == 3);
    +  assert(internal_kernel_label.dim() == 2);
    +  assert(kernel_mask.size(1) == internal_kernel_label.size(0));
    +  assert(kernel_mask.size(2) == internal_kernel_label.size(1));
    +  CHECK_CPU_INPUT(kernel_mask);
    +  CHECK_CPU_INPUT(internal_kernel_label);
    +  auto ptr_data = kernel_mask.data_ptr();
    +  IntArrayRef data_shape = kernel_mask.sizes();
    +
    +  auto data_label_map = internal_kernel_label.data_ptr();
    +  vector> text_line;
    +
    +  kernel_dilate(ptr_data, data_shape, data_label_map, kernel_num,
    +                min_kernel_area, text_line);
    +
    +  return text_line;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_parrots.cpp
    new file mode 100644
    index 000000000..1581fdc83
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_parrots.cpp
    @@ -0,0 +1,43 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "contour_expand_pytorch.h"
    +
    +using namespace parrots;
    +using namespace std;
    +
    +template 
    +void contour_expand_parrots(T& ctx, const SSElement& attr,
    +                            const OperatorBase::in_list_t& ins,
    +                            OperatorBase::out_list_t& outs) {
    +  int min_kernel_area, kernel_num;
    +  SSAttrs(attr)
    +      .get("min_kernel_area", min_kernel_area)
    +      .get("kernel_num", kernel_num)
    +      .done();
    +  at::Tensor kernel_mask;
    +  at::Tensor internal_kernel_label;
    +  kernel_mask = buildATensor(ctx, ins[0]);
    +  internal_kernel_label = buildATensor(ctx, ins[1]);
    +  auto out = contour_expand(kernel_mask, internal_kernel_label, min_kernel_area,
    +                            kernel_num);
    +  int n = out.size(), m = 0;
    +  for (int i = 0; i < n; ++i)
    +    if (m < out[i].size()) m = out[i].size();
    +  auto options = torch::TensorOptions().dtype(at::kInt);
    +  auto tensor = torch::zeros({n, m}, options);
    +  for (int i = 0; i < n; i++)
    +    tensor.slice(0, i, i + 1) =
    +        torch::from_blob(out[i].data(), {out[i].size()}, options);
    +  updateDArray(ctx, tensor, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(contour_expand)
    +    .attr("min_kernel_area")
    +    .attr("kernel_num")
    +    .input(2)
    +    .output(1)
    +    .apply(contour_expand_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_pytorch.h
    new file mode 100644
    index 000000000..881bbac3c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/contour_expand_pytorch.h
    @@ -0,0 +1,12 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CONTOUR_EXPAND_PYTORCH_H
    +#define CONTOUR_EXPAND_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +std::vector> contour_expand(Tensor kernel_mask,
    +                                             Tensor internal_kernel_label,
    +                                             int min_kernel_area,
    +                                             int kernel_num);
    +
    +#endif  // CONTOUR_EXPAND_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou.cpp
    new file mode 100644
    index 000000000..79f2028b5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou.cpp
    @@ -0,0 +1,23 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/SDL-GuoZonghao/BeyondBoundingBox/tree/main/mmdet/ops/iou/src
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void convex_iou_impl(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious) {
    +  DISPATCH_DEVICE_IMPL(convex_iou_impl, pointsets, polygons, ious);
    +}
    +
    +void convex_iou(const Tensor pointsets, const Tensor polygons, Tensor ious) {
    +  convex_iou_impl(pointsets, polygons, ious);
    +}
    +
    +void convex_giou_impl(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output) {
    +  DISPATCH_DEVICE_IMPL(convex_giou_impl, pointsets, polygons, output);
    +}
    +
    +void convex_giou(const Tensor pointsets, const Tensor polygons, Tensor output) {
    +  convex_giou_impl(pointsets, polygons, output);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_parrots.cpp
    new file mode 100644
    index 000000000..bf766542f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_parrots.cpp
    @@ -0,0 +1,40 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "convex_iou_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void convex_iou_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  auto pointsets = buildATensor(ctx, ins[0]);
    +  auto polygons = buildATensor(ctx, ins[1]);
    +  auto ious = buildATensor(ctx, outs[0]);
    +  convex_iou(pointsets, polygons, ious);
    +}
    +
    +void convex_giou_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  auto pointsets = buildATensor(ctx, ins[0]);
    +  auto polygons = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  convex_giou(pointsets, polygons, output);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(convex_iou)
    +    .input(2)
    +    .output(1)
    +    .apply(convex_iou_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(convex_giou)
    +    .input(2)
    +    .output(1)
    +    .apply(convex_giou_forward_cuda_parrots)
    +    .done();
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_pytorch.h
    new file mode 100644
    index 000000000..4f16a1ce4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/convex_iou_pytorch.h
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CONVEX_IOU_PYTORCH_H
    +#define CONVEX_IOU_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void convex_iou(const Tensor pointsets, const Tensor polygons, Tensor ious);
    +
    +void convex_giou(const Tensor pointsets, const Tensor polygons, Tensor output);
    +
    +#endif  // RIROI_ALIGN_ROTATED_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation.cpp
    new file mode 100644
    index 000000000..f4adba2a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation.cpp
    @@ -0,0 +1,47 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void correlation_forward_impl(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW) {
    +  DISPATCH_DEVICE_IMPL(correlation_forward_impl, input1, input2, output, kH, kW,
    +                       patchH, patchW, padH, padW, dilationH, dilationW,
    +                       dilation_patchH, dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_impl(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW) {
    +  DISPATCH_DEVICE_IMPL(correlation_backward_impl, grad_output, input1, input2,
    +                       grad_input1, grad_input2, kH, kW, patchH, patchW, padH,
    +                       padW, dilationH, dilationW, dilation_patchH,
    +                       dilation_patchW, dH, dW);
    +}
    +
    +void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
    +                         int kW, int patchH, int patchW, int padH, int padW,
    +                         int dilationH, int dilationW, int dilation_patchH,
    +                         int dilation_patchW, int dH, int dW) {
    +  correlation_forward_impl(input1, input2, output, kH, kW, patchH, patchW, padH,
    +                           padW, dilationH, dilationW, dilation_patchH,
    +                           dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
    +                          Tensor grad_input1, Tensor grad_input2, int kH,
    +                          int kW, int patchH, int patchW, int padH, int padW,
    +                          int dilationH, int dilationW, int dilation_patchH,
    +                          int dilation_patchW, int dH, int dW) {
    +  correlation_backward_impl(grad_output, input1, input2, grad_input1,
    +                            grad_input2, kH, kW, patchH, patchW, padH, padW,
    +                            dilationH, dilationW, dilation_patchH,
    +                            dilation_patchW, dH, dW);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_parrots.cpp
    new file mode 100644
    index 000000000..b1e287d06
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_parrots.cpp
    @@ -0,0 +1,176 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "correlation_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void correlation_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  int kH, kW, patchH, patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW;
    +  SSAttrs(attr)
    +      .get("kH", kH)
    +      .get("kW", kW)
    +      .get("patchH", patchH)
    +      .get("patchW", patchW)
    +      .get("padH", padH)
    +      .get("padW", padW)
    +      .get("dilationH", dilationH)
    +      .get("dilationW", dilationW)
    +      .get("dilation_patchH", dilation_patchH)
    +      .get("dilation_patchW", dilation_patchW)
    +      .get("dH", dH)
    +      .get("dW", dW)
    +      .done();
    +
    +  auto input1 = buildATensor(ctx, ins[0]);
    +  auto input2 = buildATensor(ctx, ins[1]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +
    +  correlation_forward(input1, input2, output, kH, kW, patchH, patchW, padH,
    +                      padW, dilationH, dilationW, dilation_patchH,
    +                      dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  int kH, kW, patchH, patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW;
    +  SSAttrs(attr)
    +      .get("kH", kH)
    +      .get("kW", kW)
    +      .get("patchH", patchH)
    +      .get("patchW", patchW)
    +      .get("padH", padH)
    +      .get("padW", padW)
    +      .get("dilationH", dilationH)
    +      .get("dilationW", dilationW)
    +      .get("dilation_patchH", dilation_patchH)
    +      .get("dilation_patchW", dilation_patchW)
    +      .get("dH", dH)
    +      .get("dW", dW)
    +      .done();
    +
    +  auto grad_output = buildATensor(ctx, ins[0]);
    +  auto input1 = buildATensor(ctx, ins[1]);
    +  auto input2 = buildATensor(ctx, ins[2]);
    +
    +  auto grad_input1 = buildATensor(ctx, outs[0]);
    +  auto grad_input2 = buildATensor(ctx, outs[1]);
    +
    +  correlation_backward(grad_output, input1, input2, grad_input1, grad_input2,
    +                       kH, kW, patchH, patchW, padH, padW, dilationH, dilationW,
    +                       dilation_patchH, dilation_patchW, dH, dW);
    +}
    +#endif
    +
    +void correlation_forward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  int kH, kW, patchH, patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW;
    +  SSAttrs(attr)
    +      .get("kH", kH)
    +      .get("kW", kW)
    +      .get("patchH", patchH)
    +      .get("patchW", patchW)
    +      .get("padH", padH)
    +      .get("padW", padW)
    +      .get("dilationH", dilationH)
    +      .get("dilationW", dilationW)
    +      .get("dilation_patchH", dilation_patchH)
    +      .get("dilation_patchW", dilation_patchW)
    +      .get("dH", dH)
    +      .get("dW", dW)
    +      .done();
    +
    +  auto input1 = buildATensor(ctx, ins[0]);
    +  auto input2 = buildATensor(ctx, ins[1]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +
    +  correlation_forward(input1, input2, output, kH, kW, patchH, patchW, padH,
    +                      padW, dilationH, dilationW, dilation_patchH,
    +                      dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  int kH, kW, patchH, patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW;
    +  SSAttrs(attr)
    +      .get("kH", kH)
    +      .get("kW", kW)
    +      .get("patchH", patchH)
    +      .get("patchW", patchW)
    +      .get("padH", padH)
    +      .get("padW", padW)
    +      .get("dilationH", dilationH)
    +      .get("dilationW", dilationW)
    +      .get("dilation_patchH", dilation_patchH)
    +      .get("dilation_patchW", dilation_patchW)
    +      .get("dH", dH)
    +      .get("dW", dW)
    +      .done();
    +
    +  auto grad_output = buildATensor(ctx, ins[0]);
    +  auto input1 = buildATensor(ctx, ins[1]);
    +  auto input2 = buildATensor(ctx, ins[2]);
    +
    +  auto grad_input1 = buildATensor(ctx, outs[0]);
    +  auto grad_input2 = buildATensor(ctx, outs[1]);
    +
    +  correlation_backward(grad_output, input1, input2, grad_input1, grad_input2,
    +                       kH, kW, patchH, patchW, padH, padW, dilationH, dilationW,
    +                       dilation_patchH, dilation_patchW, dH, dW);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(correlation_forward)
    +    .attr("kH")
    +    .attr("kW")
    +    .attr("patchH")
    +    .attr("patchW")
    +    .attr("padH")
    +    .attr("padW")
    +    .attr("dilationH")
    +    .attr("dilationW")
    +    .attr("dilation_patchH")
    +    .attr("dilation_patchW")
    +    .attr("dH")
    +    .attr("dW")
    +    .input(2)
    +    .output(1)
    +    .apply(correlation_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(correlation_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(correlation_backward)
    +    .attr("kH")
    +    .attr("kW")
    +    .attr("patchH")
    +    .attr("patchW")
    +    .attr("padH")
    +    .attr("padW")
    +    .attr("dilationH")
    +    .attr("dilationW")
    +    .attr("dilation_patchH")
    +    .attr("dilation_patchW")
    +    .attr("dH")
    +    .attr("dW")
    +    .input(3)
    +    .output(2)
    +    .apply(correlation_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(correlation_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_pytorch.h
    new file mode 100644
    index 000000000..806fcaa71
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/correlation_pytorch.h
    @@ -0,0 +1,18 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef CORRELATION_PYTORCH_H
    +#define CORRELATION_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
    +                         int kW, int patchH, int patchW, int padH, int padW,
    +                         int dilationH, int dilationW, int dilation_patchH,
    +                         int dilation_patchW, int dH, int dW);
    +
    +void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
    +                          Tensor grad_input1, Tensor grad_input2, int kH,
    +                          int kW, int patchH, int patchW, int padH, int padW,
    +                          int dilationH, int dilationW, int dilation_patchH,
    +                          int dilation_patchW, int dH, int dW);
    +
    +#endif  // CORRELATION_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/cudabind.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/cudabind.cpp
    new file mode 100644
    index 000000000..4521ddf4a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/cudabind.cpp
    @@ -0,0 +1,1626 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void AssignScoreWithKForwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& points, const Tensor& centers, const Tensor& scores,
    +    const Tensor& knn_idx, Tensor& output);
    +
    +void AssignScoreWithKBackwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores);
    +
    +void assign_score_withk_forward_cuda(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output) {
    +  AssignScoreWithKForwardCUDAKernelLauncher(
    +      B, N0, N1, M, K, O, aggregate, points, centers, scores, knn_idx, output);
    +};
    +
    +void assign_score_withk_backward_cuda(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores) {
    +  AssignScoreWithKBackwardCUDAKernelLauncher(
    +      B, N0, N1, M, K, O, aggregate, grad_out, points, centers, scores, knn_idx,
    +      grad_points, grad_centers, grad_scores);
    +};
    +
    +void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output);
    +
    +void assign_score_withk_backward_impl(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores);
    +
    +REGISTER_DEVICE_IMPL(assign_score_withk_forward_impl, CUDA,
    +                     assign_score_withk_forward_cuda);
    +REGISTER_DEVICE_IMPL(assign_score_withk_backward_impl, CUDA,
    +                     assign_score_withk_backward_cuda);
    +
    +void BallQueryForwardCUDAKernelLauncher(int b, int n, int m, float min_radius,
    +                                        float max_radius, int nsample,
    +                                        const Tensor new_xyz, const Tensor xyz,
    +                                        Tensor idx);
    +
    +void ball_query_forward_cuda(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx) {
    +  BallQueryForwardCUDAKernelLauncher(b, n, m, min_radius, max_radius, nsample,
    +                                     new_xyz, xyz, idx);
    +};
    +
    +void ball_query_forward_impl(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx);
    +REGISTER_DEVICE_IMPL(ball_query_forward_impl, CUDA, ball_query_forward_cuda);
    +
    +void BBoxOverlapsCUDAKernelLauncher(const Tensor bboxes1, const Tensor bboxes2,
    +                                    Tensor ious, const int mode,
    +                                    const bool aligned, const int offset);
    +
    +void bbox_overlaps_cuda(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset) {
    +  BBoxOverlapsCUDAKernelLauncher(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset);
    +REGISTER_DEVICE_IMPL(bbox_overlaps_impl, CUDA, bbox_overlaps_cuda);
    +
    +void BorderAlignForwardCUDAKernelLauncher(const Tensor& input,
    +                                          const Tensor& boxes, Tensor output,
    +                                          Tensor argmax_idx,
    +                                          const int pool_size);
    +
    +void BorderAlignBackwardCUDAKernelLauncher(const Tensor& grad_output,
    +                                           const Tensor& boxes,
    +                                           const Tensor& argmax_idx,
    +                                           Tensor grad_input,
    +                                           const int pool_size);
    +
    +void border_align_forward_cuda(const Tensor& input, const Tensor& boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size) {
    +  BorderAlignForwardCUDAKernelLauncher(input, boxes, output, argmax_idx,
    +                                       pool_size);
    +}
    +
    +void border_align_backward_cuda(const Tensor& grad_output, const Tensor& boxes,
    +                                const Tensor& argmax_idx, Tensor grad_input,
    +                                const int pool_size) {
    +  BorderAlignBackwardCUDAKernelLauncher(grad_output, boxes, argmax_idx,
    +                                        grad_input, pool_size);
    +}
    +
    +void border_align_forward_impl(const Tensor& input, const Tensor& boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size);
    +
    +void border_align_backward_impl(const Tensor& grad_output, const Tensor& boxes,
    +                                const Tensor& argmax_idx, Tensor grad_input,
    +                                const int pool_size);
    +
    +REGISTER_DEVICE_IMPL(border_align_forward_impl, CUDA,
    +                     border_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(border_align_backward_impl, CUDA,
    +                     border_align_backward_cuda);
    +
    +void box_iou_rotated_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +
    +void box_iou_rotated_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +REGISTER_DEVICE_IMPL(box_iou_rotated_impl, CUDA, box_iou_rotated_cuda);
    +
    +void CARAFEForwardCUDAKernelLauncher(const Tensor features, const Tensor masks,
    +                                     Tensor rfeatures, Tensor routput,
    +                                     Tensor rmasks, Tensor output,
    +                                     const int kernel_size,
    +                                     const int group_size,
    +                                     const int scale_factor);
    +
    +void CARAFEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor rfeatures, const Tensor masks,
    +    Tensor rtop_grad, Tensor rbottom_grad_hs, Tensor rbottom_grad,
    +    Tensor rmask_grad, Tensor bottom_grad, Tensor mask_grad,
    +    const int kernel_size, const int group_size, const int scale_factor);
    +
    +void carafe_forward_cuda(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor) {
    +  CARAFEForwardCUDAKernelLauncher(features, masks, rfeatures, routput, rmasks,
    +                                  output, kernel_size, group_size,
    +                                  scale_factor);
    +}
    +
    +void carafe_backward_cuda(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor) {
    +  CARAFEBackwardCUDAKernelLauncher(top_grad, rfeatures, masks, rtop_grad,
    +                                   rbottom_grad_hs, rbottom_grad, rmask_grad,
    +                                   bottom_grad, mask_grad, kernel_size,
    +                                   group_size, scale_factor);
    +}
    +
    +void carafe_forward_impl(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_backward_impl(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor);
    +
    +REGISTER_DEVICE_IMPL(carafe_forward_impl, CUDA, carafe_forward_cuda);
    +REGISTER_DEVICE_IMPL(carafe_backward_impl, CUDA, carafe_backward_cuda);
    +
    +void CARAFENAIVEForwardCUDAKernelLauncher(const Tensor features,
    +                                          const Tensor masks, Tensor output,
    +                                          const int kernel_size,
    +                                          const int group_size,
    +                                          const int scale_factor);
    +
    +void CARAFENAIVEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor features, const Tensor masks,
    +    Tensor bottom_grad, Tensor mask_grad, const int kernel_size,
    +    const int group_size, const int scale_factor);
    +
    +void carafe_naive_forward_cuda(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor) {
    +  CARAFENAIVEForwardCUDAKernelLauncher(features, masks, output, kernel_size,
    +                                       group_size, scale_factor);
    +}
    +
    +void carafe_naive_backward_cuda(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor) {
    +  CARAFENAIVEBackwardCUDAKernelLauncher(top_grad, features, masks, bottom_grad,
    +                                        mask_grad, kernel_size, group_size,
    +                                        scale_factor);
    +}
    +void carafe_naive_forward_impl(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor);
    +
    +void carafe_naive_backward_impl(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor);
    +
    +REGISTER_DEVICE_IMPL(carafe_naive_forward_impl, CUDA,
    +                     carafe_naive_forward_cuda);
    +REGISTER_DEVICE_IMPL(carafe_naive_backward_impl, CUDA,
    +                     carafe_naive_backward_cuda);
    +
    +void CorrelationForwardCUDAKernelLauncher(Tensor input1, Tensor input2,
    +                                          Tensor output, int kH, int kW,
    +                                          int patchH, int patchW, int padH,
    +                                          int padW, int dilationH,
    +                                          int dilationW, int dilation_patchH,
    +                                          int dilation_patchW, int dH, int dW);
    +
    +void CorrelationBackwardCUDAKernelLauncher(Tensor grad_output, Tensor input1,
    +                                           Tensor input2, Tensor grad_input1,
    +                                           Tensor grad_input2, int kH, int kW,
    +                                           int patchH, int patchW, int padH,
    +                                           int padW, int dilationH,
    +                                           int dilationW, int dilation_patchH,
    +                                           int dilation_patchW, int dH, int dW);
    +
    +void correlation_forward_cuda(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW) {
    +  CorrelationForwardCUDAKernelLauncher(
    +      input1, input2, output, kH, kW, patchH, patchW, padH, padW, dilationH,
    +      dilationW, dilation_patchH, dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_cuda(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW) {
    +  CorrelationBackwardCUDAKernelLauncher(
    +      grad_output, input1, input2, grad_input1, grad_input2, kH, kW, patchH,
    +      patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW);
    +}
    +
    +void correlation_forward_impl(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW);
    +
    +void correlation_backward_impl(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW);
    +
    +REGISTER_DEVICE_IMPL(correlation_forward_impl, CUDA, correlation_forward_cuda);
    +REGISTER_DEVICE_IMPL(correlation_backward_impl, CUDA,
    +                     correlation_backward_cuda);
    +
    +void deformable_im2col_cuda(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col);
    +
    +void deformable_col2im_cuda(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im);
    +
    +void deformable_col2im_coord_cuda(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset);
    +
    +void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col);
    +
    +void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im);
    +
    +void deformable_col2im_coord_impl(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset);
    +
    +REGISTER_DEVICE_IMPL(deformable_im2col_impl, CUDA, deformable_im2col_cuda);
    +REGISTER_DEVICE_IMPL(deformable_col2im_impl, CUDA, deformable_col2im_cuda);
    +REGISTER_DEVICE_IMPL(deformable_col2im_coord_impl, CUDA,
    +                     deformable_col2im_coord_cuda);
    +
    +void DeformRoIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                            Tensor offset, Tensor output,
    +                                            int pooled_height, int pooled_width,
    +                                            float spatial_scale,
    +                                            int sampling_ratio, float gamma);
    +
    +void DeformRoIPoolBackwardCUDAKernelLauncher(
    +    Tensor grad_output, Tensor input, Tensor rois, Tensor offset,
    +    Tensor grad_input, Tensor grad_offset, int pooled_height, int pooled_width,
    +    float spatial_scale, int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  DeformRoIPoolForwardCUDAKernelLauncher(input, rois, offset, output,
    +                                         pooled_height, pooled_width,
    +                                         spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_backward_cuda(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma) {
    +  DeformRoIPoolBackwardCUDAKernelLauncher(
    +      grad_output, input, rois, offset, grad_input, grad_offset, pooled_height,
    +      pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma);
    +
    +REGISTER_DEVICE_IMPL(deform_roi_pool_forward_impl, CUDA,
    +                     deform_roi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(deform_roi_pool_backward_impl, CUDA,
    +                     deform_roi_pool_backward_cuda);
    +
    +void SigmoidFocalLossForwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha);
    +
    +void SigmoidFocalLossBackwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                                Tensor weight,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha);
    +
    +void SoftmaxFocalLossForwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha);
    +
    +void SoftmaxFocalLossBackwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                                Tensor weight, Tensor buff,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha);
    +
    +void sigmoid_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  SigmoidFocalLossForwardCUDAKernelLauncher(input, target, weight, output,
    +                                            gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha) {
    +  SigmoidFocalLossBackwardCUDAKernelLauncher(input, target, weight, grad_input,
    +                                             gamma, alpha);
    +}
    +
    +void softmax_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  SoftmaxFocalLossForwardCUDAKernelLauncher(input, target, weight, output,
    +                                            gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha) {
    +  SoftmaxFocalLossBackwardCUDAKernelLauncher(input, target, weight, buff,
    +                                             grad_input, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha);
    +
    +void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha);
    +
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, CUDA,
    +                     sigmoid_focal_loss_forward_cuda);
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, CUDA,
    +                     sigmoid_focal_loss_backward_cuda);
    +REGISTER_DEVICE_IMPL(softmax_focal_loss_forward_impl, CUDA,
    +                     softmax_focal_loss_forward_cuda);
    +REGISTER_DEVICE_IMPL(softmax_focal_loss_backward_impl, CUDA,
    +                     softmax_focal_loss_backward_cuda);
    +
    +void FurthestPointSamplingForwardCUDAKernelLauncher(int b, int n, int m,
    +                                                    const float* dataset,
    +                                                    float* temp, int* idxs);
    +
    +void FurthestPointSamplingWithDistForwardCUDAKernelLauncher(
    +    int b, int n, int m, const float* dataset, float* temp, int* idxs);
    +
    +void furthest_point_sampling_forward_cuda(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m) {
    +  const float* dataset = points_tensor.data_ptr();
    +  float* temp = temp_tensor.data_ptr();
    +  int* idxs = idx_tensor.data_ptr();
    +  FurthestPointSamplingForwardCUDAKernelLauncher(b, n, m, dataset, temp, idxs);
    +}
    +
    +void furthest_point_sampling_with_dist_forward_cuda(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m) {
    +  const float* dataset = points_tensor.data_ptr();
    +  float* temp = temp_tensor.data_ptr();
    +  int* idxs = idx_tensor.data_ptr();
    +  FurthestPointSamplingWithDistForwardCUDAKernelLauncher(b, n, m, dataset, temp,
    +                                                         idxs);
    +}
    +
    +void furthest_point_sampling_forward_impl(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m);
    +
    +void furthest_point_sampling_with_dist_forward_impl(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m);
    +
    +REGISTER_DEVICE_IMPL(furthest_point_sampling_forward_impl, CUDA,
    +                     furthest_point_sampling_forward_cuda);
    +REGISTER_DEVICE_IMPL(furthest_point_sampling_with_dist_forward_impl, CUDA,
    +                     furthest_point_sampling_with_dist_forward_cuda);
    +
    +torch::Tensor fused_bias_leakyrelu_op(const torch::Tensor& input,
    +                                      const torch::Tensor& bias,
    +                                      const torch::Tensor& refer, int act,
    +                                      int grad, float alpha, float scale);
    +
    +torch::Tensor fused_bias_leakyrelu_op_impl(const torch::Tensor& input,
    +                                           const torch::Tensor& bias,
    +                                           const torch::Tensor& refer, int act,
    +                                           int grad, float alpha, float scale);
    +REGISTER_DEVICE_IMPL(fused_bias_leakyrelu_op_impl, CUDA,
    +                     fused_bias_leakyrelu_op);
    +
    +void GatherPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           const Tensor points,
    +                                           const Tensor idx, Tensor out);
    +
    +void GatherPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                            const Tensor grad_out,
    +                                            const Tensor idx,
    +                                            Tensor grad_points);
    +
    +void gather_points_forward_cuda(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out) {
    +  GatherPointsForwardCUDAKernelLauncher(b, c, n, npoints, points, idx, out);
    +};
    +
    +void gather_points_backward_cuda(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points) {
    +  GatherPointsBackwardCUDAKernelLauncher(b, c, n, npoints, grad_out, idx,
    +                                         grad_points);
    +};
    +
    +void gather_points_forward_impl(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out);
    +
    +void gather_points_backward_impl(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points);
    +
    +REGISTER_DEVICE_IMPL(gather_points_forward_impl, CUDA,
    +                     gather_points_forward_cuda);
    +REGISTER_DEVICE_IMPL(gather_points_backward_impl, CUDA,
    +                     gather_points_backward_cuda);
    +
    +void GroupPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                          int nsample, const Tensor points,
    +                                          const Tensor idx, Tensor out);
    +
    +void GroupPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           int nsample, const Tensor grad_out,
    +                                           const Tensor idx,
    +                                           Tensor grad_points);
    +
    +void group_points_forward_cuda(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out) {
    +  GroupPointsForwardCUDAKernelLauncher(b, c, n, npoints, nsample, points, idx,
    +                                       out);
    +};
    +
    +void group_points_backward_cuda(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points) {
    +  GroupPointsBackwardCUDAKernelLauncher(b, c, n, npoints, nsample, grad_out,
    +                                        idx, grad_points);
    +};
    +
    +void group_points_forward_impl(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out);
    +
    +void group_points_backward_impl(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points);
    +
    +REGISTER_DEVICE_IMPL(group_points_forward_impl, CUDA,
    +                     group_points_forward_cuda);
    +REGISTER_DEVICE_IMPL(group_points_backward_impl, CUDA,
    +                     group_points_backward_cuda);
    +
    +void KNNForwardCUDAKernelLauncher(int b, int n, int m, int nsample,
    +                                  const Tensor xyz, const Tensor new_xyz,
    +                                  Tensor idx, Tensor dist2);
    +
    +void knn_forward_cuda(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2) {
    +  KNNForwardCUDAKernelLauncher(b, n, m, nsample, xyz, new_xyz, idx, dist2);
    +}
    +
    +void knn_forward_impl(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2);
    +REGISTER_DEVICE_IMPL(knn_forward_impl, CUDA, knn_forward_cuda);
    +
    +void MaskedIm2colForwardCUDAKernelLauncher(const Tensor bottom_data,
    +                                           const Tensor mask_h_idx,
    +                                           const Tensor mask_w_idx,
    +                                           Tensor top_data, const int kernel_h,
    +                                           const int kernel_w, const int pad_h,
    +                                           const int pad_w);
    +
    +void MaskedCol2imForwardCUDAKernelLauncher(const Tensor bottom_data,
    +                                           const Tensor mask_h_idx,
    +                                           const Tensor mask_w_idx,
    +                                           Tensor top_data, const int height,
    +                                           const int width, const int channels);
    +
    +void masked_im2col_forward_cuda(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kw), col: (kh * kw * ic, ow * oh)
    +  MaskedIm2colForwardCUDAKernelLauncher(im, mask_h_idx, mask_w_idx, col,
    +                                        kernel_h, kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_cuda(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kh), col: (kh * kw * ic, ow * oh)
    +  MaskedCol2imForwardCUDAKernelLauncher(col, mask_h_idx, mask_w_idx, im, height,
    +                                        width, channels);
    +}
    +
    +void masked_im2col_forward_impl(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w);
    +
    +void masked_col2im_forward_impl(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels);
    +
    +REGISTER_DEVICE_IMPL(masked_im2col_forward_impl, CUDA,
    +                     masked_im2col_forward_cuda);
    +REGISTER_DEVICE_IMPL(masked_col2im_forward_impl, CUDA,
    +                     masked_col2im_forward_cuda);
    +
    +void modulated_deformable_im2col_cuda(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col);
    +
    +void modulated_deformable_col2im_cuda(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im);
    +
    +void modulated_deformable_col2im_coord_cuda(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask);
    +
    +void modulated_deformable_im2col_impl(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col);
    +
    +void modulated_deformable_col2im_impl(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im);
    +
    +void modulated_deformable_col2im_coord_impl(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask);
    +
    +REGISTER_DEVICE_IMPL(modulated_deformable_im2col_impl, CUDA,
    +                     modulated_deformable_im2col_cuda);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_impl, CUDA,
    +                     modulated_deformable_col2im_cuda);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_coord_impl, CUDA,
    +                     modulated_deformable_col2im_coord_cuda);
    +
    +Tensor ms_deform_attn_cuda_forward(const Tensor& value,
    +                                   const Tensor& spatial_shapes,
    +                                   const Tensor& level_start_index,
    +                                   const Tensor& sampling_loc,
    +                                   const Tensor& attn_weight,
    +                                   const int im2col_step);
    +
    +void ms_deform_attn_cuda_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight, const int im2col_step);
    +
    +Tensor ms_deform_attn_impl_forward(const Tensor& value,
    +                                   const Tensor& spatial_shapes,
    +                                   const Tensor& level_start_index,
    +                                   const Tensor& sampling_loc,
    +                                   const Tensor& attn_weight,
    +                                   const int im2col_step);
    +
    +void ms_deform_attn_impl_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight, const int im2col_step);
    +
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_forward, CUDA,
    +                     ms_deform_attn_cuda_forward);
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_backward, CUDA,
    +                     ms_deform_attn_cuda_backward);
    +
    +Tensor NMSCUDAKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
    +                             int offset);
    +
    +Tensor nms_cuda(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return NMSCUDAKernelLauncher(boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +REGISTER_DEVICE_IMPL(nms_impl, CUDA, nms_cuda);
    +
    +void PointsInBoxesPartForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                                int pts_num, const Tensor boxes,
    +                                                const Tensor pts,
    +                                                Tensor box_idx_of_points);
    +
    +void PointsInBoxesAllForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                               int pts_num, const Tensor boxes,
    +                                               const Tensor pts,
    +                                               Tensor box_idx_of_points);
    +
    +void points_in_boxes_part_forward_cuda(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points) {
    +  PointsInBoxesPartForwardCUDAKernelLauncher(batch_size, boxes_num, pts_num,
    +                                             boxes, pts, box_idx_of_points);
    +};
    +
    +void points_in_boxes_all_forward_cuda(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points) {
    +  PointsInBoxesAllForwardCUDAKernelLauncher(batch_size, boxes_num, pts_num,
    +                                            boxes, pts, box_idx_of_points);
    +};
    +
    +void points_in_boxes_part_forward_impl(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points);
    +
    +void points_in_boxes_all_forward_impl(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points);
    +REGISTER_DEVICE_IMPL(points_in_boxes_part_forward_impl, CUDA,
    +                     points_in_boxes_part_forward_cuda);
    +REGISTER_DEVICE_IMPL(points_in_boxes_all_forward_impl, CUDA,
    +                     points_in_boxes_all_forward_cuda);
    +
    +void PSAMaskForwardCUDAKernelLauncher(const int psa_type, const Tensor input,
    +                                      Tensor output, const int num_,
    +                                      const int h_feature, const int w_feature,
    +                                      const int h_mask, const int w_mask,
    +                                      const int half_h_mask,
    +                                      const int half_w_mask);
    +
    +void PSAMaskBackwardCUDAKernelLauncher(
    +    const int psa_type, const Tensor grad_output, Tensor grad_input,
    +    const int num_, const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int half_h_mask, const int half_w_mask);
    +
    +void psamask_forward_cuda(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask) {
    +  PSAMaskForwardCUDAKernelLauncher(psa_type, input, output, num_, h_feature,
    +                                   w_feature, h_mask, w_mask, half_h_mask,
    +                                   half_w_mask);
    +}
    +
    +void psamask_backward_cuda(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask) {
    +  PSAMaskBackwardCUDAKernelLauncher(psa_type, grad_output, grad_input, num_,
    +                                    h_feature, w_feature, h_mask, w_mask,
    +                                    half_h_mask, half_w_mask);
    +}
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask);
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask);
    +REGISTER_DEVICE_IMPL(psamask_forward_impl, CUDA, psamask_forward_cuda);
    +REGISTER_DEVICE_IMPL(psamask_backward_impl, CUDA, psamask_backward_cuda);
    +
    +void ROIAlignForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                       Tensor argmax_y, Tensor argmax_x,
    +                                       int aligned_height, int aligned_width,
    +                                       float spatial_scale, int sampling_ratio,
    +                                       int pool_mode, bool aligned);
    +
    +void ROIAlignBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                        Tensor argmax_y, Tensor argmax_x,
    +                                        Tensor grad_input, int aligned_height,
    +                                        int aligned_width, float spatial_scale,
    +                                        int sampling_ratio, int pool_mode,
    +                                        bool aligned);
    +
    +void roi_align_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  ROIAlignForwardCUDAKernelLauncher(
    +      input, rois, output, argmax_y, argmax_x, aligned_height, aligned_width,
    +      spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned) {
    +  ROIAlignBackwardCUDAKernelLauncher(
    +      grad_output, rois, argmax_y, argmax_x, grad_input, aligned_height,
    +      aligned_width, spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned);
    +
    +REGISTER_DEVICE_IMPL(roi_align_forward_impl, CUDA, roi_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_align_backward_impl, CUDA, roi_align_backward_cuda);
    +
    +void ROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor input, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor output);
    +
    +void ROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor bottom_grad);
    +
    +void roi_align_rotated_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +
    +  int num_channels = input.size(1);
    +  int data_height = input.size(2);
    +  int data_width = input.size(3);
    +  ROIAlignRotatedForwardCUDAKernelLauncher(
    +      input, rois, spatial_scale, sampling_ratio, aligned, clockwise,
    +      num_channels, data_height, data_width, num_rois, aligned_height,
    +      aligned_width, output);
    +}
    +
    +void roi_align_rotated_backward_cuda(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +
    +  int num_channels = bottom_grad.size(1);
    +  int data_height = bottom_grad.size(2);
    +  int data_width = bottom_grad.size(3);
    +  ROIAlignRotatedBackwardCUDAKernelLauncher(
    +      top_grad, rois, spatial_scale, sampling_ratio, aligned, clockwise,
    +      num_channels, data_height, data_width, num_rois, aligned_height,
    +      aligned_width, bottom_grad);
    +}
    +
    +void roi_align_rotated_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_forward_impl, CUDA,
    +                     roi_align_rotated_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_backward_impl, CUDA,
    +                     roi_align_rotated_backward_cuda);
    +
    +void RiROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor features, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor output);
    +
    +void RiROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor bottom_grad);
    +
    +void riroi_align_rotated_forward_cuda(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +  CHECK_CONTIGUOUS(features);
    +  CHECK_CONTIGUOUS(rois);
    +  int num_channels = features.size(1) / num_orientations;
    +  int data_height = features.size(2);
    +  int data_width = features.size(3);
    +  RiROIAlignRotatedForwardCUDAKernelLauncher(
    +      features, rois, spatial_scale, num_samples, clockwise, num_channels,
    +      data_height, data_width, num_rois, pooled_height, pooled_width,
    +      num_orientations, output);
    +}
    +
    +void riroi_align_rotated_backward_cuda(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +  CHECK_CONTIGUOUS(top_grad);
    +  CHECK_CONTIGUOUS(rois);
    +  int num_channels = bottom_grad.size(1) / num_orientations;
    +  int data_height = bottom_grad.size(2);
    +  int data_width = bottom_grad.size(3);
    +  RiROIAlignRotatedBackwardCUDAKernelLauncher(
    +      top_grad, rois, spatial_scale, num_samples, clockwise, num_channels,
    +      data_height, data_width, num_rois, pooled_height, pooled_width,
    +      num_orientations, bottom_grad);
    +}
    +
    +void riroi_align_rotated_forward_impl(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise);
    +
    +void riroi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise);
    +
    +REGISTER_DEVICE_IMPL(riroi_align_rotated_forward_impl, CUDA,
    +                     riroi_align_rotated_forward_cuda);
    +REGISTER_DEVICE_IMPL(riroi_align_rotated_backward_impl, CUDA,
    +                     riroi_align_rotated_backward_cuda);
    +
    +void RoiawarePool3dForwardCUDAKernelLauncher(
    +    int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x,
    +    int out_y, int out_z, const Tensor rois, const Tensor pts,
    +    const Tensor pts_feature, Tensor argmax, Tensor pts_idx_of_voxels,
    +    Tensor pooled_features, int pool_method);
    +
    +void RoiawarePool3dBackwardCUDAKernelLauncher(
    +    int boxes_num, int out_x, int out_y, int out_z, int channels,
    +    int max_pts_each_voxel, const Tensor pts_idx_of_voxels, const Tensor argmax,
    +    const Tensor grad_out, Tensor grad_in, int pool_method);
    +
    +void roiaware_pool3d_forward_cuda(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method) {
    +  RoiawarePool3dForwardCUDAKernelLauncher(
    +      boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
    +      rois, pts, pts_feature, argmax, pts_idx_of_voxels, pooled_features,
    +      pool_method);
    +};
    +
    +void roiaware_pool3d_backward_cuda(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method) {
    +  RoiawarePool3dBackwardCUDAKernelLauncher(
    +      boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
    +      pts_idx_of_voxels, argmax, grad_out, grad_in, pool_method);
    +};
    +
    +void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method);
    +
    +void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method);
    +
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_forward_impl, CUDA,
    +                     roiaware_pool3d_forward_cuda);
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_backward_impl, CUDA,
    +                     roiaware_pool3d_backward_cuda);
    +
    +void RoIPointPool3dForwardCUDAKernelLauncher(
    +    int batch_size, int pts_num, int boxes_num, int feature_in_len,
    +    int sampled_pts_num, const Tensor xyz, const Tensor boxes3d,
    +    const Tensor pts_feature, Tensor pooled_features, Tensor pooled_empty_flag);
    +
    +void roipoint_pool3d_forward_cuda(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag) {
    +  RoIPointPool3dForwardCUDAKernelLauncher(
    +      batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, xyz,
    +      boxes3d, pts_feature, pooled_features, pooled_empty_flag);
    +};
    +
    +void roipoint_pool3d_forward_impl(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag);
    +REGISTER_DEVICE_IMPL(roipoint_pool3d_forward_impl, CUDA,
    +                     roipoint_pool3d_forward_cuda);
    +
    +void ROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                      Tensor argmax, int pooled_height,
    +                                      int pooled_width, float spatial_scale);
    +
    +void ROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                       Tensor argmax, Tensor grad_input,
    +                                       int pooled_height, int pooled_width,
    +                                       float spatial_scale);
    +
    +void roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale) {
    +  ROIPoolForwardCUDAKernelLauncher(input, rois, output, argmax, pooled_height,
    +                                   pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale) {
    +  ROIPoolBackwardCUDAKernelLauncher(grad_output, rois, argmax, grad_input,
    +                                    pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale);
    +void roi_pool_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale);
    +REGISTER_DEVICE_IMPL(roi_pool_forward_impl, CUDA, roi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_pool_backward_impl, CUDA, roi_pool_backward_cuda);
    +
    +typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;
    +
    +std::vector DynamicPointToVoxelForwardCUDAKernelLauncher(
    +    const at::Tensor& feats, const at::Tensor& coors,
    +    const reduce_t reduce_type);
    +
    +void DynamicPointToVoxelBackwardCUDAKernelLauncher(
    +    at::Tensor& grad_feats, const at::Tensor& grad_reduced_feats,
    +    const at::Tensor& feats, const at::Tensor& reduced_feats,
    +    const at::Tensor& coors_map, const at::Tensor& reduce_count,
    +    const reduce_t reduce_type);
    +
    +std::vector dynamic_point_to_voxel_forward_cuda(
    +    const torch::Tensor& feats, const torch::Tensor& coors,
    +    const reduce_t reduce_type) {
    +  return DynamicPointToVoxelForwardCUDAKernelLauncher(feats, coors,
    +                                                      reduce_type);
    +};
    +
    +void dynamic_point_to_voxel_backward_cuda(
    +    torch::Tensor& grad_feats, const torch::Tensor& grad_reduced_feats,
    +    const torch::Tensor& feats, const torch::Tensor& reduced_feats,
    +    const torch::Tensor& coors_idx, const torch::Tensor& reduce_count,
    +    const reduce_t reduce_type) {
    +  DynamicPointToVoxelBackwardCUDAKernelLauncher(grad_feats, grad_reduced_feats,
    +                                                feats, reduced_feats, coors_idx,
    +                                                reduce_count, reduce_type);
    +};
    +
    +std::vector dynamic_point_to_voxel_forward_impl(
    +    const torch::Tensor& feats, const torch::Tensor& coors,
    +    const reduce_t reduce_type);
    +
    +void dynamic_point_to_voxel_backward_impl(
    +    torch::Tensor& grad_feats, const torch::Tensor& grad_reduced_feats,
    +    const torch::Tensor& feats, const torch::Tensor& reduced_feats,
    +    const torch::Tensor& coors_idx, const torch::Tensor& reduce_count,
    +    const reduce_t reduce_type);
    +
    +REGISTER_DEVICE_IMPL(dynamic_point_to_voxel_forward_impl, CUDA,
    +                     dynamic_point_to_voxel_forward_cuda);
    +REGISTER_DEVICE_IMPL(dynamic_point_to_voxel_backward_impl, CUDA,
    +                     dynamic_point_to_voxel_backward_cuda);
    +
    +void SyncBNForwardMeanCUDAKernelLauncher(const Tensor input, Tensor mean);
    +
    +void SyncBNForwardVarCUDAKernelLauncher(const Tensor input, const Tensor mean,
    +                                        Tensor var);
    +
    +void SyncBNForwardOutputCUDAKernelLauncher(
    +    const Tensor input, const Tensor mean, const Tensor var,
    +    Tensor running_mean, Tensor running_var, const Tensor weight,
    +    const Tensor bias, Tensor norm, Tensor std, Tensor output, float eps,
    +    float momentum, int group_size);
    +
    +void SyncBNBackwardParamCUDAKernelLauncher(const Tensor grad_output,
    +                                           const Tensor norm,
    +                                           Tensor grad_weight,
    +                                           Tensor grad_bias);
    +
    +void SyncBNBackwardDataCUDAKernelLauncher(const Tensor grad_output,
    +                                          const Tensor weight,
    +                                          const Tensor grad_weight,
    +                                          const Tensor grad_bias,
    +                                          const Tensor norm, const Tensor std,
    +                                          Tensor grad_input);
    +
    +void sync_bn_forward_mean_cuda(const Tensor input, Tensor mean) {
    +  SyncBNForwardMeanCUDAKernelLauncher(input, mean);
    +}
    +
    +void sync_bn_forward_var_cuda(const Tensor input, const Tensor mean,
    +                              Tensor var) {
    +  SyncBNForwardVarCUDAKernelLauncher(input, mean, var);
    +}
    +
    +void sync_bn_forward_output_cuda(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size) {
    +  SyncBNForwardOutputCUDAKernelLauncher(input, mean, var, running_mean,
    +                                        running_var, weight, bias, norm, std,
    +                                        output, eps, momentum, group_size);
    +}
    +
    +void sync_bn_backward_param_cuda(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias) {
    +  SyncBNBackwardParamCUDAKernelLauncher(grad_output, norm, grad_weight,
    +                                        grad_bias);
    +}
    +
    +void sync_bn_backward_data_cuda(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input) {
    +  SyncBNBackwardDataCUDAKernelLauncher(grad_output, weight, grad_weight,
    +                                       grad_bias, norm, std, grad_input);
    +}
    +
    +void sync_bn_forward_mean_impl(const Tensor input, Tensor mean);
    +
    +void sync_bn_forward_var_impl(const Tensor input, const Tensor mean,
    +                              Tensor var);
    +
    +void sync_bn_forward_output_impl(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size);
    +
    +void sync_bn_backward_param_impl(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias);
    +
    +void sync_bn_backward_data_impl(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input);
    +
    +REGISTER_DEVICE_IMPL(sync_bn_forward_mean_impl, CUDA,
    +                     sync_bn_forward_mean_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_forward_var_impl, CUDA, sync_bn_forward_var_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_forward_output_impl, CUDA,
    +                     sync_bn_forward_output_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_backward_param_impl, CUDA,
    +                     sync_bn_backward_param_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_backward_data_impl, CUDA,
    +                     sync_bn_backward_data_cuda);
    +
    +void ThreeInterpolateForwardCUDAKernelLauncher(int b, int c, int m, int n,
    +                                               const Tensor points,
    +                                               const Tensor idx,
    +                                               const Tensor weight, Tensor out);
    +
    +void ThreeInterpolateBackwardCUDAKernelLauncher(int b, int c, int n, int m,
    +                                                const Tensor grad_out,
    +                                                const Tensor idx,
    +                                                const Tensor weight,
    +                                                Tensor grad_points);
    +
    +void three_interpolate_forward_cuda(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out) {
    +  ThreeInterpolateForwardCUDAKernelLauncher(b, c, m, n, points, idx, weight,
    +                                            out);
    +};
    +
    +void three_interpolate_backward_cuda(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points) {
    +  ThreeInterpolateBackwardCUDAKernelLauncher(b, c, n, m, grad_out, idx, weight,
    +                                             grad_points);
    +};
    +
    +void three_interpolate_forward_impl(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out);
    +
    +void three_interpolate_backward_impl(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points);
    +REGISTER_DEVICE_IMPL(three_interpolate_forward_impl, CUDA,
    +                     three_interpolate_forward_cuda);
    +REGISTER_DEVICE_IMPL(three_interpolate_backward_impl, CUDA,
    +                     three_interpolate_backward_cuda);
    +
    +void ThreeNNForwardCUDAKernelLauncher(int b, int n, int m, const Tensor unknown,
    +                                      const Tensor known, Tensor dist2,
    +                                      Tensor idx);
    +
    +void three_nn_forward_cuda(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx) {
    +  ThreeNNForwardCUDAKernelLauncher(b, n, m, unknown, known, dist2, idx);
    +};
    +
    +void three_nn_forward_impl(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx);
    +REGISTER_DEVICE_IMPL(three_nn_forward_impl, CUDA, three_nn_forward_cuda);
    +
    +void TINShiftForwardCUDAKernelLauncher(Tensor input, Tensor shift,
    +                                       Tensor output);
    +
    +void TINShiftBackwardCUDAKernelLauncher(Tensor grad_output, Tensor shift,
    +                                        Tensor grad_input);
    +
    +void tin_shift_forward_cuda(Tensor input, Tensor shift, Tensor output) {
    +  TINShiftForwardCUDAKernelLauncher(input, shift, output);
    +}
    +
    +void tin_shift_backward_cuda(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input) {
    +  TINShiftBackwardCUDAKernelLauncher(grad_output, shift, grad_input);
    +}
    +
    +void tin_shift_forward_impl(Tensor input, Tensor shift, Tensor output);
    +void tin_shift_backward_impl(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input);
    +REGISTER_DEVICE_IMPL(tin_shift_forward_impl, CUDA, tin_shift_forward_cuda);
    +REGISTER_DEVICE_IMPL(tin_shift_backward_impl, CUDA, tin_shift_backward_cuda);
    +
    +torch::Tensor upfirdn2d_op(const torch::Tensor& input,
    +                           const torch::Tensor& kernel, int up_x, int up_y,
    +                           int down_x, int down_y, int pad_x0, int pad_x1,
    +                           int pad_y0, int pad_y1);
    +
    +torch::Tensor upfirdn2d_op_impl(const torch::Tensor& input,
    +                                const torch::Tensor& kernel, int up_x, int up_y,
    +                                int down_x, int down_y, int pad_x0, int pad_x1,
    +                                int pad_y0, int pad_y1);
    +REGISTER_DEVICE_IMPL(upfirdn2d_op_impl, CUDA, upfirdn2d_op);
    +
    +int HardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3);
    +
    +int NondeterministicHardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3);
    +
    +void DynamicVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& coors,
    +    const std::vector voxel_size, const std::vector coors_range,
    +    const int NDim = 3);
    +
    +int hard_voxelize_forward_cuda(const at::Tensor& points, at::Tensor& voxels,
    +                               at::Tensor& coors,
    +                               at::Tensor& num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim) {
    +  return HardVoxelizeForwardCUDAKernelLauncher(
    +      points, voxels, coors, num_points_per_voxel, voxel_size, coors_range,
    +      max_points, max_voxels, NDim);
    +};
    +
    +int nondeterministic_hard_voxelize_forward_cuda(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim) {
    +  return NondeterministicHardVoxelizeForwardCUDAKernelLauncher(
    +      points, voxels, coors, num_points_per_voxel, voxel_size, coors_range,
    +      max_points, max_voxels, NDim);
    +};
    +
    +void dynamic_voxelize_forward_cuda(const at::Tensor& points, at::Tensor& coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim) {
    +  DynamicVoxelizeForwardCUDAKernelLauncher(points, coors, voxel_size,
    +                                           coors_range, NDim);
    +};
    +
    +int hard_voxelize_forward_impl(const at::Tensor& points, at::Tensor& voxels,
    +                               at::Tensor& coors,
    +                               at::Tensor& num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim);
    +
    +int nondeterministic_hard_voxelize_forward_impl(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim);
    +
    +void dynamic_voxelize_forward_impl(const at::Tensor& points, at::Tensor& coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim);
    +
    +REGISTER_DEVICE_IMPL(hard_voxelize_forward_impl, CUDA,
    +                     hard_voxelize_forward_cuda);
    +REGISTER_DEVICE_IMPL(nondeterministic_hard_voxelize_forward_impl, CUDA,
    +                     nondeterministic_hard_voxelize_forward_cuda);
    +REGISTER_DEVICE_IMPL(dynamic_voxelize_forward_impl, CUDA,
    +                     dynamic_voxelize_forward_cuda);
    +
    +void RotatedFeatureAlignForwardCUDAKernelLauncher(const Tensor features,
    +                                                  const Tensor best_bboxes,
    +                                                  const float spatial_scale,
    +                                                  const int points,
    +                                                  Tensor output);
    +
    +void RotatedFeatureAlignBackwardCUDAKernelLauncher(const Tensor top_grad,
    +                                                   const Tensor best_bboxes,
    +                                                   const float spatial_scale,
    +                                                   const int points,
    +                                                   Tensor bottom_grad);
    +
    +void rotated_feature_align_forward_cuda(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output) {
    +  RotatedFeatureAlignForwardCUDAKernelLauncher(features, best_bboxes,
    +                                               spatial_scale, points, output);
    +};
    +
    +void rotated_feature_align_backward_cuda(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad) {
    +  RotatedFeatureAlignBackwardCUDAKernelLauncher(
    +      top_grad, best_bboxes, spatial_scale, points, bottom_grad);
    +};
    +
    +void rotated_feature_align_forward_impl(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output);
    +
    +void rotated_feature_align_backward_impl(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad);
    +
    +REGISTER_DEVICE_IMPL(rotated_feature_align_forward_impl, CUDA,
    +                     rotated_feature_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(rotated_feature_align_backward_impl, CUDA,
    +                     rotated_feature_align_backward_cuda);
    +
    +void PointsInPolygonsForwardCUDAKernelLauncher(const at::Tensor points,
    +                                               const at::Tensor polygons,
    +                                               const int rows, const int cols,
    +                                               at::Tensor output);
    +
    +void points_in_polygons_forward_cuda(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols) {
    +  PointsInPolygonsForwardCUDAKernelLauncher(points, polygons, rows, cols,
    +                                            output);
    +};
    +
    +void points_in_polygons_forward_impl(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols);
    +
    +REGISTER_DEVICE_IMPL(points_in_polygons_forward_impl, CUDA,
    +                     points_in_polygons_forward_cuda);
    +
    +void MinAreaPolygonsCUDAKernelLauncher(const Tensor pointsets, Tensor polygons);
    +
    +void min_area_polygons_cuda(const Tensor pointsets, Tensor polygons) {
    +  MinAreaPolygonsCUDAKernelLauncher(pointsets, polygons);
    +}
    +
    +void min_area_polygons_impl(const Tensor pointsets, Tensor polygons);
    +
    +REGISTER_DEVICE_IMPL(min_area_polygons_impl, CUDA, min_area_polygons_cuda);
    +
    +void ActiveRotatedFilterForwardCUDAKernelLauncher(const Tensor input,
    +                                                  const Tensor indices,
    +                                                  Tensor output);
    +
    +void ActiveRotatedFilterBackwardCUDAKernelLauncher(const Tensor grad_out,
    +                                                   const Tensor indices,
    +                                                   Tensor grad_in);
    +
    +void active_rotated_filter_forward_cuda(const Tensor input,
    +                                        const Tensor indices, Tensor output) {
    +  ActiveRotatedFilterForwardCUDAKernelLauncher(input, indices, output);
    +};
    +
    +void active_rotated_filter_backward_cuda(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in) {
    +  ActiveRotatedFilterBackwardCUDAKernelLauncher(grad_out, indices, grad_in);
    +};
    +
    +void active_rotated_filter_forward_impl(const Tensor input,
    +                                        const Tensor indices, Tensor output);
    +
    +void active_rotated_filter_backward_impl(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in);
    +
    +REGISTER_DEVICE_IMPL(active_rotated_filter_forward_impl, CUDA,
    +                     active_rotated_filter_forward_cuda);
    +REGISTER_DEVICE_IMPL(active_rotated_filter_backward_impl, CUDA,
    +                     active_rotated_filter_backward_cuda);
    +
    +void ConvexIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                 Tensor ious);
    +
    +void ConvexGIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                  Tensor output);
    +
    +void convex_iou_cuda(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious) {
    +  ConvexIoUCUDAKernelLauncher(pointsets, polygons, ious);
    +}
    +
    +void convex_giou_cuda(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output) {
    +  ConvexGIoUCUDAKernelLauncher(pointsets, polygons, output);
    +}
    +
    +void convex_iou_impl(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious);
    +
    +void convex_giou_impl(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output);
    +
    +REGISTER_DEVICE_IMPL(convex_iou_impl, CUDA, convex_iou_cuda);
    +REGISTER_DEVICE_IMPL(convex_giou_impl, CUDA, convex_giou_cuda);
    +
    +Tensor DiffIoURotatedSortVerticesCUDAKernelLauncher(Tensor vertices,
    +                                                    Tensor mask,
    +                                                    Tensor num_valid);
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_cuda(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid) {
    +  return DiffIoURotatedSortVerticesCUDAKernelLauncher(vertices, mask,
    +                                                      num_valid);
    +}
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_impl(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid);
    +
    +REGISTER_DEVICE_IMPL(diff_iou_rotated_sort_vertices_forward_impl, CUDA,
    +                     diff_iou_rotated_sort_vertices_forward_cuda);
    +
    +void ChamferDistanceForwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, const Tensor dist1,
    +    const Tensor dist2, const Tensor idx1, const Tensor idx2);
    +
    +void ChamferDistanceBackwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, Tensor idx1, Tensor idx2,
    +    Tensor grad_dist1, Tensor grad_dist2, Tensor grad_xyz1, Tensor grad_xyz2);
    +
    +void chamfer_distance_forward_cuda(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2) {
    +  ChamferDistanceForwardCUDAKernelLauncher(xyz1, xyz2, dist1, dist2, idx1,
    +                                           idx2);
    +};
    +
    +void chamfer_distance_backward_cuda(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2) {
    +  ChamferDistanceBackwardCUDAKernelLauncher(xyz1, xyz2, idx1, idx2, graddist1,
    +                                            graddist2, gradxyz1, gradxyz2);
    +};
    +
    +void chamfer_distance_forward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2);
    +
    +void chamfer_distance_backward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2);
    +
    +REGISTER_DEVICE_IMPL(chamfer_distance_forward_impl, CUDA,
    +                     chamfer_distance_forward_cuda);
    +REGISTER_DEVICE_IMPL(chamfer_distance_backward_impl, CUDA,
    +                     chamfer_distance_backward_cuda);
    +
    +void PrROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                        Tensor output, int pooled_height,
    +                                        int pooled_width, float spatial_scale);
    +
    +void PrROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                         Tensor grad_input, int pooled_height,
    +                                         int pooled_width, float spatial_scale);
    +
    +void PrROIPoolCoorBackwardCUDAKernelLauncher(
    +    Tensor output, Tensor grad_output, Tensor input, Tensor rois,
    +    Tensor grad_rois, int pooled_height, int pooled_width, float spatial_scale);
    +
    +void prroi_pool_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale) {
    +  PrROIPoolForwardCUDAKernelLauncher(input, rois, output, pooled_height,
    +                                     pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_backward_cuda(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  PrROIPoolBackwardCUDAKernelLauncher(grad_output, rois, grad_input,
    +                                      pooled_height, pooled_width,
    +                                      spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward_cuda(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale) {
    +  PrROIPoolCoorBackwardCUDAKernelLauncher(output, grad_output, input, rois,
    +                                          grad_rois, pooled_height,
    +                                          pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale);
    +void prroi_pool_backward_impl(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale);
    +void prroi_pool_coor_backward_impl(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale);
    +REGISTER_DEVICE_IMPL(prroi_pool_forward_impl, CUDA, prroi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(prroi_pool_backward_impl, CUDA, prroi_pool_backward_cuda);
    +REGISTER_DEVICE_IMPL(prroi_pool_coor_backward_impl, CUDA,
    +                     prroi_pool_coor_backward_cuda);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv.cpp
    new file mode 100644
    index 000000000..86690b939
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv.cpp
    @@ -0,0 +1,517 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col) {
    +  DISPATCH_DEVICE_IMPL(deformable_im2col_impl, data_im, data_offset, channels,
    +                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
    +                       stride_w, dilation_h, dilation_w, parallel_imgs,
    +                       deformable_group, data_col);
    +}
    +
    +void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im) {
    +  DISPATCH_DEVICE_IMPL(deformable_col2im_impl, data_col, data_offset, channels,
    +                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
    +                       stride_w, dilation_h, dilation_w, parallel_imgs,
    +                       deformable_group, grad_im);
    +}
    +
    +void deformable_col2im_coord_impl(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset) {
    +  DISPATCH_DEVICE_IMPL(deformable_col2im_coord_impl, data_col, data_im,
    +                       data_offset, channels, height, width, ksize_h, ksize_w,
    +                       pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
    +                       parallel_imgs, deformable_group, grad_offset);
    +}
    +
    +void deform_conv_shape_check(at::Tensor input, at::Tensor offset,
    +                             at::Tensor *gradOutput, at::Tensor weight, int kH,
    +                             int kW, int dH, int dW, int padH, int padW,
    +                             int dilationH, int dilationW, int group,
    +                             int deformable_group) {
    +  TORCH_CHECK(
    +      weight.ndimension() == 4,
    +      "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, but got: %s",
    +      weight.ndimension());
    +
    +  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
    +
    +  TORCH_CHECK(kW > 0 && kH > 0,
    +              "kernel size should be greater than zero, but got kH: %d kW: %d",
    +              kH, kW);
    +
    +  TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
    +              "kernel size should be consistent with weight, ",
    +              "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d",
    +              kH, kW, weight.size(2), weight.size(3));
    +
    +  TORCH_CHECK(dW > 0 && dH > 0,
    +              "stride should be greater than zero, but got dH: %d dW: %d", dH,
    +              dW);
    +
    +  TORCH_CHECK(
    +      dilationW > 0 && dilationH > 0,
    +      "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
    +      dilationH, dilationW);
    +
    +  int ndim = input.ndimension();
    +  int dimf = 0;
    +  int dimh = 1;
    +  int dimw = 2;
    +
    +  if (ndim == 4) {
    +    dimf++;
    +    dimh++;
    +    dimw++;
    +  }
    +
    +  TORCH_CHECK(ndim == 3 || ndim == 4,
    +              "3D or 4D input tensor expected but got: %s", ndim);
    +
    +  long nInputPlane = weight.size(1) * group;
    +  long inputHeight = input.size(dimh);
    +  long inputWidth = input.size(dimw);
    +  long nOutputPlane = weight.size(0);
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +
    +  TORCH_CHECK(nInputPlane % deformable_group == 0,
    +              "input channels must divide deformable group size");
    +
    +  if (outputWidth < 1 || outputHeight < 1)
    +    AT_ERROR(
    +        "Given input size: (%ld x %ld x %ld). "
    +        "Calculated output size: (%ld x %ld x %ld). Output size is too small",
    +        nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
    +        outputWidth);
    +
    +  TORCH_CHECK(input.size(1) == nInputPlane,
    +              "invalid number of input planes, expected: %d, but got: %d",
    +              nInputPlane, input.size(1));
    +
    +  TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
    +              "input image is smaller than kernel");
    +
    +  TORCH_CHECK(
    +      (offset.size(2) == outputHeight && offset.size(3) == outputWidth),
    +      "invalid spatial size of offset, expected height: %d width: %d, but "
    +      "got height: %d width: %d",
    +      outputHeight, outputWidth, offset.size(2), offset.size(3));
    +
    +  TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
    +              "invalid number of channels of offset");
    +
    +  if (gradOutput != NULL) {
    +    TORCH_CHECK(
    +        gradOutput->size(dimf) == nOutputPlane,
    +        "invalid number of gradOutput planes, expected: %d, but got: %d",
    +        nOutputPlane, gradOutput->size(dimf));
    +
    +    TORCH_CHECK(
    +        (gradOutput->size(dimh) == outputHeight &&
    +         gradOutput->size(dimw) == outputWidth),
    +        "invalid size of gradOutput, expected height: %d width: %d , but "
    +        "got height: %d width: %d",
    +        outputHeight, outputWidth, gradOutput->size(dimh),
    +        gradOutput->size(dimw));
    +  }
    +}
    +
    +void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
    +                         Tensor output, Tensor columns, Tensor ones, int kW,
    +                         int kH, int dW, int dH, int padW, int padH,
    +                         int dilationW, int dilationH, int group,
    +                         int deformable_group, int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(weight);
    +    CHECK_CUDA_INPUT(output);
    +    CHECK_CUDA_INPUT(columns);
    +    CHECK_CUDA_INPUT(ones);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(weight);
    +    CHECK_CPU_INPUT(output);
    +    CHECK_CPU_INPUT(columns);
    +    CHECK_CPU_INPUT(ones);
    +  }
    +
    +  deform_conv_shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH,
    +                          padW, dilationH, dilationW, group, deformable_group);
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input.unsqueeze_(0);
    +    offset.unsqueeze_(0);
    +  }
    +
    +  // todo: assert batchsize dividable by im2col_step
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = weight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
    +
    +  output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
    +                        outputHeight, outputWidth});
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
    +    ones = at::ones({outputHeight, outputWidth}, input.options());
    +  }
    +
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  Tensor output_buffer = at::zeros({batchSize / im2col_step, nOutputPlane,
    +                                    im2col_step * outputHeight, outputWidth},
    +                                   output.options());
    +
    +  output_buffer = output_buffer.view(
    +      {output_buffer.size(0), group, output_buffer.size(1) / group,
    +       output_buffer.size(2), output_buffer.size(3)});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group, columns);
    +
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      output_buffer[elt][g] = output_buffer[elt][g]
    +                                  .flatten(1)
    +                                  .addmm_(weight[g].flatten(1), columns[g])
    +                                  .view_as(output_buffer[elt][g]);
    +    }
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +  }
    +
    +  output_buffer = output_buffer.view(
    +      {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
    +       output_buffer.size(3), output_buffer.size(4)});
    +
    +  output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
    +                                      im2col_step, outputHeight, outputWidth});
    +  output_buffer.transpose_(1, 2);
    +  output.copy_(output_buffer);
    +  output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    output = output.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    +  }
    +}
    +
    +void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
    +                                Tensor gradInput, Tensor gradOffset,
    +                                Tensor weight, Tensor columns, int kW, int kH,
    +                                int dW, int dH, int padW, int padH,
    +                                int dilationW, int dilationH, int group,
    +                                int deformable_group, int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(gradOutput);
    +    CHECK_CUDA_INPUT(gradInput);
    +    CHECK_CUDA_INPUT(gradOffset);
    +    CHECK_CUDA_INPUT(weight);
    +    CHECK_CUDA_INPUT(columns);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(gradOutput);
    +    CHECK_CPU_INPUT(gradInput);
    +    CHECK_CPU_INPUT(gradOffset);
    +    CHECK_CPU_INPUT(weight);
    +    CHECK_CPU_INPUT(columns);
    +  }
    +  deform_conv_shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW,
    +                          padH, padW, dilationH, dilationW, group,
    +                          deformable_group);
    +
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input = input.view({1, input.size(0), input.size(1), input.size(2)});
    +    offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
    +    gradOutput = gradOutput.view(
    +        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
    +  }
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = weight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
    +  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  // change order of grad output
    +  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
    +                                nOutputPlane, outputHeight, outputWidth});
    +  gradOutput.transpose_(1, 2);
    +
    +  gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                              inputHeight, inputWidth});
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
    +                                deformable_group * 2 * kH * kW, outputHeight,
    +                                outputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    // divide into groups
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +    gradOutput = gradOutput.view(
    +        {gradOutput.size(0), group, gradOutput.size(1) / group,
    +         gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
    +
    +    for (int g = 0; g < group; g++) {
    +      columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
    +                                     gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    gradOutput = gradOutput.view(
    +        {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
    +         gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
    +
    +    deformable_col2im_coord_impl(columns, input[elt], offset[elt], nInputPlane,
    +                                 inputHeight, inputWidth, kH, kW, padH, padW,
    +                                 dH, dW, dilationH, dilationW, im2col_step,
    +                                 deformable_group, gradOffset[elt]);
    +
    +    deformable_col2im_impl(columns, offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group,
    +                           gradInput[elt]);
    +
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +  }
    +
    +  gradOutput.transpose_(1, 2);
    +  gradOutput =
    +      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  gradOffset = gradOffset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +    gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
    +    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    +    gradOffset =
    +        gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
    +  }
    +}
    +
    +void deform_conv_backward_parameters(Tensor input, Tensor offset,
    +                                     Tensor gradOutput, Tensor gradWeight,
    +                                     Tensor columns, Tensor ones, int kW,
    +                                     int kH, int dW, int dH, int padW, int padH,
    +                                     int dilationW, int dilationH, int group,
    +                                     int deformable_group, float scale,
    +                                     int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(gradOutput);
    +    CHECK_CUDA_INPUT(gradWeight);
    +    CHECK_CUDA_INPUT(columns);
    +    CHECK_CUDA_INPUT(ones);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(gradOutput);
    +    CHECK_CPU_INPUT(gradWeight);
    +    CHECK_CPU_INPUT(columns);
    +    CHECK_CPU_INPUT(ones);
    +  }
    +
    +  deform_conv_shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH,
    +                          dW, padH, padW, dilationH, dilationW, group,
    +                          deformable_group);
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input = input.view(
    +        at::IntList({1, input.size(0), input.size(1), input.size(2)}));
    +    gradOutput = gradOutput.view(
    +        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
    +  }
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = gradWeight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
    +
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
    +                                nOutputPlane, outputHeight, outputWidth});
    +  gradOutput.transpose_(1, 2);
    +
    +  Tensor gradOutputBuffer = at::zeros_like(gradOutput);
    +  gradOutputBuffer =
    +      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
    +                             outputHeight, outputWidth});
    +  gradOutputBuffer = gradOutputBuffer.contiguous();
    +  gradOutputBuffer.copy_(gradOutput);
    +  gradOutputBuffer =
    +      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
    +                             im2col_step * outputHeight, outputWidth});
    +
    +  gradOutput.transpose_(1, 2);
    +  gradOutput =
    +      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group, columns);
    +
    +    // divide into group
    +    gradOutputBuffer = gradOutputBuffer.view(
    +        {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
    +         gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    gradWeight =
    +        gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
    +                         gradWeight.size(2), gradWeight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      gradWeight[g] = gradWeight[g]
    +                          .flatten(1)
    +                          .addmm_(gradOutputBuffer[elt][g].flatten(1),
    +                                  columns[g].transpose(1, 0), 1.0, scale)
    +                          .view_as(gradWeight[g]);
    +    }
    +    gradOutputBuffer = gradOutputBuffer.view(
    +        {gradOutputBuffer.size(0),
    +         gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
    +         gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
    +                                  gradWeight.size(2), gradWeight.size(3),
    +                                  gradWeight.size(4)});
    +  }
    +
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_parrots.cpp
    new file mode 100644
    index 000000000..c07a170df
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_parrots.cpp
    @@ -0,0 +1,273 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "deform_conv_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void deform_conv_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& offset = buildATensor(ctx, ins[2]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +  auto ones = buildATensor(ctx, outs[2]);
    +
    +  deform_conv_forward(input, weight, offset, output, columns, ones, kW, kH, dW,
    +                      dH, padW, padH, dilationW, dilationH, group,
    +                      deformable_group, im2col_step);
    +}
    +
    +void deform_conv_backward_input_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& offset = buildATensor(ctx, ins[1]);
    +  const auto& gradOutput = buildATensor(ctx, ins[2]);
    +
    +  auto gradInput = buildATensor(ctx, outs[0]);
    +  auto gradOffset = buildATensor(ctx, outs[1]);
    +  auto weight = buildATensor(ctx, outs[2]);
    +  auto columns = buildATensor(ctx, outs[3]);
    +
    +  deform_conv_backward_input(input, offset, gradOutput, gradInput, gradOffset,
    +                             weight, columns, kW, kH, dW, dH, padW, padH,
    +                             dilationW, dilationH, group, deformable_group,
    +                             im2col_step);
    +}
    +
    +void deform_conv_backward_parameters_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  float scale;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("scale", scale)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& offset = buildATensor(ctx, ins[1]);
    +  const auto& gradOutput = buildATensor(ctx, ins[2]);
    +
    +  auto gradWeight = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +  auto ones = buildATensor(ctx, outs[2]);
    +  deform_conv_backward_parameters(input, offset, gradOutput, gradWeight,
    +                                  columns, ones, kW, kH, dW, dH, padW, padH,
    +                                  dilationW, dilationH, group, deformable_group,
    +                                  scale, im2col_step);
    +}
    +#endif
    +
    +void deform_conv_forward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& offset = buildATensor(ctx, ins[2]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +  auto ones = buildATensor(ctx, outs[2]);
    +
    +  deform_conv_forward(input, weight, offset, output, columns, ones, kW, kH, dW,
    +                      dH, padW, padH, dilationW, dilationH, group,
    +                      deformable_group, im2col_step);
    +}
    +
    +void deform_conv_backward_input_cpu_parrots(HostContext& ctx,
    +                                            const SSElement& attr,
    +                                            const OperatorBase::in_list_t& ins,
    +                                            OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& offset = buildATensor(ctx, ins[1]);
    +  const auto& gradOutput = buildATensor(ctx, ins[2]);
    +
    +  auto gradInput = buildATensor(ctx, outs[0]);
    +  auto gradOffset = buildATensor(ctx, outs[1]);
    +  auto weight = buildATensor(ctx, outs[2]);
    +  auto columns = buildATensor(ctx, outs[3]);
    +
    +  deform_conv_backward_input(input, offset, gradOutput, gradInput, gradOffset,
    +                             weight, columns, kW, kH, dW, dH, padW, padH,
    +                             dilationW, dilationH, group, deformable_group,
    +                             im2col_step);
    +}
    +
    +void deform_conv_backward_parameters_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
    +      im2col_step;
    +  float scale;
    +  SSAttrs(attr)
    +      .get("kW", kW)
    +      .get("kH", kH)
    +      .get("dW", dW)
    +      .get("dH", dH)
    +      .get("padW", padW)
    +      .get("padH", padH)
    +      .get("dilationW", dilationW)
    +      .get("dilationH", dilationH)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("scale", scale)
    +      .get("im2col_step", im2col_step)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& offset = buildATensor(ctx, ins[1]);
    +  const auto& gradOutput = buildATensor(ctx, ins[2]);
    +
    +  auto gradWeight = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +  auto ones = buildATensor(ctx, outs[2]);
    +  deform_conv_backward_parameters(input, offset, gradOutput, gradWeight,
    +                                  columns, ones, kW, kH, dW, dH, padW, padH,
    +                                  dilationW, dilationH, group, deformable_group,
    +                                  scale, im2col_step);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(deform_conv_forward)
    +    .attr("kW")
    +    .attr("kH")
    +    .attr("dW")
    +    .attr("dH")
    +    .attr("padW")
    +    .attr("padH")
    +    .attr("dilationW")
    +    .attr("dilationH")
    +    .attr("group")
    +    .attr("deformable_group")
    +    .attr("im2col_step")
    +    .input(3)
    +    .output(3)
    +    .apply(deform_conv_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(deform_conv_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(deform_conv_backward_input)
    +    .attr("kW")
    +    .attr("kH")
    +    .attr("dW")
    +    .attr("dH")
    +    .attr("padW")
    +    .attr("padH")
    +    .attr("dilationW")
    +    .attr("dilationH")
    +    .attr("group")
    +    .attr("deformable_group")
    +    .attr("im2col_step")
    +    .input(3)
    +    .output(4)
    +    .apply(deform_conv_backward_input_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(deform_conv_backward_input_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(deform_conv_backward_parameters)
    +    .attr("kW")
    +    .attr("kH")
    +    .attr("dW")
    +    .attr("dH")
    +    .attr("padW")
    +    .attr("padH")
    +    .attr("dilationW")
    +    .attr("dilationH")
    +    .attr("group")
    +    .attr("deformable_group")
    +    .attr("scale")
    +    .attr("im2col_step")
    +    .input(3)
    +    .output(3)
    +    .apply(deform_conv_backward_parameters_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(deform_conv_backward_parameters_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_pytorch.h
    new file mode 100644
    index 000000000..e0d3d40d1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_conv_pytorch.h
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef DEFORM_CONV_PYTORCH_H
    +#define DEFORM_CONV_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
    +                         Tensor output, Tensor columns, Tensor ones, int kW,
    +                         int kH, int dW, int dH, int padW, int padH,
    +                         int dilationW, int dilationH, int group,
    +                         int deformable_group, int im2col_step);
    +
    +void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
    +                                Tensor gradInput, Tensor gradOffset,
    +                                Tensor weight, Tensor columns, int kW, int kH,
    +                                int dW, int dH, int padW, int padH,
    +                                int dilationW, int dilationH, int group,
    +                                int deformable_group, int im2col_step);
    +
    +void deform_conv_backward_parameters(Tensor input, Tensor offset,
    +                                     Tensor gradOutput, Tensor gradWeight,
    +                                     Tensor columns, Tensor ones, int kW,
    +                                     int kH, int dW, int dH, int padW, int padH,
    +                                     int dilationW, int dilationH, int group,
    +                                     int deformable_group, float scale,
    +                                     int im2col_step);
    +
    +#endif  // DEFORM_CONV_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool.cpp
    new file mode 100644
    index 000000000..4fb78a96e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool.cpp
    @@ -0,0 +1,42 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  DISPATCH_DEVICE_IMPL(deform_roi_pool_forward_impl, input, rois, offset,
    +                       output, pooled_height, pooled_width, spatial_scale,
    +                       sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma) {
    +  DISPATCH_DEVICE_IMPL(deform_roi_pool_backward_impl, grad_output, input, rois,
    +                       offset, grad_input, grad_offset, pooled_height,
    +                       pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_forward(Tensor input, Tensor rois, Tensor offset,
    +                             Tensor output, int pooled_height, int pooled_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             float gamma) {
    +  deform_roi_pool_forward_impl(input, rois, offset, output, pooled_height,
    +                               pooled_width, spatial_scale, sampling_ratio,
    +                               gamma);
    +}
    +
    +void deform_roi_pool_backward(Tensor grad_output, Tensor input, Tensor rois,
    +                              Tensor offset, Tensor grad_input,
    +                              Tensor grad_offset, int pooled_height,
    +                              int pooled_width, float spatial_scale,
    +                              int sampling_ratio, float gamma) {
    +  deform_roi_pool_backward_impl(grad_output, input, rois, offset, grad_input,
    +                                grad_offset, pooled_height, pooled_width,
    +                                spatial_scale, sampling_ratio, gamma);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_parrots.cpp
    new file mode 100644
    index 000000000..fc2701d52
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_parrots.cpp
    @@ -0,0 +1,102 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "deform_roi_pool_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +/*void deform_roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor offset,
    + *                                  Tensor output, int pooled_height,
    + *                                  int pooled_width, float spatial_scale,
    + *                                  int sampling_ratio, float gamma);
    + */
    +void deform_roi_pool_forward_cuda_parrots(CudaContext& ctx,
    +                                          const SSElement& attr,
    +                                          const OperatorBase::in_list_t& ins,
    +                                          OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  float gamma;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("gamma", gamma)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  const auto& offset = buildATensor(ctx, ins[2]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  deform_roi_pool_forward_cuda(input, rois, offset, output, pooled_height,
    +                               pooled_width, spatial_scale, sampling_ratio,
    +                               gamma);
    +}
    +
    +/*void deform_roi_pool_backward_cuda(Tensor grad_output, Tensor input,
    + *                                   Tensor rois, Tensor offset,
    + *                                   Tensor grad_input, Tensor grad_offset,
    + *                                   int pooled_height, int pooled_width,
    + *                                   float spatial_scale, int sampling_ratio,
    + *                                   float gamma);
    + */
    +void deform_roi_pool_backward_cuda_parrots(CudaContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  float gamma;
    +
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("gamma", gamma)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& input = buildATensor(ctx, ins[1]);
    +  const auto& rois = buildATensor(ctx, ins[2]);
    +  const auto& offset = buildATensor(ctx, ins[3]);
    +
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  auto grad_offset = buildATensor(ctx, outs[1]);
    +
    +  deform_roi_pool_backward_cuda(grad_output, input, rois, offset, grad_input,
    +                                grad_offset, pooled_height, pooled_width,
    +                                spatial_scale, sampling_ratio, gamma);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(deform_roi_pool_forward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("gamma")
    +    .input(3)
    +    .output(1)
    +    .apply(deform_roi_pool_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(deform_roi_pool_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("gamma")
    +    .input(4)
    +    .output(2)
    +    .apply(deform_roi_pool_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_pytorch.h
    new file mode 100644
    index 000000000..ac0f2c324
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/deform_roi_pool_pytorch.h
    @@ -0,0 +1,18 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef DEFORM_ROI_POOL_PYTORCH_H
    +#define DEFORM_ROI_POOL_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void deform_roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_backward_cuda(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma);
    +#endif  // DEFORM_ROI_POOL_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated.cpp
    new file mode 100644
    index 000000000..2361b7fbe
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated.cpp
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_impl(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid) {
    +  return DISPATCH_DEVICE_IMPL(diff_iou_rotated_sort_vertices_forward_impl,
    +                              vertices, mask, num_valid);
    +}
    +
    +Tensor diff_iou_rotated_sort_vertices_forward(Tensor vertices, Tensor mask,
    +                                              Tensor num_valid) {
    +  return diff_iou_rotated_sort_vertices_forward_impl(vertices, mask, num_valid);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_parrots.cpp
    new file mode 100644
    index 000000000..b4d3e0e05
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_parrots.cpp
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "diff_iou_rotated_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void diff_iou_rotated_sort_vertices_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  at::Tensor boxes, scores, dets;
    +  auto vertices = buildATensor(ctx, ins[0]);
    +  auto mask = buildATensor(ctx, ins[1]);
    +  auto num_valid = buildATensor(ctx, ins[2]);
    +  auto out =
    +      diff_iou_rotated_sort_vertices_forward_cuda(vertices, mask, num_valid);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(diff_iou_rotated_sort_vertices_forward)
    +    .input(3)
    +    .output(1)
    +    .apply(diff_iou_rotated_sort_vertices_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_pytorch.h
    new file mode 100644
    index 000000000..ef911ecc2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/diff_iou_rotated_pytorch.h
    @@ -0,0 +1,10 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef DIFF_IOU_ROTATED_PYTORCH_H
    +#define DIFF_IOU_ROTATED_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_cuda(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid);
    +
    +#endif  // DIFF_IOU_ROTATED_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss.cpp
    new file mode 100644
    index 000000000..ed0e21865
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss.cpp
    @@ -0,0 +1,53 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, input, target, weight,
    +                       output, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, input, target, weight,
    +                       grad_input, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(softmax_focal_loss_forward_impl, input, target, weight,
    +                       output, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha) {
    +  DISPATCH_DEVICE_IMPL(softmax_focal_loss_backward_impl, input, target, weight,
    +                       buff, grad_input, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha) {
    +  sigmoid_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor grad_input, float gamma, float alpha) {
    +  sigmoid_focal_loss_backward_impl(input, target, weight, grad_input, gamma,
    +                                   alpha);
    +}
    +
    +void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha) {
    +  softmax_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor buff, Tensor grad_input, float gamma,
    +                                 float alpha) {
    +  softmax_focal_loss_backward_impl(input, target, weight, buff, grad_input,
    +                                   gamma, alpha);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_parrots.cpp
    new file mode 100644
    index 000000000..044e200c4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_parrots.cpp
    @@ -0,0 +1,113 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "focal_loss_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void sigmoid_focal_loss_forward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  float gamma;
    +  float alpha;
    +  SSAttrs(attr).get("gamma", gamma).get("alpha", alpha).done();
    +
    +  // get inputs and outputs
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& target = buildATensor(ctx, ins[1]);
    +  const auto& weight = buildATensor(ctx, ins[2]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +
    +  sigmoid_focal_loss_forward_cuda(input, target, weight, output, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float gamma;
    +  float alpha;
    +  SSAttrs(attr).get("gamma", gamma).get("alpha", alpha).done();
    +
    +  // get inputs and outputs
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& target = buildATensor(ctx, ins[1]);
    +  const auto& weight = buildATensor(ctx, ins[2]);
    +
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +
    +  sigmoid_focal_loss_backward_cuda(input, target, weight, grad_input, gamma,
    +                                   alpha);
    +}
    +
    +void softmax_focal_loss_forward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  float gamma;
    +  float alpha;
    +  SSAttrs(attr).get("gamma", gamma).get("alpha", alpha).done();
    +
    +  // get inputs and outputs
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& target = buildATensor(ctx, ins[1]);
    +  const auto& weight = buildATensor(ctx, ins[2]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  softmax_focal_loss_forward_cuda(input, target, weight, output, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float gamma;
    +  float alpha;
    +  SSAttrs(attr).get("gamma", gamma).get("alpha", alpha).done();
    +
    +  // get inputs and outputs
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& target = buildATensor(ctx, ins[1]);
    +  const auto& weight = buildATensor(ctx, ins[2]);
    +
    +  auto buff = buildATensor(ctx, outs[0]);
    +  auto grad_input = buildATensor(ctx, outs[1]);
    +  softmax_focal_loss_backward_cuda(input, target, weight, buff, grad_input,
    +                                   gamma, alpha);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(sigmoid_focal_loss_forward)
    +    .attr("gamma")
    +    .attr("alpha")
    +    .input(3)
    +    .output(1)
    +    .apply(sigmoid_focal_loss_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(sigmoid_focal_loss_backward)
    +    .attr("gamma")
    +    .attr("alpha")
    +    .input(3)
    +    .output(1)
    +    .apply(sigmoid_focal_loss_backward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(softmax_focal_loss_forward)
    +    .attr("gamma")
    +    .attr("alpha")
    +    .input(3)
    +    .output(1)
    +    .apply(softmax_focal_loss_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(softmax_focal_loss_backward)
    +    .attr("gamma")
    +    .attr("alpha")
    +    .input(3)
    +    .output(2)
    +    .apply(softmax_focal_loss_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_pytorch.h
    new file mode 100644
    index 000000000..b7a00c8ab
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/focal_loss_pytorch.h
    @@ -0,0 +1,21 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef FOCAL_LOSS_PYTORCH_H
    +#define FOCAL_LOSS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void sigmoid_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha);
    +
    +void softmax_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void softmax_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha);
    +#endif  // FOCAL_LOSS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample.cpp
    new file mode 100644
    index 000000000..9c7098acd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample.cpp
    @@ -0,0 +1,34 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/sampling.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void furthest_point_sampling_forward_impl(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m) {
    +  DISPATCH_DEVICE_IMPL(furthest_point_sampling_forward_impl, points_tensor,
    +                       temp_tensor, idx_tensor, b, n, m);
    +}
    +
    +void furthest_point_sampling_with_dist_forward_impl(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m) {
    +  DISPATCH_DEVICE_IMPL(furthest_point_sampling_with_dist_forward_impl,
    +                       points_tensor, temp_tensor, idx_tensor, b, n, m);
    +}
    +
    +void furthest_point_sampling_forward(Tensor points_tensor, Tensor temp_tensor,
    +                                     Tensor idx_tensor, int b, int n, int m) {
    +  furthest_point_sampling_forward_impl(points_tensor, temp_tensor, idx_tensor,
    +                                       b, n, m);
    +}
    +
    +void furthest_point_sampling_with_dist_forward(Tensor points_tensor,
    +                                               Tensor temp_tensor,
    +                                               Tensor idx_tensor, int b, int n,
    +                                               int m) {
    +  furthest_point_sampling_with_dist_forward_impl(points_tensor, temp_tensor,
    +                                                 idx_tensor, b, n, m);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_parrots.cpp
    new file mode 100644
    index 000000000..483bfb243
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_parrots.cpp
    @@ -0,0 +1,57 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "furthest_point_sample_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void furthest_point_sample_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int b, n, m;
    +  SSAttrs(attr).get("b", b).get("n", n).get("m", m).done();
    +
    +  auto points_tensor = buildATensor(ctx, ins[0]);
    +  auto temp_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto idx_tensor = buildATensor(ctx, outs[0]);
    +
    +  furthest_point_sampling_forward(points_tensor, temp_tensor, idx_tensor, b, n,
    +                                  m);
    +}
    +
    +void furthest_point_sampling_with_dist_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int b, n, m;
    +  SSAttrs(attr).get("b", b).get("n", n).get("m", m).done();
    +
    +  auto points_tensor = buildATensor(ctx, ins[0]);
    +  auto temp_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto idx_tensor = buildATensor(ctx, outs[0]);
    +
    +  furthest_point_sampling_with_dist_forward(points_tensor, temp_tensor,
    +                                            idx_tensor, b, n, m);
    +}
    +PARROTS_EXTENSION_REGISTER(furthest_point_sampling_forward)
    +    .attr("b")
    +    .attr("n")
    +    .attr("m")
    +    .input(2)
    +    .output(1)
    +    .apply(furthest_point_sample_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(furthest_point_sampling_with_dist_forward)
    +    .attr("b")
    +    .attr("n")
    +    .attr("m")
    +    .input(2)
    +    .output(1)
    +    .apply(furthest_point_sampling_with_dist_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_pytorch.h
    new file mode 100644
    index 000000000..0325cd66e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/furthest_point_sample_pytorch.h
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef FURTHEST_POINT_SAMPLE_PYTORCH_H
    +#define FURTHEST_POINT_SAMPLE_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void furthest_point_sampling_forward(Tensor points_tensor, Tensor temp_tensor,
    +                                     Tensor idx_tensor, int b, int n, int m);
    +
    +void furthest_point_sampling_with_dist_forward(Tensor points_tensor,
    +                                               Tensor temp_tensor,
    +                                               Tensor idx_tensor, int b, int n,
    +                                               int m);
    +#endif  // FURTHEST_POINT_SAMPLE_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_leakyrelu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_leakyrelu.cpp
    new file mode 100644
    index 000000000..8d411c9d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_leakyrelu.cpp
    @@ -0,0 +1,119 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act.cpp
    +
    +/*
    +Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +
    +NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +Augmentation (ADA)
    +=======================================================================
    +
    +1. Definitions
    +
    +"Licensor" means any person or entity that distributes its Work.
    +
    +"Software" means the original work of authorship made available under
    +this License.
    +
    +"Work" means the Software and any additions to or derivative works of
    +the Software that are made available under this License.
    +
    +The terms "reproduce," "reproduction," "derivative works," and
    +"distribution" have the meaning as provided under U.S. copyright law;
    +provided, however, that for the purposes of this License, derivative
    +works shall not include works that remain separable from, or merely
    +link (or bind by name) to the interfaces of, the Work.
    +
    +Works, including the Software, are "made available" under this License
    +by including in or with the Work either (a) a copyright notice
    +referencing the applicability of this License to the Work, or (b) a
    +copy of this License.
    +
    +2. License Grants
    +
    +    2.1 Copyright Grant. Subject to the terms and conditions of this
    +    License, each Licensor grants to you a perpetual, worldwide,
    +    non-exclusive, royalty-free, copyright license to reproduce,
    +    prepare derivative works of, publicly display, publicly perform,
    +    sublicense and distribute its Work and any resulting derivative
    +    works in any form.
    +
    +3. Limitations
    +
    +    3.1 Redistribution. You may reproduce or distribute the Work only
    +    if (a) you do so under this License, (b) you include a complete
    +    copy of this License with your distribution, and (c) you retain
    +    without modification any copyright, patent, trademark, or
    +    attribution notices that are present in the Work.
    +
    +    3.2 Derivative Works. You may specify that additional or different
    +    terms apply to the use, reproduction, and distribution of your
    +    derivative works of the Work ("Your Terms") only if (a) Your Terms
    +    provide that the use limitation in Section 3.3 applies to your
    +    derivative works, and (b) you identify the specific derivative
    +    works that are subject to Your Terms. Notwithstanding Your Terms,
    +    this License (including the redistribution requirements in Section
    +    3.1) will continue to apply to the Work itself.
    +
    +    3.3 Use Limitation. The Work and any derivative works thereof only
    +    may be used or intended for use non-commercially. Notwithstanding
    +    the foregoing, NVIDIA and its affiliates may use the Work and any
    +    derivative works commercially. As used herein, "non-commercially"
    +    means for research or evaluation purposes only.
    +
    +    3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +    against any Licensor (including any claim, cross-claim or
    +    counterclaim in a lawsuit) to enforce any patents that you allege
    +    are infringed by any Work, then your rights under this License from
    +    such Licensor (including the grant in Section 2.1) will terminate
    +    immediately.
    +
    +    3.5 Trademarks. This License does not grant any rights to use any
    +    Licensor’s or its affiliates’ names, logos, or trademarks, except
    +    as necessary to reproduce the notices described in this License.
    +
    +    3.6 Termination. If you violate any term of this License, then your
    +    rights under this License (including the grant in Section 2.1) will
    +    terminate immediately.
    +
    +4. Disclaimer of Warranty.
    +
    +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +THIS LICENSE.
    +
    +5. Limitation of Liability.
    +
    +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +THE POSSIBILITY OF SUCH DAMAGES.
    +
    +=======================================================================
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +torch::Tensor fused_bias_leakyrelu_op_impl(const torch::Tensor& input,
    +                                           const torch::Tensor& bias,
    +                                           const torch::Tensor& refer, int act,
    +                                           int grad, float alpha, float scale) {
    +  return DISPATCH_DEVICE_IMPL(fused_bias_leakyrelu_op_impl, input, bias, refer,
    +                              act, grad, alpha, scale);
    +}
    +
    +torch::Tensor fused_bias_leakyrelu(const torch::Tensor& input,
    +                                   const torch::Tensor& bias,
    +                                   const torch::Tensor& refer, int act,
    +                                   int grad, float alpha, float scale) {
    +  return fused_bias_leakyrelu_op_impl(input, bias, refer, act, grad, alpha,
    +                                      scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_parrots.cpp
    new file mode 100644
    index 000000000..47409ad20
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/fused_bias_parrots.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +using namespace at;
    +using namespace parrots;
    +
    +torch::Tensor fused_bias_leakyrelu(const torch::Tensor &input,
    +                                   const torch::Tensor &bias,
    +                                   const torch::Tensor &refer, int act,
    +                                   int grad, float alpha, float scale);
    +
    +void fused_bias_leakyrelu_parrots(CudaContext &ctx, const SSElement &attr,
    +                                  const OperatorBase::in_list_t &ins,
    +                                  OperatorBase::out_list_t &outs) {
    +  int act, grad;
    +  float alpha, scale;
    +  SSAttrs(attr)
    +      .get("act", act)
    +      .get("grad", grad)
    +      .get("alpha", alpha)
    +      .get("scale", scale)
    +      .done();
    +  const auto &input = buildATensor(ctx, ins[0]);
    +  const auto &bias = buildATensor(ctx, ins[1]);
    +  const auto &refer = buildATensor(ctx, ins[2]);
    +  auto out = fused_bias_leakyrelu(input, bias, refer, act, grad, alpha, scale);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(fused_bias_leakyrelu)
    +    .attr("act")
    +    .attr("grad")
    +    .attr("alpha")
    +    .attr("scale")
    +    .input(3)
    +    .output(1)
    +    .apply(fused_bias_leakyrelu_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points.cpp
    new file mode 100644
    index 000000000..b8fb02002
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points.cpp
    @@ -0,0 +1,30 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void gather_points_forward_impl(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out) {
    +  DISPATCH_DEVICE_IMPL(gather_points_forward_impl, b, c, n, npoints, points,
    +                       idx, out);
    +}
    +
    +void gather_points_backward_impl(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(gather_points_backward_impl, b, c, n, npoints, grad_out,
    +                       idx, grad_points);
    +}
    +
    +void gather_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                           Tensor out_tensor, int b, int c, int n,
    +                           int npoints) {
    +  gather_points_forward_impl(b, c, n, npoints, points_tensor, idx_tensor,
    +                             out_tensor);
    +}
    +
    +void gather_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                            Tensor grad_points_tensor, int b, int c, int n,
    +                            int npoints) {
    +  gather_points_backward_impl(b, c, n, npoints, grad_out_tensor, idx_tensor,
    +                              grad_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_parrots.cpp
    new file mode 100644
    index 000000000..1d2d9e129
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_parrots.cpp
    @@ -0,0 +1,71 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "gather_points_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void gather_points_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  int b, c, n, npoints;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("n", n)
    +      .get("npoints", npoints)
    +      .done();
    +
    +  auto points_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto out_tensor = buildATensor(ctx, outs[0]);
    +
    +  gather_points_forward(points_tensor, idx_tensor, out_tensor, b, c, n,
    +                        npoints);
    +}
    +
    +void gather_points_backward_cuda_parrots(CudaContext& ctx,
    +                                         const SSElement& attr,
    +                                         const OperatorBase::in_list_t& ins,
    +                                         OperatorBase::out_list_t& outs) {
    +  int b, c, n, npoints;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("n", n)
    +      .get("npoints", npoints)
    +      .done();
    +
    +  auto grad_out_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto grad_points_tensor = buildATensor(ctx, outs[0]);
    +
    +  gather_points_backward(grad_out_tensor, idx_tensor, grad_points_tensor, b, c,
    +                         n, npoints);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(gather_points_forward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("n")
    +    .attr("npoints")
    +    .input(2)
    +    .output(1)
    +    .apply(gather_points_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(gather_points_backward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("n")
    +    .attr("npoints")
    +    .input(2)
    +    .output(1)
    +    .apply(gather_points_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_pytorch.h
    new file mode 100644
    index 000000000..1689ae6ad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/gather_points_pytorch.h
    @@ -0,0 +1,13 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef GATHER_POINTS_PYTORCH_H
    +#define GATHER_POINTS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void gather_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                           Tensor out_tensor, int b, int c, int n, int npoints);
    +
    +void gather_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                            Tensor grad_points_tensor, int b, int c, int n,
    +                            int npoints);
    +#endif  // GATHER_POINTS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points.cpp
    new file mode 100644
    index 000000000..cdd190d40
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points.cpp
    @@ -0,0 +1,34 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void group_points_forward_impl(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out) {
    +  DISPATCH_DEVICE_IMPL(group_points_forward_impl, b, c, n, npoints, nsample,
    +                       points, idx, out);
    +}
    +
    +void group_points_backward_impl(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(group_points_backward_impl, b, c, n, npoints, nsample,
    +                       grad_out, idx, grad_points);
    +}
    +
    +void group_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                          Tensor out_tensor, int b, int c, int n, int npoints,
    +                          int nsample) {
    +  DISPATCH_DEVICE_IMPL(group_points_forward_impl, b, c, n, npoints, nsample,
    +                       points_tensor, idx_tensor, out_tensor);
    +}
    +
    +void group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                           Tensor grad_points_tensor, int b, int c, int n,
    +                           int npoints, int nsample) {
    +  group_points_backward_impl(b, c, n, npoints, nsample, grad_out_tensor,
    +                             idx_tensor, grad_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_parrots.cpp
    new file mode 100644
    index 000000000..282c01a8c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_parrots.cpp
    @@ -0,0 +1,72 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "group_points_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void group_points_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  int b, c, n, npoints, nsample;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("n", n)
    +      .get("npoints", npoints)
    +      .get("nsample", nsample)
    +      .done();
    +  auto points_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto out_tensor = buildATensor(ctx, outs[0]);
    +
    +  group_points_forward(points_tensor, idx_tensor, out_tensor, b, c, n, npoints,
    +                       nsample);
    +}
    +
    +void group_points_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  int b, c, n, npoints, nsample;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("n", n)
    +      .get("npoints", npoints)
    +      .get("nsample", nsample)
    +      .done();
    +  auto grad_out_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto grad_points_tensor = buildATensor(ctx, outs[0]);
    +
    +  group_points_backward(grad_out_tensor, idx_tensor, grad_points_tensor, b, c,
    +                        n, npoints, nsample);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(group_points_forward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("n")
    +    .attr("npoints")
    +    .attr("nsample")
    +    .input(2)
    +    .output(1)
    +    .apply(group_points_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(group_points_backward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("n")
    +    .attr("npoints")
    +    .attr("nsample")
    +    .input(2)
    +    .output(1)
    +    .apply(group_points_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_pytorch.h
    new file mode 100644
    index 000000000..e704ab078
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/group_points_pytorch.h
    @@ -0,0 +1,15 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef GROUP_POINTS_PYTORCH_H
    +#define GROUP_POINTS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void group_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                          Tensor out_tensor, int b, int c, int n, int npoints,
    +                          int nsample);
    +
    +void group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                           Tensor grad_points_tensor, int b, int c, int n,
    +                           int npoints, int nsample);
    +
    +#endif  // GROUP_POINTS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/info.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/info.cpp
    new file mode 100644
    index 000000000..a4cc41861
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/info.cpp
    @@ -0,0 +1,65 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/vision.cpp
    +#include "pytorch_cpp_helper.hpp"
    +
    +#ifdef MMCV_WITH_CUDA
    +#ifdef MMCV_WITH_HIP
    +#include 
    +int get_hiprt_version() {
    +  int runtimeVersion;
    +  hipRuntimeGetVersion(&runtimeVersion);
    +  return runtimeVersion;
    +}
    +#else
    +#include 
    +int get_cudart_version() { return CUDART_VERSION; }
    +#endif
    +#endif
    +
    +std::string get_compiling_cuda_version() {
    +#ifdef MMCV_WITH_CUDA
    +#ifndef MMCV_WITH_HIP
    +  std::ostringstream oss;
    +  // copied from
    +  // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231
    +  auto printCudaStyleVersion = [&](int v) {
    +    oss << (v / 1000) << "." << (v / 10 % 100);
    +    if (v % 10 != 0) {
    +      oss << "." << (v % 10);
    +    }
    +  };
    +  printCudaStyleVersion(get_cudart_version());
    +  return oss.str();
    +#else
    +  std::ostringstream oss;
    +  oss << get_hiprt_version();
    +  return oss.str();
    +#endif
    +#else
    +  return std::string("not available");
    +#endif
    +}
    +
    +// similar to
    +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp
    +std::string get_compiler_version() {
    +  std::ostringstream ss;
    +#if defined(__GNUC__)
    +#ifndef __clang__
    +  { ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; }
    +#endif
    +#endif
    +
    +#if defined(__clang_major__)
    +  {
    +    ss << "clang " << __clang_major__ << "." << __clang_minor__ << "."
    +       << __clang_patchlevel__;
    +  }
    +#endif
    +
    +#if defined(_MSC_VER)
    +  { ss << "MSVC " << _MSC_FULL_VER; }
    +#endif
    +  return ss.str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d.cpp
    new file mode 100644
    index 000000000..a347c0ee9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d.cpp
    @@ -0,0 +1,66 @@
    +// Modified from
    +// https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/iou3d_nms/src/iou3d_nms.cpp
    +
    +/*
    +3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
    +Written by Shaoshuai Shi
    +All Rights Reserved 2019-2020.
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
    +
    +void iou3d_boxes_overlap_bev_forward_impl(const int num_a, const Tensor boxes_a,
    +                                          const int num_b, const Tensor boxes_b,
    +                                          Tensor ans_overlap) {
    +  DISPATCH_DEVICE_IMPL(iou3d_boxes_overlap_bev_forward_impl, num_a, boxes_a,
    +                       num_b, boxes_b, ans_overlap);
    +}
    +
    +void iou3d_nms3d_forward_impl(const Tensor boxes, Tensor &keep,
    +                              Tensor &keep_num, float nms_overlap_thresh) {
    +  DISPATCH_DEVICE_IMPL(iou3d_nms3d_forward_impl, boxes, keep, keep_num,
    +                       nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_normal_forward_impl(const Tensor boxes, Tensor &keep,
    +                                     Tensor &keep_num,
    +                                     float nms_overlap_thresh) {
    +  DISPATCH_DEVICE_IMPL(iou3d_nms3d_normal_forward_impl, boxes, keep, keep_num,
    +                       nms_overlap_thresh);
    +}
    +
    +void iou3d_boxes_overlap_bev_forward(Tensor boxes_a, Tensor boxes_b,
    +                                     Tensor ans_overlap) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params boxes_b: (M, 5)
    +  // params ans_overlap: (N, M)
    +  int num_a = boxes_a.size(0);
    +  int num_b = boxes_b.size(0);
    +
    +  iou3d_boxes_overlap_bev_forward_impl(num_a, boxes_a, num_b, boxes_b,
    +                                       ans_overlap);
    +}
    +
    +void iou3d_nms3d_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                         float nms_overlap_thresh) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params keep: (N)
    +  CHECK_CONTIGUOUS(boxes);
    +  CHECK_CONTIGUOUS(keep);
    +
    +  iou3d_nms3d_forward_impl(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_normal_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                                float nms_overlap_thresh) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params keep: (N)
    +
    +  CHECK_CONTIGUOUS(boxes);
    +  CHECK_CONTIGUOUS(keep);
    +
    +  iou3d_nms3d_normal_forward_impl(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_parrots.cpp
    new file mode 100644
    index 000000000..20e288aea
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_parrots.cpp
    @@ -0,0 +1,70 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "iou3d_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void iou3d_boxes_overlap_bev_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto boxes_a = buildATensor(ctx, ins[0]);
    +  auto boxes_b = buildATensor(ctx, ins[1]);
    +
    +  auto ans_iou = buildATensor(ctx, outs[0]);
    +
    +  iou3d_boxes_overlap_bev_forward(boxes_a, boxes_b, ans_iou);
    +}
    +
    +void iou3d_nms3d_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  float nms_overlap_thresh;
    +  SSAttrs(attr).get("nms_overlap_thresh", nms_overlap_thresh).done();
    +
    +  auto boxes = buildATensor(ctx, ins[0]);
    +
    +  auto keep = buildATensor(ctx, outs[0]);
    +  auto keep_num = buildATensor(ctx, outs[1]);
    +
    +  iou3d_nms3d_forward(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_normal_forward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  float nms_overlap_thresh;
    +  SSAttrs(attr).get("nms_overlap_thresh", nms_overlap_thresh).done();
    +
    +  auto boxes = buildATensor(ctx, ins[0]);
    +
    +  auto keep = buildATensor(ctx, outs[0]);
    +  auto keep_num = buildATensor(ctx, outs[1]);
    +
    +  iou3d_nms3d_normal_forward(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(iou3d_boxes_overlap_bev_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(iou3d_boxes_overlap_bev_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(iou3d_nms3d_forward)
    +    .attr("nms_overlap_thresh")
    +    .input(1)
    +    .output(2)
    +    .apply(iou3d_nms3d_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(iou3d_nms3d_normal_forward)
    +    .attr("nms_overlap_thresh")
    +    .input(1)
    +    .output(2)
    +    .apply(iou3d_nms3d_normal_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_pytorch.h
    new file mode 100644
    index 000000000..76170edc7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/iou3d_pytorch.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef IOU_3D_PYTORCH_H
    +#define IOU_3D_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void iou3d_boxes_overlap_bev_forward(Tensor boxes_a, Tensor boxes_b,
    +                                     Tensor ans_overlap);
    +
    +void iou3d_nms3d_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                         float nms_overlap_thresh);
    +
    +void iou3d_nms3d_normal_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                                float nms_overlap_thresh);
    +
    +#endif  // IOU_3D_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn.cpp
    new file mode 100644
    index 000000000..b4be9428c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn.cpp
    @@ -0,0 +1,17 @@
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/pointops/src/knnquery_heap
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void knn_forward_impl(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2) {
    +  DISPATCH_DEVICE_IMPL(knn_forward_impl, b, n, m, nsample, xyz, new_xyz, idx,
    +                       dist2);
    +}
    +
    +void knn_forward(Tensor xyz_tensor, Tensor new_xyz_tensor, Tensor idx_tensor,
    +                 Tensor dist2_tensor, int b, int n, int m, int nsample) {
    +  knn_forward_impl(b, n, m, nsample, xyz_tensor, new_xyz_tensor, idx_tensor,
    +                   dist2_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_parrots.cpp
    new file mode 100644
    index 000000000..585b84644
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_parrots.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "knn_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void knn_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                              const OperatorBase::in_list_t& ins,
    +                              OperatorBase::out_list_t& outs) {
    +  int b, n, m, nsample;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("n", n)
    +      .get("m", m)
    +      .get("nsample", nsample)
    +      .done();
    +
    +  auto xyz_tensor = buildATensor(ctx, ins[0]);
    +  auto new_xyz_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto idx_tensor = buildATensor(ctx, outs[0]);
    +  auto dist2_tensor = buildATensor(ctx, outs[1]);
    +
    +  knn_forward(xyz_tensor, new_xyz_tensor, idx_tensor, dist2_tensor, b, n, m,
    +              nsample);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(knn_forward)
    +    .attr("b")
    +    .attr("n")
    +    .attr("m")
    +    .attr("nsample")
    +    .input(2)
    +    .output(2)
    +    .apply(knn_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_pytorch.h
    new file mode 100644
    index 000000000..b0875f838
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/knn_pytorch.h
    @@ -0,0 +1,9 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef KNN_PYTORCH_H
    +#define KNN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void knn_forward(Tensor xyz_tensor, Tensor new_xyz_tensor, Tensor idx_tensor,
    +                 Tensor dist2_tensor, int b, int n, int m, int nsample);
    +#endif  // KNN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d.cpp
    new file mode 100644
    index 000000000..590392535
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d.cpp
    @@ -0,0 +1,33 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void masked_im2col_forward_impl(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w) {
    +  DISPATCH_DEVICE_IMPL(masked_im2col_forward_impl, im, mask_h_idx, mask_w_idx,
    +                       col, kernel_h, kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_impl(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels) {
    +  DISPATCH_DEVICE_IMPL(masked_col2im_forward_impl, col, mask_h_idx, mask_w_idx,
    +                       im, height, width, channels);
    +}
    +
    +void masked_im2col_forward(const Tensor im, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor col,
    +                           const int kernel_h, const int kernel_w,
    +                           const int pad_h, const int pad_w) {
    +  masked_im2col_forward_impl(im, mask_h_idx, mask_w_idx, col, kernel_h,
    +                             kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward(const Tensor col, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor im, int height,
    +                           int width, int channels) {
    +  masked_col2im_forward_impl(col, mask_h_idx, mask_w_idx, im, height, width,
    +                             channels);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_parrots.cpp
    new file mode 100644
    index 000000000..39f19740c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_parrots.cpp
    @@ -0,0 +1,72 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "masked_conv2d_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void masked_im2col_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kw), col: (kh * kw * ic, ow * oh)
    +  int kernel_h, kernel_w, pad_h, pad_w;
    +  SSAttrs(attr)
    +      .get("kernel_h", kernel_h)
    +      .get("kernel_w", kernel_w)
    +      .get("pad_h", pad_h)
    +      .get("pad_w", pad_w)
    +      .done();
    +
    +  const auto& im = buildATensor(ctx, ins[0]);
    +  const auto& mask_h_idx = buildATensor(ctx, ins[1]);
    +  const auto& mask_w_idx = buildATensor(ctx, ins[2]);
    +
    +  auto col = buildATensor(ctx, outs[0]);
    +  masked_im2col_forward_cuda(im, mask_h_idx, mask_w_idx, col, kernel_h,
    +                             kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kh), col: (kh * kw * ic, ow * oh)
    +  int height, width, channels;
    +  SSAttrs(attr)
    +      .get("height", height)
    +      .get("width", width)
    +      .get("channels", channels)
    +      .done();
    +
    +  const auto& col = buildATensor(ctx, ins[0]);
    +  const auto& mask_h_idx = buildATensor(ctx, ins[1]);
    +  const auto& mask_w_idx = buildATensor(ctx, ins[2]);
    +
    +  auto im = buildATensor(ctx, outs[0]);
    +  masked_col2im_forward_cuda(col, mask_h_idx, mask_w_idx, im, height, width,
    +                             channels);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(masked_im2col_forward)
    +    .attr("kernel_h")
    +    .attr("kernel_w")
    +    .attr("pad_h")
    +    .attr("pad_w")
    +    .input(3)
    +    .output(1)
    +    .apply(masked_im2col_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(masked_col2im_forward)
    +    .attr("height")
    +    .attr("width")
    +    .attr("channels")
    +    .input(3)
    +    .output(1)
    +    .apply(masked_col2im_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_pytorch.h
    new file mode 100644
    index 000000000..36d5643f6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/masked_conv2d_pytorch.h
    @@ -0,0 +1,15 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef MASKED_CONV2D_PYTORCH_H
    +#define MASKED_CONV2D_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void masked_im2col_forward_cuda(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w);
    +
    +void masked_col2im_forward_cuda(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels);
    +#endif  // MASKED_CONV2D_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons.cpp
    new file mode 100644
    index 000000000..8ff996dc8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons.cpp
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void min_area_polygons_impl(const Tensor pointsets, Tensor polygons) {
    +  DISPATCH_DEVICE_IMPL(min_area_polygons_impl, pointsets, polygons);
    +}
    +
    +void min_area_polygons(const Tensor pointsets, Tensor polygons) {
    +  min_area_polygons_impl(pointsets, polygons);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_parrots.cpp
    new file mode 100644
    index 000000000..d9e4ff4b3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_parrots.cpp
    @@ -0,0 +1,26 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "min_area_polygons_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void min_area_polygons_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                    const OperatorBase::in_list_t& ins,
    +                                    OperatorBase::out_list_t& outs) {
    +  auto pointsets = buildATensor(ctx, ins[0]);
    +
    +  auto polygons = buildATensor(ctx, outs[0]);
    +  min_area_polygons(pointsets, polygons);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(min_area_polygons)
    +    .input(1)
    +    .output(1)
    +    .apply(min_area_polygons_cuda_parrots)
    +    .done();
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_pytorch.h
    new file mode 100644
    index 000000000..1df276418
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/min_area_polygons_pytorch.h
    @@ -0,0 +1,9 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef MIN_AREA_POLYGONS_PYTORCH_H
    +#define MIN_AREA_POLYGONS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void min_area_polygons(const Tensor pointsets, Tensor polygons);
    +
    +#endif  // MIN_AREA_POLYGONS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv.cpp
    new file mode 100644
    index 000000000..12b538a05
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv.cpp
    @@ -0,0 +1,237 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void modulated_deformable_im2col_impl(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_im2col_impl, data_im, data_offset,
    +                       data_mask, batch_size, channels, height_im, width_im,
    +                       height_col, width_col, kernel_h, kernel_w, pad_h, pad_w,
    +                       stride_h, stride_w, dilation_h, dilation_w,
    +                       deformable_group, data_col);
    +}
    +
    +void modulated_deformable_col2im_impl(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_col2im_impl, data_col, data_offset,
    +                       data_mask, batch_size, channels, height_im, width_im,
    +                       height_col, width_col, kernel_h, kernel_w, pad_h, pad_w,
    +                       stride_h, stride_w, dilation_h, dilation_w,
    +                       deformable_group, grad_im);
    +}
    +
    +void modulated_deformable_col2im_coord_impl(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_col2im_coord_impl, data_col,
    +                       data_im, data_offset, data_mask, batch_size, channels,
    +                       height_im, width_im, height_col, width_col, kernel_h,
    +                       kernel_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
    +                       dilation_w, deformable_group, grad_offset, grad_mask);
    +}
    +
    +void modulated_deform_conv_forward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    +    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    +    const int dilation_h, const int dilation_w, const int group,
    +    const int deformable_group, const bool with_bias) {
    +  at::DeviceGuard guard(input.device());
    +
    +  const int batch = input.size(0);
    +  const int channels = input.size(1);
    +  const int height = input.size(2);
    +  const int width = input.size(3);
    +
    +  const int channels_out = weight.size(0);
    +  const int channels_kernel = weight.size(1);
    +  const int kernel_h_ = weight.size(2);
    +  const int kernel_w_ = weight.size(3);
    +
    +  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    +    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
    +             kernel_h_, kernel_w, kernel_h_, kernel_w_);
    +  if (channels != channels_kernel * group)
    +    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
    +             channels, channels_kernel * group);
    +
    +  const int height_out =
    +      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    +  const int width_out =
    +      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < height_out * width_out) {
    +    // Resize plane and fill with ones...
    +    ones = at::ones({height_out, width_out}, input.options());
    +  }
    +
    +  // resize output
    +  output = output.view({batch, channels_out, height_out, width_out}).zero_();
    +  // resize temporary columns
    +  columns =
    +      at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
    +                input.options());
    +
    +  output = output.view({output.size(0), group, output.size(1) / group,
    +                        output.size(2), output.size(3)});
    +
    +  for (int b = 0; b < batch; b++) {
    +    modulated_deformable_im2col_impl(
    +        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, columns);
    +
    +    // divide into group
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +
    +    for (int g = 0; g < group; g++) {
    +      output[b][g] = output[b][g]
    +                         .flatten(1)
    +                         .addmm_(weight[g].flatten(1), columns[g])
    +                         .view_as(output[b][g]);
    +    }
    +
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +  }
    +
    +  output = output.view({output.size(0), output.size(1) * output.size(2),
    +                        output.size(3), output.size(4)});
    +
    +  if (with_bias) {
    +    output += bias.view({1, bias.size(0), 1, 1});
    +  }
    +}
    +
    +void modulated_deform_conv_backward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    +    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    +    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    +    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    +    const bool with_bias) {
    +  at::DeviceGuard guard(input.device());
    +
    +  const int batch = input.size(0);
    +  const int channels = input.size(1);
    +  const int height = input.size(2);
    +  const int width = input.size(3);
    +
    +  const int channels_kernel = weight.size(1);
    +  const int kernel_h_ = weight.size(2);
    +  const int kernel_w_ = weight.size(3);
    +  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    +    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
    +             kernel_h_, kernel_w, kernel_h_, kernel_w_);
    +  if (channels != channels_kernel * group)
    +    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
    +             channels, channels_kernel * group);
    +
    +  const int height_out =
    +      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    +  const int width_out =
    +      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < height_out * width_out) {
    +    // Resize plane and fill with ones...
    +    ones = at::ones({height_out, width_out}, input.options());
    +  }
    +
    +  grad_input = grad_input.view({batch, channels, height, width});
    +  columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
    +                      input.options());
    +
    +  grad_output =
    +      grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
    +                        grad_output.size(2), grad_output.size(3)});
    +
    +  for (int b = 0; b < batch; b++) {
    +    // divide int group
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
    +                        grad_output[b][g].flatten(1), 0.0f, 1.0f);
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +
    +    // gradient w.r.t. input coordinate data
    +    modulated_deformable_col2im_coord_impl(
    +        columns, input[b], offset[b], mask[b], 1, channels, height, width,
    +        height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
    +        stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
    +        grad_mask[b]);
    +    // gradient w.r.t. input data
    +    modulated_deformable_col2im_impl(
    +        columns, offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, grad_input[b]);
    +
    +    // gradient w.r.t. weight, dWeight should accumulate across the batch and
    +    // group
    +    modulated_deformable_im2col_impl(
    +        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, columns);
    +
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
    +                                    grad_weight.size(1), grad_weight.size(2),
    +                                    grad_weight.size(3)});
    +    if (with_bias)
    +      grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
    +
    +    for (int g = 0; g < group; g++) {
    +      grad_weight[g] =
    +          grad_weight[g]
    +              .flatten(1)
    +              .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
    +              .view_as(grad_weight[g]);
    +      if (with_bias) {
    +        grad_bias[g] =
    +            grad_bias[g]
    +                .view({-1, 1})
    +                .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
    +                .view(-1);
    +      }
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
    +                                    grad_weight.size(2), grad_weight.size(3),
    +                                    grad_weight.size(4)});
    +    if (with_bias)
    +      grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
    +  }
    +  grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
    +                                  grad_output.size(2), grad_output.size(3),
    +                                  grad_output.size(4)});
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_parrots.cpp
    new file mode 100644
    index 000000000..2ef7efff6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_parrots.cpp
    @@ -0,0 +1,199 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "modulated_deform_conv_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void modulated_deform_conv_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h,
    +      dilation_w, group, deformable_group, with_bias;
    +  SSAttrs(attr)
    +      .get("kernel_h", kernel_h)
    +      .get("kernel_w", kernel_w)
    +      .get("stride_h", stride_h)
    +      .get("stride_w", stride_w)
    +      .get("pad_h", pad_h)
    +      .get("pad_w", pad_w)
    +      .get("dilation_h", dilation_h)
    +      .get("dilation_w", dilation_w)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("with_bias", with_bias)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& bias = buildATensor(ctx, ins[2]);
    +  const auto& ones = buildATensor(ctx, ins[3]);
    +  const auto& offset = buildATensor(ctx, ins[4]);
    +  const auto& mask = buildATensor(ctx, ins[5]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +
    +  modulated_deform_conv_forward(input, weight, bias, ones, offset, mask, output,
    +                                columns, kernel_h, kernel_w, stride_h, stride_w,
    +                                pad_h, pad_w, dilation_h, dilation_w, group,
    +                                deformable_group, with_bias);
    +}
    +
    +void modulated_deform_conv_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h,
    +      dilation_w, group, deformable_group, with_bias;
    +  SSAttrs(attr)
    +      .get("kernel_h", kernel_h)
    +      .get("kernel_w", kernel_w)
    +      .get("stride_h", stride_h)
    +      .get("stride_w", stride_w)
    +      .get("pad_h", pad_h)
    +      .get("pad_w", pad_w)
    +      .get("dilation_h", dilation_h)
    +      .get("dilation_w", dilation_w)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("with_bias", with_bias)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& bias = buildATensor(ctx, ins[2]);
    +  const auto& ones = buildATensor(ctx, ins[3]);
    +  const auto& offset = buildATensor(ctx, ins[4]);
    +  const auto& mask = buildATensor(ctx, ins[5]);
    +
    +  auto columns = buildATensor(ctx, outs[0]);
    +  auto grad_input = buildATensor(ctx, outs[1]);
    +  auto grad_weight = buildATensor(ctx, outs[2]);
    +  auto grad_bias = buildATensor(ctx, outs[3]);
    +  auto grad_offset = buildATensor(ctx, outs[4]);
    +  auto grad_mask = buildATensor(ctx, outs[5]);
    +  auto grad_output = buildATensor(ctx, outs[6]);
    +  modulated_deform_conv_backward(
    +      input, weight, bias, ones, offset, mask, columns, grad_input, grad_weight,
    +      grad_bias, grad_offset, grad_mask, grad_output, kernel_h, kernel_w,
    +      stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group,
    +      deformable_group, with_bias);
    +}
    +#endif
    +
    +void modulated_deform_conv_forward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h,
    +      dilation_w, group, deformable_group, with_bias;
    +  SSAttrs(attr)
    +      .get("kernel_h", kernel_h)
    +      .get("kernel_w", kernel_w)
    +      .get("stride_h", stride_h)
    +      .get("stride_w", stride_w)
    +      .get("pad_h", pad_h)
    +      .get("pad_w", pad_w)
    +      .get("dilation_h", dilation_h)
    +      .get("dilation_w", dilation_w)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("with_bias", with_bias)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& bias = buildATensor(ctx, ins[2]);
    +  const auto& ones = buildATensor(ctx, ins[3]);
    +  const auto& offset = buildATensor(ctx, ins[4]);
    +  const auto& mask = buildATensor(ctx, ins[5]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto columns = buildATensor(ctx, outs[1]);
    +
    +  modulated_deform_conv_forward(input, weight, bias, ones, offset, mask, output,
    +                                columns, kernel_h, kernel_w, stride_h, stride_w,
    +                                pad_h, pad_w, dilation_h, dilation_w, group,
    +                                deformable_group, with_bias);
    +}
    +
    +void modulated_deform_conv_backward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h,
    +      dilation_w, group, deformable_group, with_bias;
    +  SSAttrs(attr)
    +      .get("kernel_h", kernel_h)
    +      .get("kernel_w", kernel_w)
    +      .get("stride_h", stride_h)
    +      .get("stride_w", stride_w)
    +      .get("pad_h", pad_h)
    +      .get("pad_w", pad_w)
    +      .get("dilation_h", dilation_h)
    +      .get("dilation_w", dilation_w)
    +      .get("group", group)
    +      .get("deformable_group", deformable_group)
    +      .get("with_bias", with_bias)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& bias = buildATensor(ctx, ins[2]);
    +  const auto& ones = buildATensor(ctx, ins[3]);
    +  const auto& offset = buildATensor(ctx, ins[4]);
    +  const auto& mask = buildATensor(ctx, ins[5]);
    +
    +  auto columns = buildATensor(ctx, outs[0]);
    +  auto grad_input = buildATensor(ctx, outs[1]);
    +  auto grad_weight = buildATensor(ctx, outs[2]);
    +  auto grad_bias = buildATensor(ctx, outs[3]);
    +  auto grad_offset = buildATensor(ctx, outs[4]);
    +  auto grad_mask = buildATensor(ctx, outs[5]);
    +  auto grad_output = buildATensor(ctx, outs[6]);
    +  modulated_deform_conv_backward(
    +      input, weight, bias, ones, offset, mask, columns, grad_input, grad_weight,
    +      grad_bias, grad_offset, grad_mask, grad_output, kernel_h, kernel_w,
    +      stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group,
    +      deformable_group, with_bias);
    +}
    +PARROTS_EXTENSION_REGISTER(modulated_deform_conv_forward)
    +    .attr("kernel_h")
    +    .attr("kernel_w")
    +    .attr("stride_h")
    +    .attr("stride_w")
    +    .attr("pad_h")
    +    .attr("pad_w")
    +    .attr("dilation_h")
    +    .attr("dilation_w")
    +    .attr("group")
    +    .attr("deformable_group")
    +    .attr("with_bias")
    +    .input(6)
    +    .output(2)
    +    .apply(modulated_deform_conv_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(modulated_deform_conv_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(modulated_deform_conv_backward)
    +    .attr("kernel_h")
    +    .attr("kernel_w")
    +    .attr("stride_h")
    +    .attr("stride_w")
    +    .attr("pad_h")
    +    .attr("pad_w")
    +    .attr("dilation_h")
    +    .attr("dilation_w")
    +    .attr("group")
    +    .attr("deformable_group")
    +    .attr("with_bias")
    +    .input(6)
    +    .output(7)
    +    .apply(modulated_deform_conv_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(modulated_deform_conv_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_pytorch.h
    new file mode 100644
    index 000000000..12f686861
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/modulated_deform_conv_pytorch.h
    @@ -0,0 +1,21 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef MODULATED_DEFORM_CONV_PYTORCH_H
    +#define MODULATED_DEFORM_CONV_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void modulated_deform_conv_forward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    +    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    +    const int dilation_h, const int dilation_w, const int group,
    +    const int deformable_group, const bool with_bias);
    +
    +void modulated_deform_conv_backward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    +    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    +    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    +    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    +    const bool with_bias);
    +#endif  // MODULATED_DEFORM_CONV_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn.cpp
    new file mode 100644
    index 000000000..25c8f6209
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn.cpp
    @@ -0,0 +1,60 @@
    +/*!
    +**************************************************************************************************
    +* Deformable DETR
    +* Copyright (c) 2020 SenseTime. All Rights Reserved.
    +* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
    +**************************************************************************************************
    +* Modified from
    +*https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
    +**************************************************************************************************
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor ms_deform_attn_impl_forward(const Tensor &value,
    +                                   const Tensor &spatial_shapes,
    +                                   const Tensor &level_start_index,
    +                                   const Tensor &sampling_loc,
    +                                   const Tensor &attn_weight,
    +                                   const int im2col_step) {
    +  return DISPATCH_DEVICE_IMPL(ms_deform_attn_impl_forward, value,
    +                              spatial_shapes, level_start_index, sampling_loc,
    +                              attn_weight, im2col_step);
    +}
    +
    +void ms_deform_attn_impl_backward(
    +    const Tensor &value, const Tensor &spatial_shapes,
    +    const Tensor &level_start_index, const Tensor &sampling_loc,
    +    const Tensor &attn_weight, const Tensor &grad_output, Tensor &grad_value,
    +    Tensor &grad_sampling_loc, Tensor &grad_attn_weight,
    +    const int im2col_step) {
    +  DISPATCH_DEVICE_IMPL(ms_deform_attn_impl_backward, value, spatial_shapes,
    +                       level_start_index, sampling_loc, attn_weight,
    +                       grad_output, grad_value, grad_sampling_loc,
    +                       grad_attn_weight, im2col_step);
    +}
    +
    +Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
    +                              const Tensor &level_start_index,
    +                              const Tensor &sampling_loc,
    +                              const Tensor &attn_weight,
    +                              const int im2col_step) {
    +  at::DeviceGuard guard(value.device());
    +  return ms_deform_attn_impl_forward(value, spatial_shapes, level_start_index,
    +                                     sampling_loc, attn_weight, im2col_step);
    +}
    +
    +void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
    +                             const Tensor &level_start_index,
    +                             const Tensor &sampling_loc,
    +                             const Tensor &attn_weight,
    +                             const Tensor &grad_output, Tensor &grad_value,
    +                             Tensor &grad_sampling_loc,
    +                             Tensor &grad_attn_weight, const int im2col_step) {
    +  at::DeviceGuard guard(value.device());
    +  ms_deform_attn_impl_backward(value, spatial_shapes, level_start_index,
    +                               sampling_loc, attn_weight, grad_output,
    +                               grad_value, grad_sampling_loc, grad_attn_weight,
    +                               im2col_step);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn_parrots.cpp
    new file mode 100644
    index 000000000..a3ad786a8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/ms_deform_attn_parrots.cpp
    @@ -0,0 +1,69 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +using namespace at;
    +using namespace parrots;
    +
    +Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
    +                              const Tensor &level_start_index,
    +                              const Tensor &sampling_loc,
    +                              const Tensor &attn_weight, const int im2col_step);
    +
    +void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
    +                             const Tensor &level_start_index,
    +                             const Tensor &sampling_loc,
    +                             const Tensor &attn_weight,
    +                             const Tensor &grad_output, Tensor &grad_value,
    +                             Tensor &grad_sampling_loc,
    +                             Tensor &grad_attn_weight, const int im2col_step);
    +
    +void ms_deform_attn_forward_parrots(CudaContext &ctx, const SSElement &attr,
    +                                    const OperatorBase::in_list_t &ins,
    +                                    OperatorBase::out_list_t &outs) {
    +  int im2col_step;
    +  SSAttrs(attr).get("im2col_step", im2col_step).done();
    +  const auto &value = buildATensor(ctx, ins[0]);
    +  const auto &spatial_shapes = buildATensor(ctx, ins[1]);
    +  const auto &level_start_index = buildATensor(ctx, ins[2]);
    +  const auto &sampling_loc = buildATensor(ctx, ins[3]);
    +  const auto &attn_weight = buildATensor(ctx, ins[4]);
    +  auto out = ms_deform_attn_forward(value, spatial_shapes, level_start_index,
    +                                    sampling_loc, attn_weight, im2col_step);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +void ms_deform_attn_backward_parrots(CudaContext &ctx, const SSElement &attr,
    +                                     const OperatorBase::in_list_t &ins,
    +                                     OperatorBase::out_list_t &outs) {
    +  int im2col_step;
    +  SSAttrs(attr).get("im2col_step", im2col_step).done();
    +  const auto &value = buildATensor(ctx, ins[0]);
    +  const auto &spatial_shapes = buildATensor(ctx, ins[1]);
    +  const auto &level_start_index = buildATensor(ctx, ins[2]);
    +  const auto &sampling_loc = buildATensor(ctx, ins[3]);
    +  const auto &attn_weight = buildATensor(ctx, ins[4]);
    +  const auto &grad_output = buildATensor(ctx, ins[5]);
    +  auto grad_value = buildATensor(ctx, outs[0]);
    +  auto grad_sampling_loc = buildATensor(ctx, outs[1]);
    +  auto grad_attn_weight = buildATensor(ctx, outs[2]);
    +  ms_deform_attn_backward(value, spatial_shapes, level_start_index,
    +                          sampling_loc, attn_weight, grad_output, grad_value,
    +                          grad_sampling_loc, grad_attn_weight, im2col_step);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(ms_deform_attn_forward)
    +    .attr("im2col_step")
    +    .input(5)
    +    .output(1)
    +    .apply(ms_deform_attn_forward_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(ms_deform_attn_backward)
    +    .attr("im2col_step")
    +    .input(6)
    +    .output(3)
    +    .apply(ms_deform_attn_backward_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms.cpp
    new file mode 100644
    index 000000000..199d8af23
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms.cpp
    @@ -0,0 +1,33 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return DISPATCH_DEVICE_IMPL(nms_impl, boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor softnms_impl(Tensor boxes, Tensor scores, Tensor dets,
    +                    float iou_threshold, float sigma, float min_score,
    +                    int method, int offset) {
    +  return DISPATCH_DEVICE_IMPL(softnms_impl, boxes, scores, dets, iou_threshold,
    +                              sigma, min_score, method, offset);
    +}
    +
    +std::vector > nms_match_impl(Tensor dets,
    +                                              float iou_threshold) {
    +  return DISPATCH_DEVICE_IMPL(nms_match_impl, dets, iou_threshold);
    +}
    +
    +Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return nms_impl(boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
    +               float sigma, float min_score, int method, int offset) {
    +  return softnms_impl(boxes, scores, dets, iou_threshold, sigma, min_score,
    +                      method, offset);
    +}
    +
    +std::vector > nms_match(Tensor dets, float iou_threshold) {
    +  return nms_match_impl(dets, iou_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_parrots.cpp
    new file mode 100644
    index 000000000..db8b5f16e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_parrots.cpp
    @@ -0,0 +1,140 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "nms_pytorch.h"
    +
    +using namespace parrots;
    +
    +// Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +template 
    +void nms_parrots(T& ctx, const SSElement& attr,
    +                 const OperatorBase::in_list_t& ins,
    +                 OperatorBase::out_list_t& outs) {
    +  float iou_threshold;
    +  int offset;
    +  SSAttrs(attr)
    +      .get("iou_threshold", iou_threshold)
    +      .get("offset", offset)
    +      .done();
    +  at::Tensor boxes, scores;
    +  boxes = buildATensor(ctx, ins[0]);
    +  scores = buildATensor(ctx, ins[1]);
    +  auto out = nms(boxes, scores, iou_threshold, offset);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +/*Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
    + *                float sigma, float min_score, int method, int offset);*/
    +template 
    +void softnms_parrots(T& ctx, const SSElement& attr,
    +                     const OperatorBase::in_list_t& ins,
    +                     OperatorBase::out_list_t& outs) {
    +  float iou_threshold, sigma, min_score;
    +  int method, offset;
    +  SSAttrs(attr)
    +      .get("iou_threshold", iou_threshold)
    +      .get("sigma", sigma)
    +      .get("min_score", min_score)
    +      .get("method", method)
    +      .get("offset", offset)
    +      .done();
    +  at::Tensor boxes, scores, dets;
    +  boxes = buildATensor(ctx, ins[0]);
    +  scores = buildATensor(ctx, ins[1]);
    +  dets = buildATensor(ctx, ins[2]);
    +  auto out = softnms(boxes, scores, dets, iou_threshold, sigma, min_score,
    +                     method, offset);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +// std::vector > nms_match(Tensor dets, float iou_threshold);
    +template 
    +void nms_match_parrots(T& ctx, const SSElement& attr,
    +                       const OperatorBase::in_list_t& ins,
    +                       OperatorBase::out_list_t& outs) {
    +  float iou_threshold;
    +  SSAttrs(attr).get("iou_threshold", iou_threshold).done();
    +  at::Tensor dets;
    +  dets = buildATensor(ctx, ins[0]);
    +  auto out = nms_match(dets, iou_threshold);
    +  int n = out.size(), m = 0;
    +  for (int i = 0; i < n; ++i)
    +    if (m < out[i].size()) m = out[i].size();
    +  auto options = torch::TensorOptions().dtype(at::kInt);
    +  auto tensor = torch::zeros({n, m}, options);
    +  for (int i = 0; i < n; i++)
    +    tensor.slice(0, i, i + 1) =
    +        torch::from_blob(out[i].data(), {out[i].size()}, options);
    +  updateDArray(ctx, tensor, outs[0]);
    +}
    +
    +/*Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
    + *                    const Tensor dets_sorted, const float iou_threshold,
    + *                                       const int multi_label);*/
    +template 
    +void nms_rotated_parrots(T& ctx, const SSElement& attr,
    +                         const OperatorBase::in_list_t& ins,
    +                         OperatorBase::out_list_t& outs) {
    +  float iou_threshold;
    +  int multi_label;
    +  SSAttrs(attr)
    +      .get("iou_threshold", iou_threshold)
    +      .get("multi_label", multi_label)
    +      .done();
    +  at::Tensor dets, scores, order, dets_sorted;
    +  dets = buildATensor(ctx, ins[0]);
    +  scores = buildATensor(ctx, ins[1]);
    +  order = buildATensor(ctx, ins[2]);
    +  dets_sorted = buildATensor(ctx, ins[3]);
    +  auto out =
    +      nms_rotated(dets, scores, order, dets_sorted, iou_threshold, multi_label);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(nms)
    +    .attr("iou_threshold")
    +    .attr("offset")
    +    .input(2)
    +    .output(1)
    +    .apply(nms_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(nms_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(softnms)
    +    .attr("iou_threshold")
    +    .attr("sigma")
    +    .attr("min_score")
    +    .attr("method")
    +    .attr("offset")
    +    .input(3)
    +    .output(1)
    +    .apply(softnms_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(softnms_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(nms_match)
    +    .attr("iou_threshold")
    +    .input(1)
    +    .output(1)
    +    .apply(nms_match_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(nms_match_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(nms_rotated)
    +    .attr("multi_label")
    +    .attr("iou_threshold")
    +    .input(4)
    +    .output(1)
    +    .apply(nms_rotated_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(nms_rotated_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_pytorch.h
    new file mode 100644
    index 000000000..78c680e57
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_pytorch.h
    @@ -0,0 +1,18 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef NMS_PYTORCH_H
    +#define NMS_PYTORCH_H
    +#include 
    +
    +at::Tensor nms(at::Tensor boxes, at::Tensor scores, float iou_threshold,
    +               int offset);
    +
    +at::Tensor softnms(at::Tensor boxes, at::Tensor scores, at::Tensor dets,
    +                   float iou_threshold, float sigma, float min_score,
    +                   int method, int offset);
    +
    +std::vector > nms_match(at::Tensor dets, float iou_threshold);
    +
    +at::Tensor nms_rotated(const at::Tensor dets, const at::Tensor scores,
    +                       const at::Tensor order, const at::Tensor dets_sorted,
    +                       const float iou_threshold, const int multi_label);
    +#endif  // NMS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_rotated.cpp
    new file mode 100644
    index 000000000..e4ef676a9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/nms_rotated.cpp
    @@ -0,0 +1,32 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/nms_rotated/nms_rotated.h
    +#include "pytorch_cpp_helper.hpp"
    +
    +Tensor nms_rotated_cpu(const Tensor dets, const Tensor scores,
    +                       const float iou_threshold);
    +
    +#ifdef MMCV_WITH_CUDA
    +Tensor nms_rotated_cuda(const Tensor dets, const Tensor scores,
    +                        const Tensor order, const Tensor dets_sorted,
    +                        const float iou_threshold, const int multi_label);
    +#endif
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
    +                   const Tensor dets_sorted, const float iou_threshold,
    +                   const int multi_label) {
    +  assert(dets.device().is_cuda() == scores.device().is_cuda());
    +  if (dets.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    return nms_rotated_cuda(dets, scores, order, dets_sorted, iou_threshold,
    +                            multi_label);
    +#else
    +    AT_ERROR("Not compiled with GPU support");
    +#endif
    +  }
    +
    +  return nms_rotated_cpu(dets, scores, iou_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group.cpp
    new file mode 100644
    index 000000000..2bf8c8bbf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group.cpp
    @@ -0,0 +1,26 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// It is modified from https://github.com/WenmuZhou/PAN.pytorch
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +std::vector> pixel_group_impl(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float dis_threshold) {
    +  return DISPATCH_DEVICE_IMPL(pixel_group_impl, score, mask, embedding,
    +                              kernel_label, kernel_contour, kernel_region_num,
    +                              dis_threshold);
    +}
    +
    +std::vector> pixel_group(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float distance_threshold) {
    +  score = score.contiguous();
    +  mask = mask.contiguous();
    +  embedding = embedding.contiguous();
    +  kernel_label = kernel_label.contiguous();
    +  kernel_contour = kernel_contour.contiguous();
    +
    +  return pixel_group_impl(score, mask, embedding, kernel_label, kernel_contour,
    +                          kernel_region_num, distance_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_parrots.cpp
    new file mode 100644
    index 000000000..bd863a4e1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_parrots.cpp
    @@ -0,0 +1,54 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "pixel_group_pytorch.h"
    +
    +using namespace parrots;
    +using namespace std;
    +
    +template 
    +void pixel_group_parrots(T& ctx, const SSElement& attr,
    +                         const OperatorBase::in_list_t& ins,
    +                         OperatorBase::out_list_t& outs) {
    +  int kernel_region_num;
    +  float distance_threshold;
    +  SSAttrs(attr)
    +      .get("kernel_region_num", kernel_region_num)
    +      .get("distance_threshold", distance_threshold)
    +      .done();
    +  at::Tensor score;
    +  at::Tensor mask;
    +  at::Tensor embedding;
    +  at::Tensor kernel_label;
    +  at::Tensor kernel_contour;
    +  score = buildATensor(ctx, ins[0]);
    +  mask = buildATensor(ctx, ins[1]);
    +  embedding = buildATensor(ctx, ins[2]);
    +  kernel_label = buildATensor(ctx, ins[3]);
    +  kernel_contour = buildATensor(ctx, ins[4]);
    +  auto out = pixel_group(score, mask, embedding, kernel_label, kernel_contour,
    +                         kernel_region_num, distance_threshold);
    +  int n = out.size();
    +  std::vector out_tensor;
    +  for (int i = 0; i < n; ++i) out_tensor.push_back(float(out[i].size()));
    +  for (int i = 0; i < n; ++i)
    +    out_tensor.insert(out_tensor.end(), out[i].begin(), out[i].end());
    +  auto options = torch::TensorOptions().dtype(at::kFloat);
    +  auto tensor = torch::zeros({1, out_tensor.size()}, options);
    +  tensor.slice(0, 0, 1) =
    +      torch::from_blob(out_tensor.data(), {out_tensor.size()}, options);
    +  updateDArray(ctx, tensor, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(pixel_group)
    +    .attr("kernel_region_num")
    +    .attr("distance_threshold")
    +    .input(5)
    +    .output(1)
    +    .apply(pixel_group_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(pixel_group_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_pytorch.h
    new file mode 100644
    index 000000000..1686ef3ee
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/pixel_group_pytorch.h
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef PIXEL_GROUP_PYTORCH_H
    +#define PIXEL_GROUP_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +std::vector> pixel_group(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float distance_threshold);
    +
    +#endif  // PIXEL_GROUP_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes.cpp
    new file mode 100644
    index 000000000..540da9403
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes.cpp
    @@ -0,0 +1,44 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void points_in_boxes_part_forward_impl(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points) {
    +  DISPATCH_DEVICE_IMPL(points_in_boxes_part_forward_impl, batch_size, boxes_num,
    +                       pts_num, boxes, pts, box_idx_of_points);
    +}
    +
    +void points_in_boxes_all_forward_impl(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points) {
    +  DISPATCH_DEVICE_IMPL(points_in_boxes_all_forward_impl, batch_size, boxes_num,
    +                       pts_num, boxes, pts, box_idx_of_points);
    +}
    +
    +void points_in_boxes_part_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                  Tensor box_idx_of_points_tensor) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box params pts: (B, npoints, 3)
    +  // [x, y, z] in LiDAR coordinate params boxes_idx_of_points: (B, npoints),
    +  // default -1
    +  int batch_size = boxes_tensor.size(0);
    +  int boxes_num = boxes_tensor.size(1);
    +  int pts_num = pts_tensor.size(1);
    +  points_in_boxes_part_forward_impl(batch_size, boxes_num, pts_num,
    +                                    boxes_tensor, pts_tensor,
    +                                    box_idx_of_points_tensor);
    +}
    +
    +void points_in_boxes_all_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor box_idx_of_points_tensor) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center. params pts: (B, npoints, 3) [x, y, z]
    +  // in LiDAR coordinate params boxes_idx_of_points: (B, npoints), default -1
    +  int batch_size = boxes_tensor.size(0);
    +  int boxes_num = boxes_tensor.size(1);
    +  int pts_num = pts_tensor.size(1);
    +  points_in_boxes_all_forward_impl(batch_size, boxes_num, pts_num, boxes_tensor,
    +                                   pts_tensor, box_idx_of_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_parrots.cpp
    new file mode 100644
    index 000000000..afd2b0eb2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_parrots.cpp
    @@ -0,0 +1,64 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "points_in_boxes_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void points_in_boxes_part_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto boxes_tensor = buildATensor(ctx, ins[0]);
    +  auto pts_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto box_idx_of_points_tensor = buildATensor(ctx, outs[0]);
    +
    +  points_in_boxes_part_forward(boxes_tensor, pts_tensor,
    +                               box_idx_of_points_tensor);
    +}
    +
    +void points_in_boxes_all_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  auto boxes_tensor = buildATensor(ctx, ins[0]);
    +  auto pts_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto box_idx_of_points_tensor = buildATensor(ctx, outs[0]);
    +
    +  points_in_boxes_all_forward(boxes_tensor, pts_tensor,
    +                              box_idx_of_points_tensor);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(points_in_boxes_part_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(points_in_boxes_part_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(points_in_boxes_all_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(points_in_boxes_all_forward_cuda_parrots)
    +    .done();
    +#endif
    +
    +void points_in_boxes_forward_cpu_parrots(HostContext& ctx,
    +                                         const SSElement& attr,
    +                                         const OperatorBase::in_list_t& ins,
    +                                         OperatorBase::out_list_t& outs) {
    +  auto boxes_tensor = buildATensor(ctx, ins[0]);
    +  auto pts_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto pts_indices_tensor = buildATensor(ctx, outs[0]);
    +
    +  points_in_boxes_cpu_forward(boxes_tensor, pts_tensor, pts_indices_tensor);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(points_in_boxes_cpu_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(points_in_boxes_forward_cpu_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_pytorch.h
    new file mode 100644
    index 000000000..f3e465e3c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_boxes_pytorch.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef POINTS_IN_BOXES_PYTORCH_H
    +#define POINTS_IN_BOXES_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void points_in_boxes_part_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                  Tensor box_idx_of_points_tensor);
    +
    +void points_in_boxes_all_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor box_idx_of_points_tensor);
    +
    +void points_in_boxes_cpu_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor pts_indices_tensor);
    +
    +#endif  // POINTS_IN_BOXES_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons.cpp
    new file mode 100644
    index 000000000..75a93dcef
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons.cpp
    @@ -0,0 +1,15 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void points_in_polygons_forward_impl(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols) {
    +  DISPATCH_DEVICE_IMPL(points_in_polygons_forward_impl, points, polygons,
    +                       output, rows, cols);
    +}
    +
    +void points_in_polygons_forward(Tensor points, Tensor polygons, Tensor output) {
    +  int rows = points.size(0);
    +  int cols = polygons.size(0);
    +  points_in_polygons_forward_impl(points, polygons, output, rows, cols);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_parrots.cpp
    new file mode 100644
    index 000000000..d52018e64
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_parrots.cpp
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "points_in_polygons_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void points_in_polygons_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  auto points = buildATensor(ctx, ins[0]);
    +  auto polygons = buildATensor(ctx, ins[1]);
    +
    +  auto output = buildATensor(ctx, outs[0]);
    +
    +  points_in_polygons_forward(points, polygons, output);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(points_in_polygons_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(points_in_polygons_cuda_parrots)
    +    .done();
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_pytorch.h
    new file mode 100644
    index 000000000..042678143
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/points_in_polygons_pytorch.h
    @@ -0,0 +1,9 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef POINTS_IN_POLYGONS_PYTORCH_H
    +#define POINTS_IN_POLYGONS_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void points_in_polygons_forward(Tensor points, Tensor polygons, Tensor output);
    +
    +#endif  // POINTS_IN_POLYGONS_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool.cpp
    new file mode 100644
    index 000000000..00db84a15
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool.cpp
    @@ -0,0 +1,47 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void prroi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_forward_impl, input, rois, output,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_backward_impl(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_backward_impl, grad_output, rois, grad_input,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward_impl(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_coor_backward_impl, output, grad_output,
    +                       input, rois, grad_rois, pooled_height, pooled_width,
    +                       spatial_scale);
    +}
    +
    +void prroi_pool_forward(Tensor input, Tensor rois, Tensor output,
    +                        int pooled_height, int pooled_width,
    +                        float spatial_scale) {
    +  prroi_pool_forward_impl(input, rois, output, pooled_height, pooled_width,
    +                          spatial_scale);
    +}
    +
    +void prroi_pool_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
    +                         int pooled_height, int pooled_width,
    +                         float spatial_scale) {
    +  prroi_pool_backward_impl(grad_output, rois, grad_input, pooled_height,
    +                           pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward(Tensor output, Tensor grad_output, Tensor input,
    +                              Tensor rois, Tensor grad_rois, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  prroi_pool_coor_backward_impl(output, grad_output, input, rois, grad_rois,
    +                                pooled_height, pooled_width, spatial_scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_parrots.cpp
    new file mode 100644
    index 000000000..4e8295581
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_parrots.cpp
    @@ -0,0 +1,97 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "prroi_pool_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void prroi_pool_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  prroi_pool_forward(input, rois, output, pooled_height, pooled_width,
    +                     spatial_scale);
    +}
    +
    +void prroi_pool_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  prroi_pool_backward(grad_output, rois, grad_input, pooled_height,
    +                      pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward_cuda_parrots(CudaContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .done();
    +
    +  const auto& output = buildATensor(ctx, ins[0]);
    +  const auto& grad_output = buildATensor(ctx, ins[1]);
    +  const auto& input = buildATensor(ctx, ins[2]);
    +  const auto& rois = buildATensor(ctx, ins[3]);
    +  auto grad_rois = buildATensor(ctx, outs[0]);
    +  prroi_pool_coor_backward(output, grad_output, input, rois, grad_rois,
    +                           pooled_height, pooled_width, spatial_scale);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(prroi_pool_forward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .input(2)
    +    .output(1)
    +    .apply(prroi_pool_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(prroi_pool_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .input(2)
    +    .output(1)
    +    .apply(prroi_pool_backward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(prroi_pool_coor_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .input(4)
    +    .output(1)
    +    .apply(prroi_pool_coor_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_pytorch.h
    new file mode 100644
    index 000000000..451b01dd5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/prroi_pool_pytorch.h
    @@ -0,0 +1,19 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef PRROI_POOL_PYTORCH_H
    +#define PRROI_POOL_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void prroi_pool_forward(Tensor input, Tensor rois, Tensor output,
    +                        int pooled_height, int pooled_width,
    +                        float spatial_scale);
    +
    +void prroi_pool_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
    +                         int pooled_height, int pooled_width,
    +                         float spatial_scale);
    +
    +void prroi_pool_coor_backward(Tensor output, Tensor grad_output, Tensor input,
    +                              Tensor rois, Tensor grad_rois, int pooled_height,
    +                              int pooled_width, float spatial_scale);
    +
    +#endif  // PRROI_POOL_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask.cpp
    new file mode 100644
    index 000000000..6064c9ba5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/hszhao/semseg/blob/master/lib/psa/src
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask) {
    +  DISPATCH_DEVICE_IMPL(psamask_forward_impl, psa_type, input, output, num_,
    +                       h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                       half_w_mask);
    +}
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask) {
    +  DISPATCH_DEVICE_IMPL(psamask_backward_impl, psa_type, grad_output, grad_input,
    +                       num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                       half_w_mask);
    +}
    +
    +void psamask_forward(const Tensor input, Tensor output, const int psa_type,
    +                     const int num_, const int h_feature, const int w_feature,
    +                     const int h_mask, const int w_mask, const int half_h_mask,
    +                     const int half_w_mask) {
    +  psamask_forward_impl(psa_type, input, output, num_, h_feature, w_feature,
    +                       h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +
    +void psamask_backward(Tensor grad_output, const Tensor grad_input,
    +                      const int psa_type, const int num_, const int h_feature,
    +                      const int w_feature, const int h_mask, const int w_mask,
    +                      const int half_h_mask, const int half_w_mask) {
    +  psamask_backward_impl(psa_type, grad_output, grad_input, num_, h_feature,
    +                        w_feature, h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_parrots.cpp
    new file mode 100644
    index 000000000..f67102d02
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_parrots.cpp
    @@ -0,0 +1,129 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "psamask_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void psamask_forward_cuda_parrots(CudaContext &ctx, const SSElement &attr,
    +                                  const OperatorBase::in_list_t &ins,
    +                                  OperatorBase::out_list_t &outs) {
    +  int psa_type, num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +      half_w_mask;
    +  SSAttrs(attr)
    +      .get("psa_type", psa_type)
    +      .get("num_", num_)
    +      .get("h_feature", h_feature)
    +      .get("w_feature", w_feature)
    +      .get("h_mask", h_mask)
    +      .get("w_mask", w_mask)
    +      .get("half_h_mask", half_h_mask)
    +      .get("half_w_mask", half_w_mask)
    +      .done();
    +  const auto &input = buildATensor(ctx, ins[0]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  psamask_forward_cuda(psa_type, input, output, num_, h_feature, w_feature,
    +                       h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +
    +void psamask_backward_cuda_parrots(CudaContext &ctx, const SSElement &attr,
    +                                   const OperatorBase::in_list_t &ins,
    +                                   OperatorBase::out_list_t &outs) {
    +  int psa_type, num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +      half_w_mask;
    +  SSAttrs(attr)
    +      .get("psa_type", psa_type)
    +      .get("num_", num_)
    +      .get("h_feature", h_feature)
    +      .get("w_feature", w_feature)
    +      .get("h_mask", h_mask)
    +      .get("w_mask", w_mask)
    +      .get("half_h_mask", half_h_mask)
    +      .get("half_w_mask", half_w_mask)
    +      .done();
    +
    +  const auto &grad_output = buildATensor(ctx, ins[0]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  psamask_backward_cuda(psa_type, grad_output, grad_input, num_, h_feature,
    +                        w_feature, h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +#endif
    +
    +void psamask_forward_cpu_parrots(HostContext &ctx, const SSElement &attr,
    +                                 const OperatorBase::in_list_t &ins,
    +                                 OperatorBase::out_list_t &outs) {
    +  int psa_type, num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +      half_w_mask;
    +  SSAttrs(attr)
    +      .get("psa_type", psa_type)
    +      .get("num_", num_)
    +      .get("h_feature", h_feature)
    +      .get("w_feature", w_feature)
    +      .get("h_mask", h_mask)
    +      .get("w_mask", w_mask)
    +      .get("half_h_mask", half_h_mask)
    +      .get("half_w_mask", half_w_mask)
    +      .done();
    +  const auto &input = buildATensor(ctx, ins[0]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  psamask_forward_cpu(psa_type, input, output, num_, h_feature, w_feature,
    +                      h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +
    +void psamask_backward_cpu_parrots(HostContext &ctx, const SSElement &attr,
    +                                  const OperatorBase::in_list_t &ins,
    +                                  OperatorBase::out_list_t &outs) {
    +  int psa_type, num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +      half_w_mask;
    +  SSAttrs(attr)
    +      .get("psa_type", psa_type)
    +      .get("num_", num_)
    +      .get("h_feature", h_feature)
    +      .get("w_feature", w_feature)
    +      .get("h_mask", h_mask)
    +      .get("w_mask", w_mask)
    +      .get("half_h_mask", half_h_mask)
    +      .get("half_w_mask", half_w_mask)
    +      .done();
    +
    +  const auto &grad_output = buildATensor(ctx, ins[0]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  psamask_backward_cpu(psa_type, grad_output, grad_input, num_, h_feature,
    +                       w_feature, h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(psamask_forward)
    +    .attr("psa_type")
    +    .attr("num_")
    +    .attr("h_feature")
    +    .attr("w_feature")
    +    .attr("h_mask")
    +    .attr("w_mask")
    +    .attr("half_h_mask")
    +    .attr("half_w_mask")
    +    .input(1)
    +    .output(1)
    +    .apply(psamask_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(psamask_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(psamask_backward)
    +    .attr("psa_type")
    +    .attr("num_")
    +    .attr("h_feature")
    +    .attr("w_feature")
    +    .attr("h_mask")
    +    .attr("w_mask")
    +    .attr("half_h_mask")
    +    .attr("half_w_mask")
    +    .input(1)
    +    .output(1)
    +    .apply(psamask_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(psamask_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_pytorch.h
    new file mode 100644
    index 000000000..c3f0579ef
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/psamask_pytorch.h
    @@ -0,0 +1,31 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef PSAMASK_PYTORCH_H
    +#define PSAMASK_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +#ifdef MMCV_WITH_CUDA
    +void psamask_forward_cuda(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask);
    +
    +void psamask_backward_cuda(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask);
    +#endif
    +void psamask_forward_cpu(const int psa_type, const Tensor input, Tensor output,
    +                         const int num_, const int h_feature,
    +                         const int w_feature, const int h_mask,
    +                         const int w_mask, const int half_h_mask,
    +                         const int half_w_mask);
    +
    +void psamask_backward_cpu(const int psa_type, const Tensor grad_output,
    +                          Tensor grad_input, const int num_,
    +                          const int h_feature, const int w_feature,
    +                          const int h_mask, const int w_mask,
    +                          const int half_h_mask, const int half_w_mask);
    +#endif  // PSAMASK_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated.cpp
    new file mode 100644
    index 000000000..81ffa9fd6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated.cpp
    @@ -0,0 +1,42 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void riroi_align_rotated_forward_impl(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(riroi_align_rotated_forward_impl, features, rois, output,
    +                       pooled_height, pooled_width, spatial_scale, num_samples,
    +                       num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(riroi_align_rotated_backward_impl, top_grad, rois,
    +                       bottom_grad, pooled_height, pooled_width, spatial_scale,
    +                       num_samples, num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_forward(Tensor features, Tensor rois, Tensor output,
    +                                 int pooled_height, int pooled_width,
    +                                 float spatial_scale, int num_samples,
    +                                 int num_orientations, bool clockwise) {
    +  riroi_align_rotated_forward_impl(features, rois, output, pooled_height,
    +                                   pooled_width, spatial_scale, num_samples,
    +                                   num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                  Tensor bottom_grad, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int num_samples, int num_orientations,
    +                                  bool clockwise) {
    +  riroi_align_rotated_backward_impl(top_grad, rois, bottom_grad, pooled_height,
    +                                    pooled_width, spatial_scale, num_samples,
    +                                    num_orientations, clockwise);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_parrots.cpp
    new file mode 100644
    index 000000000..5eb340ce4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_parrots.cpp
    @@ -0,0 +1,86 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "riroi_align_rotated_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void riroi_align_rotated_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sample_num;
    +  int num_orientations;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("num_samples", sample_num)
    +      .get("num_orientations", num_orientations)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  auto input = buildATensor(ctx, ins[0]);
    +  auto rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  riroi_align_rotated_forward(input, rois, output, pooled_height, pooled_width,
    +                              spatial_scale, sample_num, num_orientations,
    +                              clockwise);
    +}
    +
    +void riroi_align_rotated_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sample_num;
    +  int num_orientations;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("num_samples", sample_num)
    +      .get("num_orientations", num_orientations)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  auto grad_output = buildATensor(ctx, ins[0]);
    +  auto rois = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  riroi_align_rotated_backward(grad_output, rois, grad_input, pooled_height,
    +                               pooled_width, spatial_scale, sample_num,
    +                               num_orientations, clockwise);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(riroi_align_rotated_forward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("num_samples")
    +    .attr("num_orientations")
    +    .attr("clockwise")
    +    .input(2)
    +    .output(1)
    +    .apply(riroi_align_rotated_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(riroi_align_rotated_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("num_samples")
    +    .attr("num_orientations")
    +    .attr("clockwise")
    +    .input(2)
    +    .output(1)
    +    .apply(riroi_align_rotated_backward_cuda_parrots)
    +    .done();
    +
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_pytorch.h
    new file mode 100644
    index 000000000..49a30bffa
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/riroi_align_rotated_pytorch.h
    @@ -0,0 +1,18 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef RIROI_ALIGN_ROTATED_PYTORCH_H
    +#define RIROI_ALIGN_ROTATED_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void riroi_align_rotated_forward(Tensor features, Tensor rois, Tensor output,
    +                                 int pooled_height, int pooled_width,
    +                                 float spatial_scale, int num_samples,
    +                                 int num_orientations, bool clockwise);
    +
    +void riroi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                  Tensor bottom_grad, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int num_samples, int num_orientations,
    +                                  bool clockwise);
    +
    +#endif  // RIROI_ALIGN_ROTATED_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align.cpp
    new file mode 100644
    index 000000000..6e7077397
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  DISPATCH_DEVICE_IMPL(roi_align_forward_impl, input, rois, output, argmax_y,
    +                       argmax_x, aligned_height, aligned_width, spatial_scale,
    +                       sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned) {
    +  DISPATCH_DEVICE_IMPL(roi_align_backward_impl, grad_output, rois, argmax_y,
    +                       argmax_x, grad_input, aligned_height, aligned_width,
    +                       spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward(Tensor input, Tensor rois, Tensor output,
    +                       Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                       int aligned_width, float spatial_scale,
    +                       int sampling_ratio, int pool_mode, bool aligned) {
    +  roi_align_forward_impl(input, rois, output, argmax_y, argmax_x,
    +                         aligned_height, aligned_width, spatial_scale,
    +                         sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                        Tensor argmax_x, Tensor grad_input, int aligned_height,
    +                        int aligned_width, float spatial_scale,
    +                        int sampling_ratio, int pool_mode, bool aligned) {
    +  roi_align_backward_impl(grad_output, rois, argmax_y, argmax_x, grad_input,
    +                          aligned_height, aligned_width, spatial_scale,
    +                          sampling_ratio, pool_mode, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_parrots.cpp
    new file mode 100644
    index 000000000..60abea092
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_parrots.cpp
    @@ -0,0 +1,151 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "roi_align_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_align_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                    const OperatorBase::in_list_t& ins,
    +                                    OperatorBase::out_list_t& outs) {
    +  int aligned_height;
    +  int aligned_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  int pool_mode;
    +  bool aligned;
    +  SSAttrs(attr)
    +      .get("aligned_height", aligned_height)
    +      .get("aligned_width", aligned_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("pool_mode", pool_mode)
    +      .get("aligned", aligned)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto argmax_y = buildATensor(ctx, outs[1]);
    +  auto argmax_x = buildATensor(ctx, outs[2]);
    +  roi_align_forward_cuda(input, rois, output, argmax_y, argmax_x,
    +                         aligned_height, aligned_width, spatial_scale,
    +                         sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                     const OperatorBase::in_list_t& ins,
    +                                     OperatorBase::out_list_t& outs) {
    +  int aligned_height;
    +  int aligned_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  int pool_mode;
    +  bool aligned;
    +  SSAttrs(attr)
    +      .get("aligned_height", aligned_height)
    +      .get("aligned_width", aligned_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("pool_mode", pool_mode)
    +      .get("aligned", aligned)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  const auto& argmax_y = buildATensor(ctx, ins[2]);
    +  const auto& argmax_x = buildATensor(ctx, ins[3]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  roi_align_backward_cuda(grad_output, rois, argmax_y, argmax_x, grad_input,
    +                          aligned_height, aligned_width, spatial_scale,
    +                          sampling_ratio, pool_mode, aligned);
    +}
    +#endif
    +
    +void roi_align_forward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                   const OperatorBase::in_list_t& ins,
    +                                   OperatorBase::out_list_t& outs) {
    +  int aligned_height;
    +  int aligned_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  int pool_mode;
    +  bool aligned;
    +  SSAttrs(attr)
    +      .get("aligned_height", aligned_height)
    +      .get("aligned_width", aligned_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("pool_mode", pool_mode)
    +      .get("aligned", aligned)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto argmax_y = buildATensor(ctx, outs[1]);
    +  auto argmax_x = buildATensor(ctx, outs[2]);
    +  roi_align_forward_cpu(input, rois, output, argmax_y, argmax_x, aligned_height,
    +                        aligned_width, spatial_scale, sampling_ratio, pool_mode,
    +                        aligned);
    +}
    +
    +void roi_align_backward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                    const OperatorBase::in_list_t& ins,
    +                                    OperatorBase::out_list_t& outs) {
    +  int aligned_height;
    +  int aligned_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  int pool_mode;
    +  bool aligned;
    +  SSAttrs(attr)
    +      .get("aligned_height", aligned_height)
    +      .get("aligned_width", aligned_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("pool_mode", pool_mode)
    +      .get("aligned", aligned)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  const auto& argmax_y = buildATensor(ctx, ins[2]);
    +  const auto& argmax_x = buildATensor(ctx, ins[3]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  roi_align_backward_cpu(grad_output, rois, argmax_y, argmax_x, grad_input,
    +                         aligned_height, aligned_width, spatial_scale,
    +                         sampling_ratio, pool_mode, aligned);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(roi_align_forward)
    +    .attr("aligned_height")
    +    .attr("aligned_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("pool_mode")
    +    .attr("aligned")
    +    .input(2)
    +    .output(3)
    +    .apply(roi_align_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(roi_align_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(roi_align_backward)
    +    .attr("aligned_height")
    +    .attr("aligned_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("pool_mode")
    +    .attr("aligned")
    +    .input(4)
    +    .output(1)
    +    .apply(roi_align_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(roi_align_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_pytorch.h
    new file mode 100644
    index 000000000..4c6016098
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_pytorch.h
    @@ -0,0 +1,32 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROI_ALIGN_PYTORCH_H
    +#define ROI_ALIGN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_align_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +void roi_align_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned);
    +#endif
    +
    +void roi_align_forward_cpu(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                           int aligned_width, float spatial_scale,
    +                           int sampling_ratio, int pool_mode, bool aligned);
    +
    +void roi_align_backward_cpu(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                            Tensor argmax_x, Tensor grad_input,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +#endif  // ROI_ALIGN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated.cpp
    new file mode 100644
    index 000000000..5ef691ada
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_align_rotated_forward_impl(Tensor features, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sample_ratio,
    +                                    bool aligned, bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(roi_align_rotated_forward_impl, features, rois, output,
    +                       aligned_height, aligned_width, spatial_scale,
    +                       sample_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sample_ratio, bool aligned,
    +                                     bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(roi_align_rotated_backward_impl, top_grad, rois,
    +                       bottom_grad, aligned_height, aligned_width,
    +                       spatial_scale, sample_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_forward(Tensor input, Tensor rois, Tensor output,
    +                               int aligned_height, int aligned_width,
    +                               float spatial_scale, int sampling_ratio,
    +                               bool aligned, bool clockwise) {
    +  roi_align_rotated_forward_impl(input, rois, output, aligned_height,
    +                                 aligned_width, spatial_scale, sampling_ratio,
    +                                 aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                Tensor bottom_grad, int aligned_height,
    +                                int aligned_width, float spatial_scale,
    +                                int sampling_ratio, bool aligned,
    +                                bool clockwise) {
    +  roi_align_rotated_backward_impl(top_grad, rois, bottom_grad, aligned_height,
    +                                  aligned_width, spatial_scale, sampling_ratio,
    +                                  aligned, clockwise);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_parrots.cpp
    new file mode 100644
    index 000000000..9386250a2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_parrots.cpp
    @@ -0,0 +1,147 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "roi_align_rotated_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_align_rotated_forward_cuda_parrots(CudaContext& ctx,
    +                                            const SSElement& attr,
    +                                            const OperatorBase::in_list_t& ins,
    +                                            OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  bool aligned;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("aligned", aligned)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  roi_align_rotated_forward_cuda(input, rois, output, pooled_height,
    +                                 pooled_width, spatial_scale, sampling_ratio,
    +                                 aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  bool aligned;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("aligned", aligned)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  roi_align_rotated_backward_cuda(grad_output, rois, grad_input, pooled_height,
    +                                  pooled_width, spatial_scale, sampling_ratio,
    +                                  aligned, clockwise);
    +}
    +#endif
    +
    +void roi_align_rotated_forward_cpu_parrots(HostContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  bool aligned;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("aligned", aligned)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  roi_align_rotated_forward_cpu(input, rois, output, pooled_height,
    +                                pooled_width, spatial_scale, sampling_ratio,
    +                                aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_cpu_parrots(HostContext& ctx,
    +                                            const SSElement& attr,
    +                                            const OperatorBase::in_list_t& ins,
    +                                            OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  int sampling_ratio;
    +  bool aligned;
    +  bool clockwise;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .get("sampling_ratio", sampling_ratio)
    +      .get("aligned", aligned)
    +      .get("clockwise", clockwise)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  roi_align_rotated_backward_cpu(grad_output, rois, grad_input, pooled_height,
    +                                 pooled_width, spatial_scale, sampling_ratio,
    +                                 aligned, clockwise);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(roi_align_rotated_forward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("aligned")
    +    .attr("clockwise")
    +    .input(2)
    +    .output(1)
    +    .apply(roi_align_rotated_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(roi_align_rotated_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(roi_align_rotated_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .attr("sampling_ratio")
    +    .attr("aligned")
    +    .attr("clockwise")
    +    .input(2)
    +    .output(1)
    +    .apply(roi_align_rotated_backward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(roi_align_rotated_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_pytorch.h
    new file mode 100644
    index 000000000..8136b56d1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_align_rotated_pytorch.h
    @@ -0,0 +1,31 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROI_ALIGN_ROTATED_PYTORCH_H
    +#define ROI_ALIGN_ROTATED_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_align_rotated_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                                    int pooled_height, int pooled_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_cuda(Tensor grad_output, Tensor rois,
    +                                     Tensor bottom_grad, int pooled_height,
    +                                     int pooled_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise);
    +#endif
    +
    +void roi_align_rotated_forward_cpu(Tensor input, Tensor rois, Tensor output,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_cpu(Tensor grad_output, Tensor rois,
    +                                    Tensor bottom_grad, int pooled_height,
    +                                    int pooled_width, float spatial_scale,
    +                                    int sampling_ratio, bool aligned,
    +                                    bool clockwise);
    +
    +#endif  // ROI_ALIGN_ROTATED_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool.cpp
    new file mode 100644
    index 000000000..bba90b806
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool.cpp
    @@ -0,0 +1,31 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(roi_pool_forward_impl, input, rois, output, argmax,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(roi_pool_backward_impl, grad_output, rois, argmax,
    +                       grad_input, pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_forward(Tensor input, Tensor rois, Tensor output, Tensor argmax,
    +                      int pooled_height, int pooled_width,
    +                      float spatial_scale) {
    +  roi_pool_forward_impl(input, rois, output, argmax, pooled_height,
    +                        pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward(Tensor grad_output, Tensor rois, Tensor argmax,
    +                       Tensor grad_input, int pooled_height, int pooled_width,
    +                       float spatial_scale) {
    +  roi_pool_backward_impl(grad_output, rois, argmax, grad_input, pooled_height,
    +                         pooled_width, spatial_scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_parrots.cpp
    new file mode 100644
    index 000000000..0acde4a41
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_parrots.cpp
    @@ -0,0 +1,67 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "roi_pool_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_pool_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                   const OperatorBase::in_list_t& ins,
    +                                   OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  auto argmax = buildATensor(ctx, outs[1]);
    +  roi_pool_forward_cuda(input, rois, output, argmax, pooled_height,
    +                        pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                    const OperatorBase::in_list_t& ins,
    +                                    OperatorBase::out_list_t& outs) {
    +  int pooled_height;
    +  int pooled_width;
    +  float spatial_scale;
    +  SSAttrs(attr)
    +      .get("pooled_height", pooled_height)
    +      .get("pooled_width", pooled_width)
    +      .get("spatial_scale", spatial_scale)
    +      .done();
    +
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& rois = buildATensor(ctx, ins[1]);
    +  const auto& argmax = buildATensor(ctx, ins[2]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  roi_pool_backward_cuda(grad_output, rois, argmax, grad_input, pooled_height,
    +                         pooled_width, spatial_scale);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(roi_pool_forward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .input(2)
    +    .output(2)
    +    .apply(roi_pool_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(roi_pool_backward)
    +    .attr("pooled_height")
    +    .attr("pooled_width")
    +    .attr("spatial_scale")
    +    .input(3)
    +    .output(1)
    +    .apply(roi_pool_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_pytorch.h
    new file mode 100644
    index 000000000..d67a1502f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roi_pool_pytorch.h
    @@ -0,0 +1,16 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROI_POOL_PYTORCH_H
    +#define ROI_POOL_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale);
    +
    +void roi_pool_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale);
    +#endif
    +#endif  // ROI_POOL_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d.cpp
    new file mode 100644
    index 000000000..6cf9cf094
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d.cpp
    @@ -0,0 +1,72 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method) {
    +  DISPATCH_DEVICE_IMPL(roiaware_pool3d_forward_impl, boxes_num, pts_num,
    +                       channels, max_pts_each_voxel, out_x, out_y, out_z, rois,
    +                       pts, pts_feature, argmax, pts_idx_of_voxels,
    +                       pooled_features, pool_method);
    +}
    +
    +void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method) {
    +  DISPATCH_DEVICE_IMPL(roiaware_pool3d_backward_impl, boxes_num, out_x, out_y,
    +                       out_z, channels, max_pts_each_voxel, pts_idx_of_voxels,
    +                       argmax, grad_out, grad_in, pool_method);
    +}
    +
    +void roiaware_pool3d_forward(Tensor rois, Tensor pts, Tensor pts_feature,
    +                             Tensor argmax, Tensor pts_idx_of_voxels,
    +                             Tensor pooled_features, int pool_method) {
    +  // params rois: (N, 7) [x, y, z, x_size, y_size, z_size, ry] in LiDAR
    +  // coordinate
    +  // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate
    +  // params pts_feature: (npoints, C)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params pooled_features: (N, out_x, out_y, out_z, C)
    +  // params pool_method: 0: max_pool 1: avg_pool
    +  int boxes_num = rois.size(0);
    +  int pts_num = pts.size(0);
    +  int channels = pts_feature.size(1);
    +  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    +  int out_x = pts_idx_of_voxels.size(1);
    +  int out_y = pts_idx_of_voxels.size(2);
    +  int out_z = pts_idx_of_voxels.size(3);
    +  assert((out_x < 256) && (out_y < 256) &&
    +         (out_z < 256));  // we encode index with 8bit
    +
    +  roiaware_pool3d_forward_impl(boxes_num, pts_num, channels, max_pts_each_voxel,
    +                               out_x, out_y, out_z, rois, pts, pts_feature,
    +                               argmax, pts_idx_of_voxels, pooled_features,
    +                               pool_method);
    +}
    +
    +void roiaware_pool3d_backward(Tensor pts_idx_of_voxels, Tensor argmax,
    +                              Tensor grad_out, Tensor grad_in,
    +                              int pool_method) {
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params grad_out: (N, out_x, out_y, out_z, C)
    +  // params grad_in: (npoints, C), return value
    +  // params pool_method: 0: max_pool 1: avg_pool
    +  int boxes_num = pts_idx_of_voxels.size(0);
    +  int out_x = pts_idx_of_voxels.size(1);
    +  int out_y = pts_idx_of_voxels.size(2);
    +  int out_z = pts_idx_of_voxels.size(3);
    +  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    +  int channels = grad_out.size(4);
    +
    +  roiaware_pool3d_backward_impl(boxes_num, out_x, out_y, out_z, channels,
    +                                max_pts_each_voxel, pts_idx_of_voxels, argmax,
    +                                grad_out, grad_in, pool_method);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_parrots.cpp
    new file mode 100644
    index 000000000..771d92004
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_parrots.cpp
    @@ -0,0 +1,58 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "roiaware_pool3d_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roiaware_pool3d_forward_cuda_parrots(CudaContext& ctx,
    +                                          const SSElement& attr,
    +                                          const OperatorBase::in_list_t& ins,
    +                                          OperatorBase::out_list_t& outs) {
    +  int pool_method;
    +  SSAttrs(attr).get("pool_method", pool_method).done();
    +  auto rois = buildATensor(ctx, ins[0]);
    +  auto pts = buildATensor(ctx, ins[1]);
    +  auto pts_feature = buildATensor(ctx, ins[2]);
    +
    +  auto argmax = buildATensor(ctx, outs[0]);
    +  auto pts_idx_of_voxels = buildATensor(ctx, outs[1]);
    +  auto pooled_features = buildATensor(ctx, outs[2]);
    +
    +  roiaware_pool3d_forward(rois, pts, pts_feature, argmax, pts_idx_of_voxels,
    +                          pooled_features, pool_method);
    +}
    +
    +void roiaware_pool3d_backward_cuda_parrots(CudaContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  int pool_method;
    +  SSAttrs(attr).get("pool_method", pool_method).done();
    +  auto pts_idx_of_voxels = buildATensor(ctx, ins[0]);
    +  auto argmax = buildATensor(ctx, ins[1]);
    +  auto grad_out = buildATensor(ctx, ins[2]);
    +
    +  auto grad_in = buildATensor(ctx, outs[0]);
    +
    +  roiaware_pool3d_backward(pts_idx_of_voxels, argmax, grad_out, grad_in,
    +                           pool_method);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(roiaware_pool3d_forward)
    +    .attr("pool_method")
    +    .input(3)
    +    .output(3)
    +    .apply(roiaware_pool3d_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(roiaware_pool3d_backward)
    +    .attr("pool_method")
    +    .input(3)
    +    .output(1)
    +    .apply(roiaware_pool3d_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_pytorch.h
    new file mode 100644
    index 000000000..0b4b0402a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roiaware_pool3d_pytorch.h
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROIAWARE_POOL3D_PYTORCH_H
    +#define ROIAWARE_POOL3D_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void roiaware_pool3d_forward(Tensor rois, Tensor pts, Tensor pts_feature,
    +                             Tensor argmax, Tensor pts_idx_of_voxels,
    +                             Tensor pooled_features, int pool_method);
    +
    +void roiaware_pool3d_backward(Tensor pts_idx_of_voxels, Tensor argmax,
    +                              Tensor grad_out, Tensor grad_in, int pool_method);
    +
    +#endif  // ROIAWARE_POOL3D_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d.cpp
    new file mode 100644
    index 000000000..a10080b7c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d.cpp
    @@ -0,0 +1,39 @@
    +/*
    +Modified from
    +https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d.cpp
    +Point cloud feature pooling
    +Written by Shaoshuai Shi
    +All Rights Reserved 2018.
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roipoint_pool3d_forward_impl(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag) {
    +  DISPATCH_DEVICE_IMPL(roipoint_pool3d_forward_impl, batch_size, pts_num,
    +                       boxes_num, feature_in_len, sampled_pts_num, xyz, boxes3d,
    +                       pts_feature, pooled_features, pooled_empty_flag);
    +}
    +
    +void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature,
    +                             Tensor pooled_features, Tensor pooled_empty_flag) {
    +  // params xyz: (B, N, 3)
    +  // params boxes3d: (B, M, 7)
    +  // params pts_feature: (B, N, C)
    +  // params pooled_features: (B, M, 512, 3+C)
    +  // params pooled_empty_flag: (B, M)
    +  int batch_size = xyz.size(0);
    +  int pts_num = xyz.size(1);
    +  int boxes_num = boxes3d.size(1);
    +  int feature_in_len = pts_feature.size(2);
    +  int sampled_pts_num = pooled_features.size(2);
    +
    +  roipoint_pool3d_forward_impl(batch_size, pts_num, boxes_num, feature_in_len,
    +                               sampled_pts_num, xyz, boxes3d, pts_feature,
    +                               pooled_features, pooled_empty_flag);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_parrots.cpp
    new file mode 100644
    index 000000000..17f549849
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_parrots.cpp
    @@ -0,0 +1,31 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "roipoint_pool3d_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void roipoint_pool3d_forward_cuda_parrots(CudaContext& ctx,
    +                                          const SSElement& attr,
    +                                          const OperatorBase::in_list_t& ins,
    +                                          OperatorBase::out_list_t& outs) {
    +  auto xyz = buildATensor(ctx, ins[0]);
    +  auto boxes3d = buildATensor(ctx, ins[1]);
    +  auto pts_feature = buildATensor(ctx, ins[2]);
    +
    +  auto pooled_features = buildATensor(ctx, outs[0]);
    +  auto pooled_empty_flag = buildATensor(ctx, outs[1]);
    +
    +  roipoint_pool3d_forward(xyz, boxes3d, pts_feature, pooled_features,
    +                          pooled_empty_flag);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(roipoint_pool3d_forward)
    +    .input(3)
    +    .output(2)
    +    .apply(roipoint_pool3d_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_pytorch.h
    new file mode 100644
    index 000000000..e5b61b0d9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/roipoint_pool3d_pytorch.h
    @@ -0,0 +1,10 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROIPOINT_POOL3D_PYTORCH_H
    +#define ROIPOINT_POOL3D_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature,
    +                             Tensor pooled_features, Tensor pooled_empty_flag);
    +
    +#endif  // ROIPOINT_POOL3D_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align.cpp
    new file mode 100644
    index 000000000..71fe0c9a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align.cpp
    @@ -0,0 +1,39 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_cuda.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void rotated_feature_align_forward_impl(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(rotated_feature_align_forward_impl, features,
    +                       best_bboxes, spatial_scale, points, output);
    +}
    +
    +void rotated_feature_align_backward_impl(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad) {
    +  DISPATCH_DEVICE_IMPL(rotated_feature_align_backward_impl, top_grad,
    +                       best_bboxes, spatial_scale, points, bottom_grad);
    +}
    +
    +void rotated_feature_align_forward(const Tensor features,
    +                                   const Tensor best_bboxes, Tensor output,
    +                                   const float spatial_scale,
    +                                   const int points) {
    +  rotated_feature_align_forward_impl(features, best_bboxes, spatial_scale,
    +                                     points, output);
    +}
    +
    +void rotated_feature_align_backward(const Tensor top_grad,
    +                                    const Tensor best_bboxes,
    +                                    Tensor bottom_grad,
    +                                    const float spatial_scale,
    +                                    const int points) {
    +  rotated_feature_align_backward_impl(top_grad, best_bboxes, spatial_scale,
    +                                      points, bottom_grad);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_parrots.cpp
    new file mode 100644
    index 000000000..ad11a9d2f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_parrots.cpp
    @@ -0,0 +1,99 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "rotated_feature_align_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void rotated_feature_align_forward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float spatial_scale;
    +  int points;
    +  SSAttrs(attr)
    +      .get("spatial_scale", spatial_scale)
    +      .get("points", points)
    +      .done();
    +
    +  auto features = buildATensor(ctx, ins[0]);
    +  auto best_bboxes = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  rotated_feature_align_forward(features, best_bboxes, output, spatial_scale,
    +                                points);
    +}
    +
    +void rotated_feature_align_backward_cuda_parrots(
    +    CudaContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float spatial_scale;
    +  int points;
    +  SSAttrs(attr)
    +      .get("spatial_scale", spatial_scale)
    +      .get("points", points)
    +      .done();
    +
    +  auto grad_output = buildATensor(ctx, ins[0]);
    +  auto best_bboxes = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  rotated_feature_align_backward(grad_output, best_bboxes, grad_input,
    +                                 spatial_scale, points);
    +}
    +
    +void rotated_feature_align_forward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float spatial_scale;
    +  int points;
    +  SSAttrs(attr)
    +      .get("spatial_scale", spatial_scale)
    +      .get("points", points)
    +      .done();
    +
    +  auto features = buildATensor(ctx, ins[0]);
    +  auto best_bboxes = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  rotated_feature_align_forward(features, best_bboxes, output, spatial_scale,
    +                                points);
    +}
    +#endif
    +
    +void rotated_feature_align_backward_cpu_parrots(
    +    HostContext& ctx, const SSElement& attr, const OperatorBase::in_list_t& ins,
    +    OperatorBase::out_list_t& outs) {
    +  float spatial_scale;
    +  int points;
    +  SSAttrs(attr)
    +      .get("spatial_scale", spatial_scale)
    +      .get("points", points)
    +      .done();
    +
    +  auto grad_output = buildATensor(ctx, ins[0]);
    +  auto best_bboxes = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  rotated_feature_align_backward(grad_output, best_bboxes, grad_input,
    +                                 spatial_scale, points);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(rotated_feature_align_forward)
    +    .attr("spatial_scale")
    +    .attr("points")
    +    .input(2)
    +    .output(1)
    +    .apply(rotated_feature_align_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(rotated_feature_align_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(rotated_feature_align_backward)
    +    .attr("spatial_scale")
    +    .attr("points")
    +    .input(2)
    +    .output(1)
    +    .apply(rotated_feature_align_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(rotated_feature_align_backward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_pytorch.h
    new file mode 100644
    index 000000000..9a695ee5e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/rotated_feature_align_pytorch.h
    @@ -0,0 +1,17 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef ROTATED_FEATURE_ALIGN_PYTORCH_H
    +#define ROTATED_FEATURE_ALIGN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void rotated_feature_align_forward(const Tensor features,
    +                                   const Tensor best_bboxes, Tensor output,
    +                                   const float spatial_scale, const int points);
    +
    +void rotated_feature_align_backward(const Tensor top_grad,
    +                                    const Tensor best_bboxes,
    +                                    Tensor bottom_grad,
    +                                    const float spatial_scale,
    +                                    const int points);
    +
    +#endif  // ROTATED_FEATURE_ALIGN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn.cpp
    new file mode 100644
    index 000000000..fd5a51327
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn.cpp
    @@ -0,0 +1,69 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void sync_bn_forward_mean_impl(const Tensor input, Tensor mean) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_mean_impl, input, mean);
    +}
    +
    +void sync_bn_forward_var_impl(const Tensor input, const Tensor mean,
    +                              Tensor var) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_var_impl, input, mean, var);
    +}
    +
    +void sync_bn_forward_output_impl(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_output_impl, input, mean, var,
    +                       running_mean, running_var, weight, bias, norm, std,
    +                       output, eps, momentum, group_size);
    +}
    +
    +void sync_bn_backward_param_impl(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_backward_param_impl, grad_output, norm,
    +                       grad_weight, grad_bias);
    +}
    +
    +void sync_bn_backward_data_impl(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_backward_data_impl, grad_output, weight,
    +                       grad_weight, grad_bias, norm, std, grad_input);
    +}
    +
    +void sync_bn_forward_mean(const Tensor input, Tensor mean) {
    +  sync_bn_forward_mean_impl(input, mean);
    +}
    +
    +void sync_bn_forward_var(const Tensor input, const Tensor mean, Tensor var) {
    +  sync_bn_forward_var_impl(input, mean, var);
    +}
    +
    +void sync_bn_forward_output(const Tensor input, const Tensor mean,
    +                            const Tensor var, const Tensor weight,
    +                            const Tensor bias, Tensor running_mean,
    +                            Tensor running_var, Tensor norm, Tensor std,
    +                            Tensor output, float eps, float momentum,
    +                            int group_size) {
    +  sync_bn_forward_output_impl(input, mean, var, running_mean, running_var,
    +                              weight, bias, norm, std, output, eps, momentum,
    +                              group_size);
    +}
    +
    +void sync_bn_backward_param(const Tensor grad_output, const Tensor norm,
    +                            Tensor grad_weight, Tensor grad_bias) {
    +  sync_bn_backward_param_impl(grad_output, norm, grad_weight, grad_bias);
    +}
    +
    +void sync_bn_backward_data(const Tensor grad_output, const Tensor weight,
    +                           const Tensor grad_weight, const Tensor grad_bias,
    +                           const Tensor norm, const Tensor std,
    +                           Tensor grad_input) {
    +  sync_bn_backward_data_impl(grad_output, weight, grad_weight, grad_bias, norm,
    +                             std, grad_input);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_parrots.cpp
    new file mode 100644
    index 000000000..0b1855abd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_parrots.cpp
    @@ -0,0 +1,111 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "sync_bn_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void sync_bn_forward_mean_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  auto mean = buildATensor(ctx, outs[0]);
    +  sync_bn_forward_mean_cuda(input, mean);
    +}
    +
    +void sync_bn_forward_var_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                      const OperatorBase::in_list_t& ins,
    +                                      OperatorBase::out_list_t& outs) {
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& mean = buildATensor(ctx, ins[1]);
    +  auto var = buildATensor(ctx, outs[0]);
    +  sync_bn_forward_var_cuda(input, mean, var);
    +}
    +
    +void sync_bn_forward_output_cuda_parrots(CudaContext& ctx,
    +                                         const SSElement& attr,
    +                                         const OperatorBase::in_list_t& ins,
    +                                         OperatorBase::out_list_t& outs) {
    +  size_t group_size;
    +  float eps, momentum;
    +  SSAttrs(attr)
    +      .get("eps", eps)
    +      .get("momentum", momentum)
    +      .get("group_size", group_size)
    +      .done();
    +
    +  const auto& input = buildATensor(ctx, ins[0]);
    +  const auto& mean = buildATensor(ctx, ins[1]);
    +  const auto& var = buildATensor(ctx, ins[2]);
    +  const auto& weight = buildATensor(ctx, ins[3]);
    +  const auto& bias = buildATensor(ctx, ins[4]);
    +  auto running_mean = buildATensor(ctx, outs[0]);
    +  auto running_var = buildATensor(ctx, outs[1]);
    +  auto norm = buildATensor(ctx, outs[2]);
    +  auto std = buildATensor(ctx, outs[3]);
    +  auto output = buildATensor(ctx, outs[4]);
    +  sync_bn_forward_output_cuda(input, mean, var, running_mean, running_var,
    +                              weight, bias, norm, std, output, eps, momentum,
    +                              group_size);
    +}
    +
    +void sync_bn_backward_param_cuda_parrots(CudaContext& ctx,
    +                                         const SSElement& attr,
    +                                         const OperatorBase::in_list_t& ins,
    +                                         OperatorBase::out_list_t& outs) {
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& norm = buildATensor(ctx, ins[1]);
    +  auto grad_weight = buildATensor(ctx, outs[0]);
    +  auto grad_bias = buildATensor(ctx, outs[1]);
    +  sync_bn_backward_param_cuda(grad_output, norm, grad_weight, grad_bias);
    +}
    +
    +void sync_bn_backward_data_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  const auto& grad_output = buildATensor(ctx, ins[0]);
    +  const auto& weight = buildATensor(ctx, ins[1]);
    +  const auto& grad_weight = buildATensor(ctx, ins[2]);
    +  const auto& grad_bias = buildATensor(ctx, ins[3]);
    +  const auto& norm = buildATensor(ctx, ins[4]);
    +  const auto& std = buildATensor(ctx, ins[5]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  sync_bn_backward_data_cuda(grad_output, weight, grad_weight, grad_bias, norm,
    +                             std, grad_input);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(sync_bn_forward_mean)
    +    .input(1)
    +    .output(1)
    +    .apply(sync_bn_forward_mean_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(sync_bn_forward_var)
    +    .input(2)
    +    .output(1)
    +    .apply(sync_bn_forward_var_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(sync_bn_forward_output)
    +    .attr("eps")
    +    .attr("momentum")
    +    .attr("group_size")
    +    .input(5)
    +    .output(5)
    +    .apply(sync_bn_forward_output_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(sync_bn_backward_param)
    +    .input(2)
    +    .output(2)
    +    .apply(sync_bn_backward_param_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(sync_bn_backward_data)
    +    .input(6)
    +    .output(1)
    +    .apply(sync_bn_backward_data_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_pytorch.h
    new file mode 100644
    index 000000000..6bd6a7fad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/sync_bn_pytorch.h
    @@ -0,0 +1,26 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef SYNC_BN_PYTORCH_H
    +#define SYNC_BN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void sync_bn_forward_mean_cuda(const Tensor input, Tensor mean);
    +
    +void sync_bn_forward_var_cuda(const Tensor input, const Tensor mean,
    +                              Tensor var);
    +
    +void sync_bn_forward_output_cuda(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size);
    +
    +void sync_bn_backward_param_cuda(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias);
    +
    +void sync_bn_backward_data_cuda(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input);
    +#endif  // SYNC_BN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate.cpp
    new file mode 100644
    index 000000000..1e0ec71bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate.cpp
    @@ -0,0 +1,33 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void three_interpolate_forward_impl(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out) {
    +  DISPATCH_DEVICE_IMPL(three_interpolate_forward_impl, b, c, m, n, points, idx,
    +                       weight, out);
    +}
    +
    +void three_interpolate_backward_impl(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(three_interpolate_backward_impl, b, c, n, m, grad_out,
    +                       idx, weight, grad_points);
    +}
    +
    +void three_interpolate_forward(Tensor points_tensor, Tensor idx_tensor,
    +                               Tensor weight_tensor, Tensor out_tensor, int b,
    +                               int c, int m, int n) {
    +  three_interpolate_forward_impl(b, c, m, n, points_tensor, idx_tensor,
    +                                 weight_tensor, out_tensor);
    +}
    +
    +void three_interpolate_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                Tensor weight_tensor, Tensor grad_points_tensor,
    +                                int b, int c, int n, int m) {
    +  three_interpolate_backward_impl(b, c, n, m, grad_out_tensor, idx_tensor,
    +                                  weight_tensor, grad_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_parrots.cpp
    new file mode 100644
    index 000000000..a71a90fd1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_parrots.cpp
    @@ -0,0 +1,74 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "three_interpolate_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void three_interpolate_forward_cuda_parrots(CudaContext& ctx,
    +                                            const SSElement& attr,
    +                                            const OperatorBase::in_list_t& ins,
    +                                            OperatorBase::out_list_t& outs) {
    +  int b, c, m, n;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("m", m)
    +      .get("n", n)
    +      .done();
    +
    +  auto points_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +  auto weight_tensor = buildATensor(ctx, ins[2]);
    +
    +  auto out_tensor = buildATensor(ctx, outs[0]);
    +
    +  three_interpolate_forward(points_tensor, idx_tensor, weight_tensor,
    +                            out_tensor, b, c, m, n);
    +}
    +
    +void three_interpolate_backward_cuda_parrots(CudaContext& ctx,
    +                                             const SSElement& attr,
    +                                             const OperatorBase::in_list_t& ins,
    +                                             OperatorBase::out_list_t& outs) {
    +  int b, c, n, m;
    +  SSAttrs(attr)
    +      .get("b", b)
    +      .get("c", c)
    +      .get("n", n)
    +      .get("m", m)
    +      .done();
    +
    +  auto grad_out_tensor = buildATensor(ctx, ins[0]);
    +  auto idx_tensor = buildATensor(ctx, ins[1]);
    +  auto weight_tensor = buildATensor(ctx, ins[2]);
    +
    +  auto grad_points_tensor = buildATensor(ctx, outs[0]);
    +
    +  three_interpolate_backward(grad_out_tensor, idx_tensor, weight_tensor,
    +                             grad_points_tensor, b, c, n, m);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(three_interpolate_forward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("m")
    +    .attr("n")
    +    .input(3)
    +    .output(1)
    +    .apply(three_interpolate_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(three_interpolate_backward)
    +    .attr("b")
    +    .attr("c")
    +    .attr("n")
    +    .attr("m")
    +    .input(3)
    +    .output(1)
    +    .apply(three_interpolate_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_pytorch.h
    new file mode 100644
    index 000000000..464c6d900
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_interpolate_pytorch.h
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef THREE_INTERPOLATE_PYTORCH_H
    +#define THREE_INTERPOLATE_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void three_interpolate_forward(Tensor points_tensor, Tensor idx_tensor,
    +                               Tensor weight_tensor, Tensor out_tensor, int b,
    +                               int c, int m, int n);
    +
    +void three_interpolate_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                Tensor weight_tensor, Tensor grad_points_tensor,
    +                                int b, int c, int n, int m);
    +#endif  // THREE_INTERPOLATE_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn.cpp
    new file mode 100644
    index 000000000..b629200c0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn.cpp
    @@ -0,0 +1,18 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void three_nn_forward_impl(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx) {
    +  DISPATCH_DEVICE_IMPL(three_nn_forward_impl, b, n, m, unknown, known, dist2,
    +                       idx);
    +}
    +
    +void three_nn_forward(Tensor unknown_tensor, Tensor known_tensor,
    +                      Tensor dist2_tensor, Tensor idx_tensor, int b, int n,
    +                      int m) {
    +  three_nn_forward_impl(b, n, m, unknown_tensor, known_tensor, dist2_tensor,
    +                        idx_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_parrots.cpp
    new file mode 100644
    index 000000000..c28c7d216
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_parrots.cpp
    @@ -0,0 +1,35 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "three_nn_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void three_nn_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                   const OperatorBase::in_list_t& ins,
    +                                   OperatorBase::out_list_t& outs) {
    +  int b, n, m;
    +  SSAttrs(attr).get("b", b).get("n", n).get("m", m).done();
    +
    +  auto unknown_tensor = buildATensor(ctx, ins[0]);
    +  auto known_tensor = buildATensor(ctx, ins[1]);
    +
    +  auto dist2_tensor = buildATensor(ctx, outs[0]);
    +  auto idx_tensor = buildATensor(ctx, outs[1]);
    +
    +  three_nn_forward(unknown_tensor, known_tensor, dist2_tensor, idx_tensor, b, n,
    +                   m);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(three_nn_forward)
    +    .attr("b")
    +    .attr("n")
    +    .attr("m")
    +    .input(2)
    +    .output(2)
    +    .apply(three_nn_forward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_pytorch.h
    new file mode 100644
    index 000000000..6574fba09
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/three_nn_pytorch.h
    @@ -0,0 +1,10 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef THREE_NN_PYTORCH_H
    +#define THREE_NN_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void three_nn_forward(Tensor unknown_tensor, Tensor known_tensor,
    +                      Tensor dist2_tensor, Tensor idx_tensor, int b, int n,
    +                      int m);
    +#endif  // THREE_NN_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift.cpp
    new file mode 100644
    index 000000000..b03f58754
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift.cpp
    @@ -0,0 +1,20 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void tin_shift_forward_impl(Tensor input, Tensor shift, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(tin_shift_forward_impl, input, shift, output);
    +}
    +
    +void tin_shift_backward_impl(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input) {
    +  DISPATCH_DEVICE_IMPL(tin_shift_backward_impl, grad_output, shift, grad_input);
    +}
    +
    +void tin_shift_forward(Tensor input, Tensor shift, Tensor output) {
    +  tin_shift_forward_impl(input, shift, output);
    +}
    +
    +void tin_shift_backward(Tensor grad_output, Tensor shift, Tensor grad_input) {
    +  tin_shift_backward_impl(grad_output, shift, grad_input);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_parrots.cpp
    new file mode 100644
    index 000000000..b0920928e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_parrots.cpp
    @@ -0,0 +1,39 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "tin_shift_pytorch.h"
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void tin_shift_forward_cuda_parrots(CudaContext &ctx, const SSElement &attr,
    +                                    const OperatorBase::in_list_t &ins,
    +                                    OperatorBase::out_list_t &outs) {
    +  const auto &input = buildATensor(ctx, ins[0]);
    +  const auto &shift = buildATensor(ctx, ins[1]);
    +  auto output = buildATensor(ctx, outs[0]);
    +  tin_shift_forward_cuda(input, shift, output);
    +}
    +
    +void tin_shift_backward_cuda_parrots(CudaContext &ctx, const SSElement &attr,
    +                                     const OperatorBase::in_list_t &ins,
    +                                     OperatorBase::out_list_t &outs) {
    +  const auto &grad_output = buildATensor(ctx, ins[0]);
    +  const auto &shift = buildATensor(ctx, ins[1]);
    +  auto grad_input = buildATensor(ctx, outs[0]);
    +  tin_shift_backward_cuda(grad_output, shift, grad_input);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(tin_shift_forward)
    +    .input(2)
    +    .output(1)
    +    .apply(tin_shift_forward_cuda_parrots)
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(tin_shift_backward)
    +    .input(2)
    +    .output(1)
    +    .apply(tin_shift_backward_cuda_parrots)
    +    .done();
    +#endif
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_pytorch.h
    new file mode 100644
    index 000000000..fe7238376
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/tin_shift_pytorch.h
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef TIN_SHIFT_PYTORCH_H
    +#define TIN_SHIFT_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void tin_shift_forward_cuda(Tensor input, Tensor shift, Tensor output);
    +
    +void tin_shift_backward_cuda(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input);
    +#endif  // TIN_SHIFT_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d.cpp
    new file mode 100644
    index 000000000..dd325bd78
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d.cpp
    @@ -0,0 +1,118 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.cpp
    +
    +/*
    +Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +
    +NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +Augmentation (ADA)
    +=======================================================================
    +
    +1. Definitions
    +
    +"Licensor" means any person or entity that distributes its Work.
    +
    +"Software" means the original work of authorship made available under
    +this License.
    +
    +"Work" means the Software and any additions to or derivative works of
    +the Software that are made available under this License.
    +
    +The terms "reproduce," "reproduction," "derivative works," and
    +"distribution" have the meaning as provided under U.S. copyright law;
    +provided, however, that for the purposes of this License, derivative
    +works shall not include works that remain separable from, or merely
    +link (or bind by name) to the interfaces of, the Work.
    +
    +Works, including the Software, are "made available" under this License
    +by including in or with the Work either (a) a copyright notice
    +referencing the applicability of this License to the Work, or (b) a
    +copy of this License.
    +
    +2. License Grants
    +
    +    2.1 Copyright Grant. Subject to the terms and conditions of this
    +    License, each Licensor grants to you a perpetual, worldwide,
    +    non-exclusive, royalty-free, copyright license to reproduce,
    +    prepare derivative works of, publicly display, publicly perform,
    +    sublicense and distribute its Work and any resulting derivative
    +    works in any form.
    +
    +3. Limitations
    +
    +    3.1 Redistribution. You may reproduce or distribute the Work only
    +    if (a) you do so under this License, (b) you include a complete
    +    copy of this License with your distribution, and (c) you retain
    +    without modification any copyright, patent, trademark, or
    +    attribution notices that are present in the Work.
    +
    +    3.2 Derivative Works. You may specify that additional or different
    +    terms apply to the use, reproduction, and distribution of your
    +    derivative works of the Work ("Your Terms") only if (a) Your Terms
    +    provide that the use limitation in Section 3.3 applies to your
    +    derivative works, and (b) you identify the specific derivative
    +    works that are subject to Your Terms. Notwithstanding Your Terms,
    +    this License (including the redistribution requirements in Section
    +    3.1) will continue to apply to the Work itself.
    +
    +    3.3 Use Limitation. The Work and any derivative works thereof only
    +    may be used or intended for use non-commercially. Notwithstanding
    +    the foregoing, NVIDIA and its affiliates may use the Work and any
    +    derivative works commercially. As used herein, "non-commercially"
    +    means for research or evaluation purposes only.
    +
    +    3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +    against any Licensor (including any claim, cross-claim or
    +    counterclaim in a lawsuit) to enforce any patents that you allege
    +    are infringed by any Work, then your rights under this License from
    +    such Licensor (including the grant in Section 2.1) will terminate
    +    immediately.
    +
    +    3.5 Trademarks. This License does not grant any rights to use any
    +    Licensor’s or its affiliates’ names, logos, or trademarks, except
    +    as necessary to reproduce the notices described in this License.
    +
    +    3.6 Termination. If you violate any term of this License, then your
    +    rights under this License (including the grant in Section 2.1) will
    +    terminate immediately.
    +
    +4. Disclaimer of Warranty.
    +
    +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +THIS LICENSE.
    +
    +5. Limitation of Liability.
    +
    +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +THE POSSIBILITY OF SUCH DAMAGES.
    +
    +=======================================================================
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +torch::Tensor upfirdn2d_op_impl(const torch::Tensor& input,
    +                                const torch::Tensor& kernel, int up_x, int up_y,
    +                                int down_x, int down_y, int pad_x0, int pad_x1,
    +                                int pad_y0, int pad_y1) {
    +  return DISPATCH_DEVICE_IMPL(upfirdn2d_op_impl, input, kernel, up_x, up_y,
    +                              down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
    +}
    +
    +torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
    +                        int up_x, int up_y, int down_x, int down_y, int pad_x0,
    +                        int pad_x1, int pad_y0, int pad_y1) {
    +  return upfirdn2d_op_impl(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
    +                           pad_x1, pad_y0, pad_y1);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d_parrots.cpp
    new file mode 100644
    index 000000000..f0c50db5c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/upfirdn2d_parrots.cpp
    @@ -0,0 +1,47 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +using namespace at;
    +using namespace parrots;
    +
    +torch::Tensor upfirdn2d(const Tensor &input, const Tensor &kernel, int up_x,
    +                        int up_y, int down_x, int down_y, int pad_x0,
    +                        int pad_x1, int pad_y0, int pad_y1);
    +
    +void upfirdn2d_parrots(CudaContext &ctx, const SSElement &attr,
    +                       const OperatorBase::in_list_t &ins,
    +                       OperatorBase::out_list_t &outs) {
    +  int up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1;
    +  const auto &input = buildATensor(ctx, ins[0]);
    +  const auto &kernel = buildATensor(ctx, ins[1]);
    +  SSAttrs(attr)
    +      .get("up_x", up_x)
    +      .get("up_y", up_y)
    +      .get("down_x", down_x)
    +      .get("down_y", down_y)
    +      .get("pad_x0", pad_x0)
    +      .get("pad_x1", pad_x1)
    +      .get("pad_y0", pad_y0)
    +      .get("pad_y1", pad_y1)
    +      .done();
    +  auto out = upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
    +                       pad_x1, pad_y0, pad_y1);
    +  updateDArray(ctx, out, outs[0]);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(upfirdn2d)
    +    .attr("up_x")
    +    .attr("up_y")
    +    .attr("down_x")
    +    .attr("down_y")
    +    .attr("pad_x0")
    +    .attr("pad_x1")
    +    .attr("pad_y0")
    +    .attr("pad_y1")
    +    .input(2)
    +    .output(1)
    +    .apply(upfirdn2d_parrots)
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization.cpp
    new file mode 100644
    index 000000000..7946be617
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization.cpp
    @@ -0,0 +1,74 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +int hard_voxelize_forward_impl(const at::Tensor &points, at::Tensor &voxels,
    +                               at::Tensor &coors,
    +                               at::Tensor &num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim = 3) {
    +  return DISPATCH_DEVICE_IMPL(hard_voxelize_forward_impl, points, voxels, coors,
    +                              num_points_per_voxel, voxel_size, coors_range,
    +                              max_points, max_voxels, NDim);
    +}
    +
    +int nondeterministic_hard_voxelize_forward_impl(
    +    const at::Tensor &points, at::Tensor &voxels, at::Tensor &coors,
    +    at::Tensor &num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3) {
    +  return DISPATCH_DEVICE_IMPL(nondeterministic_hard_voxelize_forward_impl,
    +                              points, voxels, coors, num_points_per_voxel,
    +                              voxel_size, coors_range, max_points, max_voxels,
    +                              NDim);
    +}
    +
    +void dynamic_voxelize_forward_impl(const at::Tensor &points, at::Tensor &coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim = 3) {
    +  DISPATCH_DEVICE_IMPL(dynamic_voxelize_forward_impl, points, coors, voxel_size,
    +                       coors_range, NDim);
    +}
    +
    +void hard_voxelize_forward(const at::Tensor &points,
    +                           const at::Tensor &voxel_size,
    +                           const at::Tensor &coors_range, at::Tensor &voxels,
    +                           at::Tensor &coors, at::Tensor &num_points_per_voxel,
    +                           at::Tensor &voxel_num, const int max_points,
    +                           const int max_voxels, const int NDim = 3,
    +                           const bool deterministic = true) {
    +  int64_t *voxel_num_data = voxel_num.data_ptr();
    +  std::vector voxel_size_v(
    +      voxel_size.data_ptr(),
    +      voxel_size.data_ptr() + voxel_size.numel());
    +  std::vector coors_range_v(
    +      coors_range.data_ptr(),
    +      coors_range.data_ptr() + coors_range.numel());
    +
    +  if (deterministic) {
    +    *voxel_num_data = hard_voxelize_forward_impl(
    +        points, voxels, coors, num_points_per_voxel, voxel_size_v,
    +        coors_range_v, max_points, max_voxels, NDim);
    +  } else {
    +    *voxel_num_data = nondeterministic_hard_voxelize_forward_impl(
    +        points, voxels, coors, num_points_per_voxel, voxel_size_v,
    +        coors_range_v, max_points, max_voxels, NDim);
    +  }
    +}
    +
    +void dynamic_voxelize_forward(const at::Tensor &points,
    +                              const at::Tensor &voxel_size,
    +                              const at::Tensor &coors_range, at::Tensor &coors,
    +                              const int NDim = 3) {
    +  std::vector voxel_size_v(
    +      voxel_size.data_ptr(),
    +      voxel_size.data_ptr() + voxel_size.numel());
    +  std::vector coors_range_v(
    +      coors_range.data_ptr(),
    +      coors_range.data_ptr() + coors_range.numel());
    +  dynamic_voxelize_forward_impl(points, coors, voxel_size_v, coors_range_v,
    +                                NDim);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_parrots.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_parrots.cpp
    new file mode 100644
    index 000000000..90e2a4445
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_parrots.cpp
    @@ -0,0 +1,113 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +
    +#include "voxelization_pytorch.h"
    +
    +using namespace parrots;
    +
    +#ifdef MMCV_WITH_CUDA
    +void hard_voxelize_forward_cuda_parrots(CudaContext& ctx, const SSElement& attr,
    +                                        const OperatorBase::in_list_t& ins,
    +                                        OperatorBase::out_list_t& outs) {
    +  int max_points, max_voxels, NDim;
    +  bool deterministic;
    +  SSAttrs(attr)
    +      .get("max_points", max_points)
    +      .get("max_voxels", max_voxels)
    +      .get("NDim", NDim)
    +      .get("deterministic", deterministic)
    +      .done();
    +  const auto& points = buildATensor(ctx, ins[0]);
    +  const auto& voxel_size = buildATensor(ctx, ins[1]);
    +  const auto& coors_range = buildATensor(ctx, ins[2]);
    +
    +  auto voxels = buildATensor(ctx, outs[0]);
    +  auto coors = buildATensor(ctx, outs[1]);
    +  auto num_points_per_voxel = buildATensor(ctx, outs[2]);
    +  auto voxel_num = buildATensor(ctx, outs[3]);
    +
    +  hard_voxelize_forward(points, voxel_size, coors_range, voxels, coors,
    +                        num_points_per_voxel, voxel_num, max_points, max_voxels,
    +                        NDim, deterministic);
    +}
    +
    +void dynamic_voxelize_forward_cuda_parrots(CudaContext& ctx,
    +                                           const SSElement& attr,
    +                                           const OperatorBase::in_list_t& ins,
    +                                           OperatorBase::out_list_t& outs) {
    +  int NDim;
    +  SSAttrs(attr).get("NDim", NDim).done();
    +  const auto& points = buildATensor(ctx, ins[0]);
    +  const auto& voxel_size = buildATensor(ctx, ins[1]);
    +  const auto& coors_range = buildATensor(ctx, ins[2]);
    +
    +  auto coors = buildATensor(ctx, outs[0]);
    +
    +  dynamic_voxelize_forward(points, voxel_size, coors_range, coors, NDim);
    +}
    +#endif
    +
    +void hard_voxelize_forward_cpu_parrots(HostContext& ctx, const SSElement& attr,
    +                                       const OperatorBase::in_list_t& ins,
    +                                       OperatorBase::out_list_t& outs) {
    +  int max_points, max_voxels, NDim;
    +  bool deterministic;
    +  SSAttrs(attr)
    +      .get("max_points", max_points)
    +      .get("max_voxels", max_voxels)
    +      .get("NDim", NDim)
    +      .get("deterministic", deterministic)
    +      .done();
    +  const auto& points = buildATensor(ctx, ins[0]);
    +  const auto& voxel_size = buildATensor(ctx, ins[1]);
    +  const auto& coors_range = buildATensor(ctx, ins[2]);
    +
    +  auto voxels = buildATensor(ctx, outs[0]);
    +  auto coors = buildATensor(ctx, outs[1]);
    +  auto num_points_per_voxel = buildATensor(ctx, outs[2]);
    +  auto voxel_num = buildATensor(ctx, outs[3]);
    +
    +  hard_voxelize_forward(points, voxel_size, coors_range, voxels, coors,
    +                        num_points_per_voxel, voxel_num, max_points, max_voxels,
    +                        NDim, deterministic);
    +}
    +
    +void dynamic_voxelize_forward_cpu_parrots(HostContext& ctx,
    +                                          const SSElement& attr,
    +                                          const OperatorBase::in_list_t& ins,
    +                                          OperatorBase::out_list_t& outs) {
    +  int NDim;
    +  SSAttrs(attr).get("NDim", NDim).done();
    +  const auto& points = buildATensor(ctx, ins[0]);
    +  const auto& voxel_size = buildATensor(ctx, ins[1]);
    +  const auto& coors_range = buildATensor(ctx, ins[2]);
    +
    +  auto coors = buildATensor(ctx, outs[0]);
    +
    +  dynamic_voxelize_forward(points, voxel_size, coors_range, coors, NDim);
    +}
    +
    +PARROTS_EXTENSION_REGISTER(hard_voxelize_forward)
    +    .attr("max_points")
    +    .attr("max_voxels")
    +    .attr("NDim")
    +    .attr("deterministic")
    +    .input(3)
    +    .output(4)
    +    .apply(hard_voxelize_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(hard_voxelize_forward_cuda_parrots)
    +#endif
    +    .done();
    +
    +PARROTS_EXTENSION_REGISTER(dynamic_voxelize_forward)
    +    .attr("NDim")
    +    .input(3)
    +    .output(1)
    +    .apply(dynamic_voxelize_forward_cpu_parrots)
    +#ifdef MMCV_WITH_CUDA
    +    .apply(dynamic_voxelize_forward_cuda_parrots)
    +#endif
    +    .done();
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_pytorch.h b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_pytorch.h
    new file mode 100644
    index 000000000..0019d5191
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/parrots/voxelization_pytorch.h
    @@ -0,0 +1,20 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef VOXELIZATION_PYTORCH_H
    +#define VOXELIZATION_PYTORCH_H
    +#include 
    +using namespace at;
    +
    +void hard_voxelize_forward(const at::Tensor &points,
    +                           const at::Tensor &voxel_size,
    +                           const at::Tensor &coors_range, at::Tensor &voxels,
    +                           at::Tensor &coors, at::Tensor &num_points_per_voxel,
    +                           at::Tensor &voxel_num, const int max_points,
    +                           const int max_voxels, const int NDim = 3,
    +                           const bool deterministic = true);
    +
    +void dynamic_voxelize_forward(const at::Tensor &points,
    +                              const at::Tensor &voxel_size,
    +                              const at::Tensor &coors_range, at::Tensor &coors,
    +                              const int NDim = 3);
    +
    +#endif  // VOXELIZATION_PYTORCH_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/active_rotated_filter.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/active_rotated_filter.cpp
    new file mode 100644
    index 000000000..e1ead1f8e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/active_rotated_filter.cpp
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/csuhan/s2anet/blob/master/mmdet/ops/orn/src/ActiveRotatingFilter.h
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void active_rotated_filter_forward_impl(const Tensor input,
    +                                        const Tensor indices, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(active_rotated_filter_forward_impl, input, indices,
    +                       output);
    +}
    +
    +void active_rotated_filter_backward_impl(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in) {
    +  DISPATCH_DEVICE_IMPL(active_rotated_filter_backward_impl, grad_out, indices,
    +                       grad_in);
    +}
    +
    +void active_rotated_filter_forward(const Tensor input, const Tensor indices,
    +                                   Tensor output) {
    +  active_rotated_filter_forward_impl(input, indices, output);
    +}
    +
    +void active_rotated_filter_backward(const Tensor grad_out, const Tensor indices,
    +                                    Tensor grad_in) {
    +  active_rotated_filter_backward_impl(grad_out, indices, grad_in);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/assign_score_withk.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/assign_score_withk.cpp
    new file mode 100644
    index 000000000..907627718
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/assign_score_withk.cpp
    @@ -0,0 +1,42 @@
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/paconv_lib/src/gpu
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output) {
    +  DISPATCH_DEVICE_IMPL(assign_score_withk_forward_impl, B, N0, N1, M, K, O,
    +                       aggregate, points, centers, scores, knn_idx, output);
    +}
    +
    +void assign_score_withk_backward_impl(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores) {
    +  DISPATCH_DEVICE_IMPL(assign_score_withk_backward_impl, B, N0, N1, M, K, O,
    +                       aggregate, grad_out, points, centers, scores, knn_idx,
    +                       grad_points, grad_centers, grad_scores);
    +}
    +
    +void assign_score_withk_forward(const Tensor& points, const Tensor& centers,
    +                                const Tensor& scores, const Tensor& knn_idx,
    +                                Tensor& output, int B, int N0, int N1, int M,
    +                                int K, int O, int aggregate) {
    +  assign_score_withk_forward_impl(B, N0, N1, M, K, O, aggregate, points,
    +                                  centers, scores, knn_idx, output);
    +}
    +
    +void assign_score_withk_backward(const Tensor& grad_out, const Tensor& points,
    +                                 const Tensor& centers, const Tensor& scores,
    +                                 const Tensor& knn_idx, Tensor& grad_points,
    +                                 Tensor& grad_centers, Tensor& grad_scores,
    +                                 int B, int N0, int N1, int M, int K, int O,
    +                                 int aggregate) {
    +  assign_score_withk_backward_impl(B, N0, N1, M, K, O, aggregate, grad_out,
    +                                   points, centers, scores, knn_idx,
    +                                   grad_points, grad_centers, grad_scores);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ball_query.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ball_query.cpp
    new file mode 100644
    index 000000000..b0534db5c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ball_query.cpp
    @@ -0,0 +1,38 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void ball_query_forward_impl(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx) {
    +  DISPATCH_DEVICE_IMPL(ball_query_forward_impl, b, n, m, min_radius, max_radius,
    +                       nsample, new_xyz, xyz, idx);
    +}
    +
    +void ball_query_forward(Tensor new_xyz_tensor, Tensor xyz_tensor,
    +                        Tensor idx_tensor, int b, int n, int m,
    +                        float min_radius, float max_radius, int nsample) {
    +  ball_query_forward_impl(b, n, m, min_radius, max_radius, nsample,
    +                          new_xyz_tensor, xyz_tensor, idx_tensor);
    +}
    +
    +void stack_ball_query_forward_impl(float max_radius, int nsample,
    +                                   const Tensor new_xyz,
    +                                   const Tensor new_xyz_batch_cnt,
    +                                   const Tensor xyz, const Tensor xyz_batch_cnt,
    +                                   Tensor idx) {
    +  DISPATCH_DEVICE_IMPL(stack_ball_query_forward_impl, max_radius, nsample,
    +                       new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx);
    +}
    +
    +void stack_ball_query_forward(Tensor new_xyz_tensor, Tensor new_xyz_batch_cnt,
    +                              Tensor xyz_tensor, Tensor xyz_batch_cnt,
    +                              Tensor idx_tensor, float max_radius,
    +                              int nsample) {
    +  stack_ball_query_forward_impl(max_radius, nsample, new_xyz_tensor,
    +                                new_xyz_batch_cnt, xyz_tensor, xyz_batch_cnt,
    +                                idx_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp
    new file mode 100644
    index 000000000..187216fb0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset) {
    +  DISPATCH_DEVICE_IMPL(bbox_overlaps_impl, bboxes1, bboxes2, ious, mode,
    +                       aligned, offset);
    +}
    +
    +void bbox_overlaps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                   const int mode, const bool aligned, const int offset) {
    +  bbox_overlaps_impl(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/border_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/border_align.cpp
    new file mode 100644
    index 000000000..565de6899
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/border_align.cpp
    @@ -0,0 +1,30 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void border_align_forward_impl(const Tensor &input, const Tensor &boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size) {
    +  DISPATCH_DEVICE_IMPL(border_align_forward_impl, input, boxes, output,
    +                       argmax_idx, pool_size);
    +}
    +
    +void border_align_backward_impl(const Tensor &grad_output, const Tensor &boxes,
    +                                const Tensor &argmax_idx, Tensor grad_input,
    +                                const int pool_size) {
    +  DISPATCH_DEVICE_IMPL(border_align_backward_impl, grad_output, boxes,
    +                       argmax_idx, grad_input, pool_size);
    +}
    +
    +void border_align_forward(const Tensor &input, const Tensor &boxes,
    +                          Tensor output, Tensor argmax_idx,
    +                          const int pool_size) {
    +  border_align_forward_impl(input, boxes, output, argmax_idx, pool_size);
    +}
    +
    +void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
    +                           const Tensor &argmax_idx, Tensor grad_input,
    +                           const int pool_size) {
    +  border_align_backward_impl(grad_output, boxes, argmax_idx, grad_input,
    +                             pool_size);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_quadri.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_quadri.cpp
    new file mode 100644
    index 000000000..48c928106
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_quadri.cpp
    @@ -0,0 +1,17 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void box_iou_quadri_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned) {
    +  DISPATCH_DEVICE_IMPL(box_iou_quadri_impl, boxes1, boxes2, ious, mode_flag,
    +                       aligned);
    +}
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +void box_iou_quadri(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                    const int mode_flag, const bool aligned) {
    +  box_iou_quadri_impl(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_rotated.cpp
    new file mode 100644
    index 000000000..a2a4e0953
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/box_iou_rotated.cpp
    @@ -0,0 +1,19 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void box_iou_rotated_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned) {
    +  DISPATCH_DEVICE_IMPL(box_iou_rotated_impl, boxes1, boxes2, ious, mode_flag,
    +                       aligned);
    +}
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +void box_iou_rotated(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                     const int mode_flag, const bool aligned) {
    +  box_iou_rotated_impl(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe.cpp
    new file mode 100644
    index 000000000..a563aed94
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe.cpp
    @@ -0,0 +1,38 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void carafe_forward_impl(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_forward_impl, features, masks, rfeatures, routput,
    +                       rmasks, output, kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_backward_impl(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_backward_impl, top_grad, rfeatures, masks,
    +                       rtop_grad, rbottom_grad_hs, rbottom_grad, rmask_grad,
    +                       bottom_grad, mask_grad, kernel_size, group_size,
    +                       scale_factor);
    +}
    +
    +void carafe_forward(Tensor features, Tensor masks, Tensor rfeatures,
    +                    Tensor routput, Tensor rmasks, Tensor output,
    +                    int kernel_size, int group_size, int scale_factor) {
    +  carafe_forward_impl(features, masks, rfeatures, routput, rmasks, output,
    +                      kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_backward(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                     Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                     Tensor rbottom_grad, Tensor rmask_grad, Tensor bottom_grad,
    +                     Tensor mask_grad, int kernel_size, int group_size,
    +                     int scale_factor) {
    +  carafe_backward_impl(top_grad, rfeatures, masks, rtop_grad, rbottom_grad_hs,
    +                       rbottom_grad, rmask_grad, bottom_grad, mask_grad,
    +                       kernel_size, group_size, scale_factor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe_naive.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe_naive.cpp
    new file mode 100644
    index 000000000..6e8917a61
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/carafe_naive.cpp
    @@ -0,0 +1,32 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void carafe_naive_forward_impl(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_naive_forward_impl, features, masks, output,
    +                       kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_naive_backward_impl(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor) {
    +  DISPATCH_DEVICE_IMPL(carafe_naive_backward_impl, top_grad, features, masks,
    +                       bottom_grad, mask_grad, kernel_size, group_size,
    +                       scale_factor);
    +}
    +
    +void carafe_naive_forward(Tensor features, Tensor masks, Tensor output,
    +                          int kernel_size, int group_size, int scale_factor) {
    +  carafe_naive_forward_impl(features, masks, output, kernel_size, group_size,
    +                            scale_factor);
    +}
    +
    +void carafe_naive_backward(Tensor top_grad, Tensor features, Tensor masks,
    +                           Tensor bottom_grad, Tensor mask_grad,
    +                           int kernel_size, int group_size, int scale_factor) {
    +  carafe_naive_backward_impl(top_grad, features, masks, bottom_grad, mask_grad,
    +                             kernel_size, group_size, scale_factor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/chamfer_distance.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/chamfer_distance.cpp
    new file mode 100644
    index 000000000..dcff69893
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/chamfer_distance.cpp
    @@ -0,0 +1,35 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/chrdiller/pyTorchChamferDistance/blob/master/chamfer_distance/chamfer_distance.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void chamfer_distance_forward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2) {
    +  DISPATCH_DEVICE_IMPL(chamfer_distance_forward_impl, xyz1, xyz2, dist1, dist2,
    +                       idx1, idx2);
    +}
    +
    +void chamfer_distance_backward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2) {
    +  DISPATCH_DEVICE_IMPL(chamfer_distance_backward_impl, xyz1, xyz2, idx1, idx2,
    +                       graddist1, graddist2, gradxyz1, gradxyz2);
    +}
    +
    +void chamfer_distance_forward(const Tensor xyz1, const Tensor xyz2,
    +                              const Tensor dist1, const Tensor dist2,
    +                              const Tensor idx1, const Tensor idx2) {
    +  chamfer_distance_forward_impl(xyz1, xyz2, dist1, dist2, idx1, idx2);
    +}
    +
    +void chamfer_distance_backward(const Tensor xyz1, const Tensor xyz2,
    +                               Tensor idx1, Tensor idx2, Tensor graddist1,
    +                               Tensor graddist2, Tensor gradxyz1,
    +                               Tensor gradxyz2) {
    +  chamfer_distance_backward_impl(xyz1, xyz2, idx1, idx2, graddist1, graddist2,
    +                                 gradxyz1, gradxyz2);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/contour_expand.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/contour_expand.cpp
    new file mode 100755
    index 000000000..586c48ee4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/contour_expand.cpp
    @@ -0,0 +1,111 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// It is modified from https://github.com/whai362/PSENet
    +#include 
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +
    +using namespace std;
    +
    +class Point2d {
    + public:
    +  int x;
    +  int y;
    +
    +  Point2d() : x(0), y(0) {}
    +  Point2d(int _x, int _y) : x(_x), y(_y) {}
    +};
    +
    +void kernel_dilate(const uint8_t *data, IntArrayRef data_shape,
    +                   const int *label_map, int &label_num, int &min_area,
    +                   vector> &text_line) {
    +  std::vector area(label_num + 1);
    +  int kernel_num = data_shape[0];
    +  int height = data_shape[1];
    +  int width = data_shape[2];
    +
    +  for (int x = 0; x < height; ++x) {
    +    for (int y = 0; y < width; ++y) {
    +      int label = label_map[x * width + y];
    +      if (label == 0) continue;
    +      area[label] += 1;
    +    }
    +  }
    +
    +  queue queue, next_queue;
    +  for (int x = 0; x < height; ++x) {
    +    vector row(width);
    +    for (int y = 0; y < width; ++y) {
    +      int label = label_map[x * width + y];
    +      if (label == 0) continue;
    +      if (area[label] < min_area) continue;
    +
    +      Point2d point(x, y);
    +      queue.push(point);
    +      row[y] = label;
    +    }
    +    text_line.emplace_back(row);
    +  }
    +
    +  int dx[] = {-1, 1, 0, 0};
    +  int dy[] = {0, 0, -1, 1};
    +  vector kernel_step(kernel_num);
    +  std::for_each(kernel_step.begin(), kernel_step.end(),
    +                [=](int &k) { return k * height * width; });
    +
    +  for (int kernel_id = kernel_num - 2; kernel_id >= 0; --kernel_id) {
    +    while (!queue.empty()) {
    +      Point2d point = queue.front();
    +      queue.pop();
    +      int x = point.x;
    +      int y = point.y;
    +      int label = text_line[x][y];
    +
    +      bool is_edge = true;
    +      for (int d = 0; d < 4; ++d) {
    +        int tmp_x = x + dx[d];
    +        int tmp_y = y + dy[d];
    +
    +        if (tmp_x < 0 || tmp_x >= height) continue;
    +        if (tmp_y < 0 || tmp_y >= width) continue;
    +        int kernel_value = data[kernel_step[kernel_id] + tmp_x * width + tmp_y];
    +        if (kernel_value == 0) continue;
    +        if (text_line[tmp_x][tmp_y] > 0) continue;
    +
    +        Point2d point(tmp_x, tmp_y);
    +        queue.push(point);
    +        text_line[tmp_x][tmp_y] = label;
    +        is_edge = false;
    +      }
    +
    +      if (is_edge) {
    +        next_queue.push(point);
    +      }
    +    }
    +    swap(queue, next_queue);
    +  }
    +}
    +
    +std::vector> contour_expand(Tensor kernel_mask,
    +                                             Tensor internal_kernel_label,
    +                                             int min_kernel_area,
    +                                             int kernel_num) {
    +  kernel_mask = kernel_mask.contiguous();
    +  internal_kernel_label = internal_kernel_label.contiguous();
    +  assert(kernel_mask.dim() == 3);
    +  assert(internal_kernel_label.dim() == 2);
    +  assert(kernel_mask.size(1) == internal_kernel_label.size(0));
    +  assert(kernel_mask.size(2) == internal_kernel_label.size(1));
    +  CHECK_CPU_INPUT(kernel_mask);
    +  CHECK_CPU_INPUT(internal_kernel_label);
    +  auto ptr_data = kernel_mask.data_ptr();
    +  IntArrayRef data_shape = kernel_mask.sizes();
    +
    +  auto data_label_map = internal_kernel_label.data_ptr();
    +  vector> text_line;
    +
    +  kernel_dilate(ptr_data, data_shape, data_label_map, kernel_num,
    +                min_kernel_area, text_line);
    +
    +  return text_line;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/convex_iou.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/convex_iou.cpp
    new file mode 100644
    index 000000000..79f2028b5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/convex_iou.cpp
    @@ -0,0 +1,23 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/SDL-GuoZonghao/BeyondBoundingBox/tree/main/mmdet/ops/iou/src
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void convex_iou_impl(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious) {
    +  DISPATCH_DEVICE_IMPL(convex_iou_impl, pointsets, polygons, ious);
    +}
    +
    +void convex_iou(const Tensor pointsets, const Tensor polygons, Tensor ious) {
    +  convex_iou_impl(pointsets, polygons, ious);
    +}
    +
    +void convex_giou_impl(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output) {
    +  DISPATCH_DEVICE_IMPL(convex_giou_impl, pointsets, polygons, output);
    +}
    +
    +void convex_giou(const Tensor pointsets, const Tensor polygons, Tensor output) {
    +  convex_giou_impl(pointsets, polygons, output);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/correlation.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/correlation.cpp
    new file mode 100644
    index 000000000..f4adba2a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/correlation.cpp
    @@ -0,0 +1,47 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void correlation_forward_impl(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW) {
    +  DISPATCH_DEVICE_IMPL(correlation_forward_impl, input1, input2, output, kH, kW,
    +                       patchH, patchW, padH, padW, dilationH, dilationW,
    +                       dilation_patchH, dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_impl(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW) {
    +  DISPATCH_DEVICE_IMPL(correlation_backward_impl, grad_output, input1, input2,
    +                       grad_input1, grad_input2, kH, kW, patchH, patchW, padH,
    +                       padW, dilationH, dilationW, dilation_patchH,
    +                       dilation_patchW, dH, dW);
    +}
    +
    +void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
    +                         int kW, int patchH, int patchW, int padH, int padW,
    +                         int dilationH, int dilationW, int dilation_patchH,
    +                         int dilation_patchW, int dH, int dW) {
    +  correlation_forward_impl(input1, input2, output, kH, kW, patchH, patchW, padH,
    +                           padW, dilationH, dilationW, dilation_patchH,
    +                           dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
    +                          Tensor grad_input1, Tensor grad_input2, int kH,
    +                          int kW, int patchH, int patchW, int padH, int padW,
    +                          int dilationH, int dilationW, int dilation_patchH,
    +                          int dilation_patchW, int dH, int dW) {
    +  correlation_backward_impl(grad_output, input1, input2, grad_input1,
    +                            grad_input2, kH, kW, patchH, patchW, padH, padW,
    +                            dilationH, dilationW, dilation_patchH,
    +                            dilation_patchW, dH, dW);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/active_rotated_filter.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/active_rotated_filter.cpp
    new file mode 100644
    index 000000000..aa5a8b3d5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/active_rotated_filter.cpp
    @@ -0,0 +1,120 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/csuhan/s2anet/blob/master/mmdet/ops/orn/src/cpu/ActiveRotatingFilter_cpu.cpp
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +void active_rotated_filter_forward_cpu_kernel(
    +    const T* weightData, const int* indicesData, const int num_output_planes,
    +    const int num_input_planes, const int num_orientations, const int kH,
    +    const int kW, const int num_rotations, T* outputData) {
    +  const int nEntry = num_orientations * kH * kW;
    +  int i, j, l;
    +  int k;
    +
    +#pragma omp parallel for private(i, j, l, k)
    +  for (i = 0; i < num_output_planes; i++) {
    +    for (j = 0; j < num_input_planes; j++) {
    +      for (l = 0; l < nEntry; l++) {
    +        int weightIndex = i * num_input_planes * nEntry + j * nEntry + l;
    +        T val = *(weightData + weightIndex);
    +        for (k = 0; k < num_rotations; k++) {
    +          int index = (int)(*(indicesData + l * num_rotations + k)) - 1;
    +          T* target = outputData +
    +                      i * (num_rotations * num_input_planes * nEntry) +
    +                      k * (num_input_planes * nEntry) + j * (nEntry) + index;
    +          *target = val;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void active_rotated_filter_backward_cpu_kernel(
    +    const T* gradOutputData, const int* indicesData,
    +    const int num_output_planes, const int num_input_planes,
    +    const int num_orientations, const int kH, const int kW,
    +    const int num_rotations, T* gradInputData) {
    +  const int nEntry = num_orientations * kH * kW;
    +  int i, j, l;
    +  int k;
    +
    +#pragma omp parallel for private(i, j, l, k)
    +  for (i = 0; i < num_output_planes; i++) {
    +    for (j = 0; j < num_input_planes; j++) {
    +      for (l = 0; l < nEntry; l++) {
    +        int gradInputIndex = i * num_input_planes * nEntry + j * nEntry + l;
    +        T* val = gradInputData + gradInputIndex;
    +        *val = 0;
    +        for (k = 0; k < num_rotations; k++) {
    +          int index = (int)(*(indicesData + l * num_rotations + k)) - 1;
    +          const T* target =
    +              gradOutputData + i * (num_rotations * num_input_planes * nEntry) +
    +              k * (num_input_planes * nEntry) + j * (nEntry) + index;
    +          *val = *val + *target;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void ActiveRotatedFilterForwardCPULauncher(const Tensor input,
    +                                           const Tensor indices,
    +                                           Tensor output) {
    +  const int num_output_planes = input.size(0);
    +  const int num_input_planes = input.size(1);
    +  const int num_orientations = input.size(2);
    +  const int kH = input.size(3);
    +  const int kW = input.size(4);
    +  const int num_rotations = indices.size(3);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "active_rotated_filter_forward_cpu_kernel", [&] {
    +        active_rotated_filter_forward_cpu_kernel(
    +            input.data_ptr(), indices.data_ptr(),
    +            num_output_planes, num_input_planes, num_orientations, kH, kW,
    +            num_rotations, output.data_ptr());
    +      });
    +}
    +
    +void ActiveRotatedFilterBackwardCPULauncher(const Tensor grad_out,
    +                                            const Tensor indices,
    +                                            Tensor grad_in) {
    +  const int num_orientations = indices.size(0);
    +  const int kH = indices.size(1);
    +  const int kW = indices.size(2);
    +  const int num_rotations = indices.size(3);
    +  const int num_output_planes = grad_out.size(0) / num_rotations;
    +  const int num_input_planes = grad_out.size(1) / num_orientations;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "active_rotated_filter_backward_cpu_kernel", [&] {
    +        active_rotated_filter_backward_cpu_kernel(
    +            grad_out.data_ptr(), indices.data_ptr(),
    +            num_output_planes, num_input_planes, num_orientations, kH, kW,
    +            num_rotations, grad_in.data_ptr());
    +      });
    +}
    +
    +void active_rotated_filter_forward_cpu(const Tensor input, const Tensor indices,
    +                                       Tensor output) {
    +  ActiveRotatedFilterForwardCPULauncher(input, indices, output);
    +}
    +
    +void active_rotated_filter_backward_cpu(const Tensor grad_out,
    +                                        const Tensor indices, Tensor grad_in) {
    +  ActiveRotatedFilterBackwardCPULauncher(grad_out, indices, grad_in);
    +}
    +
    +void active_rotated_filter_forward_impl(const Tensor input,
    +                                        const Tensor indices, Tensor output);
    +
    +void active_rotated_filter_backward_impl(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in);
    +
    +REGISTER_DEVICE_IMPL(active_rotated_filter_forward_impl, CPU,
    +                     active_rotated_filter_forward_cpu);
    +REGISTER_DEVICE_IMPL(active_rotated_filter_backward_impl, CPU,
    +                     active_rotated_filter_backward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_quadri.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_quadri.cpp
    new file mode 100644
    index 000000000..211699ce2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_quadri.cpp
    @@ -0,0 +1,36 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "box_iou_rotated_utils.hpp"
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +void box_iou_quadri_cpu_kernel(const Tensor boxes1, const Tensor boxes2,
    +                               Tensor ious, const int mode_flag,
    +                               const bool aligned) {
    +  int output_size = ious.numel();
    +  auto num_boxes1 = boxes1.size(0);
    +  auto num_boxes2 = boxes2.size(0);
    +
    +  if (aligned) {
    +    for (int i = 0; i < output_size; i++) {
    +      ious[i] = single_box_iou_quadri(boxes1[i].data_ptr(),
    +                                         boxes2[i].data_ptr(), mode_flag);
    +    }
    +  } else {
    +    for (int i = 0; i < num_boxes1; i++) {
    +      for (int j = 0; j < num_boxes2; j++) {
    +        ious[i * num_boxes2 + j] = single_box_iou_quadri(
    +            boxes1[i].data_ptr(), boxes2[j].data_ptr(), mode_flag);
    +      }
    +    }
    +  }
    +}
    +
    +void box_iou_quadri_cpu(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                        const int mode_flag, const bool aligned) {
    +  box_iou_quadri_cpu_kernel(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    +
    +void box_iou_quadri_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned);
    +REGISTER_DEVICE_IMPL(box_iou_quadri_impl, CPU, box_iou_quadri_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_rotated.cpp
    new file mode 100644
    index 000000000..585d2c9fd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/box_iou_rotated.cpp
    @@ -0,0 +1,38 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
    +#include "box_iou_rotated_utils.hpp"
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +void box_iou_rotated_cpu_kernel(const Tensor boxes1, const Tensor boxes2,
    +                                Tensor ious, const int mode_flag,
    +                                const bool aligned) {
    +  int output_size = ious.numel();
    +  auto num_boxes1 = boxes1.size(0);
    +  auto num_boxes2 = boxes2.size(0);
    +
    +  if (aligned) {
    +    for (int i = 0; i < output_size; i++) {
    +      ious[i] = single_box_iou_rotated(boxes1[i].data_ptr(),
    +                                          boxes2[i].data_ptr(), mode_flag);
    +    }
    +  } else {
    +    for (int i = 0; i < num_boxes1; i++) {
    +      for (int j = 0; j < num_boxes2; j++) {
    +        ious[i * num_boxes2 + j] = single_box_iou_rotated(
    +            boxes1[i].data_ptr(), boxes2[j].data_ptr(), mode_flag);
    +      }
    +    }
    +  }
    +}
    +
    +void box_iou_rotated_cpu(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned) {
    +  box_iou_rotated_cpu_kernel(boxes1, boxes2, ious, mode_flag, aligned);
    +}
    +
    +void box_iou_rotated_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +REGISTER_DEVICE_IMPL(box_iou_rotated_impl, CPU, box_iou_rotated_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/deform_conv.cpp
    new file mode 100644
    index 000000000..7ab67e78c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/deform_conv.cpp
    @@ -0,0 +1,408 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +T deformable_im2col_bilinear_cpu(const T *input, const int data_width,
    +                                 const int height, const int width, T h, T w) {
    +  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    +    return 0;
    +  }
    +
    +  int h_low = floor(h);
    +  int w_low = floor(w);
    +  int h_high = h_low + 1;
    +  int w_high = w_low + 1;
    +
    +  T lh = h - h_low;
    +  T lw = w - w_low;
    +  T hh = 1 - lh, hw = 1 - lw;
    +
    +  T v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
    +  T v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1)
    +    v2 = input[h_low * data_width + w_high];
    +  T v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0)
    +    v3 = input[h_high * data_width + w_low];
    +  T v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1)
    +    v4 = input[h_high * data_width + w_high];
    +
    +  T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +template 
    +T get_gradient_weight_cpu(T argmax_h, T argmax_w, const int h, const int w,
    +                          const int height, const int width) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floor(argmax_h);
    +  int argmax_w_low = floor(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +  if (h == argmax_h_low && w == argmax_w_low)
    +    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_low && w == argmax_w_high)
    +    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
    +  if (h == argmax_h_high && w == argmax_w_low)
    +    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_high && w == argmax_w_high)
    +    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
    +  return weight;
    +}
    +
    +template 
    +T get_coordinate_weight_cpu(T argmax_h, T argmax_w, const int height,
    +                            const int width, const T *im_data,
    +                            const int data_width, const int bp_dir) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floor(argmax_h);
    +  int argmax_w_low = floor(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +
    +  if (bp_dir == 0) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += -1 * (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  } else if (bp_dir == 1) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  }
    +
    +  return weight;
    +}
    +
    +template 
    +void deformable_im2col_cpu_kernel(
    +    const int n, const T *data_im, const T *data_offset, const int height,
    +    const int width, const int kernel_h, const int kernel_w, const int pad_h,
    +    const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int num_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *data_col) {
    +  for (int index = 0; index < n; index++) {
    +    // index index of output matrix
    +    const int w_col = index % width_col;
    +    const int h_col = (index / width_col) % height_col;
    +    const int b_col = (index / width_col / height_col) % batch_size;
    +    const int c_im = (index / width_col / height_col) / batch_size;
    +    const int c_col = c_im * kernel_h * kernel_w;
    +
    +    // compute deformable group index
    +    const int deformable_group_index = c_im / channel_per_deformable_group;
    +
    +    const int h_in = h_col * stride_h - pad_h;
    +    const int w_in = w_col * stride_w - pad_w;
    +    T *data_col_ptr =
    +        data_col +
    +        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    +    const T *data_im_ptr =
    +        data_im + (b_col * num_channels + c_im) * height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    for (int i = 0; i < kernel_h; ++i) {
    +      for (int j = 0; j < kernel_w; ++j) {
    +        const int data_offset_h_ptr =
    +            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
    +        const int data_offset_w_ptr =
    +            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
    +            w_col;
    +        const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +        const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +        T val = static_cast(0);
    +        const T h_im = h_in + i * dilation_h + offset_h;
    +        const T w_im = w_in + j * dilation_w + offset_w;
    +        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
    +          val = deformable_im2col_bilinear_cpu(data_im_ptr, width, height,
    +                                               width, h_im, w_im);
    +        *data_col_ptr = val;
    +        data_col_ptr += batch_size * height_col * width_col;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void deformable_col2im_cpu_kernel(
    +    const int n, const T *data_col, const T *data_offset, const int channels,
    +    const int height, const int width, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int deformable_group, const int height_col, const int width_col,
    +    T *grad_im) {
    +  for (int index = 0; index < n; index++) {
    +    const int j = (index / width_col / height_col / batch_size) % kernel_w;
    +    const int i =
    +        (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +    const int c =
    +        index / width_col / height_col / batch_size / kernel_w / kernel_h;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / channel_per_deformable_group;
    +
    +    int w_out = index % width_col;
    +    int h_out = (index / width_col) % height_col;
    +    int b = (index / width_col / height_col) % batch_size;
    +    int w_in = w_out * stride_w - pad_w;
    +    int h_in = h_out * stride_h - pad_h;
    +
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const int data_offset_h_ptr =
    +        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    +    const int data_offset_w_ptr =
    +        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    +    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    +    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
    +
    +    const T cur_top_grad = data_col[index];
    +    const int cur_h = (int)cur_inv_h_data;
    +    const int cur_w = (int)cur_inv_w_data;
    +    for (int dy = -2; dy <= 2; dy++) {
    +      for (int dx = -2; dx <= 2; dx++) {
    +        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
    +            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
    +            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
    +          int cur_bottom_grad_pos =
    +              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
    +          T weight =
    +              get_gradient_weight_cpu(cur_inv_h_data, cur_inv_w_data,
    +                                      cur_h + dy, cur_w + dx, height, width);
    +          *(grad_im + cur_bottom_grad_pos) += weight * cur_top_grad;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void deformable_col2im_coord_cpu_kernel(
    +    const int n, const T *data_col, const T *data_im, const T *data_offset,
    +    const int channels, const int height, const int width, const int kernel_h,
    +    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    +    const int stride_w, const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int offset_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *grad_offset) {
    +  for (int index = 0; index < n; index++) {
    +    T val = 0;
    +    int w = index % width_col;
    +    int h = (index / width_col) % height_col;
    +    int c = (index / width_col / height_col) % offset_channels;
    +    int b = (index / width_col / height_col) / offset_channels;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    +    const int col_step = kernel_h * kernel_w;
    +    int cnt = 0;
    +    const T *data_col_ptr = data_col + deformable_group_index *
    +                                           channel_per_deformable_group *
    +                                           batch_size * width_col * height_col;
    +    const T *data_im_ptr =
    +        data_im + (b * deformable_group + deformable_group_index) *
    +                      channel_per_deformable_group / kernel_h / kernel_w *
    +                      height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
    +
    +    for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
    +         col_c += col_step) {
    +      const int col_pos =
    +          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
    +      const int bp_dir = offset_c % 2;
    +
    +      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
    +      int i =
    +          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +      int w_out = col_pos % width_col;
    +      int h_out = (col_pos / width_col) % height_col;
    +      int w_in = w_out * stride_w - pad_w;
    +      int h_in = h_out * stride_h - pad_h;
    +      const int data_offset_h_ptr =
    +          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
    +      const int data_offset_w_ptr =
    +          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
    +           w_out);
    +      const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +      const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +      T inv_h = h_in + i * dilation_h + offset_h;
    +      T inv_w = w_in + j * dilation_w + offset_w;
    +      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
    +        inv_h = inv_w = -2;
    +      const T weight = get_coordinate_weight_cpu(
    +          inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
    +          width, bp_dir);
    +      val += weight * data_col_ptr[col_pos];
    +      cnt += 1;
    +    }
    +
    +    grad_offset[index] = val;
    +  }
    +}
    +
    +void deformable_im2col_cpu(Tensor data_im, Tensor data_offset,
    +                           const int channels, const int height,
    +                           const int width, const int ksize_h,
    +                           const int ksize_w, const int pad_h, const int pad_w,
    +                           const int stride_h, const int stride_w,
    +                           const int dilation_h, const int dilation_w,
    +                           const int parallel_imgs, const int deformable_group,
    +                           Tensor data_col) {
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels = channels * height_col * width_col * parallel_imgs;
    +  int channel_per_deformable_group = channels / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_im.scalar_type(), "deformable_im2col_cpu", [&] {
    +        deformable_im2col_cpu_kernel(
    +            num_kernels, data_im.data_ptr(),
    +            data_offset.data_ptr(), height, width, ksize_h, ksize_w,
    +            pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
    +            channel_per_deformable_group, parallel_imgs, channels,
    +            deformable_group, height_col, width_col,
    +            data_col.data_ptr());
    +      });
    +}
    +
    +void deformable_col2im_cpu(Tensor data_col, Tensor data_offset,
    +                           const int channels, const int height,
    +                           const int width, const int ksize_h,
    +                           const int ksize_w, const int pad_h, const int pad_w,
    +                           const int stride_h, const int stride_w,
    +                           const int dilation_h, const int dilation_w,
    +                           const int parallel_imgs, const int deformable_group,
    +                           Tensor grad_im) {
    +  // todo: make sure parallel_imgs is passed in correctly
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels =
    +      channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
    +  int channel_per_deformable_group = channels / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        scalar_t *grad_im_ = grad_im.data_ptr();
    +
    +        deformable_col2im_cpu_kernel(
    +            num_kernels, data_col_, data_offset_, channels, height, width,
    +            ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
    +            dilation_w, channel_per_deformable_group, parallel_imgs,
    +            deformable_group, height_col, width_col, grad_im_);
    +      }));
    +}
    +
    +void deformable_col2im_coord_cpu(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset) {
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w *
    +                    deformable_group * parallel_imgs;
    +  int channel_per_deformable_group =
    +      channels * ksize_h * ksize_w / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "deformable_col2im_coord_cpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        scalar_t *grad_offset_ = grad_offset.data_ptr();
    +
    +        deformable_col2im_coord_cpu_kernel(
    +            num_kernels, data_col_, data_im_, data_offset_, channels, height,
    +            width, ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w,
    +            dilation_h, dilation_w, channel_per_deformable_group, parallel_imgs,
    +            2 * ksize_h * ksize_w * deformable_group, deformable_group,
    +            height_col, width_col, grad_offset_);
    +      }));
    +}
    +
    +void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col);
    +
    +void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im);
    +
    +void deformable_col2im_coord_impl(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset);
    +
    +REGISTER_DEVICE_IMPL(deformable_im2col_impl, CPU, deformable_im2col_cpu);
    +REGISTER_DEVICE_IMPL(deformable_col2im_impl, CPU, deformable_col2im_cpu);
    +REGISTER_DEVICE_IMPL(deformable_col2im_coord_impl, CPU,
    +                     deformable_col2im_coord_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/modulated_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/modulated_deform_conv.cpp
    new file mode 100644
    index 000000000..953909564
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/modulated_deform_conv.cpp
    @@ -0,0 +1,436 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +T dmcn_im2col_bilinear_cpu(const T *input, const int data_width,
    +                           const int height, const int width, T h, T w) {
    +  int h_low = floorf(h);
    +  int w_low = floorf(w);
    +  int h_high = h_low + 1;
    +  int w_high = w_low + 1;
    +
    +  T lh = h - h_low;
    +  T lw = w - w_low;
    +  T hh = 1 - lh, hw = 1 - lw;
    +
    +  T v1 = 0;
    +  if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
    +  T v2 = 0;
    +  if (h_low >= 0 && w_high <= width - 1)
    +    v2 = input[h_low * data_width + w_high];
    +  T v3 = 0;
    +  if (h_high <= height - 1 && w_low >= 0)
    +    v3 = input[h_high * data_width + w_low];
    +  T v4 = 0;
    +  if (h_high <= height - 1 && w_high <= width - 1)
    +    v4 = input[h_high * data_width + w_high];
    +
    +  T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
    +
    +  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +  return val;
    +}
    +
    +template 
    +T dmcn_get_gradient_weight_cpu(T argmax_h, T argmax_w, const int h, const int w,
    +                               const int height, const int width) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +  if (h == argmax_h_low && w == argmax_w_low)
    +    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_low && w == argmax_w_high)
    +    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
    +  if (h == argmax_h_high && w == argmax_w_low)
    +    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
    +  if (h == argmax_h_high && w == argmax_w_high)
    +    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
    +  return weight;
    +}
    +
    +template 
    +T dmcn_get_coordinate_weight_cpu(T argmax_h, T argmax_w, const int height,
    +                                 const int width, const T *im_data,
    +                                 const int data_width, const int bp_dir) {
    +  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
    +      argmax_w >= width) {
    +    // empty
    +    return 0;
    +  }
    +
    +  int argmax_h_low = floorf(argmax_h);
    +  int argmax_w_low = floorf(argmax_w);
    +  int argmax_h_high = argmax_h_low + 1;
    +  int argmax_w_high = argmax_w_low + 1;
    +
    +  T weight = 0;
    +
    +  if (bp_dir == 0) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += -1 * (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += (argmax_w_low + 1 - argmax_w) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_w - argmax_w_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  } else if (bp_dir == 1) {
    +    if (argmax_h_low >= 0 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_low];
    +    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
    +      weight += (argmax_h_low + 1 - argmax_h) *
    +                im_data[argmax_h_low * data_width + argmax_w_high];
    +    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
    +      weight += -1 * (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_low];
    +    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
    +      weight += (argmax_h - argmax_h_low) *
    +                im_data[argmax_h_high * data_width + argmax_w_high];
    +  }
    +
    +  return weight;
    +}
    +
    +template 
    +void modulated_deformable_im2col_cpu_kernel(
    +    const int n, const T *data_im, const T *data_offset, const T *data_mask,
    +    const int height, const int width, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int num_channels, const int deformable_group, const int height_col,
    +    const int width_col, T *data_col) {
    +  for (int index = 0; index < n; index++) {
    +    // index index of output matrix
    +    const int w_col = index % width_col;
    +    const int h_col = (index / width_col) % height_col;
    +    const int b_col = (index / width_col / height_col) % batch_size;
    +    const int c_im = (index / width_col / height_col) / batch_size;
    +    const int c_col = c_im * kernel_h * kernel_w;
    +
    +    // compute deformable group index
    +    const int deformable_group_index = c_im / channel_per_deformable_group;
    +
    +    const int h_in = h_col * stride_h - pad_h;
    +    const int w_in = w_col * stride_w - pad_w;
    +
    +    T *data_col_ptr =
    +        data_col +
    +        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    +    const T *data_im_ptr =
    +        data_im + (b_col * num_channels + c_im) * height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +
    +    const T *data_mask_ptr =
    +        data_mask + (b_col * deformable_group + deformable_group_index) *
    +                        kernel_h * kernel_w * height_col * width_col;
    +
    +    for (int i = 0; i < kernel_h; ++i) {
    +      for (int j = 0; j < kernel_w; ++j) {
    +        const int data_offset_h_ptr =
    +            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
    +        const int data_offset_w_ptr =
    +            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
    +            w_col;
    +        const int data_mask_hw_ptr =
    +            ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
    +        const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +        const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +        const T mask = data_mask_ptr[data_mask_hw_ptr];
    +        T val = static_cast(0);
    +        const T h_im = h_in + i * dilation_h + offset_h;
    +        const T w_im = w_in + j * dilation_w + offset_w;
    +        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
    +          val = dmcn_im2col_bilinear_cpu(data_im_ptr, width, height, width,
    +                                         h_im, w_im);
    +        *data_col_ptr = val * mask;
    +        data_col_ptr += batch_size * height_col * width_col;
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void modulated_deformable_col2im_cpu_kernel(
    +    const int n, const T *data_col, const T *data_offset, const T *data_mask,
    +    const int channels, const int height, const int width, const int kernel_h,
    +    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    +    const int stride_w, const int dilation_h, const int dilation_w,
    +    const int channel_per_deformable_group, const int batch_size,
    +    const int deformable_group, const int height_col, const int width_col,
    +    T *grad_im) {
    +  for (int index = 0; index < n; index++) {
    +    const int j = (index / width_col / height_col / batch_size) % kernel_w;
    +    const int i =
    +        (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +    const int c =
    +        index / width_col / height_col / batch_size / kernel_w / kernel_h;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / channel_per_deformable_group;
    +
    +    int w_out = index % width_col;
    +    int h_out = (index / width_col) % height_col;
    +    int b = (index / width_col / height_col) % batch_size;
    +    int w_in = w_out * stride_w - pad_w;
    +    int h_in = h_out * stride_h - pad_h;
    +
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const T *data_mask_ptr =
    +        data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
    +                        kernel_w * height_col * width_col;
    +    const int data_offset_h_ptr =
    +        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    +    const int data_offset_w_ptr =
    +        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    +    const int data_mask_hw_ptr =
    +        ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    +    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +    const T mask = data_mask_ptr[data_mask_hw_ptr];
    +    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    +    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
    +
    +    const T cur_top_grad = data_col[index] * mask;
    +    const int cur_h = (int)cur_inv_h_data;
    +    const int cur_w = (int)cur_inv_w_data;
    +    for (int dy = -2; dy <= 2; dy++) {
    +      for (int dx = -2; dx <= 2; dx++) {
    +        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
    +            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
    +            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
    +          int cur_bottom_grad_pos =
    +              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
    +          T weight = dmcn_get_gradient_weight_cpu(cur_inv_h_data,
    +                                                  cur_inv_w_data, cur_h + dy,
    +                                                  cur_w + dx, height, width);
    +          *(grad_im + cur_bottom_grad_pos) += weight * cur_top_grad;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void modulated_deformable_col2im_coord_cpu_kernel(
    +    const int n, const T *data_col, const T *data_im, const T *data_offset,
    +    const T *data_mask, const int channels, const int height, const int width,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int channel_per_deformable_group,
    +    const int batch_size, const int offset_channels, const int deformable_group,
    +    const int height_col, const int width_col, T *grad_offset, T *grad_mask) {
    +  for (int index = 0; index < n; index++) {
    +    T val = 0, mval = 0;
    +    int w = index % width_col;
    +    int h = (index / width_col) % height_col;
    +    int c = (index / width_col / height_col) % offset_channels;
    +    int b = (index / width_col / height_col) / offset_channels;
    +    // compute the start and end of the output
    +
    +    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    +    const int col_step = kernel_h * kernel_w;
    +    int cnt = 0;
    +    const T *data_col_ptr = data_col + deformable_group_index *
    +                                           channel_per_deformable_group *
    +                                           batch_size * width_col * height_col;
    +    const T *data_im_ptr =
    +        data_im + (b * deformable_group + deformable_group_index) *
    +                      channel_per_deformable_group / kernel_h / kernel_w *
    +                      height * width;
    +    const T *data_offset_ptr =
    +        data_offset + (b * deformable_group + deformable_group_index) * 2 *
    +                          kernel_h * kernel_w * height_col * width_col;
    +    const T *data_mask_ptr =
    +        data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
    +                        kernel_w * height_col * width_col;
    +
    +    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
    +
    +    for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
    +         col_c += col_step) {
    +      const int col_pos =
    +          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
    +      const int bp_dir = offset_c % 2;
    +
    +      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
    +      int i =
    +          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
    +      int w_out = col_pos % width_col;
    +      int h_out = (col_pos / width_col) % height_col;
    +      int w_in = w_out * stride_w - pad_w;
    +      int h_in = h_out * stride_h - pad_h;
    +      const int data_offset_h_ptr =
    +          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
    +      const int data_offset_w_ptr =
    +          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
    +           w_out);
    +      const int data_mask_hw_ptr =
    +          (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
    +      const T offset_h = data_offset_ptr[data_offset_h_ptr];
    +      const T offset_w = data_offset_ptr[data_offset_w_ptr];
    +      const T mask = data_mask_ptr[data_mask_hw_ptr];
    +      T inv_h = h_in + i * dilation_h + offset_h;
    +      T inv_w = w_in + j * dilation_w + offset_w;
    +      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
    +        inv_h = inv_w = -2;
    +      else
    +        mval += data_col_ptr[col_pos] *
    +                dmcn_im2col_bilinear_cpu(data_im_ptr + cnt * height * width,
    +                                         width, height, width, inv_h, inv_w);
    +      const T weight = dmcn_get_coordinate_weight_cpu(
    +          inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
    +          width, bp_dir);
    +      val += weight * data_col_ptr[col_pos] * mask;
    +      cnt += 1;
    +    }
    +    // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
    +    grad_offset[index] = val;
    +    if (offset_c % 2 == 0)
    +      // KERNEL_ASSIGN(grad_mask[(((b * deformable_group +
    +      // deformable_group_index) * kernel_h * kernel_w + offset_c / 2) *
    +      // height_col + h) * width_col + w], mask_req, mval);
    +      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
    +                      kernel_w +
    +                  offset_c / 2) *
    +                     height_col +
    +                 h) *
    +                    width_col +
    +                w] = mval;
    +  }
    +}
    +
    +void modulated_deformable_im2col_cpu(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col) {
    +  // num_axes should be smaller than block size
    +  const int channel_per_deformable_group = channels / deformable_group;
    +  const int num_kernels = channels * batch_size * height_col * width_col;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_im.scalar_type(), "modulated_deformable_im2col_cpu", ([&] {
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *data_col_ = data_col.data_ptr();
    +
    +        modulated_deformable_im2col_cpu_kernel(
    +            num_kernels, data_im_, data_offset_, data_mask_, height_im,
    +            width_im, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +            dilation_h, dilation_w, channel_per_deformable_group, batch_size,
    +            channels, deformable_group, height_col, width_col, data_col_);
    +      }));
    +}
    +
    +void modulated_deformable_col2im_cpu(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im) {
    +  const int channel_per_deformable_group = channels / deformable_group;
    +  const int num_kernels =
    +      channels * kernel_h * kernel_w * batch_size * height_col * width_col;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "modulated_deformable_col2im_cpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *grad_im_ = grad_im.data_ptr();
    +
    +        modulated_deformable_col2im_cpu_kernel(
    +            num_kernels, data_col_, data_offset_, data_mask_, channels,
    +            height_im, width_im, kernel_h, kernel_w, pad_h, pad_w, stride_h,
    +            stride_w, dilation_h, dilation_w, channel_per_deformable_group,
    +            batch_size, deformable_group, height_col, width_col, grad_im_);
    +      }));
    +}
    +
    +void modulated_deformable_col2im_coord_cpu(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask) {
    +  const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h *
    +                          kernel_w * deformable_group;
    +  const int channel_per_deformable_group =
    +      channels * kernel_h * kernel_w / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "modulated_deformable_col2im_coord_cpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *grad_offset_ = grad_offset.data_ptr();
    +        scalar_t *grad_mask_ = grad_mask.data_ptr();
    +
    +        modulated_deformable_col2im_coord_cpu_kernel(
    +            num_kernels, data_col_, data_im_, data_offset_, data_mask_,
    +            channels, height_im, width_im, kernel_h, kernel_w, pad_h, pad_w,
    +            stride_h, stride_w, dilation_h, dilation_w,
    +            channel_per_deformable_group, batch_size,
    +            2 * kernel_h * kernel_w * deformable_group, deformable_group,
    +            height_col, width_col, grad_offset_, grad_mask_);
    +      }));
    +}
    +
    +void modulated_deformable_im2col_impl(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col);
    +
    +void modulated_deformable_col2im_impl(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im);
    +
    +void modulated_deformable_col2im_coord_impl(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask);
    +
    +REGISTER_DEVICE_IMPL(modulated_deformable_im2col_impl, CPU,
    +                     modulated_deformable_im2col_cpu);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_impl, CPU,
    +                     modulated_deformable_col2im_cpu);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_coord_impl, CPU,
    +                     modulated_deformable_col2im_coord_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms.cpp
    new file mode 100644
    index 000000000..53e9b9a8d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms.cpp
    @@ -0,0 +1,230 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor nms_cpu(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  if (boxes.numel() == 0) {
    +    return at::empty({0}, boxes.options().dtype(at::kLong));
    +  }
    +  auto x1_t = boxes.select(1, 0).contiguous();
    +  auto y1_t = boxes.select(1, 1).contiguous();
    +  auto x2_t = boxes.select(1, 2).contiguous();
    +  auto y2_t = boxes.select(1, 3).contiguous();
    +
    +  Tensor areas_t = (x2_t - x1_t + offset) * (y2_t - y1_t + offset);
    +
    +  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
    +
    +  auto nboxes = boxes.size(0);
    +  Tensor select_t = at::ones({nboxes}, boxes.options().dtype(at::kBool));
    +
    +  auto select = select_t.data_ptr();
    +  auto order = order_t.data_ptr();
    +  auto x1 = x1_t.data_ptr();
    +  auto y1 = y1_t.data_ptr();
    +  auto x2 = x2_t.data_ptr();
    +  auto y2 = y2_t.data_ptr();
    +  auto areas = areas_t.data_ptr();
    +
    +  for (int64_t _i = 0; _i < nboxes; _i++) {
    +    if (select[_i] == false) continue;
    +    auto i = order[_i];
    +    auto ix1 = x1[i];
    +    auto iy1 = y1[i];
    +    auto ix2 = x2[i];
    +    auto iy2 = y2[i];
    +    auto iarea = areas[i];
    +
    +    for (int64_t _j = _i + 1; _j < nboxes; _j++) {
    +      if (select[_j] == false) continue;
    +      auto j = order[_j];
    +      auto xx1 = std::max(ix1, x1[j]);
    +      auto yy1 = std::max(iy1, y1[j]);
    +      auto xx2 = std::min(ix2, x2[j]);
    +      auto yy2 = std::min(iy2, y2[j]);
    +
    +      auto w = std::max(0.f, xx2 - xx1 + offset);
    +      auto h = std::max(0.f, yy2 - yy1 + offset);
    +      auto inter = w * h;
    +      auto ovr = inter / (iarea + areas[j] - inter);
    +      if (ovr > iou_threshold) select[_j] = false;
    +    }
    +  }
    +  return order_t.masked_select(select_t);
    +}
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +REGISTER_DEVICE_IMPL(nms_impl, CPU, nms_cpu);
    +
    +Tensor softnms_cpu(Tensor boxes, Tensor scores, Tensor dets,
    +                   float iou_threshold, float sigma, float min_score,
    +                   int method, int offset) {
    +  if (boxes.numel() == 0) {
    +    return at::empty({0}, boxes.options().dtype(at::kLong));
    +  }
    +
    +  auto x1_t = boxes.select(1, 0).contiguous();
    +  auto y1_t = boxes.select(1, 1).contiguous();
    +  auto x2_t = boxes.select(1, 2).contiguous();
    +  auto y2_t = boxes.select(1, 3).contiguous();
    +  auto scores_t = scores.clone();
    +
    +  Tensor areas_t = (x2_t - x1_t + offset) * (y2_t - y1_t + offset);
    +
    +  auto nboxes = boxes.size(0);
    +  auto x1 = x1_t.data_ptr();
    +  auto y1 = y1_t.data_ptr();
    +  auto x2 = x2_t.data_ptr();
    +  auto y2 = y2_t.data_ptr();
    +  auto sc = scores_t.data_ptr();
    +  auto areas = areas_t.data_ptr();
    +  auto de = dets.data_ptr();
    +
    +  int64_t pos = 0;
    +  Tensor inds_t = at::arange(nboxes, boxes.options().dtype(at::kLong));
    +  auto inds = inds_t.data_ptr();
    +
    +  for (int64_t i = 0; i < nboxes; i++) {
    +    auto max_score = sc[i];
    +    auto max_pos = i;
    +
    +    pos = i + 1;
    +    // get max box
    +    while (pos < nboxes) {
    +      if (max_score < sc[pos]) {
    +        max_score = sc[pos];
    +        max_pos = pos;
    +      }
    +      pos = pos + 1;
    +    }
    +    // swap
    +    auto ix1 = de[i * 5 + 0] = x1[max_pos];
    +    auto iy1 = de[i * 5 + 1] = y1[max_pos];
    +    auto ix2 = de[i * 5 + 2] = x2[max_pos];
    +    auto iy2 = de[i * 5 + 3] = y2[max_pos];
    +    auto iscore = de[i * 5 + 4] = sc[max_pos];
    +    auto iarea = areas[max_pos];
    +    auto iind = inds[max_pos];
    +    x1[max_pos] = x1[i];
    +    y1[max_pos] = y1[i];
    +    x2[max_pos] = x2[i];
    +    y2[max_pos] = y2[i];
    +    sc[max_pos] = sc[i];
    +    areas[max_pos] = areas[i];
    +    inds[max_pos] = inds[i];
    +    x1[i] = ix1;
    +    y1[i] = iy1;
    +    x2[i] = ix2;
    +    y2[i] = iy2;
    +    sc[i] = iscore;
    +    areas[i] = iarea;
    +    inds[i] = iind;
    +
    +    pos = i + 1;
    +    while (pos < nboxes) {
    +      auto xx1 = std::max(ix1, x1[pos]);
    +      auto yy1 = std::max(iy1, y1[pos]);
    +      auto xx2 = std::min(ix2, x2[pos]);
    +      auto yy2 = std::min(iy2, y2[pos]);
    +
    +      auto w = std::max(0.f, xx2 - xx1 + offset);
    +      auto h = std::max(0.f, yy2 - yy1 + offset);
    +      auto inter = w * h;
    +      auto ovr = inter / (iarea + areas[pos] - inter);
    +
    +      float weight = 1.;
    +      if (method == 0) {
    +        if (ovr >= iou_threshold) weight = 0;
    +      } else if (method == 1) {
    +        if (ovr >= iou_threshold) weight = 1 - ovr;
    +      } else if (method == 2) {
    +        weight = std::exp(-(ovr * ovr) / sigma);
    +      }
    +      sc[pos] *= weight;
    +      // if box score falls below threshold, discard the box by
    +      // swapping with last box update N
    +      if (sc[pos] < min_score) {
    +        x1[pos] = x1[nboxes - 1];
    +        y1[pos] = y1[nboxes - 1];
    +        x2[pos] = x2[nboxes - 1];
    +        y2[pos] = y2[nboxes - 1];
    +        sc[pos] = sc[nboxes - 1];
    +        areas[pos] = areas[nboxes - 1];
    +        inds[pos] = inds[nboxes - 1];
    +        nboxes = nboxes - 1;
    +        pos = pos - 1;
    +      }
    +      pos = pos + 1;
    +    }
    +  }
    +  return inds_t.slice(0, 0, nboxes);
    +}
    +
    +Tensor softnms_impl(Tensor boxes, Tensor scores, Tensor dets,
    +                    float iou_threshold, float sigma, float min_score,
    +                    int method, int offset);
    +REGISTER_DEVICE_IMPL(softnms_impl, CPU, softnms_cpu);
    +
    +std::vector > nms_match_cpu(Tensor dets, float iou_threshold) {
    +  auto x1_t = dets.select(1, 0).contiguous();
    +  auto y1_t = dets.select(1, 1).contiguous();
    +  auto x2_t = dets.select(1, 2).contiguous();
    +  auto y2_t = dets.select(1, 3).contiguous();
    +  auto scores = dets.select(1, 4).contiguous();
    +
    +  at::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t);
    +
    +  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
    +
    +  auto ndets = dets.size(0);
    +  at::Tensor suppressed_t =
    +      at::zeros({ndets}, dets.options().dtype(at::kByte).device(at::kCPU));
    +
    +  auto suppressed = suppressed_t.data_ptr();
    +  auto order = order_t.data_ptr();
    +  auto x1 = x1_t.data_ptr();
    +  auto y1 = y1_t.data_ptr();
    +  auto x2 = x2_t.data_ptr();
    +  auto y2 = y2_t.data_ptr();
    +  auto areas = areas_t.data_ptr();
    +
    +  std::vector keep;
    +  std::vector > matched;
    +
    +  for (int64_t _i = 0; _i < ndets; _i++) {
    +    auto i = order[_i];
    +    if (suppressed[i] == 1) continue;
    +    keep.push_back(i);
    +    std::vector v_i;
    +    auto ix1 = x1[i];
    +    auto iy1 = y1[i];
    +    auto ix2 = x2[i];
    +    auto iy2 = y2[i];
    +    auto iarea = areas[i];
    +
    +    for (int64_t _j = _i + 1; _j < ndets; _j++) {
    +      auto j = order[_j];
    +      if (suppressed[j] == 1) continue;
    +      auto xx1 = std::max(ix1, x1[j]);
    +      auto yy1 = std::max(iy1, y1[j]);
    +      auto xx2 = std::min(ix2, x2[j]);
    +      auto yy2 = std::min(iy2, y2[j]);
    +
    +      auto w = std::max(static_cast(0), xx2 - xx1);
    +      auto h = std::max(static_cast(0), yy2 - yy1);
    +      auto inter = w * h;
    +      auto ovr = inter / (iarea + areas[j] - inter);
    +      if (ovr >= iou_threshold) {
    +        suppressed[j] = 1;
    +        v_i.push_back(j);
    +      }
    +    }
    +    matched.push_back(v_i);
    +  }
    +  for (size_t i = 0; i < keep.size(); i++)
    +    matched[i].insert(matched[i].begin(), keep[i]);
    +  return matched;
    +}
    +
    +std::vector > nms_match_impl(Tensor dets, float iou_threshold);
    +REGISTER_DEVICE_IMPL(nms_match_impl, CPU, nms_match_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_quadri.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_quadri.cpp
    new file mode 100644
    index 000000000..086df167e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_quadri.cpp
    @@ -0,0 +1,64 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "box_iou_rotated_utils.hpp"
    +#include "pytorch_cpp_helper.hpp"
    +
    +template 
    +Tensor nms_quadri_cpu_kernel(const Tensor dets, const Tensor scores,
    +                             const float iou_threshold) {
    +  // nms_quadri_cpu_kernel is modified from torchvision's nms_cpu_kernel,
    +  // however, the code in this function is much shorter because
    +  // we delegate the IoU computation for quadri boxes to
    +  // the single_box_iou_quadri function in box_iou_rotated_utils.h
    +  AT_ASSERTM(!dets.is_cuda(), "dets must be a CPU tensor");
    +  AT_ASSERTM(!scores.is_cuda(), "scores must be a CPU tensor");
    +  AT_ASSERTM(dets.scalar_type() == scores.scalar_type(),
    +             "dets should have the same type as scores");
    +
    +  if (dets.numel() == 0) {
    +    return at::empty({0}, dets.options().dtype(at::kLong));
    +  }
    +
    +  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
    +
    +  auto ndets = dets.size(0);
    +  Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte));
    +  Tensor keep_t = at::zeros({ndets}, dets.options().dtype(at::kLong));
    +
    +  auto suppressed = suppressed_t.data_ptr();
    +  auto keep = keep_t.data_ptr();
    +  auto order = order_t.data_ptr();
    +
    +  int64_t num_to_keep = 0;
    +
    +  for (int64_t _i = 0; _i < ndets; _i++) {
    +    auto i = order[_i];
    +    if (suppressed[i] == 1) {
    +      continue;
    +    }
    +
    +    keep[num_to_keep++] = i;
    +
    +    for (int64_t _j = _i + 1; _j < ndets; _j++) {
    +      auto j = order[_j];
    +      if (suppressed[j] == 1) {
    +        continue;
    +      }
    +
    +      auto ovr = single_box_iou_quadri(
    +          dets[i].data_ptr(), dets[j].data_ptr(), 0);
    +      if (ovr >= iou_threshold) {
    +        suppressed[j] = 1;
    +      }
    +    }
    +  }
    +  return keep_t.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep);
    +}
    +
    +Tensor nms_quadri_cpu(const Tensor dets, const Tensor scores,
    +                      const float iou_threshold) {
    +  auto result = at::empty({0}, dets.options());
    +  AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms_quadri", [&] {
    +    result = nms_quadri_cpu_kernel(dets, scores, iou_threshold);
    +  });
    +  return result;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_rotated.cpp
    new file mode 100644
    index 000000000..d2774c826
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/nms_rotated.cpp
    @@ -0,0 +1,66 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/nms_rotated/nms_rotated_cpu.cpp
    +#include "box_iou_rotated_utils.hpp"
    +#include "pytorch_cpp_helper.hpp"
    +
    +template 
    +Tensor nms_rotated_cpu_kernel(const Tensor dets, const Tensor scores,
    +                              const float iou_threshold) {
    +  // nms_rotated_cpu_kernel is modified from torchvision's nms_cpu_kernel,
    +  // however, the code in this function is much shorter because
    +  // we delegate the IoU computation for rotated boxes to
    +  // the single_box_iou_rotated function in box_iou_rotated_utils.h
    +  AT_ASSERTM(!dets.is_cuda(), "dets must be a CPU tensor");
    +  AT_ASSERTM(!scores.is_cuda(), "scores must be a CPU tensor");
    +  AT_ASSERTM(dets.scalar_type() == scores.scalar_type(),
    +             "dets should have the same type as scores");
    +
    +  if (dets.numel() == 0) {
    +    return at::empty({0}, dets.options().dtype(at::kLong));
    +  }
    +
    +  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
    +
    +  auto ndets = dets.size(0);
    +  Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte));
    +  Tensor keep_t = at::zeros({ndets}, dets.options().dtype(at::kLong));
    +
    +  auto suppressed = suppressed_t.data_ptr();
    +  auto keep = keep_t.data_ptr();
    +  auto order = order_t.data_ptr();
    +
    +  int64_t num_to_keep = 0;
    +
    +  for (int64_t _i = 0; _i < ndets; _i++) {
    +    auto i = order[_i];
    +    if (suppressed[i] == 1) {
    +      continue;
    +    }
    +
    +    keep[num_to_keep++] = i;
    +
    +    for (int64_t _j = _i + 1; _j < ndets; _j++) {
    +      auto j = order[_j];
    +      if (suppressed[j] == 1) {
    +        continue;
    +      }
    +
    +      auto ovr = single_box_iou_rotated(
    +          dets[i].data_ptr(), dets[j].data_ptr(), 0);
    +      if (ovr >= iou_threshold) {
    +        suppressed[j] = 1;
    +      }
    +    }
    +  }
    +  return keep_t.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep);
    +}
    +
    +Tensor nms_rotated_cpu(const Tensor dets, const Tensor scores,
    +                       const float iou_threshold) {
    +  auto result = at::empty({0}, dets.options());
    +  AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms_rotated", [&] {
    +    result = nms_rotated_cpu_kernel(dets, scores, iou_threshold);
    +  });
    +  return result;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/pixel_group.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/pixel_group.cpp
    new file mode 100755
    index 000000000..db06a224a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/pixel_group.cpp
    @@ -0,0 +1,126 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// It is modified from https://github.com/WenmuZhou/PAN.pytorch
    +
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +std::vector> estimate_confidence(int32_t* label,
    +                                                    float* score, int label_num,
    +                                                    int height, int width) {
    +  std::vector> point_vector;
    +  for (int i = 0; i < label_num; i++) {
    +    std::vector point;
    +    point.push_back(0);
    +    point.push_back(0);
    +    point_vector.push_back(point);
    +  }
    +  for (int y = 0; y < height; y++) {
    +    auto label_tmp = label + y * width;
    +    auto score_tmp = score + y * width;
    +    for (int x = 0; x < width; x++) {
    +      auto l = label_tmp[x];
    +      if (l > 0) {
    +        float confidence = score_tmp[x];
    +        point_vector[l].push_back(x);
    +        point_vector[l].push_back(y);
    +        point_vector[l][0] += confidence;
    +        point_vector[l][1] += 1;
    +      }
    +    }
    +  }
    +  for (size_t l = 0; l < point_vector.size(); l++)
    +    if (point_vector[l][1] > 0) {
    +      point_vector[l][0] /= point_vector[l][1];
    +    }
    +  return point_vector;
    +}
    +std::vector> pixel_group_cpu(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float dis_threshold) {
    +  assert(score.dim() == 2);
    +  assert(mask.dim() == 2);
    +  assert(embedding.dim() == 3);
    +  int height = score.size(0);
    +  int width = score.size(1);
    +  assert(height == mask.size(0) == embedding.size(1) == kernel_label.size(1));
    +  assert(width == mask.size(1) == embedding.size(2) == kernel_label.size(2));
    +
    +  auto threshold_square = dis_threshold * dis_threshold;
    +  auto ptr_score = score.data_ptr();
    +  auto ptr_mask = mask.data_ptr();
    +  auto ptr_kernel_contour = kernel_contour.data_ptr();
    +  auto ptr_embedding = embedding.data_ptr();
    +  auto ptr_kernel_label = kernel_label.data_ptr();
    +  std::queue> contour_pixels;
    +  auto embedding_dim = embedding.size(2);
    +  std::vector> kernel_vector(
    +      kernel_region_num, std::vector(embedding_dim + 1, 0));
    +
    +  Tensor text_label;
    +  text_label = kernel_label.clone();
    +  auto ptr_text_label = text_label.data_ptr();
    +
    +  for (int i = 0; i < height; i++) {
    +    auto ptr_embedding_tmp = ptr_embedding + i * width * embedding_dim;
    +    auto ptr_kernel_label_tmp = ptr_kernel_label + i * width;
    +    auto ptr_kernel_contour_tmp = ptr_kernel_contour + i * width;
    +
    +    for (int j = 0, k = 0; j < width && k < width * embedding_dim;
    +         j++, k += embedding_dim) {
    +      int32_t label = ptr_kernel_label_tmp[j];
    +      if (label > 0) {
    +        for (int d = 0; d < embedding_dim; d++)
    +          kernel_vector[label][d] += ptr_embedding_tmp[k + d];
    +        kernel_vector[label][embedding_dim] += 1;
    +        // kernel pixel number
    +        if (ptr_kernel_contour_tmp[j]) {
    +          contour_pixels.push(std::make_tuple(i, j, label));
    +        }
    +      }
    +    }
    +  }
    +  for (int i = 0; i < kernel_region_num; i++) {
    +    for (int j = 0; j < embedding_dim; j++) {
    +      kernel_vector[i][j] /= kernel_vector[i][embedding_dim];
    +    }
    +  }
    +  int dx[4] = {-1, 1, 0, 0};
    +  int dy[4] = {0, 0, -1, 1};
    +  while (!contour_pixels.empty()) {
    +    auto query_pixel = contour_pixels.front();
    +    contour_pixels.pop();
    +    int y = std::get<0>(query_pixel);
    +    int x = std::get<1>(query_pixel);
    +    int32_t l = std::get<2>(query_pixel);
    +    auto kernel_cv = kernel_vector[l];
    +    for (int idx = 0; idx < 4; idx++) {
    +      int tmpy = y + dy[idx];
    +      int tmpx = x + dx[idx];
    +      auto ptr_text_label_tmp = ptr_text_label + tmpy * width;
    +      if (tmpy < 0 || tmpy >= height || tmpx < 0 || tmpx >= width) continue;
    +      if (!ptr_mask[tmpy * width + tmpx] || ptr_text_label_tmp[tmpx] > 0)
    +        continue;
    +
    +      float dis = 0;
    +      auto ptr_embedding_tmp = ptr_embedding + tmpy * width * embedding_dim;
    +      for (size_t i = 0; i < size_t(embedding_dim); i++) {
    +        dis +=
    +            pow(kernel_cv[i] - ptr_embedding_tmp[tmpx * embedding_dim + i], 2);
    +        // ignore further computing if dis is big enough
    +        if (dis >= threshold_square) break;
    +      }
    +      if (dis >= threshold_square) continue;
    +      contour_pixels.push(std::make_tuple(tmpy, tmpx, l));
    +      ptr_text_label_tmp[tmpx] = l;
    +    }
    +  }
    +
    +  return estimate_confidence(ptr_text_label, ptr_score, kernel_region_num,
    +                             height, width);
    +}
    +std::vector> pixel_group_impl(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float dis_threshold);
    +REGISTER_DEVICE_IMPL(pixel_group_impl, CPU, pixel_group_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/points_in_boxes.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/points_in_boxes.cpp
    new file mode 100644
    index 000000000..c16baa4cc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/points_in_boxes.cpp
    @@ -0,0 +1,53 @@
    +#include "pytorch_cpp_helper.hpp"
    +
    +inline void lidar_to_local_coords_cpu(float shift_x, float shift_y, float rz,
    +                                      float &local_x, float &local_y) {
    +  float cosa = cos(-rz), sina = sin(-rz);
    +  local_x = shift_x * cosa + shift_y * (-sina);
    +  local_y = shift_x * sina + shift_y * cosa;
    +}
    +
    +inline int check_pt_in_box3d_cpu(const float *pt, const float *box3d,
    +                                 float &local_x, float &local_y) {
    +  // param pt: (x, y, z)
    +  // param box3d: (cx, cy, cz, x_size, y_size, z_size, rz) in LiDAR coordinate,
    +  // cz in the bottom center
    +  float x = pt[0], y = pt[1], z = pt[2];
    +  float cx = box3d[0], cy = box3d[1], cz = box3d[2];
    +  float x_size = box3d[3], y_size = box3d[4], z_size = box3d[5], rz = box3d[6];
    +  cz += z_size /
    +        2.0;  // shift to the center since cz in box3d is the bottom center
    +
    +  if (fabsf(z - cz) > z_size / 2.0) return 0;
    +  lidar_to_local_coords_cpu(x - cx, y - cy, rz, local_x, local_y);
    +  float in_flag = (local_x > -x_size / 2.0) & (local_x < x_size / 2.0) &
    +                  (local_y > -y_size / 2.0) & (local_y < y_size / 2.0);
    +  return in_flag;
    +}
    +
    +void points_in_boxes_cpu_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor pts_indices_tensor) {
    +  // params boxes: (N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box DO NOT overlaps params pts:
    +  // (npoints, 3) [x, y, z] in LiDAR coordinate params pts_indices: (N, npoints)
    +
    +  CHECK_CONTIGUOUS(boxes_tensor);
    +  CHECK_CONTIGUOUS(pts_tensor);
    +  CHECK_CONTIGUOUS(pts_indices_tensor);
    +
    +  int boxes_num = boxes_tensor.size(0);
    +  int pts_num = pts_tensor.size(0);
    +
    +  const float *boxes = boxes_tensor.data_ptr();
    +  const float *pts = pts_tensor.data_ptr();
    +  int *pts_indices = pts_indices_tensor.data_ptr();
    +
    +  float local_x = 0, local_y = 0;
    +  for (int i = 0; i < boxes_num; i++) {
    +    for (int j = 0; j < pts_num; j++) {
    +      int cur_in_flag =
    +          check_pt_in_box3d_cpu(pts + j * 3, boxes + i * 7, local_x, local_y);
    +      pts_indices[i * pts_num + j] = cur_in_flag;
    +    }
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/psamask.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/psamask.cpp
    new file mode 100644
    index 000000000..aa7fdcbdc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/psamask.cpp
    @@ -0,0 +1,199 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/hszhao/semseg/blob/master/lib/psa/src
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +#ifndef min
    +#define min(a, b) (((a) < (b)) ? (a) : (b))
    +#endif
    +#ifndef max
    +#define max(a, b) (((a) > (b)) ? (a) : (b))
    +#endif
    +
    +void psamask_collect_forward(const int num_, const int h_feature,
    +                             const int w_feature, const int h_mask,
    +                             const int w_mask, const int half_h_mask,
    +                             const int half_w_mask, const Tensor mask_data,
    +                             Tensor buffer_data) {
    +  for (int n = 0; n < num_; n++) {
    +    for (int h = 0; h < h_feature; h++) {
    +      for (int w = 0; w < w_feature; w++) {
    +        // effective mask region : [hstart, hend) x [wstart, wend) with
    +        // mask-indexed
    +        const int hstart = max(0, half_h_mask - h);
    +        const int hend = min(h_mask, h_feature + half_h_mask - h);
    +        const int wstart = max(0, half_w_mask - w);
    +        const int wend = min(w_mask, w_feature + half_w_mask - w);
    +        // (hidx,                    widx                   ) with mask-indexed
    +        // (hidx + h - half_h_mask, widx + w - half_w_mask) with
    +        // feature-indexed
    +        for (int hidx = hstart; hidx < hend; hidx++) {
    +          for (int widx = wstart; widx < wend; widx++) {
    +            buffer_data.view({-1})[(n * h_feature * w_feature +
    +                                    (hidx + h - half_h_mask) * w_feature +
    +                                    (widx + w - half_w_mask)) *
    +                                       h_feature * w_feature +
    +                                   h * w_feature + w] =
    +                mask_data.view(
    +                    {-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
    +                               h_feature +
    +                           h) *
    +                              w_feature +
    +                          w];
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void psamask_distribute_forward(const int num_, const int h_feature,
    +                                const int w_feature, const int h_mask,
    +                                const int w_mask, const int half_h_mask,
    +                                const int half_w_mask, const Tensor mask_data,
    +                                Tensor buffer_data) {
    +  for (int n = 0; n < num_; n++) {
    +    for (int h = 0; h < h_feature; h++) {
    +      for (int w = 0; w < w_feature; w++) {
    +        // effective mask region : [hstart, hend) x [wstart, wend) with
    +        // mask-indexed
    +        const int hstart = max(0, half_h_mask - h);
    +        const int hend = min(h_mask, h_feature + half_h_mask - h);
    +        const int wstart = max(0, half_w_mask - w);
    +        const int wend = min(w_mask, w_feature + half_w_mask - w);
    +        // (hidx,                    widx                   ) with mask-indexed
    +        // (hidx + h - half_h_mask, widx + w - half_w_mask) with
    +        // feature-indexed
    +        for (int hidx = hstart; hidx < hend; hidx++) {
    +          for (int widx = wstart; widx < wend; widx++) {
    +            buffer_data.view(
    +                {-1})[(n * h_feature * w_feature + h * w_feature + w) *
    +                          h_feature * w_feature +
    +                      (hidx + h - half_h_mask) * w_feature +
    +                      (widx + w - half_w_mask)] =
    +                mask_data.view(
    +                    {-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
    +                               h_feature +
    +                           h) *
    +                              w_feature +
    +                          w];
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void psamask_collect_backward(const int num_, const int h_feature,
    +                              const int w_feature, const int h_mask,
    +                              const int w_mask, const int half_h_mask,
    +                              const int half_w_mask, const Tensor buffer_diff,
    +                              Tensor mask_diff) {
    +  for (int n = 0; n < num_; n++) {
    +    for (int h = 0; h < h_feature; h++) {
    +      for (int w = 0; w < w_feature; w++) {
    +        // effective mask region : [hstart, hend) x [wstart, wend) with
    +        // mask-indexed
    +        const int hstart = max(0, half_h_mask - h);
    +        const int hend = min(h_mask, h_feature + half_h_mask - h);
    +        const int wstart = max(0, half_w_mask - w);
    +        const int wend = min(w_mask, w_feature + half_w_mask - w);
    +        // (hidx,                    widx                   ) with mask-indexed
    +        // (hidx + h - half_h_mask, widx + w - half_w_mask) with
    +        // feature-indexed
    +        for (int hidx = hstart; hidx < hend; hidx++) {
    +          for (int widx = wstart; widx < wend; widx++) {
    +            mask_diff.view({-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
    +                                      h_feature +
    +                                  h) *
    +                                     w_feature +
    +                                 w] =
    +                buffer_diff.view({-1})[(n * h_feature * w_feature +
    +                                        (hidx + h - half_h_mask) * w_feature +
    +                                        (widx + w - half_w_mask)) *
    +                                           h_feature * w_feature +
    +                                       h * w_feature + w];
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void psamask_distribute_backward(const int num_, const int h_feature,
    +                                 const int w_feature, const int h_mask,
    +                                 const int w_mask, const int half_h_mask,
    +                                 const int half_w_mask,
    +                                 const Tensor buffer_diff, Tensor mask_diff) {
    +  for (int n = 0; n < num_; n++) {
    +    for (int h = 0; h < h_feature; h++) {
    +      for (int w = 0; w < w_feature; w++) {
    +        // effective mask region : [hstart, hend) x [wstart, wend) with
    +        // mask-indexed
    +        const int hstart = max(0, half_h_mask - h);
    +        const int hend = min(h_mask, h_feature + half_h_mask - h);
    +        const int wstart = max(0, half_w_mask - w);
    +        const int wend = min(w_mask, w_feature + half_w_mask - w);
    +        // (hidx,                    widx                   ) with mask-indexed
    +        // (hidx + h - half_h_mask, widx + w - half_w_mask) with
    +        // feature-indexed
    +        for (int hidx = hstart; hidx < hend; hidx++) {
    +          for (int widx = wstart; widx < wend; widx++) {
    +            mask_diff.view({-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
    +                                      h_feature +
    +                                  h) *
    +                                     w_feature +
    +                                 w] =
    +                buffer_diff.view(
    +                    {-1})[(n * h_feature * w_feature + h * w_feature + w) *
    +                              h_feature * w_feature +
    +                          (hidx + h - half_h_mask) * w_feature +
    +                          (widx + w - half_w_mask)];
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void psamask_forward_cpu(const int psa_type, const Tensor input, Tensor output,
    +                         const int num_, const int h_feature,
    +                         const int w_feature, const int h_mask,
    +                         const int w_mask, const int half_h_mask,
    +                         const int half_w_mask) {
    +  if (psa_type == 0)
    +    psamask_collect_forward(num_, h_feature, w_feature, h_mask, w_mask,
    +                            half_h_mask, half_w_mask, input, output);
    +  else
    +    psamask_distribute_forward(num_, h_feature, w_feature, h_mask, w_mask,
    +                               half_h_mask, half_w_mask, input, output);
    +}
    +
    +void psamask_backward_cpu(const int psa_type, const Tensor grad_output,
    +                          Tensor grad_input, const int num_,
    +                          const int h_feature, const int w_feature,
    +                          const int h_mask, const int w_mask,
    +                          const int half_h_mask, const int half_w_mask) {
    +  if (psa_type == 0)
    +    psamask_collect_backward(num_, h_feature, w_feature, h_mask, w_mask,
    +                             half_h_mask, half_w_mask, grad_output, grad_input);
    +  else
    +    psamask_distribute_backward(num_, h_feature, w_feature, h_mask, w_mask,
    +                                half_h_mask, half_w_mask, grad_output,
    +                                grad_input);
    +}
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask);
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask);
    +REGISTER_DEVICE_IMPL(psamask_forward_impl, CPU, psamask_forward_cpu);
    +REGISTER_DEVICE_IMPL(psamask_backward_impl, CPU, psamask_backward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align.cpp
    new file mode 100644
    index 000000000..d54539064
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align.cpp
    @@ -0,0 +1,466 @@
    +// Modified from
    +// https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include 
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +// implementation taken from Caffe2
    +template 
    +struct PreCalc {
    +  int pos1;
    +  int pos2;
    +  int pos3;
    +  int pos4;
    +  T w1;
    +  T w2;
    +  T w3;
    +  T w4;
    +};
    +
    +template 
    +void pre_calc_for_bilinear_interpolate(
    +    const int height, const int width, const int pooled_height,
    +    const int pooled_width, const int iy_upper, const int ix_upper,
    +    T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
    +    int roi_bin_grid_h, int roi_bin_grid_w, std::vector>& pre_calc) {
    +  int pre_calc_index = 0;
    +  for (int ph = 0; ph < pooled_height; ph++) {
    +    for (int pw = 0; pw < pooled_width; pw++) {
    +      for (int iy = 0; iy < iy_upper; iy++) {
    +        const T yy = roi_start_h + ph * bin_size_h +
    +                     static_cast(iy + .5f) * bin_size_h /
    +                         static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +        for (int ix = 0; ix < ix_upper; ix++) {
    +          const T xx = roi_start_w + pw * bin_size_w +
    +                       static_cast(ix + .5f) * bin_size_w /
    +                           static_cast(roi_bin_grid_w);
    +
    +          T x = xx;
    +          T y = yy;
    +          // deal with: inverse elements are out of feature map boundary
    +          if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +            // empty
    +            PreCalc pc;
    +            pc.pos1 = 0;
    +            pc.pos2 = 0;
    +            pc.pos3 = 0;
    +            pc.pos4 = 0;
    +            pc.w1 = 0;
    +            pc.w2 = 0;
    +            pc.w3 = 0;
    +            pc.w4 = 0;
    +            pre_calc[pre_calc_index] = pc;
    +            pre_calc_index += 1;
    +            continue;
    +          }
    +
    +          if (y <= 0) {
    +            y = 0;
    +          }
    +          if (x <= 0) {
    +            x = 0;
    +          }
    +
    +          int y_low = (int)y;
    +          int x_low = (int)x;
    +          int y_high;
    +          int x_high;
    +
    +          if (y_low >= height - 1) {
    +            y_high = y_low = height - 1;
    +            y = (T)y_low;
    +          } else {
    +            y_high = y_low + 1;
    +          }
    +
    +          if (x_low >= width - 1) {
    +            x_high = x_low = width - 1;
    +            x = (T)x_low;
    +          } else {
    +            x_high = x_low + 1;
    +          }
    +
    +          T ly = y - y_low;
    +          T lx = x - x_low;
    +          T hy = 1. - ly, hx = 1. - lx;
    +          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +          // save weights and indices
    +          PreCalc pc;
    +          pc.pos1 = y_low * width + x_low;
    +          pc.pos2 = y_low * width + x_high;
    +          pc.pos3 = y_high * width + x_low;
    +          pc.pos4 = y_high * width + x_high;
    +          pc.w1 = w1;
    +          pc.w2 = w2;
    +          pc.w3 = w3;
    +          pc.w4 = w4;
    +          pre_calc[pre_calc_index] = pc;
    +
    +          pre_calc_index += 1;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void ROIAlignForward(const int nthreads, const T* input, const T* rois,
    +                     T* output, T* argmax_y, T* argmax_x,
    +                     const int pooled_height, const int pooled_width,
    +                     const T spatial_scale, const int sampling_ratio,
    +                     const int pool_mode,  // 0 - max pool, 1 - avg pool
    +                     const bool aligned, const int channels, const int height,
    +                     const int width) {
    +  int n_rois = nthreads / channels / pooled_width / pooled_height;
    +  // (n, c, ph, pw) is an element in the pooled output
    +  // can be parallelized using omp
    +  // #pragma omp parallel for num_threads(32)
    +  for (int n = 0; n < n_rois; n++) {
    +    int index_n = n * channels * pooled_width * pooled_height;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    T offset = aligned ? (T)0.5 : (T)0.0;
    +    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    +    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    +    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    +    T roi_end_h = offset_rois[4] * spatial_scale - offset;
    +
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +    if (aligned) {
    +      AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
    +                 "ROIs in ROIAlign cannot have non-negative size!");
    +    } else {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (T)1.);
    +      roi_height = std::max(roi_height, (T)1.);
    +    }
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
    +
    +    // When the grid is empty, output zeros == 0/1, instead of NaN.
    +    const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    // we want to precalculate indices and weights shared by all channels,
    +    // this is the key point of optimization
    +    std::vector> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
    +                                     pooled_width * pooled_height);
    +    pre_calc_for_bilinear_interpolate(
    +        height, width, pooled_height, pooled_width, roi_bin_grid_h,
    +        roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
    +        roi_bin_grid_h, roi_bin_grid_w, pre_calc);
    +
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * pooled_width * pooled_height;
    +      const T* offset_input =
    +          input + (roi_batch_ind * channels + c) * height * width;
    +      int pre_calc_index = 0;
    +
    +      for (int ph = 0; ph < pooled_height; ph++) {
    +        for (int pw = 0; pw < pooled_width; pw++) {
    +          int index = index_n_c + ph * pooled_width + pw;
    +
    +          T output_val = 0.;
    +          T maxval = -10000;
    +          T maxidx_y = -1.f, maxidx_x = -1.f;
    +          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +            const T y = roi_start_h + ph * bin_size_h +
    +                        static_cast(iy + .5f) * bin_size_h /
    +                            static_cast(roi_bin_grid_h);
    +            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +              const T x = roi_start_w + pw * bin_size_w +
    +                          static_cast(ix + .5f) * bin_size_w /
    +                              static_cast(roi_bin_grid_w);
    +              PreCalc pc = pre_calc[pre_calc_index];
    +              T val = pc.w1 * offset_input[pc.pos1] +
    +                      pc.w2 * offset_input[pc.pos2] +
    +                      pc.w3 * offset_input[pc.pos3] +
    +                      pc.w4 * offset_input[pc.pos4];
    +              if (val > maxval) {
    +                maxval = val;
    +                maxidx_y = y;
    +                maxidx_x = x;
    +              }
    +              output_val += val;
    +              pre_calc_index += 1;
    +            }
    +          }
    +          if (pool_mode == 0) {
    +            // We do max pooling inside a bin
    +            output[index] = maxval;
    +            argmax_y[index] = maxidx_y;
    +            argmax_x[index] = maxidx_x;
    +          } else if (pool_mode == 1) {
    +            // We do average (integral) pooling inside a bin
    +            output[index] = output_val / count;
    +          }  // if
    +        }    // for pw
    +      }      // for ph
    +    }        // for c
    +  }          // for n
    +}
    +
    +template 
    +void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
    +                                   T& w1, T& w2, T& w3, T& w4, int& x_low,
    +                                   int& x_high, int& y_low, int& y_high,
    +                                   const int index /* index for debug only*/) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +    // empty
    +    w1 = w2 = w3 = w4 = 0.;
    +    x_low = x_high = y_low = y_high = -1;
    +    return;
    +  }
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  y_low = (int)y;
    +  x_low = (int)x;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +
    +  // reference in forward
    +  // T v1 = input[y_low * width + x_low];
    +  // T v2 = input[y_low * width + x_high];
    +  // T v3 = input[y_high * width + x_low];
    +  // T v4 = input[y_high * width + x_high];
    +  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +
    +  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  return;
    +}
    +
    +template 
    +inline void add(T* address, const T& val) {
    +  *address += val;
    +}
    +
    +template 
    +void ROIAlignBackward(const int nthreads, const T* grad_output, const T* rois,
    +                      const T* argmax_y, const T* argmax_x, T* grad_input,
    +                      const int pooled_height, const int pooled_width,
    +                      const T spatial_scale, const int sampling_ratio,
    +                      const int pool_mode,  // 0 - max pool, 1 - avg pool
    +                      const bool aligned, const int channels, const int height,
    +                      const int width, const int n_stride, const int c_stride,
    +                      const int h_stride, const int w_stride) {
    +  for (int index = 0; index < nthreads; index++) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* offset_rois = rois + n * 5;
    +    int roi_batch_ind = offset_rois[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    T offset = aligned ? (T)0.5 : (T)0.0;
    +    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    +    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    +    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    +    T roi_end_h = offset_rois[4] * spatial_scale - offset;
    +
    +    T roi_width = roi_end_w - roi_start_w;
    +    T roi_height = roi_end_h - roi_start_h;
    +    if (aligned) {
    +      AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
    +                 "ROIs in ROIAlign do not have non-negative size!");
    +    } else {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (T)1.);
    +      roi_height = std::max(roi_height, (T)1.);
    +    }
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    T* offset_grad_input =
    +        grad_input + ((roi_batch_ind * channels + c) * height * width);
    +
    +    int output_offset = n * n_stride + c * c_stride;
    +    const T* offset_grad_output = grad_output + output_offset;
    +    const T grad_output_this_bin =
    +        offset_grad_output[ph * h_stride + pw * w_stride];
    +
    +    if (pool_mode == 0) {
    +      // We do max pooling inside a bin
    +      T y = argmax_y[index], x = argmax_x[index];
    +      if (y != -1.f) {
    +        T w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                      x_low, x_high, y_low, y_high, index);
    +
    +        T g1 = grad_output_this_bin * w1;
    +        T g2 = grad_output_this_bin * w2;
    +        T g3 = grad_output_this_bin * w3;
    +        T g4 = grad_output_this_bin * w4;
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          // atomic add is not needed for now since it is single threaded
    +          add(offset_grad_input + y_low * width + x_low, static_cast(g1));
    +          add(offset_grad_input + y_low * width + x_high, static_cast(g2));
    +          add(offset_grad_input + y_high * width + x_low, static_cast(g3));
    +          add(offset_grad_input + y_high * width + x_high, static_cast(g4));
    +        }  // if
    +      }    // mode
    +    } else if (pool_mode == 1) {
    +      // We do average (integral) pooling inside a bin
    +      // We use roi_bin_grid to sample the grid and mimic integral
    +      int roi_bin_grid_h =
    +          (sampling_ratio > 0)
    +              ? sampling_ratio
    +              : ceilf(roi_height / pooled_height);  // e.g., = 2
    +      int roi_bin_grid_w = (sampling_ratio > 0)
    +                               ? sampling_ratio
    +                               : ceilf(roi_width / pooled_width);
    +
    +      const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +      for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +        const T y = roi_start_h + ph * bin_size_h +
    +                    static_cast(iy + .5f) * bin_size_h /
    +                        static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +        for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +          const T x = roi_start_w + pw * bin_size_w +
    +                      static_cast(ix + .5f) * bin_size_w /
    +                          static_cast(roi_bin_grid_w);
    +
    +          T w1, w2, w3, w4;
    +          int x_low, x_high, y_low, y_high;
    +
    +          bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                        x_low, x_high, y_low, y_high, index);
    +
    +          T g1 = grad_output_this_bin * w1 / count;
    +          T g2 = grad_output_this_bin * w2 / count;
    +          T g3 = grad_output_this_bin * w3 / count;
    +          T g4 = grad_output_this_bin * w4 / count;
    +
    +          if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +            // atomic add is not needed for now since it is single threaded
    +            add(offset_grad_input + y_low * width + x_low, static_cast(g1));
    +            add(offset_grad_input + y_low * width + x_high, static_cast(g2));
    +            add(offset_grad_input + y_high * width + x_low, static_cast(g3));
    +            add(offset_grad_input + y_high * width + x_high,
    +                static_cast(g4));
    +          }  // if
    +        }    // ix
    +      }      // iy
    +    }        // mode
    +  }          // for
    +}  // ROIAlignBackward
    +
    +void ROIAlignForwardCPULauncher(Tensor input, Tensor rois, Tensor output,
    +                                Tensor argmax_y, Tensor argmax_x,
    +                                int aligned_height, int aligned_width,
    +                                float spatial_scale, int sampling_ratio,
    +                                int pool_mode, bool aligned) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "ROIAlign_forward", [&] {
    +        ROIAlignForward(
    +            output_size, input.data_ptr(), rois.data_ptr(),
    +            output.data_ptr(), argmax_y.data_ptr(),
    +            argmax_x.data_ptr(), aligned_height, aligned_width,
    +            static_cast(spatial_scale), sampling_ratio, pool_mode,
    +            aligned, channels, height, width);
    +      });
    +}
    +
    +void ROIAlignBackwardCPULauncher(Tensor grad_output, Tensor rois,
    +                                 Tensor argmax_y, Tensor argmax_x,
    +                                 Tensor grad_input, int aligned_height,
    +                                 int aligned_width, float spatial_scale,
    +                                 int sampling_ratio, int pool_mode,
    +                                 bool aligned) {
    +  int output_size = grad_output.numel();
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  // get stride values to ensure indexing into gradients is correct.
    +  int n_stride = grad_output.stride(0);
    +  int c_stride = grad_output.stride(1);
    +  int h_stride = grad_output.stride(2);
    +  int w_stride = grad_output.stride(3);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "ROIAlign_backward", [&] {
    +        ROIAlignBackward(
    +            output_size, grad_output.data_ptr(),
    +            rois.data_ptr(), argmax_y.data_ptr(),
    +            argmax_x.data_ptr(), grad_input.data_ptr(),
    +            aligned_height, aligned_width, static_cast(spatial_scale),
    +            sampling_ratio, pool_mode, aligned, channels, height, width,
    +            n_stride, c_stride, h_stride, w_stride);
    +      });
    +}
    +
    +void roi_align_forward_cpu(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                           int aligned_width, float spatial_scale,
    +                           int sampling_ratio, int pool_mode, bool aligned) {
    +  ROIAlignForwardCPULauncher(input, rois, output, argmax_y, argmax_x,
    +                             aligned_height, aligned_width, spatial_scale,
    +                             sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_cpu(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                            Tensor argmax_x, Tensor grad_input,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  ROIAlignBackwardCPULauncher(grad_output, rois, argmax_y, argmax_x, grad_input,
    +                              aligned_height, aligned_width, spatial_scale,
    +                              sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned);
    +
    +REGISTER_DEVICE_IMPL(roi_align_forward_impl, CPU, roi_align_forward_cpu);
    +REGISTER_DEVICE_IMPL(roi_align_backward_impl, CPU, roi_align_backward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp
    new file mode 100644
    index 000000000..8c849de0c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp
    @@ -0,0 +1,455 @@
    +// Modified from
    +// https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlignRotated
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include 
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +// implementation taken from Caffe2
    +template 
    +struct PreCalc {
    +  int pos1;
    +  int pos2;
    +  int pos3;
    +  int pos4;
    +  T w1;
    +  T w2;
    +  T w3;
    +  T w4;
    +};
    +
    +template 
    +void pre_calc_for_bilinear_interpolate(
    +    const int height, const int width, const int pooled_height,
    +    const int pooled_width, const int iy_upper, const int ix_upper,
    +    T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
    +    int roi_bin_grid_h, int roi_bin_grid_w, T roi_center_h, T roi_center_w,
    +    T cos_theta, T sin_theta, std::vector>& pre_calc) {
    +  int pre_calc_index = 0;
    +  for (int ph = 0; ph < pooled_height; ph++) {
    +    for (int pw = 0; pw < pooled_width; pw++) {
    +      for (int iy = 0; iy < iy_upper; iy++) {
    +        const T yy = roi_start_h + ph * bin_size_h +
    +                     static_cast(iy + .5f) * bin_size_h /
    +                         static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +        for (int ix = 0; ix < ix_upper; ix++) {
    +          const T xx = roi_start_w + pw * bin_size_w +
    +                       static_cast(ix + .5f) * bin_size_w /
    +                           static_cast(roi_bin_grid_w);
    +
    +          // Rotate by theta around the center and translate
    +          // In image space, (y, x) is the order for Right Handed System,
    +          // and this is essentially multiplying the point by a rotation matrix
    +          // to rotate it counterclockwise through angle theta.
    +          T y = yy * cos_theta - xx * sin_theta + roi_center_h;
    +          T x = yy * sin_theta + xx * cos_theta + roi_center_w;
    +          // deal with: inverse elements are out of feature map boundary
    +          if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +            // empty
    +            PreCalc pc;
    +            pc.pos1 = 0;
    +            pc.pos2 = 0;
    +            pc.pos3 = 0;
    +            pc.pos4 = 0;
    +            pc.w1 = 0;
    +            pc.w2 = 0;
    +            pc.w3 = 0;
    +            pc.w4 = 0;
    +            pre_calc[pre_calc_index] = pc;
    +            pre_calc_index += 1;
    +            continue;
    +          }
    +
    +          if (y < 0) {
    +            y = 0;
    +          }
    +          if (x < 0) {
    +            x = 0;
    +          }
    +
    +          int y_low = (int)y;
    +          int x_low = (int)x;
    +          int y_high;
    +          int x_high;
    +
    +          if (y_low >= height - 1) {
    +            y_high = y_low = height - 1;
    +            y = (T)y_low;
    +          } else {
    +            y_high = y_low + 1;
    +          }
    +
    +          if (x_low >= width - 1) {
    +            x_high = x_low = width - 1;
    +            x = (T)x_low;
    +          } else {
    +            x_high = x_low + 1;
    +          }
    +
    +          T ly = y - y_low;
    +          T lx = x - x_low;
    +          T hy = 1. - ly, hx = 1. - lx;
    +          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +          // save weights and indices
    +          PreCalc pc;
    +          pc.pos1 = y_low * width + x_low;
    +          pc.pos2 = y_low * width + x_high;
    +          pc.pos3 = y_high * width + x_low;
    +          pc.pos4 = y_high * width + x_high;
    +          pc.w1 = w1;
    +          pc.w2 = w2;
    +          pc.w3 = w3;
    +          pc.w4 = w4;
    +          pre_calc[pre_calc_index] = pc;
    +
    +          pre_calc_index += 1;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +void ROIAlignRotatedForward(const int nthreads, const T* input,
    +                            const T& spatial_scale, const bool aligned,
    +                            const bool clockwise, const int channels,
    +                            const int height, const int width,
    +                            const int pooled_height, const int pooled_width,
    +                            const int sampling_ratio, const T* rois,
    +                            T* output) {
    +  int n_rois = nthreads / channels / pooled_width / pooled_height;
    +  // (n, c, ph, pw) is an element in the pooled output
    +  // can be parallelized using omp
    +  // #pragma omp parallel for num_threads(32)
    +  for (int n = 0; n < n_rois; n++) {
    +    int index_n = n * channels * pooled_width * pooled_height;
    +
    +    const T* current_roi = rois + n * 6;
    +    int roi_batch_ind = current_roi[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    T offset = aligned ? (T)0.5 : (T)0.0;
    +    T roi_center_w = current_roi[1] * spatial_scale - offset;
    +    T roi_center_h = current_roi[2] * spatial_scale - offset;
    +    T roi_width = current_roi[3] * spatial_scale;
    +    T roi_height = current_roi[4] * spatial_scale;
    +    T theta = current_roi[5];
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    T cos_theta = cos(theta);
    +    T sin_theta = sin(theta);
    +
    +    if (aligned) {
    +      AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
    +                 "ROIs in ROIAlignRotated do not have non-negative size!");
    +    } else {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (T)1.);
    +      roi_height = std::max(roi_height, (T)1.);
    +    }
    +
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
    +
    +    // We do average (integral) pooling inside a bin
    +    const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1);  // e.g. = 4
    +
    +    // we want to precalculate indices and weights shared by all channels,
    +    // this is the key point of optimization
    +    std::vector> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
    +                                     pooled_width * pooled_height);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    T roi_start_h = -roi_height / 2.0;
    +    T roi_start_w = -roi_width / 2.0;
    +
    +    pre_calc_for_bilinear_interpolate(
    +        height, width, pooled_height, pooled_width, roi_bin_grid_h,
    +        roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
    +        roi_bin_grid_h, roi_bin_grid_w, roi_center_h, roi_center_w, cos_theta,
    +        sin_theta, pre_calc);
    +
    +    for (int c = 0; c < channels; c++) {
    +      int index_n_c = index_n + c * pooled_width * pooled_height;
    +      const T* offset_input =
    +          input + (roi_batch_ind * channels + c) * height * width;
    +      int pre_calc_index = 0;
    +
    +      for (int ph = 0; ph < pooled_height; ph++) {
    +        for (int pw = 0; pw < pooled_width; pw++) {
    +          int index = index_n_c + ph * pooled_width + pw;
    +
    +          T output_val = 0.;
    +          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +              PreCalc pc = pre_calc[pre_calc_index];
    +              output_val += pc.w1 * offset_input[pc.pos1] +
    +                            pc.w2 * offset_input[pc.pos2] +
    +                            pc.w3 * offset_input[pc.pos3] +
    +                            pc.w4 * offset_input[pc.pos4];
    +
    +              pre_calc_index += 1;
    +            }
    +          }
    +          output_val /= count;
    +
    +          output[index] = output_val;
    +        }  // for pw
    +      }    // for ph
    +    }      // for c
    +  }        // for n
    +}
    +
    +template 
    +void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
    +                                   T& w1, T& w2, T& w3, T& w4, int& x_low,
    +                                   int& x_high, int& y_low, int& y_high) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +    // empty
    +    w1 = w2 = w3 = w4 = 0.;
    +    x_low = x_high = y_low = y_high = -1;
    +    return;
    +  }
    +
    +  if (y < 0) {
    +    y = 0;
    +  }
    +
    +  if (x < 0) {
    +    x = 0;
    +  }
    +
    +  y_low = (int)y;
    +  x_low = (int)x;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +
    +  // reference in forward
    +  // T v1 = input[y_low * width + x_low];
    +  // T v2 = input[y_low * width + x_high];
    +  // T v3 = input[y_high * width + x_low];
    +  // T v4 = input[y_high * width + x_high];
    +  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
    +
    +  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  return;
    +}
    +
    +template 
    +inline void add(T* address, const T& val) {
    +  *address += val;
    +}
    +
    +template 
    +void ROIAlignRotatedBackward(
    +    const int nthreads,
    +    // may not be contiguous. should index using n_stride, etc
    +    const T* grad_output, const T& spatial_scale, const bool aligned,
    +    const bool clockwise, const int channels, const int height, const int width,
    +    const int pooled_height, const int pooled_width, const int sampling_ratio,
    +    T* grad_input, const T* rois, const int n_stride, const int c_stride,
    +    const int h_stride, const int w_stride) {
    +  for (int index = 0; index < nthreads; index++) {
    +    // (n, c, ph, pw) is an element in the pooled output
    +    int pw = index % pooled_width;
    +    int ph = (index / pooled_width) % pooled_height;
    +    int c = (index / pooled_width / pooled_height) % channels;
    +    int n = index / pooled_width / pooled_height / channels;
    +
    +    const T* current_roi = rois + n * 6;
    +    int roi_batch_ind = current_roi[0];
    +
    +    // Do not use rounding; this implementation detail is critical
    +    T offset = aligned ? (T)0.5 : (T)0.0;
    +    T roi_center_w = current_roi[1] * spatial_scale - offset;
    +    T roi_center_h = current_roi[2] * spatial_scale - offset;
    +    T roi_width = current_roi[3] * spatial_scale;
    +    T roi_height = current_roi[4] * spatial_scale;
    +    T theta = current_roi[5];
    +    if (clockwise) {
    +      theta = -theta;  // If clockwise, the angle needs to be reversed.
    +    }
    +    T cos_theta = cos(theta);
    +    T sin_theta = sin(theta);
    +
    +    if (aligned) {
    +      AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
    +                 "ROIs in ROIAlignRotated do not have non-negative size!");
    +    } else {  // for backward-compatibility only
    +      roi_width = std::max(roi_width, (T)1.);
    +      roi_height = std::max(roi_height, (T)1.);
    +    }
    +
    +    T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
    +    T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
    +
    +    T* offset_grad_input =
    +        grad_input + ((roi_batch_ind * channels + c) * height * width);
    +
    +    int output_offset = n * n_stride + c * c_stride;
    +    const T* offset_grad_output = grad_output + output_offset;
    +    const T grad_output_this_bin =
    +        offset_grad_output[ph * h_stride + pw * w_stride];
    +
    +    // We use roi_bin_grid to sample the grid and mimic integral
    +    int roi_bin_grid_h = (sampling_ratio > 0)
    +                             ? sampling_ratio
    +                             : ceilf(roi_height / pooled_height);  // e.g., = 2
    +    int roi_bin_grid_w =
    +        (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
    +
    +    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    +    // Appropriate translation needs to be applied after.
    +    T roi_start_h = -roi_height / 2.0;
    +    T roi_start_w = -roi_width / 2.0;
    +
    +    // We do average (integral) pooling inside a bin
    +    const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
    +
    +    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
    +      const T yy = roi_start_h + ph * bin_size_h +
    +                   static_cast(iy + .5f) * bin_size_h /
    +                       static_cast(roi_bin_grid_h);  // e.g., 0.5, 1.5
    +      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
    +        const T xx = roi_start_w + pw * bin_size_w +
    +                     static_cast(ix + .5f) * bin_size_w /
    +                         static_cast(roi_bin_grid_w);
    +
    +        // Rotate by theta around the center and translate
    +        T y = yy * cos_theta - xx * sin_theta + roi_center_h;
    +        T x = yy * sin_theta + xx * cos_theta + roi_center_w;
    +
    +        T w1, w2, w3, w4;
    +        int x_low, x_high, y_low, y_high;
    +
    +        bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
    +                                      x_low, x_high, y_low, y_high);
    +
    +        T g1 = grad_output_this_bin * w1 / count;
    +        T g2 = grad_output_this_bin * w2 / count;
    +        T g3 = grad_output_this_bin * w3 / count;
    +        T g4 = grad_output_this_bin * w4 / count;
    +
    +        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +          // atomic add is not needed for now since it is single threaded
    +          add(offset_grad_input + y_low * width + x_low, static_cast(g1));
    +          add(offset_grad_input + y_low * width + x_high, static_cast(g2));
    +          add(offset_grad_input + y_high * width + x_low, static_cast(g3));
    +          add(offset_grad_input + y_high * width + x_high, static_cast(g4));
    +        }  // if
    +      }    // ix
    +    }      // iy
    +  }        // for
    +}  // ROIAlignRotatedBackward
    +
    +void ROIAlignRotatedForwardCPULauncher(Tensor input, Tensor rois, Tensor output,
    +                                       int aligned_height, int aligned_width,
    +                                       float spatial_scale, int sampling_ratio,
    +                                       bool aligned, bool clockwise) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "ROIAlignRotated_forward", [&] {
    +        ROIAlignRotatedForward(
    +            output_size, input.data_ptr(),
    +            static_cast(spatial_scale), aligned, clockwise, channels,
    +            height, width, aligned_height, aligned_width, sampling_ratio,
    +            rois.data_ptr(), output.data_ptr());
    +      });
    +}
    +
    +void ROIAlignRotatedBackwardCPULauncher(Tensor grad_output, Tensor rois,
    +                                        Tensor grad_input, int aligned_height,
    +                                        int aligned_width, float spatial_scale,
    +                                        int sampling_ratio, bool aligned,
    +                                        bool clockwise) {
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  // get stride values to ensure indexing into gradients is correct.
    +  int n_stride = grad_output.stride(0);
    +  int c_stride = grad_output.stride(1);
    +  int h_stride = grad_output.stride(2);
    +  int w_stride = grad_output.stride(3);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "ROIAlignRotated_backward", [&] {
    +        ROIAlignRotatedBackward(
    +            grad_output.numel(), grad_output.data_ptr(),
    +            static_cast(spatial_scale), aligned, clockwise, channels,
    +            height, width, aligned_height, aligned_width, sampling_ratio,
    +            grad_input.data_ptr(), rois.data_ptr(),
    +            n_stride, c_stride, h_stride, w_stride);
    +      });
    +}
    +
    +void roi_align_rotated_forward_cpu(Tensor input, Tensor rois, Tensor output,
    +                                   int aligned_height, int aligned_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   bool aligned, bool clockwise) {
    +  ROIAlignRotatedForwardCPULauncher(input, rois, output, aligned_height,
    +                                    aligned_width, spatial_scale,
    +                                    sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_cpu(Tensor top_grad, Tensor rois,
    +                                    Tensor bottom_grad, int aligned_height,
    +                                    int aligned_width, float spatial_scale,
    +                                    int sampling_ratio, bool aligned,
    +                                    bool clockwise) {
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +  ROIAlignRotatedBackwardCPULauncher(
    +      top_grad, rois, bottom_grad, aligned_height, aligned_width, spatial_scale,
    +      sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_forward_impl, CPU,
    +                     roi_align_rotated_forward_cpu);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_backward_impl, CPU,
    +                     roi_align_rotated_backward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/rotated_feature_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/rotated_feature_align.cpp
    new file mode 100644
    index 000000000..09dcdd337
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/rotated_feature_align.cpp
    @@ -0,0 +1,262 @@
    +// modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_kernel.cu
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +T bilinear_interpolate(const T* input, const int height, const int width, T y,
    +                       T x, const int index /* index for debug only*/) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) return 0;
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  int y_low = (int)y;
    +  int x_low = (int)x;
    +  int y_high;
    +  int x_high;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  // do bilinear interpolation
    +  T v1 = input[y_low * width + x_low];
    +  T v2 = input[y_low * width + x_high];
    +  T v3 = input[y_high * width + x_low];
    +  T v4 = input[y_high * width + x_high];
    +  const T v_low = fma(v2 - v1, lx, v1);
    +  const T v_high = fma(v4 - v3, lx, v3);
    +  const T val = fma(v_high - v_low, ly, v_low);
    +
    +  return val;
    +}
    +
    +template 
    +void rotated_feature_align_forward_cpu_kernel(
    +    const int nthreads, const int points, const scalar_t* bottom_data,
    +    const scalar_t* best_bboxes, const scalar_t spatial_scale,
    +    const int channels, const int height, const int width, scalar_t* top_data) {
    +  for (int index = 0; index < nthreads; index++) {
    +    int w = index % width;
    +    int h = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    const scalar_t* bbox_offset =
    +        best_bboxes + ((n * height + h) * width + w) * 5;
    +    scalar_t roi_y = bbox_offset[0] * spatial_scale;
    +    scalar_t roi_x = bbox_offset[1] * spatial_scale;
    +
    +    scalar_t px[5] = {roi_x, 0, 0, 0, 0};
    +    scalar_t py[5] = {roi_y, 0, 0, 0, 0};
    +
    +    if (points > 1) {
    +      scalar_t roi_w = bbox_offset[2] * spatial_scale;
    +      scalar_t roi_h = bbox_offset[3] * spatial_scale;
    +      scalar_t roi_a = bbox_offset[4];
    +
    +      scalar_t w_2 = roi_w / 2, h_2 = roi_h / 2;
    +      scalar_t cosa = cosf(roi_a), sina = sinf(roi_a);
    +      scalar_t wx = cosa * w_2, wy = sina * w_2;
    +      scalar_t hx = -sina * h_2, hy = cosa * h_2;
    +
    +      px[1] = roi_x + wx + hx;
    +      py[1] = roi_y + wy + hy;
    +      px[2] = roi_x - wx + hx;
    +      py[2] = roi_y - wy + hy;
    +      px[3] = roi_x - wx - hx;
    +      py[3] = roi_y - wy - hy;
    +      px[4] = roi_x + wx - hx;
    +      py[4] = roi_y + wy - hy;
    +    }
    +
    +    const scalar_t* offset_bottom_data =
    +        bottom_data + (n * channels + c) * height * width;
    +
    +    scalar_t output_val = bottom_data[index];
    +    for (int i = 0; i < points; i++) {
    +      output_val += bilinear_interpolate(offset_bottom_data, height,
    +                                                   width, py[i], px[i], i);
    +    }
    +    top_data[index] = output_val;
    +  }
    +}
    +
    +template 
    +void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
    +                                   T& w1, T& w2, T& w3, T& w4, int& x_low,
    +                                   int& x_high, int& y_low, int& y_high,
    +                                   const int index) {
    +  // deal with cases that inverse elements are out of feature map boundary
    +  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    +    // empty
    +    w1 = w2 = w3 = w4 = 0.;
    +    x_low = x_high = y_low = y_high = -1;
    +    return;
    +  }
    +
    +  if (y <= 0) y = 0;
    +  if (x <= 0) x = 0;
    +
    +  y_low = (int)y;
    +  x_low = (int)x;
    +
    +  if (y_low >= height - 1) {
    +    y_high = y_low = height - 1;
    +    y = (T)y_low;
    +  } else {
    +    y_high = y_low + 1;
    +  }
    +
    +  if (x_low >= width - 1) {
    +    x_high = x_low = width - 1;
    +    x = (T)x_low;
    +  } else {
    +    x_high = x_low + 1;
    +  }
    +
    +  T ly = y - y_low;
    +  T lx = x - x_low;
    +  T hy = 1. - ly, hx = 1. - lx;
    +
    +  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
    +
    +  return;
    +}
    +
    +template 
    +inline void valueAdd(scalar_t* address, scalar_t val) {
    +  scalar_t old = *address;
    +  *address = (old + val);
    +}
    +
    +template 
    +void rotated_feature_align_backward_cpu_kernel(
    +    const int nthreads, const int points, const scalar_t* top_diff,
    +    const scalar_t* best_bboxes, const scalar_t spatial_scale,
    +    const int channels, const int height, const int width,
    +    scalar_t* bottom_diff) {
    +  for (int index = 0; index < nthreads; index++) {
    +    int w = index % width;
    +    int h = (index / width) % height;
    +    int c = (index / width / height) % channels;
    +    int n = index / width / height / channels;
    +
    +    const scalar_t* bbox_offset =
    +        best_bboxes + ((n * height + h) * width + w) * 5;
    +    scalar_t roi_y = bbox_offset[0] * spatial_scale;
    +    scalar_t roi_x = bbox_offset[1] * spatial_scale;
    +
    +    scalar_t px[5] = {roi_x, 0, 0, 0, 0};
    +    scalar_t py[5] = {roi_y, 0, 0, 0, 0};
    +
    +    if (points > 1) {
    +      scalar_t roi_w = bbox_offset[2] * spatial_scale;
    +      scalar_t roi_h = bbox_offset[3] * spatial_scale;
    +      scalar_t roi_a = bbox_offset[4];
    +
    +      scalar_t w_2 = roi_w / 2, h_2 = roi_h / 2;
    +      scalar_t cosa = cosf(roi_a), sina = sinf(roi_a);
    +      scalar_t wx = cosa * w_2, wy = sina * w_2;
    +      scalar_t hx = -sina * h_2, hy = cosa * h_2;
    +
    +      px[1] = roi_x + wx + hx;
    +      py[1] = roi_y + wy + hy;
    +      px[2] = roi_x - wx + hx;
    +      py[2] = roi_y - wy + hy;
    +      px[3] = roi_x - wx - hx;
    +      py[3] = roi_y - wy - hy;
    +      px[4] = roi_x + wx - hx;
    +      py[4] = roi_y + wy - hy;
    +    }
    +
    +    scalar_t* offset_bottom_diff =
    +        bottom_diff + (n * channels + c) * height * width;
    +    scalar_t value_top_diff = top_diff[index];
    +
    +    valueAdd(bottom_diff + index, value_top_diff);
    +    for (int i = 0; i < points; i++) {
    +      scalar_t w1, w2, w3, w4;
    +      int x_low, x_high, y_low, y_high;
    +
    +      bilinear_interpolate_gradient(height, width, py[i], px[i], w1,
    +                                              w2, w3, w4, x_low, x_high, y_low,
    +                                              y_high, i);
    +      scalar_t g1 = value_top_diff * w1;
    +      scalar_t g2 = value_top_diff * w2;
    +      scalar_t g3 = value_top_diff * w3;
    +      scalar_t g4 = value_top_diff * w4;
    +      if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    +        valueAdd(offset_bottom_diff + y_low * width + x_low, g1);
    +        valueAdd(offset_bottom_diff + y_low * width + x_high, g2);
    +        valueAdd(offset_bottom_diff + y_high * width + x_low, g3);
    +        valueAdd(offset_bottom_diff + y_high * width + x_high, g4);
    +      }
    +    }
    +  }
    +}
    +
    +void rotated_feature_align_forward_cpu(const Tensor features,
    +                                       const Tensor best_bboxes,
    +                                       const float spatial_scale,
    +                                       const int points, Tensor output) {
    +  const int output_size = features.numel();
    +  AT_DISPATCH_FLOATING_TYPES(
    +      features.scalar_type(), "rotated_feature_align_forward_cpu_kernel", [&] {
    +        const scalar_t* bottom_data = features.data_ptr();
    +        const scalar_t* bboxes_data = best_bboxes.data_ptr();
    +        scalar_t* top_data = output.data_ptr();
    +
    +        rotated_feature_align_forward_cpu_kernel(
    +            output_size, points, bottom_data, bboxes_data,
    +            scalar_t(spatial_scale), features.size(1), features.size(2),
    +            features.size(3), top_data);
    +      });
    +}
    +
    +void rotated_feature_align_backward_cpu(const Tensor top_grad,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor bottom_grad) {
    +  const int output_size = top_grad.numel();
    +  AT_DISPATCH_FLOATING_TYPES(
    +      top_grad.scalar_type(), "rotated_feature_align_backward_cpu_kernel", [&] {
    +        const scalar_t* top_diff = top_grad.data_ptr();
    +        const scalar_t* bboxes_data = best_bboxes.data_ptr();
    +        scalar_t* bottom_diff = bottom_grad.data_ptr();
    +
    +        rotated_feature_align_backward_cpu_kernel(
    +            output_size, points, top_diff, bboxes_data, scalar_t(spatial_scale),
    +            top_grad.size(1), top_grad.size(2), top_grad.size(3), bottom_diff);
    +      });
    +}
    +
    +void rotated_feature_align_forward_impl(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output);
    +
    +void rotated_feature_align_backward_impl(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad);
    +
    +REGISTER_DEVICE_IMPL(rotated_feature_align_forward_impl, CPU,
    +                     rotated_feature_align_forward_cpu);
    +
    +REGISTER_DEVICE_IMPL(rotated_feature_align_backward_impl, CPU,
    +                     rotated_feature_align_backward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/voxelization.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/voxelization.cpp
    new file mode 100644
    index 000000000..a21f849a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cpu/voxelization.cpp
    @@ -0,0 +1,186 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +template 
    +void dynamic_voxelize_forward_cpu_kernel(
    +    const torch::TensorAccessor points,
    +    torch::TensorAccessor coors, const std::vector voxel_size,
    +    const std::vector coors_range, const std::vector grid_size,
    +    const int num_points, const int num_features, const int NDim) {
    +  const int ndim_minus_1 = NDim - 1;
    +  bool failed = false;
    +  // int coor[NDim];
    +  int* coor = new int[NDim]();
    +  int c;
    +
    +  for (int i = 0; i < num_points; ++i) {
    +    failed = false;
    +    for (int j = 0; j < NDim; ++j) {
    +      c = floor((points[i][j] - coors_range[j]) / voxel_size[j]);
    +      // necessary to rm points out of range
    +      if ((c < 0 || c >= grid_size[j])) {
    +        failed = true;
    +        break;
    +      }
    +      coor[ndim_minus_1 - j] = c;
    +    }
    +
    +    // memcpy and memset will cause problem because of the memory distribution
    +    // discontinuity of TensorAccessor, so here using loops to replace memcpy
    +    // or memset
    +    if (failed) {
    +      for (int k = 0; k < NDim; ++k) {
    +        coors[i][k] = -1;
    +      }
    +    } else {
    +      for (int k = 0; k < NDim; ++k) {
    +        coors[i][k] = coor[k];
    +      }
    +    }
    +  }
    +
    +  delete[] coor;
    +  return;
    +}
    +
    +template 
    +void hard_voxelize_forward_cpu_kernel(
    +    const torch::TensorAccessor points,
    +    torch::TensorAccessor voxels, torch::TensorAccessor coors,
    +    torch::TensorAccessor num_points_per_voxel,
    +    torch::TensorAccessor coor_to_voxelidx, int& voxel_num,
    +    const std::vector voxel_size, const std::vector coors_range,
    +    const std::vector grid_size, const int max_points,
    +    const int max_voxels, const int num_points, const int num_features,
    +    const int NDim) {
    +  // declare a temp coors
    +  at::Tensor temp_coors = at::zeros(
    +      {num_points, NDim}, at::TensorOptions().dtype(at::kInt).device(at::kCPU));
    +
    +  // First use dynamic voxelization to get coors,
    +  // then check max points/voxels constraints
    +  dynamic_voxelize_forward_cpu_kernel(
    +      points, temp_coors.accessor(), voxel_size, coors_range, grid_size,
    +      num_points, num_features, NDim);
    +
    +  int voxelidx, num;
    +  auto coor = temp_coors.accessor();
    +
    +  for (int i = 0; i < num_points; ++i) {
    +    // T_int* coor = temp_coors.data_ptr() + i * NDim;
    +
    +    if (coor[i][0] == -1) continue;
    +
    +    voxelidx = coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]];
    +
    +    // record voxel
    +    if (voxelidx == -1) {
    +      voxelidx = voxel_num;
    +      if (max_voxels != -1 && voxel_num >= max_voxels) continue;
    +      voxel_num += 1;
    +
    +      coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]] = voxelidx;
    +      // memcpy will cause problem because of the memory distribution
    +      // discontinuity of TensorAccessor, so here using loops to replace memcpy
    +      for (int k = 0; k < NDim; ++k) {
    +        coors[voxelidx][k] = coor[i][k];
    +      }
    +    }
    +
    +    // put points into voxel
    +    num = num_points_per_voxel[voxelidx];
    +    if (max_points == -1 || num < max_points) {
    +      // memcpy will cause problem because of the memory distribution
    +      // discontinuity of TensorAccessor, so here using loops to replace memcpy
    +      for (int k = 0; k < num_features; ++k) {
    +        voxels[voxelidx][num][k] = points[i][k];
    +      }
    +      num_points_per_voxel[voxelidx] += 1;
    +    }
    +  }
    +
    +  return;
    +}
    +
    +void dynamic_voxelize_forward_cpu(const at::Tensor& points, at::Tensor& coors,
    +                                  const std::vector voxel_size,
    +                                  const std::vector coors_range,
    +                                  const int NDim = 3) {
    +  // check device
    +  AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");
    +
    +  std::vector grid_size(NDim);
    +  const int num_points = points.size(0);
    +  const int num_features = points.size(1);
    +
    +  for (int i = 0; i < NDim; ++i) {
    +    grid_size[i] =
    +        round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
    +  }
    +
    +  // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "dynamic_voxelize_forward_cpu_kernel", [&] {
    +        dynamic_voxelize_forward_cpu_kernel(
    +            points.accessor(), coors.accessor(),
    +            voxel_size, coors_range, grid_size, num_points, num_features, NDim);
    +      });
    +}
    +
    +int hard_voxelize_forward_cpu(const at::Tensor& points, at::Tensor& voxels,
    +                              at::Tensor& coors,
    +                              at::Tensor& num_points_per_voxel,
    +                              const std::vector voxel_size,
    +                              const std::vector coors_range,
    +                              const int max_points, const int max_voxels,
    +                              const int NDim = 3) {
    +  // current version tooks about 0.02s_0.03s for one frame on cpu
    +  // check device
    +  AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");
    +
    +  std::vector grid_size(NDim);
    +  const int num_points = points.size(0);
    +  const int num_features = points.size(1);
    +
    +  for (int i = 0; i < NDim; ++i) {
    +    grid_size[i] =
    +        round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
    +  }
    +
    +  // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
    +  // printf("cpu coor_to_voxelidx size: [%d, %d, %d]\n", grid_size[2],
    +  // grid_size[1], grid_size[0]);
    +  at::Tensor coor_to_voxelidx =
    +      -at::ones({grid_size[2], grid_size[1], grid_size[0]}, coors.options());
    +
    +  int voxel_num = 0;
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "hard_voxelize_forward_cpu_kernel", [&] {
    +        hard_voxelize_forward_cpu_kernel(
    +            points.accessor(), voxels.accessor(),
    +            coors.accessor(), num_points_per_voxel.accessor(),
    +            coor_to_voxelidx.accessor(), voxel_num, voxel_size,
    +            coors_range, grid_size, max_points, max_voxels, num_points,
    +            num_features, NDim);
    +      });
    +
    +  return voxel_num;
    +}
    +
    +int hard_voxelize_forward_impl(const at::Tensor& points, at::Tensor& voxels,
    +                               at::Tensor& coors,
    +                               at::Tensor& num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim);
    +
    +void dynamic_voxelize_forward_impl(const at::Tensor& points, at::Tensor& coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim);
    +REGISTER_DEVICE_IMPL(hard_voxelize_forward_impl, CPU,
    +                     hard_voxelize_forward_cpu);
    +REGISTER_DEVICE_IMPL(dynamic_voxelize_forward_impl, CPU,
    +                     dynamic_voxelize_forward_cpu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/active_rotated_filter_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/active_rotated_filter_cuda.cu
    new file mode 100644
    index 000000000..27fffb9fa
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/active_rotated_filter_cuda.cu
    @@ -0,0 +1,58 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/csuhan/s2anet/blob/master/mmdet/ops/orn/src/cuda/ActiveRotatingFilter_cuda.cu
    +#include "active_rotated_filter_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void ActiveRotatedFilterForwardCUDAKernelLauncher(const Tensor input,
    +                                                  const Tensor indices,
    +                                                  Tensor output) {
    +  int num_output_planes = input.size(0);
    +  int num_input_planes = input.size(1);
    +  int num_orientations = input.size(2);
    +  int kH = input.size(3);
    +  int kW = input.size(4);
    +  int num_rotations = indices.size(3);
    +  int nEntry = num_orientations * kH * kW;
    +  int output_size = input.numel();
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "active_rotated_filter_forward_cuda_kernel", [&] {
    +        active_rotated_filter_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                indices.data_ptr(), num_input_planes, num_output_planes,
    +                num_orientations, num_rotations, nEntry,
    +                output.data_ptr());
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ActiveRotatedFilterBackwardCUDAKernelLauncher(const Tensor grad_out,
    +                                                   const Tensor indices,
    +                                                   Tensor grad_in) {
    +  int num_orientations = indices.size(0);
    +  int kH = indices.size(1);
    +  int kW = indices.size(2);
    +  int num_rotations = indices.size(3);
    +  int num_output_planes = grad_out.size(0) / num_rotations;
    +  int num_input_planes = grad_out.size(1) / num_orientations;
    +  int nEntry = num_orientations * kH * kW;
    +  int output_size = grad_in.numel();
    +
    +  at::cuda::CUDAGuard device_guard(indices.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "active_rotated_filter_backward_cuda_kernel",
    +      [&] {
    +        active_rotated_filter_backward_cuda_kernel
    +            <<>>(
    +                output_size, grad_out.data_ptr(),
    +                indices.data_ptr(), num_input_planes, num_output_planes,
    +                num_orientations, num_rotations, nEntry,
    +                grad_in.data_ptr());
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/assign_score_withk_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/assign_score_withk_cuda.cu
    new file mode 100644
    index 000000000..bdb5fab9f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/assign_score_withk_cuda.cu
    @@ -0,0 +1,66 @@
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/paconv_lib/src/gpu
    +#include 
    +#include 
    +
    +#include "assign_score_withk_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void AssignScoreWithKForwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& points, const Tensor& centers, const Tensor& scores,
    +    const Tensor& knn_idx, Tensor& output) {
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(GET_BLOCKS(B * O * N1 * K, THREADS_PER_BLOCK));
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "assign_score_withk_forward_cuda_kernel", [&] {
    +        assign_score_withk_forward_cuda_kernel
    +            <<>>(
    +                B, N0, N1, M, K, O, aggregate, points.data_ptr(),
    +                centers.data_ptr(), scores.data_ptr(),
    +                knn_idx.data_ptr(), output.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void AssignScoreWithKBackwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores) {
    +  at::cuda::CUDAGuard device_guard(grad_out.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks1(GET_BLOCKS(B * M * O, THREADS_PER_BLOCK));
    +  dim3 threads1(THREADS_PER_BLOCK);
    +  dim3 blocks2(GET_BLOCKS(B * N1 * K * M, THREADS_PER_BLOCK));
    +  dim3 threads2(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "assign_score_withk_points_backward_cuda_kernel",
    +      [&] {
    +        assign_score_withk_points_backward_cuda_kernel
    +            <<>>(
    +                B, N0, N1, M, K, O, aggregate, grad_out.data_ptr(),
    +                scores.data_ptr(), knn_idx.data_ptr(),
    +                grad_points.data_ptr(),
    +                grad_centers.data_ptr());
    +      });
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "assign_score_withk_scores_backward_cuda_kernel",
    +      [&] {
    +        assign_score_withk_scores_backward_cuda_kernel
    +            <<>>(
    +                B, N0, N1, M, K, O, aggregate, grad_out.data_ptr(),
    +                points.data_ptr(), centers.data_ptr(),
    +                knn_idx.data_ptr(), grad_scores.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ball_query_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ball_query_cuda.cu
    new file mode 100644
    index 000000000..c42c3e2ae
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ball_query_cuda.cu
    @@ -0,0 +1,38 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query_gpu.cu
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "ball_query_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void BallQueryForwardCUDAKernelLauncher(int b, int n, int m, float min_radius,
    +                                        float max_radius, int nsample,
    +                                        const Tensor new_xyz, const Tensor xyz,
    +                                        Tensor idx) {
    +  // new_xyz: (B, M, 3)
    +  // xyz: (B, N, 3)
    +  // output:
    +  //      idx: (B, M, nsample)
    +
    +  at::cuda::CUDAGuard device_guard(new_xyz.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(m, THREADS_PER_BLOCK), b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      new_xyz.scalar_type(), "ball_query_forward_cuda_kernel", [&] {
    +        ball_query_forward_cuda_kernel
    +            <<>>(
    +                b, n, m, min_radius, max_radius, nsample,
    +                new_xyz.data_ptr(), xyz.data_ptr(),
    +                idx.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/bbox_overlaps_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/bbox_overlaps_cuda.cu
    new file mode 100644
    index 000000000..7dae535cf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/bbox_overlaps_cuda.cu
    @@ -0,0 +1,40 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "bbox_overlaps_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +// Disable fp16 on ROCm device
    +#ifndef MMCV_WITH_HIP
    +#if __CUDA_ARCH__ >= 530
    +template <>
    +__global__ void bbox_overlaps_cuda_kernel(
    +    const at::Half* bbox1, const at::Half* bbox2, at::Half* ious,
    +    const int num_bbox1, const int num_bbox2, const int mode,
    +    const bool aligned, const int offset) {
    +  bbox_overlaps_cuda_kernel_half(reinterpret_cast(bbox1),
    +                                 reinterpret_cast(bbox2),
    +                                 reinterpret_cast<__half*>(ious), num_bbox1,
    +                                 num_bbox2, mode, aligned, offset);
    +}
    +
    +#endif  // __CUDA_ARCH__ >= 530
    +#endif  // MMCV_WITH_HIP
    +
    +void BBoxOverlapsCUDAKernelLauncher(const Tensor bboxes1, const Tensor bboxes2,
    +                                    Tensor ious, const int mode,
    +                                    const bool aligned, const int offset) {
    +  int output_size = ious.numel();
    +  int num_bbox1 = bboxes1.size(0);
    +  int num_bbox2 = bboxes2.size(0);
    +
    +  at::cuda::CUDAGuard device_guard(bboxes1.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      bboxes1.scalar_type(), "bbox_overlaps_cuda_kernel", ([&] {
    +        bbox_overlaps_cuda_kernel
    +            <<>>(
    +                bboxes1.data_ptr(), bboxes2.data_ptr(),
    +                ious.data_ptr(), num_bbox1, num_bbox2, mode, aligned,
    +                offset);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/border_align_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/border_align_cuda.cu
    new file mode 100644
    index 000000000..3aeefea5d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/border_align_cuda.cu
    @@ -0,0 +1,68 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "border_align_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void BorderAlignForwardCUDAKernelLauncher(const Tensor &input,
    +                                          const Tensor &boxes, Tensor output,
    +                                          Tensor argmax_idx,
    +                                          const int pool_size) {
    +  // shape assertion
    +  AT_ASSERTM(input.ndimension() == 4,
    +             "non-empty 4D(batch mode) tensor expected for input feature");
    +  AT_ASSERTM(boxes.ndimension() == 3,
    +             "boxes must be 3D tensor with size of [B, H*W, 4]");
    +
    +  int batch_size = input.size(0);
    +  int feat_channels = input.size(1);
    +  int channels = feat_channels / 4;
    +  int height = input.size(2);
    +  int width = input.size(3);
    +  // shape [N, box_size, 4] for boxes. (x1, y1, x2, y2) format
    +  int box_size = boxes.size(1);
    +  // shape [N, channels, box_size, 4] for output
    +  int nthreads = batch_size * channels * box_size;
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  dim3 block(128, 4);
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "border_align_forward_cuda_kernel", [&] {
    +        border_align_forward_cuda_kernel
    +            <<>>(
    +                nthreads, input.data_ptr(),
    +                boxes.data_ptr(), output.data_ptr(),
    +                argmax_idx.data_ptr(), channels, box_size, height, width,
    +                pool_size);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void BorderAlignBackwardCUDAKernelLauncher(const Tensor &grad_output,
    +                                           const Tensor &boxes,
    +                                           const Tensor &argmax_idx,
    +                                           Tensor grad_input,
    +                                           const int pool_size) {
    +  int batch_size = grad_input.size(0);
    +  int feat_channels = grad_input.size(1);
    +  int channels = feat_channels / 4;
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +  int box_size = boxes.size(1);
    +  int nthreads = batch_size * channels * box_size;
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  dim3 block(128, 4);
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "border_align_backward_cuda_kernel", [&] {
    +        border_align_backward_cuda_kernel
    +            <<>>(
    +                nthreads, grad_output.data_ptr(),
    +                boxes.data_ptr(), argmax_idx.data_ptr(),
    +                grad_input.data_ptr(), channels, box_size, height,
    +                width, pool_size);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_quadri_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_quadri_cuda.cu
    new file mode 100644
    index 000000000..25b6819a7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_quadri_cuda.cu
    @@ -0,0 +1,23 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "box_iou_quadri_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void box_iou_quadri_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned) {
    +  using scalar_t = float;
    +  AT_ASSERTM(boxes1.is_cuda(), "boxes1 must be a CUDA tensor");
    +  AT_ASSERTM(boxes2.is_cuda(), "boxes2 must be a CUDA tensor");
    +
    +  int output_size = ious.numel();
    +  int num_boxes1 = boxes1.size(0);
    +  int num_boxes2 = boxes2.size(0);
    +
    +  at::cuda::CUDAGuard device_guard(boxes1.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  box_iou_quadri_cuda_kernel
    +      <<>>(
    +          num_boxes1, num_boxes2, boxes1.data_ptr(),
    +          boxes2.data_ptr(), (scalar_t*)ious.data_ptr(),
    +          mode_flag, aligned);
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_rotated_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_rotated_cuda.cu
    new file mode 100644
    index 000000000..3c13e0623
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/box_iou_rotated_cuda.cu
    @@ -0,0 +1,25 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu
    +#include "box_iou_rotated_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void box_iou_rotated_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned) {
    +  using scalar_t = float;
    +  AT_ASSERTM(boxes1.is_cuda(), "boxes1 must be a CUDA tensor");
    +  AT_ASSERTM(boxes2.is_cuda(), "boxes2 must be a CUDA tensor");
    +
    +  int output_size = ious.numel();
    +  int num_boxes1 = boxes1.size(0);
    +  int num_boxes2 = boxes2.size(0);
    +
    +  at::cuda::CUDAGuard device_guard(boxes1.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  box_iou_rotated_cuda_kernel
    +      <<>>(
    +          num_boxes1, num_boxes2, boxes1.data_ptr(),
    +          boxes2.data_ptr(), (scalar_t*)ious.data_ptr(),
    +          mode_flag, aligned);
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_cuda.cu
    new file mode 100644
    index 000000000..984e734f9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_cuda.cu
    @@ -0,0 +1,180 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "carafe_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void CARAFEForwardCUDAKernelLauncher(const Tensor features, const Tensor masks,
    +                                     Tensor rfeatures, Tensor routput,
    +                                     Tensor rmasks, Tensor output,
    +                                     const int kernel_size,
    +                                     const int group_size,
    +                                     const int scale_factor) {
    +  const int batch_size = output.size(0);
    +  const int channels = output.size(1);
    +  const int output_height = output.size(2);
    +  const int output_width = output.size(3);
    +
    +  const int input_height = features.size(2);
    +  const int input_width = features.size(3);
    +
    +  const int mask_channels = masks.size(1);
    +
    +  rfeatures.resize_({batch_size, input_height, input_width, channels});
    +  routput.resize_({batch_size, output_height, output_width, channels});
    +  rmasks.resize_({batch_size, output_height, output_width, mask_channels});
    +
    +  // one warp per pixel
    +  at::cuda::CUDAGuard device_guard(features.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "NCHW2NHWC_Feature", ([&] {
    +        const scalar_t *bottom_data = features.data_ptr();
    +        scalar_t *top_data = rfeatures.data_ptr();
    +        const int dh = divideUP(channels, kTileDim);
    +        const int dw = divideUP(input_height * input_width, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, channels, input_height * input_width, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "NCHW2NHWC_Masks", ([&] {
    +        const scalar_t *bottom_data = masks.data_ptr();
    +        scalar_t *top_data = rmasks.data_ptr();
    +        const int dh = divideUP(mask_channels, kTileDim);
    +        const int dw = divideUP(output_height * output_width, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, mask_channels, output_height * output_width, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "CARAFELaucherForward", ([&] {
    +        const int num_kernels =
    +            batch_size * output_height * output_width * THREADS_PER_PIXEL;
    +        const scalar_t *bottom_data = rfeatures.data_ptr();
    +        const scalar_t *bottom_masks = rmasks.data_ptr();
    +        scalar_t *top_data = routput.data_ptr();
    +
    +        CARAFEForward<<>>(
    +            num_kernels, bottom_data, bottom_masks, kernel_size, group_size,
    +            scale_factor, channels, input_height, input_width, output_height,
    +            output_width, mask_channels, top_data);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "NHWC2NCHW", ([&] {
    +        const scalar_t *bottom_data = routput.data_ptr();
    +        scalar_t *top_data = output.data_ptr();
    +        const int dh = divideUP(output_height * output_width, kTileDim);
    +        const int dw = divideUP(channels, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, output_height * output_width, channels, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void CARAFEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor rfeatures, const Tensor masks,
    +    Tensor rtop_grad, Tensor rbottom_grad_hs, Tensor rbottom_grad,
    +    Tensor rmask_grad, Tensor bottom_grad, Tensor mask_grad,
    +    const int kernel_size, const int group_size, const int scale_factor) {
    +  const int batch_size = top_grad.size(0);
    +  const int channels = top_grad.size(1);
    +  const int output_height = top_grad.size(2);
    +  const int output_width = top_grad.size(3);
    +
    +  const int input_height = bottom_grad.size(2);
    +  const int input_width = bottom_grad.size(3);
    +
    +  const int mask_channels = masks.size(1);
    +
    +  rtop_grad.resize_({batch_size, output_height, output_width, channels});
    +  rbottom_grad.resize_({batch_size, input_height, input_width, channels});
    +  rbottom_grad_hs.resize_({batch_size, output_height, output_width, channels});
    +  rmask_grad.resize_({batch_size, output_height, output_width, mask_channels});
    +
    +  at::cuda::CUDAGuard device_guard(top_grad.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "NCHW2NHWC_Top_Grad", ([&] {
    +        const scalar_t *bottom_data = top_grad.data_ptr();
    +        scalar_t *top_data = rtop_grad.data_ptr();
    +        const int dh = divideUP(channels, kTileDim);
    +        const int dw = divideUP(output_height * output_width, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, channels, output_height * output_width, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "CARAFELaucherBackward_Feature", ([&] {
    +        const int num_kernels =
    +            batch_size * output_height * output_width * THREADS_PER_PIXEL;
    +        const scalar_t *top_diff = rtop_grad.data_ptr();
    +        const scalar_t *bottom_masks = masks.data_ptr();
    +        scalar_t *bottom_diff = rbottom_grad_hs.data_ptr();
    +
    +        CARAFEBackward_Feature
    +            <<>>(num_kernels, top_diff, bottom_masks, kernel_size,
    +                         group_size, scale_factor, channels, input_height,
    +                         input_width, output_height, output_width,
    +                         mask_channels, bottom_diff);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "FeatureSum", ([&] {
    +        const int num_kernels =
    +            batch_size * input_height * input_width * THREADS_PER_PIXEL;
    +        const scalar_t *bottom_diff_hs = rbottom_grad_hs.data_ptr();
    +        scalar_t *bottom_diff = rbottom_grad.data_ptr();
    +
    +        FeatureSum
    +            <<>>(num_kernels, bottom_diff_hs, scale_factor, channels,
    +                         input_height, input_width, bottom_diff);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "NHWC2NCHW_Bottom_Grad", ([&] {
    +        const scalar_t *bottom_data = rbottom_grad.data_ptr();
    +        scalar_t *top_data = bottom_grad.data_ptr();
    +        const int dh = divideUP(input_height * input_width, kTileDim);
    +        const int dw = divideUP(channels, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, input_height * input_width, channels, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "CARAFELaucherBackward_Mask", ([&] {
    +        const int num_kernels = batch_size * output_height * output_width *
    +                                mask_channels * WARP_SIZE;
    +        const scalar_t *top_diff = rtop_grad.data_ptr();
    +        const scalar_t *bottom_data = rfeatures.data_ptr();
    +        scalar_t *mask_diff = rmask_grad.data_ptr();
    +
    +        CARAFEBackward_Mask
    +            <<>>(num_kernels, top_diff, bottom_data, kernel_size,
    +                         group_size, scale_factor, channels, input_height,
    +                         input_width, output_height, output_width,
    +                         mask_channels, mask_diff);
    +      }));
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "NHWC2NCHW_Mask_Grad", ([&] {
    +        const scalar_t *bottom_data = rmask_grad.data_ptr();
    +        scalar_t *top_data = mask_grad.data_ptr();
    +        const int dh = divideUP(output_height * output_width, kTileDim);
    +        const int dw = divideUP(mask_channels, kTileDim);
    +        BatchTranspose2DCUDAKernel
    +            <<>>(
    +                batch_size, output_height * output_width, mask_channels, dh, dw,
    +                bottom_data, top_data);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_naive_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_naive_cuda.cu
    new file mode 100644
    index 000000000..2fc566768
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/carafe_naive_cuda.cu
    @@ -0,0 +1,52 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "carafe_naive_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void CARAFENAIVEForwardCUDAKernelLauncher(const Tensor features,
    +                                          const Tensor masks, Tensor output,
    +                                          const int kernel_size,
    +                                          const int group_size,
    +                                          const int scale_factor) {
    +  int output_size = output.numel();
    +  int channels = output.size(1);
    +  int height = output.size(2);
    +  int width = output.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(features.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "CARAFENAIVEForward", ([&] {
    +        carafe_naive_forward_cuda_kernel
    +            <<>>(
    +                output_size, features.data_ptr(),
    +                masks.data_ptr(), output.data_ptr(),
    +                kernel_size, group_size, scale_factor, channels, height, width);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void CARAFENAIVEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor features, const Tensor masks,
    +    Tensor bottom_grad, Tensor mask_grad, const int kernel_size,
    +    const int group_size, const int scale_factor) {
    +  int output_size = top_grad.numel();
    +  int channels = top_grad.size(1);
    +  int height = top_grad.size(2);
    +  int width = top_grad.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(top_grad.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "CARAFENAIVEBackward", ([&] {
    +        carafe_naive_backward_cuda_kernel
    +            <<>>(
    +                output_size, top_grad.data_ptr(),
    +                features.data_ptr(), masks.data_ptr(),
    +                bottom_grad.data_ptr(),
    +                mask_grad.data_ptr(), kernel_size, group_size,
    +                scale_factor, channels, height, width);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/chamfer_distance_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/chamfer_distance_cuda.cu
    new file mode 100644
    index 000000000..6effa29ee
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/chamfer_distance_cuda.cu
    @@ -0,0 +1,63 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/chrdiller/pyTorchChamferDistance/blob/master/chamfer_distance/chamfer_distance.cpp
    +#include "chamfer_distance_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void ChamferDistanceForwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, const Tensor dist1,
    +    const Tensor dist2, const Tensor idx1, const Tensor idx2) {
    +  int batch_size = xyz1.size(0);
    +  int n = xyz1.size(1);
    +  int m = xyz2.size(1);
    +
    +  at::cuda::CUDAGuard device_guard(xyz1.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz1.scalar_type(), "chamfer_distance_forward_cuda_kernel", [&] {
    +        chamfer_distance_forward_cuda_kernel
    +            <<>>(
    +                batch_size, n, xyz1.data_ptr(), m,
    +                xyz2.data_ptr(), dist1.data_ptr(),
    +                idx1.data_ptr());
    +      });
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz1.scalar_type(), "chamfer_distance_forward_cuda_kernel", [&] {
    +        chamfer_distance_forward_cuda_kernel
    +            <<>>(
    +                batch_size, m, xyz2.data_ptr(), n,
    +                xyz1.data_ptr(), dist2.data_ptr(),
    +                idx2.data_ptr());
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ChamferDistanceBackwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, Tensor idx1, Tensor idx2,
    +    Tensor grad_dist1, Tensor grad_dist2, Tensor grad_xyz1, Tensor grad_xyz2) {
    +  int batch_size = xyz1.size(0);
    +  int n = xyz1.size(1);
    +  int m = xyz2.size(1);
    +
    +  at::cuda::CUDAGuard device_guard(xyz1.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz1.scalar_type(), "chamfer_distance_backward_cuda_kernel", [&] {
    +        chamfer_distance_backward_cuda_kernel
    +            <<>>(
    +                batch_size, m, xyz1.data_ptr(), n,
    +                xyz2.data_ptr(), grad_dist1.data_ptr(),
    +                idx1.data_ptr(), grad_xyz1.data_ptr(),
    +                grad_xyz2.data_ptr());
    +      });
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz1.scalar_type(), "chamfer_distance_backward_cuda_kernel", [&] {
    +        chamfer_distance_backward_cuda_kernel
    +            <<>>(
    +                batch_size, n, xyz2.data_ptr(), m,
    +                xyz1.data_ptr(), grad_dist2.data_ptr(),
    +                idx2.data_ptr(), grad_xyz2.data_ptr(),
    +                grad_xyz1.data_ptr());
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/convex_iou.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/convex_iou.cu
    new file mode 100644
    index 000000000..804f7ac3b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/convex_iou.cu
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/SDL-GuoZonghao/BeyondBoundingBox/blob/main/mmdet/ops/iou/src/convex_iou_kernel.cu
    +#include "convex_iou_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void ConvexIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                 Tensor ious) {
    +  int output_size = ious.numel();
    +  int num_pointsets = pointsets.size(0);
    +  int num_polygons = polygons.size(0);
    +
    +  at::cuda::CUDAGuard device_guard(pointsets.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      pointsets.scalar_type(), "convex_iou_cuda_kernel", ([&] {
    +        convex_iou_cuda_kernel
    +            <<>>(
    +                num_pointsets, num_polygons, pointsets.data_ptr(),
    +                polygons.data_ptr(), ious.data_ptr());
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ConvexGIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                  Tensor output) {
    +  int output_size = output.numel();
    +  int num_pointsets = pointsets.size(0);
    +  int num_polygons = polygons.size(0);
    +
    +  at::cuda::CUDAGuard device_guard(pointsets.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      pointsets.scalar_type(), "convex_giou_cuda_kernel", ([&] {
    +        convex_giou_cuda_kernel
    +            <<>>(
    +                num_pointsets, num_polygons, pointsets.data_ptr(),
    +                polygons.data_ptr(), output.data_ptr());
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/correlation_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/correlation_cuda.cu
    new file mode 100644
    index 000000000..6a43cfc70
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/correlation_cuda.cu
    @@ -0,0 +1,94 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/ClementPinard/Pytorch-Correlation-extension/blob/master/Correlation_Module/correlation_cuda_kernel.cu
    +// Original licence: Under MIT License
    +
    +#include "correlation_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void CorrelationForwardCUDAKernelLauncher(Tensor input1, Tensor input2,
    +                                          Tensor output, int kH, int kW,
    +                                          int patchH, int patchW, int padH,
    +                                          int padW, int dilationH,
    +                                          int dilationW, int dilation_patchH,
    +                                          int dilation_patchW, int dH, int dW) {
    +  const int batch_size = input1.size(0);
    +  const int iH = input1.size(2);
    +  const int iW = input1.size(3);
    +  const int dilatedKH = (kH - 1) * dilationH + 1;
    +  const int dilatedKW = (kW - 1) * dilationW + 1;
    +
    +  const auto oH = (iH + 2 * padH - dilatedKH) / dH + 1;
    +  const auto oW = (iW + 2 * padW - dilatedKW) / dW + 1;
    +
    +  auto trInput1 = input1.permute({0, 2, 3, 1}).contiguous();
    +  auto trInput2 = input2.permute({0, 2, 3, 1}).contiguous();
    +
    +  const dim3 threads(WARP_SIZE, 4, 4);
    +  const dim3 blocks(batch_size, (oH + 3) >> 2, (oW + 3) >> 2);
    +
    +  at::cuda::CUDAGuard device_guard(input1.device());
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input1.scalar_type(), "correlation_forward_cuda", ([&] {
    +        TensorAcc4R trInput1_acc =
    +            trInput1.packed_accessor32();
    +        TensorAcc4R trInput2_acc =
    +            trInput2.packed_accessor32();
    +        TensorAcc5R output_acc =
    +            output.packed_accessor32();
    +
    +        correlation_forward_cuda_kernel
    +            <<>>(
    +                trInput1_acc, trInput2_acc, output_acc, kH, kW, patchH, patchW,
    +                padH, padW, dilationH, dilationW, dilation_patchH,
    +                dilation_patchW, dH, dW, oH, oW);
    +      }));
    +}
    +
    +void CorrelationBackwardCUDAKernelLauncher(
    +    Tensor grad_output, Tensor input1, Tensor input2, Tensor grad_input1,
    +    Tensor grad_input2, int kH, int kW, int patchH, int patchW, int padH,
    +    int padW, int dilationH, int dilationW, int dilation_patchH,
    +    int dilation_patchW, int dH, int dW) {
    +  const int batch_size = input1.size(0);
    +  const int iH = input1.size(2);
    +  const int iW = input1.size(3);
    +  const int C = input1.size(1);
    +
    +  auto trInput1 = input1.permute({0, 2, 3, 1}).contiguous();
    +  auto trInput2 = input2.permute({0, 2, 3, 1}).contiguous();
    +  const dim3 blocks(batch_size, iH, iW);
    +  const dim3 threads(THREADS_PER_BLOCK);
    +
    +  at::cuda::CUDAGuard device_guard(input1.device());
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input1.scalar_type(), "correlation_backward_cuda", ([&] {
    +        const int grad_cache_size = patchH * patchW * sizeof(scalar_t);
    +        TensorAcc4R input1_acc =
    +            trInput1.packed_accessor32();
    +        TensorAcc4R input2_acc =
    +            trInput2.packed_accessor32();
    +        TensorAcc4R grad_input1_acc =
    +            grad_input1.packed_accessor32();
    +        TensorAcc4R grad_input2_acc =
    +            grad_input2.packed_accessor32();
    +        TensorAcc5R grad_output_acc =
    +            grad_output.packed_accessor32();
    +
    +        correlation_backward_cuda_kernel_input1
    +            <<>>(
    +                grad_output_acc, input2_acc, grad_input1_acc, kH, kW, patchH,
    +                patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +                dilation_patchW, dH, dW);
    +
    +        correlation_backward_cuda_kernel_input2
    +            <<>>(
    +                grad_output_acc, input1_acc, grad_input2_acc, kH, kW, patchH,
    +                patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +                dilation_patchW, dH, dW);
    +      }));
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/cudabind.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/cudabind.cpp
    new file mode 100644
    index 000000000..27c7fcfb0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/cudabind.cpp
    @@ -0,0 +1,1869 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void AssignScoreWithKForwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& points, const Tensor& centers, const Tensor& scores,
    +    const Tensor& knn_idx, Tensor& output);
    +
    +void AssignScoreWithKBackwardCUDAKernelLauncher(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores);
    +
    +void assign_score_withk_forward_cuda(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output) {
    +  AssignScoreWithKForwardCUDAKernelLauncher(
    +      B, N0, N1, M, K, O, aggregate, points, centers, scores, knn_idx, output);
    +};
    +
    +void assign_score_withk_backward_cuda(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores) {
    +  AssignScoreWithKBackwardCUDAKernelLauncher(
    +      B, N0, N1, M, K, O, aggregate, grad_out, points, centers, scores, knn_idx,
    +      grad_points, grad_centers, grad_scores);
    +};
    +
    +void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
    +                                     int aggregate, const Tensor& points,
    +                                     const Tensor& centers,
    +                                     const Tensor& scores,
    +                                     const Tensor& knn_idx, Tensor& output);
    +
    +void assign_score_withk_backward_impl(
    +    int B, int N0, int N1, int M, int K, int O, int aggregate,
    +    const Tensor& grad_out, const Tensor& points, const Tensor& centers,
    +    const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
    +    Tensor& grad_centers, Tensor& grad_scores);
    +
    +REGISTER_DEVICE_IMPL(assign_score_withk_forward_impl, CUDA,
    +                     assign_score_withk_forward_cuda);
    +REGISTER_DEVICE_IMPL(assign_score_withk_backward_impl, CUDA,
    +                     assign_score_withk_backward_cuda);
    +
    +void BallQueryForwardCUDAKernelLauncher(int b, int n, int m, float min_radius,
    +                                        float max_radius, int nsample,
    +                                        const Tensor new_xyz, const Tensor xyz,
    +                                        Tensor idx);
    +
    +void ball_query_forward_cuda(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx) {
    +  BallQueryForwardCUDAKernelLauncher(b, n, m, min_radius, max_radius, nsample,
    +                                     new_xyz, xyz, idx);
    +};
    +
    +void ball_query_forward_impl(int b, int n, int m, float min_radius,
    +                             float max_radius, int nsample,
    +                             const Tensor new_xyz, const Tensor xyz,
    +                             Tensor idx);
    +REGISTER_DEVICE_IMPL(ball_query_forward_impl, CUDA, ball_query_forward_cuda);
    +
    +void StackBallQueryForwardCUDAKernelLauncher(float max_radius, int nsample,
    +                                             const Tensor new_xyz,
    +                                             const Tensor new_xyz_batch_cnt,
    +                                             const Tensor xyz,
    +                                             const Tensor xyz_batch_cnt,
    +                                             Tensor idx);
    +
    +void stack_ball_query_forward_cuda(float max_radius, int nsample,
    +                                   const Tensor new_xyz,
    +                                   const Tensor new_xyz_batch_cnt,
    +                                   const Tensor xyz, const Tensor xyz_batch_cnt,
    +                                   Tensor idx) {
    +  StackBallQueryForwardCUDAKernelLauncher(
    +      max_radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx);
    +};
    +
    +void stack_ball_query_forward_impl(float max_radius, int nsample,
    +                                   const Tensor new_xyz,
    +                                   const Tensor new_xyz_batch_cnt,
    +                                   const Tensor xyz, const Tensor xyz_batch_cnt,
    +                                   Tensor idx);
    +REGISTER_DEVICE_IMPL(stack_ball_query_forward_impl, CUDA,
    +                     stack_ball_query_forward_cuda);
    +
    +void BBoxOverlapsCUDAKernelLauncher(const Tensor bboxes1, const Tensor bboxes2,
    +                                    Tensor ious, const int mode,
    +                                    const bool aligned, const int offset);
    +
    +void bbox_overlaps_cuda(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset) {
    +  BBoxOverlapsCUDAKernelLauncher(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset);
    +REGISTER_DEVICE_IMPL(bbox_overlaps_impl, CUDA, bbox_overlaps_cuda);
    +
    +void BorderAlignForwardCUDAKernelLauncher(const Tensor& input,
    +                                          const Tensor& boxes, Tensor output,
    +                                          Tensor argmax_idx,
    +                                          const int pool_size);
    +
    +void BorderAlignBackwardCUDAKernelLauncher(const Tensor& grad_output,
    +                                           const Tensor& boxes,
    +                                           const Tensor& argmax_idx,
    +                                           Tensor grad_input,
    +                                           const int pool_size);
    +
    +void border_align_forward_cuda(const Tensor& input, const Tensor& boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size) {
    +  BorderAlignForwardCUDAKernelLauncher(input, boxes, output, argmax_idx,
    +                                       pool_size);
    +}
    +
    +void border_align_backward_cuda(const Tensor& grad_output, const Tensor& boxes,
    +                                const Tensor& argmax_idx, Tensor grad_input,
    +                                const int pool_size) {
    +  BorderAlignBackwardCUDAKernelLauncher(grad_output, boxes, argmax_idx,
    +                                        grad_input, pool_size);
    +}
    +
    +void border_align_forward_impl(const Tensor& input, const Tensor& boxes,
    +                               Tensor output, Tensor argmax_idx,
    +                               const int pool_size);
    +
    +void border_align_backward_impl(const Tensor& grad_output, const Tensor& boxes,
    +                                const Tensor& argmax_idx, Tensor grad_input,
    +                                const int pool_size);
    +
    +REGISTER_DEVICE_IMPL(border_align_forward_impl, CUDA,
    +                     border_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(border_align_backward_impl, CUDA,
    +                     border_align_backward_cuda);
    +
    +void box_iou_rotated_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +
    +void box_iou_rotated_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                          const int mode_flag, const bool aligned);
    +REGISTER_DEVICE_IMPL(box_iou_rotated_impl, CUDA, box_iou_rotated_cuda);
    +
    +void box_iou_quadri_cuda(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned);
    +
    +void box_iou_quadri_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                         const int mode_flag, const bool aligned);
    +REGISTER_DEVICE_IMPL(box_iou_quadri_impl, CUDA, box_iou_quadri_cuda);
    +
    +void CARAFEForwardCUDAKernelLauncher(const Tensor features, const Tensor masks,
    +                                     Tensor rfeatures, Tensor routput,
    +                                     Tensor rmasks, Tensor output,
    +                                     const int kernel_size,
    +                                     const int group_size,
    +                                     const int scale_factor);
    +
    +void CARAFEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor rfeatures, const Tensor masks,
    +    Tensor rtop_grad, Tensor rbottom_grad_hs, Tensor rbottom_grad,
    +    Tensor rmask_grad, Tensor bottom_grad, Tensor mask_grad,
    +    const int kernel_size, const int group_size, const int scale_factor);
    +
    +void carafe_forward_cuda(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor) {
    +  CARAFEForwardCUDAKernelLauncher(features, masks, rfeatures, routput, rmasks,
    +                                  output, kernel_size, group_size,
    +                                  scale_factor);
    +}
    +
    +void carafe_backward_cuda(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor) {
    +  CARAFEBackwardCUDAKernelLauncher(top_grad, rfeatures, masks, rtop_grad,
    +                                   rbottom_grad_hs, rbottom_grad, rmask_grad,
    +                                   bottom_grad, mask_grad, kernel_size,
    +                                   group_size, scale_factor);
    +}
    +
    +void carafe_forward_impl(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_backward_impl(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor);
    +
    +REGISTER_DEVICE_IMPL(carafe_forward_impl, CUDA, carafe_forward_cuda);
    +REGISTER_DEVICE_IMPL(carafe_backward_impl, CUDA, carafe_backward_cuda);
    +
    +void CARAFENAIVEForwardCUDAKernelLauncher(const Tensor features,
    +                                          const Tensor masks, Tensor output,
    +                                          const int kernel_size,
    +                                          const int group_size,
    +                                          const int scale_factor);
    +
    +void CARAFENAIVEBackwardCUDAKernelLauncher(
    +    const Tensor top_grad, const Tensor features, const Tensor masks,
    +    Tensor bottom_grad, Tensor mask_grad, const int kernel_size,
    +    const int group_size, const int scale_factor);
    +
    +void carafe_naive_forward_cuda(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor) {
    +  CARAFENAIVEForwardCUDAKernelLauncher(features, masks, output, kernel_size,
    +                                       group_size, scale_factor);
    +}
    +
    +void carafe_naive_backward_cuda(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor) {
    +  CARAFENAIVEBackwardCUDAKernelLauncher(top_grad, features, masks, bottom_grad,
    +                                        mask_grad, kernel_size, group_size,
    +                                        scale_factor);
    +}
    +void carafe_naive_forward_impl(Tensor features, Tensor masks, Tensor output,
    +                               int kernel_size, int group_size,
    +                               int scale_factor);
    +
    +void carafe_naive_backward_impl(Tensor top_grad, Tensor features, Tensor masks,
    +                                Tensor bottom_grad, Tensor mask_grad,
    +                                int kernel_size, int group_size,
    +                                int scale_factor);
    +
    +REGISTER_DEVICE_IMPL(carafe_naive_forward_impl, CUDA,
    +                     carafe_naive_forward_cuda);
    +REGISTER_DEVICE_IMPL(carafe_naive_backward_impl, CUDA,
    +                     carafe_naive_backward_cuda);
    +
    +void CorrelationForwardCUDAKernelLauncher(Tensor input1, Tensor input2,
    +                                          Tensor output, int kH, int kW,
    +                                          int patchH, int patchW, int padH,
    +                                          int padW, int dilationH,
    +                                          int dilationW, int dilation_patchH,
    +                                          int dilation_patchW, int dH, int dW);
    +
    +void CorrelationBackwardCUDAKernelLauncher(Tensor grad_output, Tensor input1,
    +                                           Tensor input2, Tensor grad_input1,
    +                                           Tensor grad_input2, int kH, int kW,
    +                                           int patchH, int patchW, int padH,
    +                                           int padW, int dilationH,
    +                                           int dilationW, int dilation_patchH,
    +                                           int dilation_patchW, int dH, int dW);
    +
    +void correlation_forward_cuda(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW) {
    +  CorrelationForwardCUDAKernelLauncher(
    +      input1, input2, output, kH, kW, patchH, patchW, padH, padW, dilationH,
    +      dilationW, dilation_patchH, dilation_patchW, dH, dW);
    +}
    +
    +void correlation_backward_cuda(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW) {
    +  CorrelationBackwardCUDAKernelLauncher(
    +      grad_output, input1, input2, grad_input1, grad_input2, kH, kW, patchH,
    +      patchW, padH, padW, dilationH, dilationW, dilation_patchH,
    +      dilation_patchW, dH, dW);
    +}
    +
    +void correlation_forward_impl(Tensor input1, Tensor input2, Tensor output,
    +                              int kH, int kW, int patchH, int patchW, int padH,
    +                              int padW, int dilationH, int dilationW,
    +                              int dilation_patchH, int dilation_patchW, int dH,
    +                              int dW);
    +
    +void correlation_backward_impl(Tensor grad_output, Tensor input1, Tensor input2,
    +                               Tensor grad_input1, Tensor grad_input2, int kH,
    +                               int kW, int patchH, int patchW, int padH,
    +                               int padW, int dilationH, int dilationW,
    +                               int dilation_patchH, int dilation_patchW, int dH,
    +                               int dW);
    +
    +REGISTER_DEVICE_IMPL(correlation_forward_impl, CUDA, correlation_forward_cuda);
    +REGISTER_DEVICE_IMPL(correlation_backward_impl, CUDA,
    +                     correlation_backward_cuda);
    +
    +void deformable_im2col_cuda(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col);
    +
    +void deformable_col2im_cuda(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im);
    +
    +void deformable_col2im_coord_cuda(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset);
    +
    +void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col);
    +
    +void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im);
    +
    +void deformable_col2im_coord_impl(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset);
    +
    +REGISTER_DEVICE_IMPL(deformable_im2col_impl, CUDA, deformable_im2col_cuda);
    +REGISTER_DEVICE_IMPL(deformable_col2im_impl, CUDA, deformable_col2im_cuda);
    +REGISTER_DEVICE_IMPL(deformable_col2im_coord_impl, CUDA,
    +                     deformable_col2im_coord_cuda);
    +
    +void DeformRoIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                            Tensor offset, Tensor output,
    +                                            int pooled_height, int pooled_width,
    +                                            float spatial_scale,
    +                                            int sampling_ratio, float gamma);
    +
    +void DeformRoIPoolBackwardCUDAKernelLauncher(
    +    Tensor grad_output, Tensor input, Tensor rois, Tensor offset,
    +    Tensor grad_input, Tensor grad_offset, int pooled_height, int pooled_width,
    +    float spatial_scale, int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  DeformRoIPoolForwardCUDAKernelLauncher(input, rois, offset, output,
    +                                         pooled_height, pooled_width,
    +                                         spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_backward_cuda(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma) {
    +  DeformRoIPoolBackwardCUDAKernelLauncher(
    +      grad_output, input, rois, offset, grad_input, grad_offset, pooled_height,
    +      pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma);
    +
    +REGISTER_DEVICE_IMPL(deform_roi_pool_forward_impl, CUDA,
    +                     deform_roi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(deform_roi_pool_backward_impl, CUDA,
    +                     deform_roi_pool_backward_cuda);
    +
    +void SigmoidFocalLossForwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha);
    +
    +void SigmoidFocalLossBackwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                                Tensor weight,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha);
    +
    +void SoftmaxFocalLossForwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha);
    +
    +void SoftmaxFocalLossBackwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                                Tensor weight, Tensor buff,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha);
    +
    +void sigmoid_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  SigmoidFocalLossForwardCUDAKernelLauncher(input, target, weight, output,
    +                                            gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha) {
    +  SigmoidFocalLossBackwardCUDAKernelLauncher(input, target, weight, grad_input,
    +                                             gamma, alpha);
    +}
    +
    +void softmax_focal_loss_forward_cuda(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  SoftmaxFocalLossForwardCUDAKernelLauncher(input, target, weight, output,
    +                                            gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward_cuda(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha) {
    +  SoftmaxFocalLossBackwardCUDAKernelLauncher(input, target, weight, buff,
    +                                             grad_input, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha);
    +
    +void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha);
    +
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, CUDA,
    +                     sigmoid_focal_loss_forward_cuda);
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, CUDA,
    +                     sigmoid_focal_loss_backward_cuda);
    +REGISTER_DEVICE_IMPL(softmax_focal_loss_forward_impl, CUDA,
    +                     softmax_focal_loss_forward_cuda);
    +REGISTER_DEVICE_IMPL(softmax_focal_loss_backward_impl, CUDA,
    +                     softmax_focal_loss_backward_cuda);
    +
    +void FurthestPointSamplingForwardCUDAKernelLauncher(int b, int n, int m,
    +                                                    const float* dataset,
    +                                                    float* temp, int* idxs);
    +
    +void FurthestPointSamplingWithDistForwardCUDAKernelLauncher(
    +    int b, int n, int m, const float* dataset, float* temp, int* idxs);
    +
    +void furthest_point_sampling_forward_cuda(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m) {
    +  const float* dataset = points_tensor.data_ptr();
    +  float* temp = temp_tensor.data_ptr();
    +  int* idxs = idx_tensor.data_ptr();
    +  FurthestPointSamplingForwardCUDAKernelLauncher(b, n, m, dataset, temp, idxs);
    +}
    +
    +void furthest_point_sampling_with_dist_forward_cuda(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m) {
    +  const float* dataset = points_tensor.data_ptr();
    +  float* temp = temp_tensor.data_ptr();
    +  int* idxs = idx_tensor.data_ptr();
    +  FurthestPointSamplingWithDistForwardCUDAKernelLauncher(b, n, m, dataset, temp,
    +                                                         idxs);
    +}
    +
    +void furthest_point_sampling_forward_impl(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m);
    +
    +void furthest_point_sampling_with_dist_forward_impl(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m);
    +
    +REGISTER_DEVICE_IMPL(furthest_point_sampling_forward_impl, CUDA,
    +                     furthest_point_sampling_forward_cuda);
    +REGISTER_DEVICE_IMPL(furthest_point_sampling_with_dist_forward_impl, CUDA,
    +                     furthest_point_sampling_with_dist_forward_cuda);
    +
    +torch::Tensor fused_bias_leakyrelu_op(const torch::Tensor& input,
    +                                      const torch::Tensor& bias,
    +                                      const torch::Tensor& refer, int act,
    +                                      int grad, float alpha, float scale);
    +
    +torch::Tensor fused_bias_leakyrelu_op_impl(const torch::Tensor& input,
    +                                           const torch::Tensor& bias,
    +                                           const torch::Tensor& refer, int act,
    +                                           int grad, float alpha, float scale);
    +REGISTER_DEVICE_IMPL(fused_bias_leakyrelu_op_impl, CUDA,
    +                     fused_bias_leakyrelu_op);
    +
    +void GatherPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           const Tensor points,
    +                                           const Tensor idx, Tensor out);
    +
    +void GatherPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                            const Tensor grad_out,
    +                                            const Tensor idx,
    +                                            Tensor grad_points);
    +
    +void gather_points_forward_cuda(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out) {
    +  GatherPointsForwardCUDAKernelLauncher(b, c, n, npoints, points, idx, out);
    +};
    +
    +void gather_points_backward_cuda(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points) {
    +  GatherPointsBackwardCUDAKernelLauncher(b, c, n, npoints, grad_out, idx,
    +                                         grad_points);
    +};
    +
    +void gather_points_forward_impl(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out);
    +
    +void gather_points_backward_impl(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points);
    +
    +REGISTER_DEVICE_IMPL(gather_points_forward_impl, CUDA,
    +                     gather_points_forward_cuda);
    +REGISTER_DEVICE_IMPL(gather_points_backward_impl, CUDA,
    +                     gather_points_backward_cuda);
    +
    +void GroupPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                          int nsample, const Tensor points,
    +                                          const Tensor idx, Tensor out);
    +
    +void GroupPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           int nsample, const Tensor grad_out,
    +                                           const Tensor idx,
    +                                           Tensor grad_points);
    +
    +void group_points_forward_cuda(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out) {
    +  GroupPointsForwardCUDAKernelLauncher(b, c, n, npoints, nsample, points, idx,
    +                                       out);
    +};
    +
    +void group_points_backward_cuda(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points) {
    +  GroupPointsBackwardCUDAKernelLauncher(b, c, n, npoints, nsample, grad_out,
    +                                        idx, grad_points);
    +};
    +
    +void group_points_forward_impl(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out);
    +
    +void group_points_backward_impl(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points);
    +
    +REGISTER_DEVICE_IMPL(group_points_forward_impl, CUDA,
    +                     group_points_forward_cuda);
    +REGISTER_DEVICE_IMPL(group_points_backward_impl, CUDA,
    +                     group_points_backward_cuda);
    +
    +void StackGroupPointsForwardCUDAKernelLauncher(
    +    int b, int c, int m, int nsample, const Tensor features_tensor,
    +    const Tensor features_batch_cnt_tensor, const Tensor idx_tensor,
    +    const Tensor idx_batch_cnt_tensor, Tensor out_tensor);
    +void StackGroupPointsBackwardCUDAKernelLauncher(
    +    int b, int c, int m, int n, int nsample, const Tensor grad_out_tensor,
    +    const Tensor idx_tensor, const Tensor idx_batch_cnt_tensor,
    +    const Tensor features_batch_cnt_tensor, Tensor grad_features_tensor);
    +
    +void stack_group_points_forward_cuda(int b, int c, int m, int nsample,
    +                                     const Tensor features_tensor,
    +                                     const Tensor features_batch_cnt_tensor,
    +                                     const Tensor idx_tensor,
    +                                     const Tensor idx_batch_cnt_tensor,
    +                                     Tensor out_tensor) {
    +  StackGroupPointsForwardCUDAKernelLauncher(
    +      b, c, m, nsample, features_tensor, features_batch_cnt_tensor, idx_tensor,
    +      idx_batch_cnt_tensor, out_tensor);
    +};
    +
    +void stack_group_points_backward_cuda(int b, int c, int m, int n, int nsample,
    +                                      const Tensor grad_out_tensor,
    +                                      const Tensor idx_tensor,
    +                                      const Tensor idx_batch_cnt_tensor,
    +                                      const Tensor features_batch_cnt_tensor,
    +                                      Tensor grad_features_tensor) {
    +  StackGroupPointsBackwardCUDAKernelLauncher(
    +      b, c, m, n, nsample, grad_out_tensor, idx_tensor, idx_batch_cnt_tensor,
    +      features_batch_cnt_tensor, grad_features_tensor);
    +};
    +
    +void stack_group_points_forward_impl(int b, int c, int m, int nsample,
    +                                     const Tensor features_tensor,
    +                                     const Tensor features_batch_cnt_tensor,
    +                                     const Tensor idx_tensor,
    +                                     const Tensor idx_batch_cnt_tensor,
    +                                     Tensor out_tensor);
    +
    +void stack_group_points_backward_impl(int b, int c, int m, int n, int nsample,
    +                                      const Tensor grad_out_tensor,
    +                                      const Tensor idx_tensor,
    +                                      const Tensor idx_batch_cnt_tensor,
    +                                      const Tensor features_batch_cnt_tensor,
    +                                      Tensor grad_features_tensor);
    +
    +REGISTER_DEVICE_IMPL(stack_group_points_forward_impl, CUDA,
    +                     stack_group_points_forward_cuda);
    +REGISTER_DEVICE_IMPL(stack_group_points_backward_impl, CUDA,
    +                     stack_group_points_backward_cuda);
    +
    +void IoU3DBoxesOverlapBevForwardCUDAKernelLauncher(const int num_a,
    +                                                   const Tensor boxes_a,
    +                                                   const int num_b,
    +                                                   const Tensor boxes_b,
    +                                                   Tensor ans_overlap);
    +
    +void IoU3DNMS3DForwardCUDAKernelLauncher(const Tensor boxes, Tensor& keep,
    +                                         Tensor& keep_num,
    +                                         float nms_overlap_thresh);
    +
    +void IoU3DNMS3DNormalForwardCUDAKernelLauncher(const Tensor boxes, Tensor& keep,
    +                                               Tensor& keep_num,
    +                                               float nms_overlap_thresh);
    +
    +void iou3d_boxes_overlap_bev_forward_cuda(const int num_a, const Tensor boxes_a,
    +                                          const int num_b, const Tensor boxes_b,
    +                                          Tensor ans_overlap) {
    +  IoU3DBoxesOverlapBevForwardCUDAKernelLauncher(num_a, boxes_a, num_b, boxes_b,
    +                                                ans_overlap);
    +};
    +
    +void iou3d_nms3d_forward_cuda(const Tensor boxes, Tensor& keep,
    +                              Tensor& keep_num, float nms_overlap_thresh) {
    +  IoU3DNMS3DForwardCUDAKernelLauncher(boxes, keep, keep_num,
    +                                      nms_overlap_thresh);
    +};
    +
    +void iou3d_nms3d_normal_forward_cuda(const Tensor boxes, Tensor& keep,
    +                                     Tensor& keep_num,
    +                                     float nms_overlap_thresh) {
    +  IoU3DNMS3DNormalForwardCUDAKernelLauncher(boxes, keep, keep_num,
    +                                            nms_overlap_thresh);
    +};
    +
    +void iou3d_boxes_overlap_bev_forward_impl(const int num_a, const Tensor boxes_a,
    +                                          const int num_b, const Tensor boxes_b,
    +                                          Tensor ans_overlap);
    +
    +void iou3d_nms3d_forward_impl(const Tensor boxes, Tensor& keep,
    +                              Tensor& keep_num, float nms_overlap_thresh);
    +
    +void iou3d_nms3d_normal_forward_impl(const Tensor boxes, Tensor& keep,
    +                                     Tensor& keep_num,
    +                                     float nms_overlap_thresh);
    +
    +REGISTER_DEVICE_IMPL(iou3d_boxes_overlap_bev_forward_impl, CUDA,
    +                     iou3d_boxes_overlap_bev_forward_cuda);
    +REGISTER_DEVICE_IMPL(iou3d_nms3d_forward_impl, CUDA, iou3d_nms3d_forward_cuda);
    +REGISTER_DEVICE_IMPL(iou3d_nms3d_normal_forward_impl, CUDA,
    +                     iou3d_nms3d_normal_forward_cuda);
    +
    +void KNNForwardCUDAKernelLauncher(int b, int n, int m, int nsample,
    +                                  const Tensor xyz, const Tensor new_xyz,
    +                                  Tensor idx, Tensor dist2);
    +
    +void knn_forward_cuda(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2) {
    +  KNNForwardCUDAKernelLauncher(b, n, m, nsample, xyz, new_xyz, idx, dist2);
    +}
    +
    +void knn_forward_impl(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2);
    +REGISTER_DEVICE_IMPL(knn_forward_impl, CUDA, knn_forward_cuda);
    +
    +void MaskedIm2colForwardCUDAKernelLauncher(const Tensor bottom_data,
    +                                           const Tensor mask_h_idx,
    +                                           const Tensor mask_w_idx,
    +                                           Tensor top_data, const int kernel_h,
    +                                           const int kernel_w, const int pad_h,
    +                                           const int pad_w);
    +
    +void MaskedCol2imForwardCUDAKernelLauncher(const Tensor bottom_data,
    +                                           const Tensor mask_h_idx,
    +                                           const Tensor mask_w_idx,
    +                                           Tensor top_data, const int height,
    +                                           const int width, const int channels);
    +
    +void masked_im2col_forward_cuda(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kw), col: (kh * kw * ic, ow * oh)
    +  MaskedIm2colForwardCUDAKernelLauncher(im, mask_h_idx, mask_w_idx, col,
    +                                        kernel_h, kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_cuda(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kh), col: (kh * kw * ic, ow * oh)
    +  MaskedCol2imForwardCUDAKernelLauncher(col, mask_h_idx, mask_w_idx, im, height,
    +                                        width, channels);
    +}
    +
    +void masked_im2col_forward_impl(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w);
    +
    +void masked_col2im_forward_impl(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels);
    +
    +REGISTER_DEVICE_IMPL(masked_im2col_forward_impl, CUDA,
    +                     masked_im2col_forward_cuda);
    +REGISTER_DEVICE_IMPL(masked_col2im_forward_impl, CUDA,
    +                     masked_col2im_forward_cuda);
    +
    +void modulated_deformable_im2col_cuda(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col);
    +
    +void modulated_deformable_col2im_cuda(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im);
    +
    +void modulated_deformable_col2im_coord_cuda(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask);
    +
    +void modulated_deformable_im2col_impl(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col);
    +
    +void modulated_deformable_col2im_impl(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im);
    +
    +void modulated_deformable_col2im_coord_impl(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask);
    +
    +REGISTER_DEVICE_IMPL(modulated_deformable_im2col_impl, CUDA,
    +                     modulated_deformable_im2col_cuda);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_impl, CUDA,
    +                     modulated_deformable_col2im_cuda);
    +REGISTER_DEVICE_IMPL(modulated_deformable_col2im_coord_impl, CUDA,
    +                     modulated_deformable_col2im_coord_cuda);
    +
    +Tensor ms_deform_attn_cuda_forward(const Tensor& value,
    +                                   const Tensor& spatial_shapes,
    +                                   const Tensor& level_start_index,
    +                                   const Tensor& sampling_loc,
    +                                   const Tensor& attn_weight,
    +                                   const int im2col_step);
    +
    +void ms_deform_attn_cuda_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight, const int im2col_step);
    +
    +Tensor ms_deform_attn_impl_forward(const Tensor& value,
    +                                   const Tensor& spatial_shapes,
    +                                   const Tensor& level_start_index,
    +                                   const Tensor& sampling_loc,
    +                                   const Tensor& attn_weight,
    +                                   const int im2col_step);
    +
    +void ms_deform_attn_impl_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight, const int im2col_step);
    +
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_forward, CUDA,
    +                     ms_deform_attn_cuda_forward);
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_backward, CUDA,
    +                     ms_deform_attn_cuda_backward);
    +
    +Tensor NMSCUDAKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
    +                             int offset);
    +
    +Tensor nms_cuda(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return NMSCUDAKernelLauncher(boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +REGISTER_DEVICE_IMPL(nms_impl, CUDA, nms_cuda);
    +
    +void PointsInBoxesPartForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                                int pts_num, const Tensor boxes,
    +                                                const Tensor pts,
    +                                                Tensor box_idx_of_points);
    +
    +void PointsInBoxesAllForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                               int pts_num, const Tensor boxes,
    +                                               const Tensor pts,
    +                                               Tensor box_idx_of_points);
    +
    +void points_in_boxes_part_forward_cuda(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points) {
    +  PointsInBoxesPartForwardCUDAKernelLauncher(batch_size, boxes_num, pts_num,
    +                                             boxes, pts, box_idx_of_points);
    +};
    +
    +void points_in_boxes_all_forward_cuda(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points) {
    +  PointsInBoxesAllForwardCUDAKernelLauncher(batch_size, boxes_num, pts_num,
    +                                            boxes, pts, box_idx_of_points);
    +};
    +
    +void points_in_boxes_part_forward_impl(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points);
    +
    +void points_in_boxes_all_forward_impl(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points);
    +REGISTER_DEVICE_IMPL(points_in_boxes_part_forward_impl, CUDA,
    +                     points_in_boxes_part_forward_cuda);
    +REGISTER_DEVICE_IMPL(points_in_boxes_all_forward_impl, CUDA,
    +                     points_in_boxes_all_forward_cuda);
    +
    +void PSAMaskForwardCUDAKernelLauncher(const int psa_type, const Tensor input,
    +                                      Tensor output, const int num_,
    +                                      const int h_feature, const int w_feature,
    +                                      const int h_mask, const int w_mask,
    +                                      const int half_h_mask,
    +                                      const int half_w_mask);
    +
    +void PSAMaskBackwardCUDAKernelLauncher(
    +    const int psa_type, const Tensor grad_output, Tensor grad_input,
    +    const int num_, const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int half_h_mask, const int half_w_mask);
    +
    +void psamask_forward_cuda(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask) {
    +  PSAMaskForwardCUDAKernelLauncher(psa_type, input, output, num_, h_feature,
    +                                   w_feature, h_mask, w_mask, half_h_mask,
    +                                   half_w_mask);
    +}
    +
    +void psamask_backward_cuda(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask) {
    +  PSAMaskBackwardCUDAKernelLauncher(psa_type, grad_output, grad_input, num_,
    +                                    h_feature, w_feature, h_mask, w_mask,
    +                                    half_h_mask, half_w_mask);
    +}
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask);
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask);
    +REGISTER_DEVICE_IMPL(psamask_forward_impl, CUDA, psamask_forward_cuda);
    +REGISTER_DEVICE_IMPL(psamask_backward_impl, CUDA, psamask_backward_cuda);
    +
    +void ROIAlignForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                       Tensor argmax_y, Tensor argmax_x,
    +                                       int aligned_height, int aligned_width,
    +                                       float spatial_scale, int sampling_ratio,
    +                                       int pool_mode, bool aligned);
    +
    +void ROIAlignBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                        Tensor argmax_y, Tensor argmax_x,
    +                                        Tensor grad_input, int aligned_height,
    +                                        int aligned_width, float spatial_scale,
    +                                        int sampling_ratio, int pool_mode,
    +                                        bool aligned);
    +
    +void roi_align_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  ROIAlignForwardCUDAKernelLauncher(
    +      input, rois, output, argmax_y, argmax_x, aligned_height, aligned_width,
    +      spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned) {
    +  ROIAlignBackwardCUDAKernelLauncher(
    +      grad_output, rois, argmax_y, argmax_x, grad_input, aligned_height,
    +      aligned_width, spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned);
    +
    +REGISTER_DEVICE_IMPL(roi_align_forward_impl, CUDA, roi_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_align_backward_impl, CUDA, roi_align_backward_cuda);
    +
    +void ROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor input, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor output);
    +
    +void ROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor bottom_grad);
    +
    +void roi_align_rotated_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +
    +  int num_channels = input.size(1);
    +  int data_height = input.size(2);
    +  int data_width = input.size(3);
    +  ROIAlignRotatedForwardCUDAKernelLauncher(
    +      input, rois, spatial_scale, sampling_ratio, aligned, clockwise,
    +      num_channels, data_height, data_width, num_rois, aligned_height,
    +      aligned_width, output);
    +}
    +
    +void roi_align_rotated_backward_cuda(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +
    +  int num_channels = bottom_grad.size(1);
    +  int data_height = bottom_grad.size(2);
    +  int data_width = bottom_grad.size(3);
    +  ROIAlignRotatedBackwardCUDAKernelLauncher(
    +      top_grad, rois, spatial_scale, sampling_ratio, aligned, clockwise,
    +      num_channels, data_height, data_width, num_rois, aligned_height,
    +      aligned_width, bottom_grad);
    +}
    +
    +void roi_align_rotated_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_forward_impl, CUDA,
    +                     roi_align_rotated_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_backward_impl, CUDA,
    +                     roi_align_rotated_backward_cuda);
    +
    +void RiROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor features, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor output);
    +
    +void RiROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor bottom_grad);
    +
    +void riroi_align_rotated_forward_cuda(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +  CHECK_CONTIGUOUS(features);
    +  CHECK_CONTIGUOUS(rois);
    +  int num_channels = features.size(1) / num_orientations;
    +  int data_height = features.size(2);
    +  int data_width = features.size(3);
    +  RiROIAlignRotatedForwardCUDAKernelLauncher(
    +      features, rois, spatial_scale, num_samples, clockwise, num_channels,
    +      data_height, data_width, num_rois, pooled_height, pooled_width,
    +      num_orientations, output);
    +}
    +
    +void riroi_align_rotated_backward_cuda(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise) {
    +  // Number of ROIs
    +  int num_rois = rois.size(0);
    +  int size_rois = rois.size(1);
    +  if (size_rois != 6) {
    +    AT_ERROR("wrong roi size");
    +  }
    +  CHECK_CONTIGUOUS(top_grad);
    +  CHECK_CONTIGUOUS(rois);
    +  int num_channels = bottom_grad.size(1) / num_orientations;
    +  int data_height = bottom_grad.size(2);
    +  int data_width = bottom_grad.size(3);
    +  RiROIAlignRotatedBackwardCUDAKernelLauncher(
    +      top_grad, rois, spatial_scale, num_samples, clockwise, num_channels,
    +      data_height, data_width, num_rois, pooled_height, pooled_width,
    +      num_orientations, bottom_grad);
    +}
    +
    +void riroi_align_rotated_forward_impl(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise);
    +
    +void riroi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise);
    +
    +REGISTER_DEVICE_IMPL(riroi_align_rotated_forward_impl, CUDA,
    +                     riroi_align_rotated_forward_cuda);
    +REGISTER_DEVICE_IMPL(riroi_align_rotated_backward_impl, CUDA,
    +                     riroi_align_rotated_backward_cuda);
    +
    +void RoiawarePool3dForwardCUDAKernelLauncher(
    +    int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x,
    +    int out_y, int out_z, const Tensor rois, const Tensor pts,
    +    const Tensor pts_feature, Tensor argmax, Tensor pts_idx_of_voxels,
    +    Tensor pooled_features, int pool_method);
    +
    +void RoiawarePool3dBackwardCUDAKernelLauncher(
    +    int boxes_num, int out_x, int out_y, int out_z, int channels,
    +    int max_pts_each_voxel, const Tensor pts_idx_of_voxels, const Tensor argmax,
    +    const Tensor grad_out, Tensor grad_in, int pool_method);
    +
    +void roiaware_pool3d_forward_cuda(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method) {
    +  RoiawarePool3dForwardCUDAKernelLauncher(
    +      boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
    +      rois, pts, pts_feature, argmax, pts_idx_of_voxels, pooled_features,
    +      pool_method);
    +};
    +
    +void roiaware_pool3d_backward_cuda(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method) {
    +  RoiawarePool3dBackwardCUDAKernelLauncher(
    +      boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
    +      pts_idx_of_voxels, argmax, grad_out, grad_in, pool_method);
    +};
    +
    +void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method);
    +
    +void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method);
    +
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_forward_impl, CUDA,
    +                     roiaware_pool3d_forward_cuda);
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_backward_impl, CUDA,
    +                     roiaware_pool3d_backward_cuda);
    +
    +void RoIPointPool3dForwardCUDAKernelLauncher(
    +    int batch_size, int pts_num, int boxes_num, int feature_in_len,
    +    int sampled_pts_num, const Tensor xyz, const Tensor boxes3d,
    +    const Tensor pts_feature, Tensor pooled_features, Tensor pooled_empty_flag);
    +
    +void roipoint_pool3d_forward_cuda(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag) {
    +  RoIPointPool3dForwardCUDAKernelLauncher(
    +      batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, xyz,
    +      boxes3d, pts_feature, pooled_features, pooled_empty_flag);
    +};
    +
    +void roipoint_pool3d_forward_impl(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag);
    +REGISTER_DEVICE_IMPL(roipoint_pool3d_forward_impl, CUDA,
    +                     roipoint_pool3d_forward_cuda);
    +
    +void ROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                      Tensor argmax, int pooled_height,
    +                                      int pooled_width, float spatial_scale);
    +
    +void ROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                       Tensor argmax, Tensor grad_input,
    +                                       int pooled_height, int pooled_width,
    +                                       float spatial_scale);
    +
    +void roi_pool_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale) {
    +  ROIPoolForwardCUDAKernelLauncher(input, rois, output, argmax, pooled_height,
    +                                   pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_cuda(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale) {
    +  ROIPoolBackwardCUDAKernelLauncher(grad_output, rois, argmax, grad_input,
    +                                    pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale);
    +void roi_pool_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale);
    +REGISTER_DEVICE_IMPL(roi_pool_forward_impl, CUDA, roi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(roi_pool_backward_impl, CUDA, roi_pool_backward_cuda);
    +
    +typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;
    +
    +std::vector DynamicPointToVoxelForwardCUDAKernelLauncher(
    +    const at::Tensor& feats, const at::Tensor& coors,
    +    const reduce_t reduce_type);
    +
    +void DynamicPointToVoxelBackwardCUDAKernelLauncher(
    +    at::Tensor& grad_feats, const at::Tensor& grad_reduced_feats,
    +    const at::Tensor& feats, const at::Tensor& reduced_feats,
    +    const at::Tensor& coors_map, const at::Tensor& reduce_count,
    +    const reduce_t reduce_type);
    +
    +std::vector dynamic_point_to_voxel_forward_cuda(
    +    const torch::Tensor& feats, const torch::Tensor& coors,
    +    const reduce_t reduce_type) {
    +  return DynamicPointToVoxelForwardCUDAKernelLauncher(feats, coors,
    +                                                      reduce_type);
    +};
    +
    +void dynamic_point_to_voxel_backward_cuda(
    +    torch::Tensor& grad_feats, const torch::Tensor& grad_reduced_feats,
    +    const torch::Tensor& feats, const torch::Tensor& reduced_feats,
    +    const torch::Tensor& coors_idx, const torch::Tensor& reduce_count,
    +    const reduce_t reduce_type) {
    +  DynamicPointToVoxelBackwardCUDAKernelLauncher(grad_feats, grad_reduced_feats,
    +                                                feats, reduced_feats, coors_idx,
    +                                                reduce_count, reduce_type);
    +};
    +
    +std::vector dynamic_point_to_voxel_forward_impl(
    +    const torch::Tensor& feats, const torch::Tensor& coors,
    +    const reduce_t reduce_type);
    +
    +void dynamic_point_to_voxel_backward_impl(
    +    torch::Tensor& grad_feats, const torch::Tensor& grad_reduced_feats,
    +    const torch::Tensor& feats, const torch::Tensor& reduced_feats,
    +    const torch::Tensor& coors_idx, const torch::Tensor& reduce_count,
    +    const reduce_t reduce_type);
    +
    +REGISTER_DEVICE_IMPL(dynamic_point_to_voxel_forward_impl, CUDA,
    +                     dynamic_point_to_voxel_forward_cuda);
    +REGISTER_DEVICE_IMPL(dynamic_point_to_voxel_backward_impl, CUDA,
    +                     dynamic_point_to_voxel_backward_cuda);
    +
    +void SyncBNForwardMeanCUDAKernelLauncher(const Tensor input, Tensor mean);
    +
    +void SyncBNForwardVarCUDAKernelLauncher(const Tensor input, const Tensor mean,
    +                                        Tensor var);
    +
    +void SyncBNForwardOutputCUDAKernelLauncher(
    +    const Tensor input, const Tensor mean, const Tensor var,
    +    Tensor running_mean, Tensor running_var, const Tensor weight,
    +    const Tensor bias, Tensor norm, Tensor std, Tensor output, float eps,
    +    float momentum, int group_size);
    +
    +void SyncBNBackwardParamCUDAKernelLauncher(const Tensor grad_output,
    +                                           const Tensor norm,
    +                                           Tensor grad_weight,
    +                                           Tensor grad_bias);
    +
    +void SyncBNBackwardDataCUDAKernelLauncher(const Tensor grad_output,
    +                                          const Tensor weight,
    +                                          const Tensor grad_weight,
    +                                          const Tensor grad_bias,
    +                                          const Tensor norm, const Tensor std,
    +                                          Tensor grad_input);
    +
    +void sync_bn_forward_mean_cuda(const Tensor input, Tensor mean) {
    +  SyncBNForwardMeanCUDAKernelLauncher(input, mean);
    +}
    +
    +void sync_bn_forward_var_cuda(const Tensor input, const Tensor mean,
    +                              Tensor var) {
    +  SyncBNForwardVarCUDAKernelLauncher(input, mean, var);
    +}
    +
    +void sync_bn_forward_output_cuda(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size) {
    +  SyncBNForwardOutputCUDAKernelLauncher(input, mean, var, running_mean,
    +                                        running_var, weight, bias, norm, std,
    +                                        output, eps, momentum, group_size);
    +}
    +
    +void sync_bn_backward_param_cuda(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias) {
    +  SyncBNBackwardParamCUDAKernelLauncher(grad_output, norm, grad_weight,
    +                                        grad_bias);
    +}
    +
    +void sync_bn_backward_data_cuda(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input) {
    +  SyncBNBackwardDataCUDAKernelLauncher(grad_output, weight, grad_weight,
    +                                       grad_bias, norm, std, grad_input);
    +}
    +
    +void sync_bn_forward_mean_impl(const Tensor input, Tensor mean);
    +
    +void sync_bn_forward_var_impl(const Tensor input, const Tensor mean,
    +                              Tensor var);
    +
    +void sync_bn_forward_output_impl(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size);
    +
    +void sync_bn_backward_param_impl(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias);
    +
    +void sync_bn_backward_data_impl(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input);
    +
    +REGISTER_DEVICE_IMPL(sync_bn_forward_mean_impl, CUDA,
    +                     sync_bn_forward_mean_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_forward_var_impl, CUDA, sync_bn_forward_var_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_forward_output_impl, CUDA,
    +                     sync_bn_forward_output_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_backward_param_impl, CUDA,
    +                     sync_bn_backward_param_cuda);
    +REGISTER_DEVICE_IMPL(sync_bn_backward_data_impl, CUDA,
    +                     sync_bn_backward_data_cuda);
    +
    +void ThreeInterpolateForwardCUDAKernelLauncher(int b, int c, int m, int n,
    +                                               const Tensor points,
    +                                               const Tensor idx,
    +                                               const Tensor weight, Tensor out);
    +
    +void ThreeInterpolateBackwardCUDAKernelLauncher(int b, int c, int n, int m,
    +                                                const Tensor grad_out,
    +                                                const Tensor idx,
    +                                                const Tensor weight,
    +                                                Tensor grad_points);
    +
    +void three_interpolate_forward_cuda(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out) {
    +  ThreeInterpolateForwardCUDAKernelLauncher(b, c, m, n, points, idx, weight,
    +                                            out);
    +};
    +
    +void three_interpolate_backward_cuda(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points) {
    +  ThreeInterpolateBackwardCUDAKernelLauncher(b, c, n, m, grad_out, idx, weight,
    +                                             grad_points);
    +};
    +
    +void three_interpolate_forward_impl(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out);
    +
    +void three_interpolate_backward_impl(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points);
    +REGISTER_DEVICE_IMPL(three_interpolate_forward_impl, CUDA,
    +                     three_interpolate_forward_cuda);
    +REGISTER_DEVICE_IMPL(three_interpolate_backward_impl, CUDA,
    +                     three_interpolate_backward_cuda);
    +
    +void ThreeNNForwardCUDAKernelLauncher(int b, int n, int m, const Tensor unknown,
    +                                      const Tensor known, Tensor dist2,
    +                                      Tensor idx);
    +
    +void three_nn_forward_cuda(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx) {
    +  ThreeNNForwardCUDAKernelLauncher(b, n, m, unknown, known, dist2, idx);
    +};
    +
    +void three_nn_forward_impl(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx);
    +REGISTER_DEVICE_IMPL(three_nn_forward_impl, CUDA, three_nn_forward_cuda);
    +
    +void TINShiftForwardCUDAKernelLauncher(Tensor input, Tensor shift,
    +                                       Tensor output);
    +
    +void TINShiftBackwardCUDAKernelLauncher(Tensor grad_output, Tensor shift,
    +                                        Tensor grad_input);
    +
    +void tin_shift_forward_cuda(Tensor input, Tensor shift, Tensor output) {
    +  TINShiftForwardCUDAKernelLauncher(input, shift, output);
    +}
    +
    +void tin_shift_backward_cuda(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input) {
    +  TINShiftBackwardCUDAKernelLauncher(grad_output, shift, grad_input);
    +}
    +
    +void tin_shift_forward_impl(Tensor input, Tensor shift, Tensor output);
    +void tin_shift_backward_impl(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input);
    +REGISTER_DEVICE_IMPL(tin_shift_forward_impl, CUDA, tin_shift_forward_cuda);
    +REGISTER_DEVICE_IMPL(tin_shift_backward_impl, CUDA, tin_shift_backward_cuda);
    +
    +torch::Tensor upfirdn2d_op(const torch::Tensor& input,
    +                           const torch::Tensor& kernel, int up_x, int up_y,
    +                           int down_x, int down_y, int pad_x0, int pad_x1,
    +                           int pad_y0, int pad_y1);
    +
    +torch::Tensor upfirdn2d_op_impl(const torch::Tensor& input,
    +                                const torch::Tensor& kernel, int up_x, int up_y,
    +                                int down_x, int down_y, int pad_x0, int pad_x1,
    +                                int pad_y0, int pad_y1);
    +REGISTER_DEVICE_IMPL(upfirdn2d_op_impl, CUDA, upfirdn2d_op);
    +
    +int HardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3);
    +
    +int NondeterministicHardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3);
    +
    +void DynamicVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor& points, at::Tensor& coors,
    +    const std::vector voxel_size, const std::vector coors_range,
    +    const int NDim = 3);
    +
    +int hard_voxelize_forward_cuda(const at::Tensor& points, at::Tensor& voxels,
    +                               at::Tensor& coors,
    +                               at::Tensor& num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim) {
    +  return HardVoxelizeForwardCUDAKernelLauncher(
    +      points, voxels, coors, num_points_per_voxel, voxel_size, coors_range,
    +      max_points, max_voxels, NDim);
    +};
    +
    +int nondeterministic_hard_voxelize_forward_cuda(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim) {
    +  return NondeterministicHardVoxelizeForwardCUDAKernelLauncher(
    +      points, voxels, coors, num_points_per_voxel, voxel_size, coors_range,
    +      max_points, max_voxels, NDim);
    +};
    +
    +void dynamic_voxelize_forward_cuda(const at::Tensor& points, at::Tensor& coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim) {
    +  DynamicVoxelizeForwardCUDAKernelLauncher(points, coors, voxel_size,
    +                                           coors_range, NDim);
    +};
    +
    +int hard_voxelize_forward_impl(const at::Tensor& points, at::Tensor& voxels,
    +                               at::Tensor& coors,
    +                               at::Tensor& num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim);
    +
    +int nondeterministic_hard_voxelize_forward_impl(
    +    const at::Tensor& points, at::Tensor& voxels, at::Tensor& coors,
    +    at::Tensor& num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim);
    +
    +void dynamic_voxelize_forward_impl(const at::Tensor& points, at::Tensor& coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim);
    +
    +REGISTER_DEVICE_IMPL(hard_voxelize_forward_impl, CUDA,
    +                     hard_voxelize_forward_cuda);
    +REGISTER_DEVICE_IMPL(nondeterministic_hard_voxelize_forward_impl, CUDA,
    +                     nondeterministic_hard_voxelize_forward_cuda);
    +REGISTER_DEVICE_IMPL(dynamic_voxelize_forward_impl, CUDA,
    +                     dynamic_voxelize_forward_cuda);
    +
    +void RotatedFeatureAlignForwardCUDAKernelLauncher(const Tensor features,
    +                                                  const Tensor best_bboxes,
    +                                                  const float spatial_scale,
    +                                                  const int points,
    +                                                  Tensor output);
    +
    +void RotatedFeatureAlignBackwardCUDAKernelLauncher(const Tensor top_grad,
    +                                                   const Tensor best_bboxes,
    +                                                   const float spatial_scale,
    +                                                   const int points,
    +                                                   Tensor bottom_grad);
    +
    +void rotated_feature_align_forward_cuda(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output) {
    +  RotatedFeatureAlignForwardCUDAKernelLauncher(features, best_bboxes,
    +                                               spatial_scale, points, output);
    +};
    +
    +void rotated_feature_align_backward_cuda(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad) {
    +  RotatedFeatureAlignBackwardCUDAKernelLauncher(
    +      top_grad, best_bboxes, spatial_scale, points, bottom_grad);
    +};
    +
    +void rotated_feature_align_forward_impl(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output);
    +
    +void rotated_feature_align_backward_impl(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad);
    +
    +REGISTER_DEVICE_IMPL(rotated_feature_align_forward_impl, CUDA,
    +                     rotated_feature_align_forward_cuda);
    +REGISTER_DEVICE_IMPL(rotated_feature_align_backward_impl, CUDA,
    +                     rotated_feature_align_backward_cuda);
    +
    +void PointsInPolygonsForwardCUDAKernelLauncher(const at::Tensor points,
    +                                               const at::Tensor polygons,
    +                                               const int rows, const int cols,
    +                                               at::Tensor output);
    +
    +void points_in_polygons_forward_cuda(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols) {
    +  PointsInPolygonsForwardCUDAKernelLauncher(points, polygons, rows, cols,
    +                                            output);
    +};
    +
    +void points_in_polygons_forward_impl(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols);
    +
    +REGISTER_DEVICE_IMPL(points_in_polygons_forward_impl, CUDA,
    +                     points_in_polygons_forward_cuda);
    +
    +// torch::Tensor IndiceMaxpoolForwardCUDAKernelLauncher(torch::Tensor features,
    +//                                                      torch::Tensor indicePairs,
    +//                                                      torch::Tensor indiceNum,
    +//                                                      int64_t numAct);
    +
    +// torch::Tensor indice_maxpool_forward_cuda(torch::Tensor features,
    +//                                           torch::Tensor indicePairs,
    +//                                           torch::Tensor indiceNum,
    +//                                           int64_t numAct) {
    +//   return IndiceMaxpoolForwardCUDAKernelLauncher(features, indicePairs,
    +//                                                 indiceNum, numAct);
    +// };
    +
    +// torch::Tensor indice_maxpool_forward_impl(torch::Tensor features,
    +//                                           torch::Tensor indicePairs,
    +//                                           torch::Tensor indiceNum,
    +//                                           int64_t numAct);
    +// REGISTER_DEVICE_IMPL(indice_maxpool_forward_impl, CUDA,
    +//                      indice_maxpool_forward_cuda);
    +
    +// torch::Tensor IndiceMaxpoolBackwardCUDAKernelLauncher(torch::Tensor features,
    +//                                                       torch::Tensor outFeatures,
    +//                                                       torch::Tensor outGrad,
    +//                                                       torch::Tensor indicePairs,
    +//                                                       torch::Tensor indiceNum);
    +
    +// torch::Tensor indice_maxpool_backward_cuda(torch::Tensor features,
    +//                                            torch::Tensor outFeatures,
    +//                                            torch::Tensor outGrad,
    +//                                            torch::Tensor indicePairs,
    +//                                            torch::Tensor indiceNum) {
    +//   return IndiceMaxpoolBackwardCUDAKernelLauncher(features, outFeatures, outGrad,
    +//                                                  indicePairs, indiceNum);
    +// };
    +
    +// torch::Tensor indice_maxpool_backward_impl(torch::Tensor features,
    +//                                            torch::Tensor outFeatures,
    +//                                            torch::Tensor outGrad,
    +//                                            torch::Tensor indicePairs,
    +//                                            torch::Tensor indiceNum);
    +
    +// REGISTER_DEVICE_IMPL(indice_maxpool_backward_impl, CUDA,
    +//                      indice_maxpool_backward_cuda)
    +
    +// torch::Tensor IndiceConvForwardCUDAKernelLauncher(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor indicePairs,
    +//     torch::Tensor indiceNum, int64_t numActOut, int64_t _inverse,
    +//     int64_t _subM);
    +
    +// torch::Tensor indice_conv_forward_cuda(torch::Tensor features,
    +//                                        torch::Tensor filters,
    +//                                        torch::Tensor indicePairs,
    +//                                        torch::Tensor indiceNum,
    +//                                        int64_t numActOut, int64_t _inverse,
    +//                                        int64_t _subM) {
    +//   return IndiceConvForwardCUDAKernelLauncher(
    +//       features, filters, indicePairs, indiceNum, numActOut, _inverse, _subM);
    +// };
    +
    +// torch::Tensor indice_conv_forward_impl(torch::Tensor features,
    +//                                        torch::Tensor filters,
    +//                                        torch::Tensor indicePairs,
    +//                                        torch::Tensor indiceNum,
    +//                                        int64_t numActOut, int64_t _inverse,
    +//                                        int64_t _subM);
    +
    +// REGISTER_DEVICE_IMPL(indice_conv_forward_impl, CUDA, indice_conv_forward_cuda);
    +
    +// std::vector IndiceConvBackwardCUDAKernelLauncher(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor outGrad,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t _inverse,
    +//     int64_t _subM);
    +
    +// std::vector indice_conv_backward_cuda(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor outGrad,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t _inverse,
    +//     int64_t _subM) {
    +//   return IndiceConvBackwardCUDAKernelLauncher(
    +//       features, filters, outGrad, indicePairs, indiceNum, _inverse, _subM);
    +// };
    +
    +// std::vector indice_conv_backward_impl(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor outGrad,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t _inverse,
    +//     int64_t _subM);
    +
    +// REGISTER_DEVICE_IMPL(indice_conv_backward_impl, CUDA,
    +//                      indice_conv_backward_cuda);
    +
    +// torch::Tensor FusedIndiceConvBatchnormCUDAKernelLauncher(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t numActOut,
    +//     int64_t _inverse, int64_t _subM);
    +
    +// torch::Tensor fused_indice_conv_batchnorm_forward_cuda(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t numActOut,
    +//     int64_t _inverse, int64_t _subM) {
    +//   return FusedIndiceConvBatchnormCUDAKernelLauncher(features, filters, bias,
    +//                                                     indicePairs, indiceNum,
    +//                                                     numActOut, _inverse, _subM);
    +// };
    +
    +// torch::Tensor fused_indice_conv_batchnorm_forward_impl(
    +//     torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
    +//     torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t numActOut,
    +//     int64_t _inverse, int64_t _subM);
    +
    +// REGISTER_DEVICE_IMPL(fused_indice_conv_batchnorm_forward_impl, CUDA,
    +//                      fused_indice_conv_batchnorm_forward_cuda)
    +
    +void MinAreaPolygonsCUDAKernelLauncher(const Tensor pointsets, Tensor polygons);
    +
    +void min_area_polygons_cuda(const Tensor pointsets, Tensor polygons) {
    +  MinAreaPolygonsCUDAKernelLauncher(pointsets, polygons);
    +}
    +
    +void min_area_polygons_impl(const Tensor pointsets, Tensor polygons);
    +
    +REGISTER_DEVICE_IMPL(min_area_polygons_impl, CUDA, min_area_polygons_cuda);
    +
    +void ActiveRotatedFilterForwardCUDAKernelLauncher(const Tensor input,
    +                                                  const Tensor indices,
    +                                                  Tensor output);
    +
    +void ActiveRotatedFilterBackwardCUDAKernelLauncher(const Tensor grad_out,
    +                                                   const Tensor indices,
    +                                                   Tensor grad_in);
    +
    +void active_rotated_filter_forward_cuda(const Tensor input,
    +                                        const Tensor indices, Tensor output) {
    +  ActiveRotatedFilterForwardCUDAKernelLauncher(input, indices, output);
    +};
    +
    +void active_rotated_filter_backward_cuda(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in) {
    +  ActiveRotatedFilterBackwardCUDAKernelLauncher(grad_out, indices, grad_in);
    +};
    +
    +void active_rotated_filter_forward_impl(const Tensor input,
    +                                        const Tensor indices, Tensor output);
    +
    +void active_rotated_filter_backward_impl(const Tensor grad_out,
    +                                         const Tensor indices, Tensor grad_in);
    +
    +REGISTER_DEVICE_IMPL(active_rotated_filter_forward_impl, CUDA,
    +                     active_rotated_filter_forward_cuda);
    +REGISTER_DEVICE_IMPL(active_rotated_filter_backward_impl, CUDA,
    +                     active_rotated_filter_backward_cuda);
    +
    +void ConvexIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                 Tensor ious);
    +
    +void ConvexGIoUCUDAKernelLauncher(const Tensor pointsets, const Tensor polygons,
    +                                  Tensor output);
    +
    +void convex_iou_cuda(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious) {
    +  ConvexIoUCUDAKernelLauncher(pointsets, polygons, ious);
    +}
    +
    +void convex_giou_cuda(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output) {
    +  ConvexGIoUCUDAKernelLauncher(pointsets, polygons, output);
    +}
    +
    +void convex_iou_impl(const Tensor pointsets, const Tensor polygons,
    +                     Tensor ious);
    +
    +void convex_giou_impl(const Tensor pointsets, const Tensor polygons,
    +                      Tensor output);
    +
    +REGISTER_DEVICE_IMPL(convex_iou_impl, CUDA, convex_iou_cuda);
    +REGISTER_DEVICE_IMPL(convex_giou_impl, CUDA, convex_giou_cuda);
    +
    +Tensor DiffIoURotatedSortVerticesCUDAKernelLauncher(Tensor vertices,
    +                                                    Tensor mask,
    +                                                    Tensor num_valid);
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_cuda(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid) {
    +  return DiffIoURotatedSortVerticesCUDAKernelLauncher(vertices, mask,
    +                                                      num_valid);
    +}
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_impl(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid);
    +
    +REGISTER_DEVICE_IMPL(diff_iou_rotated_sort_vertices_forward_impl, CUDA,
    +                     diff_iou_rotated_sort_vertices_forward_cuda);
    +
    +void ChamferDistanceForwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, const Tensor dist1,
    +    const Tensor dist2, const Tensor idx1, const Tensor idx2);
    +
    +void ChamferDistanceBackwardCUDAKernelLauncher(
    +    const Tensor xyz1, const Tensor xyz2, Tensor idx1, Tensor idx2,
    +    Tensor grad_dist1, Tensor grad_dist2, Tensor grad_xyz1, Tensor grad_xyz2);
    +
    +void chamfer_distance_forward_cuda(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2) {
    +  ChamferDistanceForwardCUDAKernelLauncher(xyz1, xyz2, dist1, dist2, idx1,
    +                                           idx2);
    +};
    +
    +void chamfer_distance_backward_cuda(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2) {
    +  ChamferDistanceBackwardCUDAKernelLauncher(xyz1, xyz2, idx1, idx2, graddist1,
    +                                            graddist2, gradxyz1, gradxyz2);
    +};
    +
    +void chamfer_distance_forward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                   const Tensor dist1, const Tensor dist2,
    +                                   const Tensor idx1, const Tensor idx2);
    +
    +void chamfer_distance_backward_impl(const Tensor xyz1, const Tensor xyz2,
    +                                    Tensor idx1, Tensor idx2, Tensor graddist1,
    +                                    Tensor graddist2, Tensor gradxyz1,
    +                                    Tensor gradxyz2);
    +
    +REGISTER_DEVICE_IMPL(chamfer_distance_forward_impl, CUDA,
    +                     chamfer_distance_forward_cuda);
    +REGISTER_DEVICE_IMPL(chamfer_distance_backward_impl, CUDA,
    +                     chamfer_distance_backward_cuda);
    +
    +void PrROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                        Tensor output, int pooled_height,
    +                                        int pooled_width, float spatial_scale);
    +
    +void PrROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                         Tensor grad_input, int pooled_height,
    +                                         int pooled_width, float spatial_scale);
    +
    +void PrROIPoolCoorBackwardCUDAKernelLauncher(
    +    Tensor output, Tensor grad_output, Tensor input, Tensor rois,
    +    Tensor grad_rois, int pooled_height, int pooled_width, float spatial_scale);
    +
    +void prroi_pool_forward_cuda(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale) {
    +  PrROIPoolForwardCUDAKernelLauncher(input, rois, output, pooled_height,
    +                                     pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_backward_cuda(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  PrROIPoolBackwardCUDAKernelLauncher(grad_output, rois, grad_input,
    +                                      pooled_height, pooled_width,
    +                                      spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward_cuda(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale) {
    +  PrROIPoolCoorBackwardCUDAKernelLauncher(output, grad_output, input, rois,
    +                                          grad_rois, pooled_height,
    +                                          pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale);
    +void prroi_pool_backward_impl(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale);
    +void prroi_pool_coor_backward_impl(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale);
    +REGISTER_DEVICE_IMPL(prroi_pool_forward_impl, CUDA, prroi_pool_forward_cuda);
    +REGISTER_DEVICE_IMPL(prroi_pool_backward_impl, CUDA, prroi_pool_backward_cuda);
    +REGISTER_DEVICE_IMPL(prroi_pool_coor_backward_impl, CUDA,
    +                     prroi_pool_coor_backward_cuda);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_conv_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_conv_cuda.cu
    new file mode 100644
    index 000000000..05fc08b70
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_conv_cuda.cu
    @@ -0,0 +1,105 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "deform_conv_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void deformable_im2col_cuda(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col) {
    +  // num_axes should be smaller than block size
    +  // todo: check parallel_imgs is correctly passed in
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels = channels * height_col * width_col * parallel_imgs;
    +  int channel_per_deformable_group = channels / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_im.scalar_type(), "deformable_im2col_gpu", ([&] {
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        scalar_t *data_col_ = data_col.data_ptr();
    +
    +        deformable_im2col_gpu_kernel<<>>(
    +            num_kernels, data_im_, data_offset_, height, width, ksize_h,
    +            ksize_w, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
    +            channel_per_deformable_group, parallel_imgs, channels,
    +            deformable_group, height_col, width_col, data_col_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void deformable_col2im_cuda(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im) {
    +  // todo: make sure parallel_imgs is passed in correctly
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels =
    +      channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
    +  int channel_per_deformable_group = channels / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        scalar_t *grad_im_ = grad_im.data_ptr();
    +
    +        deformable_col2im_gpu_kernel<<>>(
    +            num_kernels, data_col_, data_offset_, channels, height, width,
    +            ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
    +            dilation_w, channel_per_deformable_group, parallel_imgs,
    +            deformable_group, height_col, width_col, grad_im_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void deformable_col2im_coord_cuda(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset) {
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w *
    +                    deformable_group * parallel_imgs;
    +  int channel_per_deformable_group =
    +      channels * ksize_h * ksize_w / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        scalar_t *grad_offset_ = grad_offset.data_ptr();
    +
    +        deformable_col2im_coord_gpu_kernel<<<
    +            GET_BLOCKS(num_kernels), THREADS_PER_BLOCK, 0,
    +            at::cuda::getCurrentCUDAStream()>>>(
    +            num_kernels, data_col_, data_im_, data_offset_, channels, height,
    +            width, ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w,
    +            dilation_h, dilation_w, channel_per_deformable_group, parallel_imgs,
    +            2 * ksize_h * ksize_w * deformable_group, deformable_group,
    +            height_col, width_col, grad_offset_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_roi_pool_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_roi_pool_cuda.cu
    new file mode 100644
    index 000000000..d44399829
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/deform_roi_pool_cuda.cu
    @@ -0,0 +1,55 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "deform_roi_pool_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void DeformRoIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                            Tensor offset, Tensor output,
    +                                            int pooled_height, int pooled_width,
    +                                            float spatial_scale,
    +                                            int sampling_ratio, float gamma) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "deform_roi_pool_forward_cuda_kernel", [&] {
    +        deform_roi_pool_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                rois.data_ptr(), offset.data_ptr(),
    +                output.data_ptr(), pooled_height, pooled_width,
    +                static_cast(spatial_scale), sampling_ratio,
    +                static_cast(gamma), channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void DeformRoIPoolBackwardCUDAKernelLauncher(
    +    Tensor grad_output, Tensor input, Tensor rois, Tensor offset,
    +    Tensor grad_input, Tensor grad_offset, int pooled_height, int pooled_width,
    +    float spatial_scale, int sampling_ratio, float gamma) {
    +  int output_size = grad_output.numel();
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "deform_roi_pool_backward_cuda_kernel", [&] {
    +        deform_roi_pool_backward_cuda_kernel
    +            <<>>(
    +                output_size, grad_output.data_ptr(),
    +                input.data_ptr(), rois.data_ptr(),
    +                offset.data_ptr(), grad_input.data_ptr(),
    +                grad_offset.data_ptr(), pooled_height, pooled_width,
    +                static_cast(spatial_scale), sampling_ratio,
    +                static_cast(gamma), channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/diff_iou_rotated_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/diff_iou_rotated_cuda.cu
    new file mode 100644
    index 000000000..62dbf5da3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/diff_iou_rotated_cuda.cu
    @@ -0,0 +1,35 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Adapted from
    +// https://github.com/lilanxiao/Rotated_IoU/cuda_op/sort_vert_kernel.cu  # noqa
    +#include "diff_iou_rotated_cuda_kernel.cuh"
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_cuda_helper.hpp"
    +
    +at::Tensor DiffIoURotatedSortVerticesCUDAKernelLauncher(at::Tensor vertices,
    +                                                        at::Tensor mask,
    +                                                        at::Tensor num_valid) {
    +  at::cuda::CUDAGuard device_guard(vertices.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  CHECK_CONTIGUOUS(vertices);
    +  CHECK_CONTIGUOUS(mask);
    +  CHECK_CONTIGUOUS(num_valid);
    +  CHECK_CUDA(vertices);
    +  CHECK_CUDA(mask);
    +  CHECK_CUDA(num_valid);
    +
    +  int b = vertices.size(0);
    +  int n = vertices.size(1);
    +  int m = vertices.size(2);
    +  at::Tensor idx =
    +      torch::zeros({b, n, MAX_NUM_VERT_IDX},
    +                   at::device(vertices.device()).dtype(at::ScalarType::Int));
    +
    +  diff_iou_rotated_sort_vertices_forward_cuda_kernel<<>>(
    +      b, n, m, vertices.data_ptr(), mask.data_ptr(),
    +      num_valid.data_ptr(), idx.data_ptr());
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  return idx;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/focal_loss_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/focal_loss_cuda.cu
    new file mode 100644
    index 000000000..1d5c43337
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/focal_loss_cuda.cu
    @@ -0,0 +1,111 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "sigmoid_focal_loss_cuda_kernel.cuh"
    +#include "softmax_focal_loss_cuda_kernel.cuh"
    +
    +void SigmoidFocalLossForwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha) {
    +  int output_size = output.numel();
    +  int num_classes = input.size(1);
    +  AT_ASSERTM(target.max().item() <= (int32_t)num_classes,
    +             "target label should smaller or equal than num classes");
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "sigmoid_focal_loss_forward_cuda_kernel", [&] {
    +        sigmoid_focal_loss_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                target.data_ptr(), weight.data_ptr(),
    +                output.data_ptr(), gamma, alpha, num_classes);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SigmoidFocalLossBackwardCUDAKernelLauncher(Tensor input, Tensor target,
    +                                                Tensor weight,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha) {
    +  int output_size = grad_input.numel();
    +  int num_classes = input.size(1);
    +
    +  at::cuda::CUDAGuard device_guard(grad_input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "sigmoid_focal_loss_backward_cuda_kernel", [&] {
    +        sigmoid_focal_loss_backward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                target.data_ptr(), weight.data_ptr(),
    +                grad_input.data_ptr(), gamma, alpha, num_classes);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SoftmaxFocalLossForwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha) {
    +  int output_size = output.numel();
    +  int num_classes = softmax.size(1);
    +
    +  AT_ASSERTM(target.max().item() <= (int32_t)num_classes,
    +             "target label should smaller or equal than num classes");
    +  at::cuda::CUDAGuard device_guard(softmax.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      softmax.scalar_type(), "softmax_focal_loss_forward_cuda_kernel", [&] {
    +        softmax_focal_loss_forward_cuda_kernel
    +            <<>>(
    +                output_size, softmax.data_ptr(),
    +                target.data_ptr(), weight.data_ptr(),
    +                output.data_ptr(), gamma, alpha, num_classes);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SoftmaxFocalLossBackwardCUDAKernelLauncher(Tensor softmax, Tensor target,
    +                                                Tensor weight, Tensor buff,
    +                                                Tensor grad_input,
    +                                                const float gamma,
    +                                                const float alpha) {
    +  int num_classes = softmax.size(1);
    +
    +  int output_size = buff.numel();
    +  at::cuda::CUDAGuard device_guard(grad_input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_input.scalar_type(),
    +      "softmax_focal_loss_backward_cuda1_"
    +      "kernel",
    +      [&] {
    +        softmax_focal_loss_backward_cuda1_kernel
    +            <<>>(
    +                output_size, softmax.data_ptr(),
    +                target.data_ptr(), weight.data_ptr(),
    +                buff.data_ptr(), gamma, alpha, num_classes);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  output_size = grad_input.numel();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_input.scalar_type(),
    +      "softmax_focal_loss_backward_cuda2_"
    +      "kernel",
    +      [&] {
    +        softmax_focal_loss_backward_cuda2_kernel
    +            <<>>(
    +                output_size, softmax.data_ptr(),
    +                target.data_ptr(), buff.data_ptr(),
    +                grad_input.data_ptr(), num_classes);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/furthest_point_sample_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/furthest_point_sample_cuda.cu
    new file mode 100644
    index 000000000..6b1392733
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/furthest_point_sample_cuda.cu
    @@ -0,0 +1,146 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/sampling_gpu.cu
    +
    +#include 
    +#include 
    +
    +#include "furthest_point_sample_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +inline int opt_n_threads(int work_size) {
    +#if defined(__ILUVATAR__)
    +  const int pow_2 = std::log(static_cast(work_size)) / std::log(2.0);
    +#else
    +  const int pow_2 = std::log(static_cast(work_size)) / std::log(2.0);
    +#endif
    +  return std::max(std::min(1 << pow_2, 1024), 1);
    +}
    +
    +void FurthestPointSamplingForwardCUDAKernelLauncher(int b, int n, int m,
    +                                                    const float* dataset,
    +                                                    float* temp, int* idxs) {
    +  // dataset: (B, N, 3)
    +  // tmp: (B, N)
    +  // output:
    +  //      idx: (B, M)
    +
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  unsigned int n_threads = opt_n_threads(n);
    +
    +  switch (n_threads) {
    +    case 1024:
    +      furthest_point_sampling_forward_cuda_kernel<1024>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 512:
    +      furthest_point_sampling_forward_cuda_kernel<512>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 256:
    +      furthest_point_sampling_forward_cuda_kernel<256>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 128:
    +      furthest_point_sampling_forward_cuda_kernel<128>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 64:
    +      furthest_point_sampling_forward_cuda_kernel<64>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 32:
    +      furthest_point_sampling_forward_cuda_kernel<32>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 16:
    +      furthest_point_sampling_forward_cuda_kernel<16>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 8:
    +      furthest_point_sampling_forward_cuda_kernel<8>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 4:
    +      furthest_point_sampling_forward_cuda_kernel<4>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 2:
    +      furthest_point_sampling_forward_cuda_kernel<2>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 1:
    +      furthest_point_sampling_forward_cuda_kernel<1>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    default:
    +      furthest_point_sampling_forward_cuda_kernel<512>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void FurthestPointSamplingWithDistForwardCUDAKernelLauncher(
    +    int b, int n, int m, const float* dataset, float* temp, int* idxs) {
    +  // dataset: (B, N, N)
    +  // temp: (B, N)
    +  // output:
    +  //      idx: (B, M)
    +
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  unsigned int n_threads = opt_n_threads(n);
    +
    +  switch (n_threads) {
    +    case 1024:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<1024>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 512:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<512>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 256:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<256>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 128:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<128>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 64:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<64>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 32:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<32>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 16:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<16>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 8:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<8>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 4:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<4>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 2:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<2>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    case 1:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<1>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +      break;
    +    default:
    +      furthest_point_sampling_with_dist_forward_cuda_kernel<512>
    +          <<>>(b, n, m, dataset, temp, idxs);
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu
    new file mode 100644
    index 000000000..911ea019a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/fused_bias_leakyrelu_cuda.cu
    @@ -0,0 +1,109 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act_kernel.cu
    +// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
    +//
    +// This work is made available under the Nvidia Source Code License-NC.
    +// To view a copy of this license, visit
    +// https://nvlabs.github.io/stylegan2/license.html
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +#include 
    +
    +template 
    +static __global__ void fused_bias_act_kernel(
    +    scalar_t* out, const scalar_t* p_x, const scalar_t* p_b,
    +    const scalar_t* p_ref, int act, int grad, scalar_t alpha, scalar_t scale,
    +    int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
    +  int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
    +
    +  scalar_t zero = 0.0;
    +
    +  for (int loop_idx = 0; loop_idx < loop_x && xi < size_x;
    +       loop_idx++, xi += blockDim.x) {
    +    scalar_t x = p_x[xi];
    +
    +    if (use_bias) {
    +      x += p_b[(xi / step_b) % size_b];
    +    }
    +
    +    scalar_t ref = use_ref ? p_ref[xi] : zero;
    +
    +    scalar_t y;
    +
    +    // act = 1: linear layer
    +    // act = 3: leaky relu layer
    +    // grad = 0: direct forward path
    +    // grad = 1: first order deviation
    +    // grad = 2: second order deviation
    +    switch (act * 10 + grad) {
    +      default:
    +      case 10:
    +        y = x;
    +        break;
    +      case 11:
    +        y = x;
    +        break;
    +      case 12:
    +        y = 0.0;
    +        break;
    +
    +      case 30:
    +        y = (x > 0.0) ? x : x * alpha;
    +        break;
    +      case 31:
    +        y = (ref > 0.0) ? x : x * alpha;
    +        break;
    +      case 32:
    +        y = 0.0;
    +        break;
    +    }
    +
    +    out[xi] = y * scale;
    +  }
    +}
    +
    +torch::Tensor fused_bias_leakyrelu_op(const torch::Tensor& input,
    +                                      const torch::Tensor& bias,
    +                                      const torch::Tensor& refer, int act,
    +                                      int grad, float alpha, float scale) {
    +  int curDevice = -1;
    +  cudaGetDevice(&curDevice);
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
    +
    +  auto x = input.contiguous();
    +  auto b = bias.contiguous();
    +  auto ref = refer.contiguous();
    +
    +  int use_bias = b.numel() ? 1 : 0;
    +  int use_ref = ref.numel() ? 1 : 0;
    +
    +  int size_x = x.numel();
    +  int size_b = b.numel();
    +  int step_b = 1;
    +
    +  for (int i = 1 + 1; i < x.dim(); i++) {
    +    step_b *= x.size(i);
    +  }
    +
    +  int loop_x = 4;
    +  int block_size = 4 * 32;
    +  int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
    +
    +  auto y = torch::empty_like(x);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      x.scalar_type(), "fused_bias_act_kernel", [&] {
    +        fused_bias_act_kernel<<>>(
    +            y.data_ptr(), x.data_ptr(),
    +            b.data_ptr(), ref.data_ptr(), act, grad, alpha,
    +            scale, loop_x, size_x, step_b, size_b, use_bias, use_ref);
    +      });
    +
    +  return y;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/gather_points_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/gather_points_cuda.cu
    new file mode 100644
    index 000000000..fd0a7b5da
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/gather_points_cuda.cu
    @@ -0,0 +1,58 @@
    +#include 
    +#include 
    +
    +#include "gather_points_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void GatherPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           const Tensor points,
    +                                           const Tensor idx, Tensor out) {
    +  // points: (B, C, N)
    +  // idx: (B, npoints)
    +  // output:
    +  //      out: (B, C, npoints)
    +
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(npoints, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "gather_points_forward_cuda_kernel", [&] {
    +        gather_points_forward_cuda_kernel
    +            <<>>(
    +                b, c, n, npoints, points.data_ptr(),
    +                idx.data_ptr(), out.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void GatherPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                            const Tensor grad_out,
    +                                            const Tensor idx,
    +                                            Tensor grad_points) {
    +  // grad_out: (B, C, npoints)
    +  // idx: (B, npoints)
    +  // output:
    +  //      grad_points: (B, C, N)
    +
    +  at::cuda::CUDAGuard device_guard(grad_out.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(npoints, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "gather_points_backward_cuda_kernel", [&] {
    +        gather_points_backward_cuda_kernel
    +            <<>>(
    +                b, c, n, npoints, grad_out.data_ptr(),
    +                idx.data_ptr(), grad_points.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/group_points_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/group_points_cuda.cu
    new file mode 100644
    index 000000000..42fc2bb67
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/group_points_cuda.cu
    @@ -0,0 +1,61 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points_gpu.cu
    +#include 
    +#include 
    +
    +#include "group_points_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void GroupPointsForwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                          int nsample, const Tensor points,
    +                                          const Tensor idx, Tensor out) {
    +  // points: (B, C, N)
    +  // idx: (B, npoints, nsample)
    +  // output:
    +  //      out: (B, C, npoints, nsample)
    +
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(npoints * nsample, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "group_points_forward_cuda_kernel", [&] {
    +        group_points_forward_cuda_kernel
    +            <<>>(
    +                b, c, n, npoints, nsample, points.data_ptr(),
    +                idx.data_ptr(), out.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void GroupPointsBackwardCUDAKernelLauncher(int b, int c, int n, int npoints,
    +                                           int nsample, const Tensor grad_out,
    +                                           const Tensor idx,
    +                                           Tensor grad_points) {
    +  // grad_out: (B, C, npoints, nsample)
    +  // idx: (B, npoints, nsample)
    +  // output:
    +  //      grad_points: (B, C, N)
    +
    +  at::cuda::CUDAGuard device_guard(grad_out.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(npoints * nsample, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "group_points_backward_cuda_kernel", [&] {
    +        group_points_backward_cuda_kernel
    +            <<>>(
    +                b, c, n, npoints, nsample, grad_out.data_ptr(),
    +                idx.data_ptr(), grad_points.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu
    new file mode 100644
    index 000000000..bb1c5fc13
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu
    @@ -0,0 +1,104 @@
    +// Modified from
    +// https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/iou3d_nms/src/iou3d_nms_kernel.cu
    +
    +/*
    +3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
    +Written by Shaoshuai Shi
    +All Rights Reserved 2019-2020.
    +*/
    +
    +#include 
    +
    +#include "iou3d_cuda_kernel.cuh"
    +#include "nms_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void IoU3DBoxesOverlapBevForwardCUDAKernelLauncher(const int num_a,
    +                                                   const Tensor boxes_a,
    +                                                   const int num_b,
    +                                                   const Tensor boxes_b,
    +                                                   Tensor ans_overlap) {
    +  at::cuda::CUDAGuard device_guard(boxes_a.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(num_b, THREADS_PER_BLOCK_IOU3D),
    +              GET_BLOCKS(num_a, THREADS_PER_BLOCK_IOU3D));
    +  dim3 threads(THREADS_PER_BLOCK_IOU3D, THREADS_PER_BLOCK_IOU3D);
    +
    +  iou3d_boxes_overlap_bev_forward_cuda_kernel<<>>(
    +      num_a, boxes_a.data_ptr(), num_b, boxes_b.data_ptr(),
    +      ans_overlap.data_ptr());
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void IoU3DNMS3DForwardCUDAKernelLauncher(const Tensor boxes, Tensor& keep,
    +                                         Tensor& keep_num,
    +                                         float nms_overlap_thresh) {
    +  using namespace at::indexing;
    +  at::cuda::CUDAGuard device_guard(boxes.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  int boxes_num = boxes.size(0);
    +
    +  const int col_blocks =
    +      (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +  Tensor mask =
    +      at::empty({boxes_num, col_blocks}, boxes.options().dtype(at::kLong));
    +
    +  dim3 blocks(GET_BLOCKS(boxes_num, THREADS_PER_BLOCK_NMS),
    +              GET_BLOCKS(boxes_num, THREADS_PER_BLOCK_NMS));
    +  dim3 threads(THREADS_PER_BLOCK_NMS);
    +
    +  iou3d_nms3d_forward_cuda_kernel<<>>(
    +      boxes_num, nms_overlap_thresh, boxes.data_ptr(),
    +      (unsigned long long*)mask.data_ptr());
    +
    +  at::Tensor keep_t = at::zeros(
    +      {boxes_num}, boxes.options().dtype(at::kBool).device(at::kCUDA));
    +  gather_keep_from_mask<<<1, std::min(col_blocks, THREADS_PER_BLOCK),
    +                          col_blocks * sizeof(unsigned long long), stream>>>(
    +      keep_t.data_ptr(), (unsigned long long*)mask.data_ptr(),
    +      boxes_num);
    +
    +  auto keep_data = keep_t.nonzero().index({Slice(), 0});
    +  keep_num.fill_(at::Scalar(keep_data.size(0)));
    +  keep.index_put_({Slice(0, keep_data.size(0))}, keep_data);
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void IoU3DNMS3DNormalForwardCUDAKernelLauncher(const Tensor boxes, Tensor& keep,
    +                                               Tensor& keep_num,
    +                                               float nms_overlap_thresh) {
    +  using namespace at::indexing;
    +  at::cuda::CUDAGuard device_guard(boxes.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  int boxes_num = boxes.size(0);
    +
    +  const int col_blocks =
    +      (boxes_num + THREADS_PER_BLOCK_NMS - 1) / THREADS_PER_BLOCK_NMS;
    +  Tensor mask =
    +      at::empty({boxes_num, col_blocks}, boxes.options().dtype(at::kLong));
    +
    +  dim3 blocks(GET_BLOCKS(boxes_num, THREADS_PER_BLOCK_NMS),
    +              GET_BLOCKS(boxes_num, THREADS_PER_BLOCK_NMS));
    +  dim3 threads(THREADS_PER_BLOCK_NMS);
    +
    +  iou3d_nms3d_normal_forward_cuda_kernel<<>>(
    +      boxes_num, nms_overlap_thresh, boxes.data_ptr(),
    +      (unsigned long long*)mask.data_ptr());
    +
    +  at::Tensor keep_t = at::zeros(
    +      {boxes_num}, boxes.options().dtype(at::kBool).device(at::kCUDA));
    +  gather_keep_from_mask<<<1, std::min(col_blocks, THREADS_PER_BLOCK),
    +                          col_blocks * sizeof(unsigned long long), stream>>>(
    +      keep_t.data_ptr(), (unsigned long long*)mask.data_ptr(),
    +      boxes_num);
    +
    +  auto keep_data = keep_t.nonzero().index({Slice(), 0});
    +  keep_num.fill_(at::Scalar(keep_data.size(0)));
    +  keep.index_put_({Slice(0, keep_data.size(0))}, keep_data);
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/knn_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/knn_cuda.cu
    new file mode 100644
    index 000000000..e33518197
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/knn_cuda.cu
    @@ -0,0 +1,34 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/pointops/src/knnquery_heap
    +
    +#include 
    +#include 
    +
    +#include "knn_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void KNNForwardCUDAKernelLauncher(int b, int n, int m, int nsample,
    +                                  const Tensor xyz, const Tensor new_xyz,
    +                                  Tensor idx, Tensor dist2) {
    +  // param new_xyz: (B, m, 3)
    +  // param xyz: (B, n, 3)
    +  // param idx: (B, m, nsample)
    +
    +  at::cuda::CUDAGuard device_guard(new_xyz.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(m, THREADS_PER_BLOCK), b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      new_xyz.scalar_type(), "knn_forward_cuda_kernel", [&] {
    +        knn_forward_cuda_kernel<<>>(
    +            b, n, m, nsample, xyz.data_ptr(),
    +            new_xyz.data_ptr(), idx.data_ptr(),
    +            dist2.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/masked_conv2d_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/masked_conv2d_cuda.cu
    new file mode 100644
    index 000000000..022e18901
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/masked_conv2d_cuda.cu
    @@ -0,0 +1,54 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "masked_conv2d_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void MaskedIm2colForwardCUDAKernelLauncher(const Tensor bottom_data,
    +                                           const Tensor mask_h_idx,
    +                                           const Tensor mask_w_idx,
    +                                           Tensor top_data, const int kernel_h,
    +                                           const int kernel_w, const int pad_h,
    +                                           const int pad_w) {
    +  int channels = bottom_data.size(1);
    +  int height = bottom_data.size(2);
    +  int width = bottom_data.size(3);
    +  int mask_cnt = mask_h_idx.size(0);
    +  int output_size = mask_cnt * channels;
    +
    +  at::cuda::CUDAGuard device_guard(bottom_data.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      bottom_data.scalar_type(), "MaskedIm2colLaucherForward", ([&] {
    +        const scalar_t *bottom_data_ = bottom_data.data_ptr();
    +        const int64_t *mask_h_idx_ = mask_h_idx.data_ptr();
    +        const int64_t *mask_w_idx_ = mask_w_idx.data_ptr();
    +        scalar_t *top_data_ = top_data.data_ptr();
    +        MaskedIm2colForward
    +            <<>>(
    +                output_size, bottom_data_, height, width, kernel_h, kernel_w,
    +                pad_h, pad_w, mask_h_idx_, mask_w_idx_, mask_cnt, top_data_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void MaskedCol2imForwardCUDAKernelLauncher(
    +    const Tensor bottom_data, const Tensor mask_h_idx, const Tensor mask_w_idx,
    +    Tensor top_data, const int height, const int width, const int channels) {
    +  int mask_cnt = mask_h_idx.size(0);
    +  int output_size = mask_cnt * channels;
    +
    +  at::cuda::CUDAGuard device_guard(bottom_data.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      bottom_data.scalar_type(), "MaskedCol2imLaucherForward", ([&] {
    +        const scalar_t *bottom_data_ = bottom_data.data_ptr();
    +        const int64_t *mask_h_idx_ = mask_h_idx.data_ptr();
    +        const int64_t *mask_w_idx_ = mask_w_idx.data_ptr();
    +        scalar_t *top_data_ = top_data.data_ptr();
    +
    +        MaskedCol2imForward
    +            <<>>(
    +                output_size, bottom_data_, height, width, channels, mask_h_idx_,
    +                mask_w_idx_, mask_cnt, top_data_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/min_area_polygons.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/min_area_polygons.cu
    new file mode 100644
    index 000000000..9314f2dda
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/min_area_polygons.cu
    @@ -0,0 +1,21 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/SDL-GuoZonghao/BeyondBoundingBox/blob/main/mmdet/ops/minareabbox/src/minareabbox_kernel.cu
    +#include "min_area_polygons_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void MinAreaPolygonsCUDAKernelLauncher(const Tensor pointsets,
    +                                       Tensor polygons) {
    +  int num_pointsets = pointsets.size(0);
    +  const int output_size = polygons.numel();
    +  at::cuda::CUDAGuard device_guard(pointsets.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      pointsets.scalar_type(), "min_area_polygons_cuda_kernel", ([&] {
    +        min_area_polygons_cuda_kernel
    +            <<>>(
    +                num_pointsets, pointsets.data_ptr(),
    +                polygons.data_ptr());
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/modulated_deform_conv_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/modulated_deform_conv_cuda.cu
    new file mode 100644
    index 000000000..2b52796e4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/modulated_deform_conv_cuda.cu
    @@ -0,0 +1,96 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "modulated_deform_conv_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void modulated_deformable_im2col_cuda(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col) {
    +  // num_axes should be smaller than block size
    +  const int channel_per_deformable_group = channels / deformable_group;
    +  const int num_kernels = channels * batch_size * height_col * width_col;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] {
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *data_col_ = data_col.data_ptr();
    +
    +        modulated_deformable_im2col_gpu_kernel<<<
    +            GET_BLOCKS(num_kernels), THREADS_PER_BLOCK, 0,
    +            at::cuda::getCurrentCUDAStream()>>>(
    +            num_kernels, data_im_, data_offset_, data_mask_, height_im,
    +            width_im, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +            dilation_h, dilation_w, channel_per_deformable_group, batch_size,
    +            channels, deformable_group, height_col, width_col, data_col_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void modulated_deformable_col2im_cuda(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im) {
    +  const int channel_per_deformable_group = channels / deformable_group;
    +  const int num_kernels =
    +      channels * kernel_h * kernel_w * batch_size * height_col * width_col;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *grad_im_ = grad_im.data_ptr();
    +
    +        modulated_deformable_col2im_gpu_kernel<<<
    +            GET_BLOCKS(num_kernels), THREADS_PER_BLOCK, 0,
    +            at::cuda::getCurrentCUDAStream()>>>(
    +            num_kernels, data_col_, data_offset_, data_mask_, channels,
    +            height_im, width_im, kernel_h, kernel_w, pad_h, pad_w, stride_h,
    +            stride_w, dilation_h, dilation_w, channel_per_deformable_group,
    +            batch_size, deformable_group, height_col, width_col, grad_im_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void modulated_deformable_col2im_coord_cuda(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask) {
    +  const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h *
    +                          kernel_w * deformable_group;
    +  const int channel_per_deformable_group =
    +      channels * kernel_h * kernel_w / deformable_group;
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] {
    +        const scalar_t *data_col_ = data_col.data_ptr();
    +        const scalar_t *data_im_ = data_im.data_ptr();
    +        const scalar_t *data_offset_ = data_offset.data_ptr();
    +        const scalar_t *data_mask_ = data_mask.data_ptr();
    +        scalar_t *grad_offset_ = grad_offset.data_ptr();
    +        scalar_t *grad_mask_ = grad_mask.data_ptr();
    +
    +        modulated_deformable_col2im_coord_gpu_kernel<<<
    +            GET_BLOCKS(num_kernels), THREADS_PER_BLOCK, 0,
    +            at::cuda::getCurrentCUDAStream()>>>(
    +            num_kernels, data_col_, data_im_, data_offset_, data_mask_,
    +            channels, height_im, width_im, kernel_h, kernel_w, pad_h, pad_w,
    +            stride_h, stride_w, dilation_h, dilation_w,
    +            channel_per_deformable_group, batch_size,
    +            2 * kernel_h * kernel_w * deformable_group, deformable_group,
    +            height_col, width_col, grad_offset_, grad_mask_);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ms_deform_attn_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ms_deform_attn_cuda.cu
    new file mode 100644
    index 000000000..fd191ee9c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/ms_deform_attn_cuda.cu
    @@ -0,0 +1,351 @@
    +/*!
    +**************************************************************************************************
    +* Deformable DETR
    +* Copyright (c) 2020 SenseTime. All Rights Reserved.
    +* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
    +**************************************************************************************************
    +* Modified from
    +*https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
    +**************************************************************************************************
    +*/
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +
    +#include "ms_deform_attn_cuda_kernel.cuh"
    +
    +template 
    +void ms_deformable_im2col_cuda(cudaStream_t stream, const scalar_t *data_value,
    +                               const int64_t *data_spatial_shapes,
    +                               const int64_t *data_level_start_index,
    +                               const scalar_t *data_sampling_loc,
    +                               const scalar_t *data_attn_weight,
    +                               const int batch_size, const int spatial_size,
    +                               const int num_heads, const int channels,
    +                               const int num_levels, const int num_query,
    +                               const int num_point, scalar_t *data_col) {
    +  const int num_kernels = batch_size * num_query * num_heads * channels;
    +  const int num_actual_kernels = batch_size * num_query * num_heads * channels;
    +  const int num_threads = THREADS_PER_BLOCK;
    +  ms_deformable_im2col_gpu_kernel
    +      <<>>(
    +          num_kernels, data_value, data_spatial_shapes, data_level_start_index,
    +          data_sampling_loc, data_attn_weight, batch_size, spatial_size,
    +          num_heads, channels, num_levels, num_query, num_point, data_col);
    +
    +  cudaError_t err = cudaGetLastError();
    +  if (err != cudaSuccess) {
    +    printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
    +  }
    +}
    +
    +template 
    +void ms_deformable_col2im_cuda(
    +    cudaStream_t stream, const scalar_t *grad_col, const scalar_t *data_value,
    +    const int64_t *data_spatial_shapes, const int64_t *data_level_start_index,
    +    const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight,
    +    const int batch_size, const int spatial_size, const int num_heads,
    +    const int channels, const int num_levels, const int num_query,
    +    const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc,
    +    scalar_t *grad_attn_weight) {
    +  const int num_threads =
    +      (channels > THREADS_PER_BLOCK) ? THREADS_PER_BLOCK : channels;
    +  const int num_kernels = batch_size * num_query * num_heads * channels;
    +  const int num_actual_kernels = batch_size * num_query * num_heads * channels;
    +  if (channels > THREADS_PER_BLOCK) {
    +    if ((channels & THREADS_PER_BLOCK - 1) == 0) {
    +      ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks
    +          <<>>(
    +              num_kernels, grad_col, data_value, data_spatial_shapes,
    +              data_level_start_index, data_sampling_loc, data_attn_weight,
    +              batch_size, spatial_size, num_heads, channels, num_levels,
    +              num_query, num_point, grad_value, grad_sampling_loc,
    +              grad_attn_weight);
    +    } else {
    +      ms_deformable_col2im_gpu_kernel_gm
    +          <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                       data_level_start_index, data_sampling_loc,
    +                       data_attn_weight, batch_size, spatial_size, num_heads,
    +                       channels, num_levels, num_query, num_point, grad_value,
    +                       grad_sampling_loc, grad_attn_weight);
    +    }
    +  } else {
    +    switch (channels) {
    +      case 1:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 2:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 4:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 8:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 16:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 32:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 64:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 128:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 256:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      case 512:
    +        ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
    +            <<>>(num_kernels, grad_col, data_value, data_spatial_shapes,
    +                         data_level_start_index, data_sampling_loc,
    +                         data_attn_weight, batch_size, spatial_size, num_heads,
    +                         channels, num_levels, num_query, num_point, grad_value,
    +                         grad_sampling_loc, grad_attn_weight);
    +        break;
    +      default:
    +        if (channels < 64) {
    +          ms_deformable_col2im_gpu_kernel_shm_reduce_v1
    +              <<>>(
    +                  num_kernels, grad_col, data_value, data_spatial_shapes,
    +                  data_level_start_index, data_sampling_loc, data_attn_weight,
    +                  batch_size, spatial_size, num_heads, channels, num_levels,
    +                  num_query, num_point, grad_value, grad_sampling_loc,
    +                  grad_attn_weight);
    +        } else {
    +          ms_deformable_col2im_gpu_kernel_shm_reduce_v2
    +              <<>>(
    +                  num_kernels, grad_col, data_value, data_spatial_shapes,
    +                  data_level_start_index, data_sampling_loc, data_attn_weight,
    +                  batch_size, spatial_size, num_heads, channels, num_levels,
    +                  num_query, num_point, grad_value, grad_sampling_loc,
    +                  grad_attn_weight);
    +        }
    +    }
    +  }
    +  cudaError_t err = cudaGetLastError();
    +  if (err != cudaSuccess) {
    +    printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
    +  }
    +}
    +
    +at::Tensor ms_deform_attn_cuda_forward(const at::Tensor &value,
    +                                       const at::Tensor &spatial_shapes,
    +                                       const at::Tensor &level_start_index,
    +                                       const at::Tensor &sampling_loc,
    +                                       const at::Tensor &attn_weight,
    +                                       const int im2col_step) {
    +  AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
    +  AT_ASSERTM(spatial_shapes.is_contiguous(),
    +             "spatial_shapes tensor has to be contiguous");
    +  AT_ASSERTM(level_start_index.is_contiguous(),
    +             "level_start_index tensor has to be contiguous");
    +  AT_ASSERTM(sampling_loc.is_contiguous(),
    +             "sampling_loc tensor has to be contiguous");
    +  AT_ASSERTM(attn_weight.is_contiguous(),
    +             "attn_weight tensor has to be contiguous");
    +
    +  AT_ASSERTM(value.is_cuda(), "value must be a CUDA tensor");
    +  AT_ASSERTM(spatial_shapes.is_cuda(), "spatial_shapes must be a CUDA tensor");
    +  AT_ASSERTM(level_start_index.is_cuda(),
    +             "level_start_index must be a CUDA tensor");
    +  AT_ASSERTM(sampling_loc.is_cuda(), "sampling_loc must be a CUDA tensor");
    +  AT_ASSERTM(attn_weight.is_cuda(), "attn_weight must be a CUDA tensor");
    +
    +  const int batch = value.size(0);
    +  const int spatial_size = value.size(1);
    +  const int num_heads = value.size(2);
    +  const int channels = value.size(3);
    +
    +  const int num_levels = spatial_shapes.size(0);
    +
    +  const int num_query = sampling_loc.size(1);
    +  const int num_point = sampling_loc.size(4);
    +
    +  const int im2col_step_ = std::min(batch, im2col_step);
    +
    +  AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)",
    +             batch, im2col_step_);
    +
    +  auto output =
    +      at::zeros({batch, num_query, num_heads, channels}, value.options());
    +
    +  const int batch_n = im2col_step_;
    +  auto output_n = output.view(
    +      {batch / im2col_step_, batch_n, num_query, num_heads, channels});
    +  auto per_value_size = spatial_size * num_heads * channels;
    +  auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
    +  auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
    +  for (int n = 0; n < batch / im2col_step_; ++n) {
    +    auto columns = output_n.select(0, n);
    +    AT_DISPATCH_FLOATING_TYPES(
    +        value.scalar_type(), "ms_deform_attn_forward_cuda", ([&] {
    +          ms_deformable_im2col_cuda(
    +              at::cuda::getCurrentCUDAStream(),
    +              value.data_ptr() + n * im2col_step_ * per_value_size,
    +              spatial_shapes.data_ptr(),
    +              level_start_index.data_ptr(),
    +              sampling_loc.data_ptr() +
    +                  n * im2col_step_ * per_sample_loc_size,
    +              attn_weight.data_ptr() +
    +                  n * im2col_step_ * per_attn_weight_size,
    +              batch_n, spatial_size, num_heads, channels, num_levels, num_query,
    +              num_point, columns.data_ptr());
    +        }));
    +  }
    +
    +  output = output.view({batch, num_query, num_heads * channels});
    +
    +  return output;
    +}
    +
    +void ms_deform_attn_cuda_backward(
    +    const at::Tensor &value, const at::Tensor &spatial_shapes,
    +    const at::Tensor &level_start_index, const at::Tensor &sampling_loc,
    +    const at::Tensor &attn_weight, const at::Tensor &grad_output,
    +    at::Tensor &grad_value, at::Tensor &grad_sampling_loc,
    +    at::Tensor &grad_attn_weight, const int im2col_step) {
    +  AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
    +  AT_ASSERTM(spatial_shapes.is_contiguous(),
    +             "spatial_shapes tensor has to be contiguous");
    +  AT_ASSERTM(level_start_index.is_contiguous(),
    +             "level_start_index tensor has to be contiguous");
    +  AT_ASSERTM(sampling_loc.is_contiguous(),
    +             "sampling_loc tensor has to be contiguous");
    +  AT_ASSERTM(attn_weight.is_contiguous(),
    +             "attn_weight tensor has to be contiguous");
    +  AT_ASSERTM(grad_output.is_contiguous(),
    +             "grad_output tensor has to be contiguous");
    +
    +  AT_ASSERTM(value.is_cuda(), "value must be a CUDA tensor");
    +  AT_ASSERTM(spatial_shapes.is_cuda(), "spatial_shapes must be a CUDA tensor");
    +  AT_ASSERTM(level_start_index.is_cuda(),
    +             "level_start_index must be a CUDA tensor");
    +  AT_ASSERTM(sampling_loc.is_cuda(), "sampling_loc must be a CUDA tensor");
    +  AT_ASSERTM(attn_weight.is_cuda(), "attn_weight must be a CUDA tensor");
    +  AT_ASSERTM(grad_output.is_cuda(), "grad_output must be a CUDA tensor");
    +
    +  const int batch = value.size(0);
    +  const int spatial_size = value.size(1);
    +  const int num_heads = value.size(2);
    +  const int channels = value.size(3);
    +
    +  const int num_levels = spatial_shapes.size(0);
    +
    +  const int num_query = sampling_loc.size(1);
    +  const int num_point = sampling_loc.size(4);
    +
    +  const int im2col_step_ = std::min(batch, im2col_step);
    +
    +  AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)",
    +             batch, im2col_step_);
    +
    +  const int batch_n = im2col_step_;
    +  auto per_value_size = spatial_size * num_heads * channels;
    +  auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
    +  auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
    +  auto grad_output_n = grad_output.view(
    +      {batch / im2col_step_, batch_n, num_query, num_heads, channels});
    +
    +  for (int n = 0; n < batch / im2col_step_; ++n) {
    +    auto grad_output_g = grad_output_n.select(0, n);
    +    AT_DISPATCH_FLOATING_TYPES(
    +        value.scalar_type(), "ms_deform_attn_backward_cuda", ([&] {
    +          ms_deformable_col2im_cuda(
    +              at::cuda::getCurrentCUDAStream(),
    +              grad_output_g.data_ptr(),
    +              value.data_ptr() + n * im2col_step_ * per_value_size,
    +              spatial_shapes.data_ptr(),
    +              level_start_index.data_ptr(),
    +              sampling_loc.data_ptr() +
    +                  n * im2col_step_ * per_sample_loc_size,
    +              attn_weight.data_ptr() +
    +                  n * im2col_step_ * per_attn_weight_size,
    +              batch_n, spatial_size, num_heads, channels, num_levels, num_query,
    +              num_point,
    +              grad_value.data_ptr() +
    +                  n * im2col_step_ * per_value_size,
    +              grad_sampling_loc.data_ptr() +
    +                  n * im2col_step_ * per_sample_loc_size,
    +              grad_attn_weight.data_ptr() +
    +                  n * im2col_step_ * per_attn_weight_size);
    +        }));
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_cuda.cu
    new file mode 100644
    index 000000000..e7179c6ab
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_cuda.cu
    @@ -0,0 +1,36 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "nms_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +Tensor NMSCUDAKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
    +                             int offset) {
    +  at::cuda::CUDAGuard device_guard(boxes.device());
    +
    +  if (boxes.numel() == 0) {
    +    return at::empty({0}, boxes.options().dtype(at::kLong));
    +  }
    +  auto order_t = std::get<1>(scores.sort(0, /*descending=*/true));
    +  auto boxes_sorted = boxes.index_select(0, order_t);
    +
    +  int boxes_num = boxes.size(0);
    +  const int col_blocks = (boxes_num + threadsPerBlock - 1) / threadsPerBlock;
    +  const int col_blocks_alloc = GET_BLOCKS(boxes_num, threadsPerBlock);
    +  Tensor mask =
    +      at::empty({boxes_num, col_blocks}, boxes.options().dtype(at::kLong));
    +  dim3 blocks(col_blocks_alloc, col_blocks_alloc);
    +  dim3 threads(threadsPerBlock);
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  nms_cuda<<>>(
    +      boxes_num, iou_threshold, offset, boxes_sorted.data_ptr(),
    +      (unsigned long long*)mask.data_ptr());
    +
    +  // Filter the boxes which should be kept.
    +  at::Tensor keep_t = at::zeros(
    +      {boxes_num}, boxes.options().dtype(at::kBool).device(at::kCUDA));
    +  gather_keep_from_mask<<<1, std::min(col_blocks, THREADS_PER_BLOCK),
    +                          col_blocks * sizeof(unsigned long long), stream>>>(
    +      keep_t.data_ptr(), (unsigned long long*)mask.data_ptr(),
    +      boxes_num);
    +  AT_CUDA_CHECK(cudaGetLastError());
    +  return order_t.masked_select(keep_t);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_quadri_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_quadri_cuda.cu
    new file mode 100644
    index 000000000..15004b821
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_quadri_cuda.cu
    @@ -0,0 +1,60 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "nms_quadri_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +Tensor nms_quadri_cuda(const Tensor dets, const Tensor scores,
    +                       const Tensor order_t, const Tensor dets_sorted,
    +                       float iou_threshold, const int multi_label) {
    +  // using scalar_t = float;
    +  AT_ASSERTM(dets.is_cuda(), "dets must be a CUDA tensor");
    +  AT_ASSERTM(scores.is_cuda(), "scores must be a CUDA tensor");
    +  at::cuda::CUDAGuard device_guard(dets.device());
    +
    +  int dets_num = dets.size(0);
    +
    +  const int col_blocks = at::cuda::ATenCeilDiv(dets_num, threadsPerBlock);
    +
    +  Tensor mask =
    +      at::empty({dets_num * col_blocks}, dets.options().dtype(at::kLong));
    +
    +  dim3 blocks(col_blocks, col_blocks);
    +  dim3 threads(threadsPerBlock);
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      dets_sorted.scalar_type(), "nms_quadri_kernel_cuda", [&] {
    +        nms_quadri_cuda_kernel<<>>(
    +            dets_num, iou_threshold, dets_sorted.data_ptr(),
    +            (unsigned long long*)mask.data_ptr(), multi_label);
    +      });
    +
    +  Tensor mask_cpu = mask.to(at::kCPU);
    +  unsigned long long* mask_host =
    +      (unsigned long long*)mask_cpu.data_ptr();
    +
    +  std::vector remv(col_blocks);
    +  memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
    +
    +  Tensor keep =
    +      at::empty({dets_num}, dets.options().dtype(at::kLong).device(at::kCPU));
    +  int64_t* keep_out = keep.data_ptr();
    +
    +  int num_to_keep = 0;
    +  for (int i = 0; i < dets_num; i++) {
    +    int nblock = i / threadsPerBlock;
    +    int inblock = i % threadsPerBlock;
    +
    +    if (!(remv[nblock] & (1ULL << inblock))) {
    +      keep_out[num_to_keep++] = i;
    +      unsigned long long* p = mask_host + i * col_blocks;
    +      for (int j = nblock; j < col_blocks; j++) {
    +        remv[j] |= p[j];
    +      }
    +    }
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +  return order_t.index(
    +      {keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
    +           .to(order_t.device(), keep.scalar_type())});
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_rotated_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_rotated_cuda.cu
    new file mode 100644
    index 000000000..e1185f81c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/nms_rotated_cuda.cu
    @@ -0,0 +1,62 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/nms_rotated/nms_rotated_cuda.cu
    +#include "nms_rotated_cuda.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +Tensor nms_rotated_cuda(const Tensor dets, const Tensor scores,
    +                        const Tensor order_t, const Tensor dets_sorted,
    +                        float iou_threshold, const int multi_label) {
    +  // using scalar_t = float;
    +  AT_ASSERTM(dets.is_cuda(), "dets must be a CUDA tensor");
    +  AT_ASSERTM(scores.is_cuda(), "scores must be a CUDA tensor");
    +  at::cuda::CUDAGuard device_guard(dets.device());
    +
    +  int dets_num = dets.size(0);
    +
    +  const int col_blocks = at::cuda::ATenCeilDiv(dets_num, threadsPerBlock);
    +
    +  Tensor mask =
    +      at::empty({dets_num * col_blocks}, dets.options().dtype(at::kLong));
    +
    +  dim3 blocks(col_blocks, col_blocks);
    +  dim3 threads(threadsPerBlock);
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      dets_sorted.scalar_type(), "nms_rotated_kernel_cuda", [&] {
    +        nms_rotated_cuda_kernel<<>>(
    +            dets_num, iou_threshold, dets_sorted.data_ptr(),
    +            (unsigned long long*)mask.data_ptr(), multi_label);
    +      });
    +
    +  Tensor mask_cpu = mask.to(at::kCPU);
    +  unsigned long long* mask_host =
    +      (unsigned long long*)mask_cpu.data_ptr();
    +
    +  std::vector remv(col_blocks);
    +  memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
    +
    +  Tensor keep =
    +      at::empty({dets_num}, dets.options().dtype(at::kLong).device(at::kCPU));
    +  int64_t* keep_out = keep.data_ptr();
    +
    +  int num_to_keep = 0;
    +  for (int i = 0; i < dets_num; i++) {
    +    int nblock = i / threadsPerBlock;
    +    int inblock = i % threadsPerBlock;
    +
    +    if (!(remv[nblock] & (1ULL << inblock))) {
    +      keep_out[num_to_keep++] = i;
    +      unsigned long long* p = mask_host + i * col_blocks;
    +      for (int j = nblock; j < col_blocks; j++) {
    +        remv[j] |= p[j];
    +      }
    +    }
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +  return order_t.index(
    +      {keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
    +           .to(order_t.device(), keep.scalar_type())});
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_boxes_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_boxes_cuda.cu
    new file mode 100644
    index 000000000..3cc89d010
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_boxes_cuda.cu
    @@ -0,0 +1,62 @@
    +// Modified from
    +// https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu
    +// Written by Shaoshuai Shi
    +// All Rights Reserved 2019.
    +
    +#include 
    +
    +#include "points_in_boxes_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void PointsInBoxesPartForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                                int pts_num, const Tensor boxes,
    +                                                const Tensor pts,
    +                                                Tensor box_idx_of_points) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is
    +  // the bottom center, each box DO NOT overlaps params pts: (B, npoints, 3) [x,
    +  // y, z] in LiDAR coordinate params boxes_idx_of_points: (B, npoints), default
    +  // -1
    +
    +  at::cuda::CUDAGuard device_guard(boxes.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(GET_BLOCKS(pts_num, THREADS_PER_BLOCK), batch_size);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      boxes.scalar_type(), "points_in_boxes_part_forward_cuda_kernel", [&] {
    +        points_in_boxes_part_forward_cuda_kernel
    +            <<>>(
    +                batch_size, boxes_num, pts_num, boxes.data_ptr(),
    +                pts.data_ptr(), box_idx_of_points.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void PointsInBoxesAllForwardCUDAKernelLauncher(int batch_size, int boxes_num,
    +                                               int pts_num, const Tensor boxes,
    +                                               const Tensor pts,
    +                                               Tensor box_idx_of_points) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box params pts: (B, npoints, 3)
    +  // [x, y, z] in LiDAR coordinate params boxes_idx_of_points: (B, npoints),
    +  // default -1
    +
    +  at::cuda::CUDAGuard device_guard(boxes.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(GET_BLOCKS(pts_num, THREADS_PER_BLOCK), batch_size);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      boxes.scalar_type(), "points_in_boxes_all_forward_cuda_kernel", [&] {
    +        points_in_boxes_all_forward_cuda_kernel
    +            <<>>(
    +                batch_size, boxes_num, pts_num, boxes.data_ptr(),
    +                pts.data_ptr(), box_idx_of_points.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_polygons_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_polygons_cuda.cu
    new file mode 100644
    index 000000000..6e7db9ddf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/points_in_polygons_cuda.cu
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/ming71/CUDA/blob/master/point_justify/points_justify_kernel.cu
    +
    +#include 
    +
    +#include "points_in_polygons_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void PointsInPolygonsForwardCUDAKernelLauncher(const at::Tensor points,
    +                                               const at::Tensor polygons,
    +                                               const int rows, const int cols,
    +                                               at::Tensor output) {
    +  const int output_size = rows * cols;
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "points_in_polygons_forward_cuda_kernel", ([&] {
    +        const scalar_t *vertex1 = points.data_ptr();
    +        const scalar_t *vertex2 = polygons.data_ptr();
    +        scalar_t *inside_flag = output.data_ptr();
    +
    +        points_in_polygons_forward_cuda_kernel
    +            <<>>(
    +                output_size, vertex1, vertex2, rows, cols, inside_flag);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/prroi_pool_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/prroi_pool_cuda.cu
    new file mode 100644
    index 000000000..e0636098b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/prroi_pool_cuda.cu
    @@ -0,0 +1,65 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "prroi_pool_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void PrROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois,
    +                                        Tensor output, int pooled_height,
    +                                        int pooled_width, float spatial_scale) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  prroi_pool_forward_cuda_kernel
    +      <<>>(
    +          output_size, input.data_ptr(), rois.data_ptr(),
    +          output.data_ptr(), pooled_height, pooled_width,
    +          static_cast(spatial_scale), channels, height, width);
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void PrROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                         Tensor grad_input, int pooled_height,
    +                                         int pooled_width,
    +                                         float spatial_scale) {
    +  int output_size = grad_output.numel();
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  prroi_pool_backward_cuda_kernel
    +      <<>>(
    +          output_size, grad_output.data_ptr(), rois.data_ptr(),
    +          grad_input.data_ptr(), pooled_height, pooled_width,
    +          static_cast(spatial_scale), channels, height, width);
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void PrROIPoolCoorBackwardCUDAKernelLauncher(Tensor output, Tensor grad_output,
    +                                             Tensor input, Tensor rois,
    +                                             Tensor grad_rois,
    +                                             int pooled_height,
    +                                             int pooled_width,
    +                                             float spatial_scale) {
    +  int output_size = grad_output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  prroi_pool_coor_backward_cuda_kernel
    +      <<>>(
    +          output_size, output.data_ptr(), grad_output.data_ptr(),
    +          input.data_ptr(), rois.data_ptr(),
    +          grad_rois.data_ptr(), pooled_height, pooled_width,
    +          static_cast(spatial_scale), channels, height, width);
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/psamask_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/psamask_cuda.cu
    new file mode 100644
    index 000000000..a0bdfa60c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/psamask_cuda.cu
    @@ -0,0 +1,60 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/hszhao/semseg/blob/master/lib/psa/src
    +
    +#include 
    +
    +#include "psamask_cuda_kernel.cuh"
    +#include "pytorch_cuda_helper.hpp"
    +
    +void PSAMaskForwardCUDAKernelLauncher(const int psa_type, const Tensor input,
    +                                      Tensor output, const int num_,
    +                                      const int h_feature, const int w_feature,
    +                                      const int h_mask, const int w_mask,
    +                                      const int half_h_mask,
    +                                      const int half_w_mask) {
    +  int nthreads = num_ * h_feature * w_feature;
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  if (psa_type == 0)
    +    AT_DISPATCH_FLOATING_TYPES(
    +        input.scalar_type(), "psamask_collect_forward_cuda", [&] {
    +          psamask_collect_forward_cuda<<>>(
    +              nthreads, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +              half_w_mask, input.data_ptr(),
    +              output.data_ptr());
    +        });
    +  else
    +    AT_DISPATCH_FLOATING_TYPES(
    +        input.scalar_type(), "psamask_distribute_forward_cuda", [&] {
    +          psamask_distribute_forward_cuda
    +              <<>>(
    +                  nthreads, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                  half_w_mask, input.data_ptr(),
    +                  output.data_ptr());
    +        });
    +}
    +
    +void PSAMaskBackwardCUDAKernelLauncher(
    +    const int psa_type, const Tensor grad_output, Tensor grad_input,
    +    const int num_, const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int half_h_mask, const int half_w_mask) {
    +  int nthreads = num_ * h_feature * w_feature;
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  if (psa_type == 0)
    +    AT_DISPATCH_FLOATING_TYPES(
    +        grad_input.scalar_type(), "psamask_collect_backward_cuda", [&] {
    +          psamask_collect_backward_cuda<<>>(
    +              nthreads, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +              half_w_mask, grad_output.data_ptr(),
    +              grad_input.data_ptr());
    +        });
    +  else
    +    AT_DISPATCH_FLOATING_TYPES(
    +        grad_input.scalar_type(), "psamask_distribute_backward_cuda", [&] {
    +          psamask_distribute_backward_cuda
    +              <<>>(
    +                  nthreads, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                  half_w_mask, grad_output.data_ptr(),
    +                  grad_input.data_ptr());
    +        });
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/riroi_align_rotated_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/riroi_align_rotated_cuda.cu
    new file mode 100644
    index 000000000..9829da731
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/riroi_align_rotated_cuda.cu
    @@ -0,0 +1,53 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "riroi_align_rotated_cuda_kernel.cuh"
    +
    +void RiROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor features, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor output) {
    +  const int output_size =
    +      num_rois * pooled_height * pooled_width * channels * num_orientations;
    +  at::cuda::CUDAGuard device_guard(features.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "riroi_align_rotated_forward_cuda_kernel", ([&] {
    +        const scalar_t *bottom_data = features.data_ptr();
    +        const scalar_t *rois_data = rois.data_ptr();
    +        scalar_t *top_data = output.data_ptr();
    +
    +        riroi_align_rotated_forward_cuda_kernel
    +            <<>>(
    +                output_size, bottom_data, rois_data, scalar_t(spatial_scale),
    +                num_samples, clockwise, channels, height, width, pooled_height,
    +                pooled_width, num_orientations, top_data);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void RiROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int num_samples, const bool clockwise, const int channels,
    +    const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const int num_orientations,
    +    at::Tensor bottom_grad) {
    +  const int output_size =
    +      num_rois * pooled_height * pooled_width * channels * num_orientations;
    +  at::cuda::CUDAGuard device_guard(top_grad.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "riroi_align_rotated_backward_cuda_kernel", ([&] {
    +        const scalar_t *top_diff = top_grad.data_ptr();
    +        const scalar_t *rois_data = rois.data_ptr();
    +        scalar_t *bottom_diff = bottom_grad.data_ptr();
    +        riroi_align_rotated_backward_cuda_kernel
    +            <<>>(
    +                output_size, top_diff, rois_data, spatial_scale, num_samples,
    +                clockwise, channels, height, width, pooled_height, pooled_width,
    +                num_orientations, bottom_diff);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_cuda.cu
    new file mode 100644
    index 000000000..3d4f7614e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_cuda.cu
    @@ -0,0 +1,58 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "roi_align_cuda_kernel.cuh"
    +
    +void ROIAlignForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                       Tensor argmax_y, Tensor argmax_x,
    +                                       int aligned_height, int aligned_width,
    +                                       float spatial_scale, int sampling_ratio,
    +                                       int pool_mode, bool aligned) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "roi_align_forward_cuda_kernel", [&] {
    +        roi_align_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                rois.data_ptr(), output.data_ptr(),
    +                argmax_y.data_ptr(), argmax_x.data_ptr(),
    +                aligned_height, aligned_width,
    +                static_cast(spatial_scale), sampling_ratio, pool_mode,
    +                aligned, channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ROIAlignBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                        Tensor argmax_y, Tensor argmax_x,
    +                                        Tensor grad_input, int aligned_height,
    +                                        int aligned_width, float spatial_scale,
    +                                        int sampling_ratio, int pool_mode,
    +                                        bool aligned) {
    +  int output_size = grad_output.numel();
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "roi_align_backward_cuda_kernel", [&] {
    +        roi_align_backward_cuda_kernel
    +            <<>>(
    +                output_size, grad_output.data_ptr(),
    +                rois.data_ptr(), argmax_y.data_ptr(),
    +                argmax_x.data_ptr(), grad_input.data_ptr(),
    +                aligned_height, aligned_width,
    +                static_cast(spatial_scale), sampling_ratio, pool_mode,
    +                aligned, channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_rotated_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_rotated_cuda.cu
    new file mode 100644
    index 000000000..c0fd987bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_align_rotated_cuda.cu
    @@ -0,0 +1,45 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "roi_align_rotated_cuda_kernel.cuh"
    +
    +void ROIAlignRotatedForwardCUDAKernelLauncher(
    +    const at::Tensor input, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor output) {
    +  const int output_size = num_rois * pooled_height * pooled_width * channels;
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "ROIAlignRotatedLaucherForward", ([&] {
    +        const scalar_t *bottom_data = input.data_ptr();
    +        const scalar_t *rois_data = rois.data_ptr();
    +        scalar_t *top_data = output.data_ptr();
    +
    +        roi_align_rotated_forward_cuda_kernel
    +            <<>>(
    +                output_size, bottom_data, rois_data, scalar_t(spatial_scale),
    +                sampling_ratio, aligned, clockwise, channels, height, width,
    +                pooled_height, pooled_width, top_data);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ROIAlignRotatedBackwardCUDAKernelLauncher(
    +    const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale,
    +    const int sampling_ratio, const bool aligned, const bool clockwise,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, at::Tensor bottom_grad) {
    +  const int output_size = num_rois * pooled_height * pooled_width * channels;
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "ROIAlignLaucherBackward", ([&] {
    +        const scalar_t *top_diff = top_grad.data_ptr();
    +        const scalar_t *rois_data = rois.data_ptr();
    +        scalar_t *bottom_diff = bottom_grad.data_ptr();
    +        roi_align_rotated_backward_cuda_kernel
    +            <<>>(
    +                output_size, top_diff, rois_data, spatial_scale, sampling_ratio,
    +                aligned, clockwise, channels, height, width, pooled_height,
    +                pooled_width, bottom_diff);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_pool_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_pool_cuda.cu
    new file mode 100644
    index 000000000..d9cdf3050
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roi_pool_cuda.cu
    @@ -0,0 +1,50 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "roi_pool_cuda_kernel.cuh"
    +
    +void ROIPoolForwardCUDAKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                      Tensor argmax, int pooled_height,
    +                                      int pooled_width, float spatial_scale) {
    +  int output_size = output.numel();
    +  int channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "roi_pool_forward_cuda_kernel", [&] {
    +        roi_pool_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(),
    +                rois.data_ptr(), output.data_ptr(),
    +                argmax.data_ptr(), pooled_height, pooled_width,
    +                static_cast(spatial_scale), channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ROIPoolBackwardCUDAKernelLauncher(Tensor grad_output, Tensor rois,
    +                                       Tensor argmax, Tensor grad_input,
    +                                       int pooled_height, int pooled_width,
    +                                       float spatial_scale) {
    +  int output_size = grad_output.numel();
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "roi_pool_backward_cuda_kernel", [&] {
    +        roi_pool_backward_cuda_kernel
    +            <<>>(
    +                output_size, grad_output.data_ptr(),
    +                rois.data_ptr(), argmax.data_ptr(),
    +                grad_input.data_ptr(), pooled_height, pooled_width,
    +                channels, height, width);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roiaware_pool3d_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roiaware_pool3d_cuda.cu
    new file mode 100644
    index 000000000..7d83755f4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roiaware_pool3d_cuda.cu
    @@ -0,0 +1,118 @@
    +// Modified from
    +// https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu
    +// Written by Shaoshuai Shi
    +// All Rights Reserved 2019.
    +
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "roiaware_pool3d_cuda_kernel.cuh"
    +
    +void RoiawarePool3dForwardCUDAKernelLauncher(
    +    int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x,
    +    int out_y, int out_z, const Tensor rois, const Tensor pts,
    +    const Tensor pts_feature, Tensor argmax, Tensor pts_idx_of_voxels,
    +    Tensor pooled_features, int pool_method) {
    +  // params rois: (N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate params pts: (npoints, 3) [x, y, z] in LiDAR coordinate params
    +  // pts_feature: (npoints, C) params argmax: (N, out_x, out_y, out_z, C) params
    +  // pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) params
    +  // pooled_features: (N, out_x, out_y, out_z, C) params pool_method: 0:
    +  // max_pool 1: avg_pool
    +
    +  at::cuda::CUDAGuard device_guard(pts_feature.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  Tensor pts_mask =
    +      -at::ones({boxes_num, pts_num}, pts_feature.options().dtype(at::kInt));
    +
    +  dim3 blocks_mask(GET_BLOCKS(pts_num, THREADS_PER_BLOCK), boxes_num);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      rois.scalar_type(), "generate_pts_mask_for_box3d", [&] {
    +        generate_pts_mask_for_box3d
    +            <<>>(
    +                boxes_num, pts_num, out_x, out_y, out_z,
    +                rois.data_ptr(), pts.data_ptr(),
    +                pts_mask.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  // TODO: Merge the collect and pool functions, SS
    +
    +  dim3 blocks_collect(GET_BLOCKS(boxes_num, THREADS_PER_BLOCK));
    +
    +  AT_DISPATCH_INTEGRAL_TYPES(
    +      pts_idx_of_voxels.scalar_type(), "collect_inside_pts_for_box3d", [&] {
    +        collect_inside_pts_for_box3d
    +            <<>>(
    +                boxes_num, pts_num, max_pts_each_voxel, out_x, out_y, out_z,
    +                pts_mask.data_ptr(),
    +                pts_idx_of_voxels.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  dim3 blocks_pool(GET_BLOCKS(out_x * out_y * out_z, THREADS_PER_BLOCK),
    +                   channels, boxes_num);
    +  if (pool_method == 0) {
    +    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +        pts_feature.scalar_type(), "roiaware_maxpool3d", [&] {
    +          roiaware_maxpool3d<<>>(
    +              boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y,
    +              out_z, pts_feature.data_ptr(),
    +              pts_idx_of_voxels.data_ptr(),
    +              pooled_features.data_ptr(), argmax.data_ptr());
    +        });
    +  } else if (pool_method == 1) {
    +    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +        pts_feature.scalar_type(), "roiaware_avgpool3d", [&] {
    +          roiaware_avgpool3d<<>>(
    +              boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y,
    +              out_z, pts_feature.data_ptr(),
    +              pts_idx_of_voxels.data_ptr(),
    +              pooled_features.data_ptr());
    +        });
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void RoiawarePool3dBackwardCUDAKernelLauncher(
    +    int boxes_num, int out_x, int out_y, int out_z, int channels,
    +    int max_pts_each_voxel, const Tensor pts_idx_of_voxels, const Tensor argmax,
    +    const Tensor grad_out, Tensor grad_in, int pool_method) {
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params grad_out: (N, out_x, out_y, out_z, C)
    +  // params grad_in: (npoints, C), return value
    +  // params pool_method: 0: max_pool, 1: avg_pool
    +
    +  at::cuda::CUDAGuard device_guard(grad_out.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(GET_BLOCKS(out_x * out_y * out_z, THREADS_PER_BLOCK), channels,
    +              boxes_num);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  if (pool_method == 0) {
    +    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +        grad_in.scalar_type(), "roiaware_maxpool3d_backward", [&] {
    +          roiaware_maxpool3d_backward<<>>(
    +              boxes_num, channels, out_x, out_y, out_z, argmax.data_ptr(),
    +              grad_out.data_ptr(), grad_in.data_ptr());
    +        });
    +  } else if (pool_method == 1) {
    +    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +        grad_in.scalar_type(), "roiaware_avgpool3d_backward", [&] {
    +          roiaware_avgpool3d_backward<<>>(
    +              boxes_num, channels, out_x, out_y, out_z, max_pts_each_voxel,
    +              pts_idx_of_voxels.data_ptr(), grad_out.data_ptr(),
    +              grad_in.data_ptr());
    +        });
    +  }
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roipoint_pool3d_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roipoint_pool3d_cuda.cu
    new file mode 100644
    index 000000000..af2098e82
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/roipoint_pool3d_cuda.cu
    @@ -0,0 +1,60 @@
    +/*
    +Modified from
    +https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d_kernel.cu
    +Point cloud feature pooling
    +Written by Shaoshuai Shi
    +All Rights Reserved 2018.
    +*/
    +
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "roipoint_pool3d_cuda_kernel.cuh"
    +
    +void RoIPointPool3dForwardCUDAKernelLauncher(
    +    int batch_size, int pts_num, int boxes_num, int feature_in_len,
    +    int sampled_pts_num, const Tensor xyz, const Tensor boxes3d,
    +    const Tensor pts_feature, Tensor pooled_features,
    +    Tensor pooled_empty_flag) {
    +  Tensor pts_assign = at::empty({batch_size, pts_num, boxes_num},
    +                                boxes3d.options().dtype(at::kInt));
    +
    +  at::cuda::CUDAGuard device_guard(xyz.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(pts_num, THREADS_PER_BLOCK), boxes_num, batch_size);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz.scalar_type(), "assign_pts_to_box3d", [&] {
    +        assign_pts_to_box3d<<>>(
    +            batch_size, pts_num, boxes_num, xyz.data_ptr(),
    +            boxes3d.data_ptr(), pts_assign.data_ptr());
    +      });
    +
    +  Tensor pts_idx = at::empty({batch_size, boxes_num, sampled_pts_num},
    +                             boxes3d.options().dtype(at::kInt));
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks2(GET_BLOCKS(boxes_num, THREADS_PER_BLOCK), batch_size);
    +
    +  get_pooled_idx<<>>(
    +      batch_size, pts_num, boxes_num, sampled_pts_num,
    +      pts_assign.data_ptr(), pts_idx.data_ptr(),
    +      pooled_empty_flag.data_ptr());
    +
    +  dim3 blocks_pool(GET_BLOCKS(sampled_pts_num, THREADS_PER_BLOCK), boxes_num,
    +                   batch_size);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      xyz.scalar_type(), "roipoint_pool3d_forward", [&] {
    +        roipoint_pool3d_forward<<>>(
    +            batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
    +            xyz.data_ptr(), pts_idx.data_ptr(),
    +            pts_feature.data_ptr(),
    +            pooled_features.data_ptr(),
    +            pooled_empty_flag.data_ptr());
    +      });
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/rotated_feature_align_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/rotated_feature_align_cuda.cu
    new file mode 100644
    index 000000000..d172338ae
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/rotated_feature_align_cuda.cu
    @@ -0,0 +1,53 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_kernel.cu
    +#include "pytorch_cuda_helper.hpp"
    +#include "rotated_feature_align_cuda_kernel.cuh"
    +
    +void RotatedFeatureAlignForwardCUDAKernelLauncher(const Tensor features,
    +                                                  const Tensor best_bboxes,
    +                                                  const float spatial_scale,
    +                                                  const int points,
    +                                                  Tensor output) {
    +  at::cuda::CUDAGuard device_guard(features.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  const int output_size = features.numel();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features.scalar_type(), "rotated_feature_align_forward_cuda_kernel",
    +      ([&] {
    +        const scalar_t* bottom_data = features.data_ptr();
    +        const scalar_t* bboxes_data = best_bboxes.data_ptr();
    +        scalar_t* top_data = output.data_ptr();
    +
    +        rotated_feature_align_forward_kernel
    +            <<>>(
    +                output_size, points, bottom_data, bboxes_data,
    +                scalar_t(spatial_scale), features.size(1), features.size(2),
    +                features.size(3), top_data);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void RotatedFeatureAlignBackwardCUDAKernelLauncher(const Tensor top_grad,
    +                                                   const Tensor best_bboxes,
    +                                                   const float spatial_scale,
    +                                                   const int points,
    +                                                   Tensor bottom_grad) {
    +  at::cuda::CUDAGuard device_guard(top_grad.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  const int output_size = top_grad.numel();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      top_grad.scalar_type(), "rotated_feature_align_backward_cuda_kernel",
    +      ([&] {
    +        const scalar_t* top_diff = top_grad.data_ptr();
    +        const scalar_t* bboxes_data = best_bboxes.data_ptr();
    +        scalar_t* bottom_diff = bottom_grad.data_ptr();
    +
    +        rotated_feature_align_backward_kernel
    +            <<>>(
    +                output_size, points, top_diff, bboxes_data,
    +                scalar_t(spatial_scale), top_grad.size(1), top_grad.size(2),
    +                top_grad.size(3), bottom_diff);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/scatter_points_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/scatter_points_cuda.cu
    new file mode 100644
    index 000000000..cbc44651f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/scatter_points_cuda.cu
    @@ -0,0 +1,132 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include 
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "scatter_points_cuda_kernel.cuh"
    +
    +std::vector DynamicPointToVoxelForwardCUDAKernelLauncher(
    +    const at::Tensor &feats, const at::Tensor &coors,
    +    const reduce_t reduce_type) {
    +  const int num_input = feats.size(0);
    +  const int num_feats = feats.size(1);
    +
    +  if (num_input == 0)
    +    return {feats.clone().detach(), coors.clone().detach(),
    +            coors.new_empty({0}, torch::kInt32),
    +            coors.new_empty({0}, torch::kInt32)};
    +
    +  at::Tensor out_coors;
    +  at::Tensor coors_map;
    +  at::Tensor reduce_count;
    +
    +  auto coors_clean = coors.masked_fill(coors.lt(0).any(-1, true), -1);
    +
    +  std::tie(out_coors, coors_map, reduce_count) =
    +      at::unique_dim(coors_clean, 0, true, true, true);
    +
    +  if (out_coors[0][0].lt(0).item()) {
    +    // the first element of out_coors (-1,-1,-1) and should be removed
    +    out_coors = out_coors.slice(0, 1);
    +    reduce_count = reduce_count.slice(0, 1);
    +    coors_map = coors_map - 1;
    +  }
    +
    +  coors_map = coors_map.to(torch::kInt32);
    +  reduce_count = reduce_count.to(torch::kInt32);
    +
    +  auto reduced_feats =
    +      at::empty({out_coors.size(0), num_feats}, feats.options());
    +
    +  at::cuda::CUDAGuard device_guard(feats.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  AT_DISPATCH_FLOATING_TYPES(
    +      feats.scalar_type(), "feats_reduce_kernel", ([&] {
    +        if (reduce_type == reduce_t::MAX)
    +          reduced_feats.fill_(-std::numeric_limits::infinity());
    +        else
    +          reduced_feats.fill_(static_cast(0));
    +
    +        dim3 blocks(std::min(
    +            at::cuda::ATenCeilDiv(num_input, THREADS_PER_BLOCK), maxGridDim));
    +        dim3 threads(THREADS_PER_BLOCK);
    +        feats_reduce_kernel<<>>(
    +            feats.data_ptr(), coors_map.data_ptr(),
    +            reduced_feats.data_ptr(), num_input, num_feats,
    +            reduce_type);
    +        if (reduce_type == reduce_t::MEAN)
    +          reduced_feats /= reduce_count.unsqueeze(-1).to(reduced_feats.dtype());
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  return {reduced_feats, out_coors, coors_map, reduce_count};
    +}
    +
    +void DynamicPointToVoxelBackwardCUDAKernelLauncher(
    +    at::Tensor &grad_feats, const at::Tensor &grad_reduced_feats,
    +    const at::Tensor &feats, const at::Tensor &reduced_feats,
    +    const at::Tensor &coors_map, const at::Tensor &reduce_count,
    +    const reduce_t reduce_type) {
    +  const int num_input = feats.size(0);
    +  const int num_reduced = reduced_feats.size(0);
    +  const int num_feats = feats.size(1);
    +
    +  grad_feats.fill_(0);
    +  // copy voxel grad to points
    +
    +  if (num_input == 0 || num_reduced == 0) return;
    +  at::cuda::CUDAGuard device_guard(feats.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  if (reduce_type == reduce_t::MEAN || reduce_type == reduce_t::SUM) {
    +    AT_DISPATCH_FLOATING_TYPES(
    +        grad_reduced_feats.scalar_type(), "add_reduce_traceback_grad_kernel",
    +        ([&] {
    +          dim3 blocks(std::min(
    +              at::cuda::ATenCeilDiv(num_input, THREADS_PER_BLOCK), maxGridDim));
    +          dim3 threads(THREADS_PER_BLOCK);
    +          add_reduce_traceback_grad_kernel<<>>(
    +              grad_feats.data_ptr(),
    +              grad_reduced_feats.data_ptr(),
    +              coors_map.data_ptr(), reduce_count.data_ptr(),
    +              num_input, num_feats, reduce_type);
    +        }));
    +
    +    AT_CUDA_CHECK(cudaGetLastError());
    +  } else {
    +    auto reduce_from = at::full({num_reduced, num_feats}, num_input,
    +                                coors_map.options().dtype(torch::kInt32));
    +    AT_DISPATCH_FLOATING_TYPES(
    +        grad_reduced_feats.scalar_type(),
    +        "max_reduce_traceback_scatter_idx_kernel", ([&] {
    +          dim3 blocks(std::min(
    +              at::cuda::ATenCeilDiv(num_input, THREADS_PER_BLOCK), maxGridDim));
    +          dim3 threads(THREADS_PER_BLOCK);
    +          max_reduce_traceback_scatter_idx_kernel<<>>(
    +              feats.data_ptr(), reduced_feats.data_ptr(),
    +              reduce_from.data_ptr(), coors_map.data_ptr(),
    +              num_input, num_feats);
    +        }));
    +
    +    AT_CUDA_CHECK(cudaGetLastError());
    +
    +    AT_DISPATCH_FLOATING_TYPES(
    +        grad_reduced_feats.scalar_type(),
    +        "max_reduce_traceback_scatter_idx_kernel", ([&] {
    +          dim3 blocks(
    +              std::min(at::cuda::ATenCeilDiv(num_reduced, THREADS_PER_BLOCK),
    +                       maxGridDim));
    +          dim3 threads(THREADS_PER_BLOCK);
    +          max_reduce_scatter_grad_kernel<<>>(
    +              grad_feats.data_ptr(),
    +              grad_reduced_feats.data_ptr(),
    +              reduce_from.data_ptr(), num_reduced, num_feats);
    +        }));
    +
    +    AT_CUDA_CHECK(cudaGetLastError());
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_ball_query_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_ball_query_cuda.cu
    new file mode 100644
    index 000000000..3095df5ee
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_ball_query_cuda.cu
    @@ -0,0 +1,45 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query_gpu.cu
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "stack_ball_query_cuda_kernel.cuh"
    +#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
    +
    +void StackBallQueryForwardCUDAKernelLauncher(float max_radius, int nsample,
    +                                             const Tensor new_xyz,
    +                                             const Tensor new_xyz_batch_cnt,
    +                                             const Tensor xyz,
    +                                             const Tensor xyz_batch_cnt,
    +                                             Tensor idx) {
    +  at::cuda::CUDAGuard device_guard(new_xyz.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  //   const float *new_xyz_ptr = new_xyz.data_ptr();
    +  //   const float *xyz_ptr = xyz.data_ptr();
    +  //   const int *new_xyz_batch_cnt_ptr = new_xyz_batch_cnt.data_ptr();
    +  //   const int *xyz_batch_cnt_ptr = xyz_batch_cnt.data_ptr();
    +  //   int *idx_ptr = idx.data_ptr();
    +
    +  int B = xyz_batch_cnt.size(0);
    +  int M = new_xyz.size(0);
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(DIVUP(M, THREADS_PER_BLOCK));
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      new_xyz.scalar_type(), "stack_ball_query_forward_cuda_kernel", [&] {
    +        stack_ball_query_forward_cuda_kernel
    +            <<>>(
    +                B, M, max_radius, nsample, new_xyz.data_ptr(),
    +                new_xyz_batch_cnt.data_ptr(), xyz.data_ptr(),
    +                xyz_batch_cnt.data_ptr(), idx.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_group_points_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_group_points_cuda.cu
    new file mode 100644
    index 000000000..9f903b02a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/stack_group_points_cuda.cu
    @@ -0,0 +1,62 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points_gpu.cu
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "stack_group_points_cuda_kernel.cuh"
    +
    +void StackGroupPointsForwardCUDAKernelLauncher(
    +    int b, int c, int m, int nsample, const Tensor features_tensor,
    +    const Tensor features_batch_cnt_tensor, const Tensor idx_tensor,
    +    const Tensor idx_batch_cnt_tensor, Tensor out_tensor) {
    +  // points: (B, C, N)
    +  // idx: (B, npoints, nsample)
    +  // output:
    +  //      out: (B, C, npoints, nsample)
    +  at::cuda::CUDAGuard device_guard(features_tensor.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(DIVUP(m * c * nsample, THREADS_PER_BLOCK));
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      features_tensor.scalar_type(), "stack_group_points_forward_cuda_kernel",
    +      [&] {
    +        stack_group_points_forward_cuda_kernel
    +            <<>>(
    +                b, c, m, nsample, features_tensor.data_ptr(),
    +                features_batch_cnt_tensor.data_ptr(),
    +                idx_tensor.data_ptr(),
    +                idx_batch_cnt_tensor.data_ptr(),
    +                out_tensor.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void StackGroupPointsBackwardCUDAKernelLauncher(
    +    int b, int c, int m, int n, int nsample, const Tensor grad_out_tensor,
    +    const Tensor idx_tensor, const Tensor idx_batch_cnt_tensor,
    +    const Tensor features_batch_cnt_tensor, Tensor grad_features_tensor) {
    +  at::cuda::CUDAGuard device_guard(grad_features_tensor.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  dim3 blocks(DIVUP(m * c * nsample, THREADS_PER_BLOCK));
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_features_tensor.scalar_type(),
    +      "stack_group_points_backward_cuda_kernel", [&] {
    +        stack_group_points_backward_cuda_kernel
    +            <<>>(
    +                b, c, m, n, nsample, grad_out_tensor.data_ptr(),
    +                idx_tensor.data_ptr(),
    +                idx_batch_cnt_tensor.data_ptr(),
    +                features_batch_cnt_tensor.data_ptr(),
    +                grad_features_tensor.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/sync_bn_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/sync_bn_cuda.cu
    new file mode 100644
    index 000000000..657c81701
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/sync_bn_cuda.cu
    @@ -0,0 +1,110 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "sync_bn_cuda_kernel.cuh"
    +
    +void SyncBNForwardMeanCUDAKernelLauncher(const Tensor input, Tensor mean) {
    +  int num = input.size(0);
    +  int channels = input.size(1);
    +  int spatial = input.size(2);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "sync_bn_forward_mean_cuda_kernel", [&] {
    +        sync_bn_forward_mean_cuda_kernel
    +            <<>>(
    +                input.data_ptr(), mean.data_ptr(), num,
    +                channels, spatial);
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SyncBNForwardVarCUDAKernelLauncher(const Tensor input, const Tensor mean,
    +                                        Tensor var) {
    +  int num = input.size(0);
    +  int channels = input.size(1);
    +  int spatial = input.size(2);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "sync_bn_forward_mean_cuda_kernel", [&] {
    +        sync_bn_forward_var_cuda_kernel
    +            <<>>(
    +                input.data_ptr(), mean.data_ptr(),
    +                var.data_ptr(), num, channels, spatial);
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SyncBNForwardOutputCUDAKernelLauncher(
    +    const Tensor input, const Tensor mean, const Tensor var,
    +    Tensor running_mean, Tensor running_var, const Tensor weight,
    +    const Tensor bias, Tensor norm, Tensor std, Tensor output, float eps,
    +    float momentum, int group_size) {
    +  int num = input.size(0);
    +  int channels = input.size(1);
    +  int spatial = input.size(2);
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "sync_bn_forward_mean_cuda_kernel", [&] {
    +        sync_bn_forward_output_cuda_kernel
    +            <<>>(
    +                input.data_ptr(), mean.data_ptr(),
    +                var.data_ptr(), running_mean.data_ptr(),
    +                running_var.data_ptr(), weight.data_ptr(),
    +                bias.data_ptr(), norm.data_ptr(),
    +                std.data_ptr(), output.data_ptr(), num,
    +                channels, spatial, eps, momentum, group_size);
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SyncBNBackwardParamCUDAKernelLauncher(const Tensor grad_output,
    +                                           const Tensor norm,
    +                                           Tensor grad_weight,
    +                                           Tensor grad_bias) {
    +  int num = grad_output.size(0);
    +  int channels = grad_output.size(1);
    +  int spatial = grad_output.size(2);
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "sync_bn_backward_param_cuda_kernel", [&] {
    +        sync_bn_backward_param_cuda_kernel
    +            <<>>(
    +                grad_output.data_ptr(), norm.data_ptr(),
    +                grad_weight.data_ptr(), grad_bias.data_ptr(), num,
    +                channels, spatial);
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void SyncBNBackwardDataCUDAKernelLauncher(const Tensor grad_output,
    +                                          const Tensor weight,
    +                                          const Tensor grad_weight,
    +                                          const Tensor grad_bias,
    +                                          const Tensor norm, const Tensor std,
    +                                          Tensor grad_input) {
    +  int output_size = grad_input.numel();
    +  int num = grad_input.size(0);
    +  int channels = grad_input.size(1);
    +  int spatial = grad_input.size(2);
    +
    +  at::cuda::CUDAGuard device_guard(grad_input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "sync_bn_backward_data_cuda_kernel", [&] {
    +        sync_bn_backward_data_cuda_kernel
    +            <<>>(
    +                output_size, grad_output.data_ptr(),
    +                weight.data_ptr(), grad_weight.data_ptr(),
    +                grad_bias.data_ptr(), norm.data_ptr(),
    +                std.data_ptr(), grad_input.data_ptr(), num,
    +                channels, spatial);
    +      });
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_interpolate_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_interpolate_cuda.cu
    new file mode 100644
    index 000000000..56a555006
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_interpolate_cuda.cu
    @@ -0,0 +1,66 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate_gpu.cu
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "three_interpolate_cuda_kernel.cuh"
    +
    +void ThreeInterpolateForwardCUDAKernelLauncher(int b, int c, int m, int n,
    +                                               const Tensor points,
    +                                               const Tensor idx,
    +                                               const Tensor weight,
    +                                               Tensor out) {
    +  // points: (B, C, M)
    +  // idx: (B, N, 3)
    +  // weight: (B, N, 3)
    +  // output:
    +  //      out: (B, C, N)
    +
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(n, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      points.scalar_type(), "three_interpolate_forward_cuda_kernel", [&] {
    +        three_interpolate_forward_cuda_kernel
    +            <<>>(
    +                b, c, m, n, points.data_ptr(), idx.data_ptr(),
    +                weight.data_ptr(), out.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void ThreeInterpolateBackwardCUDAKernelLauncher(int b, int c, int n, int m,
    +                                                const Tensor grad_out,
    +                                                const Tensor idx,
    +                                                const Tensor weight,
    +                                                Tensor grad_points) {
    +  // grad_out: (B, C, N)
    +  // weight: (B, N, 3)
    +  // output:
    +  //      grad_points: (B, C, M)
    +
    +  at::cuda::CUDAGuard device_guard(grad_out.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(n, THREADS_PER_BLOCK), c, b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_out.scalar_type(), "three_interpolate_backward_cuda_kernel", [&] {
    +        three_interpolate_backward_cuda_kernel
    +            <<>>(
    +                b, c, n, m, grad_out.data_ptr(), idx.data_ptr(),
    +                weight.data_ptr(), grad_points.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_nn_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_nn_cuda.cu
    new file mode 100644
    index 000000000..91c68829b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/three_nn_cuda.cu
    @@ -0,0 +1,35 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate_gpu.cu
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "three_nn_cuda_kernel.cuh"
    +
    +void ThreeNNForwardCUDAKernelLauncher(int b, int n, int m, const Tensor unknown,
    +                                      const Tensor known, Tensor dist2,
    +                                      Tensor idx) {
    +  // unknown: (B, N, 3)
    +  // known: (B, M, 3)
    +  // output:
    +  //      dist2: (B, N, 3)
    +  //      idx: (B, N, 3)
    +
    +  at::cuda::CUDAGuard device_guard(unknown.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  // blockIdx.x(col), blockIdx.y(row)
    +  dim3 blocks(GET_BLOCKS(n, THREADS_PER_BLOCK), b);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      unknown.scalar_type(), "three_nn_forward_cuda_kernel", [&] {
    +        three_nn_forward_cuda_kernel<<>>(
    +            b, n, m, unknown.data_ptr(), known.data_ptr(),
    +            dist2.data_ptr(), idx.data_ptr());
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/tin_shift_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/tin_shift_cuda.cu
    new file mode 100644
    index 000000000..19c85c76c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/tin_shift_cuda.cu
    @@ -0,0 +1,55 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cuda_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +#include "tin_shift_cuda_kernel.cuh"
    +
    +void TINShiftForwardCUDAKernelLauncher(Tensor input, Tensor shift,
    +                                       Tensor output) {
    +  int output_size = output.numel();
    +  int batch_size = input.size(0);
    +  int t_size = input.size(1);
    +  int channels = input.size(2);
    +  int hw_size = input.size(3);
    +  int group_size = shift.size(1);
    +  int group_channel = channels / group_size;
    +  int num_kernels = batch_size * hw_size * channels;
    +
    +  at::cuda::CUDAGuard device_guard(input.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      input.scalar_type(), "tin_shift_forward_cuda_kernel", [&] {
    +        tin_shift_forward_cuda_kernel
    +            <<>>(
    +                output_size, input.data_ptr(), shift.data_ptr(),
    +                output.data_ptr(), batch_size, channels, t_size,
    +                hw_size, group_size, group_channel);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    +
    +void TINShiftBackwardCUDAKernelLauncher(Tensor grad_output, Tensor shift,
    +                                        Tensor grad_input) {
    +  int output_size = grad_output.numel();
    +  int batch_size = grad_output.size(0);
    +  int t_size = grad_output.size(1);
    +  int channels = grad_output.size(2);
    +  int hw_size = grad_output.size(3);
    +  int group_size = shift.size(1);
    +  int group_channel = channels / group_size;
    +  int num_kernels = batch_size * hw_size * channels;
    +
    +  at::cuda::CUDAGuard device_guard(grad_output.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    +      grad_output.scalar_type(), "tin_shift_backward_cuda_kernel", [&] {
    +        tin_shift_backward_cuda_kernel
    +            <<>>(
    +                output_size, grad_output.data_ptr(),
    +                shift.data_ptr(), grad_input.data_ptr(),
    +                batch_size, channels, t_size, hw_size, group_size,
    +                group_channel);
    +      });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu
    new file mode 100644
    index 000000000..ea2f08820
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/upfirdn2d_kernel.cu
    @@ -0,0 +1,370 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d_kernel.cu
    +// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
    +//
    +// This work is made available under the Nvidia Source Code License-NC.
    +// To view a copy of this license, visit
    +// https://nvlabs.github.io/stylegan2/license.html
    +
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +#include 
    +
    +static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
    +  int c = a / b;
    +
    +  if (c * b > a) {
    +    c--;
    +  }
    +
    +  return c;
    +}
    +
    +struct UpFirDn2DKernelParams {
    +  int up_x;
    +  int up_y;
    +  int down_x;
    +  int down_y;
    +  int pad_x0;
    +  int pad_x1;
    +  int pad_y0;
    +  int pad_y1;
    +
    +  int major_dim;
    +  int in_h;
    +  int in_w;
    +  int minor_dim;
    +  int kernel_h;
    +  int kernel_w;
    +  int out_h;
    +  int out_w;
    +  int loop_major;
    +  int loop_x;
    +};
    +
    +template 
    +__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
    +                                       const scalar_t *kernel,
    +                                       const UpFirDn2DKernelParams p) {
    +  int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
    +  int out_y = minor_idx / p.minor_dim;
    +  minor_idx -= out_y * p.minor_dim;
    +  int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
    +  int major_idx_base = blockIdx.z * p.loop_major;
    +
    +  if (out_x_base >= p.out_w || out_y >= p.out_h ||
    +      major_idx_base >= p.major_dim) {
    +    return;
    +  }
    +
    +  int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
    +  int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
    +  int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
    +  int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
    +
    +  for (int loop_major = 0, major_idx = major_idx_base;
    +       loop_major < p.loop_major && major_idx < p.major_dim;
    +       loop_major++, major_idx++) {
    +    for (int loop_x = 0, out_x = out_x_base;
    +         loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
    +      int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
    +      int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
    +      int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
    +      int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
    +
    +      const scalar_t *x_p =
    +          &input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
    +                 minor_idx];
    +      const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
    +      int x_px = p.minor_dim;
    +      int k_px = -p.up_x;
    +      int x_py = p.in_w * p.minor_dim;
    +      int k_py = -p.up_y * p.kernel_w;
    +
    +      scalar_t v = 0.0f;
    +
    +      for (int y = 0; y < h; y++) {
    +        for (int x = 0; x < w; x++) {
    +          v += static_cast(*x_p) * static_cast(*k_p);
    +          x_p += x_px;
    +          k_p += k_px;
    +        }
    +
    +        x_p += x_py - w * x_px;
    +        k_p += k_py - w * k_px;
    +      }
    +
    +      out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
    +          minor_idx] = v;
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
    +                                 const scalar_t *kernel,
    +                                 const UpFirDn2DKernelParams p) {
    +  const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
    +  const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
    +
    +  __shared__ volatile float sk[kernel_h][kernel_w];
    +  __shared__ volatile float sx[tile_in_h][tile_in_w];
    +
    +  int minor_idx = blockIdx.x;
    +  int tile_out_y = minor_idx / p.minor_dim;
    +  minor_idx -= tile_out_y * p.minor_dim;
    +  tile_out_y *= tile_out_h;
    +  int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
    +  int major_idx_base = blockIdx.z * p.loop_major;
    +
    +  if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
    +      major_idx_base >= p.major_dim) {
    +    return;
    +  }
    +
    +  for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
    +       tap_idx += blockDim.x) {
    +    int ky = tap_idx / kernel_w;
    +    int kx = tap_idx - ky * kernel_w;
    +    scalar_t v = 0.0;
    +
    +    if (kx < p.kernel_w & ky < p.kernel_h) {
    +      v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
    +    }
    +
    +    sk[ky][kx] = v;
    +  }
    +
    +  for (int loop_major = 0, major_idx = major_idx_base;
    +       loop_major < p.loop_major & major_idx < p.major_dim;
    +       loop_major++, major_idx++) {
    +    for (int loop_x = 0, tile_out_x = tile_out_x_base;
    +         loop_x < p.loop_x & tile_out_x < p.out_w;
    +         loop_x++, tile_out_x += tile_out_w) {
    +      int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
    +      int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
    +      int tile_in_x = floor_div(tile_mid_x, up_x);
    +      int tile_in_y = floor_div(tile_mid_y, up_y);
    +
    +      __syncthreads();
    +
    +      for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
    +           in_idx += blockDim.x) {
    +        int rel_in_y = in_idx / tile_in_w;
    +        int rel_in_x = in_idx - rel_in_y * tile_in_w;
    +        int in_x = rel_in_x + tile_in_x;
    +        int in_y = rel_in_y + tile_in_y;
    +
    +        scalar_t v = 0.0;
    +
    +        if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
    +          v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
    +                        p.minor_dim +
    +                    minor_idx];
    +        }
    +
    +        sx[rel_in_y][rel_in_x] = v;
    +      }
    +
    +      __syncthreads();
    +      for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
    +           out_idx += blockDim.x) {
    +        int rel_out_y = out_idx / tile_out_w;
    +        int rel_out_x = out_idx - rel_out_y * tile_out_w;
    +        int out_x = rel_out_x + tile_out_x;
    +        int out_y = rel_out_y + tile_out_y;
    +
    +        int mid_x = tile_mid_x + rel_out_x * down_x;
    +        int mid_y = tile_mid_y + rel_out_y * down_y;
    +        int in_x = floor_div(mid_x, up_x);
    +        int in_y = floor_div(mid_y, up_y);
    +        int rel_in_x = in_x - tile_in_x;
    +        int rel_in_y = in_y - tile_in_y;
    +        int kernel_x = (in_x + 1) * up_x - mid_x - 1;
    +        int kernel_y = (in_y + 1) * up_y - mid_y - 1;
    +
    +        scalar_t v = 0.0;
    +
    +#pragma unroll
    +        for (int y = 0; y < kernel_h / up_y; y++)
    +#pragma unroll
    +          for (int x = 0; x < kernel_w / up_x; x++)
    +            v += sx[rel_in_y + y][rel_in_x + x] *
    +                 sk[kernel_y + y * up_y][kernel_x + x * up_x];
    +
    +        if (out_x < p.out_w & out_y < p.out_h) {
    +          out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
    +              minor_idx] = v;
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +torch::Tensor upfirdn2d_op(const torch::Tensor &input,
    +                           const torch::Tensor &kernel, int up_x, int up_y,
    +                           int down_x, int down_y, int pad_x0, int pad_x1,
    +                           int pad_y0, int pad_y1) {
    +  int curDevice = -1;
    +  cudaGetDevice(&curDevice);
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
    +
    +  UpFirDn2DKernelParams p;
    +
    +  auto x = input.contiguous();
    +  auto k = kernel.contiguous();
    +
    +  p.major_dim = x.size(0);
    +  p.in_h = x.size(1);
    +  p.in_w = x.size(2);
    +  p.minor_dim = x.size(3);
    +  p.kernel_h = k.size(0);
    +  p.kernel_w = k.size(1);
    +  p.up_x = up_x;
    +  p.up_y = up_y;
    +  p.down_x = down_x;
    +  p.down_y = down_y;
    +  p.pad_x0 = pad_x0;
    +  p.pad_x1 = pad_x1;
    +  p.pad_y0 = pad_y0;
    +  p.pad_y1 = pad_y1;
    +
    +  p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
    +            p.down_y;
    +  p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
    +            p.down_x;
    +
    +  auto out =
    +      at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
    +
    +  int mode = -1;
    +
    +  int tile_out_h = -1;
    +  int tile_out_w = -1;
    +
    +  if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
    +      p.kernel_h <= 4 && p.kernel_w <= 4) {
    +    mode = 1;
    +    tile_out_h = 16;
    +    tile_out_w = 64;
    +  }
    +
    +  if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
    +      p.kernel_h <= 3 && p.kernel_w <= 3) {
    +    mode = 2;
    +    tile_out_h = 16;
    +    tile_out_w = 64;
    +  }
    +
    +  if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
    +      p.kernel_h <= 4 && p.kernel_w <= 4) {
    +    mode = 3;
    +    tile_out_h = 16;
    +    tile_out_w = 64;
    +  }
    +
    +  if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
    +      p.kernel_h <= 2 && p.kernel_w <= 2) {
    +    mode = 4;
    +    tile_out_h = 16;
    +    tile_out_w = 64;
    +  }
    +
    +  if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
    +      p.kernel_h <= 4 && p.kernel_w <= 4) {
    +    mode = 5;
    +    tile_out_h = 8;
    +    tile_out_w = 32;
    +  }
    +
    +  if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
    +      p.kernel_h <= 2 && p.kernel_w <= 2) {
    +    mode = 6;
    +    tile_out_h = 8;
    +    tile_out_w = 32;
    +  }
    +
    +  dim3 block_size;
    +  dim3 grid_size;
    +
    +  if (tile_out_h > 0 && tile_out_w > 0) {
    +    p.loop_major = (p.major_dim - 1) / 16384 + 1;
    +    p.loop_x = 1;
    +    block_size = dim3(32 * 8, 1, 1);
    +    grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
    +                     (p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
    +                     (p.major_dim - 1) / p.loop_major + 1);
    +  } else {
    +    p.loop_major = (p.major_dim - 1) / 16384 + 1;
    +    p.loop_x = 4;
    +    block_size = dim3(4, 32, 1);
    +    grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
    +                     (p.out_w - 1) / (p.loop_x * block_size.y) + 1,
    +                     (p.major_dim - 1) / p.loop_major + 1);
    +  }
    +
    +  AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
    +    switch (mode) {
    +      case 1:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      case 2:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      case 3:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      case 4:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      case 5:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      case 6:
    +        upfirdn2d_kernel
    +            <<>>(out.data_ptr(),
    +                                                   x.data_ptr(),
    +                                                   k.data_ptr(), p);
    +
    +        break;
    +
    +      default:
    +        upfirdn2d_kernel_large<<>>(
    +            out.data_ptr(), x.data_ptr(),
    +            k.data_ptr(), p);
    +    }
    +  });
    +
    +  return out;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/voxelization_cuda.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/voxelization_cuda.cu
    new file mode 100644
    index 000000000..f4166b7b7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/cuda/voxelization_cuda.cu
    @@ -0,0 +1,286 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include 
    +#include 
    +
    +#include "pytorch_cuda_helper.hpp"
    +#include "voxelization_cuda_kernel.cuh"
    +
    +int HardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor &points, at::Tensor &voxels, at::Tensor &coors,
    +    at::Tensor &num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3) {
    +  // current version tooks about 0.04s for one frame on cpu
    +  // check device
    +
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  const int num_points = points.size(0);
    +  const int num_features = points.size(1);
    +
    +  const float voxel_x = voxel_size[0];
    +  const float voxel_y = voxel_size[1];
    +  const float voxel_z = voxel_size[2];
    +  const float coors_x_min = coors_range[0];
    +  const float coors_y_min = coors_range[1];
    +  const float coors_z_min = coors_range[2];
    +  const float coors_x_max = coors_range[3];
    +  const float coors_y_max = coors_range[4];
    +  const float coors_z_max = coors_range[5];
    +
    +  const int grid_x = round((coors_x_max - coors_x_min) / voxel_x);
    +  const int grid_y = round((coors_y_max - coors_y_min) / voxel_y);
    +  const int grid_z = round((coors_z_max - coors_z_min) / voxel_z);
    +
    +  // map points to voxel coors
    +  at::Tensor temp_coors =
    +      at::zeros({num_points, NDim}, points.options().dtype(at::kInt));
    +
    +  dim3 grid(std::min(at::cuda::ATenCeilDiv(num_points, 512), 4096));
    +  dim3 block(512);
    +
    +  // 1. link point to corresponding voxel coors
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "hard_voxelize_kernel", ([&] {
    +        dynamic_voxelize_kernel<<>>(
    +            points.contiguous().data_ptr(),
    +            temp_coors.contiguous().data_ptr(), voxel_x, voxel_y, voxel_z,
    +            coors_x_min, coors_y_min, coors_z_min, coors_x_max, coors_y_max,
    +            coors_z_max, grid_x, grid_y, grid_z, num_points, num_features,
    +            NDim);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  // 2. map point to the idx of the corresponding voxel, find duplicate coor
    +  // create some temporary variables
    +  auto point_to_pointidx = -at::ones(
    +      {
    +          num_points,
    +      },
    +      points.options().dtype(at::kInt));
    +  auto point_to_voxelidx = -at::ones(
    +      {
    +          num_points,
    +      },
    +      points.options().dtype(at::kInt));
    +
    +  dim3 map_grid(std::min(at::cuda::ATenCeilDiv(num_points, 512), 4096));
    +  dim3 map_block(512);
    +
    +  AT_DISPATCH_ALL_TYPES(
    +      temp_coors.scalar_type(), "determin_duplicate", ([&] {
    +        point_to_voxelidx_kernel<<>>(
    +            temp_coors.contiguous().data_ptr(),
    +            point_to_voxelidx.contiguous().data_ptr(),
    +            point_to_pointidx.contiguous().data_ptr(), max_points,
    +            max_voxels, num_points, NDim);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  // 3. determine voxel num and voxel's coor index
    +  // make the logic in the CUDA device could accelerate about 10 times
    +  auto coor_to_voxelidx = -at::ones(
    +      {
    +          num_points,
    +      },
    +      points.options().dtype(at::kInt));
    +  auto voxel_num = at::zeros(
    +      {
    +          1,
    +      },
    +      points.options().dtype(at::kInt));  // must be zero from the beginning
    +
    +  AT_DISPATCH_ALL_TYPES(temp_coors.scalar_type(), "determin_duplicate", ([&] {
    +                          determin_voxel_num<<<1, 1, 0, stream>>>(
    +                              num_points_per_voxel.contiguous().data_ptr(),
    +                              point_to_voxelidx.contiguous().data_ptr(),
    +                              point_to_pointidx.contiguous().data_ptr(),
    +                              coor_to_voxelidx.contiguous().data_ptr(),
    +                              voxel_num.contiguous().data_ptr(),
    +                              max_points, max_voxels, num_points);
    +                        }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  // 4. copy point features to voxels
    +  // Step 4 & 5 could be parallel
    +  auto pts_output_size = num_points * num_features;
    +  dim3 cp_grid(std::min(at::cuda::ATenCeilDiv(pts_output_size, 512), 4096));
    +  dim3 cp_block(512);
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "assign_point_to_voxel", ([&] {
    +        assign_point_to_voxel<<>>(
    +            pts_output_size, points.contiguous().data_ptr(),
    +            point_to_voxelidx.contiguous().data_ptr(),
    +            coor_to_voxelidx.contiguous().data_ptr(),
    +            voxels.contiguous().data_ptr(), max_points, num_features,
    +            num_points, NDim);
    +      }));
    +  //   cudaDeviceSynchronize();
    +  //   AT_CUDA_CHECK(cudaGetLastError());
    +
    +  // 5. copy coors of each voxels
    +  auto coors_output_size = num_points * NDim;
    +  dim3 coors_cp_grid(
    +      std::min(at::cuda::ATenCeilDiv(coors_output_size, 512), 4096));
    +  dim3 coors_cp_block(512);
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "assign_point_to_voxel", ([&] {
    +        assign_voxel_coors
    +            <<>>(
    +                coors_output_size, temp_coors.contiguous().data_ptr(),
    +                point_to_voxelidx.contiguous().data_ptr(),
    +                coor_to_voxelidx.contiguous().data_ptr(),
    +                coors.contiguous().data_ptr(), num_points, NDim);
    +      }));
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +
    +  auto voxel_num_cpu = voxel_num.to(at::kCPU);
    +  int voxel_num_int = voxel_num_cpu.data_ptr()[0];
    +
    +  return voxel_num_int;
    +}
    +
    +int NondeterministicHardVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor &points, at::Tensor &voxels, at::Tensor &coors,
    +    at::Tensor &num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3) {
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  const int num_points = points.size(0);
    +  const int num_features = points.size(1);
    +
    +  if (num_points == 0) return 0;
    +
    +  dim3 blocks(
    +      std::min(at::cuda::ATenCeilDiv(num_points, THREADS_PER_BLOCK), 4096));
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  const float voxel_x = voxel_size[0];
    +  const float voxel_y = voxel_size[1];
    +  const float voxel_z = voxel_size[2];
    +  const float coors_x_min = coors_range[0];
    +  const float coors_y_min = coors_range[1];
    +  const float coors_z_min = coors_range[2];
    +  const float coors_x_max = coors_range[3];
    +  const float coors_y_max = coors_range[4];
    +  const float coors_z_max = coors_range[5];
    +
    +  const int grid_x = round((coors_x_max - coors_x_min) / voxel_x);
    +  const int grid_y = round((coors_y_max - coors_y_min) / voxel_y);
    +  const int grid_z = round((coors_z_max - coors_z_min) / voxel_z);
    +
    +  // map points to voxel coors
    +  at::Tensor temp_coors =
    +      at::zeros({num_points, NDim}, points.options().dtype(at::kInt));
    +
    +  // 1. link point to corresponding voxel coors
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "hard_voxelize_kernel", ([&] {
    +        dynamic_voxelize_kernel<<>>(
    +            points.contiguous().data_ptr(),
    +            temp_coors.contiguous().data_ptr(), voxel_x, voxel_y, voxel_z,
    +            coors_x_min, coors_y_min, coors_z_min, coors_x_max, coors_y_max,
    +            coors_z_max, grid_x, grid_y, grid_z, num_points, num_features,
    +            NDim);
    +      }));
    +
    +  at::Tensor coors_map;
    +  at::Tensor reduce_count;
    +
    +  auto coors_clean = temp_coors.masked_fill(temp_coors.lt(0).any(-1, true), -1);
    +
    +  std::tie(temp_coors, coors_map, reduce_count) =
    +      at::unique_dim(coors_clean, 0, true, true, false);
    +
    +  if (temp_coors[0][0].lt(0).item()) {
    +    // the first element of temp_coors is (-1,-1,-1) and should be removed
    +    temp_coors = temp_coors.slice(0, 1);
    +    coors_map = coors_map - 1;
    +  }
    +
    +  int num_coors = temp_coors.size(0);
    +  temp_coors = temp_coors.to(at::kInt);
    +  coors_map = coors_map.to(at::kInt);
    +
    +  at::Tensor coors_count = at::zeros({1}, coors_map.options());
    +  at::Tensor coors_order = at::empty({num_coors}, coors_map.options());
    +  at::Tensor pts_id = at::zeros({num_points}, coors_map.options());
    +  reduce_count = at::zeros({num_coors}, coors_map.options());
    +
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "get_assign_pos", ([&] {
    +        nondeterministic_get_assign_pos<<>>(
    +            num_points, coors_map.contiguous().data_ptr(),
    +            pts_id.contiguous().data_ptr(),
    +            coors_count.contiguous().data_ptr(),
    +            reduce_count.contiguous().data_ptr(),
    +            coors_order.contiguous().data_ptr());
    +      }));
    +
    +  AT_DISPATCH_ALL_TYPES(
    +      points.scalar_type(), "assign_point_to_voxel", ([&] {
    +        nondeterministic_assign_point_voxel
    +            <<>>(
    +                num_points, points.contiguous().data_ptr(),
    +                coors_map.contiguous().data_ptr(),
    +                pts_id.contiguous().data_ptr(),
    +                temp_coors.contiguous().data_ptr(),
    +                reduce_count.contiguous().data_ptr(),
    +                coors_order.contiguous().data_ptr(),
    +                voxels.contiguous().data_ptr(),
    +                coors.contiguous().data_ptr(),
    +                num_points_per_voxel.contiguous().data_ptr(),
    +                max_voxels, max_points, num_features, NDim);
    +      }));
    +  AT_CUDA_CHECK(cudaGetLastError());
    +  return max_voxels < num_coors ? max_voxels : num_coors;
    +}
    +
    +void DynamicVoxelizeForwardCUDAKernelLauncher(
    +    const at::Tensor &points, at::Tensor &coors,
    +    const std::vector voxel_size, const std::vector coors_range,
    +    const int NDim = 3) {
    +  // current version tooks about 0.04s for one frame on cpu
    +  // check device
    +
    +  at::cuda::CUDAGuard device_guard(points.device());
    +  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    +
    +  const int num_points = points.size(0);
    +  const int num_features = points.size(1);
    +
    +  const float voxel_x = voxel_size[0];
    +  const float voxel_y = voxel_size[1];
    +  const float voxel_z = voxel_size[2];
    +  const float coors_x_min = coors_range[0];
    +  const float coors_y_min = coors_range[1];
    +  const float coors_z_min = coors_range[2];
    +  const float coors_x_max = coors_range[3];
    +  const float coors_y_max = coors_range[4];
    +  const float coors_z_max = coors_range[5];
    +
    +  const int grid_x = round((coors_x_max - coors_x_min) / voxel_x);
    +  const int grid_y = round((coors_y_max - coors_y_min) / voxel_y);
    +  const int grid_z = round((coors_z_max - coors_z_min) / voxel_z);
    +
    +  const int col_blocks = at::cuda::ATenCeilDiv(num_points, THREADS_PER_BLOCK);
    +  dim3 blocks(col_blocks);
    +  dim3 threads(THREADS_PER_BLOCK);
    +
    +  AT_DISPATCH_ALL_TYPES(points.scalar_type(), "dynamic_voxelize_kernel", [&] {
    +    dynamic_voxelize_kernel<<>>(
    +        points.contiguous().data_ptr(),
    +        coors.contiguous().data_ptr(), voxel_x, voxel_y, voxel_z,
    +        coors_x_min, coors_y_min, coors_z_min, coors_x_max, coors_y_max,
    +        coors_z_max, grid_x, grid_y, grid_z, num_points, num_features, NDim);
    +  });
    +
    +  AT_CUDA_CHECK(cudaGetLastError());
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_conv.cpp
    new file mode 100644
    index 000000000..86690b939
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_conv.cpp
    @@ -0,0 +1,517 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor data_col) {
    +  DISPATCH_DEVICE_IMPL(deformable_im2col_impl, data_im, data_offset, channels,
    +                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
    +                       stride_w, dilation_h, dilation_w, parallel_imgs,
    +                       deformable_group, data_col);
    +}
    +
    +void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
    +                            const int channels, const int height,
    +                            const int width, const int ksize_h,
    +                            const int ksize_w, const int pad_h, const int pad_w,
    +                            const int stride_h, const int stride_w,
    +                            const int dilation_h, const int dilation_w,
    +                            const int parallel_imgs, const int deformable_group,
    +                            Tensor grad_im) {
    +  DISPATCH_DEVICE_IMPL(deformable_col2im_impl, data_col, data_offset, channels,
    +                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
    +                       stride_w, dilation_h, dilation_w, parallel_imgs,
    +                       deformable_group, grad_im);
    +}
    +
    +void deformable_col2im_coord_impl(
    +    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    +    const int height, const int width, const int ksize_h, const int ksize_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int parallel_imgs,
    +    const int deformable_group, Tensor grad_offset) {
    +  DISPATCH_DEVICE_IMPL(deformable_col2im_coord_impl, data_col, data_im,
    +                       data_offset, channels, height, width, ksize_h, ksize_w,
    +                       pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
    +                       parallel_imgs, deformable_group, grad_offset);
    +}
    +
    +void deform_conv_shape_check(at::Tensor input, at::Tensor offset,
    +                             at::Tensor *gradOutput, at::Tensor weight, int kH,
    +                             int kW, int dH, int dW, int padH, int padW,
    +                             int dilationH, int dilationW, int group,
    +                             int deformable_group) {
    +  TORCH_CHECK(
    +      weight.ndimension() == 4,
    +      "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, but got: %s",
    +      weight.ndimension());
    +
    +  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
    +
    +  TORCH_CHECK(kW > 0 && kH > 0,
    +              "kernel size should be greater than zero, but got kH: %d kW: %d",
    +              kH, kW);
    +
    +  TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
    +              "kernel size should be consistent with weight, ",
    +              "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d",
    +              kH, kW, weight.size(2), weight.size(3));
    +
    +  TORCH_CHECK(dW > 0 && dH > 0,
    +              "stride should be greater than zero, but got dH: %d dW: %d", dH,
    +              dW);
    +
    +  TORCH_CHECK(
    +      dilationW > 0 && dilationH > 0,
    +      "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
    +      dilationH, dilationW);
    +
    +  int ndim = input.ndimension();
    +  int dimf = 0;
    +  int dimh = 1;
    +  int dimw = 2;
    +
    +  if (ndim == 4) {
    +    dimf++;
    +    dimh++;
    +    dimw++;
    +  }
    +
    +  TORCH_CHECK(ndim == 3 || ndim == 4,
    +              "3D or 4D input tensor expected but got: %s", ndim);
    +
    +  long nInputPlane = weight.size(1) * group;
    +  long inputHeight = input.size(dimh);
    +  long inputWidth = input.size(dimw);
    +  long nOutputPlane = weight.size(0);
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +
    +  TORCH_CHECK(nInputPlane % deformable_group == 0,
    +              "input channels must divide deformable group size");
    +
    +  if (outputWidth < 1 || outputHeight < 1)
    +    AT_ERROR(
    +        "Given input size: (%ld x %ld x %ld). "
    +        "Calculated output size: (%ld x %ld x %ld). Output size is too small",
    +        nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
    +        outputWidth);
    +
    +  TORCH_CHECK(input.size(1) == nInputPlane,
    +              "invalid number of input planes, expected: %d, but got: %d",
    +              nInputPlane, input.size(1));
    +
    +  TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
    +              "input image is smaller than kernel");
    +
    +  TORCH_CHECK(
    +      (offset.size(2) == outputHeight && offset.size(3) == outputWidth),
    +      "invalid spatial size of offset, expected height: %d width: %d, but "
    +      "got height: %d width: %d",
    +      outputHeight, outputWidth, offset.size(2), offset.size(3));
    +
    +  TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
    +              "invalid number of channels of offset");
    +
    +  if (gradOutput != NULL) {
    +    TORCH_CHECK(
    +        gradOutput->size(dimf) == nOutputPlane,
    +        "invalid number of gradOutput planes, expected: %d, but got: %d",
    +        nOutputPlane, gradOutput->size(dimf));
    +
    +    TORCH_CHECK(
    +        (gradOutput->size(dimh) == outputHeight &&
    +         gradOutput->size(dimw) == outputWidth),
    +        "invalid size of gradOutput, expected height: %d width: %d , but "
    +        "got height: %d width: %d",
    +        outputHeight, outputWidth, gradOutput->size(dimh),
    +        gradOutput->size(dimw));
    +  }
    +}
    +
    +void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
    +                         Tensor output, Tensor columns, Tensor ones, int kW,
    +                         int kH, int dW, int dH, int padW, int padH,
    +                         int dilationW, int dilationH, int group,
    +                         int deformable_group, int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(weight);
    +    CHECK_CUDA_INPUT(output);
    +    CHECK_CUDA_INPUT(columns);
    +    CHECK_CUDA_INPUT(ones);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(weight);
    +    CHECK_CPU_INPUT(output);
    +    CHECK_CPU_INPUT(columns);
    +    CHECK_CPU_INPUT(ones);
    +  }
    +
    +  deform_conv_shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH,
    +                          padW, dilationH, dilationW, group, deformable_group);
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input.unsqueeze_(0);
    +    offset.unsqueeze_(0);
    +  }
    +
    +  // todo: assert batchsize dividable by im2col_step
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = weight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
    +
    +  output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
    +                        outputHeight, outputWidth});
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
    +    ones = at::ones({outputHeight, outputWidth}, input.options());
    +  }
    +
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  Tensor output_buffer = at::zeros({batchSize / im2col_step, nOutputPlane,
    +                                    im2col_step * outputHeight, outputWidth},
    +                                   output.options());
    +
    +  output_buffer = output_buffer.view(
    +      {output_buffer.size(0), group, output_buffer.size(1) / group,
    +       output_buffer.size(2), output_buffer.size(3)});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group, columns);
    +
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      output_buffer[elt][g] = output_buffer[elt][g]
    +                                  .flatten(1)
    +                                  .addmm_(weight[g].flatten(1), columns[g])
    +                                  .view_as(output_buffer[elt][g]);
    +    }
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +  }
    +
    +  output_buffer = output_buffer.view(
    +      {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
    +       output_buffer.size(3), output_buffer.size(4)});
    +
    +  output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
    +                                      im2col_step, outputHeight, outputWidth});
    +  output_buffer.transpose_(1, 2);
    +  output.copy_(output_buffer);
    +  output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    output = output.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    +  }
    +}
    +
    +void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
    +                                Tensor gradInput, Tensor gradOffset,
    +                                Tensor weight, Tensor columns, int kW, int kH,
    +                                int dW, int dH, int padW, int padH,
    +                                int dilationW, int dilationH, int group,
    +                                int deformable_group, int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(gradOutput);
    +    CHECK_CUDA_INPUT(gradInput);
    +    CHECK_CUDA_INPUT(gradOffset);
    +    CHECK_CUDA_INPUT(weight);
    +    CHECK_CUDA_INPUT(columns);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(gradOutput);
    +    CHECK_CPU_INPUT(gradInput);
    +    CHECK_CPU_INPUT(gradOffset);
    +    CHECK_CPU_INPUT(weight);
    +    CHECK_CPU_INPUT(columns);
    +  }
    +  deform_conv_shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW,
    +                          padH, padW, dilationH, dilationW, group,
    +                          deformable_group);
    +
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input = input.view({1, input.size(0), input.size(1), input.size(2)});
    +    offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
    +    gradOutput = gradOutput.view(
    +        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
    +  }
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = weight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
    +  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  // change order of grad output
    +  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
    +                                nOutputPlane, outputHeight, outputWidth});
    +  gradOutput.transpose_(1, 2);
    +
    +  gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                              inputHeight, inputWidth});
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
    +                                deformable_group * 2 * kH * kW, outputHeight,
    +                                outputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    // divide into groups
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +    gradOutput = gradOutput.view(
    +        {gradOutput.size(0), group, gradOutput.size(1) / group,
    +         gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
    +
    +    for (int g = 0; g < group; g++) {
    +      columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
    +                                     gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    gradOutput = gradOutput.view(
    +        {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
    +         gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
    +
    +    deformable_col2im_coord_impl(columns, input[elt], offset[elt], nInputPlane,
    +                                 inputHeight, inputWidth, kH, kW, padH, padW,
    +                                 dH, dW, dilationH, dilationW, im2col_step,
    +                                 deformable_group, gradOffset[elt]);
    +
    +    deformable_col2im_impl(columns, offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group,
    +                           gradInput[elt]);
    +
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +  }
    +
    +  gradOutput.transpose_(1, 2);
    +  gradOutput =
    +      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  gradOffset = gradOffset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +    gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
    +    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    +    gradOffset =
    +        gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
    +  }
    +}
    +
    +void deform_conv_backward_parameters(Tensor input, Tensor offset,
    +                                     Tensor gradOutput, Tensor gradWeight,
    +                                     Tensor columns, Tensor ones, int kW,
    +                                     int kH, int dW, int dH, int padW, int padH,
    +                                     int dilationW, int dilationH, int group,
    +                                     int deformable_group, float scale,
    +                                     int im2col_step) {
    +  if (input.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    CHECK_CUDA_INPUT(input);
    +    CHECK_CUDA_INPUT(offset);
    +    CHECK_CUDA_INPUT(gradOutput);
    +    CHECK_CUDA_INPUT(gradWeight);
    +    CHECK_CUDA_INPUT(columns);
    +    CHECK_CUDA_INPUT(ones);
    +#else
    +    AT_ERROR("DeformConv is not compiled with GPU support");
    +#endif
    +  } else {
    +    CHECK_CPU_INPUT(input);
    +    CHECK_CPU_INPUT(offset);
    +    CHECK_CPU_INPUT(gradOutput);
    +    CHECK_CPU_INPUT(gradWeight);
    +    CHECK_CPU_INPUT(columns);
    +    CHECK_CPU_INPUT(ones);
    +  }
    +
    +  deform_conv_shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH,
    +                          dW, padH, padW, dilationH, dilationW, group,
    +                          deformable_group);
    +  at::DeviceGuard guard(input.device());
    +
    +  int batch = 1;
    +
    +  if (input.ndimension() == 3) {
    +    // Force batch
    +    batch = 0;
    +    input = input.view(
    +        at::IntList({1, input.size(0), input.size(1), input.size(2)}));
    +    gradOutput = gradOutput.view(
    +        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
    +  }
    +
    +  long batchSize = input.size(0);
    +  long nInputPlane = input.size(1);
    +  long inputHeight = input.size(2);
    +  long inputWidth = input.size(3);
    +
    +  long nOutputPlane = gradWeight.size(0);
    +
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
    +
    +  columns = at::zeros(
    +      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
    +      input.options());
    +
    +  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
    +                                nOutputPlane, outputHeight, outputWidth});
    +  gradOutput.transpose_(1, 2);
    +
    +  Tensor gradOutputBuffer = at::zeros_like(gradOutput);
    +  gradOutputBuffer =
    +      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
    +                             outputHeight, outputWidth});
    +  gradOutputBuffer = gradOutputBuffer.contiguous();
    +  gradOutputBuffer.copy_(gradOutput);
    +  gradOutputBuffer =
    +      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
    +                             im2col_step * outputHeight, outputWidth});
    +
    +  gradOutput.transpose_(1, 2);
    +  gradOutput =
    +      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
    +
    +  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
    +                      inputHeight, inputWidth});
    +  offset =
    +      offset.view({batchSize / im2col_step, im2col_step,
    +                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
    +                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
    +                           dilationW, im2col_step, deformable_group, columns);
    +
    +    // divide into group
    +    gradOutputBuffer = gradOutputBuffer.view(
    +        {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
    +         gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    gradWeight =
    +        gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
    +                         gradWeight.size(2), gradWeight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      gradWeight[g] = gradWeight[g]
    +                          .flatten(1)
    +                          .addmm_(gradOutputBuffer[elt][g].flatten(1),
    +                                  columns[g].transpose(1, 0), 1.0, scale)
    +                          .view_as(gradWeight[g]);
    +    }
    +    gradOutputBuffer = gradOutputBuffer.view(
    +        {gradOutputBuffer.size(0),
    +         gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
    +         gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
    +                                  gradWeight.size(2), gradWeight.size(3),
    +                                  gradWeight.size(4)});
    +  }
    +
    +  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
    +  offset = offset.view(
    +      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
    +
    +  if (batch == 0) {
    +    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    +    input = input.view({nInputPlane, inputHeight, inputWidth});
    +  }
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_roi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_roi_pool.cpp
    new file mode 100644
    index 000000000..4fb78a96e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/deform_roi_pool.cpp
    @@ -0,0 +1,42 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  DISPATCH_DEVICE_IMPL(deform_roi_pool_forward_impl, input, rois, offset,
    +                       output, pooled_height, pooled_width, spatial_scale,
    +                       sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma) {
    +  DISPATCH_DEVICE_IMPL(deform_roi_pool_backward_impl, grad_output, input, rois,
    +                       offset, grad_input, grad_offset, pooled_height,
    +                       pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_forward(Tensor input, Tensor rois, Tensor offset,
    +                             Tensor output, int pooled_height, int pooled_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             float gamma) {
    +  deform_roi_pool_forward_impl(input, rois, offset, output, pooled_height,
    +                               pooled_width, spatial_scale, sampling_ratio,
    +                               gamma);
    +}
    +
    +void deform_roi_pool_backward(Tensor grad_output, Tensor input, Tensor rois,
    +                              Tensor offset, Tensor grad_input,
    +                              Tensor grad_offset, int pooled_height,
    +                              int pooled_width, float spatial_scale,
    +                              int sampling_ratio, float gamma) {
    +  deform_roi_pool_backward_impl(grad_output, input, rois, offset, grad_input,
    +                                grad_offset, pooled_height, pooled_width,
    +                                spatial_scale, sampling_ratio, gamma);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/diff_iou_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/diff_iou_rotated.cpp
    new file mode 100644
    index 000000000..2361b7fbe
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/diff_iou_rotated.cpp
    @@ -0,0 +1,14 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor diff_iou_rotated_sort_vertices_forward_impl(Tensor vertices, Tensor mask,
    +                                                   Tensor num_valid) {
    +  return DISPATCH_DEVICE_IMPL(diff_iou_rotated_sort_vertices_forward_impl,
    +                              vertices, mask, num_valid);
    +}
    +
    +Tensor diff_iou_rotated_sort_vertices_forward(Tensor vertices, Tensor mask,
    +                                              Tensor num_valid) {
    +  return diff_iou_rotated_sort_vertices_forward_impl(vertices, mask, num_valid);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/focal_loss.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/focal_loss.cpp
    new file mode 100644
    index 000000000..ed0e21865
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/focal_loss.cpp
    @@ -0,0 +1,53 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, input, target, weight,
    +                       output, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, input, target, weight,
    +                       grad_input, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha) {
    +  DISPATCH_DEVICE_IMPL(softmax_focal_loss_forward_impl, input, target, weight,
    +                       output, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha) {
    +  DISPATCH_DEVICE_IMPL(softmax_focal_loss_backward_impl, input, target, weight,
    +                       buff, grad_input, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha) {
    +  sigmoid_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor grad_input, float gamma, float alpha) {
    +  sigmoid_focal_loss_backward_impl(input, target, weight, grad_input, gamma,
    +                                   alpha);
    +}
    +
    +void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha) {
    +  softmax_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
    +}
    +
    +void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor buff, Tensor grad_input, float gamma,
    +                                 float alpha) {
    +  softmax_focal_loss_backward_impl(input, target, weight, buff, grad_input,
    +                                   gamma, alpha);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/furthest_point_sample.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/furthest_point_sample.cpp
    new file mode 100644
    index 000000000..9c7098acd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/furthest_point_sample.cpp
    @@ -0,0 +1,34 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/sampling.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void furthest_point_sampling_forward_impl(Tensor points_tensor,
    +                                          Tensor temp_tensor, Tensor idx_tensor,
    +                                          int b, int n, int m) {
    +  DISPATCH_DEVICE_IMPL(furthest_point_sampling_forward_impl, points_tensor,
    +                       temp_tensor, idx_tensor, b, n, m);
    +}
    +
    +void furthest_point_sampling_with_dist_forward_impl(Tensor points_tensor,
    +                                                    Tensor temp_tensor,
    +                                                    Tensor idx_tensor, int b,
    +                                                    int n, int m) {
    +  DISPATCH_DEVICE_IMPL(furthest_point_sampling_with_dist_forward_impl,
    +                       points_tensor, temp_tensor, idx_tensor, b, n, m);
    +}
    +
    +void furthest_point_sampling_forward(Tensor points_tensor, Tensor temp_tensor,
    +                                     Tensor idx_tensor, int b, int n, int m) {
    +  furthest_point_sampling_forward_impl(points_tensor, temp_tensor, idx_tensor,
    +                                       b, n, m);
    +}
    +
    +void furthest_point_sampling_with_dist_forward(Tensor points_tensor,
    +                                               Tensor temp_tensor,
    +                                               Tensor idx_tensor, int b, int n,
    +                                               int m) {
    +  furthest_point_sampling_with_dist_forward_impl(points_tensor, temp_tensor,
    +                                                 idx_tensor, b, n, m);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_bias_leakyrelu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_bias_leakyrelu.cpp
    new file mode 100644
    index 000000000..8d411c9d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_bias_leakyrelu.cpp
    @@ -0,0 +1,119 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act.cpp
    +
    +/*
    +Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +
    +NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +Augmentation (ADA)
    +=======================================================================
    +
    +1. Definitions
    +
    +"Licensor" means any person or entity that distributes its Work.
    +
    +"Software" means the original work of authorship made available under
    +this License.
    +
    +"Work" means the Software and any additions to or derivative works of
    +the Software that are made available under this License.
    +
    +The terms "reproduce," "reproduction," "derivative works," and
    +"distribution" have the meaning as provided under U.S. copyright law;
    +provided, however, that for the purposes of this License, derivative
    +works shall not include works that remain separable from, or merely
    +link (or bind by name) to the interfaces of, the Work.
    +
    +Works, including the Software, are "made available" under this License
    +by including in or with the Work either (a) a copyright notice
    +referencing the applicability of this License to the Work, or (b) a
    +copy of this License.
    +
    +2. License Grants
    +
    +    2.1 Copyright Grant. Subject to the terms and conditions of this
    +    License, each Licensor grants to you a perpetual, worldwide,
    +    non-exclusive, royalty-free, copyright license to reproduce,
    +    prepare derivative works of, publicly display, publicly perform,
    +    sublicense and distribute its Work and any resulting derivative
    +    works in any form.
    +
    +3. Limitations
    +
    +    3.1 Redistribution. You may reproduce or distribute the Work only
    +    if (a) you do so under this License, (b) you include a complete
    +    copy of this License with your distribution, and (c) you retain
    +    without modification any copyright, patent, trademark, or
    +    attribution notices that are present in the Work.
    +
    +    3.2 Derivative Works. You may specify that additional or different
    +    terms apply to the use, reproduction, and distribution of your
    +    derivative works of the Work ("Your Terms") only if (a) Your Terms
    +    provide that the use limitation in Section 3.3 applies to your
    +    derivative works, and (b) you identify the specific derivative
    +    works that are subject to Your Terms. Notwithstanding Your Terms,
    +    this License (including the redistribution requirements in Section
    +    3.1) will continue to apply to the Work itself.
    +
    +    3.3 Use Limitation. The Work and any derivative works thereof only
    +    may be used or intended for use non-commercially. Notwithstanding
    +    the foregoing, NVIDIA and its affiliates may use the Work and any
    +    derivative works commercially. As used herein, "non-commercially"
    +    means for research or evaluation purposes only.
    +
    +    3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +    against any Licensor (including any claim, cross-claim or
    +    counterclaim in a lawsuit) to enforce any patents that you allege
    +    are infringed by any Work, then your rights under this License from
    +    such Licensor (including the grant in Section 2.1) will terminate
    +    immediately.
    +
    +    3.5 Trademarks. This License does not grant any rights to use any
    +    Licensor’s or its affiliates’ names, logos, or trademarks, except
    +    as necessary to reproduce the notices described in this License.
    +
    +    3.6 Termination. If you violate any term of this License, then your
    +    rights under this License (including the grant in Section 2.1) will
    +    terminate immediately.
    +
    +4. Disclaimer of Warranty.
    +
    +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +THIS LICENSE.
    +
    +5. Limitation of Liability.
    +
    +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +THE POSSIBILITY OF SUCH DAMAGES.
    +
    +=======================================================================
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +torch::Tensor fused_bias_leakyrelu_op_impl(const torch::Tensor& input,
    +                                           const torch::Tensor& bias,
    +                                           const torch::Tensor& refer, int act,
    +                                           int grad, float alpha, float scale) {
    +  return DISPATCH_DEVICE_IMPL(fused_bias_leakyrelu_op_impl, input, bias, refer,
    +                              act, grad, alpha, scale);
    +}
    +
    +torch::Tensor fused_bias_leakyrelu(const torch::Tensor& input,
    +                                   const torch::Tensor& bias,
    +                                   const torch::Tensor& refer, int act,
    +                                   int grad, float alpha, float scale) {
    +  return fused_bias_leakyrelu_op_impl(input, bias, refer, act, grad, alpha,
    +                                      scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_spconv_ops.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_spconv_ops.cpp
    new file mode 100644
    index 000000000..54073a54e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/fused_spconv_ops.cpp
    @@ -0,0 +1,34 @@
    +// Copyright 2019 Yan Yan
    +//
    +// Licensed under the Apache License, Version 2.0 (the "License");
    +// you may not use this file except in compliance with the License.
    +// You may obtain a copy of the License at
    +//
    +//     http://www.apache.org/licenses/LICENSE-2.0
    +//
    +// Unless required by applicable law or agreed to in writing, software
    +// distributed under the License is distributed on an "AS IS" BASIS,
    +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    +// See the License for the specific language governing permissions and
    +// limitations under the License.
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +torch::Tensor fused_indice_conv_batchnorm_forward_impl(
    +    torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
    +    torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t numActOut,
    +    int64_t _inverse, int64_t _subM) {
    +  return DISPATCH_DEVICE_IMPL(fused_indice_conv_batchnorm_forward_impl,
    +                              features, filters, bias, indicePairs, indiceNum,
    +                              numActOut, _inverse, _subM);
    +}
    +
    +torch::Tensor fused_indice_conv_batchnorm_forward(
    +    torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
    +    torch::Tensor indicePairs, torch::Tensor indiceNum, int64_t numActOut,
    +    int64_t _inverse, int64_t _subM) {
    +  return fused_indice_conv_batchnorm_forward_impl(features, filters, bias,
    +                                                  indicePairs, indiceNum,
    +                                                  numActOut, _inverse, _subM);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/gather_points.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/gather_points.cpp
    new file mode 100644
    index 000000000..b8fb02002
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/gather_points.cpp
    @@ -0,0 +1,30 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void gather_points_forward_impl(int b, int c, int n, int npoints,
    +                                const Tensor points, const Tensor idx,
    +                                Tensor out) {
    +  DISPATCH_DEVICE_IMPL(gather_points_forward_impl, b, c, n, npoints, points,
    +                       idx, out);
    +}
    +
    +void gather_points_backward_impl(int b, int c, int n, int npoints,
    +                                 const Tensor grad_out, const Tensor idx,
    +                                 Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(gather_points_backward_impl, b, c, n, npoints, grad_out,
    +                       idx, grad_points);
    +}
    +
    +void gather_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                           Tensor out_tensor, int b, int c, int n,
    +                           int npoints) {
    +  gather_points_forward_impl(b, c, n, npoints, points_tensor, idx_tensor,
    +                             out_tensor);
    +}
    +
    +void gather_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                            Tensor grad_points_tensor, int b, int c, int n,
    +                            int npoints) {
    +  gather_points_backward_impl(b, c, n, npoints, grad_out_tensor, idx_tensor,
    +                              grad_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/group_points.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/group_points.cpp
    new file mode 100644
    index 000000000..850deed98
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/group_points.cpp
    @@ -0,0 +1,76 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void group_points_forward_impl(int b, int c, int n, int npoints, int nsample,
    +                               const Tensor points, const Tensor idx,
    +                               Tensor out) {
    +  DISPATCH_DEVICE_IMPL(group_points_forward_impl, b, c, n, npoints, nsample,
    +                       points, idx, out);
    +}
    +
    +void group_points_backward_impl(int b, int c, int n, int npoints, int nsample,
    +                                const Tensor grad_out, const Tensor idx,
    +                                Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(group_points_backward_impl, b, c, n, npoints, nsample,
    +                       grad_out, idx, grad_points);
    +}
    +
    +void group_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                          Tensor out_tensor, int b, int c, int n, int npoints,
    +                          int nsample) {
    +  DISPATCH_DEVICE_IMPL(group_points_forward_impl, b, c, n, npoints, nsample,
    +                       points_tensor, idx_tensor, out_tensor);
    +}
    +
    +void group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                           Tensor grad_points_tensor, int b, int c, int n,
    +                           int npoints, int nsample) {
    +  group_points_backward_impl(b, c, n, npoints, nsample, grad_out_tensor,
    +                             idx_tensor, grad_points_tensor);
    +}
    +
    +void stack_group_points_backward_impl(int b, int c, int m, int n, int nsample,
    +                                      const Tensor grad_out_tensor,
    +                                      const Tensor idx_tensor,
    +                                      const Tensor idx_batch_cnt_tensor,
    +                                      const Tensor features_batch_cnt_tensor,
    +                                      Tensor grad_features_tensor) {
    +  DISPATCH_DEVICE_IMPL(stack_group_points_backward_impl, b, c, m, n, nsample,
    +                       grad_out_tensor, idx_tensor, idx_batch_cnt_tensor,
    +                       features_batch_cnt_tensor, grad_features_tensor);
    +}
    +
    +void stack_group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                 Tensor idx_batch_cnt_tensor,
    +                                 Tensor features_batch_cnt_tensor,
    +                                 Tensor grad_features_tensor, int b, int c,
    +                                 int m, int n, int nsample) {
    +  stack_group_points_backward_impl(
    +      b, c, m, n, nsample, grad_out_tensor, idx_tensor, idx_batch_cnt_tensor,
    +      features_batch_cnt_tensor, grad_features_tensor);
    +}
    +
    +void stack_group_points_forward_impl(int b, int c, int m, int nsample,
    +                                     const Tensor features_tensor,
    +                                     const Tensor features_batch_cnt_tensor,
    +                                     const Tensor idx_tensor,
    +                                     const Tensor idx_batch_cnt_tensor,
    +                                     Tensor out_tensor) {
    +  DISPATCH_DEVICE_IMPL(stack_group_points_forward_impl, b, c, m, nsample,
    +                       features_tensor, features_batch_cnt_tensor, idx_tensor,
    +                       idx_batch_cnt_tensor, out_tensor);
    +}
    +
    +void stack_group_points_forward(Tensor features_tensor,
    +                                Tensor features_batch_cnt_tensor,
    +                                Tensor idx_tensor, Tensor idx_batch_cnt_tensor,
    +                                Tensor out_tensor, int b, int c, int m,
    +                                int nsample) {
    +  DISPATCH_DEVICE_IMPL(stack_group_points_forward_impl, b, c, m, nsample,
    +                       features_tensor, features_batch_cnt_tensor, idx_tensor,
    +                       idx_batch_cnt_tensor, out_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/info.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/info.cpp
    new file mode 100644
    index 000000000..a4cc41861
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/info.cpp
    @@ -0,0 +1,65 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/vision.cpp
    +#include "pytorch_cpp_helper.hpp"
    +
    +#ifdef MMCV_WITH_CUDA
    +#ifdef MMCV_WITH_HIP
    +#include 
    +int get_hiprt_version() {
    +  int runtimeVersion;
    +  hipRuntimeGetVersion(&runtimeVersion);
    +  return runtimeVersion;
    +}
    +#else
    +#include 
    +int get_cudart_version() { return CUDART_VERSION; }
    +#endif
    +#endif
    +
    +std::string get_compiling_cuda_version() {
    +#ifdef MMCV_WITH_CUDA
    +#ifndef MMCV_WITH_HIP
    +  std::ostringstream oss;
    +  // copied from
    +  // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231
    +  auto printCudaStyleVersion = [&](int v) {
    +    oss << (v / 1000) << "." << (v / 10 % 100);
    +    if (v % 10 != 0) {
    +      oss << "." << (v % 10);
    +    }
    +  };
    +  printCudaStyleVersion(get_cudart_version());
    +  return oss.str();
    +#else
    +  std::ostringstream oss;
    +  oss << get_hiprt_version();
    +  return oss.str();
    +#endif
    +#else
    +  return std::string("not available");
    +#endif
    +}
    +
    +// similar to
    +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp
    +std::string get_compiler_version() {
    +  std::ostringstream ss;
    +#if defined(__GNUC__)
    +#ifndef __clang__
    +  { ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; }
    +#endif
    +#endif
    +
    +#if defined(__clang_major__)
    +  {
    +    ss << "clang " << __clang_major__ << "." << __clang_minor__ << "."
    +       << __clang_patchlevel__;
    +  }
    +#endif
    +
    +#if defined(_MSC_VER)
    +  { ss << "MSVC " << _MSC_FULL_VER; }
    +#endif
    +  return ss.str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/iou3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/iou3d.cpp
    new file mode 100644
    index 000000000..a347c0ee9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/iou3d.cpp
    @@ -0,0 +1,66 @@
    +// Modified from
    +// https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/iou3d_nms/src/iou3d_nms.cpp
    +
    +/*
    +3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
    +Written by Shaoshuai Shi
    +All Rights Reserved 2019-2020.
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
    +
    +void iou3d_boxes_overlap_bev_forward_impl(const int num_a, const Tensor boxes_a,
    +                                          const int num_b, const Tensor boxes_b,
    +                                          Tensor ans_overlap) {
    +  DISPATCH_DEVICE_IMPL(iou3d_boxes_overlap_bev_forward_impl, num_a, boxes_a,
    +                       num_b, boxes_b, ans_overlap);
    +}
    +
    +void iou3d_nms3d_forward_impl(const Tensor boxes, Tensor &keep,
    +                              Tensor &keep_num, float nms_overlap_thresh) {
    +  DISPATCH_DEVICE_IMPL(iou3d_nms3d_forward_impl, boxes, keep, keep_num,
    +                       nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_normal_forward_impl(const Tensor boxes, Tensor &keep,
    +                                     Tensor &keep_num,
    +                                     float nms_overlap_thresh) {
    +  DISPATCH_DEVICE_IMPL(iou3d_nms3d_normal_forward_impl, boxes, keep, keep_num,
    +                       nms_overlap_thresh);
    +}
    +
    +void iou3d_boxes_overlap_bev_forward(Tensor boxes_a, Tensor boxes_b,
    +                                     Tensor ans_overlap) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params boxes_b: (M, 5)
    +  // params ans_overlap: (N, M)
    +  int num_a = boxes_a.size(0);
    +  int num_b = boxes_b.size(0);
    +
    +  iou3d_boxes_overlap_bev_forward_impl(num_a, boxes_a, num_b, boxes_b,
    +                                       ans_overlap);
    +}
    +
    +void iou3d_nms3d_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                         float nms_overlap_thresh) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params keep: (N)
    +  CHECK_CONTIGUOUS(boxes);
    +  CHECK_CONTIGUOUS(keep);
    +
    +  iou3d_nms3d_forward_impl(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_normal_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                                float nms_overlap_thresh) {
    +  // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
    +  // params keep: (N)
    +
    +  CHECK_CONTIGUOUS(boxes);
    +  CHECK_CONTIGUOUS(keep);
    +
    +  iou3d_nms3d_normal_forward_impl(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/knn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/knn.cpp
    new file mode 100644
    index 000000000..b4be9428c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/knn.cpp
    @@ -0,0 +1,17 @@
    +// Modified from
    +// https://github.com/CVMI-Lab/PAConv/tree/main/scene_seg/lib/pointops/src/knnquery_heap
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void knn_forward_impl(int b, int n, int m, int nsample, const Tensor xyz,
    +                      const Tensor new_xyz, Tensor idx, Tensor dist2) {
    +  DISPATCH_DEVICE_IMPL(knn_forward_impl, b, n, m, nsample, xyz, new_xyz, idx,
    +                       dist2);
    +}
    +
    +void knn_forward(Tensor xyz_tensor, Tensor new_xyz_tensor, Tensor idx_tensor,
    +                 Tensor dist2_tensor, int b, int n, int m, int nsample) {
    +  knn_forward_impl(b, n, m, nsample, xyz_tensor, new_xyz_tensor, idx_tensor,
    +                   dist2_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/masked_conv2d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/masked_conv2d.cpp
    new file mode 100644
    index 000000000..590392535
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/masked_conv2d.cpp
    @@ -0,0 +1,33 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void masked_im2col_forward_impl(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w) {
    +  DISPATCH_DEVICE_IMPL(masked_im2col_forward_impl, im, mask_h_idx, mask_w_idx,
    +                       col, kernel_h, kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_impl(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels) {
    +  DISPATCH_DEVICE_IMPL(masked_col2im_forward_impl, col, mask_h_idx, mask_w_idx,
    +                       im, height, width, channels);
    +}
    +
    +void masked_im2col_forward(const Tensor im, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor col,
    +                           const int kernel_h, const int kernel_w,
    +                           const int pad_h, const int pad_w) {
    +  masked_im2col_forward_impl(im, mask_h_idx, mask_w_idx, col, kernel_h,
    +                             kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward(const Tensor col, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor im, int height,
    +                           int width, int channels) {
    +  masked_col2im_forward_impl(col, mask_h_idx, mask_w_idx, im, height, width,
    +                             channels);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/min_area_polygons.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/min_area_polygons.cpp
    new file mode 100644
    index 000000000..8ff996dc8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/min_area_polygons.cpp
    @@ -0,0 +1,11 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void min_area_polygons_impl(const Tensor pointsets, Tensor polygons) {
    +  DISPATCH_DEVICE_IMPL(min_area_polygons_impl, pointsets, polygons);
    +}
    +
    +void min_area_polygons(const Tensor pointsets, Tensor polygons) {
    +  min_area_polygons_impl(pointsets, polygons);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/bbox_overlaps_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/bbox_overlaps_mlu.cpp
    new file mode 100644
    index 000000000..82d55559c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/bbox_overlaps_mlu.cpp
    @@ -0,0 +1,100 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelBBoxOverlaps(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                        cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                        const void *bbox1, const void *bbox2, void *ious,
    +                        const int32_t num_bbox1, const int32_t num_bbox2,
    +                        const int32_t mode, const bool aligned,
    +                        const int32_t offset);
    +
    +static void policyFunc(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type,
    +                       const int32_t batch_num_all) {
    +  auto union_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto core_num = union_num * core_dim;
    +
    +  // Union1 policyFunc
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_dim;
    +  auto need_core_num = PAD_UP(batch_num_all, core_dim);
    +  k_dim->y =
    +      (need_core_num < core_num) ? (need_core_num / core_dim) : union_num;
    +  k_dim->z = 1;
    +
    +  return;
    +}
    +
    +void BBoxOverlapsMLUKernelLauncher(const Tensor bboxes1, const Tensor bboxes2,
    +                                   Tensor ious, const int32_t mode,
    +                                   const bool aligned, const int32_t offset) {
    +  // check dtype
    +  TORCH_CHECK(
    +      bboxes1.scalar_type() == at::kFloat || bboxes1.scalar_type() == at::kHalf,
    +      "Data type of input should be Float or Half. But now input type is ",
    +      bboxes1.scalar_type(), ".");
    +  TORCH_CHECK(bboxes1.scalar_type() == bboxes2.scalar_type(),
    +              "bboxes1's dtype should be the same with bboxes2's dtype.");
    +
    +  // params check
    +  TORCH_CHECK(bboxes1.dim() == 2, "bboxes1 should be a 2d tensor, got ",
    +              bboxes1.dim(), "D");
    +  TORCH_CHECK(bboxes2.dim() == 2, "bboxes2 should be a 2d tensor, got ",
    +              bboxes2.dim(), "D");
    +
    +  auto rows = bboxes1.size(0);
    +  auto cols = bboxes2.size(0);
    +  auto batch_num_all = rows;
    +
    +  if (rows * cols == 0) {
    +    // return if zero element
    +    return;
    +  }
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(&k_dim, &k_type, batch_num_all);
    +
    +  // get compute queue
    +  cnrtQueue_t queue = torch_mlu::getCurQueue();
    +
    +  // get dtype of input
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(bboxes1.dtype());
    +
    +  // get ptr of tensors
    +  auto bboxes1_impl = torch_mlu::getMluTensorImpl(bboxes1);
    +  auto bboxes1_ptr = bboxes1_impl->cnnlMalloc();
    +  auto bboxes2_impl = torch_mlu::getMluTensorImpl(bboxes2);
    +  auto bboxes2_ptr = bboxes2_impl->cnnlMalloc();
    +  auto ious_impl = torch_mlu::getMluTensorImpl(ious);
    +  auto ious_ptr = ious_impl->cnnlMalloc();
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUUnion1BboxOverlapsKernel";
    +  CNLOG(INFO) << "kDim :[ " << k_dim.x << ", " << k_dim.y << ", " << k_dim.z
    +              << " ]";
    +  KernelBBoxOverlaps(k_dim, k_type, queue, d_type, bboxes1_ptr, bboxes2_ptr,
    +                     ious_ptr, rows, cols, mode, aligned, offset);
    +}
    +
    +void bbox_overlaps_mlu(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                       const int mode, const bool aligned, const int offset) {
    +  BBoxOverlapsMLUKernelLauncher(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                        const int mode, const bool aligned, const int offset);
    +REGISTER_DEVICE_IMPL(bbox_overlaps_impl, MLU, bbox_overlaps_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp
    new file mode 100644
    index 000000000..25e0b85d1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp
    @@ -0,0 +1,429 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "carafe_utils.hpp"
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelCarafeForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                         cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                         const void *input, const void *mask,
    +                         const CarafeForwardParam ¶m,
    +                         const CarafeForwardBlockDim &block_dim,
    +                         const CarafeForwardGridDim &grid_dim, void *output);
    +
    +void KernelCarafeBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t dtype,
    +                          const void *input, const void *mask,
    +                          const void *grad_output, void *grad_input,
    +                          void *grad_mask, const int n, const int hi,
    +                          const int wi, const int c, const int k_up,
    +                          const int group, const int scale);
    +
    +// Get total NRAM usage and set strides of NRAM arrays.
    +static void getNramUsage(CarafeForwardParam *param,
    +                         CarafeForwardBlockDim *block_dim, int *nram_usage) {
    +  // input_nram[blkDim_(Hi+Kh)-1, blkDim_(Wi+Kw)-1, blkDim_G, blkDim_Cg]
    +  block_dim->Hi = CEIL_DIV(block_dim->Ho, param->scale_factor) + 1;
    +  block_dim->Wi = CEIL_DIV(block_dim->Wo, param->scale_factor) + 1;
    +
    +  param->input_nram_stride_g = PAD_UP(block_dim->Cg, param->align_size_NRAM);
    +  param->input_nram_stride_w = param->input_nram_stride_g * block_dim->G;
    +  param->input_nram_stride_h =
    +      (block_dim->Wi + block_dim->Kw - 1) * param->input_nram_stride_w;
    +  param->input_nram_size =
    +      (block_dim->Hi + block_dim->Kh - 1) * param->input_nram_stride_h;
    +
    +  // mask_nram[blkDim_Ho, blkDim_Wo, blkDim_G, blkDim_Kh, blkDim_Kw]
    +  param->mask_nram_stride_kh = block_dim->Kw;
    +  param->mask_nram_stride_g = block_dim->Kh * param->mask_nram_stride_kh;
    +  param->mask_nram_stride_w = block_dim->G * param->mask_nram_stride_g;
    +  param->mask_nram_stride_h = block_dim->Wo * param->mask_nram_stride_w;
    +  param->mask_nram_size =
    +      PAD_UP(block_dim->Ho * param->mask_nram_stride_h, param->align_size_NRAM);
    +
    +  // output_nram[blkDim_Ho, blkDim_Wo, blkDim_(G*Cg)]
    +  param->output_nram_stride_g = param->input_nram_stride_g;
    +  param->output_nram_stride_w =
    +      PAD_UP(param->input_nram_stride_w, param->align_size_NFU);
    +  param->output_nram_stride_h = block_dim->Wo * param->output_nram_stride_w;
    +  param->output_nram_size = block_dim->Ho * param->output_nram_stride_h;
    +
    +  // sum_array[blkDim_(G*Cg)]
    +
    +  // ensure the last mul_const on Cg does not exceed memory boundary
    +  int sum_array_size_bang_mul_const =
    +      (block_dim->G - 1) * param->input_nram_stride_g +
    +      PAD_UP(param->input_nram_stride_g, param->align_size_NFU);
    +
    +  int sum_array_size =
    +      std::max(param->output_nram_stride_w, sum_array_size_bang_mul_const);
    +
    +  *nram_usage = param->input_nram_size + param->mask_nram_size +
    +                param->output_nram_size + sum_array_size;
    +}
    +
    +// Policy Function for Forward
    +static void genPolicyForward(CarafeForwardParam *param,
    +                             CarafeForwardBlockDim *block_dim,
    +                             CarafeForwardGridDim *grid_dim, cnrtDim3_t *k_dim,
    +                             cnrtFunctionType_t *k_type) {
    +  // device info
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  auto core_num = core_dim * cluster_num;
    +
    +  // maximum NRAM size as the number of 
    +  auto max_nram_size =
    +      torch_mlu::getDeviceAttr(cnrtAttrNramSizePerMcore) / param->dtype_size;
    +
    +  // determine grid and block dimensions
    +
    +  // set initial values for block_dim and grid_dim
    +  block_dim->Ho = param->Ho;
    +  block_dim->Wo = param->Wo;
    +  block_dim->Kh = param->kernel_size;
    +  block_dim->Kw = param->kernel_size;
    +  block_dim->G = param->group_size;
    +  block_dim->Cg = param->Cg;
    +
    +  grid_dim->Ho = 1;
    +  grid_dim->Wo = 1;
    +  grid_dim->Kh = 1;
    +  grid_dim->Kw = 1;
    +  grid_dim->G = 1;
    +  grid_dim->Cg = 1;
    +
    +  // decrease the block size to fit in the NRAM.
    +  int nram_usage = 0;
    +  while (true) {
    +    getNramUsage(param, block_dim, &nram_usage);
    +
    +    if (nram_usage > max_nram_size) {
    +      // decrease Ho
    +      // decrease block_Ho and block_Wo evenly
    +      // so that the block is close to a square.
    +      if (block_dim->Ho > 1 && block_dim->Ho >= block_dim->Wo) {
    +        grid_dim->Ho += 1;
    +        block_dim->Ho = CEIL_DIV(param->Ho, grid_dim->Ho);
    +      } else if (block_dim->Wo > 1 && block_dim->Wo > block_dim->Ho) {
    +        // decrease Wo
    +        grid_dim->Wo += 1;
    +        block_dim->Wo = CEIL_DIV(param->Wo, grid_dim->Wo);
    +      } else if (block_dim->Kh > 1) {
    +        // decrease Kh
    +        grid_dim->Kh += 1;
    +        block_dim->Kh = CEIL_DIV(param->kernel_size, grid_dim->Kh);
    +        // reset Hi, Wi to maximize NRAM usage
    +        grid_dim->Ho = 1;
    +        block_dim->Ho = param->Ho;
    +        grid_dim->Wo = 1;
    +        block_dim->Wo = param->Wo;
    +      } else if (block_dim->Kw > 1) {
    +        // decrease Kw
    +        grid_dim->Kw += 1;
    +        block_dim->Kw = CEIL_DIV(param->kernel_size, grid_dim->Kw);
    +        // reset Kh
    +        grid_dim->Kh = 1;
    +        block_dim->Kh = param->kernel_size;
    +      } else if (block_dim->G > 1) {
    +        // decrease G
    +        grid_dim->G += 1;
    +        block_dim->G = CEIL_DIV(param->group_size, grid_dim->G);
    +        // reset Kw
    +        grid_dim->Kw = 1;
    +        block_dim->Kw = param->kernel_size;
    +      } else if (block_dim->Cg > 1) {
    +        // decrease block_Cg
    +        // This is done in the last since c is the continuous dim
    +        // (input layout is NHWC) and large c can improve
    +        // IO & compute efficiency.
    +        grid_dim->Cg += 1;
    +        block_dim->Cg = CEIL_DIV(param->Cg, grid_dim->Cg);
    +        // reset G
    +        grid_dim->G = 1;
    +        block_dim->G = param->group_size;
    +      } else {
    +        // the block volume is one now, cannot decrease the block size anymore!
    +        // this situation should not occur.
    +        break;
    +      }
    +    } else {
    +      break;
    +    }
    +  }
    +
    +  // define parameters depending on block_dim, grid_dim
    +  param->block_Cg_NFU = PAD_UP(block_dim->Cg, param->align_size_NFU);
    +
    +  // define host arrays' strides
    +
    +  // input[N,H,W,G,Cg]
    +  param->input_stride_g = param->Cg;
    +  param->input_stride_w = param->Ci;
    +  param->input_stride_h = param->Wi * param->input_stride_w;
    +  param->input_stride_n = param->Hi * param->input_stride_h;
    +  // mask[N,Ho,Wo,G,Kh,Kw]
    +  param->mask_stride_kh = param->kernel_size;
    +  param->mask_stride_g = param->kernel_size * param->mask_stride_kh;
    +  param->mask_stride_w = param->group_size * param->mask_stride_g;
    +  param->mask_stride_h = param->Wo * param->mask_stride_w;
    +  param->mask_stride_n = param->Ho * param->mask_stride_h;
    +  // output[N,Ho,Wo,G,Cg]
    +  param->output_stride_g = param->Cg;
    +  param->output_stride_w = param->Ci;
    +  param->output_stride_h = param->Wo * param->output_stride_w;
    +  param->output_stride_n = param->Ho * param->output_stride_h;
    +
    +  param->job_num =
    +      param->N * grid_dim->Ho * grid_dim->Wo * grid_dim->G * grid_dim->Cg;
    +
    +  // determine task type and dims
    +  *k_type = CNRT_FUNC_TYPE_BLOCK;
    +  k_dim->x = std::min(param->job_num, static_cast(core_num));
    +  k_dim->y = 1;
    +  k_dim->z = 1;
    +}
    +
    +void CARAFEForwardMLUKernelLauncher(const Tensor input, const Tensor mask,
    +                                    Tensor rinput, Tensor routput, Tensor rmask,
    +                                    Tensor output, const int kernel_size,
    +                                    const int group_size,
    +                                    const int scale_factor) {
    +  const int batch_size = output.size(0);
    +  const int channels = output.size(1);
    +  const int ho = output.size(2);
    +  const int wo = output.size(3);
    +
    +  // check tensor data type
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "Data type of input should be Float or Half. But now input type is ",
    +      input.scalar_type(), ".");
    +
    +  TORCH_CHECK(mask.scalar_type() == input.scalar_type(),
    +              "Data types of input and mask should be the same, but got ",
    +              input.scalar_type(), " and ", mask.scalar_type());
    +
    +  // check number of dimensions
    +  TORCH_CHECK(input.dim() == 4, "input should be a 4-D tensor, but has ",
    +              input.dim(), "D.");
    +  TORCH_CHECK(mask.dim() == 4, "mask should be a 4-D tensor, but has ",
    +              input.dim(), "D.");
    +
    +  // return fast on zero-element tensor
    +  if (output.numel() == 0) {
    +    output = at::zeros({batch_size, channels, ho, wo}, output.options());
    +    return;
    +  }
    +
    +  // set param
    +  CarafeForwardParam param;
    +  param.N = input.size(0);
    +  param.Ci = input.size(1);
    +  param.Hi = input.size(2);
    +  param.Wi = input.size(3);
    +
    +  param.kernel_size = kernel_size;
    +  param.group_size = group_size;
    +  param.scale_factor = scale_factor;
    +  param.Cg = param.Ci / group_size;
    +  param.dtype_size = input.itemsize();
    +  param.align_size_NRAM = NRAM_ALIGN_SIZE / param.dtype_size;
    +  param.align_size_NFU = NFU_ALIGN_SIZE / param.dtype_size;
    +  param.kernel_size_sq = param.kernel_size * param.kernel_size;
    +  param.kernel_size_half = (param.kernel_size - 1) / 2;
    +  param.Ho = param.Hi * param.scale_factor;
    +  param.Wo = param.Wi * param.scale_factor;
    +
    +  // generate policy
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  CarafeForwardBlockDim block_dim;
    +  CarafeForwardGridDim grid_dim;
    +
    +  genPolicyForward(¶m, &block_dim, &grid_dim, &k_dim, &k_type);
    +
    +  // convert NCHW to NHWC
    +  auto memory_format_input_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto rinput_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format_input_nhwc);
    +
    +  auto memory_format_mask_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(mask.dim());
    +  auto rmask_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(mask, memory_format_mask_nhwc);
    +
    +  auto memory_format_output_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(output.dim());
    +  auto routput_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(output, memory_format_output_nhwc);
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(rinput_);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto mask_impl = torch_mlu::getMluTensorImpl(rmask_);
    +  auto mask_ptr = mask_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(routput_);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get dtype of input
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  // launch kernel
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  CNLOG(INFO) << "Launch Kernel KernelCarafeForward<<>>";
    +
    +  KernelCarafeForward(k_dim, k_type, queue, d_type, input_ptr, mask_ptr, param,
    +                      block_dim, grid_dim, output_ptr);
    +
    +  // copy output from NHWC back into NCHW
    +  rinput.copy_(rinput_);
    +  output.copy_(routput_);
    +}
    +
    +// Policy Function for Backward
    +static void policyFuncBackward(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  // set Union1 Job
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim->z = 1;
    +}
    +
    +void CARAFEBackwardMLUKernelLauncher(
    +    const Tensor grad_output, const Tensor rinput, const Tensor mask,
    +    Tensor rgrad_output, Tensor rgrad_input_hs, Tensor rgrad_input,
    +    Tensor rgrad_mask, Tensor grad_input, Tensor grad_mask,
    +    const int kernel_size, const int group_size, const int scale_factor) {
    +  const int batch_size = rinput.size(0);
    +  const int channels = rinput.size(1);
    +  const int hi = rinput.size(2);
    +  const int wi = rinput.size(3);
    +
    +  // data type check
    +  TORCH_CHECK(grad_output.scalar_type() == at::kFloat ||
    +                  grad_output.scalar_type() == at::kHalf,
    +              "grad_output type should be Float or Half, got ",
    +              grad_output.scalar_type());
    +  TORCH_CHECK(grad_output.scalar_type() == mask.scalar_type(),
    +              "mask should have the same type as grad_output");
    +
    +  // dim check
    +  TORCH_CHECK(grad_output.dim() == 4, "grad_output should be a 4d tensor, got ",
    +              grad_output.dim(), "D");
    +
    +  // param check
    +  TORCH_CHECK(kernel_size < 137, "kernel_size should be less than 137, got ",
    +              kernel_size);
    +
    +  // set task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncBackward(&k_dim, &k_type);
    +
    +  // convert NCHW to NHWC
    +  auto memory_format_input_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(rinput.dim());
    +  auto rinput_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(rinput, memory_format_input_nhwc);
    +
    +  auto memory_format_mask_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(mask.dim());
    +  auto rmask_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(mask, memory_format_mask_nhwc);
    +
    +  auto memory_format_grad_output_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad_output.dim());
    +  auto rgrad_output_ = torch_mlu::cnnl::ops::cnnl_contiguous(
    +      grad_output, memory_format_grad_output_nhwc);
    +
    +  auto memory_format_grad_input_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad_input.dim());
    +  auto rgrad_input_ = torch_mlu::cnnl::ops::cnnl_contiguous(
    +                          grad_input, memory_format_grad_input_nhwc)
    +                          .zero_();
    +
    +  auto memory_format_grad_mask_nhwc =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad_mask.dim());
    +  auto rgrad_mask_ = torch_mlu::cnnl::ops::cnnl_contiguous(
    +      grad_mask, memory_format_grad_mask_nhwc);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(rinput_);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto mask_impl = torch_mlu::getMluTensorImpl(rmask_);
    +  auto mask_ptr = mask_impl->cnnlMalloc();
    +  auto grad_output_impl = torch_mlu::getMluTensorImpl(rgrad_output_);
    +  auto grad_output_ptr = grad_output_impl->cnnlMalloc();
    +  auto grad_input_impl = torch_mlu::getMluTensorImpl(rgrad_input_);
    +  auto grad_input_ptr = grad_input_impl->cnnlMalloc();
    +  auto grad_mask_impl = torch_mlu::getMluTensorImpl(rgrad_mask_);
    +  auto grad_mask_ptr = grad_mask_impl->cnnlMalloc();
    +
    +  // get dtype of grad_output
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(grad_output.dtype());
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +
    +  CNLOG(INFO) << "Launch Kernel KernelCarafeBackward<<>>";
    +
    +  // launch kernel
    +  KernelCarafeBackward(k_dim, k_type, queue, d_type, input_ptr, mask_ptr,
    +                       grad_output_ptr, grad_input_ptr, grad_mask_ptr,
    +                       batch_size, hi, wi, channels, kernel_size, group_size,
    +                       scale_factor);
    +
    +  // copy output from NHWC back into NCHW
    +  grad_input.copy_(rgrad_input_);
    +  grad_mask.copy_(rgrad_mask_);
    +}
    +
    +void carafe_forward_mlu(Tensor features, Tensor masks, Tensor rfeatures,
    +                        Tensor routput, Tensor rmasks, Tensor output,
    +                        int kernel_size, int group_size, int scale_factor) {
    +  CARAFEForwardMLUKernelLauncher(features, masks, rfeatures, routput, rmasks,
    +                                 output, kernel_size, group_size, scale_factor);
    +}
    +
    +void carafe_backward_mlu(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                         Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                         Tensor rbottom_grad, Tensor rmask_grad,
    +                         Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                         int group_size, int scale_factor) {
    +  CARAFEBackwardMLUKernelLauncher(top_grad, rfeatures, masks, rtop_grad,
    +                                  rbottom_grad_hs, rbottom_grad, rmask_grad,
    +                                  bottom_grad, mask_grad, kernel_size,
    +                                  group_size, scale_factor);
    +}
    +
    +void carafe_forward_impl(Tensor features, Tensor masks, Tensor rfeatures,
    +                         Tensor routput, Tensor rmasks, Tensor output,
    +                         int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_backward_impl(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                          Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                          Tensor rbottom_grad, Tensor rmask_grad,
    +                          Tensor bottom_grad, Tensor mask_grad, int kernel_size,
    +                          int group_size, int scale_factor);
    +
    +REGISTER_DEVICE_IMPL(carafe_forward_impl, MLU, carafe_forward_mlu);
    +REGISTER_DEVICE_IMPL(carafe_backward_impl, MLU, carafe_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/deform_roi_pool_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/deform_roi_pool_mlu.cpp
    new file mode 100644
    index 000000000..4d73cbbe5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/deform_roi_pool_mlu.cpp
    @@ -0,0 +1,343 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelDeformRoIPoolForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                cnrtQueue_t queue, cnrtDataType_t data_type,
    +                                const void *input, const void *rois,
    +                                const void *offset, void *output,
    +                                const int channels, const int height,
    +                                const int width, const int num_rois,
    +                                const int pooled_height, const int pooled_width,
    +                                const float spatial_scale,
    +                                const int sampling_ratio, const float gamma);
    +
    +void KernelDeformRoIPoolBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    cnrtDataType_t data_type, const void *grad_output, const void *input,
    +    const void *rois, const void *offset, void *grad_input, void *grad_offset,
    +    const int channels, const int height, const int width, const int num_rois,
    +    const int pooled_height, const int pooled_width, const float spatial_scale,
    +    const int sampling_ratio, const float gamma);
    +
    +// policy function for forward and backward
    +static void policyFunc(const int bin_num, cnrtDim3_t *k_dim,
    +                       cnrtFunctionType_t *k_type) {
    +  const size_t cluster_limit = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  ;
    +  const size_t core_limit = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  const size_t bin_num_align = CEIL_ALIGN(bin_num, core_limit);
    +  k_dim->x = core_limit;
    +  k_dim->y = (bin_num_align / core_limit) > cluster_limit
    +                 ? cluster_limit
    +                 : (bin_num_align / core_limit);
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +}
    +
    +void DeformRoIPoolForwardMLUKernelLauncher(Tensor input, Tensor rois,
    +                                           Tensor offset, Tensor output,
    +                                           int pooled_height, int pooled_width,
    +                                           float spatial_scale,
    +                                           int sampling_ratio, float gamma) {
    +  // Check dtype.
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "input type should be Float or Half, got ", input.scalar_type());
    +  TORCH_CHECK(input.scalar_type() == rois.scalar_type(),
    +              "rois should have the same type as input");
    +
    +  // Check shape.
    +  TORCH_CHECK(input.dim() == 4, "input should be 4d tensor, got ", input.dim(),
    +              "D.");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be 2d tensor, got ", rois.dim(),
    +              "D.");
    +  if (offset.defined() && offset.numel() > 0) {
    +    TORCH_CHECK(input.scalar_type() == offset.scalar_type(),
    +                "offset should have the same type as input");
    +    TORCH_CHECK(offset.dim() == 4, "offset should be 4d tensor, got ",
    +                offset.dim(), "D.");
    +    TORCH_CHECK(
    +        (offset.size(0) == rois.size(0)), "offset.size(0) = ", offset.size(0),
    +        "while rois.size(0)) = ", rois.size(0), ". They should be the same.");
    +    TORCH_CHECK((offset.size(1) == 2), "offset.size(1) should be 2, ",
    +                "but now offset.size(1) = ", offset.size(1), ".");
    +    TORCH_CHECK((offset.size(2) == output.size(2)),
    +                "offset.size(2) = ", offset.size(2),
    +                "while output.size(2)) = ", output.size(2),
    +                ". They should be the same.");
    +    TORCH_CHECK((offset.size(3) == output.size(3)),
    +                "offset.size(3) = ", offset.size(3),
    +                "while output.size(3)) = ", output.size(3),
    +                ". They should be the same.");
    +  }
    +
    +  TORCH_CHECK(spatial_scale > 0 && spatial_scale <= 1,
    +              "spatial_scale should be within (0, 1], got ", spatial_scale,
    +              ".");
    +
    +  // compute kernel params
    +  auto height = input.size(2);
    +  auto width = input.size(3);
    +  auto channels = input.size(1);
    +  auto num_rois = output.size(0);
    +
    +  if (output.numel() == 0) {
    +    output = at::zeros({num_rois, channels, pooled_height, pooled_width},
    +                       input.options());
    +    return;
    +  }
    +
    +  // zero element check
    +  TORCH_CHECK(input.size(0) != 0, "input.size(0) should not be zero, got ",
    +              input.size(0));
    +  TORCH_CHECK(rois.numel() != 0, "rois.numel() should not be zero, got ",
    +              rois.numel());
    +  if (input.numel() == 0 || output.numel() == 0) {
    +    return;
    +  }
    +
    +  // large tensor check
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(input.numel() < max_input_num,
    +              "input.numel() should be less than 2147483648, got ",
    +              input.numel());
    +  TORCH_CHECK(rois.numel() < max_input_num,
    +              "rois.numel() should be less than 2147483648, got ",
    +              rois.numel());
    +  TORCH_CHECK(output.numel() < max_input_num,
    +              "output.numel() should be less than 2147483648, got ",
    +              output.numel());
    +  TORCH_CHECK(!offset.defined() || offset.numel() < max_input_num,
    +              "offset.numel() should be less than 2147483648, got ",
    +              offset.numel());
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto input_ = torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format);
    +
    +  at::Tensor output_ =
    +      at::empty({num_rois, channels, pooled_height, pooled_width},
    +                input.options(), memory_format);
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(num_rois * pooled_height * pooled_width, &k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(input_);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto offset_impl = torch_mlu::getMluTensorImpl(offset);
    +  auto offset_ptr = offset_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output_);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(input_.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelDeformRoIPoolForward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelDeformRoIPoolForward(k_dim, k_type, queue, data_type, input_ptr,
    +                             rois_ptr, offset_ptr, output_ptr, channels, height,
    +                             width, num_rois, pooled_height, pooled_width,
    +                             spatial_scale, sampling_ratio, gamma);
    +
    +  output.copy_(output_);
    +}
    +
    +void DeformRoIPoolBackwardMLUKernelLauncher(
    +    Tensor grad_output, Tensor input, Tensor rois, Tensor offset,
    +    Tensor grad_input, Tensor grad_offset, int pooled_height, int pooled_width,
    +    float spatial_scale, int sampling_ratio, float gamma) {
    +  // Check dtype.
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "input type should be Float or Half, got ", input.scalar_type());
    +  TORCH_CHECK(input.scalar_type() == grad_output.scalar_type(),
    +              "grad_output should have the same type as input");
    +  TORCH_CHECK(input.scalar_type() == rois.scalar_type(),
    +              "rois should have the same type as input");
    +  TORCH_CHECK(input.scalar_type() == grad_input.scalar_type(),
    +              "grad_input should have the same type as input");
    +
    +  // Check shape.
    +  TORCH_CHECK(grad_output.dim() == 4, "grad_output should be 4d tensor, got ",
    +              grad_output.dim(), "D.");
    +  TORCH_CHECK(input.dim() == 4, "input should be 4d tensor, got ", input.dim(),
    +              "D.");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be 2d tensor, got ", rois.dim(),
    +              "D.");
    +  if (offset.defined() && offset.numel() > 0) {
    +    TORCH_CHECK(input.scalar_type() == offset.scalar_type(),
    +                "offset should have the same type as input");
    +    TORCH_CHECK(offset.dim() == 4, "offset should be 4d tensor, got ",
    +                offset.dim(), "D.");
    +    TORCH_CHECK(
    +        (offset.size(0) == rois.size(0)), "offset.size(0) = ", offset.size(0),
    +        "while rois.size(0)) = ", rois.size(0), ". They should be the same.");
    +    TORCH_CHECK((offset.size(1) == 2), "offset.size(1) should be 2, ",
    +                "but now offset.size(1) = ", offset.size(1), ".");
    +    TORCH_CHECK((offset.size(2) == grad_output.size(2)),
    +                "offset.size(2) = ", offset.size(2),
    +                "while grad_output.size(2)) = ", grad_output.size(2),
    +                ". They should be the same.");
    +    TORCH_CHECK((offset.size(3) == grad_output.size(3)),
    +                "offset.size(3) = ", offset.size(3),
    +                "while grad_output.size(3)) = ", grad_output.size(3),
    +                ". They should be the same.");
    +  }
    +
    +  TORCH_CHECK(spatial_scale > 0 && spatial_scale <= 1,
    +              "spatial_scale should be within (0, 1], got ", spatial_scale);
    +
    +  // Check relationship between tensor.
    +  TORCH_CHECK((grad_output.size(0) == rois.size(0)),
    +              "grad_output.size(0) = ", grad_output.size(0),
    +              "while rois.size(0)) = ", rois.size(0),
    +              ". They should be the same.");
    +  TORCH_CHECK((grad_output.size(1) == input.size(1)),
    +              "grad_output.size(1) = ", grad_output.size(1),
    +              "while input.size(1)) = ", input.size(1),
    +              ". They should be the same.");
    +  TORCH_CHECK((grad_output.size(2) == pooled_height),
    +              "grad_output.size(2) = ", grad_output.size(2),
    +              "while pooled_height = ", pooled_height,
    +              ". They should be the same.");
    +  TORCH_CHECK((grad_output.size(3) == pooled_width),
    +              "grad_output.size(3) = ", grad_output.size(3),
    +              "while pooled_width = ", pooled_width,
    +              ". They should be the same.");
    +
    +  // compute kernel params
    +  auto batch = input.size(0);
    +  auto channels = input.size(1);
    +  auto height = input.size(2);
    +  auto width = input.size(3);
    +  auto num_rois = grad_output.size(0);
    +
    +  // zero element check
    +  TORCH_CHECK(input.size(0) != 0, "input.size(0) should not be zero, got ",
    +              input.size(0));
    +  TORCH_CHECK(rois.numel() != 0, "rois.numel() should not be zero, got ",
    +              rois.numel());
    +  if (input.numel() == 0 || grad_output.numel() == 0) {
    +    return;
    +  }
    +
    +  // large tensor check
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(input.numel() < max_input_num,
    +              "input.numel() should be less than 2147483648, got ",
    +              input.numel());
    +  TORCH_CHECK(rois.numel() < max_input_num,
    +              "rois.numel() should be less than 2147483648, got ",
    +              rois.numel());
    +  TORCH_CHECK(grad_output.numel() < max_input_num,
    +              "grad_output.numel() should be less than 2147483648, got ",
    +              grad_output.numel());
    +  TORCH_CHECK(!offset.defined() || offset.numel() < max_input_num,
    +              "offset.numel() should be less than 2147483648, got ",
    +              offset.numel());
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad_output.dim());
    +  auto grad_output_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(grad_output, memory_format);
    +  memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto input_ = torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format);
    +  at::Tensor grad_input_ = at::empty({batch, channels, height, width},
    +                                     input.options(), memory_format)
    +                               .zero_();
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(num_rois * pooled_height * pooled_width, &k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto grad_output_impl = torch_mlu::getMluTensorImpl(grad_output_);
    +  auto grad_output_ptr = grad_output_impl->cnnlMalloc();
    +  auto input_impl = torch_mlu::getMluTensorImpl(input_);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto offset_impl = torch_mlu::getMluTensorImpl(offset);
    +  auto offset_ptr = offset_impl->cnnlMalloc();
    +  auto grad_input_impl = torch_mlu::getMluTensorImpl(grad_input_);
    +  auto grad_input_ptr = grad_input_impl->cnnlMalloc();
    +  auto grad_offset_impl = torch_mlu::getMluTensorImpl(grad_offset);
    +  auto grad_offset_ptr = grad_offset_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel KernelDeformRoIPoolBackward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelDeformRoIPoolBackward(k_dim, k_type, queue, data_type, grad_output_ptr,
    +                              input_ptr, rois_ptr, offset_ptr, grad_input_ptr,
    +                              grad_offset_ptr, channels, height, width,
    +                              num_rois, pooled_height, pooled_width,
    +                              spatial_scale, sampling_ratio, gamma);
    +
    +  grad_input.copy_(grad_input_);
    +}
    +
    +void deform_roi_pool_forward_mlu(Tensor input, Tensor rois, Tensor offset,
    +                                 Tensor output, int pooled_height,
    +                                 int pooled_width, float spatial_scale,
    +                                 int sampling_ratio, float gamma) {
    +  DeformRoIPoolForwardMLUKernelLauncher(input, rois, offset, output,
    +                                        pooled_height, pooled_width,
    +                                        spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_backward_mlu(Tensor grad_output, Tensor input, Tensor rois,
    +                                  Tensor offset, Tensor grad_input,
    +                                  Tensor grad_offset, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  DeformRoIPoolBackwardMLUKernelLauncher(
    +      grad_output, input, rois, offset, grad_input, grad_offset, pooled_height,
    +      pooled_width, spatial_scale, sampling_ratio, gamma);
    +}
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma);
    +
    +REGISTER_DEVICE_IMPL(deform_roi_pool_forward_impl, MLU,
    +                     deform_roi_pool_forward_mlu);
    +REGISTER_DEVICE_IMPL(deform_roi_pool_backward_impl, MLU,
    +                     deform_roi_pool_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/focal_loss_sigmoid_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/focal_loss_sigmoid_mlu.cpp
    new file mode 100644
    index 000000000..9242644c8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/focal_loss_sigmoid_mlu.cpp
    @@ -0,0 +1,332 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include 
    +#include 
    +
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelFocalLossSigmoidForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                   cnrtQueue_t queue,
    +                                   const cnrtDataType_t d_type,
    +                                   const void *input, const void *target,
    +                                   const void *weight, const int32_t N,
    +                                   const int32_t C, const float alpha,
    +                                   const float gamma, void *output);
    +
    +void KernelFocalLossSigmoidBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                    cnrtQueue_t queue,
    +                                    const cnrtDataType_t d_type,
    +                                    const void *input, const void *target,
    +                                    const void *weight, const float gamma,
    +                                    const float alpha, const int32_t dim_n,
    +                                    const int32_t deal_n, const int32_t dim_c,
    +                                    void *output);
    +// Policy Function for Forward
    +static void policyFuncForward(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type,
    +                              const Tensor &input, const Tensor &target,
    +                              const Tensor &weight) {
    +  auto N = input.size(0);
    +  auto C = input.size(1);
    +
    +  const size_t nram_size = torch_mlu::getDeviceAttr(cnrtAttrNramSizePerMcore);
    +  const size_t c_align_size = PAD_UP((C * input.itemsize()), NFU_ALIGN_SIZE);
    +  const int split_target_num = 2;
    +  const int split_pipeline_num = 6;
    +  const int has_weight = weight.data_ptr() != nullptr;
    +  const int target_data_width = target.scalar_type() == at::kLong
    +                                    ? target.itemsize() / 2
    +                                    : target.itemsize();
    +  const int threshold_c =
    +      PAD_DOWN((nram_size - split_target_num * sizeof(int)) /
    +                   (split_pipeline_num + has_weight),
    +               NFU_ALIGN_SIZE) /
    +      input.itemsize();
    +
    +  int n_seg = 1;
    +  if (C <= threshold_c) {
    +    int c_size = C * input.itemsize();
    +    int reservered_align_size =
    +        (split_target_num + split_pipeline_num) * NFU_ALIGN_SIZE;
    +    int wegiht_size = 0;
    +    if (has_weight) {
    +      c_size = c_align_size;
    +      reservered_align_size = split_target_num * NFU_ALIGN_SIZE;
    +      wegiht_size = c_align_size;
    +    }
    +    // n_seg * c_size * split_pipeline_num + n_seg * target.itemsize() *
    +    // split_target_num
    +    //     + weight_size + reservered_align_size <= nram_size
    +    n_seg = (nram_size - wegiht_size - reservered_align_size) /
    +            (split_pipeline_num * c_size + split_target_num * sizeof(int32_t));
    +  }
    +  auto seg_num = n_seg == 0 ? N : (N + n_seg - 1) / n_seg;
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  auto core_num = core_dim * cluster_num;
    +
    +  k_dim->x = *k_type;
    +  k_dim->y =
    +      seg_num > core_num ? cluster_num : (seg_num + core_dim - 1) / core_dim;
    +  k_dim->z = 1;
    +}
    +
    +// Policy Function for Backward
    +static void policyFuncBackward(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  // set Union1 Job
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim->z = 1;
    +}
    +
    +void SigmoidFocalLossForwardMLUKernelLauncher(Tensor input, Tensor target,
    +                                              Tensor weight, Tensor output,
    +                                              const float gamma,
    +                                              const float alpha) {
    +  // params check
    +  TORCH_CHECK(gamma >= 0, "gamma should be greater than or equal to 0. ",
    +              "But now gamma is ", gamma, ".");
    +
    +  // check dtype
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "Data type of input should be Float or Half. But now input type is ",
    +      input.scalar_type(), ".");
    +
    +  TORCH_CHECK(
    +      (target.scalar_type() == at::kInt || target.scalar_type() == at::kLong),
    +      "target type should be Int or Long. ", "But now target type is ",
    +      target.scalar_type(), ".");
    +
    +  if (weight.data_ptr() != nullptr) {
    +    TORCH_CHECK(weight.scalar_type() == input.scalar_type(),
    +                "Data types of input and weight should be the same. But now "
    +                "input type is ",
    +                input.scalar_type(), ", weight type is ", weight.scalar_type(),
    +                ".");
    +  } else {
    +    CNLOG(INFO) << "weight is a empty tensor.";
    +  }
    +
    +  // return if zero-element
    +  if (input.numel() == 0 || target.numel() == 0 || output.numel() == 0) {
    +    return;
    +  }
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  policyFuncForward(&k_dim, &k_type, input, target, weight);
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(input);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto target_impl = torch_mlu::getMluTensorImpl(target);
    +  auto target_ptr = target_impl->cnnlMalloc();
    +  auto weight_impl = torch_mlu::getMluTensorImpl(weight);
    +  auto weight_ptr = weight_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  // get dtype of input
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  CNLOG(INFO) << "Launch Kernel KernelFocalLossSigmoidForward<<>>";
    +  // launch kernel
    +  KernelFocalLossSigmoidForward(k_dim, k_type, queue, d_type, input_ptr,
    +                                target_ptr, weight_ptr, input.size(0),
    +                                input.size(1), alpha, gamma, output_ptr);
    +}
    +
    +void getDealNAndThresholdC(const int compute_data_bytes,
    +                           const int target_data_bytes, const int total_c,
    +                           int *deal_n_ptr, int *threshold_c_ptr,
    +                           const bool has_weight, const bool is_half) {
    +  /* NRAM partition:
    +   *
    +   * |-----------------ping pong--------------------|
    +   * |input | pt | alpha_t | temp | output | target | flt_min | gamma | weight|
    +   *
    +   * split_pipeline_num is 5: including input, pt, alpha_t, temp, output.
    +   */
    +  const int nram_split_num = 5;
    +  const int nram_split_pingpong = 2;
    +  const int max_nram_size = torch_mlu::getDeviceAttr(cnrtAttrNramSizePerMcore);
    +  int32_t compute_align_size = NFU_ALIGN_SIZE;
    +  if (is_half) {
    +    compute_align_size += NFU_ALIGN_SIZE;
    +  }
    +  const int32_t compute_align_num = compute_align_size / compute_data_bytes;
    +  // reservered_align_size: including input(ping pong), pt(ping pong),
    +  //                        alpha_t(ping pong), temp(ping pong),
    +  //                        output(ping pong), target(ping pong),
    +  //                        flt_min and gamma.
    +  const int reservered_align_size =
    +      ((nram_split_num + 1) * nram_split_pingpong + 2) * compute_align_size;
    +  int nram_pingpong_size = max_nram_size - reservered_align_size;
    +
    +  int compute_c = total_c;
    +  int threshold_c = 0;
    +  if (has_weight) {
    +    // reserved space for weight to align
    +    nram_pingpong_size -= NFU_ALIGN_SIZE;
    +
    +    // threshold_c * nram_split_pingpong * compute_data_bytes * nram_split_num +
    +    //     nram_split_pingpong * target_data_bytes +
    +    //     threshold_c * compute_data_bytes <= nram_pingpong_size
    +    threshold_c =
    +        (nram_pingpong_size - nram_split_pingpong * target_data_bytes) /
    +        (compute_data_bytes * (nram_split_num * nram_split_pingpong + 1));
    +    threshold_c = PAD_DOWN(threshold_c, compute_align_num);
    +    int weight_space = PAD_UP(total_c * compute_data_bytes, NFU_ALIGN_SIZE);
    +
    +    // reserved space for weight
    +    nram_pingpong_size -= weight_space;
    +    compute_c = PAD_UP(total_c, compute_align_num);
    +  } else {
    +    // threshold_c * nram_split_pingpong * compute_data_bytes * nram_split_num +
    +    //     nram_split_pingpong * target_data_bytes <= nram_pingpong_size
    +    threshold_c =
    +        (nram_pingpong_size / nram_split_pingpong - target_data_bytes) /
    +        (nram_split_num * compute_data_bytes);
    +  }
    +  // deal_n * compute_c * nram_split_pingpong * compute_data_bytes *
    +  //     nram_split_num + deal_n * nram_split_pingpong * target_data_bytes <=
    +  //     nram_pingpong_size
    +  *deal_n_ptr =
    +      nram_pingpong_size /
    +      ((nram_split_num * compute_c * compute_data_bytes + target_data_bytes) *
    +       nram_split_pingpong);
    +  *threshold_c_ptr = threshold_c;
    +}
    +
    +void SigmoidFocalLossBackwardMLUKernelLauncher(Tensor input, Tensor target,
    +                                               Tensor weight, Tensor output,
    +                                               const float gamma,
    +                                               const float alpha) {
    +  // params check
    +  TORCH_CHECK(gamma >= 0, "gamma should be greater than or equal to 0. ",
    +              "But now gamma is ", gamma, ".");
    +  // check dtype
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "Data type of input should be Float or Half. But now input type is ",
    +      input.scalar_type(), ".");
    +
    +  TORCH_CHECK(
    +      (target.scalar_type() == at::kInt || target.scalar_type() == at::kLong),
    +      "target type should be Int or Long. ", "But now target type is ",
    +      target.scalar_type(), ".");
    +
    +  bool has_weight = false;
    +  if (weight.data_ptr() != nullptr) {
    +    TORCH_CHECK(weight.scalar_type() == input.scalar_type(),
    +                "Data types of input and weight should be the same. But now "
    +                "input type is ",
    +                input.scalar_type(), ", weight type is ", weight.scalar_type(),
    +                ".");
    +    has_weight = true;
    +  } else {
    +    CNLOG(INFO) << "weight is a empty tensor.";
    +  }
    +
    +  auto dim_c = input.size(1);
    +  const int compute_data_bytes = sizeof(float);
    +  // target supports only INT on MLU device while it keeps LONG on host side,
    +  // so target.itemsize() / 2
    +  const int target_data_bytes = target.scalar_type() == at::kLong
    +                                    ? (target.itemsize() / 2)
    +                                    : target.itemsize();
    +  int deal_n = 0;
    +  int threshold_c = 0;
    +  bool is_half = false;
    +  if (input.scalar_type() == at::kHalf) {
    +    is_half = true;
    +  }
    +  // calculate deal_n and threshold_c
    +  getDealNAndThresholdC(compute_data_bytes, target_data_bytes, dim_c, &deal_n,
    +                        &threshold_c, has_weight, is_half);
    +
    +  // check C
    +  TORCH_CHECK(threshold_c >= dim_c,
    +              "input.size(1) should be in the range of [0, ", threshold_c,
    +              "]. ", "But now input.size(1) is ", dim_c, ".");
    +
    +  if (input.numel() == 0 || target.numel() == 0 || output.numel() == 0) {
    +    // return if zero-element
    +    return;
    +  }
    +
    +  // set task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncBackward(&k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(input);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto target_impl = torch_mlu::getMluTensorImpl(target);
    +  auto target_ptr = target_impl->cnnlMalloc();
    +  auto weight_impl = torch_mlu::getMluTensorImpl(weight);
    +  auto weight_ptr = weight_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  // get dtype of input
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(input.dtype());
    +  auto core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto dim_n = input.size(0);
    +
    +  CNLOG(INFO) << "Launch Kernel KernelFocalLossSigmoidBackward<<>>";
    +
    +  // launch kernel
    +  KernelFocalLossSigmoidBackward(k_dim, k_type, queue, d_type, input_ptr,
    +                                 target_ptr, weight_ptr, gamma, alpha, dim_n,
    +                                 deal_n, dim_c, output_ptr);
    +}
    +
    +void sigmoid_focal_loss_forward_mlu(Tensor input, Tensor target, Tensor weight,
    +                                    Tensor output, float gamma, float alpha) {
    +  SigmoidFocalLossForwardMLUKernelLauncher(input, target, weight, output, gamma,
    +                                           alpha);
    +}
    +
    +void sigmoid_focal_loss_backward_mlu(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor grad_input, float gamma,
    +                                     float alpha) {
    +  SigmoidFocalLossBackwardMLUKernelLauncher(input, target, weight, grad_input,
    +                                            gamma, alpha);
    +}
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha);
    +
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, MLU,
    +                     sigmoid_focal_loss_forward_mlu);
    +REGISTER_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, MLU,
    +                     sigmoid_focal_loss_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/iou3d_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/iou3d_mlu.cpp
    new file mode 100644
    index 000000000..5348d16e0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/iou3d_mlu.cpp
    @@ -0,0 +1,144 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelIou3d(cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +                 const cnrtDataType_t data_type_input, const void *boxes_dram,
    +                 const int input_box_num, const float iou_threshold,
    +                 void *workspace, void *output_size, void *output);
    +
    +int selectType(uint32_t use_job, int box_num_per_core) {
    +  // the box_num_per_core should be at least 256, otherwise the real IO
    +  // bandwidth would be very low
    +  while (box_num_per_core < 256 && use_job >= 4) {
    +    box_num_per_core *= 2;
    +    use_job /= 2;
    +  }
    +  return use_job;
    +}
    +static cnnlStatus_t policyFunc(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type,
    +                               int &core_num_per_class,
    +                               const int input_box_num) {
    +  uint32_t core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  uint32_t job_limit = getJobLimitCapability();
    +  uint32_t core_number = job_limit;
    +
    +  int box_num_per_core = (input_box_num + core_number - 1) / core_number;
    +  int use_job = selectType(job_limit, box_num_per_core);
    +  // initiate k_type as Union1
    +  k_dim->x = core_dim;
    +  k_dim->y = 1;
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  switch (job_limit) {
    +    case CN_KERNEL_CLASS_BLOCK:
    +    case CN_KERNEL_CLASS_UNION:
    +    case CN_KERNEL_CLASS_UNION2:
    +    case CN_KERNEL_CLASS_UNION4:
    +    case CN_KERNEL_CLASS_UNION8:
    +    case CN_KERNEL_CLASS_UNION16: {
    +      if (use_job < 4) {
    +        k_dim->x = 1;
    +        *k_type = CNRT_FUNC_TYPE_BLOCK;
    +      } else if (use_job == 4) {
    +        k_dim->x = core_dim;
    +        *k_type = CNRT_FUNC_TYPE_UNION1;
    +      } else {
    +        k_dim->x = use_job;
    +        *k_type = (cnrtFunctionType_t)use_job;
    +      }
    +    }; break;
    +    default:
    +      LOG(WARNING) << "[cnnlNms_v2]: got unsupported job limit number."
    +                   << " Use default CN_KERNEL_CLASS_UNION1 with UNION1 task.";
    +  }
    +  return CNNL_STATUS_SUCCESS;
    +}
    +
    +void IoU3DNMS3DMLUKernelLauncher(Tensor boxes, Tensor &keep, Tensor &keep_num,
    +                                 float iou_threshold) {
    +  // dimension parameters check
    +  TORCH_CHECK(boxes.dim() == 2, "boxes should be a 2d tensor, got ",
    +              boxes.dim(), "D");
    +  TORCH_CHECK(boxes.size(1) == 7,
    +              "boxes should have 7 elements in dimension 1, got ",
    +              boxes.size(1));
    +
    +  // data type check
    +  TORCH_CHECK(
    +      boxes.scalar_type() == at::kFloat || boxes.scalar_type() == at::kHalf,
    +      "data type of boxes should be Float or Half, got ", boxes.scalar_type());
    +
    +  if (boxes.numel() == 0) {
    +    return;
    +  }
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(boxes.numel() < max_input_num,
    +              "boxes.numel() should be less than 2147483648, got ",
    +              boxes.numel());
    +  int input_box_num = boxes.size(0);
    +
    +  cnrtDataType_t data_type_input = torch_mlu::toCnrtDtype(boxes.dtype());
    +  cnrtDim3_t k_dim;
    +  cnrtJobType_t k_type;
    +
    +  int core_num_per_class;
    +  policyFunc(&k_dim, &k_type, core_num_per_class, input_box_num);
    +
    +  // transpose boxes (n, 7) to (7, n) for better performance
    +  auto boxes_t = boxes.transpose(0, 1);
    +  auto boxes_ = torch_mlu::cnnl::ops::cnnl_contiguous(boxes_t);
    +
    +  auto output = at::empty({input_box_num}, boxes.options().dtype(at::kLong));
    +  auto output_size = at::empty({1}, boxes.options().dtype(at::kInt));
    +
    +  // workspace
    +  const int info_num = 7;  // x, y,z, dx, dy, dz,angle
    +  size_t space_size = 0;
    +  if (boxes.scalar_type() == at::kHalf) {
    +    space_size = input_box_num * sizeof(int16_t) * info_num +
    +                 input_box_num * sizeof(float) + sizeof(float);
    +  } else {
    +    space_size = input_box_num * sizeof(float) * (info_num + 1) + sizeof(float);
    +  }
    +
    +  auto workspace = at::empty(space_size, boxes.options().dtype(at::kByte));
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  auto boxes_impl = torch_mlu::getMluTensorImpl(boxes_);
    +  auto boxes_ptr = boxes_impl->cnnlMalloc();
    +  auto workspace_impl = torch_mlu::getMluTensorImpl(workspace);
    +  auto workspace_ptr = workspace_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(keep);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +  auto output_size_impl = torch_mlu::getMluTensorImpl(keep_num);
    +  auto output_size_ptr = output_size_impl->cnnlMalloc();
    +
    +  uint32_t core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  CNLOG(INFO) << "Launch Kernel KernelIou3d<<>>";
    +  KernelIou3d(k_dim, k_type, queue, data_type_input, boxes_ptr, input_box_num,
    +              iou_threshold, workspace_ptr, output_size_ptr, output_ptr);
    +}
    +
    +void iou3d_nms3d_forward_mlu(const Tensor boxes, Tensor &keep, Tensor &keep_num,
    +                             float nms_overlap_thresh) {
    +  IoU3DNMS3DMLUKernelLauncher(boxes, keep, keep_num, nms_overlap_thresh);
    +}
    +
    +void iou3d_nms3d_forward_impl(const Tensor boxes, Tensor &keep,
    +                              Tensor &keep_num, float nms_overlap_thresh);
    +REGISTER_DEVICE_IMPL(iou3d_nms3d_forward_impl, MLU, iou3d_nms3d_forward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/masked_conv2d_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/masked_conv2d_mlu.cpp
    new file mode 100755
    index 000000000..e7842b3a1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/masked_conv2d_mlu.cpp
    @@ -0,0 +1,226 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelMaskedIm2colForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    cnrtDataType_t k_dtype, const void *im_ptr, const int height,
    +    const int width, const int channels, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const void *mask_h_idx_ptr,
    +    const void *mask_w_idx_ptr, const int mask_cnt, void *col_ptr);
    +
    +void KernelMaskedCol2imForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                               cnrtQueue_t queue, cnrtDataType_t k_dtype,
    +                               const void *col_ptr, const int height,
    +                               const int width, const int channels,
    +                               const void *mask_h_idx_ptr,
    +                               const void *mask_w_idx_ptr, const int mask_cnt,
    +                               void *im_ptr);
    +
    +// policy function
    +static void policyFunc(const int mask_cnt, cnrtDim3_t *k_dim,
    +                       cnrtFunctionType_t *k_type) {
    +  const size_t cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  const size_t core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  const size_t task_dim = CEIL_ALIGN(mask_cnt, core_num);
    +  k_dim->x = core_num;
    +  k_dim->y =
    +      (task_dim / core_num) > cluster_num ? cluster_num : (task_dim / core_num);
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +}
    +
    +void MaskedIm2colForwardMLUKernelLauncher(const Tensor im,
    +                                          const Tensor mask_h_idx,
    +                                          const Tensor mask_w_idx, Tensor col,
    +                                          const int kernel_h,
    +                                          const int kernel_w, const int pad_h,
    +                                          const int pad_w) {
    +  // Check dtype.
    +  TORCH_CHECK(im.scalar_type() == at::kFloat || im.scalar_type() == at::kHalf,
    +              "im type should be Float or Half, got ", im.scalar_type(), ".");
    +  TORCH_CHECK(mask_h_idx.scalar_type() == at::kInt ||
    +                  mask_h_idx.scalar_type() == at::kLong,
    +              "mask_h_idx type should be Int or Long, got ",
    +              mask_h_idx.scalar_type(), ".");
    +  TORCH_CHECK(mask_w_idx.scalar_type() == at::kInt ||
    +                  mask_w_idx.scalar_type() == at::kLong,
    +              "mask_w_idx type should be Int or Long, got ",
    +              mask_w_idx.scalar_type(), ".");
    +  TORCH_CHECK(kernel_h > 0, "kernel_h should greater than 0, got ", kernel_h,
    +              ".");
    +  TORCH_CHECK(kernel_w > 0, "kernel_w should greater than 0, got ", kernel_w,
    +              ".");
    +
    +  // zero element check
    +  TORCH_CHECK(im.numel() > 0, "im.numel should greater than zero, got ",
    +              im.numel(), ".");
    +  TORCH_CHECK(col.size(0) > 0, "col.size(0) should greater than zero, got ",
    +              col.size(0), ".");
    +
    +  // large tensor check
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(im.numel() < max_input_num,
    +              "im.numel() should be less than 2147483648, got ", im.numel(),
    +              ".");
    +  TORCH_CHECK(col.numel() < max_input_num,
    +              "col.numel() should be less than 2147483648, got ", col.numel(),
    +              ".");
    +
    +  const int channels = im.size(1);
    +  const int height = im.size(2);
    +  const int width = im.size(3);
    +  const int mask_cnt = mask_h_idx.size(0);
    +
    +  // auto im_t = im.permute({0, 2, 3, 1}).contiguous();
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(im.dim());
    +  auto im_ = torch_mlu::cnnl::ops::cnnl_contiguous(im, memory_format);
    +  auto col_ =
    +      at::zeros({mask_cnt, kernel_h * kernel_w, channels}, col.options());
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(mask_cnt, &k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +  // get ptr of tensors
    +  auto im_impl = torch_mlu::getMluTensorImpl(im_);
    +  auto im_ptr = im_impl->cnnlMalloc();
    +  auto mask_h_idx_impl = torch_mlu::getMluTensorImpl(mask_h_idx);
    +  auto mask_h_idx_ptr = mask_h_idx_impl->cnnlMalloc();
    +  auto mask_w_idx_impl = torch_mlu::getMluTensorImpl(mask_w_idx);
    +  auto mask_w_idx_ptr = mask_w_idx_impl->cnnlMalloc();
    +  auto col_impl = torch_mlu::getMluTensorImpl(col_);
    +  auto col_ptr = col_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(im.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelMaskedIm2colForward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +  KernelMaskedIm2colForward(k_dim, k_type, queue, data_type, im_ptr, height,
    +                            width, channels, kernel_h, kernel_w, pad_h, pad_w,
    +                            mask_h_idx_ptr, mask_w_idx_ptr, mask_cnt, col_ptr);
    +
    +  col.copy_(col_.permute({2, 1, 0})
    +                .reshape({channels * kernel_h * kernel_w, mask_cnt})
    +                .contiguous());
    +}
    +
    +void MaskedCol2imForwardMLUKernelLauncher(const Tensor col,
    +                                          const Tensor mask_h_idx,
    +                                          const Tensor mask_w_idx, Tensor im,
    +                                          const int height, const int width,
    +                                          const int channels) {
    +  // Check dtype.
    +  TORCH_CHECK(col.scalar_type() == at::kFloat || col.scalar_type() == at::kHalf,
    +              "col type should be Float or Half, got ", col.scalar_type(), ".");
    +  TORCH_CHECK(mask_h_idx.scalar_type() == at::kInt ||
    +                  mask_h_idx.scalar_type() == at::kLong,
    +              "mask_h_idx type should be Int or Long, got ",
    +              mask_h_idx.scalar_type(), ".");
    +  TORCH_CHECK(mask_w_idx.scalar_type() == at::kInt ||
    +                  mask_w_idx.scalar_type() == at::kLong,
    +              "mask_w_idx type should be Int or Long, got ",
    +              mask_w_idx.scalar_type(), ".");
    +
    +  // zero element check
    +  TORCH_CHECK(im.numel() > 0, "im.numel should greater than zero, got ",
    +              im.numel(), ".");
    +  TORCH_CHECK(col.size(0) > 0, "col.size(0) should greater than zero, got ",
    +              col.size(0), ".");
    +
    +  // large tensor check
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(im.numel() < max_input_num,
    +              "im.numel() should be less than 2147483648, got ", im.numel(),
    +              ".");
    +  TORCH_CHECK(col.numel() < max_input_num,
    +              "col.numel() should be less than 2147483648, got ", col.numel(),
    +              ".");
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(im.dim());
    +  at::Tensor im_ =
    +      at::empty({1, channels, height, width}, im.options(), memory_format)
    +          .zero_();
    +
    +  auto col_t = torch_mlu::cnnl::ops::cnnl_contiguous(col.transpose(0, 1));
    +
    +  const int mask_cnt = mask_h_idx.size(0);
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(mask_cnt, &k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +  // get ptr of tensors
    +  auto im_impl = torch_mlu::getMluTensorImpl(im_);
    +  auto im_ptr = im_impl->cnnlMalloc();
    +  auto mask_h_idx_impl = torch_mlu::getMluTensorImpl(mask_h_idx);
    +  auto mask_h_idx_ptr = mask_h_idx_impl->cnnlMalloc();
    +  auto mask_w_idx_impl = torch_mlu::getMluTensorImpl(mask_w_idx);
    +  auto mask_w_idx_ptr = mask_w_idx_impl->cnnlMalloc();
    +  auto col_t_impl = torch_mlu::getMluTensorImpl(col_t);
    +  auto col_t_ptr = col_t_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(col.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelMaskedCol2imForward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelMaskedCol2imForward(k_dim, k_type, queue, data_type, col_t_ptr, height,
    +                            width, channels, mask_h_idx_ptr, mask_w_idx_ptr,
    +                            mask_cnt, im_ptr);
    +
    +  im.copy_(im_);
    +}
    +
    +void masked_im2col_forward_mlu(const Tensor im, const Tensor mask_h_idx,
    +                               const Tensor mask_w_idx, Tensor col,
    +                               const int kernel_h, const int kernel_w,
    +                               const int pad_h, const int pad_w) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kw), col: (kh * kw * ic, ow * oh)
    +  MaskedIm2colForwardMLUKernelLauncher(im, mask_h_idx, mask_w_idx, col,
    +                                       kernel_h, kernel_w, pad_h, pad_w);
    +}
    +
    +void masked_col2im_forward_mlu(const Tensor col, const Tensor mask_h_idx,
    +                               const Tensor mask_w_idx, Tensor im, int height,
    +                               int width, int channels) {
    +  // im: (n, ic, h, w), kernel size (kh, kw)
    +  // kernel: (oc, ic * kh * kh), col: (kh * kw * ic, ow * oh)
    +  MaskedCol2imForwardMLUKernelLauncher(col, mask_h_idx, mask_w_idx, im, height,
    +                                       width, channels);
    +}
    +
    +void masked_im2col_forward_impl(const Tensor im, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor col,
    +                                const int kernel_h, const int kernel_w,
    +                                const int pad_h, const int pad_w);
    +
    +void masked_col2im_forward_impl(const Tensor col, const Tensor mask_h_idx,
    +                                const Tensor mask_w_idx, Tensor im, int height,
    +                                int width, int channels);
    +
    +REGISTER_DEVICE_IMPL(masked_im2col_forward_impl, MLU,
    +                     masked_im2col_forward_mlu);
    +REGISTER_DEVICE_IMPL(masked_col2im_forward_impl, MLU,
    +                     masked_col2im_forward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/ms_deform_attn_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/ms_deform_attn_mlu.cpp
    new file mode 100644
    index 000000000..e93fd984a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/ms_deform_attn_mlu.cpp
    @@ -0,0 +1,420 @@
    +/*************************************************************************
    + * Copyright (C) 2022 by Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +#define MIN(a, b) (((a) < (b)) ? (a) : (b))
    +
    +void KernelMsDeformAttnForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const char* data_value_gdram,
    +    const char* data_spatial_shapes_gdram,
    +    const char* data_level_start_index_gdram,
    +    const char* data_sampling_loc_gdram, const char* data_attn_weight_gdram,
    +    const int32_t batch_size, const int32_t num_keys, const int32_t num_heads,
    +    const int32_t channels, const int32_t num_levels, const int32_t num_queries,
    +    const int32_t num_points, char* data_col_gdram);
    +void KernelMsDeformAttnBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const float* data_value,
    +    const int32_t* spatial_shapes, const int32_t* data_level_start_index,
    +    const float* data_sampling_loc, const float* data_attn_weight,
    +    const float* grad_output, const int32_t batch_size, const int32_t num_keys,
    +    const int32_t num_heads, const int32_t channels, const int32_t num_levels,
    +    const int32_t num_queries, const int32_t num_points, float* grad_value,
    +    float* grad_sampling_loc, float* grad_attn_weight);
    +// policy function
    +static void policyFuncForward(cnrtDim3_t* k_dim, cnrtFunctionType_t* k_type,
    +                              const int batch_size, const int num_queries,
    +                              const int num_heads) {
    +  k_dim->x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->y =
    +      MIN((batch_size * num_queries * num_heads + k_dim->x - 1) / k_dim->x,
    +          torch_mlu::getDeviceAttr(cnrtAttrClusterCount));
    +  k_dim->z = 1;
    +#if __BANG_ARCH__ == 520
    +  *k_type = CNRT_FUNC_TYPE_BLOCK;
    +#else
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +#endif
    +}
    +
    +// policy function for backward
    +static void policyFuncBackward(const int32_t batch_size,
    +                               const int32_t num_queries,
    +                               const int32_t num_heads,
    +                               const int32_t num_levels,
    +                               cnrtFunctionType_t* k_type, cnrtDim3_t* k_dim) {
    +  size_t cluster_limit = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  size_t core_limit = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->x = core_limit;
    +  int32_t total_num = batch_size * num_queries * num_heads * num_levels;
    +  size_t total_num_align = CEIL_ALIGN(total_num, core_limit);
    +  k_dim->y = (total_num_align / core_limit) > cluster_limit
    +                 ? cluster_limit
    +                 : (total_num_align / core_limit);
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +}
    +
    +Tensor ms_deform_attn_mlu_forward(const Tensor& value,
    +                                  const Tensor& spatial_shapes,
    +                                  const Tensor& level_start_index,
    +                                  const Tensor& sampling_loc,
    +                                  const Tensor& attn_weight,
    +                                  const int im2col_step) {
    +  // check contiguous
    +  AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
    +  AT_ASSERTM(spatial_shapes.is_contiguous(),
    +             "spatial_shapes tensor has to be contiguous");
    +  AT_ASSERTM(level_start_index.is_contiguous(),
    +             "level_start_index tensor has to be contiguous");
    +  AT_ASSERTM(sampling_loc.is_contiguous(),
    +             "sampling_loc tensor has to be contiguous");
    +  AT_ASSERTM(attn_weight.is_contiguous(),
    +             "attn_weight tensor has to be contiguous");
    +
    +  // check datatype
    +  TORCH_CHECK((value.scalar_type() == at::kFloat),
    +              "value type should be Float, got ", value.scalar_type(), ".");
    +  TORCH_CHECK((spatial_shapes.scalar_type() == at::kInt ||
    +               spatial_shapes.scalar_type() == at::kLong),
    +              "spatial_shapes type should be Int, got ",
    +              spatial_shapes.scalar_type(), ".");
    +  TORCH_CHECK((level_start_index.scalar_type() == at::kInt ||
    +               level_start_index.scalar_type() == at::kLong),
    +              "level_start_index type should be Int, got ",
    +              level_start_index.scalar_type(), ".");
    +  TORCH_CHECK((sampling_loc.scalar_type() == at::kFloat),
    +              "sampling_loc type should be Float, got ",
    +              sampling_loc.scalar_type(), ".");
    +  TORCH_CHECK((attn_weight.scalar_type() == at::kFloat),
    +              "attn_weight type should be Float, got ",
    +              attn_weight.scalar_type(), ".");
    +
    +  // check shape
    +  TORCH_CHECK(value.dim() == 4, "value should be a 4d tensor, got ",
    +              value.dim(), "D.");
    +  TORCH_CHECK(spatial_shapes.dim() == 2,
    +              "spatial_shapes should be a 2d tensor, got ",
    +              spatial_shapes.dim(), "D.");
    +  TORCH_CHECK(level_start_index.dim() == 1,
    +              "level_start_index should be a 1d tensor, got ",
    +              level_start_index.dim(), "D.");
    +  TORCH_CHECK(sampling_loc.dim() == 6,
    +              "sampling_loc should be a 6d tensor, got ", sampling_loc.dim(),
    +              "D.");
    +  TORCH_CHECK(attn_weight.dim() == 5, "attn_weight should be a 5d tensor, got ",
    +              attn_weight.dim(), "D.");
    +
    +  const int batch_size = value.size(0);
    +  const int num_keys = value.size(1);
    +  const int num_heads = value.size(2);
    +  const int channels = value.size(3);
    +  const int num_levels = spatial_shapes.size(0);
    +  const int num_queries = sampling_loc.size(1);
    +  const int num_points = sampling_loc.size(4);
    +
    +  TORCH_CHECK(spatial_shapes.size(1) == 2,
    +              "the 2nd dimensions of spatial_shapes should be 2, got ",
    +              spatial_shapes.size(1), ".");
    +  TORCH_CHECK(sampling_loc.size(5) == 2,
    +              "the 6th dimensions of sampling_loc should be 2, got ",
    +              sampling_loc.size(5), ".");
    +  TORCH_CHECK((sampling_loc.size(0) == batch_size),
    +              "the 1st dimensions of sampling_loc should be batch_size, ",
    +              "but now the 1st dimension of sampling_loc is ",
    +              sampling_loc.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((attn_weight.size(0) == batch_size),
    +              "the 1st dimensions of attn_weight should be batch_size, ",
    +              "but now the 1st dimension of attn_weight is ",
    +              attn_weight.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((sampling_loc.size(2) == num_heads),
    +              "the 3rd dimensions of sampling_loc should be num_heads, ",
    +              "but now the 3rd dimension of sampling_loc is ",
    +              sampling_loc.size(2), ", and num_heads is ", num_heads, ".");
    +  TORCH_CHECK((attn_weight.size(2) == num_heads),
    +              "the 3rd dimensions of attn_weight should be num_heads, ",
    +              "but now the 3rd dimension of attn_weight is ",
    +              attn_weight.size(2), ", and num_heads is ", num_heads, ".");
    +  TORCH_CHECK((level_start_index.size(0) == num_levels),
    +              "the 1st dimensions of level_start_index should be num_levels, ",
    +              "but now the 1st dimension of level_start_index is ",
    +              level_start_index.size(0), ", and num_levels is ", num_levels,
    +              ".");
    +  TORCH_CHECK((sampling_loc.size(3) == num_levels),
    +              "the 4th dimensions of sampling_loc should be num_levels, ",
    +              "but now the 4th dimension of sampling_loc is ",
    +              sampling_loc.size(3), ", and num_levels is ", num_levels, ".");
    +  TORCH_CHECK((attn_weight.size(3) == num_levels),
    +              "the 4th dimensions of attn_weight should be num_levels, ",
    +              "but now the 4th dimension of attn_weight is ",
    +              attn_weight.size(3), ", and num_levels is ", num_levels, ".");
    +  TORCH_CHECK((attn_weight.size(1) == num_queries),
    +              "the 2nd dimensions of attn_weight should be num_queries, ",
    +              "but now the 2nd dimension of attn_weight is ",
    +              attn_weight.size(1), ", and num_queries is ", num_queries, ".");
    +  TORCH_CHECK((attn_weight.size(4) == num_points),
    +              "the 5th dimensions of attn_weight should be num_points, ",
    +              "but now the 5th dimension of attn_weight is ",
    +              attn_weight.size(4), ", and num_points is ", num_points, ".");
    +
    +  auto output = at::zeros({batch_size, num_queries, num_heads, channels},
    +                          value.options());
    +
    +  // large tensor check
    +  const size_t max_input_size = 2147483648;
    +  TORCH_CHECK(value.numel() < max_input_size,
    +              "value element num should be less than 2^31, got ", value.numel(),
    +              ".");
    +  TORCH_CHECK(sampling_loc.numel() < max_input_size,
    +              "sampling_loc element num should be less than 2^31, got ",
    +              sampling_loc.numel(), ".");
    +  TORCH_CHECK(output.numel() < max_input_size,
    +              "output element num should be less than 2^31, got ",
    +              output.numel(), ".");
    +
    +  // check zero element
    +  TORCH_CHECK(batch_size != 0, "batch_size should not be zero");
    +  TORCH_CHECK(num_heads != 0, "num_heads should not be zero");
    +  TORCH_CHECK(channels != 0, "channels should not be zero");
    +  TORCH_CHECK(num_queries != 0, "num_queries should not be zero");
    +
    +  if (num_keys == 0 || num_levels == 0 || num_points == 0) {
    +    return output;
    +  }
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncForward(&k_dim, &k_type, batch_size, num_queries, num_heads);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  auto spatial_shapes_ = spatial_shapes.to(at::kInt);
    +  auto level_start_index_ = level_start_index.to(at::kInt);
    +
    +  // get ptr of tensors
    +  auto value_impl = torch_mlu::getMluTensorImpl(value);
    +  auto value_ptr = value_impl->cnnlMalloc();
    +  auto spatial_shapes_impl = torch_mlu::getMluTensorImpl(spatial_shapes_);
    +  auto spatial_shapes_ptr = spatial_shapes_impl->cnnlMalloc();
    +  auto level_start_index_impl = torch_mlu::getMluTensorImpl(level_start_index_);
    +  auto level_start_index_ptr = level_start_index_impl->cnnlMalloc();
    +  auto sampling_loc_impl = torch_mlu::getMluTensorImpl(sampling_loc);
    +  auto sampling_loc_ptr = sampling_loc_impl->cnnlMalloc();
    +  auto attn_weight_impl = torch_mlu::getMluTensorImpl(attn_weight);
    +  auto attn_weight_ptr = attn_weight_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  // get compute dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(value.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelMsDeformAttnForward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelMsDeformAttnForward(
    +      k_dim, k_type, queue, data_type, (char*)value_ptr,
    +      (char*)spatial_shapes_ptr, (char*)level_start_index_ptr,
    +      (char*)sampling_loc_ptr, (char*)attn_weight_ptr, batch_size, num_keys,
    +      num_heads, channels, num_levels, num_queries, num_points,
    +      (char*)output_ptr);
    +
    +  output = output.view({batch_size, num_queries, num_heads * channels});
    +  return output;
    +}
    +
    +void ms_deform_attn_mlu_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight,
    +    const int im2col_step) {
    +  // check contiguous
    +  AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
    +  AT_ASSERTM(spatial_shapes.is_contiguous(),
    +             "spatial_shapes tensor has to be contiguous");
    +  AT_ASSERTM(level_start_index.is_contiguous(),
    +             "level_start_index tensor has to be contiguous");
    +  AT_ASSERTM(sampling_loc.is_contiguous(),
    +             "sampling_loc tensor has to be contiguous");
    +  AT_ASSERTM(attn_weight.is_contiguous(),
    +             "attn_weight tensor has to be contiguous");
    +  AT_ASSERTM(grad_output.is_contiguous(),
    +             "grad_output tensor has to be contiguous");
    +
    +  // check datatype
    +  TORCH_CHECK((value.scalar_type() == at::kFloat),
    +              "value type should be Float, got ", value.scalar_type(), ".");
    +  TORCH_CHECK((spatial_shapes.scalar_type() == at::kInt ||
    +               spatial_shapes.scalar_type() == at::kLong),
    +              "spatial_shapes type should be Int, got ",
    +              spatial_shapes.scalar_type(), ".");
    +  TORCH_CHECK((level_start_index.scalar_type() == at::kInt ||
    +               level_start_index.scalar_type() == at::kLong),
    +              "level_start_index type should be Int, got ",
    +              level_start_index.scalar_type(), ".");
    +  TORCH_CHECK((sampling_loc.scalar_type() == at::kFloat),
    +              "sampling_loc type should be Float, got ",
    +              sampling_loc.scalar_type(), ".");
    +  TORCH_CHECK((attn_weight.scalar_type() == at::kFloat),
    +              "attn_weight type should be Float, got ",
    +              attn_weight.scalar_type(), ".");
    +  TORCH_CHECK((grad_output.scalar_type() == at::kFloat),
    +              "grad_output type should be Float, got ",
    +              grad_output.scalar_type(), ".");
    +
    +  const int batch_size = value.size(0);
    +  const int num_keys = value.size(1);
    +  const int num_heads = value.size(2);
    +  const int channels = value.size(3);
    +  const int num_levels = spatial_shapes.size(0);
    +  const int num_queries = sampling_loc.size(1);
    +  const int num_points = sampling_loc.size(4);
    +  // Check shape.
    +  TORCH_CHECK(spatial_shapes.size(1) == 2,
    +              "the 2nd dimensions of spatial_shapes should be 2, got ",
    +              spatial_shapes.size(1), ".");
    +
    +  TORCH_CHECK((level_start_index.size(0) == num_levels),
    +              "the 1st dimensions of level_start_index should be num_levels, ",
    +              "but now the 1st dimension of level_start_index is ",
    +              level_start_index.size(0), ", and num_levels is ", num_levels,
    +              ".");
    +
    +  TORCH_CHECK((sampling_loc.size(0) == batch_size),
    +              "the 1st dimensions of sampling_loc should be batch_size, ",
    +              "but now the 1st dimension of sampling_loc is ",
    +              sampling_loc.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((sampling_loc.size(2) == num_heads),
    +              "the 3rd dimensions of sampling_loc should be num_heads, ",
    +              "but now the 3rd dimension of sampling_loc is ",
    +              sampling_loc.size(2), ", and num_heads is ", num_heads, ".");
    +  TORCH_CHECK((sampling_loc.size(3) == num_levels),
    +              "the 4th dimensions of sampling_loc should be num_levels, ",
    +              "but now the 4th dimension of sampling_loc is ",
    +              sampling_loc.size(3), ", and num_levels is ", num_levels, ".");
    +  TORCH_CHECK(sampling_loc.size(5) == 2,
    +              "the 6th dimensions of sampling_loc should be 2, got ",
    +              sampling_loc.size(5), ".");
    +
    +  TORCH_CHECK((attn_weight.size(0) == batch_size),
    +              "the 1st dimensions of attn_weight should be batch_size, ",
    +              "but now the 1st dimension of attn_weight is ",
    +              attn_weight.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((attn_weight.size(1) == num_queries),
    +              "the 2nd dimensions of attn_weight should be num_queries, ",
    +              "but now the 2nd dimension of attn_weight is ",
    +              attn_weight.size(1), ", and num_queries is ", num_queries, ".");
    +
    +  TORCH_CHECK((attn_weight.size(2) == num_heads),
    +              "the 3rd dimensions of attn_weight should be num_heads, ",
    +              "but now the 3rd dimension of attn_weight is ",
    +              attn_weight.size(2), ", and num_heads is ", num_heads, ".");
    +  TORCH_CHECK((attn_weight.size(3) == num_levels),
    +              "the 4th dimensions of attn_weight should be num_levels, ",
    +              "but now the 4th dimension of attn_weight is ",
    +              attn_weight.size(3), ", and num_levels is ", num_levels, ".");
    +  TORCH_CHECK((attn_weight.size(4) == num_points),
    +              "the 5th dimensions of attn_weight should be num_points, ",
    +              "but now the 5th dimension of attn_weight is ",
    +              attn_weight.size(4), ", and num_points is ", num_points, ".");
    +
    +  TORCH_CHECK((grad_output.size(0) == batch_size),
    +              "the 1st dimensions of grad_output should be batch_size, ",
    +              "but now the 1st dimension of grad_output is ",
    +              grad_output.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((grad_output.size(1) == num_queries),
    +              "the 2nd dimensions of grad_output should be num_queries, ",
    +              "but now the 2nd dimension of grad_output is ",
    +              grad_output.size(1), ", and num_queries is ", num_queries, ".");
    +  TORCH_CHECK(
    +      (grad_output.size(2) == num_heads * channels),
    +      "the 3rd dimensions of grad_output should be num_heads * channels, ",
    +      "but now the 3rd dimension of grad_output is ", grad_output.size(2),
    +      ", and num_heads * channels is ", num_heads * channels, ".");
    +
    +  // check zero element
    +  TORCH_CHECK(batch_size != 0, "The batch_size is zero.");
    +  TORCH_CHECK(channels != 0, "The channels is zero.");
    +  TORCH_CHECK(num_keys != 0, "The num_keys is zero.");
    +  TORCH_CHECK(num_heads != 0, "The num_heads is zero.");
    +  TORCH_CHECK(num_queries != 0, "The num_queries is zero.");
    +  if (num_levels == 0 || num_points == 0) {
    +    return;
    +  }
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncBackward(batch_size, num_queries, num_heads, num_levels, &k_type,
    +                     &k_dim);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto value_impl = torch_mlu::getMluTensorImpl(value);
    +  auto value_ptr = value_impl->cnnlMalloc();
    +  auto spatial_shapes_impl = torch_mlu::getMluTensorImpl(spatial_shapes);
    +  auto spatial_shapes_ptr = spatial_shapes_impl->cnnlMalloc();
    +  auto level_start_index_impl = torch_mlu::getMluTensorImpl(level_start_index);
    +  auto level_start_index_ptr = level_start_index_impl->cnnlMalloc();
    +  auto sampling_loc_impl = torch_mlu::getMluTensorImpl(sampling_loc);
    +  auto sampling_loc_ptr = sampling_loc_impl->cnnlMalloc();
    +  auto attn_weight_impl = torch_mlu::getMluTensorImpl(attn_weight);
    +  auto attn_weight_ptr = attn_weight_impl->cnnlMalloc();
    +  auto grad_output_impl = torch_mlu::getMluTensorImpl(grad_output);
    +  auto grad_output_ptr = grad_output_impl->cnnlMalloc();
    +  auto grad_value_impl = torch_mlu::getMluTensorImpl(grad_value);
    +  auto grad_value_ptr = grad_value_impl->cnnlMalloc();
    +  auto grad_sampling_loc_impl = torch_mlu::getMluTensorImpl(grad_sampling_loc);
    +  auto grad_sampling_loc_ptr = grad_sampling_loc_impl->cnnlMalloc();
    +  auto grad_attn_weight_impl = torch_mlu::getMluTensorImpl(grad_attn_weight);
    +  auto grad_attn_weight_ptr = grad_attn_weight_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(value.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelMsDeformAttnBackward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelMsDeformAttnBackward(
    +      k_dim, k_type, queue, data_type, (float*)value_ptr,
    +      (int32_t*)spatial_shapes_ptr, (int32_t*)level_start_index_ptr,
    +      (float*)sampling_loc_ptr, (float*)attn_weight_ptr,
    +      (float*)grad_output_ptr, batch_size, num_keys, num_heads, channels,
    +      num_levels, num_queries, num_points, (float*)grad_value_ptr,
    +      (float*)grad_sampling_loc_ptr, (float*)grad_attn_weight_ptr);
    +}
    +
    +Tensor ms_deform_attn_impl_forward(const Tensor& value,
    +                                   const Tensor& spatial_shapes,
    +                                   const Tensor& level_start_index,
    +                                   const Tensor& sampling_loc,
    +                                   const Tensor& attn_weight,
    +                                   const int im2col_step);
    +
    +void ms_deform_attn_impl_backward(
    +    const Tensor& value, const Tensor& spatial_shapes,
    +    const Tensor& level_start_index, const Tensor& sampling_loc,
    +    const Tensor& attn_weight, const Tensor& grad_output, Tensor& grad_value,
    +    Tensor& grad_sampling_loc, Tensor& grad_attn_weight, const int im2col_step);
    +
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_forward, MLU,
    +                     ms_deform_attn_mlu_forward);
    +REGISTER_DEVICE_IMPL(ms_deform_attn_impl_backward, MLU,
    +                     ms_deform_attn_mlu_backward);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp
    new file mode 100644
    index 000000000..e2f4322a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp
    @@ -0,0 +1,156 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelNms(cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +               const cnrtDataType_t data_type_input, const void *boxes_ptr,
    +               const void *scores_ptr, const int input_num_boxes,
    +               const int max_output_boxes, const float iou_threshold,
    +               const float offset, void *workspace_ptr, void *output_size_ptr,
    +               void *output_ptr);
    +
    +int selectUnionType(uint32_t use_job, int box_num_per_core) {
    +  // the box_num_per_core should be at least 256, otherwise the real IO
    +  // bandwidth would be very low
    +  while (box_num_per_core < 256 && use_job >= 4) {
    +    box_num_per_core *= 2;
    +    use_job /= 2;
    +  }
    +  return use_job;
    +}
    +
    +static cnnlStatus_t policyFunc(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type,
    +                               int &core_num_per_class,
    +                               const int input_box_num) {
    +  uint32_t core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  uint32_t cluster_number = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  uint32_t job_limit = getJobLimitCapability();
    +  uint32_t core_number = job_limit;
    +
    +  int box_num_per_core = (input_box_num + core_number - 1) / core_number;
    +  int use_job = selectUnionType(job_limit, box_num_per_core);
    +  // initiate k_type as Union1
    +  k_dim->x = core_dim;
    +  k_dim->y = 1;
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  switch (job_limit) {
    +    case CN_KERNEL_CLASS_BLOCK:
    +    case CN_KERNEL_CLASS_UNION:
    +    case CN_KERNEL_CLASS_UNION2:
    +    case CN_KERNEL_CLASS_UNION4:
    +    case CN_KERNEL_CLASS_UNION8:
    +    case CN_KERNEL_CLASS_UNION16: {
    +      if (use_job < 4) {
    +        k_dim->x = 1;
    +        *k_type = CNRT_FUNC_TYPE_BLOCK;
    +      } else if (use_job == 4) {
    +        k_dim->x = core_dim;
    +        *k_type = CNRT_FUNC_TYPE_UNION1;
    +      } else {
    +        k_dim->x = use_job;
    +        *k_type = (cnrtFunctionType_t)use_job;
    +      }
    +    }; break;
    +    default:
    +      LOG(WARNING) << "[cnnlNms_v2]: got unsupported job limit number."
    +                   << " Use default CN_KERNEL_CLASS_UNION1 with UNION1 task.";
    +  }
    +  return CNNL_STATUS_SUCCESS;
    +}
    +
    +Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
    +                            int offset) {
    +  // dimension parameters check
    +  TORCH_CHECK(boxes.dim() == 2, "boxes should be a 2d tensor, got ",
    +              boxes.dim(), "D");
    +  TORCH_CHECK(boxes.size(1) == 4,
    +              "boxes should have 4 elements in dimension 1, got ",
    +              boxes.size(1));
    +  TORCH_CHECK(scores.dim() == 1, "scores should be a 1d tensor, got ",
    +              scores.dim(), "D");
    +
    +  // data type check
    +  TORCH_CHECK(boxes.scalar_type() == scores.scalar_type(),
    +              "boxes should have the same type as scores");
    +  TORCH_CHECK(
    +      boxes.scalar_type() == at::kFloat || boxes.scalar_type() == at::kHalf,
    +      "data type of boxes should be Float or Half, got ", boxes.scalar_type());
    +
    +  if (boxes.numel() == 0) {
    +    return at::empty({0}, boxes.options().dtype(at::kLong));
    +  }
    +
    +  int input_num_boxes = boxes.size(0);
    +  int max_output_boxes = boxes.size(0);
    +
    +  cnrtDataType_t data_type_input = torch_mlu::toCnrtDtype(boxes.dtype());
    +  cnrtDim3_t k_dim;
    +  cnrtJobType_t k_type;
    +
    +  int core_num_per_class;
    +  policyFunc(&k_dim, &k_type, core_num_per_class, input_num_boxes);
    +
    +  // transpose boxes (n, 4) to (4, n) for better performance
    +  auto boxes_t = boxes.transpose(0, 1);
    +  auto boxes_ = torch_mlu::cnnl::ops::cnnl_contiguous(boxes_t);
    +  auto scores_ = torch_mlu::cnnl::ops::cnnl_contiguous(scores);
    +  auto output = at::empty({max_output_boxes}, boxes.options().dtype(at::kLong));
    +  auto output_size = at::empty({1}, scores.options().dtype(at::kInt));
    +
    +  // workspace
    +  const int info_num = 5;  // x1, x2, y1, y2 and score
    +  size_t space_size = 0;
    +  if (boxes.scalar_type() == at::kHalf) {
    +    space_size = input_num_boxes * sizeof(int16_t) * info_num + sizeof(float);
    +  } else {
    +    space_size = input_num_boxes * sizeof(float) * info_num + sizeof(float);
    +  }
    +#if __BANG_ARCH__ > 370
    +  int cluster_num = getCoreNumOfJobLimitCapability() /
    +                    torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  space_size += cluster_number * sizeof(float) * 7;
    +#endif
    +  auto workspace = at::empty(space_size, boxes.options().dtype(at::kByte));
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  auto boxes_impl = torch_mlu::getMluTensorImpl(boxes_);
    +  auto boxes_ptr = boxes_impl->cnnlMalloc();
    +  auto scores_impl = torch_mlu::getMluTensorImpl(scores_);
    +  auto scores_ptr = scores_impl->cnnlMalloc();
    +  auto workspace_impl = torch_mlu::getMluTensorImpl(workspace);
    +  auto workspace_ptr = workspace_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +  auto output_size_impl = torch_mlu::getMluTensorImpl(output_size);
    +  auto output_size_ptr = output_size_impl->cnnlMalloc();
    +
    +  uint32_t core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  CNLOG(INFO) << "Launch Kernel MLUUnionX NMS<<>>";
    +  KernelNms(k_dim, k_type, queue, data_type_input, boxes_ptr, scores_ptr,
    +            input_num_boxes, max_output_boxes, iou_threshold, offset,
    +            workspace_ptr, output_size_ptr, output_ptr);
    +  int output_num = *static_cast(output_size.cpu().data_ptr());
    +  return output.slice(0, 0, output_num);
    +}
    +
    +Tensor nms_mlu(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return NMSMLUKernelLauncher(boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +REGISTER_DEVICE_IMPL(nms_impl, MLU, nms_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/psamask_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/psamask_mlu.cpp
    new file mode 100644
    index 000000000..87077b5c4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/psamask_mlu.cpp
    @@ -0,0 +1,308 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include 
    +
    +#include "psamask_utils.hpp"
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +#define COMPUTE_COUNT_ALIGN 64
    +
    +void KernelPsamaskForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *x, void *y, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int x_c, const int y_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg);
    +
    +void KernelPsamaskBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *dy, void *dx, const PsamaskType psa_type,
    +    const DimPartitionType core_partition,
    +    const DimPartitionType cluster_partition, const int batch,
    +    const int h_feature, const int w_feature, const int h_mask,
    +    const int w_mask, const int dx_c, const int dy_c, const int half_h_mask,
    +    const int half_w_mask, const int n_per_core, const int h_per_core,
    +    const int n_per_cluster, const int h_per_cluster, const int limit_n_seg,
    +    const int limit_h_seg, const int limit_w_seg);
    +
    +namespace {
    +void policyFunc(cnrtDim3_t *k_dim_ptr, cnrtFunctionType_t *f_type_ptr,
    +                PartitionSeg *partition_ptr, const int n, const int h_feature) {
    +  unsigned int core_dim = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  unsigned int cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  unsigned int use_cluster_num = cluster_num;
    +  unsigned int use_core_num = core_dim;
    +
    +  if (n >= cluster_num || n >= h_feature) {
    +    partition_ptr->cluster_partition = PARTITION_N;
    +    partition_ptr->n_per_cluster = (n + cluster_num - 1) / cluster_num;
    +    partition_ptr->h_per_cluster = h_feature;
    +    use_cluster_num =
    +        (n + partition_ptr->n_per_cluster - 1) / partition_ptr->n_per_cluster;
    +  } else {
    +    partition_ptr->cluster_partition = PARTITION_H;
    +    partition_ptr->h_per_cluster = (h_feature + cluster_num - 1) / cluster_num;
    +    partition_ptr->n_per_cluster = n;
    +    use_cluster_num = (h_feature + partition_ptr->h_per_cluster - 1) /
    +                      partition_ptr->h_per_cluster;
    +  }
    +
    +  if (partition_ptr->n_per_cluster >= core_dim ||
    +      partition_ptr->n_per_cluster >= partition_ptr->h_per_cluster) {
    +    partition_ptr->core_partition = PARTITION_N;
    +    partition_ptr->n_per_core =
    +        (partition_ptr->n_per_cluster + core_dim - 1) / core_dim;
    +    partition_ptr->h_per_core = partition_ptr->h_per_cluster;
    +    use_core_num =
    +        (partition_ptr->n_per_cluster + partition_ptr->n_per_core - 1) /
    +        partition_ptr->n_per_core;
    +  } else {
    +    partition_ptr->core_partition = PARTITION_H;
    +    partition_ptr->h_per_core =
    +        (partition_ptr->h_per_cluster + core_dim - 1) / core_dim;
    +    partition_ptr->n_per_core = partition_ptr->n_per_cluster;
    +    use_core_num =
    +        (partition_ptr->h_per_cluster + partition_ptr->h_per_core - 1) /
    +        partition_ptr->h_per_core;
    +  }
    +  *k_dim_ptr = {core_dim, use_cluster_num, 1};
    +}
    +
    +}  // namespace
    +
    +bool findLimit(const int shape_core_n, const int shape_core_h,
    +               const int shape_core_w, const int shape_core_ci,
    +               const int shape_core_co, int *limit_n_seg_ptr,
    +               int *limit_h_seg_ptr, int *limit_w_seg_ptr, const int psa_type) {
    +  const bool need_temp = psa_type == 1;
    +  const int input_bytes = sizeof(float);
    +  int limit_n_seg = shape_core_n;
    +  int limit_h_seg = shape_core_h;
    +  int limit_w_seg = shape_core_w;
    +
    +  const int max_nram_size = torch_mlu::getDeviceAttr(cnrtAttrNramSizePerMcore);
    +  const int align_base_128 = NFU_ALIGN_SIZE / input_bytes;
    +  const int align_base_64 = COMPUTE_COUNT_ALIGN / input_bytes;
    +  const int align_co = CEIL_ALIGN(shape_core_co, align_base_64);
    +  const int align_w = CEIL_ALIGN(shape_core_w, align_base_64);
    +  const int align_hw = CEIL_ALIGN(shape_core_h * shape_core_w, align_base_64);
    +  const int max_num = max_nram_size / input_bytes;
    +
    +  int n_limit =
    +      max_num /
    +      (CEIL_ALIGN(shape_core_h * shape_core_w * shape_core_ci, align_base_128) +
    +       align_hw * align_co * (1 + need_temp));
    +  if (n_limit > 0) {
    +    n_limit = std::min(n_limit, shape_core_n);
    +    limit_n_seg = n_limit;
    +  } else {
    +    int h_limit =
    +        max_num / (CEIL_ALIGN(shape_core_w * shape_core_ci, align_base_128) +
    +                   align_w * align_co * (1 + need_temp));
    +    if (h_limit > 0) {
    +      h_limit = std::min(h_limit, shape_core_h);
    +      limit_h_seg = h_limit;
    +      limit_n_seg = 1;
    +    } else {
    +      int w_limit =
    +          max_num / (CEIL_ALIGN(shape_core_ci, align_base_128) +
    +                     CEIL_ALIGN(align_co, align_base_128) * (1 + need_temp));
    +      if (w_limit > 0 && w_limit >= (COMPUTE_COUNT_ALIGN / input_bytes)) {
    +        w_limit = std::min(w_limit, shape_core_w);
    +        w_limit = w_limit / (COMPUTE_COUNT_ALIGN / input_bytes) *
    +                  (COMPUTE_COUNT_ALIGN / input_bytes);
    +        limit_w_seg = w_limit;
    +        limit_h_seg = 1;
    +        limit_n_seg = 1;
    +      } else {
    +        CNLOG(INFO) << "The size of input channel is too large.";
    +        return false;
    +      }
    +    }
    +  }
    +  *limit_n_seg_ptr = limit_n_seg;
    +  *limit_h_seg_ptr = limit_h_seg;
    +  *limit_w_seg_ptr = limit_w_seg;
    +  return true;
    +}
    +
    +void PSAMaskForwardMLUKernelLauncher(const int psa_type, const Tensor x,
    +                                     Tensor y, const int num_,
    +                                     const int h_feature, const int w_feature,
    +                                     const int h_mask, const int w_mask,
    +                                     const int half_h_mask,
    +                                     const int half_w_mask) {
    +  // params check
    +  TORCH_CHECK(x.scalar_type() == at::kFloat, "x type should be Float, got ",
    +              x.scalar_type());
    +  TORCH_CHECK(y.scalar_type() == x.scalar_type(),
    +              "y should have the same type as x");
    +  TORCH_CHECK(x.dim() == 4, "x should be a 4d tensor, got ", x.dim(), "D");
    +  TORCH_CHECK(y.dim() == 4, "y should be a 4d tensor, got ", y.dim(), "D");
    +
    +  int x_c = x.size(1);
    +  int y_c = y.size(1);
    +  TORCH_CHECK(h_mask * w_mask == x_c,
    +              "channel of x should be the same as h_mask * w_mask");
    +  TORCH_CHECK(h_feature * w_feature == y_c,
    +              "channel of y should be the same as h_feature * w_feature");
    +  TORCH_CHECK(psa_type == 0 || psa_type == 1,
    +              "psa_type only supports 'COLLECT' and 'DISTRIBUTE' currently");
    +
    +  if (x.numel() == 0) {
    +    CNLOG(INFO) << "skip zero-element tensor";
    +    return;
    +  }
    +
    +  cnrtFunctionType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  cnrtDim3_t k_dim;
    +  PartitionSeg partition_info;
    +  policyFunc(&k_dim, &k_type, &partition_info, num_, h_feature);
    +  int n_limit_seg, h_limit_seg, w_limit_seg;
    +  bool ret =
    +      findLimit(partition_info.n_per_core, partition_info.h_per_core, w_feature,
    +                x_c, y_c, &n_limit_seg, &h_limit_seg, &w_limit_seg, psa_type);
    +  if (ret != true) {
    +    return;
    +  }
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(x.dim());
    +  auto x_tensor = torch_mlu::cnnl::ops::cnnl_contiguous(x, memory_format);
    +  at::Tensor y_tmp =
    +      at::empty({num_, y_c, h_feature, w_feature}, x.options(), memory_format);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto x_impl = torch_mlu::getMluTensorImpl(x_tensor);
    +  auto x_ptr = x_impl->cnnlMalloc();
    +  auto y_impl = torch_mlu::getMluTensorImpl(y_tmp);
    +  auto y_ptr = y_impl->cnnlMalloc();
    +
    +  KernelPsamaskForward(
    +      k_dim, k_type, queue, x_ptr, y_ptr, (PsamaskType)psa_type,
    +      partition_info.core_partition, partition_info.cluster_partition, num_,
    +      h_feature, w_feature, h_mask, w_mask, x_c, y_c, half_h_mask, half_w_mask,
    +      partition_info.n_per_core, partition_info.h_per_core,
    +      partition_info.n_per_cluster, partition_info.h_per_cluster, n_limit_seg,
    +      h_limit_seg, w_limit_seg);
    +
    +  y.copy_(y_tmp);
    +}
    +
    +void PSAMaskBackwardMLUKernelLauncher(const int psa_type, const Tensor dy,
    +                                      Tensor dx, const int num_,
    +                                      const int h_feature, const int w_feature,
    +                                      const int h_mask, const int w_mask,
    +                                      const int half_h_mask,
    +                                      const int half_w_mask) {
    +  // params check
    +  TORCH_CHECK(dy.scalar_type() == at::kFloat, "dy type should be Float, got ",
    +              dy.scalar_type());
    +  TORCH_CHECK(dx.scalar_type() == dy.scalar_type(),
    +              "dx should have the same type as dy");
    +  TORCH_CHECK(dy.dim() == 4, "dy should be a 4d tensor, got ", dy.dim(), "D");
    +  TORCH_CHECK(dx.dim() == 4, "dx should be a 4d tensor, got ", dx.dim(), "D");
    +
    +  int dy_c = dy.size(1);
    +  int dx_c = dx.size(1);
    +  TORCH_CHECK(h_feature * w_feature == dy_c,
    +              "channel of dy should be the same as h_feature * w_feature");
    +  TORCH_CHECK(h_mask * w_mask == dx_c,
    +              "channel of dx should be the same as h_mask * w_mask");
    +  TORCH_CHECK(psa_type == 0 || psa_type == 1,
    +              "psa_type only supports 'COLLECT' and 'DISTRIBUTE' currently");
    +
    +  if (dx.numel() == 0) {
    +    CNLOG(INFO) << "skip zero-element tensor";
    +    return;
    +  }
    +
    +  cnrtFunctionType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  cnrtDim3_t k_dim;
    +  PartitionSeg partition_info;
    +  policyFunc(&k_dim, &k_type, &partition_info, num_, h_feature);
    +  int n_limit_seg, h_limit_seg, w_limit_seg;
    +  bool ret =
    +      findLimit(partition_info.n_per_core, partition_info.h_per_core, w_feature,
    +                dx_c, dy_c, &n_limit_seg, &h_limit_seg, &w_limit_seg, psa_type);
    +  if (ret != true) {
    +    return;
    +  }
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(dy.dim());
    +  auto dy_tensor = torch_mlu::cnnl::ops::cnnl_contiguous(dy, memory_format);
    +  at::Tensor dx_tmp = at::empty({num_, dx_c, h_feature, w_feature},
    +                                dy.options(), memory_format);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto dx_impl = torch_mlu::getMluTensorImpl(dx_tmp);
    +  auto dx_ptr = dx_impl->cnnlMalloc();
    +  auto dy_impl = torch_mlu::getMluTensorImpl(dy_tensor);
    +  auto dy_ptr = dy_impl->cnnlMalloc();
    +
    +  KernelPsamaskBackward(
    +      k_dim, k_type, queue, dy_ptr, dx_ptr, (PsamaskType)psa_type,
    +      partition_info.core_partition, partition_info.cluster_partition, num_,
    +      h_feature, w_feature, h_mask, w_mask, dx_c, dy_c, half_h_mask,
    +      half_w_mask, partition_info.n_per_core, partition_info.h_per_core,
    +      partition_info.n_per_cluster, partition_info.h_per_cluster, n_limit_seg,
    +      h_limit_seg, w_limit_seg);
    +
    +  dx.copy_(dx_tmp);
    +}
    +
    +void psamask_forward_mlu(const int psa_type, const Tensor input, Tensor output,
    +                         const int num_, const int h_feature,
    +                         const int w_feature, const int h_mask,
    +                         const int w_mask, const int half_h_mask,
    +                         const int half_w_mask) {
    +  PSAMaskForwardMLUKernelLauncher(psa_type, input, output, num_, h_feature,
    +                                  w_feature, h_mask, w_mask, half_h_mask,
    +                                  half_w_mask);
    +}
    +
    +void psamask_backward_mlu(const int psa_type, const Tensor grad_output,
    +                          Tensor grad_input, const int num_,
    +                          const int h_feature, const int w_feature,
    +                          const int h_mask, const int w_mask,
    +                          const int half_h_mask, const int half_w_mask) {
    +  PSAMaskBackwardMLUKernelLauncher(psa_type, grad_output, grad_input, num_,
    +                                   h_feature, w_feature, h_mask, w_mask,
    +                                   half_h_mask, half_w_mask);
    +}
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask);
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask);
    +
    +REGISTER_DEVICE_IMPL(psamask_forward_impl, MLU, psamask_forward_mlu);
    +REGISTER_DEVICE_IMPL(psamask_backward_impl, MLU, psamask_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_mlu.cpp
    new file mode 100644
    index 000000000..361bba25f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_mlu.cpp
    @@ -0,0 +1,206 @@
    +/*************************************************************************
    + * Copyright (C) 2021 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelRoiAlign(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                    cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                    const void *input, const void *rois, const int channels,
    +                    const bool aligned, const int pooled_height,
    +                    const int pooled_width, const int input_height,
    +                    const int input_width, const int sampling_ratio,
    +                    const float spatial_scale, const int num_rois,
    +                    void *output);
    +
    +void KernelRoiAlignBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                            cnrtQueue_t queue, const cnrtDataType_t dtype,
    +                            const void *grads, const void *boxes,
    +                            void *grads_image, const int boxes_num,
    +                            const int hi, const int wi, const int c,
    +                            const int no, const int ho, const int wo,
    +                            const float spatial_scale, const int sampling_ratio,
    +                            const bool aligned);
    +
    +void ROIAlignForwardMLUKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                      Tensor argmax_y, Tensor argmax_x,
    +                                      int aligned_height, int aligned_width,
    +                                      float spatial_scale, int sampling_ratio,
    +                                      int pool_mode, bool aligned) {
    +  // params check
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "input type should be Float or Half, got ", input.scalar_type());
    +  TORCH_CHECK(rois.scalar_type() == input.scalar_type(),
    +              "rois should have the same type as input");
    +  TORCH_CHECK(input.dim() == 4, "input should be a 4d tensor, got ",
    +              input.dim(), "D");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be a 2d tensor, got ", rois.dim(),
    +              "D");
    +  TORCH_CHECK(pool_mode == 1, "pool_mode only supports 'avg' currently");
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto input_tensor =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format);
    +
    +  auto num_rois = rois.size(0);
    +  auto channels = input.size(1);
    +  int height = input.size(2);
    +  int width = input.size(3);
    +
    +  if (output.numel() == 0) {
    +    output = at::zeros({num_rois, channels, aligned_height, aligned_width},
    +                       input.options());
    +    return;
    +  }
    +
    +  at::Tensor output_tmp =
    +      at::empty({num_rois, channels, aligned_height, aligned_width},
    +                input.options(), memory_format);
    +
    +  // get tensor impl
    +  auto self_impl = torch_mlu::getMluTensorImpl(input_tensor);
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto output_impl = torch_mlu::getMluTensorImpl(output_tmp);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get the mlu ptr
    +  auto self_ptr = self_impl->cnnlMalloc();
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  cnrtJobType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  cnrtDim3_t k_dim;
    +  k_dim.x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim.y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim.z = 1;
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  KernelRoiAlign(k_dim, k_type, queue, data_type, self_ptr, rois_ptr, channels,
    +                 aligned, aligned_height, aligned_width, height, width,
    +                 sampling_ratio, spatial_scale, num_rois, output_ptr);
    +
    +  output.copy_(output_tmp);
    +}
    +
    +static int nearestPower2(int x) {
    +  x--;
    +  x |= x >> 1;
    +  x |= x >> 2;
    +  x |= x >> 4;
    +  x |= x >> 8;
    +  x |= x >> 16;
    +  x++;
    +  return x;
    +}
    +
    +void ROIAlignBackwardMLUKernelLauncher(Tensor grad, Tensor rois,
    +                                       Tensor argmax_y, Tensor argmax_x,
    +                                       Tensor grad_input, int aligned_height,
    +                                       int aligned_width, float spatial_scale,
    +                                       int sampling_ratio, int pool_mode,
    +                                       bool aligned) {
    +  // params check
    +  TORCH_CHECK(
    +      grad.scalar_type() == at::kFloat || grad.scalar_type() == at::kHalf,
    +      "grad type should be Float or Half, got ", grad.scalar_type());
    +  TORCH_CHECK(rois.scalar_type() == grad.scalar_type(),
    +              "rois should have the same type as grad");
    +  TORCH_CHECK(grad.dim() == 4, "grad should be a 4d tensor, got ", grad.dim(),
    +              "D");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be a 2d tensor, got ", rois.dim(),
    +              "D");
    +  TORCH_CHECK(pool_mode == 1, "pool_mode only supports 'avg' currently");
    +
    +  int batch_size = grad_input.size(0);
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad.dim());
    +  auto grad_ = torch_mlu::cnnl::ops::cnnl_contiguous(grad, memory_format);
    +  auto grad_input_ = at::empty({batch_size, channels, height, width},
    +                               grad.options(), memory_format)
    +                         .zero_();
    +
    +  int boxes_num = rois.size(0);
    +  int hi = grad.size(2);
    +  int wi = grad.size(3);
    +  int c = grad.size(1);
    +
    +  int no = grad_input.size(0);
    +  int ho = grad_input.size(2);
    +  int wo = grad_input.size(3);
    +
    +  // get tensor impl
    +  auto grad_impl = torch_mlu::getMluTensorImpl(grad_);
    +  auto grad_input_impl = torch_mlu::getMluTensorImpl(grad_input_);
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get the mlu ptr
    +  auto grad_ptr = grad_impl->cnnlMalloc();
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto grad_input_ptr = grad_input_impl->cnnlMalloc();
    +
    +  cnrtJobType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  int need_core = nearestPower2(boxes_num);
    +  int union_number = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  uint32_t dim_x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  uint32_t dim_y = (need_core - 1) / dim_x + 1;
    +  dim_y = (dim_y > union_number) ? union_number : dim_y;
    +  cnrtDim3_t k_dim = {dim_x, dim_y, 1};
    +  cnrtDataType_t k_dtype = torch_mlu::toCnrtDtype(grad.dtype());
    +
    +  KernelRoiAlignBackward(k_dim, k_type, queue, k_dtype, grad_ptr, rois_ptr,
    +                         grad_input_ptr, boxes_num, hi, wi, c, no, ho, wo,
    +                         spatial_scale, sampling_ratio, aligned);
    +  grad_input.copy_(grad_input_);
    +}
    +
    +void roi_align_forward_mlu(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                           int aligned_width, float spatial_scale,
    +                           int sampling_ratio, int pool_mode, bool aligned) {
    +  ROIAlignForwardMLUKernelLauncher(input, rois, output, argmax_y, argmax_x,
    +                                   aligned_height, aligned_width, spatial_scale,
    +                                   sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_mlu(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                            Tensor argmax_x, Tensor grad_input,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  ROIAlignBackwardMLUKernelLauncher(
    +      grad_output, rois, argmax_y, argmax_x, grad_input, aligned_height,
    +      aligned_width, spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned);
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned);
    +
    +REGISTER_DEVICE_IMPL(roi_align_forward_impl, MLU, roi_align_forward_mlu);
    +REGISTER_DEVICE_IMPL(roi_align_backward_impl, MLU, roi_align_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_rotated_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_rotated_mlu.cpp
    new file mode 100755
    index 000000000..c3058c01f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_align_rotated_mlu.cpp
    @@ -0,0 +1,232 @@
    +/*************************************************************************
    + * Copyright (C) 2022 by Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +#include "roi_align_rotated_utils.hpp"
    +
    +namespace {
    +
    +void policyFunc(int bin_num, cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  unsigned int core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  unsigned int cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_num;
    +  unsigned int use_cluster = (bin_num + core_num - 1) / core_num;
    +  k_dim->y = use_cluster > cluster_num ? cluster_num : use_cluster;
    +  k_dim->z = 1;
    +}
    +
    +}  // namespace
    +
    +void KernelRoiAlignRotatedForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const void *features, const void *rois,
    +    void *output, const int batch, const int height, const int width,
    +    const int channel, const int rois_num,
    +    const RoiAlignRotatedParams roiAlignRotatedParams);
    +
    +void KernelRoiAlignRotatedBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const void *top_grad, const void *rois,
    +    void *bottom_grad, const int batch, const int height, const int width,
    +    const int channel, const int rois_num,
    +    const RoiAlignRotatedParams roiAlignRotatedParams);
    +
    +void ROIAlignRotatedForwardMLUKernelLauncher(Tensor input, Tensor rois,
    +                                             Tensor output, int pooled_height,
    +                                             int pooled_width,
    +                                             float spatial_scale,
    +                                             int sampling_ratio, bool aligned,
    +                                             bool clockwise) {
    +  TORCH_CHECK(((input.scalar_type() == output.scalar_type()) &&
    +               (output.scalar_type() == rois.scalar_type())),
    +              "data types of input, rois and output should be the same, ",
    +              "but now input type is ", input.scalar_type(), ", rois type is ",
    +              rois.scalar_type(), ", output type is ", output.scalar_type(),
    +              ".");
    +  TORCH_CHECK(
    +      (input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf),
    +      "input type should be Float or Half, got ", input.scalar_type(), ".");
    +
    +  TORCH_CHECK(input.dim() == 4, "input should be a 4d tensor, got ",
    +              input.dim(), "D.");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be a 2d tensor, got ", rois.dim(),
    +              "D.");
    +  TORCH_CHECK(output.dim() == 4, "output should be a 4d tensor, got ",
    +              output.dim(), "D.");
    +
    +  TORCH_CHECK((rois.size(0) == output.size(0)),
    +              "the 1st dimensions of rois and output should be the same, ",
    +              "but now the 1st dimension of rois is ", rois.size(0),
    +              ", and output is ", output.size(0), ".");
    +
    +  TORCH_CHECK((input.size(1) == output.size(1)),
    +              "the 2nd dimensions of input and output should be the same, ",
    +              "but now the 2nd dimension of input is ", input.size(1),
    +              ", and output is ", output.size(1), ".");
    +
    +  int channel = input.size(1);
    +  int width = input.size(3);
    +  int height = input.size(2);
    +  int batch = input.size(0);
    +  int rois_nums = rois.size(0);
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  // return if zero-elements
    +  if (input.numel() == 0) {
    +    CNLOG(INFO) << "Skip the zero-elements case.";
    +    return;
    +  }
    +
    +  RoiAlignRotatedParams roiAlignRotatedParams{pooled_height,  pooled_width,
    +                                              sampling_ratio, spatial_scale,
    +                                              aligned,        clockwise};
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(rois_nums * pooled_height * pooled_width, &k_dim, &k_type);
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto input_tensor =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format);
    +  at::Tensor output_tmp =
    +      at::empty({rois_nums, channel, pooled_height, pooled_width},
    +                input.options(), memory_format);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(input_tensor);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output_tmp);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  KernelRoiAlignRotatedForward(k_dim, k_type, queue, d_type, input_ptr,
    +                               rois_ptr, output_ptr, batch, height, width,
    +                               channel, rois_nums, roiAlignRotatedParams);
    +  output.copy_(output_tmp);
    +}
    +
    +void ROIAlignRotatedBackwardMLUKernelLauncher(
    +    Tensor top_grad, Tensor rois, Tensor bottom_grad, int pooled_height,
    +    int pooled_width, float spatial_scale, int sampling_ratio, bool aligned,
    +    bool clockwise) {
    +  TORCH_CHECK(((top_grad.scalar_type() == bottom_grad.scalar_type()) &&
    +               (bottom_grad.scalar_type() == rois.scalar_type())),
    +              "data types of top_grad, rois and bottom_grad should be ",
    +              "the same, but now top_grad type is ", top_grad.scalar_type(),
    +              ", rois type is ", rois.scalar_type(), ", bottom_grad type is ",
    +              bottom_grad.scalar_type(), ".");
    +  TORCH_CHECK((bottom_grad.scalar_type() == at::kFloat ||
    +               bottom_grad.scalar_type() == at::kHalf),
    +              "Data type of bottom_grad should be Float ro Half, got ",
    +              bottom_grad.scalar_type(), ".");
    +
    +  TORCH_CHECK(bottom_grad.dim() == 4, "bottom_grad should be a 4d tensor, got ",
    +              top_grad.dim(), "D.");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be a 2d tensor, got ", rois.dim(),
    +              "D.");
    +  TORCH_CHECK(top_grad.dim() == 4, "top_grad should be a 4d tensor, got ",
    +              bottom_grad.dim(), "D.");
    +
    +  TORCH_CHECK((rois.size(0) == top_grad.size(0)),
    +              "the 1st dimensions of rois and top_grad should be the same, ",
    +              "but now the 1st dimension of rois is ", rois.size(0),
    +              ", and top_grad is ", top_grad.size(0), ".");
    +
    +  TORCH_CHECK((bottom_grad.size(1) == top_grad.size(1)),
    +              "the 2nd dimensions of bottom_grad and top_grad should be ",
    +              "the same, but now the 2nd dimension of bottom_grad is ",
    +              bottom_grad.size(1), ", and top_grad is ", top_grad.size(1), ".");
    +
    +  int channel = bottom_grad.size(1);
    +  int width = bottom_grad.size(3);
    +  int height = bottom_grad.size(2);
    +  int batch = bottom_grad.size(0);
    +  int rois_nums = rois.size(0);
    +  cnrtDataType_t d_type = torch_mlu::toCnrtDtype(bottom_grad.dtype());
    +
    +  // return if zero-elements
    +  if (bottom_grad.numel() == 0) {
    +    CNLOG(INFO) << "Skip the zero-elements case.";
    +    return;
    +  }
    +
    +  RoiAlignRotatedParams roiAlignRotatedParams{pooled_height,  pooled_width,
    +                                              sampling_ratio, spatial_scale,
    +                                              aligned,        clockwise};
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFunc(rois_nums * pooled_height * pooled_width, &k_dim, &k_type);
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(top_grad.dim());
    +  auto top_grad_tensor =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(top_grad, memory_format);
    +  at::Tensor bottom_grad_tmp = at::empty({batch, channel, height, width},
    +                                         top_grad.options(), memory_format)
    +                                   .zero_();
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto bottom_grad_impl = torch_mlu::getMluTensorImpl(bottom_grad_tmp);
    +  auto bottom_grad_ptr = bottom_grad_impl->cnnlMalloc();
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto top_grad_impl = torch_mlu::getMluTensorImpl(top_grad_tensor);
    +  auto top_grad_ptr = top_grad_impl->cnnlMalloc();
    +
    +  KernelRoiAlignRotatedBackward(k_dim, k_type, queue, d_type, top_grad_ptr,
    +                                rois_ptr, bottom_grad_ptr, batch, height, width,
    +                                channel, rois_nums, roiAlignRotatedParams);
    +  bottom_grad.copy_(bottom_grad_tmp);
    +}
    +
    +void roi_align_rotated_forward_mlu(Tensor input, Tensor rois, Tensor output,
    +                                   int aligned_height, int aligned_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   bool aligned, bool clockwise) {
    +  ROIAlignRotatedForwardMLUKernelLauncher(input, rois, output, aligned_height,
    +                                          aligned_width, spatial_scale,
    +                                          sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_mlu(Tensor top_grad, Tensor rois,
    +                                    Tensor bottom_grad, int aligned_height,
    +                                    int aligned_width, float spatial_scale,
    +                                    int sampling_ratio, bool aligned,
    +                                    bool clockwise) {
    +  ROIAlignRotatedBackwardMLUKernelLauncher(
    +      top_grad, rois, bottom_grad, aligned_height, aligned_width, spatial_scale,
    +      sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise);
    +
    +REGISTER_DEVICE_IMPL(roi_align_rotated_forward_impl, MLU,
    +                     roi_align_rotated_forward_mlu);
    +REGISTER_DEVICE_IMPL(roi_align_rotated_backward_impl, MLU,
    +                     roi_align_rotated_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_pool_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_pool_mlu.cpp
    new file mode 100644
    index 000000000..7db23957d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roi_pool_mlu.cpp
    @@ -0,0 +1,275 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelRoiPoolForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t data_type,
    +                          const void *input_data, const void *input_rois,
    +                          const int batch, const int channels, const int height,
    +                          const int width, const int pooled_height,
    +                          const int pooled_width, const int rois_num,
    +                          const float spatial_scale, void *output_data,
    +                          int *argmax);
    +
    +void KernelRoiPoolBackward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                           cnrtQueue_t queue, cnrtDataType_t k_dtype,
    +                           const void *grad_output_ptr, const void *rois_ptr,
    +                           const int *argmax_ptr, void *grad_input_ptr,
    +                           const int box_num, const int pooled_height,
    +                           const int pooled_width, const int channels,
    +                           const int batch, const int height, const int width,
    +                           const float spatial_scale);
    +
    +// policy function for forward
    +static void policyFuncForward(const int bin_num, cnrtDim3_t *k_dim,
    +                              cnrtFunctionType_t *k_type) {
    +  auto core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_num;
    +  unsigned int use_cluster = bin_num / core_num + (bin_num % core_num > 0);
    +  k_dim->y = use_cluster > cluster_num ? cluster_num : use_cluster;
    +  k_dim->z = 1;
    +}
    +
    +void ROIPoolForwardMLUKernelLauncher(Tensor input, Tensor rois, Tensor output,
    +                                     Tensor argmax, int pooled_height,
    +                                     int pooled_width, float spatial_scale) {
    +  // Check dtype.
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "input type should be Float or Half, got ", input.scalar_type());
    +  TORCH_CHECK(input.scalar_type() == rois.scalar_type(),
    +              "rois should have the same type as input");
    +
    +  // Check dtype relationship.
    +  TORCH_CHECK(
    +      argmax.scalar_type() == at::kLong || argmax.scalar_type() == at::kInt,
    +      "argmax type should be Int or Long, got ", argmax.scalar_type());
    +
    +  // Check shape.
    +  TORCH_CHECK(input.dim() == 4, "input should be 4d tensor, got ", input.dim(),
    +              "D");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be 2d tensor, got ", rois.dim(),
    +              "D");
    +  TORCH_CHECK(argmax.dim() == 4, "argmax should be 4d tensor, got ",
    +              argmax.dim(), "D");
    +
    +  TORCH_CHECK(spatial_scale > 0 && spatial_scale <= 1,
    +              "spatial_scale should be within (0, 1], got ", spatial_scale);
    +
    +  // compute kernel params
    +  auto batch = input.size(0);
    +  auto height = input.size(2);
    +  auto width = input.size(3);
    +  auto channels = input.size(1);
    +  auto rois_num = output.size(0);
    +
    +  if (output.numel() == 0) {
    +    output = at::zeros({rois_num, channels, pooled_height, pooled_width},
    +                       input.options());
    +    return;
    +  }
    +  if (argmax.numel() == 0) {
    +    argmax = at::zeros({rois_num, channels, pooled_height, pooled_width},
    +                       argmax.options());
    +    return;
    +  }
    +
    +  // zero element check
    +  if (input.numel() == 0 || rois.numel() == 0 || output.numel() == 0 ||
    +      argmax.numel() == 0) {
    +    return;
    +  }
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(input.dim());
    +  auto input_ = torch_mlu::cnnl::ops::cnnl_contiguous(input, memory_format);
    +
    +  at::Tensor output_ =
    +      at::empty({rois_num, channels, pooled_height, pooled_width},
    +                input.options(), memory_format);
    +  at::Tensor argmax_ =
    +      at::empty({rois_num, channels, pooled_height, pooled_width},
    +                argmax.options(), memory_format);
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncForward(rois_num * pooled_height * pooled_width, &k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto input_impl = torch_mlu::getMluTensorImpl(input_);
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto output_impl = torch_mlu::getMluTensorImpl(output_);
    +  auto output_ptr = output_impl->cnnlMalloc();
    +  auto argmax_impl = torch_mlu::getMluTensorImpl(argmax_);
    +  auto argmax_ptr = argmax_impl->cnnlMalloc();
    +
    +  // get comput dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(input_.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelRoiPoolForward<<<" << k_dim.x << ", "
    +              << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelRoiPoolForward(k_dim, k_type, queue, data_type, input_ptr, rois_ptr,
    +                       batch, channels, height, width, pooled_height,
    +                       pooled_width, rois_num, spatial_scale, output_ptr,
    +                       (int *)argmax_ptr);
    +  output.copy_(output_);
    +  argmax.copy_(argmax_);
    +}
    +
    +// policy function for backward
    +static void policyFuncBackward(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim->z = 1;
    +}
    +
    +void ROIPoolBackwardMLUKernelLauncher(Tensor grad_output, Tensor rois,
    +                                      Tensor argmax, Tensor grad_input,
    +                                      int pooled_height, int pooled_width,
    +                                      float spatial_scale) {
    +  // Check dtype.
    +  TORCH_CHECK(
    +      argmax.scalar_type() == at::kLong || argmax.scalar_type() == at::kInt,
    +      "argmax type should be Int or Long, got ", argmax.scalar_type());
    +  TORCH_CHECK((grad_output.scalar_type() == at::kFloat ||
    +               grad_output.scalar_type() == at::kHalf),
    +              "grad_output type should be FLoat or Half, got ",
    +              grad_output.scalar_type());
    +
    +  // Check dtype relationship.
    +  TORCH_CHECK((rois.scalar_type() == grad_output.scalar_type()),
    +              "rois should have the same type as grad_output");
    +
    +  // Check shape.
    +  TORCH_CHECK(grad_output.dim() == 4, "grad_output should be 4d tensor, got ",
    +              grad_output.dim(), "D");
    +  TORCH_CHECK(rois.dim() == 2, "rois should be 2d tensor, got ", rois.dim(),
    +              "D");
    +  TORCH_CHECK(argmax.dim() == 4, "argmax should be 4d tensor, got ",
    +              argmax.dim(), "D");
    +
    +  TORCH_CHECK(spatial_scale > 0 && spatial_scale <= 1,
    +              "spatial_scale should be within (0, 1], got ", spatial_scale);
    +
    +  // Check relationship between tensor.
    +  // Check the relationship of n.
    +  TORCH_CHECK(grad_output.size(0) == rois.size(0),
    +              "grad_output.size(0) = ", grad_output.size(0),
    +              ", while rois.size(0) = ", rois.size(0),
    +              ". They should be the same.");
    +
    +  // Check the relationship of channels.
    +  TORCH_CHECK(grad_output.size(1) == argmax.size(1),
    +              "grad_output.size(1) = ", grad_output.size(1),
    +              ", while argmax.size(1) = ", argmax.size(1),
    +              ". They should be the same.");
    +
    +  // Check the relationship of height and width.
    +  TORCH_CHECK(grad_output.size(2) == argmax.size(2),
    +              "argmax.size(2) = ", argmax.size(2),
    +              ", while grad_output.size(2) = ", grad_output.size(2),
    +              ". They should be the same.");
    +  TORCH_CHECK(grad_output.size(3) == argmax.size(3),
    +              "argmax.size(3) = ", argmax.size(3),
    +              ", while grad_output.size(3) = ", grad_output.size(3),
    +              ". They should be the same.");
    +
    +  // Check zero element.
    +  if (grad_output.numel() == 0 || rois.numel() == 0 || argmax.numel() == 0 ||
    +      grad_input.numel() == 0) {
    +    // return if zero-element
    +    return;
    +  }
    +
    +  auto memory_format =
    +      torch_mlu::cnnl::ops::get_channels_last_memory_format(grad_output.dim());
    +  auto grad_output_ =
    +      torch_mlu::cnnl::ops::cnnl_contiguous(grad_output, memory_format);
    +  auto argmax_ = torch_mlu::cnnl::ops::cnnl_contiguous(argmax, memory_format);
    +
    +  int boxes_num = grad_output.size(0);
    +  int no = grad_input.size(0);
    +  int channels = grad_input.size(1);
    +  int height = grad_input.size(2);
    +  int width = grad_input.size(3);
    +  auto grad_input_ = at::empty({no, channels, height, width},
    +                               grad_input.options(), memory_format)
    +                         .zero_();
    +
    +  // get tensor impl
    +  auto grad_output_impl = torch_mlu::getMluTensorImpl(grad_output_);
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto argmax_impl = torch_mlu::getMluTensorImpl(argmax_);
    +  auto grad_input_impl = torch_mlu::getMluTensorImpl(grad_input_);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get mlu ptr
    +  auto grad_output_ptr = grad_output_impl->cnnlMalloc();
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  auto argmax_ptr = argmax_impl->cnnlMalloc();
    +  auto grad_input_ptr = grad_input_impl->cnnlMalloc();
    +
    +  // calculate task dimension
    +  cnrtDataType_t k_dtype = torch_mlu::toCnrtDtype(grad_input.dtype());
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncBackward(&k_dim, &k_type);
    +
    +  CNLOG(INFO) << "Launch Kernel MLUKernelRoiPoolBackward<<<" << k_dim.x << ", "
    +              << k_dim.y << ", " << k_dim.z << ">>>";
    +
    +  KernelRoiPoolBackward(k_dim, k_type, queue, k_dtype, grad_output_ptr,
    +                        rois_ptr, (int *)argmax_ptr, grad_input_ptr, boxes_num,
    +                        pooled_height, pooled_width, channels, no, height,
    +                        width, spatial_scale);
    +
    +  grad_input.copy_(grad_input_);
    +}
    +
    +void roi_pool_forward_mlu(Tensor input, Tensor rois, Tensor output,
    +                          Tensor argmax, int pooled_height, int pooled_width,
    +                          float spatial_scale) {
    +  ROIPoolForwardMLUKernelLauncher(input, rois, output, argmax, pooled_height,
    +                                  pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_mlu(Tensor grad_output, Tensor rois, Tensor argmax,
    +                           Tensor grad_input, int pooled_height,
    +                           int pooled_width, float spatial_scale) {
    +  ROIPoolBackwardMLUKernelLauncher(grad_output, rois, argmax, grad_input,
    +                                   pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale);
    +
    +void roi_pool_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale);
    +
    +REGISTER_DEVICE_IMPL(roi_pool_forward_impl, MLU, roi_pool_forward_mlu);
    +REGISTER_DEVICE_IMPL(roi_pool_backward_impl, MLU, roi_pool_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roiaware_pool3d_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roiaware_pool3d_mlu.cpp
    new file mode 100644
    index 000000000..62cb2dc62
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roiaware_pool3d_mlu.cpp
    @@ -0,0 +1,399 @@
    +/*************************************************************************
    + * Copyright (C) 2022 by Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelPtsIdxOfVoxels(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                          const int pool_method, const int boxes_num,
    +                          const int pts_num, const int max_pts_each_voxel,
    +                          const int out_x, const int out_y, const int out_z,
    +                          const void *rois, const void *pts,
    +                          int *pts_idx_of_voxels);
    +
    +void KernelRoiawarePool3dForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const int pool_method, const int boxes_num,
    +    const int pts_num, const int channels, const int max_pts_each_voxel,
    +    const int out_x, const int out_y, const int out_z, const void *pts_feature,
    +    const int *pts_idx_of_voxels, void *pooled_features, int *argmax);
    +
    +// policy function
    +static void kernelPtsIdxOfVoxelsPolicyFunc(const int boxes_num,
    +                                           cnrtDim3_t *k_dim,
    +                                           cnrtFunctionType_t *k_type) {
    +  unsigned int core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  unsigned int cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_num;
    +  unsigned int use_cluster = (boxes_num + core_num - 1) / core_num;
    +  k_dim->y = use_cluster > cluster_num ? cluster_num : use_cluster;
    +  k_dim->z = 1;
    +}
    +
    +static void kernelRoiawarePool3dForwardPolicyFunc(
    +    const int boxes_num, const int out_x, const int out_y, const int out_z,
    +    cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  unsigned int core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  unsigned int cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_num;
    +  const int voxels_num = boxes_num * out_x * out_y * out_z;
    +  unsigned int use_cluster = (voxels_num + core_num - 1) / core_num;
    +  k_dim->y = use_cluster > cluster_num ? cluster_num : use_cluster;
    +  k_dim->z = 1;
    +}
    +
    +void RoiawarePool3dForwardMLUKernelLauncher(
    +    const int pool_method, const int boxes_num, const int pts_num,
    +    const int channels, const int max_pts_each_voxel, const int out_x,
    +    const int out_y, const int out_z, const Tensor rois, const Tensor pts,
    +    const Tensor pts_feature, Tensor pts_idx_of_voxels, Tensor pooled_features,
    +    Tensor argmax) {
    +  // check datatype
    +  TORCH_CHECK(((pts.scalar_type() == rois.scalar_type()) &&
    +               (pts_feature.scalar_type() == rois.scalar_type()) &&
    +               (pooled_features.scalar_type() == rois.scalar_type())),
    +              "data types of rois, rois, pts_feature and pooled_features "
    +              "should be the same, ",
    +              "but now rois type is ", rois.scalar_type(), ", pts type is ",
    +              pts.scalar_type(), ", pts_feature type is ",
    +              pts_feature.scalar_type(), ", pooled_features type is ",
    +              pooled_features.scalar_type(), ".");
    +  TORCH_CHECK(
    +      (rois.scalar_type() == at::kFloat || rois.scalar_type() == at::kHalf),
    +      "rois type should be Float or Half, got ", rois.scalar_type(), ".");
    +  TORCH_CHECK((pts_idx_of_voxels.scalar_type() == at::kInt),
    +              "pts_idx_of_voxels type should be Int, got ",
    +              pts_idx_of_voxels.scalar_type(), ".");
    +  // check dim
    +  TORCH_CHECK(rois.dim() == 2, "rois should be a 2D tensor, got ", rois.dim(),
    +              "D.");
    +  TORCH_CHECK(pts.dim() == 2, "pts should be a 2D tensor, got ", pts.dim(),
    +              "D.");
    +  TORCH_CHECK(pts_feature.dim() == 2, "pts_feature should be a 2D tensor, got ",
    +              pts_feature.dim(), "D.");
    +  TORCH_CHECK(pts_idx_of_voxels.dim() == 5,
    +              "pts_idx_of_voxels should be a 5D tensor, got ",
    +              pts_idx_of_voxels.dim(), "D.");
    +  TORCH_CHECK(pooled_features.dim() == 5,
    +              "pooled_features should be a 5D tensor, got ",
    +              pooled_features.dim(), "D.");
    +  // check shape
    +  TORCH_CHECK(((rois.size(0) == boxes_num) && (rois.size(1) == 7)),
    +              "the dimensions of rois should be (boxes_num, 7), ", "but got (",
    +              rois.size(0), ", ", rois.size(1), ") .");
    +  TORCH_CHECK(((pts.size(0) == pts_num) && (pts.size(1) == 3)),
    +              "the dimensions of pts should be (pts_num, 3), ", "but got (",
    +              pts.size(0), ",", pts.size(1), ").");
    +  TORCH_CHECK(
    +      ((pts_feature.size(0) == pts_num) && (pts_feature.size(1) == channels)),
    +      "the dimensions of pts_feature should be (pts_num, channels), ",
    +      "but got (", pts_feature.size(0), ",", pts_feature.size(1), ").");
    +  TORCH_CHECK(((pts_idx_of_voxels.size(0) == boxes_num) &&
    +               (pts_idx_of_voxels.size(1) == out_x) &&
    +               (pts_idx_of_voxels.size(2) == out_y) &&
    +               (pts_idx_of_voxels.size(3) == out_z) &&
    +               (pts_idx_of_voxels.size(4) == max_pts_each_voxel)),
    +              "the dimensions of pts_idx_of_voxels should be (boxes_num, "
    +              "out_x, out_y, out_z, max_pts_each_voxel), ",
    +              "but got (", pts_idx_of_voxels.size(0), ",",
    +              pts_idx_of_voxels.size(1), ",", pts_idx_of_voxels.size(2), ",",
    +              pts_idx_of_voxels.size(3), ",", pts_idx_of_voxels.size(4), ").");
    +  TORCH_CHECK(((pooled_features.size(0) == boxes_num) &&
    +               (pooled_features.size(1) == out_x) &&
    +               (pooled_features.size(2) == out_y) &&
    +               (pooled_features.size(3) == out_z) &&
    +               (pooled_features.size(4) == channels)),
    +              "the dimensions of pooled_features should be (boxes_num, out_x, "
    +              "out_y, out_z, channels), ",
    +              "but got (", pooled_features.size(0), ",",
    +              pooled_features.size(1), ",", pooled_features.size(2), ",",
    +              pooled_features.size(3), ",", pooled_features.size(4), ").");
    +  // check other params : pool_mothod
    +  TORCH_CHECK(((pool_method == 0) || (pool_method == 1)),
    +              "the num of pool_method should be 0(max) or 1(avg), ", "but got ",
    +              pool_method, ".");
    +  // check large tensor
    +  const size_t max_input_size = 2147483648;
    +  TORCH_CHECK(rois.numel() < max_input_size,
    +              "rois element num should be less than 2^31, got ", rois.numel(),
    +              ".");
    +  TORCH_CHECK(pts.numel() < max_input_size,
    +              "pts element num should be less than 2^31, got ", pts.numel(),
    +              ".");
    +  TORCH_CHECK(pts_feature.numel() < max_input_size,
    +              "pts_feature element num should be less than 2^31, got ",
    +              pts_feature.numel(), ".");
    +  TORCH_CHECK(pts_idx_of_voxels.numel() < max_input_size,
    +              "pts_idx_of_voxels element num should be less than 2^31, got ",
    +              pts_idx_of_voxels.numel(), ".");
    +  TORCH_CHECK(pooled_features.numel() < max_input_size,
    +              "pooled_features element num should be less than 2^31, got ",
    +              pooled_features.numel(), ".");
    +  // check zero element
    +  TORCH_CHECK(rois.numel() != 0, "rois.numel() should not be zero, got ",
    +              rois.numel());
    +  TORCH_CHECK(pts.numel() != 0, "pts.numel() should not be zero, got ",
    +              pts.numel());
    +  TORCH_CHECK(pts_feature.numel() != 0,
    +              "pts_feature.numel() should not be zero, got ",
    +              pts_feature.numel());
    +  TORCH_CHECK(pts_idx_of_voxels.numel() != 0,
    +              "pts_idx_of_voxels.numel() should not be zero, got ",
    +              pts_idx_of_voxels.numel());
    +  TORCH_CHECK(pooled_features.numel() != 0,
    +              "pooled_features.numel() should not be zero, got ",
    +              pooled_features.numel());
    +  if (pool_method == 0) {
    +    // check datatype
    +    TORCH_CHECK((argmax.scalar_type() == at::kInt),
    +                "argmax type should be Int, got ", argmax.scalar_type(), ".");
    +    // check dim
    +    TORCH_CHECK(argmax.dim() == 5, "argmax should be a 5D tensor, got ",
    +                argmax.dim(), "D.");
    +    // check shape
    +    TORCH_CHECK(((argmax.size(0) == boxes_num) && (argmax.size(1) == out_x) &&
    +                 (argmax.size(2) == out_y) && (argmax.size(3) == out_z) &&
    +                 (argmax.size(4) == channels)),
    +                "the dimensions of argmax should be (boxes_num, out_x, out_y, "
    +                "out_z, channels), ",
    +                "but got (", argmax.size(0), ",", argmax.size(1), ",",
    +                argmax.size(2), ",", argmax.size(3), ",", argmax.size(4), ").");
    +    // check large tensor
    +    TORCH_CHECK(argmax.numel() < max_input_size,
    +                "argmax element num should be less than 2^31, got ",
    +                argmax.numel(), ".");
    +    // check zero element
    +    TORCH_CHECK(argmax.numel() != 0, "argmax.numel() should not be zero, got ",
    +                argmax.numel());
    +    // when pool_method is 0, which is max pool, init argmax data value to -1
    +    argmax.fill_(static_cast(-1));
    +  }
    +  // calculate task one dimension
    +  cnrtDim3_t k1_dim;
    +  cnrtFunctionType_t k1_type;
    +  kernelPtsIdxOfVoxelsPolicyFunc(boxes_num, &k1_dim, &k1_type);
    +  cnrtDim3_t k2_dim;
    +  cnrtFunctionType_t k2_type;
    +  kernelRoiawarePool3dForwardPolicyFunc(boxes_num, out_x, out_y, out_z, &k2_dim,
    +                                        &k2_type);
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +  // get ptr of tensors
    +  auto rois_impl = torch_mlu::getMluTensorImpl(rois);
    +  auto rois_ptr = rois_impl->cnnlMalloc();
    +  // transpose points [pts_num, 3] -> [3, pts_num]
    +  auto pts_ = pts.permute({1, 0}).contiguous();
    +  auto pts_impl = torch_mlu::getMluTensorImpl(pts_);
    +  auto pts_ptr = pts_impl->cnnlMalloc();
    +  // transpose points_features [pts_num, channels] -> [channels, pts_num]
    +  auto pts_feature_ = pts_feature.permute({1, 0}).contiguous();
    +  auto pts_feature_impl = torch_mlu::getMluTensorImpl(pts_feature_);
    +  auto pts_feature_ptr = pts_feature_impl->cnnlMalloc();
    +  auto pts_idx_of_voxels_impl = torch_mlu::getMluTensorImpl(pts_idx_of_voxels);
    +  auto pts_idx_of_voxels_ptr = pts_idx_of_voxels_impl->cnnlMalloc();
    +  auto pooled_features_impl = torch_mlu::getMluTensorImpl(pooled_features);
    +  auto pooled_features_ptr = pooled_features_impl->cnnlMalloc();
    +  auto argmax_impl = torch_mlu::getMluTensorImpl(argmax);
    +  auto argmax_ptr = argmax_impl->cnnlMalloc();
    +  // get compute dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(rois.dtype());
    +  // launch kernel PtsIdxOfVoxels
    +  CNLOG(INFO) << "Launch Kernel MLUKernel PtsIdxOfVoxels<<<" << k1_dim.x << ", "
    +              << k1_dim.y << ", " << k1_dim.z << ">>>";
    +  KernelPtsIdxOfVoxels(k1_dim, k1_type, queue, data_type, pool_method,
    +                       boxes_num, pts_num, max_pts_each_voxel, out_x, out_y,
    +                       out_z, rois_ptr, pts_ptr, (int *)pts_idx_of_voxels_ptr);
    +  // launch kernel RoiawarePool3dForward
    +  CNLOG(INFO) << "Launch Kernel MLUKernel RoiawarePool3dForward<<<" << k2_dim.x
    +              << ", " << k2_dim.y << ", " << k2_dim.z << ">>>";
    +  KernelRoiawarePool3dForward(
    +      k2_dim, k2_type, queue, data_type, pool_method, boxes_num, pts_num,
    +      channels, max_pts_each_voxel, out_x, out_y, out_z, pts_feature_ptr,
    +      (int *)pts_idx_of_voxels_ptr, pooled_features_ptr, (int *)argmax_ptr);
    +}
    +
    +void roiaware_pool3d_forward_mlu(int boxes_num, int pts_num, int channels,
    +                                 int max_pts_each_voxel, int out_x, int out_y,
    +                                 int out_z, const Tensor rois, const Tensor pts,
    +                                 const Tensor pts_feature, Tensor argmax,
    +                                 Tensor pts_idx_of_voxels,
    +                                 Tensor pooled_features, int pool_method) {
    +  RoiawarePool3dForwardMLUKernelLauncher(
    +      pool_method, boxes_num, pts_num, channels, max_pts_each_voxel, out_x,
    +      out_y, out_z, rois, pts, pts_feature, pts_idx_of_voxels, pooled_features,
    +      argmax);
    +}
    +
    +void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method);
    +
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_forward_impl, MLU,
    +                     roiaware_pool3d_forward_mlu);
    +
    +void KernelRoiawarePool3dBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const int pool_method, const int boxes_num,
    +    const int out_x, const int out_y, const int out_z, const int channels,
    +    const int max_pts_each_voxel, const int *pts_idx_of_voxels,
    +    const int *argmax, const void *grad_out, void *grad_in);
    +
    +static void kernelRoiawarePool3dBackwardPolicyFunc(
    +    const int boxes_num, const int out_x, const int out_y, const int out_z,
    +    cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  unsigned int core_num = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  unsigned int cluster_num = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +  k_dim->x = core_num;
    +  const int voxels_num = boxes_num * out_x * out_y * out_z;
    +  unsigned int use_cluster = (voxels_num + core_num - 1) / core_num;
    +  k_dim->y = use_cluster > cluster_num ? cluster_num : use_cluster;
    +  k_dim->z = 1;
    +}
    +
    +void RoiawarePool3dBackwardMLUKernelLauncher(
    +    int pool_method, int boxes_num, int out_x, int out_y, int out_z,
    +    int channels, int max_pts_each_voxel, const Tensor pts_idx_of_voxels,
    +    const Tensor argmax, const Tensor grad_out, Tensor grad_in) {
    +  // check datatype
    +  TORCH_CHECK((pts_idx_of_voxels.scalar_type() == at::kInt),
    +              "pts_idx_of_voxels type should be Int, got ",
    +              pts_idx_of_voxels.scalar_type(), ".");
    +  TORCH_CHECK((argmax.scalar_type() == at::kInt),
    +              "argmax type should be Int, got ", argmax.scalar_type(), ".");
    +  TORCH_CHECK((grad_out.scalar_type() == at::kFloat ||
    +               grad_out.scalar_type() == at::kHalf),
    +              "grad_out type should be Float or Half, got ",
    +              grad_out.scalar_type(), ".");
    +  TORCH_CHECK((grad_out.scalar_type() == grad_in.scalar_type()),
    +              "data types of grad_out, grad_in, should be the same, ",
    +              "but now grad_out type is ", grad_out.scalar_type(),
    +              ", grad_in type is ", grad_in.scalar_type(), ".");
    +  // check dim
    +  TORCH_CHECK(pts_idx_of_voxels.dim() == 5,
    +              "pts_idx_of_voxels should be a 5D tensor, got ",
    +              pts_idx_of_voxels.dim(), "D.");
    +  TORCH_CHECK(argmax.dim() == 5, "argmax should be a 5D tensor, got ",
    +              argmax.dim(), "D.");
    +  TORCH_CHECK(grad_out.dim() == 5, "grad_out should be a 5D tensor, got ",
    +              grad_out.dim(), "D.");
    +  TORCH_CHECK(grad_in.dim() == 2, "grad_in should be a 2D tensor, got ",
    +              grad_in.dim(), "D.");
    +  // check shape
    +  TORCH_CHECK(((pts_idx_of_voxels.size(0) == boxes_num) &&
    +               (pts_idx_of_voxels.size(1) == out_x) &&
    +               (pts_idx_of_voxels.size(2) == out_y) &&
    +               (pts_idx_of_voxels.size(3) == out_z) &&
    +               (pts_idx_of_voxels.size(4) == max_pts_each_voxel)),
    +              "the dimensions of pts_idx_of_voxels should be (boxes_num, "
    +              "out_x, out_y, out_z, max_pts_each_voxel), ",
    +              "but got (", pts_idx_of_voxels.size(0), ",",
    +              pts_idx_of_voxels.size(1), ",", pts_idx_of_voxels.size(2), ",",
    +              pts_idx_of_voxels.size(3), ",", pts_idx_of_voxels.size(4), ").");
    +  TORCH_CHECK(((argmax.size(0) == boxes_num) && (argmax.size(1) == out_x) &&
    +               (argmax.size(2) == out_y) && (argmax.size(3) == out_z) &&
    +               (argmax.size(4) == channels)),
    +              "the dimensions of argmax should be (boxes_num, out_x, out_y, "
    +              "out_z, channels), ",
    +              "but got (", argmax.size(0), ",", argmax.size(1), ",",
    +              argmax.size(2), ",", argmax.size(3), ",", argmax.size(4), ").");
    +  TORCH_CHECK(((grad_out.size(0) == boxes_num) && (grad_out.size(1) == out_x) &&
    +               (grad_out.size(2) == out_y) && (grad_out.size(3) == out_z) &&
    +               (grad_out.size(4) == channels)),
    +              "the dimensions of grad_out should be (boxes_num, out_x, "
    +              "out_y, out_z, channels), ",
    +              "but got (", grad_out.size(0), ",", grad_out.size(1), ",",
    +              grad_out.size(2), ",", grad_out.size(3), ",", grad_out.size(4),
    +              ").");
    +  TORCH_CHECK((grad_in.size(1) == channels),
    +              "the 1st dimensions of grad_in should be channels, ", "but got ",
    +              grad_in.size(1), ".");
    +  // check other params : pool_mothod
    +  TORCH_CHECK(((pool_method == 0) || (pool_method == 1)),
    +              "the num of pool_method should be 0(max) or 1(avg), ", "but got ",
    +              pool_method, ".");
    +  // check large tensor
    +  const size_t max_input_size = 2147483648;
    +  TORCH_CHECK(pts_idx_of_voxels.numel() < max_input_size,
    +              "pts_idx_of_voxels element num should be less than 2^31, got ",
    +              pts_idx_of_voxels.numel(), ".");
    +  TORCH_CHECK(argmax.numel() < max_input_size,
    +              "argmax element num should be less than 2^31, got ",
    +              argmax.numel(), ".");
    +  TORCH_CHECK(grad_out.numel() < max_input_size,
    +              "grad_out element num should be less than 2^31, got ",
    +              grad_out.numel(), ".");
    +  TORCH_CHECK(grad_in.numel() < max_input_size,
    +              "grad_in element num should be less than 2^31, got ",
    +              grad_in.numel(), ".");
    +  // check zero element
    +  TORCH_CHECK(pts_idx_of_voxels.numel() != 0,
    +              "pts_idx_of_voxels.numel() should not be zero, got ",
    +              pts_idx_of_voxels.numel());
    +  TORCH_CHECK(argmax.numel() != 0, "argmax.numel() should not be zero, got ",
    +              argmax.numel());
    +  TORCH_CHECK(grad_out.numel() != 0,
    +              "grad_out.numel() should not be zero, got ", grad_out.numel());
    +  TORCH_CHECK(grad_in.numel() != 0, "grad_in.numel() should not be zero, got ",
    +              grad_in.numel());
    +  // calculate task one dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  kernelRoiawarePool3dBackwardPolicyFunc(boxes_num, out_x, out_y, out_z, &k_dim,
    +                                         &k_type);
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +  // transpose points_features [pts_num, channels] -> [channels, pts_num]
    +  auto pts_idx_of_voxels_impl = torch_mlu::getMluTensorImpl(pts_idx_of_voxels);
    +  auto pts_idx_of_voxels_ptr = pts_idx_of_voxels_impl->cnnlMalloc();
    +  auto argmax_impl = torch_mlu::getMluTensorImpl(argmax);
    +  auto argmax_ptr = argmax_impl->cnnlMalloc();
    +  auto grad_out_impl = torch_mlu::getMluTensorImpl(grad_out);
    +  auto grad_out_ptr = grad_out_impl->cnnlMalloc();
    +  auto grad_in_impl = torch_mlu::getMluTensorImpl(grad_in);
    +  auto grad_in_ptr = grad_in_impl->cnnlMalloc();
    +  // get compute dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(grad_out.dtype());
    +  // launch kernel RoiawarePool3dForward
    +  CNLOG(INFO) << "Launch Kernel MLUKernel RoiawarePool3dBackward<<<" << k_dim.x
    +              << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +  KernelRoiawarePool3dBackward(k_dim, k_type, queue, data_type, pool_method,
    +                               boxes_num, out_x, out_y, out_z, channels,
    +                               max_pts_each_voxel, (int *)pts_idx_of_voxels_ptr,
    +                               (int *)argmax_ptr, grad_out_ptr, grad_in_ptr);
    +}
    +
    +void roiaware_pool3d_backward_mlu(int boxes_num, int out_x, int out_y,
    +                                  int out_z, int channels,
    +                                  int max_pts_each_voxel,
    +                                  const Tensor pts_idx_of_voxels,
    +                                  const Tensor argmax, const Tensor grad_out,
    +                                  Tensor grad_in, int pool_method) {
    +  RoiawarePool3dBackwardMLUKernelLauncher(
    +      pool_method, boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
    +      pts_idx_of_voxels, argmax, grad_out, grad_in);
    +}
    +
    +void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method);
    +
    +REGISTER_DEVICE_IMPL(roiaware_pool3d_backward_impl, MLU,
    +                     roiaware_pool3d_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roipoint_pool3d_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roipoint_pool3d_mlu.cpp
    new file mode 100644
    index 000000000..49dfe0eca
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/roipoint_pool3d_mlu.cpp
    @@ -0,0 +1,166 @@
    +/*************************************************************************
    + * Copyright (C) 2022 by Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelRoiPointPool3dForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                                 cnrtQueue_t queue, const cnrtDataType_t d_type,
    +                                 const int batch_size, const int pts_num,
    +                                 const int boxes_num, const int feature_in_len,
    +                                 const int sampled_pts_num, const void *xyz,
    +                                 const void *boxes3d, const void *pts_feature,
    +                                 void *pooled_features, int *pooled_empty_flag);
    +
    +void KernelRoiPointPool3dLargeBoxesNumForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const cnrtDataType_t d_type, const int batch_size, const int pts_num,
    +    const int boxes_num, const int feature_in_len, const int sampled_pts_num,
    +    const void *xyz, const void *boxes3d, const void *pts_feature,
    +    void *pooled_features, int *pooled_empty_flag);
    +
    +// policy function
    +static void policyFuncForward(cnrtDim3_t *k_dim, cnrtFunctionType_t *k_type) {
    +  // start U1 task, occupy all available clusters
    +  k_dim->x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim->y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +}
    +
    +void RoIPointPool3dForwardMLUKernelLauncher(
    +    int batch_size, int pts_num, int boxes_num, int feature_in_len,
    +    int sampled_pts_num, const Tensor xyz, const Tensor boxes3d,
    +    const Tensor pts_feature, Tensor pooled_features,
    +    Tensor pooled_empty_flag) {
    +  // check datatype
    +  TORCH_CHECK(((xyz.scalar_type() == pooled_features.scalar_type()) &&
    +               (boxes3d.scalar_type() == pooled_features.scalar_type()) &&
    +               (pts_feature.scalar_type() == pooled_features.scalar_type())),
    +              "data types of xyz, boxes3d, pts_feature and pooled_features "
    +              "should be the same, ",
    +              "but now xyz type is ", xyz.scalar_type(), ", boxes3d type is ",
    +              boxes3d.scalar_type(), ", pts_feature type is ",
    +              pts_feature.scalar_type(), ", pooled_features type is ",
    +              pooled_features.scalar_type(), ".");
    +  TORCH_CHECK(
    +      (xyz.scalar_type() == at::kFloat || xyz.scalar_type() == at::kHalf),
    +      "xyz type should be Float or Half, got ", xyz.scalar_type(), ".");
    +  TORCH_CHECK((pooled_empty_flag.scalar_type() == at::kInt),
    +              "pooled_empty_flag type should be Int, got ",
    +              pooled_empty_flag.scalar_type(), ".");
    +
    +  // check shape
    +  TORCH_CHECK(boxes3d.dim() == 3, "boxes3d should be a 3d tensor, got ",
    +              boxes3d.dim(), "D.");
    +  TORCH_CHECK(pts_feature.dim() == 3, "pts_feature should be a 3d tensor, got ",
    +              pts_feature.dim(), "D.");
    +
    +  TORCH_CHECK(boxes3d.size(2) == 7,
    +              "the 3rd dimensions of boxes3d should be 7, got ",
    +              boxes3d.size(2), ".");
    +  TORCH_CHECK((boxes3d.size(0) == batch_size),
    +              "the 1st dimensions of boxes3d should be batch_size, ",
    +              "but now the 1st dimension of boxes3d is ", boxes3d.size(0),
    +              ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((pts_feature.size(0) == batch_size),
    +              "the 1st dimensions of pts_feature should be batch_size, ",
    +              "but now the 1st dimension of pts_feature is ",
    +              pts_feature.size(0), ", and batch_size is ", batch_size, ".");
    +  TORCH_CHECK((pts_feature.size(1) == pts_num),
    +              "the 2nd dimensions of pts_feature should be pts_num, ",
    +              "but now the 2nd dimension of pts_feature is ",
    +              pts_feature.size(1), ", and pts_num is ", pts_num, ".");
    +
    +  // check zero element
    +  if (xyz.numel() == 0 || pts_feature.numel() == 0 || boxes3d.numel() == 0 ||
    +      pooled_features.numel() == 0 || pooled_empty_flag.numel() == 0) {
    +    return;
    +  }
    +
    +  // large tensor check
    +  const size_t max_input_size = 2147483648;
    +  TORCH_CHECK(xyz.numel() < max_input_size,
    +              "xyz element num should be less than 2^31, got ", xyz.numel(),
    +              ".");
    +  TORCH_CHECK(boxes3d.numel() < max_input_size,
    +              "boxes3d element num should be less than 2^31, got ",
    +              boxes3d.numel(), ".");
    +  TORCH_CHECK(pts_feature.numel() < max_input_size,
    +              "pts_feature element num should be less than 2^31, got ",
    +              pts_feature.numel(), ".");
    +
    +  // calculate task dimension
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  policyFuncForward(&k_dim, &k_type);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  // transpose points [B, N ,3] -> [3, B, N]
    +  auto xyz_ = xyz.permute({2, 0, 1}).contiguous();
    +  auto xyz_impl = torch_mlu::getMluTensorImpl(xyz_);
    +  auto xyz_ptr = xyz_impl->cnnlMalloc();
    +  // transpose point_features [B, N, C] -> [B, C, N]
    +  auto pts_feature_ = pts_feature.permute({0, 2, 1}).contiguous();
    +  auto pts_feature_impl = torch_mlu::getMluTensorImpl(pts_feature_);
    +  auto pts_feature_ptr = pts_feature_impl->cnnlMalloc();
    +  auto boxes3d_impl = torch_mlu::getMluTensorImpl(boxes3d);
    +  auto boxes3d_ptr = boxes3d_impl->cnnlMalloc();
    +  auto pooled_features_impl = torch_mlu::getMluTensorImpl(pooled_features);
    +  auto pooled_features_ptr = pooled_features_impl->cnnlMalloc();
    +  auto pooled_empty_flag_impl = torch_mlu::getMluTensorImpl(pooled_empty_flag);
    +  auto pooled_empty_flag_ptr = pooled_empty_flag_impl->cnnlMalloc();
    +
    +  // get compute dtype of input
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(xyz_.dtype());
    +
    +  // launch kernel
    +  if (boxes_num <= 10240) {
    +    CNLOG(INFO) << "Launch Kernel MLUKernelRoiPointPool3dForward<<<" << k_dim.x
    +                << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +    KernelRoiPointPool3dForward(
    +        k_dim, k_type, queue, data_type, batch_size, pts_num, boxes_num,
    +        feature_in_len, sampled_pts_num, xyz_ptr, boxes3d_ptr, pts_feature_ptr,
    +        pooled_features_ptr, (int *)pooled_empty_flag_ptr);
    +  } else {
    +    CNLOG(INFO)
    +        << "Launch Kernel MLUKernelRoiPointPool3dLargeBoxesNumForward<<<"
    +        << k_dim.x << ", " << k_dim.y << ", " << k_dim.z << ">>>";
    +    KernelRoiPointPool3dLargeBoxesNumForward(
    +        k_dim, k_type, queue, data_type, batch_size, pts_num, boxes_num,
    +        feature_in_len, sampled_pts_num, xyz_ptr, boxes3d_ptr, pts_feature_ptr,
    +        pooled_features_ptr, (int *)pooled_empty_flag_ptr);
    +  }
    +}
    +
    +void roipoint_pool3d_forward_mlu(int batch_size, int pts_num, int boxes_num,
    +                                 int feature_in_len, int sampled_pts_num,
    +                                 const Tensor xyz, const Tensor boxes3d,
    +                                 const Tensor pts_feature,
    +                                 Tensor pooled_features,
    +                                 Tensor pooled_empty_flag) {
    +  RoIPointPool3dForwardMLUKernelLauncher(
    +      batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, xyz,
    +      boxes3d, pts_feature, pooled_features, pooled_empty_flag);
    +}
    +
    +void roipoint_pool3d_forward_impl(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag);
    +
    +REGISTER_DEVICE_IMPL(roipoint_pool3d_forward_impl, MLU,
    +                     roipoint_pool3d_forward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/three_nn_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/three_nn_mlu.cpp
    new file mode 100644
    index 000000000..f407e3f63
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/three_nn_mlu.cpp
    @@ -0,0 +1,100 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelThreeNNForward(cnrtDim3_t k_dim, cnrtFunctionType_t k_type,
    +                          cnrtQueue_t queue, cnrtDataType_t data_type,
    +                          const void *unknown, const void *known, void *dist2,
    +                          int *idx, const int b, const int n, const int m);
    +
    +void ThreeNNMLUKernelLauncher(int b, int n, int m, const Tensor unknown,
    +                              const Tensor known, Tensor dist2, Tensor idx) {
    +  // Check dtype.
    +  TORCH_CHECK(
    +      unknown.scalar_type() == at::kFloat || unknown.scalar_type() == at::kHalf,
    +      "unknown type should be Float or Half, got ", unknown.scalar_type(), ".");
    +  TORCH_CHECK(unknown.scalar_type() == known.scalar_type(),
    +              "known should have the same type as unknown.");
    +  TORCH_CHECK(unknown.scalar_type() == dist2.scalar_type(),
    +              "dist2 should have the same type as unknown.");
    +  TORCH_CHECK(idx.scalar_type() == at::kInt, "idx type should be Int.");
    +
    +  // Check shape.
    +  TORCH_CHECK(unknown.dim() == 3, "unknown should be 3d tensor, got ",
    +              unknown.dim(), "D.");
    +  TORCH_CHECK(known.dim() == 3, "known should be 3d tensor, got ", known.dim(),
    +              "D.");
    +  TORCH_CHECK(unknown.size(0) == known.size(0),
    +              "known.dim0 should be equal to unknown.dim0, got ", known.size(0),
    +              ".");
    +  TORCH_CHECK(unknown.size(2) == 3, "unknown dim2 should be 3, got ",
    +              unknown.size(2), ".");
    +  TORCH_CHECK(known.size(2) == 3, "known dim2 should be 3, got ", known.size(2),
    +              ".");
    +
    +  // zero element check
    +  TORCH_CHECK(unknown.numel() > 0,
    +              "unknown.numel should greater than zero, got ", unknown.numel(),
    +              ".");
    +  if (known.numel() == 0) {
    +    // return if known zero element
    +    return;
    +  }
    +
    +  // large tensor check
    +  const size_t max_input_num = 2147483648;  // 2^31, 2G num
    +  TORCH_CHECK(unknown.numel() < max_input_num,
    +              "unknown.numel() should be less than 2147483648, got ",
    +              unknown.numel(), ".");
    +  TORCH_CHECK(known.numel() < max_input_num,
    +              "known.numel() should be less than 2147483648, got ",
    +              known.numel(), ".");
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get ptr of tensors
    +  auto unknown_impl = torch_mlu::getMluTensorImpl(unknown);
    +  auto unknown_ptr = unknown_impl->cnnlMalloc();
    +  auto known_t = known.permute({0, 2, 1}).contiguous();
    +  auto known_impl = torch_mlu::getMluTensorImpl(known_t);
    +  auto known_ptr = known_impl->cnnlMalloc();
    +  auto dist2_impl = torch_mlu::getMluTensorImpl(dist2);
    +  auto dist2_ptr = dist2_impl->cnnlMalloc();
    +  auto idx_impl = torch_mlu::getMluTensorImpl(idx);
    +  auto idx_ptr = idx_impl->cnnlMalloc();
    +
    +  cnrtJobType_t k_type = CNRT_FUNC_TYPE_UNION1;
    +  cnrtDim3_t k_dim;
    +  k_dim.x = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  k_dim.y = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  k_dim.z = 1;
    +  cnrtDataType_t data_type = torch_mlu::toCnrtDtype(unknown.dtype());
    +
    +  // launch kernel
    +  CNLOG(INFO) << "Launch Kernel MLUKernelThreeNNForward<<<" << k_dim.x << ", "
    +              << k_dim.y << ", " << k_dim.z << ">>>.";
    +
    +  KernelThreeNNForward(k_dim, k_type, queue, data_type, unknown_ptr, known_ptr,
    +                       dist2_ptr, (int *)idx_ptr, b, n, m);
    +}
    +
    +void three_nn_forward_mlu(int b, int n, int m, const Tensor unknown,
    +                          const Tensor known, Tensor dist2, Tensor idx) {
    +  ThreeNNMLUKernelLauncher(b, n, m, unknown, known, dist2, idx);
    +}
    +
    +void three_nn_forward_impl(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx);
    +
    +REGISTER_DEVICE_IMPL(three_nn_forward_impl, MLU, three_nn_forward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/tin_shift_mlu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/tin_shift_mlu.cpp
    new file mode 100644
    index 000000000..728330795
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mlu/tin_shift_mlu.cpp
    @@ -0,0 +1,203 @@
    +/*************************************************************************
    + * Copyright (C) 2022 Cambricon.
    + *
    + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    + *************************************************************************/
    +#include "pytorch_device_registry.hpp"
    +#include "pytorch_mlu_helper.hpp"
    +
    +void KernelTinShiftForward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *input, const void *shifts, void *output, const int batch_size,
    +    const int time_size, const int channel_size, const int hw_size,
    +    const int group_size, const int group_channel,
    +    const cnrtDataType_t data_dtype, const int channel_per_core,
    +    const int max_number_hw_per_core, const int max_length_per_core);
    +
    +void KernelTinShiftBackward(
    +    cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
    +    const void *grad_output, const void *shifts, void *grad_input,
    +    const int batch_size, const int time_size, const int channel_size,
    +    const int hw_size, const int group_size, const int group_channel,
    +    const cnrtDataType_t data_dtype, const int channel_per_core,
    +    const int max_number_hw_per_core, const int max_length_per_core);
    +
    +// policy function
    +static void policyFunc(const Tensor &input, cnrtDim3_t *k_dim,
    +                       cnrtFunctionType_t *k_type, int *channel_per_core,
    +                       int *max_number_hw_per_core, int *max_length_per_core) {
    +  const int32_t cluster_limit = torch_mlu::getDeviceAttr(cnrtAttrClusterCount);
    +  const int32_t core_limit = torch_mlu::getDeviceAttr(cnrtAttrMcorePerCluster);
    +  auto nram_size = torch_mlu::getDeviceAttr(cnrtAttrNramSizePerMcore);
    +  const int core_num = core_limit * cluster_limit;
    +  const int batch_size = input.size(0);
    +  const int time_size = input.size(1);
    +  const int channel_size = input.size(2);
    +  const int hw_size = input.size(3);
    +
    +  const size_t size_per_channel = time_size * hw_size * input.itemsize();
    +  *channel_per_core = nram_size / size_per_channel;
    +  int task_dim = 0;
    +  if (*channel_per_core == 0) {
    +    const size_t size_per_hw = hw_size * input.itemsize();
    +    *max_number_hw_per_core = nram_size / size_per_hw;
    +    if (*max_number_hw_per_core <= 0) {
    +      *max_length_per_core = nram_size / input.itemsize();
    +    }
    +    int tmp_max_number_hw_per_core =
    +        *max_number_hw_per_core > 0 ? *max_number_hw_per_core : 1;
    +    const int loop_time =
    +        (time_size / (tmp_max_number_hw_per_core)) +
    +        ((time_size % (tmp_max_number_hw_per_core)) > 0 ? 1 : 0);
    +    task_dim = batch_size * channel_size * loop_time < core_num
    +                   ? batch_size * channel_size * loop_time
    +                   : core_num;
    +  } else {
    +    task_dim = batch_size * channel_size < core_num ? batch_size * channel_size
    +                                                    : core_num;
    +  }
    +
    +  k_dim->x = core_limit;
    +  k_dim->y = (task_dim / core_limit) > 0 ? (task_dim / core_limit) : 1;
    +  k_dim->z = 1;
    +  *k_type = CNRT_FUNC_TYPE_UNION1;
    +}
    +
    +void TINShiftForwardMLUKernelLauncher(Tensor input, Tensor shift,
    +                                      Tensor output) {
    +  // params check
    +  TORCH_CHECK(
    +      input.scalar_type() == at::kFloat || input.scalar_type() == at::kHalf,
    +      "input type should be Float or Half, got ", input.scalar_type(), ".");
    +  TORCH_CHECK(input.dim() == 4, "input should be a 4d tensor, got ",
    +              input.dim(), "d.");
    +  TORCH_CHECK(shift.dim() == 2, "shift should be a 2d tensor, got ",
    +              shift.dim(), "d.");
    +  TORCH_CHECK(
    +      input.size(0) == shift.size(0),
    +      "input batch size should be the same as shift's, input batch size is ",
    +      input.size(0), " and shift batch size is ", shift.size(0), ".");
    +  TORCH_CHECK(input.size(0) != 0, "Input batch size should not be zero.");
    +  TORCH_CHECK(input.size(3) != 0,
    +              "The last dim size of input should not be zero.");
    +  if (input.size(1) == 0) {
    +    return;
    +  }
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  int channel_per_core = 0;
    +  int max_number_hw_per_core = 0;
    +  int max_length_per_core = 0;
    +  policyFunc(input, &k_dim, &k_type, &channel_per_core, &max_number_hw_per_core,
    +             &max_length_per_core);
    +
    +  const int batch_size = input.size(0);
    +  const int time_size = input.size(1);
    +  const int channel_size = input.size(2);
    +  const int hw_size = input.size(3);
    +  const int group_size = shift.size(1);
    +  int group_channel = channel_size / group_size;
    +
    +  // get tensor impl
    +  auto input_impl = torch_mlu::getMluTensorImpl(input);
    +  auto shift_impl = torch_mlu::getMluTensorImpl(shift);
    +  auto output_impl = torch_mlu::getMluTensorImpl(output);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get the mlu ptr
    +  auto input_ptr = input_impl->cnnlMalloc();
    +  auto shift_ptr = shift_impl->cnnlMalloc();
    +  auto output_ptr = output_impl->cnnlMalloc();
    +
    +  cnrtDataType_t data_dtype = torch_mlu::toCnrtDtype(input.dtype());
    +
    +  KernelTinShiftForward(k_dim, k_type, queue, input_ptr, shift_ptr, output_ptr,
    +                        batch_size, time_size, channel_size, hw_size,
    +                        group_size, group_channel, data_dtype, channel_per_core,
    +                        max_number_hw_per_core, max_length_per_core);
    +}
    +
    +void TINShiftBackwardMLUKernelLauncher(Tensor grad_output, Tensor shift,
    +                                       Tensor grad_input) {
    +  // params check
    +  TORCH_CHECK(grad_output.scalar_type() == at::kFloat ||
    +                  grad_output.scalar_type() == at::kHalf,
    +              "grad_output type should be Float or Half, got ",
    +              grad_output.scalar_type(), ".");
    +  TORCH_CHECK(grad_output.dim() == 4, "grad_output should be a 4d tensor, got ",
    +              grad_output.dim(), "d.");
    +  TORCH_CHECK(shift.dim() == 2, "shift should be a 2d tensor, got ",
    +              shift.dim(), "d.");
    +  TORCH_CHECK(grad_output.size(0) == shift.size(0),
    +              "grad_output batch size should be the same as shift's, "
    +              "grad_output batch size is ",
    +              grad_output.size(0), ", shift batch size is ", shift.size(0),
    +              ".");
    +  TORCH_CHECK(grad_output.size(0) != 0,
    +              "grad_output batch size should not be zero.");
    +  TORCH_CHECK(grad_output.size(3) != 0,
    +              "The last dim size of grad_output should not be zero.");
    +  if (grad_output.size(1) == 0) {
    +    return;
    +  }
    +  cnrtDim3_t k_dim;
    +  cnrtFunctionType_t k_type;
    +  int channel_per_core = 0;
    +  int max_number_hw_per_core = 0;
    +  int max_length_per_core = 0;
    +  policyFunc(grad_output, &k_dim, &k_type, &channel_per_core,
    +             &max_number_hw_per_core, &max_length_per_core);
    +
    +  const int batch_size = grad_output.size(0);
    +  const int time_size = grad_output.size(1);
    +  const int channel_size = grad_output.size(2);
    +  const int hw_size = grad_output.size(3);
    +  const int group_size = shift.size(1);
    +  int group_channel = channel_size / group_size;
    +
    +  // get tensor impl
    +  auto grad_output_impl = torch_mlu::getMluTensorImpl(grad_output);
    +  auto shift_impl = torch_mlu::getMluTensorImpl(shift);
    +  auto grad_input_impl = torch_mlu::getMluTensorImpl(grad_input);
    +
    +  // get compute queue
    +  auto queue = torch_mlu::getCurQueue();
    +
    +  // get the mlu ptr
    +  auto grad_output_ptr = grad_output_impl->cnnlMalloc();
    +  auto shift_ptr = shift_impl->cnnlMalloc();
    +  auto grad_input_ptr = grad_input_impl->cnnlMalloc();
    +
    +  cnrtDataType_t data_dtype = torch_mlu::toCnrtDtype(grad_output.dtype());
    +
    +  KernelTinShiftBackward(k_dim, k_type, queue, grad_output_ptr, shift_ptr,
    +                         grad_input_ptr, batch_size, time_size, channel_size,
    +                         hw_size, group_size, group_channel, data_dtype,
    +                         channel_per_core, max_number_hw_per_core,
    +                         max_length_per_core);
    +}
    +
    +void tin_shift_forward_mlu(Tensor input, Tensor shift, Tensor output) {
    +  TINShiftForwardMLUKernelLauncher(input, shift, output);
    +}
    +
    +void tin_shift_backward_mlu(Tensor grad_output, Tensor shift,
    +                            Tensor grad_input) {
    +  TINShiftBackwardMLUKernelLauncher(grad_output, shift, grad_input);
    +}
    +
    +void tin_shift_forward_impl(Tensor input, Tensor shift, Tensor output);
    +
    +void tin_shift_backward_impl(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input);
    +
    +REGISTER_DEVICE_IMPL(tin_shift_forward_impl, MLU, tin_shift_forward_mlu);
    +REGISTER_DEVICE_IMPL(tin_shift_backward_impl, MLU, tin_shift_backward_mlu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/modulated_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/modulated_deform_conv.cpp
    new file mode 100644
    index 000000000..12b538a05
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/modulated_deform_conv.cpp
    @@ -0,0 +1,237 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void modulated_deformable_im2col_impl(
    +    const Tensor data_im, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor data_col) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_im2col_impl, data_im, data_offset,
    +                       data_mask, batch_size, channels, height_im, width_im,
    +                       height_col, width_col, kernel_h, kernel_w, pad_h, pad_w,
    +                       stride_h, stride_w, dilation_h, dilation_w,
    +                       deformable_group, data_col);
    +}
    +
    +void modulated_deformable_col2im_impl(
    +    const Tensor data_col, const Tensor data_offset, const Tensor data_mask,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, Tensor grad_im) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_col2im_impl, data_col, data_offset,
    +                       data_mask, batch_size, channels, height_im, width_im,
    +                       height_col, width_col, kernel_h, kernel_w, pad_h, pad_w,
    +                       stride_h, stride_w, dilation_h, dilation_w,
    +                       deformable_group, grad_im);
    +}
    +
    +void modulated_deformable_col2im_coord_impl(
    +    const Tensor data_col, const Tensor data_im, const Tensor data_offset,
    +    const Tensor data_mask, const int batch_size, const int channels,
    +    const int height_im, const int width_im, const int height_col,
    +    const int width_col, const int kernel_h, const int kernel_w,
    +    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    +    const int dilation_h, const int dilation_w, const int deformable_group,
    +    Tensor grad_offset, Tensor grad_mask) {
    +  DISPATCH_DEVICE_IMPL(modulated_deformable_col2im_coord_impl, data_col,
    +                       data_im, data_offset, data_mask, batch_size, channels,
    +                       height_im, width_im, height_col, width_col, kernel_h,
    +                       kernel_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
    +                       dilation_w, deformable_group, grad_offset, grad_mask);
    +}
    +
    +void modulated_deform_conv_forward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    +    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    +    const int dilation_h, const int dilation_w, const int group,
    +    const int deformable_group, const bool with_bias) {
    +  at::DeviceGuard guard(input.device());
    +
    +  const int batch = input.size(0);
    +  const int channels = input.size(1);
    +  const int height = input.size(2);
    +  const int width = input.size(3);
    +
    +  const int channels_out = weight.size(0);
    +  const int channels_kernel = weight.size(1);
    +  const int kernel_h_ = weight.size(2);
    +  const int kernel_w_ = weight.size(3);
    +
    +  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    +    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
    +             kernel_h_, kernel_w, kernel_h_, kernel_w_);
    +  if (channels != channels_kernel * group)
    +    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
    +             channels, channels_kernel * group);
    +
    +  const int height_out =
    +      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    +  const int width_out =
    +      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < height_out * width_out) {
    +    // Resize plane and fill with ones...
    +    ones = at::ones({height_out, width_out}, input.options());
    +  }
    +
    +  // resize output
    +  output = output.view({batch, channels_out, height_out, width_out}).zero_();
    +  // resize temporary columns
    +  columns =
    +      at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
    +                input.options());
    +
    +  output = output.view({output.size(0), group, output.size(1) / group,
    +                        output.size(2), output.size(3)});
    +
    +  for (int b = 0; b < batch; b++) {
    +    modulated_deformable_im2col_impl(
    +        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, columns);
    +
    +    // divide into group
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +
    +    for (int g = 0; g < group; g++) {
    +      output[b][g] = output[b][g]
    +                         .flatten(1)
    +                         .addmm_(weight[g].flatten(1), columns[g])
    +                         .view_as(output[b][g]);
    +    }
    +
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +  }
    +
    +  output = output.view({output.size(0), output.size(1) * output.size(2),
    +                        output.size(3), output.size(4)});
    +
    +  if (with_bias) {
    +    output += bias.view({1, bias.size(0), 1, 1});
    +  }
    +}
    +
    +void modulated_deform_conv_backward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    +    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    +    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    +    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    +    const bool with_bias) {
    +  at::DeviceGuard guard(input.device());
    +
    +  const int batch = input.size(0);
    +  const int channels = input.size(1);
    +  const int height = input.size(2);
    +  const int width = input.size(3);
    +
    +  const int channels_kernel = weight.size(1);
    +  const int kernel_h_ = weight.size(2);
    +  const int kernel_w_ = weight.size(3);
    +  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    +    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
    +             kernel_h_, kernel_w, kernel_h_, kernel_w_);
    +  if (channels != channels_kernel * group)
    +    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
    +             channels, channels_kernel * group);
    +
    +  const int height_out =
    +      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    +  const int width_out =
    +      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
    +
    +  if (ones.ndimension() != 2 ||
    +      ones.size(0) * ones.size(1) < height_out * width_out) {
    +    // Resize plane and fill with ones...
    +    ones = at::ones({height_out, width_out}, input.options());
    +  }
    +
    +  grad_input = grad_input.view({batch, channels, height, width});
    +  columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
    +                      input.options());
    +
    +  grad_output =
    +      grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
    +                        grad_output.size(2), grad_output.size(3)});
    +
    +  for (int b = 0; b < batch; b++) {
    +    // divide int group
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    weight = weight.view({group, weight.size(0) / group, weight.size(1),
    +                          weight.size(2), weight.size(3)});
    +
    +    for (int g = 0; g < group; g++) {
    +      columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
    +                        grad_output[b][g].flatten(1), 0.0f, 1.0f);
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
    +                          weight.size(3), weight.size(4)});
    +
    +    // gradient w.r.t. input coordinate data
    +    modulated_deformable_col2im_coord_impl(
    +        columns, input[b], offset[b], mask[b], 1, channels, height, width,
    +        height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
    +        stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
    +        grad_mask[b]);
    +    // gradient w.r.t. input data
    +    modulated_deformable_col2im_impl(
    +        columns, offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, grad_input[b]);
    +
    +    // gradient w.r.t. weight, dWeight should accumulate across the batch and
    +    // group
    +    modulated_deformable_im2col_impl(
    +        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
    +        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
    +        dilation_h, dilation_w, deformable_group, columns);
    +
    +    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    +    grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
    +                                    grad_weight.size(1), grad_weight.size(2),
    +                                    grad_weight.size(3)});
    +    if (with_bias)
    +      grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
    +
    +    for (int g = 0; g < group; g++) {
    +      grad_weight[g] =
    +          grad_weight[g]
    +              .flatten(1)
    +              .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
    +              .view_as(grad_weight[g]);
    +      if (with_bias) {
    +        grad_bias[g] =
    +            grad_bias[g]
    +                .view({-1, 1})
    +                .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
    +                .view(-1);
    +      }
    +    }
    +
    +    columns =
    +        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    +    grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
    +                                    grad_weight.size(2), grad_weight.size(3),
    +                                    grad_weight.size(4)});
    +    if (with_bias)
    +      grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
    +  }
    +  grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
    +                                  grad_output.size(2), grad_output.size(3),
    +                                  grad_output.size(4)});
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mps/bbox_overlaps_mps.mm b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mps/bbox_overlaps_mps.mm
    new file mode 100644
    index 000000000..cad6a41a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/mps/bbox_overlaps_mps.mm
    @@ -0,0 +1,99 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "pytorch_device_registry.hpp"
    +
    +#include "MPSLibrary.h"
    +#include "MPSStream.h"
    +#include "MPSUtils.h"
    +
    +using at::Tensor;
    +
    +const static std::string kSourceCode = R"(
    +#include 
    +#include 
    +using namespace metal;
    +
    +kernel void bbox_overlap_mps_kernel(constant const float4* bboxes1,
    +                       constant const float4* bboxes2,
    +                       device float* ious,
    +                       constant int& num_bbox1,
    +                       constant int& num_bbox2,
    +                       constant int& mode,
    +                       constant bool& aligned,
    +                       constant int& offset,
    +                       uint index [[thread_position_in_grid]])
    +{
    +    int base1 = index;
    +    int base2 = index;
    +    if(!aligned){
    +      base1 = index / num_bbox2;
    +      base2 = index % num_bbox2;
    +    }
    +
    +    const float f_offset = float(offset);
    +
    +    const float4 b1 = bboxes1[base1];
    +    const float b1_area = (b1[2]-b1[0]+f_offset)*(b1[3]-b1[1]+f_offset);
    +
    +    const float4 b2 = bboxes2[base2];
    +    const float b2_area = (b2[2]-b2[0]+f_offset)*(b2[3]-b2[1]+f_offset);
    +
    +    const float2 left_top = fmax(b1.xy, b2.xy);
    +    const float2 right_bottom = fmin(b1.zw, b2.zw);
    +    const float2 wh = fmax(right_bottom - left_top + f_offset, 0.0f);
    +    const float interS = wh.x * wh.y;
    +
    +    const float baseS =
    +        fmax(mode == 0 ? b1_area + b2_area - interS : b1_area, f_offset);
    +    ious[index] = interS / baseS;
    +}
    +)";
    +
    +void BBoxOverlapsMPSKernelLauncher(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                                   const int mode, const bool aligned, const int offset) {
    +  // get stream
    +  auto stream = at::mps::getCurrentMPSStream();
    +  auto library_manager = MPSLibraryManager::getInstance();
    +  MPSLibrary* library;
    +  const static std::string kLibraryName = "bbox_overlap";
    +  if (library_manager->hasLibrary(kLibraryName))
    +    library = library_manager->getLibrary(kLibraryName);
    +  else
    +    library = library_manager->createLibraryFromSouce(kLibraryName, kSourceCode);
    +  auto func_pso = library->getComputePipelineState("bbox_overlap_mps_kernel");
    +
    +  // create command buffer and encoder
    +  MTLCommandBuffer_t command_buffer = stream->commandBuffer();
    +  MTLComputeCommandEncoder_t compute_encoder = [command_buffer computeCommandEncoder];
    +
    +  // set pso and buffer
    +  int output_size = ious.numel();
    +  int num_bbox1 = bboxes1.size(0);
    +  int num_bbox2 = bboxes2.size(0);
    +  int num_elements = output_size;
    +  setMTLArgs(compute_encoder, func_pso, bboxes1, bboxes2, ious, num_bbox1, num_bbox2, mode, aligned,
    +             offset);
    +
    +  // set grid size
    +  MTLSize grid_size = MTLSizeMake(num_elements, 1, 1);
    +  NSUInteger thread_group_size_x = func_pso.maxTotalThreadsPerThreadgroup;
    +  if (thread_group_size_x > num_elements) {
    +    thread_group_size_x = num_elements;
    +  }
    +  MTLSize thread_group_size = MTLSizeMake(thread_group_size_x, 1, 1);
    +
    +  // encoding
    +  [compute_encoder dispatchThreads:grid_size threadsPerThreadgroup:thread_group_size];
    +  [compute_encoder endEncoding];
    +
    +  // commit, not sure if flush is required
    +  stream->commit(false);
    +}
    +
    +void bbox_overlaps_mps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious, const int mode,
    +                       const bool aligned, const int offset) {
    +  BBoxOverlapsMPSKernelLauncher(bboxes1, bboxes2, ious, mode, aligned, offset);
    +}
    +
    +void bbox_overlaps_impl(const Tensor bboxes1, const Tensor bboxes2, Tensor ious, const int mode,
    +                        const bool aligned, const int offset);
    +REGISTER_DEVICE_IMPL(bbox_overlaps_impl, MPS, bbox_overlaps_mps);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ms_deform_attn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ms_deform_attn.cpp
    new file mode 100644
    index 000000000..25c8f6209
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/ms_deform_attn.cpp
    @@ -0,0 +1,60 @@
    +/*!
    +**************************************************************************************************
    +* Deformable DETR
    +* Copyright (c) 2020 SenseTime. All Rights Reserved.
    +* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
    +**************************************************************************************************
    +* Modified from
    +*https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
    +**************************************************************************************************
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor ms_deform_attn_impl_forward(const Tensor &value,
    +                                   const Tensor &spatial_shapes,
    +                                   const Tensor &level_start_index,
    +                                   const Tensor &sampling_loc,
    +                                   const Tensor &attn_weight,
    +                                   const int im2col_step) {
    +  return DISPATCH_DEVICE_IMPL(ms_deform_attn_impl_forward, value,
    +                              spatial_shapes, level_start_index, sampling_loc,
    +                              attn_weight, im2col_step);
    +}
    +
    +void ms_deform_attn_impl_backward(
    +    const Tensor &value, const Tensor &spatial_shapes,
    +    const Tensor &level_start_index, const Tensor &sampling_loc,
    +    const Tensor &attn_weight, const Tensor &grad_output, Tensor &grad_value,
    +    Tensor &grad_sampling_loc, Tensor &grad_attn_weight,
    +    const int im2col_step) {
    +  DISPATCH_DEVICE_IMPL(ms_deform_attn_impl_backward, value, spatial_shapes,
    +                       level_start_index, sampling_loc, attn_weight,
    +                       grad_output, grad_value, grad_sampling_loc,
    +                       grad_attn_weight, im2col_step);
    +}
    +
    +Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
    +                              const Tensor &level_start_index,
    +                              const Tensor &sampling_loc,
    +                              const Tensor &attn_weight,
    +                              const int im2col_step) {
    +  at::DeviceGuard guard(value.device());
    +  return ms_deform_attn_impl_forward(value, spatial_shapes, level_start_index,
    +                                     sampling_loc, attn_weight, im2col_step);
    +}
    +
    +void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
    +                             const Tensor &level_start_index,
    +                             const Tensor &sampling_loc,
    +                             const Tensor &attn_weight,
    +                             const Tensor &grad_output, Tensor &grad_value,
    +                             Tensor &grad_sampling_loc,
    +                             Tensor &grad_attn_weight, const int im2col_step) {
    +  at::DeviceGuard guard(value.device());
    +  ms_deform_attn_impl_backward(value, spatial_shapes, level_start_index,
    +                               sampling_loc, attn_weight, grad_output,
    +                               grad_value, grad_sampling_loc, grad_attn_weight,
    +                               im2col_step);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms.cpp
    new file mode 100644
    index 000000000..199d8af23
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms.cpp
    @@ -0,0 +1,33 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return DISPATCH_DEVICE_IMPL(nms_impl, boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor softnms_impl(Tensor boxes, Tensor scores, Tensor dets,
    +                    float iou_threshold, float sigma, float min_score,
    +                    int method, int offset) {
    +  return DISPATCH_DEVICE_IMPL(softnms_impl, boxes, scores, dets, iou_threshold,
    +                              sigma, min_score, method, offset);
    +}
    +
    +std::vector > nms_match_impl(Tensor dets,
    +                                              float iou_threshold) {
    +  return DISPATCH_DEVICE_IMPL(nms_match_impl, dets, iou_threshold);
    +}
    +
    +Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  return nms_impl(boxes, scores, iou_threshold, offset);
    +}
    +
    +Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
    +               float sigma, float min_score, int method, int offset) {
    +  return softnms_impl(boxes, scores, dets, iou_threshold, sigma, min_score,
    +                      method, offset);
    +}
    +
    +std::vector > nms_match(Tensor dets, float iou_threshold) {
    +  return nms_match_impl(dets, iou_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_quadri.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_quadri.cpp
    new file mode 100644
    index 000000000..b8baed951
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_quadri.cpp
    @@ -0,0 +1,30 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +#include "pytorch_cpp_helper.hpp"
    +
    +Tensor nms_quadri_cpu(const Tensor dets, const Tensor scores,
    +                      const float iou_threshold);
    +
    +#ifdef MMCV_WITH_CUDA
    +Tensor nms_quadri_cuda(const Tensor dets, const Tensor scores,
    +                       const Tensor order, const Tensor dets_sorted,
    +                       const float iou_threshold, const int multi_label);
    +#endif
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +Tensor nms_quadri(const Tensor dets, const Tensor scores, const Tensor order,
    +                  const Tensor dets_sorted, const float iou_threshold,
    +                  const int multi_label) {
    +  assert(dets.device().is_cuda() == scores.device().is_cuda());
    +  if (dets.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    return nms_quadri_cuda(dets, scores, order, dets_sorted, iou_threshold,
    +                           multi_label);
    +#else
    +    AT_ERROR("Not compiled with GPU support");
    +#endif
    +  }
    +
    +  return nms_quadri_cpu(dets, scores, iou_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_rotated.cpp
    new file mode 100644
    index 000000000..e4ef676a9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/nms_rotated.cpp
    @@ -0,0 +1,32 @@
    +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +// modified from
    +// https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/csrc/nms_rotated/nms_rotated.h
    +#include "pytorch_cpp_helper.hpp"
    +
    +Tensor nms_rotated_cpu(const Tensor dets, const Tensor scores,
    +                       const float iou_threshold);
    +
    +#ifdef MMCV_WITH_CUDA
    +Tensor nms_rotated_cuda(const Tensor dets, const Tensor scores,
    +                        const Tensor order, const Tensor dets_sorted,
    +                        const float iou_threshold, const int multi_label);
    +#endif
    +
    +// Interface for Python
    +// inline is needed to prevent multiple function definitions when this header is
    +// included by different cpps
    +Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
    +                   const Tensor dets_sorted, const float iou_threshold,
    +                   const int multi_label) {
    +  assert(dets.device().is_cuda() == scores.device().is_cuda());
    +  if (dets.device().is_cuda()) {
    +#ifdef MMCV_WITH_CUDA
    +    return nms_rotated_cuda(dets, scores, order, dets_sorted, iou_threshold,
    +                            multi_label);
    +#else
    +    AT_ERROR("Not compiled with GPU support");
    +#endif
    +  }
    +
    +  return nms_rotated_cpu(dets, scores, iou_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/deform_roi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/deform_roi_pool.cpp
    new file mode 100644
    index 000000000..0e9f2ee7a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/deform_roi_pool.cpp
    @@ -0,0 +1,63 @@
    +#include "pytorch_npu_helper.hpp"
    +
    +using namespace NPU_NAME_SPACE;
    +using namespace std;
    +
    +void deform_roi_pool_forward_impl(Tensor input, Tensor rois, Tensor offset,
    +                                  Tensor output, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma);
    +
    +void deform_roi_pool_backward_impl(Tensor grad_output, Tensor input,
    +                                   Tensor rois, Tensor offset,
    +                                   Tensor grad_input, Tensor grad_offset,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale, int sampling_ratio,
    +                                   float gamma);
    +
    +void deform_roi_pool_forward_npu(Tensor input, Tensor rois, Tensor offset,
    +                                 Tensor output, int pooled_height,
    +                                 int pooled_width, float spatial_scale,
    +                                 int sampling_ratio, float gamma) {
    +  c10::SmallVector output_sizes = {pooled_height, pooled_width};
    +  at::IntArrayRef output_size = at::IntArrayRef(output_sizes);
    +  int64_t sampling_ratio_ = (int64_t)sampling_ratio;
    +  OpCommand cmd;
    +  cmd.Name("DeformableRoiPool")
    +      .Input(input)
    +      .Input(rois)
    +      .Input(offset)
    +      .Output(output)
    +      .Attr("spatial_scale", spatial_scale)
    +      .Attr("output_size", output_size)
    +      .Attr("sampling_ratio", sampling_ratio_)
    +      .Attr("gamma", gamma)
    +      .Run();
    +}
    +
    +void deform_roi_pool_backward_npu(Tensor grad_output, Tensor input, Tensor rois,
    +                                  Tensor offset, Tensor grad_input,
    +                                  Tensor grad_offset, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int sampling_ratio, float gamma) {
    +  c10::SmallVector output_sizes = {pooled_height, pooled_width};
    +  at::IntArrayRef output_size = at::IntArrayRef(output_sizes);
    +  int64_t sampling_ratio_ = (int64_t)sampling_ratio;
    +  OpCommand cmd;
    +  cmd.Name("DeformableRoiPoolGrad")
    +      .Input(grad_input)
    +      .Input(input)
    +      .Input(rois)
    +      .Input(offset)
    +      .Output(grad_output)
    +      .Output(grad_offset)
    +      .Attr("output_size", output_size)
    +      .Attr("spatial_scale", spatial_scale)
    +      .Attr("sample_ratio", sampling_ratio_)
    +      .Attr("gamma", gamma)
    +      .Run();
    +}
    +
    +REGISTER_NPU_IMPL(deform_roi_pool_forward_impl, deform_roi_pool_forward_npu);
    +
    +REGISTER_NPU_IMPL(deform_roi_pool_backward_impl, deform_roi_pool_backward_npu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/focal_loss_npu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/focal_loss_npu.cpp
    new file mode 100644
    index 000000000..c949bf953
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/focal_loss_npu.cpp
    @@ -0,0 +1,162 @@
    +#include "pytorch_npu_helper.hpp"
    +
    +using namespace NPU_NAME_SPACE;
    +using namespace std;
    +
    +void sigmoid_focal_loss_forward_npu(Tensor input, Tensor target, Tensor weight,
    +                                    Tensor output, float gamma, float alpha) {
    +  int64_t n_class = input.size(1);
    +  at::Tensor target_y = at::ones_like(input);
    +  if (n_class == 1) {
    +    target_y = at::reshape(target, input.sizes());
    +    target_y = at::mul(target_y, -1.0);
    +    target_y = at::add(target_y, 1.0);
    +  } else {
    +    target_y = at_npu::native::NPUNativeFunctions::one_hot(target, n_class);
    +  }
    +  target_y =
    +      at_npu::native::NPUNativeFunctions::npu_dtype_cast(target_y, at::kInt);
    +  int64_t weight_size = weight.size(0);
    +  at::Tensor weight_y = at::ones_like(input);
    +  if (weight_size > 0) {
    +    weight_y = at_npu::native::NPUNativeFunctions::npu_broadcast(weight,
    +                                                                 input.sizes());
    +  }
    +  OpCommand cmd;
    +  string reduction = "none";
    +  cmd.Name("SigmoidFocalLoss")
    +      .Input(input)
    +      .Input(target_y)
    +      .Input(weight_y)
    +      .Output(output)
    +      .Attr("gamma", gamma)
    +      .Attr("alpha", alpha)
    +      .Attr("reduction", reduction)
    +      .Run();
    +}
    +
    +void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward_npu(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor grad_input, float gamma,
    +                                     float alpha) {
    +  int64_t n_class = input.size(1);
    +  at::Tensor target_y = at::ones_like(input);
    +  if (n_class == 1) {
    +    target_y = at::reshape(target, input.sizes());
    +  } else {
    +    target_y = at_npu::native::NPUNativeFunctions::one_hot(target, n_class);
    +    target_y = at::mul(target_y, -1.0);
    +    target_y = at::add(target_y, 1.0);
    +  }
    +  target_y =
    +      at_npu::native::NPUNativeFunctions::npu_dtype_cast(target_y, at::kInt);
    +  at::Tensor grad_up = at::ones_like(input);
    +  int64_t weight_size = weight.size(0);
    +  at::Tensor weight_y = at::ones_like(input);
    +  if (weight_size > 0) {
    +    weight_y = at_npu::native::NPUNativeFunctions::npu_broadcast(weight,
    +                                                                 input.sizes());
    +  }
    +  OpCommand cmd;
    +  string reduction = "none";
    +  cmd.Name("SigmoidFocalLossGrad")
    +      .Input(input)
    +      .Input(target_y)
    +      .Input(grad_up)
    +      .Input(weight_y)
    +      .Output(grad_input)
    +      .Attr("gamma", gamma)
    +      .Attr("alpha", alpha)
    +      .Attr("reduction", reduction)
    +      .Run();
    +}
    +
    +void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor grad_input,
    +                                      float gamma, float alpha);
    +
    +void softmax_focal_loss_forward_npu(Tensor input, Tensor target, Tensor weight,
    +                                    Tensor output, float gamma, float alpha) {
    +  int64_t n_class = input.size(1);
    +  at::Tensor target_y =
    +      at_npu::native::NPUNativeFunctions::one_hot(target, n_class);
    +  target_y =
    +      at_npu::native::NPUNativeFunctions::npu_dtype_cast(target_y, at::kInt);
    +  int64_t weight_size = weight.size(0);
    +  at::Tensor weight_y = at::ones_like(input);
    +  if (weight_size > 0) {
    +    weight_y = at_npu::native::NPUNativeFunctions::npu_broadcast(weight,
    +                                                                 input.sizes());
    +  }
    +  at::Tensor op_output = at::ones_like(input);
    +  OpCommand cmd;
    +  string reduction = "none";
    +  cmd.Name("SoftmaxFocalLoss")
    +      .Input(input)
    +      .Input(target_y)
    +      .Input(weight_y)
    +      .Output(op_output)
    +      .Attr("gamma", gamma)
    +      .Attr("alpha", alpha)
    +      .Attr("reduction", reduction)
    +      .Run();
    +  int64_t n_batch = input.size(0);
    +  c10::SmallVector offsets = {0, 0};
    +  c10::SmallVector sizes = {n_batch, 1};
    +  at::IntArrayRef offset = at::IntArrayRef(offsets);
    +  at::IntArrayRef size = at::IntArrayRef(sizes);
    +  at_npu::native::NPUNativeFunctions::npu_slice_out(op_output, offset, size,
    +                                                    output);
    +}
    +
    +void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor grad_input, float gamma,
    +                                     float alpha);
    +
    +void softmax_focal_loss_backward_npu(Tensor input, Tensor target, Tensor weight,
    +                                     Tensor buff, Tensor grad_input,
    +                                     float gamma, float alpha) {
    +  int64_t n_class = input.size(1);
    +  at::Tensor target_y =
    +      at_npu::native::NPUNativeFunctions::one_hot(target, n_class);
    +  target_y =
    +      at_npu::native::NPUNativeFunctions::npu_dtype_cast(target_y, at::kInt);
    +  at::Tensor grad_up = at::ones_like(input);
    +  int64_t weight_size = weight.size(0);
    +  at::Tensor weight_y = at::ones_like(input);
    +  if (weight_size > 0) {
    +    weight_y = at_npu::native::NPUNativeFunctions::npu_broadcast(weight,
    +                                                                 input.sizes());
    +  }
    +  OpCommand cmd;
    +  string reduction = "none";
    +  cmd.Name("SoftmaxFocalLossGrad")
    +      .Input(input)
    +      .Input(target_y)
    +      .Input(grad_up)
    +      .Input(weight_y)
    +      .Output(grad_input)
    +      .Attr("gamma", gamma)
    +      .Attr("alpha", alpha)
    +      .Attr("reduction", reduction)
    +      .Run();
    +}
    +
    +void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
    +                                      Tensor weight, Tensor buff,
    +                                      Tensor grad_input, float gamma,
    +                                      float alpha);
    +
    +REGISTER_NPU_IMPL(sigmoid_focal_loss_forward_impl,
    +                  sigmoid_focal_loss_forward_npu);
    +
    +REGISTER_NPU_IMPL(sigmoid_focal_loss_backward_impl,
    +                  sigmoid_focal_loss_backward_npu);
    +
    +REGISTER_NPU_IMPL(softmax_focal_loss_forward_impl,
    +                  softmax_focal_loss_forward_npu);
    +
    +REGISTER_NPU_IMPL(softmax_focal_loss_backward_impl,
    +                  softmax_focal_loss_backward_npu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/fused_bias_leakyrelu_npu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/fused_bias_leakyrelu_npu.cpp
    new file mode 100644
    index 000000000..cd052b586
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/fused_bias_leakyrelu_npu.cpp
    @@ -0,0 +1,54 @@
    +#include "pytorch_npu_helper.hpp"
    +
    +using namespace NPU_NAME_SPACE;
    +using namespace std;
    +
    +Tensor fused_bias_leakyrelu_op_impl(const Tensor &input, const Tensor &bias,
    +                                    const Tensor &refer, int act, int grad,
    +                                    float alpha, float scale);
    +
    +Tensor fused_bias_leakyrelu_npu(const Tensor &input, const Tensor &bias,
    +                                const Tensor &refer, int act, int grad,
    +                                float alpha, float scale) {
    +  at::Tensor py = at::empty_like(input);
    +  // forward
    +  if (grad == 0) {
    +    auto input_size = input.sizes();
    +    int input_length = input_size.size();
    +    c10::SmallVector input_size_tmp;
    +    input_size_tmp = array_to_small_vector(input_size);
    +    if (input_length > 1) {
    +      for (int i = 0; i < input_length; i++) {
    +        if (i != 1) {
    +          input_size_tmp[i] = 1;
    +        }
    +      }
    +    }
    +    at::Tensor bias_tmp = at::reshape(bias, input_size_tmp);
    +    at::Tensor bias_ = at_npu::native::NPUNativeFunctions::npu_broadcast(
    +        bias_tmp, input.sizes());
    +    OpCommand cmd;
    +    cmd.Name("FusedBiasLeakyRelu")
    +        .Input(input)
    +        .Input(bias_)
    +        .Output(py)
    +        .Attr("scale", scale)
    +        .Attr("negative_slope", alpha)
    +        .Run();
    +  }
    +
    +  // backward
    +  if (grad == 1) {
    +    OpCommand cmd;
    +    cmd.Name("FusedBiasLeakyReluGrad")
    +        .Input(input)
    +        .Input(refer)
    +        .Output(py)
    +        .Attr("scale", scale)
    +        .Attr("negative_slope", alpha)
    +        .Run();
    +  }
    +  return py;
    +}
    +
    +REGISTER_NPU_IMPL(fused_bias_leakyrelu_op_impl, fused_bias_leakyrelu_npu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/nms_npu.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/nms_npu.cpp
    new file mode 100644
    index 000000000..2f86893ea
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/npu/nms_npu.cpp
    @@ -0,0 +1,45 @@
    +#include "pytorch_npu_helper.hpp"
    +
    +using namespace NPU_NAME_SPACE;
    +using namespace std;
    +
    +Tensor nms_npu(Tensor boxes, Tensor scores, float iou_threshold, int offset) {
    +  at::Tensor boxed_offest = at_npu::native::OpPreparation::ApplyTensor(boxes);
    +  at::Tensor ones_tensor =
    +      at_npu::native::OpPreparation::ApplyTensor(boxes).fill_(1);
    +  at::add_out(boxed_offest, boxes, ones_tensor, offset);
    +  at::Tensor iou_threshold_y = at_npu::native::OpPreparation::ApplyTensor(
    +                                   {}, boxes.options().dtype(at::kFloat), boxes)
    +                                   .fill_(iou_threshold);
    +  at::Tensor scores_threshold_y =
    +      at_npu::native::OpPreparation::ApplyTensor(
    +          {}, boxes.options().dtype(at::kFloat), boxes)
    +          .fill_(0);
    +  at::Tensor max_outputsize_y = at_npu::native::OpPreparation::ApplyTensor(
    +                                    {}, boxes.options().dtype(at::kInt), boxes)
    +                                    .fill_(boxes.size(0));
    +  c10::SmallVector outputsize = {boxes.size(0)};
    +  at::Tensor output = at_npu::native::OpPreparation::ApplyTensor(
    +                          outputsize, boxes.options().dtype(at::kInt), boxes)
    +                          .fill_(-1);
    +  OpCommand cmd;
    +  cmd.Name("NonMaxSuppressionV3")
    +      .Input(boxes)
    +      .Input(scores)
    +      .Input(max_outputsize_y)
    +      .Input(iou_threshold_y)
    +      .Input(scores_threshold_y)
    +      .Output(output)
    +      .Run();
    +  auto outputsizeBool = at::gt(output, -1);
    +  auto outputsizeInt = outputsizeBool.to(at::ScalarType::Int);
    +  auto countLen = at::sum(outputsizeInt, at::ScalarType::Int);
    +  at::Tensor actual_output = output.slice(0, 0, countLen.item().toLong());
    +  actual_output = at_npu::native::NPUNativeFunctions::npu_dtype_cast(
    +      actual_output, at::kLong);
    +  return actual_output;
    +}
    +
    +Tensor nms_impl(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +
    +REGISTER_NPU_IMPL(nms_impl, nms_npu);
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pixel_group.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pixel_group.cpp
    new file mode 100755
    index 000000000..2bf8c8bbf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pixel_group.cpp
    @@ -0,0 +1,26 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// It is modified from https://github.com/WenmuZhou/PAN.pytorch
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +std::vector> pixel_group_impl(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float dis_threshold) {
    +  return DISPATCH_DEVICE_IMPL(pixel_group_impl, score, mask, embedding,
    +                              kernel_label, kernel_contour, kernel_region_num,
    +                              dis_threshold);
    +}
    +
    +std::vector> pixel_group(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float distance_threshold) {
    +  score = score.contiguous();
    +  mask = mask.contiguous();
    +  embedding = embedding.contiguous();
    +  kernel_label = kernel_label.contiguous();
    +  kernel_contour = kernel_contour.contiguous();
    +
    +  return pixel_group_impl(score, mask, embedding, kernel_label, kernel_contour,
    +                          kernel_region_num, distance_threshold);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_boxes.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_boxes.cpp
    new file mode 100644
    index 000000000..540da9403
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_boxes.cpp
    @@ -0,0 +1,44 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void points_in_boxes_part_forward_impl(int batch_size, int boxes_num,
    +                                       int pts_num, const Tensor boxes,
    +                                       const Tensor pts,
    +                                       Tensor box_idx_of_points) {
    +  DISPATCH_DEVICE_IMPL(points_in_boxes_part_forward_impl, batch_size, boxes_num,
    +                       pts_num, boxes, pts, box_idx_of_points);
    +}
    +
    +void points_in_boxes_all_forward_impl(int batch_size, int boxes_num,
    +                                      int pts_num, const Tensor boxes,
    +                                      const Tensor pts,
    +                                      Tensor box_idx_of_points) {
    +  DISPATCH_DEVICE_IMPL(points_in_boxes_all_forward_impl, batch_size, boxes_num,
    +                       pts_num, boxes, pts, box_idx_of_points);
    +}
    +
    +void points_in_boxes_part_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                  Tensor box_idx_of_points_tensor) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center, each box params pts: (B, npoints, 3)
    +  // [x, y, z] in LiDAR coordinate params boxes_idx_of_points: (B, npoints),
    +  // default -1
    +  int batch_size = boxes_tensor.size(0);
    +  int boxes_num = boxes_tensor.size(1);
    +  int pts_num = pts_tensor.size(1);
    +  points_in_boxes_part_forward_impl(batch_size, boxes_num, pts_num,
    +                                    boxes_tensor, pts_tensor,
    +                                    box_idx_of_points_tensor);
    +}
    +
    +void points_in_boxes_all_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor box_idx_of_points_tensor) {
    +  // params boxes: (B, N, 7) [x, y, z, x_size, y_size, z_size, rz] in LiDAR
    +  // coordinate, z is the bottom center. params pts: (B, npoints, 3) [x, y, z]
    +  // in LiDAR coordinate params boxes_idx_of_points: (B, npoints), default -1
    +  int batch_size = boxes_tensor.size(0);
    +  int boxes_num = boxes_tensor.size(1);
    +  int pts_num = pts_tensor.size(1);
    +  points_in_boxes_all_forward_impl(batch_size, boxes_num, pts_num, boxes_tensor,
    +                                   pts_tensor, box_idx_of_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_polygons.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_polygons.cpp
    new file mode 100644
    index 000000000..75a93dcef
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/points_in_polygons.cpp
    @@ -0,0 +1,15 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void points_in_polygons_forward_impl(const Tensor points, const Tensor polygons,
    +                                     Tensor output, const int rows,
    +                                     const int cols) {
    +  DISPATCH_DEVICE_IMPL(points_in_polygons_forward_impl, points, polygons,
    +                       output, rows, cols);
    +}
    +
    +void points_in_polygons_forward(Tensor points, Tensor polygons, Tensor output) {
    +  int rows = points.size(0);
    +  int cols = polygons.size(0);
    +  points_in_polygons_forward_impl(points, polygons, output, rows, cols);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/prroi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/prroi_pool.cpp
    new file mode 100644
    index 000000000..00db84a15
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/prroi_pool.cpp
    @@ -0,0 +1,47 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void prroi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                             int pooled_height, int pooled_width,
    +                             float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_forward_impl, input, rois, output,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_backward_impl(Tensor grad_output, Tensor rois,
    +                              Tensor grad_input, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_backward_impl, grad_output, rois, grad_input,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward_impl(Tensor output, Tensor grad_output,
    +                                   Tensor input, Tensor rois, Tensor grad_rois,
    +                                   int pooled_height, int pooled_width,
    +                                   float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(prroi_pool_coor_backward_impl, output, grad_output,
    +                       input, rois, grad_rois, pooled_height, pooled_width,
    +                       spatial_scale);
    +}
    +
    +void prroi_pool_forward(Tensor input, Tensor rois, Tensor output,
    +                        int pooled_height, int pooled_width,
    +                        float spatial_scale) {
    +  prroi_pool_forward_impl(input, rois, output, pooled_height, pooled_width,
    +                          spatial_scale);
    +}
    +
    +void prroi_pool_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
    +                         int pooled_height, int pooled_width,
    +                         float spatial_scale) {
    +  prroi_pool_backward_impl(grad_output, rois, grad_input, pooled_height,
    +                           pooled_width, spatial_scale);
    +}
    +
    +void prroi_pool_coor_backward(Tensor output, Tensor grad_output, Tensor input,
    +                              Tensor rois, Tensor grad_rois, int pooled_height,
    +                              int pooled_width, float spatial_scale) {
    +  prroi_pool_coor_backward_impl(output, grad_output, input, rois, grad_rois,
    +                                pooled_height, pooled_width, spatial_scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/psamask.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/psamask.cpp
    new file mode 100644
    index 000000000..6064c9ba5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/psamask.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from
    +// https://github.com/hszhao/semseg/blob/master/lib/psa/src
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
    +                          const int num_, const int h_feature,
    +                          const int w_feature, const int h_mask,
    +                          const int w_mask, const int half_h_mask,
    +                          const int half_w_mask) {
    +  DISPATCH_DEVICE_IMPL(psamask_forward_impl, psa_type, input, output, num_,
    +                       h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                       half_w_mask);
    +}
    +
    +void psamask_backward_impl(const int psa_type, const Tensor grad_output,
    +                           Tensor grad_input, const int num_,
    +                           const int h_feature, const int w_feature,
    +                           const int h_mask, const int w_mask,
    +                           const int half_h_mask, const int half_w_mask) {
    +  DISPATCH_DEVICE_IMPL(psamask_backward_impl, psa_type, grad_output, grad_input,
    +                       num_, h_feature, w_feature, h_mask, w_mask, half_h_mask,
    +                       half_w_mask);
    +}
    +
    +void psamask_forward(const Tensor input, Tensor output, const int psa_type,
    +                     const int num_, const int h_feature, const int w_feature,
    +                     const int h_mask, const int w_mask, const int half_h_mask,
    +                     const int half_w_mask) {
    +  psamask_forward_impl(psa_type, input, output, num_, h_feature, w_feature,
    +                       h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    +
    +void psamask_backward(Tensor grad_output, const Tensor grad_input,
    +                      const int psa_type, const int num_, const int h_feature,
    +                      const int w_feature, const int h_mask, const int w_mask,
    +                      const int half_h_mask, const int half_w_mask) {
    +  psamask_backward_impl(psa_type, grad_output, grad_input, num_, h_feature,
    +                        w_feature, h_mask, w_mask, half_h_mask, half_w_mask);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pybind.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pybind.cpp
    new file mode 100644
    index 000000000..0286a2307
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/pybind.cpp
    @@ -0,0 +1,902 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include "pytorch_cpp_helper.hpp"
    +
    +std::string get_compiler_version();
    +std::string get_compiling_cuda_version();
    +
    +void assign_score_withk_forward(const Tensor &points, const Tensor ¢ers,
    +                                const Tensor &scores, const Tensor &knn_idx,
    +                                Tensor &output, int B, int N0, int N1, int M,
    +                                int K, int O, int aggregate);
    +
    +void assign_score_withk_backward(const Tensor &grad_out, const Tensor &points,
    +                                 const Tensor ¢ers, const Tensor &scores,
    +                                 const Tensor &knn_idx, Tensor &grad_points,
    +                                 Tensor &grad_centers, Tensor &grad_scores,
    +                                 int B, int N0, int N1, int M, int K, int O,
    +                                 int aggregate);
    +
    +void carafe_naive_forward(Tensor features, Tensor masks, Tensor output,
    +                          int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_naive_backward(Tensor top_grad, Tensor features, Tensor masks,
    +                           Tensor bottom_grad, Tensor mask_grad,
    +                           int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_forward(Tensor features, Tensor masks, Tensor rfeatures,
    +                    Tensor routput, Tensor rmasks, Tensor output,
    +                    int kernel_size, int group_size, int scale_factor);
    +
    +void carafe_backward(Tensor top_grad, Tensor rfeatures, Tensor masks,
    +                     Tensor rtop_grad, Tensor rbottom_grad_hs,
    +                     Tensor rbottom_grad, Tensor rmask_grad, Tensor bottom_grad,
    +                     Tensor mask_grad, int kernel_size, int group_size,
    +                     int scale_factor);
    +
    +void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
    +                         Tensor output, Tensor columns, Tensor ones, int kW,
    +                         int kH, int dW, int dH, int padW, int padH,
    +                         int dilationW, int dilationH, int group,
    +                         int deformable_group, int im2col_step);
    +
    +void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
    +                                Tensor gradInput, Tensor gradOffset,
    +                                Tensor weight, Tensor columns, int kW, int kH,
    +                                int dW, int dH, int padW, int padH,
    +                                int dilationW, int dilationH, int group,
    +                                int deformable_group, int im2col_step);
    +
    +void deform_conv_backward_parameters(Tensor input, Tensor offset,
    +                                     Tensor gradOutput, Tensor gradWeight,
    +                                     Tensor columns, Tensor ones, int kW,
    +                                     int kH, int dW, int dH, int padW, int padH,
    +                                     int dilationW, int dilationH, int group,
    +                                     int deformable_group, float scale,
    +                                     int im2col_step);
    +
    +void deform_roi_pool_forward(Tensor input, Tensor rois, Tensor offset,
    +                             Tensor output, int pooled_height, int pooled_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             float gamma);
    +
    +void deform_roi_pool_backward(Tensor grad_output, Tensor input, Tensor rois,
    +                              Tensor offset, Tensor grad_input,
    +                              Tensor grad_offset, int pooled_height,
    +                              int pooled_width, float spatial_scale,
    +                              int sampling_ratio, float gamma);
    +
    +void group_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                          Tensor out_tensor, int b, int c, int n, int npoints,
    +                          int nsample);
    +
    +void group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                           Tensor grad_points_tensor, int b, int c, int n,
    +                           int npoints, int nsample);
    +
    +void stack_group_points_forward(Tensor features_tensor,
    +                                Tensor features_batch_cnt_tensor,
    +                                Tensor idx_tensor, Tensor idx_batch_cnt_tensor,
    +                                Tensor out_tensor, int b, int c, int m,
    +                                int nsample);
    +
    +void stack_group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                 Tensor idx_batch_cnt_tensor,
    +                                 Tensor features_batch_cnt_tensor,
    +                                 Tensor grad_features_tensor, int b, int c,
    +                                 int m, int n, int nsample);
    +
    +void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature,
    +                             Tensor pooled_features, Tensor pooled_empty_flag);
    +
    +void gather_points_forward(Tensor points_tensor, Tensor idx_tensor,
    +                           Tensor out_tensor, int b, int c, int n, int npoints);
    +
    +void gather_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                            Tensor grad_points_tensor, int b, int c, int n,
    +                            int npoints);
    +
    +void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha);
    +
    +void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor grad_input, float gamma, float alpha);
    +
    +void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
    +                                Tensor output, float gamma, float alpha);
    +
    +void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
    +                                 Tensor buff, Tensor grad_input, float gamma,
    +                                 float alpha);
    +
    +void three_interpolate_forward(Tensor points_tensor, Tensor idx_tensor,
    +                               Tensor weight_tensor, Tensor out_tensor, int b,
    +                               int c, int m, int n);
    +
    +void three_interpolate_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                Tensor weight_tensor, Tensor grad_points_tensor,
    +                                int b, int c, int n, int m);
    +
    +void three_nn_forward(Tensor unknown_tensor, Tensor known_tensor,
    +                      Tensor dist2_tensor, Tensor idx_tensor, int b, int n,
    +                      int m);
    +
    +void bbox_overlaps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
    +                   const int mode, const bool aligned, const int offset);
    +
    +void knn_forward(Tensor xyz_tensor, Tensor new_xyz_tensor, Tensor idx_tensor,
    +                 Tensor dist2_tensor, int b, int n, int m, int nsample);
    +
    +void iou3d_boxes_overlap_bev_forward(Tensor boxes_a, Tensor boxes_b,
    +                                     Tensor ans_overlap);
    +
    +void iou3d_nms3d_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                         float nms_overlap_thresh);
    +
    +void iou3d_nms3d_normal_forward(Tensor boxes, Tensor keep, Tensor keep_num,
    +                                float nms_overlap_thresh);
    +
    +void furthest_point_sampling_forward(Tensor points_tensor, Tensor temp_tensor,
    +                                     Tensor idx_tensor, int b, int n, int m);
    +
    +void furthest_point_sampling_with_dist_forward(Tensor points_tensor,
    +                                               Tensor temp_tensor,
    +                                               Tensor idx_tensor, int b, int n,
    +                                               int m);
    +
    +void masked_im2col_forward(const Tensor im, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor col,
    +                           const int kernel_h, const int kernel_w,
    +                           const int pad_h, const int pad_w);
    +
    +void masked_col2im_forward(const Tensor col, const Tensor mask_h_idx,
    +                           const Tensor mask_w_idx, Tensor im, int height,
    +                           int width, int channels);
    +
    +void modulated_deform_conv_forward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    +    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    +    const int dilation_h, const int dilation_w, const int group,
    +    const int deformable_group, const bool with_bias);
    +
    +void modulated_deform_conv_backward(
    +    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    +    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    +    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    +    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    +    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    +    const bool with_bias);
    +
    +Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
    +                              const Tensor &level_start_index,
    +                              const Tensor &sampling_loc,
    +                              const Tensor &attn_weight, const int im2col_step);
    +
    +void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
    +                             const Tensor &level_start_index,
    +                             const Tensor &sampling_loc,
    +                             const Tensor &attn_weight,
    +                             const Tensor &grad_output, Tensor &grad_value,
    +                             Tensor &grad_sampling_loc,
    +                             Tensor &grad_attn_weight, const int im2col_step);
    +
    +Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset);
    +
    +Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
    +               float sigma, float min_score, int method, int offset);
    +
    +std::vector> nms_match(Tensor dets, float iou_threshold);
    +
    +std::vector> pixel_group(
    +    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    +    Tensor kernel_contour, int kernel_region_num, float distance_threshold);
    +
    +std::vector> contour_expand(Tensor kernel_mask,
    +                                             Tensor internal_kernel_label,
    +                                             int min_kernel_area,
    +                                             int kernel_num);
    +
    +void roi_align_forward(Tensor input, Tensor rois, Tensor output,
    +                       Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                       int aligned_width, float spatial_scale,
    +                       int sampling_ratio, int pool_mode, bool aligned);
    +
    +void roi_align_backward(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                        Tensor argmax_x, Tensor grad_input, int aligned_height,
    +                        int aligned_width, float spatial_scale,
    +                        int sampling_ratio, int pool_mode, bool aligned);
    +
    +void roi_pool_forward(Tensor input, Tensor rois, Tensor output, Tensor argmax,
    +                      int pooled_height, int pooled_width, float spatial_scale);
    +
    +void roi_pool_backward(Tensor grad_output, Tensor rois, Tensor argmax,
    +                       Tensor grad_input, int pooled_height, int pooled_width,
    +                       float spatial_scale);
    +
    +void sync_bn_forward_mean(const Tensor input, Tensor mean);
    +
    +void sync_bn_forward_var(const Tensor input, const Tensor mean, Tensor var);
    +
    +void sync_bn_forward_output(const Tensor input, const Tensor mean,
    +                            const Tensor var, const Tensor weight,
    +                            const Tensor bias, Tensor running_mean,
    +                            Tensor running_var, Tensor norm, Tensor std,
    +                            Tensor output, float eps, float momentum,
    +                            int group_size);
    +
    +void sync_bn_backward_param(const Tensor grad_output, const Tensor norm,
    +                            Tensor grad_weight, Tensor grad_bias);
    +
    +void sync_bn_backward_data(const Tensor grad_output, const Tensor weight,
    +                           const Tensor grad_weight, const Tensor grad_bias,
    +                           const Tensor norm, const Tensor std,
    +                           Tensor grad_input);
    +
    +void psamask_forward(const Tensor input, Tensor output, const int psa_type,
    +                     const int num_, const int h_feature, const int w_feature,
    +                     const int h_mask, const int w_mask, const int half_h_mask,
    +                     const int half_w_mask);
    +
    +void psamask_backward(Tensor grad_output, const Tensor grad_input,
    +                      const int psa_type, const int num_, const int h_feature,
    +                      const int w_feature, const int h_mask, const int w_mask,
    +                      const int half_h_mask, const int half_w_mask);
    +
    +void tin_shift_forward(Tensor input, Tensor shift, Tensor output);
    +
    +void tin_shift_backward(Tensor grad_output, Tensor shift, Tensor grad_input);
    +
    +void ball_query_forward(Tensor new_xyz_tensor, Tensor xyz_tensor,
    +                        Tensor idx_tensor, int b, int n, int m,
    +                        float min_radius, float max_radius, int nsample);
    +
    +void stack_ball_query_forward(Tensor new_xyz_tensor, Tensor new_xyz_batch_cnt,
    +                              Tensor xyz_tensor, Tensor xyz_batch_cnt,
    +                              Tensor idx_tensor, float max_radius, int nsample);
    +
    +void prroi_pool_forward(Tensor input, Tensor rois, Tensor output,
    +                        int pooled_height, int pooled_width,
    +                        float spatial_scale);
    +
    +void prroi_pool_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
    +                         int pooled_height, int pooled_width,
    +                         float spatial_scale);
    +
    +void prroi_pool_coor_backward(Tensor output, Tensor grad_output, Tensor input,
    +                              Tensor rois, Tensor grad_rois, int pooled_height,
    +                              int pooled_width, float spatial_scale);
    +
    +// template 
    +// std::vector get_indice_pairs_forward(
    +//     torch::Tensor indices, int64_t batchSize,
    +//     std::vector outSpatialShape, std::vector spatialShape,
    +//     std::vector kernelSize, std::vector stride,
    +//     std::vector padding, std::vector dilation,
    +//     std::vector outPadding, int64_t _subM, int64_t _transpose);
    +
    +// template 
    +// std::vector get_indice_pairs_backward(
    +//     Tensor indices, Tensor gridOut, int64_t batchSize,
    +//     std::vector outSpatialShape, std::vector spatialShape,
    +//     std::vector kernelSize, std::vector stride,
    +//     std::vector padding, std::vector dilation,
    +//     std::vector outPadding, int64_t _subM, int64_t _transpose);
    +
    +// Tensor indice_conv_forward(Tensor features, Tensor filters, Tensor indicePairs,
    +//                            Tensor indiceNum, int64_t numActOut,
    +//                            int64_t _inverse, int64_t _subM);
    +
    +// std::vector indice_conv_backward(Tensor features, Tensor filters,
    +//                                          Tensor outGrad, Tensor indicePairs,
    +//                                          Tensor indiceNum, int64_t _inverse,
    +//                                          int64_t _subM);
    +
    +// Tensor fused_indice_conv_batchnorm_forward(Tensor features, Tensor filters,
    +//                                            Tensor bias, Tensor indicePairs,
    +//                                            Tensor indiceNum, int64_t numActOut,
    +//                                            int64_t _inverse, int64_t _subM);
    +
    +// Tensor indice_maxpool_forward(Tensor features, Tensor indicePairs,
    +//                               Tensor indiceNum, int64_t numAct);
    +
    +// Tensor indice_maxpool_backward(Tensor features, Tensor outFeatures,
    +//                                Tensor outGrad, Tensor indicePairs,
    +//                                Tensor indiceNum);
    +
    +void box_iou_rotated(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                     const int mode_flag, const bool aligned);
    +
    +Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
    +                   const Tensor dets_sorted, const float iou_threshold,
    +                   const int multi_label);
    +
    +Tensor upfirdn2d(const Tensor &input, const Tensor &kernel, int up_x, int up_y,
    +                 int down_x, int down_y, int pad_x0, int pad_x1, int pad_y0,
    +                 int pad_y1);
    +
    +Tensor fused_bias_leakyrelu(const Tensor &input, const Tensor &bias,
    +                            const Tensor &refer, int act, int grad, float alpha,
    +                            float scale);
    +
    +void roi_align_rotated_forward(Tensor input, Tensor rois, Tensor output,
    +                               int pooled_height, int pooled_width,
    +                               float spatial_scale, int sampling_ratio,
    +                               bool aligned, bool clockwise);
    +
    +void roi_align_rotated_backward(Tensor grad_output, Tensor rois,
    +                                Tensor grad_input, int pooled_height,
    +                                int pooled_width, float spatial_scale,
    +                                int sampling_ratio, bool aligned,
    +                                bool clockwise);
    +
    +std::vector dynamic_point_to_voxel_forward(
    +    const torch::Tensor &feats, const torch::Tensor &coors,
    +    const std::string &reduce_type);
    +
    +void dynamic_point_to_voxel_backward(torch::Tensor &grad_feats,
    +                                     const torch::Tensor &grad_reduced_feats,
    +                                     const torch::Tensor &feats,
    +                                     const torch::Tensor &reduced_feats,
    +                                     const torch::Tensor &coors_idx,
    +                                     const torch::Tensor &reduce_count,
    +                                     const std::string &reduce_type);
    +
    +void hard_voxelize_forward(const at::Tensor &points,
    +                           const at::Tensor &voxel_size,
    +                           const at::Tensor &coors_range, at::Tensor &voxels,
    +                           at::Tensor &coors, at::Tensor &num_points_per_voxel,
    +                           at::Tensor &voxel_num, const int max_points,
    +                           const int max_voxels, const int NDim,
    +                           const bool deterministic);
    +
    +void dynamic_voxelize_forward(const at::Tensor &points,
    +                              const at::Tensor &voxel_size,
    +                              const at::Tensor &coors_range, at::Tensor &coors,
    +                              const int NDim);
    +
    +void border_align_forward(const Tensor &input, const Tensor &boxes,
    +                          Tensor output, Tensor argmax_idx,
    +                          const int pool_size);
    +
    +void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
    +                           const Tensor &argmax_idx, Tensor grad_input,
    +                           const int pool_size);
    +
    +void points_in_boxes_cpu_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor pts_indices_tensor);
    +
    +void points_in_boxes_part_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                  Tensor box_idx_of_points_tensor);
    +
    +void points_in_boxes_all_forward(Tensor boxes_tensor, Tensor pts_tensor,
    +                                 Tensor box_idx_of_points_tensor);
    +
    +void roiaware_pool3d_forward(Tensor rois, Tensor pts, Tensor pts_feature,
    +                             Tensor argmax, Tensor pts_idx_of_voxels,
    +                             Tensor pooled_features, int pool_method);
    +
    +void roiaware_pool3d_backward(Tensor pts_idx_of_voxels, Tensor argmax,
    +                              Tensor grad_out, Tensor grad_in, int pool_method);
    +
    +void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
    +                         int kW, int patchH, int patchW, int padH, int padW,
    +                         int dilationH, int dilationW, int dilation_patchH,
    +                         int dilation_patchW, int dH, int dW);
    +
    +void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
    +                          Tensor grad_input1, Tensor grad_input2, int kH,
    +                          int kW, int patchH, int patchW, int padH, int padW,
    +                          int dilationH, int dilationW, int dilation_patchH,
    +                          int dilation_patchW, int dH, int dW);
    +
    +void rotated_feature_align_forward(const Tensor features,
    +                                   const Tensor best_bboxes, Tensor output,
    +                                   const float spatial_scale, const int points);
    +
    +void rotated_feature_align_backward(const Tensor top_grad,
    +                                    const Tensor best_bboxes,
    +                                    Tensor bottom_grad,
    +                                    const float spatial_scale,
    +                                    const int points);
    +
    +void riroi_align_rotated_forward(Tensor features, Tensor rois, Tensor output,
    +                                 int pooled_height, int pooled_width,
    +                                 float spatial_scale, int num_samples,
    +                                 int num_orientations, bool clockwise);
    +
    +void riroi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                  Tensor bottom_grad, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int num_samples, int num_orientations,
    +                                  bool clockwise);
    +
    +void points_in_polygons_forward(Tensor points, Tensor polygons, Tensor output);
    +
    +void min_area_polygons(const Tensor pointsets, Tensor polygons);
    +
    +void active_rotated_filter_forward(const Tensor input, const Tensor indices,
    +                                   Tensor output);
    +
    +void active_rotated_filter_backward(const Tensor grad_out, const Tensor indices,
    +                                    Tensor grad_in);
    +
    +void convex_iou(const Tensor pointsets, const Tensor polygons, Tensor ious);
    +
    +void convex_giou(const Tensor pointsets, const Tensor polygons, Tensor output);
    +
    +at::Tensor diff_iou_rotated_sort_vertices_forward(at::Tensor vertices,
    +                                                  at::Tensor mask,
    +                                                  at::Tensor num_valid);
    +
    +void chamfer_distance_forward(const Tensor xyz1, const Tensor xyz2,
    +                              const Tensor dist1, const Tensor dist2,
    +                              const Tensor idx1, const Tensor idx);
    +
    +void chamfer_distance_backward(const Tensor xyz1, const Tensor xyz2,
    +                               Tensor idx1, Tensor idx2, Tensor graddist1,
    +                               Tensor graddist2, Tensor gradxyz1,
    +                               Tensor gradxyz2);
    +
    +void box_iou_quadri(const Tensor boxes1, const Tensor boxes2, Tensor ious,
    +                    const int mode_flag, const bool aligned);
    +
    +Tensor nms_quadri(const Tensor dets, const Tensor scores, const Tensor order,
    +                  const Tensor dets_sorted, const float iou_threshold,
    +                  const int multi_label);
    +
    +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    +  m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)", py::arg("input"),
    +        py::arg("kernel"), py::arg("up_x"), py::arg("up_y"), py::arg("down_x"),
    +        py::arg("down_y"), py::arg("pad_x0"), py::arg("pad_x1"),
    +        py::arg("pad_y0"), py::arg("pad_y1"));
    +  m.def("fused_bias_leakyrelu", &fused_bias_leakyrelu,
    +        "fused_bias_leakyrelu (CUDA)", py::arg("input"), py::arg("bias"),
    +        py::arg("empty"), py::arg("act"), py::arg("grad"), py::arg("alpha"),
    +        py::arg("scale"));
    +  m.def("gather_points_forward", &gather_points_forward,
    +        "gather_points_forward", py::arg("points_tensor"),
    +        py::arg("idx_tensor"), py::arg("out_tensor"), py::arg("b"),
    +        py::arg("c"), py::arg("n"), py::arg("npoints"));
    +  m.def("gather_points_backward", &gather_points_backward,
    +        "gather_points_backward", py::arg("grad_out_tensor"),
    +        py::arg("idx_tensor"), py::arg("grad_points_tensor"), py::arg("b"),
    +        py::arg("c"), py::arg("n"), py::arg("npoints"));
    +  m.def("get_compiler_version", &get_compiler_version, "get_compiler_version");
    +  m.def("get_compiling_cuda_version", &get_compiling_cuda_version,
    +        "get_compiling_cuda_version");
    +  m.def("assign_score_withk_forward", &assign_score_withk_forward,
    +        "assign_score_withk_forward", py::arg("points"), py::arg("centers"),
    +        py::arg("scores"), py::arg("knn_idx"), py::arg("output"), py::arg("B"),
    +        py::arg("N0"), py::arg("N1"), py::arg("M"), py::arg("K"), py::arg("O"),
    +        py::arg("aggregate"));
    +  m.def("assign_score_withk_backward", &assign_score_withk_backward,
    +        "assign_score_withk_backward", py::arg("grad_out"), py::arg("points"),
    +        py::arg("centers"), py::arg("scores"), py::arg("knn_idx"),
    +        py::arg("grad_points"), py::arg("grad_centers"), py::arg("grad_scores"),
    +        py::arg("B"), py::arg("N0"), py::arg("N1"), py::arg("M"), py::arg("K"),
    +        py::arg("O"), py::arg("aggregate"));
    +  m.def("knn_forward", &knn_forward, "knn_forward", py::arg("xyz_tensor"),
    +        py::arg("new_xyz_tensor"), py::arg("idx_tensor"),
    +        py::arg("dist2_tensor"), py::arg("b"), py::arg("n"), py::arg("m"),
    +        py::arg("nsample"));
    +  m.def("carafe_naive_forward", &carafe_naive_forward, "carafe_naive_forward",
    +        py::arg("features"), py::arg("masks"), py::arg("output"),
    +        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
    +  m.def("carafe_naive_backward", &carafe_naive_backward,
    +        "carafe_naive_backward", py::arg("top_grad"), py::arg("features"),
    +        py::arg("masks"), py::arg("bottom_grad"), py::arg("mask_grad"),
    +        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
    +  m.def("carafe_forward", &carafe_forward, "carafe_forward",
    +        py::arg("features"), py::arg("masks"), py::arg("rfeatures"),
    +        py::arg("routput"), py::arg("rmasks"), py::arg("output"),
    +        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
    +  m.def("carafe_backward", &carafe_backward, "carafe_backward",
    +        py::arg("top_grad"), py::arg("rfeatures"), py::arg("masks"),
    +        py::arg("rtop_grad"), py::arg("rbottom_grad_hs"),
    +        py::arg("rbottom_grad"), py::arg("rmask_grad"), py::arg("bottom_grad"),
    +        py::arg("mask_grad"), py::arg("kernel_size"), py::arg("group_size"),
    +        py::arg("scale_factor"));
    +  m.def("deform_conv_forward", &deform_conv_forward, "deform_conv_forward",
    +        py::arg("input"), py::arg("weight"), py::arg("offset"),
    +        py::arg("output"), py::arg("columns"), py::arg("ones"), py::arg("kW"),
    +        py::arg("kH"), py::arg("dW"), py::arg("dH"), py::arg("padW"),
    +        py::arg("padH"), py::arg("dilationW"), py::arg("dilationH"),
    +        py::arg("group"), py::arg("deformable_group"), py::arg("im2col_step"));
    +  m.def("deform_conv_backward_input", &deform_conv_backward_input,
    +        "deform_conv_backward_input", py::arg("input"), py::arg("offset"),
    +        py::arg("gradOutput"), py::arg("gradInput"), py::arg("gradOffset"),
    +        py::arg("weight"), py::arg("columns"), py::arg("kW"), py::arg("kH"),
    +        py::arg("dW"), py::arg("dH"), py::arg("padW"), py::arg("padH"),
    +        py::arg("dilationW"), py::arg("dilationH"), py::arg("group"),
    +        py::arg("deformable_group"), py::arg("im2col_step"));
    +  m.def("deform_conv_backward_parameters", &deform_conv_backward_parameters,
    +        "deform_conv_backward_parameters", py::arg("input"), py::arg("offset"),
    +        py::arg("gradOutput"), py::arg("gradWeight"), py::arg("columns"),
    +        py::arg("ones"), py::arg("kW"), py::arg("kH"), py::arg("dW"),
    +        py::arg("dH"), py::arg("padW"), py::arg("padH"), py::arg("dilationW"),
    +        py::arg("dilationH"), py::arg("group"), py::arg("deformable_group"),
    +        py::arg("scale"), py::arg("im2col_step"));
    +  m.def("deform_roi_pool_forward", &deform_roi_pool_forward,
    +        "deform roi pool forward", py::arg("input"), py::arg("rois"),
    +        py::arg("offset"), py::arg("output"), py::arg("pooled_height"),
    +        py::arg("pooled_width"), py::arg("spatial_scale"),
    +        py::arg("sampling_ratio"), py::arg("gamma"));
    +  m.def("deform_roi_pool_backward", &deform_roi_pool_backward,
    +        "deform roi pool backward", py::arg("grad_output"), py::arg("input"),
    +        py::arg("rois"), py::arg("offset"), py::arg("grad_input"),
    +        py::arg("grad_offset"), py::arg("pooled_height"),
    +        py::arg("pooled_width"), py::arg("spatial_scale"),
    +        py::arg("sampling_ratio"), py::arg("gamma"));
    +  m.def("roipoint_pool3d_forward", &roipoint_pool3d_forward,
    +        "roipoint_pool3d_forward", py::arg("xyz"), py::arg("boxes3d"),
    +        py::arg("pts_feature"), py::arg("pooled_features"),
    +        py::arg("pooled_empty_flag"));
    +  m.def("sigmoid_focal_loss_forward", &sigmoid_focal_loss_forward,
    +        "sigmoid_focal_loss_forward ", py::arg("input"), py::arg("target"),
    +        py::arg("weight"), py::arg("output"), py::arg("gamma"),
    +        py::arg("alpha"));
    +  m.def("sigmoid_focal_loss_backward", &sigmoid_focal_loss_backward,
    +        "sigmoid_focal_loss_backward", py::arg("input"), py::arg("target"),
    +        py::arg("weight"), py::arg("grad_input"), py::arg("gamma"),
    +        py::arg("alpha"));
    +  m.def("softmax_focal_loss_forward", &softmax_focal_loss_forward,
    +        "softmax_focal_loss_forward", py::arg("input"), py::arg("target"),
    +        py::arg("weight"), py::arg("output"), py::arg("gamma"),
    +        py::arg("alpha"));
    +  m.def("softmax_focal_loss_backward", &softmax_focal_loss_backward,
    +        "softmax_focal_loss_backward", py::arg("input"), py::arg("target"),
    +        py::arg("weight"), py::arg("buff"), py::arg("grad_input"),
    +        py::arg("gamma"), py::arg("alpha"));
    +  m.def("three_interpolate_forward", &three_interpolate_forward,
    +        "three_interpolate_forward", py::arg("points_tensor"),
    +        py::arg("idx_tensor"), py::arg("weight_tensor"), py::arg("out_tensor"),
    +        py::arg("b"), py::arg("c"), py::arg("m"), py::arg("n"));
    +  m.def("three_interpolate_backward", &three_interpolate_backward,
    +        "three_interpolate_backward", py::arg("grad_out_tensor"),
    +        py::arg("idx_tensor"), py::arg("weight_tensor"),
    +        py::arg("grad_points_tensor"), py::arg("b"), py::arg("c"), py::arg("n"),
    +        py::arg("m"));
    +  m.def("three_nn_forward", &three_nn_forward, "three_nn_forward",
    +        py::arg("unknown_tensor"), py::arg("known_tensor"),
    +        py::arg("dist2_tensor"), py::arg("idx_tensor"), py::arg("b"),
    +        py::arg("n"), py::arg("m"));
    +  m.def("bbox_overlaps", &bbox_overlaps, "bbox_overlaps", py::arg("bboxes1"),
    +        py::arg("bboxes2"), py::arg("ious"), py::arg("mode"),
    +        py::arg("aligned"), py::arg("offset"));
    +  m.def("group_points_forward", &group_points_forward, "group_points_forward",
    +        py::arg("points_tensor"), py::arg("idx_tensor"), py::arg("out_tensor"),
    +        py::arg("b"), py::arg("c"), py::arg("n"), py::arg("npoints"),
    +        py::arg("nsample"));
    +  m.def("group_points_backward", &group_points_backward,
    +        "group_points_backward", py::arg("grad_out_tensor"),
    +        py::arg("idx_tensor"), py::arg("grad_points_tensor"), py::arg("b"),
    +        py::arg("c"), py::arg("n"), py::arg("npoints"), py::arg("nsample"));
    +  m.def("stack_group_points_forward", &stack_group_points_forward,
    +        "stack_group_points_forward", py::arg("features_tensor"),
    +        py::arg("features_batch_cnt_tensor"), py::arg("idx_tensor"),
    +        py::arg("idx_batch_cnt_tensor"), py::arg("out_tensor"), py::arg("b"),
    +        py::arg("c"), py::arg("m"), py::arg("nsample"));
    +  m.def("stack_group_points_backward", &stack_group_points_backward,
    +        "stack_group_points_backward", py::arg("grad_out_tensor"),
    +        py::arg("idx_tensor"), py::arg("idx_batch_cnt_tensor"),
    +        py::arg("features_batch_cnt_tensor"), py::arg("grad_features_tensor"),
    +        py::arg("b"), py::arg("c"), py::arg("m"), py::arg("n"),
    +        py::arg("nsample"));
    +  m.def("knn_forward", &knn_forward, "knn_forward", py::arg("b"), py::arg("n"),
    +        py::arg("m"), py::arg("nsample"), py::arg("xyz_tensor"),
    +        py::arg("new_xyz_tensor"), py::arg("idx_tensor"),
    +        py::arg("dist2_tensor"));
    +  m.def("iou3d_boxes_overlap_bev_forward", &iou3d_boxes_overlap_bev_forward,
    +        "iou3d_boxes_overlap_bev_forward", py::arg("boxes_a"),
    +        py::arg("boxes_b"), py::arg("ans_iou"));
    +  m.def("iou3d_nms3d_forward", &iou3d_nms3d_forward, "iou3d_nms3d_forward",
    +        py::arg("boxes"), py::arg("keep"), py::arg("num_out"),
    +        py::arg("nms_overlap_thresh"));
    +  m.def("iou3d_nms3d_normal_forward", &iou3d_nms3d_normal_forward,
    +        "iou3d_nms3d_normal_forward", py::arg("boxes"), py::arg("keep"),
    +        py::arg("num_out"), py::arg("nms_overlap_thresh"));
    +  m.def("furthest_point_sampling_forward", &furthest_point_sampling_forward,
    +        "furthest_point_sampling_forward", py::arg("points_tensor"),
    +        py::arg("temp_tensor"), py::arg("idx_tensor"), py::arg("b"),
    +        py::arg("n"), py::arg("m"));
    +  m.def("furthest_point_sampling_with_dist_forward",
    +        &furthest_point_sampling_with_dist_forward,
    +        "furthest_point_sampling_with_dist_forward", py::arg("points_tensor"),
    +        py::arg("temp_tensor"), py::arg("idx_tensor"), py::arg("b"),
    +        py::arg("n"), py::arg("m"));
    +  m.def("masked_im2col_forward", &masked_im2col_forward,
    +        "masked_im2col_forward", py::arg("im"), py::arg("mask_h_idx"),
    +        py::arg("mask_w_idx"), py::arg("col"), py::arg("kernel_h"),
    +        py::arg("kernel_w"), py::arg("pad_h"), py::arg("pad_w"));
    +  m.def("masked_col2im_forward", &masked_col2im_forward,
    +        "masked_col2im_forward", py::arg("col"), py::arg("mask_h_idx"),
    +        py::arg("mask_w_idx"), py::arg("im"), py::arg("height"),
    +        py::arg("width"), py::arg("channels"));
    +  m.def("modulated_deform_conv_forward", &modulated_deform_conv_forward,
    +        "modulated deform conv forward", py::arg("input"), py::arg("weight"),
    +        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
    +        py::arg("output"), py::arg("columns"), py::arg("kernel_h"),
    +        py::arg("kernel_w"), py::arg("stride_h"), py::arg("stride_w"),
    +        py::arg("pad_h"), py::arg("pad_w"), py::arg("dilation_h"),
    +        py::arg("dilation_w"), py::arg("group"), py::arg("deformable_group"),
    +        py::arg("with_bias"));
    +  m.def("modulated_deform_conv_backward", &modulated_deform_conv_backward,
    +        "modulated deform conv backward", py::arg("input"), py::arg("weight"),
    +        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
    +        py::arg("columns"), py::arg("grad_input"), py::arg("grad_weight"),
    +        py::arg("grad_bias"), py::arg("grad_offset"), py::arg("grad_mask"),
    +        py::arg("grad_output"), py::arg("kernel_h"), py::arg("kernel_w"),
    +        py::arg("stride_h"), py::arg("stride_w"), py::arg("pad_h"),
    +        py::arg("pad_w"), py::arg("dilation_h"), py::arg("dilation_w"),
    +        py::arg("group"), py::arg("deformable_group"), py::arg("with_bias"));
    +  m.def("nms", &nms, "nms (CPU/CUDA) ", py::arg("boxes"), py::arg("scores"),
    +        py::arg("iou_threshold"), py::arg("offset"));
    +  m.def("softnms", &softnms, "softnms (CPU) ", py::arg("boxes"),
    +        py::arg("scores"), py::arg("dets"), py::arg("iou_threshold"),
    +        py::arg("sigma"), py::arg("min_score"), py::arg("method"),
    +        py::arg("offset"));
    +  m.def("nms_match", &nms_match, "nms_match (CPU) ", py::arg("dets"),
    +        py::arg("iou_threshold"));
    +  m.def("pixel_group", &pixel_group, "pixel group (CPU) ", py::arg("score"),
    +        py::arg("mask"), py::arg("embedding"), py::arg("kernel_label"),
    +        py::arg("kernel_contour"), py::arg("kernel_region_label"),
    +        py::arg("distance_threshold"));
    +  m.def("contour_expand", &contour_expand, "contour exapnd (CPU) ",
    +        py::arg("kernel_mask"), py::arg("internal_kernel_label"),
    +        py::arg("min_kernel_area"), py::arg("kernel_num"));
    +  m.def("roi_align_forward", &roi_align_forward, "roi_align forward",
    +        py::arg("input"), py::arg("rois"), py::arg("output"),
    +        py::arg("argmax_y"), py::arg("argmax_x"), py::arg("aligned_height"),
    +        py::arg("aligned_width"), py::arg("spatial_scale"),
    +        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
    +  m.def("roi_align_backward", &roi_align_backward, "roi_align backward",
    +        py::arg("grad_output"), py::arg("rois"), py::arg("argmax_y"),
    +        py::arg("argmax_x"), py::arg("grad_input"), py::arg("aligned_height"),
    +        py::arg("aligned_width"), py::arg("spatial_scale"),
    +        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
    +  m.def("roi_pool_forward", &roi_pool_forward, "roi_pool forward",
    +        py::arg("input"), py::arg("rois"), py::arg("output"), py::arg("argmax"),
    +        py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"));
    +  m.def("roi_pool_backward", &roi_pool_backward, "roi_pool backward",
    +        py::arg("grad_output"), py::arg("rois"), py::arg("argmax"),
    +        py::arg("grad_input"), py::arg("pooled_height"),
    +        py::arg("pooled_width"), py::arg("spatial_scale"));
    +  m.def("sync_bn_forward_mean", &sync_bn_forward_mean, "sync_bn forward_mean",
    +        py::arg("input"), py::arg("mean"));
    +  m.def("sync_bn_forward_var", &sync_bn_forward_var, "sync_bn forward_var",
    +        py::arg("input"), py::arg("mean"), py::arg("var"));
    +  m.def("sync_bn_forward_output", &sync_bn_forward_output,
    +        "sync_bn forward_output", py::arg("input"), py::arg("mean"),
    +        py::arg("var"), py::arg("weight"), py::arg("bias"),
    +        py::arg("running_mean"), py::arg("running_var"), py::arg("norm"),
    +        py::arg("std"), py::arg("output"), py::arg("eps"), py::arg("momentum"),
    +        py::arg("group_size"));
    +  m.def("sync_bn_backward_param", &sync_bn_backward_param,
    +        "sync_bn backward_param", py::arg("grad_output"), py::arg("norm"),
    +        py::arg("grad_weight"), py::arg("grad_bias"));
    +  m.def("sync_bn_backward_data", &sync_bn_backward_data,
    +        "sync_bn backward_data", py::arg("grad_output"), py::arg("weight"),
    +        py::arg("grad_weight"), py::arg("grad_bias"), py::arg("norm"),
    +        py::arg("std"), py::arg("grad_input"));
    +//   m.def("get_indice_pairs_2d_forward", &get_indice_pairs_forward<2>,
    +//         "get_indice_pairs_2d_forward", py::arg("indices"), py::arg("batchSize"),
    +//         py::arg("outSpatialShape"), py::arg("spatialShape"),
    +//         py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
    +//         py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
    +//         py::arg("_transpose"));
    +//   m.def("get_indice_pairs_3d_forward", &get_indice_pairs_forward<3>,
    +//         "get_indice_pairs_3d_forward", py::arg("indices"), py::arg("batchSize"),
    +//         py::arg("outSpatialShape"), py::arg("spatialShape"),
    +//         py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
    +//         py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
    +//         py::arg("_transpose"));
    +//   m.def("get_indice_pairs_4d_forward", &get_indice_pairs_forward<4>,
    +//         "get_indice_pairs_4d_forward", py::arg("indices"), py::arg("batchSize"),
    +//         py::arg("outSpatialShape"), py::arg("spatialShape"),
    +//         py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
    +//         py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
    +//         py::arg("_transpose"));
    +//   m.def("get_indice_pairs_2d_backward", &get_indice_pairs_backward<2>,
    +//         "get_indice_pairs_2d_backward", py::arg("indices"), py::arg("gridOut"),
    +//         py::arg("batchSize"), py::arg("outSpatialShape"),
    +//         py::arg("spatialShape"), py::arg("kernelSize"), py::arg("stride"),
    +//         py::arg("padding"), py::arg("dilation"), py::arg("outPadding"),
    +//         py::arg("_subM"), py::arg("_transpose"));
    +//   m.def("get_indice_pairs_3d_backward", &get_indice_pairs_backward<3>,
    +//         "get_indice_pairs_3d_backward", py::arg("indices"), py::arg("gridOut"),
    +//         py::arg("batchSize"), py::arg("outSpatialShape"),
    +//         py::arg("spatialShape"), py::arg("kernelSize"), py::arg("stride"),
    +//         py::arg("padding"), py::arg("dilation"), py::arg("outPadding"),
    +//         py::arg("_subM"), py::arg("_transpose"));
    +//   m.def("indice_conv_forward", &indice_conv_forward, "indice_conv_forward",
    +//         py::arg("features"), py::arg("filters"), py::arg("indicePairs"),
    +//         py::arg("indiceNum"), py::arg("numActOut"), py::arg("_inverse"),
    +//         py::arg("_subM"));
    +//   m.def("indice_conv_backward", &indice_conv_backward, "indice_conv_backward",
    +//         py::arg("features"), py::arg("filters"), py::arg("outGrad"),
    +//         py::arg("indicePairs"), py::arg("indiceNum"), py::arg("_inverse"),
    +//         py::arg("_subM"));
    +//   m.def("fused_indice_conv_forward", &fused_indice_conv_batchnorm_forward,
    +//         "fused_indice_conv_forward", py::arg("features"), py::arg("filters"),
    +//         py::arg("bias"), py::arg("indicePairs"), py::arg("indiceNum"),
    +//         py::arg("numActOut"), py::arg("_inverse"), py::arg("_subM"));
    +//   m.def("indice_maxpool_forward", &indice_maxpool_forward,
    +//         "indice_maxpool_forward", py::arg("features"), py::arg("indicePairs"),
    +//         py::arg("indiceNum"), py::arg("numAct"));
    +//   m.def("indice_maxpool_backward", &indice_maxpool_backward,
    +//         "indice_maxpool_backward", py::arg("features"), py::arg("outFeatures"),
    +//         py::arg("outGrad"), py::arg("indicePairs"), py::arg("indiceNum"));
    +  m.def("psamask_forward", &psamask_forward, "PSAMASK forward (CPU/CUDA)",
    +        py::arg("input"), py::arg("output"), py::arg("psa_type"),
    +        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
    +        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
    +        py::arg("half_w_mask"));
    +  m.def("psamask_backward", &psamask_backward, "PSAMASK backward (CPU/CUDA)",
    +        py::arg("grad_output"), py::arg("grad_input"), py::arg("psa_type"),
    +        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
    +        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
    +        py::arg("half_w_mask"));
    +  m.def("tin_shift_forward", &tin_shift_forward, "tin_shift forward",
    +        py::arg("input"), py::arg("shift"), py::arg("output"));
    +  m.def("tin_shift_backward", &tin_shift_backward, "tin_shift backward",
    +        py::arg("grad_output"), py::arg("shift"), py::arg("grad_input"));
    +  m.def("box_iou_rotated", &box_iou_rotated, "IoU for rotated boxes",
    +        py::arg("boxes1"), py::arg("boxes2"), py::arg("ious"),
    +        py::arg("mode_flag"), py::arg("aligned"));
    +  m.def("nms_rotated", &nms_rotated, "NMS for rotated boxes", py::arg("dets"),
    +        py::arg("scores"), py::arg("order"), py::arg("dets_sorted"),
    +        py::arg("iou_threshold"), py::arg("multi_label"));
    +  m.def("ball_query_forward", &ball_query_forward, "ball_query_forward",
    +        py::arg("new_xyz_tensor"), py::arg("xyz_tensor"), py::arg("idx_tensor"),
    +        py::arg("b"), py::arg("n"), py::arg("m"), py::arg("min_radius"),
    +        py::arg("max_radius"), py::arg("nsample"));
    +  m.def("stack_ball_query_forward", &stack_ball_query_forward,
    +        "stack_ball_query_forward", py::arg("new_xyz_tensor"),
    +        py::arg("new_xyz_batch_cnt"), py::arg("xyz_tensor"),
    +        py::arg("xyz_batch_cnt"), py::arg("idx_tensor"), py::arg("max_radius"),
    +        py::arg("nsample"));
    +  m.def("roi_align_rotated_forward", &roi_align_rotated_forward,
    +        "roi_align_rotated forward", py::arg("input"), py::arg("rois"),
    +        py::arg("output"), py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"), py::arg("sampling_ratio"), py::arg("aligned"),
    +        py::arg("clockwise"));
    +  m.def("roi_align_rotated_backward", &roi_align_rotated_backward,
    +        "roi_align_rotated backward", py::arg("rois"), py::arg("grad_input"),
    +        py::arg("grad_output"), py::arg("pooled_height"),
    +        py::arg("pooled_width"), py::arg("spatial_scale"),
    +        py::arg("sampling_ratio"), py::arg("aligned"), py::arg("clockwise"));
    +  m.def("dynamic_point_to_voxel_forward", &dynamic_point_to_voxel_forward,
    +        "dynamic_point_to_voxel_forward", py::arg("feats"), py::arg("coors"),
    +        py::arg("reduce_type"));
    +  m.def("dynamic_point_to_voxel_backward", &dynamic_point_to_voxel_backward,
    +        "dynamic_point_to_voxel_backward", py::arg("grad_feats"),
    +        py::arg("grad_reduced_feats"), py::arg("feats"),
    +        py::arg("reduced_feats"), py::arg("coors_idx"), py::arg("reduce_count"),
    +        py::arg("reduce_type"));
    +  m.def("hard_voxelize_forward", &hard_voxelize_forward,
    +        "hard_voxelize_forward", py::arg("points"), py::arg("voxel_size"),
    +        py::arg("coors_range"), py::arg("voxels"), py::arg("coors"),
    +        py::arg("num_points_per_voxel"), py::arg("voxel_num"),
    +        py::arg("max_points"), py::arg("max_voxels"), py::arg("NDim"),
    +        py::arg("deterministic"));
    +  m.def("dynamic_voxelize_forward", &dynamic_voxelize_forward,
    +        "dynamic_voxelize_forward", py::arg("points"), py::arg("voxel_size"),
    +        py::arg("coors_range"), py::arg("coors"), py::arg("NDim"));
    +  m.def("ms_deform_attn_forward", &ms_deform_attn_forward,
    +        "forward function of multi-scale deformable attention",
    +        py::arg("value"), py::arg("value_spatial_shapes"),
    +        py::arg("value_level_start_index"), py::arg("sampling_locations"),
    +        py::arg("attention_weights"), py::arg("im2col_step"));
    +  m.def("ms_deform_attn_backward", &ms_deform_attn_backward,
    +        "backward function of multi-scale deformable attention",
    +        py::arg("value"), py::arg("value_spatial_shapes"),
    +        py::arg("value_level_start_index"), py::arg("sampling_locations"),
    +        py::arg("attention_weights"), py::arg("grad_output"),
    +        py::arg("grad_value"), py::arg("grad_sampling_loc"),
    +        py::arg("grad_attn_weight"), py::arg("im2col_step"));
    +  m.def("border_align_forward", &border_align_forward,
    +        "forward function of border_align", py::arg("input"), py::arg("boxes"),
    +        py::arg("output"), py::arg("argmax_idx"), py::arg("pool_size"));
    +  m.def("border_align_backward", &border_align_backward,
    +        "backward function of border_align", py::arg("grad_output"),
    +        py::arg("boxes"), py::arg("argmax_idx"), py::arg("grad_input"),
    +        py::arg("pool_size"));
    +  m.def("correlation_forward", &correlation_forward, "Correlation forward",
    +        py::arg("input1"), py::arg("input2"), py::arg("output"), py::arg("kH"),
    +        py::arg("kW"), py::arg("patchH"), py::arg("patchW"), py::arg("padH"),
    +        py::arg("padW"), py::arg("dilationH"), py::arg("dilationW"),
    +        py::arg("dilation_patchH"), py::arg("dilation_patchW"), py::arg("dH"),
    +        py::arg("dW"));
    +  m.def("correlation_backward", &correlation_backward, "Correlation backward",
    +        py::arg("grad_output"), py::arg("input1"), py::arg("input2"),
    +        py::arg("grad_input1"), py::arg("grad_input2"), py::arg("kH"),
    +        py::arg("kW"), py::arg("patchH"), py::arg("patchW"), py::arg("padH"),
    +        py::arg("padW"), py::arg("dilationH"), py::arg("dilationW"),
    +        py::arg("dilation_patchH"), py::arg("dilation_patchW"), py::arg("dH"),
    +        py::arg("dW"));
    +  m.def("points_in_boxes_cpu_forward", &points_in_boxes_cpu_forward,
    +        "points_in_boxes_cpu_forward", py::arg("boxes_tensor"),
    +        py::arg("pts_tensor"), py::arg("pts_indices_tensor"));
    +  m.def("points_in_boxes_part_forward", &points_in_boxes_part_forward,
    +        "points_in_boxes_part_forward", py::arg("boxes_tensor"),
    +        py::arg("pts_tensor"), py::arg("box_idx_of_points_tensor"));
    +  m.def("points_in_boxes_all_forward", &points_in_boxes_all_forward,
    +        "points_in_boxes_all_forward", py::arg("boxes_tensor"),
    +        py::arg("pts_tensor"), py::arg("box_idx_of_points_tensor"));
    +  m.def("roiaware_pool3d_forward", &roiaware_pool3d_forward,
    +        "roiaware_pool3d_forward", py::arg("rois"), py::arg("pts"),
    +        py::arg("pts_feature"), py::arg("argmax"), py::arg("pts_idx_of_voxels"),
    +        py::arg("pooled_features"), py::arg("pool_method"));
    +  m.def("roiaware_pool3d_backward", &roiaware_pool3d_backward,
    +        "roiaware_pool3d_backward", py::arg("pts_idx_of_voxels"),
    +        py::arg("argmax"), py::arg("grad_out"), py::arg("grad_in"),
    +        py::arg("pool_method"));
    +  m.def("rotated_feature_align_forward", &rotated_feature_align_forward,
    +        "Feature Refine forward (CUDA)", py::arg("features"),
    +        py::arg("best_bboxes"), py::arg("output"), py::arg("spatial_scale"),
    +        py::arg("points"));
    +  m.def("rotated_feature_align_backward", &rotated_feature_align_backward,
    +        "Feature Refine backward (CUDA)", py::arg("top_grad"),
    +        py::arg("best_bboxes"), py::arg("bottom_grad"),
    +        py::arg("spatial_scale"), py::arg("points"));
    +  m.def("riroi_align_rotated_forward", &riroi_align_rotated_forward,
    +        "riroi_align_rotated forward", py::arg("features"), py::arg("rois"),
    +        py::arg("output"), py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"), py::arg("num_samples"),
    +        py::arg("num_orientations"), py::arg("clockwise"));
    +  m.def("riroi_align_rotated_backward", &riroi_align_rotated_backward,
    +        "riroi_align_rotated backward", py::arg("top_grad"), py::arg("rois"),
    +        py::arg("bottom_grad"), py::arg("pooled_height"),
    +        py::arg("pooled_width"), py::arg("spatial_scale"),
    +        py::arg("num_samples"), py::arg("num_orientations"),
    +        py::arg("clockwise"));
    +  m.def("points_in_polygons_forward", &points_in_polygons_forward,
    +        "points_in_polygons_forward", py::arg("points"), py::arg("polygons"),
    +        py::arg("output"));
    +  m.def("min_area_polygons", &min_area_polygons, "min_area_polygons",
    +        py::arg("pointsets"), py::arg("polygons"));
    +  m.def("active_rotated_filter_forward", &active_rotated_filter_forward,
    +        "active_rotated_filter_forward", py::arg("input"), py::arg("indices"),
    +        py::arg("output"));
    +  m.def("active_rotated_filter_backward", &active_rotated_filter_backward,
    +        "active_rotated_filter_backward", py::arg("grad_out"),
    +        py::arg("indices"), py::arg("grad_in"));
    +  m.def("convex_iou", &convex_iou, "convex_iou", py::arg("pointsets"),
    +        py::arg("polygons"), py::arg("ious"));
    +  m.def("convex_giou", &convex_giou, "convex_giou", py::arg("pointsets"),
    +        py::arg("polygons"), py::arg("output"));
    +  m.def("diff_iou_rotated_sort_vertices_forward",
    +        &diff_iou_rotated_sort_vertices_forward,
    +        "diff_iou_rotated_sort_vertices_forward", py::arg("vertices"),
    +        py::arg("mask"), py::arg("num_valid"));
    +  m.def("chamfer_distance_forward", &chamfer_distance_forward,
    +        "chamfer_distance_forward", py::arg("xyz1"), py::arg("xyz2"),
    +        py::arg("dist1"), py::arg("dist2"), py::arg("idx1"), py::arg("idx2"));
    +  m.def("chamfer_distance_backward", &chamfer_distance_backward,
    +        "chamfer_distance_backward", py::arg("xyz1"), py::arg("xyz2"),
    +        py::arg("idx1"), py::arg("idx2"), py::arg("graddist1"),
    +        py::arg("graddist2"), py::arg("gradxyz1"), py::arg("gradxyz2"));
    +  m.def("prroi_pool_forward", &prroi_pool_forward, "prroi_pool forward",
    +        py::arg("input"), py::arg("rois"), py::arg("output"),
    +        py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"));
    +  m.def("prroi_pool_backward", &prroi_pool_backward, "prroi_pool_backward",
    +        py::arg("grad_output"), py::arg("rois"), py::arg("grad_input"),
    +        py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"));
    +  m.def("prroi_pool_coor_backward", &prroi_pool_coor_backward,
    +        "prroi_pool_coor_backward", py::arg("output"), py::arg("grad_output"),
    +        py::arg("input"), py::arg("rois"), py::arg("grad_rois"),
    +        py::arg("pooled_height"), py::arg("pooled_width"),
    +        py::arg("spatial_scale"));
    +  m.def("box_iou_quadri", &box_iou_quadri, "IoU for quadrilateral boxes",
    +        py::arg("boxes1"), py::arg("boxes2"), py::arg("ious"),
    +        py::arg("mode_flag"), py::arg("aligned"));
    +  m.def("nms_quadri", &nms_quadri, "NMS for quadrilateral boxes",
    +        py::arg("dets"), py::arg("scores"), py::arg("order"),
    +        py::arg("dets_sorted"), py::arg("iou_threshold"),
    +        py::arg("multi_label"));
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/riroi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/riroi_align_rotated.cpp
    new file mode 100644
    index 000000000..81ffa9fd6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/riroi_align_rotated.cpp
    @@ -0,0 +1,42 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void riroi_align_rotated_forward_impl(Tensor features, Tensor rois,
    +                                      Tensor output, int pooled_height,
    +                                      int pooled_width, float spatial_scale,
    +                                      int num_samples, int num_orientations,
    +                                      bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(riroi_align_rotated_forward_impl, features, rois, output,
    +                       pooled_height, pooled_width, spatial_scale, num_samples,
    +                       num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                       Tensor bottom_grad, int pooled_height,
    +                                       int pooled_width, float spatial_scale,
    +                                       int num_samples, int num_orientations,
    +                                       bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(riroi_align_rotated_backward_impl, top_grad, rois,
    +                       bottom_grad, pooled_height, pooled_width, spatial_scale,
    +                       num_samples, num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_forward(Tensor features, Tensor rois, Tensor output,
    +                                 int pooled_height, int pooled_width,
    +                                 float spatial_scale, int num_samples,
    +                                 int num_orientations, bool clockwise) {
    +  riroi_align_rotated_forward_impl(features, rois, output, pooled_height,
    +                                   pooled_width, spatial_scale, num_samples,
    +                                   num_orientations, clockwise);
    +}
    +
    +void riroi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                  Tensor bottom_grad, int pooled_height,
    +                                  int pooled_width, float spatial_scale,
    +                                  int num_samples, int num_orientations,
    +                                  bool clockwise) {
    +  riroi_align_rotated_backward_impl(top_grad, rois, bottom_grad, pooled_height,
    +                                    pooled_width, spatial_scale, num_samples,
    +                                    num_orientations, clockwise);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align.cpp
    new file mode 100644
    index 000000000..6e7077397
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_align_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                            Tensor argmax_y, Tensor argmax_x,
    +                            int aligned_height, int aligned_width,
    +                            float spatial_scale, int sampling_ratio,
    +                            int pool_mode, bool aligned) {
    +  DISPATCH_DEVICE_IMPL(roi_align_forward_impl, input, rois, output, argmax_y,
    +                       argmax_x, aligned_height, aligned_width, spatial_scale,
    +                       sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                             Tensor argmax_x, Tensor grad_input,
    +                             int aligned_height, int aligned_width,
    +                             float spatial_scale, int sampling_ratio,
    +                             int pool_mode, bool aligned) {
    +  DISPATCH_DEVICE_IMPL(roi_align_backward_impl, grad_output, rois, argmax_y,
    +                       argmax_x, grad_input, aligned_height, aligned_width,
    +                       spatial_scale, sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_forward(Tensor input, Tensor rois, Tensor output,
    +                       Tensor argmax_y, Tensor argmax_x, int aligned_height,
    +                       int aligned_width, float spatial_scale,
    +                       int sampling_ratio, int pool_mode, bool aligned) {
    +  roi_align_forward_impl(input, rois, output, argmax_y, argmax_x,
    +                         aligned_height, aligned_width, spatial_scale,
    +                         sampling_ratio, pool_mode, aligned);
    +}
    +
    +void roi_align_backward(Tensor grad_output, Tensor rois, Tensor argmax_y,
    +                        Tensor argmax_x, Tensor grad_input, int aligned_height,
    +                        int aligned_width, float spatial_scale,
    +                        int sampling_ratio, int pool_mode, bool aligned) {
    +  roi_align_backward_impl(grad_output, rois, argmax_y, argmax_x, grad_input,
    +                          aligned_height, aligned_width, spatial_scale,
    +                          sampling_ratio, pool_mode, aligned);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align_rotated.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align_rotated.cpp
    new file mode 100644
    index 000000000..77ea5ce70
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_align_rotated.cpp
    @@ -0,0 +1,41 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_align_rotated_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                                    int aligned_height, int aligned_width,
    +                                    float spatial_scale, int sampling_ratio,
    +                                    bool aligned, bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(roi_align_rotated_forward_impl, input, rois, output,
    +                       aligned_height, aligned_width, spatial_scale,
    +                       sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward_impl(Tensor top_grad, Tensor rois,
    +                                     Tensor bottom_grad, int aligned_height,
    +                                     int aligned_width, float spatial_scale,
    +                                     int sampling_ratio, bool aligned,
    +                                     bool clockwise) {
    +  DISPATCH_DEVICE_IMPL(roi_align_rotated_backward_impl, top_grad, rois,
    +                       bottom_grad, aligned_height, aligned_width,
    +                       spatial_scale, sampling_ratio, aligned, clockwise);
    +}
    +
    +void roi_align_rotated_forward(Tensor input, Tensor rois, Tensor output,
    +                               int aligned_height, int aligned_width,
    +                               float spatial_scale, int sampling_ratio,
    +                               bool aligned, bool clockwise) {
    +  roi_align_rotated_forward_impl(input, rois, output, aligned_height,
    +                                 aligned_width, spatial_scale, sampling_ratio,
    +                                 aligned, clockwise);
    +}
    +
    +void roi_align_rotated_backward(Tensor top_grad, Tensor rois,
    +                                Tensor bottom_grad, int aligned_height,
    +                                int aligned_width, float spatial_scale,
    +                                int sampling_ratio, bool aligned,
    +                                bool clockwise) {
    +  roi_align_rotated_backward_impl(top_grad, rois, bottom_grad, aligned_height,
    +                                  aligned_width, spatial_scale, sampling_ratio,
    +                                  aligned, clockwise);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_pool.cpp
    new file mode 100644
    index 000000000..bba90b806
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roi_pool.cpp
    @@ -0,0 +1,31 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roi_pool_forward_impl(Tensor input, Tensor rois, Tensor output,
    +                           Tensor argmax, int pooled_height, int pooled_width,
    +                           float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(roi_pool_forward_impl, input, rois, output, argmax,
    +                       pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward_impl(Tensor grad_output, Tensor rois, Tensor argmax,
    +                            Tensor grad_input, int pooled_height,
    +                            int pooled_width, float spatial_scale) {
    +  DISPATCH_DEVICE_IMPL(roi_pool_backward_impl, grad_output, rois, argmax,
    +                       grad_input, pooled_height, pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_forward(Tensor input, Tensor rois, Tensor output, Tensor argmax,
    +                      int pooled_height, int pooled_width,
    +                      float spatial_scale) {
    +  roi_pool_forward_impl(input, rois, output, argmax, pooled_height,
    +                        pooled_width, spatial_scale);
    +}
    +
    +void roi_pool_backward(Tensor grad_output, Tensor rois, Tensor argmax,
    +                       Tensor grad_input, int pooled_height, int pooled_width,
    +                       float spatial_scale) {
    +  roi_pool_backward_impl(grad_output, rois, argmax, grad_input, pooled_height,
    +                         pooled_width, spatial_scale);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roiaware_pool3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roiaware_pool3d.cpp
    new file mode 100644
    index 000000000..6cf9cf094
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roiaware_pool3d.cpp
    @@ -0,0 +1,72 @@
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels,
    +                                  int max_pts_each_voxel, int out_x, int out_y,
    +                                  int out_z, const Tensor rois,
    +                                  const Tensor pts, const Tensor pts_feature,
    +                                  Tensor argmax, Tensor pts_idx_of_voxels,
    +                                  Tensor pooled_features, int pool_method) {
    +  DISPATCH_DEVICE_IMPL(roiaware_pool3d_forward_impl, boxes_num, pts_num,
    +                       channels, max_pts_each_voxel, out_x, out_y, out_z, rois,
    +                       pts, pts_feature, argmax, pts_idx_of_voxels,
    +                       pooled_features, pool_method);
    +}
    +
    +void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y,
    +                                   int out_z, int channels,
    +                                   int max_pts_each_voxel,
    +                                   const Tensor pts_idx_of_voxels,
    +                                   const Tensor argmax, const Tensor grad_out,
    +                                   Tensor grad_in, int pool_method) {
    +  DISPATCH_DEVICE_IMPL(roiaware_pool3d_backward_impl, boxes_num, out_x, out_y,
    +                       out_z, channels, max_pts_each_voxel, pts_idx_of_voxels,
    +                       argmax, grad_out, grad_in, pool_method);
    +}
    +
    +void roiaware_pool3d_forward(Tensor rois, Tensor pts, Tensor pts_feature,
    +                             Tensor argmax, Tensor pts_idx_of_voxels,
    +                             Tensor pooled_features, int pool_method) {
    +  // params rois: (N, 7) [x, y, z, x_size, y_size, z_size, ry] in LiDAR
    +  // coordinate
    +  // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate
    +  // params pts_feature: (npoints, C)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params pooled_features: (N, out_x, out_y, out_z, C)
    +  // params pool_method: 0: max_pool 1: avg_pool
    +  int boxes_num = rois.size(0);
    +  int pts_num = pts.size(0);
    +  int channels = pts_feature.size(1);
    +  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    +  int out_x = pts_idx_of_voxels.size(1);
    +  int out_y = pts_idx_of_voxels.size(2);
    +  int out_z = pts_idx_of_voxels.size(3);
    +  assert((out_x < 256) && (out_y < 256) &&
    +         (out_z < 256));  // we encode index with 8bit
    +
    +  roiaware_pool3d_forward_impl(boxes_num, pts_num, channels, max_pts_each_voxel,
    +                               out_x, out_y, out_z, rois, pts, pts_feature,
    +                               argmax, pts_idx_of_voxels, pooled_features,
    +                               pool_method);
    +}
    +
    +void roiaware_pool3d_backward(Tensor pts_idx_of_voxels, Tensor argmax,
    +                              Tensor grad_out, Tensor grad_in,
    +                              int pool_method) {
    +  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    +  // params argmax: (N, out_x, out_y, out_z, C)
    +  // params grad_out: (N, out_x, out_y, out_z, C)
    +  // params grad_in: (npoints, C), return value
    +  // params pool_method: 0: max_pool 1: avg_pool
    +  int boxes_num = pts_idx_of_voxels.size(0);
    +  int out_x = pts_idx_of_voxels.size(1);
    +  int out_y = pts_idx_of_voxels.size(2);
    +  int out_z = pts_idx_of_voxels.size(3);
    +  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    +  int channels = grad_out.size(4);
    +
    +  roiaware_pool3d_backward_impl(boxes_num, out_x, out_y, out_z, channels,
    +                                max_pts_each_voxel, pts_idx_of_voxels, argmax,
    +                                grad_out, grad_in, pool_method);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roipoint_pool3d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roipoint_pool3d.cpp
    new file mode 100644
    index 000000000..a10080b7c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/roipoint_pool3d.cpp
    @@ -0,0 +1,39 @@
    +/*
    +Modified from
    +https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d.cpp
    +Point cloud feature pooling
    +Written by Shaoshuai Shi
    +All Rights Reserved 2018.
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void roipoint_pool3d_forward_impl(int batch_size, int pts_num, int boxes_num,
    +                                  int feature_in_len, int sampled_pts_num,
    +                                  const Tensor xyz, const Tensor boxes3d,
    +                                  const Tensor pts_feature,
    +                                  Tensor pooled_features,
    +                                  Tensor pooled_empty_flag) {
    +  DISPATCH_DEVICE_IMPL(roipoint_pool3d_forward_impl, batch_size, pts_num,
    +                       boxes_num, feature_in_len, sampled_pts_num, xyz, boxes3d,
    +                       pts_feature, pooled_features, pooled_empty_flag);
    +}
    +
    +void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature,
    +                             Tensor pooled_features, Tensor pooled_empty_flag) {
    +  // params xyz: (B, N, 3)
    +  // params boxes3d: (B, M, 7)
    +  // params pts_feature: (B, N, C)
    +  // params pooled_features: (B, M, 512, 3+C)
    +  // params pooled_empty_flag: (B, M)
    +  int batch_size = xyz.size(0);
    +  int pts_num = xyz.size(1);
    +  int boxes_num = boxes3d.size(1);
    +  int feature_in_len = pts_feature.size(2);
    +  int sampled_pts_num = pooled_features.size(2);
    +
    +  roipoint_pool3d_forward_impl(batch_size, pts_num, boxes_num, feature_in_len,
    +                               sampled_pts_num, xyz, boxes3d, pts_feature,
    +                               pooled_features, pooled_empty_flag);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/rotated_feature_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/rotated_feature_align.cpp
    new file mode 100644
    index 000000000..71fe0c9a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/rotated_feature_align.cpp
    @@ -0,0 +1,39 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +// Modified from
    +// https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection/blob/master/mmdet/ops/fr/src/feature_refine_cuda.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void rotated_feature_align_forward_impl(const Tensor features,
    +                                        const Tensor best_bboxes,
    +                                        const float spatial_scale,
    +                                        const int points, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(rotated_feature_align_forward_impl, features,
    +                       best_bboxes, spatial_scale, points, output);
    +}
    +
    +void rotated_feature_align_backward_impl(const Tensor top_grad,
    +                                         const Tensor best_bboxes,
    +                                         const float spatial_scale,
    +                                         const int points, Tensor bottom_grad) {
    +  DISPATCH_DEVICE_IMPL(rotated_feature_align_backward_impl, top_grad,
    +                       best_bboxes, spatial_scale, points, bottom_grad);
    +}
    +
    +void rotated_feature_align_forward(const Tensor features,
    +                                   const Tensor best_bboxes, Tensor output,
    +                                   const float spatial_scale,
    +                                   const int points) {
    +  rotated_feature_align_forward_impl(features, best_bboxes, spatial_scale,
    +                                     points, output);
    +}
    +
    +void rotated_feature_align_backward(const Tensor top_grad,
    +                                    const Tensor best_bboxes,
    +                                    Tensor bottom_grad,
    +                                    const float spatial_scale,
    +                                    const int points) {
    +  rotated_feature_align_backward_impl(top_grad, best_bboxes, spatial_scale,
    +                                      points, bottom_grad);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/scatter_points.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/scatter_points.cpp
    new file mode 100644
    index 000000000..0de8ebf64
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/scatter_points.cpp
    @@ -0,0 +1,53 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;
    +
    +std::vector dynamic_point_to_voxel_forward_impl(
    +    const torch::Tensor &feats, const torch::Tensor &coors,
    +    const reduce_t reduce_type) {
    +  return DISPATCH_DEVICE_IMPL(dynamic_point_to_voxel_forward_impl, feats, coors,
    +                              reduce_type);
    +}
    +
    +void dynamic_point_to_voxel_backward_impl(
    +    torch::Tensor &grad_feats, const torch::Tensor &grad_reduced_feats,
    +    const torch::Tensor &feats, const torch::Tensor &reduced_feats,
    +    const torch::Tensor &coors_idx, const torch::Tensor &reduce_count,
    +    const reduce_t reduce_type) {
    +  DISPATCH_DEVICE_IMPL(dynamic_point_to_voxel_backward_impl, grad_feats,
    +                       grad_reduced_feats, feats, reduced_feats, coors_idx,
    +                       reduce_count, reduce_type);
    +}
    +
    +inline reduce_t convert_reduce_type(const std::string &reduce_type) {
    +  if (reduce_type == "max")
    +    return reduce_t::MAX;
    +  else if (reduce_type == "sum")
    +    return reduce_t::SUM;
    +  else if (reduce_type == "mean")
    +    return reduce_t::MEAN;
    +  else
    +    TORCH_CHECK(false, "do not support reduce type " + reduce_type)
    +  return reduce_t::SUM;
    +}
    +
    +std::vector dynamic_point_to_voxel_forward(
    +    const torch::Tensor &feats, const torch::Tensor &coors,
    +    const std::string &reduce_type) {
    +  return dynamic_point_to_voxel_forward_impl(feats, coors,
    +                                             convert_reduce_type(reduce_type));
    +}
    +
    +void dynamic_point_to_voxel_backward(torch::Tensor &grad_feats,
    +                                     const torch::Tensor &grad_reduced_feats,
    +                                     const torch::Tensor &feats,
    +                                     const torch::Tensor &reduced_feats,
    +                                     const torch::Tensor &coors_idx,
    +                                     const torch::Tensor &reduce_count,
    +                                     const std::string &reduce_type) {
    +  dynamic_point_to_voxel_backward_impl(grad_feats, grad_reduced_feats, feats,
    +                                       reduced_feats, coors_idx, reduce_count,
    +                                       convert_reduce_type(reduce_type));
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/sync_bn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/sync_bn.cpp
    new file mode 100644
    index 000000000..fd5a51327
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/sync_bn.cpp
    @@ -0,0 +1,69 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void sync_bn_forward_mean_impl(const Tensor input, Tensor mean) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_mean_impl, input, mean);
    +}
    +
    +void sync_bn_forward_var_impl(const Tensor input, const Tensor mean,
    +                              Tensor var) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_var_impl, input, mean, var);
    +}
    +
    +void sync_bn_forward_output_impl(const Tensor input, const Tensor mean,
    +                                 const Tensor var, Tensor running_mean,
    +                                 Tensor running_var, const Tensor weight,
    +                                 const Tensor bias, Tensor norm, Tensor std,
    +                                 Tensor output, float eps, float momentum,
    +                                 int group_size) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_forward_output_impl, input, mean, var,
    +                       running_mean, running_var, weight, bias, norm, std,
    +                       output, eps, momentum, group_size);
    +}
    +
    +void sync_bn_backward_param_impl(const Tensor grad_output, const Tensor norm,
    +                                 Tensor grad_weight, Tensor grad_bias) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_backward_param_impl, grad_output, norm,
    +                       grad_weight, grad_bias);
    +}
    +
    +void sync_bn_backward_data_impl(const Tensor grad_output, const Tensor weight,
    +                                const Tensor grad_weight,
    +                                const Tensor grad_bias, const Tensor norm,
    +                                const Tensor std, Tensor grad_input) {
    +  DISPATCH_DEVICE_IMPL(sync_bn_backward_data_impl, grad_output, weight,
    +                       grad_weight, grad_bias, norm, std, grad_input);
    +}
    +
    +void sync_bn_forward_mean(const Tensor input, Tensor mean) {
    +  sync_bn_forward_mean_impl(input, mean);
    +}
    +
    +void sync_bn_forward_var(const Tensor input, const Tensor mean, Tensor var) {
    +  sync_bn_forward_var_impl(input, mean, var);
    +}
    +
    +void sync_bn_forward_output(const Tensor input, const Tensor mean,
    +                            const Tensor var, const Tensor weight,
    +                            const Tensor bias, Tensor running_mean,
    +                            Tensor running_var, Tensor norm, Tensor std,
    +                            Tensor output, float eps, float momentum,
    +                            int group_size) {
    +  sync_bn_forward_output_impl(input, mean, var, running_mean, running_var,
    +                              weight, bias, norm, std, output, eps, momentum,
    +                              group_size);
    +}
    +
    +void sync_bn_backward_param(const Tensor grad_output, const Tensor norm,
    +                            Tensor grad_weight, Tensor grad_bias) {
    +  sync_bn_backward_param_impl(grad_output, norm, grad_weight, grad_bias);
    +}
    +
    +void sync_bn_backward_data(const Tensor grad_output, const Tensor weight,
    +                           const Tensor grad_weight, const Tensor grad_bias,
    +                           const Tensor norm, const Tensor std,
    +                           Tensor grad_input) {
    +  sync_bn_backward_data_impl(grad_output, weight, grad_weight, grad_bias, norm,
    +                             std, grad_input);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_interpolate.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_interpolate.cpp
    new file mode 100644
    index 000000000..1e0ec71bb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_interpolate.cpp
    @@ -0,0 +1,33 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void three_interpolate_forward_impl(int b, int c, int m, int n,
    +                                    const Tensor points, const Tensor idx,
    +                                    const Tensor weight, Tensor out) {
    +  DISPATCH_DEVICE_IMPL(three_interpolate_forward_impl, b, c, m, n, points, idx,
    +                       weight, out);
    +}
    +
    +void three_interpolate_backward_impl(int b, int c, int n, int m,
    +                                     const Tensor grad_out, const Tensor idx,
    +                                     const Tensor weight, Tensor grad_points) {
    +  DISPATCH_DEVICE_IMPL(three_interpolate_backward_impl, b, c, n, m, grad_out,
    +                       idx, weight, grad_points);
    +}
    +
    +void three_interpolate_forward(Tensor points_tensor, Tensor idx_tensor,
    +                               Tensor weight_tensor, Tensor out_tensor, int b,
    +                               int c, int m, int n) {
    +  three_interpolate_forward_impl(b, c, m, n, points_tensor, idx_tensor,
    +                                 weight_tensor, out_tensor);
    +}
    +
    +void three_interpolate_backward(Tensor grad_out_tensor, Tensor idx_tensor,
    +                                Tensor weight_tensor, Tensor grad_points_tensor,
    +                                int b, int c, int n, int m) {
    +  three_interpolate_backward_impl(b, c, n, m, grad_out_tensor, idx_tensor,
    +                                  weight_tensor, grad_points_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_nn.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_nn.cpp
    new file mode 100644
    index 000000000..b629200c0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/three_nn.cpp
    @@ -0,0 +1,18 @@
    +// Modified from
    +// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/interpolate.cpp
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void three_nn_forward_impl(int b, int n, int m, const Tensor unknown,
    +                           const Tensor known, Tensor dist2, Tensor idx) {
    +  DISPATCH_DEVICE_IMPL(three_nn_forward_impl, b, n, m, unknown, known, dist2,
    +                       idx);
    +}
    +
    +void three_nn_forward(Tensor unknown_tensor, Tensor known_tensor,
    +                      Tensor dist2_tensor, Tensor idx_tensor, int b, int n,
    +                      int m) {
    +  three_nn_forward_impl(b, n, m, unknown_tensor, known_tensor, dist2_tensor,
    +                        idx_tensor);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/tin_shift.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/tin_shift.cpp
    new file mode 100644
    index 000000000..b03f58754
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/tin_shift.cpp
    @@ -0,0 +1,20 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +void tin_shift_forward_impl(Tensor input, Tensor shift, Tensor output) {
    +  DISPATCH_DEVICE_IMPL(tin_shift_forward_impl, input, shift, output);
    +}
    +
    +void tin_shift_backward_impl(Tensor grad_output, Tensor shift,
    +                             Tensor grad_input) {
    +  DISPATCH_DEVICE_IMPL(tin_shift_backward_impl, grad_output, shift, grad_input);
    +}
    +
    +void tin_shift_forward(Tensor input, Tensor shift, Tensor output) {
    +  tin_shift_forward_impl(input, shift, output);
    +}
    +
    +void tin_shift_backward(Tensor grad_output, Tensor shift, Tensor grad_input) {
    +  tin_shift_backward_impl(grad_output, shift, grad_input);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/upfirdn2d.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/upfirdn2d.cpp
    new file mode 100644
    index 000000000..dd325bd78
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/upfirdn2d.cpp
    @@ -0,0 +1,118 @@
    +// Modified from
    +// https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.cpp
    +
    +/*
    +Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +
    +NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +Augmentation (ADA)
    +=======================================================================
    +
    +1. Definitions
    +
    +"Licensor" means any person or entity that distributes its Work.
    +
    +"Software" means the original work of authorship made available under
    +this License.
    +
    +"Work" means the Software and any additions to or derivative works of
    +the Software that are made available under this License.
    +
    +The terms "reproduce," "reproduction," "derivative works," and
    +"distribution" have the meaning as provided under U.S. copyright law;
    +provided, however, that for the purposes of this License, derivative
    +works shall not include works that remain separable from, or merely
    +link (or bind by name) to the interfaces of, the Work.
    +
    +Works, including the Software, are "made available" under this License
    +by including in or with the Work either (a) a copyright notice
    +referencing the applicability of this License to the Work, or (b) a
    +copy of this License.
    +
    +2. License Grants
    +
    +    2.1 Copyright Grant. Subject to the terms and conditions of this
    +    License, each Licensor grants to you a perpetual, worldwide,
    +    non-exclusive, royalty-free, copyright license to reproduce,
    +    prepare derivative works of, publicly display, publicly perform,
    +    sublicense and distribute its Work and any resulting derivative
    +    works in any form.
    +
    +3. Limitations
    +
    +    3.1 Redistribution. You may reproduce or distribute the Work only
    +    if (a) you do so under this License, (b) you include a complete
    +    copy of this License with your distribution, and (c) you retain
    +    without modification any copyright, patent, trademark, or
    +    attribution notices that are present in the Work.
    +
    +    3.2 Derivative Works. You may specify that additional or different
    +    terms apply to the use, reproduction, and distribution of your
    +    derivative works of the Work ("Your Terms") only if (a) Your Terms
    +    provide that the use limitation in Section 3.3 applies to your
    +    derivative works, and (b) you identify the specific derivative
    +    works that are subject to Your Terms. Notwithstanding Your Terms,
    +    this License (including the redistribution requirements in Section
    +    3.1) will continue to apply to the Work itself.
    +
    +    3.3 Use Limitation. The Work and any derivative works thereof only
    +    may be used or intended for use non-commercially. Notwithstanding
    +    the foregoing, NVIDIA and its affiliates may use the Work and any
    +    derivative works commercially. As used herein, "non-commercially"
    +    means for research or evaluation purposes only.
    +
    +    3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +    against any Licensor (including any claim, cross-claim or
    +    counterclaim in a lawsuit) to enforce any patents that you allege
    +    are infringed by any Work, then your rights under this License from
    +    such Licensor (including the grant in Section 2.1) will terminate
    +    immediately.
    +
    +    3.5 Trademarks. This License does not grant any rights to use any
    +    Licensor’s or its affiliates’ names, logos, or trademarks, except
    +    as necessary to reproduce the notices described in this License.
    +
    +    3.6 Termination. If you violate any term of this License, then your
    +    rights under this License (including the grant in Section 2.1) will
    +    terminate immediately.
    +
    +4. Disclaimer of Warranty.
    +
    +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +THIS LICENSE.
    +
    +5. Limitation of Liability.
    +
    +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +THE POSSIBILITY OF SUCH DAMAGES.
    +
    +=======================================================================
    +*/
    +
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +torch::Tensor upfirdn2d_op_impl(const torch::Tensor& input,
    +                                const torch::Tensor& kernel, int up_x, int up_y,
    +                                int down_x, int down_y, int pad_x0, int pad_x1,
    +                                int pad_y0, int pad_y1) {
    +  return DISPATCH_DEVICE_IMPL(upfirdn2d_op_impl, input, kernel, up_x, up_y,
    +                              down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
    +}
    +
    +torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
    +                        int up_x, int up_y, int down_x, int down_y, int pad_x0,
    +                        int pad_x1, int pad_y0, int pad_y1) {
    +  return upfirdn2d_op_impl(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
    +                           pad_x1, pad_y0, pad_y1);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/voxelization.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/voxelization.cpp
    new file mode 100644
    index 000000000..7946be617
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/pytorch/voxelization.cpp
    @@ -0,0 +1,74 @@
    +// Copyright (c) OpenMMLab. All rights reserved.
    +#include "pytorch_cpp_helper.hpp"
    +#include "pytorch_device_registry.hpp"
    +
    +int hard_voxelize_forward_impl(const at::Tensor &points, at::Tensor &voxels,
    +                               at::Tensor &coors,
    +                               at::Tensor &num_points_per_voxel,
    +                               const std::vector voxel_size,
    +                               const std::vector coors_range,
    +                               const int max_points, const int max_voxels,
    +                               const int NDim = 3) {
    +  return DISPATCH_DEVICE_IMPL(hard_voxelize_forward_impl, points, voxels, coors,
    +                              num_points_per_voxel, voxel_size, coors_range,
    +                              max_points, max_voxels, NDim);
    +}
    +
    +int nondeterministic_hard_voxelize_forward_impl(
    +    const at::Tensor &points, at::Tensor &voxels, at::Tensor &coors,
    +    at::Tensor &num_points_per_voxel, const std::vector voxel_size,
    +    const std::vector coors_range, const int max_points,
    +    const int max_voxels, const int NDim = 3) {
    +  return DISPATCH_DEVICE_IMPL(nondeterministic_hard_voxelize_forward_impl,
    +                              points, voxels, coors, num_points_per_voxel,
    +                              voxel_size, coors_range, max_points, max_voxels,
    +                              NDim);
    +}
    +
    +void dynamic_voxelize_forward_impl(const at::Tensor &points, at::Tensor &coors,
    +                                   const std::vector voxel_size,
    +                                   const std::vector coors_range,
    +                                   const int NDim = 3) {
    +  DISPATCH_DEVICE_IMPL(dynamic_voxelize_forward_impl, points, coors, voxel_size,
    +                       coors_range, NDim);
    +}
    +
    +void hard_voxelize_forward(const at::Tensor &points,
    +                           const at::Tensor &voxel_size,
    +                           const at::Tensor &coors_range, at::Tensor &voxels,
    +                           at::Tensor &coors, at::Tensor &num_points_per_voxel,
    +                           at::Tensor &voxel_num, const int max_points,
    +                           const int max_voxels, const int NDim = 3,
    +                           const bool deterministic = true) {
    +  int64_t *voxel_num_data = voxel_num.data_ptr();
    +  std::vector voxel_size_v(
    +      voxel_size.data_ptr(),
    +      voxel_size.data_ptr() + voxel_size.numel());
    +  std::vector coors_range_v(
    +      coors_range.data_ptr(),
    +      coors_range.data_ptr() + coors_range.numel());
    +
    +  if (deterministic) {
    +    *voxel_num_data = hard_voxelize_forward_impl(
    +        points, voxels, coors, num_points_per_voxel, voxel_size_v,
    +        coors_range_v, max_points, max_voxels, NDim);
    +  } else {
    +    *voxel_num_data = nondeterministic_hard_voxelize_forward_impl(
    +        points, voxels, coors, num_points_per_voxel, voxel_size_v,
    +        coors_range_v, max_points, max_voxels, NDim);
    +  }
    +}
    +
    +void dynamic_voxelize_forward(const at::Tensor &points,
    +                              const at::Tensor &voxel_size,
    +                              const at::Tensor &coors_range, at::Tensor &coors,
    +                              const int NDim = 3) {
    +  std::vector voxel_size_v(
    +      voxel_size.data_ptr(),
    +      voxel_size.data_ptr() + voxel_size.numel());
    +  std::vector coors_range_v(
    +      coors_range.data_ptr(),
    +      coors_range.data_ptr() + coors_range.numel());
    +  dynamic_voxelize_forward_impl(points, coors, voxel_size_v, coors_range_v,
    +                                NDim);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool.cpp
    new file mode 100644
    index 000000000..d405a7d6b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool.cpp
    @@ -0,0 +1,217 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_corner_pool.hpp"
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +void CornerPoolForwardLauncher_float(const float *input, float *output,
    +                                     const int batch_size, const int channels,
    +                                     const int height, const int width,
    +                                     const int pool_type, cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *CORNER_POOL_PLUGIN_NAME{"MMCVCornerPool"};
    +}  // namespace
    +
    +CornerPoolPluginDynamic::CornerPoolPluginDynamic(const std::string &name,
    +                                                 TRT_CORNER_POOL_TYPE poolType)
    +    : mLayerName(name), mPoolType(poolType) {}
    +
    +CornerPoolPluginDynamic::CornerPoolPluginDynamic(const std::string name,
    +                                                 const void *data,
    +                                                 size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mPoolType);
    +}
    +
    +CornerPoolPluginDynamic::~CornerPoolPluginDynamic() {}
    +
    +nvinfer1::IPluginV2DynamicExt *CornerPoolPluginDynamic::clone() const {
    +  CornerPoolPluginDynamic *plugin =
    +      new CornerPoolPluginDynamic(mLayerName, mPoolType);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs CornerPoolPluginDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  return inputs[0];
    +}
    +
    +bool CornerPoolPluginDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  switch (pos) {
    +    // input[0]
    +    case 0:
    +      return inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +             inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +    // output[0]
    +    case 1:
    +      return inOut[pos].type == inOut[0].type &&
    +             inOut[pos].format == inOut[0].format;
    +    default:
    +      return false;
    +  }
    +}
    +
    +void CornerPoolPluginDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t CornerPoolPluginDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
    +}
    +
    +int CornerPoolPluginDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc *inputDesc,
    +    const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
    +    void *const *outputs, void *workSpace, cudaStream_t stream) {
    +  const void *input = inputs[0];
    +  void *output_value = outputs[0];
    +
    +  const int batch_size = inputDesc[0].dims.d[0];
    +  const int channels = inputDesc[0].dims.d[1];
    +  const int height = inputDesc[0].dims.d[2];
    +  const int width = inputDesc[0].dims.d[3];
    +
    +  CornerPoolForwardLauncher_float((float *)input, (float *)output_value,
    +                                  batch_size, channels, height, width,
    +                                  int(mPoolType), stream);
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType CornerPoolPluginDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *CornerPoolPluginDynamic::getPluginType() const {
    +  switch (mPoolType) {
    +    case TRT_CORNER_POOL_TYPE::TRT_TOP_POOL:
    +    case TRT_CORNER_POOL_TYPE::TRT_BOTTOM_POOL:
    +    case TRT_CORNER_POOL_TYPE::TRT_LEFT_POOL:
    +    case TRT_CORNER_POOL_TYPE::TRT_RIGHT_POOL:
    +      return CORNER_POOL_PLUGIN_NAME;
    +
    +    default:
    +      return "UnknownpoolType";
    +  }
    +}
    +
    +const char *CornerPoolPluginDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int CornerPoolPluginDynamic::getNbOutputs() const { return 1; }
    +
    +int CornerPoolPluginDynamic::initialize() { return 0; }
    +
    +void CornerPoolPluginDynamic::terminate() {}
    +
    +size_t CornerPoolPluginDynamic::getSerializationSize() const {
    +  return sizeof(mPoolType);
    +}
    +
    +void CornerPoolPluginDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mPoolType);
    +}
    +
    +void CornerPoolPluginDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void CornerPoolPluginDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *CornerPoolPluginDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +CornerPoolPluginDynamicCreator::CornerPoolPluginDynamicCreator() {
    +  mPluginAttributes.clear();
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("mode"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *CornerPoolPluginDynamicCreator::getPluginName() const {
    +  return CORNER_POOL_PLUGIN_NAME;
    +}
    +
    +const char *CornerPoolPluginDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +CornerPoolPluginDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *CornerPoolPluginDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  TRT_CORNER_POOL_TYPE poolType;
    +  int poolMode = -1;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("mode") == 0) {
    +      poolMode = static_cast(fc->fields[i].data)[0];
    +    }
    +  }
    +
    +  assert(poolMode >= 0 && poolMode <= 3);
    +  switch (poolMode) {
    +    case 0:
    +      poolType = TRT_CORNER_POOL_TYPE::TRT_TOP_POOL;
    +      break;
    +    case 1:
    +      poolType = TRT_CORNER_POOL_TYPE::TRT_BOTTOM_POOL;
    +      break;
    +    case 2:
    +      poolType = TRT_CORNER_POOL_TYPE::TRT_LEFT_POOL;
    +      break;
    +    case 3:
    +      poolType = TRT_CORNER_POOL_TYPE::TRT_RIGHT_POOL;
    +      break;
    +
    +    default:
    +      break;
    +  }
    +
    +  CornerPoolPluginDynamic *plugin = new CornerPoolPluginDynamic(name, poolType);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *CornerPoolPluginDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  // This object will be deleted when the network is destroyed, which will
    +  // call FCPluginDynamic::destroy()
    +  auto plugin = new CornerPoolPluginDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void CornerPoolPluginDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *CornerPoolPluginDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool_kernel.cu
    new file mode 100644
    index 000000000..ecf9ee6e8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_corner_pool_kernel.cu
    @@ -0,0 +1,110 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "common_cuda_helper.hpp"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +template 
    +__global__ void top_bottom_pool_kernel(const scalar_t *input, scalar_t *output,
    +                                       const int batch_size, const int channels,
    +                                       const int height, const int width,
    +                                       const int pool_type) {
    +  const int nthreads = batch_size * channels * width;
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int n_idx = index / (channels * width);  // batch
    +    int w_idx = index % width;               // width
    +    int c_idx = (index / width) % channels;  // channels
    +    int offset_n = n_idx * channels * width * height;
    +    int offset_n_c = offset_n + c_idx * width * height;
    +    int direction = -1;            // in [-1, 1], default for TopPool
    +    int index_start = height - 2;  // default for TopPool
    +    // pool_type in [0, 1]
    +    if (pool_type == 0) {
    +      // TopPool
    +      // directly copy the most bottom value from input to output
    +      output[offset_n_c + (height - 1) * width + w_idx] =
    +          input[offset_n_c + (height - 1) * width + w_idx];
    +    } else {
    +      // BottomPool
    +      // directly copy the most top value from input to output
    +      output[offset_n_c + w_idx] = input[offset_n_c + w_idx];
    +      index_start = 1;
    +      direction = 1;
    +    }
    +    // do pool
    +    for (int h = index_start; h >= 0 && h < height; h += direction) {
    +      output[offset_n_c + h * width + w_idx] =
    +          max(output[offset_n_c + (h - direction) * width + w_idx],
    +              input[offset_n_c + h * width + w_idx]);
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void left_right_pool_kernel(const scalar_t *input, scalar_t *output,
    +                                       const int batch_size, const int channels,
    +                                       const int height, const int width,
    +                                       const int pool_type) {
    +  const int nthreads = batch_size * channels * height;
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    int n_idx = index / (channels * height);  // batch
    +    int h_idx = index % height;               // height
    +    int c_idx = (index / height) % channels;  // channels
    +    int offset_n = n_idx * channels * width * height;
    +    int offset_n_c = offset_n + c_idx * width * height;
    +    int offset_n_c_h = offset_n_c + h_idx * width;
    +    int direction = -1;           // in [-1, 1], default for LeftPool
    +    int index_start = width - 2;  // default for LeftPool
    +    // pool_type in [2, 3]
    +    if (pool_type == 2) {
    +      // LeftPool
    +      // directly copy the most right value from input to output
    +      output[offset_n_c_h + width - 1] = input[offset_n_c_h + width - 1];
    +    } else {
    +      // RightPool
    +      // directly copy the most left value from input to output
    +      output[offset_n_c_h] = input[offset_n_c_h];
    +      index_start = 1;
    +      direction = 1;
    +    }
    +    // do pool
    +    for (int w = index_start; w >= 0 && w < width; w += direction) {
    +      output[offset_n_c_h + w] =
    +          max(output[offset_n_c_h + w - direction], input[offset_n_c_h + w]);
    +    }
    +  }
    +}
    +
    +template 
    +void CornerPoolForwardLauncher(const scalar_t *input, scalar_t *output,
    +                               const int batch_size, const int channels,
    +                               const int height, const int width,
    +                               const int pool_type, cudaStream_t stream) {
    +  int nthreads = -1, col_block = -1;
    +
    +  switch (pool_type) {
    +    case 0:
    +    case 1:
    +      nthreads = batch_size * channels * width;
    +      col_block = GET_BLOCKS(nthreads, THREADS_PER_BLOCK);
    +      top_bottom_pool_kernel
    +          <<>>(
    +              input, output, batch_size, channels, height, width, pool_type);
    +      break;
    +    case 2:
    +    case 3:
    +      nthreads = batch_size * channels * height;
    +      col_block = GET_BLOCKS(nthreads, THREADS_PER_BLOCK);
    +      left_right_pool_kernel
    +          <<>>(
    +              input, output, batch_size, channels, height, width, pool_type);
    +      break;
    +  }
    +}
    +
    +void CornerPoolForwardLauncher_float(const float *input, float *output,
    +                                     const int batch_size, const int channels,
    +                                     const int height, const int width,
    +                                     const int pool_type, cudaStream_t stream) {
    +  CornerPoolForwardLauncher(input, output, batch_size, channels, height,
    +                                   width, pool_type, stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu
    new file mode 100644
    index 000000000..f76c5f229
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu
    @@ -0,0 +1,91 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +using mmcv::TensorDesc;
    +
    +template 
    +__global__ void copy_permute_kernel(scalar_t *dst, const scalar_t *src, int n,
    +                                    TensorDesc ts_src_stride,
    +                                    TensorDesc ts_dst_stride,
    +                                    TensorDesc ts_permute) {
    +  const int src_dim = ts_src_stride.dim;
    +  int *src_stride = &(ts_src_stride.stride[0]);
    +  int *dst_stride = &(ts_dst_stride.stride[0]);
    +  int *permute = &(ts_permute.shape[0]);
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    size_t dst_index = index;
    +    size_t src_index = 0;
    +    for (int i = 0; i < src_dim; ++i) {
    +      int dim_index = dst_index / dst_stride[i];
    +      dst_index = dst_index % dst_stride[i];
    +      src_index += dim_index * src_stride[permute[i]];
    +    }
    +    dst[index] = src[src_index];
    +  }
    +}
    +
    +template 
    +void memcpyPermute(scalar_t *dst, const scalar_t *src, int *src_size,
    +                   int *permute, int src_dim, cudaStream_t stream) {
    +  size_t copy_size = 1;
    +  TensorDesc ts_permute;
    +  memcpy(&(ts_permute.shape[0]), permute, src_dim * sizeof(int));
    +
    +  TensorDesc ts_src_stride;
    +  TensorDesc ts_dst_stride;
    +  ts_src_stride.dim = src_dim;
    +  ts_dst_stride.dim = src_dim;
    +  int *src_stride = &(ts_src_stride.stride[0]);
    +  int *dst_stride = &(ts_dst_stride.stride[0]);
    +  int *dst_size = &(ts_dst_stride.shape[0]);
    +  src_stride[src_dim - 1] = 1;
    +  dst_stride[src_dim - 1] = 1;
    +
    +  for (int i = src_dim - 1; i >= 0; --i) {
    +    dst_size[i] = src_size[permute[i]];
    +    if (i < src_dim - 1) {
    +      src_stride[i] = src_stride[i + 1] * src_size[i + 1];
    +    }
    +  }
    +
    +  for (int i = src_dim - 1; i >= 0; --i) {
    +    copy_size *= dst_size[i];
    +    if (i < src_dim - 1) {
    +      dst_stride[i] = dst_stride[i + 1] * dst_size[i + 1];
    +    }
    +  }
    +
    +  copy_permute_kernel
    +      <<>>(
    +          dst, src, copy_size, ts_src_stride, ts_dst_stride, ts_permute);
    +}
    +
    +template void memcpyPermute(float *dst, const float *src, int *src_size,
    +                                   int *permute, int src_dim,
    +                                   cudaStream_t stream);
    +
    +template <>
    +cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
    +                                     cublasOperation_t transa,
    +                                     cublasOperation_t transb, int m, int n,
    +                                     int k, const float *alpha, const float *A,
    +                                     int lda, const float *B, int ldb,
    +                                     const float *beta, float *C, int ldc) {
    +  return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
    +                     beta, C, ldc);
    +}
    +
    +template <>
    +cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
    +                                    cublasOperation_t transa,
    +                                    cublasOperation_t transb, int m, int n,
    +                                    int k, const half *alpha, const half *A,
    +                                    int lda, const half *B, int ldb,
    +                                    const half *beta, half *C, int ldc) {
    +  return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
    +                     beta, C, ldc);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin.cpp
    new file mode 100644
    index 000000000..40bebbca2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin.cpp
    @@ -0,0 +1,242 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_cummaxmin.hpp"
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +void CumMaxMinForwardLauncher_float(const float *input, float *output_value,
    +                                    int *output_index, const int *dims,
    +                                    int nbDims, int cum_dim, int cum_type,
    +                                    cudaStream_t stream);
    +
    +void CumMaxMinForwardLauncher_int32(const int *input, int *output_value,
    +                                    int *output_index, const int *dims,
    +                                    int nbDims, int cum_dim, int cum_type,
    +                                    cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *CUMMAXMIN_PLUGIN_NAME{"cummaxmin"};
    +static const char *CUMMAX_PLUGIN_NAME{"cummax"};
    +static const char *CUMMIN_PLUGIN_NAME{"cummin"};
    +}  // namespace
    +
    +CumMaxMinPluginDynamic::CumMaxMinPluginDynamic(const std::string &name, int dim,
    +                                               TRT_CUMCMPTYPE cumType)
    +    : mLayerName(name), mDim(dim), mCumType(cumType) {}
    +
    +CumMaxMinPluginDynamic::CumMaxMinPluginDynamic(const std::string name,
    +                                               const void *data, size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mDim);
    +  deserialize_value(&data, &length, &mCumType);
    +}
    +
    +CumMaxMinPluginDynamic::~CumMaxMinPluginDynamic() {}
    +
    +nvinfer1::IPluginV2DynamicExt *CumMaxMinPluginDynamic::clone() const {
    +  CumMaxMinPluginDynamic *plugin =
    +      new CumMaxMinPluginDynamic(mLayerName, mDim, mCumType);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs CumMaxMinPluginDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  return inputs[0];
    +}
    +
    +bool CumMaxMinPluginDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  switch (pos) {
    +    // input[0]
    +    case 0:
    +      return (inOut[pos].type == nvinfer1::DataType::kFLOAT ||
    +              inOut[pos].type == nvinfer1::DataType::kINT32) &&
    +             inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +    // output[0]
    +    case 1:
    +      return inOut[pos].type == inOut[0].type &&
    +             inOut[pos].format == inOut[0].format;
    +    // output[1]
    +    case 2:
    +      return inOut[pos].type == nvinfer1::DataType::kINT32 &&
    +             inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +    default:
    +      return false;
    +  }
    +}
    +
    +void CumMaxMinPluginDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t CumMaxMinPluginDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
    +}
    +
    +int CumMaxMinPluginDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc *inputDesc,
    +    const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
    +    void *const *outputs, void *workSpace, cudaStream_t stream) {
    +  const void *input = inputs[0];
    +  void *output_value = outputs[0];
    +  int *output_index = (int *)outputs[1];
    +
    +  const int *dims = &(inputDesc[0].dims.d[0]);
    +  int nbDims = inputDesc[0].dims.nbDims;
    +
    +  switch (inputDesc[0].type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      CumMaxMinForwardLauncher_float((float *)input, (float *)output_value,
    +                                     output_index, dims, nbDims, mDim,
    +                                     int(mCumType), stream);
    +      break;
    +    case nvinfer1::DataType::kINT32:
    +      CumMaxMinForwardLauncher_int32((int *)input, (int *)output_value,
    +                                     output_index, dims, nbDims, mDim,
    +                                     int(mCumType), stream);
    +      break;
    +    default:
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType CumMaxMinPluginDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  switch (index) {
    +    case 0:
    +      return inputTypes[0];
    +    case 1:
    +      return nvinfer1::DataType::kINT32;
    +    default:
    +      break;
    +  }
    +}
    +
    +// IPluginV2 Methods
    +const char *CumMaxMinPluginDynamic::getPluginType() const {
    +  switch (mCumType) {
    +    case TRT_CUMCMPTYPE::TRT_CUMMAX:
    +      return CUMMAX_PLUGIN_NAME;
    +    case TRT_CUMCMPTYPE::TRT_CUMMIN:
    +      return CUMMIN_PLUGIN_NAME;
    +    default:
    +      return "UnknownCumType";
    +  }
    +}
    +
    +const char *CumMaxMinPluginDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int CumMaxMinPluginDynamic::getNbOutputs() const { return 2; }
    +
    +int CumMaxMinPluginDynamic::initialize() { return 0; }
    +
    +void CumMaxMinPluginDynamic::terminate() {}
    +
    +size_t CumMaxMinPluginDynamic::getSerializationSize() const {
    +  return sizeof(mDim) + sizeof(mCumType);
    +}
    +
    +void CumMaxMinPluginDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mDim);
    +  serialize_value(&buffer, mCumType);
    +}
    +
    +void CumMaxMinPluginDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void CumMaxMinPluginDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *CumMaxMinPluginDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +CumMaxMinPluginDynamicCreator::CumMaxMinPluginDynamicCreator(
    +    TRT_CUMCMPTYPE cumType)
    +    : mCumType(cumType) {
    +  mPluginAttributes.clear();
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("dim"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *CumMaxMinPluginDynamicCreator::getPluginName() const {
    +  return CUMMAXMIN_PLUGIN_NAME;
    +}
    +
    +const char *CumMaxMinPluginDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +CumMaxMinPluginDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *CumMaxMinPluginDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  int dim = 0;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("dim") == 0) {
    +      dim = static_cast(fc->fields[i].data)[0];
    +    }
    +  }
    +
    +  CumMaxMinPluginDynamic *plugin =
    +      new CumMaxMinPluginDynamic(name, dim, mCumType);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *CumMaxMinPluginDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  // This object will be deleted when the network is destroyed, which will
    +  // call FCPluginDynamic::destroy()
    +  auto plugin = new CumMaxMinPluginDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void CumMaxMinPluginDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *CumMaxMinPluginDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +CumMaxPluginDynamicCreator::CumMaxPluginDynamicCreator()
    +    : CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE::TRT_CUMMAX) {}
    +
    +const char *CumMaxPluginDynamicCreator::getPluginName() const {
    +  return CUMMAX_PLUGIN_NAME;
    +}
    +
    +CumMinPluginDynamicCreator::CumMinPluginDynamicCreator()
    +    : CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE::TRT_CUMMIN) {}
    +
    +const char *CumMinPluginDynamicCreator::getPluginName() const {
    +  return CUMMIN_PLUGIN_NAME;
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin_kernel.cu
    new file mode 100644
    index 000000000..47d756a33
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_cummaxmin_kernel.cu
    @@ -0,0 +1,90 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +
    +#include "common_cuda_helper.hpp"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +using mmcv::TensorDesc;
    +
    +template 
    +__global__ void cummaxmin_kernel(const scalar_t *input, scalar_t *output_value,
    +                                 int *output_index, TensorDesc tensor_desc,
    +                                 int cum_dim, int cum_type) {
    +  const size_t cum_size = tensor_desc.shape[cum_dim];
    +  const size_t cum_stride = tensor_desc.stride[cum_dim];
    +  const size_t data_size =
    +      tensor_desc.stride[0] * tensor_desc.shape[0] / cum_size;
    +  CUDA_1D_KERNEL_LOOP(index, data_size) {
    +    size_t cum_offset =
    +        index / cum_stride * (cum_size * cum_stride) + index % cum_stride;
    +    int cum_index = 0;
    +    auto cum_value = input[cum_offset];
    +    output_value[cum_offset] = cum_value;
    +    output_index[cum_offset] = cum_index;
    +
    +    for (size_t cum_index_current = 1; cum_index_current < cum_size;
    +         ++cum_index_current) {
    +      cum_offset += cum_stride;
    +      const auto cum_value_current = input[cum_offset];
    +      switch (cum_type) {
    +        case 0:  // max
    +          if (cum_value_current > cum_value) {
    +            cum_value = cum_value_current;
    +            cum_index = cum_index_current;
    +          }
    +          break;
    +        case 1:  // min
    +          if (cum_value_current < cum_value) {
    +            cum_value = cum_value_current;
    +            cum_index = cum_index_current;
    +          }
    +          break;
    +      }
    +      output_value[cum_offset] = cum_value;
    +      output_index[cum_offset] = cum_index;
    +    }
    +  }
    +}
    +
    +template 
    +void CumMaxMinForwardLauncher(const scalar_t *input, scalar_t *output_value,
    +                              int *output_index, const int *dims, int nbDims,
    +                              int cum_dim, int cum_type, cudaStream_t stream) {
    +  // fill tensordesc and initial
    +  TensorDesc tensor_desc;
    +  memset((void *)&tensor_desc, 0, sizeof(TensorDesc));
    +  tensor_desc.dim = nbDims;
    +  tensor_desc.shape[nbDims - 1] = dims[nbDims - 1];
    +  tensor_desc.stride[nbDims - 1] = 1;
    +  for (int i = nbDims - 2; i >= 0; --i) {
    +    tensor_desc.shape[i] = dims[i];
    +    tensor_desc.stride[i] = dims[i + 1] * tensor_desc.stride[i + 1];
    +  }
    +
    +  // cum dim should be larger than 0
    +  cum_dim = cum_dim >= 0 ? cum_dim : (nbDims + cum_dim);
    +
    +  const int data_size =
    +      tensor_desc.stride[0] * tensor_desc.shape[0] / tensor_desc.shape[cum_dim];
    +
    +  const int col_block = GET_BLOCKS(data_size, THREADS_PER_BLOCK);
    +
    +  cummaxmin_kernel<<>>(
    +      input, output_value, output_index, tensor_desc, cum_dim, cum_type);
    +}
    +
    +void CumMaxMinForwardLauncher_float(const float *input, float *output_value,
    +                                    int *output_index, const int *dims,
    +                                    int nbDims, int cum_dim, int cum_type,
    +                                    cudaStream_t stream) {
    +  CumMaxMinForwardLauncher(input, output_value, output_index, dims,
    +                                  nbDims, cum_dim, cum_type, stream);
    +}
    +
    +void CumMaxMinForwardLauncher_int32(const int *input, int *output_value,
    +                                    int *output_index, const int *dims,
    +                                    int nbDims, int cum_dim, int cum_type,
    +                                    cudaStream_t stream) {
    +  CumMaxMinForwardLauncher(input, output_value, output_index, dims, nbDims,
    +                                cum_dim, cum_type, stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp
    new file mode 100644
    index 000000000..62ec3a127
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp
    @@ -0,0 +1,318 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_deform_conv.hpp"
    +
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +void DeformConvForwardCUDAKernelLauncher_float(
    +    const float *input, const float *weight, const float *offset, float *output,
    +    void *workspace, int batchSize, int nInputPlane, int inputHeight,
    +    int inputWidth, int nOutputPlane, int kW, int kH, int dW, int dH, int padW,
    +    int padH, int dilationW, int dilationH, int group, int deformable_group,
    +    int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"MMCVDeformConv2d"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection DeformableConvPluginDynamicCreator::mFC{};
    +std::vector
    +    DeformableConvPluginDynamicCreator::mPluginAttributes;
    +
    +DeformableConvPluginDynamic::DeformableConvPluginDynamic(
    +    const std::string &name, const nvinfer1::Dims &stride,
    +    const nvinfer1::Dims &padding, const nvinfer1::Dims &dilation,
    +    const int deformableGroup, const int group, int im2colStep)
    +    : mLayerName(name),
    +      mStride(stride),
    +      mPadding(padding),
    +      mDilation(dilation),
    +      mDeformableGroup(deformableGroup),
    +      mGroup(group),
    +      mIm2colStep(im2colStep) {}
    +
    +DeformableConvPluginDynamic::DeformableConvPluginDynamic(const std::string name,
    +                                                         const void *data,
    +                                                         size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mStride);
    +  deserialize_value(&data, &length, &mPadding);
    +  deserialize_value(&data, &length, &mDilation);
    +  deserialize_value(&data, &length, &mDeformableGroup);
    +  deserialize_value(&data, &length, &mGroup);
    +  deserialize_value(&data, &length, &mIm2colStep);
    +}
    +DeformableConvPluginDynamic::~DeformableConvPluginDynamic() {}
    +
    +nvinfer1::IPluginV2DynamicExt *DeformableConvPluginDynamic::clone() const {
    +  DeformableConvPluginDynamic *plugin =
    +      new DeformableConvPluginDynamic(mLayerName, mStride, mPadding, mDilation,
    +                                      mDeformableGroup, mGroup, mIm2colStep);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs DeformableConvPluginDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  nvinfer1::DimsExprs ret;
    +  ret.nbDims = 4;
    +  ret.d[0] = inputs[0].d[0];
    +  ret.d[1] = inputs[2].d[0];
    +
    +  ret.d[2] = inputs[1].d[2];
    +  ret.d[3] = inputs[1].d[3];
    +
    +  return ret;
    +}
    +
    +bool DeformableConvPluginDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  if (pos == 0) {
    +    return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +            inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
    +
    +  } else {
    +    return inOut[pos].type == inOut[0].type &&
    +           inOut[pos].format == inOut[0].format;
    +  }
    +}
    +
    +void DeformableConvPluginDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t DeformableConvPluginDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
    +
    +  int batch_size = inputs[0].dims.d[0];
    +  int nInputPlane = inputs[0].dims.d[1];
    +  int inputHeight = inputs[0].dims.d[2];
    +  int inputWidth = inputs[0].dims.d[3];
    +
    +  int nOutputPlane = outputs[0].dims.d[1];
    +  int outputHeight = outputs[0].dims.d[2];
    +  int outputWidth = outputs[0].dims.d[3];
    +
    +  int kW = inputs[2].dims.d[2];
    +  int kH = inputs[2].dims.d[3];
    +  int im2col_step = std::min(batch_size, mIm2colStep);
    +
    +  size_t col_size =
    +      mmcv::getAlignedSize(nInputPlane * kW * kH * im2col_step * outputHeight *
    +                           outputWidth * sizeof_dtype);
    +
    +  size_t out_size = 0;
    +  if (im2col_step != 1)
    +    out_size = mmcv::getAlignedSize(batch_size * nOutputPlane * outputHeight *
    +                                    outputWidth * sizeof_dtype);
    +
    +  return col_size + out_size;
    +}
    +
    +int DeformableConvPluginDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc *inputDesc,
    +    const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
    +    void *const *outputs, void *workSpace, cudaStream_t stream) {
    +  int batch_size = inputDesc[0].dims.d[0];
    +  int inputChannel = inputDesc[0].dims.d[1];
    +  int inputHeight = inputDesc[0].dims.d[2];
    +  int inputWidth = inputDesc[0].dims.d[3];
    +  int outputChannel = outputDesc[0].dims.d[1];
    +  int kernelHeight = inputDesc[2].dims.d[2];
    +  int kernelWidth = inputDesc[2].dims.d[3];
    +
    +  const void *x = inputs[0];
    +  const void *offset = inputs[1];
    +  const void *weight = inputs[2];
    +  void *output = outputs[0];
    +  int im2col_step = std::min(batch_size, mIm2colStep);
    +
    +  // TODO: add fp16 support
    +  auto data_type = inputDesc[0].type;
    +  switch (data_type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      DeformConvForwardCUDAKernelLauncher_float(
    +          (float *)x, (float *)weight, (float *)offset, (float *)output,
    +          workSpace, batch_size, inputChannel, inputHeight, inputWidth,
    +          outputChannel, kernelWidth, kernelHeight, mStride.d[0], mStride.d[1],
    +          mPadding.d[0], mPadding.d[1], mDilation.d[0], mDilation.d[1], mGroup,
    +          mDeformableGroup, im2col_step, m_cublas_handle, stream);
    +      break;
    +    default:
    +      return 1;
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType DeformableConvPluginDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *DeformableConvPluginDynamic::getPluginType() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *DeformableConvPluginDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int DeformableConvPluginDynamic::getNbOutputs() const { return 1; }
    +
    +int DeformableConvPluginDynamic::initialize() { return 0; }
    +
    +void DeformableConvPluginDynamic::terminate() {}
    +
    +size_t DeformableConvPluginDynamic::getSerializationSize() const {
    +  return sizeof(mStride) + sizeof(mPadding) + sizeof(mDilation) +
    +         sizeof(mDeformableGroup) + sizeof(mGroup) + sizeof(mIm2colStep);
    +}
    +
    +void DeformableConvPluginDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mStride);
    +  serialize_value(&buffer, mPadding);
    +  serialize_value(&buffer, mDilation);
    +  serialize_value(&buffer, mDeformableGroup);
    +  serialize_value(&buffer, mGroup);
    +  serialize_value(&buffer, mIm2colStep);
    +}
    +
    +void DeformableConvPluginDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void DeformableConvPluginDynamic::attachToContext(
    +    cudnnContext *cudnnContext, cublasContext *cublasContext,
    +    nvinfer1::IGpuAllocator *gpuAllocator) {
    +  m_cublas_handle = cublasContext;
    +}
    +
    +void DeformableConvPluginDynamic::detachFromContext() {}
    +
    +void DeformableConvPluginDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *DeformableConvPluginDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +DeformableConvPluginDynamicCreator::DeformableConvPluginDynamicCreator() {
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("stride"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("padding"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("dilation"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("groups"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("deform_groups"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("bias"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("im2col_step"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *DeformableConvPluginDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *DeformableConvPluginDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +DeformableConvPluginDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *DeformableConvPluginDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  nvinfer1::Dims stride{2, {1, 1}};
    +  nvinfer1::Dims padding{2, {0, 0}};
    +  nvinfer1::Dims dilation{2, {1, 1}};
    +  int deformableGroup = 1;
    +  int group = 1;
    +  int im2col_step = 32;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("stride") == 0) {
    +      stride.nbDims = 2;
    +      stride.d[0] = static_cast(fc->fields[i].data)[0];
    +      if (fc->fields[i].length == 1) {
    +        stride.d[1] = stride.d[0];
    +      } else {
    +        stride.d[1] = static_cast(fc->fields[i].data)[1];
    +      }
    +    }
    +
    +    if (field_name.compare("padding") == 0) {
    +      padding.nbDims = 2;
    +      padding.d[0] = static_cast(fc->fields[i].data)[0];
    +      if (fc->fields[i].length == 1) {
    +        padding.d[1] = padding.d[0];
    +      } else {
    +        padding.d[1] = static_cast(fc->fields[i].data)[1];
    +      }
    +    }
    +
    +    if (field_name.compare("dilation") == 0) {
    +      dilation.nbDims = 2;
    +      dilation.d[0] = static_cast(fc->fields[i].data)[0];
    +      if (fc->fields[i].length == 1) {
    +        dilation.d[1] = dilation.d[0];
    +      } else {
    +        dilation.d[1] = static_cast(fc->fields[i].data)[1];
    +      }
    +    }
    +
    +    if (field_name.compare("deform_groups") == 0) {
    +      deformableGroup = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("groups") == 0) {
    +      group = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("im2col_step") == 0) {
    +      im2col_step = static_cast(fc->fields[i].data)[0];
    +    }
    +  }
    +
    +  DeformableConvPluginDynamic *plugin = new DeformableConvPluginDynamic(
    +      name, stride, padding, dilation, deformableGroup, group, im2col_step);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *DeformableConvPluginDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  auto plugin = new DeformableConvPluginDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void DeformableConvPluginDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *DeformableConvPluginDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu
    new file mode 100644
    index 000000000..b1f698904
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu
    @@ -0,0 +1,129 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "deform_conv_cuda_kernel.cuh"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +template 
    +void trt_deformable_im2col(const T* data_input, const T* data_offset,
    +                           const int channels, const int height,
    +                           const int width, const int ksize_h,
    +                           const int ksize_w, const int pad_h, const int pad_w,
    +                           const int stride_h, const int stride_w,
    +                           const int dilation_h, const int dilation_w,
    +                           const int parallel_imgs, const int deformable_group,
    +                           T* data_col, cudaStream_t stream) {
    +  int height_col =
    +      (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
    +  int width_col =
    +      (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
    +  int num_kernels = channels * height_col * width_col * parallel_imgs;
    +  int channel_per_deformable_group = channels / deformable_group;
    +
    +  deformable_im2col_gpu_kernel
    +      <<>>(
    +          num_kernels, data_input, data_offset, height, width, ksize_h, ksize_w,
    +          pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
    +          channel_per_deformable_group, parallel_imgs, channels,
    +          deformable_group, height_col, width_col, data_col);
    +
    +  cudaCheckError();
    +}
    +
    +template 
    +void DeformConvForwardCUDAKernelLauncher(
    +    const scalar_t* input, const scalar_t* weight, const scalar_t* offset,
    +    scalar_t* output, void* workspace, int batchSize, int nInputPlane,
    +    int inputHeight, int inputWidth, int nOutputPlane, int kW, int kH, int dW,
    +    int dH, int padW, int padH, int dilationW, int dilationH, int group,
    +    int deformable_group, int im2col_step, cublasHandle_t cublas_handle,
    +    cudaStream_t stream) {
    +  size_t word_size = sizeof(scalar_t);
    +
    +  im2col_step = std::min(int(batchSize), im2col_step);
    +  long outputWidth =
    +      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
    +  long outputHeight =
    +      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
    +
    +  long long columns_size =
    +      mmcv::getAlignedSize(nInputPlane * kW * kH * im2col_step * outputHeight *
    +                           outputWidth * word_size);
    +
    +  // column buffer for img2col
    +  scalar_t* columns = (scalar_t*)workspace;
    +  workspace = workspace + columns_size;
    +
    +  scalar_t* output_buffer;
    +  long long output_buffer_size = 0;
    +  if (im2col_step == 1) {
    +    output_buffer = output;
    +  } else {
    +    // output need permute when im2col_step!=1
    +    output_buffer = (scalar_t*)workspace;
    +    output_buffer_size = batchSize * nOutputPlane * outputWidth * outputHeight;
    +  }
    +
    +  long long input_elt_step =
    +      im2col_step * nInputPlane * inputHeight * inputWidth;
    +  long long offset_elt_step =
    +      im2col_step * deformable_group * 2 * kH * kW * outputHeight * outputWidth;
    +  long long out_buffer_step =
    +      nOutputPlane * im2col_step * outputHeight * outputWidth;
    +  long long col_g_step =
    +      nInputPlane * kW * kH / group * im2col_step * outputHeight * outputWidth;
    +  long long weight_g_step =
    +      nOutputPlane / group * nInputPlane / group * kH * kW;
    +  long long out_buffer_g_step =
    +      nOutputPlane / group * im2col_step * outputHeight * outputWidth;
    +  int m = nOutputPlane / group;
    +  int n = im2col_step * outputHeight * outputWidth;
    +  int k = nInputPlane / group * kH * kW;
    +  scalar_t alpha = 1.;
    +  scalar_t beta = 0.;
    +
    +  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    +    const scalar_t* input_start = input + elt * input_elt_step;
    +    const scalar_t* offset_start = offset + elt * offset_elt_step;
    +
    +    trt_deformable_im2col(input_start, offset_start, nInputPlane,
    +                                    inputHeight, inputWidth, kH, kW, padH, padW,
    +                                    dH, dW, dilationH, dilationW, im2col_step,
    +                                    deformable_group, columns, stream);
    +
    +    for (int g = 0; g < group; ++g) {
    +      const scalar_t* weight_start = weight + g * weight_g_step;
    +      scalar_t* col_start = columns + g * col_g_step;
    +      scalar_t* out_buffer_start =
    +          output_buffer + elt * out_buffer_step + g * out_buffer_g_step;
    +
    +      cublasGemmWrap(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k,
    +                               &alpha, col_start, n, weight_start, k, &beta,
    +                               out_buffer_start, n);
    +      cudaCheckError();
    +    }
    +  }
    +
    +  if (im2col_step != 1) {
    +    int output_buffer_shape[5] = {batchSize / im2col_step, nOutputPlane,
    +                                  im2col_step, outputHeight, outputWidth};
    +    int output_buffer_permute[5] = {0, 2, 1, 3, 4};
    +    memcpyPermute(output, output_buffer, &output_buffer_shape[0],
    +                            &output_buffer_permute[0], 5, stream);
    +  }
    +}
    +
    +void DeformConvForwardCUDAKernelLauncher_float(
    +    const float* input, const float* weight, const float* offset, float* output,
    +    void* workspace, int batchSize, int nInputPlane, int inputHeight,
    +    int inputWidth, int nOutputPlane, int kW, int kH, int dW, int dH, int padW,
    +    int padH, int dilationW, int dilationH, int group, int deformable_group,
    +    int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream) {
    +  DeformConvForwardCUDAKernelLauncher(
    +      input, weight, offset, output, workspace, batchSize, nInputPlane,
    +      inputHeight, inputWidth, nOutputPlane, kW, kH, dW, dH, padW, padH,
    +      dilationW, dilationH, group, deformable_group, im2col_step, cublas_handle,
    +      stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler.cpp
    new file mode 100644
    index 000000000..d955ca53e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler.cpp
    @@ -0,0 +1,256 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_grid_sampler.hpp"
    +
    +#include 
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +using mmcv::GridSamplerInterpolation;
    +using mmcv::GridSamplerPadding;
    +
    +void grid_sample_float(float *output, const float *input, const float *grid,
    +                       int *output_dims, int *input_dims, int *grid_dims,
    +                       int nb_dims, GridSamplerInterpolation interp,
    +                       GridSamplerPadding padding, bool align_corners,
    +                       cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"grid_sampler"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection GridSamplerDynamicCreator::mFC{};
    +std::vector GridSamplerDynamicCreator::mPluginAttributes;
    +
    +GridSamplerDynamic::GridSamplerDynamic(const std::string &name, int mode,
    +                                       int paddingMode, bool alignCorners)
    +    : mLayerName(name),
    +      mMode(mode),
    +      mPaddingMode(paddingMode),
    +      mAlignCorners(alignCorners) {}
    +
    +GridSamplerDynamic::GridSamplerDynamic(const std::string name, const void *data,
    +                                       size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mMode);
    +  deserialize_value(&data, &length, &mPaddingMode);
    +  deserialize_value(&data, &length, &mAlignCorners);
    +}
    +
    +nvinfer1::IPluginV2DynamicExt *GridSamplerDynamic::clone() const {
    +  GridSamplerDynamic *plugin =
    +      new GridSamplerDynamic(mLayerName, mMode, mPaddingMode, mAlignCorners);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs GridSamplerDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  nvinfer1::DimsExprs ret;
    +  ret.nbDims = inputs[0].nbDims;
    +  ret.d[0] = inputs[0].d[0];
    +  ret.d[1] = inputs[0].d[1];
    +  for (int i = 2; i < ret.nbDims; ++i) {
    +    ret.d[i] = inputs[1].d[i - 1];
    +  }
    +  return ret;
    +}
    +
    +bool GridSamplerDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  if (pos == 0) {
    +    return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +            inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
    +  } else {
    +    return inOut[pos].type == inOut[0].type &&
    +           inOut[pos].format == inOut[0].format;
    +  }
    +}
    +
    +void GridSamplerDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {
    +  // Validate input arguments
    +}
    +
    +size_t GridSamplerDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  return 0;
    +}
    +
    +int GridSamplerDynamic::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +                                const nvinfer1::PluginTensorDesc *outputDesc,
    +                                const void *const *inputs, void *const *outputs,
    +                                void *workSpace, cudaStream_t stream) {
    +  nvinfer1::Dims input_dims = inputDesc[0].dims;
    +  nvinfer1::Dims grid_dims = inputDesc[1].dims;
    +  nvinfer1::Dims output_dims = outputDesc[0].dims;
    +
    +  using mmcv::GridSamplerInterpolation;
    +  using mmcv::GridSamplerPadding;
    +
    +  GridSamplerInterpolation interp_mode = GridSamplerInterpolation::Bilinear;
    +  switch (mMode) {
    +    case 0:
    +      interp_mode = GridSamplerInterpolation::Bilinear;
    +      break;
    +    case 1:
    +      interp_mode = GridSamplerInterpolation::Nearest;
    +      break;
    +    default:
    +      break;
    +  }
    +
    +  GridSamplerPadding padding_mode = GridSamplerPadding::Zeros;
    +  switch (mPaddingMode) {
    +    case 0:
    +      padding_mode = GridSamplerPadding::Zeros;
    +      break;
    +
    +    case 1:
    +      padding_mode = GridSamplerPadding::Border;
    +      break;
    +
    +    case 2:
    +      padding_mode = GridSamplerPadding::Reflection;
    +      break;
    +    default:
    +      break;
    +  }
    +
    +  auto data_type = inputDesc[0].type;
    +
    +  switch (data_type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      grid_sample_float(
    +          (float *)outputs[0], (float *)inputs[0], (float *)inputs[1],
    +          &(output_dims.d[0]), &(input_dims.d[0]), &(grid_dims.d[0]),
    +          input_dims.nbDims, interp_mode, padding_mode, mAlignCorners, stream);
    +      break;
    +    default:
    +      return 1;
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType GridSamplerDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *GridSamplerDynamic::getPluginType() const { return PLUGIN_NAME; }
    +
    +const char *GridSamplerDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int GridSamplerDynamic::getNbOutputs() const { return 1; }
    +
    +int GridSamplerDynamic::initialize() { return 0; }
    +
    +void GridSamplerDynamic::terminate() {}
    +
    +size_t GridSamplerDynamic::getSerializationSize() const {
    +  return sizeof(mMode) + sizeof(mPaddingMode) + sizeof(mAlignCorners);
    +}
    +
    +void GridSamplerDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mMode);
    +  serialize_value(&buffer, mPaddingMode);
    +  serialize_value(&buffer, mAlignCorners);
    +}
    +
    +void GridSamplerDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void GridSamplerDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *GridSamplerDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +GridSamplerDynamicCreator::GridSamplerDynamicCreator() {
    +  mPluginAttributes.clear();
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("interpolation_mode"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("padding_mode"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("align_corners"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *GridSamplerDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *GridSamplerDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +GridSamplerDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *GridSamplerDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  int mode = 0;
    +  int paddingMode = 0;
    +  bool alignCorners = false;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("interpolation_mode") == 0) {
    +      mode = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("padding_mode") == 0) {
    +      paddingMode = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("align_corners") == 0) {
    +      alignCorners = (bool)(static_cast(fc->fields[i].data)[0]);
    +    }
    +  }
    +
    +  GridSamplerDynamic *plugin =
    +      new GridSamplerDynamic(name, mode, paddingMode, alignCorners);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *GridSamplerDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  // This object will be deleted when the network is destroyed, which will
    +  // call FCPluginDynamic::destroy()
    +  auto plugin = new GridSamplerDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void GridSamplerDynamicCreator::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *GridSamplerDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler_kernel.cu
    new file mode 100644
    index 000000000..253a35d59
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_grid_sampler_kernel.cu
    @@ -0,0 +1,441 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// modified from
    +// https://github.com/pytorch/pytorch/blob/ec683299ebabf297a3504c76248d37be830e4342/aten/src/ATen/native/cuda/GridSampler.cuh
    +// and
    +// https://github.com/pytorch/pytorch/blob/ec683299ebabf297a3504c76248d37be830e4342/aten/src/ATen/native/cuda/GridSampler.cu
    +
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_grid_sampler.hpp"
    +#include "trt_plugin_helper.hpp"
    +
    +using mmcv::GridSamplerInterpolation;
    +using mmcv::GridSamplerPadding;
    +using mmcv::TensorDesc;
    +
    +// Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
    +// where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
    +// if align_corners: -1 and +1 get sent to the centers of the corner pixels
    +//     -1 --> 0
    +//     +1 --> (size - 1)
    +//     scale_factor = (size - 1) / 2
    +// if not align_corners: -1 and +1 get sent to the image edges
    +//     -1 --> -0.5
    +//     +1 --> (size - 1) + 0.5 == size - 0.5
    +//     scale_factor = size / 2
    +template 
    +static __forceinline__ __device__ scalar_t
    +grid_sampler_unnormalize(scalar_t coord, int size, bool align_corners) {
    +  if (align_corners) {
    +    // unnormalize coord from [-1, 1] to [0, size - 1]
    +    return ((coord + 1.f) / 2) * (size - 1);
    +  } else {
    +    // unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
    +    return ((coord + 1.f) * size - 1) / 2;
    +  }
    +}
    +
    +// Clips coordinates to between 0 and clip_limit - 1
    +template 
    +static __forceinline__ __device__ scalar_t clip_coordinates(scalar_t in,
    +                                                            int clip_limit) {
    +  return ::min(static_cast(clip_limit - 1),
    +               ::max(in, static_cast(0)));
    +}
    +
    +// Reflects coordinates until they fall between low and high (inclusive).
    +// The bounds are passed as twice their value so that half-integer values
    +// can be represented as ints.
    +template 
    +static __forceinline__ __device__ scalar_t reflect_coordinates(scalar_t in,
    +                                                               int twice_low,
    +                                                               int twice_high) {
    +  if (twice_low == twice_high) {
    +    return static_cast(0);
    +  }
    +  scalar_t min = static_cast(twice_low) / 2;
    +  scalar_t span = static_cast(twice_high - twice_low) / 2;
    +  in = ::fabs(in - min);
    +  // `fmod` returns same sign as `in`, which is positive after the `fabs` above.
    +  scalar_t extra = ::fmod(in, span);
    +  int flips = static_cast(::floor(in / span));
    +  if (flips % 2 == 0) {
    +    return extra + min;
    +  } else {
    +    return span - extra + min;
    +  }
    +}
    +
    +template 
    +static __forceinline__ __device__ scalar_t
    +safe_downgrade_to_int_range(scalar_t x) {
    +  // -100.0 does not have special meaning. This is just to make sure
    +  // it's not within_bounds_2d or within_bounds_3d, and does not cause
    +  // undefined behavior. See #35506.
    +  if (x > INT_MAX - 1 || x < INT_MIN || !::isfinite(static_cast(x)))
    +    return static_cast(-100.0);
    +  return x;
    +}
    +
    +// Computes the pixel source index value for a grid coordinate
    +template 
    +static __forceinline__ __device__ scalar_t grid_sampler_compute_source_index(
    +    scalar_t coord, int size, GridSamplerPadding padding_mode,
    +    bool align_corners) {
    +  coord = grid_sampler_unnormalize(coord, size, align_corners);
    +  if (padding_mode == GridSamplerPadding::Border) {
    +    // clip coordinates to image borders
    +    coord = clip_coordinates(coord, size);
    +  } else if (padding_mode == GridSamplerPadding::Reflection) {
    +    // reflect coordinates by image borders
    +    if (align_corners) {
    +      coord = reflect_coordinates(coord, 0, 2 * (size - 1));
    +    } else {
    +      coord = reflect_coordinates(coord, -1, 2 * size - 1);
    +    }
    +    // clip coordinates to image borders
    +    coord = clip_coordinates(coord, size);
    +  }
    +
    +  coord = safe_downgrade_to_int_range(coord);
    +  return coord;
    +}
    +
    +static __forceinline__ __device__ bool within_bounds_2d(int h, int w, int H,
    +                                                        int W) {
    +  return h >= 0 && h < H && w >= 0 && w < W;
    +}
    +
    +static __forceinline__ __device__ bool within_bounds_3d(int d, int h, int w,
    +                                                        int D, int H, int W) {
    +  return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
    +}
    +
    +template 
    +__global__ void grid_sampler_2d_kernel(
    +    const int nthreads, const scalar_t *input, const scalar_t *grid,
    +    scalar_t *output, TensorDesc input_desc, TensorDesc grid_desc,
    +    TensorDesc output_desc, const GridSamplerInterpolation interpolation_mode,
    +    const GridSamplerPadding padding_mode, bool align_corners) {
    +  int C = input_desc.shape[1];
    +  int inp_H = input_desc.shape[2];
    +  int inp_W = input_desc.shape[3];
    +  int out_H = grid_desc.shape[1];
    +  int out_W = grid_desc.shape[2];
    +  int inp_sN = input_desc.stride[0];
    +  int inp_sC = input_desc.stride[1];
    +  int inp_sH = input_desc.stride[2];
    +  int inp_sW = input_desc.stride[3];
    +  int grid_sN = grid_desc.stride[0];
    +  int grid_sH = grid_desc.stride[1];
    +  int grid_sW = grid_desc.stride[2];
    +  int grid_sCoor = grid_desc.stride[3];
    +  int out_sN = output_desc.stride[0];
    +  int out_sC = output_desc.stride[1];
    +  int out_sH = output_desc.stride[2];
    +  int out_sW = output_desc.stride[3];
    +
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % out_W;
    +    const int h = (index / out_W) % out_H;
    +    const int n = index / (out_H * out_W);
    +    const int grid_offset = n * grid_sN + h * grid_sH + w * grid_sW;
    +
    +    // get the corresponding input x, y coordinates from grid
    +    scalar_t ix = grid[grid_offset];
    +    scalar_t iy = grid[grid_offset + grid_sCoor];
    +
    +    ix = grid_sampler_compute_source_index(ix, inp_W, padding_mode,
    +                                           align_corners);
    +    iy = grid_sampler_compute_source_index(iy, inp_H, padding_mode,
    +                                           align_corners);
    +
    +    if (interpolation_mode == GridSamplerInterpolation::Bilinear) {
    +      // get NE, NW, SE, SW pixel values from (x, y)
    +      int ix_nw = static_cast(::floor(ix));
    +      int iy_nw = static_cast(::floor(iy));
    +      int ix_ne = ix_nw + 1;
    +      int iy_ne = iy_nw;
    +      int ix_sw = ix_nw;
    +      int iy_sw = iy_nw + 1;
    +      int ix_se = ix_nw + 1;
    +      int iy_se = iy_nw + 1;
    +
    +      // get surfaces to each neighbor:
    +      scalar_t nw = (ix_se - ix) * (iy_se - iy);
    +      scalar_t ne = (ix - ix_sw) * (iy_sw - iy);
    +      scalar_t sw = (ix_ne - ix) * (iy - iy_ne);
    +      scalar_t se = (ix - ix_nw) * (iy - iy_nw);
    +
    +      // calculate bilinear weighted pixel value and set output pixel
    +      auto inp_ptr_NC = input + n * inp_sN;
    +      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
    +      for (int c = 0; c < C;
    +           ++c, inp_ptr_NC += inp_sC, out_ptr_NCHW += out_sC) {
    +        *out_ptr_NCHW = static_cast(0);
    +        if (within_bounds_2d(iy_nw, ix_nw, inp_H, inp_W)) {
    +          *out_ptr_NCHW += inp_ptr_NC[iy_nw * inp_sH + ix_nw * inp_sW] * nw;
    +        }
    +        if (within_bounds_2d(iy_ne, ix_ne, inp_H, inp_W)) {
    +          *out_ptr_NCHW += inp_ptr_NC[iy_ne * inp_sH + ix_ne * inp_sW] * ne;
    +        }
    +        if (within_bounds_2d(iy_sw, ix_sw, inp_H, inp_W)) {
    +          *out_ptr_NCHW += inp_ptr_NC[iy_sw * inp_sH + ix_sw * inp_sW] * sw;
    +        }
    +        if (within_bounds_2d(iy_se, ix_se, inp_H, inp_W)) {
    +          *out_ptr_NCHW += inp_ptr_NC[iy_se * inp_sH + ix_se * inp_sW] * se;
    +        }
    +      }
    +    } else if (interpolation_mode == GridSamplerInterpolation::Nearest) {
    +      int ix_nearest = static_cast(::round(ix));
    +      int iy_nearest = static_cast(::round(iy));
    +
    +      // assign nearest neighbor pixel value to output pixel
    +      auto inp_ptr_NC = input + n * inp_sN;
    +      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
    +      for (int c = 0; c < C;
    +           ++c, inp_ptr_NC += inp_sC, out_ptr_NCHW += out_sC) {
    +        if (within_bounds_2d(iy_nearest, ix_nearest, inp_H, inp_W)) {
    +          *out_ptr_NCHW = inp_ptr_NC[iy_nearest * inp_sH + ix_nearest * inp_sW];
    +        } else {
    +          *out_ptr_NCHW = static_cast(0);
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +template 
    +__global__ void grid_sampler_3d_kernel(
    +    const int nthreads, const scalar_t *input, const scalar_t *grid,
    +    scalar_t *output, TensorDesc input_desc, TensorDesc grid_desc,
    +    TensorDesc output_desc, const GridSamplerInterpolation interpolation_mode,
    +    const GridSamplerPadding padding_mode, bool align_corners) {
    +  int C = input_desc.shape[1];
    +  int inp_D = input_desc.shape[2];
    +  int inp_H = input_desc.shape[3];
    +  int inp_W = input_desc.shape[4];
    +  int out_D = grid_desc.shape[1];
    +  int out_H = grid_desc.shape[2];
    +  int out_W = grid_desc.shape[3];
    +  int inp_sN = input_desc.stride[0];
    +  int inp_sC = input_desc.stride[1];
    +  int inp_sD = input_desc.stride[2];
    +  int inp_sH = input_desc.stride[3];
    +  int inp_sW = input_desc.stride[4];
    +  int grid_sN = grid_desc.stride[0];
    +  int grid_sD = grid_desc.stride[1];
    +  int grid_sH = grid_desc.stride[2];
    +  int grid_sW = grid_desc.stride[3];
    +  int grid_sCoor = grid_desc.stride[4];
    +  int out_sN = output_desc.stride[0];
    +  int out_sC = output_desc.stride[1];
    +  int out_sD = output_desc.stride[2];
    +  int out_sH = output_desc.stride[3];
    +  int out_sW = output_desc.stride[4];
    +
    +  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    +    const int w = index % out_W;
    +    const int h = (index / out_W) % out_H;
    +    const int d = (index / (out_H * out_W)) % out_D;
    +    const int n = index / (out_D * out_H * out_W);
    +    const int grid_offset =
    +        n * grid_sN + d * grid_sD + h * grid_sH + w * grid_sW;
    +
    +    // get the corresponding input x, y, z coordinates from grid
    +    scalar_t ix = grid[grid_offset];
    +    scalar_t iy = grid[grid_offset + grid_sCoor];
    +    scalar_t iz = grid[grid_offset + 2 * grid_sCoor];
    +
    +    ix = grid_sampler_compute_source_index(ix, inp_W, padding_mode,
    +                                           align_corners);
    +    iy = grid_sampler_compute_source_index(iy, inp_H, padding_mode,
    +                                           align_corners);
    +    iz = grid_sampler_compute_source_index(iz, inp_D, padding_mode,
    +                                           align_corners);
    +
    +    if (interpolation_mode == GridSamplerInterpolation::Bilinear) {
    +      // get corner pixel values from (x, y, z)
    +      // for 4d, we used north-east-south-west
    +      // for 5d, we add top-bottom
    +      int ix_tnw = static_cast(::floor(ix));
    +      int iy_tnw = static_cast(::floor(iy));
    +      int iz_tnw = static_cast(::floor(iz));
    +
    +      int ix_tne = ix_tnw + 1;
    +      int iy_tne = iy_tnw;
    +      int iz_tne = iz_tnw;
    +
    +      int ix_tsw = ix_tnw;
    +      int iy_tsw = iy_tnw + 1;
    +      int iz_tsw = iz_tnw;
    +
    +      int ix_tse = ix_tnw + 1;
    +      int iy_tse = iy_tnw + 1;
    +      int iz_tse = iz_tnw;
    +
    +      int ix_bnw = ix_tnw;
    +      int iy_bnw = iy_tnw;
    +      int iz_bnw = iz_tnw + 1;
    +
    +      int ix_bne = ix_tnw + 1;
    +      int iy_bne = iy_tnw;
    +      int iz_bne = iz_tnw + 1;
    +
    +      int ix_bsw = ix_tnw;
    +      int iy_bsw = iy_tnw + 1;
    +      int iz_bsw = iz_tnw + 1;
    +
    +      int ix_bse = ix_tnw + 1;
    +      int iy_bse = iy_tnw + 1;
    +      int iz_bse = iz_tnw + 1;
    +
    +      // get surfaces to each neighbor:
    +      scalar_t tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
    +      scalar_t tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
    +      scalar_t tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
    +      scalar_t tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
    +      scalar_t bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
    +      scalar_t bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
    +      scalar_t bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
    +      scalar_t bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
    +
    +      auto inp_ptr_NC = input + n * inp_sN;
    +      auto out_ptr_NCDHW =
    +          output + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
    +      for (int c = 0; c < C;
    +           ++c, inp_ptr_NC += inp_sC, out_ptr_NCDHW += out_sC) {
    +        //   (c, iz_tnw, iy_tnw, ix_tnw) * tnw + (c, iz_tne, iy_tne, ix_tne) *
    +        //   tne
    +        // + (c, iz_tsw, iy_tsw, ix_tsw) * tsw + (c, iz_tse, iy_tse, ix_tse) *
    +        // tse
    +        // + (c, iz_bnw, iy_bnw, ix_bnw) * bnw + (c, iz_bne, iy_bne, ix_bne) *
    +        // bne
    +        // + (c, iz_bsw, iy_bsw, ix_bsw) * bsw + (c, iz_bse, iy_bse, ix_bse) *
    +        // bse
    +        *out_ptr_NCDHW = static_cast(0);
    +        if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW] *
    +              tnw;
    +        }
    +        if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW] *
    +              tne;
    +        }
    +        if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW] *
    +              tsw;
    +        }
    +        if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW] *
    +              tse;
    +        }
    +        if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW] *
    +              bnw;
    +        }
    +        if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW] *
    +              bne;
    +        }
    +        if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW] *
    +              bsw;
    +        }
    +        if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
    +          *out_ptr_NCDHW +=
    +              inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW] *
    +              bse;
    +        }
    +      }
    +    } else if (interpolation_mode == GridSamplerInterpolation::Nearest) {
    +      int ix_nearest = static_cast(::round(ix));
    +      int iy_nearest = static_cast(::round(iy));
    +      int iz_nearest = static_cast(::round(iz));
    +
    +      // assign nearest neighbor pixel value to output pixel
    +      auto inp_ptr_NC = input + n * inp_sN;
    +      auto out_ptr_NCDHW =
    +          output + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
    +      for (int c = 0; c < C;
    +           ++c, inp_ptr_NC += inp_sC, out_ptr_NCDHW += out_sC) {
    +        if (within_bounds_3d(iz_nearest, iy_nearest, ix_nearest, inp_D, inp_H,
    +                             inp_W)) {
    +          *out_ptr_NCDHW =
    +              inp_ptr_NC[iz_nearest * inp_sD + iy_nearest * inp_sH +
    +                         ix_nearest * inp_sW];
    +        } else {
    +          *out_ptr_NCDHW = static_cast(0);
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +void create_desc(const int *dims, int nb_dims, TensorDesc &desc) {
    +  memcpy(&desc.shape[0], dims, sizeof(int) * nb_dims);
    +  desc.stride[nb_dims - 1] = 1;
    +  for (int i = nb_dims - 2; i >= 0; --i) {
    +    desc.stride[i] = desc.stride[i + 1] * desc.shape[i + 1];
    +  }
    +}
    +
    +template 
    +void grid_sample(T *output, const T *input, const T *grid, int *output_dims,
    +                 int *input_dims, int *grid_dims, int nb_dims,
    +                 GridSamplerInterpolation interp, GridSamplerPadding padding,
    +                 bool align_corners, cudaStream_t stream) {
    +  TensorDesc input_desc;
    +  create_desc(input_dims, nb_dims, input_desc);
    +
    +  TensorDesc output_desc;
    +  create_desc(output_dims, nb_dims, output_desc);
    +
    +  TensorDesc grid_desc;
    +  create_desc(grid_dims, nb_dims, grid_desc);
    +
    +  int count = 1;
    +  for (int i = 0; i < nb_dims; ++i) {
    +    if (i == 1) {
    +      continue;
    +    }
    +    count *= output_desc.shape[i];
    +  }
    +
    +  if (nb_dims == 4) {
    +    grid_sampler_2d_kernel
    +        <<>>(
    +            count, input, grid, output, input_desc, grid_desc, output_desc,
    +            interp, padding, align_corners);
    +  } else if (nb_dims == 5) {
    +    grid_sampler_3d_kernel
    +        <<>>(
    +            count, input, grid, output, input_desc, grid_desc, output_desc,
    +            interp, padding, align_corners);
    +  } else {
    +    printf("input and grid dims should be 4 or 5\n");
    +  }
    +}
    +
    +void grid_sample_float(float *output, const float *input, const float *grid,
    +                       int *output_dims, int *input_dims, int *grid_dims,
    +                       int nb_dims, GridSamplerInterpolation interp,
    +                       GridSamplerPadding padding, bool align_corners,
    +                       cudaStream_t stream) {
    +  grid_sample(output, input, grid, output_dims, input_dims, grid_dims,
    +                     nb_dims, interp, padding, align_corners, stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_instance_norm.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_instance_norm.cpp
    new file mode 100644
    index 000000000..b9b363a81
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_instance_norm.cpp
    @@ -0,0 +1,246 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +// Modified from:
    +// https://github.com/NVIDIA/TensorRT/blob/master/plugin/instanceNormalizationPlugin/instanceNormalizationPlugin.cpp
    +
    +#include "trt_instance_norm.hpp"
    +
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +using namespace nvinfer1;
    +
    +cudnnStatus_t convert_trt2cudnn_dtype(nvinfer1::DataType trt_dtype,
    +                                      cudnnDataType_t* cudnn_dtype) {
    +  switch (trt_dtype) {
    +    case nvinfer1::DataType::kFLOAT:
    +      *cudnn_dtype = CUDNN_DATA_FLOAT;
    +      break;
    +    case nvinfer1::DataType::kHALF:
    +      *cudnn_dtype = CUDNN_DATA_HALF;
    +      break;
    +    default:
    +      return CUDNN_STATUS_BAD_PARAM;
    +  }
    +  return CUDNN_STATUS_SUCCESS;
    +}
    +
    +namespace {
    +constexpr const char* PLUGIN_VERSION{"1"};
    +constexpr const char* PLUGIN_NAME{"MMCVInstanceNormalization"};
    +}  // namespace
    +
    +PluginFieldCollection InstanceNormalizationDynamicCreator::mFC{};
    +std::vector InstanceNormalizationDynamicCreator::mPluginAttributes;
    +
    +InstanceNormalizationDynamic::InstanceNormalizationDynamic(
    +    const std::string& name, float epsilon)
    +    : mLayerName(name), mEpsilon(epsilon) {}
    +
    +InstanceNormalizationDynamic::InstanceNormalizationDynamic(
    +    const std::string& name, void const* serialData, size_t serialLength)
    +    : mLayerName(name) {
    +  deserialize_value(&serialData, &serialLength, &mEpsilon);
    +}
    +
    +InstanceNormalizationDynamic::~InstanceNormalizationDynamic() {}
    +
    +// InstanceNormalizationDynamic returns one output.
    +int InstanceNormalizationDynamic::getNbOutputs() const { return 1; }
    +
    +DimsExprs InstanceNormalizationDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
    +    nvinfer1::IExprBuilder& exprBuilder) {
    +  nvinfer1::DimsExprs output(inputs[0]);
    +  return output;
    +}
    +
    +int InstanceNormalizationDynamic::initialize() { return 0; }
    +
    +void InstanceNormalizationDynamic::terminate() {}
    +
    +size_t InstanceNormalizationDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const {
    +  int n = inputs[0].dims.d[0];
    +  int c = inputs[0].dims.d[1];
    +  int elem_size = mmcv::getElementSize(inputs[1].type);
    +  return mmcv::getAlignedSize(n * c * elem_size) * 2;
    +}
    +
    +int InstanceNormalizationDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc* inputDesc,
    +    const nvinfer1::PluginTensorDesc* outputDesc, const void* const* inputs,
    +    void* const* outputs, void* workspace, cudaStream_t stream) {
    +  nvinfer1::Dims input_dims = inputDesc[0].dims;
    +  int n = input_dims.d[0];
    +  int c = input_dims.d[1];
    +  int h = input_dims.d[2];
    +  int w = input_dims.nbDims > 3 ? input_dims.d[3] : 1;
    +  int elem_size = mmcv::getElementSize(inputDesc[1].type);
    +
    +  void* n_scales = (void*)workspace;
    +  void* n_bias = (void*)(workspace + mmcv::getAlignedSize(n * c * elem_size));
    +
    +  const void* scales = (const void*)inputs[1];
    +  const void* bias = (const void*)inputs[2];
    +
    +  for (int i = 0; i < n; ++i) {
    +    cudaMemcpyAsync(n_scales + i * c * elem_size, scales, c * elem_size,
    +                    cudaMemcpyDeviceToDevice, stream);
    +    cudaMemcpyAsync(n_bias + i * c * elem_size, bias, c * elem_size,
    +                    cudaMemcpyDeviceToDevice, stream);
    +  }
    +
    +  cudnnSetTensor4dDescriptor(_b_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1,
    +                             n * c, 1, 1);
    +  cudnnDataType_t cudnn_dtype{};
    +  convert_trt2cudnn_dtype(inputDesc[0].type, &cudnn_dtype);
    +  cudnnSetTensor4dDescriptor(_x_desc, CUDNN_TENSOR_NCHW, cudnn_dtype, 1, n * c,
    +                             h, w);
    +  cudnnSetTensor4dDescriptor(_y_desc, CUDNN_TENSOR_NCHW, cudnn_dtype, 1, n * c,
    +                             h, w);
    +  float alpha = 1;
    +  float beta = 0;
    +  void const* x_ptr = inputs[0];
    +  void* y_ptr = outputs[0];
    +  cudnnSetStream(_cudnn_handle, stream);
    +  // Note: Use of CUDNN_BATCHNORM_SPATIAL_PERSISTENT can cause numerical
    +  //       overflows (NaNs) for fp32 data in some circumstances. The lower-
    +  //       performance CUDNN_BATCHNORM_SPATIAL should be used if this is not
    +  //       acceptable.
    +  cudnnBatchNormalizationForwardTraining(
    +      _cudnn_handle, CUDNN_BATCHNORM_SPATIAL_PERSISTENT, &alpha, &beta, _x_desc,
    +      x_ptr, _y_desc, y_ptr, _b_desc, n_scales, n_bias, 1., nullptr, nullptr,
    +      mEpsilon, nullptr, nullptr);
    +  return 0;
    +}
    +
    +size_t InstanceNormalizationDynamic::getSerializationSize() const {
    +  return serialized_size(mEpsilon);
    +}
    +
    +void InstanceNormalizationDynamic::serialize(void* buffer) const {
    +  serialize_value(&buffer, mEpsilon);
    +}
    +
    +bool InstanceNormalizationDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs,
    +    int nbOutputs) {
    +  return ((inOut[pos].type == nvinfer1::DataType::kFLOAT ||
    +           inOut[pos].type == nvinfer1::DataType::kHALF) &&
    +          inOut[pos].format == nvinfer1::PluginFormat::kLINEAR &&
    +          inOut[pos].type == inOut[0].type);
    +}
    +
    +const char* InstanceNormalizationDynamic::getPluginType() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char* InstanceNormalizationDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +void InstanceNormalizationDynamic::destroy() { delete this; }
    +
    +IPluginV2DynamicExt* InstanceNormalizationDynamic::clone() const {
    +  auto* plugin = new InstanceNormalizationDynamic{mLayerName, mEpsilon};
    +  plugin->setPluginNamespace(mPluginNamespace.c_str());
    +  return plugin;
    +}
    +
    +// Set plugin namespace
    +void InstanceNormalizationDynamic::setPluginNamespace(
    +    const char* pluginNamespace) {
    +  mPluginNamespace = pluginNamespace;
    +}
    +
    +const char* InstanceNormalizationDynamic::getPluginNamespace() const {
    +  return mPluginNamespace.c_str();
    +}
    +
    +nvinfer1::DataType InstanceNormalizationDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType* inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// Attach the plugin object to an execution context and grant the plugin the
    +// access to some context resource.
    +void InstanceNormalizationDynamic::attachToContext(
    +    cudnnContext* cudnnContext, cublasContext* cublasContext,
    +    IGpuAllocator* gpuAllocator) {
    +  _cudnn_handle = cudnnContext;
    +  cudnnCreateTensorDescriptor(&_b_desc);
    +  cudnnCreateTensorDescriptor(&_x_desc);
    +  cudnnCreateTensorDescriptor(&_y_desc);
    +}
    +
    +// Detach the plugin object from its execution context.
    +void InstanceNormalizationDynamic::detachFromContext() {
    +  cudnnDestroyTensorDescriptor(_y_desc);
    +  cudnnDestroyTensorDescriptor(_x_desc);
    +  cudnnDestroyTensorDescriptor(_b_desc);
    +}
    +
    +void InstanceNormalizationDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) {}
    +
    +// InstanceNormalizationDynamicCreator methods
    +InstanceNormalizationDynamicCreator::InstanceNormalizationDynamicCreator() {
    +  mPluginAttributes.clear();
    +  mPluginAttributes.emplace_back(
    +      PluginField("epsilon", nullptr, PluginFieldType::kFLOAT32, 1));
    +
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char* InstanceNormalizationDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char* InstanceNormalizationDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const PluginFieldCollection*
    +InstanceNormalizationDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +IPluginV2DynamicExt* InstanceNormalizationDynamicCreator::createPlugin(
    +    const char* name, const nvinfer1::PluginFieldCollection* fc) {
    +  float epsilon = 1e-5;
    +  const PluginField* fields = fc->fields;
    +  for (int i = 0; i < fc->nbFields; ++i) {
    +    const char* attrName = fields[i].name;
    +    if (!strcmp(attrName, "epsilon")) {
    +      epsilon = *(static_cast(fields[i].data));
    +    }
    +  }
    +
    +  InstanceNormalizationDynamic* obj =
    +      new InstanceNormalizationDynamic(name, epsilon);
    +  obj->setPluginNamespace(mNamespace.c_str());
    +  return obj;
    +}
    +
    +IPluginV2DynamicExt* InstanceNormalizationDynamicCreator::deserializePlugin(
    +    const char* name, const void* serialData, size_t serialLength) {
    +  InstanceNormalizationDynamic* obj =
    +      new InstanceNormalizationDynamic{name, serialData, serialLength};
    +  obj->setPluginNamespace(mNamespace.c_str());
    +  return obj;
    +}
    +
    +void InstanceNormalizationDynamicCreator::setPluginNamespace(
    +    const char* libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char* InstanceNormalizationDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp
    new file mode 100644
    index 000000000..0ed490d6b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp
    @@ -0,0 +1,308 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_modulated_deform_conv.hpp"
    +
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +void ModulatedDeformConvForwardCUDAKernelLauncher_float(
    +    const float *input, const float *weight, const float *bias,
    +    const float *offset, const float *mask, float *output, void *workspace,
    +    int batch, int channels, int height, int width, int channels_out,
    +    int kernel_w, int kernel_h, int stride_w, int stride_h, int pad_w,
    +    int pad_h, int dilation_w, int dilation_h, int group, int deformable_group,
    +    int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"MMCVModulatedDeformConv2d"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection
    +    ModulatedDeformableConvPluginDynamicCreator::mFC{};
    +std::vector
    +    ModulatedDeformableConvPluginDynamicCreator::mPluginAttributes;
    +
    +ModulatedDeformableConvPluginDynamic::ModulatedDeformableConvPluginDynamic(
    +    const std::string &name, const nvinfer1::Dims stride,
    +    const nvinfer1::Dims padding, const nvinfer1::Dims dilation,
    +    const int deformableGroup, const int group)
    +    : mLayerName(name),
    +      mStride(stride),
    +      mPadding(padding),
    +      mDilation(dilation),
    +      mDeformableGroup(deformableGroup),
    +      mGroup(group) {
    +  mWithBias = false;
    +}
    +
    +ModulatedDeformableConvPluginDynamic::ModulatedDeformableConvPluginDynamic(
    +    const std::string name, const void *data, size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mStride);
    +  deserialize_value(&data, &length, &mPadding);
    +  deserialize_value(&data, &length, &mDilation);
    +  deserialize_value(&data, &length, &mDeformableGroup);
    +  deserialize_value(&data, &length, &mGroup);
    +  mWithBias = false;
    +}
    +ModulatedDeformableConvPluginDynamic::~ModulatedDeformableConvPluginDynamic() {}
    +
    +nvinfer1::IPluginV2DynamicExt *ModulatedDeformableConvPluginDynamic::clone()
    +    const {
    +  ModulatedDeformableConvPluginDynamic *plugin =
    +      new ModulatedDeformableConvPluginDynamic(
    +          mLayerName, mStride, mPadding, mDilation, mDeformableGroup, mGroup);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs ModulatedDeformableConvPluginDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  nvinfer1::DimsExprs ret;
    +  ret.nbDims = 4;
    +  ret.d[0] = inputs[0].d[0];
    +  ret.d[1] = inputs[3].d[0];
    +
    +  ret.d[2] = inputs[1].d[2];
    +  ret.d[3] = inputs[1].d[3];
    +
    +  return ret;
    +}
    +
    +bool ModulatedDeformableConvPluginDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  if (pos == 0) {
    +    return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +            inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
    +
    +  } else {
    +    return inOut[pos].type == inOut[0].type &&
    +           inOut[pos].format == inOut[0].format;
    +  }
    +}
    +
    +void ModulatedDeformableConvPluginDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {
    +  if (nbInputs == 5) {
    +    mWithBias = true;
    +  }
    +}
    +
    +size_t ModulatedDeformableConvPluginDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
    +
    +  int batch_size = inputs[0].dims.d[0];
    +  int nInputPlane = inputs[0].dims.d[1];
    +  int inputHeight = inputs[0].dims.d[2];
    +  int inputWidth = inputs[0].dims.d[3];
    +
    +  int nOutputPlane = outputs[0].dims.d[1];
    +  int outputHeight = outputs[0].dims.d[2];
    +  int outputWidth = outputs[0].dims.d[3];
    +
    +  int kW = inputs[3].dims.d[2];
    +  int kH = inputs[3].dims.d[3];
    +  int im2col_step = std::min(32, batch_size);
    +
    +  size_t col_size = mmcv::getAlignedSize(nInputPlane * kW * kH * outputHeight *
    +                                         outputWidth * sizeof_dtype);
    +
    +  return col_size;
    +}
    +
    +int ModulatedDeformableConvPluginDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc *inputDesc,
    +    const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
    +    void *const *outputs, void *workSpace, cudaStream_t stream) {
    +  int batch = inputDesc[0].dims.d[0];
    +  int channels = inputDesc[0].dims.d[1];
    +  int height = inputDesc[0].dims.d[2];
    +  int width = inputDesc[0].dims.d[3];
    +  int channels_out = outputDesc[0].dims.d[1];
    +  int kernel_h = inputDesc[3].dims.d[2];
    +  int kernel_w = inputDesc[3].dims.d[3];
    +
    +  const void *x = inputs[0];
    +  const void *offset = inputs[1];
    +  const void *mask = inputs[2];
    +  const void *weight = inputs[3];
    +  const void *bias = mWithBias ? inputs[4] : nullptr;
    +  void *output = outputs[0];
    +  int im2col_step = std::min(batch, 32);
    +
    +  // TODO: add fp16 support
    +  auto data_type = inputDesc[0].type;
    +  switch (data_type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      ModulatedDeformConvForwardCUDAKernelLauncher_float(
    +          (float *)x, (float *)weight, (float *)bias, (float *)offset,
    +          (float *)mask, (float *)output, workSpace, batch, channels, height,
    +          width, channels_out, kernel_w, kernel_h, mStride.d[0], mStride.d[1],
    +          mPadding.d[0], mPadding.d[1], mDilation.d[0], mDilation.d[1], mGroup,
    +          mDeformableGroup, im2col_step, m_cublas_handle, stream);
    +      break;
    +    default:
    +      return 1;
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType ModulatedDeformableConvPluginDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *ModulatedDeformableConvPluginDynamic::getPluginType() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *ModulatedDeformableConvPluginDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int ModulatedDeformableConvPluginDynamic::getNbOutputs() const { return 1; }
    +
    +int ModulatedDeformableConvPluginDynamic::initialize() { return 0; }
    +
    +void ModulatedDeformableConvPluginDynamic::terminate() {}
    +
    +size_t ModulatedDeformableConvPluginDynamic::getSerializationSize() const {
    +  return sizeof(mStride) + sizeof(mPadding) + sizeof(mDilation) +
    +         sizeof(mDeformableGroup) + sizeof(mGroup);
    +}
    +
    +void ModulatedDeformableConvPluginDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mStride);
    +  serialize_value(&buffer, mPadding);
    +  serialize_value(&buffer, mDilation);
    +  serialize_value(&buffer, mDeformableGroup);
    +  serialize_value(&buffer, mGroup);
    +}
    +
    +void ModulatedDeformableConvPluginDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void ModulatedDeformableConvPluginDynamic::attachToContext(
    +    cudnnContext *cudnnContext, cublasContext *cublasContext,
    +    nvinfer1::IGpuAllocator *gpuAllocator) {
    +  m_cublas_handle = cublasContext;
    +}
    +
    +void ModulatedDeformableConvPluginDynamic::detachFromContext() {}
    +
    +void ModulatedDeformableConvPluginDynamic::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *ModulatedDeformableConvPluginDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +ModulatedDeformableConvPluginDynamicCreator::
    +    ModulatedDeformableConvPluginDynamicCreator() {
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("stride"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("padding"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("dilation"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("groups"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("deform_groups"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *ModulatedDeformableConvPluginDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *ModulatedDeformableConvPluginDynamicCreator::getPluginVersion()
    +    const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +ModulatedDeformableConvPluginDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *ModulatedDeformableConvPluginDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  nvinfer1::Dims stride{2, {1, 1}};
    +  nvinfer1::Dims padding{2, {0, 0}};
    +  nvinfer1::Dims dilation{2, {1, 1}};
    +  int deformableGroup = 1;
    +  int group = 1;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("deform_groups") == 0) {
    +      deformableGroup = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("groups") == 0) {
    +      group = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("stride") == 0) {
    +      stride.nbDims = 2;
    +      stride.d[0] = static_cast(fc->fields[i].data)[0];
    +      stride.d[1] = static_cast(fc->fields[i].data)[1];
    +    }
    +
    +    if (field_name.compare("padding") == 0) {
    +      padding.nbDims = 2;
    +      padding.d[0] = static_cast(fc->fields[i].data)[0];
    +      padding.d[1] = static_cast(fc->fields[i].data)[1];
    +    }
    +
    +    if (field_name.compare("dilation") == 0) {
    +      dilation.nbDims = 2;
    +      dilation.d[0] = static_cast(fc->fields[i].data)[0];
    +      dilation.d[1] = static_cast(fc->fields[i].data)[1];
    +    }
    +  }
    +
    +  ModulatedDeformableConvPluginDynamic *plugin =
    +      new ModulatedDeformableConvPluginDynamic(name, stride, padding, dilation,
    +                                               deformableGroup, group);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *
    +ModulatedDeformableConvPluginDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  auto plugin =
    +      new ModulatedDeformableConvPluginDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void ModulatedDeformableConvPluginDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *ModulatedDeformableConvPluginDynamicCreator::getPluginNamespace()
    +    const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu
    new file mode 100644
    index 000000000..3c5b723a0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu
    @@ -0,0 +1,134 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "modulated_deform_conv_cuda_kernel.cuh"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +template 
    +void trt_modulated_deformable_im2col(
    +    const T* data_im_, const T* data_offset_, const T* data_mask_,
    +    const int batch_size, const int channels, const int height_im,
    +    const int width_im, const int height_col, const int width_col,
    +    const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
    +    const int stride_h, const int stride_w, const int dilation_h,
    +    const int dilation_w, const int deformable_group, T* data_col_,
    +    cudaStream_t stream) {
    +  // num_axes should be smaller than block size
    +  const int channel_per_deformable_group = channels / deformable_group;
    +  const int num_kernels = channels * batch_size * height_col * width_col;
    +
    +  modulated_deformable_im2col_gpu_kernel
    +      <<>>(
    +          num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im,
    +          kernel_h, kenerl_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
    +          dilation_w, channel_per_deformable_group, batch_size, channels,
    +          deformable_group, height_col, width_col, data_col_);
    +
    +  cudaCheckError();
    +}
    +
    +template 
    +__global__ void output_add_bias_kernel(scalar_t* output, const scalar_t* bias,
    +                                       size_t step_batch, size_t step_channel,
    +                                       size_t n) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    output[index] += bias[(index % step_batch) / step_channel];
    +  }
    +}
    +
    +template 
    +static void output_add_bias(scalar_t* output, const scalar_t* bias,
    +                            size_t batch, size_t channel, size_t height,
    +                            size_t width, cudaStream_t stream) {
    +  size_t step_channel = height * width;
    +  size_t step_batch = step_channel * channel;
    +  size_t n = step_batch * batch;
    +  output_add_bias_kernel<<>>(
    +      output, bias, step_batch, step_channel, n);
    +}
    +
    +template 
    +void ModulatedDeformConvForwardCUDAKernelLauncher(
    +    const scalar_t* input, const scalar_t* weight, const scalar_t* bias,
    +    const scalar_t* offset, const scalar_t* mask, scalar_t* output,
    +    void* workspace, int batch, int channels, int height, int width,
    +    int channels_out, int kernel_w, int kernel_h, int stride_w, int stride_h,
    +    int pad_w, int pad_h, int dilation_w, int dilation_h, int group,
    +    int deformable_group, int im2col_step, cublasHandle_t cublas_handle,
    +    cudaStream_t stream) {
    +  size_t sizeof_dtype = sizeof(scalar_t);
    +  bool with_bias = (bias != nullptr);
    +
    +  im2col_step = std::min(int(batch), im2col_step);
    +  assert(batch % im2col_step == 0);
    +  const int channels_kernel = channels / group;
    +
    +  const int height_out =
    +      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    +  const int width_out =
    +      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
    +
    +  scalar_t* columns = (scalar_t*)workspace;
    +
    +  const size_t input_step = channels * height * width;
    +  const size_t offset_step =
    +      deformable_group * kernel_h * kernel_w * 2 * height_out * width_out;
    +  const size_t mask_step =
    +      deformable_group * kernel_h * kernel_w * height_out * width_out;
    +  const size_t out_step = channels_out * height_out * width_out;
    +  const size_t out_group_step = out_step / group;
    +  const size_t col_g_step =
    +      channels * kernel_w * kernel_h / group * height_out * width_out;
    +  const size_t weight_g_step =
    +      channels_out / group * channels / group * kernel_h * kernel_w;
    +
    +  const int m = channels_out / group;
    +  const int n = height_out * width_out;
    +  const int k = channels / group * kernel_h * kernel_w;
    +  scalar_t alpha = 1.;
    +  scalar_t beta = 0.;
    +
    +  for (int b = 0; b < batch; b++) {
    +    const scalar_t* input_start = input + b * input_step;
    +    const scalar_t* offset_start = offset + b * offset_step;
    +    const scalar_t* mask_start = mask + b * mask_step;
    +    trt_modulated_deformable_im2col(
    +        input_start, offset_start, mask_start, 1, channels, height, width,
    +        height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
    +        stride_w, dilation_h, dilation_w, deformable_group, columns, stream);
    +
    +    for (int g = 0; g < group; g++) {
    +      const scalar_t* weight_start = weight + g * weight_g_step;
    +      scalar_t* col_start = columns + g * col_g_step;
    +      scalar_t* out_buffer_start = output + b * out_step + g * out_group_step;
    +
    +      // cudaMemsetAsync(out_buffer_start, 0, 1, stream);
    +      cublasGemmWrap(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k,
    +                               &alpha, col_start, n, weight_start, k, &beta,
    +                               out_buffer_start, n);
    +      cudaCheckError();
    +    }
    +  }
    +
    +  if (with_bias) {
    +    output_add_bias(output, bias, batch, channels_out, height_out,
    +                              width_out, stream);
    +  }
    +}
    +
    +void ModulatedDeformConvForwardCUDAKernelLauncher_float(
    +    const float* input, const float* weight, const float* bias,
    +    const float* offset, const float* mask, float* output, void* workspace,
    +    int batch, int channels, int height, int width, int channels_out,
    +    int kernel_w, int kernel_h, int stride_w, int stride_h, int pad_w,
    +    int pad_h, int dilation_w, int dilation_h, int group, int deformable_group,
    +    int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream) {
    +  ModulatedDeformConvForwardCUDAKernelLauncher(
    +      input, weight, bias, offset, mask, output, workspace, batch, channels,
    +      height, width, channels_out, kernel_w, kernel_h, stride_w, stride_h,
    +      pad_w, pad_h, dilation_w, dilation_h, group, deformable_group,
    +      im2col_step, cublas_handle, stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms.cpp
    new file mode 100644
    index 000000000..64be215e7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms.cpp
    @@ -0,0 +1,279 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_nms.hpp"
    +
    +#include 
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +extern size_t get_onnxnms_workspace_size(
    +    size_t num_batches, size_t spatial_dimension, size_t num_classes,
    +    size_t boxes_word_size, int center_point_box, size_t output_length);
    +
    +extern void TRTNMSCUDAKernelLauncher_float(
    +    const float *boxes, const float *scores,
    +    const int max_output_boxes_per_class, const float iou_threshold,
    +    const float score_threshold, const int offset, int *output,
    +    int center_point_box, int num_batches, int spatial_dimension,
    +    int num_classes, size_t output_length, void *workspace,
    +    cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"NonMaxSuppression"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection NonMaxSuppressionDynamicCreator::mFC{};
    +std::vector
    +    NonMaxSuppressionDynamicCreator::mPluginAttributes;
    +
    +NonMaxSuppressionDynamic::NonMaxSuppressionDynamic(
    +    const std::string &name, int centerPointBox, int maxOutputBoxesPerClass,
    +    float iouThreshold, float scoreThreshold, int offset)
    +    : mLayerName(name),
    +      mCenterPointBox(centerPointBox),
    +      mMaxOutputBoxesPerClass(maxOutputBoxesPerClass),
    +      mIouThreshold(iouThreshold),
    +      mScoreThreshold(scoreThreshold),
    +      mOffset(offset) {}
    +
    +NonMaxSuppressionDynamic::NonMaxSuppressionDynamic(const std::string name,
    +                                                   const void *data,
    +                                                   size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mCenterPointBox);
    +  deserialize_value(&data, &length, &mMaxOutputBoxesPerClass);
    +  deserialize_value(&data, &length, &mIouThreshold);
    +  deserialize_value(&data, &length, &mScoreThreshold);
    +  deserialize_value(&data, &length, &mOffset);
    +}
    +
    +nvinfer1::IPluginV2DynamicExt *NonMaxSuppressionDynamic::clone() const {
    +  NonMaxSuppressionDynamic *plugin = new NonMaxSuppressionDynamic(
    +      mLayerName, mCenterPointBox, mMaxOutputBoxesPerClass, mIouThreshold,
    +      mScoreThreshold, mOffset);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs NonMaxSuppressionDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  nvinfer1::DimsExprs ret;
    +  ret.nbDims = 2;
    +  auto num_batches = inputs[0].d[0];
    +  auto spatial_dimension = inputs[0].d[1];
    +  if (mMaxOutputBoxesPerClass > 0) {
    +    spatial_dimension = exprBuilder.operation(
    +        nvinfer1::DimensionOperation::kMIN, *spatial_dimension,
    +        *exprBuilder.constant(mMaxOutputBoxesPerClass));
    +  }
    +  auto num_classes = inputs[1].d[1];
    +  ret.d[0] = exprBuilder.operation(
    +      nvinfer1::DimensionOperation::kPROD, *num_batches,
    +      *exprBuilder.operation(nvinfer1::DimensionOperation::kPROD,
    +                             *spatial_dimension, *num_classes));
    +  ret.d[1] = exprBuilder.constant(3);
    +
    +  return ret;
    +}
    +
    +bool NonMaxSuppressionDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  if (pos < nbInputs) {
    +    switch (pos) {
    +      case 0:
    +        // boxes
    +        return inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +               inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +      case 1:
    +        // scores
    +        return inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +               inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +      default:
    +        return true;
    +    }
    +  } else {
    +    switch (pos - nbInputs) {
    +      case 0:
    +        // selected_indices
    +        return inOut[pos].type == nvinfer1::DataType::kINT32 &&
    +               inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +      default:
    +        return true;
    +    }
    +  }
    +  return true;
    +}
    +
    +void NonMaxSuppressionDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t NonMaxSuppressionDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  size_t boxes_word_size = mmcv::getElementSize(inputs[0].type);
    +  size_t num_batches = inputs[0].dims.d[0];
    +  size_t spatial_dimension = inputs[0].dims.d[1];
    +  size_t num_classes = inputs[1].dims.d[1];
    +  size_t output_length = outputs[0].dims.d[0];
    +
    +  return get_onnxnms_workspace_size(num_batches, spatial_dimension, num_classes,
    +                                    boxes_word_size, mCenterPointBox,
    +                                    output_length);
    +}
    +
    +int NonMaxSuppressionDynamic::enqueue(
    +    const nvinfer1::PluginTensorDesc *inputDesc,
    +    const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
    +    void *const *outputs, void *workSpace, cudaStream_t stream) {
    +  int num_batches = inputDesc[0].dims.d[0];
    +  int spatial_dimension = inputDesc[0].dims.d[1];
    +  int num_classes = inputDesc[1].dims.d[1];
    +  int output_length = outputDesc[0].dims.d[0];
    +
    +  const float *boxes = (const float *)inputs[0];
    +  const float *scores = (const float *)inputs[1];
    +  int *output = (int *)outputs[0];
    +  TRTNMSCUDAKernelLauncher_float(
    +      boxes, scores, mMaxOutputBoxesPerClass, mIouThreshold, mScoreThreshold,
    +      mOffset, output, mCenterPointBox, num_batches, spatial_dimension,
    +      num_classes, output_length, workSpace, stream);
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType NonMaxSuppressionDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return nvinfer1::DataType::kINT32;
    +}
    +
    +// IPluginV2 Methods
    +const char *NonMaxSuppressionDynamic::getPluginType() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *NonMaxSuppressionDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int NonMaxSuppressionDynamic::getNbOutputs() const { return 1; }
    +
    +int NonMaxSuppressionDynamic::initialize() { return 0; }
    +
    +void NonMaxSuppressionDynamic::terminate() {}
    +
    +size_t NonMaxSuppressionDynamic::getSerializationSize() const {
    +  return sizeof(mCenterPointBox) + sizeof(mMaxOutputBoxesPerClass) +
    +         sizeof(mIouThreshold) + sizeof(mScoreThreshold) + sizeof(mOffset);
    +}
    +
    +void NonMaxSuppressionDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mCenterPointBox);
    +  serialize_value(&buffer, mMaxOutputBoxesPerClass);
    +  serialize_value(&buffer, mIouThreshold);
    +  serialize_value(&buffer, mScoreThreshold);
    +  serialize_value(&buffer, mOffset);
    +}
    +
    +void NonMaxSuppressionDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void NonMaxSuppressionDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *NonMaxSuppressionDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +NonMaxSuppressionDynamicCreator::NonMaxSuppressionDynamicCreator() {
    +  mPluginAttributes.clear();
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("center_point_box"));
    +  mPluginAttributes.emplace_back(
    +      nvinfer1::PluginField("max_output_boxes_per_class"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("iou_threshold"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("score_threshold"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("offset"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *NonMaxSuppressionDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *NonMaxSuppressionDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +NonMaxSuppressionDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *NonMaxSuppressionDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  int centerPointBox = 0;
    +  int maxOutputBoxesPerClass = 0;
    +  float iouThreshold = 0.0f;
    +  float scoreThreshold = 0.0f;
    +  int offset = 0;
    +
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("center_point_box") == 0) {
    +      centerPointBox = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("max_output_boxes_per_class") == 0) {
    +      maxOutputBoxesPerClass = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("iou_threshold") == 0) {
    +      iouThreshold = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("score_threshold") == 0) {
    +      scoreThreshold = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("offset") == 0) {
    +      offset = static_cast(fc->fields[i].data)[0];
    +    }
    +  }
    +  NonMaxSuppressionDynamic *plugin =
    +      new NonMaxSuppressionDynamic(name, centerPointBox, maxOutputBoxesPerClass,
    +                                   iouThreshold, scoreThreshold, offset);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *NonMaxSuppressionDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  auto plugin = new NonMaxSuppressionDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void NonMaxSuppressionDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *NonMaxSuppressionDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms_kernel.cu
    new file mode 100644
    index 000000000..3de37ca6e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_nms_kernel.cu
    @@ -0,0 +1,274 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "nms_cuda_kernel.cuh"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +struct NMSBox {
    +  float box[4];
    +};
    +
    +struct nms_centerwh2xyxy {
    +  __host__ __device__ NMSBox operator()(const NMSBox box) {
    +    NMSBox out;
    +    out.box[0] = box.box[0] - box.box[2] / 2.0f;
    +    out.box[1] = box.box[1] - box.box[3] / 2.0f;
    +    out.box[2] = box.box[0] + box.box[2] / 2.0f;
    +    out.box[3] = box.box[1] + box.box[3] / 2.0f;
    +    return out;
    +  }
    +};
    +
    +struct nms_sbox_idle {
    +  const float* idle_box_;
    +  __host__ __device__ nms_sbox_idle(const float* idle_box) {
    +    idle_box_ = idle_box;
    +  }
    +
    +  __host__ __device__ NMSBox operator()(const NMSBox box) {
    +    return {idle_box_[0], idle_box_[1], idle_box_[2], idle_box_[3]};
    +  }
    +};
    +
    +struct nms_score_threshold {
    +  float score_threshold_;
    +  __host__ __device__ nms_score_threshold(const float score_threshold) {
    +    score_threshold_ = score_threshold;
    +  }
    +
    +  __host__ __device__ bool operator()(const float score) {
    +    return score < score_threshold_;
    +  }
    +};
    +
    +__global__ void nms_reindex_kernel(int n, int* output, int* index_cache) {
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    const int old_index = output[index * 3 + 2];
    +    output[index * 3 + 2] = index_cache[old_index];
    +  }
    +}
    +
    +__global__ void mask_to_output_kernel(const unsigned long long* dev_mask,
    +                                      const int* index, int* output,
    +                                      int* output_count, int batch_id,
    +                                      int cls_id, int spatial_dimension,
    +                                      int col_blocks,
    +                                      int max_output_boxes_per_class) {
    +  extern __shared__ unsigned long long remv[];
    +
    +  // fill remv with 0
    +  CUDA_1D_KERNEL_LOOP(i, col_blocks) { remv[i] = 0; }
    +  __syncthreads();
    +
    +  int start = *output_count;
    +  int out_per_class_count = 0;
    +  for (int i = 0; i < spatial_dimension; i++) {
    +    const int nblock = i / threadsPerBlock;
    +    const int inblock = i % threadsPerBlock;
    +    if (!(remv[nblock] & (1ULL << inblock))) {
    +      if (threadIdx.x == 0) {
    +        output[start * 3 + 0] = batch_id;
    +        output[start * 3 + 1] = cls_id;
    +        output[start * 3 + 2] = index[i];
    +        start += 1;
    +      }
    +      out_per_class_count += 1;
    +      if (out_per_class_count >= max_output_boxes_per_class) {
    +        break;
    +      }
    +      __syncthreads();
    +      // set every overlap box with bit 1 in remv
    +      const unsigned long long* p = dev_mask + i * col_blocks;
    +      CUDA_1D_KERNEL_LOOP(j, col_blocks) {
    +        if (j >= nblock) {
    +          remv[j] |= p[j];
    +        }
    +      }  // j
    +      __syncthreads();
    +    }
    +  }  // i
    +  if (threadIdx.x == 0) {
    +    *output_count = start;
    +  }
    +}
    +
    +size_t get_onnxnms_workspace_size(size_t num_batches, size_t spatial_dimension,
    +                                  size_t num_classes, size_t boxes_word_size,
    +                                  int center_point_box, size_t output_length) {
    +  size_t boxes_xyxy_workspace = 0;
    +  if (center_point_box == 1) {
    +    boxes_xyxy_workspace = mmcv::getAlignedSize(
    +        num_batches * spatial_dimension * 4 * boxes_word_size);
    +  }
    +  size_t scores_workspace =
    +      mmcv::getAlignedSize(spatial_dimension * boxes_word_size);
    +  size_t boxes_workspace =
    +      mmcv::getAlignedSize(spatial_dimension * 4 * boxes_word_size);
    +  const int col_blocks =
    +      (spatial_dimension + threadsPerBlock - 1) / threadsPerBlock;
    +  size_t mask_workspace = mmcv::getAlignedSize(spatial_dimension * col_blocks *
    +                                               sizeof(unsigned long long));
    +  size_t index_template_workspace =
    +      mmcv::getAlignedSize(spatial_dimension * sizeof(int));
    +  size_t index_workspace =
    +      mmcv::getAlignedSize(spatial_dimension * sizeof(int));
    +  size_t count_workspace = mmcv::getAlignedSize(sizeof(int));
    +  return scores_workspace + boxes_xyxy_workspace + boxes_workspace +
    +         mask_workspace + index_template_workspace + index_workspace +
    +         count_workspace;
    +}
    +
    +/**
    + * Launch the NonMaxSuppression kernel
    + *
    + * The NMS will be performed on each batch/class, share the kernel implement
    + * `nms_cuda`. For each batch/class, the `boxes_sorted` and `index_cache` will
    + * be sorted by scores, boxes_sorted will be used in `nms_cuda` kernel. After
    + * that, the output would be generated by `mask_to_output_kernel` with
    + * `dev_mask` and `sorted_cache`.
    + *
    + * @param[in] bboxes with shape [num_batch, spatial_dimension, 4], input boxes
    + * @param[in] scores with shape [num_batch, num_classes, spatial_dimension],
    + *     input scores
    + * @param[in] max_output_boxes_per_class max output boxes per class
    + * @param[in] iou_threshold threshold of iou
    + * @param[in] score_threshold threshold of scores
    + * @param[in] offset box offset, only 0 or 1 is valid
    + * @param[out] output with shape [output_length, 3], each row contain index
    + *     (batch_id, class_id, boxes_id), filling -1 if result is not valid.
    + * @param[in] center_point_box 0 if boxes is [left, top, right, bottom] 1 if
    + *     boxes is [center_x, center_y, width, height]
    + * @param[in] num_batches batch size of boxes and scores
    + * @param[in] spatial_dimension boxes numbers each batch
    + * @param[in] num_classes class numbers
    + * @param[in] output_length the max output rows
    + * @param[in] workspace memory for all temporary variables.
    + * @param[in] stream cuda stream
    + */
    +void TRTNMSCUDAKernelLauncher_float(const float* boxes, const float* scores,
    +                                    const int max_output_boxes_per_class,
    +                                    const float iou_threshold,
    +                                    const float score_threshold,
    +                                    const int offset, int* output,
    +                                    int center_point_box, int num_batches,
    +                                    int spatial_dimension, int num_classes,
    +                                    size_t output_length, void* workspace,
    +                                    cudaStream_t stream) {
    +  const int col_blocks =
    +      (spatial_dimension + threadsPerBlock - 1) / threadsPerBlock;
    +  float* boxes_sorted = (float*)workspace;
    +  workspace = static_cast(workspace) +
    +              mmcv::getAlignedSize(spatial_dimension * 4 * sizeof(float));
    +
    +  float* boxes_xyxy = nullptr;
    +  if (center_point_box == 1) {
    +    boxes_xyxy = (float*)workspace;
    +    workspace = static_cast(workspace) +
    +                mmcv::getAlignedSize(num_batches * spatial_dimension * 4 *
    +                                     sizeof(float));
    +    thrust::transform(thrust::cuda::par.on(stream), (NMSBox*)boxes,
    +                      (NMSBox*)(boxes + num_batches * spatial_dimension * 4),
    +                      (NMSBox*)boxes_xyxy, nms_centerwh2xyxy());
    +    cudaCheckError();
    +  }
    +
    +  float* scores_sorted = (float*)workspace;
    +  workspace = static_cast(workspace) +
    +              mmcv::getAlignedSize(spatial_dimension * sizeof(float));
    +
    +  unsigned long long* dev_mask = (unsigned long long*)workspace;
    +  workspace = static_cast(workspace) +
    +              mmcv::getAlignedSize(spatial_dimension * col_blocks *
    +                                   sizeof(unsigned long long));
    +
    +  int* index_cache = (int*)workspace;
    +  workspace = static_cast(workspace) +
    +              mmcv::getAlignedSize(spatial_dimension * sizeof(int));
    +
    +  // generate sequence [0,1,2,3,4 ....]
    +  int* index_template = (int*)workspace;
    +  workspace = static_cast(workspace) +
    +              mmcv::getAlignedSize(spatial_dimension * sizeof(int));
    +  thrust::sequence(thrust::cuda::par.on(stream), index_template,
    +                   index_template + spatial_dimension, 0);
    +
    +  int max_output_boxes_per_class_cpu = max_output_boxes_per_class;
    +  if (max_output_boxes_per_class_cpu <= 0) {
    +    max_output_boxes_per_class_cpu = spatial_dimension;
    +  }
    +
    +  int* output_count = (int*)workspace;
    +  workspace = static_cast(workspace) + mmcv::getAlignedSize(sizeof(int));
    +  cudaMemsetAsync(output_count, 0, sizeof(int), stream);
    +
    +  // fill output with -1
    +  thrust::fill(thrust::cuda::par.on(stream), output, output + output_length * 3,
    +               -1);
    +  cudaCheckError();
    +
    +  dim3 blocks(col_blocks, col_blocks);
    +  dim3 threads(threadsPerBlock);
    +
    +  for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
    +    for (int cls_id = 0; cls_id < num_classes; ++cls_id) {
    +      const int batch_cls_id = batch_id * num_classes + cls_id;
    +
    +      // sort boxes by score
    +      cudaMemcpyAsync(scores_sorted, scores + batch_cls_id * spatial_dimension,
    +                      spatial_dimension * sizeof(float),
    +                      cudaMemcpyDeviceToDevice, stream);
    +      cudaCheckError();
    +
    +      cudaMemcpyAsync(index_cache, index_template,
    +                      spatial_dimension * sizeof(int), cudaMemcpyDeviceToDevice,
    +                      stream);
    +      cudaCheckError();
    +
    +      thrust::sort_by_key(thrust::cuda::par.on(stream), scores_sorted,
    +                          scores_sorted + spatial_dimension, index_cache,
    +                          thrust::greater());
    +
    +      if (center_point_box == 1) {
    +        thrust::gather(thrust::cuda::par.on(stream), index_cache,
    +                       index_cache + spatial_dimension,
    +                       (NMSBox*)(boxes_xyxy + batch_id * spatial_dimension * 4),
    +                       (NMSBox*)boxes_sorted);
    +      } else {
    +        thrust::gather(thrust::cuda::par.on(stream), index_cache,
    +                       index_cache + spatial_dimension,
    +                       (NMSBox*)(boxes + batch_id * spatial_dimension * 4),
    +                       (NMSBox*)boxes_sorted);
    +      }
    +
    +      cudaCheckError();
    +
    +      if (score_threshold > 0.0f) {
    +        thrust::transform_if(
    +            thrust::cuda::par.on(stream), (NMSBox*)boxes_sorted,
    +            (NMSBox*)(boxes_sorted + spatial_dimension * 4), scores_sorted,
    +            (NMSBox*)boxes_sorted, nms_sbox_idle(boxes_sorted),
    +            nms_score_threshold(score_threshold));
    +      }
    +
    +      nms_cuda<<>>(spatial_dimension, iou_threshold,
    +                                               offset, boxes_sorted, dev_mask);
    +
    +      // will be performed when dev_mask is full.
    +      mask_to_output_kernel<<<1, threadsPerBlock,
    +                              col_blocks * sizeof(unsigned long long),
    +                              stream>>>(
    +          dev_mask, index_cache, output, output_count, batch_id, cls_id,
    +          spatial_dimension, col_blocks, max_output_boxes_per_class_cpu);
    +    }  // cls_id
    +  }    // batch_id
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp
    new file mode 100644
    index 000000000..eec1bb2c7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp
    @@ -0,0 +1,27 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_plugin.hpp"
    +
    +#include "trt_corner_pool.hpp"
    +#include "trt_cummaxmin.hpp"
    +#include "trt_deform_conv.hpp"
    +#include "trt_grid_sampler.hpp"
    +#include "trt_instance_norm.hpp"
    +#include "trt_modulated_deform_conv.hpp"
    +#include "trt_nms.hpp"
    +#include "trt_roi_align.hpp"
    +#include "trt_scatternd.hpp"
    +
    +REGISTER_TENSORRT_PLUGIN(CumMaxPluginDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(CumMinPluginDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(GridSamplerDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(DeformableConvPluginDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(ModulatedDeformableConvPluginDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(NonMaxSuppressionDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(ONNXScatterNDDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(InstanceNormalizationDynamicCreator);
    +REGISTER_TENSORRT_PLUGIN(CornerPoolPluginDynamicCreator);
    +
    +extern "C" {
    +bool initLibMMCVInferPlugins() { return true; }
    +}  // extern "C"
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align.cpp
    new file mode 100644
    index 000000000..97700f939
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align.cpp
    @@ -0,0 +1,294 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_roi_align.hpp"
    +
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +extern void TRTRoIAlignForwardCUDAKernelLauncher_float(
    +    const float *input, const float *rois, float *output, float *argmax_y,
    +    float *argmax_x, int output_size, int channels, int height, int width,
    +    int aligned_height, int aligned_width, float spatial_scale,
    +    int sampling_ratio, int pool_mode, bool aligned, cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"MMCVRoiAlign"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection RoIAlignPluginDynamicCreator::mFC{};
    +std::vector
    +    RoIAlignPluginDynamicCreator::mPluginAttributes;
    +
    +RoIAlignPluginDynamic::RoIAlignPluginDynamic(const std::string &name,
    +                                             int outWidth, int outHeight,
    +                                             float spatialScale,
    +                                             int sampleRatio, int poolMode,
    +                                             bool aligned)
    +    : mLayerName(name),
    +      mOutWidth(outWidth),
    +      mOutHeight(outHeight),
    +      mSpatialScale(spatialScale),
    +      mSampleRatio(sampleRatio),
    +      mPoolMode(poolMode),
    +      mAligned(aligned) {}
    +
    +RoIAlignPluginDynamic::RoIAlignPluginDynamic(const std::string name,
    +                                             const void *data, size_t length)
    +    : mLayerName(name) {
    +  deserialize_value(&data, &length, &mOutWidth);
    +  deserialize_value(&data, &length, &mOutHeight);
    +  deserialize_value(&data, &length, &mSpatialScale);
    +  deserialize_value(&data, &length, &mSampleRatio);
    +  deserialize_value(&data, &length, &mPoolMode);
    +  deserialize_value(&data, &length, &mAligned);
    +}
    +
    +nvinfer1::IPluginV2DynamicExt *RoIAlignPluginDynamic::clone() const {
    +  RoIAlignPluginDynamic *plugin = new RoIAlignPluginDynamic(
    +      mLayerName, mOutWidth, mOutHeight, mSpatialScale, mSampleRatio, mPoolMode,
    +      mAligned);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs RoIAlignPluginDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  nvinfer1::DimsExprs ret;
    +  ret.nbDims = 4;
    +  ret.d[0] = inputs[1].d[0];
    +  ret.d[1] = inputs[0].d[1];
    +  ret.d[2] = exprBuilder.constant(mOutHeight);
    +  ret.d[3] = exprBuilder.constant(mOutWidth);
    +
    +  return ret;
    +}
    +
    +bool RoIAlignPluginDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  return inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +         inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +}
    +
    +void RoIAlignPluginDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t RoIAlignPluginDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  size_t output_size = 0;
    +  size_t word_size = 0;
    +  switch (mPoolMode) {
    +    case 0:  // max
    +      output_size = outputs[0].dims.d[0] * outputs[0].dims.d[1] *
    +                    outputs[0].dims.d[2] * outputs[0].dims.d[3];
    +      word_size = mmcv::getElementSize(outputs[0].type);
    +      return output_size * word_size * 2;
    +      break;
    +    case 1:
    +      return 0;
    +      break;
    +    default:
    +      return 0;
    +  }
    +  return 0;
    +}
    +
    +int RoIAlignPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +                                   const nvinfer1::PluginTensorDesc *outputDesc,
    +                                   const void *const *inputs,
    +                                   void *const *outputs, void *workSpace,
    +                                   cudaStream_t stream) {
    +  int channels = inputDesc[0].dims.d[1];
    +  int height = inputDesc[0].dims.d[2];
    +  int width = inputDesc[0].dims.d[3];
    +
    +  int output_size = outputDesc[0].dims.d[0] * outputDesc[0].dims.d[1] *
    +                    outputDesc[0].dims.d[2] * outputDesc[0].dims.d[3];
    +  int word_size = mmcv::getElementSize(outputDesc[0].type);
    +
    +  const void *feat = inputs[0];
    +  const void *rois = inputs[1];
    +  void *output = outputs[0];
    +  void *argmax_y = nullptr;
    +  void *argmax_x = nullptr;
    +
    +  switch (mPoolMode) {
    +    case 0:  // max
    +      argmax_y = workSpace;
    +      argmax_x = argmax_y + output_size * word_size;
    +      break;
    +    case 1:  // avg
    +      break;
    +  }
    +
    +  switch (outputDesc[0].type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      TRTRoIAlignForwardCUDAKernelLauncher_float(
    +          (const float *)feat, (const float *)rois, (float *)output,
    +          (float *)argmax_y, (float *)argmax_x, output_size, channels, height,
    +          width, mOutHeight, mOutWidth, mSpatialScale, mSampleRatio, mPoolMode,
    +          mAligned, stream);
    +      break;
    +
    +    default:
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType RoIAlignPluginDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *RoIAlignPluginDynamic::getPluginType() const { return PLUGIN_NAME; }
    +
    +const char *RoIAlignPluginDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int RoIAlignPluginDynamic::getNbOutputs() const { return 1; }
    +
    +int RoIAlignPluginDynamic::initialize() { return 0; }
    +
    +void RoIAlignPluginDynamic::terminate() {}
    +
    +size_t RoIAlignPluginDynamic::getSerializationSize() const {
    +  return sizeof(mOutWidth) + sizeof(mOutHeight) + sizeof(mSpatialScale) +
    +         sizeof(mSampleRatio) + sizeof(mPoolMode) + sizeof(mAligned);
    +}
    +
    +void RoIAlignPluginDynamic::serialize(void *buffer) const {
    +  serialize_value(&buffer, mOutWidth);
    +  serialize_value(&buffer, mOutHeight);
    +  serialize_value(&buffer, mSpatialScale);
    +  serialize_value(&buffer, mSampleRatio);
    +  serialize_value(&buffer, mPoolMode);
    +  serialize_value(&buffer, mAligned);
    +}
    +
    +void RoIAlignPluginDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void RoIAlignPluginDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *RoIAlignPluginDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +RoIAlignPluginDynamicCreator::RoIAlignPluginDynamicCreator() {
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("output_height"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("output_width"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("spatial_scale"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("sampling_ratio"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("mode"));
    +  mPluginAttributes.emplace_back(nvinfer1::PluginField("aligned"));
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *RoIAlignPluginDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *RoIAlignPluginDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +RoIAlignPluginDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *RoIAlignPluginDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  int outWidth = 7;
    +  int outHeight = 7;
    +  float spatialScale = 1.0;
    +  int sampleRatio = 0;
    +  int poolMode = -1;
    +  bool aligned = true;
    +  for (int i = 0; i < fc->nbFields; i++) {
    +    if (fc->fields[i].data == nullptr) {
    +      continue;
    +    }
    +    std::string field_name(fc->fields[i].name);
    +
    +    if (field_name.compare("output_height") == 0) {
    +      outHeight = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("output_width") == 0) {
    +      outWidth = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("spatial_scale") == 0) {
    +      spatialScale = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("sampling_ratio") == 0) {
    +      sampleRatio = static_cast(fc->fields[i].data)[0];
    +    }
    +
    +    if (field_name.compare("mode") == 0) {
    +      int data_size = fc->fields[i].length;
    +      const char *data_start = static_cast(fc->fields[i].data);
    +      std::string poolModeStr(data_start, data_size);
    +      if (poolModeStr == "avg") {
    +        poolMode = 1;
    +      } else if (poolModeStr == "max") {
    +        poolMode = 0;
    +      } else {
    +        std::cout << "Unknown pool mode \"" << poolModeStr << "\"."
    +                  << std::endl;
    +      }
    +      assert(poolMode >= 0);
    +    }
    +
    +    if (field_name.compare("aligned") == 0) {
    +      int aligned_int = static_cast(fc->fields[i].data)[0];
    +      aligned = aligned_int != 0;
    +    }
    +  }
    +
    +  assert(outHeight > 0);
    +  assert(outWidth > 0);
    +  assert(spatialScale > 0.);
    +  assert(poolMode >= 0);
    +
    +  RoIAlignPluginDynamic *plugin = new RoIAlignPluginDynamic(
    +      name, outWidth, outHeight, spatialScale, sampleRatio, poolMode, aligned);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *RoIAlignPluginDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  auto plugin = new RoIAlignPluginDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void RoIAlignPluginDynamicCreator::setPluginNamespace(
    +    const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *RoIAlignPluginDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align_kernel.cu
    new file mode 100644
    index 000000000..650bc685c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_roi_align_kernel.cu
    @@ -0,0 +1,28 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "common_cuda_helper.hpp"
    +#include "roi_align_cuda_kernel.cuh"
    +
    +template 
    +void TRTRoIAlignForwardCUDAKernelLauncher(
    +    const scalar_t* input, const scalar_t* rois, scalar_t* output,
    +    scalar_t* argmax_y, scalar_t* argmax_x, int output_size, int channels,
    +    int height, int width, int aligned_height, int aligned_width,
    +    scalar_t spatial_scale, int sampling_ratio, int pool_mode, bool aligned,
    +    cudaStream_t stream) {
    +  roi_align_forward_cuda_kernel
    +      <<>>(
    +          output_size, input, rois, output, argmax_y, argmax_x, aligned_height,
    +          aligned_width, static_cast(spatial_scale), sampling_ratio,
    +          pool_mode, aligned, channels, height, width);
    +}
    +
    +void TRTRoIAlignForwardCUDAKernelLauncher_float(
    +    const float* input, const float* rois, float* output, float* argmax_y,
    +    float* argmax_x, int output_size, int channels, int height, int width,
    +    int aligned_height, int aligned_width, float spatial_scale,
    +    int sampling_ratio, int pool_mode, bool aligned, cudaStream_t stream) {
    +  TRTRoIAlignForwardCUDAKernelLauncher(
    +      input, rois, output, argmax_y, argmax_x, output_size, channels, height,
    +      width, aligned_height, aligned_width, spatial_scale, sampling_ratio,
    +      pool_mode, aligned, stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd.cpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd.cpp
    new file mode 100644
    index 000000000..0d0779020
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd.cpp
    @@ -0,0 +1,207 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include "trt_scatternd.hpp"
    +
    +#include 
    +#include 
    +
    +#include 
    +
    +#include "trt_serialize.hpp"
    +
    +extern void TRTONNXScatterNDKernelLauncher_float(
    +    const float *data, const int *indices, const float *update, const int *dims,
    +    int nbDims, const int *indices_dims, int indice_nbDims, float *output,
    +    cudaStream_t stream);
    +
    +extern void TRTONNXScatterNDKernelLauncher_int32(
    +    const int *data, const int *indices, const int *update, const int *dims,
    +    int nbDims, const int *indices_dims, int indice_nbDims, int *output,
    +    cudaStream_t stream);
    +
    +namespace {
    +static const char *PLUGIN_VERSION{"1"};
    +static const char *PLUGIN_NAME{"ScatterND"};
    +}  // namespace
    +
    +nvinfer1::PluginFieldCollection ONNXScatterNDDynamicCreator::mFC{};
    +std::vector
    +    ONNXScatterNDDynamicCreator::mPluginAttributes;
    +
    +ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string &name)
    +    : mLayerName(name) {}
    +
    +ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string name,
    +                                           const void *data, size_t length)
    +    : mLayerName(name) {}
    +
    +nvinfer1::IPluginV2DynamicExt *ONNXScatterNDDynamic::clone() const {
    +  ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(mLayerName);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +
    +  return plugin;
    +}
    +
    +nvinfer1::DimsExprs ONNXScatterNDDynamic::getOutputDimensions(
    +    int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +    nvinfer1::IExprBuilder &exprBuilder) {
    +  return inputs[0];
    +}
    +
    +bool ONNXScatterNDDynamic::supportsFormatCombination(
    +    int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
    +    int nbOutputs) {
    +  if (pos < nbInputs) {
    +    switch (pos) {
    +      case 0:
    +        // data
    +        return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
    +                inOut[pos].format == nvinfer1::TensorFormat::kLINEAR) ||
    +               (inOut[pos].type == nvinfer1::DataType::kINT32 &&
    +                inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
    +      case 1:
    +        // indices
    +        return inOut[pos].type == nvinfer1::DataType::kINT32 &&
    +               inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
    +      case 2:
    +        // updates
    +        return inOut[pos].type == inOut[0].type &&
    +               inOut[pos].format == inOut[0].format;
    +      default:
    +        return true;
    +    }
    +  } else {
    +    switch (pos - nbInputs) {
    +      case 0:
    +        // output
    +        return inOut[pos].type == inOut[0].type &&
    +               inOut[pos].format == inOut[0].format;
    +      default:
    +        return true;
    +    }
    +  }
    +  return true;
    +}
    +
    +void ONNXScatterNDDynamic::configurePlugin(
    +    const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
    +
    +size_t ONNXScatterNDDynamic::getWorkspaceSize(
    +    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    +    const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
    +  return 0;
    +}
    +
    +int ONNXScatterNDDynamic::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +                                  const nvinfer1::PluginTensorDesc *outputDesc,
    +                                  const void *const *inputs,
    +                                  void *const *outputs, void *workSpace,
    +                                  cudaStream_t stream) {
    +  const int *dims = &(inputDesc[0].dims.d[0]);
    +  const int *indices_dims = &(inputDesc[1].dims.d[0]);
    +  int nbDims = inputDesc[0].dims.nbDims;
    +  int indice_nbDims = inputDesc[1].dims.nbDims;
    +
    +  const void *data = inputs[0];
    +  const void *indices = inputs[1];
    +  const void *update = inputs[2];
    +  void *output = outputs[0];
    +
    +  auto data_type = inputDesc[0].type;
    +
    +  switch (data_type) {
    +    case nvinfer1::DataType::kFLOAT:
    +      TRTONNXScatterNDKernelLauncher_float(
    +          (float *)data, (int *)indices, (float *)update, dims, nbDims,
    +          indices_dims, indice_nbDims, (float *)output, stream);
    +      break;
    +
    +    case nvinfer1::DataType::kINT32:
    +      TRTONNXScatterNDKernelLauncher_int32(
    +          (int *)data, (int *)indices, (int *)update, dims, nbDims,
    +          indices_dims, indice_nbDims, (int *)output, stream);
    +      break;
    +    default:
    +      break;
    +  }
    +
    +  return 0;
    +}
    +
    +nvinfer1::DataType ONNXScatterNDDynamic::getOutputDataType(
    +    int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
    +  return inputTypes[0];
    +}
    +
    +// IPluginV2 Methods
    +const char *ONNXScatterNDDynamic::getPluginType() const { return PLUGIN_NAME; }
    +
    +const char *ONNXScatterNDDynamic::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +int ONNXScatterNDDynamic::getNbOutputs() const { return 1; }
    +
    +int ONNXScatterNDDynamic::initialize() { return 0; }
    +
    +void ONNXScatterNDDynamic::terminate() {}
    +
    +size_t ONNXScatterNDDynamic::getSerializationSize() const { return 0; }
    +
    +void ONNXScatterNDDynamic::serialize(void *buffer) const {}
    +
    +void ONNXScatterNDDynamic::destroy() {
    +  // This gets called when the network containing plugin is destroyed
    +  delete this;
    +}
    +
    +void ONNXScatterNDDynamic::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *ONNXScatterNDDynamic::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    +
    +////////////////////// creator /////////////////////////////
    +
    +ONNXScatterNDDynamicCreator::ONNXScatterNDDynamicCreator() {
    +  mPluginAttributes.clear();
    +  mFC.nbFields = mPluginAttributes.size();
    +  mFC.fields = mPluginAttributes.data();
    +}
    +
    +const char *ONNXScatterNDDynamicCreator::getPluginName() const {
    +  return PLUGIN_NAME;
    +}
    +
    +const char *ONNXScatterNDDynamicCreator::getPluginVersion() const {
    +  return PLUGIN_VERSION;
    +}
    +
    +const nvinfer1::PluginFieldCollection *
    +ONNXScatterNDDynamicCreator::getFieldNames() {
    +  return &mFC;
    +}
    +
    +nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::createPlugin(
    +    const char *name, const nvinfer1::PluginFieldCollection *fc) {
    +  ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(name);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::deserializePlugin(
    +    const char *name, const void *serialData, size_t serialLength) {
    +  auto plugin = new ONNXScatterNDDynamic(name, serialData, serialLength);
    +  plugin->setPluginNamespace(getPluginNamespace());
    +  return plugin;
    +}
    +
    +void ONNXScatterNDDynamicCreator::setPluginNamespace(const char *libNamespace) {
    +  mNamespace = libNamespace;
    +}
    +
    +const char *ONNXScatterNDDynamicCreator::getPluginNamespace() const {
    +  return mNamespace.c_str();
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd_kernel.cu b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd_kernel.cu
    new file mode 100644
    index 000000000..f1b095efa
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/plugins/trt_scatternd_kernel.cu
    @@ -0,0 +1,93 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#include 
    +
    +#include 
    +
    +#include "common_cuda_helper.hpp"
    +#include "trt_cuda_helper.cuh"
    +#include "trt_plugin_helper.hpp"
    +
    +static int const threadsPerBlock = sizeof(unsigned long long int) * 8;
    +
    +using mmcv::TensorDesc;
    +
    +template 
    +__global__ void onnx_scatternd_kernel(const int n, const int* indices,
    +                                      const T* update, T* output,
    +                                      TensorDesc tensor_desc,
    +                                      TensorDesc indice_desc) {
    +  const int indice_cols = indice_desc.shape[indice_desc.dim - 1];
    +  const int copy_stride = tensor_desc.stride[indice_cols - 1];
    +  const int* stride = &(tensor_desc.stride[0]);
    +  CUDA_1D_KERNEL_LOOP(index, n) {
    +    int output_offset = 0;
    +    const int* indices_current = indices + index * indice_cols;
    +    for (int i = 0; i < indice_cols; ++i) {
    +      output_offset += stride[i] * indices_current[i];
    +    }
    +    memcpy(output + output_offset, update + index * copy_stride,
    +           copy_stride * sizeof(T));
    +  }
    +}
    +
    +template 
    +void TRTONNXScatterNDKernelLauncher(const T* data, const int* indices,
    +                                    const T* update, const int* dims,
    +                                    int nbDims, const int* indices_dims,
    +                                    int indice_nbDims, T* output,
    +                                    cudaStream_t stream) {
    +  // fill tensordesc and initial
    +  TensorDesc tensor_desc;
    +  memset((void*)&tensor_desc, 0, sizeof(TensorDesc));
    +  tensor_desc.dim = nbDims;
    +  tensor_desc.shape[nbDims - 1] = dims[nbDims - 1];
    +  tensor_desc.stride[nbDims - 1] = 1;
    +  for (int i = nbDims - 2; i >= 0; --i) {
    +    tensor_desc.shape[i] = dims[i];
    +    tensor_desc.stride[i] = dims[i + 1] * tensor_desc.stride[i + 1];
    +  }
    +  const int data_size = tensor_desc.stride[0] * tensor_desc.shape[0];
    +
    +  TensorDesc indice_desc;
    +  memset((void*)&indice_desc, 0, sizeof(TensorDesc));
    +  indice_desc.dim = indice_nbDims;
    +  indice_desc.shape[indice_nbDims - 1] = indices_dims[indice_nbDims - 1];
    +  indice_desc.stride[indice_nbDims - 1] = 1;
    +  for (int i = indice_nbDims - 2; i >= 0; --i) {
    +    indice_desc.shape[i] = indices_dims[i];
    +    indice_desc.stride[i] = indices_dims[i + 1] * indice_desc.stride[i + 1];
    +  }
    +
    +  // output = np.copy(data)
    +  cudaMemcpyAsync(output, data, data_size * sizeof(T),
    +                  cudaMemcpyDeviceToDevice);
    +
    +  int num_update_indice = 1;
    +  for (int i = 0; i < indice_nbDims - 1; ++i) {
    +    num_update_indice *= indice_desc.shape[i];
    +  }
    +  // scatter
    +  const int col_block = GET_BLOCKS(num_update_indice, threadsPerBlock);
    +  onnx_scatternd_kernel<<>>(
    +      num_update_indice, indices, update, output, tensor_desc, indice_desc);
    +}
    +
    +void TRTONNXScatterNDKernelLauncher_float(const float* data, const int* indices,
    +                                          const float* update, const int* dims,
    +                                          int nbDims, const int* indices_dims,
    +                                          int indice_nbDims, float* output,
    +                                          cudaStream_t stream) {
    +  TRTONNXScatterNDKernelLauncher(data, indices, update, dims, nbDims,
    +                                        indices_dims, indice_nbDims, output,
    +                                        stream);
    +}
    +
    +void TRTONNXScatterNDKernelLauncher_int32(const int* data, const int* indices,
    +                                          const int* update, const int* dims,
    +                                          int nbDims, const int* indices_dims,
    +                                          int indice_nbDims, int* output,
    +                                          cudaStream_t stream) {
    +  TRTONNXScatterNDKernelLauncher(data, indices, update, dims, nbDims,
    +                                      indices_dims, indice_nbDims, output,
    +                                      stream);
    +}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_corner_pool.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_corner_pool.hpp
    new file mode 100644
    index 000000000..f34e15b31
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_corner_pool.hpp
    @@ -0,0 +1,111 @@
    +#ifndef TRT_CORNER_POOL_HPP
    +#define TRT_CORNER_POOL_HPP
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +enum TRT_CORNER_POOL_TYPE {
    +  TRT_TOP_POOL = 0,
    +  TRT_BOTTOM_POOL = 1,
    +  TRT_LEFT_POOL = 2,
    +  TRT_RIGHT_POOL = 3
    +};
    +
    +// implement of CornerPool
    +class CornerPoolPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  CornerPoolPluginDynamic(const std::string &name,
    +                          TRT_CORNER_POOL_TYPE poolType);
    +
    +  CornerPoolPluginDynamic(const std::string name, const void *data,
    +                          size_t length);
    +
    +  CornerPoolPluginDynamic() = delete;
    +
    +  ~CornerPoolPluginDynamic();
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + protected:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  TRT_CORNER_POOL_TYPE mPoolType;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +// CornerPool creator
    +class CornerPoolPluginDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  CornerPoolPluginDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + protected:
    +  nvinfer1::PluginFieldCollection mFC;
    +  std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +
    +#endif TRT_CORNER_POOL_HPP  // TRT_CORNER_POOL_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh
    new file mode 100644
    index 000000000..846d06a41
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh
    @@ -0,0 +1,39 @@
    +// Copyright (c) OpenMMLab. All rights reserved
    +#ifndef TRT_CUDA_HELPER_HPP
    +#define TRT_CUDA_HELPER_HPP
    +#include 
    +
    +#define cudaCheckError()                                       \
    +  {                                                            \
    +    cudaError_t e = cudaGetLastError();                        \
    +    if (e != cudaSuccess) {                                    \
    +      printf("Cuda failure %s:%d: '%s'\n", __FILE__, __LINE__, \
    +             cudaGetErrorString(e));                           \
    +      exit(0);                                                 \
    +    }                                                          \
    +  }
    +
    +/**
    + * Returns a view of the original tensor with its dimensions permuted.
    + *
    + * @param[out] dst pointer to the destination tensor
    + * @param[in] src pointer to the source tensor
    + * @param[in] src_size shape of the src tensor
    + * @param[in] permute The desired ordering of dimensions
    + * @param[in] src_dim dim of src tensor
    + * @param[in] stream cuda stream handle
    + */
    +template 
    +void memcpyPermute(scalar_t* dst, const scalar_t* src, int* src_size,
    +                   int* permute, int src_dim, cudaStream_t stream = 0);
    +
    +template 
    +cublasStatus_t cublasGemmWrap(cublasHandle_t handle, cublasOperation_t transa,
    +                              cublasOperation_t transb, int m, int n, int k,
    +                              const scalar_t* alpha, const scalar_t* A, int lda,
    +                              const scalar_t* B, int ldb, const scalar_t* beta,
    +                              scalar_t* C, int ldc) {
    +  return CUBLAS_STATUS_INTERNAL_ERROR;
    +}
    +
    +#endif  // TRT_CUDA_HELPER_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cummaxmin.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cummaxmin.hpp
    new file mode 100644
    index 000000000..5b856b02f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_cummaxmin.hpp
    @@ -0,0 +1,122 @@
    +#ifndef TRT_CUMMAXMIN_HPP
    +#define TRT_CUMMAXMIN_HPP
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +enum TRT_CUMCMPTYPE { TRT_CUMMAX = 0, TRT_CUMMIN = 1 };
    +
    +// implement of cummax and cummin
    +class CumMaxMinPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  CumMaxMinPluginDynamic(const std::string &name, int dim,
    +                         TRT_CUMCMPTYPE cumType);
    +
    +  CumMaxMinPluginDynamic(const std::string name, const void *data,
    +                         size_t length);
    +
    +  CumMaxMinPluginDynamic() = delete;
    +
    +  ~CumMaxMinPluginDynamic();
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + protected:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  int mDim;
    +  TRT_CUMCMPTYPE mCumType;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +// cummax and cummin creator
    +class CumMaxMinPluginDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE cumType);
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + protected:
    +  TRT_CUMCMPTYPE mCumType;
    +  nvinfer1::PluginFieldCollection mFC;
    +  std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +
    +// cummax creator
    +class CumMaxPluginDynamicCreator : public CumMaxMinPluginDynamicCreator {
    + public:
    +  CumMaxPluginDynamicCreator();
    +  const char *getPluginName() const override;
    +};
    +
    +// cummin creator
    +class CumMinPluginDynamicCreator : public CumMaxMinPluginDynamicCreator {
    + public:
    +  CumMinPluginDynamicCreator();
    +  const char *getPluginName() const override;
    +};
    +
    +#endif TRT_CUMMAXMIN_HPP  // TRT_CUMMAXMIN_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp
    new file mode 100644
    index 000000000..fc48ac5dd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp
    @@ -0,0 +1,118 @@
    +#ifndef TRT_DEFORM_CONV_HPP
    +#define TRT_DEFORM_CONV_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +class DeformableConvPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  DeformableConvPluginDynamic(const std::string &name,
    +                              const nvinfer1::Dims &stride,
    +                              const nvinfer1::Dims &padding,
    +                              const nvinfer1::Dims &dilation,
    +                              const int deformableGroup, const int group,
    +                              int im2colStep);
    +
    +  DeformableConvPluginDynamic(const std::string name, const void *data,
    +                              size_t length);
    +
    +  DeformableConvPluginDynamic() = delete;
    +
    +  ~DeformableConvPluginDynamic();
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +  void attachToContext(cudnnContext *cudnnContext, cublasContext *cublasContext,
    +                       nvinfer1::IGpuAllocator *gpuAllocator) override;
    +  void detachFromContext() override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  nvinfer1::Dims mStride;
    +  nvinfer1::Dims mPadding;
    +  nvinfer1::Dims mDilation;
    +  int mDeformableGroup;
    +  int mGroup;
    +  int mIm2colStep;
    +
    +  cublasHandle_t m_cublas_handle;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class DeformableConvPluginDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  DeformableConvPluginDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_DEFORM_CONV_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_grid_sampler.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_grid_sampler.hpp
    new file mode 100644
    index 000000000..40920ce5f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_grid_sampler.hpp
    @@ -0,0 +1,108 @@
    +#ifndef TRT_GRID_SAMPLER_HPP
    +#define TRT_GRID_SAMPLER_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +namespace mmcv {
    +enum class GridSamplerInterpolation { Bilinear, Nearest };
    +enum class GridSamplerPadding { Zeros, Border, Reflection };
    +}  // namespace mmcv
    +
    +class GridSamplerDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  GridSamplerDynamic(const std::string &name, int mode, int paddingMode,
    +                     bool alignCorners);
    +
    +  GridSamplerDynamic(const std::string name, const void *data, size_t length);
    +
    +  GridSamplerDynamic() = delete;
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  int mMode;
    +  int mPaddingMode;
    +  bool mAlignCorners;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class GridSamplerDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  GridSamplerDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_GRID_SAMPLER_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_instance_norm.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_instance_norm.hpp
    new file mode 100644
    index 000000000..78060c390
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_instance_norm.hpp
    @@ -0,0 +1,120 @@
    +// Modified from:
    +// https://github.com/NVIDIA/TensorRT/blob/master/plugin/instanceNormalizationPlugin/instanceNormalizationPlugin.h
    +
    +#ifndef TRT_INSTANCE_NORMALIZATION_PLUGIN_H
    +#define TRT_INSTANCE_NORMALIZATION_PLUGIN_H
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +typedef unsigned short half_type;
    +
    +class InstanceNormalizationDynamic final
    +    : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  InstanceNormalizationDynamic(const std::string& name, float epsilon);
    +
    +  InstanceNormalizationDynamic(const std::string& name, void const* serialData,
    +                               size_t serialLength);
    +
    +  InstanceNormalizationDynamic() = delete;
    +
    +  ~InstanceNormalizationDynamic() override;
    +
    +  int getNbOutputs() const override;
    +
    +  // DynamicExt plugins returns DimsExprs class instead of Dims
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
    +      nvinfer1::IExprBuilder& exprBuilder) override;
    +
    +  int initialize() override;
    +
    +  void terminate() override;
    +
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc* outputs,
    +                          int nbOutputs) const override;
    +
    +  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
    +              const nvinfer1::PluginTensorDesc* outputDesc,
    +              const void* const* inputs, void* const* outputs, void* workspace,
    +              cudaStream_t stream) override;
    +
    +  size_t getSerializationSize() const override;
    +
    +  void serialize(void* buffer) const override;
    +
    +  // DynamicExt plugin supportsFormat update.
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc* inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +
    +  const char* getPluginType() const override;
    +
    +  const char* getPluginVersion() const override;
    +
    +  void destroy() override;
    +
    +  nvinfer1::IPluginV2DynamicExt* clone() const override;
    +
    +  void setPluginNamespace(const char* pluginNamespace) override;
    +
    +  const char* getPluginNamespace() const override;
    +
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType* inputTypes,
    +                                       int nbInputs) const override;
    +
    +  void attachToContext(cudnnContext* cudnn, cublasContext* cublas,
    +                       nvinfer1::IGpuAllocator* allocator) override;
    +
    +  void detachFromContext() override;
    +
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc* out,
    +                       int nbOutputs) override;
    +
    + private:
    +  const std::string mLayerName;
    +  float mEpsilon{};
    +  cudnnHandle_t _cudnn_handle{};
    +  cudnnTensorDescriptor_t _x_desc{}, _y_desc{}, _b_desc{};
    +  std::string mPluginNamespace{};
    +};
    +
    +class InstanceNormalizationDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  InstanceNormalizationDynamicCreator();
    +
    +  ~InstanceNormalizationDynamicCreator() override = default;
    +
    +  const char* getPluginName() const override;
    +
    +  const char* getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection* getFieldNames() override;
    +
    +  nvinfer1::IPluginV2DynamicExt* createPlugin(
    +      const char* name, const nvinfer1::PluginFieldCollection* fc) override;
    +
    +  nvinfer1::IPluginV2DynamicExt* deserializePlugin(
    +      const char* name, const void* serialData, size_t serialLength) override;
    +
    +  void setPluginNamespace(const char* pluginNamespace) override;
    +
    +  const char* getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +
    +#endif  // TRT_INSTANCE_NORMALIZATION_PLUGIN_H
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp
    new file mode 100644
    index 000000000..0907e7ea8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp
    @@ -0,0 +1,120 @@
    +#ifndef TRT_MODULATED_DEFORM_CONV_HPP
    +#define TRT_MODULATED_DEFORM_CONV_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +class ModulatedDeformableConvPluginDynamic
    +    : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  ModulatedDeformableConvPluginDynamic(const std::string &name,
    +                                       const nvinfer1::Dims stride,
    +                                       const nvinfer1::Dims padding,
    +                                       const nvinfer1::Dims dilation,
    +                                       const int deformableGroup,
    +                                       const int group);
    +
    +  ModulatedDeformableConvPluginDynamic(const std::string name, const void *data,
    +                                       size_t length);
    +
    +  ModulatedDeformableConvPluginDynamic() = delete;
    +
    +  ~ModulatedDeformableConvPluginDynamic();
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +  void attachToContext(cudnnContext *cudnnContext, cublasContext *cublasContext,
    +                       nvinfer1::IGpuAllocator *gpuAllocator) override;
    +  void detachFromContext() override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  nvinfer1::Dims mStride;
    +  nvinfer1::Dims mPadding;
    +  nvinfer1::Dims mDilation;
    +  int mDeformableGroup;
    +  int mGroup;
    +  bool mWithBias;
    +
    +  cublasHandle_t m_cublas_handle;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class ModulatedDeformableConvPluginDynamicCreator
    +    : public nvinfer1::IPluginCreator {
    + public:
    +  ModulatedDeformableConvPluginDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_MODULATED_DEFORM_CONV_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_nms.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_nms.hpp
    new file mode 100644
    index 000000000..a914d9094
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_nms.hpp
    @@ -0,0 +1,107 @@
    +#ifndef TRT_NMS_HPP
    +#define TRT_NMS_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +class NonMaxSuppressionDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  NonMaxSuppressionDynamic(const std::string &name, int centerPointBox,
    +                           int maxOutputBoxesPerClass, float iouThreshold,
    +                           float scoreThreshold, int offset);
    +
    +  NonMaxSuppressionDynamic(const std::string name, const void *data,
    +                           size_t length);
    +
    +  NonMaxSuppressionDynamic() = delete;
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  int mCenterPointBox;
    +  int mMaxOutputBoxesPerClass;
    +  float mIouThreshold;
    +  float mScoreThreshold;
    +  int mOffset;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class NonMaxSuppressionDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  NonMaxSuppressionDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_NMS_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin.hpp
    new file mode 100644
    index 000000000..a4adf29d2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin.hpp
    @@ -0,0 +1,7 @@
    +#ifndef TRT_PLUGIN_HPP
    +#define TRT_PLUGIN_HPP
    +
    +extern "C" {
    +bool initLibMMCVInferPlugins();
    +}  // extern "C"
    +#endif  // TRT_PLUGIN_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin_helper.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin_helper.hpp
    new file mode 100644
    index 000000000..70fba7810
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_plugin_helper.hpp
    @@ -0,0 +1,41 @@
    +#ifndef TRT_PLUGIN_HELPER_HPP
    +#define TRT_PLUGIN_HELPER_HPP
    +#include 
    +
    +#include "NvInferPlugin.h"
    +
    +namespace mmcv {
    +
    +const int MAXTENSORDIMS = 10;
    +
    +struct TensorDesc {
    +  int shape[MAXTENSORDIMS];
    +  int stride[MAXTENSORDIMS];
    +  int dim;
    +};
    +
    +inline unsigned int getElementSize(nvinfer1::DataType t) {
    +  switch (t) {
    +    case nvinfer1::DataType::kINT32:
    +      return 4;
    +    case nvinfer1::DataType::kFLOAT:
    +      return 4;
    +    case nvinfer1::DataType::kHALF:
    +      return 2;
    +    // case nvinfer1::DataType::kBOOL:
    +    case nvinfer1::DataType::kINT8:
    +      return 1;
    +    default:
    +      throw std::runtime_error("Invalid DataType.");
    +  }
    +  throw std::runtime_error("Invalid DataType.");
    +  return 0;
    +}
    +
    +inline size_t getAlignedSize(size_t origin_size, size_t aligned_number = 16) {
    +  return size_t((origin_size + aligned_number - 1) / aligned_number) *
    +         aligned_number;
    +}
    +
    +}  // namespace mmcv
    +#endif  // TRT_PLUGIN_HELPER_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_roi_align.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_roi_align.hpp
    new file mode 100644
    index 000000000..5677af90b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_roi_align.hpp
    @@ -0,0 +1,108 @@
    +#ifndef TRT_ROI_ALIGN_HPP
    +#define TRT_ROI_ALIGN_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +class RoIAlignPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  RoIAlignPluginDynamic(const std::string &name, int outWidth, int outHeight,
    +                        float spatialScale, int sampleRatio, int poolMode,
    +                        bool aligned);
    +
    +  RoIAlignPluginDynamic(const std::string name, const void *data,
    +                        size_t length);
    +
    +  RoIAlignPluginDynamic() = delete;
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    +  int mOutWidth;
    +  int mOutHeight;
    +  float mSpatialScale;
    +  int mSampleRatio;
    +  int mPoolMode;  // 1:avg 0:max
    +  bool mAligned;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class RoIAlignPluginDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  RoIAlignPluginDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_ROI_ALIGN_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_scatternd.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_scatternd.hpp
    new file mode 100644
    index 000000000..6087cbefb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_scatternd.hpp
    @@ -0,0 +1,98 @@
    +#ifndef TRT_SCATTERND_HPP
    +#define TRT_SCATTERND_HPP
    +#include 
    +
    +#include 
    +#include 
    +#include 
    +
    +#include "trt_plugin_helper.hpp"
    +
    +class ONNXScatterNDDynamic : public nvinfer1::IPluginV2DynamicExt {
    + public:
    +  ONNXScatterNDDynamic(const std::string &name);
    +
    +  ONNXScatterNDDynamic(const std::string name, const void *data, size_t length);
    +
    +  ONNXScatterNDDynamic() = delete;
    +
    +  // IPluginV2DynamicExt Methods
    +  nvinfer1::IPluginV2DynamicExt *clone() const override;
    +  nvinfer1::DimsExprs getOutputDimensions(
    +      int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
    +      nvinfer1::IExprBuilder &exprBuilder) override;
    +  bool supportsFormatCombination(int pos,
    +                                 const nvinfer1::PluginTensorDesc *inOut,
    +                                 int nbInputs, int nbOutputs) override;
    +  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
    +                       int nbInputs,
    +                       const nvinfer1::DynamicPluginTensorDesc *out,
    +                       int nbOutputs) override;
    +  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
    +                          int nbInputs,
    +                          const nvinfer1::PluginTensorDesc *outputs,
    +                          int nbOutputs) const override;
    +  int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
    +              const nvinfer1::PluginTensorDesc *outputDesc,
    +              const void *const *inputs, void *const *outputs, void *workspace,
    +              cudaStream_t stream) override;
    +
    +  // IPluginV2Ext Methods
    +  nvinfer1::DataType getOutputDataType(int index,
    +                                       const nvinfer1::DataType *inputTypes,
    +                                       int nbInputs) const override;
    +
    +  // IPluginV2 Methods
    +  const char *getPluginType() const override;
    +  const char *getPluginVersion() const override;
    +  int getNbOutputs() const override;
    +  int initialize() override;
    +  void terminate() override;
    +  size_t getSerializationSize() const override;
    +  void serialize(void *buffer) const override;
    +  void destroy() override;
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  const std::string mLayerName;
    +  std::string mNamespace;
    +
    + protected:
    +  // To prevent compiler warnings.
    +  using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::configurePlugin;
    +  using nvinfer1::IPluginV2DynamicExt::enqueue;
    +  using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
    +  using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
    +  using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
    +  using nvinfer1::IPluginV2DynamicExt::supportsFormat;
    +};
    +
    +class ONNXScatterNDDynamicCreator : public nvinfer1::IPluginCreator {
    + public:
    +  ONNXScatterNDDynamicCreator();
    +
    +  const char *getPluginName() const override;
    +
    +  const char *getPluginVersion() const override;
    +
    +  const nvinfer1::PluginFieldCollection *getFieldNames() override;
    +
    +  nvinfer1::IPluginV2 *createPlugin(
    +      const char *name, const nvinfer1::PluginFieldCollection *fc) override;
    +
    +  nvinfer1::IPluginV2 *deserializePlugin(const char *name,
    +                                         const void *serialData,
    +                                         size_t serialLength) override;
    +
    +  void setPluginNamespace(const char *pluginNamespace) override;
    +
    +  const char *getPluginNamespace() const override;
    +
    + private:
    +  static nvinfer1::PluginFieldCollection mFC;
    +  static std::vector mPluginAttributes;
    +  std::string mNamespace;
    +};
    +#endif  // TRT_SCATTERND_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_serialize.hpp b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_serialize.hpp
    new file mode 100644
    index 000000000..1f0899fdf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/csrc/tensorrt/trt_serialize.hpp
    @@ -0,0 +1,105 @@
    +// Modified from:
    +// https://github.com/NVIDIA/TensorRT/blob/master/plugin/common/serialize.hpp
    +
    +#ifndef TRT_SERIALIZE_HPP
    +#define TRT_SERIALIZE_HPP
    +#include 
    +#include 
    +#include 
    +#include 
    +#include 
    +using std::cerr;
    +using std::cout;
    +using std::endl;
    +
    +template 
    +inline void serialize_value(void** buffer, T const& value);
    +
    +template 
    +inline void deserialize_value(void const** buffer, size_t* buffer_size,
    +                              T* value);
    +
    +namespace {
    +
    +template 
    +struct Serializer {};
    +
    +template 
    +struct Serializer::value ||
    +                                             std::is_enum::value ||
    +                                             std::is_pod::value>::type> {
    +  static size_t serialized_size(T const& value) { return sizeof(T); }
    +  static void serialize(void** buffer, T const& value) {
    +    ::memcpy(*buffer, &value, sizeof(T));
    +    reinterpret_cast(*buffer) += sizeof(T);
    +  }
    +  static void deserialize(void const** buffer, size_t* buffer_size, T* value) {
    +    assert(*buffer_size >= sizeof(T));
    +    ::memcpy(value, *buffer, sizeof(T));
    +    reinterpret_cast(*buffer) += sizeof(T);
    +    *buffer_size -= sizeof(T);
    +  }
    +};
    +
    +template <>
    +struct Serializer {
    +  static size_t serialized_size(const char* value) { return strlen(value) + 1; }
    +  static void serialize(void** buffer, const char* value) {
    +    ::strcpy(static_cast(*buffer), value);
    +    reinterpret_cast(*buffer) += strlen(value) + 1;
    +  }
    +  static void deserialize(void const** buffer, size_t* buffer_size,
    +                          const char** value) {
    +    *value = static_cast(*buffer);
    +    size_t data_size = strnlen(*value, *buffer_size) + 1;
    +    assert(*buffer_size >= data_size);
    +    reinterpret_cast(*buffer) += data_size;
    +    *buffer_size -= data_size;
    +  }
    +};
    +
    +template 
    +struct Serializer,
    +                  typename std::enable_if::value ||
    +                                          std::is_enum::value ||
    +                                          std::is_pod::value>::type> {
    +  static size_t serialized_size(std::vector const& value) {
    +    return sizeof(value.size()) + value.size() * sizeof(T);
    +  }
    +  static void serialize(void** buffer, std::vector const& value) {
    +    serialize_value(buffer, value.size());
    +    size_t nbyte = value.size() * sizeof(T);
    +    ::memcpy(*buffer, value.data(), nbyte);
    +    reinterpret_cast(*buffer) += nbyte;
    +  }
    +  static void deserialize(void const** buffer, size_t* buffer_size,
    +                          std::vector* value) {
    +    size_t size;
    +    deserialize_value(buffer, buffer_size, &size);
    +    value->resize(size);
    +    size_t nbyte = value->size() * sizeof(T);
    +    assert(*buffer_size >= nbyte);
    +    ::memcpy(value->data(), *buffer, nbyte);
    +    reinterpret_cast(*buffer) += nbyte;
    +    *buffer_size -= nbyte;
    +  }
    +};
    +
    +}  // namespace
    +
    +template 
    +inline size_t serialized_size(T const& value) {
    +  return Serializer::serialized_size(value);
    +}
    +
    +template 
    +inline void serialize_value(void** buffer, T const& value) {
    +  return Serializer::serialize(buffer, value);
    +}
    +
    +template 
    +inline void deserialize_value(void const** buffer, size_t* buffer_size,
    +                              T* value) {
    +  return Serializer::deserialize(buffer, buffer_size, value);
    +}
    +#endif  // TRT_SERIALIZE_HPP
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_conv.py
    new file mode 100644
    index 000000000..85f665cd3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_conv.py
    @@ -0,0 +1,408 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from torch import Tensor
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair, _single
    +
    +from mmcv.utils import deprecated_api_warning
    +from ..cnn import CONV_LAYERS
    +from ..utils import ext_loader, print_log
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'deform_conv_forward', 'deform_conv_backward_input',
    +    'deform_conv_backward_parameters'
    +])
    +
    +
    +class DeformConv2dFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g,
    +                 input,
    +                 offset,
    +                 weight,
    +                 stride,
    +                 padding,
    +                 dilation,
    +                 groups,
    +                 deform_groups,
    +                 bias=False,
    +                 im2col_step=32):
    +        return g.op(
    +            'mmcv::MMCVDeformConv2d',
    +            input,
    +            offset,
    +            weight,
    +            stride_i=stride,
    +            padding_i=padding,
    +            dilation_i=dilation,
    +            groups_i=groups,
    +            deform_groups_i=deform_groups,
    +            bias_i=bias,
    +            im2col_step_i=im2col_step)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input: Tensor,
    +                offset: Tensor,
    +                weight: Tensor,
    +                stride: Union[int, Tuple[int, ...]] = 1,
    +                padding: Union[int, Tuple[int, ...]] = 0,
    +                dilation: Union[int, Tuple[int, ...]] = 1,
    +                groups: int = 1,
    +                deform_groups: int = 1,
    +                bias: bool = False,
    +                im2col_step: int = 32) -> Tensor:
    +        if input is not None and input.dim() != 4:
    +            raise ValueError(
    +                f'Expected 4D tensor as input, got {input.dim()}D tensor \
    +                  instead.')
    +        assert bias is False, 'Only support bias is False.'
    +        ctx.stride = _pair(stride)
    +        ctx.padding = _pair(padding)
    +        ctx.dilation = _pair(dilation)
    +        ctx.groups = groups
    +        ctx.deform_groups = deform_groups
    +        ctx.im2col_step = im2col_step
    +
    +        # When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
    +        # amp won't cast the type of model (float32), but "offset" is cast
    +        # to float16 by nn.Conv2d automatically, leading to the type
    +        # mismatch with input (when it is float32) or weight.
    +        # The flag for whether to use fp16 or amp is the type of "offset",
    +        # we cast weight and input to temporarily support fp16 and amp
    +        # whatever the pytorch version is.
    +        input = input.type_as(offset)
    +        weight = weight.type_as(input)
    +        ctx.save_for_backward(input, offset, weight)
    +
    +        output = input.new_empty(
    +            DeformConv2dFunction._output_size(ctx, input, weight))
    +
    +        ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]  # columns, ones
    +
    +        cur_im2col_step = min(ctx.im2col_step, input.size(0))
    +        assert (input.size(0) % cur_im2col_step
    +                ) == 0, 'batch size must be divisible by im2col_step'
    +        ext_module.deform_conv_forward(
    +            input,
    +            weight,
    +            offset,
    +            output,
    +            ctx.bufs_[0],
    +            ctx.bufs_[1],
    +            kW=weight.size(3),
    +            kH=weight.size(2),
    +            dW=ctx.stride[1],
    +            dH=ctx.stride[0],
    +            padW=ctx.padding[1],
    +            padH=ctx.padding[0],
    +            dilationW=ctx.dilation[1],
    +            dilationH=ctx.dilation[0],
    +            group=ctx.groups,
    +            deformable_group=ctx.deform_groups,
    +            im2col_step=cur_im2col_step)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(
    +        ctx, grad_output: Tensor
    +    ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], None,
    +               None, None, None, None, None, None]:
    +        input, offset, weight = ctx.saved_tensors
    +
    +        grad_input = grad_offset = grad_weight = None
    +
    +        cur_im2col_step = min(ctx.im2col_step, input.size(0))
    +        assert (input.size(0) % cur_im2col_step
    +                ) == 0, 'batch size must be divisible by im2col_step'
    +
    +        grad_output = grad_output.contiguous()
    +        if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
    +            grad_input = torch.zeros_like(input)
    +            grad_offset = torch.zeros_like(offset)
    +            ext_module.deform_conv_backward_input(
    +                input,
    +                offset,
    +                grad_output,
    +                grad_input,
    +                grad_offset,
    +                weight,
    +                ctx.bufs_[0],
    +                kW=weight.size(3),
    +                kH=weight.size(2),
    +                dW=ctx.stride[1],
    +                dH=ctx.stride[0],
    +                padW=ctx.padding[1],
    +                padH=ctx.padding[0],
    +                dilationW=ctx.dilation[1],
    +                dilationH=ctx.dilation[0],
    +                group=ctx.groups,
    +                deformable_group=ctx.deform_groups,
    +                im2col_step=cur_im2col_step)
    +
    +        if ctx.needs_input_grad[2]:
    +            grad_weight = torch.zeros_like(weight)
    +            ext_module.deform_conv_backward_parameters(
    +                input,
    +                offset,
    +                grad_output,
    +                grad_weight,
    +                ctx.bufs_[0],
    +                ctx.bufs_[1],
    +                kW=weight.size(3),
    +                kH=weight.size(2),
    +                dW=ctx.stride[1],
    +                dH=ctx.stride[0],
    +                padW=ctx.padding[1],
    +                padH=ctx.padding[0],
    +                dilationW=ctx.dilation[1],
    +                dilationH=ctx.dilation[0],
    +                group=ctx.groups,
    +                deformable_group=ctx.deform_groups,
    +                scale=1,
    +                im2col_step=cur_im2col_step)
    +
    +        return grad_input, grad_offset, grad_weight, \
    +            None, None, None, None, None, None, None
    +
    +    @staticmethod
    +    def _output_size(ctx, input, weight):
    +        channels = weight.size(0)
    +        output_size = (input.size(0), channels)
    +        for d in range(input.dim() - 2):
    +            in_size = input.size(d + 2)
    +            pad = ctx.padding[d]
    +            kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
    +            stride_ = ctx.stride[d]
    +            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
    +        if not all(map(lambda s: s > 0, output_size)):
    +            raise ValueError(
    +                'convolution input is too small (output would be ' +
    +                'x'.join(map(str, output_size)) + ')')
    +        return output_size
    +
    +
    +deform_conv2d = DeformConv2dFunction.apply
    +
    +
    +class DeformConv2d(nn.Module):
    +    r"""Deformable 2D convolution.
    +
    +    Applies a deformable 2D convolution over an input signal composed of
    +    several input planes. DeformConv2d was described in the paper
    +    `Deformable Convolutional Networks
    +    `_
    +
    +    Note:
    +        The argument ``im2col_step`` was added in version 1.3.17, which means
    +        number of samples processed by the ``im2col_cuda_kernel`` per call.
    +        It enables users to define ``batch_size`` and ``im2col_step`` more
    +        flexibly and solved `issue mmcv#1440
    +        `_.
    +
    +    Args:
    +        in_channels (int): Number of channels in the input image.
    +        out_channels (int): Number of channels produced by the convolution.
    +        kernel_size(int, tuple): Size of the convolving kernel.
    +        stride(int, tuple): Stride of the convolution. Default: 1.
    +        padding (int or tuple): Zero-padding added to both sides of the input.
    +            Default: 0.
    +        dilation (int or tuple): Spacing between kernel elements. Default: 1.
    +        groups (int): Number of blocked connections from input.
    +            channels to output channels. Default: 1.
    +        deform_groups (int): Number of deformable group partitions.
    +        bias (bool): If True, adds a learnable bias to the output.
    +            Default: False.
    +        im2col_step (int): Number of samples processed by im2col_cuda_kernel
    +            per call. It will work when ``batch_size`` > ``im2col_step``, but
    +            ``batch_size`` must be divisible by ``im2col_step``. Default: 32.
    +            `New in version 1.3.17.`
    +    """
    +
    +    @deprecated_api_warning({'deformable_groups': 'deform_groups'},
    +                            cls_name='DeformConv2d')
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, ...]],
    +                 stride: Union[int, Tuple[int, ...]] = 1,
    +                 padding: Union[int, Tuple[int, ...]] = 0,
    +                 dilation: Union[int, Tuple[int, ...]] = 1,
    +                 groups: int = 1,
    +                 deform_groups: int = 1,
    +                 bias: bool = False,
    +                 im2col_step: int = 32) -> None:
    +        super().__init__()
    +
    +        assert not bias, \
    +            f'bias={bias} is not supported in DeformConv2d.'
    +        assert in_channels % groups == 0, \
    +            f'in_channels {in_channels} cannot be divisible by groups {groups}'
    +        assert out_channels % groups == 0, \
    +            f'out_channels {out_channels} cannot be divisible by groups \
    +              {groups}'
    +
    +        self.in_channels = in_channels
    +        self.out_channels = out_channels
    +        self.kernel_size = _pair(kernel_size)
    +        self.stride = _pair(stride)
    +        self.padding = _pair(padding)
    +        self.dilation = _pair(dilation)
    +        self.groups = groups
    +        self.deform_groups = deform_groups
    +        self.im2col_step = im2col_step
    +        # enable compatibility with nn.Conv2d
    +        self.transposed = False
    +        self.output_padding = _single(0)
    +
    +        # only weight, no bias
    +        self.weight = nn.Parameter(
    +            torch.Tensor(out_channels, in_channels // self.groups,
    +                         *self.kernel_size))
    +
    +        self.reset_parameters()
    +
    +    def reset_parameters(self):
    +        # switch the initialization of `self.weight` to the standard kaiming
    +        # method described in `Delving deep into rectifiers: Surpassing
    +        # human-level performance on ImageNet classification` - He, K. et al.
    +        # (2015), using a uniform distribution
    +        nn.init.kaiming_uniform_(self.weight, nonlinearity='relu')
    +
    +    def forward(self, x: Tensor, offset: Tensor) -> Tensor:
    +        """Deformable Convolutional forward function.
    +
    +        Args:
    +            x (Tensor): Input feature, shape (B, C_in, H_in, W_in)
    +            offset (Tensor): Offset for deformable convolution, shape
    +                (B, deform_groups*kernel_size[0]*kernel_size[1]*2,
    +                H_out, W_out), H_out, W_out are equal to the output's.
    +
    +                An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
    +                The spatial arrangement is like:
    +
    +                .. code:: text
    +
    +                    (x0, y0) (x1, y1) (x2, y2)
    +                    (x3, y3) (x4, y4) (x5, y5)
    +                    (x6, y6) (x7, y7) (x8, y8)
    +
    +        Returns:
    +            Tensor: Output of the layer.
    +        """
    +        # To fix an assert error in deform_conv_cuda.cpp:128
    +        # input image is smaller than kernel
    +        input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) <
    +                                                          self.kernel_size[1])
    +        if input_pad:
    +            pad_h = max(self.kernel_size[0] - x.size(2), 0)
    +            pad_w = max(self.kernel_size[1] - x.size(3), 0)
    +            x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
    +            offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0)
    +            offset = offset.contiguous()
    +        out = deform_conv2d(x, offset, self.weight, self.stride, self.padding,
    +                            self.dilation, self.groups, self.deform_groups,
    +                            False, self.im2col_step)
    +        if input_pad:
    +            out = out[:, :, :out.size(2) - pad_h, :out.size(3) -
    +                      pad_w].contiguous()
    +        return out
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(in_channels={self.in_channels},\n'
    +        s += f'out_channels={self.out_channels},\n'
    +        s += f'kernel_size={self.kernel_size},\n'
    +        s += f'stride={self.stride},\n'
    +        s += f'padding={self.padding},\n'
    +        s += f'dilation={self.dilation},\n'
    +        s += f'groups={self.groups},\n'
    +        s += f'deform_groups={self.deform_groups},\n'
    +        # bias is not supported in DeformConv2d.
    +        s += 'bias=False)'
    +        return s
    +
    +
    +@CONV_LAYERS.register_module('DCN')
    +class DeformConv2dPack(DeformConv2d):
    +    """A Deformable Conv Encapsulation that acts as normal Conv layers.
    +
    +    The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
    +    The spatial arrangement is like:
    +
    +    .. code:: text
    +
    +        (x0, y0) (x1, y1) (x2, y2)
    +        (x3, y3) (x4, y4) (x5, y5)
    +        (x6, y6) (x7, y7) (x8, y8)
    +
    +    Args:
    +        in_channels (int): Same as nn.Conv2d.
    +        out_channels (int): Same as nn.Conv2d.
    +        kernel_size (int or tuple[int]): Same as nn.Conv2d.
    +        stride (int or tuple[int]): Same as nn.Conv2d.
    +        padding (int or tuple[int]): Same as nn.Conv2d.
    +        dilation (int or tuple[int]): Same as nn.Conv2d.
    +        groups (int): Same as nn.Conv2d.
    +        bias (bool or str): If specified as `auto`, it will be decided by the
    +            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
    +            False.
    +    """
    +
    +    _version = 2
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        self.conv_offset = nn.Conv2d(
    +            self.in_channels,
    +            self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
    +            kernel_size=self.kernel_size,
    +            stride=_pair(self.stride),
    +            padding=_pair(self.padding),
    +            dilation=_pair(self.dilation),
    +            bias=True)
    +        self.init_offset()
    +
    +    def init_offset(self):
    +        self.conv_offset.weight.data.zero_()
    +        self.conv_offset.bias.data.zero_()
    +
    +    def forward(self, x: Tensor) -> Tensor:  # type: ignore
    +        offset = self.conv_offset(x)
    +        return deform_conv2d(x, offset, self.weight, self.stride, self.padding,
    +                             self.dilation, self.groups, self.deform_groups,
    +                             False, self.im2col_step)
    +
    +    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
    +                              missing_keys, unexpected_keys, error_msgs):
    +        version = local_metadata.get('version', None)
    +
    +        if version is None or version < 2:
    +            # the key is different in early versions
    +            # In version < 2, DeformConvPack loads previous benchmark models.
    +            if (prefix + 'conv_offset.weight' not in state_dict
    +                    and prefix[:-1] + '_offset.weight' in state_dict):
    +                state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
    +                    prefix[:-1] + '_offset.weight')
    +            if (prefix + 'conv_offset.bias' not in state_dict
    +                    and prefix[:-1] + '_offset.bias' in state_dict):
    +                state_dict[prefix +
    +                           'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
    +                                                                '_offset.bias')
    +
    +        if version is not None and version > 1:
    +            print_log(
    +                f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to '
    +                'version 2.',
    +                logger='root')
    +
    +        super()._load_from_state_dict(state_dict, prefix, local_metadata,
    +                                      strict, missing_keys, unexpected_keys,
    +                                      error_msgs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_roi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_roi_pool.py
    new file mode 100644
    index 000000000..ec9a4c124
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deform_roi_pool.py
    @@ -0,0 +1,209 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Tuple
    +
    +from torch import Tensor, nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['deform_roi_pool_forward', 'deform_roi_pool_backward'])
    +
    +
    +class DeformRoIPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, rois, offset, output_size, spatial_scale,
    +                 sampling_ratio, gamma):
    +        return g.op(
    +            'mmcv::MMCVDeformRoIPool',
    +            input,
    +            rois,
    +            offset,
    +            pooled_height_i=output_size[0],
    +            pooled_width_i=output_size[1],
    +            spatial_scale_f=spatial_scale,
    +            sampling_ratio_f=sampling_ratio,
    +            gamma_f=gamma)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input: Tensor,
    +                rois: Tensor,
    +                offset: Optional[Tensor],
    +                output_size: Tuple[int, ...],
    +                spatial_scale: float = 1.0,
    +                sampling_ratio: int = 0,
    +                gamma: float = 0.1) -> Tensor:
    +        if offset is None:
    +            offset = input.new_zeros(0)
    +        ctx.output_size = _pair(output_size)
    +        ctx.spatial_scale = float(spatial_scale)
    +        ctx.sampling_ratio = int(sampling_ratio)
    +        ctx.gamma = float(gamma)
    +
    +        assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!'
    +
    +        output_shape = (rois.size(0), input.size(1), ctx.output_size[0],
    +                        ctx.output_size[1])
    +        output = input.new_zeros(output_shape)
    +
    +        ext_module.deform_roi_pool_forward(
    +            input,
    +            rois,
    +            offset,
    +            output,
    +            pooled_height=ctx.output_size[0],
    +            pooled_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale,
    +            sampling_ratio=ctx.sampling_ratio,
    +            gamma=ctx.gamma)
    +
    +        ctx.save_for_backward(input, rois, offset)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(
    +        ctx, grad_output: Tensor
    +    ) -> Tuple[Tensor, None, Tensor, None, None, None, None]:
    +        input, rois, offset = ctx.saved_tensors
    +        grad_input = grad_output.new_zeros(input.shape)
    +        grad_offset = grad_output.new_zeros(offset.shape)
    +
    +        ext_module.deform_roi_pool_backward(
    +            grad_output,
    +            input,
    +            rois,
    +            offset,
    +            grad_input,
    +            grad_offset,
    +            pooled_height=ctx.output_size[0],
    +            pooled_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale,
    +            sampling_ratio=ctx.sampling_ratio,
    +            gamma=ctx.gamma)
    +        if grad_offset.numel() == 0:
    +            grad_offset = None
    +        return grad_input, None, grad_offset, None, None, None, None
    +
    +
    +deform_roi_pool = DeformRoIPoolFunction.apply
    +
    +
    +class DeformRoIPool(nn.Module):
    +
    +    def __init__(self,
    +                 output_size: Tuple[int, ...],
    +                 spatial_scale: float = 1.0,
    +                 sampling_ratio: int = 0,
    +                 gamma: float = 0.1):
    +        super().__init__()
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +        self.sampling_ratio = int(sampling_ratio)
    +        self.gamma = float(gamma)
    +
    +    def forward(self,
    +                input: Tensor,
    +                rois: Tensor,
    +                offset: Optional[Tensor] = None) -> Tensor:
    +        return deform_roi_pool(input, rois, offset, self.output_size,
    +                               self.spatial_scale, self.sampling_ratio,
    +                               self.gamma)
    +
    +
    +class DeformRoIPoolPack(DeformRoIPool):
    +
    +    def __init__(self,
    +                 output_size: Tuple[int, ...],
    +                 output_channels: int,
    +                 deform_fc_channels: int = 1024,
    +                 spatial_scale: float = 1.0,
    +                 sampling_ratio: int = 0,
    +                 gamma: float = 0.1):
    +        super().__init__(output_size, spatial_scale, sampling_ratio, gamma)
    +
    +        self.output_channels = output_channels
    +        self.deform_fc_channels = deform_fc_channels
    +
    +        self.offset_fc = nn.Sequential(
    +            nn.Linear(
    +                self.output_size[0] * self.output_size[1] *
    +                self.output_channels, self.deform_fc_channels),
    +            nn.ReLU(inplace=True),
    +            nn.Linear(self.deform_fc_channels, self.deform_fc_channels),
    +            nn.ReLU(inplace=True),
    +            nn.Linear(self.deform_fc_channels,
    +                      self.output_size[0] * self.output_size[1] * 2))
    +        self.offset_fc[-1].weight.data.zero_()
    +        self.offset_fc[-1].bias.data.zero_()
    +
    +    def forward(self, input: Tensor, rois: Tensor) -> Tensor:  # type: ignore
    +        assert input.size(1) == self.output_channels
    +        x = deform_roi_pool(input, rois, None, self.output_size,
    +                            self.spatial_scale, self.sampling_ratio,
    +                            self.gamma)
    +        rois_num = rois.size(0)
    +        offset = self.offset_fc(x.view(rois_num, -1))
    +        offset = offset.view(rois_num, 2, self.output_size[0],
    +                             self.output_size[1])
    +        return deform_roi_pool(input, rois, offset, self.output_size,
    +                               self.spatial_scale, self.sampling_ratio,
    +                               self.gamma)
    +
    +
    +class ModulatedDeformRoIPoolPack(DeformRoIPool):
    +
    +    def __init__(self,
    +                 output_size: Tuple[int, ...],
    +                 output_channels: int,
    +                 deform_fc_channels: int = 1024,
    +                 spatial_scale: float = 1.0,
    +                 sampling_ratio: int = 0,
    +                 gamma: float = 0.1):
    +        super().__init__(output_size, spatial_scale, sampling_ratio, gamma)
    +
    +        self.output_channels = output_channels
    +        self.deform_fc_channels = deform_fc_channels
    +
    +        self.offset_fc = nn.Sequential(
    +            nn.Linear(
    +                self.output_size[0] * self.output_size[1] *
    +                self.output_channels, self.deform_fc_channels),
    +            nn.ReLU(inplace=True),
    +            nn.Linear(self.deform_fc_channels, self.deform_fc_channels),
    +            nn.ReLU(inplace=True),
    +            nn.Linear(self.deform_fc_channels,
    +                      self.output_size[0] * self.output_size[1] * 2))
    +        self.offset_fc[-1].weight.data.zero_()
    +        self.offset_fc[-1].bias.data.zero_()
    +
    +        self.mask_fc = nn.Sequential(
    +            nn.Linear(
    +                self.output_size[0] * self.output_size[1] *
    +                self.output_channels, self.deform_fc_channels),
    +            nn.ReLU(inplace=True),
    +            nn.Linear(self.deform_fc_channels,
    +                      self.output_size[0] * self.output_size[1] * 1),
    +            nn.Sigmoid())
    +        self.mask_fc[2].weight.data.zero_()
    +        self.mask_fc[2].bias.data.zero_()
    +
    +    def forward(self, input: Tensor, rois: Tensor) -> Tensor:  # type: ignore
    +        assert input.size(1) == self.output_channels
    +        x = deform_roi_pool(input, rois, None, self.output_size,
    +                            self.spatial_scale, self.sampling_ratio,
    +                            self.gamma)
    +        rois_num = rois.size(0)
    +        offset = self.offset_fc(x.view(rois_num, -1))
    +        offset = offset.view(rois_num, 2, self.output_size[0],
    +                             self.output_size[1])
    +        mask = self.mask_fc(x.view(rois_num, -1))
    +        mask = mask.view(rois_num, 1, self.output_size[0], self.output_size[1])
    +        d = deform_roi_pool(input, rois, offset, self.output_size,
    +                            self.spatial_scale, self.sampling_ratio,
    +                            self.gamma)
    +        return d * mask
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deprecated_wrappers.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deprecated_wrappers.py
    new file mode 100644
    index 000000000..629a8033f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/deprecated_wrappers.py
    @@ -0,0 +1,46 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# This file is for backward compatibility.
    +# Module wrappers for empty tensor have been moved to mmcv.cnn.bricks.
    +import warnings
    +
    +from ..cnn.bricks.wrappers import Conv2d, ConvTranspose2d, Linear, MaxPool2d
    +
    +
    +class Conv2d_deprecated(Conv2d):
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        warnings.warn(
    +            'Importing Conv2d wrapper from "mmcv.ops" will be deprecated in'
    +            ' the future. Please import them from "mmcv.cnn" instead',
    +            DeprecationWarning)
    +
    +
    +class ConvTranspose2d_deprecated(ConvTranspose2d):
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        warnings.warn(
    +            'Importing ConvTranspose2d wrapper from "mmcv.ops" will be '
    +            'deprecated in the future. Please import them from "mmcv.cnn" '
    +            'instead', DeprecationWarning)
    +
    +
    +class MaxPool2d_deprecated(MaxPool2d):
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        warnings.warn(
    +            'Importing MaxPool2d wrapper from "mmcv.ops" will be deprecated in'
    +            ' the future. Please import them from "mmcv.cnn" instead',
    +            DeprecationWarning)
    +
    +
    +class Linear_deprecated(Linear):
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        warnings.warn(
    +            'Importing Linear wrapper from "mmcv.ops" will be deprecated in'
    +            ' the future. Please import them from "mmcv.cnn" instead',
    +            DeprecationWarning)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/diff_iou_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/diff_iou_rotated.py
    new file mode 100644
    index 000000000..ddcf4b4fc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/diff_iou_rotated.py
    @@ -0,0 +1,301 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/box_intersection_2d.py  # noqa
    +# Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/oriented_iou_loss.py  # noqa
    +from typing import Tuple
    +
    +import torch
    +from torch import Tensor
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +EPSILON = 1e-8
    +ext_module = ext_loader.load_ext('_ext',
    +                                 ['diff_iou_rotated_sort_vertices_forward'])
    +
    +
    +class SortVertices(Function):
    +
    +    @staticmethod
    +    def forward(ctx, vertices, mask, num_valid):
    +        idx = ext_module.diff_iou_rotated_sort_vertices_forward(
    +            vertices, mask, num_valid)
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(idx)
    +        return idx
    +
    +    @staticmethod
    +    def backward(ctx, gradout):
    +        return ()
    +
    +
    +def box_intersection(corners1: Tensor,
    +                     corners2: Tensor) -> Tuple[Tensor, Tensor]:
    +    """Find intersection points of rectangles.
    +    Convention: if two edges are collinear, there is no intersection point.
    +
    +    Args:
    +        corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
    +        corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
    +
    +    Returns:
    +        Tuple:
    +         - Tensor: (B, N, 4, 4, 2) Intersections.
    +         - Tensor: (B, N, 4, 4) Valid intersections mask.
    +    """
    +    # build edges from corners
    +    # B, N, 4, 4: Batch, Box, edge, point
    +    line1 = torch.cat([corners1, corners1[:, :, [1, 2, 3, 0], :]], dim=3)
    +    line2 = torch.cat([corners2, corners2[:, :, [1, 2, 3, 0], :]], dim=3)
    +    # duplicate data to pair each edges from the boxes
    +    # (B, N, 4, 4) -> (B, N, 4, 4, 4) : Batch, Box, edge1, edge2, point
    +    line1_ext = line1.unsqueeze(3)
    +    line2_ext = line2.unsqueeze(2)
    +    x1, y1, x2, y2 = line1_ext.split([1, 1, 1, 1], dim=-1)
    +    x3, y3, x4, y4 = line2_ext.split([1, 1, 1, 1], dim=-1)
    +    # math: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
    +    numerator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
    +    denumerator_t = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4)
    +    t = denumerator_t / numerator
    +    t[numerator == .0] = -1.
    +    mask_t = (t > 0) & (t < 1)  # intersection on line segment 1
    +    denumerator_u = (x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3)
    +    u = -denumerator_u / numerator
    +    u[numerator == .0] = -1.
    +    mask_u = (u > 0) & (u < 1)  # intersection on line segment 2
    +    mask = mask_t * mask_u
    +    # overwrite with EPSILON. otherwise numerically unstable
    +    t = denumerator_t / (numerator + EPSILON)
    +    intersections = torch.stack([x1 + t * (x2 - x1), y1 + t * (y2 - y1)],
    +                                dim=-1)
    +    intersections = intersections * mask.float().unsqueeze(-1)
    +    return intersections, mask
    +
    +
    +def box1_in_box2(corners1: Tensor, corners2: Tensor) -> Tensor:
    +    """Check if corners of box1 lie in box2.
    +    Convention: if a corner is exactly on the edge of the other box,
    +    it's also a valid point.
    +
    +    Args:
    +        corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
    +        corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
    +
    +    Returns:
    +        Tensor: (B, N, 4) Intersection.
    +    """
    +    # a, b, c, d - 4 vertices of box2
    +    a = corners2[:, :, 0:1, :]  # (B, N, 1, 2)
    +    b = corners2[:, :, 1:2, :]  # (B, N, 1, 2)
    +    d = corners2[:, :, 3:4, :]  # (B, N, 1, 2)
    +    # ab, am, ad - vectors between corresponding vertices
    +    ab = b - a  # (B, N, 1, 2)
    +    am = corners1 - a  # (B, N, 4, 2)
    +    ad = d - a  # (B, N, 1, 2)
    +    prod_ab = torch.sum(ab * am, dim=-1)  # (B, N, 4)
    +    norm_ab = torch.sum(ab * ab, dim=-1)  # (B, N, 1)
    +    prod_ad = torch.sum(ad * am, dim=-1)  # (B, N, 4)
    +    norm_ad = torch.sum(ad * ad, dim=-1)  # (B, N, 1)
    +    # NOTE: the expression looks ugly but is stable if the two boxes
    +    # are exactly the same also stable with different scale of bboxes
    +    cond1 = (prod_ab / norm_ab > -1e-6) * (prod_ab / norm_ab < 1 + 1e-6
    +                                           )  # (B, N, 4)
    +    cond2 = (prod_ad / norm_ad > -1e-6) * (prod_ad / norm_ad < 1 + 1e-6
    +                                           )  # (B, N, 4)
    +    return cond1 * cond2
    +
    +
    +def box_in_box(corners1: Tensor, corners2: Tensor) -> Tuple[Tensor, Tensor]:
    +    """Check if corners of two boxes lie in each other.
    +
    +    Args:
    +        corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
    +        corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
    +
    +    Returns:
    +        Tuple:
    +         - Tensor: (B, N, 4) True if i-th corner of box1 is in box2.
    +         - Tensor: (B, N, 4) True if i-th corner of box2 is in box1.
    +    """
    +    c1_in_2 = box1_in_box2(corners1, corners2)
    +    c2_in_1 = box1_in_box2(corners2, corners1)
    +    return c1_in_2, c2_in_1
    +
    +
    +def build_vertices(corners1: Tensor, corners2: Tensor, c1_in_2: Tensor,
    +                   c2_in_1: Tensor, intersections: Tensor,
    +                   valid_mask: Tensor) -> Tuple[Tensor, Tensor]:
    +    """Find vertices of intersection area.
    +
    +    Args:
    +        corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
    +        corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
    +        c1_in_2 (Tensor): (B, N, 4) True if i-th corner of box1 is in box2.
    +        c2_in_1 (Tensor): (B, N, 4) True if i-th corner of box2 is in box1.
    +        intersections (Tensor): (B, N, 4, 4, 2) Intersections.
    +        valid_mask (Tensor): (B, N, 4, 4) Valid intersections mask.
    +
    +    Returns:
    +        Tuple:
    +         - Tensor: (B, N, 24, 2) Vertices of intersection area;
    +               only some elements are valid.
    +         - Tensor: (B, N, 24) Mask of valid elements in vertices.
    +    """
    +    # NOTE: inter has elements equals zero and has zeros gradient
    +    # (masked by multiplying with 0); can be used as trick
    +    B = corners1.size()[0]
    +    N = corners1.size()[1]
    +    # (B, N, 4 + 4 + 16, 2)
    +    vertices = torch.cat(
    +        [corners1, corners2,
    +         intersections.view([B, N, -1, 2])], dim=2)
    +    # Bool (B, N, 4 + 4 + 16)
    +    mask = torch.cat([c1_in_2, c2_in_1, valid_mask.view([B, N, -1])], dim=2)
    +    return vertices, mask
    +
    +
    +def sort_indices(vertices: Tensor, mask: Tensor) -> Tensor:
    +    """Sort indices.
    +    Note:
    +        why 9? the polygon has maximal 8 vertices.
    +        +1 to duplicate the first element.
    +        the index should have following structure:
    +            (A, B, C, ... , A, X, X, X)
    +        and X indicates the index of arbitrary elements in the last
    +        16 (intersections not corners) with value 0 and mask False.
    +        (cause they have zero value and zero gradient)
    +
    +    Args:
    +        vertices (Tensor): (B, N, 24, 2) Box vertices.
    +        mask (Tensor): (B, N, 24) Mask.
    +
    +    Returns:
    +        Tensor: (B, N, 9) Sorted indices.
    +
    +    """
    +    num_valid = torch.sum(mask.int(), dim=2).int()  # (B, N)
    +    mean = torch.sum(
    +        vertices * mask.float().unsqueeze(-1), dim=2,
    +        keepdim=True) / num_valid.unsqueeze(-1).unsqueeze(-1)
    +    vertices_normalized = vertices - mean  # normalization makes sorting easier
    +    return SortVertices.apply(vertices_normalized, mask, num_valid).long()
    +
    +
    +def calculate_area(idx_sorted: Tensor,
    +                   vertices: Tensor) -> Tuple[Tensor, Tensor]:
    +    """Calculate area of intersection.
    +
    +    Args:
    +        idx_sorted (Tensor): (B, N, 9) Sorted vertex ids.
    +        vertices (Tensor): (B, N, 24, 2) Vertices.
    +
    +    Returns:
    +        Tuple:
    +         - Tensor (B, N): Area of intersection.
    +         - Tensor: (B, N, 9, 2) Vertices of polygon with zero padding.
    +    """
    +    idx_ext = idx_sorted.unsqueeze(-1).repeat([1, 1, 1, 2])
    +    selected = torch.gather(vertices, 2, idx_ext)
    +    total = selected[:, :, 0:-1, 0] * selected[:, :, 1:, 1] \
    +        - selected[:, :, 0:-1, 1] * selected[:, :, 1:, 0]
    +    total = torch.sum(total, dim=2)
    +    area = torch.abs(total) / 2
    +    return area, selected
    +
    +
    +def oriented_box_intersection_2d(corners1: Tensor,
    +                                 corners2: Tensor) -> Tuple[Tensor, Tensor]:
    +    """Calculate intersection area of 2d rotated boxes.
    +
    +    Args:
    +        corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
    +        corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
    +
    +    Returns:
    +        Tuple:
    +         - Tensor (B, N): Area of intersection.
    +         - Tensor (B, N, 9, 2): Vertices of polygon with zero padding.
    +    """
    +    intersections, valid_mask = box_intersection(corners1, corners2)
    +    c12, c21 = box_in_box(corners1, corners2)
    +    vertices, mask = build_vertices(corners1, corners2, c12, c21,
    +                                    intersections, valid_mask)
    +    sorted_indices = sort_indices(vertices, mask)
    +    return calculate_area(sorted_indices, vertices)
    +
    +
    +def box2corners(box: Tensor) -> Tensor:
    +    """Convert rotated 2d box coordinate to corners.
    +
    +    Args:
    +        box (Tensor): (B, N, 5) with x, y, w, h, alpha.
    +
    +    Returns:
    +        Tensor: (B, N, 4, 2) Corners.
    +    """
    +    B = box.size()[0]
    +    x, y, w, h, alpha = box.split([1, 1, 1, 1, 1], dim=-1)
    +    x4 = box.new_tensor([0.5, -0.5, -0.5, 0.5]).to(box.device)
    +    x4 = x4 * w  # (B, N, 4)
    +    y4 = box.new_tensor([0.5, 0.5, -0.5, -0.5]).to(box.device)
    +    y4 = y4 * h  # (B, N, 4)
    +    corners = torch.stack([x4, y4], dim=-1)  # (B, N, 4, 2)
    +    sin = torch.sin(alpha)
    +    cos = torch.cos(alpha)
    +    row1 = torch.cat([cos, sin], dim=-1)
    +    row2 = torch.cat([-sin, cos], dim=-1)  # (B, N, 2)
    +    rot_T = torch.stack([row1, row2], dim=-2)  # (B, N, 2, 2)
    +    rotated = torch.bmm(corners.view([-1, 4, 2]), rot_T.view([-1, 2, 2]))
    +    rotated = rotated.view([B, -1, 4, 2])  # (B * N, 4, 2) -> (B, N, 4, 2)
    +    rotated[..., 0] += x
    +    rotated[..., 1] += y
    +    return rotated
    +
    +
    +def diff_iou_rotated_2d(box1: Tensor, box2: Tensor) -> Tensor:
    +    """Calculate differentiable iou of rotated 2d boxes.
    +
    +    Args:
    +        box1 (Tensor): (B, N, 5) First box.
    +        box2 (Tensor): (B, N, 5) Second box.
    +
    +    Returns:
    +        Tensor: (B, N) IoU.
    +    """
    +    corners1 = box2corners(box1)
    +    corners2 = box2corners(box2)
    +    intersection, _ = oriented_box_intersection_2d(corners1,
    +                                                   corners2)  # (B, N)
    +    area1 = box1[:, :, 2] * box1[:, :, 3]
    +    area2 = box2[:, :, 2] * box2[:, :, 3]
    +    union = area1 + area2 - intersection
    +    iou = intersection / union
    +    return iou
    +
    +
    +def diff_iou_rotated_3d(box3d1: Tensor, box3d2: Tensor) -> Tensor:
    +    """Calculate differentiable iou of rotated 3d boxes.
    +
    +    Args:
    +        box3d1 (Tensor): (B, N, 3+3+1) First box (x,y,z,w,h,l,alpha).
    +        box3d2 (Tensor): (B, N, 3+3+1) Second box (x,y,z,w,h,l,alpha).
    +
    +    Returns:
    +        Tensor: (B, N) IoU.
    +    """
    +    box1 = box3d1[..., [0, 1, 3, 4, 6]]  # 2d box
    +    box2 = box3d2[..., [0, 1, 3, 4, 6]]
    +    corners1 = box2corners(box1)
    +    corners2 = box2corners(box2)
    +    intersection, _ = oriented_box_intersection_2d(corners1, corners2)
    +    zmax1 = box3d1[..., 2] + box3d1[..., 5] * 0.5
    +    zmin1 = box3d1[..., 2] - box3d1[..., 5] * 0.5
    +    zmax2 = box3d2[..., 2] + box3d2[..., 5] * 0.5
    +    zmin2 = box3d2[..., 2] - box3d2[..., 5] * 0.5
    +    z_overlap = (torch.min(zmax1, zmax2) -
    +                 torch.max(zmin1, zmin2)).clamp_(min=0.)
    +    intersection_3d = intersection * z_overlap
    +    volume1 = box3d1[..., 3] * box3d1[..., 4] * box3d1[..., 5]
    +    volume2 = box3d2[..., 3] * box3d2[..., 4] * box3d2[..., 5]
    +    union_3d = volume1 + volume2 - intersection_3d
    +    return intersection_3d / union_3d
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/focal_loss.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/focal_loss.py
    new file mode 100644
    index 000000000..5a941c865
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/focal_loss.py
    @@ -0,0 +1,234 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'sigmoid_focal_loss_forward', 'sigmoid_focal_loss_backward',
    +    'softmax_focal_loss_forward', 'softmax_focal_loss_backward'
    +])
    +
    +
    +class SigmoidFocalLossFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: torch.Tensor, target: torch.LongTensor,
    +                 gamma: float, alpha: float, weight: torch.Tensor,
    +                 reduction: str):
    +        return g.op(
    +            'mmcv::MMCVSigmoidFocalLoss',
    +            input,
    +            target,
    +            gamma_f=gamma,
    +            alpha_f=alpha,
    +            weight_f=weight,
    +            reduction_s=reduction)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input: torch.Tensor,
    +                target: Union[torch.LongTensor, torch.cuda.LongTensor],
    +                gamma: float = 2.0,
    +                alpha: float = 0.25,
    +                weight: Optional[torch.Tensor] = None,
    +                reduction: str = 'mean') -> torch.Tensor:
    +
    +        assert target.dtype == torch.long
    +        assert input.dim() == 2
    +        assert target.dim() == 1
    +        assert input.size(0) == target.size(0)
    +        if weight is None:
    +            weight = input.new_empty(0)
    +        else:
    +            assert weight.dim() == 1
    +            assert input.size(1) == weight.size(0)
    +        ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2}
    +        assert reduction in ctx.reduction_dict.keys()
    +
    +        ctx.gamma = float(gamma)
    +        ctx.alpha = float(alpha)
    +        ctx.reduction = ctx.reduction_dict[reduction]
    +
    +        output = input.new_zeros(input.size())
    +
    +        ext_module.sigmoid_focal_loss_forward(
    +            input, target, weight, output, gamma=ctx.gamma, alpha=ctx.alpha)
    +        if ctx.reduction == ctx.reduction_dict['mean']:
    +            output = output.sum() / input.size(0)
    +        elif ctx.reduction == ctx.reduction_dict['sum']:
    +            output = output.sum()
    +        ctx.save_for_backward(input, target, weight)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        input, target, weight = ctx.saved_tensors
    +
    +        grad_input = input.new_zeros(input.size())
    +
    +        ext_module.sigmoid_focal_loss_backward(
    +            input,
    +            target,
    +            weight,
    +            grad_input,
    +            gamma=ctx.gamma,
    +            alpha=ctx.alpha)
    +
    +        grad_input *= grad_output
    +        if ctx.reduction == ctx.reduction_dict['mean']:
    +            grad_input /= input.size(0)
    +        return grad_input, None, None, None, None, None
    +
    +
    +sigmoid_focal_loss = SigmoidFocalLossFunction.apply
    +
    +
    +class SigmoidFocalLoss(nn.Module):
    +
    +    def __init__(self,
    +                 gamma: float,
    +                 alpha: float,
    +                 weight: Optional[torch.Tensor] = None,
    +                 reduction: str = 'mean'):
    +        super().__init__()
    +        self.gamma = gamma
    +        self.alpha = alpha
    +        self.register_buffer('weight', weight)
    +        self.reduction = reduction
    +
    +    def forward(
    +        self,
    +        input: torch.Tensor,
    +        target: Union[torch.LongTensor, torch.cuda.LongTensor],
    +    ) -> torch.Tensor:
    +        return sigmoid_focal_loss(input, target, self.gamma, self.alpha,
    +                                  self.weight, self.reduction)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(gamma={self.gamma}, '
    +        s += f'alpha={self.alpha}, '
    +        s += f'reduction={self.reduction})'
    +        return s
    +
    +
    +class SoftmaxFocalLossFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input: torch.Tensor, target: torch.LongTensor,
    +                 gamma: float, alpha: float, weight: torch.Tensor,
    +                 reduction: str):
    +        return g.op(
    +            'mmcv::MMCVSoftmaxFocalLoss',
    +            input,
    +            target,
    +            gamma_f=gamma,
    +            alpha_f=alpha,
    +            weight_f=weight,
    +            reduction_s=reduction)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input: torch.Tensor,
    +                target: Union[torch.LongTensor, torch.cuda.LongTensor],
    +                gamma: float = 2.0,
    +                alpha: float = 0.25,
    +                weight: Optional[torch.Tensor] = None,
    +                reduction='mean') -> torch.Tensor:
    +
    +        assert target.dtype == torch.long
    +        assert input.dim() == 2
    +        assert target.dim() == 1
    +        assert input.size(0) == target.size(0)
    +        if weight is None:
    +            weight = input.new_empty(0)
    +        else:
    +            assert weight.dim() == 1
    +            assert input.size(1) == weight.size(0)
    +        ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2}
    +        assert reduction in ctx.reduction_dict.keys()
    +
    +        ctx.gamma = float(gamma)
    +        ctx.alpha = float(alpha)
    +        ctx.reduction = ctx.reduction_dict[reduction]
    +
    +        channel_stats, _ = torch.max(input, dim=1)
    +        input_softmax = input - channel_stats.unsqueeze(1).expand_as(input)
    +        input_softmax.exp_()
    +
    +        channel_stats = input_softmax.sum(dim=1)
    +        input_softmax /= channel_stats.unsqueeze(1).expand_as(input)
    +
    +        output = input.new_zeros(input.size(0))
    +        ext_module.softmax_focal_loss_forward(
    +            input_softmax,
    +            target,
    +            weight,
    +            output,
    +            gamma=ctx.gamma,
    +            alpha=ctx.alpha)
    +
    +        if ctx.reduction == ctx.reduction_dict['mean']:
    +            output = output.sum() / input.size(0)
    +        elif ctx.reduction == ctx.reduction_dict['sum']:
    +            output = output.sum()
    +        ctx.save_for_backward(input_softmax, target, weight)
    +        return output
    +
    +    @staticmethod
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        input_softmax, target, weight = ctx.saved_tensors
    +        buff = input_softmax.new_zeros(input_softmax.size(0))
    +        grad_input = input_softmax.new_zeros(input_softmax.size())
    +
    +        ext_module.softmax_focal_loss_backward(
    +            input_softmax,
    +            target,
    +            weight,
    +            buff,
    +            grad_input,
    +            gamma=ctx.gamma,
    +            alpha=ctx.alpha)
    +
    +        grad_input *= grad_output
    +        if ctx.reduction == ctx.reduction_dict['mean']:
    +            grad_input /= input_softmax.size(0)
    +        return grad_input, None, None, None, None, None
    +
    +
    +softmax_focal_loss = SoftmaxFocalLossFunction.apply
    +
    +
    +class SoftmaxFocalLoss(nn.Module):
    +
    +    def __init__(self,
    +                 gamma: float,
    +                 alpha: float,
    +                 weight: Optional[torch.Tensor] = None,
    +                 reduction: str = 'mean'):
    +        super().__init__()
    +        self.gamma = gamma
    +        self.alpha = alpha
    +        self.register_buffer('weight', weight)
    +        self.reduction = reduction
    +
    +    def forward(
    +        self,
    +        input: torch.Tensor,
    +        target: Union[torch.LongTensor, torch.cuda.LongTensor],
    +    ) -> torch.Tensor:
    +        return softmax_focal_loss(input, target, self.gamma, self.alpha,
    +                                  self.weight, self.reduction)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(gamma={self.gamma}, '
    +        s += f'alpha={self.alpha}, '
    +        s += f'reduction={self.reduction})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/furthest_point_sample.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/furthest_point_sample.py
    new file mode 100644
    index 000000000..22b1a3048
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/furthest_point_sample.py
    @@ -0,0 +1,84 @@
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'furthest_point_sampling_forward',
    +    'furthest_point_sampling_with_dist_forward'
    +])
    +
    +
    +class FurthestPointSampling(Function):
    +    """Uses iterative furthest point sampling to select a set of features whose
    +    corresponding points have the furthest distance."""
    +
    +    @staticmethod
    +    def forward(ctx, points_xyz: torch.Tensor,
    +                num_points: int) -> torch.Tensor:
    +        """
    +        Args:
    +            points_xyz (torch.Tensor): (B, N, 3) where N > num_points.
    +            num_points (int): Number of points in the sampled set.
    +
    +        Returns:
    +            torch.Tensor: (B, num_points) indices of the sampled points.
    +        """
    +        assert points_xyz.is_contiguous()
    +
    +        B, N = points_xyz.size()[:2]
    +        output = torch.cuda.IntTensor(B, num_points)
    +        temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
    +
    +        ext_module.furthest_point_sampling_forward(
    +            points_xyz,
    +            temp,
    +            output,
    +            b=B,
    +            n=N,
    +            m=num_points,
    +        )
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(output)
    +        return output
    +
    +    @staticmethod
    +    def backward(xyz, a=None):
    +        return None, None
    +
    +
    +class FurthestPointSamplingWithDist(Function):
    +    """Uses iterative furthest point sampling to select a set of features whose
    +    corresponding points have the furthest distance."""
    +
    +    @staticmethod
    +    def forward(ctx, points_dist: torch.Tensor,
    +                num_points: int) -> torch.Tensor:
    +        """
    +        Args:
    +            points_dist (torch.Tensor): (B, N, N) Distance between each point
    +                pair.
    +            num_points (int): Number of points in the sampled set.
    +
    +        Returns:
    +            torch.Tensor: (B, num_points) indices of the sampled points.
    +        """
    +        assert points_dist.is_contiguous()
    +
    +        B, N, _ = points_dist.size()
    +        output = points_dist.new_zeros([B, num_points], dtype=torch.int32)
    +        temp = points_dist.new_zeros([B, N]).fill_(1e10)
    +
    +        ext_module.furthest_point_sampling_with_dist_forward(
    +            points_dist, temp, output, b=B, n=N, m=num_points)
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(output)
    +        return output
    +
    +    @staticmethod
    +    def backward(xyz, a=None):
    +        return None, None
    +
    +
    +furthest_point_sample = FurthestPointSampling.apply
    +furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/fused_bias_leakyrelu.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/fused_bias_leakyrelu.py
    new file mode 100644
    index 000000000..fe17d2db7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/fused_bias_leakyrelu.py
    @@ -0,0 +1,282 @@
    +# modified from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
    +
    +# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +# NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +# Augmentation (ADA)
    +# =======================================================================
    +
    +# 1. Definitions
    +
    +# "Licensor" means any person or entity that distributes its Work.
    +
    +# "Software" means the original work of authorship made available under
    +# this License.
    +
    +# "Work" means the Software and any additions to or derivative works of
    +# the Software that are made available under this License.
    +
    +# The terms "reproduce," "reproduction," "derivative works," and
    +# "distribution" have the meaning as provided under U.S. copyright law;
    +# provided, however, that for the purposes of this License, derivative
    +# works shall not include works that remain separable from, or merely
    +# link (or bind by name) to the interfaces of, the Work.
    +
    +# Works, including the Software, are "made available" under this License
    +# by including in or with the Work either (a) a copyright notice
    +# referencing the applicability of this License to the Work, or (b) a
    +# copy of this License.
    +
    +# 2. License Grants
    +
    +#     2.1 Copyright Grant. Subject to the terms and conditions of this
    +#     License, each Licensor grants to you a perpetual, worldwide,
    +#     non-exclusive, royalty-free, copyright license to reproduce,
    +#     prepare derivative works of, publicly display, publicly perform,
    +#     sublicense and distribute its Work and any resulting derivative
    +#     works in any form.
    +
    +# 3. Limitations
    +
    +#     3.1 Redistribution. You may reproduce or distribute the Work only
    +#     if (a) you do so under this License, (b) you include a complete
    +#     copy of this License with your distribution, and (c) you retain
    +#     without modification any copyright, patent, trademark, or
    +#     attribution notices that are present in the Work.
    +
    +#     3.2 Derivative Works. You may specify that additional or different
    +#     terms apply to the use, reproduction, and distribution of your
    +#     derivative works of the Work ("Your Terms") only if (a) Your Terms
    +#     provide that the use limitation in Section 3.3 applies to your
    +#     derivative works, and (b) you identify the specific derivative
    +#     works that are subject to Your Terms. Notwithstanding Your Terms,
    +#     this License (including the redistribution requirements in Section
    +#     3.1) will continue to apply to the Work itself.
    +
    +#     3.3 Use Limitation. The Work and any derivative works thereof only
    +#     may be used or intended for use non-commercially. Notwithstanding
    +#     the foregoing, NVIDIA and its affiliates may use the Work and any
    +#     derivative works commercially. As used herein, "non-commercially"
    +#     means for research or evaluation purposes only.
    +
    +#     3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +#     against any Licensor (including any claim, cross-claim or
    +#     counterclaim in a lawsuit) to enforce any patents that you allege
    +#     are infringed by any Work, then your rights under this License from
    +#     such Licensor (including the grant in Section 2.1) will terminate
    +#     immediately.
    +
    +#     3.5 Trademarks. This License does not grant any rights to use any
    +#     Licensor’s or its affiliates’ names, logos, or trademarks, except
    +#     as necessary to reproduce the notices described in this License.
    +
    +#     3.6 Termination. If you violate any term of this License, then your
    +#     rights under this License (including the grant in Section 2.1) will
    +#     terminate immediately.
    +
    +# 4. Disclaimer of Warranty.
    +
    +# THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +# NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +# THIS LICENSE.
    +
    +# 5. Limitation of Liability.
    +
    +# EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +# THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +# SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +# INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +# OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +# (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +# LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +# COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +# THE POSSIBILITY OF SUCH DAMAGES.
    +
    +# =======================================================================
    +
    +import torch
    +import torch.nn.functional as F
    +from torch import nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['fused_bias_leakyrelu'])
    +
    +
    +class FusedBiasLeakyReLUFunctionBackward(Function):
    +    """Calculate second order deviation.
    +
    +    This function is to compute the second order deviation for the fused leaky
    +    relu operation.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx, grad_output: torch.Tensor, out: torch.Tensor,
    +                negative_slope: float, scale: float) -> tuple:
    +        ctx.save_for_backward(out)
    +        ctx.negative_slope = negative_slope
    +        ctx.scale = scale
    +
    +        empty = grad_output.new_empty(0)
    +
    +        grad_input = ext_module.fused_bias_leakyrelu(
    +            grad_output,
    +            empty,
    +            out,
    +            act=3,
    +            grad=1,
    +            alpha=negative_slope,
    +            scale=scale)
    +
    +        dim = [0]
    +
    +        if grad_input.ndim > 2:
    +            dim += list(range(2, grad_input.ndim))
    +
    +        grad_bias = grad_input.sum(dim).detach()
    +
    +        return grad_input, grad_bias
    +
    +    @staticmethod
    +    def backward(ctx, gradgrad_input: torch.Tensor,
    +                 gradgrad_bias: nn.Parameter) -> tuple:
    +        out, = ctx.saved_tensors
    +
    +        # The second order deviation, in fact, contains two parts, while the
    +        # the first part is zero. Thus, we direct consider the second part
    +        # which is similar with the first order deviation in implementation.
    +        gradgrad_out = ext_module.fused_bias_leakyrelu(
    +            gradgrad_input,
    +            gradgrad_bias.to(out.dtype),
    +            out,
    +            act=3,
    +            grad=1,
    +            alpha=ctx.negative_slope,
    +            scale=ctx.scale)
    +
    +        return gradgrad_out, None, None, None
    +
    +
    +class FusedBiasLeakyReLUFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx, input: torch.Tensor, bias: nn.Parameter,
    +                negative_slope: float, scale: float) -> torch.Tensor:
    +        empty = input.new_empty(0)
    +
    +        out = ext_module.fused_bias_leakyrelu(
    +            input,
    +            bias,
    +            empty,
    +            act=3,
    +            grad=0,
    +            alpha=negative_slope,
    +            scale=scale)
    +        ctx.save_for_backward(out)
    +        ctx.negative_slope = negative_slope
    +        ctx.scale = scale
    +
    +        return out
    +
    +    @staticmethod
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        out, = ctx.saved_tensors
    +
    +        grad_input, grad_bias = FusedBiasLeakyReLUFunctionBackward.apply(
    +            grad_output, out, ctx.negative_slope, ctx.scale)
    +
    +        return grad_input, grad_bias, None, None
    +
    +
    +class FusedBiasLeakyReLU(nn.Module):
    +    r"""Fused bias leaky ReLU.
    +
    +    This function is introduced in the StyleGAN2:
    +    `Analyzing and Improving the Image Quality of StyleGAN
    +    `_
    +
    +    The bias term comes from the convolution operation. In addition, to keep
    +    the variance of the feature map or gradients unchanged, they also adopt a
    +    scale similarly with Kaiming initialization. However, since the
    +    :math:`1+{alpha}^2` is too small, we can just ignore it. Therefore, the
    +    final scale is just :math:`\sqrt{2}`. Of course, you may change it with
    +    your own scale.
    +
    +    TODO: Implement the CPU version.
    +
    +    Args:
    +        num_channels (int): The channel number of the feature map.
    +        negative_slope (float, optional): Same as nn.LeakyRelu.
    +            Defaults to 0.2.
    +        scale (float, optional): A scalar to adjust the variance of the feature
    +            map. Defaults to 2**0.5.
    +    """
    +
    +    def __init__(self,
    +                 num_channels: int,
    +                 negative_slope: float = 0.2,
    +                 scale: float = 2**0.5):
    +        super().__init__()
    +
    +        self.bias = nn.Parameter(torch.zeros(num_channels))
    +        self.negative_slope = negative_slope
    +        self.scale = scale
    +
    +    def forward(self, input: torch.Tensor) -> torch.Tensor:
    +        return fused_bias_leakyrelu(input, self.bias, self.negative_slope,
    +                                    self.scale)
    +
    +
    +def fused_bias_leakyrelu(input: torch.Tensor,
    +                         bias: nn.Parameter,
    +                         negative_slope: float = 0.2,
    +                         scale: float = 2**0.5) -> torch.Tensor:
    +    r"""Fused bias leaky ReLU function.
    +
    +    This function is introduced in the StyleGAN2:
    +    `Analyzing and Improving the Image Quality of StyleGAN
    +    `_
    +
    +    The bias term comes from the convolution operation. In addition, to keep
    +    the variance of the feature map or gradients unchanged, they also adopt a
    +    scale similarly with Kaiming initialization. However, since the
    +    :math:`1+{alpha}^2` is too small, we can just ignore it. Therefore, the
    +    final scale is just :math:`\sqrt{2}`. Of course, you may change it with
    +    your own scale.
    +
    +    Args:
    +        input (torch.Tensor): Input feature map.
    +        bias (nn.Parameter): The bias from convolution operation.
    +        negative_slope (float, optional): Same as nn.LeakyRelu.
    +            Defaults to 0.2.
    +        scale (float, optional): A scalar to adjust the variance of the feature
    +            map. Defaults to 2**0.5.
    +
    +    Returns:
    +        torch.Tensor: Feature map after non-linear activation.
    +    """
    +
    +    if not input.is_cuda and input.device.type != 'npu':
    +        return bias_leakyrelu_ref(input, bias, negative_slope, scale)
    +
    +    return FusedBiasLeakyReLUFunction.apply(input, bias.to(input.dtype),
    +                                            negative_slope, scale)
    +
    +
    +def bias_leakyrelu_ref(x: torch.Tensor,
    +                       bias: nn.Parameter,
    +                       negative_slope: float = 0.2,
    +                       scale: float = 2**0.5) -> torch.Tensor:
    +
    +    if bias is not None:
    +        assert bias.ndim == 1
    +        assert bias.shape[0] == x.shape[1]
    +        x = x + bias.reshape([-1 if i == 1 else 1 for i in range(x.ndim)])
    +
    +    x = F.leaky_relu(x, negative_slope)
    +    if scale != 1:
    +        x = x * scale
    +
    +    return x
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/gather_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/gather_points.py
    new file mode 100644
    index 000000000..895bfab64
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/gather_points.py
    @@ -0,0 +1,59 @@
    +from typing import Tuple
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['gather_points_forward', 'gather_points_backward'])
    +
    +
    +class GatherPoints(Function):
    +    """Gather points with given index."""
    +
    +    @staticmethod
    +    def forward(ctx, features: torch.Tensor,
    +                indices: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            features (torch.Tensor): (B, C, N) features to gather.
    +            indices (torch.Tensor): (B, M) where M is the number of points.
    +
    +        Returns:
    +            torch.Tensor: (B, C, M) where M is the number of points.
    +        """
    +        assert features.is_contiguous()
    +        assert indices.is_contiguous()
    +
    +        B, npoint = indices.size()
    +        _, C, N = features.size()
    +        output = features.new_zeros((B, C, npoint))
    +
    +        ext_module.gather_points_forward(
    +            features, indices, output, b=B, c=C, n=N, npoints=npoint)
    +
    +        ctx.for_backwards = (indices, C, N)
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(indices)
    +        return output
    +
    +    @staticmethod
    +    def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, None]:
    +        idx, C, N = ctx.for_backwards
    +        B, npoint = idx.size()
    +
    +        grad_features = grad_out.new_zeros((B, C, N))
    +        grad_out_data = grad_out.data.contiguous()
    +        ext_module.gather_points_backward(
    +            grad_out_data,
    +            idx,
    +            grad_features.data,
    +            b=B,
    +            c=C,
    +            n=N,
    +            npoints=npoint)
    +        return grad_features, None
    +
    +
    +gather_points = GatherPoints.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/group_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/group_points.py
    new file mode 100644
    index 000000000..999728c22
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/group_points.py
    @@ -0,0 +1,299 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Tuple, Union
    +
    +import torch
    +from torch import nn as nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +from .ball_query import ball_query
    +from .knn import knn
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'group_points_forward', 'group_points_backward',
    +    'stack_group_points_forward', 'stack_group_points_backward'
    +])
    +
    +
    +class QueryAndGroup(nn.Module):
    +    """Groups points with a ball query of radius.
    +
    +    Args:
    +        max_radius (float): The maximum radius of the balls.
    +            If None is given, we will use kNN sampling instead of ball query.
    +        sample_num (int): Maximum number of features to gather in the ball.
    +        min_radius (float, optional): The minimum radius of the balls.
    +            Default: 0.
    +        use_xyz (bool, optional): Whether to use xyz.
    +            Default: True.
    +        return_grouped_xyz (bool, optional): Whether to return grouped xyz.
    +            Default: False.
    +        normalize_xyz (bool, optional): Whether to normalize xyz.
    +            Default: False.
    +        uniform_sample (bool, optional): Whether to sample uniformly.
    +            Default: False
    +        return_unique_cnt (bool, optional): Whether to return the count of
    +            unique samples. Default: False.
    +        return_grouped_idx (bool, optional): Whether to return grouped idx.
    +            Default: False.
    +    """
    +
    +    def __init__(self,
    +                 max_radius: float,
    +                 sample_num: int,
    +                 min_radius: float = 0.,
    +                 use_xyz: bool = True,
    +                 return_grouped_xyz: bool = False,
    +                 normalize_xyz: bool = False,
    +                 uniform_sample: bool = False,
    +                 return_unique_cnt: bool = False,
    +                 return_grouped_idx: bool = False):
    +        super().__init__()
    +        self.max_radius = max_radius
    +        self.min_radius = min_radius
    +        self.sample_num = sample_num
    +        self.use_xyz = use_xyz
    +        self.return_grouped_xyz = return_grouped_xyz
    +        self.normalize_xyz = normalize_xyz
    +        self.uniform_sample = uniform_sample
    +        self.return_unique_cnt = return_unique_cnt
    +        self.return_grouped_idx = return_grouped_idx
    +        if self.return_unique_cnt:
    +            assert self.uniform_sample, \
    +                'uniform_sample should be True when ' \
    +                'returning the count of unique samples'
    +        if self.max_radius is None:
    +            assert not self.normalize_xyz, \
    +                'can not normalize grouped xyz when max_radius is None'
    +
    +    def forward(
    +        self,
    +        points_xyz: torch.Tensor,
    +        center_xyz: torch.Tensor,
    +        features: Optional[torch.Tensor] = None,
    +    ) -> Union[torch.Tensor, Tuple]:
    +        """
    +        Args:
    +            points_xyz (torch.Tensor): (B, N, 3) xyz coordinates of the
    +                points.
    +            center_xyz (torch.Tensor): (B, npoint, 3) coordinates of the
    +                centriods.
    +            features (torch.Tensor): (B, C, N) The features of grouped
    +                points.
    +
    +        Returns:
    +            Tuple | torch.Tensor: (B, 3 + C, npoint, sample_num) Grouped
    +            concatenated coordinates and features of points.
    +        """
    +        # if self.max_radius is None, we will perform kNN instead of ball query
    +        # idx is of shape [B, npoint, sample_num]
    +        if self.max_radius is None:
    +            idx = knn(self.sample_num, points_xyz, center_xyz, False)
    +            idx = idx.transpose(1, 2).contiguous()
    +        else:
    +            idx = ball_query(self.min_radius, self.max_radius, self.sample_num,
    +                             points_xyz, center_xyz)
    +
    +        if self.uniform_sample:
    +            unique_cnt = torch.zeros((idx.shape[0], idx.shape[1]))
    +            for i_batch in range(idx.shape[0]):
    +                for i_region in range(idx.shape[1]):
    +                    unique_ind = torch.unique(idx[i_batch, i_region, :])
    +                    num_unique = unique_ind.shape[0]
    +                    unique_cnt[i_batch, i_region] = num_unique
    +                    sample_ind = torch.randint(
    +                        0,
    +                        num_unique, (self.sample_num - num_unique, ),
    +                        dtype=torch.long)
    +                    all_ind = torch.cat((unique_ind, unique_ind[sample_ind]))
    +                    idx[i_batch, i_region, :] = all_ind
    +
    +        xyz_trans = points_xyz.transpose(1, 2).contiguous()
    +        # (B, 3, npoint, sample_num)
    +        grouped_xyz = grouping_operation(xyz_trans, idx)
    +        grouped_xyz_diff = grouped_xyz - \
    +            center_xyz.transpose(1, 2).unsqueeze(-1)  # relative offsets
    +        if self.normalize_xyz:
    +            grouped_xyz_diff /= self.max_radius
    +
    +        if features is not None:
    +            grouped_features = grouping_operation(features, idx)
    +            if self.use_xyz:
    +                # (B, C + 3, npoint, sample_num)
    +                new_features = torch.cat([grouped_xyz_diff, grouped_features],
    +                                         dim=1)
    +            else:
    +                new_features = grouped_features
    +        else:
    +            assert (self.use_xyz
    +                    ), 'Cannot have not features and not use xyz as a feature!'
    +            new_features = grouped_xyz_diff
    +
    +        ret = [new_features]
    +        if self.return_grouped_xyz:
    +            ret.append(grouped_xyz)
    +        if self.return_unique_cnt:
    +            ret.append(unique_cnt)
    +        if self.return_grouped_idx:
    +            ret.append(idx)
    +        if len(ret) == 1:
    +            return ret[0]
    +        else:
    +            return tuple(ret)
    +
    +
    +class GroupAll(nn.Module):
    +    """Group xyz with feature.
    +
    +    Args:
    +        use_xyz (bool): Whether to use xyz.
    +    """
    +
    +    def __init__(self, use_xyz: bool = True):
    +        super().__init__()
    +        self.use_xyz = use_xyz
    +
    +    def forward(self,
    +                xyz: torch.Tensor,
    +                new_xyz: torch.Tensor,
    +                features: Optional[torch.Tensor] = None) -> torch.Tensor:
    +        """
    +        Args:
    +            xyz (Tensor): (B, N, 3) xyz coordinates of the features.
    +            new_xyz (Tensor): new xyz coordinates of the features.
    +            features (Tensor): (B, C, N) features to group.
    +
    +        Returns:
    +            Tensor: (B, C + 3, 1, N) Grouped feature.
    +        """
    +        grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
    +        if features is not None:
    +            grouped_features = features.unsqueeze(2)
    +            if self.use_xyz:
    +                # (B, 3 + C, 1, N)
    +                new_features = torch.cat([grouped_xyz, grouped_features],
    +                                         dim=1)
    +            else:
    +                new_features = grouped_features
    +        else:
    +            new_features = grouped_xyz
    +
    +        return new_features
    +
    +
    +class GroupingOperation(Function):
    +    """Group feature with given index."""
    +
    +    @staticmethod
    +    def forward(
    +            ctx,
    +            features: torch.Tensor,
    +            indices: torch.Tensor,
    +            features_batch_cnt: Optional[torch.Tensor] = None,
    +            indices_batch_cnt: Optional[torch.Tensor] = None) -> torch.Tensor:
    +        """
    +        Args:
    +            features (Tensor): Tensor of features to group, input shape is
    +                (B, C, N) or stacked inputs (N1 + N2 ..., C).
    +            indices (Tensor):  The indices of features to group with, input
    +                shape is (B, npoint, nsample) or stacked inputs
    +                (M1 + M2 ..., nsample).
    +            features_batch_cnt (Tensor, optional): Input features nums in
    +                each batch, just like (N1, N2, ...). Defaults to None.
    +                New in version 1.7.0.
    +            indices_batch_cnt (Tensor, optional): Input indices nums in
    +                each batch, just like (M1, M2, ...). Defaults to None.
    +                New in version 1.7.0.
    +
    +        Returns:
    +            Tensor: Grouped features, the shape is (B, C, npoint, nsample)
    +            or (M1 + M2 ..., C, nsample).
    +        """
    +        features = features.contiguous()
    +        indices = indices.contiguous()
    +        if features_batch_cnt is not None and indices_batch_cnt is not None:
    +            assert features_batch_cnt.dtype == torch.int
    +            assert indices_batch_cnt.dtype == torch.int
    +            M, nsample = indices.size()
    +            N, C = features.size()
    +            B = indices_batch_cnt.shape[0]
    +            output = features.new_zeros((M, C, nsample))
    +            ext_module.stack_group_points_forward(
    +                features,
    +                features_batch_cnt,
    +                indices,
    +                indices_batch_cnt,
    +                output,
    +                b=B,
    +                m=M,
    +                c=C,
    +                nsample=nsample)
    +            ctx.for_backwards = (B, N, indices, features_batch_cnt,
    +                                 indices_batch_cnt)
    +        else:
    +            B, nfeatures, nsample = indices.size()
    +            _, C, N = features.size()
    +            output = features.new_zeros(B, C, nfeatures, nsample)
    +
    +            ext_module.group_points_forward(
    +                features,
    +                indices,
    +                output,
    +                b=B,
    +                c=C,
    +                n=N,
    +                npoints=nfeatures,
    +                nsample=nsample)
    +
    +            ctx.for_backwards = (indices, N)
    +        return output
    +
    +    @staticmethod
    +    def backward(ctx, grad_out: torch.Tensor) -> Tuple:
    +        """
    +        Args:
    +            grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients
    +                of the output from forward.
    +
    +        Returns:
    +            Tensor: (B, C, N) gradient of the features.
    +        """
    +        if len(ctx.for_backwards) != 5:
    +            idx, N = ctx.for_backwards
    +
    +            B, C, npoint, nsample = grad_out.size()
    +            grad_features = grad_out.new_zeros(B, C, N)
    +
    +            grad_out_data = grad_out.data.contiguous()
    +            ext_module.group_points_backward(
    +                grad_out_data,
    +                idx,
    +                grad_features.data,
    +                b=B,
    +                c=C,
    +                n=N,
    +                npoints=npoint,
    +                nsample=nsample)
    +            return grad_features, None
    +        else:
    +            B, N, idx, features_batch_cnt, idx_batch_cnt = ctx.for_backwards
    +
    +            M, C, nsample = grad_out.size()
    +            grad_features = grad_out.new_zeros(N, C)
    +
    +            grad_out_data = grad_out.data.contiguous()
    +            ext_module.stack_group_points_backward(
    +                grad_out_data,
    +                idx,
    +                idx_batch_cnt,
    +                features_batch_cnt,
    +                grad_features.data,
    +                b=B,
    +                c=C,
    +                m=M,
    +                n=N,
    +                nsample=nsample)
    +            return grad_features, None, None, None
    +
    +
    +grouping_operation = GroupingOperation.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/info.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/info.py
    new file mode 100644
    index 000000000..29f2e5598
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/info.py
    @@ -0,0 +1,36 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import glob
    +import os
    +
    +import torch
    +
    +if torch.__version__ == 'parrots':
    +    import parrots
    +
    +    def get_compiler_version():
    +        return 'GCC ' + parrots.version.compiler
    +
    +    def get_compiling_cuda_version():
    +        return parrots.version.cuda
    +else:
    +    from ..utils import ext_loader
    +    ext_module = ext_loader.load_ext(
    +        '_ext', ['get_compiler_version', 'get_compiling_cuda_version'])
    +
    +    def get_compiler_version():
    +        return ext_module.get_compiler_version()
    +
    +    def get_compiling_cuda_version():
    +        return ext_module.get_compiling_cuda_version()
    +
    +
    +def get_onnxruntime_op_path():
    +    wildcard = os.path.join(
    +        os.path.abspath(os.path.dirname(os.path.dirname(__file__))),
    +        '_ext_ort.*.so')
    +
    +    paths = glob.glob(wildcard)
    +    if len(paths) > 0:
    +        return paths[0]
    +    else:
    +        return ''
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/iou3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/iou3d.py
    new file mode 100755
    index 000000000..4903dcf32
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/iou3d.py
    @@ -0,0 +1,224 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Optional
    +
    +import torch
    +from torch import Tensor
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'iou3d_boxes_overlap_bev_forward', 'iou3d_nms3d_forward',
    +    'iou3d_nms3d_normal_forward'
    +])
    +
    +
    +def boxes_overlap_bev(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
    +    """Calculate boxes BEV overlap.
    +
    +    Args:
    +        boxes_a (torch.Tensor): Input boxes a with shape (M, 7).
    +        boxes_b (torch.Tensor): Input boxes b with shape (N, 7).
    +
    +    Returns:
    +        torch.Tensor: BEV overlap result with shape (M, N).
    +    """
    +    ans_overlap = boxes_a.new_zeros(
    +        torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
    +    ext_module.iou3d_boxes_overlap_bev_forward(boxes_a.contiguous(),
    +                                               boxes_b.contiguous(),
    +                                               ans_overlap)
    +
    +    return ans_overlap
    +
    +
    +def boxes_iou3d(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
    +    """Calculate boxes 3D IoU.
    +
    +    Args:
    +        boxes_a (torch.Tensor): Input boxes a with shape (M, 7).
    +        boxes_b (torch.Tensor): Input boxes b with shape (N, 7).
    +
    +    Returns:
    +        torch.Tensor: 3D IoU result with shape (M, N).
    +    """
    +    assert boxes_a.shape[1] == boxes_b.shape[1] == 7,\
    +        'Input boxes shape should be (N, 7)'
    +
    +    boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
    +    boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
    +    boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1)
    +    boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1)
    +
    +    overlaps_bev = boxes_a.new_zeros(
    +        torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
    +    ext_module.iou3d_boxes_overlap_bev_forward(boxes_a.contiguous(),
    +                                               boxes_b.contiguous(),
    +                                               overlaps_bev)
    +
    +    max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
    +    min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
    +    overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
    +    overlaps_3d = overlaps_bev * overlaps_h
    +    vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
    +    vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1)
    +    iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
    +    return iou3d
    +
    +
    +def nms3d(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor:
    +    """3D NMS function GPU implementation (for BEV boxes).
    +
    +    Args:
    +        boxes (torch.Tensor): Input boxes with the shape of (N, 7)
    +            ([x, y, z, dx, dy, dz, heading]).
    +        scores (torch.Tensor): Scores of boxes with the shape of (N).
    +        iou_threshold (float): Overlap threshold of NMS.
    +
    +    Returns:
    +        torch.Tensor: Indexes after NMS.
    +    """
    +    assert boxes.size(1) == 7, 'Input boxes shape should be (N, 7)'
    +    order = scores.sort(0, descending=True)[1]
    +    boxes = boxes[order].contiguous()
    +
    +    keep = boxes.new_zeros(boxes.size(0), dtype=torch.long)
    +    num_out = boxes.new_zeros(size=(), dtype=torch.long)
    +    ext_module.iou3d_nms3d_forward(
    +        boxes, keep, num_out, nms_overlap_thresh=iou_threshold)
    +    keep = order[keep[:num_out].to(boxes.device)].contiguous()
    +    return keep
    +
    +
    +def nms3d_normal(boxes: Tensor, scores: Tensor,
    +                 iou_threshold: float) -> Tensor:
    +    """Normal 3D NMS function GPU implementation. The overlap of two boxes for
    +    IoU calculation is defined as the exact overlapping area of the two boxes
    +    WITH their yaw angle set to 0.
    +
    +    Args:
    +        boxes (torch.Tensor): Input boxes with shape (N, 7).
    +            ([x, y, z, dx, dy, dz, heading]).
    +        scores (torch.Tensor): Scores of predicted boxes with shape (N).
    +        iou_threshold (float): Overlap threshold of NMS.
    +
    +    Returns:
    +        torch.Tensor: Remaining indices with scores in descending order.
    +    """
    +    assert boxes.shape[1] == 7, 'Input boxes shape should be (N, 7)'
    +    order = scores.sort(0, descending=True)[1]
    +    boxes = boxes[order].contiguous()
    +
    +    keep = boxes.new_zeros(boxes.size(0), dtype=torch.long)
    +    num_out = boxes.new_zeros(size=(), dtype=torch.long)
    +    ext_module.iou3d_nms3d_normal_forward(
    +        boxes, keep, num_out, nms_overlap_thresh=iou_threshold)
    +    return order[keep[:num_out].to(boxes.device)].contiguous()
    +
    +
    +def _xyxyr2xywhr(boxes: Tensor) -> Tensor:
    +    """Convert [x1, y1, x2, y2, heading] box to [x, y, dx, dy, heading] box.
    +
    +    Args:
    +        box (torch.Tensor): Input boxes with shape (N, 5).
    +
    +    Returns:
    +        torch.Tensor: Converted boxes with shape (N, 7).
    +    """
    +    warnings.warn(
    +        'This function is deprecated and will be removed in the future.',
    +        DeprecationWarning)
    +    return torch.stack(
    +        ((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2,
    +         boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1], boxes[:, 4]),
    +        dim=-1)
    +
    +
    +def boxes_iou_bev(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
    +    """Calculate boxes IoU in the Bird's Eye View.
    +
    +    Args:
    +        boxes_a (torch.Tensor): Input boxes a with shape (M, 5)
    +            ([x1, y1, x2, y2, ry]).
    +        boxes_b (torch.Tensor): Input boxes b with shape (N, 5)
    +            ([x1, y1, x2, y2, ry]).
    +
    +    Returns:
    +        torch.Tensor: IoU result with shape (M, N).
    +    """
    +    from .box_iou_rotated import box_iou_rotated
    +
    +    warnings.warn(
    +        '`iou3d.boxes_iou_bev` is deprecated and will be removed in'
    +        ' the future. Please, use `box_iou_rotated.box_iou_rotated`.',
    +        DeprecationWarning)
    +
    +    return box_iou_rotated(_xyxyr2xywhr(boxes_a), _xyxyr2xywhr(boxes_b))
    +
    +
    +def nms_bev(boxes: Tensor,
    +            scores: Tensor,
    +            thresh: float,
    +            pre_max_size: Optional[int] = None,
    +            post_max_size: Optional[int] = None) -> Tensor:
    +    """NMS function GPU implementation (for BEV boxes).
    +
    +    The overlap of two
    +    boxes for IoU calculation is defined as the exact overlapping area of the
    +    two boxes. In this function, one can also set ``pre_max_size`` and
    +    ``post_max_size``.
    +    Args:
    +        boxes (torch.Tensor): Input boxes with the shape of (N, 5)
    +            ([x1, y1, x2, y2, ry]).
    +        scores (torch.Tensor): Scores of boxes with the shape of (N,).
    +        thresh (float): Overlap threshold of NMS.
    +        pre_max_size (int, optional): Max size of boxes before NMS.
    +            Default: None.
    +        post_max_size (int, optional): Max size of boxes after NMS.
    +            Default: None.
    +    Returns:
    +        torch.Tensor: Indexes after NMS.
    +    """
    +    from .nms import nms_rotated
    +
    +    warnings.warn(
    +        '`iou3d.nms_bev` is deprecated and will be removed in'
    +        ' the future. Please, use `nms.nms_rotated`.', DeprecationWarning)
    +    assert boxes.size(1) == 5, 'Input boxes shape should be (N, 5)'
    +    order = scores.sort(0, descending=True)[1]
    +
    +    if pre_max_size is not None:
    +        order = order[:pre_max_size]
    +    boxes = _xyxyr2xywhr(boxes)[order]
    +    scores = scores[order]
    +
    +    keep = nms_rotated(boxes, scores, thresh)[1]
    +    keep = order[keep]
    +
    +    if post_max_size is not None:
    +        keep = keep[:post_max_size]
    +    return keep
    +
    +
    +def nms_normal_bev(boxes: Tensor, scores: Tensor, thresh: float) -> Tensor:
    +    """Normal NMS function GPU implementation (for BEV boxes).
    +
    +    The overlap of
    +    two boxes for IoU calculation is defined as the exact overlapping area of
    +    the two boxes WITH their yaw angle set to 0.
    +    Args:
    +        boxes (torch.Tensor): Input boxes with shape (N, 5)
    +            ([x1, y1, x2, y2, ry]).
    +        scores (torch.Tensor): Scores of predicted boxes with shape (N,).
    +        thresh (float): Overlap threshold of NMS.
    +    Returns:
    +        torch.Tensor: Remaining indices with scores in descending order.
    +    """
    +    from .nms import nms
    +
    +    warnings.warn(
    +        '`iou3d.nms_normal_bev` is deprecated and will be removed in'
    +        ' the future. Please, use `nms.nms`.', DeprecationWarning)
    +    assert boxes.shape[1] == 5, 'Input boxes shape should be (N, 5)'
    +
    +    return nms(boxes[:, :-1], scores, thresh)[1]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/knn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/knn.py
    new file mode 100644
    index 000000000..48ce92f92
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/knn.py
    @@ -0,0 +1,80 @@
    +from typing import Optional
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['knn_forward'])
    +
    +
    +class KNN(Function):
    +    r"""KNN (CUDA) based on heap data structure.
    +
    +    Modified from `PAConv `_.
    +
    +    Find k-nearest points.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx,
    +                k: int,
    +                xyz: torch.Tensor,
    +                center_xyz: Optional[torch.Tensor] = None,
    +                transposed: bool = False) -> torch.Tensor:
    +        """
    +        Args:
    +            k (int): number of nearest neighbors.
    +            xyz (torch.Tensor): (B, N, 3) if transposed == False, else
    +                (B, 3, N). xyz coordinates of the features.
    +            center_xyz (torch.Tensor, optional): (B, npoint, 3) if transposed
    +                is False, else (B, 3, npoint). centers of the knn query.
    +                Default: None.
    +            transposed (bool, optional): whether the input tensors are
    +                transposed. Should not explicitly use this keyword when
    +                calling knn (=KNN.apply), just add the fourth param.
    +                Default: False.
    +
    +        Returns:
    +            torch.Tensor: (B, k, npoint) tensor with the indices of the
    +            features that form k-nearest neighbours.
    +        """
    +        assert (k > 0) & (k < 100), 'k should be in range(0, 100)'
    +
    +        if center_xyz is None:
    +            center_xyz = xyz
    +
    +        if transposed:
    +            xyz = xyz.transpose(2, 1).contiguous()
    +            center_xyz = center_xyz.transpose(2, 1).contiguous()
    +
    +        assert xyz.is_contiguous()  # [B, N, 3]
    +        assert center_xyz.is_contiguous()  # [B, npoint, 3]
    +
    +        center_xyz_device = center_xyz.get_device()
    +        assert center_xyz_device == xyz.get_device(), \
    +            'center_xyz and xyz should be put on the same device'
    +        if torch.cuda.current_device() != center_xyz_device:
    +            torch.cuda.set_device(center_xyz_device)
    +
    +        B, npoint, _ = center_xyz.shape
    +        N = xyz.shape[1]
    +
    +        idx = center_xyz.new_zeros((B, npoint, k)).int()
    +        dist2 = center_xyz.new_zeros((B, npoint, k)).float()
    +
    +        ext_module.knn_forward(
    +            xyz, center_xyz, idx, dist2, b=B, n=N, m=npoint, nsample=k)
    +        # idx shape to [B, k, npoint]
    +        idx = idx.transpose(2, 1).contiguous()
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(idx)
    +        return idx
    +
    +    @staticmethod
    +    def backward(ctx, a=None):
    +        return None, None, None
    +
    +
    +knn = KNN.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/masked_conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/masked_conv.py
    new file mode 100644
    index 000000000..275b503a4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/masked_conv.py
    @@ -0,0 +1,138 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +from typing import Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['masked_im2col_forward', 'masked_col2im_forward'])
    +
    +
    +class MaskedConv2dFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, features, mask, weight, bias, padding, stride):
    +        return g.op(
    +            'mmcv::MMCVMaskedConv2d',
    +            features,
    +            mask,
    +            weight,
    +            bias,
    +            padding_i=padding,
    +            stride_i=stride)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                features: torch.Tensor,
    +                mask: torch.Tensor,
    +                weight: torch.nn.Parameter,
    +                bias: torch.nn.Parameter,
    +                padding: int = 0,
    +                stride: int = 1) -> torch.Tensor:
    +        assert mask.dim() == 3 and mask.size(0) == 1
    +        assert features.dim() == 4 and features.size(0) == 1
    +        assert features.size()[2:] == mask.size()[1:]
    +        pad_h, pad_w = _pair(padding)
    +        stride_h, stride_w = _pair(stride)
    +        if stride_h != 1 or stride_w != 1:
    +            raise ValueError(
    +                'Stride could not only be 1 in masked_conv2d currently.')
    +        out_channel, in_channel, kernel_h, kernel_w = weight.size()
    +
    +        if features.device.type == 'npu':
    +            import torch_npu
    +            output = torch_npu.npu_conv2d(
    +                features,
    +                weight,
    +                bias,
    +                stride=(stride_h, stride_w),
    +                padding=(pad_h, pad_w),
    +                dilation=(1, 1),
    +                groups=1)
    +            if mask.size()[1:] != output.size()[2:]:
    +                raise ValueError(
    +                    'The mask is inconsistent with the shape of output_conv.')
    +            mask = mask > 0
    +            mask = mask.type(output.dtype)
    +            output = output * mask
    +            return output
    +
    +        batch_size = features.size(0)
    +        out_h = int(
    +            math.floor(
    +                torch.true_divide((features.size(2) + 2 * pad_h -
    +                                   (kernel_h - 1) - 1), stride_h) + 1))
    +        out_w = int(
    +            math.floor(
    +                torch.true_divide((features.size(3) + 2 * pad_w -
    +                                   (kernel_w - 1) - 1), stride_w) + 1))
    +        mask_inds = torch.nonzero(mask[0] > 0, as_tuple=False)
    +        output = features.new_zeros(batch_size, out_channel, out_h, out_w)
    +        if mask_inds.numel() > 0:
    +            mask_h_idx = mask_inds[:, 0].contiguous()
    +            mask_w_idx = mask_inds[:, 1].contiguous()
    +            data_col = features.new_zeros(in_channel * kernel_h * kernel_w,
    +                                          mask_inds.size(0))
    +            ext_module.masked_im2col_forward(
    +                features,
    +                mask_h_idx,
    +                mask_w_idx,
    +                data_col,
    +                kernel_h=kernel_h,
    +                kernel_w=kernel_w,
    +                pad_h=pad_h,
    +                pad_w=pad_w)
    +            masked_output = torch.addmm(1, bias[:, None], 1,
    +                                        weight.view(out_channel, -1), data_col)
    +            ext_module.masked_col2im_forward(
    +                masked_output,
    +                mask_h_idx,
    +                mask_w_idx,
    +                output,
    +                height=out_h,
    +                width=out_w,
    +                channels=out_channel)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        return (None, ) * 5
    +
    +
    +masked_conv2d = MaskedConv2dFunction.apply
    +
    +
    +class MaskedConv2d(nn.Conv2d):
    +    """A MaskedConv2d which inherits the official Conv2d.
    +
    +    The masked forward doesn't implement the backward function and only
    +    supports the stride parameter to be 1 currently.
    +    """
    +
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int, ...]],
    +                 stride: int = 1,
    +                 padding: int = 0,
    +                 dilation: int = 1,
    +                 groups: int = 1,
    +                 bias: bool = True):
    +        super().__init__(in_channels, out_channels, kernel_size, stride,
    +                         padding, dilation, groups, bias)
    +
    +    def forward(self,
    +                input: torch.Tensor,
    +                mask: Optional[torch.Tensor] = None) -> torch.Tensor:
    +        if mask is None:  # fallback to the normal Conv2d
    +            return super().forward(input)
    +        else:
    +            return masked_conv2d(input, mask, self.weight, self.bias,
    +                                 self.padding)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/merge_cells.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/merge_cells.py
    new file mode 100644
    index 000000000..19c3fe658
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/merge_cells.py
    @@ -0,0 +1,166 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +from abc import abstractmethod
    +from typing import Optional
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from ..cnn import ConvModule
    +
    +
    +class BaseMergeCell(nn.Module):
    +    """The basic class for cells used in NAS-FPN and NAS-FCOS.
    +
    +    BaseMergeCell takes 2 inputs. After applying convolution
    +    on them, they are resized to the target size. Then,
    +    they go through binary_op, which depends on the type of cell.
    +    If with_out_conv is True, the result of output will go through
    +    another convolution layer.
    +
    +    Args:
    +        fused_channels (int): number of input channels in out_conv layer.
    +        out_channels (int): number of output channels in out_conv layer.
    +        with_out_conv (bool): Whether to use out_conv layer
    +        out_conv_cfg (dict): Config dict for convolution layer, which should
    +            contain "groups", "kernel_size", "padding", "bias" to build
    +            out_conv layer.
    +        out_norm_cfg (dict): Config dict for normalization layer in out_conv.
    +        out_conv_order (tuple): The order of conv/norm/activation layers in
    +            out_conv.
    +        with_input1_conv (bool): Whether to use convolution on input1.
    +        with_input2_conv (bool): Whether to use convolution on input2.
    +        input_conv_cfg (dict): Config dict for building input1_conv layer and
    +            input2_conv layer, which is expected to contain the type of
    +            convolution.
    +            Default: None, which means using conv2d.
    +        input_norm_cfg (dict): Config dict for normalization layer in
    +            input1_conv and input2_conv layer. Default: None.
    +        upsample_mode (str): Interpolation method used to resize the output
    +            of input1_conv and input2_conv to target size. Currently, we
    +            support ['nearest', 'bilinear']. Default: 'nearest'.
    +    """
    +
    +    def __init__(self,
    +                 fused_channels: Optional[int] = 256,
    +                 out_channels: Optional[int] = 256,
    +                 with_out_conv: bool = True,
    +                 out_conv_cfg: dict = dict(
    +                     groups=1, kernel_size=3, padding=1, bias=True),
    +                 out_norm_cfg: Optional[dict] = None,
    +                 out_conv_order: tuple = ('act', 'conv', 'norm'),
    +                 with_input1_conv: bool = False,
    +                 with_input2_conv: bool = False,
    +                 input_conv_cfg: Optional[dict] = None,
    +                 input_norm_cfg: Optional[dict] = None,
    +                 upsample_mode: str = 'nearest'):
    +        super().__init__()
    +        assert upsample_mode in ['nearest', 'bilinear']
    +        self.with_out_conv = with_out_conv
    +        self.with_input1_conv = with_input1_conv
    +        self.with_input2_conv = with_input2_conv
    +        self.upsample_mode = upsample_mode
    +
    +        if self.with_out_conv:
    +            self.out_conv = ConvModule(
    +                fused_channels,  # type: ignore
    +                out_channels,  # type: ignore
    +                **out_conv_cfg,
    +                norm_cfg=out_norm_cfg,
    +                order=out_conv_order)
    +
    +        self.input1_conv = self._build_input_conv(
    +            out_channels, input_conv_cfg,
    +            input_norm_cfg) if with_input1_conv else nn.Sequential()
    +        self.input2_conv = self._build_input_conv(
    +            out_channels, input_conv_cfg,
    +            input_norm_cfg) if with_input2_conv else nn.Sequential()
    +
    +    def _build_input_conv(self, channel, conv_cfg, norm_cfg):
    +        return ConvModule(
    +            channel,
    +            channel,
    +            3,
    +            padding=1,
    +            conv_cfg=conv_cfg,
    +            norm_cfg=norm_cfg,
    +            bias=True)
    +
    +    @abstractmethod
    +    def _binary_op(self, x1, x2):
    +        pass
    +
    +    def _resize(self, x, size):
    +        if x.shape[-2:] == size:
    +            return x
    +        elif x.shape[-2:] < size:
    +            return F.interpolate(x, size=size, mode=self.upsample_mode)
    +        else:
    +            if x.shape[-2] % size[-2] != 0 or x.shape[-1] % size[-1] != 0:
    +                h, w = x.shape[-2:]
    +                target_h, target_w = size
    +                pad_h = math.ceil(h / target_h) * target_h - h
    +                pad_w = math.ceil(w / target_w) * target_w - w
    +                pad_l = pad_w // 2
    +                pad_r = pad_w - pad_l
    +                pad_t = pad_h // 2
    +                pad_b = pad_h - pad_t
    +                pad = (pad_l, pad_r, pad_t, pad_b)
    +                x = F.pad(x, pad, mode='constant', value=0.0)
    +            kernel_size = (x.shape[-2] // size[-2], x.shape[-1] // size[-1])
    +            x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size)
    +            return x
    +
    +    def forward(self,
    +                x1: torch.Tensor,
    +                x2: torch.Tensor,
    +                out_size: Optional[tuple] = None) -> torch.Tensor:
    +        assert x1.shape[:2] == x2.shape[:2]
    +        assert out_size is None or len(out_size) == 2
    +        if out_size is None:  # resize to larger one
    +            out_size = max(x1.size()[2:], x2.size()[2:])
    +
    +        x1 = self.input1_conv(x1)
    +        x2 = self.input2_conv(x2)
    +
    +        x1 = self._resize(x1, out_size)
    +        x2 = self._resize(x2, out_size)
    +
    +        x = self._binary_op(x1, x2)
    +        if self.with_out_conv:
    +            x = self.out_conv(x)
    +        return x
    +
    +
    +class SumCell(BaseMergeCell):
    +
    +    def __init__(self, in_channels: int, out_channels: int, **kwargs):
    +        super().__init__(in_channels, out_channels, **kwargs)
    +
    +    def _binary_op(self, x1, x2):
    +        return x1 + x2
    +
    +
    +class ConcatCell(BaseMergeCell):
    +
    +    def __init__(self, in_channels: int, out_channels: int, **kwargs):
    +        super().__init__(in_channels * 2, out_channels, **kwargs)
    +
    +    def _binary_op(self, x1, x2):
    +        ret = torch.cat([x1, x2], dim=1)
    +        return ret
    +
    +
    +class GlobalPoolingCell(BaseMergeCell):
    +
    +    def __init__(self,
    +                 in_channels: Optional[int] = None,
    +                 out_channels: Optional[int] = None,
    +                 **kwargs):
    +        super().__init__(in_channels, out_channels, **kwargs)
    +        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
    +
    +    def _binary_op(self, x1, x2):
    +        x2_att = self.global_pool(x2).sigmoid()
    +        return x2 + x2_att * x1
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/min_area_polygons.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/min_area_polygons.py
    new file mode 100644
    index 000000000..b95f58796
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/min_area_polygons.py
    @@ -0,0 +1,20 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['min_area_polygons'])
    +
    +
    +def min_area_polygons(pointsets: torch.Tensor) -> torch.Tensor:
    +    """Find the smallest polygons that surrounds all points in the point sets.
    +
    +    Args:
    +        pointsets (Tensor): point sets with shape  (N, 18).
    +
    +    Returns:
    +        torch.Tensor: Return the smallest polygons with shape (N, 8).
    +    """
    +    polygons = pointsets.new_zeros((pointsets.size(0), 8))
    +    ext_module.min_area_polygons(pointsets, polygons)
    +    return polygons
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/modulated_deform_conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/modulated_deform_conv.py
    new file mode 100644
    index 000000000..6a5173cb4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/modulated_deform_conv.py
    @@ -0,0 +1,439 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +from typing import Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair, _single
    +
    +from mmcv.utils import IS_MLU_AVAILABLE, deprecated_api_warning
    +from ..cnn import CONV_LAYERS
    +from ..utils import ext_loader, print_log
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext',
    +    ['modulated_deform_conv_forward', 'modulated_deform_conv_backward'])
    +
    +
    +class ModulatedDeformConv2dFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, offset, mask, weight, bias, stride, padding,
    +                 dilation, groups, deform_groups):
    +        input_tensors = [input, offset, mask, weight]
    +        if bias is not None:
    +            input_tensors.append(bias)
    +        return g.op(
    +            'mmcv::MMCVModulatedDeformConv2d',
    +            *input_tensors,
    +            stride_i=stride,
    +            padding_i=padding,
    +            dilation_i=dilation,
    +            groups_i=groups,
    +            deform_groups_i=deform_groups)
    +
    +    @staticmethod
    +    def _calculate_sort_index(kernel_h, kernel_w, deformable_group):
    +        split_num = deformable_group * 2 * kernel_h * kernel_w
    +        sort_index = list(range(split_num))
    +        sort_index_fp = (sort_index[1::2] + sort_index[::2])
    +        sort_index_bp_dict = {i: idx for idx, i in enumerate(sort_index)}
    +        sort_index_bp = [sort_index_bp_dict[i] for i in sort_index]
    +        sort_index_fp = torch.IntTensor(sort_index_fp)
    +        sort_index_bp = torch.IntTensor(sort_index_bp)
    +        sort_index_fp = sort_index_fp.npu()
    +        sort_index_bp = sort_index_bp.npu()
    +        return sort_index_fp, sort_index_bp
    +
    +    @staticmethod
    +    def _npu_forward(ctx, input_tensor, offset, mask, weight, bias):
    +        _, _, kernel_h, kernel_w = weight.shape
    +        conv2d_bias = bias if len(bias) > 0 else None
    +        sort_index_fp, sort_index_bp = \
    +            ModulatedDeformConv2dFunction._calculate_sort_index(
    +                kernel_w, kernel_h, ctx.deform_groups)
    +        select_offset = offset.index_select(1, sort_index_fp)
    +        offset_all = torch.cat([select_offset, mask], dim=1)
    +        output, offset_out = torch.npu_deformable_conv2d(
    +            input_tensor,
    +            weight,
    +            offset_all,
    +            conv2d_bias,
    +            kernel_size=[kernel_w, kernel_h],
    +            stride=[1, 1, ctx.stride[0], ctx.stride[1]],
    +            padding=[1, 1, ctx.padding[0], ctx.padding[1]],
    +            dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
    +            groups=ctx.groups,
    +            deformable_groups=ctx.deform_groups,
    +            modulated=True)
    +        if weight.requires_grad or mask.requires_grad or offset.requires_grad \
    +                or input_tensor.requires_grad:
    +            ctx.save_for_backward(input_tensor, weight, offset_out, offset_all,
    +                                  sort_index_bp)
    +        return output
    +
    +    @staticmethod
    +    def _npu_backward(ctx, grad_output):
    +        input_tensor, weight, offset_out, offset_all, sort_index_bp = \
    +            ctx.saved_tensors
    +        grad_input, grad_weight, grad_offset_all, grad_bias = \
    +            torch.npu_deformable_conv2dbk(
    +                input_tensor, grad_output, offset_out, weight, offset_all,
    +                kernel_size=[weight.shape[3], weight.shape[2]],
    +                stride=[1, 1, ctx.stride[0], ctx.stride[1]],
    +                padding=[1, 1, ctx.padding[0], ctx.padding[1]],
    +                dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
    +                groups=ctx.groups, deformable_groups=ctx.deform_groups,
    +                modulated=True)
    +        grad_offset = grad_offset_all.index_select(1, sort_index_bp)
    +        grad_mask = grad_offset_all[:, grad_offset.shape[1]:, :, :]
    +        if not ctx.with_bias:
    +            grad_bias = None
    +        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
    +                None, None, None, None, None, None, None, None)
    +
    +    @staticmethod
    +    def forward(ctx,
    +                input: torch.Tensor,
    +                offset: torch.Tensor,
    +                mask: torch.Tensor,
    +                weight: nn.Parameter,
    +                bias: Optional[nn.Parameter] = None,
    +                stride: int = 1,
    +                padding: int = 0,
    +                dilation: int = 1,
    +                groups: int = 1,
    +                deform_groups: int = 1) -> torch.Tensor:
    +        if input is not None and input.dim() != 4:
    +            raise ValueError(
    +                f'Expected 4D tensor as input, got {input.dim()}D tensor \
    +                  instead.')
    +        ctx.stride = _pair(stride)
    +        ctx.padding = _pair(padding)
    +        ctx.dilation = _pair(dilation)
    +        ctx.groups = groups
    +        ctx.deform_groups = deform_groups
    +        ctx.with_bias = bias is not None
    +        ctx.device = input.device.type
    +        if not ctx.with_bias:
    +            bias = input.new_empty(0)  # fake tensor
    +        # When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
    +        # amp won't cast the type of model (float32), but "offset" is cast
    +        # to float16 by nn.Conv2d automatically, leading to the type
    +        # mismatch with input (when it is float32) or weight.
    +        # The flag for whether to use fp16 or amp is the type of "offset",
    +        # we cast weight and input to temporarily support fp16 and amp
    +        # whatever the pytorch version is.
    +        input = input.type_as(offset)
    +        weight = weight.type_as(input)
    +        bias = bias.type_as(input)  # type: ignore
    +        mask = mask.type_as(input)
    +        if ctx.device == 'npu':
    +            output = ModulatedDeformConv2dFunction._npu_forward(
    +                ctx, input, offset, mask, weight, bias)
    +            return output
    +        ctx.save_for_backward(input, offset, mask, weight, bias)
    +        output = input.new_empty(
    +            ModulatedDeformConv2dFunction._output_size(ctx, input, weight))
    +        ctx._bufs = [input.new_empty(0), input.new_empty(0)]
    +        ext_module.modulated_deform_conv_forward(
    +            input,
    +            weight,
    +            bias,
    +            ctx._bufs[0],
    +            offset,
    +            mask,
    +            output,
    +            ctx._bufs[1],
    +            kernel_h=weight.size(2),
    +            kernel_w=weight.size(3),
    +            stride_h=ctx.stride[0],
    +            stride_w=ctx.stride[1],
    +            pad_h=ctx.padding[0],
    +            pad_w=ctx.padding[1],
    +            dilation_h=ctx.dilation[0],
    +            dilation_w=ctx.dilation[1],
    +            group=ctx.groups,
    +            deformable_group=ctx.deform_groups,
    +            with_bias=ctx.with_bias)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        if ctx.device == 'npu':
    +            return ModulatedDeformConv2dFunction._npu_backward(
    +                ctx, grad_output)
    +        input, offset, mask, weight, bias = ctx.saved_tensors
    +        grad_input = torch.zeros_like(input)
    +        grad_offset = torch.zeros_like(offset)
    +        grad_mask = torch.zeros_like(mask)
    +        grad_weight = torch.zeros_like(weight)
    +        grad_bias = torch.zeros_like(bias)
    +        grad_output = grad_output.contiguous()
    +        ext_module.modulated_deform_conv_backward(
    +            input,
    +            weight,
    +            bias,
    +            ctx._bufs[0],
    +            offset,
    +            mask,
    +            ctx._bufs[1],
    +            grad_input,
    +            grad_weight,
    +            grad_bias,
    +            grad_offset,
    +            grad_mask,
    +            grad_output,
    +            kernel_h=weight.size(2),
    +            kernel_w=weight.size(3),
    +            stride_h=ctx.stride[0],
    +            stride_w=ctx.stride[1],
    +            pad_h=ctx.padding[0],
    +            pad_w=ctx.padding[1],
    +            dilation_h=ctx.dilation[0],
    +            dilation_w=ctx.dilation[1],
    +            group=ctx.groups,
    +            deformable_group=ctx.deform_groups,
    +            with_bias=ctx.with_bias)
    +        if not ctx.with_bias:
    +            grad_bias = None
    +
    +        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
    +                None, None, None, None, None)
    +
    +    @staticmethod
    +    def _output_size(ctx, input, weight):
    +        channels = weight.size(0)
    +        output_size = (input.size(0), channels)
    +        for d in range(input.dim() - 2):
    +            in_size = input.size(d + 2)
    +            pad = ctx.padding[d]
    +            kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
    +            stride_ = ctx.stride[d]
    +            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
    +        if not all(map(lambda s: s > 0, output_size)):
    +            raise ValueError(
    +                'convolution input is too small (output would be ' +
    +                'x'.join(map(str, output_size)) + ')')
    +        return output_size
    +
    +
    +modulated_deform_conv2d = ModulatedDeformConv2dFunction.apply
    +
    +
    +class ModulatedDeformConv2d(nn.Module):
    +
    +    @deprecated_api_warning({'deformable_groups': 'deform_groups'},
    +                            cls_name='ModulatedDeformConv2d')
    +    def __init__(self,
    +                 in_channels: int,
    +                 out_channels: int,
    +                 kernel_size: Union[int, Tuple[int]],
    +                 stride: int = 1,
    +                 padding: int = 0,
    +                 dilation: int = 1,
    +                 groups: int = 1,
    +                 deform_groups: int = 1,
    +                 bias: Union[bool, str] = True):
    +        super().__init__()
    +        self.in_channels = in_channels
    +        self.out_channels = out_channels
    +        self.kernel_size = _pair(kernel_size)
    +        self.stride = _pair(stride)
    +        self.padding = _pair(padding)
    +        self.dilation = _pair(dilation)
    +        self.groups = groups
    +        self.deform_groups = deform_groups
    +        # enable compatibility with nn.Conv2d
    +        self.transposed = False
    +        self.output_padding = _single(0)
    +
    +        self.weight = nn.Parameter(
    +            torch.Tensor(out_channels, in_channels // groups,
    +                         *self.kernel_size))
    +        if bias:
    +            self.bias = nn.Parameter(torch.Tensor(out_channels))
    +        else:
    +            self.register_parameter('bias', None)
    +        self.init_weights()
    +
    +    def init_weights(self):
    +        n = self.in_channels
    +        for k in self.kernel_size:
    +            n *= k
    +        stdv = 1. / math.sqrt(n)
    +        self.weight.data.uniform_(-stdv, stdv)
    +        if self.bias is not None:
    +            self.bias.data.zero_()
    +
    +    def forward(self, x: torch.Tensor, offset: torch.Tensor,
    +                mask: torch.Tensor) -> torch.Tensor:
    +        return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
    +                                       self.stride, self.padding,
    +                                       self.dilation, self.groups,
    +                                       self.deform_groups)
    +
    +
    +@CONV_LAYERS.register_module('DCNv2')
    +class ModulatedDeformConv2dPack(ModulatedDeformConv2d):
    +    """A ModulatedDeformable Conv Encapsulation that acts as normal Conv
    +    layers.
    +
    +    Args:
    +        in_channels (int): Same as nn.Conv2d.
    +        out_channels (int): Same as nn.Conv2d.
    +        kernel_size (int or tuple[int]): Same as nn.Conv2d.
    +        stride (int): Same as nn.Conv2d, while tuple is not supported.
    +        padding (int): Same as nn.Conv2d, while tuple is not supported.
    +        dilation (int): Same as nn.Conv2d, while tuple is not supported.
    +        groups (int): Same as nn.Conv2d.
    +        bias (bool or str): If specified as `auto`, it will be decided by the
    +            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
    +            False.
    +    """
    +
    +    _version = 2
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        self.conv_offset = nn.Conv2d(
    +            self.in_channels,
    +            self.deform_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
    +            kernel_size=self.kernel_size,
    +            stride=self.stride,
    +            padding=self.padding,
    +            dilation=self.dilation,
    +            bias=True)
    +        self.init_weights()
    +
    +    def init_weights(self) -> None:
    +        super().init_weights()
    +        if hasattr(self, 'conv_offset'):
    +            self.conv_offset.weight.data.zero_()
    +            self.conv_offset.bias.data.zero_()
    +
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore
    +        out = self.conv_offset(x)
    +        o1, o2, mask = torch.chunk(out, 3, dim=1)
    +        offset = torch.cat((o1, o2), dim=1)
    +        mask = torch.sigmoid(mask)
    +        return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
    +                                       self.stride, self.padding,
    +                                       self.dilation, self.groups,
    +                                       self.deform_groups)
    +
    +    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
    +                              missing_keys, unexpected_keys, error_msgs):
    +        version = local_metadata.get('version', None)
    +
    +        if version is None or version < 2:
    +            # the key is different in early versions
    +            # In version < 2, ModulatedDeformConvPack
    +            # loads previous benchmark models.
    +            if (prefix + 'conv_offset.weight' not in state_dict
    +                    and prefix[:-1] + '_offset.weight' in state_dict):
    +                state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
    +                    prefix[:-1] + '_offset.weight')
    +            if (prefix + 'conv_offset.bias' not in state_dict
    +                    and prefix[:-1] + '_offset.bias' in state_dict):
    +                state_dict[prefix +
    +                           'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
    +                                                                '_offset.bias')
    +
    +        if version is not None and version > 1:
    +            print_log(
    +                f'ModulatedDeformConvPack {prefix.rstrip(".")} is upgraded to '
    +                'version 2.',
    +                logger='root')
    +
    +        super()._load_from_state_dict(state_dict, prefix, local_metadata,
    +                                      strict, missing_keys, unexpected_keys,
    +                                      error_msgs)
    +
    +
    +if IS_MLU_AVAILABLE:
    +    from torchvision.ops import deform_conv2d as tv_deform_conv2d
    +
    +    @CONV_LAYERS.register_module('DCNv2', force=True)
    +    class ModulatedDeformConv2dPack_MLU(nn.modules.Module):
    +        """This class is the DCNv2 implementation of the MLU device. The MLU
    +        backend support of the operator has been implemented in torchvision.
    +        The mmcv registration mechanism is used for multiplexing here. The
    +        torchvision implementation of DCNv2 is called.
    +
    +        Args:
    +            in_channels (int): Same as nn.Conv2d.
    +            out_channels (int): Same as nn.Conv2d.
    +            kernel_size (int or tuple[int]): Same as nn.Conv2d.
    +            stride (int): Same as nn.Conv2d, while tuple is not supported.
    +            padding (int): Same as nn.Conv2d, while tuple is not supported.
    +            dilation (int): Same as nn.Conv2d, while tuple is not supported.
    +            groups (int): Same as nn.Conv2d.
    +            bias (bool or str): If specified as `auto`, it will be decided by
    +                the norm_cfg. Bias will be set as True if norm_cfg is None,
    +                otherwise False.
    +        """
    +
    +        def __init__(self,
    +                     in_channels: int,
    +                     out_channels: int,
    +                     kernel_size: Union[int, Tuple[int]],
    +                     stride: int = 1,
    +                     padding: int = 0,
    +                     dilation: int = 1,
    +                     groups: int = 1,
    +                     deform_groups: int = 1,
    +                     bias: Union[bool, str] = True):
    +            super().__init__()
    +            self.in_channels = in_channels
    +            self.out_channels = out_channels
    +            self.kernel_size = _pair(kernel_size)
    +            self.stride = _pair(stride)
    +            self.padding = _pair(padding)
    +            self.dilation = _pair(dilation)
    +            self.groups = groups
    +            self.deform_groups = deform_groups
    +            self.weight = nn.Parameter(
    +                torch.Tensor(out_channels, in_channels, *self.kernel_size))
    +            if bias:
    +                self.bias = nn.Parameter(torch.Tensor(out_channels))
    +            else:
    +                self.register_parameter('bias', None)
    +            self.conv_offset = nn.Conv2d(
    +                self.in_channels,
    +                self.deform_groups * 3 * self.kernel_size[0] *
    +                self.kernel_size[1],
    +                kernel_size=self.kernel_size,
    +                stride=self.stride,
    +                padding=self.padding,
    +                bias=True)
    +            self.init_weights()
    +
    +        def init_weights(self):
    +            n = self.in_channels
    +            for k in self.kernel_size:
    +                n *= k
    +            stdv = 1. / math.sqrt(n)
    +            self.weight.data.uniform_(-stdv, stdv)
    +            if self.bias is not None:
    +                self.bias.data.zero_()
    +            self.conv_offset.weight.data.zero_()
    +            self.conv_offset.bias.data.zero_()
    +
    +        def forward(self, x):
    +            out = self.conv_offset(x)
    +            o1, o2, mask = torch.chunk(out, 3, dim=1)
    +            offset = torch.cat((o1, o2), dim=1)
    +            mask = torch.sigmoid(mask)
    +            return tv_deform_conv2d(
    +                x,
    +                offset,
    +                self.weight,
    +                bias=self.bias,
    +                stride=self.stride,
    +                padding=self.padding,
    +                dilation=self.dilation,
    +                mask=mask)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/multi_scale_deform_attn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/multi_scale_deform_attn.py
    new file mode 100644
    index 000000000..961a9154e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/multi_scale_deform_attn.py
    @@ -0,0 +1,366 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import math
    +import warnings
    +from typing import Optional, no_type_check
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from torch.autograd.function import Function, once_differentiable
    +
    +import mmcv
    +from mmcv import deprecated_api_warning
    +from mmcv.cnn import constant_init, xavier_init
    +from mmcv.cnn.bricks.registry import ATTENTION
    +from mmcv.runner import BaseModule
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['ms_deform_attn_backward', 'ms_deform_attn_forward'])
    +
    +
    +class MultiScaleDeformableAttnFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx, value: torch.Tensor, value_spatial_shapes: torch.Tensor,
    +                value_level_start_index: torch.Tensor,
    +                sampling_locations: torch.Tensor,
    +                attention_weights: torch.Tensor,
    +                im2col_step: torch.Tensor) -> torch.Tensor:
    +        """GPU/MLU version of multi-scale deformable attention.
    +
    +        Args:
    +            value (torch.Tensor): The value has shape
    +                (bs, num_keys, mum_heads, embed_dims//num_heads)
    +            value_spatial_shapes (torch.Tensor): Spatial shape of
    +                each feature map, has shape (num_levels, 2),
    +                last dimension 2 represent (h, w)
    +            sampling_locations (torch.Tensor): The location of sampling points,
    +                has shape
    +                (bs ,num_queries, num_heads, num_levels, num_points, 2),
    +                the last dimension 2 represent (x, y).
    +            attention_weights (torch.Tensor): The weight of sampling points
    +                used when calculate the attention, has shape
    +                (bs ,num_queries, num_heads, num_levels, num_points),
    +            im2col_step (torch.Tensor): The step used in image to column.
    +
    +        Returns:
    +            torch.Tensor: has shape (bs, num_queries, embed_dims)
    +        """
    +
    +        ctx.im2col_step = im2col_step
    +        output = ext_module.ms_deform_attn_forward(
    +            value,
    +            value_spatial_shapes,
    +            value_level_start_index,
    +            sampling_locations,
    +            attention_weights,
    +            im2col_step=ctx.im2col_step)
    +        ctx.save_for_backward(value, value_spatial_shapes,
    +                              value_level_start_index, sampling_locations,
    +                              attention_weights)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx, grad_output: torch.Tensor) -> tuple:
    +        """GPU/MLU version of backward function.
    +
    +        Args:
    +            grad_output (torch.Tensor): Gradient of output tensor of forward.
    +
    +        Returns:
    +            tuple[Tensor]: Gradient of input tensors in forward.
    +        """
    +        value, value_spatial_shapes, value_level_start_index,\
    +            sampling_locations, attention_weights = ctx.saved_tensors
    +        grad_value = torch.zeros_like(value)
    +        grad_sampling_loc = torch.zeros_like(sampling_locations)
    +        grad_attn_weight = torch.zeros_like(attention_weights)
    +
    +        ext_module.ms_deform_attn_backward(
    +            value,
    +            value_spatial_shapes,
    +            value_level_start_index,
    +            sampling_locations,
    +            attention_weights,
    +            grad_output.contiguous(),
    +            grad_value,
    +            grad_sampling_loc,
    +            grad_attn_weight,
    +            im2col_step=ctx.im2col_step)
    +
    +        return grad_value, None, None, \
    +            grad_sampling_loc, grad_attn_weight, None
    +
    +
    +def multi_scale_deformable_attn_pytorch(
    +        value: torch.Tensor, value_spatial_shapes: torch.Tensor,
    +        sampling_locations: torch.Tensor,
    +        attention_weights: torch.Tensor) -> torch.Tensor:
    +    """CPU version of multi-scale deformable attention.
    +
    +    Args:
    +        value (torch.Tensor): The value has shape
    +            (bs, num_keys, num_heads, embed_dims//num_heads)
    +        value_spatial_shapes (torch.Tensor): Spatial shape of
    +            each feature map, has shape (num_levels, 2),
    +            last dimension 2 represent (h, w)
    +        sampling_locations (torch.Tensor): The location of sampling points,
    +            has shape
    +            (bs ,num_queries, num_heads, num_levels, num_points, 2),
    +            the last dimension 2 represent (x, y).
    +        attention_weights (torch.Tensor): The weight of sampling points used
    +            when calculate the attention, has shape
    +            (bs ,num_queries, num_heads, num_levels, num_points),
    +
    +    Returns:
    +        torch.Tensor: has shape (bs, num_queries, embed_dims)
    +    """
    +
    +    bs, _, num_heads, embed_dims = value.shape
    +    _, num_queries, num_heads, num_levels, num_points, _ =\
    +        sampling_locations.shape
    +    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes],
    +                             dim=1)
    +    sampling_grids = 2 * sampling_locations - 1
    +    sampling_value_list = []
    +    for level, (H_, W_) in enumerate(value_spatial_shapes):
    +        # bs, H_*W_, num_heads, embed_dims ->
    +        # bs, H_*W_, num_heads*embed_dims ->
    +        # bs, num_heads*embed_dims, H_*W_ ->
    +        # bs*num_heads, embed_dims, H_, W_
    +        value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(
    +            bs * num_heads, embed_dims, H_, W_)
    +        # bs, num_queries, num_heads, num_points, 2 ->
    +        # bs, num_heads, num_queries, num_points, 2 ->
    +        # bs*num_heads, num_queries, num_points, 2
    +        sampling_grid_l_ = sampling_grids[:, :, :,
    +                                          level].transpose(1, 2).flatten(0, 1)
    +        # bs*num_heads, embed_dims, num_queries, num_points
    +        sampling_value_l_ = F.grid_sample(
    +            value_l_,
    +            sampling_grid_l_,
    +            mode='bilinear',
    +            padding_mode='zeros',
    +            align_corners=False)
    +        sampling_value_list.append(sampling_value_l_)
    +    # (bs, num_queries, num_heads, num_levels, num_points) ->
    +    # (bs, num_heads, num_queries, num_levels, num_points) ->
    +    # (bs, num_heads, 1, num_queries, num_levels*num_points)
    +    attention_weights = attention_weights.transpose(1, 2).reshape(
    +        bs * num_heads, 1, num_queries, num_levels * num_points)
    +    output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) *
    +              attention_weights).sum(-1).view(bs, num_heads * embed_dims,
    +                                              num_queries)
    +    return output.transpose(1, 2).contiguous()
    +
    +
    +@ATTENTION.register_module()
    +class MultiScaleDeformableAttention(BaseModule):
    +    """An attention module used in Deformable-Detr.
    +
    +    `Deformable DETR: Deformable Transformers for End-to-End Object Detection.
    +    `_.
    +
    +    Args:
    +        embed_dims (int): The embedding dimension of Attention.
    +            Default: 256.
    +        num_heads (int): Parallel attention heads. Default: 64.
    +        num_levels (int): The number of feature map used in
    +            Attention. Default: 4.
    +        num_points (int): The number of sampling points for
    +            each query in each head. Default: 4.
    +        im2col_step (int): The step used in image_to_column.
    +            Default: 64.
    +        dropout (float): A Dropout layer on `inp_identity`.
    +            Default: 0.1.
    +        batch_first (bool): Key, Query and Value are shape of
    +            (batch, n, embed_dim)
    +            or (n, batch, embed_dim). Default to False.
    +        norm_cfg (dict): Config dict for normalization layer.
    +            Default: None.
    +        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 embed_dims: int = 256,
    +                 num_heads: int = 8,
    +                 num_levels: int = 4,
    +                 num_points: int = 4,
    +                 im2col_step: int = 64,
    +                 dropout: float = 0.1,
    +                 batch_first: bool = False,
    +                 norm_cfg: Optional[dict] = None,
    +                 init_cfg: Optional[mmcv.ConfigDict] = None):
    +        super().__init__(init_cfg)
    +        if embed_dims % num_heads != 0:
    +            raise ValueError(f'embed_dims must be divisible by num_heads, '
    +                             f'but got {embed_dims} and {num_heads}')
    +        dim_per_head = embed_dims // num_heads
    +        self.norm_cfg = norm_cfg
    +        self.dropout = nn.Dropout(dropout)
    +        self.batch_first = batch_first
    +
    +        # you'd better set dim_per_head to a power of 2
    +        # which is more efficient in the CUDA implementation
    +        def _is_power_of_2(n):
    +            if (not isinstance(n, int)) or (n < 0):
    +                raise ValueError(
    +                    'invalid input for _is_power_of_2: {} (type: {})'.format(
    +                        n, type(n)))
    +            return (n & (n - 1) == 0) and n != 0
    +
    +        if not _is_power_of_2(dim_per_head):
    +            warnings.warn(
    +                "You'd better set embed_dims in "
    +                'MultiScaleDeformAttention to make '
    +                'the dimension of each attention head a power of 2 '
    +                'which is more efficient in our CUDA implementation.')
    +
    +        self.im2col_step = im2col_step
    +        self.embed_dims = embed_dims
    +        self.num_levels = num_levels
    +        self.num_heads = num_heads
    +        self.num_points = num_points
    +        self.sampling_offsets = nn.Linear(
    +            embed_dims, num_heads * num_levels * num_points * 2)
    +        self.attention_weights = nn.Linear(embed_dims,
    +                                           num_heads * num_levels * num_points)
    +        self.value_proj = nn.Linear(embed_dims, embed_dims)
    +        self.output_proj = nn.Linear(embed_dims, embed_dims)
    +        self.init_weights()
    +
    +    def init_weights(self) -> None:
    +        """Default initialization for Parameters of Module."""
    +        constant_init(self.sampling_offsets, 0.)
    +        device = next(self.parameters()).device
    +        thetas = torch.arange(
    +            self.num_heads, dtype=torch.float32,
    +            device=device) * (2.0 * math.pi / self.num_heads)
    +        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
    +        grid_init = (grid_init /
    +                     grid_init.abs().max(-1, keepdim=True)[0]).view(
    +                         self.num_heads, 1, 1,
    +                         2).repeat(1, self.num_levels, self.num_points, 1)
    +        for i in range(self.num_points):
    +            grid_init[:, :, i, :] *= i + 1
    +
    +        self.sampling_offsets.bias.data = grid_init.view(-1)
    +        constant_init(self.attention_weights, val=0., bias=0.)
    +        xavier_init(self.value_proj, distribution='uniform', bias=0.)
    +        xavier_init(self.output_proj, distribution='uniform', bias=0.)
    +        self._is_init = True
    +
    +    @no_type_check
    +    @deprecated_api_warning({'residual': 'identity'},
    +                            cls_name='MultiScaleDeformableAttention')
    +    def forward(self,
    +                query: torch.Tensor,
    +                key: Optional[torch.Tensor] = None,
    +                value: Optional[torch.Tensor] = None,
    +                identity: Optional[torch.Tensor] = None,
    +                query_pos: Optional[torch.Tensor] = None,
    +                key_padding_mask: Optional[torch.Tensor] = None,
    +                reference_points: Optional[torch.Tensor] = None,
    +                spatial_shapes: Optional[torch.Tensor] = None,
    +                level_start_index: Optional[torch.Tensor] = None,
    +                **kwargs) -> torch.Tensor:
    +        """Forward Function of MultiScaleDeformAttention.
    +
    +        Args:
    +            query (torch.Tensor): Query of Transformer with shape
    +                (num_query, bs, embed_dims).
    +            key (torch.Tensor): The key tensor with shape
    +                `(num_key, bs, embed_dims)`.
    +            value (torch.Tensor): The value tensor with shape
    +                `(num_key, bs, embed_dims)`.
    +            identity (torch.Tensor): The tensor used for addition, with the
    +                same shape as `query`. Default None. If None,
    +                `query` will be used.
    +            query_pos (torch.Tensor): The positional encoding for `query`.
    +                Default: None.
    +            key_padding_mask (torch.Tensor): ByteTensor for `query`, with
    +                shape [bs, num_key].
    +            reference_points (torch.Tensor):  The normalized reference
    +                points with shape (bs, num_query, num_levels, 2),
    +                all elements is range in [0, 1], top-left (0,0),
    +                bottom-right (1, 1), including padding area.
    +                or (N, Length_{query}, num_levels, 4), add
    +                additional two dimensions is (w, h) to
    +                form reference boxes.
    +            spatial_shapes (torch.Tensor): Spatial shape of features in
    +                different levels. With shape (num_levels, 2),
    +                last dimension represents (h, w).
    +            level_start_index (torch.Tensor): The start index of each level.
    +                A tensor has shape ``(num_levels, )`` and can be represented
    +                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
    +
    +        Returns:
    +            torch.Tensor: forwarded results with shape
    +            [num_query, bs, embed_dims].
    +        """
    +
    +        if value is None:
    +            value = query
    +
    +        if identity is None:
    +            identity = query
    +        if query_pos is not None:
    +            query = query + query_pos
    +        if not self.batch_first:
    +            # change to (bs, num_query ,embed_dims)
    +            query = query.permute(1, 0, 2)
    +            value = value.permute(1, 0, 2)
    +
    +        bs, num_query, _ = query.shape
    +        bs, num_value, _ = value.shape
    +        assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
    +
    +        value = self.value_proj(value)
    +        if key_padding_mask is not None:
    +            value = value.masked_fill(key_padding_mask[..., None], 0.0)
    +        value = value.view(bs, num_value, self.num_heads, -1)
    +        sampling_offsets = self.sampling_offsets(query).view(
    +            bs, num_query, self.num_heads, self.num_levels, self.num_points, 2)
    +        attention_weights = self.attention_weights(query).view(
    +            bs, num_query, self.num_heads, self.num_levels * self.num_points)
    +        attention_weights = attention_weights.softmax(-1)
    +
    +        attention_weights = attention_weights.view(bs, num_query,
    +                                                   self.num_heads,
    +                                                   self.num_levels,
    +                                                   self.num_points)
    +        if reference_points.shape[-1] == 2:
    +            offset_normalizer = torch.stack(
    +                [spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
    +            sampling_locations = reference_points[:, :, None, :, None, :] \
    +                + sampling_offsets \
    +                / offset_normalizer[None, None, None, :, None, :]
    +        elif reference_points.shape[-1] == 4:
    +            sampling_locations = reference_points[:, :, None, :, None, :2] \
    +                + sampling_offsets / self.num_points \
    +                * reference_points[:, :, None, :, None, 2:] \
    +                * 0.5
    +        else:
    +            raise ValueError(
    +                f'Last dim of reference_points must be'
    +                f' 2 or 4, but get {reference_points.shape[-1]} instead.')
    +        if ((IS_CUDA_AVAILABLE and value.is_cuda)
    +                or (IS_MLU_AVAILABLE and value.is_mlu)):
    +            output = MultiScaleDeformableAttnFunction.apply(
    +                value, spatial_shapes, level_start_index, sampling_locations,
    +                attention_weights, self.im2col_step)
    +        else:
    +            output = multi_scale_deformable_attn_pytorch(
    +                value, spatial_shapes, sampling_locations, attention_weights)
    +
    +        output = self.output_proj(output)
    +
    +        if not self.batch_first:
    +            # (num_query, bs ,embed_dims)
    +            output = output.permute(1, 0, 2)
    +
    +        return self.dropout(output) + identity
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/nms.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/nms.py
    new file mode 100644
    index 000000000..5d3e70b67
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/nms.py
    @@ -0,0 +1,519 @@
    +import os
    +from typing import Any, Dict, List, Optional, Tuple, Union
    +
    +import numpy as np
    +import torch
    +from torch import Tensor
    +
    +from mmcv.utils import deprecated_api_warning
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['nms', 'softnms', 'nms_match', 'nms_rotated', 'nms_quadri'])
    +
    +
    +# This function is modified from: https://github.com/pytorch/vision/
    +class NMSop(torch.autograd.Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any, bboxes: Tensor, scores: Tensor, iou_threshold: float,
    +                offset: int, score_threshold: float, max_num: int) -> Tensor:
    +        is_filtering_by_score = score_threshold > 0
    +        if is_filtering_by_score:
    +            valid_mask = scores > score_threshold
    +            bboxes, scores = bboxes[valid_mask], scores[valid_mask]
    +            valid_inds = torch.nonzero(
    +                valid_mask, as_tuple=False).squeeze(dim=1)
    +
    +        inds = ext_module.nms(
    +            bboxes, scores, iou_threshold=float(iou_threshold), offset=offset)
    +
    +        if max_num > 0:
    +            inds = inds[:max_num]
    +        if is_filtering_by_score:
    +            inds = valid_inds[inds]
    +        return inds
    +
    +    @staticmethod
    +    def symbolic(g, bboxes, scores, iou_threshold, offset, score_threshold,
    +                 max_num):
    +        from ..onnx import is_custom_op_loaded
    +        has_custom_op = is_custom_op_loaded()
    +        # TensorRT nms plugin is aligned with original nms in ONNXRuntime
    +        is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
    +        if has_custom_op and (not is_trt_backend):
    +            return g.op(
    +                'mmcv::NonMaxSuppression',
    +                bboxes,
    +                scores,
    +                iou_threshold_f=float(iou_threshold),
    +                offset_i=int(offset))
    +        else:
    +            from torch.onnx.symbolic_opset9 import select, squeeze, unsqueeze
    +
    +            from ..onnx.onnx_utils.symbolic_helper import _size_helper
    +
    +            boxes = unsqueeze(g, bboxes, 0)
    +            scores = unsqueeze(g, unsqueeze(g, scores, 0), 0)
    +
    +            if max_num > 0:
    +                max_num = g.op(
    +                    'Constant',
    +                    value_t=torch.tensor(max_num, dtype=torch.long))
    +            else:
    +                dim = g.op('Constant', value_t=torch.tensor(0))
    +                max_num = _size_helper(g, bboxes, dim)
    +            max_output_per_class = max_num
    +            iou_threshold = g.op(
    +                'Constant',
    +                value_t=torch.tensor([iou_threshold], dtype=torch.float))
    +            score_threshold = g.op(
    +                'Constant',
    +                value_t=torch.tensor([score_threshold], dtype=torch.float))
    +            nms_out = g.op('NonMaxSuppression', boxes, scores,
    +                           max_output_per_class, iou_threshold,
    +                           score_threshold)
    +            return squeeze(
    +                g,
    +                select(
    +                    g, nms_out, 1,
    +                    g.op(
    +                        'Constant',
    +                        value_t=torch.tensor([2], dtype=torch.long))), 1)
    +
    +
    +class SoftNMSop(torch.autograd.Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any, boxes: Tensor, scores: Tensor, iou_threshold: float,
    +                sigma: float, min_score: float, method: int,
    +                offset: int) -> Tuple[Tensor, Tensor]:
    +        dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
    +        inds = ext_module.softnms(
    +            boxes.cpu(),
    +            scores.cpu(),
    +            dets.cpu(),
    +            iou_threshold=float(iou_threshold),
    +            sigma=float(sigma),
    +            min_score=float(min_score),
    +            method=int(method),
    +            offset=int(offset))
    +        return dets, inds
    +
    +    @staticmethod
    +    def symbolic(g, boxes, scores, iou_threshold, sigma, min_score, method,
    +                 offset):
    +        from packaging import version
    +        assert version.parse(torch.__version__) >= version.parse('1.7.0')
    +        nms_out = g.op(
    +            'mmcv::SoftNonMaxSuppression',
    +            boxes,
    +            scores,
    +            iou_threshold_f=float(iou_threshold),
    +            sigma_f=float(sigma),
    +            min_score_f=float(min_score),
    +            method_i=int(method),
    +            offset_i=int(offset),
    +            outputs=2)
    +        return nms_out
    +
    +
    +array_like_type = Union[Tensor, np.ndarray]
    +
    +
    +@deprecated_api_warning({'iou_thr': 'iou_threshold'})
    +def nms(boxes: array_like_type,
    +        scores: array_like_type,
    +        iou_threshold: float,
    +        offset: int = 0,
    +        score_threshold: float = 0,
    +        max_num: int = -1) -> Tuple[array_like_type, array_like_type]:
    +    """Dispatch to either CPU or GPU NMS implementations.
    +
    +    The input can be either torch tensor or numpy array. GPU NMS will be used
    +    if the input is gpu tensor, otherwise CPU NMS
    +    will be used. The returned type will always be the same as inputs.
    +
    +    Arguments:
    +        boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
    +        scores (torch.Tensor or np.ndarray): scores in shape (N, ).
    +        iou_threshold (float): IoU threshold for NMS.
    +        offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).
    +        score_threshold (float): score threshold for NMS.
    +        max_num (int): maximum number of boxes after NMS.
    +
    +    Returns:
    +        tuple: kept dets (boxes and scores) and indice, which always have
    +        the same data type as the input.
    +
    +    Example:
    +        >>> boxes = np.array([[49.1, 32.4, 51.0, 35.9],
    +        >>>                   [49.3, 32.9, 51.0, 35.3],
    +        >>>                   [49.2, 31.8, 51.0, 35.4],
    +        >>>                   [35.1, 11.5, 39.1, 15.7],
    +        >>>                   [35.6, 11.8, 39.3, 14.2],
    +        >>>                   [35.3, 11.5, 39.9, 14.5],
    +        >>>                   [35.2, 11.7, 39.7, 15.7]], dtype=np.float32)
    +        >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.5, 0.4, 0.3],\
    +               dtype=np.float32)
    +        >>> iou_threshold = 0.6
    +        >>> dets, inds = nms(boxes, scores, iou_threshold)
    +        >>> assert len(inds) == len(dets) == 3
    +    """
    +    assert isinstance(boxes, (Tensor, np.ndarray))
    +    assert isinstance(scores, (Tensor, np.ndarray))
    +    is_numpy = False
    +    if isinstance(boxes, np.ndarray):
    +        is_numpy = True
    +        boxes = torch.from_numpy(boxes)
    +    if isinstance(scores, np.ndarray):
    +        scores = torch.from_numpy(scores)
    +    assert boxes.size(1) == 4
    +    assert boxes.size(0) == scores.size(0)
    +    assert offset in (0, 1)
    +
    +    inds = NMSop.apply(boxes, scores, iou_threshold, offset, score_threshold,
    +                       max_num)
    +    dets = torch.cat((boxes[inds], scores[inds].reshape(-1, 1)), dim=1)
    +    if is_numpy:
    +        dets = dets.cpu().numpy()
    +        inds = inds.cpu().numpy()
    +    return dets, inds
    +
    +
    +@deprecated_api_warning({'iou_thr': 'iou_threshold'})
    +def soft_nms(boxes: array_like_type,
    +             scores: array_like_type,
    +             iou_threshold: float = 0.3,
    +             sigma: float = 0.5,
    +             min_score: float = 1e-3,
    +             method: str = 'linear',
    +             offset: int = 0) -> Tuple[array_like_type, array_like_type]:
    +    """Dispatch to only CPU Soft NMS implementations.
    +
    +    The input can be either a torch tensor or numpy array.
    +    The returned type will always be the same as inputs.
    +
    +    Args:
    +        boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
    +        scores (torch.Tensor or np.ndarray): scores in shape (N, ).
    +        iou_threshold (float): IoU threshold for NMS.
    +        sigma (float): hyperparameter for gaussian method
    +        min_score (float): score filter threshold
    +        method (str): either 'linear' or 'gaussian'
    +        offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).
    +
    +    Returns:
    +        tuple: kept dets (boxes and scores) and indice, which always have
    +        the same data type as the input.
    +
    +    Example:
    +        >>> boxes = np.array([[4., 3., 5., 3.],
    +        >>>                   [4., 3., 5., 4.],
    +        >>>                   [3., 1., 3., 1.],
    +        >>>                   [3., 1., 3., 1.],
    +        >>>                   [3., 1., 3., 1.],
    +        >>>                   [3., 1., 3., 1.]], dtype=np.float32)
    +        >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32)
    +        >>> iou_threshold = 0.6
    +        >>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5)
    +        >>> assert len(inds) == len(dets) == 5
    +    """
    +
    +    assert isinstance(boxes, (Tensor, np.ndarray))
    +    assert isinstance(scores, (Tensor, np.ndarray))
    +    is_numpy = False
    +    if isinstance(boxes, np.ndarray):
    +        is_numpy = True
    +        boxes = torch.from_numpy(boxes)
    +    if isinstance(scores, np.ndarray):
    +        scores = torch.from_numpy(scores)
    +    assert boxes.size(1) == 4
    +    assert boxes.size(0) == scores.size(0)
    +    assert offset in (0, 1)
    +    method_dict = {'naive': 0, 'linear': 1, 'gaussian': 2}
    +    assert method in method_dict.keys()
    +
    +    if torch.__version__ == 'parrots':
    +        dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
    +        indata_list = [boxes.cpu(), scores.cpu(), dets.cpu()]
    +        indata_dict = {
    +            'iou_threshold': float(iou_threshold),
    +            'sigma': float(sigma),
    +            'min_score': min_score,
    +            'method': method_dict[method],
    +            'offset': int(offset)
    +        }
    +        inds = ext_module.softnms(*indata_list, **indata_dict)
    +    else:
    +        dets, inds = SoftNMSop.apply(boxes.cpu(), scores.cpu(),
    +                                     float(iou_threshold), float(sigma),
    +                                     float(min_score), method_dict[method],
    +                                     int(offset))
    +
    +    dets = dets[:inds.size(0)]
    +
    +    if is_numpy:
    +        dets = dets.cpu().numpy()
    +        inds = inds.cpu().numpy()
    +        return dets, inds
    +    else:
    +        return dets.to(device=boxes.device), inds.to(device=boxes.device)
    +
    +
    +def batched_nms(boxes: Tensor,
    +                scores: Tensor,
    +                idxs: Tensor,
    +                nms_cfg: Optional[Dict],
    +                class_agnostic: bool = False) -> Tuple[Tensor, Tensor]:
    +    r"""Performs non-maximum suppression in a batched fashion.
    +
    +    Modified from `torchvision/ops/boxes.py#L39
    +    `_.
    +    In order to perform NMS independently per class, we add an offset to all
    +    the boxes. The offset is dependent only on the class idx, and is large
    +    enough so that boxes from different classes do not overlap.
    +
    +    Note:
    +        In v1.4.1 and later, ``batched_nms`` supports skipping the NMS and
    +        returns sorted raw results when `nms_cfg` is None.
    +
    +    Args:
    +        boxes (torch.Tensor): boxes in shape (N, 4) or (N, 5).
    +        scores (torch.Tensor): scores in shape (N, ).
    +        idxs (torch.Tensor): each index value correspond to a bbox cluster,
    +            and NMS will not be applied between elements of different idxs,
    +            shape (N, ).
    +        nms_cfg (dict | optional): Supports skipping the nms when `nms_cfg`
    +            is None, otherwise it should specify nms type and other
    +            parameters like `iou_thr`. Possible keys includes the following.
    +
    +            - iou_threshold (float): IoU threshold used for NMS.
    +            - split_thr (float): threshold number of boxes. In some cases the
    +              number of boxes is large (e.g., 200k). To avoid OOM during
    +              training, the users could set `split_thr` to a small value.
    +              If the number of boxes is greater than the threshold, it will
    +              perform NMS on each group of boxes separately and sequentially.
    +              Defaults to 10000.
    +        class_agnostic (bool): if true, nms is class agnostic,
    +            i.e. IoU thresholding happens over all boxes,
    +            regardless of the predicted class. Defaults to False.
    +
    +    Returns:
    +        tuple: kept dets and indice.
    +
    +        - boxes (Tensor): Bboxes with score after nms, has shape
    +          (num_bboxes, 5). last dimension 5 arrange as
    +          (x1, y1, x2, y2, score)
    +        - keep (Tensor): The indices of remaining boxes in input
    +          boxes.
    +    """
    +    # skip nms when nms_cfg is None
    +    if nms_cfg is None:
    +        scores, inds = scores.sort(descending=True)
    +        boxes = boxes[inds]
    +        return torch.cat([boxes, scores[:, None]], -1), inds
    +
    +    nms_cfg_ = nms_cfg.copy()
    +    class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic)
    +    if class_agnostic:
    +        boxes_for_nms = boxes
    +    else:
    +        # When using rotated boxes, only apply offsets on center.
    +        if boxes.size(-1) == 5:
    +            # Strictly, the maximum coordinates of the rotating box
    +            # (x,y,w,h,a) should be calculated by polygon coordinates.
    +            # But the conversion from rotated box to polygon will
    +            # slow down the speed.
    +            # So we use max(x,y) + max(w,h) as max coordinate
    +            # which is larger than polygon max coordinate
    +            # max(x1, y1, x2, y2,x3, y3, x4, y4)
    +            max_coordinate = boxes[..., :2].max() + boxes[..., 2:4].max()
    +            offsets = idxs.to(boxes) * (
    +                max_coordinate + torch.tensor(1).to(boxes))
    +            boxes_ctr_for_nms = boxes[..., :2] + offsets[:, None]
    +            boxes_for_nms = torch.cat([boxes_ctr_for_nms, boxes[..., 2:5]],
    +                                      dim=-1)
    +        else:
    +            max_coordinate = boxes.max()
    +            offsets = idxs.to(boxes) * (
    +                max_coordinate + torch.tensor(1).to(boxes))
    +            boxes_for_nms = boxes + offsets[:, None]
    +
    +    nms_type = nms_cfg_.pop('type', 'nms')
    +    nms_op = eval(nms_type)
    +
    +    split_thr = nms_cfg_.pop('split_thr', 10000)
    +    # Won't split to multiple nms nodes when exporting to onnx
    +    if boxes_for_nms.shape[0] < split_thr or torch.onnx.is_in_onnx_export():
    +        dets, keep = nms_op(boxes_for_nms, scores, **nms_cfg_)
    +        boxes = boxes[keep]
    +
    +        # This assumes `dets` has arbitrary dimensions where
    +        # the last dimension is score.
    +        # Currently it supports bounding boxes [x1, y1, x2, y2, score] or
    +        # rotated boxes [cx, cy, w, h, angle_radian, score].
    +
    +        scores = dets[:, -1]
    +    else:
    +        max_num = nms_cfg_.pop('max_num', -1)
    +        total_mask = scores.new_zeros(scores.size(), dtype=torch.bool)
    +        # Some type of nms would reweight the score, such as SoftNMS
    +        scores_after_nms = scores.new_zeros(scores.size())
    +        for id in torch.unique(idxs):
    +            mask = (idxs == id).nonzero(as_tuple=False).view(-1)
    +            dets, keep = nms_op(boxes_for_nms[mask], scores[mask], **nms_cfg_)
    +            total_mask[mask[keep]] = True
    +            scores_after_nms[mask[keep]] = dets[:, -1]
    +        keep = total_mask.nonzero(as_tuple=False).view(-1)
    +
    +        scores, inds = scores_after_nms[keep].sort(descending=True)
    +        keep = keep[inds]
    +        boxes = boxes[keep]
    +
    +        if max_num > 0:
    +            keep = keep[:max_num]
    +            boxes = boxes[:max_num]
    +            scores = scores[:max_num]
    +
    +    boxes = torch.cat([boxes, scores[:, None]], -1)
    +    return boxes, keep
    +
    +
    +def nms_match(dets: array_like_type,
    +              iou_threshold: float) -> List[array_like_type]:
    +    """Matched dets into different groups by NMS.
    +
    +    NMS match is Similar to NMS but when a bbox is suppressed, nms match will
    +    record the indice of suppressed bbox and form a group with the indice of
    +    kept bbox. In each group, indice is sorted as score order.
    +
    +    Args:
    +        dets (torch.Tensor | np.ndarray): Det boxes with scores, shape (N, 5).
    +        iou_threshold (float): IoU thresh for NMS.
    +
    +    Returns:
    +        list[torch.Tensor | np.ndarray]: The outer list corresponds different
    +        matched group, the inner Tensor corresponds the indices for a group
    +        in score order.
    +    """
    +    if dets.shape[0] == 0:
    +        matched = []
    +    else:
    +        assert dets.shape[-1] == 5, 'inputs dets.shape should be (N, 5), ' \
    +                                    f'but get {dets.shape}'
    +        if isinstance(dets, Tensor):
    +            dets_t = dets.detach().cpu()
    +        else:
    +            dets_t = torch.from_numpy(dets)
    +        indata_list = [dets_t]
    +        indata_dict = {'iou_threshold': float(iou_threshold)}
    +        matched = ext_module.nms_match(*indata_list, **indata_dict)
    +        if torch.__version__ == 'parrots':
    +            matched = matched.tolist()  # type: ignore
    +
    +    if isinstance(dets, Tensor):
    +        return [dets.new_tensor(m, dtype=torch.long) for m in matched]
    +    else:
    +        return [np.array(m, dtype=int) for m in matched]
    +
    +
    +def nms_rotated(dets: Tensor,
    +                scores: Tensor,
    +                iou_threshold: float,
    +                labels: Optional[Tensor] = None,
    +                clockwise: bool = True) -> Tuple[Tensor, Tensor]:
    +    """Performs non-maximum suppression (NMS) on the rotated boxes according to
    +    their intersection-over-union (IoU).
    +
    +    Rotated NMS iteratively removes lower scoring rotated boxes which have an
    +    IoU greater than iou_threshold with another (higher scoring) rotated box.
    +
    +    Args:
    +        dets (torch.Tensor):  Rotated boxes in shape (N, 5).
    +            They are expected to be in
    +            (x_ctr, y_ctr, width, height, angle_radian) format.
    +        scores (torch.Tensor): scores in shape (N, ).
    +        iou_threshold (float): IoU thresh for NMS.
    +        labels (torch.Tensor, optional): boxes' label in shape (N,).
    +        clockwise (bool): flag indicating whether the positive angular
    +            orientation is clockwise. default True.
    +            `New in version 1.4.3.`
    +
    +    Returns:
    +        tuple: kept dets(boxes and scores) and indice, which is always the
    +        same data type as the input.
    +    """
    +    if dets.shape[0] == 0:
    +        return dets, None
    +    if not clockwise:
    +        flip_mat = dets.new_ones(dets.shape[-1])
    +        flip_mat[-1] = -1
    +        dets_cw = dets * flip_mat
    +    else:
    +        dets_cw = dets
    +    multi_label = labels is not None
    +    if multi_label:
    +        dets_wl = torch.cat((dets_cw, labels.unsqueeze(1)), 1)  # type: ignore
    +    else:
    +        dets_wl = dets_cw
    +    _, order = scores.sort(0, descending=True)
    +    dets_sorted = dets_wl.index_select(0, order)
    +
    +    if torch.__version__ == 'parrots':
    +        keep_inds = ext_module.nms_rotated(
    +            dets_wl,
    +            scores,
    +            order,
    +            dets_sorted,
    +            iou_threshold=iou_threshold,
    +            multi_label=multi_label)
    +    else:
    +        keep_inds = ext_module.nms_rotated(dets_wl, scores, order, dets_sorted,
    +                                           iou_threshold, multi_label)
    +    dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
    +                     dim=1)
    +    return dets, keep_inds
    +
    +
    +def nms_quadri(dets: Tensor,
    +               scores: Tensor,
    +               iou_threshold: float,
    +               labels: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
    +    """Performs non-maximum suppression (NMS) on the quadrilateral boxes
    +    according to their intersection-over-union (IoU).
    +
    +    Quadri NMS iteratively removes lower scoring quadrilateral boxes
    +    which have an IoU greater than iou_threshold with another (higher
    +    scoring) quadrilateral box.
    +
    +    Args:
    +        dets (torch.Tensor):  Quadri boxes in shape (N, 8).
    +            They are expected to be in
    +            (x1, y1, ..., x4, y4) format.
    +        scores (torch.Tensor): scores in shape (N, ).
    +        iou_threshold (float): IoU thresh for NMS.
    +        labels (torch.Tensor, optional): boxes' label in shape (N,).
    +
    +    Returns:
    +        tuple: kept dets(boxes and scores) and indice, which is always the
    +        same data type as the input.
    +    """
    +    if dets.shape[0] == 0:
    +        return dets, None
    +
    +    multi_label = labels is not None
    +    if multi_label:
    +        dets_with_lables = \
    +            torch.cat((dets, labels.unsqueeze(1)), 1)  # type: ignore
    +    else:
    +        dets_with_lables = dets
    +    _, order = scores.sort(0, descending=True)
    +    dets_sorted = dets_with_lables.index_select(0, order)
    +
    +    keep_inds = ext_module.nms_quadri(dets_with_lables, scores, order,
    +                                      dets_sorted, iou_threshold, multi_label)
    +    dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
    +                     dim=1)
    +    return dets, keep_inds
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/pixel_group.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/pixel_group.py
    new file mode 100644
    index 000000000..cf73e326d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/pixel_group.py
    @@ -0,0 +1,86 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Union
    +
    +import numpy as np
    +import torch
    +from torch import Tensor
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['pixel_group'])
    +
    +
    +def pixel_group(
    +    score: Union[np.ndarray, Tensor],
    +    mask: Union[np.ndarray, Tensor],
    +    embedding: Union[np.ndarray, Tensor],
    +    kernel_label: Union[np.ndarray, Tensor],
    +    kernel_contour: Union[np.ndarray, Tensor],
    +    kernel_region_num: int,
    +    distance_threshold: float,
    +) -> List[List[float]]:
    +    """Group pixels into text instances, which is widely used text detection
    +    methods.
    +
    +    Arguments:
    +        score (np.array or torch.Tensor): The foreground score with size hxw.
    +        mask (np.array or Tensor): The foreground mask with size hxw.
    +        embedding (np.array or torch.Tensor): The embedding with size hxwxc to
    +            distinguish instances.
    +        kernel_label (np.array or torch.Tensor): The instance kernel index with
    +            size hxw.
    +        kernel_contour (np.array or torch.Tensor): The kernel contour with
    +            size hxw.
    +        kernel_region_num (int): The instance kernel region number.
    +        distance_threshold (float): The embedding distance threshold between
    +            kernel and pixel in one instance.
    +
    +    Returns:
    +        list[list[float]]: The instance coordinates and attributes list. Each
    +        element consists of averaged confidence, pixel number, and coordinates
    +        (x_i, y_i for all pixels) in order.
    +    """
    +    assert isinstance(score, (torch.Tensor, np.ndarray))
    +    assert isinstance(mask, (torch.Tensor, np.ndarray))
    +    assert isinstance(embedding, (torch.Tensor, np.ndarray))
    +    assert isinstance(kernel_label, (torch.Tensor, np.ndarray))
    +    assert isinstance(kernel_contour, (torch.Tensor, np.ndarray))
    +    assert isinstance(kernel_region_num, int)
    +    assert isinstance(distance_threshold, float)
    +
    +    if isinstance(score, np.ndarray):
    +        score = torch.from_numpy(score)
    +    if isinstance(mask, np.ndarray):
    +        mask = torch.from_numpy(mask)
    +    if isinstance(embedding, np.ndarray):
    +        embedding = torch.from_numpy(embedding)
    +    if isinstance(kernel_label, np.ndarray):
    +        kernel_label = torch.from_numpy(kernel_label)
    +    if isinstance(kernel_contour, np.ndarray):
    +        kernel_contour = torch.from_numpy(kernel_contour)
    +
    +    if torch.__version__ == 'parrots':
    +        label = ext_module.pixel_group(
    +            score,
    +            mask,
    +            embedding,
    +            kernel_label,
    +            kernel_contour,
    +            kernel_region_num=kernel_region_num,
    +            distance_threshold=distance_threshold)
    +        label = label.tolist()
    +        label = label[0]
    +        list_index = kernel_region_num
    +        pixel_assignment = []
    +        for x in range(kernel_region_num):
    +            pixel_assignment.append(
    +                np.array(
    +                    label[list_index:list_index + int(label[x])],
    +                    dtype=np.float))
    +            list_index = list_index + int(label[x])
    +    else:
    +        pixel_assignment = ext_module.pixel_group(score, mask, embedding,
    +                                                  kernel_label, kernel_contour,
    +                                                  kernel_region_num,
    +                                                  distance_threshold)
    +    return pixel_assignment
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/point_sample.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/point_sample.py
    new file mode 100644
    index 000000000..b40ccaba8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/point_sample.py
    @@ -0,0 +1,360 @@
    +# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend  # noqa
    +
    +from os import path as osp
    +from typing import Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from torch import Tensor
    +from torch.nn.modules.utils import _pair
    +from torch.onnx.operators import shape_as_tensor
    +
    +
    +def bilinear_grid_sample(im: Tensor,
    +                         grid: Tensor,
    +                         align_corners: bool = False) -> Tensor:
    +    """Given an input and a flow-field grid, computes the output using input
    +    values and pixel locations from grid. Supported only bilinear interpolation
    +    method to sample the input pixels.
    +
    +    Args:
    +        im (torch.Tensor): Input feature map, shape (N, C, H, W)
    +        grid (torch.Tensor): Point coordinates, shape (N, Hg, Wg, 2)
    +        align_corners (bool): If set to True, the extrema (-1 and 1) are
    +            considered as referring to the center points of the input’s
    +            corner pixels. If set to False, they are instead considered as
    +            referring to the corner points of the input’s corner pixels,
    +            making the sampling more resolution agnostic.
    +
    +    Returns:
    +        torch.Tensor: A tensor with sampled points, shape (N, C, Hg, Wg)
    +    """
    +    n, c, h, w = im.shape
    +    gn, gh, gw, _ = grid.shape
    +    assert n == gn
    +
    +    x = grid[:, :, :, 0]
    +    y = grid[:, :, :, 1]
    +
    +    if align_corners:
    +        x = ((x + 1) / 2) * (w - 1)
    +        y = ((y + 1) / 2) * (h - 1)
    +    else:
    +        x = ((x + 1) * w - 1) / 2
    +        y = ((y + 1) * h - 1) / 2
    +
    +    x = x.view(n, -1)
    +    y = y.view(n, -1)
    +
    +    x0 = torch.floor(x).long()
    +    y0 = torch.floor(y).long()
    +    x1 = x0 + 1
    +    y1 = y0 + 1
    +
    +    wa = ((x1 - x) * (y1 - y)).unsqueeze(1)
    +    wb = ((x1 - x) * (y - y0)).unsqueeze(1)
    +    wc = ((x - x0) * (y1 - y)).unsqueeze(1)
    +    wd = ((x - x0) * (y - y0)).unsqueeze(1)
    +
    +    # Apply default for grid_sample function zero padding
    +    im_padded = F.pad(im, pad=[1, 1, 1, 1], mode='constant', value=0)
    +    padded_h = h + 2
    +    padded_w = w + 2
    +    # save points positions after padding
    +    x0, x1, y0, y1 = x0 + 1, x1 + 1, y0 + 1, y1 + 1
    +
    +    # Clip coordinates to padded image size
    +    x0 = torch.where(x0 < 0, torch.tensor(0), x0)
    +    x0 = torch.where(x0 > padded_w - 1, torch.tensor(padded_w - 1), x0)
    +    x1 = torch.where(x1 < 0, torch.tensor(0), x1)
    +    x1 = torch.where(x1 > padded_w - 1, torch.tensor(padded_w - 1), x1)
    +    y0 = torch.where(y0 < 0, torch.tensor(0), y0)
    +    y0 = torch.where(y0 > padded_h - 1, torch.tensor(padded_h - 1), y0)
    +    y1 = torch.where(y1 < 0, torch.tensor(0), y1)
    +    y1 = torch.where(y1 > padded_h - 1, torch.tensor(padded_h - 1), y1)
    +
    +    im_padded = im_padded.view(n, c, -1)
    +
    +    x0_y0 = (x0 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1)
    +    x0_y1 = (x0 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1)
    +    x1_y0 = (x1 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1)
    +    x1_y1 = (x1 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1)
    +
    +    Ia = torch.gather(im_padded, 2, x0_y0)
    +    Ib = torch.gather(im_padded, 2, x0_y1)
    +    Ic = torch.gather(im_padded, 2, x1_y0)
    +    Id = torch.gather(im_padded, 2, x1_y1)
    +
    +    return (Ia * wa + Ib * wb + Ic * wc + Id * wd).reshape(n, c, gh, gw)
    +
    +
    +def is_in_onnx_export_without_custom_ops() -> bool:
    +    from mmcv.ops import get_onnxruntime_op_path
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    return torch.onnx.is_in_onnx_export(
    +    ) and not osp.exists(ort_custom_op_path)
    +
    +
    +def normalize(grid: Tensor) -> Tensor:
    +    """Normalize input grid from [-1, 1] to [0, 1]
    +
    +    Args:
    +        grid (torch.Tensor): The grid to be normalize, range [-1, 1].
    +
    +    Returns:
    +        torch.Tensor: Normalized grid, range [0, 1].
    +    """
    +
    +    return (grid + 1.0) / 2.0
    +
    +
    +def denormalize(grid: Tensor) -> Tensor:
    +    """Denormalize input grid from range [0, 1] to [-1, 1]
    +
    +    Args:
    +        grid (torch.Tensor): The grid to be denormalize, range [0, 1].
    +
    +    Returns:
    +        torch.Tensor: Denormalized grid, range [-1, 1].
    +    """
    +
    +    return grid * 2.0 - 1.0
    +
    +
    +def generate_grid(num_grid: int, size: Tuple[int, int],
    +                  device: torch.device) -> Tensor:
    +    """Generate regular square grid of points in [0, 1] x [0, 1] coordinate
    +    space.
    +
    +    Args:
    +        num_grid (int): The number of grids to sample, one for each region.
    +        size (tuple[int, int]): The side size of the regular grid.
    +        device (torch.device): Desired device of returned tensor.
    +
    +    Returns:
    +        torch.Tensor: A tensor of shape (num_grid, size[0]*size[1], 2) that
    +        contains coordinates for the regular grids.
    +    """
    +
    +    affine_trans = torch.tensor([[[1., 0., 0.], [0., 1., 0.]]], device=device)
    +    grid = F.affine_grid(
    +        affine_trans, torch.Size((1, 1, *size)), align_corners=False)
    +    grid = normalize(grid)
    +    return grid.view(1, -1, 2).expand(num_grid, -1, -1)
    +
    +
    +def rel_roi_point_to_abs_img_point(rois: Tensor,
    +                                   rel_roi_points: Tensor) -> Tensor:
    +    """Convert roi based relative point coordinates to image based absolute
    +    point coordinates.
    +
    +    Args:
    +        rois (torch.Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5)
    +        rel_roi_points (torch.Tensor): Point coordinates inside RoI, relative
    +            to RoI, location, range (0, 1), shape (N, P, 2)
    +    Returns:
    +        torch.Tensor: Image based absolute point coordinates, shape (N, P, 2)
    +    """
    +
    +    with torch.no_grad():
    +        assert rel_roi_points.size(0) == rois.size(0)
    +        assert rois.dim() == 2
    +        assert rel_roi_points.dim() == 3
    +        assert rel_roi_points.size(2) == 2
    +        # remove batch idx
    +        if rois.size(1) == 5:
    +            rois = rois[:, 1:]
    +        abs_img_points = rel_roi_points.clone()
    +        # To avoid an error during exporting to onnx use independent
    +        # variables instead inplace computation
    +        xs = abs_img_points[:, :, 0] * (rois[:, None, 2] - rois[:, None, 0])
    +        ys = abs_img_points[:, :, 1] * (rois[:, None, 3] - rois[:, None, 1])
    +        xs += rois[:, None, 0]
    +        ys += rois[:, None, 1]
    +        abs_img_points = torch.stack([xs, ys], dim=2)
    +    return abs_img_points
    +
    +
    +def get_shape_from_feature_map(x: Tensor) -> Tensor:
    +    """Get spatial resolution of input feature map considering exporting to
    +    onnx mode.
    +
    +    Args:
    +        x (torch.Tensor): Input tensor, shape (N, C, H, W)
    +
    +    Returns:
    +        torch.Tensor: Spatial resolution (width, height), shape (1, 1, 2)
    +    """
    +    if torch.onnx.is_in_onnx_export():
    +        img_shape = shape_as_tensor(x)[2:].flip(0).view(1, 1, 2).to(
    +            x.device).float()
    +    else:
    +        img_shape = torch.tensor(x.shape[2:]).flip(0).view(1, 1, 2).to(
    +            x.device).float()
    +    return img_shape
    +
    +
    +def abs_img_point_to_rel_img_point(abs_img_points: Tensor,
    +                                   img: Union[tuple, Tensor],
    +                                   spatial_scale: float = 1.) -> Tensor:
    +    """Convert image based absolute point coordinates to image based relative
    +    coordinates for sampling.
    +
    +    Args:
    +        abs_img_points (torch.Tensor): Image based absolute point coordinates,
    +            shape (N, P, 2)
    +        img (tuple or torch.Tensor): (height, width) of image or feature map.
    +        spatial_scale (float, optional): Scale points by this factor.
    +            Default: 1.
    +
    +    Returns:
    +        Tensor: Image based relative point coordinates for sampling, shape
    +        (N, P, 2).
    +    """
    +
    +    assert (isinstance(img, tuple) and len(img) == 2) or \
    +           (isinstance(img, torch.Tensor) and len(img.shape) == 4)
    +
    +    if isinstance(img, tuple):
    +        h, w = img
    +        scale = torch.tensor([w, h],
    +                             dtype=torch.float,
    +                             device=abs_img_points.device)
    +        scale = scale.view(1, 1, 2)
    +    else:
    +        scale = get_shape_from_feature_map(img)
    +
    +    return abs_img_points / scale * spatial_scale
    +
    +
    +def rel_roi_point_to_rel_img_point(rois: Tensor,
    +                                   rel_roi_points: Tensor,
    +                                   img: Union[tuple, Tensor],
    +                                   spatial_scale: float = 1.) -> Tensor:
    +    """Convert roi based relative point coordinates to image based absolute
    +    point coordinates.
    +
    +    Args:
    +        rois (torch.Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5)
    +        rel_roi_points (torch.Tensor): Point coordinates inside RoI, relative
    +            to RoI, location, range (0, 1), shape (N, P, 2)
    +        img (tuple or torch.Tensor): (height, width) of image or feature map.
    +        spatial_scale (float, optional): Scale points by this factor.
    +            Default: 1.
    +
    +    Returns:
    +        torch.Tensor: Image based relative point coordinates for sampling,
    +        shape (N, P, 2).
    +    """
    +
    +    abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points)
    +    rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img,
    +                                                   spatial_scale)
    +
    +    return rel_img_point
    +
    +
    +def point_sample(input: Tensor,
    +                 points: Tensor,
    +                 align_corners: bool = False,
    +                 **kwargs) -> Tensor:
    +    """A wrapper around :func:`grid_sample` to support 3D point_coords tensors
    +    Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to
    +    lie inside ``[0, 1] x [0, 1]`` square.
    +
    +    Args:
    +        input (torch.Tensor): Feature map, shape (N, C, H, W).
    +        points (torch.Tensor): Image based absolute point coordinates
    +            (normalized), range [0, 1] x [0, 1], shape (N, P, 2) or
    +            (N, Hgrid, Wgrid, 2).
    +        align_corners (bool, optional): Whether align_corners.
    +            Default: False
    +
    +    Returns:
    +        torch.Tensor: Features of `point` on `input`, shape (N, C, P) or
    +        (N, C, Hgrid, Wgrid).
    +    """
    +
    +    add_dim = False
    +    if points.dim() == 3:
    +        add_dim = True
    +        points = points.unsqueeze(2)
    +    if is_in_onnx_export_without_custom_ops():
    +        # If custom ops for onnx runtime not compiled use python
    +        # implementation of grid_sample function to make onnx graph
    +        # with supported nodes
    +        output = bilinear_grid_sample(
    +            input, denormalize(points), align_corners=align_corners)
    +    else:
    +        output = F.grid_sample(
    +            input, denormalize(points), align_corners=align_corners, **kwargs)
    +    if add_dim:
    +        output = output.squeeze(3)
    +    return output
    +
    +
    +class SimpleRoIAlign(nn.Module):
    +
    +    def __init__(self,
    +                 output_size: Tuple[int],
    +                 spatial_scale: float,
    +                 aligned: bool = True) -> None:
    +        """Simple RoI align in PointRend, faster than standard RoIAlign.
    +
    +        Args:
    +            output_size (tuple[int]): h, w
    +            spatial_scale (float): scale the input boxes by this number
    +            aligned (bool): if False, use the legacy implementation in
    +                MMDetection, align_corners=True will be used in F.grid_sample.
    +                If True, align the results more perfectly.
    +        """
    +
    +        super().__init__()
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +        # to be consistent with other RoI ops
    +        self.use_torchvision = False
    +        self.aligned = aligned
    +
    +    def forward(self, features: Tensor, rois: Tensor) -> Tensor:
    +        num_imgs = features.size(0)
    +        num_rois = rois.size(0)
    +        rel_roi_points = generate_grid(
    +            num_rois, self.output_size, device=rois.device)
    +
    +        if torch.onnx.is_in_onnx_export():
    +            rel_img_points = rel_roi_point_to_rel_img_point(
    +                rois, rel_roi_points, features, self.spatial_scale)
    +            rel_img_points = rel_img_points.reshape(num_imgs, -1,
    +                                                    *rel_img_points.shape[1:])
    +            point_feats = point_sample(
    +                features, rel_img_points, align_corners=not self.aligned)
    +            point_feats = point_feats.transpose(1, 2)
    +        else:
    +            point_feats = []
    +            for batch_ind in range(num_imgs):
    +                # unravel batch dim
    +                feat = features[batch_ind].unsqueeze(0)
    +                inds = (rois[:, 0].long() == batch_ind)
    +                if inds.any():
    +                    rel_img_points = rel_roi_point_to_rel_img_point(
    +                        rois[inds], rel_roi_points[inds], feat,
    +                        self.spatial_scale).unsqueeze(0)
    +                    point_feat = point_sample(
    +                        feat, rel_img_points, align_corners=not self.aligned)
    +                    point_feat = point_feat.squeeze(0).transpose(0, 1)
    +                    point_feats.append(point_feat)
    +
    +            point_feats = torch.cat(point_feats, dim=0)
    +
    +        channels = features.size(1)
    +        roi_feats = point_feats.reshape(num_rois, channels, *self.output_size)
    +
    +        return roi_feats
    +
    +    def __repr__(self) -> str:
    +        format_str = self.__class__.__name__
    +        format_str += '(output_size={}, spatial_scale={}'.format(
    +            self.output_size, self.spatial_scale)
    +        return format_str
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_boxes.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_boxes.py
    new file mode 100644
    index 000000000..4915e6b57
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_boxes.py
    @@ -0,0 +1,137 @@
    +import torch
    +from torch import Tensor
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'points_in_boxes_part_forward', 'points_in_boxes_cpu_forward',
    +    'points_in_boxes_all_forward'
    +])
    +
    +
    +def points_in_boxes_part(points: Tensor, boxes: Tensor) -> Tensor:
    +    """Find the box in which each point is (CUDA).
    +
    +    Args:
    +        points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate.
    +        boxes (torch.Tensor): [B, T, 7],
    +            num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz] in
    +            LiDAR/DEPTH coordinate, (x, y, z) is the bottom center.
    +
    +    Returns:
    +        torch.Tensor: Return the box indices of points with the shape of
    +        (B, M). Default background = -1.
    +    """
    +    assert points.shape[0] == boxes.shape[0], \
    +        'Points and boxes should have the same batch size, ' \
    +        f'but got {points.shape[0]} and {boxes.shape[0]}'
    +    assert boxes.shape[2] == 7, \
    +        'boxes dimension should be 7, ' \
    +        f'but got unexpected shape {boxes.shape[2]}'
    +    assert points.shape[2] == 3, \
    +        'points dimension should be 3, ' \
    +        f'but got unexpected shape {points.shape[2]}'
    +    batch_size, num_points, _ = points.shape
    +
    +    box_idxs_of_pts = points.new_zeros((batch_size, num_points),
    +                                       dtype=torch.int).fill_(-1)
    +
    +    # If manually put the tensor 'points' or 'boxes' on a device
    +    # which is not the current device, some temporary variables
    +    # will be created on the current device in the cuda op,
    +    # and the output will be incorrect.
    +    # Therefore, we force the current device to be the same
    +    # as the device of the tensors if it was not.
    +    # Please refer to https://github.com/open-mmlab/mmdetection3d/issues/305
    +    # for the incorrect output before the fix.
    +    points_device = points.get_device()
    +    assert points_device == boxes.get_device(), \
    +        'Points and boxes should be put on the same device'
    +    if torch.cuda.current_device() != points_device:
    +        torch.cuda.set_device(points_device)
    +
    +    ext_module.points_in_boxes_part_forward(boxes.contiguous(),
    +                                            points.contiguous(),
    +                                            box_idxs_of_pts)
    +
    +    return box_idxs_of_pts
    +
    +
    +def points_in_boxes_cpu(points: Tensor, boxes: Tensor) -> Tensor:
    +    """Find all boxes in which each point is (CPU). The CPU version of
    +    :meth:`points_in_boxes_all`.
    +
    +    Args:
    +        points (torch.Tensor): [B, M, 3], [x, y, z] in
    +            LiDAR/DEPTH coordinate
    +        boxes (torch.Tensor): [B, T, 7],
    +            num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
    +            (x, y, z) is the bottom center.
    +
    +    Returns:
    +        torch.Tensor: Return the box indices of points with the shape of
    +        (B, M, T). Default background = 0.
    +    """
    +    assert points.shape[0] == boxes.shape[0], \
    +        'Points and boxes should have the same batch size, ' \
    +        f'but got {points.shape[0]} and {boxes.shape[0]}'
    +    assert boxes.shape[2] == 7, \
    +        'boxes dimension should be 7, ' \
    +        f'but got unexpected shape {boxes.shape[2]}'
    +    assert points.shape[2] == 3, \
    +        'points dimension should be 3, ' \
    +        f'but got unexpected shape {points.shape[2]}'
    +    batch_size, num_points, _ = points.shape
    +    num_boxes = boxes.shape[1]
    +
    +    point_indices = points.new_zeros((batch_size, num_boxes, num_points),
    +                                     dtype=torch.int)
    +    for b in range(batch_size):
    +        ext_module.points_in_boxes_cpu_forward(boxes[b].float().contiguous(),
    +                                               points[b].float().contiguous(),
    +                                               point_indices[b])
    +    point_indices = point_indices.transpose(1, 2)
    +
    +    return point_indices
    +
    +
    +def points_in_boxes_all(points: Tensor, boxes: Tensor) -> Tensor:
    +    """Find all boxes in which each point is (CUDA).
    +
    +    Args:
    +        points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate
    +        boxes (torch.Tensor): [B, T, 7],
    +            num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
    +            (x, y, z) is the bottom center.
    +
    +    Returns:
    +        torch.Tensor: Return the box indices of points with the shape of
    +        (B, M, T). Default background = 0.
    +    """
    +    assert boxes.shape[0] == points.shape[0], \
    +        'Points and boxes should have the same batch size, ' \
    +        f'but got {boxes.shape[0]} and {boxes.shape[0]}'
    +    assert boxes.shape[2] == 7, \
    +        'boxes dimension should be 7, ' \
    +        f'but got unexpected shape {boxes.shape[2]}'
    +    assert points.shape[2] == 3, \
    +        'points dimension should be 3, ' \
    +        f'but got unexpected shape {points.shape[2]}'
    +    batch_size, num_points, _ = points.shape
    +    num_boxes = boxes.shape[1]
    +
    +    box_idxs_of_pts = points.new_zeros((batch_size, num_points, num_boxes),
    +                                       dtype=torch.int).fill_(0)
    +
    +    # Same reason as line 25-32
    +    points_device = points.get_device()
    +    assert points_device == boxes.get_device(), \
    +        'Points and boxes should be put on the same device'
    +    if torch.cuda.current_device() != points_device:
    +        torch.cuda.set_device(points_device)
    +
    +    ext_module.points_in_boxes_all_forward(boxes.contiguous(),
    +                                           points.contiguous(),
    +                                           box_idxs_of_pts)
    +
    +    return box_idxs_of_pts
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_polygons.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_polygons.py
    new file mode 100644
    index 000000000..62d0dbdc9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_in_polygons.py
    @@ -0,0 +1,38 @@
    +import torch
    +from torch import Tensor
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['points_in_polygons_forward'])
    +
    +
    +def points_in_polygons(points: Tensor, polygons: Tensor) -> Tensor:
    +    """Judging whether points are inside polygons, which is used in the ATSS
    +    assignment for the rotated boxes.
    +
    +    It should be noted that when the point is just at the polygon boundary, the
    +    judgment will be inaccurate, but the effect on assignment is limited.
    +
    +    Args:
    +        points (torch.Tensor): It has shape (B, 2), indicating (x, y).
    +            M means the number of predicted points.
    +        polygons (torch.Tensor): It has shape (M, 8), indicating
    +            (x1, y1, x2, y2, x3, y3, x4, y4). M means the number of
    +            ground truth polygons.
    +
    +    Returns:
    +        torch.Tensor: Return the result with the shape of (B, M),
    +        1 indicates that the point is inside the polygon,
    +        0 indicates that the point is outside the polygon.
    +    """
    +    assert points.shape[1] == 2, \
    +        'points dimension should be 2, ' \
    +        f'but got unexpected shape {points.shape[1]}'
    +    assert polygons.shape[1] == 8, \
    +        'polygons dimension should be 8, ' \
    +        f'but got unexpected shape {polygons.shape[1]}'
    +    output = torch.full([points.shape[0], polygons.shape[0]],
    +                        0.).cuda().float()
    +    ext_module.points_in_polygons_forward(points.contiguous(),
    +                                          polygons.contiguous(), output)
    +    return output
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_sampler.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_sampler.py
    new file mode 100644
    index 000000000..1cff84620
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/points_sampler.py
    @@ -0,0 +1,175 @@
    +from typing import List
    +
    +import torch
    +from torch import Tensor
    +from torch import nn as nn
    +
    +from mmcv.runner import force_fp32
    +from .furthest_point_sample import (furthest_point_sample,
    +                                    furthest_point_sample_with_dist)
    +
    +
    +def calc_square_dist(point_feat_a: Tensor,
    +                     point_feat_b: Tensor,
    +                     norm: bool = True) -> Tensor:
    +    """Calculating square distance between a and b.
    +
    +    Args:
    +        point_feat_a (torch.Tensor): (B, N, C) Feature vector of each point.
    +        point_feat_b (torch.Tensor): (B, M, C) Feature vector of each point.
    +        norm (bool, optional): Whether to normalize the distance.
    +            Default: True.
    +
    +    Returns:
    +        torch.Tensor: (B, N, M) Square distance between each point pair.
    +    """
    +    num_channel = point_feat_a.shape[-1]
    +    dist = torch.cdist(point_feat_a, point_feat_b)
    +    if norm:
    +        dist = dist / num_channel
    +    else:
    +        dist = torch.square(dist)
    +    return dist
    +
    +
    +def get_sampler_cls(sampler_type: str) -> nn.Module:
    +    """Get the type and mode of points sampler.
    +
    +    Args:
    +        sampler_type (str): The type of points sampler.
    +            The valid value are "D-FPS", "F-FPS", or "FS".
    +
    +    Returns:
    +        class: Points sampler type.
    +    """
    +    sampler_mappings = {
    +        'D-FPS': DFPSSampler,
    +        'F-FPS': FFPSSampler,
    +        'FS': FSSampler,
    +    }
    +    try:
    +        return sampler_mappings[sampler_type]
    +    except KeyError:
    +        raise KeyError(
    +            f'Supported `sampler_type` are {sampler_mappings.keys()}, but got \
    +                {sampler_type}')
    +
    +
    +class PointsSampler(nn.Module):
    +    """Points sampling.
    +
    +    Args:
    +        num_point (list[int]): Number of sample points.
    +        fps_mod_list (list[str], optional): Type of FPS method, valid mod
    +            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
    +            F-FPS: using feature distances for FPS.
    +            D-FPS: using Euclidean distances of points for FPS.
    +            FS: using F-FPS and D-FPS simultaneously.
    +        fps_sample_range_list (list[int], optional):
    +            Range of points to apply FPS. Default: [-1].
    +    """
    +
    +    def __init__(self,
    +                 num_point: List[int],
    +                 fps_mod_list: List[str] = ['D-FPS'],
    +                 fps_sample_range_list: List[int] = [-1]) -> None:
    +        super().__init__()
    +        # FPS would be applied to different fps_mod in the list,
    +        # so the length of the num_point should be equal to
    +        # fps_mod_list and fps_sample_range_list.
    +        assert len(num_point) == len(fps_mod_list) == len(
    +            fps_sample_range_list)
    +        self.num_point = num_point
    +        self.fps_sample_range_list = fps_sample_range_list
    +        self.samplers = nn.ModuleList()
    +        for fps_mod in fps_mod_list:
    +            self.samplers.append(get_sampler_cls(fps_mod)())
    +        self.fp16_enabled = False
    +
    +    @force_fp32()
    +    def forward(self, points_xyz: Tensor, features: Tensor) -> Tensor:
    +        """
    +        Args:
    +            points_xyz (torch.Tensor): (B, N, 3) xyz coordinates of
    +                the points.
    +            features (torch.Tensor): (B, C, N) features of the points.
    +
    +        Returns:
    +            torch.Tensor: (B, npoint, sample_num) Indices of sampled points.
    +        """
    +        indices = []
    +        last_fps_end_index = 0
    +        for fps_sample_range, sampler, npoint in zip(
    +                self.fps_sample_range_list, self.samplers, self.num_point):
    +            assert fps_sample_range < points_xyz.shape[1]
    +
    +            if fps_sample_range == -1:
    +                sample_points_xyz = points_xyz[:, last_fps_end_index:]
    +                if features is not None:
    +                    sample_features = features[:, :, last_fps_end_index:]
    +                else:
    +                    sample_features = None
    +            else:
    +                sample_points_xyz = points_xyz[:, last_fps_end_index:
    +                                               fps_sample_range]
    +                if features is not None:
    +                    sample_features = features[:, :, last_fps_end_index:
    +                                               fps_sample_range]
    +                else:
    +                    sample_features = None
    +
    +            fps_idx = sampler(sample_points_xyz.contiguous(), sample_features,
    +                              npoint)
    +
    +            indices.append(fps_idx + last_fps_end_index)
    +            last_fps_end_index = fps_sample_range
    +        indices = torch.cat(indices, dim=1)
    +
    +        return indices
    +
    +
    +class DFPSSampler(nn.Module):
    +    """Using Euclidean distances of points for FPS."""
    +
    +    def __init__(self) -> None:
    +        super().__init__()
    +
    +    def forward(self, points: Tensor, features: Tensor, npoint: int) -> Tensor:
    +        """Sampling points with D-FPS."""
    +        fps_idx = furthest_point_sample(points.contiguous(), npoint)
    +        return fps_idx
    +
    +
    +class FFPSSampler(nn.Module):
    +    """Using feature distances for FPS."""
    +
    +    def __init__(self) -> None:
    +        super().__init__()
    +
    +    def forward(self, points: Tensor, features: Tensor, npoint: int) -> Tensor:
    +        """Sampling points with F-FPS."""
    +        assert features is not None, \
    +            'feature input to FFPS_Sampler should not be None'
    +        features_for_fps = torch.cat([points, features.transpose(1, 2)], dim=2)
    +        features_dist = calc_square_dist(
    +            features_for_fps, features_for_fps, norm=False)
    +        fps_idx = furthest_point_sample_with_dist(features_dist, npoint)
    +        return fps_idx
    +
    +
    +class FSSampler(nn.Module):
    +    """Using F-FPS and D-FPS simultaneously."""
    +
    +    def __init__(self) -> None:
    +        super().__init__()
    +
    +    def forward(self, points: Tensor, features: Tensor, npoint: int) -> Tensor:
    +        """Sampling points with FS_Sampling."""
    +        assert features is not None, \
    +            'feature input to FS_Sampler should not be None'
    +        ffps_sampler = FFPSSampler()
    +        dfps_sampler = DFPSSampler()
    +        fps_idx_ffps = ffps_sampler(points, features, npoint)
    +        fps_idx_dfps = dfps_sampler(points, features, npoint)
    +        fps_idx = torch.cat([fps_idx_ffps, fps_idx_dfps], dim=1)
    +        return fps_idx
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/prroi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/prroi_pool.py
    new file mode 100644
    index 000000000..b8a99c11e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/prroi_pool.py
    @@ -0,0 +1,151 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import TORCH_VERSION, ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext',
    +    ['prroi_pool_forward', 'prroi_pool_backward', 'prroi_pool_coor_backward'])
    +
    +
    +class PrRoIPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, features, rois, output_size, spatial_scale):
    +        return g.op(
    +            'mmcv::PrRoIPool',
    +            features,
    +            rois,
    +            pooled_height_i=int(output_size[0]),
    +            pooled_width_i=int(output_size[1]),
    +            spatial_scale_f=float(spatial_scale))
    +
    +    @staticmethod
    +    def forward(ctx,
    +                features: torch.Tensor,
    +                rois: torch.Tensor,
    +                output_size: Tuple,
    +                spatial_scale: float = 1.0) -> torch.Tensor:
    +        if features.dtype != torch.float32 or rois.dtype != torch.float32:
    +            raise ValueError('Precise RoI Pooling only takes float input, got '
    +                             f'{features.dtype()} for features and'
    +                             f'{rois.dtype()} for rois.')
    +
    +        pooled_height = int(output_size[0])
    +        pooled_width = int(output_size[1])
    +        spatial_scale = float(spatial_scale)
    +
    +        features = features.contiguous()
    +        rois = rois.contiguous()
    +        output_shape = (rois.size(0), features.size(1), pooled_height,
    +                        pooled_width)
    +        output = features.new_zeros(output_shape)
    +        params = (pooled_height, pooled_width, spatial_scale)
    +
    +        ext_module.prroi_pool_forward(
    +            features,
    +            rois,
    +            output,
    +            pooled_height=params[0],
    +            pooled_width=params[1],
    +            spatial_scale=params[2])
    +        ctx.params = params
    +        # everything here is contiguous.
    +        ctx.save_for_backward(features, rois, output)
    +
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(
    +        ctx, grad_output: torch.Tensor
    +    ) -> Tuple[torch.Tensor, torch.Tensor, None, None, None]:
    +        features, rois, output = ctx.saved_tensors
    +        grad_input = grad_output.new_zeros(*features.shape)
    +        grad_coor = grad_output.new_zeros(*rois.shape)
    +
    +        if features.requires_grad or TORCH_VERSION == 'parrots':
    +            grad_output = grad_output.contiguous()
    +            ext_module.prroi_pool_backward(
    +                grad_output,
    +                rois,
    +                grad_input,
    +                pooled_height=ctx.params[0],
    +                pooled_width=ctx.params[1],
    +                spatial_scale=ctx.params[2])
    +        if rois.requires_grad or TORCH_VERSION == 'parrots':
    +            grad_output = grad_output.contiguous()
    +            ext_module.prroi_pool_coor_backward(
    +                output,
    +                grad_output,
    +                features,
    +                rois,
    +                grad_coor,
    +                pooled_height=ctx.params[0],
    +                pooled_width=ctx.params[1],
    +                spatial_scale=ctx.params[2])
    +
    +        return grad_input, grad_coor, None, None, None
    +
    +
    +prroi_pool = PrRoIPoolFunction.apply
    +
    +
    +class PrRoIPool(nn.Module):
    +    """The operation of precision RoI pooling. The implementation of PrRoIPool
    +    is modified from https://github.com/vacancy/PreciseRoIPooling/
    +
    +    Precise RoI Pooling (PrRoIPool) is an integration-based (bilinear
    +    interpolation) average pooling method for RoI Pooling. It avoids any
    +    quantization and has a continuous gradient on bounding box coordinates.
    +    It is:
    +
    +    1. different from the original RoI Pooling proposed in Fast R-CNN. PrRoI
    +    Pooling uses average pooling instead of max pooling for each bin and has a
    +    continuous gradient on bounding box coordinates. That is, one can take the
    +    derivatives of some loss function w.r.t the coordinates of each RoI and
    +    optimize the RoI coordinates.
    +    2. different from the RoI Align proposed in Mask R-CNN. PrRoI Pooling uses
    +    a full integration-based average pooling instead of sampling a constant
    +    number of points. This makes the gradient w.r.t. the coordinates
    +    continuous.
    +
    +    Args:
    +        output_size (Union[int, tuple]): h, w.
    +        spatial_scale (float, optional): scale the input boxes by this number.
    +            Defaults to 1.0.
    +    """
    +
    +    def __init__(self,
    +                 output_size: Union[int, tuple],
    +                 spatial_scale: float = 1.0):
    +        super().__init__()
    +
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +
    +    def forward(self, features: torch.Tensor,
    +                rois: torch.Tensor) -> torch.Tensor:
    +        """Forward function.
    +
    +        Args:
    +            features (torch.Tensor): The feature map.
    +            rois (torch.Tensor): The RoI bboxes in [tl_x, tl_y, br_x, br_y]
    +                format.
    +
    +        Returns:
    +            torch.Tensor: The pooled results.
    +        """
    +        return prroi_pool(features, rois, self.output_size, self.spatial_scale)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(output_size={self.output_size}, '
    +        s += f'spatial_scale={self.spatial_scale})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/psa_mask.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/psa_mask.py
    new file mode 100644
    index 000000000..45f494666
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/psa_mask.py
    @@ -0,0 +1,98 @@
    +# Modified from https://github.com/hszhao/semseg/blob/master/lib/psa
    +from typing import Optional, Tuple
    +
    +import torch
    +from torch import nn
    +from torch.autograd import Function
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext',
    +                                 ['psamask_forward', 'psamask_backward'])
    +
    +
    +class PSAMaskFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, psa_type, mask_size):
    +        return g.op(
    +            'mmcv::MMCVPSAMask',
    +            input,
    +            psa_type_i=psa_type,
    +            mask_size_i=mask_size)
    +
    +    @staticmethod
    +    def forward(ctx, input: torch.Tensor, psa_type: str,
    +                mask_size: int) -> torch.Tensor:
    +        ctx.psa_type = psa_type
    +        ctx.mask_size = _pair(mask_size)
    +        ctx.save_for_backward(input)
    +
    +        h_mask, w_mask = ctx.mask_size
    +        batch_size, channels, h_feature, w_feature = input.size()
    +        assert channels == h_mask * w_mask
    +        output = input.new_zeros(
    +            (batch_size, h_feature * w_feature, h_feature, w_feature))
    +
    +        ext_module.psamask_forward(
    +            input,
    +            output,
    +            psa_type=psa_type,
    +            num_=batch_size,
    +            h_feature=h_feature,
    +            w_feature=w_feature,
    +            h_mask=h_mask,
    +            w_mask=w_mask,
    +            half_h_mask=(h_mask - 1) // 2,
    +            half_w_mask=(w_mask - 1) // 2)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +            ctx, grad_output: torch.Tensor
    +    ) -> Tuple[torch.Tensor, None, None, None]:
    +        input = ctx.saved_tensors[0]
    +        psa_type = ctx.psa_type
    +        h_mask, w_mask = ctx.mask_size
    +        batch_size, channels, h_feature, w_feature = input.size()
    +        grad_input = grad_output.new_zeros(
    +            (batch_size, channels, h_feature, w_feature))
    +        ext_module.psamask_backward(
    +            grad_output,
    +            grad_input,
    +            psa_type=psa_type,
    +            num_=batch_size,
    +            h_feature=h_feature,
    +            w_feature=w_feature,
    +            h_mask=h_mask,
    +            w_mask=w_mask,
    +            half_h_mask=(h_mask - 1) // 2,
    +            half_w_mask=(w_mask - 1) // 2)
    +        return grad_input, None, None, None
    +
    +
    +psa_mask = PSAMaskFunction.apply
    +
    +
    +class PSAMask(nn.Module):
    +
    +    def __init__(self, psa_type: str, mask_size: Optional[tuple] = None):
    +        super().__init__()
    +        assert psa_type in ['collect', 'distribute']
    +        if psa_type == 'collect':
    +            psa_type_enum = 0
    +        else:
    +            psa_type_enum = 1
    +        self.psa_type_enum = psa_type_enum
    +        self.mask_size = mask_size
    +        self.psa_type = psa_type
    +
    +    def forward(self, input: torch.Tensor) -> torch.Tensor:
    +        return psa_mask(input, self.psa_type_enum, self.mask_size)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(psa_type={self.psa_type}, '
    +        s += f'mask_size={self.mask_size})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/riroi_align_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/riroi_align_rotated.py
    new file mode 100644
    index 000000000..1de810cc5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/riroi_align_rotated.py
    @@ -0,0 +1,139 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader, is_tuple_of
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['riroi_align_rotated_forward', 'riroi_align_rotated_backward'])
    +
    +
    +class RiRoIAlignRotatedFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any,
    +                features: torch.Tensor,
    +                rois: torch.Tensor,
    +                out_size: Union[int, tuple],
    +                spatial_scale: float,
    +                num_samples: int = 0,
    +                num_orientations: int = 8,
    +                clockwise: bool = False) -> torch.Tensor:
    +        if isinstance(out_size, int):
    +            out_h = out_size
    +            out_w = out_size
    +        elif is_tuple_of(out_size, int):
    +            assert len(out_size) == 2
    +            out_h, out_w = out_size
    +        else:
    +            raise TypeError(
    +                f'"out_size" should be an integer or tuple of integers,'
    +                f' but got {out_size}')
    +        ctx.spatial_scale = spatial_scale
    +        ctx.num_samples = num_samples
    +        ctx.num_orientations = num_orientations
    +        ctx.clockwise = clockwise
    +        ctx.save_for_backward(rois)
    +        ctx.feature_size = features.size()
    +
    +        batch_size, num_channels, _, _ = features.size()
    +        num_rois = rois.size(0)
    +
    +        output = features.new_zeros(num_rois, num_channels, out_h, out_w)
    +
    +        ext_module.riroi_align_rotated_forward(
    +            features,
    +            rois,
    +            output,
    +            pooled_height=out_h,
    +            pooled_width=out_w,
    +            spatial_scale=spatial_scale,
    +            num_samples=num_samples,
    +            num_orientations=num_orientations,
    +            clockwise=clockwise)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +        ctx: Any, grad_output: torch.Tensor
    +    ) -> Optional[Tuple[torch.Tensor, None, None, None, None, None, None]]:
    +        feature_size = ctx.feature_size
    +        spatial_scale = ctx.spatial_scale
    +        num_orientations = ctx.num_orientations
    +        clockwise = ctx.clockwise
    +        num_samples = ctx.num_samples
    +        rois = ctx.saved_tensors[0]
    +        assert feature_size is not None
    +        batch_size, num_channels, feature_h, feature_w = feature_size
    +
    +        out_w = grad_output.size(3)
    +        out_h = grad_output.size(2)
    +
    +        grad_input = None
    +
    +        if ctx.needs_input_grad[0]:
    +            grad_input = rois.new_zeros(batch_size, num_channels, feature_h,
    +                                        feature_w)
    +            ext_module.riroi_align_rotated_backward(
    +                grad_output.contiguous(),
    +                rois,
    +                grad_input,
    +                pooled_height=out_h,
    +                pooled_width=out_w,
    +                spatial_scale=spatial_scale,
    +                num_samples=num_samples,
    +                num_orientations=num_orientations,
    +                clockwise=clockwise)
    +
    +            return grad_input, None, None, None, None, None, None
    +        return None
    +
    +
    +riroi_align_rotated = RiRoIAlignRotatedFunction.apply
    +
    +
    +class RiRoIAlignRotated(nn.Module):
    +    """Rotation-invariant RoI align pooling layer for rotated proposals.
    +
    +    It accepts a feature map of shape (N, C, H, W) and rois with shape
    +    (n, 6) with each roi decoded as (batch_index, center_x, center_y,
    +    w, h, angle). The angle is in radian.
    +
    +    The details are described in the paper `ReDet: A Rotation-equivariant
    +    Detector for Aerial Object Detection  `_.
    +
    +    Args:
    +        out_size (tuple): fixed dimensional RoI output with shape (h, w).
    +        spatial_scale (float): scale the input boxes by this number
    +        num_samples (int): number of inputs samples to take for each
    +            output sample. 0 to take samples densely for current models.
    +        num_orientations (int): number of oriented channels.
    +        clockwise (bool): If True, the angle in each proposal follows a
    +            clockwise fashion in image space, otherwise, the angle is
    +            counterclockwise. Default: False.
    +    """
    +
    +    def __init__(self,
    +                 out_size: tuple,
    +                 spatial_scale: float,
    +                 num_samples: int = 0,
    +                 num_orientations: int = 8,
    +                 clockwise: bool = False):
    +        super().__init__()
    +
    +        self.out_size = out_size
    +        self.spatial_scale = float(spatial_scale)
    +        self.num_samples = int(num_samples)
    +        self.num_orientations = int(num_orientations)
    +        self.clockwise = clockwise
    +
    +    def forward(self, features: torch.Tensor,
    +                rois: torch.Tensor) -> torch.Tensor:
    +        return RiRoIAlignRotatedFunction.apply(features, rois, self.out_size,
    +                                               self.spatial_scale,
    +                                               self.num_samples,
    +                                               self.num_orientations,
    +                                               self.clockwise)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align.py
    new file mode 100644
    index 000000000..ca802f60c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align.py
    @@ -0,0 +1,226 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import deprecated_api_warning, ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext',
    +                                 ['roi_align_forward', 'roi_align_backward'])
    +
    +
    +class RoIAlignFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio,
    +                 pool_mode, aligned):
    +        from ..onnx import is_custom_op_loaded
    +        has_custom_op = is_custom_op_loaded()
    +        if has_custom_op:
    +            return g.op(
    +                'mmcv::MMCVRoiAlign',
    +                input,
    +                rois,
    +                output_height_i=output_size[0],
    +                output_width_i=output_size[1],
    +                spatial_scale_f=spatial_scale,
    +                sampling_ratio_i=sampling_ratio,
    +                mode_s=pool_mode,
    +                aligned_i=aligned)
    +        else:
    +            from torch.onnx import TensorProtoDataType
    +            from torch.onnx.symbolic_helper import _slice_helper
    +            from torch.onnx.symbolic_opset9 import squeeze, sub
    +
    +            # batch_indices = rois[:, 0].long()
    +            batch_indices = _slice_helper(
    +                g, rois, axes=[1], starts=[0], ends=[1])
    +            batch_indices = squeeze(g, batch_indices, 1)
    +            batch_indices = g.op(
    +                'Cast', batch_indices, to_i=TensorProtoDataType.INT64)
    +            # rois = rois[:, 1:]
    +            rois = _slice_helper(g, rois, axes=[1], starts=[1], ends=[5])
    +            if aligned:
    +                # rois -= 0.5/spatial_scale
    +                aligned_offset = g.op(
    +                    'Constant',
    +                    value_t=torch.tensor([0.5 / spatial_scale],
    +                                         dtype=torch.float32))
    +                rois = sub(g, rois, aligned_offset)
    +            # roi align
    +            return g.op(
    +                'RoiAlign',
    +                input,
    +                rois,
    +                batch_indices,
    +                output_height_i=output_size[0],
    +                output_width_i=output_size[1],
    +                spatial_scale_f=spatial_scale,
    +                sampling_ratio_i=max(0, sampling_ratio),
    +                mode_s=pool_mode)
    +
    +    @staticmethod
    +    def forward(ctx: Any,
    +                input: torch.Tensor,
    +                rois: torch.Tensor,
    +                output_size: int,
    +                spatial_scale: float = 1.0,
    +                sampling_ratio: int = 0,
    +                pool_mode: str = 'avg',
    +                aligned: bool = True) -> torch.Tensor:
    +        ctx.output_size = _pair(output_size)
    +        ctx.spatial_scale = spatial_scale
    +        ctx.sampling_ratio = sampling_ratio
    +        assert pool_mode in ('max', 'avg')
    +        ctx.pool_mode = 0 if pool_mode == 'max' else 1
    +        ctx.aligned = aligned
    +        ctx.input_shape = input.size()
    +
    +        assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!'
    +
    +        output_shape = (rois.size(0), input.size(1), ctx.output_size[0],
    +                        ctx.output_size[1])
    +        output = input.new_zeros(output_shape)
    +        if ctx.pool_mode == 0:
    +            argmax_y = input.new_zeros(output_shape)
    +            argmax_x = input.new_zeros(output_shape)
    +        else:
    +            argmax_y = input.new_zeros(0)
    +            argmax_x = input.new_zeros(0)
    +
    +        ext_module.roi_align_forward(
    +            input,
    +            rois,
    +            output,
    +            argmax_y,
    +            argmax_x,
    +            aligned_height=ctx.output_size[0],
    +            aligned_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale,
    +            sampling_ratio=ctx.sampling_ratio,
    +            pool_mode=ctx.pool_mode,
    +            aligned=ctx.aligned)
    +
    +        ctx.save_for_backward(rois, argmax_y, argmax_x)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
    +        rois, argmax_y, argmax_x = ctx.saved_tensors
    +        grad_input = grad_output.new_zeros(ctx.input_shape)
    +        # complex head architecture may cause grad_output uncontiguous.
    +        grad_output = grad_output.contiguous()
    +        ext_module.roi_align_backward(
    +            grad_output,
    +            rois,
    +            argmax_y,
    +            argmax_x,
    +            grad_input,
    +            aligned_height=ctx.output_size[0],
    +            aligned_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale,
    +            sampling_ratio=ctx.sampling_ratio,
    +            pool_mode=ctx.pool_mode,
    +            aligned=ctx.aligned)
    +        return grad_input, None, None, None, None, None, None
    +
    +
    +roi_align = RoIAlignFunction.apply
    +
    +
    +class RoIAlign(nn.Module):
    +    """RoI align pooling layer.
    +
    +    Args:
    +        output_size (tuple): h, w
    +        spatial_scale (float): scale the input boxes by this number
    +        sampling_ratio (int): number of inputs samples to take for each
    +            output sample. 0 to take samples densely for current models.
    +        pool_mode (str, 'avg' or 'max'): pooling mode in each bin.
    +        aligned (bool): if False, use the legacy implementation in
    +            MMDetection. If True, align the results more perfectly.
    +        use_torchvision (bool): whether to use roi_align from torchvision.
    +
    +    Note:
    +        The implementation of RoIAlign when aligned=True is modified from
    +        https://github.com/facebookresearch/detectron2/
    +
    +        The meaning of aligned=True:
    +
    +        Given a continuous coordinate c, its two neighboring pixel
    +        indices (in our pixel model) are computed by floor(c - 0.5) and
    +        ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
    +        indices [0] and [1] (which are sampled from the underlying signal
    +        at continuous coordinates 0.5 and 1.5). But the original roi_align
    +        (aligned=False) does not subtract the 0.5 when computing
    +        neighboring pixel indices and therefore it uses pixels with a
    +        slightly incorrect alignment (relative to our pixel model) when
    +        performing bilinear interpolation.
    +
    +        With `aligned=True`,
    +        we first appropriately scale the ROI and then shift it by -0.5
    +        prior to calling roi_align. This produces the correct neighbors;
    +
    +        The difference does not make a difference to the model's
    +        performance if ROIAlign is used together with conv layers.
    +    """
    +
    +    @deprecated_api_warning(
    +        {
    +            'out_size': 'output_size',
    +            'sample_num': 'sampling_ratio'
    +        },
    +        cls_name='RoIAlign')
    +    def __init__(self,
    +                 output_size: tuple,
    +                 spatial_scale: float = 1.0,
    +                 sampling_ratio: int = 0,
    +                 pool_mode: str = 'avg',
    +                 aligned: bool = True,
    +                 use_torchvision: bool = False):
    +        super().__init__()
    +
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +        self.sampling_ratio = int(sampling_ratio)
    +        self.pool_mode = pool_mode
    +        self.aligned = aligned
    +        self.use_torchvision = use_torchvision
    +
    +    def forward(self, input: torch.Tensor, rois: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            input: NCHW images
    +            rois: Bx5 boxes. First column is the index into N.\
    +                The other 4 columns are xyxy.
    +        """
    +        if self.use_torchvision:
    +            from torchvision.ops import roi_align as tv_roi_align
    +            if 'aligned' in tv_roi_align.__code__.co_varnames:
    +                return tv_roi_align(input, rois, self.output_size,
    +                                    self.spatial_scale, self.sampling_ratio,
    +                                    self.aligned)
    +            else:
    +                if self.aligned:
    +                    rois -= rois.new_tensor([0.] +
    +                                            [0.5 / self.spatial_scale] * 4)
    +                return tv_roi_align(input, rois, self.output_size,
    +                                    self.spatial_scale, self.sampling_ratio)
    +        else:
    +            return roi_align(input, rois, self.output_size, self.spatial_scale,
    +                             self.sampling_ratio, self.pool_mode, self.aligned)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(output_size={self.output_size}, '
    +        s += f'spatial_scale={self.spatial_scale}, '
    +        s += f'sampling_ratio={self.sampling_ratio}, '
    +        s += f'pool_mode={self.pool_mode}, '
    +        s += f'aligned={self.aligned}, '
    +        s += f'use_torchvision={self.use_torchvision})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align_rotated.py
    new file mode 100644
    index 000000000..f970ef4d8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_align_rotated.py
    @@ -0,0 +1,186 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import deprecated_api_warning, ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward'])
    +
    +
    +class RoIAlignRotatedFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio,
    +                 aligned, clockwise):
    +        if isinstance(output_size, int):
    +            out_h = output_size
    +            out_w = output_size
    +        elif isinstance(output_size, tuple):
    +            assert len(output_size) == 2
    +            assert isinstance(output_size[0], int)
    +            assert isinstance(output_size[1], int)
    +            out_h, out_w = output_size
    +        else:
    +            raise TypeError(
    +                '"output_size" must be an integer or tuple of integers')
    +        return g.op(
    +            'mmcv::MMCVRoIAlignRotated',
    +            input,
    +            rois,
    +            output_height_i=out_h,
    +            output_width_i=out_h,
    +            spatial_scale_f=spatial_scale,
    +            sampling_ratio_i=sampling_ratio,
    +            aligned_i=aligned,
    +            clockwise_i=clockwise)
    +
    +    @staticmethod
    +    def forward(ctx: Any,
    +                input: torch.Tensor,
    +                rois: torch.Tensor,
    +                output_size: Union[int, tuple],
    +                spatial_scale: float,
    +                sampling_ratio: int = 0,
    +                aligned: bool = True,
    +                clockwise: bool = False) -> torch.Tensor:
    +        ctx.output_size = _pair(output_size)
    +        ctx.spatial_scale = spatial_scale
    +        ctx.sampling_ratio = sampling_ratio
    +        ctx.aligned = aligned
    +        ctx.clockwise = clockwise
    +        ctx.save_for_backward(rois)
    +        ctx.feature_size = input.size()
    +
    +        batch_size, num_channels, data_height, data_width = input.size()
    +        num_rois = rois.size(0)
    +
    +        output = input.new_zeros(num_rois, num_channels, ctx.output_size[0],
    +                                 ctx.output_size[1])
    +        ext_module.roi_align_rotated_forward(
    +            input,
    +            rois,
    +            output,
    +            pooled_height=ctx.output_size[0],
    +            pooled_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale,
    +            sampling_ratio=ctx.sampling_ratio,
    +            aligned=ctx.aligned,
    +            clockwise=ctx.clockwise)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +        ctx: Any, grad_output: torch.Tensor
    +    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], None, None,
    +               None, None, None]:
    +        feature_size = ctx.feature_size
    +        rois = ctx.saved_tensors[0]
    +        assert feature_size is not None
    +        batch_size, num_channels, data_height, data_width = feature_size
    +
    +        out_w = grad_output.size(3)
    +        out_h = grad_output.size(2)
    +
    +        grad_input = grad_rois = None
    +
    +        if ctx.needs_input_grad[0]:
    +            grad_input = rois.new_zeros(batch_size, num_channels, data_height,
    +                                        data_width)
    +            ext_module.roi_align_rotated_backward(
    +                grad_output.contiguous(),
    +                rois,
    +                grad_input,
    +                pooled_height=out_h,
    +                pooled_width=out_w,
    +                spatial_scale=ctx.spatial_scale,
    +                sampling_ratio=ctx.sampling_ratio,
    +                aligned=ctx.aligned,
    +                clockwise=ctx.clockwise)
    +        return grad_input, grad_rois, None, None, None, None, None
    +
    +
    +roi_align_rotated = RoIAlignRotatedFunction.apply
    +
    +
    +class RoIAlignRotated(nn.Module):
    +    """RoI align pooling layer for rotated proposals.
    +
    +    It accepts a feature map of shape (N, C, H, W) and rois with shape
    +    (n, 6) with each roi decoded as (batch_index, center_x, center_y,
    +    w, h, angle). The angle is in radian.
    +
    +    Args:
    +        output_size (tuple): h, w
    +        spatial_scale (float): scale the input boxes by this number
    +        sampling_ratio(int): number of inputs samples to take for each
    +            output sample. 0 to take samples densely for current models.
    +        aligned (bool): if False, use the legacy implementation in
    +            MMDetection. If True, align the results more perfectly.
    +            Default: True.
    +        clockwise (bool): If True, the angle in each proposal follows a
    +            clockwise fashion in image space, otherwise, the angle is
    +            counterclockwise. Default: False.
    +
    +    Note:
    +        The implementation of RoIAlign when aligned=True is modified from
    +        https://github.com/facebookresearch/detectron2/
    +
    +        The meaning of aligned=True:
    +
    +        Given a continuous coordinate c, its two neighboring pixel
    +        indices (in our pixel model) are computed by floor(c - 0.5) and
    +        ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
    +        indices [0] and [1] (which are sampled from the underlying signal
    +        at continuous coordinates 0.5 and 1.5). But the original roi_align
    +        (aligned=False) does not subtract the 0.5 when computing
    +        neighboring pixel indices and therefore it uses pixels with a
    +        slightly incorrect alignment (relative to our pixel model) when
    +        performing bilinear interpolation.
    +
    +        With `aligned=True`,
    +        we first appropriately scale the ROI and then shift it by -0.5
    +        prior to calling roi_align. This produces the correct neighbors;
    +
    +        The difference does not make a difference to the model's
    +        performance if ROIAlign is used together with conv layers.
    +    """
    +
    +    @deprecated_api_warning(
    +        {
    +            'out_size': 'output_size',
    +            'sample_num': 'sampling_ratio'
    +        },
    +        cls_name='RoIAlignRotated')
    +    def __init__(self,
    +                 output_size: Union[int, tuple],
    +                 spatial_scale: float,
    +                 sampling_ratio: int = 0,
    +                 aligned: bool = True,
    +                 clockwise: bool = False):
    +        super().__init__()
    +
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +        self.sampling_ratio = int(sampling_ratio)
    +        self.aligned = aligned
    +        self.clockwise = clockwise
    +
    +    def forward(self, input: torch.Tensor, rois: torch.Tensor) -> torch.Tensor:
    +        return RoIAlignRotatedFunction.apply(input, rois, self.output_size,
    +                                             self.spatial_scale,
    +                                             self.sampling_ratio, self.aligned,
    +                                             self.clockwise)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(output_size={self.output_size}, '
    +        s += f'spatial_scale={self.spatial_scale}, '
    +        s += f'sampling_ratio={self.sampling_ratio}, '
    +        s += f'aligned={self.aligned}, '
    +        s += f'clockwise={self.clockwise})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_pool.py
    new file mode 100644
    index 000000000..e295b6a0c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roi_pool.py
    @@ -0,0 +1,96 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext',
    +                                 ['roi_pool_forward', 'roi_pool_backward'])
    +
    +
    +class RoIPoolFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, rois, output_size, spatial_scale):
    +        return g.op(
    +            'MaxRoiPool',
    +            input,
    +            rois,
    +            pooled_shape_i=output_size,
    +            spatial_scale_f=spatial_scale)
    +
    +    @staticmethod
    +    def forward(ctx: Any,
    +                input: torch.Tensor,
    +                rois: torch.Tensor,
    +                output_size: Union[int, tuple],
    +                spatial_scale: float = 1.0) -> torch.Tensor:
    +        ctx.output_size = _pair(output_size)
    +        ctx.spatial_scale = spatial_scale
    +        ctx.input_shape = input.size()
    +
    +        assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!'
    +
    +        output_shape = (rois.size(0), input.size(1), ctx.output_size[0],
    +                        ctx.output_size[1])
    +        output = input.new_zeros(output_shape)
    +        argmax = input.new_zeros(output_shape, dtype=torch.int)
    +
    +        ext_module.roi_pool_forward(
    +            input,
    +            rois,
    +            output,
    +            argmax,
    +            pooled_height=ctx.output_size[0],
    +            pooled_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale)
    +
    +        ctx.save_for_backward(rois, argmax)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(
    +            ctx: Any, grad_output: torch.Tensor
    +    ) -> Tuple[torch.Tensor, None, None, None]:
    +        rois, argmax = ctx.saved_tensors
    +        grad_input = grad_output.new_zeros(ctx.input_shape)
    +
    +        ext_module.roi_pool_backward(
    +            grad_output,
    +            rois,
    +            argmax,
    +            grad_input,
    +            pooled_height=ctx.output_size[0],
    +            pooled_width=ctx.output_size[1],
    +            spatial_scale=ctx.spatial_scale)
    +
    +        return grad_input, None, None, None
    +
    +
    +roi_pool = RoIPoolFunction.apply
    +
    +
    +class RoIPool(nn.Module):
    +
    +    def __init__(self,
    +                 output_size: Union[int, tuple],
    +                 spatial_scale: float = 1.0):
    +        super().__init__()
    +
    +        self.output_size = _pair(output_size)
    +        self.spatial_scale = float(spatial_scale)
    +
    +    def forward(self, input: torch.Tensor, rois: torch.Tensor) -> torch.Tensor:
    +        return roi_pool(input, rois, self.output_size, self.spatial_scale)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'(output_size={self.output_size}, '
    +        s += f'spatial_scale={self.spatial_scale})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roiaware_pool3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roiaware_pool3d.py
    new file mode 100644
    index 000000000..9a09049b5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roiaware_pool3d.py
    @@ -0,0 +1,132 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, Tuple, Union
    +
    +import torch
    +from torch import nn as nn
    +from torch.autograd import Function
    +
    +import mmcv
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['roiaware_pool3d_forward', 'roiaware_pool3d_backward'])
    +
    +
    +class RoIAwarePool3d(nn.Module):
    +    """Encode the geometry-specific features of each 3D proposal.
    +
    +    Please refer to `PartA2 `_ for more
    +    details.
    +
    +    Args:
    +        out_size (int or tuple): The size of output features. n or
    +            [n1, n2, n3].
    +        max_pts_per_voxel (int, optional): The maximum number of points per
    +            voxel. Default: 128.
    +        mode (str, optional): Pooling method of RoIAware, 'max' or 'avg'.
    +            Default: 'max'.
    +    """
    +
    +    def __init__(self,
    +                 out_size: Union[int, tuple],
    +                 max_pts_per_voxel: int = 128,
    +                 mode: str = 'max'):
    +        super().__init__()
    +
    +        self.out_size = out_size
    +        self.max_pts_per_voxel = max_pts_per_voxel
    +        assert mode in ['max', 'avg']
    +        pool_mapping = {'max': 0, 'avg': 1}
    +        self.mode = pool_mapping[mode]
    +
    +    def forward(self, rois: torch.Tensor, pts: torch.Tensor,
    +                pts_feature: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            rois (torch.Tensor): [N, 7], in LiDAR coordinate,
    +                (x, y, z) is the bottom center of rois.
    +            pts (torch.Tensor): [npoints, 3], coordinates of input points.
    +            pts_feature (torch.Tensor): [npoints, C], features of input points.
    +
    +        Returns:
    +            torch.Tensor: Pooled features whose shape is
    +            [N, out_x, out_y, out_z, C].
    +        """
    +
    +        return RoIAwarePool3dFunction.apply(rois, pts, pts_feature,
    +                                            self.out_size,
    +                                            self.max_pts_per_voxel, self.mode)
    +
    +
    +class RoIAwarePool3dFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any, rois: torch.Tensor, pts: torch.Tensor,
    +                pts_feature: torch.Tensor, out_size: Union[int, tuple],
    +                max_pts_per_voxel: int, mode: int) -> torch.Tensor:
    +        """
    +        Args:
    +            rois (torch.Tensor): [N, 7], in LiDAR coordinate,
    +                (x, y, z) is the bottom center of rois.
    +            pts (torch.Tensor): [npoints, 3], coordinates of input points.
    +            pts_feature (torch.Tensor): [npoints, C], features of input points.
    +            out_size (int or tuple): The size of output features. n or
    +                [n1, n2, n3].
    +            max_pts_per_voxel (int): The maximum number of points per voxel.
    +                Default: 128.
    +            mode (int): Pooling method of RoIAware, 0 (max pool) or 1 (average
    +                pool).
    +
    +        Returns:
    +            torch.Tensor: Pooled features whose shape is
    +            [N, out_x, out_y, out_z, C].
    +        """
    +
    +        if isinstance(out_size, int):
    +            out_x = out_y = out_z = out_size
    +        else:
    +            assert len(out_size) == 3
    +            assert mmcv.is_tuple_of(out_size, int)
    +            out_x, out_y, out_z = out_size
    +
    +        num_rois = rois.shape[0]
    +        num_channels = pts_feature.shape[-1]
    +        num_pts = pts.shape[0]
    +
    +        pooled_features = pts_feature.new_zeros(
    +            (num_rois, out_x, out_y, out_z, num_channels))
    +        argmax = pts_feature.new_zeros(
    +            (num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int)
    +        pts_idx_of_voxels = pts_feature.new_zeros(
    +            (num_rois, out_x, out_y, out_z, max_pts_per_voxel),
    +            dtype=torch.int)
    +
    +        ext_module.roiaware_pool3d_forward(
    +            rois,
    +            pts,
    +            pts_feature,
    +            argmax,
    +            pts_idx_of_voxels,
    +            pooled_features,
    +            pool_method=mode)
    +
    +        ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, mode,
    +                                            num_pts, num_channels)
    +        return pooled_features
    +
    +    @staticmethod
    +    def backward(
    +        ctx: Any, grad_out: torch.Tensor
    +    ) -> Tuple[None, None, torch.Tensor, None, None, None]:
    +        ret = ctx.roiaware_pool3d_for_backward
    +        pts_idx_of_voxels, argmax, mode, num_pts, num_channels = ret
    +
    +        grad_in = grad_out.new_zeros((num_pts, num_channels))
    +        ext_module.roiaware_pool3d_backward(
    +            pts_idx_of_voxels,
    +            argmax,
    +            grad_out.contiguous(),
    +            grad_in,
    +            pool_method=mode)
    +
    +        return None, None, grad_in, None, None, None
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roipoint_pool3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roipoint_pool3d.py
    new file mode 100644
    index 000000000..3c16f5fa6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/roipoint_pool3d.py
    @@ -0,0 +1,87 @@
    +from typing import Any, Tuple
    +
    +import torch
    +from torch import nn as nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['roipoint_pool3d_forward'])
    +
    +
    +class RoIPointPool3d(nn.Module):
    +    """Encode the geometry-specific features of each 3D proposal.
    +
    +    Please refer to `Paper of PartA2 `_
    +    for more details.
    +
    +    Args:
    +        num_sampled_points (int, optional): Number of samples in each roi.
    +            Default: 512.
    +    """
    +
    +    def __init__(self, num_sampled_points: int = 512):
    +        super().__init__()
    +        self.num_sampled_points = num_sampled_points
    +
    +    def forward(self, points: torch.Tensor, point_features: torch.Tensor,
    +                boxes3d: torch.Tensor) -> Tuple[torch.Tensor]:
    +        """
    +        Args:
    +            points (torch.Tensor): Input points whose shape is (B, N, C).
    +            point_features (torch.Tensor): Features of input points whose shape
    +                is (B, N, C).
    +            boxes3d (B, M, 7), Input bounding boxes whose shape is (B, M, 7).
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains two elements. The first one
    +            is the pooled features whose shape is (B, M, 512, 3 + C). The
    +            second is an empty flag whose shape is (B, M).
    +        """
    +        return RoIPointPool3dFunction.apply(points, point_features, boxes3d,
    +                                            self.num_sampled_points)
    +
    +
    +class RoIPointPool3dFunction(Function):
    +
    +    @staticmethod
    +    def forward(
    +            ctx: Any,
    +            points: torch.Tensor,
    +            point_features: torch.Tensor,
    +            boxes3d: torch.Tensor,
    +            num_sampled_points: int = 512
    +    ) -> Tuple[torch.Tensor, torch.Tensor]:
    +        """
    +        Args:
    +            points (torch.Tensor): Input points whose shape is (B, N, C).
    +            point_features (torch.Tensor): Features of input points whose shape
    +                is (B, N, C).
    +            boxes3d (B, M, 7), Input bounding boxes whose shape is (B, M, 7).
    +            num_sampled_points (int, optional): The num of sampled points.
    +                Default: 512.
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains two elements. The first one
    +            is the pooled features whose shape is (B, M, 512, 3 + C). The
    +            second is an empty flag whose shape is (B, M).
    +        """
    +        assert len(points.shape) == 3 and points.shape[2] == 3
    +        batch_size, boxes_num, feature_len = points.shape[0], boxes3d.shape[
    +            1], point_features.shape[2]
    +        pooled_boxes3d = boxes3d.view(batch_size, -1, 7)
    +        pooled_features = point_features.new_zeros(
    +            (batch_size, boxes_num, num_sampled_points, 3 + feature_len))
    +        pooled_empty_flag = point_features.new_zeros(
    +            (batch_size, boxes_num)).int()
    +
    +        ext_module.roipoint_pool3d_forward(points.contiguous(),
    +                                           pooled_boxes3d.contiguous(),
    +                                           point_features.contiguous(),
    +                                           pooled_features, pooled_empty_flag)
    +
    +        return pooled_features, pooled_empty_flag
    +
    +    @staticmethod
    +    def backward(ctx: Any, grad_out: torch.Tensor) -> torch.Tensor:
    +        raise NotImplementedError
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/rotated_feature_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/rotated_feature_align.py
    new file mode 100644
    index 000000000..0132c0486
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/rotated_feature_align.py
    @@ -0,0 +1,95 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any
    +
    +import torch
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext',
    +    ['rotated_feature_align_forward', 'rotated_feature_align_backward'])
    +
    +
    +class RotatedFeatureAlignFunction(Function):
    +    """Using the feature interpolation to obtain the position information
    +    correspond to the refined rotate anchors and reconstruct the feature maps
    +    in pixel-wise manner to achieve feature alignment.
    +
    +    The details are described in the paper
    +    `R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating
    +    Object `_.
    +    """
    +
    +    @staticmethod
    +    def symbolic(g, features, best_rbboxes, spatial_scale, points):
    +        assert points in [1, 5]
    +        return g.op(
    +            'mmcv::MMCVRotatedFeatureAlign',
    +            features,
    +            best_rbboxes,
    +            spatial_scale_f=spatial_scale,
    +            points_i=points)
    +
    +    @staticmethod
    +    def forward(ctx: Any, features: torch.Tensor, best_rbboxes: torch.Tensor,
    +                spatial_scale: float, points: int) -> torch.Tensor:
    +        """
    +        Args:
    +            features (torch.Tensor): Input features with shape [N,C,H,W].
    +            best_rbboxes (torch.Tensor): Refined rotate anchors with
    +                shape [N,H,W,5]. Coordinate format (cx,cx,h,w,a).
    +            spatial_scale (float): The scale of feature map size and
    +                input image size.
    +            points (int, optional): The number of sample points.
    +                Only 1 and 5 are supported. Defaults to 1.
    +
    +        Returns:
    +            torch.Tensor: Refined features with shape [N,C,H,W].
    +        """
    +        ctx.spatial_scale = spatial_scale
    +        ctx.points = points
    +        ctx.save_for_backward(best_rbboxes)
    +        assert points in [1, 5]
    +        output = torch.zeros_like(features)
    +        ext_module.rotated_feature_align_forward(
    +            features,
    +            best_rbboxes,
    +            output,
    +            spatial_scale=spatial_scale,
    +            points=points)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
    +        """
    +        Args:
    +            grad_output (torch.Tensor): The gradient of output features
    +                with shape [N,C,H,W].
    +
    +        Returns:
    +            torch.Tensor: The gradient of input features with shape [N,C,H,W].
    +        """
    +        best_rbboxes = ctx.saved_tensors[0]
    +        points = ctx.points
    +        spatial_scale = ctx.spatial_scale
    +        grad_input = None
    +        if ctx.needs_input_grad[0]:
    +            grad_input = torch.zeros_like(grad_output)
    +            ext_module.rotated_feature_align_backward(
    +                grad_output.contiguous(),
    +                best_rbboxes,
    +                grad_input,
    +                spatial_scale=spatial_scale,
    +                points=points)
    +        return grad_input, None, None, None
    +
    +
    +def rotated_feature_align(features: torch.Tensor,
    +                          best_rbboxes: torch.Tensor,
    +                          spatial_scale: float = 1 / 8,
    +                          points: int = 1) -> torch.Tensor:
    +    return RotatedFeatureAlignFunction.apply(features, best_rbboxes,
    +                                             spatial_scale, points)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/saconv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/saconv.py
    new file mode 100644
    index 000000000..817ef9496
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/saconv.py
    @@ -0,0 +1,146 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +from mmcv.cnn import CONV_LAYERS, ConvAWS2d, constant_init
    +from mmcv.ops.deform_conv import deform_conv2d
    +from mmcv.utils import TORCH_VERSION, digit_version
    +
    +
    +@CONV_LAYERS.register_module(name='SAC')
    +class SAConv2d(ConvAWS2d):
    +    """SAC (Switchable Atrous Convolution)
    +
    +    This is an implementation of `DetectoRS: Detecting Objects with Recursive
    +    Feature Pyramid and Switchable Atrous Convolution
    +    `_.
    +
    +    Args:
    +        in_channels (int): Number of channels in the input image
    +        out_channels (int): Number of channels produced by the convolution
    +        kernel_size (int or tuple): Size of the convolving kernel
    +        stride (int or tuple, optional): Stride of the convolution. Default: 1
    +        padding (int or tuple, optional): Zero-padding added to both sides of
    +            the input. Default: 0
    +        padding_mode (string, optional): ``'zeros'``, ``'reflect'``,
    +            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
    +        dilation (int or tuple, optional): Spacing between kernel elements.
    +            Default: 1
    +        groups (int, optional): Number of blocked connections from input
    +            channels to output channels. Default: 1
    +        bias (bool, optional): If ``True``, adds a learnable bias to the
    +            output. Default: ``True``
    +        use_deform: If ``True``, replace convolution with deformable
    +            convolution. Default: ``False``.
    +    """
    +
    +    def __init__(self,
    +                 in_channels,
    +                 out_channels,
    +                 kernel_size,
    +                 stride=1,
    +                 padding=0,
    +                 dilation=1,
    +                 groups=1,
    +                 bias=True,
    +                 use_deform=False):
    +        super().__init__(
    +            in_channels,
    +            out_channels,
    +            kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            groups=groups,
    +            bias=bias)
    +        self.use_deform = use_deform
    +        self.switch = nn.Conv2d(
    +            self.in_channels, 1, kernel_size=1, stride=stride, bias=True)
    +        self.weight_diff = nn.Parameter(torch.Tensor(self.weight.size()))
    +        self.pre_context = nn.Conv2d(
    +            self.in_channels, self.in_channels, kernel_size=1, bias=True)
    +        self.post_context = nn.Conv2d(
    +            self.out_channels, self.out_channels, kernel_size=1, bias=True)
    +        if self.use_deform:
    +            self.offset_s = nn.Conv2d(
    +                self.in_channels,
    +                18,
    +                kernel_size=3,
    +                padding=1,
    +                stride=stride,
    +                bias=True)
    +            self.offset_l = nn.Conv2d(
    +                self.in_channels,
    +                18,
    +                kernel_size=3,
    +                padding=1,
    +                stride=stride,
    +                bias=True)
    +        self.init_weights()
    +
    +    def init_weights(self):
    +        constant_init(self.switch, 0, bias=1)
    +        self.weight_diff.data.zero_()
    +        constant_init(self.pre_context, 0)
    +        constant_init(self.post_context, 0)
    +        if self.use_deform:
    +            constant_init(self.offset_s, 0)
    +            constant_init(self.offset_l, 0)
    +
    +    def forward(self, x):
    +        # pre-context
    +        avg_x = F.adaptive_avg_pool2d(x, output_size=1)
    +        avg_x = self.pre_context(avg_x)
    +        avg_x = avg_x.expand_as(x)
    +        x = x + avg_x
    +        # switch
    +        avg_x = F.pad(x, pad=(2, 2, 2, 2), mode='reflect')
    +        avg_x = F.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0)
    +        switch = self.switch(avg_x)
    +        # sac
    +        weight = self._get_weight(self.weight)
    +        zero_bias = torch.zeros(
    +            self.out_channels, device=weight.device, dtype=weight.dtype)
    +
    +        if self.use_deform:
    +            offset = self.offset_s(avg_x)
    +            out_s = deform_conv2d(x, offset, weight, self.stride, self.padding,
    +                                  self.dilation, self.groups, 1)
    +        else:
    +            if (TORCH_VERSION == 'parrots'
    +                    or digit_version(TORCH_VERSION) < digit_version('1.5.0')):
    +                out_s = super().conv2d_forward(x, weight)
    +            elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
    +                # bias is a required argument of _conv_forward in torch 1.8.0
    +                out_s = super()._conv_forward(x, weight, zero_bias)
    +            else:
    +                out_s = super()._conv_forward(x, weight)
    +        ori_p = self.padding
    +        ori_d = self.dilation
    +        self.padding = tuple(3 * p for p in self.padding)
    +        self.dilation = tuple(3 * d for d in self.dilation)
    +        weight = weight + self.weight_diff
    +        if self.use_deform:
    +            offset = self.offset_l(avg_x)
    +            out_l = deform_conv2d(x, offset, weight, self.stride, self.padding,
    +                                  self.dilation, self.groups, 1)
    +        else:
    +            if (TORCH_VERSION == 'parrots'
    +                    or digit_version(TORCH_VERSION) < digit_version('1.5.0')):
    +                out_l = super().conv2d_forward(x, weight)
    +            elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
    +                # bias is a required argument of _conv_forward in torch 1.8.0
    +                out_l = super()._conv_forward(x, weight, zero_bias)
    +            else:
    +                out_l = super()._conv_forward(x, weight)
    +
    +        out = switch * out_s + (1 - switch) * out_l
    +        self.padding = ori_p
    +        self.dilation = ori_d
    +        # post-context
    +        avg_x = F.adaptive_avg_pool2d(out, output_size=1)
    +        avg_x = self.post_context(avg_x)
    +        avg_x = avg_x.expand_as(out)
    +        out = out + avg_x
    +        return out
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/scatter_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/scatter_points.py
    new file mode 100644
    index 000000000..5d881bfe6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/scatter_points.py
    @@ -0,0 +1,148 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, List, Optional, Tuple
    +
    +import torch
    +import torch.nn.functional as F
    +from torch import nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext',
    +    ['dynamic_point_to_voxel_forward', 'dynamic_point_to_voxel_backward'])
    +
    +
    +class _DynamicScatter(Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any,
    +                feats: torch.Tensor,
    +                coors: torch.Tensor,
    +                reduce_type: str = 'max') -> Tuple[torch.Tensor, torch.Tensor]:
    +        """convert kitti points(N, >=3) to voxels.
    +
    +        Args:
    +            feats (torch.Tensor): [N, C]. Points features to be reduced
    +                into voxels.
    +            coors (torch.Tensor): [N, ndim]. Corresponding voxel coordinates
    +                (specifically multi-dim voxel index) of each points.
    +            reduce_type (str, optional): Reduce op. support 'max', 'sum' and
    +                'mean'. Default: 'max'.
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains two elements. The first one
    +            is the voxel features with shape [M, C] which are respectively
    +            reduced from input features that share the same voxel coordinates.
    +            The second is voxel coordinates with shape [M, ndim].
    +        """
    +        results = ext_module.dynamic_point_to_voxel_forward(
    +            feats, coors, reduce_type)
    +        (voxel_feats, voxel_coors, point2voxel_map,
    +         voxel_points_count) = results
    +        ctx.reduce_type = reduce_type
    +        ctx.save_for_backward(feats, voxel_feats, point2voxel_map,
    +                              voxel_points_count)
    +        ctx.mark_non_differentiable(voxel_coors)
    +        return voxel_feats, voxel_coors
    +
    +    @staticmethod
    +    def backward(ctx: Any,
    +                 grad_voxel_feats: torch.Tensor,
    +                 grad_voxel_coors: Optional[torch.Tensor] = None) -> tuple:
    +        (feats, voxel_feats, point2voxel_map,
    +         voxel_points_count) = ctx.saved_tensors
    +        grad_feats = torch.zeros_like(feats)
    +        # TODO: whether to use index put or use cuda_backward
    +        # To use index put, need point to voxel index
    +        ext_module.dynamic_point_to_voxel_backward(
    +            grad_feats, grad_voxel_feats.contiguous(), feats, voxel_feats,
    +            point2voxel_map, voxel_points_count, ctx.reduce_type)
    +        return grad_feats, None, None
    +
    +
    +dynamic_scatter = _DynamicScatter.apply
    +
    +
    +class DynamicScatter(nn.Module):
    +    """Scatters points into voxels, used in the voxel encoder with dynamic
    +    voxelization.
    +
    +    Note:
    +        The CPU and GPU implementation get the same output, but have numerical
    +        difference after summation and division (e.g., 5e-7).
    +
    +    Args:
    +        voxel_size (list): list [x, y, z] size of three dimension.
    +        point_cloud_range (list): The coordinate range of points, [x_min,
    +            y_min, z_min, x_max, y_max, z_max].
    +        average_points (bool): whether to use avg pooling to scatter points
    +            into voxel.
    +    """
    +
    +    def __init__(self, voxel_size: List, point_cloud_range: List,
    +                 average_points: bool):
    +        super().__init__()
    +
    +        self.voxel_size = voxel_size
    +        self.point_cloud_range = point_cloud_range
    +        self.average_points = average_points
    +
    +    def forward_single(
    +            self, points: torch.Tensor,
    +            coors: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    +        """Scatters points into voxels.
    +
    +        Args:
    +            points (torch.Tensor): Points to be reduced into voxels.
    +            coors (torch.Tensor): Corresponding voxel coordinates (specifically
    +                multi-dim voxel index) of each points.
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains two elements. The first one
    +            is the voxel features with shape [M, C] which are respectively
    +            reduced from input features that share the same voxel coordinates.
    +            The second is voxel coordinates with shape [M, ndim].
    +        """
    +        reduce = 'mean' if self.average_points else 'max'
    +        return dynamic_scatter(points.contiguous(), coors.contiguous(), reduce)
    +
    +    def forward(self, points: torch.Tensor,
    +                coors: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    +        """Scatters points/features into voxels.
    +
    +        Args:
    +            points (torch.Tensor): Points to be reduced into voxels.
    +            coors (torch.Tensor): Corresponding voxel coordinates (specifically
    +                multi-dim voxel index) of each points.
    +
    +        Returns:
    +            tuple[torch.Tensor]: A tuple contains two elements. The first one
    +            is the voxel features with shape [M, C] which are respectively
    +            reduced from input features that share the same voxel coordinates.
    +            The second is voxel coordinates with shape [M, ndim].
    +        """
    +        if coors.size(-1) == 3:
    +            return self.forward_single(points, coors)
    +        else:
    +            batch_size = coors[-1, 0] + 1
    +            voxels, voxel_coors = [], []
    +            for i in range(batch_size):
    +                inds = torch.where(coors[:, 0] == i)
    +                voxel, voxel_coor = self.forward_single(
    +                    points[inds], coors[inds][:, 1:])
    +                coor_pad = F.pad(voxel_coor, (1, 0), mode='constant', value=i)
    +                voxel_coors.append(coor_pad)
    +                voxels.append(voxel)
    +            features = torch.cat(voxels, dim=0)
    +            feature_coors = torch.cat(voxel_coors, dim=0)
    +
    +            return features, feature_coors
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__ + '('
    +        s += 'voxel_size=' + str(self.voxel_size)
    +        s += ', point_cloud_range=' + str(self.point_cloud_range)
    +        s += ', average_points=' + str(self.average_points)
    +        s += ')'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/sync_bn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/sync_bn.py
    new file mode 100644
    index 000000000..ce8727cb3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/sync_bn.py
    @@ -0,0 +1,283 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional
    +
    +import torch
    +import torch.distributed as dist
    +import torch.nn.functional as F
    +from torch.autograd import Function
    +from torch.autograd.function import once_differentiable
    +from torch.nn.modules.module import Module
    +from torch.nn.parameter import Parameter
    +
    +from mmcv.cnn import NORM_LAYERS
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', [
    +    'sync_bn_forward_mean', 'sync_bn_forward_var', 'sync_bn_forward_output',
    +    'sync_bn_backward_param', 'sync_bn_backward_data'
    +])
    +
    +
    +class SyncBatchNormFunction(Function):
    +
    +    @staticmethod
    +    def symbolic(g, input, running_mean, running_var, weight, bias, momentum,
    +                 eps, group, group_size, stats_mode):
    +        return g.op(
    +            'mmcv::MMCVSyncBatchNorm',
    +            input,
    +            running_mean,
    +            running_var,
    +            weight,
    +            bias,
    +            momentum_f=momentum,
    +            eps_f=eps,
    +            group_i=group,
    +            group_size_i=group_size,
    +            stats_mode=stats_mode)
    +
    +    @staticmethod
    +    def forward(self, input: torch.Tensor, running_mean: torch.Tensor,
    +                running_var: torch.Tensor, weight: torch.Tensor,
    +                bias: torch.Tensor, momentum: float, eps: float, group: int,
    +                group_size: int, stats_mode: str) -> torch.Tensor:
    +        self.momentum = momentum
    +        self.eps = eps
    +        self.group = group
    +        self.group_size = group_size
    +        self.stats_mode = stats_mode
    +
    +        assert isinstance(
    +                   input, (torch.HalfTensor, torch.FloatTensor,
    +                           torch.cuda.HalfTensor, torch.cuda.FloatTensor)), \
    +               f'only support Half or Float Tensor, but {input.type()}'
    +        output = torch.zeros_like(input)
    +        input3d = input.flatten(start_dim=2)
    +        output3d = output.view_as(input3d)
    +        num_channels = input3d.size(1)
    +
    +        # ensure mean/var/norm/std are initialized as zeros
    +        # ``torch.empty()`` does not guarantee that
    +        mean = torch.zeros(
    +            num_channels, dtype=torch.float, device=input3d.device)
    +        var = torch.zeros(
    +            num_channels, dtype=torch.float, device=input3d.device)
    +        norm = torch.zeros_like(
    +            input3d, dtype=torch.float, device=input3d.device)
    +        std = torch.zeros(
    +            num_channels, dtype=torch.float, device=input3d.device)
    +
    +        batch_size = input3d.size(0)
    +        if batch_size > 0:
    +            ext_module.sync_bn_forward_mean(input3d, mean)
    +            batch_flag = torch.ones([1], device=mean.device, dtype=mean.dtype)
    +        else:
    +            # skip updating mean and leave it as zeros when the input is empty
    +            batch_flag = torch.zeros([1], device=mean.device, dtype=mean.dtype)
    +
    +        # synchronize mean and the batch flag
    +        vec = torch.cat([mean, batch_flag])
    +        if self.stats_mode == 'N':
    +            vec *= batch_size
    +        if self.group_size > 1:
    +            dist.all_reduce(vec, group=self.group)
    +        total_batch = vec[-1].detach()
    +        mean = vec[:num_channels]
    +
    +        if self.stats_mode == 'default':
    +            mean = mean / self.group_size
    +        elif self.stats_mode == 'N':
    +            mean = mean / total_batch.clamp(min=1)
    +        else:
    +            raise NotImplementedError
    +
    +        # leave var as zeros when the input is empty
    +        if batch_size > 0:
    +            ext_module.sync_bn_forward_var(input3d, mean, var)
    +
    +        if self.stats_mode == 'N':
    +            var *= batch_size
    +        if self.group_size > 1:
    +            dist.all_reduce(var, group=self.group)
    +
    +        if self.stats_mode == 'default':
    +            var /= self.group_size
    +        elif self.stats_mode == 'N':
    +            var /= total_batch.clamp(min=1)
    +        else:
    +            raise NotImplementedError
    +
    +        # if the total batch size over all the ranks is zero,
    +        # we should not update the statistics in the current batch
    +        update_flag = total_batch.clamp(max=1)
    +        momentum = update_flag * self.momentum
    +        ext_module.sync_bn_forward_output(
    +            input3d,
    +            mean,
    +            var,
    +            weight,
    +            bias,
    +            running_mean,
    +            running_var,
    +            norm,
    +            std,
    +            output3d,
    +            eps=self.eps,
    +            momentum=momentum,
    +            group_size=self.group_size)
    +        self.save_for_backward(norm, std, weight)
    +        return output
    +
    +    @staticmethod
    +    @once_differentiable
    +    def backward(self, grad_output: torch.Tensor) -> tuple:
    +        norm, std, weight = self.saved_tensors
    +        grad_weight = torch.zeros_like(weight)
    +        grad_bias = torch.zeros_like(weight)
    +        grad_input = torch.zeros_like(grad_output)
    +        grad_output3d = grad_output.flatten(start_dim=2)
    +        grad_input3d = grad_input.view_as(grad_output3d)
    +
    +        batch_size = grad_input3d.size(0)
    +        if batch_size > 0:
    +            ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight,
    +                                              grad_bias)
    +
    +        # all reduce
    +        if self.group_size > 1:
    +            dist.all_reduce(grad_weight, group=self.group)
    +            dist.all_reduce(grad_bias, group=self.group)
    +            grad_weight /= self.group_size
    +            grad_bias /= self.group_size
    +
    +        if batch_size > 0:
    +            ext_module.sync_bn_backward_data(grad_output3d, weight,
    +                                             grad_weight, grad_bias, norm, std,
    +                                             grad_input3d)
    +
    +        return grad_input, None, None, grad_weight, grad_bias, \
    +            None, None, None, None, None
    +
    +
    +@NORM_LAYERS.register_module(name='MMSyncBN')
    +class SyncBatchNorm(Module):
    +    """Synchronized Batch Normalization.
    +
    +    Args:
    +        num_features (int): number of features/chennels in input tensor
    +        eps (float, optional): a value added to the denominator for numerical
    +            stability. Defaults to 1e-5.
    +        momentum (float, optional): the value used for the running_mean and
    +            running_var computation. Defaults to 0.1.
    +        affine (bool, optional): whether to use learnable affine parameters.
    +            Defaults to True.
    +        track_running_stats (bool, optional): whether to track the running
    +            mean and variance during training. When set to False, this
    +            module does not track such statistics, and initializes statistics
    +            buffers ``running_mean`` and ``running_var`` as ``None``. When
    +            these buffers are ``None``, this module always uses batch
    +            statistics in both training and eval modes. Defaults to True.
    +        group (int, optional): synchronization of stats happen within
    +            each process group individually. By default it is synchronization
    +            across the whole world. Defaults to None.
    +        stats_mode (str, optional): The statistical mode. Available options
    +            includes ``'default'`` and ``'N'``. Defaults to 'default'.
    +            When ``stats_mode=='default'``, it computes the overall statistics
    +            using those from each worker with equal weight, i.e., the
    +            statistics are synchronized and simply divied by ``group``. This
    +            mode will produce inaccurate statistics when empty tensors occur.
    +            When ``stats_mode=='N'``, it compute the overall statistics using
    +            the total number of batches in each worker ignoring the number of
    +            group, i.e., the statistics are synchronized and then divied by
    +            the total batch ``N``. This mode is beneficial when empty tensors
    +            occur during training, as it average the total mean by the real
    +            number of batch.
    +    """
    +
    +    def __init__(self,
    +                 num_features: int,
    +                 eps: float = 1e-5,
    +                 momentum: float = 0.1,
    +                 affine: bool = True,
    +                 track_running_stats: bool = True,
    +                 group: Optional[int] = None,
    +                 stats_mode: str = 'default'):
    +        super().__init__()
    +        self.num_features = num_features
    +        self.eps = eps
    +        self.momentum = momentum
    +        self.affine = affine
    +        self.track_running_stats = track_running_stats
    +        group = dist.group.WORLD if group is None else group
    +        self.group = group
    +        self.group_size = dist.get_world_size(group)
    +        assert stats_mode in ['default', 'N'], \
    +            f'"stats_mode" only accepts "default" and "N", got "{stats_mode}"'
    +        self.stats_mode = stats_mode
    +        if self.affine:
    +            self.weight = Parameter(torch.Tensor(num_features))
    +            self.bias = Parameter(torch.Tensor(num_features))
    +        else:
    +            self.register_parameter('weight', None)
    +            self.register_parameter('bias', None)
    +        if self.track_running_stats:
    +            self.register_buffer('running_mean', torch.zeros(num_features))
    +            self.register_buffer('running_var', torch.ones(num_features))
    +            self.register_buffer('num_batches_tracked',
    +                                 torch.tensor(0, dtype=torch.long))
    +        else:
    +            self.register_buffer('running_mean', None)
    +            self.register_buffer('running_var', None)
    +            self.register_buffer('num_batches_tracked', None)
    +        self.reset_parameters()
    +
    +    def reset_running_stats(self):
    +        if self.track_running_stats:
    +            self.running_mean.zero_()
    +            self.running_var.fill_(1)
    +            self.num_batches_tracked.zero_()
    +
    +    def reset_parameters(self):
    +        self.reset_running_stats()
    +        if self.affine:
    +            self.weight.data.uniform_()  # pytorch use ones_()
    +            self.bias.data.zero_()
    +
    +    def forward(self, input: torch.Tensor) -> torch.Tensor:
    +        if input.dim() < 2:
    +            raise ValueError(
    +                f'expected at least 2D input, got {input.dim()}D input')
    +        if self.momentum is None:
    +            exponential_average_factor = 0.0
    +        else:
    +            exponential_average_factor = self.momentum
    +
    +        if self.training and self.track_running_stats:
    +            if self.num_batches_tracked is not None:
    +                self.num_batches_tracked += 1
    +                if self.momentum is None:  # use cumulative moving average
    +                    exponential_average_factor = 1.0 / float(
    +                        self.num_batches_tracked)
    +                else:  # use exponential moving average
    +                    exponential_average_factor = self.momentum
    +
    +        if self.training or not self.track_running_stats:
    +            return SyncBatchNormFunction.apply(
    +                input, self.running_mean, self.running_var, self.weight,
    +                self.bias, exponential_average_factor, self.eps, self.group,
    +                self.group_size, self.stats_mode)
    +        else:
    +            return F.batch_norm(input, self.running_mean, self.running_var,
    +                                self.weight, self.bias, False,
    +                                exponential_average_factor, self.eps)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__
    +        s += f'({self.num_features}, '
    +        s += f'eps={self.eps}, '
    +        s += f'momentum={self.momentum}, '
    +        s += f'affine={self.affine}, '
    +        s += f'track_running_stats={self.track_running_stats}, '
    +        s += f'group_size={self.group_size},'
    +        s += f'stats_mode={self.stats_mode})'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_interpolate.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_interpolate.py
    new file mode 100644
    index 000000000..286bd0472
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_interpolate.py
    @@ -0,0 +1,69 @@
    +from typing import Any, Tuple
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['three_interpolate_forward', 'three_interpolate_backward'])
    +
    +
    +class ThreeInterpolate(Function):
    +    """Performs weighted linear interpolation on 3 features.
    +
    +    Please refer to `Paper of PointNet++ `_
    +    for more details.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx: Any, features: torch.Tensor, indices: torch.Tensor,
    +                weight: torch.Tensor) -> torch.Tensor:
    +        """
    +        Args:
    +            features (torch.Tensor): (B, C, M) Features descriptors to be
    +                interpolated.
    +            indices (torch.Tensor): (B, n, 3) indices of three nearest
    +                neighbor features for the target features.
    +            weight (torch.Tensor): (B, n, 3) weights of three nearest
    +                neighbor features for the target features.
    +
    +        Returns:
    +            torch.Tensor: (B, C, N) tensor of the interpolated features
    +        """
    +        assert features.is_contiguous()
    +        assert indices.is_contiguous()
    +        assert weight.is_contiguous()
    +
    +        B, c, m = features.size()
    +        n = indices.size(1)
    +        ctx.three_interpolate_for_backward = (indices, weight, m)
    +        output = features.new_empty(B, c, n)
    +
    +        ext_module.three_interpolate_forward(
    +            features, indices, weight, output, b=B, c=c, m=m, n=n)
    +        return output
    +
    +    @staticmethod
    +    def backward(
    +        ctx, grad_out: torch.Tensor
    +    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    +        """
    +        Args:
    +            grad_out (torch.Tensor): (B, C, N) tensor with gradients of outputs
    +
    +        Returns:
    +            torch.Tensor: (B, C, M) tensor with gradients of features
    +        """
    +        idx, weight, m = ctx.three_interpolate_for_backward
    +        B, c, n = grad_out.size()
    +
    +        grad_features = grad_out.new_zeros(B, c, m)
    +        grad_out_data = grad_out.data.contiguous()
    +
    +        ext_module.three_interpolate_backward(
    +            grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m)
    +        return grad_features, None, None
    +
    +
    +three_interpolate = ThreeInterpolate.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_nn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_nn.py
    new file mode 100644
    index 000000000..d41b9789c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/three_nn.py
    @@ -0,0 +1,51 @@
    +from typing import Any, Tuple
    +
    +import torch
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext', ['three_nn_forward'])
    +
    +
    +class ThreeNN(Function):
    +    """Find the top-3 nearest neighbors of the target set from the source set.
    +
    +    Please refer to `Paper of PointNet++ `_
    +    for more details.
    +    """
    +
    +    @staticmethod
    +    def forward(ctx: Any, target: torch.Tensor,
    +                source: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    +        """
    +        Args:
    +            target (torch.Tensor): shape (B, N, 3), points set that needs to
    +                find the nearest neighbors.
    +            source (torch.Tensor): shape (B, M, 3), points set that is used
    +                to find the nearest neighbors of points in target set.
    +
    +        Returns:
    +            torch.Tensor: shape (B, N, 3), L2 distance of each point in target
    +            set to their corresponding top three nearest neighbors.
    +        """
    +        target = target.contiguous()
    +        source = source.contiguous()
    +
    +        B, N, _ = target.size()
    +        m = source.size(1)
    +        dist2 = target.new_empty(B, N, 3)
    +        idx = target.new_empty(B, N, 3, dtype=torch.int32)
    +
    +        ext_module.three_nn_forward(target, source, dist2, idx, b=B, n=N, m=m)
    +        if torch.__version__ != 'parrots':
    +            ctx.mark_non_differentiable(idx)
    +
    +        return torch.sqrt(dist2), idx
    +
    +    @staticmethod
    +    def backward(ctx, a=None, b=None):
    +        return None, None
    +
    +
    +three_nn = ThreeNN.apply
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/tin_shift.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/tin_shift.py
    new file mode 100755
    index 000000000..473231cc0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/tin_shift.py
    @@ -0,0 +1,75 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# Code reference from "Temporal Interlacing Network"
    +# https://github.com/deepcs233/TIN/blob/master/cuda_shift/rtc_wrap.py
    +# Hao Shao, Shengju Qian, Yu Liu
    +# shaoh19@mails.tsinghua.edu.cn, sjqian@cse.cuhk.edu.hk, yuliu@ee.cuhk.edu.hk
    +
    +import torch
    +import torch.nn as nn
    +from torch.autograd import Function
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext('_ext',
    +                                 ['tin_shift_forward', 'tin_shift_backward'])
    +
    +
    +class TINShiftFunction(Function):
    +
    +    @staticmethod
    +    def forward(ctx, input, shift):
    +        if input.size(0) != shift.size(0):
    +            raise ValueError(
    +                'The first dim (batch) of `input` and `shift` should be '
    +                f'same, but got {input.size(0)} and {shift.size(0)}.')
    +        C = input.size(2)
    +        num_segments = shift.size(1)
    +        if C // num_segments <= 0 or C % num_segments != 0:
    +            raise ValueError('C should be a multiple of num_segments, '
    +                             f'but got C={C} and num_segments={num_segments}.')
    +
    +        ctx.save_for_backward(shift)
    +
    +        out = torch.zeros_like(input)
    +        ext_module.tin_shift_forward(input, shift, out)
    +
    +        return out
    +
    +    @staticmethod
    +    def backward(ctx, grad_output):
    +
    +        shift = ctx.saved_tensors[0]
    +        data_grad_input = grad_output.new(*grad_output.size()).zero_()
    +        shift_grad_input = shift.new(*shift.size()).zero_()
    +        ext_module.tin_shift_backward(grad_output, shift, data_grad_input)
    +
    +        return data_grad_input, shift_grad_input
    +
    +
    +tin_shift = TINShiftFunction.apply
    +
    +
    +class TINShift(nn.Module):
    +    """Temporal Interlace Shift.
    +
    +    Temporal Interlace shift is a differentiable temporal-wise frame shifting
    +    which is proposed in "Temporal Interlacing Network"
    +
    +    Please refer to `Temporal Interlacing Network
    +    `_ for more details.
    +
    +    Code is modified from https://github.com/mit-han-lab/temporal-shift-module
    +    """
    +
    +    def forward(self, input, shift):
    +        """Perform temporal interlace shift.
    +
    +        Args:
    +            input (torch.Tensor): Feature map with shape
    +                [N, num_segments, C, H * W].
    +            shift (torch.Tensor): Shift tensor with shape [N, num_segments].
    +
    +        Returns:
    +            Feature map after temporal interlace shift.
    +        """
    +        return tin_shift(input, shift)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/upfirdn2d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/upfirdn2d.py
    new file mode 100644
    index 000000000..434238359
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/upfirdn2d.py
    @@ -0,0 +1,341 @@
    +# modified from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py  # noqa:E501
    +
    +# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
    +# NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
    +# Augmentation (ADA)
    +# =======================================================================
    +
    +# 1. Definitions
    +
    +# "Licensor" means any person or entity that distributes its Work.
    +
    +# "Software" means the original work of authorship made available under
    +# this License.
    +
    +# "Work" means the Software and any additions to or derivative works of
    +# the Software that are made available under this License.
    +
    +# The terms "reproduce," "reproduction," "derivative works," and
    +# "distribution" have the meaning as provided under U.S. copyright law;
    +# provided, however, that for the purposes of this License, derivative
    +# works shall not include works that remain separable from, or merely
    +# link (or bind by name) to the interfaces of, the Work.
    +
    +# Works, including the Software, are "made available" under this License
    +# by including in or with the Work either (a) a copyright notice
    +# referencing the applicability of this License to the Work, or (b) a
    +# copy of this License.
    +
    +# 2. License Grants
    +
    +#     2.1 Copyright Grant. Subject to the terms and conditions of this
    +#     License, each Licensor grants to you a perpetual, worldwide,
    +#     non-exclusive, royalty-free, copyright license to reproduce,
    +#     prepare derivative works of, publicly display, publicly perform,
    +#     sublicense and distribute its Work and any resulting derivative
    +#     works in any form.
    +
    +# 3. Limitations
    +
    +#     3.1 Redistribution. You may reproduce or distribute the Work only
    +#     if (a) you do so under this License, (b) you include a complete
    +#     copy of this License with your distribution, and (c) you retain
    +#     without modification any copyright, patent, trademark, or
    +#     attribution notices that are present in the Work.
    +
    +#     3.2 Derivative Works. You may specify that additional or different
    +#     terms apply to the use, reproduction, and distribution of your
    +#     derivative works of the Work ("Your Terms") only if (a) Your Terms
    +#     provide that the use limitation in Section 3.3 applies to your
    +#     derivative works, and (b) you identify the specific derivative
    +#     works that are subject to Your Terms. Notwithstanding Your Terms,
    +#     this License (including the redistribution requirements in Section
    +#     3.1) will continue to apply to the Work itself.
    +
    +#     3.3 Use Limitation. The Work and any derivative works thereof only
    +#     may be used or intended for use non-commercially. Notwithstanding
    +#     the foregoing, NVIDIA and its affiliates may use the Work and any
    +#     derivative works commercially. As used herein, "non-commercially"
    +#     means for research or evaluation purposes only.
    +
    +#     3.4 Patent Claims. If you bring or threaten to bring a patent claim
    +#     against any Licensor (including any claim, cross-claim or
    +#     counterclaim in a lawsuit) to enforce any patents that you allege
    +#     are infringed by any Work, then your rights under this License from
    +#     such Licensor (including the grant in Section 2.1) will terminate
    +#     immediately.
    +
    +#     3.5 Trademarks. This License does not grant any rights to use any
    +#     Licensor’s or its affiliates’ names, logos, or trademarks, except
    +#     as necessary to reproduce the notices described in this License.
    +
    +#     3.6 Termination. If you violate any term of this License, then your
    +#     rights under this License (including the grant in Section 2.1) will
    +#     terminate immediately.
    +
    +# 4. Disclaimer of Warranty.
    +
    +# THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
    +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
    +# NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
    +# THIS LICENSE.
    +
    +# 5. Limitation of Liability.
    +
    +# EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
    +# THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
    +# SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
    +# INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
    +# OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
    +# (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
    +# LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
    +# COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
    +# THE POSSIBILITY OF SUCH DAMAGES.
    +
    +# =======================================================================
    +
    +from typing import Any, List, Tuple, Union
    +
    +import torch
    +from torch.autograd import Function
    +from torch.nn import functional as F
    +
    +from mmcv.utils import to_2tuple
    +from ..utils import ext_loader
    +
    +upfirdn2d_ext = ext_loader.load_ext('_ext', ['upfirdn2d'])
    +
    +
    +class UpFirDn2dBackward(Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any, grad_output: torch.Tensor, kernel: torch.Tensor,
    +                grad_kernel: torch.Tensor, up: tuple, down: tuple, pad: tuple,
    +                g_pad: tuple, in_size: Union[List, Tuple],
    +                out_size: Union[List, Tuple]) -> torch.Tensor:
    +
    +        up_x, up_y = up
    +        down_x, down_y = down
    +        g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
    +
    +        grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
    +
    +        grad_input = upfirdn2d_ext.upfirdn2d(
    +            grad_output,
    +            grad_kernel,
    +            up_x=down_x,
    +            up_y=down_y,
    +            down_x=up_x,
    +            down_y=up_y,
    +            pad_x0=g_pad_x0,
    +            pad_x1=g_pad_x1,
    +            pad_y0=g_pad_y0,
    +            pad_y1=g_pad_y1)
    +        grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
    +                                     in_size[3])
    +
    +        ctx.save_for_backward(kernel)
    +
    +        pad_x0, pad_x1, pad_y0, pad_y1 = pad
    +
    +        ctx.up_x = up_x
    +        ctx.up_y = up_y
    +        ctx.down_x = down_x
    +        ctx.down_y = down_y
    +        ctx.pad_x0 = pad_x0
    +        ctx.pad_x1 = pad_x1
    +        ctx.pad_y0 = pad_y0
    +        ctx.pad_y1 = pad_y1
    +        ctx.in_size = in_size
    +        ctx.out_size = out_size
    +
    +        return grad_input
    +
    +    @staticmethod
    +    def backward(ctx: Any, gradgrad_input: torch.Tensor) -> tuple:
    +        kernel, = ctx.saved_tensors
    +
    +        gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2],
    +                                                ctx.in_size[3], 1)
    +
    +        gradgrad_out = upfirdn2d_ext.upfirdn2d(
    +            gradgrad_input,
    +            kernel,
    +            up_x=ctx.up_x,
    +            up_y=ctx.up_y,
    +            down_x=ctx.down_x,
    +            down_y=ctx.down_y,
    +            pad_x0=ctx.pad_x0,
    +            pad_x1=ctx.pad_x1,
    +            pad_y0=ctx.pad_y0,
    +            pad_y1=ctx.pad_y1)
    +        # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0],
    +        #                                  ctx.out_size[1], ctx.in_size[3])
    +        gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
    +                                         ctx.out_size[0], ctx.out_size[1])
    +
    +        return gradgrad_out, None, None, None, None, None, None, None, None
    +
    +
    +class UpFirDn2d(Function):
    +
    +    @staticmethod
    +    def forward(ctx: Any, input: torch.Tensor, kernel: torch.Tensor, up: tuple,
    +                down: tuple, pad: tuple) -> torch.Tensor:
    +        up_x, up_y = up
    +        down_x, down_y = down
    +        pad_x0, pad_x1, pad_y0, pad_y1 = pad
    +
    +        kernel_h, kernel_w = kernel.shape
    +        batch, channel, in_h, in_w = input.shape
    +        ctx.in_size = input.shape
    +
    +        input = input.reshape(-1, in_h, in_w, 1)
    +
    +        ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
    +
    +        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    +        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
    +        ctx.out_size = (out_h, out_w)
    +
    +        ctx.up = (up_x, up_y)
    +        ctx.down = (down_x, down_y)
    +        ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
    +
    +        g_pad_x0 = kernel_w - pad_x0 - 1
    +        g_pad_y0 = kernel_h - pad_y0 - 1
    +        g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
    +        g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
    +
    +        ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
    +
    +        out = upfirdn2d_ext.upfirdn2d(
    +            input,
    +            kernel,
    +            up_x=up_x,
    +            up_y=up_y,
    +            down_x=down_x,
    +            down_y=down_y,
    +            pad_x0=pad_x0,
    +            pad_x1=pad_x1,
    +            pad_y0=pad_y0,
    +            pad_y1=pad_y1)
    +        # out = out.view(major, out_h, out_w, minor)
    +        out = out.view(-1, channel, out_h, out_w)
    +
    +        return out
    +
    +    @staticmethod
    +    def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
    +        kernel, grad_kernel = ctx.saved_tensors
    +
    +        grad_input = UpFirDn2dBackward.apply(
    +            grad_output,
    +            kernel,
    +            grad_kernel,
    +            ctx.up,
    +            ctx.down,
    +            ctx.pad,
    +            ctx.g_pad,
    +            ctx.in_size,
    +            ctx.out_size,
    +        )
    +
    +        return grad_input, None, None, None, None
    +
    +
    +def upfirdn2d(
    +    input: torch.Tensor,
    +    kernel: torch.Tensor,
    +    up: Union[int, tuple] = 1,
    +    down: Union[int, tuple] = 1,
    +    pad: tuple = (0, 0)) -> torch.Tensor:  # noqa E125
    +    """UpFRIDn for 2d features.
    +
    +    UpFIRDn is short for upsample, apply FIR filter and downsample. More
    +    details can be found in:
    +    https://www.mathworks.com/help/signal/ref/upfirdn.html
    +
    +    Args:
    +        input (torch.Tensor): Tensor with shape of (n, c, h, w).
    +        kernel (torch.Tensor): Filter kernel.
    +        up (int | tuple[int], optional): Upsampling factor. If given a number,
    +            we will use this factor for the both height and width side.
    +            Defaults to 1.
    +        down (int | tuple[int], optional): Downsampling factor. If given a
    +            number, we will use this factor for the both height and width side.
    +            Defaults to 1.
    +        pad (tuple[int], optional): Padding for tensors, (x_pad, y_pad) or
    +            (x_pad_0, x_pad_1, y_pad_0, y_pad_1). Defaults to (0, 0).
    +
    +    Returns:
    +        torch.Tensor: Tensor after UpFIRDn.
    +    """
    +    if input.device.type == 'cpu':
    +        if len(pad) == 2:
    +            pad = (pad[0], pad[1], pad[0], pad[1])  # type: ignore
    +
    +        _up = to_2tuple(up)
    +
    +        _down = to_2tuple(down)
    +
    +        out = upfirdn2d_native(input, kernel, _up[0], _up[1], _down[0],
    +                               _down[1], pad[0], pad[1], pad[2], pad[3])
    +    else:
    +        _up = to_2tuple(up)
    +
    +        _down = to_2tuple(down)
    +
    +        if len(pad) == 4:
    +            _pad = pad
    +        elif len(pad) == 2:
    +            _pad = (pad[0], pad[1], pad[0], pad[1])
    +
    +        out = UpFirDn2d.apply(input, kernel, _up, _down, _pad)
    +
    +    return out
    +
    +
    +def upfirdn2d_native(input: torch.Tensor, kernel: torch.Tensor, up_x: int,
    +                     up_y: int, down_x: int, down_y: int, pad_x0: int,
    +                     pad_x1: int, pad_y0: int, pad_y1: int) -> torch.Tensor:
    +    _, channel, in_h, in_w = input.shape
    +    input = input.reshape(-1, in_h, in_w, 1)
    +
    +    _, in_h, in_w, minor = input.shape
    +    kernel_h, kernel_w = kernel.shape
    +
    +    out = input.view(-1, in_h, 1, in_w, 1, minor)
    +    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    +    out = out.view(-1, in_h * up_y, in_w * up_x, minor)
    +
    +    out = F.pad(
    +        out,
    +        [0, 0,
    +         max(pad_x0, 0),
    +         max(pad_x1, 0),
    +         max(pad_y0, 0),
    +         max(pad_y1, 0)])
    +    out = out[:,
    +              max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0),
    +              max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ]
    +
    +    out = out.permute(0, 3, 1, 2)
    +    out = out.reshape(
    +        [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    +    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    +    out = F.conv2d(out, w)
    +    out = out.reshape(
    +        -1,
    +        minor,
    +        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
    +        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    +    )
    +    out = out.permute(0, 2, 3, 1)
    +    out = out[:, ::down_y, ::down_x, :]
    +
    +    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    +    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
    +
    +    return out.view(-1, channel, out_h, out_w)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/voxelize.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/voxelize.py
    new file mode 100644
    index 000000000..992ce68fd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/ops/voxelize.py
    @@ -0,0 +1,183 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, List, Tuple, Union
    +
    +import torch
    +from torch import nn
    +from torch.autograd import Function
    +from torch.nn.modules.utils import _pair
    +
    +from ..utils import ext_loader
    +
    +ext_module = ext_loader.load_ext(
    +    '_ext', ['dynamic_voxelize_forward', 'hard_voxelize_forward'])
    +
    +
    +class _Voxelization(Function):
    +
    +    @staticmethod
    +    def forward(
    +            ctx: Any,
    +            points: torch.Tensor,
    +            voxel_size: Union[tuple, float],
    +            coors_range: Union[tuple, float],
    +            max_points: int = 35,
    +            max_voxels: int = 20000,
    +            deterministic: bool = True) -> Union[Tuple[torch.Tensor], Tuple]:
    +        """Convert kitti points(N, >=3) to voxels.
    +
    +        Args:
    +            points (torch.Tensor): [N, ndim]. Points[:, :3] contain xyz points
    +                and points[:, 3:] contain other information like reflectivity.
    +            voxel_size (tuple or float): The size of voxel with the shape of
    +                [3].
    +            coors_range (tuple or float): The coordinate range of voxel with
    +                the shape of [6].
    +            max_points (int, optional): maximum points contained in a voxel. if
    +                max_points=-1, it means using dynamic_voxelize. Default: 35.
    +            max_voxels (int, optional): maximum voxels this function create.
    +                for second, 20000 is a good choice. Users should shuffle points
    +                before call this function because max_voxels may drop points.
    +                Default: 20000.
    +            deterministic: bool. whether to invoke the non-deterministic
    +                version of hard-voxelization implementations. non-deterministic
    +                version is considerablly fast but is not deterministic. only
    +                affects hard voxelization. default True. for more information
    +                of this argument and the implementation insights, please refer
    +                to the following links:
    +                https://github.com/open-mmlab/mmdetection3d/issues/894
    +                https://github.com/open-mmlab/mmdetection3d/pull/904
    +                it is an experimental feature and we will appreciate it if
    +                you could share with us the failing cases.
    +
    +        Returns:
    +            tuple[torch.Tensor]: tuple[torch.Tensor]: A tuple contains three
    +            elements. The first one is the output voxels with the shape of
    +            [M, max_points, n_dim], which only contain points and returned
    +            when max_points != -1. The second is the voxel coordinates with
    +            shape of [M, 3]. The last is number of point per voxel with the
    +            shape of [M], which only returned when max_points != -1.
    +        """
    +        if max_points == -1 or max_voxels == -1:
    +            coors = points.new_zeros(size=(points.size(0), 3), dtype=torch.int)
    +            ext_module.dynamic_voxelize_forward(
    +                points,
    +                torch.tensor(voxel_size, dtype=torch.float),
    +                torch.tensor(coors_range, dtype=torch.float),
    +                coors,
    +                NDim=3)
    +            return coors
    +        else:
    +            voxels = points.new_zeros(
    +                size=(max_voxels, max_points, points.size(1)))
    +            coors = points.new_zeros(size=(max_voxels, 3), dtype=torch.int)
    +            num_points_per_voxel = points.new_zeros(
    +                size=(max_voxels, ), dtype=torch.int)
    +            voxel_num = torch.zeros(size=(), dtype=torch.long)
    +            ext_module.hard_voxelize_forward(
    +                points,
    +                torch.tensor(voxel_size, dtype=torch.float),
    +                torch.tensor(coors_range, dtype=torch.float),
    +                voxels,
    +                coors,
    +                num_points_per_voxel,
    +                voxel_num,
    +                max_points=max_points,
    +                max_voxels=max_voxels,
    +                NDim=3,
    +                deterministic=deterministic)
    +            # select the valid voxels
    +            voxels_out = voxels[:voxel_num]
    +            coors_out = coors[:voxel_num]
    +            num_points_per_voxel_out = num_points_per_voxel[:voxel_num]
    +            return voxels_out, coors_out, num_points_per_voxel_out
    +
    +
    +voxelization = _Voxelization.apply
    +
    +
    +class Voxelization(nn.Module):
    +    """Convert kitti points(N, >=3) to voxels.
    +
    +    Please refer to `Point-Voxel CNN for Efficient 3D Deep Learning
    +    `_ for more details.
    +
    +    Args:
    +        voxel_size (tuple or float): The size of voxel with the shape of [3].
    +        point_cloud_range (tuple or float): The coordinate range of voxel with
    +            the shape of [6].
    +        max_num_points (int): maximum points contained in a voxel. if
    +            max_points=-1, it means using dynamic_voxelize.
    +        max_voxels (int, optional): maximum voxels this function create.
    +            for second, 20000 is a good choice. Users should shuffle points
    +            before call this function because max_voxels may drop points.
    +            Default: 20000.
    +    """
    +
    +    def __init__(self,
    +                 voxel_size: List,
    +                 point_cloud_range: List,
    +                 max_num_points: int,
    +                 max_voxels: Union[tuple, int] = 20000,
    +                 deterministic: bool = True):
    +        """
    +        Args:
    +            voxel_size (list): list [x, y, z] size of three dimension
    +            point_cloud_range (list):
    +                [x_min, y_min, z_min, x_max, y_max, z_max]
    +            max_num_points (int): max number of points per voxel
    +            max_voxels (tuple or int): max number of voxels in
    +                (training, testing) time
    +            deterministic: bool. whether to invoke the non-deterministic
    +                version of hard-voxelization implementations. non-deterministic
    +                version is considerablly fast but is not deterministic. only
    +                affects hard voxelization. default True. for more information
    +                of this argument and the implementation insights, please refer
    +                to the following links:
    +                https://github.com/open-mmlab/mmdetection3d/issues/894
    +                https://github.com/open-mmlab/mmdetection3d/pull/904
    +                it is an experimental feature and we will appreciate it if
    +                you could share with us the failing cases.
    +        """
    +        super().__init__()
    +
    +        self.voxel_size = voxel_size
    +        self.point_cloud_range = point_cloud_range
    +        self.max_num_points = max_num_points
    +        if isinstance(max_voxels, tuple):
    +            self.max_voxels = max_voxels
    +        else:
    +            self.max_voxels = _pair(max_voxels)
    +        self.deterministic = deterministic
    +
    +        point_cloud_range = torch.tensor(
    +            point_cloud_range, dtype=torch.float32)
    +        voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
    +        grid_size = (
    +            point_cloud_range[3:] -  # type: ignore
    +            point_cloud_range[:3]) / voxel_size  # type: ignore
    +        grid_size = torch.round(grid_size).long()
    +        input_feat_shape = grid_size[:2]
    +        self.grid_size = grid_size
    +        # the origin shape is as [x-len, y-len, z-len]
    +        # [w, h, d] -> [d, h, w]
    +        self.pcd_shape = [*input_feat_shape, 1][::-1]
    +
    +    def forward(self, input: torch.Tensor) -> torch.Tensor:
    +        if self.training:
    +            max_voxels = self.max_voxels[0]
    +        else:
    +            max_voxels = self.max_voxels[1]
    +
    +        return voxelization(input, self.voxel_size, self.point_cloud_range,
    +                            self.max_num_points, max_voxels,
    +                            self.deterministic)
    +
    +    def __repr__(self):
    +        s = self.__class__.__name__ + '('
    +        s += 'voxel_size=' + str(self.voxel_size)
    +        s += ', point_cloud_range=' + str(self.point_cloud_range)
    +        s += ', max_num_points=' + str(self.max_num_points)
    +        s += ', max_voxels=' + str(self.max_voxels)
    +        s += ', deterministic=' + str(self.deterministic)
    +        s += ')'
    +        return s
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/__init__.py
    new file mode 100644
    index 000000000..2ed2c17ad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/__init__.py
    @@ -0,0 +1,13 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .collate import collate
    +from .data_container import DataContainer
    +from .data_parallel import MMDataParallel
    +from .distributed import MMDistributedDataParallel
    +from .registry import MODULE_WRAPPERS
    +from .scatter_gather import scatter, scatter_kwargs
    +from .utils import is_module_wrapper
    +
    +__all__ = [
    +    'collate', 'DataContainer', 'MMDataParallel', 'MMDistributedDataParallel',
    +    'scatter', 'scatter_kwargs', 'is_module_wrapper', 'MODULE_WRAPPERS'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/_functions.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/_functions.py
    new file mode 100644
    index 000000000..43580b46f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/_functions.py
    @@ -0,0 +1,82 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Optional, Union
    +
    +import torch
    +from torch import Tensor
    +from torch.nn.parallel._functions import _get_stream
    +
    +
    +def scatter(input: Union[List, Tensor],
    +            devices: List,
    +            streams: Optional[List] = None) -> Union[List, Tensor]:
    +    """Scatters tensor across multiple GPUs."""
    +    if streams is None:
    +        streams = [None] * len(devices)
    +
    +    if isinstance(input, list):
    +        chunk_size = (len(input) - 1) // len(devices) + 1
    +        outputs = [
    +            scatter(input[i], [devices[i // chunk_size]],
    +                    [streams[i // chunk_size]]) for i in range(len(input))
    +        ]
    +        return outputs
    +    elif isinstance(input, Tensor):
    +        output = input.contiguous()
    +        # TODO: copy to a pinned buffer first (if copying from CPU)
    +        stream = streams[0] if output.numel() > 0 else None
    +        if devices != [-1]:
    +            with torch.cuda.device(devices[0]), torch.cuda.stream(stream):
    +                output = output.cuda(devices[0], non_blocking=True)
    +
    +        return output
    +    else:
    +        raise Exception(f'Unknown type {type(input)}.')
    +
    +
    +def synchronize_stream(output: Union[List, Tensor], devices: List,
    +                       streams: List) -> None:
    +    if isinstance(output, list):
    +        chunk_size = len(output) // len(devices)
    +        for i in range(len(devices)):
    +            for j in range(chunk_size):
    +                synchronize_stream(output[i * chunk_size + j], [devices[i]],
    +                                   [streams[i]])
    +    elif isinstance(output, Tensor):
    +        if output.numel() != 0:
    +            with torch.cuda.device(devices[0]):
    +                main_stream = torch.cuda.current_stream()
    +                main_stream.wait_stream(streams[0])
    +                output.record_stream(main_stream)
    +    else:
    +        raise Exception(f'Unknown type {type(output)}.')
    +
    +
    +def get_input_device(input: Union[List, Tensor]) -> int:
    +    if isinstance(input, list):
    +        for item in input:
    +            input_device = get_input_device(item)
    +            if input_device != -1:
    +                return input_device
    +        return -1
    +    elif isinstance(input, Tensor):
    +        return input.get_device() if input.is_cuda else -1
    +    else:
    +        raise Exception(f'Unknown type {type(input)}.')
    +
    +
    +class Scatter:
    +
    +    @staticmethod
    +    def forward(target_gpus: List[int], input: Union[List, Tensor]) -> tuple:
    +        input_device = get_input_device(input)
    +        streams = None
    +        if input_device == -1 and target_gpus != [-1]:
    +            # Perform CPU to GPU copies in a background stream
    +            streams = [_get_stream(device) for device in target_gpus]
    +
    +        outputs = scatter(input, target_gpus, streams)
    +        # Synchronize with the copy stream
    +        if streams is not None:
    +            synchronize_stream(outputs, target_gpus, streams)
    +
    +        return tuple(outputs) if isinstance(outputs, list) else (outputs, )
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/collate.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/collate.py
    new file mode 100644
    index 000000000..50c408bed
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/collate.py
    @@ -0,0 +1,84 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from collections.abc import Mapping, Sequence
    +
    +import torch
    +import torch.nn.functional as F
    +from torch.utils.data.dataloader import default_collate
    +
    +from .data_container import DataContainer
    +
    +
    +def collate(batch: Sequence, samples_per_gpu: int = 1):
    +    """Puts each data field into a tensor/DataContainer with outer dimension
    +    batch size.
    +
    +    Extend default_collate to add support for
    +    :type:`~mmcv.parallel.DataContainer`. There are 3 cases.
    +
    +    1. cpu_only = True, e.g., meta data
    +    2. cpu_only = False, stack = True, e.g., images tensors
    +    3. cpu_only = False, stack = False, e.g., gt bboxes
    +    """
    +
    +    if not isinstance(batch, Sequence):
    +        raise TypeError(f'{batch.dtype} is not supported.')
    +
    +    if isinstance(batch[0], DataContainer):
    +        stacked = []
    +        if batch[0].cpu_only:
    +            for i in range(0, len(batch), samples_per_gpu):
    +                stacked.append(
    +                    [sample.data for sample in batch[i:i + samples_per_gpu]])
    +            return DataContainer(
    +                stacked, batch[0].stack, batch[0].padding_value, cpu_only=True)
    +        elif batch[0].stack:
    +            for i in range(0, len(batch), samples_per_gpu):
    +                assert isinstance(batch[i].data, torch.Tensor)
    +
    +                if batch[i].pad_dims is not None:
    +                    ndim = batch[i].dim()
    +                    assert ndim > batch[i].pad_dims
    +                    max_shape = [0 for _ in range(batch[i].pad_dims)]
    +                    for dim in range(1, batch[i].pad_dims + 1):
    +                        max_shape[dim - 1] = batch[i].size(-dim)
    +                    for sample in batch[i:i + samples_per_gpu]:
    +                        for dim in range(0, ndim - batch[i].pad_dims):
    +                            assert batch[i].size(dim) == sample.size(dim)
    +                        for dim in range(1, batch[i].pad_dims + 1):
    +                            max_shape[dim - 1] = max(max_shape[dim - 1],
    +                                                     sample.size(-dim))
    +                    padded_samples = []
    +                    for sample in batch[i:i + samples_per_gpu]:
    +                        pad = [0 for _ in range(batch[i].pad_dims * 2)]
    +                        for dim in range(1, batch[i].pad_dims + 1):
    +                            pad[2 * dim -
    +                                1] = max_shape[dim - 1] - sample.size(-dim)
    +                        padded_samples.append(
    +                            F.pad(
    +                                sample.data, pad, value=sample.padding_value))
    +                    stacked.append(default_collate(padded_samples))
    +                elif batch[i].pad_dims is None:
    +                    stacked.append(
    +                        default_collate([
    +                            sample.data
    +                            for sample in batch[i:i + samples_per_gpu]
    +                        ]))
    +                else:
    +                    raise ValueError(
    +                        'pad_dims should be either None or integers (1-3)')
    +
    +        else:
    +            for i in range(0, len(batch), samples_per_gpu):
    +                stacked.append(
    +                    [sample.data for sample in batch[i:i + samples_per_gpu]])
    +        return DataContainer(stacked, batch[0].stack, batch[0].padding_value)
    +    elif isinstance(batch[0], Sequence):
    +        transposed = zip(*batch)
    +        return [collate(samples, samples_per_gpu) for samples in transposed]
    +    elif isinstance(batch[0], Mapping):
    +        return {
    +            key: collate([d[key] for d in batch], samples_per_gpu)
    +            for key in batch[0]
    +        }
    +    else:
    +        return default_collate(batch)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_container.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_container.py
    new file mode 100644
    index 000000000..62f257311
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_container.py
    @@ -0,0 +1,91 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import functools
    +from typing import Callable, Type, Union
    +
    +import numpy as np
    +import torch
    +
    +
    +def assert_tensor_type(func: Callable) -> Callable:
    +
    +    @functools.wraps(func)
    +    def wrapper(*args, **kwargs):
    +        if not isinstance(args[0].data, torch.Tensor):
    +            raise AttributeError(
    +                f'{args[0].__class__.__name__} has no attribute '
    +                f'{func.__name__} for type {args[0].datatype}')
    +        return func(*args, **kwargs)
    +
    +    return wrapper
    +
    +
    +class DataContainer:
    +    """A container for any type of objects.
    +
    +    Typically tensors will be stacked in the collate function and sliced along
    +    some dimension in the scatter function. This behavior has some limitations.
    +    1. All tensors have to be the same size.
    +    2. Types are limited (numpy array or Tensor).
    +
    +    We design `DataContainer` and `MMDataParallel` to overcome these
    +    limitations. The behavior can be either of the following.
    +
    +    - copy to GPU, pad all tensors to the same size and stack them
    +    - copy to GPU without stacking
    +    - leave the objects as is and pass it to the model
    +    - pad_dims specifies the number of last few dimensions to do padding
    +    """
    +
    +    def __init__(self,
    +                 data: Union[torch.Tensor, np.ndarray],
    +                 stack: bool = False,
    +                 padding_value: int = 0,
    +                 cpu_only: bool = False,
    +                 pad_dims: int = 2):
    +        self._data = data
    +        self._cpu_only = cpu_only
    +        self._stack = stack
    +        self._padding_value = padding_value
    +        assert pad_dims in [None, 1, 2, 3]
    +        self._pad_dims = pad_dims
    +
    +    def __repr__(self) -> str:
    +        return f'{self.__class__.__name__}({repr(self.data)})'
    +
    +    def __len__(self) -> int:
    +        return len(self._data)
    +
    +    @property
    +    def data(self) -> Union[torch.Tensor, np.ndarray]:
    +        return self._data
    +
    +    @property
    +    def datatype(self) -> Union[Type, str]:
    +        if isinstance(self.data, torch.Tensor):
    +            return self.data.type()
    +        else:
    +            return type(self.data)
    +
    +    @property
    +    def cpu_only(self) -> bool:
    +        return self._cpu_only
    +
    +    @property
    +    def stack(self) -> bool:
    +        return self._stack
    +
    +    @property
    +    def padding_value(self) -> int:
    +        return self._padding_value
    +
    +    @property
    +    def pad_dims(self) -> int:
    +        return self._pad_dims
    +
    +    @assert_tensor_type
    +    def size(self, *args, **kwargs) -> torch.Size:
    +        return self.data.size(*args, **kwargs)
    +
    +    @assert_tensor_type
    +    def dim(self) -> int:
    +        return self.data.dim()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_parallel.py
    new file mode 100644
    index 000000000..eea088fa0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/data_parallel.py
    @@ -0,0 +1,99 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from itertools import chain
    +from typing import List, Tuple
    +
    +from torch.nn.parallel import DataParallel
    +
    +from .scatter_gather import ScatterInputs, scatter_kwargs
    +
    +
    +class MMDataParallel(DataParallel):
    +    """The DataParallel module that supports DataContainer.
    +
    +    MMDataParallel has two main differences with PyTorch DataParallel:
    +
    +    - It supports a custom type :class:`DataContainer` which allows more
    +      flexible control of input data during both GPU and CPU inference.
    +    - It implements two more APIs ``train_step()`` and ``val_step()``.
    +
    +    .. warning::
    +        MMDataParallel only supports single GPU training, if you need to
    +        train with multiple GPUs, please use MMDistributedDataParallel
    +        instead. If you have multiple GPUs and you just want to use
    +        MMDataParallel, you can set the environment variable
    +        ``CUDA_VISIBLE_DEVICES=0`` or instantiate ``MMDataParallel`` with
    +        ``device_ids=[0]``.
    +
    +    Args:
    +        module (:class:`nn.Module`): Module to be encapsulated.
    +        device_ids (list[int]): Device IDS of modules to be scattered to.
    +            Defaults to None when GPU is not available.
    +        output_device (str | int): Device ID for output. Defaults to None.
    +        dim (int): Dimension used to scatter the data. Defaults to 0.
    +    """
    +
    +    def __init__(self, *args, dim: int = 0, **kwargs):
    +        super().__init__(*args, dim=dim, **kwargs)
    +        self.dim = dim
    +
    +    def forward(self, *inputs, **kwargs):
    +        """Override the original forward function.
    +
    +        The main difference lies in the CPU inference where the data in
    +        :class:`DataContainers` will still be gathered.
    +        """
    +        if not self.device_ids:
    +            # We add the following line thus the module could gather and
    +            # convert data containers as those in GPU inference
    +            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
    +            return self.module(*inputs[0], **kwargs[0])
    +        else:
    +            return super().forward(*inputs, **kwargs)
    +
    +    def scatter(self, inputs: ScatterInputs, kwargs: ScatterInputs,
    +                device_ids: List[int]) -> Tuple[tuple, tuple]:
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    +
    +    def train_step(self, *inputs, **kwargs):
    +        if not self.device_ids:
    +            # We add the following line thus the module could gather and
    +            # convert data containers as those in GPU inference
    +            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
    +            return self.module.train_step(*inputs[0], **kwargs[0])
    +
    +        assert len(self.device_ids) == 1, \
    +            ('MMDataParallel only supports single GPU training, if you need to'
    +             ' train with multiple GPUs, please use MMDistributedDataParallel'
    +             ' instead.')
    +
    +        for t in chain(self.module.parameters(), self.module.buffers()):
    +            if t.device != self.src_device_obj:
    +                raise RuntimeError(
    +                    'module must have its parameters and buffers '
    +                    f'on device {self.src_device_obj} (device_ids[0]) but '
    +                    f'found one of them on device: {t.device}')
    +
    +        inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
    +        return self.module.train_step(*inputs[0], **kwargs[0])
    +
    +    def val_step(self, *inputs, **kwargs):
    +        if not self.device_ids:
    +            # We add the following line thus the module could gather and
    +            # convert data containers as those in GPU inference
    +            inputs, kwargs = self.scatter(inputs, kwargs, [-1])
    +            return self.module.val_step(*inputs[0], **kwargs[0])
    +
    +        assert len(self.device_ids) == 1, \
    +            ('MMDataParallel only supports single GPU training, if you need to'
    +             ' train with multiple GPUs, please use MMDistributedDataParallel'
    +             ' instead.')
    +
    +        for t in chain(self.module.parameters(), self.module.buffers()):
    +            if t.device != self.src_device_obj:
    +                raise RuntimeError(
    +                    'module must have its parameters and buffers '
    +                    f'on device {self.src_device_obj} (device_ids[0]) but '
    +                    f'found one of them on device: {t.device}')
    +
    +        inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
    +        return self.module.val_step(*inputs[0], **kwargs[0])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed.py
    new file mode 100644
    index 000000000..bf34cb590
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed.py
    @@ -0,0 +1,167 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Any, List, Tuple
    +
    +import torch
    +from torch.nn.parallel.distributed import (DistributedDataParallel,
    +                                           _find_tensors)
    +
    +from mmcv import print_log
    +from mmcv.utils import TORCH_VERSION, digit_version
    +from .scatter_gather import ScatterInputs, scatter_kwargs
    +
    +
    +class MMDistributedDataParallel(DistributedDataParallel):
    +    """The DDP module that supports DataContainer.
    +
    +    MMDDP has two main differences with PyTorch DDP:
    +
    +    - It supports a custom type :class:`DataContainer` which allows more
    +      flexible control of input data.
    +    - It implement two APIs ``train_step()`` and ``val_step()``.
    +    """
    +
    +    def to_kwargs(self, inputs: ScatterInputs, kwargs: ScatterInputs,
    +                  device_id: int) -> Tuple[tuple, tuple]:
    +        # Use `self.to_kwargs` instead of `self.scatter` in pytorch1.8
    +        # to move all tensors to device_id
    +        return scatter_kwargs(inputs, kwargs, [device_id], dim=self.dim)
    +
    +    def scatter(self, inputs: ScatterInputs, kwargs: ScatterInputs,
    +                device_ids: List[int]) -> Tuple[tuple, tuple]:
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    +
    +    def train_step(self, *inputs, **kwargs):
    +        """train_step() API for module wrapped by DistributedDataParallel.
    +
    +        This method is basically the same as
    +        ``DistributedDataParallel.forward()``, while replacing
    +        ``self.module.forward()`` with ``self.module.train_step()``.
    +        It is compatible with PyTorch 1.1 - 1.5.
    +        """
    +
    +        # In PyTorch >= 1.7, ``reducer._rebuild_buckets()`` is moved from the
    +        # end of backward to the beginning of forward.
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.7')
    +                and self.reducer._rebuild_buckets()):
    +            print_log(
    +                'Reducer buckets have been rebuilt in this iteration.',
    +                logger='mmcv')
    +
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.11.0a0')):
    +            if self._check_sync_bufs_pre_fwd():
    +                self._sync_buffers()
    +        else:
    +            if (getattr(self, 'require_forward_param_sync', False)
    +                    and self.require_forward_param_sync):
    +                self._sync_params()
    +
    +        if self.device_ids:
    +            inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
    +            if len(self.device_ids) == 1:
    +                output = self.module.train_step(*inputs[0], **kwargs[0])
    +            else:
    +                outputs = self.parallel_apply(
    +                    self._module_copies[:len(inputs)], inputs, kwargs)
    +                output = self.gather(outputs, self.output_device)
    +        else:
    +            output = self.module.train_step(*inputs, **kwargs)
    +
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.11.0a0')):
    +            if self._check_sync_bufs_post_fwd():
    +                self._sync_buffers()
    +
    +        if (torch.is_grad_enabled()
    +                and getattr(self, 'require_backward_grad_sync', False)
    +                and self.require_backward_grad_sync):
    +            if self.find_unused_parameters:
    +                self.reducer.prepare_for_backward(list(_find_tensors(output)))
    +            else:
    +                self.reducer.prepare_for_backward([])
    +        else:
    +            if ('parrots' not in TORCH_VERSION
    +                    and digit_version(TORCH_VERSION) > digit_version('1.2')):
    +                self.require_forward_param_sync = False
    +        return output
    +
    +    def val_step(self, *inputs, **kwargs):
    +        """val_step() API for module wrapped by DistributedDataParallel.
    +
    +        This method is basically the same as
    +        ``DistributedDataParallel.forward()``, while replacing
    +        ``self.module.forward()`` with ``self.module.val_step()``.
    +        It is compatible with PyTorch 1.1 - 1.5.
    +        """
    +        # In PyTorch >= 1.7, ``reducer._rebuild_buckets()`` is moved from the
    +        # end of backward to the beginning of forward.
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.7')
    +                and self.reducer._rebuild_buckets()):
    +            print_log(
    +                'Reducer buckets have been rebuilt in this iteration.',
    +                logger='mmcv')
    +
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.11.0a0')):
    +            if self._check_sync_bufs_pre_fwd():
    +                self._sync_buffers()
    +        else:
    +            if (getattr(self, 'require_forward_param_sync', False)
    +                    and self.require_forward_param_sync):
    +                self._sync_params()
    +
    +        if self.device_ids:
    +            inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
    +            if len(self.device_ids) == 1:
    +                output = self.module.val_step(*inputs[0], **kwargs[0])
    +            else:
    +                outputs = self.parallel_apply(
    +                    self._module_copies[:len(inputs)], inputs, kwargs)
    +                output = self.gather(outputs, self.output_device)
    +        else:
    +            output = self.module.val_step(*inputs, **kwargs)
    +
    +        if ('parrots' not in TORCH_VERSION
    +                and digit_version(TORCH_VERSION) >= digit_version('1.11.0a0')):
    +            if self._check_sync_bufs_post_fwd():
    +                self._sync_buffers()
    +
    +        if (torch.is_grad_enabled()
    +                and getattr(self, 'require_backward_grad_sync', False)
    +                and self.require_backward_grad_sync):
    +            if self.find_unused_parameters:
    +                self.reducer.prepare_for_backward(list(_find_tensors(output)))
    +            else:
    +                self.reducer.prepare_for_backward([])
    +        else:
    +            if ('parrots' not in TORCH_VERSION
    +                    and digit_version(TORCH_VERSION) > digit_version('1.2')):
    +                self.require_forward_param_sync = False
    +        return output
    +
    +    def _run_ddp_forward(self, *inputs, **kwargs) -> Any:
    +        """Processes inputs and runs ``self.module.forward``.
    +
    +        Pytorch 1.12.0 performs ``self.module.forward`` in ``_run_ddp_forward``
    +        and deprecates using ``DistributedDataParallel.to_kwargs`` to
    +        process inputs, which leads to inputs cannot be processed by
    +        :meth:`MMDistributedDataParallel.to_kwargs` anymore. Therefore,
    +        ``MMDistributedDataParallel`` overrides this method to call
    +        :meth:`to_kwargs` explicitly.
    +
    +        See more information in ``_.  # noqa: E501
    +
    +        Returns:
    +            Any: Forward result of :attr:`module`.
    +        """
    +        module_to_run = self._replicated_tensor_module if \
    +            self._use_replicated_tensor_module else self.module
    +
    +        if self.device_ids:
    +            inputs, kwargs = self.to_kwargs(  # type: ignore
    +                inputs, kwargs, self.device_ids[0])
    +            return module_to_run(*inputs[0], **kwargs[0])  # type: ignore
    +        else:
    +            return module_to_run(*inputs, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed_deprecated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed_deprecated.py
    new file mode 100644
    index 000000000..21b6c4ec1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/distributed_deprecated.py
    @@ -0,0 +1,74 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Sequence, Tuple
    +
    +import torch
    +import torch.distributed as dist
    +import torch.nn as nn
    +from torch._utils import (_flatten_dense_tensors, _take_tensors,
    +                          _unflatten_dense_tensors)
    +
    +from mmcv.utils import TORCH_VERSION, digit_version
    +from .registry import MODULE_WRAPPERS
    +from .scatter_gather import ScatterInputs, scatter_kwargs
    +
    +
    +@MODULE_WRAPPERS.register_module()
    +class MMDistributedDataParallel(nn.Module):
    +
    +    def __init__(self,
    +                 module: nn.Module,
    +                 dim: int = 0,
    +                 broadcast_buffers: bool = True,
    +                 bucket_cap_mb: int = 25):
    +        super().__init__()
    +        self.module = module
    +        self.dim = dim
    +        self.broadcast_buffers = broadcast_buffers
    +
    +        self.broadcast_bucket_size = bucket_cap_mb * 1024 * 1024
    +        self._sync_params()
    +
    +    def _dist_broadcast_coalesced(self, tensors: Sequence[torch.Tensor],
    +                                  buffer_size: int) -> None:
    +        for tensors in _take_tensors(tensors, buffer_size):
    +            flat_tensors = _flatten_dense_tensors(tensors)
    +            dist.broadcast(flat_tensors, 0)
    +            for tensor, synced in zip(
    +                    tensors, _unflatten_dense_tensors(flat_tensors, tensors)):
    +                tensor.copy_(synced)
    +
    +    def _sync_params(self) -> None:
    +        module_states = list(self.module.state_dict().values())
    +        if len(module_states) > 0:
    +            self._dist_broadcast_coalesced(module_states,
    +                                           self.broadcast_bucket_size)
    +        if self.broadcast_buffers:
    +            if (TORCH_VERSION != 'parrots'
    +                    and digit_version(TORCH_VERSION) < digit_version('1.0')):
    +                buffers = [b.data for b in self.module._all_buffers()]
    +            else:
    +                buffers = [b.data for b in self.module.buffers()]
    +            if len(buffers) > 0:
    +                self._dist_broadcast_coalesced(buffers,
    +                                               self.broadcast_bucket_size)
    +
    +    def scatter(self, inputs: ScatterInputs, kwargs: ScatterInputs,
    +                device_ids: List[int]) -> Tuple[tuple, tuple]:
    +        return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
    +
    +    def forward(self, *inputs, **kwargs):
    +        inputs, kwargs = self.scatter(inputs, kwargs,
    +                                      [torch.cuda.current_device()])
    +        return self.module(*inputs[0], **kwargs[0])
    +
    +    def train_step(self, *inputs, **kwargs):
    +        inputs, kwargs = self.scatter(inputs, kwargs,
    +                                      [torch.cuda.current_device()])
    +        output = self.module.train_step(*inputs[0], **kwargs[0])
    +        return output
    +
    +    def val_step(self, *inputs, **kwargs):
    +        inputs, kwargs = self.scatter(inputs, kwargs,
    +                                      [torch.cuda.current_device()])
    +        output = self.module.val_step(*inputs[0], **kwargs[0])
    +        return output
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/registry.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/registry.py
    new file mode 100644
    index 000000000..144f9fb16
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/registry.py
    @@ -0,0 +1,8 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from torch.nn.parallel import DataParallel, DistributedDataParallel
    +
    +from mmcv.utils import Registry
    +
    +MODULE_WRAPPERS = Registry('module wrapper')
    +MODULE_WRAPPERS.register_module(module=DataParallel)
    +MODULE_WRAPPERS.register_module(module=DistributedDataParallel)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/scatter_gather.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/scatter_gather.py
    new file mode 100644
    index 000000000..3133b253c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/scatter_gather.py
    @@ -0,0 +1,70 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Tuple, Union
    +
    +from torch import Tensor
    +from torch.nn.parallel._functions import Scatter as OrigScatter
    +
    +from ._functions import Scatter
    +from .data_container import DataContainer
    +
    +ScatterInputs = Union[Tensor, DataContainer, tuple, list, dict]
    +
    +
    +def scatter(inputs: ScatterInputs,
    +            target_gpus: List[int],
    +            dim: int = 0) -> list:
    +    """Scatter inputs to target gpus.
    +
    +    The only difference from original :func:`scatter` is to add support for
    +    :type:`~mmcv.parallel.DataContainer`.
    +    """
    +
    +    def scatter_map(obj):
    +        if isinstance(obj, Tensor):
    +            if target_gpus != [-1]:
    +                return OrigScatter.apply(target_gpus, None, dim, obj)
    +            else:
    +                # for CPU inference we use self-implemented scatter
    +                return Scatter.forward(target_gpus, obj)
    +        if isinstance(obj, DataContainer):
    +            if obj.cpu_only:
    +                return obj.data
    +            else:
    +                return Scatter.forward(target_gpus, obj.data)
    +        if isinstance(obj, tuple) and len(obj) > 0:
    +            return list(zip(*map(scatter_map, obj)))
    +        if isinstance(obj, list) and len(obj) > 0:
    +            out = list(map(list, zip(*map(scatter_map, obj))))
    +            return out
    +        if isinstance(obj, dict) and len(obj) > 0:
    +            out = list(map(type(obj), zip(*map(scatter_map, obj.items()))))
    +            return out
    +        return [obj for _ in target_gpus]
    +
    +    # After scatter_map is called, a scatter_map cell will exist. This cell
    +    # has a reference to the actual function scatter_map, which has references
    +    # to a closure that has a reference to the scatter_map cell (because the
    +    # fn is recursive). To avoid this reference cycle, we set the function to
    +    # None, clearing the cell
    +    try:
    +        return scatter_map(inputs)
    +    finally:
    +        scatter_map = None  # type: ignore
    +
    +
    +def scatter_kwargs(inputs: ScatterInputs,
    +                   kwargs: ScatterInputs,
    +                   target_gpus: List[int],
    +                   dim: int = 0) -> Tuple[tuple, tuple]:
    +    """Scatter with support for kwargs dictionary."""
    +    inputs = scatter(inputs, target_gpus, dim) if inputs else []
    +    kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
    +    if len(inputs) < len(kwargs):
    +        length = len(kwargs) - len(inputs)
    +        inputs.extend([() for _ in range(length)])  # type: ignore
    +    elif len(kwargs) < len(inputs):
    +        length = len(inputs) - len(kwargs)
    +        kwargs.extend([{} for _ in range(length)])  # type: ignore
    +    inputs = tuple(inputs)
    +    kwargs = tuple(kwargs)
    +    return inputs, kwargs
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/utils.py
    new file mode 100644
    index 000000000..bd52622b1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/parallel/utils.py
    @@ -0,0 +1,32 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from torch import nn
    +
    +from .registry import MODULE_WRAPPERS
    +
    +
    +def is_module_wrapper(module: nn.Module) -> bool:
    +    """Check if a module is a module wrapper.
    +
    +    The following 3 modules in MMCV (and their subclasses) are regarded as
    +    module wrappers: DataParallel, DistributedDataParallel,
    +    MMDistributedDataParallel (the deprecated version). You may add you own
    +    module wrapper by registering it to mmcv.parallel.MODULE_WRAPPERS or
    +    its children registries.
    +
    +    Args:
    +        module (nn.Module): The module to be checked.
    +
    +    Returns:
    +        bool: True if the input module is a module wrapper.
    +    """
    +
    +    def is_module_in_wrapper(module, module_wrapper):
    +        module_wrappers = tuple(module_wrapper.module_dict.values())
    +        if isinstance(module, module_wrappers):
    +            return True
    +        for child in module_wrapper.children.values():
    +            if is_module_in_wrapper(module, child):
    +                return True
    +        return False
    +
    +    return is_module_in_wrapper(module, MODULE_WRAPPERS)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/__init__.py
    new file mode 100644
    index 000000000..183d53672
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/__init__.py
    @@ -0,0 +1,73 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .base_module import BaseModule, ModuleDict, ModuleList, Sequential
    +from .base_runner import BaseRunner
    +from .builder import RUNNERS, build_runner
    +from .checkpoint import (CheckpointLoader, _load_checkpoint,
    +                         _load_checkpoint_with_prefix, load_checkpoint,
    +                         load_state_dict, save_checkpoint, weights_to_cpu)
    +from .default_constructor import DefaultRunnerConstructor
    +from .dist_utils import (allreduce_grads, allreduce_params, get_dist_info,
    +                         init_dist, master_only)
    +from .epoch_based_runner import EpochBasedRunner, Runner
    +from .fp16_utils import LossScaler, auto_fp16, force_fp32, wrap_fp16_model
    +from .hooks import (HOOKS, CheckpointHook, ClearMLLoggerHook, ClosureHook,
    +                    DistEvalHook, DistSamplerSeedHook, DvcliveLoggerHook,
    +                    EMAHook, EvalHook, Fp16OptimizerHook,
    +                    GradientCumulativeFp16OptimizerHook,
    +                    GradientCumulativeOptimizerHook, Hook, IterTimerHook,
    +                    LoggerHook, MlflowLoggerHook, NeptuneLoggerHook,
    +                    OptimizerHook, PaviLoggerHook, SegmindLoggerHook,
    +                    SyncBuffersHook, TensorboardLoggerHook, TextLoggerHook,
    +                    WandbLoggerHook)
    +from .hooks.lr_updater import StepLrUpdaterHook  # noqa
    +from .hooks.lr_updater import (CosineAnnealingLrUpdaterHook,
    +                               CosineRestartLrUpdaterHook, CyclicLrUpdaterHook,
    +                               ExpLrUpdaterHook, FixedLrUpdaterHook,
    +                               FlatCosineAnnealingLrUpdaterHook,
    +                               InvLrUpdaterHook, LinearAnnealingLrUpdaterHook,
    +                               LrUpdaterHook, OneCycleLrUpdaterHook,
    +                               PolyLrUpdaterHook)
    +from .hooks.momentum_updater import (CosineAnnealingMomentumUpdaterHook,
    +                                     CyclicMomentumUpdaterHook,
    +                                     LinearAnnealingMomentumUpdaterHook,
    +                                     MomentumUpdaterHook,
    +                                     OneCycleMomentumUpdaterHook,
    +                                     StepMomentumUpdaterHook)
    +from .iter_based_runner import IterBasedRunner, IterLoader
    +from .log_buffer import LogBuffer
    +from .optimizer import (OPTIMIZER_BUILDERS, OPTIMIZERS,
    +                        DefaultOptimizerConstructor, build_optimizer,
    +                        build_optimizer_constructor)
    +from .priority import Priority, get_priority
    +from .utils import get_host_info, get_time_str, obj_from_dict, set_random_seed
    +
    +# initialize ipu to registor ipu runner to RUNNERS
    +from mmcv.device import ipu  # isort:skip  # noqa
    +
    +__all__ = [
    +    'BaseRunner', 'Runner', 'EpochBasedRunner', 'IterBasedRunner', 'LogBuffer',
    +    'HOOKS', 'Hook', 'CheckpointHook', 'ClosureHook', 'LrUpdaterHook',
    +    'FixedLrUpdaterHook', 'StepLrUpdaterHook', 'ExpLrUpdaterHook',
    +    'PolyLrUpdaterHook', 'InvLrUpdaterHook', 'CosineAnnealingLrUpdaterHook',
    +    'FlatCosineAnnealingLrUpdaterHook', 'CosineRestartLrUpdaterHook',
    +    'CyclicLrUpdaterHook', 'OneCycleLrUpdaterHook', 'MomentumUpdaterHook',
    +    'StepMomentumUpdaterHook', 'CosineAnnealingMomentumUpdaterHook',
    +    'CyclicMomentumUpdaterHook', 'OneCycleMomentumUpdaterHook',
    +    'OptimizerHook', 'IterTimerHook', 'DistSamplerSeedHook', 'LoggerHook',
    +    'PaviLoggerHook', 'TextLoggerHook', 'TensorboardLoggerHook',
    +    'NeptuneLoggerHook', 'WandbLoggerHook', 'MlflowLoggerHook',
    +    'DvcliveLoggerHook', '_load_checkpoint', 'load_state_dict',
    +    'load_checkpoint', 'weights_to_cpu', 'save_checkpoint', 'Priority',
    +    'get_priority', 'get_host_info', 'get_time_str', 'obj_from_dict',
    +    'init_dist', 'get_dist_info', 'master_only', 'OPTIMIZER_BUILDERS',
    +    'OPTIMIZERS', 'DefaultOptimizerConstructor', 'build_optimizer',
    +    'build_optimizer_constructor', 'IterLoader', 'set_random_seed',
    +    'auto_fp16', 'force_fp32', 'wrap_fp16_model', 'Fp16OptimizerHook',
    +    'SyncBuffersHook', 'EMAHook', 'build_runner', 'RUNNERS', 'allreduce_grads',
    +    'allreduce_params', 'LossScaler', 'CheckpointLoader', 'BaseModule',
    +    '_load_checkpoint_with_prefix', 'EvalHook', 'DistEvalHook', 'Sequential',
    +    'ModuleDict', 'ModuleList', 'GradientCumulativeOptimizerHook',
    +    'GradientCumulativeFp16OptimizerHook', 'DefaultRunnerConstructor',
    +    'SegmindLoggerHook', 'LinearAnnealingMomentumUpdaterHook',
    +    'LinearAnnealingLrUpdaterHook', 'ClearMLLoggerHook'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_module.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_module.py
    new file mode 100644
    index 000000000..845e8c8ff
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_module.py
    @@ -0,0 +1,213 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import warnings
    +from abc import ABCMeta
    +from collections import defaultdict
    +from logging import FileHandler
    +from typing import Iterable, Optional
    +
    +import torch.nn as nn
    +
    +from mmcv.runner.dist_utils import master_only
    +from mmcv.utils.logging import get_logger, logger_initialized, print_log
    +
    +
    +class BaseModule(nn.Module, metaclass=ABCMeta):
    +    """Base module for all modules in openmmlab.
    +
    +    ``BaseModule`` is a wrapper of ``torch.nn.Module`` with additional
    +    functionality of parameter initialization. Compared with
    +    ``torch.nn.Module``, ``BaseModule`` mainly adds three attributes.
    +
    +    - ``init_cfg``: the config to control the initialization.
    +    - ``init_weights``: The function of parameter initialization and recording
    +      initialization information.
    +    - ``_params_init_info``: Used to track the parameter initialization
    +      information. This attribute only exists during executing the
    +      ``init_weights``.
    +
    +    Args:
    +        init_cfg (dict, optional): Initialization config dict.
    +    """
    +
    +    def __init__(self, init_cfg: Optional[dict] = None):
    +        """Initialize BaseModule, inherited from `torch.nn.Module`"""
    +
    +        # NOTE init_cfg can be defined in different levels, but init_cfg
    +        # in low levels has a higher priority.
    +
    +        super().__init__()
    +        # define default value of init_cfg instead of hard code
    +        # in init_weights() function
    +        self._is_init = False
    +
    +        self.init_cfg = copy.deepcopy(init_cfg)
    +
    +        # Backward compatibility in derived classes
    +        # if pretrained is not None:
    +        #     warnings.warn('DeprecationWarning: pretrained is a deprecated \
    +        #         key, please consider using init_cfg')
    +        #     self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
    +
    +    @property
    +    def is_init(self) -> bool:
    +        return self._is_init
    +
    +    def init_weights(self) -> None:
    +        """Initialize the weights."""
    +
    +        is_top_level_module = False
    +        # check if it is top-level module
    +        if not hasattr(self, '_params_init_info'):
    +            # The `_params_init_info` is used to record the initialization
    +            # information of the parameters
    +            # the key should be the obj:`nn.Parameter` of model and the value
    +            # should be a dict containing
    +            # - init_info (str): The string that describes the initialization.
    +            # - tmp_mean_value (FloatTensor): The mean of the parameter,
    +            #       which indicates whether the parameter has been modified.
    +            # this attribute would be deleted after all parameters
    +            # is initialized.
    +            self._params_init_info: defaultdict = defaultdict(dict)
    +            is_top_level_module = True
    +
    +            # Initialize the `_params_init_info`,
    +            # When detecting the `tmp_mean_value` of
    +            # the corresponding parameter is changed, update related
    +            # initialization information
    +            for name, param in self.named_parameters():
    +                self._params_init_info[param][
    +                    'init_info'] = f'The value is the same before and ' \
    +                                   f'after calling `init_weights` ' \
    +                                   f'of {self.__class__.__name__} '
    +                self._params_init_info[param][
    +                    'tmp_mean_value'] = param.data.mean()
    +
    +            # pass `params_init_info` to all submodules
    +            # All submodules share the same `params_init_info`,
    +            # so it will be updated when parameters are
    +            # modified at any level of the model.
    +            for sub_module in self.modules():
    +                sub_module._params_init_info = self._params_init_info
    +
    +        # Get the initialized logger, if not exist,
    +        # create a logger named `mmcv`
    +        logger_names = list(logger_initialized.keys())
    +        logger_name = logger_names[0] if logger_names else 'mmcv'
    +
    +        from ..cnn import initialize
    +        from ..cnn.utils.weight_init import update_init_info
    +        module_name = self.__class__.__name__
    +        if not self._is_init:
    +            if self.init_cfg:
    +                print_log(
    +                    f'initialize {module_name} with init_cfg {self.init_cfg}',
    +                    logger=logger_name)
    +                initialize(self, self.init_cfg)
    +                if isinstance(self.init_cfg, dict):
    +                    # prevent the parameters of
    +                    # the pre-trained model
    +                    # from being overwritten by
    +                    # the `init_weights`
    +                    if self.init_cfg['type'] == 'Pretrained':
    +                        return
    +
    +            for m in self.children():
    +                if hasattr(m, 'init_weights'):
    +                    m.init_weights()
    +                    # users may overload the `init_weights`
    +                    update_init_info(
    +                        m,
    +                        init_info=f'Initialized by '
    +                        f'user-defined `init_weights`'
    +                        f' in {m.__class__.__name__} ')
    +
    +            self._is_init = True
    +        else:
    +            warnings.warn(f'init_weights of {self.__class__.__name__} has '
    +                          f'been called more than once.')
    +
    +        if is_top_level_module:
    +            self._dump_init_info(logger_name)
    +
    +            for sub_module in self.modules():
    +                del sub_module._params_init_info
    +
    +    @master_only
    +    def _dump_init_info(self, logger_name: str) -> None:
    +        """Dump the initialization information to a file named
    +        `initialization.log.json` in workdir.
    +
    +        Args:
    +            logger_name (str): The name of logger.
    +        """
    +
    +        logger = get_logger(logger_name)
    +
    +        with_file_handler = False
    +        # dump the information to the logger file if there is a `FileHandler`
    +        for handler in logger.handlers:
    +            if isinstance(handler, FileHandler):
    +                handler.stream.write(
    +                    'Name of parameter - Initialization information\n')
    +                for name, param in self.named_parameters():
    +                    handler.stream.write(
    +                        f'\n{name} - {param.shape}: '
    +                        f"\n{self._params_init_info[param]['init_info']} \n")
    +                handler.stream.flush()
    +                with_file_handler = True
    +        if not with_file_handler:
    +            for name, param in self.named_parameters():
    +                print_log(
    +                    f'\n{name} - {param.shape}: '
    +                    f"\n{self._params_init_info[param]['init_info']} \n ",
    +                    logger=logger_name)
    +
    +    def __repr__(self):
    +        s = super().__repr__()
    +        if self.init_cfg:
    +            s += f'\ninit_cfg={self.init_cfg}'
    +        return s
    +
    +
    +class Sequential(BaseModule, nn.Sequential):
    +    """Sequential module in openmmlab.
    +
    +    Args:
    +        init_cfg (dict, optional): Initialization config dict.
    +    """
    +
    +    def __init__(self, *args, init_cfg: Optional[dict] = None):
    +        BaseModule.__init__(self, init_cfg)
    +        nn.Sequential.__init__(self, *args)
    +
    +
    +class ModuleList(BaseModule, nn.ModuleList):
    +    """ModuleList in openmmlab.
    +
    +    Args:
    +        modules (iterable, optional): an iterable of modules to add.
    +        init_cfg (dict, optional): Initialization config dict.
    +    """
    +
    +    def __init__(self,
    +                 modules: Optional[Iterable] = None,
    +                 init_cfg: Optional[dict] = None):
    +        BaseModule.__init__(self, init_cfg)
    +        nn.ModuleList.__init__(self, modules)
    +
    +
    +class ModuleDict(BaseModule, nn.ModuleDict):
    +    """ModuleDict in openmmlab.
    +
    +    Args:
    +        modules (dict, optional): a mapping (dictionary) of (string: module)
    +            or an iterable of key-value pairs of type (string, module).
    +        init_cfg (dict, optional): Initialization config dict.
    +    """
    +
    +    def __init__(self,
    +                 modules: Optional[dict] = None,
    +                 init_cfg: Optional[dict] = None):
    +        BaseModule.__init__(self, init_cfg)
    +        nn.ModuleDict.__init__(self, modules)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_runner.py
    new file mode 100644
    index 000000000..2c5a9ddd0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/base_runner.py
    @@ -0,0 +1,566 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import logging
    +import os.path as osp
    +import warnings
    +from abc import ABCMeta, abstractmethod
    +from collections import OrderedDict
    +from typing import (Any, Callable, Dict, List, Optional, Tuple, Union,
    +                    no_type_check)
    +
    +import torch
    +from torch.optim import Optimizer
    +from torch.utils.data import DataLoader
    +
    +import mmcv
    +from ..parallel import is_module_wrapper
    +from .checkpoint import load_checkpoint
    +from .dist_utils import get_dist_info
    +from .hooks import HOOKS, Hook
    +from .log_buffer import LogBuffer
    +from .priority import Priority, get_priority
    +from .utils import get_time_str
    +
    +
    +class BaseRunner(metaclass=ABCMeta):
    +    """The base class of Runner, a training helper for PyTorch.
    +
    +    All subclasses should implement the following APIs:
    +
    +    - ``run()``
    +    - ``train()``
    +    - ``val()``
    +    - ``save_checkpoint()``
    +
    +    Args:
    +        model (:obj:`torch.nn.Module`): The model to be run.
    +        batch_processor (callable): A callable method that process a data
    +            batch. The interface of this method should be
    +            `batch_processor(model, data, train_mode) -> dict`
    +        optimizer (dict or :obj:`torch.optim.Optimizer`): It can be either an
    +            optimizer (in most cases) or a dict of optimizers (in models that
    +            requires more than one optimizer, e.g., GAN).
    +        work_dir (str, optional): The working directory to save checkpoints
    +            and logs. Defaults to None.
    +        logger (:obj:`logging.Logger`): Logger used during training.
    +             Defaults to None. (The default value is just for backward
    +             compatibility)
    +        meta (dict | None): A dict records some import information such as
    +            environment info and seed, which will be logged in logger hook.
    +            Defaults to None.
    +        max_epochs (int, optional): Total training epochs.
    +        max_iters (int, optional): Total training iterations.
    +    """
    +
    +    def __init__(self,
    +                 model: torch.nn.Module,
    +                 batch_processor: Optional[Callable] = None,
    +                 optimizer: Union[Dict, torch.optim.Optimizer, None] = None,
    +                 work_dir: Optional[str] = None,
    +                 logger: Optional[logging.Logger] = None,
    +                 meta: Optional[Dict] = None,
    +                 max_iters: Optional[int] = None,
    +                 max_epochs: Optional[int] = None) -> None:
    +        if batch_processor is not None:
    +            if not callable(batch_processor):
    +                raise TypeError('batch_processor must be callable, '
    +                                f'but got {type(batch_processor)}')
    +            warnings.warn(
    +                'batch_processor is deprecated, please implement '
    +                'train_step() and val_step() in the model instead.',
    +                DeprecationWarning)
    +            # raise an error is `batch_processor` is not None and
    +            # `model.train_step()` exists.
    +            if is_module_wrapper(model):
    +                _model = model.module
    +            else:
    +                _model = model
    +            if hasattr(_model, 'train_step') or hasattr(_model, 'val_step'):
    +                raise RuntimeError(
    +                    'batch_processor and model.train_step()/model.val_step() '
    +                    'cannot be both available.')
    +        else:
    +            assert hasattr(model, 'train_step')
    +
    +        # check the type of `optimizer`
    +        if isinstance(optimizer, dict):
    +            for name, optim in optimizer.items():
    +                if not isinstance(optim, Optimizer):
    +                    raise TypeError(
    +                        f'optimizer must be a dict of torch.optim.Optimizers, '
    +                        f'but optimizer["{name}"] is a {type(optim)}')
    +        elif not isinstance(optimizer, Optimizer) and optimizer is not None:
    +            raise TypeError(
    +                f'optimizer must be a torch.optim.Optimizer object '
    +                f'or dict or None, but got {type(optimizer)}')
    +
    +        # check the type of `logger`
    +        if not isinstance(logger, logging.Logger):
    +            raise TypeError(f'logger must be a logging.Logger object, '
    +                            f'but got {type(logger)}')
    +
    +        # check the type of `meta`
    +        if meta is not None and not isinstance(meta, dict):
    +            raise TypeError(
    +                f'meta must be a dict or None, but got {type(meta)}')
    +
    +        self.model = model
    +        self.batch_processor = batch_processor
    +        self.optimizer = optimizer
    +        self.logger = logger
    +        self.meta = meta
    +        # create work_dir
    +        if isinstance(work_dir, str):
    +            self.work_dir: Optional[str] = osp.abspath(work_dir)
    +            mmcv.mkdir_or_exist(self.work_dir)
    +        elif work_dir is None:
    +            self.work_dir = None
    +        else:
    +            raise TypeError('"work_dir" must be a str or None')
    +
    +        # get model name from the model class
    +        if hasattr(self.model, 'module'):
    +            self._model_name = self.model.module.__class__.__name__
    +        else:
    +            self._model_name = self.model.__class__.__name__
    +
    +        self._rank, self._world_size = get_dist_info()
    +        self.timestamp = get_time_str()
    +        self.mode: Optional[str] = None
    +        self._hooks: List[Hook] = []
    +        self._epoch = 0
    +        self._iter = 0
    +        self._inner_iter = 0
    +
    +        if max_epochs is not None and max_iters is not None:
    +            raise ValueError(
    +                'Only one of `max_epochs` or `max_iters` can be set.')
    +
    +        self._max_epochs = max_epochs
    +        self._max_iters = max_iters
    +        # TODO: Redesign LogBuffer, it is not flexible and elegant enough
    +        self.log_buffer = LogBuffer()
    +
    +    @property
    +    def model_name(self) -> str:
    +        """str: Name of the model, usually the module class name."""
    +        return self._model_name
    +
    +    @property
    +    def rank(self) -> int:
    +        """int: Rank of current process. (distributed training)"""
    +        return self._rank
    +
    +    @property
    +    def world_size(self) -> int:
    +        """int: Number of processes participating in the job.
    +        (distributed training)"""
    +        return self._world_size
    +
    +    @property
    +    def hooks(self) -> List[Hook]:
    +        """list[:obj:`Hook`]: A list of registered hooks."""
    +        return self._hooks
    +
    +    @property
    +    def epoch(self) -> int:
    +        """int: Current epoch."""
    +        return self._epoch
    +
    +    @property
    +    def iter(self) -> int:
    +        """int: Current iteration."""
    +        return self._iter
    +
    +    @property
    +    def inner_iter(self) -> int:
    +        """int: Iteration in an epoch."""
    +        return self._inner_iter
    +
    +    @property
    +    def max_epochs(self):
    +        """int: Maximum training epochs."""
    +        return self._max_epochs
    +
    +    @property
    +    def max_iters(self):
    +        """int: Maximum training iterations."""
    +        return self._max_iters
    +
    +    @abstractmethod
    +    def train(self):
    +        pass
    +
    +    @abstractmethod
    +    def val(self):
    +        pass
    +
    +    @abstractmethod
    +    def run(self, data_loaders: List[DataLoader],
    +            workflow: List[Tuple[str, int]], **kwargs) -> Any:
    +        pass
    +
    +    @abstractmethod
    +    def save_checkpoint(self,
    +                        out_dir: str,
    +                        filename_tmpl: str,
    +                        save_optimizer: bool = True,
    +                        meta: Optional[Dict] = None,
    +                        create_symlink: bool = True) -> None:
    +        pass
    +
    +    def current_lr(self) -> Union[List[float], Dict[str, List[float]]]:
    +        """Get current learning rates.
    +
    +        Returns:
    +            list[float] | dict[str, list[float]]: Current learning rates of all
    +            param groups. If the runner has a dict of optimizers, this method
    +            will return a dict.
    +        """
    +        lr: Union[List[float], Dict[str, List[float]]]
    +        if isinstance(self.optimizer, torch.optim.Optimizer):
    +            lr = [group['lr'] for group in self.optimizer.param_groups]
    +        elif isinstance(self.optimizer, dict):
    +            lr = dict()
    +            for name, optim in self.optimizer.items():
    +                lr[name] = [group['lr'] for group in optim.param_groups]
    +        else:
    +            raise RuntimeError(
    +                'lr is not applicable because optimizer does not exist.')
    +        return lr
    +
    +    def current_momentum(self) -> Union[List[float], Dict[str, List[float]]]:
    +        """Get current momentums.
    +
    +        Returns:
    +            list[float] | dict[str, list[float]]: Current momentums of all
    +            param groups. If the runner has a dict of optimizers, this method
    +            will return a dict.
    +        """
    +
    +        def _get_momentum(optimizer):
    +            momentums = []
    +            for group in optimizer.param_groups:
    +                if 'momentum' in group.keys():
    +                    momentums.append(group['momentum'])
    +                elif 'betas' in group.keys():
    +                    momentums.append(group['betas'][0])
    +                else:
    +                    momentums.append(0)
    +            return momentums
    +
    +        if self.optimizer is None:
    +            raise RuntimeError(
    +                'momentum is not applicable because optimizer does not exist.')
    +        elif isinstance(self.optimizer, torch.optim.Optimizer):
    +            momentums = _get_momentum(self.optimizer)
    +        elif isinstance(self.optimizer, dict):
    +            momentums = dict()
    +            for name, optim in self.optimizer.items():
    +                momentums[name] = _get_momentum(optim)
    +        return momentums
    +
    +    def register_hook(self,
    +                      hook: Hook,
    +                      priority: Union[int, str, Priority] = 'NORMAL') -> None:
    +        """Register a hook into the hook list.
    +
    +        The hook will be inserted into a priority queue, with the specified
    +        priority (See :class:`Priority` for details of priorities).
    +        For hooks with the same priority, they will be triggered in the same
    +        order as they are registered.
    +
    +        Args:
    +            hook (:obj:`Hook`): The hook to be registered.
    +            priority (int or str or :obj:`Priority`): Hook priority.
    +                Lower value means higher priority.
    +        """
    +        assert isinstance(hook, Hook)
    +        if hasattr(hook, 'priority'):
    +            raise ValueError('"priority" is a reserved attribute for hooks')
    +        priority = get_priority(priority)
    +        hook.priority = priority  # type: ignore
    +        # insert the hook to a sorted list
    +        inserted = False
    +        for i in range(len(self._hooks) - 1, -1, -1):
    +            if priority >= self._hooks[i].priority:  # type: ignore
    +                self._hooks.insert(i + 1, hook)
    +                inserted = True
    +                break
    +        if not inserted:
    +            self._hooks.insert(0, hook)
    +
    +    def register_hook_from_cfg(self, hook_cfg: Dict) -> None:
    +        """Register a hook from its cfg.
    +
    +        Args:
    +            hook_cfg (dict): Hook config. It should have at least keys 'type'
    +              and 'priority' indicating its type and priority.
    +
    +        Note:
    +            The specific hook class to register should not use 'type' and
    +            'priority' arguments during initialization.
    +        """
    +        hook_cfg = hook_cfg.copy()
    +        priority = hook_cfg.pop('priority', 'NORMAL')
    +        hook = mmcv.build_from_cfg(hook_cfg, HOOKS)
    +        self.register_hook(hook, priority=priority)
    +
    +    def call_hook(self, fn_name: str) -> None:
    +        """Call all hooks.
    +
    +        Args:
    +            fn_name (str): The function name in each hook to be called, such as
    +                "before_train_epoch".
    +        """
    +        for hook in self._hooks:
    +            getattr(hook, fn_name)(self)
    +
    +    def get_hook_info(self) -> str:
    +        # Get hooks info in each stage
    +        stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages}
    +        for hook in self.hooks:
    +            try:
    +                priority = Priority(hook.priority).name  # type: ignore
    +            except ValueError:
    +                priority = hook.priority  # type: ignore
    +            classname = hook.__class__.__name__
    +            hook_info = f'({priority:<12}) {classname:<35}'
    +            for trigger_stage in hook.get_triggered_stages():
    +                stage_hook_map[trigger_stage].append(hook_info)
    +
    +        stage_hook_infos = []
    +        for stage in Hook.stages:
    +            hook_infos = stage_hook_map[stage]
    +            if len(hook_infos) > 0:
    +                info = f'{stage}:\n'
    +                info += '\n'.join(hook_infos)
    +                info += '\n -------------------- '
    +                stage_hook_infos.append(info)
    +        return '\n'.join(stage_hook_infos)
    +
    +    def load_checkpoint(
    +        self,
    +        filename: str,
    +        map_location: Union[str, Callable] = 'cpu',
    +        strict: bool = False,
    +        revise_keys: List = [(r'^module.', '')],
    +    ) -> Union[Dict, OrderedDict]:
    +        return load_checkpoint(
    +            self.model,
    +            filename,
    +            map_location,
    +            strict,
    +            self.logger,
    +            revise_keys=revise_keys)
    +
    +    @no_type_check
    +    def resume(self,
    +               checkpoint: str,
    +               resume_optimizer: bool = True,
    +               map_location: Union[str, Callable] = 'default') -> None:
    +        if map_location == 'default':
    +            if torch.cuda.is_available():
    +                device_id = torch.cuda.current_device()
    +                checkpoint = self.load_checkpoint(
    +                    checkpoint,
    +                    map_location=lambda storage, loc: storage.cuda(device_id))
    +            else:
    +                checkpoint = self.load_checkpoint(checkpoint)
    +        else:
    +            checkpoint = self.load_checkpoint(
    +                checkpoint, map_location=map_location)
    +
    +        self._epoch = checkpoint['meta']['epoch']
    +        self._iter = checkpoint['meta']['iter']
    +        if self.meta is None:
    +            self.meta = {}
    +        self.meta.setdefault('hook_msgs', {})
    +        # load `last_ckpt`, `best_score`, `best_ckpt`, etc. for hook messages
    +        self.meta['hook_msgs'].update(checkpoint['meta'].get('hook_msgs', {}))
    +
    +        # Re-calculate the number of iterations when resuming
    +        # models with different number of GPUs
    +        if 'config' in checkpoint['meta']:
    +            config = mmcv.Config.fromstring(
    +                checkpoint['meta']['config'], file_format='.py')
    +            previous_gpu_ids = config.get('gpu_ids', None)
    +            if previous_gpu_ids and len(previous_gpu_ids) > 0 and len(
    +                    previous_gpu_ids) != self.world_size:
    +                self._iter = int(self._iter * len(previous_gpu_ids) /
    +                                 self.world_size)
    +                self.logger.info('the iteration number is changed due to '
    +                                 'change of GPU number')
    +
    +        # resume meta information meta
    +        self.meta = checkpoint['meta']
    +
    +        if 'optimizer' in checkpoint and resume_optimizer:
    +            if isinstance(self.optimizer, Optimizer):
    +                self.optimizer.load_state_dict(checkpoint['optimizer'])
    +            elif isinstance(self.optimizer, dict):
    +                for k in self.optimizer.keys():
    +                    self.optimizer[k].load_state_dict(
    +                        checkpoint['optimizer'][k])
    +            else:
    +                raise TypeError(
    +                    'Optimizer should be dict or torch.optim.Optimizer '
    +                    f'but got {type(self.optimizer)}')
    +
    +        self.logger.info('resumed epoch %d, iter %d', self.epoch, self.iter)
    +
    +    def register_lr_hook(self, lr_config: Union[Dict, Hook, None]) -> None:
    +        if lr_config is None:
    +            return
    +        elif isinstance(lr_config, dict):
    +            assert 'policy' in lr_config
    +            policy_type = lr_config.pop('policy')
    +            # If the type of policy is all in lower case, e.g., 'cyclic',
    +            # then its first letter will be capitalized, e.g., to be 'Cyclic'.
    +            # This is for the convenient usage of Lr updater.
    +            # Since this is not applicable for `
    +            # CosineAnnealingLrUpdater`,
    +            # the string will not be changed if it contains capital letters.
    +            if policy_type == policy_type.lower():
    +                policy_type = policy_type.title()
    +            hook_type = policy_type + 'LrUpdaterHook'
    +            lr_config['type'] = hook_type
    +            hook = mmcv.build_from_cfg(lr_config, HOOKS)
    +        else:
    +            hook = lr_config
    +        self.register_hook(hook, priority='VERY_HIGH')
    +
    +    def register_momentum_hook(
    +            self, momentum_config: Union[Dict, Hook, None]) -> None:
    +        if momentum_config is None:
    +            return
    +        if isinstance(momentum_config, dict):
    +            assert 'policy' in momentum_config
    +            policy_type = momentum_config.pop('policy')
    +            # If the type of policy is all in lower case, e.g., 'cyclic',
    +            # then its first letter will be capitalized, e.g., to be 'Cyclic'.
    +            # This is for the convenient usage of momentum updater.
    +            # Since this is not applicable for
    +            # `CosineAnnealingMomentumUpdater`,
    +            # the string will not be changed if it contains capital letters.
    +            if policy_type == policy_type.lower():
    +                policy_type = policy_type.title()
    +            hook_type = policy_type + 'MomentumUpdaterHook'
    +            momentum_config['type'] = hook_type
    +            hook = mmcv.build_from_cfg(momentum_config, HOOKS)
    +        else:
    +            hook = momentum_config
    +        self.register_hook(hook, priority='HIGH')
    +
    +    def register_optimizer_hook(
    +            self, optimizer_config: Union[Dict, Hook, None]) -> None:
    +        if optimizer_config is None:
    +            return
    +        if isinstance(optimizer_config, dict):
    +            optimizer_config.setdefault('type', 'OptimizerHook')
    +            hook = mmcv.build_from_cfg(optimizer_config, HOOKS)
    +        else:
    +            hook = optimizer_config
    +        self.register_hook(hook, priority='ABOVE_NORMAL')
    +
    +    def register_checkpoint_hook(
    +            self, checkpoint_config: Union[Dict, Hook, None]) -> None:
    +        if checkpoint_config is None:
    +            return
    +        if isinstance(checkpoint_config, dict):
    +            checkpoint_config.setdefault('type', 'CheckpointHook')
    +            hook = mmcv.build_from_cfg(checkpoint_config, HOOKS)
    +        else:
    +            hook = checkpoint_config
    +        self.register_hook(hook, priority='NORMAL')
    +
    +    def register_logger_hooks(self, log_config: Optional[Dict]) -> None:
    +        if log_config is None:
    +            return
    +        log_interval = log_config['interval']
    +        for info in log_config['hooks']:
    +            logger_hook = mmcv.build_from_cfg(
    +                info, HOOKS, default_args=dict(interval=log_interval))
    +            self.register_hook(logger_hook, priority='VERY_LOW')
    +
    +    def register_timer_hook(
    +        self,
    +        timer_config: Union[Dict, Hook, None],
    +    ) -> None:
    +        if timer_config is None:
    +            return
    +        if isinstance(timer_config, dict):
    +            timer_config_ = copy.deepcopy(timer_config)
    +            hook = mmcv.build_from_cfg(timer_config_, HOOKS)
    +        else:
    +            hook = timer_config
    +        self.register_hook(hook, priority='LOW')
    +
    +    def register_custom_hooks(
    +            self, custom_config: Union[List, Dict, Hook, None]) -> None:
    +        if custom_config is None:
    +            return
    +
    +        if not isinstance(custom_config, list):
    +            custom_config = [custom_config]
    +
    +        for item in custom_config:
    +            if isinstance(item, dict):
    +                self.register_hook_from_cfg(item)
    +            else:
    +                self.register_hook(item, priority='NORMAL')
    +
    +    def register_profiler_hook(
    +        self,
    +        profiler_config: Union[Dict, Hook, None],
    +    ) -> None:
    +        if profiler_config is None:
    +            return
    +        if isinstance(profiler_config, dict):
    +            profiler_config.setdefault('type', 'ProfilerHook')
    +            hook = mmcv.build_from_cfg(profiler_config, HOOKS)
    +        else:
    +            hook = profiler_config
    +        self.register_hook(hook)
    +
    +    def register_training_hooks(
    +            self,
    +            lr_config: Union[Dict, Hook, None],
    +            optimizer_config: Union[Dict, Hook, None] = None,
    +            checkpoint_config: Union[Dict, Hook, None] = None,
    +            log_config: Optional[Dict] = None,
    +            momentum_config: Union[Dict, Hook, None] = None,
    +            timer_config: Union[Dict, Hook] = dict(type='IterTimerHook'),
    +            custom_hooks_config: Union[List, Dict, Hook, None] = None) -> None:
    +        """Register default and custom hooks for training.
    +
    +        Default and custom hooks include:
    +
    +        +----------------------+-------------------------+
    +        | Hooks                | Priority                |
    +        +======================+=========================+
    +        | LrUpdaterHook        | VERY_HIGH (10)          |
    +        +----------------------+-------------------------+
    +        | MomentumUpdaterHook  | HIGH (30)               |
    +        +----------------------+-------------------------+
    +        | OptimizerStepperHook | ABOVE_NORMAL (40)       |
    +        +----------------------+-------------------------+
    +        | CheckpointSaverHook  | NORMAL (50)             |
    +        +----------------------+-------------------------+
    +        | IterTimerHook        | LOW (70)                |
    +        +----------------------+-------------------------+
    +        | LoggerHook(s)        | VERY_LOW (90)           |
    +        +----------------------+-------------------------+
    +        | CustomHook(s)        | defaults to NORMAL (50) |
    +        +----------------------+-------------------------+
    +
    +        If custom hooks have same priority with default hooks, custom hooks
    +        will be triggered after default hooks.
    +        """
    +        self.register_lr_hook(lr_config)
    +        self.register_momentum_hook(momentum_config)
    +        self.register_optimizer_hook(optimizer_config)
    +        self.register_checkpoint_hook(checkpoint_config)
    +        self.register_timer_hook(timer_config)
    +        self.register_logger_hooks(log_config)
    +        self.register_custom_hooks(custom_hooks_config)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/builder.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/builder.py
    new file mode 100644
    index 000000000..008da32aa
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/builder.py
    @@ -0,0 +1,25 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +from typing import Optional
    +
    +from ..utils import Registry
    +
    +RUNNERS = Registry('runner')
    +RUNNER_BUILDERS = Registry('runner builder')
    +
    +
    +def build_runner_constructor(cfg: dict):
    +    return RUNNER_BUILDERS.build(cfg)
    +
    +
    +def build_runner(cfg: dict, default_args: Optional[dict] = None):
    +    runner_cfg = copy.deepcopy(cfg)
    +    constructor_type = runner_cfg.pop('constructor',
    +                                      'DefaultRunnerConstructor')
    +    runner_constructor = build_runner_constructor(
    +        dict(
    +            type=constructor_type,
    +            runner_cfg=runner_cfg,
    +            default_args=default_args))
    +    runner = runner_constructor()
    +    return runner
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/checkpoint.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/checkpoint.py
    new file mode 100644
    index 000000000..9dd2d311e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/checkpoint.py
    @@ -0,0 +1,821 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import io
    +import logging
    +import os
    +import os.path as osp
    +import pkgutil
    +import re
    +import time
    +import warnings
    +from collections import OrderedDict
    +from importlib import import_module
    +from tempfile import TemporaryDirectory
    +from typing import Callable, Dict, List, Optional, Tuple, Union
    +
    +import torch
    +import torch.nn as nn
    +import torchvision
    +from torch.optim import Optimizer
    +
    +import mmcv
    +from ..fileio import FileClient
    +from ..fileio import load as load_file
    +from ..parallel import is_module_wrapper
    +from ..utils import digit_version, load_url, mkdir_or_exist
    +from .dist_utils import get_dist_info
    +
    +ENV_MMCV_HOME = 'MMCV_HOME'
    +ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
    +DEFAULT_CACHE_DIR = '~/.cache'
    +
    +
    +def _get_mmcv_home() -> str:
    +    mmcv_home = os.path.expanduser(
    +        os.getenv(
    +            ENV_MMCV_HOME,
    +            os.path.join(
    +                os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv')))
    +
    +    mkdir_or_exist(mmcv_home)
    +    return mmcv_home
    +
    +
    +def load_state_dict(module: nn.Module,
    +                    state_dict: Union[dict, OrderedDict],
    +                    strict: bool = False,
    +                    logger: Optional[logging.Logger] = None) -> None:
    +    """Load state_dict to a module.
    +
    +    This method is modified from :meth:`torch.nn.Module.load_state_dict`.
    +    Default value for ``strict`` is set to ``False`` and the message for
    +    param mismatch will be shown even if strict is False.
    +
    +    Args:
    +        module (Module): Module that receives the state_dict.
    +        state_dict (dict or OrderedDict): Weights.
    +        strict (bool): whether to strictly enforce that the keys
    +            in :attr:`state_dict` match the keys returned by this module's
    +            :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
    +        logger (:obj:`logging.Logger`, optional): Logger to log the error
    +            message. If not specified, print function will be used.
    +    """
    +    unexpected_keys: List[str] = []
    +    all_missing_keys: List[str] = []
    +    err_msg: List[str] = []
    +
    +    metadata = getattr(state_dict, '_metadata', None)
    +    state_dict = state_dict.copy()  # type: ignore
    +    if metadata is not None:
    +        state_dict._metadata = metadata  # type: ignore
    +
    +    # use _load_from_state_dict to enable checkpoint version control
    +    def load(module, prefix=''):
    +        # recursively check parallel module in case that the model has a
    +        # complicated structure, e.g., nn.Module(nn.Module(DDP))
    +        if is_module_wrapper(module):
    +            module = module.module
    +        local_metadata = {} if metadata is None else metadata.get(
    +            prefix[:-1], {})
    +        module._load_from_state_dict(state_dict, prefix, local_metadata, True,
    +                                     all_missing_keys, unexpected_keys,
    +                                     err_msg)
    +        for name, child in module._modules.items():
    +            if child is not None:
    +                load(child, prefix + name + '.')
    +
    +    load(module)
    +    # break load->load reference cycle
    +    load = None  # type: ignore
    +
    +    # ignore "num_batches_tracked" of BN layers
    +    missing_keys = [
    +        key for key in all_missing_keys if 'num_batches_tracked' not in key
    +    ]
    +
    +    if unexpected_keys:
    +        err_msg.append('unexpected key in source '
    +                       f'state_dict: {", ".join(unexpected_keys)}\n')
    +    if missing_keys:
    +        err_msg.append(
    +            f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
    +
    +    rank, _ = get_dist_info()
    +    if len(err_msg) > 0 and rank == 0:
    +        err_msg.insert(
    +            0, 'The model and loaded state dict do not match exactly\n')
    +        err_msg = '\n'.join(err_msg)  # type: ignore
    +        if strict:
    +            raise RuntimeError(err_msg)
    +        elif logger is not None:
    +            logger.warning(err_msg)
    +        else:
    +            print(err_msg)
    +
    +
    +def get_torchvision_models():
    +    if digit_version(torchvision.__version__) < digit_version('0.13.0a0'):
    +        model_urls = dict()
    +        # When the version of torchvision is lower than 0.13, the model url is
    +        # not declared in `torchvision.model.__init__.py`, so we need to
    +        # iterate through `torchvision.models.__path__` to get the url for each
    +        # model.
    +        for _, name, ispkg in pkgutil.walk_packages(
    +                torchvision.models.__path__):
    +            if ispkg:
    +                continue
    +            _zoo = import_module(f'torchvision.models.{name}')
    +            if hasattr(_zoo, 'model_urls'):
    +                _urls = getattr(_zoo, 'model_urls')
    +                model_urls.update(_urls)
    +    else:
    +        # Since torchvision bumps to v0.13, the weight loading logic,
    +        # model keys and model urls have been changed. Here the URLs of old
    +        # version is loaded to avoid breaking back compatibility. If the
    +        # torchvision version>=0.13.0, new URLs will be added. Users can get
    +        # the resnet50 checkpoint by setting 'resnet50.imagent1k_v1',
    +        # 'resnet50' or 'ResNet50_Weights.IMAGENET1K_V1' in the config.
    +        json_path = osp.join(mmcv.__path__[0],
    +                             'model_zoo/torchvision_0.12.json')
    +        model_urls = mmcv.load(json_path)
    +        if digit_version(torchvision.__version__) < digit_version('0.14.0a0'):
    +            weights_list = [
    +                cls for cls_name, cls in torchvision.models.__dict__.items()
    +                if cls_name.endswith('_Weights')
    +            ]
    +        else:
    +            weights_list = [
    +                torchvision.models.get_model_weights(model)
    +                for model in torchvision.models.list_models(torchvision.models)
    +            ]
    +
    +        for cls in weights_list:
    +            # The name of torchvision model weights classes ends with
    +            # `_Weights` such as `ResNet18_Weights`. However, some model weight
    +            # classes, such as `MNASNet0_75_Weights` does not have any urls in
    +            # torchvision 0.13.0 and cannot be iterated. Here we simply check
    +            # `DEFAULT` attribute to ensure the class is not empty.
    +            if not hasattr(cls, 'DEFAULT'):
    +                continue
    +            # Since `cls.DEFAULT` can not be accessed by iterating cls, we set
    +            # default urls explicitly.
    +            cls_name = cls.__name__
    +            cls_key = cls_name.replace('_Weights', '').lower()
    +            model_urls[f'{cls_key}.default'] = cls.DEFAULT.url
    +            for weight_enum in cls:
    +                cls_key = cls_name.replace('_Weights', '').lower()
    +                cls_key = f'{cls_key}.{weight_enum.name.lower()}'
    +                model_urls[cls_key] = weight_enum.url
    +
    +    return model_urls
    +
    +
    +def get_external_models():
    +    mmcv_home = _get_mmcv_home()
    +    default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json')
    +    default_urls = load_file(default_json_path)
    +    assert isinstance(default_urls, dict)
    +    external_json_path = osp.join(mmcv_home, 'open_mmlab.json')
    +    if osp.exists(external_json_path):
    +        external_urls = load_file(external_json_path)
    +        assert isinstance(external_urls, dict)
    +        default_urls.update(external_urls)
    +
    +    return default_urls
    +
    +
    +def get_mmcls_models():
    +    mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json')
    +    mmcls_urls = load_file(mmcls_json_path)
    +
    +    return mmcls_urls
    +
    +
    +def get_deprecated_model_names():
    +    deprecate_json_path = osp.join(mmcv.__path__[0],
    +                                   'model_zoo/deprecated.json')
    +    deprecate_urls = load_file(deprecate_json_path)
    +    assert isinstance(deprecate_urls, dict)
    +
    +    return deprecate_urls
    +
    +
    +def _process_mmcls_checkpoint(checkpoint: Dict) -> Dict:
    +    if 'state_dict' in checkpoint:
    +        state_dict = checkpoint['state_dict']
    +    else:
    +        # Some checkpoints converted from 3rd-party repo don't
    +        # have the "state_dict" key.
    +        state_dict = checkpoint
    +    new_state_dict = OrderedDict()
    +    for k, v in state_dict.items():
    +        if k.startswith('backbone.'):
    +            new_state_dict[k[9:]] = v
    +    new_checkpoint = dict(state_dict=new_state_dict)
    +
    +    return new_checkpoint
    +
    +
    +class CheckpointLoader:
    +    """A general checkpoint loader to manage all schemes."""
    +
    +    _schemes: dict = {}
    +
    +    @classmethod
    +    def _register_scheme(cls,
    +                         prefixes: Union[str, List, Tuple],
    +                         loader: Callable,
    +                         force: bool = False) -> None:
    +        if isinstance(prefixes, str):
    +            prefixes = [prefixes]
    +        else:
    +            assert isinstance(prefixes, (list, tuple))
    +        for prefix in prefixes:
    +            if (prefix not in cls._schemes) or force:
    +                cls._schemes[prefix] = loader
    +            else:
    +                raise KeyError(
    +                    f'{prefix} is already registered as a loader backend, '
    +                    'add "force=True" if you want to override it')
    +        # sort, longer prefixes take priority
    +        cls._schemes = OrderedDict(
    +            sorted(cls._schemes.items(), key=lambda t: t[0], reverse=True))
    +
    +    @classmethod
    +    def register_scheme(cls,
    +                        prefixes: Union[str, List[str], Tuple[str, ...]],
    +                        loader: Optional[Callable] = None,
    +                        force: bool = False) -> Callable:
    +        """Register a loader to CheckpointLoader.
    +
    +        This method can be used as a normal class method or a decorator.
    +
    +        Args:
    +            prefixes (str or Sequence[str]):
    +            The prefix of the registered loader.
    +            loader (function, optional): The loader function to be registered.
    +                When this method is used as a decorator, loader is None.
    +                Defaults to None.
    +            force (bool, optional): Whether to override the loader
    +                if the prefix has already been registered. Defaults to False.
    +        """
    +
    +        if loader is not None:
    +            cls._register_scheme(prefixes, loader, force=force)
    +            return  # type: ignore
    +
    +        def _register(loader_cls):
    +            cls._register_scheme(prefixes, loader_cls, force=force)
    +            return loader_cls
    +
    +        return _register
    +
    +    @classmethod
    +    def _get_checkpoint_loader(cls, path: str):
    +        """Finds a loader that supports the given path. Falls back to the local
    +        loader if no other loader is found.
    +
    +        Args:
    +            path (str): checkpoint path
    +
    +        Returns:
    +            callable: checkpoint loader
    +        """
    +        for p in cls._schemes:
    +            # use regular match to handle some cases that where the prefix of
    +            # loader has a prefix. For example, both 's3://path' and
    +            # 'open-mmlab:s3://path' should return `load_from_ceph`
    +            if re.match(p, path) is not None:
    +                return cls._schemes[p]
    +
    +    @classmethod
    +    def load_checkpoint(
    +            cls,
    +            filename: str,
    +            map_location: Union[str, Callable, None] = None,
    +            logger: Optional[logging.Logger] = None
    +    ) -> Union[dict, OrderedDict]:
    +        """load checkpoint through URL scheme path.
    +
    +        Args:
    +            filename (str): checkpoint file name with given prefix
    +            map_location (str, optional): Same as :func:`torch.load`.
    +                Default: None
    +            logger (:mod:`logging.Logger`, optional): The logger for message.
    +                Default: None
    +
    +        Returns:
    +            dict or OrderedDict: The loaded checkpoint.
    +        """
    +
    +        checkpoint_loader = cls._get_checkpoint_loader(filename)
    +        class_name = checkpoint_loader.__name__  # type: ignore
    +        mmcv.print_log(
    +            f'load checkpoint from {class_name[10:]} path: {filename}', logger)
    +        return checkpoint_loader(filename, map_location)  # type: ignore
    +
    +
    +@CheckpointLoader.register_scheme(prefixes='')
    +def load_from_local(
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """load checkpoint by local file path.
    +
    +    Args:
    +        filename (str): local checkpoint file path
    +        map_location (str, optional): Same as :func:`torch.load`.
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    filename = osp.expanduser(filename)
    +    if not osp.isfile(filename):
    +        raise FileNotFoundError(f'{filename} can not be found.')
    +    checkpoint = torch.load(filename, map_location=map_location)
    +    return checkpoint
    +
    +
    +@CheckpointLoader.register_scheme(prefixes=('http://', 'https://'))
    +def load_from_http(
    +        filename: str,
    +        map_location: Union[str, Callable, None] = None,
    +        model_dir: Optional[str] = None) -> Union[dict, OrderedDict]:
    +    """load checkpoint through HTTP or HTTPS scheme path. In distributed
    +    setting, this function only download checkpoint at local rank 0.
    +
    +    Args:
    +        filename (str): checkpoint file path with modelzoo or
    +            torchvision prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +        model_dir (str, optional): directory in which to save the object,
    +            Default: None
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    rank, world_size = get_dist_info()
    +    if rank == 0:
    +        checkpoint = load_url(
    +            filename, model_dir=model_dir, map_location=map_location)
    +    if world_size > 1:
    +        torch.distributed.barrier()
    +        if rank > 0:
    +            checkpoint = load_url(
    +                filename, model_dir=model_dir, map_location=map_location)
    +    return checkpoint
    +
    +
    +@CheckpointLoader.register_scheme(prefixes='pavi://')
    +def load_from_pavi(
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """load checkpoint through the file path prefixed with pavi. In distributed
    +    setting, this function download ckpt at all ranks to different temporary
    +    directories.
    +
    +    Args:
    +        filename (str): checkpoint file path with pavi prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +          Default: None
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    assert filename.startswith('pavi://'), \
    +        f'Expected filename startswith `pavi://`, but get {filename}'
    +    model_path = filename[7:]
    +
    +    try:
    +        from pavi import modelcloud
    +    except ImportError:
    +        raise ImportError(
    +            'Please install pavi to load checkpoint from modelcloud.')
    +
    +    model = modelcloud.get(model_path)
    +    with TemporaryDirectory() as tmp_dir:
    +        downloaded_file = osp.join(tmp_dir, model.name)
    +        model.download(downloaded_file)
    +        checkpoint = torch.load(downloaded_file, map_location=map_location)
    +    return checkpoint
    +
    +
    +@CheckpointLoader.register_scheme(prefixes=r'(\S+\:)?s3://')
    +def load_from_ceph(filename: str,
    +                   map_location: Union[str, Callable, None] = None,
    +                   backend: str = 'petrel') -> Union[dict, OrderedDict]:
    +    """load checkpoint through the file path prefixed with s3.  In distributed
    +    setting, this function download ckpt at all ranks to different temporary
    +    directories.
    +
    +    Note:
    +        Since v1.4.1, the registered scheme prefixes have been enhanced to
    +        support bucket names in the path prefix, e.g. 's3://xx.xx/xx.path',
    +        'bucket1:s3://xx.xx/xx.path'.
    +
    +    Args:
    +        filename (str): checkpoint file path with s3 prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +        backend (str): The storage backend type. Options are 'ceph',
    +            'petrel'. Default: 'petrel'.
    +
    +    .. warning::
    +        :class:`mmcv.fileio.file_client.CephBackend` will be deprecated,
    +        please use :class:`mmcv.fileio.file_client.PetrelBackend` instead.
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    allowed_backends = ['ceph', 'petrel']
    +    if backend not in allowed_backends:
    +        raise ValueError(f'Load from Backend {backend} is not supported.')
    +
    +    if backend == 'ceph':
    +        warnings.warn(
    +            'CephBackend will be deprecated, please use PetrelBackend instead',
    +            DeprecationWarning)
    +
    +    # CephClient and PetrelBackend have the same prefix 's3://' and the latter
    +    # will be chosen as default. If PetrelBackend can not be instantiated
    +    # successfully, the CephClient will be chosen.
    +    try:
    +        file_client = FileClient(backend=backend)
    +    except ImportError:
    +        allowed_backends.remove(backend)
    +        file_client = FileClient(backend=allowed_backends[0])
    +
    +    with io.BytesIO(file_client.get(filename)) as buffer:
    +        checkpoint = torch.load(buffer, map_location=map_location)
    +    return checkpoint
    +
    +
    +@CheckpointLoader.register_scheme(prefixes=('modelzoo://', 'torchvision://'))
    +def load_from_torchvision(
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """load checkpoint through the file path prefixed with modelzoo or
    +    torchvision.
    +
    +    Args:
    +        filename (str): checkpoint file path with modelzoo or
    +            torchvision prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    model_urls = get_torchvision_models()
    +    if filename.startswith('modelzoo://'):
    +        warnings.warn(
    +            'The URL scheme of "modelzoo://" is deprecated, please '
    +            'use "torchvision://" instead', DeprecationWarning)
    +        model_name = filename[11:]
    +    else:
    +        model_name = filename[14:]
    +
    +    # Support getting model urls in the same way as torchvision
    +    # `ResNet50_Weights.IMAGENET1K_V1` will be mapped to
    +    # resnet50.imagenet1k_v1.
    +    model_name = model_name.lower().replace('_weights', '')
    +    return load_from_http(model_urls[model_name], map_location=map_location)
    +
    +
    +@CheckpointLoader.register_scheme(prefixes=('open-mmlab://', 'openmmlab://'))
    +def load_from_openmmlab(
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """load checkpoint through the file path prefixed with open-mmlab or
    +    openmmlab.
    +
    +    Args:
    +        filename (str): checkpoint file path with open-mmlab or
    +        openmmlab prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +          Default: None
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +
    +    model_urls = get_external_models()
    +    prefix_str = 'open-mmlab://'
    +    if filename.startswith(prefix_str):
    +        model_name = filename[13:]
    +    else:
    +        model_name = filename[12:]
    +        prefix_str = 'openmmlab://'
    +
    +    deprecated_urls = get_deprecated_model_names()
    +    if model_name in deprecated_urls:
    +        warnings.warn(
    +            f'{prefix_str}{model_name} is deprecated in favor '
    +            f'of {prefix_str}{deprecated_urls[model_name]}',
    +            DeprecationWarning)
    +        model_name = deprecated_urls[model_name]
    +    model_url = model_urls[model_name]
    +    # check if is url
    +    if model_url.startswith(('http://', 'https://')):
    +        checkpoint = load_from_http(model_url, map_location=map_location)
    +    else:
    +        filename = osp.join(_get_mmcv_home(), model_url)
    +        if not osp.isfile(filename):
    +            raise FileNotFoundError(f'{filename} can not be found.')
    +        checkpoint = torch.load(filename, map_location=map_location)
    +    return checkpoint
    +
    +
    +@CheckpointLoader.register_scheme(prefixes='mmcls://')
    +def load_from_mmcls(
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """load checkpoint through the file path prefixed with mmcls.
    +
    +    Args:
    +        filename (str): checkpoint file path with mmcls prefix
    +        map_location (str, optional): Same as :func:`torch.load`.
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +
    +    model_urls = get_mmcls_models()
    +    model_name = filename[8:]
    +    checkpoint = load_from_http(
    +        model_urls[model_name], map_location=map_location)
    +    checkpoint = _process_mmcls_checkpoint(checkpoint)
    +    return checkpoint
    +
    +
    +def _load_checkpoint(
    +        filename: str,
    +        map_location: Union[str, Callable, None] = None,
    +        logger: Optional[logging.Logger] = None) -> Union[dict, OrderedDict]:
    +    """Load checkpoint from somewhere (modelzoo, file, url).
    +
    +    Args:
    +        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
    +            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
    +            details.
    +        map_location (str, optional): Same as :func:`torch.load`.
    +           Default: None.
    +        logger (:mod:`logging.Logger`, optional): The logger for error message.
    +           Default: None
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint. It can be either an
    +           OrderedDict storing model weights or a dict containing other
    +           information, which depends on the checkpoint.
    +    """
    +    return CheckpointLoader.load_checkpoint(filename, map_location, logger)
    +
    +
    +def _load_checkpoint_with_prefix(
    +    prefix: str,
    +    filename: str,
    +    map_location: Union[str, Callable, None] = None,
    +) -> Union[dict, OrderedDict]:
    +    """Load partial pretrained model with specific prefix.
    +
    +    Args:
    +        prefix (str): The prefix of sub-module.
    +        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
    +            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
    +            details.
    +        map_location (str | None): Same as :func:`torch.load`. Default: None.
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +
    +    checkpoint = _load_checkpoint(filename, map_location=map_location)
    +
    +    if 'state_dict' in checkpoint:
    +        state_dict = checkpoint['state_dict']
    +    else:
    +        state_dict = checkpoint
    +    if not prefix.endswith('.'):
    +        prefix += '.'
    +    prefix_len = len(prefix)
    +
    +    state_dict = {
    +        k[prefix_len:]: v
    +        for k, v in state_dict.items() if k.startswith(prefix)
    +    }
    +
    +    assert state_dict, f'{prefix} is not in the pretrained model'
    +    return state_dict
    +
    +
    +def load_checkpoint(
    +        model: torch.nn.Module,
    +        filename: str,
    +        map_location: Union[str, Callable, None] = None,
    +        strict: bool = False,
    +        logger: Optional[logging.Logger] = None,
    +        revise_keys: list = [(r'^module\.', '')]) -> Union[dict, OrderedDict]:
    +    """Load checkpoint from a file or URI.
    +
    +    Args:
    +        model (Module): Module to load checkpoint.
    +        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
    +            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
    +            details.
    +        map_location (str): Same as :func:`torch.load`.
    +        strict (bool): Whether to allow different params for the model and
    +            checkpoint.
    +        logger (:mod:`logging.Logger` or None): The logger for error message.
    +        revise_keys (list): A list of customized keywords to modify the
    +            state_dict in checkpoint. Each item is a (pattern, replacement)
    +            pair of the regular expression operations. Default: strip
    +            the prefix 'module.' by [(r'^module\\.', '')].
    +
    +    Returns:
    +        dict or OrderedDict: The loaded checkpoint.
    +    """
    +    checkpoint = _load_checkpoint(filename, map_location, logger)
    +    # OrderedDict is a subclass of dict
    +    if not isinstance(checkpoint, dict):
    +        raise RuntimeError(
    +            f'No state_dict found in checkpoint file {filename}')
    +    # get state_dict from checkpoint
    +    if 'state_dict' in checkpoint:
    +        state_dict = checkpoint['state_dict']
    +    else:
    +        state_dict = checkpoint
    +
    +    # strip prefix of state_dict
    +    metadata = getattr(state_dict, '_metadata', OrderedDict())
    +    for p, r in revise_keys:
    +        state_dict = OrderedDict(
    +            {re.sub(p, r, k): v
    +             for k, v in state_dict.items()})
    +    # Keep metadata in state_dict
    +    state_dict._metadata = metadata
    +
    +    # load state_dict
    +    load_state_dict(model, state_dict, strict, logger)
    +    return checkpoint
    +
    +
    +def weights_to_cpu(state_dict: OrderedDict) -> OrderedDict:
    +    """Copy a model state_dict to cpu.
    +
    +    Args:
    +        state_dict (OrderedDict): Model weights on GPU.
    +
    +    Returns:
    +        OrderedDict: Model weights on GPU.
    +    """
    +    state_dict_cpu = OrderedDict()
    +    for key, val in state_dict.items():
    +        state_dict_cpu[key] = val.cpu()
    +    # Keep metadata in state_dict
    +    state_dict_cpu._metadata = getattr(  # type: ignore
    +        state_dict, '_metadata', OrderedDict())
    +    return state_dict_cpu
    +
    +
    +def _save_to_state_dict(module: torch.nn.Module, destination: dict,
    +                        prefix: str, keep_vars: bool) -> None:
    +    """Saves module state to `destination` dictionary.
    +
    +    This method is modified from :meth:`torch.nn.Module._save_to_state_dict`.
    +
    +    Args:
    +        module (nn.Module): The module to generate state_dict.
    +        destination (dict): A dict where state will be stored.
    +        prefix (str): The prefix for parameters and buffers used in this
    +            module.
    +    """
    +    for name, param in module._parameters.items():
    +        if param is not None:
    +            destination[prefix + name] = param if keep_vars else param.detach()
    +    for name, buf in module._buffers.items():
    +        # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d
    +        if buf is not None:
    +            destination[prefix + name] = buf if keep_vars else buf.detach()
    +
    +
    +def get_state_dict(module: torch.nn.Module,
    +                   destination: Optional[OrderedDict] = None,
    +                   prefix: str = '',
    +                   keep_vars: bool = False) -> OrderedDict:
    +    """Returns a dictionary containing a whole state of the module.
    +
    +    Both parameters and persistent buffers (e.g. running averages) are
    +    included. Keys are corresponding parameter and buffer names.
    +
    +    This method is modified from :meth:`torch.nn.Module.state_dict` to
    +    recursively check parallel module in case that the model has a complicated
    +    structure, e.g., nn.Module(nn.Module(DDP)).
    +
    +    Args:
    +        module (nn.Module): The module to generate state_dict.
    +        destination (OrderedDict): Returned dict for the state of the
    +            module.
    +        prefix (str): Prefix of the key.
    +        keep_vars (bool): Whether to keep the variable property of the
    +            parameters. Default: False.
    +
    +    Returns:
    +        dict: A dictionary containing a whole state of the module.
    +    """
    +    # recursively check parallel module in case that the model has a
    +    # complicated structure, e.g., nn.Module(nn.Module(DDP))
    +    if is_module_wrapper(module):
    +        module = module.module
    +
    +    # below is the same as torch.nn.Module.state_dict()
    +    if destination is None:
    +        destination = OrderedDict()
    +        destination._metadata = OrderedDict()  # type: ignore
    +    destination._metadata[prefix[:-1]] = local_metadata = dict(  # type: ignore
    +        version=module._version)
    +    _save_to_state_dict(module, destination, prefix, keep_vars)  # type: ignore
    +    for name, child in module._modules.items():
    +        if child is not None:
    +            get_state_dict(
    +                child, destination, prefix + name + '.', keep_vars=keep_vars)
    +    for hook in module._state_dict_hooks.values():
    +        hook_result = hook(module, destination, prefix, local_metadata)
    +        if hook_result is not None:
    +            destination = hook_result
    +    return destination  # type: ignore
    +
    +
    +def save_checkpoint(model: torch.nn.Module,
    +                    filename: str,
    +                    optimizer: Optional[Optimizer] = None,
    +                    meta: Optional[dict] = None,
    +                    file_client_args: Optional[dict] = None) -> None:
    +    """Save checkpoint to file.
    +
    +    The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
    +    ``optimizer``. By default ``meta`` will contain version and time info.
    +
    +    Args:
    +        model (Module): Module whose params are to be saved.
    +        filename (str): Checkpoint filename.
    +        optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
    +        meta (dict, optional): Metadata to be saved in checkpoint.
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +            `New in version 1.3.16.`
    +    """
    +    if meta is None:
    +        meta = {}
    +    elif not isinstance(meta, dict):
    +        raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
    +    meta.update(mmcv_version=mmcv.__version__, time=time.asctime())
    +
    +    if is_module_wrapper(model):
    +        model = model.module
    +
    +    if hasattr(model, 'CLASSES') and model.CLASSES is not None:
    +        # save class name to the meta
    +        meta.update(CLASSES=model.CLASSES)
    +
    +    checkpoint = {
    +        'meta': meta,
    +        'state_dict': weights_to_cpu(get_state_dict(model))  # type: ignore
    +    }
    +    # save optimizer state dict in the checkpoint
    +    if isinstance(optimizer, Optimizer):
    +        checkpoint['optimizer'] = optimizer.state_dict()
    +    elif isinstance(optimizer, dict):
    +        checkpoint['optimizer'] = {}
    +        for name, optim in optimizer.items():
    +            checkpoint['optimizer'][name] = optim.state_dict()
    +
    +    if filename.startswith('pavi://'):
    +        if file_client_args is not None:
    +            raise ValueError(
    +                'file_client_args should be "None" if filename starts with'
    +                f'"pavi://", but got {file_client_args}')
    +        try:
    +            from pavi import exception, modelcloud
    +        except ImportError:
    +            raise ImportError(
    +                'Please install pavi to load checkpoint from modelcloud.')
    +        model_path = filename[7:]
    +        root = modelcloud.Folder()
    +        model_dir, model_name = osp.split(model_path)
    +        try:
    +            model = modelcloud.get(model_dir)
    +        except exception.NodeNotFoundError:
    +            model = root.create_training_model(model_dir)
    +        with TemporaryDirectory() as tmp_dir:
    +            checkpoint_file = osp.join(tmp_dir, model_name)
    +            with open(checkpoint_file, 'wb') as f:
    +                torch.save(checkpoint, f)
    +                f.flush()
    +            model.create_file(checkpoint_file, name=model_name)
    +    else:
    +        file_client = FileClient.infer_client(file_client_args, filename)
    +        with io.BytesIO() as f:
    +            torch.save(checkpoint, f)
    +            file_client.put(f.getvalue(), filename)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/default_constructor.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/default_constructor.py
    new file mode 100644
    index 000000000..394b51cfd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/default_constructor.py
    @@ -0,0 +1,47 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional
    +
    +from .builder import RUNNER_BUILDERS, RUNNERS
    +
    +
    +@RUNNER_BUILDERS.register_module()
    +class DefaultRunnerConstructor:
    +    """Default constructor for runners.
    +
    +    Custom existing `Runner` like `EpocBasedRunner` though `RunnerConstructor`.
    +    For example, We can inject some new properties and functions for `Runner`.
    +
    +    Example:
    +        >>> from mmcv.runner import RUNNER_BUILDERS, build_runner
    +        >>> # Define a new RunnerReconstructor
    +        >>> @RUNNER_BUILDERS.register_module()
    +        >>> class MyRunnerConstructor:
    +        ...     def __init__(self, runner_cfg, default_args=None):
    +        ...         if not isinstance(runner_cfg, dict):
    +        ...             raise TypeError('runner_cfg should be a dict',
    +        ...                             f'but got {type(runner_cfg)}')
    +        ...         self.runner_cfg = runner_cfg
    +        ...         self.default_args = default_args
    +        ...
    +        ...     def __call__(self):
    +        ...         runner = RUNNERS.build(self.runner_cfg,
    +        ...                                default_args=self.default_args)
    +        ...         # Add new properties for existing runner
    +        ...         runner.my_name = 'my_runner'
    +        ...         runner.my_function = lambda self: print(self.my_name)
    +        ...         ...
    +        >>> # build your runner
    +        >>> runner_cfg = dict(type='EpochBasedRunner', max_epochs=40,
    +        ...                   constructor='MyRunnerConstructor')
    +        >>> runner = build_runner(runner_cfg)
    +    """
    +
    +    def __init__(self, runner_cfg: dict, default_args: Optional[dict] = None):
    +        if not isinstance(runner_cfg, dict):
    +            raise TypeError('runner_cfg should be a dict',
    +                            f'but got {type(runner_cfg)}')
    +        self.runner_cfg = runner_cfg
    +        self.default_args = default_args
    +
    +    def __call__(self):
    +        return RUNNERS.build(self.runner_cfg, default_args=self.default_args)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/dist_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/dist_utils.py
    new file mode 100644
    index 000000000..c061b3c11
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/dist_utils.py
    @@ -0,0 +1,220 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
    +import functools
    +import os
    +import socket
    +import subprocess
    +from collections import OrderedDict
    +from typing import Callable, List, Optional, Tuple
    +
    +import torch
    +import torch.multiprocessing as mp
    +from torch import distributed as dist
    +from torch._utils import (_flatten_dense_tensors, _take_tensors,
    +                          _unflatten_dense_tensors)
    +
    +from mmcv.utils import IS_MLU_AVAILABLE, IS_NPU_AVAILABLE
    +
    +
    +def _find_free_port() -> str:
    +    # Copied from https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py # noqa: E501
    +    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    +    # Binding to port 0 will cause the OS to find an available port for us
    +    sock.bind(('', 0))
    +    port = sock.getsockname()[1]
    +    sock.close()
    +    # NOTE: there is still a chance the port could be taken by other processes.
    +    return port
    +
    +
    +def _is_free_port(port: int) -> bool:
    +    ips = socket.gethostbyname_ex(socket.gethostname())[-1]
    +    ips.append('localhost')
    +    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
    +        return all(s.connect_ex((ip, port)) != 0 for ip in ips)
    +
    +
    +def init_dist(launcher: str, backend: str = 'nccl', **kwargs) -> None:
    +    if mp.get_start_method(allow_none=True) is None:
    +        mp.set_start_method('spawn')
    +    if launcher == 'pytorch':
    +        _init_dist_pytorch(backend, **kwargs)
    +    elif launcher == 'mpi':
    +        _init_dist_mpi(backend, **kwargs)
    +    elif launcher == 'slurm':
    +        _init_dist_slurm(backend, **kwargs)
    +    else:
    +        raise ValueError(f'Invalid launcher type: {launcher}')
    +
    +
    +def _init_dist_pytorch(backend: str, **kwargs) -> None:
    +    # TODO: use local_rank instead of rank % num_gpus
    +    rank = int(os.environ['RANK'])
    +    if IS_MLU_AVAILABLE:
    +        import torch_mlu  # noqa: F401
    +        torch.mlu.set_device(rank)
    +        dist.init_process_group(
    +            backend='cncl',
    +            rank=rank,
    +            world_size=int(os.environ['WORLD_SIZE']),
    +            **kwargs)
    +    elif IS_NPU_AVAILABLE:
    +        import torch_npu  # noqa: F401
    +        num_npus = torch.npu.device_count()
    +        torch.npu.set_device(rank % num_npus)
    +        dist.init_process_group(
    +            backend='hccl',
    +            rank=rank,
    +            world_size=int(os.environ['WORLD_SIZE']),
    +            **kwargs)
    +    else:
    +        num_gpus = torch.cuda.device_count()
    +        torch.cuda.set_device(rank % num_gpus)
    +        dist.init_process_group(backend=backend, **kwargs)
    +
    +
    +def _init_dist_mpi(backend: str, **kwargs) -> None:
    +    local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
    +    torch.cuda.set_device(local_rank)
    +    if 'MASTER_PORT' not in os.environ:
    +        # 29500 is torch.distributed default port
    +        os.environ['MASTER_PORT'] = '29500'
    +    if 'MASTER_ADDR' not in os.environ:
    +        raise KeyError('The environment variable MASTER_ADDR is not set')
    +    os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_SIZE']
    +    os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_RANK']
    +    dist.init_process_group(backend=backend, **kwargs)
    +
    +
    +def _init_dist_slurm(backend: str, port: Optional[int] = None) -> None:
    +    """Initialize slurm distributed training environment.
    +
    +    If argument ``port`` is not specified, then the master port will be system
    +    environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
    +    environment variable, then a default port ``29500`` will be used.
    +
    +    Args:
    +        backend (str): Backend of torch.distributed.
    +        port (int, optional): Master port. Defaults to None.
    +    """
    +    proc_id = int(os.environ['SLURM_PROCID'])
    +    ntasks = int(os.environ['SLURM_NTASKS'])
    +    node_list = os.environ['SLURM_NODELIST']
    +    num_gpus = torch.cuda.device_count()
    +    torch.cuda.set_device(proc_id % num_gpus)
    +    addr = subprocess.getoutput(
    +        f'scontrol show hostname {node_list} | head -n1')
    +    # specify master port
    +    if port is not None:
    +        os.environ['MASTER_PORT'] = str(port)
    +    elif 'MASTER_PORT' in os.environ:
    +        pass  # use MASTER_PORT in the environment variable
    +    else:
    +        # if torch.distributed default port(29500) is available
    +        # then use it, else find a free port
    +        if _is_free_port(29500):
    +            os.environ['MASTER_PORT'] = '29500'
    +        else:
    +            os.environ['MASTER_PORT'] = str(_find_free_port())
    +    # use MASTER_ADDR in the environment variable if it already exists
    +    if 'MASTER_ADDR' not in os.environ:
    +        os.environ['MASTER_ADDR'] = addr
    +    os.environ['WORLD_SIZE'] = str(ntasks)
    +    os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
    +    os.environ['RANK'] = str(proc_id)
    +    dist.init_process_group(backend=backend)
    +
    +
    +def get_dist_info() -> Tuple[int, int]:
    +    if dist.is_available() and dist.is_initialized():
    +        rank = dist.get_rank()
    +        world_size = dist.get_world_size()
    +    else:
    +        rank = 0
    +        world_size = 1
    +    return rank, world_size
    +
    +
    +def master_only(func: Callable) -> Callable:
    +
    +    @functools.wraps(func)
    +    def wrapper(*args, **kwargs):
    +        rank, _ = get_dist_info()
    +        if rank == 0:
    +            return func(*args, **kwargs)
    +
    +    return wrapper
    +
    +
    +def allreduce_params(params: List[torch.nn.Parameter],
    +                     coalesce: bool = True,
    +                     bucket_size_mb: int = -1) -> None:
    +    """Allreduce parameters.
    +
    +    Args:
    +        params (list[torch.nn.Parameter]): List of parameters or buffers
    +            of a model.
    +        coalesce (bool, optional): Whether allreduce parameters as a whole.
    +            Defaults to True.
    +        bucket_size_mb (int, optional): Size of bucket, the unit is MB.
    +            Defaults to -1.
    +    """
    +    _, world_size = get_dist_info()
    +    if world_size == 1:
    +        return
    +    params = [param.data for param in params]
    +    if coalesce:
    +        _allreduce_coalesced(params, world_size, bucket_size_mb)
    +    else:
    +        for tensor in params:
    +            dist.all_reduce(tensor.div_(world_size))
    +
    +
    +def allreduce_grads(params: List[torch.nn.Parameter],
    +                    coalesce: bool = True,
    +                    bucket_size_mb: int = -1) -> None:
    +    """Allreduce gradients.
    +
    +    Args:
    +        params (list[torch.nn.Parameter]): List of parameters of a model.
    +        coalesce (bool, optional): Whether allreduce parameters as a whole.
    +            Defaults to True.
    +        bucket_size_mb (int, optional): Size of bucket, the unit is MB.
    +            Defaults to -1.
    +    """
    +    grads = [
    +        param.grad.data for param in params
    +        if param.requires_grad and param.grad is not None
    +    ]
    +    _, world_size = get_dist_info()
    +    if world_size == 1:
    +        return
    +    if coalesce:
    +        _allreduce_coalesced(grads, world_size, bucket_size_mb)
    +    else:
    +        for tensor in grads:
    +            dist.all_reduce(tensor.div_(world_size))
    +
    +
    +def _allreduce_coalesced(tensors: torch.Tensor,
    +                         world_size: int,
    +                         bucket_size_mb: int = -1) -> None:
    +    if bucket_size_mb > 0:
    +        bucket_size_bytes = bucket_size_mb * 1024 * 1024
    +        buckets = _take_tensors(tensors, bucket_size_bytes)
    +    else:
    +        buckets = OrderedDict()
    +        for tensor in tensors:
    +            tp = tensor.type()
    +            if tp not in buckets:
    +                buckets[tp] = []
    +            buckets[tp].append(tensor)
    +        buckets = buckets.values()
    +
    +    for bucket in buckets:
    +        flat_tensors = _flatten_dense_tensors(bucket)
    +        dist.all_reduce(flat_tensors)
    +        flat_tensors.div_(world_size)
    +        for tensor, synced in zip(
    +                bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
    +            tensor.copy_(synced)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/epoch_based_runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/epoch_based_runner.py
    new file mode 100644
    index 000000000..d6e906928
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/epoch_based_runner.py
    @@ -0,0 +1,197 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import platform
    +import shutil
    +import time
    +import warnings
    +from typing import Any, Dict, List, Optional, Tuple
    +
    +import torch
    +from torch.utils.data import DataLoader
    +
    +import mmcv
    +from .base_runner import BaseRunner
    +from .builder import RUNNERS
    +from .checkpoint import save_checkpoint
    +from .utils import get_host_info
    +
    +
    +@RUNNERS.register_module()
    +class EpochBasedRunner(BaseRunner):
    +    """Epoch-based Runner.
    +
    +    This runner train models epoch by epoch.
    +    """
    +
    +    def run_iter(self, data_batch: Any, train_mode: bool, **kwargs) -> None:
    +        if self.batch_processor is not None:
    +            outputs = self.batch_processor(
    +                self.model, data_batch, train_mode=train_mode, **kwargs)
    +        elif train_mode:
    +            outputs = self.model.train_step(data_batch, self.optimizer,
    +                                            **kwargs)
    +        else:
    +            outputs = self.model.val_step(data_batch, self.optimizer, **kwargs)
    +        if not isinstance(outputs, dict):
    +            raise TypeError('"batch_processor()" or "model.train_step()"'
    +                            'and "model.val_step()" must return a dict')
    +        if 'log_vars' in outputs:
    +            self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
    +        self.outputs = outputs
    +
    +    def train(self, data_loader, **kwargs):
    +        self.model.train()
    +        self.mode = 'train'
    +        self.data_loader = data_loader
    +        self._max_iters = self._max_epochs * len(self.data_loader)
    +        self.call_hook('before_train_epoch')
    +        time.sleep(2)  # Prevent possible deadlock during epoch transition
    +        for i, data_batch in enumerate(self.data_loader):
    +            self.data_batch = data_batch
    +            self._inner_iter = i
    +            self.call_hook('before_train_iter')
    +            self.run_iter(data_batch, train_mode=True, **kwargs)
    +            self.call_hook('after_train_iter')
    +            del self.data_batch
    +            self._iter += 1
    +
    +        self.call_hook('after_train_epoch')
    +        self._epoch += 1
    +
    +    @torch.no_grad()
    +    def val(self, data_loader, **kwargs):
    +        self.model.eval()
    +        self.mode = 'val'
    +        self.data_loader = data_loader
    +        self.call_hook('before_val_epoch')
    +        time.sleep(2)  # Prevent possible deadlock during epoch transition
    +        for i, data_batch in enumerate(self.data_loader):
    +            self.data_batch = data_batch
    +            self._inner_iter = i
    +            self.call_hook('before_val_iter')
    +            self.run_iter(data_batch, train_mode=False)
    +            self.call_hook('after_val_iter')
    +            del self.data_batch
    +        self.call_hook('after_val_epoch')
    +
    +    def run(self,
    +            data_loaders: List[DataLoader],
    +            workflow: List[Tuple[str, int]],
    +            max_epochs: Optional[int] = None,
    +            **kwargs) -> None:
    +        """Start running.
    +
    +        Args:
    +            data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
    +                and validation.
    +            workflow (list[tuple]): A list of (phase, epochs) to specify the
    +                running order and epochs. E.g, [('train', 2), ('val', 1)] means
    +                running 2 epochs for training and 1 epoch for validation,
    +                iteratively.
    +        """
    +        assert isinstance(data_loaders, list)
    +        assert mmcv.is_list_of(workflow, tuple)
    +        assert len(data_loaders) == len(workflow)
    +        if max_epochs is not None:
    +            warnings.warn(
    +                'setting max_epochs in run is deprecated, '
    +                'please set max_epochs in runner_config', DeprecationWarning)
    +            self._max_epochs = max_epochs
    +
    +        assert self._max_epochs is not None, (
    +            'max_epochs must be specified during instantiation')
    +
    +        for i, flow in enumerate(workflow):
    +            mode, epochs = flow
    +            if mode == 'train':
    +                self._max_iters = self._max_epochs * len(data_loaders[i])
    +                break
    +
    +        work_dir = self.work_dir if self.work_dir is not None else 'NONE'
    +        self.logger.info('Start running, host: %s, work_dir: %s',
    +                         get_host_info(), work_dir)
    +        self.logger.info('Hooks will be executed in the following order:\n%s',
    +                         self.get_hook_info())
    +        self.logger.info('workflow: %s, max: %d epochs', workflow,
    +                         self._max_epochs)
    +        self.call_hook('before_run')
    +
    +        while self.epoch < self._max_epochs:
    +            for i, flow in enumerate(workflow):
    +                mode, epochs = flow
    +                if isinstance(mode, str):  # self.train()
    +                    if not hasattr(self, mode):
    +                        raise ValueError(
    +                            f'runner has no method named "{mode}" to run an '
    +                            'epoch')
    +                    epoch_runner = getattr(self, mode)
    +                else:
    +                    raise TypeError(
    +                        'mode in workflow must be a str, but got {}'.format(
    +                            type(mode)))
    +
    +                for _ in range(epochs):
    +                    if mode == 'train' and self.epoch >= self._max_epochs:
    +                        break
    +                    epoch_runner(data_loaders[i], **kwargs)
    +
    +        time.sleep(1)  # wait for some hooks like loggers to finish
    +        self.call_hook('after_run')
    +
    +    def save_checkpoint(self,
    +                        out_dir: str,
    +                        filename_tmpl: str = 'epoch_{}.pth',
    +                        save_optimizer: bool = True,
    +                        meta: Optional[Dict] = None,
    +                        create_symlink: bool = True) -> None:
    +        """Save the checkpoint.
    +
    +        Args:
    +            out_dir (str): The directory that checkpoints are saved.
    +            filename_tmpl (str, optional): The checkpoint filename template,
    +                which contains a placeholder for the epoch number.
    +                Defaults to 'epoch_{}.pth'.
    +            save_optimizer (bool, optional): Whether to save the optimizer to
    +                the checkpoint. Defaults to True.
    +            meta (dict, optional): The meta information to be saved in the
    +                checkpoint. Defaults to None.
    +            create_symlink (bool, optional): Whether to create a symlink
    +                "latest.pth" to point to the latest checkpoint.
    +                Defaults to True.
    +        """
    +        if meta is None:
    +            meta = {}
    +        elif not isinstance(meta, dict):
    +            raise TypeError(
    +                f'meta should be a dict or None, but got {type(meta)}')
    +        if self.meta is not None:
    +            meta.update(self.meta)
    +            # Note: meta.update(self.meta) should be done before
    +            # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise
    +            # there will be problems with resumed checkpoints.
    +            # More details in https://github.com/open-mmlab/mmcv/pull/1108
    +        meta.update(epoch=self.epoch + 1, iter=self.iter)
    +
    +        filename = filename_tmpl.format(self.epoch + 1)
    +        filepath = osp.join(out_dir, filename)
    +        optimizer = self.optimizer if save_optimizer else None
    +        save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta)
    +        # in some environments, `os.symlink` is not supported, you may need to
    +        # set `create_symlink` to False
    +        if create_symlink:
    +            dst_file = osp.join(out_dir, 'latest.pth')
    +            if platform.system() != 'Windows':
    +                mmcv.symlink(filename, dst_file)
    +            else:
    +                shutil.copy(filepath, dst_file)
    +
    +
    +@RUNNERS.register_module()
    +class Runner(EpochBasedRunner):
    +    """Deprecated name of EpochBasedRunner."""
    +
    +    def __init__(self, *args, **kwargs):
    +        warnings.warn(
    +            'Runner was deprecated, please use EpochBasedRunner instead',
    +            DeprecationWarning)
    +        super().__init__(*args, **kwargs)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/fp16_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/fp16_utils.py
    new file mode 100644
    index 000000000..2c349b64f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/fp16_utils.py
    @@ -0,0 +1,438 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import functools
    +import warnings
    +from collections import abc
    +from inspect import getfullargspec
    +from typing import Callable, Iterable, List, Optional
    +
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +from torch.nn.parameter import Parameter
    +
    +from mmcv.utils import IS_NPU_AVAILABLE, TORCH_VERSION, digit_version
    +from .dist_utils import allreduce_grads as _allreduce_grads
    +
    +try:
    +    # If PyTorch version >= 1.6.0, torch.cuda.amp.autocast would be imported
    +    # and used; otherwise, auto fp16 will adopt mmcv's implementation.
    +    # Note that when PyTorch >= 1.6.0, we still cast tensor types to fp16
    +    # manually, so the behavior may not be consistent with real amp.
    +    if IS_NPU_AVAILABLE:
    +        from torch.npu.amp import autocast
    +    else:
    +        from torch.cuda.amp import autocast
    +except ImportError:
    +    pass
    +
    +
    +def cast_tensor_type(inputs, src_type: torch.dtype, dst_type: torch.dtype):
    +    """Recursively convert Tensor in inputs from src_type to dst_type.
    +
    +    Note:
    +        In v1.4.4 and later, ``cast_tersor_type`` will only convert the
    +        torch.Tensor which is consistent with ``src_type`` to the ``dst_type``.
    +        Before v1.4.4, it ignores the ``src_type`` argument, leading to some
    +        potential problems. For example,
    +        ``cast_tensor_type(inputs, torch.float, torch.half)`` will convert all
    +        tensors in inputs to ``torch.half`` including those originally in
    +        ``torch.Int`` or other types, which is not expected.
    +
    +    Args:
    +        inputs: Inputs that to be casted.
    +        src_type (torch.dtype): Source type..
    +        dst_type (torch.dtype): Destination type.
    +
    +    Returns:
    +        The same type with inputs, but all contained Tensors have been cast.
    +    """
    +    if isinstance(inputs, nn.Module):
    +        return inputs
    +    elif isinstance(inputs, torch.Tensor):
    +        # we need to ensure that the type of inputs to be casted are the same
    +        # as the argument `src_type`.
    +        return inputs.to(dst_type) if inputs.dtype == src_type else inputs
    +    elif isinstance(inputs, str):
    +        return inputs
    +    elif isinstance(inputs, np.ndarray):
    +        return inputs
    +    elif isinstance(inputs, abc.Mapping):
    +        return type(inputs)({  # type: ignore
    +            k: cast_tensor_type(v, src_type, dst_type)
    +            for k, v in inputs.items()
    +        })
    +    elif isinstance(inputs, abc.Iterable):
    +        return type(inputs)(  # type: ignore
    +            cast_tensor_type(item, src_type, dst_type) for item in inputs)
    +    else:
    +        return inputs
    +
    +
    +def auto_fp16(
    +        apply_to: Optional[Iterable] = None,
    +        out_fp32: bool = False,
    +        supported_types: tuple = (nn.Module, ),
    +) -> Callable:
    +    """Decorator to enable fp16 training automatically.
    +
    +    This decorator is useful when you write custom modules and want to support
    +    mixed precision training. If inputs arguments are fp32 tensors, they will
    +    be converted to fp16 automatically. Arguments other than fp32 tensors are
    +    ignored. If you are using PyTorch >= 1.6, torch.cuda.amp is used as the
    +    backend, otherwise, original mmcv implementation will be adopted.
    +
    +    Args:
    +        apply_to (Iterable, optional): The argument names to be converted.
    +            `None` indicates all arguments.
    +        out_fp32 (bool): Whether to convert the output back to fp32.
    +        supported_types (tuple): Classes can be decorated by ``auto_fp16``.
    +            `New in version 1.5.0.`
    +    Example:
    +
    +        >>> import torch.nn as nn
    +        >>> class MyModule1(nn.Module):
    +        >>>
    +        >>>     # Convert x and y to fp16
    +        >>>     @auto_fp16()
    +        >>>     def forward(self, x, y):
    +        >>>         pass
    +
    +        >>> import torch.nn as nn
    +        >>> class MyModule2(nn.Module):
    +        >>>
    +        >>>     # convert pred to fp16
    +        >>>     @auto_fp16(apply_to=('pred', ))
    +        >>>     def do_something(self, pred, others):
    +        >>>         pass
    +    """
    +
    +    def auto_fp16_wrapper(old_func: Callable) -> Callable:
    +
    +        @functools.wraps(old_func)
    +        def new_func(*args, **kwargs) -> Callable:
    +            # check if the module has set the attribute `fp16_enabled`, if not,
    +            # just fallback to the original method.
    +            if not isinstance(args[0], supported_types):
    +                raise TypeError('@auto_fp16 can only be used to decorate the '
    +                                f'method of those classes {supported_types}')
    +            if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
    +                return old_func(*args, **kwargs)
    +
    +            # get the arg spec of the decorated method
    +            args_info = getfullargspec(old_func)
    +            # get the argument names to be casted
    +            args_to_cast = args_info.args if apply_to is None else apply_to
    +            # convert the args that need to be processed
    +            new_args = []
    +            # NOTE: default args are not taken into consideration
    +            if args:
    +                arg_names = args_info.args[:len(args)]
    +                for i, arg_name in enumerate(arg_names):
    +                    if arg_name in args_to_cast:
    +                        new_args.append(
    +                            cast_tensor_type(args[i], torch.float, torch.half))
    +                    else:
    +                        new_args.append(args[i])
    +            # convert the kwargs that need to be processed
    +            new_kwargs = {}
    +            if kwargs:
    +                for arg_name, arg_value in kwargs.items():
    +                    if arg_name in args_to_cast:
    +                        new_kwargs[arg_name] = cast_tensor_type(
    +                            arg_value, torch.float, torch.half)
    +                    else:
    +                        new_kwargs[arg_name] = arg_value
    +            # apply converted arguments to the decorated method
    +            if (TORCH_VERSION != 'parrots' and
    +                    digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +                with autocast(enabled=True):
    +                    output = old_func(*new_args, **new_kwargs)
    +            else:
    +                output = old_func(*new_args, **new_kwargs)
    +            # cast the results back to fp32 if necessary
    +            if out_fp32:
    +                output = cast_tensor_type(output, torch.half, torch.float)
    +            return output
    +
    +        return new_func
    +
    +    return auto_fp16_wrapper
    +
    +
    +def force_fp32(apply_to: Optional[Iterable] = None,
    +               out_fp16: bool = False) -> Callable:
    +    """Decorator to convert input arguments to fp32 in force.
    +
    +    This decorator is useful when you write custom modules and want to support
    +    mixed precision training. If there are some inputs that must be processed
    +    in fp32 mode, then this decorator can handle it. If inputs arguments are
    +    fp16 tensors, they will be converted to fp32 automatically. Arguments other
    +    than fp16 tensors are ignored. If you are using PyTorch >= 1.6,
    +    torch.cuda.amp is used as the backend, otherwise, original mmcv
    +    implementation will be adopted.
    +
    +    Args:
    +        apply_to (Iterable, optional): The argument names to be converted.
    +            `None` indicates all arguments.
    +        out_fp16 (bool): Whether to convert the output back to fp16.
    +
    +    Example:
    +
    +        >>> import torch.nn as nn
    +        >>> class MyModule1(nn.Module):
    +        >>>
    +        >>>     # Convert x and y to fp32
    +        >>>     @force_fp32()
    +        >>>     def loss(self, x, y):
    +        >>>         pass
    +
    +        >>> import torch.nn as nn
    +        >>> class MyModule2(nn.Module):
    +        >>>
    +        >>>     # convert pred to fp32
    +        >>>     @force_fp32(apply_to=('pred', ))
    +        >>>     def post_process(self, pred, others):
    +        >>>         pass
    +    """
    +
    +    def force_fp32_wrapper(old_func):
    +
    +        @functools.wraps(old_func)
    +        def new_func(*args, **kwargs) -> Callable:
    +            # check if the module has set the attribute `fp16_enabled`, if not,
    +            # just fallback to the original method.
    +            if not isinstance(args[0], torch.nn.Module):
    +                raise TypeError('@force_fp32 can only be used to decorate the '
    +                                'method of nn.Module')
    +            if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
    +                return old_func(*args, **kwargs)
    +            # get the arg spec of the decorated method
    +            args_info = getfullargspec(old_func)
    +            # get the argument names to be casted
    +            args_to_cast = args_info.args if apply_to is None else apply_to
    +            # convert the args that need to be processed
    +            new_args = []
    +            if args:
    +                arg_names = args_info.args[:len(args)]
    +                for i, arg_name in enumerate(arg_names):
    +                    if arg_name in args_to_cast:
    +                        new_args.append(
    +                            cast_tensor_type(args[i], torch.half, torch.float))
    +                    else:
    +                        new_args.append(args[i])
    +            # convert the kwargs that need to be processed
    +            new_kwargs = dict()
    +            if kwargs:
    +                for arg_name, arg_value in kwargs.items():
    +                    if arg_name in args_to_cast:
    +                        new_kwargs[arg_name] = cast_tensor_type(
    +                            arg_value, torch.half, torch.float)
    +                    else:
    +                        new_kwargs[arg_name] = arg_value
    +            # apply converted arguments to the decorated method
    +            if (TORCH_VERSION != 'parrots' and
    +                    digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +                with autocast(enabled=False):
    +                    output = old_func(*new_args, **new_kwargs)
    +            else:
    +                output = old_func(*new_args, **new_kwargs)
    +            # cast the results back to fp32 if necessary
    +            if out_fp16:
    +                output = cast_tensor_type(output, torch.float, torch.half)
    +            return output
    +
    +        return new_func
    +
    +    return force_fp32_wrapper
    +
    +
    +def allreduce_grads(params: List[Parameter],
    +                    coalesce: bool = True,
    +                    bucket_size_mb: int = -1) -> None:
    +    warnings.warn(
    +        '"mmcv.runner.fp16_utils.allreduce_grads" is deprecated, and will be '
    +        'removed in v2.8. Please switch to "mmcv.runner.allreduce_grads',
    +        DeprecationWarning)
    +    _allreduce_grads(params, coalesce=coalesce, bucket_size_mb=bucket_size_mb)
    +
    +
    +def wrap_fp16_model(model: nn.Module) -> None:
    +    """Wrap the FP32 model to FP16.
    +
    +    If you are using PyTorch >= 1.6, torch.cuda.amp is used as the
    +    backend, otherwise, original mmcv implementation will be adopted.
    +
    +    For PyTorch >= 1.6, this function will
    +    1. Set fp16 flag inside the model to True.
    +
    +    Otherwise:
    +    1. Convert FP32 model to FP16.
    +    2. Remain some necessary layers to be FP32, e.g., normalization layers.
    +    3. Set `fp16_enabled` flag inside the model to True.
    +
    +    Args:
    +        model (nn.Module): Model in FP32.
    +    """
    +    if (TORCH_VERSION == 'parrots'
    +            or digit_version(TORCH_VERSION) < digit_version('1.6.0')):
    +        # convert model to fp16
    +        model.half()
    +        # patch the normalization layers to make it work in fp32 mode
    +        patch_norm_fp32(model)
    +    # set `fp16_enabled` flag
    +    for m in model.modules():
    +        if hasattr(m, 'fp16_enabled'):
    +            m.fp16_enabled = True
    +
    +
    +def patch_norm_fp32(module: nn.Module) -> nn.Module:
    +    """Recursively convert normalization layers from FP16 to FP32.
    +
    +    Args:
    +        module (nn.Module): The modules to be converted in FP16.
    +
    +    Returns:
    +        nn.Module: The converted module, the normalization layers have been
    +            converted to FP32.
    +    """
    +    if isinstance(module, (nn.modules.batchnorm._BatchNorm, nn.GroupNorm)):
    +        module.float()
    +        if isinstance(module, nn.GroupNorm) or torch.__version__ < '1.3':
    +            module.forward = patch_forward_method(module.forward, torch.half,
    +                                                  torch.float)
    +    for child in module.children():
    +        patch_norm_fp32(child)
    +    return module
    +
    +
    +def patch_forward_method(func: Callable,
    +                         src_type: torch.dtype,
    +                         dst_type: torch.dtype,
    +                         convert_output: bool = True) -> Callable:
    +    """Patch the forward method of a module.
    +
    +    Args:
    +        func (callable): The original forward method.
    +        src_type (torch.dtype): Type of input arguments to be converted from.
    +        dst_type (torch.dtype): Type of input arguments to be converted to.
    +        convert_output (bool): Whether to convert the output back to src_type.
    +
    +    Returns:
    +        callable: The patched forward method.
    +    """
    +
    +    def new_forward(*args, **kwargs):
    +        output = func(*cast_tensor_type(args, src_type, dst_type),
    +                      **cast_tensor_type(kwargs, src_type, dst_type))
    +        if convert_output:
    +            output = cast_tensor_type(output, dst_type, src_type)
    +        return output
    +
    +    return new_forward
    +
    +
    +class LossScaler:
    +    """Class that manages loss scaling in mixed precision training which
    +    supports both dynamic or static mode.
    +
    +    The implementation refers to
    +    https://github.com/NVIDIA/apex/blob/master/apex/fp16_utils/loss_scaler.py.
    +    Indirectly, by supplying ``mode='dynamic'`` for dynamic loss scaling.
    +    It's important to understand how :class:`LossScaler` operates.
    +    Loss scaling is designed to combat the problem of underflowing
    +    gradients encountered at long times when training fp16 networks.
    +    Dynamic loss scaling begins by attempting a very high loss
    +    scale.  Ironically, this may result in OVERflowing gradients.
    +    If overflowing gradients are encountered, :class:`FP16_Optimizer` then
    +    skips the update step for this particular iteration/minibatch,
    +    and :class:`LossScaler` adjusts the loss scale to a lower value.
    +    If a certain number of iterations occur without overflowing gradients
    +    detected,:class:`LossScaler` increases the loss scale once more.
    +    In this way :class:`LossScaler` attempts to "ride the edge" of always
    +    using the highest loss scale possible without incurring overflow.
    +
    +    Args:
    +        init_scale (float): Initial loss scale value, default: 2**32.
    +        scale_factor (float): Factor used when adjusting the loss scale.
    +            Default: 2.
    +        mode (str): Loss scaling mode. 'dynamic' or 'static'
    +        scale_window (int): Number of consecutive iterations without an
    +            overflow to wait before increasing the loss scale. Default: 1000.
    +    """
    +
    +    def __init__(self,
    +                 init_scale: float = 2**32,
    +                 mode: str = 'dynamic',
    +                 scale_factor: float = 2.,
    +                 scale_window: int = 1000):
    +        self.cur_scale = init_scale
    +        self.cur_iter = 0
    +        assert mode in ('dynamic',
    +                        'static'), 'mode can only be dynamic or static'
    +        self.mode = mode
    +        self.last_overflow_iter = -1
    +        self.scale_factor = scale_factor
    +        self.scale_window = scale_window
    +
    +    def has_overflow(self, params: List[Parameter]) -> bool:
    +        """Check if params contain overflow."""
    +        if self.mode != 'dynamic':
    +            return False
    +        for p in params:
    +            if p.grad is not None and LossScaler._has_inf_or_nan(p.grad.data):
    +                return True
    +        return False
    +
    +    def _has_inf_or_nan(x: torch.Tensor) -> bool:
    +        """Check if params contain NaN."""
    +        try:
    +            cpu_sum = float(x.float().sum())
    +        except RuntimeError as instance:
    +            if 'value cannot be converted' not in instance.args[0]:
    +                raise
    +            return True
    +        else:
    +            if cpu_sum == float('inf') or cpu_sum == -float('inf') \
    +                    or cpu_sum != cpu_sum:
    +                return True
    +            return False
    +
    +    def update_scale(self, overflow: bool) -> None:
    +        """update the current loss scale value when overflow happens."""
    +        if self.mode != 'dynamic':
    +            return
    +        if overflow:
    +            self.cur_scale = max(self.cur_scale / self.scale_factor, 1)
    +            self.last_overflow_iter = self.cur_iter
    +        else:
    +            if (self.cur_iter - self.last_overflow_iter) % \
    +                    self.scale_window == 0:
    +                self.cur_scale *= self.scale_factor
    +        self.cur_iter += 1
    +
    +    def state_dict(self) -> dict:
    +        """Returns the state of the scaler as a :class:`dict`."""
    +        return dict(
    +            cur_scale=self.cur_scale,
    +            cur_iter=self.cur_iter,
    +            mode=self.mode,
    +            last_overflow_iter=self.last_overflow_iter,
    +            scale_factor=self.scale_factor,
    +            scale_window=self.scale_window)
    +
    +    def load_state_dict(self, state_dict: dict) -> None:
    +        """Loads the loss_scaler state dict.
    +
    +        Args:
    +           state_dict (dict): scaler state.
    +        """
    +        self.cur_scale = state_dict['cur_scale']
    +        self.cur_iter = state_dict['cur_iter']
    +        self.mode = state_dict['mode']
    +        self.last_overflow_iter = state_dict['last_overflow_iter']
    +        self.scale_factor = state_dict['scale_factor']
    +        self.scale_window = state_dict['scale_window']
    +
    +    @property
    +    def loss_scale(self) -> float:
    +        return self.cur_scale
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/__init__.py
    new file mode 100644
    index 000000000..03e2a619e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/__init__.py
    @@ -0,0 +1,48 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .checkpoint import CheckpointHook
    +from .closure import ClosureHook
    +from .ema import EMAHook
    +from .evaluation import DistEvalHook, EvalHook
    +from .hook import HOOKS, Hook
    +from .iter_timer import IterTimerHook
    +from .logger import (ClearMLLoggerHook, DvcliveLoggerHook, LoggerHook,
    +                     MlflowLoggerHook, NeptuneLoggerHook, PaviLoggerHook,
    +                     SegmindLoggerHook, TensorboardLoggerHook, TextLoggerHook,
    +                     WandbLoggerHook)
    +from .lr_updater import (CosineAnnealingLrUpdaterHook,
    +                         CosineRestartLrUpdaterHook, CyclicLrUpdaterHook,
    +                         ExpLrUpdaterHook, FixedLrUpdaterHook,
    +                         FlatCosineAnnealingLrUpdaterHook, InvLrUpdaterHook,
    +                         LinearAnnealingLrUpdaterHook, LrUpdaterHook,
    +                         OneCycleLrUpdaterHook, PolyLrUpdaterHook,
    +                         StepLrUpdaterHook)
    +from .memory import EmptyCacheHook
    +from .momentum_updater import (CosineAnnealingMomentumUpdaterHook,
    +                               CyclicMomentumUpdaterHook,
    +                               LinearAnnealingMomentumUpdaterHook,
    +                               MomentumUpdaterHook,
    +                               OneCycleMomentumUpdaterHook,
    +                               StepMomentumUpdaterHook)
    +from .optimizer import (Fp16OptimizerHook, GradientCumulativeFp16OptimizerHook,
    +                        GradientCumulativeOptimizerHook, OptimizerHook)
    +from .profiler import ProfilerHook
    +from .sampler_seed import DistSamplerSeedHook
    +from .sync_buffer import SyncBuffersHook
    +
    +__all__ = [
    +    'HOOKS', 'Hook', 'CheckpointHook', 'ClosureHook', 'LrUpdaterHook',
    +    'FixedLrUpdaterHook', 'StepLrUpdaterHook', 'ExpLrUpdaterHook',
    +    'PolyLrUpdaterHook', 'InvLrUpdaterHook', 'CosineAnnealingLrUpdaterHook',
    +    'FlatCosineAnnealingLrUpdaterHook', 'CosineRestartLrUpdaterHook',
    +    'CyclicLrUpdaterHook', 'OneCycleLrUpdaterHook', 'OptimizerHook',
    +    'Fp16OptimizerHook', 'IterTimerHook', 'DistSamplerSeedHook',
    +    'EmptyCacheHook', 'LoggerHook', 'MlflowLoggerHook', 'PaviLoggerHook',
    +    'TextLoggerHook', 'TensorboardLoggerHook', 'NeptuneLoggerHook',
    +    'WandbLoggerHook', 'DvcliveLoggerHook', 'MomentumUpdaterHook',
    +    'StepMomentumUpdaterHook', 'CosineAnnealingMomentumUpdaterHook',
    +    'CyclicMomentumUpdaterHook', 'OneCycleMomentumUpdaterHook',
    +    'SyncBuffersHook', 'EMAHook', 'EvalHook', 'DistEvalHook', 'ProfilerHook',
    +    'GradientCumulativeOptimizerHook', 'GradientCumulativeFp16OptimizerHook',
    +    'SegmindLoggerHook', 'LinearAnnealingLrUpdaterHook',
    +    'LinearAnnealingMomentumUpdaterHook', 'ClearMLLoggerHook'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/checkpoint.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/checkpoint.py
    new file mode 100644
    index 000000000..5cc4f356d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/checkpoint.py
    @@ -0,0 +1,168 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import warnings
    +from typing import Optional
    +
    +from mmcv.fileio import FileClient
    +from ..dist_utils import allreduce_params, master_only
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class CheckpointHook(Hook):
    +    """Save checkpoints periodically.
    +
    +    Args:
    +        interval (int): The saving period. If ``by_epoch=True``, interval
    +            indicates epochs, otherwise it indicates iterations.
    +            Default: -1, which means "never".
    +        by_epoch (bool): Saving checkpoints by epoch or by iteration.
    +            Default: True.
    +        save_optimizer (bool): Whether to save optimizer state_dict in the
    +            checkpoint. It is usually used for resuming experiments.
    +            Default: True.
    +        out_dir (str, optional): The root directory to save checkpoints. If not
    +            specified, ``runner.work_dir`` will be used by default. If
    +            specified, the ``out_dir`` will be the concatenation of ``out_dir``
    +            and the last level directory of ``runner.work_dir``.
    +            `Changed in version 1.3.16.`
    +        max_keep_ckpts (int, optional): The maximum checkpoints to keep.
    +            In some cases we want only the latest few checkpoints and would
    +            like to delete old ones to save the disk space.
    +            Default: -1, which means unlimited.
    +        save_last (bool, optional): Whether to force the last checkpoint to be
    +            saved regardless of interval. Default: True.
    +        sync_buffer (bool, optional): Whether to synchronize buffers in
    +            different gpus. Default: False.
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +            `New in version 1.3.16.`
    +
    +    .. warning::
    +        Before v1.3.16, the ``out_dir`` argument indicates the path where the
    +        checkpoint is stored. However, since v1.3.16, ``out_dir`` indicates the
    +        root directory and the final path to save checkpoint is the
    +        concatenation of ``out_dir`` and the last level directory of
    +        ``runner.work_dir``. Suppose the value of ``out_dir`` is "/path/of/A"
    +        and the value of ``runner.work_dir`` is "/path/of/B", then the final
    +        path will be "/path/of/A/B".
    +    """
    +
    +    def __init__(self,
    +                 interval: int = -1,
    +                 by_epoch: bool = True,
    +                 save_optimizer: bool = True,
    +                 out_dir: Optional[str] = None,
    +                 max_keep_ckpts: int = -1,
    +                 save_last: bool = True,
    +                 sync_buffer: bool = False,
    +                 file_client_args: Optional[dict] = None,
    +                 **kwargs):
    +        self.interval = interval
    +        self.by_epoch = by_epoch
    +        self.save_optimizer = save_optimizer
    +        self.out_dir = out_dir
    +        self.max_keep_ckpts = max_keep_ckpts
    +        self.save_last = save_last
    +        self.args = kwargs
    +        self.sync_buffer = sync_buffer
    +        self.file_client_args = file_client_args
    +
    +    def before_run(self, runner):
    +        if not self.out_dir:
    +            self.out_dir = runner.work_dir
    +
    +        self.file_client = FileClient.infer_client(self.file_client_args,
    +                                                   self.out_dir)
    +
    +        # if `self.out_dir` is not equal to `runner.work_dir`, it means that
    +        # `self.out_dir` is set so the final `self.out_dir` is the
    +        # concatenation of `self.out_dir` and the last level directory of
    +        # `runner.work_dir`
    +        if self.out_dir != runner.work_dir:
    +            basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +            self.out_dir = self.file_client.join_path(self.out_dir, basename)
    +
    +        runner.logger.info(f'Checkpoints will be saved to {self.out_dir} by '
    +                           f'{self.file_client.name}.')
    +
    +        # disable the create_symlink option because some file backends do not
    +        # allow to create a symlink
    +        if 'create_symlink' in self.args:
    +            if self.args[
    +                    'create_symlink'] and not self.file_client.allow_symlink:
    +                self.args['create_symlink'] = False
    +                warnings.warn(
    +                    'create_symlink is set as True by the user but is changed'
    +                    'to be False because creating symbolic link is not '
    +                    f'allowed in {self.file_client.name}')
    +        else:
    +            self.args['create_symlink'] = self.file_client.allow_symlink
    +
    +    def after_train_epoch(self, runner):
    +        if not self.by_epoch:
    +            return
    +
    +        # save checkpoint for following cases:
    +        # 1. every ``self.interval`` epochs
    +        # 2. reach the last epoch of training
    +        if self.every_n_epochs(
    +                runner, self.interval) or (self.save_last
    +                                           and self.is_last_epoch(runner)):
    +            runner.logger.info(
    +                f'Saving checkpoint at {runner.epoch + 1} epochs')
    +            if self.sync_buffer:
    +                allreduce_params(runner.model.buffers())
    +            self._save_checkpoint(runner)
    +
    +    @master_only
    +    def _save_checkpoint(self, runner):
    +        """Save the current checkpoint and delete unwanted checkpoint."""
    +        runner.save_checkpoint(
    +            self.out_dir, save_optimizer=self.save_optimizer, **self.args)
    +        if runner.meta is not None:
    +            if self.by_epoch:
    +                cur_ckpt_filename = self.args.get(
    +                    'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1)
    +            else:
    +                cur_ckpt_filename = self.args.get(
    +                    'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1)
    +            runner.meta.setdefault('hook_msgs', dict())
    +            runner.meta['hook_msgs']['last_ckpt'] = self.file_client.join_path(
    +                self.out_dir, cur_ckpt_filename)
    +        # remove other checkpoints
    +        if self.max_keep_ckpts > 0:
    +            if self.by_epoch:
    +                name = 'epoch_{}.pth'
    +                current_ckpt = runner.epoch + 1
    +            else:
    +                name = 'iter_{}.pth'
    +                current_ckpt = runner.iter + 1
    +            redundant_ckpts = range(
    +                current_ckpt - self.max_keep_ckpts * self.interval, 0,
    +                -self.interval)
    +            filename_tmpl = self.args.get('filename_tmpl', name)
    +            for _step in redundant_ckpts:
    +                ckpt_path = self.file_client.join_path(
    +                    self.out_dir, filename_tmpl.format(_step))
    +                if self.file_client.isfile(ckpt_path):
    +                    self.file_client.remove(ckpt_path)
    +                else:
    +                    break
    +
    +    def after_train_iter(self, runner):
    +        if self.by_epoch:
    +            return
    +
    +        # save checkpoint for following cases:
    +        # 1. every ``self.interval`` iterations
    +        # 2. reach the last iteration of training
    +        if self.every_n_iters(
    +                runner, self.interval) or (self.save_last
    +                                           and self.is_last_iter(runner)):
    +            runner.logger.info(
    +                f'Saving checkpoint at {runner.iter + 1} iterations')
    +            if self.sync_buffer:
    +                allreduce_params(runner.model.buffers())
    +            self._save_checkpoint(runner)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/closure.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/closure.py
    new file mode 100644
    index 000000000..73a3e6a90
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/closure.py
    @@ -0,0 +1,13 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Callable
    +
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class ClosureHook(Hook):
    +
    +    def __init__(self, fn_name: str, fn: Callable):
    +        assert hasattr(self, fn_name)
    +        assert callable(fn)
    +        setattr(self, fn_name, fn)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/ema.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/ema.py
    new file mode 100644
    index 000000000..b5b578e5e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/ema.py
    @@ -0,0 +1,91 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional
    +
    +from ...parallel import is_module_wrapper
    +from ..hooks.hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class EMAHook(Hook):
    +    r"""Exponential Moving Average Hook.
    +
    +    Use Exponential Moving Average on all parameters of model in training
    +    process. All parameters have a ema backup, which update by the formula
    +    as below. EMAHook takes priority over EvalHook and CheckpointSaverHook.
    +
    +        .. math::
    +
    +            Xema\_{t+1} = (1 - \text{momentum}) \times
    +            Xema\_{t} +  \text{momentum} \times X_t
    +
    +    Args:
    +        momentum (float): The momentum used for updating ema parameter.
    +            Defaults to 0.0002.
    +        interval (int): Update ema parameter every interval iteration.
    +            Defaults to 1.
    +        warm_up (int): During first warm_up steps, we may use smaller momentum
    +            to update ema parameters more slowly. Defaults to 100.
    +        resume_from (str, optional): The checkpoint path. Defaults to None.
    +    """
    +
    +    def __init__(self,
    +                 momentum: float = 0.0002,
    +                 interval: int = 1,
    +                 warm_up: int = 100,
    +                 resume_from: Optional[str] = None):
    +        assert isinstance(interval, int) and interval > 0
    +        self.warm_up = warm_up
    +        self.interval = interval
    +        assert momentum > 0 and momentum < 1
    +        self.momentum = momentum**interval
    +        self.checkpoint = resume_from
    +
    +    def before_run(self, runner):
    +        """To resume model with it's ema parameters more friendly.
    +
    +        Register ema parameter as ``named_buffer`` to model
    +        """
    +        model = runner.model
    +        if is_module_wrapper(model):
    +            model = model.module
    +        self.param_ema_buffer = {}
    +        self.model_parameters = dict(model.named_parameters(recurse=True))
    +        for name, value in self.model_parameters.items():
    +            # "." is not allowed in module's buffer name
    +            buffer_name = f"ema_{name.replace('.', '_')}"
    +            self.param_ema_buffer[name] = buffer_name
    +            model.register_buffer(buffer_name, value.data.clone())
    +        self.model_buffers = dict(model.named_buffers(recurse=True))
    +        if self.checkpoint is not None:
    +            runner.resume(self.checkpoint)
    +
    +    def after_train_iter(self, runner):
    +        """Update ema parameter every self.interval iterations."""
    +        curr_step = runner.iter
    +        # We warm up the momentum considering the instability at beginning
    +        momentum = min(self.momentum,
    +                       (1 + curr_step) / (self.warm_up + curr_step))
    +        if curr_step % self.interval != 0:
    +            return
    +        for name, parameter in self.model_parameters.items():
    +            buffer_name = self.param_ema_buffer[name]
    +            buffer_parameter = self.model_buffers[buffer_name]
    +            buffer_parameter.mul_(1 - momentum).add_(momentum, parameter.data)
    +
    +    def after_train_epoch(self, runner):
    +        """We load parameter values from ema backup to model before the
    +        EvalHook."""
    +        self._swap_ema_parameters()
    +
    +    def before_train_epoch(self, runner):
    +        """We recover model's parameter from ema backup after last epoch's
    +        EvalHook."""
    +        self._swap_ema_parameters()
    +
    +    def _swap_ema_parameters(self):
    +        """Swap the parameter of model with parameter in ema_buffer."""
    +        for name, value in self.model_parameters.items():
    +            temp = value.data.clone()
    +            ema_buffer = self.model_buffers[self.param_ema_buffer[name]]
    +            value.data.copy_(ema_buffer.data)
    +            ema_buffer.data.copy_(temp)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/evaluation.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/evaluation.py
    new file mode 100644
    index 000000000..181e03409
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/evaluation.py
    @@ -0,0 +1,515 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import warnings
    +from math import inf
    +from typing import Callable, List, Optional
    +
    +import torch.distributed as dist
    +from torch.nn.modules.batchnorm import _BatchNorm
    +from torch.utils.data import DataLoader
    +
    +from mmcv.fileio import FileClient
    +from mmcv.utils import is_seq_of
    +from .hook import Hook
    +from .logger import LoggerHook
    +
    +
    +class EvalHook(Hook):
    +    """Non-Distributed evaluation hook.
    +
    +    This hook will regularly perform evaluation in a given interval when
    +    performing in non-distributed environment.
    +
    +    Args:
    +        dataloader (DataLoader): A PyTorch dataloader, whose dataset has
    +            implemented ``evaluate`` function.
    +        start (int | None, optional): Evaluation starting epoch. It enables
    +            evaluation before the training starts if ``start`` <= the resuming
    +            epoch. If None, whether to evaluate is merely decided by
    +            ``interval``. Default: None.
    +        interval (int): Evaluation interval. Default: 1.
    +        by_epoch (bool): Determine perform evaluation by epoch or by iteration.
    +            If set to True, it will perform by epoch. Otherwise, by iteration.
    +            Default: True.
    +        save_best (str, optional): If a metric is specified, it would measure
    +            the best checkpoint during evaluation. The information about best
    +            checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep
    +            best score value and best checkpoint path, which will be also
    +            loaded when resume checkpoint. Options are the evaluation metrics
    +            on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
    +            detection and instance segmentation. ``AR@100`` for proposal
    +            recall. If ``save_best`` is ``auto``, the first key of the returned
    +            ``OrderedDict`` result will be used. Default: None.
    +        rule (str | None, optional): Comparison rule for best score. If set to
    +            None, it will infer a reasonable rule. Keys such as 'acc', 'top'
    +            .etc will be inferred by 'greater' rule. Keys contain 'loss' will
    +            be inferred by 'less' rule. Options are 'greater', 'less', None.
    +            Default: None.
    +        test_fn (callable, optional): test a model with samples from a
    +            dataloader, and return the test results. If ``None``, the default
    +            test function ``mmcv.engine.single_gpu_test`` will be used.
    +            (default: ``None``)
    +        greater_keys (List[str] | None, optional): Metric keys that will be
    +            inferred by 'greater' comparison rule. If ``None``,
    +            _default_greater_keys will be used. (default: ``None``)
    +        less_keys (List[str] | None, optional): Metric keys that will be
    +            inferred by 'less' comparison rule. If ``None``, _default_less_keys
    +            will be used. (default: ``None``)
    +        out_dir (str, optional): The root directory to save checkpoints. If not
    +            specified, `runner.work_dir` will be used by default. If specified,
    +            the `out_dir` will be the concatenation of `out_dir` and the last
    +            level directory of `runner.work_dir`.
    +            `New in version 1.3.16.`
    +        file_client_args (dict): Arguments to instantiate a FileClient.
    +            See :class:`mmcv.fileio.FileClient` for details. Default: None.
    +            `New in version 1.3.16.`
    +        **eval_kwargs: Evaluation arguments fed into the evaluate function of
    +            the dataset.
    +
    +    Note:
    +        If new arguments are added for EvalHook, tools/test.py,
    +        tools/eval_metric.py may be affected.
    +    """
    +
    +    # Since the key for determine greater or less is related to the downstream
    +    # tasks, downstream repos may need to overwrite the following inner
    +    # variable accordingly.
    +
    +    rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y}
    +    init_value_map = {'greater': -inf, 'less': inf}
    +    _default_greater_keys = [
    +        'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU',
    +        'mAcc', 'aAcc'
    +    ]
    +    _default_less_keys = ['loss']
    +
    +    def __init__(self,
    +                 dataloader: DataLoader,
    +                 start: Optional[int] = None,
    +                 interval: int = 1,
    +                 by_epoch: bool = True,
    +                 save_best: Optional[str] = None,
    +                 rule: Optional[str] = None,
    +                 test_fn: Optional[Callable] = None,
    +                 greater_keys: Optional[List[str]] = None,
    +                 less_keys: Optional[List[str]] = None,
    +                 out_dir: Optional[str] = None,
    +                 file_client_args: Optional[dict] = None,
    +                 **eval_kwargs):
    +        if not isinstance(dataloader, DataLoader):
    +            raise TypeError(f'dataloader must be a pytorch DataLoader, '
    +                            f'but got {type(dataloader)}')
    +
    +        if interval <= 0:
    +            raise ValueError(f'interval must be a positive number, '
    +                             f'but got {interval}')
    +
    +        assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean'
    +
    +        if start is not None and start < 0:
    +            raise ValueError(f'The evaluation start epoch {start} is smaller '
    +                             f'than 0')
    +
    +        self.dataloader = dataloader
    +        self.interval = interval
    +        self.start = start
    +        self.by_epoch = by_epoch
    +
    +        assert isinstance(save_best, str) or save_best is None, \
    +            '""save_best"" should be a str or None ' \
    +            f'rather than {type(save_best)}'
    +        self.save_best = save_best
    +        self.eval_kwargs = eval_kwargs
    +        self.initial_flag = True
    +
    +        if test_fn is None:
    +            from mmcv.engine import single_gpu_test
    +            self.test_fn = single_gpu_test
    +        else:
    +            self.test_fn = test_fn
    +
    +        if greater_keys is None:
    +            self.greater_keys = self._default_greater_keys
    +        else:
    +            if not isinstance(greater_keys, (list, tuple)):
    +                assert isinstance(greater_keys, str)
    +                greater_keys = (greater_keys, )
    +            assert is_seq_of(greater_keys, str)
    +            self.greater_keys = greater_keys
    +
    +        if less_keys is None:
    +            self.less_keys = self._default_less_keys
    +        else:
    +            if not isinstance(less_keys, (list, tuple)):
    +                assert isinstance(greater_keys, str)
    +                less_keys = (less_keys, )
    +            assert is_seq_of(less_keys, str)
    +            self.less_keys = less_keys
    +
    +        if self.save_best is not None:
    +            self.best_ckpt_path = None
    +            self._init_rule(rule, self.save_best)
    +
    +        self.out_dir = out_dir
    +        self.file_client_args = file_client_args
    +
    +    def _init_rule(self, rule: Optional[str], key_indicator: str):
    +        """Initialize rule, key_indicator, comparison_func, and best score.
    +
    +        Here is the rule to determine which rule is used for key indicator
    +        when the rule is not specific (note that the key indicator matching
    +        is case-insensitive):
    +        1. If the key indicator is in ``self.greater_keys``, the rule will be
    +           specified as 'greater'.
    +        2. Or if the key indicator is in ``self.less_keys``, the rule will be
    +           specified as 'less'.
    +        3. Or if any one item in ``self.greater_keys`` is a substring of
    +            key_indicator , the rule will be specified as 'greater'.
    +        4. Or if any one item in ``self.less_keys`` is a substring of
    +            key_indicator , the rule will be specified as 'less'.
    +
    +        Args:
    +            rule (str | None): Comparison rule for best score.
    +            key_indicator (str | None): Key indicator to determine the
    +                comparison rule.
    +        """
    +        if rule not in self.rule_map and rule is not None:
    +            raise KeyError(f'rule must be greater, less or None, '
    +                           f'but got {rule}.')
    +
    +        if rule is None:
    +            if key_indicator != 'auto':
    +                # `_lc` here means we use the lower case of keys for
    +                # case-insensitive matching
    +                assert isinstance(key_indicator, str)
    +                key_indicator_lc = key_indicator.lower()
    +                greater_keys = [key.lower() for key in self.greater_keys]
    +                less_keys = [key.lower() for key in self.less_keys]
    +
    +                if key_indicator_lc in greater_keys:
    +                    rule = 'greater'
    +                elif key_indicator_lc in less_keys:
    +                    rule = 'less'
    +                elif any(key in key_indicator_lc for key in greater_keys):
    +                    rule = 'greater'
    +                elif any(key in key_indicator_lc for key in less_keys):
    +                    rule = 'less'
    +                else:
    +                    raise ValueError(f'Cannot infer the rule for key '
    +                                     f'{key_indicator}, thus a specific rule '
    +                                     f'must be specified.')
    +        self.rule = rule
    +        self.key_indicator = key_indicator
    +        if self.rule is not None:
    +            self.compare_func = self.rule_map[self.rule]
    +
    +    def before_run(self, runner):
    +        if not self.out_dir:
    +            self.out_dir = runner.work_dir
    +
    +        self.file_client = FileClient.infer_client(self.file_client_args,
    +                                                   self.out_dir)
    +
    +        # if `self.out_dir` is not equal to `runner.work_dir`, it means that
    +        # `self.out_dir` is set so the final `self.out_dir` is the
    +        # concatenation of `self.out_dir` and the last level directory of
    +        # `runner.work_dir`
    +        if self.out_dir != runner.work_dir:
    +            basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +            self.out_dir = self.file_client.join_path(self.out_dir, basename)
    +            runner.logger.info(
    +                f'The best checkpoint will be saved to {self.out_dir} by '
    +                f'{self.file_client.name}')
    +
    +        if self.save_best is not None:
    +            if runner.meta is None:
    +                warnings.warn('runner.meta is None. Creating an empty one.')
    +                runner.meta = dict()
    +            runner.meta.setdefault('hook_msgs', dict())
    +            self.best_ckpt_path = runner.meta['hook_msgs'].get(
    +                'best_ckpt', None)
    +
    +    def before_train_iter(self, runner):
    +        """Evaluate the model only at the start of training by iteration."""
    +        if self.by_epoch or not self.initial_flag:
    +            return
    +        if self.start is not None and runner.iter >= self.start:
    +            self.after_train_iter(runner)
    +        self.initial_flag = False
    +
    +    def before_train_epoch(self, runner):
    +        """Evaluate the model only at the start of training by epoch."""
    +        if not (self.by_epoch and self.initial_flag):
    +            return
    +        if self.start is not None and runner.epoch >= self.start:
    +            self.after_train_epoch(runner)
    +        self.initial_flag = False
    +
    +    def after_train_iter(self, runner):
    +        """Called after every training iter to evaluate the results."""
    +        if not self.by_epoch and self._should_evaluate(runner):
    +            # Because the priority of EvalHook is higher than LoggerHook, the
    +            # training log and the evaluating log are mixed. Therefore,
    +            # we need to dump the training log and clear it before evaluating
    +            # log is generated. In addition, this problem will only appear in
    +            # `IterBasedRunner` whose `self.by_epoch` is False, because
    +            # `EpochBasedRunner` whose `self.by_epoch` is True calls
    +            # `_do_evaluate` in `after_train_epoch` stage, and at this stage
    +            # the training log has been printed, so it will not cause any
    +            # problem. more details at
    +            # https://github.com/open-mmlab/mmsegmentation/issues/694
    +            for hook in runner._hooks:
    +                if isinstance(hook, LoggerHook):
    +                    hook.after_train_iter(runner)
    +            runner.log_buffer.clear()
    +
    +            self._do_evaluate(runner)
    +
    +    def after_train_epoch(self, runner):
    +        """Called after every training epoch to evaluate the results."""
    +        if self.by_epoch and self._should_evaluate(runner):
    +            self._do_evaluate(runner)
    +
    +    def _do_evaluate(self, runner):
    +        """perform evaluation and save ckpt."""
    +        results = self.test_fn(runner.model, self.dataloader)
    +        runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
    +        key_score = self.evaluate(runner, results)
    +        # the key_score may be `None` so it needs to skip the action to save
    +        # the best checkpoint
    +        if self.save_best and key_score:
    +            self._save_ckpt(runner, key_score)
    +
    +    def _should_evaluate(self, runner):
    +        """Judge whether to perform evaluation.
    +
    +        Here is the rule to judge whether to perform evaluation:
    +        1. It will not perform evaluation during the epoch/iteration interval,
    +           which is determined by ``self.interval``.
    +        2. It will not perform evaluation if the start time is larger than
    +           current time.
    +        3. It will not perform evaluation when current time is larger than
    +           the start time but during epoch/iteration interval.
    +
    +        Returns:
    +            bool: The flag indicating whether to perform evaluation.
    +        """
    +        if self.by_epoch:
    +            current = runner.epoch
    +            check_time = self.every_n_epochs
    +        else:
    +            current = runner.iter
    +            check_time = self.every_n_iters
    +
    +        if self.start is None:
    +            if not check_time(runner, self.interval):
    +                # No evaluation during the interval.
    +                return False
    +        elif (current + 1) < self.start:
    +            # No evaluation if start is larger than the current time.
    +            return False
    +        else:
    +            # Evaluation only at epochs/iters 3, 5, 7...
    +            # if start==3 and interval==2
    +            if (current + 1 - self.start) % self.interval:
    +                return False
    +        return True
    +
    +    def _save_ckpt(self, runner, key_score):
    +        """Save the best checkpoint.
    +
    +        It will compare the score according to the compare function, write
    +        related information (best score, best checkpoint path) and save the
    +        best checkpoint into ``work_dir``.
    +        """
    +        if self.by_epoch:
    +            current = f'epoch_{runner.epoch + 1}'
    +            cur_type, cur_time = 'epoch', runner.epoch + 1
    +        else:
    +            current = f'iter_{runner.iter + 1}'
    +            cur_type, cur_time = 'iter', runner.iter + 1
    +
    +        best_score = runner.meta['hook_msgs'].get(
    +            'best_score', self.init_value_map[self.rule])
    +        if self.compare_func(key_score, best_score):
    +            best_score = key_score
    +            runner.meta['hook_msgs']['best_score'] = best_score
    +
    +            if self.best_ckpt_path and self.file_client.isfile(
    +                    self.best_ckpt_path):
    +                self.file_client.remove(self.best_ckpt_path)
    +                runner.logger.info(
    +                    f'The previous best checkpoint {self.best_ckpt_path} was '
    +                    'removed')
    +
    +            best_ckpt_name = f'best_{self.key_indicator}_{current}.pth'
    +            self.best_ckpt_path = self.file_client.join_path(
    +                self.out_dir, best_ckpt_name)
    +            runner.meta['hook_msgs']['best_ckpt'] = self.best_ckpt_path
    +
    +            runner.save_checkpoint(
    +                self.out_dir,
    +                filename_tmpl=best_ckpt_name,
    +                create_symlink=False)
    +            runner.logger.info(
    +                f'Now best checkpoint is saved as {best_ckpt_name}.')
    +            runner.logger.info(
    +                f'Best {self.key_indicator} is {best_score:0.4f} '
    +                f'at {cur_time} {cur_type}.')
    +
    +    def evaluate(self, runner, results):
    +        """Evaluate the results.
    +
    +        Args:
    +            runner (:obj:`mmcv.Runner`): The underlined training runner.
    +            results (list): Output results.
    +        """
    +        eval_res = self.dataloader.dataset.evaluate(
    +            results, logger=runner.logger, **self.eval_kwargs)
    +
    +        for name, val in eval_res.items():
    +            runner.log_buffer.output[name] = val
    +        runner.log_buffer.ready = True
    +
    +        if self.save_best is not None:
    +            # If the performance of model is pool, the `eval_res` may be an
    +            # empty dict and it will raise exception when `self.save_best` is
    +            # not None. More details at
    +            # https://github.com/open-mmlab/mmdetection/issues/6265.
    +            if not eval_res:
    +                warnings.warn(
    +                    'Since `eval_res` is an empty dict, the behavior to save '
    +                    'the best checkpoint will be skipped in this evaluation.')
    +                return None
    +
    +            if self.key_indicator == 'auto':
    +                # infer from eval_results
    +                self._init_rule(self.rule, list(eval_res.keys())[0])
    +            return eval_res[self.key_indicator]
    +
    +        return None
    +
    +
    +class DistEvalHook(EvalHook):
    +    """Distributed evaluation hook.
    +
    +    This hook will regularly perform evaluation in a given interval when
    +    performing in distributed environment.
    +
    +    Args:
    +        dataloader (DataLoader): A PyTorch dataloader, whose dataset has
    +            implemented ``evaluate`` function.
    +        start (int | None, optional): Evaluation starting epoch. It enables
    +            evaluation before the training starts if ``start`` <= the resuming
    +            epoch. If None, whether to evaluate is merely decided by
    +            ``interval``. Default: None.
    +        interval (int): Evaluation interval. Default: 1.
    +        by_epoch (bool): Determine perform evaluation by epoch or by iteration.
    +            If set to True, it will perform by epoch. Otherwise, by iteration.
    +            default: True.
    +        save_best (str, optional): If a metric is specified, it would measure
    +            the best checkpoint during evaluation. The information about best
    +            checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep
    +            best score value and best checkpoint path, which will be also
    +            loaded when resume checkpoint. Options are the evaluation metrics
    +            on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
    +            detection and instance segmentation. ``AR@100`` for proposal
    +            recall. If ``save_best`` is ``auto``, the first key of the returned
    +            ``OrderedDict`` result will be used. Default: None.
    +        rule (str | None, optional): Comparison rule for best score. If set to
    +            None, it will infer a reasonable rule. Keys such as 'acc', 'top'
    +            .etc will be inferred by 'greater' rule. Keys contain 'loss' will
    +            be inferred by 'less' rule. Options are 'greater', 'less', None.
    +            Default: None.
    +        test_fn (callable, optional): test a model with samples from a
    +            dataloader in a multi-gpu manner, and return the test results. If
    +            ``None``, the default test function ``mmcv.engine.multi_gpu_test``
    +            will be used. (default: ``None``)
    +        tmpdir (str | None): Temporary directory to save the results of all
    +            processes. Default: None.
    +        gpu_collect (bool): Whether to use gpu or cpu to collect results.
    +            Default: False.
    +        broadcast_bn_buffer (bool): Whether to broadcast the
    +            buffer(running_mean and running_var) of rank 0 to other rank
    +            before evaluation. Default: True.
    +        out_dir (str, optional): The root directory to save checkpoints. If not
    +            specified, `runner.work_dir` will be used by default. If specified,
    +            the `out_dir` will be the concatenation of `out_dir` and the last
    +            level directory of `runner.work_dir`.
    +        file_client_args (dict): Arguments to instantiate a FileClient.
    +            See :class:`mmcv.fileio.FileClient` for details. Default: None.
    +        **eval_kwargs: Evaluation arguments fed into the evaluate function of
    +            the dataset.
    +    """
    +
    +    def __init__(self,
    +                 dataloader: DataLoader,
    +                 start: Optional[int] = None,
    +                 interval: int = 1,
    +                 by_epoch: bool = True,
    +                 save_best: Optional[str] = None,
    +                 rule: Optional[str] = None,
    +                 test_fn: Optional[Callable] = None,
    +                 greater_keys: Optional[List[str]] = None,
    +                 less_keys: Optional[List[str]] = None,
    +                 broadcast_bn_buffer: bool = True,
    +                 tmpdir: Optional[str] = None,
    +                 gpu_collect: bool = False,
    +                 out_dir: Optional[str] = None,
    +                 file_client_args: Optional[dict] = None,
    +                 **eval_kwargs):
    +
    +        if test_fn is None:
    +            from mmcv.engine import multi_gpu_test
    +            test_fn = multi_gpu_test
    +
    +        super().__init__(
    +            dataloader,
    +            start=start,
    +            interval=interval,
    +            by_epoch=by_epoch,
    +            save_best=save_best,
    +            rule=rule,
    +            test_fn=test_fn,
    +            greater_keys=greater_keys,
    +            less_keys=less_keys,
    +            out_dir=out_dir,
    +            file_client_args=file_client_args,
    +            **eval_kwargs)
    +
    +        self.broadcast_bn_buffer = broadcast_bn_buffer
    +        self.tmpdir = tmpdir
    +        self.gpu_collect = gpu_collect
    +
    +    def _do_evaluate(self, runner):
    +        """perform evaluation and save ckpt."""
    +        # Synchronization of BatchNorm's buffer (running_mean
    +        # and running_var) is not supported in the DDP of pytorch,
    +        # which may cause the inconsistent performance of models in
    +        # different ranks, so we broadcast BatchNorm's buffers
    +        # of rank 0 to other ranks to avoid this.
    +        if self.broadcast_bn_buffer:
    +            model = runner.model
    +            for name, module in model.named_modules():
    +                if isinstance(module,
    +                              _BatchNorm) and module.track_running_stats:
    +                    dist.broadcast(module.running_var, 0)
    +                    dist.broadcast(module.running_mean, 0)
    +
    +        tmpdir = self.tmpdir
    +        if tmpdir is None:
    +            tmpdir = osp.join(runner.work_dir, '.eval_hook')
    +
    +        results = self.test_fn(
    +            runner.model,
    +            self.dataloader,
    +            tmpdir=tmpdir,
    +            gpu_collect=self.gpu_collect)
    +        if runner.rank == 0:
    +            print('\n')
    +            runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
    +            key_score = self.evaluate(runner, results)
    +            # the key_score may be `None` so it needs to skip the action to
    +            # save the best checkpoint
    +            if self.save_best and key_score:
    +                self._save_ckpt(runner, key_score)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/hook.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/hook.py
    new file mode 100644
    index 000000000..f2d1c9865
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/hook.py
    @@ -0,0 +1,92 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.utils import Registry, is_method_overridden
    +
    +HOOKS = Registry('hook')
    +
    +
    +class Hook:
    +    stages = ('before_run', 'before_train_epoch', 'before_train_iter',
    +              'after_train_iter', 'after_train_epoch', 'before_val_epoch',
    +              'before_val_iter', 'after_val_iter', 'after_val_epoch',
    +              'after_run')
    +
    +    def before_run(self, runner):
    +        pass
    +
    +    def after_run(self, runner):
    +        pass
    +
    +    def before_epoch(self, runner):
    +        pass
    +
    +    def after_epoch(self, runner):
    +        pass
    +
    +    def before_iter(self, runner):
    +        pass
    +
    +    def after_iter(self, runner):
    +        pass
    +
    +    def before_train_epoch(self, runner):
    +        self.before_epoch(runner)
    +
    +    def before_val_epoch(self, runner):
    +        self.before_epoch(runner)
    +
    +    def after_train_epoch(self, runner):
    +        self.after_epoch(runner)
    +
    +    def after_val_epoch(self, runner):
    +        self.after_epoch(runner)
    +
    +    def before_train_iter(self, runner):
    +        self.before_iter(runner)
    +
    +    def before_val_iter(self, runner):
    +        self.before_iter(runner)
    +
    +    def after_train_iter(self, runner):
    +        self.after_iter(runner)
    +
    +    def after_val_iter(self, runner):
    +        self.after_iter(runner)
    +
    +    def every_n_epochs(self, runner, n):
    +        return (runner.epoch + 1) % n == 0 if n > 0 else False
    +
    +    def every_n_inner_iters(self, runner, n):
    +        return (runner.inner_iter + 1) % n == 0 if n > 0 else False
    +
    +    def every_n_iters(self, runner, n):
    +        return (runner.iter + 1) % n == 0 if n > 0 else False
    +
    +    def end_of_epoch(self, runner):
    +        return runner.inner_iter + 1 == len(runner.data_loader)
    +
    +    def is_last_epoch(self, runner):
    +        return runner.epoch + 1 == runner._max_epochs
    +
    +    def is_last_iter(self, runner):
    +        return runner.iter + 1 == runner._max_iters
    +
    +    def get_triggered_stages(self):
    +        trigger_stages = set()
    +        for stage in Hook.stages:
    +            if is_method_overridden(stage, Hook, self):
    +                trigger_stages.add(stage)
    +
    +        # some methods will be triggered in multi stages
    +        # use this dict to map method to stages.
    +        method_stages_map = {
    +            'before_epoch': ['before_train_epoch', 'before_val_epoch'],
    +            'after_epoch': ['after_train_epoch', 'after_val_epoch'],
    +            'before_iter': ['before_train_iter', 'before_val_iter'],
    +            'after_iter': ['after_train_iter', 'after_val_iter'],
    +        }
    +
    +        for method, map_stages in method_stages_map.items():
    +            if is_method_overridden(method, Hook, self):
    +                trigger_stages.update(map_stages)
    +
    +        return [stage for stage in Hook.stages if stage in trigger_stages]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/iter_timer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/iter_timer.py
    new file mode 100644
    index 000000000..cfd5002fe
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/iter_timer.py
    @@ -0,0 +1,18 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import time
    +
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class IterTimerHook(Hook):
    +
    +    def before_epoch(self, runner):
    +        self.t = time.time()
    +
    +    def before_iter(self, runner):
    +        runner.log_buffer.update({'data_time': time.time() - self.t})
    +
    +    def after_iter(self, runner):
    +        runner.log_buffer.update({'time': time.time() - self.t})
    +        self.t = time.time()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/__init__.py
    new file mode 100644
    index 000000000..062709e70
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/__init__.py
    @@ -0,0 +1,18 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .base import LoggerHook
    +from .clearml import ClearMLLoggerHook
    +from .dvclive import DvcliveLoggerHook
    +from .mlflow import MlflowLoggerHook
    +from .neptune import NeptuneLoggerHook
    +from .pavi import PaviLoggerHook
    +from .segmind import SegmindLoggerHook
    +from .tensorboard import TensorboardLoggerHook
    +from .text import TextLoggerHook
    +from .wandb import WandbLoggerHook
    +
    +__all__ = [
    +    'LoggerHook', 'MlflowLoggerHook', 'PaviLoggerHook',
    +    'TensorboardLoggerHook', 'TextLoggerHook', 'WandbLoggerHook',
    +    'NeptuneLoggerHook', 'DvcliveLoggerHook', 'SegmindLoggerHook',
    +    'ClearMLLoggerHook'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/base.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/base.py
    new file mode 100644
    index 000000000..416a1b751
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/base.py
    @@ -0,0 +1,172 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numbers
    +from abc import ABCMeta, abstractmethod
    +from typing import Dict
    +
    +import numpy as np
    +import torch
    +
    +from ..hook import Hook
    +
    +
    +class LoggerHook(Hook):
    +    """Base class for logger hooks.
    +
    +    Args:
    +        interval (int): Logging interval (every k iterations). Default 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default True.
    +    """
    +
    +    __metaclass__ = ABCMeta
    +
    +    def __init__(self,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True):
    +        self.interval = interval
    +        self.ignore_last = ignore_last
    +        self.reset_flag = reset_flag
    +        self.by_epoch = by_epoch
    +
    +    @abstractmethod
    +    def log(self, runner):
    +        pass
    +
    +    @staticmethod
    +    def is_scalar(val,
    +                  include_np: bool = True,
    +                  include_torch: bool = True) -> bool:
    +        """Tell the input variable is a scalar or not.
    +
    +        Args:
    +            val: Input variable.
    +            include_np (bool): Whether include 0-d np.ndarray as a scalar.
    +            include_torch (bool): Whether include 0-d torch.Tensor as a scalar.
    +
    +        Returns:
    +            bool: True or False.
    +        """
    +        if isinstance(val, numbers.Number):
    +            return True
    +        elif include_np and isinstance(val, np.ndarray) and val.ndim == 0:
    +            return True
    +        elif include_torch and isinstance(val, torch.Tensor) and len(val) == 1:
    +            return True
    +        else:
    +            return False
    +
    +    def get_mode(self, runner) -> str:
    +        if runner.mode == 'train':
    +            if 'time' in runner.log_buffer.output:
    +                mode = 'train'
    +            else:
    +                mode = 'val'
    +        elif runner.mode == 'val':
    +            mode = 'val'
    +        else:
    +            raise ValueError(f"runner mode should be 'train' or 'val', "
    +                             f'but got {runner.mode}')
    +        return mode
    +
    +    def get_epoch(self, runner) -> int:
    +        if runner.mode == 'train':
    +            epoch = runner.epoch + 1
    +        elif runner.mode == 'val':
    +            # normal val mode
    +            # runner.epoch += 1 has been done before val workflow
    +            epoch = runner.epoch
    +        else:
    +            raise ValueError(f"runner mode should be 'train' or 'val', "
    +                             f'but got {runner.mode}')
    +        return epoch
    +
    +    def get_iter(self, runner, inner_iter: bool = False) -> int:
    +        """Get the current training iteration step."""
    +        if self.by_epoch and inner_iter:
    +            current_iter = runner.inner_iter + 1
    +        else:
    +            current_iter = runner.iter + 1
    +        return current_iter
    +
    +    def get_lr_tags(self, runner) -> Dict[str, float]:
    +        tags = {}
    +        lrs = runner.current_lr()
    +        if isinstance(lrs, dict):
    +            for name, value in lrs.items():
    +                tags[f'learning_rate/{name}'] = value[0]
    +        else:
    +            tags['learning_rate'] = lrs[0]
    +        return tags
    +
    +    def get_momentum_tags(self, runner) -> Dict[str, float]:
    +        tags = {}
    +        momentums = runner.current_momentum()
    +        if isinstance(momentums, dict):
    +            for name, value in momentums.items():
    +                tags[f'momentum/{name}'] = value[0]
    +        else:
    +            tags['momentum'] = momentums[0]
    +        return tags
    +
    +    def get_loggable_tags(
    +        self,
    +        runner,
    +        allow_scalar: bool = True,
    +        allow_text: bool = False,
    +        add_mode: bool = True,
    +        tags_to_skip: tuple = ('time', 'data_time')
    +    ) -> Dict:
    +        tags = {}
    +        for var, val in runner.log_buffer.output.items():
    +            if var in tags_to_skip:
    +                continue
    +            if self.is_scalar(val) and not allow_scalar:
    +                continue
    +            if isinstance(val, str) and not allow_text:
    +                continue
    +            if add_mode:
    +                var = f'{self.get_mode(runner)}/{var}'
    +            tags[var] = val
    +        tags.update(self.get_lr_tags(runner))
    +        tags.update(self.get_momentum_tags(runner))
    +        return tags
    +
    +    def before_run(self, runner) -> None:
    +        for hook in runner.hooks[::-1]:
    +            if isinstance(hook, LoggerHook):
    +                hook.reset_flag = True
    +                break
    +
    +    def before_epoch(self, runner) -> None:
    +        runner.log_buffer.clear()  # clear logs of last epoch
    +
    +    def after_train_iter(self, runner) -> None:
    +        if self.by_epoch and self.every_n_inner_iters(runner, self.interval):
    +            runner.log_buffer.average(self.interval)
    +        elif not self.by_epoch and self.every_n_iters(runner, self.interval):
    +            runner.log_buffer.average(self.interval)
    +        elif self.end_of_epoch(runner) and not self.ignore_last:
    +            # not precise but more stable
    +            runner.log_buffer.average(self.interval)
    +
    +        if runner.log_buffer.ready:
    +            self.log(runner)
    +            if self.reset_flag:
    +                runner.log_buffer.clear_output()
    +
    +    def after_train_epoch(self, runner) -> None:
    +        if runner.log_buffer.ready:
    +            self.log(runner)
    +            if self.reset_flag:
    +                runner.log_buffer.clear_output()
    +
    +    def after_val_epoch(self, runner) -> None:
    +        runner.log_buffer.average()
    +        self.log(runner)
    +        if self.reset_flag:
    +            runner.log_buffer.clear_output()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/clearml.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/clearml.py
    new file mode 100644
    index 000000000..7db651f03
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/clearml.py
    @@ -0,0 +1,63 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +from typing import Dict, Optional
    +
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class ClearMLLoggerHook(LoggerHook):
    +    """Class to log metrics with clearml.
    +
    +    It requires `clearml`_ to be installed.
    +
    +
    +    Args:
    +        init_kwargs (dict): A dict contains the `clearml.Task.init`
    +            initialization keys. See `taskinit`_  for more details.
    +        interval (int): Logging interval (every k iterations). Default 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +
    +    .. _clearml:
    +        https://clear.ml/docs/latest/docs/
    +    .. _taskinit:
    +        https://clear.ml/docs/latest/docs/references/sdk/task/#taskinit
    +    """
    +
    +    def __init__(self,
    +                 init_kwargs: Optional[Dict] = None,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.import_clearml()
    +        self.init_kwargs = init_kwargs
    +
    +    def import_clearml(self):
    +        try:
    +            import clearml
    +        except ImportError:
    +            raise ImportError(
    +                'Please run "pip install clearml" to install clearml')
    +        self.clearml = clearml
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +        task_kwargs = self.init_kwargs if self.init_kwargs else {}
    +        self.task = self.clearml.Task.init(**task_kwargs)
    +        self.task_logger = self.task.get_logger()
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        for tag, val in tags.items():
    +            self.task_logger.report_scalar(tag, tag, val,
    +                                           self.get_iter(runner))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/dvclive.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/dvclive.py
    new file mode 100644
    index 000000000..04e584530
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/dvclive.py
    @@ -0,0 +1,73 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from pathlib import Path
    +from typing import Optional
    +
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class DvcliveLoggerHook(LoggerHook):
    +    """Class to log metrics with dvclive.
    +
    +    It requires `dvclive`_ to be installed.
    +
    +    Args:
    +        model_file (str): Default None. If not None, after each epoch the
    +            model will be saved to {model_file}.
    +        interval (int): Logging interval (every k iterations). Default 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +        dvclive (Live, optional): An instance of the `Live`_ logger to use
    +            instead of initializing a new one internally. Defaults to None.
    +        kwargs: Arguments for instantiating `Live`_ (ignored if `dvclive` is
    +            provided).
    +
    +    .. _dvclive:
    +        https://dvc.org/doc/dvclive
    +
    +    .. _Live:
    +        https://dvc.org/doc/dvclive/api-reference/live#parameters
    +    """
    +
    +    def __init__(self,
    +                 model_file: Optional[str] = None,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True,
    +                 dvclive=None,
    +                 **kwargs):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.model_file = model_file
    +        self._import_dvclive(dvclive, **kwargs)
    +
    +    def _import_dvclive(self, dvclive=None, **kwargs) -> None:
    +        try:
    +            from dvclive import Live
    +        except ImportError:
    +            raise ImportError(
    +                'Please run "pip install dvclive" to install dvclive')
    +        self.dvclive = dvclive if dvclive is not None else Live(**kwargs)
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        if tags:
    +            self.dvclive.set_step(self.get_iter(runner))
    +            for k, v in tags.items():
    +                self.dvclive.log(k, v)
    +
    +    @master_only
    +    def after_train_epoch(self, runner) -> None:
    +        super().after_train_epoch(runner)
    +        if self.model_file is not None:
    +            runner.save_checkpoint(
    +                Path(self.model_file).parent,
    +                filename_tmpl=Path(self.model_file).name,
    +                create_symlink=False,
    +            )
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/mlflow.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/mlflow.py
    new file mode 100644
    index 000000000..638be9f4a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/mlflow.py
    @@ -0,0 +1,87 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict, Optional
    +
    +from mmcv.utils import TORCH_VERSION
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class MlflowLoggerHook(LoggerHook):
    +    """Class to log metrics and (optionally) a trained model to MLflow.
    +
    +    It requires `MLflow`_ to be installed.
    +
    +    Args:
    +        exp_name (str, optional): Name of the experiment to be used.
    +            Default None. If not None, set the active experiment.
    +            If experiment does not exist, an experiment with provided name
    +            will be created.
    +        tags (Dict[str], optional): Tags for the current run.
    +            Default None. If not None, set tags for the current run.
    +        params (Dict[str], optional): Params for the current run.
    +            Default None. If not None, set params for the current run.
    +        log_model (bool, optional): Whether to log an MLflow artifact.
    +            Default True. If True, log runner.model as an MLflow artifact
    +            for the current run.
    +        interval (int): Logging interval (every k iterations). Default: 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +
    +    .. _MLflow:
    +        https://www.mlflow.org/docs/latest/index.html
    +    """
    +
    +    def __init__(self,
    +                 exp_name: Optional[str] = None,
    +                 tags: Optional[Dict] = None,
    +                 params: Optional[Dict] = None,
    +                 log_model: bool = True,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.import_mlflow()
    +        self.exp_name = exp_name
    +        self.tags = tags
    +        self.params = params
    +        self.log_model = log_model
    +
    +    def import_mlflow(self) -> None:
    +        try:
    +            import mlflow
    +            import mlflow.pytorch as mlflow_pytorch
    +        except ImportError:
    +            raise ImportError(
    +                'Please run "pip install mlflow" to install mlflow')
    +        self.mlflow = mlflow
    +        self.mlflow_pytorch = mlflow_pytorch
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +        if self.exp_name is not None:
    +            self.mlflow.set_experiment(self.exp_name)
    +        if self.tags is not None:
    +            self.mlflow.set_tags(self.tags)
    +        if self.params is not None:
    +            self.mlflow.log_params(self.params)
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        if tags:
    +            self.mlflow.log_metrics(tags, step=self.get_iter(runner))
    +
    +    @master_only
    +    def after_run(self, runner) -> None:
    +        if self.log_model:
    +            self.mlflow_pytorch.log_model(
    +                runner.model,
    +                'models',
    +                pip_requirements=[f'torch=={TORCH_VERSION}'])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/neptune.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/neptune.py
    new file mode 100644
    index 000000000..e398fe1e7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/neptune.py
    @@ -0,0 +1,89 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Dict, Optional
    +
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class NeptuneLoggerHook(LoggerHook):
    +    """Class to log metrics to NeptuneAI.
    +
    +    It requires `Neptune`_ to be installed.
    +
    +    Args:
    +        init_kwargs (dict): a dict contains the initialization keys as below:
    +
    +            - project (str): Name of a project in a form of
    +              namespace/project_name. If None, the value of NEPTUNE_PROJECT
    +              environment variable will be taken.
    +            - api_token (str): User’s API token. If None, the value of
    +              NEPTUNE_API_TOKEN environment variable will be taken. Note: It is
    +              strongly recommended to use NEPTUNE_API_TOKEN environment
    +              variable rather than placing your API token in plain text in your
    +              source code.
    +            - name (str, optional, default is 'Untitled'): Editable name of the
    +              run. Name is displayed in the run's Details and in Runs table as
    +              a column.
    +
    +            Check https://docs.neptune.ai/api-reference/neptune#init for more
    +            init arguments.
    +        interval (int): Logging interval (every k iterations). Default: 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than ``interval``. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: True.
    +        with_step (bool): If True, the step will be logged from
    +            ``self.get_iters``. Otherwise, step will not be logged.
    +            Default: True.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +
    +    .. _Neptune:
    +        https://docs.neptune.ai
    +    """
    +
    +    def __init__(self,
    +                 init_kwargs: Optional[Dict] = None,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = True,
    +                 with_step: bool = True,
    +                 by_epoch: bool = True):
    +
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.import_neptune()
    +        self.init_kwargs = init_kwargs
    +        self.with_step = with_step
    +
    +    def import_neptune(self) -> None:
    +        try:
    +            import neptune.new as neptune
    +        except ImportError:
    +            raise ImportError(
    +                'Please run "pip install neptune-client" to install neptune')
    +        self.neptune = neptune
    +        self.run = None
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        if self.init_kwargs:
    +            self.run = self.neptune.init(**self.init_kwargs)
    +        else:
    +            self.run = self.neptune.init()
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        if tags:
    +            for tag_name, tag_value in tags.items():
    +                if self.with_step:
    +                    self.run[tag_name].log(  # type: ignore
    +                        tag_value, step=self.get_iter(runner))
    +                else:
    +                    tags['global_step'] = self.get_iter(runner)
    +                    self.run[tag_name].log(tags)  # type: ignore
    +
    +    @master_only
    +    def after_run(self, runner) -> None:
    +        self.run.stop()  # type: ignore
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/pavi.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/pavi.py
    new file mode 100644
    index 000000000..f22eb5427
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/pavi.py
    @@ -0,0 +1,277 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import json
    +import os
    +import os.path as osp
    +import warnings
    +from functools import partial
    +from typing import Dict, Optional
    +
    +import torch
    +import yaml
    +
    +import mmcv
    +from mmcv.parallel.scatter_gather import scatter
    +from mmcv.parallel.utils import is_module_wrapper
    +from mmcv.runner.dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class PaviLoggerHook(LoggerHook):
    +    """Class to visual model, log metrics (for internal use).
    +
    +    Args:
    +        init_kwargs (dict): A dict contains the initialization keys as below:
    +
    +            - name (str, optional): Custom training name. Defaults to None,
    +              which means current work_dir.
    +            - project (str, optional): Project name. Defaults to "default".
    +            - model (str, optional): Training model name. Defaults to current
    +              model.
    +            - session_text (str, optional): Session string in YAML format.
    +              Defaults to current config.
    +            - training_id (int, optional): Training ID in PAVI, if you want to
    +              use an existing training. Defaults to None.
    +            - compare_id (int, optional): Compare ID in PAVI, if you want to
    +              add the task to an existing compare. Defaults to None.
    +            - overwrite_last_training (bool, optional): Whether to upload data
    +              to the training with the same name in the same project, rather
    +              than creating a new one. Defaults to False.
    +        add_graph (bool, optional): **Deprecated**. Whether to visual model.
    +            Default: False.
    +        img_key (str, optional): **Deprecated**. Image key. Defaults to None.
    +        add_last_ckpt (bool): Whether to save checkpoint after run.
    +            Default: False.
    +        interval (int): Logging interval (every k iterations). Default: True.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +        add_graph_kwargs (dict, optional): A dict contains the params for
    +            adding graph, the keys are as below:
    +            - active (bool): Whether to use ``add_graph``. Default: False.
    +            - start (int): The epoch or iteration to start. Default: 0.
    +            - interval (int): Interval of ``add_graph``. Default: 1.
    +            - img_key (str): Get image data from Dataset. Default: 'img'.
    +            - opset_version (int): ``opset_version`` of exporting onnx.
    +                Default: 11.
    +            - dummy_forward_kwargs (dict, optional): Set default parameters to
    +                model forward function except image. For example, you can set
    +                {'return_loss': False} for mmcls. Default: None.
    +        add_ckpt_kwargs (dict, optional): A dict contains the params for
    +            adding checkpoint, the keys are as below:
    +            - active (bool): Whether to upload checkpoint. Default: False.
    +            - start (int): The epoch or iteration to start. Default: 0.
    +            - interval (int): Interval of upload checkpoint. Default: 1.
    +    """
    +
    +    def __init__(self,
    +                 init_kwargs: Optional[Dict] = None,
    +                 add_graph: Optional[bool] = None,
    +                 img_key: Optional[str] = None,
    +                 add_last_ckpt: bool = False,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True,
    +                 add_graph_kwargs: Optional[Dict] = None,
    +                 add_ckpt_kwargs: Optional[Dict] = None) -> None:
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.init_kwargs = init_kwargs
    +
    +        add_graph_kwargs = {} if add_graph_kwargs is None else add_graph_kwargs
    +        self.add_graph = add_graph_kwargs.get('active', False)
    +        self.add_graph_start = add_graph_kwargs.get('start', 0)
    +        self.add_graph_interval = add_graph_kwargs.get('interval', 1)
    +        self.img_key = add_graph_kwargs.get('img_key', 'img')
    +        self.opset_version = add_graph_kwargs.get('opset_version', 11)
    +        self.dummy_forward_kwargs = add_graph_kwargs.get(
    +            'dummy_forward_kwargs', {})
    +        if add_graph is not None:
    +            warnings.warn(
    +                '"add_graph" is deprecated in `PaviLoggerHook`, please use '
    +                'the key "active" of add_graph_kwargs instead',
    +                DeprecationWarning)
    +            self.add_graph = add_graph
    +        if img_key is not None:
    +            warnings.warn(
    +                '"img_key" is deprecated in `PaviLoggerHook`, please use '
    +                'the key "img_key" of add_graph_kwargs instead',
    +                DeprecationWarning)
    +            self.img_key = img_key
    +
    +        add_ckpt_kwargs = {} if add_ckpt_kwargs is None else add_ckpt_kwargs
    +        self.add_ckpt = add_ckpt_kwargs.get('active', False)
    +        self.add_last_ckpt = add_last_ckpt
    +        self.add_ckpt_start = add_ckpt_kwargs.get('start', 0)
    +        self.add_ckpt_interval = add_ckpt_kwargs.get('interval', 1)
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +        try:
    +            from pavi import SummaryWriter
    +        except ImportError:
    +            raise ImportError(
    +                'No module named pavi, please contact pavi team or visit'
    +                'document for pavi installation instructions.')
    +
    +        self.run_name = runner.work_dir.split('/')[-1]
    +
    +        if not self.init_kwargs:
    +            self.init_kwargs = dict()
    +        self.init_kwargs.setdefault('name', self.run_name)
    +        self.init_kwargs.setdefault('model', runner._model_name)
    +        if runner.meta is not None:
    +            if 'config_dict' in runner.meta:
    +                config_dict = runner.meta['config_dict']
    +                assert isinstance(
    +                    config_dict,
    +                    dict), ('meta["config_dict"] has to be of a dict, '
    +                            f'but got {type(config_dict)}')
    +            elif 'config_file' in runner.meta:
    +                config_file = runner.meta['config_file']
    +                config_dict = dict(mmcv.Config.fromfile(config_file))
    +            else:
    +                config_dict = None
    +            if config_dict is not None:
    +                # 'max_.*iter' is parsed in pavi sdk as the maximum iterations
    +                #  to properly set up the progress bar.
    +                config_dict = config_dict.copy()
    +                config_dict.setdefault('max_iter', runner.max_iters)
    +                # non-serializable values are first converted in
    +                # mmcv.dump to json
    +                config_dict = json.loads(
    +                    mmcv.dump(config_dict, file_format='json'))
    +                session_text = yaml.dump(config_dict)
    +                self.init_kwargs.setdefault('session_text', session_text)
    +        self.writer = SummaryWriter(**self.init_kwargs)
    +
    +    def get_step(self, runner) -> int:
    +        """Get the total training step/epoch."""
    +        if self.get_mode(runner) == 'val' and self.by_epoch:
    +            return self.get_epoch(runner)
    +        else:
    +            return self.get_iter(runner)
    +
    +    def _add_ckpt(self, runner, ckpt_path: str, step: int) -> None:
    +
    +        if osp.islink(ckpt_path):
    +            ckpt_path = osp.join(runner.work_dir, os.readlink(ckpt_path))
    +
    +        if osp.isfile(ckpt_path):
    +            self.writer.add_snapshot_file(
    +                tag=self.run_name,
    +                snapshot_file_path=ckpt_path,
    +                iteration=step)
    +
    +    def _add_graph(self, runner, step: int) -> None:
    +        from mmcv.runner.iter_based_runner import IterLoader
    +        if is_module_wrapper(runner.model):
    +            _model = runner.model.module
    +        else:
    +            _model = runner.model
    +        device = next(_model.parameters()).device
    +        # Note that if your sampler indices is generated in init method, your
    +        # dataset may be one less.
    +        if isinstance(runner.data_loader, IterLoader):
    +            data = next(iter(runner.data_loader._dataloader))
    +        else:
    +            data = next(iter(runner.data_loader))
    +        data = scatter(data, [device.index])[0]
    +        img = data[self.img_key]
    +        with torch.no_grad():
    +            origin_forward = _model.forward
    +            if hasattr(_model, 'forward_dummy'):
    +                _model.forward = _model.forward_dummy
    +            if self.dummy_forward_kwargs:
    +                _model.forward = partial(_model.forward,
    +                                         **self.dummy_forward_kwargs)
    +            self.writer.add_graph(
    +                _model,
    +                img,
    +                tag=f'{self.run_name}_{step}',
    +                opset_version=self.opset_version)
    +            _model.forward = origin_forward
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner, add_mode=False)
    +        if tags:
    +            self.writer.add_scalars(
    +                self.get_mode(runner), tags, self.get_step(runner))
    +
    +    @master_only
    +    def after_run(self, runner) -> None:
    +
    +        if self.add_last_ckpt:
    +            # using runner.epoch/iter is ok since the step has been + 1
    +            step = runner.epoch if self.by_epoch else runner.iter
    +
    +            ckpt_path = osp.join(runner.work_dir, 'latest.pth')
    +            self._add_ckpt(runner, ckpt_path, step)
    +
    +        # flush the buffer and send a task ending signal to Pavi
    +        self.writer.close()
    +
    +    @master_only
    +    def before_train_epoch(self, runner) -> None:
    +        super().before_train_epoch(runner)
    +
    +        if not self.by_epoch:
    +            return None
    +
    +        step = self.get_epoch(runner)
    +        if (self.add_graph and step >= self.add_graph_start
    +                and ((step - self.add_graph_start) % self.add_graph_interval
    +                     == 0)):  # noqa: E129
    +            self._add_graph(runner, step)
    +
    +    @master_only
    +    def before_train_iter(self, runner) -> None:
    +        super().before_train_iter(runner)
    +
    +        if self.by_epoch:
    +            return None
    +
    +        step = self.get_iter(runner)
    +        if (self.add_graph and step >= self.add_graph_start
    +                and ((step - self.add_graph_start) % self.add_graph_interval
    +                     == 0)):  # noqa: E129
    +            self._add_graph(runner, step)
    +
    +    @master_only
    +    def after_train_epoch(self, runner) -> None:
    +        super().after_train_epoch(runner)
    +        # Do not use runner.epoch since it starts from 0.
    +        if not self.by_epoch:
    +            return None
    +
    +        step = self.get_epoch(runner)
    +
    +        if (self.add_ckpt and step >= self.add_ckpt_start
    +                and ((step - self.add_ckpt_start) % self.add_ckpt_interval
    +                     == 0)):  # noqa: E129
    +
    +            ckpt_path = osp.join(runner.work_dir, f'epoch_{step}.pth')
    +
    +            self._add_ckpt(runner, ckpt_path, step)
    +
    +    @master_only
    +    def after_train_iter(self, runner) -> None:
    +        super().after_train_iter(runner)
    +
    +        if self.by_epoch:
    +            return None
    +
    +        step = self.get_iter(runner)
    +
    +        if (self.add_ckpt and step >= self.add_ckpt_start
    +                and ((step - self.add_ckpt_start) % self.add_ckpt_interval
    +                     == 0)):  # noqa: E129
    +
    +            ckpt_path = osp.join(runner.work_dir, f'iter_{step}.pth')
    +
    +            self._add_ckpt(runner, ckpt_path, step)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/segmind.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/segmind.py
    new file mode 100644
    index 000000000..ecb3751ed
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/segmind.py
    @@ -0,0 +1,48 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class SegmindLoggerHook(LoggerHook):
    +    """Class to log metrics to Segmind.
    +
    +    It requires `Segmind`_ to be installed.
    +
    +    Args:
    +        interval (int): Logging interval (every k iterations). Default: 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default True.
    +
    +    .. _Segmind:
    +        https://docs.segmind.com/python-library
    +    """
    +
    +    def __init__(self,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch=True):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.import_segmind()
    +
    +    def import_segmind(self) -> None:
    +        try:
    +            import segmind
    +        except ImportError:
    +            raise ImportError(
    +                "Please run 'pip install segmind' to install segmind")
    +        self.log_metrics = segmind.tracking.fluent.log_metrics
    +        self.mlflow_log = segmind.utils.logging_utils.try_mlflow_log
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        if tags:
    +            # logging metrics to segmind
    +            self.mlflow_log(
    +                self.log_metrics, tags, step=runner.epoch, epoch=runner.epoch)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/tensorboard.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/tensorboard.py
    new file mode 100644
    index 000000000..11d079911
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/tensorboard.py
    @@ -0,0 +1,69 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +from typing import Optional
    +
    +from mmcv.utils import TORCH_VERSION, digit_version
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class TensorboardLoggerHook(LoggerHook):
    +    """Class to log metrics to Tensorboard.
    +
    +    Args:
    +        log_dir (string): Save directory location. Default: None. If default
    +            values are used, directory location is ``runner.work_dir``/tf_logs.
    +        interval (int): Logging interval (every k iterations). Default: True.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`. Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        by_epoch (bool): Whether EpochBasedRunner is used. Default: True.
    +    """
    +
    +    def __init__(self,
    +                 log_dir: Optional[str] = None,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 by_epoch: bool = True):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.log_dir = log_dir
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +        if (TORCH_VERSION == 'parrots'
    +                or digit_version(TORCH_VERSION) < digit_version('1.1')):
    +            try:
    +                from tensorboardX import SummaryWriter
    +            except ImportError:
    +                raise ImportError('Please install tensorboardX to use '
    +                                  'TensorboardLoggerHook.')
    +        else:
    +            try:
    +                from torch.utils.tensorboard import SummaryWriter
    +            except ImportError:
    +                raise ImportError(
    +                    'Please run "pip install future tensorboard" to install '
    +                    'the dependencies to use torch.utils.tensorboard '
    +                    '(applicable to PyTorch 1.1 or higher)')
    +
    +        if self.log_dir is None:
    +            self.log_dir = osp.join(runner.work_dir, 'tf_logs')
    +        self.writer = SummaryWriter(self.log_dir)
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner, allow_text=True)
    +        for tag, val in tags.items():
    +            if isinstance(val, str):
    +                self.writer.add_text(tag, val, self.get_iter(runner))
    +            else:
    +                self.writer.add_scalar(tag, val, self.get_iter(runner))
    +
    +    @master_only
    +    def after_run(self, runner) -> None:
    +        self.writer.close()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/text.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/text.py
    new file mode 100644
    index 000000000..fbfa208a6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/text.py
    @@ -0,0 +1,256 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import datetime
    +import os
    +import os.path as osp
    +from collections import OrderedDict
    +from typing import Dict, Optional, Union
    +
    +import torch
    +import torch.distributed as dist
    +
    +import mmcv
    +from mmcv.fileio.file_client import FileClient
    +from mmcv.utils import is_tuple_of, scandir
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class TextLoggerHook(LoggerHook):
    +    """Logger hook in text.
    +
    +    In this logger hook, the information will be printed on terminal and
    +    saved in json file.
    +
    +    Args:
    +        by_epoch (bool, optional): Whether EpochBasedRunner is used.
    +            Default: True.
    +        interval (int, optional): Logging interval (every k iterations).
    +            Default: 10.
    +        ignore_last (bool, optional): Ignore the log of last iterations in each
    +            epoch if less than :attr:`interval`. Default: True.
    +        reset_flag (bool, optional): Whether to clear the output buffer after
    +            logging. Default: False.
    +        interval_exp_name (int, optional): Logging interval for experiment
    +            name. This feature is to help users conveniently get the experiment
    +            information from screen or log file. Default: 1000.
    +        out_dir (str, optional): Logs are saved in ``runner.work_dir`` default.
    +            If ``out_dir`` is specified, logs will be copied to a new directory
    +            which is the concatenation of ``out_dir`` and the last level
    +            directory of ``runner.work_dir``. Default: None.
    +            `New in version 1.3.16.`
    +        out_suffix (str or tuple[str], optional): Those filenames ending with
    +            ``out_suffix`` will be copied to ``out_dir``.
    +            Default: ('.log.json', '.log', '.py').
    +            `New in version 1.3.16.`
    +        keep_local (bool, optional): Whether to keep local log when
    +            :attr:`out_dir` is specified. If False, the local log will be
    +            removed. Default: True.
    +            `New in version 1.3.16.`
    +        file_client_args (dict, optional): Arguments to instantiate a
    +            FileClient. See :class:`mmcv.fileio.FileClient` for details.
    +            Default: None.
    +            `New in version 1.3.16.`
    +    """
    +
    +    def __init__(self,
    +                 by_epoch: bool = True,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 interval_exp_name: int = 1000,
    +                 out_dir: Optional[str] = None,
    +                 out_suffix: Union[str, tuple] = ('.log.json', '.log', '.py'),
    +                 keep_local: bool = True,
    +                 file_client_args: Optional[Dict] = None):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.by_epoch = by_epoch
    +        self.time_sec_tot = 0
    +        self.interval_exp_name = interval_exp_name
    +
    +        if out_dir is None and file_client_args is not None:
    +            raise ValueError(
    +                'file_client_args should be "None" when `out_dir` is not'
    +                'specified.')
    +        self.out_dir = out_dir
    +
    +        if not (out_dir is None or isinstance(out_dir, str)
    +                or is_tuple_of(out_dir, str)):
    +            raise TypeError('out_dir should be  "None" or string or tuple of '
    +                            'string, but got {out_dir}')
    +        self.out_suffix = out_suffix
    +
    +        self.keep_local = keep_local
    +        self.file_client_args = file_client_args
    +        if self.out_dir is not None:
    +            self.file_client = FileClient.infer_client(file_client_args,
    +                                                       self.out_dir)
    +
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +
    +        if self.out_dir is not None:
    +            self.file_client = FileClient.infer_client(self.file_client_args,
    +                                                       self.out_dir)
    +            # The final `self.out_dir` is the concatenation of `self.out_dir`
    +            # and the last level directory of `runner.work_dir`
    +            basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +            self.out_dir = self.file_client.join_path(self.out_dir, basename)
    +            runner.logger.info(
    +                f'Text logs will be saved to {self.out_dir} by '
    +                f'{self.file_client.name} after the training process.')
    +
    +        self.start_iter = runner.iter
    +        self.json_log_path = osp.join(runner.work_dir,
    +                                      f'{runner.timestamp}.log.json')
    +        if runner.meta is not None:
    +            self._dump_log(runner.meta, runner)
    +
    +    def _get_max_memory(self, runner) -> int:
    +        device = getattr(runner.model, 'output_device', None)
    +        mem = torch.cuda.max_memory_allocated(device=device)
    +        mem_mb = torch.tensor([int(mem) // (1024 * 1024)],
    +                              dtype=torch.int,
    +                              device=device)
    +        if runner.world_size > 1:
    +            dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX)
    +        return mem_mb.item()
    +
    +    def _log_info(self, log_dict: Dict, runner) -> None:
    +        # print exp name for users to distinguish experiments
    +        # at every ``interval_exp_name`` iterations and the end of each epoch
    +        if runner.meta is not None and 'exp_name' in runner.meta:
    +            if (self.every_n_iters(runner, self.interval_exp_name)) or (
    +                    self.by_epoch and self.end_of_epoch(runner)):
    +                exp_info = f'Exp name: {runner.meta["exp_name"]}'
    +                runner.logger.info(exp_info)
    +
    +        if log_dict['mode'] == 'train':
    +            if isinstance(log_dict['lr'], dict):
    +                lr_str = []
    +                for k, val in log_dict['lr'].items():
    +                    lr_str.append(f'lr_{k}: {val:.3e}')
    +                lr_str = ' '.join(lr_str)  # type: ignore
    +            else:
    +                lr_str = f'lr: {log_dict["lr"]:.3e}'  # type: ignore
    +
    +            # by epoch: Epoch [4][100/1000]
    +            # by iter:  Iter [100/100000]
    +            if self.by_epoch:
    +                log_str = f'Epoch [{log_dict["epoch"]}]' \
    +                          f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t'
    +            else:
    +                log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t'
    +            log_str += f'{lr_str}, '
    +
    +            if 'time' in log_dict.keys():
    +                self.time_sec_tot += (log_dict['time'] * self.interval)
    +                time_sec_avg = self.time_sec_tot / (
    +                    runner.iter - self.start_iter + 1)
    +                eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1)
    +                eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
    +                log_str += f'eta: {eta_str}, '
    +                log_str += f'time: {log_dict["time"]:.3f}, ' \
    +                           f'data_time: {log_dict["data_time"]:.3f}, '
    +                # statistic memory
    +                if torch.cuda.is_available():
    +                    log_str += f'memory: {log_dict["memory"]}, '
    +        else:
    +            # val/test time
    +            # here 1000 is the length of the val dataloader
    +            # by epoch: Epoch[val] [4][1000]
    +            # by iter: Iter[val] [1000]
    +            if self.by_epoch:
    +                log_str = f'Epoch({log_dict["mode"]}) ' \
    +                    f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t'
    +            else:
    +                log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t'
    +
    +        log_items = []
    +        for name, val in log_dict.items():
    +            # TODO: resolve this hack
    +            # these items have been in log_str
    +            if name in [
    +                    'mode', 'Epoch', 'iter', 'lr', 'time', 'data_time',
    +                    'memory', 'epoch'
    +            ]:
    +                continue
    +            if isinstance(val, float):
    +                val = f'{val:.4f}'
    +            log_items.append(f'{name}: {val}')
    +        log_str += ', '.join(log_items)
    +
    +        runner.logger.info(log_str)
    +
    +    def _dump_log(self, log_dict: Dict, runner) -> None:
    +        # dump log in json format
    +        json_log = OrderedDict()
    +        for k, v in log_dict.items():
    +            json_log[k] = self._round_float(v)
    +        # only append log at last line
    +        if runner.rank == 0:
    +            with open(self.json_log_path, 'a+') as f:
    +                mmcv.dump(json_log, f, file_format='json')
    +                f.write('\n')
    +
    +    def _round_float(self, items):
    +        if isinstance(items, list):
    +            return [self._round_float(item) for item in items]
    +        elif isinstance(items, float):
    +            return round(items, 5)
    +        else:
    +            return items
    +
    +    def log(self, runner) -> OrderedDict:
    +        if 'eval_iter_num' in runner.log_buffer.output:
    +            # this doesn't modify runner.iter and is regardless of by_epoch
    +            cur_iter = runner.log_buffer.output.pop('eval_iter_num')
    +        else:
    +            cur_iter = self.get_iter(runner, inner_iter=True)
    +
    +        log_dict = OrderedDict(
    +            mode=self.get_mode(runner),
    +            epoch=self.get_epoch(runner),
    +            iter=cur_iter)
    +
    +        # only record lr of the first param group
    +        cur_lr = runner.current_lr()
    +        if isinstance(cur_lr, list):
    +            log_dict['lr'] = cur_lr[0]
    +        else:
    +            assert isinstance(cur_lr, dict)
    +            log_dict['lr'] = {}
    +            for k, lr_ in cur_lr.items():
    +                assert isinstance(lr_, list)
    +                log_dict['lr'].update({k: lr_[0]})
    +
    +        if 'time' in runner.log_buffer.output:
    +            # statistic memory
    +            if torch.cuda.is_available():
    +                log_dict['memory'] = self._get_max_memory(runner)
    +
    +        log_dict = dict(log_dict, **runner.log_buffer.output)  # type: ignore
    +
    +        self._log_info(log_dict, runner)
    +        self._dump_log(log_dict, runner)
    +        return log_dict
    +
    +    def after_run(self, runner) -> None:
    +        # copy or upload logs to self.out_dir
    +        if self.out_dir is not None:
    +            for filename in scandir(runner.work_dir, self.out_suffix, True):
    +                local_filepath = osp.join(runner.work_dir, filename)
    +                out_filepath = self.file_client.join_path(
    +                    self.out_dir, filename)
    +                with open(local_filepath) as f:
    +                    self.file_client.put_text(f.read(), out_filepath)
    +
    +                runner.logger.info(
    +                    f'The file {local_filepath} has been uploaded to '
    +                    f'{out_filepath}.')
    +
    +                if not self.keep_local:
    +                    os.remove(local_filepath)
    +                    runner.logger.info(
    +                        f'{local_filepath} was removed due to the '
    +                        '`self.keep_local=False`')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/wandb.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/wandb.py
    new file mode 100644
    index 000000000..9013f984b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/logger/wandb.py
    @@ -0,0 +1,130 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import warnings
    +from typing import Dict, Optional, Union
    +
    +from mmcv.utils import scandir
    +from ...dist_utils import master_only
    +from ..hook import HOOKS
    +from .base import LoggerHook
    +
    +
    +@HOOKS.register_module()
    +class WandbLoggerHook(LoggerHook):
    +    """Class to log metrics with wandb.
    +
    +    It requires `wandb`_ to be installed.
    +
    +
    +    Args:
    +        init_kwargs (dict): A dict contains the initialization keys. Check
    +            https://docs.wandb.ai/ref/python/init for more init arguments.
    +        interval (int): Logging interval (every k iterations).
    +            Default 10.
    +        ignore_last (bool): Ignore the log of last iterations in each epoch
    +            if less than `interval`.
    +            Default: True.
    +        reset_flag (bool): Whether to clear the output buffer after logging.
    +            Default: False.
    +        commit (bool): Save the metrics dict to the wandb server and increment
    +            the step. If false ``wandb.log`` just updates the current metrics
    +            dict with the row argument and metrics won't be saved until
    +            ``wandb.log`` is called with ``commit=True``.
    +            Default: True.
    +        by_epoch (bool): Whether EpochBasedRunner is used.
    +            Default: True.
    +        with_step (bool): If True, the step will be logged from
    +            ``self.get_iters``. Otherwise, step will not be logged.
    +            Default: True.
    +        log_artifact (bool): If True, artifacts in {work_dir} will be uploaded
    +            to wandb after training ends.
    +            Default: True
    +            `New in version 1.4.3.`
    +        out_suffix (str or tuple[str], optional): Those filenames ending with
    +            ``out_suffix`` will be uploaded to wandb.
    +            Default: ('.log.json', '.log', '.py').
    +            `New in version 1.4.3.`
    +        define_metric_cfg (dict, optional): A dict of metrics and summaries for
    +            wandb.define_metric. The key is metric and the value is summary.
    +            The summary should be in ["min", "max", "mean" ,"best", "last",
    +             "none"].
    +            For example, if setting
    +            ``define_metric_cfg={'coco/bbox_mAP': 'max'}``, the maximum value
    +            of ``coco/bbox_mAP`` will be logged on wandb UI. See
    +            `wandb docs `_
    +            for details.
    +            Defaults to None.
    +            `New in version 1.6.3.`
    +
    +    .. _wandb:
    +        https://docs.wandb.ai
    +    """
    +
    +    def __init__(self,
    +                 init_kwargs: Optional[Dict] = None,
    +                 interval: int = 10,
    +                 ignore_last: bool = True,
    +                 reset_flag: bool = False,
    +                 commit: bool = True,
    +                 by_epoch: bool = True,
    +                 with_step: bool = True,
    +                 log_artifact: bool = True,
    +                 out_suffix: Union[str, tuple] = ('.log.json', '.log', '.py'),
    +                 define_metric_cfg: Optional[Dict] = None):
    +        super().__init__(interval, ignore_last, reset_flag, by_epoch)
    +        self.import_wandb()
    +        self.init_kwargs = init_kwargs
    +        self.commit = commit
    +        self.with_step = with_step
    +        self.log_artifact = log_artifact
    +        self.out_suffix = out_suffix
    +        self.define_metric_cfg = define_metric_cfg
    +
    +    def import_wandb(self) -> None:
    +        try:
    +            import wandb
    +        except ImportError:
    +            raise ImportError(
    +                'Please run "pip install wandb" to install wandb')
    +        self.wandb = wandb
    +
    +    @master_only
    +    def before_run(self, runner) -> None:
    +        super().before_run(runner)
    +        if self.wandb is None:
    +            self.import_wandb()
    +        if self.init_kwargs:
    +            self.wandb.init(**self.init_kwargs)  # type: ignore
    +        else:
    +            self.wandb.init()  # type: ignore
    +        summary_choice = ['min', 'max', 'mean', 'best', 'last', 'none']
    +        if self.define_metric_cfg is not None:
    +            for metric, summary in self.define_metric_cfg.items():
    +                if summary not in summary_choice:
    +                    warnings.warn(
    +                        f'summary should be in {summary_choice}. '
    +                        f'metric={metric}, summary={summary} will be skipped.')
    +                self.wandb.define_metric(  # type: ignore
    +                    metric, summary=summary)
    +
    +    @master_only
    +    def log(self, runner) -> None:
    +        tags = self.get_loggable_tags(runner)
    +        if tags:
    +            if self.with_step:
    +                self.wandb.log(
    +                    tags, step=self.get_iter(runner), commit=self.commit)
    +            else:
    +                tags['global_step'] = self.get_iter(runner)
    +                self.wandb.log(tags, commit=self.commit)
    +
    +    @master_only
    +    def after_run(self, runner) -> None:
    +        if self.log_artifact:
    +            wandb_artifact = self.wandb.Artifact(
    +                name='artifacts', type='model')
    +            for filename in scandir(runner.work_dir, self.out_suffix, True):
    +                local_filepath = osp.join(runner.work_dir, filename)
    +                wandb_artifact.add_file(local_filepath)
    +            self.wandb.log_artifact(wandb_artifact)
    +        self.wandb.join()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/lr_updater.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/lr_updater.py
    new file mode 100644
    index 000000000..e0be40559
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/lr_updater.py
    @@ -0,0 +1,754 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numbers
    +from math import cos, pi
    +from typing import Callable, List, Optional, Union
    +
    +import mmcv
    +from mmcv import runner
    +from .hook import HOOKS, Hook
    +
    +
    +class LrUpdaterHook(Hook):
    +    """LR Scheduler in MMCV.
    +
    +    Args:
    +        by_epoch (bool): LR changes epoch by epoch
    +        warmup (string): Type of warmup used. It can be None(use no warmup),
    +            'constant', 'linear' or 'exp'
    +        warmup_iters (int): The number of iterations or epochs that warmup
    +            lasts
    +        warmup_ratio (float): LR used at the beginning of warmup equals to
    +            warmup_ratio * initial_lr
    +        warmup_by_epoch (bool): When warmup_by_epoch == True, warmup_iters
    +            means the number of epochs that warmup lasts, otherwise means the
    +            number of iteration that warmup lasts
    +    """
    +
    +    def __init__(self,
    +                 by_epoch: bool = True,
    +                 warmup: Optional[str] = None,
    +                 warmup_iters: int = 0,
    +                 warmup_ratio: float = 0.1,
    +                 warmup_by_epoch: bool = False) -> None:
    +        # validate the "warmup" argument
    +        if warmup is not None:
    +            if warmup not in ['constant', 'linear', 'exp']:
    +                raise ValueError(
    +                    f'"{warmup}" is not a supported type for warming up, valid'
    +                    ' types are "constant", "linear" and "exp"')
    +        if warmup is not None:
    +            assert warmup_iters > 0, \
    +                '"warmup_iters" must be a positive integer'
    +            assert 0 < warmup_ratio <= 1.0, \
    +                '"warmup_ratio" must be in range (0,1]'
    +
    +        self.by_epoch = by_epoch
    +        self.warmup = warmup
    +        self.warmup_iters: Optional[int] = warmup_iters
    +        self.warmup_ratio = warmup_ratio
    +        self.warmup_by_epoch = warmup_by_epoch
    +
    +        if self.warmup_by_epoch:
    +            self.warmup_epochs: Optional[int] = self.warmup_iters
    +            self.warmup_iters = None
    +        else:
    +            self.warmup_epochs = None
    +
    +        self.base_lr: Union[list, dict] = []  # initial lr for all param groups
    +        self.regular_lr: list = []  # expected lr if no warming up is performed
    +
    +    def _set_lr(self, runner, lr_groups):
    +        if isinstance(runner.optimizer, dict):
    +            for k, optim in runner.optimizer.items():
    +                for param_group, lr in zip(optim.param_groups, lr_groups[k]):
    +                    param_group['lr'] = lr
    +        else:
    +            for param_group, lr in zip(runner.optimizer.param_groups,
    +                                       lr_groups):
    +                param_group['lr'] = lr
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        raise NotImplementedError
    +
    +    def get_regular_lr(self, runner: 'runner.BaseRunner'):
    +        if isinstance(runner.optimizer, dict):
    +            lr_groups = {}
    +            for k in runner.optimizer.keys():
    +                _lr_group = [
    +                    self.get_lr(runner, _base_lr)
    +                    for _base_lr in self.base_lr[k]
    +                ]
    +                lr_groups.update({k: _lr_group})
    +
    +            return lr_groups
    +        else:
    +            return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr]
    +
    +    def get_warmup_lr(self, cur_iters: int):
    +
    +        def _get_warmup_lr(cur_iters, regular_lr):
    +            if self.warmup == 'constant':
    +                warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr]
    +            elif self.warmup == 'linear':
    +                k = (1 - cur_iters / self.warmup_iters) * (1 -
    +                                                           self.warmup_ratio)
    +                warmup_lr = [_lr * (1 - k) for _lr in regular_lr]
    +            elif self.warmup == 'exp':
    +                k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
    +                warmup_lr = [_lr * k for _lr in regular_lr]
    +            return warmup_lr
    +
    +        if isinstance(self.regular_lr, dict):
    +            lr_groups = {}
    +            for key, regular_lr in self.regular_lr.items():
    +                lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr)
    +            return lr_groups
    +        else:
    +            return _get_warmup_lr(cur_iters, self.regular_lr)
    +
    +    def before_run(self, runner: 'runner.BaseRunner'):
    +        # NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
    +        # it will be set according to the optimizer params
    +        if isinstance(runner.optimizer, dict):
    +            self.base_lr = {}
    +            for k, optim in runner.optimizer.items():
    +                for group in optim.param_groups:
    +                    group.setdefault('initial_lr', group['lr'])
    +                _base_lr = [
    +                    group['initial_lr'] for group in optim.param_groups
    +                ]
    +                self.base_lr.update({k: _base_lr})
    +        else:
    +            for group in runner.optimizer.param_groups:  # type: ignore
    +                group.setdefault('initial_lr', group['lr'])
    +            self.base_lr = [
    +                group['initial_lr']
    +                for group in runner.optimizer.param_groups  # type: ignore
    +            ]
    +
    +    def before_train_epoch(self, runner: 'runner.BaseRunner'):
    +        if self.warmup_iters is None:
    +            epoch_len = len(runner.data_loader)  # type: ignore
    +            self.warmup_iters = self.warmup_epochs * epoch_len  # type: ignore
    +
    +        if not self.by_epoch:
    +            return
    +
    +        self.regular_lr = self.get_regular_lr(runner)
    +        self._set_lr(runner, self.regular_lr)
    +
    +    def before_train_iter(self, runner: 'runner.BaseRunner'):
    +        cur_iter = runner.iter
    +        assert isinstance(self.warmup_iters, int)
    +        if not self.by_epoch:
    +            self.regular_lr = self.get_regular_lr(runner)
    +            if self.warmup is None or cur_iter >= self.warmup_iters:
    +                self._set_lr(runner, self.regular_lr)
    +            else:
    +                warmup_lr = self.get_warmup_lr(cur_iter)
    +                self._set_lr(runner, warmup_lr)
    +        elif self.by_epoch:
    +            if self.warmup is None or cur_iter > self.warmup_iters:
    +                return
    +            elif cur_iter == self.warmup_iters:
    +                self._set_lr(runner, self.regular_lr)
    +            else:
    +                warmup_lr = self.get_warmup_lr(cur_iter)
    +                self._set_lr(runner, warmup_lr)
    +
    +
    +@HOOKS.register_module()
    +class FixedLrUpdaterHook(LrUpdaterHook):
    +
    +    def __init__(self, **kwargs):
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner, base_lr):
    +        return base_lr
    +
    +
    +@HOOKS.register_module()
    +class StepLrUpdaterHook(LrUpdaterHook):
    +    """Step LR scheduler with min_lr clipping.
    +
    +    Args:
    +        step (int | list[int]): Step to decay the LR. If an int value is given,
    +            regard it as the decay interval. If a list is given, decay LR at
    +            these steps.
    +        gamma (float): Decay LR ratio. Defaults to 0.1.
    +        min_lr (float, optional): Minimum LR value to keep. If LR after decay
    +            is lower than `min_lr`, it will be clipped to this value. If None
    +            is given, we don't perform lr clipping. Default: None.
    +    """
    +
    +    def __init__(self,
    +                 step: Union[int, List[int]],
    +                 gamma: float = 0.1,
    +                 min_lr: Optional[float] = None,
    +                 **kwargs) -> None:
    +        if isinstance(step, list):
    +            assert mmcv.is_list_of(step, int)
    +            assert all([s > 0 for s in step])
    +        elif isinstance(step, int):
    +            assert step > 0
    +        else:
    +            raise TypeError('"step" must be a list or integer')
    +        self.step = step
    +        self.gamma = gamma
    +        self.min_lr = min_lr
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        progress = runner.epoch if self.by_epoch else runner.iter
    +
    +        # calculate exponential term
    +        if isinstance(self.step, int):
    +            exp = progress // self.step
    +        else:
    +            exp = len(self.step)
    +            for i, s in enumerate(self.step):
    +                if progress < s:
    +                    exp = i
    +                    break
    +
    +        lr = base_lr * (self.gamma**exp)
    +        if self.min_lr is not None:
    +            # clip to a minimum value
    +            lr = max(lr, self.min_lr)
    +        return lr
    +
    +
    +@HOOKS.register_module()
    +class ExpLrUpdaterHook(LrUpdaterHook):
    +
    +    def __init__(self, gamma: float, **kwargs) -> None:
    +        self.gamma = gamma
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        progress = runner.epoch if self.by_epoch else runner.iter
    +        return base_lr * self.gamma**progress
    +
    +
    +@HOOKS.register_module()
    +class PolyLrUpdaterHook(LrUpdaterHook):
    +
    +    def __init__(self,
    +                 power: float = 1.,
    +                 min_lr: float = 0.,
    +                 **kwargs) -> None:
    +        self.power = power
    +        self.min_lr = min_lr
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        if self.by_epoch:
    +            progress = runner.epoch
    +            max_progress = runner.max_epochs
    +        else:
    +            progress = runner.iter
    +            max_progress = runner.max_iters
    +        coeff = (1 - progress / max_progress)**self.power
    +        return (base_lr - self.min_lr) * coeff + self.min_lr
    +
    +
    +@HOOKS.register_module()
    +class InvLrUpdaterHook(LrUpdaterHook):
    +
    +    def __init__(self, gamma: float, power: float = 1., **kwargs) -> None:
    +        self.gamma = gamma
    +        self.power = power
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        progress = runner.epoch if self.by_epoch else runner.iter
    +        return base_lr * (1 + self.gamma * progress)**(-self.power)
    +
    +
    +@HOOKS.register_module()
    +class CosineAnnealingLrUpdaterHook(LrUpdaterHook):
    +    """CosineAnnealing LR scheduler.
    +
    +    Args:
    +        min_lr (float, optional): The minimum lr. Default: None.
    +        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
    +            Either `min_lr` or `min_lr_ratio` should be specified.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 min_lr: Optional[float] = None,
    +                 min_lr_ratio: Optional[float] = None,
    +                 **kwargs) -> None:
    +        assert (min_lr is None) ^ (min_lr_ratio is None)
    +        self.min_lr = min_lr
    +        self.min_lr_ratio = min_lr_ratio
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        if self.by_epoch:
    +            progress = runner.epoch
    +            max_progress = runner.max_epochs
    +        else:
    +            progress = runner.iter
    +            max_progress = runner.max_iters
    +
    +        if self.min_lr_ratio is not None:
    +            target_lr = base_lr * self.min_lr_ratio
    +        else:
    +            target_lr = self.min_lr  # type:ignore
    +        return annealing_cos(base_lr, target_lr, progress / max_progress)
    +
    +
    +@HOOKS.register_module()
    +class FlatCosineAnnealingLrUpdaterHook(LrUpdaterHook):
    +    """Flat + Cosine lr schedule.
    +
    +    Modified from https://github.com/fastai/fastai/blob/master/fastai/callback/schedule.py#L128 # noqa: E501
    +
    +    Args:
    +        start_percent (float): When to start annealing the learning rate
    +            after the percentage of the total training steps.
    +            The value should be in range [0, 1).
    +            Default: 0.75
    +        min_lr (float, optional): The minimum lr. Default: None.
    +        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
    +            Either `min_lr` or `min_lr_ratio` should be specified.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 start_percent: float = 0.75,
    +                 min_lr: Optional[float] = None,
    +                 min_lr_ratio: Optional[float] = None,
    +                 **kwargs) -> None:
    +        assert (min_lr is None) ^ (min_lr_ratio is None)
    +        if start_percent < 0 or start_percent > 1 or not isinstance(
    +                start_percent, float):
    +            raise ValueError(
    +                'expected float between 0 and 1 start_percent, but '
    +                f'got {start_percent}')
    +        self.start_percent = start_percent
    +        self.min_lr = min_lr
    +        self.min_lr_ratio = min_lr_ratio
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        if self.by_epoch:
    +            start = round(runner.max_epochs * self.start_percent)
    +            progress = runner.epoch - start
    +            max_progress = runner.max_epochs - start
    +        else:
    +            start = round(runner.max_iters * self.start_percent)
    +            progress = runner.iter - start
    +            max_progress = runner.max_iters - start
    +
    +        if self.min_lr_ratio is not None:
    +            target_lr = base_lr * self.min_lr_ratio
    +        else:
    +            target_lr = self.min_lr  # type:ignore
    +
    +        if progress < 0:
    +            return base_lr
    +        else:
    +            return annealing_cos(base_lr, target_lr, progress / max_progress)
    +
    +
    +@HOOKS.register_module()
    +class CosineRestartLrUpdaterHook(LrUpdaterHook):
    +    """Cosine annealing with restarts learning rate scheme.
    +
    +    Args:
    +        periods (list[int]): Periods for each cosine anneling cycle.
    +        restart_weights (list[float]): Restart weights at each
    +            restart iteration. Defaults to [1].
    +        min_lr (float, optional): The minimum lr. Default: None.
    +        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
    +            Either `min_lr` or `min_lr_ratio` should be specified.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 periods: List[int],
    +                 restart_weights: List[float] = [1],
    +                 min_lr: Optional[float] = None,
    +                 min_lr_ratio: Optional[float] = None,
    +                 **kwargs) -> None:
    +        assert (min_lr is None) ^ (min_lr_ratio is None)
    +        self.periods = periods
    +        self.min_lr = min_lr
    +        self.min_lr_ratio = min_lr_ratio
    +        self.restart_weights = restart_weights
    +        assert (len(self.periods) == len(self.restart_weights)
    +                ), 'periods and restart_weights should have the same length.'
    +        super().__init__(**kwargs)
    +
    +        self.cumulative_periods = [
    +            sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
    +        ]
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        if self.by_epoch:
    +            progress = runner.epoch
    +        else:
    +            progress = runner.iter
    +
    +        if self.min_lr_ratio is not None:
    +            target_lr = base_lr * self.min_lr_ratio
    +        else:
    +            target_lr = self.min_lr  # type:ignore
    +
    +        idx = get_position_from_periods(progress, self.cumulative_periods)
    +        current_weight = self.restart_weights[idx]
    +        nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1]
    +        current_periods = self.periods[idx]
    +
    +        alpha = min((progress - nearest_restart) / current_periods, 1)
    +        return annealing_cos(base_lr, target_lr, alpha, current_weight)
    +
    +
    +def get_position_from_periods(iteration: int, cumulative_periods: List[int]):
    +    """Get the position from a period list.
    +
    +    It will return the index of the right-closest number in the period list.
    +    For example, the cumulative_periods = [100, 200, 300, 400],
    +    if iteration == 50, return 0;
    +    if iteration == 210, return 2;
    +    if iteration == 300, return 3.
    +
    +    Args:
    +        iteration (int): Current iteration.
    +        cumulative_periods (list[int]): Cumulative period list.
    +
    +    Returns:
    +        int: The position of the right-closest number in the period list.
    +    """
    +    for i, period in enumerate(cumulative_periods):
    +        if iteration < period:
    +            return i
    +    raise ValueError(f'Current iteration {iteration} exceeds '
    +                     f'cumulative_periods {cumulative_periods}')
    +
    +
    +@HOOKS.register_module()
    +class CyclicLrUpdaterHook(LrUpdaterHook):
    +    """Cyclic LR Scheduler.
    +
    +    Implement the cyclical learning rate policy (CLR) described in
    +    https://arxiv.org/pdf/1506.01186.pdf
    +
    +    Different from the original paper, we use cosine annealing rather than
    +    triangular policy inside a cycle. This improves the performance in the
    +    3D detection area.
    +
    +    Args:
    +        by_epoch (bool, optional): Whether to update LR by epoch.
    +        target_ratio (tuple[float], optional): Relative ratio of the highest LR
    +            and the lowest LR to the initial LR.
    +        cyclic_times (int, optional): Number of cycles during training
    +        step_ratio_up (float, optional): The ratio of the increasing process of
    +            LR in the total cycle.
    +        anneal_strategy (str, optional): {'cos', 'linear'}
    +            Specifies the annealing strategy: 'cos' for cosine annealing,
    +            'linear' for linear annealing. Default: 'cos'.
    +        gamma (float, optional): Cycle decay ratio. Default: 1.
    +            It takes values in the range (0, 1]. The difference between the
    +            maximum learning rate and the minimum learning rate decreases
    +            periodically when it is less than 1. `New in version 1.4.4.`
    +    """
    +
    +    def __init__(self,
    +                 by_epoch: bool = False,
    +                 target_ratio: Union[float, tuple] = (10, 1e-4),
    +                 cyclic_times: int = 1,
    +                 step_ratio_up: float = 0.4,
    +                 anneal_strategy: str = 'cos',
    +                 gamma: float = 1,
    +                 **kwargs) -> None:
    +        if isinstance(target_ratio, float):
    +            target_ratio = (target_ratio, target_ratio / 1e5)
    +        elif isinstance(target_ratio, tuple):
    +            target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \
    +                if len(target_ratio) == 1 else target_ratio
    +        else:
    +            raise ValueError('target_ratio should be either float '
    +                             f'or tuple, got {type(target_ratio)}')
    +
    +        assert len(target_ratio) == 2, \
    +            '"target_ratio" must be list or tuple of two floats'
    +        assert 0 <= step_ratio_up < 1.0, \
    +            '"step_ratio_up" must be in range [0,1)'
    +        assert 0 < gamma <= 1, \
    +            '"gamma" must be in range (0, 1]'
    +
    +        self.target_ratio = target_ratio
    +        self.cyclic_times = cyclic_times
    +        self.step_ratio_up = step_ratio_up
    +        self.gamma = gamma
    +        self.max_iter_per_phase = None
    +        self.lr_phases: list = []  # init lr_phases
    +        # validate anneal_strategy
    +        if anneal_strategy not in ['cos', 'linear']:
    +            raise ValueError('anneal_strategy must be one of "cos" or '
    +                             f'"linear", instead got {anneal_strategy}')
    +        elif anneal_strategy == 'cos':
    +            self.anneal_func: Callable[[float, float, float],
    +                                       float] = annealing_cos
    +        elif anneal_strategy == 'linear':
    +            self.anneal_func = annealing_linear
    +
    +        assert not by_epoch, \
    +            'currently only support "by_epoch" = False'
    +        super().__init__(by_epoch, **kwargs)
    +
    +    def before_run(self, runner: 'runner.BaseRunner'):
    +        super().before_run(runner)
    +        # initiate lr_phases
    +        # total lr_phases are separated as up and down
    +        self.max_iter_per_phase = runner.max_iters // self.cyclic_times
    +        iter_up_phase = int(self.step_ratio_up *
    +                            self.max_iter_per_phase)  # type: ignore
    +        self.lr_phases.append([0, iter_up_phase, 1, self.target_ratio[0]])
    +        self.lr_phases.append([
    +            iter_up_phase, self.max_iter_per_phase, self.target_ratio[0],
    +            self.target_ratio[1]
    +        ])
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        curr_iter = runner.iter % self.max_iter_per_phase  # type: ignore
    +        curr_cycle = runner.iter // self.max_iter_per_phase  # type: ignore
    +        # Update weight decay
    +        scale = self.gamma**curr_cycle
    +
    +        for (start_iter, end_iter, start_ratio, end_ratio) in self.lr_phases:
    +            if start_iter <= curr_iter < end_iter:
    +                # Apply cycle scaling to gradually reduce the difference
    +                # between max_lr and base lr. The target end_ratio can be
    +                # expressed as:
    +                # end_ratio = (base_lr + scale * (max_lr - base_lr)) / base_lr
    +                # iteration: 0-iter_up_phase:
    +                if start_iter == 0:
    +                    end_ratio = 1 - scale + end_ratio * scale
    +                # iteration: iter_up_phase-self.max_iter_per_phase
    +                else:
    +                    start_ratio = 1 - scale + start_ratio * scale
    +                progress = curr_iter - start_iter
    +                return self.anneal_func(base_lr * start_ratio,
    +                                        base_lr * end_ratio,
    +                                        progress / (end_iter - start_iter))
    +
    +
    +@HOOKS.register_module()
    +class OneCycleLrUpdaterHook(LrUpdaterHook):
    +    """One Cycle LR Scheduler.
    +
    +    The 1cycle learning rate policy changes the learning rate after every
    +    batch. The one cycle learning rate policy is described in
    +    https://arxiv.org/pdf/1708.07120.pdf
    +
    +    Args:
    +        max_lr (float or list): Upper learning rate boundaries in the cycle
    +            for each parameter group.
    +        total_steps (int, optional): The total number of steps in the cycle.
    +            Note that if a value is not provided here, it will be the max_iter
    +            of runner. Default: None.
    +        pct_start (float): The percentage of the cycle (in number of steps)
    +            spent increasing the learning rate.
    +            Default: 0.3
    +        anneal_strategy (str): {'cos', 'linear'}
    +            Specifies the annealing strategy: 'cos' for cosine annealing,
    +            'linear' for linear annealing.
    +            Default: 'cos'
    +        div_factor (float): Determines the initial learning rate via
    +            initial_lr = max_lr/div_factor
    +            Default: 25
    +        final_div_factor (float): Determines the minimum learning rate via
    +            min_lr = initial_lr/final_div_factor
    +            Default: 1e4
    +        three_phase (bool): If three_phase is True, use a third phase of the
    +            schedule to annihilate the learning rate according to
    +            final_div_factor instead of modifying the second phase (the first
    +            two phases will be symmetrical about the step indicated by
    +            pct_start).
    +            Default: False
    +    """
    +
    +    def __init__(self,
    +                 max_lr: Union[float, List],
    +                 total_steps: Optional[int] = None,
    +                 pct_start: float = 0.3,
    +                 anneal_strategy: str = 'cos',
    +                 div_factor: float = 25,
    +                 final_div_factor: float = 1e4,
    +                 three_phase: bool = False,
    +                 **kwargs) -> None:
    +        # validate by_epoch, currently only support by_epoch = False
    +        if 'by_epoch' not in kwargs:
    +            kwargs['by_epoch'] = False
    +        else:
    +            assert not kwargs['by_epoch'], \
    +                'currently only support "by_epoch" = False'
    +        if not isinstance(max_lr, (numbers.Number, list, dict)):
    +            raise ValueError('the type of max_lr must be the one of list or '
    +                             f'dict, but got {type(max_lr)}')
    +        self._max_lr = max_lr
    +        if total_steps is not None:
    +            if not isinstance(total_steps, int):
    +                raise ValueError('the type of total_steps must be int, but'
    +                                 f'got {type(total_steps)}')
    +            self.total_steps = total_steps
    +        # validate pct_start
    +        if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
    +            raise ValueError('expected float between 0 and 1 pct_start, but '
    +                             f'got {pct_start}')
    +        self.pct_start = pct_start
    +        # validate anneal_strategy
    +        if anneal_strategy not in ['cos', 'linear']:
    +            raise ValueError('anneal_strategy must be one of "cos" or '
    +                             f'"linear", instead got {anneal_strategy}')
    +        elif anneal_strategy == 'cos':
    +            self.anneal_func: Callable[[float, float, float],
    +                                       float] = annealing_cos
    +        elif anneal_strategy == 'linear':
    +            self.anneal_func = annealing_linear
    +        self.div_factor = div_factor
    +        self.final_div_factor = final_div_factor
    +        self.three_phase = three_phase
    +        self.lr_phases: list = []  # init lr_phases
    +        super().__init__(**kwargs)
    +
    +    def before_run(self, runner: 'runner.BaseRunner'):
    +        if hasattr(self, 'total_steps'):
    +            total_steps = self.total_steps
    +        else:
    +            total_steps = runner.max_iters
    +        if total_steps < runner.max_iters:
    +            raise ValueError(
    +                'The total steps must be greater than or equal to max '
    +                f'iterations {runner.max_iters} of runner, but total steps '
    +                f'is {total_steps}.')
    +
    +        if isinstance(runner.optimizer, dict):
    +            self.base_lr = {}
    +            for k, optim in runner.optimizer.items():
    +                _max_lr = format_param(k, optim, self._max_lr)
    +                self.base_lr[k] = [lr / self.div_factor for lr in _max_lr]
    +                for group, lr in zip(optim.param_groups, self.base_lr[k]):
    +                    group.setdefault('initial_lr', lr)
    +        else:
    +            k = type(runner.optimizer).__name__
    +            _max_lr = format_param(k, runner.optimizer, self._max_lr)
    +            self.base_lr = [lr / self.div_factor for lr in _max_lr]
    +            optim_param_groups = runner.optimizer.param_groups  # type: ignore
    +            for group, lr in zip(optim_param_groups, self.base_lr):
    +                group.setdefault('initial_lr', lr)
    +
    +        if self.three_phase:
    +            self.lr_phases.append(
    +                [float(self.pct_start * total_steps) - 1, 1, self.div_factor])
    +            self.lr_phases.append([
    +                float(2 * self.pct_start * total_steps) - 2, self.div_factor, 1
    +            ])
    +            self.lr_phases.append(
    +                [total_steps - 1, 1, 1 / self.final_div_factor])
    +        else:
    +            self.lr_phases.append(
    +                [float(self.pct_start * total_steps) - 1, 1, self.div_factor])
    +            self.lr_phases.append(
    +                [total_steps - 1, self.div_factor, 1 / self.final_div_factor])
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        curr_iter = runner.iter
    +        start_iter = 0
    +        for i, (end_iter, start_lr, end_lr) in enumerate(self.lr_phases):
    +            if curr_iter <= end_iter:
    +                pct = (curr_iter - start_iter) / (end_iter - start_iter)
    +                lr = self.anneal_func(base_lr * start_lr, base_lr * end_lr,
    +                                      pct)
    +                break
    +            start_iter = end_iter
    +        return lr
    +
    +
    +@HOOKS.register_module()
    +class LinearAnnealingLrUpdaterHook(LrUpdaterHook):
    +    """Linear annealing LR Scheduler decays the learning rate of each parameter
    +    group linearly.
    +
    +    Args:
    +        min_lr (float, optional): The minimum lr. Default: None.
    +        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
    +            Either `min_lr` or `min_lr_ratio` should be specified.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 min_lr: Optional[float] = None,
    +                 min_lr_ratio: Optional[float] = None,
    +                 **kwargs):
    +        assert (min_lr is None) ^ (min_lr_ratio is None)
    +        self.min_lr = min_lr
    +        self.min_lr_ratio = min_lr_ratio
    +        super().__init__(**kwargs)
    +
    +    def get_lr(self, runner: 'runner.BaseRunner', base_lr: float):
    +        if self.by_epoch:
    +            progress = runner.epoch
    +            max_progress = runner.max_epochs
    +        else:
    +            progress = runner.iter
    +            max_progress = runner.max_iters
    +        if self.min_lr_ratio is not None:
    +            target_lr = base_lr * self.min_lr_ratio
    +        else:
    +            target_lr = self.min_lr  # type:ignore
    +        return annealing_linear(base_lr, target_lr, progress / max_progress)
    +
    +
    +def annealing_cos(start: float,
    +                  end: float,
    +                  factor: float,
    +                  weight: float = 1.) -> float:
    +    """Calculate annealing cos learning rate.
    +
    +    Cosine anneal from `weight * start + (1 - weight) * end` to `end` as
    +    percentage goes from 0.0 to 1.0.
    +
    +    Args:
    +        start (float): The starting learning rate of the cosine annealing.
    +        end (float): The ending learing rate of the cosine annealing.
    +        factor (float): The coefficient of `pi` when calculating the current
    +            percentage. Range from 0.0 to 1.0.
    +        weight (float, optional): The combination factor of `start` and `end`
    +            when calculating the actual starting learning rate. Default to 1.
    +    """
    +    cos_out = cos(pi * factor) + 1
    +    return end + 0.5 * weight * (start - end) * cos_out
    +
    +
    +def annealing_linear(start: float, end: float, factor: float) -> float:
    +    """Calculate annealing linear learning rate.
    +
    +    Linear anneal from `start` to `end` as percentage goes from 0.0 to 1.0.
    +
    +    Args:
    +        start (float): The starting learning rate of the linear annealing.
    +        end (float): The ending learing rate of the linear annealing.
    +        factor (float): The coefficient of `pi` when calculating the current
    +            percentage. Range from 0.0 to 1.0.
    +    """
    +    return start + (end - start) * factor
    +
    +
    +def format_param(name, optim, param):
    +    if isinstance(param, numbers.Number):
    +        return [param] * len(optim.param_groups)
    +    elif isinstance(param, (list, tuple)):  # multi param groups
    +        if len(param) != len(optim.param_groups):
    +            raise ValueError(f'expected {len(optim.param_groups)} '
    +                             f'values for {name}, got {len(param)}')
    +        return param
    +    else:  # multi optimizers
    +        if name not in param:
    +            raise KeyError(f'{name} is not found in {param.keys()}')
    +        return param[name]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/memory.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/memory.py
    new file mode 100644
    index 000000000..78d1a7e36
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/memory.py
    @@ -0,0 +1,28 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class EmptyCacheHook(Hook):
    +
    +    def __init__(self,
    +                 before_epoch: bool = False,
    +                 after_epoch: bool = True,
    +                 after_iter: bool = False):
    +        self._before_epoch = before_epoch
    +        self._after_epoch = after_epoch
    +        self._after_iter = after_iter
    +
    +    def after_iter(self, runner):
    +        if self._after_iter:
    +            torch.cuda.empty_cache()
    +
    +    def before_epoch(self, runner):
    +        if self._before_epoch:
    +            torch.cuda.empty_cache()
    +
    +    def after_epoch(self, runner):
    +        if self._after_epoch:
    +            torch.cuda.empty_cache()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/momentum_updater.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/momentum_updater.py
    new file mode 100644
    index 000000000..fd9bc4834
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/momentum_updater.py
    @@ -0,0 +1,594 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Callable, Dict, List, Optional, Tuple, Union
    +
    +import mmcv
    +from .hook import HOOKS, Hook
    +from .lr_updater import annealing_cos, annealing_linear, format_param
    +
    +
    +class MomentumUpdaterHook(Hook):
    +
    +    def __init__(self,
    +                 by_epoch: bool = True,
    +                 warmup: Optional[str] = None,
    +                 warmup_iters: int = 0,
    +                 warmup_ratio: float = 0.9):
    +        # validate the "warmup" argument
    +        if warmup is not None:
    +            if warmup not in ['constant', 'linear', 'exp']:
    +                raise ValueError(
    +                    f'"{warmup}" is not a supported type for warming up, valid'
    +                    ' types are "constant" and "linear"')
    +        if warmup is not None:
    +            assert warmup_iters > 0, \
    +                '"warmup_iters" must be a positive integer'
    +            assert 0 < warmup_ratio <= 1.0, \
    +                '"warmup_momentum" must be in range (0,1]'
    +
    +        self.by_epoch = by_epoch
    +        self.warmup = warmup
    +        self.warmup_iters = warmup_iters
    +        self.warmup_ratio = warmup_ratio
    +
    +        # initial momentum for all param groups
    +        self.base_momentum: Union[list, dict] = []
    +        # expected momentum if no warming up is performed
    +        self.regular_momentum: Union[list, dict] = []
    +
    +    def _set_momentum(self, runner, momentum_groups):
    +        if isinstance(runner.optimizer, dict):
    +            for k, optim in runner.optimizer.items():
    +                for param_group, mom in zip(optim.param_groups,
    +                                            momentum_groups[k]):
    +                    if 'momentum' in param_group.keys():
    +                        param_group['momentum'] = mom
    +                    elif 'betas' in param_group.keys():
    +                        param_group['betas'] = (mom, param_group['betas'][1])
    +        else:
    +            for param_group, mom in zip(runner.optimizer.param_groups,
    +                                        momentum_groups):
    +                if 'momentum' in param_group.keys():
    +                    param_group['momentum'] = mom
    +                elif 'betas' in param_group.keys():
    +                    param_group['betas'] = (mom, param_group['betas'][1])
    +
    +    def get_momentum(self, runner, base_momentum) -> float:
    +        raise NotImplementedError
    +
    +    def get_regular_momentum(self, runner) -> Union[list, Dict[str, list]]:
    +        if isinstance(runner.optimizer, dict):
    +            assert isinstance(self.base_momentum, dict)
    +            momentum_groups: Dict[str, List[float]] = {}
    +            for k in runner.optimizer.keys():
    +                _momentum_group: List[float] = [
    +                    self.get_momentum(runner, _base_momentum)
    +                    for _base_momentum in self.base_momentum[k]
    +                ]
    +                momentum_groups.update({k: _momentum_group})
    +            return momentum_groups
    +        else:
    +            assert isinstance(self.base_momentum, list)
    +            return [
    +                self.get_momentum(runner, _base_momentum)
    +                for _base_momentum in self.base_momentum
    +            ]
    +
    +    def get_warmup_momentum(
    +            self,
    +            cur_iters: int) -> Union[List[float], Dict[str, List[float]]]:
    +
    +        def _get_warmup_momentum(cur_iters, regular_momentum):
    +            if self.warmup == 'constant':
    +                warmup_momentum = [
    +                    _momentum / self.warmup_ratio
    +                    for _momentum in regular_momentum
    +                ]
    +            elif self.warmup == 'linear':
    +                k = (1 - cur_iters / self.warmup_iters) * (1 -
    +                                                           self.warmup_ratio)
    +                warmup_momentum = [
    +                    _momentum / (1 - k) for _momentum in regular_momentum
    +                ]
    +            elif self.warmup == 'exp':
    +                k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
    +                warmup_momentum = [
    +                    _momentum / k for _momentum in regular_momentum
    +                ]
    +            else:
    +                raise ValueError(
    +                    'Expected values of `self.warmup` to be "constant", '
    +                    f'"linear", or "exp", got {self.warmup}')
    +            return warmup_momentum
    +
    +        if isinstance(self.regular_momentum, dict):
    +            momentum_groups = {}
    +            for key, regular_momentum in self.regular_momentum.items():
    +                momentum_groups[key] = _get_warmup_momentum(
    +                    cur_iters, regular_momentum)
    +            return momentum_groups
    +        else:
    +            return _get_warmup_momentum(cur_iters, self.regular_momentum)
    +
    +    def before_run(self, runner):
    +        # NOTE: when resuming from a checkpoint,
    +        # if 'initial_momentum' is not saved,
    +        # it will be set according to the optimizer params
    +        if isinstance(runner.optimizer, dict):
    +            self.base_momentum = {}
    +            for k, optim in runner.optimizer.items():
    +                for group in optim.param_groups:
    +                    if 'momentum' in group.keys():
    +                        group.setdefault('initial_momentum', group['momentum'])
    +                    else:
    +                        group.setdefault('initial_momentum', group['betas'][0])
    +                _base_momentum = [
    +                    group['initial_momentum'] for group in optim.param_groups
    +                ]
    +                self.base_momentum.update({k: _base_momentum})
    +        else:
    +            for group in runner.optimizer.param_groups:
    +                if 'momentum' in group.keys():
    +                    group.setdefault('initial_momentum', group['momentum'])
    +                else:
    +                    group.setdefault('initial_momentum', group['betas'][0])
    +            self.base_momentum = [
    +                group['initial_momentum']
    +                for group in runner.optimizer.param_groups
    +            ]
    +
    +    def before_train_epoch(self, runner):
    +        if not self.by_epoch:
    +            return
    +        self.regular_momentum = self.get_regular_momentum(runner)
    +        self._set_momentum(runner, self.regular_momentum)
    +
    +    def before_train_iter(self, runner):
    +        cur_iter = runner.iter
    +        if not self.by_epoch:
    +            self.regular_momentum = self.get_regular_momentum(runner)
    +            if self.warmup is None or cur_iter >= self.warmup_iters:
    +                self._set_momentum(runner, self.regular_momentum)
    +            else:
    +                warmup_momentum = self.get_warmup_momentum(cur_iter)
    +                self._set_momentum(runner, warmup_momentum)
    +        elif self.by_epoch:
    +            if self.warmup is None or cur_iter > self.warmup_iters:
    +                return
    +            elif cur_iter == self.warmup_iters:
    +                self._set_momentum(runner, self.regular_momentum)
    +            else:
    +                warmup_momentum = self.get_warmup_momentum(cur_iter)
    +                self._set_momentum(runner, warmup_momentum)
    +
    +
    +@HOOKS.register_module()
    +class StepMomentumUpdaterHook(MomentumUpdaterHook):
    +    """Step momentum scheduler with min value clipping.
    +
    +    Args:
    +        step (int | list[int]): Step to decay the momentum. If an int value is
    +            given, regard it as the decay interval. If a list is given, decay
    +            momentum at these steps.
    +        gamma (float, optional): Decay momentum ratio. Default: 0.5.
    +        min_momentum (float, optional): Minimum momentum value to keep. If
    +            momentum after decay is lower than this value, it will be clipped
    +            accordingly. If None is given, we don't perform lr clipping.
    +            Default: None.
    +    """
    +
    +    def __init__(self,
    +                 step: Union[int, List[int]],
    +                 gamma: float = 0.5,
    +                 min_momentum: Optional[float] = None,
    +                 **kwargs):
    +        if isinstance(step, list):
    +            assert mmcv.is_list_of(step, int)
    +            assert all([s > 0 for s in step])
    +        elif isinstance(step, int):
    +            assert step > 0
    +        else:
    +            raise TypeError('"step" must be a list or integer')
    +        self.step = step
    +        self.gamma = gamma
    +        self.min_momentum = min_momentum
    +        super().__init__(**kwargs)
    +
    +    def get_momentum(self, runner, base_momentum: float) -> float:
    +        progress = runner.epoch if self.by_epoch else runner.iter
    +
    +        # calculate exponential term
    +        if isinstance(self.step, int):
    +            exp = progress // self.step
    +        else:
    +            exp = len(self.step)
    +            for i, s in enumerate(self.step):
    +                if progress < s:
    +                    exp = i
    +                    break
    +
    +        momentum = base_momentum * (self.gamma**exp)
    +        if self.min_momentum is not None:
    +            # clip to a minimum value
    +            momentum = max(momentum, self.min_momentum)
    +        return momentum
    +
    +
    +@HOOKS.register_module()
    +class CosineAnnealingMomentumUpdaterHook(MomentumUpdaterHook):
    +    """Cosine annealing LR Momentum decays the Momentum of each parameter group
    +    linearly.
    +
    +    Args:
    +        min_momentum (float, optional): The minimum momentum. Default: None.
    +        min_momentum_ratio (float, optional): The ratio of minimum momentum to
    +            the base momentum. Either `min_momentum` or `min_momentum_ratio`
    +            should be specified. Default: None.
    +    """
    +
    +    def __init__(self,
    +                 min_momentum: Optional[float] = None,
    +                 min_momentum_ratio: Optional[float] = None,
    +                 **kwargs):
    +        assert (min_momentum is None) ^ (min_momentum_ratio is None)
    +        self.min_momentum = min_momentum
    +        self.min_momentum_ratio = min_momentum_ratio
    +        super().__init__(**kwargs)
    +
    +    def get_momentum(self, runner, base_momentum: float) -> float:
    +        if self.by_epoch:
    +            progress = runner.epoch
    +            max_progress = runner.max_epochs
    +        else:
    +            progress = runner.iter
    +            max_progress = runner.max_iters
    +        if self.min_momentum_ratio is not None:
    +            target_momentum = base_momentum * self.min_momentum_ratio
    +        else:
    +            assert self.min_momentum is not None
    +            target_momentum = self.min_momentum
    +        return annealing_cos(base_momentum, target_momentum,
    +                             progress / max_progress)
    +
    +
    +@HOOKS.register_module()
    +class LinearAnnealingMomentumUpdaterHook(MomentumUpdaterHook):
    +    """Linear annealing LR Momentum decays the Momentum of each parameter group
    +    linearly.
    +
    +    Args:
    +        min_momentum (float, optional): The minimum momentum. Default: None.
    +        min_momentum_ratio (float, optional): The ratio of minimum momentum to
    +            the base momentum. Either `min_momentum` or `min_momentum_ratio`
    +            should be specified. Default: None.
    +    """
    +
    +    def __init__(self,
    +                 min_momentum: Optional[float] = None,
    +                 min_momentum_ratio: Optional[float] = None,
    +                 **kwargs):
    +        assert (min_momentum is None) ^ (min_momentum_ratio is None)
    +        self.min_momentum = min_momentum
    +        self.min_momentum_ratio = min_momentum_ratio
    +        super().__init__(**kwargs)
    +
    +    def get_momentum(self, runner, base_momentum: float) -> float:
    +        if self.by_epoch:
    +            progress = runner.epoch
    +            max_progress = runner.max_epochs
    +        else:
    +            progress = runner.iter
    +            max_progress = runner.max_iters
    +        if self.min_momentum_ratio is not None:
    +            target_momentum = base_momentum * self.min_momentum_ratio
    +        else:
    +            assert self.min_momentum is not None
    +            target_momentum = self.min_momentum
    +        return annealing_linear(base_momentum, target_momentum,
    +                                progress / max_progress)
    +
    +
    +@HOOKS.register_module()
    +class CyclicMomentumUpdaterHook(MomentumUpdaterHook):
    +    """Cyclic momentum Scheduler.
    +
    +    Implement the cyclical momentum scheduler policy described in
    +    https://arxiv.org/pdf/1708.07120.pdf
    +
    +    This momentum scheduler usually used together with the CyclicLRUpdater
    +    to improve the performance in the 3D detection area.
    +
    +    Args:
    +        target_ratio (tuple[float]): Relative ratio of the lowest momentum and
    +            the highest momentum to the initial momentum.
    +        cyclic_times (int): Number of cycles during training
    +        step_ratio_up (float): The ratio of the increasing process of momentum
    +            in  the total cycle.
    +        by_epoch (bool): Whether to update momentum by epoch.
    +        anneal_strategy (str, optional): {'cos', 'linear'}
    +            Specifies the annealing strategy: 'cos' for cosine annealing,
    +            'linear' for linear annealing. Default: 'cos'.
    +        gamma (float, optional): Cycle decay ratio. Default: 1.
    +            It takes values in the range (0, 1]. The difference between the
    +            maximum learning rate and the minimum learning rate decreases
    +            periodically when it is less than 1. `New in version 1.4.4.`
    +    """
    +
    +    def __init__(self,
    +                 by_epoch: bool = False,
    +                 target_ratio: Tuple[float, float] = (0.85 / 0.95, 1.),
    +                 cyclic_times: int = 1,
    +                 step_ratio_up: float = 0.4,
    +                 anneal_strategy: str = 'cos',
    +                 gamma: float = 1.,
    +                 **kwargs):
    +        if isinstance(target_ratio, float):
    +            target_ratio = (target_ratio, target_ratio / 1e5)
    +        elif isinstance(target_ratio, tuple):
    +            target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \
    +                if len(target_ratio) == 1 else target_ratio
    +        else:
    +            raise ValueError('target_ratio should be either float '
    +                             f'or tuple, got {type(target_ratio)}')
    +
    +        assert len(target_ratio) == 2, \
    +            '"target_ratio" must be list or tuple of two floats'
    +        assert 0 <= step_ratio_up < 1.0, \
    +            '"step_ratio_up" must be in range [0,1)'
    +
    +        self.target_ratio = target_ratio
    +        self.cyclic_times = cyclic_times
    +        self.step_ratio_up = step_ratio_up
    +        self.gamma = gamma
    +        self.momentum_phases: List[list] = []  # init momentum_phases
    +
    +        self.anneal_func: Callable[[float, float, float], float]
    +        if anneal_strategy not in ['cos', 'linear']:
    +            raise ValueError('anneal_strategy must be one of "cos" or '
    +                             f'"linear", instead got {anneal_strategy}')
    +        elif anneal_strategy == 'cos':
    +            self.anneal_func = annealing_cos
    +        elif anneal_strategy == 'linear':
    +            self.anneal_func = annealing_linear
    +        # currently only support by_epoch=False
    +        assert not by_epoch, \
    +            'currently only support "by_epoch" = False'
    +        super().__init__(by_epoch, **kwargs)
    +
    +    def before_run(self, runner):
    +        super().before_run(runner)
    +        # initiate momentum_phases
    +        # total momentum_phases are separated as up and down
    +        max_iter_per_phase = runner.max_iters // self.cyclic_times
    +        iter_up_phase = int(self.step_ratio_up * max_iter_per_phase)
    +        self.max_iter_per_phase = max_iter_per_phase
    +        self.momentum_phases.append(
    +            [0, iter_up_phase, 1, self.target_ratio[0]])
    +        self.momentum_phases.append([
    +            iter_up_phase, max_iter_per_phase, self.target_ratio[0],
    +            self.target_ratio[1]
    +        ])
    +
    +    def get_momentum(self, runner, base_momentum: float) -> float:
    +        curr_iter = runner.iter % self.max_iter_per_phase
    +        curr_cycle = runner.iter // self.max_iter_per_phase
    +        scale = self.gamma**curr_cycle
    +        for (start_iter, end_iter, start_ratio, end_ratio) \
    +                in self.momentum_phases:
    +            if start_iter <= curr_iter < end_iter:
    +                # Apply cycle scaling to gradually reduce the difference
    +                # between max_momentum and base momentum. The target end_ratio
    +                # can be expressed as:
    +                # end_ratio = (base_momentum + scale * \
    +                # (max_momentum - base_momentum)) / base_momentum
    +                # iteration: 0-iter_up_phase:
    +                if start_iter == 0:
    +                    end_ratio = 1 - scale + end_ratio * scale
    +                # iteration: iter_up_phase-self.max_iter_per_phase
    +                else:
    +                    start_ratio = 1 - scale + start_ratio * scale
    +                progress = curr_iter - start_iter
    +                return self.anneal_func(base_momentum * start_ratio,
    +                                        base_momentum * end_ratio,
    +                                        progress / (end_iter - start_iter))
    +        raise RuntimeError('The method should return in the for-loop and '
    +                           'should not be executed until this')
    +
    +
    +@HOOKS.register_module()
    +class OneCycleMomentumUpdaterHook(MomentumUpdaterHook):
    +    """OneCycle momentum Scheduler.
    +
    +    This momentum scheduler usually used together with the OneCycleLrUpdater
    +    to improve the performance.
    +
    +    Args:
    +        base_momentum (float or list): Lower momentum boundaries in the cycle
    +            for each parameter group. Note that momentum is cycled inversely
    +            to learning rate; at the peak of a cycle, momentum is
    +            'base_momentum' and learning rate is 'max_lr'.
    +            Default: 0.85
    +        max_momentum (float or list): Upper momentum boundaries in the cycle
    +            for each parameter group. Functionally,
    +            it defines the cycle amplitude (max_momentum - base_momentum).
    +            Note that momentum is cycled inversely
    +            to learning rate; at the start of a cycle, momentum is
    +            'max_momentum' and learning rate is 'base_lr'
    +            Default: 0.95
    +        pct_start (float): The percentage of the cycle (in number of steps)
    +            spent increasing the learning rate.
    +            Default: 0.3
    +        anneal_strategy (str): {'cos', 'linear'}
    +            Specifies the annealing strategy: 'cos' for cosine annealing,
    +            'linear' for linear annealing.
    +            Default: 'cos'
    +        three_phase (bool): If three_phase is True, use a third phase of the
    +            schedule to annihilate the learning rate according to
    +            final_div_factor instead of modifying the second phase (the first
    +            two phases will be symmetrical about the step indicated by
    +            pct_start).
    +            Default: False
    +    """
    +
    +    def __init__(self,
    +                 base_momentum: Union[float, list, dict] = 0.85,
    +                 max_momentum: Union[float, list, dict] = 0.95,
    +                 pct_start: float = 0.3,
    +                 anneal_strategy: str = 'cos',
    +                 three_phase: bool = False,
    +                 **kwargs):
    +        # validate by_epoch, currently only support by_epoch=False
    +        if 'by_epoch' not in kwargs:
    +            kwargs['by_epoch'] = False
    +        else:
    +            assert not kwargs['by_epoch'], \
    +                'currently only support "by_epoch" = False'
    +        if not isinstance(base_momentum, (float, list, dict)):
    +            raise ValueError('base_momentum must be the type among of float,'
    +                             'list or dict.')
    +        self._base_momentum = base_momentum
    +        if not isinstance(max_momentum, (float, list, dict)):
    +            raise ValueError('max_momentum must be the type among of float,'
    +                             'list or dict.')
    +        self._max_momentum = max_momentum
    +        # validate pct_start
    +        if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
    +            raise ValueError('Expected float between 0 and 1 pct_start, but '
    +                             f'got {pct_start}')
    +        self.pct_start = pct_start
    +        # validate anneal_strategy
    +        self.anneal_func: Callable[[float, float, float], float]
    +        if anneal_strategy not in ['cos', 'linear']:
    +            raise ValueError('anneal_strategy must by one of "cos" or '
    +                             f'"linear", instead got {anneal_strategy}')
    +        elif anneal_strategy == 'cos':
    +            self.anneal_func = annealing_cos
    +        elif anneal_strategy == 'linear':
    +            self.anneal_func = annealing_linear
    +        self.three_phase = three_phase
    +        self.momentum_phases: List[dict] = []  # init momentum_phases
    +        super().__init__(**kwargs)
    +
    +    def before_run(self, runner):
    +        if isinstance(runner.optimizer, dict):
    +            for k, optim in runner.optimizer.items():
    +                if ('momentum' not in optim.defaults
    +                        and 'betas' not in optim.defaults):
    +                    raise ValueError('optimizer must support momentum with'
    +                                     'option enabled')
    +                self.use_beta1 = 'betas' in optim.defaults
    +                _base_momentum = format_param(k, optim, self._base_momentum)
    +                _max_momentum = format_param(k, optim, self._max_momentum)
    +                for group, b_momentum, m_momentum in zip(
    +                        optim.param_groups, _base_momentum, _max_momentum):
    +                    if self.use_beta1:
    +                        _, beta2 = group['betas']
    +                        group['betas'] = (m_momentum, beta2)
    +                    else:
    +                        group['momentum'] = m_momentum
    +                    group['base_momentum'] = b_momentum
    +                    group['max_momentum'] = m_momentum
    +        else:
    +            optim = runner.optimizer
    +            if ('momentum' not in optim.defaults
    +                    and 'betas' not in optim.defaults):
    +                raise ValueError('optimizer must support momentum with'
    +                                 'option enabled')
    +            self.use_beta1 = 'betas' in optim.defaults
    +            k = type(optim).__name__
    +            _base_momentum = format_param(k, optim, self._base_momentum)
    +            _max_momentum = format_param(k, optim, self._max_momentum)
    +            for group, b_momentum, m_momentum in zip(optim.param_groups,
    +                                                     _base_momentum,
    +                                                     _max_momentum):
    +                if self.use_beta1:
    +                    _, beta2 = group['betas']
    +                    group['betas'] = (m_momentum, beta2)
    +                else:
    +                    group['momentum'] = m_momentum
    +                group['base_momentum'] = b_momentum
    +                group['max_momentum'] = m_momentum
    +
    +        if self.three_phase:
    +            self.momentum_phases.append({
    +                'end_iter':
    +                float(self.pct_start * runner.max_iters) - 1,
    +                'start_momentum':
    +                'max_momentum',
    +                'end_momentum':
    +                'base_momentum'
    +            })
    +            self.momentum_phases.append({
    +                'end_iter':
    +                float(2 * self.pct_start * runner.max_iters) - 2,
    +                'start_momentum':
    +                'base_momentum',
    +                'end_momentum':
    +                'max_momentum'
    +            })
    +            self.momentum_phases.append({
    +                'end_iter': runner.max_iters - 1,
    +                'start_momentum': 'max_momentum',
    +                'end_momentum': 'max_momentum'
    +            })
    +        else:
    +            self.momentum_phases.append({
    +                'end_iter':
    +                float(self.pct_start * runner.max_iters) - 1,
    +                'start_momentum':
    +                'max_momentum',
    +                'end_momentum':
    +                'base_momentum'
    +            })
    +            self.momentum_phases.append({
    +                'end_iter': runner.max_iters - 1,
    +                'start_momentum': 'base_momentum',
    +                'end_momentum': 'max_momentum'
    +            })
    +
    +    def _set_momentum(self, runner, momentum_groups):
    +        if isinstance(runner.optimizer, dict):
    +            for k, optim in runner.optimizer.items():
    +                for param_group, mom in zip(optim.param_groups,
    +                                            momentum_groups[k]):
    +                    if 'momentum' in param_group.keys():
    +                        param_group['momentum'] = mom
    +                    elif 'betas' in param_group.keys():
    +                        param_group['betas'] = (mom, param_group['betas'][1])
    +        else:
    +            for param_group, mom in zip(runner.optimizer.param_groups,
    +                                        momentum_groups):
    +                if 'momentum' in param_group.keys():
    +                    param_group['momentum'] = mom
    +                elif 'betas' in param_group.keys():
    +                    param_group['betas'] = (mom, param_group['betas'][1])
    +
    +    def get_momentum(self, runner, param_group: Dict[str, float]) -> float:
    +        curr_iter = runner.iter
    +        start_iter = 0
    +        momentum = 0.
    +        for i, phase in enumerate(self.momentum_phases):
    +            end_iter = phase['end_iter']
    +            if curr_iter <= end_iter or i == len(self.momentum_phases) - 1:
    +                pct = (curr_iter - start_iter) / (end_iter - start_iter)
    +                momentum = self.anneal_func(
    +                    param_group[phase['start_momentum']],
    +                    param_group[phase['end_momentum']], pct)
    +                break
    +            start_iter = end_iter
    +        return momentum
    +
    +    def get_regular_momentum(self, runner):
    +        if isinstance(runner.optimizer, dict):
    +            momentum_groups = {}
    +            for k, optim in runner.optimizer.items():
    +                _momentum_group = [
    +                    self.get_momentum(runner, param_group)
    +                    for param_group in optim.param_groups
    +                ]
    +                momentum_groups.update({k: _momentum_group})
    +            return momentum_groups
    +        else:
    +            momentum_groups = []
    +            for param_group in runner.optimizer.param_groups:
    +                momentum_groups.append(self.get_momentum(runner, param_group))
    +            return momentum_groups
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/optimizer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/optimizer.py
    new file mode 100644
    index 000000000..930154750
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/optimizer.py
    @@ -0,0 +1,560 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import logging
    +from collections import defaultdict
    +from itertools import chain
    +from typing import Optional, Union
    +
    +import torch.nn as nn
    +from torch import Tensor
    +from torch.nn.utils import clip_grad
    +
    +from mmcv.utils import (IS_NPU_AVAILABLE, TORCH_VERSION, _BatchNorm,
    +                        digit_version)
    +from ..dist_utils import allreduce_grads
    +from ..fp16_utils import LossScaler, wrap_fp16_model
    +from .hook import HOOKS, Hook
    +
    +try:
    +    # If PyTorch version >= 1.6.0, torch.cuda.amp.GradScaler would be imported
    +    # and used; otherwise, auto fp16 will adopt mmcv's implementation.
    +    if IS_NPU_AVAILABLE:
    +        from torch.npu.amp import GradScaler
    +    else:
    +        from torch.cuda.amp import GradScaler
    +except ImportError:
    +    pass
    +
    +
    +@HOOKS.register_module()
    +class OptimizerHook(Hook):
    +    """A hook contains custom operations for the optimizer.
    +
    +    Args:
    +        grad_clip (dict, optional): A config dict to control the clip_grad.
    +            Default: None.
    +        detect_anomalous_params (bool): This option is only used for
    +            debugging which will slow down the training speed.
    +            Detect anomalous parameters that are not included in
    +            the computational graph with `loss` as the root.
    +            There are two cases
    +
    +                - Parameters were not used during
    +                  forward pass.
    +                - Parameters were not used to produce
    +                  loss.
    +            Default: False.
    +    """
    +
    +    def __init__(self,
    +                 grad_clip: Optional[dict] = None,
    +                 detect_anomalous_params: bool = False):
    +        self.grad_clip = grad_clip
    +        self.detect_anomalous_params = detect_anomalous_params
    +
    +    def clip_grads(self, params):
    +        params = list(
    +            filter(lambda p: p.requires_grad and p.grad is not None, params))
    +        if len(params) > 0:
    +            return clip_grad.clip_grad_norm_(params, **self.grad_clip)
    +
    +    def after_train_iter(self, runner):
    +        runner.optimizer.zero_grad()
    +        if self.detect_anomalous_params:
    +            self.detect_anomalous_parameters(runner.outputs['loss'], runner)
    +        runner.outputs['loss'].backward()
    +
    +        if self.grad_clip is not None:
    +            grad_norm = self.clip_grads(runner.model.parameters())
    +            if grad_norm is not None:
    +                # Add grad norm to the logger
    +                runner.log_buffer.update({'grad_norm': float(grad_norm)},
    +                                         runner.outputs['num_samples'])
    +        runner.optimizer.step()
    +
    +    def detect_anomalous_parameters(self, loss: Tensor, runner) -> None:
    +        logger = runner.logger
    +        parameters_in_graph = set()
    +        visited = set()
    +
    +        def traverse(grad_fn):
    +            if grad_fn is None:
    +                return
    +            if grad_fn not in visited:
    +                visited.add(grad_fn)
    +                if hasattr(grad_fn, 'variable'):
    +                    parameters_in_graph.add(grad_fn.variable)
    +                parents = grad_fn.next_functions
    +                if parents is not None:
    +                    for parent in parents:
    +                        grad_fn = parent[0]
    +                        traverse(grad_fn)
    +
    +        traverse(loss.grad_fn)
    +        for n, p in runner.model.named_parameters():
    +            if p not in parameters_in_graph and p.requires_grad:
    +                logger.log(
    +                    level=logging.ERROR,
    +                    msg=f'{n} with shape {p.size()} is not '
    +                    f'in the computational graph \n')
    +
    +
    +@HOOKS.register_module()
    +class GradientCumulativeOptimizerHook(OptimizerHook):
    +    """Optimizer Hook implements multi-iters gradient cumulating.
    +
    +    Args:
    +        cumulative_iters (int, optional): Num of gradient cumulative iters.
    +            The optimizer will step every `cumulative_iters` iters.
    +            Defaults to 1.
    +
    +    Examples:
    +        >>> # Use cumulative_iters to simulate a large batch size
    +        >>> # It is helpful when the hardware cannot handle a large batch size.
    +        >>> loader = DataLoader(data, batch_size=64)
    +        >>> optim_hook = GradientCumulativeOptimizerHook(cumulative_iters=4)
    +        >>> # almost equals to
    +        >>> loader = DataLoader(data, batch_size=256)
    +        >>> optim_hook = OptimizerHook()
    +    """
    +
    +    def __init__(self, cumulative_iters: int = 1, **kwargs):
    +        super().__init__(**kwargs)
    +
    +        assert isinstance(cumulative_iters, int) and cumulative_iters > 0, \
    +            f'cumulative_iters only accepts positive int, but got ' \
    +            f'{type(cumulative_iters)} instead.'
    +
    +        self.cumulative_iters = cumulative_iters
    +        self.divisible_iters = 0
    +        self.remainder_iters = 0
    +        self.initialized = False
    +
    +    def has_batch_norm(self, module: nn.Module) -> bool:
    +        if isinstance(module, _BatchNorm):
    +            return True
    +        for m in module.children():
    +            if self.has_batch_norm(m):
    +                return True
    +        return False
    +
    +    def _init(self, runner):
    +        if runner.iter % self.cumulative_iters != 0:
    +            runner.logger.warning(
    +                'Resume iter number is not divisible by cumulative_iters in '
    +                'GradientCumulativeOptimizerHook, which means the gradient of '
    +                'some iters is lost and the result may be influenced slightly.'
    +            )
    +
    +        if self.has_batch_norm(runner.model) and self.cumulative_iters > 1:
    +            runner.logger.warning(
    +                'GradientCumulativeOptimizerHook may slightly decrease '
    +                'performance if the model has BatchNorm layers.')
    +
    +        self.divisible_iters = (
    +            runner.max_iters // self.cumulative_iters * self.cumulative_iters)
    +        self.remainder_iters = runner.max_iters - self.divisible_iters
    +
    +        self.initialized = True
    +
    +    def _get_loss_factor(self, runner):
    +        """Get loss division factor for the current iteration."""
    +        if runner.iter < runner.max_iters - self.remainder_iters:
    +            loss_factor = self.cumulative_iters
    +        else:
    +            loss_factor = self.remainder_iters
    +            runner.logger.warning(
    +                f'Loss will be divided by {loss_factor} in the last '
    +                f'{self.remainder_iters} iterations because they are not '
    +                f'enough for {self.cumulative_iters} cumulative_iters.')
    +            assert loss_factor > 0
    +
    +        return loss_factor
    +
    +    def after_train_iter(self, runner):
    +        if not self.initialized:
    +            self._init(runner)
    +
    +        loss = runner.outputs['loss'] / self._get_loss_factor(runner)
    +        loss.backward()
    +
    +        if (self.every_n_iters(runner, self.cumulative_iters)
    +                or self.is_last_iter(runner)):
    +
    +            if self.grad_clip is not None:
    +                grad_norm = self.clip_grads(runner.model.parameters())
    +                if grad_norm is not None:
    +                    # Add grad norm to the logger
    +                    runner.log_buffer.update({'grad_norm': float(grad_norm)},
    +                                             runner.outputs['num_samples'])
    +            runner.optimizer.step()
    +            runner.optimizer.zero_grad()
    +
    +
    +if (TORCH_VERSION != 'parrots'
    +        and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +
    +    @HOOKS.register_module()
    +    class Fp16OptimizerHook(OptimizerHook):
    +        """FP16 optimizer hook (using PyTorch's implementation).
    +
    +        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
    +        to take care of the optimization procedure.
    +
    +        Args:
    +            loss_scale (float | str | dict): Scale factor configuration.
    +                If loss_scale is a float, static loss scaling will be used with
    +                the specified scale. If loss_scale is a string, it must be
    +                'dynamic', then dynamic loss scaling will be used.
    +                It can also be a dict containing arguments of GradScalar.
    +                Defaults to 512. For Pytorch >= 1.6, mmcv uses official
    +                implementation of GradScaler. If you use a dict version of
    +                loss_scale to create GradScaler, please refer to:
    +                https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
    +                for the parameters.
    +
    +        Examples:
    +            >>> loss_scale = dict(
    +            ...     init_scale=65536.0,
    +            ...     growth_factor=2.0,
    +            ...     backoff_factor=0.5,
    +            ...     growth_interval=2000
    +            ... )
    +            >>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale)
    +        """
    +
    +        def __init__(self,
    +                     grad_clip: Optional[dict] = None,
    +                     coalesce: bool = True,
    +                     bucket_size_mb: int = -1,
    +                     loss_scale: Union[float, str, dict] = 512.,
    +                     distributed: bool = True):
    +            self.grad_clip = grad_clip
    +            self.coalesce = coalesce
    +            self.bucket_size_mb = bucket_size_mb
    +            self.distributed = distributed
    +            self._scale_update_param = None
    +            if loss_scale == 'dynamic':
    +                self.loss_scaler = GradScaler()
    +            elif isinstance(loss_scale, float):
    +                self._scale_update_param = loss_scale
    +                self.loss_scaler = GradScaler(init_scale=loss_scale)
    +            elif isinstance(loss_scale, dict):
    +                self.loss_scaler = GradScaler(**loss_scale)
    +            else:
    +                raise ValueError('loss_scale must be of type float, dict, or '
    +                                 f'"dynamic", got {loss_scale}')
    +
    +        def before_run(self, runner) -> None:
    +            """Preparing steps before Mixed Precision Training."""
    +            # wrap model mode to fp16
    +            wrap_fp16_model(runner.model)
    +            # resume from state dict
    +            if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
    +                scaler_state_dict = runner.meta['fp16']['loss_scaler']
    +                self.loss_scaler.load_state_dict(scaler_state_dict)
    +
    +        def copy_grads_to_fp32(self, fp16_net: nn.Module,
    +                               fp32_weights: Tensor) -> None:
    +            """Copy gradients from fp16 model to fp32 weight copy."""
    +            for fp32_param, fp16_param in zip(fp32_weights,
    +                                              fp16_net.parameters()):
    +                if fp16_param.grad is not None:
    +                    if fp32_param.grad is None:
    +                        fp32_param.grad = fp32_param.data.new(
    +                            fp32_param.size())
    +                    fp32_param.grad.copy_(fp16_param.grad)
    +
    +        def copy_params_to_fp16(self, fp16_net: nn.Module,
    +                                fp32_weights: Tensor) -> None:
    +            """Copy updated params from fp32 weight copy to fp16 model."""
    +            for fp16_param, fp32_param in zip(fp16_net.parameters(),
    +                                              fp32_weights):
    +                fp16_param.data.copy_(fp32_param.data)
    +
    +        def after_train_iter(self, runner) -> None:
    +            """Backward optimization steps for Mixed Precision Training. For
    +            dynamic loss scaling, please refer to
    +            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.
    +
    +            1. Scale the loss by a scale factor.
    +            2. Backward the loss to obtain the gradients.
    +            3. Unscale the optimizer’s gradient tensors.
    +            4. Call optimizer.step() and update scale factor.
    +            5. Save loss_scaler state_dict for resume purpose.
    +            """
    +            # clear grads of last iteration
    +            runner.model.zero_grad()
    +            runner.optimizer.zero_grad()
    +
    +            self.loss_scaler.scale(runner.outputs['loss']).backward()
    +            self.loss_scaler.unscale_(runner.optimizer)
    +            # grad clip
    +            if self.grad_clip is not None:
    +                grad_norm = self.clip_grads(runner.model.parameters())
    +                if grad_norm is not None:
    +                    # Add grad norm to the logger
    +                    runner.log_buffer.update({'grad_norm': float(grad_norm)},
    +                                             runner.outputs['num_samples'])
    +            # backward and update scaler
    +            self.loss_scaler.step(runner.optimizer)
    +            self.loss_scaler.update(self._scale_update_param)
    +
    +            # save state_dict of loss_scaler
    +            runner.meta.setdefault(
    +                'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
    +
    +    @HOOKS.register_module()
    +    class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook,
    +                                              Fp16OptimizerHook):
    +        """Fp16 optimizer Hook (using PyTorch's implementation) implements
    +        multi-iters gradient cumulating.
    +
    +        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
    +        to take care of the optimization procedure.
    +        """
    +
    +        def __init__(self, *args, **kwargs):
    +            super().__init__(*args, **kwargs)
    +
    +        def after_train_iter(self, runner) -> None:
    +            if not self.initialized:
    +                self._init(runner)
    +
    +            loss = runner.outputs['loss'] / self._get_loss_factor(runner)
    +            self.loss_scaler.scale(loss).backward()
    +
    +            if (self.every_n_iters(runner, self.cumulative_iters)
    +                    or self.is_last_iter(runner)):
    +
    +                # copy fp16 grads in the model to fp32 params in the optimizer
    +                self.loss_scaler.unscale_(runner.optimizer)
    +
    +                if self.grad_clip is not None:
    +                    grad_norm = self.clip_grads(runner.model.parameters())
    +                    if grad_norm is not None:
    +                        # Add grad norm to the logger
    +                        runner.log_buffer.update(
    +                            {'grad_norm': float(grad_norm)},
    +                            runner.outputs['num_samples'])
    +
    +                # backward and update scaler
    +                self.loss_scaler.step(runner.optimizer)
    +                self.loss_scaler.update(self._scale_update_param)
    +
    +                # save state_dict of loss_scaler
    +                runner.meta.setdefault(
    +                    'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
    +
    +                # clear grads
    +                runner.model.zero_grad()
    +                runner.optimizer.zero_grad()
    +
    +else:
    +
    +    @HOOKS.register_module()
    +    class Fp16OptimizerHook(OptimizerHook):  # type: ignore
    +        """FP16 optimizer hook (mmcv's implementation).
    +
    +        The steps of fp16 optimizer is as follows.
    +        1. Scale the loss value.
    +        2. BP in the fp16 model.
    +        2. Copy gradients from fp16 model to fp32 weights.
    +        3. Update fp32 weights.
    +        4. Copy updated parameters from fp32 weights to fp16 model.
    +
    +        Refer to https://arxiv.org/abs/1710.03740 for more details.
    +
    +        Args:
    +            loss_scale (float | str | dict): Scale factor configuration.
    +                If loss_scale is a float, static loss scaling will be used with
    +                the specified scale. If loss_scale is a string, it must be
    +                'dynamic', then dynamic loss scaling will be used.
    +                It can also be a dict containing arguments of LossScaler.
    +                Defaults to 512.
    +        """
    +
    +        def __init__(self,
    +                     grad_clip: Optional[dict] = None,
    +                     coalesce: bool = True,
    +                     bucket_size_mb: int = -1,
    +                     loss_scale: Union[float, str, dict] = 512.,
    +                     distributed: bool = True):
    +            self.grad_clip = grad_clip
    +            self.coalesce = coalesce
    +            self.bucket_size_mb = bucket_size_mb
    +            self.distributed = distributed
    +            if loss_scale == 'dynamic':
    +                self.loss_scaler = LossScaler(mode='dynamic')
    +            elif isinstance(loss_scale, float):
    +                self.loss_scaler = LossScaler(
    +                    init_scale=loss_scale, mode='static')
    +            elif isinstance(loss_scale, dict):
    +                self.loss_scaler = LossScaler(**loss_scale)
    +            else:
    +                raise ValueError('loss_scale must be of type float, dict, or '
    +                                 f'"dynamic", got {loss_scale}')
    +
    +        def before_run(self, runner) -> None:
    +            """Preparing steps before Mixed Precision Training.
    +
    +            1. Make a master copy of fp32 weights for optimization.
    +            2. Convert the main model from fp32 to fp16.
    +            """
    +            # keep a copy of fp32 weights
    +            old_groups = runner.optimizer.param_groups
    +            runner.optimizer.param_groups = copy.deepcopy(
    +                runner.optimizer.param_groups)
    +            state: defaultdict = defaultdict(dict)
    +            p_map = {
    +                old_p: p
    +                for old_p, p in zip(
    +                    chain(*(g['params'] for g in old_groups)),
    +                    chain(*(g['params']
    +                            for g in runner.optimizer.param_groups)))
    +            }
    +            for k, v in runner.optimizer.state.items():
    +                state[p_map[k]] = v
    +            runner.optimizer.state = state
    +            # convert model to fp16
    +            wrap_fp16_model(runner.model)
    +            # resume from state dict
    +            if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
    +                scaler_state_dict = runner.meta['fp16']['loss_scaler']
    +                self.loss_scaler.load_state_dict(scaler_state_dict)
    +
    +        def copy_grads_to_fp32(self, fp16_net: nn.Module,
    +                               fp32_weights: Tensor) -> None:
    +            """Copy gradients from fp16 model to fp32 weight copy."""
    +            for fp32_param, fp16_param in zip(fp32_weights,
    +                                              fp16_net.parameters()):
    +                if fp16_param.grad is not None:
    +                    if fp32_param.grad is None:
    +                        fp32_param.grad = fp32_param.data.new(
    +                            fp32_param.size())
    +                    fp32_param.grad.copy_(fp16_param.grad)
    +
    +        def copy_params_to_fp16(self, fp16_net: nn.Module,
    +                                fp32_weights: Tensor) -> None:
    +            """Copy updated params from fp32 weight copy to fp16 model."""
    +            for fp16_param, fp32_param in zip(fp16_net.parameters(),
    +                                              fp32_weights):
    +                fp16_param.data.copy_(fp32_param.data)
    +
    +        def after_train_iter(self, runner) -> None:
    +            """Backward optimization steps for Mixed Precision Training. For
    +            dynamic loss scaling, please refer `loss_scalar.py`
    +
    +            1. Scale the loss by a scale factor.
    +            2. Backward the loss to obtain the gradients (fp16).
    +            3. Copy gradients from the model to the fp32 weight copy.
    +            4. Scale the gradients back and update the fp32 weight copy.
    +            5. Copy back the params from fp32 weight copy to the fp16 model.
    +            6. Save loss_scaler state_dict for resume purpose.
    +            """
    +            # clear grads of last iteration
    +            runner.model.zero_grad()
    +            runner.optimizer.zero_grad()
    +            # scale the loss value
    +            scaled_loss = runner.outputs['loss'] * self.loss_scaler.loss_scale
    +            scaled_loss.backward()
    +            # copy fp16 grads in the model to fp32 params in the optimizer
    +
    +            fp32_weights = []
    +            for param_group in runner.optimizer.param_groups:
    +                fp32_weights += param_group['params']
    +            self.copy_grads_to_fp32(runner.model, fp32_weights)
    +            # allreduce grads
    +            if self.distributed:
    +                allreduce_grads(fp32_weights, self.coalesce,
    +                                self.bucket_size_mb)
    +
    +            has_overflow = self.loss_scaler.has_overflow(fp32_weights)
    +            # if has overflow, skip this iteration
    +            if not has_overflow:
    +                # scale the gradients back
    +                for param in fp32_weights:
    +                    if param.grad is not None:
    +                        param.grad.div_(self.loss_scaler.loss_scale)
    +                if self.grad_clip is not None:
    +                    grad_norm = self.clip_grads(fp32_weights)
    +                    if grad_norm is not None:
    +                        # Add grad norm to the logger
    +                        runner.log_buffer.update(
    +                            {'grad_norm': float(grad_norm)},
    +                            runner.outputs['num_samples'])
    +                # update fp32 params
    +                runner.optimizer.step()
    +                # copy fp32 params to the fp16 model
    +                self.copy_params_to_fp16(runner.model, fp32_weights)
    +            self.loss_scaler.update_scale(has_overflow)
    +            if has_overflow:
    +                runner.logger.warning('Check overflow, downscale loss scale '
    +                                      f'to {self.loss_scaler.cur_scale}')
    +
    +            # save state_dict of loss_scaler
    +            runner.meta.setdefault(
    +                'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
    +
    +    @HOOKS.register_module()
    +    class GradientCumulativeFp16OptimizerHook(  # type: ignore
    +            GradientCumulativeOptimizerHook, Fp16OptimizerHook):
    +        """Fp16 optimizer Hook (using mmcv implementation) implements multi-
    +        iters gradient cumulating."""
    +
    +        def __init__(self, *args, **kwargs):
    +            super().__init__(*args, **kwargs)
    +
    +        def after_train_iter(self, runner) -> None:
    +            if not self.initialized:
    +                self._init(runner)
    +
    +            loss = runner.outputs['loss'] / self._get_loss_factor(runner)
    +            scaled_loss = loss * self.loss_scaler.loss_scale
    +            scaled_loss.backward()
    +
    +            if (self.every_n_iters(runner, self.cumulative_iters)
    +                    or self.is_last_iter(runner)):
    +
    +                # copy fp16 grads in the model to fp32 params in the optimizer
    +                fp32_weights = []
    +                for param_group in runner.optimizer.param_groups:
    +                    fp32_weights += param_group['params']
    +                self.copy_grads_to_fp32(runner.model, fp32_weights)
    +                # allreduce grads
    +                if self.distributed:
    +                    allreduce_grads(fp32_weights, self.coalesce,
    +                                    self.bucket_size_mb)
    +
    +                has_overflow = self.loss_scaler.has_overflow(fp32_weights)
    +                # if has overflow, skip this iteration
    +                if not has_overflow:
    +                    # scale the gradients back
    +                    for param in fp32_weights:
    +                        if param.grad is not None:
    +                            param.grad.div_(self.loss_scaler.loss_scale)
    +                    if self.grad_clip is not None:
    +                        grad_norm = self.clip_grads(fp32_weights)
    +                        if grad_norm is not None:
    +                            # Add grad norm to the logger
    +                            runner.log_buffer.update(
    +                                {'grad_norm': float(grad_norm)},
    +                                runner.outputs['num_samples'])
    +                    # update fp32 params
    +                    runner.optimizer.step()
    +                    # copy fp32 params to the fp16 model
    +                    self.copy_params_to_fp16(runner.model, fp32_weights)
    +                else:
    +                    runner.logger.warning(
    +                        'Check overflow, downscale loss scale '
    +                        f'to {self.loss_scaler.cur_scale}')
    +
    +                self.loss_scaler.update_scale(has_overflow)
    +
    +                # save state_dict of loss_scaler
    +                runner.meta.setdefault(
    +                    'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
    +
    +                # clear grads
    +                runner.model.zero_grad()
    +                runner.optimizer.zero_grad()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/profiler.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/profiler.py
    new file mode 100644
    index 000000000..6b0fc4b86
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/profiler.py
    @@ -0,0 +1,190 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import warnings
    +from typing import Callable, List, Optional, Union
    +
    +import torch
    +
    +from ..dist_utils import master_only
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class ProfilerHook(Hook):
    +    """Profiler to analyze performance during training.
    +
    +    PyTorch Profiler is a tool that allows the collection of the performance
    +    metrics during the training. More details on Profiler can be found at
    +    https://pytorch.org/docs/1.8.1/profiler.html#torch.profiler.profile
    +
    +    Args:
    +        by_epoch (bool): Profile performance by epoch or by iteration.
    +            Default: True.
    +        profile_iters (int): Number of iterations for profiling.
    +            If ``by_epoch=True``, profile_iters indicates that they are the
    +            first profile_iters epochs at the beginning of the
    +            training, otherwise it indicates the first profile_iters
    +            iterations. Default: 1.
    +        activities (list[str]): List of activity groups (CPU, CUDA) to use in
    +            profiling. Default: ['cpu', 'cuda'].
    +        schedule (dict, optional): Config of generating the callable schedule.
    +            if schedule is None, profiler will not add step markers into the
    +            trace and table view. Default: None.
    +        on_trace_ready (callable, dict): Either a handler or a dict of generate
    +            handler. Default: None.
    +        record_shapes (bool): Save information about operator's input shapes.
    +            Default: False.
    +        profile_memory (bool): Track tensor memory allocation/deallocation.
    +            Default: False.
    +        with_stack (bool): Record source information (file and line number)
    +            for the ops. Default: False.
    +        with_flops (bool): Use formula to estimate the FLOPS of specific
    +            operators (matrix multiplication and 2D convolution).
    +            Default: False.
    +        json_trace_path (str, optional): Exports the collected trace in Chrome
    +            JSON format. Default: None.
    +
    +    Example:
    +        >>> runner = ... # instantiate a Runner
    +        >>> # tensorboard trace
    +        >>> trace_config = dict(type='tb_trace', dir_name='work_dir')
    +        >>> profiler_config = dict(on_trace_ready=trace_config)
    +        >>> runner.register_profiler_hook(profiler_config)
    +        >>> runner.run(data_loaders=[trainloader], workflow=[('train', 1)])
    +    """
    +
    +    def __init__(self,
    +                 by_epoch: bool = True,
    +                 profile_iters: int = 1,
    +                 activities: List[str] = ['cpu', 'cuda'],
    +                 schedule: Optional[dict] = None,
    +                 on_trace_ready: Optional[Union[Callable, dict]] = None,
    +                 record_shapes: bool = False,
    +                 profile_memory: bool = False,
    +                 with_stack: bool = False,
    +                 with_flops: bool = False,
    +                 json_trace_path: Optional[str] = None) -> None:
    +        try:
    +            from torch import profiler  # torch version >= 1.8.1
    +        except ImportError:
    +            raise ImportError('profiler is the new feature of torch1.8.1, '
    +                              f'but your version is {torch.__version__}')
    +
    +        assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean.'
    +        self.by_epoch = by_epoch
    +
    +        if profile_iters < 1:
    +            raise ValueError('profile_iters should be greater than 0, but got '
    +                             f'{profile_iters}')
    +        self.profile_iters = profile_iters
    +
    +        if not isinstance(activities, list):
    +            raise ValueError(
    +                f'activities should be list, but got {type(activities)}')
    +        self.activities = []
    +        for activity in activities:
    +            activity = activity.lower()
    +            if activity == 'cpu':
    +                self.activities.append(profiler.ProfilerActivity.CPU)
    +            elif activity == 'cuda':
    +                self.activities.append(profiler.ProfilerActivity.CUDA)
    +            else:
    +                raise ValueError(
    +                    f'activity should be "cpu" or "cuda", but got {activity}')
    +
    +        if schedule is not None:
    +            self.schedule = profiler.schedule(**schedule)
    +        else:
    +            self.schedule = None
    +
    +        self.on_trace_ready = on_trace_ready
    +        self.record_shapes = record_shapes
    +        self.profile_memory = profile_memory
    +        self.with_stack = with_stack
    +        self.with_flops = with_flops
    +        self.json_trace_path = json_trace_path
    +
    +    @master_only
    +    def before_run(self, runner):
    +        if self.by_epoch and runner.max_epochs < self.profile_iters:
    +            raise ValueError('self.profile_iters should not be greater than '
    +                             f'{runner.max_epochs}')
    +
    +        if not self.by_epoch and runner.max_iters < self.profile_iters:
    +            raise ValueError('self.profile_iters should not be greater than '
    +                             f'{runner.max_iters}')
    +
    +        if callable(self.on_trace_ready):  # handler
    +            _on_trace_ready = self.on_trace_ready
    +        elif isinstance(self.on_trace_ready, dict):  # config of handler
    +            trace_cfg = self.on_trace_ready.copy()
    +            trace_type = trace_cfg.pop('type')  # log_trace handler
    +            if trace_type == 'log_trace':
    +
    +                def _log_handler(prof):
    +                    print(prof.key_averages().table(**trace_cfg))
    +
    +                _on_trace_ready = _log_handler
    +            elif trace_type == 'tb_trace':  # tensorboard_trace handler
    +                try:
    +                    import torch_tb_profiler  # noqa: F401
    +                except ImportError:
    +                    raise ImportError('please run "pip install '
    +                                      'torch-tb-profiler" to install '
    +                                      'torch_tb_profiler')
    +                if 'dir_name' not in trace_cfg:
    +                    trace_cfg['dir_name'] = osp.join(runner.work_dir,
    +                                                     'tf_tracing_logs')
    +                elif not osp.isabs(trace_cfg['dir_name']):
    +                    trace_cfg['dir_name'] = osp.join(runner.work_dir,
    +                                                     trace_cfg['dir_name'])
    +                runner.logger.info(
    +                    'tracing files of ProfilerHook will be saved to '
    +                    f"{trace_cfg['dir_name']}.")
    +                _on_trace_ready = torch.profiler.tensorboard_trace_handler(
    +                    **trace_cfg)
    +            else:
    +                raise ValueError('trace_type should be "log_trace" or '
    +                                 f'"tb_trace", but got {trace_type}')
    +        elif self.on_trace_ready is None:
    +            _on_trace_ready = None  # type: ignore
    +        else:
    +            raise ValueError('on_trace_ready should be handler, dict or None, '
    +                             f'but got {type(self.on_trace_ready)}')
    +
    +        if self.by_epoch and runner.max_epochs > 1:
    +            warnings.warn(f'profiler will profile {runner.max_epochs} epochs '
    +                          'instead of 1 epoch. Since profiler will slow down '
    +                          'the training, it is recommended to train 1 epoch '
    +                          'with ProfilerHook and adjust your setting according'
    +                          ' to the profiler summary. During normal training '
    +                          '(epoch > 1), you may disable the ProfilerHook.')
    +
    +        self.profiler = torch.profiler.profile(
    +            activities=self.activities,
    +            schedule=self.schedule,
    +            on_trace_ready=_on_trace_ready,
    +            record_shapes=self.record_shapes,
    +            profile_memory=self.profile_memory,
    +            with_stack=self.with_stack,
    +            with_flops=self.with_flops)
    +
    +        self.profiler.__enter__()
    +        runner.logger.info('profiler is profiling...')
    +
    +    @master_only
    +    def after_train_epoch(self, runner):
    +        if self.by_epoch and runner.epoch == self.profile_iters - 1:
    +            runner.logger.info('profiler may take a few minutes...')
    +            self.profiler.__exit__(None, None, None)
    +            if self.json_trace_path is not None:
    +                self.profiler.export_chrome_trace(self.json_trace_path)
    +
    +    @master_only
    +    def after_train_iter(self, runner):
    +        self.profiler.step()
    +        if not self.by_epoch and runner.iter == self.profile_iters - 1:
    +            runner.logger.info('profiler may take a few minutes...')
    +            self.profiler.__exit__(None, None, None)
    +            if self.json_trace_path is not None:
    +                self.profiler.export_chrome_trace(self.json_trace_path)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sampler_seed.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sampler_seed.py
    new file mode 100644
    index 000000000..ee0dc6bdd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sampler_seed.py
    @@ -0,0 +1,20 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class DistSamplerSeedHook(Hook):
    +    """Data-loading sampler for distributed training.
    +
    +    When distributed training, it is only useful in conjunction with
    +    :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same
    +    purpose with :obj:`IterLoader`.
    +    """
    +
    +    def before_epoch(self, runner):
    +        if hasattr(runner.data_loader.sampler, 'set_epoch'):
    +            # in case the data loader uses `SequentialSampler` in Pytorch
    +            runner.data_loader.sampler.set_epoch(runner.epoch)
    +        elif hasattr(runner.data_loader.batch_sampler.sampler, 'set_epoch'):
    +            # batch sampler in pytorch warps the sampler as its attributes.
    +            runner.data_loader.batch_sampler.sampler.set_epoch(runner.epoch)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sync_buffer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sync_buffer.py
    new file mode 100644
    index 000000000..5f07ae656
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/hooks/sync_buffer.py
    @@ -0,0 +1,22 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from ..dist_utils import allreduce_params
    +from .hook import HOOKS, Hook
    +
    +
    +@HOOKS.register_module()
    +class SyncBuffersHook(Hook):
    +    """Synchronize model buffers such as running_mean and running_var in BN at
    +    the end of each epoch.
    +
    +    Args:
    +        distributed (bool): Whether distributed training is used. It is
    +          effective only for distributed training. Defaults to True.
    +    """
    +
    +    def __init__(self, distributed: bool = True):
    +        self.distributed = distributed
    +
    +    def after_epoch(self, runner):
    +        """All-reduce model buffers at the end of each epoch."""
    +        if self.distributed:
    +            allreduce_params(runner.model.buffers())
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/iter_based_runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/iter_based_runner.py
    new file mode 100644
    index 000000000..06b4b7d2a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/iter_based_runner.py
    @@ -0,0 +1,285 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +import platform
    +import shutil
    +import time
    +import warnings
    +from typing import Callable, Dict, List, Optional, Tuple, Union, no_type_check
    +
    +import torch
    +from torch.optim import Optimizer
    +from torch.utils.data import DataLoader
    +
    +import mmcv
    +from .base_runner import BaseRunner
    +from .builder import RUNNERS
    +from .checkpoint import save_checkpoint
    +from .hooks import IterTimerHook
    +from .utils import get_host_info
    +
    +
    +class IterLoader:
    +
    +    def __init__(self, dataloader: DataLoader):
    +        self._dataloader = dataloader
    +        self.iter_loader = iter(self._dataloader)
    +        self._epoch = 0
    +
    +    @property
    +    def epoch(self) -> int:
    +        return self._epoch
    +
    +    def __next__(self):
    +        try:
    +            data = next(self.iter_loader)
    +        except StopIteration:
    +            self._epoch += 1
    +            if hasattr(self._dataloader.sampler, 'set_epoch'):
    +                self._dataloader.sampler.set_epoch(self._epoch)
    +            time.sleep(2)  # Prevent possible deadlock during epoch transition
    +            self.iter_loader = iter(self._dataloader)
    +            data = next(self.iter_loader)
    +
    +        return data
    +
    +    def __len__(self):
    +        return len(self._dataloader)
    +
    +
    +@RUNNERS.register_module()
    +class IterBasedRunner(BaseRunner):
    +    """Iteration-based Runner.
    +
    +    This runner train models iteration by iteration.
    +    """
    +
    +    def train(self, data_loader, **kwargs):
    +        self.model.train()
    +        self.mode = 'train'
    +        self.data_loader = data_loader
    +        self._epoch = data_loader.epoch
    +        data_batch = next(data_loader)
    +        self.data_batch = data_batch
    +        self.call_hook('before_train_iter')
    +        outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
    +        if not isinstance(outputs, dict):
    +            raise TypeError('model.train_step() must return a dict')
    +        if 'log_vars' in outputs:
    +            self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
    +        self.outputs = outputs
    +        self.call_hook('after_train_iter')
    +        del self.data_batch
    +        self._inner_iter += 1
    +        self._iter += 1
    +
    +    @torch.no_grad()
    +    def val(self, data_loader, **kwargs):
    +        self.model.eval()
    +        self.mode = 'val'
    +        self.data_loader = data_loader
    +        data_batch = next(data_loader)
    +        self.data_batch = data_batch
    +        self.call_hook('before_val_iter')
    +        outputs = self.model.val_step(data_batch, **kwargs)
    +        if not isinstance(outputs, dict):
    +            raise TypeError('model.val_step() must return a dict')
    +        if 'log_vars' in outputs:
    +            self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
    +        self.outputs = outputs
    +        self.call_hook('after_val_iter')
    +        del self.data_batch
    +        self._inner_iter += 1
    +
    +    def run(self,
    +            data_loaders: List[DataLoader],
    +            workflow: List[Tuple[str, int]],
    +            max_iters: Optional[int] = None,
    +            **kwargs) -> None:
    +        """Start running.
    +
    +        Args:
    +            data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
    +                and validation.
    +            workflow (list[tuple]): A list of (phase, iters) to specify the
    +                running order and iterations. E.g, [('train', 10000),
    +                ('val', 1000)] means running 10000 iterations for training and
    +                1000 iterations for validation, iteratively.
    +        """
    +        assert isinstance(data_loaders, list)
    +        assert mmcv.is_list_of(workflow, tuple)
    +        assert len(data_loaders) == len(workflow)
    +        if max_iters is not None:
    +            warnings.warn(
    +                'setting max_iters in run is deprecated, '
    +                'please set max_iters in runner_config', DeprecationWarning)
    +            self._max_iters = max_iters
    +        assert self._max_iters is not None, (
    +            'max_iters must be specified during instantiation')
    +
    +        work_dir = self.work_dir if self.work_dir is not None else 'NONE'
    +        self.logger.info('Start running, host: %s, work_dir: %s',
    +                         get_host_info(), work_dir)
    +        self.logger.info('Hooks will be executed in the following order:\n%s',
    +                         self.get_hook_info())
    +        self.logger.info('workflow: %s, max: %d iters', workflow,
    +                         self._max_iters)
    +        self.call_hook('before_run')
    +
    +        iter_loaders = [IterLoader(x) for x in data_loaders]
    +
    +        self.call_hook('before_epoch')
    +
    +        while self.iter < self._max_iters:
    +            for i, flow in enumerate(workflow):
    +                self._inner_iter = 0
    +                mode, iters = flow
    +                if not isinstance(mode, str) or not hasattr(self, mode):
    +                    raise ValueError(
    +                        'runner has no method named "{}" to run a workflow'.
    +                        format(mode))
    +                iter_runner = getattr(self, mode)
    +                for _ in range(iters):
    +                    if mode == 'train' and self.iter >= self._max_iters:
    +                        break
    +                    iter_runner(iter_loaders[i], **kwargs)
    +
    +        time.sleep(1)  # wait for some hooks like loggers to finish
    +        self.call_hook('after_epoch')
    +        self.call_hook('after_run')
    +
    +    @no_type_check
    +    def resume(self,
    +               checkpoint: str,
    +               resume_optimizer: bool = True,
    +               map_location: Union[str, Callable] = 'default') -> None:
    +        """Resume model from checkpoint.
    +
    +        Args:
    +            checkpoint (str): Checkpoint to resume from.
    +            resume_optimizer (bool, optional): Whether resume the optimizer(s)
    +                if the checkpoint file includes optimizer(s). Default to True.
    +            map_location (str, optional): Same as :func:`torch.load`.
    +                Default to 'default'.
    +        """
    +        if map_location == 'default':
    +            device_id = torch.cuda.current_device()
    +            checkpoint = self.load_checkpoint(
    +                checkpoint,
    +                map_location=lambda storage, loc: storage.cuda(device_id))
    +        else:
    +            checkpoint = self.load_checkpoint(
    +                checkpoint, map_location=map_location)
    +
    +        self._epoch = checkpoint['meta']['epoch']
    +        self._iter = checkpoint['meta']['iter']
    +        self._inner_iter = checkpoint['meta']['iter']
    +        if 'optimizer' in checkpoint and resume_optimizer:
    +            if isinstance(self.optimizer, Optimizer):
    +                self.optimizer.load_state_dict(checkpoint['optimizer'])
    +            elif isinstance(self.optimizer, dict):
    +                for k in self.optimizer.keys():
    +                    self.optimizer[k].load_state_dict(
    +                        checkpoint['optimizer'][k])
    +            else:
    +                raise TypeError(
    +                    'Optimizer should be dict or torch.optim.Optimizer '
    +                    f'but got {type(self.optimizer)}')
    +
    +        self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')
    +
    +    def save_checkpoint(  # type: ignore
    +            self,
    +            out_dir: str,
    +            filename_tmpl: str = 'iter_{}.pth',
    +            meta: Optional[Dict] = None,
    +            save_optimizer: bool = True,
    +            create_symlink: bool = True) -> None:
    +        """Save checkpoint to file.
    +
    +        Args:
    +            out_dir (str): Directory to save checkpoint files.
    +            filename_tmpl (str, optional): Checkpoint file template.
    +                Defaults to 'iter_{}.pth'.
    +            meta (dict, optional): Metadata to be saved in checkpoint.
    +                Defaults to None.
    +            save_optimizer (bool, optional): Whether save optimizer.
    +                Defaults to True.
    +            create_symlink (bool, optional): Whether create symlink to the
    +                latest checkpoint file. Defaults to True.
    +        """
    +        if meta is None:
    +            meta = {}
    +        elif not isinstance(meta, dict):
    +            raise TypeError(
    +                f'meta should be a dict or None, but got {type(meta)}')
    +        if self.meta is not None:
    +            meta.update(self.meta)
    +            # Note: meta.update(self.meta) should be done before
    +            # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise
    +            # there will be problems with resumed checkpoints.
    +            # More details in https://github.com/open-mmlab/mmcv/pull/1108
    +        meta.update(epoch=self.epoch + 1, iter=self.iter)
    +
    +        filename = filename_tmpl.format(self.iter + 1)
    +        filepath = osp.join(out_dir, filename)
    +        optimizer = self.optimizer if save_optimizer else None
    +        save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta)
    +        # in some environments, `os.symlink` is not supported, you may need to
    +        # set `create_symlink` to False
    +        if create_symlink:
    +            dst_file = osp.join(out_dir, 'latest.pth')
    +            if platform.system() != 'Windows':
    +                mmcv.symlink(filename, dst_file)
    +            else:
    +                shutil.copy(filepath, dst_file)
    +
    +    def register_training_hooks(self,
    +                                lr_config,
    +                                optimizer_config=None,
    +                                checkpoint_config=None,
    +                                log_config=None,
    +                                momentum_config=None,
    +                                custom_hooks_config=None):
    +        """Register default hooks for iter-based training.
    +
    +        Checkpoint hook, optimizer stepper hook and logger hooks will be set to
    +        `by_epoch=False` by default.
    +
    +        Default hooks include:
    +
    +        +----------------------+-------------------------+
    +        | Hooks                | Priority                |
    +        +======================+=========================+
    +        | LrUpdaterHook        | VERY_HIGH (10)          |
    +        +----------------------+-------------------------+
    +        | MomentumUpdaterHook  | HIGH (30)               |
    +        +----------------------+-------------------------+
    +        | OptimizerStepperHook | ABOVE_NORMAL (40)       |
    +        +----------------------+-------------------------+
    +        | CheckpointSaverHook  | NORMAL (50)             |
    +        +----------------------+-------------------------+
    +        | IterTimerHook        | LOW (70)                |
    +        +----------------------+-------------------------+
    +        | LoggerHook(s)        | VERY_LOW (90)           |
    +        +----------------------+-------------------------+
    +        | CustomHook(s)        | defaults to NORMAL (50) |
    +        +----------------------+-------------------------+
    +
    +        If custom hooks have same priority with default hooks, custom hooks
    +        will be triggered after default hooks.
    +        """
    +        if checkpoint_config is not None:
    +            checkpoint_config.setdefault('by_epoch', False)  # type: ignore
    +        if lr_config is not None:
    +            lr_config.setdefault('by_epoch', False)  # type: ignore
    +        if log_config is not None:
    +            for info in log_config['hooks']:
    +                info.setdefault('by_epoch', False)
    +        super().register_training_hooks(
    +            lr_config=lr_config,
    +            momentum_config=momentum_config,
    +            optimizer_config=optimizer_config,
    +            checkpoint_config=checkpoint_config,
    +            log_config=log_config,
    +            timer_config=IterTimerHook(),
    +            custom_hooks_config=custom_hooks_config)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/log_buffer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/log_buffer.py
    new file mode 100644
    index 000000000..3c9f37963
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/log_buffer.py
    @@ -0,0 +1,41 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from collections import OrderedDict
    +
    +import numpy as np
    +
    +
    +class LogBuffer:
    +
    +    def __init__(self):
    +        self.val_history = OrderedDict()
    +        self.n_history = OrderedDict()
    +        self.output = OrderedDict()
    +        self.ready = False
    +
    +    def clear(self) -> None:
    +        self.val_history.clear()
    +        self.n_history.clear()
    +        self.clear_output()
    +
    +    def clear_output(self) -> None:
    +        self.output.clear()
    +        self.ready = False
    +
    +    def update(self, vars: dict, count: int = 1) -> None:
    +        assert isinstance(vars, dict)
    +        for key, var in vars.items():
    +            if key not in self.val_history:
    +                self.val_history[key] = []
    +                self.n_history[key] = []
    +            self.val_history[key].append(var)
    +            self.n_history[key].append(count)
    +
    +    def average(self, n: int = 0) -> None:
    +        """Average latest n values or all values."""
    +        assert n >= 0
    +        for key in self.val_history:
    +            values = np.array(self.val_history[key][-n:])
    +            nums = np.array(self.n_history[key][-n:])
    +            avg = np.sum(values * nums) / np.sum(nums)
    +            self.output[key] = avg
    +        self.ready = True
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/__init__.py
    new file mode 100644
    index 000000000..53c34d047
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/__init__.py
    @@ -0,0 +1,9 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .builder import (OPTIMIZER_BUILDERS, OPTIMIZERS, build_optimizer,
    +                      build_optimizer_constructor)
    +from .default_constructor import DefaultOptimizerConstructor
    +
    +__all__ = [
    +    'OPTIMIZER_BUILDERS', 'OPTIMIZERS', 'DefaultOptimizerConstructor',
    +    'build_optimizer', 'build_optimizer_constructor'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/builder.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/builder.py
    new file mode 100644
    index 000000000..49d8f05a2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/builder.py
    @@ -0,0 +1,45 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +import inspect
    +from typing import Dict, List
    +
    +import torch
    +
    +from ...utils import Registry, build_from_cfg
    +
    +OPTIMIZERS = Registry('optimizer')
    +OPTIMIZER_BUILDERS = Registry('optimizer builder')
    +
    +
    +def register_torch_optimizers() -> List:
    +    torch_optimizers = []
    +    for module_name in dir(torch.optim):
    +        if module_name.startswith('__'):
    +            continue
    +        _optim = getattr(torch.optim, module_name)
    +        if inspect.isclass(_optim) and issubclass(_optim,
    +                                                  torch.optim.Optimizer):
    +            OPTIMIZERS.register_module()(_optim)
    +            torch_optimizers.append(module_name)
    +    return torch_optimizers
    +
    +
    +TORCH_OPTIMIZERS = register_torch_optimizers()
    +
    +
    +def build_optimizer_constructor(cfg: Dict):
    +    return build_from_cfg(cfg, OPTIMIZER_BUILDERS)
    +
    +
    +def build_optimizer(model, cfg: Dict):
    +    optimizer_cfg = copy.deepcopy(cfg)
    +    constructor_type = optimizer_cfg.pop('constructor',
    +                                         'DefaultOptimizerConstructor')
    +    paramwise_cfg = optimizer_cfg.pop('paramwise_cfg', None)
    +    optim_constructor = build_optimizer_constructor(
    +        dict(
    +            type=constructor_type,
    +            optimizer_cfg=optimizer_cfg,
    +            paramwise_cfg=paramwise_cfg))
    +    optimizer = optim_constructor(model)
    +    return optimizer
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/default_constructor.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/default_constructor.py
    new file mode 100644
    index 000000000..c82b56e52
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/optimizer/default_constructor.py
    @@ -0,0 +1,258 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Dict, List, Optional, Union
    +
    +import torch
    +import torch.nn as nn
    +from torch.nn import GroupNorm, LayerNorm
    +
    +from mmcv.utils import _BatchNorm, _InstanceNorm, build_from_cfg, is_list_of
    +from mmcv.utils.ext_loader import check_ops_exist
    +from .builder import OPTIMIZER_BUILDERS, OPTIMIZERS
    +
    +
    +@OPTIMIZER_BUILDERS.register_module()
    +class DefaultOptimizerConstructor:
    +    """Default constructor for optimizers.
    +
    +    By default each parameter share the same optimizer settings, and we
    +    provide an argument ``paramwise_cfg`` to specify parameter-wise settings.
    +    It is a dict and may contain the following fields:
    +
    +    - ``custom_keys`` (dict): Specified parameters-wise settings by keys. If
    +      one of the keys in ``custom_keys`` is a substring of the name of one
    +      parameter, then the setting of the parameter will be specified by
    +      ``custom_keys[key]`` and other setting like ``bias_lr_mult`` etc. will
    +      be ignored. It should be noted that the aforementioned ``key`` is the
    +      longest key that is a substring of the name of the parameter. If there
    +      are multiple matched keys with the same length, then the key with lower
    +      alphabet order will be chosen.
    +      ``custom_keys[key]`` should be a dict and may contain fields ``lr_mult``
    +      and ``decay_mult``. See Example 2 below.
    +    - ``bias_lr_mult`` (float): It will be multiplied to the learning
    +      rate for all bias parameters (except for those in normalization
    +      layers and offset layers of DCN).
    +    - ``bias_decay_mult`` (float): It will be multiplied to the weight
    +      decay for all bias parameters (except for those in
    +      normalization layers, depthwise conv layers, offset layers of DCN).
    +    - ``norm_decay_mult`` (float): It will be multiplied to the weight
    +      decay for all weight and bias parameters of normalization
    +      layers.
    +    - ``dwconv_decay_mult`` (float): It will be multiplied to the weight
    +      decay for all weight and bias parameters of depthwise conv
    +      layers.
    +    - ``dcn_offset_lr_mult`` (float): It will be multiplied to the learning
    +      rate for parameters of offset layer in the deformable convs
    +      of a model.
    +    - ``bypass_duplicate`` (bool): If true, the duplicate parameters
    +      would not be added into optimizer. Default: False.
    +
    +    Note:
    +
    +        1. If the option ``dcn_offset_lr_mult`` is used, the constructor will
    +        override the effect of ``bias_lr_mult`` in the bias of offset layer.
    +        So be careful when using both ``bias_lr_mult`` and
    +        ``dcn_offset_lr_mult``. If you wish to apply both of them to the offset
    +        layer in deformable convs, set ``dcn_offset_lr_mult`` to the original
    +        ``dcn_offset_lr_mult`` * ``bias_lr_mult``.
    +
    +        2. If the option ``dcn_offset_lr_mult`` is used, the constructor will
    +        apply it to all the DCN layers in the model. So be careful when the
    +        model contains multiple DCN layers in places other than backbone.
    +
    +    Args:
    +        model (:obj:`nn.Module`): The model with parameters to be optimized.
    +        optimizer_cfg (dict): The config dict of the optimizer.
    +            Positional fields are
    +
    +                - `type`: class name of the optimizer.
    +
    +            Optional fields are
    +
    +                - any arguments of the corresponding optimizer type, e.g.,
    +                  lr, weight_decay, momentum, etc.
    +        paramwise_cfg (dict, optional): Parameter-wise options.
    +
    +    Example 1:
    +        >>> model = torch.nn.modules.Conv1d(1, 1, 1)
    +        >>> optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9,
    +        >>>                      weight_decay=0.0001)
    +        >>> paramwise_cfg = dict(norm_decay_mult=0.)
    +        >>> optim_builder = DefaultOptimizerConstructor(
    +        >>>     optimizer_cfg, paramwise_cfg)
    +        >>> optimizer = optim_builder(model)
    +
    +    Example 2:
    +        >>> # assume model have attribute model.backbone and model.cls_head
    +        >>> optimizer_cfg = dict(type='SGD', lr=0.01, weight_decay=0.95)
    +        >>> paramwise_cfg = dict(custom_keys={
    +                'backbone': dict(lr_mult=0.1, decay_mult=0.9)})
    +        >>> optim_builder = DefaultOptimizerConstructor(
    +        >>>     optimizer_cfg, paramwise_cfg)
    +        >>> optimizer = optim_builder(model)
    +        >>> # Then the `lr` and `weight_decay` for model.backbone is
    +        >>> # (0.01 * 0.1, 0.95 * 0.9). `lr` and `weight_decay` for
    +        >>> # model.cls_head is (0.01, 0.95).
    +    """
    +
    +    def __init__(self,
    +                 optimizer_cfg: Dict,
    +                 paramwise_cfg: Optional[Dict] = None):
    +        if not isinstance(optimizer_cfg, dict):
    +            raise TypeError('optimizer_cfg should be a dict',
    +                            f'but got {type(optimizer_cfg)}')
    +        self.optimizer_cfg = optimizer_cfg
    +        self.paramwise_cfg = {} if paramwise_cfg is None else paramwise_cfg
    +        self.base_lr = optimizer_cfg.get('lr', None)
    +        self.base_wd = optimizer_cfg.get('weight_decay', None)
    +        self._validate_cfg()
    +
    +    def _validate_cfg(self) -> None:
    +        if not isinstance(self.paramwise_cfg, dict):
    +            raise TypeError('paramwise_cfg should be None or a dict, '
    +                            f'but got {type(self.paramwise_cfg)}')
    +
    +        if 'custom_keys' in self.paramwise_cfg:
    +            if not isinstance(self.paramwise_cfg['custom_keys'], dict):
    +                raise TypeError(
    +                    'If specified, custom_keys must be a dict, '
    +                    f'but got {type(self.paramwise_cfg["custom_keys"])}')
    +            if self.base_wd is None:
    +                for key in self.paramwise_cfg['custom_keys']:
    +                    if 'decay_mult' in self.paramwise_cfg['custom_keys'][key]:
    +                        raise ValueError('base_wd should not be None')
    +
    +        # get base lr and weight decay
    +        # weight_decay must be explicitly specified if mult is specified
    +        if ('bias_decay_mult' in self.paramwise_cfg
    +                or 'norm_decay_mult' in self.paramwise_cfg
    +                or 'dwconv_decay_mult' in self.paramwise_cfg):
    +            if self.base_wd is None:
    +                raise ValueError('base_wd should not be None')
    +
    +    def _is_in(self, param_group: Dict, param_group_list: List) -> bool:
    +        assert is_list_of(param_group_list, dict)
    +        param = set(param_group['params'])
    +        param_set = set()
    +        for group in param_group_list:
    +            param_set.update(set(group['params']))
    +
    +        return not param.isdisjoint(param_set)
    +
    +    def add_params(self,
    +                   params: List[Dict],
    +                   module: nn.Module,
    +                   prefix: str = '',
    +                   is_dcn_module: Union[int, float, None] = None) -> None:
    +        """Add all parameters of module to the params list.
    +
    +        The parameters of the given module will be added to the list of param
    +        groups, with specific rules defined by paramwise_cfg.
    +
    +        Args:
    +            params (list[dict]): A list of param groups, it will be modified
    +                in place.
    +            module (nn.Module): The module to be added.
    +            prefix (str): The prefix of the module
    +            is_dcn_module (int|float|None): If the current module is a
    +                submodule of DCN, `is_dcn_module` will be passed to
    +                control conv_offset layer's learning rate. Defaults to None.
    +        """
    +        # get param-wise options
    +        custom_keys = self.paramwise_cfg.get('custom_keys', {})
    +        # first sort with alphabet order and then sort with reversed len of str
    +        sorted_keys = sorted(sorted(custom_keys.keys()), key=len, reverse=True)
    +
    +        bias_lr_mult = self.paramwise_cfg.get('bias_lr_mult', 1.)
    +        bias_decay_mult = self.paramwise_cfg.get('bias_decay_mult', 1.)
    +        norm_decay_mult = self.paramwise_cfg.get('norm_decay_mult', 1.)
    +        dwconv_decay_mult = self.paramwise_cfg.get('dwconv_decay_mult', 1.)
    +        bypass_duplicate = self.paramwise_cfg.get('bypass_duplicate', False)
    +        dcn_offset_lr_mult = self.paramwise_cfg.get('dcn_offset_lr_mult', 1.)
    +
    +        # special rules for norm layers and depth-wise conv layers
    +        is_norm = isinstance(module,
    +                             (_BatchNorm, _InstanceNorm, GroupNorm, LayerNorm))
    +        is_dwconv = (
    +            isinstance(module, torch.nn.Conv2d)
    +            and module.in_channels == module.groups)
    +
    +        for name, param in module.named_parameters(recurse=False):
    +            param_group = {'params': [param]}
    +            if not param.requires_grad:
    +                params.append(param_group)
    +                continue
    +            if bypass_duplicate and self._is_in(param_group, params):
    +                warnings.warn(f'{prefix} is duplicate. It is skipped since '
    +                              f'bypass_duplicate={bypass_duplicate}')
    +                continue
    +            # if the parameter match one of the custom keys, ignore other rules
    +            is_custom = False
    +            for key in sorted_keys:
    +                if key in f'{prefix}.{name}':
    +                    is_custom = True
    +                    lr_mult = custom_keys[key].get('lr_mult', 1.)
    +                    param_group['lr'] = self.base_lr * lr_mult
    +                    if self.base_wd is not None:
    +                        decay_mult = custom_keys[key].get('decay_mult', 1.)
    +                        param_group['weight_decay'] = self.base_wd * decay_mult
    +                    break
    +
    +            if not is_custom:
    +                # bias_lr_mult affects all bias parameters
    +                # except for norm.bias dcn.conv_offset.bias
    +                if name == 'bias' and not (is_norm or is_dcn_module):
    +                    param_group['lr'] = self.base_lr * bias_lr_mult
    +
    +                if (prefix.find('conv_offset') != -1 and is_dcn_module
    +                        and isinstance(module, torch.nn.Conv2d)):
    +                    # deal with both dcn_offset's bias & weight
    +                    param_group['lr'] = self.base_lr * dcn_offset_lr_mult
    +
    +                # apply weight decay policies
    +                if self.base_wd is not None:
    +                    # norm decay
    +                    if is_norm:
    +                        param_group[
    +                            'weight_decay'] = self.base_wd * norm_decay_mult
    +                    # depth-wise conv
    +                    elif is_dwconv:
    +                        param_group[
    +                            'weight_decay'] = self.base_wd * dwconv_decay_mult
    +                    # bias lr and decay
    +                    elif name == 'bias' and not is_dcn_module:
    +                        # TODO: current bias_decay_mult will have affect on DCN
    +                        param_group[
    +                            'weight_decay'] = self.base_wd * bias_decay_mult
    +            params.append(param_group)
    +
    +        if check_ops_exist():
    +            from mmcv.ops import DeformConv2d, ModulatedDeformConv2d
    +            is_dcn_module = isinstance(module,
    +                                       (DeformConv2d, ModulatedDeformConv2d))
    +        else:
    +            is_dcn_module = False
    +        for child_name, child_mod in module.named_children():
    +            child_prefix = f'{prefix}.{child_name}' if prefix else child_name
    +            self.add_params(
    +                params,
    +                child_mod,
    +                prefix=child_prefix,
    +                is_dcn_module=is_dcn_module)
    +
    +    def __call__(self, model: nn.Module):
    +        if hasattr(model, 'module'):
    +            model = model.module
    +
    +        optimizer_cfg = self.optimizer_cfg.copy()
    +        # if no paramwise option is specified, just use the global setting
    +        if not self.paramwise_cfg:
    +            optimizer_cfg['params'] = model.parameters()
    +            return build_from_cfg(optimizer_cfg, OPTIMIZERS)
    +
    +        # set param-wise lr and weight decay recursively
    +        params: List[Dict] = []
    +        self.add_params(params, model)
    +        optimizer_cfg['params'] = params
    +
    +        return build_from_cfg(optimizer_cfg, OPTIMIZERS)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/priority.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/priority.py
    new file mode 100644
    index 000000000..ff644043b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/priority.py
    @@ -0,0 +1,61 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from enum import Enum
    +from typing import Union
    +
    +
    +class Priority(Enum):
    +    """Hook priority levels.
    +
    +    +--------------+------------+
    +    | Level        | Value      |
    +    +==============+============+
    +    | HIGHEST      | 0          |
    +    +--------------+------------+
    +    | VERY_HIGH    | 10         |
    +    +--------------+------------+
    +    | HIGH         | 30         |
    +    +--------------+------------+
    +    | ABOVE_NORMAL | 40         |
    +    +--------------+------------+
    +    | NORMAL       | 50         |
    +    +--------------+------------+
    +    | BELOW_NORMAL | 60         |
    +    +--------------+------------+
    +    | LOW          | 70         |
    +    +--------------+------------+
    +    | VERY_LOW     | 90         |
    +    +--------------+------------+
    +    | LOWEST       | 100        |
    +    +--------------+------------+
    +    """
    +
    +    HIGHEST = 0
    +    VERY_HIGH = 10
    +    HIGH = 30
    +    ABOVE_NORMAL = 40
    +    NORMAL = 50
    +    BELOW_NORMAL = 60
    +    LOW = 70
    +    VERY_LOW = 90
    +    LOWEST = 100
    +
    +
    +def get_priority(priority: Union[int, str, Priority]) -> int:
    +    """Get priority value.
    +
    +    Args:
    +        priority (int or str or :obj:`Priority`): Priority.
    +
    +    Returns:
    +        int: The priority value.
    +    """
    +    if isinstance(priority, int):
    +        if priority < 0 or priority > 100:
    +            raise ValueError('priority must be between 0 and 100')
    +        return priority
    +    elif isinstance(priority, Priority):
    +        return priority.value
    +    elif isinstance(priority, str):
    +        return Priority[priority.upper()].value
    +    else:
    +        raise TypeError('priority must be an integer or Priority enum value')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/utils.py
    new file mode 100644
    index 000000000..8cdc6fadd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/runner/utils.py
    @@ -0,0 +1,99 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import random
    +import sys
    +import time
    +import warnings
    +from getpass import getuser
    +from socket import gethostname
    +from types import ModuleType
    +from typing import Optional
    +
    +import numpy as np
    +import torch
    +
    +import mmcv
    +
    +
    +def get_host_info() -> str:
    +    """Get hostname and username.
    +
    +    Return empty string if exception raised, e.g. ``getpass.getuser()`` will
    +    lead to error in docker container
    +    """
    +    host = ''
    +    try:
    +        host = f'{getuser()}@{gethostname()}'
    +    except Exception as e:
    +        warnings.warn(f'Host or user not found: {str(e)}')
    +    finally:
    +        return host
    +
    +
    +def get_time_str() -> str:
    +    return time.strftime('%Y%m%d_%H%M%S', time.localtime())
    +
    +
    +def obj_from_dict(info: dict,
    +                  parent: Optional[ModuleType] = None,
    +                  default_args: Optional[dict] = None):
    +    """Initialize an object from dict.
    +
    +    The dict must contain the key "type", which indicates the object type, it
    +    can be either a string or type, such as "list" or ``list``. Remaining
    +    fields are treated as the arguments for constructing the object.
    +
    +    Args:
    +        info (dict): Object types and arguments.
    +        parent (:class:`module`): Module which may containing expected object
    +            classes.
    +        default_args (dict, optional): Default arguments for initializing the
    +            object.
    +
    +    Returns:
    +        any type: Object built from the dict.
    +    """
    +    assert isinstance(info, dict) and 'type' in info
    +    assert isinstance(default_args, dict) or default_args is None
    +    args = info.copy()
    +    obj_type = args.pop('type')
    +    if mmcv.is_str(obj_type):
    +        if parent is not None:
    +            obj_type = getattr(parent, obj_type)
    +        else:
    +            obj_type = sys.modules[obj_type]
    +    elif not isinstance(obj_type, type):
    +        raise TypeError('type must be a str or valid type, but '
    +                        f'got {type(obj_type)}')
    +    if default_args is not None:
    +        for name, value in default_args.items():
    +            args.setdefault(name, value)
    +    return obj_type(**args)
    +
    +
    +def set_random_seed(seed: int,
    +                    deterministic: bool = False,
    +                    use_rank_shift: bool = False) -> None:
    +    """Set random seed.
    +
    +    Args:
    +        seed (int): Seed to be used.
    +        deterministic (bool): Whether to set the deterministic option for
    +            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
    +            to True and `torch.backends.cudnn.benchmark` to False.
    +            Default: False.
    +        rank_shift (bool): Whether to add rank number to the random seed to
    +            have different random seed in different threads. Default: False.
    +    """
    +    if use_rank_shift:
    +        rank, _ = mmcv.runner.get_dist_info()
    +        seed += rank
    +    random.seed(seed)
    +    np.random.seed(seed)
    +    torch.manual_seed(seed)
    +    torch.cuda.manual_seed(seed)
    +    torch.cuda.manual_seed_all(seed)
    +    os.environ['PYTHONHASHSEED'] = str(seed)
    +    if deterministic:
    +        torch.backends.cudnn.deterministic = True
    +        torch.backends.cudnn.benchmark = False
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/__init__.py
    new file mode 100644
    index 000000000..d86ddbf4b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/__init__.py
    @@ -0,0 +1,30 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# flake8: noqa
    +from .init_plugins import is_tensorrt_plugin_loaded, load_tensorrt_plugin
    +from .preprocess import preprocess_onnx
    +
    +
    +def is_tensorrt_available():
    +    try:
    +        import tensorrt
    +        del tensorrt
    +        return True
    +    except ModuleNotFoundError:
    +        return False
    +
    +
    +__all__ = []
    +
    +if is_tensorrt_available():
    +    from .tensorrt_utils import (TRTWraper, TRTWrapper, load_trt_engine,
    +                                 onnx2trt, save_trt_engine)
    +
    +    # load tensorrt plugin lib
    +    load_tensorrt_plugin()
    +
    +    __all__.extend([
    +        'onnx2trt', 'save_trt_engine', 'load_trt_engine', 'TRTWraper',
    +        'TRTWrapper'
    +    ])
    +
    +__all__.extend(['is_tensorrt_plugin_loaded', 'preprocess_onnx'])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/init_plugins.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/init_plugins.py
    new file mode 100644
    index 000000000..909b9ae28
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/init_plugins.py
    @@ -0,0 +1,76 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import ctypes
    +import glob
    +import os
    +import warnings
    +
    +
    +def get_tensorrt_op_path() -> str:
    +    """Get TensorRT plugins library path."""
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    wildcard = os.path.join(
    +        os.path.abspath(os.path.dirname(os.path.dirname(__file__))),
    +        '_ext_trt.*.so')
    +
    +    paths = glob.glob(wildcard)
    +    lib_path = paths[0] if len(paths) > 0 else ''
    +    return lib_path
    +
    +
    +plugin_is_loaded = False
    +
    +
    +def is_tensorrt_plugin_loaded() -> bool:
    +    """Check if TensorRT plugins library is loaded or not.
    +
    +    Returns:
    +        bool: plugin_is_loaded flag
    +    """
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    global plugin_is_loaded
    +    return plugin_is_loaded
    +
    +
    +def load_tensorrt_plugin() -> None:
    +    """load TensorRT plugins library."""
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    global plugin_is_loaded
    +    lib_path = get_tensorrt_op_path()
    +    if (not plugin_is_loaded) and os.path.exists(lib_path):
    +        ctypes.CDLL(lib_path)
    +        plugin_is_loaded = True
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/preprocess.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/preprocess.py
    new file mode 100644
    index 000000000..a0ad25428
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/preprocess.py
    @@ -0,0 +1,136 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +
    +import numpy as np
    +import onnx
    +
    +
    +def preprocess_onnx(onnx_model: onnx.ModelProto) -> onnx.ModelProto:
    +    """Modify onnx model to match with TensorRT plugins in mmcv.
    +
    +    There are some conflict between onnx node definition and TensorRT limit.
    +    This function perform preprocess on the onnx model to solve the conflicts.
    +    For example, onnx `attribute` is loaded in TensorRT on host and onnx
    +    `input` is loaded on device. The shape inference is performed on host, so
    +    any `input` related to shape (such as `max_output_boxes_per_class` in
    +    NonMaxSuppression) should be transformed to `attribute` before conversion.
    +
    +    Arguments:
    +        onnx_model (onnx.ModelProto): Input onnx model.
    +
    +    Returns:
    +        onnx.ModelProto: Modified onnx model.
    +    """
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    graph = onnx_model.graph
    +    nodes = graph.node
    +    initializers = graph.initializer
    +    node_dict = {}
    +    for node in nodes:
    +        node_outputs = node.output
    +        for output in node_outputs:
    +            if len(output) > 0:
    +                node_dict[output] = node
    +
    +    init_dict = {_.name: _ for _ in initializers}
    +
    +    nodes_name_to_remove = set()
    +
    +    def is_node_without_output(name):
    +        for node_name, node in node_dict.items():
    +            if node_name not in nodes_name_to_remove:
    +                if name in node.input:
    +                    return False
    +        return True
    +
    +    def mark_nodes_to_remove(name):
    +        node = node_dict[name]
    +        nodes_name_to_remove.add(name)
    +        for input_node_name in node.input:
    +            if is_node_without_output(input_node_name):
    +                mark_nodes_to_remove(input_node_name)
    +
    +    def parse_data(name, typ, default_value=0):
    +        if name in node_dict:
    +            node = node_dict[name]
    +            if node.op_type == 'Constant':
    +                raw_data = node.attribute[0].t.raw_data
    +            else:
    +                mark_nodes_to_remove(name)
    +                return default_value
    +        elif name in init_dict:
    +            raw_data = init_dict[name].raw_data
    +        else:
    +            raise ValueError(f'{name} not found in node or initilizer.')
    +        return np.frombuffer(raw_data, typ).item()
    +
    +    nrof_node = len(nodes)
    +    for idx in range(nrof_node):
    +        node = nodes[idx]
    +        node_attributes = node.attribute
    +        node_inputs = node.input
    +        node_outputs = node.output
    +        node_name = node.name
    +        # process NonMaxSuppression node
    +        if node.op_type == 'NonMaxSuppression':
    +            center_point_box = 0
    +            max_output_boxes_per_class = 1000000
    +            iou_threshold = 0.3
    +            score_threshold = 0.0
    +            offset = 0
    +            for attribute in node_attributes:
    +                if attribute.name == 'center_point_box':
    +                    center_point_box = attribute.i
    +                elif attribute.name == 'offset':
    +                    offset = attribute.i
    +
    +            if len(node_inputs) >= 3:
    +                max_output_boxes_per_class = parse_data(
    +                    node_inputs[2], np.int64, max_output_boxes_per_class)
    +                mark_nodes_to_remove(node_inputs[2])
    +
    +            if len(node_inputs) >= 4:
    +                iou_threshold = parse_data(node_inputs[3], np.float32,
    +                                           iou_threshold)
    +                mark_nodes_to_remove(node_inputs[3])
    +
    +            if len(node_inputs) >= 5:
    +                score_threshold = parse_data(node_inputs[4], np.float32)
    +                mark_nodes_to_remove(node_inputs[4])
    +
    +            new_node = onnx.helper.make_node(
    +                'NonMaxSuppression',
    +                node_inputs[:2],
    +                node_outputs,
    +                name=node_name,
    +                center_point_box=center_point_box,
    +                max_output_boxes_per_class=max_output_boxes_per_class,
    +                iou_threshold=iou_threshold,
    +                score_threshold=score_threshold,
    +                offset=offset)
    +
    +            for output in node_outputs:
    +                if output in node_dict:
    +                    node_dict[output] = new_node
    +            nodes.insert(idx, new_node)
    +            nodes.remove(node)
    +        elif node.op_type == 'InstanceNormalization':
    +            # directly change op name
    +            node.op_type = 'MMCVInstanceNormalization'
    +
    +    for node_name in nodes_name_to_remove:
    +        nodes.remove(node_dict[node_name])
    +
    +    return onnx_model
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/tensorrt_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/tensorrt_utils.py
    new file mode 100644
    index 000000000..b415abcd7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/tensorrt/tensorrt_utils.py
    @@ -0,0 +1,291 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Union
    +
    +import onnx
    +import tensorrt as trt
    +import torch
    +
    +from .preprocess import preprocess_onnx
    +
    +
    +def onnx2trt(onnx_model: Union[str, onnx.ModelProto],
    +             opt_shape_dict: dict,
    +             log_level: trt.ILogger.Severity = trt.Logger.ERROR,
    +             fp16_mode: bool = False,
    +             max_workspace_size: int = 0,
    +             device_id: int = 0) -> trt.ICudaEngine:
    +    """Convert onnx model to tensorrt engine.
    +
    +    Arguments:
    +        onnx_model (str or onnx.ModelProto): the onnx model to convert from
    +        opt_shape_dict (dict): the min/opt/max shape of each input
    +        log_level (TensorRT log level): the log level of TensorRT
    +        fp16_mode (bool): enable fp16 mode
    +        max_workspace_size (int): set max workspace size of TensorRT engine.
    +            some tactic and layers need large workspace.
    +        device_id (int): choice the device to create engine.
    +
    +    Returns:
    +        tensorrt.ICudaEngine: the TensorRT engine created from onnx_model
    +
    +    Example:
    +        >>> engine = onnx2trt(
    +        >>>             "onnx_model.onnx",
    +        >>>             {'input': [[1, 3, 160, 160],
    +        >>>                        [1, 3, 320, 320],
    +        >>>                        [1, 3, 640, 640]]},
    +        >>>             log_level=trt.Logger.WARNING,
    +        >>>             fp16_mode=True,
    +        >>>             max_workspace_size=1 << 30,
    +        >>>             device_id=0)
    +        >>>             })
    +    """
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    device = torch.device(f'cuda:{device_id}')
    +    # create builder and network
    +    logger = trt.Logger(log_level)
    +    builder = trt.Builder(logger)
    +    EXPLICIT_BATCH = 1 << (int)(
    +        trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    +    network = builder.create_network(EXPLICIT_BATCH)
    +
    +    # parse onnx
    +    parser = trt.OnnxParser(network, logger)
    +
    +    if isinstance(onnx_model, str):
    +        onnx_model = onnx.load(onnx_model)
    +
    +    onnx_model = preprocess_onnx(onnx_model)
    +
    +    if not parser.parse(onnx_model.SerializeToString()):
    +        error_msgs = ''
    +        for error in range(parser.num_errors):
    +            error_msgs += f'{parser.get_error(error)}\n'
    +        raise RuntimeError(f'parse onnx failed:\n{error_msgs}')
    +
    +    # config builder
    +    builder.max_workspace_size = max_workspace_size
    +
    +    config = builder.create_builder_config()
    +    config.max_workspace_size = max_workspace_size
    +    profile = builder.create_optimization_profile()
    +
    +    for input_name, param in opt_shape_dict.items():
    +        min_shape = tuple(param[0][:])
    +        opt_shape = tuple(param[1][:])
    +        max_shape = tuple(param[2][:])
    +        profile.set_shape(input_name, min_shape, opt_shape, max_shape)
    +    config.add_optimization_profile(profile)
    +
    +    if fp16_mode:
    +        builder.fp16_mode = fp16_mode
    +        config.set_flag(trt.BuilderFlag.FP16)
    +
    +    # create engine
    +    with torch.cuda.device(device):
    +        engine = builder.build_engine(network, config)
    +
    +    return engine
    +
    +
    +def save_trt_engine(engine: trt.ICudaEngine, path: str) -> None:
    +    """Serialize TensorRT engine to disk.
    +
    +    Arguments:
    +        engine (tensorrt.ICudaEngine): TensorRT engine to serialize
    +        path (str): disk path to write the engine
    +    """
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    with open(path, mode='wb') as f:
    +        f.write(bytearray(engine.serialize()))
    +
    +
    +def load_trt_engine(path: str) -> trt.ICudaEngine:
    +    """Deserialize TensorRT engine from disk.
    +
    +    Arguments:
    +        path (str): disk path to read the engine
    +
    +    Returns:
    +        tensorrt.ICudaEngine: the TensorRT engine loaded from disk
    +    """
    +
    +    # Following strings of text style are from colorama package
    +    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +    white_background = '\x1b[107m'
    +
    +    msg = white_background + bright_style + red_text
    +    msg += 'DeprecationWarning: This function will be deprecated in future. '
    +    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    +    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +    msg += reset_style
    +    warnings.warn(msg)
    +
    +    with trt.Logger() as logger, trt.Runtime(logger) as runtime:
    +        with open(path, mode='rb') as f:
    +            engine_bytes = f.read()
    +        engine = runtime.deserialize_cuda_engine(engine_bytes)
    +        return engine
    +
    +
    +def torch_dtype_from_trt(dtype: trt.DataType) -> Union[torch.dtype, TypeError]:
    +    """Convert pytorch dtype to TensorRT dtype."""
    +    if dtype == trt.bool:
    +        return torch.bool
    +    elif dtype == trt.int8:
    +        return torch.int8
    +    elif dtype == trt.int32:
    +        return torch.int32
    +    elif dtype == trt.float16:
    +        return torch.float16
    +    elif dtype == trt.float32:
    +        return torch.float32
    +    else:
    +        raise TypeError('%s is not supported by torch' % dtype)
    +
    +
    +def torch_device_from_trt(
    +        device: trt.TensorLocation) -> Union[torch.device, TypeError]:
    +    """Convert pytorch device to TensorRT device."""
    +    if device == trt.TensorLocation.DEVICE:
    +        return torch.device('cuda')
    +    elif device == trt.TensorLocation.HOST:
    +        return torch.device('cpu')
    +    else:
    +        return TypeError('%s is not supported by torch' % device)
    +
    +
    +class TRTWrapper(torch.nn.Module):
    +    """TensorRT engine Wrapper.
    +
    +    Arguments:
    +        engine (tensorrt.ICudaEngine): TensorRT engine to wrap
    +        input_names (list[str]): names of each inputs
    +        output_names (list[str]): names of each outputs
    +
    +    Note:
    +        If the engine is converted from onnx model. The input_names and
    +        output_names should be the same as onnx model.
    +    """
    +
    +    def __init__(self, engine, input_names=None, output_names=None):
    +
    +        # Following strings of text style are from colorama package
    +        bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +        red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +        white_background = '\x1b[107m'
    +
    +        msg = white_background + bright_style + red_text
    +        msg += 'DeprecationWarning: This tool will be deprecated in future. '
    +        msg += blue_text + \
    +            'Welcome to use the unified model deployment toolbox '
    +        msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +        msg += reset_style
    +        warnings.warn(msg)
    +
    +        super().__init__()
    +        self.engine = engine
    +        if isinstance(self.engine, str):
    +            self.engine = load_trt_engine(engine)
    +
    +        if not isinstance(self.engine, trt.ICudaEngine):
    +            raise TypeError('engine should be str or trt.ICudaEngine')
    +
    +        self._register_state_dict_hook(TRTWrapper._on_state_dict)
    +        self.context = self.engine.create_execution_context()
    +
    +        # get input and output names from engine
    +        if input_names is None or output_names is None:
    +            names = [_ for _ in self.engine]
    +            input_names = list(filter(self.engine.binding_is_input, names))
    +            output_names = list(set(names) - set(input_names))
    +        self.input_names = input_names
    +        self.output_names = output_names
    +
    +    def _on_state_dict(self, state_dict, prefix, local_metadata):
    +        state_dict[prefix + 'engine'] = bytearray(self.engine.serialize())
    +        state_dict[prefix + 'input_names'] = self.input_names
    +        state_dict[prefix + 'output_names'] = self.output_names
    +
    +    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
    +                              missing_keys, unexpected_keys, error_msgs):
    +        engine_bytes = state_dict[prefix + 'engine']
    +
    +        with trt.Logger() as logger, trt.Runtime(logger) as runtime:
    +            self.engine = runtime.deserialize_cuda_engine(engine_bytes)
    +            self.context = self.engine.create_execution_context()
    +
    +        self.input_names = state_dict[prefix + 'input_names']
    +        self.output_names = state_dict[prefix + 'output_names']
    +
    +    def forward(self, inputs):
    +        """
    +        Arguments:
    +            inputs (dict): dict of input name-tensors pair
    +
    +        Return:
    +            dict: dict of output name-tensors pair
    +        """
    +        assert self.input_names is not None
    +        assert self.output_names is not None
    +        bindings = [None] * (len(self.input_names) + len(self.output_names))
    +
    +        for input_name, input_tensor in inputs.items():
    +            idx = self.engine.get_binding_index(input_name)
    +
    +            if input_tensor.dtype == torch.long:
    +                input_tensor = input_tensor.int()
    +            self.context.set_binding_shape(idx, tuple(input_tensor.shape))
    +            bindings[idx] = input_tensor.contiguous().data_ptr()
    +
    +        # create output tensors
    +        outputs = {}
    +        for i, output_name in enumerate(self.output_names):
    +            idx = self.engine.get_binding_index(output_name)
    +            dtype = torch_dtype_from_trt(self.engine.get_binding_dtype(idx))
    +            shape = tuple(self.context.get_binding_shape(idx))
    +
    +            device = torch_device_from_trt(self.engine.get_location(idx))
    +            output = torch.empty(size=shape, dtype=dtype, device=device)
    +            outputs[output_name] = output
    +            bindings[idx] = output.data_ptr()
    +
    +        self.context.execute_async_v2(bindings,
    +                                      torch.cuda.current_stream().cuda_stream)
    +
    +        return outputs
    +
    +
    +class TRTWraper(TRTWrapper):
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +        warnings.warn(
    +            'TRTWraper will be deprecated in'
    +            ' future. Please use TRTWrapper instead', DeprecationWarning)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/__init__.py
    new file mode 100644
    index 000000000..6dbdc2e1a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/__init__.py
    @@ -0,0 +1,81 @@
    +# flake8: noqa
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .config import Config, ConfigDict, DictAction
    +from .misc import (check_prerequisites, concat_list, deprecated_api_warning,
    +                   has_method, import_modules_from_strings, is_list_of,
    +                   is_method_overridden, is_seq_of, is_str, is_tuple_of,
    +                   iter_cast, list_cast, requires_executable, requires_package,
    +                   slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple,
    +                   to_ntuple, tuple_cast)
    +from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist,
    +                   scandir, symlink)
    +from .progressbar import (ProgressBar, track_iter_progress,
    +                          track_parallel_progress, track_progress)
    +from .testing import (assert_attrs_equal, assert_dict_contains_subset,
    +                      assert_dict_has_keys, assert_is_norm_layer,
    +                      assert_keys_equal, assert_params_all_zeros,
    +                      check_python_script)
    +from .timer import Timer, TimerError, check_time
    +from .version_utils import digit_version, get_git_hash
    +
    +try:
    +    import torch
    +except ImportError:
    +    __all__ = [
    +        'Config', 'ConfigDict', 'DictAction', 'is_str', 'iter_cast',
    +        'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of',
    +        'slice_list', 'concat_list', 'check_prerequisites', 'requires_package',
    +        'requires_executable', 'is_filepath', 'fopen', 'check_file_exist',
    +        'mkdir_or_exist', 'symlink', 'scandir', 'ProgressBar',
    +        'track_progress', 'track_iter_progress', 'track_parallel_progress',
    +        'Timer', 'TimerError', 'check_time', 'deprecated_api_warning',
    +        'digit_version', 'get_git_hash', 'import_modules_from_strings',
    +        'assert_dict_contains_subset', 'assert_attrs_equal',
    +        'assert_dict_has_keys', 'assert_keys_equal', 'check_python_script',
    +        'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple',
    +        'is_method_overridden', 'has_method'
    +    ]
    +else:
    +    from .device_type import (IS_IPU_AVAILABLE, IS_MLU_AVAILABLE,
    +                              IS_MPS_AVAILABLE, IS_NPU_AVAILABLE)
    +    from .env import collect_env
    +    from .hub import load_url
    +    from .logging import get_logger, print_log
    +    from .parrots_jit import jit, skip_no_elena
    +    # yapf: disable
    +    from .parrots_wrapper import (IS_CUDA_AVAILABLE, TORCH_VERSION,
    +                                  BuildExtension, CppExtension, CUDAExtension,
    +                                  DataLoader, PoolDataLoader, SyncBatchNorm,
    +                                  _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd,
    +                                  _AvgPoolNd, _BatchNorm, _ConvNd,
    +                                  _ConvTransposeMixin, _get_cuda_home,
    +                                  _InstanceNorm, _MaxPoolNd, get_build_config,
    +                                  is_rocm_pytorch)
    +    # yapf: enable
    +    from .registry import Registry, build_from_cfg
    +    from .seed import worker_init_fn
    +    from .torch_ops import torch_meshgrid
    +    from .trace import is_jit_tracing
    +    __all__ = [
    +        'Config', 'ConfigDict', 'DictAction', 'collect_env', 'get_logger',
    +        'print_log', 'is_str', 'iter_cast', 'list_cast', 'tuple_cast',
    +        'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list',
    +        'check_prerequisites', 'requires_package', 'requires_executable',
    +        'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist',
    +        'symlink', 'scandir', 'ProgressBar', 'track_progress',
    +        'track_iter_progress', 'track_parallel_progress', 'Registry',
    +        'build_from_cfg', 'Timer', 'TimerError', 'check_time', 'SyncBatchNorm',
    +        '_AdaptiveAvgPoolNd', '_AdaptiveMaxPoolNd', '_AvgPoolNd', '_BatchNorm',
    +        '_ConvNd', '_ConvTransposeMixin', '_InstanceNorm', '_MaxPoolNd',
    +        'get_build_config', 'BuildExtension', 'CppExtension', 'CUDAExtension',
    +        'DataLoader', 'PoolDataLoader', 'TORCH_VERSION',
    +        'deprecated_api_warning', 'digit_version', 'get_git_hash',
    +        'import_modules_from_strings', 'jit', 'skip_no_elena',
    +        'assert_dict_contains_subset', 'assert_attrs_equal',
    +        'assert_dict_has_keys', 'assert_keys_equal', 'assert_is_norm_layer',
    +        'assert_params_all_zeros', 'check_python_script',
    +        'is_method_overridden', 'is_jit_tracing', 'is_rocm_pytorch',
    +        '_get_cuda_home', 'load_url', 'has_method', 'IS_CUDA_AVAILABLE',
    +        'worker_init_fn', 'IS_MLU_AVAILABLE', 'IS_IPU_AVAILABLE',
    +        'IS_MPS_AVAILABLE', 'IS_NPU_AVAILABLE', 'torch_meshgrid'
    +    ]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/config.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/config.py
    new file mode 100644
    index 000000000..a76bc4872
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/config.py
    @@ -0,0 +1,741 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import ast
    +import copy
    +import os
    +import os.path as osp
    +import platform
    +import shutil
    +import sys
    +import tempfile
    +import types
    +import uuid
    +import warnings
    +from argparse import Action, ArgumentParser
    +from collections import abc
    +from importlib import import_module
    +from pathlib import Path
    +
    +from addict import Dict
    +from yapf.yapflib.yapf_api import FormatCode
    +
    +from .misc import import_modules_from_strings
    +from .path import check_file_exist
    +
    +if platform.system() == 'Windows':
    +    import regex as re  # type: ignore
    +else:
    +    import re  # type: ignore
    +
    +BASE_KEY = '_base_'
    +DELETE_KEY = '_delete_'
    +DEPRECATION_KEY = '_deprecation_'
    +RESERVED_KEYS = ['filename', 'text', 'pretty_text']
    +
    +
    +class ConfigDict(Dict):
    +
    +    def __missing__(self, name):
    +        raise KeyError(name)
    +
    +    def __getattr__(self, name):
    +        try:
    +            value = super().__getattr__(name)
    +        except KeyError:
    +            ex = AttributeError(f"'{self.__class__.__name__}' object has no "
    +                                f"attribute '{name}'")
    +        except Exception as e:
    +            ex = e
    +        else:
    +            return value
    +        raise ex
    +
    +
    +def add_args(parser, cfg, prefix=''):
    +    for k, v in cfg.items():
    +        if isinstance(v, str):
    +            parser.add_argument('--' + prefix + k)
    +        elif isinstance(v, int):
    +            parser.add_argument('--' + prefix + k, type=int)
    +        elif isinstance(v, float):
    +            parser.add_argument('--' + prefix + k, type=float)
    +        elif isinstance(v, bool):
    +            parser.add_argument('--' + prefix + k, action='store_true')
    +        elif isinstance(v, dict):
    +            add_args(parser, v, prefix + k + '.')
    +        elif isinstance(v, abc.Iterable):
    +            parser.add_argument('--' + prefix + k, type=type(v[0]), nargs='+')
    +        else:
    +            print(f'cannot parse key {prefix + k} of type {type(v)}')
    +    return parser
    +
    +
    +class Config:
    +    """A facility for config and config files.
    +
    +    It supports common file formats as configs: python/json/yaml. The interface
    +    is the same as a dict object and also allows access config values as
    +    attributes.
    +
    +    Example:
    +        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
    +        >>> cfg.a
    +        1
    +        >>> cfg.b
    +        {'b1': [0, 1]}
    +        >>> cfg.b.b1
    +        [0, 1]
    +        >>> cfg = Config.fromfile('tests/data/config/a.py')
    +        >>> cfg.filename
    +        "/home/kchen/projects/mmcv/tests/data/config/a.py"
    +        >>> cfg.item4
    +        'test'
    +        >>> cfg
    +        "Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
    +        "{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
    +    """
    +
    +    @staticmethod
    +    def _validate_py_syntax(filename):
    +        with open(filename, encoding='utf-8') as f:
    +            # Setting encoding explicitly to resolve coding issue on windows
    +            content = f.read()
    +        try:
    +            ast.parse(content)
    +        except SyntaxError as e:
    +            raise SyntaxError('There are syntax errors in config '
    +                              f'file {filename}: {e}')
    +
    +    @staticmethod
    +    def _substitute_predefined_vars(filename, temp_config_name):
    +        file_dirname = osp.dirname(filename)
    +        file_basename = osp.basename(filename)
    +        file_basename_no_extension = osp.splitext(file_basename)[0]
    +        file_extname = osp.splitext(filename)[1]
    +        support_templates = dict(
    +            fileDirname=file_dirname,
    +            fileBasename=file_basename,
    +            fileBasenameNoExtension=file_basename_no_extension,
    +            fileExtname=file_extname)
    +        with open(filename, encoding='utf-8') as f:
    +            # Setting encoding explicitly to resolve coding issue on windows
    +            config_file = f.read()
    +        for key, value in support_templates.items():
    +            regexp = r'\{\{\s*' + str(key) + r'\s*\}\}'
    +            value = value.replace('\\', '/')
    +            config_file = re.sub(regexp, value, config_file)
    +        with open(temp_config_name, 'w', encoding='utf-8') as tmp_config_file:
    +            tmp_config_file.write(config_file)
    +
    +    @staticmethod
    +    def _pre_substitute_base_vars(filename, temp_config_name):
    +        """Substitute base variable placehoders to string, so that parsing
    +        would work."""
    +        with open(filename, encoding='utf-8') as f:
    +            # Setting encoding explicitly to resolve coding issue on windows
    +            config_file = f.read()
    +        base_var_dict = {}
    +        regexp = r'\{\{\s*' + BASE_KEY + r'\.([\w\.]+)\s*\}\}'
    +        base_vars = set(re.findall(regexp, config_file))
    +        for base_var in base_vars:
    +            randstr = f'_{base_var}_{uuid.uuid4().hex.lower()[:6]}'
    +            base_var_dict[randstr] = base_var
    +            regexp = r'\{\{\s*' + BASE_KEY + r'\.' + base_var + r'\s*\}\}'
    +            config_file = re.sub(regexp, f'"{randstr}"', config_file)
    +        with open(temp_config_name, 'w', encoding='utf-8') as tmp_config_file:
    +            tmp_config_file.write(config_file)
    +        return base_var_dict
    +
    +    @staticmethod
    +    def _substitute_base_vars(cfg, base_var_dict, base_cfg):
    +        """Substitute variable strings to their actual values."""
    +        cfg = copy.deepcopy(cfg)
    +
    +        if isinstance(cfg, dict):
    +            for k, v in cfg.items():
    +                if isinstance(v, str) and v in base_var_dict:
    +                    new_v = base_cfg
    +                    for new_k in base_var_dict[v].split('.'):
    +                        new_v = new_v[new_k]
    +                    cfg[k] = new_v
    +                elif isinstance(v, (list, tuple, dict)):
    +                    cfg[k] = Config._substitute_base_vars(
    +                        v, base_var_dict, base_cfg)
    +        elif isinstance(cfg, tuple):
    +            cfg = tuple(
    +                Config._substitute_base_vars(c, base_var_dict, base_cfg)
    +                for c in cfg)
    +        elif isinstance(cfg, list):
    +            cfg = [
    +                Config._substitute_base_vars(c, base_var_dict, base_cfg)
    +                for c in cfg
    +            ]
    +        elif isinstance(cfg, str) and cfg in base_var_dict:
    +            new_v = base_cfg
    +            for new_k in base_var_dict[cfg].split('.'):
    +                new_v = new_v[new_k]
    +            cfg = new_v
    +
    +        return cfg
    +
    +    @staticmethod
    +    def _file2dict(filename, use_predefined_variables=True):
    +        filename = osp.abspath(osp.expanduser(filename))
    +        check_file_exist(filename)
    +        fileExtname = osp.splitext(filename)[1]
    +        if fileExtname not in ['.py', '.json', '.yaml', '.yml']:
    +            raise OSError('Only py/yml/yaml/json type are supported now!')
    +
    +        with tempfile.TemporaryDirectory() as temp_config_dir:
    +            temp_config_file = tempfile.NamedTemporaryFile(
    +                dir=temp_config_dir, suffix=fileExtname)
    +            if platform.system() == 'Windows':
    +                temp_config_file.close()
    +            temp_config_name = osp.basename(temp_config_file.name)
    +            # Substitute predefined variables
    +            if use_predefined_variables:
    +                Config._substitute_predefined_vars(filename,
    +                                                   temp_config_file.name)
    +            else:
    +                shutil.copyfile(filename, temp_config_file.name)
    +            # Substitute base variables from placeholders to strings
    +            base_var_dict = Config._pre_substitute_base_vars(
    +                temp_config_file.name, temp_config_file.name)
    +
    +            if filename.endswith('.py'):
    +                temp_module_name = osp.splitext(temp_config_name)[0]
    +                sys.path.insert(0, temp_config_dir)
    +                Config._validate_py_syntax(filename)
    +                mod = import_module(temp_module_name)
    +                sys.path.pop(0)
    +                cfg_dict = {
    +                    name: value
    +                    for name, value in mod.__dict__.items()
    +                    if not name.startswith('__')
    +                    and not isinstance(value, types.ModuleType)
    +                    and not isinstance(value, types.FunctionType)
    +                }
    +                # delete imported module
    +                del sys.modules[temp_module_name]
    +            elif filename.endswith(('.yml', '.yaml', '.json')):
    +                import mmcv
    +                cfg_dict = mmcv.load(temp_config_file.name)
    +            # close temp file
    +            temp_config_file.close()
    +
    +        # check deprecation information
    +        if DEPRECATION_KEY in cfg_dict:
    +            deprecation_info = cfg_dict.pop(DEPRECATION_KEY)
    +            warning_msg = f'The config file {filename} will be deprecated ' \
    +                'in the future.'
    +            if 'expected' in deprecation_info:
    +                warning_msg += f' Please use {deprecation_info["expected"]} ' \
    +                    'instead.'
    +            if 'reference' in deprecation_info:
    +                warning_msg += ' More information can be found at ' \
    +                    f'{deprecation_info["reference"]}'
    +            warnings.warn(warning_msg, DeprecationWarning)
    +
    +        cfg_text = filename + '\n'
    +        with open(filename, encoding='utf-8') as f:
    +            # Setting encoding explicitly to resolve coding issue on windows
    +            cfg_text += f.read()
    +
    +        if BASE_KEY in cfg_dict:
    +            cfg_dir = osp.dirname(filename)
    +            base_filename = cfg_dict.pop(BASE_KEY)
    +            base_filename = base_filename if isinstance(
    +                base_filename, list) else [base_filename]
    +
    +            cfg_dict_list = list()
    +            cfg_text_list = list()
    +            for f in base_filename:
    +                _cfg_dict, _cfg_text = Config._file2dict(osp.join(cfg_dir, f))
    +                cfg_dict_list.append(_cfg_dict)
    +                cfg_text_list.append(_cfg_text)
    +
    +            base_cfg_dict = dict()
    +            for c in cfg_dict_list:
    +                duplicate_keys = base_cfg_dict.keys() & c.keys()
    +                if len(duplicate_keys) > 0:
    +                    raise KeyError('Duplicate key is not allowed among bases. '
    +                                   f'Duplicate keys: {duplicate_keys}')
    +                base_cfg_dict.update(c)
    +
    +            # Substitute base variables from strings to their actual values
    +            cfg_dict = Config._substitute_base_vars(cfg_dict, base_var_dict,
    +                                                    base_cfg_dict)
    +
    +            base_cfg_dict = Config._merge_a_into_b(cfg_dict, base_cfg_dict)
    +            cfg_dict = base_cfg_dict
    +
    +            # merge cfg_text
    +            cfg_text_list.append(cfg_text)
    +            cfg_text = '\n'.join(cfg_text_list)
    +
    +        return cfg_dict, cfg_text
    +
    +    @staticmethod
    +    def _merge_a_into_b(a, b, allow_list_keys=False):
    +        """merge dict ``a`` into dict ``b`` (non-inplace).
    +
    +        Values in ``a`` will overwrite ``b``. ``b`` is copied first to avoid
    +        in-place modifications.
    +
    +        Args:
    +            a (dict): The source dict to be merged into ``b``.
    +            b (dict): The origin dict to be fetch keys from ``a``.
    +            allow_list_keys (bool): If True, int string keys (e.g. '0', '1')
    +              are allowed in source ``a`` and will replace the element of the
    +              corresponding index in b if b is a list. Default: False.
    +
    +        Returns:
    +            dict: The modified dict of ``b`` using ``a``.
    +
    +        Examples:
    +            # Normally merge a into b.
    +            >>> Config._merge_a_into_b(
    +            ...     dict(obj=dict(a=2)), dict(obj=dict(a=1)))
    +            {'obj': {'a': 2}}
    +
    +            # Delete b first and merge a into b.
    +            >>> Config._merge_a_into_b(
    +            ...     dict(obj=dict(_delete_=True, a=2)), dict(obj=dict(a=1)))
    +            {'obj': {'a': 2}}
    +
    +            # b is a list
    +            >>> Config._merge_a_into_b(
    +            ...     {'0': dict(a=2)}, [dict(a=1), dict(b=2)], True)
    +            [{'a': 2}, {'b': 2}]
    +        """
    +        b = b.copy()
    +        for k, v in a.items():
    +            if allow_list_keys and k.isdigit() and isinstance(b, list):
    +                k = int(k)
    +                if len(b) <= k:
    +                    raise KeyError(f'Index {k} exceeds the length of list {b}')
    +                b[k] = Config._merge_a_into_b(v, b[k], allow_list_keys)
    +            elif isinstance(v, dict):
    +                if k in b and not v.pop(DELETE_KEY, False):
    +                    allowed_types = (dict, list) if allow_list_keys else dict
    +                    if not isinstance(b[k], allowed_types):
    +                        raise TypeError(
    +                            f'{k}={v} in child config cannot inherit from '
    +                            f'base because {k} is a dict in the child config '
    +                            f'but is of type {type(b[k])} in base config. '
    +                            f'You may set `{DELETE_KEY}=True` to ignore the '
    +                            f'base config.')
    +                    b[k] = Config._merge_a_into_b(v, b[k], allow_list_keys)
    +                else:
    +                    b[k] = ConfigDict(v)
    +            else:
    +                b[k] = v
    +        return b
    +
    +    @staticmethod
    +    def fromfile(filename,
    +                 use_predefined_variables=True,
    +                 import_custom_modules=True):
    +        if isinstance(filename, Path):
    +            filename = str(filename)
    +        cfg_dict, cfg_text = Config._file2dict(filename,
    +                                               use_predefined_variables)
    +        if import_custom_modules and cfg_dict.get('custom_imports', None):
    +            import_modules_from_strings(**cfg_dict['custom_imports'])
    +        return Config(cfg_dict, cfg_text=cfg_text, filename=filename)
    +
    +    @staticmethod
    +    def fromstring(cfg_str, file_format):
    +        """Generate config from config str.
    +
    +        Args:
    +            cfg_str (str): Config str.
    +            file_format (str): Config file format corresponding to the
    +               config str. Only py/yml/yaml/json type are supported now!
    +
    +        Returns:
    +            :obj:`Config`: Config obj.
    +        """
    +        if file_format not in ['.py', '.json', '.yaml', '.yml']:
    +            raise OSError('Only py/yml/yaml/json type are supported now!')
    +        if file_format != '.py' and 'dict(' in cfg_str:
    +            # check if users specify a wrong suffix for python
    +            warnings.warn(
    +                'Please check "file_format", the file format may be .py')
    +        with tempfile.NamedTemporaryFile(
    +                'w', encoding='utf-8', suffix=file_format,
    +                delete=False) as temp_file:
    +            temp_file.write(cfg_str)
    +            # on windows, previous implementation cause error
    +            # see PR 1077 for details
    +        cfg = Config.fromfile(temp_file.name)
    +        os.remove(temp_file.name)
    +        return cfg
    +
    +    @staticmethod
    +    def auto_argparser(description=None):
    +        """Generate argparser from config file automatically (experimental)"""
    +        partial_parser = ArgumentParser(description=description)
    +        partial_parser.add_argument('config', help='config file path')
    +        cfg_file = partial_parser.parse_known_args()[0].config
    +        cfg = Config.fromfile(cfg_file)
    +        parser = ArgumentParser(description=description)
    +        parser.add_argument('config', help='config file path')
    +        add_args(parser, cfg)
    +        return parser, cfg
    +
    +    def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
    +        if cfg_dict is None:
    +            cfg_dict = dict()
    +        elif not isinstance(cfg_dict, dict):
    +            raise TypeError('cfg_dict must be a dict, but '
    +                            f'got {type(cfg_dict)}')
    +        for key in cfg_dict:
    +            if key in RESERVED_KEYS:
    +                raise KeyError(f'{key} is reserved for config file')
    +
    +        if isinstance(filename, Path):
    +            filename = str(filename)
    +
    +        super().__setattr__('_cfg_dict', ConfigDict(cfg_dict))
    +        super().__setattr__('_filename', filename)
    +        if cfg_text:
    +            text = cfg_text
    +        elif filename:
    +            with open(filename) as f:
    +                text = f.read()
    +        else:
    +            text = ''
    +        super().__setattr__('_text', text)
    +
    +    @property
    +    def filename(self):
    +        return self._filename
    +
    +    @property
    +    def text(self):
    +        return self._text
    +
    +    @property
    +    def pretty_text(self):
    +
    +        indent = 4
    +
    +        def _indent(s_, num_spaces):
    +            s = s_.split('\n')
    +            if len(s) == 1:
    +                return s_
    +            first = s.pop(0)
    +            s = [(num_spaces * ' ') + line for line in s]
    +            s = '\n'.join(s)
    +            s = first + '\n' + s
    +            return s
    +
    +        def _format_basic_types(k, v, use_mapping=False):
    +            if isinstance(v, str):
    +                v_str = f"'{v}'"
    +            else:
    +                v_str = str(v)
    +
    +            if use_mapping:
    +                k_str = f"'{k}'" if isinstance(k, str) else str(k)
    +                attr_str = f'{k_str}: {v_str}'
    +            else:
    +                attr_str = f'{str(k)}={v_str}'
    +            attr_str = _indent(attr_str, indent)
    +
    +            return attr_str
    +
    +        def _format_list(k, v, use_mapping=False):
    +            # check if all items in the list are dict
    +            if all(isinstance(_, dict) for _ in v):
    +                v_str = '[\n'
    +                v_str += '\n'.join(
    +                    f'dict({_indent(_format_dict(v_), indent)}),'
    +                    for v_ in v).rstrip(',')
    +                if use_mapping:
    +                    k_str = f"'{k}'" if isinstance(k, str) else str(k)
    +                    attr_str = f'{k_str}: {v_str}'
    +                else:
    +                    attr_str = f'{str(k)}={v_str}'
    +                attr_str = _indent(attr_str, indent) + ']'
    +            else:
    +                attr_str = _format_basic_types(k, v, use_mapping)
    +            return attr_str
    +
    +        def _contain_invalid_identifier(dict_str):
    +            contain_invalid_identifier = False
    +            for key_name in dict_str:
    +                contain_invalid_identifier |= \
    +                    (not str(key_name).isidentifier())
    +            return contain_invalid_identifier
    +
    +        def _format_dict(input_dict, outest_level=False):
    +            r = ''
    +            s = []
    +
    +            use_mapping = _contain_invalid_identifier(input_dict)
    +            if use_mapping:
    +                r += '{'
    +            for idx, (k, v) in enumerate(input_dict.items()):
    +                is_last = idx >= len(input_dict) - 1
    +                end = '' if outest_level or is_last else ','
    +                if isinstance(v, dict):
    +                    v_str = '\n' + _format_dict(v)
    +                    if use_mapping:
    +                        k_str = f"'{k}'" if isinstance(k, str) else str(k)
    +                        attr_str = f'{k_str}: dict({v_str}'
    +                    else:
    +                        attr_str = f'{str(k)}=dict({v_str}'
    +                    attr_str = _indent(attr_str, indent) + ')' + end
    +                elif isinstance(v, list):
    +                    attr_str = _format_list(k, v, use_mapping) + end
    +                else:
    +                    attr_str = _format_basic_types(k, v, use_mapping) + end
    +
    +                s.append(attr_str)
    +            r += '\n'.join(s)
    +            if use_mapping:
    +                r += '}'
    +            return r
    +
    +        cfg_dict = self._cfg_dict.to_dict()
    +        text = _format_dict(cfg_dict, outest_level=True)
    +        # copied from setup.cfg
    +        yapf_style = dict(
    +            based_on_style='pep8',
    +            blank_line_before_nested_class_or_def=True,
    +            split_before_expression_after_opening_paren=True)
    +        text, _ = FormatCode(text, style_config=yapf_style, verify=True)
    +
    +        return text
    +
    +    def __repr__(self):
    +        return f'Config (path: {self.filename}): {self._cfg_dict.__repr__()}'
    +
    +    def __len__(self):
    +        return len(self._cfg_dict)
    +
    +    def __getattr__(self, name):
    +        return getattr(self._cfg_dict, name)
    +
    +    def __getitem__(self, name):
    +        return self._cfg_dict.__getitem__(name)
    +
    +    def __setattr__(self, name, value):
    +        if isinstance(value, dict):
    +            value = ConfigDict(value)
    +        self._cfg_dict.__setattr__(name, value)
    +
    +    def __setitem__(self, name, value):
    +        if isinstance(value, dict):
    +            value = ConfigDict(value)
    +        self._cfg_dict.__setitem__(name, value)
    +
    +    def __iter__(self):
    +        return iter(self._cfg_dict)
    +
    +    def __getstate__(self):
    +        return (self._cfg_dict, self._filename, self._text)
    +
    +    def __copy__(self):
    +        cls = self.__class__
    +        other = cls.__new__(cls)
    +        other.__dict__.update(self.__dict__)
    +
    +        return other
    +
    +    def __deepcopy__(self, memo):
    +        cls = self.__class__
    +        other = cls.__new__(cls)
    +        memo[id(self)] = other
    +
    +        for key, value in self.__dict__.items():
    +            super(Config, other).__setattr__(key, copy.deepcopy(value, memo))
    +
    +        return other
    +
    +    def __setstate__(self, state):
    +        _cfg_dict, _filename, _text = state
    +        super().__setattr__('_cfg_dict', _cfg_dict)
    +        super().__setattr__('_filename', _filename)
    +        super().__setattr__('_text', _text)
    +
    +    def dump(self, file=None):
    +        """Dumps config into a file or returns a string representation of the
    +        config.
    +
    +        If a file argument is given, saves the config to that file using the
    +        format defined by the file argument extension.
    +
    +        Otherwise, returns a string representing the config. The formatting of
    +        this returned string is defined by the extension of `self.filename`. If
    +        `self.filename` is not defined, returns a string representation of a
    +         dict (lowercased and using ' for strings).
    +
    +        Examples:
    +            >>> cfg_dict = dict(item1=[1, 2], item2=dict(a=0),
    +            ...     item3=True, item4='test')
    +            >>> cfg = Config(cfg_dict=cfg_dict)
    +            >>> dump_file = "a.py"
    +            >>> cfg.dump(dump_file)
    +
    +        Args:
    +            file (str, optional): Path of the output file where the config
    +                will be dumped. Defaults to None.
    +        """
    +        import mmcv
    +        cfg_dict = super().__getattribute__('_cfg_dict').to_dict()
    +        if file is None:
    +            if self.filename is None or self.filename.endswith('.py'):
    +                return self.pretty_text
    +            else:
    +                file_format = self.filename.split('.')[-1]
    +                return mmcv.dump(cfg_dict, file_format=file_format)
    +        elif file.endswith('.py'):
    +            with open(file, 'w', encoding='utf-8') as f:
    +                f.write(self.pretty_text)
    +        else:
    +            file_format = file.split('.')[-1]
    +            return mmcv.dump(cfg_dict, file=file, file_format=file_format)
    +
    +    def merge_from_dict(self, options, allow_list_keys=True):
    +        """Merge list into cfg_dict.
    +
    +        Merge the dict parsed by MultipleKVAction into this cfg.
    +
    +        Examples:
    +            >>> options = {'model.backbone.depth': 50,
    +            ...            'model.backbone.with_cp':True}
    +            >>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
    +            >>> cfg.merge_from_dict(options)
    +            >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
    +            >>> assert cfg_dict == dict(
    +            ...     model=dict(backbone=dict(depth=50, with_cp=True)))
    +
    +            >>> # Merge list element
    +            >>> cfg = Config(dict(pipeline=[
    +            ...     dict(type='LoadImage'), dict(type='LoadAnnotations')]))
    +            >>> options = dict(pipeline={'0': dict(type='SelfLoadImage')})
    +            >>> cfg.merge_from_dict(options, allow_list_keys=True)
    +            >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
    +            >>> assert cfg_dict == dict(pipeline=[
    +            ...     dict(type='SelfLoadImage'), dict(type='LoadAnnotations')])
    +
    +        Args:
    +            options (dict): dict of configs to merge from.
    +            allow_list_keys (bool): If True, int string keys (e.g. '0', '1')
    +              are allowed in ``options`` and will replace the element of the
    +              corresponding index in the config if the config is a list.
    +              Default: True.
    +        """
    +        option_cfg_dict = {}
    +        for full_key, v in options.items():
    +            d = option_cfg_dict
    +            key_list = full_key.split('.')
    +            for subkey in key_list[:-1]:
    +                d.setdefault(subkey, ConfigDict())
    +                d = d[subkey]
    +            subkey = key_list[-1]
    +            d[subkey] = v
    +
    +        cfg_dict = super().__getattribute__('_cfg_dict')
    +        super().__setattr__(
    +            '_cfg_dict',
    +            Config._merge_a_into_b(
    +                option_cfg_dict, cfg_dict, allow_list_keys=allow_list_keys))
    +
    +
    +class DictAction(Action):
    +    """
    +    argparse action to split an argument into KEY=VALUE form
    +    on the first = and append to a dictionary. List options can
    +    be passed as comma separated values, i.e 'KEY=V1,V2,V3', or with explicit
    +    brackets, i.e. 'KEY=[V1,V2,V3]'. It also support nested brackets to build
    +    list/tuple values. e.g. 'KEY=[(V1,V2),(V3,V4)]'
    +    """
    +
    +    @staticmethod
    +    def _parse_int_float_bool(val):
    +        try:
    +            return int(val)
    +        except ValueError:
    +            pass
    +        try:
    +            return float(val)
    +        except ValueError:
    +            pass
    +        if val.lower() in ['true', 'false']:
    +            return True if val.lower() == 'true' else False
    +        if val == 'None':
    +            return None
    +        return val
    +
    +    @staticmethod
    +    def _parse_iterable(val):
    +        """Parse iterable values in the string.
    +
    +        All elements inside '()' or '[]' are treated as iterable values.
    +
    +        Args:
    +            val (str): Value string.
    +
    +        Returns:
    +            list | tuple: The expanded list or tuple from the string.
    +
    +        Examples:
    +            >>> DictAction._parse_iterable('1,2,3')
    +            [1, 2, 3]
    +            >>> DictAction._parse_iterable('[a, b, c]')
    +            ['a', 'b', 'c']
    +            >>> DictAction._parse_iterable('[(1, 2, 3), [a, b], c]')
    +            [(1, 2, 3), ['a', 'b'], 'c']
    +        """
    +
    +        def find_next_comma(string):
    +            """Find the position of next comma in the string.
    +
    +            If no ',' is found in the string, return the string length. All
    +            chars inside '()' and '[]' are treated as one element and thus ','
    +            inside these brackets are ignored.
    +            """
    +            assert (string.count('(') == string.count(')')) and (
    +                    string.count('[') == string.count(']')), \
    +                f'Imbalanced brackets exist in {string}'
    +            end = len(string)
    +            for idx, char in enumerate(string):
    +                pre = string[:idx]
    +                # The string before this ',' is balanced
    +                if ((char == ',') and (pre.count('(') == pre.count(')'))
    +                        and (pre.count('[') == pre.count(']'))):
    +                    end = idx
    +                    break
    +            return end
    +
    +        # Strip ' and " characters and replace whitespace.
    +        val = val.strip('\'\"').replace(' ', '')
    +        is_tuple = False
    +        if val.startswith('(') and val.endswith(')'):
    +            is_tuple = True
    +            val = val[1:-1]
    +        elif val.startswith('[') and val.endswith(']'):
    +            val = val[1:-1]
    +        elif ',' not in val:
    +            # val is a single value
    +            return DictAction._parse_int_float_bool(val)
    +
    +        values = []
    +        while len(val) > 0:
    +            comma_idx = find_next_comma(val)
    +            element = DictAction._parse_iterable(val[:comma_idx])
    +            values.append(element)
    +            val = val[comma_idx + 1:]
    +        if is_tuple:
    +            values = tuple(values)
    +        return values
    +
    +    def __call__(self, parser, namespace, values, option_string=None):
    +        options = {}
    +        for kv in values:
    +            key, val = kv.split('=', maxsplit=1)
    +            options[key] = self._parse_iterable(val)
    +        setattr(namespace, self.dest, options)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/device_type.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/device_type.py
    new file mode 100644
    index 000000000..cef966ac8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/device_type.py
    @@ -0,0 +1,53 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +
    +def is_ipu_available() -> bool:
    +    try:
    +        import poptorch
    +        return poptorch.ipuHardwareIsAvailable()
    +    except ImportError:
    +        return False
    +
    +
    +IS_IPU_AVAILABLE = is_ipu_available()
    +
    +
    +def is_mlu_available() -> bool:
    +    try:
    +        import torch
    +        return (hasattr(torch, 'is_mlu_available')
    +                and torch.is_mlu_available())
    +    except Exception:
    +        return False
    +
    +
    +IS_MLU_AVAILABLE = is_mlu_available()
    +
    +
    +def is_mps_available() -> bool:
    +    """Return True if mps devices exist.
    +
    +    It's specialized for mac m1 chips and require torch version 1.12 or higher.
    +    """
    +    try:
    +        import torch
    +        return hasattr(torch.backends,
    +                       'mps') and torch.backends.mps.is_available()
    +    except Exception:
    +        return False
    +
    +
    +IS_MPS_AVAILABLE = is_mps_available()
    +
    +
    +def is_npu_available() -> bool:
    +    """Return True if npu devices exist."""
    +    try:
    +        import torch
    +        import torch_npu
    +        return (hasattr(torch, 'npu') and torch_npu.npu.is_available())
    +    except Exception:
    +        return False
    +
    +
    +IS_NPU_AVAILABLE = is_npu_available()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/env.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/env.py
    new file mode 100644
    index 000000000..83f42b600
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/env.py
    @@ -0,0 +1,132 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""This file holding some environment constant for sharing by other files."""
    +
    +import os.path as osp
    +import subprocess
    +import sys
    +from collections import defaultdict
    +
    +import cv2
    +import torch
    +
    +import mmcv
    +from .parrots_wrapper import get_build_config
    +
    +
    +def collect_env():
    +    """Collect the information of the running environments.
    +
    +    Returns:
    +        dict: The environment information. The following fields are contained.
    +
    +            - sys.platform: The variable of ``sys.platform``.
    +            - Python: Python version.
    +            - CUDA available: Bool, indicating if CUDA is available.
    +            - GPU devices: Device type of each GPU.
    +            - CUDA_HOME (optional): The env var ``CUDA_HOME``.
    +            - NVCC (optional): NVCC version.
    +            - GCC: GCC version, "n/a" if GCC is not installed.
    +            - MSVC: Microsoft Virtual C++ Compiler version, Windows only.
    +            - PyTorch: PyTorch version.
    +            - PyTorch compiling details: The output of \
    +                ``torch.__config__.show()``.
    +            - TorchVision (optional): TorchVision version.
    +            - OpenCV: OpenCV version.
    +            - MMCV: MMCV version.
    +            - MMCV Compiler: The GCC version for compiling MMCV ops.
    +            - MMCV CUDA Compiler: The CUDA version for compiling MMCV ops.
    +    """
    +    env_info = {}
    +    env_info['sys.platform'] = sys.platform
    +    env_info['Python'] = sys.version.replace('\n', '')
    +
    +    cuda_available = torch.cuda.is_available()
    +    env_info['CUDA available'] = cuda_available
    +
    +    if cuda_available:
    +        devices = defaultdict(list)
    +        for k in range(torch.cuda.device_count()):
    +            devices[torch.cuda.get_device_name(k)].append(str(k))
    +        for name, device_ids in devices.items():
    +            env_info['GPU ' + ','.join(device_ids)] = name
    +
    +        from mmcv.utils.parrots_wrapper import _get_cuda_home
    +        CUDA_HOME = _get_cuda_home()
    +        env_info['CUDA_HOME'] = CUDA_HOME
    +
    +        if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
    +            if CUDA_HOME == '/opt/rocm':
    +                try:
    +                    nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc')
    +                    nvcc = subprocess.check_output(
    +                        f'"{nvcc}" --version', shell=True)
    +                    nvcc = nvcc.decode('utf-8').strip()
    +                    release = nvcc.rfind('HIP version:')
    +                    build = nvcc.rfind('')
    +                    nvcc = nvcc[release:build].strip()
    +                except subprocess.SubprocessError:
    +                    nvcc = 'Not Available'
    +            else:
    +                try:
    +                    nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
    +                    nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True)
    +                    nvcc = nvcc.decode('utf-8').strip()
    +                    release = nvcc.rfind('Cuda compilation tools')
    +                    build = nvcc.rfind('Build ')
    +                    nvcc = nvcc[release:build].strip()
    +                except subprocess.SubprocessError:
    +                    nvcc = 'Not Available'
    +            env_info['NVCC'] = nvcc
    +
    +    try:
    +        # Check C++ Compiler.
    +        # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
    +        # indicating the compiler used, we use this to get the compiler name
    +        import sysconfig
    +        cc = sysconfig.get_config_var('CC')
    +        if cc:
    +            cc = osp.basename(cc.split()[0])
    +            cc_info = subprocess.check_output(f'{cc} --version', shell=True)
    +            env_info['GCC'] = cc_info.decode('utf-8').partition(
    +                '\n')[0].strip()
    +        else:
    +            # on Windows, cl.exe is not in PATH. We need to find the path.
    +            # distutils.ccompiler.new_compiler() returns a msvccompiler
    +            # object and after initialization, path to cl.exe is found.
    +            import locale
    +            import os
    +            from distutils.ccompiler import new_compiler
    +            ccompiler = new_compiler()
    +            ccompiler.initialize()
    +            cc = subprocess.check_output(
    +                f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True)
    +            encoding = os.device_encoding(
    +                sys.stdout.fileno()) or locale.getpreferredencoding()
    +            env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip()
    +            env_info['GCC'] = 'n/a'
    +    except subprocess.CalledProcessError:
    +        env_info['GCC'] = 'n/a'
    +
    +    env_info['PyTorch'] = torch.__version__
    +    env_info['PyTorch compiling details'] = get_build_config()
    +
    +    try:
    +        import torchvision
    +        env_info['TorchVision'] = torchvision.__version__
    +    except ModuleNotFoundError:
    +        pass
    +
    +    env_info['OpenCV'] = cv2.__version__
    +
    +    env_info['MMCV'] = mmcv.__version__
    +
    +    try:
    +        from mmcv.ops import get_compiler_version, get_compiling_cuda_version
    +    except ModuleNotFoundError:
    +        env_info['MMCV Compiler'] = 'n/a'
    +        env_info['MMCV CUDA Compiler'] = 'n/a'
    +    else:
    +        env_info['MMCV Compiler'] = get_compiler_version()
    +        env_info['MMCV CUDA Compiler'] = get_compiling_cuda_version()
    +
    +    return env_info
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/ext_loader.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/ext_loader.py
    new file mode 100644
    index 000000000..a31e107df
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/ext_loader.py
    @@ -0,0 +1,72 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import importlib
    +import os
    +import pkgutil
    +import warnings
    +from collections import namedtuple
    +
    +import torch
    +
    +if torch.__version__ != 'parrots':
    +
    +    def load_ext(name, funcs):
    +        ext = importlib.import_module('mmcv.' + name)
    +        for fun in funcs:
    +            assert hasattr(ext, fun), f'{fun} miss in module {name}'
    +        return ext
    +else:
    +    from parrots import extension
    +    from parrots.base import ParrotsException
    +
    +    has_return_value_ops = [
    +        'nms',
    +        'softnms',
    +        'nms_match',
    +        'nms_rotated',
    +        'top_pool_forward',
    +        'top_pool_backward',
    +        'bottom_pool_forward',
    +        'bottom_pool_backward',
    +        'left_pool_forward',
    +        'left_pool_backward',
    +        'right_pool_forward',
    +        'right_pool_backward',
    +        'fused_bias_leakyrelu',
    +        'upfirdn2d',
    +        'ms_deform_attn_forward',
    +        'pixel_group',
    +        'contour_expand',
    +        'diff_iou_rotated_sort_vertices_forward',
    +    ]
    +
    +    def get_fake_func(name, e):
    +
    +        def fake_func(*args, **kwargs):
    +            warnings.warn(f'{name} is not supported in parrots now')
    +            raise e
    +
    +        return fake_func
    +
    +    def load_ext(name, funcs):
    +        ExtModule = namedtuple('ExtModule', funcs)
    +        ext_list = []
    +        lib_root = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
    +        for fun in funcs:
    +            try:
    +                ext_fun = extension.load(fun, name, lib_dir=lib_root)
    +            except ParrotsException as e:
    +                if 'No element registered' not in e.message:
    +                    warnings.warn(e.message)
    +                ext_fun = get_fake_func(fun, e)
    +                ext_list.append(ext_fun)
    +            else:
    +                if fun in has_return_value_ops:
    +                    ext_list.append(ext_fun.op)
    +                else:
    +                    ext_list.append(ext_fun.op_)
    +        return ExtModule(*ext_list)
    +
    +
    +def check_ops_exist() -> bool:
    +    ext_loader = pkgutil.find_loader('mmcv._ext')
    +    return ext_loader is not None
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/hub.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/hub.py
    new file mode 100644
    index 000000000..a9cbbc95b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/hub.py
    @@ -0,0 +1,131 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +# The 1.6 release of PyTorch switched torch.save to use a new zipfile-based
    +# file format. It will cause RuntimeError when a checkpoint was saved in
    +# torch >= 1.6.0 but loaded in torch < 1.7.0.
    +# More details at https://github.com/open-mmlab/mmpose/issues/904
    +from .parrots_wrapper import TORCH_VERSION
    +from .path import mkdir_or_exist
    +from .version_utils import digit_version
    +
    +if TORCH_VERSION != 'parrots' and digit_version(TORCH_VERSION) < digit_version(
    +        '1.7.0'):
    +    # Modified from https://github.com/pytorch/pytorch/blob/master/torch/hub.py
    +    import os
    +    import sys
    +    import warnings
    +    import zipfile
    +    from urllib.parse import urlparse
    +
    +    import torch
    +    from torch.hub import HASH_REGEX, _get_torch_home, download_url_to_file
    +
    +    # Hub used to support automatically extracts from zipfile manually
    +    # compressed by users. The legacy zip format expects only one file from
    +    # torch.save() < 1.6 in the zip. We should remove this support since
    +    # zipfile is now default zipfile format for torch.save().
    +    def _is_legacy_zip_format(filename):
    +        if zipfile.is_zipfile(filename):
    +            infolist = zipfile.ZipFile(filename).infolist()
    +            return len(infolist) == 1 and not infolist[0].is_dir()
    +        return False
    +
    +    def _legacy_zip_load(filename, model_dir, map_location):
    +        warnings.warn(
    +            'Falling back to the old format < 1.6. This support will'
    +            ' be deprecated in favor of default zipfile format '
    +            'introduced in 1.6. Please redo torch.save() to save it '
    +            'in the new zipfile format.', DeprecationWarning)
    +        # Note: extractall() defaults to overwrite file if exists. No need to
    +        #       clean up beforehand. We deliberately don't handle tarfile here
    +        #       since our legacy serialization format was in tar.
    +        #       E.g. resnet18-5c106cde.pth which is widely used.
    +        with zipfile.ZipFile(filename) as f:
    +            members = f.infolist()
    +            if len(members) != 1:
    +                raise RuntimeError(
    +                    'Only one file(not dir) is allowed in the zipfile')
    +            f.extractall(model_dir)
    +            extraced_name = members[0].filename
    +            extracted_file = os.path.join(model_dir, extraced_name)
    +        return torch.load(extracted_file, map_location=map_location)
    +
    +    def load_url(url,
    +                 model_dir=None,
    +                 map_location=None,
    +                 progress=True,
    +                 check_hash=False,
    +                 file_name=None):
    +        r"""Loads the Torch serialized object at the given URL.
    +
    +        If downloaded file is a zip file, it will be automatically decompressed
    +
    +        If the object is already present in `model_dir`, it's deserialized and
    +        returned.
    +        The default value of ``model_dir`` is ``/checkpoints`` where
    +        ``hub_dir`` is the directory returned by :func:`~torch.hub.get_dir`.
    +
    +        Args:
    +            url (str): URL of the object to download
    +            model_dir (str, optional): directory in which to save the object
    +            map_location (optional): a function or a dict specifying how to
    +                remap storage locations (see torch.load)
    +            progress (bool, optional): whether or not to display a progress bar
    +                to stderr. Default: True
    +            check_hash(bool, optional): If True, the filename part of the URL
    +                should follow the naming convention ``filename-.ext``
    +                where ```` is the first eight or more digits of the
    +                SHA256 hash of the contents of the file. The hash is used to
    +                ensure unique names and to verify the contents of the file.
    +                Default: False
    +            file_name (str, optional): name for the downloaded file. Filename
    +                from ``url`` will be used if not set. Default: None.
    +
    +        Example:
    +            >>> url = ('https://s3.amazonaws.com/pytorch/models/resnet18-5c106'
    +            ...        'cde.pth')
    +            >>> state_dict = torch.hub.load_state_dict_from_url(url)
    +        """
    +        # Issue warning to move data if old env is set
    +        if os.getenv('TORCH_MODEL_ZOO'):
    +            warnings.warn(
    +                'TORCH_MODEL_ZOO is deprecated, please use env '
    +                'TORCH_HOME instead', DeprecationWarning)
    +
    +        if model_dir is None:
    +            torch_home = _get_torch_home()
    +            model_dir = os.path.join(torch_home, 'checkpoints')
    +
    +        mkdir_or_exist(model_dir)
    +
    +        parts = urlparse(url)
    +        filename = os.path.basename(parts.path)
    +        if file_name is not None:
    +            filename = file_name
    +        cached_file = os.path.join(model_dir, filename)
    +        if not os.path.exists(cached_file):
    +            sys.stderr.write('Downloading: "{}" to {}\n'.format(
    +                url, cached_file))
    +            hash_prefix = None
    +            if check_hash:
    +                r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
    +                hash_prefix = r.group(1) if r else None
    +            download_url_to_file(
    +                url, cached_file, hash_prefix, progress=progress)
    +
    +        if _is_legacy_zip_format(cached_file):
    +            return _legacy_zip_load(cached_file, model_dir, map_location)
    +
    +        try:
    +            return torch.load(cached_file, map_location=map_location)
    +        except RuntimeError as error:
    +            if digit_version(TORCH_VERSION) < digit_version('1.5.0'):
    +                warnings.warn(
    +                    f'If the error is the same as "{cached_file} is a zip '
    +                    'archive (did you mean to use torch.jit.load()?)", you can'
    +                    ' upgrade your torch to 1.5.0 or higher (current torch '
    +                    f'version is {TORCH_VERSION}). The error was raised '
    +                    ' because the checkpoint was saved in torch>=1.6.0 but '
    +                    'loaded in torch<1.5.')
    +            raise error
    +else:
    +    from torch.utils.model_zoo import load_url  # type: ignore # noqa: F401
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/logging.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/logging.py
    new file mode 100644
    index 000000000..5a90aac8b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/logging.py
    @@ -0,0 +1,111 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +
    +import torch.distributed as dist
    +
    +logger_initialized: dict = {}
    +
    +
    +def get_logger(name, log_file=None, log_level=logging.INFO, file_mode='w'):
    +    """Initialize and get a logger by name.
    +
    +    If the logger has not been initialized, this method will initialize the
    +    logger by adding one or two handlers, otherwise the initialized logger will
    +    be directly returned. During initialization, a StreamHandler will always be
    +    added. If `log_file` is specified and the process rank is 0, a FileHandler
    +    will also be added.
    +
    +    Args:
    +        name (str): Logger name.
    +        log_file (str | None): The log filename. If specified, a FileHandler
    +            will be added to the logger.
    +        log_level (int): The logger level. Note that only the process of
    +            rank 0 is affected, and other processes will set the level to
    +            "Error" thus be silent most of the time.
    +        file_mode (str): The file mode used in opening log file.
    +            Defaults to 'w'.
    +
    +    Returns:
    +        logging.Logger: The expected logger.
    +    """
    +    logger = logging.getLogger(name)
    +    if name in logger_initialized:
    +        return logger
    +    # handle hierarchical names
    +    # e.g., logger "a" is initialized, then logger "a.b" will skip the
    +    # initialization since it is a child of "a".
    +    for logger_name in logger_initialized:
    +        if name.startswith(logger_name):
    +            return logger
    +
    +    # handle duplicate logs to the console
    +    # Starting in 1.8.0, PyTorch DDP attaches a StreamHandler  (NOTSET)
    +    # to the root logger. As logger.propagate is True by default, this root
    +    # level handler causes logging messages from rank>0 processes to
    +    # unexpectedly show up on the console, creating much unwanted clutter.
    +    # To fix this issue, we set the root logger's StreamHandler, if any, to log
    +    # at the ERROR level.
    +    for handler in logger.root.handlers:
    +        if type(handler) is logging.StreamHandler:
    +            handler.setLevel(logging.ERROR)
    +
    +    stream_handler = logging.StreamHandler()
    +    handlers = [stream_handler]
    +
    +    if dist.is_available() and dist.is_initialized():
    +        rank = dist.get_rank()
    +    else:
    +        rank = 0
    +
    +    # only rank 0 will add a FileHandler
    +    if rank == 0 and log_file is not None:
    +        # Here, the default behaviour of the official logger is 'a'. Thus, we
    +        # provide an interface to change the file mode to the default
    +        # behaviour.
    +        file_handler = logging.FileHandler(log_file, file_mode)
    +        handlers.append(file_handler)
    +
    +    formatter = logging.Formatter(
    +        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    +    for handler in handlers:
    +        handler.setFormatter(formatter)
    +        handler.setLevel(log_level)
    +        logger.addHandler(handler)
    +
    +    if rank == 0:
    +        logger.setLevel(log_level)
    +    else:
    +        logger.setLevel(logging.ERROR)
    +
    +    logger_initialized[name] = True
    +
    +    return logger
    +
    +
    +def print_log(msg, logger=None, level=logging.INFO):
    +    """Print a log message.
    +
    +    Args:
    +        msg (str): The message to be logged.
    +        logger (logging.Logger | str | None): The logger to be used.
    +            Some special loggers are:
    +
    +            - "silent": no message will be printed.
    +            - other str: the logger obtained with `get_root_logger(logger)`.
    +            - None: The `print()` method will be used to print log messages.
    +        level (int): Logging level. Only available when `logger` is a Logger
    +            object or "root".
    +    """
    +    if logger is None:
    +        print(msg)
    +    elif isinstance(logger, logging.Logger):
    +        logger.log(level, msg)
    +    elif logger == 'silent':
    +        pass
    +    elif isinstance(logger, str):
    +        _logger = get_logger(logger)
    +        _logger.log(level, msg)
    +    else:
    +        raise TypeError(
    +            'logger should be either a logging.Logger object, str, '
    +            f'"silent" or None, but got {type(logger)}')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/misc.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/misc.py
    new file mode 100644
    index 000000000..7957ea89b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/misc.py
    @@ -0,0 +1,377 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import collections.abc
    +import functools
    +import itertools
    +import subprocess
    +import warnings
    +from collections import abc
    +from importlib import import_module
    +from inspect import getfullargspec
    +from itertools import repeat
    +
    +
    +# From PyTorch internals
    +def _ntuple(n):
    +
    +    def parse(x):
    +        if isinstance(x, collections.abc.Iterable):
    +            return x
    +        return tuple(repeat(x, n))
    +
    +    return parse
    +
    +
    +to_1tuple = _ntuple(1)
    +to_2tuple = _ntuple(2)
    +to_3tuple = _ntuple(3)
    +to_4tuple = _ntuple(4)
    +to_ntuple = _ntuple
    +
    +
    +def is_str(x):
    +    """Whether the input is an string instance.
    +
    +    Note: This method is deprecated since python 2 is no longer supported.
    +    """
    +    return isinstance(x, str)
    +
    +
    +def import_modules_from_strings(imports, allow_failed_imports=False):
    +    """Import modules from the given list of strings.
    +
    +    Args:
    +        imports (list | str | None): The given module names to be imported.
    +        allow_failed_imports (bool): If True, the failed imports will return
    +            None. Otherwise, an ImportError is raise. Default: False.
    +
    +    Returns:
    +        list[module] | module | None: The imported modules.
    +
    +    Examples:
    +        >>> osp, sys = import_modules_from_strings(
    +        ...     ['os.path', 'sys'])
    +        >>> import os.path as osp_
    +        >>> import sys as sys_
    +        >>> assert osp == osp_
    +        >>> assert sys == sys_
    +    """
    +    if not imports:
    +        return
    +    single_import = False
    +    if isinstance(imports, str):
    +        single_import = True
    +        imports = [imports]
    +    if not isinstance(imports, list):
    +        raise TypeError(
    +            f'custom_imports must be a list but got type {type(imports)}')
    +    imported = []
    +    for imp in imports:
    +        if not isinstance(imp, str):
    +            raise TypeError(
    +                f'{imp} is of type {type(imp)} and cannot be imported.')
    +        try:
    +            imported_tmp = import_module(imp)
    +        except ImportError:
    +            if allow_failed_imports:
    +                warnings.warn(f'{imp} failed to import and is ignored.',
    +                              UserWarning)
    +                imported_tmp = None
    +            else:
    +                raise ImportError
    +        imported.append(imported_tmp)
    +    if single_import:
    +        imported = imported[0]
    +    return imported
    +
    +
    +def iter_cast(inputs, dst_type, return_type=None):
    +    """Cast elements of an iterable object into some type.
    +
    +    Args:
    +        inputs (Iterable): The input object.
    +        dst_type (type): Destination type.
    +        return_type (type, optional): If specified, the output object will be
    +            converted to this type, otherwise an iterator.
    +
    +    Returns:
    +        iterator or specified type: The converted object.
    +    """
    +    if not isinstance(inputs, abc.Iterable):
    +        raise TypeError('inputs must be an iterable object')
    +    if not isinstance(dst_type, type):
    +        raise TypeError('"dst_type" must be a valid type')
    +
    +    out_iterable = map(dst_type, inputs)
    +
    +    if return_type is None:
    +        return out_iterable
    +    else:
    +        return return_type(out_iterable)
    +
    +
    +def list_cast(inputs, dst_type):
    +    """Cast elements of an iterable object into a list of some type.
    +
    +    A partial method of :func:`iter_cast`.
    +    """
    +    return iter_cast(inputs, dst_type, return_type=list)
    +
    +
    +def tuple_cast(inputs, dst_type):
    +    """Cast elements of an iterable object into a tuple of some type.
    +
    +    A partial method of :func:`iter_cast`.
    +    """
    +    return iter_cast(inputs, dst_type, return_type=tuple)
    +
    +
    +def is_seq_of(seq, expected_type, seq_type=None):
    +    """Check whether it is a sequence of some type.
    +
    +    Args:
    +        seq (Sequence): The sequence to be checked.
    +        expected_type (type): Expected type of sequence items.
    +        seq_type (type, optional): Expected sequence type.
    +
    +    Returns:
    +        bool: Whether the sequence is valid.
    +    """
    +    if seq_type is None:
    +        exp_seq_type = abc.Sequence
    +    else:
    +        assert isinstance(seq_type, type)
    +        exp_seq_type = seq_type
    +    if not isinstance(seq, exp_seq_type):
    +        return False
    +    for item in seq:
    +        if not isinstance(item, expected_type):
    +            return False
    +    return True
    +
    +
    +def is_list_of(seq, expected_type):
    +    """Check whether it is a list of some type.
    +
    +    A partial method of :func:`is_seq_of`.
    +    """
    +    return is_seq_of(seq, expected_type, seq_type=list)
    +
    +
    +def is_tuple_of(seq, expected_type):
    +    """Check whether it is a tuple of some type.
    +
    +    A partial method of :func:`is_seq_of`.
    +    """
    +    return is_seq_of(seq, expected_type, seq_type=tuple)
    +
    +
    +def slice_list(in_list, lens):
    +    """Slice a list into several sub lists by a list of given length.
    +
    +    Args:
    +        in_list (list): The list to be sliced.
    +        lens(int or list): The expected length of each out list.
    +
    +    Returns:
    +        list: A list of sliced list.
    +    """
    +    if isinstance(lens, int):
    +        assert len(in_list) % lens == 0
    +        lens = [lens] * int(len(in_list) / lens)
    +    if not isinstance(lens, list):
    +        raise TypeError('"indices" must be an integer or a list of integers')
    +    elif sum(lens) != len(in_list):
    +        raise ValueError('sum of lens and list length does not '
    +                         f'match: {sum(lens)} != {len(in_list)}')
    +    out_list = []
    +    idx = 0
    +    for i in range(len(lens)):
    +        out_list.append(in_list[idx:idx + lens[i]])
    +        idx += lens[i]
    +    return out_list
    +
    +
    +def concat_list(in_list):
    +    """Concatenate a list of list into a single list.
    +
    +    Args:
    +        in_list (list): The list of list to be merged.
    +
    +    Returns:
    +        list: The concatenated flat list.
    +    """
    +    return list(itertools.chain(*in_list))
    +
    +
    +def check_prerequisites(
    +        prerequisites,
    +        checker,
    +        msg_tmpl='Prerequisites "{}" are required in method "{}" but not '
    +        'found, please install them first.'):  # yapf: disable
    +    """A decorator factory to check if prerequisites are satisfied.
    +
    +    Args:
    +        prerequisites (str of list[str]): Prerequisites to be checked.
    +        checker (callable): The checker method that returns True if a
    +            prerequisite is meet, False otherwise.
    +        msg_tmpl (str): The message template with two variables.
    +
    +    Returns:
    +        decorator: A specific decorator.
    +    """
    +
    +    def wrap(func):
    +
    +        @functools.wraps(func)
    +        def wrapped_func(*args, **kwargs):
    +            requirements = [prerequisites] if isinstance(
    +                prerequisites, str) else prerequisites
    +            missing = []
    +            for item in requirements:
    +                if not checker(item):
    +                    missing.append(item)
    +            if missing:
    +                print(msg_tmpl.format(', '.join(missing), func.__name__))
    +                raise RuntimeError('Prerequisites not meet.')
    +            else:
    +                return func(*args, **kwargs)
    +
    +        return wrapped_func
    +
    +    return wrap
    +
    +
    +def _check_py_package(package):
    +    try:
    +        import_module(package)
    +    except ImportError:
    +        return False
    +    else:
    +        return True
    +
    +
    +def _check_executable(cmd):
    +    if subprocess.call(f'which {cmd}', shell=True) != 0:
    +        return False
    +    else:
    +        return True
    +
    +
    +def requires_package(prerequisites):
    +    """A decorator to check if some python packages are installed.
    +
    +    Example:
    +        >>> @requires_package('numpy')
    +        >>> func(arg1, args):
    +        >>>     return numpy.zeros(1)
    +        array([0.])
    +        >>> @requires_package(['numpy', 'non_package'])
    +        >>> func(arg1, args):
    +        >>>     return numpy.zeros(1)
    +        ImportError
    +    """
    +    return check_prerequisites(prerequisites, checker=_check_py_package)
    +
    +
    +def requires_executable(prerequisites):
    +    """A decorator to check if some executable files are installed.
    +
    +    Example:
    +        >>> @requires_executable('ffmpeg')
    +        >>> func(arg1, args):
    +        >>>     print(1)
    +        1
    +    """
    +    return check_prerequisites(prerequisites, checker=_check_executable)
    +
    +
    +def deprecated_api_warning(name_dict, cls_name=None):
    +    """A decorator to check if some arguments are deprecate and try to replace
    +    deprecate src_arg_name to dst_arg_name.
    +
    +    Args:
    +        name_dict(dict):
    +            key (str): Deprecate argument names.
    +            val (str): Expected argument names.
    +
    +    Returns:
    +        func: New function.
    +    """
    +
    +    def api_warning_wrapper(old_func):
    +
    +        @functools.wraps(old_func)
    +        def new_func(*args, **kwargs):
    +            # get the arg spec of the decorated method
    +            args_info = getfullargspec(old_func)
    +            # get name of the function
    +            func_name = old_func.__name__
    +            if cls_name is not None:
    +                func_name = f'{cls_name}.{func_name}'
    +            if args:
    +                arg_names = args_info.args[:len(args)]
    +                for src_arg_name, dst_arg_name in name_dict.items():
    +                    if src_arg_name in arg_names:
    +                        warnings.warn(
    +                            f'"{src_arg_name}" is deprecated in '
    +                            f'`{func_name}`, please use "{dst_arg_name}" '
    +                            'instead', DeprecationWarning)
    +                        arg_names[arg_names.index(src_arg_name)] = dst_arg_name
    +            if kwargs:
    +                for src_arg_name, dst_arg_name in name_dict.items():
    +                    if src_arg_name in kwargs:
    +
    +                        assert dst_arg_name not in kwargs, (
    +                            f'The expected behavior is to replace '
    +                            f'the deprecated key `{src_arg_name}` to '
    +                            f'new key `{dst_arg_name}`, but got them '
    +                            f'in the arguments at the same time, which '
    +                            f'is confusing. `{src_arg_name} will be '
    +                            f'deprecated in the future, please '
    +                            f'use `{dst_arg_name}` instead.')
    +
    +                        warnings.warn(
    +                            f'"{src_arg_name}" is deprecated in '
    +                            f'`{func_name}`, please use "{dst_arg_name}" '
    +                            'instead', DeprecationWarning)
    +                        kwargs[dst_arg_name] = kwargs.pop(src_arg_name)
    +
    +            # apply converted arguments to the decorated method
    +            output = old_func(*args, **kwargs)
    +            return output
    +
    +        return new_func
    +
    +    return api_warning_wrapper
    +
    +
    +def is_method_overridden(method, base_class, derived_class):
    +    """Check if a method of base class is overridden in derived class.
    +
    +    Args:
    +        method (str): the method name to check.
    +        base_class (type): the class of the base class.
    +        derived_class (type | Any): the class or instance of the derived class.
    +    """
    +    assert isinstance(base_class, type), \
    +        "base_class doesn't accept instance, Please pass class instead."
    +
    +    if not isinstance(derived_class, type):
    +        derived_class = derived_class.__class__
    +
    +    base_method = getattr(base_class, method)
    +    derived_method = getattr(derived_class, method)
    +    return derived_method != base_method
    +
    +
    +def has_method(obj: object, method: str) -> bool:
    +    """Check whether the object has a method.
    +
    +    Args:
    +        method (str): The method name to check.
    +        obj (object): The object to check.
    +
    +    Returns:
    +        bool: True if the object has the method else False.
    +    """
    +    return hasattr(obj, method) and callable(getattr(obj, method))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_jit.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_jit.py
    new file mode 100644
    index 000000000..61873f6db
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_jit.py
    @@ -0,0 +1,41 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +
    +from .parrots_wrapper import TORCH_VERSION
    +
    +parrots_jit_option = os.getenv('PARROTS_JIT_OPTION')
    +
    +if TORCH_VERSION == 'parrots' and parrots_jit_option == 'ON':
    +    from parrots.jit import pat as jit
    +else:
    +
    +    def jit(func=None,
    +            check_input=None,
    +            full_shape=True,
    +            derivate=False,
    +            coderize=False,
    +            optimize=False):
    +
    +        def wrapper(func):
    +
    +            def wrapper_inner(*args, **kargs):
    +                return func(*args, **kargs)
    +
    +            return wrapper_inner
    +
    +        if func is None:
    +            return wrapper
    +        else:
    +            return func
    +
    +
    +if TORCH_VERSION == 'parrots':
    +    from parrots.utils.tester import skip_no_elena
    +else:
    +
    +    def skip_no_elena(func):
    +
    +        def wrapper(*args, **kargs):
    +            return func(*args, **kargs)
    +
    +        return wrapper
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_wrapper.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_wrapper.py
    new file mode 100644
    index 000000000..cf2c7e5ce
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/parrots_wrapper.py
    @@ -0,0 +1,114 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from functools import partial
    +
    +import torch
    +
    +TORCH_VERSION = torch.__version__
    +
    +
    +def is_cuda_available() -> bool:
    +    return torch.cuda.is_available()
    +
    +
    +IS_CUDA_AVAILABLE = is_cuda_available()
    +
    +
    +def is_rocm_pytorch() -> bool:
    +    is_rocm = False
    +    if TORCH_VERSION != 'parrots':
    +        try:
    +            from torch.utils.cpp_extension import ROCM_HOME
    +            is_rocm = True if ((torch.version.hip is not None) and
    +                               (ROCM_HOME is not None)) else False
    +        except ImportError:
    +            pass
    +    return is_rocm
    +
    +
    +def _get_cuda_home():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.utils.build_extension import CUDA_HOME
    +    else:
    +        if is_rocm_pytorch():
    +            from torch.utils.cpp_extension import ROCM_HOME
    +            CUDA_HOME = ROCM_HOME
    +        else:
    +            from torch.utils.cpp_extension import CUDA_HOME
    +    return CUDA_HOME
    +
    +
    +def get_build_config():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.config import get_build_info
    +        return get_build_info()
    +    else:
    +        return torch.__config__.show()
    +
    +
    +def _get_conv():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.nn.modules.conv import _ConvNd, _ConvTransposeMixin
    +    else:
    +        from torch.nn.modules.conv import _ConvNd, _ConvTransposeMixin
    +    return _ConvNd, _ConvTransposeMixin
    +
    +
    +def _get_dataloader():
    +    if TORCH_VERSION == 'parrots':
    +        from torch.utils.data import DataLoader, PoolDataLoader
    +    else:
    +        from torch.utils.data import DataLoader
    +        PoolDataLoader = DataLoader
    +    return DataLoader, PoolDataLoader
    +
    +
    +def _get_extension():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.utils.build_extension import BuildExtension, Extension
    +        CppExtension = partial(Extension, cuda=False)
    +        CUDAExtension = partial(Extension, cuda=True)
    +    else:
    +        from torch.utils.cpp_extension import (BuildExtension, CppExtension,
    +                                               CUDAExtension)
    +    return BuildExtension, CppExtension, CUDAExtension
    +
    +
    +def _get_pool():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.nn.modules.pool import (_AdaptiveAvgPoolNd,
    +                                             _AdaptiveMaxPoolNd, _AvgPoolNd,
    +                                             _MaxPoolNd)
    +    else:
    +        from torch.nn.modules.pooling import (_AdaptiveAvgPoolNd,
    +                                              _AdaptiveMaxPoolNd, _AvgPoolNd,
    +                                              _MaxPoolNd)
    +    return _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd
    +
    +
    +def _get_norm():
    +    if TORCH_VERSION == 'parrots':
    +        from parrots.nn.modules.batchnorm import _BatchNorm, _InstanceNorm
    +        SyncBatchNorm_ = torch.nn.SyncBatchNorm2d
    +    else:
    +        from torch.nn.modules.batchnorm import _BatchNorm
    +        from torch.nn.modules.instancenorm import _InstanceNorm
    +        SyncBatchNorm_ = torch.nn.SyncBatchNorm
    +    return _BatchNorm, _InstanceNorm, SyncBatchNorm_
    +
    +
    +_ConvNd, _ConvTransposeMixin = _get_conv()
    +DataLoader, PoolDataLoader = _get_dataloader()
    +BuildExtension, CppExtension, CUDAExtension = _get_extension()
    +_BatchNorm, _InstanceNorm, SyncBatchNorm_ = _get_norm()
    +_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd = _get_pool()
    +
    +
    +class SyncBatchNorm(SyncBatchNorm_):  # type: ignore
    +
    +    def _check_input_dim(self, input):
    +        if TORCH_VERSION == 'parrots':
    +            if input.dim() < 2:
    +                raise ValueError(
    +                    f'expected at least 2D input (got {input.dim()}D input)')
    +        else:
    +            super()._check_input_dim(input)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/path.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/path.py
    new file mode 100644
    index 000000000..568081837
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/path.py
    @@ -0,0 +1,101 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +from pathlib import Path
    +
    +from .misc import is_str
    +
    +
    +def is_filepath(x):
    +    return is_str(x) or isinstance(x, Path)
    +
    +
    +def fopen(filepath, *args, **kwargs):
    +    if is_str(filepath):
    +        return open(filepath, *args, **kwargs)
    +    elif isinstance(filepath, Path):
    +        return filepath.open(*args, **kwargs)
    +    raise ValueError('`filepath` should be a string or a Path')
    +
    +
    +def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
    +    if not osp.isfile(filename):
    +        raise FileNotFoundError(msg_tmpl.format(filename))
    +
    +
    +def mkdir_or_exist(dir_name, mode=0o777):
    +    if dir_name == '':
    +        return
    +    dir_name = osp.expanduser(dir_name)
    +    os.makedirs(dir_name, mode=mode, exist_ok=True)
    +
    +
    +def symlink(src, dst, overwrite=True, **kwargs):
    +    if os.path.lexists(dst) and overwrite:
    +        os.remove(dst)
    +    os.symlink(src, dst, **kwargs)
    +
    +
    +def scandir(dir_path, suffix=None, recursive=False, case_sensitive=True):
    +    """Scan a directory to find the interested files.
    +
    +    Args:
    +        dir_path (str | :obj:`Path`): Path of the directory.
    +        suffix (str | tuple(str), optional): File suffix that we are
    +            interested in. Default: None.
    +        recursive (bool, optional): If set to True, recursively scan the
    +            directory. Default: False.
    +        case_sensitive (bool, optional) : If set to False, ignore the case of
    +            suffix. Default: True.
    +
    +    Returns:
    +        A generator for all the interested files with relative paths.
    +    """
    +    if isinstance(dir_path, (str, Path)):
    +        dir_path = str(dir_path)
    +    else:
    +        raise TypeError('"dir_path" must be a string or Path object')
    +
    +    if (suffix is not None) and not isinstance(suffix, (str, tuple)):
    +        raise TypeError('"suffix" must be a string or tuple of strings')
    +
    +    if suffix is not None and not case_sensitive:
    +        suffix = suffix.lower() if isinstance(suffix, str) else tuple(
    +            item.lower() for item in suffix)
    +
    +    root = dir_path
    +
    +    def _scandir(dir_path, suffix, recursive, case_sensitive):
    +        for entry in os.scandir(dir_path):
    +            if not entry.name.startswith('.') and entry.is_file():
    +                rel_path = osp.relpath(entry.path, root)
    +                _rel_path = rel_path if case_sensitive else rel_path.lower()
    +                if suffix is None or _rel_path.endswith(suffix):
    +                    yield rel_path
    +            elif recursive and os.path.isdir(entry.path):
    +                # scan recursively if entry.path is a directory
    +                yield from _scandir(entry.path, suffix, recursive,
    +                                    case_sensitive)
    +
    +    return _scandir(dir_path, suffix, recursive, case_sensitive)
    +
    +
    +def find_vcs_root(path, markers=('.git', )):
    +    """Finds the root directory (including itself) of specified markers.
    +
    +    Args:
    +        path (str): Path of directory or file.
    +        markers (list[str], optional): List of file or directory names.
    +
    +    Returns:
    +        The directory contained one of the markers or None if not found.
    +    """
    +    if osp.isfile(path):
    +        path = osp.dirname(path)
    +
    +    prev, cur = None, osp.abspath(osp.expanduser(path))
    +    while cur != prev:
    +        if any(osp.exists(osp.join(cur, marker)) for marker in markers):
    +            return cur
    +        prev, cur = cur, osp.split(cur)[0]
    +    return None
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/progressbar.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/progressbar.py
    new file mode 100644
    index 000000000..0062f670d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/progressbar.py
    @@ -0,0 +1,208 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import sys
    +from collections.abc import Iterable
    +from multiprocessing import Pool
    +from shutil import get_terminal_size
    +
    +from .timer import Timer
    +
    +
    +class ProgressBar:
    +    """A progress bar which can print the progress."""
    +
    +    def __init__(self, task_num=0, bar_width=50, start=True, file=sys.stdout):
    +        self.task_num = task_num
    +        self.bar_width = bar_width
    +        self.completed = 0
    +        self.file = file
    +        if start:
    +            self.start()
    +
    +    @property
    +    def terminal_width(self):
    +        width, _ = get_terminal_size()
    +        return width
    +
    +    def start(self):
    +        if self.task_num > 0:
    +            self.file.write(f'[{" " * self.bar_width}] 0/{self.task_num}, '
    +                            'elapsed: 0s, ETA:')
    +        else:
    +            self.file.write('completed: 0, elapsed: 0s')
    +        self.file.flush()
    +        self.timer = Timer()
    +
    +    def update(self, num_tasks=1):
    +        assert num_tasks > 0
    +        self.completed += num_tasks
    +        elapsed = self.timer.since_start()
    +        if elapsed > 0:
    +            fps = self.completed / elapsed
    +        else:
    +            fps = float('inf')
    +        if self.task_num > 0:
    +            percentage = self.completed / float(self.task_num)
    +            eta = int(elapsed * (1 - percentage) / percentage + 0.5)
    +            msg = f'\r[{{}}] {self.completed}/{self.task_num}, ' \
    +                  f'{fps:.1f} task/s, elapsed: {int(elapsed + 0.5)}s, ' \
    +                  f'ETA: {eta:5}s'
    +
    +            bar_width = min(self.bar_width,
    +                            int(self.terminal_width - len(msg)) + 2,
    +                            int(self.terminal_width * 0.6))
    +            bar_width = max(2, bar_width)
    +            mark_width = int(bar_width * percentage)
    +            bar_chars = '>' * mark_width + ' ' * (bar_width - mark_width)
    +            self.file.write(msg.format(bar_chars))
    +        else:
    +            self.file.write(
    +                f'completed: {self.completed}, elapsed: {int(elapsed + 0.5)}s,'
    +                f' {fps:.1f} tasks/s')
    +        self.file.flush()
    +
    +
    +def track_progress(func, tasks, bar_width=50, file=sys.stdout, **kwargs):
    +    """Track the progress of tasks execution with a progress bar.
    +
    +    Tasks are done with a simple for-loop.
    +
    +    Args:
    +        func (callable): The function to be applied to each task.
    +        tasks (list or tuple[Iterable, int]): A list of tasks or
    +            (tasks, total num).
    +        bar_width (int): Width of progress bar.
    +
    +    Returns:
    +        list: The task results.
    +    """
    +    if isinstance(tasks, tuple):
    +        assert len(tasks) == 2
    +        assert isinstance(tasks[0], Iterable)
    +        assert isinstance(tasks[1], int)
    +        task_num = tasks[1]
    +        tasks = tasks[0]
    +    elif isinstance(tasks, Iterable):
    +        task_num = len(tasks)
    +    else:
    +        raise TypeError(
    +            '"tasks" must be an iterable object or a (iterator, int) tuple')
    +    prog_bar = ProgressBar(task_num, bar_width, file=file)
    +    results = []
    +    for task in tasks:
    +        results.append(func(task, **kwargs))
    +        prog_bar.update()
    +    prog_bar.file.write('\n')
    +    return results
    +
    +
    +def init_pool(process_num, initializer=None, initargs=None):
    +    if initializer is None:
    +        return Pool(process_num)
    +    elif initargs is None:
    +        return Pool(process_num, initializer)
    +    else:
    +        if not isinstance(initargs, tuple):
    +            raise TypeError('"initargs" must be a tuple')
    +        return Pool(process_num, initializer, initargs)
    +
    +
    +def track_parallel_progress(func,
    +                            tasks,
    +                            nproc,
    +                            initializer=None,
    +                            initargs=None,
    +                            bar_width=50,
    +                            chunksize=1,
    +                            skip_first=False,
    +                            keep_order=True,
    +                            file=sys.stdout):
    +    """Track the progress of parallel task execution with a progress bar.
    +
    +    The built-in :mod:`multiprocessing` module is used for process pools and
    +    tasks are done with :func:`Pool.map` or :func:`Pool.imap_unordered`.
    +
    +    Args:
    +        func (callable): The function to be applied to each task.
    +        tasks (list or tuple[Iterable, int]): A list of tasks or
    +            (tasks, total num).
    +        nproc (int): Process (worker) number.
    +        initializer (None or callable): Refer to :class:`multiprocessing.Pool`
    +            for details.
    +        initargs (None or tuple): Refer to :class:`multiprocessing.Pool` for
    +            details.
    +        chunksize (int): Refer to :class:`multiprocessing.Pool` for details.
    +        bar_width (int): Width of progress bar.
    +        skip_first (bool): Whether to skip the first sample for each worker
    +            when estimating fps, since the initialization step may takes
    +            longer.
    +        keep_order (bool): If True, :func:`Pool.imap` is used, otherwise
    +            :func:`Pool.imap_unordered` is used.
    +
    +    Returns:
    +        list: The task results.
    +    """
    +    if isinstance(tasks, tuple):
    +        assert len(tasks) == 2
    +        assert isinstance(tasks[0], Iterable)
    +        assert isinstance(tasks[1], int)
    +        task_num = tasks[1]
    +        tasks = tasks[0]
    +    elif isinstance(tasks, Iterable):
    +        task_num = len(tasks)
    +    else:
    +        raise TypeError(
    +            '"tasks" must be an iterable object or a (iterator, int) tuple')
    +    pool = init_pool(nproc, initializer, initargs)
    +    start = not skip_first
    +    task_num -= nproc * chunksize * int(skip_first)
    +    prog_bar = ProgressBar(task_num, bar_width, start, file=file)
    +    results = []
    +    if keep_order:
    +        gen = pool.imap(func, tasks, chunksize)
    +    else:
    +        gen = pool.imap_unordered(func, tasks, chunksize)
    +    for result in gen:
    +        results.append(result)
    +        if skip_first:
    +            if len(results) < nproc * chunksize:
    +                continue
    +            elif len(results) == nproc * chunksize:
    +                prog_bar.start()
    +                continue
    +        prog_bar.update()
    +    prog_bar.file.write('\n')
    +    pool.close()
    +    pool.join()
    +    return results
    +
    +
    +def track_iter_progress(tasks, bar_width=50, file=sys.stdout):
    +    """Track the progress of tasks iteration or enumeration with a progress
    +    bar.
    +
    +    Tasks are yielded with a simple for-loop.
    +
    +    Args:
    +        tasks (list or tuple[Iterable, int]): A list of tasks or
    +            (tasks, total num).
    +        bar_width (int): Width of progress bar.
    +
    +    Yields:
    +        list: The task results.
    +    """
    +    if isinstance(tasks, tuple):
    +        assert len(tasks) == 2
    +        assert isinstance(tasks[0], Iterable)
    +        assert isinstance(tasks[1], int)
    +        task_num = tasks[1]
    +        tasks = tasks[0]
    +    elif isinstance(tasks, Iterable):
    +        task_num = len(tasks)
    +    else:
    +        raise TypeError(
    +            '"tasks" must be an iterable object or a (iterator, int) tuple')
    +    prog_bar = ProgressBar(task_num, bar_width, file=file)
    +    for task in tasks:
    +        yield task
    +        prog_bar.update()
    +    prog_bar.file.write('\n')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/registry.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/registry.py
    new file mode 100644
    index 000000000..a7db6bd44
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/registry.py
    @@ -0,0 +1,340 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import inspect
    +import warnings
    +from functools import partial
    +from typing import Any, Dict, Optional
    +
    +from .misc import deprecated_api_warning, is_seq_of
    +
    +
    +def build_from_cfg(cfg: Dict,
    +                   registry: 'Registry',
    +                   default_args: Optional[Dict] = None) -> Any:
    +    """Build a module from config dict when it is a class configuration, or
    +    call a function from config dict when it is a function configuration.
    +
    +    Example:
    +        >>> MODELS = Registry('models')
    +        >>> @MODELS.register_module()
    +        >>> class ResNet:
    +        >>>     pass
    +        >>> resnet = build_from_cfg(dict(type='Resnet'), MODELS)
    +        >>> # Returns an instantiated object
    +        >>> @MODELS.register_module()
    +        >>> def resnet50():
    +        >>>     pass
    +        >>> resnet = build_from_cfg(dict(type='resnet50'), MODELS)
    +        >>> # Return a result of the calling function
    +
    +    Args:
    +        cfg (dict): Config dict. It should at least contain the key "type".
    +        registry (:obj:`Registry`): The registry to search the type from.
    +        default_args (dict, optional): Default initialization arguments.
    +
    +    Returns:
    +        object: The constructed object.
    +    """
    +    if not isinstance(cfg, dict):
    +        raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
    +    if 'type' not in cfg:
    +        if default_args is None or 'type' not in default_args:
    +            raise KeyError(
    +                '`cfg` or `default_args` must contain the key "type", '
    +                f'but got {cfg}\n{default_args}')
    +    if not isinstance(registry, Registry):
    +        raise TypeError('registry must be an mmcv.Registry object, '
    +                        f'but got {type(registry)}')
    +    if not (isinstance(default_args, dict) or default_args is None):
    +        raise TypeError('default_args must be a dict or None, '
    +                        f'but got {type(default_args)}')
    +
    +    args = cfg.copy()
    +
    +    if default_args is not None:
    +        for name, value in default_args.items():
    +            args.setdefault(name, value)
    +
    +    obj_type = args.pop('type')
    +    if isinstance(obj_type, str):
    +        obj_cls = registry.get(obj_type)
    +        if obj_cls is None:
    +            raise KeyError(
    +                f'{obj_type} is not in the {registry.name} registry')
    +    elif inspect.isclass(obj_type) or inspect.isfunction(obj_type):
    +        obj_cls = obj_type
    +    else:
    +        raise TypeError(
    +            f'type must be a str or valid type, but got {type(obj_type)}')
    +    try:
    +        return obj_cls(**args)
    +    except Exception as e:
    +        # Normal TypeError does not print class name.
    +        raise type(e)(f'{obj_cls.__name__}: {e}')
    +
    +
    +class Registry:
    +    """A registry to map strings to classes or functions.
    +
    +    Registered object could be built from registry. Meanwhile, registered
    +    functions could be called from registry.
    +
    +    Example:
    +        >>> MODELS = Registry('models')
    +        >>> @MODELS.register_module()
    +        >>> class ResNet:
    +        >>>     pass
    +        >>> resnet = MODELS.build(dict(type='ResNet'))
    +        >>> @MODELS.register_module()
    +        >>> def resnet50():
    +        >>>     pass
    +        >>> resnet = MODELS.build(dict(type='resnet50'))
    +
    +    Please refer to
    +    https://mmcv.readthedocs.io/en/latest/understand_mmcv/registry.html for
    +    advanced usage.
    +
    +    Args:
    +        name (str): Registry name.
    +        build_func(func, optional): Build function to construct instance from
    +            Registry, func:`build_from_cfg` is used if neither ``parent`` or
    +            ``build_func`` is specified. If ``parent`` is specified and
    +            ``build_func`` is not given,  ``build_func`` will be inherited
    +            from ``parent``. Default: None.
    +        parent (Registry, optional): Parent registry. The class registered in
    +            children registry could be built from parent. Default: None.
    +        scope (str, optional): The scope of registry. It is the key to search
    +            for children registry. If not specified, scope will be the name of
    +            the package where class is defined, e.g. mmdet, mmcls, mmseg.
    +            Default: None.
    +    """
    +
    +    def __init__(self, name, build_func=None, parent=None, scope=None):
    +        self._name = name
    +        self._module_dict = dict()
    +        self._children = dict()
    +        self._scope = self.infer_scope() if scope is None else scope
    +
    +        # self.build_func will be set with the following priority:
    +        # 1. build_func
    +        # 2. parent.build_func
    +        # 3. build_from_cfg
    +        if build_func is None:
    +            if parent is not None:
    +                self.build_func = parent.build_func
    +            else:
    +                self.build_func = build_from_cfg
    +        else:
    +            self.build_func = build_func
    +        if parent is not None:
    +            assert isinstance(parent, Registry)
    +            parent._add_children(self)
    +            self.parent = parent
    +        else:
    +            self.parent = None
    +
    +    def __len__(self):
    +        return len(self._module_dict)
    +
    +    def __contains__(self, key):
    +        return self.get(key) is not None
    +
    +    def __repr__(self):
    +        format_str = self.__class__.__name__ + \
    +                     f'(name={self._name}, ' \
    +                     f'items={self._module_dict})'
    +        return format_str
    +
    +    @staticmethod
    +    def infer_scope():
    +        """Infer the scope of registry.
    +
    +        The name of the package where registry is defined will be returned.
    +
    +        Example:
    +            >>> # in mmdet/models/backbone/resnet.py
    +            >>> MODELS = Registry('models')
    +            >>> @MODELS.register_module()
    +            >>> class ResNet:
    +            >>>     pass
    +            The scope of ``ResNet`` will be ``mmdet``.
    +
    +        Returns:
    +            str: The inferred scope name.
    +        """
    +        # We access the caller using inspect.currentframe() instead of
    +        # inspect.stack() for performance reasons. See details in PR #1844
    +        frame = inspect.currentframe()
    +        # get the frame where `infer_scope()` is called
    +        infer_scope_caller = frame.f_back.f_back
    +        filename = inspect.getmodule(infer_scope_caller).__name__
    +        split_filename = filename.split('.')
    +        return split_filename[0]
    +
    +    @staticmethod
    +    def split_scope_key(key):
    +        """Split scope and key.
    +
    +        The first scope will be split from key.
    +
    +        Examples:
    +            >>> Registry.split_scope_key('mmdet.ResNet')
    +            'mmdet', 'ResNet'
    +            >>> Registry.split_scope_key('ResNet')
    +            None, 'ResNet'
    +
    +        Return:
    +            tuple[str | None, str]: The former element is the first scope of
    +            the key, which can be ``None``. The latter is the remaining key.
    +        """
    +        split_index = key.find('.')
    +        if split_index != -1:
    +            return key[:split_index], key[split_index + 1:]
    +        else:
    +            return None, key
    +
    +    @property
    +    def name(self):
    +        return self._name
    +
    +    @property
    +    def scope(self):
    +        return self._scope
    +
    +    @property
    +    def module_dict(self):
    +        return self._module_dict
    +
    +    @property
    +    def children(self):
    +        return self._children
    +
    +    def get(self, key):
    +        """Get the registry record.
    +
    +        Args:
    +            key (str): The class name in string format.
    +
    +        Returns:
    +            class: The corresponding class.
    +        """
    +        scope, real_key = self.split_scope_key(key)
    +        if scope is None or scope == self._scope:
    +            # get from self
    +            if real_key in self._module_dict:
    +                return self._module_dict[real_key]
    +        else:
    +            # get from self._children
    +            if scope in self._children:
    +                return self._children[scope].get(real_key)
    +            else:
    +                # goto root
    +                parent = self.parent
    +                while parent.parent is not None:
    +                    parent = parent.parent
    +                return parent.get(key)
    +
    +    def build(self, *args, **kwargs):
    +        return self.build_func(*args, **kwargs, registry=self)
    +
    +    def _add_children(self, registry):
    +        """Add children for a registry.
    +
    +        The ``registry`` will be added as children based on its scope.
    +        The parent registry could build objects from children registry.
    +
    +        Example:
    +            >>> models = Registry('models')
    +            >>> mmdet_models = Registry('models', parent=models)
    +            >>> @mmdet_models.register_module()
    +            >>> class ResNet:
    +            >>>     pass
    +            >>> resnet = models.build(dict(type='mmdet.ResNet'))
    +        """
    +
    +        assert isinstance(registry, Registry)
    +        assert registry.scope is not None
    +        assert registry.scope not in self.children, \
    +            f'scope {registry.scope} exists in {self.name} registry'
    +        self.children[registry.scope] = registry
    +
    +    @deprecated_api_warning(name_dict=dict(module_class='module'))
    +    def _register_module(self, module, module_name=None, force=False):
    +        if not inspect.isclass(module) and not inspect.isfunction(module):
    +            raise TypeError('module must be a class or a function, '
    +                            f'but got {type(module)}')
    +
    +        if module_name is None:
    +            module_name = module.__name__
    +        if isinstance(module_name, str):
    +            module_name = [module_name]
    +        for name in module_name:
    +            if not force and name in self._module_dict:
    +                raise KeyError(f'{name} is already registered '
    +                               f'in {self.name}')
    +            self._module_dict[name] = module
    +
    +    def deprecated_register_module(self, cls=None, force=False):
    +        warnings.warn(
    +            'The old API of register_module(module, force=False) '
    +            'is deprecated and will be removed, please use the new API '
    +            'register_module(name=None, force=False, module=None) instead.',
    +            DeprecationWarning)
    +        if cls is None:
    +            return partial(self.deprecated_register_module, force=force)
    +        self._register_module(cls, force=force)
    +        return cls
    +
    +    def register_module(self, name=None, force=False, module=None):
    +        """Register a module.
    +
    +        A record will be added to `self._module_dict`, whose key is the class
    +        name or the specified name, and value is the class itself.
    +        It can be used as a decorator or a normal function.
    +
    +        Example:
    +            >>> backbones = Registry('backbone')
    +            >>> @backbones.register_module()
    +            >>> class ResNet:
    +            >>>     pass
    +
    +            >>> backbones = Registry('backbone')
    +            >>> @backbones.register_module(name='mnet')
    +            >>> class MobileNet:
    +            >>>     pass
    +
    +            >>> backbones = Registry('backbone')
    +            >>> class ResNet:
    +            >>>     pass
    +            >>> backbones.register_module(ResNet)
    +
    +        Args:
    +            name (str | None): The module name to be registered. If not
    +                specified, the class name will be used.
    +            force (bool, optional): Whether to override an existing class with
    +                the same name. Default: False.
    +            module (type): Module class or function to be registered.
    +        """
    +        if not isinstance(force, bool):
    +            raise TypeError(f'force must be a boolean, but got {type(force)}')
    +        # NOTE: This is a walkaround to be compatible with the old api,
    +        # while it may introduce unexpected bugs.
    +        if isinstance(name, type):
    +            return self.deprecated_register_module(name, force=force)
    +
    +        # raise the error ahead of time
    +        if not (name is None or isinstance(name, str) or is_seq_of(name, str)):
    +            raise TypeError(
    +                'name must be either of None, an instance of str or a sequence'
    +                f'  of str, but got {type(name)}')
    +
    +        # use it as a normal method: x.register_module(module=SomeClass)
    +        if module is not None:
    +            self._register_module(module=module, module_name=name, force=force)
    +            return module
    +
    +        # use it as a decorator: @x.register_module()
    +        def _register(module):
    +            self._register_module(module=module, module_name=name, force=force)
    +            return module
    +
    +        return _register
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/seed.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/seed.py
    new file mode 100644
    index 000000000..003f92367
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/seed.py
    @@ -0,0 +1,23 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import random
    +
    +import numpy as np
    +import torch
    +
    +
    +def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
    +    """Function to initialize each worker.
    +
    +    The seed of each worker equals to
    +    ``num_worker * rank + worker_id + user_seed``.
    +
    +    Args:
    +        worker_id (int): Id for each worker.
    +        num_workers (int): Number of workers.
    +        rank (int): Rank in distributed training.
    +        seed (int): Random seed.
    +    """
    +    worker_seed = num_workers * rank + worker_id + seed
    +    np.random.seed(worker_seed)
    +    random.seed(worker_seed)
    +    torch.manual_seed(worker_seed)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/testing.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/testing.py
    new file mode 100644
    index 000000000..7b64e8fae
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/testing.py
    @@ -0,0 +1,141 @@
    +# Copyright (c) Open-MMLab.
    +import sys
    +from collections.abc import Iterable
    +from runpy import run_path
    +from shlex import split
    +from typing import Any, Dict, List
    +from unittest.mock import patch
    +
    +
    +def check_python_script(cmd):
    +    """Run the python cmd script with `__main__`. The difference between
    +    `os.system` is that, this function exectues code in the current process, so
    +    that it can be tracked by coverage tools. Currently it supports two forms:
    +
    +    - ./tests/data/scripts/hello.py zz
    +    - python tests/data/scripts/hello.py zz
    +    """
    +    args = split(cmd)
    +    if args[0] == 'python':
    +        args = args[1:]
    +    with patch.object(sys, 'argv', args):
    +        run_path(args[0], run_name='__main__')
    +
    +
    +def _any(judge_result):
    +    """Since built-in ``any`` works only when the element of iterable is not
    +    iterable, implement the function."""
    +    if not isinstance(judge_result, Iterable):
    +        return judge_result
    +
    +    try:
    +        for element in judge_result:
    +            if _any(element):
    +                return True
    +    except TypeError:
    +        # Maybe encounter the case: torch.tensor(True) | torch.tensor(False)
    +        if judge_result:
    +            return True
    +    return False
    +
    +
    +def assert_dict_contains_subset(dict_obj: Dict[Any, Any],
    +                                expected_subset: Dict[Any, Any]) -> bool:
    +    """Check if the dict_obj contains the expected_subset.
    +
    +    Args:
    +        dict_obj (Dict[Any, Any]): Dict object to be checked.
    +        expected_subset (Dict[Any, Any]): Subset expected to be contained in
    +            dict_obj.
    +
    +    Returns:
    +        bool: Whether the dict_obj contains the expected_subset.
    +    """
    +
    +    for key, value in expected_subset.items():
    +        if key not in dict_obj.keys() or _any(dict_obj[key] != value):
    +            return False
    +    return True
    +
    +
    +def assert_attrs_equal(obj: Any, expected_attrs: Dict[str, Any]) -> bool:
    +    """Check if attribute of class object is correct.
    +
    +    Args:
    +        obj (object): Class object to be checked.
    +        expected_attrs (Dict[str, Any]): Dict of the expected attrs.
    +
    +    Returns:
    +        bool: Whether the attribute of class object is correct.
    +    """
    +    for attr, value in expected_attrs.items():
    +        if not hasattr(obj, attr) or _any(getattr(obj, attr) != value):
    +            return False
    +    return True
    +
    +
    +def assert_dict_has_keys(obj: Dict[str, Any],
    +                         expected_keys: List[str]) -> bool:
    +    """Check if the obj has all the expected_keys.
    +
    +    Args:
    +        obj (Dict[str, Any]): Object to be checked.
    +        expected_keys (List[str]): Keys expected to contained in the keys of
    +            the obj.
    +
    +    Returns:
    +        bool: Whether the obj has the expected keys.
    +    """
    +    return set(expected_keys).issubset(set(obj.keys()))
    +
    +
    +def assert_keys_equal(result_keys: List[str], target_keys: List[str]) -> bool:
    +    """Check if target_keys is equal to result_keys.
    +
    +    Args:
    +        result_keys (List[str]): Result keys to be checked.
    +        target_keys (List[str]): Target keys to be checked.
    +
    +    Returns:
    +        bool: Whether target_keys is equal to result_keys.
    +    """
    +    return set(result_keys) == set(target_keys)
    +
    +
    +def assert_is_norm_layer(module) -> bool:
    +    """Check if the module is a norm layer.
    +
    +    Args:
    +        module (nn.Module): The module to be checked.
    +
    +    Returns:
    +        bool: Whether the module is a norm layer.
    +    """
    +    from torch.nn import GroupNorm, LayerNorm
    +
    +    from .parrots_wrapper import _BatchNorm, _InstanceNorm
    +    norm_layer_candidates = (_BatchNorm, _InstanceNorm, GroupNorm, LayerNorm)
    +    return isinstance(module, norm_layer_candidates)
    +
    +
    +def assert_params_all_zeros(module) -> bool:
    +    """Check if the parameters of the module is all zeros.
    +
    +    Args:
    +        module (nn.Module): The module to be checked.
    +
    +    Returns:
    +        bool: Whether the parameters of the module is all zeros.
    +    """
    +    weight_data = module.weight.data
    +    is_weight_zero = weight_data.allclose(
    +        weight_data.new_zeros(weight_data.size()))
    +
    +    if hasattr(module, 'bias') and module.bias is not None:
    +        bias_data = module.bias.data
    +        is_bias_zero = bias_data.allclose(
    +            bias_data.new_zeros(bias_data.size()))
    +    else:
    +        is_bias_zero = True
    +
    +    return is_weight_zero and is_bias_zero
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/timer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/timer.py
    new file mode 100644
    index 000000000..087a969cf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/timer.py
    @@ -0,0 +1,118 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from time import time
    +
    +
    +class TimerError(Exception):
    +
    +    def __init__(self, message):
    +        self.message = message
    +        super().__init__(message)
    +
    +
    +class Timer:
    +    """A flexible Timer class.
    +
    +    Examples:
    +        >>> import time
    +        >>> import mmcv
    +        >>> with mmcv.Timer():
    +        >>>     # simulate a code block that will run for 1s
    +        >>>     time.sleep(1)
    +        1.000
    +        >>> with mmcv.Timer(print_tmpl='it takes {:.1f} seconds'):
    +        >>>     # simulate a code block that will run for 1s
    +        >>>     time.sleep(1)
    +        it takes 1.0 seconds
    +        >>> timer = mmcv.Timer()
    +        >>> time.sleep(0.5)
    +        >>> print(timer.since_start())
    +        0.500
    +        >>> time.sleep(0.5)
    +        >>> print(timer.since_last_check())
    +        0.500
    +        >>> print(timer.since_start())
    +        1.000
    +    """
    +
    +    def __init__(self, start=True, print_tmpl=None):
    +        self._is_running = False
    +        self.print_tmpl = print_tmpl if print_tmpl else '{:.3f}'
    +        if start:
    +            self.start()
    +
    +    @property
    +    def is_running(self):
    +        """bool: indicate whether the timer is running"""
    +        return self._is_running
    +
    +    def __enter__(self):
    +        self.start()
    +        return self
    +
    +    def __exit__(self, type, value, traceback):
    +        print(self.print_tmpl.format(self.since_last_check()))
    +        self._is_running = False
    +
    +    def start(self):
    +        """Start the timer."""
    +        if not self._is_running:
    +            self._t_start = time()
    +            self._is_running = True
    +        self._t_last = time()
    +
    +    def since_start(self):
    +        """Total time since the timer is started.
    +
    +        Returns:
    +            float: Time in seconds.
    +        """
    +        if not self._is_running:
    +            raise TimerError('timer is not running')
    +        self._t_last = time()
    +        return self._t_last - self._t_start
    +
    +    def since_last_check(self):
    +        """Time since the last checking.
    +
    +        Either :func:`since_start` or :func:`since_last_check` is a checking
    +        operation.
    +
    +        Returns:
    +            float: Time in seconds.
    +        """
    +        if not self._is_running:
    +            raise TimerError('timer is not running')
    +        dur = time() - self._t_last
    +        self._t_last = time()
    +        return dur
    +
    +
    +_g_timers = {}  # global timers
    +
    +
    +def check_time(timer_id):
    +    """Add check points in a single line.
    +
    +    This method is suitable for running a task on a list of items. A timer will
    +    be registered when the method is called for the first time.
    +
    +    Examples:
    +        >>> import time
    +        >>> import mmcv
    +        >>> for i in range(1, 6):
    +        >>>     # simulate a code block
    +        >>>     time.sleep(i)
    +        >>>     mmcv.check_time('task1')
    +        2.000
    +        3.000
    +        4.000
    +        5.000
    +
    +    Args:
    +        str: Timer identifier.
    +    """
    +    if timer_id not in _g_timers:
    +        _g_timers[timer_id] = Timer()
    +        return 0
    +    else:
    +        return _g_timers[timer_id].since_last_check()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/torch_ops.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/torch_ops.py
    new file mode 100644
    index 000000000..b4f2213a4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/torch_ops.py
    @@ -0,0 +1,29 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from .parrots_wrapper import TORCH_VERSION
    +from .version_utils import digit_version
    +
    +_torch_version_meshgrid_indexing = (
    +    'parrots' not in TORCH_VERSION
    +    and digit_version(TORCH_VERSION) >= digit_version('1.10.0a0'))
    +
    +
    +def torch_meshgrid(*tensors):
    +    """A wrapper of torch.meshgrid to compat different PyTorch versions.
    +
    +    Since PyTorch 1.10.0a0, torch.meshgrid supports the arguments ``indexing``.
    +    So we implement a wrapper here to avoid warning when using high-version
    +    PyTorch and avoid compatibility issues when using previous versions of
    +    PyTorch.
    +
    +    Args:
    +        tensors (List[Tensor]): List of scalars or 1 dimensional tensors.
    +
    +    Returns:
    +        Sequence[Tensor]: Sequence of meshgrid tensors.
    +    """
    +    if _torch_version_meshgrid_indexing:
    +        return torch.meshgrid(*tensors, indexing='ij')
    +    else:
    +        return torch.meshgrid(*tensors)  # Uses indexing='ij' by default
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/trace.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/trace.py
    new file mode 100644
    index 000000000..45423bd05
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/trace.py
    @@ -0,0 +1,24 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +
    +import torch
    +
    +from mmcv.utils import digit_version
    +
    +
    +def is_jit_tracing() -> bool:
    +    if (torch.__version__ != 'parrots'
    +            and digit_version(torch.__version__) >= digit_version('1.6.0')):
    +        on_trace = torch.jit.is_tracing()
    +        # In PyTorch 1.6, torch.jit.is_tracing has a bug.
    +        # Refers to https://github.com/pytorch/pytorch/issues/42448
    +        if isinstance(on_trace, bool):
    +            return on_trace
    +        else:
    +            return torch._C._is_tracing()
    +    else:
    +        warnings.warn(
    +            'torch.jit.is_tracing is only supported after v1.6.0. '
    +            'Therefore is_tracing returns False automatically. Please '
    +            'set on_trace manually if you are using trace.', UserWarning)
    +        return False
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/version_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/version_utils.py
    new file mode 100644
    index 000000000..77c41f608
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/utils/version_utils.py
    @@ -0,0 +1,90 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import subprocess
    +import warnings
    +
    +from packaging.version import parse
    +
    +
    +def digit_version(version_str: str, length: int = 4):
    +    """Convert a version string into a tuple of integers.
    +
    +    This method is usually used for comparing two versions. For pre-release
    +    versions: alpha < beta < rc.
    +
    +    Args:
    +        version_str (str): The version string.
    +        length (int): The maximum number of version levels. Default: 4.
    +
    +    Returns:
    +        tuple[int]: The version info in digits (integers).
    +    """
    +    assert 'parrots' not in version_str
    +    version = parse(version_str)
    +    assert version.release, f'failed to parse version {version_str}'
    +    release = list(version.release)
    +    release = release[:length]
    +    if len(release) < length:
    +        release = release + [0] * (length - len(release))
    +    if version.is_prerelease:
    +        mapping = {'a': -3, 'b': -2, 'rc': -1}
    +        val = -4
    +        # version.pre can be None
    +        if version.pre:
    +            if version.pre[0] not in mapping:
    +                warnings.warn(f'unknown prerelease version {version.pre[0]}, '
    +                              'version checking may go wrong')
    +            else:
    +                val = mapping[version.pre[0]]
    +            release.extend([val, version.pre[-1]])
    +        else:
    +            release.extend([val, 0])
    +
    +    elif version.is_postrelease:
    +        release.extend([1, version.post])  # type: ignore
    +    else:
    +        release.extend([0, 0])
    +    return tuple(release)
    +
    +
    +def _minimal_ext_cmd(cmd):
    +    # construct minimal environment
    +    env = {}
    +    for k in ['SYSTEMROOT', 'PATH', 'HOME']:
    +        v = os.environ.get(k)
    +        if v is not None:
    +            env[k] = v
    +    # LANGUAGE is used on win32
    +    env['LANGUAGE'] = 'C'
    +    env['LANG'] = 'C'
    +    env['LC_ALL'] = 'C'
    +    out = subprocess.Popen(
    +        cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
    +    return out
    +
    +
    +def get_git_hash(fallback='unknown', digits=None):
    +    """Get the git hash of the current repo.
    +
    +    Args:
    +        fallback (str, optional): The fallback string when git hash is
    +            unavailable. Defaults to 'unknown'.
    +        digits (int, optional): kept digits of the hash. Defaults to None,
    +            meaning all digits are kept.
    +
    +    Returns:
    +        str: Git commit hash.
    +    """
    +
    +    if digits is not None and not isinstance(digits, int):
    +        raise TypeError('digits must be None or an integer')
    +
    +    try:
    +        out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
    +        sha = out.strip().decode('ascii')
    +        if digits is not None:
    +            sha = sha[:digits]
    +    except OSError:
    +        sha = fallback
    +
    +    return sha
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/version.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/version.py
    new file mode 100644
    index 000000000..4564c4f27
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/version.py
    @@ -0,0 +1,35 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +__version__ = '1.7.1'
    +
    +
    +def parse_version_info(version_str: str, length: int = 4) -> tuple:
    +    """Parse a version string into a tuple.
    +
    +    Args:
    +        version_str (str): The version string.
    +        length (int): The maximum number of version levels. Default: 4.
    +
    +    Returns:
    +        tuple[int | str]: The version info, e.g., "1.3.0" is parsed into
    +            (1, 3, 0, 0, 0, 0), and "2.0.0rc1" is parsed into
    +            (2, 0, 0, 0, 'rc', 1) (when length is set to 4).
    +    """
    +    from packaging.version import parse
    +    version = parse(version_str)
    +    assert version.release, f'failed to parse version {version_str}'
    +    release = list(version.release)
    +    release = release[:length]
    +    if len(release) < length:
    +        release = release + [0] * (length - len(release))
    +    if version.is_prerelease:
    +        release.extend(list(version.pre))  # type: ignore
    +    elif version.is_postrelease:
    +        release.extend(list(version.post))  # type: ignore
    +    else:
    +        release.extend([0, 0])
    +    return tuple(release)
    +
    +
    +version_info = tuple(int(x) for x in __version__.split('.')[:3])
    +
    +__all__ = ['__version__', 'version_info', 'parse_version_info']
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/__init__.py
    new file mode 100644
    index 000000000..73199b01d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/__init__.py
    @@ -0,0 +1,11 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .io import Cache, VideoReader, frames2video
    +from .optflow import (dequantize_flow, flow_from_bytes, flow_warp, flowread,
    +                      flowwrite, quantize_flow, sparse_flow_from_bytes)
    +from .processing import concat_video, convert_video, cut_video, resize_video
    +
    +__all__ = [
    +    'Cache', 'VideoReader', 'frames2video', 'convert_video', 'resize_video',
    +    'cut_video', 'concat_video', 'flowread', 'flowwrite', 'quantize_flow',
    +    'dequantize_flow', 'flow_warp', 'flow_from_bytes', 'sparse_flow_from_bytes'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/io.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/io.py
    new file mode 100644
    index 000000000..0b2b68876
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/io.py
    @@ -0,0 +1,317 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +from collections import OrderedDict
    +
    +import cv2
    +from cv2 import (CAP_PROP_FOURCC, CAP_PROP_FPS, CAP_PROP_FRAME_COUNT,
    +                 CAP_PROP_FRAME_HEIGHT, CAP_PROP_FRAME_WIDTH,
    +                 CAP_PROP_POS_FRAMES, VideoWriter_fourcc)
    +
    +from mmcv.utils import (check_file_exist, mkdir_or_exist, scandir,
    +                        track_progress)
    +
    +
    +class Cache:
    +
    +    def __init__(self, capacity):
    +        self._cache = OrderedDict()
    +        self._capacity = int(capacity)
    +        if capacity <= 0:
    +            raise ValueError('capacity must be a positive integer')
    +
    +    @property
    +    def capacity(self):
    +        return self._capacity
    +
    +    @property
    +    def size(self):
    +        return len(self._cache)
    +
    +    def put(self, key, val):
    +        if key in self._cache:
    +            return
    +        if len(self._cache) >= self.capacity:
    +            self._cache.popitem(last=False)
    +        self._cache[key] = val
    +
    +    def get(self, key, default=None):
    +        val = self._cache[key] if key in self._cache else default
    +        return val
    +
    +
    +class VideoReader:
    +    """Video class with similar usage to a list object.
    +
    +    This video wrapper class provides convenient apis to access frames.
    +    There exists an issue of OpenCV's VideoCapture class that jumping to a
    +    certain frame may be inaccurate. It is fixed in this class by checking
    +    the position after jumping each time.
    +    Cache is used when decoding videos. So if the same frame is visited for
    +    the second time, there is no need to decode again if it is stored in the
    +    cache.
    +
    +    Examples:
    +        >>> import mmcv
    +        >>> v = mmcv.VideoReader('sample.mp4')
    +        >>> len(v)  # get the total frame number with `len()`
    +        120
    +        >>> for img in v:  # v is iterable
    +        >>>     mmcv.imshow(img)
    +        >>> v[5]  # get the 6th frame
    +    """
    +
    +    def __init__(self, filename, cache_capacity=10):
    +        # Check whether the video path is a url
    +        if not filename.startswith(('https://', 'http://')):
    +            check_file_exist(filename, 'Video file not found: ' + filename)
    +        self._vcap = cv2.VideoCapture(filename)
    +        assert cache_capacity > 0
    +        self._cache = Cache(cache_capacity)
    +        self._position = 0
    +        # get basic info
    +        self._width = int(self._vcap.get(CAP_PROP_FRAME_WIDTH))
    +        self._height = int(self._vcap.get(CAP_PROP_FRAME_HEIGHT))
    +        self._fps = self._vcap.get(CAP_PROP_FPS)
    +        self._frame_cnt = int(self._vcap.get(CAP_PROP_FRAME_COUNT))
    +        self._fourcc = self._vcap.get(CAP_PROP_FOURCC)
    +
    +    @property
    +    def vcap(self):
    +        """:obj:`cv2.VideoCapture`: The raw VideoCapture object."""
    +        return self._vcap
    +
    +    @property
    +    def opened(self):
    +        """bool: Indicate whether the video is opened."""
    +        return self._vcap.isOpened()
    +
    +    @property
    +    def width(self):
    +        """int: Width of video frames."""
    +        return self._width
    +
    +    @property
    +    def height(self):
    +        """int: Height of video frames."""
    +        return self._height
    +
    +    @property
    +    def resolution(self):
    +        """tuple: Video resolution (width, height)."""
    +        return (self._width, self._height)
    +
    +    @property
    +    def fps(self):
    +        """float: FPS of the video."""
    +        return self._fps
    +
    +    @property
    +    def frame_cnt(self):
    +        """int: Total frames of the video."""
    +        return self._frame_cnt
    +
    +    @property
    +    def fourcc(self):
    +        """str: "Four character code" of the video."""
    +        return self._fourcc
    +
    +    @property
    +    def position(self):
    +        """int: Current cursor position, indicating frame decoded."""
    +        return self._position
    +
    +    def _get_real_position(self):
    +        return int(round(self._vcap.get(CAP_PROP_POS_FRAMES)))
    +
    +    def _set_real_position(self, frame_id):
    +        self._vcap.set(CAP_PROP_POS_FRAMES, frame_id)
    +        pos = self._get_real_position()
    +        for _ in range(frame_id - pos):
    +            self._vcap.read()
    +        self._position = frame_id
    +
    +    def read(self):
    +        """Read the next frame.
    +
    +        If the next frame have been decoded before and in the cache, then
    +        return it directly, otherwise decode, cache and return it.
    +
    +        Returns:
    +            ndarray or None: Return the frame if successful, otherwise None.
    +        """
    +        # pos = self._position
    +        if self._cache:
    +            img = self._cache.get(self._position)
    +            if img is not None:
    +                ret = True
    +            else:
    +                if self._position != self._get_real_position():
    +                    self._set_real_position(self._position)
    +                ret, img = self._vcap.read()
    +                if ret:
    +                    self._cache.put(self._position, img)
    +        else:
    +            ret, img = self._vcap.read()
    +        if ret:
    +            self._position += 1
    +        return img
    +
    +    def get_frame(self, frame_id):
    +        """Get frame by index.
    +
    +        Args:
    +            frame_id (int): Index of the expected frame, 0-based.
    +
    +        Returns:
    +            ndarray or None: Return the frame if successful, otherwise None.
    +        """
    +        if frame_id < 0 or frame_id >= self._frame_cnt:
    +            raise IndexError(
    +                f'"frame_id" must be between 0 and {self._frame_cnt - 1}')
    +        if frame_id == self._position:
    +            return self.read()
    +        if self._cache:
    +            img = self._cache.get(frame_id)
    +            if img is not None:
    +                self._position = frame_id + 1
    +                return img
    +        self._set_real_position(frame_id)
    +        ret, img = self._vcap.read()
    +        if ret:
    +            if self._cache:
    +                self._cache.put(self._position, img)
    +            self._position += 1
    +        return img
    +
    +    def current_frame(self):
    +        """Get the current frame (frame that is just visited).
    +
    +        Returns:
    +            ndarray or None: If the video is fresh, return None, otherwise
    +            return the frame.
    +        """
    +        if self._position == 0:
    +            return None
    +        return self._cache.get(self._position - 1)
    +
    +    def cvt2frames(self,
    +                   frame_dir,
    +                   file_start=0,
    +                   filename_tmpl='{:06d}.jpg',
    +                   start=0,
    +                   max_num=0,
    +                   show_progress=True):
    +        """Convert a video to frame images.
    +
    +        Args:
    +            frame_dir (str): Output directory to store all the frame images.
    +            file_start (int): Filenames will start from the specified number.
    +            filename_tmpl (str): Filename template with the index as the
    +                placeholder.
    +            start (int): The starting frame index.
    +            max_num (int): Maximum number of frames to be written.
    +            show_progress (bool): Whether to show a progress bar.
    +        """
    +        mkdir_or_exist(frame_dir)
    +        if max_num == 0:
    +            task_num = self.frame_cnt - start
    +        else:
    +            task_num = min(self.frame_cnt - start, max_num)
    +        if task_num <= 0:
    +            raise ValueError('start must be less than total frame number')
    +        if start > 0:
    +            self._set_real_position(start)
    +
    +        def write_frame(file_idx):
    +            img = self.read()
    +            if img is None:
    +                return
    +            filename = osp.join(frame_dir, filename_tmpl.format(file_idx))
    +            cv2.imwrite(filename, img)
    +
    +        if show_progress:
    +            track_progress(write_frame, range(file_start,
    +                                              file_start + task_num))
    +        else:
    +            for i in range(task_num):
    +                write_frame(file_start + i)
    +
    +    def __len__(self):
    +        return self.frame_cnt
    +
    +    def __getitem__(self, index):
    +        if isinstance(index, slice):
    +            return [
    +                self.get_frame(i)
    +                for i in range(*index.indices(self.frame_cnt))
    +            ]
    +        # support negative indexing
    +        if index < 0:
    +            index += self.frame_cnt
    +            if index < 0:
    +                raise IndexError('index out of range')
    +        return self.get_frame(index)
    +
    +    def __iter__(self):
    +        self._set_real_position(0)
    +        return self
    +
    +    def __next__(self):
    +        img = self.read()
    +        if img is not None:
    +            return img
    +        else:
    +            raise StopIteration
    +
    +    next = __next__
    +
    +    def __enter__(self):
    +        return self
    +
    +    def __exit__(self, exc_type, exc_value, traceback):
    +        self._vcap.release()
    +
    +
    +def frames2video(frame_dir: str,
    +                 video_file: str,
    +                 fps: float = 30,
    +                 fourcc: str = 'XVID',
    +                 filename_tmpl: str = '{:06d}.jpg',
    +                 start: int = 0,
    +                 end: int = 0,
    +                 show_progress: bool = True) -> None:
    +    """Read the frame images from a directory and join them as a video.
    +
    +    Args:
    +        frame_dir (str): The directory containing video frames.
    +        video_file (str): Output filename.
    +        fps (float): FPS of the output video.
    +        fourcc (str): Fourcc of the output video, this should be compatible
    +            with the output file type.
    +        filename_tmpl (str): Filename template with the index as the variable.
    +        start (int): Starting frame index.
    +        end (int): Ending frame index.
    +        show_progress (bool): Whether to show a progress bar.
    +    """
    +    if end == 0:
    +        ext = filename_tmpl.split('.')[-1]
    +        end = len([name for name in scandir(frame_dir, ext)])
    +    first_file = osp.join(frame_dir, filename_tmpl.format(start))
    +    check_file_exist(first_file, 'The start frame not found: ' + first_file)
    +    img = cv2.imread(first_file)
    +    height, width = img.shape[:2]
    +    resolution = (width, height)
    +    vwriter = cv2.VideoWriter(video_file, VideoWriter_fourcc(*fourcc), fps,
    +                              resolution)
    +
    +    def write_frame(file_idx):
    +        filename = osp.join(frame_dir, filename_tmpl.format(file_idx))
    +        img = cv2.imread(filename)
    +        vwriter.write(img)
    +
    +    if show_progress:
    +        track_progress(write_frame, range(start, end))
    +    else:
    +        for i in range(start, end):
    +            write_frame(i)
    +    vwriter.release()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/optflow.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/optflow.py
    new file mode 100644
    index 000000000..91ce00457
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/optflow.py
    @@ -0,0 +1,272 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from typing import Tuple, Union
    +
    +import cv2
    +import numpy as np
    +
    +from mmcv.arraymisc import dequantize, quantize
    +from mmcv.image import imread, imwrite
    +from mmcv.utils import is_str
    +
    +
    +def flowread(flow_or_path: Union[np.ndarray, str],
    +             quantize: bool = False,
    +             concat_axis: int = 0,
    +             *args,
    +             **kwargs) -> np.ndarray:
    +    """Read an optical flow map.
    +
    +    Args:
    +        flow_or_path (ndarray or str): A flow map or filepath.
    +        quantize (bool): whether to read quantized pair, if set to True,
    +            remaining args will be passed to :func:`dequantize_flow`.
    +        concat_axis (int): The axis that dx and dy are concatenated,
    +            can be either 0 or 1. Ignored if quantize is False.
    +
    +    Returns:
    +        ndarray: Optical flow represented as a (h, w, 2) numpy array
    +    """
    +    if isinstance(flow_or_path, np.ndarray):
    +        if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2):
    +            raise ValueError(f'Invalid flow with shape {flow_or_path.shape}')
    +        return flow_or_path
    +    elif not is_str(flow_or_path):
    +        raise TypeError(f'"flow_or_path" must be a filename or numpy array, '
    +                        f'not {type(flow_or_path)}')
    +
    +    if not quantize:
    +        with open(flow_or_path, 'rb') as f:
    +            try:
    +                header = f.read(4).decode('utf-8')
    +            except Exception:
    +                raise OSError(f'Invalid flow file: {flow_or_path}')
    +            else:
    +                if header != 'PIEH':
    +                    raise OSError(f'Invalid flow file: {flow_or_path}, '
    +                                  'header does not contain PIEH')
    +
    +            w = np.fromfile(f, np.int32, 1).squeeze()
    +            h = np.fromfile(f, np.int32, 1).squeeze()
    +            flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
    +    else:
    +        assert concat_axis in [0, 1]
    +        cat_flow = imread(flow_or_path, flag='unchanged')
    +        if cat_flow.ndim != 2:
    +            raise OSError(
    +                f'{flow_or_path} is not a valid quantized flow file, '
    +                f'its dimension is {cat_flow.ndim}.')
    +        assert cat_flow.shape[concat_axis] % 2 == 0
    +        dx, dy = np.split(cat_flow, 2, axis=concat_axis)
    +        flow = dequantize_flow(dx, dy, *args, **kwargs)
    +
    +    return flow.astype(np.float32)
    +
    +
    +def flowwrite(flow: np.ndarray,
    +              filename: str,
    +              quantize: bool = False,
    +              concat_axis: int = 0,
    +              *args,
    +              **kwargs) -> None:
    +    """Write optical flow to file.
    +
    +    If the flow is not quantized, it will be saved as a .flo file losslessly,
    +    otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
    +    will be concatenated horizontally into a single image if quantize is True.)
    +
    +    Args:
    +        flow (ndarray): (h, w, 2) array of optical flow.
    +        filename (str): Output filepath.
    +        quantize (bool): Whether to quantize the flow and save it to 2 jpeg
    +            images. If set to True, remaining args will be passed to
    +            :func:`quantize_flow`.
    +        concat_axis (int): The axis that dx and dy are concatenated,
    +            can be either 0 or 1. Ignored if quantize is False.
    +    """
    +    if not quantize:
    +        with open(filename, 'wb') as f:
    +            f.write(b'PIEH')
    +            np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
    +            flow = flow.astype(np.float32)
    +            flow.tofile(f)
    +            f.flush()
    +    else:
    +        assert concat_axis in [0, 1]
    +        dx, dy = quantize_flow(flow, *args, **kwargs)
    +        dxdy = np.concatenate((dx, dy), axis=concat_axis)
    +        imwrite(dxdy, filename)
    +
    +
    +def quantize_flow(flow: np.ndarray,
    +                  max_val: float = 0.02,
    +                  norm: bool = True) -> tuple:
    +    """Quantize flow to [0, 255].
    +
    +    After this step, the size of flow will be much smaller, and can be
    +    dumped as jpeg images.
    +
    +    Args:
    +        flow (ndarray): (h, w, 2) array of optical flow.
    +        max_val (float): Maximum value of flow, values beyond
    +                        [-max_val, max_val] will be truncated.
    +        norm (bool): Whether to divide flow values by image width/height.
    +
    +    Returns:
    +        tuple[ndarray]: Quantized dx and dy.
    +    """
    +    h, w, _ = flow.shape
    +    dx = flow[..., 0]
    +    dy = flow[..., 1]
    +    if norm:
    +        dx = dx / w  # avoid inplace operations
    +        dy = dy / h
    +    # use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
    +    flow_comps = [
    +        quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]
    +    ]
    +    return tuple(flow_comps)
    +
    +
    +def dequantize_flow(dx: np.ndarray,
    +                    dy: np.ndarray,
    +                    max_val: float = 0.02,
    +                    denorm: bool = True) -> np.ndarray:
    +    """Recover from quantized flow.
    +
    +    Args:
    +        dx (ndarray): Quantized dx.
    +        dy (ndarray): Quantized dy.
    +        max_val (float): Maximum value used when quantizing.
    +        denorm (bool): Whether to multiply flow values with width/height.
    +
    +    Returns:
    +        ndarray: Dequantized flow.
    +    """
    +    assert dx.shape == dy.shape
    +    assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)
    +
    +    dx, dy = (dequantize(d, -max_val, max_val, 255) for d in [dx, dy])
    +
    +    if denorm:
    +        dx *= dx.shape[1]
    +        dy *= dx.shape[0]
    +    flow = np.dstack((dx, dy))
    +    return flow
    +
    +
    +def flow_warp(img: np.ndarray,
    +              flow: np.ndarray,
    +              filling_value: int = 0,
    +              interpolate_mode: str = 'nearest') -> np.ndarray:
    +    """Use flow to warp img.
    +
    +    Args:
    +        img (ndarray): Image to be warped.
    +        flow (ndarray): Optical Flow.
    +        filling_value (int): The missing pixels will be set with filling_value.
    +        interpolate_mode (str): bilinear -> Bilinear Interpolation;
    +                                nearest -> Nearest Neighbor.
    +
    +    Returns:
    +        ndarray: Warped image with the same shape of img
    +    """
    +    warnings.warn('This function is just for prototyping and cannot '
    +                  'guarantee the computational efficiency.')
    +    assert flow.ndim == 3, 'Flow must be in 3D arrays.'
    +    height = flow.shape[0]
    +    width = flow.shape[1]
    +    channels = img.shape[2]
    +
    +    output = np.ones(
    +        (height, width, channels), dtype=img.dtype) * filling_value
    +
    +    grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
    +    dx = grid[:, :, 0] + flow[:, :, 1]
    +    dy = grid[:, :, 1] + flow[:, :, 0]
    +    sx = np.floor(dx).astype(int)
    +    sy = np.floor(dy).astype(int)
    +    valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)
    +
    +    if interpolate_mode == 'nearest':
    +        output[valid, :] = img[dx[valid].round().astype(int),
    +                               dy[valid].round().astype(int), :]
    +    elif interpolate_mode == 'bilinear':
    +        # dirty walkround for integer positions
    +        eps_ = 1e-6
    +        dx, dy = dx + eps_, dy + eps_
    +        left_top_ = img[np.floor(dx[valid]).astype(int),
    +                        np.floor(dy[valid]).astype(int), :] * (
    +                            np.ceil(dx[valid]) - dx[valid])[:, None] * (
    +                                np.ceil(dy[valid]) - dy[valid])[:, None]
    +        left_down_ = img[np.ceil(dx[valid]).astype(int),
    +                         np.floor(dy[valid]).astype(int), :] * (
    +                             dx[valid] - np.floor(dx[valid]))[:, None] * (
    +                                 np.ceil(dy[valid]) - dy[valid])[:, None]
    +        right_top_ = img[np.floor(dx[valid]).astype(int),
    +                         np.ceil(dy[valid]).astype(int), :] * (
    +                             np.ceil(dx[valid]) - dx[valid])[:, None] * (
    +                                 dy[valid] - np.floor(dy[valid]))[:, None]
    +        right_down_ = img[np.ceil(dx[valid]).astype(int),
    +                          np.ceil(dy[valid]).astype(int), :] * (
    +                              dx[valid] - np.floor(dx[valid]))[:, None] * (
    +                                  dy[valid] - np.floor(dy[valid]))[:, None]
    +        output[valid, :] = left_top_ + left_down_ + right_top_ + right_down_
    +    else:
    +        raise NotImplementedError(
    +            'We only support interpolation modes of nearest and bilinear, '
    +            f'but got {interpolate_mode}.')
    +    return output.astype(img.dtype)
    +
    +
    +def flow_from_bytes(content: bytes) -> np.ndarray:
    +    """Read dense optical flow from bytes.
    +
    +    .. note::
    +        This load optical flow function works for FlyingChairs, FlyingThings3D,
    +        Sintel, FlyingChairsOcc datasets, but cannot load the data from
    +        ChairsSDHom.
    +
    +    Args:
    +        content (bytes): Optical flow bytes got from files or other streams.
    +
    +    Returns:
    +        ndarray: Loaded optical flow with the shape (H, W, 2).
    +    """
    +
    +    # header in first 4 bytes
    +    header = content[:4]
    +    if header.decode('utf-8') != 'PIEH':
    +        raise Exception('Flow file header does not contain PIEH')
    +    # width in second 4 bytes
    +    width = np.frombuffer(content[4:], np.int32, 1).squeeze()
    +    # height in third 4 bytes
    +    height = np.frombuffer(content[8:], np.int32, 1).squeeze()
    +    # after first 12 bytes, all bytes are flow
    +    flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape(
    +        (height, width, 2))
    +
    +    return flow
    +
    +
    +def sparse_flow_from_bytes(content: bytes) -> Tuple[np.ndarray, np.ndarray]:
    +    """Read the optical flow in KITTI datasets from bytes.
    +
    +    This function is modified from RAFT load the `KITTI datasets
    +    `_.
    +
    +    Args:
    +        content (bytes): Optical flow bytes got from files or other streams.
    +
    +    Returns:
    +        Tuple(ndarray, ndarray): Loaded optical flow with the shape (H, W, 2)
    +        and flow valid mask with the shape (H, W).
    +    """  # nopa
    +
    +    content = np.frombuffer(content, np.uint8)
    +    flow = cv2.imdecode(content, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
    +    flow = flow[:, :, ::-1].astype(np.float32)
    +    # flow shape (H, W, 2) valid shape (H, W)
    +    flow, valid = flow[:, :, :2], flow[:, :, 2]
    +    flow = (flow - 2**15) / 64.0
    +    return flow, valid
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/processing.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/processing.py
    new file mode 100644
    index 000000000..90e2a4c02
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/video/processing.py
    @@ -0,0 +1,161 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import subprocess
    +import tempfile
    +from typing import List, Optional, Union
    +
    +from mmcv.utils import requires_executable
    +
    +
    +@requires_executable('ffmpeg')
    +def convert_video(in_file: str,
    +                  out_file: str,
    +                  print_cmd: bool = False,
    +                  pre_options: str = '',
    +                  **kwargs) -> None:
    +    """Convert a video with ffmpeg.
    +
    +    This provides a general api to ffmpeg, the executed command is::
    +
    +        `ffmpeg -y  -i   `
    +
    +    Options(kwargs) are mapped to ffmpeg commands with the following rules:
    +
    +    - key=val: "-key val"
    +    - key=True: "-key"
    +    - key=False: ""
    +
    +    Args:
    +        in_file (str): Input video filename.
    +        out_file (str): Output video filename.
    +        pre_options (str): Options appears before "-i ".
    +        print_cmd (bool): Whether to print the final ffmpeg command.
    +    """
    +    options = []
    +    for k, v in kwargs.items():
    +        if isinstance(v, bool):
    +            if v:
    +                options.append(f'-{k}')
    +        elif k == 'log_level':
    +            assert v in [
    +                'quiet', 'panic', 'fatal', 'error', 'warning', 'info',
    +                'verbose', 'debug', 'trace'
    +            ]
    +            options.append(f'-loglevel {v}')
    +        else:
    +            options.append(f'-{k} {v}')
    +    cmd = f'ffmpeg -y {pre_options} -i {in_file} {" ".join(options)} ' \
    +          f'{out_file}'
    +    if print_cmd:
    +        print(cmd)
    +    subprocess.call(cmd, shell=True)
    +
    +
    +@requires_executable('ffmpeg')
    +def resize_video(in_file: str,
    +                 out_file: str,
    +                 size: Optional[tuple] = None,
    +                 ratio: Union[tuple, float, None] = None,
    +                 keep_ar: bool = False,
    +                 log_level: str = 'info',
    +                 print_cmd: bool = False) -> None:
    +    """Resize a video.
    +
    +    Args:
    +        in_file (str): Input video filename.
    +        out_file (str): Output video filename.
    +        size (tuple): Expected size (w, h), eg, (320, 240) or (320, -1).
    +        ratio (tuple or float): Expected resize ratio, (2, 0.5) means
    +            (w*2, h*0.5).
    +        keep_ar (bool): Whether to keep original aspect ratio.
    +        log_level (str): Logging level of ffmpeg.
    +        print_cmd (bool): Whether to print the final ffmpeg command.
    +    """
    +    if size is None and ratio is None:
    +        raise ValueError('expected size or ratio must be specified')
    +    if size is not None and ratio is not None:
    +        raise ValueError('size and ratio cannot be specified at the same time')
    +    options = {'log_level': log_level}
    +    if size:
    +        if not keep_ar:
    +            options['vf'] = f'scale={size[0]}:{size[1]}'
    +        else:
    +            options['vf'] = f'scale=w={size[0]}:h={size[1]}:' \
    +                            'force_original_aspect_ratio=decrease'
    +    else:
    +        if not isinstance(ratio, tuple):
    +            ratio = (ratio, ratio)
    +        options['vf'] = f'scale="trunc(iw*{ratio[0]}):trunc(ih*{ratio[1]})"'
    +    convert_video(in_file, out_file, print_cmd, **options)
    +
    +
    +@requires_executable('ffmpeg')
    +def cut_video(in_file: str,
    +              out_file: str,
    +              start: Optional[float] = None,
    +              end: Optional[float] = None,
    +              vcodec: Optional[str] = None,
    +              acodec: Optional[str] = None,
    +              log_level: str = 'info',
    +              print_cmd: bool = False) -> None:
    +    """Cut a clip from a video.
    +
    +    Args:
    +        in_file (str): Input video filename.
    +        out_file (str): Output video filename.
    +        start (None or float): Start time (in seconds).
    +        end (None or float): End time (in seconds).
    +        vcodec (None or str): Output video codec, None for unchanged.
    +        acodec (None or str): Output audio codec, None for unchanged.
    +        log_level (str): Logging level of ffmpeg.
    +        print_cmd (bool): Whether to print the final ffmpeg command.
    +    """
    +    options = {'log_level': log_level}
    +    if vcodec is None:
    +        options['vcodec'] = 'copy'
    +    if acodec is None:
    +        options['acodec'] = 'copy'
    +    if start:
    +        options['ss'] = start  # type: ignore
    +    else:
    +        start = 0
    +    if end:
    +        options['t'] = end - start  # type: ignore
    +    convert_video(in_file, out_file, print_cmd, **options)
    +
    +
    +@requires_executable('ffmpeg')
    +def concat_video(video_list: List,
    +                 out_file: str,
    +                 vcodec: Optional[str] = None,
    +                 acodec: Optional[str] = None,
    +                 log_level: str = 'info',
    +                 print_cmd: bool = False) -> None:
    +    """Concatenate multiple videos into a single one.
    +
    +    Args:
    +        video_list (list): A list of video filenames
    +        out_file (str): Output video filename
    +        vcodec (None or str): Output video codec, None for unchanged
    +        acodec (None or str): Output audio codec, None for unchanged
    +        log_level (str): Logging level of ffmpeg.
    +        print_cmd (bool): Whether to print the final ffmpeg command.
    +    """
    +    tmp_filehandler, tmp_filename = tempfile.mkstemp(suffix='.txt', text=True)
    +    with open(tmp_filename, 'w') as f:
    +        for filename in video_list:
    +            f.write(f'file {osp.abspath(filename)}\n')
    +    options = {'log_level': log_level}
    +    if vcodec is None:
    +        options['vcodec'] = 'copy'
    +    if acodec is None:
    +        options['acodec'] = 'copy'
    +    convert_video(
    +        tmp_filename,
    +        out_file,
    +        print_cmd,
    +        pre_options='-f concat -safe 0',
    +        **options)
    +    os.close(tmp_filehandler)
    +    os.remove(tmp_filename)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/__init__.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/__init__.py
    new file mode 100644
    index 000000000..835df136b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/__init__.py
    @@ -0,0 +1,9 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from .color import Color, color_val
    +from .image import imshow, imshow_bboxes, imshow_det_bboxes
    +from .optflow import flow2rgb, flowshow, make_color_wheel
    +
    +__all__ = [
    +    'Color', 'color_val', 'imshow', 'imshow_bboxes', 'imshow_det_bboxes',
    +    'flowshow', 'flow2rgb', 'make_color_wheel'
    +]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/color.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/color.py
    new file mode 100644
    index 000000000..2cc0b523e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/color.py
    @@ -0,0 +1,52 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from enum import Enum
    +from typing import Union
    +
    +import numpy as np
    +
    +from mmcv.utils import is_str
    +
    +
    +class Color(Enum):
    +    """An enum that defines common colors.
    +
    +    Contains red, green, blue, cyan, yellow, magenta, white and black.
    +    """
    +    red = (0, 0, 255)
    +    green = (0, 255, 0)
    +    blue = (255, 0, 0)
    +    cyan = (255, 255, 0)
    +    yellow = (0, 255, 255)
    +    magenta = (255, 0, 255)
    +    white = (255, 255, 255)
    +    black = (0, 0, 0)
    +
    +
    +def color_val(color: Union[Color, str, tuple, int, np.ndarray]) -> tuple:
    +    """Convert various input to color tuples.
    +
    +    Args:
    +        color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
    +
    +    Returns:
    +        tuple[int]: A tuple of 3 integers indicating BGR channels.
    +    """
    +    if is_str(color):
    +        return Color[color].value  # type: ignore
    +    elif isinstance(color, Color):
    +        return color.value
    +    elif isinstance(color, tuple):
    +        assert len(color) == 3
    +        for channel in color:
    +            assert 0 <= channel <= 255
    +        return color
    +    elif isinstance(color, int):
    +        assert 0 <= color <= 255
    +        return color, color, color
    +    elif isinstance(color, np.ndarray):
    +        assert color.ndim == 1 and color.size == 3
    +        assert np.all((color >= 0) & (color <= 255))
    +        color = color.astype(np.uint8)
    +        return tuple(color)
    +    else:
    +        raise TypeError(f'Invalid type for color: {type(color)}')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/image.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/image.py
    new file mode 100644
    index 000000000..e7ac4c181
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/image.py
    @@ -0,0 +1,161 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import List, Optional, Union
    +
    +import cv2
    +import numpy as np
    +
    +from mmcv.image import imread, imwrite
    +from .color import Color, color_val
    +
    +# a type alias declares the optional types of color argument
    +ColorType = Union[Color, str, tuple, int, np.ndarray]
    +
    +
    +def imshow(img: Union[str, np.ndarray],
    +           win_name: str = '',
    +           wait_time: int = 0):
    +    """Show an image.
    +
    +    Args:
    +        img (str or ndarray): The image to be displayed.
    +        win_name (str): The window name.
    +        wait_time (int): Value of waitKey param.
    +    """
    +    cv2.imshow(win_name, imread(img))
    +    if wait_time == 0:  # prevent from hanging if windows was closed
    +        while True:
    +            ret = cv2.waitKey(1)
    +
    +            closed = cv2.getWindowProperty(win_name, cv2.WND_PROP_VISIBLE) < 1
    +            # if user closed window or if some key pressed
    +            if closed or ret != -1:
    +                break
    +    else:
    +        ret = cv2.waitKey(wait_time)
    +
    +
    +def imshow_bboxes(img: Union[str, np.ndarray],
    +                  bboxes: Union[list, np.ndarray],
    +                  colors: ColorType = 'green',
    +                  top_k: int = -1,
    +                  thickness: int = 1,
    +                  show: bool = True,
    +                  win_name: str = '',
    +                  wait_time: int = 0,
    +                  out_file: Optional[str] = None):
    +    """Draw bboxes on an image.
    +
    +    Args:
    +        img (str or ndarray): The image to be displayed.
    +        bboxes (list or ndarray): A list of ndarray of shape (k, 4).
    +        colors (Color or str or tuple or int or ndarray): A list of colors.
    +        top_k (int): Plot the first k bboxes only if set positive.
    +        thickness (int): Thickness of lines.
    +        show (bool): Whether to show the image.
    +        win_name (str): The window name.
    +        wait_time (int): Value of waitKey param.
    +        out_file (str, optional): The filename to write the image.
    +
    +    Returns:
    +        ndarray: The image with bboxes drawn on it.
    +    """
    +    img = imread(img)
    +    img = np.ascontiguousarray(img)
    +
    +    if isinstance(bboxes, np.ndarray):
    +        bboxes = [bboxes]
    +    if not isinstance(colors, list):
    +        colors = [colors for _ in range(len(bboxes))]
    +    colors = [color_val(c) for c in colors]
    +    assert len(bboxes) == len(colors)
    +
    +    for i, _bboxes in enumerate(bboxes):
    +        _bboxes = _bboxes.astype(np.int32)
    +        if top_k <= 0:
    +            _top_k = _bboxes.shape[0]
    +        else:
    +            _top_k = min(top_k, _bboxes.shape[0])
    +        for j in range(_top_k):
    +            left_top = (_bboxes[j, 0], _bboxes[j, 1])
    +            right_bottom = (_bboxes[j, 2], _bboxes[j, 3])
    +            cv2.rectangle(
    +                img, left_top, right_bottom, colors[i], thickness=thickness)
    +
    +    if show:
    +        imshow(img, win_name, wait_time)
    +    if out_file is not None:
    +        imwrite(img, out_file)
    +    return img
    +
    +
    +def imshow_det_bboxes(img: Union[str, np.ndarray],
    +                      bboxes: np.ndarray,
    +                      labels: np.ndarray,
    +                      class_names: List[str] = None,
    +                      score_thr: float = 0,
    +                      bbox_color: ColorType = 'green',
    +                      text_color: ColorType = 'green',
    +                      thickness: int = 1,
    +                      font_scale: float = 0.5,
    +                      show: bool = True,
    +                      win_name: str = '',
    +                      wait_time: int = 0,
    +                      out_file: Optional[str] = None):
    +    """Draw bboxes and class labels (with scores) on an image.
    +
    +    Args:
    +        img (str or ndarray): The image to be displayed.
    +        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
    +            (n, 5).
    +        labels (ndarray): Labels of bboxes.
    +        class_names (list[str]): Names of each classes.
    +        score_thr (float): Minimum score of bboxes to be shown.
    +        bbox_color (Color or str or tuple or int or ndarray): Color
    +            of bbox lines.
    +        text_color (Color or str or tuple or int or ndarray): Color
    +            of texts.
    +        thickness (int): Thickness of lines.
    +        font_scale (float): Font scales of texts.
    +        show (bool): Whether to show the image.
    +        win_name (str): The window name.
    +        wait_time (int): Value of waitKey param.
    +        out_file (str or None): The filename to write the image.
    +
    +    Returns:
    +        ndarray: The image with bboxes drawn on it.
    +    """
    +    assert bboxes.ndim == 2
    +    assert labels.ndim == 1
    +    assert bboxes.shape[0] == labels.shape[0]
    +    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    +    img = imread(img)
    +    img = np.ascontiguousarray(img)
    +
    +    if score_thr > 0:
    +        assert bboxes.shape[1] == 5
    +        scores = bboxes[:, -1]
    +        inds = scores > score_thr
    +        bboxes = bboxes[inds, :]
    +        labels = labels[inds]
    +
    +    bbox_color = color_val(bbox_color)
    +    text_color = color_val(text_color)
    +
    +    for bbox, label in zip(bboxes, labels):
    +        bbox_int = bbox.astype(np.int32)
    +        left_top = (bbox_int[0], bbox_int[1])
    +        right_bottom = (bbox_int[2], bbox_int[3])
    +        cv2.rectangle(
    +            img, left_top, right_bottom, bbox_color, thickness=thickness)
    +        label_text = class_names[
    +            label] if class_names is not None else f'cls {label}'
    +        if len(bbox) > 4:
    +            label_text += f'|{bbox[-1]:.02f}'
    +        cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
    +                    cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
    +
    +    if show:
    +        imshow(img, win_name, wait_time)
    +    if out_file is not None:
    +        imwrite(img, out_file)
    +    return img
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/optflow.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/optflow.py
    new file mode 100644
    index 000000000..080b0e61f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/mmcv/visualization/optflow.py
    @@ -0,0 +1,116 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from typing import Optional, Union
    +
    +import numpy as np
    +
    +from mmcv.image import rgb2bgr
    +from mmcv.video import flowread
    +from .image import imshow
    +
    +
    +def flowshow(flow: Union[np.ndarray, str],
    +             win_name: str = '',
    +             wait_time: int = 0) -> None:
    +    """Show optical flow.
    +
    +    Args:
    +        flow (ndarray or str): The optical flow to be displayed.
    +        win_name (str): The window name.
    +        wait_time (int): Value of waitKey param.
    +    """
    +    flow = flowread(flow)
    +    flow_img = flow2rgb(flow)
    +    imshow(rgb2bgr(flow_img), win_name, wait_time)
    +
    +
    +def flow2rgb(flow: np.ndarray,
    +             color_wheel: Optional[np.ndarray] = None,
    +             unknown_thr: float = 1e6) -> np.ndarray:
    +    """Convert flow map to RGB image.
    +
    +    Args:
    +        flow (ndarray): Array of optical flow.
    +        color_wheel (ndarray or None): Color wheel used to map flow field to
    +            RGB colorspace. Default color wheel will be used if not specified.
    +        unknown_thr (float): Values above this threshold will be marked as
    +            unknown and thus ignored.
    +
    +    Returns:
    +        ndarray: RGB image that can be visualized.
    +    """
    +    assert flow.ndim == 3 and flow.shape[-1] == 2
    +    if color_wheel is None:
    +        color_wheel = make_color_wheel()
    +    assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3
    +    num_bins = color_wheel.shape[0]
    +
    +    dx = flow[:, :, 0].copy()
    +    dy = flow[:, :, 1].copy()
    +
    +    ignore_inds = (
    +        np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) |
    +        (np.abs(dy) > unknown_thr))
    +    dx[ignore_inds] = 0
    +    dy[ignore_inds] = 0
    +
    +    rad = np.sqrt(dx**2 + dy**2)
    +    if np.any(rad > np.finfo(float).eps):
    +        max_rad = np.max(rad)
    +        dx /= max_rad
    +        dy /= max_rad
    +
    +    rad = np.sqrt(dx**2 + dy**2)
    +    angle = np.arctan2(-dy, -dx) / np.pi
    +
    +    bin_real = (angle + 1) / 2 * (num_bins - 1)
    +    bin_left = np.floor(bin_real).astype(int)
    +    bin_right = (bin_left + 1) % num_bins
    +    w = (bin_real - bin_left.astype(np.float32))[..., None]
    +    flow_img = (1 -
    +                w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :]
    +    small_ind = rad <= 1
    +    flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind])
    +    flow_img[np.logical_not(small_ind)] *= 0.75
    +
    +    flow_img[ignore_inds, :] = 0
    +
    +    return flow_img
    +
    +
    +def make_color_wheel(bins: Optional[Union[list, tuple]] = None) -> np.ndarray:
    +    """Build a color wheel.
    +
    +    Args:
    +        bins(list or tuple, optional): Specify the number of bins for each
    +            color range, corresponding to six ranges: red -> yellow,
    +            yellow -> green, green -> cyan, cyan -> blue, blue -> magenta,
    +            magenta -> red. [15, 6, 4, 11, 13, 6] is used for default
    +            (see Middlebury).
    +
    +    Returns:
    +        ndarray: Color wheel of shape (total_bins, 3).
    +    """
    +    if bins is None:
    +        bins = [15, 6, 4, 11, 13, 6]
    +    assert len(bins) == 6
    +
    +    RY, YG, GC, CB, BM, MR = tuple(bins)
    +
    +    ry = [1, np.arange(RY) / RY, 0]
    +    yg = [1 - np.arange(YG) / YG, 1, 0]
    +    gc = [0, 1, np.arange(GC) / GC]
    +    cb = [0, 1 - np.arange(CB) / CB, 1]
    +    bm = [np.arange(BM) / BM, 0, 1]
    +    mr = [1, 0, 1 - np.arange(MR) / MR]
    +
    +    num_bins = RY + YG + GC + CB + BM + MR
    +
    +    color_wheel = np.zeros((3, num_bins), dtype=np.float32)
    +
    +    col = 0
    +    for i, color in enumerate([ry, yg, gc, cb, bm, mr]):
    +        for j in range(3):
    +            color_wheel[j, col:col + bins[i]] = color[j]
    +        col += bins[i]
    +
    +    return color_wheel.T
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements.txt
    new file mode 100644
    index 000000000..448e224f9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements.txt
    @@ -0,0 +1,4 @@
    +-r requirements/build.txt
    +-r requirements/optional.txt
    +-r requirements/runtime.txt
    +-r requirements/test.txt
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/build.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/build.txt
    new file mode 100644
    index 000000000..abf514853
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/build.txt
    @@ -0,0 +1 @@
    +pytest-runner
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/docs.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/docs.txt
    new file mode 100644
    index 000000000..a1ff4d390
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/docs.txt
    @@ -0,0 +1,9 @@
    +docutils==0.16.0
    +markdown>=3.4.0
    +myst-parser
    +opencv-python
    +-e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
    +sphinx==4.0.2
    +sphinx-copybutton
    +sphinx_markdown_tables>=0.0.16
    +torch
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/optional.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/optional.txt
    new file mode 100644
    index 000000000..bc74f1d29
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/optional.txt
    @@ -0,0 +1,2 @@
    +ninja
    +psutil
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/runtime.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/runtime.txt
    new file mode 100644
    index 000000000..66e90d674
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/runtime.txt
    @@ -0,0 +1,7 @@
    +addict
    +numpy
    +packaging
    +Pillow
    +pyyaml
    +regex;sys_platform=='win32'
    +yapf
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/test.txt b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/test.txt
    new file mode 100644
    index 000000000..598095b7c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/requirements/test.txt
    @@ -0,0 +1,10 @@
    +coverage
    +lmdb
    +onnx
    +onnxoptimizer; python_version < '3.10'
    +onnxruntime>=1.8.0
    +protobuf~=3.19.0
    +pytest
    +PyTurboJPEG
    +scipy
    +tifffile
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.cfg b/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.cfg
    new file mode 100644
    index 000000000..6feae1f9b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.cfg
    @@ -0,0 +1,26 @@
    +[bdist_wheel]
    +universal=1
    +
    +[aliases]
    +test=pytest
    +
    +[yapf]
    +based_on_style = pep8
    +blank_line_before_nested_class_or_def = true
    +split_before_expression_after_opening_paren = true
    +
    +[isort]
    +line_length = 79
    +multi_line_output = 0
    +extra_standard_library = pkg_resources,setuptools,logging,os,warnings,abc
    +known_first_party = mmcv
    +known_third_party = addict,cv2,matplotlib,numpy,onnx,onnxruntime,packaging,pytest,pytorch_sphinx_theme,scipy,sphinx,tensorrt,torch,torchvision,yaml,yapf
    +no_lines_before = STDLIB,LOCALFOLDER
    +default_section = THIRDPARTY
    +
    +# ignore-words-list needs to be lowercase format. For example, if we want to
    +# ignore word "BA", then we need to append "ba" to ignore-words-list rather
    +# than "BA"
    +[codespell]
    +quiet-level = 3
    +ignore-words-list = inout,hist,ba,inh,ro,tne,warmup,warpped,warpping,cann
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.py
    new file mode 100644
    index 000000000..15941195b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/setup.py
    @@ -0,0 +1,481 @@
    +import glob
    +import os
    +import platform
    +import re
    +import warnings
    +from pkg_resources import DistributionNotFound, get_distribution
    +from setuptools import find_packages, setup
    +
    +EXT_TYPE = ''
    +try:
    +    import torch
    +    if torch.__version__ == 'parrots':
    +        from parrots.utils.build_extension import BuildExtension
    +        EXT_TYPE = 'parrots'
    +    elif (hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()) or \
    +            os.getenv('FORCE_MLU', '0') == '1':
    +        from torch_mlu.utils.cpp_extension import BuildExtension
    +        EXT_TYPE = 'pytorch'
    +    else:
    +        from torch.utils.cpp_extension import BuildExtension
    +        EXT_TYPE = 'pytorch'
    +    cmd_class = {'build_ext': BuildExtension}
    +except ModuleNotFoundError:
    +    cmd_class = {}
    +    print('Skip building ext ops due to the absence of torch.')
    +
    +
    +def choose_requirement(primary, secondary):
    +    """If some version of primary requirement installed, return primary, else
    +    return secondary."""
    +    try:
    +        name = re.split(r'[!<>=]', primary)[0]
    +        get_distribution(name)
    +    except DistributionNotFound:
    +        return secondary
    +
    +    return str(primary)
    +
    +
    +def get_version():
    +    version_file = 'mmcv/version.py'
    +    with open(version_file, 'r', encoding='utf-8') as f:
    +        exec(compile(f.read(), version_file, 'exec'))
    +    version = locals()['__version__']
    +    local_version_identifier = os.environ.get('MMCV_LOCAL_VERSION_IDENTIFIER', '')
    +    if local_version_identifier != '':
    +        version += '+' + local_version_identifier
    +    return version
    +
    +
    +def parse_requirements(fname='requirements/runtime.txt', with_version=True):
    +    """Parse the package dependencies listed in a requirements file but strips
    +    specific versioning information.
    +
    +    Args:
    +        fname (str): path to requirements file
    +        with_version (bool, default=False): if True include version specs
    +
    +    Returns:
    +        List[str]: list of requirements items
    +
    +    CommandLine:
    +        python -c "import setup; print(setup.parse_requirements())"
    +    """
    +    import sys
    +    from os.path import exists
    +    require_fpath = fname
    +
    +    def parse_line(line):
    +        """Parse information from a line in a requirements text file."""
    +        if line.startswith('-r '):
    +            # Allow specifying requirements in other files
    +            target = line.split(' ')[1]
    +            for info in parse_require_file(target):
    +                yield info
    +        else:
    +            info = {'line': line}
    +            if line.startswith('-e '):
    +                info['package'] = line.split('#egg=')[1]
    +            else:
    +                # Remove versioning from the package
    +                pat = '(' + '|'.join(['>=', '==', '>']) + ')'
    +                parts = re.split(pat, line, maxsplit=1)
    +                parts = [p.strip() for p in parts]
    +
    +                info['package'] = parts[0]
    +                if len(parts) > 1:
    +                    op, rest = parts[1:]
    +                    if ';' in rest:
    +                        # Handle platform specific dependencies
    +                        # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
    +                        version, platform_deps = map(str.strip,
    +                                                     rest.split(';'))
    +                        info['platform_deps'] = platform_deps
    +                    else:
    +                        version = rest  # NOQA
    +                    info['version'] = (op, version)
    +            yield info
    +
    +    def parse_require_file(fpath):
    +        with open(fpath) as f:
    +            for line in f.readlines():
    +                line = line.strip()
    +                if line and not line.startswith('#'):
    +                    yield from parse_line(line)
    +
    +    def gen_packages_items():
    +        if exists(require_fpath):
    +            for info in parse_require_file(require_fpath):
    +                parts = [info['package']]
    +                if with_version and 'version' in info:
    +                    parts.extend(info['version'])
    +                if not sys.version.startswith('3.4'):
    +                    # apparently package_deps are broken in 3.4
    +                    platform_deps = info.get('platform_deps')
    +                    if platform_deps is not None:
    +                        parts.append(';' + platform_deps)
    +                item = ''.join(parts)
    +                yield item
    +
    +    packages = list(gen_packages_items())
    +    return packages
    +
    +
    +install_requires = parse_requirements()
    +
    +try:
    +    # OpenCV installed via conda.
    +    import cv2  # NOQA: F401
    +    major, minor, *rest = cv2.__version__.split('.')
    +    if int(major) < 3:
    +        raise RuntimeError(
    +            f'OpenCV >=3 is required but {cv2.__version__} is installed')
    +except ImportError:
    +    # If first not installed install second package
    +    CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3',
    +                                'opencv-python>=3')]
    +    for main, secondary in CHOOSE_INSTALL_REQUIRES:
    +        install_requires.append(choose_requirement(main, secondary))
    +
    +
    +def get_extensions():
    +    extensions = []
    +
    +    if os.getenv('MMCV_WITH_TRT', '0') != '0':
    +
    +        # Following strings of text style are from colorama package
    +        bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +        red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +        white_background = '\x1b[107m'
    +
    +        msg = white_background + bright_style + red_text
    +        msg += 'DeprecationWarning: ' + \
    +            'Custom TensorRT Ops will be deprecated in future. '
    +        msg += blue_text + \
    +            'Welcome to use the unified model deployment toolbox '
    +        msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +        msg += reset_style
    +        warnings.warn(msg)
    +
    +        ext_name = 'mmcv._ext_trt'
    +        from torch.utils.cpp_extension import include_paths, library_paths
    +        library_dirs = []
    +        libraries = []
    +        include_dirs = []
    +        tensorrt_path = os.getenv('TENSORRT_DIR', '0')
    +        tensorrt_lib_path = glob.glob(
    +            os.path.join(tensorrt_path, 'targets', '*', 'lib'))[0]
    +        library_dirs += [tensorrt_lib_path]
    +        libraries += ['nvinfer', 'nvparsers', 'nvinfer_plugin']
    +        libraries += ['cudart']
    +        define_macros = []
    +        extra_compile_args = {'cxx': []}
    +
    +        include_path = os.path.abspath('./mmcv/ops/csrc/common/cuda')
    +        include_trt_path = os.path.abspath('./mmcv/ops/csrc/tensorrt')
    +        include_dirs.append(include_path)
    +        include_dirs.append(include_trt_path)
    +        include_dirs.append(os.path.join(tensorrt_path, 'include'))
    +        include_dirs += include_paths(cuda=True)
    +
    +        op_files = glob.glob('./mmcv/ops/csrc/tensorrt/plugins/*')
    +        define_macros += [('MMCV_WITH_CUDA', None)]
    +        define_macros += [('MMCV_WITH_TRT', None)]
    +        cuda_args = os.getenv('MMCV_CUDA_ARGS')
    +        extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
    +        # prevent cub/thrust conflict with other python library
    +        # More context See issues #1454
    +        extra_compile_args['nvcc'] += ['-Xcompiler=-fno-gnu-unique']
    +        library_dirs += library_paths(cuda=True)
    +
    +        from setuptools import Extension
    +        ext_ops = Extension(
    +            name=ext_name,
    +            sources=op_files,
    +            include_dirs=include_dirs,
    +            define_macros=define_macros,
    +            extra_compile_args=extra_compile_args,
    +            language='c++',
    +            library_dirs=library_dirs,
    +            libraries=libraries)
    +        extensions.append(ext_ops)
    +
    +    if os.getenv('MMCV_WITH_OPS', '0') == '0':
    +        return extensions
    +
    +    if EXT_TYPE == 'parrots':
    +        ext_name = 'mmcv._ext'
    +        from parrots.utils.build_extension import Extension
    +
    +        # new parrots op impl do not use MMCV_USE_PARROTS
    +        # define_macros = [('MMCV_USE_PARROTS', None)]
    +        define_macros = []
    +        include_dirs = []
    +        op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\
    +            glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') +\
    +            glob.glob('./mmcv/ops/csrc/parrots/*.cpp')
    +        op_files.remove('./mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu')
    +        include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +        include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
    +        cuda_args = os.getenv('MMCV_CUDA_ARGS')
    +        extra_compile_args = {
    +            'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'],
    +            'cxx': ['-std=c++14'],
    +        }
    +        if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
    +            define_macros += [('MMCV_WITH_CUDA', None)]
    +            extra_compile_args['nvcc'] += [
    +                '-D__CUDA_NO_HALF_OPERATORS__',
    +                '-D__CUDA_NO_HALF_CONVERSIONS__',
    +                '-D__CUDA_NO_HALF2_OPERATORS__',
    +            ]
    +        ext_ops = Extension(
    +            name=ext_name,
    +            sources=op_files,
    +            include_dirs=include_dirs,
    +            define_macros=define_macros,
    +            extra_compile_args=extra_compile_args,
    +            cuda=True,
    +            pytorch=True)
    +        extensions.append(ext_ops)
    +    elif EXT_TYPE == 'pytorch':
    +        ext_name = 'mmcv._ext'
    +        from torch.utils.cpp_extension import CppExtension, CUDAExtension
    +
    +        # prevent ninja from using too many resources
    +        try:
    +            import psutil
    +            num_cpu = len(psutil.Process().cpu_affinity())
    +            cpu_use = max(4, num_cpu - 1)
    +        except (ModuleNotFoundError, AttributeError):
    +            cpu_use = 4
    +
    +        os.environ.setdefault('MAX_JOBS', str(cpu_use))
    +        define_macros = []
    +
    +        # Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a
    +        # required key passed to PyTorch. Even if there is no flag passed
    +        # to cxx, users also need to pass an empty list to PyTorch.
    +        # Since PyTorch1.8.0, it has a default value so users do not need
    +        # to pass an empty list anymore.
    +        # More details at https://github.com/pytorch/pytorch/pull/45956
    +        extra_compile_args = {'cxx': []}
    +
    +        # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
    +        # c++14 features, the argument ['std=c++14'] must be added here.
    +        # However, in the windows environment, some standard libraries
    +        # will depend on c++17 or higher. In fact, for the windows
    +        # environment, the compiler will choose the appropriate compiler
    +        # to compile those cpp files, so there is no need to add the
    +        # argument
    +        if platform.system() != 'Windows':
    +            if float(torch.__version__.split('.')[0]) > 1:
    +                print("PyTorch version is 2.x or higher")
    +                extra_compile_args['cxx'] = ['-std=c++17']
    +            else:
    +                print("PyTorch version is 1.x")
    +                extra_compile_args['cxx'] = ['-std=c++14']
    +
    +        include_dirs = []
    +
    +        is_rocm_pytorch = False
    +        try:
    +            from torch.utils.cpp_extension import ROCM_HOME
    +            is_rocm_pytorch = True if ((torch.version.hip is not None) and
    +                                       (ROCM_HOME is not None)) else False
    +        except ImportError:
    +            pass
    +
    +        if is_rocm_pytorch or torch.cuda.is_available() or os.getenv(
    +                'FORCE_CUDA', '0') == '1':
    +            if is_rocm_pytorch:
    +                define_macros += [('MMCV_WITH_HIP', None)]
    +            define_macros += [('MMCV_WITH_CUDA', None)]
    +            cuda_args = os.getenv('MMCV_CUDA_ARGS')
    +            extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
    +            if is_rocm_pytorch and platform.system() != 'Windows':
    +                extra_compile_args['nvcc'] += \
    +                    ['--gpu-max-threads-per-block=1024']
    +            op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp')
    +            extension = CUDAExtension
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/pytorch'))
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
    +        elif (hasattr(torch, 'is_mlu_available') and
    +                torch.is_mlu_available()) or \
    +                os.getenv('FORCE_MLU', '0') == '1':
    +            from torch_mlu.utils.cpp_extension import MLUExtension
    +            define_macros += [('MMCV_WITH_MLU', None)]
    +            mlu_args = os.getenv('MMCV_MLU_ARGS')
    +            extra_compile_args['cncc'] = [mlu_args] if mlu_args else []
    +            op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/mlu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/common/mlu/*.mlu')
    +            extension = MLUExtension
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mlu'))
    +        elif (hasattr(torch.backends, 'mps')
    +              and torch.backends.mps.is_available()) or os.getenv(
    +                  'FORCE_MPS', '0') == '1':
    +            # objc compiler support
    +            from distutils.unixccompiler import UnixCCompiler
    +            if '.mm' not in UnixCCompiler.src_extensions:
    +                UnixCCompiler.src_extensions.append('.mm')
    +                UnixCCompiler.language_map['.mm'] = 'objc'
    +
    +            define_macros += [('MMCV_WITH_MPS', None)]
    +            extra_compile_args = {}
    +            extra_compile_args['cxx'] = ['-Wall', '-std=c++17']
    +            extra_compile_args['cxx'] += [
    +                '-framework', 'Metal', '-framework', 'Foundation'
    +            ]
    +            extra_compile_args['cxx'] += ['-ObjC++']
    +            # src
    +            op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/common/mps/*.mm') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/mps/*.mm')
    +            extension = CppExtension
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mps'))
    +        elif (os.getenv('FORCE_NPU', '0') == '1'):
    +            print(f'Compiling {ext_name} only with CPU and NPU')
    +            try:
    +                from torch_npu.utils.cpp_extension import NpuExtension
    +                define_macros += [('MMCV_WITH_NPU', None)]
    +                extension = NpuExtension
    +            except Exception:
    +                raise ImportError('can not find any torch_npu')
    +            # src
    +            op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/common/npu/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/npu/*.cpp')
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/npu'))
    +        else:
    +            print(f'Compiling {ext_name} only with CPU')
    +            op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
    +                glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp')
    +            extension = CppExtension
    +            include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
    +
    +        # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
    +        # c++14 features, the argument ['std=c++14'] must be added here.
    +        # However, in the windows environment, some standard libraries
    +        # will depend on c++17 or higher. In fact, for the windows
    +        # environment, the compiler will choose the appropriate compiler
    +        # to compile those cpp files, so there is no need to add the
    +        # argument
    +        if 'nvcc' in extra_compile_args and platform.system() != 'Windows':
    +            if float(torch.__version__.split('.')[0]) > 1:
    +                print("PyTorch version is 2.x or higher")
    +                extra_compile_args['nvcc'] += ['-std=c++17']
    +            else:
    +                print("PyTorch version is 1.x")
    +                extra_compile_args['nvcc'] += ['-std=c++14']
    +
    +        ext_ops = extension(
    +            name=ext_name,
    +            sources=op_files,
    +            include_dirs=include_dirs,
    +            define_macros=define_macros,
    +            extra_compile_args=extra_compile_args)
    +        extensions.append(ext_ops)
    +
    +    if EXT_TYPE == 'pytorch' and os.getenv('MMCV_WITH_ORT', '0') != '0':
    +
    +        # Following strings of text style are from colorama package
    +        bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    +        red_text, blue_text = '\x1b[31m', '\x1b[34m'
    +        white_background = '\x1b[107m'
    +
    +        msg = white_background + bright_style + red_text
    +        msg += 'DeprecationWarning: ' + \
    +            'Custom ONNXRuntime Ops will be deprecated in future. '
    +        msg += blue_text + \
    +            'Welcome to use the unified model deployment toolbox '
    +        msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    +        msg += reset_style
    +        warnings.warn(msg)
    +        ext_name = 'mmcv._ext_ort'
    +        import onnxruntime
    +        from torch.utils.cpp_extension import include_paths, library_paths
    +        library_dirs = []
    +        libraries = []
    +        include_dirs = []
    +        ort_path = os.getenv('ONNXRUNTIME_DIR', '0')
    +        library_dirs += [os.path.join(ort_path, 'lib')]
    +        libraries.append('onnxruntime')
    +        define_macros = []
    +        extra_compile_args = {'cxx': []}
    +
    +        include_path = os.path.abspath('./mmcv/ops/csrc/onnxruntime')
    +        include_dirs.append(include_path)
    +        include_dirs.append(os.path.join(ort_path, 'include'))
    +
    +        op_files = glob.glob('./mmcv/ops/csrc/onnxruntime/cpu/*')
    +        if onnxruntime.get_device() == 'GPU' or os.getenv('FORCE_CUDA',
    +                                                          '0') == '1':
    +            define_macros += [('MMCV_WITH_CUDA', None)]
    +            cuda_args = os.getenv('MMCV_CUDA_ARGS')
    +            extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
    +            op_files += glob.glob('./mmcv/ops/csrc/onnxruntime/gpu/*')
    +            include_dirs += include_paths(cuda=True)
    +            library_dirs += library_paths(cuda=True)
    +        else:
    +            include_dirs += include_paths(cuda=False)
    +            library_dirs += library_paths(cuda=False)
    +
    +        from setuptools import Extension
    +        ext_ops = Extension(
    +            name=ext_name,
    +            sources=op_files,
    +            include_dirs=include_dirs,
    +            define_macros=define_macros,
    +            extra_compile_args=extra_compile_args,
    +            language='c++',
    +            library_dirs=library_dirs,
    +            libraries=libraries)
    +        extensions.append(ext_ops)
    +
    +    return extensions
    +
    +
    +setup(
    +    name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' else 'mmcv-full',
    +    version=get_version(),
    +    description='OpenMMLab Computer Vision Foundation',
    +    keywords='computer vision',
    +    packages=find_packages(),
    +    include_package_data=True,
    +    classifiers=[
    +        'Development Status :: 4 - Beta',
    +        'License :: OSI Approved :: Apache Software License',
    +        'Operating System :: OS Independent',
    +        'Programming Language :: Python :: 3',
    +        'Programming Language :: Python :: 3.6',
    +        'Programming Language :: Python :: 3.7',
    +        'Programming Language :: Python :: 3.8',
    +        'Programming Language :: Python :: 3.9',
    +        'Programming Language :: Python :: 3.10',
    +        'Topic :: Utilities',
    +    ],
    +    url='https://github.com/open-mmlab/mmcv',
    +    author='MMCV Contributors',
    +    author_email='openmmlab@gmail.com',
    +    install_requires=install_requires,
    +    extras_require={
    +        'all': parse_requirements('requirements.txt'),
    +        'tests': parse_requirements('requirements/test.txt'),
    +        'build': parse_requirements('requirements/build.txt'),
    +        'optional': parse_requirements('requirements/optional.txt'),
    +    },
    +    ext_modules=get_extensions(),
    +    cmdclass=cmd_class,
    +    zip_safe=False)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_arraymisc.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_arraymisc.py
    new file mode 100644
    index 000000000..b29e5f670
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_arraymisc.py
    @@ -0,0 +1,70 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +
    +import numpy as np
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_quantize():
    +    arr = np.random.randn(10, 10)
    +    levels = 20
    +
    +    qarr = mmcv.quantize(arr, -1, 1, levels)
    +    assert qarr.shape == arr.shape
    +    assert qarr.dtype == np.dtype('int64')
    +    for i in range(arr.shape[0]):
    +        for j in range(arr.shape[1]):
    +            ref = min(levels - 1,
    +                      int(np.floor(10 * (1 + max(min(arr[i, j], 1), -1)))))
    +            assert qarr[i, j] == ref
    +
    +    qarr = mmcv.quantize(arr, -1, 1, 20, dtype=np.uint8)
    +    assert qarr.shape == arr.shape
    +    assert qarr.dtype == np.dtype('uint8')
    +
    +    with pytest.raises(ValueError):
    +        mmcv.quantize(arr, -1, 1, levels=0)
    +    with pytest.raises(ValueError):
    +        mmcv.quantize(arr, -1, 1, levels=10.0)
    +    with pytest.raises(ValueError):
    +        mmcv.quantize(arr, 2, 1, levels)
    +
    +
    +def test_dequantize():
    +    levels = 20
    +    qarr = np.random.randint(levels, size=(10, 10))
    +
    +    arr = mmcv.dequantize(qarr, -1, 1, levels)
    +    assert arr.shape == qarr.shape
    +    assert arr.dtype == np.dtype('float64')
    +    for i in range(qarr.shape[0]):
    +        for j in range(qarr.shape[1]):
    +            assert arr[i, j] == (qarr[i, j] + 0.5) / 10 - 1
    +
    +    arr = mmcv.dequantize(qarr, -1, 1, levels, dtype=np.float32)
    +    assert arr.shape == qarr.shape
    +    assert arr.dtype == np.dtype('float32')
    +
    +    with pytest.raises(ValueError):
    +        mmcv.dequantize(arr, -1, 1, levels=0)
    +    with pytest.raises(ValueError):
    +        mmcv.dequantize(arr, -1, 1, levels=10.0)
    +    with pytest.raises(ValueError):
    +        mmcv.dequantize(arr, 2, 1, levels)
    +
    +
    +def test_joint():
    +    arr = np.random.randn(100, 100)
    +    levels = 1000
    +    qarr = mmcv.quantize(arr, -1, 1, levels)
    +    recover = mmcv.dequantize(qarr, -1, 1, levels)
    +    assert np.abs(recover[arr < -1] + 0.999).max() < 1e-6
    +    assert np.abs(recover[arr > 1] - 0.999).max() < 1e-6
    +    assert np.abs((recover - arr)[(arr >= -1) & (arr <= 1)]).max() <= 1e-3
    +
    +    arr = np.clip(np.random.randn(100) / 1000, -0.01, 0.01)
    +    levels = 99
    +    qarr = mmcv.quantize(arr, -1, 1, levels)
    +    recover = mmcv.dequantize(qarr, -1, 1, levels)
    +    assert np.all(recover == 0)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_build_layers.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_build_layers.py
    new file mode 100644
    index 000000000..4a9b3eb90
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_build_layers.py
    @@ -0,0 +1,407 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn.bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
    +                             PADDING_LAYERS, PLUGIN_LAYERS,
    +                             build_activation_layer, build_conv_layer,
    +                             build_norm_layer, build_padding_layer,
    +                             build_plugin_layer, build_upsample_layer, is_norm)
    +from mmcv.cnn.bricks.norm import infer_abbr as infer_norm_abbr
    +from mmcv.cnn.bricks.plugin import infer_abbr as infer_plugin_abbr
    +from mmcv.cnn.bricks.upsample import PixelShufflePack
    +from mmcv.utils.parrots_wrapper import _BatchNorm
    +
    +
    +def test_build_conv_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'Conv2d'
    +        build_conv_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict(kernel_size=3)
    +        build_conv_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported conv type
    +        cfg = dict(type='FancyConv')
    +        build_conv_layer(cfg)
    +
    +    kwargs = dict(
    +        in_channels=4, out_channels=8, kernel_size=3, groups=2, dilation=2)
    +    cfg = None
    +    layer = build_conv_layer(cfg, **kwargs)
    +    assert isinstance(layer, nn.Conv2d)
    +    assert layer.in_channels == kwargs['in_channels']
    +    assert layer.out_channels == kwargs['out_channels']
    +    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    +    assert layer.groups == kwargs['groups']
    +    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])
    +
    +    cfg = dict(type='Conv')
    +    layer = build_conv_layer(cfg, **kwargs)
    +    assert isinstance(layer, nn.Conv2d)
    +    assert layer.in_channels == kwargs['in_channels']
    +    assert layer.out_channels == kwargs['out_channels']
    +    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    +    assert layer.groups == kwargs['groups']
    +    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])
    +
    +    cfg = dict(type='deconv')
    +    layer = build_conv_layer(cfg, **kwargs)
    +    assert isinstance(layer, nn.ConvTranspose2d)
    +    assert layer.in_channels == kwargs['in_channels']
    +    assert layer.out_channels == kwargs['out_channels']
    +    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    +    assert layer.groups == kwargs['groups']
    +    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])
    +
    +    # sparse convs cannot support the case when groups>1
    +    kwargs.pop('groups')
    +
    +    for type_name, module in CONV_LAYERS.module_dict.items():
    +        cfg = dict(type=type_name)
    +        # SparseInverseConv2d and SparseInverseConv3d do not have the argument
    +        # 'dilation'
    +        if type_name == 'SparseInverseConv2d' or type_name == \
    +                'SparseInverseConv3d':
    +            kwargs.pop('dilation')
    +        layer = build_conv_layer(cfg, **kwargs)
    +        assert isinstance(layer, module)
    +        assert layer.in_channels == kwargs['in_channels']
    +        assert layer.out_channels == kwargs['out_channels']
    +        kwargs['dilation'] = 2  # recover the key
    +
    +
    +def test_infer_norm_abbr():
    +    with pytest.raises(TypeError):
    +        # class_type must be a class
    +        infer_norm_abbr(0)
    +
    +    class MyNorm:
    +
    +        _abbr_ = 'mn'
    +
    +    assert infer_norm_abbr(MyNorm) == 'mn'
    +
    +    class FancyBatchNorm:
    +        pass
    +
    +    assert infer_norm_abbr(FancyBatchNorm) == 'bn'
    +
    +    class FancyInstanceNorm:
    +        pass
    +
    +    assert infer_norm_abbr(FancyInstanceNorm) == 'in'
    +
    +    class FancyLayerNorm:
    +        pass
    +
    +    assert infer_norm_abbr(FancyLayerNorm) == 'ln'
    +
    +    class FancyGroupNorm:
    +        pass
    +
    +    assert infer_norm_abbr(FancyGroupNorm) == 'gn'
    +
    +    class FancyNorm:
    +        pass
    +
    +    assert infer_norm_abbr(FancyNorm) == 'norm_layer'
    +
    +
    +def test_build_norm_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'BN'
    +        build_norm_layer(cfg, 3)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict()
    +        build_norm_layer(cfg, 3)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported norm type
    +        cfg = dict(type='FancyNorm')
    +        build_norm_layer(cfg, 3)
    +
    +    with pytest.raises(AssertionError):
    +        # postfix must be int or str
    +        cfg = dict(type='BN')
    +        build_norm_layer(cfg, 3, postfix=[1, 2])
    +
    +    with pytest.raises(AssertionError):
    +        # `num_groups` must be in cfg when using 'GN'
    +        cfg = dict(type='GN')
    +        build_norm_layer(cfg, 3)
    +
    +    # test each type of norm layer in norm_cfg
    +    abbr_mapping = {
    +        'BN': 'bn',
    +        'BN1d': 'bn',
    +        'BN2d': 'bn',
    +        'BN3d': 'bn',
    +        'SyncBN': 'bn',
    +        'GN': 'gn',
    +        'LN': 'ln',
    +        'IN': 'in',
    +        'IN1d': 'in',
    +        'IN2d': 'in',
    +        'IN3d': 'in',
    +    }
    +    for type_name, module in NORM_LAYERS.module_dict.items():
    +        if type_name == 'MMSyncBN':  # skip MMSyncBN
    +            continue
    +        for postfix in ['_test', 1]:
    +            cfg = dict(type=type_name)
    +            if type_name == 'GN':
    +                cfg['num_groups'] = 3
    +            name, layer = build_norm_layer(cfg, 3, postfix=postfix)
    +            assert name == abbr_mapping[type_name] + str(postfix)
    +            assert isinstance(layer, module)
    +            if type_name == 'GN':
    +                assert layer.num_channels == 3
    +                assert layer.num_groups == cfg['num_groups']
    +            elif type_name != 'LN':
    +                assert layer.num_features == 3
    +
    +
    +def test_build_activation_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'ReLU'
    +        build_activation_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict()
    +        build_activation_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported activation type
    +        cfg = dict(type='FancyReLU')
    +        build_activation_layer(cfg)
    +
    +    # test each type of activation layer in activation_cfg
    +    for type_name, module in ACTIVATION_LAYERS.module_dict.items():
    +        cfg['type'] = type_name
    +        layer = build_activation_layer(cfg)
    +        assert isinstance(layer, module)
    +
    +    # sanity check for Clamp
    +    act = build_activation_layer(dict(type='Clamp'))
    +    x = torch.randn(10) * 1000
    +    y = act(x)
    +    assert np.logical_and((y >= -1).numpy(), (y <= 1).numpy()).all()
    +    act = build_activation_layer(dict(type='Clip', min=0))
    +    y = act(x)
    +    assert np.logical_and((y >= 0).numpy(), (y <= 1).numpy()).all()
    +    act = build_activation_layer(dict(type='Clamp', max=0))
    +    y = act(x)
    +    assert np.logical_and((y >= -1).numpy(), (y <= 0).numpy()).all()
    +
    +
    +def test_build_padding_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'reflect'
    +        build_padding_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict()
    +        build_padding_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported activation type
    +        cfg = dict(type='FancyPad')
    +        build_padding_layer(cfg)
    +
    +    for type_name, module in PADDING_LAYERS.module_dict.items():
    +        cfg['type'] = type_name
    +        layer = build_padding_layer(cfg, 2)
    +        assert isinstance(layer, module)
    +
    +    input_x = torch.randn(1, 2, 5, 5)
    +    cfg = dict(type='reflect')
    +    padding_layer = build_padding_layer(cfg, 2)
    +    res = padding_layer(input_x)
    +    assert res.shape == (1, 2, 9, 9)
    +
    +
    +def test_upsample_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'bilinear'
    +        build_upsample_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict()
    +        build_upsample_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported activation type
    +        cfg = dict(type='FancyUpsample')
    +        build_upsample_layer(cfg)
    +
    +    for type_name in ['nearest', 'bilinear']:
    +        cfg['type'] = type_name
    +        layer = build_upsample_layer(cfg)
    +        assert isinstance(layer, nn.Upsample)
    +        assert layer.mode == type_name
    +
    +    cfg = dict(
    +        type='deconv', in_channels=3, out_channels=3, kernel_size=3, stride=2)
    +    layer = build_upsample_layer(cfg)
    +    assert isinstance(layer, nn.ConvTranspose2d)
    +
    +    cfg = dict(type='deconv')
    +    kwargs = dict(in_channels=3, out_channels=3, kernel_size=3, stride=2)
    +    layer = build_upsample_layer(cfg, **kwargs)
    +    assert isinstance(layer, nn.ConvTranspose2d)
    +    assert layer.in_channels == kwargs['in_channels']
    +    assert layer.out_channels == kwargs['out_channels']
    +    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    +    assert layer.stride == (kwargs['stride'], kwargs['stride'])
    +
    +    layer = build_upsample_layer(cfg, 3, 3, 3, 2)
    +    assert isinstance(layer, nn.ConvTranspose2d)
    +    assert layer.in_channels == kwargs['in_channels']
    +    assert layer.out_channels == kwargs['out_channels']
    +    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    +    assert layer.stride == (kwargs['stride'], kwargs['stride'])
    +
    +    cfg = dict(
    +        type='pixel_shuffle',
    +        in_channels=3,
    +        out_channels=3,
    +        scale_factor=2,
    +        upsample_kernel=3)
    +    layer = build_upsample_layer(cfg)
    +
    +    assert isinstance(layer, PixelShufflePack)
    +    assert layer.scale_factor == 2
    +    assert layer.upsample_kernel == 3
    +
    +
    +def test_pixel_shuffle_pack():
    +    x_in = torch.rand(2, 3, 10, 10)
    +    pixel_shuffle = PixelShufflePack(3, 3, scale_factor=2, upsample_kernel=3)
    +    assert pixel_shuffle.upsample_conv.kernel_size == (3, 3)
    +    x_out = pixel_shuffle(x_in)
    +    assert x_out.shape == (2, 3, 20, 20)
    +
    +
    +def test_is_norm():
    +    norm_set1 = [
    +        nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.InstanceNorm1d,
    +        nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm
    +    ]
    +    norm_set2 = [nn.GroupNorm]
    +    for norm_type in norm_set1:
    +        layer = norm_type(3)
    +        assert is_norm(layer)
    +        assert not is_norm(layer, exclude=(norm_type, ))
    +    for norm_type in norm_set2:
    +        layer = norm_type(3, 6)
    +        assert is_norm(layer)
    +        assert not is_norm(layer, exclude=(norm_type, ))
    +
    +    class MyNorm(nn.BatchNorm2d):
    +        pass
    +
    +    layer = MyNorm(3)
    +    assert is_norm(layer)
    +    assert not is_norm(layer, exclude=_BatchNorm)
    +    assert not is_norm(layer, exclude=(_BatchNorm, ))
    +
    +    layer = nn.Conv2d(3, 8, 1)
    +    assert not is_norm(layer)
    +
    +    with pytest.raises(TypeError):
    +        layer = nn.BatchNorm1d(3)
    +        is_norm(layer, exclude='BN')
    +
    +    with pytest.raises(TypeError):
    +        layer = nn.BatchNorm1d(3)
    +        is_norm(layer, exclude=('BN', ))
    +
    +
    +def test_infer_plugin_abbr():
    +    with pytest.raises(TypeError):
    +        # class_type must be a class
    +        infer_plugin_abbr(0)
    +
    +    class MyPlugin:
    +
    +        _abbr_ = 'mp'
    +
    +    assert infer_plugin_abbr(MyPlugin) == 'mp'
    +
    +    class FancyPlugin:
    +        pass
    +
    +    assert infer_plugin_abbr(FancyPlugin) == 'fancy_plugin'
    +
    +
    +def test_build_plugin_layer():
    +    with pytest.raises(TypeError):
    +        # cfg must be a dict
    +        cfg = 'Plugin'
    +        build_plugin_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # `type` must be in cfg
    +        cfg = dict()
    +        build_plugin_layer(cfg)
    +
    +    with pytest.raises(KeyError):
    +        # unsupported plugin type
    +        cfg = dict(type='FancyPlugin')
    +        build_plugin_layer(cfg)
    +
    +    with pytest.raises(AssertionError):
    +        # postfix must be int or str
    +        cfg = dict(type='ConvModule')
    +        build_plugin_layer(cfg, postfix=[1, 2])
    +
    +    # test ContextBlock
    +    for postfix in ['', '_test', 1]:
    +        cfg = dict(type='ContextBlock')
    +        name, layer = build_plugin_layer(
    +            cfg, postfix=postfix, in_channels=16, ratio=1. / 4)
    +        assert name == 'context_block' + str(postfix)
    +        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ContextBlock'])
    +
    +    # test GeneralizedAttention
    +    for postfix in ['', '_test', 1]:
    +        cfg = dict(type='GeneralizedAttention')
    +        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
    +        assert name == 'gen_attention_block' + str(postfix)
    +        assert isinstance(layer,
    +                          PLUGIN_LAYERS.module_dict['GeneralizedAttention'])
    +
    +    # test NonLocal2d
    +    for postfix in ['', '_test', 1]:
    +        cfg = dict(type='NonLocal2d')
    +        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
    +        assert name == 'nonlocal_block' + str(postfix)
    +        assert isinstance(layer, PLUGIN_LAYERS.module_dict['NonLocal2d'])
    +
    +    # test ConvModule
    +    for postfix in ['', '_test', 1]:
    +        cfg = dict(type='ConvModule')
    +        name, layer = build_plugin_layer(
    +            cfg,
    +            postfix=postfix,
    +            in_channels=16,
    +            out_channels=4,
    +            kernel_size=3)
    +        assert name == 'conv_block' + str(postfix)
    +        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ConvModule'])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_context_block.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_context_block.py
    new file mode 100644
    index 000000000..864cb4179
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_context_block.py
    @@ -0,0 +1,59 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.cnn.bricks import ContextBlock
    +
    +
    +def test_context_block():
    +    with pytest.raises(AssertionError):
    +        # pooling_type should be in ['att', 'avg']
    +        ContextBlock(16, 1. / 4, pooling_type='unsupport_type')
    +
    +    with pytest.raises(AssertionError):
    +        # fusion_types should be of type list or tuple
    +        ContextBlock(16, 1. / 4, fusion_types='unsupport_type')
    +
    +    with pytest.raises(AssertionError):
    +        # fusion_types should be in ['channel_add', 'channel_mul']
    +        ContextBlock(16, 1. / 4, fusion_types=('unsupport_type', ))
    +
    +    # test pooling_type='att'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    context_block = ContextBlock(16, 1. / 4, pooling_type='att')
    +    out = context_block(imgs)
    +    assert context_block.conv_mask.in_channels == 16
    +    assert context_block.conv_mask.out_channels == 1
    +    assert out.shape == imgs.shape
    +
    +    # test pooling_type='avg'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    context_block = ContextBlock(16, 1. / 4, pooling_type='avg')
    +    out = context_block(imgs)
    +    assert hasattr(context_block, 'avg_pool')
    +    assert out.shape == imgs.shape
    +
    +    # test fusion_types=('channel_add',)
    +    imgs = torch.randn(2, 16, 20, 20)
    +    context_block = ContextBlock(16, 1. / 4, fusion_types=('channel_add', ))
    +    out = context_block(imgs)
    +    assert context_block.channel_add_conv is not None
    +    assert context_block.channel_mul_conv is None
    +    assert out.shape == imgs.shape
    +
    +    # test fusion_types=('channel_mul',)
    +    imgs = torch.randn(2, 16, 20, 20)
    +    context_block = ContextBlock(16, 1. / 4, fusion_types=('channel_mul', ))
    +    out = context_block(imgs)
    +    assert context_block.channel_add_conv is None
    +    assert context_block.channel_mul_conv is not None
    +    assert out.shape == imgs.shape
    +
    +    # test fusion_types=('channel_add', 'channel_mul')
    +    imgs = torch.randn(2, 16, 20, 20)
    +    context_block = ContextBlock(
    +        16, 1. / 4, fusion_types=('channel_add', 'channel_mul'))
    +    out = context_block(imgs)
    +    assert context_block.channel_add_conv is not None
    +    assert context_block.channel_mul_conv is not None
    +    assert out.shape == imgs.shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv2d_adaptive_padding.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv2d_adaptive_padding.py
    new file mode 100644
    index 000000000..83114bd5b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv2d_adaptive_padding.py
    @@ -0,0 +1,28 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.cnn.bricks import Conv2dAdaptivePadding
    +
    +
    +def test_conv2d_samepadding():
    +    # test Conv2dAdaptivePadding with stride=1
    +    inputs = torch.rand((1, 3, 28, 28))
    +    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1)
    +    output = conv(inputs)
    +    assert output.shape == inputs.shape
    +
    +    inputs = torch.rand((1, 3, 13, 13))
    +    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1)
    +    output = conv(inputs)
    +    assert output.shape == inputs.shape
    +
    +    # test Conv2dAdaptivePadding with stride=2
    +    inputs = torch.rand((1, 3, 28, 28))
    +    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2)
    +    output = conv(inputs)
    +    assert output.shape == torch.Size([1, 3, 14, 14])
    +
    +    inputs = torch.rand((1, 3, 13, 13))
    +    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2)
    +    output = conv(inputs)
    +    assert output.shape == torch.Size([1, 3, 7, 7])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv_module.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv_module.py
    new file mode 100644
    index 000000000..e0baa5223
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_conv_module.py
    @@ -0,0 +1,250 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import warnings
    +from unittest.mock import patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn.bricks import CONV_LAYERS, ConvModule, HSigmoid, HSwish
    +from mmcv.utils import TORCH_VERSION, digit_version
    +
    +
    +@CONV_LAYERS.register_module()
    +class ExampleConv(nn.Module):
    +
    +    def __init__(self,
    +                 in_channels,
    +                 out_channels,
    +                 kernel_size,
    +                 stride=1,
    +                 padding=0,
    +                 dilation=1,
    +                 groups=1,
    +                 bias=True,
    +                 norm_cfg=None):
    +        super().__init__()
    +        self.in_channels = in_channels
    +        self.out_channels = out_channels
    +        self.kernel_size = kernel_size
    +        self.stride = stride
    +        self.padding = padding
    +        self.dilation = dilation
    +        self.groups = groups
    +        self.bias = bias
    +        self.norm_cfg = norm_cfg
    +        self.output_padding = (0, 0, 0)
    +        self.transposed = False
    +
    +        self.conv0 = nn.Conv2d(in_channels, out_channels, kernel_size)
    +        self.init_weights()
    +
    +    def forward(self, x):
    +        x = self.conv0(x)
    +        return x
    +
    +    def init_weights(self):
    +        nn.init.constant_(self.conv0.weight, 0)
    +
    +
    +def test_conv_module():
    +    with pytest.raises(AssertionError):
    +        # conv_cfg must be a dict or None
    +        conv_cfg = 'conv'
    +        ConvModule(3, 8, 2, conv_cfg=conv_cfg)
    +
    +    with pytest.raises(AssertionError):
    +        # norm_cfg must be a dict or None
    +        norm_cfg = 'norm'
    +        ConvModule(3, 8, 2, norm_cfg=norm_cfg)
    +
    +    with pytest.raises(KeyError):
    +        # softmax is not supported
    +        act_cfg = dict(type='softmax')
    +        ConvModule(3, 8, 2, act_cfg=act_cfg)
    +
    +    # conv + norm + act
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    assert conv.with_activation
    +    assert hasattr(conv, 'activate')
    +    assert conv.with_norm
    +    assert hasattr(conv, 'norm')
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # conv + act
    +    conv = ConvModule(3, 8, 2)
    +    assert conv.with_activation
    +    assert hasattr(conv, 'activate')
    +    assert not conv.with_norm
    +    assert conv.norm is None
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # conv
    +    conv = ConvModule(3, 8, 2, act_cfg=None)
    +    assert not conv.with_norm
    +    assert conv.norm is None
    +    assert not conv.with_activation
    +    assert not hasattr(conv, 'activate')
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # conv with its own `init_weights` method
    +    conv_module = ConvModule(
    +        3, 8, 2, conv_cfg=dict(type='ExampleConv'), act_cfg=None)
    +    assert torch.equal(conv_module.conv.conv0.weight, torch.zeros(8, 3, 2, 2))
    +
    +    # with_spectral_norm=True
    +    conv = ConvModule(3, 8, 3, padding=1, with_spectral_norm=True)
    +    assert hasattr(conv.conv, 'weight_orig')
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # padding_mode='reflect'
    +    conv = ConvModule(3, 8, 3, padding=1, padding_mode='reflect')
    +    assert isinstance(conv.padding_layer, nn.ReflectionPad2d)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # non-existing padding mode
    +    with pytest.raises(KeyError):
    +        conv = ConvModule(3, 8, 3, padding=1, padding_mode='non_exists')
    +
    +    # leaky relu
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
    +    assert isinstance(conv.activate, nn.LeakyReLU)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # tanh
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='Tanh'))
    +    assert isinstance(conv.activate, nn.Tanh)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # Sigmoid
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='Sigmoid'))
    +    assert isinstance(conv.activate, nn.Sigmoid)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # PReLU
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='PReLU'))
    +    assert isinstance(conv.activate, nn.PReLU)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # HSwish
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='HSwish'))
    +    if (TORCH_VERSION == 'parrots'
    +            or digit_version(TORCH_VERSION) < digit_version('1.7')):
    +        assert isinstance(conv.activate, HSwish)
    +    else:
    +        assert isinstance(conv.activate, nn.Hardswish)
    +
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # HSigmoid
    +    conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='HSigmoid'))
    +    assert isinstance(conv.activate, HSigmoid)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +
    +def test_bias():
    +    # bias: auto, without norm
    +    conv = ConvModule(3, 8, 2)
    +    assert conv.conv.bias is not None
    +
    +    # bias: auto, with norm
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    assert conv.conv.bias is None
    +
    +    # bias: False, without norm
    +    conv = ConvModule(3, 8, 2, bias=False)
    +    assert conv.conv.bias is None
    +
    +    # bias: True, with batch norm
    +    with pytest.warns(UserWarning) as record:
    +        ConvModule(3, 8, 2, bias=True, norm_cfg=dict(type='BN'))
    +    assert len(record) == 1
    +    assert record[0].message.args[
    +        0] == 'Unnecessary conv bias before batch/instance norm'
    +
    +    # bias: True, with instance norm
    +    with pytest.warns(UserWarning) as record:
    +        ConvModule(3, 8, 2, bias=True, norm_cfg=dict(type='IN'))
    +    assert len(record) == 1
    +    assert record[0].message.args[
    +        0] == 'Unnecessary conv bias before batch/instance norm'
    +
    +    # bias: True, with other norm
    +    with pytest.warns(UserWarning) as record:
    +        norm_cfg = dict(type='GN', num_groups=1)
    +        ConvModule(3, 8, 2, bias=True, norm_cfg=norm_cfg)
    +        warnings.warn('No warnings')
    +    assert len(record) == 1
    +    assert record[0].message.args[0] == 'No warnings'
    +
    +
    +def conv_forward(self, x):
    +    return x + '_conv'
    +
    +
    +def bn_forward(self, x):
    +    return x + '_bn'
    +
    +
    +def relu_forward(self, x):
    +    return x + '_relu'
    +
    +
    +@patch('torch.nn.ReLU.forward', relu_forward)
    +@patch('torch.nn.BatchNorm2d.forward', bn_forward)
    +@patch('torch.nn.Conv2d.forward', conv_forward)
    +def test_order():
    +    with pytest.raises(AssertionError):
    +        # order must be a tuple
    +        order = ['conv', 'norm', 'act']
    +        ConvModule(3, 8, 2, order=order)
    +
    +    with pytest.raises(AssertionError):
    +        # length of order must be 3
    +        order = ('conv', 'norm')
    +        ConvModule(3, 8, 2, order=order)
    +
    +    with pytest.raises(AssertionError):
    +        # order must be an order of 'conv', 'norm', 'act'
    +        order = ('conv', 'norm', 'norm')
    +        ConvModule(3, 8, 2, order=order)
    +
    +    with pytest.raises(AssertionError):
    +        # order must be an order of 'conv', 'norm', 'act'
    +        order = ('conv', 'norm', 'something')
    +        ConvModule(3, 8, 2, order=order)
    +
    +    # ('conv', 'norm', 'act')
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    out = conv('input')
    +    assert out == 'input_conv_bn_relu'
    +
    +    # ('norm', 'conv', 'act')
    +    conv = ConvModule(
    +        3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act'))
    +    out = conv('input')
    +    assert out == 'input_bn_conv_relu'
    +
    +    # ('conv', 'norm', 'act'), activate=False
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    out = conv('input', activate=False)
    +    assert out == 'input_conv_bn'
    +
    +    # ('conv', 'norm', 'act'), activate=False
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    out = conv('input', norm=False)
    +    assert out == 'input_conv_relu'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_depthwise_seperable_conv_module.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_depthwise_seperable_conv_module.py
    new file mode 100644
    index 000000000..748fc1bf8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_depthwise_seperable_conv_module.py
    @@ -0,0 +1,91 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn.bricks import DepthwiseSeparableConvModule
    +
    +
    +def test_depthwise_separable_conv():
    +    with pytest.raises(AssertionError):
    +        # conv_cfg must be a dict or None
    +        DepthwiseSeparableConvModule(4, 8, 2, groups=2)
    +
    +    # test default config
    +    conv = DepthwiseSeparableConvModule(3, 8, 2)
    +    assert conv.depthwise_conv.conv.groups == 3
    +    assert conv.pointwise_conv.conv.kernel_size == (1, 1)
    +    assert not conv.depthwise_conv.with_norm
    +    assert not conv.pointwise_conv.with_norm
    +    assert conv.depthwise_conv.activate.__class__.__name__ == 'ReLU'
    +    assert conv.pointwise_conv.activate.__class__.__name__ == 'ReLU'
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # test dw_norm_cfg
    +    conv = DepthwiseSeparableConvModule(3, 8, 2, dw_norm_cfg=dict(type='BN'))
    +    assert conv.depthwise_conv.norm_name == 'bn'
    +    assert not conv.pointwise_conv.with_norm
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # test pw_norm_cfg
    +    conv = DepthwiseSeparableConvModule(3, 8, 2, pw_norm_cfg=dict(type='BN'))
    +    assert not conv.depthwise_conv.with_norm
    +    assert conv.pointwise_conv.norm_name == 'bn'
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # test norm_cfg
    +    conv = DepthwiseSeparableConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
    +    assert conv.depthwise_conv.norm_name == 'bn'
    +    assert conv.pointwise_conv.norm_name == 'bn'
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    # add test for ['norm', 'conv', 'act']
    +    conv = DepthwiseSeparableConvModule(3, 8, 2, order=('norm', 'conv', 'act'))
    +    x = torch.rand(1, 3, 256, 256)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 255, 255)
    +
    +    conv = DepthwiseSeparableConvModule(
    +        3, 8, 3, padding=1, with_spectral_norm=True)
    +    assert hasattr(conv.depthwise_conv.conv, 'weight_orig')
    +    assert hasattr(conv.pointwise_conv.conv, 'weight_orig')
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    conv = DepthwiseSeparableConvModule(
    +        3, 8, 3, padding=1, padding_mode='reflect')
    +    assert isinstance(conv.depthwise_conv.padding_layer, nn.ReflectionPad2d)
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # test dw_act_cfg
    +    conv = DepthwiseSeparableConvModule(
    +        3, 8, 3, padding=1, dw_act_cfg=dict(type='LeakyReLU'))
    +    assert conv.depthwise_conv.activate.__class__.__name__ == 'LeakyReLU'
    +    assert conv.pointwise_conv.activate.__class__.__name__ == 'ReLU'
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # test pw_act_cfg
    +    conv = DepthwiseSeparableConvModule(
    +        3, 8, 3, padding=1, pw_act_cfg=dict(type='LeakyReLU'))
    +    assert conv.depthwise_conv.activate.__class__.__name__ == 'ReLU'
    +    assert conv.pointwise_conv.activate.__class__.__name__ == 'LeakyReLU'
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    +
    +    # test act_cfg
    +    conv = DepthwiseSeparableConvModule(
    +        3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
    +    assert conv.depthwise_conv.activate.__class__.__name__ == 'LeakyReLU'
    +    assert conv.pointwise_conv.activate.__class__.__name__ == 'LeakyReLU'
    +    output = conv(x)
    +    assert output.shape == (1, 8, 256, 256)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_flops_counter.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_flops_counter.py
    new file mode 100644
    index 000000000..e2ba6e242
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_flops_counter.py
    @@ -0,0 +1,152 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn import get_model_complexity_info
    +from mmcv.cnn.utils.flops_counter import flops_to_string, params_to_string
    +
    +try:
    +    from StringIO import StringIO
    +except ImportError:
    +    from io import StringIO
    +
    +# yapf: disable
    +gt_results = [
    +    {'model': nn.Conv1d(3, 8, 3), 'input': (3, 16), 'flops': 1120.0, 'params': 80.0},  # noqa: E501
    +    {'model': nn.Conv2d(3, 8, 3), 'input': (3, 16, 16), 'flops': 43904.0, 'params': 224.0},  # noqa: E501
    +    {'model': nn.Conv3d(3, 8, 3), 'input': (3, 3, 16, 16), 'flops': 128576.0, 'params': 656.0},  # noqa: E501
    +    {'model': nn.ReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.PReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 1},  # noqa: E501
    +    {'model': nn.ELU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.LeakyReLU(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.ReLU6(), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.MaxPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0},  # noqa: E501
    +    {'model': nn.MaxPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.MaxPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AvgPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AvgPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AvgPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveMaxPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveMaxPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveMaxPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveAvgPool1d(2), 'input': (3, 16), 'flops': 48.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveAvgPool2d(2), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.AdaptiveAvgPool3d(2), 'input': (3, 3, 16, 16), 'flops': 2304.0, 'params': 0},  # noqa: E501
    +    {'model': nn.BatchNorm1d(3), 'input': (3, 16), 'flops': 96.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.BatchNorm2d(3), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.BatchNorm3d(3), 'input': (3, 3, 16, 16), 'flops': 4608.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.GroupNorm(2, 6), 'input': (6, 16, 16), 'flops': 3072.0, 'params': 12.0},  # noqa: E501
    +    {'model': nn.InstanceNorm1d(3, affine=True), 'input': (3, 16), 'flops': 96.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.InstanceNorm2d(3, affine=True), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.InstanceNorm3d(3, affine=True), 'input': (3, 3, 16, 16), 'flops': 4608.0, 'params': 6.0},  # noqa: E501
    +    {'model': nn.LayerNorm((3, 16, 16)), 'input': (3, 16, 16), 'flops': 1536.0, 'params': 1536.0},  # noqa: E501
    +    {'model': nn.LayerNorm((3, 16, 16), elementwise_affine=False), 'input': (3, 16, 16), 'flops': 768.0, 'params': 0},  # noqa: E501
    +    {'model': nn.Linear(1024, 2), 'input': (1024, ), 'flops': 2048.0, 'params': 2050.0},  # noqa: E501
    +    {'model': nn.ConvTranspose2d(3, 8, 3), 'input': (3, 16, 16), 'flops': 57888, 'params': 224.0},  # noqa: E501
    +    {'model': nn.Upsample((32, 32)), 'input': (3, 16, 16), 'flops': 3072.0, 'params': 0}  # noqa: E501
    +]
    +# yapf: enable
    +
    +
    +class ExampleModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv2d = nn.Conv2d(3, 8, 3)
    +
    +    def forward(self, imgs):
    +        x = torch.randn((1, *imgs))
    +        return self.conv2d(x)
    +
    +
    +def input_constructor(x):
    +    return dict(imgs=x)
    +
    +
    +def test_flops_counter():
    +    with pytest.raises(AssertionError):
    +        # input_res should be a tuple
    +        model = nn.Conv2d(3, 8, 3)
    +        input_res = [1, 3, 16, 16]
    +        get_model_complexity_info(model, input_res)
    +
    +    with pytest.raises(AssertionError):
    +        # len(input_res) >= 2
    +        model = nn.Conv2d(3, 8, 3)
    +        input_res = tuple()
    +        get_model_complexity_info(model, input_res)
    +
    +    # test common layers
    +    for item in gt_results:
    +        model = item['model']
    +        input = item['input']
    +        flops, params = get_model_complexity_info(
    +            model, input, as_strings=False, print_per_layer_stat=False)
    +        assert flops == item['flops'] and params == item['params']
    +
    +    # test input constructor
    +    model = ExampleModel()
    +    x = (3, 16, 16)
    +    flops, params = get_model_complexity_info(
    +        model,
    +        x,
    +        as_strings=False,
    +        print_per_layer_stat=False,
    +        input_constructor=input_constructor)
    +    assert flops == 43904.0 and params == 224.0
    +
    +    # test output string
    +    model = nn.Conv3d(3, 8, 3)
    +    x = (3, 3, 512, 512)
    +    flops, params = get_model_complexity_info(
    +        model, x, print_per_layer_stat=False)
    +    assert flops == '0.17 GFLOPs' and params == str(656)
    +
    +    # test print per layer status
    +    model = nn.Conv1d(3, 8, 3)
    +    x = (3, 16)
    +    out = StringIO()
    +    get_model_complexity_info(model, x, ost=out)
    +    assert out.getvalue() == \
    +        'Conv1d(0.0 M, 100.000% Params, 0.0 GFLOPs, 100.000% FLOPs, 3, 8, kernel_size=(3,), stride=(1,))\n'  # noqa: E501
    +
    +    # test when model is not a common instance
    +    model = nn.Sequential(nn.Conv2d(3, 8, 3), nn.Flatten(), nn.Linear(1568, 2))
    +    x = (3, 16, 16)
    +    flops, params = get_model_complexity_info(
    +        model, x, as_strings=False, print_per_layer_stat=True)
    +    assert flops == 47040.0 and params == 3362
    +
    +
    +def test_flops_to_string():
    +    flops = 6.54321 * 10.**9
    +    assert flops_to_string(flops) == '6.54 GFLOPs'
    +    assert flops_to_string(flops, 'MFLOPs') == '6543.21 MFLOPs'
    +    assert flops_to_string(flops, 'KFLOPs') == '6543210.0 KFLOPs'
    +    assert flops_to_string(flops, 'FLOPs') == '6543210000.0 FLOPs'
    +    assert flops_to_string(flops, precision=4) == '6.5432 GFLOPs'
    +
    +    flops = 6.54321 * 10.**9
    +    assert flops_to_string(flops, None) == '6.54 GFLOPs'
    +    flops = 3.21 * 10.**7
    +    assert flops_to_string(flops, None) == '32.1 MFLOPs'
    +    flops = 5.4 * 10.**3
    +    assert flops_to_string(flops, None) == '5.4 KFLOPs'
    +    flops = 987
    +    assert flops_to_string(flops, None) == '987 FLOPs'
    +
    +
    +def test_params_to_string():
    +    num_params = 3.21 * 10.**7
    +    assert params_to_string(num_params) == '32.1 M'
    +    num_params = 4.56 * 10.**5
    +    assert params_to_string(num_params) == '456.0 k'
    +    num_params = 7.89 * 10.**2
    +    assert params_to_string(num_params) == '789.0'
    +
    +    num_params = 6.54321 * 10.**7
    +    assert params_to_string(num_params, 'M') == '65.43 M'
    +    assert params_to_string(num_params, 'K') == '65432.1 K'
    +    assert params_to_string(num_params, '') == '65432100.0'
    +    assert params_to_string(num_params, precision=4) == '65.4321 M'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_fuse_conv_bn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_fuse_conv_bn.py
    new file mode 100644
    index 000000000..e60be5386
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_fuse_conv_bn.py
    @@ -0,0 +1,16 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn import ConvModule, fuse_conv_bn
    +
    +
    +def test_fuse_conv_bn():
    +    inputs = torch.rand((1, 3, 5, 5))
    +    modules = nn.ModuleList()
    +    modules.append(nn.BatchNorm2d(3))
    +    modules.append(ConvModule(3, 5, 3, norm_cfg=dict(type='BN')))
    +    modules.append(ConvModule(5, 5, 3, norm_cfg=dict(type='BN')))
    +    modules = nn.Sequential(*modules)
    +    fused_modules = fuse_conv_bn(modules)
    +    assert torch.equal(modules(inputs), fused_modules(inputs))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_generalized_attention.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_generalized_attention.py
    new file mode 100644
    index 000000000..8753959f7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_generalized_attention.py
    @@ -0,0 +1,75 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.cnn.bricks import GeneralizedAttention
    +
    +
    +def test_context_block():
    +    # test attention_type='1000'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, attention_type='1000')
    +    assert gen_attention_block.query_conv.in_channels == 16
    +    assert gen_attention_block.key_conv.in_channels == 16
    +    assert gen_attention_block.key_conv.in_channels == 16
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test attention_type='0100'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, attention_type='0100')
    +    assert gen_attention_block.query_conv.in_channels == 16
    +    assert gen_attention_block.appr_geom_fc_x.in_features == 8
    +    assert gen_attention_block.appr_geom_fc_y.in_features == 8
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test attention_type='0010'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, attention_type='0010')
    +    assert gen_attention_block.key_conv.in_channels == 16
    +    assert hasattr(gen_attention_block, 'appr_bias')
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test attention_type='0001'
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, attention_type='0001')
    +    assert gen_attention_block.appr_geom_fc_x.in_features == 8
    +    assert gen_attention_block.appr_geom_fc_y.in_features == 8
    +    assert hasattr(gen_attention_block, 'geom_bias')
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test spatial_range >= 0
    +    imgs = torch.randn(2, 256, 20, 20)
    +    gen_attention_block = GeneralizedAttention(256, spatial_range=10)
    +    assert hasattr(gen_attention_block, 'local_constraint_map')
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test q_stride > 1
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, q_stride=2)
    +    assert gen_attention_block.q_downsample is not None
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test kv_stride > 1
    +    imgs = torch.randn(2, 16, 20, 20)
    +    gen_attention_block = GeneralizedAttention(16, kv_stride=2)
    +    assert gen_attention_block.kv_downsample is not None
    +    out = gen_attention_block(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # test fp16 with attention_type='1111'
    +    if torch.cuda.is_available():
    +        imgs = torch.randn(2, 16, 20, 20).cuda().to(torch.half)
    +        gen_attention_block = GeneralizedAttention(
    +            16,
    +            spatial_range=-1,
    +            num_heads=8,
    +            attention_type='1111',
    +            kv_stride=2)
    +        gen_attention_block.cuda().type(torch.half)
    +        out = gen_attention_block(imgs)
    +        assert out.shape == imgs.shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hsigmoid.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hsigmoid.py
    new file mode 100644
    index 000000000..43e9f624a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hsigmoid.py
    @@ -0,0 +1,37 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.cnn.bricks import HSigmoid
    +
    +
    +def test_hsigmoid():
    +    # test assertion divisor can not be zero
    +    with pytest.raises(AssertionError):
    +        HSigmoid(divisor=0)
    +
    +    # test with default parameters
    +    act = HSigmoid()
    +    input_shape = torch.Size([1, 3, 64, 64])
    +    input = torch.randn(input_shape)
    +    output = act(input)
    +    expected_output = torch.min(
    +        torch.max((input + 3) / 6, torch.zeros(input_shape)),
    +        torch.ones(input_shape))
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.equal(output, expected_output)
    +
    +    # test with designated parameters
    +    act = HSigmoid(1, 2, 0, 1)
    +    input_shape = torch.Size([1, 3, 64, 64])
    +    input = torch.randn(input_shape)
    +    output = act(input)
    +    expected_output = torch.min(
    +        torch.max((input + 1) / 2, torch.zeros(input_shape)),
    +        torch.ones(input_shape))
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.equal(output, expected_output)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hswish.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hswish.py
    new file mode 100644
    index 000000000..5cd1bcf31
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_hswish.py
    @@ -0,0 +1,21 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +from torch.nn.functional import relu6
    +
    +from mmcv.cnn.bricks import HSwish
    +
    +
    +def test_hswish():
    +    # test inplace
    +    act = HSwish(inplace=True)
    +    assert act.act.inplace
    +    act = HSwish()
    +    assert not act.act.inplace
    +
    +    input = torch.randn(1, 3, 64, 64)
    +    expected_output = input * relu6(input + 3) / 6
    +    output = act(input)
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.equal(output, expected_output)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_model_registry.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_model_registry.py
    new file mode 100644
    index 000000000..dd446cef5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_model_registry.py
    @@ -0,0 +1,64 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch.nn as nn
    +
    +import mmcv
    +from mmcv.cnn import MODELS, build_model_from_cfg
    +
    +
    +def test_build_model_from_cfg():
    +    BACKBONES = mmcv.Registry('backbone', build_func=build_model_from_cfg)
    +
    +    @BACKBONES.register_module()
    +    class ResNet(nn.Module):
    +
    +        def __init__(self, depth, stages=4):
    +            super().__init__()
    +            self.depth = depth
    +            self.stages = stages
    +
    +        def forward(self, x):
    +            return x
    +
    +    @BACKBONES.register_module()
    +    class ResNeXt(nn.Module):
    +
    +        def __init__(self, depth, stages=4):
    +            super().__init__()
    +            self.depth = depth
    +            self.stages = stages
    +
    +        def forward(self, x):
    +            return x
    +
    +    cfg = dict(type='ResNet', depth=50)
    +    model = BACKBONES.build(cfg)
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    cfg = dict(type='ResNeXt', depth=50, stages=3)
    +    model = BACKBONES.build(cfg)
    +    assert isinstance(model, ResNeXt)
    +    assert model.depth == 50 and model.stages == 3
    +
    +    cfg = [
    +        dict(type='ResNet', depth=50),
    +        dict(type='ResNeXt', depth=50, stages=3)
    +    ]
    +    model = BACKBONES.build(cfg)
    +    assert isinstance(model, nn.Sequential)
    +    assert isinstance(model[0], ResNet)
    +    assert model[0].depth == 50 and model[0].stages == 4
    +    assert isinstance(model[1], ResNeXt)
    +    assert model[1].depth == 50 and model[1].stages == 3
    +
    +    # test inherit `build_func` from parent
    +    NEW_MODELS = mmcv.Registry('models', parent=MODELS, scope='new')
    +    assert NEW_MODELS.build_func is build_model_from_cfg
    +
    +    # test specify `build_func`
    +    def pseudo_build(cfg):
    +        return cfg
    +
    +    NEW_MODELS = mmcv.Registry(
    +        'models', parent=MODELS, build_func=pseudo_build)
    +    assert NEW_MODELS.build_func is pseudo_build
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_non_local.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_non_local.py
    new file mode 100644
    index 000000000..25d788339
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_non_local.py
    @@ -0,0 +1,220 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn import NonLocal1d, NonLocal2d, NonLocal3d
    +from mmcv.cnn.bricks.non_local import _NonLocalNd
    +
    +
    +def test_nonlocal():
    +    with pytest.raises(ValueError):
    +        # mode should be in ['embedded_gaussian', 'dot_product']
    +        _NonLocalNd(3, mode='unsupport_mode')
    +
    +    # _NonLocalNd with zero initialization
    +    _NonLocalNd(3)
    +    _NonLocalNd(3, norm_cfg=dict(type='BN'))
    +
    +    # _NonLocalNd without zero initialization
    +    _NonLocalNd(3, zeros_init=False)
    +    _NonLocalNd(3, norm_cfg=dict(type='BN'), zeros_init=False)
    +
    +
    +def test_nonlocal3d():
    +    # NonLocal3d with 'embedded_gaussian' mode
    +    imgs = torch.randn(2, 3, 10, 20, 20)
    +    nonlocal_3d = NonLocal3d(3)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            # NonLocal is only implemented on gpu in parrots
    +            imgs = imgs.cuda()
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal3d with 'dot_product' mode
    +    nonlocal_3d = NonLocal3d(3, mode='dot_product')
    +    assert nonlocal_3d.mode == 'dot_product'
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal3d with 'concatenation' mode
    +    nonlocal_3d = NonLocal3d(3, mode='concatenation')
    +    assert nonlocal_3d.mode == 'concatenation'
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal3d with 'gaussian' mode
    +    nonlocal_3d = NonLocal3d(3, mode='gaussian')
    +    assert not hasattr(nonlocal_3d, 'phi')
    +    assert nonlocal_3d.mode == 'gaussian'
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal3d with 'gaussian' mode and sub_sample
    +    nonlocal_3d = NonLocal3d(3, mode='gaussian', sub_sample=True)
    +    assert isinstance(nonlocal_3d.g, nn.Sequential) and len(nonlocal_3d.g) == 2
    +    assert isinstance(nonlocal_3d.g[1], nn.MaxPool3d)
    +    assert nonlocal_3d.g[1].kernel_size == (1, 2, 2)
    +    assert isinstance(nonlocal_3d.phi, nn.MaxPool3d)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal3d with 'dot_product' mode and sub_sample
    +    nonlocal_3d = NonLocal3d(3, mode='dot_product', sub_sample=True)
    +    for m in [nonlocal_3d.g, nonlocal_3d.phi]:
    +        assert isinstance(m, nn.Sequential) and len(m) == 2
    +        assert isinstance(m[1], nn.MaxPool3d)
    +        assert m[1].kernel_size == (1, 2, 2)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_3d.cuda()
    +    out = nonlocal_3d(imgs)
    +    assert out.shape == imgs.shape
    +
    +
    +def test_nonlocal2d():
    +    # NonLocal2d with 'embedded_gaussian' mode
    +    imgs = torch.randn(2, 3, 20, 20)
    +    nonlocal_2d = NonLocal2d(3)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal2d with 'dot_product' mode
    +    imgs = torch.randn(2, 3, 20, 20)
    +    nonlocal_2d = NonLocal2d(3, mode='dot_product')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal2d with 'concatenation' mode
    +    imgs = torch.randn(2, 3, 20, 20)
    +    nonlocal_2d = NonLocal2d(3, mode='concatenation')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal2d with 'gaussian' mode
    +    imgs = torch.randn(2, 3, 20, 20)
    +    nonlocal_2d = NonLocal2d(3, mode='gaussian')
    +    assert not hasattr(nonlocal_2d, 'phi')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal2d with 'gaussian' mode and sub_sample
    +    nonlocal_2d = NonLocal2d(3, mode='gaussian', sub_sample=True)
    +    assert isinstance(nonlocal_2d.g, nn.Sequential) and len(nonlocal_2d.g) == 2
    +    assert isinstance(nonlocal_2d.g[1], nn.MaxPool2d)
    +    assert nonlocal_2d.g[1].kernel_size == (2, 2)
    +    assert isinstance(nonlocal_2d.phi, nn.MaxPool2d)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal2d with 'dot_product' mode and sub_sample
    +    nonlocal_2d = NonLocal2d(3, mode='dot_product', sub_sample=True)
    +    for m in [nonlocal_2d.g, nonlocal_2d.phi]:
    +        assert isinstance(m, nn.Sequential) and len(m) == 2
    +        assert isinstance(m[1], nn.MaxPool2d)
    +        assert m[1].kernel_size == (2, 2)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_2d.cuda()
    +    out = nonlocal_2d(imgs)
    +    assert out.shape == imgs.shape
    +
    +
    +def test_nonlocal1d():
    +    # NonLocal1d with 'embedded_gaussian' mode
    +    imgs = torch.randn(2, 3, 20)
    +    nonlocal_1d = NonLocal1d(3)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal1d with 'dot_product' mode
    +    imgs = torch.randn(2, 3, 20)
    +    nonlocal_1d = NonLocal1d(3, mode='dot_product')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal1d with 'concatenation' mode
    +    imgs = torch.randn(2, 3, 20)
    +    nonlocal_1d = NonLocal1d(3, mode='concatenation')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal1d with 'gaussian' mode
    +    imgs = torch.randn(2, 3, 20)
    +    nonlocal_1d = NonLocal1d(3, mode='gaussian')
    +    assert not hasattr(nonlocal_1d, 'phi')
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            imgs = imgs.cuda()
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal1d with 'gaussian' mode and sub_sample
    +    nonlocal_1d = NonLocal1d(3, mode='gaussian', sub_sample=True)
    +    assert isinstance(nonlocal_1d.g, nn.Sequential) and len(nonlocal_1d.g) == 2
    +    assert isinstance(nonlocal_1d.g[1], nn.MaxPool1d)
    +    assert nonlocal_1d.g[1].kernel_size == 2
    +    assert isinstance(nonlocal_1d.phi, nn.MaxPool1d)
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    +
    +    # NonLocal1d with 'dot_product' mode and sub_sample
    +    nonlocal_1d = NonLocal1d(3, mode='dot_product', sub_sample=True)
    +    for m in [nonlocal_1d.g, nonlocal_1d.phi]:
    +        assert isinstance(m, nn.Sequential) and len(m) == 2
    +        assert isinstance(m[1], nn.MaxPool1d)
    +        assert m[1].kernel_size == 2
    +    if torch.__version__ == 'parrots':
    +        if torch.cuda.is_available():
    +            nonlocal_1d.cuda()
    +    out = nonlocal_1d(imgs)
    +    assert out.shape == imgs.shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_revert_syncbn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_revert_syncbn.py
    new file mode 100644
    index 000000000..187c2a6d0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_revert_syncbn.py
    @@ -0,0 +1,61 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import platform
    +
    +import numpy as np
    +import pytest
    +import torch
    +import torch.distributed as dist
    +
    +from mmcv.cnn.bricks import ConvModule
    +from mmcv.cnn.utils import revert_sync_batchnorm
    +
    +if platform.system() == 'Windows':
    +    import regex as re
    +else:
    +    import re
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not supported in parrots now')
    +def test_revert_syncbn():
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN'))
    +    x = torch.randn(1, 3, 10, 10)
    +    # Expect a ValueError prompting that SyncBN is not supported on CPU
    +    with pytest.raises(ValueError):
    +        y = conv(x)
    +    conv = revert_sync_batchnorm(conv)
    +    y = conv(x)
    +    assert y.shape == (1, 8, 9, 9)
    +
    +
    +def test_revert_mmsyncbn():
    +    if 'SLURM_NTASKS' not in os.environ or int(os.environ['SLURM_NTASKS']) < 2:
    +        print('Must run on slurm with more than 1 process!\n'
    +              'srun -p test --gres=gpu:2 -n2')
    +        return
    +    rank = int(os.environ['SLURM_PROCID'])
    +    world_size = int(os.environ['SLURM_NTASKS'])
    +    local_rank = int(os.environ['SLURM_LOCALID'])
    +    node_list = str(os.environ['SLURM_NODELIST'])
    +
    +    node_parts = re.findall('[0-9]+', node_list)
    +    os.environ['MASTER_ADDR'] = (f'{node_parts[1]}.{node_parts[2]}' +
    +                                 f'.{node_parts[3]}.{node_parts[4]}')
    +    os.environ['MASTER_PORT'] = '12341'
    +    os.environ['WORLD_SIZE'] = str(world_size)
    +    os.environ['RANK'] = str(rank)
    +
    +    dist.init_process_group('nccl')
    +    torch.cuda.set_device(local_rank)
    +    x = torch.randn(1, 3, 10, 10).cuda()
    +    dist.broadcast(x, src=0)
    +    conv = ConvModule(3, 8, 2, norm_cfg=dict(type='MMSyncBN')).cuda()
    +    conv.eval()
    +    y_mmsyncbn = conv(x).detach().cpu().numpy()
    +    conv = revert_sync_batchnorm(conv)
    +    y_bn = conv(x).detach().cpu().numpy()
    +    assert np.all(np.isclose(y_bn, y_mmsyncbn, 1e-3))
    +    conv, x = conv.to('cpu'), x.to('cpu')
    +    y_bn_cpu = conv(x).detach().numpy()
    +    assert np.all(np.isclose(y_bn, y_bn_cpu, 1e-3))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_operator.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_operator.py
    new file mode 100644
    index 000000000..b555605fc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_operator.py
    @@ -0,0 +1,325 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from copy import deepcopy
    +
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn.rfsearch.operator import Conv2dRFSearchOp
    +
    +global_config = dict(
    +    step=0,
    +    max_step=12,
    +    search_interval=1,
    +    exp_rate=0.5,
    +    init_alphas=0.01,
    +    mmin=1,
    +    mmax=24,
    +    num_branches=2,
    +    skip_layer=['stem', 'layer1'])
    +
    +
    +# test with 3x3 conv
    +def test_rfsearch_operator_3x3():
    +    conv = nn.Conv2d(
    +        in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1)
    +    operator = Conv2dRFSearchOp(conv, global_config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    # set no_grad to perform in-place operator
    +    with torch.no_grad():
    +        # After expand: (1, 1) (2, 2)
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (2, 2)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After estimate: (2, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (2, 2)
    +        assert operator.op_layer.dilation == (2, 2)
    +        assert operator.op_layer.padding == (2, 2)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (3, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.1
    +        operator.branch_weights[1] = 0.4
    +        # After estimate: (3, 3) with branch_weights of [0.2 0.8]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (3, 3)
    +        assert operator.op_layer.dilation == (3, 3)
    +        assert operator.op_layer.padding == (3, 3)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +
    +# test with 5x5 conv
    +def test_rfsearch_operator_5x5():
    +    conv = nn.Conv2d(
    +        in_channels=3, out_channels=3, kernel_size=5, stride=1, padding=2)
    +    operator = Conv2dRFSearchOp(conv, global_config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    with torch.no_grad():
    +        # After expand: (1, 1) (2, 2)
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (2, 2)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After estimate: (2, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (2, 2)
    +        assert operator.op_layer.dilation == (2, 2)
    +        assert operator.op_layer.padding == (4, 4)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (3, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.1
    +        operator.branch_weights[1] = 0.4
    +        # After estimate: (3, 3) with branch_weights of [0.2 0.8]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (3, 3)
    +        assert operator.op_layer.dilation == (3, 3)
    +        assert operator.op_layer.padding == (6, 6)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +
    +# test with 5x5 conv num_branches=3
    +def test_rfsearch_operator_5x5_branch3():
    +    conv = nn.Conv2d(
    +        in_channels=3, out_channels=3, kernel_size=5, stride=1, padding=2)
    +    config = deepcopy(global_config)
    +    config['num_branches'] = 3
    +    operator = Conv2dRFSearchOp(conv, config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    with torch.no_grad():
    +        # After expand: (1, 1) (2, 2)
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (2, 2)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After estimate: (2, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (2, 2)
    +        assert operator.op_layer.dilation == (2, 2)
    +        assert operator.op_layer.padding == (4, 4)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (2, 2) (3, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 3
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (2, 2)
    +        assert operator.dilation_rates[2] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.1
    +        operator.branch_weights[1] = 0.3
    +        operator.branch_weights[2] = 0.6
    +        # After estimate: (3, 3) with branch_weights of [0.1 0.3 0.6]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (3, 3)
    +        assert operator.op_layer.dilation == (3, 3)
    +        assert operator.op_layer.padding == (6, 6)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +
    +# test with 1x5 conv
    +def test_rfsearch_operator_1x5():
    +    conv = nn.Conv2d(
    +        in_channels=3,
    +        out_channels=3,
    +        kernel_size=(1, 5),
    +        stride=1,
    +        padding=(0, 2))
    +    operator = Conv2dRFSearchOp(conv, global_config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    # After expand: (1, 1) (1, 2)
    +    assert len(operator.dilation_rates) == 2
    +    assert operator.dilation_rates[0] == (1, 1)
    +    assert operator.dilation_rates[1] == (1, 2)
    +    assert torch.all(
    +        operator.branch_weights.data == global_config['init_alphas']).item()
    +    # test forward
    +    assert operator(x).shape == (1, 3, 32, 32)
    +
    +    with torch.no_grad():
    +        # After estimate: (1, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (1, 2)
    +        assert operator.op_layer.dilation == (1, 2)
    +        assert operator.op_layer.padding == (0, 4)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (1, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (1, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.2
    +        operator.branch_weights[1] = 0.8
    +        # After estimate: (3, 3) with branch_weights of [0.2 0.8]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (1, 3)
    +        assert operator.op_layer.dilation == (1, 3)
    +        assert operator.op_layer.padding == (0, 6)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +
    +# test with 5x5 conv initial_dilation=(2, 2)
    +def test_rfsearch_operator_5x5_d2x2():
    +    conv = nn.Conv2d(
    +        in_channels=3,
    +        out_channels=3,
    +        kernel_size=5,
    +        stride=1,
    +        padding=4,
    +        dilation=(2, 2))
    +    operator = Conv2dRFSearchOp(conv, global_config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    with torch.no_grad():
    +        # After expand: (1, 1) (3, 3)
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After estimate: (2, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (2, 2)
    +        assert operator.op_layer.dilation == (2, 2)
    +        assert operator.op_layer.padding == (4, 4)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (3, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.8
    +        operator.branch_weights[1] = 0.2
    +        # After estimate: (3, 3) with branch_weights of [0.8 0.2]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.op_layer.dilation == (1, 1)
    +        assert operator.op_layer.padding == (2, 2)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +
    +# test with 5x5 conv initial_dilation=(1, 2)
    +def test_rfsearch_operator_5x5_d1x2():
    +    conv = nn.Conv2d(
    +        in_channels=3,
    +        out_channels=3,
    +        kernel_size=5,
    +        stride=1,
    +        padding=(2, 4),
    +        dilation=(1, 2))
    +    operator = Conv2dRFSearchOp(conv, global_config)
    +    x = torch.randn(1, 3, 32, 32)
    +
    +    with torch.no_grad():
    +        # After expand: (1, 1) (2, 3)
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (2, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After estimate: (2, 2) with branch_weights of [0.5 0.5]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (2, 2)
    +        assert operator.op_layer.dilation == (2, 2)
    +        assert operator.op_layer.padding == (4, 4)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        # After expand: (1, 1) (3, 3)
    +        operator.expand_rates()
    +        assert len(operator.dilation_rates) == 2
    +        assert operator.dilation_rates[0] == (1, 1)
    +        assert operator.dilation_rates[1] == (3, 3)
    +        assert torch.all(operator.branch_weights.data ==
    +                         global_config['init_alphas']).item()
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    +
    +        operator.branch_weights[0] = 0.1
    +        operator.branch_weights[1] = 0.8
    +        # After estimate: (3, 3) with branch_weights of [0.1 0.8]
    +        operator.estimate_rates()
    +        assert len(operator.dilation_rates) == 1
    +        assert operator.dilation_rates[0] == (3, 3)
    +        assert operator.op_layer.dilation == (3, 3)
    +        assert operator.op_layer.padding == (6, 6)
    +        # test forward
    +        assert operator(x).shape == (1, 3, 32, 32)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_search.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_search.py
    new file mode 100644
    index 000000000..182134981
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_rfsearch/test_search.py
    @@ -0,0 +1,177 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""Tests the rfsearch with runners.
    +
    +CommandLine:
    +    pytest tests/test_runner/test_hooks.py
    +    xdoctest tests/test_hooks.py zero
    +"""
    +
    +import torch
    +import torch.nn as nn
    +from torch.utils.data import DataLoader
    +
    +from mmcv.cnn.rfsearch import Conv2dRFSearchOp, RFSearchHook
    +from tests.test_runner.test_hooks import _build_demo_runner
    +
    +
    +def test_rfsearchhook():
    +
    +    def conv(in_channels, out_channels, kernel_size, stride, padding,
    +             dilation):
    +        return nn.Conv2d(
    +            in_channels=in_channels,
    +            out_channels=out_channels,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation)
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.stem = conv(1, 2, 3, 1, 1, 1)
    +            self.conv0 = conv(2, 2, 3, 1, 1, 1)
    +            self.layer0 = nn.Sequential(
    +                conv(2, 2, 3, 1, 1, 1), conv(2, 2, 3, 1, 1, 1))
    +            self.conv1 = conv(2, 2, 1, 1, 0, 1)
    +            self.conv2 = conv(2, 2, 3, 1, 1, 1)
    +            self.conv3 = conv(2, 2, (1, 3), 1, (0, 1), 1)
    +
    +        def forward(self, x):
    +            x1 = self.stem(x)
    +            x2 = self.layer0(x1)
    +            x3 = self.conv0(x2)
    +            x4 = self.conv1(x3)
    +            x5 = self.conv2(x4)
    +            x6 = self.conv3(x5)
    +            return x6
    +
    +        def train_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x).mean(), num_samples=x.shape[0])
    +
    +    rfsearch_cfg = dict(
    +        mode='search',
    +        rfstructure_file=None,
    +        config=dict(
    +            search=dict(
    +                step=0,
    +                max_step=12,
    +                search_interval=1,
    +                exp_rate=0.5,
    +                init_alphas=0.01,
    +                mmin=1,
    +                mmax=24,
    +                num_branches=2,
    +                skip_layer=['stem', 'conv0', 'layer0.1'])),
    +    )
    +
    +    # hook for search
    +    rfsearchhook_search = RFSearchHook(
    +        'search', rfsearch_cfg['config'], by_epoch=True, verbose=True)
    +    rfsearchhook_search.config['structure'] = {
    +        'module.layer0.0': [1, 1],
    +        'module.conv2': [2, 2],
    +        'module.conv3': [1, 1]
    +    }
    +    # hook for fixed_single_branch
    +    rfsearchhook_fixed_single_branch = RFSearchHook(
    +        'fixed_single_branch',
    +        rfsearch_cfg['config'],
    +        by_epoch=True,
    +        verbose=True)
    +    rfsearchhook_fixed_single_branch.config['structure'] = {
    +        'module.layer0.0': [1, 1],
    +        'module.conv2': [2, 2],
    +        'module.conv3': [1, 1]
    +    }
    +    # hook for fixed_multi_branch
    +    rfsearchhook_fixed_multi_branch = RFSearchHook(
    +        'fixed_multi_branch',
    +        rfsearch_cfg['config'],
    +        by_epoch=True,
    +        verbose=True)
    +    rfsearchhook_fixed_multi_branch.config['structure'] = {
    +        'module.layer0.0': [1, 1],
    +        'module.conv2': [2, 2],
    +        'module.conv3': [1, 1]
    +    }
    +
    +    def test_skip_layer():
    +        assert not isinstance(model.stem, Conv2dRFSearchOp)
    +        assert not isinstance(model.conv0, Conv2dRFSearchOp)
    +        assert isinstance(model.layer0[0], Conv2dRFSearchOp)
    +        assert not isinstance(model.layer0[1], Conv2dRFSearchOp)
    +
    +    # 1. test init_model() with mode of search
    +    model = Model()
    +    rfsearchhook_search.init_model(model)
    +
    +    test_skip_layer()
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv2.dilation_rates == [(1, 1), (3, 3)]
    +    assert model.conv3.dilation_rates == [(1, 1), (1, 2)]
    +
    +    # 1. test step() with mode of search
    +    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    +    runner = _build_demo_runner()
    +    runner.model = model
    +    runner.register_hook(rfsearchhook_search)
    +    runner.run([loader], [('train', 1)])
    +
    +    test_skip_layer()
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv2.dilation_rates == [(1, 1), (3, 3)]
    +    assert model.conv3.dilation_rates == [(1, 1), (1, 3)]
    +
    +    # 2. test init_model() with mode of fixed_single_branch
    +    model = Model()
    +    rfsearchhook_fixed_single_branch.init_model(model)
    +
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert not isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert not isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv1.dilation == (1, 1)
    +    assert model.conv2.dilation == (2, 2)
    +    assert model.conv3.dilation == (1, 1)
    +
    +    # 2. test step() with mode of fixed_single_branch
    +    runner = _build_demo_runner()
    +    runner.model = model
    +    runner.register_hook(rfsearchhook_fixed_single_branch)
    +    runner.run([loader], [('train', 1)])
    +
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert not isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert not isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv1.dilation == (1, 1)
    +    assert model.conv2.dilation == (2, 2)
    +    assert model.conv3.dilation == (1, 1)
    +
    +    # 3. test init_model() with mode of fixed_multi_branch
    +    model = Model()
    +    rfsearchhook_fixed_multi_branch.init_model(model)
    +
    +    test_skip_layer()
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv2.dilation_rates == [(1, 1), (3, 3)]
    +    assert model.conv3.dilation_rates == [(1, 1), (1, 2)]
    +
    +    # 3. test step() with mode of fixed_single_branch
    +    runner = _build_demo_runner()
    +    runner.model = model
    +    runner.register_hook(rfsearchhook_fixed_multi_branch)
    +    runner.run([loader], [('train', 1)])
    +
    +    test_skip_layer()
    +    assert not isinstance(model.conv1, Conv2dRFSearchOp)
    +    assert isinstance(model.conv2, Conv2dRFSearchOp)
    +    assert isinstance(model.conv3, Conv2dRFSearchOp)
    +    assert model.conv2.dilation_rates == [(1, 1), (3, 3)]
    +    assert model.conv3.dilation_rates == [(1, 1), (1, 2)]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_scale.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_scale.py
    new file mode 100644
    index 000000000..bee78eb57
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_scale.py
    @@ -0,0 +1,22 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.cnn.bricks import Scale
    +
    +
    +def test_scale():
    +    # test default scale
    +    scale = Scale()
    +    assert scale.scale.data == 1.
    +    assert scale.scale.dtype == torch.float
    +    x = torch.rand(1, 3, 64, 64)
    +    output = scale(x)
    +    assert output.shape == (1, 3, 64, 64)
    +
    +    # test given scale
    +    scale = Scale(10.)
    +    assert scale.scale.data == 10.
    +    assert scale.scale.dtype == torch.float
    +    x = torch.rand(1, 3, 64, 64)
    +    output = scale(x)
    +    assert output.shape == (1, 3, 64, 64)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_silu.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_silu.py
    new file mode 100644
    index 000000000..e3bbc0f9b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_silu.py
    @@ -0,0 +1,28 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +from mmcv.cnn.bricks import build_activation_layer
    +
    +
    +def test_silu():
    +    act = build_activation_layer(dict(type='SiLU'))
    +    input = torch.randn(1, 3, 64, 64)
    +    expected_output = input * torch.sigmoid(input)
    +    output = act(input)
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.allclose(output, expected_output)
    +
    +    # test inplace
    +    act = build_activation_layer(dict(type='SiLU', inplace=True))
    +    assert act.inplace
    +    input = torch.randn(1, 3, 64, 64)
    +    expected_output = input * torch.sigmoid(input)
    +    output = act(input)
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.allclose(output, expected_output)
    +    assert torch.allclose(input, expected_output)
    +    assert input is output
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_swish.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_swish.py
    new file mode 100644
    index 000000000..2317f5a13
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_swish.py
    @@ -0,0 +1,16 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn.functional as F
    +
    +from mmcv.cnn.bricks import Swish
    +
    +
    +def test_swish():
    +    act = Swish()
    +    input = torch.randn(1, 3, 64, 64)
    +    expected_output = input * F.sigmoid(input)
    +    output = act(input)
    +    # test output shape
    +    assert output.shape == expected_output.shape
    +    # test output value
    +    assert torch.equal(output, expected_output)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_transformer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_transformer.py
    new file mode 100644
    index 000000000..e024d83b1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_transformer.py
    @@ -0,0 +1,679 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +
    +import pytest
    +import torch
    +
    +from mmcv.cnn.bricks.drop import DropPath
    +from mmcv.cnn.bricks.transformer import (FFN, AdaptivePadding,
    +                                         BaseTransformerLayer,
    +                                         MultiheadAttention, PatchEmbed,
    +                                         PatchMerging,
    +                                         TransformerLayerSequence)
    +from mmcv.runner import ModuleList
    +
    +
    +def test_adaptive_padding():
    +    for padding in ('same', 'corner'):
    +        kernel_size = 16
    +        stride = 16
    +        dilation = 1
    +        input = torch.rand(1, 1, 15, 17)
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        out = adap_pad(input)
    +        # padding to divisible by 16
    +        assert (out.shape[2], out.shape[3]) == (16, 32)
    +        input = torch.rand(1, 1, 16, 17)
    +        out = adap_pad(input)
    +        # padding to divisible by 16
    +        assert (out.shape[2], out.shape[3]) == (16, 32)
    +
    +        kernel_size = (2, 2)
    +        stride = (2, 2)
    +        dilation = (1, 1)
    +
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        input = torch.rand(1, 1, 11, 13)
    +        out = adap_pad(input)
    +        # padding to divisible by 2
    +        assert (out.shape[2], out.shape[3]) == (12, 14)
    +
    +        kernel_size = (2, 2)
    +        stride = (10, 10)
    +        dilation = (1, 1)
    +
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        input = torch.rand(1, 1, 10, 13)
    +        out = adap_pad(input)
    +        #  no padding
    +        assert (out.shape[2], out.shape[3]) == (10, 13)
    +
    +        kernel_size = (11, 11)
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        input = torch.rand(1, 1, 11, 13)
    +        out = adap_pad(input)
    +        #  all padding
    +        assert (out.shape[2], out.shape[3]) == (21, 21)
    +
    +        # test padding as kernel is (7,9)
    +        input = torch.rand(1, 1, 11, 13)
    +        stride = (3, 4)
    +        kernel_size = (4, 5)
    +        dilation = (2, 2)
    +        # actually (7, 9)
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        dilation_out = adap_pad(input)
    +        assert (dilation_out.shape[2], dilation_out.shape[3]) == (16, 21)
    +        kernel_size = (7, 9)
    +        dilation = (1, 1)
    +        adap_pad = AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=padding)
    +        kernel79_out = adap_pad(input)
    +        assert (kernel79_out.shape[2], kernel79_out.shape[3]) == (16, 21)
    +        assert kernel79_out.shape == dilation_out.shape
    +
    +    # assert only support "same" "corner"
    +    with pytest.raises(AssertionError):
    +        AdaptivePadding(
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            dilation=dilation,
    +            padding=1)
    +
    +
    +def test_patch_embed():
    +    B = 2
    +    H = 3
    +    W = 4
    +    C = 3
    +    embed_dims = 10
    +    kernel_size = 3
    +    stride = 1
    +    dummy_input = torch.rand(B, C, H, W)
    +    patch_merge_1 = PatchEmbed(
    +        in_channels=C,
    +        embed_dims=embed_dims,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=0,
    +        dilation=1,
    +        norm_cfg=None)
    +
    +    x1, shape = patch_merge_1(dummy_input)
    +    # test out shape
    +    assert x1.shape == (2, 2, 10)
    +    # test outsize is correct
    +    assert shape == (1, 2)
    +    # test L = out_h * out_w
    +    assert shape[0] * shape[1] == x1.shape[1]
    +
    +    B = 2
    +    H = 10
    +    W = 10
    +    C = 3
    +    embed_dims = 10
    +    kernel_size = 5
    +    stride = 2
    +    dummy_input = torch.rand(B, C, H, W)
    +    # test dilation
    +    patch_merge_2 = PatchEmbed(
    +        in_channels=C,
    +        embed_dims=embed_dims,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=0,
    +        dilation=2,
    +        norm_cfg=None,
    +    )
    +
    +    x2, shape = patch_merge_2(dummy_input)
    +    # test out shape
    +    assert x2.shape == (2, 1, 10)
    +    # test outsize is correct
    +    assert shape == (1, 1)
    +    # test L = out_h * out_w
    +    assert shape[0] * shape[1] == x2.shape[1]
    +
    +    stride = 2
    +    input_size = (10, 10)
    +
    +    dummy_input = torch.rand(B, C, H, W)
    +    # test stride and norm
    +    patch_merge_3 = PatchEmbed(
    +        in_channels=C,
    +        embed_dims=embed_dims,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=0,
    +        dilation=2,
    +        norm_cfg=dict(type='LN'),
    +        input_size=input_size)
    +
    +    x3, shape = patch_merge_3(dummy_input)
    +    # test out shape
    +    assert x3.shape == (2, 1, 10)
    +    # test outsize is correct
    +    assert shape == (1, 1)
    +    # test L = out_h * out_w
    +    assert shape[0] * shape[1] == x3.shape[1]
    +
    +    # test the init_out_size with nn.Unfold
    +    assert patch_merge_3.init_out_size[1] == (input_size[0] - 2 * 4 -
    +                                              1) // 2 + 1
    +    assert patch_merge_3.init_out_size[0] == (input_size[0] - 2 * 4 -
    +                                              1) // 2 + 1
    +    H = 11
    +    W = 12
    +    input_size = (H, W)
    +    dummy_input = torch.rand(B, C, H, W)
    +    # test stride and norm
    +    patch_merge_3 = PatchEmbed(
    +        in_channels=C,
    +        embed_dims=embed_dims,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=0,
    +        dilation=2,
    +        norm_cfg=dict(type='LN'),
    +        input_size=input_size)
    +
    +    _, shape = patch_merge_3(dummy_input)
    +    # when input_size equal to real input
    +    # the out_size should be equal to `init_out_size`
    +    assert shape == patch_merge_3.init_out_size
    +
    +    input_size = (H, W)
    +    dummy_input = torch.rand(B, C, H, W)
    +    # test stride and norm
    +    patch_merge_3 = PatchEmbed(
    +        in_channels=C,
    +        embed_dims=embed_dims,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=0,
    +        dilation=2,
    +        norm_cfg=dict(type='LN'),
    +        input_size=input_size)
    +
    +    _, shape = patch_merge_3(dummy_input)
    +    # when input_size equal to real input
    +    # the out_size should be equal to `init_out_size`
    +    assert shape == patch_merge_3.init_out_size
    +
    +    # test adap padding
    +    for padding in ('same', 'corner'):
    +        in_c = 2
    +        embed_dims = 3
    +        B = 2
    +
    +        # test stride is 1
    +        input_size = (5, 5)
    +        kernel_size = (5, 5)
    +        stride = (1, 1)
    +        dilation = 1
    +        bias = False
    +
    +        x = torch.rand(B, in_c, *input_size)
    +        patch_embed = PatchEmbed(
    +            in_channels=in_c,
    +            embed_dims=embed_dims,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_embed(x)
    +        assert x_out.size() == (B, 25, 3)
    +        assert out_size == (5, 5)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test kernel_size == stride
    +        input_size = (5, 5)
    +        kernel_size = (5, 5)
    +        stride = (5, 5)
    +        dilation = 1
    +        bias = False
    +
    +        x = torch.rand(B, in_c, *input_size)
    +        patch_embed = PatchEmbed(
    +            in_channels=in_c,
    +            embed_dims=embed_dims,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_embed(x)
    +        assert x_out.size() == (B, 1, 3)
    +        assert out_size == (1, 1)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test kernel_size == stride
    +        input_size = (6, 5)
    +        kernel_size = (5, 5)
    +        stride = (5, 5)
    +        dilation = 1
    +        bias = False
    +
    +        x = torch.rand(B, in_c, *input_size)
    +        patch_embed = PatchEmbed(
    +            in_channels=in_c,
    +            embed_dims=embed_dims,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_embed(x)
    +        assert x_out.size() == (B, 2, 3)
    +        assert out_size == (2, 1)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test different kernel_size with different stride
    +        input_size = (6, 5)
    +        kernel_size = (6, 2)
    +        stride = (6, 2)
    +        dilation = 1
    +        bias = False
    +
    +        x = torch.rand(B, in_c, *input_size)
    +        patch_embed = PatchEmbed(
    +            in_channels=in_c,
    +            embed_dims=embed_dims,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_embed(x)
    +        assert x_out.size() == (B, 3, 3)
    +        assert out_size == (1, 3)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +
    +def test_patch_merging():
    +    # Test the model with int padding
    +    in_c = 3
    +    out_c = 4
    +    kernel_size = 3
    +    stride = 3
    +    padding = 1
    +    dilation = 1
    +    bias = False
    +    # test the case `pad_to_stride` is False
    +    patch_merge = PatchMerging(
    +        in_channels=in_c,
    +        out_channels=out_c,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        bias=bias)
    +    B, L, C = 1, 100, 3
    +    input_size = (10, 10)
    +    x = torch.rand(B, L, C)
    +    x_out, out_size = patch_merge(x, input_size)
    +    assert x_out.size() == (1, 16, 4)
    +    assert out_size == (4, 4)
    +    # assert out size is consistent with real output
    +    assert x_out.size(1) == out_size[0] * out_size[1]
    +    in_c = 4
    +    out_c = 5
    +    kernel_size = 6
    +    stride = 3
    +    padding = 2
    +    dilation = 2
    +    bias = False
    +    patch_merge = PatchMerging(
    +        in_channels=in_c,
    +        out_channels=out_c,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        bias=bias)
    +    B, L, C = 1, 100, 4
    +    input_size = (10, 10)
    +    x = torch.rand(B, L, C)
    +    x_out, out_size = patch_merge(x, input_size)
    +    assert x_out.size() == (1, 4, 5)
    +    assert out_size == (2, 2)
    +    # assert out size is consistent with real output
    +    assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +    # Test with adaptive padding
    +    for padding in ('same', 'corner'):
    +        in_c = 2
    +        out_c = 3
    +        B = 2
    +
    +        # test stride is 1
    +        input_size = (5, 5)
    +        kernel_size = (5, 5)
    +        stride = (1, 1)
    +        dilation = 1
    +        bias = False
    +        L = input_size[0] * input_size[1]
    +
    +        x = torch.rand(B, L, in_c)
    +        patch_merge = PatchMerging(
    +            in_channels=in_c,
    +            out_channels=out_c,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_merge(x, input_size)
    +        assert x_out.size() == (B, 25, 3)
    +        assert out_size == (5, 5)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test kernel_size == stride
    +        input_size = (5, 5)
    +        kernel_size = (5, 5)
    +        stride = (5, 5)
    +        dilation = 1
    +        bias = False
    +        L = input_size[0] * input_size[1]
    +
    +        x = torch.rand(B, L, in_c)
    +        patch_merge = PatchMerging(
    +            in_channels=in_c,
    +            out_channels=out_c,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_merge(x, input_size)
    +        assert x_out.size() == (B, 1, 3)
    +        assert out_size == (1, 1)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test kernel_size == stride
    +        input_size = (6, 5)
    +        kernel_size = (5, 5)
    +        stride = (5, 5)
    +        dilation = 1
    +        bias = False
    +        L = input_size[0] * input_size[1]
    +
    +        x = torch.rand(B, L, in_c)
    +        patch_merge = PatchMerging(
    +            in_channels=in_c,
    +            out_channels=out_c,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_merge(x, input_size)
    +        assert x_out.size() == (B, 2, 3)
    +        assert out_size == (2, 1)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +        # test different kernel_size with different stride
    +        input_size = (6, 5)
    +        kernel_size = (6, 2)
    +        stride = (6, 2)
    +        dilation = 1
    +        bias = False
    +        L = input_size[0] * input_size[1]
    +
    +        x = torch.rand(B, L, in_c)
    +        patch_merge = PatchMerging(
    +            in_channels=in_c,
    +            out_channels=out_c,
    +            kernel_size=kernel_size,
    +            stride=stride,
    +            padding=padding,
    +            dilation=dilation,
    +            bias=bias)
    +
    +        x_out, out_size = patch_merge(x, input_size)
    +        assert x_out.size() == (B, 3, 3)
    +        assert out_size == (1, 3)
    +        assert x_out.size(1) == out_size[0] * out_size[1]
    +
    +
    +def test_multiheadattention():
    +    MultiheadAttention(
    +        embed_dims=5,
    +        num_heads=5,
    +        attn_drop=0,
    +        proj_drop=0,
    +        dropout_layer=dict(type='Dropout', drop_prob=0.),
    +        batch_first=True)
    +    batch_dim = 2
    +    embed_dim = 5
    +    num_query = 100
    +    attn_batch_first = MultiheadAttention(
    +        embed_dims=5,
    +        num_heads=5,
    +        attn_drop=0,
    +        proj_drop=0,
    +        dropout_layer=dict(type='DropPath', drop_prob=0.),
    +        batch_first=True)
    +
    +    attn_query_first = MultiheadAttention(
    +        embed_dims=5,
    +        num_heads=5,
    +        attn_drop=0,
    +        proj_drop=0,
    +        dropout_layer=dict(type='DropPath', drop_prob=0.),
    +        batch_first=False)
    +
    +    param_dict = dict(attn_query_first.named_parameters())
    +    for n, v in attn_batch_first.named_parameters():
    +        param_dict[n].data = v.data
    +
    +    input_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    +    input_query_first = input_batch_first.transpose(0, 1)
    +
    +    assert torch.allclose(
    +        attn_query_first(input_query_first).sum(),
    +        attn_batch_first(input_batch_first).sum())
    +
    +    key_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    +    key_query_first = key_batch_first.transpose(0, 1)
    +
    +    assert torch.allclose(
    +        attn_query_first(input_query_first, key_query_first).sum(),
    +        attn_batch_first(input_batch_first, key_batch_first).sum())
    +
    +    identity = torch.ones_like(input_query_first)
    +
    +    # check deprecated arguments can be used normally
    +
    +    assert torch.allclose(
    +        attn_query_first(
    +            input_query_first, key_query_first, residual=identity).sum(),
    +        attn_batch_first(input_batch_first, key_batch_first).sum() +
    +        identity.sum() - input_batch_first.sum())
    +
    +    assert torch.allclose(
    +        attn_query_first(
    +            input_query_first, key_query_first, identity=identity).sum(),
    +        attn_batch_first(input_batch_first, key_batch_first).sum() +
    +        identity.sum() - input_batch_first.sum())
    +
    +    attn_query_first(
    +        input_query_first, key_query_first, identity=identity).sum(),
    +
    +
    +def test_ffn():
    +    with pytest.raises(AssertionError):
    +        # num_fcs should be no less than 2
    +        FFN(num_fcs=1)
    +    FFN(dropout=0, add_residual=True)
    +    ffn = FFN(dropout=0, add_identity=True)
    +
    +    input_tensor = torch.rand(2, 20, 256)
    +    input_tensor_nbc = input_tensor.transpose(0, 1)
    +    assert torch.allclose(ffn(input_tensor).sum(), ffn(input_tensor_nbc).sum())
    +    residual = torch.rand_like(input_tensor)
    +    torch.allclose(
    +        ffn(input_tensor, residual=residual).sum(),
    +        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())
    +
    +    torch.allclose(
    +        ffn(input_tensor, identity=residual).sum(),
    +        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())
    +
    +
    +@pytest.mark.skipif(not torch.cuda.is_available(), reason='Cuda not available')
    +def test_basetransformerlayer_cuda():
    +    # To test if the BaseTransformerLayer's behaviour remains
    +    # consistent after being deepcopied
    +    operation_order = ('self_attn', 'ffn')
    +    baselayer = BaseTransformerLayer(
    +        operation_order=operation_order,
    +        batch_first=True,
    +        attn_cfgs=dict(
    +            type='MultiheadAttention',
    +            embed_dims=256,
    +            num_heads=8,
    +        ),
    +    )
    +    baselayers = ModuleList([copy.deepcopy(baselayer) for _ in range(2)])
    +    baselayers.to('cuda')
    +    x = torch.rand(2, 10, 256).cuda()
    +    for m in baselayers:
    +        x = m(x)
    +        assert x.shape == torch.Size([2, 10, 256])
    +
    +
    +@pytest.mark.parametrize('embed_dims', [False, 256])
    +def test_basetransformerlayer(embed_dims):
    +    attn_cfgs = dict(type='MultiheadAttention', embed_dims=256, num_heads=8),
    +    if embed_dims:
    +        ffn_cfgs = dict(
    +            type='FFN',
    +            embed_dims=embed_dims,
    +            feedforward_channels=1024,
    +            num_fcs=2,
    +            ffn_drop=0.,
    +            act_cfg=dict(type='ReLU', inplace=True),
    +        )
    +    else:
    +        ffn_cfgs = dict(
    +            type='FFN',
    +            feedforward_channels=1024,
    +            num_fcs=2,
    +            ffn_drop=0.,
    +            act_cfg=dict(type='ReLU', inplace=True),
    +        )
    +
    +    feedforward_channels = 2048
    +    ffn_dropout = 0.1
    +    operation_order = ('self_attn', 'norm', 'ffn', 'norm')
    +
    +    # test deprecated_args
    +    baselayer = BaseTransformerLayer(
    +        attn_cfgs=attn_cfgs,
    +        ffn_cfgs=ffn_cfgs,
    +        feedforward_channels=feedforward_channels,
    +        ffn_dropout=ffn_dropout,
    +        operation_order=operation_order)
    +    assert baselayer.batch_first is False
    +    assert baselayer.ffns[0].feedforward_channels == feedforward_channels
    +
    +    attn_cfgs = dict(type='MultiheadAttention', num_heads=8, embed_dims=256),
    +    feedforward_channels = 2048
    +    ffn_dropout = 0.1
    +    operation_order = ('self_attn', 'norm', 'ffn', 'norm')
    +    baselayer = BaseTransformerLayer(
    +        attn_cfgs=attn_cfgs,
    +        feedforward_channels=feedforward_channels,
    +        ffn_dropout=ffn_dropout,
    +        operation_order=operation_order,
    +        batch_first=True)
    +    assert baselayer.attentions[0].batch_first
    +    in_tensor = torch.rand(2, 10, 256)
    +    baselayer(in_tensor)
    +
    +
    +def test_transformerlayersequence():
    +    squeue = TransformerLayerSequence(
    +        num_layers=6,
    +        transformerlayers=dict(
    +            type='BaseTransformerLayer',
    +            attn_cfgs=[
    +                dict(
    +                    type='MultiheadAttention',
    +                    embed_dims=256,
    +                    num_heads=8,
    +                    dropout=0.1),
    +                dict(type='MultiheadAttention', embed_dims=256, num_heads=4)
    +            ],
    +            feedforward_channels=1024,
    +            ffn_dropout=0.1,
    +            operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn',
    +                             'norm')))
    +    assert len(squeue.layers) == 6
    +    assert squeue.pre_norm is False
    +    with pytest.raises(AssertionError):
    +        # if transformerlayers is a list, len(transformerlayers)
    +        # should be equal to num_layers
    +        TransformerLayerSequence(
    +            num_layers=6,
    +            transformerlayers=[
    +                dict(
    +                    type='BaseTransformerLayer',
    +                    attn_cfgs=[
    +                        dict(
    +                            type='MultiheadAttention',
    +                            embed_dims=256,
    +                            num_heads=8,
    +                            dropout=0.1),
    +                        dict(type='MultiheadAttention', embed_dims=256)
    +                    ],
    +                    feedforward_channels=1024,
    +                    ffn_dropout=0.1,
    +                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
    +                                     'ffn', 'norm'))
    +            ])
    +
    +
    +def test_drop_path():
    +    drop_path = DropPath(drop_prob=0)
    +    test_in = torch.rand(2, 3, 4, 5)
    +    assert test_in is drop_path(test_in)
    +
    +    drop_path = DropPath(drop_prob=0.1)
    +    drop_path.training = False
    +    test_in = torch.rand(2, 3, 4, 5)
    +    assert test_in is drop_path(test_in)
    +    drop_path.training = True
    +    assert test_in is not drop_path(test_in)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_weight_init.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_weight_init.py
    new file mode 100644
    index 000000000..c14be6628
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_weight_init.py
    @@ -0,0 +1,562 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import random
    +from tempfile import TemporaryDirectory
    +
    +import numpy as np
    +import pytest
    +import torch
    +from scipy import stats
    +from torch import nn
    +
    +from mmcv.cnn import (Caffe2XavierInit, ConstantInit, KaimingInit, NormalInit,
    +                      PretrainedInit, TruncNormalInit, UniformInit, XavierInit,
    +                      bias_init_with_prob, caffe2_xavier_init, constant_init,
    +                      initialize, kaiming_init, normal_init, trunc_normal_init,
    +                      uniform_init, xavier_init)
    +
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not supported in parrots now', allow_module_level=True)
    +
    +
    +def test_constant_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    constant_init(conv_module, 0.1)
    +    assert conv_module.weight.allclose(
    +        torch.full_like(conv_module.weight, 0.1))
    +    assert conv_module.bias.allclose(torch.zeros_like(conv_module.bias))
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    constant_init(conv_module_no_bias, 0.1)
    +    assert conv_module.weight.allclose(
    +        torch.full_like(conv_module.weight, 0.1))
    +
    +
    +def test_xavier_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    xavier_init(conv_module, bias=0.1)
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    +    xavier_init(conv_module, distribution='uniform')
    +    # TODO: sanity check of weight distribution, e.g. mean, std
    +    with pytest.raises(AssertionError):
    +        xavier_init(conv_module, distribution='student-t')
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    xavier_init(conv_module_no_bias)
    +
    +
    +def test_normal_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    normal_init(conv_module, bias=0.1)
    +    # TODO: sanity check of weight distribution, e.g. mean, std
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    normal_init(conv_module_no_bias)
    +    # TODO: sanity check distribution, e.g. mean, std
    +
    +
    +def test_trunc_normal_init():
    +
    +    def _random_float(a, b):
    +        return (b - a) * random.random() + a
    +
    +    def _is_trunc_normal(tensor, mean, std, a, b):
    +        # scipy's trunc norm is suited for data drawn from N(0, 1),
    +        # so we need to transform our data to test it using scipy.
    +        z_samples = (tensor.view(-1) - mean) / std
    +        z_samples = z_samples.tolist()
    +        a0 = (a - mean) / std
    +        b0 = (b - mean) / std
    +        p_value = stats.kstest(z_samples, 'truncnorm', args=(a0, b0))[1]
    +        return p_value > 0.0001
    +
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    mean = _random_float(-3, 3)
    +    std = _random_float(.01, 1)
    +    a = _random_float(mean - 2 * std, mean)
    +    b = _random_float(mean, mean + 2 * std)
    +    trunc_normal_init(conv_module, mean, std, a, b, bias=0.1)
    +    assert _is_trunc_normal(conv_module.weight, mean, std, a, b)
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    +
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    trunc_normal_init(conv_module_no_bias)
    +    # TODO: sanity check distribution, e.g. mean, std
    +
    +
    +def test_uniform_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    uniform_init(conv_module, bias=0.1)
    +    # TODO: sanity check of weight distribution, e.g. mean, std
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    uniform_init(conv_module_no_bias)
    +
    +
    +def test_kaiming_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    kaiming_init(conv_module, bias=0.1)
    +    # TODO: sanity check of weight distribution, e.g. mean, std
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    +    kaiming_init(conv_module, distribution='uniform')
    +    with pytest.raises(AssertionError):
    +        kaiming_init(conv_module, distribution='student-t')
    +    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    +    kaiming_init(conv_module_no_bias)
    +
    +
    +def test_caffe_xavier_init():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    caffe2_xavier_init(conv_module)
    +
    +
    +def test_bias_init_with_prob():
    +    conv_module = nn.Conv2d(3, 16, 3)
    +    prior_prob = 0.1
    +    normal_init(conv_module, bias=bias_init_with_prob(0.1))
    +    # TODO: sanity check of weight distribution, e.g. mean, std
    +    bias = float(-np.log((1 - prior_prob) / prior_prob))
    +    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, bias))
    +
    +
    +def test_constaninit():
    +    """test ConstantInit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    func = ConstantInit(val=1, bias=2, layer='Conv2d')
    +    func(model)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    +
    +    assert not torch.equal(model[2].weight,
    +                           torch.full(model[2].weight.shape, 1.))
    +    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))
    +
    +    func = ConstantInit(val=3, bias_prob=0.01, layer='Linear')
    +    func(model)
    +    res = bias_init_with_prob(0.01)
    +
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +    func = ConstantInit(val=4., bias=5., layer='_ConvNd')
    +    func(model)
    +    assert torch.all(model[0].weight == 4.)
    +    assert torch.all(model[2].weight == 4.)
    +    assert torch.all(model[0].bias == 5.)
    +    assert torch.all(model[2].bias == 5.)
    +
    +    # test bias input type
    +    with pytest.raises(TypeError):
    +        func = ConstantInit(val=1, bias='1')
    +    # test bias_prob type
    +    with pytest.raises(TypeError):
    +        func = ConstantInit(val=1, bias_prob='1')
    +    # test layer input type
    +    with pytest.raises(TypeError):
    +        func = ConstantInit(val=1, layer=1)
    +
    +
    +def test_xavierinit():
    +    """test XavierInit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    func = XavierInit(bias=0.1, layer='Conv2d')
    +    func(model)
    +    assert model[0].bias.allclose(torch.full_like(model[2].bias, 0.1))
    +    assert not model[2].bias.allclose(torch.full_like(model[0].bias, 0.1))
    +
    +    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    +    func = XavierInit(gain=100, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    +    model.apply(constant_func)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))
    +
    +    res = bias_init_with_prob(0.01)
    +    func(model)
    +    assert not torch.equal(model[0].weight,
    +                           torch.full(model[0].weight.shape, 0.))
    +    assert not torch.equal(model[2].weight,
    +                           torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, res))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +    func = ConstantInit(val=4., bias=5., layer='_ConvNd')
    +    func(model)
    +    assert torch.all(model[0].weight == 4.)
    +    assert torch.all(model[2].weight == 4.)
    +    assert torch.all(model[0].bias == 5.)
    +    assert torch.all(model[2].bias == 5.)
    +
    +    func = XavierInit(gain=100, bias_prob=0.01, layer='_ConvNd')
    +    func(model)
    +    assert not torch.all(model[0].weight == 4.)
    +    assert not torch.all(model[2].weight == 4.)
    +    assert torch.all(model[0].bias == res)
    +    assert torch.all(model[2].bias == res)
    +
    +    # test bias input type
    +    with pytest.raises(TypeError):
    +        func = XavierInit(bias='0.1', layer='Conv2d')
    +    # test layer inpur type
    +    with pytest.raises(TypeError):
    +        func = XavierInit(bias=0.1, layer=1)
    +
    +
    +def test_normalinit():
    +    """test Normalinit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +
    +    func = NormalInit(mean=100, std=1e-5, bias=200, layer=['Conv2d', 'Linear'])
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(100.))
    +    assert model[2].weight.allclose(torch.tensor(100.))
    +    assert model[0].bias.allclose(torch.tensor(200.))
    +    assert model[2].bias.allclose(torch.tensor(200.))
    +
    +    func = NormalInit(
    +        mean=300, std=1e-5, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    +    res = bias_init_with_prob(0.01)
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(300.))
    +    assert model[2].weight.allclose(torch.tensor(300.))
    +    assert model[0].bias.allclose(torch.tensor(res))
    +    assert model[2].bias.allclose(torch.tensor(res))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +
    +    func = NormalInit(mean=300, std=1e-5, bias_prob=0.01, layer='_ConvNd')
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(300.))
    +    assert model[2].weight.allclose(torch.tensor(300.))
    +    assert torch.all(model[0].bias == res)
    +    assert torch.all(model[2].bias == res)
    +
    +
    +def test_truncnormalinit():
    +    """test TruncNormalInit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +
    +    func = TruncNormalInit(
    +        mean=100, std=1e-5, bias=200, a=0, b=200, layer=['Conv2d', 'Linear'])
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(100.))
    +    assert model[2].weight.allclose(torch.tensor(100.))
    +    assert model[0].bias.allclose(torch.tensor(200.))
    +    assert model[2].bias.allclose(torch.tensor(200.))
    +
    +    func = TruncNormalInit(
    +        mean=300,
    +        std=1e-5,
    +        a=100,
    +        b=400,
    +        bias_prob=0.01,
    +        layer=['Conv2d', 'Linear'])
    +    res = bias_init_with_prob(0.01)
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(300.))
    +    assert model[2].weight.allclose(torch.tensor(300.))
    +    assert model[0].bias.allclose(torch.tensor(res))
    +    assert model[2].bias.allclose(torch.tensor(res))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +
    +    func = TruncNormalInit(
    +        mean=300, std=1e-5, a=100, b=400, bias_prob=0.01, layer='_ConvNd')
    +    func(model)
    +    assert model[0].weight.allclose(torch.tensor(300.))
    +    assert model[2].weight.allclose(torch.tensor(300.))
    +    assert torch.all(model[0].bias == res)
    +    assert torch.all(model[2].bias == res)
    +
    +
    +def test_uniforminit():
    +    """"test UniformInit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    func = UniformInit(a=1, b=1, bias=2, layer=['Conv2d', 'Linear'])
    +    func(model)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))
    +
    +    func = UniformInit(a=100, b=100, layer=['Conv2d', 'Linear'], bias=10)
    +    func(model)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape,
    +                                                   100.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape,
    +                                                   100.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +
    +    func = UniformInit(a=100, b=100, bias_prob=0.01, layer='_ConvNd')
    +    res = bias_init_with_prob(0.01)
    +    func(model)
    +    assert torch.all(model[0].weight == 100.)
    +    assert torch.all(model[2].weight == 100.)
    +    assert torch.all(model[0].bias == res)
    +    assert torch.all(model[2].bias == res)
    +
    +
    +def test_kaiminginit():
    +    """test KaimingInit class."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    func = KaimingInit(bias=0.1, layer='Conv2d')
    +    func(model)
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    +    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))
    +
    +    func = KaimingInit(a=100, bias=10, layer=['Conv2d', 'Linear'])
    +    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    +    model.apply(constant_func)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))
    +
    +    func(model)
    +    assert not torch.equal(model[0].weight,
    +                           torch.full(model[0].weight.shape, 0.))
    +    assert not torch.equal(model[2].weight,
    +                           torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))
    +
    +    # test layer key with base class name
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    +    func = KaimingInit(bias=0.1, layer='_ConvNd')
    +    func(model)
    +    assert torch.all(model[0].bias == 0.1)
    +    assert torch.all(model[2].bias == 0.1)
    +
    +    func = KaimingInit(a=100, bias=10, layer='_ConvNd')
    +    constant_func = ConstantInit(val=0, bias=0, layer='_ConvNd')
    +    model.apply(constant_func)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))
    +
    +    func(model)
    +    assert not torch.equal(model[0].weight,
    +                           torch.full(model[0].weight.shape, 0.))
    +    assert not torch.equal(model[2].weight,
    +                           torch.full(model[2].weight.shape, 0.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))
    +
    +
    +def test_caffe2xavierinit():
    +    """test Caffe2XavierInit."""
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    func = Caffe2XavierInit(bias=0.1, layer='Conv2d')
    +    func(model)
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    +    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))
    +
    +
    +class FooModule(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.linear = nn.Linear(1, 2)
    +        self.conv2d = nn.Conv2d(3, 1, 3)
    +        self.conv2d_2 = nn.Conv2d(3, 2, 3)
    +
    +
    +def test_pretrainedinit():
    +    """test PretrainedInit class."""
    +
    +    modelA = FooModule()
    +    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
    +    modelA.apply(constant_func)
    +    modelB = FooModule()
    +    funcB = PretrainedInit(checkpoint='modelA.pth')
    +    modelC = nn.Linear(1, 2)
    +    funcC = PretrainedInit(checkpoint='modelA.pth', prefix='linear.')
    +    with TemporaryDirectory():
    +        torch.save(modelA.state_dict(), 'modelA.pth')
    +        funcB(modelB)
    +        assert torch.equal(modelB.linear.weight,
    +                           torch.full(modelB.linear.weight.shape, 1.))
    +        assert torch.equal(modelB.linear.bias,
    +                           torch.full(modelB.linear.bias.shape, 2.))
    +        assert torch.equal(modelB.conv2d.weight,
    +                           torch.full(modelB.conv2d.weight.shape, 1.))
    +        assert torch.equal(modelB.conv2d.bias,
    +                           torch.full(modelB.conv2d.bias.shape, 2.))
    +        assert torch.equal(modelB.conv2d_2.weight,
    +                           torch.full(modelB.conv2d_2.weight.shape, 1.))
    +        assert torch.equal(modelB.conv2d_2.bias,
    +                           torch.full(modelB.conv2d_2.bias.shape, 2.))
    +
    +        funcC(modelC)
    +        assert torch.equal(modelC.weight, torch.full(modelC.weight.shape, 1.))
    +        assert torch.equal(modelC.bias, torch.full(modelC.bias.shape, 2.))
    +
    +
    +def test_initialize():
    +    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    +    foonet = FooModule()
    +
    +    # test layer key
    +    init_cfg = dict(type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
    +    initialize(model, init_cfg)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))
    +    assert init_cfg == dict(
    +        type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
    +
    +    # test init_cfg with list type
    +    init_cfg = [
    +        dict(type='Constant', layer='Conv2d', val=1, bias=2),
    +        dict(type='Constant', layer='Linear', val=3, bias=4)
    +    ]
    +    initialize(model, init_cfg)
    +    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    +    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    +    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    +    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 4.))
    +    assert init_cfg == [
    +        dict(type='Constant', layer='Conv2d', val=1, bias=2),
    +        dict(type='Constant', layer='Linear', val=3, bias=4)
    +    ]
    +
    +    # test layer key and override key
    +    init_cfg = dict(
    +        type='Constant',
    +        val=1,
    +        bias=2,
    +        layer=['Conv2d', 'Linear'],
    +        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    +    initialize(foonet, init_cfg)
    +    assert torch.equal(foonet.linear.weight,
    +                       torch.full(foonet.linear.weight.shape, 1.))
    +    assert torch.equal(foonet.linear.bias,
    +                       torch.full(foonet.linear.bias.shape, 2.))
    +    assert torch.equal(foonet.conv2d.weight,
    +                       torch.full(foonet.conv2d.weight.shape, 1.))
    +    assert torch.equal(foonet.conv2d.bias,
    +                       torch.full(foonet.conv2d.bias.shape, 2.))
    +    assert torch.equal(foonet.conv2d_2.weight,
    +                       torch.full(foonet.conv2d_2.weight.shape, 3.))
    +    assert torch.equal(foonet.conv2d_2.bias,
    +                       torch.full(foonet.conv2d_2.bias.shape, 4.))
    +    assert init_cfg == dict(
    +        type='Constant',
    +        val=1,
    +        bias=2,
    +        layer=['Conv2d', 'Linear'],
    +        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    +
    +    # test override key
    +    init_cfg = dict(
    +        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))
    +    initialize(foonet, init_cfg)
    +    assert not torch.equal(foonet.linear.weight,
    +                           torch.full(foonet.linear.weight.shape, 5.))
    +    assert not torch.equal(foonet.linear.bias,
    +                           torch.full(foonet.linear.bias.shape, 6.))
    +    assert not torch.equal(foonet.conv2d.weight,
    +                           torch.full(foonet.conv2d.weight.shape, 5.))
    +    assert not torch.equal(foonet.conv2d.bias,
    +                           torch.full(foonet.conv2d.bias.shape, 6.))
    +    assert torch.equal(foonet.conv2d_2.weight,
    +                       torch.full(foonet.conv2d_2.weight.shape, 5.))
    +    assert torch.equal(foonet.conv2d_2.bias,
    +                       torch.full(foonet.conv2d_2.bias.shape, 6.))
    +    assert init_cfg == dict(
    +        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))
    +
    +    init_cfg = dict(
    +        type='Pretrained',
    +        checkpoint='modelA.pth',
    +        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    +    modelA = FooModule()
    +    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
    +    modelA.apply(constant_func)
    +    with TemporaryDirectory():
    +        torch.save(modelA.state_dict(), 'modelA.pth')
    +        initialize(foonet, init_cfg)
    +        assert torch.equal(foonet.linear.weight,
    +                           torch.full(foonet.linear.weight.shape, 1.))
    +        assert torch.equal(foonet.linear.bias,
    +                           torch.full(foonet.linear.bias.shape, 2.))
    +        assert torch.equal(foonet.conv2d.weight,
    +                           torch.full(foonet.conv2d.weight.shape, 1.))
    +        assert torch.equal(foonet.conv2d.bias,
    +                           torch.full(foonet.conv2d.bias.shape, 2.))
    +        assert torch.equal(foonet.conv2d_2.weight,
    +                           torch.full(foonet.conv2d_2.weight.shape, 3.))
    +        assert torch.equal(foonet.conv2d_2.bias,
    +                           torch.full(foonet.conv2d_2.bias.shape, 4.))
    +    assert init_cfg == dict(
    +        type='Pretrained',
    +        checkpoint='modelA.pth',
    +        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    +
    +    # test init_cfg type
    +    with pytest.raises(TypeError):
    +        init_cfg = 'init_cfg'
    +        initialize(foonet, init_cfg)
    +
    +    # test override value type
    +    with pytest.raises(TypeError):
    +        init_cfg = dict(
    +            type='Constant',
    +            val=1,
    +            bias=2,
    +            layer=['Conv2d', 'Linear'],
    +            override='conv')
    +        initialize(foonet, init_cfg)
    +
    +    # test override name
    +    with pytest.raises(RuntimeError):
    +        init_cfg = dict(
    +            type='Constant',
    +            val=1,
    +            bias=2,
    +            layer=['Conv2d', 'Linear'],
    +            override=dict(type='Constant', name='conv2d_3', val=3, bias=4))
    +        initialize(foonet, init_cfg)
    +
    +    # test list override name
    +    with pytest.raises(RuntimeError):
    +        init_cfg = dict(
    +            type='Constant',
    +            val=1,
    +            bias=2,
    +            layer=['Conv2d', 'Linear'],
    +            override=[
    +                dict(type='Constant', name='conv2d', val=3, bias=4),
    +                dict(type='Constant', name='conv2d_3', val=5, bias=6)
    +            ])
    +        initialize(foonet, init_cfg)
    +
    +    # test override with args except type key
    +    with pytest.raises(ValueError):
    +        init_cfg = dict(
    +            type='Constant',
    +            val=1,
    +            bias=2,
    +            override=dict(name='conv2d_2', val=3, bias=4))
    +        initialize(foonet, init_cfg)
    +
    +    # test override without name
    +    with pytest.raises(ValueError):
    +        init_cfg = dict(
    +            type='Constant',
    +            val=1,
    +            bias=2,
    +            override=dict(type='Constant', val=3, bias=4))
    +        initialize(foonet, init_cfg)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_wrappers.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_wrappers.py
    new file mode 100644
    index 000000000..429c96628
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_cnn/test_wrappers.py
    @@ -0,0 +1,375 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.cnn.bricks import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
    +                             Linear, MaxPool2d, MaxPool3d)
    +
    +if torch.__version__ != 'parrots':
    +    torch_version = '1.1'
    +else:
    +    torch_version = 'parrots'
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    +    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
    +def test_conv2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
    +                padding, dilation):
    +    """
    +    CommandLine:
    +        xdoctest -m tests/test_wrappers.py test_conv2d
    +    """
    +    # train mode
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_h, in_w)
    +    torch.manual_seed(0)
    +    wrapper = Conv2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_h, in_w).requires_grad_(True)
    +    torch.manual_seed(0)
    +    ref = nn.Conv2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    wrapper_out.sum().backward()
    +    assert wrapper.weight.grad is not None
    +    assert wrapper.weight.grad.shape == wrapper.weight.shape
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +    # eval mode
    +    x_empty = torch.randn(0, in_channel, in_h, in_w)
    +    wrapper = Conv2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    wrapper.eval()
    +    wrapper(x_empty)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    +    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
    +def test_conv3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size, stride,
    +                padding, dilation):
    +    """
    +    CommandLine:
    +        xdoctest -m tests/test_wrappers.py test_conv3d
    +    """
    +    # train mode
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    +    torch.manual_seed(0)
    +    wrapper = Conv3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_t, in_h,
    +                           in_w).requires_grad_(True)
    +    torch.manual_seed(0)
    +    ref = nn.Conv3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    wrapper_out.sum().backward()
    +    assert wrapper.weight.grad is not None
    +    assert wrapper.weight.grad.shape == wrapper.weight.shape
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +    # eval mode
    +    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    +    wrapper = Conv3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation)
    +    wrapper.eval()
    +    wrapper(x_empty)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    +    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
    +def test_conv_transposed_2d(in_w, in_h, in_channel, out_channel, kernel_size,
    +                            stride, padding, dilation):
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    +    # out padding must be smaller than either stride or dilation
    +    op = min(stride, dilation) - 1
    +    if torch.__version__ == 'parrots':
    +        op = 0
    +    torch.manual_seed(0)
    +    wrapper = ConvTranspose2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_h, in_w)
    +    torch.manual_seed(0)
    +    ref = nn.ConvTranspose2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    wrapper_out.sum().backward()
    +    assert wrapper.weight.grad is not None
    +    assert wrapper.weight.grad.shape == wrapper.weight.shape
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +    # eval mode
    +    x_empty = torch.randn(0, in_channel, in_h, in_w)
    +    wrapper = ConvTranspose2d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    wrapper.eval()
    +    wrapper(x_empty)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    +    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
    +def test_conv_transposed_3d(in_w, in_h, in_t, in_channel, out_channel,
    +                            kernel_size, stride, padding, dilation):
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    +    # out padding must be smaller than either stride or dilation
    +    op = min(stride, dilation) - 1
    +    torch.manual_seed(0)
    +    wrapper = ConvTranspose3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    +    torch.manual_seed(0)
    +    ref = nn.ConvTranspose3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    wrapper_out.sum().backward()
    +    assert wrapper.weight.grad is not None
    +    assert wrapper.weight.grad.shape == wrapper.weight.shape
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +    # eval mode
    +    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w)
    +    wrapper = ConvTranspose3d(
    +        in_channel,
    +        out_channel,
    +        kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        output_padding=op)
    +    wrapper.eval()
    +    wrapper(x_empty)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_channel,out_channel,kernel_size,stride,padding,dilation',
    +    [(10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 3, 3, 5, 2, 1, 2)])
    +def test_max_pool_2d(in_w, in_h, in_channel, out_channel, kernel_size, stride,
    +                     padding, dilation):
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_h, in_w, requires_grad=True)
    +    wrapper = MaxPool2d(
    +        kernel_size, stride=stride, padding=padding, dilation=dilation)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_h, in_w)
    +    ref = nn.MaxPool2d(
    +        kernel_size, stride=stride, padding=padding, dilation=dilation)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize(
    +    'in_w,in_h,in_t,in_channel,out_channel,kernel_size,stride,padding,dilation',  # noqa: E501
    +    [(10, 10, 10, 1, 1, 3, 1, 0, 1), (20, 20, 20, 3, 3, 5, 2, 1, 2)])
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots' and not torch.cuda.is_available(),
    +    reason='parrots requires CUDA support')
    +def test_max_pool_3d(in_w, in_h, in_t, in_channel, out_channel, kernel_size,
    +                     stride, padding, dilation):
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_channel, in_t, in_h, in_w, requires_grad=True)
    +    wrapper = MaxPool3d(
    +        kernel_size, stride=stride, padding=padding, dilation=dilation)
    +    if torch.__version__ == 'parrots':
    +        x_empty = x_empty.cuda()
    +    wrapper_out = wrapper(x_empty)
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_channel, in_t, in_h, in_w)
    +    ref = nn.MaxPool3d(
    +        kernel_size, stride=stride, padding=padding, dilation=dilation)
    +    if torch.__version__ == 'parrots':
    +        x_normal = x_normal.cuda()
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +
    +@patch('torch.__version__', torch_version)
    +@pytest.mark.parametrize('in_w,in_h,in_feature,out_feature', [(10, 10, 1, 1),
    +                                                              (20, 20, 3, 3)])
    +def test_linear(in_w, in_h, in_feature, out_feature):
    +    # wrapper op with 0-dim input
    +    x_empty = torch.randn(0, in_feature, requires_grad=True)
    +    torch.manual_seed(0)
    +    wrapper = Linear(in_feature, out_feature)
    +    wrapper_out = wrapper(x_empty)
    +
    +    # torch op with 3-dim input as shape reference
    +    x_normal = torch.randn(3, in_feature)
    +    torch.manual_seed(0)
    +    ref = nn.Linear(in_feature, out_feature)
    +    ref_out = ref(x_normal)
    +
    +    assert wrapper_out.shape[0] == 0
    +    assert wrapper_out.shape[1:] == ref_out.shape[1:]
    +
    +    wrapper_out.sum().backward()
    +    assert wrapper.weight.grad is not None
    +    assert wrapper.weight.grad.shape == wrapper.weight.shape
    +
    +    assert torch.equal(wrapper(x_normal), ref_out)
    +
    +    # eval mode
    +    x_empty = torch.randn(0, in_feature)
    +    wrapper = Linear(in_feature, out_feature)
    +    wrapper.eval()
    +    wrapper(x_empty)
    +
    +
    +@patch('mmcv.cnn.bricks.wrappers.TORCH_VERSION', (1, 10))
    +def test_nn_op_forward_called():
    +    for m in ['Conv2d', 'ConvTranspose2d', 'MaxPool2d']:
    +        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
    +            # randn input
    +            x_empty = torch.randn(0, 3, 10, 10)
    +            wrapper = eval(m)(3, 2, 1)
    +            wrapper(x_empty)
    +            nn_module_forward.assert_called_with(x_empty)
    +
    +            # non-randn input
    +            x_normal = torch.randn(1, 3, 10, 10)
    +            wrapper = eval(m)(3, 2, 1)
    +            wrapper(x_normal)
    +            nn_module_forward.assert_called_with(x_normal)
    +
    +    for m in ['Conv3d', 'ConvTranspose3d', 'MaxPool3d']:
    +        with patch(f'torch.nn.{m}.forward') as nn_module_forward:
    +            # randn input
    +            x_empty = torch.randn(0, 3, 10, 10, 10)
    +            wrapper = eval(m)(3, 2, 1)
    +            wrapper(x_empty)
    +            nn_module_forward.assert_called_with(x_empty)
    +
    +            # non-randn input
    +            x_normal = torch.randn(1, 3, 10, 10, 10)
    +            wrapper = eval(m)(3, 2, 1)
    +            wrapper(x_normal)
    +            nn_module_forward.assert_called_with(x_normal)
    +
    +    with patch('torch.nn.Linear.forward') as nn_module_forward:
    +        # randn input
    +        x_empty = torch.randn(0, 3)
    +        wrapper = Linear(3, 3)
    +        wrapper(x_empty)
    +        nn_module_forward.assert_called_with(x_empty)
    +
    +        # non-randn input
    +        x_normal = torch.randn(1, 3)
    +        wrapper = Linear(3, 3)
    +        wrapper(x_normal)
    +        nn_module_forward.assert_called_with(x_normal)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_device_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_device_utils.py
    new file mode 100644
    index 000000000..11a34c97c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_device_utils.py
    @@ -0,0 +1,18 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from mmcv.device import get_device
    +from mmcv.utils import (IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE,
    +                        IS_NPU_AVAILABLE)
    +
    +
    +def test_get_device():
    +    current_device = get_device()
    +    if IS_NPU_AVAILABLE:
    +        assert current_device == 'npu'
    +    elif IS_CUDA_AVAILABLE:
    +        assert current_device == 'cuda'
    +    elif IS_MLU_AVAILABLE:
    +        assert current_device == 'mlu'
    +    elif IS_MPS_AVAILABLE:
    +        assert current_device == 'mps'
    +    else:
    +        assert current_device == 'cpu'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_functions.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_functions.py
    new file mode 100644
    index 000000000..d0fb6a7ca
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_functions.py
    @@ -0,0 +1,101 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.device._functions import Scatter, scatter
    +from mmcv.utils import IS_MLU_AVAILABLE, IS_MPS_AVAILABLE, IS_NPU_AVAILABLE
    +
    +
    +def test_scatter():
    +    # if the device is CPU, just return the input
    +    input = torch.zeros([1, 3, 3, 3])
    +    output = scatter(input=input, devices=[-1])
    +    assert torch.allclose(input, output)
    +
    +    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +    outputs = scatter(input=inputs, devices=[-1])
    +    for input, output in zip(inputs, outputs):
    +        assert torch.allclose(input, output)
    +
    +    # if the device is MLU, copy the input from CPU to MLU
    +    if IS_MLU_AVAILABLE:
    +        input = torch.zeros([1, 3, 3, 3])
    +        output = scatter(input=input, devices=[0])
    +        assert torch.allclose(input.to('mlu'), output)
    +
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = scatter(input=inputs, devices=[0])
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.to('mlu'), output)
    +
    +    # if the device is NPU, copy the input from CPU to NPU
    +    if IS_NPU_AVAILABLE:
    +        input = torch.zeros([1, 3, 3, 3])
    +        output = scatter(input=input, devices=[0])
    +        assert torch.allclose(input.to('npu'), output)
    +
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = scatter(input=inputs, devices=[0])
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.to('npu'), output)
    +
    +    # if the device is MPS, copy the input from CPU to MPS
    +    if IS_MPS_AVAILABLE:
    +        input = torch.zeros([1, 3, 3, 3])
    +        output = scatter(input=input, devices=[0])
    +        assert torch.allclose(input.to('mps'), output)
    +
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = scatter(input=inputs, devices=[0])
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.to('mps'), output)
    +
    +    # input should be a tensor or list of tensor
    +    with pytest.raises(Exception):
    +        scatter(5, [-1])
    +
    +
    +def test_Scatter():
    +    # if the device is CPU, just return the input
    +    target_devices = [-1]
    +    input = torch.zeros([1, 3, 3, 3])
    +    outputs = Scatter.forward(target_devices, input)
    +    assert isinstance(outputs, tuple)
    +    assert torch.allclose(input, outputs[0])
    +
    +    target_devices = [-1]
    +    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +    outputs = Scatter.forward(target_devices, inputs)
    +    assert isinstance(outputs, tuple)
    +    for input, output in zip(inputs, outputs):
    +        assert torch.allclose(input, output)
    +
    +    # if the device is MLU, copy the input from CPU to MLU
    +    if IS_MLU_AVAILABLE:
    +        target_devices = [0]
    +        input = torch.zeros([1, 3, 3, 3])
    +        outputs = Scatter.forward(target_devices, input)
    +        assert isinstance(outputs, tuple)
    +        assert torch.allclose(input.to('mlu'), outputs[0])
    +
    +        target_devices = [0]
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = Scatter.forward(target_devices, inputs)
    +        assert isinstance(outputs, tuple)
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.to('mlu'), output[0])
    +
    +    # if the device is MPS, copy the input from CPU to MPS
    +    if IS_MPS_AVAILABLE:
    +        target_devices = [0]
    +        input = torch.zeros([1, 3, 3, 3])
    +        outputs = Scatter.forward(target_devices, input)
    +        assert isinstance(outputs, tuple)
    +        assert torch.allclose(input.to('mps'), outputs[0])
    +
    +        target_devices = [0]
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = Scatter.forward(target_devices, inputs)
    +        assert isinstance(outputs, tuple)
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.to('mps'), output[0])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_hierarchicaldatamanager.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_hierarchicaldatamanager.py
    new file mode 100755
    index 000000000..e0a0f012f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_hierarchicaldatamanager.py
    @@ -0,0 +1,106 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.parallel.data_container import DataContainer
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from mmcv.device.ipu.hierarchical_data_manager import \
    +        HierarchicalDataManager
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +
    +@skip_no_ipu
    +def test_HierarchicalData():
    +    # test hierarchical data
    +    hierarchical_data_sample = {
    +        'a': torch.rand(3, 4),
    +        'b': np.random.rand(3, 4),
    +        'c': DataContainer({
    +            'a': torch.rand(3, 4),
    +            'b': 4,
    +            'c': 'd'
    +        }),
    +        'd': 123,
    +        'e': [1, 3, torch.rand(3, 4),
    +              np.random.rand(3, 4)],
    +        'f': {
    +            'a': torch.rand(3, 4),
    +            'b': np.random.rand(3, 4),
    +            'c': [1, 'asd']
    +        }
    +    }
    +    all_tensors = []
    +    all_tensors.append(hierarchical_data_sample['a'])
    +    all_tensors.append(hierarchical_data_sample['c'].data['a'])
    +    all_tensors.append(hierarchical_data_sample['e'][2])
    +    all_tensors.append(hierarchical_data_sample['f']['a'])
    +    all_tensors_id = [id(ele) for ele in all_tensors]
    +
    +    hd = HierarchicalDataManager(logging.getLogger())
    +    hd.record_hierarchical_data(hierarchical_data_sample)
    +    tensors = hd.collect_all_tensors()
    +    for t in tensors:
    +        assert id(t) in all_tensors_id
    +    tensors[0].add_(1)
    +    hd.update_all_tensors(tensors)
    +    data = hd.hierarchical_data
    +    data['c'].data['a'].sub_(1)
    +    hd.record_hierarchical_data(data)
    +    tensors = hd.collect_all_tensors()
    +    for t in tensors:
    +        assert id(t) in all_tensors_id
    +    hd.quick()
    +
    +    with pytest.raises(
    +            AssertionError,
    +            match='original hierarchical data is not torch.tensor'):
    +        hd.record_hierarchical_data(torch.rand(3, 4))
    +
    +    class AuxClass:
    +        pass
    +
    +    with pytest.raises(NotImplementedError, match='not supported datatype:'):
    +        hd.record_hierarchical_data(AuxClass())
    +
    +    with pytest.raises(NotImplementedError, match='not supported datatype:'):
    +        hierarchical_data_sample['a'] = AuxClass()
    +        hd.update_all_tensors(tensors)
    +
    +    with pytest.raises(NotImplementedError, match='not supported datatype:'):
    +        hierarchical_data_sample['a'] = AuxClass()
    +        hd.collect_all_tensors()
    +
    +    with pytest.raises(NotImplementedError, match='not supported datatype:'):
    +        hierarchical_data_sample['a'] = AuxClass()
    +        hd.clean_all_tensors()
    +
    +    hd = HierarchicalDataManager(logging.getLogger())
    +    hd.record_hierarchical_data(hierarchical_data_sample)
    +    hierarchical_data_sample['a'] = torch.rand(3, 4)
    +    with pytest.raises(ValueError, match='all data except torch.Tensor'):
    +        new_hierarchical_data_sample = {
    +            **hierarchical_data_sample, 'b': np.random.rand(3, 4)
    +        }
    +        hd.update_hierarchical_data(new_hierarchical_data_sample)
    +
    +    hd.update_hierarchical_data(new_hierarchical_data_sample, strict=False)
    +
    +    hd.clean_all_tensors()
    +
    +    # test single tensor
    +    single_tensor = torch.rand(3, 4)
    +    hd = HierarchicalDataManager(logging.getLogger())
    +    hd.record_hierarchical_data(single_tensor)
    +    tensors = hd.collect_all_tensors()
    +    assert len(tensors) == 1 and single_tensor in tensors
    +    single_tensor_to_update = [torch.rand(3, 4)]
    +    hd.update_all_tensors(single_tensor_to_update)
    +    new_tensors = hd.collect_all_tensors()
    +    assert new_tensors == single_tensor_to_update
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_dataloder.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_dataloder.py
    new file mode 100755
    index 000000000..b1db14805
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_dataloder.py
    @@ -0,0 +1,69 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +from torch.utils.data import Dataset
    +
    +from mmcv.parallel.data_container import DataContainer
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from mmcv.device.ipu import IPUDataLoader, cfg2options
    +    from mmcv.device.ipu.dataloader import collate
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +
    +class ToyDataset(Dataset):
    +
    +    def __getitem__(self, index):
    +        return 111
    +
    +    def __len__(self, ):
    +        return 3
    +
    +
    +@skip_no_ipu
    +def test_ipu_dataloader():
    +    # test lazy initialization
    +    dataloader = IPUDataLoader(
    +        ToyDataset(), None, batch_size=256, num_workers=1, mode='async')
    +    options_cfg = {'train_cfg': {}, 'eval_cfg': {}}
    +    ipu_options = cfg2options(options_cfg)
    +    dataloader.init(ipu_options['training'])
    +
    +    # test normal initialization
    +    options_cfg = {'train_cfg': {}, 'eval_cfg': {}}
    +    ipu_options = cfg2options(options_cfg)['training']
    +    dataloader = IPUDataLoader(
    +        ToyDataset(), ipu_options, batch_size=256, num_workers=1, mode='async')
    +
    +
    +@skip_no_ipu
    +def test_ipu_collate():
    +    with pytest.raises(TypeError, match='`batch` should be a sequence'):
    +        collate(123)
    +
    +    with pytest.raises(TypeError, match='DataContainer is not supported'):
    +        collate([DataContainer(666)])
    +
    +    data_list = [[1, 2, 3], [2, 3, 4], DataContainer(666)]
    +    batch0 = {
    +        'tensor': torch.rand(3, 4, 5),
    +        'arr': np.random.rand(3, 4, 5, 6),
    +        'data_list': data_list
    +    }
    +    batch1 = {
    +        'tensor': torch.rand(3, 4, 5),
    +        'arr': np.random.rand(3, 4, 5, 6),
    +        'data_list': data_list
    +    }
    +    batch = [batch1, batch0]
    +    results = collate(batch)
    +    assert results['tensor'].shape == (2, 3, 4, 5)
    +    assert results['arr'].shape == (2, 3, 4, 5, 6)
    +    for data in results['data_list']:
    +        for tensor in data:
    +            assert not isinstance(tensor, DataContainer)
    +            assert tensor.shape == (2, )
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_hooks.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_hooks.py
    new file mode 100755
    index 000000000..ed43d35a1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_hooks.py
    @@ -0,0 +1,129 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +import os.path as osp
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.runner import build_runner
    +from mmcv.runner.fp16_utils import auto_fp16
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from mmcv.device.ipu.hook_wrapper import IPUFp16OptimizerHook
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +
    +# TODO Once the model training and inference interfaces
    +# of MMCLS and MMDET are unified,
    +# construct the model according to the unified standards
    +class ToyModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +        self.bn = nn.BatchNorm2d(3)
    +        self.relu = nn.ReLU6()
    +        self.fp16_enabled = False
    +
    +    @auto_fp16(apply_to=('img', ))
    +    def forward(self, img, return_loss=True, **kwargs):
    +        x = self.conv(img)
    +        x = self.bn(x)
    +        x = self.relu(x)
    +        if return_loss:
    +            loss = ((x - kwargs['gt_label'])**2).sum()
    +            return {
    +                'loss': loss,
    +                'loss_list': [loss, loss],
    +                'loss_dict': {
    +                    'loss1': loss
    +                }
    +            }
    +        return x
    +
    +    def _parse_losses(self, losses):
    +        return losses['loss'], losses['loss']
    +
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        losses = self(**data)
    +        loss, log_vars = self._parse_losses(losses)
    +        outputs = dict(
    +            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
    +        return outputs
    +
    +
    +@skip_no_ipu
    +def test_ipu_hook_wrapper(tmp_path):
    +    model = ToyModel()
    +    dummy_input = {
    +        'data': {
    +            'img': torch.rand((16, 3, 10, 10)),
    +            'gt_label': torch.rand((16, 3, 10, 10))
    +        }
    +    }
    +
    +    dir_name = 'a_tmp_dir'
    +    working_dir = osp.join(tmp_path, dir_name)
    +
    +    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    +
    +    default_args = dict(
    +        model=model,
    +        work_dir=working_dir,
    +        optimizer=optimizer,
    +        logger=logging.getLogger())
    +    cfg = dict(type='IPUEpochBasedRunner', max_epochs=1)
    +    dummy_runner = build_runner(cfg, default_args=default_args)
    +
    +    # learning policy
    +    lr_config = dict(policy='step', step=[1, 150])
    +    # test optimizer config
    +    optimizer_config = dict(
    +        grad_clip=dict(max_norm=2), detect_anomalous_params=True)
    +
    +    # test building ipu_lr_hook_class
    +    dummy_runner.register_training_hooks(
    +        lr_config=lr_config, optimizer_config=None, timer_config=None)
    +
    +    # test _set_lr()
    +    output = dummy_runner.model.train_step(**dummy_input)
    +    dummy_runner.outputs = output
    +    dummy_runner.call_hook('before_train_epoch')
    +
    +    # test building ipu_optimizer_hook_class
    +    with pytest.raises(
    +            NotImplementedError, match='IPU does not support gradient clip'):
    +        dummy_runner.register_training_hooks(
    +            lr_config=None,
    +            optimizer_config=optimizer_config,
    +            timer_config=None)
    +
    +    # test fp16 optimizer hook
    +    lr_config = dict(policy='step', step=[1, 150])
    +    optimizer_config = dict(grad_clip=dict(max_norm=2))
    +    dummy_runner.hooks.pop(0)
    +
    +    with pytest.raises(NotImplementedError, match='IPU mode does not support'):
    +        optimizer_config = IPUFp16OptimizerHook(
    +            loss_scale='dynamic', distributed=False)
    +
    +    with pytest.raises(NotImplementedError, match='IPU mode supports single'):
    +        optimizer_config = IPUFp16OptimizerHook(
    +            loss_scale={}, distributed=False)
    +
    +    with pytest.raises(ValueError, match='loss_scale should be float'):
    +        optimizer_config = IPUFp16OptimizerHook(
    +            loss_scale=[], distributed=False)
    +
    +    optimizer_config = IPUFp16OptimizerHook(loss_scale=2.0, distributed=False)
    +
    +    dummy_runner.register_training_hooks(
    +        lr_config=lr_config,
    +        optimizer_config=optimizer_config,
    +        timer_config=None)
    +
    +    dummy_runner.call_hook('after_train_iter')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_model.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_model.py
    new file mode 100755
    index 000000000..b2300961a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_model.py
    @@ -0,0 +1,300 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +
    +import numpy as np
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.runner.fp16_utils import auto_fp16
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from mmcv.device.ipu import cfg2options, ipu_model_wrapper
    +    from mmcv.device.ipu.utils import compare_ndarray
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +
    +class MyBN(nn.BatchNorm2d):
    +
    +    def forward(self, *args, **kwargs):
    +        result = super().forward(*args, **kwargs)
    +        return result, self.running_mean
    +
    +
    +# TODO Once the model training and inference interfaces
    +# of MMCLS and MMDET are unified,
    +# construct the model according to the unified standards
    +class ToyModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +        self.bn = MyBN(3)
    +        self.relu = nn.ReLU6()
    +        self.fp16_enabled = False
    +
    +    @auto_fp16(apply_to=('img', ))
    +    def forward(self, img, return_loss=True, **kwargs):
    +        x = self.conv(img)
    +        x, running_mean = self.bn(x)
    +        x = self.relu(x)
    +        if return_loss:
    +            loss = ((x - kwargs['gt_label'])**2).sum()
    +            return {
    +                'loss': loss,
    +                'loss_list': [loss, loss],
    +                'loss_dict': {
    +                    'loss1': loss
    +                }
    +            }
    +        return x
    +
    +    def _parse_losses(self, losses):
    +        return losses['loss'], losses['loss']
    +
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        losses = self(**data)
    +        loss, log_vars = self._parse_losses(losses)
    +        outputs = dict(
    +            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
    +        return outputs
    +
    +
    +@skip_no_ipu
    +def test_build_model():
    +    for execution_strategy in \
    +            ['SameAsIpu', 'ShardedExecution', 'error_strategy']:
    +        if execution_strategy == 'error_strategy':
    +
    +            def maybe_catch_error(_error):
    +                return pytest.raises(_error)
    +        else:
    +
    +            class NullContextManager:
    +
    +                def __enter__(self, ):
    +                    pass
    +
    +                def __exit__(self, exc_type, exc_value, exc_traceback):
    +                    pass
    +
    +            def maybe_catch_error(_error):
    +                return NullContextManager()
    +
    +        with maybe_catch_error(NotImplementedError):
    +            options_cfg = dict(
    +                randomSeed=888,
    +                enableExecutableCaching='cache_engine',
    +                train_cfg=dict(
    +                    executionStrategy=execution_strategy,
    +                    Training=dict(gradientAccumulation=8),
    +                    availableMemoryProportion=[0.3, 0.3, 0.3, 0.3]),
    +                eval_cfg=dict(deviceIterations=1, ),
    +                partialsType='half')
    +
    +            ipu_options = cfg2options(options_cfg)
    +            model = ToyModel()
    +            optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    +            logger = logging.getLogger()
    +            modules_to_record = None
    +            ipu_model_cfg = dict(
    +                train_split_edges=[dict(layer_to_call='conv', ipu_id=0)],
    +                train_ckpt_nodes=['bn', 'conv'])
    +            fp16_cfg = {'loss_scale': 0.5}
    +            ipu_model = ipu_model_wrapper(
    +                model,
    +                ipu_options,
    +                optimizer,
    +                logger,
    +                modules_to_record=modules_to_record,
    +                ipu_model_cfg=ipu_model_cfg,
    +                fp16_cfg=fp16_cfg)
    +
    +            ipu_model.train()
    +            ipu_model.eval()
    +            ipu_model.train()
    +
    +
    +def run_model(ipu_options,
    +              fp16_cfg,
    +              modules_to_record,
    +              ipu_model_wrapper_func,
    +              only_eval=False):
    +    model = ToyModel()
    +    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)\
    +        if not only_eval else None
    +    logger = logging.getLogger()
    +    ipu_model_cfg = dict(
    +        train_split_edges=[dict(layer_to_call='conv', ipu_id=0)],
    +        train_ckpt_nodes=['bn', 'conv'])
    +    ipu_model = ipu_model_wrapper_func(
    +        model,
    +        ipu_options,
    +        optimizer,
    +        logger,
    +        modules_to_record=modules_to_record,
    +        ipu_model_cfg=ipu_model_cfg,
    +        fp16_cfg=fp16_cfg)
    +
    +    def get_dummy_input(training):
    +        if training:
    +            return {
    +                'data': {
    +                    'img': torch.rand((16, 3, 10, 10)),
    +                    'gt_label': torch.rand((16, 3, 10, 10))
    +                }
    +            }
    +        else:
    +            return {
    +                'img': torch.rand((16, 3, 10, 10)),
    +                'img_metas': {
    +                    'img': torch.rand((16, 3, 10, 10))
    +                },
    +                'return_loss': False
    +            }
    +
    +    if not only_eval:
    +        training = True
    +        ipu_model.train()
    +        for _ in range(3):
    +            dummy_input = get_dummy_input(training)
    +            output = ipu_model.train_step(**dummy_input)
    +    training = False
    +    ipu_model.eval()
    +    for _ in range(3):
    +        dummy_input = get_dummy_input(training)
    +        output = ipu_model(**dummy_input)
    +    return output, ipu_model
    +
    +
    +@skip_no_ipu
    +def test_run_model():
    +    # test feature alignment not support gradientAccumulation mode
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            Training=dict(gradientAccumulation=8),
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +        partialsType='half')
    +    ipu_options = cfg2options(options_cfg)
    +    modules_to_record = ['bn']
    +    with pytest.raises(AssertionError, match='Feature alignment'):
    +        run_model(ipu_options, None, modules_to_record, ipu_model_wrapper)
    +
    +    # test feature alignment not support multi-replica mode
    +    options_cfg = dict(
    +        randomSeed=888,
    +        replicationFactor=2,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +        partialsType='half')
    +    ipu_options = cfg2options(options_cfg)
    +    modules_to_record = ['bn']
    +    with pytest.raises(AssertionError, match='Feature alignment'):
    +        run_model(ipu_options, None, modules_to_record, ipu_model_wrapper)
    +
    +    # test feature alignment not support fp16 mode
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +        partialsType='half')
    +    ipu_options = cfg2options(options_cfg)
    +    fp16_cfg = {
    +        'loss_scale': 0.5,
    +        'velocity_accum_type': 'half',
    +        'accum_type': 'half'
    +    }
    +    modules_to_record = ['bn']
    +    with pytest.raises(NotImplementedError):
    +        run_model(ipu_options, fp16_cfg, modules_to_record, ipu_model_wrapper)
    +
    +    # test velocity_accum_type and accum_type
    +    fp16_cfg = {
    +        'loss_scale': 0.5,
    +        'velocity_accum_type': 'float',
    +        'accum_type': 'float'
    +    }
    +    run_model(ipu_options, fp16_cfg, None, ipu_model_wrapper)
    +
    +    # test compile and run
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +        partialsType='half')
    +    ipu_options = cfg2options(options_cfg)
    +    modules_to_record = ['bn']
    +    run_model(ipu_options, None, modules_to_record, ipu_model_wrapper)
    +
    +    # test feature alignment
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ))
    +    ipu_options = cfg2options(options_cfg)
    +    modules_to_record = None
    +    run_model(ipu_options, None, modules_to_record, ipu_model_wrapper)
    +
    +    # test inference mode
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +        partialsType='half')
    +    ipu_options = cfg2options(options_cfg)
    +    fp16_cfg = {'loss_scale': 0.5}
    +    modules_to_record = None
    +    _, ipu_model = run_model(
    +        ipu_options,
    +        fp16_cfg,
    +        modules_to_record,
    +        ipu_model_wrapper,
    +        only_eval=True)
    +    with pytest.raises(RuntimeError):
    +        ipu_model.train()
    +    with pytest.raises(ValueError):
    +        ipu_model.train(123)
    +    _, ipu_model = run_model(ipu_options, None, modules_to_record,
    +                             ipu_model_wrapper)
    +
    +    # test NotImplementedError in __call__
    +    ipu_model.train()
    +    with pytest.raises(NotImplementedError):
    +        ipu_model()
    +
    +    # test parse_losses
    +    with pytest.raises(TypeError):
    +        ipu_model._model.model._parse_losses({'loss': None})
    +
    +
    +@skip_no_ipu
    +def test_compare_tensor():
    +    compare_ndarray(np.random.rand(3, 4), np.random.rand(3, 4))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_runner.py
    new file mode 100755
    index 000000000..4de4fb708
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_runner.py
    @@ -0,0 +1,126 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +import os.path as osp
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +from torch.utils.data import Dataset
    +
    +from mmcv.runner import build_runner
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from mmcv.device.ipu import IPUDataLoader, runner
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +# Most of its functions are inherited from EpochBasedRunner and IterBasedRunner
    +# So only do incremental testing on overridden methods
    +# Comparing with base runner,
    +# Overridden functions are listed below:
    +# __init__, register_lr_hook, register_optimizer_hook
    +# register_lr_hook and register_optimizer_hook are tested in test_runner.py
    +
    +
    +class OldStyleModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +
    +
    +class Model(OldStyleModel):
    +
    +    def train_step(self):
    +        pass
    +
    +    def val_step(self):
    +        pass
    +
    +
    +class ToyModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +        self.bn = nn.BatchNorm2d(3)
    +        self.relu = nn.ReLU6()
    +        self.fp16_enabled = False
    +
    +    def forward(self, img, return_loss=True, **kwargs):
    +        x = self.conv(img)
    +        x = self.bn(x)
    +        x = self.relu(x)
    +        if return_loss:
    +            loss = ((x - kwargs['gt_label'])**2).sum()
    +            return {'loss': loss, 'loss1': loss + 1}
    +        return x
    +
    +    def _parse_losses(self, losses):
    +        return losses['loss'], {'loss1': losses['loss']}
    +
    +    def train_step(self, data, optimizer=None, **kwargs):
    +        losses = self(**data)
    +        loss, log_vars = self._parse_losses(losses)
    +        outputs = dict(
    +            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
    +        return outputs
    +
    +
    +class ToyDataset(Dataset):
    +
    +    def __getitem__(self, index):
    +        return {
    +            'img': torch.rand((3, 10, 10)),
    +            'gt_label': torch.rand((3, 10, 10))
    +        }
    +
    +    def __len__(self, ):
    +        return 3
    +
    +
    +@skip_no_ipu
    +def test_build_runner(tmp_path):
    +    # __init__
    +    dir_name = 'a_tmp_dir'
    +
    +    default_args = dict(
    +        model=Model(),
    +        work_dir=osp.join(tmp_path, dir_name),
    +        logger=logging.getLogger())
    +    cfg = dict(type='IPUEpochBasedRunner', max_epochs=1)
    +    ipu_runner = build_runner(cfg, default_args=default_args)
    +    assert ipu_runner._max_epochs == 1
    +    cfg = dict(type='IPUIterBasedRunner', max_iters=1)
    +    ipu_runner = build_runner(cfg, default_args=default_args)
    +    assert ipu_runner._max_iters == 1
    +
    +    runner.IS_IPU_AVAILABLE = False
    +    cfg = dict(type='IPUIterBasedRunner', max_iters=1)
    +    with pytest.raises(
    +            NotImplementedError,
    +            match='cpu mode on IPURunner is not supported'):
    +        ipu_runner = build_runner(cfg, default_args=default_args)
    +
    +    runner.IS_IPU_AVAILABLE = True
    +    with pytest.raises(ValueError, match='Only one of'):
    +        cfg = dict(type='IPUIterBasedRunner', max_epochs=1, max_iters=1)
    +        ipu_runner = build_runner(cfg, default_args=default_args)
    +
    +    model = ToyModel()
    +    options_cfg = {'train_cfg': {}, 'eval_cfg': {}}
    +    dataloader = IPUDataLoader(ToyDataset(), None, num_workers=1)
    +    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    +    cfg = dict(type='IPUIterBasedRunner', max_iters=2, options_cfg=options_cfg)
    +    default_args = dict(
    +        model=model,
    +        optimizer=optimizer,
    +        work_dir=osp.join(tmp_path, dir_name),
    +        logger=logging.getLogger())
    +    ipu_runner = build_runner(cfg, default_args=default_args)
    +    ipu_runner.run([dataloader], [('train', 2)])
    +    ipu_runner.get_options('val')
    +    with pytest.raises(ValueError, match='mode should be train or val'):
    +        ipu_runner.get_options('666')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_utils.py
    new file mode 100755
    index 000000000..692fe024e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_ipu/test_ipu_utils.py
    @@ -0,0 +1,193 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +
    +import pytest
    +import torch.nn as nn
    +
    +import mmcv
    +from mmcv.utils import IS_IPU_AVAILABLE
    +
    +if IS_IPU_AVAILABLE:
    +    from poptorch.options import _IExecutionStrategy
    +
    +    from mmcv.device.ipu import cfg2options
    +    from mmcv.device.ipu.utils import (build_from_cfg_with_wrapper,
    +                                       model_sharding)
    +
    +skip_no_ipu = pytest.mark.skipif(
    +    not IS_IPU_AVAILABLE, reason='test case under ipu environment')
    +
    +
    +class ToyModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +        self.bn = nn.BatchNorm2d(3)
    +        self.relu = nn.ReLU6()
    +
    +
    +@skip_no_ipu
    +def test_build_from_cfg():
    +    BACKBONES = mmcv.Registry('backbone')
    +
    +    @BACKBONES.register_module()
    +    class ResNet:
    +
    +        def __init__(self, depth, stages=4):
    +            self.depth = depth
    +            self.stages = stages
    +
    +    @BACKBONES.register_module()
    +    class ResNeXt:
    +
    +        def __init__(self, depth, stages=4):
    +            self.depth = depth
    +            self.stages = stages
    +
    +    cfg = dict(type='ResNet', depth=50)
    +    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    cfg = dict(type='ResNet', depth=50)
    +    model = build_from_cfg_with_wrapper(
    +        cfg, BACKBONES, default_args={'stages': 3})
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 3
    +
    +    cfg = dict(type='ResNeXt', depth=50, stages=3)
    +    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +    assert isinstance(model, ResNeXt)
    +    assert model.depth == 50 and model.stages == 3
    +
    +    cfg = dict(type=ResNet, depth=50)
    +    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    # type defined using default_args
    +    cfg = dict(depth=50)
    +    model = build_from_cfg_with_wrapper(
    +        cfg, BACKBONES, default_args=dict(type='ResNet'))
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    cfg = dict(depth=50)
    +    model = build_from_cfg_with_wrapper(
    +        cfg, BACKBONES, default_args=dict(type=ResNet))
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    # not a registry
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='VGG')
    +        model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')
    +
    +    # non-registered class
    +    with pytest.raises(KeyError):
    +        cfg = dict(type='VGG')
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +
    +    # default_args must be a dict or None
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=1)
    +
    +    # cfg['type'] should be a str or class
    +    with pytest.raises(TypeError):
    +        cfg = dict(type=1000)
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +
    +    # cfg should contain the key "type"
    +    with pytest.raises(KeyError, match='must contain the key "type"'):
    +        cfg = dict(depth=50, stages=4)
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +
    +    # cfg or default_args should contain the key "type"
    +    with pytest.raises(KeyError, match='must contain the key "type"'):
    +        cfg = dict(depth=50)
    +        model = build_from_cfg_with_wrapper(
    +            cfg, BACKBONES, default_args=dict(stages=4))
    +
    +    # incorrect registry type
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')
    +
    +    # incorrect default_args type
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=0)
    +
    +    # incorrect arguments
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', non_existing_arg=50)
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +
    +    # cfg not dict
    +    with pytest.raises(TypeError):
    +        cfg = []
    +        model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    +
    +
    +@skip_no_ipu
    +def test_cast_to_options():
    +    options_cfg = dict(
    +        randomSeed=888,
    +        enableExecutableCaching='cache_engine',
    +        train_cfg=dict(
    +            executionStrategy='SameAsIpu',
    +            Training=dict(gradientAccumulation=8),
    +            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
    +        ),
    +        eval_cfg=dict(deviceIterations=1, ),
    +    )
    +    ipu_options = cfg2options(copy.deepcopy(options_cfg))
    +    assert 'training' in ipu_options
    +    assert 'inference' in ipu_options
    +    assert ipu_options['training']._values['random_seed'] == 888
    +    assert ipu_options['training']._values['replication_factor'] == 1
    +    assert ipu_options['training']._values['available_memory_proportion'] == {
    +        0: 0.3,
    +        1: 0.3,
    +        2: 0.3,
    +        3: 0.3
    +    }
    +    assert ipu_options['training']._popart.options[
    +        'cachePath'] == 'cache_engine'
    +    assert isinstance(ipu_options['training']._execution_strategy,
    +                      _IExecutionStrategy)
    +    assert ipu_options['inference']._values['device_iterations'] == 1
    +
    +    with pytest.raises(NotImplementedError, match='cfg type'):
    +        _options_cfg = copy.deepcopy(options_cfg)
    +        _options_cfg['randomSeed'] = (1, 3)
    +        cfg2options(_options_cfg)
    +
    +    with pytest.raises(NotImplementedError, match='options_node type'):
    +        _options_cfg = copy.deepcopy(options_cfg)
    +        _options_cfg['train_cfg']['Precision'] = {'autocast_policy': 123}
    +        cfg2options(_options_cfg)
    +
    +
    +@skip_no_ipu
    +def test_model_sharding():
    +    model = ToyModel()
    +    split_edges = [dict(layer_to_call='666', ipu_id=0)]
    +
    +    with pytest.raises(RuntimeError, match='split_edges:'):
    +        model_sharding(model, split_edges)
    +
    +    model = ToyModel()
    +    split_edges = [
    +        dict(layer_to_call='conv', ipu_id=0),
    +        dict(layer_to_call=1, ipu_id=0)
    +    ]
    +
    +    with pytest.raises(ValueError, match='The same layer is referenced'):
    +        model_sharding(model, split_edges)
    +
    +    model = ToyModel()
    +    split_edges = [dict(layer_to_call='conv', ipu_id=0)]
    +    model_sharding(model, split_edges)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mlu/test_mlu_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mlu/test_mlu_parallel.py
    new file mode 100644
    index 000000000..4d04fb655
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mlu/test_mlu_parallel.py
    @@ -0,0 +1,37 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import MagicMock, patch
    +
    +import torch.nn as nn
    +
    +from mmcv.device.mlu import MLUDataParallel, MLUDistributedDataParallel
    +from mmcv.parallel import is_module_wrapper
    +from mmcv.utils import IS_MLU_AVAILABLE
    +
    +
    +def mock(*args, **kwargs):
    +    pass
    +
    +
    +@patch('torch.distributed._broadcast_coalesced', mock)
    +@patch('torch.distributed.broadcast', mock)
    +@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
    +def test_is_module_wrapper():
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(2, 2, 1)
    +
    +        def forward(self, x):
    +            return self.conv(x)
    +
    +    model = Model()
    +    assert not is_module_wrapper(model)
    +
    +    if IS_MLU_AVAILABLE:
    +        mludp = MLUDataParallel(model)
    +        assert is_module_wrapper(mludp)
    +
    +        mluddp = MLUDistributedDataParallel(model, process_group=MagicMock())
    +        assert is_module_wrapper(mluddp)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mps/test_mps_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mps/test_mps_parallel.py
    new file mode 100644
    index 000000000..4b4e0b86e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_mps/test_mps_parallel.py
    @@ -0,0 +1,34 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import patch
    +
    +import torch.nn as nn
    +
    +from mmcv.device.mps import MPSDataParallel
    +from mmcv.parallel import is_module_wrapper
    +from mmcv.utils import IS_MPS_AVAILABLE
    +
    +
    +def mock(*args, **kwargs):
    +    pass
    +
    +
    +@patch('torch.distributed._broadcast_coalesced', mock)
    +@patch('torch.distributed.broadcast', mock)
    +@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
    +def test_is_module_wrapper():
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(2, 2, 1)
    +
    +        def forward(self, x):
    +            return self.conv(x)
    +
    +    model = Model()
    +    assert not is_module_wrapper(model)
    +
    +    if IS_MPS_AVAILABLE:
    +        mpsdp = MPSDataParallel(model)
    +        assert is_module_wrapper(mpsdp)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_npu/test_npu_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_npu/test_npu_parallel.py
    new file mode 100644
    index 000000000..ae5efa6b7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_device/test_npu/test_npu_parallel.py
    @@ -0,0 +1,37 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import MagicMock, patch
    +
    +import torch.nn as nn
    +
    +from mmcv.device.npu import NPUDataParallel, NPUDistributedDataParallel
    +from mmcv.parallel import is_module_wrapper
    +from mmcv.utils import IS_NPU_AVAILABLE
    +
    +
    +def mock(*args, **kwargs):
    +    pass
    +
    +
    +@patch('torch.distributed._broadcast_coalesced', mock)
    +@patch('torch.distributed.broadcast', mock)
    +@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
    +def test_is_module_wrapper():
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(2, 2, 1)
    +
    +        def forward(self, x):
    +            return self.conv(x)
    +
    +    model = Model()
    +    assert not is_module_wrapper(model)
    +
    +    if IS_NPU_AVAILABLE:
    +        npudp = NPUDataParallel(model)
    +        assert is_module_wrapper(npudp)
    +
    +        npuddp = NPUDistributedDataParallel(model, process_group=MagicMock())
    +        assert is_module_wrapper(npuddp)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileclient.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileclient.py
    new file mode 100644
    index 000000000..64ea04116
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileclient.py
    @@ -0,0 +1,866 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import sys
    +import tempfile
    +from contextlib import contextmanager
    +from copy import deepcopy
    +from pathlib import Path
    +from unittest.mock import MagicMock, patch
    +
    +import pytest
    +
    +import mmcv
    +from mmcv import BaseStorageBackend, FileClient
    +from mmcv.utils import has_method
    +
    +sys.modules['ceph'] = MagicMock()
    +sys.modules['petrel_client'] = MagicMock()
    +sys.modules['petrel_client.client'] = MagicMock()
    +sys.modules['mc'] = MagicMock()
    +
    +
    +@contextmanager
    +def build_temporary_directory():
    +    """Build a temporary directory containing many files to test
    +    ``FileClient.list_dir_or_file``.
    +
    +    . \n
    +    | -- dir1 \n
    +    | -- | -- text3.txt \n
    +    | -- dir2 \n
    +    | -- | -- dir3 \n
    +    | -- | -- | -- text4.txt \n
    +    | -- | -- img.jpg \n
    +    | -- text1.txt \n
    +    | -- text2.txt \n
    +    """
    +    with tempfile.TemporaryDirectory() as tmp_dir:
    +        text1 = Path(tmp_dir) / 'text1.txt'
    +        text1.open('w').write('text1')
    +        text2 = Path(tmp_dir) / 'text2.txt'
    +        text2.open('w').write('text2')
    +        dir1 = Path(tmp_dir) / 'dir1'
    +        dir1.mkdir()
    +        text3 = dir1 / 'text3.txt'
    +        text3.open('w').write('text3')
    +        dir2 = Path(tmp_dir) / 'dir2'
    +        dir2.mkdir()
    +        jpg1 = dir2 / 'img.jpg'
    +        jpg1.open('wb').write(b'img')
    +        dir3 = dir2 / 'dir3'
    +        dir3.mkdir()
    +        text4 = dir3 / 'text4.txt'
    +        text4.open('w').write('text4')
    +        yield tmp_dir
    +
    +
    +@contextmanager
    +def delete_and_reset_method(obj, method):
    +    method_obj = deepcopy(getattr(type(obj), method))
    +    try:
    +        delattr(type(obj), method)
    +        yield
    +    finally:
    +        setattr(type(obj), method, method_obj)
    +
    +
    +class MockS3Client:
    +
    +    def __init__(self, enable_mc=True):
    +        self.enable_mc = enable_mc
    +
    +    def Get(self, filepath):
    +        with open(filepath, 'rb') as f:
    +            content = f.read()
    +        return content
    +
    +
    +class MockPetrelClient:
    +
    +    def __init__(self,
    +                 enable_mc=True,
    +                 enable_multi_cluster=False,
    +                 conf_path=None):
    +        self.enable_mc = enable_mc
    +        self.enable_multi_cluster = enable_multi_cluster
    +        self.conf_path = conf_path
    +
    +    def Get(self, filepath):
    +        with open(filepath, 'rb') as f:
    +            content = f.read()
    +        return content
    +
    +    def put(self):
    +        pass
    +
    +    def delete(self):
    +        pass
    +
    +    def contains(self):
    +        pass
    +
    +    def isdir(self):
    +        pass
    +
    +    def list(self, dir_path):
    +        for entry in os.scandir(dir_path):
    +            if not entry.name.startswith('.') and entry.is_file():
    +                yield entry.name
    +            elif osp.isdir(entry.path):
    +                yield entry.name + '/'
    +
    +
    +class MockMemcachedClient:
    +
    +    def __init__(self, server_list_cfg, client_cfg):
    +        pass
    +
    +    def Get(self, filepath, buffer):
    +        with open(filepath, 'rb') as f:
    +            buffer.content = f.read()
    +
    +
    +class TestFileClient:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        cls.test_data_dir = Path(__file__).parent / 'data'
    +        cls.img_path = cls.test_data_dir / 'color.jpg'
    +        cls.img_shape = (300, 400, 3)
    +        cls.text_path = cls.test_data_dir / 'filelist.txt'
    +
    +    def test_error(self):
    +        with pytest.raises(ValueError):
    +            FileClient('hadoop')
    +
    +    def test_disk_backend(self):
    +        disk_backend = FileClient('disk')
    +
    +        # test `name` attribute
    +        assert disk_backend.name == 'HardDiskBackend'
    +        # test `allow_symlink` attribute
    +        assert disk_backend.allow_symlink
    +        # test `get`
    +        # input path is Path object
    +        img_bytes = disk_backend.get(self.img_path)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert self.img_path.open('rb').read() == img_bytes
    +        assert img.shape == self.img_shape
    +        # input path is str
    +        img_bytes = disk_backend.get(str(self.img_path))
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert self.img_path.open('rb').read() == img_bytes
    +        assert img.shape == self.img_shape
    +
    +        # test `get_text`
    +        # input path is Path object
    +        value_buf = disk_backend.get_text(self.text_path)
    +        assert self.text_path.open('r').read() == value_buf
    +        # input path is str
    +        value_buf = disk_backend.get_text(str(self.text_path))
    +        assert self.text_path.open('r').read() == value_buf
    +
    +        with tempfile.TemporaryDirectory() as tmp_dir:
    +            # test `put`
    +            filepath1 = Path(tmp_dir) / 'test.jpg'
    +            disk_backend.put(b'disk', filepath1)
    +            assert filepath1.open('rb').read() == b'disk'
    +            # test the `mkdir_or_exist` behavior in `put`
    +            _filepath1 = Path(tmp_dir) / 'not_existed_dir1' / 'test.jpg'
    +            disk_backend.put(b'disk', _filepath1)
    +            assert _filepath1.open('rb').read() == b'disk'
    +
    +            # test `put_text`
    +            filepath2 = Path(tmp_dir) / 'test.txt'
    +            disk_backend.put_text('disk', filepath2)
    +            assert filepath2.open('r').read() == 'disk'
    +            # test the `mkdir_or_exist` behavior in `put_text`
    +            _filepath2 = Path(tmp_dir) / 'not_existed_dir2' / 'test.txt'
    +            disk_backend.put_text('disk', _filepath2)
    +            assert _filepath2.open('r').read() == 'disk'
    +
    +            # test `isfile`
    +            assert disk_backend.isfile(filepath2)
    +            assert not disk_backend.isfile(Path(tmp_dir) / 'not/existed/path')
    +
    +            # test `remove`
    +            disk_backend.remove(filepath2)
    +
    +            # test `exists`
    +            assert not disk_backend.exists(filepath2)
    +
    +            # test `get_local_path`
    +            # if the backend is disk, `get_local_path` just return the input
    +            with disk_backend.get_local_path(filepath1) as path:
    +                assert str(filepath1) == path
    +            assert osp.isfile(filepath1)
    +
    +        # test `join_path`
    +        disk_dir = '/path/of/your/directory'
    +        assert disk_backend.join_path(disk_dir, 'file') == \
    +            osp.join(disk_dir, 'file')
    +        assert disk_backend.join_path(disk_dir, 'dir', 'file') == \
    +            osp.join(disk_dir, 'dir', 'file')
    +
    +        # test `list_dir_or_file`
    +        with build_temporary_directory() as tmp_dir:
    +            # 1. list directories and files
    +            assert set(disk_backend.list_dir_or_file(tmp_dir)) == {
    +                'dir1', 'dir2', 'text1.txt', 'text2.txt'
    +            }
    +            # 2. list directories and files recursively
    +            assert set(disk_backend.list_dir_or_file(
    +                tmp_dir, recursive=True)) == {
    +                    'dir1',
    +                    osp.join('dir1', 'text3.txt'), 'dir2',
    +                    osp.join('dir2', 'dir3'),
    +                    osp.join('dir2', 'dir3', 'text4.txt'),
    +                    osp.join('dir2', 'img.jpg'), 'text1.txt', 'text2.txt'
    +                }
    +            # 3. only list directories
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_file=False)) == {'dir1', 'dir2'}
    +            with pytest.raises(
    +                    TypeError,
    +                    match='`suffix` should be None when `list_dir` is True'):
    +                # Exception is raised among the `list_dir_or_file` of client,
    +                # so we need to invode the client to trigger the exception
    +                disk_backend.client.list_dir_or_file(
    +                    tmp_dir, list_file=False, suffix='.txt')
    +            # 4. only list directories recursively
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_file=False, recursive=True)) == {
    +                        'dir1', 'dir2',
    +                        osp.join('dir2', 'dir3')
    +                    }
    +            # 5. only list files
    +            assert set(disk_backend.list_dir_or_file(
    +                tmp_dir, list_dir=False)) == {'text1.txt', 'text2.txt'}
    +            # 6. only list files recursively
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False, recursive=True)) == {
    +                        osp.join('dir1', 'text3.txt'),
    +                        osp.join('dir2', 'dir3', 'text4.txt'),
    +                        osp.join('dir2', 'img.jpg'), 'text1.txt', 'text2.txt'
    +                    }
    +            # 7. only list files ending with suffix
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False,
    +                    suffix='.txt')) == {'text1.txt', 'text2.txt'}
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False,
    +                    suffix=('.txt', '.jpg'))) == {'text1.txt', 'text2.txt'}
    +            with pytest.raises(
    +                    TypeError,
    +                    match='`suffix` must be a string or tuple of strings'):
    +                disk_backend.client.list_dir_or_file(
    +                    tmp_dir, list_dir=False, suffix=['.txt', '.jpg'])
    +            # 8. only list files ending with suffix recursively
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False, suffix='.txt',
    +                    recursive=True)) == {
    +                        osp.join('dir1', 'text3.txt'),
    +                        osp.join('dir2', 'dir3', 'text4.txt'), 'text1.txt',
    +                        'text2.txt'
    +                    }
    +            # 7. only list files ending with suffix
    +            assert set(
    +                disk_backend.list_dir_or_file(
    +                    tmp_dir,
    +                    list_dir=False,
    +                    suffix=('.txt', '.jpg'),
    +                    recursive=True)) == {
    +                        osp.join('dir1', 'text3.txt'),
    +                        osp.join('dir2', 'dir3', 'text4.txt'),
    +                        osp.join('dir2', 'img.jpg'), 'text1.txt', 'text2.txt'
    +                    }
    +
    +    @patch('ceph.S3Client', MockS3Client)
    +    def test_ceph_backend(self):
    +        ceph_backend = FileClient('ceph')
    +
    +        # test `allow_symlink` attribute
    +        assert not ceph_backend.allow_symlink
    +
    +        # input path is Path object
    +        with pytest.raises(NotImplementedError):
    +            ceph_backend.get_text(self.text_path)
    +        # input path is str
    +        with pytest.raises(NotImplementedError):
    +            ceph_backend.get_text(str(self.text_path))
    +
    +        # input path is Path object
    +        img_bytes = ceph_backend.get(self.img_path)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +        # input path is str
    +        img_bytes = ceph_backend.get(str(self.img_path))
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +
    +        # `path_mapping` is either None or dict
    +        with pytest.raises(AssertionError):
    +            FileClient('ceph', path_mapping=1)
    +        # test `path_mapping`
    +        ceph_path = 's3://user/data'
    +        ceph_backend = FileClient(
    +            'ceph', path_mapping={str(self.test_data_dir): ceph_path})
    +        ceph_backend.client._client.Get = MagicMock(
    +            return_value=ceph_backend.client._client.Get(self.img_path))
    +        img_bytes = ceph_backend.get(self.img_path)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +        ceph_backend.client._client.Get.assert_called_with(
    +            str(self.img_path).replace(str(self.test_data_dir), ceph_path))
    +
    +    @patch('petrel_client.client.Client', MockPetrelClient)
    +    @pytest.mark.parametrize('backend,prefix', [('petrel', None),
    +                                                (None, 's3')])
    +    def test_petrel_backend(self, backend, prefix):
    +        petrel_backend = FileClient(backend=backend, prefix=prefix)
    +
    +        # test `allow_symlink` attribute
    +        assert not petrel_backend.allow_symlink
    +
    +        # input path is Path object
    +        img_bytes = petrel_backend.get(self.img_path)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +        # input path is str
    +        img_bytes = petrel_backend.get(str(self.img_path))
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +
    +        # `path_mapping` is either None or dict
    +        with pytest.raises(AssertionError):
    +            FileClient('petrel', path_mapping=1)
    +
    +        # test `_map_path`
    +        petrel_dir = 's3://user/data'
    +        petrel_backend = FileClient(
    +            'petrel', path_mapping={str(self.test_data_dir): petrel_dir})
    +        assert petrel_backend.client._map_path(str(self.img_path)) == \
    +            str(self.img_path).replace(str(self.test_data_dir), petrel_dir)
    +
    +        petrel_path = f'{petrel_dir}/test.jpg'
    +        petrel_backend = FileClient('petrel')
    +
    +        # test `_format_path`
    +        assert petrel_backend.client._format_path('s3://user\\data\\test.jpg')\
    +            == petrel_path
    +
    +        # test `get`
    +        with patch.object(
    +                petrel_backend.client._client, 'Get',
    +                return_value=b'petrel') as mock_get:
    +            assert petrel_backend.get(petrel_path) == b'petrel'
    +            mock_get.assert_called_once_with(petrel_path)
    +
    +        # test `get_text`
    +        with patch.object(
    +                petrel_backend.client._client, 'Get',
    +                return_value=b'petrel') as mock_get:
    +            assert petrel_backend.get_text(petrel_path) == 'petrel'
    +            mock_get.assert_called_once_with(petrel_path)
    +
    +        # test `put`
    +        with patch.object(petrel_backend.client._client, 'put') as mock_put:
    +            petrel_backend.put(b'petrel', petrel_path)
    +            mock_put.assert_called_once_with(petrel_path, b'petrel')
    +
    +        # test `put_text`
    +        with patch.object(petrel_backend.client._client, 'put') as mock_put:
    +            petrel_backend.put_text('petrel', petrel_path)
    +            mock_put.assert_called_once_with(petrel_path, b'petrel')
    +
    +        # test `remove`
    +        assert has_method(petrel_backend.client._client, 'delete')
    +        # raise Exception if `delete` is not implemented
    +        with delete_and_reset_method(petrel_backend.client._client, 'delete'):
    +            assert not has_method(petrel_backend.client._client, 'delete')
    +            with pytest.raises(NotImplementedError):
    +                petrel_backend.remove(petrel_path)
    +
    +        with patch.object(petrel_backend.client._client,
    +                          'delete') as mock_delete:
    +            petrel_backend.remove(petrel_path)
    +            mock_delete.assert_called_once_with(petrel_path)
    +
    +        # test `exists`
    +        assert has_method(petrel_backend.client._client, 'contains')
    +        assert has_method(petrel_backend.client._client, 'isdir')
    +        # raise Exception if `delete` is not implemented
    +        with delete_and_reset_method(petrel_backend.client._client,
    +                                     'contains'), delete_and_reset_method(
    +                                         petrel_backend.client._client,
    +                                         'isdir'):
    +            assert not has_method(petrel_backend.client._client, 'contains')
    +            assert not has_method(petrel_backend.client._client, 'isdir')
    +            with pytest.raises(NotImplementedError):
    +                petrel_backend.exists(petrel_path)
    +
    +        with patch.object(
    +                petrel_backend.client._client, 'contains',
    +                return_value=True) as mock_contains:
    +            assert petrel_backend.exists(petrel_path)
    +            mock_contains.assert_called_once_with(petrel_path)
    +
    +        # test `isdir`
    +        assert has_method(petrel_backend.client._client, 'isdir')
    +        with delete_and_reset_method(petrel_backend.client._client, 'isdir'):
    +            assert not has_method(petrel_backend.client._client, 'isdir')
    +            with pytest.raises(NotImplementedError):
    +                petrel_backend.isdir(petrel_path)
    +
    +        with patch.object(
    +                petrel_backend.client._client, 'isdir',
    +                return_value=True) as mock_isdir:
    +            assert petrel_backend.isdir(petrel_dir)
    +            mock_isdir.assert_called_once_with(petrel_dir)
    +
    +        # test `isfile`
    +        assert has_method(petrel_backend.client._client, 'contains')
    +        with delete_and_reset_method(petrel_backend.client._client,
    +                                     'contains'):
    +            assert not has_method(petrel_backend.client._client, 'contains')
    +            with pytest.raises(NotImplementedError):
    +                petrel_backend.isfile(petrel_path)
    +
    +        with patch.object(
    +                petrel_backend.client._client, 'contains',
    +                return_value=True) as mock_contains:
    +            assert petrel_backend.isfile(petrel_path)
    +            mock_contains.assert_called_once_with(petrel_path)
    +
    +        # test `join_path`
    +        assert petrel_backend.join_path(petrel_dir, 'file') == \
    +            f'{petrel_dir}/file'
    +        assert petrel_backend.join_path(f'{petrel_dir}/', 'file') == \
    +            f'{petrel_dir}/file'
    +        assert petrel_backend.join_path(petrel_dir, 'dir', 'file') == \
    +            f'{petrel_dir}/dir/file'
    +
    +        # test `get_local_path`
    +        with patch.object(petrel_backend.client._client, 'Get',
    +                          return_value=b'petrel') as mock_get, \
    +             patch.object(petrel_backend.client._client, 'contains',
    +                          return_value=True) as mock_contains:
    +            with petrel_backend.get_local_path(petrel_path) as path:
    +                assert Path(path).open('rb').read() == b'petrel'
    +            # exist the with block and path will be released
    +            assert not osp.isfile(path)
    +            mock_get.assert_called_once_with(petrel_path)
    +            mock_contains.assert_called_once_with(petrel_path)
    +
    +        # test `list_dir_or_file`
    +        assert has_method(petrel_backend.client._client, 'list')
    +        with delete_and_reset_method(petrel_backend.client._client, 'list'):
    +            assert not has_method(petrel_backend.client._client, 'list')
    +            with pytest.raises(NotImplementedError):
    +                list(petrel_backend.list_dir_or_file(petrel_dir))
    +
    +        with build_temporary_directory() as tmp_dir:
    +            # 1. list directories and files
    +            assert set(petrel_backend.list_dir_or_file(tmp_dir)) == {
    +                'dir1', 'dir2', 'text1.txt', 'text2.txt'
    +            }
    +            # 2. list directories and files recursively
    +            assert set(
    +                petrel_backend.list_dir_or_file(tmp_dir, recursive=True)) == {
    +                    'dir1', '/'.join(('dir1', 'text3.txt')), 'dir2', '/'.join(
    +                        ('dir2', 'dir3')), '/'.join(
    +                            ('dir2', 'dir3', 'text4.txt')), '/'.join(
    +                                ('dir2', 'img.jpg')), 'text1.txt', 'text2.txt'
    +                }
    +            # 3. only list directories
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_file=False)) == {'dir1', 'dir2'}
    +            with pytest.raises(
    +                    TypeError,
    +                    match=('`list_dir` should be False when `suffix` is not '
    +                           'None')):
    +                # Exception is raised among the `list_dir_or_file` of client,
    +                # so we need to invode the client to trigger the exception
    +                petrel_backend.client.list_dir_or_file(
    +                    tmp_dir, list_file=False, suffix='.txt')
    +            # 4. only list directories recursively
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_file=False, recursive=True)) == {
    +                        'dir1', 'dir2', '/'.join(('dir2', 'dir3'))
    +                    }
    +            # 5. only list files
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False)) == {'text1.txt', 'text2.txt'}
    +            # 6. only list files recursively
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False, recursive=True)) == {
    +                        '/'.join(('dir1', 'text3.txt')), '/'.join(
    +                            ('dir2', 'dir3', 'text4.txt')), '/'.join(
    +                                ('dir2', 'img.jpg')), 'text1.txt', 'text2.txt'
    +                    }
    +            # 7. only list files ending with suffix
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False,
    +                    suffix='.txt')) == {'text1.txt', 'text2.txt'}
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False,
    +                    suffix=('.txt', '.jpg'))) == {'text1.txt', 'text2.txt'}
    +            with pytest.raises(
    +                    TypeError,
    +                    match='`suffix` must be a string or tuple of strings'):
    +                petrel_backend.client.list_dir_or_file(
    +                    tmp_dir, list_dir=False, suffix=['.txt', '.jpg'])
    +            # 8. only list files ending with suffix recursively
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir, list_dir=False, suffix='.txt',
    +                    recursive=True)) == {
    +                        '/'.join(('dir1', 'text3.txt')), '/'.join(
    +                            ('dir2', 'dir3', 'text4.txt')), 'text1.txt',
    +                        'text2.txt'
    +                    }
    +            # 7. only list files ending with suffix
    +            assert set(
    +                petrel_backend.list_dir_or_file(
    +                    tmp_dir,
    +                    list_dir=False,
    +                    suffix=('.txt', '.jpg'),
    +                    recursive=True)) == {
    +                        '/'.join(('dir1', 'text3.txt')), '/'.join(
    +                            ('dir2', 'dir3', 'text4.txt')), '/'.join(
    +                                ('dir2', 'img.jpg')), 'text1.txt', 'text2.txt'
    +                    }
    +
    +    @patch('mc.MemcachedClient.GetInstance', MockMemcachedClient)
    +    @patch('mc.pyvector', MagicMock)
    +    @patch('mc.ConvertBuffer', lambda x: x.content)
    +    def test_memcached_backend(self):
    +        mc_cfg = dict(server_list_cfg='', client_cfg='', sys_path=None)
    +        mc_backend = FileClient('memcached', **mc_cfg)
    +
    +        # test `allow_symlink` attribute
    +        assert not mc_backend.allow_symlink
    +
    +        # input path is Path object
    +        with pytest.raises(NotImplementedError):
    +            mc_backend.get_text(self.text_path)
    +        # input path is str
    +        with pytest.raises(NotImplementedError):
    +            mc_backend.get_text(str(self.text_path))
    +
    +        # input path is Path object
    +        img_bytes = mc_backend.get(self.img_path)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +        # input path is str
    +        img_bytes = mc_backend.get(str(self.img_path))
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +
    +    def test_lmdb_backend(self):
    +        lmdb_path = self.test_data_dir / 'demo.lmdb'
    +
    +        # db_path is Path object
    +        lmdb_backend = FileClient('lmdb', db_path=lmdb_path)
    +
    +        # test `allow_symlink` attribute
    +        assert not lmdb_backend.allow_symlink
    +
    +        with pytest.raises(NotImplementedError):
    +            lmdb_backend.get_text(self.text_path)
    +
    +        img_bytes = lmdb_backend.get('baboon')
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == (120, 125, 3)
    +
    +        # db_path is str
    +        lmdb_backend = FileClient('lmdb', db_path=str(lmdb_path))
    +        with pytest.raises(NotImplementedError):
    +            lmdb_backend.get_text(str(self.text_path))
    +        img_bytes = lmdb_backend.get('baboon')
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == (120, 125, 3)
    +
    +    @pytest.mark.parametrize('backend,prefix', [('http', None),
    +                                                (None, 'http')])
    +    def test_http_backend(self, backend, prefix):
    +        http_backend = FileClient(backend=backend, prefix=prefix)
    +        img_url = 'https://raw.githubusercontent.com/open-mmlab/mmcv/' \
    +            'master/tests/data/color.jpg'
    +        text_url = 'https://raw.githubusercontent.com/open-mmlab/mmcv/' \
    +            'master/tests/data/filelist.txt'
    +
    +        # test `allow_symlink` attribute
    +        assert not http_backend.allow_symlink
    +
    +        # input is path or Path object
    +        with pytest.raises(Exception):
    +            http_backend.get(self.img_path)
    +        with pytest.raises(Exception):
    +            http_backend.get(str(self.img_path))
    +        with pytest.raises(Exception):
    +            http_backend.get_text(self.text_path)
    +        with pytest.raises(Exception):
    +            http_backend.get_text(str(self.text_path))
    +
    +        # input url is http image
    +        img_bytes = http_backend.get(img_url)
    +        img = mmcv.imfrombytes(img_bytes)
    +        assert img.shape == self.img_shape
    +
    +        # input url is http text
    +        value_buf = http_backend.get_text(text_url)
    +        assert self.text_path.open('r').read() == value_buf
    +
    +        # test `_get_local_path`
    +        # exist the with block and path will be released
    +        with http_backend.get_local_path(img_url) as path:
    +            assert mmcv.imread(path).shape == self.img_shape
    +        assert not osp.isfile(path)
    +
    +    def test_new_magic_method(self):
    +
    +        class DummyBackend1(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return filepath
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return filepath
    +
    +        FileClient.register_backend('dummy_backend', DummyBackend1)
    +        client1 = FileClient(backend='dummy_backend')
    +        client2 = FileClient(backend='dummy_backend')
    +        assert client1 is client2
    +
    +        # if a backend is overwrote, it will disable the singleton pattern for
    +        # the backend
    +        class DummyBackend2(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                pass
    +
    +            def get_text(self, filepath):
    +                pass
    +
    +        FileClient.register_backend('dummy_backend', DummyBackend2, force=True)
    +        client3 = FileClient(backend='dummy_backend')
    +        client4 = FileClient(backend='dummy_backend')
    +        assert client2 is not client3
    +        assert client3 is client4
    +
    +    def test_parse_uri_prefix(self):
    +        # input path is None
    +        with pytest.raises(AssertionError):
    +            FileClient.parse_uri_prefix(None)
    +        # input path is list
    +        with pytest.raises(AssertionError):
    +            FileClient.parse_uri_prefix([])
    +
    +        # input path is Path object
    +        assert FileClient.parse_uri_prefix(self.img_path) is None
    +        # input path is str
    +        assert FileClient.parse_uri_prefix(str(self.img_path)) is None
    +
    +        # input path starts with https
    +        img_url = 'https://raw.githubusercontent.com/open-mmlab/mmcv/' \
    +            'master/tests/data/color.jpg'
    +        assert FileClient.parse_uri_prefix(img_url) == 'https'
    +
    +        # input path starts with s3
    +        img_url = 's3://your_bucket/img.png'
    +        assert FileClient.parse_uri_prefix(img_url) == 's3'
    +
    +        # input path starts with clusterName:s3
    +        img_url = 'clusterName:s3://your_bucket/img.png'
    +        assert FileClient.parse_uri_prefix(img_url) == 's3'
    +
    +    def test_infer_client(self):
    +        # HardDiskBackend
    +        file_client_args = {'backend': 'disk'}
    +        client = FileClient.infer_client(file_client_args)
    +        assert client.name == 'HardDiskBackend'
    +        client = FileClient.infer_client(uri=self.img_path)
    +        assert client.name == 'HardDiskBackend'
    +
    +        # PetrelBackend
    +        file_client_args = {'backend': 'petrel'}
    +        client = FileClient.infer_client(file_client_args)
    +        assert client.name == 'PetrelBackend'
    +        uri = 's3://user_data'
    +        client = FileClient.infer_client(uri=uri)
    +        assert client.name == 'PetrelBackend'
    +
    +    def test_register_backend(self):
    +
    +        # name must be a string
    +        with pytest.raises(TypeError):
    +
    +            class TestClass1:
    +                pass
    +
    +            FileClient.register_backend(1, TestClass1)
    +
    +        # module must be a class
    +        with pytest.raises(TypeError):
    +            FileClient.register_backend('int', 0)
    +
    +        # module must be a subclass of BaseStorageBackend
    +        with pytest.raises(TypeError):
    +
    +            class TestClass1:
    +                pass
    +
    +            FileClient.register_backend('TestClass1', TestClass1)
    +
    +        class ExampleBackend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return filepath
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return filepath
    +
    +        FileClient.register_backend('example', ExampleBackend)
    +        example_backend = FileClient('example')
    +        assert example_backend.get(self.img_path) == self.img_path
    +        assert example_backend.get_text(self.text_path) == self.text_path
    +        assert 'example' in FileClient._backends
    +
    +        class Example2Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes2'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text2'
    +
    +        # force=False
    +        with pytest.raises(KeyError):
    +            FileClient.register_backend('example', Example2Backend)
    +
    +        FileClient.register_backend('example', Example2Backend, force=True)
    +        example_backend = FileClient('example')
    +        assert example_backend.get(self.img_path) == b'bytes2'
    +        assert example_backend.get_text(self.text_path) == 'text2'
    +
    +        @FileClient.register_backend(name='example3')
    +        class Example3Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes3'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text3'
    +
    +        example_backend = FileClient('example3')
    +        assert example_backend.get(self.img_path) == b'bytes3'
    +        assert example_backend.get_text(self.text_path) == 'text3'
    +        assert 'example3' in FileClient._backends
    +
    +        # force=False
    +        with pytest.raises(KeyError):
    +
    +            @FileClient.register_backend(name='example3')
    +            class Example4Backend(BaseStorageBackend):
    +
    +                def get(self, filepath):
    +                    return b'bytes4'
    +
    +                def get_text(self, filepath, encoding='utf-8'):
    +                    return 'text4'
    +
    +        @FileClient.register_backend(name='example3', force=True)
    +        class Example5Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes5'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text5'
    +
    +        example_backend = FileClient('example3')
    +        assert example_backend.get(self.img_path) == b'bytes5'
    +        assert example_backend.get_text(self.text_path) == 'text5'
    +
    +        # prefixes is a str
    +        class Example6Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes6'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text6'
    +
    +        FileClient.register_backend(
    +            'example4',
    +            Example6Backend,
    +            force=True,
    +            prefixes='example4_prefix')
    +        example_backend = FileClient('example4')
    +        assert example_backend.get(self.img_path) == b'bytes6'
    +        assert example_backend.get_text(self.text_path) == 'text6'
    +        example_backend = FileClient(prefix='example4_prefix')
    +        assert example_backend.get(self.img_path) == b'bytes6'
    +        assert example_backend.get_text(self.text_path) == 'text6'
    +        example_backend = FileClient('example4', prefix='example4_prefix')
    +        assert example_backend.get(self.img_path) == b'bytes6'
    +        assert example_backend.get_text(self.text_path) == 'text6'
    +
    +        # prefixes is a list of str
    +        class Example7Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes7'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text7'
    +
    +        FileClient.register_backend(
    +            'example5',
    +            Example7Backend,
    +            force=True,
    +            prefixes=['example5_prefix1', 'example5_prefix2'])
    +        example_backend = FileClient('example5')
    +        assert example_backend.get(self.img_path) == b'bytes7'
    +        assert example_backend.get_text(self.text_path) == 'text7'
    +        example_backend = FileClient(prefix='example5_prefix1')
    +        assert example_backend.get(self.img_path) == b'bytes7'
    +        assert example_backend.get_text(self.text_path) == 'text7'
    +        example_backend = FileClient(prefix='example5_prefix2')
    +        assert example_backend.get(self.img_path) == b'bytes7'
    +        assert example_backend.get_text(self.text_path) == 'text7'
    +
    +        # backend has a higher priority than prefixes
    +        class Example8Backend(BaseStorageBackend):
    +
    +            def get(self, filepath):
    +                return b'bytes8'
    +
    +            def get_text(self, filepath, encoding='utf-8'):
    +                return 'text8'
    +
    +        FileClient.register_backend(
    +            'example6',
    +            Example8Backend,
    +            force=True,
    +            prefixes='example6_prefix')
    +        example_backend = FileClient('example6')
    +        assert example_backend.get(self.img_path) == b'bytes8'
    +        assert example_backend.get_text(self.text_path) == 'text8'
    +        example_backend = FileClient('example6', prefix='example4_prefix')
    +        assert example_backend.get(self.img_path) == b'bytes8'
    +        assert example_backend.get_text(self.text_path) == 'text8'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileio.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileio.py
    new file mode 100644
    index 000000000..f5e23bf7f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_fileio.py
    @@ -0,0 +1,211 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import sys
    +import tempfile
    +from unittest.mock import MagicMock, patch
    +
    +import pytest
    +
    +import mmcv
    +from mmcv.fileio.file_client import HTTPBackend, PetrelBackend
    +
    +sys.modules['petrel_client'] = MagicMock()
    +sys.modules['petrel_client.client'] = MagicMock()
    +
    +
    +def _test_handler(file_format, test_obj, str_checker, mode='r+'):
    +    # dump to a string
    +    dump_str = mmcv.dump(test_obj, file_format=file_format)
    +    str_checker(dump_str)
    +
    +    # load/dump with filenames from disk
    +    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_dump')
    +    mmcv.dump(test_obj, tmp_filename, file_format=file_format)
    +    assert osp.isfile(tmp_filename)
    +    load_obj = mmcv.load(tmp_filename, file_format=file_format)
    +    assert load_obj == test_obj
    +    os.remove(tmp_filename)
    +
    +    # load/dump with filename from petrel
    +    method = 'put' if 'b' in mode else 'put_text'
    +    with patch.object(PetrelBackend, method, return_value=None) as mock_method:
    +        filename = 's3://path/of/your/file'
    +        mmcv.dump(test_obj, filename, file_format=file_format)
    +    mock_method.assert_called()
    +
    +    # json load/dump with a file-like object
    +    with tempfile.NamedTemporaryFile(mode, delete=False) as f:
    +        tmp_filename = f.name
    +        mmcv.dump(test_obj, f, file_format=file_format)
    +    assert osp.isfile(tmp_filename)
    +    with open(tmp_filename, mode) as f:
    +        load_obj = mmcv.load(f, file_format=file_format)
    +    assert load_obj == test_obj
    +    os.remove(tmp_filename)
    +
    +    # automatically inference the file format from the given filename
    +    tmp_filename = osp.join(tempfile.gettempdir(),
    +                            'mmcv_test_dump.' + file_format)
    +    mmcv.dump(test_obj, tmp_filename)
    +    assert osp.isfile(tmp_filename)
    +    load_obj = mmcv.load(tmp_filename)
    +    assert load_obj == test_obj
    +    os.remove(tmp_filename)
    +
    +
    +obj_for_test = [{'a': 'abc', 'b': 1}, 2, 'c']
    +
    +
    +def test_json():
    +
    +    def json_checker(dump_str):
    +        assert dump_str in [
    +            '[{"a": "abc", "b": 1}, 2, "c"]', '[{"b": 1, "a": "abc"}, 2, "c"]'
    +        ]
    +
    +    _test_handler('json', obj_for_test, json_checker)
    +
    +
    +def test_yaml():
    +
    +    def yaml_checker(dump_str):
    +        assert dump_str in [
    +            '- {a: abc, b: 1}\n- 2\n- c\n', '- {b: 1, a: abc}\n- 2\n- c\n',
    +            '- a: abc\n  b: 1\n- 2\n- c\n', '- b: 1\n  a: abc\n- 2\n- c\n'
    +        ]
    +
    +    _test_handler('yaml', obj_for_test, yaml_checker)
    +
    +
    +def test_pickle():
    +
    +    def pickle_checker(dump_str):
    +        import pickle
    +        assert pickle.loads(dump_str) == obj_for_test
    +
    +    _test_handler('pickle', obj_for_test, pickle_checker, mode='rb+')
    +
    +
    +def test_exception():
    +    test_obj = [{'a': 'abc', 'b': 1}, 2, 'c']
    +
    +    with pytest.raises(ValueError):
    +        mmcv.dump(test_obj)
    +
    +    with pytest.raises(TypeError):
    +        mmcv.dump(test_obj, 'tmp.txt')
    +
    +
    +def test_register_handler():
    +
    +    @mmcv.register_handler('txt')
    +    class TxtHandler1(mmcv.BaseFileHandler):
    +
    +        def load_from_fileobj(self, file):
    +            return file.read()
    +
    +        def dump_to_fileobj(self, obj, file):
    +            file.write(str(obj))
    +
    +        def dump_to_str(self, obj, **kwargs):
    +            return str(obj)
    +
    +    @mmcv.register_handler(['txt1', 'txt2'])
    +    class TxtHandler2(mmcv.BaseFileHandler):
    +
    +        def load_from_fileobj(self, file):
    +            return file.read()
    +
    +        def dump_to_fileobj(self, obj, file):
    +            file.write('\n')
    +            file.write(str(obj))
    +
    +        def dump_to_str(self, obj, **kwargs):
    +            return str(obj)
    +
    +    content = mmcv.load(osp.join(osp.dirname(__file__), 'data/filelist.txt'))
    +    assert content == '1.jpg\n2.jpg\n3.jpg\n4.jpg\n5.jpg'
    +    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test.txt2')
    +    mmcv.dump(content, tmp_filename)
    +    with open(tmp_filename) as f:
    +        written = f.read()
    +    os.remove(tmp_filename)
    +    assert written == '\n' + content
    +
    +
    +def test_list_from_file():
    +    # get list from disk
    +    filename = osp.join(osp.dirname(__file__), 'data/filelist.txt')
    +    filelist = mmcv.list_from_file(filename)
    +    assert filelist == ['1.jpg', '2.jpg', '3.jpg', '4.jpg', '5.jpg']
    +    filelist = mmcv.list_from_file(filename, prefix='a/')
    +    assert filelist == ['a/1.jpg', 'a/2.jpg', 'a/3.jpg', 'a/4.jpg', 'a/5.jpg']
    +    filelist = mmcv.list_from_file(filename, offset=2)
    +    assert filelist == ['3.jpg', '4.jpg', '5.jpg']
    +    filelist = mmcv.list_from_file(filename, max_num=2)
    +    assert filelist == ['1.jpg', '2.jpg']
    +    filelist = mmcv.list_from_file(filename, offset=3, max_num=3)
    +    assert filelist == ['4.jpg', '5.jpg']
    +
    +    # get list from http
    +    with patch.object(
    +            HTTPBackend, 'get_text', return_value='1.jpg\n2.jpg\n3.jpg'):
    +        filename = 'http://path/of/your/file'
    +        filelist = mmcv.list_from_file(
    +            filename, file_client_args={'backend': 'http'})
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +        filelist = mmcv.list_from_file(
    +            filename, file_client_args={'prefix': 'http'})
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +        filelist = mmcv.list_from_file(filename)
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +
    +    # get list from petrel
    +    with patch.object(
    +            PetrelBackend, 'get_text', return_value='1.jpg\n2.jpg\n3.jpg'):
    +        filename = 's3://path/of/your/file'
    +        filelist = mmcv.list_from_file(
    +            filename, file_client_args={'backend': 'petrel'})
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +        filelist = mmcv.list_from_file(
    +            filename, file_client_args={'prefix': 's3'})
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +        filelist = mmcv.list_from_file(filename)
    +        assert filelist == ['1.jpg', '2.jpg', '3.jpg']
    +
    +
    +def test_dict_from_file():
    +    # get dict from disk
    +    filename = osp.join(osp.dirname(__file__), 'data/mapping.txt')
    +    mapping = mmcv.dict_from_file(filename)
    +    assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +    mapping = mmcv.dict_from_file(filename, key_type=int)
    +    assert mapping == {1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}
    +
    +    # get dict from http
    +    with patch.object(
    +            HTTPBackend, 'get_text', return_value='1 cat\n2 dog cow\n3 panda'):
    +        filename = 'http://path/of/your/file'
    +        mapping = mmcv.dict_from_file(
    +            filename, file_client_args={'backend': 'http'})
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +        mapping = mmcv.dict_from_file(
    +            filename, file_client_args={'prefix': 'http'})
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +        mapping = mmcv.dict_from_file(filename)
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +
    +    # get dict from petrel
    +    with patch.object(
    +            PetrelBackend, 'get_text',
    +            return_value='1 cat\n2 dog cow\n3 panda'):
    +        filename = 's3://path/of/your/file'
    +        mapping = mmcv.dict_from_file(
    +            filename, file_client_args={'backend': 'petrel'})
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +        mapping = mmcv.dict_from_file(
    +            filename, file_client_args={'prefix': 's3'})
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    +        mapping = mmcv.dict_from_file(filename)
    +        assert mapping == {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_colorspace.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_colorspace.py
    new file mode 100644
    index 000000000..d53e4e44d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_colorspace.py
    @@ -0,0 +1,355 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import cv2
    +import numpy as np
    +import pytest
    +from numpy.testing import assert_array_almost_equal, assert_array_equal
    +
    +import mmcv
    +from mmcv.image.colorspace import (_convert_input_type_range,
    +                                   _convert_output_type_range)
    +
    +
    +def test_bgr2gray():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2gray(in_img)
    +    computed_gray = (
    +        in_img[:, :, 0] * 0.114 + in_img[:, :, 1] * 0.587 +
    +        in_img[:, :, 2] * 0.299)
    +    assert_array_almost_equal(out_img, computed_gray, decimal=4)
    +    out_img_3d = mmcv.bgr2gray(in_img, True)
    +    assert out_img_3d.shape == (10, 10, 1)
    +    assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)
    +
    +
    +def test_rgb2gray():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.rgb2gray(in_img)
    +    computed_gray = (
    +        in_img[:, :, 0] * 0.299 + in_img[:, :, 1] * 0.587 +
    +        in_img[:, :, 2] * 0.114)
    +    assert_array_almost_equal(out_img, computed_gray, decimal=4)
    +    out_img_3d = mmcv.rgb2gray(in_img, True)
    +    assert out_img_3d.shape == (10, 10, 1)
    +    assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4)
    +
    +
    +def test_gray2bgr():
    +    in_img = np.random.rand(10, 10).astype(np.float32)
    +    out_img = mmcv.gray2bgr(in_img)
    +    assert out_img.shape == (10, 10, 3)
    +    for i in range(3):
    +        assert_array_almost_equal(out_img[..., i], in_img, decimal=4)
    +
    +
    +def test_gray2rgb():
    +    in_img = np.random.rand(10, 10).astype(np.float32)
    +    out_img = mmcv.gray2rgb(in_img)
    +    assert out_img.shape == (10, 10, 3)
    +    for i in range(3):
    +        assert_array_almost_equal(out_img[..., i], in_img, decimal=4)
    +
    +
    +def test_bgr2rgb():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2rgb(in_img)
    +    assert out_img.shape == in_img.shape
    +    assert_array_equal(out_img[..., 0], in_img[..., 2])
    +    assert_array_equal(out_img[..., 1], in_img[..., 1])
    +    assert_array_equal(out_img[..., 2], in_img[..., 0])
    +
    +
    +def test_rgb2bgr():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.rgb2bgr(in_img)
    +    assert out_img.shape == in_img.shape
    +    assert_array_equal(out_img[..., 0], in_img[..., 2])
    +    assert_array_equal(out_img[..., 1], in_img[..., 1])
    +    assert_array_equal(out_img[..., 2], in_img[..., 0])
    +
    +
    +def test_bgr2hsv():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2hsv(in_img)
    +    argmax = in_img.argmax(axis=2)
    +    computed_hsv = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            v = max(r, g, b)
    +            s = (v - min(r, g, b)) / v if v != 0 else 0
    +            if argmax[i, j] == 0:
    +                h = 240 + 60 * (r - g) / (v - min(r, g, b))
    +            elif argmax[i, j] == 1:
    +                h = 120 + 60 * (b - r) / (v - min(r, g, b))
    +            else:
    +                h = 60 * (g - b) / (v - min(r, g, b))
    +            if h < 0:
    +                h += 360
    +            computed_hsv[i, j, :] = [h, s, v]
    +    assert_array_almost_equal(out_img, computed_hsv, decimal=2)
    +
    +
    +def test_convert_input_type_range():
    +    with pytest.raises(TypeError):
    +        # The img type should be np.float32 or np.uint8
    +        in_img = np.random.rand(10, 10, 3).astype(np.uint64)
    +        _convert_input_type_range(in_img)
    +    # np.float32
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = _convert_input_type_range(in_img)
    +    assert out_img.dtype == np.float32
    +    assert np.absolute(out_img).mean() < 1
    +    # np.uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = _convert_input_type_range(in_img)
    +    assert out_img.dtype == np.float32
    +    assert np.absolute(out_img).mean() < 1
    +
    +
    +def test_convert_output_type_range():
    +    with pytest.raises(TypeError):
    +        # The dst_type should be np.float32 or np.uint8
    +        in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +        _convert_output_type_range(in_img, np.uint64)
    +    # np.float32
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.float32)
    +    out_img = _convert_output_type_range(in_img, np.float32)
    +    assert out_img.dtype == np.float32
    +    assert np.absolute(out_img).mean() < 1
    +    # np.uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.float32)
    +    out_img = _convert_output_type_range(in_img, np.uint8)
    +    assert out_img.dtype == np.uint8
    +    assert np.absolute(out_img).mean() > 1
    +
    +
    +def assert_image_almost_equal(x, y, atol=1):
    +    assert x.dtype == np.uint8
    +    assert y.dtype == np.uint8
    +    assert np.all(np.abs(x.astype(np.int32) - y.astype(np.int32)) <= atol)
    +
    +
    +def test_rgb2ycbcr():
    +    with pytest.raises(TypeError):
    +        # The img type should be np.float32 or np.uint8
    +        in_img = np.random.rand(10, 10, 3).astype(np.uint64)
    +        mmcv.rgb2ycbcr(in_img)
    +
    +    # float32
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.rgb2ycbcr(in_img)
    +    computed_ycbcr = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            r, g, b = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            cb = 128 - r * 37.797 - g * 74.203 + b * 112.0
    +            cr = 128 + r * 112.0 - g * 93.786 - b * 18.214
    +            computed_ycbcr[i, j, :] = [y, cb, cr]
    +    computed_ycbcr /= 255.
    +    assert_array_almost_equal(out_img, computed_ycbcr, decimal=2)
    +    # y_only=True
    +    out_img = mmcv.rgb2ycbcr(in_img, y_only=True)
    +    computed_y = np.empty_like(out_img, dtype=out_img.dtype)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            r, g, b = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            computed_y[i, j] = y
    +    computed_y /= 255.
    +    assert_array_almost_equal(out_img, computed_y, decimal=2)
    +
    +    # uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.rgb2ycbcr(in_img)
    +    computed_ycbcr = np.empty_like(in_img)
    +    in_img = in_img / 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            r, g, b = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            cb = 128 - r * 37.797 - g * 74.203 + b * 112.0
    +            cr = 128 + r * 112.0 - g * 93.786 - b * 18.214
    +            y, cb, cr = y.round(), cb.round(), cr.round()
    +            computed_ycbcr[i, j, :] = [y, cb, cr]
    +    assert_image_almost_equal(out_img, computed_ycbcr)
    +    # y_only=True
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.rgb2ycbcr(in_img, y_only=True)
    +    computed_y = np.empty_like(out_img, dtype=out_img.dtype)
    +    in_img = in_img / 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            r, g, b = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            y = y.round()
    +            computed_y[i, j] = y
    +    assert_image_almost_equal(out_img, computed_y)
    +
    +
    +def test_bgr2ycbcr():
    +    # float32
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2ycbcr(in_img)
    +    computed_ycbcr = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            cb = 128 - r * 37.797 - g * 74.203 + b * 112.0
    +            cr = 128 + r * 112.0 - g * 93.786 - b * 18.214
    +            computed_ycbcr[i, j, :] = [y, cb, cr]
    +    computed_ycbcr /= 255.
    +    assert_array_almost_equal(out_img, computed_ycbcr, decimal=2)
    +    # y_only=True
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2ycbcr(in_img, y_only=True)
    +    computed_y = np.empty_like(out_img, dtype=out_img.dtype)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            computed_y[i, j] = y
    +    computed_y /= 255.
    +    assert_array_almost_equal(out_img, computed_y, decimal=2)
    +
    +    # uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.bgr2ycbcr(in_img)
    +    computed_ycbcr = np.empty_like(in_img)
    +    in_img = in_img / 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            cb = 128 - r * 37.797 - g * 74.203 + b * 112.0
    +            cr = 128 + r * 112.0 - g * 93.786 - b * 18.214
    +            y, cb, cr = y.round(), cb.round(), cr.round()
    +            computed_ycbcr[i, j, :] = [y, cb, cr]
    +    assert_image_almost_equal(out_img, computed_ycbcr)
    +    # y_only = True
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.bgr2ycbcr(in_img, y_only=True)
    +    computed_y = np.empty_like(out_img, dtype=out_img.dtype)
    +    in_img = in_img / 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            y = 16 + r * 65.481 + g * 128.553 + b * 24.966
    +            y = y.round()
    +            computed_y[i, j] = y
    +    assert_image_almost_equal(out_img, computed_y)
    +
    +
    +def test_ycbcr2rgb():
    +    with pytest.raises(TypeError):
    +        # The img type should be np.float32 or np.uint8
    +        in_img = np.random.rand(10, 10, 3).astype(np.uint64)
    +        mmcv.ycbcr2rgb(in_img)
    +
    +    # float32
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.ycbcr2rgb(in_img)
    +    computed_rgb = np.empty_like(in_img)
    +    in_img *= 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            y, cb, cr = in_img[i, j]
    +            r = -222.921 + y * 0.00456621 * 255 + cr * 0.00625893 * 255
    +            g = 135.576 + y * 0.00456621 * 255 - cb * 0.00153632 * 255 - \
    +                cr * 0.00318811 * 255
    +            b = -276.836 + y * 0.00456621 * 255. + cb * 0.00791071 * 255
    +            computed_rgb[i, j, :] = [r, g, b]
    +    computed_rgb /= 255.
    +    assert_array_almost_equal(out_img, computed_rgb, decimal=2)
    +
    +    # uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.ycbcr2rgb(in_img)
    +    computed_rgb = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            y, cb, cr = in_img[i, j]
    +            r = -222.921 + y * 0.00456621 * 255 + cr * 0.00625893 * 255
    +            g = 135.576 + y * 0.00456621 * 255 - cb * 0.00153632 * 255 - \
    +                cr * 0.00318811 * 255
    +            b = -276.836 + y * 0.00456621 * 255. + cb * 0.00791071 * 255
    +            r, g, b = r.round(), g.round(), b.round()
    +            computed_rgb[i, j, :] = [r, g, b]
    +    assert_image_almost_equal(out_img, computed_rgb)
    +
    +
    +def test_ycbcr2bgr():
    +    # float32
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.ycbcr2bgr(in_img)
    +    computed_bgr = np.empty_like(in_img)
    +    in_img *= 255.
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            y, cb, cr = in_img[i, j]
    +            r = -222.921 + y * 0.00456621 * 255 + cr * 0.00625893 * 255
    +            g = 135.576 + y * 0.00456621 * 255 - cb * 0.00153632 * 255 - \
    +                cr * 0.00318811 * 255
    +            b = -276.836 + y * 0.00456621 * 255. + cb * 0.00791071 * 255
    +            computed_bgr[i, j, :] = [b, g, r]
    +    computed_bgr /= 255.
    +    assert_array_almost_equal(out_img, computed_bgr, decimal=2)
    +
    +    # uint8
    +    in_img = (np.random.rand(10, 10, 3) * 255).astype(np.uint8)
    +    out_img = mmcv.ycbcr2bgr(in_img)
    +    computed_bgr = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            y, cb, cr = in_img[i, j]
    +            r = -222.921 + y * 0.00456621 * 255 + cr * 0.00625893 * 255
    +            g = 135.576 + y * 0.00456621 * 255 - cb * 0.00153632 * 255 - \
    +                cr * 0.00318811 * 255
    +            b = -276.836 + y * 0.00456621 * 255. + cb * 0.00791071 * 255
    +            r, g, b = r.round(), g.round(), b.round()
    +            computed_bgr[i, j, :] = [b, g, r]
    +    assert_image_almost_equal(out_img, computed_bgr)
    +
    +
    +def test_bgr2hls():
    +    in_img = np.random.rand(10, 10, 3).astype(np.float32)
    +    out_img = mmcv.bgr2hls(in_img)
    +    argmax = in_img.argmax(axis=2)
    +    computed_hls = np.empty_like(in_img)
    +    for i in range(in_img.shape[0]):
    +        for j in range(in_img.shape[1]):
    +            b, g, r = in_img[i, j]
    +            maxc = max(r, g, b)
    +            minc = min(r, g, b)
    +            _l = (minc + maxc) / 2.0
    +            if minc == maxc:
    +                h = 0.0
    +                s = 0.0
    +            if _l <= 0.5:
    +                s = (maxc - minc) / (maxc + minc)
    +            else:
    +                s = (maxc - minc) / (2.0 - maxc - minc)
    +            if argmax[i, j] == 2:
    +                h = 60 * (g - b) / (maxc - minc)
    +            elif argmax[i, j] == 1:
    +                h = 60 * (2.0 + (b - r) / (maxc - minc))
    +            else:
    +                h = 60 * (4.0 + (r - g) / (maxc - minc))
    +            if h < 0:
    +                h += 360
    +            computed_hls[i, j, :] = [h, _l, s]
    +    assert_array_almost_equal(out_img, computed_hls, decimal=2)
    +
    +
    +@pytest.mark.parametrize('src,dst,ref', [('bgr', 'gray', cv2.COLOR_BGR2GRAY),
    +                                         ('rgb', 'gray', cv2.COLOR_RGB2GRAY),
    +                                         ('bgr', 'rgb', cv2.COLOR_BGR2RGB),
    +                                         ('rgb', 'bgr', cv2.COLOR_RGB2BGR),
    +                                         ('bgr', 'hsv', cv2.COLOR_BGR2HSV),
    +                                         ('hsv', 'bgr', cv2.COLOR_HSV2BGR),
    +                                         ('bgr', 'hls', cv2.COLOR_BGR2HLS),
    +                                         ('hls', 'bgr', cv2.COLOR_HLS2BGR)])
    +def test_imconvert(src, dst, ref):
    +    img = np.random.rand(10, 10, 3).astype(np.float32)
    +    assert_array_equal(mmcv.imconvert(img, src, dst), cv2.cvtColor(img, ref))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_geometric.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_geometric.py
    new file mode 100644
    index 000000000..e6409d7e5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_geometric.py
    @@ -0,0 +1,617 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +
    +import cv2
    +import numpy as np
    +import pytest
    +from numpy.testing import assert_array_equal
    +
    +import mmcv
    +
    +
    +class TestGeometric:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        cls.data_dir = osp.join(osp.dirname(__file__), '../data')
    +        # the test img resolution is 400x300
    +        cls.img_path = osp.join(cls.data_dir, 'color.jpg')
    +        cls.img = cv2.imread(cls.img_path)
    +
    +    def test_imresize(self):
    +        resized_img = mmcv.imresize(self.img, (1000, 600))
    +        assert resized_img.shape == (600, 1000, 3)
    +        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
    +                                                      True)
    +        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
    +                and h_scale == 2.0)
    +        resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
    +        resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
    +        assert id(resized_img_dst) == id(resized_img)
    +        assert_array_equal(resized_img_dst,
    +                           mmcv.imresize(self.img, (1000, 600)))
    +        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
    +            resized_img = mmcv.imresize(
    +                self.img, (1000, 600), interpolation=mode)
    +            assert resized_img.shape == (600, 1000, 3)
    +
    +        # test pillow resize
    +        for mode in [
    +                'nearest', 'bilinear', 'bicubic', 'box', 'lanczos', 'hamming'
    +        ]:
    +            resized_img = mmcv.imresize(
    +                self.img, (1000, 600), interpolation=mode, backend='pillow')
    +            assert resized_img.shape == (600, 1000, 3)
    +
    +        # resize backend must be 'cv2' or 'pillow'
    +        with pytest.raises(ValueError):
    +            mmcv.imresize(self.img, (1000, 600), backend='not support')
    +
    +    def test_imresize_to_multiple(self):
    +        # test size and keep_ratio = False
    +        resized_img = mmcv.imresize_to_multiple(
    +            self.img, divisor=16, size=(511, 513), keep_ratio=False)
    +        assert resized_img.shape == (528, 512, 3)
    +        resized_img = mmcv.imresize_to_multiple(
    +            self.img, divisor=(16, 32), size=(511, 513), keep_ratio=False)
    +        assert resized_img.shape == (544, 512, 3)
    +
    +        # test size, keep_ratio = True, and return_scale
    +        resized_img, w_scale, h_scale = mmcv.imresize_to_multiple(
    +            self.img,
    +            divisor=16,
    +            size=(1000, 600),
    +            keep_ratio=True,
    +            return_scale=True)
    +        assert resized_img.shape == (
    +            608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400
    +        resized_img, w_scale, h_scale = mmcv.imresize_to_multiple(
    +            self.img,
    +            divisor=(18, 16),
    +            size=(1000, 600),
    +            keep_ratio=True,
    +            return_scale=True)
    +        assert resized_img.shape == (
    +            608, 810, 3) and h_scale == 608 / 300 and w_scale == 810 / 400
    +
    +        # test scale_factor and return_scale
    +        resized_img, w_scale, h_scale = mmcv.imresize_to_multiple(
    +            self.img, divisor=16, scale_factor=2, return_scale=True)
    +        assert resized_img.shape == (
    +            608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400
    +        resized_img, w_scale, h_scale = mmcv.imresize_to_multiple(
    +            self.img, divisor=16, scale_factor=(2, 3), return_scale=True)
    +        assert resized_img.shape == (
    +            912, 800, 3) and h_scale == 912 / 300 and w_scale == 800 / 400
    +        resized_img, w_scale, h_scale = mmcv.imresize_to_multiple(
    +            self.img, divisor=(18, 16), scale_factor=(2, 3), return_scale=True)
    +        assert resized_img.shape == (
    +            912, 810, 3) and h_scale == 912 / 300 and w_scale == 810 / 400
    +
    +        # one of size and scale_factor should be given
    +        with pytest.raises(ValueError):
    +            mmcv.imresize_to_multiple(
    +                self.img, divisor=16, size=(1000, 600), scale_factor=2)
    +        with pytest.raises(ValueError):
    +            mmcv.imresize_to_multiple(
    +                self.img, divisor=16, size=None, scale_factor=None)
    +
    +    def test_imresize_like(self):
    +        a = np.zeros((100, 200, 3))
    +        resized_img = mmcv.imresize_like(self.img, a)
    +        assert resized_img.shape == (100, 200, 3)
    +
    +    def test_rescale_size(self):
    +        new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True)
    +        assert new_size == (600, 450) and scale_factor == 1.5
    +        new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True)
    +        assert new_size == (374, 280) and scale_factor == 0.934
    +
    +        new_size = mmcv.rescale_size((400, 300), 1.5)
    +        assert new_size == (600, 450)
    +        new_size = mmcv.rescale_size((400, 300), 0.934)
    +        assert new_size == (374, 280)
    +
    +        new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600),
    +                                                   True)
    +        assert new_size == (800, 600) and scale_factor == 2.0
    +        new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200),
    +                                                   True)
    +        assert new_size == (200, 150) and scale_factor == 0.5
    +
    +        new_size = mmcv.rescale_size((400, 300), (1000, 600))
    +        assert new_size == (800, 600)
    +        new_size = mmcv.rescale_size((400, 300), (180, 200))
    +        assert new_size == (200, 150)
    +
    +        with pytest.raises(ValueError):
    +            mmcv.rescale_size((400, 300), -0.5)
    +        with pytest.raises(TypeError):
    +            mmcv.rescale_size()((400, 300), [100, 100])
    +
    +    def test_imrescale(self):
    +        # rescale by a certain factor
    +        resized_img = mmcv.imrescale(self.img, 1.5)
    +        assert resized_img.shape == (450, 600, 3)
    +        resized_img = mmcv.imrescale(self.img, 0.934)
    +        assert resized_img.shape == (280, 374, 3)
    +
    +        # rescale by a certain max_size
    +        # resize (400, 300) to (max_1000, max_600)
    +        resized_img = mmcv.imrescale(self.img, (1000, 600))
    +        assert resized_img.shape == (600, 800, 3)
    +        resized_img, scale = mmcv.imrescale(
    +            self.img, (1000, 600), return_scale=True)
    +        assert resized_img.shape == (600, 800, 3) and scale == 2.0
    +        # resize (400, 300) to (max_200, max_180)
    +        resized_img = mmcv.imrescale(self.img, (180, 200))
    +        assert resized_img.shape == (150, 200, 3)
    +        resized_img, scale = mmcv.imrescale(
    +            self.img, (180, 200), return_scale=True)
    +        assert resized_img.shape == (150, 200, 3) and scale == 0.5
    +
    +        # test exceptions
    +        with pytest.raises(ValueError):
    +            mmcv.imrescale(self.img, -0.5)
    +        with pytest.raises(TypeError):
    +            mmcv.imrescale(self.img, [100, 100])
    +
    +    def test_imflip(self):
    +        # direction must be "horizontal" or "vertical" or "diagonal"
    +        with pytest.raises(AssertionError):
    +            mmcv.imflip(np.random.rand(80, 60, 3), direction='random')
    +
    +        # test horizontal flip (color image)
    +        img = np.random.rand(80, 60, 3)
    +        h, w, c = img.shape
    +        flipped_img = mmcv.imflip(img)
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
    +
    +        # test vertical flip (color image)
    +        flipped_img = mmcv.imflip(img, direction='vertical')
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
    +
    +        # test diagonal flip (color image)
    +        flipped_img = mmcv.imflip(img, direction='diagonal')
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k]
    +
    +        # test horizontal flip (grayscale image)
    +        img = np.random.rand(80, 60)
    +        h, w = img.shape
    +        flipped_img = mmcv.imflip(img)
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[i, w - 1 - j]
    +
    +        # test vertical flip (grayscale image)
    +        flipped_img = mmcv.imflip(img, direction='vertical')
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[h - 1 - i, j]
    +
    +        # test diagonal flip (grayscale image)
    +        flipped_img = mmcv.imflip(img, direction='diagonal')
    +        assert flipped_img.shape == img.shape
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j]
    +
    +    def test_imflip_(self):
    +        # direction must be "horizontal" or "vertical" or "diagonal"
    +        with pytest.raises(AssertionError):
    +            mmcv.imflip_(np.random.rand(80, 60, 3), direction='random')
    +
    +        # test horizontal flip (color image)
    +        img = np.random.rand(80, 60, 3)
    +        h, w, c = img.shape
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip)
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[i, w - 1 - j, k]
    +                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]
    +
    +        # test vertical flip (color image)
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[h - 1 - i, j, k]
    +                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]
    +
    +        # test diagonal flip (color image)
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal')
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                for k in range(c):
    +                    assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k]
    +                    assert flipped_img[i, j, k] == img_for_flip[i, j, k]
    +
    +        # test horizontal flip (grayscale image)
    +        img = np.random.rand(80, 60)
    +        h, w = img.shape
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip)
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[i, w - 1 - j]
    +                assert flipped_img[i, j] == img_for_flip[i, j]
    +
    +        # test vertical flip (grayscale image)
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip, direction='vertical')
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[h - 1 - i, j]
    +                assert flipped_img[i, j] == img_for_flip[i, j]
    +
    +        # test diagonal flip (grayscale image)
    +        img_for_flip = img.copy()
    +        flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal')
    +        assert flipped_img.shape == img.shape
    +        assert flipped_img.shape == img_for_flip.shape
    +        assert id(flipped_img) == id(img_for_flip)
    +        for i in range(h):
    +            for j in range(w):
    +                assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j]
    +                assert flipped_img[i, j] == img_for_flip[i, j]
    +
    +    def test_imcrop(self):
    +        # yapf: disable
    +        bboxes = np.array([[100, 100, 199, 199],  # center
    +                           [0, 0, 150, 100],  # left-top corner
    +                           [250, 200, 399, 299],  # right-bottom corner
    +                           [0, 100, 399, 199],  # wide
    +                           [150, 0, 299, 299]])  # tall
    +        # yapf: enable
    +
    +        # crop one bbox
    +        patch = mmcv.imcrop(self.img, bboxes[0, :])
    +        patches = mmcv.imcrop(self.img, bboxes[[0], :])
    +        assert patch.shape == (100, 100, 3)
    +        patch_path = osp.join(self.data_dir, 'patches')
    +        ref_patch = np.load(patch_path + '/0.npy')
    +        assert_array_equal(patch, ref_patch)
    +        assert isinstance(patches, list) and len(patches) == 1
    +        assert_array_equal(patches[0], ref_patch)
    +
    +        # crop with no scaling and padding
    +        patches = mmcv.imcrop(self.img, bboxes)
    +        assert len(patches) == bboxes.shape[0]
    +        for i in range(len(patches)):
    +            ref_patch = np.load(patch_path + f'/{i}.npy')
    +            assert_array_equal(patches[i], ref_patch)
    +
    +        # crop with scaling and no padding
    +        patches = mmcv.imcrop(self.img, bboxes, 1.2)
    +        for i in range(len(patches)):
    +            ref_patch = np.load(patch_path + f'/scale_{i}.npy')
    +            assert_array_equal(patches[i], ref_patch)
    +
    +        # crop with scaling and padding
    +        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0])
    +        for i in range(len(patches)):
    +            ref_patch = np.load(patch_path + f'/pad_{i}.npy')
    +            assert_array_equal(patches[i], ref_patch)
    +        patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0)
    +        for i in range(len(patches)):
    +            ref_patch = np.load(patch_path + f'/pad0_{i}.npy')
    +            assert_array_equal(patches[i], ref_patch)
    +
    +    def test_impad(self):
    +        # grayscale image
    +        img = np.random.rand(10, 10).astype(np.float32)
    +        padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
    +        assert_array_equal(img, padded_img[:10, :10])
    +        assert_array_equal(
    +            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
    +        assert_array_equal(
    +            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])
    +
    +        # RGB image
    +        img = np.random.rand(10, 10, 3).astype(np.float32)
    +        padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0)
    +        assert_array_equal(img, padded_img[:10, :10, :])
    +        assert_array_equal(
    +            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
    +        assert_array_equal(
    +            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
    +
    +        # RGB image with different values for three channels.
    +        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
    +        padded_img = mmcv.impad(
    +            img, padding=(0, 0, 2, 5), pad_val=(100, 110, 120))
    +        assert_array_equal(img, padded_img[:10, :10, :])
    +        assert_array_equal(
    +            np.array([100, 110, 120], dtype='uint8') * np.ones(
    +                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
    +        assert_array_equal(
    +            np.array([100, 110, 120], dtype='uint8') * np.ones(
    +                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
    +
    +        # Pad the grayscale image to shape (15, 12)
    +        img = np.random.rand(10, 10).astype(np.float32)
    +        padded_img = mmcv.impad(img, shape=(15, 12))
    +        assert_array_equal(img, padded_img[:10, :10])
    +        assert_array_equal(
    +            np.zeros((5, 12), dtype='float32'), padded_img[10:, :])
    +        assert_array_equal(
    +            np.zeros((15, 2), dtype='float32'), padded_img[:, 10:])
    +
    +        # Pad the RGB image to shape (15, 12)
    +        img = np.random.rand(10, 10, 3).astype(np.float32)
    +        padded_img = mmcv.impad(img, shape=(15, 12))
    +        assert_array_equal(img, padded_img[:10, :10, :])
    +        assert_array_equal(
    +            np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :])
    +        assert_array_equal(
    +            np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :])
    +
    +        # Pad the RGB image to shape (15, 12) with different values for
    +        # three channels.
    +        img = np.random.randint(256, size=(10, 10, 3)).astype('uint8')
    +        padded_img = mmcv.impad(img, shape=(15, 12), pad_val=(100, 110, 120))
    +        assert_array_equal(img, padded_img[:10, :10, :])
    +        assert_array_equal(
    +            np.array([100, 110, 120], dtype='uint8') * np.ones(
    +                (5, 12, 3), dtype='uint8'), padded_img[10:, :, :])
    +        assert_array_equal(
    +            np.array([100, 110, 120], dtype='uint8') * np.ones(
    +                (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :])
    +
    +        # RGB image with padding=[5, 2]
    +        img = np.random.rand(10, 10, 3).astype(np.float32)
    +        padded_img = mmcv.impad(img, padding=(5, 2), pad_val=0)
    +
    +        assert padded_img.shape == (14, 20, 3)
    +        assert_array_equal(img, padded_img[2:12, 5:15, :])
    +        assert_array_equal(
    +            np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, :5, :])
    +        assert_array_equal(
    +            np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, :5, :])
    +        assert_array_equal(
    +            np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, 15:, :])
    +        assert_array_equal(
    +            np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, 15:, :])
    +
    +        # RGB image with type(pad_val) = tuple
    +        pad_val = (0, 1, 2)
    +        img = np.random.rand(10, 10, 3).astype(np.float32)
    +        padded_img = mmcv.impad(img, padding=(0, 0, 5, 2), pad_val=pad_val)
    +
    +        assert padded_img.shape == (12, 15, 3)
    +        assert_array_equal(img, padded_img[:10, :10, :])
    +        assert_array_equal(pad_val[0] * np.ones((2, 15, 1), dtype='float32'),
    +                           padded_img[10:, :, 0:1])
    +        assert_array_equal(pad_val[1] * np.ones((2, 15, 1), dtype='float32'),
    +                           padded_img[10:, :, 1:2])
    +        assert_array_equal(pad_val[2] * np.ones((2, 15, 1), dtype='float32'),
    +                           padded_img[10:, :, 2:3])
    +
    +        assert_array_equal(pad_val[0] * np.ones((12, 5, 1), dtype='float32'),
    +                           padded_img[:, 10:, 0:1])
    +        assert_array_equal(pad_val[1] * np.ones((12, 5, 1), dtype='float32'),
    +                           padded_img[:, 10:, 1:2])
    +        assert_array_equal(pad_val[2] * np.ones((12, 5, 1), dtype='float32'),
    +                           padded_img[:, 10:, 2:3])
    +
    +        # test different padding mode with channel number = 3
    +        for mode in ['constant', 'edge', 'reflect', 'symmetric']:
    +            img = np.random.rand(10, 10, 3).astype(np.float32)
    +            padded_img = mmcv.impad(
    +                img, padding=(0, 0, 5, 2), pad_val=pad_val, padding_mode=mode)
    +            assert padded_img.shape == (12, 15, 3)
    +
    +        # test different padding mode with channel number = 1
    +        for mode in ['constant', 'edge', 'reflect', 'symmetric']:
    +            img = np.random.rand(10, 10).astype(np.float32)
    +            padded_img = mmcv.impad(
    +                img, padding=(0, 0, 5, 2), pad_val=0, padding_mode=mode)
    +            assert padded_img.shape == (12, 15)
    +
    +        # Padding must be a int or a 2, or 4 element tuple.
    +        with pytest.raises(ValueError):
    +            mmcv.impad(img, padding=(1, 1, 1))
    +
    +        # pad_val must be a int or a tuple
    +        with pytest.raises(TypeError):
    +            mmcv.impad(img, padding=(1, 1, 1, 1), pad_val='wrong')
    +
    +        # When pad_val is a tuple,
    +        # len(pad_val) should be equal to img.shape[-1]
    +        img = np.random.rand(10, 10, 3).astype(np.float32)
    +        with pytest.raises(AssertionError):
    +            mmcv.impad(img, padding=3, pad_val=(100, 200))
    +
    +        with pytest.raises(AssertionError):
    +            mmcv.impad(img, padding=2, pad_val=0, padding_mode='unknown')
    +
    +        with pytest.raises(AssertionError):
    +            mmcv.impad(img, shape=(12, 15), padding=(0, 0, 5, 2))
    +
    +        # Pad shape smaller than image shape
    +        padded_img = mmcv.impad(img, shape=(8, 8))
    +        assert padded_img.shape == (10, 10, 3)
    +
    +    def test_impad_to_multiple(self):
    +        img = np.random.rand(11, 14, 3).astype(np.float32)
    +        padded_img = mmcv.impad_to_multiple(img, 4)
    +        assert padded_img.shape == (12, 16, 3)
    +        img = np.random.rand(20, 12).astype(np.float32)
    +        padded_img = mmcv.impad_to_multiple(img, 5)
    +        assert padded_img.shape == (20, 15)
    +        img = np.random.rand(20, 12).astype(np.float32)
    +        padded_img = mmcv.impad_to_multiple(img, 2)
    +        assert padded_img.shape == (20, 12)
    +
    +    def test_cutout(self):
    +        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
    +
    +        # shape must be int or tuple
    +        with pytest.raises(AssertionError):
    +            mmcv.cutout(img, 2.5)
    +        # pad_val must be int or float or tuple with the same length
    +        # of img channels
    +        with pytest.raises(AssertionError):
    +            mmcv.cutout(img, 1, (1, 2, 3))
    +        with pytest.raises(TypeError):
    +            mmcv.cutout(img, 1, None)
    +
    +        # test cutout the whole img
    +        assert_array_equal(mmcv.cutout(img, 6), np.zeros_like(img))
    +        # test not cutout
    +        assert_array_equal(mmcv.cutout(img, 0), img)
    +        # test cutout when shape is int
    +        np.random.seed(0)
    +        img_cutout = np.array([[1, 2, 3], [4, 0, 6], [7, 8,
    +                                                      9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.cutout(img, 1), img_cutout)
    +        img_cutout = np.array([[1, 2, 3], [4, 10, 6], [7, 8,
    +                                                       9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.cutout(img, 1, pad_val=10), img_cutout)
    +        # test cutout when shape is tuple
    +        np.random.seed(0)
    +        img_cutout = np.array([[1, 2, 3], [0, 0, 6], [7, 8,
    +                                                      9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.cutout(img, (1, 2)), img_cutout)
    +        img_cutout = np.array([[1, 2, 3], [10, 10, 6], [7, 8,
    +                                                        9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.cutout(img, (1, 2), pad_val=10), img_cutout)
    +
    +    def test_imrotate(self):
    +        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.imrotate(img, 0), img)
    +        img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]])
    +        assert_array_equal(mmcv.imrotate(img, 90), img_r)
    +        img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]])
    +        assert_array_equal(mmcv.imrotate(img, -90), img_r)
    +
    +        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8)
    +        img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]])
    +        assert_array_equal(mmcv.imrotate(img, 90), img_r)
    +        img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]])
    +        assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r)
    +        img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]])
    +        assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r)
    +        img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]])
    +        assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r)
    +        img_r = np.array([[6, 6, 2, 2], [7, 7, 3, 3]])
    +        assert_array_equal(
    +            mmcv.imrotate(img, 90, border_mode='replicate'), img_r)
    +
    +        with pytest.raises(ValueError):
    +            mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True)
    +
    +    def test_imshear(self):
    +        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
    +        assert_array_equal(mmcv.imshear(img, 0), img)
    +        # magnitude=1, horizontal
    +        img_sheared = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 7]],
    +                               dtype=np.uint8)
    +        assert_array_equal(mmcv.imshear(img, 1), img_sheared)
    +        # magnitude=-1, vertical
    +        img_sheared = np.array([[1, 5, 9], [4, 8, 0], [7, 0, 0]],
    +                               dtype=np.uint8)
    +        assert_array_equal(mmcv.imshear(img, -1, 'vertical'), img_sheared)
    +        # magnitude=1, vertical, borderValue=100
    +        borderValue = 100
    +        img_sheared = np.array(
    +            [[1, borderValue, borderValue], [4, 2, borderValue], [7, 5, 3]],
    +            dtype=np.uint8)
    +        assert_array_equal(
    +            mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared)
    +        # magnitude=1, vertical, borderValue=100, img shape (h,w,3)
    +        img = np.stack([img, img, img], axis=-1)
    +        img_sheared = np.stack([img_sheared, img_sheared, img_sheared],
    +                               axis=-1)
    +        assert_array_equal(
    +            mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared)
    +        # test tuple format of borderValue
    +        assert_array_equal(
    +            mmcv.imshear(img, 1, 'vertical',
    +                         (borderValue, borderValue, borderValue)), img_sheared)
    +
    +        # test invalid length of borderValue
    +        with pytest.raises(AssertionError):
    +            mmcv.imshear(img, 0.5, 'horizontal', (borderValue, ))
    +
    +        # test invalid type of borderValue
    +        with pytest.raises(ValueError):
    +            mmcv.imshear(img, 0.5, 'horizontal', [borderValue])
    +
    +        # test invalid value of direction
    +        with pytest.raises(AssertionError):
    +            mmcv.imshear(img, 0.5, 'diagonal')
    +
    +    def test_imtranslate(self):
    +        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)
    +        assert_array_equal(mmcv.imtranslate(img, 0), img)
    +        # offset=1, horizontal
    +        img_translated = np.array([[128, 1, 2], [128, 4, 5], [128, 7, 8]],
    +                                  dtype=np.uint8)
    +        assert_array_equal(
    +            mmcv.imtranslate(img, 1, border_value=128), img_translated)
    +        # offset=-1, vertical
    +        img_translated = np.array([[4, 5, 6], [7, 8, 9], [0, 0, 0]],
    +                                  dtype=np.uint8)
    +        assert_array_equal(
    +            mmcv.imtranslate(img, -1, 'vertical'), img_translated)
    +        # offset=-2, horizontal
    +        img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        img_translated = [[3, 4, 128, 128], [7, 8, 128, 128]]
    +        img_translated = np.stack(
    +            [img_translated, img_translated, img_translated], axis=-1)
    +        assert_array_equal(
    +            mmcv.imtranslate(img, -2, border_value=128), img_translated)
    +        # offset=2, vertical
    +        border_value = (110, 120, 130)
    +        img_translated = np.stack([
    +            np.ones((2, 4)) * border_value[0],
    +            np.ones((2, 4)) * border_value[1],
    +            np.ones((2, 4)) * border_value[2]
    +        ],
    +                                  axis=-1).astype(np.uint8)
    +        assert_array_equal(
    +            mmcv.imtranslate(img, 2, 'vertical', border_value), img_translated)
    +        # test invalid number elements in border_value
    +        with pytest.raises(AssertionError):
    +            mmcv.imtranslate(img, 1, border_value=(1, ))
    +        # test invalid type of border_value
    +        with pytest.raises(ValueError):
    +            mmcv.imtranslate(img, 1, border_value=[1, 2, 3])
    +        # test invalid value of direction
    +        with pytest.raises(AssertionError):
    +            mmcv.imtranslate(img, 1, 'diagonal')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_image_misc.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_image_misc.py
    new file mode 100644
    index 000000000..fc71727ac
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_image_misc.py
    @@ -0,0 +1,72 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +from numpy.testing import assert_array_equal
    +
    +import mmcv
    +
    +try:
    +    import torch
    +except ImportError:
    +    torch = None
    +
    +
    +@pytest.mark.skipif(torch is None, reason='requires torch library')
    +def test_tensor2imgs():
    +    # test tensor obj
    +    with pytest.raises(AssertionError):
    +        tensor = np.random.rand(2, 3, 3)
    +        mmcv.tensor2imgs(tensor)
    +
    +    # test tensor ndim
    +    with pytest.raises(AssertionError):
    +        tensor = torch.randn(2, 3, 3)
    +        mmcv.tensor2imgs(tensor)
    +
    +    # test tensor dim-1
    +    with pytest.raises(AssertionError):
    +        tensor = torch.randn(2, 4, 3, 3)
    +        mmcv.tensor2imgs(tensor)
    +
    +    # test mean length
    +    with pytest.raises(AssertionError):
    +        tensor = torch.randn(2, 3, 5, 5)
    +        mmcv.tensor2imgs(tensor, mean=(1, ))
    +        tensor = torch.randn(2, 1, 5, 5)
    +        mmcv.tensor2imgs(tensor, mean=(0, 0, 0))
    +
    +    # test std length
    +    with pytest.raises(AssertionError):
    +        tensor = torch.randn(2, 3, 5, 5)
    +        mmcv.tensor2imgs(tensor, std=(1, ))
    +        tensor = torch.randn(2, 1, 5, 5)
    +        mmcv.tensor2imgs(tensor, std=(1, 1, 1))
    +
    +    # test to_rgb
    +    with pytest.raises(AssertionError):
    +        tensor = torch.randn(2, 1, 5, 5)
    +        mmcv.tensor2imgs(tensor, mean=(0, ), std=(1, ), to_rgb=True)
    +
    +    # test rgb=True
    +    tensor = torch.randn(2, 3, 5, 5)
    +    gts = [
    +        t.cpu().numpy().transpose(1, 2, 0).astype(np.uint8)
    +        for t in tensor.flip(1)
    +    ]
    +    outputs = mmcv.tensor2imgs(tensor, to_rgb=True)
    +    for gt, output in zip(gts, outputs):
    +        assert_array_equal(gt, output)
    +
    +    # test rgb=False
    +    tensor = torch.randn(2, 3, 5, 5)
    +    gts = [t.cpu().numpy().transpose(1, 2, 0).astype(np.uint8) for t in tensor]
    +    outputs = mmcv.tensor2imgs(tensor, to_rgb=False)
    +    for gt, output in zip(gts, outputs):
    +        assert_array_equal(gt, output)
    +
    +    # test tensor channel 1 and rgb=False
    +    tensor = torch.randn(2, 1, 5, 5)
    +    gts = [t.squeeze(0).cpu().numpy().astype(np.uint8) for t in tensor]
    +    outputs = mmcv.tensor2imgs(tensor, to_rgb=False)
    +    for gt, output in zip(gts, outputs):
    +        assert_array_equal(gt, output)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_io.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_io.py
    new file mode 100644
    index 000000000..7c1b4dd68
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_io.py
    @@ -0,0 +1,389 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import sys
    +import tempfile
    +from pathlib import Path
    +from unittest.mock import MagicMock, patch
    +
    +import cv2
    +import numpy as np
    +import pytest
    +import torch
    +from numpy.testing import assert_allclose, assert_array_equal
    +
    +import mmcv
    +from mmcv.fileio.file_client import HTTPBackend, PetrelBackend
    +
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not necessary in parrots test', allow_module_level=True)
    +
    +
    +class TestIO:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        cls.data_dir = osp.join(osp.dirname(__file__), '../data')
    +        # the test img resolution is 400x300
    +        cls.img_path = osp.join(cls.data_dir, 'color.jpg')
    +        cls.img_path_obj = Path(cls.img_path)
    +        cls.gray_img_path = osp.join(cls.data_dir, 'grayscale.jpg')
    +        cls.gray_img_path_obj = Path(cls.gray_img_path)
    +        cls.gray_img_dim3_path = osp.join(cls.data_dir, 'grayscale_dim3.jpg')
    +        cls.gray_alpha_img_path = osp.join(cls.data_dir, 'gray_alpha.png')
    +        cls.palette_img_path = osp.join(cls.data_dir, 'palette.gif')
    +        cls.exif_img_path = osp.join(cls.data_dir, 'color_exif.jpg')
    +        cls.img = cv2.imread(cls.img_path)
    +        cls.tiff_path = osp.join(cls.data_dir, 'uint16-5channel.tif')
    +        # petrel s3 path
    +        cls.s3_path = 's3://path/of/your/file.jpg'
    +        # http path
    +        cls.http_path = 'http://path/of/your/file.jpg'
    +        # add mock package
    +        sys.modules['petrel_client'] = MagicMock()
    +        sys.modules['petrel_client.client'] = MagicMock()
    +
    +    @classmethod
    +    def teardown_class(cls):
    +        # clean instances avoid to influence other unittest
    +        mmcv.FileClient._instances = {}
    +
    +    def assert_img_equal(self, img, ref_img, ratio_thr=0.999):
    +        assert img.shape == ref_img.shape
    +        assert img.dtype == ref_img.dtype
    +        area = ref_img.shape[0] * ref_img.shape[1]
    +        diff = np.abs(img.astype('int32') - ref_img.astype('int32'))
    +        assert np.sum(diff <= 1) / float(area) > ratio_thr
    +
    +    def test_imread(self):
    +        # backend cv2
    +        mmcv.use_backend('cv2')
    +
    +        # HardDiskBackend
    +        img_cv2_color_bgr = mmcv.imread(self.img_path)
    +        assert img_cv2_color_bgr.shape == (300, 400, 3)
    +        img_cv2_color_rgb = mmcv.imread(self.img_path, channel_order='rgb')
    +        assert img_cv2_color_rgb.shape == (300, 400, 3)
    +        assert_array_equal(img_cv2_color_rgb[:, :, ::-1], img_cv2_color_bgr)
    +        img_cv2_grayscale1 = mmcv.imread(self.img_path, 'grayscale')
    +        assert img_cv2_grayscale1.shape == (300, 400)
    +        img_cv2_grayscale2 = mmcv.imread(self.gray_img_path)
    +        assert img_cv2_grayscale2.shape == (300, 400, 3)
    +        img_cv2_unchanged = mmcv.imread(self.gray_img_path, 'unchanged')
    +        assert img_cv2_unchanged.shape == (300, 400)
    +        img_cv2_unchanged = mmcv.imread(img_cv2_unchanged)
    +        assert_array_equal(img_cv2_unchanged, mmcv.imread(img_cv2_unchanged))
    +
    +        img_cv2_color_bgr = mmcv.imread(self.img_path_obj)
    +        assert img_cv2_color_bgr.shape == (300, 400, 3)
    +        img_cv2_color_rgb = mmcv.imread(self.img_path_obj, channel_order='rgb')
    +        assert img_cv2_color_rgb.shape == (300, 400, 3)
    +        assert_array_equal(img_cv2_color_rgb[:, :, ::-1], img_cv2_color_bgr)
    +        img_cv2_grayscale1 = mmcv.imread(self.img_path_obj, 'grayscale')
    +        assert img_cv2_grayscale1.shape == (300, 400)
    +        img_cv2_grayscale2 = mmcv.imread(self.gray_img_path_obj)
    +        assert img_cv2_grayscale2.shape == (300, 400, 3)
    +        img_cv2_unchanged = mmcv.imread(self.gray_img_path_obj, 'unchanged')
    +        assert img_cv2_unchanged.shape == (300, 400)
    +        with pytest.raises(TypeError):
    +            mmcv.imread(1)
    +
    +        # PetrelBackend
    +        img_cv2_color_bgr = mmcv.imread(self.img_path)
    +        with patch.object(
    +                PetrelBackend, 'get',
    +                return_value=img_cv2_color_bgr) as mock_method:
    +            img_cv2_color_bgr_petrel = mmcv.imread(self.s3_path, backend='cv2')
    +            img_cv2_color_bgr_petrel_with_args = mmcv.imread(
    +                self.s3_path,
    +                backend='cv2',
    +                file_client_args={'backend': 'petrel'})
    +            mock_method.assert_called()
    +            assert_array_equal(img_cv2_color_bgr_petrel,
    +                               img_cv2_color_bgr_petrel_with_args)
    +
    +        # HTTPBackend
    +        img_cv2_color_bgr = mmcv.imread(self.img_path)
    +        with patch.object(
    +                HTTPBackend, 'get',
    +                return_value=img_cv2_color_bgr) as mock_method:
    +            img_cv2_color_bgr_http = mmcv.imread(self.http_path, backend='cv2')
    +            img_cv2_color_bgr_http_with_args = mmcv.imread(
    +                self.http_path,
    +                backend='cv2',
    +                file_client_args={'backend': 'http'})
    +            mock_method.assert_called()
    +            assert_array_equal(img_cv2_color_bgr_http,
    +                               img_cv2_color_bgr_http_with_args)
    +
    +        with pytest.raises(FileNotFoundError):
    +            mmcv.imread('/not/exists/' + self.img_path)
    +
    +        # test arg backend pillow
    +        img_pil_gray_alpha = mmcv.imread(
    +            self.gray_alpha_img_path, 'grayscale', backend='pillow')
    +        assert img_pil_gray_alpha.shape == (400, 500)
    +        mean = img_pil_gray_alpha[300:, 400:].mean()
    +        assert_allclose(img_pil_gray_alpha[300:, 400:] - mean, 0)
    +        img_pil_gray_alpha = mmcv.imread(
    +            self.gray_alpha_img_path, backend='pillow')
    +        mean = img_pil_gray_alpha[300:, 400:].mean(axis=(0, 1))
    +        assert_allclose(img_pil_gray_alpha[300:, 400:] - mean, 0)
    +        assert img_pil_gray_alpha.shape == (400, 500, 3)
    +        img_pil_gray_alpha = mmcv.imread(
    +            self.gray_alpha_img_path, 'unchanged', backend='pillow')
    +        assert img_pil_gray_alpha.shape == (400, 500, 2)
    +        img_pil_palette = mmcv.imread(
    +            self.palette_img_path, 'grayscale', backend='pillow')
    +        assert img_pil_palette.shape == (300, 400)
    +        img_pil_palette = mmcv.imread(self.palette_img_path, backend='pillow')
    +        assert img_pil_palette.shape == (300, 400, 3)
    +        img_pil_palette = mmcv.imread(
    +            self.palette_img_path, 'unchanged', backend='pillow')
    +        assert img_pil_palette.shape == (300, 400)
    +
    +        # backend pillow
    +        mmcv.use_backend('pillow')
    +        img_pil_grayscale1 = mmcv.imread(self.img_path, 'grayscale')
    +        assert img_pil_grayscale1.shape == (300, 400)
    +        img_pil_gray_alpha = mmcv.imread(self.gray_alpha_img_path, 'grayscale')
    +        assert img_pil_gray_alpha.shape == (400, 500)
    +        mean = img_pil_gray_alpha[300:, 400:].mean()
    +        assert_allclose(img_pil_gray_alpha[300:, 400:] - mean, 0)
    +        img_pil_gray_alpha = mmcv.imread(self.gray_alpha_img_path)
    +        mean = img_pil_gray_alpha[300:, 400:].mean(axis=(0, 1))
    +        assert_allclose(img_pil_gray_alpha[300:, 400:] - mean, 0)
    +        assert img_pil_gray_alpha.shape == (400, 500, 3)
    +        img_pil_gray_alpha = mmcv.imread(self.gray_alpha_img_path, 'unchanged')
    +        assert img_pil_gray_alpha.shape == (400, 500, 2)
    +        img_pil_palette = mmcv.imread(self.palette_img_path, 'grayscale')
    +        assert img_pil_palette.shape == (300, 400)
    +        img_pil_palette = mmcv.imread(self.palette_img_path)
    +        assert img_pil_palette.shape == (300, 400, 3)
    +        img_pil_palette = mmcv.imread(self.palette_img_path, 'unchanged')
    +        assert img_pil_palette.shape == (300, 400)
    +        img_pil_grayscale2 = mmcv.imread(self.gray_img_path)
    +        assert img_pil_grayscale2.shape == (300, 400, 3)
    +        img_pil_unchanged = mmcv.imread(self.gray_img_path, 'unchanged')
    +        assert img_pil_unchanged.shape == (300, 400)
    +        img_pil_unchanged = mmcv.imread(img_pil_unchanged)
    +        assert_array_equal(img_pil_unchanged, mmcv.imread(img_pil_unchanged))
    +
    +        img_pil_color_bgr = mmcv.imread(self.img_path_obj)
    +        assert img_pil_color_bgr.shape == (300, 400, 3)
    +        img_pil_color_rgb = mmcv.imread(self.img_path_obj, channel_order='rgb')
    +        assert img_pil_color_rgb.shape == (300, 400, 3)
    +        assert (img_pil_color_rgb == img_cv2_color_rgb).sum() / float(
    +            img_cv2_color_rgb.size) > 0.5
    +        assert_array_equal(img_pil_color_rgb[:, :, ::-1], img_pil_color_bgr)
    +        img_pil_grayscale1 = mmcv.imread(self.img_path_obj, 'grayscale')
    +        assert img_pil_grayscale1.shape == (300, 400)
    +        img_pil_grayscale2 = mmcv.imread(self.gray_img_path_obj)
    +        assert img_pil_grayscale2.shape == (300, 400, 3)
    +        img_pil_unchanged = mmcv.imread(self.gray_img_path_obj, 'unchanged')
    +        assert img_pil_unchanged.shape == (300, 400)
    +        with pytest.raises(TypeError):
    +            mmcv.imread(1)
    +
    +        # backend turbojpeg
    +        mmcv.use_backend('turbojpeg')
    +
    +        img_turbojpeg_color_bgr = mmcv.imread(self.img_path)
    +        assert img_turbojpeg_color_bgr.shape == (300, 400, 3)
    +        assert_array_equal(img_turbojpeg_color_bgr, img_cv2_color_bgr)
    +
    +        img_turbojpeg_color_rgb = mmcv.imread(
    +            self.img_path, channel_order='rgb')
    +        assert img_turbojpeg_color_rgb.shape == (300, 400, 3)
    +        assert_array_equal(img_turbojpeg_color_rgb, img_cv2_color_rgb)
    +
    +        with pytest.raises(ValueError):
    +            mmcv.imread(self.img_path, channel_order='unsupport_order')
    +
    +        img_turbojpeg_grayscale1 = mmcv.imread(self.img_path, flag='grayscale')
    +        assert img_turbojpeg_grayscale1.shape == (300, 400)
    +        assert_array_equal(img_turbojpeg_grayscale1, img_cv2_grayscale1)
    +
    +        img_turbojpeg_grayscale2 = mmcv.imread(self.gray_img_path)
    +        assert img_turbojpeg_grayscale2.shape == (300, 400, 3)
    +        assert_array_equal(img_turbojpeg_grayscale2, img_cv2_grayscale2)
    +
    +        img_turbojpeg_grayscale2 = mmcv.imread(img_turbojpeg_grayscale2)
    +        assert_array_equal(img_turbojpeg_grayscale2,
    +                           mmcv.imread(img_turbojpeg_grayscale2))
    +
    +        with pytest.raises(ValueError):
    +            mmcv.imread(self.gray_img_path, 'unchanged')
    +
    +        with pytest.raises(TypeError):
    +            mmcv.imread(1)
    +
    +        with pytest.raises(AssertionError):
    +            mmcv.use_backend('unsupport_backend')
    +
    +        with pytest.raises(ValueError):
    +            mmcv.imread(self.img_path, 'unsupported_backend')
    +
    +        # backend tifffile, multi channel tiff file(> 4 channels).
    +        mmcv.use_backend('tifffile')
    +        img_tifffile = mmcv.imread(self.tiff_path)
    +        assert img_tifffile.shape == (200, 150, 5)
    +
    +        mmcv.use_backend('cv2')
    +
    +        # consistent exif behaviour
    +        img_cv2_exif = mmcv.imread(self.exif_img_path)
    +        img_pil_exif = mmcv.imread(self.exif_img_path, backend='pillow')
    +        assert img_cv2_exif.shape == (400, 300, 3)
    +        assert img_pil_exif.shape == (400, 300, 3)
    +        img_cv2_exif_unchanged = mmcv.imread(
    +            self.exif_img_path, flag='unchanged')
    +        img_pil_exif_unchanged = mmcv.imread(
    +            self.exif_img_path, backend='pillow', flag='unchanged')
    +        assert img_cv2_exif_unchanged.shape == (300, 400, 3)
    +        assert img_pil_exif_unchanged.shape == (300, 400, 3)
    +        img_cv2_color_ignore_exif = mmcv.imread(
    +            self.exif_img_path, flag='color_ignore_orientation')
    +        img_pil_color_ignore_exif = mmcv.imread(
    +            self.exif_img_path,
    +            backend='pillow',
    +            flag='color_ignore_orientation')
    +        assert img_cv2_color_ignore_exif.shape == (300, 400, 3)
    +        assert img_pil_color_ignore_exif.shape == (300, 400, 3)
    +        img_cv2_grayscale_ignore_exif = mmcv.imread(
    +            self.exif_img_path, flag='grayscale_ignore_orientation')
    +        img_pil_grayscale_ignore_exif = mmcv.imread(
    +            self.exif_img_path,
    +            backend='pillow',
    +            flag='grayscale_ignore_orientation')
    +        assert img_cv2_grayscale_ignore_exif.shape == (300, 400)
    +        assert img_pil_grayscale_ignore_exif.shape == (300, 400)
    +
    +    def test_imfrombytes(self):
    +        # backend cv2, channel order: bgr
    +        mmcv.use_backend('cv2')
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_cv2 = mmcv.imfrombytes(img_bytes)
    +        assert img_cv2.shape == (300, 400, 3)
    +
    +        # backend cv2, channel order: rgb
    +        mmcv.use_backend('cv2')
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_rgb_cv2 = mmcv.imfrombytes(img_bytes, channel_order='rgb')
    +        assert img_rgb_cv2.shape == (300, 400, 3)
    +        assert_array_equal(img_rgb_cv2, img_cv2[:, :, ::-1])
    +
    +        # backend cv2, grayscale, decode as 3 channels
    +        with open(self.gray_img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_rgb_cv2 = mmcv.imfrombytes(img_bytes)
    +        assert gray_img_rgb_cv2.shape == (300, 400, 3)
    +
    +        # backend cv2, grayscale
    +        with open(self.gray_img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_cv2 = mmcv.imfrombytes(img_bytes, flag='grayscale')
    +        assert gray_img_cv2.shape == (300, 400)
    +
    +        # backend cv2, grayscale dim3
    +        with open(self.gray_img_dim3_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_dim3_cv2 = mmcv.imfrombytes(img_bytes, flag='grayscale')
    +        assert gray_img_dim3_cv2.shape == (300, 400)
    +
    +        # arg backend pillow, channel order: bgr
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_pillow = mmcv.imfrombytes(img_bytes, backend='pillow')
    +        assert img_pillow.shape == (300, 400, 3)
    +        # Pillow and opencv decoding may not be the same
    +        assert (img_cv2 == img_pillow).sum() / float(img_cv2.size) > 0.5
    +
    +        # backend pillow, channel order: bgr
    +        mmcv.use_backend('pillow')
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_pillow = mmcv.imfrombytes(img_bytes)
    +        assert img_pillow.shape == (300, 400, 3)
    +        # Pillow and opencv decoding may not be the same
    +        assert (img_cv2 == img_pillow).sum() / float(img_cv2.size) > 0.5
    +
    +        # backend turbojpeg, channel order: bgr
    +        mmcv.use_backend('turbojpeg')
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_turbojpeg = mmcv.imfrombytes(img_bytes)
    +        assert img_turbojpeg.shape == (300, 400, 3)
    +        assert_array_equal(img_cv2, img_turbojpeg)
    +
    +        # backend turbojpeg, channel order: rgb
    +        with open(self.img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        img_rgb_turbojpeg = mmcv.imfrombytes(img_bytes, channel_order='rgb')
    +        assert img_rgb_turbojpeg.shape == (300, 400, 3)
    +        assert_array_equal(img_rgb_turbojpeg, img_cv2[:, :, ::-1])
    +
    +        # backend turbojpeg, grayscale, decode as 3 channels
    +        with open(self.gray_img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_turbojpeg = mmcv.imfrombytes(img_bytes)
    +        assert gray_img_turbojpeg.shape == (300, 400, 3)
    +        assert_array_equal(gray_img_rgb_cv2, gray_img_turbojpeg)
    +
    +        # backend turbojpeg, grayscale
    +        with open(self.gray_img_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_turbojpeg = mmcv.imfrombytes(img_bytes, flag='grayscale')
    +        assert gray_img_turbojpeg.shape == (300, 400)
    +        assert_array_equal(gray_img_cv2, gray_img_turbojpeg)
    +
    +        # backend turbojpeg, grayscale dim3
    +        with open(self.gray_img_dim3_path, 'rb') as f:
    +            img_bytes = f.read()
    +        gray_img_dim3_turbojpeg = mmcv.imfrombytes(img_bytes, flag='grayscale')
    +        assert gray_img_dim3_turbojpeg.shape == (300, 400)
    +        assert_array_equal(gray_img_dim3_cv2, gray_img_dim3_turbojpeg)
    +
    +        mmcv.use_backend('cv2')
    +
    +        with pytest.raises(ValueError):
    +            with open(self.img_path, 'rb') as f:
    +                img_bytes = f.read()
    +            mmcv.imfrombytes(img_bytes, backend='unsupported_backend')
    +
    +    def test_imwrite(self):
    +        img = mmcv.imread(self.img_path)
    +        out_file = osp.join(tempfile.gettempdir(), 'mmcv_test.jpg')
    +        mmcv.imwrite(img, out_file)
    +        rewrite_img = mmcv.imread(out_file)
    +        os.remove(out_file)
    +        self.assert_img_equal(img, rewrite_img)
    +
    +        # test petrel client
    +        with patch.object(
    +                PetrelBackend, 'put', return_value=None) as mock_method:
    +            ret = mmcv.imwrite(img, self.s3_path)
    +            ret_with_args = mmcv.imwrite(
    +                img, self.s3_path, file_client_args={'backend': 'petrel'})
    +            assert ret
    +            assert ret_with_args
    +            mock_method.assert_called()
    +
    +        with pytest.raises(cv2.error):
    +            mmcv.imwrite(img, 'error_file.jppg')
    +
    +    @patch('mmcv.image.io.TurboJPEG', None)
    +    def test_no_turbojpeg(self):
    +        with pytest.raises(ImportError):
    +            mmcv.use_backend('turbojpeg')
    +
    +        mmcv.use_backend('cv2')
    +
    +    @patch('mmcv.image.io.Image', None)
    +    def test_no_pillow(self):
    +        with pytest.raises(ImportError):
    +            mmcv.use_backend('pillow')
    +
    +        mmcv.use_backend('cv2')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_photometric.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_photometric.py
    new file mode 100644
    index 000000000..2288a5ef6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_image/test_photometric.py
    @@ -0,0 +1,426 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +
    +import cv2
    +import numpy as np
    +import pytest
    +from numpy.testing import assert_array_equal
    +
    +import mmcv
    +
    +
    +class TestPhotometric:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        # the test img resolution is 400x300
    +        cls.img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
    +        cls.img = cv2.imread(cls.img_path)
    +        cls.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
    +        cls.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
    +
    +    def test_imnormalize(self):
    +        rgb_img = self.img[:, :, ::-1]
    +        baseline = (rgb_img - self.mean) / self.std
    +        img = mmcv.imnormalize(self.img, self.mean, self.std)
    +        assert np.allclose(img, baseline)
    +        assert id(img) != id(self.img)
    +        img = mmcv.imnormalize(rgb_img, self.mean, self.std, to_rgb=False)
    +        assert np.allclose(img, baseline)
    +        assert id(img) != id(rgb_img)
    +
    +    def test_imnormalize_(self):
    +        img_for_normalize = np.float32(self.img)
    +        rgb_img_for_normalize = np.float32(self.img[:, :, ::-1])
    +        baseline = (rgb_img_for_normalize - self.mean) / self.std
    +        img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
    +        assert np.allclose(img_for_normalize, baseline)
    +        assert id(img) == id(img_for_normalize)
    +        img = mmcv.imnormalize_(
    +            rgb_img_for_normalize, self.mean, self.std, to_rgb=False)
    +        assert np.allclose(img, baseline)
    +        assert id(img) == id(rgb_img_for_normalize)
    +
    +    def test_imdenormalize(self):
    +        norm_img = (self.img[:, :, ::-1] - self.mean) / self.std
    +        rgb_baseline = (norm_img * self.std + self.mean)
    +        bgr_baseline = rgb_baseline[:, :, ::-1]
    +        img = mmcv.imdenormalize(norm_img, self.mean, self.std)
    +        assert np.allclose(img, bgr_baseline)
    +        img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False)
    +        assert np.allclose(img, rgb_baseline)
    +
    +    def test_iminvert(self):
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
    +                         dtype=np.uint8)
    +        assert_array_equal(mmcv.iminvert(img), img_r)
    +
    +    def test_solarize(self):
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
    +                         dtype=np.uint8)
    +        assert_array_equal(mmcv.solarize(img), img_r)
    +        img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
    +                         dtype=np.uint8)
    +        assert_array_equal(mmcv.solarize(img, 100), img_r)
    +
    +    def test_posterize(self):
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
    +                         dtype=np.uint8)
    +        assert_array_equal(mmcv.posterize(img, 1), img_r)
    +        img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
    +                         dtype=np.uint8)
    +        assert_array_equal(mmcv.posterize(img, 3), img_r)
    +
    +    def test_adjust_color(self, nb_rand_test=100):
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        assert_array_equal(mmcv.adjust_color(img), img)
    +        img_gray = mmcv.bgr2gray(img)
    +        img_r = np.stack([img_gray, img_gray, img_gray], axis=-1)
    +        assert_array_equal(mmcv.adjust_color(img, 0), img_r)
    +        assert_array_equal(mmcv.adjust_color(img, 0, 1), img_r)
    +        assert_array_equal(
    +            mmcv.adjust_color(img, 0.5, 0.5),
    +            np.round(np.clip((img * 0.5 + img_r * 0.5), 0,
    +                             255)).astype(img.dtype))
    +        assert_array_equal(
    +            mmcv.adjust_color(img, 1, 1.5),
    +            np.round(np.clip(img * 1 + img_r * 1.5, 0, 255)).astype(img.dtype))
    +        assert_array_equal(
    +            mmcv.adjust_color(img, 0.8, -0.6, gamma=2),
    +            np.round(np.clip(img * 0.8 - 0.6 * img_r + 2, 0,
    +                             255)).astype(img.dtype))
    +        assert_array_equal(
    +            mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6),
    +            np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0,
    +                             255)).astype(img.dtype))
    +
    +        # test float type of image
    +        img = img.astype(np.float32)
    +        assert_array_equal(
    +            np.round(mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6)),
    +            np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255)))
    +
    +        # test equalize with randomly sampled image.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(np.random.normal(0, 1, (256, 256, 3)) * 260, 0,
    +                          255).astype(np.uint8)
    +            factor = np.random.uniform()
    +            cv2_img = mmcv.adjust_color(img, alpha=factor)
    +            pil_img = mmcv.adjust_color(img, alpha=factor, backend='pillow')
    +            np.testing.assert_allclose(cv2_img, pil_img, rtol=0, atol=2)
    +
    +        # the input type must be uint8 for pillow backend
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_color(img.astype(np.float32), backend='pillow')
    +
    +        # backend must be 'cv2' or 'pillow'
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_color(img.astype(np.uint8), backend='not support')
    +
    +    def test_imequalize(self, nb_rand_test=100):
    +
    +        def _imequalize(img):
    +            # equalize the image using PIL.ImageOps.equalize
    +            from PIL import Image, ImageOps
    +            img = Image.fromarray(img)
    +            equalized_img = np.asarray(ImageOps.equalize(img))
    +            return equalized_img
    +
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        equalized_img = mmcv.imequalize(img)
    +        assert_array_equal(equalized_img, _imequalize(img))
    +
    +        # test equalize with case step=0
    +        img = np.array([[0, 0, 0], [120, 120, 120], [255, 255, 255]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        assert_array_equal(mmcv.imequalize(img), img)
    +
    +        # test equalize with randomly sampled image.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(np.random.normal(0, 1, (256, 256, 3)) * 260, 0,
    +                          255).astype(np.uint8)
    +            equalized_img = mmcv.imequalize(img)
    +            assert_array_equal(equalized_img, _imequalize(img))
    +
    +    def test_adjust_brightness(self, nb_rand_test=100):
    +
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        # test case with factor 1.0
    +        assert_array_equal(mmcv.adjust_brightness(img, 1.), img)
    +        # test case with factor 0.0
    +        assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img))
    +        # test adjust_brightness with randomly sampled images and factors.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(
    +                np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
    +                255).astype(np.uint8)
    +            factor = np.random.uniform() + np.random.choice([0, 1])
    +            np.testing.assert_allclose(
    +                mmcv.adjust_brightness(img, factor).astype(np.int32),
    +                mmcv.adjust_brightness(img, factor,
    +                                       backend='pillow').astype(np.int32),
    +                rtol=0,
    +                atol=1)
    +
    +        # the input type must be uint8 for pillow backend
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_brightness(img.astype(np.float32), backend='pillow')
    +
    +        # backend must be 'cv2' or 'pillow'
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_brightness(img.astype(np.uint8), backend='not support')
    +
    +    def test_adjust_contrast(self, nb_rand_test=100):
    +
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +        # test case with factor 1.0
    +        assert_array_equal(mmcv.adjust_contrast(img, 1.), img)
    +        # test case with factor 0.0
    +        assert_array_equal(
    +            mmcv.adjust_contrast(img, 0.),
    +            mmcv.adjust_contrast(img, 0., backend='pillow'))
    +        # test adjust_contrast with randomly sampled images and factors.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(
    +                np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
    +                255).astype(np.uint8)
    +            factor = np.random.uniform() + np.random.choice([0, 1])
    +            # Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast
    +            # and mmcv.adjust_contrast comes from the gap that converts from
    +            # a color image to gray image using mmcv or PIL.
    +            np.testing.assert_allclose(
    +                mmcv.adjust_contrast(img, factor).astype(np.int32),
    +                mmcv.adjust_contrast(img, factor,
    +                                     backend='pillow').astype(np.int32),
    +                rtol=0,
    +                atol=1)
    +
    +        # the input type must be uint8 pillow backend
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_contrast(img.astype(np.float32), backend='pillow')
    +
    +        # backend must be 'cv2' or 'pillow'
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_contrast(img.astype(np.uint8), backend='not support')
    +
    +    def test_auto_contrast(self, nb_rand_test=100):
    +
    +        def _auto_contrast(img, cutoff=0):
    +            from PIL import Image
    +            from PIL.ImageOps import autocontrast
    +
    +            # Image.fromarray defaultly supports RGB, not BGR.
    +            # convert from BGR to RGB
    +            img = Image.fromarray(img[..., ::-1], mode='RGB')
    +            contrasted_img = autocontrast(img, cutoff)
    +            # convert from RGB to BGR
    +            return np.asarray(contrasted_img)[..., ::-1]
    +
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +
    +        # test case without cut-off
    +        assert_array_equal(mmcv.auto_contrast(img), _auto_contrast(img))
    +        # test case with cut-off as int
    +        assert_array_equal(
    +            mmcv.auto_contrast(img, 10), _auto_contrast(img, 10))
    +        # test case with cut-off as float
    +        assert_array_equal(
    +            mmcv.auto_contrast(img, 12.5), _auto_contrast(img, 12.5))
    +        # test case with cut-off as tuple
    +        assert_array_equal(
    +            mmcv.auto_contrast(img, (10, 10)), _auto_contrast(img, 10))
    +        # test case with cut-off with sum over 100
    +        assert_array_equal(
    +            mmcv.auto_contrast(img, 60), _auto_contrast(img, 60))
    +
    +        # test auto_contrast with randomly sampled images and factors.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(
    +                np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
    +                255).astype(np.uint8)
    +            # cut-offs are not set as tuple since in `build.yml`, pillow 6.2.2
    +            # is installed, which does not support setting low cut-off and high
    +            #  cut-off differently.
    +            # With pillow above 8.0.0, cutoff can be set as tuple
    +            cutoff = np.random.rand() * 100
    +            assert_array_equal(
    +                mmcv.auto_contrast(img, cutoff), _auto_contrast(img, cutoff))
    +
    +    def test_adjust_sharpness(self, nb_rand_test=100):
    +
    +        def _adjust_sharpness(img, factor):
    +            # adjust the sharpness of image using
    +            # PIL.ImageEnhance.Sharpness
    +            from PIL import Image
    +            from PIL.ImageEnhance import Sharpness
    +            img = Image.fromarray(img)
    +            sharpened_img = Sharpness(img).enhance(factor)
    +            return np.asarray(sharpened_img)
    +
    +        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
    +                       dtype=np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +
    +        # test case with invalid type of kernel
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_sharpness(img, 1., kernel=1.)
    +        # test case with invalid shape of kernel
    +        kernel = np.ones((3, 3, 3))
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_sharpness(img, 1., kernel=kernel)
    +        # test case with all-zero kernel, factor 0.0
    +        kernel = np.zeros((3, 3))
    +        assert_array_equal(
    +            mmcv.adjust_sharpness(img, 0., kernel=kernel), np.zeros_like(img))
    +
    +        # test case with factor 1.0
    +        assert_array_equal(mmcv.adjust_sharpness(img, 1.), img)
    +        # test adjust_sharpness with randomly sampled images and factors.
    +        for _ in range(nb_rand_test):
    +            img = np.clip(
    +                np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
    +                255).astype(np.uint8)
    +            factor = np.random.uniform()
    +            # Note the gap between PIL.ImageEnhance.Sharpness and
    +            # mmcv.adjust_sharpness mainly comes from the difference ways of
    +            # handling img edges when applying filters
    +            np.testing.assert_allclose(
    +                mmcv.adjust_sharpness(img, factor).astype(np.int32)[1:-1,
    +                                                                    1:-1],
    +                _adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1],
    +                rtol=0,
    +                atol=1)
    +
    +    def test_adjust_lighting(self):
    +        img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
    +        img = np.stack([img, img, img], axis=-1)
    +
    +        # eigval and eigvec must be np.ndarray
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_lighting(img, 1, np.ones((3, 1)))
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_lighting(img, np.array([1]), (1, 1, 1))
    +        # we must have the same number of eigval and eigvec
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_lighting(img, np.array([1]), np.eye(2))
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_lighting(img, np.array([1]), np.array([1]))
    +
    +        img_adjusted = mmcv.adjust_lighting(
    +            img,
    +            np.random.normal(0, 1, 2),
    +            np.random.normal(0, 1, (3, 2)),
    +            alphastd=0.)
    +        assert_array_equal(img_adjusted, img)
    +
    +    def test_lut_transform(self):
    +        lut_table = np.array(list(range(256)))
    +
    +        # test assertion image values should between 0 and 255.
    +        with pytest.raises(AssertionError):
    +            mmcv.lut_transform(np.array([256]), lut_table)
    +        with pytest.raises(AssertionError):
    +            mmcv.lut_transform(np.array([-1]), lut_table)
    +
    +        # test assertion lut_table should be ndarray with shape (256, )
    +        with pytest.raises(AssertionError):
    +            mmcv.lut_transform(np.array([0]), list(range(256)))
    +        with pytest.raises(AssertionError):
    +            mmcv.lut_transform(np.array([1]), np.array(list(range(257))))
    +
    +        img = mmcv.lut_transform(self.img, lut_table)
    +        baseline = cv2.LUT(self.img, lut_table)
    +        assert np.allclose(img, baseline)
    +
    +        input_img = np.array(
    +            [[[0, 128, 255], [255, 128, 0]], [[0, 128, 255], [255, 128, 0]]],
    +            dtype=float)
    +        img = mmcv.lut_transform(input_img, lut_table)
    +        baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
    +        assert np.allclose(img, baseline)
    +
    +        input_img = np.random.randint(0, 256, size=(7, 8, 9, 10, 11))
    +        img = mmcv.lut_transform(input_img, lut_table)
    +        baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
    +        assert np.allclose(img, baseline)
    +
    +    def test_clahe(self):
    +
    +        def _clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)):
    +            clahe = cv2.createCLAHE(clip_limit, tile_grid_size)
    +            return clahe.apply(np.array(img, dtype=np.uint8))
    +
    +        # test assertion image should have the right shape
    +        with pytest.raises(AssertionError):
    +            mmcv.clahe(self.img)
    +
    +        # test assertion tile_grid_size should be a tuple with 2 integers
    +        with pytest.raises(AssertionError):
    +            mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8.0, 8.0))
    +        with pytest.raises(AssertionError):
    +            mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8, 8, 8))
    +        with pytest.raises(AssertionError):
    +            mmcv.clahe(self.img[:, :, 0], tile_grid_size=[8, 8])
    +
    +        # test with different channels
    +        for i in range(self.img.shape[-1]):
    +            img = mmcv.clahe(self.img[:, :, i])
    +            img_std = _clahe(self.img[:, :, i])
    +            assert np.allclose(img, img_std)
    +            assert id(img) != id(self.img[:, :, i])
    +            assert id(img_std) != id(self.img[:, :, i])
    +
    +        # test case with clip_limit=1.2
    +        for i in range(self.img.shape[-1]):
    +            img = mmcv.clahe(self.img[:, :, i], 1.2)
    +            img_std = _clahe(self.img[:, :, i], 1.2)
    +            assert np.allclose(img, img_std)
    +            assert id(img) != id(self.img[:, :, i])
    +            assert id(img_std) != id(self.img[:, :, i])
    +
    +    def test_adjust_hue(self):
    +        # test case with img is not ndarray
    +        from PIL import Image
    +        pil_img = Image.fromarray(self.img)
    +
    +        with pytest.raises(TypeError):
    +            mmcv.adjust_hue(pil_img, hue_factor=0.0)
    +
    +        # test case with hue_factor > 0.5 or hue_factor < -0.5
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_hue(self.img, hue_factor=-0.6)
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_hue(self.img, hue_factor=0.6)
    +
    +        for i in np.arange(-0.5, 0.5, 0.2):
    +            pil_res = mmcv.adjust_hue(self.img, hue_factor=i, backend='pillow')
    +            pil_res = np.array(pil_res)
    +            cv2_res = mmcv.adjust_hue(self.img, hue_factor=i)
    +            assert np.allclose(pil_res, cv2_res, atol=10.0)
    +
    +        # test pillow backend
    +        with pytest.raises(AssertionError):
    +            mmcv.adjust_hue(
    +                self.img.astype(np.float32), hue_factor=0, backend='pillow')
    +
    +        # backend must be 'cv2' or 'pillow'
    +        with pytest.raises(ValueError):
    +            mmcv.adjust_hue(
    +                self.img.astype(np.uint8), hue_factor=0, backend='not support')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_load_model_zoo.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_load_model_zoo.py
    new file mode 100644
    index 000000000..904cb9403
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_load_model_zoo.py
    @@ -0,0 +1,156 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +from unittest.mock import patch
    +
    +import pytest
    +import torchvision
    +
    +import mmcv
    +from mmcv.runner.checkpoint import (DEFAULT_CACHE_DIR, ENV_MMCV_HOME,
    +                                    ENV_XDG_CACHE_HOME, _get_mmcv_home,
    +                                    _load_checkpoint,
    +                                    get_deprecated_model_names,
    +                                    get_external_models)
    +from mmcv.utils import digit_version
    +
    +
    +@patch('mmcv.__path__', [osp.join(osp.dirname(__file__), 'data/')])
    +def test_set_mmcv_home():
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    mmcv_home = osp.join(osp.dirname(__file__), 'data/model_zoo/mmcv_home/')
    +    os.environ[ENV_MMCV_HOME] = mmcv_home
    +    assert _get_mmcv_home() == mmcv_home
    +
    +
    +@patch('mmcv.__path__', [osp.join(osp.dirname(__file__), 'data/')])
    +def test_default_mmcv_home():
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    os.environ.pop(ENV_XDG_CACHE_HOME, None)
    +    assert _get_mmcv_home() == os.path.expanduser(
    +        os.path.join(DEFAULT_CACHE_DIR, 'mmcv'))
    +    model_urls = get_external_models()
    +    assert model_urls == mmcv.load(
    +        osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json'))
    +
    +
    +@patch('mmcv.__path__', [osp.join(osp.dirname(__file__), 'data/')])
    +def test_get_external_models():
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    mmcv_home = osp.join(osp.dirname(__file__), 'data/model_zoo/mmcv_home/')
    +    os.environ[ENV_MMCV_HOME] = mmcv_home
    +    ext_urls = get_external_models()
    +    assert ext_urls == {
    +        'train': 'https://localhost/train.pth',
    +        'test': 'test.pth',
    +        'val': 'val.pth',
    +        'train_empty': 'train.pth'
    +    }
    +
    +
    +@patch('mmcv.__path__', [osp.join(osp.dirname(__file__), 'data/')])
    +def test_get_deprecated_models():
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    mmcv_home = osp.join(osp.dirname(__file__), 'data/model_zoo/mmcv_home/')
    +    os.environ[ENV_MMCV_HOME] = mmcv_home
    +    dep_urls = get_deprecated_model_names()
    +    assert dep_urls == {
    +        'train_old': 'train',
    +        'test_old': 'test',
    +    }
    +
    +
    +def load_from_http(url, map_location=None):
    +    return 'url:' + url
    +
    +
    +def load_url(url, map_location=None, model_dir=None):
    +    return load_from_http(url)
    +
    +
    +def load(filepath, map_location=None):
    +    return 'local:' + filepath
    +
    +
    +@patch('mmcv.__path__', [osp.join(osp.dirname(__file__), 'data/')])
    +@patch('mmcv.runner.checkpoint.load_from_http', load_from_http)
    +@patch('mmcv.runner.checkpoint.load_url', load_url)
    +@patch('torch.load', load)
    +def test_load_external_url():
    +    # test modelzoo://
    +    torchvision_version = torchvision.__version__
    +    if digit_version(torchvision_version) < digit_version('0.10.0a0'):
    +        assert (_load_checkpoint('modelzoo://resnet50') ==
    +                'url:https://download.pytorch.org/models/resnet50-19c8e'
    +                '357.pth')
    +        assert (_load_checkpoint('torchvision://resnet50') ==
    +                'url:https://download.pytorch.org/models/resnet50-19c8e'
    +                '357.pth')
    +    else:
    +        assert (_load_checkpoint('modelzoo://resnet50') ==
    +                'url:https://download.pytorch.org/models/resnet50-0676b'
    +                'a61.pth')
    +        assert (_load_checkpoint('torchvision://resnet50') ==
    +                'url:https://download.pytorch.org/models/resnet50-0676b'
    +                'a61.pth')
    +
    +    if digit_version(torchvision_version) >= digit_version('0.13.0a0'):
    +        # Test load new format torchvision models.
    +        assert (
    +            _load_checkpoint('torchvision://resnet50.imagenet1k_v1') ==
    +            'url:https://download.pytorch.org/models/resnet50-0676ba61.pth')
    +
    +        assert (
    +            _load_checkpoint('torchvision://ResNet50_Weights.IMAGENET1K_V1') ==
    +            'url:https://download.pytorch.org/models/resnet50-0676ba61.pth')
    +
    +        _load_checkpoint('torchvision://resnet50.default')
    +
    +    # test open-mmlab:// with default MMCV_HOME
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    os.environ.pop(ENV_XDG_CACHE_HOME, None)
    +    url = _load_checkpoint('open-mmlab://train')
    +    assert url == 'url:https://localhost/train.pth'
    +
    +    # test open-mmlab:// with deprecated model name
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    os.environ.pop(ENV_XDG_CACHE_HOME, None)
    +    with pytest.warns(
    +            Warning,
    +            match='open-mmlab://train_old is deprecated in favor of '
    +            'open-mmlab://train'):
    +        url = _load_checkpoint('open-mmlab://train_old')
    +        assert url == 'url:https://localhost/train.pth'
    +
    +    # test openmmlab:// with deprecated model name
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    os.environ.pop(ENV_XDG_CACHE_HOME, None)
    +    with pytest.warns(
    +            Warning,
    +            match='openmmlab://train_old is deprecated in favor of '
    +            'openmmlab://train'):
    +        url = _load_checkpoint('openmmlab://train_old')
    +        assert url == 'url:https://localhost/train.pth'
    +
    +    # test open-mmlab:// with user-defined MMCV_HOME
    +    os.environ.pop(ENV_MMCV_HOME, None)
    +    mmcv_home = osp.join(osp.dirname(__file__), 'data/model_zoo/mmcv_home')
    +    os.environ[ENV_MMCV_HOME] = mmcv_home
    +    url = _load_checkpoint('open-mmlab://train')
    +    assert url == 'url:https://localhost/train.pth'
    +    with pytest.raises(FileNotFoundError, match='train.pth can not be found.'):
    +        _load_checkpoint('open-mmlab://train_empty')
    +    url = _load_checkpoint('open-mmlab://test')
    +    assert url == f'local:{osp.join(_get_mmcv_home(), "test.pth")}'
    +    url = _load_checkpoint('open-mmlab://val')
    +    assert url == f'local:{osp.join(_get_mmcv_home(), "val.pth")}'
    +
    +    # test http:// https://
    +    url = _load_checkpoint('http://localhost/train.pth')
    +    assert url == 'url:http://localhost/train.pth'
    +
    +    # test local file
    +    with pytest.raises(FileNotFoundError, match='train.pth can not be found.'):
    +        _load_checkpoint('train.pth')
    +    url = _load_checkpoint(osp.join(_get_mmcv_home(), 'test.pth'))
    +    assert url == f'local:{osp.join(_get_mmcv_home(), "test.pth")}'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/output.pkl b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/output.pkl
    new file mode 100644
    index 0000000000000000000000000000000000000000..bcb7b2dd606930522b102d3a59fef70d6f3eb885
    GIT binary patch
    literal 2168
    zcmd^BO=}ZT6n)9$%dxbj6hQ)YAwmUB(`ibn3r9kU!c!bm#NZ}OCqojPB)-WcD+R$t
    zai<$sA{FVzO@Bc%E<(Yj3zx2Rp$oyKf~fB%IU$qUty%QK;pDyC`#w$%@5bOtgt0_|
    z9g0~t$4u9%RNMAa$@I+B{d-O>JI(F};!)W08Zs+YYezQ7e8+7|IAmep_^+w!W7dQ-jWmTcE9ZB#8!6^ZkCal#X7
    zUYtxBJf8SCwVT|Ns}hVOub*Uz!1b4cC(C6cJtYom^EzCK=7#b5pV`6Ab42_AQF)=hIhQ`FlZC`kb
    z7@i`Ar-c#0UFBA$q;{==q<+~Z%El+MR(UwZHle!Z>lL>VI-
    z{ov2Av%?3!ZM#j`NOIXTW9=@``)IJD(hl!mmT!mUFHJCbh-lbTN88OTeG!Q94m(~w
    zdiG?X@{b&iR*yBP@r6c@I1^atyKJ#oXmD|Z$6^--NejxwVLCaP0^IEnS)SUv3|ZIv
    VbZYQ_BGj9UQV*9k3Zwjf?q5M}yi@=H
    
    literal 0
    HcmV?d00001
    
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_active_rotated_filter.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_active_rotated_filter.py
    new file mode 100644
    index 000000000..30ea59c5c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_active_rotated_filter.py
    @@ -0,0 +1,258 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import active_rotated_filter
    +
    +np_feature = np.array([[[[[-1.4934e-01, 1.1341e+00, -1.6241e-01],
    +                          [-1.0986e+00, -1.1463e+00, -1.3176e+00],
    +                          [1.4808e+00, 7.6572e-01, -1.4548e+00]]]],
    +                       [[[[1.9370e+00, 6.2799e-01, 2.5834e-02],
    +                          [-1.4242e+00, 7.6566e-01, 1.0015e+00],
    +                          [9.8669e-01, 4.1356e-01, 6.1068e-01]]]],
    +                       [[[[1.4565e+00, 1.4960e+00, 2.4339e-01],
    +                          [-2.2484e-01, 7.5942e-01, -8.1184e-01],
    +                          [-1.7077e+00, 1.0658e+00, 3.8311e-01]]]],
    +                       [[[[8.4734e-01, 1.0904e+00, 2.4356e+00],
    +                          [9.5822e-01, 2.2260e-01, -2.4450e-01],
    +                          [-1.5078e+00, 7.0902e-02, -1.5921e+00]]]],
    +                       [[[[2.1173e+00, -7.3524e-01, 1.8888e+00],
    +                          [1.0169e+00, 4.7033e-01, -1.0875e+00],
    +                          [-1.0736e+00, -5.2245e-01, -2.8733e-01]]]],
    +                       [[[[-5.6433e-01, 1.5835e+00, -1.5826e+00],
    +                          [-8.8974e-01, -4.3128e-01, -2.2423e-01],
    +                          [1.6552e-03, -1.7292e+00, 2.6639e-01]]]],
    +                       [[[[-1.2951e-01, 1.3493e+00, -1.9329e+00],
    +                          [5.6248e-01, -5.1189e-01, 1.3614e+00],
    +                          [3.3680e-01, -8.7148e-01, 5.0592e-01]]]],
    +                       [[[[1.6781e-02, -8.3929e-01, 1.2060e+00],
    +                          [-1.0764e+00, 4.7821e-01, 1.5342e+00],
    +                          [-4.4542e-01, -1.8606e+00, 3.0827e-01]]]]])
    +
    +np_indices = np.array([[[[1, 2, 3, 6, 9, 8, 7, 4], [2, 3, 6, 9, 8, 7, 4, 1],
    +                         [3, 6, 9, 8, 7, 4, 1, 2]],
    +                        [[4, 1, 2, 3, 6, 9, 8, 7], [5, 5, 5, 5, 5, 5, 5, 5],
    +                         [6, 9, 8, 7, 4, 1, 2, 3]],
    +                        [[7, 4, 1, 2, 3, 6, 9, 8], [8, 7, 4, 1, 2, 3, 6, 9],
    +                         [9, 8, 7, 4, 1, 2, 3, 6]]]])
    +
    +expected_output = np.array([[[[-1.4934e-01, 1.1341e+00, -1.6241e-01],
    +                              [-1.0986e+00, -1.1463e+00, -1.3176e+00],
    +                              [1.4808e+00, 7.6572e-01, -1.4548e+00]]],
    +                            [[[-1.0986e+00, -1.4934e-01, 1.1341e+00],
    +                              [1.4808e+00, -1.1463e+00, -1.6241e-01],
    +                              [7.6572e-01, -1.4548e+00, -1.3176e+00]]],
    +                            [[[1.4808e+00, -1.0986e+00, -1.4934e-01],
    +                              [7.6572e-01, -1.1463e+00, 1.1341e+00],
    +                              [-1.4548e+00, -1.3176e+00, -1.6241e-01]]],
    +                            [[[7.6572e-01, 1.4808e+00, -1.0986e+00],
    +                              [-1.4548e+00, -1.1463e+00, -1.4934e-01],
    +                              [-1.3176e+00, -1.6241e-01, 1.1341e+00]]],
    +                            [[[-1.4548e+00, 7.6572e-01, 1.4808e+00],
    +                              [-1.3176e+00, -1.1463e+00, -1.0986e+00],
    +                              [-1.6241e-01, 1.1341e+00, -1.4934e-01]]],
    +                            [[[-1.3176e+00, -1.4548e+00, 7.6572e-01],
    +                              [-1.6241e-01, -1.1463e+00, 1.4808e+00],
    +                              [1.1341e+00, -1.4934e-01, -1.0986e+00]]],
    +                            [[[-1.6241e-01, -1.3176e+00, -1.4548e+00],
    +                              [1.1341e+00, -1.1463e+00, 7.6572e-01],
    +                              [-1.4934e-01, -1.0986e+00, 1.4808e+00]]],
    +                            [[[1.1341e+00, -1.6241e-01, -1.3176e+00],
    +                              [-1.4934e-01, -1.1463e+00, -1.4548e+00],
    +                              [-1.0986e+00, 1.4808e+00, 7.6572e-01]]],
    +                            [[[1.9370e+00, 6.2799e-01, 2.5834e-02],
    +                              [-1.4242e+00, 7.6566e-01, 1.0015e+00],
    +                              [9.8669e-01, 4.1356e-01, 6.1068e-01]]],
    +                            [[[-1.4242e+00, 1.9370e+00, 6.2799e-01],
    +                              [9.8669e-01, 7.6566e-01, 2.5834e-02],
    +                              [4.1356e-01, 6.1068e-01, 1.0015e+00]]],
    +                            [[[9.8669e-01, -1.4242e+00, 1.9370e+00],
    +                              [4.1356e-01, 7.6566e-01, 6.2799e-01],
    +                              [6.1068e-01, 1.0015e+00, 2.5834e-02]]],
    +                            [[[4.1356e-01, 9.8669e-01, -1.4242e+00],
    +                              [6.1068e-01, 7.6566e-01, 1.9370e+00],
    +                              [1.0015e+00, 2.5834e-02, 6.2799e-01]]],
    +                            [[[6.1068e-01, 4.1356e-01, 9.8669e-01],
    +                              [1.0015e+00, 7.6566e-01, -1.4242e+00],
    +                              [2.5834e-02, 6.2799e-01, 1.9370e+00]]],
    +                            [[[1.0015e+00, 6.1068e-01, 4.1356e-01],
    +                              [2.5834e-02, 7.6566e-01, 9.8669e-01],
    +                              [6.2799e-01, 1.9370e+00, -1.4242e+00]]],
    +                            [[[2.5834e-02, 1.0015e+00, 6.1068e-01],
    +                              [6.2799e-01, 7.6566e-01, 4.1356e-01],
    +                              [1.9370e+00, -1.4242e+00, 9.8669e-01]]],
    +                            [[[6.2799e-01, 2.5834e-02, 1.0015e+00],
    +                              [1.9370e+00, 7.6566e-01, 6.1068e-01],
    +                              [-1.4242e+00, 9.8669e-01, 4.1356e-01]]],
    +                            [[[1.4565e+00, 1.4960e+00, 2.4339e-01],
    +                              [-2.2484e-01, 7.5942e-01, -8.1184e-01],
    +                              [-1.7077e+00, 1.0658e+00, 3.8311e-01]]],
    +                            [[[-2.2484e-01, 1.4565e+00, 1.4960e+00],
    +                              [-1.7077e+00, 7.5942e-01, 2.4339e-01],
    +                              [1.0658e+00, 3.8311e-01, -8.1184e-01]]],
    +                            [[[-1.7077e+00, -2.2484e-01, 1.4565e+00],
    +                              [1.0658e+00, 7.5942e-01, 1.4960e+00],
    +                              [3.8311e-01, -8.1184e-01, 2.4339e-01]]],
    +                            [[[1.0658e+00, -1.7077e+00, -2.2484e-01],
    +                              [3.8311e-01, 7.5942e-01, 1.4565e+00],
    +                              [-8.1184e-01, 2.4339e-01, 1.4960e+00]]],
    +                            [[[3.8311e-01, 1.0658e+00, -1.7077e+00],
    +                              [-8.1184e-01, 7.5942e-01, -2.2484e-01],
    +                              [2.4339e-01, 1.4960e+00, 1.4565e+00]]],
    +                            [[[-8.1184e-01, 3.8311e-01, 1.0658e+00],
    +                              [2.4339e-01, 7.5942e-01, -1.7077e+00],
    +                              [1.4960e+00, 1.4565e+00, -2.2484e-01]]],
    +                            [[[2.4339e-01, -8.1184e-01, 3.8311e-01],
    +                              [1.4960e+00, 7.5942e-01, 1.0658e+00],
    +                              [1.4565e+00, -2.2484e-01, -1.7077e+00]]],
    +                            [[[1.4960e+00, 2.4339e-01, -8.1184e-01],
    +                              [1.4565e+00, 7.5942e-01, 3.8311e-01],
    +                              [-2.2484e-01, -1.7077e+00, 1.0658e+00]]],
    +                            [[[8.4734e-01, 1.0904e+00, 2.4356e+00],
    +                              [9.5822e-01, 2.2260e-01, -2.4450e-01],
    +                              [-1.5078e+00, 7.0902e-02, -1.5921e+00]]],
    +                            [[[9.5822e-01, 8.4734e-01, 1.0904e+00],
    +                              [-1.5078e+00, 2.2260e-01, 2.4356e+00],
    +                              [7.0902e-02, -1.5921e+00, -2.4450e-01]]],
    +                            [[[-1.5078e+00, 9.5822e-01, 8.4734e-01],
    +                              [7.0902e-02, 2.2260e-01, 1.0904e+00],
    +                              [-1.5921e+00, -2.4450e-01, 2.4356e+00]]],
    +                            [[[7.0902e-02, -1.5078e+00, 9.5822e-01],
    +                              [-1.5921e+00, 2.2260e-01, 8.4734e-01],
    +                              [-2.4450e-01, 2.4356e+00, 1.0904e+00]]],
    +                            [[[-1.5921e+00, 7.0902e-02, -1.5078e+00],
    +                              [-2.4450e-01, 2.2260e-01, 9.5822e-01],
    +                              [2.4356e+00, 1.0904e+00, 8.4734e-01]]],
    +                            [[[-2.4450e-01, -1.5921e+00, 7.0902e-02],
    +                              [2.4356e+00, 2.2260e-01, -1.5078e+00],
    +                              [1.0904e+00, 8.4734e-01, 9.5822e-01]]],
    +                            [[[2.4356e+00, -2.4450e-01, -1.5921e+00],
    +                              [1.0904e+00, 2.2260e-01, 7.0902e-02],
    +                              [8.4734e-01, 9.5822e-01, -1.5078e+00]]],
    +                            [[[1.0904e+00, 2.4356e+00, -2.4450e-01],
    +                              [8.4734e-01, 2.2260e-01, -1.5921e+00],
    +                              [9.5822e-01, -1.5078e+00, 7.0902e-02]]],
    +                            [[[2.1173e+00, -7.3524e-01, 1.8888e+00],
    +                              [1.0169e+00, 4.7033e-01, -1.0875e+00],
    +                              [-1.0736e+00, -5.2245e-01, -2.8733e-01]]],
    +                            [[[1.0169e+00, 2.1173e+00, -7.3524e-01],
    +                              [-1.0736e+00, 4.7033e-01, 1.8888e+00],
    +                              [-5.2245e-01, -2.8733e-01, -1.0875e+00]]],
    +                            [[[-1.0736e+00, 1.0169e+00, 2.1173e+00],
    +                              [-5.2245e-01, 4.7033e-01, -7.3524e-01],
    +                              [-2.8733e-01, -1.0875e+00, 1.8888e+00]]],
    +                            [[[-5.2245e-01, -1.0736e+00, 1.0169e+00],
    +                              [-2.8733e-01, 4.7033e-01, 2.1173e+00],
    +                              [-1.0875e+00, 1.8888e+00, -7.3524e-01]]],
    +                            [[[-2.8733e-01, -5.2245e-01, -1.0736e+00],
    +                              [-1.0875e+00, 4.7033e-01, 1.0169e+00],
    +                              [1.8888e+00, -7.3524e-01, 2.1173e+00]]],
    +                            [[[-1.0875e+00, -2.8733e-01, -5.2245e-01],
    +                              [1.8888e+00, 4.7033e-01, -1.0736e+00],
    +                              [-7.3524e-01, 2.1173e+00, 1.0169e+00]]],
    +                            [[[1.8888e+00, -1.0875e+00, -2.8733e-01],
    +                              [-7.3524e-01, 4.7033e-01, -5.2245e-01],
    +                              [2.1173e+00, 1.0169e+00, -1.0736e+00]]],
    +                            [[[-7.3524e-01, 1.8888e+00, -1.0875e+00],
    +                              [2.1173e+00, 4.7033e-01, -2.8733e-01],
    +                              [1.0169e+00, -1.0736e+00, -5.2245e-01]]],
    +                            [[[-5.6433e-01, 1.5835e+00, -1.5826e+00],
    +                              [-8.8974e-01, -4.3128e-01, -2.2423e-01],
    +                              [1.6552e-03, -1.7292e+00, 2.6639e-01]]],
    +                            [[[-8.8974e-01, -5.6433e-01, 1.5835e+00],
    +                              [1.6552e-03, -4.3128e-01, -1.5826e+00],
    +                              [-1.7292e+00, 2.6639e-01, -2.2423e-01]]],
    +                            [[[1.6552e-03, -8.8974e-01, -5.6433e-01],
    +                              [-1.7292e+00, -4.3128e-01, 1.5835e+00],
    +                              [2.6639e-01, -2.2423e-01, -1.5826e+00]]],
    +                            [[[-1.7292e+00, 1.6552e-03, -8.8974e-01],
    +                              [2.6639e-01, -4.3128e-01, -5.6433e-01],
    +                              [-2.2423e-01, -1.5826e+00, 1.5835e+00]]],
    +                            [[[2.6639e-01, -1.7292e+00, 1.6552e-03],
    +                              [-2.2423e-01, -4.3128e-01, -8.8974e-01],
    +                              [-1.5826e+00, 1.5835e+00, -5.6433e-01]]],
    +                            [[[-2.2423e-01, 2.6639e-01, -1.7292e+00],
    +                              [-1.5826e+00, -4.3128e-01, 1.6552e-03],
    +                              [1.5835e+00, -5.6433e-01, -8.8974e-01]]],
    +                            [[[-1.5826e+00, -2.2423e-01, 2.6639e-01],
    +                              [1.5835e+00, -4.3128e-01, -1.7292e+00],
    +                              [-5.6433e-01, -8.8974e-01, 1.6552e-03]]],
    +                            [[[1.5835e+00, -1.5826e+00, -2.2423e-01],
    +                              [-5.6433e-01, -4.3128e-01, 2.6639e-01],
    +                              [-8.8974e-01, 1.6552e-03, -1.7292e+00]]],
    +                            [[[-1.2951e-01, 1.3493e+00, -1.9329e+00],
    +                              [5.6248e-01, -5.1189e-01, 1.3614e+00],
    +                              [3.3680e-01, -8.7148e-01, 5.0592e-01]]],
    +                            [[[5.6248e-01, -1.2951e-01, 1.3493e+00],
    +                              [3.3680e-01, -5.1189e-01, -1.9329e+00],
    +                              [-8.7148e-01, 5.0592e-01, 1.3614e+00]]],
    +                            [[[3.3680e-01, 5.6248e-01, -1.2951e-01],
    +                              [-8.7148e-01, -5.1189e-01, 1.3493e+00],
    +                              [5.0592e-01, 1.3614e+00, -1.9329e+00]]],
    +                            [[[-8.7148e-01, 3.3680e-01, 5.6248e-01],
    +                              [5.0592e-01, -5.1189e-01, -1.2951e-01],
    +                              [1.3614e+00, -1.9329e+00, 1.3493e+00]]],
    +                            [[[5.0592e-01, -8.7148e-01, 3.3680e-01],
    +                              [1.3614e+00, -5.1189e-01, 5.6248e-01],
    +                              [-1.9329e+00, 1.3493e+00, -1.2951e-01]]],
    +                            [[[1.3614e+00, 5.0592e-01, -8.7148e-01],
    +                              [-1.9329e+00, -5.1189e-01, 3.3680e-01],
    +                              [1.3493e+00, -1.2951e-01, 5.6248e-01]]],
    +                            [[[-1.9329e+00, 1.3614e+00, 5.0592e-01],
    +                              [1.3493e+00, -5.1189e-01, -8.7148e-01],
    +                              [-1.2951e-01, 5.6248e-01, 3.3680e-01]]],
    +                            [[[1.3493e+00, -1.9329e+00, 1.3614e+00],
    +                              [-1.2951e-01, -5.1189e-01, 5.0592e-01],
    +                              [5.6248e-01, 3.3680e-01, -8.7148e-01]]],
    +                            [[[1.6781e-02, -8.3929e-01, 1.2060e+00],
    +                              [-1.0764e+00, 4.7821e-01, 1.5342e+00],
    +                              [-4.4542e-01, -1.8606e+00, 3.0827e-01]]],
    +                            [[[-1.0764e+00, 1.6781e-02, -8.3929e-01],
    +                              [-4.4542e-01, 4.7821e-01, 1.2060e+00],
    +                              [-1.8606e+00, 3.0827e-01, 1.5342e+00]]],
    +                            [[[-4.4542e-01, -1.0764e+00, 1.6781e-02],
    +                              [-1.8606e+00, 4.7821e-01, -8.3929e-01],
    +                              [3.0827e-01, 1.5342e+00, 1.2060e+00]]],
    +                            [[[-1.8606e+00, -4.4542e-01, -1.0764e+00],
    +                              [3.0827e-01, 4.7821e-01, 1.6781e-02],
    +                              [1.5342e+00, 1.2060e+00, -8.3929e-01]]],
    +                            [[[3.0827e-01, -1.8606e+00, -4.4542e-01],
    +                              [1.5342e+00, 4.7821e-01, -1.0764e+00],
    +                              [1.2060e+00, -8.3929e-01, 1.6781e-02]]],
    +                            [[[1.5342e+00, 3.0827e-01, -1.8606e+00],
    +                              [1.2060e+00, 4.7821e-01, -4.4542e-01],
    +                              [-8.3929e-01, 1.6781e-02, -1.0764e+00]]],
    +                            [[[1.2060e+00, 1.5342e+00, 3.0827e-01],
    +                              [-8.3929e-01, 4.7821e-01, -1.8606e+00],
    +                              [1.6781e-02, -1.0764e+00, -4.4542e-01]]],
    +                            [[[-8.3929e-01, 1.2060e+00, 1.5342e+00],
    +                              [1.6781e-02, 4.7821e-01, 3.0827e-01],
    +                              [-1.0764e+00, -4.4542e-01, -1.8606e+00]]]])
    +
    +expected_grad = np.array([[[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]],
    +                          [[[[8., 8., 8.], [8., 8., 8.], [8., 8., 8.]]]]])
    +
    +
    +@pytest.mark.parametrize('device', [
    +    'cpu',
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not torch.cuda.is_available(), reason='requires CUDA support')),
    +])
    +def test_active_rotated_filter(device):
    +    feature = torch.tensor(
    +        np_feature, dtype=torch.float, device=device, requires_grad=True)
    +    indices = torch.tensor(np_indices, dtype=torch.int, device=device)
    +    output = active_rotated_filter(feature, indices)
    +    output.backward(torch.ones_like(output))
    +    assert np.allclose(output.data.cpu().numpy(), expected_output, atol=1e-3)
    +    assert np.allclose(
    +        feature.grad.data.cpu().numpy(), expected_grad, atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_assign_score_withk.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_assign_score_withk.py
    new file mode 100644
    index 000000000..f8fc6ae62
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_assign_score_withk.py
    @@ -0,0 +1,188 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import assign_score_withk
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_paconv_assign_scores():
    +    scores = torch.tensor([[[[0.06947571, 0.6065746], [0.28462553, 0.8378516],
    +                             [0.7595994, 0.97220325], [0.519155, 0.766185]],
    +                            [[0.15348864, 0.6051019], [0.21510637, 0.31916398],
    +                             [0.00236845, 0.5842595], [0.6783676, 0.5216348]]],
    +                           [[[0.23089725, 0.5568468], [0.7405102, 0.06438422],
    +                             [0.6887394, 0.22089851], [0.0502342, 0.79228795]],
    +                            [[0.44883424, 0.15427643],
    +                             [0.13817799, 0.34856772], [0.7989621, 0.33788306],
    +                             [0.15699774, 0.7693662]]]]).float().cuda()
    +    scores.requires_grad_()
    +    points = torch.tensor([[[[0.06001121, 0.92963666, 0.5753327, 0.7251477],
    +                             [0.53563064, 0.23129565, 0.92366195, 0.44261628]],
    +                            [[0.5770022, 0.56625944, 0.23560429, 0.11178821],
    +                             [0.7735967, 0.95678777, 0.25468266, 0.02895975]],
    +                            [[0.0589869, 0.09017515, 0.5977862, 0.02797985],
    +                             [0.603862, 0.35991007, 0.85761684, 0.3096559]],
    +                            [[0.22359002, 0.13983732, 0.5544243, 0.68863827],
    +                             [0.85646236, 0.75651926, 0.8638947, 0.83600986]],
    +                            [[0.45424145, 0.27458847, 0.6456112, 0.47162914],
    +                             [0.15773582, 0.47645122, 0.79964715, 0.3323908]],
    +                            [[0.8351399, 0.84696376, 0.9431732, 0.29418713],
    +                             [0.77168906, 0.6996871, 0.19354361, 0.03392768]],
    +                            [[0.30976456, 0.7074133, 0.581795, 0.976677],
    +                             [0.69656056, 0.07199162, 0.4708506, 0.29117996]],
    +                            [[0.5829035, 0.30201727, 0.76556486, 0.0935446],
    +                             [0.88030535, 0.16129416, 0.9242525, 0.49545723]]],
    +                           [[[0.50899494, 0.06482804, 0.44939405, 0.37704808],
    +                             [0.47028124, 0.11969638, 0.62823206, 0.28560323]],
    +                            [[0.40690207, 0.689753, 0.51636654, 0.23040164],
    +                             [0.06935787, 0.00488842, 0.22462702, 0.09182382]],
    +                            [[0.26611632, 0.00184339, 0.7730655, 0.5228131],
    +                             [0.87776035, 0.77895886, 0.2787183, 0.16620636]],
    +                            [[0.502574, 0.04039001, 0.5368497, 0.98379374],
    +                             [0.40973026, 0.3238272, 0.9733018, 0.13988364]],
    +                            [[0.04586202, 0.20983845, 0.20662665, 0.22270602],
    +                             [0.60387236, 0.5155574, 0.51237285, 0.6528438]],
    +                            [[0.45735973, 0.86821306, 0.61054605, 0.8370336],
    +                             [0.45193362, 0.3734138, 0.7825672, 0.5699416]],
    +                            [[0.44591594, 0.12447512, 0.09282011, 0.7055254],
    +                             [0.25223452, 0.46696228, 0.7051136, 0.892151]],
    +                            [[0.49615085, 0.47321403, 0.93138885, 0.7652197],
    +                             [0.38766378, 0.30332977, 0.23131835,
    +                              0.02863514]]]]).float().cuda()
    +    points.requires_grad_()
    +    centers = torch.tensor([[[[0.83878064, 0.96658987, 0.8033424, 0.9598312],
    +                              [0.45035273, 0.8768925, 0.977736, 0.54547966]],
    +                             [[0.01041394, 0.597893, 0.36212963, 0.4410367],
    +                              [0.94879234, 0.8372817, 0.21237361, 0.67945415]],
    +                             [[0.5096087, 0.26401454, 0.60034937, 0.5417416],
    +                              [0.87591463, 0.546456, 0.4096033, 0.16373193]],
    +                             [[0.79547447, 0.1482386, 0.12840575, 0.45384115],
    +                              [0.5640288, 0.944541, 0.5745328, 0.73229736]],
    +                             [[0.93011934, 0.7406011, 0.62621707, 0.8677915],
    +                              [0.91563636, 0.3595413, 0.6678378, 0.6085383]],
    +                             [[0.22431666, 0.65617776, 0.7483924, 0.6263364],
    +                              [0.30968404, 0.78204364, 0.14899081,
    +                               0.09628749]],
    +                             [[0.73675203, 0.72104895, 0.4648038, 0.6101647],
    +                              [0.7817645, 0.16572917, 0.3311919, 0.43407398]],
    +                             [[0.8193154, 0.09559608, 0.05978829, 0.90262103],
    +                              [0.4256065, 0.8165596, 0.8206446, 0.6604721]]],
    +                            [[[0.7159653, 0.18600845, 0.21433902, 0.3159626],
    +                              [0.3921569, 0.33221376, 0.5061177, 0.7961841]],
    +                             [[0.95338356, 0.04785997, 0.67185795, 0.6538394],
    +                              [0.4729132, 0.33404195, 0.17750603, 0.8445621]],
    +                             [[0.6755793, 0.16193843, 0.75943846, 0.92123103],
    +                              [0.2781859, 0.03114432, 0.710638, 0.52729136]],
    +                             [[0.8376105, 0.10858494, 0.13208169, 0.365772],
    +                              [0.5930795, 0.27390373, 0.14036089, 0.170403]],
    +                             [[0.3479789, 0.89855295, 0.04844379, 0.9871029],
    +                              [0.29781651, 0.0244137, 0.9179047, 0.8081611]],
    +                             [[0.12460887, 0.44991326, 0.19382608, 0.35037738],
    +                              [0.2773472, 0.4362057, 0.36757517, 0.5993509]],
    +                             [[0.29630446, 0.90046406, 0.5417113, 0.13510644],
    +                              [0.09623539, 0.04226565, 0.32001644,
    +                               0.44358212]],
    +                             [[0.5274848, 0.82096446, 0.9415489, 0.7123748],
    +                              [0.7537517, 0.8086482, 0.85345286,
    +                               0.7472754]]]]).float().cuda()
    +    centers.requires_grad_()
    +    knn_idx = torch.tensor([[[6, 7, 4, 6], [2, 4, 2, 4]],
    +                            [[7, 1, 3, 2], [6, 0, 2, 6]]]).long().cuda()
    +    aggregate = 'sum'
    +    expected_output = torch.tensor(
    +        [[[[-0.08134781, 0.03877336, -0.8212776, -0.2869547],
    +           [-0.23378491, -0.24112664, -0.1600166, -0.4121864]],
    +          [[-0.05780616, -0.12298299, -0.0370461, -0.07889931],
    +           [-0.13956165, -0.02006848, -0.10940295, -0.0293439]],
    +          [[0.09284145, 0.58250105, 0.5927749, 0.16774094],
    +           [0.27070042, 0.13422406, 0.2617501, 0.23416464]],
    +          [[-0.06121218, -0.09561322, -0.20408826, 0.08079343],
    +           [0.00944228, 0.03874819, 0.08404065, 0.04041629]]],
    +         [[[-0.2110898, -0.13335688, -0.09315082, 0.08512095],
    +           [0.09121774, 0.15976946, 0.23994486, 0.14350912]],
    +          [[-0.36167958, -0.14891288, -0.64470863, -0.0646704],
    +           [-0.28276974, -0.08847666, -0.46904767, 0.20491874]],
    +          [[-0.34877953, -0.35533834, -0.25225785, -0.4638189],
    +           [-0.1420663, 0.09467781, 0.17088932, 0.22580585]],
    +          [[-0.3879708, -0.3991068, 0.05276498, -0.46989647],
    +           [0.32522714, -0.02163534, 0.21604237, 0.4346682]]]]).float()
    +
    +    # test forward
    +    output = assign_score_withk(scores, points, centers, knn_idx, aggregate)
    +    assert torch.allclose(output.detach().cpu(), expected_output, atol=1e-6)
    +
    +    # test backward
    +    loss = output.sum()
    +    loss.backward()
    +    expected_scores_grad = torch.tensor([[[[0.04288036, -0.18217683],
    +                                           [-0.78873926, 0.7485497],
    +                                           [-0.6866992, 0.05346543],
    +                                           [0.04288036, -0.18217683]],
    +                                          [[-1.1407862, 0.13533896],
    +                                           [-0.06964391, -0.22948086],
    +                                           [-1.1407862, 0.13533896],
    +                                           [-0.06964391, -0.22948086]]],
    +                                         [[[-0.3363995, -2.212181],
    +                                           [-1.1589496, -2.7724311],
    +                                           [-0.9387654, -1.3163853],
    +                                           [-1.4385346, -1.0614843]],
    +                                          [[-0.5048497, 1.4143617],
    +                                           [-0.47332114, 0.6017133],
    +                                           [-0.30974793, 1.1995442],
    +                                           [-0.5048497, 1.4143617]]]]).float()
    +    expected_points_grad = torch.tensor(
    +        [[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0.15585709, 0.15585709, 0.15585709, 0.15585709],
    +           [1.1893613, 1.1893613, 1.1893613, 1.1893613]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[1.6530733, 1.6530733, 1.6530733, 1.6530733],
    +           [1.8130021, 1.8130021, 1.8130021, 1.8130021]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0.58863074, 0.58863074, 0.58863074, 0.58863074],
    +           [1.3727596, 1.3727596, 1.3727596, 1.3727596]],
    +          [[0.28462553, 0.28462553, 0.28462553, 0.28462553],
    +           [0.8378516, 0.8378516, 0.8378516, 0.8378516]]],
    +         [[[0.13817799, 0.13817799, 0.13817799, 0.13817799],
    +           [0.34856772, 0.34856772, 0.34856772, 0.34856772]],
    +          [[0.7405102, 0.7405102, 0.7405102, 0.7405102],
    +           [0.06438422, 0.06438422, 0.06438422, 0.06438422]],
    +          [[0.8491963, 0.8491963, 0.8491963, 0.8491963],
    +           [1.1301711, 1.1301711, 1.1301711, 1.1301711]],
    +          [[0.6887394, 0.6887394, 0.6887394, 0.6887394],
    +           [0.22089851, 0.22089851, 0.22089851, 0.22089851]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0.605832, 0.605832, 0.605832, 0.605832],
    +           [0.92364264, 0.92364264, 0.92364264, 0.92364264]],
    +          [[0.23089725, 0.23089725, 0.23089725, 0.23089725],
    +           [0.5568468, 0.5568468, 0.5568468, 0.5568468]]]]).float()
    +    expected_centers_grad = torch.tensor(
    +        [[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[-1.0493311, -1.0493311, -1.0493311, -1.0493311],
    +           [-2.0301602, -2.0301602, -2.0301602, -2.0301602]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[-1.6328557, -1.6328557, -1.6328557, -1.6328557],
    +           [-3.1828144, -3.1828144, -3.1828144, -3.1828144]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]]],
    +         [[[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[0., 0., 0., 0.], [0., 0., 0., 0.]],
    +          [[-1.5429721, -1.5429721, -1.5429721, -1.5429721],
    +           [-1.6100934, -1.6100934, -1.6100934, -1.6100934]],
    +          [[-1.7103812, -1.7103812, -1.7103812, -1.7103812],
    +           [-1.6344175, -1.6344175, -1.6344175, -1.6344175]]]]).float()
    +    assert torch.allclose(
    +        scores.grad.detach().cpu(), expected_scores_grad, atol=1e-6)
    +    assert torch.allclose(
    +        points.grad.detach().cpu(), expected_points_grad, atol=1e-6)
    +    assert torch.allclose(
    +        centers.grad.detach().cpu(), expected_centers_grad, atol=1e-6)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ball_query.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ball_query.py
    new file mode 100644
    index 000000000..d3fc7912c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ball_query.py
    @@ -0,0 +1,102 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import ball_query
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_ball_query():
    +    new_xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625],
    +                             [-2.2769, 2.7817, -0.2334],
    +                             [-0.4003, 2.4666, -0.5116],
    +                             [-0.0740, 1.3147, -1.3625],
    +                             [-0.0740, 1.3147, -1.3625]],
    +                            [[-2.0289, 2.4952, -0.1708],
    +                             [-2.0668, 6.0278, -0.4875],
    +                             [0.4066, 1.4211, -0.2947],
    +                             [-2.0289, 2.4952, -0.1708],
    +                             [-2.0289, 2.4952, -0.1708]]]).cuda()
    +
    +    xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625], [0.5555, 1.0399, -1.3634],
    +                         [-0.4003, 2.4666,
    +                          -0.5116], [-0.5251, 2.4379, -0.8466],
    +                         [-0.9691, 1.1418,
    +                          -1.3733], [-0.2232, 0.9561, -1.3626],
    +                         [-2.2769, 2.7817, -0.2334],
    +                         [-0.2822, 1.3192, -1.3645], [0.1533, 1.5024, -1.0432],
    +                         [0.4917, 1.1529, -1.3496]],
    +                        [[-2.0289, 2.4952,
    +                          -0.1708], [-0.7188, 0.9956, -0.5096],
    +                         [-2.0668, 6.0278, -0.4875], [-1.9304, 3.3092, 0.6610],
    +                         [0.0949, 1.4332, 0.3140], [-1.2879, 2.0008, -0.7791],
    +                         [-0.7252, 0.9611, -0.6371], [0.4066, 1.4211, -0.2947],
    +                         [0.3220, 1.4447, 0.3548], [-0.9744, 2.3856,
    +                                                    -1.2000]]]).cuda()
    +
    +    idx = ball_query(0, 0.2, 5, xyz, new_xyz)
    +    expected_idx = torch.tensor([[[0, 0, 0, 0, 0], [6, 6, 6, 6, 6],
    +                                  [2, 2, 2, 2, 2], [0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0]],
    +                                 [[0, 0, 0, 0, 0], [2, 2, 2, 2, 2],
    +                                  [7, 7, 7, 7, 7], [0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0]]]).cuda()
    +    assert torch.all(idx == expected_idx)
    +
    +    # test dilated ball query
    +    idx = ball_query(0.2, 0.4, 5, xyz, new_xyz)
    +    expected_idx = torch.tensor([[[0, 5, 7, 0, 0], [6, 6, 6, 6, 6],
    +                                  [2, 3, 2, 2, 2], [0, 5, 7, 0, 0],
    +                                  [0, 5, 7, 0, 0]],
    +                                 [[0, 0, 0, 0, 0], [2, 2, 2, 2, 2],
    +                                  [7, 7, 7, 7, 7], [0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0]]]).cuda()
    +    assert torch.all(idx == expected_idx)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_stack_ball_query():
    +    new_xyz = torch.tensor([[-0.0740, 1.3147, -1.3625],
    +                            [-2.2769, 2.7817, -0.2334],
    +                            [-0.4003, 2.4666, -0.5116],
    +                            [-0.0740, 1.3147, -1.3625],
    +                            [-0.0740, 1.3147, -1.3625],
    +                            [-2.0289, 2.4952, -0.1708],
    +                            [-2.0668, 6.0278, -0.4875],
    +                            [0.4066, 1.4211, -0.2947],
    +                            [-2.0289, 2.4952, -0.1708],
    +                            [-2.0289, 2.4952, -0.1708]]).cuda()
    +    new_xyz_batch_cnt = torch.tensor([5, 5], dtype=torch.int32).cuda()
    +    xyz = torch.tensor([[-0.0740, 1.3147, -1.3625], [0.5555, 1.0399, -1.3634],
    +                        [-0.4003, 2.4666, -0.5116], [-0.5251, 2.4379, -0.8466],
    +                        [-0.9691, 1.1418, -1.3733], [-0.2232, 0.9561, -1.3626],
    +                        [-2.2769, 2.7817, -0.2334], [-0.2822, 1.3192, -1.3645],
    +                        [0.1533, 1.5024, -1.0432], [0.4917, 1.1529, -1.3496],
    +                        [-2.0289, 2.4952, -0.1708], [-0.7188, 0.9956, -0.5096],
    +                        [-2.0668, 6.0278, -0.4875], [-1.9304, 3.3092, 0.6610],
    +                        [0.0949, 1.4332, 0.3140], [-1.2879, 2.0008, -0.7791],
    +                        [-0.7252, 0.9611, -0.6371], [0.4066, 1.4211, -0.2947],
    +                        [0.3220, 1.4447, 0.3548], [-0.9744, 2.3856,
    +                                                   -1.2000]]).cuda()
    +    xyz_batch_cnt = torch.tensor([10, 10], dtype=torch.int32).cuda()
    +    idx = ball_query(0, 0.2, 5, xyz, new_xyz, xyz_batch_cnt, new_xyz_batch_cnt)
    +    expected_idx = torch.tensor([[0, 0, 0, 0, 0], [6, 6, 6, 6, 6],
    +                                 [2, 2, 2, 2, 2], [0, 0, 0, 0, 0],
    +                                 [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
    +                                 [2, 2, 2, 2, 2], [7, 7, 7, 7, 7],
    +                                 [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]).cuda()
    +    assert torch.all(idx == expected_idx)
    +
    +    xyz = xyz.double()
    +    new_xyz = new_xyz.double()
    +    expected_idx = expected_idx.double()
    +    idx = ball_query(0, 0.2, 5, xyz, new_xyz, xyz_batch_cnt, new_xyz_batch_cnt)
    +    assert torch.all(idx == expected_idx)
    +
    +    xyz = xyz.half()
    +    new_xyz = new_xyz.half()
    +    expected_idx = expected_idx.half()
    +    idx = ball_query(0, 0.2, 5, xyz, new_xyz, xyz_batch_cnt, new_xyz_batch_cnt)
    +    assert torch.all(idx == expected_idx)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bbox.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bbox.py
    new file mode 100644
    index 000000000..7123b1ee1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bbox.py
    @@ -0,0 +1,66 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE
    +
    +
    +class TestBBox:
    +
    +    def _test_bbox_overlaps(self, device='cpu', dtype=torch.float):
    +        from mmcv.ops import bbox_overlaps
    +        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0],
    +                           [7.0, 7.0, 8.0, 8.0]]).to(device).type(dtype)
    +        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
    +                                                  3.0]]).to(device).type(dtype)
    +        should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]])
    +        out = bbox_overlaps(b1, b2, offset=1)
    +        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)
    +
    +        b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0,
    +                                                  4.0]]).to(device).type(dtype)
    +        b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0,
    +                                                  3.0]]).to(device).type(dtype)
    +        should_output = np.array([0.33333334, 0.5])
    +        out = bbox_overlaps(b1, b2, aligned=True, offset=1)
    +        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)
    +
    +        b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).to(device).type(dtype)
    +        b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0],
    +                           [2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0,
    +                                                  3.0]]).to(device).type(dtype)
    +        should_output = np.array([0, 0.2, 0.5, 0.5])
    +        out = bbox_overlaps(b1, b2, offset=1)
    +        assert np.allclose(out.cpu().numpy(), should_output, 1e-2)
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support')),
    +        pytest.param(
    +            'mps',
    +            marks=pytest.mark.skipif(
    +                not IS_MPS_AVAILABLE, reason='requires MPS support'))
    +    ])
    +    def test_bbox_overlaps_float(self, device):
    +        self._test_bbox_overlaps(device, dtype=torch.float)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_bbox_overlaps_half(self, device):
    +        self._test_bbox_overlaps(device, dtype=torch.half)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bilinear_grid_sample.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bilinear_grid_sample.py
    new file mode 100644
    index 000000000..8f43d4ff2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_bilinear_grid_sample.py
    @@ -0,0 +1,41 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import torch
    +import torch.nn.functional as F
    +
    +
    +class TestBilinearGridSample:
    +
    +    def _test_bilinear_grid_sample(self,
    +                                   dtype=torch.float,
    +                                   align_corners=False,
    +                                   multiplier=1,
    +                                   precision=1e-3):
    +        from mmcv.ops.point_sample import bilinear_grid_sample
    +
    +        input = torch.rand(1, 1, 20, 20, dtype=dtype)
    +        grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    +        grid = F.affine_grid(
    +            grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
    +        grid *= multiplier
    +
    +        out = bilinear_grid_sample(input, grid, align_corners=align_corners)
    +        ref_out = F.grid_sample(input, grid, align_corners=align_corners)
    +
    +        assert np.allclose(out.data.detach().cpu().numpy(),
    +                           ref_out.data.detach().cpu().numpy(), precision)
    +
    +    def test_bilinear_grid_sample(self):
    +        self._test_bilinear_grid_sample(torch.double, False)
    +        self._test_bilinear_grid_sample(torch.double, True)
    +        self._test_bilinear_grid_sample(torch.float, False)
    +        self._test_bilinear_grid_sample(torch.float, True)
    +        self._test_bilinear_grid_sample(torch.float, False)
    +        self._test_bilinear_grid_sample(torch.float, True, 5)
    +        self._test_bilinear_grid_sample(torch.float, False, 10)
    +        self._test_bilinear_grid_sample(torch.float, True, -6)
    +        self._test_bilinear_grid_sample(torch.float, False, -10)
    +        self._test_bilinear_grid_sample(torch.double, True, 5)
    +        self._test_bilinear_grid_sample(torch.double, False, 10)
    +        self._test_bilinear_grid_sample(torch.double, True, -6)
    +        self._test_bilinear_grid_sample(torch.double, False, -10)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_border_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_border_align.py
    new file mode 100644
    index 000000000..71518ce96
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_border_align.py
    @@ -0,0 +1,91 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import copy
    +
    +import numpy as np
    +import pytest
    +import torch
    +
    +# [1,4c,h,w]
    +input_arr = [[[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]],
    +              [[6, 7, 5, 8], [2, 1, 3, 4], [12, 9, 11, 10]],
    +              [[-2, -3, 2, 0], [-4, -5, 1, -1], [-1, -1, -1, -1]],
    +              [[0, -1, 2, 1], [-4, -3, -2, -1], [-1, -2, -3, -4]]]]
    +# [1,h*w,4]
    +boxes_arr = [[[0, 0, 2, 1], [1, 0, 3, 1], [1, 0, 2, 1], [0, 0, 3, 1],
    +              [0, 0, 1, 2], [0, 0, 2, 2], [1, 0, 2, 1], [1, 0, 3, 1],
    +              [0, 1, 1, 2], [0, 0, 3, 2], [1, 0, 3, 2], [2, 0, 3, 2]]]
    +output_dict = {
    +    # [1,c,h*w,4] for each value,
    +    # the output is manually checked for its correctness
    +
    +    # pool_size=1
    +    1: [[[[3., 6., 1., 2.], [4., 7., -1., 1.], [3., 7., 1., 2.],
    +          [4., 6., -1., 1.], [2., 12., -1., -1.], [3., 12., -1., 2.],
    +          [3., 7., 1., 2.], [4., 7., -1., 1.], [6., 12., -1., -2.],
    +          [4., 12., -1., 1.], [4., 9., -1., 1.], [4., 11., -1., 1.]]]],
    +
    +    # pool_size=2
    +    2: [[[[3., 6., 1., 2.], [4., 7., 1., 1.], [3., 7., 1., 2.],
    +          [4., 6., -1., 1.], [2., 12., -1., -1.], [3., 12., -1., 2.],
    +          [3., 7., 1., 2.], [4., 7., 1., 1.], [6., 12., -1., -2.],
    +          [4., 12., -1., 1.], [4., 9., -1., 1.], [4., 11., -1., 1.]]]],
    +}
    +input_grad_dict = {
    +    # [1,4c,h,w] for each value
    +    # the grad is manually checked for its correctness
    +
    +    # pool_size=1
    +    1: [[[[0., 1., 4., 6.], [0., 1., 0., 0.], [0., 0., 0., 0.]],
    +         [[2., 4., 0., 0.], [0., 0., 0., 0.], [4., 1., 1., 0.]],
    +         [[0., 0., 0., 0.], [0., 0., 3., 3.], [0., 2., 1., 3.]],
    +         [[0., 1., 4., 6.], [0., 0., 0., 0.], [0., 1., 0., 0.]]]],
    +
    +    # pool_size=2
    +    2: [[[[0., 1., 4., 6.], [0., 1., 0., 0.], [0., 0., 0., 0.]],
    +         [[2., 4., 0., 0.], [0., 0., 0., 0.], [4., 1., 1., 0.]],
    +         [[0., 0., 0., 0.], [0., 0., 5., 1.], [0., 2., 1., 3.]],
    +         [[0., 1., 4., 6.], [0., 0., 0., 0.], [0., 1., 0., 0.]]]],
    +}
    +
    +
    +def _test_border_align_allclose(device, dtype, pool_size):
    +    if not torch.cuda.is_available() and device == 'cuda':
    +        pytest.skip('test requires GPU')
    +    try:
    +        from mmcv.ops import BorderAlign, border_align
    +    except ModuleNotFoundError:
    +        pytest.skip('BorderAlign op is not successfully compiled')
    +
    +    np_input = np.array(input_arr)
    +    np_boxes = np.array(boxes_arr)
    +    np_output = np.array(output_dict[pool_size])
    +    np_grad = np.array(input_grad_dict[pool_size])
    +
    +    input = torch.tensor(
    +        np_input, dtype=dtype, device=device, requires_grad=True)
    +    boxes = torch.tensor(np_boxes, dtype=dtype, device=device)
    +
    +    # test for border_align
    +    input_cp = copy.deepcopy(input)
    +    output = border_align(input_cp, boxes, pool_size)
    +    output.backward(torch.ones_like(output))
    +    assert np.allclose(
    +        output.data.type(dtype).cpu().numpy(), np_output, atol=1e-5)
    +    assert np.allclose(
    +        input_cp.grad.data.type(dtype).cpu().numpy(), np_grad, atol=1e-5)
    +
    +    # test for BorderAlign
    +    pool_module = BorderAlign(pool_size)
    +    output = pool_module(input, boxes)
    +    output.backward(torch.ones_like(output))
    +    assert np.allclose(
    +        output.data.type(dtype).cpu().numpy(), np_output, atol=1e-5)
    +    assert np.allclose(
    +        input.grad.data.type(dtype).cpu().numpy(), np_grad, atol=1e-5)
    +
    +
    +@pytest.mark.parametrize('device', ['cuda'])
    +@pytest.mark.parametrize('dtype', [torch.float, torch.half, torch.double])
    +@pytest.mark.parametrize('pool_size', [1, 2])
    +def test_border_align(device, dtype, pool_size):
    +    _test_border_align_allclose(device, dtype, pool_size)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_quadri.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_quadri.py
    new file mode 100644
    index 000000000..e5cfcab61
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_quadri.py
    @@ -0,0 +1,77 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE
    +
    +
    +class TestBoxIoUQuadri:
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    ])
    +    def test_box_iou_quadri_cuda(self, device):
    +        from mmcv.ops import box_iou_quadri
    +        np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0],
    +                                [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0],
    +                                [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]],
    +                               dtype=np.float32)
    +        np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                                [2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0],
    +                                [7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]],
    +                               dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.0714, 1.0000, 0.0000], [0.0000, 0.5000, 0.0000],
    +             [0.0000, 0.0000, 0.5000]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.0714, 0.5000, 0.5000],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1).to(device)
    +        boxes2 = torch.from_numpy(np_boxes2).to(device)
    +
    +        ious = box_iou_quadri(boxes1, boxes2)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_quadri(boxes1, boxes2, aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    ])
    +    def test_box_iou_quadri_iof_cuda(self, device):
    +        from mmcv.ops import box_iou_quadri
    +        np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0],
    +                                [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0],
    +                                [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]],
    +                               dtype=np.float32)
    +        np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                                [2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0],
    +                                [7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]],
    +                               dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.1111, 1.0000, 0.0000], [0.0000, 1.0000, 0.0000],
    +             [0.0000, 0.0000, 1.0000]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.1111, 1.0000, 1.0000],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1).to(device)
    +        boxes2 = torch.from_numpy(np_boxes2).to(device)
    +
    +        ious = box_iou_quadri(boxes1, boxes2, mode='iof')
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_quadri(boxes1, boxes2, mode='iof', aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_rotated.py
    new file mode 100644
    index 000000000..9f5e0dfa3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_box_iou_rotated.py
    @@ -0,0 +1,163 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +
    +class TestBoxIoURotated:
    +
    +    def test_box_iou_rotated_cpu(self):
    +        from mmcv.ops import box_iou_rotated
    +        np_boxes1 = np.asarray(
    +            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
    +             [7.0, 7.0, 8.0, 8.0, 0.4]],
    +            dtype=np.float32)
    +        np_boxes2 = np.asarray(
    +            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
    +             [5.0, 5.0, 6.0, 7.0, 0.4]],
    +            dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
    +             [0.0000, 0.0000, 0.3622]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1)
    +        boxes2 = torch.from_numpy(np_boxes2)
    +
    +        # test cw angle definition
    +        ious = box_iou_rotated(boxes1, boxes2)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +        # test ccw angle definition
    +        boxes1[..., -1] *= -1
    +        boxes2[..., -1] *= -1
    +        ious = box_iou_rotated(boxes1, boxes2, clockwise=False)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(boxes1, boxes2, aligned=True, clockwise=False)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +    @pytest.mark.skipif(
    +        not torch.cuda.is_available(), reason='requires CUDA support')
    +    def test_box_iou_rotated_cuda(self):
    +        from mmcv.ops import box_iou_rotated
    +        np_boxes1 = np.asarray(
    +            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
    +             [7.0, 7.0, 8.0, 8.0, 0.4]],
    +            dtype=np.float32)
    +        np_boxes2 = np.asarray(
    +            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
    +             [5.0, 5.0, 6.0, 7.0, 0.4]],
    +            dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
    +             [0.0000, 0.0000, 0.3622]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1).cuda()
    +        boxes2 = torch.from_numpy(np_boxes2).cuda()
    +
    +        # test cw angle definition
    +        ious = box_iou_rotated(boxes1, boxes2)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +        # test ccw angle definition
    +        boxes1[..., -1] *= -1
    +        boxes2[..., -1] *= -1
    +        ious = box_iou_rotated(boxes1, boxes2, clockwise=False)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(boxes1, boxes2, aligned=True, clockwise=False)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +    def test_box_iou_rotated_iof_cpu(self):
    +        from mmcv.ops import box_iou_rotated
    +        np_boxes1 = np.asarray(
    +            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
    +             [7.0, 7.0, 8.0, 8.0, 0.4]],
    +            dtype=np.float32)
    +        np_boxes2 = np.asarray(
    +            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
    +             [5.0, 5.0, 6.0, 7.0, 0.4]],
    +            dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
    +             [0.0000, 0.0000, 0.4404]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1)
    +        boxes2 = torch.from_numpy(np_boxes2)
    +
    +        # test cw angle definition
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +        # test ccw angle definition
    +        boxes1[..., -1] *= -1
    +        boxes2[..., -1] *= -1
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof', clockwise=False)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +        ious = box_iou_rotated(
    +            boxes1, boxes2, mode='iof', aligned=True, clockwise=False)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +    @pytest.mark.skipif(
    +        not torch.cuda.is_available(), reason='requires CUDA support')
    +    def test_box_iou_rotated_iof_cuda(self):
    +        from mmcv.ops import box_iou_rotated
    +        np_boxes1 = np.asarray(
    +            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
    +             [7.0, 7.0, 8.0, 8.0, 0.4]],
    +            dtype=np.float32)
    +        np_boxes2 = np.asarray(
    +            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
    +             [5.0, 5.0, 6.0, 7.0, 0.4]],
    +            dtype=np.float32)
    +        np_expect_ious = np.asarray(
    +            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
    +             [0.0000, 0.0000, 0.4404]],
    +            dtype=np.float32)
    +        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
    +                                            dtype=np.float32)
    +
    +        boxes1 = torch.from_numpy(np_boxes1).cuda()
    +        boxes2 = torch.from_numpy(np_boxes2).cuda()
    +
    +        # test cw angle definition
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    +
    +        # test ccw angle definition
    +        boxes1[..., -1] *= -1
    +        boxes2[..., -1] *= -1
    +        ious = box_iou_rotated(boxes1, boxes2, mode='iof', clockwise=False)
    +        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +        ious = box_iou_rotated(
    +            boxes1, boxes2, mode='iof', aligned=True, clockwise=False)
    +        assert np.allclose(
    +            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_carafe.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_carafe.py
    new file mode 100644
    index 000000000..02d00f1ff
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_carafe.py
    @@ -0,0 +1,85 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +from torch.autograd import gradcheck
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +class TestCarafe:
    +
    +    def test_carafe_naive_gradcheck(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import CARAFENaive
    +        feat = torch.randn(
    +            2, 64, 3, 3, requires_grad=True, device='cuda').double()
    +        mask = torch.randn(
    +            2, 100, 6, 6, requires_grad=True,
    +            device='cuda').sigmoid().double()
    +        gradcheck(CARAFENaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)
    +
    +    def test_carafe_gradcheck(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import CARAFE
    +        feat = torch.randn(
    +            2, 64, 3, 3, requires_grad=True, device='cuda').double()
    +        mask = torch.randn(
    +            2, 100, 6, 6, requires_grad=True,
    +            device='cuda').sigmoid().double()
    +        gradcheck(CARAFE(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_carafe_allclose(self, device):
    +        try:
    +            from mmcv.ops import CARAFE
    +        except ModuleNotFoundError:
    +            pytest.skip('test requires compilation')
    +
    +        np_feat = np.fromfile(
    +            'tests/data/for_carafe/carafe_feat.bin', dtype=np.float32)
    +        np_mask = np.fromfile(
    +            'tests/data/for_carafe/carafe_mask.bin', dtype=np.float32)
    +        np_output = np.fromfile(
    +            'tests/data/for_carafe/carafe_output.bin', dtype=np.float32)
    +        np_feat_grad = np.fromfile(
    +            'tests/data/for_carafe/carafe_feat_grad.bin', dtype=np.float32)
    +        np_mask_grad = np.fromfile(
    +            'tests/data/for_carafe/carafe_mask_grad.bin', dtype=np.float32)
    +
    +        np_feat = np_feat.reshape((2, 64, 3, 3))
    +        np_mask = np_mask.reshape((2, 100, 6, 6))
    +        np_output = np_output.reshape((2, 64, 6, 6))
    +        np_feat_grad = np_feat_grad.reshape((2, 64, 3, 3))
    +        np_mask_grad = np_mask_grad.reshape((2, 100, 6, 6))
    +
    +        feat = torch.tensor(
    +            np_feat, dtype=torch.float, device=device, requires_grad=True)
    +        mask = torch.tensor(
    +            np_mask, dtype=torch.float, device=device, requires_grad=True)
    +
    +        carafe = CARAFE(5, 4, 2)
    +
    +        output = carafe(feat, mask)
    +        output.backward(torch.ones_like(output))
    +        assert np.allclose(
    +            output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
    +        assert np.allclose(
    +            feat.grad.data.type(torch.float).cpu().numpy(),
    +            np_feat_grad,
    +            atol=1e-3)
    +        assert np.allclose(
    +            mask.grad.data.type(torch.float).cpu().numpy(),
    +            np_mask_grad,
    +            atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_cc_attention.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_cc_attention.py
    new file mode 100644
    index 000000000..b2a8d22a3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_cc_attention.py
    @@ -0,0 +1,56 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +
    +
    +class Loss(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +
    +    def forward(self, input, target):
    +        input = input.view(-1)
    +        target = target.view(-1)
    +        return torch.mean(input - target)
    +
    +
    +class TestCrissCrossAttention:
    +
    +    def test_cc_attention(self):
    +        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    +
    +        from mmcv.ops import CrissCrossAttention
    +        loss_func = Loss()
    +
    +        input = np.fromfile(
    +            'tests/data/for_ccattention/ccattention_input.bin',
    +            dtype=np.float32)
    +        output = np.fromfile(
    +            'tests/data/for_ccattention/ccattention_output.bin',
    +            dtype=np.float32)
    +        input = input.reshape((1, 32, 45, 45))
    +        output = output.reshape((1, 32, 45, 45))
    +        label = torch.ones((1, 32, 45, 45))
    +
    +        input = torch.FloatTensor(input)
    +        output = torch.FloatTensor(output)
    +
    +        input.requires_grad = True
    +
    +        shape = input.shape
    +        channel = shape[1]
    +
    +        cca = CrissCrossAttention(channel)
    +        cca.to(device)
    +        input = input.to(device)
    +        label = label.to(device)
    +        cca.train()
    +        test_output = cca(input)
    +        test_loss = loss_func(test_output, label)
    +        test_loss.backward()
    +        test_output = test_output.detach().cpu().numpy()
    +        output = output.numpy()
    +
    +        assert np.allclose(test_output, output)
    +        assert test_output.shape == shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_chamfer_distance.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_chamfer_distance.py
    new file mode 100644
    index 000000000..522dcdddc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_chamfer_distance.py
    @@ -0,0 +1,57 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import chamfer_distance
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_chamfer_distance():
    +    pointset1 = torch.tensor(
    +        [[[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]],
    +         [[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]],
    +         [[1.6, 9.99], [2.3, 9.99], [2.3, 10.39], [1.6, 10.39]]],
    +        device='cuda',
    +        requires_grad=True)
    +
    +    pointset2 = torch.tensor(
    +        [[[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]],
    +         [[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]],
    +         [[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]]],
    +        device='cuda',
    +        requires_grad=True)
    +
    +    expected_dist1 = torch.tensor(
    +        [[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900],
    +         [0.5200, 0.6500, 0.4900, 0.3600]],
    +        device='cuda')
    +    expected_dist2 = torch.tensor(
    +        [[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900],
    +         [0.7200, 0.8500, 0.4900, 0.3600]],
    +        device='cuda')
    +
    +    expected_pointset1_grad = torch.tensor(
    +        [[[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000],
    +          [0.6000, 0.0000]],
    +         [[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000],
    +          [-0.6000, 0.0000]],
    +         [[1.2000, -0.8000], [-1.4000, -0.8000], [-1.4000, 0.0000],
    +          [1.2000, 0.0000]]],
    +        device='cuda')
    +
    +    expected_pointset2_grad = torch.tensor(
    +        [[[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000],
    +          [-0.6000, 0.0000]],
    +         [[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000],
    +          [0.6000, 0.0000]],
    +         [[0.0000, 0.0000], [0.0000, 0.0000], [2.8000, 0.8000],
    +          [-2.4000, 0.8000]]],
    +        device='cuda')
    +
    +    dist1, dist2, idx1, idx2 = chamfer_distance(pointset1, pointset2)
    +    dist1.backward(torch.ones_like(dist1))
    +    assert torch.allclose(dist1, expected_dist1, 1e-2)
    +    assert torch.allclose(dist2, expected_dist2, 1e-2)
    +    assert torch.allclose(pointset1.grad.data, expected_pointset1_grad, 1e-2)
    +    assert torch.allclose(pointset2.grad.data, expected_pointset2_grad, 1e-2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_contour_expand.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_contour_expand.py
    new file mode 100644
    index 000000000..b36bbf415
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_contour_expand.py
    @@ -0,0 +1,49 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import torch
    +
    +
    +def test_contour_expand():
    +    from mmcv.ops import contour_expand
    +
    +    np_internal_kernel_label = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                         [0, 0, 1, 1, 0, 0, 0, 0, 2, 0],
    +                                         [0, 0, 1, 1, 0, 0, 0, 0, 2, 0],
    +                                         [0, 0, 1, 1, 0, 0, 0, 0, 2, 0],
    +                                         [0, 0, 1, 1, 0, 0, 0, 0, 2, 0],
    +                                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                         [0, 0, 0, 0, 0, 0, 0, 0, 0,
    +                                          0]]).astype(np.int32)
    +    np_kernel_mask1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
    +                                [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
    +                                [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
    +                                [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0,
    +                                 0]]).astype(np.uint8)
    +    np_kernel_mask2 = (np_internal_kernel_label > 0).astype(np.uint8)
    +
    +    np_kernel_mask = np.stack([np_kernel_mask1, np_kernel_mask2])
    +    min_area = 1
    +    kernel_region_num = 3
    +    result = contour_expand(np_kernel_mask, np_internal_kernel_label, min_area,
    +                            kernel_region_num)
    +    gt = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0],
    +          [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0],
    +          [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    +    assert np.allclose(result, gt)
    +
    +    np_kernel_mask_t = torch.from_numpy(np_kernel_mask)
    +    np_internal_kernel_label_t = torch.from_numpy(np_internal_kernel_label)
    +    result = contour_expand(np_kernel_mask_t, np_internal_kernel_label_t,
    +                            min_area, kernel_region_num)
    +    assert np.allclose(result, gt)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_convex_iou.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_convex_iou.py
    new file mode 100644
    index 000000000..95dc48243
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_convex_iou.py
    @@ -0,0 +1,56 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import convex_giou, convex_iou
    +
    +np_pointsets = np.asarray([[
    +    1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 3.0,
    +    2.0, 1.5, 1.5
    +],
    +                           [
    +                               1.5, 1.5, 2.5, 2.5, 1.5, 2.5, 2.5, 1.5, 1.5,
    +                               3.5, 3.5, 1.5, 2.5, 3.5, 3.5, 2.5, 2.0, 2.0
    +                           ]])
    +
    +np_polygons = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.0],
    +                          [1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 1.0]])
    +
    +np_expected_iou = np.asarray([[0.2857, 0.8750], [0.0588, 0.4286]])
    +
    +np_expected_giou = np.asarray([0.2857, 0.3831])
    +
    +np_expected_grad = np.asarray([[
    +    0.0204, 0.0408, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0612,
    +    -0.0408, -0.0408, 0.0816, -0.0408, -0.0816, -0.0816, -0.0408, 0.0000,
    +    0.0000
    +],
    +                               [
    +                                   -0.1848, -0.1848, 0.0000, 0.0000, 0.0000,
    +                                   0.0000, 0.0000, 0.0000, -0.1076, -0.0801,
    +                                   -0.0801, -0.1076, -0.0367, -0.0734, -0.0734,
    +                                   -0.0367, 0.0000, 0.0000
    +                               ]])
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_convex_iou():
    +    pointsets = torch.from_numpy(np_pointsets).cuda().float()
    +    polygons = torch.from_numpy(np_polygons).cuda().float()
    +    expected_iou = torch.from_numpy(np_expected_iou).cuda().float()
    +    assert torch.allclose(
    +        convex_iou(pointsets, polygons), expected_iou, atol=1e-3)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_convex_giou():
    +    pointsets = torch.from_numpy(np_pointsets).cuda().float()
    +    polygons = torch.from_numpy(np_polygons).cuda().float()
    +    expected_giou = torch.from_numpy(np_expected_giou).cuda().float()
    +    expected_grad = torch.from_numpy(np_expected_grad).cuda().float()
    +    giou, grad = convex_giou(pointsets, polygons)
    +    assert torch.allclose(giou, expected_giou, atol=1e-3)
    +    assert torch.allclose(grad, expected_grad, atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_corner_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_corner_pool.py
    new file mode 100644
    index 000000000..d6dd25f22
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_corner_pool.py
    @@ -0,0 +1,59 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""
    +CommandLine:
    +    pytest tests/test_corner_pool.py
    +"""
    +import pytest
    +import torch
    +
    +from mmcv.ops import CornerPool
    +
    +
    +def test_corner_pool_device_and_dtypes_cpu():
    +    """
    +    CommandLine:
    +        xdoctest -m tests/test_corner_pool.py \
    +            test_corner_pool_device_and_dtypes_cpu
    +    """
    +    with pytest.raises(AssertionError):
    +        # pool mode must in ['bottom', 'left', 'right', 'top']
    +        pool = CornerPool('corner')
    +
    +    lr_tensor = torch.tensor([[[[0, 0, 0, 0, 0], [2, 1, 3, 0, 2],
    +                                [5, 4, 1, 1, 6], [0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0]]]])
    +    tb_tensor = torch.tensor([[[[0, 3, 1, 0, 0], [0, 1, 1, 0, 0],
    +                                [0, 3, 4, 0, 0], [0, 2, 2, 0, 0],
    +                                [0, 0, 2, 0, 0]]]])
    +    # Left Pool
    +    left_answer = torch.tensor([[[[0, 0, 0, 0, 0], [3, 3, 3, 2, 2],
    +                                  [6, 6, 6, 6, 6], [0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0]]]])
    +    pool = CornerPool('left')
    +    left_tensor = pool(lr_tensor)
    +    assert left_tensor.type() == lr_tensor.type()
    +    assert torch.equal(left_tensor, left_answer)
    +    # Right Pool
    +    right_answer = torch.tensor([[[[0, 0, 0, 0, 0], [2, 2, 3, 3, 3],
    +                                   [5, 5, 5, 5, 6], [0, 0, 0, 0, 0],
    +                                   [0, 0, 0, 0, 0]]]])
    +    pool = CornerPool('right')
    +    right_tensor = pool(lr_tensor)
    +    assert right_tensor.type() == lr_tensor.type()
    +    assert torch.equal(right_tensor, right_answer)
    +    # Top Pool
    +    top_answer = torch.tensor([[[[0, 3, 4, 0, 0], [0, 3, 4, 0, 0],
    +                                 [0, 3, 4, 0, 0], [0, 2, 2, 0, 0],
    +                                 [0, 0, 2, 0, 0]]]])
    +    pool = CornerPool('top')
    +    top_tensor = pool(tb_tensor)
    +    assert top_tensor.type() == tb_tensor.type()
    +    assert torch.equal(top_tensor, top_answer)
    +    # Bottom Pool
    +    bottom_answer = torch.tensor([[[[0, 3, 1, 0, 0], [0, 3, 1, 0, 0],
    +                                    [0, 3, 4, 0, 0], [0, 3, 4, 0, 0],
    +                                    [0, 3, 4, 0, 0]]]])
    +    pool = CornerPool('bottom')
    +    bottom_tensor = pool(tb_tensor)
    +    assert bottom_tensor.type() == tb_tensor.type()
    +    assert torch.equal(bottom_tensor, bottom_answer)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_correlation.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_correlation.py
    new file mode 100644
    index 000000000..916c3944a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_correlation.py
    @@ -0,0 +1,45 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import Correlation
    +
    +_input1 = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    +_input2 = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
    +
    +gt_out_shape = (1, 1, 1, 3, 3)
    +_gt_out = [[[[[1., 4., 9.], [0., 1., 4.], [24., 25., 4.]]]]]
    +gt_input1_grad = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
    +
    +
    +def assert_equal_tensor(tensor_a, tensor_b):
    +    assert tensor_a.eq(tensor_b).all()
    +
    +
    +class TestCorrelation:
    +
    +    def _test_correlation(self, dtype=torch.float):
    +
    +        layer = Correlation(max_displacement=0)
    +
    +        input1 = torch.tensor(_input1, dtype=dtype).cuda()
    +        input2 = torch.tensor(_input2, dtype=dtype).cuda()
    +        input1.requires_grad = True
    +        input2.requires_grad = True
    +        out = layer(input1, input2)
    +        out.backward(torch.ones_like(out))
    +
    +        # `eq_cpu` is not implemented for 'Half' in torch1.5.0,
    +        # so we need to make a comparison for cuda tensor
    +        # rather than cpu tensor
    +        gt_out = torch.tensor(_gt_out, dtype=dtype).cuda()
    +        assert_equal_tensor(out, gt_out)
    +        assert_equal_tensor(input1.grad.detach(), input2)
    +        assert_equal_tensor(input2.grad.detach(), input1)
    +
    +    @pytest.mark.skipif(
    +        not torch.cuda.is_available(), reason='requires CUDA support')
    +    def test_correlation(self):
    +        self._test_correlation(torch.float)
    +        self._test_correlation(torch.double)
    +        self._test_correlation(torch.half)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_conv.py
    new file mode 100644
    index 000000000..e77b5f975
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_conv.py
    @@ -0,0 +1,200 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import TORCH_VERSION, digit_version
    +
    +try:
    +    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    +    # would be imported and used; we should test if our modules support it.
    +    from torch.cuda.amp import autocast
    +except ImportError:
    +    pass
    +
    +input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    +offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
    +                 [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
    +                 [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
    +                 [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
    +offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
    +deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
    +
    +gt_out = [[[[1.650, 0.], [0.000, 0.]]]]
    +gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012],
    +               [0.000, 0.252, 0.129]]]]
    +gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]],
    +                         [[[-0.72, -1.44], [0.00, -0.72]]],
    +                         [[[0.00, 0.00], [0.00, 0.00]]],
    +                         [[[0.00, 0.00], [0.00, 0.00]]],
    +                         [[[-0.10, -0.20], [0.00, -0.10]]],
    +                         [[[-0.08, -0.16], [0.00, -0.08]]],
    +                         [[[-0.54, -1.08], [0.00, -0.54]]],
    +                         [[[-0.54, -1.08], [0.00, -0.54]]]]
    +gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
    +gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]
    +
    +
    +class TestDeformconv:
    +
    +    def _test_deformconv(self,
    +                         dtype=torch.float,
    +                         threshold=1e-3,
    +                         device='cuda',
    +                         batch_size=10,
    +                         im2col_step=2):
    +        if not torch.cuda.is_available() and device == 'cuda':
    +            pytest.skip('test requires GPU')
    +        from mmcv.ops import DeformConv2dPack
    +        c_in = 1
    +        c_out = 1
    +        batch_size = 10
    +        repeated_input = np.repeat(input, batch_size, axis=0)
    +        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
    +        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
    +        x = torch.tensor(repeated_input, device=device, dtype=dtype)
    +        x.requires_grad = True
    +        model = DeformConv2dPack(
    +            in_channels=c_in,
    +            out_channels=c_out,
    +            kernel_size=2,
    +            stride=1,
    +            padding=0,
    +            im2col_step=im2col_step)
    +        model.conv_offset.weight.data = torch.nn.Parameter(
    +            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    +        model.conv_offset.bias.data = torch.nn.Parameter(
    +            torch.Tensor(offset_bias).reshape(8))
    +        model.weight.data = torch.nn.Parameter(
    +            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
    +        if device == 'cuda':
    +            model.cuda()
    +        model.type(dtype)
    +
    +        out = model(x)
    +        out.backward(torch.ones_like(out))
    +
    +        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
    +                           threshold)
    +        assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
    +                           threshold)
    +        # the batch size of the input is increased which results in
    +        # a larger gradient so we need to divide by the batch_size
    +        assert np.allclose(
    +            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
    +            gt_offset_weight_grad, threshold)
    +        assert np.allclose(
    +            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
    +            gt_offset_bias_grad, threshold)
    +        assert np.allclose(
    +            model.weight.grad.detach().cpu().numpy() / batch_size,
    +            gt_deform_weight_grad, threshold)
    +
    +        from mmcv.ops import DeformConv2d
    +
    +        # test bias
    +        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
    +        assert not hasattr(model, 'bias')
    +        # test bias=True
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
    +        # test in_channels % group != 0
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(3, 2, 3, groups=2)
    +        # test out_channels % group != 0
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(3, 4, 3, groups=3)
    +
    +    def _test_amp_deformconv(self,
    +                             input_dtype,
    +                             threshold=1e-3,
    +                             batch_size=10,
    +                             im2col_step=2):
    +        """The function to test amp released on pytorch 1.6.0.
    +
    +        The type of input data might be torch.float or torch.half,
    +        so we should test deform_conv in both cases. With amp, the
    +        data type of model will NOT be set manually.
    +
    +        Args:
    +            input_dtype: torch.float or torch.half.
    +            threshold: the same as above function.
    +        """
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import DeformConv2dPack
    +        c_in = 1
    +        c_out = 1
    +        repeated_input = np.repeat(input, batch_size, axis=0)
    +        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
    +        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
    +        x = torch.Tensor(repeated_input).cuda().type(input_dtype)
    +        x.requires_grad = True
    +        model = DeformConv2dPack(
    +            in_channels=c_in,
    +            out_channels=c_out,
    +            kernel_size=2,
    +            stride=1,
    +            padding=0,
    +            im2col_step=im2col_step)
    +        model.conv_offset.weight.data = torch.nn.Parameter(
    +            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    +        model.conv_offset.bias.data = torch.nn.Parameter(
    +            torch.Tensor(offset_bias).reshape(8))
    +        model.weight.data = torch.nn.Parameter(
    +            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
    +        model.cuda()
    +
    +        out = model(x)
    +        out.backward(torch.ones_like(out))
    +
    +        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
    +                           threshold)
    +        assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
    +                           threshold)
    +        assert np.allclose(
    +            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
    +            gt_offset_weight_grad, threshold)
    +        assert np.allclose(
    +            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
    +            gt_offset_bias_grad, threshold)
    +        assert np.allclose(
    +            model.weight.grad.detach().cpu().numpy() / batch_size,
    +            gt_deform_weight_grad, threshold)
    +
    +        from mmcv.ops import DeformConv2d
    +
    +        # test bias
    +        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
    +        assert not hasattr(model, 'bias')
    +        # test bias=True
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
    +        # test in_channels % group != 0
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(3, 2, 3, groups=2)
    +        # test out_channels % group != 0
    +        with pytest.raises(AssertionError):
    +            model = DeformConv2d(3, 4, 3, groups=3)
    +
    +    def test_deformconv(self):
    +        self._test_deformconv(torch.double, device='cpu')
    +        self._test_deformconv(torch.float, device='cpu', threshold=1e-1)
    +        self._test_deformconv(torch.double)
    +        self._test_deformconv(torch.float)
    +        self._test_deformconv(torch.half, threshold=1e-1)
    +        # test batch_size < im2col_step
    +        self._test_deformconv(torch.float, batch_size=1, im2col_step=2)
    +        # test bach_size % im2col_step != 0
    +        with pytest.raises(
    +                AssertionError,
    +                match='batch size must be divisible by im2col_step'):
    +            self._test_deformconv(torch.float, batch_size=10, im2col_step=3)
    +
    +        # test amp when torch version >= '1.6.0', the type of
    +        # input data for deformconv might be torch.float or torch.half
    +        if (TORCH_VERSION != 'parrots'
    +                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +            with autocast(enabled=True):
    +                self._test_amp_deformconv(torch.float, 1e-1)
    +                self._test_amp_deformconv(torch.half, 1e-1)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_roi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_roi_pool.py
    new file mode 100644
    index 000000000..0e6d52fe9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_deform_roi_pool.py
    @@ -0,0 +1,152 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_NPU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +cur_dir = os.path.dirname(os.path.abspath(__file__))
    +
    +inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2.], [3., 4.]], [[4., 3.], [2.,
    +                                               1.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +              [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +outputs = [([[[[1, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375],
    +                                             [0.4375, 0.0625]]]]),
    +           ([[[[1., 1.25], [1.5, 1.75]], [[4, 3.75],
    +                                          [3.5, 3.25]]]], [[[[3.0625, 0.4375],
    +                                                             [0.4375, 0.0625]],
    +                                                            [[3.0625, 0.4375],
    +                                                             [0.4375,
    +                                                              0.0625]]]]),
    +           ([[[[1.9375, 4.75],
    +               [7.5625,
    +                10.375]]]], [[[[0.47265625, 0.4296875, 0.4296875, 0.04296875],
    +                               [0.4296875, 0.390625, 0.390625, 0.0390625],
    +                               [0.4296875, 0.390625, 0.390625, 0.0390625],
    +                               [0.04296875, 0.0390625, 0.0390625,
    +                                0.00390625]]]])]
    +
    +
    +class TestDeformRoIPool:
    +
    +    def test_deform_roi_pool_gradcheck(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import DeformRoIPoolPack
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +        sampling_ratio = 2
    +
    +        for case in inputs:
    +            np_input = np.array(case[0])
    +            np_rois = np.array(case[1])
    +
    +            x = torch.tensor(
    +                np_input, device='cuda', dtype=torch.float, requires_grad=True)
    +            rois = torch.tensor(np_rois, device='cuda', dtype=torch.float)
    +            output_c = x.size(1)
    +
    +            droipool = DeformRoIPoolPack((pool_h, pool_w),
    +                                         output_c,
    +                                         spatial_scale=spatial_scale,
    +                                         sampling_ratio=sampling_ratio).cuda()
    +
    +            if _USING_PARROTS:
    +                gradcheck(droipool, (x, rois), no_grads=[rois])
    +            else:
    +                gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2)
    +
    +    def test_modulated_deform_roi_pool_gradcheck(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import ModulatedDeformRoIPoolPack
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +        sampling_ratio = 2
    +
    +        for case in inputs:
    +            np_input = np.array(case[0])
    +            np_rois = np.array(case[1])
    +
    +            x = torch.tensor(
    +                np_input, device='cuda', dtype=torch.float, requires_grad=True)
    +            rois = torch.tensor(np_rois, device='cuda', dtype=torch.float)
    +            output_c = x.size(1)
    +
    +            droipool = ModulatedDeformRoIPoolPack(
    +                (pool_h, pool_w),
    +                output_c,
    +                spatial_scale=spatial_scale,
    +                sampling_ratio=sampling_ratio).cuda()
    +
    +            if _USING_PARROTS:
    +                gradcheck(droipool, (x, rois), no_grads=[rois])
    +            else:
    +                gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2)
    +
    +    def _test_deform_roi_pool_allclose(self, device, dtype=torch.float):
    +        from mmcv.ops import DeformRoIPoolPack
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +        sampling_ratio = 2
    +
    +        for case, output in zip(inputs, outputs):
    +            np_input = np.array(case[0])
    +            np_rois = np.array(case[1])
    +            np_output = np.array(output[0])
    +            np_grad = np.array(output[1])
    +
    +            x = torch.tensor(
    +                np_input, device=device, dtype=torch.float, requires_grad=True)
    +            rois = torch.tensor(np_rois, device=device, dtype=torch.float)
    +            output_c = x.size(1)
    +            droipool = DeformRoIPoolPack(
    +                (pool_h, pool_w),
    +                output_c,
    +                spatial_scale=spatial_scale,
    +                sampling_ratio=sampling_ratio).to(device)
    +
    +            output = droipool(x, rois)
    +            output.backward(torch.ones_like(output))
    +            assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3)
    +            assert np.allclose(x.grad.data.cpu().numpy(), np_grad, 1e-3)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support')),
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support'))
    +    ])
    +    @pytest.mark.parametrize('dtype', [
    +        torch.float,
    +        pytest.param(
    +            torch.double,
    +            marks=pytest.mark.skipif(
    +                IS_MLU_AVAILABLE,
    +                reason='MLU does not support for 64-bit floating point')),
    +        torch.half
    +    ])
    +    def test_deform_roi_pool_allclose(self, device, dtype):
    +        self._test_deform_roi_pool_allclose(device, dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_diff_iou_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_diff_iou_rotated.py
    new file mode 100644
    index 000000000..01e05551b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_diff_iou_rotated.py
    @@ -0,0 +1,49 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import diff_iou_rotated_2d, diff_iou_rotated_3d
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_diff_iou_rotated_2d():
    +    np_boxes1 = np.asarray([[[0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., .0],
    +                             [0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., .0],
    +                             [0.5, 0.5, 1., 1., .0]]],
    +                           dtype=np.float32)
    +    np_boxes2 = np.asarray(
    +        [[[0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., np.pi / 2],
    +          [0.5, 0.5, 1., 1., np.pi / 4], [1., 1., 1., 1., .0],
    +          [1.5, 1.5, 1., 1., .0]]],
    +        dtype=np.float32)
    +
    +    boxes1 = torch.from_numpy(np_boxes1).cuda()
    +    boxes2 = torch.from_numpy(np_boxes2).cuda()
    +
    +    np_expect_ious = np.asarray([[1., 1., .7071, 1 / 7, .0]])
    +    ious = diff_iou_rotated_2d(boxes1, boxes2)
    +    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_diff_iou_rotated_3d():
    +    np_boxes1 = np.asarray(
    +        [[[.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 1., .0],
    +          [.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 1., .0],
    +          [.5, .5, .5, 1., 1., 1., .0]]],
    +        dtype=np.float32)
    +    np_boxes2 = np.asarray(
    +        [[[.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 2., np.pi / 2],
    +          [.5, .5, .5, 1., 1., 1., np.pi / 4], [1., 1., 1., 1., 1., 1., .0],
    +          [-1.5, -1.5, -1.5, 2.5, 2.5, 2.5, .0]]],
    +        dtype=np.float32)
    +
    +    boxes1 = torch.from_numpy(np_boxes1).cuda()
    +    boxes2 = torch.from_numpy(np_boxes2).cuda()
    +
    +    np_expect_ious = np.asarray([[1., .5, .7071, 1 / 15, .0]])
    +    ious = diff_iou_rotated_3d(boxes1, boxes2)
    +    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_focal_loss.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_focal_loss.py
    new file mode 100644
    index 000000000..ee7c9861a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_focal_loss.py
    @@ -0,0 +1,170 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_NPU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +# torch.set_printoptions(precision=8, threshold=100)
    +
    +inputs = [
    +    ([[1., 0], [0, 1.]], [0, 1]),
    +    ([[1., 0, -1.], [0, 1., 2.]], [2, 1]),
    +    ([[1e-6, 2e-6, 3e-6], [4e-6, 5e-5, 6e-4], [7e-3, 8e-2, 9e-1]], [1, 2, 0]),
    +]
    +
    +softmax_outputs = [(0.00566451, [[-0.00657264, 0.00657264],
    +                                 [0.00657264, -0.00657264]]),
    +                   (0.34956908, [[0.10165970, 0.03739851, -0.13905823],
    +                                 [0.01227554, -0.10298023, 0.09070466]]),
    +                   (0.15754992, [[0.02590877, -0.05181759, 0.02590882],
    +                                 [0.02589641, 0.02589760, -0.05179400],
    +                                 [-0.07307514, 0.02234372, 0.05073142]])]
    +
    +sigmoid_outputs = [(0.13562961, [[-0.00657264, 0.11185755],
    +                                 [0.11185755, -0.00657264]]),
    +                   (1.10251057, [[0.28808805, 0.11185755, -0.09602935],
    +                                 [0.11185755, -0.00657264, 0.40376765]]),
    +                   (0.42287254, [[0.07457182, -0.02485716, 0.07457201],
    +                                 [0.07457211, 0.07457669, -0.02483728],
    +                                 [-0.02462499, 0.08277918, 0.18050370]])]
    +
    +
    +class Testfocalloss:
    +
    +    def _test_softmax(self, dtype=torch.float):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import softmax_focal_loss
    +        alpha = 0.25
    +        gamma = 2.0
    +        for case, output in zip(inputs, softmax_outputs):
    +            np_x = np.array(case[0])
    +            np_y = np.array(case[1])
    +            np_x_grad = np.array(output[1])
    +
    +            x = torch.from_numpy(np_x).cuda().type(dtype)
    +            x.requires_grad_()
    +            y = torch.from_numpy(np_y).cuda().long()
    +
    +            loss = softmax_focal_loss(x, y, gamma, alpha, None, 'mean')
    +            loss.backward()
    +
    +            assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
    +            assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)
    +
    +    def _test_sigmoid(self, device, dtype=torch.float):
    +        from mmcv.ops import sigmoid_focal_loss
    +        alpha = 0.25
    +        gamma = 2.0
    +        for case, output in zip(inputs, sigmoid_outputs):
    +            np_x = np.array(case[0])
    +            np_y = np.array(case[1])
    +            np_x_grad = np.array(output[1])
    +
    +            x = torch.from_numpy(np_x).to(device).type(dtype)
    +            x.requires_grad_()
    +            y = torch.from_numpy(np_y).to(device).long()
    +
    +            loss = sigmoid_focal_loss(x, y, gamma, alpha, None, 'mean')
    +            loss.backward()
    +
    +            assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
    +            assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)
    +
    +    def _test_grad_softmax(self, dtype=torch.float):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import SoftmaxFocalLoss
    +        alpha = 0.25
    +        gamma = 2.0
    +        for case in inputs:
    +            np_x = np.array(case[0])
    +            np_y = np.array(case[1])
    +
    +            x = torch.from_numpy(np_x).cuda().type(dtype)
    +            x.requires_grad_()
    +            y = torch.from_numpy(np_y).cuda().long()
    +
    +            floss = SoftmaxFocalLoss(gamma, alpha)
    +            if _USING_PARROTS:
    +                # gradcheck(floss, (x, y),
    +                #           no_grads=[y])
    +                pass
    +            else:
    +                gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)
    +
    +    def _test_grad_sigmoid(self, dtype=torch.float):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import SigmoidFocalLoss
    +        alpha = 0.25
    +        gamma = 2.0
    +        for case in inputs:
    +            np_x = np.array(case[0])
    +            np_y = np.array(case[1])
    +
    +            x = torch.from_numpy(np_x).cuda().type(dtype)
    +            x.requires_grad_()
    +            y = torch.from_numpy(np_y).cuda().long()
    +
    +            floss = SigmoidFocalLoss(gamma, alpha)
    +            if _USING_PARROTS:
    +                # gradcheck(floss, (x, y),
    +                #           no_grads=[y])
    +                pass
    +            else:
    +                gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)
    +
    +    def test_softmax_float(self):
    +        self._test_softmax(dtype=torch.float)
    +
    +    def test_softmax_half(self):
    +        self._test_softmax(dtype=torch.half)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support')),
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_sigmoid_float(self, device):
    +        self._test_sigmoid(device=device, dtype=torch.float)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support')),
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_sigmoid_half(self, device):
    +        self._test_sigmoid(device, dtype=torch.half)
    +
    +    def test_grad_softmax_float(self):
    +        self._test_grad_softmax(dtype=torch.float)
    +
    +    def test_grad_sigmoid_float(self):
    +        self._test_grad_sigmoid(dtype=torch.float)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_furthest_point_sample.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_furthest_point_sample.py
    new file mode 100644
    index 000000000..7e61e64a9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_furthest_point_sample.py
    @@ -0,0 +1,52 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import furthest_point_sample, furthest_point_sample_with_dist
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_fps():
    +    xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681],
    +                         [-0.8070, 2.4137,
    +                          -0.5845], [-1.0001, 2.1982, -0.5859],
    +                         [0.3841, 1.8983, -0.7431]],
    +                        [[-1.0696, 3.0758,
    +                          -0.1899], [-0.2559, 3.5521, -0.1402],
    +                         [0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205],
    +                         [-0.0518, 3.7251, -0.3950]]]).cuda()
    +
    +    idx = furthest_point_sample(xyz, 3)
    +    expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda()
    +    assert torch.all(idx == expected_idx)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_fps_with_dist():
    +    xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681],
    +                         [-0.8070, 2.4137,
    +                          -0.5845], [-1.0001, 2.1982, -0.5859],
    +                         [0.3841, 1.8983, -0.7431]],
    +                        [[-1.0696, 3.0758,
    +                          -0.1899], [-0.2559, 3.5521, -0.1402],
    +                         [0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205],
    +                         [-0.0518, 3.7251, -0.3950]]]).cuda()
    +
    +    expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda()
    +    xyz_square_dist = ((xyz.unsqueeze(dim=1) -
    +                        xyz.unsqueeze(dim=2))**2).sum(-1)
    +    idx = furthest_point_sample_with_dist(xyz_square_dist, 3)
    +    assert torch.all(idx == expected_idx)
    +
    +    import numpy as np
    +    fps_idx = np.load('tests/data/for_3d_ops/fps_idx.npy')
    +    features_for_fps_distance = np.load(
    +        'tests/data/for_3d_ops/features_for_fps_distance.npy')
    +    expected_idx = torch.from_numpy(fps_idx).cuda()
    +    features_for_fps_distance = torch.from_numpy(
    +        features_for_fps_distance).cuda()
    +
    +    idx = furthest_point_sample_with_dist(features_for_fps_distance, 16)
    +    assert torch.all(idx == expected_idx)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_fused_bias_leakyrelu.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_fused_bias_leakyrelu.py
    new file mode 100644
    index 000000000..e6f6fb9f7
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_fused_bias_leakyrelu.py
    @@ -0,0 +1,74 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_NPU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck, gradgradcheck
    +    _USING_PARROTS = False
    +
    +
    +class TestFusedBiasLeakyReLU:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        if not IS_CUDA_AVAILABLE and not IS_NPU_AVAILABLE:
    +            return
    +        if IS_CUDA_AVAILABLE:
    +            cls.input_tensor = torch.randn((2, 2, 2, 2),
    +                                           requires_grad=True).cuda()
    +            cls.bias = torch.zeros(2, requires_grad=True).cuda()
    +        elif IS_NPU_AVAILABLE:
    +            cls.input_tensor = torch.randn((2, 2, 2, 2),
    +                                           requires_grad=True).npu()
    +            cls.bias = torch.zeros(2, requires_grad=True).npu()
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support'))
    +    ])
    +    def test_gradient(self, device):
    +
    +        from mmcv.ops import FusedBiasLeakyReLU
    +        if _USING_PARROTS:
    +            if IS_CUDA_AVAILABLE:
    +                gradcheck(
    +                    FusedBiasLeakyReLU(2).cuda(),
    +                    self.input_tensor,
    +                    delta=1e-4,
    +                    pt_atol=1e-3)
    +        else:
    +            gradcheck(
    +                FusedBiasLeakyReLU(2).to(device),
    +                self.input_tensor,
    +                eps=1e-4,
    +                atol=1e-3)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support'))
    +    ])
    +    def test_gradgradient(self, device):
    +
    +        from mmcv.ops import FusedBiasLeakyReLU
    +        gradgradcheck(
    +            FusedBiasLeakyReLU(2).to(device),
    +            self.input_tensor,
    +            eps=1e-4,
    +            atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_gather_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_gather_points.py
    new file mode 100644
    index 000000000..a93df692a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_gather_points.py
    @@ -0,0 +1,51 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import gather_points
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_gather_points():
    +    features = torch.tensor([[[
    +        -1.6095, -0.1029, -0.8876, -1.2447, -2.4031, 0.3708, -1.1586, -1.4967,
    +        -0.4800, 0.2252
    +    ],
    +                              [
    +                                  1.9138, 3.4979, 1.6854, 1.5631, 3.6776,
    +                                  3.1154, 2.1705, 2.5221, 2.0411, 3.1446
    +                              ],
    +                              [
    +                                  -1.4173, 0.3073, -1.4339, -1.4340, -1.2770,
    +                                  -0.2867, -1.4162, -1.4044, -1.4245, -1.4074
    +                              ]],
    +                             [[
    +                                 0.2160, 0.0842, 0.3661, -0.2749, -0.4909,
    +                                 -0.6066, -0.8773, -0.0745, -0.9496, 0.1434
    +                             ],
    +                              [
    +                                  1.3644, 1.8087, 1.6855, 1.9563, 1.2746,
    +                                  1.9662, 0.9566, 1.8778, 1.1437, 1.3639
    +                              ],
    +                              [
    +                                  -0.7172, 0.1692, 0.2241, 0.0721, -0.7540,
    +                                  0.0462, -0.6227, 0.3223, -0.6944, -0.5294
    +                              ]]]).cuda()
    +
    +    idx = torch.tensor([[0, 1, 4, 0, 0, 0], [0, 5, 6, 0, 0, 0]]).int().cuda()
    +
    +    output = gather_points(features, idx)
    +    expected_output = torch.tensor(
    +        [[[-1.6095, -0.1029, -2.4031, -1.6095, -1.6095, -1.6095],
    +          [1.9138, 3.4979, 3.6776, 1.9138, 1.9138, 1.9138],
    +          [-1.4173, 0.3073, -1.2770, -1.4173, -1.4173, -1.4173]],
    +         [[0.2160, -0.6066, -0.8773, 0.2160, 0.2160, 0.2160],
    +          [1.3644, 1.9662, 0.9566, 1.3644, 1.3644, 1.3644],
    +          [-0.7172, 0.0462, -0.6227, -0.7172, -0.7172, -0.7172]]]).cuda()
    +
    +    assert torch.allclose(output, expected_output)
    +
    +    # test fp16
    +    output_half = gather_points(features.half(), idx)
    +    assert torch.allclose(output_half, expected_output.half())
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_group_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_group_points.py
    new file mode 100644
    index 000000000..8109540ce
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_group_points.py
    @@ -0,0 +1,164 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import grouping_operation
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
    +def test_grouping_points(dtype):
    +    idx = torch.tensor([[[0, 0, 0], [3, 3, 3], [8, 8, 8], [0, 0, 0], [0, 0, 0],
    +                         [0, 0, 0]],
    +                        [[0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0], [0, 0, 0],
    +                         [0, 0, 0]]]).int().cuda()
    +    features = torch.tensor([[[
    +        0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
    +        0.9268, 0.8414
    +    ],
    +                              [
    +                                  5.4247, 1.5113, 2.3944, 1.4740, 5.0300,
    +                                  5.1030, 1.9360, 2.1939, 2.1581, 3.4666
    +                              ],
    +                              [
    +                                  -1.6266, -1.0281, -1.0393, -1.6931, -1.3982,
    +                                  -0.5732, -1.0830, -1.7561, -1.6786, -1.6967
    +                              ]],
    +                             [[
    +                                 -0.0380, -0.1880, -1.5724, 0.6905, -0.3190,
    +                                 0.7798, -0.3693, -0.9457, -0.2942, -1.8527
    +                             ],
    +                              [
    +                                  1.1773, 1.5009, 2.6399, 5.9242, 1.0962,
    +                                  2.7346, 6.0865, 1.5555, 4.3303, 2.8229
    +                              ],
    +                              [
    +                                  -0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
    +                                  -1.4049, 0.4990, -0.7037, -0.9924, 0.0386
    +                              ]]],
    +                            dtype=dtype).cuda()
    +
    +    output = grouping_operation(features, idx)
    +    expected_output = torch.tensor(
    +        [[[[0.5798, 0.5798, 0.5798], [-1.3311, -1.3311, -1.3311],
    +           [0.9268, 0.9268, 0.9268], [0.5798, 0.5798, 0.5798],
    +           [0.5798, 0.5798, 0.5798], [0.5798, 0.5798, 0.5798]],
    +          [[5.4247, 5.4247, 5.4247], [1.4740, 1.4740, 1.4740],
    +           [2.1581, 2.1581, 2.1581], [5.4247, 5.4247, 5.4247],
    +           [5.4247, 5.4247, 5.4247], [5.4247, 5.4247, 5.4247]],
    +          [[-1.6266, -1.6266, -1.6266], [-1.6931, -1.6931, -1.6931],
    +           [-1.6786, -1.6786, -1.6786], [-1.6266, -1.6266, -1.6266],
    +           [-1.6266, -1.6266, -1.6266], [-1.6266, -1.6266, -1.6266]]],
    +         [[[-0.0380, -0.0380, -0.0380], [-0.3693, -0.3693, -0.3693],
    +           [-1.8527, -1.8527, -1.8527], [-0.0380, -0.0380, -0.0380],
    +           [-0.0380, -0.0380, -0.0380], [-0.0380, -0.0380, -0.0380]],
    +          [[1.1773, 1.1773, 1.1773], [6.0865, 6.0865, 6.0865],
    +           [2.8229, 2.8229, 2.8229], [1.1773, 1.1773, 1.1773],
    +           [1.1773, 1.1773, 1.1773], [1.1773, 1.1773, 1.1773]],
    +          [[-0.6646, -0.6646, -0.6646], [0.4990, 0.4990, 0.4990],
    +           [0.0386, 0.0386, 0.0386], [-0.6646, -0.6646, -0.6646],
    +           [-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646]]]],
    +        dtype=dtype).cuda()
    +    assert torch.allclose(output, expected_output)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
    +def test_stack_grouping_points(dtype):
    +    idx = torch.tensor([[0, 0, 0], [3, 3, 3], [8, 8, 8], [1, 1, 1], [0, 0, 0],
    +                        [2, 2, 2], [0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0],
    +                        [1, 1, 1], [0, 0, 0]]).int().cuda()
    +    features = torch.tensor([[
    +        0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
    +        0.9268, 0.8414
    +    ],
    +                             [
    +                                 5.4247, 1.5113, 2.3944, 1.4740, 5.0300,
    +                                 5.1030, 1.9360, 2.1939, 2.1581, 3.4666
    +                             ],
    +                             [
    +                                 -1.6266, -1.0281, -1.0393, -1.6931, -1.3982,
    +                                 -0.5732, -1.0830, -1.7561, -1.6786, -1.6967
    +                             ],
    +                             [
    +                                 -0.0380, -0.1880, -1.5724, 0.6905, -0.3190,
    +                                 0.7798, -0.3693, -0.9457, -0.2942, -1.8527
    +                             ],
    +                             [
    +                                 1.1773, 1.5009, 2.6399, 5.9242, 1.0962,
    +                                 2.7346, 6.0865, 1.5555, 4.3303, 2.8229
    +                             ],
    +                             [
    +                                 -0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
    +                                 -1.4049, 0.4990, -0.7037, -0.9924, 0.0386
    +                             ]],
    +                            dtype=dtype).cuda()
    +    features_batch_cnt = torch.tensor([3, 3]).int().cuda()
    +    indices_batch_cnt = torch.tensor([6, 6]).int().cuda()
    +    output = grouping_operation(features, idx, features_batch_cnt,
    +                                indices_batch_cnt)
    +    expected_output = torch.tensor(
    +        [[[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
    +          [-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
    +          [1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
    +          [-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
    +          [0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
    +         [[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
    +         [[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
    +         [[5.4247, 5.4247, 5.4247], [1.5113, 1.5113, 1.5113],
    +          [2.3944, 2.3944, 2.3944], [1.4740, 1.4740, 1.4740],
    +          [5.0300, 5.0300, 5.0300], [5.1030, 5.1030, 5.1030],
    +          [1.9360, 1.9360, 1.9360], [2.1939, 2.1939, 2.1939],
    +          [2.1581, 2.1581, 2.1581], [3.4666, 3.4666, 3.4666]],
    +         [[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
    +          [-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
    +          [1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
    +          [-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
    +          [0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
    +         [[-1.6266, -1.6266, -1.6266], [-1.0281, -1.0281, -1.0281],
    +          [-1.0393, -1.0393, -1.0393], [-1.6931, -1.6931, -1.6931],
    +          [-1.3982, -1.3982, -1.3982], [-0.5732, -0.5732, -0.5732],
    +          [-1.0830, -1.0830, -1.0830], [-1.7561, -1.7561, -1.7561],
    +          [-1.6786, -1.6786, -1.6786], [-1.6967, -1.6967, -1.6967]],
    +         [[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
    +          [-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
    +          [-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
    +          [-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
    +          [-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
    +         [[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
    +         [[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
    +          [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
    +         [[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
    +          [-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
    +          [-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
    +          [-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
    +          [-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
    +         [[1.1773, 1.1773, 1.1773], [1.5009, 1.5009, 1.5009],
    +          [2.6399, 2.6399, 2.6399], [5.9242, 5.9242, 5.9242],
    +          [1.0962, 1.0962, 1.0962], [2.7346, 2.7346, 2.7346],
    +          [6.0865, 6.0865, 6.0865], [1.5555, 1.5555, 1.5555],
    +          [4.3303, 4.3303, 4.3303], [2.8229, 2.8229, 2.8229]],
    +         [[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
    +          [-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
    +          [-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
    +          [-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
    +          [-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]]],
    +        dtype=dtype).cuda()
    +    assert torch.allclose(output, expected_output)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_info.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_info.py
    new file mode 100644
    index 000000000..e3c1722eb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_info.py
    @@ -0,0 +1,14 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +
    +
    +class TestInfo:
    +
    +    def test_info(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import get_compiler_version, get_compiling_cuda_version
    +        cv = get_compiler_version()
    +        ccv = get_compiling_cuda_version()
    +        assert cv is not None
    +        assert ccv is not None
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_iou3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_iou3d.py
    new file mode 100644
    index 000000000..6bb8c1ccc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_iou3d.py
    @@ -0,0 +1,145 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import boxes_iou3d, boxes_overlap_bev, nms3d, nms3d_normal
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    +])
    +def test_boxes_overlap_bev(device):
    +    np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                            [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                            [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]],
    +                           dtype=np.float32)
    +    np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2],
    +                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]],
    +                           dtype=np.float32)
    +    np_expect_overlaps = np.asarray(
    +        [[4.0, 4.0, (8 + 8 * 2**0.5) /
    +          (3 + 2 * 2**0.5)], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]],
    +        dtype=np.float32)
    +
    +    boxes1 = torch.from_numpy(np_boxes1).to(device)
    +    boxes2 = torch.from_numpy(np_boxes2).to(device)
    +
    +    # test for 3 boxes
    +    overlaps = boxes_overlap_bev(boxes1, boxes2)
    +    assert np.allclose(overlaps.cpu().numpy(), np_expect_overlaps, atol=1e-4)
    +
    +    # test for many boxes
    +    boxes2 = boxes2.repeat_interleave(555, 0)
    +
    +    overlaps = boxes_overlap_bev(boxes1, boxes2)
    +    assert np.allclose(
    +        overlaps.cpu().numpy(), np_expect_overlaps.repeat(555, 1), atol=1e-4)
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    +])
    +def test_boxes_iou3d(device):
    +    np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                            [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                            [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]],
    +                           dtype=np.float32)
    +    np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2],
    +                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]],
    +                           dtype=np.float32)
    +    np_expect_ious = np.asarray(
    +        [[1.0, 1.0, 1.0 / 2**0.5], [1.0 / 15, 1.0 / 15, 1.0 / 15],
    +         [0.0, 0.0, 0.0]],
    +        dtype=np.float32)
    +
    +    boxes1 = torch.from_numpy(np_boxes1).to(device)
    +    boxes2 = torch.from_numpy(np_boxes2).to(device)
    +
    +    ious = boxes_iou3d(boxes1, boxes2)
    +    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +def test_nms3d(device):
    +    # test for 5 boxes
    +    np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                           [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3],
    +                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0],
    +                           [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]],
    +                          dtype=np.float32)
    +    np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32)
    +    np_inds = np.array([1, 0, 3])
    +    boxes = torch.from_numpy(np_boxes)
    +    scores = torch.from_numpy(np_scores)
    +    inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3)
    +
    +    assert np.allclose(inds.cpu().numpy(), np_inds)
    +
    +    # test for many boxes
    +    # In the float data type calculation process, float will be converted to
    +    # double in CUDA kernel (https://github.com/open-mmlab/mmcv/blob
    +    # /master/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp#L61),
    +    # always use float in MLU kernel. The difference between the mentioned
    +    # above leads to different results.
    +    if device != 'mlu':
    +        np.random.seed(42)
    +        np_boxes = np.random.rand(555, 7).astype(np.float32)
    +        np_scores = np.random.rand(555).astype(np.float32)
    +        boxes = torch.from_numpy(np_boxes)
    +        scores = torch.from_numpy(np_scores)
    +        inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3)
    +
    +        assert len(inds.cpu().numpy()) == 176
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    +])
    +def test_nms3d_normal(device):
    +    # test for 5 boxes
    +    np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
    +                           [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
    +                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3],
    +                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0],
    +                           [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]],
    +                          dtype=np.float32)
    +    np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32)
    +    np_inds = np.array([1, 0, 3])
    +    boxes = torch.from_numpy(np_boxes)
    +    scores = torch.from_numpy(np_scores)
    +    inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3)
    +
    +    assert np.allclose(inds.cpu().numpy(), np_inds)
    +
    +    # test for many boxes
    +    np.random.seed(42)
    +    np_boxes = np.random.rand(555, 7).astype(np.float32)
    +    np_scores = np.random.rand(555).astype(np.float32)
    +    boxes = torch.from_numpy(np_boxes)
    +    scores = torch.from_numpy(np_scores)
    +    inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3)
    +
    +    assert len(inds.cpu().numpy()) == 148
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_knn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_knn.py
    new file mode 100644
    index 000000000..1236a5fcb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_knn.py
    @@ -0,0 +1,55 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import knn
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_knn():
    +    new_xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625],
    +                             [-2.2769, 2.7817, -0.2334],
    +                             [-0.4003, 2.4666, -0.5116],
    +                             [-0.0740, 1.3147, -1.3625],
    +                             [-0.0740, 1.3147, -1.3625]],
    +                            [[-2.0289, 2.4952, -0.1708],
    +                             [-2.0668, 6.0278, -0.4875],
    +                             [0.4066, 1.4211, -0.2947],
    +                             [-2.0289, 2.4952, -0.1708],
    +                             [-2.0289, 2.4952, -0.1708]]]).cuda()
    +
    +    xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625], [0.5555, 1.0399, -1.3634],
    +                         [-0.4003, 2.4666,
    +                          -0.5116], [-0.5251, 2.4379, -0.8466],
    +                         [-0.9691, 1.1418,
    +                          -1.3733], [-0.2232, 0.9561, -1.3626],
    +                         [-2.2769, 2.7817, -0.2334],
    +                         [-0.2822, 1.3192, -1.3645], [0.1533, 1.5024, -1.0432],
    +                         [0.4917, 1.1529, -1.3496]],
    +                        [[-2.0289, 2.4952,
    +                          -0.1708], [-0.7188, 0.9956, -0.5096],
    +                         [-2.0668, 6.0278, -0.4875], [-1.9304, 3.3092, 0.6610],
    +                         [0.0949, 1.4332, 0.3140], [-1.2879, 2.0008, -0.7791],
    +                         [-0.7252, 0.9611, -0.6371], [0.4066, 1.4211, -0.2947],
    +                         [0.3220, 1.4447, 0.3548], [-0.9744, 2.3856,
    +                                                    -1.2000]]]).cuda()
    +
    +    idx = knn(5, xyz, new_xyz)
    +    new_xyz_ = new_xyz.unsqueeze(2).repeat(1, 1, xyz.shape[1], 1)
    +    xyz_ = xyz.unsqueeze(1).repeat(1, new_xyz.shape[1], 1, 1)
    +    dist = ((new_xyz_ - xyz_) * (new_xyz_ - xyz_)).sum(-1)
    +    expected_idx = dist.topk(k=5, dim=2, largest=False)[1].transpose(2, 1)
    +    assert torch.all(idx == expected_idx)
    +
    +    idx = knn(5,
    +              xyz.transpose(1, 2).contiguous(),
    +              new_xyz.transpose(1, 2).contiguous(), True)
    +    assert torch.all(idx == expected_idx)
    +
    +    idx = knn(5, xyz, xyz)
    +    xyz_ = xyz.unsqueeze(2).repeat(1, 1, xyz.shape[1], 1)
    +    xyz__ = xyz.unsqueeze(1).repeat(1, xyz.shape[1], 1, 1)
    +    dist = ((xyz_ - xyz__) * (xyz_ - xyz__)).sum(-1)
    +    expected_idx = dist.topk(k=5, dim=2, largest=False)[1].transpose(2, 1)
    +    assert torch.all(idx == expected_idx)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_masked_conv2d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_masked_conv2d.py
    new file mode 100644
    index 000000000..072b2f7f6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_masked_conv2d.py
    @@ -0,0 +1,45 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_NPU_AVAILABLE
    +
    +
    +class TestMaskedConv2d:
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support')),
    +        pytest.param(
    +            'npu',
    +            marks=pytest.mark.skipif(
    +                not IS_NPU_AVAILABLE, reason='requires NPU support'))
    +    ])
    +    def test_masked_conv2d_all_close(self, device):
    +        from mmcv.ops import MaskedConv2d
    +        np_input = np.load(
    +            'tests/data/for_masked_conv2d/masked_conv2d_for_input.npy')
    +        np_mask = np.load(
    +            'tests/data/for_masked_conv2d/masked_conv2d_for_mask.npy')
    +        np_weight = np.load(
    +            'tests/data/for_masked_conv2d/masked_conv2d_for_weight.npy')
    +        np_bias = np.load(
    +            'tests/data/for_masked_conv2d/masked_conv2d_for_bias.npy')
    +        np_output = np.load(
    +            'tests/data/for_masked_conv2d/masked_conv2d_for_output.npy')
    +        input = torch.tensor(np_input, dtype=torch.float, device=device)
    +        mask = torch.tensor(np_mask, dtype=torch.float, device=device)
    +        weight = torch.tensor(np_weight, dtype=torch.float, device=device)
    +        bias = torch.tensor(np_bias, dtype=torch.float, device=device)
    +        conv = MaskedConv2d(3, 3, 3, 1, 1).to(device)
    +        conv.weight = torch.nn.Parameter(weight)
    +        conv.bias = torch.nn.Parameter(bias)
    +        output = conv(input, mask)
    +        assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_merge_cells.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_merge_cells.py
    new file mode 100644
    index 000000000..51551c141
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_merge_cells.py
    @@ -0,0 +1,95 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""
    +CommandLine:
    +    pytest tests/test_merge_cells.py
    +"""
    +import math
    +
    +import pytest
    +import torch
    +import torch.nn.functional as F
    +
    +from mmcv.ops.merge_cells import (BaseMergeCell, ConcatCell, GlobalPoolingCell,
    +                                  SumCell)
    +
    +
    +# All size (14, 7) below is to test the situation that
    +# the input size can't be divisible by the target size.
    +@pytest.mark.parametrize(
    +    'inputs_x, inputs_y',
    +    [(torch.randn([2, 256, 16, 16]), torch.randn([2, 256, 32, 32])),
    +     (torch.randn([2, 256, 14, 7]), torch.randn([2, 256, 32, 32]))])
    +def test_sum_cell(inputs_x, inputs_y):
    +    sum_cell = SumCell(256, 256)
    +    output = sum_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
    +    assert output.size() == inputs_x.size()
    +    output = sum_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:])
    +    assert output.size() == inputs_y.size()
    +    output = sum_cell(inputs_x, inputs_y)
    +    assert output.size() == inputs_y.size()
    +
    +
    +@pytest.mark.parametrize(
    +    'inputs_x, inputs_y',
    +    [(torch.randn([2, 256, 16, 16]), torch.randn([2, 256, 32, 32])),
    +     (torch.randn([2, 256, 14, 7]), torch.randn([2, 256, 32, 32]))])
    +def test_concat_cell(inputs_x, inputs_y):
    +    concat_cell = ConcatCell(256, 256)
    +    output = concat_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
    +    assert output.size() == inputs_x.size()
    +    output = concat_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:])
    +    assert output.size() == inputs_y.size()
    +    output = concat_cell(inputs_x, inputs_y)
    +    assert output.size() == inputs_y.size()
    +
    +
    +@pytest.mark.parametrize(
    +    'inputs_x, inputs_y',
    +    [(torch.randn([2, 256, 16, 16]), torch.randn([2, 256, 32, 32])),
    +     (torch.randn([2, 256, 14, 7]), torch.randn([2, 256, 32, 32]))])
    +def test_global_pool_cell(inputs_x, inputs_y):
    +    gp_cell = GlobalPoolingCell(with_out_conv=False)
    +    gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
    +    assert (gp_cell_out.size() == inputs_x.size())
    +    gp_cell = GlobalPoolingCell(256, 256)
    +    gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:])
    +    assert (gp_cell_out.size() == inputs_x.size())
    +
    +
    +@pytest.mark.parametrize('target_size', [(256, 256), (128, 128), (64, 64),
    +                                         (14, 7)])
    +def test_resize_methods(target_size):
    +    inputs_x = torch.randn([2, 256, 128, 128])
    +    h, w = inputs_x.shape[-2:]
    +    target_h, target_w = target_size
    +    if (h <= target_h) or w <= target_w:
    +        rs_mode = 'upsample'
    +    else:
    +        rs_mode = 'downsample'
    +
    +    if rs_mode == 'upsample':
    +        upsample_methods_list = ['nearest', 'bilinear']
    +        for method in upsample_methods_list:
    +            merge_cell = BaseMergeCell(upsample_mode=method)
    +            merge_cell_out = merge_cell._resize(inputs_x, target_size)
    +            gt_out = F.interpolate(inputs_x, size=target_size, mode=method)
    +            assert merge_cell_out.equal(gt_out)
    +    elif rs_mode == 'downsample':
    +        merge_cell = BaseMergeCell()
    +        merge_cell_out = merge_cell._resize(inputs_x, target_size)
    +        if h % target_h != 0 or w % target_w != 0:
    +            pad_h = math.ceil(h / target_h) * target_h - h
    +            pad_w = math.ceil(w / target_w) * target_w - w
    +            pad_l = pad_w // 2
    +            pad_r = pad_w - pad_l
    +            pad_t = pad_h // 2
    +            pad_b = pad_h - pad_t
    +            pad = (pad_l, pad_r, pad_t, pad_b)
    +            inputs_x = F.pad(inputs_x, pad, mode='constant', value=0.0)
    +        kernel_size = (inputs_x.shape[-2] // target_h,
    +                       inputs_x.shape[-1] // target_w)
    +        gt_out = F.max_pool2d(
    +            inputs_x, kernel_size=kernel_size, stride=kernel_size)
    +        print(merge_cell_out.shape, gt_out.shape)
    +        assert (merge_cell_out == gt_out).all()
    +        assert merge_cell_out.shape[-2:] == target_size
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_min_area_polygons.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_min_area_polygons.py
    new file mode 100644
    index 000000000..649bdecfd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_min_area_polygons.py
    @@ -0,0 +1,30 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import min_area_polygons
    +
    +np_pointsets = np.asarray([[
    +    1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 3.0,
    +    2.0, 1.5, 1.5
    +],
    +                           [
    +                               1.0, 1.0, 8.0, 8.0, 1.0, 2.0, 2.0, 1.0, 1.0,
    +                               3.0, 3.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.5, 1.5
    +                           ]])
    +
    +expected_polygons = np.asarray(
    +    [[3.0000, 1.0000, 1.0000, 1.0000, 1.0000, 3.0000, 3.0000, 3.0000],
    +     [8.0, 8.0, 2.3243, 0.0541, 0.0541, 1.6757, 5.7297, 9.6216]])
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_min_area_polygons():
    +    pointsets = torch.from_numpy(np_pointsets).cuda().float()
    +
    +    assert np.allclose(
    +        min_area_polygons(pointsets).cpu().numpy(),
    +        expected_polygons,
    +        atol=1e-4)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_modulated_deform_conv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_modulated_deform_conv.py
    new file mode 100644
    index 000000000..927489df6
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_modulated_deform_conv.py
    @@ -0,0 +1,130 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +
    +import numpy
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_MLU_AVAILABLE, TORCH_VERSION, digit_version
    +
    +try:
    +    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    +    # would be imported and used; we should test if our modules support it.
    +    from torch.cuda.amp import autocast
    +except ImportError:
    +    pass
    +
    +cur_dir = os.path.dirname(os.path.abspath(__file__))
    +
    +input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]]
    +output_t = [[[[0.5, 1.5, 2.5, 1.5], [1.0, 3.0, 5.0, 3.0], [1.0, 3.0, 5.0, 3.0],
    +              [0.5, 1.5, 2.5, 1.5]]]]
    +input_grad = [[[[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]]]]
    +dcn_w_grad = [[[[9., 9.], [9., 9.]]]]
    +dcn_offset_w_grad = [[[[-7.0, -4.0], [0.0, 0.0]]], [[[-9.0, 7.5], [-6.0,
    +                                                                   5.0]]],
    +                     [[[-4.0, -7.0], [0.0, 0.0]]],
    +                     [[[-7.5, -9.0], [-5.0, -6.0]]],
    +                     [[[-7.0, -4.0], [-7.0, -4.0]]],
    +                     [[[-6.0, 5.0], [-9.0, 7.5]]],
    +                     [[[-4.0, -7.0], [-4.0, -7.0]]],
    +                     [[[-5.0, -6.0], [-7.5, -9.0]]], [[[10.5, 6.0], [7.0,
    +                                                                     4.0]]],
    +                     [[[6.0, 10.5], [4.0, 7.0]]], [[[7.0, 4.0], [10.5, 6.0]]],
    +                     [[[4.0, 7.0], [6.0, 10.5]]]]
    +dcn_offset_b_grad = [
    +    -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, 4.5, 4.5, 4.5, 4.5
    +]
    +
    +
    +class TestMdconv:
    +
    +    def _test_mdconv(self, dtype=torch.float, device='cuda'):
    +        if not torch.cuda.is_available() and device == 'cuda':
    +            pytest.skip('test requires GPU')
    +        if device == 'mlu':
    +            from mmcv.ops import \
    +                ModulatedDeformConv2dPack_MLU as ModulatedDeformConv2dPack
    +        else:
    +            from mmcv.ops import ModulatedDeformConv2dPack
    +
    +        input = torch.tensor(input_t, dtype=dtype, device=device)
    +        input.requires_grad = True
    +        dcn = ModulatedDeformConv2dPack(
    +            1,
    +            1,
    +            kernel_size=(2, 2),
    +            stride=1,
    +            padding=1,
    +            deform_groups=1,
    +            bias=False).to(device)
    +
    +        dcn.weight.data.fill_(1.)
    +        dcn.type(dtype)
    +        output = dcn(input)
    +        output.sum().backward()
    +        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
    +        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
    +                              1e-2)
    +        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
    +                              dcn_w_grad, 1e-2)
    +        assert numpy.allclose(
    +            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
    +            dcn_offset_w_grad, 1e-2)
    +        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
    +                              dcn_offset_b_grad, 1e-2)
    +
    +    def _test_amp_mdconv(self, input_dtype=torch.float):
    +        """The function to test amp released on pytorch 1.6.0.
    +
    +        The type of input data might be torch.float or torch.half,
    +        so we should test mdconv in both cases. With amp, the data
    +        type of model will NOT be set manually.
    +
    +        Args:
    +            input_dtype: torch.float or torch.half.
    +        """
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import ModulatedDeformConv2dPack
    +        input = torch.tensor(input_t).cuda().type(input_dtype)
    +        input.requires_grad = True
    +
    +        dcn = ModulatedDeformConv2dPack(
    +            1,
    +            1,
    +            kernel_size=(2, 2),
    +            stride=1,
    +            padding=1,
    +            deform_groups=1,
    +            bias=False).cuda()
    +        dcn.weight.data.fill_(1.)
    +        output = dcn(input)
    +        output.sum().backward()
    +        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
    +        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
    +                              1e-2)
    +        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
    +                              dcn_w_grad, 1e-2)
    +        assert numpy.allclose(
    +            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
    +            dcn_offset_w_grad, 1e-2)
    +        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
    +                              dcn_offset_b_grad, 1e-2)
    +
    +    def test_mdconv(self):
    +        self._test_mdconv(torch.double, device='cpu')
    +        self._test_mdconv(torch.float, device='cpu')
    +
    +        device = 'mlu' if IS_MLU_AVAILABLE else 'cuda'
    +        self._test_mdconv(torch.double, device=device)
    +        self._test_mdconv(torch.float, device=device)
    +        self._test_mdconv(torch.half, device=device)
    +
    +        # test amp when torch version >= '1.6.0', the type of
    +        # input data for mdconv might be torch.float or torch.half
    +        if (TORCH_VERSION != 'parrots'
    +                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
    +            with autocast(enabled=True):
    +                self._test_amp_mdconv(torch.float)
    +                self._test_amp_mdconv(torch.half)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ms_deformable_attn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ms_deformable_attn.py
    new file mode 100644
    index 000000000..94223a642
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_ms_deformable_attn.py
    @@ -0,0 +1,224 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops.multi_scale_deform_attn import (
    +    MultiScaleDeformableAttention, MultiScaleDeformableAttnFunction,
    +    multi_scale_deformable_attn_pytorch)
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +
    +@pytest.mark.parametrize('device', [
    +    'cpu',
    +    pytest.param(
    +        'cuda:0',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +def test_multiscale_deformable_attention(device):
    +    with pytest.raises(ValueError):
    +        # embed_dims must be divisible by num_heads,
    +        MultiScaleDeformableAttention(
    +            embed_dims=256,
    +            num_heads=7,
    +        )
    +    device = torch.device(device)
    +    msda = MultiScaleDeformableAttention(
    +        embed_dims=3, num_levels=2, num_heads=3)
    +    msda.init_weights()
    +    num_query = 5
    +    bs = 1
    +    embed_dims = 3
    +    query = torch.rand(num_query, bs, embed_dims).to(device)
    +    key = torch.rand(num_query, bs, embed_dims).to(device)
    +    spatial_shapes = torch.Tensor([[2, 2], [1, 1]]).long().to(device)
    +    level_start_index = torch.Tensor([0, 4]).long().to(device)
    +    reference_points = torch.rand(bs, num_query, 2, 2).to(device)
    +    msda.to(device)
    +    msda(
    +        query,
    +        key,
    +        key,
    +        reference_points=reference_points,
    +        spatial_shapes=spatial_shapes,
    +        level_start_index=level_start_index)
    +
    +
    +def test_forward_multi_scale_deformable_attn_pytorch():
    +    N, M, D = 1, 2, 2
    +    Lq, L, P = 2, 2, 2
    +    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
    +    S = sum((H * W).item() for H, W in shapes)
    +
    +    torch.manual_seed(3)
    +    value = torch.rand(N, S, M, D) * 0.01
    +    sampling_locations = torch.rand(N, Lq, M, L, P, 2)
    +    attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5
    +    attention_weights /= attention_weights.sum(
    +        -1, keepdim=True).sum(
    +            -2, keepdim=True)
    +
    +    multi_scale_deformable_attn_pytorch(value.double(), shapes,
    +                                        sampling_locations.double(),
    +                                        attention_weights.double()).detach()
    +
    +
    +@pytest.mark.skipif(not IS_CUDA_AVAILABLE, reason='requires CUDA support')
    +def test_forward_equal_with_pytorch_double():
    +    N, M, D = 1, 2, 2
    +    Lq, L, P = 2, 2, 2
    +    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
    +    level_start_index = torch.cat((shapes.new_zeros(
    +        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    +    S = sum((H * W).item() for H, W in shapes)
    +
    +    torch.manual_seed(3)
    +    value = torch.rand(N, S, M, D) * 0.01
    +    sampling_locations = torch.rand(N, Lq, M, L, P, 2)
    +    attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5
    +    attention_weights /= attention_weights.sum(
    +        -1, keepdim=True).sum(
    +            -2, keepdim=True)
    +    im2col_step = 2
    +    output_pytorch = multi_scale_deformable_attn_pytorch(
    +        value.double(), shapes, sampling_locations.double(),
    +        attention_weights.double()).detach().cpu()
    +
    +    output_cuda = MultiScaleDeformableAttnFunction.apply(
    +        value.cuda().double(), shapes.cuda(), level_start_index.cuda(),
    +        sampling_locations.cuda().double(),
    +        attention_weights.cuda().double(), im2col_step).detach().cpu()
    +    assert torch.allclose(output_cuda, output_pytorch)
    +    max_abs_err = (output_cuda - output_pytorch).abs().max()
    +    max_rel_err = ((output_cuda - output_pytorch).abs() /
    +                   output_pytorch.abs()).max()
    +    assert max_abs_err < 1e-18
    +    assert max_rel_err < 1e-15
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +def test_forward_equal_with_pytorch_float(device):
    +    N, M, D = 1, 2, 2
    +    Lq, L, P = 2, 2, 2
    +    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
    +    level_start_index = torch.cat((shapes.new_zeros(
    +        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    +    S = sum((H * W).item() for H, W in shapes)
    +
    +    torch.manual_seed(3)
    +    value = torch.rand(N, S, M, D) * 0.01
    +    sampling_locations = torch.rand(N, Lq, M, L, P, 2)
    +    attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5
    +    attention_weights /= attention_weights.sum(
    +        -1, keepdim=True).sum(
    +            -2, keepdim=True)
    +    im2col_step = 2
    +    output_pytorch = multi_scale_deformable_attn_pytorch(
    +        value, shapes, sampling_locations, attention_weights).detach().cpu()
    +
    +    output_device = MultiScaleDeformableAttnFunction.apply(
    +        value.to(device), shapes.to(device), level_start_index.to(device),
    +        sampling_locations.to(device), attention_weights.to(device),
    +        im2col_step).detach().cpu()
    +    assert torch.allclose(output_device, output_pytorch, rtol=1e-2, atol=1e-3)
    +    max_abs_err = (output_device - output_pytorch).abs().max()
    +    max_rel_err = ((output_device - output_pytorch).abs() /
    +                   output_pytorch.abs()).max()
    +    assert max_abs_err < 1e-9
    +    assert max_rel_err < 1e-6
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE,
    +            reason='MLU does not support for 64-bit floating point')),
    +    torch.half
    +])
    +@pytest.mark.parametrize('channels', [
    +    4,
    +    30,
    +    32,
    +    64,
    +    71,
    +    1025,
    +])
    +def test_gradient_numerical(channels,
    +                            device,
    +                            dtype,
    +                            grad_value=True,
    +                            grad_sampling_loc=True,
    +                            grad_attn_weight=True):
    +
    +    N, M, _ = 1, 2, 2
    +    Lq, L, P = 2, 2, 2
    +    shapes = torch.as_tensor([(3, 2), (2, 1)], dtype=torch.long).to(device)
    +    level_start_index = torch.cat((shapes.new_zeros(
    +        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    +    S = sum((H * W).item() for H, W in shapes)
    +
    +    value = torch.rand(N, S, M, channels).to(device) * 0.01
    +    sampling_locations = torch.rand(N, Lq, M, L, P, 2).to(device)
    +    attention_weights = torch.rand(N, Lq, M, L, P).to(device) + 1e-5
    +    attention_weights /= attention_weights.sum(
    +        -1, keepdim=True).sum(
    +            -2, keepdim=True)
    +    im2col_step = 2
    +
    +    func = MultiScaleDeformableAttnFunction.apply
    +
    +    value.requires_grad = grad_value
    +    sampling_locations.requires_grad = grad_sampling_loc
    +    attention_weights.requires_grad = grad_attn_weight
    +    if device == 'cuda':
    +        dtype = torch.double
    +        eps = 1e-6
    +    elif device == 'mlu':
    +        dtype = torch.float
    +        eps = 1e-4
    +    if _USING_PARROTS:
    +        assert gradcheck(
    +            func, (value.to(dtype), shapes, level_start_index,
    +                   sampling_locations.to(dtype), attention_weights.to(dtype),
    +                   im2col_step),
    +            no_grads=[shapes, level_start_index],
    +            eps=eps)
    +    else:
    +        assert gradcheck(
    +            func, (value.to(dtype), shapes, level_start_index,
    +                   sampling_locations.to(dtype), attention_weights.to(dtype),
    +                   im2col_step),
    +            eps=eps,
    +            atol=1e-2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms.py
    new file mode 100644
    index 000000000..aece8ad5e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms.py
    @@ -0,0 +1,205 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +class Testnms:
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_nms_allclose(self, device):
    +        from mmcv.ops import nms
    +        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
    +                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
    +                            dtype=np.float32)
    +        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    +        np_inds = np.array([1, 0, 3])
    +        np_dets = np.array([[3.0, 6.0, 9.0, 11.0, 0.9],
    +                            [6.0, 3.0, 8.0, 7.0, 0.6],
    +                            [1.0, 4.0, 13.0, 7.0, 0.2]])
    +        boxes = torch.from_numpy(np_boxes)
    +        scores = torch.from_numpy(np_scores)
    +        dets, inds = nms(boxes, scores, iou_threshold=0.3, offset=0)
    +        assert np.allclose(dets, np_dets)  # test cpu
    +        assert np.allclose(inds, np_inds)  # test cpu
    +        dets, inds = nms(
    +            boxes.to(device), scores.to(device), iou_threshold=0.3, offset=0)
    +        assert np.allclose(dets.cpu().numpy(), np_dets)  # test gpu
    +        assert np.allclose(inds.cpu().numpy(), np_inds)  # test gpu
    +
    +    def test_softnms_allclose(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import soft_nms
    +        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
    +                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
    +                            dtype=np.float32)
    +        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    +
    +        np_output = {
    +            'linear': {
    +                'dets':
    +                np.array(
    +                    [[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
    +                     [3., 7., 10., 12., 0.29024392], [1., 4., 13., 7., 0.2]],
    +                    dtype=np.float32),
    +                'inds':
    +                np.array([1, 0, 2, 3], dtype=np.int64)
    +            },
    +            'gaussian': {
    +                'dets':
    +                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.59630775],
    +                          [3., 7., 10., 12., 0.35275510],
    +                          [1., 4., 13., 7., 0.18650459]],
    +                         dtype=np.float32),
    +                'inds':
    +                np.array([1, 0, 2, 3], dtype=np.int64)
    +            },
    +            'naive': {
    +                'dets':
    +                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
    +                          [1., 4., 13., 7., 0.2]],
    +                         dtype=np.float32),
    +                'inds':
    +                np.array([1, 0, 3], dtype=np.int64)
    +            }
    +        }
    +
    +        boxes = torch.from_numpy(np_boxes)
    +        scores = torch.from_numpy(np_scores)
    +
    +        configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
    +                   [0.3, 0.5, 0.01, 'naive']]
    +
    +        for iou, sig, mscore, m in configs:
    +            dets, inds = soft_nms(
    +                boxes,
    +                scores,
    +                iou_threshold=iou,
    +                sigma=sig,
    +                min_score=mscore,
    +                method=m)
    +            assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
    +            assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])
    +
    +        if torch.__version__ != 'parrots':
    +            boxes = boxes.cuda()
    +            scores = scores.cuda()
    +            for iou, sig, mscore, m in configs:
    +                dets, inds = soft_nms(
    +                    boxes,
    +                    scores,
    +                    iou_threshold=iou,
    +                    sigma=sig,
    +                    min_score=mscore,
    +                    method=m)
    +                assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
    +                assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])
    +
    +    def test_nms_match(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import nms, nms_match
    +        iou_thr = 0.6
    +        # empty input
    +        empty_dets = np.array([])
    +        assert len(nms_match(empty_dets, iou_thr)) == 0
    +
    +        # non empty ndarray input
    +        np_dets = np.array(
    +            [[49.1, 32.4, 51.0, 35.9, 0.9], [49.3, 32.9, 51.0, 35.3, 0.9],
    +             [35.3, 11.5, 39.9, 14.5, 0.4], [35.2, 11.7, 39.7, 15.7, 0.3]],
    +            dtype=np.float32)
    +        np_groups = nms_match(np_dets, iou_thr)
    +        assert isinstance(np_groups[0], np.ndarray)
    +        assert len(np_groups) == 2
    +        tensor_dets = torch.from_numpy(np_dets)
    +        boxes = tensor_dets[:, :4]
    +        scores = tensor_dets[:, 4]
    +        nms_keep_inds = nms(boxes.contiguous(), scores.contiguous(),
    +                            iou_thr)[1]
    +        assert {g[0].item() for g in np_groups} == set(nms_keep_inds.tolist())
    +
    +        # non empty tensor input
    +        tensor_dets = torch.from_numpy(np_dets)
    +        tensor_groups = nms_match(tensor_dets, iou_thr)
    +        assert isinstance(tensor_groups[0], torch.Tensor)
    +        for i in range(len(tensor_groups)):
    +            assert np.equal(tensor_groups[i].numpy(), np_groups[i]).all()
    +
    +        # input of wrong shape
    +        wrong_dets = np.zeros((2, 3))
    +        with pytest.raises(AssertionError):
    +            nms_match(wrong_dets, iou_thr)
    +
    +    def test_batched_nms(self):
    +        import mmcv
    +        from mmcv.ops import batched_nms
    +        results = mmcv.load('./tests/data/batched_nms_data.pkl')
    +
    +        nms_max_num = 100
    +        nms_cfg = dict(
    +            type='nms',
    +            iou_threshold=0.7,
    +            score_threshold=0.5,
    +            max_num=nms_max_num)
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(results['boxes']),
    +            torch.from_numpy(results['scores']),
    +            torch.from_numpy(results['idxs']),
    +            nms_cfg,
    +            class_agnostic=False)
    +
    +        nms_cfg.update(split_thr=100)
    +        seq_boxes, seq_keep = batched_nms(
    +            torch.from_numpy(results['boxes']),
    +            torch.from_numpy(results['scores']),
    +            torch.from_numpy(results['idxs']),
    +            nms_cfg,
    +            class_agnostic=False)
    +
    +        assert torch.equal(keep, seq_keep)
    +        assert torch.equal(boxes, seq_boxes)
    +        assert torch.equal(keep,
    +                           torch.from_numpy(results['keep'][:nms_max_num]))
    +
    +        nms_cfg = dict(type='soft_nms', iou_threshold=0.7)
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(results['boxes']),
    +            torch.from_numpy(results['scores']),
    +            torch.from_numpy(results['idxs']),
    +            nms_cfg,
    +            class_agnostic=False)
    +
    +        nms_cfg.update(split_thr=100)
    +        seq_boxes, seq_keep = batched_nms(
    +            torch.from_numpy(results['boxes']),
    +            torch.from_numpy(results['scores']),
    +            torch.from_numpy(results['idxs']),
    +            nms_cfg,
    +            class_agnostic=False)
    +
    +        assert torch.equal(keep, seq_keep)
    +        assert torch.equal(boxes, seq_boxes)
    +
    +        # test skip nms when `nms_cfg` is None
    +        seq_boxes, seq_keep = batched_nms(
    +            torch.from_numpy(results['boxes']),
    +            torch.from_numpy(results['scores']),
    +            torch.from_numpy(results['idxs']),
    +            None,
    +            class_agnostic=False)
    +        assert len(seq_keep) == len(results['boxes'])
    +        # assert score is descending order
    +        assert ((seq_boxes[:, -1][1:] - seq_boxes[:, -1][:-1]) < 0).all()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_quadri.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_quadri.py
    new file mode 100644
    index 000000000..51f91f062
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_quadri.py
    @@ -0,0 +1,119 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE
    +
    +
    +class TestNMSQuadri:
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    ])
    +    def test_ml_nms_quadri(self, device):
    +        from mmcv.ops import nms_quadri
    +        np_boxes = np.array([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0, 0.7],
    +                             [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0, 0.8],
    +                             [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0, 0.5],
    +                             [0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.9]],
    +                            dtype=np.float32)
    +        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)
    +
    +        np_expect_dets = np.array([[0., 0., 0., 2., 2., 2., 2., 0.],
    +                                   [2., 2., 3., 4., 4., 2., 3., 1.],
    +                                   [7., 7., 8., 8., 9., 7., 8., 6.]],
    +                                  dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 2], dtype=np.int64)
    +
    +        boxes = torch.from_numpy(np_boxes).to(device)
    +        labels = torch.from_numpy(np_labels).to(device)
    +
    +        dets, keep_inds = nms_quadri(boxes[:, :8], boxes[:, -1], 0.3, labels)
    +
    +        assert np.allclose(dets.cpu().numpy()[:, :8], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    ])
    +    def test_nms_quadri(self, device):
    +        from mmcv.ops import nms_quadri
    +        np_boxes = np.array([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0, 0.7],
    +                             [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0, 0.8],
    +                             [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0, 0.5],
    +                             [0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.9]],
    +                            dtype=np.float32)
    +
    +        np_expect_dets = np.array([[0., 0., 0., 2., 2., 2., 2., 0.],
    +                                   [2., 2., 3., 4., 4., 2., 3., 1.],
    +                                   [7., 7., 8., 8., 9., 7., 8., 6.]],
    +                                  dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 2], dtype=np.int64)
    +
    +        boxes = torch.from_numpy(np_boxes).to(device)
    +
    +        dets, keep_inds = nms_quadri(boxes[:, :8], boxes[:, -1], 0.3)
    +        assert np.allclose(dets.cpu().numpy()[:, :8], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +    @pytest.mark.parametrize('device', [
    +        'cpu',
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    ])
    +    def test_batched_nms(self, device):
    +        # test batched_nms with nms_quadri
    +        from mmcv.ops import batched_nms
    +
    +        np_boxes = np.array([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0, 0.7],
    +                             [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0, 0.8],
    +                             [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0, 0.5],
    +                             [0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.9]],
    +                            dtype=np.float32)
    +        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)
    +
    +        np_expect_agnostic_dets = np.array([[0., 0., 0., 2., 2., 2., 2., 0.],
    +                                            [2., 2., 3., 4., 4., 2., 3., 1.],
    +                                            [7., 7., 8., 8., 9., 7., 8., 6.]],
    +                                           dtype=np.float32)
    +        np_expect_agnostic_keep_inds = np.array([3, 1, 2], dtype=np.int64)
    +
    +        np_expect_dets = np.array([[0., 0., 0., 2., 2., 2., 2., 0.],
    +                                   [2., 2., 3., 4., 4., 2., 3., 1.],
    +                                   [1., 1., 3., 4., 4., 4., 4., 1.],
    +                                   [7., 7., 8., 8., 9., 7., 8., 6.]],
    +                                  dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64)
    +
    +        nms_cfg = dict(type='nms_quadri', iou_threshold=0.3)
    +
    +        # test class_agnostic is True
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(np_boxes[:, :8]).to(device),
    +            torch.from_numpy(np_boxes[:, -1]).to(device),
    +            torch.from_numpy(np_labels).to(device),
    +            nms_cfg,
    +            class_agnostic=True)
    +        assert np.allclose(boxes.cpu().numpy()[:, :8], np_expect_agnostic_dets)
    +        assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds)
    +
    +        # test class_agnostic is False
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(np_boxes[:, :8]).to(device),
    +            torch.from_numpy(np_boxes[:, -1]).to(device),
    +            torch.from_numpy(np_labels).to(device),
    +            nms_cfg,
    +            class_agnostic=False)
    +        assert np.allclose(boxes.cpu().numpy()[:, :8], np_expect_dets)
    +        assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_rotated.py
    new file mode 100644
    index 000000000..1b7f3607b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_nms_rotated.py
    @@ -0,0 +1,116 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(),
    +    reason='GPU is required to test NMSRotated op')
    +class TestNmsRotated:
    +
    +    def test_ml_nms_rotated(self):
    +        from mmcv.ops import nms_rotated
    +        np_boxes = np.array(
    +            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
    +             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
    +             ],
    +            dtype=np.float32)
    +        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)
    +
    +        np_expect_dets = np.array(
    +            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
    +             [6.0, 3.0, 8.0, 7.0, 0.5]],
    +            dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)
    +
    +        boxes = torch.from_numpy(np_boxes).cuda()
    +        labels = torch.from_numpy(np_labels).cuda()
    +
    +        # test cw angle definition
    +        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels)
    +
    +        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +        # test ccw angle definition
    +        boxes[..., -2] *= -1
    +        dets, keep_inds = nms_rotated(
    +            boxes[:, :5], boxes[:, -1], 0.5, labels, clockwise=False)
    +        dets[..., -2] *= -1
    +        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +    def test_nms_rotated(self):
    +        from mmcv.ops import nms_rotated
    +        np_boxes = np.array(
    +            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
    +             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
    +             ],
    +            dtype=np.float32)
    +
    +        np_expect_dets = np.array(
    +            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
    +             [6.0, 3.0, 8.0, 7.0, 0.5]],
    +            dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)
    +
    +        boxes = torch.from_numpy(np_boxes).cuda()
    +
    +        # test cw angle definition
    +        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5)
    +        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +        # test ccw angle definition
    +        boxes[..., -2] *= -1
    +        dets, keep_inds = nms_rotated(
    +            boxes[:, :5], boxes[:, -1], 0.5, clockwise=False)
    +        dets[..., -2] *= -1
    +        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
    +        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
    +
    +    def test_batched_nms(self):
    +        # test batched_nms with nms_rotated
    +        from mmcv.ops import batched_nms
    +
    +        np_boxes = np.array(
    +            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
    +             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
    +             ],
    +            dtype=np.float32)
    +        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)
    +
    +        np_expect_agnostic_dets = np.array(
    +            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
    +             [6.0, 3.0, 8.0, 7.0, 0.5]],
    +            dtype=np.float32)
    +        np_expect_agnostic_keep_inds = np.array([3, 1, 0], dtype=np.int64)
    +
    +        np_expect_dets = np.array(
    +            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
    +             [6.0, 3.0, 8.0, 7.0, 0.5], [3.0, 7.0, 10.0, 12.0, 0.3]],
    +            dtype=np.float32)
    +        np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64)
    +
    +        nms_cfg = dict(type='nms_rotated', iou_threshold=0.5)
    +
    +        # test class_agnostic is True
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(np_boxes[:, :5]),
    +            torch.from_numpy(np_boxes[:, -1]),
    +            torch.from_numpy(np_labels),
    +            nms_cfg,
    +            class_agnostic=True)
    +        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_agnostic_dets)
    +        assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds)
    +
    +        # test class_agnostic is False
    +        boxes, keep = batched_nms(
    +            torch.from_numpy(np_boxes[:, :5]),
    +            torch.from_numpy(np_boxes[:, -1]),
    +            torch.from_numpy(np_labels),
    +            nms_cfg,
    +            class_agnostic=False)
    +        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets)
    +        assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_onnx.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_onnx.py
    new file mode 100644
    index 000000000..52df109a3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_onnx.py
    @@ -0,0 +1,925 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import warnings
    +from functools import partial
    +
    +import numpy as np
    +import onnx
    +import onnxruntime as rt
    +import pytest
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from packaging import version
    +
    +onnx_file = 'tmp.onnx'
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not supported in parrots now', allow_module_level=True)
    +
    +
    +@pytest.fixture(autouse=True)
    +def run_before_and_after_test():
    +    # clear onnx_file before test
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +
    +    yield
    +
    +    # clear onnx_file after test
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +
    +
    +class WrapFunction(nn.Module):
    +
    +    def __init__(self, wrapped_function):
    +        super().__init__()
    +        self.wrapped_function = wrapped_function
    +
    +    def forward(self, *args, **kwargs):
    +        return self.wrapped_function(*args, **kwargs)
    +
    +
    +def process_grid_sample(func, input, grid, ort_custom_op_path=''):
    +    wrapped_model = WrapFunction(func).eval()
    +
    +    input_names = ['input', 'grid']
    +    output_names = ['output']
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (input, grid),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    session_options = rt.SessionOptions()
    +    if ort_custom_op_path:
    +        session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +    # get onnx output
    +    input_all = [node.name for node in onnx_model.graph.input]
    +    input_initializer = [node.name for node in onnx_model.graph.initializer]
    +    net_feed_input = list(set(input_all) - set(input_initializer))
    +    assert (len(net_feed_input) == 2)
    +    sess = rt.InferenceSession(
    +        onnx_file, session_options, providers=['CPUExecutionProvider'])
    +    ort_result = sess.run(None, {
    +        'input': input.detach().numpy(),
    +        'grid': grid.detach().numpy()
    +    })
    +    pytorch_results = wrapped_model(input.clone(), grid.clone())
    +    assert np.allclose(pytorch_results, ort_result, atol=1e-3)
    +
    +
    +@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
    +@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
    +@pytest.mark.parametrize('align_corners', [True, False])
    +def test_grid_sample(mode, padding_mode, align_corners):
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    opset_version = 11
    +    register_extra_symbolics(opset_version)
    +
    +    from mmcv.ops import get_onnxruntime_op_path
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    input = torch.rand(1, 1, 10, 10)
    +    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    +    grid = F.affine_grid(
    +        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
    +
    +    def func(input, grid):
    +        return F.grid_sample(
    +            input,
    +            grid,
    +            mode=mode,
    +            padding_mode=padding_mode,
    +            align_corners=align_corners)
    +
    +    return process_grid_sample(func, input, grid, ort_custom_op_path)
    +
    +
    +@pytest.mark.parametrize('align_corners', [True, False])
    +def test_bilinear_grid_sample(align_corners):
    +    from mmcv.ops.point_sample import bilinear_grid_sample
    +
    +    # only support pytorch >= 1.5.0
    +    if version.parse(torch.__version__) < version.parse('1.5.0'):
    +        pytest.skip('Only support PyTorch >= 1.5.0')
    +
    +    input = torch.rand(1, 1, 10, 10)
    +    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    +    grid = F.affine_grid(
    +        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
    +
    +    def func(input, grid):
    +        return bilinear_grid_sample(input, grid, align_corners=align_corners)
    +
    +    return process_grid_sample(func, input, grid)
    +
    +
    +def test_nms():
    +    from mmcv.ops import get_onnxruntime_op_path, nms
    +    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
    +                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
    +                        dtype=np.float32)
    +    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    +    boxes = torch.from_numpy(np_boxes)
    +    scores = torch.from_numpy(np_scores)
    +
    +    nms = partial(
    +        nms, iou_threshold=0.3, offset=0, score_threshold=0, max_num=0)
    +    pytorch_dets, _ = nms(boxes, scores)
    +    pytorch_score = pytorch_dets[:, 4]
    +
    +    wrapped_model = WrapFunction(nms)
    +    wrapped_model.cpu().eval()
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (boxes, scores),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['boxes', 'scores'],
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    session_options = rt.SessionOptions()
    +    if os.path.exists(ort_custom_op_path):
    +        session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +    # get onnx output
    +    input_all = [node.name for node in onnx_model.graph.input]
    +    input_initializer = [node.name for node in onnx_model.graph.initializer]
    +    net_feed_input = list(set(input_all) - set(input_initializer))
    +    assert (len(net_feed_input) == 2)
    +    sess = rt.InferenceSession(
    +        onnx_file, session_options, providers=['CPUExecutionProvider'])
    +    onnx_dets, _ = sess.run(None, {
    +        'scores': scores.detach().numpy(),
    +        'boxes': boxes.detach().numpy()
    +    })
    +    onnx_score = onnx_dets[:, 4]
    +    assert np.allclose(pytorch_score, onnx_score, atol=1e-3)
    +
    +
    +@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
    +def test_softnms():
    +    from mmcv.ops import get_onnxruntime_op_path, soft_nms
    +
    +    # only support pytorch >= 1.7.0
    +    if version.parse(torch.__version__) < version.parse('1.7.0'):
    +        warnings.warn('test_softnms should be ran with pytorch >= 1.7.0')
    +        return
    +
    +    # only support onnxruntime >= 1.5.1
    +    assert version.parse(rt.__version__) >= version.parse(
    +        '1.5.1'), 'test_softnms should be ran with onnxruntime >= 1.5.1'
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('softnms for onnxruntime is not compiled.')
    +
    +    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
    +                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
    +                        dtype=np.float32)
    +    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    +
    +    boxes = torch.from_numpy(np_boxes)
    +    scores = torch.from_numpy(np_scores)
    +
    +    configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
    +               [0.3, 0.5, 0.01, 'naive']]
    +
    +    session_options = rt.SessionOptions()
    +    session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +    for _iou_threshold, _sigma, _min_score, _method in configs:
    +        pytorch_dets, pytorch_inds = soft_nms(
    +            boxes,
    +            scores,
    +            iou_threshold=_iou_threshold,
    +            sigma=_sigma,
    +            min_score=_min_score,
    +            method=_method)
    +        nms = partial(
    +            soft_nms,
    +            iou_threshold=_iou_threshold,
    +            sigma=_sigma,
    +            min_score=_min_score,
    +            method=_method)
    +
    +        wrapped_model = WrapFunction(nms)
    +        wrapped_model.cpu().eval()
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (boxes, scores),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['boxes', 'scores'],
    +                opset_version=11)
    +        onnx_model = onnx.load(onnx_file)
    +
    +        # get onnx output
    +        input_all = [node.name for node in onnx_model.graph.input]
    +        input_initializer = [
    +            node.name for node in onnx_model.graph.initializer
    +        ]
    +        net_feed_input = list(set(input_all) - set(input_initializer))
    +        assert (len(net_feed_input) == 2)
    +        sess = rt.InferenceSession(
    +            onnx_file, session_options, providers=['CPUExecutionProvider'])
    +        onnx_dets, onnx_inds = sess.run(None, {
    +            'scores': scores.detach().numpy(),
    +            'boxes': boxes.detach().numpy()
    +        })
    +
    +        assert np.allclose(pytorch_dets, onnx_dets, atol=1e-3)
    +        assert np.allclose(onnx_inds, onnx_inds, atol=1e-3)
    +
    +
    +def test_roialign():
    +    try:
    +        from mmcv.ops import get_onnxruntime_op_path, roi_align
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('roi_align op is not successfully compiled')
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    # roi align config
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +    sampling_ratio = 2
    +
    +    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2.], [3., 4.]], [[4., 3.],
    +                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +
    +    def warpped_function(torch_input, torch_rois):
    +        return roi_align(torch_input, torch_rois, (pool_w, pool_h),
    +                         spatial_scale, sampling_ratio, 'avg', True)
    +
    +    for case in inputs:
    +        np_input = np.array(case[0], dtype=np.float32)
    +        np_rois = np.array(case[1], dtype=np.float32)
    +        input = torch.from_numpy(np_input)
    +        rois = torch.from_numpy(np_rois)
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_output = roi_align(input, rois, (pool_w, pool_h),
    +                                       spatial_scale, sampling_ratio, 'avg',
    +                                       True)
    +
    +        # export and load onnx model
    +        wrapped_model = WrapFunction(warpped_function)
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (input, rois),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['input', 'rois'],
    +                opset_version=11)
    +
    +        onnx_model = onnx.load(onnx_file)
    +        session_options = rt.SessionOptions()
    +        if os.path.exists(ort_custom_op_path):
    +            session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +        # compute onnx_output
    +        input_all = [node.name for node in onnx_model.graph.input]
    +        input_initializer = [
    +            node.name for node in onnx_model.graph.initializer
    +        ]
    +        net_feed_input = list(set(input_all) - set(input_initializer))
    +        assert (len(net_feed_input) == 2)
    +        sess = rt.InferenceSession(
    +            onnx_file, session_options, providers=['CPUExecutionProvider'])
    +        onnx_output = sess.run(None, {
    +            'input': input.detach().numpy(),
    +            'rois': rois.detach().numpy()
    +        })
    +        onnx_output = onnx_output[0]
    +
    +        # allclose
    +
    +        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    +
    +
    +def test_roialign_rotated():
    +    try:
    +        from mmcv.ops import get_onnxruntime_op_path, roi_align_rotated
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('roi_align_aligned op is not successfully compiled')
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +    # roi align config
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +    sampling_ratio = 2
    +
    +    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
    +              ([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
    +              ([[[[1., 2.], [3., 4.]],
    +                 [[4., 3.], [2., 1.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
    +              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3., 0]]),
    +              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3.,
    +                                             np.pi / 2]])]
    +
    +    def warpped_function(torch_input, torch_rois):
    +        return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
    +                                 spatial_scale, sampling_ratio, True, False)
    +
    +    for case in inputs:
    +        np_input = np.array(case[0], dtype=np.float32)
    +        np_rois = np.array(case[1], dtype=np.float32)
    +        input = torch.from_numpy(np_input)
    +        rois = torch.from_numpy(np_rois)
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_output = roi_align_rotated(input, rois, (pool_w, pool_h),
    +                                               spatial_scale, sampling_ratio,
    +                                               True, False)
    +
    +        # export and load onnx model
    +        wrapped_model = WrapFunction(warpped_function)
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (input, rois),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['features', 'rois'],
    +                opset_version=11)
    +
    +        onnx_model = onnx.load(onnx_file)
    +        session_options = rt.SessionOptions()
    +        if os.path.exists(ort_custom_op_path):
    +            session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +        # compute onnx_output
    +        input_all = [node.name for node in onnx_model.graph.input]
    +        input_initializer = [
    +            node.name for node in onnx_model.graph.initializer
    +        ]
    +        net_feed_input = list(set(input_all) - set(input_initializer))
    +        assert (len(net_feed_input) == 2)
    +        sess = rt.InferenceSession(
    +            onnx_file, session_options, providers=['CPUExecutionProvider'])
    +        onnx_output = sess.run(None, {
    +            'features': input.detach().numpy(),
    +            'rois': rois.detach().numpy()
    +        })
    +        onnx_output = onnx_output[0]
    +
    +        # allclose
    +
    +        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    +
    +
    +@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
    +def test_roipool():
    +    from mmcv.ops import roi_pool
    +
    +    # roi pool config
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +
    +    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2.], [3., 4.]], [[4., 3.],
    +                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +
    +    def warpped_function(torch_input, torch_rois):
    +        return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
    +                        spatial_scale)
    +
    +    for case in inputs:
    +        np_input = np.array(case[0], dtype=np.float32)
    +        np_rois = np.array(case[1], dtype=np.float32)
    +        input = torch.from_numpy(np_input).cuda()
    +        rois = torch.from_numpy(np_rois).cuda()
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
    +                                      spatial_scale)
    +            pytorch_output = pytorch_output.cpu()
    +
    +        # export and load onnx model
    +        wrapped_model = WrapFunction(warpped_function)
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (input, rois),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['input', 'rois'],
    +                opset_version=11)
    +        onnx_model = onnx.load(onnx_file)
    +
    +        # compute onnx_output
    +        input_all = [node.name for node in onnx_model.graph.input]
    +        input_initializer = [
    +            node.name for node in onnx_model.graph.initializer
    +        ]
    +        net_feed_input = list(set(input_all) - set(input_initializer))
    +        assert (len(net_feed_input) == 2)
    +        sess = rt.InferenceSession(
    +            onnx_file, providers=['CPUExecutionProvider'])
    +        onnx_output = sess.run(
    +            None, {
    +                'input': input.detach().cpu().numpy(),
    +                'rois': rois.detach().cpu().numpy()
    +            })
    +        onnx_output = onnx_output[0]
    +
    +        # allclose
    +        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    +
    +
    +def test_interpolate():
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    opset_version = 11
    +    register_extra_symbolics(opset_version)
    +
    +    def func(feat, scale_factor=2):
    +        out = F.interpolate(feat, scale_factor=scale_factor)
    +        return out
    +
    +    net = WrapFunction(func)
    +    net = net.cpu().eval()
    +    dummy_input = torch.randn(2, 4, 8, 8).cpu()
    +    torch.onnx.export(
    +        net,
    +        dummy_input,
    +        onnx_file,
    +        input_names=['input'],
    +        opset_version=opset_version)
    +    sess = rt.InferenceSession(onnx_file, providers=['CPUExecutionProvider'])
    +    onnx_result = sess.run(None, {'input': dummy_input.detach().numpy()})
    +    pytorch_result = func(dummy_input).detach().numpy()
    +
    +    assert np.allclose(pytorch_result, onnx_result, atol=1e-3)
    +
    +
    +def test_rotated_feature_align():
    +    if torch.__version__ == 'parrots':
    +        pytest.skip('onnx is not supported in parrots directly')
    +    try:
    +        from mmcv.ops import get_onnxruntime_op_path, rotated_feature_align
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('rotated_feature_align op is not successfully compiled')
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    spatial_scale = 1.0 / 8
    +    points = 1
    +
    +    def warpped_function(feature, bbox):
    +        return rotated_feature_align(
    +            feature, bbox, spatial_scale=spatial_scale, points=points)
    +
    +    feature = torch.tensor([[[[1.2924, -0.2172, -0.5222, 0.1172],
    +                              [0.9144, 1.2248, 1.3115, -0.9690],
    +                              [-0.8949, -1.1797, -0.9093, -0.3961],
    +                              [-0.4586, 0.5062, -0.7947, -0.7397]],
    +                             [[-1.0943, -0.7495, 1.3461, -1.1652],
    +                              [0.2034, 0.6763, -1.2357, 0.5231],
    +                              [-1.0062, 1.2592, 1.4225, -0.3951],
    +                              [-0.1242, -1.6240, 0.1932, 2.7181]],
    +                             [[-1.6271, -1.0276, 0.0578, -0.2997],
    +                              [-0.9684, -1.6946, -1.3188, -1.1938],
    +                              [-1.6744, -0.8917, -0.6556, 1.0073],
    +                              [-0.1205, 0.3671, -0.3731, -0.5347]]],
    +                            [[[0.7035, 0.2089, -0.1774, 3.4670],
    +                              [-0.8505, -0.9278, 1.4714, 0.1644],
    +                              [0.0898, 0.3531, -0.4007, 0.1927],
    +                              [1.2569, -0.2636, -0.5223, 0.0616]],
    +                             [[0.1760, -0.7639, -0.4600, -1.3260],
    +                              [-0.9921, -0.2970, -0.8955, 1.0508],
    +                              [1.3515, -0.1641, 1.9679, 1.1986],
    +                              [-0.3616, 0.6287, 0.4933, 0.3360]],
    +                             [[-0.5860, 0.2124, -0.8700, 2.4200],
    +                              [-0.0551, -1.5103, -1.6779, 0.8399],
    +                              [0.8431, 1.2414, -1.1243, -0.3887],
    +                              [-2.1254, 0.6047, -0.3515, 0.7254]]]])
    +
    +    bbox = torch.tensor(
    +        [[[[1.3080e+01, 1.2688e+01, 1.1214e+01, 9.3944e+01, -9.1905e-01],
    +           [3.8104e+01, 1.0134e+01, 1.4659e+02, 9.0306e+01, -9.8211e-01],
    +           [-5.3213e+01, 4.9508e+01, 5.1513e+01, 3.2055e+01, -3.1954e-01],
    +           [2.6974e+01, 2.5248e+01, 5.4495e+01, 3.1083e+00, -6.2127e-01]],
    +          [[-1.5604e+01, -5.1908e+01, 2.3998e+02, 1.5008e+01, -1.2546e+00],
    +           [3.1354e+01, -7.3635e+00, 6.7879e+01, 3.5081e+01, -3.3851e-01],
    +           [-5.3292e+00, 9.1946e+00, 1.2834e+01, 1.0485e+01, -1.3039e+00],
    +           [-2.3925e+01, 3.6623e+01, 3.9875e+01, 7.2009e+01, -6.5934e-01]],
    +          [[7.2114e+01, -2.3781e+01, 2.9106e+01, 8.4501e+01, -1.1340e+00],
    +           [2.6258e+01, -7.7034e+00, 1.7629e+02, 1.0615e+02, -1.2156e+00],
    +           [3.8057e+01, 4.6016e+01, 1.2965e+01, 6.9384e+00, -1.0855e+00],
    +           [2.4428e+01, -1.6189e+01, 2.0572e+02, 3.1622e+01, -1.5719e-01]],
    +          [[3.8226e+00, 2.9608e+01, 1.4457e+01, 6.8179e+01, -9.1997e-01],
    +           [2.5003e+01, -4.2490e+01, 9.6007e+01, 4.9086e+01, -1.4786e+00],
    +           [8.5983e+01, 5.4980e+01, 7.8080e+01, 1.0003e+02, -1.0926e+00],
    +           [9.9065e+00, 4.1457e+01, 5.9799e+00, 1.7973e+01, -5.6313e-01]]],
    +         [[[-1.8244e+01, 4.6309e+00, 5.3010e+01, 2.4310e+01, -7.0345e-01],
    +           [1.9419e+01, 3.6704e+01, 5.2390e+01, 5.4133e+01, -3.7730e-01],
    +           [5.6387e+01, 2.3752e+01, 9.0441e+00, 1.7792e+01, -1.5583e+00],
    +           [3.6303e+01, 1.6396e+01, 2.0283e+01, 1.9148e+01, -8.3419e-01]],
    +          [[3.2169e+01, 3.0521e+01, 2.6283e+01, 1.9680e+02, -3.0454e-01],
    +           [2.5788e+01, -3.2189e+01, 8.8882e+01, 1.0207e+02, -1.5328e+00],
    +           [8.4676e+00, -1.6668e+01, 2.4657e+01, 1.1275e+02, -4.0388e-01],
    +           [-1.0799e+01, 6.0422e+00, 9.5807e+00, 3.3677e+01, -3.5438e-01]],
    +          [[6.9363e+01, 1.0850e+01, 2.5968e+01, 2.2311e+01, -1.6408e-01],
    +           [2.8140e+00, 4.6843e+00, 3.1289e+00, 2.1480e+01, -6.7583e-01],
    +           [2.6661e+01, 4.5290e+01, 6.1679e+00, 3.0005e+01, -8.9806e-01],
    +           [5.0871e+00, 1.3234e+01, 9.2087e+01, 4.9622e+01, -2.8020e-01]],
    +          [[-1.2643e+01, 2.5176e+01, 5.0488e+01, 5.4246e+01, -4.4840e-01],
    +           [-3.4521e+01, 9.8435e-01, 5.2413e+01, 9.7996e+00, -8.4218e-01],
    +           [4.9829e+01, -1.0808e+01, 2.9848e+01, 7.3579e+01, -6.2672e-01],
    +           [8.0446e+01, 2.8064e+01, 4.5273e+01, 5.3809e+01, -1.2359e+00]]]])
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_output = rotated_feature_align(
    +            feature, bbox, spatial_scale=spatial_scale, points=points)
    +
    +    # export and load onnx model
    +    wrapped_model = WrapFunction(warpped_function)
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (feature, bbox),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['feature', 'bbox'],
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +    session_options = rt.SessionOptions()
    +    if os.path.exists(ort_custom_op_path):
    +        session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +    # compute onnx_output
    +    input_all = [node.name for node in onnx_model.graph.input]
    +    input_initializer = [node.name for node in onnx_model.graph.initializer]
    +    net_feed_input = list(set(input_all) - set(input_initializer))
    +    assert (len(net_feed_input) == 2)
    +    sess = rt.InferenceSession(
    +        onnx_file, session_options, providers=['CPUExecutionProvider'])
    +    onnx_output = sess.run(None, {
    +        'feature': feature.detach().numpy(),
    +        'bbox': bbox.detach().numpy()
    +    })
    +    onnx_output = onnx_output[0]
    +
    +    # allclose
    +    assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    +
    +
    +@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
    +def test_corner_pool(mode, opset=11):
    +    from mmcv.ops import get_onnxruntime_op_path
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    from mmcv.ops.corner_pool import CornerPool
    +
    +    def corner_pool_func(input):
    +        corner_pool_module = CornerPool(mode)
    +        return corner_pool_module.corner_pool.apply(input)
    +
    +    wrapped_model = WrapFunction(corner_pool_func).eval()
    +
    +    input = torch.rand((2, 3, 9, 12))  # (n,c,h,w)
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model,
    +            input,
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['input'],
    +            output_names=['output'],
    +            opset_version=opset)
    +
    +    onnx_model = onnx.load(onnx_file)
    +    input_all = [node.name for node in onnx_model.graph.input]
    +    input_initializer = [node.name for node in onnx_model.graph.initializer]
    +    net_feed_input = list(set(input_all) - set(input_initializer))
    +    assert (len(net_feed_input) == 1)
    +
    +    session_options = rt.SessionOptions()
    +    session_options.register_custom_ops_library(ort_custom_op_path)
    +    sess = rt.InferenceSession(
    +        onnx_file, session_options, providers=['CPUExecutionProvider'])
    +    ort_result = sess.run(None, {'input': input.detach().numpy()})
    +    pytorch_results = wrapped_model(input.clone())
    +
    +    assert np.allclose(pytorch_results, ort_result, atol=1e-5)
    +
    +
    +@pytest.mark.parametrize('key', ['cummax', 'cummin'])
    +def test_cummax_cummin(key, opset=11):
    +    # Note generally `cummax` or `cummin` is exportable to ONNX
    +    # as long as the pytorch version >= 1.5.0, since `torch.cummax`
    +    # is only supported with torch >= 1.5.0.
    +    # But when `cummax` or `cummin` serves as an intermediate component
    +    # whose outputs is used as inputs for another modules, it's expected
    +    # that pytorch version must be >= 1.7.0. Otherwise error appears like:
    +    # `RuntimeError: tuple  appears in op that does not forward tuples,
    +    # unsupported 'kind: prim::PythonOp`.
    +    if version.parse(torch.__version__) < version.parse('1.7.0'):
    +        pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')
    +
    +    # register custom op `mmcv::cummax` and `mmcv::cummin`
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    register_extra_symbolics(opset)
    +
    +    from mmcv.ops import get_onnxruntime_op_path
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    input_list = [
    +        # arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
    +        torch.rand((2, 3, 4, 1, 5)),
    +        torch.rand(1),
    +        torch.rand((2, 0, 1)),  # tensor.numel() is 0
    +        torch.FloatTensor(),  # empty tensor
    +    ]
    +
    +    cummax_cummin_funcs = {'cummax': torch.cummax, 'cummin': torch.cummin}
    +
    +    for input in input_list:
    +        ndims = input.dim()
    +        # valid dim range is [-ndims, ndims-1]
    +        # test for all `dim` value which is valid
    +        for dim in range(-ndims, ndims):
    +            cummax_func = partial(cummax_cummin_funcs[key], dim=dim)
    +            wrapped_model = WrapFunction(cummax_func).eval()
    +
    +            with torch.no_grad():
    +                torch.onnx.export(
    +                    wrapped_model,
    +                    input,
    +                    onnx_file,
    +                    export_params=True,
    +                    keep_initializers_as_inputs=True,
    +                    input_names=['input'],
    +                    output_names=['output', 'indices'],
    +                    opset_version=opset)
    +
    +            onnx_model = onnx.load(onnx_file)
    +            input_all = [node.name for node in onnx_model.graph.input]
    +            input_initializer = [
    +                node.name for node in onnx_model.graph.initializer
    +            ]
    +            net_feed_input = list(set(input_all) - set(input_initializer))
    +            assert (len(net_feed_input) == 1)
    +
    +            session_options = rt.SessionOptions()
    +            session_options.register_custom_ops_library(ort_custom_op_path)
    +            sess = rt.InferenceSession(
    +                onnx_file, session_options, providers=['CPUExecutionProvider'])
    +            ort_output, ort_inds = sess.run(None,
    +                                            {'input': input.detach().numpy()})
    +            pytorch_output, pytorch_inds = wrapped_model(input.clone())
    +            pytorch_output = pytorch_output.detach().numpy()
    +            pytorch_inds = pytorch_inds.detach().numpy()
    +            assert np.allclose(pytorch_output, ort_output, atol=1e-5)
    +            assert np.all(pytorch_inds == ort_inds)
    +
    +
    +@pytest.mark.parametrize('shifts_dims_pair', [([-3, 5], [2, 0]), (5, None)])
    +def test_roll(shifts_dims_pair):
    +    opset = 11
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    register_extra_symbolics(opset)
    +
    +    input = torch.arange(0, 4 * 5 * 6, dtype=torch.float32).view(4, 5, 6)
    +
    +    shifts, dims = shifts_dims_pair
    +    func = partial(torch.roll, shifts=shifts, dims=dims)
    +    wrapped_model = WrapFunction(func).eval()
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model,
    +            input,
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['input'],
    +            output_names=['output'],
    +            opset_version=opset)
    +
    +    onnx_model = onnx.load(onnx_file)
    +    input_all = [node.name for node in onnx_model.graph.input]
    +    input_initializer = [node.name for node in onnx_model.graph.initializer]
    +    net_feed_input = list(set(input_all) - set(input_initializer))
    +    assert (len(net_feed_input) == 1)
    +
    +    sess = rt.InferenceSession(onnx_file, providers=['CPUExecutionProvider'])
    +    ort_output = sess.run(None, {'input': input.detach().numpy()})[0]
    +
    +    with torch.no_grad():
    +        pytorch_output = wrapped_model(input.clone())
    +
    +    torch.testing.assert_allclose(ort_output, pytorch_output)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(),
    +    reason='modulated_deform_conv2d only supports in GPU')
    +def test_modulated_deform_conv2d():
    +    try:
    +        from mmcv.ops import ModulatedDeformConv2d, get_onnxruntime_op_path
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('modulated_deform_conv op is not successfully compiled')
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    # modulated deform conv config
    +    in_channels = 3
    +    out_channels = 64
    +    stride = 1
    +    padding = 0
    +    dilation = 1
    +    groups = 1
    +    deform_groups = 1
    +    kernel_size = 3
    +
    +    input = torch.rand(1, in_channels, 28, 28).cuda()  # (n, c, h, w)
    +    conv_offset = nn.Conv2d(
    +        in_channels=3,
    +        out_channels=deform_groups * 3 * kernel_size * kernel_size,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        bias=True).cuda()
    +    conv_offset.cuda()
    +    out = conv_offset(input)
    +    o1, o2, mask = torch.chunk(out, 3, dim=1)
    +    offset = torch.cat((o1, o2), dim=1)
    +    mask = torch.sigmoid(mask)
    +
    +    model_with_bias = ModulatedDeformConv2d(
    +        in_channels,
    +        out_channels,
    +        kernel_size,
    +        stride,
    +        padding,
    +        dilation,
    +        groups,
    +        deform_groups,
    +        bias=True)
    +    model_without_bias = ModulatedDeformConv2d(
    +        in_channels,
    +        out_channels,
    +        kernel_size,
    +        stride,
    +        padding,
    +        dilation,
    +        groups,
    +        deform_groups,
    +        bias=False)
    +    models = [model_with_bias.cuda(), model_without_bias.cuda()]
    +
    +    for model in models:
    +        # export and load onnx model
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                model, (input, offset, mask),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['input', 'offset', 'mask'],
    +                opset_version=11)
    +
    +        session_options = rt.SessionOptions()
    +        if os.path.exists(ort_custom_op_path):
    +            session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +        # compute onnx_output
    +        sess = rt.InferenceSession(
    +            onnx_file, session_options, providers=['CPUExecutionProvider'])
    +        onnx_output = sess.run(
    +            None, {
    +                'input': input.cpu().detach().numpy(),
    +                'offset': offset.cpu().detach().numpy(),
    +                'mask': mask.cpu().detach().numpy()
    +            })[0]
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_output = model(input, offset, mask).cpu()
    +        # allclose
    +        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    +
    +
    +def test_deform_conv2d(threshold=1e-3):
    +    try:
    +        from mmcv.ops import DeformConv2d, get_onnxruntime_op_path
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('deform_conv op is not successfully compiled')
    +
    +    ort_custom_op_path = get_onnxruntime_op_path()
    +    if not os.path.exists(ort_custom_op_path):
    +        pytest.skip('custom ops for onnxruntime are not compiled.')
    +
    +    # deform conv config
    +    # modulated deform conv config
    +    in_channels = 1
    +    out_channels = 64
    +    stride = 1
    +    padding = 0
    +    dilation = 1
    +    groups = 1
    +    deform_groups = 1
    +    kernel_size = 2
    +    input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    +    offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
    +                     [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
    +                     [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
    +                     [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
    +    offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
    +    deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
    +
    +    x = torch.tensor(input)
    +    conv_offset = nn.Conv2d(
    +        in_channels=in_channels,
    +        out_channels=deform_groups * 2 * kernel_size * kernel_size,
    +        kernel_size=kernel_size,
    +        stride=stride,
    +        padding=padding,
    +        dilation=dilation,
    +        bias=True)
    +
    +    conv_offset.weight.data = torch.nn.Parameter(
    +        torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    +    conv_offset.bias.data = torch.nn.Parameter(
    +        torch.Tensor(offset_bias).reshape(8))
    +
    +    offset = conv_offset(x)
    +
    +    model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
    +                         padding, dilation, groups, deform_groups)
    +
    +    model.weight.data = torch.nn.Parameter(
    +        torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            model, (x, offset),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['input', 'offset'],
    +            opset_version=11)
    +
    +    session_options = rt.SessionOptions()
    +    if os.path.exists(ort_custom_op_path):
    +        session_options.register_custom_ops_library(ort_custom_op_path)
    +
    +    # compute onnx_output
    +    sess = rt.InferenceSession(
    +        onnx_file, session_options, providers=['CPUExecutionProvider'])
    +    onnx_output = sess.run(
    +        None, {
    +            'input': x.cpu().detach().numpy(),
    +            'offset': offset.cpu().detach().numpy(),
    +        })[0]
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_output = model(x, offset).cpu()
    +    # allclose
    +    assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_pixel_group.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_pixel_group.py
    new file mode 100644
    index 000000000..ceb257365
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_pixel_group.py
    @@ -0,0 +1,78 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import torch
    +
    +
    +def test_pixel_group():
    +    from mmcv.ops import pixel_group
    +    np_score = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                         [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0],
    +                         [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0],
    +                         [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0],
    +                         [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0],
    +                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.float32)
    +    np_mask = (np_score > 0.5)
    +    np_embedding = np.zeros((10, 10, 8)).astype(np.float32)
    +    np_embedding[:, :7] = 0.9
    +    np_embedding[:, 7:] = 10.0
    +    np_kernel_label = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 1, 1, 1, 0, 0, 0, 2, 0],
    +                                [0, 0, 1, 1, 1, 0, 0, 0, 2, 0],
    +                                [0, 0, 1, 1, 1, 0, 0, 0, 2, 0],
    +                                [0, 0, 1, 1, 1, 0, 0, 0, 2, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                [0, 0, 0, 0, 0, 0, 0, 0, 0,
    +                                 0]]).astype(np.int32)
    +    np_kernel_contour = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                  [0, 0, 1, 1, 1, 0, 0, 0, 1, 0],
    +                                  [0, 0, 1, 0, 1, 0, 0, 0, 1, 0],
    +                                  [0, 0, 1, 0, 1, 0, 0, 0, 1, 0],
    +                                  [0, 0, 1, 1, 1, 0, 0, 0, 1, 0],
    +                                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    +                                  [0, 0, 0, 0, 0, 0, 0, 0, 0,
    +                                   0]]).astype(np.uint8)
    +    kernel_region_num = 3
    +    distance_threshold = float(0.8)
    +    result = pixel_group(np_score, np_mask, np_embedding, np_kernel_label,
    +                         np_kernel_contour, kernel_region_num,
    +                         distance_threshold)
    +    gt_1 = [
    +        0.8999997973442078, 24.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 4.0, 3.0, 5.0,
    +        3.0, 6.0, 3.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0, 5.0, 4.0, 6.0,
    +        4.0, 1.0, 5.0, 2.0, 5.0, 3.0, 5.0, 4.0, 5.0, 5.0, 5.0, 6.0, 5.0, 1.0,
    +        6.0, 2.0, 6.0, 3.0, 6.0, 4.0, 6.0, 5.0, 6.0, 6.0, 6.0
    +    ]
    +
    +    gt_2 = [
    +        0.9000000357627869, 8.0, 7.0, 3.0, 8.0, 3.0, 7.0, 4.0, 8.0, 4.0, 7.0,
    +        5.0, 8.0, 5.0, 7.0, 6.0, 8.0, 6.0
    +    ]
    +
    +    assert np.allclose(result[0], [0, 0])
    +    assert np.allclose(result[1], gt_1)
    +    assert np.allclose(result[2], gt_2)
    +
    +    # test torch Tensor
    +    np_score_t = torch.from_numpy(np_score)
    +    np_mask_t = torch.from_numpy(np_mask)
    +    np_embedding_t = torch.from_numpy(np_embedding)
    +    np_kernel_label_t = torch.from_numpy(np_kernel_label)
    +    np_kernel_contour_t = torch.from_numpy(np_kernel_contour)
    +
    +    result = pixel_group(np_score_t, np_mask_t, np_embedding_t,
    +                         np_kernel_label_t, np_kernel_contour_t,
    +                         kernel_region_num, distance_threshold)
    +
    +    assert np.allclose(result[0], [0, 0])
    +    assert np.allclose(result[1], gt_1)
    +    assert np.allclose(result[2], gt_2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_points_in_polygons.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_points_in_polygons.py
    new file mode 100644
    index 000000000..dde8ab023
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_points_in_polygons.py
    @@ -0,0 +1,23 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import points_in_polygons
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_points_in_polygons():
    +    points = np.array([[300., 300.], [400., 400.], [100., 100], [300, 250],
    +                       [100, 0]])
    +    polygons = np.array([[200., 200., 400., 400., 500., 200., 400., 100.],
    +                         [400., 400., 500., 500., 600., 300., 500., 200.],
    +                         [300., 300., 600., 700., 700., 700., 700., 100.]])
    +    expected_output = np.array([[0., 0., 0.], [0., 0., 1.], [0., 0., 0.],
    +                                [1., 0., 0.], [0., 0., 0.]])
    +    points = torch.from_numpy(points).cuda().float()
    +    polygons = torch.from_numpy(polygons).cuda().float()
    +    expected_output = torch.from_numpy(expected_output).cuda().float()
    +    assert torch.allclose(
    +        points_in_polygons(points, polygons), expected_output, 1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_prroi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_prroi_pool.py
    new file mode 100644
    index 000000000..0535dfbe2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_prroi_pool.py
    @@ -0,0 +1,98 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +
    +    _USING_PARROTS = False
    +
    +inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2.], [3., 4.]], [[4., 3.], [2.,
    +                                               1.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +              [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +outputs = [
    +    ([[[[1.75, 2.25], [2.75, 3.25]]]], [[[[1., 1.],
    +                                          [1., 1.]]]], [[0., 2., 4., 2., 4.]]),
    +    ([[[[1.75, 2.25], [2.75, 3.25]],
    +       [[3.25, 2.75], [2.25, 1.75]]]], [[[[1., 1.], [1., 1.]],
    +                                         [[1., 1.],
    +                                          [1., 1.]]]], [[0., 0., 0., 0., 0.]]),
    +    ([[[[3.75, 6.91666651],
    +        [10.08333302,
    +         13.25]]]], [[[[0.11111111, 0.22222224, 0.22222222, 0.11111111],
    +                       [0.22222224, 0.444444448, 0.44444448, 0.22222224],
    +                       [0.22222224, 0.44444448, 0.44444448, 0.22222224],
    +                       [0.11111111, 0.22222224, 0.22222224, 0.11111111]]]],
    +     [[0.0, 3.33333302, 6.66666603, 3.33333349, 6.66666698]])
    +]
    +
    +
    +class TestPrRoiPool:
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    +    ])
    +    def test_roipool_gradcheck(self, device):
    +        from mmcv.ops import PrRoIPool
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +
    +        for case in inputs:
    +            np_input = np.array(case[0], dtype=np.float32)
    +            np_rois = np.array(case[1], dtype=np.float32)
    +
    +            x = torch.tensor(np_input, device=device, requires_grad=True)
    +            rois = torch.tensor(np_rois, device=device)
    +
    +            froipool = PrRoIPool((pool_h, pool_w), spatial_scale)
    +
    +            if _USING_PARROTS:
    +                gradcheck(froipool, (x, rois), no_grads=[rois])
    +            else:
    +                gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2)
    +
    +    def _test_roipool_allclose(self, device, dtype=torch.float):
    +        from mmcv.ops import prroi_pool
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +
    +        for case, output in zip(inputs, outputs):
    +            np_input = np.array(case[0], dtype=np.float32)
    +            np_rois = np.array(case[1], dtype=np.float32)
    +            np_output = np.array(output[0], dtype=np.float32)
    +            np_input_grad = np.array(output[1], dtype=np.float32)
    +            np_rois_grad = np.array(output[2], dtype=np.float32)
    +
    +            x = torch.tensor(
    +                np_input, dtype=dtype, device=device, requires_grad=True)
    +            rois = torch.tensor(
    +                np_rois, dtype=dtype, device=device, requires_grad=True)
    +
    +            output = prroi_pool(x, rois, (pool_h, pool_w), spatial_scale)
    +            output.backward(torch.ones_like(output))
    +            assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3)
    +            assert np.allclose(x.grad.data.cpu().numpy(), np_input_grad, 1e-3)
    +            assert np.allclose(rois.grad.data.cpu().numpy(), np_rois_grad,
    +                               1e-3)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
    +    ])
    +    def test_roipool_allclose_float(self, device):
    +        self._test_roipool_allclose(device, dtype=torch.float)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_psa_mask.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_psa_mask.py
    new file mode 100644
    index 000000000..8c1f3101a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_psa_mask.py
    @@ -0,0 +1,118 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +class Loss(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +
    +    def forward(self, input, target):
    +        input = input.view(-1)
    +        target = target.view(-1)
    +        return torch.mean(input - target)
    +
    +
    +class TestPSAMask:
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_psa_mask_collect(self, device):
    +        from mmcv.ops import PSAMask
    +        test_loss = Loss()
    +
    +        input = np.fromfile(
    +            'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32)
    +        output_collect = np.fromfile(
    +            'tests/data/for_psa_mask/psa_output_collect.bin', dtype=np.float32)
    +
    +        input = input.reshape((4, 16, 8, 8))
    +        output_collect = output_collect.reshape((4, 64, 8, 8))
    +        label = torch.ones((4, 64, 8, 8))
    +
    +        input = torch.FloatTensor(input)
    +        input.requires_grad = True
    +
    +        psamask_collect = PSAMask('collect', (4, 4))
    +
    +        # test collect cpu
    +        test_output = psamask_collect(input)
    +        loss = test_loss(test_output, label)
    +        loss.backward()
    +        test_output = test_output.detach().numpy()
    +        assert np.allclose(test_output, output_collect)
    +        assert test_output.shape == output_collect.shape
    +
    +        psamask_collect.to(device)
    +        input = input.to(device)
    +        label = label.to(device)
    +
    +        # test collect on device
    +        test_output = psamask_collect(input)
    +        loss = test_loss(test_output, label)
    +        loss.backward()
    +        test_output = test_output.detach().cpu().numpy()
    +        assert np.allclose(test_output, output_collect)
    +        assert test_output.shape == output_collect.shape
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    def test_psa_mask_distribute(self, device):
    +        from mmcv.ops import PSAMask
    +        test_loss = Loss()
    +
    +        input = np.fromfile(
    +            'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32)
    +        output_distribute = np.fromfile(
    +            'tests/data/for_psa_mask/psa_output_distribute.bin',
    +            dtype=np.float32)
    +
    +        input = input.reshape((4, 16, 8, 8))
    +        output_distribute = output_distribute.reshape((4, 64, 8, 8))
    +        label = torch.ones((4, 64, 8, 8))
    +
    +        input = torch.FloatTensor(input)
    +        input.requires_grad = True
    +
    +        psamask_distribute = PSAMask('distribute', (4, 4))
    +
    +        # test distribute cpu
    +        test_output = psamask_distribute(input)
    +        loss = test_loss(test_output, label)
    +        loss.backward()
    +        test_output = test_output.detach().numpy()
    +        assert np.allclose(test_output, output_distribute)
    +        assert test_output.shape == output_distribute.shape
    +
    +        psamask_distribute.to(device)
    +        input = input.to(device)
    +        label = label.to(device)
    +
    +        # test distribute on device
    +        test_output = psamask_distribute(input)
    +        loss = test_loss(test_output, label)
    +        loss.backward()
    +        test_output = test_output.detach().cpu().numpy()
    +        assert np.allclose(test_output, output_distribute)
    +        assert test_output.shape == output_distribute.shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_riroi_align_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_riroi_align_rotated.py
    new file mode 100644
    index 000000000..c7b501cf4
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_riroi_align_rotated.py
    @@ -0,0 +1,84 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import RiRoIAlignRotated
    +
    +if torch.__version__ == 'parrots':
    +    from parrots.autograd import gradcheck
    +    _USING_PARROTS = True
    +else:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +np_feature = np.array([[[[1, 2], [3, 4]], [[1, 2], [4, 3]], [[4, 3], [2, 1]],
    +                        [[1, 2], [5, 6]], [[3, 4], [7, 8]], [[9, 10], [13,
    +                                                                       14]],
    +                        [[11, 12], [15, 16]], [[1, 1], [2, 2]]]])
    +np_rois = np.array([[0., 0.5, 0.5, 1., 1., np.pi / 3],
    +                    [0., 1., 1., 3., 3., np.pi / 2]])
    +expect_output = np.array([[[[1.8425, 1.3516], [2.3151, 1.8241]],
    +                           [[2.4779, 1.7416], [3.2173, 2.5632]],
    +                           [[2.7149, 2.2638], [2.6540, 2.3673]],
    +                           [[2.9461, 2.8638], [2.8028, 2.7205]],
    +                           [[4.1943, 2.7214], [5.6119, 4.1391]],
    +                           [[7.5276, 6.0547], [8.9453, 7.4724]],
    +                           [[12.1943, 10.7214], [13.6119, 12.1391]],
    +                           [[9.5489, 8.4237], [10.5763, 9.4511]]],
    +                          [[[7.6562, 12.5625], [4.0000, 6.6250]],
    +                           [[1.0000, 1.3125], [0.5000, 0.6562]],
    +                           [[1.6562, 1.9375], [1.0000, 1.3125]],
    +                           [[1.8438, 2.0547], [0.7500, 1.1562]],
    +                           [[0.8438, 3.0625], [0.2500, 1.1875]],
    +                           [[2.6562, 2.5625], [1.5000, 1.6250]],
    +                           [[3.6562, 4.5625], [2.0000, 2.6250]],
    +                           [[6.6562, 10.5625], [3.5000, 5.6250]]]])
    +
    +expect_grad = np.array([[[[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]],
    +                         [[1.4727, 1.5586], [1.5586, 1.6602]]]])
    +
    +pool_h = 2
    +pool_w = 2
    +spatial_scale = 1.0
    +num_samples = 2
    +sampling_ratio = 2
    +num_orientations = 8
    +clockwise = False
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_roialign_rotated_gradcheck():
    +    x = torch.tensor(
    +        np_feature, dtype=torch.float, device='cuda', requires_grad=True)
    +    rois = torch.tensor(np_rois, dtype=torch.float, device='cuda')
    +    froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples,
    +                                 num_orientations, clockwise)
    +    if _USING_PARROTS:
    +        gradcheck(
    +            froipool, (x, rois), no_grads=[rois], delta=1e-3, pt_atol=1e-3)
    +    else:
    +        gradcheck(froipool, (x, rois), eps=1e-3, atol=1e-3)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_roialign_rotated_allclose():
    +    x = torch.tensor(
    +        np_feature, dtype=torch.float, device='cuda', requires_grad=True)
    +    rois = torch.tensor(np_rois, dtype=torch.float, device='cuda')
    +    froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples,
    +                                 num_orientations, clockwise)
    +    output = froipool(x, rois)
    +    output.backward(torch.ones_like(output))
    +    assert np.allclose(
    +        output.data.type(torch.float).cpu().numpy(), expect_output, atol=1e-3)
    +    assert np.allclose(
    +        x.grad.data.type(torch.float).cpu().numpy(), expect_grad, atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align.py
    new file mode 100644
    index 000000000..6caf5c535
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align.py
    @@ -0,0 +1,120 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +# yapf:disable
    +
    +inputs = [([[[[1., 2.], [3., 4.]]]],
    +           [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2.], [3., 4.]],
    +             [[4., 3.], [2., 1.]]]],
    +           [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
    +              [9., 10., 13., 14.], [11., 12., 15., 16.]]]],
    +           [[0., 0., 0., 3., 3.]])]
    +outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]],
    +            [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
    +           ([[[[1.0, 1.25], [1.5, 1.75]],
    +              [[4.0, 3.75], [3.5, 3.25]]]],
    +            [[[[3.0625, 0.4375], [0.4375, 0.0625]],
    +              [[3.0625, 0.4375], [0.4375, 0.0625]]]]),
    +           ([[[[1.9375, 4.75], [7.5625, 10.375]]]],
    +            [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])]
    +# yapf:enable
    +
    +pool_h = 2
    +pool_w = 2
    +spatial_scale = 1.0
    +sampling_ratio = 2
    +
    +
    +def _test_roialign_gradcheck(device, dtype):
    +    try:
    +        from mmcv.ops import RoIAlign
    +    except ModuleNotFoundError:
    +        pytest.skip('RoIAlign op is not successfully compiled')
    +    if dtype is torch.half:
    +        pytest.skip('grad check does not support fp16')
    +    for case in inputs:
    +        np_input = np.array(case[0])
    +        np_rois = np.array(case[1])
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        rois = torch.tensor(np_rois, dtype=dtype, device=device)
    +
    +        froipool = RoIAlign((pool_h, pool_w), spatial_scale, sampling_ratio)
    +
    +        if torch.__version__ == 'parrots':
    +            gradcheck(
    +                froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5)
    +        else:
    +            gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)
    +
    +
    +def _test_roialign_allclose(device, dtype):
    +    try:
    +        from mmcv.ops import roi_align
    +    except ModuleNotFoundError:
    +        pytest.skip('test requires compilation')
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +    sampling_ratio = 2
    +    for case, output in zip(inputs, outputs):
    +        np_input = np.array(case[0])
    +        np_rois = np.array(case[1])
    +        np_output = np.array(output[0])
    +        np_grad = np.array(output[1])
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        rois = torch.tensor(np_rois, dtype=dtype, device=device)
    +
    +        output = roi_align(x, rois, (pool_h, pool_w), spatial_scale,
    +                           sampling_ratio, 'avg', True)
    +        output.backward(torch.ones_like(output))
    +        assert np.allclose(
    +            output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
    +        assert np.allclose(
    +            x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3)
    +
    +
    +@pytest.mark.parametrize('device', [
    +    'cpu',
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE,
    +            reason='MLU does not support for 64-bit floating point')),
    +    torch.half
    +])
    +def test_roialign(device, dtype):
    +    # check double only
    +    if dtype is torch.double:
    +        _test_roialign_gradcheck(device=device, dtype=dtype)
    +    _test_roialign_allclose(device=device, dtype=dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align_rotated.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align_rotated.py
    new file mode 100644
    index 000000000..1ad6b6e92
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_align_rotated.py
    @@ -0,0 +1,151 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +    _USING_PARROTS = False
    +
    +# yapf:disable
    +inputs = [([[[[1., 2.], [3., 4.]]]],
    +           [[0., 0.5, 0.5, 1., 1., 0]]),
    +          ([[[[1., 2.], [3., 4.]]]],
    +           [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
    +          ([[[[1., 2.], [3., 4.]],
    +             [[4., 3.], [2., 1.]]]],
    +           [[0., 0.5, 0.5, 1., 1., 0]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
    +              [9., 10., 13., 14.], [11., 12., 15., 16.]]]],
    +           [[0., 1.5, 1.5, 3., 3., 0]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
    +              [9., 10., 13., 14.], [11., 12., 15., 16.]]]],
    +           [[0., 1.5, 1.5, 3., 3., np.pi / 2]])]
    +outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]],
    +            [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
    +           ([[[[1.5, 1], [1.75, 1.25]]]],
    +            [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
    +           ([[[[1.0, 1.25], [1.5, 1.75]],
    +              [[4.0, 3.75], [3.5, 3.25]]]],
    +            [[[[3.0625, 0.4375], [0.4375, 0.0625]],
    +              [[3.0625, 0.4375], [0.4375, 0.0625]]]]),
    +           ([[[[1.9375, 4.75], [7.5625, 10.375]]]],
    +            [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]]),
    +           ([[[[7.5625, 1.9375], [10.375, 4.75]]]],
    +            [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
    +               [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])]
    +# yapf:enable
    +
    +pool_h = 2
    +pool_w = 2
    +spatial_scale = 1.0
    +sampling_ratio = 2
    +
    +
    +def _test_roialign_rotated_gradcheck(device, dtype):
    +    try:
    +        from mmcv.ops import RoIAlignRotated
    +    except ModuleNotFoundError:
    +        pytest.skip('RoIAlignRotated op is not successfully compiled')
    +    if dtype is torch.half:
    +        pytest.skip('grad check does not support fp16')
    +    for case in inputs:
    +        np_input = np.array(case[0])
    +        np_rois = np.array(case[1])
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        rois = torch.tensor(np_rois, dtype=dtype, device=device)
    +
    +        froipool = RoIAlignRotated((pool_h, pool_w), spatial_scale,
    +                                   sampling_ratio)
    +        if torch.__version__ == 'parrots':
    +            gradcheck(
    +                froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5)
    +        else:
    +            gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)
    +
    +
    +def _test_roialign_rotated_allclose(device, dtype):
    +    try:
    +        from mmcv.ops import RoIAlignRotated, roi_align_rotated
    +    except ModuleNotFoundError:
    +        pytest.skip('test requires compilation')
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +    sampling_ratio = 2
    +
    +    for case, output in zip(inputs, outputs):
    +        np_input = np.array(case[0])
    +        np_rois = np.array(case[1])
    +        np_output = np.array(output[0])
    +        np_grad = np.array(output[1])
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        rois = torch.tensor(np_rois, dtype=dtype, device=device)
    +
    +        output = roi_align_rotated(x, rois, (pool_h, pool_w), spatial_scale,
    +                                   sampling_ratio, True)
    +        output.backward(torch.ones_like(output))
    +        assert np.allclose(
    +            output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
    +        assert np.allclose(
    +            x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3)
    +
    +    # Test deprecated parameters
    +    roi_align_rotated_module_deprecated = RoIAlignRotated(
    +        out_size=(pool_h, pool_w),
    +        spatial_scale=spatial_scale,
    +        sample_num=sampling_ratio)
    +
    +    output_1 = roi_align_rotated_module_deprecated(x, rois)
    +
    +    roi_align_rotated_module_new = RoIAlignRotated(
    +        output_size=(pool_h, pool_w),
    +        spatial_scale=spatial_scale,
    +        sampling_ratio=sampling_ratio)
    +
    +    output_2 = roi_align_rotated_module_new(x, rois)
    +
    +    assert np.allclose(
    +        output_1.data.type(torch.float).cpu().numpy(),
    +        output_2.data.type(torch.float).cpu().numpy())
    +
    +
    +@pytest.mark.parametrize('device', [
    +    'cpu',
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE,
    +            reason='MLU does not support for 64-bit floating point')),
    +    torch.half
    +])
    +def test_roialign_rotated(device, dtype):
    +    # check double only
    +    if dtype is torch.double:
    +        _test_roialign_rotated_gradcheck(device=device, dtype=dtype)
    +    _test_roialign_rotated_allclose(device=device, dtype=dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_pool.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_pool.py
    new file mode 100644
    index 000000000..39d0ddea9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roi_pool.py
    @@ -0,0 +1,101 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +
    +    _USING_PARROTS = False
    +
    +cur_dir = os.path.dirname(os.path.abspath(__file__))
    +
    +inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2.], [3., 4.]], [[4., 3.], [2.,
    +                                               1.]]]], [[0., 0., 0., 1., 1.]]),
    +          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +              [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +outputs = [([[[[1., 2.], [3., 4.]]]], [[[[1., 1.], [1., 1.]]]]),
    +           ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[[[1., 1.],
    +                                                               [1., 1.]],
    +                                                              [[1., 1.],
    +                                                               [1., 1.]]]]),
    +           ([[[[4., 8.], [12., 16.]]]], [[[[0., 0., 0., 0.], [0., 1., 0., 1.],
    +                                           [0., 0., 0., 0.], [0., 1., 0.,
    +                                                              1.]]]])]
    +
    +
    +class TestRoiPool:
    +
    +    def test_roipool_gradcheck(self):
    +        if not torch.cuda.is_available():
    +            return
    +        from mmcv.ops import RoIPool
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +
    +        for case in inputs:
    +            np_input = np.array(case[0])
    +            np_rois = np.array(case[1])
    +
    +            x = torch.tensor(np_input, device='cuda', requires_grad=True)
    +            rois = torch.tensor(np_rois, device='cuda')
    +
    +            froipool = RoIPool((pool_h, pool_w), spatial_scale)
    +
    +            if _USING_PARROTS:
    +                pass
    +                # gradcheck(froipool, (x, rois), no_grads=[rois])
    +            else:
    +                gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2)
    +
    +    def _test_roipool_allclose(self, device, dtype=torch.float):
    +        from mmcv.ops import roi_pool
    +        pool_h = 2
    +        pool_w = 2
    +        spatial_scale = 1.0
    +
    +        for case, output in zip(inputs, outputs):
    +            np_input = np.array(case[0])
    +            np_rois = np.array(case[1])
    +            np_output = np.array(output[0])
    +            np_grad = np.array(output[1])
    +
    +            x = torch.tensor(
    +                np_input, dtype=dtype, device=device, requires_grad=True)
    +            rois = torch.tensor(np_rois, dtype=dtype, device=device)
    +
    +            output = roi_pool(x, rois, (pool_h, pool_w), spatial_scale)
    +            output.backward(torch.ones_like(output))
    +            assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3)
    +            assert np.allclose(x.grad.data.cpu().numpy(), np_grad, 1e-3)
    +
    +    @pytest.mark.parametrize('device', [
    +        pytest.param(
    +            'cuda',
    +            marks=pytest.mark.skipif(
    +                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +        pytest.param(
    +            'mlu',
    +            marks=pytest.mark.skipif(
    +                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +    ])
    +    @pytest.mark.parametrize('dtype', [
    +        torch.float,
    +        pytest.param(
    +            torch.double,
    +            marks=pytest.mark.skipif(
    +                IS_MLU_AVAILABLE,
    +                reason='MLU does not support for 64-bit floating point')),
    +        torch.half
    +    ])
    +    def test_roipool_allclose(self, device, dtype):
    +        self._test_roipool_allclose(device, dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roiaware_pool3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roiaware_pool3d.py
    new file mode 100644
    index 000000000..5391e924d
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roiaware_pool3d.py
    @@ -0,0 +1,158 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import (RoIAwarePool3d, points_in_boxes_all, points_in_boxes_cpu,
    +                      points_in_boxes_part)
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float, torch.half,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE, reason='MLU does not support for double'))
    +])
    +def test_RoIAwarePool3d(device, dtype):
    +    roiaware_pool3d_max = RoIAwarePool3d(
    +        out_size=4, max_pts_per_voxel=128, mode='max')
    +    roiaware_pool3d_avg = RoIAwarePool3d(
    +        out_size=4, max_pts_per_voxel=128, mode='avg')
    +    rois = torch.tensor(
    +        [[1.0, 2.0, 3.0, 5.0, 4.0, 6.0, -0.3 - np.pi / 2],
    +         [-10.0, 23.0, 16.0, 20.0, 10.0, 20.0, -0.5 - np.pi / 2]],
    +        dtype=dtype).to(device)
    +    # boxes (m, 7) with bottom center in lidar coordinate
    +    pts = torch.tensor(
    +        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
    +         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
    +         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
    +         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
    +        dtype=dtype).to(device)  # points (n, 3) in lidar coordinate
    +    pts_feature = pts.clone()
    +
    +    pooled_features_max = roiaware_pool3d_max(
    +        rois=rois, pts=pts, pts_feature=pts_feature)
    +    assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3])
    +    assert torch.allclose(pooled_features_max.sum(),
    +                          torch.tensor(51.100, dtype=dtype).to(device), 1e-3)
    +
    +    pooled_features_avg = roiaware_pool3d_avg(
    +        rois=rois, pts=pts, pts_feature=pts_feature)
    +    assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3])
    +    assert torch.allclose(pooled_features_avg.sum(),
    +                          torch.tensor(49.750, dtype=dtype).to(device), 1e-3)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_points_in_boxes_part():
    +    boxes = torch.tensor(
    +        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]],
    +         [[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
    +        dtype=torch.float32).cuda(
    +        )  # boxes (b, t, 7) with bottom center in lidar coordinate
    +    pts = torch.tensor(
    +        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
    +          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
    +          [4.7, 3.5, -12.2]],
    +         [[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5],
    +          [0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]],
    +        dtype=torch.float32).cuda()  # points (b, m, 3) in lidar coordinate
    +
    +    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    +    expected_point_indices = torch.tensor(
    +        [[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]],
    +        dtype=torch.int32).cuda()
    +    assert point_indices.shape == torch.Size([2, 8])
    +    assert (point_indices == expected_point_indices).all()
    +
    +    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
    +                         dtype=torch.float32).cuda()  # 30 degrees
    +    pts = torch.tensor(
    +        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
    +          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
    +        dtype=torch.float32).cuda()
    +    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    +    expected_point_indices = torch.tensor([[-1, -1, 0, -1, 0, -1, -1, -1]],
    +                                          dtype=torch.int32).cuda()
    +    assert (point_indices == expected_point_indices).all()
    +
    +
    +def test_points_in_boxes_cpu():
    +    boxes = torch.tensor(
    +        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
    +          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
    +        dtype=torch.float32
    +    )  # boxes (m, 7) with bottom center in lidar coordinate
    +    pts = torch.tensor(
    +        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
    +          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
    +          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
    +              -16, -18, 9
    +          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
    +        dtype=torch.float32)  # points (n, 3) in lidar coordinate
    +
    +    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    +    expected_point_indices = torch.tensor(
    +        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
    +          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
    +        dtype=torch.int32)
    +    assert point_indices.shape == torch.Size([1, 15, 2])
    +    assert (point_indices == expected_point_indices).all()
    +
    +    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
    +                         dtype=torch.float32)  # 30 degrees
    +    pts = torch.tensor(
    +        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
    +          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
    +        dtype=torch.float32)
    +    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    +    expected_point_indices = torch.tensor(
    +        [[[0], [0], [1], [0], [1], [0], [0], [0]]], dtype=torch.int32)
    +    assert (point_indices == expected_point_indices).all()
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_points_in_boxes_all():
    +    boxes = torch.tensor(
    +        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
    +          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
    +        dtype=torch.float32).cuda(
    +        )  # boxes (m, 7) with bottom center in lidar coordinate
    +    pts = torch.tensor(
    +        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
    +          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
    +          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
    +              -16, -18, 9
    +          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
    +        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate
    +
    +    point_indices = points_in_boxes_all(points=pts, boxes=boxes)
    +    expected_point_indices = torch.tensor(
    +        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
    +          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
    +        dtype=torch.int32).cuda()
    +    assert point_indices.shape == torch.Size([1, 15, 2])
    +    assert (point_indices == expected_point_indices).all()
    +
    +    if torch.cuda.device_count() > 1:
    +        pts = pts.to('cuda:1')
    +        boxes = boxes.to('cuda:1')
    +        expected_point_indices = expected_point_indices.to('cuda:1')
    +        point_indices = points_in_boxes_all(points=pts, boxes=boxes)
    +        assert point_indices.shape == torch.Size([1, 15, 2])
    +        assert (point_indices == expected_point_indices).all()
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roipoint_pool3d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roipoint_pool3d.py
    new file mode 100644
    index 000000000..391a0bf3a
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_roipoint_pool3d.py
    @@ -0,0 +1,50 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import RoIPointPool3d
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float, torch.half,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE, reason='MLU does not support for double'))
    +])
    +def test_roipoint(device, dtype):
    +    points = torch.tensor(
    +        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
    +         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
    +         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
    +         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
    +        dtype=dtype).unsqueeze(0).to(device)
    +    feats = points.clone()
    +    rois = torch.tensor([[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
    +                          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
    +                        dtype=dtype).to(device)
    +
    +    roipoint_pool3d = RoIPointPool3d(num_sampled_points=4)
    +    roi_feat, empty_flag = roipoint_pool3d(points, feats, rois)
    +    expected_roi_feat = torch.tensor(
    +        [[[[1, 2, 3.3, 1, 2, 3.3], [1.2, 2.5, 3, 1.2, 2.5, 3],
    +           [0.8, 2.1, 3.5, 0.8, 2.1, 3.5], [1.6, 2.6, 3.6, 1.6, 2.6, 3.6]],
    +          [[-9.2, 21, 18.2, -9.2, 21, 18.2], [-9.2, 21, 18.2, -9.2, 21, 18.2],
    +           [-9.2, 21, 18.2, -9.2, 21, 18.2], [-9.2, 21, 18.2, -9.2, 21, 18.2]]]
    +         ],
    +        dtype=dtype).to(device)
    +    expected_empty_flag = torch.tensor([[0, 0]]).int().to(device)
    +
    +    assert torch.allclose(roi_feat, expected_roi_feat)
    +    assert torch.allclose(empty_flag, expected_empty_flag)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_rotated_feature_align.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_rotated_feature_align.py
    new file mode 100644
    index 000000000..e7422a310
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_rotated_feature_align.py
    @@ -0,0 +1,131 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import rotated_feature_align
    +from mmcv.utils import IS_CUDA_AVAILABLE
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'cpu',
    +        marks=pytest.mark.skipif(
    +            torch.__version__ == 'parrots', reason='requires PyTorch support'))
    +])
    +def test_rotated_feature_align(device):
    +    feature = torch.tensor([[[[1.2924, -0.2172, -0.5222, 0.1172],
    +                              [0.9144, 1.2248, 1.3115, -0.9690],
    +                              [-0.8949, -1.1797, -0.9093, -0.3961],
    +                              [-0.4586, 0.5062, -0.7947, -0.7397]],
    +                             [[-1.0943, -0.7495, 1.3461, -1.1652],
    +                              [0.2034, 0.6763, -1.2357, 0.5231],
    +                              [-1.0062, 1.2592, 1.4225, -0.3951],
    +                              [-0.1242, -1.6240, 0.1932, 2.7181]],
    +                             [[-1.6271, -1.0276, 0.0578, -0.2997],
    +                              [-0.9684, -1.6946, -1.3188, -1.1938],
    +                              [-1.6744, -0.8917, -0.6556,
    +                               1.0073], [-0.1205, 0.3671, -0.3731, -0.5347]]],
    +                            [[[0.7035, 0.2089, -0.1774, 3.4670],
    +                              [-0.8505, -0.9278, 1.4714, 0.1644],
    +                              [0.0898, 0.3531, -0.4007, 0.1927],
    +                              [1.2569, -0.2636, -0.5223, 0.0616]],
    +                             [[0.1760, -0.7639, -0.4600, -1.3260],
    +                              [-0.9921, -0.2970, -0.8955, 1.0508],
    +                              [1.3515, -0.1641, 1.9679, 1.1986],
    +                              [-0.3616, 0.6287, 0.4933, 0.3360]],
    +                             [[-0.5860, 0.2124, -0.8700, 2.4200],
    +                              [-0.0551, -1.5103, -1.6779, 0.8399],
    +                              [0.8431, 1.2414, -1.1243, -0.3887],
    +                              [-2.1254, 0.6047, -0.3515, 0.7254]]]],
    +                           device=device,
    +                           requires_grad=True)
    +
    +    bbox = torch.tensor(
    +        [[[[1.3080e+01, 1.2688e+01, 1.1214e+01, 9.3944e+01, -9.1905e-01],
    +           [3.8104e+01, 1.0134e+01, 1.4659e+02, 9.0306e+01, -9.8211e-01],
    +           [-5.3213e+01, 4.9508e+01, 5.1513e+01, 3.2055e+01, -3.1954e-01],
    +           [2.6974e+01, 2.5248e+01, 5.4495e+01, 3.1083e+00, -6.2127e-01]],
    +          [[-1.5604e+01, -5.1908e+01, 2.3998e+02, 1.5008e+01, -1.2546e+00],
    +           [3.1354e+01, -7.3635e+00, 6.7879e+01, 3.5081e+01, -3.3851e-01],
    +           [-5.3292e+00, 9.1946e+00, 1.2834e+01, 1.0485e+01, -1.3039e+00],
    +           [-2.3925e+01, 3.6623e+01, 3.9875e+01, 7.2009e+01, -6.5934e-01]],
    +          [[7.2114e+01, -2.3781e+01, 2.9106e+01, 8.4501e+01, -1.1340e+00],
    +           [2.6258e+01, -7.7034e+00, 1.7629e+02, 1.0615e+02, -1.2156e+00],
    +           [3.8057e+01, 4.6016e+01, 1.2965e+01, 6.9384e+00, -1.0855e+00],
    +           [2.4428e+01, -1.6189e+01, 2.0572e+02, 3.1622e+01, -1.5719e-01]],
    +          [[3.8226e+00, 2.9608e+01, 1.4457e+01, 6.8179e+01, -9.1997e-01],
    +           [2.5003e+01, -4.2490e+01, 9.6007e+01, 4.9086e+01, -1.4786e+00],
    +           [8.5983e+01, 5.4980e+01, 7.8080e+01, 1.0003e+02, -1.0926e+00],
    +           [9.9065e+00, 4.1457e+01, 5.9799e+00, 1.7973e+01, -5.6313e-01]]],
    +         [[[-1.8244e+01, 4.6309e+00, 5.3010e+01, 2.4310e+01, -7.0345e-01],
    +           [1.9419e+01, 3.6704e+01, 5.2390e+01, 5.4133e+01, -3.7730e-01],
    +           [5.6387e+01, 2.3752e+01, 9.0441e+00, 1.7792e+01, -1.5583e+00],
    +           [3.6303e+01, 1.6396e+01, 2.0283e+01, 1.9148e+01, -8.3419e-01]],
    +          [[3.2169e+01, 3.0521e+01, 2.6283e+01, 1.9680e+02, -3.0454e-01],
    +           [2.5788e+01, -3.2189e+01, 8.8882e+01, 1.0207e+02, -1.5328e+00],
    +           [8.4676e+00, -1.6668e+01, 2.4657e+01, 1.1275e+02, -4.0388e-01],
    +           [-1.0799e+01, 6.0422e+00, 9.5807e+00, 3.3677e+01, -3.5438e-01]],
    +          [[6.9363e+01, 1.0850e+01, 2.5968e+01, 2.2311e+01, -1.6408e-01],
    +           [2.8140e+00, 4.6843e+00, 3.1289e+00, 2.1480e+01, -6.7583e-01],
    +           [2.6661e+01, 4.5290e+01, 6.1679e+00, 3.0005e+01, -8.9806e-01],
    +           [5.0871e+00, 1.3234e+01, 9.2087e+01, 4.9622e+01, -2.8020e-01]],
    +          [[-1.2643e+01, 2.5176e+01, 5.0488e+01, 5.4246e+01, -4.4840e-01],
    +           [-3.4521e+01, 9.8435e-01, 5.2413e+01, 9.7996e+00, -8.4218e-01],
    +           [4.9829e+01, -1.0808e+01, 2.9848e+01, 7.3579e+01, -6.2672e-01],
    +           [8.0446e+01, 2.8064e+01, 4.5273e+01, 5.3809e+01, -1.2359e+00]]]],
    +        device=device,
    +        requires_grad=True)
    +
    +    expected_output = torch.tensor([[[[1.1095, -0.2172, -0.5222, -0.6225],
    +                                      [0.9144, 0.7662, 1.0487, -0.9690],
    +                                      [-0.8949, -1.6384, -0.9093, -0.3961],
    +                                      [-0.8604, 0.5062, -0.7947, -0.7397]],
    +                                     [[-0.3961, -0.7495, 1.3461, 1.5528],
    +                                      [0.2034, 0.5522, -1.6722, 0.5231],
    +                                      [-1.0062, 1.1350, 1.4225, -0.3951],
    +                                      [-0.4826, -1.6240, 0.1932, 2.7181]],
    +                                     [[-2.6436, -1.0276, 0.0578, -0.8344],
    +                                      [-0.9684, -1.8151, -2.1843, -1.1938],
    +                                      [-1.6744, -1.0121, -0.6556, 1.0073],
    +                                      [-0.8474, 0.3671, -0.3731, -0.5347]]],
    +                                    [[[0.7035, 0.2089, -0.1774, 3.4670],
    +                                      [-0.8505, -0.9278, 1.4714, 0.1644],
    +                                      [0.0898, 0.3064, -0.4007, 0.5849],
    +                                      [1.2569, -0.2636, -0.5223, 0.0616]],
    +                                     [[0.1760, -0.7639, -0.4600, -1.3260],
    +                                      [-0.9921, -0.2970, -0.8955, 1.0508],
    +                                      [1.3515, -0.6125, 1.9679, 0.5550],
    +                                      [-0.3616, 0.6287, 0.4933, 0.3360]],
    +                                     [[-0.5860, 0.2124, -0.8700, 2.4200],
    +                                      [-0.0551, -1.5103, -1.6779, 0.8399],
    +                                      [0.8431, 0.8455, -1.1243, -1.5994],
    +                                      [-2.1254, 0.6047, -0.3515, 0.7254]]]],
    +                                   device=device)
    +
    +    expected_grad = torch.tensor([
    +        [[[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778],
    +          [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]],
    +         [[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778],
    +          [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]],
    +         [[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778],
    +          [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]]],
    +        [[[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000],
    +          [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]],
    +         [[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000],
    +          [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]],
    +         [[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000],
    +          [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]]]
    +    ],
    +                                 device=device)
    +
    +    output = rotated_feature_align(
    +        feature, bbox, spatial_scale=1 / 8, points=1)
    +    output.backward(torch.ones_like(output))
    +    assert torch.allclose(output, expected_output, 1e-2)
    +    assert torch.allclose(feature.grad, expected_grad, 1e-2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_saconv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_saconv.py
    new file mode 100644
    index 000000000..54c511b06
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_saconv.py
    @@ -0,0 +1,46 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.ops import SAConv2d
    +
    +
    +def test_sacconv():
    +    # test with normal cast
    +    x = torch.rand(1, 3, 256, 256)
    +    saconv = SAConv2d(3, 5, kernel_size=3, padding=1)
    +    sac_out = saconv(x)
    +    refer_conv = nn.Conv2d(3, 5, kernel_size=3, padding=1)
    +    refer_out = refer_conv(x)
    +    assert sac_out.shape == refer_out.shape
    +
    +    # test with dilation >= 2
    +    dalited_saconv = SAConv2d(3, 5, kernel_size=3, padding=2, dilation=2)
    +    dalited_sac_out = dalited_saconv(x)
    +    refer_conv = nn.Conv2d(3, 5, kernel_size=3, padding=2, dilation=2)
    +    refer_out = refer_conv(x)
    +    assert dalited_sac_out.shape == refer_out.shape
    +
    +    # test with deform
    +    deform_saconv = SAConv2d(3, 5, kernel_size=3, padding=1, use_deform=True)
    +    if torch.cuda.is_available():
    +        x = torch.rand(1, 3, 256, 256).cuda()
    +        deform_saconv = SAConv2d(
    +            3, 5, kernel_size=3, padding=1, use_deform=True).cuda()
    +        deform_sac_out = deform_saconv(x).cuda()
    +        refer_conv = nn.Conv2d(3, 5, kernel_size=3, padding=1).cuda()
    +        refer_out = refer_conv(x)
    +        assert deform_sac_out.shape == refer_out.shape
    +    else:
    +        deform_sac_out = deform_saconv(x)
    +        refer_conv = nn.Conv2d(3, 5, kernel_size=3, padding=1)
    +        refer_out = refer_conv(x)
    +        assert deform_sac_out.shape == refer_out.shape
    +
    +    # test with groups >= 2
    +    x = torch.rand(1, 4, 256, 256)
    +    group_saconv = SAConv2d(4, 4, kernel_size=3, padding=1, groups=2)
    +    group_sac_out = group_saconv(x)
    +    refer_conv = nn.Conv2d(4, 4, kernel_size=3, padding=1, groups=2)
    +    refer_out = refer_conv(x)
    +    assert group_sac_out.shape == refer_out.shape
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_scatter_points.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_scatter_points.py
    new file mode 100644
    index 000000000..cf4516047
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_scatter_points.py
    @@ -0,0 +1,132 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +from torch.autograd import gradcheck
    +
    +from mmcv.ops import DynamicScatter
    +
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not supported in parrots now', allow_module_level=True)
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_dynamic_scatter():
    +    dsmean = DynamicScatter([0.32, 0.32, 6],
    +                            [-74.88, -74.88, -2, 74.88, 74.88, 4], True)
    +    dsmax = DynamicScatter([0.32, 0.32, 6],
    +                           [-74.88, -74.88, -2, 74.88, 74.88, 4], False)
    +
    +    # test empty input
    +    empty_feats = torch.empty(size=(0, 3), dtype=torch.float32, device='cuda')
    +    empty_coors = torch.empty(size=(0, 3), dtype=torch.int32, device='cuda')
    +
    +    empty_feats.requires_grad_()
    +    empty_feats_out_mean, empty_coors_out_mean = dsmean(
    +        empty_feats, empty_coors)
    +    empty_feats_out_mean.sum().backward()
    +    empty_feats_out_max, empty_coors_out_max = dsmax(empty_feats, empty_coors)
    +    empty_feats_out_max.sum().backward()
    +
    +    assert empty_feats_out_mean.shape == empty_feats.shape
    +    assert empty_feats_out_max.shape == empty_feats.shape
    +    assert empty_coors_out_mean.shape == empty_coors.shape
    +    assert empty_coors_out_max.shape == empty_coors.shape
    +
    +    # test empty reduced output
    +    empty_o_feats = torch.rand(
    +        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    +    empty_o_coors = torch.randint(
    +        low=-1, high=0, size=(200000, 3), dtype=torch.int32, device='cuda')
    +
    +    empty_o_feats.requires_grad_()
    +    empty_o_feats_out_mean, empty_o_coors_out_mean = dsmean(
    +        empty_o_feats, empty_o_coors)
    +    empty_o_feats_out_mean.sum().backward()
    +    assert (empty_o_feats.grad == 0).all()
    +
    +    empty_o_feats_out_max, empty_o_coors_out_max = dsmax(
    +        empty_o_feats, empty_o_coors)
    +    empty_o_feats_out_max.sum().backward()
    +    assert (empty_o_feats.grad == 0).all()
    +
    +    # test non-empty input
    +    feats = torch.rand(
    +        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    +    coors = torch.randint(
    +        low=-1, high=20, size=(200000, 3), dtype=torch.int32, device='cuda')
    +
    +    ref_voxel_coors = coors.unique(dim=0, sorted=True)
    +    ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0]
    +    ref_voxel_feats_mean = []
    +    ref_voxel_feats_max = []
    +    for ref_voxel_coor in ref_voxel_coors:
    +        voxel_mask = (coors == ref_voxel_coor).all(dim=-1)
    +        ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0))
    +        ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values)
    +    ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean)
    +    ref_voxel_feats_max = torch.stack(ref_voxel_feats_max)
    +
    +    feats_out_mean, coors_out_mean = dsmean(feats, coors)
    +    seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 +
    +                coors_out_mean[:, 2]).argsort()
    +    feats_out_mean = feats_out_mean[seq_mean]
    +    coors_out_mean = coors_out_mean[seq_mean]
    +
    +    feats_out_max, coors_out_max = dsmax(feats, coors)
    +    seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 +
    +               coors_out_max[:, 2]).argsort()
    +    feats_out_max = feats_out_max[seq_max]
    +    coors_cout_max = coors_out_max[seq_max]
    +
    +    assert (coors_out_mean == ref_voxel_coors).all()
    +    assert torch.allclose(
    +        feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5)
    +    assert (coors_cout_max == ref_voxel_coors).all()
    +    assert torch.allclose(
    +        feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5)
    +
    +    # test non-empty input without any point out of bound
    +    feats = torch.rand(
    +        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    +    coors = torch.randint(
    +        low=0, high=20, size=(200000, 3), dtype=torch.int32, device='cuda')
    +
    +    ref_voxel_coors = coors.unique(dim=0, sorted=True)
    +    ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0]
    +    ref_voxel_feats_mean = []
    +    ref_voxel_feats_max = []
    +    for ref_voxel_coor in ref_voxel_coors:
    +        voxel_mask = (coors == ref_voxel_coor).all(dim=-1)
    +        ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0))
    +        ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values)
    +    ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean)
    +    ref_voxel_feats_max = torch.stack(ref_voxel_feats_max)
    +
    +    feats_out_mean, coors_out_mean = dsmean(feats, coors)
    +    seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 +
    +                coors_out_mean[:, 2]).argsort()
    +    feats_out_mean = feats_out_mean[seq_mean]
    +    coors_out_mean = coors_out_mean[seq_mean]
    +
    +    feats_out_max, coors_out_max = dsmax(feats, coors)
    +    seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 +
    +               coors_out_max[:, 2]).argsort()
    +    feats_out_max = feats_out_max[seq_max]
    +    coors_cout_max = coors_out_max[seq_max]
    +
    +    assert (coors_out_mean == ref_voxel_coors).all()
    +    assert torch.allclose(
    +        feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5)
    +    assert (coors_cout_max == ref_voxel_coors).all()
    +    assert torch.allclose(
    +        feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5)
    +
    +    # test grad #
    +    feats = torch.rand(
    +        size=(100, 4), dtype=torch.float32, device='cuda') * 100 - 50
    +    coors = torch.randint(
    +        low=-1, high=3, size=(100, 3), dtype=torch.int32, device='cuda')
    +    feats.requires_grad_()
    +    gradcheck(dsmean, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5)
    +    gradcheck(dsmax, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_spconv.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_spconv.py
    new file mode 100644
    index 000000000..098ff2189
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_spconv.py
    @@ -0,0 +1,133 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +from torch import nn
    +
    +from mmcv.cnn import build_conv_layer, build_norm_layer
    +from mmcv.ops import (SparseConvTensor, SparseInverseConv3d, SparseSequential,
    +                      SubMConv3d)
    +
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not supported in parrots now', allow_module_level=True)
    +
    +
    +def make_sparse_convmodule(in_channels,
    +                           out_channels,
    +                           kernel_size,
    +                           indice_key,
    +                           stride=1,
    +                           padding=0,
    +                           conv_type='SubMConv3d',
    +                           norm_cfg=None,
    +                           order=('conv', 'norm', 'act')):
    +    """Make sparse convolution module.
    +
    +    Args:
    +        in_channels (int): the number of input channels
    +        out_channels (int): the number of out channels
    +        kernel_size (int|tuple(int)): kernel size of convolution
    +        indice_key (str): the indice key used for sparse tensor
    +        stride (int|tuple(int)): the stride of convolution
    +        padding (int or list[int]): the padding number of input
    +        conv_type (str): sparse conv type in spconv
    +        norm_cfg (dict[str]): config of normalization layer
    +        order (tuple[str]): The order of conv/norm/activation layers. It is a
    +            sequence of "conv", "norm" and "act". Common examples are
    +            ("conv", "norm", "act") and ("act", "conv", "norm").
    +
    +    Returns:
    +        spconv.SparseSequential: sparse convolution module.
    +    """
    +    assert isinstance(order, tuple) and len(order) <= 3
    +    assert set(order) | {'conv', 'norm', 'act'} == {'conv', 'norm', 'act'}
    +
    +    conv_cfg = dict(type=conv_type, indice_key=indice_key)
    +
    +    layers = list()
    +    for layer in order:
    +        if layer == 'conv':
    +            if conv_type not in [
    +                    'SparseInverseConv3d', 'SparseInverseConv2d',
    +                    'SparseInverseConv1d'
    +            ]:
    +                layers.append(
    +                    build_conv_layer(
    +                        conv_cfg,
    +                        in_channels,
    +                        out_channels,
    +                        kernel_size,
    +                        stride=stride,
    +                        padding=padding,
    +                        bias=False))
    +            else:
    +                layers.append(
    +                    build_conv_layer(
    +                        conv_cfg,
    +                        in_channels,
    +                        out_channels,
    +                        kernel_size,
    +                        bias=False))
    +        elif layer == 'norm':
    +            layers.append(build_norm_layer(norm_cfg, out_channels)[1])
    +        elif layer == 'act':
    +            layers.append(nn.ReLU(inplace=True))
    +
    +    layers = SparseSequential(*layers)
    +    return layers
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_make_sparse_convmodule():
    +    torch.cuda.empty_cache()
    +    voxel_features = torch.tensor([[6.56126, 0.9648336, -1.7339306, 0.315],
    +                                   [6.8162713, -2.480431, -1.3616394, 0.36],
    +                                   [11.643568, -4.744306, -1.3580885, 0.16],
    +                                   [23.482342, 6.5036807, 0.5806964, 0.35]],
    +                                  dtype=torch.float32,
    +                                  device='cuda')  # n, point_features
    +    coordinates = torch.tensor(
    +        [[0, 12, 819, 131], [0, 16, 750, 136], [1, 16, 705, 232],
    +         [1, 35, 930, 469]],
    +        dtype=torch.int32,
    +        device='cuda')  # n, 4(batch, ind_x, ind_y, ind_z)
    +
    +    # test
    +    input_sp_tensor = SparseConvTensor(voxel_features, coordinates,
    +                                       [41, 1600, 1408], 2)
    +
    +    sparse_block0 = make_sparse_convmodule(
    +        4,
    +        16,
    +        3,
    +        'test0',
    +        stride=1,
    +        padding=0,
    +        conv_type='SubMConv3d',
    +        norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
    +        order=('conv', 'norm', 'act')).cuda()
    +    assert isinstance(sparse_block0[0], SubMConv3d)
    +    assert sparse_block0[0].in_channels == 4
    +    assert sparse_block0[0].out_channels == 16
    +    assert isinstance(sparse_block0[1], torch.nn.BatchNorm1d)
    +    assert sparse_block0[1].eps == 0.001
    +    assert sparse_block0[1].momentum == 0.01
    +    assert isinstance(sparse_block0[2], torch.nn.ReLU)
    +
    +    # test forward
    +    out_features = sparse_block0(input_sp_tensor)
    +    assert out_features.features.shape == torch.Size([4, 16])
    +
    +    sparse_block1 = make_sparse_convmodule(
    +        4,
    +        16,
    +        3,
    +        'test1',
    +        stride=1,
    +        padding=0,
    +        conv_type='SparseInverseConv3d',
    +        norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
    +        order=('norm', 'act', 'conv')).cuda()
    +    assert isinstance(sparse_block1[0], torch.nn.BatchNorm1d)
    +    assert isinstance(sparse_block1[1], torch.nn.ReLU)
    +    assert isinstance(sparse_block1[2], SparseInverseConv3d)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_syncbn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_syncbn.py
    new file mode 100644
    index 000000000..d1c1605ad
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_syncbn.py
    @@ -0,0 +1,295 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import platform
    +
    +import numpy as np
    +import pytest
    +import torch
    +import torch.distributed as dist
    +import torch.nn as nn
    +
    +if platform.system() == 'Windows':
    +    import regex as re
    +else:
    +    import re
    +
    +
    +class TestSyncBN:
    +
    +    def dist_init(self):
    +        rank = int(os.environ['SLURM_PROCID'])
    +        world_size = int(os.environ['SLURM_NTASKS'])
    +        local_rank = int(os.environ['SLURM_LOCALID'])
    +        node_list = str(os.environ['SLURM_NODELIST'])
    +
    +        node_parts = re.findall('[0-9]+', node_list)
    +        os.environ['MASTER_ADDR'] = (f'{node_parts[1]}.{node_parts[2]}' +
    +                                     f'.{node_parts[3]}.{node_parts[4]}')
    +        os.environ['MASTER_PORT'] = '12341'
    +        os.environ['WORLD_SIZE'] = str(world_size)
    +        os.environ['RANK'] = str(rank)
    +
    +        dist.init_process_group('nccl')
    +        torch.cuda.set_device(local_rank)
    +
    +    def _test_syncbn_train(self, size=1, half=False):
    +
    +        if 'SLURM_NTASKS' not in os.environ or int(
    +                os.environ['SLURM_NTASKS']) != 4:
    +            print('must run with slurm has 4 processes!\n'
    +                  'srun -p test --gres=gpu:4 -n4')
    +            return
    +        else:
    +            print('Running syncbn test')
    +        from mmcv.ops import SyncBatchNorm
    +
    +        assert size in (1, 2, 4)
    +        if not dist.is_initialized():
    +            self.dist_init()
    +        rank = dist.get_rank()
    +
    +        torch.manual_seed(9)
    +        torch.cuda.manual_seed(9)
    +
    +        self.x = torch.rand(16, 3, 2, 3).cuda()
    +        self.y_bp = torch.rand(16, 3, 2, 3).cuda()
    +
    +        if half:
    +            self.x = self.x.half()
    +            self.y_bp = self.y_bp.half()
    +        dist.broadcast(self.x, src=0)
    +        dist.broadcast(self.y_bp, src=0)
    +
    +        torch.cuda.synchronize()
    +        if size == 1:
    +            groups = [None, None, None, None]
    +            groups[0] = dist.new_group([0])
    +            groups[1] = dist.new_group([1])
    +            groups[2] = dist.new_group([2])
    +            groups[3] = dist.new_group([3])
    +            group = groups[rank]
    +        elif size == 2:
    +            groups = [None, None, None, None]
    +            groups[0] = groups[1] = dist.new_group([0, 1])
    +            groups[2] = groups[3] = dist.new_group([2, 3])
    +            group = groups[rank]
    +        elif size == 4:
    +            group = dist.group.WORLD
    +        syncbn = SyncBatchNorm(3, group=group).cuda()
    +        syncbn.weight.data[0] = 0.2
    +        syncbn.weight.data[1] = 0.5
    +        syncbn.weight.data[2] = 0.7
    +        syncbn.train()
    +
    +        bn = nn.BatchNorm2d(3).cuda()
    +        bn.weight.data[0] = 0.2
    +        bn.weight.data[1] = 0.5
    +        bn.weight.data[2] = 0.7
    +        bn.train()
    +
    +        sx = self.x[rank * 4:rank * 4 + 4]
    +        sx.requires_grad_()
    +        sy = syncbn(sx)
    +        sy.backward(self.y_bp[rank * 4:rank * 4 + 4])
    +
    +        smean = syncbn.running_mean
    +        svar = syncbn.running_var
    +        sx_grad = sx.grad
    +        sw_grad = syncbn.weight.grad
    +        sb_grad = syncbn.bias.grad
    +
    +        if size == 1:
    +            x = self.x[rank * 4:rank * 4 + 4]
    +            y_bp = self.y_bp[rank * 4:rank * 4 + 4]
    +        elif size == 2:
    +            x = self.x[rank // 2 * 8:rank // 2 * 8 + 8]
    +            y_bp = self.y_bp[rank // 2 * 8:rank // 2 * 8 + 8]
    +        elif size == 4:
    +            x = self.x
    +            y_bp = self.y_bp
    +        x.requires_grad_()
    +        y = bn(x)
    +        y.backward(y_bp)
    +
    +        if size == 2:
    +            y = y[rank % 2 * 4:rank % 2 * 4 + 4]
    +        elif size == 4:
    +            y = y[rank * 4:rank * 4 + 4]
    +
    +        mean = bn.running_mean
    +        var = bn.running_var
    +        if size == 1:
    +            x_grad = x.grad
    +            w_grad = bn.weight.grad
    +            b_grad = bn.bias.grad
    +        elif size == 2:
    +            x_grad = x.grad[rank % 2 * 4:rank % 2 * 4 + 4]
    +            w_grad = bn.weight.grad / 2
    +            b_grad = bn.bias.grad / 2
    +        elif size == 4:
    +            x_grad = x.grad[rank * 4:rank * 4 + 4]
    +            w_grad = bn.weight.grad / 4
    +            b_grad = bn.bias.grad / 4
    +
    +        assert np.allclose(mean.data.cpu().numpy(),
    +                           smean.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(var.data.cpu().numpy(),
    +                           svar.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(y.data.cpu().numpy(), sy.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(w_grad.data.cpu().numpy(),
    +                           sw_grad.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(b_grad.data.cpu().numpy(),
    +                           sb_grad.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(x_grad.data.cpu().numpy(),
    +                           sx_grad.data.cpu().numpy(), 1e-2)
    +
    +    def _test_syncbn_empty_train(self, size=1, half=False):
    +
    +        if 'SLURM_NTASKS' not in os.environ or int(
    +                os.environ['SLURM_NTASKS']) != 4:
    +            print('must run with slurm has 4 processes!\n'
    +                  'srun -p test --gres=gpu:4 -n4')
    +            return
    +        else:
    +            print('Running syncbn test')
    +        from mmcv.ops import SyncBatchNorm
    +
    +        assert size in (1, 2, 4)
    +        if not dist.is_initialized():
    +            self.dist_init()
    +        rank = dist.get_rank()
    +
    +        torch.manual_seed(9)
    +        torch.cuda.manual_seed(9)
    +
    +        self.x = torch.rand(0, 3, 2, 3).cuda()
    +        self.y_bp = torch.rand(0, 3, 2, 3).cuda()
    +
    +        if half:
    +            self.x = self.x.half()
    +            self.y_bp = self.y_bp.half()
    +        dist.broadcast(self.x, src=0)
    +        dist.broadcast(self.y_bp, src=0)
    +
    +        torch.cuda.synchronize()
    +        if size == 1:
    +            groups = [None, None, None, None]
    +            groups[0] = dist.new_group([0])
    +            groups[1] = dist.new_group([1])
    +            groups[2] = dist.new_group([2])
    +            groups[3] = dist.new_group([3])
    +            group = groups[rank]
    +        elif size == 2:
    +            groups = [None, None, None, None]
    +            groups[0] = groups[1] = dist.new_group([0, 1])
    +            groups[2] = groups[3] = dist.new_group([2, 3])
    +            group = groups[rank]
    +        elif size == 4:
    +            group = dist.group.WORLD
    +
    +        syncbn = SyncBatchNorm(3, group=group, stats_mode='N').cuda()
    +        syncbn.weight.data[0] = 0.2
    +        syncbn.weight.data[1] = 0.5
    +        syncbn.weight.data[2] = 0.7
    +        syncbn.train()
    +
    +        bn = nn.BatchNorm2d(3).cuda()
    +        bn.weight.data[0] = 0.2
    +        bn.weight.data[1] = 0.5
    +        bn.weight.data[2] = 0.7
    +        bn.train()
    +
    +        sx = self.x[rank * 4:rank * 4 + 4]
    +        sx.requires_grad_()
    +        sy = syncbn(sx)
    +        sy.backward(self.y_bp[rank * 4:rank * 4 + 4])
    +        smean = syncbn.running_mean
    +        svar = syncbn.running_var
    +        sx_grad = sx.grad
    +        sw_grad = syncbn.weight.grad
    +        sb_grad = syncbn.bias.grad
    +
    +        if size == 1:
    +            x = self.x[rank * 4:rank * 4 + 4]
    +            y_bp = self.y_bp[rank * 4:rank * 4 + 4]
    +        elif size == 2:
    +            x = self.x[rank // 2 * 8:rank // 2 * 8 + 8]
    +            y_bp = self.y_bp[rank // 2 * 8:rank // 2 * 8 + 8]
    +        elif size == 4:
    +            x = self.x
    +            y_bp = self.y_bp
    +        x.requires_grad_()
    +        y = bn(x)
    +        y.backward(y_bp)
    +
    +        if size == 2:
    +            y = y[rank % 2 * 4:rank % 2 * 4 + 4]
    +        elif size == 4:
    +            y = y[rank * 4:rank * 4 + 4]
    +
    +        mean = bn.running_mean
    +        var = bn.running_var
    +        if size == 1:
    +            x_grad = x.grad
    +            w_grad = bn.weight.grad
    +            b_grad = bn.bias.grad
    +        elif size == 2:
    +            x_grad = x.grad[rank % 2 * 4:rank % 2 * 4 + 4]
    +            w_grad = bn.weight.grad / 2
    +            b_grad = bn.bias.grad / 2
    +        elif size == 4:
    +            x_grad = x.grad[rank * 4:rank * 4 + 4]
    +            w_grad = bn.weight.grad / 4
    +            b_grad = bn.bias.grad / 4
    +
    +        assert np.allclose(mean.data.cpu().numpy(),
    +                           smean.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(var.data.cpu().numpy(),
    +                           svar.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(y.data.cpu().numpy(), sy.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(w_grad.data.cpu().numpy(),
    +                           sw_grad.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(b_grad.data.cpu().numpy(),
    +                           sb_grad.data.cpu().numpy(), 1e-3)
    +        assert np.allclose(x_grad.data.cpu().numpy(),
    +                           sx_grad.data.cpu().numpy(), 1e-2)
    +
    +        # 'stats_mode' only allows 'default' and 'N'
    +        with pytest.raises(AssertionError):
    +            SyncBatchNorm(3, group=group, stats_mode='X')
    +
    +    def test_syncbn_1(self):
    +        self._test_syncbn_train(size=1)
    +
    +    def test_syncbn_2(self):
    +        self._test_syncbn_train(size=2)
    +
    +    def test_syncbn_4(self):
    +        self._test_syncbn_train(size=4)
    +
    +    def test_syncbn_1_half(self):
    +        self._test_syncbn_train(size=1, half=True)
    +
    +    def test_syncbn_2_half(self):
    +        self._test_syncbn_train(size=2, half=True)
    +
    +    def test_syncbn_4_half(self):
    +        self._test_syncbn_train(size=4, half=True)
    +
    +    def test_syncbn_empty_1(self):
    +        self._test_syncbn_empty_train(size=1)
    +
    +    def test_syncbn_empty_2(self):
    +        self._test_syncbn_empty_train(size=2)
    +
    +    def test_syncbn_empty_4(self):
    +        self._test_syncbn_empty_train(size=4)
    +
    +    def test_syncbn_empty_1_half(self):
    +        self._test_syncbn_empty_train(size=1, half=True)
    +
    +    def test_syncbn_empty_2_half(self):
    +        self._test_syncbn_empty_train(size=2, half=True)
    +
    +    def test_syncbn_empty_4_half(self):
    +        self._test_syncbn_empty_train(size=4, half=True)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt.py
    new file mode 100644
    index 000000000..9471e1bf8
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt.py
    @@ -0,0 +1,807 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +from functools import partial
    +from typing import Callable
    +
    +import numpy as np
    +import onnx
    +import pytest
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +
    +try:
    +    from mmcv.tensorrt import (TRTWrapper, is_tensorrt_plugin_loaded, onnx2trt,
    +                               save_trt_engine)
    +except ImportError:
    +    pytest.skip(
    +        'TensorRT should be installed from source.', allow_module_level=True)
    +
    +if not torch.cuda.is_available():
    +    pytest.skip(
    +        'CUDA is required for this test module', allow_module_level=True)
    +
    +if not is_tensorrt_plugin_loaded():
    +    pytest.skip(
    +        'Test requires to complie TensorRT plugins in mmcv',
    +        allow_module_level=True)
    +
    +
    +class WrapFunction(nn.Module):
    +
    +    def __init__(self, wrapped_function):
    +        super().__init__()
    +        self.wrapped_function = wrapped_function
    +
    +    def forward(self, *args, **kwargs):
    +        return self.wrapped_function(*args, **kwargs)
    +
    +
    +onnx_file = 'tmp.onnx'
    +trt_file = 'tmp.engine'
    +
    +
    +def test_roialign():
    +    try:
    +        from mmcv.ops import RoIAlign
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    # roi align config
    +    pool_h = 2
    +    pool_w = 2
    +    spatial_scale = 1.0
    +    sampling_ratio = 2
    +
    +    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2.], [3., 4.]], [[4., 3.],
    +                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
    +              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
    +                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
    +
    +    wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
    +                             'avg', True).cuda()
    +    for case in inputs:
    +        np_input = np.array(case[0], dtype=np.float32)
    +        np_rois = np.array(case[1], dtype=np.float32)
    +        input = torch.from_numpy(np_input).cuda()
    +        rois = torch.from_numpy(np_rois).cuda()
    +
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (input, rois),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['input', 'rois'],
    +                output_names=['roi_feat'],
    +                opset_version=11)
    +        onnx_model = onnx.load(onnx_file)
    +
    +        # create trt engine and wrapper
    +        opt_shape_dict = {
    +            'input': [list(input.shape),
    +                      list(input.shape),
    +                      list(input.shape)],
    +            'rois': [list(rois.shape),
    +                     list(rois.shape),
    +                     list(rois.shape)]
    +        }
    +        trt_engine = onnx2trt(
    +            onnx_model,
    +            opt_shape_dict,
    +            fp16_mode=fp16_mode,
    +            max_workspace_size=max_workspace_size)
    +        save_trt_engine(trt_engine, trt_file)
    +        trt_model = TRTWrapper(trt_file, ['input', 'rois'], ['roi_feat'])
    +
    +        with torch.no_grad():
    +            trt_outputs = trt_model({'input': input, 'rois': rois})
    +            trt_roi_feat = trt_outputs['roi_feat']
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_roi_feat = wrapped_model(input, rois)
    +
    +        # allclose
    +        if os.path.exists(onnx_file):
    +            os.remove(onnx_file)
    +        if os.path.exists(trt_file):
    +            os.remove(trt_file)
    +        assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
    +
    +
    +def test_nms():
    +    try:
    +        import mmcv
    +        from mmcv.ops import nms
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +    os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +    data = mmcv.load('./tests/data/batched_nms_data.pkl')
    +    boxes = torch.from_numpy(data['boxes']).cuda()
    +    scores = torch.from_numpy(data['scores']).cuda()
    +    nms = partial(
    +        nms, iou_threshold=0.7, offset=0, score_threshold=0.1, max_num=100)
    +    wrapped_model = WrapFunction(nms)
    +    wrapped_model.cpu().eval()
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (boxes.detach().cpu(), scores.detach().cpu()),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=['boxes', 'scores'],
    +            output_names=['dets', 'inds'],
    +            opset_version=11)
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'boxes': [list(boxes.shape),
    +                  list(boxes.shape),
    +                  list(boxes.shape)],
    +        'scores': [list(scores.shape),
    +                   list(scores.shape),
    +                   list(scores.shape)]
    +    }
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, ['boxes', 'scores'], ['dets', 'inds'])
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'boxes': boxes, 'scores': scores})
    +        trt_dets = trt_outputs['dets']
    +        trt_inds = trt_outputs['inds']
    +        trt_inds = trt_inds.long()
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_outputs = wrapped_model(boxes, scores)
    +        pytorch_dets, pytorch_inds = pytorch_outputs
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    num_boxes = pytorch_dets.shape[0]
    +    trt_dets = trt_dets[:num_boxes, ...]
    +    trt_inds = trt_inds[:num_boxes]
    +    trt_scores = trt_dets[:, 4]
    +    pytorch_scores = pytorch_dets[:, 4]
    +    os.environ.pop('ONNX_BACKEND')
    +    assert torch.allclose(pytorch_scores, trt_scores, atol=1e-3)
    +    assert torch.equal(pytorch_inds, trt_inds)
    +
    +
    +def test_batched_nms():
    +    try:
    +        import mmcv
    +        from mmcv.ops import batched_nms
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +
    +    # trt config
    +    os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +    data = mmcv.load('./tests/data/batched_nms_data.pkl')
    +    nms_cfg = dict(type='nms', iou_threshold=0.7, score_threshold=0.1)
    +    boxes = torch.from_numpy(data['boxes']).cuda()
    +    scores = torch.from_numpy(data['scores']).cuda()
    +    idxs = torch.from_numpy(data['idxs']).cuda()
    +    class_agnostic = False
    +
    +    nms = partial(batched_nms, nms_cfg=nms_cfg, class_agnostic=class_agnostic)
    +    wrapped_model = WrapFunction(nms)
    +    wrapped_model.cpu().eval()
    +    input_data = (boxes.detach().cpu(), scores.detach().cpu(),
    +                  idxs.detach().cpu())
    +    input_names = ['boxes', 'scores', 'idxs']
    +    output_names = ['dets', 'inds']
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model,
    +            input_data,
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +    onnx_model = onnx.load(onnx_file)
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'boxes': [list(boxes.shape),
    +                  list(boxes.shape),
    +                  list(boxes.shape)],
    +        'scores': [list(scores.shape),
    +                   list(scores.shape),
    +                   list(scores.shape)],
    +        'idxs': [list(idxs.shape),
    +                 list(idxs.shape),
    +                 list(idxs.shape)]
    +    }
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({
    +            'boxes': boxes,
    +            'scores': scores,
    +            'idxs': idxs
    +        })
    +        trt_dets = trt_outputs['dets']
    +        trt_inds = trt_outputs['inds']
    +        trt_inds = trt_inds.long()
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_outputs = wrapped_model(boxes, scores, idxs)
    +        pytorch_dets, pytorch_inds = pytorch_outputs
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    num_boxes = pytorch_dets.shape[0]
    +    trt_dets = trt_dets[:num_boxes, ...]
    +    trt_inds = trt_inds[:num_boxes]
    +    trt_scores = trt_dets[:, 4]
    +    pytorch_scores = pytorch_dets[:, 4]
    +
    +    os.environ.pop('ONNX_BACKEND')
    +    assert torch.allclose(pytorch_scores, trt_scores)
    +    assert torch.equal(pytorch_inds, trt_inds)
    +
    +
    +def test_scatternd():
    +
    +    def func(data):
    +        data[:, :-2] += 1
    +        data[:2, :] -= 1
    +        return data
    +
    +    data = torch.zeros(4, 4).cuda()
    +    wrapped_model = WrapFunction(func).eval().cuda()
    +
    +    input_names = ['input']
    +    output_names = ['output']
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (data.clone(), ),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'input': [list(data.shape),
    +                  list(data.shape),
    +                  list(data.shape)],
    +    }
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'input': data.clone()})
    +        trt_results = trt_outputs['output']
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_results = wrapped_model(data.clone())
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    assert torch.allclose(pytorch_results, trt_results)
    +
    +
    +def test_deform_conv():
    +    try:
    +        from mmcv.ops import DeformConv2dPack
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +
    +    input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    +    offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
    +                     [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
    +                     [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
    +                     [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
    +    offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
    +    deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
    +
    +    c_in = 1
    +    c_out = 1
    +    x = torch.Tensor(input).cuda()
    +    x.requires_grad = True
    +    model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
    +    model.conv_offset.weight.data = torch.nn.Parameter(
    +        torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    +    model.conv_offset.bias.data = torch.nn.Parameter(
    +        torch.Tensor(offset_bias).reshape(8))
    +    model.weight.data = torch.nn.Parameter(
    +        torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
    +    model.cuda().eval()
    +
    +    input_names = ['input']
    +    output_names = ['output']
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            model, (x.clone(), ),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'input': [list(x.shape), list(x.shape),
    +                  list(x.shape)],
    +    }
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'input': x.clone()})
    +        trt_results = trt_outputs['output']
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_results = model(x.clone())
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    assert torch.allclose(pytorch_results, trt_results)
    +
    +
    +@pytest.mark.parametrize('with_bias', [True, False])
    +def test_modulated_deform_conv(with_bias):
    +    try:
    +        from mmcv.ops import ModulatedDeformConv2dPack
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +
    +    input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    +
    +    x = torch.Tensor(input).cuda()
    +    model = ModulatedDeformConv2dPack(
    +        1,
    +        1,
    +        kernel_size=(2, 2),
    +        stride=1,
    +        padding=1,
    +        deform_groups=1,
    +        bias=with_bias)
    +    model.weight.data.fill_(1.)
    +    model.type(torch.float32)
    +    model = model.cuda().eval()
    +
    +    input_names = ['input']
    +    output_names = ['output']
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            model, (x.clone(), ),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'input': [list(x.shape), list(x.shape),
    +                  list(x.shape)],
    +    }
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'input': x.clone()})
    +        trt_results = trt_outputs['output']
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_results = model(x.clone())
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    torch.testing.assert_allclose(pytorch_results, trt_results)
    +
    +
    +@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
    +@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
    +@pytest.mark.parametrize('align_corners', [True, False])
    +def test_grid_sample(mode, padding_mode, align_corners):
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +
    +    register_extra_symbolics(11)
    +
    +    input = torch.rand(1, 1, 10, 10).cuda()
    +    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    +    grid = F.affine_grid(grid, (1, 1, 15, 15)).type_as(input).cuda()
    +
    +    def func(input, grid):
    +        return F.grid_sample(
    +            input,
    +            grid,
    +            mode=mode,
    +            padding_mode=padding_mode,
    +            align_corners=align_corners)
    +
    +    wrapped_model = WrapFunction(func).eval().cuda()
    +
    +    input_names = ['input', 'grid']
    +    output_names = ['output']
    +
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (input.clone(), grid.clone()),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    opt_shape_dict = {
    +        'input': [list(input.shape),
    +                  list(input.shape),
    +                  list(input.shape)],
    +        'grid': [list(grid.shape),
    +                 list(grid.shape),
    +                 list(grid.shape)],
    +    }
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'input': input.clone(), 'grid': grid.clone()})
    +        trt_results = trt_outputs['output']
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_results = wrapped_model(input.clone(), grid.clone())
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    assert torch.allclose(pytorch_results, trt_results)
    +
    +
    +@pytest.mark.parametrize('func', [torch.cummax, torch.cummin])
    +def test_cummin_cummax(func: Callable):
    +    # Note generally `cummax` or `cummin` is exportable to ONNX
    +    # as long as the pytorch version >= 1.5.0, since `torch.cummax`
    +    # is only supported with torch >= 1.5.0.
    +    # But when `cummax` or `cummin` serves as an intermediate component
    +    # whose outputs is used as inputs for another modules, it's expected
    +    # that pytorch version must be >= 1.7.0. Otherwise error appears like:
    +    # `RuntimeError: tuple  appears in op that does not forward tuples,
    +    # unsupported 'kind: prim::PythonOp`.
    +    from packaging import version
    +    if version.parse(torch.__version__) < version.parse('1.7.0'):
    +        pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')
    +
    +    opset = 11
    +    # register custom op `mmcv::cummax` and `mmcv::cummin`
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    register_extra_symbolics(opset)
    +
    +    input_list = [
    +        # arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
    +        torch.rand((2, 3, 4, 1, 5)).cuda(),
    +        torch.rand(1).cuda()
    +    ]
    +
    +    input_names = ['input']
    +    output_names = ['output', 'indices']
    +
    +    for input in input_list:
    +        ndims = input.dim()
    +        # valid dim range is [-ndims, ndims-1]
    +        # test for all `dim` value which is valid
    +        for dim in range(-ndims, ndims):
    +            cummax_func = partial(func, dim=dim)
    +            wrapped_model = WrapFunction(cummax_func).eval().cuda()
    +
    +            with torch.no_grad():
    +                torch.onnx.export(
    +                    wrapped_model,
    +                    input,
    +                    onnx_file,
    +                    export_params=True,
    +                    keep_initializers_as_inputs=False,
    +                    input_names=input_names,
    +                    output_names=output_names,
    +                    opset_version=opset)
    +
    +            onnx_model = onnx.load(onnx_file)
    +
    +            # create trt engine and wrapper
    +            opt_shape_dict = {
    +                'input':
    +                [list(input.shape),
    +                 list(input.shape),
    +                 list(input.shape)]
    +            }
    +            # trt config
    +            fp16_mode = False
    +            max_workspace_size = 1 << 30
    +
    +            trt_engine = onnx2trt(
    +                onnx_model,
    +                opt_shape_dict,
    +                fp16_mode=fp16_mode,
    +                max_workspace_size=max_workspace_size)
    +
    +            # remove ONNX model after conversion
    +            if os.path.exists(onnx_file):
    +                os.remove(onnx_file)
    +
    +            # save TensorRT model
    +            save_trt_engine(trt_engine, trt_file)
    +
    +            # load and wrap TensorRT model
    +            trt_model = TRTWrapper(trt_file)
    +
    +            # remove trt model after loading
    +            if os.path.exists(trt_file):
    +                os.remove(trt_file)
    +
    +            # compute trt output
    +            with torch.no_grad():
    +                trt_results = trt_model({'input': input.contiguous().clone()})
    +                trt_output = trt_results['output']
    +                trt_indices = trt_results['indices']
    +
    +            # compute pytorch output
    +            with torch.no_grad():
    +                pytorch_results = wrapped_model(input.clone())
    +                pytorch_output = pytorch_results[0]
    +                pytorch_indices = pytorch_results[1]
    +
    +            torch.testing.assert_allclose(trt_output, pytorch_output)
    +            torch.testing.assert_allclose(trt_indices, pytorch_indices)
    +
    +
    +@pytest.mark.parametrize('dynamic_export', [True, False])
    +@pytest.mark.parametrize('fp16_mode', [True, False])
    +def test_instance_norm(dynamic_export, fp16_mode):
    +    n, c, h, w = 2, 3, 10, 10
    +    data = torch.randn(n, c, h, w).cuda()
    +    norm = nn.InstanceNorm2d(c, affine=True)
    +
    +    wrapped_model = WrapFunction(norm).eval().cuda()
    +
    +    input_names = ['input']
    +    output_names = ['output']
    +    dynamic_axes = None
    +    if dynamic_export:
    +        dynamic_axes = {
    +            'input': {
    +                0: 'n',
    +                2: 'h',
    +                3: 'w',
    +            },
    +            'output': {
    +                0: 'n',
    +                2: 'h',
    +                3: 'w',
    +            },
    +        }
    +    with torch.no_grad():
    +        torch.onnx.export(
    +            wrapped_model, (data.clone(), ),
    +            onnx_file,
    +            export_params=True,
    +            keep_initializers_as_inputs=True,
    +            input_names=input_names,
    +            output_names=output_names,
    +            dynamic_axes=dynamic_axes,
    +            opset_version=11)
    +
    +    onnx_model = onnx.load(onnx_file)
    +
    +    # create trt engine and wrapper
    +    if dynamic_export:
    +        opt_shape_dict = {
    +            'input':
    +            [list(data.shape),
    +             list(data.shape), [2 * n, c, 2 * h, 2 * w]],
    +        }
    +    else:
    +        opt_shape_dict = {
    +            'input': [list(data.shape),
    +                      list(data.shape),
    +                      list(data.shape)],
    +        }
    +    # trt config
    +    max_workspace_size = 1 << 30
    +
    +    trt_engine = onnx2trt(
    +        onnx_model,
    +        opt_shape_dict,
    +        fp16_mode=fp16_mode,
    +        max_workspace_size=max_workspace_size)
    +
    +    save_trt_engine(trt_engine, trt_file)
    +    trt_model = TRTWrapper(trt_file, input_names, output_names)
    +
    +    with torch.no_grad():
    +        trt_outputs = trt_model({'input': data.clone()})
    +        trt_results = trt_outputs['output']
    +
    +    # compute pytorch_output
    +    with torch.no_grad():
    +        pytorch_results = wrapped_model(data.clone())
    +
    +    # allclose
    +    if os.path.exists(onnx_file):
    +        os.remove(onnx_file)
    +    if os.path.exists(trt_file):
    +        os.remove(trt_file)
    +    assert torch.allclose(pytorch_results, trt_results)
    +
    +
    +@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
    +def test_corner_pool(mode):
    +    try:
    +        from mmcv.ops import CornerPool
    +    except (ImportError, ModuleNotFoundError):
    +        pytest.skip('test requires compilation')
    +
    +    opset = 11
    +    # register custom op `mmcv::MMCVCornerPool`
    +    from mmcv.onnx.symbolic import register_extra_symbolics
    +    register_extra_symbolics(opset)
    +
    +    # trt config
    +    fp16_mode = False
    +    max_workspace_size = 1 << 30
    +
    +    inputs = [
    +        # (n, c, h, w)
    +        torch.rand((2, 3, 5, 5)),
    +        torch.rand((1, 2, 4, 6)),
    +        torch.rand((2, 1, 3, 2)),
    +    ]
    +
    +    class CornerPoolWrapper(CornerPool):
    +
    +        def __init__(self, mode):
    +            super().__init__(mode)
    +
    +        def forward(self, x):
    +            # no use `torch.cummax`, instead `corner_pool` is used
    +            # for various torch version
    +            return self.corner_pool.apply(x)
    +
    +    wrapped_model = CornerPoolWrapper(mode).cuda()
    +    for input in inputs:
    +        input = input.cuda()
    +
    +        with torch.no_grad():
    +            torch.onnx.export(
    +                wrapped_model, (input, ),
    +                onnx_file,
    +                export_params=True,
    +                keep_initializers_as_inputs=True,
    +                input_names=['input'],
    +                output_names=['output'],
    +                opset_version=opset)
    +        onnx_model = onnx.load(onnx_file)
    +
    +        # create trt engine and wrapper
    +        opt_shape_dict = {
    +            'input': [list(input.shape),
    +                      list(input.shape),
    +                      list(input.shape)],
    +        }
    +        trt_engine = onnx2trt(
    +            onnx_model,
    +            opt_shape_dict,
    +            fp16_mode=fp16_mode,
    +            max_workspace_size=max_workspace_size)
    +        save_trt_engine(trt_engine, trt_file)
    +        trt_model = TRTWrapper(trt_file, ['input'], ['output'])
    +
    +        with torch.no_grad():
    +            trt_outputs = trt_model({'input': input})
    +            trt_pool_feat = trt_outputs['output']
    +
    +        # compute pytorch_output
    +        with torch.no_grad():
    +            pytorch_pool_feat = wrapped_model(input)
    +
    +        # allclose
    +        if os.path.exists(onnx_file):
    +            os.remove(onnx_file)
    +        if os.path.exists(trt_file):
    +            os.remove(trt_file)
    +        assert torch.allclose(pytorch_pool_feat, trt_pool_feat, atol=1e-5)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt_preprocess.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt_preprocess.py
    new file mode 100644
    index 000000000..22d0db76e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tensorrt_preprocess.py
    @@ -0,0 +1,80 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +from functools import wraps
    +
    +import onnx
    +import pytest
    +import torch
    +
    +from mmcv.ops import nms
    +from mmcv.tensorrt.preprocess import preprocess_onnx
    +
    +if torch.__version__ == 'parrots':
    +    pytest.skip('not supported in parrots now', allow_module_level=True)
    +
    +
    +def remove_tmp_file(func):
    +
    +    @wraps(func)
    +    def wrapper(*args, **kwargs):
    +        onnx_file = 'tmp.onnx'
    +        kwargs['onnx_file'] = onnx_file
    +        try:
    +            result = func(*args, **kwargs)
    +        finally:
    +            if os.path.exists(onnx_file):
    +                os.remove(onnx_file)
    +        return result
    +
    +    return wrapper
    +
    +
    +@remove_tmp_file
    +def export_nms_module_to_onnx(module, onnx_file):
    +    torch_model = module()
    +    torch_model.eval()
    +
    +    input = (torch.rand([100, 4], dtype=torch.float32),
    +             torch.rand([100], dtype=torch.float32))
    +
    +    torch.onnx.export(
    +        torch_model,
    +        input,
    +        onnx_file,
    +        opset_version=11,
    +        input_names=['boxes', 'scores'],
    +        output_names=['output'])
    +
    +    onnx_model = onnx.load(onnx_file)
    +    return onnx_model
    +
    +
    +def test_can_handle_nms_with_constant_maxnum():
    +
    +    class ModuleNMS(torch.nn.Module):
    +
    +        def forward(self, boxes, scores):
    +            return nms(boxes, scores, iou_threshold=0.4, max_num=10)
    +
    +    onnx_model = export_nms_module_to_onnx(ModuleNMS)
    +    preprocess_onnx_model = preprocess_onnx(onnx_model)
    +    for node in preprocess_onnx_model.graph.node:
    +        if 'NonMaxSuppression' in node.name:
    +            assert len(node.attribute) == 5, 'The NMS must have 5 attributes.'
    +
    +
    +def test_can_handle_nms_with_undefined_maxnum():
    +
    +    class ModuleNMS(torch.nn.Module):
    +
    +        def forward(self, boxes, scores):
    +            return nms(boxes, scores, iou_threshold=0.4)
    +
    +    onnx_model = export_nms_module_to_onnx(ModuleNMS)
    +    preprocess_onnx_model = preprocess_onnx(onnx_model)
    +    for node in preprocess_onnx_model.graph.node:
    +        if 'NonMaxSuppression' in node.name:
    +            assert len(node.attribute) == 5, \
    +                'The NMS must have 5 attributes.'
    +            assert node.attribute[2].i > 0, \
    +                'The max_output_boxes_per_class is not defined correctly.'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_interpolate.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_interpolate.py
    new file mode 100644
    index 000000000..51a6b8732
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_interpolate.py
    @@ -0,0 +1,78 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import three_interpolate
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
    +def test_three_interpolate(dtype):
    +    features = torch.tensor(
    +        [[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350],
    +          [3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236],
    +          [2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732],
    +          [0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124],
    +          [0.3207, 0.0000, 0.3411, 0.3207, 0.3207, 0.3207]],
    +         [[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000],
    +          [0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346],
    +          [0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000],
    +          [0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414],
    +          [0.5814, 0.0103, 0.0000, 0.5814, 0.5814, 0.5814]]],
    +        dtype=dtype).cuda()
    +
    +    idx = torch.tensor([[[0, 1, 2], [2, 3, 4], [2, 3, 4], [0, 1, 2], [0, 1, 2],
    +                         [0, 1, 3]],
    +                        [[0, 2, 3], [1, 3, 4], [2, 1, 4], [0, 2, 4], [0, 2, 4],
    +                         [0, 1, 2]]]).int().cuda()
    +
    +    weight = torch.tensor([[[3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [1.0000e+00, 5.8155e-08, 2.2373e-08],
    +                            [1.0000e+00, 1.7737e-08, 1.7356e-08],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01]],
    +                           [[3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [1.0000e+00, 1.3651e-08, 7.7312e-09],
    +                            [1.0000e+00, 1.7148e-08, 1.4070e-08],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
    +                            [3.3333e-01, 3.3333e-01, 3.3333e-01]]],
    +                          dtype=dtype).cuda()
    +
    +    output = three_interpolate(features, idx, weight)
    +    expected_output = torch.tensor([[[
    +        3.8953e+00, 4.4995e+00, 4.4995e+00, 3.8953e+00, 3.8953e+00, 3.2072e+00
    +    ], [
    +        2.9320e+00, 3.0447e+00, 3.0447e+00, 2.9320e+00, 2.9320e+00, 2.9583e+00
    +    ], [
    +        2.7281e+00, 2.6436e+00, 2.6436e+00, 2.7281e+00, 2.7281e+00, 2.7380e+00
    +    ], [
    +        4.6824e+00, 7.0199e+00, 7.0199e+00, 4.6824e+00, 4.6824e+00, 2.3466e+00
    +    ], [
    +        2.2060e-01, 3.4110e-01, 3.4110e-01, 2.2060e-01, 2.2060e-01, 2.1380e-01
    +    ]],
    +                                    [[
    +                                        8.1773e-01, 9.5440e-01, 2.4532e+00,
    +                                        8.1773e-01, 8.1773e-01, 1.1359e+00
    +                                    ],
    +                                     [
    +                                         8.4689e-01, 1.9176e+00, 1.4715e+00,
    +                                         8.4689e-01, 8.4689e-01, 1.3079e+00
    +                                     ],
    +                                     [
    +                                         6.9473e-01, 2.7440e-01, 2.0842e+00,
    +                                         6.9473e-01, 6.9473e-01, 7.8619e-01
    +                                     ],
    +                                     [
    +                                         7.6789e-01, 1.5063e+00, 1.6209e+00,
    +                                         7.6789e-01, 7.6789e-01, 1.1562e+00
    +                                     ],
    +                                     [
    +                                         3.8760e-01, 1.0300e-02, 8.3569e-09,
    +                                         3.8760e-01, 3.8760e-01, 1.9723e-01
    +                                     ]]],
    +                                   dtype=dtype).cuda()
    +
    +    assert torch.allclose(output, expected_output, 1e-3, 1e-4)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_nn.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_nn.py
    new file mode 100644
    index 000000000..456188b91
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_three_nn.py
    @@ -0,0 +1,65 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.ops import three_nn
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +known = [[[-1.8373, 3.5605, -0.7867], [0.7615, 2.9420, 0.2314],
    +          [-0.6503, 3.6637, -1.0622], [-1.8373, 3.5605, -0.7867],
    +          [-1.8373, 3.5605, -0.7867]],
    +         [[-1.3399, 1.9991, -0.3698], [-0.0799, 0.9698, -0.8457],
    +          [0.0858, 2.4721, -0.1928], [-1.3399, 1.9991, -0.3698],
    +          [-1.3399, 1.9991, -0.3698]]]
    +
    +unknown = [[[-1.8373, 3.5605, -0.7867], [0.7615, 2.9420, 0.2314],
    +            [-0.6503, 3.6637, -1.0622], [-1.5237, 2.3976, -0.8097],
    +            [-0.0722, 3.4017, -0.2880], [0.5198, 3.0661, -0.4605],
    +            [-2.0185, 3.5019, -0.3236], [0.5098, 3.1020, 0.5799],
    +            [-1.6137, 3.8443, -0.5269], [0.7341, 2.9626, -0.3189]],
    +           [[-1.3399, 1.9991, -0.3698], [-0.0799, 0.9698, -0.8457],
    +            [0.0858, 2.4721, -0.1928], [-0.9022, 1.6560, -1.3090],
    +            [0.1156, 1.6901, -0.4366], [-0.6477, 2.3576, -0.1563],
    +            [-0.8482, 1.1466, -1.2704], [-0.8753, 2.0845, -0.3460],
    +            [-0.5621, 1.4233, -1.2858], [-0.5883, 1.3114, -1.2899]]]
    +
    +expected_dist = [[[0.0000, 0.0000, 0.0000], [0.0000, 2.0463, 2.8588],
    +                  [0.0000, 1.2229, 1.2229], [1.2047, 1.2047, 1.2047],
    +                  [1.0011, 1.0845, 1.8411], [0.7433, 1.4451, 2.4304],
    +                  [0.5007, 0.5007, 0.5007], [0.4587, 2.0875, 2.7544],
    +                  [0.4450, 0.4450, 0.4450], [0.5514, 1.7206, 2.6811]],
    +                 [[0.0000, 0.0000, 0.0000], [0.0000, 1.6464, 1.6952],
    +                  [0.0000, 1.5125, 1.5125], [1.0915, 1.0915, 1.0915],
    +                  [0.8197, 0.8511, 1.4894], [0.7433, 0.8082, 0.8082],
    +                  [0.8955, 1.3340, 1.3340], [0.4730, 0.4730, 0.4730],
    +                  [0.7949, 1.3325, 1.3325], [0.7566, 1.3727, 1.3727]]]
    +
    +expected_idx = [[[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4], [2, 1, 0],
    +                 [1, 2, 0], [0, 3, 4], [1, 2, 0], [0, 3, 4], [1, 2, 0]],
    +                [[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4], [2, 1, 0],
    +                 [2, 0, 3], [1, 0, 3], [0, 3, 4], [1, 0, 3], [1, 0, 3]]]
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype,rtol', [(torch.float, 1e-8),
    +                                        (torch.half, 1e-3)])
    +def test_three_nn(device, dtype, rtol):
    +    dtype = torch.float
    +    known_t = torch.tensor(known, dtype=dtype, device=device)
    +    unknown_t = torch.tensor(unknown, dtype=dtype, device=device)
    +
    +    dist_t, idx_t = three_nn(unknown_t, known_t)
    +    expected_dist_t = torch.tensor(expected_dist, dtype=dtype, device=device)
    +    expected_idx_t = torch.tensor(expected_idx, device=device)
    +
    +    assert torch.allclose(dist_t, expected_dist_t, atol=1e-4, rtol=rtol)
    +    assert torch.all(idx_t == expected_idx_t)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tin_shift.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tin_shift.py
    new file mode 100755
    index 000000000..c8ce14465
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_tin_shift.py
    @@ -0,0 +1,226 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck
    +
    +    _USING_PARROTS = False
    +
    +cur_dir = os.path.dirname(os.path.abspath(__file__))
    +
    +inputs = ([[[[0.88572276, 0.46422583], [0.97408265, 0.59547687],
    +             [0.030812204, 0.96236038], [0.75418317, 0.44058233],
    +             [0.33279222, 0.00084149837], [0.7069388, 0.23255438],
    +             [0.13547045, 0.81549376], [0.40174931, 0.36317211]],
    +            [[0.57444429, 0.15905505], [0.39897251, 0.25790238],
    +             [0.93282568, 0.18451685], [0.92526674, 0.18283755],
    +             [0.31664443, 0.59323865], [0.1957739, 0.42505842],
    +             [0.081158757, 0.81340349], [0.43456328, 0.30195212]],
    +            [[0.8198145, 0.05990988], [0.98062474, 0.34803438],
    +             [0.10412294, 0.37183142], [0.15021622, 0.038857818],
    +             [0.40985721, 0.42253625], [0.71150124, 0.59778064],
    +             [0.83851069, 0.15194464], [0.097513378, 0.74820143]],
    +            [[0.80680406, 0.49327564], [0.17821097, 0.12980539],
    +             [0.50657678, 0.14446253], [0.04178369, 0.53071898],
    +             [0.84983683, 0.3826949], [0.32193625, 0.91275406],
    +             [0.75628334, 0.52934098], [0.27994192, 0.3053292]]],
    +           [[[0.082397044, 0.4210068], [0.23563534, 0.7938987],
    +             [0.63669145, 0.69397897], [0.8844561, 0.97854084],
    +             [0.79027033, 0.60640401], [0.63528901, 0.72172403],
    +             [0.0097346902, 0.70800996], [0.87891227, 0.13674974]],
    +            [[0.74329448, 0.0243572], [0.82178867, 0.85750699],
    +             [0.7568835, 0.73146772], [0.5031184, 0.30479157],
    +             [0.28713053, 0.47414285], [0.4682079, 0.067471564],
    +             [0.48368263, 0.14590704], [0.25397325, 0.19946373]],
    +            [[0.4291026, 0.068739474], [0.7159555, 0.79903615],
    +             [0.76412082, 0.85348046], [0.081224024, 0.82264912],
    +             [0.97173303, 0.24291694], [0.48957139, 0.43488795],
    +             [0.67382395, 0.21889746], [0.36712623, 0.67127824]],
    +            [[0.12054044, 0.18096751], [0.86675781, 0.54755616],
    +             [0.68208277, 0.15164375], [0.79991871, 0.80811197],
    +             [0.85256428, 0.68253738], [0.185983, 0.95642138],
    +             [0.48102546, 0.28009653], [0.35726011, 0.58168036]]]])
    +
    +shifts = [([[1, 0, 1, -2], [-2, 1, -1, 1]]), ([[2, 1, 2, -1], [-1, 2, 0, 2]])]
    +
    +outputs = [([[[[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
    +               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
    +              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
    +               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
    +               [0.75628, 0.52934], [0.27994, 0.30533]],
    +              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
    +               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
    +               [0.0, 0.0], [0.0, 0.0]],
    +              [[0.81981, 0.05991], [0.98062, 0.34803], [0.50658, 0.14446],
    +               [0.041784, 0.53072], [0.40986, 0.42254], [0.7115, 0.59778],
    +               [0.0, 0.0], [0.0, 0.0]]],
    +             [[[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
    +               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
    +                                                                     0.0]],
    +              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
    +               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
    +               [0.0097347, 0.70801], [0.87891, 0.13675]],
    +              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
    +               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
    +               [0.25397, 0.19946]],
    +              [[0.0, 0.0], [0.0, 0.0], [0.76412, 0.85348], [0.081224, 0.82265],
    +               [0.0, 0.0], [0.0, 0.0], [0.67382, 0.2189], [0.36713,
    +                                                           0.67128]]]]),
    +           ([[[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
    +               [0.0, 0.0], [0.081159, 0.8134], [0.43456, 0.30195]],
    +              [[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
    +               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
    +              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
    +               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
    +               [0.75628, 0.52934], [0.27994, 0.30533]],
    +              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
    +               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
    +               [0.0, 0.0], [0.0, 0.0]]],
    +             [[[0.74329, 0.024357], [0.82179, 0.85751], [0.0, 0.0], [0.0, 0.0],
    +               [0.79027, 0.6064], [0.63529, 0.72172], [0.0, 0.0], [0.0, 0.0]],
    +              [[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
    +               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
    +                                                                     0.0]],
    +              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
    +               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
    +               [0.0097347, 0.70801], [0.87891, 0.13675]],
    +              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
    +               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
    +               [0.25397, 0.19946]]]])]
    +
    +grads = [
    +    [[[[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
    +       [1., 1.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]]],
    +     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]],
    +      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]],
    +      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
    +       [1., 1.]]]],
    +    [[[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [1., 1.],
    +       [1., 1.]],
    +      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
    +       [1., 1.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]]],
    +     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]],
    +      [[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
    +       [0., 0.]],
    +      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]],
    +      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
    +       [1., 1.]]]]
    +]
    +
    +
    +def _test_tinshift_gradcheck(device, dtype):
    +    try:
    +        from mmcv.ops import tin_shift
    +    except ModuleNotFoundError:
    +        pytest.skip('TINShift op is not successfully compiled')
    +
    +    if dtype == torch.half:
    +        pytest.skip('"add_cpu/sub_cpu" not implemented for Half')
    +
    +    for shift in shifts:
    +        np_input = np.array(inputs)
    +        np_shift = np.array(shift)
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        shift = torch.tensor(np_shift, device=device).int()
    +        if torch.__version__ == 'parrots':
    +            gradcheck(tin_shift, (x, shift))
    +        else:
    +            gradcheck(tin_shift, (x, shift), atol=1, rtol=0.1)
    +
    +
    +def _test_tinshift_allclose(device, dtype):
    +    try:
    +        from mmcv.ops import tin_shift
    +    except ModuleNotFoundError:
    +        pytest.skip('TINShift op is not successfully compiled')
    +
    +    for shift, output, grad in zip(shifts, outputs, grads):
    +        np_input = np.array(inputs)
    +        np_shift = np.array(shift)
    +        np_output = np.array(output)
    +        np_grad = np.array(grad)
    +
    +        x = torch.tensor(
    +            np_input, dtype=dtype, device=device, requires_grad=True)
    +        shift = torch.tensor(np_shift, device=device).int()
    +
    +        output = tin_shift(x, shift)
    +        output.backward(torch.ones_like(output))
    +        assert np.allclose(
    +            output.data.type(torch.float).cpu().numpy(), np_output, 1e-3)
    +        assert np.allclose(
    +            x.grad.data.type(torch.float).cpu().numpy(), np_grad, 1e-3)
    +
    +
    +def _test_tinshift_assert(device, dtype):
    +    try:
    +        from mmcv.ops import tin_shift
    +    except ModuleNotFoundError:
    +        pytest.skip('TINShift op is not successfully compiled')
    +
    +    inputs = [
    +        torch.rand(2, 3, 4, 2),
    +        torch.rand(2, 3, 4, 2),
    +        torch.rand(1, 3, 4, 2)
    +    ]
    +    shifts = [torch.rand(2, 3), torch.rand(2, 5)]
    +
    +    for x, shift in zip(inputs, shifts):
    +        x = x.to(device).type(dtype)
    +        shift = shift.to(device).type(dtype)
    +
    +        # A ValueError should be raised if ops get inputs with wrong shapes.
    +        with pytest.raises(ValueError):
    +            tin_shift(x, shift)
    +
    +
    +@pytest.mark.parametrize('device', [
    +    pytest.param(
    +        'cuda',
    +        marks=pytest.mark.skipif(
    +            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    +    pytest.param(
    +        'mlu',
    +        marks=pytest.mark.skipif(
    +            not IS_MLU_AVAILABLE, reason='requires MLU support'))
    +])
    +@pytest.mark.parametrize('dtype', [
    +    torch.float,
    +    pytest.param(
    +        torch.double,
    +        marks=pytest.mark.skipif(
    +            IS_MLU_AVAILABLE,
    +            reason='MLU does not support for 64-bit floating point')),
    +    torch.half
    +])
    +def test_tinshift(device, dtype):
    +    _test_tinshift_allclose(device=device, dtype=dtype)
    +    _test_tinshift_gradcheck(device=device, dtype=dtype)
    +    _test_tinshift_assert(device=device, dtype=dtype)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_upfirdn2d.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_upfirdn2d.py
    new file mode 100644
    index 000000000..6037a51c2
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_upfirdn2d.py
    @@ -0,0 +1,58 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +_USING_PARROTS = True
    +try:
    +    from parrots.autograd import gradcheck
    +except ImportError:
    +    from torch.autograd import gradcheck, gradgradcheck
    +    _USING_PARROTS = False
    +
    +
    +class TestUpFirDn2d:
    +    """Unit test for UpFirDn2d.
    +
    +    Here, we just test the basic case of upsample version. More gerneal tests
    +    will be included in other unit test for UpFirDnUpsample and
    +    UpFirDnDownSample modules.
    +    """
    +
    +    @classmethod
    +    def setup_class(cls):
    +        kernel_1d = torch.tensor([1., 3., 3., 1.])
    +        cls.kernel = kernel_1d[:, None] * kernel_1d[None, :]
    +        cls.kernel = cls.kernel / cls.kernel.sum()
    +        cls.factor = 2
    +        pad = cls.kernel.shape[0] - cls.factor
    +        cls.pad = ((pad + 1) // 2 + cls.factor - 1, pad // 2)
    +
    +        cls.input_tensor = torch.randn((2, 3, 4, 4), requires_grad=True)
    +
    +    @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
    +    def test_upfirdn2d(self):
    +        from mmcv.ops import upfirdn2d
    +        if _USING_PARROTS:
    +            gradcheck(
    +                upfirdn2d,
    +                (self.input_tensor.cuda(),
    +                 self.kernel.type_as(
    +                     self.input_tensor).cuda(), self.factor, 1, self.pad),
    +                delta=1e-4,
    +                pt_atol=1e-3)
    +        else:
    +            gradcheck(
    +                upfirdn2d,
    +                (self.input_tensor.cuda(),
    +                 self.kernel.type_as(
    +                     self.input_tensor).cuda(), self.factor, 1, self.pad),
    +                eps=1e-4,
    +                atol=1e-3)
    +
    +            gradgradcheck(
    +                upfirdn2d,
    +                (self.input_tensor.cuda(),
    +                 self.kernel.type_as(
    +                     self.input_tensor).cuda(), self.factor, 1, self.pad),
    +                eps=1e-4,
    +                atol=1e-3)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_voxelization.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_voxelization.py
    new file mode 100644
    index 000000000..d3555ac69
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_ops/test_voxelization.py
    @@ -0,0 +1,139 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +
    +from mmcv.ops import Voxelization
    +
    +
    +def _get_voxel_points_indices(points, coors, voxel):
    +    result_form = np.equal(coors, voxel)
    +    return result_form[:, 0] & result_form[:, 1] & result_form[:, 2]
    +
    +
    +@pytest.mark.parametrize('device_type', [
    +    'cpu',
    +    pytest.param(
    +        'cuda:0',
    +        marks=pytest.mark.skipif(
    +            not torch.cuda.is_available(), reason='requires CUDA support'))
    +])
    +def test_voxelization(device_type):
    +    voxel_size = [0.5, 0.5, 0.5]
    +    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    +
    +    voxel_dict = np.load(
    +        'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
    +    expected_coors = voxel_dict['coors']
    +    expected_voxels = voxel_dict['voxels']
    +    expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
    +    points = voxel_dict['points']
    +
    +    points = torch.tensor(points)
    +    max_num_points = -1
    +    dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
    +                                        max_num_points)
    +    max_num_points = 1000
    +    hard_voxelization = Voxelization(voxel_size, point_cloud_range,
    +                                     max_num_points)
    +
    +    device = torch.device(device_type)
    +
    +    # test hard_voxelization on cpu/gpu
    +    points = points.contiguous().to(device)
    +    coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
    +    coors = coors.cpu().detach().numpy()
    +    voxels = voxels.cpu().detach().numpy()
    +    num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
    +    assert np.all(coors == expected_coors)
    +    assert np.all(voxels == expected_voxels)
    +    assert np.all(num_points_per_voxel == expected_num_points_per_voxel)
    +
    +    # test dynamic_voxelization on cpu/gpu
    +    coors = dynamic_voxelization.forward(points)
    +    coors = coors.cpu().detach().numpy()
    +    points = points.cpu().detach().numpy()
    +    for i in range(expected_voxels.shape[0]):
    +        indices = _get_voxel_points_indices(points, coors, expected_voxels[i])
    +        num_points_current_voxel = points[indices].shape[0]
    +        assert num_points_current_voxel > 0
    +        assert np.all(
    +            points[indices] == expected_coors[i][:num_points_current_voxel])
    +        assert num_points_current_voxel == expected_num_points_per_voxel[i]
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_voxelization_nondeterministic():
    +    voxel_size = [0.5, 0.5, 0.5]
    +    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    +
    +    voxel_dict = np.load(
    +        'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
    +    points = voxel_dict['points']
    +
    +    points = torch.tensor(points)
    +    max_num_points = -1
    +    dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
    +                                        max_num_points)
    +
    +    max_num_points = 10
    +    max_voxels = 50
    +    hard_voxelization = Voxelization(
    +        voxel_size,
    +        point_cloud_range,
    +        max_num_points,
    +        max_voxels,
    +        deterministic=False)
    +
    +    # test hard_voxelization (non-deterministic version) on gpu
    +    points = torch.tensor(points).contiguous().to(device='cuda:0')
    +    voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
    +    coors = coors.cpu().detach().numpy().tolist()
    +    voxels = voxels.cpu().detach().numpy().tolist()
    +    num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy().tolist()
    +
    +    coors_all = dynamic_voxelization.forward(points)
    +    coors_all = coors_all.cpu().detach().numpy().tolist()
    +
    +    coors_set = {tuple(c) for c in coors}
    +    coors_all_set = {tuple(c) for c in coors_all}
    +
    +    assert len(coors_set) == len(coors)
    +    assert len(coors_set - coors_all_set) == 0
    +
    +    points = points.cpu().detach().numpy().tolist()
    +
    +    coors_points_dict = {}
    +    for c, ps in zip(coors_all, points):
    +        if tuple(c) not in coors_points_dict:
    +            coors_points_dict[tuple(c)] = set()
    +        coors_points_dict[tuple(c)].add(tuple(ps))
    +
    +    for c, ps, n in zip(coors, voxels, num_points_per_voxel):
    +        ideal_voxel_points_set = coors_points_dict[tuple(c)]
    +        voxel_points_set = {tuple(p) for p in ps[:n]}
    +        assert len(voxel_points_set) == n
    +        if n < max_num_points:
    +            assert voxel_points_set == ideal_voxel_points_set
    +            for p in ps[n:]:
    +                assert max(p) == min(p) == 0
    +        else:
    +            assert len(voxel_points_set - ideal_voxel_points_set) == 0
    +
    +    # test hard_voxelization (non-deterministic version) on gpu
    +    # with all input point in range
    +    points = torch.tensor(points).contiguous().to(device='cuda:0')[:max_voxels]
    +    coors_all = dynamic_voxelization.forward(points)
    +    valid_mask = coors_all.ge(0).all(-1)
    +    points = points[valid_mask]
    +    coors_all = coors_all[valid_mask]
    +    coors_all = coors_all.cpu().detach().numpy().tolist()
    +
    +    voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
    +    coors = coors.cpu().detach().numpy().tolist()
    +
    +    coors_set = {tuple(c) for c in coors}
    +    coors_all_set = {tuple(c) for c in coors_all}
    +
    +    assert len(coors_set) == len(coors) == len(coors_all_set)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_parallel.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_parallel.py
    new file mode 100644
    index 000000000..814aaeadf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_parallel.py
    @@ -0,0 +1,188 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import MagicMock, patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +from torch.nn.parallel import DataParallel, DistributedDataParallel
    +
    +from mmcv.parallel import (MODULE_WRAPPERS, MMDataParallel,
    +                           MMDistributedDataParallel, is_module_wrapper)
    +from mmcv.parallel._functions import Scatter, get_input_device, scatter
    +from mmcv.parallel.distributed_deprecated import \
    +    MMDistributedDataParallel as DeprecatedMMDDP
    +from mmcv.utils import Registry
    +
    +
    +def mock(*args, **kwargs):
    +    pass
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not supported in parrots now')
    +@patch('torch.distributed._broadcast_coalesced', mock)
    +@patch('torch.distributed.broadcast', mock)
    +@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
    +def test_is_module_wrapper():
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(2, 2, 1)
    +
    +        def forward(self, x):
    +            return self.conv(x)
    +
    +    # _verify_model_across_ranks is added in torch1.9.0,
    +    # _verify_params_across_processes is added in torch1.11.0,
    +    # so we should check whether _verify_model_across_ranks
    +    # and _verify_params_across_processes are the member of
    +    # torch.distributed before mocking
    +    if hasattr(torch.distributed, '_verify_model_across_ranks'):
    +        torch.distributed._verify_model_across_ranks = mock
    +    if hasattr(torch.distributed, '_verify_params_across_processes'):
    +        torch.distributed._verify_params_across_processes = mock
    +
    +    model = Model()
    +    assert not is_module_wrapper(model)
    +
    +    dp = DataParallel(model)
    +    assert is_module_wrapper(dp)
    +
    +    mmdp = MMDataParallel(model)
    +    assert is_module_wrapper(mmdp)
    +
    +    ddp = DistributedDataParallel(model, process_group=MagicMock())
    +    assert is_module_wrapper(ddp)
    +
    +    mmddp = MMDistributedDataParallel(model, process_group=MagicMock())
    +    assert is_module_wrapper(mmddp)
    +
    +    deprecated_mmddp = DeprecatedMMDDP(model)
    +    assert is_module_wrapper(deprecated_mmddp)
    +
    +    # test module wrapper registry
    +    @MODULE_WRAPPERS.register_module()
    +    class ModuleWrapper:
    +
    +        def __init__(self, module):
    +            self.module = module
    +
    +        def forward(self, *args, **kwargs):
    +            return self.module(*args, **kwargs)
    +
    +    module_wraper = ModuleWrapper(model)
    +    assert is_module_wrapper(module_wraper)
    +
    +    # test module wrapper registry in downstream repo
    +    MMRAZOR_MODULE_WRAPPERS = Registry(
    +        'mmrazor module wrapper', parent=MODULE_WRAPPERS, scope='mmrazor')
    +    MMPOSE_MODULE_WRAPPERS = Registry(
    +        'mmpose module wrapper', parent=MODULE_WRAPPERS, scope='mmpose')
    +
    +    @MMRAZOR_MODULE_WRAPPERS.register_module()
    +    class ModuleWrapperInRazor:
    +
    +        def __init__(self, module):
    +            self.module = module
    +
    +        def forward(self, *args, **kwargs):
    +            return self.module(*args, **kwargs)
    +
    +    @MMPOSE_MODULE_WRAPPERS.register_module()
    +    class ModuleWrapperInPose:
    +
    +        def __init__(self, module):
    +            self.module = module
    +
    +        def forward(self, *args, **kwargs):
    +            return self.module(*args, **kwargs)
    +
    +    wrapped_module = ModuleWrapperInRazor(model)
    +    assert is_module_wrapper(wrapped_module)
    +
    +    wrapped_module = ModuleWrapperInPose(model)
    +    assert is_module_wrapper(wrapped_module)
    +
    +
    +def test_get_input_device():
    +    # if the device is CPU, return -1
    +    input = torch.zeros([1, 3, 3, 3])
    +    assert get_input_device(input) == -1
    +    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +    assert get_input_device(inputs) == -1
    +
    +    # if the device is GPU, return the index of device
    +    if torch.cuda.is_available():
    +        input = torch.zeros([1, 3, 3, 3]).cuda()
    +        assert get_input_device(input) == 0
    +        inputs = [
    +            torch.zeros([1, 3, 3, 3]).cuda(),
    +            torch.zeros([1, 4, 4, 4]).cuda()
    +        ]
    +        assert get_input_device(inputs) == 0
    +
    +    # input should be a tensor or list of tensor
    +    with pytest.raises(Exception):
    +        get_input_device(5)
    +
    +
    +def test_scatter():
    +    # if the device is CPU, just return the input
    +    input = torch.zeros([1, 3, 3, 3])
    +    output = scatter(input=input, devices=[-1])
    +    assert torch.allclose(input, output)
    +
    +    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +    outputs = scatter(input=inputs, devices=[-1])
    +    for input, output in zip(inputs, outputs):
    +        assert torch.allclose(input, output)
    +
    +    # if the device is GPU, copy the input from CPU to GPU
    +    if torch.cuda.is_available():
    +        input = torch.zeros([1, 3, 3, 3])
    +        output = scatter(input=input, devices=[0])
    +        assert torch.allclose(input.cuda(), output)
    +
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = scatter(input=inputs, devices=[0])
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.cuda(), output)
    +
    +    # input should be a tensor or list of tensor
    +    with pytest.raises(Exception):
    +        scatter(5, [-1])
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not supported in parrots now')
    +def test_Scatter():
    +    # if the device is CPU, just return the input
    +    target_gpus = [-1]
    +    input = torch.zeros([1, 3, 3, 3])
    +    outputs = Scatter.forward(target_gpus, input)
    +    assert isinstance(outputs, tuple)
    +    assert torch.allclose(input, outputs[0])
    +
    +    target_gpus = [-1]
    +    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +    outputs = Scatter.forward(target_gpus, inputs)
    +    assert isinstance(outputs, tuple)
    +    for input, output in zip(inputs, outputs):
    +        assert torch.allclose(input, output)
    +
    +    # if the device is GPU, copy the input from CPU to GPU
    +    if torch.cuda.is_available():
    +        target_gpus = [0]
    +        input = torch.zeros([1, 3, 3, 3])
    +        outputs = Scatter.forward(target_gpus, input)
    +        assert isinstance(outputs, tuple)
    +        assert torch.allclose(input.cuda(), outputs[0])
    +
    +        target_gpus = [0]
    +        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    +        outputs = Scatter.forward(target_gpus, inputs)
    +        assert isinstance(outputs, tuple)
    +        for input, output in zip(inputs, outputs):
    +            assert torch.allclose(input.cuda(), output[0])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_basemodule.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_basemodule.py
    new file mode 100644
    index 000000000..d1016a4fd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_basemodule.py
    @@ -0,0 +1,610 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import tempfile
    +
    +import pytest
    +import torch
    +from torch import nn
    +
    +import mmcv
    +from mmcv.cnn.utils.weight_init import update_init_info
    +from mmcv.runner import BaseModule, ModuleDict, ModuleList, Sequential
    +from mmcv.utils import Registry, build_from_cfg
    +
    +COMPONENTS = Registry('component')
    +FOOMODELS = Registry('model')
    +
    +
    +@COMPONENTS.register_module()
    +class FooConv1d(BaseModule):
    +
    +    def __init__(self, init_cfg=None):
    +        super().__init__(init_cfg)
    +        self.conv1d = nn.Conv1d(4, 1, 4)
    +
    +    def forward(self, x):
    +        return self.conv1d(x)
    +
    +
    +@COMPONENTS.register_module()
    +class FooConv2d(BaseModule):
    +
    +    def __init__(self, init_cfg=None):
    +        super().__init__(init_cfg)
    +        self.conv2d = nn.Conv2d(3, 1, 3)
    +
    +    def forward(self, x):
    +        return self.conv2d(x)
    +
    +
    +@COMPONENTS.register_module()
    +class FooLinear(BaseModule):
    +
    +    def __init__(self, init_cfg=None):
    +        super().__init__(init_cfg)
    +        self.linear = nn.Linear(3, 4)
    +
    +    def forward(self, x):
    +        return self.linear(x)
    +
    +
    +@COMPONENTS.register_module()
    +class FooLinearConv1d(BaseModule):
    +
    +    def __init__(self, linear=None, conv1d=None, init_cfg=None):
    +        super().__init__(init_cfg)
    +        if linear is not None:
    +            self.linear = build_from_cfg(linear, COMPONENTS)
    +        if conv1d is not None:
    +            self.conv1d = build_from_cfg(conv1d, COMPONENTS)
    +
    +    def forward(self, x):
    +        x = self.linear(x)
    +        return self.conv1d(x)
    +
    +
    +@FOOMODELS.register_module()
    +class FooModel(BaseModule):
    +
    +    def __init__(self,
    +                 component1=None,
    +                 component2=None,
    +                 component3=None,
    +                 component4=None,
    +                 init_cfg=None) -> None:
    +        super().__init__(init_cfg)
    +        if component1 is not None:
    +            self.component1 = build_from_cfg(component1, COMPONENTS)
    +        if component2 is not None:
    +            self.component2 = build_from_cfg(component2, COMPONENTS)
    +        if component3 is not None:
    +            self.component3 = build_from_cfg(component3, COMPONENTS)
    +        if component4 is not None:
    +            self.component4 = build_from_cfg(component4, COMPONENTS)
    +
    +        # its type is not BaseModule, it can be initialized
    +        # with "override" key.
    +        self.reg = nn.Linear(3, 4)
    +
    +
    +def test_initilization_info_logger():
    +    # 'override' has higher priority
    +
    +    import os
    +
    +    import torch.nn as nn
    +
    +    from mmcv.utils.logging import get_logger
    +
    +    class OverloadInitConv(nn.Conv2d, BaseModule):
    +
    +        def init_weights(self):
    +            for p in self.parameters():
    +                with torch.no_grad():
    +                    p.fill_(1)
    +
    +    class CheckLoggerModel(BaseModule):
    +
    +        def __init__(self, init_cfg=None):
    +            super().__init__(init_cfg)
    +            self.conv1 = nn.Conv2d(1, 1, 1, 1)
    +            self.conv2 = OverloadInitConv(1, 1, 1, 1)
    +            self.conv3 = nn.Conv2d(1, 1, 1, 1)
    +            self.fc1 = nn.Linear(1, 1)
    +
    +    init_cfg = [
    +        dict(
    +            type='Normal',
    +            layer='Conv2d',
    +            std=0.01,
    +            override=dict(
    +                type='Normal', name='conv3', std=0.01, bias_prob=0.01)),
    +        dict(type='Constant', layer='Linear', val=0., bias=1.)
    +    ]
    +
    +    model = CheckLoggerModel(init_cfg=init_cfg)
    +
    +    train_log = '20210720_132454.log'
    +    workdir = tempfile.mkdtemp()
    +    log_file = os.path.join(workdir, train_log)
    +    # create a logger
    +    get_logger('init_logger', log_file=log_file)
    +    assert not hasattr(model, '_params_init_info')
    +    model.init_weights()
    +    # assert `_params_init_info` would be deleted after `init_weights`
    +    assert not hasattr(model, '_params_init_info')
    +    # assert initialization information has been dumped
    +    assert os.path.exists(log_file)
    +
    +    lines = mmcv.list_from_file(log_file)
    +
    +    # check initialization information is right
    +    for i, line in enumerate(lines):
    +        if 'conv1.weight' in line:
    +            assert 'NormalInit' in lines[i + 1]
    +        if 'conv2.weight' in line:
    +            assert 'OverloadInitConv' in lines[i + 1]
    +        if 'fc1.weight' in line:
    +            assert 'ConstantInit' in lines[i + 1]
    +
    +    # test corner case
    +
    +    class OverloadInitConvFc(nn.Conv2d, BaseModule):
    +
    +        def __init__(self, *args, **kwargs):
    +            super().__init__(*args, **kwargs)
    +            self.conv1 = nn.Linear(1, 1)
    +
    +        def init_weights(self):
    +            for p in self.parameters():
    +                with torch.no_grad():
    +                    p.fill_(1)
    +
    +    class CheckLoggerModel(BaseModule):
    +
    +        def __init__(self, init_cfg=None):
    +            super().__init__(init_cfg)
    +            self.conv1 = nn.Conv2d(1, 1, 1, 1)
    +            self.conv2 = OverloadInitConvFc(1, 1, 1, 1)
    +            self.conv3 = nn.Conv2d(1, 1, 1, 1)
    +            self.fc1 = nn.Linear(1, 1)
    +
    +    class TopLevelModule(BaseModule):
    +
    +        def __init__(self, init_cfg=None, checklog_init_cfg=None):
    +            super().__init__(init_cfg)
    +            self.module1 = CheckLoggerModel(checklog_init_cfg)
    +            self.module2 = OverloadInitConvFc(1, 1, 1, 1)
    +
    +    checklog_init_cfg = [
    +        dict(
    +            type='Normal',
    +            layer='Conv2d',
    +            std=0.01,
    +            override=dict(
    +                type='Normal', name='conv3', std=0.01, bias_prob=0.01)),
    +        dict(type='Constant', layer='Linear', val=0., bias=1.)
    +    ]
    +
    +    top_level_init_cfg = [
    +        dict(
    +            type='Normal',
    +            layer='Conv2d',
    +            std=0.01,
    +            override=dict(
    +                type='Normal', name='module2', std=0.01, bias_prob=0.01))
    +    ]
    +
    +    model = TopLevelModule(
    +        init_cfg=top_level_init_cfg, checklog_init_cfg=checklog_init_cfg)
    +
    +    model.module1.init_weights()
    +    model.module2.init_weights()
    +    model.init_weights()
    +    model.module1.init_weights()
    +    model.module2.init_weights()
    +
    +    assert not hasattr(model, '_params_init_info')
    +    model.init_weights()
    +    # assert `_params_init_info` would be deleted after `init_weights`
    +    assert not hasattr(model, '_params_init_info')
    +    # assert initialization information has been dumped
    +    assert os.path.exists(log_file)
    +
    +    lines = mmcv.list_from_file(log_file)
    +    # check initialization information is right
    +    for i, line in enumerate(lines):
    +        if 'TopLevelModule' in line and 'init_cfg' not in line:
    +            # have been set init_flag
    +            assert 'the same' in line
    +
    +
    +def test_update_init_info():
    +
    +    class DummyModel(BaseModule):
    +
    +        def __init__(self, init_cfg=None):
    +            super().__init__(init_cfg)
    +            self.conv1 = nn.Conv2d(1, 1, 1, 1)
    +            self.conv3 = nn.Conv2d(1, 1, 1, 1)
    +            self.fc1 = nn.Linear(1, 1)
    +
    +    model = DummyModel()
    +    from collections import defaultdict
    +    model._params_init_info = defaultdict(dict)
    +    for name, param in model.named_parameters():
    +        model._params_init_info[param]['init_info'] = 'init'
    +        model._params_init_info[param]['tmp_mean_value'] = param.data.mean()
    +
    +    with torch.no_grad():
    +        for p in model.parameters():
    +            p.fill_(1)
    +
    +    update_init_info(model, init_info='fill_1')
    +
    +    for item in model._params_init_info.values():
    +        assert item['init_info'] == 'fill_1'
    +        assert item['tmp_mean_value'] == 1
    +
    +    # test assert for new parameters
    +    model.conv1.bias = nn.Parameter(torch.ones_like(model.conv1.bias))
    +    with pytest.raises(AssertionError):
    +        update_init_info(model, init_info=' ')
    +
    +
    +def test_model_weight_init():
    +    """
    +    Config
    +    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
    +                     Conv2d: weight=5, bias=6)
    +    ├──component1 (FooConv1d)
    +    ├──component2 (FooConv2d)
    +    ├──component3 (FooLinear)
    +    ├──component4 (FooLinearConv1d)
    +        ├──linear (FooLinear)
    +        ├──conv1d (FooConv1d)
    +    ├──reg (nn.Linear)
    +
    +    Parameters after initialization
    +    model (FooModel)
    +    ├──component1 (FooConv1d, weight=3, bias=4)
    +    ├──component2 (FooConv2d, weight=5, bias=6)
    +    ├──component3 (FooLinear, weight=1, bias=2)
    +    ├──component4 (FooLinearConv1d)
    +        ├──linear (FooLinear, weight=1, bias=2)
    +        ├──conv1d (FooConv1d, weight=3, bias=4)
    +    ├──reg (nn.Linear, weight=1, bias=2)
    +    """
    +    model_cfg = dict(
    +        type='FooModel',
    +        init_cfg=[
    +            dict(type='Constant', val=1, bias=2, layer='Linear'),
    +            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
    +            dict(type='Constant', val=5, bias=6, layer='Conv2d')
    +        ],
    +        component1=dict(type='FooConv1d'),
    +        component2=dict(type='FooConv2d'),
    +        component3=dict(type='FooLinear'),
    +        component4=dict(
    +            type='FooLinearConv1d',
    +            linear=dict(type='FooLinear'),
    +            conv1d=dict(type='FooConv1d')))
    +
    +    model = build_from_cfg(model_cfg, FOOMODELS)
    +    model.init_weights()
    +
    +    assert torch.equal(model.component1.conv1d.weight,
    +                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    +    assert torch.equal(model.component1.conv1d.bias,
    +                       torch.full(model.component1.conv1d.bias.shape, 4.0))
    +    assert torch.equal(model.component2.conv2d.weight,
    +                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    +    assert torch.equal(model.component2.conv2d.bias,
    +                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    +    assert torch.equal(model.component3.linear.weight,
    +                       torch.full(model.component3.linear.weight.shape, 1.0))
    +    assert torch.equal(model.component3.linear.bias,
    +                       torch.full(model.component3.linear.bias.shape, 2.0))
    +    assert torch.equal(
    +        model.component4.linear.linear.weight,
    +        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    +    assert torch.equal(
    +        model.component4.linear.linear.bias,
    +        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    +    assert torch.equal(
    +        model.component4.conv1d.conv1d.weight,
    +        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    +    assert torch.equal(
    +        model.component4.conv1d.conv1d.bias,
    +        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    +    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
    +                                                    1.0))
    +    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))
    +
    +
    +def test_nest_components_weight_init():
    +    """
    +    Config
    +    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
    +                     Conv2d: weight=5, bias=6)
    +    ├──component1 (FooConv1d, Conv1d: weight=7, bias=8)
    +    ├──component2 (FooConv2d, Conv2d: weight=9, bias=10)
    +    ├──component3 (FooLinear)
    +    ├──component4 (FooLinearConv1d, Linear: weight=11, bias=12)
    +        ├──linear (FooLinear, Linear: weight=11, bias=12)
    +        ├──conv1d (FooConv1d)
    +    ├──reg (nn.Linear, weight=13, bias=14)
    +
    +    Parameters after initialization
    +    model (FooModel)
    +    ├──component1 (FooConv1d, weight=7, bias=8)
    +    ├──component2 (FooConv2d, weight=9, bias=10)
    +    ├──component3 (FooLinear, weight=1, bias=2)
    +    ├──component4 (FooLinearConv1d)
    +        ├──linear (FooLinear, weight=1, bias=2)
    +        ├──conv1d (FooConv1d, weight=3, bias=4)
    +    ├──reg (nn.Linear, weight=13, bias=14)
    +    """
    +
    +    model_cfg = dict(
    +        type='FooModel',
    +        init_cfg=[
    +            dict(
    +                type='Constant',
    +                val=1,
    +                bias=2,
    +                layer='Linear',
    +                override=dict(type='Constant', name='reg', val=13, bias=14)),
    +            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
    +            dict(type='Constant', val=5, bias=6, layer='Conv2d'),
    +        ],
    +        component1=dict(
    +            type='FooConv1d',
    +            init_cfg=dict(type='Constant', layer='Conv1d', val=7, bias=8)),
    +        component2=dict(
    +            type='FooConv2d',
    +            init_cfg=dict(type='Constant', layer='Conv2d', val=9, bias=10)),
    +        component3=dict(type='FooLinear'),
    +        component4=dict(
    +            type='FooLinearConv1d',
    +            linear=dict(type='FooLinear'),
    +            conv1d=dict(type='FooConv1d')))
    +
    +    model = build_from_cfg(model_cfg, FOOMODELS)
    +    model.init_weights()
    +
    +    assert torch.equal(model.component1.conv1d.weight,
    +                       torch.full(model.component1.conv1d.weight.shape, 7.0))
    +    assert torch.equal(model.component1.conv1d.bias,
    +                       torch.full(model.component1.conv1d.bias.shape, 8.0))
    +    assert torch.equal(model.component2.conv2d.weight,
    +                       torch.full(model.component2.conv2d.weight.shape, 9.0))
    +    assert torch.equal(model.component2.conv2d.bias,
    +                       torch.full(model.component2.conv2d.bias.shape, 10.0))
    +    assert torch.equal(model.component3.linear.weight,
    +                       torch.full(model.component3.linear.weight.shape, 1.0))
    +    assert torch.equal(model.component3.linear.bias,
    +                       torch.full(model.component3.linear.bias.shape, 2.0))
    +    assert torch.equal(
    +        model.component4.linear.linear.weight,
    +        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    +    assert torch.equal(
    +        model.component4.linear.linear.bias,
    +        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    +    assert torch.equal(
    +        model.component4.conv1d.conv1d.weight,
    +        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    +    assert torch.equal(
    +        model.component4.conv1d.conv1d.bias,
    +        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    +    assert torch.equal(model.reg.weight,
    +                       torch.full(model.reg.weight.shape, 13.0))
    +    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 14.0))
    +
    +
    +def test_without_layer_weight_init():
    +    model_cfg = dict(
    +        type='FooModel',
    +        init_cfg=[
    +            dict(type='Constant', val=1, bias=2, layer='Linear'),
    +            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
    +            dict(type='Constant', val=5, bias=6, layer='Conv2d')
    +        ],
    +        component1=dict(
    +            type='FooConv1d', init_cfg=dict(type='Constant', val=7, bias=8)),
    +        component2=dict(type='FooConv2d'),
    +        component3=dict(type='FooLinear'))
    +    model = build_from_cfg(model_cfg, FOOMODELS)
    +    model.init_weights()
    +
    +    assert torch.equal(model.component1.conv1d.weight,
    +                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    +    assert torch.equal(model.component1.conv1d.bias,
    +                       torch.full(model.component1.conv1d.bias.shape, 4.0))
    +
    +    # init_cfg in component1 does not have layer key, so it does nothing
    +    assert torch.equal(model.component2.conv2d.weight,
    +                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    +    assert torch.equal(model.component2.conv2d.bias,
    +                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    +    assert torch.equal(model.component3.linear.weight,
    +                       torch.full(model.component3.linear.weight.shape, 1.0))
    +    assert torch.equal(model.component3.linear.bias,
    +                       torch.full(model.component3.linear.bias.shape, 2.0))
    +
    +    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
    +                                                    1.0))
    +    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))
    +
    +
    +def test_override_weight_init():
    +    # only initialize 'override'
    +    model_cfg = dict(
    +        type='FooModel',
    +        init_cfg=[
    +            dict(type='Constant', val=10, bias=20, override=dict(name='reg'))
    +        ],
    +        component1=dict(type='FooConv1d'),
    +        component3=dict(type='FooLinear'))
    +    model = build_from_cfg(model_cfg, FOOMODELS)
    +    model.init_weights()
    +    assert torch.equal(model.reg.weight,
    +                       torch.full(model.reg.weight.shape, 10.0))
    +    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 20.0))
    +    # do not initialize others
    +    assert not torch.equal(
    +        model.component1.conv1d.weight,
    +        torch.full(model.component1.conv1d.weight.shape, 10.0))
    +    assert not torch.equal(
    +        model.component1.conv1d.bias,
    +        torch.full(model.component1.conv1d.bias.shape, 20.0))
    +    assert not torch.equal(
    +        model.component3.linear.weight,
    +        torch.full(model.component3.linear.weight.shape, 10.0))
    +    assert not torch.equal(
    +        model.component3.linear.bias,
    +        torch.full(model.component3.linear.bias.shape, 20.0))
    +
    +    # 'override' has higher priority
    +    model_cfg = dict(
    +        type='FooModel',
    +        init_cfg=[
    +            dict(
    +                type='Constant',
    +                val=1,
    +                bias=2,
    +                override=dict(name='reg', type='Constant', val=30, bias=40))
    +        ],
    +        component1=dict(type='FooConv1d'),
    +        component2=dict(type='FooConv2d'),
    +        component3=dict(type='FooLinear'))
    +    model = build_from_cfg(model_cfg, FOOMODELS)
    +    model.init_weights()
    +
    +    assert torch.equal(model.reg.weight,
    +                       torch.full(model.reg.weight.shape, 30.0))
    +    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 40.0))
    +
    +
    +def test_sequential_model_weight_init():
    +    seq_model_cfg = [
    +        dict(
    +            type='FooConv1d',
    +            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
    +        dict(
    +            type='FooConv2d',
    +            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
    +    ]
    +    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
    +    seq_model = Sequential(*layers)
    +    seq_model.init_weights()
    +    assert torch.equal(seq_model[0].conv1d.weight,
    +                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    +    assert torch.equal(seq_model[0].conv1d.bias,
    +                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    +    assert torch.equal(seq_model[1].conv2d.weight,
    +                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    +    assert torch.equal(seq_model[1].conv2d.bias,
    +                       torch.full(seq_model[1].conv2d.bias.shape, 3.))
    +    # inner init_cfg has higher priority
    +    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
    +    seq_model = Sequential(
    +        *layers,
    +        init_cfg=dict(
    +            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
    +    seq_model.init_weights()
    +    assert torch.equal(seq_model[0].conv1d.weight,
    +                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    +    assert torch.equal(seq_model[0].conv1d.bias,
    +                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    +    assert torch.equal(seq_model[1].conv2d.weight,
    +                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    +    assert torch.equal(seq_model[1].conv2d.bias,
    +                       torch.full(seq_model[1].conv2d.bias.shape, 3.))
    +
    +
    +def test_modulelist_weight_init():
    +    models_cfg = [
    +        dict(
    +            type='FooConv1d',
    +            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
    +        dict(
    +            type='FooConv2d',
    +            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
    +    ]
    +    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
    +    modellist = ModuleList(layers)
    +    modellist.init_weights()
    +    assert torch.equal(modellist[0].conv1d.weight,
    +                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    +    assert torch.equal(modellist[0].conv1d.bias,
    +                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    +    assert torch.equal(modellist[1].conv2d.weight,
    +                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    +    assert torch.equal(modellist[1].conv2d.bias,
    +                       torch.full(modellist[1].conv2d.bias.shape, 3.))
    +    # inner init_cfg has higher priority
    +    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
    +    modellist = ModuleList(
    +        layers,
    +        init_cfg=dict(
    +            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
    +    modellist.init_weights()
    +    assert torch.equal(modellist[0].conv1d.weight,
    +                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    +    assert torch.equal(modellist[0].conv1d.bias,
    +                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    +    assert torch.equal(modellist[1].conv2d.weight,
    +                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    +    assert torch.equal(modellist[1].conv2d.bias,
    +                       torch.full(modellist[1].conv2d.bias.shape, 3.))
    +
    +
    +def test_moduledict_weight_init():
    +    models_cfg = dict(
    +        foo_conv_1d=dict(
    +            type='FooConv1d',
    +            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
    +        foo_conv_2d=dict(
    +            type='FooConv2d',
    +            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
    +    )
    +    layers = {
    +        name: build_from_cfg(cfg, COMPONENTS)
    +        for name, cfg in models_cfg.items()
    +    }
    +    modeldict = ModuleDict(layers)
    +    modeldict.init_weights()
    +    assert torch.equal(
    +        modeldict['foo_conv_1d'].conv1d.weight,
    +        torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.))
    +    assert torch.equal(
    +        modeldict['foo_conv_1d'].conv1d.bias,
    +        torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.))
    +    assert torch.equal(
    +        modeldict['foo_conv_2d'].conv2d.weight,
    +        torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.))
    +    assert torch.equal(
    +        modeldict['foo_conv_2d'].conv2d.bias,
    +        torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.))
    +    # inner init_cfg has higher priority
    +    layers = {
    +        name: build_from_cfg(cfg, COMPONENTS)
    +        for name, cfg in models_cfg.items()
    +    }
    +    modeldict = ModuleDict(
    +        layers,
    +        init_cfg=dict(
    +            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
    +    modeldict.init_weights()
    +    assert torch.equal(
    +        modeldict['foo_conv_1d'].conv1d.weight,
    +        torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.))
    +    assert torch.equal(
    +        modeldict['foo_conv_1d'].conv1d.bias,
    +        torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.))
    +    assert torch.equal(
    +        modeldict['foo_conv_2d'].conv2d.weight,
    +        torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.))
    +    assert torch.equal(
    +        modeldict['foo_conv_2d'].conv2d.bias,
    +        torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_checkpoint.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_checkpoint.py
    new file mode 100644
    index 000000000..1f8fcf8b1
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_checkpoint.py
    @@ -0,0 +1,451 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import sys
    +from collections import OrderedDict
    +from tempfile import TemporaryDirectory
    +from unittest.mock import MagicMock, patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +import torch.optim as optim
    +from torch.nn.parallel import DataParallel
    +
    +from mmcv.fileio.file_client import PetrelBackend
    +from mmcv.parallel.registry import MODULE_WRAPPERS
    +from mmcv.runner.checkpoint import (_load_checkpoint_with_prefix,
    +                                    get_state_dict, load_checkpoint,
    +                                    load_from_local, load_from_pavi,
    +                                    save_checkpoint)
    +
    +sys.modules['petrel_client'] = MagicMock()
    +sys.modules['petrel_client.client'] = MagicMock()
    +
    +
    +@MODULE_WRAPPERS.register_module()
    +class DDPWrapper:
    +
    +    def __init__(self, module):
    +        self.module = module
    +
    +
    +class Block(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +        self.norm = nn.BatchNorm2d(3)
    +
    +
    +class Model(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.block = Block()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +
    +
    +class Mockpavimodel:
    +
    +    def __init__(self, name='fakename'):
    +        self.name = name
    +
    +    def download(self, file):
    +        pass
    +
    +
    +def assert_tensor_equal(tensor_a, tensor_b):
    +    assert tensor_a.eq(tensor_b).all()
    +
    +
    +def test_get_state_dict():
    +    if torch.__version__ == 'parrots':
    +        state_dict_keys = {
    +            'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
    +            'block.norm.bias', 'block.norm.running_mean',
    +            'block.norm.running_var', 'conv.weight', 'conv.bias'
    +        }
    +    else:
    +        state_dict_keys = {
    +            'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
    +            'block.norm.bias', 'block.norm.running_mean',
    +            'block.norm.running_var', 'block.norm.num_batches_tracked',
    +            'conv.weight', 'conv.bias'
    +        }
    +
    +    model = Model()
    +    state_dict = get_state_dict(model)
    +    assert isinstance(state_dict, OrderedDict)
    +    assert set(state_dict.keys()) == state_dict_keys
    +
    +    assert_tensor_equal(state_dict['block.conv.weight'],
    +                        model.block.conv.weight)
    +    assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
    +    assert_tensor_equal(state_dict['block.norm.weight'],
    +                        model.block.norm.weight)
    +    assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
    +    assert_tensor_equal(state_dict['block.norm.running_mean'],
    +                        model.block.norm.running_mean)
    +    assert_tensor_equal(state_dict['block.norm.running_var'],
    +                        model.block.norm.running_var)
    +    if torch.__version__ != 'parrots':
    +        assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
    +                            model.block.norm.num_batches_tracked)
    +    assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
    +    assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)
    +
    +    wrapped_model = DDPWrapper(model)
    +    state_dict = get_state_dict(wrapped_model)
    +    assert isinstance(state_dict, OrderedDict)
    +    assert set(state_dict.keys()) == state_dict_keys
    +    assert_tensor_equal(state_dict['block.conv.weight'],
    +                        wrapped_model.module.block.conv.weight)
    +    assert_tensor_equal(state_dict['block.conv.bias'],
    +                        wrapped_model.module.block.conv.bias)
    +    assert_tensor_equal(state_dict['block.norm.weight'],
    +                        wrapped_model.module.block.norm.weight)
    +    assert_tensor_equal(state_dict['block.norm.bias'],
    +                        wrapped_model.module.block.norm.bias)
    +    assert_tensor_equal(state_dict['block.norm.running_mean'],
    +                        wrapped_model.module.block.norm.running_mean)
    +    assert_tensor_equal(state_dict['block.norm.running_var'],
    +                        wrapped_model.module.block.norm.running_var)
    +    if torch.__version__ != 'parrots':
    +        assert_tensor_equal(
    +            state_dict['block.norm.num_batches_tracked'],
    +            wrapped_model.module.block.norm.num_batches_tracked)
    +    assert_tensor_equal(state_dict['conv.weight'],
    +                        wrapped_model.module.conv.weight)
    +    assert_tensor_equal(state_dict['conv.bias'],
    +                        wrapped_model.module.conv.bias)
    +
    +    # wrapped inner module
    +    for name, module in wrapped_model.module._modules.items():
    +        module = DataParallel(module)
    +        wrapped_model.module._modules[name] = module
    +    state_dict = get_state_dict(wrapped_model)
    +    assert isinstance(state_dict, OrderedDict)
    +    assert set(state_dict.keys()) == state_dict_keys
    +    assert_tensor_equal(state_dict['block.conv.weight'],
    +                        wrapped_model.module.block.module.conv.weight)
    +    assert_tensor_equal(state_dict['block.conv.bias'],
    +                        wrapped_model.module.block.module.conv.bias)
    +    assert_tensor_equal(state_dict['block.norm.weight'],
    +                        wrapped_model.module.block.module.norm.weight)
    +    assert_tensor_equal(state_dict['block.norm.bias'],
    +                        wrapped_model.module.block.module.norm.bias)
    +    assert_tensor_equal(state_dict['block.norm.running_mean'],
    +                        wrapped_model.module.block.module.norm.running_mean)
    +    assert_tensor_equal(state_dict['block.norm.running_var'],
    +                        wrapped_model.module.block.module.norm.running_var)
    +    if torch.__version__ != 'parrots':
    +        assert_tensor_equal(
    +            state_dict['block.norm.num_batches_tracked'],
    +            wrapped_model.module.block.module.norm.num_batches_tracked)
    +    assert_tensor_equal(state_dict['conv.weight'],
    +                        wrapped_model.module.conv.module.weight)
    +    assert_tensor_equal(state_dict['conv.bias'],
    +                        wrapped_model.module.conv.module.bias)
    +
    +
    +def test_load_pavimodel_dist():
    +    sys.modules['pavi'] = MagicMock()
    +    sys.modules['pavi.modelcloud'] = MagicMock()
    +    pavimodel = Mockpavimodel()
    +    import pavi
    +    pavi.modelcloud.get = MagicMock(return_value=pavimodel)
    +    with pytest.raises(AssertionError):
    +        # test pavi prefix
    +        _ = load_from_pavi('MyPaviFolder/checkpoint.pth')
    +
    +    with pytest.raises(FileNotFoundError):
    +        # there is not such checkpoint for us to load
    +        _ = load_from_pavi('pavi://checkpoint.pth')
    +
    +
    +def test_load_checkpoint_with_prefix():
    +
    +    class FooModule(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.linear = nn.Linear(1, 2)
    +            self.conv2d = nn.Conv2d(3, 1, 3)
    +            self.conv2d_2 = nn.Conv2d(3, 2, 3)
    +
    +    model = FooModule()
    +    nn.init.constant_(model.linear.weight, 1)
    +    nn.init.constant_(model.linear.bias, 2)
    +    nn.init.constant_(model.conv2d.weight, 3)
    +    nn.init.constant_(model.conv2d.bias, 4)
    +    nn.init.constant_(model.conv2d_2.weight, 5)
    +    nn.init.constant_(model.conv2d_2.bias, 6)
    +
    +    with TemporaryDirectory():
    +        torch.save(model.state_dict(), 'model.pth')
    +        prefix = 'conv2d'
    +        state_dict = _load_checkpoint_with_prefix(prefix, 'model.pth')
    +        assert torch.equal(model.conv2d.state_dict()['weight'],
    +                           state_dict['weight'])
    +        assert torch.equal(model.conv2d.state_dict()['bias'],
    +                           state_dict['bias'])
    +
    +        # test whether prefix is in pretrained model
    +        with pytest.raises(AssertionError):
    +            prefix = 'back'
    +            _load_checkpoint_with_prefix(prefix, 'model.pth')
    +
    +
    +def test_load_checkpoint():
    +    import os
    +    import re
    +    import tempfile
    +
    +    class PrefixModel(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.backbone = Model()
    +
    +    pmodel = PrefixModel()
    +    model = Model()
    +    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    +
    +    # add prefix
    +    torch.save(model.state_dict(), checkpoint_path)
    +    state_dict = load_checkpoint(
    +        pmodel, checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    +    for key in pmodel.backbone.state_dict().keys():
    +        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    +    # strip prefix
    +    torch.save(pmodel.state_dict(), checkpoint_path)
    +    state_dict = load_checkpoint(
    +        model, checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    +
    +    for key in state_dict.keys():
    +        key_stripped = re.sub(r'^backbone\.', '', key)
    +        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    +    os.remove(checkpoint_path)
    +
    +
    +def test_load_checkpoint_metadata():
    +    import os
    +    import tempfile
    +
    +    from mmcv.runner import load_checkpoint, save_checkpoint
    +
    +    class ModelV1(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.block = Block()
    +            self.conv1 = nn.Conv2d(3, 3, 1)
    +            self.conv2 = nn.Conv2d(3, 3, 1)
    +            nn.init.normal_(self.conv1.weight)
    +            nn.init.normal_(self.conv2.weight)
    +
    +    class ModelV2(nn.Module):
    +        _version = 2
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.block = Block()
    +            self.conv0 = nn.Conv2d(3, 3, 1)
    +            self.conv1 = nn.Conv2d(3, 3, 1)
    +            nn.init.normal_(self.conv0.weight)
    +            nn.init.normal_(self.conv1.weight)
    +
    +        def _load_from_state_dict(self, state_dict, prefix, local_metadata,
    +                                  *args, **kwargs):
    +            """load checkpoints."""
    +
    +            # Names of some parameters in has been changed.
    +            version = local_metadata.get('version', None)
    +            if version is None or version < 2:
    +                state_dict_keys = list(state_dict.keys())
    +                convert_map = {'conv1': 'conv0', 'conv2': 'conv1'}
    +                for k in state_dict_keys:
    +                    for ori_str, new_str in convert_map.items():
    +                        if k.startswith(prefix + ori_str):
    +                            new_key = k.replace(ori_str, new_str)
    +                            state_dict[new_key] = state_dict[k]
    +                            del state_dict[k]
    +
    +            super()._load_from_state_dict(state_dict, prefix, local_metadata,
    +                                          *args, **kwargs)
    +
    +    model_v1 = ModelV1()
    +    model_v1_conv0_weight = model_v1.conv1.weight.detach()
    +    model_v1_conv1_weight = model_v1.conv2.weight.detach()
    +    model_v2 = ModelV2()
    +    model_v2_conv0_weight = model_v2.conv0.weight.detach()
    +    model_v2_conv1_weight = model_v2.conv1.weight.detach()
    +    ckpt_v1_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v1.pth')
    +    ckpt_v2_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v2.pth')
    +
    +    # Save checkpoint
    +    save_checkpoint(model_v1, ckpt_v1_path)
    +    save_checkpoint(model_v2, ckpt_v2_path)
    +
    +    # test load v1 model
    +    load_checkpoint(model_v2, ckpt_v1_path)
    +    assert torch.allclose(model_v2.conv0.weight, model_v1_conv0_weight)
    +    assert torch.allclose(model_v2.conv1.weight, model_v1_conv1_weight)
    +
    +    # test load v2 model
    +    load_checkpoint(model_v2, ckpt_v2_path)
    +    assert torch.allclose(model_v2.conv0.weight, model_v2_conv0_weight)
    +    assert torch.allclose(model_v2.conv1.weight, model_v2_conv1_weight)
    +
    +
    +def test_load_classes_name():
    +    import os
    +    import tempfile
    +
    +    from mmcv.runner import load_checkpoint, save_checkpoint
    +    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    +    model = Model()
    +    save_checkpoint(model, checkpoint_path)
    +    checkpoint = load_checkpoint(model, checkpoint_path)
    +    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
    +
    +    model.CLASSES = ('class1', 'class2')
    +    save_checkpoint(model, checkpoint_path)
    +    checkpoint = load_checkpoint(model, checkpoint_path)
    +    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    +    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
    +
    +    model = Model()
    +    wrapped_model = DDPWrapper(model)
    +    save_checkpoint(wrapped_model, checkpoint_path)
    +    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    +    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
    +
    +    wrapped_model.module.CLASSES = ('class1', 'class2')
    +    save_checkpoint(wrapped_model, checkpoint_path)
    +    checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
    +    assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
    +    assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
    +
    +    # remove the temp file
    +    os.remove(checkpoint_path)
    +
    +
    +def test_checkpoint_loader():
    +    import os
    +    import tempfile
    +
    +    from mmcv.runner import CheckpointLoader, _load_checkpoint, save_checkpoint
    +    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    +    model = Model()
    +    save_checkpoint(model, checkpoint_path)
    +    checkpoint = _load_checkpoint(checkpoint_path)
    +    assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
    +    # remove the temp file
    +    os.remove(checkpoint_path)
    +
    +    filenames = [
    +        'http://xx.xx/xx.pth', 'https://xx.xx/xx.pth',
    +        'modelzoo://xx.xx/xx.pth', 'torchvision://xx.xx/xx.pth',
    +        'open-mmlab://xx.xx/xx.pth', 'openmmlab://xx.xx/xx.pth',
    +        'mmcls://xx.xx/xx.pth', 'pavi://xx.xx/xx.pth', 's3://xx.xx/xx.pth',
    +        'ss3://xx.xx/xx.pth', ' s3://xx.xx/xx.pth',
    +        'open-mmlab:s3://xx.xx/xx.pth', 'openmmlab:s3://xx.xx/xx.pth',
    +        'openmmlabs3://xx.xx/xx.pth', ':s3://xx.xx/xx.path'
    +    ]
    +    fn_names = [
    +        'load_from_http', 'load_from_http', 'load_from_torchvision',
    +        'load_from_torchvision', 'load_from_openmmlab', 'load_from_openmmlab',
    +        'load_from_mmcls', 'load_from_pavi', 'load_from_ceph',
    +        'load_from_local', 'load_from_local', 'load_from_ceph',
    +        'load_from_ceph', 'load_from_local', 'load_from_local'
    +    ]
    +
    +    for filename, fn_name in zip(filenames, fn_names):
    +        loader = CheckpointLoader._get_checkpoint_loader(filename)
    +        assert loader.__name__ == fn_name
    +
    +    @CheckpointLoader.register_scheme(prefixes='ftp://')
    +    def load_from_ftp(filename, map_location):
    +        return dict(filename=filename)
    +
    +    # test register_loader
    +    filename = 'ftp://xx.xx/xx.pth'
    +    loader = CheckpointLoader._get_checkpoint_loader(filename)
    +    assert loader.__name__ == 'load_from_ftp'
    +
    +    def load_from_ftp1(filename, map_location):
    +        return dict(filename=filename)
    +
    +    # test duplicate registered error
    +    with pytest.raises(KeyError):
    +        CheckpointLoader.register_scheme('ftp://', load_from_ftp1)
    +
    +    # test force param
    +    CheckpointLoader.register_scheme('ftp://', load_from_ftp1, force=True)
    +    checkpoint = CheckpointLoader.load_checkpoint(filename)
    +    assert checkpoint['filename'] == filename
    +
    +    # test print function name
    +    loader = CheckpointLoader._get_checkpoint_loader(filename)
    +    assert loader.__name__ == 'load_from_ftp1'
    +
    +    # test sort
    +    @CheckpointLoader.register_scheme(prefixes='a/b')
    +    def load_from_ab(filename, map_location):
    +        return dict(filename=filename)
    +
    +    @CheckpointLoader.register_scheme(prefixes='a/b/c')
    +    def load_from_abc(filename, map_location):
    +        return dict(filename=filename)
    +
    +    filename = 'a/b/c/d'
    +    loader = CheckpointLoader._get_checkpoint_loader(filename)
    +    assert loader.__name__ == 'load_from_abc'
    +
    +
    +def test_save_checkpoint(tmp_path):
    +    model = Model()
    +    optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
    +    # meta is not a dict
    +    with pytest.raises(TypeError):
    +        save_checkpoint(model, '/path/of/your/filename', meta='invalid type')
    +
    +    # 1. save to disk
    +    filename = str(tmp_path / 'checkpoint1.pth')
    +    save_checkpoint(model, filename)
    +
    +    filename = str(tmp_path / 'checkpoint2.pth')
    +    save_checkpoint(model, filename, optimizer)
    +
    +    filename = str(tmp_path / 'checkpoint3.pth')
    +    save_checkpoint(model, filename, meta={'test': 'test'})
    +
    +    filename = str(tmp_path / 'checkpoint4.pth')
    +    save_checkpoint(model, filename, file_client_args={'backend': 'disk'})
    +
    +    # 2. save to petrel oss
    +    with patch.object(PetrelBackend, 'put') as mock_method:
    +        filename = 's3://path/of/your/checkpoint1.pth'
    +        save_checkpoint(model, filename)
    +    mock_method.assert_called()
    +
    +    with patch.object(PetrelBackend, 'put') as mock_method:
    +        filename = 's3://path//of/your/checkpoint2.pth'
    +        save_checkpoint(
    +            model, filename, file_client_args={'backend': 'petrel'})
    +    mock_method.assert_called()
    +
    +
    +def test_load_from_local():
    +    import os
    +    home_path = os.path.expanduser('~')
    +    checkpoint_path = os.path.join(
    +        home_path, 'dummy_checkpoint_used_to_test_load_from_local.pth')
    +    model = Model()
    +    save_checkpoint(model, checkpoint_path)
    +    checkpoint = load_from_local(
    +        '~/dummy_checkpoint_used_to_test_load_from_local.pth',
    +        map_location=None)
    +    assert_tensor_equal(checkpoint['state_dict']['block.conv.weight'],
    +                        model.block.conv.weight)
    +    os.remove(checkpoint_path)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_dist_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_dist_utils.py
    new file mode 100644
    index 000000000..979c2e4f3
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_dist_utils.py
    @@ -0,0 +1,53 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +from unittest.mock import patch
    +
    +import pytest
    +
    +from mmcv.runner import init_dist
    +
    +
    +@patch('torch.cuda.device_count', return_value=1)
    +@patch('torch.cuda.set_device')
    +@patch('torch.distributed.init_process_group')
    +@patch('subprocess.getoutput', return_value='127.0.0.1')
    +def test_init_dist(mock_getoutput, mock_dist_init, mock_set_device,
    +                   mock_device_count):
    +    with pytest.raises(ValueError):
    +        # launcher must be one of {'pytorch', 'mpi', 'slurm'}
    +        init_dist('invaliad_launcher')
    +
    +    # test initialize with slurm launcher
    +    os.environ['SLURM_PROCID'] = '0'
    +    os.environ['SLURM_NTASKS'] = '1'
    +    os.environ['SLURM_NODELIST'] = '[0]'  # haven't check the correct form
    +
    +    init_dist('slurm')
    +    # no port is specified, use default port 29500
    +    assert os.environ['MASTER_PORT'] == '29500'
    +    assert os.environ['MASTER_ADDR'] == '127.0.0.1'
    +    assert os.environ['WORLD_SIZE'] == '1'
    +    assert os.environ['RANK'] == '0'
    +    mock_set_device.assert_called_with(0)
    +    mock_getoutput.assert_called_with('scontrol show hostname [0] | head -n1')
    +    mock_dist_init.assert_called_with(backend='nccl')
    +
    +    init_dist('slurm', port=29505)
    +    # port is specified with argument 'port'
    +    assert os.environ['MASTER_PORT'] == '29505'
    +    assert os.environ['MASTER_ADDR'] == '127.0.0.1'
    +    assert os.environ['WORLD_SIZE'] == '1'
    +    assert os.environ['RANK'] == '0'
    +    mock_set_device.assert_called_with(0)
    +    mock_getoutput.assert_called_with('scontrol show hostname [0] | head -n1')
    +    mock_dist_init.assert_called_with(backend='nccl')
    +
    +    init_dist('slurm')
    +    # port is specified by environment variable 'MASTER_PORT'
    +    assert os.environ['MASTER_PORT'] == '29505'
    +    assert os.environ['MASTER_ADDR'] == '127.0.0.1'
    +    assert os.environ['WORLD_SIZE'] == '1'
    +    assert os.environ['RANK'] == '0'
    +    mock_set_device.assert_called_with(0)
    +    mock_getoutput.assert_called_with('scontrol show hostname [0] | head -n1')
    +    mock_dist_init.assert_called_with(backend='nccl')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_eval_hook.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_eval_hook.py
    new file mode 100644
    index 000000000..d833bad25
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_eval_hook.py
    @@ -0,0 +1,481 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import json
    +import os.path as osp
    +import sys
    +import tempfile
    +import unittest.mock as mock
    +from collections import OrderedDict
    +from unittest.mock import MagicMock, patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +import torch.optim as optim
    +from torch.utils.data import DataLoader, Dataset
    +
    +from mmcv.fileio.file_client import PetrelBackend
    +from mmcv.runner import DistEvalHook as BaseDistEvalHook
    +from mmcv.runner import EpochBasedRunner
    +from mmcv.runner import EvalHook as BaseEvalHook
    +from mmcv.runner import IterBasedRunner
    +from mmcv.utils import get_logger, scandir
    +
    +sys.modules['petrel_client'] = MagicMock()
    +sys.modules['petrel_client.client'] = MagicMock()
    +
    +
    +class ExampleDataset(Dataset):
    +
    +    def __init__(self):
    +        self.index = 0
    +        self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6]
    +
    +    def __getitem__(self, idx):
    +        results = dict(x=torch.tensor([1]))
    +        return results
    +
    +    def __len__(self):
    +        return 1
    +
    +    @mock.create_autospec
    +    def evaluate(self, results, logger=None):
    +        pass
    +
    +
    +class EvalDataset(ExampleDataset):
    +
    +    def evaluate(self, results, logger=None):
    +        acc = self.eval_result[self.index]
    +        output = OrderedDict(
    +            acc=acc, index=self.index, score=acc, loss_top=acc)
    +        self.index += 1
    +        return output
    +
    +
    +class Model(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.param = nn.Parameter(torch.tensor([1.0]))
    +
    +    def forward(self, x, **kwargs):
    +        return self.param * x
    +
    +    def train_step(self, data_batch, optimizer, **kwargs):
    +        return {'loss': torch.sum(self(data_batch['x']))}
    +
    +    def val_step(self, data_batch, optimizer, **kwargs):
    +        return {'loss': torch.sum(self(data_batch['x']))}
    +
    +
    +def _build_epoch_runner():
    +    model = Model()
    +    tmp_dir = tempfile.mkdtemp()
    +
    +    runner = EpochBasedRunner(
    +        model=model, work_dir=tmp_dir, logger=get_logger('demo'))
    +    return runner
    +
    +
    +def _build_iter_runner():
    +    model = Model()
    +    tmp_dir = tempfile.mkdtemp()
    +
    +    runner = IterBasedRunner(
    +        model=model, work_dir=tmp_dir, logger=get_logger('demo'))
    +    return runner
    +
    +
    +class EvalHook(BaseEvalHook):
    +
    +    _default_greater_keys = ['acc', 'top']
    +    _default_less_keys = ['loss', 'loss_top']
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +
    +
    +class DistEvalHook(BaseDistEvalHook):
    +
    +    greater_keys = ['acc', 'top']
    +    less_keys = ['loss', 'loss_top']
    +
    +    def __init__(self, *args, **kwargs):
    +        super().__init__(*args, **kwargs)
    +
    +
    +def test_eval_hook():
    +    with pytest.raises(AssertionError):
    +        # `save_best` should be a str
    +        test_dataset = Model()
    +        data_loader = DataLoader(test_dataset)
    +        EvalHook(data_loader, save_best=True)
    +
    +    with pytest.raises(TypeError):
    +        # dataloader must be a pytorch DataLoader
    +        test_dataset = Model()
    +        data_loader = [DataLoader(test_dataset)]
    +        EvalHook(data_loader)
    +
    +    with pytest.raises(ValueError):
    +        # key_indicator must be valid when rule_map is None
    +        test_dataset = ExampleDataset()
    +        data_loader = DataLoader(test_dataset)
    +        EvalHook(data_loader, save_best='unsupport')
    +
    +    with pytest.raises(KeyError):
    +        # rule must be in keys of rule_map
    +        test_dataset = ExampleDataset()
    +        data_loader = DataLoader(test_dataset)
    +        EvalHook(data_loader, save_best='auto', rule='unsupport')
    +
    +    # if eval_res is an empty dict, print a warning information
    +    with pytest.warns(UserWarning) as record_warnings:
    +
    +        class _EvalDataset(ExampleDataset):
    +
    +            def evaluate(self, results, logger=None):
    +                return {}
    +
    +        test_dataset = _EvalDataset()
    +        data_loader = DataLoader(test_dataset)
    +        eval_hook = EvalHook(data_loader, save_best='auto')
    +        runner = _build_epoch_runner()
    +        runner.register_hook(eval_hook)
    +        runner.run([data_loader], [('train', 1)], 1)
    +    # Since there will be many warnings thrown, we just need to check if the
    +    # expected exceptions are thrown
    +    expected_message = ('Since `eval_res` is an empty dict, the behavior to '
    +                        'save the best checkpoint will be skipped in this '
    +                        'evaluation.')
    +    for warning in record_warnings:
    +        if str(warning.message) == expected_message:
    +            break
    +    else:
    +        assert False
    +
    +    test_dataset = ExampleDataset()
    +    loader = DataLoader(test_dataset)
    +    model = Model()
    +    data_loader = DataLoader(test_dataset)
    +    eval_hook = EvalHook(data_loader, save_best=None)
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +
    +        # total_epochs = 1
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 1)
    +        test_dataset.evaluate.assert_called_with(
    +            test_dataset, [torch.tensor([1])], logger=runner.logger)
    +        assert runner.meta is None or 'best_score' not in runner.meta[
    +            'hook_msgs']
    +        assert runner.meta is None or 'best_ckpt' not in runner.meta[
    +            'hook_msgs']
    +
    +    # when `save_best` is set to 'auto', first metric will be used.
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(data_loader, interval=1, save_best='auto')
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 7
    +
    +    # total_epochs = 8, return the best acc and corresponding epoch
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(data_loader, interval=1, save_best='acc')
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 7
    +
    +    # total_epochs = 8, return the best loss_top and corresponding epoch
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(data_loader, interval=1, save_best='loss_top')
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_loss_top_epoch_6.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == -3
    +
    +    # total_epochs = 8, return the best score and corresponding epoch
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(
    +        data_loader, interval=1, save_best='score', rule='greater')
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 7
    +
    +    # total_epochs = 8, return the best score using less compare func
    +    # and indicate corresponding epoch
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(data_loader, save_best='acc', rule='less')
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == -3
    +
    +    # Test the EvalHook when resume happened
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(data_loader, save_best='acc')
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 2)
    +
    +        old_ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
    +        assert osp.exists(old_ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 4
    +
    +        resume_from = old_ckpt_path
    +        loader = DataLoader(ExampleDataset())
    +        eval_hook = EvalHook(data_loader, save_best='acc')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +
    +        runner.resume(resume_from)
    +        assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
    +        assert osp.exists(old_ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 4
    +
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == 7
    +        assert not osp.exists(old_ckpt_path)
    +
    +    # test EvalHook with customer test_fn and greater/less keys
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +
    +    eval_hook = EvalHook(
    +        data_loader,
    +        save_best='acc',
    +        test_fn=mock.MagicMock(return_value={}),
    +        greater_keys=[],
    +        less_keys=['acc'])
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert osp.exists(ckpt_path)
    +        assert runner.meta['hook_msgs']['best_score'] == -3
    +
    +    # test EvalHook with specified `out_dir`
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +    out_dir = 's3://user/data'
    +    eval_hook = EvalHook(
    +        data_loader, interval=1, save_best='auto', out_dir=out_dir)
    +
    +    with patch.object(PetrelBackend, 'put') as mock_put, \
    +         patch.object(PetrelBackend, 'remove') as mock_remove, \
    +         patch.object(PetrelBackend, 'isfile') as mock_isfile, \
    +         tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_eval')
    +        runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
    +        runner.register_checkpoint_hook(dict(interval=1))
    +        runner.register_hook(eval_hook)
    +        runner.run([loader], [('train', 1)], 8)
    +
    +        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +        ckpt_path = f'{out_dir}/{basename}/best_acc_epoch_4.pth'
    +
    +        assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
    +        assert runner.meta['hook_msgs']['best_score'] == 7
    +
    +    assert mock_put.call_count == 3
    +    assert mock_remove.call_count == 2
    +    assert mock_isfile.call_count == 2
    +
    +
    +@patch('mmcv.engine.single_gpu_test', MagicMock)
    +@patch('mmcv.engine.multi_gpu_test', MagicMock)
    +@pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook])
    +@pytest.mark.parametrize('_build_demo_runner,by_epoch',
    +                         [(_build_epoch_runner, True),
    +                          (_build_iter_runner, False)])
    +def test_start_param(EvalHookParam, _build_demo_runner, by_epoch):
    +    # create dummy data
    +    dataloader = DataLoader(EvalDataset())
    +
    +    # 0.1. dataloader is not a DataLoader object
    +    with pytest.raises(TypeError):
    +        EvalHookParam(dataloader=MagicMock(), interval=-1)
    +
    +    # 0.2. negative interval
    +    with pytest.raises(ValueError):
    +        EvalHookParam(dataloader, interval=-1)
    +
    +    # 0.3. negative start
    +    with pytest.raises(ValueError):
    +        EvalHookParam(dataloader, start=-1)
    +
    +    # 1. start=None, interval=1: perform evaluation after each epoch.
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(dataloader, interval=1, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    runner.run([dataloader], [('train', 1)], 2)
    +    assert evalhook.evaluate.call_count == 2  # after epoch 1 & 2
    +
    +    # 2. start=1, interval=1: perform evaluation after each epoch.
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(
    +        dataloader, start=1, interval=1, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    runner.run([dataloader], [('train', 1)], 2)
    +    assert evalhook.evaluate.call_count == 2  # after epoch 1 & 2
    +
    +    # 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(dataloader, interval=2, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    runner.run([dataloader], [('train', 1)], 2)
    +    assert evalhook.evaluate.call_count == 1  # after epoch 2
    +
    +    # 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(
    +        dataloader, start=1, interval=2, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    runner.run([dataloader], [('train', 1)], 3)
    +    assert evalhook.evaluate.call_count == 2  # after epoch 1 & 3
    +
    +    # 5. start=0, interval=1: perform evaluation after each epoch and
    +    #    before epoch 1.
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(dataloader, start=0, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    runner.run([dataloader], [('train', 1)], 2)
    +    assert evalhook.evaluate.call_count == 3  # before epoch1 and after e1 & e2
    +
    +    # 6. resuming from epoch i, start = x (x<=i), interval =1: perform
    +    #    evaluation after each epoch and before the first epoch.
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(dataloader, start=1, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    if by_epoch:
    +        runner._epoch = 2
    +    else:
    +        runner._iter = 2
    +    runner.run([dataloader], [('train', 1)], 3)
    +    assert evalhook.evaluate.call_count == 2  # before & after epoch 3
    +
    +    # 7. resuming from epoch i, start = i+1/None, interval =1: perform
    +    #    evaluation after each epoch.
    +    runner = _build_demo_runner()
    +    evalhook = EvalHookParam(dataloader, start=2, by_epoch=by_epoch)
    +    evalhook.evaluate = MagicMock()
    +    runner.register_hook(evalhook)
    +    if by_epoch:
    +        runner._epoch = 1
    +    else:
    +        runner._iter = 1
    +    runner.run([dataloader], [('train', 1)], 3)
    +    assert evalhook.evaluate.call_count == 2  # after epoch 2 & 3
    +
    +
    +@pytest.mark.parametrize('runner,by_epoch,eval_hook_priority',
    +                         [(EpochBasedRunner, True, 'NORMAL'),
    +                          (EpochBasedRunner, True, 'LOW'),
    +                          (IterBasedRunner, False, 'LOW')])
    +def test_logger(runner, by_epoch, eval_hook_priority):
    +    loader = DataLoader(EvalDataset())
    +    model = Model()
    +    data_loader = DataLoader(EvalDataset())
    +    eval_hook = EvalHook(
    +        data_loader, interval=1, by_epoch=by_epoch, save_best='acc')
    +
    +    with tempfile.TemporaryDirectory() as tmpdir:
    +        logger = get_logger('test_logger')
    +        optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    +        runner = EpochBasedRunner(
    +            model=model, optimizer=optimizer, work_dir=tmpdir, logger=logger)
    +        runner.register_logger_hooks(
    +            dict(
    +                interval=1,
    +                hooks=[dict(type='TextLoggerHook', by_epoch=by_epoch)]))
    +        runner.register_timer_hook(dict(type='IterTimerHook'))
    +        runner.register_hook(eval_hook, priority=eval_hook_priority)
    +        runner.run([loader], [('train', 1)], 1)
    +
    +        path = osp.join(tmpdir, next(scandir(tmpdir, '.json')))
    +        with open(path) as fr:
    +            fr.readline()  # skip the first line which is `hook_msg`
    +            train_log = json.loads(fr.readline())
    +            assert train_log['mode'] == 'train' and 'time' in train_log
    +            val_log = json.loads(fr.readline())
    +            assert val_log['mode'] == 'val' and 'time' not in val_log
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_fp16.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_fp16.py
    new file mode 100644
    index 000000000..8a2488e0b
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_fp16.py
    @@ -0,0 +1,315 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.runner.fp16_utils import auto_fp16, cast_tensor_type, force_fp32
    +
    +
    +def test_cast_tensor_type():
    +    inputs = torch.FloatTensor([5.])
    +    src_type = torch.float32
    +    dst_type = torch.int32
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, torch.Tensor)
    +    assert outputs.dtype == dst_type
    +
    +    # convert torch.float to torch.half
    +    inputs = torch.FloatTensor([5.])
    +    src_type = torch.float
    +    dst_type = torch.half
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, torch.Tensor)
    +    assert outputs.dtype == dst_type
    +
    +    # skip the conversion when the type of input is not the same as src_type
    +    inputs = torch.IntTensor([5])
    +    src_type = torch.float
    +    dst_type = torch.half
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, torch.Tensor)
    +    assert outputs.dtype == inputs.dtype
    +
    +    inputs = 'tensor'
    +    src_type = str
    +    dst_type = str
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, str)
    +
    +    inputs = np.array([5.])
    +    src_type = np.ndarray
    +    dst_type = np.ndarray
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, np.ndarray)
    +
    +    inputs = dict(
    +        tensor_a=torch.FloatTensor([1.]), tensor_b=torch.FloatTensor([2.]))
    +    src_type = torch.float32
    +    dst_type = torch.int32
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, dict)
    +    assert outputs['tensor_a'].dtype == dst_type
    +    assert outputs['tensor_b'].dtype == dst_type
    +
    +    inputs = [torch.FloatTensor([1.]), torch.FloatTensor([2.])]
    +    src_type = torch.float32
    +    dst_type = torch.int32
    +    outputs = cast_tensor_type(inputs, src_type, dst_type)
    +    assert isinstance(outputs, list)
    +    assert outputs[0].dtype == dst_type
    +    assert outputs[1].dtype == dst_type
    +
    +    inputs = 5
    +    outputs = cast_tensor_type(inputs, None, None)
    +    assert isinstance(outputs, int)
    +
    +
    +def test_auto_fp16():
    +    with pytest.raises(TypeError):
    +        # ExampleObject is not a subclass of nn.Module
    +
    +        class ExampleObject:
    +
    +            @auto_fp16()
    +            def __call__(self, x):
    +                return x
    +
    +        model = ExampleObject()
    +        input_x = torch.ones(1, dtype=torch.float32)
    +        model(input_x)
    +
    +    # apply to all input args
    +    class ExampleModule(nn.Module):
    +
    +        @auto_fp16()
    +        def forward(self, x, y):
    +            return x, y
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.float32)
    +    input_y = torch.ones(1, dtype=torch.float32)
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +
    +    model.fp16_enabled = True
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y = model(input_x.cuda(), input_y.cuda())
    +        assert output_x.dtype == torch.half
    +        assert output_y.dtype == torch.half
    +
    +    # apply to specified input args
    +    class ExampleModule(nn.Module):
    +
    +        @auto_fp16(apply_to=('x', ))
    +        def forward(self, x, y):
    +            return x, y
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.float32)
    +    input_y = torch.ones(1, dtype=torch.float32)
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +
    +    model.fp16_enabled = True
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.float32
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y = model(input_x.cuda(), input_y.cuda())
    +        assert output_x.dtype == torch.half
    +        assert output_y.dtype == torch.float32
    +
    +    # apply to optional input args
    +    class ExampleModule(nn.Module):
    +
    +        @auto_fp16(apply_to=('x', 'y'))
    +        def forward(self, x, y=None, z=None):
    +            return x, y, z
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.float32)
    +    input_y = torch.ones(1, dtype=torch.float32)
    +    input_z = torch.ones(1, dtype=torch.float32)
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +    assert output_z.dtype == torch.float32
    +
    +    model.fp16_enabled = True
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +    assert output_z.dtype == torch.float32
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y, output_z = model(
    +            input_x.cuda(), y=input_y.cuda(), z=input_z.cuda())
    +        assert output_x.dtype == torch.half
    +        assert output_y.dtype == torch.half
    +        assert output_z.dtype == torch.float32
    +
    +    # out_fp32=True
    +    class ExampleModule(nn.Module):
    +
    +        @auto_fp16(apply_to=('x', 'y'), out_fp32=True)
    +        def forward(self, x, y=None, z=None):
    +            return x, y, z
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.half)
    +    input_y = torch.ones(1, dtype=torch.float32)
    +    input_z = torch.ones(1, dtype=torch.float32)
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.float32
    +    assert output_z.dtype == torch.float32
    +
    +    model.fp16_enabled = True
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +    assert output_z.dtype == torch.float32
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y, output_z = model(
    +            input_x.cuda(), y=input_y.cuda(), z=input_z.cuda())
    +        assert output_x.dtype == torch.float32
    +        assert output_y.dtype == torch.float32
    +        assert output_z.dtype == torch.float32
    +
    +
    +def test_force_fp32():
    +    with pytest.raises(TypeError):
    +        # ExampleObject is not a subclass of nn.Module
    +
    +        class ExampleObject:
    +
    +            @force_fp32()
    +            def __call__(self, x):
    +                return x
    +
    +        model = ExampleObject()
    +        input_x = torch.ones(1, dtype=torch.float32)
    +        model(input_x)
    +
    +    # apply to all input args
    +    class ExampleModule(nn.Module):
    +
    +        @force_fp32()
    +        def forward(self, x, y):
    +            return x, y
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.half)
    +    input_y = torch.ones(1, dtype=torch.half)
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +
    +    model.fp16_enabled = True
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y = model(input_x.cuda(), input_y.cuda())
    +        assert output_x.dtype == torch.float32
    +        assert output_y.dtype == torch.float32
    +
    +    # apply to specified input args
    +    class ExampleModule(nn.Module):
    +
    +        @force_fp32(apply_to=('x', ))
    +        def forward(self, x, y):
    +            return x, y
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.half)
    +    input_y = torch.ones(1, dtype=torch.half)
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +
    +    model.fp16_enabled = True
    +    output_x, output_y = model(input_x, input_y)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.half
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y = model(input_x.cuda(), input_y.cuda())
    +        assert output_x.dtype == torch.float32
    +        assert output_y.dtype == torch.half
    +
    +    # apply to optional input args
    +    class ExampleModule(nn.Module):
    +
    +        @force_fp32(apply_to=('x', 'y'))
    +        def forward(self, x, y=None, z=None):
    +            return x, y, z
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.half)
    +    input_y = torch.ones(1, dtype=torch.half)
    +    input_z = torch.ones(1, dtype=torch.half)
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +    assert output_z.dtype == torch.half
    +
    +    model.fp16_enabled = True
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.float32
    +    assert output_z.dtype == torch.half
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y, output_z = model(
    +            input_x.cuda(), y=input_y.cuda(), z=input_z.cuda())
    +        assert output_x.dtype == torch.float32
    +        assert output_y.dtype == torch.float32
    +        assert output_z.dtype == torch.half
    +
    +    # out_fp16=True
    +    class ExampleModule(nn.Module):
    +
    +        @force_fp32(apply_to=('x', 'y'), out_fp16=True)
    +        def forward(self, x, y=None, z=None):
    +            return x, y, z
    +
    +    model = ExampleModule()
    +    input_x = torch.ones(1, dtype=torch.float32)
    +    input_y = torch.ones(1, dtype=torch.half)
    +    input_z = torch.ones(1, dtype=torch.half)
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.float32
    +    assert output_y.dtype == torch.half
    +    assert output_z.dtype == torch.half
    +
    +    model.fp16_enabled = True
    +    output_x, output_y, output_z = model(input_x, y=input_y, z=input_z)
    +    assert output_x.dtype == torch.half
    +    assert output_y.dtype == torch.half
    +    assert output_z.dtype == torch.half
    +
    +    if torch.cuda.is_available():
    +        model.cuda()
    +        output_x, output_y, output_z = model(
    +            input_x.cuda(), y=input_y.cuda(), z=input_z.cuda())
    +        assert output_x.dtype == torch.half
    +        assert output_y.dtype == torch.half
    +        assert output_z.dtype == torch.half
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_hooks.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_hooks.py
    new file mode 100644
    index 000000000..4822d1927
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_hooks.py
    @@ -0,0 +1,2075 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +"""Tests the hooks with runners.
    +
    +CommandLine:
    +    pytest tests/test_runner/test_hooks.py
    +    xdoctest tests/test_hooks.py zero
    +"""
    +import logging
    +import os.path as osp
    +import platform
    +import random
    +import re
    +import shutil
    +import sys
    +import tempfile
    +from unittest.mock import MagicMock, Mock, call, patch
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +from torch.nn.init import constant_
    +from torch.utils.data import DataLoader
    +
    +from mmcv.fileio.file_client import PetrelBackend
    +# yapf: disable
    +from mmcv.runner import (CheckpointHook, ClearMLLoggerHook, DvcliveLoggerHook,
    +                         EMAHook, Fp16OptimizerHook,
    +                         GradientCumulativeFp16OptimizerHook,
    +                         GradientCumulativeOptimizerHook, IterTimerHook,
    +                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
    +                         PaviLoggerHook, SegmindLoggerHook, WandbLoggerHook,
    +                         build_runner)
    +# yapf: enable
    +from mmcv.runner.fp16_utils import auto_fp16
    +from mmcv.runner.hooks.hook import HOOKS, Hook
    +from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
    +                                          CyclicLrUpdaterHook,
    +                                          FlatCosineAnnealingLrUpdaterHook,
    +                                          OneCycleLrUpdaterHook,
    +                                          StepLrUpdaterHook)
    +from mmcv.utils import TORCH_VERSION
    +
    +sys.modules['petrel_client'] = MagicMock()
    +sys.modules['petrel_client.client'] = MagicMock()
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not supported in parrots now')
    +def test_optimizerhook():
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv1 = nn.Conv2d(
    +                in_channels=1,
    +                out_channels=2,
    +                kernel_size=3,
    +                stride=1,
    +                padding=1,
    +                dilation=1)
    +            self.conv2 = nn.Conv2d(
    +                in_channels=2,
    +                out_channels=2,
    +                kernel_size=3,
    +                stride=1,
    +                padding=1,
    +                dilation=1)
    +            self.conv3 = nn.Conv2d(
    +                in_channels=1,
    +                out_channels=2,
    +                kernel_size=3,
    +                stride=1,
    +                padding=1,
    +                dilation=1)
    +
    +        def forward(self, x):
    +            x1 = self.conv1(x)
    +            x2 = self.conv2(x1)
    +            return x1, x2
    +
    +    model = Model()
    +    x = torch.rand(1, 1, 3, 3)
    +
    +    dummy_runner = Mock()
    +    dummy_runner.optimizer.zero_grad = Mock(return_value=None)
    +    dummy_runner.optimizer.step = Mock(return_value=None)
    +    dummy_runner.model = model
    +    dummy_runner.outputs = dict()
    +
    +    dummy_runner.outputs['num_samples'] = 0
    +
    +    class DummyLogger():
    +
    +        def __init__(self):
    +            self.msg = ''
    +
    +        def log(self, msg=None, **kwargs):
    +            self.msg += msg
    +
    +    dummy_runner.logger = DummyLogger()
    +    optimizer_hook = OptimizerHook(
    +        dict(max_norm=2), detect_anomalous_params=True)
    +
    +    dummy_runner.outputs['loss'] = model(x)[0].sum()
    +    optimizer_hook.after_train_iter(dummy_runner)
    +    # assert the parameters of conv2 and conv3 are not in the
    +    # computational graph which is with x1.sum() as root.
    +    assert 'conv2.weight' in dummy_runner.logger.msg
    +    assert 'conv2.bias' in dummy_runner.logger.msg
    +    assert 'conv3.weight' in dummy_runner.logger.msg
    +    assert 'conv3.bias' in dummy_runner.logger.msg
    +    assert 'conv1.weight' not in dummy_runner.logger.msg
    +    assert 'conv1.bias' not in dummy_runner.logger.msg
    +
    +    dummy_runner.outputs['loss'] = model(x)[1].sum()
    +    dummy_runner.logger.msg = ''
    +    optimizer_hook.after_train_iter(dummy_runner)
    +    # assert the parameters of conv3 are not in the computational graph
    +    assert 'conv3.weight' in dummy_runner.logger.msg
    +    assert 'conv3.bias' in dummy_runner.logger.msg
    +    assert 'conv2.weight' not in dummy_runner.logger.msg
    +    assert 'conv2.bias' not in dummy_runner.logger.msg
    +    assert 'conv1.weight' not in dummy_runner.logger.msg
    +    assert 'conv1.bias' not in dummy_runner.logger.msg
    +
    +
    +def test_checkpoint_hook(tmp_path):
    +    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""
    +
    +    # test epoch based runner
    +    loader = DataLoader(torch.ones((5, 2)))
    +    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    +    runner.meta = dict()
    +    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    +    runner.register_hook(checkpointhook)
    +    runner.run([loader], [('train', 1)])
    +    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
    +        runner.work_dir, 'epoch_1.pth')
    +    shutil.rmtree(runner.work_dir)
    +
    +    # test petrel oss when the type of runner is `EpochBasedRunner`
    +    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    +    runner.meta = dict()
    +    out_dir = 's3://user/data'
    +    with patch.object(PetrelBackend, 'put') as mock_put, \
    +            patch.object(PetrelBackend, 'remove') as mock_remove, \
    +            patch.object(PetrelBackend, 'isfile') as mock_isfile:
    +        checkpointhook = CheckpointHook(
    +            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
    +        runner.register_hook(checkpointhook)
    +        runner.run([loader], [('train', 1)])
    +        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +        assert runner.meta['hook_msgs']['last_ckpt'] == \
    +            '/'.join([out_dir, basename, 'epoch_4.pth'])
    +    mock_put.assert_called()
    +    mock_remove.assert_called()
    +    mock_isfile.assert_called()
    +    shutil.rmtree(runner.work_dir)
    +
    +    # test iter based runner
    +    runner = _build_demo_runner(
    +        'IterBasedRunner', max_iters=1, max_epochs=None)
    +    runner.meta = dict()
    +    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    +    runner.register_hook(checkpointhook)
    +    runner.run([loader], [('train', 1)])
    +    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
    +        runner.work_dir, 'iter_1.pth')
    +    shutil.rmtree(runner.work_dir)
    +
    +    # test petrel oss when the type of runner is `IterBasedRunner`
    +    runner = _build_demo_runner(
    +        'IterBasedRunner', max_iters=4, max_epochs=None)
    +    runner.meta = dict()
    +    out_dir = 's3://user/data'
    +    with patch.object(PetrelBackend, 'put') as mock_put, \
    +            patch.object(PetrelBackend, 'remove') as mock_remove, \
    +            patch.object(PetrelBackend, 'isfile') as mock_isfile:
    +        checkpointhook = CheckpointHook(
    +            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
    +        runner.register_hook(checkpointhook)
    +        runner.run([loader], [('train', 1)])
    +        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
    +        assert runner.meta['hook_msgs']['last_ckpt'] == \
    +            '/'.join([out_dir, basename, 'iter_4.pth'])
    +    mock_put.assert_called()
    +    mock_remove.assert_called()
    +    mock_isfile.assert_called()
    +    shutil.rmtree(runner.work_dir)
    +
    +
    +def test_ema_hook():
    +    """xdoctest -m tests/test_hooks.py test_ema_hook."""
    +
    +    class DemoModel(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(
    +                in_channels=1,
    +                out_channels=2,
    +                kernel_size=1,
    +                padding=1,
    +                bias=True)
    +            self._init_weight()
    +
    +        def _init_weight(self):
    +            constant_(self.conv.weight, 0)
    +            constant_(self.conv.bias, 0)
    +
    +        def forward(self, x):
    +            return self.conv(x).sum()
    +
    +        def train_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x))
    +
    +        def val_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x))
    +
    +    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    +    runner = _build_demo_runner()
    +    demo_model = DemoModel()
    +    runner.model = demo_model
    +    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    +    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    +    runner.register_hook(emahook, priority='HIGHEST')
    +    runner.register_hook(checkpointhook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    +    contain_ema_buffer = False
    +    for name, value in checkpoint['state_dict'].items():
    +        if 'ema' in name:
    +            contain_ema_buffer = True
    +            assert value.sum() == 0
    +            value.fill_(1)
    +        else:
    +            assert value.sum() == 0
    +    assert contain_ema_buffer
    +    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    +    work_dir = runner.work_dir
    +    resume_ema_hook = EMAHook(
    +        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
    +    runner = _build_demo_runner(max_epochs=2)
    +    runner.model = demo_model
    +    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    +    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    +    runner.register_hook(checkpointhook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    +    contain_ema_buffer = False
    +    for name, value in checkpoint['state_dict'].items():
    +        if 'ema' in name:
    +            contain_ema_buffer = True
    +            assert value.sum() == 2
    +        else:
    +            assert value.sum() == 1
    +    assert contain_ema_buffer
    +    shutil.rmtree(runner.work_dir)
    +    shutil.rmtree(work_dir)
    +
    +
    +def test_custom_hook():
    +
    +    @HOOKS.register_module()
    +    class ToyHook(Hook):
    +
    +        def __init__(self, info, *args, **kwargs):
    +            super().__init__()
    +            self.info = info
    +
    +    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    +    # test if custom_hooks is None
    +    runner.register_custom_hooks(None)
    +    assert len(runner.hooks) == 0
    +    # test if custom_hooks is dict list
    +    custom_hooks_cfg = [
    +        dict(type='ToyHook', priority=51, info=51),
    +        dict(type='ToyHook', priority=49, info=49)
    +    ]
    +    runner.register_custom_hooks(custom_hooks_cfg)
    +    assert [hook.info for hook in runner.hooks] == [49, 51]
    +    # test if custom_hooks is object and without priority
    +    runner.register_custom_hooks(ToyHook(info='default'))
    +    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    +    shutil.rmtree(runner.work_dir)
    +
    +    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    +    # test custom_hooks with string priority setting
    +    priority_ranks = [
    +        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
    +        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    +    ]
    +    random_priority_ranks = priority_ranks.copy()
    +    random.shuffle(random_priority_ranks)
    +    custom_hooks_cfg = [
    +        dict(type='ToyHook', priority=rank, info=rank)
    +        for rank in random_priority_ranks
    +    ]
    +    runner.register_custom_hooks(custom_hooks_cfg)
    +    assert [hook.info for hook in runner.hooks] == priority_ranks
    +    shutil.rmtree(runner.work_dir)
    +
    +    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    +    # test register_training_hooks order
    +    custom_hooks_cfg = [
    +        dict(type='ToyHook', priority=1, info='custom 1'),
    +        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
    +        dict(type='ToyHook', priority=89, info='custom 89')
    +    ]
    +    runner.register_training_hooks(
    +        lr_config=ToyHook('lr'),
    +        optimizer_config=ToyHook('optimizer'),
    +        checkpoint_config=ToyHook('checkpoint'),
    +        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
    +        momentum_config=ToyHook('momentum'),
    +        timer_config=ToyHook('timer'),
    +        custom_hooks_config=custom_hooks_cfg)
    +    # If custom hooks have same priority with default hooks, custom hooks
    +    # will be triggered after default hooks.
    +    hooks_order = [
    +        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
    +        'custom normal', 'timer', 'custom 89', 'log'
    +    ]
    +    assert [hook.info for hook in runner.hooks] == hooks_order
    +    shutil.rmtree(runner.work_dir)
    +
    +
    +def test_pavi_hook():
    +    sys.modules['pavi'] = MagicMock()
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +    runner = _build_demo_runner()
    +    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
    +    hook = PaviLoggerHook(
    +        add_graph_kwargs=None, add_last_ckpt=False, add_ckpt_kwargs=None)
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +    hook.writer.add_scalars.assert_called_with('val', {
    +        'learning_rate': 0.02,
    +        'momentum': 0.95
    +    }, 1)
    +
    +
    +def test_pavi_hook_epoch_based():
    +    """Test setting start epoch and interval epoch."""
    +    sys.modules['pavi'] = MagicMock()
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +    runner = _build_demo_runner(max_epochs=6)
    +    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
    +    hook = PaviLoggerHook(
    +        add_graph_kwargs={
    +            'active': False,
    +            'start': 0,
    +            'interval': 1
    +        },
    +        add_last_ckpt=True,
    +        add_ckpt_kwargs={
    +            'active': True,
    +            'start': 1,
    +            'interval': 2
    +        })
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +
    +    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
    +    if platform.system() == 'Windows':
    +        final_file_path = osp.join(runner.work_dir, 'latest.pth')
    +    else:
    +        final_file_path = osp.join(runner.work_dir, 'epoch_6.pth')
    +    calls = [
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'epoch_1.pth'),
    +            iteration=1),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'epoch_3.pth'),
    +            iteration=3),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'epoch_5.pth'),
    +            iteration=5),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, final_file_path),
    +            iteration=6),
    +    ]
    +    hook.writer.add_snapshot_file.assert_has_calls(calls, any_order=False)
    +
    +
    +def test_pavi_hook_iter_based():
    +    """Test setting start epoch and interval epoch."""
    +    sys.modules['pavi'] = MagicMock()
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +    runner = _build_demo_runner(
    +        'IterBasedRunner', max_iters=15, max_epochs=None)
    +    runner.meta = dict()
    +    hook = PaviLoggerHook(
    +        by_epoch=False,
    +        add_graph_kwargs={
    +            'active': False,
    +            'start': 0,
    +            'interval': 1
    +        },
    +        add_last_ckpt=True,
    +        add_ckpt_kwargs={
    +            'active': True,
    +            'start': 0,
    +            'interval': 4
    +        })
    +
    +    runner.register_hook(CheckpointHook(interval=4, by_epoch=False))
    +    runner.register_hook(hook)
    +
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +
    +    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
    +    if platform.system() == 'Windows':
    +        final_file_path = osp.join(runner.work_dir, 'latest.pth')
    +    else:
    +        final_file_path = osp.join(runner.work_dir, 'iter_15.pth')
    +    calls = [
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'iter_4.pth'),
    +            iteration=4),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'iter_8.pth'),
    +            iteration=8),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, 'iter_12.pth'),
    +            iteration=12),
    +        call(
    +            tag=runner.work_dir.split('/')[-1],
    +            snapshot_file_path=osp.join(runner.work_dir, final_file_path),
    +            iteration=15),
    +    ]
    +    hook.writer.add_snapshot_file.assert_has_calls(calls, any_order=False)
    +
    +
    +def test_sync_buffers_hook():
    +    loader = DataLoader(torch.ones((5, 2)))
    +    runner = _build_demo_runner()
    +    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
    +                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
    +def test_momentum_runner_hook(multi_optimizers, max_iters, gamma,
    +                              cyclic_times):
    +    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='CyclicMomentumUpdaterHook',
    +        by_epoch=False,
    +        target_ratio=(0.85 / 0.95, 1),
    +        cyclic_times=cyclic_times,
    +        step_ratio_up=0.4,
    +        gamma=gamma)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add momentum LR scheduler
    +    hook_cfg = dict(
    +        type='CyclicLrUpdaterHook',
    +        by_epoch=False,
    +        target_ratio=(10, 1),
    +        cyclic_times=1,
    +        step_ratio_up=0.4)
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01999999999999999,
    +                    'learning_rate/model2': 0.009999999999999995,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.2,
    +                    'learning_rate/model2': 0.1,
    +                    'momentum/model1': 0.85,
    +                    'momentum/model2': 0.8052631578947369,
    +                }, 5),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.155,
    +                    'learning_rate/model2': 0.0775,
    +                    'momentum/model1': 0.875,
    +                    'momentum/model2': 0.8289473684210527,
    +                }, 7)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.01999999999999999,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.11,
    +                'momentum': 0.85
    +            }, 3),
    +            call('train', {
    +                'learning_rate': 0.1879422863405995,
    +                'momentum': 0.95
    +            }, 6),
    +            call('train', {
    +                'learning_rate': 0.11000000000000001,
    +                'momentum': 0.9
    +            }, 8),
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +    # test constant momentum warmup
    +    sys.modules['pavi'] = MagicMock()
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='StepMomentumUpdaterHook',
    +        by_epoch=False,
    +        warmup='constant',
    +        warmup_iters=5,
    +        warmup_ratio=0.5,
    +        step=[10],
    +    )
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.9,
    +                    'momentum/model2': 1.8,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.9,
    +                    'momentum/model2': 1.8,
    +                }, 5),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 10),
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.9
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.9
    +            }, 5),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 10),
    +        ]
    +
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +    # test linear momentum warmup
    +    sys.modules['pavi'] = MagicMock()
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='StepMomentumUpdaterHook',
    +        by_epoch=False,
    +        warmup='linear',
    +        warmup_iters=5,
    +        warmup_ratio=0.5,
    +        step=[10],
    +    )
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.9,
    +                    'momentum/model2': 1.8,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.3571428571428572,
    +                    'momentum/model2': 1.2857142857142858,
    +                }, 3),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 10),
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.9
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.3571428571428572
    +            }, 3),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 10),
    +        ]
    +
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +    # test exponentially momentum warmup
    +    sys.modules['pavi'] = MagicMock()
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='StepMomentumUpdaterHook',
    +        by_epoch=False,
    +        warmup='exp',
    +        warmup_iters=5,
    +        warmup_ratio=0.5,
    +        step=[10],
    +    )
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.9,
    +                    'momentum/model2': 1.8,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 1.4399307381848783,
    +                    'momentum/model2': 1.3641449098593583,
    +                }, 3),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 10),
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.9
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 1.4399307381848783
    +            }, 3),
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 10),
    +        ]
    +
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers', (True, False))
    +def test_cosine_runner_hook(multi_optimizers):
    +    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='CosineAnnealingMomentumUpdaterHook',
    +        min_momentum_ratio=0.99 / 0.95,
    +        by_epoch=False,
    +        warmup_iters=2,
    +        warmup_ratio=0.9 / 0.95)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add momentum LR scheduler
    +    hook_cfg = dict(
    +        type='CosineAnnealingLrUpdaterHook',
    +        by_epoch=False,
    +        min_lr_ratio=0,
    +        warmup_iters=2,
    +        warmup_ratio=0.9)
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +    runner.register_hook(IterTimerHook())
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01,
    +                    'learning_rate/model2': 0.005,
    +                    'momentum/model1': 0.97,
    +                    'momentum/model2': 0.9189473684210527,
    +                }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.0004894348370484647,
    +                    'learning_rate/model2': 0.00024471741852423234,
    +                    'momentum/model1': 0.9890211303259032,
    +                    'momentum/model2': 0.9369673866245399,
    +                }, 10)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.01,
    +                'momentum': 0.97
    +            }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate': 0.0004894348370484647,
    +                    'momentum': 0.9890211303259032
    +                }, 10)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers', (True, False))
    +def test_linear_runner_hook(multi_optimizers):
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +
    +    hook_cfg = dict(
    +        type='LinearAnnealingMomentumUpdaterHook',
    +        min_momentum_ratio=0.99 / 0.95,
    +        by_epoch=False,
    +        warmup_iters=2,
    +        warmup_ratio=0.9 / 0.95)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add momentum LR scheduler
    +    hook_cfg = dict(
    +        type='LinearAnnealingLrUpdaterHook',
    +        by_epoch=False,
    +        min_lr_ratio=0,
    +        warmup_iters=2,
    +        warmup_ratio=0.9)
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +    runner.register_hook(IterTimerHook())
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01,
    +                    'learning_rate/model2': 0.005,
    +                    'momentum/model1': 0.97,
    +                    'momentum/model2': 0.9189473684210527,
    +                }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.0019999999999999983,
    +                    'learning_rate/model2': 0.0009999999999999992,
    +                    'momentum/model1': 0.9860000000000001,
    +                    'momentum/model2': 0.9341052631578949,
    +                }, 10)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.01,
    +                'momentum': 0.97
    +            }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate': 0.0019999999999999983,
    +                    'momentum': 0.9860000000000001
    +                }, 10)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers, by_epoch', [(False, False),
    +                                                        (True, False),
    +                                                        (False, True),
    +                                                        (True, True)])
    +def test_flat_cosine_runner_hook(multi_optimizers, by_epoch):
    +    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    max_epochs = 10 if by_epoch else 1
    +    runner = _build_demo_runner(
    +        multi_optimizers=multi_optimizers, max_epochs=max_epochs)
    +
    +    with pytest.raises(ValueError):
    +        # start_percent: expected float between 0 and 1
    +        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)
    +
    +    # add LR scheduler
    +    hook_cfg = dict(
    +        type='FlatCosineAnnealingLrUpdaterHook',
    +        by_epoch=by_epoch,
    +        min_lr_ratio=0,
    +        warmup='linear',
    +        warmup_iters=10 if by_epoch else 2,
    +        warmup_ratio=0.9,
    +        start_percent=0.5)
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +    runner.register_hook(IterTimerHook())
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        if by_epoch:
    +            calls = [
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.018000000000000002,
    +                        'learning_rate/model2': 0.009000000000000001,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9,
    +                    }, 1),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.02,
    +                        'learning_rate/model2': 0.01,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9,
    +                    }, 11),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.018090169943749474,
    +                        'learning_rate/model2': 0.009045084971874737,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9,
    +                    }, 61),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.0019098300562505265,
    +                        'learning_rate/model2': 0.0009549150281252633,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9,
    +                    }, 100)
    +            ]
    +        else:
    +            calls = [
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.018000000000000002,
    +                        'learning_rate/model2': 0.009000000000000001,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9
    +                    }, 1),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.02,
    +                        'learning_rate/model2': 0.01,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9
    +                    }, 6),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.018090169943749474,
    +                        'learning_rate/model2': 0.009045084971874737,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9
    +                    }, 7),
    +                call(
    +                    'train', {
    +                        'learning_rate/model1': 0.0019098300562505265,
    +                        'learning_rate/model2': 0.0009549150281252633,
    +                        'momentum/model1': 0.95,
    +                        'momentum/model2': 0.9
    +                    }, 10)
    +            ]
    +    else:
    +        if by_epoch:
    +            calls = [
    +                call('train', {
    +                    'learning_rate': 0.018000000000000002,
    +                    'momentum': 0.95
    +                }, 1),
    +                call('train', {
    +                    'learning_rate': 0.02,
    +                    'momentum': 0.95
    +                }, 11),
    +                call('train', {
    +                    'learning_rate': 0.018090169943749474,
    +                    'momentum': 0.95
    +                }, 61),
    +                call('train', {
    +                    'learning_rate': 0.0019098300562505265,
    +                    'momentum': 0.95
    +                }, 100)
    +            ]
    +        else:
    +            calls = [
    +                call('train', {
    +                    'learning_rate': 0.018000000000000002,
    +                    'momentum': 0.95
    +                }, 1),
    +                call('train', {
    +                    'learning_rate': 0.02,
    +                    'momentum': 0.95
    +                }, 6),
    +                call('train', {
    +                    'learning_rate': 0.018090169943749474,
    +                    'momentum': 0.95
    +                }, 7),
    +                call('train', {
    +                    'learning_rate': 0.0019098300562505265,
    +                    'momentum': 0.95
    +                }, 10)
    +            ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not supported in parrots now')
    +@pytest.mark.parametrize('multi_optimizers, max_iters', [(True, 10), (True, 2),
    +                                                         (False, 10),
    +                                                         (False, 2)])
    +def test_one_cycle_runner_hook(multi_optimizers, max_iters):
    +    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    +    with pytest.raises(AssertionError):
    +        # by_epoch should be False
    +        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)
    +
    +    with pytest.raises(ValueError):
    +        # expected float between 0 and 1
    +        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)
    +
    +    with pytest.raises(ValueError):
    +        # anneal_strategy should be either 'cos' or 'linear'
    +        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')
    +
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='OneCycleMomentumUpdaterHook',
    +        base_momentum=0.85,
    +        max_momentum=0.95,
    +        pct_start=0.5,
    +        anneal_strategy='cos',
    +        three_phase=False)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add LR scheduler
    +    hook_cfg = dict(
    +        type='OneCycleLrUpdaterHook',
    +        max_lr=0.01,
    +        pct_start=0.5,
    +        anneal_strategy='cos',
    +        div_factor=25,
    +        final_div_factor=1e4,
    +        three_phase=False)
    +    runner.register_hook_from_cfg(hook_cfg)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +    runner.register_hook(IterTimerHook())
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.0003999999999999993,
    +                    'learning_rate/model2': 0.0003999999999999993,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.95,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.00904508879153485,
    +                    'learning_rate/model2': 0.00904508879153485,
    +                    'momentum/model1': 0.8595491502812526,
    +                    'momentum/model2': 0.8595491502812526,
    +                }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 4e-08,
    +                    'learning_rate/model2': 4e-08,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.95,
    +                }, 10)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.0003999999999999993,
    +                'momentum': 0.95
    +            }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate': 0.00904508879153485,
    +                    'momentum': 0.8595491502812526
    +                }, 6),
    +            call('train', {
    +                'learning_rate': 4e-08,
    +                'momentum': 0.95
    +            }, 10)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +    # Test OneCycleLrUpdaterHook
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(
    +        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)
    +
    +    args = dict(
    +        max_lr=0.01,
    +        total_steps=5,
    +        pct_start=0.5,
    +        anneal_strategy='linear',
    +        div_factor=25,
    +        final_div_factor=1e4,
    +    )
    +    hook = OneCycleLrUpdaterHook(**args)
    +    runner.register_hook(hook)
    +    if max_iters == 10:
    +        # test total_steps < max_iters
    +        with pytest.raises(ValueError):
    +            runner.run([loader], [('train', 1)])
    +    else:
    +        # test total_steps > max_iters
    +        runner.run([loader], [('train', 1)])
    +        lr_last = runner.current_lr()
    +        t = torch.tensor([0.0], requires_grad=True)
    +        optim = torch.optim.SGD([t], lr=0.01)
    +        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
    +        lr_target = []
    +        for _ in range(max_iters):
    +            optim.step()
    +            lr_target.append(optim.param_groups[0]['lr'])
    +            lr_scheduler.step()
    +        assert lr_target[-1] == lr_last[0]
    +
    +
    +@pytest.mark.parametrize('multi_optimizers', (True, False))
    +def test_cosine_restart_lr_update_hook(multi_optimizers):
    +    """Test CosineRestartLrUpdaterHook."""
    +    with pytest.raises(AssertionError):
    +        # either `min_lr` or `min_lr_ratio` should be specified
    +        CosineRestartLrUpdaterHook(
    +            by_epoch=False,
    +            periods=[2, 10],
    +            restart_weights=[0.5, 0.5],
    +            min_lr=0.1,
    +            min_lr_ratio=0)
    +
    +    with pytest.raises(AssertionError):
    +        # periods and restart_weights should have the same length
    +        CosineRestartLrUpdaterHook(
    +            by_epoch=False,
    +            periods=[2, 10],
    +            restart_weights=[0.5],
    +            min_lr_ratio=0)
    +
    +    with pytest.raises(ValueError):
    +        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
    +        sys.modules['pavi'] = MagicMock()
    +        loader = DataLoader(torch.ones((10, 2)))
    +        runner = _build_demo_runner()
    +
    +        # add cosine restart LR scheduler
    +        hook = CosineRestartLrUpdaterHook(
    +            by_epoch=False,
    +            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
    +            restart_weights=[0.5, 0.5],
    +            min_lr=0.0001)
    +        runner.register_hook(hook)
    +        runner.register_hook(IterTimerHook())
    +
    +        # add pavi hook
    +        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +        runner.register_hook(hook)
    +        runner.run([loader], [('train', 1)])
    +        shutil.rmtree(runner.work_dir)
    +
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add cosine restart LR scheduler
    +    hook = CosineRestartLrUpdaterHook(
    +        by_epoch=False,
    +        periods=[5, 5],
    +        restart_weights=[0.5, 0.5],
    +        min_lr_ratio=0)
    +    runner.register_hook(hook)
    +    runner.register_hook(IterTimerHook())
    +
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01,
    +                    'learning_rate/model2': 0.005,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01,
    +                    'learning_rate/model2': 0.005,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.0009549150281252633,
    +                    'learning_rate/model2': 0.00047745751406263163,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 10)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.01,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.01,
    +                'momentum': 0.95
    +            }, 6),
    +            call('train', {
    +                'learning_rate': 0.0009549150281252633,
    +                'momentum': 0.95
    +            }, 10)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers', (True, False))
    +def test_step_runner_hook(multi_optimizers):
    +    """Test StepLrUpdaterHook."""
    +    with pytest.raises(TypeError):
    +        # `step` should be specified
    +        StepLrUpdaterHook()
    +    with pytest.raises(AssertionError):
    +        # if `step` is int, should be positive
    +        StepLrUpdaterHook(-10)
    +    with pytest.raises(AssertionError):
    +        # if `step` is list of int, should all be positive
    +        StepLrUpdaterHook([10, 16, -20])
    +
    +    # test StepLrUpdaterHook with int `step` value
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((30, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='StepMomentumUpdaterHook',
    +        by_epoch=False,
    +        step=5,
    +        gamma=0.5,
    +        min_momentum=0.05)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add step LR scheduler
    +    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    +    runner.register_hook(hook)
    +    runner.register_hook(IterTimerHook())
    +
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.01,
    +                    'learning_rate/model2': 0.005,
    +                    'momentum/model1': 0.475,
    +                    'momentum/model2': 0.45
    +                }, 6),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.0025,
    +                    'learning_rate/model2': 0.00125,
    +                    'momentum/model1': 0.11875,
    +                    'momentum/model2': 0.1125
    +                }, 16),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.00125,
    +                    'learning_rate/model2': 0.001,
    +                    'momentum/model1': 0.059375,
    +                    'momentum/model2': 0.05625
    +                }, 21),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.001,
    +                    'learning_rate/model2': 0.001,
    +                    'momentum/model1': 0.05,
    +                    'momentum/model2': 0.05
    +                }, 26),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.001,
    +                    'learning_rate/model2': 0.001,
    +                    'momentum/model1': 0.05,
    +                    'momentum/model2': 0.05
    +                }, 30)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.01,
    +                'momentum': 0.475
    +            }, 6),
    +            call('train', {
    +                'learning_rate': 0.0025,
    +                'momentum': 0.11875
    +            }, 16),
    +            call('train', {
    +                'learning_rate': 0.00125,
    +                'momentum': 0.059375
    +            }, 21),
    +            call('train', {
    +                'learning_rate': 0.001,
    +                'momentum': 0.05
    +            }, 26),
    +            call('train', {
    +                'learning_rate': 0.001,
    +                'momentum': 0.05
    +            }, 30)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +    # test StepLrUpdaterHook with list[int] `step` value
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
    +
    +    # add momentum scheduler
    +    hook_cfg = dict(
    +        type='StepMomentumUpdaterHook',
    +        by_epoch=False,
    +        step=[4, 6, 8],
    +        gamma=0.1)
    +    runner.register_hook_from_cfg(hook_cfg)
    +
    +    # add step LR scheduler
    +    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    +    runner.register_hook(hook)
    +    runner.register_hook(IterTimerHook())
    +
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    # TODO: use a more elegant way to check values
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.002,
    +                    'learning_rate/model2': 0.001,
    +                    'momentum/model1': 9.5e-2,
    +                    'momentum/model2': 9.000000000000001e-2
    +                }, 5),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 2.0000000000000004e-4,
    +                    'learning_rate/model2': 1.0000000000000002e-4,
    +                    'momentum/model1': 9.500000000000001e-3,
    +                    'momentum/model2': 9.000000000000003e-3
    +                }, 7),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 2.0000000000000005e-05,
    +                    'learning_rate/model2': 1.0000000000000003e-05,
    +                    'momentum/model1': 9.500000000000002e-4,
    +                    'momentum/model2': 9.000000000000002e-4
    +                }, 9)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.002,
    +                'momentum': 0.095
    +            }, 5),
    +            call(
    +                'train', {
    +                    'learning_rate': 2.0000000000000004e-4,
    +                    'momentum': 9.500000000000001e-3
    +                }, 7),
    +            call(
    +                'train', {
    +                    'learning_rate': 2.0000000000000005e-05,
    +                    'momentum': 9.500000000000002e-4
    +                }, 9)
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
    +                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
    +def test_cyclic_lr_update_hook(multi_optimizers, max_iters, gamma,
    +                               cyclic_times):
    +    """Test CyclicLrUpdateHook."""
    +    with pytest.raises(AssertionError):
    +        # by_epoch should be False
    +        CyclicLrUpdaterHook(by_epoch=True)
    +
    +    with pytest.raises(AssertionError):
    +        # target_ratio must be either float or tuple/list of two floats
    +        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))
    +
    +    with pytest.raises(AssertionError):
    +        # step_ratio_up must be in range [0,1)
    +        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)
    +
    +    with pytest.raises(ValueError):
    +        # anneal_strategy must be one of "cos" or "linear"
    +        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')
    +
    +    with pytest.raises(AssertionError):
    +        # gamma must be in range (0, 1]
    +        CyclicLrUpdaterHook(by_epoch=False, gamma=0)
    +
    +    sys.modules['pavi'] = MagicMock()
    +    loader = DataLoader(torch.ones((10, 2)))
    +    runner = _build_demo_runner(
    +        runner_type='IterBasedRunner',
    +        max_epochs=None,
    +        max_iters=max_iters,
    +        multi_optimizers=multi_optimizers)
    +
    +    # add cyclic LR scheduler
    +    schedule_hook = CyclicLrUpdaterHook(
    +        by_epoch=False,
    +        target_ratio=(10.0, 1.0),
    +        cyclic_times=cyclic_times,
    +        step_ratio_up=0.5,
    +        anneal_strategy='linear',
    +        gamma=gamma)
    +    runner.register_hook(schedule_hook)
    +    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    +    runner.register_hook(IterTimerHook())
    +    # add pavi hook
    +    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    +    runner.register_hook(hook)
    +    runner.run([loader], [('train', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    assert hasattr(hook, 'writer')
    +    if multi_optimizers:
    +        calls = [
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.02,
    +                    'learning_rate/model2': 0.01,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 1),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.155,
    +                    'learning_rate/model2': 0.0775,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 4),
    +            call(
    +                'train', {
    +                    'learning_rate/model1': 0.155,
    +                    'learning_rate/model2': 0.0775,
    +                    'momentum/model1': 0.95,
    +                    'momentum/model2': 0.9,
    +                }, 6)
    +        ]
    +    else:
    +        calls = [
    +            call('train', {
    +                'learning_rate': 0.02,
    +                'momentum': 0.95
    +            }, 1),
    +            call('train', {
    +                'learning_rate': 0.11,
    +                'momentum': 0.95
    +            }, 4),
    +            call('train', {
    +                'learning_rate': 0.065,
    +                'momentum': 0.95
    +            }, 6),
    +            call('train', {
    +                'learning_rate': 0.11,
    +                'momentum': 0.95
    +            }, 7),
    +        ]
    +    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
    +
    +
    +@pytest.mark.parametrize('log_model', (True, False))
    +def test_mlflow_hook(log_model):
    +    sys.modules['mlflow'] = MagicMock()
    +    sys.modules['mlflow.pytorch'] = MagicMock()
    +
    +    runner = _build_demo_runner()
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    hook.mlflow.set_experiment.assert_called_with('test')
    +    hook.mlflow.log_metrics.assert_called_with(
    +        {
    +            'learning_rate': 0.02,
    +            'momentum': 0.95
    +        }, step=6)
    +    if log_model:
    +        hook.mlflow_pytorch.log_model.assert_called_with(
    +            runner.model,
    +            'models',
    +            pip_requirements=[f'torch=={TORCH_VERSION}'])
    +    else:
    +        assert not hook.mlflow_pytorch.log_model.called
    +
    +
    +def test_segmind_hook():
    +    sys.modules['segmind'] = MagicMock()
    +    runner = _build_demo_runner()
    +    hook = SegmindLoggerHook()
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    hook.mlflow_log.assert_called_with(
    +        hook.log_metrics, {
    +            'learning_rate': 0.02,
    +            'momentum': 0.95
    +        },
    +        step=runner.epoch,
    +        epoch=runner.epoch)
    +
    +
    +def test_wandb_hook():
    +    sys.modules['wandb'] = MagicMock()
    +    runner = _build_demo_runner()
    +    hook = WandbLoggerHook(
    +        log_artifact=True, define_metric_cfg={'val/loss': 'min'})
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +
    +    shutil.rmtree(runner.work_dir)
    +
    +    hook.wandb.init.assert_called_with()
    +    hook.wandb.define_metric.assert_called_with('val/loss', summary='min')
    +    hook.wandb.log.assert_called_with({
    +        'learning_rate': 0.02,
    +        'momentum': 0.95
    +    },
    +                                      step=6,
    +                                      commit=True)
    +    hook.wandb.log_artifact.assert_called()
    +    hook.wandb.join.assert_called_with()
    +
    +
    +def test_neptune_hook():
    +    sys.modules['neptune'] = MagicMock()
    +    sys.modules['neptune.new'] = MagicMock()
    +    runner = _build_demo_runner()
    +    hook = NeptuneLoggerHook()
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    hook.neptune.init.assert_called_with()
    +    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    +    hook.run.stop.assert_called_with()
    +
    +
    +def test_dvclive_hook():
    +    sys.modules['dvclive'] = MagicMock()
    +    runner = _build_demo_runner()
    +
    +    hook = DvcliveLoggerHook()
    +    dvclive_mock = hook.dvclive
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    dvclive_mock.set_step.assert_called_with(6)
    +    dvclive_mock.log.assert_called_with('momentum', 0.95)
    +
    +
    +def test_dvclive_hook_model_file(tmp_path):
    +    sys.modules['dvclive'] = MagicMock()
    +    runner = _build_demo_runner()
    +
    +    hook = DvcliveLoggerHook(model_file=osp.join(runner.work_dir, 'model.pth'))
    +    runner.register_hook(hook)
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +
    +    assert osp.exists(osp.join(runner.work_dir, 'model.pth'))
    +
    +    shutil.rmtree(runner.work_dir)
    +
    +
    +def test_dvclive_hook_pass_logger(tmp_path):
    +    sys.modules['dvclive'] = MagicMock()
    +    from dvclive import Live
    +    logger = Live()
    +
    +    sys.modules['dvclive'] = MagicMock()
    +    assert DvcliveLoggerHook().dvclive is not logger
    +    assert DvcliveLoggerHook(dvclive=logger).dvclive is logger
    +
    +
    +def test_clearml_hook():
    +    sys.modules['clearml'] = MagicMock()
    +    runner = _build_demo_runner()
    +    hook = ClearMLLoggerHook(init_kwargs={
    +        'project_name': 'proj',
    +        'task_name': 'task',
    +    })
    +
    +    loader = DataLoader(torch.ones((5, 2)))
    +
    +    runner.register_hook(hook)
    +    runner.run([loader, loader], [('train', 1), ('val', 1)])
    +    shutil.rmtree(runner.work_dir)
    +
    +    hook.clearml.Task.init.assert_called_with(
    +        project_name='proj', task_name='task')
    +    hook.task.get_logger.assert_called_with()
    +    report_scalar_calls = [
    +        call('momentum', 'momentum', 0.95, 6),
    +        call('learning_rate', 'learning_rate', 0.02, 6),
    +    ]
    +    hook.task_logger.report_scalar.assert_has_calls(
    +        report_scalar_calls, any_order=True)
    +
    +
    +def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
    +                                    max_epochs=1,
    +                                    max_iters=None,
    +                                    multi_optimizers=False):
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.linear = nn.Linear(2, 1)
    +            self.conv = nn.Conv2d(3, 3, 3)
    +
    +        def forward(self, x):
    +            return self.linear(x)
    +
    +        def train_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x))
    +
    +        def val_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x))
    +
    +    model = Model()
    +
    +    if multi_optimizers:
    +        optimizer = {
    +            'model1':
    +            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
    +            'model2':
    +            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
    +        }
    +    else:
    +        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
    +
    +    tmp_dir = tempfile.mkdtemp()
    +    runner = build_runner(
    +        dict(type=runner_type),
    +        default_args=dict(
    +            model=model,
    +            work_dir=tmp_dir,
    +            optimizer=optimizer,
    +            logger=logging.getLogger(),
    +            max_epochs=max_epochs,
    +            max_iters=max_iters))
    +    return runner
    +
    +
    +def _build_demo_runner(runner_type='EpochBasedRunner',
    +                       max_epochs=1,
    +                       max_iters=None,
    +                       multi_optimizers=False):
    +    log_config = dict(
    +        interval=1, hooks=[
    +            dict(type='TextLoggerHook'),
    +        ])
    +
    +    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
    +                                             max_iters, multi_optimizers)
    +
    +    runner.register_checkpoint_hook(dict(interval=1))
    +    runner.register_logger_hooks(log_config)
    +    return runner
    +
    +
    +def test_runner_with_revise_keys():
    +    import os
    +
    +    class Model(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.conv = nn.Conv2d(3, 3, 1)
    +
    +    class PrefixModel(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.backbone = Model()
    +
    +    pmodel = PrefixModel()
    +    model = Model()
    +    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
    +
    +    # add prefix
    +    torch.save(model.state_dict(), checkpoint_path)
    +    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    +    runner.model = pmodel
    +    state_dict = runner.load_checkpoint(
    +        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    +    for key in pmodel.backbone.state_dict().keys():
    +        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    +    # strip prefix
    +    torch.save(pmodel.state_dict(), checkpoint_path)
    +    runner.model = model
    +    state_dict = runner.load_checkpoint(
    +        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    +    for key in state_dict.keys():
    +        key_stripped = re.sub(r'^backbone\.', '', key)
    +        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    +    os.remove(checkpoint_path)
    +
    +
    +def test_get_triggered_stages():
    +
    +    class ToyHook(Hook):
    +        # test normal stage
    +        def before_run():
    +            pass
    +
    +        # test the method mapped to multi stages.
    +        def after_epoch():
    +            pass
    +
    +    hook = ToyHook()
    +    # stages output have order, so here is list instead of set.
    +    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    +    assert hook.get_triggered_stages() == expected_stages
    +
    +
    +def test_gradient_cumulative_optimizer_hook():
    +
    +    class ToyModel(nn.Module):
    +
    +        def __init__(self, with_norm=False):
    +            super().__init__()
    +            self.fp16_enabled = False
    +            self.fc = nn.Linear(3, 2)
    +            nn.init.constant_(self.fc.weight, 1.)
    +            nn.init.constant_(self.fc.bias, 1.)
    +            self.with_norm = with_norm
    +            if with_norm:
    +                self.norm = nn.BatchNorm1d(2)
    +
    +        def forward(self, x):
    +            x = self.fc(x)
    +            if self.with_norm:
    +                x = self.norm(x)
    +            return x
    +
    +        def train_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x).mean(), num_samples=x.shape[0])
    +
    +        def val_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x).mean(), num_samples=x.shape[0])
    +
    +    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
    +        model = ToyModel()
    +        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
    +        tmp_dir = tempfile.mkdtemp()
    +
    +        runner = build_runner(
    +            config,
    +            default_args=dict(
    +                model=model,
    +                work_dir=tmp_dir,
    +                optimizer=optimizer,
    +                logger=logging.getLogger(),
    +                meta=dict()))
    +        return runner
    +
    +    with pytest.raises(AssertionError):
    +        # cumulative_iters only accepts int
    +        GradientCumulativeOptimizerHook(cumulative_iters='str')
    +
    +    with pytest.raises(AssertionError):
    +        # cumulative_iters only accepts positive number
    +        GradientCumulativeOptimizerHook(cumulative_iters=-1)
    +
    +    # test epoch based runner
    +    data = torch.rand((6, 3))
    +    # optimize with cumulative_iters
    +    loader_1 = DataLoader(data, batch_size=1)
    +    runner_1 = build_toy_runner()
    +    optimizer_hook = GradientCumulativeOptimizerHook(
    +        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +    runner_1.register_hook(optimizer_hook)
    +    runner_1.run([loader_1], [('train', 1)])
    +
    +    # optimize without cumulative_iters
    +    loader_2 = DataLoader(data, batch_size=3)
    +    runner_2 = build_toy_runner()
    +    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    +    runner_2.register_hook(optimizer_hook)
    +    runner_2.run([loader_2], [('train', 1)])
    +
    +    # test optimizer works well
    +    assert (runner_1.model.fc.weight < 1).all()
    +    assert (runner_1.model.fc.bias < 1).all()
    +    # test optimizer with cumulative_iters gets the same results
    +    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    +    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    +    shutil.rmtree(runner_1.work_dir)
    +    shutil.rmtree(runner_2.work_dir)
    +
    +    # test iter based runner
    +    data = torch.rand((8, 3))
    +    # optimize with cumulative_iters
    +    loader_1 = DataLoader(data, batch_size=1)
    +    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    +    optimizer_hook = GradientCumulativeOptimizerHook(
    +        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +    runner_1.register_hook(optimizer_hook)
    +    runner_1.run([loader_1], [('train', 1)])
    +
    +    # optimize without cumulative_iters
    +    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    +    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    +    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    +    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    +    runner_2.register_hook(optimizer_hook)
    +    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
    +                                                            ('train', 1)])
    +
    +    # test optimizer works well
    +    assert (runner_1.model.fc.weight < 1).all()
    +    assert (runner_1.model.fc.bias < 1).all()
    +    # test optimizer with cumulative_iters gets the same results
    +    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    +    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    +    shutil.rmtree(runner_1.work_dir)
    +    shutil.rmtree(runner_2.work_dir)
    +
    +    # test has_batch_norm
    +    model = ToyModel(with_norm=True)
    +    optimizer_hook = GradientCumulativeOptimizerHook(
    +        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +    assert optimizer_hook.has_batch_norm(model)
    +
    +    def calc_loss_factors(runner):
    +        optimizer_hook = GradientCumulativeOptimizerHook(
    +            grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +        optimizer_hook._init(runner)
    +        loss_factors = []
    +        for current_iter in range(runner._iter, runner._max_iters):
    +            runner._iter = current_iter
    +            loss_factor = optimizer_hook._get_loss_factor(runner)
    +            loss_factors.append(loss_factor)
    +        shutil.rmtree(runner.work_dir)
    +
    +        return loss_factors
    +
    +    # test loss_factor with EpochBasedRunner
    +    runner = build_toy_runner(dict(type='EpochBasedRunner', max_epochs=2))
    +    runner._max_iters = 6  # max_epochs * len(data_loader)
    +    assert calc_loss_factors(runner) == [3] * 6
    +    runner = build_toy_runner(dict(type='EpochBasedRunner', max_epochs=2))
    +    runner._max_iters = 8  # max_epochs * len(data_loader)
    +    assert calc_loss_factors(runner) == [3] * 6 + [2, 2]
    +    runner = build_toy_runner(dict(type='EpochBasedRunner', max_epochs=2))
    +    runner._max_iters = 10  # max_epochs * len(data_loader)
    +    assert calc_loss_factors(runner) == [3] * 9 + [1]
    +    runner = build_toy_runner(dict(type='EpochBasedRunner', max_epochs=2))
    +    runner._max_iters = 10  # max_epochs * len(data_loader)
    +    runner._iter = 5  # resume
    +    assert calc_loss_factors(runner) == [3] * 4 + [1]
    +
    +    # test loss_factor with IterBasedRunner
    +    runner = build_toy_runner(dict(type='IterBasedRunner', max_iters=6))
    +    assert calc_loss_factors(runner) == [3] * 6
    +    runner = build_toy_runner(dict(type='IterBasedRunner', max_iters=7))
    +    assert calc_loss_factors(runner) == [3] * 6 + [1]
    +    runner = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    +    assert calc_loss_factors(runner) == [3] * 6 + [2, 2]
    +    runner = build_toy_runner(dict(type='IterBasedRunner', max_iters=6))
    +    runner._iter = 3  # resume
    +    assert calc_loss_factors(runner) == [3] * 3
    +    runner = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    +    runner._iter = 3  # resume
    +    assert calc_loss_factors(runner) == [3] * 3 + [2, 2]
    +
    +
    +@pytest.mark.skipif(
    +    not torch.cuda.is_available(), reason='requires CUDA support')
    +def test_gradient_cumulative_fp16_optimizer_hook():
    +
    +    class ToyModel(nn.Module):
    +
    +        def __init__(self):
    +            super().__init__()
    +            self.fp16_enabled = False
    +            self.fc = nn.Linear(3, 2)
    +            nn.init.constant_(self.fc.weight, 1.)
    +            nn.init.constant_(self.fc.bias, 1.)
    +
    +        @auto_fp16(apply_to=('x', ))
    +        def forward(self, x):
    +            x = self.fc(x)
    +            return x
    +
    +        def train_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x).mean(), num_samples=x.shape[0])
    +
    +        def val_step(self, x, optimizer, **kwargs):
    +            return dict(loss=self(x).mean(), num_samples=x.shape[0])
    +
    +    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
    +        model = ToyModel().cuda()
    +        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
    +        tmp_dir = tempfile.mkdtemp()
    +
    +        runner = build_runner(
    +            config,
    +            default_args=dict(
    +                model=model,
    +                work_dir=tmp_dir,
    +                optimizer=optimizer,
    +                logger=logging.getLogger(),
    +                meta=dict()))
    +        return runner
    +
    +    # test epoch based runner
    +    data = torch.rand((6, 3)).cuda()
    +    # optimize with cumulative_iters
    +    loader_1 = DataLoader(data, batch_size=1)
    +    runner_1 = build_toy_runner()
    +    optimizer_hook = GradientCumulativeFp16OptimizerHook(
    +        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +    runner_1.register_hook(optimizer_hook)
    +    runner_1.run([loader_1], [('train', 1)])
    +
    +    # optimize without cumulative_iters
    +    loader_2 = DataLoader(data, batch_size=3)
    +    runner_2 = build_toy_runner()
    +    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    +    runner_2.register_hook(optimizer_hook)
    +    runner_2.run([loader_2], [('train', 1)])
    +
    +    # test optimizer works well
    +    assert (runner_1.model.fc.weight < 1).all()
    +    assert (runner_1.model.fc.bias < 1).all()
    +    # test optimizer with cumulative_iters gets the same results
    +    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    +    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    +    shutil.rmtree(runner_1.work_dir)
    +    shutil.rmtree(runner_2.work_dir)
    +
    +    # test iter based runner
    +    data = torch.rand((8, 3)).cuda()
    +    # optimize with cumulative_iters
    +    loader_1 = DataLoader(data, batch_size=1)
    +    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    +    optimizer_hook = GradientCumulativeFp16OptimizerHook(
    +        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    +    runner_1.register_hook(optimizer_hook)
    +    runner_1.run([loader_1], [('train', 1)])
    +
    +    # optimize without cumulative_iters
    +    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    +    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    +    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    +    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    +    runner_2.register_hook(optimizer_hook)
    +    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
    +                                                            ('train', 1)])
    +
    +    # test optimizer works well
    +    assert (runner_1.model.fc.weight < 1).all()
    +    assert (runner_1.model.fc.bias < 1).all()
    +    # test optimizer with cumulative_iters gets the same results
    +    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    +    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    +    shutil.rmtree(runner_1.work_dir)
    +    shutil.rmtree(runner_2.work_dir)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_optimizer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_optimizer.py
    new file mode 100644
    index 000000000..724f45db9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_optimizer.py
    @@ -0,0 +1,640 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import sys
    +import warnings
    +from unittest.mock import MagicMock
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor
    +from mmcv.runner.optimizer import build_optimizer, build_optimizer_constructor
    +from mmcv.runner.optimizer.builder import TORCH_OPTIMIZERS
    +from mmcv.utils.ext_loader import check_ops_exist
    +
    +OPS_AVAILABLE = check_ops_exist()
    +if not OPS_AVAILABLE:
    +    sys.modules['mmcv.ops'] = MagicMock(
    +        DeformConv2d=dict, ModulatedDeformConv2d=dict)
    +
    +
    +class SubModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv1 = nn.Conv2d(2, 2, kernel_size=1, groups=2)
    +        self.gn = nn.GroupNorm(2, 2)
    +        self.param1 = nn.Parameter(torch.ones(1))
    +
    +    def forward(self, x):
    +        return x
    +
    +
    +class ExampleModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.param1 = nn.Parameter(torch.ones(1))
    +        self.conv1 = nn.Conv2d(3, 4, kernel_size=1, bias=False)
    +        self.conv2 = nn.Conv2d(4, 2, kernel_size=1)
    +        self.bn = nn.BatchNorm2d(2)
    +        self.sub = SubModel()
    +        if OPS_AVAILABLE:
    +            from mmcv.ops import DeformConv2dPack
    +            self.dcn = DeformConv2dPack(
    +                3, 4, kernel_size=3, deformable_groups=1)
    +
    +    def forward(self, x):
    +        return x
    +
    +
    +class ExampleDuplicateModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.param1 = nn.Parameter(torch.ones(1))
    +        self.conv1 = nn.Sequential(nn.Conv2d(3, 4, kernel_size=1, bias=False))
    +        self.conv2 = nn.Sequential(nn.Conv2d(4, 2, kernel_size=1))
    +        self.bn = nn.BatchNorm2d(2)
    +        self.sub = SubModel()
    +        self.conv3 = nn.Sequential(nn.Conv2d(3, 4, kernel_size=1, bias=False))
    +        self.conv3[0] = self.conv1[0]
    +        if OPS_AVAILABLE:
    +            from mmcv.ops import DeformConv2dPack
    +            self.dcn = DeformConv2dPack(
    +                3, 4, kernel_size=3, deformable_groups=1)
    +
    +    def forward(self, x):
    +        return x
    +
    +
    +class PseudoDataParallel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.module = ExampleModel()
    +
    +    def forward(self, x):
    +        return x
    +
    +
    +base_lr = 0.01
    +base_wd = 0.0001
    +momentum = 0.9
    +
    +
    +def check_default_optimizer(optimizer, model, prefix=''):
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == base_wd
    +    param_groups = optimizer.param_groups[0]
    +    if OPS_AVAILABLE:
    +        param_names = [
    +            'param1', 'conv1.weight', 'conv2.weight', 'conv2.bias',
    +            'bn.weight', 'bn.bias', 'sub.param1', 'sub.conv1.weight',
    +            'sub.conv1.bias', 'sub.gn.weight', 'sub.gn.bias', 'dcn.weight',
    +            'dcn.conv_offset.weight', 'dcn.conv_offset.bias'
    +        ]
    +    else:
    +        param_names = [
    +            'param1', 'conv1.weight', 'conv2.weight', 'conv2.bias',
    +            'bn.weight', 'bn.bias', 'sub.param1', 'sub.conv1.weight',
    +            'sub.conv1.bias', 'sub.gn.weight', 'sub.gn.bias'
    +        ]
    +    param_dict = dict(model.named_parameters())
    +    assert len(param_groups['params']) == len(param_names)
    +    for i in range(len(param_groups['params'])):
    +        assert torch.equal(param_groups['params'][i],
    +                           param_dict[prefix + param_names[i]])
    +
    +
    +def check_sgd_optimizer(optimizer,
    +                        model,
    +                        prefix='',
    +                        bias_lr_mult=1,
    +                        bias_decay_mult=1,
    +                        norm_decay_mult=1,
    +                        dwconv_decay_mult=1,
    +                        dcn_offset_lr_mult=1,
    +                        bypass_duplicate=False):
    +    param_groups = optimizer.param_groups
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == base_wd
    +    model_parameters = list(model.parameters())
    +    assert len(param_groups) == len(model_parameters)
    +    for i, param in enumerate(model_parameters):
    +        param_group = param_groups[i]
    +        assert torch.equal(param_group['params'][0], param)
    +        assert param_group['momentum'] == momentum
    +
    +    # param1
    +    param1 = param_groups[0]
    +    assert param1['lr'] == base_lr
    +    assert param1['weight_decay'] == base_wd
    +    # conv1.weight
    +    conv1_weight = param_groups[1]
    +    assert conv1_weight['lr'] == base_lr
    +    assert conv1_weight['weight_decay'] == base_wd
    +    # conv2.weight
    +    conv2_weight = param_groups[2]
    +    assert conv2_weight['lr'] == base_lr
    +    assert conv2_weight['weight_decay'] == base_wd
    +    # conv2.bias
    +    conv2_bias = param_groups[3]
    +    assert conv2_bias['lr'] == base_lr * bias_lr_mult
    +    assert conv2_bias['weight_decay'] == base_wd * bias_decay_mult
    +    # bn.weight
    +    bn_weight = param_groups[4]
    +    assert bn_weight['lr'] == base_lr
    +    assert bn_weight['weight_decay'] == base_wd * norm_decay_mult
    +    # bn.bias
    +    bn_bias = param_groups[5]
    +    assert bn_bias['lr'] == base_lr
    +    assert bn_bias['weight_decay'] == base_wd * norm_decay_mult
    +    # sub.param1
    +    sub_param1 = param_groups[6]
    +    assert sub_param1['lr'] == base_lr
    +    assert sub_param1['weight_decay'] == base_wd
    +    # sub.conv1.weight
    +    sub_conv1_weight = param_groups[7]
    +    assert sub_conv1_weight['lr'] == base_lr
    +    assert sub_conv1_weight['weight_decay'] == base_wd * dwconv_decay_mult
    +    # sub.conv1.bias
    +    sub_conv1_bias = param_groups[8]
    +    assert sub_conv1_bias['lr'] == base_lr * bias_lr_mult
    +    assert sub_conv1_bias['weight_decay'] == base_wd * dwconv_decay_mult
    +    # sub.gn.weight
    +    sub_gn_weight = param_groups[9]
    +    assert sub_gn_weight['lr'] == base_lr
    +    assert sub_gn_weight['weight_decay'] == base_wd * norm_decay_mult
    +    # sub.gn.bias
    +    sub_gn_bias = param_groups[10]
    +    assert sub_gn_bias['lr'] == base_lr
    +    assert sub_gn_bias['weight_decay'] == base_wd * norm_decay_mult
    +
    +    if torch.cuda.is_available():
    +        dcn_conv_weight = param_groups[11]
    +        assert dcn_conv_weight['lr'] == base_lr
    +        assert dcn_conv_weight['weight_decay'] == base_wd
    +
    +        dcn_offset_weight = param_groups[12]
    +        assert dcn_offset_weight['lr'] == base_lr * dcn_offset_lr_mult
    +        assert dcn_offset_weight['weight_decay'] == base_wd
    +
    +        dcn_offset_bias = param_groups[13]
    +        assert dcn_offset_bias['lr'] == base_lr * dcn_offset_lr_mult
    +        assert dcn_offset_bias['weight_decay'] == base_wd
    +
    +
    +def test_default_optimizer_constructor():
    +    model = ExampleModel()
    +
    +    with pytest.raises(TypeError):
    +        # optimizer_cfg must be a dict
    +        optimizer_cfg = []
    +        optim_constructor = DefaultOptimizerConstructor(optimizer_cfg)
    +        optim_constructor(model)
    +
    +    with pytest.raises(TypeError):
    +        # paramwise_cfg must be a dict or None
    +        optimizer_cfg = dict(lr=0.0001)
    +        paramwise_cfg = ['error']
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg, paramwise_cfg)
    +        optim_constructor(model)
    +
    +    with pytest.raises(ValueError):
    +        # bias_decay_mult/norm_decay_mult is specified but weight_decay is None
    +        optimizer_cfg = dict(lr=0.0001, weight_decay=None)
    +        paramwise_cfg = dict(bias_decay_mult=1, norm_decay_mult=1)
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg, paramwise_cfg)
    +        optim_constructor(model)
    +
    +    # basic config with ExampleModel
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg)
    +    optimizer = optim_constructor(model)
    +    check_default_optimizer(optimizer, model)
    +
    +    # basic config with pseudo data parallel
    +    model = PseudoDataParallel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = None
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg)
    +    optimizer = optim_constructor(model)
    +    check_default_optimizer(optimizer, model, prefix='module.')
    +
    +    # basic config with DataParallel
    +    if torch.cuda.is_available():
    +        model = torch.nn.DataParallel(ExampleModel())
    +        optimizer_cfg = dict(
    +            type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +        paramwise_cfg = None
    +        optim_constructor = DefaultOptimizerConstructor(optimizer_cfg)
    +        optimizer = optim_constructor(model)
    +        check_default_optimizer(optimizer, model, prefix='module.')
    +
    +    # Empty paramwise_cfg with ExampleModel
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict()
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    check_default_optimizer(optimizer, model)
    +
    +    # Empty paramwise_cfg with ExampleModel and no grad
    +    model = ExampleModel()
    +    for param in model.parameters():
    +        param.requires_grad = False
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict()
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg)
    +    optimizer = optim_constructor(model)
    +    check_default_optimizer(optimizer, model)
    +
    +    # paramwise_cfg with ExampleModel
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict(
    +        bias_lr_mult=2,
    +        bias_decay_mult=0.5,
    +        norm_decay_mult=0,
    +        dwconv_decay_mult=0.1,
    +        dcn_offset_lr_mult=0.1)
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    check_sgd_optimizer(optimizer, model, **paramwise_cfg)
    +
    +    # paramwise_cfg with ExampleModel, weight decay is None
    +    model = ExampleModel()
    +    optimizer_cfg = dict(type='Rprop', lr=base_lr)
    +    paramwise_cfg = dict(bias_lr_mult=2)
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +
    +    param_groups = optimizer.param_groups
    +    assert isinstance(optimizer, torch.optim.Rprop)
    +    assert optimizer.defaults['lr'] == base_lr
    +    model_parameters = list(model.parameters())
    +    assert len(param_groups) == len(model_parameters)
    +    for i, param in enumerate(model_parameters):
    +        param_group = param_groups[i]
    +        assert torch.equal(param_group['params'][0], param)
    +    # param1
    +    assert param_groups[0]['lr'] == base_lr
    +    # conv1.weight
    +    assert param_groups[1]['lr'] == base_lr
    +    # conv2.weight
    +    assert param_groups[2]['lr'] == base_lr
    +    # conv2.bias
    +    assert param_groups[3]['lr'] == base_lr * paramwise_cfg['bias_lr_mult']
    +    # bn.weight
    +    assert param_groups[4]['lr'] == base_lr
    +    # bn.bias
    +    assert param_groups[5]['lr'] == base_lr
    +    # sub.param1
    +    assert param_groups[6]['lr'] == base_lr
    +    # sub.conv1.weight
    +    assert param_groups[7]['lr'] == base_lr
    +    # sub.conv1.bias
    +    assert param_groups[8]['lr'] == base_lr * paramwise_cfg['bias_lr_mult']
    +    # sub.gn.weight
    +    assert param_groups[9]['lr'] == base_lr
    +    # sub.gn.bias
    +    assert param_groups[10]['lr'] == base_lr
    +
    +    if OPS_AVAILABLE:
    +        # dcn.weight
    +        assert param_groups[11]['lr'] == base_lr
    +        # dcn.conv_offset.weight
    +        assert param_groups[12]['lr'] == base_lr
    +        # dcn.conv_offset.bias
    +        assert param_groups[13]['lr'] == base_lr
    +
    +    # paramwise_cfg with pseudo data parallel
    +    model = PseudoDataParallel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict(
    +        bias_lr_mult=2,
    +        bias_decay_mult=0.5,
    +        norm_decay_mult=0,
    +        dwconv_decay_mult=0.1,
    +        dcn_offset_lr_mult=0.1)
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    check_sgd_optimizer(optimizer, model, prefix='module.', **paramwise_cfg)
    +
    +    # paramwise_cfg with DataParallel
    +    if torch.cuda.is_available():
    +        model = torch.nn.DataParallel(ExampleModel())
    +        optimizer_cfg = dict(
    +            type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +        paramwise_cfg = dict(
    +            bias_lr_mult=2,
    +            bias_decay_mult=0.5,
    +            norm_decay_mult=0,
    +            dwconv_decay_mult=0.1,
    +            dcn_offset_lr_mult=0.1)
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg, paramwise_cfg)
    +        optimizer = optim_constructor(model)
    +        check_sgd_optimizer(
    +            optimizer, model, prefix='module.', **paramwise_cfg)
    +
    +    # paramwise_cfg with ExampleModel and no grad
    +    for param in model.parameters():
    +        param.requires_grad = False
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    param_groups = optimizer.param_groups
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == base_wd
    +    for i, (name, param) in enumerate(model.named_parameters()):
    +        param_group = param_groups[i]
    +        assert torch.equal(param_group['params'][0], param)
    +        assert param_group['momentum'] == momentum
    +        assert param_group['lr'] == base_lr
    +        assert param_group['weight_decay'] == base_wd
    +
    +    # paramwise_cfg with bypass_duplicate option
    +    model = ExampleDuplicateModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict(
    +        bias_lr_mult=2,
    +        bias_decay_mult=0.5,
    +        norm_decay_mult=0,
    +        dwconv_decay_mult=0.1)
    +    with pytest.raises(ValueError) as excinfo:
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg, paramwise_cfg)
    +        optim_constructor(model)
    +        assert 'some parameters appear in more than one parameter ' \
    +               'group' == excinfo.value
    +
    +    paramwise_cfg = dict(
    +        bias_lr_mult=2,
    +        bias_decay_mult=0.5,
    +        norm_decay_mult=0,
    +        dwconv_decay_mult=0.1,
    +        dcn_offset_lr_mult=0.1,
    +        bypass_duplicate=True)
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    with warnings.catch_warnings(record=True) as w:
    +        optimizer = optim_constructor(model)
    +        warnings.simplefilter('always')
    +        assert len(w) == 1
    +        assert str(w[0].message) == 'conv3.0 is duplicate. It is skipped ' \
    +                                    'since bypass_duplicate=True'
    +    model_parameters = list(model.parameters())
    +    num_params = 14 if OPS_AVAILABLE else 11
    +    assert len(optimizer.param_groups) == len(model_parameters) == num_params
    +    check_sgd_optimizer(optimizer, model, **paramwise_cfg)
    +
    +    # test DefaultOptimizerConstructor with custom_keys and ExampleModel
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict(
    +        custom_keys={
    +            'param1': dict(lr_mult=10),
    +            'sub': dict(lr_mult=0.1, decay_mult=0),
    +            'sub.gn': dict(lr_mult=0.01),
    +            'non_exist_key': dict(lr_mult=0.0)
    +        },
    +        norm_decay_mult=0.5)
    +
    +    with pytest.raises(TypeError):
    +        # custom_keys should be a dict
    +        paramwise_cfg_ = dict(custom_keys=[0.1, 0.0001])
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg, paramwise_cfg_)
    +        optimizer = optim_constructor(model)
    +
    +    with pytest.raises(ValueError):
    +        # if 'decay_mult' is specified in custom_keys, weight_decay should be
    +        # specified
    +        optimizer_cfg_ = dict(type='SGD', lr=0.01)
    +        paramwise_cfg_ = dict(custom_keys={'.backbone': dict(decay_mult=0.5)})
    +        optim_constructor = DefaultOptimizerConstructor(
    +            optimizer_cfg_, paramwise_cfg_)
    +        optimizer = optim_constructor(model)
    +
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    # check optimizer type and default config
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == base_wd
    +
    +    # check params groups
    +    param_groups = optimizer.param_groups
    +
    +    groups = []
    +    group_settings = []
    +    # group 1, matches of 'param1'
    +    # 'param1' is the longest match for 'sub.param1'
    +    groups.append(['param1', 'sub.param1'])
    +    group_settings.append({
    +        'lr': base_lr * 10,
    +        'momentum': momentum,
    +        'weight_decay': base_wd,
    +    })
    +    # group 2, matches of 'sub.gn'
    +    groups.append(['sub.gn.weight', 'sub.gn.bias'])
    +    group_settings.append({
    +        'lr': base_lr * 0.01,
    +        'momentum': momentum,
    +        'weight_decay': base_wd,
    +    })
    +    # group 3, matches of 'sub'
    +    groups.append(['sub.conv1.weight', 'sub.conv1.bias'])
    +    group_settings.append({
    +        'lr': base_lr * 0.1,
    +        'momentum': momentum,
    +        'weight_decay': 0,
    +    })
    +    # group 4, bn is configured by 'norm_decay_mult'
    +    groups.append(['bn.weight', 'bn.bias'])
    +    group_settings.append({
    +        'lr': base_lr,
    +        'momentum': momentum,
    +        'weight_decay': base_wd * 0.5,
    +    })
    +    # group 5, default group
    +    groups.append(['conv1.weight', 'conv2.weight', 'conv2.bias'])
    +    group_settings.append({
    +        'lr': base_lr,
    +        'momentum': momentum,
    +        'weight_decay': base_wd
    +    })
    +
    +    num_params = 14 if OPS_AVAILABLE else 11
    +    assert len(param_groups) == num_params
    +    for i, (name, param) in enumerate(model.named_parameters()):
    +        assert torch.equal(param_groups[i]['params'][0], param)
    +        for group, settings in zip(groups, group_settings):
    +            if name in group:
    +                for setting in settings:
    +                    assert param_groups[i][setting] == settings[
    +                        setting], f'{name} {setting}'
    +
    +    # test DefaultOptimizerConstructor with custom_keys and ExampleModel 2
    +    model = ExampleModel()
    +    optimizer_cfg = dict(type='SGD', lr=base_lr, momentum=momentum)
    +    paramwise_cfg = dict(custom_keys={'param1': dict(lr_mult=10)})
    +
    +    optim_constructor = DefaultOptimizerConstructor(optimizer_cfg,
    +                                                    paramwise_cfg)
    +    optimizer = optim_constructor(model)
    +    # check optimizer type and default config
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == 0
    +
    +    # check params groups
    +    param_groups = optimizer.param_groups
    +
    +    groups = []
    +    group_settings = []
    +    # group 1, matches of 'param1'
    +    groups.append(['param1', 'sub.param1'])
    +    group_settings.append({
    +        'lr': base_lr * 10,
    +        'momentum': momentum,
    +        'weight_decay': 0,
    +    })
    +    # group 2, default group
    +    groups.append([
    +        'sub.conv1.weight', 'sub.conv1.bias', 'sub.gn.weight', 'sub.gn.bias',
    +        'conv1.weight', 'conv2.weight', 'conv2.bias', 'bn.weight', 'bn.bias'
    +    ])
    +    group_settings.append({
    +        'lr': base_lr,
    +        'momentum': momentum,
    +        'weight_decay': 0
    +    })
    +
    +    num_params = 14 if OPS_AVAILABLE else 11
    +    assert len(param_groups) == num_params
    +    for i, (name, param) in enumerate(model.named_parameters()):
    +        assert torch.equal(param_groups[i]['params'][0], param)
    +        for group, settings in zip(groups, group_settings):
    +            if name in group:
    +                for setting in settings:
    +                    assert param_groups[i][setting] == settings[
    +                        setting], f'{name} {setting}'
    +
    +
    +def test_torch_optimizers():
    +    torch_optimizers = [
    +        'ASGD', 'Adadelta', 'Adagrad', 'Adam', 'AdamW', 'Adamax', 'LBFGS',
    +        'Optimizer', 'RMSprop', 'Rprop', 'SGD', 'SparseAdam'
    +    ]
    +    assert set(torch_optimizers).issubset(set(TORCH_OPTIMIZERS))
    +
    +
    +def test_build_optimizer_constructor():
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    paramwise_cfg = dict(
    +        bias_lr_mult=2,
    +        bias_decay_mult=0.5,
    +        norm_decay_mult=0,
    +        dwconv_decay_mult=0.1,
    +        dcn_offset_lr_mult=0.1)
    +    optim_constructor_cfg = dict(
    +        type='DefaultOptimizerConstructor',
    +        optimizer_cfg=optimizer_cfg,
    +        paramwise_cfg=paramwise_cfg)
    +    optim_constructor = build_optimizer_constructor(optim_constructor_cfg)
    +    optimizer = optim_constructor(model)
    +    check_sgd_optimizer(optimizer, model, **paramwise_cfg)
    +
    +    from mmcv.runner import OPTIMIZERS
    +    from mmcv.utils import build_from_cfg
    +
    +    @OPTIMIZER_BUILDERS.register_module()
    +    class MyOptimizerConstructor(DefaultOptimizerConstructor):
    +
    +        def __call__(self, model):
    +            if hasattr(model, 'module'):
    +                model = model.module
    +
    +            conv1_lr_mult = self.paramwise_cfg.get('conv1_lr_mult', 1.)
    +
    +            params = []
    +            for name, param in model.named_parameters():
    +                param_group = {'params': [param]}
    +                if name.startswith('conv1') and param.requires_grad:
    +                    param_group['lr'] = self.base_lr * conv1_lr_mult
    +                params.append(param_group)
    +            optimizer_cfg['params'] = params
    +
    +            return build_from_cfg(optimizer_cfg, OPTIMIZERS)
    +
    +    paramwise_cfg = dict(conv1_lr_mult=5)
    +    optim_constructor_cfg = dict(
    +        type='MyOptimizerConstructor',
    +        optimizer_cfg=optimizer_cfg,
    +        paramwise_cfg=paramwise_cfg)
    +    optim_constructor = build_optimizer_constructor(optim_constructor_cfg)
    +    optimizer = optim_constructor(model)
    +
    +    param_groups = optimizer.param_groups
    +    assert isinstance(optimizer, torch.optim.SGD)
    +    assert optimizer.defaults['lr'] == base_lr
    +    assert optimizer.defaults['momentum'] == momentum
    +    assert optimizer.defaults['weight_decay'] == base_wd
    +    for i, param in enumerate(model.parameters()):
    +        param_group = param_groups[i]
    +        assert torch.equal(param_group['params'][0], param)
    +        assert param_group['momentum'] == momentum
    +    # conv1.weight
    +    assert param_groups[1]['lr'] == base_lr * paramwise_cfg['conv1_lr_mult']
    +    assert param_groups[1]['weight_decay'] == base_wd
    +
    +
    +def test_build_optimizer():
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
    +    optimizer = build_optimizer(model, optimizer_cfg)
    +    check_default_optimizer(optimizer, model)
    +
    +    model = ExampleModel()
    +    optimizer_cfg = dict(
    +        type='SGD',
    +        lr=base_lr,
    +        weight_decay=base_wd,
    +        momentum=momentum,
    +        paramwise_cfg=dict(
    +            bias_lr_mult=2,
    +            bias_decay_mult=0.5,
    +            norm_decay_mult=0,
    +            dwconv_decay_mult=0.1,
    +            dcn_offset_lr_mult=0.1))
    +    optimizer = build_optimizer(model, optimizer_cfg)
    +    check_sgd_optimizer(optimizer, model, **optimizer_cfg['paramwise_cfg'])
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_runner.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_runner.py
    new file mode 100644
    index 000000000..06e1d620e
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_runner.py
    @@ -0,0 +1,288 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +import os
    +import os.path as osp
    +import platform
    +import random
    +import string
    +import tempfile
    +
    +import pytest
    +import torch
    +import torch.nn as nn
    +
    +from mmcv.parallel import MMDataParallel
    +from mmcv.runner import (RUNNERS, EpochBasedRunner, IterBasedRunner,
    +                         build_runner)
    +from mmcv.runner.hooks import IterTimerHook
    +
    +
    +class OldStyleModel(nn.Module):
    +
    +    def __init__(self):
    +        super().__init__()
    +        self.conv = nn.Conv2d(3, 3, 1)
    +
    +
    +class Model(OldStyleModel):
    +
    +    def train_step(self):
    +        pass
    +
    +    def val_step(self):
    +        pass
    +
    +
    +def test_build_runner():
    +    temp_root = tempfile.gettempdir()
    +    dir_name = ''.join(
    +        [random.choice(string.ascii_letters) for _ in range(10)])
    +
    +    default_args = dict(
    +        model=Model(),
    +        work_dir=osp.join(temp_root, dir_name),
    +        logger=logging.getLogger())
    +    cfg = dict(type='EpochBasedRunner', max_epochs=1)
    +    runner = build_runner(cfg, default_args=default_args)
    +    assert runner._max_epochs == 1
    +    cfg = dict(type='IterBasedRunner', max_iters=1)
    +    runner = build_runner(cfg, default_args=default_args)
    +    assert runner._max_iters == 1
    +
    +    with pytest.raises(ValueError, match='Only one of'):
    +        cfg = dict(type='IterBasedRunner', max_epochs=1, max_iters=1)
    +        runner = build_runner(cfg, default_args=default_args)
    +
    +
    +@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
    +def test_epoch_based_runner(runner_class):
    +    with pytest.warns(DeprecationWarning):
    +        # batch_processor is deprecated
    +        model = OldStyleModel()
    +
    +        def batch_processor():
    +            pass
    +
    +        _ = runner_class(model, batch_processor, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # batch_processor must be callable
    +        model = OldStyleModel()
    +        _ = runner_class(model, batch_processor=0, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # optimizer must be a optimizer or a dict of optimizers
    +        model = Model()
    +        optimizer = 'NotAOptimizer'
    +        _ = runner_class(
    +            model, optimizer=optimizer, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # optimizer must be a optimizer or a dict of optimizers
    +        model = Model()
    +        optimizers = dict(optim1=torch.optim.Adam(), optim2='NotAOptimizer')
    +        _ = runner_class(
    +            model, optimizer=optimizers, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # logger must be a logging.Logger
    +        model = Model()
    +        _ = runner_class(model, logger=None)
    +
    +    with pytest.raises(TypeError):
    +        # meta must be a dict or None
    +        model = Model()
    +        _ = runner_class(model, logger=logging.getLogger(), meta=['list'])
    +
    +    with pytest.raises(AssertionError):
    +        # model must implement the method train_step()
    +        model = OldStyleModel()
    +        _ = runner_class(model, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # work_dir must be a str or None
    +        model = Model()
    +        _ = runner_class(model, work_dir=1, logger=logging.getLogger())
    +
    +    with pytest.raises(RuntimeError):
    +        # batch_processor and train_step() cannot be both set
    +
    +        def batch_processor():
    +            pass
    +
    +        model = Model()
    +        _ = runner_class(model, batch_processor, logger=logging.getLogger())
    +
    +    # test work_dir
    +    model = Model()
    +    temp_root = tempfile.gettempdir()
    +    dir_name = ''.join(
    +        [random.choice(string.ascii_letters) for _ in range(10)])
    +    work_dir = osp.join(temp_root, dir_name)
    +    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
    +    assert osp.isdir(work_dir)
    +    _ = runner_class(model, work_dir=work_dir, logger=logging.getLogger())
    +    assert osp.isdir(work_dir)
    +    os.removedirs(work_dir)
    +
    +
    +@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
    +def test_runner_with_parallel(runner_class):
    +
    +    def batch_processor():
    +        pass
    +
    +    model = MMDataParallel(OldStyleModel())
    +    _ = runner_class(model, batch_processor, logger=logging.getLogger())
    +
    +    model = MMDataParallel(Model())
    +    _ = runner_class(model, logger=logging.getLogger())
    +
    +    with pytest.raises(RuntimeError):
    +        # batch_processor and train_step() cannot be both set
    +
    +        def batch_processor():
    +            pass
    +
    +        model = MMDataParallel(Model())
    +        _ = runner_class(model, batch_processor, logger=logging.getLogger())
    +
    +
    +@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
    +def test_save_checkpoint(runner_class):
    +    model = Model()
    +    runner = runner_class(model=model, logger=logging.getLogger())
    +
    +    with pytest.raises(TypeError):
    +        # meta should be None or dict
    +        runner.save_checkpoint('.', meta=list())
    +
    +    with tempfile.TemporaryDirectory() as root:
    +        runner.save_checkpoint(root)
    +
    +        latest_path = osp.join(root, 'latest.pth')
    +        assert osp.exists(latest_path)
    +
    +        if isinstance(runner, EpochBasedRunner):
    +            first_ckp_path = osp.join(root, 'epoch_1.pth')
    +        elif isinstance(runner, IterBasedRunner):
    +            first_ckp_path = osp.join(root, 'iter_1.pth')
    +
    +        assert osp.exists(first_ckp_path)
    +
    +        if platform.system() != 'Windows':
    +            assert osp.realpath(latest_path) == osp.realpath(first_ckp_path)
    +        else:
    +            # use copy instead of symlink on windows
    +            pass
    +
    +        torch.load(latest_path)
    +
    +
    +@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
    +def test_build_lr_momentum_hook(runner_class):
    +    model = Model()
    +    runner = runner_class(model=model, logger=logging.getLogger())
    +
    +    # test policy that is already title
    +    lr_config = dict(
    +        policy='CosineAnnealing',
    +        by_epoch=False,
    +        min_lr_ratio=0,
    +        warmup_iters=2,
    +        warmup_ratio=0.9)
    +    runner.register_lr_hook(lr_config)
    +    assert len(runner.hooks) == 1
    +
    +    # test policy that is already title
    +    lr_config = dict(
    +        policy='Cyclic',
    +        by_epoch=False,
    +        target_ratio=(10, 1),
    +        cyclic_times=1,
    +        step_ratio_up=0.4)
    +    runner.register_lr_hook(lr_config)
    +    assert len(runner.hooks) == 2
    +
    +    # test policy that is not title
    +    lr_config = dict(
    +        policy='cyclic',
    +        by_epoch=False,
    +        target_ratio=(0.85 / 0.95, 1),
    +        cyclic_times=1,
    +        step_ratio_up=0.4)
    +    runner.register_lr_hook(lr_config)
    +    assert len(runner.hooks) == 3
    +
    +    # test policy that is title
    +    lr_config = dict(
    +        policy='Step',
    +        warmup='linear',
    +        warmup_iters=500,
    +        warmup_ratio=1.0 / 3,
    +        step=[8, 11])
    +    runner.register_lr_hook(lr_config)
    +    assert len(runner.hooks) == 4
    +
    +    # test policy that is not title
    +    lr_config = dict(
    +        policy='step',
    +        warmup='linear',
    +        warmup_iters=500,
    +        warmup_ratio=1.0 / 3,
    +        step=[8, 11])
    +    runner.register_lr_hook(lr_config)
    +    assert len(runner.hooks) == 5
    +
    +    # test policy that is already title
    +    mom_config = dict(
    +        policy='CosineAnnealing',
    +        min_momentum_ratio=0.99 / 0.95,
    +        by_epoch=False,
    +        warmup_iters=2,
    +        warmup_ratio=0.9 / 0.95)
    +    runner.register_momentum_hook(mom_config)
    +    assert len(runner.hooks) == 6
    +
    +    # test policy that is already title
    +    mom_config = dict(
    +        policy='Cyclic',
    +        by_epoch=False,
    +        target_ratio=(0.85 / 0.95, 1),
    +        cyclic_times=1,
    +        step_ratio_up=0.4)
    +    runner.register_momentum_hook(mom_config)
    +    assert len(runner.hooks) == 7
    +
    +    # test policy that is already title
    +    mom_config = dict(
    +        policy='cyclic',
    +        by_epoch=False,
    +        target_ratio=(0.85 / 0.95, 1),
    +        cyclic_times=1,
    +        step_ratio_up=0.4)
    +    runner.register_momentum_hook(mom_config)
    +    assert len(runner.hooks) == 8
    +
    +
    +@pytest.mark.parametrize('runner_class', RUNNERS.module_dict.values())
    +def test_register_timer_hook(runner_class):
    +    model = Model()
    +    runner = runner_class(model=model, logger=logging.getLogger())
    +
    +    # test register None
    +    timer_config = None
    +    runner.register_timer_hook(timer_config)
    +    assert len(runner.hooks) == 0
    +
    +    # test register IterTimerHook with config
    +    timer_config = dict(type='IterTimerHook')
    +    runner.register_timer_hook(timer_config)
    +    assert len(runner.hooks) == 1
    +    assert isinstance(runner.hooks[0], IterTimerHook)
    +
    +    # test register IterTimerHook
    +    timer_config = IterTimerHook()
    +    runner.register_timer_hook(timer_config)
    +    assert len(runner.hooks) == 2
    +    assert isinstance(runner.hooks[1], IterTimerHook)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_utils.py
    new file mode 100644
    index 000000000..3d2d18146
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_runner/test_utils.py
    @@ -0,0 +1,39 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import random
    +
    +import numpy as np
    +import torch
    +
    +from mmcv.runner import set_random_seed
    +from mmcv.utils import TORCH_VERSION, digit_version
    +
    +is_rocm_pytorch = False
    +if digit_version(TORCH_VERSION) >= digit_version('1.5'):
    +    from torch.utils.cpp_extension import ROCM_HOME
    +    is_rocm_pytorch = True if ((torch.version.hip is not None) and
    +                               (ROCM_HOME is not None)) else False
    +
    +
    +def test_set_random_seed():
    +    set_random_seed(0)
    +    a_random = random.randint(0, 10)
    +    a_np_random = np.random.rand(2, 2)
    +    a_torch_random = torch.rand(2, 2)
    +    assert torch.backends.cudnn.deterministic is False
    +    assert torch.backends.cudnn.benchmark is False
    +    assert os.environ['PYTHONHASHSEED'] == str(0)
    +
    +    set_random_seed(0, True)
    +    b_random = random.randint(0, 10)
    +    b_np_random = np.random.rand(2, 2)
    +    b_torch_random = torch.rand(2, 2)
    +    assert torch.backends.cudnn.deterministic is True
    +    if is_rocm_pytorch:
    +        assert torch.backends.cudnn.benchmark is True
    +    else:
    +        assert torch.backends.cudnn.benchmark is False
    +
    +    assert a_random == b_random
    +    assert np.equal(a_np_random, b_np_random).all()
    +    assert torch.equal(a_torch_random, b_torch_random)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_config.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_config.py
    new file mode 100644
    index 000000000..ab54422ac
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_config.py
    @@ -0,0 +1,610 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import argparse
    +import copy
    +import json
    +import os
    +import os.path as osp
    +import shutil
    +import tempfile
    +from pathlib import Path
    +
    +import pytest
    +import yaml
    +
    +from mmcv import Config, ConfigDict, DictAction, dump, load
    +
    +data_path = osp.join(osp.dirname(osp.dirname(__file__)), 'data')
    +
    +
    +def test_construct():
    +    cfg = Config()
    +    assert cfg.filename is None
    +    assert cfg.text == ''
    +    assert len(cfg) == 0
    +    assert cfg._cfg_dict == {}
    +
    +    with pytest.raises(TypeError):
    +        Config([0, 1])
    +
    +    cfg_dict = dict(item1=[1, 2], item2=dict(a=0), item3=True, item4='test')
    +    # test a.py
    +    cfg_file = osp.join(data_path, 'config/a.py')
    +    cfg_file_path = Path(cfg_file)
    +    file_list = [cfg_file, cfg_file_path]
    +    for item in file_list:
    +        cfg = Config(cfg_dict, filename=item)
    +        assert isinstance(cfg, Config)
    +        assert isinstance(cfg.filename, str) and cfg.filename == str(item)
    +        assert cfg.text == open(item).read()
    +        assert cfg.dump() == cfg.pretty_text
    +        with tempfile.TemporaryDirectory() as temp_config_dir:
    +            dump_file = osp.join(temp_config_dir, 'a.py')
    +            cfg.dump(dump_file)
    +            assert cfg.dump() == open(dump_file).read()
    +            assert Config.fromfile(dump_file)
    +
    +    # test b.json
    +    cfg_file = osp.join(data_path, 'config/b.json')
    +    cfg = Config(cfg_dict, filename=cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.text == open(cfg_file).read()
    +    assert cfg.dump() == json.dumps(cfg_dict)
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        dump_file = osp.join(temp_config_dir, 'b.json')
    +        cfg.dump(dump_file)
    +        assert cfg.dump() == open(dump_file).read()
    +        assert Config.fromfile(dump_file)
    +
    +    # test c.yaml
    +    cfg_file = osp.join(data_path, 'config/c.yaml')
    +    cfg = Config(cfg_dict, filename=cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.text == open(cfg_file).read()
    +    assert cfg.dump() == yaml.dump(cfg_dict)
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        dump_file = osp.join(temp_config_dir, 'c.yaml')
    +        cfg.dump(dump_file)
    +        assert cfg.dump() == open(dump_file).read()
    +        assert Config.fromfile(dump_file)
    +
    +    # test h.py
    +    cfg_file = osp.join(data_path, 'config/h.py')
    +    path = osp.join(osp.dirname(__file__), 'data', 'config')
    +    # the value of osp.dirname(__file__) may be `D:\a\xxx` in windows
    +    # environment. When dumping the cfg_dict to file, `D:\a\xxx` will be
    +    # converted to `D:\x07\xxx` and it will cause unexpected result when
    +    # checking whether `D:\a\xxx` equals to `D:\x07\xxx`. Therefore, we forcely
    +    # convert a string representation of the path with forward slashes (/)
    +    path = Path(path).as_posix()
    +    cfg_dict = dict(item1='h.py', item2=path, item3='abc_h')
    +    cfg = Config(cfg_dict, filename=cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.text == open(cfg_file).read()
    +    assert cfg.dump() == cfg.pretty_text
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        dump_file = osp.join(temp_config_dir, 'h.py')
    +        cfg.dump(dump_file)
    +        assert cfg.dump() == open(dump_file).read()
    +        assert Config.fromfile(dump_file)
    +        assert Config.fromfile(dump_file)['item1'] == cfg_dict['item1']
    +        assert Config.fromfile(dump_file)['item2'] == cfg_dict['item2']
    +        assert Config.fromfile(dump_file)['item3'] == cfg_dict['item3']
    +
    +    # test no use_predefined_variable
    +    cfg_dict = dict(
    +        item1='{{fileBasename}}',
    +        item2='{{ fileDirname}}',
    +        item3='abc_{{ fileBasenameNoExtension }}')
    +    assert Config.fromfile(cfg_file, False)
    +    assert Config.fromfile(cfg_file, False)['item1'] == cfg_dict['item1']
    +    assert Config.fromfile(cfg_file, False)['item2'] == cfg_dict['item2']
    +    assert Config.fromfile(cfg_file, False)['item3'] == cfg_dict['item3']
    +
    +    # test p.yaml
    +    cfg_file = osp.join(data_path, 'config/p.yaml')
    +    cfg_dict = dict(item1=osp.join(osp.dirname(__file__), 'data', 'config'))
    +    cfg = Config(cfg_dict, filename=cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.text == open(cfg_file).read()
    +    assert cfg.dump() == yaml.dump(cfg_dict)
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        dump_file = osp.join(temp_config_dir, 'p.yaml')
    +        cfg.dump(dump_file)
    +        assert cfg.dump() == open(dump_file).read()
    +        assert Config.fromfile(dump_file)
    +        assert Config.fromfile(dump_file)['item1'] == cfg_dict['item1']
    +
    +    # test no use_predefined_variable
    +    assert Config.fromfile(cfg_file, False)
    +    assert Config.fromfile(cfg_file, False)['item1'] == '{{ fileDirname }}'
    +
    +    # test o.json
    +    cfg_file = osp.join(data_path, 'config/o.json')
    +    cfg_dict = dict(item1=osp.join(osp.dirname(__file__), 'data', 'config'))
    +    cfg = Config(cfg_dict, filename=cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.text == open(cfg_file).read()
    +    assert cfg.dump() == json.dumps(cfg_dict)
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        dump_file = osp.join(temp_config_dir, 'o.json')
    +        cfg.dump(dump_file)
    +        assert cfg.dump() == open(dump_file).read()
    +        assert Config.fromfile(dump_file)
    +        assert Config.fromfile(dump_file)['item1'] == cfg_dict['item1']
    +
    +    # test no use_predefined_variable
    +    assert Config.fromfile(cfg_file, False)
    +    assert Config.fromfile(cfg_file, False)['item1'] == '{{ fileDirname }}'
    +
    +
    +def test_fromfile():
    +    for filename in ['a.py', 'a.b.py', 'b.json', 'c.yaml']:
    +        cfg_file = osp.join(data_path, 'config', filename)
    +        cfg_file_path = Path(cfg_file)
    +        file_list = [cfg_file, cfg_file_path]
    +        for item in file_list:
    +            cfg = Config.fromfile(item)
    +            assert isinstance(cfg, Config)
    +            assert isinstance(cfg.filename, str) and cfg.filename == str(item)
    +            assert cfg.text == osp.abspath(osp.expanduser(item)) + '\n' + \
    +                open(item).read()
    +
    +    # test custom_imports for Config.fromfile
    +    cfg_file = osp.join(data_path, 'config', 'q.py')
    +    imported_file = osp.join(data_path, 'config', 'r.py')
    +    target_pkg = osp.join(osp.dirname(__file__), 'r.py')
    +
    +    # Since the imported config will be regarded as a tmp file
    +    # it should be copied to the directory at the same level
    +    shutil.copy(imported_file, target_pkg)
    +    Config.fromfile(cfg_file, import_custom_modules=True)
    +
    +    assert os.environ.pop('TEST_VALUE') == 'test'
    +    os.remove(target_pkg)
    +
    +    with pytest.raises(FileNotFoundError):
    +        Config.fromfile('no_such_file.py')
    +    with pytest.raises(IOError):
    +        Config.fromfile(osp.join(data_path, 'color.jpg'))
    +
    +
    +def test_fromstring():
    +    for filename in ['a.py', 'a.b.py', 'b.json', 'c.yaml']:
    +        cfg_file = osp.join(data_path, 'config', filename)
    +        file_format = osp.splitext(filename)[-1]
    +        in_cfg = Config.fromfile(cfg_file)
    +
    +        out_cfg = Config.fromstring(in_cfg.pretty_text, '.py')
    +        assert in_cfg._cfg_dict == out_cfg._cfg_dict
    +
    +        cfg_str = open(cfg_file).read()
    +        out_cfg = Config.fromstring(cfg_str, file_format)
    +        assert in_cfg._cfg_dict == out_cfg._cfg_dict
    +
    +    # test pretty_text only supports py file format
    +    cfg_file = osp.join(data_path, 'config', 'b.json')
    +    in_cfg = Config.fromfile(cfg_file)
    +    with pytest.raises(Exception):
    +        Config.fromstring(in_cfg.pretty_text, '.json')
    +
    +    # test file format error
    +    cfg_str = open(cfg_file).read()
    +    with pytest.raises(Exception):
    +        Config.fromstring(cfg_str, '.py')
    +
    +
    +def test_merge_from_base():
    +    cfg_file = osp.join(data_path, 'config/d.py')
    +    cfg = Config.fromfile(cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    base_cfg_file = osp.join(data_path, 'config/base.py')
    +    merge_text = osp.abspath(osp.expanduser(base_cfg_file)) + '\n' + \
    +        open(base_cfg_file).read()
    +    merge_text += '\n' + osp.abspath(osp.expanduser(cfg_file)) + '\n' + \
    +                  open(cfg_file).read()
    +    assert cfg.text == merge_text
    +    assert cfg.item1 == [2, 3]
    +    assert cfg.item2.a == 1
    +    assert cfg.item3 is False
    +    assert cfg.item4 == 'test_base'
    +
    +    with pytest.raises(TypeError):
    +        Config.fromfile(osp.join(data_path, 'config/e.py'))
    +
    +
    +def test_merge_from_multiple_bases():
    +    cfg_file = osp.join(data_path, 'config/l.py')
    +    cfg = Config.fromfile(cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    # cfg.field
    +    assert cfg.item1 == [1, 2]
    +    assert cfg.item2.a == 0
    +    assert cfg.item3 is False
    +    assert cfg.item4 == 'test'
    +    assert cfg.item5 == dict(a=0, b=1)
    +    assert cfg.item6 == [dict(a=0), dict(b=1)]
    +    assert cfg.item7 == dict(a=[0, 1, 2], b=dict(c=[3.1, 4.2, 5.3]))
    +
    +    with pytest.raises(KeyError):
    +        Config.fromfile(osp.join(data_path, 'config/m.py'))
    +
    +
    +def test_base_variables():
    +    for file in ['t.py', 't.json', 't.yaml']:
    +        cfg_file = osp.join(data_path, f'config/{file}')
    +        cfg = Config.fromfile(cfg_file)
    +        assert isinstance(cfg, Config)
    +        assert cfg.filename == cfg_file
    +        # cfg.field
    +        assert cfg.item1 == [1, 2]
    +        assert cfg.item2.a == 0
    +        assert cfg.item3 is False
    +        assert cfg.item4 == 'test'
    +        assert cfg.item5 == dict(a=0, b=1)
    +        assert cfg.item6 == [dict(a=0), dict(b=1)]
    +        assert cfg.item7 == dict(a=[0, 1, 2], b=dict(c=[3.1, 4.2, 5.3]))
    +        assert cfg.item8 == file
    +        assert cfg.item9 == dict(a=0)
    +        assert cfg.item10 == [3.1, 4.2, 5.3]
    +
    +    # test nested base
    +    for file in ['u.py', 'u.json', 'u.yaml']:
    +        cfg_file = osp.join(data_path, f'config/{file}')
    +        cfg = Config.fromfile(cfg_file)
    +        assert isinstance(cfg, Config)
    +        assert cfg.filename == cfg_file
    +        # cfg.field
    +        assert cfg.base == '_base_.item8'
    +        assert cfg.item1 == [1, 2]
    +        assert cfg.item2.a == 0
    +        assert cfg.item3 is False
    +        assert cfg.item4 == 'test'
    +        assert cfg.item5 == dict(a=0, b=1)
    +        assert cfg.item6 == [dict(a=0), dict(b=1)]
    +        assert cfg.item7 == dict(a=[0, 1, 2], b=dict(c=[3.1, 4.2, 5.3]))
    +        assert cfg.item8 == 't.py'
    +        assert cfg.item9 == dict(a=0)
    +        assert cfg.item10 == [3.1, 4.2, 5.3]
    +        assert cfg.item11 == 't.py'
    +        assert cfg.item12 == dict(a=0)
    +        assert cfg.item13 == [3.1, 4.2, 5.3]
    +        assert cfg.item14 == [1, 2]
    +        assert cfg.item15 == dict(
    +            a=dict(b=dict(a=0)),
    +            b=[False],
    +            c=['test'],
    +            d=[[{
    +                'e': 0
    +            }], [{
    +                'a': 0
    +            }, {
    +                'b': 1
    +            }]],
    +            e=[1, 2])
    +
    +    # test reference assignment for py
    +    cfg_file = osp.join(data_path, 'config/v.py')
    +    cfg = Config.fromfile(cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    assert cfg.item21 == 't.py'
    +    assert cfg.item22 == 't.py'
    +    assert cfg.item23 == [3.1, 4.2, 5.3]
    +    assert cfg.item24 == [3.1, 4.2, 5.3]
    +    assert cfg.item25 == dict(
    +        a=dict(b=[3.1, 4.2, 5.3]),
    +        b=[[3.1, 4.2, 5.3]],
    +        c=[[{
    +            'e': 't.py'
    +        }], [{
    +            'a': 0
    +        }, {
    +            'b': 1
    +        }]],
    +        e='t.py')
    +
    +
    +def test_merge_recursive_bases():
    +    cfg_file = osp.join(data_path, 'config/f.py')
    +    cfg = Config.fromfile(cfg_file)
    +    assert isinstance(cfg, Config)
    +    assert cfg.filename == cfg_file
    +    # cfg.field
    +    assert cfg.item1 == [2, 3]
    +    assert cfg.item2.a == 1
    +    assert cfg.item3 is False
    +    assert cfg.item4 == 'test_recursive_bases'
    +
    +
    +def test_merge_from_dict():
    +    cfg_file = osp.join(data_path, 'config/a.py')
    +    cfg = Config.fromfile(cfg_file)
    +    input_options = {'item2.a': 1, 'item2.b': 0.1, 'item3': False}
    +    cfg.merge_from_dict(input_options)
    +    assert cfg.item2 == dict(a=1, b=0.1)
    +    assert cfg.item3 is False
    +
    +    cfg_file = osp.join(data_path, 'config/s.py')
    +    cfg = Config.fromfile(cfg_file)
    +
    +    # Allow list keys
    +    input_options = {'item.0.a': 1, 'item.1.b': 1}
    +    cfg.merge_from_dict(input_options, allow_list_keys=True)
    +    assert cfg.item == [{'a': 1}, {'b': 1, 'c': 0}]
    +
    +    # allow_list_keys is False
    +    input_options = {'item.0.a': 1, 'item.1.b': 1}
    +    with pytest.raises(TypeError):
    +        cfg.merge_from_dict(input_options, allow_list_keys=False)
    +
    +    # Overflowed index number
    +    input_options = {'item.2.a': 1}
    +    with pytest.raises(KeyError):
    +        cfg.merge_from_dict(input_options, allow_list_keys=True)
    +
    +
    +def test_merge_delete():
    +    cfg_file = osp.join(data_path, 'config/delete.py')
    +    cfg = Config.fromfile(cfg_file)
    +    # cfg.field
    +    assert cfg.item1 == dict(a=0)
    +    assert cfg.item2 == dict(a=0, b=0)
    +    assert cfg.item3 is True
    +    assert cfg.item4 == 'test'
    +    assert '_delete_' not in cfg.item2
    +
    +    # related issue: https://github.com/open-mmlab/mmcv/issues/1570
    +    assert type(cfg.item1) == ConfigDict
    +    assert type(cfg.item2) == ConfigDict
    +
    +
    +def test_merge_intermediate_variable():
    +    cfg_file = osp.join(data_path, 'config/i_child.py')
    +    cfg = Config.fromfile(cfg_file)
    +    # cfg.field
    +    assert cfg.item1 == [1, 2]
    +    assert cfg.item2 == dict(a=0)
    +    assert cfg.item3 is True
    +    assert cfg.item4 == 'test'
    +    assert cfg.item_cfg == dict(b=2)
    +    assert cfg.item5 == dict(cfg=dict(b=1))
    +    assert cfg.item6 == dict(cfg=dict(b=2))
    +
    +
    +def test_fromfile_in_config():
    +    cfg_file = osp.join(data_path, 'config/code.py')
    +    cfg = Config.fromfile(cfg_file)
    +    # cfg.field
    +    assert cfg.cfg.item1 == [1, 2]
    +    assert cfg.cfg.item2 == dict(a=0)
    +    assert cfg.cfg.item3 is True
    +    assert cfg.cfg.item4 == 'test'
    +    assert cfg.item5 == 1
    +
    +
    +def test_dict():
    +    cfg_dict = dict(item1=[1, 2], item2=dict(a=0), item3=True, item4='test')
    +
    +    for filename in ['a.py', 'b.json', 'c.yaml']:
    +        cfg_file = osp.join(data_path, 'config', filename)
    +        cfg = Config.fromfile(cfg_file)
    +
    +        # len(cfg)
    +        assert len(cfg) == 4
    +        # cfg.keys()
    +        assert set(cfg.keys()) == set(cfg_dict.keys())
    +        assert set(cfg._cfg_dict.keys()) == set(cfg_dict.keys())
    +        # cfg.values()
    +        for value in cfg.values():
    +            assert value in cfg_dict.values()
    +        # cfg.items()
    +        for name, value in cfg.items():
    +            assert name in cfg_dict
    +            assert value in cfg_dict.values()
    +        # cfg.field
    +        assert cfg.item1 == cfg_dict['item1']
    +        assert cfg.item2 == cfg_dict['item2']
    +        assert cfg.item2.a == 0
    +        assert cfg.item3 == cfg_dict['item3']
    +        assert cfg.item4 == cfg_dict['item4']
    +        with pytest.raises(AttributeError):
    +            cfg.not_exist
    +        # field in cfg, cfg[field], cfg.get()
    +        for name in ['item1', 'item2', 'item3', 'item4']:
    +            assert name in cfg
    +            assert cfg[name] == cfg_dict[name]
    +            assert cfg.get(name) == cfg_dict[name]
    +            assert cfg.get('not_exist') is None
    +            assert cfg.get('not_exist', 0) == 0
    +            with pytest.raises(KeyError):
    +                cfg['not_exist']
    +        assert 'item1' in cfg
    +        assert 'not_exist' not in cfg
    +        # cfg.update()
    +        cfg.update(dict(item1=0))
    +        assert cfg.item1 == 0
    +        cfg.update(dict(item2=dict(a=1)))
    +        assert cfg.item2.a == 1
    +
    +
    +@pytest.mark.parametrize('file', ['a.json', 'b.py', 'c.yaml', 'd.yml', None])
    +def test_dump(file):
    +    # config loaded from dict
    +    cfg_dict = dict(item1=[1, 2], item2=dict(a=0), item3=True, item4='test')
    +    cfg = Config(cfg_dict=cfg_dict)
    +    assert cfg.item1 == cfg_dict['item1']
    +    assert cfg.item2 == cfg_dict['item2']
    +    assert cfg.item3 == cfg_dict['item3']
    +    assert cfg.item4 == cfg_dict['item4']
    +    assert cfg._filename is None
    +    if file is not None:
    +        # dump without a filename argument is only returning pretty_text.
    +        with tempfile.TemporaryDirectory() as temp_config_dir:
    +            cfg_file = osp.join(temp_config_dir, file)
    +            cfg.dump(cfg_file)
    +            dumped_cfg = Config.fromfile(cfg_file)
    +            assert dumped_cfg._cfg_dict == cfg._cfg_dict
    +    else:
    +        assert cfg.dump() == cfg.pretty_text
    +
    +    # The key of json must be a string, so key `1` will be converted to `'1'`.
    +    def compare_json_cfg(ori_cfg, dumped_json_cfg):
    +        for key, value in ori_cfg.items():
    +            assert str(key) in dumped_json_cfg
    +            if not isinstance(value, dict):
    +                assert ori_cfg[key] == dumped_json_cfg[str(key)]
    +            else:
    +                compare_json_cfg(value, dumped_json_cfg[str(key)])
    +
    +    # config loaded from file
    +    cfg_file = osp.join(data_path, 'config/n.py')
    +    cfg = Config.fromfile(cfg_file)
    +    if file is not None:
    +        with tempfile.TemporaryDirectory() as temp_config_dir:
    +            cfg_file = osp.join(temp_config_dir, file)
    +            cfg.dump(cfg_file)
    +            dumped_cfg = Config.fromfile(cfg_file)
    +        if not file.endswith('.json'):
    +            assert dumped_cfg._cfg_dict == cfg._cfg_dict
    +        else:
    +            compare_json_cfg(cfg._cfg_dict, dumped_cfg._cfg_dict)
    +    else:
    +        assert cfg.dump() == cfg.pretty_text
    +
    +
    +def test_setattr():
    +    cfg = Config()
    +    cfg.item1 = [1, 2]
    +    cfg.item2 = {'a': 0}
    +    cfg['item5'] = {'a': {'b': None}}
    +    assert cfg._cfg_dict['item1'] == [1, 2]
    +    assert cfg.item1 == [1, 2]
    +    assert cfg._cfg_dict['item2'] == {'a': 0}
    +    assert cfg.item2.a == 0
    +    assert cfg._cfg_dict['item5'] == {'a': {'b': None}}
    +    assert cfg.item5.a.b is None
    +
    +
    +def test_pretty_text():
    +    cfg_file = osp.join(data_path, 'config/l.py')
    +    cfg = Config.fromfile(cfg_file)
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        text_cfg_filename = osp.join(temp_config_dir, '_text_config.py')
    +        with open(text_cfg_filename, 'w') as f:
    +            f.write(cfg.pretty_text)
    +        text_cfg = Config.fromfile(text_cfg_filename)
    +    assert text_cfg._cfg_dict == cfg._cfg_dict
    +
    +
    +def test_dict_action():
    +    parser = argparse.ArgumentParser(description='Train a detector')
    +    parser.add_argument(
    +        '--options', nargs='+', action=DictAction, help='custom options')
    +    # Nested brackets
    +    args = parser.parse_args(
    +        ['--options', 'item2.a=a,b', 'item2.b=[(a,b), [1,2], false]'])
    +    out_dict = {'item2.a': ['a', 'b'], 'item2.b': [('a', 'b'), [1, 2], False]}
    +    assert args.options == out_dict
    +    # Single Nested brackets
    +    args = parser.parse_args(['--options', 'item2.a=[[1]]'])
    +    out_dict = {'item2.a': [[1]]}
    +    assert args.options == out_dict
    +    # Imbalance bracket
    +    with pytest.raises(AssertionError):
    +        parser.parse_args(['--options', 'item2.a=[(a,b), [1,2], false'])
    +    # Normal values
    +    args = parser.parse_args([
    +        '--options', 'item2.a=1', 'item2.b=0.1', 'item2.c=x', 'item3=false',
    +        'item4=none', 'item5=None'
    +    ])
    +    out_dict = {
    +        'item2.a': 1,
    +        'item2.b': 0.1,
    +        'item2.c': 'x',
    +        'item3': False,
    +        'item4': 'none',
    +        'item5': None,
    +    }
    +    assert args.options == out_dict
    +    cfg_file = osp.join(data_path, 'config/a.py')
    +    cfg = Config.fromfile(cfg_file)
    +    cfg.merge_from_dict(args.options)
    +    assert cfg.item2 == dict(a=1, b=0.1, c='x')
    +    assert cfg.item3 is False
    +
    +
    +def test_reserved_key():
    +    cfg_file = osp.join(data_path, 'config/g.py')
    +    with pytest.raises(KeyError):
    +        Config.fromfile(cfg_file)
    +
    +
    +def test_syntax_error():
    +    # the name can not be used to open the file a second time in windows,
    +    # so `delete` should be set as `False` and we need to manually remove it
    +    # more details can be found at https://github.com/open-mmlab/mmcv/pull/1077
    +    temp_cfg_file = tempfile.NamedTemporaryFile(suffix='.py', delete=False)
    +    temp_cfg_path = temp_cfg_file.name
    +    # write a file with syntax error
    +    with open(temp_cfg_path, 'w') as f:
    +        f.write('a=0b=dict(c=1)')
    +    with pytest.raises(
    +            SyntaxError, match='There are syntax errors in config file'):
    +        Config.fromfile(temp_cfg_path)
    +    temp_cfg_file.close()
    +    os.remove(temp_cfg_path)
    +
    +
    +def test_pickle_support():
    +    cfg_file = osp.join(data_path, 'config/n.py')
    +    cfg = Config.fromfile(cfg_file)
    +
    +    with tempfile.TemporaryDirectory() as temp_config_dir:
    +        pkl_cfg_filename = osp.join(temp_config_dir, '_pickle.pkl')
    +        dump(cfg, pkl_cfg_filename)
    +        pkl_cfg = load(pkl_cfg_filename)
    +
    +    assert pkl_cfg._cfg_dict == cfg._cfg_dict
    +
    +
    +def test_deprecation():
    +    deprecated_cfg_files = [
    +        osp.join(data_path, 'config/deprecated.py'),
    +        osp.join(data_path, 'config/deprecated_as_base.py')
    +    ]
    +
    +    for cfg_file in deprecated_cfg_files:
    +        with pytest.warns(DeprecationWarning):
    +            cfg = Config.fromfile(cfg_file)
    +        assert cfg.item1 == 'expected'
    +
    +
    +def test_deepcopy():
    +    cfg_file = osp.join(data_path, 'config/n.py')
    +    cfg = Config.fromfile(cfg_file)
    +    new_cfg = copy.deepcopy(cfg)
    +
    +    assert isinstance(new_cfg, Config)
    +    assert new_cfg._cfg_dict == cfg._cfg_dict
    +    assert new_cfg._cfg_dict is not cfg._cfg_dict
    +    assert new_cfg._filename == cfg._filename
    +    assert new_cfg._text == cfg._text
    +
    +
    +def test_copy():
    +    cfg_file = osp.join(data_path, 'config/n.py')
    +    cfg = Config.fromfile(cfg_file)
    +    new_cfg = copy.copy(cfg)
    +
    +    assert isinstance(new_cfg, Config)
    +    assert new_cfg is not cfg
    +    assert new_cfg._cfg_dict is cfg._cfg_dict
    +    assert new_cfg._filename == cfg._filename
    +    assert new_cfg._text == cfg._text
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_env.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_env.py
    new file mode 100644
    index 000000000..74bafff37
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_env.py
    @@ -0,0 +1,34 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import sys
    +
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_collect_env():
    +    try:
    +        import torch  # noqa: F401
    +    except ModuleNotFoundError:
    +        pytest.skip('skipping tests that require PyTorch')
    +
    +    from mmcv.utils import collect_env
    +    env_info = collect_env()
    +    expected_keys = [
    +        'sys.platform', 'Python', 'CUDA available', 'PyTorch',
    +        'PyTorch compiling details', 'OpenCV', 'MMCV', 'MMCV Compiler', 'GCC',
    +        'MMCV CUDA Compiler'
    +    ]
    +    for key in expected_keys:
    +        assert key in env_info
    +
    +    if env_info['CUDA available']:
    +        for key in ['CUDA_HOME', 'NVCC']:
    +            assert key in env_info
    +
    +    if sys.platform == 'win32':
    +        assert 'MSVC' in env_info
    +
    +    assert env_info['sys.platform'] == sys.platform
    +    assert env_info['Python'] == sys.version.replace('\n', '')
    +    assert env_info['MMCV'] == mmcv.__version__
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_hub.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_hub.py
    new file mode 100644
    index 000000000..b44ee9be0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_hub.py
    @@ -0,0 +1,36 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +from torch.utils import model_zoo
    +
    +from mmcv.utils import TORCH_VERSION, digit_version, load_url
    +
    +
    +@pytest.mark.skipif(
    +    torch.__version__ == 'parrots', reason='not necessary in parrots test')
    +def test_load_url():
    +    url1 = 'https://download.openmmlab.com/mmcv/test_data/saved_in_pt1.5.pth'
    +    url2 = 'https://download.openmmlab.com/mmcv/test_data/saved_in_pt1.6.pth'
    +
    +    # The 1.6 release of PyTorch switched torch.save to use a new zipfile-based
    +    # file format. It will cause RuntimeError when a checkpoint was saved in
    +    # torch >= 1.6.0 but loaded in torch < 1.7.0.
    +    # More details at https://github.com/open-mmlab/mmpose/issues/904
    +    if digit_version(TORCH_VERSION) < digit_version('1.7.0'):
    +        model_zoo.load_url(url1)
    +        with pytest.raises(RuntimeError):
    +            model_zoo.load_url(url2)
    +    else:
    +        # high version of PyTorch can load checkpoints from url, regardless
    +        # of which version they were saved in
    +        model_zoo.load_url(url1)
    +        model_zoo.load_url(url2)
    +
    +    load_url(url1)
    +    # if a checkpoint was saved in torch >= 1.6.0 but loaded in torch < 1.5.0,
    +    # it will raise a RuntimeError
    +    if digit_version(TORCH_VERSION) < digit_version('1.5.0'):
    +        with pytest.raises(RuntimeError):
    +            load_url(url2)
    +    else:
    +        load_url(url2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_logging.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_logging.py
    new file mode 100644
    index 000000000..ab66a34b9
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_logging.py
    @@ -0,0 +1,118 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import logging
    +import os
    +import platform
    +import tempfile
    +from unittest.mock import patch
    +
    +import pytest
    +
    +from mmcv import get_logger, print_log
    +
    +if platform.system() == 'Windows':
    +    import regex as re
    +else:
    +    import re
    +
    +
    +@patch('torch.distributed.get_rank', lambda: 0)
    +@patch('torch.distributed.is_initialized', lambda: True)
    +@patch('torch.distributed.is_available', lambda: True)
    +def test_get_logger_rank0():
    +    logger = get_logger('rank0.pkg1')
    +    assert isinstance(logger, logging.Logger)
    +    assert len(logger.handlers) == 1
    +    assert isinstance(logger.handlers[0], logging.StreamHandler)
    +    assert logger.handlers[0].level == logging.INFO
    +
    +    logger = get_logger('rank0.pkg2', log_level=logging.DEBUG)
    +    assert isinstance(logger, logging.Logger)
    +    assert len(logger.handlers) == 1
    +    assert logger.handlers[0].level == logging.DEBUG
    +
    +    # the name can not be used to open the file a second time in windows,
    +    # so `delete` should be set as `False` and we need to manually remove it
    +    # more details can be found at https://github.com/open-mmlab/mmcv/pull/1077
    +    with tempfile.NamedTemporaryFile(delete=False) as f:
    +        logger = get_logger('rank0.pkg3', log_file=f.name)
    +        assert isinstance(logger, logging.Logger)
    +        assert len(logger.handlers) == 2
    +        assert isinstance(logger.handlers[0], logging.StreamHandler)
    +        assert isinstance(logger.handlers[1], logging.FileHandler)
    +        logger_pkg3 = get_logger('rank0.pkg3')
    +        assert id(logger_pkg3) == id(logger)
    +        # flushing and closing all handlers in order to remove `f.name`
    +        logging.shutdown()
    +
    +    os.remove(f.name)
    +
    +    logger_pkg3 = get_logger('rank0.pkg3.subpkg')
    +    assert logger_pkg3.handlers == logger_pkg3.handlers
    +
    +
    +@patch('torch.distributed.get_rank', lambda: 1)
    +@patch('torch.distributed.is_initialized', lambda: True)
    +@patch('torch.distributed.is_available', lambda: True)
    +def test_get_logger_rank1():
    +    logger = get_logger('rank1.pkg1')
    +    assert isinstance(logger, logging.Logger)
    +    assert len(logger.handlers) == 1
    +    assert isinstance(logger.handlers[0], logging.StreamHandler)
    +    assert logger.handlers[0].level == logging.INFO
    +
    +    # the name can not be used to open the file a second time in windows,
    +    # so `delete` should be set as `False` and we need to manually remove it
    +    # more details can be found at https://github.com/open-mmlab/mmcv/pull/1077
    +    with tempfile.NamedTemporaryFile(delete=False) as f:
    +        logger = get_logger('rank1.pkg2', log_file=f.name)
    +        assert isinstance(logger, logging.Logger)
    +        assert len(logger.handlers) == 1
    +        assert logger.handlers[0].level == logging.INFO
    +        # flushing and closing all handlers in order to remove `f.name`
    +        logging.shutdown()
    +
    +    os.remove(f.name)
    +
    +
    +def test_print_log_print(capsys):
    +    print_log('welcome', logger=None)
    +    out, _ = capsys.readouterr()
    +    assert out == 'welcome\n'
    +
    +
    +def test_print_log_silent(capsys, caplog):
    +    print_log('welcome', logger='silent')
    +    out, _ = capsys.readouterr()
    +    assert out == ''
    +    assert len(caplog.records) == 0
    +
    +
    +def test_print_log_logger(caplog):
    +    print_log('welcome', logger='mmcv')
    +    assert caplog.record_tuples[-1] == ('mmcv', logging.INFO, 'welcome')
    +
    +    print_log('welcome', logger='mmcv', level=logging.ERROR)
    +    assert caplog.record_tuples[-1] == ('mmcv', logging.ERROR, 'welcome')
    +
    +    # the name can not be used to open the file a second time in windows,
    +    # so `delete` should be set as `False` and we need to manually remove it
    +    # more details can be found at https://github.com/open-mmlab/mmcv/pull/1077
    +    with tempfile.NamedTemporaryFile(delete=False) as f:
    +        logger = get_logger('abc', log_file=f.name)
    +        print_log('welcome', logger=logger)
    +        assert caplog.record_tuples[-1] == ('abc', logging.INFO, 'welcome')
    +        with open(f.name) as fin:
    +            log_text = fin.read()
    +            regex_time = r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3}'
    +            match = re.fullmatch(regex_time + r' - abc - INFO - welcome\n',
    +                                 log_text)
    +            assert match is not None
    +        # flushing and closing all handlers in order to remove `f.name`
    +        logging.shutdown()
    +
    +    os.remove(f.name)
    +
    +
    +def test_print_log_exception():
    +    with pytest.raises(TypeError):
    +        print_log('welcome', logger=0)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_misc.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_misc.py
    new file mode 100644
    index 000000000..2b14c0077
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_misc.py
    @@ -0,0 +1,224 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +
    +import mmcv
    +from mmcv import deprecated_api_warning
    +from mmcv.utils.misc import has_method
    +
    +
    +def test_to_ntuple():
    +    single_number = 2
    +    assert mmcv.utils.to_1tuple(single_number) == (single_number, )
    +    assert mmcv.utils.to_2tuple(single_number) == (single_number,
    +                                                   single_number)
    +    assert mmcv.utils.to_3tuple(single_number) == (single_number,
    +                                                   single_number,
    +                                                   single_number)
    +    assert mmcv.utils.to_4tuple(single_number) == (single_number,
    +                                                   single_number,
    +                                                   single_number,
    +                                                   single_number)
    +    assert mmcv.utils.to_ntuple(5)(single_number) == (single_number,
    +                                                      single_number,
    +                                                      single_number,
    +                                                      single_number,
    +                                                      single_number)
    +    assert mmcv.utils.to_ntuple(6)(single_number) == (single_number,
    +                                                      single_number,
    +                                                      single_number,
    +                                                      single_number,
    +                                                      single_number,
    +                                                      single_number)
    +
    +
    +def test_iter_cast():
    +    assert mmcv.list_cast([1, 2, 3], int) == [1, 2, 3]
    +    assert mmcv.list_cast(['1.1', 2, '3'], float) == [1.1, 2.0, 3.0]
    +    assert mmcv.list_cast([1, 2, 3], str) == ['1', '2', '3']
    +    assert mmcv.tuple_cast((1, 2, 3), str) == ('1', '2', '3')
    +    assert next(mmcv.iter_cast([1, 2, 3], str)) == '1'
    +    with pytest.raises(TypeError):
    +        mmcv.iter_cast([1, 2, 3], '')
    +    with pytest.raises(TypeError):
    +        mmcv.iter_cast(1, str)
    +
    +
    +def test_is_seq_of():
    +    assert mmcv.is_seq_of([1.0, 2.0, 3.0], float)
    +    assert mmcv.is_seq_of([(1, ), (2, ), (3, )], tuple)
    +    assert mmcv.is_seq_of((1.0, 2.0, 3.0), float)
    +    assert mmcv.is_list_of([1.0, 2.0, 3.0], float)
    +    assert not mmcv.is_seq_of((1.0, 2.0, 3.0), float, seq_type=list)
    +    assert not mmcv.is_tuple_of([1.0, 2.0, 3.0], float)
    +    assert not mmcv.is_seq_of([1.0, 2, 3], int)
    +    assert not mmcv.is_seq_of((1.0, 2, 3), int)
    +
    +
    +def test_slice_list():
    +    in_list = [1, 2, 3, 4, 5, 6]
    +    assert mmcv.slice_list(in_list, [1, 2, 3]) == [[1], [2, 3], [4, 5, 6]]
    +    assert mmcv.slice_list(in_list, [len(in_list)]) == [in_list]
    +    with pytest.raises(TypeError):
    +        mmcv.slice_list(in_list, 2.0)
    +    with pytest.raises(ValueError):
    +        mmcv.slice_list(in_list, [1, 2])
    +
    +
    +def test_concat_list():
    +    assert mmcv.concat_list([[1, 2]]) == [1, 2]
    +    assert mmcv.concat_list([[1, 2], [3, 4, 5], [6]]) == [1, 2, 3, 4, 5, 6]
    +
    +
    +def test_requires_package(capsys):
    +
    +    @mmcv.requires_package('nnn')
    +    def func_a():
    +        pass
    +
    +    @mmcv.requires_package(['numpy', 'n1', 'n2'])
    +    def func_b():
    +        pass
    +
    +    @mmcv.requires_package('numpy')
    +    def func_c():
    +        return 1
    +
    +    with pytest.raises(RuntimeError):
    +        func_a()
    +    out, _ = capsys.readouterr()
    +    assert out == ('Prerequisites "nnn" are required in method "func_a" but '
    +                   'not found, please install them first.\n')
    +
    +    with pytest.raises(RuntimeError):
    +        func_b()
    +    out, _ = capsys.readouterr()
    +    assert out == (
    +        'Prerequisites "n1, n2" are required in method "func_b" but not found,'
    +        ' please install them first.\n')
    +
    +    assert func_c() == 1
    +
    +
    +def test_requires_executable(capsys):
    +
    +    @mmcv.requires_executable('nnn')
    +    def func_a():
    +        pass
    +
    +    @mmcv.requires_executable(['ls', 'n1', 'n2'])
    +    def func_b():
    +        pass
    +
    +    @mmcv.requires_executable('mv')
    +    def func_c():
    +        return 1
    +
    +    with pytest.raises(RuntimeError):
    +        func_a()
    +    out, _ = capsys.readouterr()
    +    assert out == ('Prerequisites "nnn" are required in method "func_a" but '
    +                   'not found, please install them first.\n')
    +
    +    with pytest.raises(RuntimeError):
    +        func_b()
    +    out, _ = capsys.readouterr()
    +    assert out == (
    +        'Prerequisites "n1, n2" are required in method "func_b" but not found,'
    +        ' please install them first.\n')
    +
    +    assert func_c() == 1
    +
    +
    +def test_import_modules_from_strings():
    +    # multiple imports
    +    import os.path as osp_
    +    import sys as sys_
    +    osp, sys = mmcv.import_modules_from_strings(['os.path', 'sys'])
    +    assert osp == osp_
    +    assert sys == sys_
    +
    +    # single imports
    +    osp = mmcv.import_modules_from_strings('os.path')
    +    assert osp == osp_
    +    # No imports
    +    assert mmcv.import_modules_from_strings(None) is None
    +    assert mmcv.import_modules_from_strings([]) is None
    +    assert mmcv.import_modules_from_strings('') is None
    +    # Unsupported types
    +    with pytest.raises(TypeError):
    +        mmcv.import_modules_from_strings(1)
    +    with pytest.raises(TypeError):
    +        mmcv.import_modules_from_strings([1])
    +    # Failed imports
    +    with pytest.raises(ImportError):
    +        mmcv.import_modules_from_strings('_not_implemented_module')
    +    with pytest.warns(UserWarning):
    +        imported = mmcv.import_modules_from_strings(
    +            '_not_implemented_module', allow_failed_imports=True)
    +        assert imported is None
    +    with pytest.warns(UserWarning):
    +        imported = mmcv.import_modules_from_strings(
    +            ['os.path', '_not_implemented'], allow_failed_imports=True)
    +        assert imported[0] == osp
    +        assert imported[1] is None
    +
    +
    +def test_is_method_overridden():
    +
    +    class Base:
    +
    +        def foo1():
    +            pass
    +
    +        def foo2():
    +            pass
    +
    +    class Sub(Base):
    +
    +        def foo1():
    +            pass
    +
    +    # test passing sub class directly
    +    assert mmcv.is_method_overridden('foo1', Base, Sub)
    +    assert not mmcv.is_method_overridden('foo2', Base, Sub)
    +
    +    # test passing instance of sub class
    +    sub_instance = Sub()
    +    assert mmcv.is_method_overridden('foo1', Base, sub_instance)
    +    assert not mmcv.is_method_overridden('foo2', Base, sub_instance)
    +
    +    # base_class should be a class, not instance
    +    base_instance = Base()
    +    with pytest.raises(AssertionError):
    +        mmcv.is_method_overridden('foo1', base_instance, sub_instance)
    +
    +
    +def test_has_method():
    +
    +    class Foo:
    +
    +        def __init__(self, name):
    +            self.name = name
    +
    +        def print_name(self):
    +            print(self.name)
    +
    +    foo = Foo('foo')
    +    assert not has_method(foo, 'name')
    +    assert has_method(foo, 'print_name')
    +
    +
    +def test_deprecated_api_warning():
    +
    +    @deprecated_api_warning(name_dict=dict(old_key='new_key'))
    +    def dummy_func(new_key=1):
    +        return new_key
    +
    +    # replace `old_key` to `new_key`
    +    assert dummy_func(old_key=2) == 2
    +
    +    # The expected behavior is to replace the
    +    # deprecated key `old_key` to `new_key`,
    +    # but got them in the arguments at the same time
    +    with pytest.raises(AssertionError):
    +        dummy_func(old_key=1, new_key=2)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_parrots_jit.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_parrots_jit.py
    new file mode 100644
    index 000000000..71be929fb
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_parrots_jit.py
    @@ -0,0 +1,278 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +import mmcv
    +from mmcv.utils import TORCH_VERSION
    +
    +pytest.skip('this test not ready now', allow_module_level=True)
    +skip_no_parrots = pytest.mark.skipif(
    +    TORCH_VERSION != 'parrots', reason='test case under parrots environment')
    +
    +
    +class TestJit:
    +
    +    def test_add_dict(self):
    +
    +        @mmcv.jit
    +        def add_dict(oper):
    +            rets = oper['x'] + oper['y']
    +            return {'result': rets}
    +
    +        def add_dict_pyfunc(oper):
    +            rets = oper['x'] + oper['y']
    +            return {'result': rets}
    +
    +        a = torch.rand((3, 4))
    +        b = torch.rand((3, 4))
    +        oper = {'x': a, 'y': b}
    +
    +        rets_t = add_dict(oper)
    +        rets = add_dict_pyfunc(oper)
    +        assert 'result' in rets
    +        assert (rets_t['result'] == rets['result']).all()
    +
    +    def test_add_list(self):
    +
    +        @mmcv.jit
    +        def add_list(oper, x, y):
    +            rets = {}
    +            for idx, pair in enumerate(oper):
    +                rets[f'k{idx}'] = pair['x'] + pair['y']
    +            rets[f'k{len(oper)}'] = x + y
    +            return rets
    +
    +        def add_list_pyfunc(oper, x, y):
    +            rets = {}
    +            for idx, pair in enumerate(oper):
    +                rets[f'k{idx}'] = pair['x'] + pair['y']
    +            rets[f'k{len(oper)}'] = x + y
    +            return rets
    +
    +        pair_num = 3
    +        oper = []
    +        for _ in range(pair_num):
    +            oper.append({'x': torch.rand((3, 4)), 'y': torch.rand((3, 4))})
    +        a = torch.rand((3, 4))
    +        b = torch.rand((3, 4))
    +        rets = add_list_pyfunc(oper, x=a, y=b)
    +        rets_t = add_list(oper, x=a, y=b)
    +        for idx in range(pair_num + 1):
    +            assert f'k{idx}' in rets_t
    +            assert (rets[f'k{idx}'] == rets_t[f'k{idx}']).all()
    +
    +    @skip_no_parrots
    +    def test_jit_cache(self):
    +
    +        @mmcv.jit
    +        def func(oper):
    +            if oper['const'] > 1:
    +                return oper['x'] * 2 + oper['y']
    +            else:
    +                return oper['x'] * 2 - oper['y']
    +
    +        def pyfunc(oper):
    +            if oper['const'] > 1:
    +                return oper['x'] * 2 + oper['y']
    +            else:
    +                return oper['x'] * 2 - oper['y']
    +
    +        assert len(func._cache._cache) == 0
    +
    +        oper = {'const': 2, 'x': torch.rand((3, 4)), 'y': torch.rand((3, 4))}
    +        rets_plus = pyfunc(oper)
    +        rets_plus_t = func(oper)
    +        assert (rets_plus == rets_plus_t).all()
    +        assert len(func._cache._cache) == 1
    +
    +        oper['const'] = 0.5
    +        rets_minus = pyfunc(oper)
    +        rets_minus_t = func(oper)
    +        assert (rets_minus == rets_minus_t).all()
    +        assert len(func._cache._cache) == 2
    +
    +        rets_a = (rets_minus_t + rets_plus_t) / 4
    +        assert torch.allclose(oper['x'], rets_a)
    +
    +    @skip_no_parrots
    +    def test_jit_shape(self):
    +
    +        @mmcv.jit
    +        def func(a):
    +            return a + 1
    +
    +        assert len(func._cache._cache) == 0
    +
    +        a = torch.ones((3, 4))
    +        r = func(a)
    +        assert r.shape == (3, 4)
    +        assert (r == 2).all()
    +        assert len(func._cache._cache) == 1
    +
    +        a = torch.ones((2, 3, 4))
    +        r = func(a)
    +        assert r.shape == (2, 3, 4)
    +        assert (r == 2).all()
    +        assert len(func._cache._cache) == 2
    +
    +    @skip_no_parrots
    +    def test_jit_kwargs(self):
    +
    +        @mmcv.jit
    +        def func(a, b):
    +            return torch.mean((a - b) * (a - b))
    +
    +        assert len(func._cache._cache) == 0
    +        x = torch.rand((16, 32))
    +        y = torch.rand((16, 32))
    +        func(x, y)
    +        assert len(func._cache._cache) == 1
    +        func(x, b=y)
    +        assert len(func._cache._cache) == 1
    +        func(b=y, a=x)
    +        assert len(func._cache._cache) == 1
    +
    +    def test_jit_derivate(self):
    +
    +        @mmcv.jit(derivate=True)
    +        def func(x, y):
    +            return (x + 2) * (y - 2)
    +
    +        a = torch.rand((3, 4))
    +        b = torch.rand((3, 4))
    +        a.requires_grad = True
    +
    +        c = func(a, b)
    +        assert c.requires_grad
    +        d = torch.empty_like(c)
    +        d.fill_(1.0)
    +        c.backward(d)
    +        assert torch.allclose(a.grad, (b - 2))
    +        assert b.grad is None
    +
    +        a.grad = None
    +        c = func(a, b)
    +        assert c.requires_grad
    +        d = torch.empty_like(c)
    +        d.fill_(2.7)
    +        c.backward(d)
    +        assert torch.allclose(a.grad, 2.7 * (b - 2))
    +        assert b.grad is None
    +
    +    def test_jit_optimize(self):
    +
    +        @mmcv.jit(optimize=True)
    +        def func(a, b):
    +            return torch.mean((a - b) * (a - b))
    +
    +        def pyfunc(a, b):
    +            return torch.mean((a - b) * (a - b))
    +
    +        a = torch.rand((16, 32))
    +        b = torch.rand((16, 32))
    +
    +        c = func(a, b)
    +        d = pyfunc(a, b)
    +        assert torch.allclose(c, d)
    +
    +    @mmcv.skip_no_elena
    +    def test_jit_coderize(self):
    +        if not torch.cuda.is_available():
    +            return
    +
    +        @mmcv.jit(coderize=True)
    +        def func(a, b):
    +            return (a + b) * (a - b)
    +
    +        def pyfunc(a, b):
    +            return (a + b) * (a - b)
    +
    +        a = torch.rand((16, 32), device='cuda')
    +        b = torch.rand((16, 32), device='cuda')
    +
    +        c = func(a, b)
    +        d = pyfunc(a, b)
    +        assert torch.allclose(c, d)
    +
    +    def test_jit_value_dependent(self):
    +
    +        @mmcv.jit
    +        def func(a, b):
    +            torch.nonzero(a)
    +            return torch.mean((a - b) * (a - b))
    +
    +        def pyfunc(a, b):
    +            torch.nonzero(a)
    +            return torch.mean((a - b) * (a - b))
    +
    +        a = torch.rand((16, 32))
    +        b = torch.rand((16, 32))
    +
    +        c = func(a, b)
    +        d = pyfunc(a, b)
    +        assert torch.allclose(c, d)
    +
    +    @skip_no_parrots
    +    def test_jit_check_input(self):
    +
    +        def func(x):
    +            y = torch.rand_like(x)
    +            return x + y
    +
    +        a = torch.ones((3, 4))
    +        with pytest.raises(AssertionError):
    +            func = mmcv.jit(func, check_input=(a, ))
    +
    +    @skip_no_parrots
    +    def test_jit_partial_shape(self):
    +
    +        @mmcv.jit(full_shape=False)
    +        def func(a, b):
    +            return torch.mean((a - b) * (a - b))
    +
    +        def pyfunc(a, b):
    +            return torch.mean((a - b) * (a - b))
    +
    +        a = torch.rand((3, 4))
    +        b = torch.rand((3, 4))
    +        assert torch.allclose(func(a, b), pyfunc(a, b))
    +        assert len(func._cache._cache) == 1
    +
    +        a = torch.rand((6, 5))
    +        b = torch.rand((6, 5))
    +        assert torch.allclose(func(a, b), pyfunc(a, b))
    +        assert len(func._cache._cache) == 1
    +
    +        a = torch.rand((3, 4, 5))
    +        b = torch.rand((3, 4, 5))
    +        assert torch.allclose(func(a, b), pyfunc(a, b))
    +        assert len(func._cache._cache) == 2
    +
    +        a = torch.rand((1, 9, 8))
    +        b = torch.rand((1, 9, 8))
    +        assert torch.allclose(func(a, b), pyfunc(a, b))
    +        assert len(func._cache._cache) == 2
    +
    +    def test_instance_method(self):
    +
    +        class T:
    +
    +            def __init__(self, shape):
    +                self._c = torch.rand(shape)
    +
    +            @mmcv.jit
    +            def test_method(self, x, y):
    +                return (x * self._c) + y
    +
    +        shape = (16, 32)
    +        t = T(shape)
    +        a = torch.rand(shape)
    +        b = torch.rand(shape)
    +        res = (a * t._c) + b
    +        jit_res = t.test_method(a, b)
    +        assert torch.allclose(res, jit_res)
    +
    +        t = T(shape)
    +        res = (a * t._c) + b
    +        jit_res = t.test_method(a, b)
    +        assert torch.allclose(res, jit_res)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_path.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_path.py
    new file mode 100644
    index 000000000..56d65ce26
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_path.py
    @@ -0,0 +1,81 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os.path as osp
    +from pathlib import Path
    +
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_is_filepath():
    +    assert mmcv.is_filepath(__file__)
    +    assert mmcv.is_filepath('abc')
    +    assert mmcv.is_filepath(Path('/etc'))
    +    assert not mmcv.is_filepath(0)
    +
    +
    +def test_fopen():
    +    assert hasattr(mmcv.fopen(__file__), 'read')
    +    assert hasattr(mmcv.fopen(Path(__file__)), 'read')
    +
    +
    +def test_check_file_exist():
    +    mmcv.check_file_exist(__file__)
    +    with pytest.raises(FileNotFoundError):
    +        mmcv.check_file_exist('no_such_file.txt')
    +
    +
    +def test_scandir():
    +    folder = osp.join(osp.dirname(osp.dirname(__file__)), 'data/for_scan')
    +    filenames = ['a.bin', '1.txt', '2.txt', '1.json', '2.json', '3.TXT']
    +    assert set(mmcv.scandir(folder)) == set(filenames)
    +    assert set(mmcv.scandir(Path(folder))) == set(filenames)
    +    assert set(mmcv.scandir(folder, '.txt')) == {
    +        filename
    +        for filename in filenames if filename.endswith('.txt')
    +    }
    +    assert set(mmcv.scandir(folder, ('.json', '.txt'))) == {
    +        filename
    +        for filename in filenames if filename.endswith(('.txt', '.json'))
    +    }
    +    assert set(mmcv.scandir(folder, '.png')) == set()
    +
    +    # path of sep is `\\` in windows but `/` in linux, so osp.join should be
    +    # used to join string for compatibility
    +    filenames_recursive = [
    +        'a.bin', '1.txt', '2.txt', '1.json', '2.json', '3.TXT',
    +        osp.join('sub', '1.json'),
    +        osp.join('sub', '1.txt'), '.file'
    +    ]
    +    # .file starts with '.' and is a file so it will not be scanned
    +    assert set(mmcv.scandir(folder, recursive=True)) == {
    +        filename
    +        for filename in filenames_recursive if filename != '.file'
    +    }
    +    assert set(mmcv.scandir(Path(folder), recursive=True)) == {
    +        filename
    +        for filename in filenames_recursive if filename != '.file'
    +    }
    +    assert set(mmcv.scandir(folder, '.txt', recursive=True)) == {
    +        filename
    +        for filename in filenames_recursive if filename.endswith('.txt')
    +    }
    +    assert set(
    +        mmcv.scandir(folder, '.TXT', recursive=True,
    +                     case_sensitive=False)) == {
    +                         filename
    +                         for filename in filenames_recursive
    +                         if filename.endswith(('.txt', '.TXT'))
    +                     }
    +    assert set(
    +        mmcv.scandir(
    +            folder, ('.TXT', '.JSON'), recursive=True,
    +            case_sensitive=False)) == {
    +                filename
    +                for filename in filenames_recursive
    +                if filename.endswith(('.txt', '.json', '.TXT'))
    +            }
    +    with pytest.raises(TypeError):
    +        list(mmcv.scandir(123))
    +    with pytest.raises(TypeError):
    +        list(mmcv.scandir(folder, 111))
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_progressbar.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_progressbar.py
    new file mode 100644
    index 000000000..982aa247f
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_progressbar.py
    @@ -0,0 +1,163 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import time
    +from io import StringIO
    +from unittest.mock import patch
    +
    +import mmcv
    +
    +
    +def reset_string_io(io):
    +    io.truncate(0)
    +    io.seek(0)
    +
    +
    +class TestProgressBar:
    +
    +    def test_start(self):
    +        out = StringIO()
    +        bar_width = 20
    +        # without total task num
    +        prog_bar = mmcv.ProgressBar(bar_width=bar_width, file=out)
    +        assert out.getvalue() == 'completed: 0, elapsed: 0s'
    +        reset_string_io(out)
    +        prog_bar = mmcv.ProgressBar(bar_width=bar_width, start=False, file=out)
    +        assert out.getvalue() == ''
    +        reset_string_io(out)
    +        prog_bar.start()
    +        assert out.getvalue() == 'completed: 0, elapsed: 0s'
    +        # with total task num
    +        reset_string_io(out)
    +        prog_bar = mmcv.ProgressBar(10, bar_width=bar_width, file=out)
    +        assert out.getvalue() == f'[{" " * bar_width}] 0/10, elapsed: 0s, ETA:'
    +        reset_string_io(out)
    +        prog_bar = mmcv.ProgressBar(
    +            10, bar_width=bar_width, start=False, file=out)
    +        assert out.getvalue() == ''
    +        reset_string_io(out)
    +        prog_bar.start()
    +        assert out.getvalue() == f'[{" " * bar_width}] 0/10, elapsed: 0s, ETA:'
    +
    +    def test_update(self):
    +        out = StringIO()
    +        bar_width = 20
    +        # without total task num
    +        prog_bar = mmcv.ProgressBar(bar_width=bar_width, file=out)
    +        time.sleep(1)
    +        reset_string_io(out)
    +        prog_bar.update()
    +        assert out.getvalue() == 'completed: 1, elapsed: 1s, 1.0 tasks/s'
    +        reset_string_io(out)
    +        # with total task num
    +        prog_bar = mmcv.ProgressBar(10, bar_width=bar_width, file=out)
    +        time.sleep(1)
    +        reset_string_io(out)
    +        prog_bar.update()
    +        assert out.getvalue() == f'\r[{">" * 2 + " " * 18}] 1/10, 1.0 ' \
    +                                 'task/s, elapsed: 1s, ETA:     9s'
    +
    +    def test_adaptive_length(self):
    +        with patch.dict('os.environ', {'COLUMNS': '80'}):
    +            out = StringIO()
    +            bar_width = 20
    +            prog_bar = mmcv.ProgressBar(10, bar_width=bar_width, file=out)
    +            time.sleep(1)
    +            reset_string_io(out)
    +            prog_bar.update()
    +            assert len(out.getvalue()) == 66
    +
    +            os.environ['COLUMNS'] = '30'
    +            reset_string_io(out)
    +            prog_bar.update()
    +            assert len(out.getvalue()) == 48
    +
    +            os.environ['COLUMNS'] = '60'
    +            reset_string_io(out)
    +            prog_bar.update()
    +            assert len(out.getvalue()) == 60
    +
    +
    +def sleep_1s(num):
    +    time.sleep(1)
    +    return num
    +
    +
    +def test_track_progress_list():
    +    out = StringIO()
    +    ret = mmcv.track_progress(sleep_1s, [1, 2, 3], bar_width=3, file=out)
    +    assert out.getvalue() == (
    +        '[   ] 0/3, elapsed: 0s, ETA:'
    +        '\r[>  ] 1/3, 1.0 task/s, elapsed: 1s, ETA:     2s'
    +        '\r[>> ] 2/3, 1.0 task/s, elapsed: 2s, ETA:     1s'
    +        '\r[>>>] 3/3, 1.0 task/s, elapsed: 3s, ETA:     0s\n')
    +    assert ret == [1, 2, 3]
    +
    +
    +def test_track_progress_iterator():
    +    out = StringIO()
    +    ret = mmcv.track_progress(
    +        sleep_1s, ((i for i in [1, 2, 3]), 3), bar_width=3, file=out)
    +    assert out.getvalue() == (
    +        '[   ] 0/3, elapsed: 0s, ETA:'
    +        '\r[>  ] 1/3, 1.0 task/s, elapsed: 1s, ETA:     2s'
    +        '\r[>> ] 2/3, 1.0 task/s, elapsed: 2s, ETA:     1s'
    +        '\r[>>>] 3/3, 1.0 task/s, elapsed: 3s, ETA:     0s\n')
    +    assert ret == [1, 2, 3]
    +
    +
    +def test_track_iter_progress():
    +    out = StringIO()
    +    ret = []
    +    for num in mmcv.track_iter_progress([1, 2, 3], bar_width=3, file=out):
    +        ret.append(sleep_1s(num))
    +    assert out.getvalue() == (
    +        '[   ] 0/3, elapsed: 0s, ETA:'
    +        '\r[>  ] 1/3, 1.0 task/s, elapsed: 1s, ETA:     2s'
    +        '\r[>> ] 2/3, 1.0 task/s, elapsed: 2s, ETA:     1s'
    +        '\r[>>>] 3/3, 1.0 task/s, elapsed: 3s, ETA:     0s\n')
    +    assert ret == [1, 2, 3]
    +
    +
    +def test_track_enum_progress():
    +    out = StringIO()
    +    ret = []
    +    count = []
    +    for i, num in enumerate(
    +            mmcv.track_iter_progress([1, 2, 3], bar_width=3, file=out)):
    +        ret.append(sleep_1s(num))
    +        count.append(i)
    +    assert out.getvalue() == (
    +        '[   ] 0/3, elapsed: 0s, ETA:'
    +        '\r[>  ] 1/3, 1.0 task/s, elapsed: 1s, ETA:     2s'
    +        '\r[>> ] 2/3, 1.0 task/s, elapsed: 2s, ETA:     1s'
    +        '\r[>>>] 3/3, 1.0 task/s, elapsed: 3s, ETA:     0s\n')
    +    assert ret == [1, 2, 3]
    +    assert count == [0, 1, 2]
    +
    +
    +def test_track_parallel_progress_list():
    +    out = StringIO()
    +    results = mmcv.track_parallel_progress(
    +        sleep_1s, [1, 2, 3, 4], 2, bar_width=4, file=out)
    +    # The following cannot pass CI on Github Action
    +    # assert out.getvalue() == (
    +    #     '[    ] 0/4, elapsed: 0s, ETA:'
    +    #     '\r[>   ] 1/4, 1.0 task/s, elapsed: 1s, ETA:     3s'
    +    #     '\r[>>  ] 2/4, 2.0 task/s, elapsed: 1s, ETA:     1s'
    +    #     '\r[>>> ] 3/4, 1.5 task/s, elapsed: 2s, ETA:     1s'
    +    #     '\r[>>>>] 4/4, 2.0 task/s, elapsed: 2s, ETA:     0s\n')
    +    assert results == [1, 2, 3, 4]
    +
    +
    +def test_track_parallel_progress_iterator():
    +    out = StringIO()
    +    results = mmcv.track_parallel_progress(
    +        sleep_1s, ((i for i in [1, 2, 3, 4]), 4), 2, bar_width=4, file=out)
    +    # The following cannot pass CI on Github Action
    +    # assert out.getvalue() == (
    +    #     '[    ] 0/4, elapsed: 0s, ETA:'
    +    #     '\r[>   ] 1/4, 1.0 task/s, elapsed: 1s, ETA:     3s'
    +    #     '\r[>>  ] 2/4, 2.0 task/s, elapsed: 1s, ETA:     1s'
    +    #     '\r[>>> ] 3/4, 1.5 task/s, elapsed: 2s, ETA:     1s'
    +    #     '\r[>>>>] 4/4, 2.0 task/s, elapsed: 2s, ETA:     0s\n')
    +    assert results == [1, 2, 3, 4]
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_registry.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_registry.py
    new file mode 100644
    index 000000000..09dc46b7c
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_registry.py
    @@ -0,0 +1,294 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_registry():
    +    CATS = mmcv.Registry('cat')
    +    assert CATS.name == 'cat'
    +    assert CATS.module_dict == {}
    +    assert len(CATS) == 0
    +
    +    @CATS.register_module()
    +    class BritishShorthair:
    +        pass
    +
    +    assert len(CATS) == 1
    +    assert CATS.get('BritishShorthair') is BritishShorthair
    +
    +    class Munchkin:
    +        pass
    +
    +    CATS.register_module(Munchkin)
    +    assert len(CATS) == 2
    +    assert CATS.get('Munchkin') is Munchkin
    +    assert 'Munchkin' in CATS
    +
    +    with pytest.raises(KeyError):
    +        CATS.register_module(Munchkin)
    +
    +    CATS.register_module(Munchkin, force=True)
    +    assert len(CATS) == 2
    +
    +    # force=False
    +    with pytest.raises(KeyError):
    +
    +        @CATS.register_module()
    +        class BritishShorthair:
    +            pass
    +
    +    @CATS.register_module(force=True)
    +    class BritishShorthair:
    +        pass
    +
    +    assert len(CATS) == 2
    +
    +    assert CATS.get('PersianCat') is None
    +    assert 'PersianCat' not in CATS
    +
    +    @CATS.register_module(name=['Siamese', 'Siamese2'])
    +    class SiameseCat:
    +        pass
    +
    +    assert CATS.get('Siamese').__name__ == 'SiameseCat'
    +    assert CATS.get('Siamese2').__name__ == 'SiameseCat'
    +
    +    class SphynxCat:
    +        pass
    +
    +    CATS.register_module(name='Sphynx', module=SphynxCat)
    +    assert CATS.get('Sphynx') is SphynxCat
    +
    +    CATS.register_module(name=['Sphynx1', 'Sphynx2'], module=SphynxCat)
    +    assert CATS.get('Sphynx2') is SphynxCat
    +
    +    repr_str = 'Registry(name=cat, items={'
    +    repr_str += ("'BritishShorthair': .BritishShorthair'>, ")
    +    repr_str += ("'Munchkin': .Munchkin'>, ")
    +    repr_str += ("'Siamese': .SiameseCat'>, ")
    +    repr_str += ("'Siamese2': .SiameseCat'>, ")
    +    repr_str += ("'Sphynx': .SphynxCat'>, ")
    +    repr_str += ("'Sphynx1': .SphynxCat'>, ")
    +    repr_str += ("'Sphynx2': .SphynxCat'>")
    +    repr_str += '})'
    +    assert repr(CATS) == repr_str
    +
    +    # name type
    +    with pytest.raises(TypeError):
    +        CATS.register_module(name=7474741, module=SphynxCat)
    +
    +    # the registered module should be a class
    +    with pytest.raises(TypeError):
    +        CATS.register_module(0)
    +
    +    @CATS.register_module()
    +    def muchkin():
    +        pass
    +
    +    assert CATS.get('muchkin') is muchkin
    +    assert 'muchkin' in CATS
    +
    +    # can only decorate a class or a function
    +    with pytest.raises(TypeError):
    +
    +        class Demo:
    +
    +            def some_method(self):
    +                pass
    +
    +        method = Demo().some_method
    +        CATS.register_module(name='some_method', module=method)
    +
    +    # begin: test old APIs
    +    with pytest.warns(DeprecationWarning):
    +        CATS.register_module(SphynxCat)
    +        assert CATS.get('SphynxCat').__name__ == 'SphynxCat'
    +
    +    with pytest.warns(DeprecationWarning):
    +        CATS.register_module(SphynxCat, force=True)
    +        assert CATS.get('SphynxCat').__name__ == 'SphynxCat'
    +
    +    with pytest.warns(DeprecationWarning):
    +
    +        @CATS.register_module
    +        class NewCat:
    +            pass
    +
    +        assert CATS.get('NewCat').__name__ == 'NewCat'
    +
    +    with pytest.warns(DeprecationWarning):
    +        CATS.deprecated_register_module(SphynxCat, force=True)
    +        assert CATS.get('SphynxCat').__name__ == 'SphynxCat'
    +
    +    with pytest.warns(DeprecationWarning):
    +
    +        @CATS.deprecated_register_module
    +        class CuteCat:
    +            pass
    +
    +        assert CATS.get('CuteCat').__name__ == 'CuteCat'
    +
    +    with pytest.warns(DeprecationWarning):
    +
    +        @CATS.deprecated_register_module(force=True)
    +        class NewCat2:
    +            pass
    +
    +        assert CATS.get('NewCat2').__name__ == 'NewCat2'
    +
    +    # end: test old APIs
    +
    +
    +def test_multi_scope_registry():
    +    DOGS = mmcv.Registry('dogs')
    +    assert DOGS.name == 'dogs'
    +    assert DOGS.scope == 'test_registry'
    +    assert DOGS.module_dict == {}
    +    assert len(DOGS) == 0
    +
    +    @DOGS.register_module()
    +    class GoldenRetriever:
    +        pass
    +
    +    assert len(DOGS) == 1
    +    assert DOGS.get('GoldenRetriever') is GoldenRetriever
    +
    +    HOUNDS = mmcv.Registry('dogs', parent=DOGS, scope='hound')
    +
    +    @HOUNDS.register_module()
    +    class BloodHound:
    +        pass
    +
    +    assert len(HOUNDS) == 1
    +    assert HOUNDS.get('BloodHound') is BloodHound
    +    assert DOGS.get('hound.BloodHound') is BloodHound
    +    assert HOUNDS.get('hound.BloodHound') is BloodHound
    +
    +    LITTLE_HOUNDS = mmcv.Registry('dogs', parent=HOUNDS, scope='little_hound')
    +
    +    @LITTLE_HOUNDS.register_module()
    +    class Dachshund:
    +        pass
    +
    +    assert len(LITTLE_HOUNDS) == 1
    +    assert LITTLE_HOUNDS.get('Dachshund') is Dachshund
    +    assert LITTLE_HOUNDS.get('hound.BloodHound') is BloodHound
    +    assert HOUNDS.get('little_hound.Dachshund') is Dachshund
    +    assert DOGS.get('hound.little_hound.Dachshund') is Dachshund
    +
    +    MID_HOUNDS = mmcv.Registry('dogs', parent=HOUNDS, scope='mid_hound')
    +
    +    @MID_HOUNDS.register_module()
    +    class Beagle:
    +        pass
    +
    +    assert MID_HOUNDS.get('Beagle') is Beagle
    +    assert HOUNDS.get('mid_hound.Beagle') is Beagle
    +    assert DOGS.get('hound.mid_hound.Beagle') is Beagle
    +    assert LITTLE_HOUNDS.get('hound.mid_hound.Beagle') is Beagle
    +    assert MID_HOUNDS.get('hound.BloodHound') is BloodHound
    +    assert MID_HOUNDS.get('hound.Dachshund') is None
    +
    +
    +def test_build_from_cfg():
    +    BACKBONES = mmcv.Registry('backbone')
    +
    +    @BACKBONES.register_module()
    +    class ResNet:
    +
    +        def __init__(self, depth, stages=4):
    +            self.depth = depth
    +            self.stages = stages
    +
    +    @BACKBONES.register_module()
    +    class ResNeXt:
    +
    +        def __init__(self, depth, stages=4):
    +            self.depth = depth
    +            self.stages = stages
    +
    +    cfg = dict(type='ResNet', depth=50)
    +    model = mmcv.build_from_cfg(cfg, BACKBONES)
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    cfg = dict(type='ResNet', depth=50)
    +    model = mmcv.build_from_cfg(cfg, BACKBONES, default_args={'stages': 3})
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 3
    +
    +    cfg = dict(type='ResNeXt', depth=50, stages=3)
    +    model = mmcv.build_from_cfg(cfg, BACKBONES)
    +    assert isinstance(model, ResNeXt)
    +    assert model.depth == 50 and model.stages == 3
    +
    +    cfg = dict(type=ResNet, depth=50)
    +    model = mmcv.build_from_cfg(cfg, BACKBONES)
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    # type defined using default_args
    +    cfg = dict(depth=50)
    +    model = mmcv.build_from_cfg(
    +        cfg, BACKBONES, default_args=dict(type='ResNet'))
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    cfg = dict(depth=50)
    +    model = mmcv.build_from_cfg(cfg, BACKBONES, default_args=dict(type=ResNet))
    +    assert isinstance(model, ResNet)
    +    assert model.depth == 50 and model.stages == 4
    +
    +    # not a registry
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='VGG')
    +        model = mmcv.build_from_cfg(cfg, 'BACKBONES')
    +
    +    # non-registered class
    +    with pytest.raises(KeyError):
    +        cfg = dict(type='VGG')
    +        model = mmcv.build_from_cfg(cfg, BACKBONES)
    +
    +    # default_args must be a dict or None
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = mmcv.build_from_cfg(cfg, BACKBONES, default_args=1)
    +
    +    # cfg['type'] should be a str or class
    +    with pytest.raises(TypeError):
    +        cfg = dict(type=1000)
    +        model = mmcv.build_from_cfg(cfg, BACKBONES)
    +
    +    # cfg should contain the key "type"
    +    with pytest.raises(KeyError, match='must contain the key "type"'):
    +        cfg = dict(depth=50, stages=4)
    +        model = mmcv.build_from_cfg(cfg, BACKBONES)
    +
    +    # cfg or default_args should contain the key "type"
    +    with pytest.raises(KeyError, match='must contain the key "type"'):
    +        cfg = dict(depth=50)
    +        model = mmcv.build_from_cfg(
    +            cfg, BACKBONES, default_args=dict(stages=4))
    +
    +    # incorrect registry type
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = mmcv.build_from_cfg(cfg, 'BACKBONES')
    +
    +    # incorrect default_args type
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', depth=50)
    +        model = mmcv.build_from_cfg(cfg, BACKBONES, default_args=0)
    +
    +    # incorrect arguments
    +    with pytest.raises(TypeError):
    +        cfg = dict(type='ResNet', non_existing_arg=50)
    +        model = mmcv.build_from_cfg(cfg, BACKBONES)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_testing.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_testing.py
    new file mode 100644
    index 000000000..c6f8e8d12
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_testing.py
    @@ -0,0 +1,195 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +
    +import mmcv
    +
    +try:
    +    import torch
    +except ImportError:
    +    torch = None
    +else:
    +    import torch.nn as nn
    +
    +
    +def test_assert_dict_contains_subset():
    +    dict_obj = {'a': 'test1', 'b': 2, 'c': (4, 6)}
    +
    +    # case 1
    +    expected_subset = {'a': 'test1', 'b': 2, 'c': (4, 6)}
    +    assert mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    # case 2
    +    expected_subset = {'a': 'test1', 'b': 2, 'c': (6, 4)}
    +    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    # case 3
    +    expected_subset = {'a': 'test1', 'b': 2, 'c': None}
    +    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    # case 4
    +    expected_subset = {'a': 'test1', 'b': 2, 'd': (4, 6)}
    +    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    # case 5
    +    dict_obj = {
    +        'a': 'test1',
    +        'b': 2,
    +        'c': (4, 6),
    +        'd': np.array([[5, 3, 5], [1, 2, 3]])
    +    }
    +    expected_subset = {
    +        'a': 'test1',
    +        'b': 2,
    +        'c': (4, 6),
    +        'd': np.array([[5, 3, 5], [6, 2, 3]])
    +    }
    +    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    # case 6
    +    dict_obj = {'a': 'test1', 'b': 2, 'c': (4, 6), 'd': np.array([[1]])}
    +    expected_subset = {'a': 'test1', 'b': 2, 'c': (4, 6), 'd': np.array([[1]])}
    +    assert mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +    if torch is not None:
    +        dict_obj = {
    +            'a': 'test1',
    +            'b': 2,
    +            'c': (4, 6),
    +            'd': torch.tensor([5, 3, 5])
    +        }
    +
    +        # case 7
    +        expected_subset = {'d': torch.tensor([5, 5, 5])}
    +        assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +        # case 8
    +        expected_subset = {'d': torch.tensor([[5, 3, 5], [4, 1, 2]])}
    +        assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)
    +
    +
    +def test_assert_attrs_equal():
    +
    +    class TestExample:
    +        a, b, c = 1, ('wvi', 3), [4.5, 3.14]
    +
    +        def test_func(self):
    +            return self.b
    +
    +    # case 1
    +    assert mmcv.assert_attrs_equal(TestExample, {
    +        'a': 1,
    +        'b': ('wvi', 3),
    +        'c': [4.5, 3.14]
    +    })
    +
    +    # case 2
    +    assert not mmcv.assert_attrs_equal(TestExample, {
    +        'a': 1,
    +        'b': ('wvi', 3),
    +        'c': [4.5, 3.14, 2]
    +    })
    +
    +    # case 3
    +    assert not mmcv.assert_attrs_equal(TestExample, {
    +        'bc': 54,
    +        'c': [4.5, 3.14]
    +    })
    +
    +    # case 4
    +    assert mmcv.assert_attrs_equal(TestExample, {
    +        'b': ('wvi', 3),
    +        'test_func': TestExample.test_func
    +    })
    +
    +    if torch is not None:
    +
    +        class TestExample:
    +            a, b = torch.tensor([1]), torch.tensor([4, 5])
    +
    +        # case 5
    +        assert mmcv.assert_attrs_equal(TestExample, {
    +            'a': torch.tensor([1]),
    +            'b': torch.tensor([4, 5])
    +        })
    +
    +        # case 6
    +        assert not mmcv.assert_attrs_equal(TestExample, {
    +            'a': torch.tensor([1]),
    +            'b': torch.tensor([4, 6])
    +        })
    +
    +
    +assert_dict_has_keys_data_1 = [({
    +    'res_layer': 1,
    +    'norm_layer': 2,
    +    'dense_layer': 3
    +})]
    +assert_dict_has_keys_data_2 = [(['res_layer', 'dense_layer'], True),
    +                               (['res_layer', 'conv_layer'], False)]
    +
    +
    +@pytest.mark.parametrize('obj', assert_dict_has_keys_data_1)
    +@pytest.mark.parametrize('expected_keys, ret_value',
    +                         assert_dict_has_keys_data_2)
    +def test_assert_dict_has_keys(obj, expected_keys, ret_value):
    +    assert mmcv.assert_dict_has_keys(obj, expected_keys) == ret_value
    +
    +
    +assert_keys_equal_data_1 = [(['res_layer', 'norm_layer', 'dense_layer'])]
    +assert_keys_equal_data_2 = [(['res_layer', 'norm_layer', 'dense_layer'], True),
    +                            (['res_layer', 'dense_layer', 'norm_layer'], True),
    +                            (['res_layer', 'norm_layer'], False),
    +                            (['res_layer', 'conv_layer', 'norm_layer'], False)]
    +
    +
    +@pytest.mark.parametrize('result_keys', assert_keys_equal_data_1)
    +@pytest.mark.parametrize('target_keys, ret_value', assert_keys_equal_data_2)
    +def test_assert_keys_equal(result_keys, target_keys, ret_value):
    +    assert mmcv.assert_keys_equal(result_keys, target_keys) == ret_value
    +
    +
    +@pytest.mark.skipif(torch is None, reason='requires torch library')
    +def test_assert_is_norm_layer():
    +    # case 1
    +    assert not mmcv.assert_is_norm_layer(nn.Conv3d(3, 64, 3))
    +
    +    # case 2
    +    assert mmcv.assert_is_norm_layer(nn.BatchNorm3d(128))
    +
    +    # case 3
    +    assert mmcv.assert_is_norm_layer(nn.GroupNorm(8, 64))
    +
    +    # case 4
    +    assert not mmcv.assert_is_norm_layer(nn.Sigmoid())
    +
    +
    +@pytest.mark.skipif(torch is None, reason='requires torch library')
    +def test_assert_params_all_zeros():
    +    demo_module = nn.Conv2d(3, 64, 3)
    +    nn.init.constant_(demo_module.weight, 0)
    +    nn.init.constant_(demo_module.bias, 0)
    +    assert mmcv.assert_params_all_zeros(demo_module)
    +
    +    nn.init.xavier_normal_(demo_module.weight)
    +    nn.init.constant_(demo_module.bias, 0)
    +    assert not mmcv.assert_params_all_zeros(demo_module)
    +
    +    demo_module = nn.Linear(2048, 400, bias=False)
    +    nn.init.constant_(demo_module.weight, 0)
    +    assert mmcv.assert_params_all_zeros(demo_module)
    +
    +    nn.init.normal_(demo_module.weight, mean=0, std=0.01)
    +    assert not mmcv.assert_params_all_zeros(demo_module)
    +
    +
    +def test_check_python_script(capsys):
    +    mmcv.utils.check_python_script('./tests/data/scripts/hello.py zz')
    +    captured = capsys.readouterr().out
    +    assert captured == 'hello zz!\n'
    +    mmcv.utils.check_python_script('./tests/data/scripts/hello.py agent')
    +    captured = capsys.readouterr().out
    +    assert captured == 'hello agent!\n'
    +    # Make sure that wrong cmd raises an error
    +    with pytest.raises(SystemExit):
    +        mmcv.utils.check_python_script('./tests/data/scripts/hello.py li zz')
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_timer.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_timer.py
    new file mode 100644
    index 000000000..983f64f58
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_timer.py
    @@ -0,0 +1,40 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import time
    +
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_timer_init():
    +    timer = mmcv.Timer(start=False)
    +    assert not timer.is_running
    +    timer.start()
    +    assert timer.is_running
    +    timer = mmcv.Timer()
    +    assert timer.is_running
    +
    +
    +def test_timer_run():
    +    timer = mmcv.Timer()
    +    time.sleep(1)
    +    assert abs(timer.since_start() - 1) < 1e-2
    +    time.sleep(1)
    +    assert abs(timer.since_last_check() - 1) < 1e-2
    +    assert abs(timer.since_start() - 2) < 1e-2
    +    timer = mmcv.Timer(False)
    +    with pytest.raises(mmcv.TimerError):
    +        timer.since_start()
    +    with pytest.raises(mmcv.TimerError):
    +        timer.since_last_check()
    +
    +
    +def test_timer_context(capsys):
    +    with mmcv.Timer():
    +        time.sleep(1)
    +    out, _ = capsys.readouterr()
    +    assert abs(float(out) - 1) < 1e-2
    +    with mmcv.Timer(print_tmpl='time: {:.1f}s'):
    +        time.sleep(1)
    +    out, _ = capsys.readouterr()
    +    assert out == 'time: 1.0s\n'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_torch_ops.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_torch_ops.py
    new file mode 100644
    index 000000000..e8752e0fd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_torch_ops.py
    @@ -0,0 +1,15 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.utils import torch_meshgrid
    +
    +
    +def test_torch_meshgrid():
    +    # torch_meshgrid should not throw warning
    +    with pytest.warns(None) as record:
    +        x = torch.tensor([1, 2, 3])
    +        y = torch.tensor([4, 5, 6])
    +        grid_x, grid_y = torch_meshgrid(x, y)
    +
    +    assert len(record) == 0
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_trace.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_trace.py
    new file mode 100644
    index 000000000..2dbf2c854
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_trace.py
    @@ -0,0 +1,25 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import pytest
    +import torch
    +
    +from mmcv.utils import digit_version, is_jit_tracing
    +
    +
    +@pytest.mark.skipif(
    +    digit_version(torch.__version__) < digit_version('1.6.0'),
    +    reason='torch.jit.is_tracing is not available before 1.6.0')
    +def test_is_jit_tracing():
    +
    +    def foo(x):
    +        if is_jit_tracing():
    +            return x
    +        else:
    +            return x.tolist()
    +
    +    x = torch.rand(3)
    +    # test without trace
    +    assert isinstance(foo(x), list)
    +
    +    # test with trace
    +    traced_foo = torch.jit.trace(foo, (torch.rand(1), ))
    +    assert isinstance(traced_foo(x), torch.Tensor)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_version_utils.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_version_utils.py
    new file mode 100644
    index 000000000..1607dd6b5
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_utils/test_version_utils.py
    @@ -0,0 +1,63 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +from unittest.mock import patch
    +
    +import pytest
    +from packaging.version import InvalidVersion
    +
    +from mmcv import get_git_hash, parse_version_info
    +from mmcv.utils import digit_version
    +
    +
    +def test_digit_version():
    +    assert digit_version('0.2.16') == (0, 2, 16, 0, 0, 0)
    +    assert digit_version('1.2.3') == (1, 2, 3, 0, 0, 0)
    +    assert digit_version('1.2.3rc0') == (1, 2, 3, 0, -1, 0)
    +    assert digit_version('1.2.3rc1') == (1, 2, 3, 0, -1, 1)
    +    assert digit_version('1.0rc0') == (1, 0, 0, 0, -1, 0)
    +    assert digit_version('1.0') == digit_version('1.0.0')
    +    assert digit_version('1.5.0+cuda90_cudnn7.6.3_lms') == digit_version('1.5')
    +    assert digit_version('1.0.0dev') < digit_version('1.0.0a')
    +    assert digit_version('1.0.0a') < digit_version('1.0.0a1')
    +    assert digit_version('1.0.0a') < digit_version('1.0.0b')
    +    assert digit_version('1.0.0b') < digit_version('1.0.0rc')
    +    assert digit_version('1.0.0rc1') < digit_version('1.0.0')
    +    assert digit_version('1.0.0') < digit_version('1.0.0post')
    +    assert digit_version('1.0.0post') < digit_version('1.0.0post1')
    +    assert digit_version('v1') == (1, 0, 0, 0, 0, 0)
    +    assert digit_version('v1.1.5') == (1, 1, 5, 0, 0, 0)
    +
    +    # When the version of packaging is less than 22.0,
    +    # it throws an AssertionError if an invalid input
    +    # is provided.
    +    with pytest.raises((AssertionError, InvalidVersion)):
    +        digit_version('a')
    +    with pytest.raises((AssertionError, InvalidVersion)):
    +        digit_version('1x')
    +    with pytest.raises((AssertionError, InvalidVersion)):
    +        digit_version('1.x')
    +
    +
    +def test_parse_version_info():
    +    assert parse_version_info('0.2.16') == (0, 2, 16, 0, 0, 0)
    +    assert parse_version_info('1.2.3') == (1, 2, 3, 0, 0, 0)
    +    assert parse_version_info('1.2.3rc0') == (1, 2, 3, 0, 'rc', 0)
    +    assert parse_version_info('1.2.3rc1') == (1, 2, 3, 0, 'rc', 1)
    +    assert parse_version_info('1.0rc0') == (1, 0, 0, 0, 'rc', 0)
    +
    +
    +def _mock_cmd_success(cmd):
    +    return b'3b46d33e90c397869ad5103075838fdfc9812aa0'
    +
    +
    +def _mock_cmd_fail(cmd):
    +    raise OSError
    +
    +
    +def test_get_git_hash():
    +    with patch('mmcv.utils.version_utils._minimal_ext_cmd', _mock_cmd_success):
    +        assert get_git_hash() == '3b46d33e90c397869ad5103075838fdfc9812aa0'
    +        assert get_git_hash(digits=6) == '3b46d3'
    +        assert get_git_hash(digits=100) == get_git_hash()
    +    with patch('mmcv.utils.version_utils._minimal_ext_cmd', _mock_cmd_fail):
    +        assert get_git_hash() == 'unknown'
    +        assert get_git_hash(fallback='n/a') == 'n/a'
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_optflow.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_optflow.py
    new file mode 100644
    index 000000000..d602fdfa0
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_optflow.py
    @@ -0,0 +1,290 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import tempfile
    +
    +import cv2
    +import numpy as np
    +import pytest
    +from numpy.testing import assert_array_almost_equal, assert_array_equal
    +
    +import mmcv
    +
    +
    +def test_flowread():
    +    data_dir = osp.join(osp.dirname(__file__), '../data')
    +    flow_shape = (60, 80, 2)
    +
    +    # read .flo file
    +    flow = mmcv.flowread(osp.join(data_dir, 'optflow.flo'))
    +    assert flow.shape == flow_shape
    +
    +    # pseudo read
    +    flow_same = mmcv.flowread(flow)
    +    assert_array_equal(flow, flow_same)
    +
    +    # read quantized flow concatenated vertically
    +    flow = mmcv.flowread(
    +        osp.join(data_dir, 'optflow_concat0.jpg'), quantize=True, denorm=True)
    +    assert flow.shape == flow_shape
    +
    +    # read quantized flow concatenated horizontally
    +    flow = mmcv.flowread(
    +        osp.join(data_dir, 'optflow_concat1.jpg'),
    +        quantize=True,
    +        concat_axis=1,
    +        denorm=True)
    +    assert flow.shape == flow_shape
    +
    +    # test exceptions
    +    notflow_file = osp.join(data_dir, 'color.jpg')
    +    with pytest.raises(TypeError):
    +        mmcv.flowread(1)
    +    with pytest.raises(IOError):
    +        mmcv.flowread(notflow_file)
    +    with pytest.raises(IOError):
    +        mmcv.flowread(notflow_file, quantize=True)
    +    with pytest.raises(ValueError):
    +        mmcv.flowread(np.zeros((100, 100, 1)))
    +
    +
    +def test_flowwrite():
    +    flow = np.random.rand(100, 100, 2).astype(np.float32)
    +
    +    # write to a .flo file
    +    tmp_filehandler, filename = tempfile.mkstemp()
    +    mmcv.flowwrite(flow, filename)
    +    flow_from_file = mmcv.flowread(filename)
    +    assert_array_equal(flow, flow_from_file)
    +    os.close(tmp_filehandler)
    +    os.remove(filename)
    +
    +    # write to two .jpg files
    +    tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
    +    for concat_axis in range(2):
    +        mmcv.flowwrite(
    +            flow, tmp_filename, quantize=True, concat_axis=concat_axis)
    +        shape = (200, 100) if concat_axis == 0 else (100, 200)
    +        assert osp.isfile(tmp_filename)
    +        assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
    +        os.remove(tmp_filename)
    +
    +    # test exceptions
    +    with pytest.raises(AssertionError):
    +        mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
    +
    +
    +def test_quantize_flow():
    +    flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
    +    max_val = 5.0
    +    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
    +    ref = np.zeros_like(flow, dtype=np.uint8)
    +    for i in range(ref.shape[0]):
    +        for j in range(ref.shape[1]):
    +            for k in range(ref.shape[2]):
    +                val = flow[i, j, k] + max_val
    +                val = min(max(val, 0), 2 * max_val)
    +                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
    +    assert_array_equal(dx, ref[..., 0])
    +    assert_array_equal(dy, ref[..., 1])
    +    max_val = 0.5
    +    dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
    +    ref = np.zeros_like(flow, dtype=np.uint8)
    +    for i in range(ref.shape[0]):
    +        for j in range(ref.shape[1]):
    +            for k in range(ref.shape[2]):
    +                scale = flow.shape[1] if k == 0 else flow.shape[0]
    +                val = flow[i, j, k] / scale + max_val
    +                val = min(max(val, 0), 2 * max_val)
    +                ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
    +    assert_array_equal(dx, ref[..., 0])
    +    assert_array_equal(dy, ref[..., 1])
    +
    +
    +def test_dequantize_flow():
    +    dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    +    dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
    +    max_val = 5.0
    +    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
    +    ref = np.zeros_like(flow, dtype=np.float32)
    +    for i in range(ref.shape[0]):
    +        for j in range(ref.shape[1]):
    +            ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
    +            ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
    +    assert_array_almost_equal(flow, ref)
    +    max_val = 0.5
    +    flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
    +    h, w = dx.shape
    +    ref = np.zeros_like(flow, dtype=np.float32)
    +    for i in range(ref.shape[0]):
    +        for j in range(ref.shape[1]):
    +            ref[i, j,
    +                0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
    +            ref[i, j,
    +                1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
    +    assert_array_almost_equal(flow, ref)
    +
    +
    +def test_flow2rgb():
    +    flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]],
    +                    dtype=np.float32)
    +    flow_img = mmcv.flow2rgb(flow)
    +    # yapf: disable
    +    assert_array_almost_equal(
    +        flow_img,
    +        np.array([[[1., 1., 1.],
    +                   [1., 0.826074731, 0.683772236],
    +                   [1., 0.652149462, 0.367544472],
    +                   [1., 0.265650552, 5.96046448e-08],
    +                   [0., 0., 0.]]],
    +                 dtype=np.float32))
    +    # yapf: enable
    +
    +
    +def test_flow_warp():
    +    img = np.zeros((5, 5, 3))
    +    img[2, 2, 0] = 1
    +    flow = np.ones((5, 5, 2))
    +
    +    res_nn = mmcv.flow_warp(img, flow, interpolate_mode='nearest')
    +    res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
    +
    +    assert_array_almost_equal(res_nn, res_bi, decimal=5)
    +
    +    img = np.zeros((5, 5, 1))
    +    img[2, 2, 0] = 1
    +    img[2, 3, 0] = 0.75
    +    flow = np.zeros((5, 5, 2))
    +    flow[2, 2, :] = [0.5, 0.7]
    +
    +    res_ = np.copy(img)
    +    res_[2, 2] = 0.5 * 0.3 + 0.75 * 0.5 * 0.3
    +    res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
    +    assert_array_almost_equal(res_, res_bi, decimal=5)
    +
    +    with pytest.raises(NotImplementedError):
    +        _ = mmcv.flow_warp(img, flow, interpolate_mode='xxx')
    +
    +    with pytest.raises(AssertionError):
    +        _ = mmcv.flow_warp(img, flow[:, :, 0], interpolate_mode='xxx')
    +
    +
    +def test_make_color_wheel():
    +    default_color_wheel = mmcv.make_color_wheel()
    +    color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
    +    # yapf: disable
    +    assert_array_equal(default_color_wheel, np.array(
    +        [[1.       , 0.        , 0.        ],  # noqa
    +        [1.        , 0.06666667, 0.        ],  # noqa
    +        [1.        , 0.13333334, 0.        ],  # noqa
    +        [1.        , 0.2       , 0.        ],  # noqa
    +        [1.        , 0.26666668, 0.        ],  # noqa
    +        [1.        , 0.33333334, 0.        ],  # noqa
    +        [1.        , 0.4       , 0.        ],  # noqa
    +        [1.        , 0.46666667, 0.        ],  # noqa
    +        [1.        , 0.53333336, 0.        ],  # noqa
    +        [1.        , 0.6       , 0.        ],  # noqa
    +        [1.        , 0.6666667 , 0.        ],  # noqa
    +        [1.        , 0.73333335, 0.        ],  # noqa
    +        [1.        , 0.8       , 0.        ],  # noqa
    +        [1.        , 0.8666667 , 0.        ],  # noqa
    +        [1.        , 0.93333334, 0.        ],  # noqa
    +        [1.        , 1.        , 0.        ],  # noqa
    +        [0.8333333 , 1.        , 0.        ],  # noqa
    +        [0.6666667 , 1.        , 0.        ],  # noqa
    +        [0.5       , 1.        , 0.        ],  # noqa
    +        [0.33333334, 1.        , 0.        ],  # noqa
    +        [0.16666667, 1.        , 0.        ],  # noqa
    +        [0.        , 1.        , 0.        ],  # noqa
    +        [0.        , 1.        , 0.25      ],  # noqa
    +        [0.        , 1.        , 0.5       ],  # noqa
    +        [0.        , 1.        , 0.75      ],  # noqa
    +        [0.        , 1.        , 1.        ],  # noqa
    +        [0.        , 0.90909094, 1.        ],  # noqa
    +        [0.        , 0.8181818 , 1.        ],  # noqa
    +        [0.        , 0.72727275, 1.        ],  # noqa
    +        [0.        , 0.6363636 , 1.        ],  # noqa
    +        [0.        , 0.54545456, 1.        ],  # noqa
    +        [0.        , 0.45454547, 1.        ],  # noqa
    +        [0.        , 0.36363637, 1.        ],  # noqa
    +        [0.        , 0.27272728, 1.        ],  # noqa
    +        [0.        , 0.18181819, 1.        ],  # noqa
    +        [0.        , 0.09090909, 1.        ],  # noqa
    +        [0.        , 0.        , 1.        ],  # noqa
    +        [0.07692308, 0.        , 1.        ],  # noqa
    +        [0.15384616, 0.        , 1.        ],  # noqa
    +        [0.23076923, 0.        , 1.        ],  # noqa
    +        [0.30769232, 0.        , 1.        ],  # noqa
    +        [0.3846154 , 0.        , 1.        ],  # noqa
    +        [0.46153846, 0.        , 1.        ],  # noqa
    +        [0.53846157, 0.        , 1.        ],  # noqa
    +        [0.61538464, 0.        , 1.        ],  # noqa
    +        [0.6923077 , 0.        , 1.        ],  # noqa
    +        [0.7692308 , 0.        , 1.        ],  # noqa
    +        [0.84615386, 0.        , 1.        ],  # noqa
    +        [0.9230769 , 0.        , 1.        ],  # noqa
    +        [1.        , 0.        , 1.        ],  # noqa
    +        [1.        , 0.        , 0.8333333 ],  # noqa
    +        [1.        , 0.        , 0.6666667 ],  # noqa
    +        [1.        , 0.        , 0.5       ],  # noqa
    +        [1.        , 0.        , 0.33333334],  # noqa
    +        [1.        , 0.        , 0.16666667]], dtype=np.float32))  # noqa
    +
    +    assert_array_equal(
    +        color_wheel,
    +        np.array([[1., 0. , 0. ],  # noqa
    +                 [1. , 0.5, 0. ],  # noqa
    +                 [1. , 1. , 0. ],  # noqa
    +                 [0.5, 1. , 0. ],  # noqa
    +                 [0. , 1. , 0. ],  # noqa
    +                 [0. , 1. , 0.5],  # noqa
    +                 [0. , 1. , 1. ],  # noqa
    +                 [0. , 0.5, 1. ],  # noqa
    +                 [0. , 0. , 1. ],  # noqa
    +                 [0.5, 0. , 1. ],  # noqa
    +                 [1. , 0. , 1. ],  # noqa
    +                 [1. , 0. , 0.5]], dtype=np.float32))  # noqa
    +    # yapf: enable
    +
    +
    +def test_flow_from_bytes():
    +    data_dir = osp.join(osp.dirname(__file__), '../data')
    +    flow_shape = (60, 80, 2)
    +    flow_file = osp.join(data_dir, 'optflow.flo')
    +
    +    # read .flo file
    +    flow_fromfile = mmcv.flowread(flow_file)
    +
    +    with open(flow_file, 'rb') as f:
    +        flow_bytes = f.read()
    +    flow_frombytes = mmcv.flow_from_bytes(flow_bytes)
    +
    +    assert flow_frombytes.shape == flow_shape
    +    assert np.all(flow_frombytes == flow_fromfile)
    +
    +
    +def test_sparse_flow_from_bytes():
    +    data_dir = osp.join(osp.dirname(__file__), '../data')
    +    flow_file = osp.join(data_dir, 'sparse_flow.png')
    +
    +    with open(flow_file, 'rb') as f:
    +        flow_bytes = f.read()
    +    # read flow from bytes
    +    flow_frombytes, valid_frombytes = mmcv.sparse_flow_from_bytes(flow_bytes)
    +
    +    # test flow shape is [H, W, 2] and valid shape is [H, W]
    +    assert flow_frombytes.shape[:2] == valid_frombytes.shape
    +    assert flow_frombytes.shape[2] == 2
    +
    +    def read_sparse_flow_from_file():
    +        flow = cv2.imread(flow_file, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
    +        flow = flow[:, :, ::-1].astype(np.float32)
    +        flow, valid = flow[:, :, :2], flow[:, :, 2]
    +        flow = (flow - 2**15) / 64.0
    +        return flow, valid
    +
    +    # read flow from file
    +    flow_flowfile, valid_fromfile = read_sparse_flow_from_file()
    +
    +    assert np.all(flow_frombytes == flow_flowfile)
    +    assert np.all(valid_frombytes == valid_fromfile)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_processing.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_processing.py
    new file mode 100644
    index 000000000..88c37a2bd
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_processing.py
    @@ -0,0 +1,58 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import platform
    +import tempfile
    +
    +import pytest
    +
    +import mmcv
    +
    +
    +class TestVideoEditor:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        cls.video_path = osp.join(osp.dirname(__file__), '../data/test.mp4')
    +        cls.num_frames = 168
    +
    +    @pytest.mark.skipif(platform.system() == 'Windows', reason='skip windows')
    +    def test_cut_concat_video(self):
    +        part1_file = osp.join(tempfile.gettempdir(), '.mmcv_test1.mp4')
    +        part2_file = osp.join(tempfile.gettempdir(), '.mmcv_test2.mp4')
    +        mmcv.cut_video(self.video_path, part1_file, end=3, vcodec='h264')
    +        mmcv.cut_video(self.video_path, part2_file, start=3, vcodec='h264')
    +        v1 = mmcv.VideoReader(part1_file)
    +        v2 = mmcv.VideoReader(part2_file)
    +        assert len(v1) == 75
    +        assert len(v2) == self.num_frames - 75
    +
    +        out_file = osp.join(tempfile.gettempdir(), '.mmcv_test.mp4')
    +        mmcv.concat_video([part1_file, part2_file], out_file)
    +        v = mmcv.VideoReader(out_file)
    +        assert len(v) == self.num_frames
    +        os.remove(part1_file)
    +        os.remove(part2_file)
    +        os.remove(out_file)
    +
    +    @pytest.mark.skipif(platform.system() == 'Windows', reason='skip windows')
    +    def test_resize_video(self):
    +        out_file = osp.join(tempfile.gettempdir(), '.mmcv_test.mp4')
    +        mmcv.resize_video(
    +            self.video_path, out_file, (200, 100), log_level='panic')
    +        v = mmcv.VideoReader(out_file)
    +        assert v.resolution == (200, 100)
    +        os.remove(out_file)
    +        mmcv.resize_video(self.video_path, out_file, ratio=2)
    +        v = mmcv.VideoReader(out_file)
    +        assert v.resolution == (294 * 2, 240 * 2)
    +        os.remove(out_file)
    +        mmcv.resize_video(self.video_path, out_file, (1000, 480), keep_ar=True)
    +        v = mmcv.VideoReader(out_file)
    +        assert v.resolution == (294 * 2, 240 * 2)
    +        os.remove(out_file)
    +        mmcv.resize_video(
    +            self.video_path, out_file, ratio=(2, 1.5), keep_ar=True)
    +        v = mmcv.VideoReader(out_file)
    +        assert v.resolution == (294 * 2, 360)
    +        os.remove(out_file)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_reader.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_reader.py
    new file mode 100644
    index 000000000..c3bbdb7dc
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_video/test_reader.py
    @@ -0,0 +1,210 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import os
    +import os.path as osp
    +import shutil
    +import tempfile
    +from collections import OrderedDict
    +
    +import pytest
    +
    +import mmcv
    +
    +
    +class TestCache:
    +
    +    def test_init(self):
    +        with pytest.raises(ValueError):
    +            mmcv.Cache(0)
    +        cache = mmcv.Cache(100)
    +        assert cache.capacity == 100
    +        assert cache.size == 0
    +
    +    def test_put(self):
    +        cache = mmcv.Cache(3)
    +        for i in range(1, 4):
    +            cache.put(f'k{i}', i)
    +            assert cache.size == i
    +        assert cache._cache == OrderedDict([('k1', 1), ('k2', 2), ('k3', 3)])
    +        cache.put('k4', 4)
    +        assert cache.size == 3
    +        assert cache._cache == OrderedDict([('k2', 2), ('k3', 3), ('k4', 4)])
    +        cache.put('k2', 2)
    +        assert cache._cache == OrderedDict([('k2', 2), ('k3', 3), ('k4', 4)])
    +
    +    def test_get(self):
    +        cache = mmcv.Cache(3)
    +        assert cache.get('key_none') is None
    +        assert cache.get('key_none', 0) == 0
    +        cache.put('k1', 1)
    +        assert cache.get('k1') == 1
    +
    +
    +class TestVideoReader:
    +
    +    @classmethod
    +    def setup_class(cls):
    +        cls.video_path = osp.join(osp.dirname(__file__), '../data/test.mp4')
    +        cls.num_frames = 168
    +        cls.video_url = 'https://download.openmmlab.com/mmcv/test_data/sample-mp4-file.mp4'  # noqa: E501
    +
    +    def test_load(self):
    +        # read from video file
    +        v = mmcv.VideoReader(self.video_path)
    +        assert v.width == 294
    +        assert v.height == 240
    +        assert v.fps == 25
    +        assert v.frame_cnt == self.num_frames
    +        assert len(v) == self.num_frames
    +        assert v.opened
    +        import cv2
    +        assert isinstance(v.vcap, type(cv2.VideoCapture()))
    +
    +        # read from video url
    +        v = mmcv.VideoReader(self.video_url)
    +        assert v.width == 320
    +        assert v.height == 240
    +        assert v.fps == 15
    +        assert v.frame_cnt == 1889
    +        assert len(v) == 1889
    +        assert v.opened
    +        assert isinstance(v.vcap, type(cv2.VideoCapture()))
    +
    +    def test_read(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        img = v.read()
    +        assert int(round(img.mean())) == 94
    +        img = v.get_frame(63)
    +        assert int(round(img.mean())) == 94
    +        img = v[64]
    +        assert int(round(img.mean())) == 205
    +        img = v[-104]
    +        assert int(round(img.mean())) == 205
    +        img = v[63]
    +        assert int(round(img.mean())) == 94
    +        img = v[-105]
    +        assert int(round(img.mean())) == 94
    +        img = v.read()
    +        assert int(round(img.mean())) == 205
    +        with pytest.raises(IndexError):
    +            v.get_frame(self.num_frames + 1)
    +        with pytest.raises(IndexError):
    +            v[-self.num_frames - 1]
    +
    +    def test_slice(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        imgs = v[-105:-103]
    +        assert int(round(imgs[0].mean())) == 94
    +        assert int(round(imgs[1].mean())) == 205
    +        assert len(imgs) == 2
    +        imgs = v[63:65]
    +        assert int(round(imgs[0].mean())) == 94
    +        assert int(round(imgs[1].mean())) == 205
    +        assert len(imgs) == 2
    +        imgs = v[64:62:-1]
    +        assert int(round(imgs[0].mean())) == 205
    +        assert int(round(imgs[1].mean())) == 94
    +        assert len(imgs) == 2
    +        imgs = v[:5]
    +        assert len(imgs) == 5
    +        for img in imgs:
    +            assert int(round(img.mean())) == 94
    +        imgs = v[165:]
    +        assert len(imgs) == 3
    +        for img in imgs:
    +            assert int(round(img.mean())) == 0
    +        imgs = v[-3:]
    +        assert len(imgs) == 3
    +        for img in imgs:
    +            assert int(round(img.mean())) == 0
    +
    +    def test_current_frame(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        assert v.current_frame() is None
    +        v.read()
    +        img = v.current_frame()
    +        assert int(round(img.mean())) == 94
    +
    +    def test_position(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        assert v.position == 0
    +        for _ in range(10):
    +            v.read()
    +        assert v.position == 10
    +        v.get_frame(99)
    +        assert v.position == 100
    +
    +    def test_iterator(self):
    +        cnt = 0
    +        for img in mmcv.VideoReader(self.video_path):
    +            cnt += 1
    +            assert img.shape == (240, 294, 3)
    +        assert cnt == self.num_frames
    +
    +    def test_with(self):
    +        with mmcv.VideoReader(self.video_path) as v:
    +            assert v.opened
    +        assert not v.opened
    +
    +    def test_cvt2frames(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        frame_dir = tempfile.mkdtemp()
    +        v.cvt2frames(frame_dir)
    +        assert osp.isdir(frame_dir)
    +        for i in range(self.num_frames):
    +            filename = f'{frame_dir}/{i:06d}.jpg'
    +            assert osp.isfile(filename)
    +            os.remove(filename)
    +
    +        v = mmcv.VideoReader(self.video_path)
    +        v.cvt2frames(frame_dir, show_progress=False)
    +        assert osp.isdir(frame_dir)
    +        for i in range(self.num_frames):
    +            filename = f'{frame_dir}/{i:06d}.jpg'
    +            assert osp.isfile(filename)
    +            os.remove(filename)
    +
    +        v = mmcv.VideoReader(self.video_path)
    +        v.cvt2frames(
    +            frame_dir,
    +            file_start=100,
    +            filename_tmpl='{:03d}.JPEG',
    +            start=100,
    +            max_num=20)
    +        assert osp.isdir(frame_dir)
    +        for i in range(100, 120):
    +            filename = f'{frame_dir}/{i:03d}.JPEG'
    +            assert osp.isfile(filename)
    +            os.remove(filename)
    +        shutil.rmtree(frame_dir)
    +
    +    def test_frames2video(self):
    +        v = mmcv.VideoReader(self.video_path)
    +        frame_dir = tempfile.mkdtemp()
    +        v.cvt2frames(frame_dir)
    +        assert osp.isdir(frame_dir)
    +        for i in range(self.num_frames):
    +            filename = f'{frame_dir}/{i:06d}.jpg'
    +            assert osp.isfile(filename)
    +
    +        out_filename = osp.join(tempfile.gettempdir(), 'mmcv_test.avi')
    +        mmcv.frames2video(frame_dir, out_filename)
    +        v = mmcv.VideoReader(out_filename)
    +        assert v.fps == 30
    +        assert len(v) == self.num_frames
    +
    +        mmcv.frames2video(
    +            frame_dir,
    +            out_filename,
    +            fps=25,
    +            start=10,
    +            end=50,
    +            show_progress=False)
    +
    +        with mmcv.VideoReader(out_filename) as v:
    +            assert v.fps == 25
    +            assert len(v) == 40
    +
    +            for i in range(self.num_frames):
    +                filename = f'{frame_dir}/{i:06d}.jpg'
    +                os.remove(filename)
    +            shutil.rmtree(frame_dir)
    diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_visualization.py b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_visualization.py
    new file mode 100644
    index 000000000..82dd093bf
    --- /dev/null
    +++ b/toolbox/MMDetection/patch/mmcv/v1.7.1/tests/test_visualization.py
    @@ -0,0 +1,19 @@
    +# Copyright (c) OpenMMLab. All rights reserved.
    +import numpy as np
    +import pytest
    +
    +import mmcv
    +
    +
    +def test_color():
    +    assert mmcv.color_val(mmcv.Color.blue) == (255, 0, 0)
    +    assert mmcv.color_val('green') == (0, 255, 0)
    +    assert mmcv.color_val((1, 2, 3)) == (1, 2, 3)
    +    assert mmcv.color_val(100) == (100, 100, 100)
    +    assert mmcv.color_val(np.zeros(3, dtype=int)) == (0, 0, 0)
    +    with pytest.raises(TypeError):
    +        mmcv.color_val([255, 255, 255])
    +    with pytest.raises(TypeError):
    +        mmcv.color_val(1.0)
    +    with pytest.raises(AssertionError):
    +        mmcv.color_val((0, 0, 500))
    -- 
    Gitee
    
    
  • hG^B=qFJR*k}qb+8EbH6wP|VX z+Z{}r54-iVSqz3iyd82e#?jCQ&qdFJc5@(1B4I%39|7pR?&HvX;_A1SS=S2jD$tML zQ=T!qrtgAe`r4vSMR&v4bSb3U`~Ar2{`zAXTpF#H8VF|k@isUK>&Z-d%XsIjEgkc- zEzt^k)|P{f=U zeThNR(Gy4@WKo`um-{_@7~#YBf2OV`?|LzUssS*`~yD7>&8wWy_i1560v0_?CTFz%_Vibp9(G5axy0 z#BX~}Ys@5-PeZ~lRFAWBLr5p3VBPg=|NIg+k#bX6Gf$-{M5E&FJ)ko8b=%7^ZXO*h~--#eNTjZ}BWrN+u$ zJA~{;DdvWq|7uF`Xb283m%aQ(_7m?rr**TSi}Uh0#c>;bCg(1U?_|}&G{$GL?C<|i zA9o99AZ;l_e(1`&I)&`lA~{u?{}rG3S}R+*t2SJ04_-xymg<*@uE{}){giC{{Ed<+ z!U>qK+W$`rFs6DwjQ@B9gp~!q{5tl-C^2{Ku^$Wx4 z&t#ERwZ&y4)xX~x0-=5hf!e`VT31{tIXYM zBKJwV_p~_`$!fAQ=*g|hT_^Ip($2%VrP`c#l5cVWIdK4G$&k2|z7#mP`;9&4MdvTu zkz@mt)8MkujWZy-iT-XB?`+_9k5o;mAx5(!exDv?l0=YZtUt7Z>{r&Q$I-WTbfx7N?f!rM{oWO zKeRco$BBJLH}O4w-cVdDbf{*sz(sV3VQ|fZ-6w_Fz<-qM!5-3!k)%eF4EG;rgz8KZ=O~1ai4; z7XjmrgVA5-e1AmM$JYi{20T1@%|?^no)P+Z{H3_BOKQL7n4r)Xd2<@5OZVKKdSr;( zGSfO5ck#^u|7YO3{nJVJzmHn)OE|v1yQ0FUV+f&n^~IWul!`}58V3+KEWHcvNaXiJ zGTM3YL(&Aok?FvPHV&f?>-8*#GmSnM7sq4anKAoP15Mi#V>awCM1n-qex-khmsQ`F z%2ndcjwLK1t-eWC#!MT8)-&rtJ{v>88tUh=3QM!DKmB%p6IuD})sx9oSg7RWEt@Xpr<;$nc(3vg1I>Y*Ift#z&qEi=b%B^)-lp@PV+VhS<^W^ys4JR| z9aXkNt2yA-ac%(RSWzSZ-8Nu47mQuT5u}ENhmFnBtJ;w(qaSlGF9MRpL?bViSTZ{8 zJ&_bT%4TL-#ow_wv}_c9aL#)^pR2sv*O_xc=p`Q2c^;tz2ySg0Us92PoW``rtNy;@ z^yM$k#TZk>H3Z^+$ABK3Kmb`2JQKIQZdLEifvN$Jg#Gb|d@LHLAk0UUN6;>r0^IM) z+c{+vF5^y@VGsM`O3HIJu_7D*Ll7yZnOG>+N5F9;P4X!iFHdTeZR;DB{^Ew@2T47W zFBb8mf&woU;82X|X8wrtj!dg8;(QX_8Vu0TJBC=WZA^y1f>vLPC@ExrZGOl|>@uJtqBbXqcosO}cB|o=O6|nDiVSm=RD# zrX4jJLscE+rG5#fuBCQKYIla6zl*ld*i0BmP~T;q#P`)YDq ztPKPcjws?+w8dnA`C_Q3JIXkK5o}AJn%Ht0UQ4V0l6n|}U1#6nRiGXKG5IrSc^jw% zybSM)i%4@4SvW2=kUxTAcYzEXuy*1i$0x8aEGPUQkRyDWVHAEUf6eTF6CO@Fdur(< zcLgU8d;!1CeM>C7NQA|f@hVtOti<+moLt4UchgNatDg^t)My1Ap$iYTA5hUzCpA04 z-!KXQ%=qS0J5Db?W0XYcxVyxs(hU8)OUo!VdybW0!aNP&4&zU%%LgxMUEj$GYK1Q- z?b5Q%)xsr9V7DoGsHA-fYu)X~SM&J-Lhyq_zI~)a5wG@NZRZ;yiRGnh-sO3aKBPVp zqP#AnXkY*avVp(C1UUr0np`D3czB3fjsB>{YN6Lb{J}4p_hoh=x+40n?HF^$qP#*{t8WFctz99#ye@RIlwSJjM%}K=OE+dxA4$Jd?J}LEX|hkP{LPg-l=9aW zAO2Qw$D1n0k>KxJ{7RMijeMh0OIv_E?&>UWVdJW5v&zgxH2tDf83awr+PK; znz}XQq5PY-93t1D7|nsBwjKQ0zfnQ`>yj^!Rjm*h>PrzP-NAufYwb;)LMcp3*YqR- z_O|v_!k1hPE*7Kn%8S$7u*1It;PZf?zg)UL!e5G;DS-BOK1)^baM2*khpRsuTbff_ zu3Fp*^j5uX_no`R^3qtn%)0)swuWq;LS8D)*o_Mj`(r$-;c&_U$leR%nEmNfCf18D z*$nb3eXZguCNwmle3HiQ&YRt#)O64%NJ&a3&!{TOVL9z}#Cg>po z_3oT;OqSn^_a3Pt9yhv3lx1d}1kcp_ah;@9J7gl-->*7KCFyMxS&k9!PahRF`;hTf zAMw3aHxeF-7QU|ANG6&WZ~k4)N)9=H)A=XuJh}PY&P-aCwEIz1<>)kZQEsL=II%V> zHW+_G8Qrv3kbm}VMpeNZ^VhB{Q_27AIGE)6UpLb)xyc^{Cu`&A_8(ZexBSKO>d#jexE2M5>JX_698s4)0q>n_vgIi#&7STvL}y(|IHs28Xa}F z#rZdc*M)BUQRh5GPJU4DkYJG*U=dzdIapUuOis`0E_hKtB;oDr^-AT{Oql15b{&Pq zfH`vbKZjzK>c!fPPCb*bvt{8VqAZ0hp8AJnw)q5b`ZRuR6%y|C_I=ig<#n%1T#tGB z?f_{po19re7ryydru&H9e~a70h|+r|bSN49Tu(%`PFALW{gq|<$g~0Fr*Ij~r(1|5 z;QJdV-#fV1d2t?o>e1U;%xj(B-%y&>aUw}7nLtrY$1o_G`~f!^=3jjcK22abjDfsT z1RWy>AD-v-D#kD2E~dXL?$smWQzZI@4xjTM!?(#iJmDvus%M|Vcg@SfkM1V4-L;l| zLA3Ch+_#=pbPV^{Ax|UZO-73mf#pzWW}XhLJh*s_BTO2jMNaUm{-zj+D8He z(FbOx2B+)2<=D~SSrN#0B;S$F`%d@fiq81==c)glDc@FCZ-HI4SrCFpU4Ll&!j6d< zq~tb{W5$-o>N!_ChX?kTuF%{3>KeK+`iUEkwE3k)4?7}DKi~FDs=Ouf>v7sGW@$4y z(T@yKRFY|z1*9*7t&L_)(staAwl?d@Ge0lrFV>7y>vr*#11f;=|1c&}-SFs($Jy!L zM#FaLM25a;Vj(WZ&dFk{-#O;;nH(X_$54I@frySUe(z)g;tQCqJ_~9DK5lBs^-dEX z>a_|s{F^zy2J_0r)Ma}At@C#OuoR!tp0&UGZRV;wt?Vji|8mbqD9d=6NqBX04io&fbry2oep}O=Z4dvj>v{ z69daJRn{LWGbfHumA)t;*JF2<_CgXRmN&BRwkD}g%@(iU`3wO!6aRBHZ}h2ippzp( zA771rM3g5tqL;8{L_q`Ki9@$-hdQvyHn0 zN?|_Fu1dZ{>n*Nmja&3tl$k7Vr$o69wsgIrcKIKMMAE;xrqK0t0NLjE$ii$?-(`vi z)RmVvs7}pd2F@GQSU{;?rh?pgFqrzxyOmz!a$F^==|^|WKt3G}UFg4e%BnM-<6Rsd{;nDcUDTL&y%@d|N37a?5EA~YTG{2#%6gcYn$3+xl}HHD>4C4 z7q(JqrR$z$v#fVVx1+GI+yUbKSM~k@U9aQSfnLervF~1o?e#c$(qmflsoD<5R;XUa z5u4O~R}K6IG;J70-G|3R9&*^y2=?)-$J_&_L0fETd6d|!;9ZHXqj%%grc=_oulmJE zc^6LqW>E@am9-1*X%rNa(V3}6)e5_tkR{xAP-XcseV)Xfo#Vp*m0YuQxdFJ_ll2Mv z4m_1_JJF>*MBPVi%5x7I{V}iff#8{%^%d4s5r?2{;>ks~>S3qj`_^2yKaPQYTQjTw ze2kPeo`|$|BeO)4C#Dsx!w!mW;CJS`X{I)QP3);}{J!YD7IMCpnH?K?KJEJLOVg_w zGa#Ovmzctp^q{-o>8<;5clcnPDf|RAdmt!LwS@u7ah}eio`M21|HH@s2a<3Dqwgg= zanww5)XU49(Cbezlau;FZkqi!T(zZ0R!Os`pYzowiCQ-Y@!|5h--)Ql&(V*J3v>UL z8kioR%$NxdI3CSDLF6cslkR8n|F>K6q|(4`c6Uii+)A<5Kj=K$d^YH)u_mXv?qqE; zR@k8V>9EV!Uo{Sr!IZ<-ja!t`4Sgvx_QuC=^>h+#-~R0Cbs;Al!&N3Th7DhI)IZsdj>6?x36 zoc4?X`XV2XcTVP|8!D9Xkx!p06Lt+O{t8b+|2sS5CQq$Xc-`vKrEwkXWmd&sQfqi} zme5gE6Z73iq8^P*zD>77k%Kqy{cA8f)AQNe=oijy_F68UZRV}}`<|53)!>oETpQ*@ zIb5&@7>dQdLkMO5=YNg<-X!~>q@C`@Ki~Za?$?xVInDT6lcNEp*4KT*sv5*U7sc>%9$MYwt8N?>{?X|FkAM z3pCbKl%@JlU&?an-@(r)D|_gsr1V|O*c8W&;HnC`f37Fn_~px~d)e$OA71{IrftL0`;4l=S(dU_^Z0oGG2mO^#YN+sh1+Vwd@BF%o;y_lT8F zF*Ni<2dLm#%V>c{-b=WXDKs(vlZn6_eqNdApfj|>G4i5r{+l98*jaD$?io3h)GeHQ zy1^bMRuqX&HE*W;jiQg$Hn}8VShKK#U21>w-25|I+Q1d*Ypq))mo%gI@Op*uds^HX zJW(Rfc%*8#Y5llqv#yjjUWti+I8|X_x0F1Vbud4_YDu0t>d6h$?C+_l_1c_U{*ZHW zsH?Ikez8vu-75>(F0z#E^g2B>n))-D0rK*_Jr(jn)IlK@LVY`6Wo7K0CqRJwG>Z znsKjV2|W}{od{7W>d5DfDepRKuhX0gxxaZF#wFe3tzMfW#HFUa z!vO(=1hFDcOC%Z%0A_#|j~9_Maq$H}YRQc*l5N&kw4`6^cZ(He#GyH<1yJbJM-gt3 zneLHai*Qsk){J->2_Y$mN87{%R`r(0G98Czxu>`+fRZQG^yy=FXNvA1 zb#*&u&$s-u`a4dH)3hrm0(h5TWYAlVA*h4?9boEVDJkm#CuspcH!_VKbdJ!`+R0IToCt)~IXj={;OSBzF%nmPHN)6fqhiHM^ zm}o!~)HDQnIKm8Z#7_W_A1+h%h+5$HzIEcN`T0;Ya6_XC3tR*i8U`vtxPlN&cz^4% zLPJ8ZYR8L0U|gZP(?kmU_nv)rw~y8Rnb|e;_lZGi>&f@^Og&eGhh>h~kSUrdnB+E; z9}gDPZ)v;4efzei=3~zv_fF^mn;Iic$%^7X>LNQjs%ISex{Aj+xEL-FLwM$2L2Q$!h^&g z_weQ8Z@Ab5ZaX+~ym;1wQgXiQ`1SWbs52_oi>s|bC;tvi9YpH(#%jLrW|KVjy*QZE zGr$V|2Sgx^6uV_(Q?4NN-kKPB$|U9$peau^3XL_QW5Nu|ndn;orLbifFkDR=j0D1s zsUQ%#m>eY<-Nb0_uX8D3E$Xv^JYHBE>{RIYnr1ZCPpbz zl2nc(zm$&bo6k1LGCEmb^7`S0?uR!WZB2(LOlBLc%?bQw@fvznq2v+6-@Y%9Yml(k zu_Yi!;_ipLb^PFTSk3lN6tQls2zK&6C(Z||cI?kvz$zw`vY!0(!ImA56xIg^S;ee< zQQ6)&xBsU&8@9f(x3SY0N-wVL@A_ofAE=G*?x{H3YDXsn znr@5@I4CIn#3-1{$=_H2Y^Q;rXGT&(-W@?lf+{5k#Qr3Vd_N|f%rt*3_Gt3Lq?5#z zcgIUaGppMG&>VXtiTx>BbUuf-SgW5~+G;Q4Tucr2HEnF(^01!RH;idA(v$7y6KMZv zRT^~TH}C@_yj-^qVB02g2v}56rhs*DbBLUu+)|hW?EIKMmxf0)E447|eS2>*FQhHt z^^Y~Ppnc-Ju1ydQvQ=_JNc-G#B*){=ox5zp;|<^S-q#qAhd*{zb(UEsvOBZ;8>MIX z|MY)D`SiOOfj3|xW1~go7|exe2Rr#Qv&Ai2uD&Te3_m@-0P^{V?ZSLMP>qCh)uwXs69A+^lP2C(wJi_##5~Z-k%!=Mh5s5Pnp~?66T!9DY0k z@LKk_1w}9G(mr0dmc?ZFi#e(=scXe6g&*v=<^~;27^e?kO^~-RtXIF9SO8vr#Z&V{Pf?; zYTl*4*fKibUaNA=Jv*|2STIM6HXKDw3Oln0*Vn%q$`LmYon^-ZCex!3I!GJFnI9zV z*8R2mOoV1tqHr4Z^cg+)!iV z7q*&Q58i$h06s`6L%@TTu0p#Z)TdH_)Lf$H(cw7C$H=L=CL8kP@YqQAiuS5C>>3PZ zi_12j#M%V!kB~2xgjHl_C#EMen5}DG*0q;}1%y0F8*#h8S|?WY^7n4#?*37R+?Nt6 zh7koWE-^)!8SxLc)wLRY&|lX$bXyeZE0(iqIyh8!hjR73*hme##NfyRfNqi-S?Q~9 z3Cx@?LFb6;enb0uU8(2)QxXV)$ZqKJ-DL(Yg?a zUNwTgL!u#e*RWa*Fv##w!Kgrx4H&S6eZ*Jfr%9=~_#2MIEdmX096`-jQMe%9>NvN3&{QwubcB?*frP`KLp5FV_^`paxUxR@b!k0JrTg*hTx0?wX z!|dfKzmyUg>DBGktp?<94o7Ls{k{~>d4}GF0Qp<*fuYXCG@hwHChfsP#5-pKTBt5( zuIO$-%%yv0bY6!MWqC2zB*BB*a|cI_^oDL>`w^=UDZ($mtW;KU(=Bp2#_WmP{XOLb z`7pp9(}BJ-15+Bdwen6;oA`tM<=0oZB)=f1Xw)fu-lJlzJ7zcf!#Z@CQBl#+#}g3T z#=feh*t%tj)>d=>Q=$as-N_K|avuC8Bd7aZgNhoKn9r|+yHcd~T}DDuXN@xeK1w1) zRuqWNUAj_I`xvDLqH=P3zz{8<>t{#j`cy+tfpiWF)Uog^|0w#?`*PxtL;4NreQR^2 z-~_1JQx7?tike5WsR9y`xh9BcdHwllxrli#vG32l0@ylNvQu%k_W>!EbJa7|fRuM) zJoQIg>*Vt(;qcXt#W5?Mq_Opq+eTxXC?z8To)T_&@b=)WCtOGL*D|K!A zm--G0{kMPwTqaxpC-tQiJ>3#fROY@zg-SnrDy8|5F!uZmf7EVTQIhQN_};c}wo&m$ z?J6?0oj#{FZUTt=thsS))OfL)a+o^iVf42ufMqZAcR}ZRe|EiY{n&xCQ%L3kAbX`l4@ghJ-q(CXYpM^7jc@Y-YPUc=LmUrg#i-?I*b* zB|Qn|vnqzYyQJKPa@lWysL`PW=NVe}MB_qf27YRJ$dR(4{Ev z5zptqivT)^V;>ARo*fn38EZS-AA9b5<$2)ogvV_CP;yq&=dNB}(UZDr@uov8Crf(2 z-cWz%C$HcCB&!6ZSgFM;9NHyj^a`hPIa^oW!4AOQ07R3w z!z~;Y?nB%40g$xvKgaLJM7*oYWXM#NC#~T{iQVt6|B4x1!fdTqqXdh*|!+V7J5XC zqo^?boSnSIhPlF@rFofJX4tcGmxhkhAjhkc>Z*O=xLufqJldhB=yfybt2S@)ESrA_tmXl7w$rf3t&Qn=gcC z5C3_D9vzQFiHEGJ;@0BOz=m^sdx>}!Te0H8z(@70eDuqTxxj6Eej5 zEHvN>(*WjKfCF$6f!E@)>_`V6gZUO5nIOP6^)!VOcL(5=mu7-VH*X;f_`pE_v?)SL z%d=t`GT90hMxi4BC#C=(PKr58VI^hLB;I3vTW|-=0Zftw^oEG`=XjR$@o|b=cjZ*< zoR(?)A{<@6)HtAV$v&~OQ+PIXziMbP)=Bx>diUy1TSbn7m%!IQnAeHF0Ogdr)+M_~ zhx}44)c|~g`P>*#j&{9S7N+e`AgTi(v1)z8Er3$0x}~KW;Ge^UI93Tw5R9r%tpyM# zNzp*spfFJ4BkC9c=wo)!e88Hw+VmlAjS$C2qyl!dnRYXjw@A?zKxc1NZZSl0jO71)S>NR^E8*8`w|?OV5!8vb$dw6c zTQ>P!+BClL_%t~G-SKB0Pru1MO)*fnC4Ro91Hau8NfUX^+N+7WbA|_O{b=laB}>mS z>T9%`={u9LJ?`EFAlksp6piGH6b*r(gx;|1aHmlr$5 zDg%c1*FTn!bF4PTj_%4*W|S@c^xTyL7agm@CBLuURv$=v3g%6T4EJm!h#F*JU`z0*j2&bq44R(g3GX9Vx=Ux zV14!^*!@}Ad^<%TUh z+?pb8Ewo#X@v102FRT05$6NhP;bI(r4qbHhCwHWYUjEENZVcMTyHu`qxO3!w1(u|L zep%$m&b*m25(=c1HtCi0hz*m+O1qx9=AJ+BoX8EO(64{0H&WT}OQlz|9!qv0{LG@4 zQXh6Ab^}(M`ojK(`rz^j$j<0<8N%zCFP$vc^fu3bxkz-!xa%A0kZuY|lv+)6S9n&; zOf`i+zB&@@Zgti;)+`9W&o;93ZMPqf8c;oHu%n1)eln7riwQl|+z58-g>-=z_DR4KgQv;l7s{fM1f$I~i79rRf8LC>k2=LMw`A5&i^>2{Hi!uUJfoQxmP0lng)r< zkM~DIb^rT?pv9MCjP*I`VyF_`Z_0mMMM?>27m#E9fg$H=&GQrIiv?Ma=hG*r;$cN4 zUuNnnLz!K#q9wzfrR2x7^S7^h~k#1D#^BLGvBrG~MBtbQGt5k$uF8`hXG zC|RS+ez=L;j~1aS9x3EK=J*teOKJ=7_VXg+=WnRiHm)9vIw~ei1m`sFOXVIN7S9G( zl4Fg+{|Q>Fssy_ptp0yAop(6Z|NFi2jOnQ$!`%Hx_be+|T!L$Z8NuNGB-?orZJW_~Ysw`uSvY z=Im7AY_n#v&F>puz*SK0*=r!ocwk&J>ci5lgH8)-9$9JHrw%rN-5WowgLyEPuh$C=1hLgWUNzr0#V`S%B{d5$KQji4prKL|WM#G?r z&7sE$zrPQe%~4UM#UbLr?o6a>NipbG<)nNmxfQHP+dV|w{U#G;ce0ZlVkDlZ;{JGi zptiOO;WunAM;S%0)J-Y&vSw`N1ju3Y@)*?2V3?DWC;Fq@8SjkxL@M~>$aRQ?I}~Z@ zXu&>b1`FwT9`5tIo;tO(s;uc?w2JVXmZIa0WU+6uivi&ytMH1<3Mo3GF5+$}x=!JZ z*lS9ZUEp^Z7Zs$iC%+1_F69KDgWe2cz=4qRw6>Q8#vJmO+~AgwS#iJjnU)B87x<{k zCez{~GVM$Rze6cwFe!~k>@KV^o~-Yk$U&8U3zB9YeEJz3x*rv`bb)p-_N~y|W%YdZ zu=2p;m4HrdEjNFs_rk3J3PLIW|NeV6YWSlgDuU=W9fR2X53kpXxjfW(2q}UGtwEQt z$YMqKuD}7}ktEAIWEo9NP04!40K{>Esqdy*3P*x#DPiu@+^2FE@m8FJ9_%=%fEn{2-g0=g#q5Z?KyHS*daEGC?-@^zJDNc$}FBx%o=QQ3frxC zDr@Z%*(|OR$p7?%Ce!@)yJ1Gk;^WaF%{EI=vu#8*&%Ihjrsp-QWWB!(-q$KpVGepk zZxoErfR>7ulD~gm!OOfnT|eJ(EYBdQo(tZ5ERODg)|#%J{GR%z3`aa{Y*LqtU=vSa*3|fsRTvpXDq~6rUqOkS1B4C|)Wisc5J z-qOvg=R-EQaa=~VUmaccT`l9!Ci7e*;vU4WeZY2u`7+1219+T#9^A9W)YA*4RAr=MFei^P zS+WwUPoaF95N4l={hTbhqy1sG(K=Z6-)gh^y#RoVd9t}*m}t}F9mt&}zx#Vn*KFo0 ztnDmnVQ*=;=lf7@$lB+rC!ToJJ0vV+m&{@CqQ_dkf<`FKor6tUpy#qb=OU^pbZ_ze zzs8ClxdurKnuYZ;^#o0|-TT=eOxQ7j;uMAaY&C-O(DPlK{4~|6df2IW;>E^nZ}L== ze3Iu18Kc_;n$Zo?C6KO*a_@3;IPR>8A-ZQ*Zt($x#Ge#`*mD8uCj1jfPeS zrn1>&+o96Fbv4T>7@b(zzW3J;AwrR&6L4m|xAZ6LR>u7)MNVxY9_{hg$Zk z%lYn`k`hYw&&gIYn)SWX3?U&TCtsW`h$SU`RlFYeW_Bkjwd23Qti%1|4UUVE8UM|L zv9@E5D}x_{+9UQRKa@+ennHzB`iqC^v{aj_Ic#1{Z{h{E#Em#GiXJ`2=Jz94j|NhcASU~zO;#Zivwrbe4HO8PgaH&|MFWEl?LT#YeGf{ zgdDD?NKJI-zs5V9mS3DH*I0~ZxgwRGuC0(p(z2F0KfY^QKdq6gPwMjARi}3HLmfZT z<)q^kwG`i?FbNqc&u5z{?(bE-jI{ba6h?1VuF(+E5wn^KSM9J{L=r_2z)YzL7;ZA; z!>J%9Zw^eW091P;{XtZ1wQ!;*CF~7zcg91H+yZr0?WdKFab{zKY2MkTAq$%_Ga(l_ zGv~%v(%y%eLg(MX`}dB-Vhqziae~E9dyoI5S=WAm}q!h8Cx8c&n_zZCH%_9$&#!q)1AvF>Ec z;cIlL_1Ec^AlxN7ba}za6pIeqa*&7b#l?bTg_|-3bG~rIHJ(>*zb)oF_&iS2XVB=s zOLH5AS|vL?>My0WjE;Ep9_;Qta>?4;O8_5cSc8uJ%=uo!)t|5vh2gRkfg36J+ndV6 z4jmMZhQ!becIL!>p}zXYYDTW=+2~T6nG=CW>%E_zyv;dzrA3+=(B{;XQkNi-1cNPc zK?~MnGv03(O@8xLQ$=`lJ`pc1=0ACe18sduL-B}0KGi!FSrtf-@15)-$*0Xxe?he+FU^)U4P66U4uek~xhJMM?15EjhI$!R@o z#pmU+F00Aq=;-QF?-i0hL5h?Xlg4qrG!#aaOp730C$~n+c^-6e_|LsAV{i7{?67Fn+%DEocze_JsTKoCN_;A9XKIUOJsA93Kjj1C z&Okv5atPmI{##CE-8!pQtIGRyJp6=qN%W&DLDt=5%igrK;ARX;)}Ni%NU87tuq0j* zfSZi3w{(snV2xP`!?toSF|zcEb}0|KMsCcQ4eNPblH>`UTdD}Sg+ zU(hq>T?Df5#~U90cLE=8aj>SmN9N;As`dTP?@h420A%dKHwQ?$<{!H^-|0Quz`u8h z;}n0{RN%NGJ+A@3C|x~M61U^hVv^AUL*QxeVEA)W!4xOY1=2kdPtL_hw^e_5*R!*} zm|@RB=&t>p-B{ePbT>DXvXn2&iu&!&w>;~JhLA1GxVWad1g_l_s!GdvhfBR{_j>fL zQs2*?e&z4E33WDB_N^NS5(-0So(e}%b6-FVgong5|Q)0$>o){UxN%d}}Yodv;QF(a@saTOylCw(+Lm>0P8y6{KXf^NH*&_E9IdoxE6+Hly(+pBgc zQnyoK@=LOrln1xFtp7I`$wK`h^S02U+av4h4(hyRx_JCd#>?Mz9OXQfU3=%vx zgW(xG)x;<}G_{T7pt_??U8sRmW4azFe> zY)V_u-13&LX*(&R3frI~WRJ3_To*V}Q4l=aIb7{YR`B7W*#ZjdKf^gswsxP@aobMc zr3(EjJ^c|!NMh}Au>5scxcgvvswhEpPsjGX9cfM${lrIaUZxhI_1~l<1FU(F508sq zew07y$veru>Q8_F_v`wZ!TT>MLuzc@Pv9?@N`{ud5vGbLCE5Ffl3qj$#4Ow2FKes+Kl)J%-U0ZOvTzllHbUg}7}#ZD*7s4SS#loDIp)tf!Lj@$Iea zpy~TLqQ1c0lU)ejDu{hl?9!GmAgpo|rg(ec8cSD9bx%I>2eV5i=UrkxOWWrns@?C% zTGScAmE7Cotzw4?A;D|v$FGPxNoa-1^^~Y7ZjK6z%3HQtOLGy&yi3)yYqeq(=JD6t zWrY{;62}wbl~#Cg*_fsYms=d7xDW+O{B+3iM||r6I&9s-E(v`#iJl2Ob>tng2bf-O z{H6YkU&z>3GmhGD6Q=DaZ zKh~n7RTY2Ztpoa@U!RWOg#pG9FRfuM2O%g{g)A+>&I`8*Q+Vq8IIIB-Vyo znhy39G&Af;?PJKN!9m5kZ|e0=vGpr(d!{lmQy99sE8D+Co1PtV<@>(5^=9&Sm*sc z$D1`a$qspbA%|DH*sZfR!ArFB*)_VIlMJg;drooyI$T05HM5TUS#r7v3SJGg@1%<$ zj=&bNs2ClfC@j$uW`tw+LV-Bu;&zQf@U|NaO-+-`F7Mxfbg(Z5X1;}HRa#-tKGs$J zcF$BytYhd{P-&c=psQuCfSk~2xqFkv-ig~EM+Z0#l)|6Ngo%cP4Rb|liT^c@)pC_- z4_$PrlvIUXlI4gRNl7!_SXw&8Y+5ZJw)BB2TFmetcQ7bCb0;;Ez`h>)m8=qjJ|9hX zMtQRKJRvWknU=yM2Kko}Io|RNpjKXH1%WN@Et&9A5022SKMwMTzrFpEDr+-_?MF&= zL=wTfSXs*#<)=M77yo^M4cVLV1fazj=!Ny><8GOub6L2DmWh+^ zi@d*yedyEU_2zzv`gTUaW9;Xt+34Gn<6q%CBm6#3Ov1yX-cPZlr)P*{3MXa9>RM~U zU<{oWmG=k1+JLuz$1eht)xc5OYN<~6!DBH-Qqu4FUtoIE30SH)+@rrnbXz$tJO(XOlS#qQ|vWcs90lHM+CQLHy**my6`kc{RF|u7)k$ zQlIkcS~2p=Rd|HCOO0=AL((!#xcK%$^$g4o(`Oq1tt$0_O_@I&b`+m&$ji%L3xjGl9ASs32Yu=t6PQD6S^De0b$chaFMKyYvCl8m zhix{#Ts+TqZ$H@ZDp?-F%op>SO7VQn{>8mb+hAADa_+d=gPZ+sgPBni_w|Wqf70#P5dQBkp?mX$qUy~?Rs7%RVsFj zsQa?uGK`GG;>zdJK-on459ZaGPXeMoauT)cP^qwmk4INHi}R(UnV`Mc(2cSoMpp$F ziRQgQ9|d@G{Sj)WEx`ZiFtKo(-x2;RKr&DJo{vx9=g{RXARx1WOF2ZP8n7(I@|nl@o7@;xI?Q%s3bG$CH|bF{Z*9OrkafrOqS z(Nho8rz@nMKZsdfxD*L^z;u@^f|%tVZNY0o22yf>gNVAty8kJL#s3?pnsTSOni&7c zLASEn+eRb>hC1=!+jUMnp^)Cr}Cyy%r{vD2M6x-%^V*pocCCGHHK{h;>D6~ zsDZcnM<%RUP+%ZkbtAO28t;wD9u{0`acu@<+-i;(rS5|T|F6@O7v)H9gETcjZWUG0 z7O(WyiB9zq!m%oEch))lp|ROEhsAoDy8k_}Pk?d+n=mxEvxY7k)&y@930(p+P`~a~ zcltH_Z{6Tko4wU4!S&zifKRif6#g(keZWXvFI+L4;PJNJKkkJ~XNQV?Q0EC~VR@rbN9E-lW` zP)r4}>|(#guexhKK#r0U8X!xxQ$jn<&bLk*=#GlD$EcC02wg5H*f2% zgZM2WIj58ZXbzWGus9)2jzB*+?#47AYXQ?&m6OvJe`5?di%OliH2vn4xCS2MMdSB8g_}Ap3sHv$rLbuK3aw?pL zkWSoy`VbRwEmD@`yEqYn7}3zR1sPx!B2Xd5)ldNW>3j>lYP1}fw8HV9@pJrQLk!V) zTHzr|@U2R;#G_i6!^zw@&tWNEOGqzRR)OM%wCb`ly}gE|#E1~y_G#V{V!UqXPk357 zxLj8~cB<|u_vE{CO_n1aAWCSr9NC$GWmfWhqzR*#YRgfn3FewO{X6dHrft6@CXRr) ztvRo0qY`K=RNF-SjfNRx19-TE911oh@jdv#X*oMf>OZa+eTz^FxLcS4PpPI2wK|F( zN*OY6{`Z}MR|9l%#QpUkR*GWP*J!?rN8P**$tNMZ%jduS({os*)cp+wTrdBN%lg*; zX8|;|v~CT=rz-vcax_8C4vnO^PuQFEBm5Zn7oH@4w0(+@ptqJ9U9kWKH4zbxJa;0x z|0b*BVBphcp48|L-!b<;2QJ@VDL?xw=%ChZ%vgCBdP+da`-lqmhP*k=SDhUGF4bg6 zzbA-T74jJI_Cqy~Lkmw?HCxtgNfW^znV%ipeY(w)Oso4dAr!e*wxV48|4wTJ{m{MR$kyRB zZsE+ItaS|`$~uq4Q42&6Q8FSL0@AqW#hc@9Z{B6AGms#US>Us))xvk7f)ZM#L&mg@ zep*Z(*Qiua{XD6~;t3@qau2eqOI$N`pz`0v^A`#5<6kLxrncR$Fkx4_I}_EnAAVCZ zWgc0b=&?Af44d=2Jh^i1B#8PZSUOUdAQZAcUCJ>d8&I1ikhC>TJbio^BjIb5%=I`6FAvYB=X6c6(H%HDg~<%bWxT*6(h zwD!5T9Bof`Dm@F?dF_x?dJuKSYx3|qvrS8Y|G3do)Lz0F&Vjm4Hgxw7o055$*X8ks z%QFmzjJ%6Y=)(C}sA%TlZ~3Y6wk_XO zJ`Wm||-{{Y9#l;s?JYQ(J-pfeb_65V=mNSKm?+PJ%!|pAI zL<+whs{dg328a7sdjhfb7b`$4JN#5=QpR*RyU7bh0D}oGk66KLg7-@fd>gP|frk7U zXBiZPVHu0>Cm;nto3Gxv*%Oj5J6QY8XJJL?VkxgsHaz$6IxJpM;Vlq>+YwQXF=&=| zszj1f3R;noK!3bd%D+a#a#O1yoXPh;(xP>ZcTcqEG~^r{{@ewg$ryhAC=n{w(Q(BY zL&;-Cqo17}=7f@+!{5?AM>FVkDLPTmL$AF~awgE!5C%k2c2=lYa!p5s648zFMqd&- z2JW$&@C;GlPqtZ<84@lLsL*_M$6s`D=#@@Pf_9LXz0{ab(T|J+Cv4~@0M}jQUG+)0 zm>+LHm^o@hmt@%QP5eB zN{Za?dh5N_6si>f2NuvFAoPK#kSl6Q`O~=g@DO~4ct!(m>$X)&K&m0tu9$#4Rm9pzg1qa{37xuAs;;d zQv{`9_2##hLcVh6me{+t8}VjOvF_}0ZR0K}C4CB)7nF%9L+|>)BGUSK}r)d=TJFDtXlVUsm(x;rYB*!&J!b5_4sfxxjLB zJ-&Ce-VEm7T>3q4Ia5Y5XU{3E4mh}-?AH!kB)haaja-FrF1l~xGOdbFBUSDV3Mh^a#Hp;Eg2*F}oxx5j z(4u!-6YHqv`gh`iB9x9&n6`StuRPOU{HO|X(9qco}oQ=;F0TT2Coj z<#{J5s(_Gy=r#Wkr&2T_w`yFz=^z+~e0Z)Z>rX4JvCpQ~F{T$D?lr8ar1&`^mF2Nl zZ_qt@VK2a`Px;_U+zE&DXJX#>5HNJJHM5DlW2D6K5f)r4TBm!Cn%Ekz8WE;k2w!{k z`{yG#5!a{ZdJM%seAP9f$>b@w{;5wjP|<|&?&F5s*EG6y||4kbd=L&yk05Vq=AB-4%x~wC#@_7@Zc`}sIry)&AAZ)CxgxZ(0 zxpQ|}ti`6LLWIZ2vRgxhtUzW=U3b!{Gx+gL#2hf3OS}a^OTvdz1$tVFKW-0^)0cO2 zD1!0wrj4%*^)smYbEWX>46=MxT%WO`N#$1YirAZkgLlo;_1}x}&$FrZ2NM{2{ESj0 z5qAmL7u@5AJ;_iBCtye&H1t|tA%FI>>zX)&u!rX^{`_@&sE@Db*G)3R3gn=f!r>IN z!ofS5=>TX3p#dztIdr3$%Pp6oUwEu8^VsV_R|6jLY5`n^!M=PnN=kuK<^&bF^bNb~ZW z-1-euXgS&H>iM;1`G-O0v^d)h*Q#QQb#;GK$IakJoi^Pl-}9s+Q+~39HU2tVufJ?w zj=SXE$)XA<7}w`c{6DkwJ<4PtOIUNk_Q_K{;jqY!+x`1MsMR00a&^8S*-~5O?7ekn z9@;ij@8IA}*QoI;_?!2u;?kMG?N4k$Pj~XGEgC%+=IoD_`r-Lsq1O3F! zwKNf0_Dcf(GbI3#&ph&1Y9`TfrLPEeYRkW4bqk7u{?+{}XypSgO< zs2Uq}HjX45*w;1RnorSgaA~ouE>B8Nag|BZlkzp*YqM zTEx3oJJBm!aZ6nu@0(HxH5Wkn<>W_Z$4&V!KVu##BBL?v1@H!K^6AF^x~nQnGg9R% z((I=Cf*Yp@INHCir4l^h7tJBK!d_j@7?MTK_x6D`V(Jk6_&w2z?BD6rCr;8u0{msd zb1%Xvd#-{Sv?r{N#7vjOqNj=vfME zbwmqEUI_Q5_B@$e%EU@;P0P#6KSz}&dZU8cO||eqpWTDMs`3u4n{dO1#`Q;J0uLH$ z!h>5)-w0*`ik1C~a1*+7Tj`Ur&~viJ0A^B&^kP+$Uq;2zO5zbj9&Z66G}@W;``3r6 zu85q?k)~nXGqNe!swzGiU z_#GnyM@JOz)=w>%5)pkIEmwGi5(PU0vFNK}wgT{pD%Fb$Uw9Gy5T0*(V;Ms)Scp$6Ir_cxM_0lX6^xj0h*m6ORtmmS_KkTfs|j*|fB@X!5`22I0@wM^P7Fwov=SC#E>PCM8ipUq&t$QhSEW|H8pl#;SHHsgOb7Iu`(T(`XZtJ8VrXa^m# zOy7QqZNExUI8+%aed2hWps>^5?4&H#m0G{#B(|?&GUm1Lwukke)D zc!pW4=xc;ARB<-&?(Y3-giXs%T}zlEFaQxmsk5~oe)PKnF7akb>h$S1-t##RB5MYA z|9o6%-}P3I$pb>Wz?Im&!2>7x#!27UShDFeGb}0ZW;I*y7ZZ!G*r_h{I}M8);6tlNFDTnvOJ;+4{LxEy4r6F?&+TO#=##0GSAD{iBB+s-`9ky9^n~ z&4`FNdP*^RI?yLJ(k8~YWGz<#i3~j`KFiIB479>_972D?tC03t;w2gL}U`vFD)H-JR53)>4FT?3Lk1=;Bs_Ipld68HzW@bzG}A`%lEMkt!vB0=GZlWFhaDq=F5bl!@Z%O0O5p zdBLmGc_-&(WkT(7*-B*8g!McRta_$_SF7Kr3xoFt@q`5#vSk;r>7?oq}N zU9EEK$1su1a1a=#6y*b>;Ve3?yMNiRZ2bCZLtylXv{n01YyEGn+@^OLT53f(C2zNJBcNu3`s?wgrl!N00&2AZfF+(onB-*ip-wNIz6H-M=lF2M zicp(bj7bkqWLDF!YZ*4vOnp0hgYC1UL;cyDoAWaHnf%#U(tWMcHOMRQGuud)PxF5* zUGYfy3`t{b#COI|t&>z9qTP0k2#seC5@@monG@#Yp+x?nY7AAy4mnU9ICE;_;sZ8iuAEgwp*1FTA*O~l6 zxcdG_jlv`?G=rLRtNkiM17au`RTC+cgXRwTt;U$<1MwooCG5^k+}&Pnj{SJ^UB-Mv z`ziJI2eNh*v#GGN9E+3TnKO>7F^iz1;v6GXkmH)yS41@J)}(BP#FEQzR@AcjQ~!p z>TWOq1e9LSNLsu{N}D{tw0N%{_x^H{_}IEvH?c1nw(eJ^9e_I=?!pAa1K>|!K=hN^ z15oiQe9GJNw$hHz22X?mpAGPGb}e^CYC;Onf7X%1TJ8JozdajghXo~vi|rj6HOEz2rgi*4KE>s;_tzHI_eh6q```(hn@_Ii;! zX4JC8eB*-@I0)&`e=mif-FUB$S%e?yy_X3lAk*{EE{LMMZC(6ak%EvK?o2Ie8`sSS zQKQP8i${o59}wBxNqoczZmkh&9{cYqANC8+)L;wwfLDa%$7;`M9&g!jtdb_9a>_94ccWT2p_U7h_Cnq`v6l~-g7h?Gn0gS?xTFnW{%k6SWqI4Yo6f3 zF@Gmo8L|F1l$DILWKo50(4bBy>qT^i0hTH`4-vMI*bsV>cU2GdTkq|x1f&u&`J=V= zJ0=a)YIm~3#?k6HzVK{L?1qVzmhR8Jldxwehffbty6V3i1BXI|D!y(mTfv5OZWGMp- zGfp3S?H`>ff}Q{vR_`jEi#s^U`+MrtWtjj&L;wz>1@qSVhx+Xm=U3jI&dzjtCPwGU zjgra*ks~P~WzC57(MD$>aFyp}`UWLnA#-3fL}drng^A~;^8OG~Mn;vear+@5p3d+3#r^T5OqA`YCYWaXJiLI9*d zSe5=;DFSI{9R&1O8IaA)B8VP2KV$5aaEH~L-1~4Lh_yycgqZ2otgx@5MNop>h^;`>TJ z-pCoAzVlR6N=y~$y0M@Ex4)-Te)}GkiAWc`R+*Sc3|OPAHzaNYLTyZ~055vdu929A zG!vrVMS(;h_OmO$C*(b1AW4u~_+hWU&2ZP`4ZmM&=Ib6-!Vz9hZ)E~lDWaiHL&=DwG|l%?Su4Yl z+zzJ%oBTNJI*IU6f&S%fhdTnO&+iD56RW8c7CH8n6kK zwC8ROx0?>PElC!uw9Pzm_f+mUJgR#!C+BDjfi|x+wcWpNJU05(>|>A2)>O|-bP_Lq zfo&wKiD2QcnB|JfALFWLddlG%Ks04th!x41m0N!(g{$84a}%>riivb)VbY82l+tBi z9DESw|6@mcdnJzCi&Cum?h4m;rl;MiNsq*ycVPPQS34GG-_Z}{FTWQJ);F-Oowo8a zAEga{&iyzwJS|H5|NkD8Oq-E!M5K{?@}(ZH#!h@8&2o9|O}wMyHZ2vpbNK6JGRnLq zWWTehuKxCE#^^>4FLU9-)WY4_;EQ+74J3nRV@W%@(;>x3;|hhUd$EI#7$ZnXp1~hU zj+~NI8fxac@9K6~ADfMY!VLq{*M*clo0wX`1o@<+G?*m3tl2;94zY38v+0B%tM(T} zc>w_ykak;G_4&u#M zoeNcnql=Zvsf7h3IUa$?t*YtvT9|A>RK<$e%QZKZM+GgdK>256Lu#|iH89a8W@$D9 zx=j)cyOY0wK`|Qw=6L)iEPduCynN*eyO#CGliq%n+;IMOQ-v+^bKAH*uY(P;l^8cFJfb#&aB1Sj@{)gWW?EXLVb5h7 z?#fv@|IkDDoPjI72aI!6VOK!780?9W3w|}x`|3AM&2)37Ver|$lO$Z5<+?>v$AsJ2 zP-54k@xX@4K`-fwFPllZjdI23Tg~{H=R;e0u4_oX*2)%RPnF;Izh#dg6GR*ytesk8 z32G)Y+>ID|p`n}3c*6GW2UlGRC(P|fPp{7Xyx^GP#*JF2r|ui*Tvpanl~Y=+ugxU& zs{UyE2~XZ-&E<3$DWe3ZGKx};YnGMYN|TP91o`b2>#Hvp7YYFv%wbCnp%)FIA2T^x zFFnSNh&Z|JLGELFnhc-SBr9(^4MwO79+*+g+}v7cl)6yswhN5$^-=bw8$^9}y{3KV zgTe_2F2vc=i)+>Si8>-{`LxQ{mrI!Qu97dO+W$^AtC$#Qa~7~jMqQVnltJFSt|!3d zouNof@|v8E&_C`!v~caj`>;wknC$4y<%UMfWq&N?^k59uO>1-xW9_h07|fu0-DMbCqce zy80z_VbQ)bEi;oPNFBDw8>We1rlsQm>lT^7Izrno(t~Kxi05A#eRSX=4O0=fxqj0I zXxk=Q{LBw2>uLpH53?Pg<>O;T9!J#*#D+p__H~-7(N62GXNS!k=gau>xj-yChoHjA zz*B|Yu9+)z=mF^6PUwaltDt?mj=S>0wx*|wtRQI#D)*i?DWOrPRxVjDO6jv=FxPKs z{8S{6v)vw#fq-Q6o|*F2gf}}s*w*+gubZ4Z85X>28xo3fyPUq-MPGsx`C4L^-L_72 zEx8>XvM@tCyZzi-p;`L5&Kj~}@PEgyxl7ZMm;TrR1_Lu2!wySSnwwSs+9$IJy-;u4 zuIMW2a+SRQzD^1^^hMyjxEdV0!`Xe@gymT&&h}ZDN0pf%t>g_r3W_Kxz>kJZpK%k5 zYfEKj#rfk@StBdBK+#8}ig2oT_Q!V~BKGV_fgMfdTJ18T)=5HGoDMMTAH*xG8i9hi zRL7KDNp%SBd@s&hu(C9D@m3@tD^|12cjw;h4!Zj5Ab*$Ja$3q$z84Zn1B9j7EQCLV z;qL8wTgGjNiA9+CEirWPlJm^J@$sF~)LNt&5#Tn!ow>jJkwYvwp>+RFa{%~NrLAt1 z!{>lynMS$B-mBQmip`3OH{?LizDYnjo-1n?<0K(QM_`MV0#$Z<-w+u5f(qRm6@bs7 z&%FuiaxnOvC)NWmasLokth0x81eGDDeunONTlk;waM0ndO$`RDoFNSL)4&ojZidC;V*XG&w0bv6`q60%5a^T1Ql2C-V_<2 z=G$Lvr3?l&)bZ0QA1^o4$X}cf2Mw;SC!>ENDi%~t8Vf4ylL5=7wbz{ zT@CbW$pB9oTezcEfX3=D8E;)Fi09}c$?BHGV#%Z)-#$wSJ^w3{JnH$!2Q9>uuvAqZ zdEbV^&*t>-`_$-?P3i>NCzC&x_f``V~1f1LS<>VmxqIVsC*gR+X7d`=~ zt9ycFeaS*Y{*y<;wqEPomT{}uG+Si|?=?Is&1}?HOUFOhGtgT)$nA5m`;=Qug2`*| z6i1PV%Hxy^jtwDO%T|o>N9ZvXNzxg4Kb#8p?n-L|iU*dM?qwjE7j`*aD464i?M`TT zwrStW?jw@p<~LQuiwi+e<0IVjk(|&}?IsPP>!E1WDPyF&K_u57A!RimPKWKWpZ*R1TMB zz_BgBG@TT~g+SvmcThWIjx$`Lnrw+&__MGL`5k3GZy| zC2Ltvk$#7*LvqY#c$thv-P)ckoX+I?LqoLv)xG6vgIS^3xw&bZn#btZhmNZ*CdB1N zQ!ZJ^WzLuf4fE9S5rcSF_=CI(H&4>nRq%d%T46msMc+j=Z-*y*44)5MvRv8&~=fxz?4SnXS+ z0RupC1D@5O7Md&b3UTs*M*U}KY zqrHI-(R>0k)Z~huC_f)s7rGi#*lA=|IN}%f9gr*MQYMbLE6^FCL>P6Aj=KtghSQ$X z5!$Y-NY_)j_F+`cA*`>SmpcB))Yrzo6VqR5SWMHa9e(u&$*mfHO>nQs7wez!a1MZ$=|{hAgQG3Gecmc97nLXywOT6Hov1DI#W6gt9xF zj8dGK)|bJHoA;C&2lnbIjPmzyw4V8UewM%#3MA0RH@&F&5mzZ)qqZn=hh>K9038BMI2#{b*=(WmIeyTz3a49?w1)xmI*+T`Di+TQiVc#<$3jZ zeJaU_h*O63WBvK-V2E#dZQ=O%xD~_^@;;uHuKo=>)(u;_y8JNH6e#ScgGdpLsf|;k zgt1(m>s~F2p(h0spw;mSJzhrX2^a|`HMv{hoh{_6U)O#Hs_B> z{u?PRW>O~Zell|)LOO@`+FWB4U*ZPlyu7fC=>(8NPoOC zd3Z%d1-Jzb2{`zmUeA(<7}62}1rFucr`+?ck|R}Fh7w}JwD=tRe_vIqU1k&8L*b!x z;LHACyEYYLL^WhYi(|92kA&0{{Z|j9k7Y)66>szyNakbOgz^A(hOplB<4hf7b?OZPtu{M=FwVoyyl084D84zf{1yz>b1;;Qf?9YrdbT8FT(*u)$_Ax`tm z=Marj0*U}D_r~~LI;HM?vLRZfZb0}?sxZ5`$UpQ$Dk@?F${U`!R0XVYZ&be7+QNjv zqAuq=D@5UrE&y6tk{ zqj9cH7)>wW1YWK+P6+QnGof_%I+x3u~)vB zp>iFQaLtb8@^5cf5OSZf7wrr%_%6CmMe3t1XH_?QUTEUFwn_|(4~Mptt?Q{p7j|^M zgUWRUT{GE!HAYTw-~%JNdJo8O1GN~JvD z{8_}-S2kt6lq2@}xiQ>X_1p8Ch4sT;jn}!fk`7rCGt9aq9?2EOFJ0#~x@(p|Z`vWF ztSIJ2nY798z^qj^gzsQQt>$^Osjf0Hn~kBC#geEYiJrpy0%=g)fk#xaWEr#3wBMeG zFAUJ3Y=~~=gH3(u6|N2lW!e`uhzy3|J~?p0Uzddh4tP;St_fWwSX}mnUDRk-%U(^T zeDLN*weNIxS)9FYzi7XpxmuVWW^VIqBJ4hql=nYwWOmya>$#n*Q=`)xXG-omg5&yN zXN0*)Hl*HjQh&9U+;*#_*rjvu>?j#6sm->q+SGWp(*H`LE%aNuSLor&fQwOCJy%Ik z!a-0nIuKJ=AFyK?CY=|(;$2(tlsEe@Dkynb{VZtVeq2?v6}GyS=03_fiwQI5B3)DI zyW&2a06XmR-Sfy6kI~#X-)PB2W!VFOHh6|_3jM+QwFPm|3KgV|@~2OJd%Msxk4miM zXbRmPY(M%a+Fi8stvr6rB6#_HG5G6RAZDSUy}n%m{8xt_q>JEb6WzR|l1_Cbvo?1SnVLRxEvwruqP?M@uMcvmBIQKb}9M zjP#S<@8DDQtTui+QLU{hGUXehpSpHoT}R?(F(Fx3zdjwhAn0*iq)_Xa^{BWBj`?rW za771YPf8lMr#O&)ZJ4F=O>>~|#ev0X&`>fkA=AWs1s>D{`(B>-n_@#h;hps|q3cms zM_}bNJ@ml1Z{ajZ*I?#|l#u&S;8vSN<+ zO1FNypZDTtP02gKEX)ih(rpEyJS<&6hs|U1PUp*bh2)+J6vR+KX(5)^mdJp-92l~q z4gZS6dhU|Z3$Ntgy*;my$*oL6ee;f<5VUg5Zwps!vwO>A3uK|xBxA(L|<}2G~sW=LBmY?X0lJ}%PdC_Eh1m1@AnIpl40JdN8jhNV;e|cS*wyyS z_Pyq-Hom^Rv)wV|4%8oP-S$`q1bS^D;!;*$AqVUoT1Bd=k+lMg4}rK?^=kusX)>~)I^DLz zIlvJT3)>%d?}I2D*>D)!NNlz5o+J<7qt||%_B_!ums>RVlljO2Lqw}HEmuTjME=7B z5^Y^_@Z_N_AU|eN;51!>1hOlHdf+cXs|nVuUl+Dt*M6GNzKb=cSw=nCu8wOHu-)@Ej99if71kS28%nOxi= zk8!H7VGr)O^3^1I=i`ss92K<;sulJ?U4A5&)?)r23meF&{VipQ&Z zpxf`KhzucTcN&z6$IB3!c3s9oi4AVe=Udqdk80c$ch4H!jvvE4oZfm-#g>90XdTbc z_}_Hm2P!0$soxzcVO~?9t-lvbddLehLw=y^Wl&aFcS8Ua;K{_1!sEGZz+D)PjQ?sI zYt{}8qHTM@q>Pa$0q!i`_LQt8l#UMS)FE8{6T0wUX#!aqN2dq_A9)5Vd3<<Zh z=~%X2$mxD+$X-4iT>ZST3Ws2z2EguN1hK%O?3J;EGQN_}70CFa;s@%|?F4?1$i+9J zZQkaJ8R1nS!*CW`C{MA|%y%m4kzqc|kh1|Wbb*7#HY}DkL=!t$bpK+?L)#S|Rq!<< zU+Tzq4A6t6)=>Gq#Rv%yZ}paUNn~xa)c|Q;b!EoYCzJ23F94xPw~tj^TeLS;5I#aI zutOTA8{f?CuI%?#Nh*~N8QTxZHIlM(yJxMCUj`=PepX>ykjjmFk*dkAA6!JPYxIZ9 zs41;HnG`D8$S>l*{~`wl`}=oZ#Yn?UYM)n~vB_(qfHT?7EwwLW#q`T#p;e|Tfx`O7 zLRSY!q>%o|(t^(7!e`)V`}*;Z?=Ww9QTNSTbvGTV@9I=FJx&)r&R1Oyinm>PKqDHf zHX@e!`f`Vo>E-KLqWLcRwi4Zdvz!hAc423qrYQ-G_r2vwL;?-wvbfak-|NkU#MS81 zKg}20SK&VDSZ6l61AdKJZgJM!*$jgLewg-lNNZ#uij zxBb93=l$xC_2i)NL~M|uO%K>r781MG%jMWUo_`7>Vmk8s<{Z5jj)y_z`_96M^$#B{ zwpyR1URmOFT3XuZN8d(YpYuLsZBWGvUF@Uhn9bX9CY6WMsazaMj4$5gCM7uOhg42o z{d6)}GUOw0-WEhZhD)1WdzTwjaVJrlpcuNhVgViOF-hzl?OTb-C-ELv`Rs1wWLKNJ z)GMn9j5o#ch4gcol@4$ZPdLiG|Gm`L^&4R=A*h#YrY2dUWi?VQbm;iFy20V$r9k}b z%B1(PSJ>gEiJN66bBcm_3GM6$!F~hM=0ev;7hK^{@0a!8c-Q;HN4V6Py26fa{}I=$ zgSOSbpKvBw)nWTx&%gXV!_f!xcjq4u+lUGXcKwoA05Rt;xGd3xwxC?~NgPw!>C{h{iMLSXT8chfB zdG0!%Jq$Y!+Zmd^mC~kEkp$79(2$Q}{&Ed~?`WKvsF`s>U9LJ6-z{fScN5kqUg;9K?8;9gbo zwfexNx~Jt$ryG0AS8mzPLj++Faa2!4_?2hL3tuYFU0~*{YHp=oqtWJ8>G;Gc_Kp^& z^nk)Vl~ui!M)hNvoS_Uc7p!aWP1Rkw=AEl3gX5j0$E2<)mbW@?K3&G!1Vdz|9LhkB=zw)KWM7 zjmY%6>Vc_#cGA3goY=K?xVSMzztuuIBOQ7FeF0oMZ-j%FNkQ}}df4WJPeW7$zWg&U z#e;b}iJYWc_gmE)i};H*!On6)!_+XTP5BZP?cI|9Q2BxnC>{u0mj!%22>%Vk0c6L~ z(N5RV6kqDly8)h}u+yRQec`iyH%s}9AU>W$G+1h}4_HZjiu*588;|FrqDUU*bmk=h z_Enl)R`$GYuvfr-bfE{N=$0CYoCx*PzYdC`GdM-l(n+BhhE~rgf z{zc&^pr63>0NdileJGHbz4;ubL^}onTsWSa63{E)pn%8ypT-M`1Xo#%K8T!-qW-C< z8z-Rjt&<_gi#NmcQP&-ZDGyz>KStz$85QwDhQI-^{28p^mYbD{W3T|@59cHYG#5}gY%qZO|M)pL1*GXq-XF2^Ds5xl6Mbq z+@nSP84xzoEYVBs?;+d$6k>cR$P5l<3 zgE7AxdLLsv8rlm^+@L3R@K>cE$TM}0R}{JPLe4X}A+kt7YIe@T?D{F}+2)?5qsify zkhj2pHUhi{ps`mf;?==IV82QOZXtHAqyMkgllU&Dz-syHy3(u=CPGk>D zU?u_{RpScFw03wd^}$&psadCL`<-=XM!t1S)LBi-(r_|@c)R11N>Prg39D|q_FxTA z$I4fP@ibNR%C6+TsjEBk(l>l<`{ixv@nJfX@Jb8!3cF@aR#8=U^@|sw61TzQ7jVo` z4q++fy?6PFpf4&5gc$W6B`6_O$mlK;TJq6lWh;Sn%i8oZiiKsxWgQo2S=l$?g}>rN zV!i59DhqI)zRK?29I7_P;@Jk4Q8doh;nA)hH-G(5rM|-aGB590@pFEw*`MsRqZ(1lYBEmkWA(3ZET?=0H(*)foyTj{qrx0N+qL|fk zuyM(%&Xr3+0Y^tMtG)$*=PWEWZsz|@bEG&(AK>9Pk9ASO?)CnJ;R(S@yuNs=FgXq~ z^X!xKnNa^y-jm%`nR=ns%888S$LS$6geyz6=(0^rJ&!r-!<2pB5eXN+*Ihx<*0sdN z;Odr|$8HM8r(gPtof_t*8&Y+?pt}FyON9cp+*e2A8;csrpELWM%GpdgAZ zdA=CxAzlzyk~o&zv=35N*{=Tx2D!2O!Jhv3WgWHVqk}1AQ0WVYaz!I`p=wMK;ZJGe zk59qgn@;RmIwRg|iL;8e=Qm2GnjQyf&avuskJQVVJF_uyk$zO$Kl+bsyihrk+NN4F z(M8h_KieNicW~Y})^Zd>KeKvV2K#%%e|D`Hz4kZCCx~D(>bLoDEG4**?I&sfU>`Sj z=Mw#+?4Y8DR{~c1L-RX|Eb4sD?e-6cpCx_w^Q@mrv3aI4&1m30FL6_1l!ppmu#J<_ zNfZ(8aKa_*=J89Zl9z2I8(~8f*)2=kgU^o2L$`8I=UXyU`a7B)n2)Vvp?z5hooEic zFldhk1(>>>Ii*>8a$%&kHfM$G-}a(q4+&HI`J~yYV!?7tI4o78s;^g;dh)wD;;m?` zA3+|-#-xRrqi$*1p{X}+CvAWZB(9`(0fCW4lk=vlH~NrPtlW<0z5GCnDZ?L;0_*!c z(QGCMc#D2mSHnksWYvR5n?_Oy0*Wb9Z_OdM3G@AS=QVbIV+N%UaaY-yzeY3OfLYPe zz4d+`+i6D?q_6xRE!(6d4}+7CfXwk-ohZLfC9Dj!1|q!e?dI!GHt!2@Qd89~X@xSL z`T38z2IEgeUXC3?g7n*A?67y~`|xL0VqNL8ui%u9ZOTK(kq)8-Vg?KAqn+Nj;!H!26hE z9MX3D?RtL@U2ymCH9CHQzMPTSDLo2@m1vdiXZHn`@(8Ni*oI2}3*w%-JcqNYGeqAP zg`2oCS$IP&adxihB(;UqC!B*Ig-(!w9<~l}3*KC>^ zAD92m-r^!{l%E|CP9KDHk^z@-`=dz28oZ zZu)c9a)Hyp(%-(F)gznD;W3K3JatLJl_FKcNjC?=oRkdhiJLXk{3XMiIKS!8_2kNHmjtp+v00-c1F=kKUgRih6utw_#$bH+XI1f1 z5+X|fd7AZTVCR`kHc9_C5nPf|omhTDfUeI)|VdoUf;qDIXa8fsQ_lCSrR~EUR0?hqN$nhWF z0dRuUitNy3{46MS38vne4rAzX!sy0BX)sBG3FJ{Qkq#Q(*%evsK2{1)=RU)u0?8Qm z<)+j#7r$2FvIn>)MQBz;h8UXW73xRQwP_};Nz8Uz6UtB$oslHE@`Tb*rGQ|#RxftX zG8JM`qoegehb8g5%yAjl*!M(rR@Lv)`TWim41C(i3>iiFx%o)p*W%47C8+aniMyJboviPoA9BF# z49W9cAn%>%Z~b`vc8>$NvTT&c#B;z$$jQbxqOpj5hY&88LDEH5L!UZiJ~yOS3I zIbpD(xU|X2+eyyCJwp7(VgCTG9K^2g(We|sPOIh+*a*~Y;!{^o`%#nZv@vd@~e z4oYniaaXH5q#=0%LD|S+u7S5BK$dmuh_rlJz z!r5|!`_iA!eT)Ldxk1lmN|K4|G?<@ z*K{y`+A*wIngd}W74k&-c@5J?Xva7HROHArb9;_5y@7?rPo}w&&#o&3X8ur=dzyMH zjrblFvSh@ikd;c1mk9|bFc;(PXY4UD1_ab~m&r46u8=b}g2LhKT)qQcdAj}1&o9q0 zPE-5vOb#MxG%BjEIJEL{^X{R+>eN6`{sY$Y?X&h5-$H60mzO2+4Po(a=B38(>_0%f zUcpe#Mhfd!756Jl=(|UQ_!1RCs8uZ1p==5@gx8TiJ*#OkiI$?@Umu#T7Zo-!SA4Nl zo5UNvv**YxRk8$_mS3x?yzqaT5|i^{Y{fYA*8kd7xL{)1i8@9F&b&(N?6N5t8+JI9 z6w8>yn8NO#P0OI&rsqMno5vYO-do4T?dH9ciJ$<3^nBKZE@|LYq2E4~6_?I-g5zmSwvVcQP{U=v|@1Ez3g*(%Bu2 zM3}(MQRmor?s-(lolkZm1*J$+gDRo*4wuw+u~F%wG+0xwFKpSul|%a@k-EyDMd8bT z@U4Cq(4C_Y0}>aRPFPcnb}Mz*S7}^ss%7ZhM2QJqw-3#4-zM&%ndSrVcv-0L2jz54 zfK&Y+7dfx$jP0Yh7fn)&HD}wv4T&8hvtmVY)47#fY2FZI?e78?RK$g+juS#6`DGqt zS)A)fyY8{sBYyd`jf+1hZ0d~kY`+O&haaLLH`PS^ z+mFc+x0wELrq5b;eUf*~vwmDTQOR_D+6a>ud)I$kBwU$1hL%=;rLB#fSKWV@a2=AP75uZM1US>CG+91Ut|kq+BC zTs%LGJ0IgZ?_)bX|Hs-LQ#c*mWTQR_IytE_KyYjgHPO>E-nIE3FMtlNYlUy&Nzz9_ z)p%YkbrC#~X)yZXyxEKovd}axeX{V0Z59TMfGs~3EB<{JNyDVNCVHXdSRQp zB$41-)Q=8x@V;X*3S!WobLmc z58gFzFPu=Hq#Dyvq#8+^|0&OEwt}BI!PtT*zUyC7{L)=I*pkF&j#)D3q;VXw4 z>NGs_^ED*)q&)a&H{teLEZfAh-2V~)`$aq)=YpgZe$*GqP2H}3! zIw*zP43_$jC#fgDlE1$ag(*DQea847KE!}oR4oc+G~=T)0u*jhO0_>X6}_ikUgkw0 z-q=4w2CNuqnF9r6Xo9HA>W3aVdg7~kn{{D71B$d@%4S=k)>+< zv2o|>H}kD~_(rp)_C?5L7QJy-#-8F^8jngw(|WS^CmTK>vDAbqZ@Gl32TsR{iS{#6 z3-#a|sf=kkus`AURTZJ=w_fP}zXxBkL&cC{?E&>ET^B_S5yn?~9Q=9wq03$%4Sf8* z>oscoeQA_*hZtNSxdXwOCuTE zSxja7{o})LcXwHLRg0}aTY@+3#ov`?m;ci^VaTJP(6pGlt__58vzH**aD7`uDf|L? z`zJCj_m{Q5fG(i=ADvjWwf-?D2jta9ZhtJ6HTiRyGEEVKHRa8B)jy&rB4{9XkMo{u zZyWWB#L%)szjpqKR-HZIT<@k9qBsG=|W1qSGZ?+ZzK0Cs^xD@ z*fN1)Ccs;aO^+)_nB$-hUp8Y|YAh*}ivh@@Pr{y@C?+sx(-*`zg{5=P7jK&^GtF-0 zk1QnG&ry8cifsV6!YVcsVooi-+~RKI5T=@cfwY_G$MycwgP{hbA#)8KaiHG#)AP7A zpWU`5&E0%blgAacw=QG8*$e~F>vm?$(sT!u0)Ip@lZIq>H;)a{(&)bz{c^3_^x~fe z)QPm*qu#TEP(l=6>qMG*lS%b@dL>nPWa3Bv^U43D!}e2~vt#GFofT%X6{-}U-hHH6 zDTS{}KPVjGy_zb79g<#8HOn;rY>Pek(lem*F01*eo7B(-rYz~!OrWP!$rHZIqz!Kz z+7z<0cDC4KS!=)D;HD_^RQ^Ti>3r4DBXv2`vh%%U!ka6I@$x4~O& z4Oc;vd&kmhpYIR8k}{l>Zf(o>p6Pn4_r3SOmX6S@C}|IT;^_WF@l$Cfc=nC)GHIJ{ z@EJ=BxvH@JZs)&Wr{1=a)jzrJ>19lYFfD!MCV#I2mAba}p)8K4#jiPd6YJx4G_}x$ zW-G&LU_=@Z`jaQ?s8fZda^CXDS(IKbD@#EALOq}S&4A}msGKQ_s=XJj|EBL7;itvi zNhkw8;Ulb*tf*vvv*R;T)>0auxZn`FXk>Xl;@9m{p~$Akmxkr#1{#GMOJ;Nlyd-Z~jSn^u+dh^j2!gRy=*Y#r;oD0skX}aup z_LArR%3|el!U&3WlTLvxsC@bUBsF>F^cbm6RH0l)RmQ$nL|0*2Q==xt?fhfq}!Ip|)8^aiP zZf2PN&OudejT@22Q{r>{&{>9JP}`mtL0Z4=SQ<9#ZDZM%JK=m_`LynF$MSqc3w$bF zYZ6yQV17aIowC9}h2?QTVB%#0XeX4vK9pfp(oqH%&^Rk(IH&}8apB;XNI`k%(tiNV z?^Q+!Qf&kyv}QrLiG-C6I}8f@>L(L+7Q=GBO+2$AxVvhM(LWeX6d!~l#P0-hMd}Ig zA;@rZ)QvdCR%k;sStJ;$@5NL<@PG880|>;2@c+R57g)Z$cmZ7^!rV|&TvAnNCj_7) zGqY%9ZIIz0Jq*Ro2{3wK$qK=K3+x7;(efALArK@)_OCHEK#udg)1=uB5UFP6$TN_V zRj8`0$apVu_$TWXvM7c~q6LE*uq&uKXc)W|eaq{p1*aEyo>Xz?Hb_wg5@M|(9z`PJ zP)6-hI1SGQD)>^hi&85cKA(%Ul4wa9O#O5GYn|Ck$Yr(WP-*Nn6+^5V&R}e?F#0k( zB|qRj(LtY2IR8)sQ>b9}^=oR8#(cnU>xzc;vWklwM|-8;%unFJzaT?^KQA#?NfoE1&i9DK8g_1KVT1ot}UdAAW1b2+Jff%p$OECkaSZ1GK54O|SnP@{a zM3~oX9pjpDaQyC^-vBGOp+$MKTU>RHZqFt|cD0V^a(Ykx6SYZKe%dhn)<}}(uPf`9 z1k#v%V!Vof(nq)24ce)QQuny`Iq8^&Gcv*KmB$w3O`kQe8;$I@1yz^<$$PT~=PQ@< zW|Y5#ZKfGpTR@0^)vOtfR*7z=P-W+3zDb^)?8=6@rg2^E{)@ioO1tWC8h+<-=kZKz zTSWLzGth2-#YZRLLZn6b>_O{?81inj)x7A33>gtom)W5|0Eyh0?G}@}KJa;vF(=BM zMi;Ylh&8o+Rg1QvyC}o3k{A8{wk=qfyFPq+Ud$&FbD7No$xGdK!? zoWwcld|8nstUyy$e{Dulp`>I!?7ZQ8O8AWL{L1!l;g^yf(n3|eU^6H!pIutm^_dG{ zTG;V@8Z#-u>+dmAdCjED0~fOIB|M~YWxFjZEfG^KL_3S);uz|=>0YatW4zzg(UI=8 z)u4X}y1=~aoG(r|O4BT1I@Ar`z@N=@ov@Tt_23iPG=uUDF^_cEj4U7dU;~yrKtNm! z_6Jv9FT#1Oe7u~7y>m#4{8cmc;Y(dl_Oe6sww8Ic-*g?l_vY;FT&kx&n+2tjCZ6{m zZ%j1=Y=@oASuUsPjUl(Gh7j?R(CwAI z`MtB3wI2TK-;1uMi3NK%*Z=X(ZSbptHa|SrXu_>mrSU8+>?PcCaYt!8x+q>;cfh7}#3x7LC68-eX#*hnRgemUj7qvcBtB6z$ z$yqh@&I&G7_b&cL+S6Tm%yCrW=(^s_c44Y;_9LTJbKB$Jw`&%v6)nFjP}&^N9c7{4 zkJ+!qZv3gJ?+nc1kDgTnkdlY*-$9m{ z<0i$BFtZrak)7PNXT@Y>WJcdP82Lab#;{$){VV|-b3L_qC<7vI^G158t10;!OBSVj z`SQ-&DdbQleqZh}h!6E>6 zhLTynC|R3s_5x*KF^|$kd4A}Rmv8-**=6B#6iHT4uQD}9?g(qP&Wb53eddf;yt*(G z;BXKyx$Mj%y60S7EShbI(67qpfRtV6N8Fr=H*v=j~uEDQ6u+&-qMB{Y53FU7D1CdN0h24m^h`9bh` zOdMMJ8#rnj`r=oa@ef$R_x}uCh^=P{kDfJT8l$n*onPH-aft~2u^ZDSNkTfi?J zIYSde%qv}Ih@7Nrw_N^=s~LoXl+P>A1W`0vo`<(B=)K6lnN?vMKMO2OviM)xxgx4M z7d>=+l`a5KV=V`x$7@3@Iy`)9JSB^jo7Ytn<%j*6@%l3y-{{9{1GrEbJXXbmF89U)*gZBkEIoUxGqqMeUQ9+@=63Vl}=qfT}Vj*qBEqEcdC;#{jC<0`gIb7H& zzUnc>VB0?pZXZy;DC-S>LL%>WG^iEI%F5G| z@c=|9cHVKz*3@_qIH$@WLsKEcD;7``znD7$;v%?tVNOm+*nB5E?v-Sftr??It2RbS z4V8vLo)Ac~=a2q8U{s|fMg#fWklj!#K3czk*>7+#hzmT64x-aIKnKz-Eclmb)9s(h zqN#Y8!|8d7Rze`^d9vV>NzGliQMi#FlI5jk5Ix&5^;FX>Y#{X039A`7-#Wr5F zqe^l!_}owUSTGqSU?RqELJ3YJuzMnnJuKX%V~c90v-0*4lvy`b)#O6-0L3>|XDqqr z`qdL-Fwy4uAJ)Gw%quG<$G*BuQZk*FccP?^6;zL)!M$ak$Q&G>>7a2L@O)GA6meIj z%{kJ`Sqc-#(U^{iQ2LGPbIRjK6g-PNa#k@PM^>2$H7MKz?{d?9t1!-PTf+o%%Z*I~ z%7n-zF)0_(?AcTIx`d9|rjqq*e20-;WL4`wDw;nCiZ0B*-ibHpa>6h$=55+&59~{I z^Jiq9>Ob?v*OF zPNqnZRnLlxk_r~p{yG#>$m5WbQfubhQ-qDFyaRIb!Bp&OE02XUIl#^UAknSdk#UzV zQ8U@okZR{G^93Tc^`GGpi#o&|8Gwo;B_d@!xEA9T7^o8njTUSMMYhdqw@3 zz|erF7+UdO%lWUfxgxh2xv>wMQay)`B6!mN&ua5Ay5Cu5Qd1@^+X=;?=RsT)P8so8 zIi*6mPX-Mi=^U-%H0=?mfJHYk^)!(*yfPsx?Kvj7$=$29d#eyJB7{4zQmB*VnnD@V z$xhI52{+_Fn?Rz{LOke)e)nJ|3dl7!xpCu3C8oDR_rJ4TT{v#YMTHX2sAF#9NAinY zIlD>;!F&3#yQ6R4ZB2*lbj!&c{qEtzmu$A|tyLiyp$(zCh1Kh2>(vIj*msM;m77A7 z(-JcZlesDV(}#!7*L4-(@RPM{VZRW$0PnX+X6d3uc|)!K%%LY!)NWHv`)yr+_k*O% z>gN3eDv~=!G~-(1idclFWR6GlbVYAV&Y&=jwbUh>i8ZO@f#=>+pH^Z#r2^;NrS_r{ zZqv?`W&7#=el)5%(%ND9+q1gTz<^a*iKw2%zkPH!OC5 zsh3XC1__I$0rl1pas=Y)M+Kq8iG3Gef$sFz@~?~@8MVTxA;p=W@8Qvv(Bfs3QC4z^ zv_;4kOY^~k;?Z|uui6i*tW-AtN=4d@#-JQB{p1K^#<**3*RPn!0W1szIyEZ@QznnN z#_p_~cY$8sAJzf6?EHb6p6-cvYXD3+`U2e(7yzHs_7+^RrXqjgs$<>(c~X0$ylu{b zp|uTq>%$LKddZ}`NOD@p%eIbdy3fXB@&pZ3uSn|mv)aK_FOfZopZ#!=EVa5INigfP z)+v;#xV7!V74IKR;yO|7{@NETRl=ckPQA|WDD||z-6e^9Bh@q$&t^{ESjsBO2CQY` zEra*>EAOao!Y<3V!t@c$~!nMy=f_0?hph#lLrX+3~@O%DnP{CCB3kAJev z943eDH7F8C%m37ex_i_ef949S7fjf3lql2uUVdMNpP$yS-RhpT+((%5MKWIgy-qd2 z*#oWfeKx5uMjm@l4Y{Bb{mWxVXHkBHu-a!e*_+GrHl$oqa!bP#m!>rE3>K1+&P_qZ zD;u623!j$MxLHVVScNIN@d31x zx9T+;bOQH$bj#rWbIs5mxQ8wx4rZi<>}HAtt|mX^Tf_b=QBZ5n$fv8uut>uI9#}x6 zUZUkDH$|u=@N&NfpDxP2dz#vq|Mz=PUa?CkQIL0nGm1iOL5~g-*gS1v079YHOUD}t zoW0SrGlA>7NZQy4P?Pg1-AgDzrBnWNak!?1beC{iWD&BDn>l;y*L){2-3zD5XM$o< zu0#X!hA~Fzg0d2(5k#qs29O&t@DXmG+k#jw0brgO=4iw_e3iVU+~-05$VRXD8aFvF zDDy$H0uD1Q)*43Do)Uin-JKF%ah*5z*&|6W-A3X+igSM|%!Cq(kaWjN>g=9+4TUZ} zbR(L}b^?1cu^Hg6D3BdLBI3Q&O`Wi+Geyif^gPVGc8I}XNZZLc(R}8Jp>Y?PWk}b? zViNh;9wF|D?P8jzR7K=?6;6N%&q+JHD9b28*G>X$SsS#zIn;O>GiGro<=_ED2z{jA zU}2JGK_^mmhKYPcV4s{8bTmiPirx767F8_BU;BC`Xp+jPo(%Kriu!|uMQuniZ?`VC z^f#`$1TCmtIJqxMH|pJPmn3MfzWqy*zsR9L&D&eR-g-i*NI@va~RW$a> zGfcF!sb0_!Irv?0*$4~>wt*8YWj~aO*x%1sIM9j2cbxcV46RW2D?tDg3$l^%b=nEH zEU}m#3`r;`HODQN@*Flbg(zOL*1~>Ho#-{a$f46?d{c(fvlHGqB01^f8b(h+U`=Jz z>`%g*i5fmEwj$>QXy=HCUvvN2MM`$whexPBeq{nH=oNW+*=f)rJ?>>*%!LzR3^Q_8 z0th;M{{>o3F%u{+?6+5iU7dz_mB1JwoX>^k{eJ8Y#0Z)|!~8Y;!gIiYgwS>Ccf>0? zfc9z#RfqKXwD9@QnZxX`J^$=ZMLC5AABpq!oa^S6!R4N=>q}fg)B5QaVpq z+ZXl&TWH_mmgl-W>o#(}{yaFgYaY)&Vu)4vZXQf*s}P8b3mUoSeDck83>$z~{VY}T zoa;2Mh~Ba}WY?V_l9-r{==Uwd%GM!PSL-)lX9}Yx*vhBH7aGD27-emmJtzK>7Bnq1 z^zI@{Fw5e?3SQF(VcQsDZk^Y+3?0Ih%y_93>E-B#gu0}VH0Iu=a*LU;K(~!S%Aj*+ zw&eAoG?U!sx=oB=;lTQI4K+G4{|RB=4pTw=Hrj*lWD-+F@jk{Y9bC>uPxktfJZWY~;I zz#y`bG6YKHZ7c=SY1XbMfG{Xh1yse~OKXeQ-~70ddLJtYx;behArK%x2Nap+5cBKb zr)mOM3tL=}CFyqVQA}(8p=w=!2cnf5e9v!Y)y|8iJ*+Qotj5YO>>!FH4dVFk&IHS_(KdGEyQZpnp?87 zQ$!?ZmhS@~!^T~{cb{Rkrg)zG8MhMRhu!g@eOOB7p}-+r=*Y;dg~_D6Y6XX`bTJw10zBQ@E*4_iwjM_}7AG-sUS3+Bq)jOudawjL-VF9dE#5$-o2+XR4WSJ&y__&Pb_xB?ve@ z8ig|3FM+>8d-T`f5opbG)Rm>e!qq4lXr_CtSL%Pq=`&v`G_8tHS2ulhQ$u_BSL+}{ zTO30$?08ya5XD3Y;nxxeJ+{NBobjrf@}~V&{EYw7L zZaWdNyi=^jP-xre@ZF|rwZZlKbn%)Uu(24VIQekcBU+#z}T(nZ|cj7gn^PQ)$^=!bZ>j;Wr=9?H-iQV8YGqNh86n|)2YTt%}4 zSjGOmi<|?U_qF#JzgvTUN0(AEbEr_8Zv#r9`lPHzH^W?Zb~{|*GIb+`wV1NeSsV4) zG2<>AT}wlGf0jp?hLKkWs7>@_T92dJAy2;XIT-&?V+d}Am+@0F@Ynr}h`Yv24gpW- zSUO6|r#7(-G<1)kEM{h6Ib!e&Q7JhE5*((Ct^5zWuV=m8VKmlProa8@;c}cv4D^bc zqZJ($s3fGLqm&BURwU(|FSVTGT8P`8Z2Q9#f4iPimrt3cSDfVcJjL7nuU|UtBWd~( zi5KfyEXq&vwm)6Jz1*cUuvWR=fI>64&eZ#cdiuJ!iG6v_%|`g6Nabpdlg-d2aB`qM z8qF+ne-Vd-6cj8!2?g;*4aJT6E9BNP97~l=o;7hP@bfJ^Pc$_@L`XX~=olC~X`^s# z$x;<9j@b7tUVc)O1J71!o_4sn$GAW5%(o93?*7QX%+vVy?}&L4A%s9COJ|~WLm@QS zsl5~(6(emCupE?%RS4bd8%bQ(q&^wLr!9GY%2eKzpiBG6-xzj2Kfk}e+g0pcXuA0{ z^>^IJn!7^4>cRJ(cO}Fb#ZaP+>6PTP%2d};KOguDfw0xl1|r=uz0g<-ahmwtB*^61 z@6})_bbp#Am-9XJ@O-jE8JBK9LGj*sl^^Gy`a0rg+*r!;h?u`+sw?M~`FlA93rYMy zp?8_iWQn|-VvA30iz3JOiLG3rPyC#mxu+W-jIVyUd_rWbdtBc1-}iDGY?`3iw~iuL z3+iU#3R!LZG%j1wtM>e?k_@@1i3=Uw=P6=KdvK+FwYnidCYO>poiENOmX*A9_m&IJ z^4rd8KFPOeeFkp&)PPH8AWB7u`eboKtQr?s?e{H%sAG%mNxy|fqzzYdM2hT-buKos z5E3i(ZF@TE38`H2^~7a1Fsvh38a%!MC(=`TJEjKE`DG2a7cW_>hwv2sB67?&^^8kB zC9p%tV|R6ZUoyy1kwY>-XST@*>aV}ty(b%Yg@p~V9U|dNr2^^*N%7WShFEf>6EY)3 zBP}W_s7C^!XIl&vV)Kuu;0xmK^)=eDRw<;b4Sl#k)$TKCOFw_oyvQ^Zhdl~Jzn zDAV5sr2J*ASV~Z(3A(v%xYRa&07A^1)Zmd92MD<;MZe#KyQn7JIrz*n+p0`S79}dd z(3W;@G6gk}eO(e%lBkB$P;UQdrAp7qQ>CWWyDY_#pOpcldV9N5Jm>Pl(rOn8pno@| zLr+c!rxU~bPc8jV285#1zw@_)=a4VXSI3C591Sn=)74o3HW-D&vQ4l|1)&}al#gW> zKC_)3{wL%n3w$;oE|rDIcD%Id7q}@o>P#hC7z*orv3vH{6SRj{tuF5CHEoxZPW4Dp zGlzU&P%i=Zt##A0meV?1xm*}H4e^$tHKSkWOr%%x-i$07r;g~&W#hJb#bbbQRJkIl zy&41%I+tlv=mZ4+wvwo4&R04{eMjg4>1-+NG_j=sF3ShFP@O?w^=wMZ@WFX2o>W<$ z>=jvJMSmmU*(nXx=5E#Y2zmi7PNA&L>Ss?F;ff8lwPxl*CaGMxz5uf+V%RK(PB`+u zb84SLN1ww)kXO-ye=0zeW9vYZZ0BI*mYtD(&sPo+@s@=~VC{+Z0@SFidmfmI3^NS0#mvM{MR~3Lr5Cw1Zl`3uF{VIRuO) zfbXXRl(sP=0419v-iQ|JadL#6=lJD#@f=#mW9t|iGe1AkX627$VdP#arJ@4V2kUUA z9l)aS=>ZcBN~wIvl5{&V9FV%p!R(8hT};SwdejPdiEsx{@Tvy-=?+=6N1;rVP>MFF zh`lo$;=l)ks@<+}Voqk(ng~?gRJS|r zpQTBF58#@a5%Pj1ue`8dbMDo$5T*|+#w<_Up9}A7cxD2j4 zaOQq9m(CgrSi7pOo}%_?I_?5Rw$Y>8lWz?$j%o>e^0N7&L0*O*34k$j>*a*&W4D!{ zgm6~XPT6i-HCXCrO^HhbpImFOvca!n!8)A6xGnT+!J{8uxEM8tG5}~yf{H=EH&z72 znOiE&7J-J^o5uf;NY*?c;`1kx40IUpvx1K$oR!r2!`2sQ`R4Cz1J^!hn<;)weY`w- zP4@G34PC6r^`(r;Wiy@bc!_nyjE}CFL9)ie6Us*X?@KCeffVh|WHjP8KD^q@;?*B& z?WMSdvUDB7UR1Y}NMA z$t}T__1!-$YJso*-(R0ZilRY6=lZQdnR+Uw6&ZP?oV8q@rP147aw?IGaF0*c;~%ul zUopLVh!hWQ6|)%c(}1->n8jdIw3MR#O4{j?zd*U4_*<5Yx#%MWvnX;g3Gbfti>}%Y zyf=~5B4japPs2{a4yn%<&QFK7a?9gRSDcT!r`Cnpu|2QD2y>s}OaIp|nUEOr6Sg~+ zDme^S2iip!7g5=WQTs6>To3(s+x`6S#_8|2VB<%vFZW3&J*{8Z5}zh^VVar>xrDMY z%H|>dfyYgHLijv)I+I?B^j*^DctV4JrK`f};jpt?=r_e3U7>0n*>7XSgX0X^w5Gnp zv!xd@L1&*E5XIO>1B`YBZDUy1B!B;5jUCZ-3s#HJ)zz|8ko&$MQu@BO%ExGI?sVgu zVE-$&roX2-Ghukufk0cShR{tbgIG*8X5zQN7aKYDOi>!~@4C z7Ed>(;FBkFQEBuF3g>fw{h#o-Hm-hqI8~dKU6p$>=;gzBws*D@$H(_QHym2g6tKID ztaAO$SL6_Ugu$2V^f(=85)|bE{Ll7sq6`pCzWBhorf7Hk=j?&B1%*OA?3ilqv2)X8 z)b1`@VpGSF|HJ`{&bw{;RK2jR#PYXbat3iF_8uXh*6YVsav9DoIZBZZJ@<`-MFg5!|vQd~QA0Tq(B&0o;KA6;Dit`5H zhbJr{I1A?ndZB9q>-nz~OFP6SR||1ws0WZ5*D2=FW|wdLIg`%D-$kDf2EBPG%6h1u zk;Y5en)tM4YG)_ENRikr9k%^oZsU0FEco8EM&GRrU?33%lI-V%v|-02)<|#N%p#LOtZUeD7l zldJ0sXg|>g=64JCak(L@;B5DWEjKh`0=oP|iH2##`oHVji%jgD@wD^BxAeU}QBpGs z0#XD$Ih_{6xXMRML*`m}$5t!KD|Rc~t(?CY=9qEZ;_g54*+l-ZcYgqbk@cII98#|E zi4y%?*o_r#^^^A1B?Is_F&tmH5t>t*tG*JxUv7hoK zSq7YJO3xf>CkzL{%{DHD0H<$1dM(b|zt%Aexk8PQ#CXIz;8{Fi)gcxxS%8)Fo3GIi zY@pj#c}U#?e%cO0ZK~-yR268=*+|&R$YkQ<1yo|ETk(F_R_&z(CXk4BLPj2P;8h^8 zpVBWeF^YG5<$zK`L5YC)cMe}lu&rJYXR_90@F3@nWD*q-4c3WRfkN=A}|w%SRQ`@W&8t-HilC4%#tepK5JvV z-IS;#1>+nLYa!h8YQYfRk6_N>|4lYf>ySkTfQXY<09J9_K-@@`q4PZh8KsC310#t3 zh%?R6Oo(bDbad2`xI`Jr04s`-k_<}8phhWDwOLJO5qwrxqd?4TCX@`zM00av$&M24 z;ni+@D#$`0)EfPekom;$2iQKiLt){y1QiC{aHH*Plb-?v*2@G}AKgHWp-@C0c`Z@8 zkawPg0-*1pq@FW?iy=XOuxIqSupDVg8sGt9iZYWjQ^rNxbn-4lQAKmC*U4zIkI;0* zV?dLP`Sp~K+>~Zy7wv31kg8*h*QY(a?@KC!Ui8Y!mQ>+*jy9g__rHNK)jkzSctY2c z;55xJo$jT=Sy>HHw0)%I9^w%|wP|^YIKBDSxLO+z5 z-ua*;d(27Tzb(bqDPBj{zb5k@1$;odFww60Nk*RsiXzvT3V(QpcKbdw7v~VqYKI~J z@lvZDHE|Udm*s-IvSJG{xG%)_vVQ!98wHoFp%+&#GoCV&+m%5e0L-?||L{)LL z{k@*|n|J1$F+1k|V`q0}@B6&Y^E{5N+sr1mI^*M*@Pc&bX;w^>M%Y$S-u)hmM;784)#Vw8*}*;A=3KTPP`gJ zdfWM_g`g$gVo3ON4XXLp&fw!;4QDR?jf-Whu`_&_EWTV3N2uP&n{rRqq~>a7rB|u7RDi%kz~ojA}84`f$?K{m%C=T2QB7f z@cF>yXJ;>|h)ZnHV!%_n>X97%on>2}@W6lLUyEIx$rL0HO)czQEZxXbT>ZE1&BPi; zZY@@c7)oQ^L{-X1<&Uq{8x>k+ct6T0E6TOB%qaZIbx#Oxd|nc=eB|s&hrHQW;E?0X znv<5bIjdui_u0EZzoHGf`gEu3@9UZ+ce>7fI9a>Ah{|#_53Z!PmPo%IzL;I$MS36D0;XB`^sgB|3{j%vs zLy(gV&^8JdeIdBvx(vQNKa&4&rPiN2g19NE#lQou{e+8%I`06&q+&ml8gxB%q=Czq z%`zFW0KUBPGC4N`3)NBk6ea;D$$K${`g~wUuOL%{9UDkKTl);ySF31IpVc=%RvE=e zW7&zwo@fw1%aJtOB(YpxhNf~NNoe>})Hr>eNbWKf#W^GzsYO#m+-)iDW_PoYF!iR~ za|0wKDRb$f+GrYr`{S`Ob)B{nNPR91LN>=gubw5*m}(ZqN6a`3ifnQ_z2@izw+)jY zPfP-(2(an(fPDwaulPFd2fig7P&>ts72Rsl1l<2rEaOQWj;j%o@&tP?H*;Gu+s0Df zXR9s}0zDcLCDn|y|Cb1VR)@&&FX#Cxmm6NdoGZA!Zy0&xJUmgc9Y0ZFT`jX9mRD%i zX9qzNmSvjg&HAEz_;~oLA=Y_!rY9Zc+4cV;YdrsToDFzWZITdjiiTVRWEK9Lr& zQm&Hl++cGpIMXD@MuarBHSM`{?okBeMYfdJRPK>$I_#dP)rM;W{-^KuM&{f<0z3A4 zS=rbSuBchizb>931c~i+LBdZ!T{!~2(Z>a>EWqok3L0SQ{l(lsK8&I(`{2}|eoD!5h@&;b1buQo(DP5bZSPDO&ZB?*%s29XnqcaDujO9bQc znGrcK3J@J@H-I{ugqfNiYj&Rk)Kkn}iY&EHiEHlY#_6BE^VtR&>zn3JWMznAehp*WsX=~j)EScl z%7O?+&sF{bT-9uM&1Czhl0l0)hVkuk2V#I}vI>G6nW4r99ltr<#{<+WLWV3x*T+=x zPR5C!T$9APWNm_N5^bR|D*3NLG+S6<#OmFqf;P2O*7YW~Wb6>28`Lkc*EwIku;EWiRBQ%c6I0`A(y z@vp{M-!Fp6%bL{;$*qFh2>(TMCnudLAix8?mj~F0@>an40 z4kL&F3;72qi|$wV5E60fQdv&@!Rq{w7t2Gh8haJ$el*Bt8+;-?#UoaD-k)CXuLSAE zUzDuyQPo_Cg0_f+gS0v4l=x6CzOQrYw}i?>rQ+1h+T!(xzEaaq?}Yz zCD+%Vf^ufN=x+7*X-nwKjmDZ>3IUqA+>S$=Wg6w7s*-mynmsZV?yTNDE84w}S zJQL`a&fFdmFgsw@Tqk0QK3Tl*fhk*i#e8#DRFqdb&e2HH;*V}Bw0vmLedIk`Q!K{SVsmf@Ho`IVncY1^|ETfh8|{BJe)yy83F zx9^a4Bh?B}lxq(3-7^FkZ`eBty@*zya53LH4~NGQL6OXT6v@9=0u?^>@D(cD;+*LX zu*t#?K0CH3{QJyH<#hK9Fsz?fQTUKxxyK!Zr_=ebEI4`Rp0hUee~d z$Ctjjqw?=gFbC*O;5q(v=+n7a-D;V+p4RDqaIzFm^=Hn70QIhVCNN@sVc(xT{Bmkm z<$9xVURfF6lS7|z(l+C~38zA2@SqoGDKxHlu(kGEC|sUs6^nF)a`n}I(LB7({lNaqAI7=u6HnHZ_=B^L@1OI#zAX`wp7XRk zFOsYDfRP69e5=FO=xcA6MTB0T9^U1MI9PGw3Jg@tO^G+3yY`(-gsK~ZPQ!WN=8@(I z9UVENfic_-9X6B~TTFDPuB;<|;N)p#-*;`!m?Sb}X5V`WaNkG#vP0d~d7D=CK zTU!yl41u@$IzYIOZj1!z(-DYUa58no8n1nB% z>lhamaT%!* zPy7qb8*j>AL`qCWDeZmB;alws{1HwNTTVmSeGu^svU3X%5@Urm&!xVUSMO6$nNQeZ8Y$s<|goH^R%X^RaGLRXaXV%&KXzAry5*pU?9t%xz zEJhuIH1j(*e>iTcPk|Ko?3e9*&x=S!R?oS|FZ=?^+XWo-6meEaxvtV-u(f!!Zjd zg#|Y9d;zeCok_;d!?Q6i?^lVnS$f!npG}HJZI|9u<*5#LI1{(YyN|a;uue!Y33g9oBOGxYlmpTw zz!8@6`wc*mws2WKu)Tkg=Le9~8X(U-j08&EOC+v0i3duo&+id(FtqIkRhfx)Ia$VT8uPxVAg4zv|OCA`g@9i+TW=?9(Py>68*epJ<*}O;ulWOMpp_Awrc-;SS zFaG<(=dQ>>v^s;V*+5Mw(MlLO2*?W|0md0ADamUU@U8H{Y#I4#+kPqNYPJE5!2ztt z?UVKsAl@qhNJcG7-66Sz_p+Fdw1|-$4Pzo4{$!r%i0f})3&J1K>rSw3P1l!N-)W~R zhKki!ZAI(>A#^yz;5g6EYVOdg9KNV9LX<2{;H2b@x&xAf9;}|f&cd}{e_t@iEwEDv znhCISiLpqq-}P>(J>yv%4(@4i3m*FoH1hmVqkeK~lQJyi1!!M&-r}A=Z7tZ$o_JFN z6oBx=1Og(OhzCohx^w8ppFDCC{ngmUIpIXe9Cj*<*{s2j(kFJMn~^x+Po6NTYmq6La?^S0yeylbs6{-+yP2JCiLe&(5`HM+NAN}I-NE7VkBFXup_g~VT z8k&<512vS2#v>uo-En!U2W&=F0&SZar5gO3GQcla*uLF>ALWxL$#B&4odwKwUH_&~y$Ec3eK7nuCeeA$ zA2S@Xmr}Vhi?kE3xSo_*3|TpTNZs=~c9Zk844b~yW}a-vuXKFvdek#?_|8pI9M+If z8L23gcTh90tYG857;!Q&cc2Bi^R{kO%j&0q8^hJ?G!BN0I=EgvDNtsMd-Xo>3a+TM zW548ynIq=7`IdhNJy8hMP7{-pz4Rg-5!U~w1rW{CBSGFEODo5eqOQnfOqwOxPAltpsGN0tIaj7eoXyvtXu61mlyd5gnl0I_jlM^}QcD17 z8()3Sl-~BMFzl6VUaSC}ks2{`D0C)9je^?s+ZzBKh6wYsMytk?laK*ZOi?s@yzL&8 z#?1c~4nj}fT@)SD@#vUkMipO@2?=n9iS!xJB0?(4jb*z>PaS$tff`nIPk-DeCjrGF zJHH1?0FI}0MQ^w?5&%pY_A;aBiS_{0_BMN{&|L@qB8_JN#jwvVWv>}mxn4SWpmI5t z+jXVT6&oiSv0gdpUEx|fA@di-{dMSmH?d8Ta3u;$n}efDb8{(FuO4V*Ws13yKusBIRuztsIZd` zuv5&!Eu8&jRNl_NIp>HxsJZ?zMoIF{aKYx{Z0yayg1c*p`;gJE!shq3l2#p(k~(g= zt08rS^&eSG@N6Z4Gd9tTI?~{&kI#FCVIZT*-PoU;Y@I{Fdz%(pZl?0`bq^?KSU#)VZl#IL?k&|YmFfkh8<%%tJ?g6q-wFh3AW3NF*bKnp%MnSM!oo;^ zGRKD-)X6+M1dGFcNj{VqCXW;BNWoxtgdAU^0ACYCr4!~|@`y=+&>J8F;^Y1%8O`;t z-}S8MRZ7ltlr5^oCEN`DeF<7CLb}9ETE=__KML`^F@Pzg%@1hiGbkbN)n90BgCf`ANgrE8K?>q*Q`|n zda3_4kP-b?W0_~Dz^5hZ9r^jQz|K%}=B=|Bxn${cmgSF(yAiv5%B2EKgM)^(d#46X9teC&@`-LrB4%4~) z(_M@y6ez38*YYx8uuS?VI~R@58|NspqeZ_@xL9WJXg{8$b0)lbWnOS`uQ2%N9b>^A zy}=K0OavC6+$bq41RI|P*3po~6ZTC6?a=X<#MmoY8KU|U4^rY~i=S_X5s4v^Ldl6W zzb$jB0)bAThJoyu>s+2q_9t3$&Au>9hoShZk@64PD3fWadVyFP{X;eZ(~J?gku4h> z5O|I1n(QUZA#}uu>=ngIdi`WzXg`Fwe&aOijybsfD-$Z4{Z>LhmPz60%|v1~aW7+) zOz_wt5vzaSw^02#qjzRJu!m?9^V4V+uI^|yt8{MeiU}$5!RF`#vFMSrUhJhrAVp?* zdU49&2fdL*C=s7*@h1NxUWdH9PUPQJEmkOti3v;RO!B+QiRAwj~fwTS`0ioqvYH4?OK&UJ6FO+%YAIw$_w?ID)rr(*S)Y!>;?!B_lVxR=@T2 z{>E28N@9#d&z^Rig`jI}IxdnB)G0 zZ}_4vblnh zjQsXK@L^5kCq!>i^=<(hPy(N=kTQDNj8=}nH#6Qgh6zh!vGtp2N>PoQzg4b|pSkc` zz4P5dKOWKz{2tivtbA5dcDZq})Ug%ZzVg76T_pGVdL68tE*sL6RQP+&TrWON+boQT z<}`NPIKHnt=1t42Y~6EyfX+B5?LY4*f5dn>t$ekG>pD}eUGRSyq)eB1KO!ZfHNtoN zxiVtw0NYxXRL!2xK1z8Z!gzgM>PO4`tkVTuht<`W;WL%2^W#IW99D$lCc;~0P};p& zUaU$jPZDRt7?V-&PRITC&nvPs>~aqg(~a22j0Y1dNWW>rUyWA6=CXwy91Jg=M&;62 zDH%Sc2|g%Qdra#iK5({<#zY+sUY~xxC?_o~jrG}!Y4aDd=e~HwSqzC- zD$i&?aI%p1S+%?RjdfG``#H)RBI+A6zWvGN=oPge}+w#9(dC7}klDWD} z#NE+&)bx=hIvNm}Qi>CZc*1U#jjP2GQP3I1#HbUR@^d0-z-knU=c-d{R}+7mA6ZHf zp;;s!M-X~EFy2EpW$TSc%Y?*>i;9g=jfv^t0i`v8fW}gtlxGThSFYs!1UU^qxg9wr z-BTz8FznyRpU018);TKn$(`$1a1$mPsm2fuLOGF1KdD_!9s#T=w_-=|-@VIxD)#G+ zsJ%I>!p^_9yZ(F^>{n!(65y3Gt)C3N`(JeF9O&$hA^>3qU0?4eFtG0XdB$HlKlMRH zj)esghV?fdUxw3)#-CPp$sz=z3~Qf4;4ufbt$|iumeorkH%OVA!?~!xm?eQ2MxP*0 z>x&lA>%NBc(wduz!pr%waL*^^#OJt3EMK<1&ijezl6ZorIhpxLB5h8ix@lxizg)4c zKMAEgQx6`IyvxHo43C~wYZ75L7#R=NeJ86Ct>+ts9S1UzS6)kD`|*ipPR8%liuikw zj(_6%%Oq{CdPFZT_a~~V1;vG9o_YK#d#(ZLo%kk)|EtW(OPV8mueN&lp_R2t+tfX{ zdv0KhwTym{zZiXFc5E#3a^7t)iLeLCADEP>DpV8CZtTBy6VyqJB{dnfNu)La5XyoP zt^&ra{!5nW<2kUcznuu_N#%@w&t;p42mDtGaPA&S&}uRR%5F?8AHXRvW!hi9tcjSc zRf0(l%jFtpuA`HaRjyaP6eB{FS*Q|XSJ35{(*5yQARF!k!D5O+Sd8BCeDF_M6@2Gb zOf)ml5e1=A*yafF!Q55@tU6>hfxuQ3ig6qqsY3u4D4rx?UZNckUUTj++m7LJ_Y?r5 z46`jjIdE4nFFEj{ZrNvlLPT(o)b*zBa6-gCB7|@Y5xcLaRZ&Orvu;o?CG zVxTikoB%|xw*x^ioCI}d1pZC@kl~AhaM3M>P`5U2woYBtq6Zhv@~IRemU2IRf=|{} z<;fC(=$!-9%M$O-Z*oUga}D~sU-*-Z%$zJ*m1+=9-a$1S5y$BOOZq@XIeeGFNo}rf z;SG1hNW`HNAOJ3w>Mqq=iZlE9N2@VDe?}suHDrL2HH5{G+SLrwndT)BkV|~wBNEe8 z)p<4Jp!+>|Y|{7o^kEX1+}7~}E0jZ3{N3;WcJg6n9u&!Di@zTas3_J&FS9wRJ+6x> ziWlTEf>r!DVJOXj?Os$?R(5VX*FU$KuC8XDtdb!bbI}7cQ2sw*tUq~>vC(`1mX`Jd z!F{K6sYNd+{`sA$- zAVv@z0NP3M4coXL*nhxgk1_$j8#y(rroG_~lR?lY$5E@-o(rUV$l%u zA}A-V!nqDTgmgSzUUQGfY+RMZ5dFjR6&nGpKRBhbI9ju7fb^35shG(JLvpvrkJ_DO zU&M6a``^F)OW5g^U&ZzA%_&vX)pX>+ao+v7i4RKS(nTTje2`!Xi0X75WN>{eJx{8i{mG=69Sc|1JqH&aM?+XTJnQJg+ zzJ2Bzf$_dvx%@j}U+4hs%`F=+q<`Y zeZBQ43hNzupSi>DW+?VS^2K(!lUT#k`J%m*@RsY#?I5oaZQLj$(7t{)mfed}Zm=l* z_l@2_!X}@MEC>SaUw4h{{OEBugDnjjGq*}*Is1D@bWtux*~-&8c;7S8stcsackVds znr+N|{dEJvo;G7EzPrymEvs=>D*6W2U4ehG z<%S8XZ&UdQ-E+=~!!NK@(W`3j`$n5Q#{K>7@1umznP4jCKQZWI);4DlY-i8FoQ3V;}jlNNb`$+{oOD@kK9Z^3TGi z(a)Q9D;=D3)orbcT_>A{T{pqX?2i}QvVBp4+~RI%XBZ)93yh`2s4?wh0znZR4qkBJ zXzHLJnQk)tVTdg#>R*@s| z$6ChIlip7-A3T-_17L_B0r@BYn*2q5%xKMK7zRF%j+@si5eM5*r^1;2WCaDK%io6A zr^zR~m-RQ>RGpXoWBLy?oIyZ(kD+&942u@$y>)!qCw>i_a5zvaeX=E>Y@ErfilZii zGN}?XbMMET@pvR4UIZJa8g3krG8&%K-5haT^)FpN>k0_OWCoeM<02B}etANQE`INk z)A{OnvgZ17G}n1`;+rqcus&mxhdCX1E*)B{N^g5CHCWA6Y`HcRq-cAL#B-W3Xf2%# zA8DW3!Rw#zbqbMbj+l*_(VI$|!Jq{`s8@*yI1H4?${g1~6eAckm>4L45iMu*3A^5? z9>qADsU)or_qP+yFXRGkCO4ZL(d(F4s8_V&Mp9CQnsGSs z!1gRQm}IwVu=b3knx;4RZxH{M&77E+t|VzH2^vf>Nqi#mISnF7cSHO$W#7l$uQY0% ziPUCjsgD7JxR#?E2&tfJVbH1V(FQcS@ZtxfpMmEXpmB&j62M1=bj#tlR*wo)GTSa| z&WN{m_6pIxeE$-v+4qy&4+QX>D961qSz}%p=0t`qh|{b7b82hr3QvNn^Q+GeD)(39 ztG7ehy?1kjbC}ue zg|{g%eu3H!TREJ-xLW_@i=_nXZ&rbHNrlA~VnU8=J?0TxA`1VVY%WTIFnn?vg#{9f zch4CyY{)(Sr_qZ9VJwYk;>zvJdjqsNWf6O|xL;~kj7LS!8?o?oUu8LEC#*d%KFb`7KZ!@D zNZzeBHhCAs$r=i1f7l4RxyD@%)Ld_XNXK-oRW_BQ->-Wvy3S>y)~A8||8sS_1E$=% z-8lHhIZc#mu=LC7=dUubg_5v3?pD3nFTn9JMGMLf{@eyKS!OrB++B5N4?45!32$}4K6&@5iH_)N;e z>|56GuA|~Hvg_#2Rekz)dHpQ9zb;w+R?2p$ljqvb(^15j;Z%f0Tve!td=7bXC$7ok zsbv7oKd-DUMJP#1H5n#ngActsUPZLa<-Sfh+6?{~7=dbanKKA5%E;9}*gZ=hi(ETf zwF9UB)<@jM-c1InN!;xh*Q->8)grA2Jr|C#2&Qa{Ty&PobvW}SN5{?b_2tSq2fkI8 z__ssKM{MZyJ5A2OG1HZsLh47!8~ZH%oQlJeed=`N(b&TI8Wyem(a|?Ne7S8j0aKan zTkbo1U;N|TG-chdgsfq&EEMA7fVrZpZ8n z|J6UpbUD`((X3=^XHs-!048oOT~M}K-lNW9>YzMLYyR^ynS_9lkPs(1H~!EDA7d93 z{bL0S4CE_#U;Nq`_om#+&3hcQMw8hRF+spx2lSTLH{@o*pNcIgq=4X0f3z-#);XJb zAXOGKq6$^joNPa-X+I6O%F+V7m7n7o4m)}fWsoRh2|P5}rVNl`a-5uN9At@><;(Wsiq)Xm!iW49NZ>vk6TU3dK?ESgKT{hh;gmzpX8b;cQ<@7Nn^uB<< z7N^vXE76dHE3vg&np_N?nfw6maI9+L`R9g94FZP>B@<>n~rf=}h(<(P65 z20k5lgA|P_SiKw9kC4Mm3&dG*d((e>vVLHkJ(4lDEpH;H0)A z*9Dl@vE|8+{4P0e4ykT-mw@QrxvAYRfF9UM^G17fGjv4u`4CNpHq zOjB-|Tic?XITcAPVgwE%(g(q%>TS^t^HsHXbw>{`GGLztZ_~zcz@_u)xahR(igI9+ zdTMb>FjGl2Kpy%RHmU~&bJdYow16$RAc-M@`ar-4zXH2i@B$z7Z3f3sB78zK{Xou2 z#3$OOyW9qGN|Ht})yZgXBK$d|Bh?!wkOR0r3}oVDz<#TnyuLNIba~vL&UfT}pCwJC zK=D(;T_T`3g2v|geMi6z0>yf}M`mbMiNL9jPZrZ{HVW331=M2XK$RON`g?|2O!9b* zc_f8HY?aiViU>b~WN&epoyh_Qgu@jGW?PWt26|f+Ti38`PDmI@Od?+8DF1!-|DL2yQ}avd}d0LY|k9+N$p;{C6K!SQo@~; zl$CSXI85J}(Q6e|7k#i84ChG5$kFt`_E)fVazB=n_ z5}5dVgQQltJY1~kxsijI<9*F{M>&&ZwDvo#s0-*8ek?v};=!Ef#SAfD=U#R%qih1N zH@WMGdxHU@-&U1cY;;?HDM-!yso*Y{tf7eo9pn9DTto1z6!VayFd!WbXdd*Ey8mUjg5A8zRJ#Ho^+R~FrkZ6 z4S?|Ya~i!+D^n;RcAwrpJFBgRHKfgw;_{z)G@>5D7y_&Ys@+-vMMO~%cuPYel!^+U zkP76M6uM3DmNIrDSO(t?j|(RfO7u6>u45lFp(IGLyRG~5%Yp=x2|2Rk zV(j{?>*%cO@seVw_ZRlbe&<3J+SBzV&~UDrM@gEmSBOM|o0WGj|Lm{7;&IMW&RFiu zWPdH?kG{2ji`_~i&+}m4gMlhak-)_>CXWWsQo%R**MAnMUJ z2hdJd!>ai!-+k}fekg1x?Srm7>BOx9Cj11QskQt0Xe$LQQBEb_hW&L}JYwAr7Sa5K z1miVQmQcEato8h*TxsPl{rjqjzdAEFVS5r|-618|&P2ud>{h2p?}0O)$B&c6FyE-o z`L#!U%97Q|h|L?0fn_21!GYq=0j{$U)78G+G}gmRnMEz&S@MrbMuWw_cW1TTn_TV` z>7+d^lDjwF%TE92AypEmFqBB^?FW|}Uajd5YBV3D=ZSsth`h0~ZySt0=ui&LVxBEw zyOhQvPOh|lf85tbZ?mKx58&E^Jw}tQI3-*&bdcew}jLsC5s4L zDd{xjK-cNV=}1gRm`&u_#?9fK8*?Q#tEF5X#zAu{Ny_zb=i`y!4?R=;DECI|gx1qP zD?_uJ?_I|8QjY`Kt8g0{@vhI@|VATsrCP??*8Iy*R-cp4248JE3uA z``&afk{5G!kRgYsFBGN=L*UNx0MFErXG}~oZ45zru>M(yHq1eDr+MvSE57xjS2vRj zeS#zz)nI2)Q18frk$E;Kb%C#U5bI!*H|xArWAj?G!n5Oq`*f?Dm&?nx&dQJEVsDEG zs%bR-!>wf;gXfv)w|l|^h#>?svA1CS*F0q~g>- zek2PlN}wkP`d{|P&0LZq0za3<;)(M#C>*l=KE;w`exUIAPl2>ti=V*8zd}wtk#)g)L2%5~BR47_AddK>P$!$e z=rYdT*SP({y-eLGAcz9NmExF<-o%cWt;1x^D3D^^ca*dJ#?1m_xB@#iWL> z!*H#U8IaDUpqYj#`C!(&hZhpBt z%aE{{Ye57{)SQB(MUu1Ylw_4}2AXbWwre^q`;4Z6D`?Rj*nC*-GxYnL1w||cMzF`r zH|IupV|M)&1-)4Wp8cN|AZh04xz6*Jr)h}4hxR;|#>Xdt4$W)9x&oM;T{W2I!oobU z|D*f4AM=n}W<+Xc^wdGL#@#}MyM0VrI&!PBl#t)MkQmuc;);sI=vB^drii3;;qnZ8 z7zF~-oU1^|%~g?0$ZhG{4a7Je()p2R*e3OqU0$d?YkatG=-(@j%e}+HhcJEK^!?4v zbVLp(zIqUJBbNUhOZzu8Q&RpvlS8{H>{*wE)X@XIF+?%1rU)+Alt04 ztGJ$pM~Xit*VcxJhvHH1mwN|!2X)W-($iCuQm+UEk&cXv;!_B6N4F(^`!CXODH!_> zIGO^ONGMp$dOv1^UpP2qff!V9E9?Sc!Fx;|T5K(ERA2LZ9i1_?xSz3bQ<4d6A%f|= z+RYDDk`vGMacx&M#rS0rOAKW%R9z^kC$A1M((W;r=a=GRX0F!oJZHyq!;`@Qhy}D# z)B>2|ug?A?*R=1wG`Bw8xh>=TAR&WZfI5!bh%RwF@GE#uRLSgG!(jX|6we#1{4B+IcN^{t3!wQ%j6NDdvV1#b6>zN#YIqZMh*&|-S^i(cKxr$ z-Az!tj`f^oF!}-7Bpu^_CADlZ5ID5BSjC~fObF2ZK>Cb^p}Yn$+ZU;-M11NTid+gV zThulFPor2Q9wog{^G!4-QMsTGmviH}-TvB#?K$p0!IoJdZCQ)lQ6sK{aOMRK%U`)< z9*^M(E+0nSCqIOkX$~U9D)xCst)Gn1IItU7(R-+yV{P~)kZx)NIpFi?fXgJj?u1a2`*w(`5`(+2EpnS#Yvo~Mi; zW;=A-M)2_u$t%#vpjAif7o}B_)L=fr073pn@uM=h3b8+$MvpO8u<5 zSv$5574lgfF7+`N$;x*T5{H`~pFPl+CZFXf@Nm@mB9gxTfUo?b^gV*tP;Kq{x4Uzl zpOd^?p1!u$#McPvu)3#=PU1=ZoAyU89p?kiUMVrH7kqq`Lmxy+rjGb4@)YH}{6gP` z+p+(%VUK-{0&9>cvR5^7_!-@BL>Ew0R%i%!F*buLKCFn3b<9j{U<4 z_2@E{XF*{OX2aVT7XfcXm7_jy#&04c{d_VLzFG$4e|flheRg(FriNrv!H{98?O+*; zp#)FH+c#^dQklZ8zvfY^K{l;E-!d!I3KOc?3gl+I_GD6z`!6FcMsfl~l7m!EHO(B1 zk3GVi#u{z#H!m{1f|tYT@rYx9Jm1`jKmgwU?O`9r3bu-{2O>Nh`g#(^tX_aYb1rwuMlUiX@2P zElz^$+27#~a3}f)t6O{C<%q3nHZXsDL$gZ>-`Ir@@Gt@cAsE@Jb&JbT3x5y2S@xFC zpA2Ag&~%w22{Jb0aq*WKROdIN|Htd&PpVi>E#o8?Y6soe?;nRM!mrOKFg778pQk-J zIxY$7D{Bdf{cWLk(IoKk9u|p_?(Xj5I0m}MVlj7(X1YlvG_y7Em4s~Z@i(BVoZWbC z5HS*b{Fjt0vPhaComWN8rjt7Og#3ENaqKKciIy}>NG68bcxEu`O}P=hBlf45_$A(5 zG5(gH(P|{I4BWCzsuxV7L&Qg5&|1q5WAfQkL;-zhvc-$p1k_ z_x4Hp9pAD%b$k*^GM;~!IMYL=Dd2kLebg!4I`>*BsRtaOtx^~aCXIceC8}%q%IkUx zcLiopUOPLxbmA%7ChN|D&Z~8h*-Pa9nR(~+sA%|gz>A6CpG{ae$X)b;Ygvt!gWt*m zRjkvUESB1+)3m7eHp!)>{9GsSz03kSW+71-rM*{0YH{wFCK8gWT5R5o#;{oe@nH?! z-3mlvMIs_8>HRCna+dcAFfPk_&ek~vb!%zDoNnXG_^E0^=g$P_jbYS2CmHFv$*xAk zBcls`jZ6+k0jv**HNAu8@%h#-v0jmEU5;|3lTYZVI5=*WAK?D=6aqU4jR=sVfw~-A5t|<)#m>yWE_;p45m3B^8HMsM6f4Q z;gqMFZ7=Hk2vX~xIR2RTv0kqd+X(+=oMnEhs33^J+h`;{HRYzc&)FO{eWZaBRSY}W zwz(ox*A*z=@!S>R7H8mc0q4^3+%wb1nJ@@)L4%x26F&%ydv}}LDiAKH*%7Ef5_ddj z41fX~0P)r6$O5dtt|b>y5f9uh0&!0mUM9LGZWJ`eb3LO(hy!5$`iQBxHU)B29io-8 zER!0z7;<%dM|7bzuvRkHpvPa^!bsDM`L&T#i{rww0eOn6{R=?>bVIZFKk)_1`J#`x z;*G5c)nYT=a+^$7*fYOCd=R>2%8x7>1VQDU4)>h3rC|N8=!npp)58+>Nsw9X;~!0c zF9CNf#Tpk2iaR&Jb$;?Vy;8_c%@E+G-U$v_j2n>>y#Vem(u3fB3OY_r(F;^NBt6SAKC2PzXrSS*Zjyw+i z)^RcFDwTt3_I)`)=lX-$nK6TYV+Z>$sfnS*kFP)^_z*(J(|Vgs>8DXI%VQ(o=S2AO z?nvKJ ztr!nl-voYBbNrK2!mlv>tf_jspzm+ls796~rI3kyUTW7~&uHW~P%MM*-zooD@Oe&4 zK~dRiHx;42ip?b@J=nj}lJpNeIaOTWJ)T(fwD@c)kBxT%N2cC(L=6@je!AvUwdHmZ z<~$5TW4I`$2S3uo(pa@CW0q_VOSW{N%6%@KpF$B5 z?EfY7;P|s!x_F7_VxUIh!M-buLCY!wlYI2B>1@lnIxU8`USY7Z6Mh#8Cu0mtkw-5LISTYP>i3(O?6yI{@;Ej$Nb_Q2tN30% zIDCTR=sM_`a4U?srrK2`h&)*^gr`ruUig&cI9Th{)*`Da zZJbZ8Bhvif!QwXz9u2VG@Xov3T=8{6)T45*bkOc*9}xE_e$S3b{4UZG^464E|JlHn zm`L`s^legWn1KN1t7N`n*wvn&sL~0*Brb)Y$sMOHGm9`Y`PY&pu+u=yKwc?`Mk%s)I?L9VyeW{q5Pccj~3sMAjncVdx-tT;>8{R z6upFy@%*$kQoTjZ`t%PMFslxH#Jl4=)*n;0ot3L{fVug56;{}OJ!Kw9Rr4W_xAfP% z*J88hZl;Hh01*fceLh!>HIu@Ghx<-ZX;@^643&$T9fxb z=%X`W_!(NoETHeO6RVG8@=41(lno z$g7+1Gs&^2?QL9MzGx)YtuSn33TColTbQ>Q2B%HRffL7&%tJrs^iWo9qK33BpnOI# zY7bB!G$9p5^p5eVjXdSyp~s8)REAlYC=76McU{X|H=Ttu#HLoN!_*<&D1S?a;>~zI z=gMj2lMVB(^L2@VO@DWR2K~9?Ui+3Lrx5Sj=_;9ReFwNl{i`*V;FHqi$&K~7u`C$9 z1KnHh_@hwaOXF%*Hi*5a08bF3@w-R6l!=f;2&L?7U2byXYK)5!wNDU~Ud?+@^nIdi zv)uCT1~2z+BJ}?M7QSRiv%+6fPQhp=Ng1_ZU9yxM_QMZf)w7e`DQO3P$TJP`k2_D4jTAum}~o zm6&MLqZXO;D7Ahabh-VbX77Zlmn0a~%!p>yo7YaqmSsWRb&~9zDB>cbKw@b)mu=w) zZWhfxA&fhM#Vo&kel+}%CY~RyCM!WjxO%w(znv|#j-p~^su|z0NGFgP+j*`r#}ubI(HHoh|YuXNU-*G`vQTuABPZfGBaiPFfv{m0x|u=LQSL41z`T4a4-B_fqKURq zqbB6-XXDo)%56GwZR?G0!k9Xt@{6zx;@tSW3ESBb;el`0_(zG2#VHlFPrq0f>p~n$ z*^6H&8fEpxGy<}@Ab0w$E7j?A61S(qkG7H`RoU{mj2Th{Eum_6cN0xsL%xr58NDt7 zS!yJdQko!`f=i7k7DC48&T`*m8fr_chagA6G<+BEr{qoi_kN}b9Wi=PFdR~xtxq0(DO@wN5 zfCp*t>iMF?om$4q^vUxp&{^3`_q&_9r2DE)Z97@K{>q|sF=F?=HN(Aug@{GQHvfmD zLcL63+n3FYlU=1nwk*%ytK{`oeT;K*?AeF$zf+S7`I~>L?wm_U9sc<$a{00MNV z5jVf3&R!@Z9@jg&LwXYRcV`l#o{~Jtn|q=W=!_!#@Mg2y5Sb9NXmj-Er5M^;eSm_c)8dgB*7C~a^ZV(VukX%}c z1xY2POIoBvI#;?`n*09l%)S3HL(C4d`#tY_&iOn~K+TL{`a2GjVh)){CHcci?w$G3 zs5G_Sh3>laLbi90sc91X_`g6!h&!AIBW?D17#Ga9cs?gorda8a zFYf9qRVJ4*c)8edzehT{Et@Forp;kZL4|f3~N8UFb`FT zEDIvEdjbNcZL}{U%g97^x#qY`f60-NveUoMGIN%L#B{M`y7MvxYzbY^$ea%0XHQP6 z-Kk4~BpWM$u6Nt_9>~Mat+*P^y7^7IS>NIDs~(MhVx*^}Wr^@mWWXnU#3owRzIx#i z$8GzoYBMMyJeyNqv)79`yyS-Bm+gouhb<}Jz2oD9wz%zCza4SnbT!^gzuhsR0Q`-B zZO(IJBfWt0dKrKvnmO61bPQPDkJKEeB$6w*Yp%4_9WDU`ms*>01Vjhm*iPxaM78w35+u_MWwoG5w?cwOrldEGfFgrbYH=Ci}C1+)rv}N3$#WUP(YX}fs1Bw0b zUJCi{WW?FtUIYb;5te51cQEtQ;(@yllHr`4@pL`;?T$z?6Be8f0+f zTx2A6j;r-H+0=wKxU<6gru%etiT9rcbG?KRHr@`5tWQgms7XSd^p^&F<$H!Axz8Bw z5pX`^vmF3#WQGmyn+&{h}eDfIW+DmHy!H=r(c}RB)yv;)M*}A|)Vv*kiG;DJP0GLF{3E|%(mG%}YFH7%) z7rBKRg8p$~o29L4cNW`@Xqj@H_Fcg>9#qwPI7CO&Qc9#SXXaCB9DVeIa5!a1eOG>6346GlY=#S>tN(3MuuZSmPkx$Lk-}Jk z9G=t+fgXX-Id#xQPt;KfX|ok!gwHijO)lTMmBUU)4OYeTmdRVSZN zV)Na8Ku9Fi?ooCLKM#ca{R4+*GNvhY=8u%ZN^;kqPMmTt8;*UaYKU60HyUSAwE=5E zYf-z*RJMUIz9f3K2e-g+RXqB-`rxmhm(*UgR7ohn7+ZbOhxCs zhYAlOBX*N3avX}+r`RP6vVt0nu&K)rgcy-uDzJqDBJdPA2OXh8mwERuEybzsu}mR0 z>}mp6Uw%xNt5gw{S98n>25a45=G+3;9FKW?K!g-#*P*w6YZ@zHr8Yav%N7opNMRvF zt(0tpu1i61u%jcx7N7Vdb7(~J`3 zgbm^^F_cmYJXW1_ofh)#2tqH@+B}B|S~HOxfj{4p5ouhlE>Fdv&!V2N{!FQ|5?Sa` z`)6=3Mcs_>#(nZPY?);B z@b8$YgK+q~=!BpKefH8ZPE6+4I+Rf#g{VjO#B&ERY>$g%gO{5aHDIS%$78YA#*ii= zo0~-uLMBZv<*xu5w|F6!FF);Qe)SR6x`7nGf@tBwjITV)nbYo`=6a6H@QY z1!bM+tyRV4&cCtwq50L_-M!=Z*JR_;zApawV!zF`l2^xoLf8-`;3PhKPr=u<%JcAV zkOU1Q4nU+@#)_OHC;XgF{vCYV^cnOjUo~t4=-I)Jiu3vWxS-kd7WO%Wo_p>|F_!Y< zvi+**Ba`~38pOrH`NG<#3$i$ku{8GwDL+KM`nz6v2E6dd;Z@U%GU0rOI@qnd_&2|s zdEWWD%cj>#%=cht-u|kmAhK&+8f%#O9G1pm)V;;&>)XT^rP9{rA;VyXpZm9VDM_=s zv0kT&cM@9<{a!3D596Yh%XYdGJ_A{5^k^K2+Kl(?N!12ELM5J=$a;pCg*Sa zwMlO-z;l96=8VTMf|VAdKpH{}d!hM5nP)?e{F$v81vN{FOJNA3kLnsfPP6&Gz3JRX zg>Z6W+pKFO5fF;&k(vqw1jK|%-Zg;~G0&(;sU(941#Cex*p!&8?7HZc3kzY=LnrDR zbqs0>f_%@+gPwCi&8`Inf9)sdi7^g^iTrB5MtB1l%o*CkbHa(7_~d|rCWzqSFQ;xf zS<^P}r>OEb$d?ykS4X864YQZ^GWd6n+eWq0lnN-uiSvJ^vw}r-28xP%&wILE3=$PG zwbj*zMb&aE!cxQ>BL1tSF#<7|Cb%)bFo86Ouf8*0ghompMN^H{UI4I{50(Z0x@>H`#Pf1!hLUi;s~J zFiU;etk<#yM_IuXcF_AsOZ^WTwaAw|=iDd)t%+7JP$vdgMle>FQ}k46c1GLu zu13t)H|^XL8-|L6MtAH*$av$o8qUt@D|ap3@iP|}(<${f`}f#T^M&?_6}9zT16OGf zo>raK!J2(UaAaU$<#H&qIV7-l@jg!^M7$=Y{xzgkrYrLS0=!Cu-X|y_PootzHRM=_ zRaf*H^;QP@IZTUT=U%hi9~bjrk2b0Z7v8WWCI;;T*SFWw3H zZ5<|M-00_pWEBKgPEh*k_1P5A@+iqo{&vqGeM`a$g_;#%nMr@k8hmhh;kZzcw|x(n zP+7~M1OsZNo?v~=Pa_QF;fi9K?||>2bCB3cAB`XO@sMWtVDrWh_ZPLsLO(b6>!bH+ z5ciPVlInwXZz>hkN0+8oE)P*(@7&ad=SIflN18vbG|0pxPt;)L4YZ%vuFAuZe{AZ= zIv3B{CQ@o`@VmB(kivBf!GdQih_xsT3oUZkBT{=*mt>*%x%~_Ib~9aJnLr9sCnxO) zxp8xKt@m`u`Nx9EsuQ#w4<`6LWNUQ;<%2oAp+Dh4aS6v(L>vmI*mwcjOc=-*%U z?i6)<8fgy>$q=G-s$QyBe*~GL#+8-ZpA5wCF7MuzO0j-*JbMLJi~=riaAq7i&P>(U zA|{qFLtRBAvGcY6w+ql8x1G`8g{G;gMHpC<9YyVRyBxNhoKzUaMj?NbnGaOi)jvhW zdf-d8)D+h0tF|Ad4L)vuHJo1ju+*^0JH zku`m`!*4R0Sd*r5iD*>Prt_rQI{aQVo&&Spe@6+@wLbdk;v#<8`^kh$kG0T7|3C$w zzy4BJQKMK7Pu0cF)M$hD*Bg8BN@Dh@b%K(7JkkA~;ktHC*(~9_ylEz%9E+H_RJp{6t;Jw*OAZgy%!-TEO{G2*z`@b3O#+ z<5K?j1}yZ(8JR=o^v24-Hw@Ft8nLmm3DTSoOV(3cyl`Zba9`cdF zX)KVLdV%3dq?ZlppRQSQ91snfduwQKg79^IE+~5XBipnz9|U_B|Mnu{%!prz)>K0 zpvXMO_Nc&g;C2`XA>|y<0g@0rAihN6euc;fk`%WzXOo7A>cYd&e}Z6&kh0z@AtDSw z3_>jVnz=$`sYJj13X<)23X)i+-jF4iI(TnNL}8(i_(qTT6GAL?3jzu zYVRLc8-9~o1;&Hy(G}Zg7&MAepPE~oOS@e@6zmXT1y8G9r&7JIFkqdMvt<75JuEn$ zrm-b;J~z-HbG#d|-+g?vFV=X3cKkY?7AIYcf8BKMfbyDOoAK~JOj}Ylc#s;RK&}H7 zZ=v(k&|Dzs%bv@8YN+x)E0oIeJ~{o|AG)#E6`6i}s||}?0V_?%+W~ldqZs=*_EBLp zvph`U!Ci}~Sr(i9Xg8Y|{&=P)^k$D1ioszR`>}F4;kjBHa#w?KCHrL+Tdh=$> z)#&Wm>`55rqshYY#)k5CV|Amx>WYryI8$`D@7mTx%spjdEg;_RpE|K2W+R5mLSYQf z&Fru#_9++$pz2=pAPdHZXYmBq5(xxDKwp-Khw%7zmExZscXB9fN=dO=-lrJRlmG9L^9 zeeZS_aHskhB=RhY92m{gG(@WBA;fxLK^YXy1%pWu7SDe2rx~b(EVG&O_4YX2tv`8R zi4BFq*Utu~MTtkVxD%9?-zccOF+eHsRal|L5HND?0s-rsBo~zlN)HrhN%>!X!Zn_D zj2mC{?JrJ*GXGH_;vw#cf%5a@=rRaUN;xPGQ>Hyvw15;H=JA<}rohv9R8)$`=B~s{ zoER&;5;@&3&LnW>)iwdM)kkYvYhUW}ZR&jTe7wCSE#f`xRWafePw&gV?W20~0qWt@ zs|0<*bze}CSYEv>kocM0+ZJm#9`i6$$r#?sxe4zoV{AQk{j2x5&6yAmGaH91T>Zm* zQ<_s325mw11h-l|9*E2>EEI6p?N%A);$onOK7IK^K?S;(III)?vxQ)hMEvLbiB+Gv z3^UnxRaU(8?UqPx!rw=Jnuy&HZDP=%v$M+M&?R z`n5ZB;s5Hu~)s95K7E{7h4T<0lz6KT^Z=hq6X`-%sNbdpXn7OHWbDyaTsC!6`bR z=$MNZfCQ{8e^zVcfURI2C2{)kH=|^7JhRqs-O0bvSVp{_{@J>}=MVep_0i9rXLZy! zx0gFV)rP{qwOtJFYs`qVnHzWg(DM5xedCNY{zkM{-wXQtXHMla*58@QU|#OR(ky&z zde5YcX}WI_&vv@v$Fe{F>GZAO__m4VNv6ZBTWnMrtzszB#4+hr0Y^5*wT9IDbxZG*LIm)1a7zW@%Ds!K@?VDaUETW$| z8!yhS-qoArj%!FmEgOtylngo=HKgb?B3VdqW5SN%#FF9-O{*VrPSBZt<@RgUoR}ZJ z>pcPIlT88m&iPSiHJMxOG4{9m`|T;%BCoAGoQ=E-0kr*k|ULzanWCENyT9Kl$Ij=g^zH=@Q5g50JMf6)+Ih)U_`X zVkQA61JN2L^(Vj4U<5)a>GK-OtPrZecXCt8p1YM$<>-+(8JS-5emONqxl}G6KO>xw zjP9rDT+4nrgoIE0$eT~@&yB2*+lrb_P}4xsm^o5aGm;xWHJj;KFRz#(mVe}fsR8qk zTi#qqo|uM|#NL!xM^h6_U^$*cf$x+ah)uJDgaxz1Xdi3Jl2KFAD!NABXoEcZ*X-=Q zmv+^EwKID;=Gd@1##B1%CH;l%$9jaPtB6>9aV>=V_&rML7BFg-V1GxLVmpmz4^b#_ zoJEY$I7-P3D@^@VG}P1%i|i!!+#c^ebos7gK&6Fhf!cJ!DINaPARf<4;2TfUIXUiG z3r*D?_T(GC=*ye+I*Vx9`I31*+Q~uq@_N%b(-Rmfm7M-FRdy)3y}pro&jvKsw2yP5 z6};k*kbA{h|3zbiu8$?vn8s<$c z-K1Q=5ia0zYv1FCN7`ZDj{2zkeX&h@>FWc?Z7?pKtm=)9reDPS`)4 zVW;Z+@J*=9e9utOihVeQhguUM=MI80<`N(o62&EvRYfL_lcnq%*%r^-%fJ#=L~zN> zW9V8kej23H!6H)3c+{KWyz0c0Z5hy(w+e6&_>=_!7ovV_9`-qX$Kb_kCfH@3+&miU zUd1=!Lw0NYS5j;m@eQ0YUElHCMTCUd@Hxd1K`T)N^fI!Xmj}c|+53(as=6}DZfab! z_QbW5hojYr5k&3e5bJYp*ai)EtNMV!D25KCPsMpPk_`q}&XTVMqtz8;x-&v7LR6x;^0uNN}$JK(+BrXa2zkH zYZ*b3XJ4blpz}yQx2f8WbkQpOp_+-Jc}QG>`Ev$9^7q`f>hh5T3Ob~0GbQl6*`WH` zkqDwtDHy>s{vc7*VPAjl_?Glx&$JB?XVvrfRunS7v#ocprROH*T#H&w$oX8%cO7Ee z)m><8_-1kjsg+x@?sUPre^calmAx3{2MlZ{s2dWarNCDnDgZHf`j#EG7M1W*#b8cS zK?AZB!{0(jhZJU&>rj8g!jsyal58uX%94{>o6{~U+5teMF!>JZ^uSF0=$<^9L-gIgF)DhOc{F~J4rgQ#iUDDP(^FB* zdu>Undn;&0wEG%AF<*8dC6O!FoUB~41(CIQS1kW;SrWn<51Hr**sRD22?T6ctCrfm zpU&QlEz&Ds(tLoan6A)oCh+-ilw7%AGyMoAlZl4gOw!T~3tK6${`2VxWZ|D@7ydv; z%C9}DN@E6qpg-ZVWE6x%w``k(fxnd!emyEWlWir$z`O>?Q= zz9-vP9#=h02acb+kGDQ`??())yFGlD+`1VTEZcdzOb65nVIY zJq3K7sfS@N$%G6|iX#p_dC0tQhR+N)hPXk7n&v#w~-S%-c-IgopQX176FOSck7 z^H`|ipzn+~soC*z7$AzK)Jk70(PI=pJr}l^q}gvvX>V7LAx`r1d}Fx6?GWKRbM$n7 z4(?3HtC#xtU9tN_b)p5+{`Zg*gQSS!YHI6TF0X%#8d8Y#!5P4SqhCC!NY}MeS#3L` zX?H$6eb+Xjuk%Q%erKl0K#N$H?cv_Yq85rVx1#KG^Wx~EM^`eJN2N_?mp(F$9#twXC zs02;~SF#PBh}N2+t!II@s=~)}?GaE69g4v@74^QNxKA)|sol*lb72lcqePHg7}DW- zFtvF%)BExWXYBXts8uJ%1|C8C+!P*0C787oCpdvf29^iP&;}NW55?;m*_Tsfk-1}wn1=R@ zkb4Q5yXB&aaDB6vp95KZZpUPYP>@DKW#{PWDS+2I=o)$F#%;cdXTL&-f<89f<4efO z+HlRk`nP?d(R7-5^*7DYZ+=z77j&lXy_SB2VN%M*at$DL*3aZHI{oT>Z=dlOnt_@& z@HQZ4`$d0h1=dgv>*awT z*c|jb`o6A5({u{DtgT6ne{@GTUz0T*>s>y$6;8!0{T^XOF3S9umQE>1BJk$Xqk?(1 zM0g0l<)6S-km7+m{b~s>mh?W@I@`WH3s?jr(z_;{ajaQ|QO-u*Li|OMYy-Sju;&1C zJbZPKc{*I$uvcNXRX20p6gfHJBE=EMyZE8iy^S_spHP^2Zur}6zBdv<0 z&lW3xOt-RMSojv|3z@kAEZ1{C+TeY%qG_PKL16&7_ny5?Ru$BFfLa#d(%1=2;f{<1 zMJL%TkBcWch@~|av}^+jtOG%ega!mgcx9jWBh!T2kA*IO3wd)63=B41g>YW}OUJJa z4~-U$`yUMW?5{pi?1LYvs;Mcp_h~KyoL085DNiA~uMpAfcC#}H=%Du2Z(C;wP}KSzaxoNL){#KldSBR_}(Lv_I#yhbYoQpvI?oErI|k@wDz z+!EootU{<9VnQ>QwLGagQVOeUv6J;rHb$J=%KS5@ESyLI5DyksT)t0yvogp_z<9W! z%+@g10X5|_3xRV3lLbAFao-o) z?qw@!8KyoXq`3=(!E)haiG^h6z2=ZslJflR33soC-FTQnE4dyuzl!QB374GBCvVsF z$aNw&T<_99zF9-aU@0C#!0I&D(t>o*7;c8JDZ+np%`qn$8uCC13EiGf2g2x-NGzED zC60)SpWY+All=P)i}y$E=Odz4N~ncAu3r_#T8Rk^$PWzt^aQ9VLY3k#+l4ewUYma| z*1T=gvzH#Q_etgo9e|2s)X*rxQRk za=-GZ!Zmm9t5X=h5z2&J>&InMSREhLa}p*^?;NxcdwzSPF}{i0o^=8WmG3 zFO%8ylJPQqT2EgbTd?*$o@tco(aewsdY#Z*+(ocH)YiQ&^pzZ&|SX z&SL&>IDxivbK;+6+MO>Fc2g0(Eo8WMrD3L$e$kHT`(Gb6JmU}j)v5bDEX84ba?UW# zrF3^j&$WDaM}`N}Ic4ni@;%-(2xHA~>McpFpNK2aoAYJWO^YR>Kar*q0m;$>-K zTC}t<>%9zl zU7_NsLHgIRBwRkvRE^hbVfJNa!1l(7Bko4Ga@)mV-gUmi&pZ9re?Di~@X7*UkM_oA zy|!l>;y5zzRd2r69`k3$;Ij{~Pcaa}kMSQmBuc|+X5JzyF*couI^Nrwv& zQ-I_A<}b`2)twz2jvLqQuM~Mi<1$;-TI5K>_!XVX<}6^+!7yDAPf2W0fB+07U2nFdOb-2J% z>D*P@H4aI>TYM*fnvH`QyjweNTXionig3-zWrts5w}ji8U1wnv-_exoogsb^8vhij^z28L-)68j~PIbvu<`uB6)dpz|~sQQ4%zJd#D{+C~!xo zphZFcW#0~!VHoWLasA*B7S3ouxaJ@|BBo5JdCEBzfNS#!z=>V9IG(S_==bH5x*3R| zv`8JZu+giwx_Z;l!Ng6Qne%hp%(<$H)~LuAsG+LY_f=m=<-{%P&B=$IBMxJ!3wn(w z4PwTAC#T=<8o1SOQbzGW0$S}K4N1{`$bqzw!E~vhyoA98tAM1TcnyaEx;)nZ$b1NV zXb{%ClWqX%)mkPcdScV3>i!4lpB1mc{NTN&IfJZFsg4A38`-K;;gmnRcw5M=|FWXB%G$1}J7-HNA9I>6w6`oRl6Br6e z2|-B=zBYh#4$j7cnI-rq?{gqfh`td3!)?AcDTgujS!kDt1K$9h<2(uwkufE`!y_JH zX1%~BV-^lEwHD4R(xaX|-B{cY z!!$LWFlU{(6&-9UH`V0B4*dixXE^WOf!vhbn-m()Z@owGmm98mFW;dnF;ccGR%W|p zp2x=>SXOJ<@HlImSyXW4nA8psN&IXG*{hV8{_kEg0DI?TS)0w%D!wDl(eSCE7Oyp zLOjHGL`BL-2i0fZBc$Pq@>$@CKrX4Mzc-{HZ~Bni(@>Vs)8*Ot5KW)WF)iYhV4Kf+ z?w|UfZ)}22x65-K$un}=HL}Bh?j+~POD3}LI7Hw>%PxoNn+}pL|E}8k_-M}{lfNMc z^K)lUrnhT~BC2_p(?g!7A>f&@Ya5(j$F?yhzTYJ4yXxfNWKH4qyk z8G%+AkckosSW6l1KN|MPtoQUC`!aHeNcu%dePgC*u7-@y_Y^e_hZ5C+?v>xw>fg526lMstEmzG_o>*3rJnDDTiPpE6=wnbyvACi0 zD0x8Ln~Fz_DPEvvq&hl(TO|IiK3I8eVzPLA{!M@rli`te+iCr1bE2kOI0It>Axuz$ zy|)!HUwpcVX?k$u!)Ap;&~nw;mw>}0V4`zzuT>G4A#=Xp+0x!lZmUI%!(daQl7*tR zQT>#bytok$BN@sWA6R}W0ZfmcBsulfb506Q!n{9$ov_{h*E7_oI zAO(fyKeIr7KE<71<$4M6-%_qr^1HmKmuq~0LZNl5xExdlS{N0!{;C_$>r*t#@=>f2m)Aj3se6&S9Rl-t0Y z2_I|9hjQFEYjb}F;{(3IaAA=$D`f;=CCED&*mh>umxVtW6Ey zy-~dxPrCnL?Hgnv6~J@h4$^<4iiR-X9-xlqFZ%nIQusCsf#zv>I(gK%vwxzBHZH9e zroOWw{y{Ur&B$#pQ+WOVb^(mG-)n|)TVWEip9s4fd2ENAIf4|(?A2-Y-;#i}&e7@_ z&%+6c>VT`)0Xwx~#`W&Y(BY;dp(~a*#tNY#fo8#U@&r0NPUO^gG!>|Vq=@F@grAfJ zGXmonuTtXr=~rsy<2-A|{SpBT|!*TRf>E_-!PMgk2|H6;W#j0cmUOtTQ#xj|f153%QB6(><7v z6rTfoh?#P;KOqzc8W*v=eX8w2h1Q5NDOk%96tf=)GNe3&)}67DDPOB6#Y}t-SKh4; zyu}vsYbK%)tVm~MS8+IN@V<0c0XX5wq88zn{iJz5JPY6~@IyR5wYP!-&;>0AJH*?W z`&Cg&pZO?&$JkiWrAPQE6{Tn%6X;RG*Q*Iyo;nOL1n9&rV-~=lV4jJ{5hMU0-Y#a; zs29!ygFyAOY^=?1942L+O%(~vH2Uj)>ad>@aqF;;5-N*fmgb6OcLwIyXgMP~wi%uA zP+CbwgVI%>o{#=qx80)x(FHEfn~Wx3S4g|+3rAMTmeDUUMx)w z!ODK0@y)|*zMm;(TwmO4x6B2jc|6Cf9AbpONV3G;iGMrtox07vAtOdW5t1>)9NN!_ zczn~{rIk!kysj1go-UhiH3zI z?cRWMnd!qYis|1~g5z9MzAOTsF;urYvIJY&Lbq;?Ftf{Q#CpaB??anIh-e-M^mLFI zXjw_}&~vFWEyZHw_^v~D+Jg>LHR0()j>slc5%UL~B)?_(z(Jdot(Z&xnuc-Z^cyBLXjHai zZ^fEeS`Oc{T^on9-v}`NnLpBNIxE3%wLaBhh%V+`Kk@||4*=18bnNo|uj`=6OW*Yn zV#F3EMxkf7HH20_tH&iFmDj1d1~#B58eH zFJB3TF|Mkt5C?bc4P}t%yw5nqFljrU-|uUf@2=C&*zYSXrGJp-HhCy>I`1PL>Z~>8 zO96Vj+oag0`1Ep#Opn(T?iprK-6bU2ge0g22<)e|KZhzi^XG34^!N zDtHm2F!t|rZExI)W z9egbn%@Mv7ay_gIe)Cw9{(ZbT1hoK8l+aI*hNA@Bv;Wg{|pzF!u{=rj)eQd}0cROE$;Y5i*SYlI`!J ztb$t$0hPh6onOrf4V2W6Y>zFfezjhE$!ywgOhWzqmn;#XlqIvmHJaPvM?43=T50Vf zHRXHv66RR?%?Mw*pHhu7gE|rlx$&)w0m{`3Qx(uf@thg3gYP<*Lm!tRU7!g!OHt9S3k?zY?+QT>KD8Zzaqj zI`@42E3&YMc9e{Bim5#Jt}+=J*-U*S=Wq4cW_WuEJEfu`ni1SPgzxYMPe2zNXgGiD zZ;_c?u89o}2ss){oVHKf$n5v<`fnG_9&hBEc%2?m^`DfUU(ZZyI(_hllE`wQx$5@q zR9G&*#3WTNOcwxpUmV>zZ(^~R&AORcJ^?={ewb8r7&2Tb6tFmXHD7xEH8-~n<1m#F z4?5*DG0EB}`sj(DBZ-rjg*chr4k3T(j-?P8iF)y5jh+fahrir;6RsF=6;9mu{?0=s z(G#F|k`O9mCY_ebG6x*gcy%ByQ6vUqu{0Jg9&2$NxK>ugyF3Q= ziC^ppUULbqV9;EK0pm20D)>nvf;QPuDIz)9_w4W!W>PRPv?gV?CQXifCVY7SF3Vu4 zTde8OXzp-a`Vh2~nF@-2OX$(JNF*JSpOIGxfbJ_xz)y+7p4L8>=fKekY9Q$!YSZw@ zKo*F^%-Nh2PclmZwk!z@ay^CAJzFVJq9`ID3lm15fSSd5CK_Ve84F4NlJK9`mH^Ar zhU6W1d#yEtE1AVQ($u}y(C@Ne?9KF#H=wf_ISH!olNhajk)jngifurF|4>W;c7FaF z5!1pD&3$kL?gyIo2bnGkb3OYBa+$u;ZU-C(fpL^B0?iD{Vr5MOMjN=uw=s9+pYXGY z<0vuLtrO8v&fr{t@!*m$O?8V5!M^Lv&EX?|sgGWl zbXnx-5SxF-GQVTyaZrv*xQ%*C=kl1?nYnZy(neN30_%F;I(DfaMe zY)=Kt(8!YNtd3qEPUPl-?DINmL@Ft6VwW1`%SDCBtaRATSS3d23PVWLp=6IIm!o_4 z_oE%gNw&LkwGgZ%+ZfNa7nAM{6W@&Tv3W1X+)x0-kq}SL)8_KYB}({BeThJn*6(Z267x7AC^_Al=gZ1DjRQ_^4j)mG{G-`R^ne?RZV9Yi&CMDg$|o$1;$ znX6MrBfrxg-je&_#g(rte%Xo}m(0}HBn%a7pLN%G9qiN;J`UTD8{7Q;I@-kdqNCIw zZv;c)ODHZi4|6s(#K2VM*nVfLi&JXm+jMVrT;tJYTXdyz3xZRqBql#Cx!OUjr1x$_ z{L|GswHNrdy6tg(>8<-EF|nBA`_vI`Zk}c0Gp-I|$p$h9!bRift>4??p6`}9TYJ5S zVqTw#r#;tuti-wBeJ8I<2$Q_Kvu7^J+TW=bRXFQj!uR;U25*^}Y2R>@(hv zAMGA0b4Q8~{YL;rhRy*e6qrI_djHd6XX^A|Q_+A{PCMs!dTw206+|9tA_ zG~k1vYkzw;N?tVO)sEbb#2n~NeP9O&Zf))Ud2$?ZNuko?Ph9uTb@ZB!PkBxJmX+QZ zhTVk+GfLiq+k!DYi=@wO&wp7F6e|CkTiDo`Z$UPsZry8vP#riiP#^!H@UCg?sxsA- zyGGKL5gelYevXl|{u&L%-5O#tuu8+NKuANVydgzOVlk*dMFN5FLHbMsZyUP!_7&s_ z7TkH?T#jp2pn^SektY@dLOxaj{h$a!QvJXXDtp;KbU!zcP}}CLP@Pzr<5SRKe0_B| zEA_*D5#e}|fDPvIy-1rqX(;twJlb3rD=|qQu&!MF#-g{Vg|J(D5Sk~T)3abXB{ERE zY*)W^npfC<5Q5)w^TUId>7Dq(NU#7}xcLHP2)L~gQF9nPKQ4z)yJrEz1y)OzHugf! zIQ^EveX%7(S*(;@`s|<|+#)yeK=PRhYG{%%2%7IEU2QN?n*>m?J}I-R{Ib1zQ(AMp z;Nz#<8)bn*S8B|d4&Tg-2%{@w{NBsU^~%Px2WJu-gE5=si%&Nm8GjVv=I4F_Ax8mD zB+q;AUx;=B`85JwjO<+CuaEK_Il;1@UK9(cEsB&|_()bE&Ls9r1~1RYXI*B;JFdL! z=~(m@_6dSST{Y#po5EXZ)mIrssG_Z!^!;3%cE;*CFS`Qp+eQr)nWzX95*wYflQ)Jl z>=b7opE)_fPB(g=^_rY~T%nhjl#(i1cX|EjP3oIQLyi1J%tv&i!AUr?MiH9F+1l5={+zNC}rksf~I$V%?vj8C$%B7M4El zBCPH1K;SR?W;`!I#0F0S2A~7vk%c^g$p(M_NpQ+j4#5!^IvCS^?i?&L@=$G((Au6} zNwD`flJ`brx!Dcunh>#KpWv4fk$XJCo;sUn1ATDx%qOKntTkXQ^&#U@QVBqZN3Q+t zBwRrh-Qv>Yr>+#kqfX4LowS>hcIMc4`P;_C|EOm`q%$&*ZjB&bcxL#!eQ0oAwgXJr zKr>Oi%TB2>4`eRZ!$*U8a{k$EM#-YIK1JrQ7pkm%ELq&qOzRvK4dI@td}BM-{?jxN ze;{T26F5~gP(j&Iawu9NhqfW-COcmUSojW9tZo<~G;YFWPxXtIhIgDcWH-Q60Yi$4jdN164vi z>de&1vCbTXsZJRqA8D=LiYLDQp`2CBUHM{2Br=zeIW{|#K=2CTddkOH$Pzz30D zPka^?3`AkXPYjb40$Bky&!2*noOUy60#lqkzadRf!X6(7!R#&VjolSShCCd9W&V`p2vJyJed_Q zgxO3V&j!J+kG)>GE^-wjb1rik-?X1egU`!sYDgLh&$WAUK6`oW^K#tXxT!IH&oj?((0IOjMo7pBvk1YjTjSfA)={92*W)D$12AU7(e@9XIKg zdx4MuH@PZ})fLNID8C9r55Jiw$gh)))Gi)2>#I4lB}Pf7`s1k%qwd36wJ*EeGUJjO z9y-h$m7X3SIEg23#3*Cy42wzKL?K&X-P3Ck3=fPaynMwo$6(LG&yMXU9y&miMmYut zo4mKJ8O|>jJ4{7l%m=(U7cwvZ`5#<|4cw4i1_LcKM?;y^uTA(CI@m`(l`Xxf`L-;! zZ_&9L(|!-bciPAz9DWZ^*ag_^&AHBezp&N!-#Yq^@$SbOka1fg=6uNVh3xgBmnXKi zsJM8&7MJU3I5;Fz?oCRMDqVZCOIjHy5nTM!@IT~ zuV25md3}0(8FGt9HfjCAlhU{WrnUzeedDvoUvL>I>efZ0@ooDClYTo(uZ-f*e4{lF zi^EaB8jC#e>)oGOsdDikJaV~lZiooOJIr#jbDF;xTbvxn|JXlU+}ot#aN_UOk6s@M zYMcU6)4q-ZynkhsG|P+^e?5;;amo= zD;RN{d87ea-9W9s56Njk?`-ht`bTX}c_;OUF6s-40NknG|HET}*lD5R`ogVz4#DF& zBUwc#R8)63{1v0Kceez8?*qm#tU03v+einxy2O9?&@KfgEsqItRm&B8dituh)E8-UI1?o4d3^jb z;Ibiam9ckp;$$PedNwZJ&c^0!gLx~ zC-H0i!Fv5h<3tX#Axp*PFUGB&qi0h7)~yDf*gN}zBiO;eGmtvI?20?`$OBS0T(skl zqyB*1Qe#k<)=PhkxJ`q`Qh?ju>R@x~$Oqcq+YoCJ_7H-ZAb0~ILrm7(l`@%4nIfI~ zKcAK8(U$o*=^t0sR|B)?#Gs)pR$V2QbQYt`DCYkm>O6y*YQL^eC-g)q0qKeq={@w0 zjV1&^KsqR0TIekZ5fCg$4Mh-v&=izjq)Q7TO{9wwiV%?A-|PO*JoC)&@g|$e`h7eOEV|T~Rh9v1@88o2) zz(T}&C<@xyy~o9|^BaouLSi84e=mVfm@oYYH1-ZZ8RSRYvgj53WBmULB0^%0rrJI# zI?DdN^#g^Ws_?z4Zuso*yXR_q!kL-#5YkaV(N1zk0@F#~UCkK*B6?@;uIYT${Q>NF zFdOjQ;Dl%!eq%2`@g;>K;89{w$sdX^|OwRjT~XVeA+k;K1mP;@cXX0Z%5K| zwHgahxTf{|IFjS;UXQ)GCPXWroFeCZpE)R=4&+5buj0z@r@dxok*a=syJoF%F4Q{? z$BIrUaOw>0zclpj?(|!B;?zwVf)5_VK|4rgOW0tL0Oi0rCa2q#1eoK7*5E|gIPNwZ zXk(IQwe-XiY-af1<)%Jij7}AzZS+FemRMp&lz|}0`Id<^97^Wddvw${Vj|REAX>JX z(U$>2*nKQI`(Ox@`}EZQ&#>&9AJkkwUk_SKD1VnEq8sg(YWnZhRFZ|{&uAKmlZ93+ ziA)wH-Xv8rjt?HRWyfo6F`~{dkd-`j*DnywL4c5Qh8HI`?Bqg)>1vCA4^9a$NukBW zDZYAql3Df}gVVD!!uSMP{d87jY7o{JS(n@bSAEj{t;OMNKj5uHJUPnr^!fla-X!x4m6eDc%mZ zr;s`?e)404L1#}8ohL$#Paw=rwhMvd(|M%XdUS9>xLBCKNZH>n&TIQT|Hqo4U(EJw zktY&`@;-h#ePV+ze3Db`b+qQw8l+;|?Dy|?VpZ!ox~|O@In945NBv>t{(fEL$@9?p zi-pC`O12+W+K+Y$HuCV3wqfVVUj+4w$6p^02>a(sqZ`ntUhLrmC3`)E3G=J0Qg!lpVR z+Z;AvkjIo}Gx-^>GtNEqzxv32`k0m2Qd_~KxgGiM4AoOu-ZPbzGco}Xns?bdm5qkg z!onQH%j#!}vCG#nPAcDl z|BI2u5^nymu)un`DITMq6RXkAc%uh=&IVKO+xOPZC=OP_q~NS=$H%i}$i2nF!hq3P z^~@YGeA%L5nRIEwjlzCkVxj}Ee?bcm@MagkroD?=8GwSJ&7x`;Z)jYm2Vx`+nqRj( z*+Zk$S&0rwop8B7*Qe*+xpX?A+*g=~XcQGy4iZ=_y3l#Nj;-bO;zX^BTCr1YL#_0ou%jV_z{X#>FTaS@uZxV8^%O z-i?J40G2V`R9@x@<2P)>Z?JB{A&TctpotxWvaW;{KWU*vS8ouE-90Ta+YtC?JT!F} z$XP;!@}GXCL|?i@@zn?alaC_)G4ZMg5-czQAc(M2pBtjBoUPa1;NqNZE1 zyAt;T5D!Ekl1~wzjDhXaY3mfrjei?WuS)-xDq0|@*(Zkgfw`y=@?{xkjb5rQ1SA9h@l{3Pc1*>WB%~FZ!ragHD4?fFH)wS zD$JeUGZ%B9NGPz7H=u7dB&Y>;udls2I>9$hWdMtj4QL$8rIy~ z_MeaBKdfuPy>FeLpQYu)4lg^alH5r2mCCC#@bmYPv=VJQn`n|~+ZwbpPIrD;lTf-v z7g$$pIrQw1fk5*4&I>;(GnTD6ItLdBqRi%Bd-i`~97Q1X=|VjDMFJcAAu00(0qc^K zk*A-w>x9fb!$e;Oqum#GT;9994?W5Ko+1m}~0MwE=okOB(R z&`HXZT6%?Jzs_&S83QgRp6d$1tH&MrN+?fa*V`NN7faYG7H z)6cEMW3|ju47mZhnJky<3U9(NFt%s_z;5 zXpUGx@ne{zHg>;7QPBArdui|88YP~4^H*81GVhFlNd<0=d3xgpw$O9ZlYmVP&_yos zx;EmEug%rGWq&y)YcMVF8G7|5yCXK)WT5P`1i#CWZ_)cKxoo7fWwPGkmk&K4XXkw( zQL0eXq-fno3uaQ}xy}80ERau6>qDjcbS-h`k;Nxj)X{M(O)wZ}BVWJ4b%mO3lg3HLvFzFzYmsvKL%-A;$52Pd(5Z^rw~y*KS~QM8 zhIUoeBsngVdFtQ(tJshUi5u<@<9H{A%k;YTqs{ zMA;jNDk||Q>VbWx`OR1w<`1#-w-pF~>4`qMeayB6cd9>H`>DBVUk+`GeHB9SG7P`S zS9ZPZ5ZX}PYe$#bov9l9O77|E80(G9yX+|$65o%G96rJs;_X#>lmU_Rn$B^TTesUS zq{)3VO5qWIGdVoWeXHEiXEXa^K>g_8d^xhdN%?4ZTukQr>kx&B$SsN1(D2CPU*}^< z8>_t88$HMIDS2eXT<&mS`U^gpJt^G?!!ROj@CW+`5rmzCh|}#+rgZn%vH%}Xuf|=c z*7MyV_w`z3+ls;iJMWgA_D7h8e-lpLibB*+L;Y3S!UM{ZzoUX@-*tBTzWJ`{_b|>a zRMJv*Nazrp#_iJ^#s8Ft8@4yZQ&UgY)>U~MB(u)GOTA8*&FKqkeHeH)ehX2WP;*@@ zE4P+zPGWk~Cs4YycLX8v{e814cTz#*df#Zp;^CzF&M$qV;ocF);JJPMfmWhbO2)rO z5$EHf3hQtuCC{daCrWfu`yvB?esjnnMf(`-~=5Bea*a6aVVaa>dA((78~oVq)QzjDeZuNPu>8Xxmt(#aK_{8E>f zd)`AgIj-Up;0{88WIw0=3{KbDVti2JTD39%gC{_ktz9Af!JsP-XRdl3n7bAVj<#!X z9t<<0>MF+r!ojCb4?i6EHm*fmNpXs1i5xQJa<}*p`X$2G^onL8gT`=bidL*@Siyw$ zg(<7af2%J8H-1m#6jVA|QV_EOcF=VZ*b{tjf&XSutHtnebRT|mZ`QM&Ur9M{xN#1l zUVi(Qa5g=)fN@Zp9CuKmk*bf9?Z1uzzMjTPEZ{^*%F*!!5xZV~X2WLM{}Sjieur(W z9Y6#Vbf5&JTQen{}8KL=vtY!mYpJ-n+o_aW2<^+&^^kz{ao-!RGk({gv}#Yh+r}>qQxmesj`K z2ND!S3a=PzQgg{#18g-!1S&q5|CD6dF>)*KoGo&TFn|8ggc*%1Nq}M#+bf!wo3Ak7R)fAB z1ds3hsfyTGJI9Ajfi-USP}Qa96r3tM7CLaGDp`XLFhb`QS{j>$tcq2x%prI-(VS0KEgaz=UlhY$l&TbdtK ziZBgv#aISXnTU?NLr@rnPAr|v^>j(I8kNTp$CG*a!)JJVIt??wO(nQWqoTFj1U( zOo1Uu1HB}JAO0yc2WXCz2s)f(anTS&5jF%y(B1-R1#W_lq!=Bzo&vI)G!o8y`cXJCqy|=8mKWD=1d~f}@^)Ux}F~73x zHr6}4cKxK%({!TG$=XQIU(C(UGkrNx_jW0W9Ht9g?>*4aaWKhngN0#6 zPHrM!nzlVCePDTiOpeUu9XGlDJLiUF~ksS%;Hoe1S2gJ65`i&nw3;8 zCbs+SDE-P9+D=}KLND$AeiwEw-pzf@qx*Gd4WJvNmFAl9K0I;XI+D6yjhfzb@s1A| z$S)9GouIF?5LZ;|Nm`9vgglAmaC>B#=M$oL4_mxtCg(E7l4VhKE3-SH{l#`huUgJ{vl z;=-QmLDgjE#a>G56_j9JYol|I(>)@K+!i|CC_2T(we55YAdOb+kpP25=k42?HQN|` zcBQIq3ol4b6iZ{QoQRf3g-0|#nhQIxMEz?YEi4bIwN?*4E)f+IoI?XB56 zpU6+Dv?3sC7cMUAY%E!;5#RHSf6$Yq#>JU4(^wtqEUok~a3s@V za{s+6p-jH`id6v1>EqXF>kk|8p=}=7N5|#j*GpLD6fC{HQVM?@kzXu zdlNoCx@UddJ`$XCUNpNs5k#i=a%tzyW3Q%KlLEh;+S%;X>Cv3BCUPk8x6$0u@1nDj z_OJkF6)^Wd+Rsq->W~S0xbG>lCew+DjxHe|)BsIizkM9vaJdfG;wwjJ4l6)F!47ANq^aJ^t zF~L#)lb-z+SMTTXo#?`&cqS&-GFHq-h+4+WdmZ#sKKu?YrNr)MrOVi;1yxKY0796& zOQmptENMPDIG&Se2_$~LpZjMS3HMvXy6BEdb6k2a87my=Ov&yB`G)?F2)4i%9Zw?m z>02j+Y|xHISu*-n-fhVxExH>%#!=*GfwLqF&A3Y;TavM27|D20b15S5h(S9NQy2f-04JKc-2PZ{7H_jch<5gYQOEc$+nmJRL#TBp2kQ@ zdtbv&7iEYayPBazO~ws?OHAZj-?YeCAiFQ}yYUEw4HvhXs@l2t#Ui+!FNQBdjVE>K z1K0=nQ%6w3*$*sxDz?83x~%Umr$_GLH`a??cPc9S+84K<-)K@h96QLlq~!w!nKsk8 zoZJ-?>*~j&#Fl>@IY+*qt>tVcRYOl2x4`u5GO^_{HHJ668uVaeV}oCwQSd+qeE{J) zlhiHi-uH4h5&pSgz_O;|?T7=+PLdOLsLWDKru}>VUoF(Jd6(=vHNJcqH1kB?aY;KK zlPx2FG^$==^OY716B!lA;6uW+w}k(^Uzch|xs(V)(sg3*NCgooK*u>qLJrd$x+^vK z%tsR{-we)WGUQHxYJCR>7}tnd$;&W7_3k(@5U#gNcOsXPPoe`Mv>91h|22j(a;Cb# z{DJ}Xp58;-z`z+zXD}V{=l+~Oo<%Cb&*eH9#xMEKdy(|9yE^}UGXZ;UM)hP4@dRU+ zQHm?Yc|<90&ylC4^yMod{B2bB);4S8fyKQ3nroz(w%{2e4z{ zpAnat1$L%$%JDB0?p=B-lrVcMoS1nfFJyBcpr??Q%u?m%WjjX&MpM3(0}kG(P~$i6 z**#Qp>3grnMtpWVHk%Bsb@EOsiOTX_?s$HB{j2J^#*%N6`Ff+TWZZ&!eKe4Zs=_s1D@yl_)?jbT zeR9?028#SDf6NtB`bfgHqvD>Yu7pA*tG~;3eGQ691du*wwc^TcQW-3ogp9`YT?~z= zJ%hGTy(9%11mFrSq;^Yr>f;~ju?Wc7{Ft>r;b8u4%E&nC%TiGM-xn^B&(&CeeE5r8 zdHV3ig1x3+*HO|4oTub^{yPCd*Nwi%2=0%lr`54vPcx3_3GigFVxdg^_Szhq`^}X? z2cA+wRi2iVhj!#v`Rcij3j8tW^3lOjHV(qgaU2)WdBi?vGU?&T$Cx^W9nT8+>VLPN zllxU@U@iOKm}11+4XAxJ16Af!5_YP!qvtfWaB1wo{(=?|?OC73@|43?*yT!^%s?`{!xArFRkxskU=il!w*4UA#J#foWQb z6{9G4J-Cxz5YIdSsUA7V0VG1*YkM~H#kk6TT;MOWn&oT!XL`4Jd*T#{21q|?05)z% z5YW_j5PLSZZx+Wx>*h`e6DRir4Gr&u(ZhBqk2*prr|cH}ldG-<;ex*a1Gpje-n4v7 z7yR!%NW0BHwGzvDl;Jhjry0+w#%I?G z_9R{(dm0utmltoJ%9$B=lF*xf=(W8CU4Y>89b4XWcT&)EY)O(kOSu{^#eHB>g(T&Z zQ9fnmH~XedF18EJk0o_de9EE&x>0s|e&%oOw9;@&q9tV@g?#J765& zYt)3k8$R-=eUv5NW6a`gLIHa`9r)4utS>L}q5|}xJ?;`0pz+*gn?G6XTRmz!@xHhs zTy*wiFEn!fU<+1jPx6uuWK5G#%K9YK)^iy@>br5A>vn}~msgUE6iveYz@j}XFxo9* z_i*L!U!HR!@TXjqMSiGhy4+kfpjeUsw>CHZ3_tZZ3ndWN&&P)&xBsN)sw=5Y&1G?O za?dxmN`TtAF8>Bu^d5*@2!h3c&v&t#a_*tT?wLYuGg*{6290Rz5FaeT%kKdJzEwZN`g|9=sLWD!7hjqe4A8|_ydJ=M znUPh>!OI^~D%xLw0e+ffDMc8$sSJqt>4IZ#P72CscRh1Lii65YArx~kmuYE^l%fAm zxifZ1LkhY|eA7Y;X`DSES7)&EXYhghY!s|IVHy-N4M1w`;zk9D*}ClFf%#yMi&CV{ zV1JJ&yWEA)k^BM@21wkfK#(0Ma68@q)@_gOLDYKSTFgMBlu1+IVuza=)UgI(fDZI? z)L#bce`D$R6p5N1+6vW~kIg|^0&E2PoDR2!C8zis!;!IwtpWQ}mpGs-0+~IoF4mV| zU70vcEc6SAJ12E}f5lQ)qu#CyKES_eNHuId-{QB_FH=_;2i38jmQVcioyM77>ae1s zqEQqlt@N@$sH-m@_YMN*RqXYN!sQOhXVsSW_dgS5ODun^SW;Fkny}JR$Zc$SS;P0IQv2TEMIHr_#w7XbSoEX;yhcvoCq?H0m}&dJ~s3L zAFI?c95mFvJ&1&u)SJ&*^M=_x`z>p5$-PS><2S}wELTJCUDsQqB|PFtbAJ^BQ^iLw z#-`rN%AN@A^|=WHVk0RXi)hzE%NV|7-pOLCl z2}r==6RjbVu>zkSb?8FAMSpyIdu=szOz2L+B^9S-8Q<#^apXYgr%tA?1n%X>?8)#X zdk9(P{tJ)YXRG34ADkkzCKpvbQ#d9o`CnY3vPlssB(0`q!FG}jiKf$29mYKGO@Y%t z3O%mOl)x=UP1o^8eLvWJrb$UI^!BZ)K+rL_O8e#8=5*#a9NL3)@OE7sZd)G;GNo*z zB)MaxvZuqu@iK5@rji@1JImXeavWEos(j*1Mi&*41n;V}fyN}8Y44O@#et~S@J~U9 zyDR^{aMrzdOO_`n?onmn2V**4{}Rox%;MA08S9$W=VPTFo4tPcos6Dm(0)7_N-l7Y7j3R6H_hfsNEzePGKzG_#xFj*( z^1Ynn<<^_~c^6xKtBvbTm6omn{5H3VDu|~($6<%vwLR;{W)hL?$Q}|jVW>bt!L;q>=3KwyT?`wzfZeL|Kv6e&mTp8jj72X zj_!O|pI>hz&i|XwJqw--&qm1)2YC!D*2)-Wb=`tI;dn<|s*CHQxkUY@pZ$_xg`x&o z^ujx82n(%Q%sqZXGF7|Bx}0lDpR=EBY)j{cFVD`qUR1UHX{}1U*umcliqg*9nX@{m1aBWI~ z)ED;nr&PB=MiC9a5M1;lBHRe6O+!N~3H4c7QBJ#|GxY;as<`_hhJ%xW_U1RVCMm6| z5QOcLB1Fe0nUQ$*s}NW(PrZ2}k5|1<_lf%mHYwbi@3=}>h&0DoDY2{?qS;ibfbzRf zTE`zJ$FgB6U2MdDP3Jk^Zx3CwE?s}clEea%WAVq|_^D97wcXVSC4_1=o^`-Qn%!n@ znkywv7luUS;V*tSsUME2pDf;g7`}*#*tri9;pYG+;NsZ!gt(EEbnksS%6 z_K#TZ_q@C>z6x5zML|A(xm=b87gETN70!j_M?qj9nFAuE&%_;ZxUGJ&nFmf1N0BuR z4JKWR<%#w-X(lHg2rJ93=Oes5A0CbRNknd!RYk6@E^a$XtEs8AMEuDYO2qE?w{kp> zb6GZ=|Lj`q3SJlg^wry%>vsO6dr`jOr|^rlt^O=!G7gVXSz2(f&&+0jQB&%cL~4xW zq=r4IOZ5%xoW$^f0E4Ke9rj*I0P&m{v=(331Z-H51YTY?09S{>zRWxs^c>0=&d6*c zUAs2K{XseWy`u1ZD1zLmf<*rPh{9=H@wx9?zKq>jwCzn%x&W4P!&2L2JjCjrg}hw46Tq-c~RNdKYm%jEKAQJ0TiUndQVk9`ZT(L62%F zZie`@iaWQoNlaEw#6h4v#keHLB|6cUud2*#CKK&8ITC$Cv$tdOcU1|5-ApK)L5TK! z&G_mkZbm2BYtBAvwAfV3&-EtEwQip(e`MrqP4nLty(zW?TTW#e74{r>bQAV0T9P6j zLJ7Gh1gM={Lf3ps@?%IC8L-+>xl5-1iE;0oe5HcyF4(=$;Qdy$q6B~pAPmCQc#-Nh zrzWMJ&-VnRK7?LB-xzFZD9ye_p`)T+u=zi0XN8~9#_kBaaB_YTr?B`!OTige9?*-; zi!n|eOmDDx+Ly5ip{8Ecx}8c{s4A3?j+xRnXK;T_<31pu+wS)CO1eZRgqhyySWqSIG_T#M6m7pgdlsV0H z>-ysp|9tYylQpfAt*k}g7Vvd;U2o|u&aNos?(~qA^`To_C z=ylak@qnCygJHb(3t(|w^YJd;I6hkSpDF@)Ewgu1oZqfL;0ZgqA;CECOaCA_d6-Rk zsl9OO_H5f(&yKgc;_>hHvnMu@i#>1Ti|f=IBwF1a z5dV5M^^4FuIv=w6z4OExzke)bxB0ApS4EF`ONtE(cqre{h9If zDq`zF-xBrC8)peemA(){4@+k514FAiVrr+RaX<|(|JDRk#G{+cnc{3;!a^!vrqrbIUgpQ|?WJEQPM>wb{K4MqM;wSeNM(s>vcx+hyDcy!xP@}i(^lLFm6&hc?RbtZ8@3@VP|@3w!8l{- z;*CKV{3Y2BeYR_haI#e64ulZ1WL!*}Ecz;_Ay*|=>=|L4w|~T3qL&`z)uujy=Et*= z>3q%SUC6id(b|N7A{?zjN~Qe>B=C{3UGlg4CZnzkhQSmNC~uTThw{(lR#(YuUNJE~ z?Qdfl^}sgQbcI(dcJL_)`*M&TKZWnF->2L9Oy?s!7ew{26T!BFlle_QRv6MoG@aNC zs3geERw?#ge%#GzfnIsR*ZKFlERaQr0pwM!>AlgZ@3Rgspjwt)iy!a+k?m|kChUv^ z)Do$lZU?y>G4sv@qO^g`17FPY%w6kISYrF}7}f-{JLouUQsi+=Xds zAV;{8nivRM;-{o<0^GTl+@TCY0HrU`BOMp@!Zc7QK?{nK84wW>!D%7~MT@cbBt$gP z7)5t}E&TPE%!W{irp}P`R}MQbFL5${MbGJFteG}ANRVx2I4fL6&Tuv4i&(%q^2K}6 zZi*%Sa7t*wZ5VRGOfMjKslUDGEN2MB2zPuCZ>qH_&$@BH>aT~Fd>I|mW;~#Rzp)`& zV{PMam{PW!jXEcz{C*$?hy!k0#sK4FDhrv-u-j8At!q>cI+WO2$A&JkA`chcr0UPn zdgeELJ6gPd9(i2H6^;mjOeDt5-SG5dwK#ZU3GO4V^tKMPolC(CD&YJx8CM|E*W=%q zF`QoJB3a&h0vxm#yFyKqoqU@m#`n$S6sJ~{2LFYzYT2p0cVAVKy_Xi`AjV#hI5p_U z;qCe1bDvX8(wDb!u@bPS3~;mt6BnG>IL5c#Uhg2aMkXQ3x%%bhPFQxRv348@8CURA zgr|NDuU`Kvcwc6to(Non1WiH9V5DC37)Wmw{{w!)lJ+U0ec3L_=1WFF?)WCM+vwvx z?%L6DO8bA4%8`Z}k6}4$ETTg9D~ENVTx0aqsVtuQlTsypnU#+2iN27`89%jdUsRa6 z*WDjKu8EKtC52v4Z-{N1!-71 z;-_}i51TH!nc7ZVsg<)wo&D6TnxCBI2c384ot4$q>Y-PwGsTyyY+F)8PF4$hr%Vq(!<8;oattZKqRsy=nwCoQ&2!(cdu=~jz=d@ zq$`Ne&P|IJ47<+u6*PoMnxwbZ6z_CDp2mKvnIQ~qS7vW8mEkJqBmV_irxeEWuQhLQ z^YAd~Wrr57;U~7{g6mcqucXT(e}~o5Mh{&19J_Vc+!s!Z$UgB85P9_CfzOM^O7RpC zztHAKDTKt9zQgRQncy&$>V~KG~?N=iq+71Fwy)d5k=?!VOkJKoPv)H9I)hw~*v=NKm2C!%(g?#XTWdkmIPW9IUz5?E~r4L+0S>m0Z!r0fkD>u_7)tPMZevWWDjAcM)$PZ{3^f zS})9n$`&G|^GIiXqu&Oc{i;~sR8!6~kNF~+o#{@zX6#$#%b3k7?o%U6I9WEp{)p)mG&Ao9SKHy`(lt6&WLs|i_ktsA2_}wu4BJO}gJdR5Wy@F=*`Ww00ZB_TMvGbe- zt{uatBN;?1mSjgKEtFLMEyi~drubKDh`>oJer@G#Jf)~6n9^$Y{!Ma@XXo?zz-0A- zhL-7zhCQ8=cAKB+ylke55IrIIgt+UDxa~K z8Mo73a)Ls@$(WT{3I4>M1Q4>HQV0mK(F)m-nhx?ty^>B`-ag4YJ&4?GYdssyJ9nQy zC)aOJ>*(3IVv(ka7V@8|+Z zp9xI_AQ+-xLH_acT81=UC(8)MPjR8xKmqh&9e9ds4DF|4BrCa@1Vq5~p|_{F2r-xv z%+e+ZCo+Nh$@uNi@v2-UN&nFU$eE=)_%gMt{Jd<; zU(;r}Abc3e0;3|MZ!{e~EA)1sFQZfm6(I(+i+oft%9){|^s+xiXmnM?pF0Rw&fcNB zI@%CtOIGJn4&OD?+b+3&(gS3S_3juxJq5=hQU%b+xHB1vFK77(cWMPgyI{25RxHPP@oxNKGe?sgRJw+9HjeN|=2 zIu6xBb~TC&@OSx;&P@24+lTs{J|%d~v;_aL^A0t>FTCea`#{X5b7FaaqDOI$i?^Vx z*7SL&QgS@`vuNxfJ&Y?E%u_M!h#HFk11n||d3odR=UAA4Gt?m;lS*mR>w63N%W!@) zkQs&oQ{4nI8S}DMVq&$<*boWIR_=L+ouZv%j7WG&w6dm&y_gQ}RjNfLv^%Nxj!oXZ zJkv=OS3zf^S0moe-4VU`Vg%x6&S2B~L5~9U^SZ?Sx0OI7W+W?=Q4HF1CngX9O=>;;}z*Yj^JoNKgT+y1a{~NdEv-+4^Wp=jfz2=gsAf_!J$AdUe&K zS?>tPk85+m2TL8dqMb+S8rBIC^UXWE{((nphIMPht{Zk1k=sB2h!@$;gzm0*Oo$Hm z$6TA4Yl#RCUGXY*9cnhJtMvHY)0CPwxU4_qn`@rtt)|uYO zHF3&U3hwonK4Ch$^JLU(BmhN0m`YX8~^PKK3 zK6)ic-l*e&%XOfr0E77^leY=mMRlu zREf8yu0!c^+kzQ>z|CwXi(A%TGTe6l(^>J&T@h@@Aj z)z8bte=2F+K7Fo!vQW4_O+Fm%-Y8W9oq^e_t>@yWgC}zb4L6$)`<+yh%l_;h?k@ZI zj1?Ex1luoj6Y~tplp>Zk$EVZfFMf6E$B#POFvmYvjXY_*Yb4u~(}WTzi6U7>!U#3p zDHp#sjMHB2jP5wD%Gjw=Pf8HIfo0Tr^H_R%?tK3>hf;!0Ws|v#(cppZM_M z=d;nm9rVV?u(|ZlHjgxIda1Yqp?;i5;&;(2Q!~hM5J*~FPQi&}z;VQ6H(ANk0q3`$ zUe^$33LhwS91eqsrcjeqAoBn&`4AKvi-O+(n5Q9;5l7wYk%!8*O*?PWOWmQzb38mC zxe&N{`iAGue$RrZwwjXM>*`8J(WrbkuNXyfeuSU`YGw$`y%OM83%r)S3OKYrU=!h$ zJb#;g4}Q`qNT^?Qh*dsB^Q9Vh(!RG|u_Gh5h|-Sbqi^s@R@ZWacTiA;RicG=7ru2u z0m>wbGy;Hzt6vhh7{G=TXwA{Ih=+d@klpJ9>;vgRRN zpB8ur*#^@y=1&gWdCp!(9xvsc9%i>~S6G-OmtmBd^00t($xD!h)7RF@OW3NFl>HR5 z#E3w}mwIqR`^`k}Q&k|V!*Ucf{0Ds@_fh|kndC{kLZCIQw<;(WlUl-~d z85s_{3KJSd83X0LtyL9&Opn0R%l2K{4i`?;Pme0xsjFI!zvpC6o&zQRcvZ{McvGGC zC(nbri;8(V1@YIHglptE|Fa8?pqOE``GlAbpofNpiFeZ6eH$yaYaG?VKKJbtHdnPC zEHk!OBTo;`;{o6MooK>#zDS|DGxN*Z^+dQrZ$J{I7ToLNXH{fP66tQ3Qbj+oXOHT# zCOXT(aW~~{#aY9r#R)qn;0$oMyI9wHp5<=wxpX6BG5s%b6N7OhQIPTRqqv8kx~pUM zNi-1}(}V)kgk?M>%1>X1gcQlbf*l62v?5UrO_@ytGEtd{y!;}08n^YFVAfrntLE%vKUwh5Rrpvm^nsu&D^#Gxf^63qgic zL$VYMq$p|yawh{y$(q)66e_Uw{Dv)(Q8uykDsggD-ogJfi9|H0~B>nXtj*A3bC zgK)#X8AnlvBt)?sN(+MNf}?Sm`X-gjj%ExlprYcZjRlj1X8OQ*rw--`s`eoT~f)grBdbLwi9@TXQ#%mnZ(a#Ow+IQ;sDLP0fIB!3?b;ltV zM&G{3Nug)G0-}s!1SaxH$2JyJu7oBV&DiufnrZx)*4F=l6^Ak3sRt3h zj?ZcZTsa46UTPY^glTbEqoeBQg^~YI=M(d1%h^>8CjcTCyzz6+c*zP(WPzNl(uhY@ zE#iNFN#RkUHHj`x{G-rz{6PNVaOtGQFHFr{>{eZU=oyudZ*6l(c(M16?-U#I=-;2S z-r~{MqoZJ$s%C)x-f<({o5v%ybU5Did8zGu-fr29bEry=>cgR?8OJA%vaADjCXg$HwY;0WQZNNAD&75iIJ6?tb9)rQ=Zb^X;OIGq$RY z;imJPlN8b6?Br45#H9A?Ld}P#0e04JY$h%H>+7b@cjrbGyt&Lw`i{#aW*brd5kc~{ zd*Ru~6^+f!Qm5UcqfL|I^FL>gfB!zsi?|SM+vyn+VRdiGMri(C@sP6$BwWH9a?b$s zSf3MT`oQvOm~t2EW*(N3?b@8O>iiVv+zhujvv2NS|2aeDE1upq?DuP}?^fEB^(+}v z3_j^C9r)Fb?ghl;CqlIAO@%v-L*OJp^L9od zr(-|Hlwm^`V))@!4%22!B(ZOCioX!Eoa&ggJb}u|F2yxGy9rB#YPWv7@63|eF=V>t zhv#=o({+-CThC30tm4P3n*C4qpWm5jCUg7|N0t2LZ7dgDi<%&b4$trbUFYEAIN+UByOQM5jONDLl*-V<8QKSsZ(5Y> z^gUr-q<4(J+T}y-@L_#En6yuH6#c58(G}KNK`85_;@)wOl&^&Pm|-vLusQ&z8^jA;Wd9`B#CcqSpS^n9+T@Bo{m0&?d?Ue!WfJQ`_pcCh`K2D6n`` z%&?Td48!vGSm*#w^zZuYL|VJ4-|Q5c6C@}Cd$1lds3&jnLR-h|zoJLsrvNyev)T}x z!!lWN6;1sT-uE-b;Orn5HHFC=X(|}$jB2*43~EA0M^~qNh)W_7;v}P>;A)UdI>TkG zi44}$(MsZXV6#R}e0ef4NDqZUH7J6qd}fBY*qj(hduNAibU<|j)8b^z7CY)U**QI= zzR5CBuuF)4Gg+CJKN(HpWuEpYd;YKy^qviWDm`m5LGnXWJk+P!c?(Jh3M-A~q{g7A z6<+ucHYN^A$G{h0Gl|+1XJa-Vx9BPmLgO-@=4+xe_evFHG;}5hedqU*6Bm{_VsMSh zLHJr$N0Zbd94MUc#t2xslI-Ht8P!-`{{JS-7&{l?Jw*;Po!J&*=$Dxj4~_n0t5I3L zmCgO0GKu-KpX;_@_ZhPKb8h+3w*VVRqqQj8fV0j0*NYlR3efX;P9vu=aeYA^%Q&)( zU>Le2%^6XGb8t-ziGm^Z!7BL;S&(n;iTIz?S2dho4V*J-Jkz|^szc(Mo|>5yEj(WZCFFmlRe>>X zW5elH@^IXSa*T$Tq(y>+-(j>E3s2p4bN#I4=5lLiaoS$AsZj}i;Y#z+&{es8{WP}T zhWwsnF%s7R>;3xzT-VYsUSbiUv#9k!>Dy0y*+!NIKbpvXm712osb#D4@dcs!?VPGf z(qE&>s(`JX2O2aQLY5m`Q@%dOdx@j3o+;f)V-T6j*o|FKFse*0^k}eS^ynCvs{6IO zyuQzAJVCWDo2TK*;g-)#F1h9u!yjI`7_F4d!;zkDQCoNZFE;d8M_XAjP0pW_Sz~29 zNGY{Hd1}S9bn??0$<6;$I(FbA&}W@flf!@Y z@TNJzNUkcQ@#`_+v{hs1;>EnE3W@xH*V3npk33g+&kh9`fevKO!hd)1%<@N+^ccgy z6CiT#?Ch0wO*-8n_0T&RuT8a}<~>?1of!>Kq~^Tt-i5Qk&s>o8^x#{tSH@2kZ{ z^kPH~-G?J>nYJuLSeT5b(R*lCem>@IjD~D4V(wGFOAjxT%`a%53;yY@znCx(JOs}= zAM{MEHlANC4V*2lQ~gfIo+}=t?%Fdqx3A=LFf9-_Q@cMuIJonliuK-IvWEqXILtg& zglKFA9W1f$v7Nj_OmOwM?<{qBxCZAT8)4x$JCbZsLZH;FTqaBWL6Q601k7h{5LRquX_}1S%I5_rpo7;50m z0(>St6hoq9AE({A09=Iz$Rt(wVUHx&7*)$V>>BhalO6L>kNR4p-OM8UUe+v%5KhkY zJBqh~>lX|a53^EBKVtjW!SbuBN|wQ+sAd5=*;zG~yv&u?;p3(;$9x})=93ei*>UvGi^($ytuc{(eyi%IW3&$qDO0EA(x zyT&c-1w0Iv5Gie)WSzLT19|5Mapz-!yNqX@_4TKNnK&T$rIlLMfAYS6%hEU*_xamq z4se|w4fhrzvsEW@Yu#S38H*Zqqol8ZlfugJziGLM5OD3(L+ZiWrY5WZ*ozoF^6V2MH!rQVtNsDL43G9+`2 zQyq1Y_2lrpPYF|{q%ngg%7CEkyHFU1D^0S@<|Xd$3Jf7YcycF{EJPs#=G@f(+7kv= z6Ct%}Y1eu0TxTQm>^%RF%EM%1hzz9m)FYpSEg76o7MmuEUHg)NyC%xc^Z!}^+*^qh z)VnOfySko$xsqZ67PM1SeTK}FeJ%trmHDsv#At}n%Jm{@Q>%m9jDw;dK!Pt>Cj~?Q zJ|%Sb{S9xK+J3rnEsp2=bujfsx*x{?VL@|WlSZ2u9Fvyw4QnXVp*CXpnxoP3lfErF z>x%U6aEHaFtmW|rv0nX5$B#9_U~~>5Jm+@B>g%fT!=j5XS&<%9a-E@1!?Q3GX_r~p z>8LeeTXj!GlM7`j*T+Q{L~uM|H8^VskYWEKZESR%k)xUq6B@Ef}GNWQsF-?yQ15ivrmtwd4fhEpCF$bsy|nsyy|(h=t@wy<0mJHr`o{+W)j&m!#7`5&0fb=aEV^!Zo)G&W2`mlX7KU#X;Mp>2s{ zMK3;9yvWy-jgZ%w&<6~}k18=K?=GXgbo9z{L*(JXkxU6U*_obW{#b$4DwCVIfGC8V zw8i(=5&{6dVGp=4?@KfiRa;#&Mk^K-CrlquUDOoJyxu4HGCwnnj7rPwshvr-hYMDyXcyQOo!R)149&u+mD_?IFdY85Wjjm-$yy5x$mzqNa* zHs4JwY|mns=HU48>pKOlbD>VaX7fbjUa?cdx3L69ZPCb_S{csMy?v#VJ+XRo-~AFNxzYzWEtbhZ0; zhhxUTlN6{75xHb^8a@ikea3e^GOaZ@yT5YDb=j@L_zCi`xM~CYY2XO1+-Ro0)!0#n5MZYqGDNh z6wMzkKV%2FOON`No-SUZrq_6=`HLk1dhwe1fWzU;>3$&5Gw?j_neX=cvF9r!YH(K~ z)L>Ub!fpkuIF<5;5{j313J%6rn&sil@ABb3Qawo7{QoRxBBj^TU10PsyS(@SG8((-gO^()gkjySPvId=(~e zJ&zDq)ik{ygETerUj*GQZfkk5(d*OlzF@-5p zj2xZIJ0?<3nY&_`Sejym2BiLPSOZOACTmLTig)^>G$emyVgacmyLqo;bFVntbH@90 z$@2W*;IO+}XvL#aRyeN}_Z$9e6f`!is^-X0)j8Y;Y%<=P;4N?0b`f$<*1+AE!QUvR zgN|DM{>&gv-CvFs-Y54sEB%z+h3mdY7n|v__AT(N_V>k7Zx#c9A(v5uB^__C)z4)#(G{m^| zVBEddQHFgrx|#E_xeO(r%KF)?oc^uptH-7&9`lT(_dnTnQ%zIJ1OM$p3kqg`_t}W$a0GHJ-12788-KUw;rWX6O7V7vABl#GK61CVl*3^-alidW+g$JPpvU%K z7kAjCA0ne)htX+TLH@U?wr%OV`@FqS zR&#q(gM>?CeHWRI z%U?{uFJLRSwbhYO;I-Uppw!pQdWo>D<>j6B?PaxIsud*~Ch(yV0mvQuL+j~P9%I62o@dBO1_(REDkt~(U$*SU;w7uPQMCly6 zq%?FU4%iUWJqZOb35bOoS=x3u>p8f1hq@>M1IIjvKyIUeJ{ym8Omw1STmK80G_Q5;u&?D5Q&Z( z+DJpBevA+wi;$s>Haf^eHnegz*-_4-=+hkqZx27(I{6HdC;mN%oHfJYf=#wHJ{5JZ z?gH9HY^C{3WY@=3*N+C{aC!ztkBzC@M@Odn(=~zizOLX_Rh4o0eZ|1($K$07NR4W8 z#qw50D@ul^#vwuPjQaScWftHZ5Ov6(ZpAUE-NfcedpuDfaA!8|Y$}kXTz}k=UL#yT zl)Ez~3DHdqu=$;UDqq=7Bb~NPDU^Qsos9JM@$q*1N=lEG=r@|`@RGI=anfcBOJK9f`QVNQ%>tK1UJ*ut?193A_piN8~?K3Q~MEkXOB@v^;+0PR&%-ZP&&m^zs zCdA6XD8YdW+mB%3;ggCHdjsJP+T_dQ70%LDr=q(cVykY*ymslN5d#rRW#`86hSY~$ zw6-9djmpPCEKjIl>dbu=sgGCEJFEs%X16utkOSFn?t4bFl z63QCQ_hZlBB!RoIWLINQI#li7?DP`@qevPBr~23D&QAODpgeB9k*}&Qmq@#1-9wWW zI{Ipj%N#r!rl?h&SFD%%|2g0J!k)<>Ra0V7^s8Y1(`*p#9;MU~Lrkt}!U7Yl&Za!m z(I6^GiWfKT;U6=Iuy~SKyue}YP+L;6I@pohE=ckCu3p(w7=HTRD6 z1+!q`@cW6_hi^Ps(D;(o$hr3%YX-=9EldKRM(a}rloHM7SJ2O^OFq_QtqACdy5J=> zZq&z!8tWhLVwV%(zsK9WpHsp(n1PtS3F1>DWvza#A=551f{y*l(q}3fzURiOmgP49 zWl2z#$C|t#lY;Rke_mKuM@q%tsGp(_$U)|f(T^&TBnKxodfHTRo61a50d1Yl@Itp? zdbWt*Biu)5!Of2m%nvV;9z>w(vIU#pQ>;g!o22gx+WKJXmQ(*IGvupby%mEAvU8pd1`UKwGZgJyP>bQm)yoX4>o2u7&Fp~ z^u=&-1f3P@vZta|9anP>wtpjbVz2s|wjQ}mEBbi^tS&O79%jvq!>1-@UKsUeC@G&F z;05INtDcF7I+4s9zaciC)w~-Q`Bt%5A?iZiaK2{s)}ySvYU${>Hm!*7+vJr!v( zdk7C5QaTOBcOzM^XOsU;<|8d!O;6Z zSj=rtM>Aj4ry|CJk{+UfEvX^kD%@x|GVarPb10ECgBa&zOx|v9f9~Op}IDX>{pOc6WpIkjgxJX%kSE;;XxAF}hFuKd<} z^|61=TI1pPlc@n!ID4-JzBe^N*H!U?`}Kvu3pbRp$u zX@GNJpv?i1@za9R!Oznz{f)_*g>>+ENlCqZtB~pX!u%yM>mXO9JUR;28cgbb_hL9+O(tZu!Sug6)l9j%}wOE+m%!=rY_z7d-s-ZV&b+^`#b%~E5kDZ`_rYT zJ-)|I(D+gyqVhj@H<7QIAXf;F8`J6hau7+V1W z2txxsW`H{P1S~it)gb%=xyupQEA%ZyD%Ho%<*3o8@ptYO4Hpi7zC>tbVX7t z^|8<$)SHpA_Cz7d&3Bk|3GdWqspnLncY^4(cL(jLPRwKKTchBFXYO zB7hb1WnGtwJbTBG1t>nmXI=IhPY6H+KXat);WX)cUSE|CB%rzT*bCT~daMALz^|tH zP#vFYm9opTn1HK*ei6I_T8oZ579v24lyMC>($?C?7U=AbgMuLz&~hv}Or@`a{oD|! zL|wJ*gA5`u02zyW< znUy`GM`jp<&k|27tuQ=DHTqjy7=(Ho!RzLjB9IxkU0Iq{3wNq zS6E;En)Gm4LG3$I-4@}hQ=O>w^f9qh>}|=lUr3nEr@mx`3Df9y$pz_Ztn^FV5#!nB zKw(SZ=E$ixTRabN{vOw&i%?RBnwn!GX|vdmR%juNO?hQkP&6cepMy1W$-k5U4% z&8RzARGa9;@eUC@AqD~=xF`^lty1|7i!UY@whm&q40_+cxLv))rmp+GMS(>I%42&; zf*n(qYtJi`hLcZBaHJ1Q1_GzPzJekXS)?9OJyGUDj2H%D1X@437MA#As0i@X;dm*G z2_V25VcQ1`riPT&Eg!8?g7Slcimg&iATX_A1PLZ`HN~%8#8smYz#dB*_g`rZRxDt9 zaJa$_1k2#ThwWF7)sfeXHHCKSfvAX`;ENOhltGxjCLCcab@v7ltN%cv9j>oAeGD?w z9tmBQC%W|T?BMi^5_4Rieg6RbUvD4}2<(FuILcshx}%$& zo!9?Z%4S4&jbt{|Ha*5v|#PCfpygY^-ZODgw$n~POgwZGfWi{uL%N?hOhq7Eraa-4Y5uj}ENZ*ScMiZbmuVx3k`U5HlSy1WZt zfUBr}voB(_bB%z{?XgrrGF^AkA>*>IE3OBbRW z{LXggy$_uYr0h%D;5TWRcCsrEb_}eai-%A@6&-ltTPd3#`EKbpTFSZ!(eq&o)Ba)j zLrt#878N8K5nteLuG!7_5*IZb<$xapDG`i&`@`U6>yPQc%b#2ejrchSMn5j?3t=@a zKsgr@Nx`vxi9k^8&P;6qo!k|JIuEa=5!P&;hRoHAib6jtpI^_Nj8tm#(H;8L_CU7o zemGW7BWw$U%UXrJZ!wU`{L=NjNk6y;dNAH)cpU#m^ z4`&tjH`ZbXi0fO=&tg}Pm3_{vVKrGhaRZ{$lL`k1^REl~?~R$|{>a^&zIlJN@*Zd) z;_nMoy{)WY@tY<&I8IJay-ePoTRx#-%;0il;MCHdLDad+5PbQ4`G#k zj>3v+TL-gNEtG$gD+L5d;v$5(|7{*_*IYS?b!uQSIKyY$@v;ddZoinxxnUjd*>sv# zdq1)^d3(4sL+Q0p>X@61loB`Teu0iNccOgY8aDuFH5KHpOck>oKG?2eKQzd>r zU7Wpr_^%o7>Mm0I8#7Tt=d-qP0?7gdIdCViezA89#Q$qZ3G?!+zHRa4 zT}%5;`!`e1(rX)F8n@n{C_-D7`y(!Hz}7#&?RKsE*VCSSiU6+~40`nb!jHnW4HCz- z+sIz_|DvA{)|R&p4;RF3iBk^W%!>K1bfr#sK4Tw7W>~Xb_|c!7RB_w$dzIo#9HX+o zJO|y&VQ5R$biJp)?a3*P4j;e4;ap5qf?(BAmy@remvbpuz?LiEAD-)Eez4UxZwNKI|9SNou4aN% z0iaP~q9Ibnu>H8jH^a5k0gQVGn?_tT5rCRDRO39l4^mi)8I=xl_Qw#E;dE5b1$opi zQZrEAfopw^prCxFLUZ9aW%woWP4S>Bl$3OoOq5XPAFp%5Spg|O2v($$NfF9PtsCsZ zXUS;N$IkGM9s>rribda6kd@o@ytJ0@-RI4e4OBmN&vaHg-~ zeEcIdNeu$jD_3BK&0Xv;wan<#=XXL-56ikII z&pJYNR@w$}71Hvtj31!-!VO>&x=5HzOljAZK%Uani}uzjQ5f2Ll`-Y~INlZ`O4Tkz zT51$;(M9eSBlR#b_K4J+Wc4=h(iL@MDL}N({O?~RI?_f<8w1X#E6m%WhV2D~E4d~1 zz23u>5O-vu>p#BO&l!*Nz;02`-QC=mq}r!7B2F|TAlgz~JG7o@B1{MbgatDg$6|yK zBr1KnAh9SMPJ>yh)rBCGgZ%&zT1dcy8Ezej+p`YWA!jdLv$ zssSHaIBi{Djr2vC+#W7j#qM8iRRzS#M4Y<$Q_ z(wZC9LxF_SMs8z%RBGkLFBggSzLbt}OzB(1w+pw)+u>pdogb%B1GX-ucvOfOCQ}m> zI88V6XWv$?A;Y(S$%NZfTYqa4lK3F${#dF>!SG=!6he-~evlGGKAb5xwoJv{y9T!x zf?bE8-nhEm98UtB^(*_!#O3SZw)U52f@rA7Lz5=U(a_7NU_nD&z(8RI$TE6y<7Vta z2o_HF<1w@aF~puNfxK{0s$%x#X68Gq_Ltfdp+7+0DkOnVLLwD**%~bE8;m>PD;48Y zQ@NtetVGZdx!C*WU7-_)OB?b@{JAvFqP^_1LSaw>N96TZD@>y59>zd!%>DZSRl!_C zRoA76utuLwU8|I3j|ET)S{+R-TQ~ozmty>QROs(X?jBNI|_gB!NKDMZ|bXA z$+tO$s61LTcHg-+w&bghCMKVEH12W{2x1mf6HRLZ17g#)4g0M_k65Z3tH#=Q{v7jyV|jL zuNE5^AaQ!QbvTlFGPbZR_iA$bW!=6{`O<0)^__0}H!Fv@)8@I1k$&`b4an9vd+=Xm z?D)eI5-*#y?;LJLPo)=I_?~|oTK*d!sT>HfHpHQZ#}C_SNugh&55~r#ms{@NL}q~bY*tmXXQKycfa}w*$F9b!p}i=Kgu89+ zRbOxs`vEV|W;-#_w%ocQa~IX+Q8qX^F+)+)4l+|O2>+}~PeIKs`yu+5i?i43(Qckj z#O3y#?&$9Pt?1z_#&Xf#S+BWWd*1>6Z7>V%dcxK^xM)w4hQ>&W_K*UV#@LhCirXDL z-!h#2X;oIP^WI*J%?1W7BHjr1vp_mLz|T)<^9vqca2I)YtF1C0T_oTO!;(YHod=jb}^!P!J2hEoZnC8JD6yCmc)K$Bws>bQdj>b z9Bmp|t9*25&==8wk*ME4>Oa1(a6W%OPMBqjL4Klo?3avXl7{$?WOWV0sFp$lWL}m8 zW$&2ev^O&HvoOIMNYtpgEgk~H0a6vI@rxYIp3UeFsn3+q$Rqfc5^@s60d`RC%CE-F zk#vjm;eAHZGaKnI`O6CWH~9Fa)X?Htxb8O&vupq6GR{tHb+iFP_VnanZO!G1!H1h* zb;?IdHygy^R%&GN@R03kmknTI56S^30KrFjH4<0qJdQiW8jiKuZf!9r!;&&Atk%Qx`g6cFhHBYozsTAXK=JOX{zzOZ== z0MW7`N$Cb`)=M=Fj4-LZsCU-Ppu5iZFwby(_H8N}AD!1}E0D()KgQbz0RwXG6ssgK z5_f6$>ZTJPiAji$x&oRtzxF;dB)jZxY<9hGl@rIcwYZ2_Oc?xr_{nPEvBhr^g{r+|5wdM+4 zlH(jPe&+sJG`d1pYHVWq!I&)LtA^t<-?XbBxM6#aEiG*h>`~!E?awQ#za<(x{kpzz z_=R_|;drSzzEj8IWV~wnG7EH84Dow{1txVt0?GrRXfm+wBokorP+y?U!Ud(GdP6Xp z1QT_vFa}~jMkl3SCbOn_udN^o5&_}GKps?nb3l)kSQZsvQr|!@R`9Wre+~^$SOaf} zCqV)H)<~ar~jy$T`H5sFSEcLYxhDuXX-ti zp`-fHHZUy45ejm#hUR*#A>2lF+ezEjO6K2+Qwuyb^lrPSgu{WCtG7as>LDT;5`wyn zEMvCOgh6$O6ZB;bDT}}~f#6*NNy0BM8)$X=68){v|NHh?${i#$knXrKIv9&YFHac! zIwt=qf%ik{7c4#%jITFBOY4*LpO%bA_jbFC-6o1mj6F}HBVB@d@9!EttM#m19baEB zPEYSY1lE*(F#-Ib-I5{w&GZS!$we>SqrXc_mVvfcwWwHFh7&3<@`+djlLUF4*=FOL zv>&NS%f8m?VGFddBL*p1S;0pxYKda(NpIfExQk5GnTaMjK6p5c>YW?R7u4*^C*SZ<=chKGekwrO)9D%&X#LwwmkqlOH{Zg=0j`)>RT3Wle0Hd zT88IGNf$d&T->G~q5p-nd>7ciN*q6S#C6U;(EBMJ*0n&zD@~8=_X>lo0L&PJWYK~C z#SnLlT5BSUS3Y+$_K+iH5JH^^P5t!KBR{*K;O4LQvC#ahx+OP`l9uT%klw&TOVZLU zzBnL}UzqQLsZLAnme)M)102@uOV`5`lVvIYe3&;R#I+3r(SBk2TyEw@)?gXtW4A@Tr?`Z?78&+YZB`TK7V(Dx_ONRz+qZH}7b@#(o747kI( z+VaL)Wllw9<@4D&V&ad4jX{T_OLDImG`F4&u$?a2bv=FCx_(WaOVN98keD$%Y+S)m zUt3+Z8_!0JD#Y$<53m(RcQ2f6h;Cjgojy6sQ}#U`Kij%fWQ|Mbd;MRZIm+NEN-T_1 z^8ag4;UIv2vEaXOsh1tEYOv1O6W0I1q^ld++goxxerl>Rvp3_r=?42}TE#$&ZjZ*t zw_{0uryH}or$|iT-d1)AX>SE55`~B6Mu)#S8e}XD%^) z@K3gYK%DkKq)atxdNwlDc6-4zazd`EQ>Drnu%w#`Iw}FR!0Wb!wyV#o-SOTCq1kI^ zn~klLZM#_SwM05f>T-SH+|jh%X7=3B{k*)w!?BSLLjCD$*~_Z$O1^atAu|@zeXANz z7f;Xs$(`p7j-2(U$<7gBu+ib}9X$#Q4cQ)*(CJH&yR_ogo$X?nmt==?_1j7axiUQ1?WN4SJOZwX@o>f zW~l4$NX{gn%oR?#OLJF{CqxB=hsRiv$-w*mxQ=67y+FXCI5mv{H0AEaW6O7z|Ly)% zX=v%qf&c=a>4vz=4fUG0Ee1vyn#f&JqqC-b0Oq{Hw)Qg z!bELS@eqr$s6p%I|3>W110-vt@5DZ7^80JI@AU}LOHTLZ)}2n*16k+_EXi(S{=9ia z5EXhsx8(txs1Mjy;UpB~S0Pjtlj= z8+chHDxnk*SX_;Z+rd$q)2B}y9q>}8MR)UbEJsHQh}ltu-%f0IsW%o0ZGTtmspR$V z>iJ1rz@cq`wK0pf#(_j@3Vsf+?3Z64(y+psi#Fx#wyDACiUO{Nyi0!!5Z{*yoGS{ z=AS?iHgMjMO?Iidqyj(?PQMK6MW$lEECWDW;}VABi839_rYSZ59?a9faSKt zcoEZGg*vd=<$T<{kQ59zL4jBo1?I}c-~0K@pE3T)1}ipBh}v5uLk_i=dIKs6b;ERA z847G?t)mEsw}@C={J=Xf3syktQK=hh)HJM)kEm$;OG?EAIW9QhgmKE}Lrzan(D%Ko zV-A%MB3w6Cd`9*p!rtM%69d=T0@3wP*-)=Z8{H0-fKZw|IvQHT`3tF8u({#DvDbN5 zDk6J!aJG5+`I=!($s?gE$EzV+^faG^T{B8-w^Ll4C9lO{#WvsK)Dp386vv#S_9^f8 zoIEi3qllZ=ib}Dv?8xQ0*Vi>tl(w5oZaCbh2B8fBi2cL_a^fbZp8Ca4SxtzVx4Th= zg-R&*>0z0ni_MoWN3)c73dKw8k|Ar7m@krB1YfwoQ(_|eTGM2fW0fAEml&oJ(}$jF zZ}%CZ>zotkjF%dF@J2P<0Cd2IA(CZsD3D-E=^?2OL<=gN{d_1@f5^S36$>5QWuHyv zSd_`b-%h@MtvaMX{OdwxNT+YoBdq@DLC9_hG8CoO}~sUnE5 z`&$F+L-K*vdq+{@Aq)tCvsdlL6ZA*j9l7uep+g3H`@c0)8?N)E4IC@6y0Ta2gib!?7b?eBu5%8ErCXNt{awlO@{%@}n?eo6)hqnI>iA@;b!cumGk_Q` zFynnbm#o9k)_pu`CWMj*ZK3IwmIIId#zk| z{GYOga?|cD9r1URIQ_nTr>O8xqnFEX)VN*Ju{&#M@&*^Uk3~k-s~Yy-?@6G1C2Kho zLt7LcT})vpJQa5PEy?b$eXnQa)ks4LC#P00NvZy9I=fe_@hFotz8#%c$k(`IAogim zaolZ-vGLSu^qVLDT+CN~w&?a6lk=UM1A$)U91JV*EdkE;+7eF#cXQY*VujA90r9>1 z)lJkN6MG4EhUxmc!=F>F_~j*(wZ5VJ9m4tSY};qKc+rl)V!i&T#9U(V6zuUcp2J~QTnma zec!8kOziIZ?ieoCSyE6#o|7TMJ<;V;@uC}|WCBmz;LyG=M0~t9zQErJ_ajrPsj2gH z{)1h$Su^0k(P+QTRX$xgojD{#syb_U$tvB7Zt=B6^H9QocwyR`%a6=J4EX9$t-#27 zqw_`CX`-pc12q z20J(;Y5{wxxe&L2b&>5A%4t{)f~sk?=Vbs?7v)h}$0!-^Q+qDav>q zpsh(quLG;JNoy-opAx{RcGy^=gV@k-RV>HRgKEKN?t^0Ul&4w7*+8= zB8OQOa7vmLh|;Ll8UpB;9N9{3qqn0AqgM}ycm1ZmO7KCgI?J%Jrdcb78kFL|e-2QyfBAntWcsm!u*;lD}pbSmT zA?P;-l;Y}8RTj+$eYTi)OoiXRt=GIDIKBE3Gv36RTCv0da`*-K#2?Q6lyG)u`Qm>4^tCQ2_^jvS_ zdE@Ez;L6o{&z3mEo!_ITNw-W{2a7?CQwSmRxb(x6Q1D+mnTV;ZRGzkH8(nLq_yvhx z(;(bOb^sm(t9lH#!-4~-ml0OzprG>Wpqg2s@$D3r%%fKf)m7EM^Fb8QmgxBe`U?SD_R4AWp;*_RMMFyc82>c`Ewst6 z(??))AAd{bKVUv?F#+g~_>t}e1yZy6uRiM-Aq}G0+U@JUTxG>Y1O+bf)mqj*5Z)$~ z1~H{r!D7C^HIV5BfM5vn5m3Df;0mY%Dg#8G%3AF$bu5k@l-&eZZ4<*f*T9WJrM6|1|6bF`&c&-fqqi}fwK;!jq3#mr{<#6(Lul@+-dRzgpO&~QeE z$UK^%!A#m|Pa!T&4y}84S!%#{h1MM{!9l5(pA=R)%BJPMsCAI#h}{#I!+zMFPNbUt ztf{BV41!X4LtHJr;%-y+b){k@S`pameAd?0E3&b-^MFhk>Kw(63I?s9Fv02`^0V4# zwkF<6)_ycC!Br97b^e`TNK}ip;vI&Du0KlcbI?!aVP!G*mYo zQp-~&@V1z)X--tTPrpm5!H82P?2t|h_pyQ^$7JwZTbo1D(Nf5TheFX92AZAI ze@FKcW`W^N5}x^Ezew(vjDK8H89!eQLtadT^exBx5e{y*cnw)lszZZc>8QQp44$lh zH#^9()V&T&FwSjW>NDjj_@`CoB85>E-1nlpq3JOQrSOmdf{O@kg)B%7#gLHIyz^;`Q^uLIP-O(i@W6VU=wjh7;!3qI>HJTW!{e#<61`z z$Gt+AW?&x+-~B$`rZ5D1S8grIH{m&R`e&-Q^S-aZV}O8EmdBEDrDy1@zOFpkYDaWv zx9;RKXoE7zffYTT+?~1|O*=3%rmU#=v}!8DZ~yx8QOfqvSpQef+sH>3XYKC5sYWeV zpO4sP#*XRFbR3*4OE@=}op<=^1S}pZyj(u{XM&$+Yy9_jD?Ph1+Np6{FZpk1_G!Qn zV!pNgpWo~4k!?oNC#P=483}&JeyKLf#XGUbp6Im2(Z=1@$DM+i?8=-1bAFXxb7zBF z&w-xw=AY+=bkx~@CjF}Ui7nN6tMuUtX$%$$O6;t&$8n+~kL7Sv?fre3S7I7>PQW?h zbmM+p&G4NZFI%Vc;{nc@31zP>FKj=jc~$f?0>l2<&(f2YGLf@s<+J|I!r|rR*Q4&y zy^l=gEEFfW63-&pw)dT$#EBX?)p_|Cc2$YWKAs8mk>Uz3`|WnsVQDI~UbSy8w2;r) zm`!z;@Z6YLLu(oBeK$=cCvrd;{sfh5J>!QmZ|wZBnj&%xR3^n+@%t00K_rKat;5+U1yy&1qEqw zh4$$X0l?)?(_&t%(5 zhVBc7s`^o&g`LTP-xXAsVdjG#bM`4raUsPfl@G%+&fbh#1ir8JoP}^;@$rAiB#V9* zSkck4qc@ppf78&A`#>@+f2c5WJ{1?VB;%x{V`h^65psbl{Hm^?)dd^Kj~0Lp^4HP) zbr;HdNiC=^X@BRvYAn|lHij1<+!%#7&vjZE1|H;g?fw2^!9XLSY4TN8Hk_F@35&ttJ-&+U4eqKJwMrt)@OQ za=mN6hR3#=Lw)lEB9DE2=PCpj@naU}tLFf4^dk0B84WE3{S6N$I;(c{L-WwQ^zvz4 zR&Kfo@f`o2T#c{>+v=Kz>gw;Q#S{HpeycQr+l^gELu)X|js-1otNxt@^#{{Yedwz+o>{eNE9SWk2gf@u-3=*vA zceiO$KUB#UeS(1~L|B;(5QRgy9o`shX=^a^*gis}mGgygS3zOiX~Eo}45hGhTcTH_ zy~J=1>|+&RG;9iTWPC1(gChkQtg=r9l+pho9Kg?D#jN!TD0EFN9oR9cK#!{pu47k_ z97Elb1j?vo1bYaow{m;i!vB$()rvJ2*zY}JvAUU;a4R$l0>(8Ny@<~Au$M5}JnN+6 z1~w$IZeO*j37pr^)L#+|`Iy7G5d!LzdhZjmF}H~tH*!++Db&@GhUux~D_C3)>j#4# zMEmbfxW@3YT37?=Zuwn;`DiN2oe=YT-+yxDSc!u7-%;U!&b`pn`iID*-eKC$t4v+f zZgq{y>$L&08KlSH889x=c((Eg-~R6ieb$|)(=j(Yw)HvR!|{C6&do<&aq{XYs{BO_ z2sB`1lvlbzd6e|{?vTmoBNNyip~c~svS~R9Krz+xv*4v(St2j;p<<@U*4u`>7XVXI z0lPkJkYvdmT+_h@<+gcKV)HF`9RowEKP-1L?Nc+6EGn>9vusdl5(4ms9sidfl{$F6 zuEh#!s;N+s>=a(1^YtmQHj>T0(kkTd(=mK~T_CmXGLNnix3L;CQy~j)es1qw1(43;G(V?My;H-4pnzl~hz4Z=ejnSM%Fa%gAl-S_`eGo`4cY0-wbm|vs`(-a@JArDm0JVA0Bb&pGF@hGgEKsQzj`%9fYK1Oo}J#5F84A8 zg*2m7hRUYhM&)oT_ie-}!KC^!HIo)n(1 zWt=Q}iOXL#^5-gD?7zeJ$Jr1BQ`e-FF81#A<6BWf0e2c7a>^8|^KGB)?pB!IFfvI3 zXw*@e)BDL%e-7tP8y*&7q1AOYdUN5SdM+D7V=I?BJF|QAD_3RH-$n+>M{PZOy9J5^ zDZYJSxp~=os#tESzV)JWfK$k$KrBn|bny}2Ww_UZq4 zI`4R@|2OX2E90E9BOKo{B4nOqlaig2Bw0C1_B!^ClUb2MIKiQmK~CSCT3w@= z?@yML5}~TKC@^w;E|I;y;Tv>5w8q*{wKDy_D!*GENZJ!wsIE~5A~&a}w*%O0j;Gg` zpWQlI#xuFPm?Z6y{p@sif^+CENf9@gOyb7tR|t&9ua9t>RImJoOjpI$W@u zl(AG!*DaYnE$KwzT$Gz01?*j5xt4{xF(SXFm;DPHRjACJEGxbbnhQKCf0?gFAvza!T?4;g9Q<1WXx)I@8uZp+7H($Sv* z3Rx?h$4QLk6QX2jFb$v9Il3M{nAJcQK!6)HdKw|*4YB&>gx(o z4A&$hxRWbF!CftBTHy1Xnp(~)rX{OYs8Qs$AnT}dMT?`pi0fUr zgD_%leg3diJ{8K)8$zlTF;MgtIB|qQ~gcms;1;LM|LHn$-M7t{f75f+99Z4nALy% zpBBIfN-5pmuSx}FqZ5dY+&fk5CgI`}SV%&1KOLJ72G7S@RxE3^V?C7+aV(M{%sf<& zLcT#L*4y3@HO7*+=@`6eDhj6FNS82;${R?Omx0*{a&MnBd3^bNc*=KcLWwOJ7Q1Rw z{iI|Wko&AHz{oV$Zz0A-Dc~&hO+%SWI&qTlV9B%T#ZeLvIxfc8O_53t|31%g`oh;t z5=c%|(1_sk@TrifSx?3;Is(%N2rH9pSEVY{2WF>rGMi)%IY|gqv!nmu3HXf%7@>ut zFwk*ag;_bKae+1E+~7qhV>^`;V|&G+O^-Oft@su&65kbBas-1{SY9P%s`WaW?3;KM zBPd^Ov{2AhRyg7-9R;k+>9C^a=+HFl@627vp<8h2cGW)@jX;f*lqP=`qhhB>7d8(r zZK>pW+2rKXkZLOHZboTJK_&ru5Ff)2KNF|C1fQ3^C^m)5- ztBK6QZy6?-mQe&m%-#s$hQA2_gzp}Fy9q=3Y?4R7PX?&vp;hF=D^24m6QN?{$Sd#se!4@V#}S{*CcxYZ!bJ(B-(dUxJc zhI5`(>-kuaWYK0u77yPB2Ji6ou^2ndCfU;euoLKJPA6%zW4qcFg|sJ+hwFW3o*m7e z4sBO33l!beFBXn*P=E>b|G`Z2^j#G(8ddC99G|MA0;-{#-Md?9mbLcn~%anNcLle%;tcCWjF{t7I@Z%E4iWfb(%OiBPV|Vwgl@ zyA=$ketsR;%j5pNZs6AI@EUAh?9_BUp+>zI8NIB;I7;PY2=2{KZkU1#;ksVy_q1va zUWRL>K)?pAnTrXlv~kfHuXr+}1nRnz2nDQYR!QpDUiIUGjMHa2vL-v#I zW`9?OARmR(nZrGm!^wQx?jMQjO1w-{LGEtl^Xmu8p11tmtEh+uks-zAVy4NTT%9w2 z`IKK9zif}1JUl3lCQFdWB6sSw^xwG<)!x=HctfSJIm=RI<11bB6ZsfZ10oM|FGdeV zFsGX-Ke^lzK(gALIvj3c;+a(RCC*S*1$emOOGi|^B;i-yXX8eu0s;=_ZT23NtH|%} zcPDTRvX`WK=+K3W$iGR~+4v$enr@JHGkE4~JBP9L{CI=ZBNAm(hvEhS&Kv?oIym~bkVdTE z(l8t$Qv|$two?~YO~kE{{30NwA{NMTBPiN7siYqujO>x1sRN3b-^D|$w&OA)_E00Q z)eO~YM=)f91`^k|EKkQ$g3hj&vkyA^7$f#Oa59cuSnp~Ul zJeel;T$UgNuf1QQ8O)TrZEfGP%5D12T9Q1JiafF+QkDwBslg<^yPhC4nY}eL?l<|zc9Lbt=8t%IHq@=D;6g;95W^ z+nd8LDT+ZIGdhHP_5Q;JPhW+oX=>WG+k74_QOyrO%jy~pQIHDT(6C=gcfUTZ< z%Tt$gHH*k^iiNj|z6E@B!+LRPeiVzgwkVc(8n6+^@id@Wv>iDl#$KX`(vS4|>YP4Y z55Il;QTeD;!JdOsi;uUorO1lwtyNuV(Ua7bL1a(7zG_gSMoyabjF2AK^p+ICrfs^pr%FE@DZCwLGec% zuyyCo2m22mxW|Y~S3ipqKi2I6?dKH5v-=1wtxhsZ#=6eL(oL5b1I z6D3)>jveD`{YI#^t4b^x@JCSu?(JCY9P zyBSUgx9@{v;7k2?;U&=z3b8cENIU6(Ezxx2n^hT?rUAC9ztT)cWM3)l)@H^f&}3G9 z%n-MaV9if^E&AQ2PG)_5{`qYl1tI;9n{%#`wf;-TJqiaWym$n%jOp-^kz@=!tE0Rmc$)xzO0|%P5uz3#77^ z`5@MFCz@{etzNhtNc-%s(2WJpYAj5W^W8NSKG<;p~BY# zs9z_2f1LsK)|AXokYU2IUZwjiq?OSwB4xAAdKK}?&Nz<_O-b2y(dj;r3kigTspdI7 zznme-6aJ&x3SId$zjvPO&YRruD>3LOvb0Qch2`9E&61PhDY9+4w$BehL%&dtT*WUe%v^m`p^uy%iIqBi6r;bg zByvGaI@^}Zs{@o|t3E{R&nSNFW7aIrm0SHqv_6CNS1+4usm7Llq$|ZNB<=uJXrX;! zdjra_HqDmi4&8?gphRF@O?Pw}x-p7TvlsFCZ@9973JjJLO_!56Vt37TXxPWqIy9X0{tPla z-CA|HYNX5H#XN#JYbxpPq5h9Yw_Anui?A8EwI1GW3T9jvJu}@ql4Cv=1Sk|SGk2Mm zoK=WwzZXw0%H{Og(<1Br`C$`iI44<aBpG3F6YR-Ds#1s`0#+(0MvP=T_l3d$hr8IksGf256OaM zF@xj%pG~xbeoueKPF|&*IXve3WYO7}LG%8771Bu4(q^9eC{!>RYVRbWEXh5`6CPdJ z0UlcrAFnWvyfdzHbkM^WbR0Ex)E1R}yY7k8Sdv~Qa0m>sD?UVgWeIf@5h92F_J!UP zA)oYTgAS*@1FcwXu;12E49e2ihctsLc-a6(G>|C!Qo0 zTAp`pp7Na^to{5@wRJG-7ko?hkIaUTOlhxr=JhaBFSEOpuFBQzqlt@gf z-2QW1bM_647)+ZZ8Gt+8h(~o^n#)g^KO_pysmSp9x0{=W{)Y%U+)vWzsQl9Cr~yvm zET&~oMPjK+4NI;873M}37E9mL_oh#;Fk=S_0Qa&`NPF&Q4v5Xg zbpHHlJuWBJHSDmn*0MJqygN`6JYyd;dqHAi>c3trdr*JR_S@)!j0e%M*+!243To|Y z0G>~)qd3f|C%%^%NrOg%+&XgGZe=0<8j~O@X~t(!8RAnEm4P(UPy{qWTzYQAy-vOM zDg}17=>b&Q9Y=#_q{OQ)NF$Tu#G%&rTU+~q-(%|vv@cn_PrS8~>l$pLGDAx&6 zE0ycJxT-kMK4zId}m3mQ0{bL1_SP}YEPFuO$x&mgVRy%kx*0$ott*y{U zqT&9ec7wjkS`YX6CYJ^Uh6zQUO#`9C9v{O|EvVd@-nbX;cv=G*uyq4qexkS#_kal0 zN1Fq0eDzL-ppQ-7W=~qPkQPYNq_ma%ASNkjZwQezF^qa(V%WXMRKk{fBnG=U|#%fB})Y57*~yBVsO4$bwpBJJrM zT9(K?x)0yue|+gclT6rfpQS^fyFY$Sxk~3J=n64vJId|yhNq|gxhdK1A1xA#e_?%Z z!YVS9&YCd_VnyzuJSU(*Ma#v=Q@k+CC1v#RH>KR=e?Bg%qq}m^ArAi1F(OQ~l)Yg9 zgP+HLmEFU*H}HwP6M{YHw))=Ub|UB8&mMYzTN7XJNqIemKlTb%L%;TRU)SetJ<1a` zE3;3?erjRCq2;@@t{WvQ1yf&#b}}w)UqRHDnU%?5x_sr~W3*S3(5gson|Q6&hf%cJg+o6V zY^3@1BEw6Y&0H2S1zT4*H&{X>vNF7+0?&s$mJBa$ZEObq{dS$D`RLo}wJw*Stsa{y zXAI`&wAF~5RA&ti$9VhblF7^9_!m?(ChOzQ*2= zdnwzdpg2|%{i7hL>c!FU9h0?s_ds^*my$&iDQky*fh3>c+rpO39tylkQ$EM1%HFKQ z?tXbN<%sEU5>CvvKtI!Cl6L8L@g+8n-E%=koVu4mRlD-}h~L!tE|dQioMB<4av^r< z;o!T+$!<0?-|H%Dc_bsIOP(yjA|gWCAU3*p`Ax40)X|}>AT)~n|2-3j2eiz4yYirs;6^Lbl&VdB9#(wx6rP>bp-FQF{e|B%0C_ zi@ioy#br%H`Cs*~yQQtF2h%^tU4XPF+ z$eUm(=aGeMJDg1*Q@976^llHJPR*uSCQ`aG%3nJATh_df4VDCK<%|&_?2zXYuS0{Z z`o11-^_(AS2k*C>$Echn%1@buSnSWjHPplgsNGisD~%7_p&f`w0UBvEoqh z2eHB=k2@N%YMSIwXEdET(eX8%I-OJ`KkWP09IOC{`Wo$*eewVSorw$qP82OFSJI0I zga!|Hp9&J+>Eh^F@6;h?TJq+#Xc|$@Hh@9!7WhVXU$XiyV2N*UNg-a7eUm);k!@+A zu{)YIH42pU1hJtXxMKG@sxTF7>U$PQuKEgz~}?J>*abDN@F} zx(0ZTnwF*(;;Ov|3aYwGqX5Y2&WqFXst{LNwc3I_>};)KZH#DbS}>KQyu3V$9Lff* z2FYWYpZ1XXFghX#JFBOztqZqocY_+$(V(s36=5O#(~cm0^YK4KJSbfS=6OVCBn*wF zB!X83U~|b)OX*~=kO^1RMCMD_HzpLVCKWmDlRp<*2?Md&ZY1#Xt0BS}!k)|x($}JE z6^V<@k3VfhqHB)>l#l;(D|=U}TpxbY_v|S<2s;z#f~e!`B^RX(P7bb~B?AG=8USW+ZD#{r55~U>(;+3}~*Arq$M@W+S(Ox($lJ zf3esa;_;bPRqfBzjo#f1Oi+CBA4oX!FjiO15q1^23UFAQ^r2GF3;mL|_utq5M^$Z{ zM|cyQVaN%AOJg+7mmFZ)yV{t#@NtlhNC zjNkV!{fpw`{4X_3{Q^|yZVtbp8a??%P08h4O3GKs;+G%YSTR2$kLsa9U>TU^`z3$u zec7ld)cQUc%`L6>zNCR3imd#=x9m?Py&07&W|OKf+&7RYH1`95f2E2=bjD;wKG)ng z`~2b_zTxSjM*&l^>yksAvgIRvFAEOEhK{?4cX4Hc_Py`01$>Tmz3{qm$#{{4CiBAI zvdk9U0XWYvlilkh*L&Yp=4EIw(NMn7ldF#(u55VBuEi+jiNR^@D4dL_95$UFwj65v zlQ!X+gNlg5t#FjR5UEz`0>#95+Ixh8Whr}|{M&aq>aIphzT?d;PgE7s3@iy#zH2Lo zx0Cn2TWdt!{% z_>KFyH?HjzK%tkrA$$8csz( zk2mt@q7rTTkETbq5mPG4{v)h*Ak^$w(G(L@^_Z`}FtLDZoajDO-2351pBa~?N>D&0 zF*5u1txKPqr^sA_UC)LGgHPI4es=opG_hnmj>Rp^Sjh$Z_`=Iq<>Q$r>sFPwSNqOq z$^+p=XI16FYioe;&>8AH(Rg%p+0IBzf}?NY@7w*26sK`en!CiWPO|QOLBKkk_<6aL{mM{?e<+{pm4zc zY4D0^%hqf8r%g>Q(v*rI#0K`)u!m$o5MUyEv zyfJq=9;GNmyOYqe|EuX(LK>4})%8rLCa27rnSz}Ak7^`M*|I64l3kDFEad(*kJJ!V zGBBd$eOBG54O8Gqsg=xh_0o#{&>?vfWBt1NV_DHl@I|e3f}^Yy!n^ZtK|}--x!fDI zEhx$)H$+6CR4q4*oR7=T_|E&J=Zc!HLc*d&mC}VyW}kZQ81`a=|ISVYt@(qU<#|u` z>2lLfrvqnXQe~0j3X>X$>AD>o?!eh4wX}|e+XJ02^#>5YQPV$>c{z{afT^{A!a`G3 z)0K8&g3wQ>6Mz9Ic~E=*gc$p%W=GpV#!J{NF-#%I&F%0n!QArrSD|GCYRTpFtL1U; z)WKSgluAiX<=()0~pJX7fSV$Ga=_kAs7W*{7@~pY7$9DzB;2p{e8c zsq^q)5BG`^tm07p`*LYa6XyN#!Z$MqOkm%52-zlDk2g{fYA^|SlbQ{RHGVLnR1 ziHmuDUmur`mldx)Vx3cXgbVTbB-&SB7Va?aJfVjmPTo2^DI~UdljcuZvi~E2f`}8+ z%PxI=wC!KGgMa3N5{fg|s6()-$+ANG+9junhKQ?(0Z(;l0d`PR-bg2_8EUceNLQ~$ zi$hHeAGv(j$93GLE0X+g!c~~T8(BN#^@SH1D+s?t+0f9T+FP5i6Z=Kn^a9TWJ++tC z&~&_NZ>fCgLvSg0|C>pQe>y%y)Q(=??2_OMki-W0$OjRKtCePc&VMKRT?QwuP1^@G znDgC`){1#|H61DeDs@$BIeVGEXjQ}|Z!2a7jz%Bdara|6HwHo7oKUFfAFB&8-{=)g zp4^uV3H?T9yX>Z&gv~4CqJ6S_Yb-wJ!^Edi?k{53qir4mPqQJb+f64&-9Eh% zZgobx*g1u+o9v1nzrO#tM1j@ip13PGKn0cKb&_YcmBRe`J^$AE17D<@SRa~hFCr5@ z1jn$6NHeltm8!&7;B%sn{pz?QgU+|!nAd#o@*6n2ksB7arxi$RoAo~}!1W%>(Mpg5?Nx$AIm4#c0`v|&g@&xr%p}JPiMkYsG1(T5Z7f`f_Ggv&y-qc zau`)riC6lsWLxejBR}#N!EU_j*{KdBt%^BVbUrE}>aAAuqPz?8eU~Pg+lTD!%X!v= zX5X7*aKGIj9MW>EDQX|vs^~5~$Vu(5A6QHX+A2sII14x<4s||F!hg6u^~DRm(e1X} zuz(cLn@rcdwnH)VK&a5)%Xg9)DfdB!kVzcTQYjEJZO`9{ktr3FS@3))Kb>W47BS>& zThWp4aK&9`GH%XKp#gP#wj(sSIMj2WR#BrGOlMhZpOj-O&pw(uXHO{Uiv*L7Hn`fih+waZsj17U|=F482hYWwW=MoW$AQrXJ(6ThSH7Y^k z9M?j6nIKUf!l&Zz=H;dAa*bARhtQosT))!TD1Y8#cgzROjA!d55`jM6+bUSpONkfS5i{`f6j_b_P6{}Hvw^hzp z35hA*1%1D#l+pv2X0&q2T_07iT^o^F{W&?Y?agzvFjk4M!`BVI<*%#;VJ0a9Zx)A+ zM%r*3#3^Q2@ByJ_jkD$4243eOR1^t8Tzy`I{Y7}dt@R&O+~?=%*CO~C)N%K&qKhz; zFf0%yc(`k8_Uj_5!8WO5f*k6u!z{(FWfYCZG6qgnU*_+EvA;skCmHL9$s-PX5(uYz z62Yr+rY-|Qae|;98bNTaMPhR|pPNVD9Wos5FX*6WovyH6HoIZwbfoA1m1rq8;&L_* z;=r~F6S6Ey$F97EFd*DOP;p%eQ0jskyPd}+^k+#@?j{JOpg?PNSZGFbdS4sf$R`*m z)sp%w59ZGZ5B5>_DCfx13PJT(~hPC4B#B29zN_{>7pz83p}_q&iKf z-%&ggH!@3MnocvAMBR?Q%-pVO@nEzxB}eyKYA!>V;$zj2D-@g}P$7sF|JNc|nBuK) zGB&DOn2VtngXB>>hdrYpwzfi^7Q`ZS#e$5MN8+!k&5_>CU`T(m1wuK2Lm6t zJGJ|OSVLV=l2)-Ai1l!d20378GFU9P}{7k;R5;PA7ocY z@??c~W0j;}&?NCGNwBHPERj7`MHsy|VKX&dG63A$mgn6wsPpNBvy}6_ny3DIq0us4 z0zdXO!10UFL=N5R@>yC)2qf;b$h=5*TaJ>_D@;5ruNG;^(@IkTvIEt1F# zqxd%H`vVddEgVJ$b0*fJ$%r>X=!i%fu=!M=3)}LDpHs-Iq^?zzr&0q2({%vUO2XlV zfD2nMRq50;toqar&<&KZ)H=G96w{CfN+}u$Y7owMsuMIf*aQzVTkMdeK0^HuQnN|(3%ZJV>t-~M~Q#`_xLrq}{4irIUy zYG^JWD>mV7#7edC@MX?q=FVHlA5oayJ)=-bW=FYLK?OT4qgj2ZQCmhmjH>Ic+kc`d z7c4)yX=`3%I&Sz+P)JT3kOoAIG&MOdVQU{G>lT8{+wVw?DQFU>>oRQ@6q-&yB=UG# z5W_Twrh_SHcJiR8u+f}vLWC7CvdQ%1^o*2xaddMb3c{FVDI-%EHZ6J`ZV~Qk<340K zoVeak&!+4iq%RMl5P7SO^uU7511iVqP7l|3gEtI*=n57Jt{Zhep>+OHwSv-;hOVy5 zs=1NzzbhXnUQCSaVf40&2=(rL*~a2%H_ z+}?7{zDLc-5i{)PQ2|UUx(@OCQudsjcgC`w^%wl6E@3K(!}J8`SX>hPtePZ~2ZlV? zsV3;iJ<1+pc6N%A^x8eUQeEe^-eAMRoa;{7SmfI)T3Rgig+{6$%k%I~Q&8x~J`vxT zoghp!t#wzT&*xER(|ji!=NsFn4WibcR~BDow2*eU+U|$sR87b1kxjHT)I9P|e!%b) zVglum9ce!x&fbK38BM0^g$(%pAzMAJ` zEx{oN!9*@%JA)oUL&Rf1t@;d4Xs`lNl( zLazMXc0U~+-2~T{&7k8<(|Bao2CgkP`eb=~j!;k511sm@V-{)I8=*~X!h^7tK;4wJ zxH^N9%5+nFBWyRk&In7snJEzxeBPIR*ptXHRDU#+Xdly8=)ZGXP!@Eu+;h25NDyRW56HcszA9*>bR0vt%dMYqR+=#gV6Sp}u&`tD&*+ciHiK#VEA}|G^upJyZu> zbHh8Gu!U#HR%gVGqZwD@7PneO@!6Q_Y_@kAGmEM>$2~20`|{|t8>;3<_5)jQ(9g0VE=|X?+of$!i)8=R9WB zLJJh}r`n;Y=($g5rjg*TkMDOk9){#$BOzp9xcVuh%W*^|ku$%p8$xheRzz_ipmAEE z4GWIW2q<4;z|s3b<%9lk|Dgg;LGyS4U7>+V;uV4Yl3|72swSn?XhX>tMK9F{lJ|UQ ztlc_?-K!=uEN_@Po$u2cO!;lLM}cbq$C^MxQMwuK9t3qk06-GbFmZFs&Qk2EI{9c; zt&eJi2{+Vr8>sD{G!v3O>EHJ}G*I$6JnLK6-PXBmhmPVF#b#G^ZGX<-_)>fT}BSb6+@(NHnX>w>OJUGsgVCe7(^kRdcDjIZEYOsS)jec23}UNUrb;hY3#YE@)Kcvs>0YZuXqZ zQNx`JHNjgrz7xyf{ZD+29(5D*j&S?dw*GmV9PHwx^H_$53gemd6OX9oO*JwUtqHK9 zyP_a7>1c)NcshuND;+k(%zG&v4d}o8=D1`^JEP}x3P}7!NhKqAF*NA>tB$4)7Y0u^ zrcUpjNQ9;@8h9y$Hae#+q_Y%8LFc zv!xryE&)s3=L=KkQ6x)$h{bsl+yyv{au=Ow%P}qx5v)TCg13SK2lqoo3(@Bp)X=Dz4H=% zmrfuOVxrYa*pc;kqJ_{x)Xfn2VIYZ<66A7{)kP{UGNWBJz|ph)610@xWTE6IOMmJg z-#`FvVi@*`ZC|E1N|Ve;O_Pk)gBD62p|YeV8__DO22qW;9H!9x5r(dfg97W6XuQY-=>sbZ{&JR0@1>@dY@Z>_=P&`I6k$@L8D_>TYd=d-l_-5IdUqyr@JJ zz&3_bjrEo1zQPqf5Afn7E%B|HxeS5TdzfK}> zaj#GU*YJ}_P|8I7%*fbyKi9>LQdd=hu`qSfB;vbweR+j11-bk#}1e z4Hzj!`B|@ms~)%Tg#xDbyQ4q%WY{#c$A2X_vc1ixl)1^sNGW2(nsjwY#G0b(;p+0O z%FnWCh9*8X%OdwbkiUZ71U-I{Iu&i`MXH<6mRGcG_^Bl69wB+|3Bp5--vd>wu)tg- zRb)KBCnXH%Us4TT6c|=4C}G(9bPJzTE&UCPxuE`xr>j{aJ+dcb1*GK`t(d#p+yok* zAdRn-{#HLKgE|hca^HJhX`{=-69S=T>!mjVc##OQONMlB_~))aygr8GFg2#~UNm89 zN5kPL2>`3Rq4}{Cn|at+6zx4Uy9hT}4GXuR!)PaP^zF^esF@*>sA~*zBN+wFEm+j` zca`WCP1wBj^kZLJt40`FaiP?6oQoWOeFqa`RUJ*IlsL?9Qr4^7*#QIWG7#`@DVV7-eFkQcyD7iz|!YoI=pY=*dg` zS4+`NtB3oLYtSahjTi_-{SsrxEcNa8tm>5f^{7b*?enrse%0P}yFp3Oaw6+@`6OKb z9;`U_42NIcQ`F{2DG3jULxgs!H_iq~ElQb0ULx^qB|)VzSTfG8c7hQx>{##JgpY-* zZ4GcbI9(&3uR;;^^Bs*HqMqU9oJsNC?)%y?`%O!O;c?{G7CgsfX0sk(`+RPdYuhg< zi^Mofe^@6dltoF$X%`+R?ksVT^qIXetJ_Gj$$*1rg(A!vHZEn+Ffn$JTg@|`<36fuz9`}KA44zYO_>?`&Ex+SSVvght?yz zQW99+;S;6;FWMd)G@1Y0aQM1XrPrG`S^Vx0k4HR^tHMVAH@#ASe9}#PFGXe`k+PYU zDZwG3&zx|x(v+1RzWLYkXhP`xC`Fkx@4lT7w8Ubp^L}Y=l+P0*S45`871eB+k?k*k z@^|Ga$WXmeb}KGscooB!vDbCp*YkxQhH(S;gpC(o=eu;AKrk2OCMGk2aI28s*!kl; z_Ibkwohv%2*f1t0XBn`epW;WU6_u2H`kZ(?ge(_LCTtyL=9jxrd{2%fi@y}34iq|2 zRR~b68};C8z+nZM06Fzs@+MS92r3iVh}x^LX>-Rqj2YU98f5oTV8aw)&hd1$W?fC_ zZDP;a(xlJfQ2CVNSY{{WzoG^`?9st;Q5p7je95qmM(W^FKhlH^TWcGsC?dr;S8q|4 zEOIrp{q$7skOcB%XjK9aMvfEsloU6+GTikwT$0t)V-aTL_)7l8`TQDJrI=?1J27?4}wO)Z~WHT_UrsgMi(Ygf@syIeo+}D3lljjXGjDxrv zQzt9!!KVY8!AqZ_`t(!^=HnYEk&$3chE2!&HA&T!tr7GzK@oRF9W|rMURQj~Lm-Mp zYbkNbXodI&bghRTSd@{Yv^5bikOA?fQfvsiR!~$ed@i}FfkTT?Alc67y`4o@dEi-G z%eHCD{>Sow_A}-?>l)mwMl2r0IWuom(hIM;=jW<46z2LQqYvJ7KUeF3bo{ zBFpm0lc(aryZh}e$Jr;RASFAT^NW}|bk}|Op;l?hxBimK=jndU{#&oWW_Z~(m@_hn zGaWlNo@uuu_0daleRCrt+wzI{=+M2L8UM|u}E#H#@_Am|zu6E-9qtP&js;&-GgsTa))u&`BmDhS(* zATcBy?K1I~hpX zjGIH}aQ9ZS8X@rC2yFvUzSe)dH|`7`2U4DJ(CPi`lU|9y*>#)G z6P_eu22l@Nwk8imlRZI(J@9VWh#k~qX~zt~+Aay+i{A*5JShjpwoLI)FEvGAiQK4u zC@{YkZaf#2F?>JYq43K~I3k3LSX+g7$a>Yeh##+#b{;@w#2TBn@Gc2{OZ_rh zO!=-smJVGm_76ABq9PA(4qGflK%I&_ijG_^=gIh+o1(FlOG~kW|8j5R(P4iM0TkOt z_XSUPo^X5u^O*M#DG=%M_JY%L|<@s zy%n&&gG-`DbUws6zJ^@r1>7$2oxct;m!*LR!tr5DCnCG6KC8cAsJ`quciu$`gdY0K z<+1pcq?K3*7wyCAps&s;cFQkXX_z{jI$N0nDe!IgS%~VK9$7^#=K#w_+AQh_(lsp^ z&dlV3+$W^Tl_2ha3Ayw0W@NqC7$UftI5}SWbaJXrHk+a(Xg%@ek2rta;kvu837f>! zEpMTB`C|ryBiVi{2c3t*ZEehkAWNj+xP9}qCm_hPqUtzK#h)}s+P~Ucc^_d`E?2UE zv~|ux96ixhAAWvGh?Kx$|5i_j@Ma=VD!%;6rX4A22@@reb*F|b(P1PB0dd!$cN{qBtb+nxPJU%(EQ~Jb=DpW)y4jj4l!#TJM^qLf3jo9co|2MNhGi{P+TgxCUW z^Q#usvKgG^e-t;+*k}O24${!lL})=<-FW`3x%3cPR1h`U?}NE{NG@%SqG;Df`3C>W z8tLK~P8&u$C<%o;Zcy|>%s9i@q_VE?UE$;X?d9aGp@P1PcyBZ;&`}hIiPNy`;PN#>LXd+QX0b$ZcV;)<~2&0*EFP(u1ZasRLX5 z{>rdxovvO_q7ED^=*-A5VZ(#fCPk>;{ZZSrN(%e0d27WlvG49_SO|t`e&+`_UMV5_ zqtGNnyI+tbnO}PfCT!ejXdk1X)GSWnUEH37oA*;$uRvEIX2IKhep1$pjg^AId~nI` z&5e(h0#0TVns?@0&X-TCIx9D5JdAO*g0s%ZX6h_s=W+IDoaJ?w(ZHye2e(H_?|>m1 za9Po~0@oisKTHdX=*&!bgj*~#hcQ#oIn%)YjTy;#z~q$5=>5O19V$5cDiH+OhkrR* zfYhZsJaF}0b^hAxUWHk8BguGO?$u~-4KpCTxoh^TjQ%b5LxyUr-&njjLUWlGH;Cit zi&^-K$1emQkz&Q1?K8`RA+C6IEJ{9m#(8H{2vG9QbcR$zvGvz#Y}@t>%G zEo|+gBfR<59C|vwq3Y_lWJPoX#_kP7wKLArEX8g7jn2j!CAbMFK>_on8|D5r>DY6<}4--ztdlpr)2?C*u zleS!BC_u8>sp-^)Zb5`7Qfje(I3O*DhiTQY`tp)PWS4K)S04sN~d*QJ+3Qzbrw)8lGiILJGfdQfA#XvvuBP1kDqi;AYw{Yz>wbZZu z_JZqc?@lec-j;nVMZe_~X3#8NG*o4wr@CgSKK*#mM~x2c>K!QxoG1_PH`Ly}u`qcB zmil10G#N9D<%=v^i>e@-ucb-2wcRM%9|1`lyh9;zq}2JV!7-H`b{TYvMLqnqZCGK5x5tLV2H`ZjiAI``_u^XQHJQsoxrst(If_U(tT2cO2r?;*~< zFRTRhw>}S(EZS}NX&B35pE(@XQcdFd-5l6-+Pl*yFTa*JCt@fbKVEhYlAB)wwB}R! zmfg6)pue9kyslg^HcKkmK#mgC!~~n(R~bIMB~q}NnXNA|- z$d}(2X#J2rY{&L0<5#1IfzZOVBSC^aae>gx=Opc^@i=)eaZYQ-qGi0=HYuia`yMqB zwdTwz{f2P7{#cm*n^|e)u}h<`6I|)mtwX%T?WXZ{m1ca?pY@>q`-9E$_GSBN&RibERu$$NcO~yDMclVxKzcV6%%0%AGbhhdcS?5B7BKM!qV$> z>#V_mJal2eX?$Phb5W?BN~uNgc8yA!{6K-z;rTYW#Tc1&VaeZ_sW5Yf_1h0@J67UR z8%U-kJ70n~U(3_LgXLOgzr^+gWwQu@1bnkc1F`EfqqPxRZA+FV|143Jt~WGajT){> z1Us-Wu;{71%z zGK;08up-z8N0E>9u_@g3JFy=IJC+mo}uf7l8d1n3r}3{@MUw73ua zmrDuyQ@-wJ`-xSkEXzy_3(1$y9bD_Lgvz{8WgYCeDE?eAGOK)F@Ij+~*Y z2dj~JIh&l?6H>OERdr|w3#qg>(h4GPGhvnZ$;nT>u!nYHIQ=wzxMcpOh>i)Dwk9Ok z315RYWJO=1fX_iFXnQ!L0>=>u-gtIa>RL<7mVmu_?AqL%trK^BPy>N6Py(B`N=&Zm z3yrs}Z#EA;HP3b>&R_qZ79e1!K|(asF(pwmO3e&ZjKRtHof=xBv0Ay{oUED|ztdns12wkVp09O_n) zff%0f(7_tBQor%Y(i8eWOuc(N)BhVkY^+R)P32Gyv*Z*x=8(gXLZOJHLJm#NXOqJm z^2tKTB+Q}YP=q4KCCMr0O46E{^V!I0nDKk{z3<=SzWu|4@vy!3eqGn~yq<^1S*cI! zQhUGq_j;0X@3Z??5{2#=KBMw*;Zsz=^2Oj-e2jL?=!?tJj!?)w!P$eu7UKMY@+9hf z@b>C-@KA8%o&u|yvanE+c=20FVyV|c-}kpd*Ln132u1FaXclMW=J>c=NpQ=z8rDFE zz(oW#ylT0tl@0?1;tj!2{(^~KV;>a^JN$2qlEIBG~D$e1o2 zQ9SG}JqpPw4E$ZA@GE*z;Dz`p5+Gn`#Re!n$AgA@ppY3o!_T~WQ+kjNeZwu*Fk*}W zkXTd{>ET4w+UFb&?C0$WVP65n5!w7G(i$)`Iu0?Em>CX^z_H`2z0yN}9_d!R}P~wCb$fy+AQYHO^;VuM_~pp{-$3H+(jRKBzn=K$BhqkO%)f{IcH0oX2{dTB>D z*;yKuZ+ar@(Zg&ZBYzas38|&8M_Kjuj?Y|Zjx|u zf(qDg^GRKcj&9B+s(Ugr;OyS9Uo&2x;XmACp^ucdKJYY5C_C)X@w9JB-qM$^H5|cW z>;6s(sb15MJwiGeEU(0OYCz^?G^9K6G43wOQT42XnG$ow;3r)r?5@6*vlByZEefatl8XJ4UObdZBly zj)Em6S$##A@)MiPU-DP``?;Rhh>+CU4T@B{Qfn557Ro(}2P97phPQtJrnkPkJHbt~ zp&)R_!&-y+eRd z39X6fN^!bR!qtz69mv&fcpX#XDg~*UTioak)h&yjBhP&j+yCyf+ipSa>7IWcIn(w$ zFZYOA{yo^=&>$@yjuSeX5#<6(mo#&Q8-qfDW$Lya<>J!?JLc|pzn43m3maH(nw3G6 z$vF?O9M>#-WfC-etg$MfDf?=AcZB+%A|E5lvyH)wMp1R=m#zbIu|tu*iO33~a$AKqMD)+w=15hM?Ey*F^ZL|C9%ruZh-14qn9JI_nLjU3&QiqjJ<~z2$E7Nk&q^h{ZWtbsA0k$| zmzz(MaEcwJ)4L&`{&@CDS!)%gk(17ft9BUu2pX!zCRA0Gx+aq%m~*ZQo2v4#_RC$yl9n(nPgQ}X1Ufw8xpHzN#Gv&7-Z{%CS(`# z0x%K(krAyQ#&1EA9s*Okhxj^@Hk+S4l!_>1w>fOD;v?mkyF;Vd`#LN=Fm`spA49`-&_zr%4h&d-!APn<&X zU678?&ou8bbsm#3;jZJQ>beFzFJG81$r2VjdJIePR>}YBUPY$=0rMERNu71Ft{)Q) z6tTOCZ~d$oY&TTnbxpoonOM!V+kPQ^=&ot~az|P_X)07L&n`CyRT6ZOX4h1Iso-r% zrwgCe9~Mrq!;_BO(n!)Il8QaO)a_|rx)DJva`#YouP%|JWZoEEv=Q7yrgx-S_ED(d zR!EYGgZGGBs~0fPYwaD@x!sN!OiRrivrjL4#0KcYhu^~yzS&_YI!}2%P_imj`I(}G zHT-$uJ*F3V{mlV^?0_P7#C03=b|H5EN#us>{^#V#x{Pxqs(I{opn)~w8NpdKg%5>H zJNNVMw`l#?r=OfnGn|t&IWHDS-z@vRjJ4aJpZ2aN?-n-gsN)uDabZftR`|TEcW{nS zvC#ky)barnk?vI^++uOA_5PuT^T2s(&!ckAXGO~ zFG8Wiy$DfIPI>AQO7Ky>{q<6)@ILCrSk67rz_m70|Ay^?5{VpT=)q&dP{{m}7!Ag- zNXIbLFqV@-wFmSmpd8tT{41mm_PU{roZ4wK=@?UtQAw8NiJecdTj{{B!0#tAHlz24 z2EWqJdk81IQpux#OJ$Os2U!(rc=4y7{%-Dnf_^-^xl_RL6+@3A)pNDx!=GkXlHBm` zr48`7yFzdT)(CERvGN}Lv)n_#GXlC555<0(TB% z-~^rIN=jtoe+N+&xs_U7HfQ#F@_ICz>gyXnYMgPtIU;}hkyyksd2lX2(ecMmrAtQ~ zb=?dQiWkzZA)^R<2?y>qE2bz1^(v<1pnMgRZqm~|1l;~bI{yH5Zk>a@L@-dkMK96R z9SZc6f0E!CeQ#t9U&gWvpKnixfBW2=F?)U|H~+5MsWiCbAl?86brCypKI? z5I=43qU23-z3Vrfr}k&Bj-@}2Ii|;pcg!H zb<1L73&BYdk+nL_)VXNLA=@L6cEqLqX|`>-ppoi}%R|Ka5hu6wk{tDyP zZ_i=~1Y0liULSh9EMk5nVtM<4E&rG1$}9A1&nOYKr59r zTl9&5+)2B`0trIC76NvC70bcaupC=rz~|_j$EJfV)1JlJrSzvSTyDwRntwi1HE*Mf z+qly7Hz$v|Qs%I;dH6?NhAHq@r!F=;$EuqN5i;Gg`TZzfuahX=v(Fa**R&#O<`)C& zwM?%vu{P~mwyRLc%8VcO_O@AA3OwJakyXxUESYr)RwV-SE$P_r_SG_)KQ{_wPKK4o}5+I@xI zZu4vG?2c#;s}ksz_f>myfm^Ii2*wVpD`A&Cgcto9ojF0TLxNeQM7WNWc^Ho;xpv1O zV@UOfHDLHdc(xeO)B8s`dn2Q?M{^I4kJ7hv5c)iy{f2v=hK@l-oy84*-fzWls9$hy6u+|Xr~lrMe3VlwT*H^GG67t3*&^KZIQ zg?IQ*hgcg1sGK5A=yFF~wzZ0LH0B-F0Z9&-M-ASSmwddJy={m$)2wYJ*BnhL5hMzh z5~0OC5lV{Oo}R86QeRlIzhHG_S`t=wf&050@gAqJbr2&>g^r5xMSj(>{@eqF8^AP@ zz{w?k+Z<@yN2g05Q-n$xpYyW55^4?SQ%7jBGgFM*Q`3<|Uw7EFx zqDEA9dwtnJ!gW4N5Oz8Z`R??|moF$)WTb(eb6?7}m$Hu!Fm)(Pn8teB@?RvD!@fi0 zU!T3QrnRlre6Y-(zzks~c0o}3Wa^Y-Wzg~}gp$mo%`^P9^htcau_}8#6GXU2g_PYb` z@Uyb6D@MVRNC7WOqW0N%dql9DW6WWYUIQM{48aaZ)KVUI>F~sIfawnk;xM5p98i4? z_)|eTB#AUur_Ba2)bPa$BjA22V2%4(AIIhkWU*V>6M)pZ#}SGg9|f)gbXoRsfZnq2 zv4Oc;7>S3$IO#leumD~`&U_@(4JBfcC}7`8?g7D^n1dhJ=p>tD(LqPKhpq0iD0;4C zy!dONy4AnHje-o`Ov^vd;|z~Sy>?e?k%|8@j3wF8=-=6&VCd<%u6! z&RtQbtgR0oY5C>>OZO6d1b4QxxoE-Nq5;yV6J_?L_D7mdfAMdu*U-wbYICnv{$BBs zxlWaOPH4E(<9ds~z!Wra`rNHCC7+*AlWxMsG~U$>~i55P%;Bw!=Sbg`myEC zg0N`8?|MQqhYVo|uNP6=r_@qaE*?1Gat%JKulM<76dzyWi@Prr-%%`&r5zUrQL({s znt=Ce-KmkH>{ISz-zZvTmzy{D7va@Cbzno-{rB2@81!D1Q46m6^7K9HL7QX^&3nR% zuRPxOWC&i0|LSR=<4AHAy!JBl+By7-1Dq|nl`&j`ABOF(r>hy6dAqBLrY9})rN4hxtQ?^S zlZxEdX9bU2q7F(PO+V9ftx)Wpp^BsFl6#?kN$8iqO5Ptt2Dq%vtbc5L46pZL5XfmI z)9Z<-N($kUaQjo$7^DFZbkeqqn>GXXyYhBcIj;(P4^f6HhE8tHhuP%sjAN?nDXhPF zd#HDR7+99Cw$C3&y!%DD{$j#_t^Bv3iTzDrzM`<-ToF6Ttf8&TXf{W5G%l5wy>k_q z34&cdu?7QueqQ4z4<|^rPS}S(HBGx44tAzVGuABLrj6C@kJ&%pzi~zWD~5&nSw-TM zPaa85uz%Gs*x%E+>2<0AKc=bnAJX!JL8+hw8-6V+5^8^>4YL2PW5*6Qtik`8Rx|x8fB7`e!g!r zK(BC*B9eD@OzLZ`|92_7yXwGK z>c*4N_tGODsEl%ThX?*YVpl3>cv(NeMX4U5Br?d4JQut}RDCYZXemQ>*#w@xfCwY> zt)6ip#&Rd3kUX;NTO5<3xG0$aix|L+=+~!@CDBy$E?#V{mqN-S0r&+B)@12m`xamX zJszZ}4wT+cvk94x@55fcDSg$pzUcCIaej4vHBgs$?4lJSTkzrQc0poMym$jMgD>T} zztKbfi;fu9w_+s{DRU!Y*_`{ObiS6%jH58atM-=%GDFnZQ(`fME_ zRT!ck0K}LGo?*>v))viv>WDY-A>pcFtFya*U#(S5v<3cneHrGb{HC;0QRVnzZk!-E zpEP|rvl`s9LQPH1MJ0gKx&sw2&G-ltZwFyA<^7s*g7Nu^0e(lHR^kt}Wa!$YUA+EG z32Ln=op7IQsQr36dm;at^&X1nd@v0#QLgKXB`QV)77Z}?ae z$shECdU#T=hi=brWGG{r*0gBnb8n#c3KY>b`rVCeT->t0f`3iB zka)NUUNQQ(kFK++u*mhHVX9Kzb@|VoBBiGVZNKSp*FDWndwnLU-;w>~PEs&$(&vJg z_kS;ckJ4Joy{VW9_fUM4e)GlQ*Dqc*iMz(9DviCfPo_MHB7v>3<{EF38+r&5}rd@C66AkJhnlV)yebE*-v9UVu z`77zowd+R&008;%2I9(Q(=ID=ZzRm-c}IfhhX{w`e!}g#(7V+m{7(G}eJ77Z|15-P zpwI7&5Kmu=&((?ixUdtsyFrt4`k1A#*H7D9bh0;J$aljahq?==RJ|li&7|D!^Z!>O ztbX{eeXDB+!7Oh_>4~QLfIErqL!pN@-BL|>fBSh`pi)lBRN9ZWx4CKW+rsKzm#UYt zGHipj5M4WOPd@4}8lwlZFlbeaidrvgE#Kfk%lq%rVy?A*>B-COi4LYUe4VJR=o0L6 z(wy9_-OKa2(`3tP6#$7Lz0+^c&J1);xUs%3t%i~wpZJq)PMrHhF;?>U-aj&&+i;bC zfHybWh|yc_b-g6PDfH*tV3y(K=P`$TO02meyR`ZEM#Do#5r{ULkq?XGUIT$3L;ZqbLDgrs_VL($2r_ix-* zIXSVrAQoA>bZfLFVW8qp_A%MKk+L0C^V0dPg3urm?bI`<==y}&hmU%%s&tm0W4j7jjmb5asb999Q5#znSiAFZ4Q86v0-fx)$mpwdI}%x zwgrx5%TIabu&la~Mf=8j*5VY=W~i3vMeLn~aQ+jl`LkuzleoS_uK>Wz0!ZgIq@6Uh zY_%I3LUw08m53nBy+PLbT1s}nwI}+~aCU!%8M)!3h$FzEpw$nDd=&LnBT>dx-w6?& zmP&f_C`_ppt{0DDXV&yQ9|+q4=3Au%OirScDLF#sG&rEegu3sKr$b9mkini z6#0(fu)OO;Zo>aIV09$mu#MW%3Aid#Pl}ptVuRuCPM5@7dsbc25O)2z!}ch-e{b?R zC~$MzolkFP^%qrFp^cV| z)!?QkJ0CDXqxS}By9xUn4i9F^uueaf+rQ|iEa<95B` z#)6}%z>JhsLS_Q;Px2eN@lqR~9o)O@Najgew$8R3Zjwm1M2k?hkLvT(9^ zd_2ikEkNL!HDb6~1o0V&C^!MH3^?uJlK&OCc(#9#=VCOP%@FE~eIXt1C!D7nwz=48 zJr|MocIsz#zBJ@GFzvZ+aSX(%SXlS!lmJ_cbv;8TZl#0KaDzO5TJi#kXc=%$OT_Gv z<2z3tCE$&7q9cufe|-r7uKqkPAWRJp_oQ%G#neNTE`1hdlLa3!;GzPURqwJ4vA(_@ zf;v>7I_>FvS;jS>UC9k*ZOv7n8vk`m@0?Z8apy&*<7}A4T-;wYi+9gUowgV}Q!Hf- ztL+W~Ku|7vXO+}nWESLy`x4ltZ+k6$l$+zCzBK}sOJ4Fjb ziAz0#M_csN=1)Wm0;9QNFQNAL%NaCZ09AFi_g@3K41CQp8y#a|hS8kj!1k?4&hNPEh{QIw% zA?z7z9UaXi@tb`My(Mx9sDsur=1I0aLZLSnda0EqUH-bKE=>nO?HzbYUMGwYZqr7l zlAdZTMQKZ6g$z@{ONNgR$Oh`+?@vKPLZ8urceY%!s;?W0V>D0zQJVQ+qr zK&UP66Y*kr**?2~zG=-~+ikWUi1XJ@cz=VoF0!(+g5LaY;MlY zp|^IVir4(@1%gzLK3$kPKjWvAIU~gr}6mjMgvFvLXCdG>;8t9kr8XFR6<+H)q%>JJT+eGpOeE^ ze$59TxjA2w9~`J#7IpreJ$5DTD+*S|?4iQt!SOHEsw z&*H;(my(&~jds{7S?%0GT`ez}NR}3jyM(;xnyVYSA965!VQ`_XKxt;)e}_6mgvgv` zlT|L7yad}>Uv;UX`q-4-Jmysc{DpL~)X~8~yMIfH$ZkI96T$bvf?mPg=d1uK^@dX$*&C~_1DzNJC$;|S=m6J<-{ z@V`36CX5Y;kS$;R)c`_PT3z{r=|G_wB*9IVWBDZYRscM#?bK`xHs36B%YnI-a{F1yBy{&}WAzz{^Z5a&sPw4hyOsVK`epbpeu+ zu8Z6j7cW{(MR9(Kj(X^egw+9v&UcgtxSRZAReS+F4zRrXA1t?~2ZdW75g%oI2D(LF zaXhRJ2AD^nzh7;>Z6i=@WNn)*-0M2<_z}|BHnyn5(p=x#YCuC+o_}r5@PhG#B7l2p znJf&cUq(weuXno2%{skB!#kMS>pisD;$LN3KIE`JZM08z*!6J0ExeXHBtDf*VPTYQ zg~dc@^0c(6w{NpbXO{QAqj!ve2Znof7p5a&d+zTr^<2B1dS5XJ03Y&FSG^d*TAgCp zf82Sm@G%E57I()!n@G+`%_IuJV-6kxY#1CH>`S!oC_O4O8aaxGG45Qn8uU~7SA$l> zMgwAy;H{#c&A~Y=va;Ml4QAdDea#jVH8D)!(1Rm@8)+=366jA>IN+aqz-(u6Tz3W_ zmz;F}7qVbyM-)l|v>RaevwIlzC7MLcB$bxn0n)Ih_YV)H*8_$OAawyH2X=;Y7$ShU zTSbL{ffF`L-;CO?s2#yE=U3&XBZO4d0`$(czm`qCewjQRVfyBy4IqYb$#T|pfI%M# z1s<%Ks_&(PnVTC7-6u-!+xw{pT$>ua<|2lgnp_h#XDH>krN(~Uh;!wYXWkPujweL9 z!1O3vDPqTe(r95c< z=JCN9mC|RH32Zv!PkBO)VdnHKwa1ZPc-chs$_A+j1Ld|;J*KId5X4I8b#k7K=Jm@4I6P3G?|>Li#HPo+v;KZFQ8V%O0eY((q?Va7T0vDXjNg^ec- z)tig%Zly1!`$@RAM@N+xcK*B!rHCwScsJ^sx(1|QX-N7MH@cXn8qF{JX=3_BG~dFJ z0hz*gG=ef;_W>!_Z_P=tom@XXFl1h8H!uf(5AuHbZ@eL(jZd1=?;eWLv4SaPv~Y8W z{%-k^yP_ySZ!%!LW#+TGzx+ywWVVa5; z1P{8TeewJft}ipm&)4#3DT$g?bMO7+m@Zu`#l-1{GEw|Odx5j?Tp0i1Kk1~f8V}UU z-SdS%Hz;5`;H{jKbWat3z98GoKv+RQ^$6Xtv8j>bSu1*3(;+u++SN7jKj5Bc)~>uJ zM6qj(T)9QuP9!G|e^U!VzF&Bn5y-6*v&}9uGLA@*8Uk`@d*=%X~r7Q?>;E%lqq`Xyzss zEm!>s?Y4Q2pU~;5UYgvOo=1HvM=9_?wew}07WY4|avO?e?r$sXX|!T>S@7Rp*m{pE z=xLXyKL*{s?j^dN_mJv$9iS}nZ>_BEE-f8;&HPI?Qs`Kr?YE$lq(KfcYeEc%d+@WD zq@8&d6%rOkH0z#QU+O(?;hNx?eyAZ^-u(@&K|^^CM>A@zNmt&&Nc+?>T)V3rNvS{P z#=qvLzYh=p^!w;%(YLJ_bk>hv++fjgU@_A%B#bqGaz@Je38}fG^3avf4ttwY6}pjA zV}$LwP8WZMuX;}K=kNKf=V;cV&)zh{e0reo$NriRZf8EBHhpW4q09Q)Uom6G93xvC z+JC6vfHgbekyAr3{CR7Juq{T@^}LdkfI)|^eqWm)8@9}jExar+IeOEmt9_8w!kVWy zcCSemGGFHAGnq^oRJ-NysbMY`Wdf+t?m>)qE}f<*koCaC{r1F` zZcNj0Ec!Hk6W2)IDEtM(E2?Bh!6ahYq0Ra*aV|JC74CpA{WHCF9~bN&hzku24*ihb z58`99vQyhmNk9;elHjSNh9M>D!(`e@Z<~7!WC$V78QcZQ8mWcI9h@)YR%vE0W}wFF z-ywFoYFIUjlss|s^2IJd&S|;n@yw+N_OT(e+RGVJ_!Ed;>@a48Q{hcwqQ8g~(%@h( zm9#*r9b#a4iMKoqjpHjIh-Q7{(NQ`Al3`keNB$#-qym5dKzSUGLt3Ln{gAP(ukfRK z>=NQa@MLY2o}QtxG5bZsAO%s*Hs`lWZkErlZx{{KXxjIIw@f(mq*(aGD~3X!IjEHb zlfy1Cctx)97wMLzwO$@yPT_qSj)EQ`hE|N;;7GZ@SwSS9e|HPEUPYSP0i`B-K+lTHbn;(>{vE?G5mboGeXn_`A58|I>&r zo^mX<^AqZ?w4N{&&S@9|RnCNtBemI8GBb_z3|F2ZMIS)*eUXo)5HL8BivcqL6lHxH zud~p9-yjBhE5_^+kW}!M@MK!Asez@oKKqwbuw0ml@gXGpVW4mw z4eNxYU1xVM)8}rPtp;gT1|>MS*FZrw(9wdM;q@S;rc*Pya6Ll7_RYrfK6O9jd?pf_TSlXqrL?`*CYLc)k?BKpf_G)ZeX)7(~WPI6H#t;?V5C~TIzO!ksF<#pwV z+(3|__&wpv&3tA>InBa{JXg9fEy0JQ^_cKb&r4xU!s1dt{9z5^r$&`O#1tW^{_vWhAXL;(9lZB zfJ#HB2Zx$5Pi)e!z#csCJ=|_*83sLyo=TnfR5Mh}`Jwtjey}ss1mq|wi+)x7?O7Lj6a99&yD%3mb$Umq z1&-yVe999Odw<6_<)p-Bn4A((Y3}#NF!cvRjz2rcQ7Bv8XTOTZ47*obGA89TqUOLO zF@LSAN^&X<=iA7lw^@iBUhy8v6Y2fM5*)w(?;gf^%*aQ;iYKD7xoO%j;hbzCGH~y;h4o^MbbCj}95(Wi{>12~hl)&7Irm{lBFH z_i8gHI|Ij>0lV9TA}2`zLW@?7+kwg_b6nS^mRhFO?Q`Wx(~juG!BcG-TfDT7pt!TQ z1poKr@3{0tkepba!Y1@x9A)qm;dJ2wwZ!au;0)^~&Aw@;_bU1(tsG9ETU2yG4U_J}D(r9C+D7lNA|E^mKA&Tr z%%5P{)jN1{gUGA9y*?gdp+?-pZM0FR9jjT>OaW?V0{X$mPH*pV%=3Xx2CYe(o)rfy z(1+0bE93+wE13LY+5MbQijv91O&Er-d0*`xV3YP^1{l>Xj4{O=*n$54lD3uuJCV6m z^fQm<6UDeXjTWrTMWTEw#vD6g5>t{yQ;Z~8|FT}}VTr>i?R6-=0-g%t^BaXg*kfS4 zyi)Azu^c*M9;sjogpY9|*T0%dUf4Q{>M`{jWj8Ta=E(f{;ejsk>`WC{&&>!F1N>)g zTeUc?$MP~9o+@lATb)#x=sd@WDEr4nH@1(Ed!?mWoP9L*+JG9I6wyRuEcDXnr}vfy zsVw&@3hxD(>hlhd^)k4@A#11yHGtt^Jgp9jZ#v!7mdul%Kc4}lE2-{nPqmy6UK66# zzhL8!3(`_gAGNALNQ6P7T|iXxj0;8-lF`#b%qB{9zfEjwOt<7{s4>F;6`rZ2_<@jE zQk>BnYovw86FrRN_E8lNN{t&|^UZkDmCKq!w|uZZ72dkc@r_b-0M+uA_Ie9m2|?=d zAs;{7Iv|0H8b#^>f9m8wHiS0UI2ROR00a6H16T}F5A^xkhmbKwU}F_+YM{@S3PZ6Q z@PQLt;(#Ap2H8n1Vt;$vNK89&zpZM3@XBN;%N8^ffUJ*S;ZV6E^I+qaM^xBkwxky^ z6_k+y7nMvQY1FU|s>j8$Po`L6KqDQ^nww#=-rX@xPUfGuY1!5GYN4SQqmy{Lc%2}& z|M>YBA$cUP7c*{iCp*ukf^L2n14Bt1$iPKcwAmoF*-S9!N0IC)$KZ%?c^G>#htyWQ z1TqSgT+pk4smoaStvUq{3Rg-93Y6j4Z;;T`>&jIjUykZS%I-%!SG3cp-wnfk3W{k zH6Hgsd=I7;=Y>~hOk33~xupNeBz31hZc`EyKrfOzz z=UX@BclJ7}UMGP-*$-Rwv&O7amHWcR<*3POXhGWb%Lqt;ODA9I&@F1TFT)olcTa@_ z5^7j>+@&*iI6`p8(p~%g!?Z6Eg1nFLf>(}6s3ar5nyHZ$x%Js%Zc$UG(x?%FoG)(d zUyWo`*k$Kblg}p2NS6h(+(~GiEEcnA+rz8UWa#X4Rko$F*^Ej9KbN6*hIxjm@ewE# zYVqdy4zkHgZi>i!7=F#!L z*LKd?zj=0|N8qPHA2Q4E%_3*M|AXe68NDV)1s|wJi&p&Rh8}?OB=LG;tz4@%s3Vx` z(*dUI90Ob=o!Z)-VvX1V29sKTkT9ohXAf_7Ki=}f#c;6(v~rZ`&BfR>W3CE8DEFy0 zz>dLTgPwfI=m)GRl8O4}!_!x~HQ$jw<>Y4ns7`yTJZ}Ek)4a?$P=sCpW&d7nI7N44 zZI-xE=wucC04OV$nlulCB_(I(S~9e?Q}_}z)uIil@0K%7@h^_yx5fvTSvmXSUEm*4 zwm*yU@wydUdIE=<_FD6)sO=zZPQ5*V^KU$FXU=IMt=moT@3!^}Lhh`cl4`22q+F6xQjW!QfE>}54zc{(k+CeZyV za<`?wKYhvnhiTDa-jR_zQf|7LBW0Ur1oNxU;iXH{PHOw(YgpR$^e~;+g zeQ-WUIH#x29CP6fdS{MeqJF^hw^;+-v6j=`z9({P?aX0TS<}u*0(p|QyImT&${Fde znzu`5= zcUQe>ZO+waImv(RmriF?;=L-Ipw9SxU9W<{dGX9Av;7t2@;`tJGnv@C;-slSAIPr! zP@&sET%S?rUCxuk{XSFZDOn}KHI6KV8X^%0OlL0GLN~!*NJ(D2)_4PpN`b-0AkC-r zg`+~o$DpZfS0q8>{E|aYQsposBsMNCF19n~p+<^}vI-Zp`IL$F)1Q;7bAP77L;Zr+ z7snSTCqtC-{zU&&wY}SEs?4QhkmyXNZw|gP=}fH;LnjtmsX)e}0o$DPu!QMe1p?wp zpCUqT`rKHcmW!d-B~n~4AXD8Kp|6n)4G9T#%v2gX3U!(TQ#I##UP&c6>h<8M`&m6l!9)lb zPJ4JO&T%nLTpO@0PG1RTYdytdS(%+`A`1EXHth$a1&mY+wL=b{LK!>r!PO&A3hTn4 zd`R3g__!YIuQUp8BnmOWSC||^X~)20@Oodw{xeaAqz-eWn81@Yz8!@|lR6-<9#c!U zzsBs))}t_-zMgW9a4&jq6ucWlx5vrbf4>`Ca|fw|mhwS@M)-1%=HXYrZgok&NxMb8 zu1tsmG6)&l%bg%XlCEcNg5*LCcUXEa+f)Yn1uHLQ0V!)jEf8V!;+mE_VmkJjS8=pB zmO7fXGQMlN8$U2`^s|ns^3kuR2rxH=wnj@Jb3>rbHWHa8clr26$LNp@u44#MQBh9q zr{DreAlYM)F^c|WY5QCQSjcmvfS$*HPY=u#L` zR{iq?Twgh1vwU3dY1Np)@x7MqirQ3{`z5#i;;-H^Mqf$EUL^U5_^?v85Cy2bqNg>GLn{agg+ zINPJM!LBT<=A?_TsbrwMj8ftqyA7sprvH%AoFHeBO3~4p+a&?vt&@1cdeSTYte$tS zg73UqAh1hl9>vb zfx@2Zo@!QN%VL|XceWKCGM7}n0{*V*{7LF966>IE!IFtKKBV#-his)BCnv$*^bB() zr6l7IB77Yk-2eHtwtCx)*d-U5=INXQ{26L2?rK?}JYDsA#=EA|k6F1>GJ)`K52JsV z)i)NVQ)-9y2P2v2Zq9-RO2iC#F3;<6WodI9VLEQ;_KSE2^zGfnP%m;;4J0;wAY9q4 z@A-hs4(I+*Q$xu9`h>tt;XICn&NUku8E(P`a}RH{csG7;ZOBI3%l*HT6c+0-I)+;t z>F)kfu|G*|`TJHY({yhLD2NpPe^u&CxNc^}rZZu2cUN%Sd&5^ZhqaObM(izeM{&aV zr$4-evypy{nbRNJdVjE}OE=@Dc0IGoxLb^762zUP=tDY+)!ZMc?6^q6DNzQgX5rcXC}bi=S< zd?G{!s4n9eVR_z<{A=kBeWXu6(cx<~4c)6@3FKakN}ilI@ztk97H+Cq&Wy3_-LH`3 zAgu6bWn4*CjfsGTH#J>xznYu`1SfAAOxm@!KULUJEbN9%Nq&t>SGLP&+k1ng1u@nr z@B4>=Y(H-md7aVgG9g>Oc`9Gc?^S{ht=%4<&ys4|9v`Q;8ktop_$*h5j);ilsN0Hc z)`Xtn;QLkZllN6vwn%TcB0YE^JIh)oud$vvyE=Q@H6i;?#72aSl--%%*0krTy$#vk zSXN&8&q>d8IWh$HWgRayXqVdQ!X686g>ZuNRqyZDQyMG2F{4N}aeS1E2_Jkcsvu-s zRMb4yW!Hf1FN~`bDUq335Q6H=HD({qf#rTRJ6lx_Kh zgU7HSO#*`9M+}N6W)@gpk+D|J{G#(&LeH{~+_TB@4Z}tTFnt3UEA$=u&Zc7(W$4za zEi6pDHJZ%?uKn1TF)yA1g*yIlQmfYn+Gj0I9a~ZPX)g+2^jFPH+p@l);l>*bSgeWW zOu1KYPs;%)L{c0x(CMk><{z9E5VJCmk(2<_3`TNnu*2~+-T4hmvBBtaI$(WXgL7(1 z5%iQz4$gk|BvEKoosabm+pB{lb(>m7X|EzbW9zW?Q-D|*rLsZJD{_gnDuigWvvZ}G zf>#C=!iV7dclPqVcnAuG>cg4ab4FX<{{%8%rFJ*b1q1kRUFSrbg_0hasK3XTXn`P&A$# z&aka}t_)fx7ce^#bS@(-JWl8TidVcMX?xjt%-%!3uucoQt&bM`zg&P(QDfxz=h864 ztyiOujbg)I-~`((|I{d5Nqu(fOH0cEx5!A0xNFC%6KL zrJqI(P21l^Z!Hm~9fzVSUCtYz@Dp z4*AY_J5*PdL3l#V^_6h(tU*o(@CW>iu6l5{_7y)&F8b>clDuR?QjK%d3?272w+|XiJR*z?2GcGPxs70@-X%tnhLSieQ9iNJyw#yS9Ksg#o`c2WN_|QLlWioBS@=fycY2Y zJv-;UHit#cq>$;0|Kv-tX4YD3uBn}o?2Yhw>L4MWsb`(L90r} z>!EQdU>{1$lI(?&W|LJ)HYQmSPQmXSGLxs#v_>z^FH3G={8ZxJgXfN7U0$T zmRQDc?hD2RLx;=h{l#mqI@j|6ZV@?C5&o*qCyp=v5YcO{aHECe-N~9Y^4!PXAVFPi zV)DDAj0Mq*DejNqpjo{$GpCNBxA=t362j>^A zY`5e!?va|-Zg;qL_|R|ckBYIHEr|Oqw4I{Dz_2Er<*ZsF^=f%V0<+Uo>FTYG3tBo2 z{Z*EaUeeOf=T3iYaEKeCZLPOi{qbftGO6B&C)1X_m#5dZ+x~JJn-$l15vo^7y>;au ziaXLO8yYlmd%GuTJJTer4SKgltT;O=ZS~X7Qpy4VysG9<#3F*NjPrnb&+5WLEmpmP z<`tUjvXztU0C;B?Td$6MT4?MkuBsVa5-j7p%IALl55pNgW3)!aXeD0g>m@F2ZuCx9 zL z<2a+(YjCJCmq-TJ;|j2sNKN^oBMO0ZnWY~?(9L6w;NhoX;wl6aJcs!DSFm;wHD`;K zn50J))R+Jyt*X09;5iU)NEsz;7c9i2Se24&2w+UOoNmbuG75NA5`1|ZiaO1L!9IvY zw5@yyO|yLDcc-kD!Mi|Y#$j!+HnqG&>L)8H)E4$Yv;N8z3BWD^UHGxFr>P?HMXtq0 z3TOKr{ts1O0?+gx|L@At*WKY38d@dOFh_Evn6svDhjLaEHbOScwUUU?EZ2l`B?&Ea z%vHiyHmV70M&-_x`{wuV_jvps|Hr?_qxL8<`}pkrd_7;!=j-_bUC0w-_6{x_hvHOn zYTxhKXhP5L!b|4C<4CY1RltKpx3c8up0q^*n2GgByaQj1JDKKOO1NS}MOJ6nQ)qJS zZ@Dw=s5aC?kJqyr{F=hzWILBWh;6jhf5!_U)ZYPkpy{q`eB+e%`TNf*_in?^#SmiX zRyBRXkWA%00cO!3`vA5+;!(R-4tNJpRRSb=1%%9_A;OZ$e_aORkVcKhgN_hYJHZJl zDMf4W3IyKg$60rDIi?M*O^jL{s;@CHnXS{fCw%JOpST}SUeQ6PCJV~W2mQyOWM{5r zS+Hzd<$k1LVfOJ+$kkv+wB)VhRlVHEiOro~3-wIsK>1uBINJG;rA(aB%z#T( zMO?u8XXV@`>X86|CS){^hzT#G(@=zO38GdXW?67EjRcAN^TP}Tt^w`@J`GI*r0_?& zuqt?|;7h4M0G!4Bxq~T|O-mcnz{UOqEQwR!rg4sbf9W6{$YHB9RMj(!c)v%up{QX^AC#~-L?8^4} zSKUP}WhZWYud-(i4)~|&*&n{Db(q8;sb@<4tU6a?70o!VG=f2u>512$QxT!w)W{^5 z+*yr#Sp}%Cnwh0#nRt(LTO|*)@OLr;BOA+Y^v}{5O+5bLu%wWbc}eTd=uF;kQy;e` zZm&;oEh!voT4g4mPANpp`K_GUtp@8}I@tm*I=l^Ynd6Hqx8pyW_mMRb;yvV{R;z|EA+=m>)>!?PdUS@K%_;y zd?a>Y{!XXQ9^z#iOD&_*o<@cDE^lZ}&CF~cRrjs)3k!QBC$&WQFlA6g^Z5Eiy6Wqy zs7Y$l=sgb=uQXdyfMgd1ACmHQhx=`+l=239!ZF#7dgdR2pG;+ge{Iv?QS%!=aSB{ zM(_xH)MBcPY0aSeH}WEvyFC}a749YW$B$~exzV~^XNcsvh9sMfh6i`3#XJbv^Li1e_e5Vvb&t1c*UP)IJ(UJ z{cCIKc5j#^$vV`C0@>=^*AL*Ja9x%Oje zZF#C+BB3V*STqBMJQk0{5cx#e7~V@bNh3Vt}i7DS1n@$ zMgEs~pGUQV4B0233jJH+tHcWfk>CIl$R3$?e5%5dMW7pFDJej-)8HRa;)~~**Auz- zBR<7WBUNNc;JJ!;wD8A$O716{xxwxysaN}Qo*j2PZ5lPlUQZbRyDA*Z!MWT(gCq13 zJRwiHhQhvLqxG-!PvrtK<6`L{va`6|@48+ta3F7bRCDGw1E^f?K-u7RpiVY|0qoiL zeKC>(%3bEsl6h9Ao_suv3@>D^FNMs%@ANv<7>)}KFrwIf2O6~|HSW)!KlhI;H^<+> ztB9*)+NA}abkaJ2EYc{hbu=K3hyD?X<_G@OgE3JFe5ktD^bfS!)DkTS3J zNjPNw2w!{%UyX4x-~}<_=OsyI(RPXg$pX9rKa_>cEGIr4Z2p< z*r4Wp@qb=MN*0nE4}nHKL%1BVIz^>A!F?&=P2cS_xsl5iks&FWggCc=yYB?-&_(A8J&|V*xRwHvANNHf1td?2D97*SY8gyc9k-p^1j=a@E~t*v z`Z#X-7&Ys)=Ya&W+4mI73vXZZYQ0b4LGauP@oA10+R>GlgZ+^BLDW>f!r#d!@PywM z(~7EMpS^jvx~Z5=C|}-*=wf~%O)o4;N=pl&+gu;_`{79p9{y<_7<`2x$`A!>1Ty8M z31~r8RiZ~tt=zBX6|+2HWb{m}f&`-<4*$$=Mp80R5kU%1^IC`7TR%4;@J#T!O9+HT zOIl0=x4%bQPD;-^EeTMj>_@i|TlpEH7zu&d-eB&qreh|JZIi0ti!SVSekA7?`x9-b z?wXIld$Vp{?RnlM`F!79=xIQwU*7(Mwv5~I4EFSq!z@d!9{1|u+pYOlcKd2QjL-j5 zy64@UymQ1F^Tsn2XKsJ&BJn6i{9fq}Mo^qSHCajMb!E-}8ZjwafcRxO6oqVznJuTQ4 z55oMj=LMzlG6P%^FxZRiS=_TNt+_$|YN9t985(XZjg}5=ju}SL}MPCk}0{-ETis zzgWJrrP=e2Y_?pb~QKcl6cnvPwYX$eylx9i-9;pwHQU8>`tb8zQXIHkf^Rb=UzhR;p!?o2Z!4&^GF znrKhBZLN1lZY9V>&6P*l2Ikrf@1$$HrN?O?ydpL?X2)*h?)G&h6gn57+T^S7Zt~rY zA%>=|;o~#ZgsEj8HZSW6?nZ4*P1wR3hK*2FhiBnV`{wt`RNu&2{@0FT-(^X;1N?pi4H>&zorn(B!*Q!a&y-}m<7x(z=1zE>l~;RHeZ%3j zFU7Qh0zm~L9HAmJa%exapPwL!aa~#hEc#}+pe%V%mclJC26(^19pg&V;;zZ zn47a5E-D?2ewH#}#q74WPnndUth=@BiWx!GOxUC8BQX<#N5EFWJL9#9iSsEFQ;-#w z50-a*3#`0;e4|kh{=n0buT(G40UBC%;P^PCGM%JQLm>nr%utp!^!En#EikS>4VVzR z-Rjqu5@g&OK}O|6R4HU7MpAA6UJ*HP2%fi6JtX>5dFE}=Z8_r26(+Dmez{nps;UU!e=87TjGPdu zAAUw!#Uu8!GM^~?45}oU&aG9Dbtgp6RC>vxqk)wU+zjxQr2_+EaFE@I6dd!5wX{59 zLCOrZS>XX9;i;7U5|TLs;6orW)0jY#lvYs{fx*oP(J>}GL^ViEhfN>3QE66OrY;c!*MeMGy+HXM9Wy&|-P`bx%T>0<8{zos(9Im>fXVEG_d3H`v zC(9awjp69^RT~{Ru&QP}K?UMtiXkPvM@!CGK8|y?i5CXdIud>Gxp$UN*(_9z*3yr| z0+am#!U0BNm?W0tUX)ThgY_$?6ouXm+nTQ)-0gihXKG}US+ubZ{LzDRJ3lsu!kT=u zTI>BewB9=i+jxysxZxLFNb%gCJvU{|757_zHs|Lf-j6#r>&M1Udi8wRHj!eWkISg| z6wXYJr>L0U(=v!NdUA5fZWW`C!He=+9m`_qRu1;e=ofzE_`{83mANOUCzA8-i-+~U z-_w$0;;3tTTP5$qM>KOrtA&TJRTql`YUxZ3$0YJD?k?_}!^lVC6Y0VVwtHJ(tFDyJ zKskal^BTLkXmwX?*mCGga7_^Yp`26!c$VtxBx!pghs0^z^r)S~G!D~Cw(zkQ!H>ZM z&+*0@`YGQ0&;9(Bp?zQ`T^xI+>v-Drp};6x(=)IGFG%$me2XsAD+u0l>eJnzh<^`w zX|^{yf4TX|(q>7^?{)RSAXcCA@*6{D+>0@;0{-=#Sj&GiCen*?PVDPLuGd{PR*RFn zzlJ+-KHuz8elLCW;wO_THCdeKVLDMhINL(EbPrVydZUdi#sMSPnwl6|;=a9gNpH^l z+K2^9o7<$~v#On{{h2FfrbqW{wVR{h91WOus3QPEE~sbZgw$1g5r;ZT!xf zc2wihfY55X_O0I4F&yo78g@32@1VW@TIqN?p8nGhaqi+Nt<56;z~DYzz8k()_EZ~@ zkkzee9Gs`y&GlKfqLMa;xiM>1UOsf%XeT{to&Ecz+e)au>8q;7x_TJPC*bbeiRkAS z@lEwjxy4&$?a6yeFZxd45PR*P_Tg8*^;~OYU$16*epx-5N@)l>g{UU<+wZCPFi72; zIm%t8uHxvy|L(urv-;?WQ$xd{oerS;Gw;GI)cVoU^sX zoH2IU1*tMmSh-ujfX$GVyZzojiW;lM>>Xa4b8VRA%+}v@^b~}^r#7ypKdii-q+8lr!+wkh zzK@w9=hta0^yUV0#^AA2rp+^-$DeuKQtt*tY_6B~ZDoNF=!m)bj^mr7=*^A0ufYsC0WD=25I8E|- z>>=wvJL?9B@6OgYs*Jy@%K!#dqBEjh@DJvu`D+m-j35cr5fJx!aD@UT8`2_^6pG)HM8iZFw5i%ATKS9(9T;gnx zaI3jkWb4`^FswxI>>gl*cZeYTR!#+mlpsL3@$#+JDU@v4@X8*c%?2J9$+~AB4+ZEz-B^z zsl5*bK)8NCFZk>b71h=pNK|v5DC`U$G8(c1$&^$1>##5em4|gdzbJr6l^9YnnF`4} z7aRm1Hn$Xpz7wj+tR;$w=A4fBdUJ^Dg2%e%ocdH-Ql-W_n{;vYMOumV&o*8AjA|^W z+CDW^GyQfJMn&qY!BZwqb8>p=BO`VOI~3eG8t@d`?h{M+)WPI3)W11L7kRe@?1k3a z>O6LO?1RQ~&R#4a!zJ~6wDx)w)b|x+rxMEk1r`Z;p~C$sA6;W$`{W;1&OWfnvhmK+ zAI}a<+h1jUl8X9t(Pk((2i5bRecD}oF#8>In40PzIs7-}a%a=u#E&xDo*TJyKY4I_ zW-by8LL{XvqH9$wTHLX=oFC_G?rOQTyZSx zT$02@by2_(}FL);xV-AF5d#|7Uf*p4F=s@!SwabYOCVn^|cJLb^IIk zTZ|(QnCSY(tNzv4E-c57MxViP^qK78pt>ZmB4Z<`G5_Gfe+J~NVu`|Owx}ZSBM-Pq z!bKvEisg51^y`QV-+|PnH5OlNi)V`l#VYyf!teb44`8Ah^z}i8*R-BeOY^o;?Vd_D z>L0(1Z_8~a-{cJmb}T=|TgM%ebZ%t*CxZAc=os?hajCBl*AGX%+Woq?L-w5#wsQts zTk|Qw(CXNmH+_A57WRI1!|GPHV?kNsNqPK4cdG`p>;;&^^`WyRx3azt)}MJXWq7*H z0|6X;hhO{|ySHhK@~q681OE4?13%(tqS><>V~4i;c3YOIZlAU09&(4)*X}#wBX@td zf)OAu{}aTfUG8eKX~?Q$9wGa3c~xiImjkM|dWSVT8hYky=II`w{P~4$pvzTTF)=92L++RGl9RRU;eUrl z?@HVdQ)yfK75UHWuUwz?_w|)3r|I=Z&zQxirjW>h`i$M5b5XnHt}ff`gap?50)4Lj zSgU4t&Z2t*duP@v*&ml5y8-M)mVG-N-MQO`qBf{ee_E2IX*QE=CYL%j^$ioygP-D} zUyb-h4&6QC(-Zef$jfkdBGoHu^WmW!MqShU#Bh}Uln zde##9?_RK+?0n2hhfBRC#)etT&*q&s2UI4Hiuy+oN`k(cEv)-oe<9a z+Y1B?5oQ8wVerCJ_g_#asawdT{S^p85_G~kdu^@hF_(SO(+eK5m#+Wq}s|2O$-G=@*xj0Tnhq$x10R} z94c1MeL7Pij~`G~m3R|Xkr+9GGDDDJik1sv5e z%?XDPDd;c##(fx&T?AFjB5&wdW3RnufD$UjV*1YwvHC;$G<5CQrH9jUcMByj|tM#_ZV^ox_P>TMQ%S@q(62|4ck%X5if zYEBG-(VhXz!_!`*Ir|`?-<)ls_FeXzUQ|%3uUNuKkelJvKD0hY7}_2~42Fgq`O?8O z`WClcvuUxxzYBC02cJF5zA|)SFZK*e@?IV`v%BBvbJg^NJ6`_sSIe)S=+J~!HWd2K zGv4b!gljw^TKuers0KvAME-|)gQ?C2#OS?ZcVTxVKNH_;wE#^^+P+0s=OEgIW!d-k zN~NZU((xaU98F6&*xyD6Z3EGYDH+`znJ8H+A9b%H?>a91;Y6KZtS8C+RL%{bQcT zz03(>1w-x(PwrdTcg3vvpdjp%*sAaTMAp*S?~O>7{`y)-Yhcp7fs>Rk5XK!%t!6pD zn%Y~46u65mbo!a%zB@q)H4*c_o7OaUhq;|zdUy^hYIk@wvauJyRYl)lyfWP?n^TPX zGn>1;v`D9H;=j+f`};Yia=;tQ$n9N(L$j_!3(V#9LzfZ+NA-8lyP3%sLLXcT`JD1$ zIW%t31i?RdXs*rCb+AhzYL46991^uWjc(A|82RR6X_7U{{&htPC8r`Cu!hZRhoWANZjCN)?=D5{OaWVbGOFU!q*b{#xB?yFhMkiOJ4GGT z?@S!@zS=7blyF$}gOGsW?H2!24K+0sCWj2{?A@+SncC>&v>=#DZSlHiT8*>BFy`uE z+-2atm~Agj1wW38K@6UCQQ5NWk-QM-?B4_}v(&3jCtN{FzT5Srmf^_L-Rm+k_(M&L zD}>UkCpV{m`MAV_vIz+2rfU;3oe8C0Q+o?WNYRV=quVoDFniX&dOw&`r4qS{Ze86w zZP(A-e)(@&G8{ZCuQMZtf=%lbzSDwNY1n29l;wnq37GEjK&zzO%rl8|X4(->rBv{r z&5)B|h_)~!$He>lc;G<@`1mnWW~J8{IL3)EJilrT1TQr6)cFA409U*}A!R=r_$A=r z?7b^FmgD3Tl*O!L<&UOXY0iNygd?D@Rr{aegB2bR!I+C@lJx8k24Y_6h~^iJBxUB! zIY0M4ZdlwJuK(28*RBv`4>g7dZBJ5Va!sSE*pH_(RV{eea%%TmgVtnWFX|uCOzq)s zan7Y`78WO|Z?MYGlp8jC*XjPIh9<7ejT40eF)z~U#?fPf6GXbLaBZy|x~4eWDNx2T zhN5SmiXwqz+oFc^Afh0K_d8p9V`7cYZ0cDY|~ zi$Mp&EV>!i%;1W#%vF41_Mb|L*)J^tF$1;(>PQCz7KzM|i&f?!P4ngn38w%NMs(jV zqQ{t^Y>^Nk91mgw@=RbbIB^BsBH*L^qA=gUu#Jh4e2KxGHiG}NXUgN*ym)_3FO!EK zURssrTxj+&CnhsWeS8{u#HZ%V^yu-D#2cCC;>oF*duZ$#h zM~4eZ&YqRQ_LIFaP%x16Q?uC1g~Rv!KKZ2Ng(lCjTJO*1ma^XygdKC7aCq1X7`j7i z>;aQ)TDSNH>d#pRuBLdFpDWXQG5gfHxFnGk6Z(m5!VB)tq?b}U_BU+gByDD~9EZXp zvQOECVh?)g-M}q{Ls4tn{!t;3^%$p}rPitHL%Ca3bKy61<~Z37j*esPR`0|X<)H8+ zyTesqX*JK?YgJZ%xSx-I!aW$z=5uRKW5!A+?lVkH{3dc-)t&F*K|cB0dAtv=^_$1; z-6sTpnc^8+x9Y9G;f*jnsVF0YtzYkKO>hr~~yGXsqbYWuU@OZL~&GCb}nW#HA z=r^)!8cV8dK54ceKUfnKWcvxoWkqu(dp_#^j1TZsyinmxlD?&O)TJ}*OscA6%$?gZ z*01M&hds+m8znij{pRNSIyJ|2L&LVwih>CKK#qRto)fcu$J6V##SHl0n+&uh26k^} zdEb;R>I8~EhlX`jHubE^n_IWxe4)924mj`eYa=bd)3E)q2iQz}2k+SPbG`HL65h*~ z)6YmOzuV;uh0YZtSOAmEnB2L@#TjZVW_^&eJEoc2R9m-QksA>}9ZZ|p>`Hy6U3V*; z=q>w@d)L?@*Nw~1Vd5GyOq`j=)m41R`^|!LaNIY4K-oY0aB`@jhT>!zwu@AnB_`09 z9Z&da`?rnYPIYf@2~RFB2Se$tTQ8YRgF!w$-Iw(ZrwHM92N0pzZTY>D)$}i1NyKXY zKvCRpZ$#poubJK7?>0^&U^dNuPOdXW|H>cMckDX7HApX}RBk04iU`!F*z27RT^Vay z-yS;UvSb<-u-tCCdDdZae&Gn^0F=T_Ze`{uclQkgjV9`k!Xftj7l2=GyX(1IKUy?3 z?WexF)rUM_v%{a*Yx`+?Cr9YFxJ+E;dFVuq+Dy=n{KKr?$@g!dQa)+Bx;oGowti(@ z?;b1FS64w8cFQ!hCSWaD4jiq*@U501jMpMY$B)L^@AMeu`&jtwQ=b?MmHRh)tC$3< z?HQTet@&LAWe|c2JJ%~UzI=!)z%Btl^20QtrQ~vkyH?@=lt?ot)WAuYoi?Cc#Flk9DF2eF4 zfsDZzxUM21Kw3NSw;cWqT+&2Hf%CCg4-2yxGpR?y1?R10g`ol&a)j6!4+6@?!SM*qFQ?XCH_o zx_1@ZWmuc;TvREn?pVWX-&IHk-L=zmn@699Rj{Yu_|KW{E_~BIy}7Uw`A-I@zJUk^ z;LyxMcpjJlRKYjOgaz@x<$Uqk=^X|$zp1R@(bsc94mpY?y(uGpr|!V>+Hx4DG!Y1- z6tAp1S~ixLDFUg@q=Wnd^BA9t&CHbPW}Uz;Xf60A=4KHxmk~ft`rEY|^D}YKQ~OAq zAPSXDIc4> z#?Zo_mC-R~A4Cg2yIKSHg2gnOpMiD({l=wje9ozea9Tz;iLU7grOTzPW`TjuxbtPf z^2GsJFh+f^vrooP5MeP+jjYP<-h6|E?t68?c0N0r2{zAg*V#zF1sqkYkQOoYu8ckx z`#f!7G`*bh+W*>cU-q+{etvPtbAS{zGqrNkVeSOQ3=g!0V#W%Oh@^$}2Q%wv@Ph?@ za~@D-RC=LNWE8%oi_zQ&UZp!2hNfm#YR2;eIw$ovBgx3UTT~>`OU(|!|QxO41 z1qi~_+7BHT4N2jf-}OL8^B@7M^7yO%@q_n;g0*mYXU@8(p>TMJ`6scA7vSm% zxKDR*)h#TJ7N$9W(zP$Nek5Pmo6;7r1hORRj6J&QSA>m!qU?vClJ`Q(9=-3tFyzRb$7I{&$inx5gl)@=E zwwA7a86R5ZZg}QB7X%?yC@|_>j`w$Fva?6;y-eJvm(e|m#`Iku`r*)b;UCJ(>EV0Sq(ItcJ0Lrn<1wvdi`{kq_l4SIPcDH+y7qp zz3#$qW=QD2FS;BZ4Ght}PJ0V0j2`S6c>XB(^F1j%24C}qmhn?;iV#a|y+>a*-5lCs z16_ZY6}8cXq0yU`pW%0xigVpu#LXn47EO0n*!6QmksBaNc75U3#!S&M^&Bo(QqHt@ z4Hn5zxUd&Zmp6@w;Kv~7Ma*%{#S;j#2j};+F|I|JI&7@`MV@&_)28bhyAx%s=>u2% z^>;Veouw4jP{LaV7U3Hh6cB_EomvlP>vMGh^t^iycC{Ec9(Vk-5>ZQ^bCkDT0GgC zu(=#oXY%_}DNQJ_Pk%8qY4Tqrkgi+)Osq{z;u~4jE{`gwV^Nu}0DH1l7k?+?am0AB zakK5k`iQ3K&amU@%Pp*(+Zn%nMhK2zb2jthRB}#4WcbR~urLET_}&>7DB3i+jEQ_W{S@+OAKj*3tApn2%Y{QDtkx z@gnRO?MylZ^!a(vZT$Rj1V8AyxNkj@leR|35@B#&AP9W0lLCr(5PUkiT+Y2M2Vy2I zBuEO$GkMpZ6DJI3Da(RsnR_Pu^9K;VS*ND5Mm=fHjI_n8LwLh+T8DQx7vw&W0vFz3 zvox$e>OL*GxCoYurNRm59UhT0&z+~X(W|3V364!60YTMIKK6l3zQ5`e@{zD|KR?kz z#rO^!1Q5x&a1^!1!8JG?5xz396jGTHjOFifmKq!DIIzH@BPfn z2M@HFJt1NZ&Aec<2h_wsppW1f$X+_YnTfst{MF%p#UN`M_k$3+a`O%wNfkoF#niLqK-S#tRKmz=9#_n zsFBB-uSd7m`z>UJkz=kH^SF%6L*!M6H{pbL(av{?bci#KjRl?NBcZx7A);$4Y8Xtj z%F5l87@ffuLCAa-gkN76*0v^G(i;|uGjcm_TUJH(&U$gF@S=_R2>Gdi!FAs%B`FmV z3i+$2VQ#ET{`YFEUg0?hq)@-L4eApCX=A8~H0vtq5TjKV2p?1Dn58;F_0+PmIkYGJ z*y@PV^3o9p3MKUfrA0xo^BlSA#f{-3b#wu(^jtK(;#%)d5ZS9PGJ=+=_ARL*JKK~L+TD62oD#zvgeBE_(;Jg3NNRi+ZIGUd#n~)Z2jrxCc2SY{i*ry` z1$WTcbiJ)_aD4{fw6V6sem&)Seds{DTj(66bA9^em+|cGZU>f6yrm7<1|S50hjR|P zO2^#=#S+iw@wUjHWSGO=3;W`(1s0j`nnyQ(2A==-hVK+*bKWcIR>bU+yx9LX!UEc3 zQ8qC6CHVEhC8c}v1}f$+4z}@r3@6@iV0Kme>WM{k!anP&w0R5w326o<3LOu~>YaM* z;&{1}%3`tC<&dKMQn!vHDA=+ut1c{ksGbX_uoYzGttT2)Djbo*PkB^7(;j1>8R(JN zB6C8K>20BQt4{gka4c$qVB?W>WZ&?AfkeyZ-!U2em?HBm-4J72sGnM5>J%&u-HyAF(LtVSSw_f;ew{m*d5 zCw!Nc-W)i1?y--F!80K~pZ)G2Vlz~Jn=^Mxv1p+?YK8q4JJfjP%_WnHYeV649i6#R zxZ!w$%%a99J3Kg|dJyC9MO}aGX2%jcUs_#t>Pk*SXk_I?U1g%Gb(lSud*V$l1QFUSpXXWl>Apxq}q#wvsJiaZty# zv<9x^cfX1HGr1VrS5(n*@T6lOC6t9Tocq0o3EIq!SX7Wmr%E6=O+Zdtdsf~!UzI@h zelxm!vl?`zF))zXT18i<(oJR*jx3~u9x0PXR!lUmb!Pq zO42P6*tL;|+b2hReNMdLc-7cRB1K3r$~A_dUm57qXlTZO1z{L%;F={hvc9!JuBH8i8{h|HX_J8GK8HZ zETY;RB0()C3kU{4fLswCqeGCY>Iel54;m81(MKIER0+nWLO4~uBdiwhe#x&kj!5jidQF(*-{DX-4}MgsCjezp@wx45)*o8Yyo z-QDeYIidA6h~Yz#QnECVA}J}-?(_~r^_d4sQi|$Os2uPEY9@Xh)cxiy|KvN331z?0 z3ryt{A*DSPHHL+U$`IYI*G(cKmq)1S2=FdFE=6lm`J*hX3i!pUT6nYX;IQ8Pm1aTA zohue3rc4Y(!5GtQ5oe+bUYe>pNURW${vj*^RrUCwS^xpOL)fZpf=A(X9}ne@tYUPP zP~5lrsLd~<=|kabZQBV6)YSFY)u{M>%tMc(dg6*tf!c6t=& zeH2_1>!Ua1ijWJKN;~^hMTtYMe)wUSUBc+8^Bmp2J_MHYx{os6UH;)<)7Zk`11wUJ z9mB7nq*}py;~F323B)pH_3nsCb2-@NXM$9eg%R2^OgO^8qjqP%)Ud(Xm;&-UAtSZ% z0bMaGQUyDe=a6?Y|9z~P^p86R5MG*kAz8q~_(KXx+9JG5))ver@DW$l_~v-UjVF1O zD!ddh{NMTcX^{I^UeZil1(Ng}oAoeRxz~BPndO=pvm%P}$-)?`fhJgfk8~9uO?z&r zdU*DC>ucY@u9k~tP^2~A47k30fi}>&LbP_V^BELtL>N5JBoA`%pK*;o=VC6dw;D9F zTRnFuZtJ8AEM3kFPBE6ec;)bD+fQMI6q}Oai?)_xK{t(k*a^Z^O)D}A*y&~pvz3HK zZy&8XXYis|TF+-cw2+MDZ!yrv_APJY5V~N>*XKJr>yc$9P@-&*?iD6UH~i!oy7qMD z#{1FrzNUp0MAM4GsYVe&)XtL5O^7WO((&rDNY?JuFkCFX&|F+=+Df zZFu|neF5W7diMVmpU?XsDj;_A2<*MMvo(yUVlGr%abMKK3}^l8vbo9Y+eS?XBkZY)hh^Z<==X3w-8HpZj}ysomo z>vEatd3tKj?dv;TF%Wl79siKf`oTsj4K-^#X40u1(dpODtQ#x?R}B}?mj7_%jd~SszJfkz^wQB(_mO-bW`ga-asqah6ZX_TaPO~FsI4s>zS8!@sLF-X z)eYU}r0Uhx)sL;MRrSJwNc*(?cmMeBJWGz+V9nKU zu56z*C2UP3NB#No|A2?u?!PtCvAAj)_6iy~d~^9H2t;_wuJ@;iW^0TKkLq3;db+X0 zO80lo;pz6HC3hWsE?~Jo@14Bu<0o^G+hvtKQ9C=SS2?B`2#G^E{KFd?@ImxW+Sz~T$R<~U7$v#1+ zlq5Z0zA~k2($rw$o25~haJDI<3crFo&XUz`539_ub)l@y;Ja);nr`hl&T4~1>h1R3 zmFhRHgRaLnS96CVLxQU(I2<~*>|dziuZ}Q+&K#EOSM8`zX_{Zwj+z3;xCe+bo)B^i zo7!;;0gEOOI}>0DYPf!PSXfY10Oz#>rEyuRAH>6yq$~*yg)J`J+}UB3&TWq%4Nlia zd@o{ex9+`t`B?s?NTa&xw#C-zpM8z`*IuJth69ExWB#=_lTC26ntFq4(R|=vwo%IEImN}~vL14)$_fT_?~zG{ zCx8BDxcKNXIq2Y97vHC5eD@71J}XPBbm*%jK~xG0OkhGZHdQJk?#~m{uLBel)r$2! z{4{eA6Dph{Ac*1Dmv+CVBBBa(4lJma*;Dkft-HavI-k|7Hr!*`HYgHWtTFDLr54U3 z)n%wPMlI@~9X{p2GH}Sd;i58o2oX0 zq{3db_BfgJv1OCb_5Zv8t~Su|Y}6;DM>?uKpsx0sX;kRq*6*KvdRc*>C$e1IewCSffp+4YZc#&Ju!@@W2^N2u_FhMsJB!vV6 z&ij13U^$JuAGyaG8^qI}_K}E%u-ncNqA@oV0M^dLN%AE=AVXjVA2igV>csVXuI9p9 z@@rM^G*x-|?yr83CZ(u-@QCk=sZi46LDqJF#00?`i3O;ll1rFoeH2R<`0G{fWPZ9> z6qmt7C#+9z{4VT-O>OqPtNJd^aaWDufr1w5#F1j)dF;B1vO%J3d;(eTF}=^}vGBDHjnV7(L6xBG-^<~qkg~F$ zN=vmt3*$110?!}DoHshzg95YGFAD|1ZF|~`ugLpVl>@71c^jiYgu&N(1I8F!Xm`)~ zFSUOA{5vT&fMLjgD+@=lx7h%?1Se|#+8hlk_xj?erM{?DPD10<_px7t>w&cezEU@z zNPGC)(jT7Qzud!X{@X*a?XoC8bzjE&*!yyKQ}TZPP`_mxBwn0iE}4>N@jx!F+x~ps zgS`q9&xv}kRr4My(-J{m9z=)or8|$`32%_Xwv`J$Uvq778e|*z>F0vh*;_RP`Ga34 z+C=O|s#Dp4fp=QHVGSCdp>v7}Mf~-gG-oxKESNlgrda>v_Rgmi=c zgH^bmf#p7t_w%=Y0hkTWcua|E`0n$)=frFJ_z}A(K3)+4IcdA|?7@JbPT1FK>*Hfb zsMpW$r2xOU$ag^@Jibr6Jhn1B=QTQgb;5}B@+r4&@Qr$5WLr3(JgD2!xu>7SevxwF zsC?abd5UG3ZswcOt^ImrEnvg=OuNJTPsn?!V{OAN`tYD( zaj}7Q{Q92b?<6!G(D*S)~6o|W`cH`CE==dtOQvE%8rAI5G` zQ-NQ)51DQ>?M|ou|KO7^g8+ch?ysu^OI!N`vUh^9eb-OWZ+*oXPy6s7oVFJaMQs@m z?R<62b>#)&palXom)w8v$0cqJURF+*k6L(7eQz(_wA|I8JILGJ$B9}>O)eIbk)fU_ z%`L+@)z(F_am>KTuX>?~fv3*Zx9YAxGdXQ&lG*Ls>lsZBBL;@-KO?t2n(lmHN$-jkllf?YVQ_UiezONJzn$S{0sx4db!A!>ej zmB@b4)W`fD8LTrkZXa1W$dfy8yiCq4t_wB0yHh`P=1Mj7U%43`Kc5EMMei(#9+sp37+}qGXtKOsu|P)m zD4FMsB@Z8R8i{l>^9ejh5MlU|4BkFg5;wE4?}~M{jajXD^6|+>8OE_Tt7+tqmmZDo z3JR))5IM|0WYS8rBHJ3OsZxBm?)s_vsGW)Tqk&+c8Pjgy&|+}zu`p=O*?WvDj0C=(2HQ#-7y*7%R)i6G5B z{Ume*;ca&A>oicbqRJ{2+MLfwN*NXxd4K4FvXkOaM^l2{DoGh?J|qe&a7G{y&ai<- zN$=hm(}zeTz;K@)=k|c_;==~O1krCH%*cU6n!n}GFW~?9BuO;M8afIj3xF50F$QrB z&SEGVLtaDmLWszH1Ck|)2f1~U>Xj(gk9N%E2aFChoKyq`&sYe>^K)d4F^rtmwObK= z15E}Ii(j@Mu4-TEJPSf6$f+osbu(Fvnb7~%*@1o_2UcFaFdO9W6>4}r_vvfK_3VA~ zv!sVkrMnnu17d>O5FJHb)vxREAUFXEP1s4)Hkb zk*FhW9i40-ZEYber|6-eH2+AF0P@gpV3O1@53vOW5Rm})W{(>X5Z|tUusqI$7;n-Z z-e}NNbEk&vt!QPX;-P>kCX3$6G62`7kW6i+6}*{><)W(_0c1>tK_IGTLebNAVo0!Z zYa8UG84_s)g^mx<>`{DK8n#e%huqoQ7CU-gSrMex51}&sBS62L}?8hw^ZN-ekFWNl&1m*xZ zd_nHUn1}7aXV-ya(Wq?CjJ6_gQF~UJH>jPwff4aF*`~zW3F_@wl6DeObt-4Ur)+g^-a(5tXqUOJ$IyLCS6vVeI?9W=}%M5M>M5qLFj(!dL8z%VWvuI@Ch(7U%4^U(nhC3vX+u&Sn}~CR!gUdS{(!mG(CdbgoaD zV?%kKy^#JEa-N23gzW;24bk-TQy{3j$Z?M2Tni2v_Ebbo1Tru7#lN#FW#GR~M*Q!1 zHkg5j(Gb^IxEO0C&)3_U?rAQ=lwa?uKLtWD(m2prbRU``q;1!Hcdg{Xmy(qGf8CW@ z^u<`EqsxqyRdK1;Tw0|zRxW`|jT<%Rlgon66P#Y%FjRa=BXZaLn^mpV<$||(+2nH{ zT|EBV;n{khcn96~z3YaDY&*CQuc)mE#xBn7*k+%uRgp)LS&x%!3`KjXpz2n3EdCtPrKi_-wW!Da-h7inAIe4bBg`4SM#A|d(`c6!`t`@ z(i^rDYA=cq2GbViyWg^|%>M}Hb9K_J&V8H)V6!$a4I1sz)B3Z&jouqe`IG*8#WCJh zUb8>XcIsI&{r)z4Hk=Oq`Iw0c80a}%KU>VU&Qu8emP(28@+j1P zmy&GS3)r4sKO;`=PYd0`r>FSa;yr|Q)h|V^q)9lC*H7B+vvrJJ1p z)X}qj$)a&1b{ zHL{gtZwU})U!0)^tUy+t z_RIF@jt^7j_A04y<2gssAMDSn&eq2kcs7e?=OD%!1-WPkm$a%?*_ip|$%0d@CG=abHnnh7-}cD2a--<8F1-a$iGb#xt8 zz(V8py<+a%B!F)xC75cc@x}AdF#$j6OVE)xNF0uuU{`F82mdnr9r|@_ei&_T8y1IC z4dcnm4r`(V1o52&fqg-Os}`^+d(CUA;N#^T;PEB3k7LVJ$1Woe1D4)n`}OSj7{*E} z!X9D5nnxblA!z?94O}LT|D9U`!|(C-pB^4G)s{4Z=Ms$!6^@!N7~X_57kJ~E49pPt z-e6=*dU+=rzj+2AGxs$6DQ5L{ZJE{n`G!M121f40&L&}O@eh;{l!W|(fy=XZ?}OpS z1`n6e6xEF?a}J9DAjEQzbNUc|9I!hup@^Qd*W!z=3XEL56a;~gVLvb{t&|B+mA!g3 zCqUU^Vam#fbE6@&S{N-}46|oS09Jlt%8}Fp4EMwA)q>*o1rZEw!Fyuud`%uwVvV>7 z&plDCTk9F695DntSFPI~a5c4&1dNt6s8RiM*K)yi^dqY~)zpA(TTRJ@0Z2{`yRQey zorU*zV|~5vLa}5GFqUngdqYZ092{R=wW^5v8^bv~Haq;g)^p8ir0!Z0M%lb6RUkqH zkqgF-UEEetthg^hkRP1ymZlX-E1gKJwz7Icc&Kj(#u}Okwa)WdLzgGckx~hEM*&FYRtMjd#Id|b|CuAyas-sdx)?5a6zIn%>?Xh! z)!6`~hDJz8OMhY0W&1-pI@W`&f5^-L;KQ$pi zPhI3|_@(ySv6dsb?5fxQ5V7KeX|4~{)xmnu*N3_a>WBkCf9HROU(K_?=b-j`eFLZQ zX6vp29{w4%p_51LDZD1{i#fLX2d`#k{PI|lPGwZ!t9tUw&HRbdIU`UQmO?@) z=Rp9{2CaQ)uQVi8DV&nY?s`0bE4R;LRtue#`6s^AtQH7m2;J>|SELaXfL3$i=>>0v zGJ~VC$WpS|>($lMYsn>lnk~g>9)ZCic{P0JavSc!@W*bkGOqYVSvUqO9GfVR^K94x zR#T!~B&Y_#Se574MMXC``IE_Z?jjZMiBvQ#4}N^jdFbGEkPdgTDu;`h(}}p1g~~2A ziM2pPx~0B7ckQsE#wu9XTMhN^ZRd+c1Q~gFuF$O^-DS;PNbzje`RSj()fDu-&xK=Z z8mhVSTxtw^ZrxhEtfl=9=nXz|+!YzW6uFdEE72O~oQ}j3)}>7zF;;=J!&7-JEk&IV zp>($)$vRoeO_vEt3D1aALtIx+ zQqBg?_FGX0r|W^U#W7F!ejoHH)cXIwYBKX|BR}wT`t{`5oZW)ZdSe}F5cZLZEpVyG zktz2SWFJ{=DYOJ0wz8Zq`OsY@X!krg@r=IyC1o zai}d#-`UePH2-aXI+%Ye;Iy-+vk>p;EpCK9NL=X4N$t}f`~9$gY?ts*C}yyVSDvmV zz{l0M>V~7)u61?A_TLGcg4Uy3LzaIWK9kD*_P3X~VoKT}bzA#AwyLjQmqb($KdWW5 zP6iygecE~5a2D#>%bRRC`LsJYq2C%m{?XCE{|H+_-EulL8nbr=1#zv%=UpCdB{*(Q z9v-HEn5YF7)ZtVGx$(H?mcO6t@O+-8ak1liULkRGfgCR*jMwfd*dEek=~Q;c=JUzpIgeq5x`tv}g) z?~O$tzr8zhg`l=1q+KG~m%Oz7u(ikPIwsB2<_`Pr;h(tQ1i%|k5mw44qH1<(U{+xwdTD5X*ZwwxXm35w=TK`ay`HDG68TTCc_LlG=))u&@u-aL=?MW{i5 zI*G(Rs@Qvp606-p=hjwQrm3~`?5mfP_i1~mFAJ~n`^@5AZG(!ZlXJ21Z*MaRJcvrK zScM3T(hXitI4qHPpGT#x77_`D5MICSrOeYQAQ)Wi)Du>vqCqQv_XV4aE?Ru&nZ{J8 zaF+Q=aDEHdq{Ow1%(|WSP*s+-jL$%eka_;D7OhS~s|8CfFg(Dhhq?B$f&Y37cnLN2 z>uDfn?*_Yo1f-mFns7tQz6V(CUs9S?Rb-*e`h8HZYIl%V%ihqS&AI%53HFzsH}-tF zH(4zhT%T$DYi@JloygJ=bp~J&IuSF41~#F=!(ZU?>w& zq&mmH8|HPNs!a(H{Ow4yGL=tu_@`iyBXmhLn{V3Qzbc28j?SM`o|4CH-ROQ}zfEgiF*;$V$N^DaG0O6v*%QL7U z&Ec`-Q{>709+31j0{Wlg+=rUpT&He$yh=P0H9$F?GK5aDa=G?kZs;ss6jYC$EcUFBWMpu(um`kf_ zEpC#=rIJTh+A%jg3f#H#$Hne_8%oHzTt5B^zv>|QmbA0xQC}dTUVJ`cyw55;4+yK@ zsTV)L#R~_X?M%7|X>0!4cBx8}qraOoj%Pin)P?QM`DB8=!{pJJk)!;#@6u-J@4QQc?f4qGEZCdtw}cQjIzk$00Y)6 znkGg%M!GWIB7}j%d?wij%Psx1g^kH5FNy&6^`2L>9yA`U1IL}c*JquexU5z@J<8@J zxdd$dziM-!SCTmnl1A6lZyu$4mNcxgn0azsdeUovs-IYG zFTW?9*;h&+4Sv2+oYt8;C^fV<;bS>8AGp!~+H7rLyP_(2bvDNPA=lK>>aI2_;E}*% z|2t&sqTi=02V3eHJ6jDI+Rs-bP2O2m5Y7CKIn2FW{C#UPChCTZ2R!U;)2ze+W;VSr zd_nAf-P!11R8>Xy#B9fFI|emgv-QVYPw_IONxv<(=tGvqe}&~r*h!X6P+z;vCui^5 zsCVwSkg`(;<9SJ6@OhxLcoD9&;JVzt)*cwGH~5w>o{g&ZHJnYyI5uugS;3C-IyV!^ z))FF>PkNGF6|5D604LGJr{!T}p8OlRwB|uyxARA}$#-)97ixb2<>Tj5qsHts+>^Wo z+NjL0Q8w`mx^`hAG+-ik9!MXk>Jf__-=*81JZ%QPH9u{CRu*JPRM(^I1Otxe?wETA z$k<(;Dn8m%INDD%&W6h)x=Fik(zT>jg_D*32q8{^>U%b})m&W>eU5$F^C!fYgkjyC z&e1<>YeYTfwxv)~t-C{-4R>$}84fr(S3)z=Luw%wcvYsQd*5%o`se0(crXQEfPoJu z8sYqm%QBV)2&Ic9u6k**nd7rR4NeK*w$&5jpW$z%Qg0ODs1sazWt7=6$u+yrq#Nr1 z(({VmQSRH`-)11({IU-2PHvKo@CaHBgBchp`bq_`E_@#4RU8@-ytg)l-vi>0#^Zj} z+0P?h2TuW5Ws2@?I-VeV_%06K1U#)n6%hnja!FQus zRa+ro6IVa_0EU;35>Qg_JZ2;XnNs6aX|kwonMpD;25MAo!Ob26|J`6KWjJPpxX~O3 z;+i`v=0`2&ch+5d517}T7V0D`z6ck=-`?yB4I?F&laL-2AF7V&KR;#t3>i|S(Vzl; zqL92G9@d*aswzJ;YyUV!ILXQZ37TFZe+S;PVf`;xueaBvWCh&42*pdnLGU7gq}d9G zDpR$kRJJBJBcbq@St4R|DOfH9O|=(wqw2l&5VBSL^pti??)ZdH7CXnkqJ**-8TGjK88JMn$3h40Ks@^kf<{8(Qv zy<23kU{CrzDPs9>h7*L@UM}m28;x%>q6=#p6Bi|NB|u@MpfJj<(nN}N^H_1&2Q75U zkf4y9cvsV#$zu%S0|n8DO+iwES1T9pI{G+P3Dn=R9_`T}cvIc;+N2N$B}SznigJsJ zKbV^gW#z9R39p>vgRr$DPaqq*N|cY(n{n*2boE=k*&Z@H9qF!=a2HW;JMKfuf|4Rw z;%d6<Ro0p;ZlQsCP6)T)?!cvEaikh` z1P$#=tYztAa@Oq(tr(Df=X=)6d(zwZXJ!<4J5wvVId`4zrH+9(UG=y1+IoO{OicWo zRx*(+a<4MPbfo=6ETk3k+vk|SbiEj)UvmFPL9c6T|Df%jt=Aldj!;ecEvfhFONn0_1QG< zsRw>$XS}}9_U2))*KP#?J$ZrbyuyIFJFcv(VA!v-(iXsKqfNiYxX|87KZM1 z<0-l*{)@#t4Y=7{ZhzAt5D9xyT)?Kvl114+`EzgX4gVdRcRVd=f1(?N1eeqPB=GIB ze8AdK=@MlAkxPjT)llUhkq7ddXSc!2htyE zYc06bx3>QVjWR_og$2ybuvuTb;DR8#r)rJhE1rnQ<$TZiK>k+EQ_~U<^ z0X8X7hjYO7?AU1X^fBWH-VV7~O_SWD_-g>Cf13kS8Qy7?3MzLgX9#BxeU|b|PoIQz zH=!*c*9_WbL|6n44Y}*<+uXKMd&3@e)w(^n_UP;{>aee2ukUP|r4iT&6uj@@r3gF~ znmh`1tn>WwnAfD_^e~3gw;)baqWFTCBU|voa2KTUbnYezRsAhdIrgxk@u1VQ;UEm^ z$k8QCbk8KSABhhmqUDB`BaUz6v&2~^^45Rb-zYk=LZUKq_Oy1DO{rUdoOJcw%51EW zmw%U&6i4a=ODTW8IV{%{eQsWtu=L*MprL; zd5}y*hCPQ|92!oFS%QUFUZW1S*)|Sd@ZC*Z zdM1Of)Vv7uja|hUf3a^%HgSql(#&{YUnAwja-5Ai-D0`2CQ-mxV1sf0HAFo9*_G1t zEU;8rG1?-b;~C4ZqF^)xi#|9-AA^(4Ei7p(hcm5`yzCd2#>jvpiLV<1ZWZLrX!Lg6qSbqftPM>G{qLrDn- zqot({12$mg7PU!N!c=PjiXJXl`uLG@iKveB&sA#-6JNX5kZhLA%qI6K^3MP zPs#P;0fdU0;1Q37phJXnM=Ry!Qi0o6z~0ZL&d#6Hr*$^V#>VR98Q6F|^>Ps>L_+i% zfY9XxmC4V4F)Ts(9v+vT&Z~l7+^xZyJ1>O7C}3^Lp8E-Kl3ynhs{A8mAEBmWu(3V& zH*{~pdvmQ7#L|uC6q5~=_`}jQdWoV0N;Sfd=fC{^PYXcHPooCmN)e&09>G;7fs0f{ zq>(+}vlA#B zld#b1G)+hkNSdaQHA~zTl;7W}xlihkuG4s1b8m^oDZy~Y|4GdoyP#qTMTP1Jsu1x7 z=k6&e)|uf~rM(s}H!9#5y=z+^aQwH@K^R|KOMD`S?^_m@_ua)hI-brD$rdo;Ehz7?{N)y$Tt-~{FG5AAPuXZX>jcA^xX`#HW-jOq zGd}_yj#2N;Ey2W2FV8H`Z9j8#Y_v5*Bqcb%32Tvx^B=y1jb%f6TCNZ5Ljh`o0+ zrE73Tf%wW?H;Ym05<&I76n*9g#N6!nV`}_GvIn6TwlHD;>sI^?tP*pD?z|!km_C z21Ovum*^tT)cWmhNBR*UsMJ63Mqr+JjuUsrt^4{=r{GZ+kp^qH!o}O4NV>-&+MYzK z#I}khC2UEBL$OTC?V`vqn1*PAN@qvJ(R#h>p=#sNo|V17t1D-kt^7XMy8Q9i(mGxB zlEO+>ZG(K`m(an1*x0 z4580@&AymE(&xS+#&PY!3^yGlo-a5nn8psO_oM9Xbef;q=V|uK-^;=zK=QZe9^n7g z_1~}|ZTXeysgWVhZ90Qcz81wvfyg&denrZD7Iau7l}Vp1?E@$klIX@`vXCxesfu?`lUPi9}6MaYV-PQj~^Pg2eWs+JcxCp^3|E*rm8f55^V9TdTKem zaAt+_uKD7VlK9ka^Yia^1jTg*KO6kMb^TpoyH)vrU4l?ja;SeY&v+U%J~DVIiO@$L?CY~Go$mq#*qg&wZ0uMYhK^yEQm)U)-XWZ5#*Qs`q(66D(2k!Fkcq=z}Iwh}Uupj471|HgJ_g=Hl&cYuZ)e;4J)G8WNFbRrOmV`DgDmb!^di||4 zviRE3-~n-FxZ#x2sZ8=@W{dnB(NwWQ$j}<=#L3v(c`urbTqjDWFn@rCog<1DMo$l) z2R;(pm;N@MHBKHaF9lpI(vh(L97nSKen8)ssURh9#9~Pt`T@MjWs+`Rue&T~UsSK= z>mC^B?eBeCb}@2JVYD=bOvXQ#weN5B6jeBwGY?ci`R;FLzh>E8IC&O+ciX@J?ui%$ zXf|Hz=_ibQVfKg>Z;O0Iz&>QlWye)m3cQ5EM~5CjX3PYlMAXck5JAi%K|RSD;<5zV zd1ihZ0Thpb0~9XZfrFUQYMIdUA=uG7MGo6k1^5b4+~M>NZoQ790xg6GL6UEOEGx)o zah6C9Y`)jIPzXPIX5j@jKkoJH;wwxvGlX54DVTX$1PNvf%7mtPSF2Vl6>KYAWvezr zci$blVEeLH_Q*<*{Zsj}Ck4mJ#RblLkb}CBi;1@9BT8jzPWUdYoOtpo$oQ5?X0|7- z%*;4**Or)-%Equ;s+X%5s2A8T^8t|*aYV6P@GS-tt*`&8`d)#S1;*fmL;Fl^?NNla zko#N6^r^#}7@>Y3gY-V!9(B8YupyK=`FkSD%*oH~dkQXAoNJ7Vnhu0jbiu&=vYZez zui$538sP)w#k>i8ovxm?z09!KwO72o29ymP8aINjv%rf4!?(@>+)kE2Yy^8ZV&>Fi z;IY;Pi+hwKm75;S@ka13npy3aLPe3s` z@$BsEI1NV7{Ulx0iQY1@)D=Xq?;jd8Zmwnb!z}wNTg1ab`|^8|gx5@Cw}j|l#OIZK zbm^T>V zD+|_de$s1S3EZ+vxFaBptPGvK6EMlfp0?bm?*XP}m57Y|eHhf+!3IbZkY zDqAa>l)z?bwfM9+GPquTnURKhMd_UUZ^bYU8cL2btasnw#cC&)7F@3s^a7(fgbxf% z9M^Qp-RU)IZoro#%IM#Sv`XJZypv-Skk;*f&<|2!y`OPkQpM(|gL!A}A=7|JcUJfn zCcDV^C0TW);D9Wn#H;oykO2vmKCDvjw*2h(QG{m9Ir4iGmIb1%=B5n=~2k#nY~{na0D7Nx#7L z{l(4WgVa{X<6XzoslKzBs=%d_Yl}y>N^0CG=leUW0(Uz10`{eKbR9VSFGa{Pnc#Gz zeeJ=!(f@S+=f?EsjJ`4b;c?MJcK7Purn~l{Is}(zbjNRI=C}KJh3-<)FDH|_`IYuF;V57IwEJ;W3c{P11U4l zGj0rhp`HJ6dCA+J3euWYhS{XZ*P0Rm|AH$hxk4<=#oK+jN?)Sjn&SO6jVt$EI&D|>6>{&aJ~EZ2tCh`8F$^Uo6xg;^Xh)Cavg0xiYQ#Ko%E?ZTROP-7jaNnlhvg&ZvB$oNyT|jpyK9FpJj6KCeV-Z>t?dTrSM3a= zyh?vhe&#ln^wmDZzis6dr1YO0*1WS#{jmVAmzyL^gG331nH$L>a-md43Hu1r3Ysc- z(!7H(avQ?rvB3c-A`hI#h*vhdW7$Q^?ej28LP$u6GKBE;B{Q;xNJmmq9>Ik{DWaeu zO?0tvF~~cSD44QIZfO0IEDNuk_wnDA=8fi4+-;kpBz6LBAzi#(I>mw;Q9@?7Y>V~g z4i{gbT0T7eb3kNKINesw^mF!Y{89{UGXg5DAh?Gzgvv1pnEWtIW5a&XQCZ?aP03+D zKi}`!t2N=junjUsfG>AmNrbp(>&Tu;d2kYTERsK*5Aj->hM1L5VWNl#f91^W+G{DA zfQ@z69oGM1;&P?E&KNv*&xO)bg}~G0rI_L2sy!3bJf=(q0*RFbuegpDt)yh33UcVU zRW}5|e88W>_XCKm*%enJnYnOHxVPz}@gsjZxG?chzB1+sWe7j0)!ygIG|G#iG!QUS zII5|OtKUXha;bqE%2kUSp@U1f@9a-^N;d4ybP2_dy-dPJi{})- z_&z)04(ep?6O8Ed#fU#H&y9!QM!%%Zog4Kl&CpusjA_jdm1&30j*t6`yZ5iHYnsUg zvMT%SZjbi#6z|hUM9^bZg36oP31DOB15cXdw?7#M(@$tyAFB}^u96Z0%4V2-zyme{n0m{U*tl*_K>4Pbp=`=QlN2c*UqL~I zC5-;%F#2L*j8l#uf%4gOR~HnmAGcSrQ@7Lo=TiM2vGkTG>SV^-B-fc6h@Fv|y1A)X z#SiQYSibfbzT6!RWS{}AEumi)4o}6zDk6wrszjQB;6b)AhQoJIP>H~0Y;zZHAvk(g%g-47VNk^L z!0Z^=nIk`jrvODyivXJ`s}EylX^baxiu@EZ%- zW~OefBkukX+hwcof_V@C|8oO>^%ac1K7_yhNwh|1f^w{M3VW*F^vdE?E6c>efAs6} z-p9RzgPI;sJx@MsH6E>+rS;|6n-HOe!V>naZtBonvA8fr{R>pyIYyQ*jFkE4Fdqvq zsSep0f4Y&DmiojKVny#n1tinuU#V26!zoLih^9XL$t3*!N3aDQ^nU&@IBJc`ThXHBoHG=j#~;lxs$3KWarZ1a$ld7sx{~y z1P4*Ku;h-6f_-B9@bb+cp2*Zi)yFrMqgz#8m^16X_%M4an3%i|8*opB2!tht(&2EAQYGm=D{{++!w z;p_JWWi#Jz_5Hx3TuajJr>o`Hs%N}fR-WFWe%Y{BvD^c*<&(dUYdN?i?5a4{rekQTsJL~Yj&`{nC zGwmX`f#l(s)9e^`$v93) zymAUshC8h>B%;N|(g?pNM9~G7^Lqh*moM*!I?5fO8qePR7@aun$jm@_yD`a)WWE+H zEfIBjlSkj<$F@zE0GI(m1iJ1|ac!-tP=Bf1gk#aX+t~|Pm$kNIG_&8>PC`s%n=y1fBgkJIx2cAJ$g+^X{@wX9S1_21my4S0%s2vJHXkFOGIM;c)@l+hp}wJpwL1c9UjOoWzrZ~kiN z?1`#1%Y?t1PZ^2@gNm(Af?2*rD(j&23o*a1=TaabTuez=KF5p1C&TW5&|)KKTnXPe zo>?Xy{Mkw=MS)rb46tD?qC_NJ`7{`O+MsaC1SU4VCaaFzr1S~^7R6JfV1H=!j*4b6 zmqDj^kZlioiDoTaw3V!udJr}~gH z(SC^bc&waED(K6yS%6RPcC)kYum@{2;w9`bV6jGF0ZV|Zivs2Zqb|xAjR05>L@^!{ z-4X&5Fz&-y5+=n<8ZTv9Kjy?zjX%GYZ@dB zu88dl(g8g~CaC4g?aKV0*h?Q52@?(! zx<^4Z>iq--nGw4}Tka0NLgC)L#L=7rj4dh8eypZM$o|61xevUL$%A56<}x-yi9_=N zs2iLVv>caL{=q`<=t(Hq=}cZION7~}AT9b!Am_!097Ch89nVeuU|{iGau zd3Xa>Pa^((sHmvGlS!Z>-*NeOuwi6vtP-PE3e^+UjJ`69Ke`WhxrToQbG~NHUSKyy zhlknNa-0*}k{18P4CKww3%#F*AlF`Jy`++NWEN9oIdY<4rF)`Gr$isZVfzGp^oP1R zv0VK8U7!^mInbfgEFY_*LemO)>Co(>33XS|y%U!d0^qSDTKlfh3(G2zWzW8vSJRYN zsX`!!!8>UULbTT|ga;qV!slJbIJlZ?vI{z`vJ0Xvq$&o{(a7KAYhkC_cIp`)|GRQv z`*q@M%49h$=@Xj;m3-up?2ujfn}Dgs_=7O9P)b|$ejFz9O}Ws$7XB5Lj=$;d+Hb$r zSk+&N;Li=a7kyVGH>hj%#I`<7>+`qae(R)0!CH+dkzMyDvHICc5@!4^qP-^CzW>`?5gs3KlRwuP zCZtKai%7Z2V8`774bd6i>(Z|>_GGiyrM3CGR#*(DCFy7ErtMDx3+!1l|GnDjzu%0E z9}G?cQ?#S5^;0$9&8g+%(aH(@(1k3Z!nn-G$k2@qv#Q%4g zJq&hFy^rv`4Z68rt`&#V71kW?Jc(DE|62k8%(S2FeLl{>0B?cg>DhjQdKKsJciAz z=xjuhg`azsT;Z&K=IiAr(UYTiLZZin-Wh1niw`B7kf{C6{uoa!mS9!YBmd4)Q8Sr` zEx5*am23$iVNj!qseeuICChKMJngJrr`t2AQe}lw>b^qB=gQ~rzvqSCE{crEv3eSH~z!g4yE1J@^;8}I# z>wEq~tONBOmu}NM+eff==fE+fzK@Ty`0h#NdtnwvL*|3comI!P!w7M~DeclBMJ9e? z($)wt8wdcSa;G$>5p;$Fs**I4KvPf{(iRSfh<~v(V$)G~M$oOyFgF2y#cVUKiR%d? z;sG)ziy5g5!NfN`U}XEqewGAkQ_f~G~%A_ zR{_r>BQNda=HXH%X-CQ{xIywqeXeaF)9GR%Uv#7SAKoBP>>OM6CK5-%GK~uhv4U>+%Y+(lRgbV@8$s z6(~GX^DS2Ki@veg6qG##1K0+oFBz_vTrRnG=8lY@Ask(U2js54%toKx&7A{cPYqd+ za$?%dLTyoG{cpIqV>P>F6BiLhod5iweH>=8kZFC>{=VSWg*sC`?)|EdJGQ`&E=U z{$ze@6ez0!cfNcY;2tOx&^$d&`G5+{V3x6?@nK%Ad>%CINagQHS-N0K5+4oBk}HG; zCdS4{6(vHA{3XW3AC|<%1^6jeWe8p}3<|U4r`>S0iZuy~ryvEv;kd2jkuN4V9B>Ap zZs&q!XYsugab&*{$qeia>?w1l7LHXL&t%2h_4JjR1zB1tVA$A%@P@{^2JfB2kK~Ah zi2!v52>%G3IwFB$b%c(p1jbo3IM_4(XV6~sDI{Kz4UlzUo5ylu^SmsZG8g}K+>%Hb zESzXyCFxmm1NTN8oFz+ocjV$W7qwwD1~5jP(HXJfB%N5fvX zC+|Y}G`pp~LH|K|EA?1%!@}Bo3qBfnd-nr<@pn@#Qt@mm+QSP0*Yn0mmdN`bQ~x9s zDvQ0-5nQ%R1!}Jl2y-RWtB77D{JanJVRKp76}D&JlO9I?P^6_c&7wHcnR@T8D*F=h zt{B2|LV@L8lBLn?ISFZ4n2I0erU{`DI7y2+2i3p-@ZOtqqpgl+D;K+7U9VJ5CAQ`e_z;ytICH zI$2e3=#C)jdPqb%&w1kVZrfjP}tM` zKBGJ2imHN~tUOphZ+UFe43qsEOcHk9}2_Mg?w>C^4ksDJ_o zW6!-6Iq&_&QUCm`P!B6*1P}CjHTzU$oZ!}dPs>f;o{g)^R)alPW4do*I`*BA(z0Xg z9h>!i@6AL@f+Ku|ZkdjEFI<=k?Qb1SH8YcUl|gTv6czyelH|y3U|RKAk_p>dC21+T z08H(g*8|9sji(djTEV}4r~rKf@mxIvebPfot3)-POT*->ppY2X-Vto;7s1|JqP0Yj zhOjywb0qlp?D)W}M>o3Q(Wf|4jpoMS>bQ4R+TGRD>4_PS9s0oa6x7*%2l;v6df9hT zQPr)2oW8z36@9gY^Fxd&kw6P3m%_rNt59|d z#~?nSD8{Kpi&Kdb`J#AIu((+a1qt^e=GIGS9krJ#RM}irb_GU_y%F|3S(1XE_9b*= z!w5|Uhyh@L!{<%U3Wvuk1?_t)M@lM3vLVH7$B+?60N`p>weC=*_od$&od$Z7BEE~Y z>73z2nSTcHeyP8EeCs2G~wrqg6CHKUMw_0=k zpB6y8osZC+93KL2@^EfOCt*ekFmfaK23L>GxsB1E&8N?9MI82UGe&+2z->_@*<=$&HtEh}C=*6D&VOSk-M^kUcb0im z>Y&=cr?2+7y0NeH>3Ho#fM0)uF%;Z{uV_^vU1 zM5Dzb+3#~u!=5l*RfGz#tz3`0p(Xu1#lKLx2dpsck&5Ss<@$OI$t$|z8}2+HJO~Lw zxL*ierCAhFWHV!ht(PreqE|6ef3*;FY6xPd%Ld>Z8ctsA@fxT1<|o#uCxQ$L<7g1y z=B%S%prwzf*5ViEp!SBOeB5|XsV#UqCiV!V&g8DNL%|vMYel!io zjAFv*1z}NEs?`w=*x&c?rWG6d_%dc03S5jlH65jg_!GucnA!>hu3^5kTqvG~D%KMq zc4#2DqhV_o%_@bdBN7P*TaAbHHHGZXjbq#X3m7JXuKL#KLs5Wyl6!Us$v3hiujlfq zmumpJC5eii3*d9<70Ml3fZh7qHMlcAZc9z~76TWXKwOH2e@1@`k}5j~i)X|3$VWrzZB8WAw;jmzj~^*7NP(O_D-vpv31Cod~~*dMse1p*l8Q&>dJP`=e`GO9Y8 zX8V5}`|?-aWNgTne-rHGZQebUlKGhNWAF20Tvblf5Bt%md!(rlO)%7q#J)>zY_z-}OfN*+eV zc#;OeC`;(+Cu2d5)m<~^4QrS%OD>h|g?GT4@X^XbMl-Ly2wG94!-$jPc- z{5+pB6E$PuJsSOw(jk@*n1x1zP|p;EF;=W4dNrA3L=~4ZpaEH&hTNu+#pmN>K}@iP zjFJT8GAt_?F#s(K=6Yd4SL%Hl(v#-V;-}Tilx;vt0ZZPK#-LCMtt-qoUy`iK8S~uR zD|)5VIlI%-<3ZxR#R;}GK&?(wX!LenO%T$w#T4f0rg^yg@2R4WW~xq!>w%}6%LZpF zdziLyTl-p@WsKZ>Y!D`dLli<)63ke>?+sd>ePjXTwfu2`Q?>VAbj z%%xAUfBW9FSS$I0dHtoLJpYP`D;*q=rK3!fuN9rL`7sS#D1Q(4;XT0`VN5ivWApTY z7@B>bF!HFb#;Cp;7`)Bytvjv-2UMI)c%sq<1|3gMU!&@)1JArRmU>RU^(07pd41WR z>tU42=(&Gc!}?KmY;|3=iT?r?v30N;VDy+*lQ&>u+>L8F@2~AJtByX0p(e+ZZGGMR!oswg_YbYMM*S2r9t&5K9>8y=$iL&MHBWKg z2RVU(e*VKf93nqH;Rlvp)I4~JA7^i3?c6QxAwUDGG5$D2-D(-P-gR`qa-x*gRz5cgb(tv910V299>~}7^Y}WowqVF z0+iRm${&7EDnsHa5b*2t1SQ!io`%QKtjgx+ud=l~z^XC=o3$j&UH7kG{Uwf*<(3w& zyi}l*vrlCz$hNu4-hx&~NJX+Elvy8ma}VR!h($%br@;7UKRXkc$BIlO(!6+Gs-~Pk zSz*bUxmYGFXvPnpy9)17ZQkPilDEvEZZ`{>n}Wjs$T6=PB+7 znHZ~2n}MLD*lbUVS}*N*42FjOk7CeV1_lR3f#MPK&vqt@#{;*EYg$o5HwQOx_)`7* zOalo<oe#o90~vg|5EE5}keL44_i}P)izh-XxB7$mSK156Wop6IH-79D*`wY)bn@Pv89cGA zXsG50Y}wdgqaHF168BZ+>zv{Nf&*MYFQ~NOPdk7>gT?8>;PFk!8AV@i^p~DsxZ=ts zODLb%12*t2W3xAq^mI&AE8w}Jgra!(cfm5Tv=}{|8ceJmC4_)C5zbTKXQnR(^&Qx%ru^onrQdAmg|q-`Loopv10; zaP{KRu7kgC3kM%)a3wtxaNI z44o^@H$?}`uS3hiFQ(SowRh({|HY@INb8E$3H^XwPwTOB$+Lf2?99(Vi?A5MJ?=C8 zJvosZS!0u5@pNmSQu+?ZV}Oj2@=BQTJ;*i}ag8kmk$p4O(a~YJXz(Yt#&0|5AjIJt zK-kPqrnS#9!P1F8%5RS|@Pk8I4}lsyx$D()n0Dut2&HH}ebp@+z`&|cVT=vH9qk{G z#o%gAcLN6ZPNe27y2+Zu?*1qy)InvEL(A~8FvZRD_)xDrSD zW46C{`XB1}sBx|0!FHF`rAPKAK@P?-$Q*ByaPD63>wpEJ($n7^EQd->gF6|-Q5Qx% zM1z;RZ@}F^_lg=G#` zL6uY0`(~Bnn!TwTK3$eCWpi%ZZ-Styr>Hv&PNh*i33aqVPd<_;Gbs+7Cas&?v;ub8 zhX-V`jgf!DIM7>ER4l2P&^lG8pB5QZac;dtSB-m&YSmZ_=D=L58;nMe3p(;|4U@>H z%d-*dXDffm_~D{LEH}v9;Y}AI35zTMD>_$@hr0Xv{bWOcm)ozL<( z($Y-v`gCp)45J$BN@S^8Ds_b=luFIJqPn)B#{26jSKx_3!$~i3!C9cAMmo!v0) zlK%ez5NP1;vP0(L)B|RGhPb{*`z%AOl3`8CL#!7WrGYqL96?B9ek`mPmLTiGE)18I5Lt8-7t?>?TlZN-8OVfz z7~H)&O=k8!LKk8DhJn&=5RF4=37OYXcLz-rg8p`P2mWPK52US=(_-#k@k7v{n!J-u zY|*md;0_+zcv5kbSBphiGdg2KF;3K;qJO_Tzc;2gS3F+&0y--*Q*y3Shtk*EnFnk% z7|sJ(J3eG#v{C1n<%_-F5vmoM_9}!^mq< zLAQYqOB0Yx?hK>~v>WL)3#s`|5xDL$V7OZ5Q9nY^b>c|lr+gBkpp85U_@_OLLSddF zqKr(RTH-SAN>>Zz4c%iADn~CTy+GXNwNyR{XXJ&gY9QyO%HgqIAddN&T7Y-p?)>`Z zw6{{GT!;2X+b4lt;rQI5Xrv87`XuASU~AC=i`&3VOYYq9yC}8)WZ6b>YlS_xkohvI=K?4(Wjf2?$R7&!xoe59 zGB-D85U}JH4*A9?B9g})t8}#0xSLv$sG)wa9HT$zMZp$bdgaPrg{RW#J{1?=Ph%uK zad#6R^m|E~wJ5GaCuC19NM(H~eUu4v!V|cVzrmYwg9q17+0$ za2h~fkwAXs^p7q@RDT$RN93&eGd`5jpq?Ek^VHYPu)05oak!{x=esP>nv<{c?bHe! ztxn#jaclzJ0MiK=(^Ux5fRQC&#y!7V_1-rBxTywncs&Qpu^Rx1s_~NXsx1tdejuN7 z8b!4Rf5t=dPmLg4#)CWGl2aZe9yY)7GC;R+S&-~0lEIXgKL6n`|3e+$*Y0x zD-}$o&a3yMduQ^ZZ8tU-#o|jBVG-sW%KBH!OX%~Po6Xj=+U$nFZEMD_mu6=IOm@l1 z$!8?mwu>wDoN~!yp3A%0V`Ez7_sw~!Go4I|SzXTZ0?#W)4y)rQEL>{9EE$y0y_SxN zK=-v}@)%fO?RzYQ0IJ~T`n)8V`JDQ#ZQ_+06aHZ(GVq=PC@S~fnEQJ*cG0qZ{pHiL z&4XMkKEw9bm-~%vbw#d%L^Y+tUsIJc9jmJUXgu+Q0jXNZGUq{xzM%2$fO6`XY+ZFg z?(o9qvokzNnoP$r@CGqj>=k5KUeAVM&?ldki9`HRSM6L!(B>rT&Y$nKq|)L`{a_aQ z1F#u?V$#3$lntW34&@KEOAiH19OVYBAev?CSj-jH`^Ar2F1$yM9Q0PH~XcGa-_m~Hq?mB5m#?P>*o|6`pCs0VsN}Jew zNJxm!UC6)NYZ~(lfMRhK3S(fm;e-fR*q=SiNAYIM9cqyuYHQ=Libewm4!e1D#V`*{ z7Q)Ua{ON2oBv$Lb$@jM9eOn)&KsO&B+Vs!Rn2p{`w<&TO6CQ0qo#o1Z5!Ks=5W!RW zcayXIX<)tBdA9q>2^*kKAV6&{Yvw?8EMqh8cG}1bh0~TNtv^L#o85a36a!W}LnBkcd~YMS4Y-1En$f7bVb5Z+{8_^hF#=ThrZG6vY`O@@^Bw*# zya3{--`)Zw;4N&NEh`Liw@Un$GCRqGdbf1rU6E5N z=Ov{<{V}-`G$3I`+ww)>faBM5V!N;iF3SNLofo>s2+?pr(HSZ&^8H~`QC!1_Ne#Vp zJ6bl{$hiNXp2DA@&!c|KIRuANVi2*00rLwATdR}1ylJ)EQ#wNyE5NX3R ziSGr`dT%a;-d)(0p8K^OfT(sJ>9l?6$@F1ygy4?0PX)8Pp}2aM(#1O;mPmir+^fC4 zUDyBk#ZLsxtpSS}zPPx}owuuT{ktI85#0m|k3!UgYLoX1#Y`;1y3UhaJ6rX`O`()1M7*?PA= z4q~dbZX3J0w{F55VL1^@?03Ejt%FWV_kon0QRwgUO!iMK5?_8Wy^zCJ&J^05V0k=( z9V+ozTf=&^-0WU|-a9DjJ-UgBcQn+JUFzfS3mnjz>n4LZ&9(C3(i*EDGn0ROo|N6a zuqe)zMwZ3MLv21=Ty%A9SN!EM)AoI@-_9qn>ywm%SMiozg()s6+~!IypZwBFVEsbP z;Wlt1DjY5}sx&C>{XW=6MN?{x2SIujG7&YMR9o6Tte+`DcwlT@@MFa8##@N9^Q!ae z3ON0eBe`&s;76FbtUO$D<-eboi5=W-0X`lOKA$K8tz2lOwe+^d2X3<+jREe?kFHBs zNREfJpmo8c|5Y9?d;9ptEuO!8jceV(mEUurSDey)Z_umMz5nuo!!%yK4l>wOyi~i8 z_e2kGWL{RIKXLEbrI}@CNexk#%j%D$L$(c58n@~Fo%j6u1~k-hsoRv={#j+N0!ohF zqIdOmBjcZ5AmhHC=<;yzw=3lL+OVtVN77}>=MFaO^)B_wvu=JKWARh#?)1wO{$51t z(F{P+ttkIawl_2c)V89OO4gk<@?x{~g(8J1*^>!`2N84i`LH=~V3ksh)kl=%T(1?sOPLE8w=0bO{WE+o^*g}Dl}KnD z{8nAnh?b3=QrtX9dw~Y$!Jr3espj96Q|tL}lv}50YQ94r5^QKu@TOn^UM6UgrhHV? z^9nSksVzkWgrdEJ=%`tCfcDuz867 zcjV?q;h0t#SV00YOa5m|+9wm;3V|F4ilkjK+njjnTtVvD0(*OLY;T|OF`$G={k7c^ zr*CYW_{EO0ZK2{vXA9a~NR=toMOgO4p*4cxvUif239wMjtL@Tlz)^3>CqV#%HDhBi zy9Y68YY*?6fQrL*w!rWLT18R4zD^N+fef??i;e};bx&M&tuTu<&W`Z2%*N;wE#F3=C7Z`#XuEi2P`x!i@e{Y)1ggy z%-zm5c@#3b#{hIHSEW1bWeG3EuLO{H3~w8*`2<<{tUSrtXvMcehR z7+b4dH2!pIkyVr%b{_JA~06n=J1*?b})y>zj%G+tDtFuH<{1f zaCRPgxw;B=sspw*_=hrpHc)jxe9M0_1{Q>{(55ftl@aj>RN832l(&-TZ1&~d)=2*($cPQ zc<=)dFEytF11(R+aq_2|A~e4N;Y zz>Uc4quPnR4@(_^kKGVWp_OfUMag}y=`&<%jbOKQd=;K?XxvNbb+Qh#zpT2iXO+H( zig_0a9q3WTIzH;vxZ}OM-q2_+XHj~!htwZa%Qz3Fsx<<-3MbjUwwnu8S4_qO+$da)doy!h7M>mU8~Eb>wPF7&4r+CZhizOJjsWa4@bAi0 zZ9lERqQTp>%J*>n&fgL)!8w)DkMdjV?l+u7!-19;_{NtZoI~%JfrZCne;_y6=lK3S zom!v(l0gcKMo5|DGaK~DXE*MxR4EKf$day*T&pcgvJW?t&A&NTk_Q&*0s^ZpwC_Fj z!xf34t`#m;I;h6dy)0Dy+yOV3frOf2%5pLn)S%2U(uUXd-irkYDBHm6<|46^+7%dgG`dsqUXW^!5YeaG+IL zg&Juwkbq)>kHVw_ezNepA!$)mhJcLP?(a;C{T=*jYr0`;U z^~6i`Id1C`J`1wq^9#Yk40RgSRlVdpwS=!7{#3G51O;baN5)Su+TbUbjf3|azB`as zy>luqJ~c^}tsVI2Bn8J zEcWK)WmZ>9$=1Qxwz%@wS1c04XbgO^Z1Rwh?F0s4Pt5UzzZWbk#c6u3>_E721>8bd z#&d>#>kl4jgX^a^eQ|5fu#t0Nk&JKq`Ck#QABRKbFmPVJ)eA-zPS>NN^J+@5+8-Ru zC`oPzAAZr{S4tj_d3bNiDlOx?-J1GQ3kSJJPgvhc;_)Sm5vGTjdgA}a7 z$y;a>geaVnWF9NW$?Rzix_ZmnF@q5je{8k?-<{3og>`4*qaOvuTeHK(OZYu&a8O@e@I~R^>cRNQ{RDZ21HcSnIysAY_{TnLZj zJVNytX7L>VpHzu?(ln=az17zTr(2p@j{j1Ef1aBa4e01(-%=XALVLh?{ps(v%Xaru z&h}h!m-ygVbK>BuyYBVyEIi+C)^J8=Skj{s|!=lem;X3If-5N&Z$ zTm5jks^O@`t8uM)Vc``Jj9_SPo)w}4OIwb;M32)ba0&kJLBWS2?z)B=-?hc9wqg1V zoo=dIaqB#nn{))^^%O9gOC=W7lokiqlxAfJ#w)lSwj3=t1~L`cKX~rfHvN(5WyMQ- z6aS5|n4op~<=?3?@u=2NwzEy-{{Hwz?~S=2`ay1PTfQLRtQx0w$-&v61$<@xVM{?-R$~JQETs?U z5u%6dvVM##PCgr%VeVY<(=H~rgFBCge# z>xU3e2LVRy_Hg>k$lpS2KdlM=~mF35o-5HS2WS~s1nAz(>uUPUO&&R&-mupl}S5ii2 z3CMIC#LrbO03lEMc@}8`1at^AJIc{cF93$`0S?_+nFy;-F%0aG@U@eccxIhoD9@KW z>x@F|2`o5p8khp3v+6V#H*$d zakntqaj%4V?*|L9Bx*!MT@(58kU}{~bK%c1pC?&`!}*|ajVNx{5bGR?WF-G|>q7Gw z)zizvIJ@XYm-4D>$(D*bZM?tVz0Y3_g!Du+H_3DJ*ma=7Y@d%^1O3=>jE$odVIT_0 zvyA+wVPFZ%OL*z{>1-`4UqX4sU?u8{^Sg@nb?GqRX)A#@GVg>5&&38D{e3Q%?Uk%kLUcI)T#ATe0!zn=WIQR>MvGxe z@y=Jz64q~BinIBDEMcscH!^i4&wkIxx_ukB()J`P4Vn!W8xMLgy~;!t!||hXOn@4A z^`vmlSF}m{PZE4E9VPJ|$BUAPeeGDn1gEsfGAP;K)GZtt0{o71cYEdVRPcKMn<7Dz z7j;e>{05ywRM)xry}+vrjwMeeqtgs(Hj;-a@rD2>x1@hWR`*Zj+O3$*cugUl!c;xh z0)OunC_)^eD~0%FP~uVhByMVmNcO*>bR*p&BU=qjrrOH<1LYUS{oM}_mAl;x^rMF{ z^4a9CulO-lvGsTFQIh!J5w6Q@gbcg;>3SR@NcLObaGH%)L_65OcDeqZmPCZBqO!8S zc!$vJwVD*ycMnk3;-cy7aENy13T^47Uw8pcmds`nZU=Ii;;sXZ~-CLIC&_SN*}qGmxj%rDa`hTmO_uaQLi9P>x__Z5PF#(6)cha`}VNyY*d1`egD# z-fNjao*S~8LJ?AUDS7eK=bVp+WIvip>)h;p_l{~R*&*0qT4rLi(2?_R`;dE_1#r7# z@qzqzm6VldHgUCnQ1?^cn%r~-e|k(ETs0Ik&$z10SW#_XDf;w@MSV@pqf&VVuNW{6 z0!p-_$W{NtG5Syc`r)BG92ndJ&|%d49uOq_B$C~)GU8rn_5F8N2fwvTTX9yygI9sC zh^G%lH3N6cb`-|3#0G)X-ca(4_TF2d@1<%B`tPhA{Z$Cu6WlLp94n(=sOuc3A3G;K zaqw++tAFCC`SS0%3xa}PV+&Kqe^Y|~Hj@u#?XxV@0;hQIDR{{9*x3)bzcleu;A$iM zXC|relwBpuVzcB+U1ovK?q|UXe|Nq9rM=V7Ye!X-^_zx2p=loaS|5J-`)>&C!P~q_ z)jozNFATS>*-C8rs(!3e=os@+9QSuST;6|1FCURM`EIq}Ceye#OJ9pwiYyD5V>{YR zPOY@#k9A@VTq#i?kNZBixcs+1(m1KEI0MNUtz@gc`)}q1O=SQ=6LuA1w_P?XMmwDbp%P%N&(4k)&@rknVAfz$ z`#>B?!J#;gjojp5rv#tei3M6$7^c!*0}`^vI5H&;1Xgia&{o~ntD#LU&+ji!|D-P@ zYoG1t*vO@Sbm9Xk{W)UxmXaRTPmY=e19!Gu0#;k%E#9E8Hq5j4Nr_>J8cdi_(2apZ z5LB~r9xav;X7kI+Of10KQk<8&Fx{D33B(8>(R87W-kG`9K;N`F3G|n&bq~SzR z+Wm!SAPoE>3s9;xd6x9cvn6pS?eMURh~9>=0KSCAGjZK>cM%|9PX0G|%;hJ9Z|m~# zUKNrBe=EQ;Tp2GW)(p5Yw1(t~6>Rk8&KU~UZw&AmUaER?`XjMQ>_Zgp$C0DJ92W?t6Viej(es07&|)=!}r zlUl(DF90{ZYvB!&4G(9QilH_2wRpY!>dw-KA5v;eB@GM=M@W|ma{3q9`6O?D(}_mu z646e*a{XXNJ0~eYOhK_6$o``)1*7j40v^WF7P!CRP$jG=U3pL9l4m90u^JUKvWHSL z@KGO1ONqFbCAjo_B3d_b+KeX$EXMGt;ykET?SR?hlP)DKtxLqkcetw{ItmN~KcAuA z2JcL0#h7z50T-1gKx;?kCwI!8R7NW}q|Z*;()zpAFB4)3r3#c)|G#TBWl9R|Je{T0 z4!6!nFiH?(TO<-uNe`UffYe@?{1U1?P1@@P}HvVcLI4`2LdlOzRT#?>W`1?o=zDabS7W(IarpVar$3SJ(SuX;~qH87qc zDQq$;!L&KW?Pb|+F*A==ni}Om)8oi?pBtQc6}-Givy~2BuHR;qC{jy6{bpCepxdvQ zl1o=1$EO(%JAd|j=b-bdGpzUiI_HnYtQjVUgZ0I>4wxSCc_l zFzx8=yr*x5kzf50XDBwNy;O2BEAzrwiF^~;`kK?_zx)1nFDR#!MAGq38%;|l6w^PI zG#vgZw)#tnHy}-Y=3gYQZ+%pC=rhj}Xx!NOIDtv^;`(moeK?z(9kjR5;=5$nd z+Wl8plSULA8z(j2Q#knRxwSdDzTodWItyqQ$rrk1Wa4$tm27zqjjHW0`x!nd-Hp^& zN+ds(*(U<@W}+AWYA#^fktJ+^Lh+_gQPnXzE8|*8qv%^QWgDy*teMQ@8jwxm;EFo zQ^n71ZD)Od{@M6-WdwW~T=MN(+^Tm61pSYeCJx7A3`>gz{Jy}zEDcQ202E<}gDTwg z`C;wD)pBvL_s~#h?e_x-1SAIbuS#UGu^DUZ~AV3|Ck-c#DsIirdyuv%vB)%qOpt@_7fip-9|1C1ryI|c$`*d zT7{hR7ZUDN?k7B?XyiRZbty6Sx8JeuD3ynRLZsumjR!_wYz>2K%C3R zCTkMVwr_VkiS;KaB-B1fqY0U#T*an)};xRGV0Z16#qv10c+u`~4a~y*M5Mp?)3#i^lBT zt)QF%-xu5E=GZU`3yUf?6fV;h01@ox<`8pN;}GFJ26;n?P=u8(0t{d?id9eE>b2D& z^jX0~`ds!#<;HALcV9s$04^jphh+ai)Pft8w3R-U%NWU5fddROz+8hXZ z{0VvP#8@XOO&dgSr>$Zd*&Z=hNuU0{s*(t6=l!J^=f$-oSm#?F1)=b;-@AJP^ow!F zkO+9cSqKt=kT@_H2MkycSqdg|RoSYCZ!C7d;m_JP?hvZ3fMzLCBreX5+{vTNbPU^} z_@C*ZYb?K(h=Se?H!*Q}RmusTX$_`RHw%$+QXaPT?fDBsm|^FK#r?|*HgSe9?erhh zN%cHTEEi)jRqih!5vO^Vu2)sLOC__TBekSdB*gMXO{#fBfke}+Mj=kWc}ona0gcHc<_4{O-zu-V`qT_%0>onR)Doa?ASPGnX}|TS@k6kwQs99_4P(m#wP#BY1uiv0aZ6L{QNc4=^T@ z0M%q#H0H9mc%DZ|G|vjwj!K7ODZ2NHJIpX{9M7ftX{Jt6#)#|sOc%0$1Z^FN0|o)> zoPAvbK5)k3;Cs+o_kjrzE3mKK4mh{7Sa$SlOIs$Zjy|ov%XLH!nvpp;3o?6>wOv%I zYaVAjb)ZbR>?L>DQ!2WO@-y3Aan=K#`q3s{RpP1k8ZK&J6|@{lmz|BmlV{z2)qA+D zyY;Ha&b+RiqAD_#tvu|1{JUfWTwWh>j`Io;;wm!4vd~>YbAEzH<5g5ldYh&+U1SO+!>y1}|{$aa#RnUQ8(4N9X(3FY#cDr@u!S8-@ zt&2I6jEl)cZGF(j{D%jP=8}2O?)x>4g?<0EFue~ifQJlSQ%(Z<)+S!mJAnSNVdfo) zssD5qk)FRGmP`l51>Y?$Fh$#)if0sNCLUJ0>?gOiBc5&-quS-G0$xADt5^F4^m$a; zt^YijrE14t0DxzMiT$1A`5GCO8@|K~F*cO~16AAVd*jK5DJ?B_Dp?-MBr8b|*y>p> z&A~UF`w}u`1KMXL9~M*>om?8ueLUmJpNOf#DsLY6RyH?OSD))(WN}WPoqu+6C`A^c z>2P%crJIw0M0lXt`plX&{eYPZP+p9IR+5A7b{=HP%&Ad;n{)&{mNR%U|D%61dpO&66a;#25`(?cE`3JZfO^U4p6w1AqD;wssW&_sdtkdYRo z2#pQ_rX)85O-LxYAQtNhCm4YROfdG{$`AwrXC#6Oqy^zd1v?QL))07AkhGoDEI-~{ z3aXZ;);m?uIXu?<`kPq?SbBIk0MnwsG|jPgz_HS%yI@SYJG)_fWkVrL?S`^aArNI8 z$l_35n*3xjaqUVm`%tRcl58CK4a7c2ZLM!g;Cv+xjLHk2XnF4Hc_Y@QkoaJ>*OO@8 z=F4YU1`)ub7G)3S+wNXWMCB9OsDdDT(an_3`cz#JP}GL*~$ zgl~*Cz}cg$Ie#DgRcySPTaO;~ABk5kBS%{g_IqlmFz@u9F#!!dnUi;O!Ti-xF zpqUfsaNG=#r58GWl0^Q!NIJxUQm4qkAtfcHd#!D2)Ab56w>Sy2IMi1fms+)tYdwb2 z&dpK#vOPzJI09bZFGwvoBVnRbNdbE*8tI^hZvYn}!~LJxKAx_-$1VK*ei18yggD(H zbp!JaquVQV?~*dX?FdxAj9Z9nZ+nO^w>#D_$UP3FpK^LP;JSp>VOlIRuhO-*Mt7bx zegPmic~Sdxb_WjTg9s}vYyL-NifVSAEH8sY_WV{>Us+xiW$Q(}oJq>WrRjaO2d2`a z47Q;!5Oy&kiSlqp`PhpbkanIBvTP66G%Fvc^{+%;LXUnz;>YagX>WvW2aNmyp)5&pDr*^L^ z-M5mIdli`H@YTL2Wccz9BZyR9o9PEud9J{n^(hk*aM&hK?9sM^whZ^z0S|{np_0cA z9Em!J+tDNka2F&2`b>-B$np>|mhdp1(5I`L_#zMIc+O#?emW zY~{j~z2V{B(XP7k;ndM#_Wo$4xQm*P$BUrz(Wufh#q^m%t0%+}jG-NSTk#$_b>g#s zfY))ouDDLJTkp}|er(m4o?9iX{lWKCX&J%xbvI=dwJaSbwT4FzTtXfVswlse+%3wt z60hMe^zhlXrqvhkHPYi758f!qh@*>W-ytN4Wq57lgg|)nT%1Oo85UvzF(_C!!=tP5GV4xCSEBfqqvBlox z1~?m5Csg*Uf{yqaX)BfLTj2_gdyDxKv~Fp`kVx|1NE0uRvF+GsR$8<)y!8xS zbORX!5zS!kA$}x8vd3T5yBabYl^S|y9wB<424*3a$g|Fi%$c#7btGsx4PU;Buk_IBO=>sz^7 ztspq&{4KxyT>H${feDaqJE}@6JXOPrW9=lLg1U4ZKjS`Lb!~TC|85w%+gW|YK;|LY z7Ul~rb*{CWkL-7Rx@Wak{>TLtol%)b_ZO?Mc?@`)ggy_n0ni+PYu_VOiRkT5*vp*> zBF2L#-ROF-D9S5G>keb8hJ-wA`2;NGDf%UE1VR&7iin?miBI?Ve=49nc+ z{R*qh&4k?aIK6(d9X4nd&Hx&j90823RGJlxQ{SM!-J31GpJ|isyWveFS)ly>3$WS{8PO*%|3TdJkNJ>37!_`!4qI=Usf`>L!)TGdi@s z)2wz_u_)Ztk_HcFfz{o|O7_@;Iu51y-$7~ZFf2Q=^HthE=4BJkQ3WG9FhOMg*YkD{ z1vBa_!&>8Y{$r%TYDY{Vvh5O{ww2U9g)EiBQRQw?Mw2Qo8xO<`ZB|S{`O$}wr;^3} z>yztOMRZF_uX}3gD$T&52%YmCIjfNwC{Q7^+3|)m08vU97?m5k@qt)sQrximqBo2d z9AyN&IYe9(gPTDxloy~4P+@MpKt`V!3U-WL?@;Y#(IOF634PNnLqZsqh`?HbyF9u| z)Xxt+;X-+?l2eL#AY-ExT$T_bm_aivb0X7prrGKL1QNd~rl6#yyH2EbBzt9LiFa}% zFsNsh)T7^#gZSoPO=;sCE0}H}&o>0cgFi+XywReKs0vGDyI&sq6l8Q%DONBu(>yDC z|CPo5H<$fisrJ1(6nQiSB*@L1rR%{(tZd33l{ppiM!&z9+5FTJ^vL__&GHa zn0jF|xSuEAAsMHk8i><>bi3HyuV(viEmX87D@?$D{WAxQ^xDTC^)_w_^6OKA=oWj& zgJ|9RBS$-fN86xn{Vtw*v@vloW)V0AT$E~ov}ut2G^KNVZF1H*P<{fltBtJ^h)8}k z!Z~B7l<}ihf>~Bc$*uR}-k*N*`_YL^&)$ZCHeY&whasDHKUciLY$@xLQOS2~yD06w zF+jLB#q%q~P#r4|QUhnvI$lfEi5)hJ@7TTNbwzO?iT+NV{H)B?F$b1_t||ea1Hfj_ zzB`-2!pD5qT#JtAbfx5|lgYJI*=?1V1rgC89 zm&$^ULaVys)pn-O?62IbJ=f0Vawa>-onv$A`M)ycQ+;VwwZUHni_eR9UUB~Zcf-ZJ zbO3np2m4LR1P{ON0l4>!=e4c^?4WHsDq=0Lf(pZ@;Kbc)C0OEO2RLLE*@T{NKKxkV6)>O(GrqZ zb01KAq&z6wrTy}jb)k&6TkUEEA{Ymeh`cBbHxCbV*&yLzj(`SG-}0)9u_uVYL*Y%O ztU3AEFos$t6a$``KM;M>t)v~>s}%4Y5AvO?o#n1c|lc*VX`NJYYc7MMO6twZa%zh4Y#W5Soc@ ziz6f_d`7Q97ebq%rOR~JYLs?MJ(lpGcD9lF?kQ_o z^tuF`kWk2A^oa+c4SWptVLMkkJv!P!DO@J!kAXrm4q~5%d%ssEPl1iZNPzlzCKM{n z9PN1hKSphdJToVCT*Uy&QFm?swYbt8sZ&20h+?J`rBjQGa2H?g{=*csp!RW2%co4j(nvL@t5Tws_gJM%*p*c7wcMRuKF7UY){+gL^lKkO58%5xkw~&`dXxNw^RjwKU*t^xJ)q9X5OkC{^&1V#D)8Gbhq z=G5t@uX~TQv}LD^_tftd3iq7cdFJWkx~tu=v(mWnIB0)z8Gc(r1RDK}BA9=Sfv~9u~8bJ?YMS;Y!rU!D9`6eaB_Iu{-xy$r3CdJ z`{CFt6#ErCitPDr^;}Fi&xh4Ws2uuMuh36h^Lx+TTWwiS$R!BfddbMi`~Y^d2ZRgU za`)mSLWN9O~C|dX9yUS61HY>zt@= zwi|l?PATMtX$zAXHy(U-U{E2Z%}qIWVn3AYa7F!aSDoGtLTXHc=&$X&QCc3hqL5Ft4gUE>h#=4#PEsBf!qMPLIp`)wvs=@i|@!f{wf$lZ_rp_i#-33i9{tKCV zTQsMM-QRmvT-$g&Peh`<{n_qr19_XVxRfFKGa?oH*Tle18~sEwRX^FKss(Sat-ihg z(}Ipa`fC{UN9p;M%-=r=a!QZaT58*J>2(7m@lVIe(e;uCR5$jIUkm0sMwr2jyuFn8 zP0JwBEf1O~qA9Fl`R*ZwDO`lAr4jXL|RuF-QH@Oi8C4Q8bg*+EC0zSlnP zSvl4FdK`ff0Lg57DR9#^9pxg&44wJ{>~o`xrZbedB|d>PQK4gBz~&com+3@{ikTV?rx4G)>pby(b4TjQ}+6jbqRr#~8O6sqNq0!(NVTQFno2uMFEKhX{V19hRIR&WB8B-$1N{d@G^ zG5ag{e0soOW8;y>*mh;z<9g$M<9hPu$E+)!nD}e#k8ro$xI>~?ZgXpBP9{KRqB4X- zG_*7`v@%2#MJA&{pY!sbxy6Gco;+iEkCE zDAi9(JU*^9S1uJV@vYsLmXVGPhyO^7PuO8rV-RjK<&TPog*5?=HlTi!Zt}9pTLLA% zWNRb~@*h6@1k45~Dsq^wmMF7MumgQQdF4T>Me(Kph;|RgWbz`g?mdO&yLSL zrDe$*IeFM=^_k_iGDeT@eVX{^2HnnjJEh1_za`Pe_BQ&fo=&~j@u>iPlu>ws<~`kDUzccZ zl!V{v@WuC4b{E;puk~tZA)|RUqtoVwyYwR8Z;5@b3mP^HqPBfE5wx&7&y7TW8VEY_ zTOD0_9HxsKf4ut05nIA|ON!8{QdLbveUs%R;7AiIp0#bVu`$Oi?N^mzw+?6OyBlfW zf@p&KU~@jo)fSlUyVR@lhBtLv`eDrNk13pQ^k&~4^qF0|B%0Tw`0|mYX>8xO5GK7< zE$(n1>qdKZzjQN~7Pn5>p54I81?&Y~&N+L|i%hRvr>Aia)>TuUx5Uy0Dz_OTbP=4) ztgl2kd8e8d5U$_uMKYZ}4~H;a(vyAR-u3f@w!rxSYe&vEsJCMBe3*!1CCRT^H;Sot zmA?B?GfCC1u9}kXTpv7d5o7(Z$(N-@5Wh8Zs4B5c(vpqa%oE3oy`-FY`!PkU=Ty@9 zykTcox7C+sZ~0UoNxl`!QX^CJKRyJV&W$wrWV^=yBkH~5sqX){@rGU{<&ucti&jAHFr%oA0_hIU!+(s>`KBy>U3H-O1!nSU`6kv<5S_45?Xaok!c6w#B#8{MmSv zj3XusMXDhB_W1Z0OK+7b9TZbtthmGE{E)=>7nNeE{uomWW2+lh5Ph_-aLthcX{g$xPEnT;W`<;w(CJ9gs$VUgvgBjKPO!^G)qA6l-lZ7x_`c8~Y!oDQmkk9OW@`&OUs|-b+ z3|%cPE#pi@M=Mh$!774|>gig_ME}9A5B7X0li?b?i7t^$SjK=}&u*`#zxONNkTMv| z{L>G0hhWNHtcLpU;Fq=Q_4Uf&u;$o;U@dLAeF$a$pFL9V@G;I{ za&u`z6CUkkjK>Z;&V8lA?FXD8MdRyFsnv>Q?`Y zXvO9!dA|X(E^2JerB*|*n47o9!HUI9k1&^z7PGnQn19gP%} z&kW)g8PDe(kDgse@%OxRP#jDuBW=*ywgiPF8%3ngG+fPle^)&3Scqpyxo6mySW_nw zcbqcoAIC`x9zO~5zXk!uz{mi(bVl-loKXY}jR}#Eu}X}e^L;ZiFSaUj)9VV9$2*pmzW%{GpF?6HJ!)6iLKk1%fTYCyUn1lY>*vLs6AyvW?#27 z${Hu8TpDH*mkoKz#x6#*ka(U8iA&_`l9Hn!t3H?SEqFv!|ADBchLl#Xz=Mz8AasUy zILV!cId@T4G@drmHem4h2ol`)s=r=3EoA^h)K=%pr?MzPx{rN@50 zov%;FG)+74WC`{}=-#;#9El-JhPLZn)xCQuzuM?*iOo{K{;9`sQRSlXb*hbU>-V!a zOnlp4MH-KM8dA}!J!KbY2dIc78w$6rv!=KJ64vorBcjpuGRQxcr){@Gz62#qoI8Dd3{ub8GDU_%@fko zw~saD-#qiX{vebG>fre(g@D9AI0#U;Mz_e((c%2z{z#? zc0~idzS`i_p71BPW4pCJexoE|)r0x7wmj+~21v7rZ>k6`^KTGh{u@{{>C{{cynLC^ z%!Z=*y=Y$cz9g~RV*H5kqSDDfg)dOzsiF)=($2eW&yfJpp4%7$R|3UIk z9b!v{pawfDS@=6~r2?8=;*hum&jTE)Lx2rj~>k}QOVTLGaW6myd zjE@2n6>iC2`;|m>w$oDL_B5nmrtv^ zX#!)|m5kk4m>$}UOxU9r;um(zzfDnN>1p-`^iLCp~8KrT2P!>1qU#BTEQNiqd`(oYFZyrPwSne*i+RQDVeW^YYeh#BT&B zRbA(5U@=dT2}DO1iU=B+vRu9)G^<A^^JYb##H5$x(^w9Mg8FGl#bYgvwjjB z28F|<7+Em`_Xf$5S{D2Jw?2R~0m4H?M za7(vw<{SA$my1Hz=Z$#&NanGRxXc@^>UTR@sf-R2;MM#~?Gx_G*QG=pc?5)<$Z?%B zHNwJzAMTdumTVCIUR-#Ew1fnNggjk68S<8UvcJ=H+pad8WR;s?kvrMSw;;gt=Nhg> zC6Be?h7))ncrBph5wFY>VKpJgO_HDP=<{VPC{`TUeGaS$OQs576FS}~cZfo}tRYs)GTOTQB?hPoM!dYC8G*ZX5hU+vXo(-r<&^FX3NilWm9+mh%c0pZc7?dMW@v zQ(Y}AO)X(X)G8z0Dd61ZE-B$pUv3>td*X0oW5c^qv1)fv=toR>&C2d>3m}*kw<1~s zltLU>ziLL{*aM*#e8mE)HEuYe0C{2$Obb*3^^mTftq*1lGbe;B@o;)L!c@$d69oQX zMp)jRjqJ28W|9_Rtc|&@DA#LA&^i`KM82)%4wmb7JFK3?! zjH$V@M1YqsMWf66Lfq<$T$G)aSDp}7&M9yt*`k!M%ZzVEjExb&#V?fchhVIp{xzp^fAriP$%q23;dn&`v`-Rv) z3JTc)&ex8ceB$s`f4;s>`Z`e>^F2P-DTUBzmo^WBS=>X78iq5D-2pHf|f9tkiwLqU`nSKBu_) zzvGu}vt`*~mHV?w#FJVB$7@fa!s6l%kM?1mMfX+Y-J|A`ywK$hq6-4K=R@PWDW~wr zA&weL)Yv=w`(-KZjU^Dnh4oVB2ZtYlWq!%fkar`jm<;eGS_eJ3{%CWJIZtzE-bk3Y zE@We>@-k{cl;*M zc=p?3lYyK6|H7|s-#>N5`6f@L{zI~cf5STw3-~JXMGX>#FMu)nW)8|bn48Tw?B0WS z$+G9&N@LgH!JC)MgCn~{Jz_q(BL)iQ;AD3e!x-j4_$329l!S8O;hV$uA$?a|XdLFO zw?BPlh_g#AmT{u%mODsvnCRc{-v%iF+hd)yh2W#T{(yQc_1glc2eVIGm<3Puy;4`b zTVz1_7M#FD5vMmt&1qW1mFW_3Pk$o57i%270oLltEGV*keaW7jqdug5&R0 zfEdmgU9uEtaCcu`Z!fzcfo(0P6+bUZjf(9ckt4_dS@hR-92g@-1sHDa7j4GP&sSO{ z&MunMIvEQzRnY;FT+l9Q)3xcL#2Q*%eUhIuvaCGus>OnAV9lYPu7;ITk3(O@$XVcV z%$azS>${@_0vLUacu9Z&m{p%vo!j+<+SRp4k{&#Ef5?Nm%sdkBEa>^ON*7J4-PnAh zJwqSq*+Dx*IdK19Eo0*-t!q17%#O(eRzJ`f6%0Bz-2ufZ3Xi z-0@Ffs13W|$(Q}qScp|O2pS3~3+(xSLu-Ie<=j=!I^>`-0GfH*YVob5tgT&GkkR9h z%IcM=4EMhL1l*>Kqy?Na*`Q~O6aiFY#VW8;#^_ACy%2j{M zUGa3E)_c>^cc&jMLKvf+N8o`uGM-EyfG>k-dZ(px+OA{+_*x;$lq2zaL$*hVfvgi5 zY{@L*4IrMn57-0-X7?ruJZgcHpNEQY1WH*!%8IK_^L|*uGJ z5M0S*Q}(t-5KLP=6o&Y8&T{H0`z|4dY%!jh_bb^ZL+H3t+~+bUE8ooA$_*RK-+Yxo z65Co_9hdRd2FN{u6%*lwOsdPNOZLrW`Kc~3#ONv*IyEFls> zv*~fLRuaVP;jp<2>LUl`OofE~0nl&Y%L;3YVom`l=qrf6Zm!oayJ1x8RgL3VwAY&+ z2!Lu$MMTCSNd~q_nta)^tq(90B$7^8Tuk3Vir)(@^p2)Vs#B3QAs|NKv%{NbUj6Z} zuC$f3O{~)nNg6{FD}IQ}w)pw*p%tZ8r;CsLUPZDCDs~}0`5(V1z&_~7HGV0mQR%T} zddTN8!t)Cv@9bw0Y#xo%(m5^)w%mNL8Vr(8aNSo=e)%J~-v`-nTkXeH&W#tf7fTVd z5j~oXE{>d9;x}b`y57qPXK?wezw=@_;oNna8fZ9sz>!hW1h%bWUxTP`njs%#3cRFv zZuFEz`-TlT+(wOWig7fxme}4=dH=C1$u?LdTu?=0xGEkw>4X4g(O8np0jF zH0i*6$Yf9dGuI^M9AnvGm)W&YxFg2+99FcWpz4 z;RyPXXr#)tt@Tg4y8~Z;*E1-cl=<4+!_ppSkC?f6fN^xbAjZRJ_BYi^%j-o$$Ub{i zA}&z@2OG=UnzLN=Y@ZUsPc0)=HfqIZW8kh~{IQJYa-BOWOmYJC0O}F@dsi)C>zN;# zS<}g!PRl*dT!(rbF0IW>2Wh{39#P`dN21bj}wQxJj9x>by*X)uBKek{pk<=IO5Y-^D z2!o4#!*7gKjm<5>NS1bN{W=g<(?6Jv2!q3S-li=F-RE3A1R+EssbP1y5e#hrd6^iV8lD{mKIl1P4Gsp?7uanRw>}L4C870>LVnb zSEenb8ozR2XI(90Wva96SJ(4>NvZi_-oF8hIWH03dH)OeOPA<4la8W)z z(Cbvee^t0NB7^mMCKs1(S#g94XDbakY!halzd@K(9}%jeaO@)6X1VbQpm- zUgQ*%{Kdh0}7D;9?4auf@Tz6qvZHaRuQlB>dQ$Lg(yce9#L{A_N zBqZ6)vU6!>E@z|VVVZ1Gl1=i%FVxXdiX{D~8g_5~wVxrD@(a5wsMsvIXJ;W;;h^*k z?5esNN$Fy#|A2WxeKyx35g>2sTz}3rJPESo%9bO3=t)ZfZc0mC#<75)#}RvsmFRc( zB5R3moBY-#Vj}Ch$q}(vh*cu%B-hF3K(|RMk%Ll^DWx!!nbNRZ z-AyR8X5tW+uvA3}Ep-jRp6K&ZGy@1>=N=(f{uK8(u30AK^g@H!7cCqBP(ie<)!PM# z4F=pHzzHh^>_dY7VI{6vPT=v6m|<=Lu{jPm46wyKuvqD#k>^i?V6k&=MjGx|cVBn7 zXmYRp^U_NN&XPNAr%i&wN~-oQe$zBHoSCZ@narhu}#yPoZ&^f+YJ z=s~>Q+U~GkBT+C(s@oR>kAHZosucO|Vd$s+7a`p(3c3UG3tZ2lts{(i*+j%Vk89X` zulOO3AB^}i(r`QHUExTQ(0%S@hdKSa@+N0>-gO0DJL3_nxA$2T8Xj?^>hBy*O{xED z<<)K!V4*d(PHQP{Y;sR_P`3qte6y}@1FMNgBzvX2safQKd*B4W#NTFm26Lz7ov6f;^+U+~vVc`Dq#d2+3;gx#M z$hQVh!{+H=q(N94J-(BOqix>Ni;Lf}?>wM*&?z&FC4i^|GrpBGeg%{d+DO55fBPjr zEdz7fKMq!nA=Mj%Ltk|HQX8+k^O!v{w;uVd`P+mH&*n~1u4w`Dy7t=4T;4p zvrO9+M7+?ve!Xu=Dw{Fx!6bM5`E&Gxz5`q`a)${$xVZTr1;pvm2IOo7D@0W(;OSg5Itc```5=`pf|VU9QJ=^WF>MZo9b}OHEdY>0638NY> zOYf8-QI{g}m%1eT38Bd58kuhp0%#$x!7L}oZjoYK!KDP;G^z^cJR99mMWB25$9)jf zB4g=HMvuqPhbSgza2d7%#QZ?v?lbUZ_)Od)>44L|ZeU{N_f#;tJodpsU%{IF$KBsm z&6NFDr1cucpZS9!+V8ed$4aj&L1-Sf9&cfFSGy zUw;&GX>h$5n4+-{)8o(fH4feQa3U|Y!b-w|r#C4**=5!HQtB%NYh5cC+aYHKAEi5_ zl%ZN({NGAHHsa}u4F6KR@;Vx}BC+aVwM)YDy@h&TZiW{9`$|#Hr&Pa2>uz4d(}pUe z7A+`QVns^knB`O>z7JS>dA@)W_udeAIE<58$}dRaAGI9M7iep&dSmkJ*Wd;WiXp6O zzDM}iRG1>b|CN6k-zL+fU77yiJV@fYcLAbtiNlhv$YK(ppCgB`OOi=+`iDC8Vxy&u zdk-`Y(yWb?3~(jp3hc70aWKu!`cZ6Wp5ag_{N2&wn+^ALV+L1Tic_W>-#WO#R9XBZ z-R0Xk!(M#+~7<-QOJf5iPDtkc@z1~)j84JNTn8t5@*OT-5GBB|B}fzy zlH#@y=i=rTZzwCy6xg#vI9Xd_Ons`a0oA`c*E!(vrsZiAsm|olVFfp$S=~e#50i|1gGh?U4zai=wBiVz+MO zo-b2jb{ihXsoeBn$a;KipZ>@w8v}tB)QO3HY%M*)`JJS4(bz4Vswyr9N8H%`b-?p` zV)(RZQ~Xv~{Shg5rh?|NFI&#({t>eOB$)YIGGWa;x9}ddWzBU~gWp}}jyV z#%Olu4GeU38=vGhYzf-Y)=~EYCNM$IoJ6y{+)Pn|W|Go5B9i~e`>V9_^}Kg}S5!;! zZ`X0Hr`iLboqBpfbo2pXtn(q`Q@^*H&zWGoyDF}#b8UL>8}>n>O` z+<$Ce{^a<0OY{f58SG&o>B?Jvd2hE3ZP$xQi>p4m_9$)2zri3$ZC8}}#PIOQmxcf01@BAX8r)o&?yP)0-dNGt(fUbxh=lQfJz|0;Dnf$Y zN%}b^h?ryJK2$)0`B&OB<5ix6ulM@;gzMVWN^$GI4Yt0M#eNIPBzU!ThEt}kFZJ(c zv!WO&lLu+ox!ZP%DS7+B>7C%1nMgW)-+e5O*#_NLYgRjt8{ZPr&DfCpU+wqm@Bj0^ zU-61H2a>$N^On<$)ovCc>~Ne_I>h*Yr&3a^o?2KJUa(zL&bh0QQ$sO|9x}^%xKo9T7H1Ut0ZmaJG?WfGR+!8X02?$k{zNlYQCo^$JXI!_4F0g zP=ar~2ZBg`2g|TH2U{y&BA`nzMGtG{Y3pz}TFn*8&E&K4nx=@DsBjST)zi}jj4l4F z8ow^24H9D5fB${}8NWHzu=NDtqYF2*DR`110_wbgCmh^(hH}UIZr;D7Dii)ol9ks& z8aTHY8*BTcu(Z5XFLi_bUp6yc0u>cEy~b{_GYc1kYU3*Hj)G2}7goyoC7x~61b zh;w#U1tGkXv~d~ZsMILdCu181j|ka+QqTP1v3G(=a1D-c;d_XgE?NAp_Qs9u8iy%Qu`XIHX~g7W3wTVJ6_TFKf&t0jL@ltjV#~ zPANHoUFKqUm4KN*{xRYdfZsAC8{6+02{}=16g*wu5QK#C%dnBz*Ybmp5md4Pu)$`@ zRkNQbU_3tDQii2?i2)_ue%5elbx#BaPM#C~YqJJJ-6L~YhFA;b6-S&;%8_{mI2qE? zyI=mCG)wWhyZkgrE~E#YcWg^mh;g?#1B8GB7d?&kD%bJUyuCa**b0YsAe+G_#c;NB z(i7Jaiusp?0mS!-0~iQ}kUmWbJhBnjebQx`lCohVUg|floMyJ=mfnw~mzox|Eh8KCCstn-7D(a311Mh`wb4l#mf^LM9tnG4o@Nf$UO4$X|LqKoD(fN ztX+#nst=6%j|Zkp*`g4}c{rrI0bFauD=u{2=E(`Ge!mcb&S~SUD5kBrU&v}7pw8FRRgxK!L8x;>to>5CtTHp;c(;>F%@9>bp6z@7Ypb3 zwH}S)-PF$wNvGK5{MmXy|~o5^%QziO;Os_P9`Zif$Hk9uh7ZR z^m-Dpc+fvlZ7nY{hkjdPYdx>YQAKyCLGOl z9*hR7*q^Q^8N#FDoU}IP;Teew}qObX^D*&+R!YBO}kkA4S=;ZmyAo+QHB2u zrPlrN?d8bFn9B?*IT|vmb;OcS7f2kAzqVz zqyHyUSwPvYI*jbtr<<$bC(N?5M&ps4ly3e)n#VCadu_41v25Z@i)xLsV$?m~JIZ`x zV?Ci)REw%^T2`bBY5ygLIr=||(F8NsVra9As-1QT8jyuH<5v}C7@PbZ)U3`}<};@;eO1;&-)jGJ^MP2u4*Vl_{3j%D%`_AVh z;BWb>?mNSl<9x4^S?U=hP?>Lw)Iac<80fp!*3^H2z^y?a7q%9J^p!JGAKFppjhI9Y z=^HP2v-By3`{;_8obg9F8vk@ibMn5FBmW8kyiQbG5tk7{fR0;yMsQ%!*eOG%AAQWy zh-!c)z?W~Dve0a#DhU|d&f{VySR&5b;+6lJ{^timtBvO^fCvJVohA)9r_w8ej2YEn zsJX1o`fclJrP3AG%-?`Wa=e&Z44Ca53wf=Gz)JE7zb||r)?_gKt~&a|`$=jg;e%WD zK(9A!hoOFl%ony6GN7F=YiS|ft!ayj)U_5N78fFl!vdZ=Wg53NS}TG3hgEAB*kS~` z`MK9y$^;h`%bt@C=N>quYz)G5L5?XXTQYz#1-T*Q3ER8Q18zx=U00MH<@T>zN%zm% zyaa^(#<=H8ButQH>{p4ZvWc3W5e<2nN8QykJLG4kxB%{Fk}_d-^e`l~Fc z7b;?U7+cNILqDq<)>m(%05u&Jxz~NjpFkf2%w?cWi(kJRj4I567TsE|Dba=2JbWW6 zT7*-rTXPW2>U9|KZWl`UG_AXwm}_(t@N+mk+fxYVUG63h~Tm9(I= zbVFlV@k_3_uh-|lnoH%SeCFrQmTS0F$nH}eeD6Z_2(XsP!xt;{PyIm+W^-8xtSg$=z=}=C0>s6FD7kdkHVxs@6-;;E5iD$QyV&{C`=oaEL1^5*6K$}2gS zSIUGec1^t-jk>*7)A}dYR=5?!r!tID>->XHY?=xLu5tT&xjFD)L!N^pefEjer#96Y zHTFn@7|rY~ihoszr<=nGKYuR?0rtv?jr2zankA>w^rsQC>)B1-q)^RLqb}2Or2ywo zyqsJX76MnB4fFcFeZ(Lypn1IM2W)E@82 zl$DIyMy#pu{46bd5My<_=bV6>aWZ$IKnqkXRihf}<_6l2P)$vX&l{iR@MI}n(Od21 zGP8_3H?3WMUZ8SrPMgUhqnL52-{{M8s=N)!0jg@n`MS_`S|FMpdbs9s1Y(At%L1F{A5p;ImF!l zg*ES)5c+sK*s1|e+uF~9`fa|m--Pw8(b)q_lJJiwy+3Xas$iythr)K*I}V09#l>dB z%Hx1vz&DUc)2>U?u7yY18`7VO#;<61ZU_1s?k|*oOo*ofM)eO0<%%HYLwLkRq-?pH z8?vl!SbJb?diS?~LLC=9$^ivQ<|EIeM7>1k2hd5r=6||2@h-t)N#N?9_o6SbPhe{aiKP~E@ zPN!ko+arrZ8j*135+|82vYc%gXCKE7?4ts+%R0w@zj`h&ayT#2@Zn^8-R<&;NpFQ~Hqd$~;{ti`Z%;wycfBr8QK*&*aVu`R6 z(oPzNi|f8_wP#M@V3BD~-+C!?V1lEEyg{`By@iS~UXMbk@iS(XvrS8$wYfT6n~DSzai-G zzD^OTO3`p#Gw(BYy zHDUUWaue{$aX}V;EQ>K9X<>qt))69Tk)*2LT)O5Lx)h6@YbjF2Nnk1`;Jx(*>*)q|{GejyUW1>Nf`#9SswdeoHfj#EA%2{hI+8 zXH^JAu9^Il#wUt`LizsZ0E75e)?9&P93`wgW#gwnRFQhlyXy|?Uo$^l;mI13|b3|vwFp<7_U2N9wROd))|e2(NJEqNypk| zYwy-qH-Fk_1YLiBh3I&qrd6hsZPARdbQ#T zQvbDWY3YMdR<^-G;dG<~-#Trld4TSfuW7pzdWDegVpUq+=yGXjy=^3kaR13@{?3im z%oKvuqz2MJ{*k8OyD`MK2cmp#23}(K%L)#^7pq0@rc=13c}0uBCSuT{^Y5vycVo(@ z({c>rYv49HA=JAd(Csv`BOH~i}wGTe_=CqyFNCAf=k#L=-dV> znUYQ>mH)in0gbuj0pF0Ve>_g+*N0~~S+5M!r>v;<<A`lWl=Dmo9@HTTl=%EoG(6j_d(2NMDL1 zO>C%=j((Sv$L_S+cQED?n1)Bm1@M~U*j*6FoP6G6Gx3gw17~#mI680zY1c5(LZ#3o z*>)HXb2Iy4li}h~nvUzB ze4|Oa8GM-X#?V3F+&36IG;!8(YUwgi!u;=y zziEckD}*ALi5*uR(n8!u=GKR&e=e)VZSaFk1)N??1ch1@AK+Ggv_vF-?6|$C7tE2l z`}@C9>C?S6S#zBBG(+mQ6Kb%+fwMug*Us4899YyejAr&vxt{sY`|CP(sOSAhByIeX zZ5K3wfeWN@mSnB<6m{+odjohWNBkd0kxTYB0(LZqEZR(TYziuctbk4h!Y6O__8t-n zB3~-rI06sBC{13AE{C-kY^GvxK7jZfV{Y&G{h%Ttb0hK{C#Bwq;ORXR;L62*y}~K;CGEUk+TsBhTj5RAIkmp!ewQHt`FEi3>O1HQ=-s4G?}k6c$utIu%J1ss5DaM^?~ z?|9*76-&oVeBT7d)>o}6@u$-FC+R|Mmw^7p#`n>+bO*5I;dTJD7yQ7-)tJY!EkFrK zrJjz!IRR_jSn%(%gpE{sKR5W!tUP9o0`!kK#%>KT#S^b@knnrrHM`4>mo$i9rqiHk zm!6e%SaB}WATA~(x_x?h=i}|VVLQ9JHcVQsT0G@e=liP|+C=$5KRgmwZh+CdU7uP( z!ooYS9q~uMz{Sa8jpB_Z0px9X|Ed@}AVRYy2f?^`#Vom4@{eW6id*Kj5 z5iKB@AM|qhWC<6zm&3S400Ev?tf49o*#8B=_D;8TuORg`l0rqE7Uvs#y_5YVtK8qG zeHpLAbB@I>OwOpS5g(1!ja`2-*70W_H-Y3!3!mhB+Zx?zc&ti9sjpWt&nFDBE@=?6 zy*F_W81j+n>bArUN@(Ld6BS31r+yDi)5QgiwPV&$t?%#YTCtR7q=1WEW;)?)n@n9@ zUF=1fQa^FPN8iLIYiP*$pF2jxqJao>a@aJ2C>RF4gEXIXUHPSEy*U46$9d%p%FtJpbm;e;5*V{S!#2o2R6AU3hce5}r9Q^Uf zgSo*})cE2Bxq7>-40)MvH^(-@%B%ST5B{^)H@_UA5vvP!{$}2=Apfvnz}%_>(`!~p ztLLRqY*i!yrY@i$JN$T3D(T_B!Ag^Y(l-d{QSYLHDS9~1ut6#%k-m86nb^gy@h&`dE<|E^*^nJHG zm$h#O6b4LwUih;A%X@XCVx%IlzV7sZ*;U=UaNDil7n`WW7k2mcNge-vQzC9fd?r3NnhrED3t_UKh0&pj zRo$7mgt5U;z^IUL8<=XE&<|3dY@u%At!KOO1E-FL%9-nENj*5NpBgLi#U*~}%go-Y zWCtCUhGVRkALunqZ*)>n!7M@1KVSJQWyvGm-G{Mk23LnRydvMP$3@0(PbqjrulP8k z@w=nsSf)=a2V-*Cu>I_6!T~>{{|k8ri#~fk*wC53CYXdl2XK5isb_UTK$|@seLaUG zWR$+~g}>+?^?S|)eTmpl=3QLvRSQ$TD|kLGHD)i&bEu(|lk)Zz!+M8{RlfO=qE z&fNM7?4H0)>x*aBp)u2Q>U;}5HKIT~6&b%w>!eK6B=5=mSc(SrD4dqS`wRLH;B-%4 zFmAi#_^R;5u+80zpNbQWjl%+1<#Yip)+~R+<>Krh@{YDQa(R&5Uu9XL`J^71hTJ&jP01W}Oh7<>#X4;@KI))r!1r`T(i*K5cVA~yKzc;-c zfiSLcS&$vxh1WYF!}FP4CBc1JoyPU?Q<+XOpZqKhKA~De zU;9Q}BTowmePBref+whsu~Vh6u>7C2yf+UUgavfI*(7T$yb-Z9@_l6e_Jd$+p_iE4 z#4f4yZJvnqwEi9D+w#3V4@NtV`Pn`$b9wWp_<+0%zAl=aoW?I{bJaRWaROVu1ekC| zV`G0&J{{%M5Ug_xVJ2aBy`0$>Oy=LeVMy1Yk*Befn|6eO_SPczm(Y zE=w(t7uY{5+o0kA9OHnBH!=8F$Fm6ENj^ZH2Hpziq`RKGYI*KRC*`VhSxV``$;FIa z1w+P?`ONPiSXfrNQ`Xasp1B8c4@cpWsV-{})$4Qsx$Fa*=xCUm8ce!70w; zj(d=nxEUf{Q9cOT_Y`KzeeEo?jqpms%$ML4M6+2Z!6lx_a4W&laStELD{06AntPJ5 zxgD{1W$=8aQ>{$t1U%P4srQ0L(%`#RUtd!Tf0QK%DtPYNQ|PlE{KBlaa4_vFdDL-Ab3ExBprG;eziGg7Q1v8I9<`!f8Ym-JU-62 z08fmf&b?96q<{PRl1Y#Hh|A-$3Hy78$aGnB zxELj2?jE1vH9PmZr$8Y~cRA3`K|QCXxIHPuQw-#lR)|ntUGBQ6t3Ky*^8g~B{k@5Z zNX2e{N9|=OXsK0~bCj=ZiGMpAu^!=>YIW|tW7nWARe0@6QPJR&X_mJe5kWf2Mb>s& zr87xB?M5u8{`ps6KScreod*YMb2L20{0$6bNaXm94KV(1M3NHr$c!hQ+n=n}R7LL&$k9LLdA$E} z(2@w+ShKs7hCJ~#)r9Drlf81e=k@jbyhO{$M z-^V%_X~yl&whxm~gQG1oo3uo21%qFjEbQ&R^tUGgp^Up1Cx)H@` zCmfQQ^RBebj}5o=CJe3}?1iZf-kFZ~nJ$vNt&uLvmY*mo{&9oj6@qLKAEi~77}8pq zxmJs*rI@>a^suHM=<=KRl%#px@sA@ubbcxS^586UIvYd!|U+|(t<(Ewbl7qvT0P9X0u zK2O_^z3qZaD>@vCiSFPkF)zaBVh=vm*3?#fzJVhy9{9Ansr{#_O2g0#6mWftJ@20r z^=J}n>WHYA5Xw*c*wy`IvIi^@i*fCwaL%Y!?UEj{r>Fm1YNu%7Y=6!@5NIJ;AzqW9 zkNZN7vE{2*6>^PU=Dp{vTGaaQ10{JF>SnD|rYY*Ut_GYe==H#N(gX#@WD%i!MQwlI zNf-*4bfF2LmV>JI5};>o8bc>%&Zbq+a#8@xE6>N($uxx8V$yUHuq<`K^b zZ+7GDiAZ=}y#fTb9Y<+1j3;W$IU-r__jD@B<($9D@#$l+vL@Xq5=MmQDqcX)t_FYo zCrG@PIHRiqYFmlx7Xk`Ih)Kcib!7le+=f_%0PCFLR^Naj^~bGYZNM2=+hBATKxg)b zF*8S-aC_A{Su2DL%<@q>s}FThvk&1EL!PbRv*3u8m61!*z()k!`KkV|QbSVuvF)!D zF1dNOzPaf_$A7>dStG&^PUruBG<|zKll}kywHc-ym&hr@N=qVBlrSZ>rF7$_<}Bt^ z&Y823q>$5!kwfK>YD${(P!eTM$)x6-Lt)5a&VJYZdHlYA^+*1&xvux?{d~Tjhb!L6 zw*GrzT-rdL&&m+S5>b%AN|HN-GG2vArVW%YJvt|GN5vM=9bRGYtq}hnOdrK{|3fl~ z6VVNl)c1{(l&HP)QRE^-lpicmc)|GLa})dxq!RsKO<4Li{LPH!?v367O^f}GwWpyL)Rf2U@X zH}Bv}R?X=f^$Xc%*u1R*hgpG#{(N43uik$ z8k14KzlaK!Q2b%)1y=pMfCkkjsgH$>VNP;wW_pLfbzlpPNxo63r zzVua7IK4RZ6Px}HG?ZZ~s;s?};Xi2uM9b&K(RV8MZ^reSo~I*lOm}0} z(%Iuuov>GHzs(!{=eK?_1ydZu*YB`@^ab-SI&R&*vF{DBO!6OZ^{R8MUSs)(L$(U> z#G`BQI-d5>vAbaEK^PUx(Y}}JL7(SsT6}RS*ByMdQ`fkuSh5+$G`RMJ#x#p~Kd z(4z3h?ycS112RYHfuR??kD0`$`TshSF{A!-E-E~k3imwy?SNM$cjzKrn2+)1>YJ;Y zRz&w`r@X7ay4i9{@n6Dj@9BM1(v?LjzGo4_J^cskEq_@2f}Mli*-$T)dLkG>@m^QU zDr{+`k{8N7EqeYQ)^!GP*_0mPQ8D(${ZHJL0;dY+=klv&f}Nc*CJ3)07`^-_;=Sfm zpn|B?VP_9wuyfwa@fq4mUP_nLzk{PJGfGI*wHBTQKjV`2$4dsyQMmtYy z)C=*8UU7y93E3V$_>4d|1{?goqz8vA{A}DTdL23A4fZ7HMK7%KhC+8=@BWMiZJLf} z?7#ItirBKs5ou$6{`>gHfFq`ZHK1qN9_j;{fY_5@3rS$DR0q9_-lc9kA2?5UpBcc| zg8$49%;j~e)Ro-)YD$QP%bk}U7B5f%tI6)k-Up+_hNnGu$D_B@<_!jOhxJ08Up4aP z#G=NYX+&%?RY9?b*ehxEZ(+rFP18Sh+h;)o%UQm&RgKFS#pux++dC~>(6nv1IC&A2 zJ#Snbj^bhRcXSuP13x%6c%eEk{!Y_mC=b0acU%2*Qq6z1uM-jZ|9{lMuvR9bz09=cu4Trj>8Y0_{ zSjSyOxaFjOueu=h^8U)nm0MMfQ;(U$WV-59p0b;aFmyNSI|4uej;>`;+w<=QTT^^l zkAO!@G?9tfwcmR;O{+vRH8^KBxO$4QZPs;PGktXJ=?B?+Mpl=|_q@}wP;syxEY&ZW zQs#CPO3=yank1dN$)0Kd*ZUzUNQWFa&k;-9ZQX4#yvFVL)bZV->$1jio0&~9a1FTI zGp^dj9d0Cl+n?NsbM-ufLF;Q4W<-_1zXIyEY zKobWEWOqygTFRIXdkf=t)`J&^#Yj{O3vZBNL{Y3r1e0$+ly4&`Wiu>01QH{dDg&qx zjk9WGFqW}2k!CF7inqG*J3fkbx+T3=J3WZ}OsLHaN<+I90I?iHnDl{7S6-Z*clXOHMIj;SB z>A20B@vYzB1Q1O`JYYu(n~5WJ-xd6GmiF;hE}D* zdjgmT`^T$gTZw_~Z9|bvnXcnD(SMU0|9j5BYb2S=X$WQf07VAv?JsQ{BJuRR+&p^g z4~r__A^4$1xd)z} z(O^_s5LpG1YNCQQ0^gsQI2eUw5=(^{iK8GtVo(4g826_iNELuLn#fYVS&!M^0N7{t z*r%TNzKtt=ZA}j{j0q<$-@;s$@RI1Yy14jc-gDBl^6*&ZENm6o5Bb4S7Nl~knuYYrOy}rG3iJUZMXUd@z~jEP^!?| z>JkefOr`bBM1k1JFG+Ba2^A+4X{l^B_|kh=9Yk+rU75;1-nYR==ba@1^8IPrF)o0* z;H?h&Fq#HEUisE14=u^NpNjOt`GhE^j@Qo+tgP z=v@MXJPkd2ansWa&nwxtim06|6obgD&b&-3lGG@pYIVRp9~a+d4(RsbAV;_;&Z|mm zZ#8?G$oayZl-=KrIe)(2ayyaZ`zbkGCcZ(pq-r|bd zDV0wWFlv@pZg$POOZ)&u((4W&E|7J7+W*Z*EB}bt6@jAjdwi}Qb9yjzLeA-9*zJ{s z(x)d`Qw2)=LNG~>e`grRGkVJkFk_eLkp~`GpQ>w>J-7!*)8V@QVFF}$ze9wm{oT?S z3Z;FoogHYL8othm0T84D=M$|rnm!8=Vx-OXRZe1z$Gq;Gd7?JGCmzxZ6S5aX*lu1t zk{0uFf2W3~+?%US@+eSZfA7qglj63Lrjpu?_(aSr8^80gPeK)^k05)*4hRU7DNxA* zK14O_Z~@ZP?(yg!#QBu51WMeKAt|q0|EC3LwfYBqDAPo2q$z%z$Nl6E#Oy~F@Cn0_ zZyK7sJ|6gPOZm8CaJ8U*ZAYweGb2B8UiCk7+puHuoZ;@>-Ov37JDk>4Il@Tdu5h$v zq?DL}Zuk~uX5Rz%-U+-n<78hO`>9D~TPMBpxjNDH=FJxpG<8rVA(b{@ktS1WRz!_0 zG%G?XVIX@_k;p?Rz(>Z@fi7uza}3}Ic|Q;eMSatQ-1zoJG6esoj=|h@{X@| zx_oyQR!4VU{QmVP;)b*@CrW4`^|A2pEcSxh$CK$@nEp#l=b7IV>-Cbr-Nbbl-<_e` zWP?!NzkubN3(z*}M6$i%&u<$;>!&F>8jT(%@aT+6t$W_6@aNQ;u7$yIc7WW-jFxmrwMLS0wgrG@Et}fs3Qwl2#DsU9EM_ z&T|ajObl%rii`-m&Q)@FFqd3c<-l=#$J(^N#@g6!x#4Rt{WqYtK5S$8+r2sseI2@v zd48_c0(<9a^iuMZ`HN@}SF#_y@!kHF30No#Au)rI*~LlTlTzx+uVv6U8RSMopbi`j z@zX*06sg${uPhC45;Kl*2N~%!`+ku~F{IWZ+BK7R9xd&fa#|MYGF8Y_c@p1ye|b-9 z!e=wIt+zO5Z*n^F0?9bTiXe#9L#bd?3a!3yE~05dp9%kfgl4F^)`ho0xj8Y%xJ5Ha zW0QB*w(W2XAIb9`0v$}ja{GwdwGAMzSB`O;7zJUPx(fUCgw-YeR{v6 zH$S+Us93)}2Uei2Zi@Bi>_JfGf{NhE>X@QqMc^c3ANAxuP{5q?kf8nMepkM)XN1N> z6U->-05tvW{Du_?^_laeoO;>9A<-=D`xmRkZtKGUhVKYGosxv~BmsjW*kZ3-tzH(8 zb#0i8sDz>2NT@>)<$KY0f$DLebRdgHMZotcV=EFKq0?pXUkB?YF@n@I5)3zPO+w7p ziW+-&ba3_}DHfe~M=f7BuH9{1ni$@l(^%VEg;helyp{J~2WWU$@K~-oZxx>S=;g|! z3q!W##kcMi9Z{an_}Z@lP(!uSJRiMl>buPa5%l7EU)WjQvmk9AzH?{Ftfry%%;`E< zs9$xL`c`~%GvC;-5*i|oMWD)6fLJ6B1$UkE{B&&8rJKF+2HoKBbUDACwS zwTOl4e&{kuk_0ReM&jbZaVe>vygxhuJk$=k?V-RRFg#Ejua2-q0Qivyg;r2bEKC_A z^i{VH+!-v)6DY>9adrEYPh9HN?duD}_?Q?)_Ggx1Fo3q@AC;8+gT9|i83JG1*gtfW zHwEv0L3VJI`iPKQMJnhv4~ZUPVnV~brxbnQQJt1IJ)MAd*aM`~Pr8{D(->?V7$|}O zcVo1G3V-?JAe~fg%NGoR0_r(L+<#t>RjnV||B_SSVA_+ciUk2)A1}!nWPv>u*?LM8 z3-%9I^2j4;Uq;c_N)MV+X$Z}W-|5rX9g568*gGPf_voUINgOSD1*53uGt&{oTa_qO zZFP^{po8!D!@A-6(CgWUq4vW$dQE38`AimN)uoXHEM!b-uhDy7X^dMzia+Kys4*BG zMpf%KbRCmHarU;fz)GY}ewWCRmfr&4p}#8S*J|beCdJ~49O$@$=18DjUA(iqWsymi z_9>+038>)a5q{+H*X)#o=Hte11M@W|4}`h0`@FKfjtL{v;OM=8$# zoVVXy85ZQ}C0%`feyH}b%xOLN_ax1ylBpgdFV)~j9!wy@!&4W2$rMX0owiov=$_j{ z($$6S`4sp#e{2L8q_mp<`Ay5YI|5q&M@N8vdc=+>oRWJN|3h5FM3`?wRN4k_}5WaI9382v$t|xvpMw-+mHCUg1L+G6s@qzW56rFG>J4nN6Cv zp-9~9Fyv8_FwO~fJf?}gcp^+Nfyw_J64SBgve~{ogXVyHxA~C&$e)Gn(S*i$t8@c= zQcVf9?-x&By&~T%pQ+|*XQ1EkDrD!O`B?m_n?6`SKxq%$p+;8QT&vCCr z+=X^L42W>xI@)AHTJU8)VPg@p*khPwe2a+JV5Tl%0{@*U6UK8S@SL`CZ3l4}zrjpMjYw2fvwf0a}IED**pX z;_%pl#pfrXBX52- zu7e5ayIvJU2K$tyo7DgD9tf*yc1L!gO}fk=-B}H(OCeK>zn9v5qECo@ zuMZ+iSDY9#THJ1l@I5iBF&TR6WNyBGWbmWXOo!;u|3Aj$64w{*>1;O45M)X`Ic85I zr{=cNkp7J`dj57C>SuaX*!>5&ShuS@3iy6)ltwd@VlX=6bV(#bHvR_edysB^w3N zBm*P?@owD*63N;stQ#lfxEwHWw*H9{~};UM-DZy0Ni~KagI6$3<$OL*P+-_VAVCWBB})1O~5GIO zD%tNWIS!GdtNjhjrCkl{f0CPTo0>mpT*@FfY>qpg4T+GCg<%U9Wh+@`=S-+&&6kb& zM!1D|Ji^IaL>wDym>(Yt75CIV)+G!3FIXJ1GjSH5~O-iZhKNKphWL< zAk73*RQOT!^|k(oWix=WabhY=2!Wfe*85z|_DgP|&j{jTwe}Ur9CB9G63R}Cv-l4R z2qDL1DQqGkwVpb5N3TdSeMCwNaRq(h+)c)Otp%a@&Gk=mn~ASM@-}*{&T)s6X?RDk z3TSRYUk245p#j0Sgr**#%Vk>IU;ew-?b9noE~g$nvB@*snyiXi+n$fwRcl-V#jjER zOc|cos>bm$QQyJo=e08V3i&;eSt9o6kG{HR&myrF2)vz2fj0n}AOIZU!>-_%jd3;# z0po{gVxUmm(F{Fw8kI^*2XI~zKJ15MMX4|(77d_qg#Ru{hq7egE{PPFhZ^P(4#oiO z5m+pOj4FcNjIlL=m!gsjQGf;E3+rbU7@{$uLBM0aA|H++k&Fb7@`0qB4q0qJ4>ibP zDZ4y2!Apcj1otSl@?d@&WFHtZPv7l^*fR@2O(<&iiPA=-SVi7xI)nvg8&75m78 z+kD5QkWTSZSY>F@ZHbwaof=MY(ymXfv)(Jrh^(%5^K=b!PRTi61nxS=x5$eVFZ4gD z^ke__6P{ANJz1oYnRrP~U{0EX`$P z`Hv)3_mYy5F6Nee@%?SSZ+kSVL;1GlPe1X|WR>4yeDJy>SuEioes5iP34)$g|3|H? zO!Hr1zDMDjF3k7qr-^*9=X9MZo1B4e4Tms@>1$xG)18&Osc&?FGakv-{?xT|Y52GSU9xSmF94>RWc!7Yf8|d#zdi==b*9Q)O=-9M z*5nfNq?y70=6%qeDA8jv`>nf19*hFF?v#JfgI!TwqipMqB(Cj}*O!- zZf7#LC-P_t`H$<#^Y0fI7eAcLzg*Hf|E?nx=9So>rv8+Dis6x_{}o(EIZ+8?-HyRb>DehDZZ@$PFUK`aY zmSXefBi2T#FH;6X8kQP_?s$B-cMSoQAG(nSgz973d z6YnSM~-8eclh^*;J`YqxSARGV0>d>vDdwX7Pg+8a%svP z1Y2$|DkHXiBWq^v(-=~{y0mqWZq}@P&VZuCK?K$B$zmlSWoR-=v$#@|*mus;$!2I3 z{POw!hYj<08-ki|Sa1E%6!w|qrdoKCP)bFvuKnciN-}Aw0PQqHykg+7>&uhMSOgAD z%y9K73IgFX#U{yba6O_Ix9H6}j*&YT^LN&~HT0!Nc*9Y< zDZ3ry=&epcn;8ZS!*}&QFVg%i!z4l5NJ6Nf`gT%6Qfhi3O#-M&awWN_Vmcm^zL*`t z;!0s~Hv)Hv7fHVa=Ec=MN_-MMv2OdC8N{0$-SNU~FN37>V0cgz<1iYF#-s~?l{!VZ zFG&qEkaujr^>8q(`kJeWH#p`zTa!rEobr7%LJ^`rOU4$aWtpCdP{#(_L$YMVvBt(G z&;tK#FB0@fQI-sV(Bq`T3aC(|B@OSQrVQXfCRC?_TI|Vcvmo@7xyS!gEdZVMI2&Nn3TJqi zS@kGCOd$&P%J1*m*3j+tj>FGOFN;&Ny_k0NLza^_rsp~J|8fqV4g2f9yQ(+5{?a%4 zk6PpQpH_!|jSc0BOSua2!gt2KBE!N&HK0;UGXLWUfz*#uc)JWL0+kL$rF|4#oKJgm z2u@if7UQ;L2XF4R@WGqxb0q=F`)r|jqh9U(ys{ZiZXtzbbr_Fn7R3WJbW9vDmJQ$l zFlD4nLL6&kn+l|woI7_^39js^Z6xl&0a0+FRi)JKfZ^IE$nO@^fa971W**?Z=*i<( zz2^uLKZu8B!q19aNvJ_4`^+UvbPETgi~&=soLmVoi)$r&o>Lz*vY)yY=j6yF(<~-$oZ@@q z@OseRmXebO>n37Unpmk=3|Uo10{lqBT9jUG{GVD;J(}|*5+#1+FiIAG@$(?|Oh-~0 z(U;vmp@o^z7P05`bu~z(L4AgF3zk~WKI@rpw{mG2FehVw)o!g0 zCiOUm!&JLNd7C^A*L>*K&YTYit3ygF%hXgeXAC!ockY5J<7StJ{{2-?Ol_P#S}8f7 zY7!<0W2mvEAK(~aeJ$}1+E1)+u)k+_bn~(f+u7Sc&UMUlJSaaqKUfVx&@a%(wJX`2 zFGKGQRwpUlD}Jr(p>_`I@0H?3U;fLio{opKAF73*iao=E&D_X-fJ(8@O=tpBAD+-e zx1Bzd51Pox1z-C2a{UJ&;Eik4aGq;wT*gbR}6< zxx+JEf*1&r3Xa9dh&RcO%cfmrT~X^i?iVVgGpnJQGdkwA{p)vxZ;XvY>>z;1DiG01 z!=k}>K5gZF_IC#;1Bl-JZ=diJ-cN)rEeD;N={YK2eTz?!93$5xuSP;XN; zKRS~AaCfS8-u@N4O6-wg^xEk9^`N()qC||aSG`nMk`vBwi`+?K*=$j zJ3V(-%;DNlefZMI!l%)J&jVd~H$6!Fwqo4fbAEu1!{)CWzM?{nhlQXJ(E05taKP0G z%@(VOI#AmXRdxUb-63vIoh}Kao3~7Yo=y1 zE4O*v7Tw5MjBi=Kf?;HEc4_;i&Dr6om(+7wnAVl)qOB2WMTca@<$YM$XN<2ry0x20 zTrd%a0u|GM@!R?E^mL$lQ!~iNXR@VkKr{7N5z8HeQM2!Vs9aPhCvwFVijttmbX&iW z)F^V@lV0GQwVw=;k)ZX+7N}?M*FaXHAgNS60CME^%#=<+e)B-)%HsY)?FqsqJ4?NdJOA;$0D!VcHqc-G7=Vu*}4F5 zl(ah3Z`bHJZhvfb$m*D!ABx^G9bQ{CAF6Zoeo3#bqq)D398Uj5iY4BpT_Y%=?J~5y z_^uEZ#{gxER1n^fT&tzYnJ}a!N#F>kNc(GjDw~*S2L14WDzo&YE-*-Q+3m&L+H8QO z?M0N4(xWd4 z9_k!=2n5yS5etv~W?k%e2?3;oVL@qDhd*2Fsl);GBwCsbK!qB~79_OcGz^xRndh`X zkwUSn9=Bz%=ms64sm0*OWM3my67e_i%2#VU2Qm8)2~-xRL-_-%s*q}oNDV&`h({Tv za`MIU!^bBK*M3Mht`?b(GHfU^#l7{sk>3LYhl@LO&;6-4vm7+bxJE1X9O9YYy_=es z`#5?@&k)SCSzFRE*qpF&jAmA+v67s9eNW4=Z8BfJyhXWwvz^KRzY(<{fuN*)?-2#? zYv8AKNkpPN?#5AEE^9r6Qt=3AGD!f7z#1hmW?6_{M-SJES-ff0`d5Hj>H0fpm zG5uN-Tmbxnl%ZJkkQbj&fn-Ws2dVc~Zst=KQ4NoWdBl5LykHZa&kM@(V{vFq(qs|P z2FEvRc2^H1rLtaCntbi>cxCy}7^6~t9z)IyU=r)X(LSVcZ8ujmKP4CkNV>jbp?-0- z6V2cboDR+_cIA&(Vyj}POSgXHi~Y9|1-W)=z>kz3ocfoHN_K67 z3jAqE+S@>Kg_IFS!``^sc9=)|la9U&*#yPMHF^Y|cpow`%3 z)m6=z(Rd={sid$zAx7{1vqQu?aVdr3F*m07aE#7-dx*HZw{|_~>g;?r@qTA#POs|5 zsr=&_n=V(mMlc~&cFrlr+s3%MV>Kf0M>H#?Cc$^JqOCQ`2FtpzT>W;FKIGQGZswTN;-oa)5+{ zjQv53!^o)%q7n&BqYxOV_h5c?4%XIHtMOR!)TWS=-z&~9u^ zf?(u-p!*imNnpA9%mv5pj`G?M8RIKn`i+76Hp35)u#nZ5(^q0-uy$%qC;UWFen1k1 zFQ%e3EQ~ew-SLBnpx}to8Hox4JV%|yA7NVVakU?=ifCQnHLDb(u$;K0J z40i7LUbZFO>><8tEoHNnRrXuBnzXl>p)F{HNLVc3l8Az*19*%M1`*tWhiYOdrAZ(Q zeYM2%#kf`f_`8E8z|3NsTyzZV_xy0lt znn}N08t;8( zYc&9Z0=J2ulMu*DM$(QeVvjcN)BWkKNJFmWq()z&B$#{HKNO#|=A z3Gd1zHCk8!YGsSED4Mhzn+T!leNLbv!0hj_lRv)*<7sbmt&aX%`v6O~G{HfuUd^1b z+eaBYUci{-k}fx0j6puH{BGe8NJiIye4GXSq46+}lP2DybwTSX9x6k}Lq~if`v=cn zjo4VpG+5ubNcJ6!2nbjNbr;P11|Hx<-`5m%Kx-c$1b2Asl!*LILRsF2 zMQSF{S9G=~IHGJx-w{~c7aSgmjCrT7h4Cc4YeNC&EQ$+R39LdHJcWJ|JvfL1xGlj% zV-hqKdoDfg!=sQ6xNCe(#>YoUETRmLChtp?fU;hN+!Mx|JSxioRVc-tDEdq|-p2$1 zyl-oRV+4&c=@RP1c2>hY9^4yFK0>=y!ZFXTkz_kArdgzC6jf(-vhJuuU{@YjiLMT9 za9SI8*i*w>-@J8yn8G@{{(Jj$Y;rtr(2dw$3azD7hcD~h^Ye2?VZi}A9rIgj<~z%B zzEP8V6?Z?Xx}UeP&C=>f5#_b^y|{dRU;lOe?~aJZ(dh-CA5MXh{~IeQKq}y8`aufZ zMOB*sBu+Zuk?2G~1s_QO-&8)dkS!Dmp_NJs4J(275+O<<>MQuwDWrqilvFBhP3~Q@ z!kp`U7!C?ef*tV?w5=Dw(}avHhRM-urh46!D3{TR?C+4?n@+)j`U*afF2s{njlQx}ZfgS)Mp~fAY_QcI zHWWPwOa4x8U#{!_Bf`Aq$dY8_EbN{E6w|C@l z6&wI-N6;5OuwXYOv~`L;d1_TO%&=~}IH|%?urN;5)>20Jk=>vHOY}Icubjl6*6*&; z`!@vz(~CXNaB?EK4+`b&|4$3hk*QI}PF(kU!{J-*B^#`bf=h{GQ-$yKiSMl6d;2&L z(%z~SWijB{56cp9h{$16SNGEoR6G#`8xHFt1REf4ia!a)Ib}veT>EcT42*D_H4D@Z z2n6wKQ)AbK*?a=J;?Hfa(%(2-e*v7xzkVc3L|hzl2$`f(W&?ka)x?QEe*zfCBMs%^6a09dUKQ)Y{~Rixp9!PBZ48ZL>K_xM9Ng8o zwtxr(!=&!6H{?%6Hu}<66nT?Fza|f(|3SGa9Q%^4aP7ro-OG0GE>ND{4*nXH?kwTj zZ6wHl1|JjDEz5uA&#Mcu!m|R;y$d}>R4>hZvW|UMmO;FH>{{B94CR{7ky~Oj3z74i zXUY8=_)pLvdvVb-!M4VfCf%_=dvZkb!bKS_6)mLXCu7qGa@3E%21eK5C8`UDH2Gkc zDThXyKzrhaXc!_2_81U&6(f`7ha7=zyKFKQZ&WSKft*7t4-kZ2g+hbB=O{We-+u=C z>HUO3PB9MxITj<7!z*{V&iL3P^9GRjpilsWrV~WBJ4WRA@%*#Z(^rZ5HA_GC4zIWF z{_@?~@CEG<8|?7tHK_#%#inuLVOQivkwzqUMPqkadT48Gs&ND3JGOQjTi2>szr?NU z@9!ViOajXwS#(D`2m9Ck%+~+nd}2$f+QQ8%D;v#s#imZ>)1|^To`tMB%=f4eU6&JB zdG}d3H&UVULqP)C5{ToAMXpKsb+J55KCn7CNdUM2#)2{6Q|yw^yvb0Vs#fX#>LDl$ z=I0;`%FmDhYUd<$gu68y=io?!>hdc8pvMKCx{2oyc3i_TjJw>k@%Pm+0Su>li9=Vk@6rn2Z5Ate*;-v5 zwz$&!bLtB8sSH*e207qKa_btzA4S(}YCgCnKXc_}_)nk46}{mBsG77d}@Kg>%?bZ;I|1 zVSpt!^v}GN&bjf4kb0v0YpD{`mvKX(A^%()@FAlg=e{zCn8|Hd?P^#{ejVnI;q$x2 za8Q@p9it0M=Lmh}WanHkDdj5+&HgJusX2+O^CTXZI+qS|q!5O6Izy@`NubH2i0b^@ z-QB%eGhIHOkQzthE09R9<9h+JIi(k92oDoVVH#QjrvSXs*V0lF@>mk4eA34QDB~cY zMWL{6M!*O6C4rh`Qjy@m!9!tAq*By~gBKd4LoD&xg{-(=4$2rUl<_}@QI;Z9fMo*?1A5;?8YT_xZ%c#{~nnWpt$-Fdg36S z2R))pC~dJP2D5G;k7{0Yz;`ioU+$9hCUNhm#_wr-#j_hlv3U>p-1~ zB&sVZR;wZeQkb+ZfKNrhL46wQqB=j;&;zCNfrVXV^VghCND?o&9e2g+R>e0Xl1X7* z8r7I++%=7;cAs?6;tNOMQ;VoXwZfWPc+%l};b12n5CL7Dc|!OZ43W-Cay7KZ6gy*X4!tn3=urv0#-^7hwr}6FtyCd93Qbhl`|Mt z;jb~Sc`SZ3gpoZJ${gB?j$Q^i$-9l=^F=ld%MV{a&X>PgX?fyC$$Dq*&n2J!pJxSw z1M6-@nQX;X^zKXj2r-P2+kgQ^;z; z`@~rtgGv{QQL~<6+)6<#NF73uXlytweL)CM(;Clsgy)>B6VzmcZIIvE_MD`7~l0|hFMz$ctrsVAFUsfttvQMT1lWfqes zN(l$R6!n(%IWv!@HZi0rGzWYK}2TL74OY-|jn8WN^o%4?Kw3BR<_EYLgifT+Xy3kN#Rd zP<6TdK-#@IsX)HCu>+=*kl-GjpOQ%?d`5w-x=siDky%d!?>Fn`pJj%Cg>iFX^Oy7T zbLpL(Bm6Srz!O~#R+(Sp>T$oIq}i*lPv{(zKEmH45n~3%JpJyS^C1TWKOhFw{k&wk z++cUS{qqTMS5|jk`*Hs0mb?MLkJOIY|MO&+>HJmoC&q`Z)tb^oX1uGL<%P`lA&*I4 zJr=_c>KGvW2Vzc&V<9Auz1Ab4*rxrOD(nURR4l*n(jkM0qzOdVAfJhu`H4I}wWb(_ zHv&-25y=A(!K2*(R3RibkykE%;xS(0%AQn; z#^6~#5B=hr4t?rCn5$S(82W<ON#g#4>_Q5bC72cxXX2n*k0!;+TW-Y8CM?c ze5vj&@_P<#`5_Ovg@R;hu>H>OO`7Nkud-p>AUgK_efF~B_S`RRamCYvotPT$x+Q-z zOuJb{yTu*D3kaRd&o2(3mmb)zijHi*Y+riT5;o*emJh6PnEm%oJ=Z|4JN(QB@yJii5Kn`clZgupy?pl&XhK@@^eU@!_m@CT3LuN{MlG2q!d zxvNJzB2ut33KSU?3kwn!a4rPg zKs^2ff<B%ABMMr8lI;-2E*}Aleg+kceVL3$8@O`?*NS0a3RR#9^hHs(S?pZs ziR;Fyzb9$sszO-T1Iaqr>}#OgOej}geSWa!R@B=cvy-3`z3h}_p>mi>7A;d59AO7K z1|bhEc&Lsgc^R&O=xrIySJq@r4;&j?IAn`%8N?^D5sKsPP-L zUm6D!*TE5>pmMFY@Sp++Pb`mOI?Tew@j59CXxOS{6K_hW|1*i zi!y0Jz{|ohIu%3Nk;)GN9`z4+*frSPp92N%;BgFr@i_JfpTdBupKh-7{c$K9x<-Zq zn#ulCT66g+b>OatCeuL;H~Qf~N}u%UHgbgqR9Mtgy$TCKPBDpwh9Cy9r7XaZdo33WLMX9mRu8E?&7*KjPdMNg$m>1)yh; z$tKeP#m}j5E)5D+RvJREAaEw!)9n@+N=>E30^+GaLO2P=??xaLtztoH*&98)wVtmA zhE880q=`#Fah0chtLi+n;gGCi8L$(uwuhI*u*w#?K?kq5Vg?b$T3VQ|gRje8$2(s= zCY6qa;P5oL~NILgW5H;nv3_DW>tIusI8Dux<|4&H_dea zbcLXPp%5GRa|R>?;9qfgz~hkwTIBqp(_NP=&=+WF*SzPL`!sn&*%ac%;z>{0Pd#lc z&ZP|SmNOZ8>RBC+ZTZ{50$&i4re!H4Ne&@hXn?vla7HcR!Y~v zQpmaB%rA|b!`mz4eSg>1JnYn+1>g+I$06NwLPE_6Pd+Fh!j$#$^usrHo~;DeZgSSw zJ}3zD*C|ZO_@rV%tY>{TOpD%so^Ge!BWrO$Kwe#0v4nsYg7XT z;X*I>zfd`I|9bYVTP@=%oSNGKFxaHXDY@$FCtNi4we-m58JzdMdMxdncVq>6oN@+< zV1oa{Fg_uy@&}5%LgCkRp5G9f6o7MeiSHE%CH-!LCT2-ntUEnCYEai|N^gy?N zcZ~WKKfjm;BN>W{d=RAx22zX=c}UfpouT2ihm9*a(Ni|Nf58$>jKM?uKLCMxe6+AQUe=hEx}$kIlphKW)4Sg-kxt*n%)Il{~ESYjXRT5(Z6#XcmHNK zgzOG6*_$mB6XUAp#h$Y9?>oXiMqJOHs?@1sgC_;+pnlZb!MRVwyQagRlgySArX@c+!lD?Q&~Hou zC>8-M3dLU4-R%LhK*H6g{w%MLw?srnk{N(gdtYM7MF73^SyBnNb|Q8`!r2@M;701b zpIfP$B3q9aul%c?Qq?O~cB+$)bM>aJY)NSNspDTgO0^yOK+VzUJ}6RN{9|PEx%Ht5 ze#-bnYJymP6fjbu(Gc|uw!m(YZ+mL!J3`5TfA%$vlsM^`IaG5VoB#;s*W#r}MrOV%azsdoQh~b2r zM+6T&>nB27Kjno(JV>ap`7ggjIH|B$R1<5K3Gw5NwIt~)hwB(>VzT#><#DCo+ix)C zuFW8iC{wjC8Z9^tendjjEYo~RQXfYNKMbH#K|?79LvBt^Kz1bNgqn0ulfW90LFK0m zE*H?+=Y)QsUus(YbJ6P`&Q#4M^?GZ7$)F~Ia`b6t$=9|Pm(P4zr$2jUEBA^W!w99a z%qTScvmWIz;C&~R;GfQ9n9W@{43N8+ zpf&z{GQqe*#0O=NRb{~a8+!Mmr#!BE$I^3t-W|`?k{TT`z z-Wt%@8S5W9yZJ3~8go2fpIQ5OL!KsM;iba>8;-Ll{SRCQdzN&eTNz}-HOBB7eNa1k zylZD5WBl2ikL=yI1G5fM6GaAdPpejf9n9xum*duirrh04_CTBXX5GBR05QNwH`Q1c zjAKON(B#&GMw9~NfBrw}7%3fqry64s6e_ZZg@b_RtO5y2+8U^3H;Dy@ZY(Mm3Ai1_ z90H(7BLwo`fr4+XfOz=-TwF$o!X$V)DVRC1HQN=j{%}(xtA^H_^v?6gT=37KTI5${ zVopvWJBOwr)viw#bbSXxQwKW-{it9ew>=Whq<$M4Q&ZDs-Q|Nch@Ti3Sk*?{8-v4N zBP@cZbKp=K3tVtfLh}X(S<1?w7auh!QUF7wDu3WGG6%u~mn=B=v;vykdp7AS=(wX< zkRDmEvPwZQEn60)!5^NU`88Z{gbUK63@YpKxjx*z**IJkK;WSsde{ z2A?O@+=>Ck^av*JRMkX)C+L^u4jP1xTWXvI-Q%3~&o1)7)=*U=Z{c^})xDo#{1QoU zL(L^%Al)dFe&^NSd9hxJ!EPI=U|{hXf=8>f46n2q@;bq zt;n328~o|6(dZ|rdQsB!@akmz!N{t_ zgSX{U9$h^?x?frv45m$J35f9*g3~nneX0h10MYR)g!j5*9zvk*Fia2*MI}uuG{d1Y zCzGz0`31#UK%9?!&%mCG@jQ1}8R?YWBTM02u9WwWNa_&CQICi4xKHIF5BT^@oFLjx z0>|GBIDv@GnSz)R`6Pk9QT6?%QFB0yGa!QCT(P0>iL#o2q$c4TZ)!ey3F(4B3Hlr> zD23%WLBb7V)4(0t0pC z$>$#YJR7VOxAeh~_O=9u1t3Oi32#(qK`FMIabC(qvTaGqsovba>fhUS=CAq1fqQbW zTem{(j>g}waekh22Ck?i8kYhWjEl=OGcP+15pE&87c^G{LKfL2T!j>1DD0HEjQQ)= z3PP_FCYwXTc*li6!Xs9vNk337-ud){qAaZ<)GM&6oo#SwcLub~>@FLwtL^r^-V$@% z=3JBpTiwE@76aS={EXiOGaO5GD(lugY66xr`WE&&?tTy(j+_r4j^13XcnO+=9{h;# ze&w~Dyjk_Ss;;zjC1iVN&Q#jQTxaHI^TG{K07E?18upf$C$A2oA{Y6gumxB7RxnMD zThjWnMc1s??!Ma#`L*75?^v-syT;wMx7FsozexJEIXMH`=7dYVD9?(4*zzsCUqOuH~gllMdvi9v{i2gZ1TscUIp$Dy=$`ecM42w%bpJ>jm^ zp(M&Amxh;(8L}mPJ&OSy(5bX*UWbJK6GO%b@4~BkJ74nf~8DzRhwDlSDbptmKqq4ml?04n&eUhasmB za-KshXCjTFoGQ%uyc|j)<|D}vrj$_*OAd4Pd-ccn`dyc6SGn|__TFCi>3Kh%j|o|O z%#dja+iTDp#G&N)4s+0t(bAWHeAVv*sCtr9sFQ(9pxo+UF# zPzLIYKrYzGM(w0pcWjT!MF0w@O@R#3-rnB3EHxi61T4L@nkHWxS^xYveCJh84FjOC z77r&6R}WZ34`vNy{SC-P$i~KfSJ-gz>Hgd-FeJztkPn$mAgsnP6Wx{< z>AF16uPlE*w!`W)r38uPQmi!sB40K*Ll^RzY|N7x8gOs@a_1HYFqB=>1j|;0L{qJ^FVgTNGOaWjQ28{@&80V(N|KZ)yGB92;+7qBqhK*o(t zVEzt6J|Tc*fp+NgL8Vk4xa*mZvs{WO#bdZkt=q3glZODt3gd-s3QYsJCsY_%-2=R* zJdimLrsBZ}fqeP36(RQPRM`6H9fP}h^MKg$kF&uoq7#15y7uBRc`v$SzunzBzm^Zm zR^r-#zpEOe${;HT2=vT8Mi2oI^)6^VV-43m0*MdMAl@Zn2B(tUe+DfEWu1>PVnKt(}t{R9JA_OE_Ib{KBnstE%_pzybLqb>#ogT)q@gSX&lZ|f4D0IMhSeP}t=9FX%U2prtg`h@V z3c5n~zDd?Fv&!I(nB(A8;E7s#G}8aH&vZ}VMtMoXFuXp8evulA=iv?Py1A>NR6I}E z&ncI@$&KKHKfg9Qx4y?k{~4n06ua+m%xty#MJ>;-XfvJ?d{h=$M59_JSIC2X*)&h; zO0XoM_Hj%PWoN{FNM&-6m^U)Q$j;O&Lj}lL5CpR_ z{1}`^^cWn9{!QyI?*4mc4c_%@yP{h7M3&Bdl_9O3S<9XezSL6{+{q6z$Hk3*h_Jr% zSh<<#+=w~)19Db8$HrLcV26ItDM##&UUNKjkKO=A#beq*yTCn5qSDn_1 zXbNR~H;~i@od<(^#e`i=vy8BGP^@C>KQ5RGJ(IaC3D?yfuW0<-GQVONBIiq^p~=g8 zdv99CEZWsf-10~SH+^h|Py+Nh>6Cw5C=bEYFjhH>hP5!2T2W3Jx$ z>nZXKi*mx%kuTxZjbZ+=#KA^N>v>j-zg_53Ufp#b*L#7MQaSKD#DTfbQ>V#mQ(;3u zyC8_p7#1(eCuCYwQ#L^_C!j&^<0QdU9QqhzJV2)A zm5A7f6Cmw;QDpK_fZ-@ZPvKdWEU}BwE}$}(WSB~3{Y^k;l=8(w;BNX})6*tpS&+eO z#d?d1d;>V1d{1fWIe~N;~p>_7HFY3X7)z>B{j*Mq}J-D+n2wMtm;HBi@fkc83lmS9nj3ESm z#00-!xO@5VzfQKh+!l*I&C~2~S69i=DaA*wUXk1uuOBGG&}0DwFSKMGr~`mO$#kkK z*0k+S3)obaEp;tJD?Q3402LzGyvQO3LC}LwBr^~fyEdmzZ&0Dx7Oah}gYCy&HGUT6 z^*zg^49gU32Q~3EInTmK>XjRbN5ECGg$+{O2kR_PE4DfCs0?j=D zE$^xJ$eYQ{l+KOaXys;yY0Fqa6D1bF$k0uu4yv8wZ@ghpXe(Ws@A2Q7gHve#Lt_XXdKlA&K_tx&J?pWhvrs<5AN z5-0rHcmK@(-l;F_ID9bXsIB9WVkGU_<7;6k$ZT?tC9;6l+K4eF{--7W8~1_NNLuEm zE;QKV=t#;2vz9qK@(Z-|IZHz92iVxyt?G+KYIok=dEl%I4@(rh1AR#SmPQ>ui8ela zMA^IPiTfvc&V{2t@Q(tYqnbUAovW_N_YaG$*U;5dLYcFpKfU1M*X?5G;n9VpMIAXA zhB^l8L5!p%Uw&E$d6-=BrmZe~=*Q1cCpG~t(BJKfk^KZ=xv2|dhG+Z}K^$Sfd&(Gz z)7R|5rjGJP0YrtcJgm117kBh-YD6qm{wb6Z1G8hI7nzM~cPG-FLX%!{%LlFNnyu@i z(Iwd?il7*YzY-5_Ibs5ZN%vftY<2W0V=+5-IKiMY{n3bCKX}u&pIRO93jjvI9>!4+D)~KSj*DZgZ;w8DJX;hfpN)q(!(GpK> z0^sM$o819WG1~Ud_aA1_2cQ8$p)=m^TZPiY5>Lqq%UwHhI(*YTe}^!nJz+P~dH9>Q zbGz|E2N3l6lC&JQxOtT+x);_Ci4?5X66 zQ&f6Kj;Ov*j03m$0Uo&-f2#C`t}hF0ic=L8i-xeplex*$pwkY^0MfJ!3ms{Y29v&F4Yn*`dq``AD%N9+Oc1gtu=T4~$0#8DP&3pw<$(*zDozRE zNX-<~yOfn{7*n4DlTCbzeBf7+!OHsp0wD!00fG!v8-Xe53M&%XnoGtnK&FJ^Nv9;) zbkpOgH0sE-iK(X{?t`#C9r}^1i)H@kFElL-@e@eJA^-&+%N`3sfpt_6Ec&lxmGZf5 zQY{pfN;H3(_)PE&& z-C~O4A5Qoq+2rhTL>BN^3~_6scql8aKuf=n`>vRjEF0W|v?roTnFMt5Zp*Da4IF4? zx+jEZ!gW92T6*cwe&`;xvr!nfe6U>a@+8Y77C3M{+o?|mh91&xBC^&-18(aF04;mC z&N!SCjo9Vx+`ily5f#N%Kc}`7Od1(^^x`pMQWqiaGu~D71sy4g}%(l(-3s3vdDrVb~XX78;(qc>*BB_ zP#9A3G!9(Ff}O`W76;eO;6>t3!Ar7{v9YY5S)Ej`9v*Zu=%z`1t&LX*i2en8c7{db z@bnKutf4;WgI$(f;WF+I^%WFDDv3sHE&L6$H;wrco_jASC@5<2sj{S!8dF*xG3 zK8$mL^|Y{LJWfCBOv$kzF134YBel~_lfkWb==;KBVKeg`a+IB5tFI4jxA!rNQOFl~ zN|@D6Z1ORKWD2TiskW+}@tP4-sUAS}E@~v(aV1htX32Zlk5Mq-o`=yBg6xkFLr79y zDc5t>-u!A$SLi>^F8m<=t}s{PV6gOq+5rZG(N)}=?lVK3ZfDSbFbdjN-zEYBrL{)t z*Mpk9jn1`n-0NlqW_GkeJWT8(H%6asNw+Ujj0w#{Pt&;gulSH;=N|+yMndVJO<=NES2>l(rK`o=szaGj@C2|)yMlOcyU>?sU z(>vEjfk2HYaiZG3V9=5&@ypQAg!dEojKa=0ZEgJuWz=(Wa)h0*&X<~6QSUz-IdP)J z;~1ZMOZ)uXXh0{uz1KH)H}aTfBn)ex+4t^)W}yEyoy4O8E3KWhyU)+l1e12P7Q4~VvRM&~o8~&-0>9WLj6RP)Dj^Kxe{74X;dJeH z4G4uQ1r0Ew^OqA;wU27>Om*XAB~*FjyJ2R}oxcC%=E;kc@OAMFaJLZmFzr)TqTZr=l26>9buZohckB?`2{X8rFdHkHlvP}AVpPk{k z0kujO!B)rK>8SP&jfh>Ap~J7>U{=*3&#aXW?N5z${H2}pOA(TDc=LutO3vWxYO4|t zOvxlXr{tk1LG7eYy4cK~8e>d1r$TDrT(13G`lqgM3Wc?4x}P3*|M(< z7Fc=ogiLnpJwOW@Z7d9X>xsFZF)OcX(KqQ zY5O2?jA+(GXADgE2Kv`l)YS|sZxqkVRdXk9>_qLau*lWsx@F!t_d@&Xz;`E7`QspA zm#Jy$&C+CWg#rm-fAn)REx>(!fLUzcDCQRftvllekICtCs4g%eX}(DSE{cA%Rx_>M zSLNh&lZnUhb?pZk3z4vi|LiWdGs2vXy`bjvWqrNw_o7BCV4ZqN?Bk|@r*%}N_u|=i zLD^QLm_pS+t2qHg%#ArW^`Cu|JU($HRM~46_cJYuwq8k(3B>aTS4KFqrTOsviv006 zs_^GL?YWpqC=6XVJO%u=c{J^-F7_35@`YX2v~dx&OxdFE1(S7_aHzo6cyc&79OE!87-wMY0ERBBizgA4<)ZMoFb7 zT(z1w-*aosDv8yZ5AfH?(mg7lfCGl~7Yv69qRJwEP@wxu zwDK(1N9yG=l1dlZh1CbtdQT$O-gpvC6z>qBz}B9390^Z*gdH0e=muWR+LBIG@7l2- zt5=M323Bbb=nV>|i@o^mJX%ntET(~0?q-iFGFTkBk)y5%;Jr!sZfEY3E}(n;HI7OG zDyNU%q$aZz>&qbzRUN|D!#maqg}bw)!f-lqV4(iSCjUU4(B|Uk^7O{wAaF$&2=Wis zZsvbM0wz!g-Hu=xhfd$$>s;kHk(-YC8myraSg{c9F zo0w>7E)zFjGy)%btMi6mtNQWd-YUe#+JfwgI>oi-sNKXwx8-&Y@Sg^DGytm+3tWJM zczJ=P8{whs#}4zB3^Fh{k#ZpLU>(nbt6q1uGO#pF+ z$ap>Ztvp~tHdcJBuF9QcuP@MZ!FR>?lK=KXW(jF`SMJT)`Y*5asIBkGAiAh;w2*Z6 z9HZw&A1F5p5FV&q_d*PVQI>5o<-(^hjw8XN3y8CigHr6Cxd3c0{0s^MWZcC(ivl4b z4C04e9R`8AbAiHob>t1<?ef;w9d6t`7G%~hcc%K)}A*VBY_c=S8;Cn1BYG}V8bap94+hydv zX02mO8&>_Ue}dY>Z@-SIB_3x#Gyd+h1e5m99d(s-kxOyV`HYlPsFv2!qtt*u;LW160C!6_QhANNn@ftiBKJLb77A_*mK(cN63G2z@O(y;%)!jlV(%s5jf>(2vA~{G#mSqAc1*>oi*}3_Gbp_&(5=Q7hC_=O&%U?9VUEF=4By@%&Msh`O`%~jkwZT8;rvLDYq`jF{UZg;8aZoFO+p89g| z&5!3ZhkjA}ojZjGvxk4&5592gY%S<)%N;C5?>Zj5K3p(6aBpW^*PLwZC4DUZi}j&L zJ9jRPMD46wHjl~CJUb%x8YEYI{d5=;sz57ukh4n)|L!R~DcNzbvPhzK?tdTDsD9S` zDf>sEcBjobxuKB!wPo7y_DY1RUs+UC)BZ|&HJea=~IGgV~XppFH-ma-NGZ)X3Ha9gXU5Ypfq!Uj7qttA>X)TDY2gM_Kw zDE@tLJ+#borJZRxrX;kWCKJ;zi2Y5Rs4B0mO6t2}-ALgnZ;-o4^+k{k*Fct4d*h&{bRIfQ-z(BSH%OS+ z=$WTmCFF7g+faP&<1Gs>qGIj*U|A!rT!BK)By_cL*)3j>(SxB*nujVEHS)_U`A8Qv zmzl?h6^7BlA%_?aAF8yjQ8L21<>(^BpiSaMjeS>;MLE(+y=^_$7p)%r8iDf%TTLLA zOF~lAGa+J%BUZXzsp224TeH*g}0G0 zyB4bn!bV~|3};r($t>n=-CEv7i-E?WivDFBswTMQN*E_F9d*c5`^(1783kb#i|0AV zq{;|!Ja{)0u`KQQnD296?FwTc0Nn8~mNL&f2v*4qDKBC1dh`VU%1FbsZ=^*|qs(R6 z)_;ts8b=C;aMal?oJ5}L+WQj(ljN5-q9uEb}Qmp7gn zr!%s?4l6rb=b$5QJnd8K#fv|vRm(EKvJ1jTG@B{tutGy@+AxZuP;=bq4&a)Hn*a+b z*EAtdp%;M3Kh8Y)^uD?b{#{-qA;8vKT)u%H$cFM54=00fQ+lrMed5U5)lLkq%^6%+@U^}S^Ij0nYy*JkZ?fML~@BWNDnz`wP! z5=`|D^D-tjhUQ`D{^-<9aHn{ybt0uQ_z;$$df}aS*Dx8+;uNnhN8Kh7UQ!>sO^I>= zK2o9f!5*n_rzdyjaJxFnnX%(VKBkWE(F}~HSLA;6CY7bLUf$&zq$}xuT*yJG@KO3!^bM}mLGPr<@<_w*~4GFS)|;j&)&KS)VN0v z)ZJ|=HWNxM;egNc)buhIV8M4kBy*4ZPB`GyTjK?9j=$qNDN0J1)kmtu_0Z*6SH2yw z)BP?Q7-(Roy(jXdf?J^M3cn|(N`h4XxX?t2v{%YWLa|~!r?}Uk-I%7#Kwcx3I2ZJ@ zF3s)df&AuxTFM)ZO40T=`w}yU3w{SZ=`JCwslX;vi5`VPfK?$7iV;cp^8U)86!Lo9 zU+HY&#+}XH8`~EJbC>HBxZh{04YTR}OMbdkZm6gC6V8L=#5)7>>@IrMlGAwaGOL&a z;)%64s56+oyKp{TxX^#0f_WRQbQJMIJmY;P`Wkwbbj-;CF|Jvosw%hK=BVwuduErr zA^fs?y2t~KH+Fw(Qu^y^2XZLab5TVmS8>lxEs~#S*=#2lrLgEAAZg>u8^N7J0Zk6Sg?v9{BV7%Ff^6N1^o} z8ilwDqYsIWz+x+a?#|1y_-m?X-&y0s*i2;P*lv0?y(99~z%*^oJ3O>0G9om%iJ%&& zGvfo0Y`HhR5M#}Z6Yi7AYr+{pKbL_whKi_mXIuLWeQf7HZpWK*0+)D$Cq|U#)M^)N zD%E?Imwl|9o80q5f3qU8GHSy8hTm25wQq=8lVlM&>RkKQS@T0OeIiDJ%)DCse` z*NUIj`uWzWnHc4}t?_$K!d}VzFJ!Dozl3`Yp22*psA z8qeIw(R?L!isXG63S5X7)UM#v%mnI7&%F9O_Wai(_z=1cXTUhcs;Xb;5`q{qDf@2R z1}~K^ge!S%7CeE3GcRQ%Ju*)r3we3jBh(X0Jbx#>s`T)0IJbC#(*L{NY~;&JHYF)r zum3K{ut?HEi_KFN0>BfAPcVx-^NFTStAf}t6tz517`{pIY7bNs(hfTau<2RLwGLr0 z2-^#Lv$sh;?bFlgj=K^w2VP)HWc9$h<6x6i2)$}K<6TDjSHW&zQ!`yOJKL7mWTN^< z#vFdcTtt2}ayntGhZkQp)i;&``B!FqO1fSW>vL~wH!D`jG>8da%4LzYU&1Olr)j7`IyZMY ztE4na`mbB*<8T??mzy{&=Yr4{6S5e*_J(Jkc+p>%fwri{=8n!Z1h+Sx!PwnD`1|*| zK5j{m-Jk&!e=48bs+z*R5dAX1n#us@LkSwZV$!}r&0lr{MUGc{BUVG{G&I;5-S3cl z9);mZi-;Ff%7iEID-0^#FHi+l=w!7Br$U>jcZsvsL% zKiRz65_6=~z^${G3R8EWoAb=0WQwot{QkYPSJ}v%QVEcPgUR*NiE>rc(8Zv)Yq`LH z)%tMtM{?j@;TKZP{KF?dg;$gDDt=hb*}mXZzN+$2&<|Ms>qghoL)1=?CkLB0B(G(= zOi`&hiyytJtdHN(Tct z&F~)|vCVUPPX|++E7cw{zug!Oiv~;_{YB-~t*nmk2aiRg)mBz^w$=SQ-eLz#y5Mp9 z!UKBzIhE1_?|gf)G!OI>DPKAlBas?TQY${9IC->vb@=jT_|AK5PYsu%`lNq{3wp8N z`NM~8!TA$prN)53%gSZ{wPk($@vE4+&I3Va&fjTQ_|_kG#|-kH zbBg6U#_93tyNK^|wZFn)!v8tNLSu2UIIfUCLhMN=L=~?-jppZ65`f$C$T;1)74?jM zaPs$5JMvhvjN$dNl=qo0Qj(?mvjGSOwR?E zq3`USv9$v#PH1g0v1@23EYS5-Va7(1krgHLE%Flr_@$vlSWi7Pdom-o%C;)U^Tav= z{zROq3Cg5BdknOtx@gBwX(-7W#9!mdf{M<6h}neSMI9#qZ8trNdv* ze?$*|4XmxX*>exv-;D_K0nvd{6`~#JAGP{}yJH3zSO5LBKb`9J)KQb`fwX_*??I#J z{lkMf4||J+vndtqwx5gFmOuCgc1&t^Xod%bc1&K$e_gn&GPD29pop@wF*rT9y)ql& z{_5|o-e8Tw<)$G=hnZ>7O|N~LU-Zv%G8}Gme#jD=8uYrn+xcTTX>yXxr_W*HWbWld znl{!mhQ;X(PXe0>bA4~se2=S0XN{u4wJD4@%|@)tsy*Z_s6YmLxKTxB_RNw>ml~+5 z`94_Uz>9L!yI>j~Pn9s~f#UJO?=ydv?|(-=DPxl{@VY)1Bpe*mbDh>E6UHMOpN7-k zFn29eIHPpko90;C!swtN5w=plYKcvl?c2O?Gq>W7>(|j@11|(L4bLz3TEtlD6yBq~ zF^IFIUrcg9SKruKBM{Q`Bjy@xIK0>OG_#!*F(eo94Y(ZeY{A18gWas$Vr&-?P=Teo z%=q;3#uR&40=+02yK{k zPO9wdMr=My)*q7zfgdbFCP+4ur=YYJy@Y(-c>f5Syi@;N-6{e&FbQPny^D}h^0_Rg zYmDXFb^MHsw-ajaG+B5Grxb7#>{Gg9XIT!WJ3XU(DK#pN&%&v#uplkh^9p8Uf$ zIlPGwM2wGU`l;r7f`h?CYSJcg&S`9WLS6fHfYsHtFGW7I*BeyOlma`)0V!l>QaR3J zFqlIte1CN)db@sRtA8HY@eKa!D$kvspC>C>y65$ku%Fn~A}R#+Hy~rFHk*~w{O<1F zO-QLsH4N9(OkjAg0B~2IzHRwIpfWDBEU8=DkB-}1$TB+d6B#?5MhfQ&=aP0aOxy1; zd!~&@oqkMxU6RCqMQM%G;Iynqs>jq!y+&Mb%>!A!sdpT#X^*vU9)y&|nZJ88nt$ zYyt&aQ#31GY}RVh_AhV^+%l}P8F6csIyL#G=$I~Vwej8n z8_!|N*0dlv|6RJ6y_rBW3FjlS#p+$NBw5tRY$un1J@%|xHFm5Z}r^|4Y z9v&IiA$qt)Iz+#eSe`w<+J&=k>G#Zq78m0wyI(MiK56E!8qJdz5OSS|-*cnCyZ_6} zPN=S(2^2UCkKRk)|NokSxc2K~@Voy=Nepcr`hPujhnvmO`$~oTpM%4L!`JEz$ZPz4 z3e@}itKsxF`|YBUfBrcOi0e70q~pK+{Z|>Zt4(TmsF5@$3xLLpG`Q`%HqGrYRXq_N z9U8g25D^mUk0mX2J5Tu1*6OE62dBT+q|D~e9AqlRRA%*Mu4(3a*;C4==-h5I(^PC( z3F`#yczE9Yvahr*t4aLVIFT3T#=viS5X)ThWL^?Go|msbUlL*px8X{_tC(39hUrUNrwO@0?H)Hw_=?|7InFoiEnOs4!OnxBxK)bl zxo~!C4vuIVC@>!vX}Fccp*WHLwHFimJpbJCY+08a0cjE1yY84fF8xy_^R#T%J- zdV-naR(su}fEE;yBF^SP1eJxMkX708edI$k*D}zT9L_^3RRq{un*gyWCA?WuqxTL; z%7->sW-xHY#CV*hulHHNhJb+0mKf+yAYOR2gnVKUaj30ys~_e+nMa z*IuD4Bz=iwo+=!|+<3lxh zjqme{_wMZW=p_A()`Q+U&FIjpi?c5^qt=aipC1E>ktEtBKZB=w0lf$D{=>9{�+A zdLze2Klx0C>!})h712jua3+MoH$Hy08*?&?g(8V+nGt0gmH!vTU!U zCPB2YDwzM3zW2frPl;D#IVWEwE{Q2DzmwwZVL`*2Tcwf}*s}?U;g{NG_5NP=7TB-a zLR>RDD}IX?8_u+}wyG~NPUPl}vzv&4FjQZ4S@YIdPzqQ;@^eGORhTE$1Aelyf%X7% z8o!0UmsqNTloE#N_eEp85E~a;3IDj83kvqs%H=1vKByEGMklEEEVR2w7nRox_!3)9 zU-X{@-hJ9vn@*3$Q7{d!G6⁣K9PJW|j?))x*37fZs3cF){N7m7bly9|nxlMIX$@ zbZj2jb|qI#HtTHg?QRb&Iv#{~9;`PSjpIrcm_107?AtD*n0(qqj}@_5NK)v&>s2jZ zUq4_nJYVd2hnvT6+{HCskNtrU8=GWW8Pyhah!D;~!|1eoaFqpozklmw#Ku}7fMM-E zsE$0CZk~x~oACB{Hkd%2AU|F9fC|HD3kM0JkzKb!BR&>$?7Y7)F4{tp(D(ChvU_^z zZuEe&+3_Q53DhSNdQ&ql0&)41{^1oK%fqMrIxZf4{9rjj%GXyx-~2-zPkFk--oo}M z$RT`Y!X6E9pai7ZG4AR$1iZv2XO`xt-p*ZcX!vg??XdrhX$02CIiA=%c2DbN$n!NZ zg1qc782p&`H}R^D-Y*l8?3?m$*%RWGo@|Z7n0PP9$Z&``Xi5y)7BUC!K3&u((Ed() zyqhaC)EfR)vsNd=yzI)!O9X2;Yra%@AFTY2E77Y;d`#hSki8K&-}4sx&d9n5QNXNv z@s^>;WB*&dpc3eF1JOb7eBI-}c|qZw;5Xk;?PSb`HVt*`ziyrhQ$leiGJOhf{z%R= zaw9E~lRot|5Po{L_kfl@X!r0df*Myr)cKTkj(wS(Rn=cM=2cx7To2E}dk9+{I(C@S zC1kRPUh5L@c1iOFao|)96g-ML!^N5`qt}M#CW6Tj7A5joa5Um4xvLHr3b*#7cRCLO zi5omkhq*dnGimkkkJ&%+!Xn11c#qc98KvSfZ`8bh*)hb6G`K?Q+&Fb-n-)?TzoOF2VBRA9x zW(=bPq;Ab2xoW@vnkIX5=fBm_SGe#so>p-Y2w=n{AcB z(=&9S(fAh#_^+R1BVTV&)6lr|hBv908s>F1i9ZIy@$A_$#!IFBi2UHAE~_k%UM)rz z%u}yz>3b>osVsi4sq$)2845hxKld(Mt#%q??NJH(?o`Zxsr6i6Cet(W$QMlEygDiZ zPH@u@9q*yA2|NgRdKTuYfvFbCSyc8Z8!T()axJrGwSG|aN5Iqex!NzH!TSpoa{;?j zR+FaFt?ZII3VyWypZW;r6JT-VY@jht>X;--5%{AL%fW2%D>KHc>%!-p3rTlvP$gdoJ{xF1Rtckd{+4*8x5YYXY}Hs*@n=dy0FNgp@ylXbF^g3fgt&-} zgTc0Q|EjxpnPy@1v)*ygOJ^}0T~u1nF%||KL2YfI(azoG{Ubo5C>&M|sj{k1^+SacjJLv*5s`HpdIzv0s z_T{yWrpw2toMgK0waTA3qo;RP)$o=v-s^o35^vb5t9RWO4{H^>R?>%exQMdA>!CjP zWnMbnBt3s)^!0_Hw&}e=%wgWzZqI#!*RuVbRPOx(m1c^frLJU7!wu8l#IYA#jWE7X z;X`EVZivp__%y(N4}t+*F=O-&z^pF6qFgl3KeHA`3Bv+qockHEEQn<+A42P0U$$|Z zdg=-@PC3w81Q*XUEDpm7o)-MI!lR!7=z(NT3w>9bd>R3mDglM?Wl1!2oeBjzC@NQ1 z3jXayCSV#N055@U%O@DYk*tF4MqixII-o|TX`alU96)ZUe>@2-w`>$%p z&VSa_(EaIVhf`JOuCt>)X(S{)I>vVij#9X}#m2L>bj-W?RyA;oGq!UqR&8+>s>Qsx zaqoH1Qj>u6e<~hFn{D-H{|a^ESOMGR?C^y!T*4^czf1Z1uk$oE!#7*71VrOIK>keE zZVeBM3#>QGEi*DX}tLY-}{Qbm9 ziI-ihtc)>vrwBH+4{t?~JYD=V;iAfKc23q6-#F{P&*!Ta&dP}s^VRKA!QK4?Wuf43 zr(E@7cC|2?69Mr%Q>zHHufZBsV177Rt4t(t zk(hYOcBr*?>h_&T-^dk(LGYNi5K}OLvUTMclwEnbJ@PW-aQ(-m#I$4NueSqoZy-gD zSPqP7rXUMJPye4qGeXj7P{o5A!Bdb4VTC}y8*hoRUFgfsHkB;B0?b`lk!i-aFT%hh z4+{)0KC2FWpDtF*qpNvI$XJaRuFD|r59cF%mTsV>&?W21H- z89}sLTV+?!gFq=93s6g22sRFjEiv$KOdxtY?v7tIZ;cl0Xy~-G6PQ@uDZPt{&xV)i zo}30&A$?2!hr`b<9`#Au9i9OF)HCw-M*B_y{qNE~F!JFpH4WrKSfN|ypCm+!S= zG)zL`l+vRcQy0Hj80#t4I}3mv>f2ZV+ht|LS#+zx`mcyXDVV?)b`beMAcB@Wh7&f> zrwenK@Ob`Edn}%j5vHGi3Yw95k;e%8STHLooGy$b<+tLfrxbsQAWFHgTzDLsm)C-Y zz}DCPL@-@(WYF@C56r`8<#dr83YF7e*$BHAl9h>QzkD)bI7JeHBoK&$yake_Xa9K# zAlg+wC-^I4ykwO;D7GM-FXbxbgAmUvNtb5ON`XVPBoO8@0gKTPODz4UuH3P=kA7bo&8E4e)<+EV9CXwVMC{$&{?3IO+tV z>8{dORL-!*;FKNDx}DciCn*zt1{u!woZ;*GI>$*rBZEf}Y^GCUT=lat(_E&n2@~Ps zo>)RZpNSF{yN<;oZSz4(UhG3${l-|wR?pBrS;H}GKJ~;oImMvp&Y5Kf;um%;N~AZY z!N|<_F!%7sVOUr=Bh_)MGg=Qh|L11X;LT?7-KKNvS>JJU|h?z$NfxGY@VO7;#rur}^dexfzw1Es%1*VeWURoChy$*vMxVfMbJJlMn8jrg zGUa)3gpEGnkLBoKPq8>+z8dIwzn$?U+^(QdZ-;7Bxc`F@eK)EuOP6=0y^%asImYIS zPUR41Tfd@O-584(@m?>u)H@ZGH}<-GJEGZSm5 z#HxG_onrw7*iWS%j6?YLchTMc`Ht1mkj}r`ssj~rF6WC_ii%mjrf{k$oWId~CvM}U zgFo_YZDGwM^dU>`bMa%0-DR+Qw;pHqWilDi4@K;r^Kmkvz9($3cSFR#rugf=Hor~k zj(T_J$mx|8`K!p)Z_orN$H`!gDS9Rwtl~Jut8z>iYS@L-SPIFg!Nhstx+IZKFxGoc ziTS6Ng7Nxj#mT7h{G;VRX8H0jBjtx$W}NR6fbac7j>`BqIf;FC2 zI=`pEZ!y8~Eir=kp?uGwN_V+i@;<`@y65eE5OXVxj^eU zNbg06?n6(-=`T08c2@R>f}3p|B7c47;I2a5&cpKfo_p1}fCzn#@k$2*80Fb_?w5Fs z&`6p12S`?Dpn{J_(Y2M*r# zCTbv>fGz%MZ<)D!=L;%(KYUX;**vm0Z6?aJwN7hl$zKHwTJWPnY&vORj~47p;oui@ z_IkP-pU>=jH~X-$f{SGQxx|OQi1hfj9HJe*cB=5O)NyY@6}W$?9{%h+P(4_o?|=2% z^Ze@LZ%Okz+&=sZhF&@Wa)t|MODbyLL@1i(`8GxT8XTRw1i2&$Ml!aO`v=cJvvPg? zO><~?2=Pl)v`*DcclX?okg?ocxs|47FrKhQTa>R<)E4;t3lJlNceEbY5B{EA`uW#; zZS_aKS#^kn#G-_mpO@?jcZo|u567A(F?;K-!eEoBBYTHLj|BKzK?J&(VZq)lIZ>^nUcN%0R9O~CnkF(X?Sl0EDZ{|T%OUM?blPwLGd{eb4D6dtc= zyZ8_IPatF%=Mm6Kk1a5Z5D(f4dOkFd!JwU1G-=Dd!1>R@n8u&Ul3Cg!JEa5z%Vy-; z!?v!mXmiu6ZtF}UqZo@=06R%xu4|dsvoSqyVZP3f;JuH&XqwlmQ9{MMZp{7~=Cvjx zsaRy>+IAv@1^Mx^aN^r3BrBdOegQbjCI55PK8^g0Zd7q!C&P_ze|Nb1JcY-J_Mx3Y z4O4B#lnaKJSXjV7IijqTkzsrn8oSVLL`ND2Dh0|pkdMZKq*)}(gLw|%v<|+-vB-5~ zKlIG&N2GzYBf|)pl$#7zDehyx#*DnWB1C8v=6O!aRB2WZ3z1vFt{^7D2UxR8`HM^8 zx&$okLrxMW*o;|dH@J72+|rkg46!a}&`LSGUy<(*%1?* z0d=5+0b=_8*7 z_fNMBz+Pe<>?{mncSE4PlRg|ysp^Yc*~hTiqT0g_8dg3nLce%!bTv zsy!e5YMVbF+K4ep>T?z_UHvW6Zr08u)A+<@9r=PUdzcoVQZivK4f*bL>&w@$T;(rc zZN=HT0N*8l<75T|kT_wIP`E3N05H{Te2nD!4U*rR^<>b29P8ZMJ~4CuxVyytfM>hy z7m*n;n3vQ08yk(80QQ0pnSqMHn5Qn<#(%;J$QS6w^rja^{MiSGLdE1|Zn?!c=}$En zahOkn20Df5n%OsTa|rb4nn)uqP20Ko(wT3!h@Uhz!!uqT`GNO8!ij^-;<_NpPKIPW z z54otsUyq4U;#_=@R^k6DNIu1vA-ie0`;5`K_GkU)D#+2d9_jM3WZl)(G}7Ht;N{P> zd3bKaIIiIGMPBeNAprnBa=hD8eSr~(dAQ%IlY zN%AXTpn=SUdtw&{^WY{Xkf}HK{X>+Pba6%%qe<|O{sNHuHfk~1$We^-57w^f(}2+- ztSkAzRX;@Ov#wO!KXWp8-Z2)0Fk}#NF@yJ;{Eg3m9V}N$`3llPb(CT$*;#<71`c;D zSGR7lq9--HH3OOW% zFo#Mtr#Ur*iptP|*qllSnX@_jJ$0 zE%h|$!}%nA4G56@lT(pOuRb?$r~d=nn#5^R0pnnPzJnwI{?_;l?eynfnESNYW#Li$ zE`5J14J@v};fuWlJ_RtkE;n*%afjEx#b{}e05(~&iKInp!S3efUHrlY7_v&e0DNYZ z2@f+P(ENG8@sQZdzOla5PZhe)Rqu8>VF!ei-FMbu3XI`|$-#fu%9PSH1_~;xQir9f z&}D`V;JDL6WHFB=HY0KP5jH}*0RG7F35sFT48j7Mx%L!y0$9@qtB_Xs9rZUoh{V@| zK(J};L$oPRD5zxEfNn~T&po6y48qmYYzX$#IUi}5U1@ELG52_&Of0mn_HGeGjNY8_ z)Hw$UdVP4;Bd+fIDqkpLzVu^tDJxR6Iv-XywX<%a=ta$>?Q{f-ZDG3hcz}eC;mdV( zeSNJD=Cro_`UP<-p-VUtiGgn5qHv%D=&j|4A*mGPYbt8D{&86xl?cbxBMxbTMOv;D zZtaD(A3?Zx*am|EUAiok3j@VLtchK@^%@dI#l&GSX4X)&eqb3Nkk3!m&Zg4=F9>stKB${P_3YM zz{Uq7(B+`xA8CVW0P_~Ay@hge1j?&O|LCM0x7R2@?UuUqf*wsM?v!;=i*Kg?jvV&~6vEJwz-JzYQYF0ORHv_c|K|me zL6@HlzDI&br*{7ex1|gVhxBaGRQHl{5UEpD4nk9s4FI|=8NB!)6dv1OPzk8205}O3 zf;b@R!}JWb?A3o6f|dE)`N30y@R226m%XywH^CpD7AFjUOek6m+itgaYvhdKnHs>o z-{2?X4IwCbZo%MA}pZun9>E(WReIck$0TpCpg+vX~k-R~+x0}(R!E#C4BJ9oZ*$CoY{DA?kERXiJ7 zkIFkQaQg-!{A7$@!jDEt_QJ(v^$;Q|Y^Q6(wV05GWz|z#o@E$g{KS!dx9!ZYPu7c0 zxjEJ?z~AH!&K}QZN3#;!5HJ*pK&5U33*YjwSW9Yt)8Uyo)wWPyP#(ZAd7<~anW%HI z_ku-vi07_Sk5BtauT`%k0BGaurku4B(us9Yw_;k~`U)z^y_($bDLs7A^Iye9w=;eX z>3y2on2bA4Dsa%MGUcRd9B|lE`|_lrP8?`ITG9L9uc>(lZ9yU;Kz1*w(~Xmm@)lNu z1Y?XP_=Sq5jw?^BCPLu(hd?7i00rc{r80okzc1dbb}zA9>aAYFe}OOFoxb7uik)jd zH(mCjhyRlj&SnK04J9ikzQkabWYxh-12+K%tv2>ga+<#a!D0<}|33WLd%o_cqpMk~ ze=TZygq|fu9e;h7WBOKS`j+haLWe#!k7SLkuC%UvsGHpynHl8V3xbjfwjI|^Hp99^ zQ#v&h!=}G}W#HD0nvR7}{Rt9%-0530`FATNBC;-i?-7xxM0EaihiC3$@0Ky4(0pMo z#yZj5f5`Z2O2_qT#a6q{?IRPD-T`kM*?xg5pymo>R3AL>dG7n>t$pj!&LMlCxzz&k z59m#TD`U6M&qekvUSj2<-UztGqI0%;%J#N85PulhK^4Kl3=^qx-g;RQM0q19CJhph zAlm~_>i-wlfp;z;iu9$@+_i+mg=b{fa0|CxDOB6Sbv6KTwZ<#N(;53it*)Wz+?uZ! z@>lGmai?t+KkNb2sC|ihz{uMU$H#gj^y+LVx{HCehpH!Gm-wr=>^(W--r%z&#c>lPlLOz3#PZ3V&G1M zd`q~VR15%DQGg*JBnK~VRT5L>@ezg3a5!MAxIY00(<%5Y#VEw>h{I7G?q*%Q1$fD4 z9I~9PAdKT}m;=Dn`qtH%?3XC9Cdk|OS^{F>L5lA#4e0Yf_i|9&H^}x|GaP$?41piW z1FP=ow)*(l#mhNQClBvxb4v6Jrmjm$g2o}Z4S>wG^GMDhJUUOL+6EwnkE};_C6WNl zbg=yEqtuKGL?|B}EvuN+d#@_R{s|7A41-w_Gq=`P@!pTmj>xQj>oOO8%F@lvEjAkQ zS3Wh>tGQ{4=efgUZXBQ;!Mcvb>WItYNZrDV6))eq<#her-roH+)u-3b{J4f6-O}D0 z11iauU$Se2fYOb(G3ZzpLY9EhgyS?1sw(^uLJkhwK$zy8o9_?^SbgtiCkRPGU{IiX z*zSU0q@M@iFjbqRcL>=tRBEaN@#^^-#C0Gc+8+jo&mDH3{av>-)z`!Y2r7AM2E3Uc zA16hk>?RO)1u9$1my|CqhJAsiRWZORMfKk!1vsDJ#;yP$dvQtA-9t}v_lI~|7i_f2 zjhJkH|Fa;g^~&DTuiu@pmvK-)#@Db`6296L_2qTbv;zqKek5|RHA~SdOh16v6{9m? zpd4(&1z>lOv;rjZ4nE0`1Na-sJDs7^=Wf^Y!@MxJ_T{HCKm<3XbJ&rZiT$dw$i1ro#uc?q_9LTaEF1f%@<{Of+~e&JSM^6XKJ*KXkfbos4C4ki(jp`RAX} zPQIOy7j~uJR4rnBA|<5*@;hJfSF!-G|;G z95zqDBIVZwzbLR8?gbgQvfSV6%2M}^q%n3PkVw%1tfj1?I_DA&+`{VSya(D z|L&2|>s$VuW-S8MSkHC6LBDEvV+3)m>76lWebIV72<;8QO@Bz?cO=7JP={QRD4abN z1{lNee^Jsjj^uC7u72Z6iP_&9dM)4brF&FJ**UHOfVz`6G>b-MpM%3Yp(sN=C@c?d z+Asc$105zvNZM1wFj11(2o*r!vYTj@sAR>=ayElD1nB@8lBekv32qK%7dLb}Z>2 zCI7(RhoE%K283N>FRz?U?fCn5iOUnUu$Fd|C=; zX|1J|=3ooj>&Vpc4J7DYqO5F=I(m=*O=OSXj#JwXMFW~T=Da$UIxb~{<#Ty=odebG z%9JPkS5i>v3~T(`-up{X!CIEdF=Gq(E;-&gKEXl??n=EF7>|Hv1Nmxg0s=U5pz`D# zQh~`5u<_R_oNUi-Z2i1C>%2P84+@=}rj(s?R$TcSxty`KiI-6~_sNu9K9ZGXG4H$b zJ$Lb5AZ8IL-iW)38prLU8Nvd%v(S zmXd^M;iH!?zgKXC)#JO85_!7!l-qvC^-r@p{)F}x-W`QwgxG04me#j&1V&*|BKyClE1}6CxviT*O)xvc; zG^QdScau?K_IOKIPJEqwbvx#7|7My7_2MT23(M$H~?DDPhN|`y?p}6 z5Rk*0PSkx98~h0HT;V&N@ET&^PA<3cYnTK^3(r49A?fSh6DUy~iekCuQdpk8#&HI_ z;%IbGKLx_gkhFL=9oFn>mXP8P@D^;4{Lz$I2otK+-3aHvx0 zlot@!*@l)x-EulueWKTF1o7E;f+C2dBq0h@vpOD9-t`XCFh>9s1M-}3*jb^@u)=-^_T?4Lk3;6|Qb(m4WBScXGB9bTK((73<(+}?FO zn!)2#MXfuHQs}E9F4#wFTYOuT@*;d-MmG|G)&M5K%!2RT$y!vDkG)sc?ysQc(zo)U zZZ&b`i_3EE>U`uMmxx~vD!PWo=l+bwNNiE`530_2QdMqVj*0mAe%=HEkzou+e=rhS zN1$$&t-q*WX6^nYS$NdJ0dwnqRbV;Mjd_gWiZSbaQOiW%qcG!s|u!CjGH%@(V zzW2Mx-;jo|v?&RO7}b4anpKWkyCFJ@5kmYYTHGf!RC)I>NiA~rce}M6mffH*AxQ!1#Eg~J0o&Z%wCT2K$( z-^xKYRu%kjD!WsrI}eroR}$dmARP#GV`(qNcIl^q__RFQ^uYZX1JA^F@5 zfP}QPhj93Nzw=;vUuZ~z)sM%ms{3!uVKk>E`>)M>8qqalcc=e-npLh}H(xRqF?lVl zTD6?ysN&!`b-00lT*)&~#Pi(5?rSZ}-zPM*MR` zrk552gzO2WFDu+~Sf_7UX>!?MH!T&(0k}3fs%OcNXW*Oenw80z+z=7(MdY6Vmz5>w zl`sFfV-OpG>&9Z``uEXKdyCpL&LP)pNg+;pojC^+n^JM`i=jS*Z$fdyzQUy;P}Q|R zgP>&q#1Omxie()HIt_Sn6ii|hs(x|FOB~hv zu(z+@R>F=(dG(sVPf_a^x=nLB4qcy=b4RIznJOv?I$)fHfezpt(1$SCFn8za-@pZ3 zCF=a%yV$#6R#7zrh8*{uefR%bn|O@umnS6tE9`u1J=^rZH>8^zA2vy;=N~@EeCm|Q zH`rfYwR$b_e7QNl7$19E#^g$^SO)rW=AJdMg&v7K-XA#S0~D4FMe7l-mBv6J2qNk^gO$!wyKuh z^8`nb$1N$qeA&yw=3yy!^;*$`zB+c_#dlf0kpqK+mLmcFY9Bi0yBS@tQvJh%H(dEX z2C&v5-i&easkeVZ&G^M@j|Hz%aU|wm*>Z2)V)smQ=**9W=anzIhA8{xYiijkug}F7 zbzBdt2oOasEL*d}6KNqiXe*!(^Lxw=Ro#E$*bo$!!6;7`WR7REO1iu(rwk6k312SZ zc(iqSqTL+6+L^N@Mk9mg4(%z6%aKRIi)QZTGuDH2l0#ZR^g>_;&fRjlG)w_Q+zg;l zNtK_338mFFxI7Yp@$oPW341Mg6l`OFb?oJ3Q$EHxcFSeo$>((yPjR3Cy7sus)``fy;=oLW6X>k1-Jw}ewbIUcPBc7r zP{yF;DbjlSXjmL~W3>4FBeSNsWfwy|zM~|u>ncB!^f$S&@IQ#ihlQ4f|9LOL;xEs4Q&{X%!x6%Fc2zZ%;PK8+T~dFX45F^~!8wmpS1d~V ze|B{mn#wFp(I#s9M7%)0*I4*-^3$Vd&ysgP{rAmy$6ZYFB?ToE(so@e^3kCf;-$PD z@SkdgheNl-9AY=R8R@N$#oQ7i@`evifaV}P1wQvfH7`&5LF9dcRda9Jtf`~hS)Ccu3N{H0ms%F@8w z+rk{hkqAw&wZq3=7DC!(I66f<4uto_@72&wp^Av#tDh^rt*K%$s#v(pLQfhD4TS7s zTe22GGk61}jwfZBUS{}z4$EEGCj~7p$A_$K{1~zFnU%1SVSt*<4h+jzd4mN2I z=~W^Duf#UVR`bql1i9_BCR|8Casp{vbkChRd-h;##mc9*Q@VA5Ge5dpJaTq_I;t_H zwo-2q>0f4Q>UcsP3V^Ug4?5A!;!?OHg*@722s(dC0ya>jFtjk7rgp!*(lK4&L8wz+BFUA_SK;gBU*o7G@K&kqQ4JEU|0RuUr28*VH9Uw54vjW9-H# z`<{{71xCMksrf?lMLY8mpHsf(4LxJ7Ime=nTpNVqt-0zF&!77(DBSluL4Zt^uRt*5 z<~&fbzQM#ni}QlID?u5PplmFrT>19882p%CL)rxiZ?Sgdo9nV)LAL#yDK z5_T+Tal39sYs21_(!*16&$RJaEoC`m;t6@=xaUwt8SqwZ!C7jvK?<+Uj%6tb7_BTc z39_+Wu~>P?pCBs%=IZZ$#daYF3%dVaKowbce#X^__;&_b#917a3Z7VN15+F%k=;m@$J zbBPn`J7T_)RyVnGb;4y)^ooDpJz-*Ed+SOW$d9R;2#)x*)g`>{g7?^)NT8CHuTIu2 z@O;BZz4kP=oOf00r=qOHtu^twWOxUXqBV%Hzx>>FmN?;de! z6qO1lCgg#fHh>lXMUbVkT+W<%E!aC%k0e-M;;q3{le~EuVBMS%Vg&+_n14%-wErkM zL}pMiuLbwjAPe;^-P57y0uYWU z2cwF#kIM@|{4&!sT*Gyku0aH$yMCG5VEdRf`%TXE?;3kz6uQDf`U5l(nM*Z#FQArlh91#WJp>dvtrFtP*I~g7Fz3TDoM!93PhJG)9Ee{p`sOQ3gtJ zh%{TV&s>-dnUQZJ_R@}B?lbHV9~h6CB0AW65MvoxiYRh?U;(4*;yZ=6{HFr82`-c6 zNT$4tIBPA1c6jjMs7ttLB6qRs#f?QTm(c0omXu@gZ_6B?iXpY7p~wa2RsQPSvdcn2 z?&7Cl!HpX;lO3bZz81CYT6T?D9gAJ`k+1YF*MFv;juWOK2RNft14I%7;-lbs!jAox zNSSf5LP(X62NF+g;RJmR-Z!Vmil8jJHX`^%VRU9{8fZ6>$P;8rx@2CKVXzV!E(_|t zGzk@*U@HN=VU6l8Ed|$23r*ie^_J+vQl-bg8wBE=MT<1OU`VsP^H<1o?Ib|%9jQJ! z>{Efz(>*lCcg8y$pvAEBJ3|X+7iU0rQkR@S>6$^~^_73!Z>?p*a`hX1DvG|8>Hw>5 zQrmUiA`;v_jfLosaj7ptE?)5jC?(EF^nciJ4=Vy>PSw4blT(6Yqw z0B6y%fm<^Zl9TT7@O94^K-UO)XtMq;WeU;P@FTb)NsfV?ur>j6+3fGy1XRMR z)b6;~1CZ#qjhu#w0`c6kILPtQ#N@weXP1!0jL4NNFzo9RL=4?ME)h$qj0gz>AuiMZ zloR_n?=^j1OmqjBRlfV`7c3zu(+8=-?o1%vTyy#pwC^MEelSohoLz4}mPWpWBdn21 z{ZuMU;pO`kY0b|`V%yW#`$?m|A;hxbD%ObWH(x!pw$p+mIVyN}#wL@!wR03aMXgQ1SQpaSkM*{F?(Qe;XJ^SPj%;sh?HM=MZMA z3NorgWp)I3g1n@x`hf#zc_fMyC3~7sP?}m0r<|OuD2MerdkPwfGXyVxVlh?&|CmUz zN+@o++mx*6h`s7gJYjY4B(rp50r#VW)j@JPC>TYhCkQr}^rj&5SnTj&zLk9LhS)E;4%HI;7$FRagBqehhl3;-%O(IPucb1u=z<3q zSR2PPf!zxki?B4-Sc!!ORbh0Z5|7u*<7H+g^GZSjjEuZ|cv)M~uZL5K!%8N^6DO^1 zEDZjf>gg$JFWXX4F$}T{Y59s464ZAv8)cB50JOGVEC&3ETQh$wAOIh{l{NQZb;gJ= z*nMx}?|0sc5L_o$|JI4Rzy|9lyL4r@y1vL+hrYS*ZU~C?_E=01oq( z;dj#cxl412K0(eE+b(rypF3yXo1Oh>O24(mOt)l4@O@_LsbJC0d_it72rrsSnXjM! zGv9nQNIzGnU1@%xeWX1l<&;q{F+0aQJ!EoN*M(2Yd|K<6p2cFx%?#O{>lI@0jd35Z z8qo!rC)`vRRnNU_f-5Q)wCh9>Ir?z>k^OkG)*X?p0~(nhC+kW< z0((CcY=l>J^pYl}F*FO2h1&P>8DPPi>=jR;_hwTV=kr5aXr0?d+sIagI2z)MlNZ^r zQIf;I{6rpQ6yTeDj82G(&1}=wHI*_Rnbi&ddDY(s%l~ba4xJ#M^eD{V!LUM$!5JDS z9&yB9&LfkuGmr499YqwM;AypUW2?X4&#Hw7{Ri~2gO93WPIr};lHl^L6t-bNuv;3J zW)SSs6`B{a>HeArSqH!1?h##s2D(GS8md>{40 zC0EkteT-Iqe^6VU9b2*+W3K}JeMJO7uWc=-x)N3Q*RZR?=f>+JSSg+rJsTn$J7Nw2 zI~fxT5>kO>Sp=L|jN~MHGTpX7{!R=XWvk&zX~<3T>lfnm+qu2jjm(ca1Tf{I<`-k3 zv@|mDI}BZV?zoNK7d{EAjt2HdC=Ltz48wW+?1+)5TWF~R7%KFUsei(K2gn}MVErdx z`yFPnelX;-dq){S8GsX!v#*n>H1dqunU$4c8=X~UdWWfGZ8>C}YktY*HyjiY5Ed3J>YuzyYg?EW4owBC0%qw@tLmAYE9oIB zL#r#+k*E79Id~2Hc^~2b9_GaFrQDKWNw?zU?nQSZ-pGjjKJ+DCsk!(s+c3B{Ky*11 zvLa3m^MZT$Us(*^)Zr%Qk#K#y(S{#F%DFVf zuj&810FU=0KSfC^yhI2=jY#6CeuFL=SHpa$a0+H(Qqjj(&)3gCK}TWF5rPCtAwlUg z6@K#TF73AG)b&XmX%xoKor;JGOjNkPokl=P-QPZ^s5h{Ky6F`nE(m^2c@tO$5r27G z9O-^R>R)iB@$EWTFKj*OOk`~5t9ePkc#9Q_iNWL9W}F#3Cs|BhEDln~h@s)O+9+8^ zhkRxdnPI3wba#&jT}A}|#fU;O_JTVR2Z+&4atueuO^(Ml9Xqy(fn}b+YCj@^m|rF{ z?ryP8+6h8>=?Mt}+A*y_XVm&kpN~bAqGx;aFp@x_i>q2{+(F1!TZi5Fvisr$^a357 z_l527XB|}65_gW5Iio|Qh6dL87L7x z!xSMUKZVEd%^oHO`|{$i;f>_uxN;^M*s@2&ckQRTbbWkZ9JR~sT|+6%5SaqMePiK4Ia(75o&38rNOd9^M&94 z(5iQKN#~V%?`>%=^>*@-KH37Gl(3kK)HO2h;mYhj3WWPsyYxcSCbjT|!5{7c z;VjMT{t;imPKirR&E6ri8IK&7bA7_Dx#sqfkx?eISjo*G82bMT2bnJr*mgLzpkyPJ zV8Bd0sw$1Mto${+Wy_Y5c~CZV@Y1BmRarw}h#`LGYxr?)Aim4{zfwdZ&G}=glva+;wm- zusU!c)dBwdlQvopA{ssFcObs9Eik+Z$00sS322@TKZbGjM;>RfC+05v-96aMUwC|q z6*>2Zr&jBvsd!n)*tCa9mqjK;B)XH64FZ(9mYvds0_P#G#$}(#u;6v|Sy?7XFQEaH z-0hTcmm-ThC}qRr(|m{xT)!7gTvV|RL@)hFN&+BqP@s)kn!6*;!jg)a+#g$@@f_j) z+R&E_nQizM9iR*nm>-q)WLB6T!DVH!QigfzqqAWUJ6Pp}jb=R;f;AlmaTtZM2-Ops zHdM0KLuQ_Su<0cCT{5ZKh{{mE^O|{AftgA$g(C+D)GV}u8}tYqXu;bZ$qX%YfA#a8 zW#QnpmElF-)rJbe;=(C`i75k53^29W57Idod=}rzSS**Ut^})@U7uSsarxHG|9)ST z0DXA?%!Y`%m^08>YQOxpD1 z&!Rd2SXg-w+;=h!>=F@AdYnu?GYr1}j}$Q=n)3MNZf~fUFZkCr^W(?0bDQaV8snOz zjE30EyK$Y>MlS%}gp%+odTFk?OukV8NJq|H{$T;(5fOWjlo=(;jVSOyW;6pEO&H-_ za-%T~0tN`=pTi|aR6z2~d?Khh*mzpvI}U4}qTZX&^ah!<$;cj#)b(*gaLDme3{ zTAIA8<%<&{iHswqxaTu$Zek^$9R`6j`Ay)}okUdLq0tDe8QdD?rD9aD1cSUb+#*xF zjyMGL_ykw8Q2mDxNXoGSZo^XE9iW+H`u5}8@7f%#H9hcXjLEoO6yTOKIqF! zMSxo`Ftx!OVWsoqnzZq!R6vKr)vTHt_}Seh2p`%~w>V?5%J;3E_*vl>BnhWfg1wN$ zWmQe;vv*%#aVw2K+&~}Z+>PnIz>kSF)z%X~YFB^U6}Hb6*iV4Nim8x5&;25z?nicGJ4$B%j0LMRJCzYZp+f-f=^w7T~1$ZCI9$GX5d+8 zFS=7eTIZ{i!x1XXY8I7#L{x(`JT6~784!%=R;Bu7rBz{Gkbcn#pXUft0T)RKfH9FtWO*VP zzxZWvET`3_?!LfeCZi%Ok3^&A$xG%xv=xg!;o)%$nS_i_LRLp8g zitDY2bWBMFrLigY_45&hw_GQ$hGbv^iw!K!N9a9fTpU)2d1r8h7jI7no(|;aUfM}* zw1nJwgCw=^$v-Ji?d(47o*j_{r>sqqtp=Kkp&^;m1;c^o$|Y*56Ev*eI$Fx)fDK$U$^qrzg~6`mmU+C2Y7-6Bua7c$j0 z-)wdz{mJt6S^z!*Tks`AdXNH%FEty7}fsQ`9Gh@(^P6G4%FW6}>{$qe%& zjrmc*(Syj*_|j{4bgzAU;QhrKZ>~2DW9jfkp~#jj)*OZhBZ+8~ZB<{QT~2LYw*nRm z!r6NgmxVum#16NVroQeQV|p?&xMw~OKg8*c7thnSF$D|3 zC5E!Z4Fu&&bv@QZa9WpspTgT0;gTsBR%aN*z;%WI`hNr)BL95S6cJgW|y?CpRajI>bxbHFKLF{}58*P0M(t^)^W*)?mg&0rSP=j_!Y<(uRebW0-RrI-Ro%2*bP zLc$k!^;%xQrHfTUpyBuzrD9Kjq>VAIGHk2OP7n z2~s=q{0zVtL&>;`ttepNkt|9z?(W|;ZFiTuWygN7tkx{ zDDq+%e{lA#m&!G_EH*Z^^!-)?GaiTQ<-zW#EhBEsq6ODwa+mhF?f?!h3?UAb4&2LF zIL^w`{ou)T{hj(Bnwn@_ISECE+q*ag#-0mSw3sF!N1gN_yC2+4eRj7vPT4UDbR`E* zSgO09Oe;N6kXm}eA>CHHFn^ycGTlI9><#Pb3*qw)qpS@^8OUgZ|CI%BKGlEN9#I8c zRVeDYoi+tu>@1V~?Bv1P7x3~zbj%KH(Z^n%)Y=GwN6JjbNQ2ND6_PgCV2>VOwU)iX zBZ0e;5%~GI4Wj!1i~!Ng2gLRXK?FDGd!9L2yQ>^LK_m{}%gP$z&;FhMH_uy-GQ|Mk zK&1Ez(k2Nx7BvTl8Ts;9tO{a(MWm?ClK)UX*m*i3qhhtWZz+CtpilKF3$v5+nS|o6C4h{Y%rp;~P=^r)0TZCdYg46yL|Nzy7D=6e4V4@H^Fm zF&q*R5^kzt5fU`DM7c--j37S|^J;Kmqe5DF!ZAj0a7Eg|p(q@kIxYqVLZ7)L)4b%k z!zc-1L{QLQ;r8v@vpmv~vXI5?kQ|_+m-9-Yrno(wptojawe^J`5Gn8Xs=kgv^2#ulSjZc zn<+^(A;&p9e579_Cx6yV@70kbELm4R&pZF4`vI>TL;q->h+cG-bGLyazkSX-SIuWA z*Q{=_zGW-8@PBDM4UPxxL)4)taaK?cmeACl(&B*A({x41ekle8YUMje#h?75OX13=>goZ{aGQa}|&tt;v$q)(um})JvTg_!Z znDsXuPBH*aKPuGhQReSU5iix2AstAvm8aHNmw_lmCK7X*HXww=fc+{6DT~3#TRWhW zY{l$Fy<79*IQzjacHEj^^gN6KjAPDa0I#_m1%PqMI|fBIg**YuYjFf0ZIjU zZ008G=ZBa6{iuJhn8)G^-`eG_%G522%)=%Jb(eoe&X;^hyi`-wGb1RT-+C&e!l)uP z&SI#oV^dt$wZwc@3TT)>#2^){MuKXPr4RAO^l6h?PQK9gQBbJP!HZ_qkfV9b48cBHzGzpDj^Enkd5Mp=R9 zUp}8#%p`d4&03DQ0SvE{*QQ}H6f zQo-1b<*>e$@AKWwD?VYhj9>STPv2tgY9x$Z5=S{+zkag}A9wl`cbzffB3RRS`L>d{ z36pexpB~~DN6enHvtLQ}W&e&SxOf86AP*s3eEP+n2T&qa9ErhzzjWoS7y9^@!ah;O zHzra2PH-S8YiWaiB<3XoDfKURpt+rOQMdO>#FA{H>Z7wzL($Vp_WM8RPj>YQqwCMH z;p=^CVTTDAi5uc;GxnUJVd+I@vqkmixv+$9h+A;FEQX3i$rZ%NuhV%*Jq%ifyG-EM zwIcp#qA4V&krfpg{z)dF!+Vt=mwc0Xm-$Tj7#LzWDmg+LJB#e^K5IH$$kFxyGYsZ| z^ipO%=yDxwG*PnlU-nH7&kEa5vHrE_`;u%QDb^!oCEg`N(E*|gyKXI6B=UFO2_SJ) zOMo@=J5-i$c1gKc9{tyLbIyN=LFTCCd7;14W z2RkjWv$F$DMb1T_<>}EW+p~BEM~Fw;kr;gEvbp}#%YWGjeJ3)Y>t<#-T1oy5Plrea zO-YjdQ7Uabfa(Yv6Y^-#p@YEYDfbpEoDWm3`QkK_pM6BoWeG`KokCQ!grBcwA^kP8 z_;3=?>LIWfRzSzd4nwuIug1>4u}+xe@O7p$iCpjfE ztv(+tLdyfnXieH+F>Vdn5tK+sx7{@4TEZ0Ui>G7mo5UkQ241-U28=+3I7WBbuU41Z z(3xS=F#(_Nanfr&^@KdBa|;eEdu8b6_#QoKd2$m@xs66nTU9&jCm+Di%#oO{U5mK; zzUZ~G^7ZmxgFvQ#m6p5&?T!wex&yb3M3Qo~eR5czcv$~}(r_GV&w(Au9C`Uh(yLev zIkyeP?_Q~7m!1t|?&qyWu6F$c@x#4FUSk2;Z#=G^-KS2F-#R%z^ubQe;({K^1~P&) z6lh#zcF94c0m?~28I5s8AS>^j?wU|rk>~@wMY7>oP>J1$f??xV z=iF^{I$7+?W}B@J@yBqe*N2hh1e9Y|h#>h)*ZG#MX-o~g{*}}Flw}wt|oCAx34?|fEpJZK-t|=-NTcs(rKxF&f+Khn7ICWKQDlCvg7or?4O{e0XQ| zAwkB<3b5Q0G?mO>FL4%C#!O8^#Ebn1md%{Lc! zajI{``0&inmD?8c(pT5$!a`dpyBec^AAL5{z?$My|%xHfz)vmxl z;hrUXP#CPt?b~mcM>Q`NM%`%lclg$JIlO@aV-I6O0K z>|_T>AAnzC_v|2hsf?dKm9&L5zg*$6)X*hZZj|ti9G~6lTRX4p5*j6tT`wbZ=}w3Q zN+hZbdLY9lQ{#)a3nYS!H`Lx57pGxzZYA;y29bxC0y5%)uU8iN^I^&DZ>!x zVro#m6VeZeO46VK(jq;dNv~ z16!{SCnd7XZ4XCl_m4XYy_+o)zMn32RV35Z9k)LAcGSmZ=;Xq-T}cf$-mUAxUTKaQ zUiQePe8a@Rz>`VENy#GThskw52#hNvuG5@elWga@)kW{9_l-|_&=6P8j98euOA$#J z$0?X0z?#_k2dTIoy8i`)-qE=Amfn?U{b;#lImKKzY8Ivv2HU`;aXZ0b8pBZB3V-8a z^Vq;s>dKkzO66^DC$0ws?_|yJPs>;mk*iWbH`I#;pWP1h{3t6cqC2knMUDS_$J6$o z?}hvq?A4vCf){4C}LP3c5*udQXNjf7V9i3;m#s#2D_ zM{cX#m<-MNwXcQiVM5vK{9#D$4b8(*htKDC3)v+jwu9@$L6P2Df5aUbV~!x`Ma%gI z2Ch-ydw9nwSoD2b)BUF=(TZ(h8CKE2;`^JO!bNo}p1+sR)NszFK;*j^MaD6*Lp^~1 z;%!c*#mDL0(AX2rdFBA1dHQ7{A1t0^TMBT9?uU|-lS_*v{j9!&jHzd@lrFx3*(ky^ zG@QL~x7~*v=d!j$T(qn7Zg4aFxY^rM^W$S=nC!h+_e0e5#;eLL&yF3S7My>B)6t9O zaH>xrW2CSQMRlTH3JsO<-|5>iw~B5ZeqHF{Cw2V2;L_=wvZ^B)yl%I4XQlblLD5)O zU!Cb!g}tR7pu&uTui?&}JZDzBG<@4Pa%8Jo z&FW91+UY@?Z5exj&@$W=F=Vuw+qc56TN(AWh@7}!G1GJV?ci zBkQN0f*v2~nuQ~9w#w6ujQ3bBZL~p{1IJ25BTB(63YIH|1`wbg`nZYwO0@f1B+eHM zp^fx_c-H*-Dm!v{%j%@UPAuf(Sv*qe?$utC;%=%R z1G`QGiITuEMFMi^nA^tY%YPwM`ZZ(a^dbMu&^K?CGnjW#^4;IBntgqCIVU6V#xGW1 z?h`FMI9a(tiwiUF-yeKqrkXJ2lk>#!%fNs+h;SY$CH-wrWdNyf9DRptK+ppewWJpR zWFk>DK|){S(tq;*%#YCQZM47LLK9^n#R7O9z1a12CoX=E)J6APu;~H4k-O+7<^Q{*?_<~kF-o&uZ-N^ir>4pSz!9zLGt=H3+iqvW%)8-Y#c%eY(4E zyydq*eT^@(6W3{R-n^iAjpe0@8JC4&2@BC0bE|VorY|f@t>(5iAo)6uFPSXhIhBjY z!p9b?vcS~j^K%$towTSjlCUkvl$%IZ+|iFZ1F4*j0+pd3!s$^Zdim$edek?dFjNR7 zi^4=nV5r-vRD@sRqQv11-#2hLa3sN1O#T}T9>m${3aOA>;XdOF;#_@(QBz+Y#T<2eNVTt)MPgNcfIFmEwF;aM3frh@g8X%_&D} zD=fhY4e8{9BQ`6_pspl9;Bbu2YKr52bGH(=*y5UmsY#CU&N92#l+rIwU7wq3KrC5{ zr?n+3G57pEe_VBB;BU8cg|0Cg26_+w#-eIwaB=f5&q&z zeLHUvI{DifWHGE1tqQv$myK5cw1?NRSj+!@7R^rcw@g)6)v;Ro2P%~l)~&22efwst zj{4R_109JtHfTyH?AUIxG9kkSR~jUsRdYKRk$E%bb}Vm3_bh99Ww6v|^~e0s$o9nD zy20&VCs&tOKEx>(sMgecyC~jtd+4f}a_$+IH~roVcQ0SK*prN2%nOaGhH5MxAfqySj9G*%o&~I+EsFf zQryh50xJ^K*WL0&eU~~ee)zh=!7ZcIU0z?EN>7D+Td%4~oTe(j+*&+<(YmErVn`%n zoHCQuqljslWRUy5Tf2x_xNI70DCY`RbgfJN{*-$PKVJPWsm{mh5U03HhHkmUkg|(r`agHgjoGFJK zf6qR@+xK>>KkCNKY|q#8@p#-H_rn9PpK}@m%k@zMt791hG2`9C4jG4rS8UdQ=&UVF zuhqrQq^w;z z8<%$P9u`>#51yV{zqPSs!zn2U6eENo!N*$Bcz3VP*^r3;CJ82EETj~x|2nAJ|LNBb zceqLMksEd17TQD;qW<9!4+o%i&{eHIv3O$`c#zihN7A&FZg78&jkLFar36l{5A85n zT#05YD=R+UJVE;s3H@jHvz(Itr`Fw5n1R)qeAd!Z@xAbYtDdd7 zor@bwiyL3go44p|( za8HpeB19Gq82T`nEY=7HN6LeZ$x)$f5u_ktLNLI&Rr(8fq$`~bqWZ+h92G(`@>CdH zemC_^WU?wzD6ErJa$s#E)C>88b22A%e2Vq37q2M%U1o&nh%?6ecod0*F=+vRmt zcjP*qO5rp--N&mx>kvTp`E;P(twbrM^&+Oh*AzO%M@r!|FcB9A$f%STndef_m%f_};?17tcc+x)ZmBs-Yp>Z_-Q# zgGCM1mUHnB2>$vO)hOQIE-} zbtlopi~u`?Kpr}i;s&@Ld|j6p&g1BY;ZtqbG5=Q|uFU3vfUMW@AV!Kk2#CNCr;81> z7(BZ=Jo~P)#c;9uu+c3bl6L%bb}=Jkx@xgM_UFK=VeR***dIVfyzx1BJ->Esz0%9G zb9QXx&XZvxeaP!N*6i(x?)AA!uPoqvcOYiz z4Gju1e_oB8|M9UsW-2r|c4;k5PMu7xz2`p7=`hyTR%+4qDha5$5*;2D8*z5*QJPoF zcLKPe>E)WKAjhs@7{+}3wG3TWS$*d=rs!8WfF%ICK!k{!;-BbE0u)>8D|2Ow*7Mf$ z%~TR?r>!c=?);-ufeJ#^#uq1|FI3Mfw9=CH6^Qnh~ zNe@ddwnKkCJn}2a)h&?eDANlb3tx{^K;ee~52Zt$DM@PN@jpc-)6Y;8#kwgk4W1Nw z9jl%BE7EK{NXzH&7M)4HxZuxIDSOYlDY7{MBxrBhfBfS|FuMcp$n7%PjIrC}Mk8r$ zYWhvX1aHDWVP$fY9l$Pf()(!ef_{e{$NrP_24#nR{l79Y4RLfr{R?a%sd1gyqhtAL zS0D_SItm=w=Q=5>-Xg&GvIBj8pil1G!Lv8)qz7c#7`SI&@6{h`pg_!yR4Dy~Ulwfd zg$AFi`#38YnKR=+%AoHRyvR)9!MC?4iDWHk@yEw)6IUJ-m#8PaP5g4!fztgyNuOnD ze|Tjy31T}_I3Qc;dysj@pQg}}l7hN3?M3(RbvSmQyVV_?D7sO1pN4saouQyUx)p1o zikx<#%69}LV<9O^QQxG?J%d(Oe{x$AwJR0L^sG0}+uwO#r!nT&HHO zS$ZPJs=9x21TeK@m+tGVjt#7o)GnI?wv$c7#_asN$+g+#kL{C_hn&dj;v=haEjd>6 zm}W2@e32j1!xg=>vu8h~Gw4nTy<3fqbVuQSg;q0&h?E^vkXP?_2Hab5B8;s52%3=; z5j5Vak=2XfM7%AVC6DeoOGtnT&xlTFdu+V-TJwdT;4qJ$bX2B<0XCYZk8VJv*C+)15sdYUseJw1A5s@jD@s)~$WS<_jMcOnf>lbug9I?91fp0gHx7Zk&HpN{M2Ef{ z*mTI0YkV1`uccA_=yQ)#cu80cvWqZBh@5uGa6wsWDse`xJb0?`xP>6QQ`X2)bT0|} z!QC?U(tLhl?MAZA;?PR4RgSx-*91FmO&iGkWFHmjMMNhIZ^nFQ<^Fzd>SBa&&C0+a zWL|erz3iQxhsuv2lO_)KC{Vu_(MY z54#tmFcG({Y?J(N9dCw`qzBJU%*-&6KN5|hf8`!n%BdSMl~m;a(|$x9E~9Eec2slk zyC40SwwoTvAhekZX8_TM+##2iD(B|Dgcm+rd;5RZx3x?>O`nQaHr5VC~Qg z)E^EVKX5^7{CP@Viyg12%Q-)cpQ=t7e;&pv0mb3N?vzs^zOT5*_7A>yfWVpkuoeSKtoYzBb^7qVlBkFdTyJ9z5;J~Qid-Ji%r zMi<1|s_y^x#786KFo`=W7f)!EuTQj#M?nge&GwXUlAO9)l8mJS5l6(Cqq5R_Ng=WT zRH}p0SuD_y^L+vE4eXI_*4LkL9DnZXp&NX}p#8vDgrz}aUz=K?r%q9Cd!6FG&vS}e zo|UQBVDY=K$BzmT@&c9^2=Du^@?#@S7r9nAJTVi4l2Gkwt(?iln&tM5p^c>kuZ^bI z<-Z4}r-E#ver{f1Q-?t%_*K6@Kb|OzT^og_!Yk8ampq`Hs@1X*3p`M{;4a+-ev84~ z#f(VO@wOlTeY_R8{$;lP-MgT>&(;lVHeRAJL%ifQ@UK60e~yeSe0wAgD6Nd$UsY9p zuwePWTbYQAf6cbNj0_8j%q&PJT&WkeWuKz7(4P zh;K1EU?Vx-57BnE;QlQQLN8PlRGW7}^dB##M=XF*Xk`gK-$jvGgy+xK6a>D2j<(&t z_y+>2gOd%!7g?VbBFB-b#?GI2p7(H|EpYS05D9jt_>aS^3P47Rr9yVuq5_kLJ5Aw( zUNQezcR{PStLNj5p5*fDX@c$WFhd1T3evrmeL>~9cURHj%%fs&+1%b4Bh> z8N1;$dyd;DmHQt-PgYc7?HkB~yxlNJA0a6SIqoa`=a&o zRI*`pb>1O?ZZ{#}Hc8c%BJw9Dz%Q>P8z&NSDBDCpJ)pw%m9se3mb@!XfhGnq;ptuM zlaAc4lCH@`0v=o-66kDe1%Ot%`X?8lj<7wBlpA#@BZz~_(l>d7z(3|06AlZoPr%BK z2>JVo>#?jqAK7C-5N!dEl_W{}ag)xLJS04Li%xzlxrWNJJECsttZs^w*{_+}Fl^T` z|8A--d|+v2&9Hi@_3QW1&a^^9Wo7X$oq@HnfsKLnIm5NN&YGVloi1wOi#PmRa{32! z&iRCfho4xL3$BVVP`Ks`7$&r9lYi>&!G+ipapWEj!<7^JKU$zZo(}B{NPv^21SlwE z#DtD?g~%N@aq%>EV(u##_9hKfySG$7)m<#;uRz%Z0wgUAo{pI{Tw8VNU%5p4{fcX6 z|D_B1#I%Otp^zdgp#PsEkkLC6X!c`o`CQ+dNkFrpnbx3w$gBk%g@!tqElF?uKuc&~ z{t?vdH?d1jbw$=w?Q|axr^uh({wH#*C)@tE)Z_uRNl6E9Y<=C@1Ot-WakhRt<9uCd z;LQVzlrA=~uk`4=u@VKP+a>A_KQ7r$Ad671j-4gmOk(GsqWB_&@;zr8?sgOZJz<3t zo&>x#0;~sT+!4lle;G%)0~X{j4V*~!ejy3QM@|V|ec4L$BX#X8FGx-~Hr{uN1l1?b z&Yp;w`!f3oU}3)Z-Bu-=f<-lzHdV7fDvsDJ|7h1)omDm*31E3^2!mo@rrN!^4B|y3 z{dZaYQG#=wrlO>)`?Z1p+?$H>^6u$y{WkD4Mow4u(S2@V@)x=J&IEibk%|US8`9JB z-0^Bz#K&hZ7F|!JP*iQ%lt=c55sp$6tY{GwsL%d3S4Rhyek#W<1WsF3_l#OzaeeZ> zPpQ+TtV*~hYrXc{z2q(DJkHQ* zgX&#FG|1!wGitD5zwx;)BPIm43)il9{CU0a+M216?DZQie<|8&s`Xk8h6rytoK=%( zbsHhf>}Yj$FhW70N?M%N45o^?)odK5?C|65`sOl7Mx{swex|qf%{$#0_>ytVcx(fI zP;G;;+F@ghl6fz4ZMV;D{2!OHh%_#?=!@!mgNyox;}xl4x4}MQe0NIE*?W8MM|?s* z0<_Nn=M$6$?uefvZWo1R=Z!||Rrl{C4H6R4JCOS^+m;LjoMyyieOJhjJs9B!5-=v0Gsh6z+ z!5+MGv}Yq#2@EFyW1&kvW|@Oh!ogx_BpNBk0GIG`NCA>^=(0$#*TUi50=tRBa3(@Fn1r-9N@69kuoStu_O-d(jm4bR=IJ$5k>53X*V1=#HY)Z# z1ltN*b=D%F1tt^Y!uW3_R?g7HDmcoJ+ztq(o0>qLy zuuXG-I33_O0@)6y4#O3Kpy4g3?2$caJA1%BWsx}oXoe0hx8A1EX|2nF$2dbEm`N*- z2NFPAZaqI0$f%VbPV{xpvN&-|kI4HUjg)GPlYtUmFKI%-gIL}xn2P01`EHJznLUfA zE;|E==O?m`bzHJcec7Y!bGBL12nRV}9{$zg*_lWw^!Pw}P0xJ0$ga<+Grv&0eDZ*> zuI|y%IG%Sa_Ckqnf+z*^kntCkY)MschOv(w5bia1zZ7`$ALohi(>{Uptkct4>Ai3a zVRx3mUXh~Mes)LUDH#NIk33f6MP{2mM#Be_^l5EgVdbz!->wizvH5U z2@MtYe!*5a@O_8h^7DF@XwEO-@l04(czC!@^hQ)me?+K<6K9eq1IDEYoXBiqukl$Q z%gEKT$LhLU5}l!8)@#Wt#fPN}pGCL0c0?lG9}c~sZ)Hia_~C0GBa7`?FFV?GrQRY~ z)bH0;=0NP*pw-6Tg4;Esp|UQyN8njy>@*Hyv{45-!xiuDp$WXEN-;@ zniuAR*WCwJf96OhpVslMqnE!74Gq3bH4d8APO2SDQERy(qrpXXHOs3|_$fI!RJuSH zHlqO5ap6RhgdNE=cKyv3(10m`-o?=xUk2NuK!r0Pt{#{k90}yldd=X`f#^03vO2YcO8pp#rwqUOmKDca8v=n3qjMDh#zZD*gn@dIGVeB>+dPY@F<0F4i_ zOZyQ~=GvrW0dQWvHsyO%pAe+osB3C!nt$Z*-O^A@><9yaWd}udLnkTGW2Wz+*b8~T z3+b5G)W&#V9Mj1DJ2qAs3zl8mCXyOE6;d({vlLdsrMf_E1nqY*%Kt&51&HR&f3=*<$W*O!KO zr4_8~(;qMEIpGyG?Ib=>|9n@c8fCdZ&H88E^xBu@OEw)8|H|ZKj$U_AzCX$DM*s(i zD5`mMM*VIme{s*1(9mLOQ*}7G0hGf&ONX~^hc7*NDk<7gS#rjQjrwAFf)FY0U)cw~ zgrnR2Uw-;+-ecB2OYS=}JWVWbA2@lwHfrVFu-8)0!T(!0EUZh@w7t@Nqt}+FB5g{a zrM+xJ3M&vL=@)gdg3HI=;E)#PCba~X9k)8DefehMag^Xv8-c&gqOvgY=4Uc;B{n}zZB+*yAh zf`aY-H8q-9-Sb%?1n{Tg5Sm56kq8@yksnNwW|URF`xNrBVHFXQ96P5`_Vc%$%hxJ5 zbs5~=adL$1um?vwvb%^Tk`eFzhgI@QDPPPlIF$6yMO+%^2<2B}1g3=jx9Xo>aP2g{ zpbvHt8Rz(4TI-2s2>C`0I%}(VS63I`n~r3gA!TP2kZ86!8kAJ8zTUOLkuC$B$&qSj zzzAb`FIP(q8i~cUwX4q zy>M6^bK-=j&U*8}h9bD>m2TPqUs6?n*5HA$`{DhSWmV0MgqWFK8>>?h^ynac6I^j= z2cRCc)qs%e(heNpN&%OB>r@@Dsi))OH3yyAii4?rL2hZ|Ut{iuSB5$JU7hRBbx>PL z7K?}ZU~4*mF(0IPHA%1;zTTu1aN0B<$#;1+?AJ~!E%dsD-Lp-EwSx%4!F|WF6tIm{ z+D<(A4FXs^T(0yWO^lQ;BABQd1t#E6h`3(^9^l@bO1b;=+uRrt&8Pa0e2StN$3G?z z$zxl#p(Z7}p1WO9g>W(ix+6puLIH>Fsi#}a?;$pb4%8>fLq4pezw({lchpzNG#&$K z+)^fm))jM>8{8Bb+gg#Q{6wvDrA28R9hhI?pk?(3g_Cc5f$8&Uci#L)y4gxLS0wqP?{kQE@r|pS`R|jQn)MU2)jY}%pL1GHG>*6VUoZ9{R zCDQv*&7Pq(K1B=7N4@`juu0d_;tN9=jz3!VaEBH5nRmh&l~;~$1lhJE!6j$S)WAd2 z(E<4lsWf2q{eh`Rv_B4`a$2;caO9qX! zQzYr~6&MRFoLU9RBCwjcIV{k1{7id>-wd z8bnXPf|EpNgGUJqwVF}I1pFK3+WzMLBFlj6c^|10a|CNNKkl>HR_2HPc)|_wznYGaTNe zwC&NC4mSYA&~EK$*W5}H!yobJ{)usSO>?aQHE{mk4Ga76`(L^QE`^?eWuY%V)q44W zuekq!$U@L&))A(=$CW#o#3mIP-e-Epvp{rj%jfm^wLDxi&A|u_Kq!c}*~m`CH2F0a z)>E*TbLuc5>27fe;Ma8k-3?a6nc!_E;sB*pfDm#fz$+p1j}hac3mthfz3#jAh`KEB z37VmjQ`3`0+Jqs=Yoi%JX|TL$c^&DW?~j0Ci4B6o zG{NO)OZK@)v7{qPyfc7hoXZVk_+9l(opzD zzso?>LHzNwH1EZJnrQRf@;5D|O_o>UW8_rMGU3;Xw|d$nT$k<=nuZ9w5ta`IU2F-4eo#fUY8zA+;8cejS$A{*AMcp+hLhc;i`tjSbBFV+gj%_BCV2R8%E zD>P4Q(qmA)c6EBTa|1!H`feSwwxv8NCj1 z^ZrHq_@!)EH^;Z7_1=xPh8C~rtDh$)Pb0jU*rjQCC^2DmaBr$HOk?Ia_v;p@9_*q& zPqPuWpWh@7@!nwUCddd;63e4L75*}p=Nc+0?)fH3^oFYBiH)m&ypkl5AIN>%(#;8n zyW0l>#U|gkUhOZR=J;b+`Dv{9(FKjrW=_iy^R2;6_Q9sB>2D9x{RPZb=9w`#V%xQG@OXNx#hDH zd^S933(&zLy4`qV%M0JyO8b4^db{SVEk6RY0ax6^KWv1H^2#VaB+c+LyMc6J8Wh@espK`AODXFu-5Hw7@Rgf-!z}Myws*9 zeePu$rDzl%dX)4j8)#{7!O^x&J@pZ5W9@uB)a*!;l^)PJsv4=FTwENcLbj)a+zXP5 zEeU`FN&5k%LyzzhPwkQcF4V`}I`4eZ#Jd-O9^nRE@nB%-kA62|JW^xs`VkHTx`G0B zAlDo^L@ z!u>}!QJSHtiv@+ApB9#k^sSmBO&Zut@7(u?)a!4Te%pKdXU9K%26hkU+1p;7dp5VT z(V$$;JyQlIC8*;!Crjt&!$w;pWzwlz?1^L|L95`*K{t;)Xq0%=5+p{br9 zcUHz_o<|)e`Y?-;<^RTZbmkmm-zE{!&nDBUq`dJSw^9#N-Zib8#m{*S4Gk6!zgSQ= zZrsROpC}B@sk;7G=y8ak`%BPPBgA+o>@RRirt9mb!~btWrNQf%Pe40c+Rq>rmHILF z-}19>#M&iN#C-N`#vMiAq$K3ny2&&Sb~OXoEh>;DpQ!g@B-0Gd+QQ*bZ`}qQz~&Bh z7#omfCzA+=D16u_P2dG6uCTwxXwS3oMbWF}4sB_oY%LS}x;oGa|;X37-^^!svdA{L&S`!Y18m}-IS5L>nmjAurMx^fm z^P~@5ssQ2hJl@IKVh(bAkX_N=^25AH*B)Dpe)~HTIJ^l`?oW2C2pGXr(_r;YO!$IM zV0GMm;(GdtuPZLplRZ)G#IuN+#_Aj6Ohyk+SC=d-&j&(qLY(C2InuQhUcf=Jz0j-* zU-tX9xV?wrOjppRt+cx3?uF9-Q8nQG4@Jzv=4vBp|#IN#H73p%NaZThBvh8LY6YOT#>5+52*d!x8%%ckjW| z8w`9FmuAqvAjk}E^{$rq$BcSRoTS6;l3IDPJo`0NrBOVBe%5fKq+vRGT*GGlWBB^) z^hSSY&D_GQNdJLl-1QrqBsUp{j#-u;I&p3Q`#=VmImvZ{x30DCP!`JVcQKEiG3@2U& zBv3CSXu8ORoShCuc%zxfZe7MB&)O@i?}}a0CdZb?>Q#YQjvP-wqxiag`m^hQUW1+G ze!UMM98J(rC$*&S$3wD-PIGePb0qj{d4M&OXl&#ggLZUihi2%fJXhVEp-|e49-fG| zQA>YKC8;nOcbxc&_gLI+5NLRq=0}6$Jw?x1&BWODx{uJ-ZJZ{@b);bM9>Acn?cBrK#K3E^%OUx~$7%8~)|?xLUYvgp9~ zx`5Sz*cGYGn$3nf1e3uch1iS0-gC*qC_z^%)g`$0d(5<$pO;qXwL12w_6)H5#Gz67 z`r?Ybaf+Xqo{Lid})Hj6M^s5 zl7+107JyBE#+jtuDDKyw*Sk`>o0EJ!;$ed!XB|^tIyMjT^Qyxg0cx6Ft```r*!wQ; zuGDO#gYUZ&4|Rc^HUX4x$5$Qr-3n&5-IO*2)sb@8{#VR+{56^*7bz!ec?(%q!tJ(o zdoM}KtT*>rEz0@7QjjM8*l*TZ_kk_2@K15oJ<)Yq{mE(X9(V8KoQsuTnmA5I83=Zs zMMHqZkzG_2_>G`(^M3jl^|eMog;9Y~VNr+#d6`#MDSJTA1-^)Pz+gOp>jy(%@3rnD zW2u-YWHbAnFGsdX_n}md+OlLOY~LPokNG$8zTMo=>}%Dy`H;WzyLT#NO6Uq7>dgcV zH*UOSd|m_FWa-czU;&(FSkIx_pP@W zyHD9H6Ro9$n78D=F{@MieZl>g(aGP@B~>v$ z$G)z~&K?X34&wU;Hx+$N5;k)cZ8?)w*d65tWwN#^Z&Sg&e`BK-gl_EJ#!SL~YZ;OV z2NI6ta|l$A%wOQq;wtMZjPoedZyHGP)1chZgIM;hVh0bka3 zG(J2XTXo9`_br(r9myWA;Gm^DUl=;wx$HyFQtaR3?%sKbmddyndgT1uUp3*|cSc8d zcK+hsP^qA9mP{mj&~`e?@?_G1K=OYm{jIhX-<`mC9``1s=|cYD`no#&O#nWjP{J7A7r$YKM^{Hm{n#zsfCxt;kYYFZw0>5qxtDAHRSDU(?ewZzQc^EVv5 z{8^6aYej-H0mU$XTs>>=;ge<;x!tddxxQLHn(AHy1G48L(;o6@d4XQbxM|yedAQJT zRz&RqOQuB9(bGN~a<)_6O+cZ%6#E@Cag5In6?AljHBDfhO-J+Y8a`v4w&XCd zc49+RyOE|7gV_=uGImrS0{OB1Xh_W`B{veg<`LY_l}+1dPnrC|Z{_%iapM+J%!S*qQ*EV&opwLEwucgzt}D*`1EVWqyVmP9wdysU5^;FWZ=9Q4DSPiXxrWjo?aLLs zWcWyU#(`&=dR{!{_%?FA4>5f;jF9ZE?xK|YFf?Gw)Hiowioop+6m_qP_zPW>R1_EH=#JJ$Z3n6F*G=e03mo}-HO9%f-}-|U1Qcsr;F zpD)kU)rMD9i0BF%%cHSjwG1&I4)WZ(qii&TiS9IaZrC>`lAwQj>Vb92z&WiBwcz8y z$3s1qzrFIvk9KwGZm3%pJu~ETOT*1kt6$nOOvfLcnDVFCODycpv|l~|!Ux*UkkFR* zkEbas3o^pWW7l{iaJtYRi+No)q+&;mx6A%|odKcj=0-*$J-Ai!s(`GB`n8j59LrD7 z4((Bz3ppF*1^wuc{}|QM;bw+lINy1ESGEdLyoIvsnscRG+ypEklRn7VzHr{#Zh!-u zMzVA%T*Zif6UDij*ug<^PIZU8jrvDt#4q?>ptF~ic|d}o^^EQ@JJW{Dts&jd=FYIs z+3ruR_Q)5v56yJU4@I0Kx_3V_?zep4X>D0`7Ptp8P2Bys@PjyHy+K=Rw&@7iO?o-EgG;`+@vj@>FBOHr<48~r5OLm~fFr^BeMV-!M0SjoOz$PirF zrB)-F(tu_hh5*)AJib;sc2tvqkFVT+FVsy2gDO(o`bs|;srs6BG7Ql=m-=|pViTr% zk$%jS@;|EAc8;mP;0%Qmf3T~o`+;c#nxY=++@2jOu^3_hMjM|U+H@jjrcb$cy*->W z>9tlEJ1g2{xbaPAqb>OA((Bm>aMPUk=<&~qS(t0r_#AFoUMZ`Y#RYpIM=6B+gTvsw zPI@@Oj2zE%MI3Ejk&bkMuBeIzdr`w0-kvqRn*j}{-G z62T2?JXbtw=vj63P8MOv1cD#&2g}!m%&oR?Z{QR_)|gQ%+k$Ap#Y1SqWrSWg1Oxdb z8r+CDEl23Feis2~9)T)|=Ho9;1O(!6C>-RjV;ixMqY=8dn+;wRc{$W}21%NcKuGZ6 zbtT%pfhLl`z=DI=pR$e#yV6X09@>>59Y!h|GMz9q~n3nl$ zR#JzX-$6~Ktnw5^D6SEUGx2pj;OP-8?KrzwIMC=B*@ARJL0vODZx7n6P^>@Al>q4b><8HAe?0q92^n`@zpn{r>{NUB^8#6jv-hW2D$C@ zyiHV?OczsDWoC=>KYh?NP`_46Ibohyx>uIxU8#1-)7Ajq4JD%?F;W|CI zq~I%gk(B8tA|Bc8!zE-`U2l8tx;KDJZ_K2GcIY{Btwy_GnNM8ReGW3DX7y)G{qHyf zFD8R-CIf@8eN*J^;~;~jYWQ2%H6s+zSZjX>5e_~o(B$r;+t%OK(LPbT`sLj&_sYts z^EZ)G@xM~K6{0$>M!l|dQ1R#bx|&hZSlA2_OJ0qY7cwU~NU0H07A~TajBsF8H5_mI zVkFzgydm#y*oc-bL}R1UG3CjPfS7J%3z-3<-#c`$GL8z=4+r8Z)ap5i4c9_x_3K! zz}NvcY0WGXz~t^SaK98Vy7$g+!nJ_aFTpnJAm;mb2rzrFH@C>XP5q^e<^BAUAO65P z+8n1mzC2-W6T8q|T%!rjia0r}Iw<;Pqpz#G7YNqWrH4*O zN9C7c?`SX_x6Vy1>@;~0z3}hT^^sehp=YL}JK+0A^LX-8z+wPD{PzJXYs({J;!7LL zzDBGT@s3oaa& z#q0>|bW2XM2t0Tn_h|9(T(-}>@A+?)Gu*7qU%cZySfm8=;Nrb^D6QEg_qIL|zOb$I z$BF(sk=9UJP#BaN=y#75AW?m6ALNsISBjPjtb*!7#>)%DlP_()iT^C$8;M{sczUAK z{X8&Zt)rx7roQx6vuECo;nLmPOHX+d0<{0C7LL*7|BTzy@2L)&^&-f1P?^aud45BD{3ljlKLQJqFsq? z3)yXIp-S=NLm%9V6{&!H5(3yc$L#HofI_5o#hytcp#|PI(+NNp{rq+}%jCR22g04^ zP~aE|*%eZ7rUdH8_uPSZf=MRxbZg#~9)atVEfYz*O2@<3`=fxJ^o{UN^Nr5hpWR+- z?S|`v0~@o8wTqLLQjKo&&IV-6@mF$CrVDYT@k0)GiS*qC;|`XD$yfq;w=37pL?^I@A5Y|W5$(D?=7B3{O}=}MSoP_gRwrnQ7TUst!MGbZW*?Ce3N1lTzWgx|Of-znJYhEw(VSC>rJ(C!}`x~3Z0(6p_d1P{tNA7$$VXClCdn{ze( zP(zc}NdVdmZ<~wGu7;UCl!YtV%A^SqRdRU|vxc+&v6~4sYb*1&HlpAAHln|REBtQp z$tOvf@e+=B_s@M4(7G46>b9J^(!jghn$6KKclKdf1itr4ZTq&bzLzI(h3b1RoDuno z4|W+*>i`EGIC&&t4Ok{(-e)BvYBCCr6c#m^fMy+7?p+lEP zdlo-`;YZwr!9dSLSQf{Faa-or))WEFy)wCH6qEaNiei7WUPE+l1} zg4r#?(l`8IP#dAMj^eew{ZlXZiEQTA#&c0#+Br{->*H?e|Lgk-;4(&y^7e2?761C? zB1I{Y4s;OZk2y}K0vs+mudNP`#x4ZMrX~YZaxC}}99uELD7T;>s6S>gx4Wl8v%hNf zN2kq(t7e)$9v6-}#~tQt<1cwAr&n^jBfa_~$M5GZ|FzlupVEbyh>CJIlY4-#Z5_SN zF9jyfo{>=t-A)-X>l5>5g7h0QS(!dviHZ+-IGjl-1N`QU@#=wr+PglG5xpC_nFN4y zRQko&kO}};IZ$Sn({!SDDHs;z=!Z_#yLugn18-c%T^_%LC9nF{z$7ZLAvZVaHc|*y zOuJucLiE$4bMtlN^jgr zBA$?A!a4uFX6;Y8d%7rtDifG2f6j1iyjXP6}Ztk@T8h)kNo-KXKV|2WF zM%mk#YP;v^g8T=if45>3$YwIz{YZDHakS~?vq!9O?!?HXteZ#@ZCtr~{gf4_I!xAd z6Y>{$=NA}y+>zqz)BKNNdr*gA>{_m|;NG)oXOTZ&k@=YR0_^pm#N%Xlyafk_pu(7A9hx7LTb-1@pEq- z3V|M~$~!U@nk`=cI@)Iq6l?=i_9x5BJ^@gJAa_KwnAbRHAOn0ZU_!GAo=moX%4;4@ z9=9at#WDuxx8u1*{XztIXYG#g^~Z|@g|Rcui?wSdz|?0h*~@z6yUm8Ev}SQFc1byA zX-awm|Ghf=LC^Bius;y@?}%xLny&G2SB2_~XmvXkRGGSfieXT^co$-}pmd zoqJR3+m;vwCd2WGi8xV#n3;w0);O5sD3gg{F%?y;bI z)j=&tnqSg;c#y^Ck>bB-%3|?!c9)!p>>kQ>W-3T5bknc?TwZS*EwmLv3R0%N6mBOp zLK*>89s$JX0Kt>A=$NXS-2`oG74zy&QN2Mt1}5x6F&RRXU2A=FSrP0OTtNzWNY@l4 z0Gbtm@RwAkcP0e%o|kLnRS8Hhc2P<)_O&7O;qW;l8L(CnvG(aY(X}g3lquvP^-ktl1}pav8eRaak3{uXTY?$)k|h-;fm&HrZFO9(ifOvSdN|H>`c;)sNQq`$bu}J*L52AOh@*;-~H(QqkT@N zLA#!i{fB~Y_EXyJb8l`RDFArg2m*BlN&wYj27ei zU$0;^vzSNgE~COhE2}pQ9L-u2AA|NpRb&}x|}buazqw+_ENiMs5RY3 zBlL{p&h*C<4Q&h9sOrdGYA4@QE7d{l6E&fa|HF?)xT0xzK(IX>1NwG162b&+nLMcU zwmC7J$pB&pCj-|@j(jJsv#y9hU0wK@o3lC@j9;4g8m&T*kB1`Swg*IT_l=JatRA1f z(SPv5`rM=1-fR78M0o*M9614$>o#DCsgJ|+OBNQS)33vxdj*{jocz0|AT7|3bB_D9 zZPYNKs^)-p+W4~;uRoWi{)=g+vn)ngNydno4GtjBaQs})WCG$$cITQB3WK?Gy2;9D zANJ56k3`p0sH?a&>u7e?V?!cRAyA@{@ZZybyFAJJ=J!cuoqYqvi*A={v)cFZM&mv~ z6?ea&eFhfC`VBJ}(g!&?3u{MJnO+cUa5f_8_xfxTlLYe{lPXzoTez&@h$f&;b{q@$ zx2M@(tAPEwpP-TKEQNdKnW54ViA8C-Xy?Pha{tLh6L-Oag;(UU7N7TQxdlTWe!+h2K|$q38--rLu% z_M%VF8OGOcONyfC2-mD2$XE?R6^LY3z3?r!u!PcT8MZQ*o}ja3H3qkFV=$ zc2wxXxvHyyO82R%sEt}%dd}77_ylFagv;8@#%qlE%zNM#7clGz%qjkDpDr%^;RWBf zm-n-bEAJ70tuZdKFm@t~#3xf@21KF>uCu4|V0?N4wf&8vqCdg0u1J?+&crejimEPz ziRaLGFbJz)xUlC=r}_c)$`q+$2kgOwm*>NsJyvRR3^T?q%-;d{+v?JzhJlrD{y8<# z-`Ceb)>(1v{6ewL`sBt$@aoKW9n0Rn*x7fx99QSWUezlhxES$hPBc$V;3zY*<+5~S z&;R2B)XZ$*BziNM`5OLLTMTVgXSP8awj^||w=5MNQzX z8iAQ$RzonW0m=o0fiC)l$(m6`W(9Pi84~E-n8<#n3)352q-c9V1Dm7)yp8lVYT~^} zfO)lSIJAYyROA$SZ^0JO5ik{Y{&p%e!n;cqSOAjGVOB-Ybk=fh*4u*nZE80bI(>o& z@>l0Xy9AES76qvdc)*h_a7*`*3MA=16Dz(nqH37M{p0P`3@JK+mj9k*Y+v%pYNQNj z1PpyI6!KVIg1T&<)T)~-7ULj1z;IWg)~}NJ4Jzzs}kuSY~OV-J3tQlnmExeel4@yed*o!%ovog2$f4#^FQKa@SS8VpC8N zYwE-D=oPu`O5p&#G4~q&i3xY80$d-Y(ah*HOt#|c&)mY=_2sgZQky08jYlnN&7g$P zH9FqZX%SyeM=Zer_tO%l&?_s0qze_+0xj={SW=_juCoej{!m$Y<6Sq)G!Kp&sEhqu zMm0jY>c-~kkeK?~pNCdIpST{j|)s+4l4I@UUZ|hM|JW%11BlD;HbKT!SZ3s^eo~bEZz{plT}>Ipztl1XoJ@oU1k4x z1BQSKZSa4;8fWP9VQEJ7dSUEhQ-eG!x+I>GN)?Tvat%D zLy6cLpAU&c+*K{13sC*q)h8R+8Zk)wdaFqv=9>Q5)d5h{AJ+cSXH!RppmQZdRfeI@3_;)|I)EV!z^yG zMNM{Nxus_LtNAq1_8f{vVj%&_I@1WhNizG z8evSh7t}RkshKADWhA7Mlr$wsH^h;JMz1GB@%yC^ zFq4n(V;sbxVIh4JW9mNIN)9g=>?BQ!oODLhqyaix(ovHzVGwU|>QuYBk6`uDhqU2K zQ&VGgmd_VL17Em=S02*~P>>^qXuM3Z)E*HuX_|yGd&L=iy6o*EWfdA1k80b??Dqg= zq`MQms@}svtV8ggV~vedO1FPwpUD?Q*?m3LHX3Bos$WJE?zvpzSc-JsFDK^P_HgNQ zxWh)O*se20nh8A|XU);ZNfn>Udycz^4Vt6nYsJYp9KH}|f`?Kqa^1$nHQ}X&e}Apn z4-P%p-{%mL|D=HOBuIr-6%UJ$U|78NKG1U)DelMFT`u{ARUnc4 zdZr4Z2Yi9&6%$J>;#EjhnHHsukWmARRdC9DPy#_p#s;+!rcJR7tCR4jQ=Q3J- zb71b>XpSRquczEa-*f3dwg8K-q3aAsK>`Xx@YcWvt!iN#lZq5&5@F!!W5WSNqKg)U z97X`YBAD!YD!{+VGBew#FDe)`glKqnNqN10Af<82Gf>BnEF9lKx(- znf?y^IVf^CJdBJ>PsdgUvS3D@d2Sa{EO4!tYav^#N$%LC@-Jl1xU$cRo=b<>`OS^S ziFpNcTbQVQR1DbY`VblmnvFk!A&w5&#b4{|2*qT$h~dN1EUqNm?+mobG0cAunwl%&5!qRNJRako53+<<&bXKI{ikJpS#4}) zsHQ-J(|5-u9b4f}j4N4)t|bG6AJ-65PI{ZURT$I#BsIxm^j>G-`pERgm+94%fsN_) zX@6E}@?z-YTNDl9>_f>eDeP79S9@&ravGaO>-= z2qd8N%5~5*dn^2QEqDMguj-Pqw$|yD^B~7$cxozQV#JUnn< zbQtehTVFH$O`%YGW(`2W%L-ce1a>-YB)h!Mt6{i=zeL=tpF5eOrQ zg)$-#QJLcykQbTz! z&w76@|8ThwTv^X^-&fiDv+p`2K7ZyGA$92w2NurM;@D&p;9E^H;1+Pr_bGRtRHymEhtN5>2ujH9u`8hqj zbj z604++SYq5`2DT{lAqH>r{mqW9zdK^yXD)!H-mQIrhmMY|Dwqc~y~D;=NH|f1oWdx6 zCqJO+;c>&*HnW&|N~>kr?OS7jejK-T{`iAx-}M=Hi;jFXJ80 zcBn~NPjW3PHLM)&wIutxNvjJVq)F|n7hkb;B!LO0dt&euGR^@#ic4!SK*1a07w9MP z>Lv?cxLYrqME}Ix+a!cForl*5F7Sw^f(?TjRPMg`1GiFSj88KhZF!+xH#Np%0Vq8v zXOl^bCc6oT6!JytM6!+5IWetjl63?p$iPco%5a0I<%rC4vWmYar!J(7P6g&xVe_Xv zK~v%3S2$H(H7ICB#d37^e{wD`W)m>d;(CfEx2e9$@ci6tM_^D86{G0KLHQAwY`={< zzx8XJr?E~f7CXBXi+M`aJx_nKwiUdy>^30PA24hf<2hTUY%owtQ!D*R0UwNMKE%N$ z^a=*Q_-!9jX#5melOD4EPhN{=+KMa36qU!H{k$KNq2;Hh%Fc&Gh0RTM`J1o)Ob@Y( z)w9!UfMq{Uydix^D*ZA!-o>Sl;=cTm%k)&{=I=DMK<}-n3gocbT3)=mQ^Td(!To?J z$2AC87#}^m{DQLbpT763$wm%_cMi&T1NoO{-@d|9N zg6(a{+5?rNPB)@`>8TH;__e}!+NGM}g|9W!;OSzK!J@2hW4qGt{hk8(d6hda6d#X zYpur-jDCGT9R8+d@^Z^5ih#1X;fjZawCwy)`~WStD)1EIn?Hp~O0x`3`M?k+C`5B@ zPio)V_bMPE>&oHGKJ(1>+%xv=)BUv?f$1KM-R!c?+1c5KhK62aWbQX8uh+g1SzWZ$;5G)$!*%!03*W_Hoi6uE4a90yU&VmKw|Oc{SA+HOM9ag@8Y%~y}2hU#bIOl`;h%fjf7Zi-PeY$S9`x!S*R+>dB8Ja66= zvj0Pcm*UX?IG@G&Kz3}FuC6{Yi->r6Ward$0%<;iI)3%=ddK=`;+auVZkJY1aWb)d z@^ZH^67j18)cUM8(*PVMDY-0jUUXt!z)CYED_spq;x3dWLN9pl|LS^2dIdp_gpuAx zTp-8vB3dU|D1?F4KF9OMBv3Yd%@A)el*N@U&9{1InPo{Lt>exbURYoqr zB?q>ZYt@?WRK{Ju9(um8N*4Aq@-B7t+se0^)stH)H&X12jU%6XRPS{r)p z+TzT&mGHwSZcfmGqC#FA*_qJPu$rED`OrU0S4|()M67=rH(#F<0D|F4@deZ0kS09Jm zk1572ypxwoh6Pn+G(Fn`ITEoCC6>dhr20^(K0#&Y^Zg#YtvZVW?K+*xz-Y_3CDesw{m z4yG!oC#2QGy_7yMwf5=SOaHk@Q%_}b0H-DVnCTfeFM}9-vK4v|!ffj`dSNl*Bw#k{ zNs{!Of<@{K5${8B))bFnD(t8st-sT+Sss(95Gk0oXjJro>)esrS%=16Wr@4_vDJV2 z*VC=rOks%NKGLn+)bM4>J)v14+O#p(LF-trxm@SxepaCC{Oa7`s&O2Ll|J1ECD#F< z9*<2GRm)~d=a-S1$C z&``mr5v|6FpY#eAZMDQ00Sj5K$k3WL<<~$AY@?91;o+{@g;Nu=;2^zM8dTvt6Fu}2 zPu$pCHqS3sGSKGh8o?Yu82!kU+(6HFQO9%k1^ec^fHs}SXg9R94OnoiAO7FHFut*A z(z~#lI`&NWddi#N*BO%Wroq8gwKSINo0NH1*Pk_R#-yTb<;vAGuG=1M!wn6GFU^GW z%Q{Y56ELQDy!&+{+RhJuQ2AmEc27{x2A`e-`R9KozkkEgek%QGVrRYJhL1X2=1x_= zcT(%H@BhKY8+I3aGSwPdx&=)#y`!m9Ler+z`MH-el{d+IbE=?j(<>`2EEYRZ5#j~? zzNkg$z9N^tWV>-DUv!T7i5$*~lpD9iM54kZ0+U1)G$Rpw(S(C|H10k_BiKr)-1zBQ zMj#q|NW$m*DY>^UKAyW{Ao`+|Dptcb)*OIpw<*>1y`DPe+4%*2TXK>1`|ry`1-J)* zNq`iIsoA0p!B#D%SB^JqMI>^tr zK+V;|JG_*`UQVxQH4F%swH^r!U;BGBYAz(|>!7~b>dLG=yrs($|9+d@U!2U=Cw|pn zD>Wp+Hdp}%eIj~407jZgF+VYTEM^+ndKv^pRf8IcrK&j&<&_i}*d!l`0@Y6vlBXfR zvWe|B;R~9Am8YL3I zC{v%LUBa(?kQUh1lEhru!TS>j(?U0d7UlB`Il9)tYSk=AtKx!g*h z{0gbn>zZlH5gZrxc2~Ov&>?AhFoMgOh=3?p*U_<=XPiZks;*9W!MKP|nCT5Hg^ zr6t5yu;N%AN%WBXGTSzm1{hgD@z6ob<(IP(T7)F;n46OkZcr!a5s3!m@&N z6)Y#OoytuLucrJkO{wTCfxDB78mhPok0NT1WSAB^35@R5NxBw5(rLcBl=yvklnE8$ zQB8ru_J95AQbbD)G8Nw~Leui5rZ{SZS*CgTHG4>jEi5;kk1&7KPW23XfM!azk_K2D zYEa0bHdbH%jxO4Ce^j?1U&*>VLE%-(>TfwTapl9n$NJ-|aVl}9Zc*Pt+q``fdL1TZ zp)abO%9x3UlXP@ckPYz2z(sr$67=TtocMk*Viy>*mY$PR zrDIz=X<^i$e5#H^d6qy=!vXCdUB3-k)Q*0!OEDUWU%&4Tf||N(mf>-T0vjGqGz#22 z2K1_|5Us~R@tqs{QdWuQK#NKc{<1*ZhD^-K{1fBUUVL?{+d^5{b15|orNQ;5<73_G z3@p?w8&4;IyUZ#H=?%#B&4+On^}&9{SVh+j&GB@0QaG_Zl$rw)?8a0{ui*MY>x34P z8di>x^!mYF4Y#u8tB&l#^He)Q7foDUd3Rr7*@1+%{2kK6JEs#u7C0|5>^-n-k25$G z`KGx!p@KFs8jgR+^n%8w&f!I}KTWX9DV7PQH6hQR6p|a%A?4Y+&g*`*k6fB7?2AYx zqPll`4;~S(!ZS9p_DL+Xl(nx-nwxJEm|Xh5kWGF5ZK#q{xWi|vGchb zqj9O&EHtRL6*xIZk7b%2&5WA)l5W~mwV=gcc9?FPw%-?RTmW;LQpSs1B9Z8zrxEVn zMH_8F|LENxB7sW|%6kQNtRk9dgOMMg&g?cC&5&dii@_QhnVjq((1r#IX%YgbsOp(% z6HbHTr!Rs~d`oSj7sT^ND0KNWsBiVzaxILCB5@Gl;8(> z`&>~{RytbS{M|Anc7#pl%c`pWopYZ%>maVEn#8CYmQPMyyB2;(JJ3HvG}`EsvOnDl ziBWjfX*{~iW7AP=Z{mfpWAJNwo1IZ!Fx#n-W4Srtjlg-*!d9lcS&;lMm!C2*wFSFx z0>w7i`@4=R2FFy-mqYFQS@wtcS;;xea^+yv)WElf)^Gh(3}Q^nTe?$|xy*$JR}Vj`Sra>Ww54urmg+SNJ|KnK(fZ7uZo%YWS0NeH zphivTw^BAy?y{Bbm@e0&tp%`QYL;LQsY9{~_;hBRQYQ;RxRvF{`tY@k3aBHbyvt8m`r#)O18-k#OR``P3%dyQVH5k zxU^jd5qV$nuurY?yj_r}SZC?>cQub;6SBDSi8T1s#2-2W^OYt0sKuvn=r?c6be^w1 z`PzT!pV@Zi;P*)o1zwt^+pj}b75CTwwaFX#waIsVk}!Z@Ap%{!|AEeMe2ZvY~EZ3lgM}puio&6uz=ffN=~- z98r;BWMhRhq3Sf(Wk`&hDnBk5+8E52Ma_-&7mPtoE3H}xY4S+GVq(gcS7nfP`SR8& z377vv-FM^KQ~^I(@%>pwaERAQZ3}fPgXNROKb2FyE`7#ZFg|MkxYr23%bO9sYc6C8 zk_G-fKt?8H{{=7j2PtCP=r4qjpP2{FQo$_^dEa~j@mH=65_kp}+-|7nv}8r1k!2^X z81X{Kr0s1s#uGO)94Ln$ok_cXXlH(UVtn0V+sK49aN{Xde*=on^`h3({NA~D! zd*s?|%eifJ*UKPhjgV7?`>R#Y#v0x1N0G`Za&vv#Dp(*Re1%-;FnJi*VrY#a3K~8I z)F29d97EjEozrl8Ro-SKB;%0}V+SbLjcmPk#~4`1y}bi_W>!Lb)Xd1eMDyi;#SNOt zrpj?F##HW^>|gVDWL4(s&=bIRvp>k8@Yq0u;KbMP9{bUfNtO1|j_b9xMH$NYWq(2&M8;0C9zUCPP*uzdM&A=RUWdnViH)}XtnB~CUdVEKwY z-J~vJ7}qAGg~YM?L!3C5-Mq^x?{FgY@b>MarcKf>294}TL>py|yNmu&Ul$jmwx@_a zJIto5D;+2n8sdU6yQf3knEy<2X>iQzP=m^DCiMn1>ro$Yc)8~#WX5@ieE!tg5bvNe zXDIDqY_Q)A1+_TV8jVLUJ^}|7Os{~RjayGfMI}N#4-kSEyM%~^y0MU+8teXKSX8st ztQEBc;W5ocTTHd1Ux(}uTBvc0oF7rHYuc!4QiB@U2Se)cb_3*}H*Chz53x#%M_y>7 zxS+>^&d`YalY$19@9QFVrRMLG->tA_V-Vy?nVO>7sk1qnfy~*W){0isud#@Kv;%?O z{o=3u4p$jJxzt67N`oeeOvF$iD=8XYau>M{xB zU@`a`1E*CTAl)QhL&Lre3=P8I3I&rj1bEbCl3^rXzwKec>zeIKF6be(h?X zn^a3B4q!5)qP1_~YxNS7z@hSKGvV6T^z4xAEtX`a!vl9=Wif=4FO+?EtW+(mnik-s z)zeisOfQ1Y-{_Tv!OV^$MnX<}vLbsZBaowJDKfdNnl`9wq_Y8^cFmBCzu7xxS{~2Y z7I>!biR-|dqz#}K1ny|SkTAJO_}s?{++=+>o>K*kd*^}@cFk?Un_}>1b0q96g3{IU zO6%8dv!`Z{?&T6P)_2p%6eaC2bIZKinLp?6p z$YWEVO79-I#hGxk%*^w8G*xnHGUGzV>#V=d=>*B2d|~&e{a1ymcll?l9^yqApAClo ztk;bGAV9si=gz+1iO$`Q68XA``%+HrP{p^9j7FYdHH_+n*Q28H-lXCJ+Zv=&_kQJd z=MH0}k(yx0be_LcsRI*g$+dS0-si+2f1TpXAn^nyffxeC_Zn3t@$7ARQ7Bo@#I zY`nUP_4aBPLc^2(!qBqL#e^5o#%W1jR&tUaYw{vQt0`Le)bT8W_qnofp0=jumo-tn zK;jvG0!J!fI-<$1Ea2}Ps6$wFq*lV9= z_bfi?om8N6H`i21@Ppkl=Yns~ZubU3CCi4SkfYODp;jc;gOH#THz$Q8$1+m#m4l7K zc9rK0@e#9&;zS>%H>0m=@u(puQRuD>ob$IO&uu7{_W z@R^Cp9&Lsgik+_*2X#5a8jWr6b)#kLmW6V{uU$i1U=T-xEWux``1%&~IuYqoGA!5;!Y%+gfulYtX{FQJspsc?D57dQ$Kf} zZv7_{3FHhKR~``p;3z+$KR0x))kn;4&@6N_PiUF?p?jcX_Vec@$QLar)4mpx8pjf7 z0st(+DtN)uEqA$CpR(KA=5l(>R!~Lv{OApXld^~P4aWU1BTGv=`CApq7OwNs#w|qn z0UY{esOw0X?I~)Dnd@uzQQzJLyY6^>y|B9MWY(?^g#V`nkor6s_Q`Y*IqO+pt)l6a z_xxOb-Zx(yT`$O`QuU}JdXSx8P9=?*Q<+;?N%O04%FTV|L)pq4+@Q!-zz`R;foH%# zGhJ_7vs~FKU*y>hYEF`cdjBp(_Ulb>xH6raUB&DF^smN+yo{P%9^@axB{%Qu?S|4| zb*?cp;;OLj?%jP2FN*Kh4ruhMIuz?j48k|mvBNj0qTL8M2jay9%O4eD$TSz<$+9k5 zK994H3*v+r-rTG6)bf*Lc8jLRPC-NPL2K6&swCCqbuGu4PG2XU=f;Y%J{WA|SKGg? zczuwlozrq#*NLb4kKzMoPgRBH3omEPuMOz`W=^muW|HJ}nR^~MK1fc!(!BY~fv|kj zrhoGdyUfx~P?jPfsX6v;%)w_OsmoUK$rO2#Vf^G1K)FD}j-|NL@) zc0@m;Y$AIWZ}D_)&;hUTDmV$;y@VLTTk@g;Y}qj3NgHrQ?iR7bG1!KUJs>2_;WHdQ zTm1ZWJWjN}n%mF5q=wioW9~n$UL5GTlL%tbE{9s#NY!-Bt>eYugViRNWVS8j>k&{4 z!885o+V#A$^9M8Y3$+Sl*C7Yu9w`6ASLeUh-^sR{Hh&pvgGoycdcF}73(MC}2$?=S!j3E*!uYABntd3O`xLXx1JWfM1 zoNk|z;FI%neqc{}Iu-+)J>SNv74^i=%Svv5xJWRQ!&`ZAlhY32NRs07;_gBO^wZ*- zj=D(CVU;JJ9yZM5!u%tSW$H|NgzsEtybLYt@@(no7|ot+ZTKK@RQa`moT>+?eo5%q z2G>~qhIHp*K=DSOD%MHiY@Mjrx!!dxCCer7WwrCji;vIVXPhiPLEil8WcSx|tYQAy z6BfnF=wYtv{Yf$rNh@ad;P)9&Qji$Km|qognCQKyE8cA1;PlF(;;r1Hc-|@NYo#^X zgt?Z377WkFFU%^;%V)nHKeB!|ddPL_62p4||I4ID&Ev|6u%sC!MK&n;+rW{fhD87L zw%G7DiLsajHYbD8Z>Zga;b!GbY|Yb$J(VhFt%F zd-~YYV#7uA^?UkjE2C~N*N3J)1?a2^v$dj_z~Vv#OTu*oS%1v@zKuTAy%@(FOlG}2 z{*PAC-55O$jY=EadBD4=l>hR$;@IWd3TdxD~B^7x%W`{4`l+4qGP$8K`zU31hN7&+pYAK5y`aO zN5Sf+Pm{&_(e<`1y)RX&Hg*AB;HUuGrti@ zQ!8%573Jz0;oY6iTC;B+Y-FGnq1Q@kIh8ZAUxJ;lv3jj3Z{=m3#X#qK)@@v&`2r{}Rp`=@0Ga?5zh82%dpBWLkP|KAcE z!K>F9mcsIG+e=N#4m$YD`;2>P)l!Zj30`z?`*GFyTxqC-IDLGre|<1}y&-Dtv$4;8 zxtfIS!=?xAI{LEzbpE;d*WIR~lAku6v2T_MB59H?)d5N*=#$1IL+{3oDJn)t5|{j|`UHP_VBMu^2jIdG_O_1C zDaF(mRkNzHAd@Yn4{zCA?qG9Ue>Hd#yK4a#4mOM&R**fw#F^XQXS@9$o zdKy7cUq0o;+xb)?aE5oM;^SKG|DW2m4`jUMdtL$i0B7;lAhRK<-Ceu*adWXkn&Ix1{LkFRbaGWL{QMB}jhM_oYx z>uSp`lr2pMuP(_%QS+ZxXLXu_BO-dPEetJjJ*sMIn1u&qA?cBGzw}Rx<>Qk|r^Bdt zLJyfD=+qAAbZ;{x5{;-ZOh}T3LFz*%u7%0t>ynM+*gxr&_r<(EVrBKMro}Y>4c35e z6wvn0NtC|3x#%wUT!%%HG5=4N^`@WCx9+8S-Sbyqw=faD&qR8@5Q~X7&8DX5!Dq}X zP5cxC%m-_Tbjm6g14Yie>U%Vt4H`ueAW8d|DqRXCg1ZrIdmn&eVdhA^hDJ&pi*r~i z?Uz34uc`(8r`GyY{q=kHX5r__Uu?{l{w1mxe-RpM^}vzNQqwu#iX_4Avl;Q>3K9hLiy^_vRO&Nipi2cooRJGEpsJOCa;dLaQ&d_4{(r^gBZ} zEUFP4bsI&+T|swGQ9L*ge{F=2V#Qo9if0v{p)XReHyqLQ=x<6bnXCDB;Fg8&Y5s8m zh@M^B_$&z!ug5FB?8y6@;iR9tGunHmiG2{4I z>-&(QhWRH{N|wu-jA!pq!!T`b`lBzm^@I_BIqRQKvMcxvZA-y4rjEY{>$Dnh-hA5d zYM|Lq^Y(7@elp_R`5^0LZ2vA;`pO%#FNcgm2XcMGOI%z)F)a<|0${Ye$FrVuO%Yi7baD+j=H@DTKVH2L;DL-90NaZ zstX~P@DKRAiSs(VA6zx-KY>A@Ht2ge%zAYf;yhh8iM%;WscIf{L`m;bHgI?>M|-ULj}Q1h37iX^&&te3 zU%Kjh^gD^bVSG}Ks=!p~UJFxj@wAIfKXv^;1?`SE8qyMs+JAwCzSofN&!91dVwklY9 z=f=31jW=)P!;j5weiFRB)W-+y4#07)lXBGe3?y{v4CPfMMzlEw zJUICn#(TV7=5h+`M8Fut)E_dqrod%ihq)oiFW%<$-7gFK0l!DaU9);0oJ4>V9vO`N z_H=LU^%pBmZtL?O`_~6z5=VQVy_tZ?i3D(lg3MzsnU9>3Kt2bH+t@1}8Z$~rLlR1Z zr?j}EZc&~)unR}BwJudqzfHiAM>1s4-1GN}FsOS53_D%1C3j9Jr`p2oDZU7f)jpaC zYmGsn#l-rjm0v84Bb>6zhQ_Ka37kd4@d>r>`tOt^Py_T%x%495KM)!oEsJz3@B;xbuP z80A=NXb*Y1-M4frdP2*!c6H|O65dinu1R&-bmX(uT@qaeY`8?1&Qy?cC|j-|KiO} zEN!C#h=3bob$SZ$PfqP`zSMgc8|w3ht3W7Dr8fL&r=w8pwD9AFt#-+O9f;&M%_ETG`(w`cblA z*_Yyt9-l{pT-F-StDyoWsS5ejm#uOA^OP`utXVPwdfjzIt8xaN|Dk9vW5Cac{EC%*O&+2bbTUo?Zi-P#^xgB zgD5ZKq$1CIy$i7G2%XOEc&O%aMzZvrkFAlvCJ~tCF4R2ke0Z?YFN_nBur$f*`cW6Uf*g6=PS1*{0R6#>nMcC{qPSL1%DlojU*=4{&w-Zv zH_U*Y0%mY=N%i1%g*i9CPM^Ynk7c@dm3x9BCfG!IxvA3hjgbr^E5i8il$JGvH@%fA|zaz zrCkxRV<2O*#kgG(=vn%jl*1f(K+85Atzo6@O}DZt0N$YdB_jFU!A7%2LQ;PFL&;nv zOLA|IJ#8E^nry6mA0aB1c2|Vf(TrBE6*+qH&vxBz0&_E=Vp^gJ$A9PHTky@MCwD77 zM;kbmRPXl%bxVEJmy7mm>H5=!vR*sN(TPBwS4Ea#nf(K2ubz@q0dJ^}e{R+}b^ZJU z=V*>2mCqf`bEFD}xEFJjzovS;0sViL1w1eVKQVxbNcDubVe0^Tg z&UJYfH$G2y-OW5Nmag6lIu_I0bg8=k(X`R#&iSuh-zM;uuP_D>D~*t7i>A?n)PNW->v z@~k+$JZ(~@)fc|naNNJunC=hpL825uR96|W5S~)!nfKpI0sN;&X2!iIDoH?<^iF{_TX6$7XM~^ z@!mToa=Sm}JO6lxzNsPBz0OkYj@aqA@yBB&^T~SKRg3RvMK0HWUX=wo_Lt5%4ZB4y zueq&HI;@M$m$c7JN6kr9q97g|s?LTWEjufbGf%eAX8-u{Y}EP}pD>9D^|P8{QoRt{ zj4+#aY24_1m}O{9ZKf^%mP$~NQ=>#Pe3dMGDP$wmbE{(Dw~#-@)M<2Mv;oLS5zvKP zdM+O+7vN%DsA}$8h&YPokG}m-x^w<&H?&Ys4Yc<1%`dl(%?~Ak?eAUsv>0eW=1Xd>~UKe zdJ0F6%}TP0`3k`TL+O65>tuWlsS6pfK}cE%^i}B$NJ3Gp+sGb3-BgmiFl0i5+F)=h z38MB?0F0A}Z7{Z-LC)%w3+eCTo@jR+Mln!Kiz7GB<M7-ryjw+hdTHCgDgU>ZZujnmM>p)@FD>H4HX&$c|1L*@oKliE-lv@fLe(v zTO3C_KCd-z?lxbaSgO2AvGlTj(1@#DsVZD=U0<5syf`%54synPZFvyudbuqZ=fOZH z^w#m+_`tTl?d-{~BXi>>`j5>^s`Gq(?`CC*hCk8-%(DP`FC$o5$4-K7z*Da1ofG*t z#}rPfvL_w*5BbBD1;*O`3g2pydYfDWxz3$s{DQ7r9cwQ1;y2yN$oA(Cfn@B1@1coH z|1S$=My! zL?pb=&<#7odV2Ce)zID~LpvS&--pQjqjwz>hq!hH@9*<}%4LW$o&oLQ=>3xiym==d z1|=cQjrGQqBmxoSfYC72zCy52KZ+1o$Vv>svTkv`=UNj6$hO@uEGH|n=E2Ej$@P>k!cwRu%DN&!c#MJy2|U6OeQbO=b==H?Z}%xKpV4O67P2t@IU~Q_RQqdqNI$JB zV|LEu)4OQ4r`_%=MW;dLVx7ZK$6G#Oa_vOVJTaE)KlS~k)L$nEC*}D-JNVsxa@LkOMi8!Y<#+Jzg@W!-Ek{&-lhEXGyZMirT+wS z)hsC`JGJEmL%Ng`0gk*N$7su9Qa55N=%aZVP(HQ^`y`e78QqvVo3y)Vju5L3*`;Xh zpVd*^9vYQ$n{L%egiRdCTWzY#0hoJMw_EK$y42*BQ|z-4#`F{Tln?B))qo9HV@8AZ z^yz@0%hAaj>y3T)gO``4^B<_=#?-#?!~6K>5;}jv(829}|22tp1Lbt! z#?|d=)+0rBLiUO7uq`)!tBZBUFmWdjyr9szW)s9PbXqb!H%DADx7M>wt9Ef_Y4u)J zx#U`yv{2GLU-^T6+o~w@<)KIYfJBd6xC2{`2q`(0ROe|5P>gGlQRTm_XV$J>krW6Z zewI?Surm$NQ??9a2nj#nOP!SMR4egn<^CUDK>of}p^5&QMri)kaO5E$o*KqZ^w9)c zv8u*Q6v2^Ne;k+a1OyhT9?+h5i7jB2{!CjnjqwH`QT-u(Phb|p9;oq$b6wx=dlIil zo4W>yqu{lhg4-xb^H$s#ofr)ZDJmg=uRg;uQHiCXIi$~m8_OZ*PD*Z@i_FDvRX z=L2Y4*TOD7ty71npR#E}VP{*&sF0V4Sfk@7Lm!oppO$qxl|)oK&qwH+lIvzHZxisM z_fEb@VV5r`Q=!KSLCPm9r-|_J^gYZI4eN@bK1KMq>*H^_R62GYbkc~6@Yh3GquHi5 zR;q*_ecNu^atfZ-gTlK@G(0Ry zSy)&Q6}Om9D=#eYYF1WG`0m|%?N<=MKs8XlKEJ-afJA=1mzgm=MZaiGS$!KSfbg4> zT_T-m0x%9}<7&P7{8Y-J-Surr|J}3W2i42NsijJ`F2tqaN zrkMjJmy09O)77f=VY_YH-Lw4$taNW%IBk{icDUR=iTF?pA6F`cp3l?u zZsT*AC}U+~3sw4zsv6q1@digehM>qL+|rQ4Vzh2Rkrazk-`I?xxCBL5jB0QZ1=WrJ zG#U)Z|MK2=q`^}*mOfomvplOG`8Z7y%wl=xCo}bYI|VLH-BI&bulp;(6zUaQrC6_D zxN%9%FI--($Q>u(XnYsz*KRcXL7h#}JbB=EpEkau&I1;{vo-I!0ke4{VhvZbXlF73 zOr1t>xW6m@)QDV4LJs-3Hr-Uqn!rBhZOz)>Bg+GBDE`Om=aoJU8|NNsj69s#)!`yA z9z|a}{HT5ONY2W9SnK%v_r?QU_lvQ>wvspa1$K0oNXl6^TA<#)Lx<(qp>6{(nepNYO5WPf!9GitVVVRR>&PoTSWB}RSi=u8Q6EcACpNN3M7~)2T3*;0gxX)RaOP)f z7mN6G1S&=939=EZHB^YbV9YvqT9QB4M{B%`l~Y4$$EcxAh25;!HJdhGk~R&(}=0r@ya&HEmf-iehQf7)`m?#6$_ z^j(Bx0`tb@6BcK4gbG|_#}5q~er%|sKZ%Xrjd$dU4yf)y7?n)7Ki#UU&78~2Q&_mJuj#1ys)f$AYB#E@9I>AA_q;-lqGr z9M1#R^eo>nI}3cII1go~YJKC8Ud4IOzuY$kTj9DFq%gJVtepHF8{+i<#if=_9$|9% z+#k?t)DGkLqmX0kBPl30(qOVpEW7K0?a$&0Y`p~Fwe23j9oLoMcZGHKHktYEB*`be zmRHb@#w-5PDY*N;Qh%emo@8}(sbQPF`PzW#7n{fCVVD=5)_<-&-hr+Q`Ci^5-^1e> zcJNZ5xJ6*v6A~;WY?$rTHEQ9a=$hDjXp6T+CyS98wc_MYZL1P9|Aeo0@NlbSEFc8!%4~(lP`}e=x3-%vnHs6a18xrG-j$@+t zw0)mLD@t2BHJam7OXzmLK?LY1cxr|uCjQ!TAm7BOGOP^bOwhkj&wjx`K11KZwg zbtt@sm<;8>G<-xY6QbXIt6U-M#?vvsj8HC;xJAv)*=R*xhEq7mCA2*MeUJo4`jHA> z%;RfcQh;Rwk>+0yL7;wVh}Q!uhU_$5?J3}KUK8cG76P6}|0u5HLulfuR}4+tk40AM zSf}fkP6wq@H-x!twf=}XI(iBAN#t}?gNGKdiq;J={vv^wLvWJQcmyY^t!%z8?c}g! z+SyLa`@bU^N0{*jv74gV3Om_O2VQ)7XfmXxAouE~VilkC;LKjn5wpUBqvoOhccThU z?S1oa>~wk@iz#;Q0tl2Vb47wmo#ekBoiWZ5RNsZQHw?1_%y-W7w|)Z6vAAZ!&U%wx zNLZPz;1|6#&vVp}JA0oF`;>nO5J_F6WXZps{4xiCF_eK~&+fS&1z{|*HDI2zr=Fmg z#F;jTCfP>YBkCBK`4NE$i)o_G(FbH;?xo+XJ zBWqw`S(%BGMeZ_f9NLUf%ci^9r)Eno;t6;XU4CXWMc@g)<%dgFW8n3D2}avi}E zzB~M!?QHZ7>6B}3rTFj#?y~}ZL_Z!)*TCGO54pF*6Jns*vo;`mSV1OU3;<7q#6HOc zI)T_0$WAJ)EEIE{QSd8C<4KQ(^9Iv z%ZYrY=sV56jbVUu*4tS(I;w`9K{Q~Dg@bhgFaJEn#l1v6l1{)M+6ff|juHMpb5>|Ea@G`#X zsHn?7a`B&~?vaM!?VLE#^3t?xyD8=5?f90WtJSW=l3dS3!%AK40IZX2&99{eTc%U? zFg}^04L}wGoFM_EW;*EW@X2YCUI>1II5i3ge;|r&Dt1R2o&soHmd)-PWjvNT1B8Iq zZ7i>wkUjEF>TyQy{Jl~ou-o(slx~vBEfNgrrMjstdAbx5>H|%B`e$|9q|E=CUrXTF!7m}C~_x`E#tIt;# zCVEsxk3Q@Cygc@GF%s5P(ed$yZ42%2f%e?l_OAbB#8TAD>jcFom55(pw28n-jxkxq zwC--xOdI^grHltkNE91hZw(Te*n~C+==OUsS#bOKZqC?Q6BUqeF_hV3#-|W$PVNtN zIMc?7DL!NuJlAc;o~MRLz{8Bzj>b~h_)>I3aF9#kHhGUzWSnJ^8p-z6r5qYp36vvH zWfA3KKOE{-BPkb5mGS%;__s^pj{^rcHOxqsz_9ViqcfoKM_o31Wbtu| zAD(ghEnARBCD-$W=&xLN=EDl<&p^e*0Wj>^Z)!k`z5O? zH&pyaXlNaD@wK3JDnX%}R9Q2FnnddqKhWG%VM#%;EwF5>f;2 zoI+fl#q7vp+6A7Gh=Zz~pJ6UY(IXiW?{tsHZ5MG}t2EyfhDIH3^W~64!$C!QoyCN# zILIs$CIZmjc|h|k_UR`CW}La$V7z@rzxL(2*80-L#IXEMg`>{7Sw11-#Wag@C%@|t zY~SRa*U&qct8*hF$!_EQ-m&Tr0o3wyQoYg-`8+$mZjU-m&ncF*qIPS~OG^XWq%Suu zF)`2_K&GoQgj_Y=Fj?G5krZ8N*t7W9eG`VxrNfr0uF=xWBG^u)YjrNYymn36r5~~U z#eOY(2n>A0_no+o`N6@4h_QAv9K{;_Wn)e9(4Kq^r^dTrsZpv+8rIOX#i-EHDlh)3 zmq#9EvC_z3-=aE%hz^(1B8dGECQQ&KHwhsN7f}J}WkWpL;vYKERxX8_yX7WIP9kI} zBjV6r2MT7tk!_=E1WY|Er$xD)8Iq-`NJ*QoOEcV#fSX3z!#|Hpe1nqk_r>|JW!P;P zO(uzyqZw9=qW|*9zmdw5Ar968iG?I|JtvdS`hqEb!Evo~xyw)1Cd&(VYK3^JKcC86 z``dnW$cKD ztxWwi`tp48^@@Vbh&dmLv0P&-&RZ5*0d%o280H|k4?GaRV+qNm{oQ^CIW1VSwhhKs zqdr~1dbedWm#o}7a?A1|A^Hlz`xe8?n)KNA4a69vBl{g)iWjR9O*JkoX`v)gy$`O* z=lg_0bT5^Y;Q@ghuyJSPLlUZRH~dEpiGNge(cmzv8_M)hnl@CY=rbEmo8kOZ`X?_0 zh>9Ct*ppViN*nZ}7Uu43Yd2q;iNS1mm{;ciT7lVI#nCe$+P=`JcAFQ~%#YJZm3F%) zu`Q+_e;0?uVCcUFmr1BnW45c(i__gGdDXW8bv_#OA|(b1Pm%wIiuJ6^q%i@B|)|YR>R_CIYQ_R;^Hv2DZ`@6ibKU_A}DjVA&F1@oJoo&wtNuGY^k6^Os57jvieJ@JB+)qeZ8oy)EvF+<;R<(tta{MW_%Z5}&kYjN*c!iS;1>3YD8P*OEOyv$=o9ih&+ksfBZ#)|}6;JT9 z1sx`c8h+-{JQC#bQYDcfEA%&ck{?#yGWB)l;=tc`47ngr#Lx#-Z2w8Lg86SSwvNlvw2h7h120`;9ibp*!q^yRDrooC`_FH=MNcqwXPY7MLc`qyQ(W}h z^Z6&pO)p#*KrG!|P!?ixt3@r%1Iy*wBBkzj0U>TXwW85=PdF|2OXnXzBv)fR9l<=A z;vsqb!kS3<9H?Rs&QzP>ne2}7u0owhXZASN7byj#cWh)2L06E{WW$wYfQjeQovf_* zBCPuV64E$DJJP6I>`5qP>japZ(v4n$us=hxwf;D@BIy64>Fnc~-v9sq9&0$c?$p_$ zET#)l%tWq+E1L$1%AYrpQ$s7tKW{5!NUbN3Iid z?f3M(-F|?(DG|GxUzpDfgY zrm#DyhazE8K|Fs3=-ooIvP9rOk0oHe4WFN0hNR1tFL#{=O{5WPs;KrMR^<1dcnW>K z^I_=w2+!Q=YxCdUdqymeu8fCUfWGNr(D&`-VQtqAX2uu|BF{bdn#Ps8%U}T=-d`2D z42FnXS^&<2r&tH>i}uc;M<%aWzlEWM0;L;f#56jg!uh;vDZsnsRV~g?qQOm7+`_Ea<541!@*GowGEU^pbq=;n1AxC*D_fYVdx5xt^-0VtDxyMOn7!^5b}SeFV%T=}MYXSM2*zDN(RIae z6(5grV+aWos@6g?h+%}3Jm7Bqs#vohinx;-58TM5{P%j~nJ)s!)LQx4gg!1=Tf^Pb z3Rh3c?tp9L^7pTz0Ju%*7(;7k(qINumx}X9v%I?D$BvM`!SKu1@9XIN?im~!8aXpK z=6ieESL{GMJv>w$@gm((Xk2IKgFH90xNXGDqnP^h^^Ul?%^2F**2FN$|0llJj+JAn zq2_=qL+H6J3y|#w`8WcsB#AoO9pxbYA+zeSLA00>2?f6AEfC;t3YI!SMdwCnhC<%!jW&nlivx1yHb!)D{eBSzlxy`&$$^&Ww*aD>s* zou#v)zLE0NqTG#N2&D72`xMgd@~~G*?YZuDWlchlJ$1)>)w~|1v>2kh12uvSN$Zs! z|3gJjfdcPhE5(oyK!8yQAYqHL{{=T+-ylr*LbD5SgQ6ljWRY%P)e65iFbKlrl z#@6okwJ7Q6-D%0R?F2}yzKIKd`h%@uhc<4MEFWplT>a=ut&EzF$`gWF$WB=-Aab*! zODA$S!Pc$?^$2ohw}Z3*MN(QEU$M}B8h6428N`~}<>~H&a!FDUB@%HEd8#u;X$-$4xBA`@87f8dl0L}CgtdM_U5_~sdnA}<>zzPIRGgnRN8m2zxsL9O1P(o zUs6jFT0c*Z%tO`jlpxc5K>->bRDCoW|B&@5e{fq6t#>=_##f5SL}#iVZnyZAdKJqB zYuh>G^C5^E#CyfoSGQxROS15qJ@#5kQmPRW#Q0eB1uT3(6Xdf~H>R*)=Ifnm$mjZz z`9m*v=z|-duc<@4aB5?df2%3+B!n8VRPNll*{jf2k6MZwetb4sEKhy znovjH=Iwnb!eF4~lx}J^#VE*_&`=-@W*7RO?yQ=?`5pj>2pk}iW1#o|hZab^35RWO zLsU>Hzv5;r&da+6!Y~*;yi52Qf-y5R)XokRlM9t*C_GNZR4p)LjvYSzR++e>-t!o()B7Y`f8fV)T2yEigCob!Nf6qnW5C?`^5 zD`NN4Lfefp&7-!eQRp?!wqHO1bg92UX#C`Kw5B%#(ByKXPc{zUwyz;+5EKc3IFum& zp^8ID=fd2c)s(0i*Hh+qFjKi z`9~A&`KPsLJzTMnQ6pDlV$H$JPh!w2YG_qCj0!>qwY|DLCf3@=mWEzMoFEAVC9^$Y z0vE@G*?lGpO-16+bprRQ@sZ`vGvbuJ)z@c2BoT98omPI6EcP~bBX?2QnqH~p>Lm*e zWe!??z)I_icSYWKSFHe!4J~SSgS812;(~zb++TDVk7&zlAnSyM{4Tf7rw{#S65Y6o zvd#F<%x#$!WiW>(^eKE1;BW zH^TG-N>jv`BsnQm+KyzLDe7Z-(~uAcL2kLOI;1VR66HVJHF(jQlnrBQADRYgkky^^ zH2|t1%;M=%LM1==+>+D5!4CZ|uSr|QQXQFDcpfa4M;p~3AjR_KwfRn$sCJN)w%|=0 zH<^xSn)f?~A_{hI;1CD%+ty*EF>l#W7>h z&Dd);&im6-5k{tCw&{K`w;T?3gy?x=dZzDWO3WWFRuuGC&tJ2-h=5cl247C6j)euwnKrPGk}2zJ z*1{1X6T$WdGv~6641xZMY)fM9(kAq54Z3YKQ;C^7qUIIWA4*R3&8=Wu*>6=-Xx+PY z8pFyeomh0swU?;*Y8($OC}mVeT@4R^$-TEFNeisDV^^xo&Jm2TYURFU#Op3g!W~PB zwbr85p_#I`Wrrtf;`4ntEk;}?ZF%p!|H(GXV_6mdAc_M{;Y)RQ7@rl$nhZ^nnUPfu ziw^F&ShSVqg*iw{TulKX9AIZiG4&e;8dyxTZN3_Eb%rc|Nq_q4NYu<;_(0h^Iz9Yw z+htkhN~8xMA_|>&zZ<2BzJlWGxa3bQ^)M@-`083be-`!CJTjAX7#`d7Y)_FB$;T$c$WXos!dANu=4_kT2PaHD+d z5GI-mU!)J-+dP|QOgwU1eyjFxJUTaZm&Qj;91ho<;NSDd!+Y1q4mCq}N8u8K*f{V7 zcgKM@#@9hYpgZs%9u9o?@LB%r1kDYTS6|5o7nFvUjU})XzJ24f6Es(5rvXbm9DbobO4?De z`YpR%E1%-bg^@((n22ve2(4f$bZYn5X-NEEeC0{GqbBb8-@Xxd7M8!~+lU12dvbuR zNpKL*dSDFlfm5%9Gh=<+7IPUv$>6OqfMvSCNnq1#eKfCH!Na%BU%q!cG7ttLFgTN_ z96YJNWIf_wdTIB?w^{!vpTRczEbX~LkuFNr+WJXN;1<@OY63Bj2xU3 zYgviBcNfWdvnV(xOu`Wm7-MTcZeW2_Hx9XJ`AE&6fKS<<2ZV$Ci)0>?MTnV7H?ySy zE`Sg_bz}b{FBux^`FODF7P-LNX*$fax$Z)g_EmX|yT5P2!h)nOIH&86mWqnSvGDA1 ziXVG^bmc|#Q1-tQ)u`~Trd&gs6ss9Tk=C|<;dzyRq=@J?L0d zJB)0W0laoIUVu&z>bw#HiE;ziqf-JYQN~%@y}u+Vk|oDJuB_}a_HxkndQwikV`MDH zil{!lvALy)xnslPj2k>eY@C`;_#eyOmS>}Lr}Q67Ts}*_m$_8CN5=3_M+fQ>70j!m z<|GyIQPahq%5&50)pJu$k&H(ba!GISj?pDPhBBy=9wTmkQD+?ZJf0QH)(|8JU!sPlcNiXhoQUYq50S72oY%Ga%1-eNoU*!_gwRC# zo!~I{<+I8;v+AJ__k#BIfr>=;c1x04E!7M+-8215CYXpg`R_fKm%i@zG}s9DXktu@ z(fD}eBOi2#H60xT9;#&glJq{mfuLwwhY_fX0_5YEz$dx!hA4;j-Hp z<={a<_Piens9t#RWj7k(<+^2~efr<<&GM=|Yv{@dtTnj$rL?uoIxbRmv;QuF06f>$ z`jqW<6d6Oji@+r4!p!G7Z(Bncl%eV-r8GcXi`BL%nCKv+V;}#C*J?9;&);jYg1nii zik$iSOQy_dew4J>vy3)8Rv{&vdwJFR`^rjB_x5Id#YIX$e1}Ox;n~u`wDJ7$4#^fA z_gv-DEX;yCAxdTbh*pF=i{|1&aWMTp9)4bU>TI^r zU!6ktp90zJCL2v6Dx~b48d?2@E{n}6>8kQ9NPUssrgl@qU3e$}qjRypVz;)mREv6k zd-F?$=7VPtJ7tUJqplJq4NOx49zU*WPuz8z{d2xv3=SqoaNPBBfDa6?OZXmvxQe!B(Kz^6njy{%VFTa{ zwl`c{6gW6)*|G`)3Meki3k)9`HYRLKZ3vR4_Qauj3<}0Y!IhDVup)gA>WH++$>E{Q z)vSt(o%bK+8Ts6vnwy-g{gHiM4re>bidA6+7e2Ge?c~ytxKFZ*JqTfHJIM}yO}zZv zAwmp+`T_fIAO%Rt`ToIW<(+a{7&QcAaP}ktk5+L-7Kf{)a(-20ee_Dsr(l>sI2-KF zrHeRTR2o}8+Mws^^RtnQgLyya&a%z=CGE`OqOPr}TH%wjtPOvR?3T4|VXG1J#giyu zc!zTtE%u(ihMLZ+ngm4Q2~&N@RG36y)&V!C$~VW|AUKrbB6aJO_~rTM@kQsV7Y4tw z&%E_qmW$eW?X{-PbZGTTh4c=@nZR(mABUlv0=m9BpnDt|B`>Noo~ z_MJ;7@wU_)t-}8JbMfNR?AM0{z=FQD*JAa*&v$fPxBhq}+xH(T-A+dMtIcBMi?jJD z{(sM2w5y3r$4MSNjO*2@Q)j*o%XMdFc_`PFXl&d45&zC#*1`%IV{N>23*h74*#Axk zcWBGvk`x|2EwL6Fh;0)H7dUL$simIbp6T<~dNrSHe&6YE$(Ee}shF7NmTRj^5Kv=b zp4kTOnd!y;rP1ZOLu!zl8Q=0jSW$6a%e*?uLMpv;Ct#)ZDf7snuXup-qKi)vkWO!8 zYl7`w`<0zbbc?(!$V-s_{Bw+9;#DYdwqsb$;S4}T|UoEn8okS#BRU(=9uhN>B^_v{;1;C%Tb|nZ)fARmM6ojcJB)MVg1uv zt}Yh?qVA`qIYhPJ8@*Cv!T=i;jJv5C{hv3O6)DMr@c8*uRe|&BkM^o1ATO?k zm$tNkvaf3xoSzcZnMHq=ZRnBu4~_)+rowvs=y>_L5O)L%)>ABwpxd*Z<9%huZGFvs z*z>?)Cecm(Qst?owHJ5+>^kg|upHfBhw#7`}?HE8%Xu;MR}#O9RAd(^JE^$y>kdWmI3C z4|H`I;M-GzT)R4k?-}^D84dMTJdI!nn;TvDJSHx)T>Sy=tccmYk;}Pkq=+d_)7?dE zAKDPjcY9yT7cxD0EC2d>e6|v{bP>P*k)`wsVYIsDl|9|7RttJE28Uxd$g#D9&@a>( zzFtm~p~4|;(zoLq*$gH-qJKZoqAO;)+<-6Z$>S;AppCo^;q+*bS%pL0xEK1BK8dDR zY#P7|qkbXJIOdYA%>AGm430+Qp4ey5>gqk}T-xV8VoeiP>4S*(dD5>#kgM#uiO2wF zy-W6rK0;npl-ODxm%JoTR3v};!P>A*!&dFAXx&|mLpZ^X62)y;#9vMxu8kc)U4&Gg6@1DilI}ab%bUCcd$Lpos&xTmrGmKH0MpHLUPN0Y8u z^p{paptIa$b8dSIedg-zF%OP_vDbj7h*;E2ZuDn}c7|o@R(uKewU$9!#i7Wlm%ru7 zSilymAOS?#D??)F6!=avfVrf zr)?G6!h2p}ncn8-zUj!`px3$w)X5lQ;MROD)ZgnF{vEbpnPFzjbBj@{3$1saY+q{x zdWegHjB_uaua4epY1CRR9LYYB)DxycG|r_R&{;F#tbH$RmQjO6E;W|X;}$?b{rwtb z92~SP4b<6L4}wl_L~%b-T2l?&-JwivgXsBk8T}l49EwZzJlG5>#0Jg9sx?}GAd%rZ zZAi1Uuvnh!80q@HGJX_eJnk7Dcre}JVx{}mpjX@B^(Lg~#c*@C*Rb(Qb#RjC;p8?T zDu_H@hbD@najejgYYR?tpoJVkPq|nuj-KpZ3qb+FG{Sv8bp(T#h{Mq7z<9|R)SX7_49p8Ao}8;XPV6_DUjgTq(Qh(%G4i}Y!lyvDl zrrQ~6e~zgF4DN0RK57gWA-1r0N+Q_JvoE- z($$Lfut}z~lG7uV-`-Z}I6G6+T-1sABs)6}WU3ZsnXWfPxFZ6)?Ti>TUw3EQ*)9l! zw97fAdlP|@N)o5yaD0K}`bb3dzJ|X|nMdkD=g)$1d)C1pA;~y20kXdzmlC|$MH7db zThf9zs+o{9NshzkK2Nj*znN~=|>KU!L?6U%f0xMP?a}$67Ix&SFafvoh zG`561d6)~90r@+wLDgoSLTBGLW*5DM70a+zMbWJ2GBk9KD;IyvI?k&ZPoWpSR^w2; z9~?LOc%r~!xqkMS>Xp$e2XPclE$Fl69PfW>lw$g=qafov z)!KrAf8uX^(`-$t?|W zb7`RX?7k+J?hoi^iv1k~D0c)h1-Do?i$idWJCg}m?relyP4%0wJ4XlN2rI_iBr;gA z=!l7hb_`0UVb#GFFidX^6;;u-vQ+TJ*O-9TxjA%bS|Y)jAX+q4wPtvE<2eO;oK)JK zoW#&KK-TK@nQxtf9{_-{tAG0&WqL5M$1yuO>(l`-7?H)5rShum1jw=NUtLxgKw88oCKU(lmlnCyrdD5-cL@Q2-*Fyrs zm9pd_eyfGA{UJ<_ zTIe&j=#vXDL8t?vT!BH-g&s(upeIIjV^DRc{d{c%2JVRQT{MHZ@K(n;>NEuc?9Moi zy#0k^f-BiVc)VOO!Hb&D$&@~Ly6Gj`)IO!so@elc)=XF3`GS2y@6RmLTt!p+J%HD7 zjcXD33bm3GM8q1cIT?2Ys`vCA$O-|j8 z#<_6}a53tJj14YAI(!tw#3}~!MV6NGa_sXpaUX1oRwpO3;~hRkER2=)lOF^LyI?Dn zU^u?Sd2F8J}Sdt=g3bqBGO2Ndrv zFteUcR_1-#jYVn?&}g;|+jOvMv`M{~1mJd}5iY3FuJ-O|J~=_qk}7Bf(n>a&D9a4~ zoPb!ESuA~$c>DAV9VQ|?obvV}(xSTO6;YQD_RG}|z4uC1-gqPY&0E2`*!m+NP^?cL z4Q)Sklc&JBk(f}pMGdD&^>DMBL%Mm8g4E3Q@!iUAxWCw)`|B*~(Uq+UBC&08eaT~ikLkUJ!mel@J?1ta~!GrJT1Jl*df@n zd`*kG^eJ1~<07iuFDnw9;m7`*Mc}Fx-SMiBo|`s(Xj~W4d5;}ilR)J#DwEjwQRkjG zg&4GIrId}Aht^CCmmbiFzRK6&f^V5eH^M7~Yq~&>%M38K+>qS(Q z*iC=wACkuw?ik*sQTf$!Wy~ejJf(x)k}aA&dwtIstCsquliM;s_i278O8N2Y2X|>k z^ja4-qT`z~KH)Ud8|2FIkT=Bo7S@n_?4TdUDmIiye*ab+a4z!uNaOyfrKvlspT@+Q zqT2~AG|ZD3o+$9(-t1qBY_2x0INfPag%XCuP}arJ47KlmNh_w?{>5zezWv~&^F(@0 z6&P@)=NUB(i7NZDpMi&oTU)pPOZ_YE%1Janv@nJwCN-;jPC8l~#eP+OmTnLdvUSb=D< z_jEHrK;%__CB4Sr%mAub?>YaYa|Z%J3nnDaJtaH|5nML3T6%?8Ph#X&*L?uU9+8AJ zY(zmnj@>RlaQtb9?{dLvZdCCezY!Pw(0xIkz;>XJ`S4SVk8j(zk+%YJMi87r!u;LM zMH4Ba|J6cJK;JJt&yz0RhFmGs**(9w7}ft)%QNt7F+l;4y}S$ zHsJ%|a*G@c!q+OehLE(mFv24JN$CS)ZT+6xR9hmJU5+YXocC$nrC?SQNKVbsL(~{~ zt^5bUNDZ8FntIJ##Xt`p1D8~o(h%|P8WYfHY5PV5W7!?{R-14HVm_@*QAS9viddao zSnhzw=smYD;_5!7ux9AXR6Mz7u3$ZeF`y5XD z8E7-d7W>@xh#vGPp4*ectl-?!Yp&8CnvM_xb#3phfK!{jgPKqKJYXatjKepqn<>Q? z-CiFhf)(r82s|qfyi;h0n&=+wL(_t1f}u3tpk~nN2?KXg6SIO{B===6ZigNZrMp#?@I()#IhPfEu2(NTbT z#i!E9VL51=ZhMY^e((6xU6f=5M^8B$NNLr>aUHsn=^CJSZ8!pQ>jouD8PcoU@EQ3!a$ctFbH5B#y6AU`?wX~y4NX_>bDEZY z7UB4cz(`4}-xdpl9Oz01en~me(IyYgcnjNA`wdZ{tR>hN(bxL2yQe&m45ARfw$0x6 zN|<4k9&FIc)KJ-zZvk-Qsme&HLQjF9uibUroLEdhZ|5@-F&05b=aV#_|IjUtn87jD zTVy)I&2rIVynUp6c1WZ;xjYhoAvdc}qlP}l1DuBf7N3e+v|vc-sf)(mC0$nT7Nmxa zUb6pH#wKXgAbvc38G`!+SiI_l1mtDWF-_7Wbyu+(+_tH9O~QN7cj8$@|-) z%Jj_BIDM_-0yvaOXq>eSLp`zB_8yPfT$b?{p(PSb%!81zoxYEd7HLpLAY zye*oF`*rMrp1WL7?>&_m1;-xN|L`q;$NWl}nMtW$n03iKxcGEnxufIrJD>HSKq3nn z5vJ!e2;p;6Qt@KusXe1PDdM;1nH0oid)^jTr;nJerUBoMPp3`bblXtw#$06@>Xqm zJ9~a^kK0LwOTsj7`_9GR5ug?tB4KU2D#{wDhRSgi0WgCDTY$ENocXSlU}Fc4lCCs7 z(cQMYuQ8vi0aX+OB5dTI?ATb0M$ieo!xlnzL7w z))C^<%cE6DEgF<#Z6`#}u17}t*_kDmzT}S;_PWtW8IlPV=78ck=&#)WA4YhBjNg{ilG3{RIh4CLLb?9^+BuPi;F4zqPBRJ{ZFq9 z*<405#tN_FX4ep1PvKx@otx=(@n#3%Ex<8#D>U;6&96t`N>o+D zU+BjCD?lCJn9vtCsZ+v;^Qu>(HhZ@{2g zURG4!lBYCpH*MTWG2{iWvr-SC+4o94)TuHsfAYMkM$oNoJ8E}E#;aL4N;SMt;WOsV zVdN#P380OJ&?n%Do;4!$s z#G^=pL`xlj#cPrPh7spA$=Y4_5=GTO)&|@^Ho{?t&lo(w6)cN3PxWFzg2UL$#%E^9t#s_y|YL7qEM^rcB>&y09ZxWj~ z1NhvaN!5QBe|O)f^LR%2Qh#WUJPl5AXItT>eInkMCPHjI_Vd)#pL}Rw%7LdPj5xDr zW9@rbN?nuwDLuDeIFyFAvQO?IKC$=iFD^}B87Qy_vXHYElbQ%kI6~-5gX&$k{l&BO zHSsE1aNSdc154HLrH63lO3X3!8w8Q!s|yCkzp0NVaJJ+f**;qCi;H(%S0P=O#b@t! z$deXL;B{V^kek&`Z6u2$TnE$I+nq#$k}i3Yj6#j@3;$wXQWIm}k>3`drG)ONF#(dG zAxpmZ0uBd!NFrBGL&yLyTIaLt;Z;jN7M9^FhZe^-k9>~z6vE06-K4v^2Y`bWY?X+2 ze@Y+0Q#c0cRVowxxVdk+d&ein5sqSL9aRYUO(_g?lE&p9n}#snbMi^wIsuyUYBnJ$!nEIY=wU= zG+}am0?%kX=3^)9+GIz%{V40i%AynGH*H8UI^yeC`o-kiwE`}!X^(51Vhp#8&(;0; zcwn***{+AeI{_ssS^ovvRadm9SxD>Qq3*K){zO#NK&!&i@Z(0(*>wu=gell^*a+5z zfI`dTjfw7<*jgJ+EPk{Fe<5M6sgUk~xs0dIBj-?@Z7)t??E7Zt=a!bnm*b^cTO+T2 zNO7`Q9k^BC*Ve@Ap}7h!+b<2SyS^QzUTCfQD+9(QVuAA0TrS_ftJY9)MFx!;pt1l< z3qz$+MGQ0f6bw#^PeIY%YVS-IOsT2Vf=Y+YuC6z!m~m!gmwQC z|1x|%^fb>P7F(Q=0YS0TBl}}3fi$rYcz|xwBM#a2L>d{j`u0IYRKWv0_r5yP%R;f$ z6KG9sR1A~z-2EU~)~1T>TNg5scfRfI&Y7d?xXWcBH9UF>-PJ^qe3I|#-KIC@-2!=@ za>&VrPcs#Liz)p}o7f$&QCaM_G<)gpn9hE>H_1TzGpA=kU9pCS;C~+$-3pu4M}|6l zwc=mwSuXj(t%Wt0N?lTFAt0nG2k&_lBX`j~VFeGL?kzS6Ttnx>NtUb(Qz8sB9Hhg) z5fxa)e~l$5s^f3US|cxwo~hR+AS6}-uhq)uT^a_u6GlwZzhQFtU08%xdKB==yq+*Q zD{Y;%fl9MUZR|56AG;s)ZM&MS>;|kdxYZuBeJ|Pu4>!u$F(c2tQOV{TN9Byz=bg>fEPR zt<1j4)F4hR3{a;|_>^?DjY#INELdjj;o(|HuEJ($9!okG)vd`0bEeC2$e0Y)S?#+t z4zeIX3eEgJ{sAlrchUA-pQQit4sR#-r0#On>wXT*T*|t&3HW#61Z88YwM?No_^w}b z%^N;QK?7=ax>c{U8>67A))NK>?H(Q%m5ZK(qsiK{8ADc0#VNYWX#f(CPOd^FshJ?t z4MG}3o5dpF3%7PNX^~xdJ(L-7Q3I{Gf5Axsl94K#29ujVLJN^^n$fewp5{f3g$u zQY}bv%}81*`l$@`3}Exrdb(SLXSm9|S@<4xcisLDKQj zFW&SQ8^~XHvLo)%pD2yV#wcmMtjZ1H(HwHpv)8X%9!l-frpHUewFNuZznNwmF@UXT zdcI8d)tUW*o&8LJl9ek?*YWhkKQe>n*Q;Jj9kXpE+$GGU{k{YF`O+LlbsAvLl3r z{LLS`{`A)dlD?kRIP1q~$9%~|kU0N|U9vihL)#IeF5YJcOrCpRiW_H&8&6)+QLm|* zkQ^hDlWk8N{f%SG^}qY~3GK3o%nq$g&&aFNE0Wo97Kh(}zkD#=kNsleW(pmqIl}fK zIr~M(L#`PSE>F&m!Ju3we6bk#1(93u&Dg^=&E**~Khl04tH%hQ<^CN%?aS6H;%{v` zzoY2=4CpR#_^J`p3Tu1*W-{kMMvx5H0}r0M$$%@}%}~7LSPY>F$a`gr`By%k;rX|l z>Y6$#Ug{Ti^SS6pe8N~z8&mdX79ZKl3*Pp8!adYQDVcA_%_z1f^8h5+fvp>7iU-r4 z=e{k^K)Ta!P_;gABtqu4WltloN2 zRZf}Y-@y!hb34{Iw9$HpWc-nMtb6$R7P*jKfAP&&WWHV@Qe88~1_Z8n@Dr2%AXq^l z5RiRUU!rdQcl_|pMZh;tw5a*>QOZ_)x_Qrd26AKRpYy?6wQW>k2J)h4%Z{QghlCwM@t9CN zuRy*DYajyZ>J#TJ4XxTT!&iGVB*hX*aadbMkT8Jz@%FnN!8?-2Nq;ETXe4LxPw1-I zru9f>>6wVwU#>&T*)0^6r}2W5<35kf{1)iibDveWi33J5$IG$q%}{`N_R6ULN*G z8QI>4_@TA>If}nIMKt~LY~RYKGSM}qLN;CB zp_5}DtOM;13rQ)8oVA~@TzSKkA?POIcXFM%*(2!x4n$`W3%t(}UtVs+n?6j#J@)K$3l>P-YLN$tN33FfzY$qoB;G&Tw^3^J}@ zI(%N5J0toQGLVt}7eMprA$2#bSwLjO@^;kaGC76=mJgSN!Vv@cDm6j5eJM zDVs06xYOx<HU0CK1}(CHtWOr_8tIy zRe4C6{j(t_KS+B}Rwve}Cfx8>NBz|ESFGx#9l{Ojs4?V1qt_^2>CG_Bqic1=rGNa> zrb>nc--zIT3w^Ew;)CzVyGE_3)p2RHI3p7u^DFle>aPDG-^MSwPq(Jj8vT0ubYc

    $O-;g`fYe9~v|V?KXYuM?Mm`s%82dH-i{|12^qsjeIGVChOUfu0yr zayTw2yWswtc1FiNDwZTs8-%8Mp48UDfB7}Mg!5BQkQq6#81Dshs(*b53Vx8QA^Zgl0#3;O{3aszWa3}eWZsWf`xkWHVN(Rb8#=3+2duG#YR-4 z)|s<{&qauYOmc7qUqgy;0<<6~C*#vcxx}gZ2ZPPD$@wYK%_gKE=5Omr_^a^ZfTC9%+!h<-0ULlRG21Y)(P=$_ODQ#Q`9N zr6)Ha`opKRCW#R}b~Wd{6{B>mQajHr<+sW$1}s1#2t@?PfvZtK;x>D?BQ){6#%O&wpS)+<)2WgZGtKln}%h4_YvSJjBe z`Fz^wZc&NtG|m;{K{9%-7Ogssw63Ou8NK+Dte>C^O(7T|4-6cX8| z<|$+A9PhSRX03-!9wpZ&A~&A)^C@v?xc;P`KuK-hz&$X!sy^wYbdHek11 zrY%%^|Aj>O}%f&X)+4$ss(af0d@yu(WtVE$D zqjRHe^S$(9-Z(iqsU9sP@QzBOf$2dT@a&mrrr=#I@U=8p2-qSs2!DL`UtR;XZ9SEu z?`f1?h5&ukqTlw+M!J-xzfT;h`;CR!$ySKo2Aed>6SsD{vl9gw9lZjQ1AN|b?P5{0 z=^f5ex(Ty-7V=)g`5i?e#sgrh zGIR^|=!Z$OO=Fy-*#eGNnwxJe|DHfGL!L(YLmAoH%(kRbp{eIv9~1xZ25u)f2dozh zg<(C{sZCD~51Yrwn}7d;qM#ztJ23DMxhSKP=cti1=I1Bn%2!cpp|@O^%<0IKh@!W& z-qYx7yYz4}+>>a0V8O=Ba=PanFp3R47)Wq>wq;$*N{sHcu&)(T`}n=w$lh>(RTE)w z$u4??mUN^CRi=1)s_1*R%;u^4d%}m#;MFrpi=0IBw8ok#r;T)M6n&qCf`t@T-hKG< zKiGvV?VXTCyUr6(z$NWmVhoGF3SlNj469mc^}9|;Il$`JCx-@G>dd8$|hL>Xm(BB|@M1hPWmg0RhL1J79dE6&S*lE)N zlM-tdpYk%6I-2{D!pf1Kf0++#;lkPc@x4`v^r|Vl@*Q3tr)2N83}SqZ)hsrIX&adI zX?eim8pORp<{Q674A42)dd0SqIcdVV90XG-Vp!D^Hj$k^W~2zx1A+oPEpK=@UZg+s zmiB+mY=<1-`tKM)(<4aqufBb+Y?1+YmNG3YIJjhEY>MB~iGz?@C>Iau;kJn;-5KAW zZT{^tj=R|fQ7__{bx%lVQ&dpcI66H({<>O&_gmGQ@ARc}L7^cCdkB-zONi~unmYgE znsQ&A9YwMiJWST$jC`1en913M+-68Rxo9H+Cp@=bF!#^$<>O_E+5dzE-$T81VOU7~ zgh6^>VnM^_uBQ;jKZ(bX;e_aN`U z5-^es)Ok);a}ot=Ca;1oA|fd-8TI*$NIAYz?;dYF@SXOZZ+`l!nLXYS(}xnrgj71p zWqR$5>lgsqKv1N8tW{NP^h@Huc@W$OIeI1N1a}-nY{N-Hp_2aB-=gphF+JUktZfs_ z`8|Agwrv3~oSv$gFqDuSycKhtY2~ z6a&0B*DI$UxMRDcqNLj8V>atge$`j9qFw2}`<1V~(~hEXO|B)jf7pujdP_)>7ZLkY zDo8)n5^+zfH#gdUl$bzAyY=c%!uy7|`h9GJeS^0|scK)px$Pk%lWOGigdWKei^c&xE*_u^KMVMw-95P$@Rg? zElb7E6U{Ywp4{gBPFqbTqK?o|$vSiHy50hRA-RD!JFj z;r&G$f%*3OpF?@-u(7}zqfk}8)n z{r1+>8~2ZAWWr)MSkg>Q%^F~dWj!iXKg1sX+jRshD{q?jPBdfMp|rI0O%fKHZOF6( z*|{~wgCuzs1scn%yThoYm-%{``4>MZk4o}-#iV&3&efy~*9`H!q3YX+e!M>(-Y734 zFSWIFJbWb|CouE87IR_VuH5v~ed*c&e-B3+e^3%F4(BmC{dw+R9yym=Fxt*#Bkc3PBEBFC3;`FdG(_7;vrl^?f(0 zzu{oFREY9T!0A9jB4tUKYxd;{&tbS2m#n8+jWw$hT*^%(-ylZ1|2UUSde#_tc6JE- zo#o2LBXr~O@y^*i+i~`wToF(CyHuf^5M#N8ZH7$6dN&+v-H-0E&HGV4Hd!}FTt?sQ zIEg-VUxudBXjwh#5_hS~mTUdg#^J@5`BJ~de{;u1uKnoVTN+=^>|frQAN0j!iM3jd zRr~T^g-DXPL<4e;R>o=u9T<$LAk)AN7du2mr&&iFgqKCdwhG?CyICjyB|>QW6Tqs& zw}kG_$eKAd86f z<$QKM7Qx4RY+3E??s>R056Qq-MOg(?q2;d#cF4o@=ie~zu|`Hm^Anf-GVinuGco*u z3?d;nG>DzEXyR1`ebB)q=>W*^V0x(4WsPX<8$B7fjeZ=N(4-vs3ggj_$s>1i1e zKbc+$_u*?`gPjG10qnp)2i_{Ed2tWg9(WY63&D@8xFwrmwuRu{B~F9HFQ^LeljW%R zLWTf6{(}g&BDu*$CtSaHd!J1Krh9v4Dt){zioWMl;sDmG)@&Nbjn0D&n=vLgFOpW9 z$^LD&nzrH9cAjO9P->f;&kQzeHA2QBWl>R4kfY7W71Xea^;gIgrjN2X{WITYy}jMR zW?^QQJCx_Nt$5mhR>TG3f;t{(b+%IDT1!99(c=@pW1$n`A%yW+B%ZneGd2XHg&XXG z#DQxwQiEBCOmRH8QzxR4^Y|(>ccn`IYG_tng;zFdi#QdpH%NX$s6=-Mq-3OY?KXCZ<9#cLCIQ+`T#m#U28(AW4~* zAu$>C@So1i%+!|5C8|f^)36bm=vbmjP-H^bA3 z|GK@!(a7j@z1wF8ok{VW#3eJdfta_}%8X@oaz7y0gQW8EBFjp8!LmaDgUX7hR7$XZ zsz`Kob1O414F|%|s7cvrV8cv~QPS0V${iDD)kjOC8vvV{D!Clb870y60dXZZs~{k9 zHqx?b>nB}v7=^C97*Q30{C1~G_g5lHou40wzYxW}&@jXnVx|W-8xB%?BD|AuT@N41 z=eGB^K#183CRYo_PhuHnru7Q7higU74L;kj7|yGy@JaTdYqz9tM!@_MzC$Vwc&PBh zwK8f##%q?Se1OZ=Kv@Ty|JK@!3srf^sC_o_?9JH>Zb{ef1&^+H`kmrcrSC!PIrO@O z5eDqdoEj2jY9C(^6a=^I%&15qBk8ZS61gi8TEDd`=D(p&!269!3O%fA8_La|CsZze zUT`Be=$w!$JM{(XmqA|4e5zE50cCe|ZLNfel$5fbe;oZhPFb&Phmi_;Z-)$`;AWQW zK0gCtOyV-PzLS-H4z&yl@$LZd+}rdLv4zwlYGoa=Jh=?*jqrF<5_Io!@;4U_62k#n z0YE=J5|;hJ_=$+YZoRUzTyp?fC8w;LAYt~M2f;#|ae>Lb(<+o)t9Mm*CA`a;)bYGF zCC(%+K0UDccA$IqOg!msB1RQ$KA{M@2UcRpX>4@=}OxqqFWk$QrsLRUj@BFE(X zTY9xQ6yk_R~TkrJP_Nd!sdF$7{U3tL4-Y0Y(*sNW??$4i`v|w2p zZTvhur6@2Vi|&EdO2N(P3hDhNr6Wm|nAf?L%gg#%b}sTVW6pQoXATZ_-KCt1#rw_d zF#-Oy6FodTnn*K>Y6oE>Bl7L7UsX+0bv`?*(?{hHX96s@Hi+DKrdz~<#d<*}Rb%f%L8(Q=l=@u3+1j#aX-(jiHBw8dfxD?c)@oI)8xG=QG{vvOjc+sCp zs+I&>J;j4x3A@ja4trBNAbFIbY)qFop{s7SCU)UA?aap3T45i}jB@S)cPJ^AQ}uNE z>{zc6Y*0SZ>7MBjpuVoNjM_V1UnO5>S$jz>q^CzoFPHV%yB=k>i#d2Co7pFIatL%Z z(T7?;+Gy4e{~RAn>7mvK=6P+=7i^SwcXtgHKjkOL-mUGr+RoR7y{pC1mPo6{%;Zg) z4N9(N>luKBYBIy-BJMTfNhpnGG@zRQ*K;7eIy7k2;P{?H;*WR&#)!ah?s!Jc@4l*& zqT*BFc0p)H^J#E0WeeJ3U1bBkAvtF@Bs=7!&0*r3=uZt|YM2`ibz<#{MMXlD3=BL< z%jr3&cGu?qKmuyu;Q<4zM~TJldvx64426Bwf9=GK9AT3df|Hwogw|d2Vvps;Uffc5 zem`sA{@<>adD7bM^zodxiO{Vqq)C!zU*wEVjCzll7jYow6;RFAw`U3CSf*faAM;3{ z&aTz|RPJ=>=UXc)Tkp3GIgkAo8R-^(uhtSqqjJxc`B@@%o1MKSbk+g18V6y$2(~b2D7xN|G9Dc5Cx;wlUq`u_6!HWVB={|rh1=+mCR4I$nwdya1dHR6#DqI~;e zT?x&>r?6A?LfRhh3HF%~0ys{9_&c843aJ%({amZy5>m2M?@8VW4S7r-D?|;YoOsc<;B8 zt3t{YS+Lq$1MBFW6>cDWzt^`<*O|zB3hHls20&w%>_dlZoGQP=dqpT5rOlkflbrh+ z0!|O}GXr=3^sd-poGVl`zO3F5u6}yCNg&50%s{IcehIR5nM60Kt(eg?0qPr*03jXE zrplD}JKXn{LZ_#vhg%k5R>Mha6;IdMZZ8Q*u78Uv_|lY2TN5hB~3Y%b7K^Z&E} z%`6|d^N^hcQ8XOQQ2>15K|GttGHdF^3REZ|OsSQWh@Pnv=ML4GU^D24SKKSn0xSap z-$OU~BFLT~++x`|eDp58y@0U4@!6x!hEG4tIg3y!tZ;54SX2ZN%DiDvaBaBW@!`EJ z1gElUG?Iqmm+9|`31f!IV9HO3kH|0$#pqz zou6_(T%QoA7-UkOr(~pH;`@;zkw{4DeuC=-{{%iozbE)N3C94K-a6EEu0t*grE`Iw6@VFHSWlR3YWh*ziLYp)|ZkqbDyo(d_ zRN9eOVP^9rz42(=;&jf^cKPqxqR7Yeo|=*0%neX#@iM@oPQHTW$5qkD^AgJ zx*_&m@OCRt0`Kx@CAxR9*HMV|*6^RLeLjhm^#fhIeBFppJ=!DrNr#Hw9F>vYww1y8 zY^j&4>n^qC>jLx%;|@0$(A`C9&;5?Kj-PwfoAV#8+m%PG%x-5B>__P}9-JnGM~$oA z*Awm=J)!2^K~=Y0e8Cq<5p@0%wNhtiklcNi_!qJ_jJN__s*dd&_sA-Y%+MsG(!x_g zgHaxh@s+T;OX=e^8_fxL(A+a~?fxb*2+cH0KJ59qI_v9yRaR2F+!cI$11iQ#meyPC z-0OoZ3w0T3;jTBKKE!aL9x}LYGdRyNDU* zt!IF2R^#4g^;$-9#WPmJi30eV&Yu6Z7|>3s(sJSPppYPT?mf*$3X?kHGw#ToT6l3IWGk`@dXlzodCO>Y)BmzsNBun#!sLpg`~7 zc<4pb@)0XWyW(#W_X4;7toJwW{|203bpsYj!bl_Veu%t=I~vybku>-TS1chrO_0W< zco4X-`E@_1FU}1NoPxH26&9E>llGX3L@^2s;NgJOYrr`!aiI%-EnWoDaqG`ClQ)-5 z@rv;8kHo~q8D7P@O*w^ug0j+30=5B&p7Ib8wa7L)d&pc-XY8*5R(;zUMYKcpE3i~qdS;Zzbim*5}gbW^3Kmd^g znh2e#ik0mU(&@8>5ULD?aSS%aQ#YF4hDcux{#8ZmBEQK6`|wp$TpiV-`r5qnc|+RA z{tk~g?*(eCf3>NUF7ygil$4!{g)Qv$G-fA*5%!(+9P0 z34%6ejGhoF&9NZ3v&jEzs<>xw#*5HG@li)eeD}q_djIa<@sNfzJ`yE^KA&1_UZOG* zfUS%)o3TSI$K>EJ!%M-Te^%3iindS5Pln^RYW2NL@DqvOw*j;-J1!(%=Ee0;5egM# z=so+B{dp=jd2dS;Sa?8rURhbm%L}OppVsqs4w&In+<<5ebRhl@c+IzJGZylw?aHt1!;aF$!%R9;5B&uGP`S@P!2pvt?m+(fWZocmfI|+*HbRt{aX-qvkR$Gae1Qh4}jzn z=&OU~E;sRFvG)E}7l>fI_tsWgLaoK-M7$dp`4dQ#E`Pl7 zskBlhGqnW0@$<6mCX&fTlpy$bC%0etrJMfmeWvybRw;^GC5-Uk| zQZwIs%P>s)VK#kNN}zL;pHkON1gA zDpXjt()upFc!_xWpwz$9?6*idfooMt^Z7buVy{ENy1CyZ+2q3};F(7kp&K@@7pLp- z4j%Y9ccfl4poqF^M@&X2Ymw2AuEVqb?Y7nfs+N`YN{fJVQOlK;fyeo0(V{1PnnKMIs$UY6p&y@X=$3Tm zD!mfTX
    %*m^}(>xH;meVb}bLYt!=4`3)sN-ylDsWjkaCPbMFGJ)0ONR;FJhlL6 zWM?ev$4?h5j*Z1rQg8XcyT^{`=y=nxKNqDWCo_re&oAV>QhZ+?2T$06!#$`~U z%GBSmnqi$9kN3dHqILG4{IIXD&$_{_eyUDh_Dg48WDW&? zr=rhaZ(Aw0uv_hw3`v!%=#a&~Pn<2P3-60VyJAv&n9z+*&VHO(NHNtB2-kt9t; zw+QU+$z5;UK{tM3IqXI4{M{ZLwsQ-3R_3W_TznDZdDwSHI+EUwX)EULA05y|&ht5o|~&NuON?ZZE9l`z>w_ur*}ToZLtQt5mn5%X)# z+8G{E<2kj)X4A$x3@7@gM4xNw8>(46S=ZKC6`%WiEYklH`^+}N*($Se8IQSP?E&VDSTWrv!Q;jk$~|d|3W#5zeRVYTUii&?kue z3&n~O#B%YdFdXy*>^~vQ=JwrD3DR(1h(Gi5_H(altW4`qmCCc^AfmG?KBWYqxOo^e z)Tk;h{$*1;5A{pJLe34Rdk6gxw$Qs;S#2N@FBD9v#1$ z$o<;2)REj*uC{~f4J#{)g3rE7pqJ*?P3abJg7pZ5T3TLCVfuxTDJ(?rO~w^M4`)e# zSIZGY-Xp6GjVgmt(O_A(QK_CqV}QS>&zJGN+b#pZEYiPmCA{FDmY!j}ux7~66)W{Wk704UhJWI<|mq)LV6h5w*T zdr*38iifALdiDA1qOiI&c!v)~udKft(20P;8=cr{;?@UOJ4rd+X8f!{oFZ46hy>xO z4)JGe0uvQj2Ptq_GMbs0#ijKx>kh)`;9C2Buk^G)lJ>^B5CL*i1D}=6v_ak2N`ruo z2!emB5?*V^OBzi4 z(BUwLOcJ)ZuMWfFiq)DSDHJ`tnb??MZ;uC=VlbFAQnKcs5*IWz8CO^}VK59-I!=V= z8*a5YHQHvpy{H*`)F7;)n0}`_*0yZCgH2(z1~s;qV-2jRJ3M7wIqNk-ZB258j+i`4 zK(jwWD{DnA_({DUm`vX~@M{paXjSsc)T@C`<-oxX1uft7r%Ft5NLG4Ku#0B9cbSP| zpxdAEB;nIP3>I~MZZ#8oC;A{o9eq0)&e-)+!mRk<&VOx?HoqbGQU+e6`1I;V=)O`X zm76}A0X?sRtb)A5gm-`^lk$U7rzOYZkm-Z<18$wv`(eqcD-PfDi0hSw^pPAQM2H_g ze7P$oyaGh+h$wwQ6(+4n-7B>t%8ZBR$aM!wouC=SEu5Xp3lRj7*tbI2aG7vjQ`gR4 zL05>VBa{d!g4hwEvvEmHuXqW#O=Zk`i&W2EIEqGU1oS4}oNba?I+F4ySk@({3 zM{lOX-jQZa>2ee~x6;qcznT%HHC5~sUk*Bih>}sDz;U5zQV>q=mRMGq4;RYMK zN34x(OZxC-(H8=h(kH{c-|S`4h?wTmY16a}vy#fiozjNGoxoiN#Y610ugh^Kiz~$m z{Z^Kf#vR)-#%yDURJFoKjA6kP2rYiF*gden5RAW`UQ0B%{`8mjv~2->VWL50?&|`_ z54ZD#;?nZQ&meg;Kk$_IY|X_B*NaI)X*?UzMZI&VH(NG<$#_c9qsy+vcNBd7e43`n z3^Qj=5PcAQPxQ7OIZ++R{C@$_5ToxQz1A>q;s z$K4iwzjbc}{H^-p@@H>taV3RfJ!dxE#2_NP*0*d($AG9M@6Y;*@s;E8`FW+<>Y5Ts z#j$C*2@46cqq$v8aWs@Ki;RpCUqx9tN0pr8{bqvy$JCiXL%qN8|2y_1TVhn!WXl>6 zvLv#UNG2&;DpB@r?8Xv8(U`JEvegjPlzqLnWJ{75Ye@Ee-~P|^`~T1R-*eAB=bn2{ z&3wQ5JfG+Nyr0)w^K7O0=Xm=BWuF7YQf8+EwQ;+De$VvQ)oBbck1zf44RXd7B|1m= z`gp0)K4o4vlq%4F*Ou?&?v|!`)_38X&2krn`;64V@ZM6kLRCG_$yNEu@}mZ8X8rdJ zHE}48#|$WxN76wWLGz5Ei_$78BoUUi^@%nc<;jML!lAX35J@SU0$r9DnB$7{O0Bqc zqj=rk%^|5-wID@vZ!2_WDIr z6H8jPZ)eW88=_Ag7tQ?@k`yg`eYT2z+)loUi6D8amX-uA4F7Fjbp2b_(a}zSkkEZI zw8H)l@6;>ChY#NEdhsw_C@|>xd2>Lu5q%L61*HTO|2Ue=C;w|YVuVK0g#P`b8je@6 zc0X2;dI~3Uj3&dsU^(P?_f6T4en%lW0Nh#6>c22SNfNRy5dml?M58j^;7{gYUi0FE z5%SLPf{Qa2dtd2g7Wzcx;G|A=iBQGptFnSiwGhjaHD&I&4NJy=gj$`j@^|+nd9ld| z;+$-8)2bU7A=Cr|&JN1Z7aC-%#WKF7!10? zG=QhmfIgsmdK6lLhwlKx2`(yB+(iK`yp-~X0j7xrQ|FX|m=8ub%xFS%RTnnEB{}_asPy`U)7eX`ZDivt|LuC;Vf^qomFFpub z^P4Ek=O4AFto1X3#U3?YrM{zkF^QJuQny@Na*peIufvOr0A$01tn>8XDNAvPTKX~BBVfJ+t1ViZIV1n~45}7ZpXS)c3Sixrn zgFCiDDAu4y6k8rmT)is3LcBVdFaL)kA<%4c|Tew$y)PB*L$S$Fwxw zIBNcezWsLvtj&8?Dh#Ur8Id|t_DXrqblIl=)ErT2!%fLb%GQI@_Za+H-pqeE5Kuli zcJn%Ukcn^%eTRv&_<~w_+3s($srv3FmsPd5yH}uD@NKkl)Td#28A?_!w81Cu*+Sai zoRnC$(A%HNlgTgjeAhN=DI%cXl3i(Hg0Ym8RI+f|%c|YQ`Q5d;-Iw<9Wkq_yVnuBZ zQRw5A=FAPh!dU-efH)+M=Bfk#niktF@wFlAs84TFVZ|2U(p~+!hR19QEeUwr5ITL;_ zl2Vz{@Z4!R4I^#tICg7|^O9dKR8^P{Sax`MbvcB4F&oDSV(19wm(-c2H7?s8zM;wB zqgr2d$3Y;%Z#JTg$EK_AZn!lP9CD7Img!i(<)J)-E``lM3gO|=N;!v_0xC;>Sq}aA zeyYB?{dG$Fhtv}^tkyMck{a@dwnnDL+B}pEEZBpM1D=DTK;jOcaK5rXnZDm^bANvw z%yv%KQ<%cg&*`!Amz>COSqaZDKo$JT>h>Z@KEEr)dndKSHtir1x>Xh7r!Ur{Oz3ki zdgH|Tv8T<8;nQTk+#UT4-@%uLyt6YrvyzwQF0D-f==q^|!alUjQHJ8vFl(%=ctc$l1gDbCQC09xC?39xnN$F#IeH#qosc?nO} zv836M44(PvsK8TQ?Ol%FwD~}~0sKW~avLev(7@$)cW;W#Pv~}(O=Xbd!BPi?o;_m{ zLcShyla|=6^V8|$hEgw z&kzgZ<;b}qm2*{9m5`miqjO(T(T{ZR@U@TM6x!TAeo+eA{7oLOy`qwGrSH$wSUw4T z$|k=3Vfr}9N!C7v6y0?jE!=jO#3PZF>K}r?=O@KGE9gdR)HPahf^LlR)BK<6c+la|B`xFYCCJ|=(kyzSz?*jUO*e>Xu~M( zN$PbdCTDbHbLh!dz)GP2#8ls8uvZ~O=S@3T1#C`ESiP)JEqrZ<(BPgvy9hV>$oWX2 zs!=%4u`%-ucmxzNOT@z8|YS9rT`ZM988q=)U_fvW=#k3hB#bZR)EVIfqVDojNv&5i7L z23&bO(CYr zUf97yA}!C}5u}VBjXXIEbUpM|mHN4J{wsew-INqbx(7Sm+9~xM#=}lq5LsR6yKP%J z$S4z?(w6fTP!MQX0YEq)fgx5`ALQvFb1P?s0DaU6Ie3-;_@h)f-QPS-qA`?xG}@3X zyE$h5Fr$aF+f@(0dnjiwK+ILI!^MvfLkh!~HgKreWtF7@3VlCx!M zs@1z~0WKDSERF}7xmegg-z^qjX-iYrz5Q!agiTLo7J>-FyKwI$jSIBJ{lNvD~QR~*c5`65S(Oj%~ zMh;u3E%f9QdIUF^p_ET`goy1UA&{Va;p z!n8RISiu*wE`dJFJKfEu(pI}I)jPdl)Bx$K!Ar%+fqap8VUp*}XA)~~*smh7#=lRy zA9SxLWhG@}L&_sG^e#x^*fQpqeJkgdan^6`bziixUeL9bHM=@F7uLMLv%cRHw51dD zu{g1CYg#wO)35Y}!R&xm;>5@DUj~i-P0?ZVyTjYLBG7}Y1-b1YKO7WfA9#K?V;TRM z7ZaUm^UCj~L7yS7+EP?UT6I$U{qktrzoyZf?OR@l-*7ow2JKDl^aQPhhPn8-?zXik zV$OJdvb)Y^$Kth~YasXVSS?+Baqj(m@_oZ}4_VM6e$2ivm)mZ$+D|L5R#viDt<0Y5 z?j28Ao+d@N=#kMowY9w0y#2i1#l2YO>9}xsSYv)pGsGe-6*4+Lj2)A{Z_2eic^A8H zt?~n=JKAF-dxJ1I>RfbvFq*!bSN(=br946`TUyO;Zv`Z^!FD4>5v~dAsIDY~TqfJ6 z8vh9*UC2k>IBl95du$bP{#;f<_y}BgsT#oOp zNNE>#lzaSPZ5lZ`&KQ_WG)Ev_ceSq&BRe`x+}GArT5y|6R;FvCmW>MN#3xWU6v z07f9hTFdpiJ`8Ch6+_~FaKz?g+(%P_`NQ_oqWFTR|L*A;jBM*Oyn1X3|M}^@Fh>5G z{v&1%f(7g1aTw(UQzBqsew_?SIE1k|ym#SGqTfH0E>xi2NH|oo5Emd+=^YA#^Bf>>UMKIZ zrjXKu7Q64K2L<>9j4~o$!2PrC!GcQ~;T7vYe8}bL0#7cqVKtW+Qrr77GedLX!qaiT zt3V*sZ?epZG7&j}fq4QH3plT0*iJkFOWf4_mjPOLDyHexwKj4*{3urWy08725uBKs z6Uu|^7d%oIc>)~Gue?wGyXm7RRsSa?+GP2aG^vCL#So95fG3p68WMO!59UR`hjhSj z0J0kt9?HagF^z&37^ZkHEX7Sk9M38L+W$M5slyVRu-q;RbRY=UOqKTt$L1R#kPj?9a+roAX{HOWN_-jN!0Z#r$00ZJUGmR-RM^e0TZ~`xrl*}03>@#o zi?IsfQQG|HLoZmeQC|pEx%WlUG$&*2SYbf#npl1KV@`{9R&@TDn)6RbCWVv}bcAzb z%0IprIqFLit*k616PAIM=)Ku30j$KmbMq8d;y{OzYy0C%7w^Jf1LbAqe~U_QcpPM5 z-8sa2dRS1PG4cSla9T|m3eWcO?g4>dRvSB1QO1X3<>Y}`;#Xqp*Zhk5U9Hqao0C>)_*h{SkUvRIKq=LD4{tpS$bkc>F}rO78wnZ5@mH#&BkI-YJ$0 z`=g#_;^gls8TO6MHzJ7k#2aT!ds7-p6PccjiYpsVx#T9 zU8j>WyVgtMDs~<^saZU`#=I7^*`1Ji^~}q#?gy(AeCqpi>%32{xtI2z3s_t#8+e*? z#31Bt2TXZm*VaVuZi=rL8V((A%`J|7T6wCaC0cn4W>C+oB*=R$q-DeEJ!QWGpNPL| z{bgVNh#YBd?zL0Mdv}`n=F_Y#$1&+gCp+$+C`-3`iM>7;v@){V@SxQEs+XIauYX0* z`d=9@pCD&tmDJr8E-2 zyL5@%v^6M>j%zYxPEW^O%y3G!{UP7xf9`2;_5ePN zyT4K-idyJAdn@>ri>h}Q>c)Ln)%WZ6XTjXSCwURW^J>vf{z_)iJopw@hX1p}TIyYT3!N-_EO^lz(bB}v&=H{OI~ zO?O8LyvR?KXuPp?1zZcQ2>G@Q9K<=S7ob^*V-lzVj~$S221n+6>A^hUS~sBg-y;+~ zqRFrWS!Vxfu+tq!fP6_w{e-n1aNa?t4y-Rh0R+3jF(FwBEC8W9m2D`{et)zsw6gA2 zv|m$1MDdzVrmq5b6U2RIcUa7+!uk_V_r&?rVR2JLeNWS!o!?W@(&+&^lMwZHZu%ov z?SS?KLan!P>MR|;Rge~sx2Dm!J)F&Ph#@YY_(1m9kXq_Mc|b{Zb-J-&l0;0Cfkh7n z6a1QjE$i3y)cy{j&1Pf$_EN%k&zA@B9}zRJmuYEg0c%UWd5X>ux|(twB(Gj=_yRk0 z6Sq(}C%|wA(*f0i07ayHnFo=_9fbcTOxJ}dLN`$Ejtd^FMeR{M;v+n^bTv*eY56{| zm?Ct$DOw0C;(z+V+#toWv8z(d(qwS?nJ1&|MPnx0U|WGOlLn4F)+d7e->FzNX*e_q z=X(_giX6+U=BI7V^-Igj^u0QaB zPPA*CAXbK-{{S@}dS=ACj!6uycLU)^>-h|FcXxZ7>m9P{FUP9;iS-_YeylWatctaqP&TjlTWqq#r6`+#I3f{oP_9$o<*&3f-?#`KYV`E|zV0E%BkU475zx>pMk|B6mODsD|tnp1%i<0yoQs(aF zx|;943WRm9EoPWp>5%R#()J?2J#=n9Mm&bt7emWXo0I9P%Hytf{<7%TX@j{UIy(3% zkFK3!%+`Hv*4%5+L*}#{T`VDrha>B$Br^%^w@yZ9-W;3pKF_3q6XdvkgcUhF{MA~P zgZ~<>kVY{3A#RR19y3-prZ9#QKW71Ds`KZ+{rnrEA})vy!(U}I@tt>@GmZ>yO;NaC zsB`$3A!{q@0?yZ=c+&?B18gSUOU)6%5K-7D6yU9KNEz!7)kJkIERxpr}HfvNt7BtvfFXQ%RJ zFR4DzjMNHYpqB_niT<)&;kvJcUmH1ZjAB0N$%$p>wqV?> zs+M;l4Op_!)Rc6!%QK~6FlNlQx1evWuiGyv_p7Mf^~R?8fkOhjOTE*C@3VEizMj1? zw&Yb|wwBo~!@#xfy4XQ-N~_}Z8W?+vOHIW;*tn2FG8^9MS+wP3nwx0uZmr~hnqKGY zPx;X{K3-auDj2wr4Fu5R1G1XW;_KwgR|>CNRh_k14>+tjRB0SJYJ1t| zUhACWGrOxW#a!B`B*!_MK$lYMKQZUmVo-h4vMqk#W~+2z0nktT|Lk=HEp-_bRqo!x zr>Xh`Z2$bd*14Ed?(6PaV1$WJdZNR?d5}ts4nbAos5Ch5hF@-B#vQrWmw#!f^J`14 z^Ilu^-t2tfdO7SerTZ^pKA>%m+_8uiUcGycyZZ^PbB~_TIHUF)Z5VZ&evc;@?7KPw zHyxDUDfZ012|fa6=ou$X{a{yx6zwk9Gj$s%-_DHSJLkJGn47+D6C|smu6jzFJR>D# z>!%HX0WMCX6xxeN>cwA5n<`D*BKgRrJ2tiT`o{YiA(iufN^DOAHm~%&_@40E_8fpa zVT>Lro6K#lf`%dk?6-*480td^T*s-ufndid-_QRz*a;a%AY@<|Q9O&hf`Eh3LloB> zqQ?Y(lux?ig0o<#vO`ygqeftqF7WLxDm%X|??oE~`{4%Tg+&R#%f2dNLu`3+%|-VMV?FaKd`)2c!B-Z?ItP%tEB z`*ZCc$zGAXwzKrRJEiO8a`g0Sku)>a@^0t4{+9a}}7I~ke8=ixn3dR!?{p$e?8PjF3t6ViWV?8X|HR&OL z^cnO9wm*v;+aVnR{QF*A7Ut&p0LJxFNxEz!w+W=-pp!HrpQv^JJA_B;60~kZ3k4ho zitQRNHNu0Jfo&ck1oMfA|(GL zv~+jn8g5smUlwk&v$3Vr5h10h@)R?Mj1?b|#zf<(zO|*LrJ0r2(<%rJD$$G>BE-DF z48T0fqeX@UZgW zIyytKM{xaxcPw7wHaTsQ&GFhytf4hWW%NLE*_F49p8T}Wc{$sDujcGFn08bJt}U%j zHmnw{hVbA8PS+C&c<51KV^;q_unO>8aaly7?pgpJHFHj;bAZc!IiG6a%EIpC-3m)9 z^`K3-dbdQAoK*ui7UmW`Ofa(C{pjh%NYC!eB51?mv|@6)i zNxead@mUAwC?5Ln3@xk6A|1Zc5ls>Cn^^<-qJ_rBQUOEG#RHq0K4RGg7Xgt7sm1sL zQ&W$&`%q8Hn{0)C<@MZ$p-Qj%hDgwkO7;5oa`WJ-@4=h;j~h^{mS`mL{9NLdrp(SP zLe;b~tTwa$mzBhjE$!@Sk>IW%M_*W=nAa`ttSFn^Jb0Nsi~m?`Q-eD{GiSUuW30Nj zw50G~Rp(8zsqwko=v~yu-)JxA8?f|1 znfFPGx3@>$bWw+8#nD(1v8P4kf|l94r`Fx8hsIOq~OrYe*EuD{7Vr?RVzS!1txg|Cz@GQB!r0m>!0S#}f)7!BG z5ou$6;dr_0p6#V81C`tJNBS;~Pfp%@e4f{wTcc;4ne#&w=be@Q3sJIE3?EL*$xvd< zIIV4ig_~P784!Q^f6F8w+S%cbRR|n_1Hb+de!~F2z)V>>p&pc}dkP|p%ZV_4(Cb`b z+0U%rN}F9zPXXa?Zha-n!H98Oc9lz4(23aADQ4y*HP`OJ*sp=-=6r)+LURo65^O^L zcO^<7YkKw1?+5VSJD^3*l}@X+cX#a+U~Xli)~i5ih$9}<2shkCvyGmGlka$~}!`4lgJVkxE^0$p(0*V$P*TPCHAQY&BwP|uMJ zIelSNl)>gxpMHf|G{}^Q-=%xN>U9YFdw6^ z@x&V55WZupmL-wVvbRJccekyVr{{Bep>f?%qipcR!IImb6+)Js3jV8#?on9MqQ*n% zJe?GGE?_xlwyb}him6thYG88F>~HMY;>xKR1a!r-6MKCtrLx0-nYz$=UhHHegS2cTF)F&@ zHIZ0G6zu)+_N~oaU)8)$=2h}Ud{+ys1hp4j?;$&q@6jJRP2zBbv}Ab$UWE5ft5S-Y zuI$8d$seAQ9of?pq~1M;mAZNLz4lR^;#ih}-POsIRbL*-8?7gNa;z<5!a8H(MuJn{6c5P{Vym#~Nxxo36 z6El)7m0I~*)A!16ma70Kgj6LBcA39F1+Ho7+bNoIB?LG@h#=;kSfj6pr`P6KL*D*& z`tC-<=J-6of9|~RcH^l*-+6Jrlt#Mo^b858Rqf<=+<&6&8T#|Lr@Oso?Z{qzF|XJ& zX`e%j^W?>#M9+k2!n*T3c0j=-b2@MQ?8U5wt`4B@o9>Hz;d-44sD0|s*X2KsNu0_lM+z3$`bv$-+o+8&VmvEO{+d%(iq#omSoKCWtS zf4^(^E{2keLmg?aPT2mqtA2ed#TvH{Aj4ozz z*ZP+mup$W`4@w~%VQ#KIn~NRlKC4Uq%6SE*7Cf>KZ7`S*Z-Llsua-_d4ojz%PQ{M< zx70TVZDhB1xY7eRYU^M>-+=7sCsOCHHov{s+q{gv)4n}fY=_z4xo~4GXk$20>o(4N6=)`}>N|n=-iv||JCtR@5;5X*lV}Kx|fG)vD z3lY!eLaw1gPL#_s+={7&HSjF3&*2pJ2}O6@+S>LwY=t5k?9^D1e=`^0&hf*>J@iMw zuG5r#<875|k}Jd8UA)HGq!Xc|Q#^Nk@aU7N#W#AK$ihVwc&Irw`A3YJtNMz-yXn6( zd0%~hY#GLUzyAm#bBUsHlscDS&c3JbAqYMKv^7#u^IWfVg0-~zM!$NMr}z6H5AU-_ z&jk1BiT&`jz+f1J1{npuwesM%s>TnUKrzr+cR}vVbVA`3%e0EX&8@MO85@$lX^JEo zIgtdn;0x8^@E{|y{uN17K-!4Qoa&n$O7EwA3MsfiCRD;s}bU2#=*diwO~pJgAP zJbEMj$?d@M0lY-Et~fP*4w%vy%$$=7L%`6bB_6`2|DgPntVs{zd2$ilpp{<|hkHr) zAyU=c{5UVKxJl4<^-ke{ARU!FQgaNC#M5vg2RA5viVGH@5`vEoE^^S;sF9)z`cyT+ zLdkkmQ2&uJ2q&Mr@?H0k3#D&^^5X$oSBU_a;;4=eD|Rwb|Eo^HbjOFoom}8$(g`iT zK(U@b{jIEke5*BZqmJ*2&XcV8_;|-5Jw^e7v9W$cMALNJpSI~9$DVfuh3CsoKyWF{ z!?HPadTTWrKn=5riEpkSFm3T9V?Bvc=dc0#Z@s0P2cUP=WAX<&IGu6ltvG8sxV?xm zC+GNh@7KcZVY+NuS#Elp7ond^!w6DmYSYosq3Q5QA~&whtMcYMAk4))TS8}+cX6;H zilj-8vcxvnu9l%YrihXEBEOrh_x{|UYAI!vZuL%)Tx8ngDcEX*(S~1g5N=U`REq5s zqAa!|{gw8~6!5H3Z~70oBy0>oQVJX-ca;a7ih*&&_hhPVYiqG?8=6QG3@oC-pEL0fz(!;GK1h9IZa}mI87*<#|-NYEH0D7XmG+< z|IIO$^B)*L$X>#Y95a5=dh`H_>fqMrvO`->64YAPSPyd`f?66lTug;j%gNi&>4YWv z`dDkzzoUy33`0ckK=u;u_dOq}dHw2lI(n7Y%BpT!RF#&Tt%eSqUZ?mEHr86RSUaJx zz5QxM0kM14mSlOsYrWF%`pFp@hk_UPa|`dsPnNv>?Hxm$E8Yb+;>L3N&P<2;UN1}F z1U8oW>5Dvr^h>{FFDw?U$as+z!ZbeGCwJPJV4mxzyB83NgL;^l&WzOM2g@%m%$1Z4 zf`O^u$s#-HidJk4CbIVTUF9pa!UpHkp3V=bp$!Eu+>~17+u7b2TQ0qrt%LA9Rpl)%_5I$i=<&%ZWqL0Q z^(XPlKm59$bx$sHb>xy7M1LY>`19JG73OJHJbZKA!7ZyxHh#O?khc0zb2n(OPMzu+ zc@5@DH)B%XJ{qm7Y#8~yzex((TWx;eI~`}+(~>O>xH^|~0mr`Cl)QsE#H1_N20)3j zeO0bip)G>b$jp0{Xtr1}P|)qHXqqt3$Ftj}zELN&oxZmrU6hp_l~FKdYogfpCe5(1 zc9`5wBT|85f5Zc^0vjUL8=J8~YpXhbtG})HCpxU2PGp*$(UX^Jy-)h$U1_PV>Z7Fc ztK8GWdt&2@DS3K%SvadJFFNnL%B=MV)2*GIhOXwjuS4*dp3h0DL3{r5)%;rb6l8m6-~ z8u(xpkZ342Fgi+a@QOfHGvFFZEw@1Te@zU)R(n>j;Y``*^o{^ix7O(}a5tL~x>{dR zdB04wNi;NYAH4*?r7!!eCgS#1A!x}^UkFkl|bf5#` zlSX*JhJH7OvS#B;PiZo~AvmXha%I)+tM~(Wqounh>Lo$zyW3dX(VQ#&?gnl-P@f9Q?m&rH=wx_wD-RR&)zmX7(T|ri&4qCLkUP6N>Lu1{z9OQQd2D2 z{Ezqf{?{N4o;RiprDVT>a*7;9hJlz~0d)!6bV#q{w(U{m+ac!nCs1(Dh(^pW!-3te z>b)==O26*jPNCzzVaEYE$=uSCQzzybu6&3q2Az!{{D_{`d6P2Fho@h{3PzTrA0Tn7 z5=`^~wheEgmC{!V&>$3DX80re92a_oQOs8gO)%DE$R?z^$8@&piwRv4o8#3Kh4=`D z48kD9#+TDU<_HFpjfQ;MF8L?rxh72nArSrCfv+kNrg3_LS>|p14HPdx_NwMDi5)kW zC^XH(v@3zOiHE62G>e}wVkO4-A>VWy1ekOAC(nU zu3#{p0aj-|12#`DoYkLIQa4Ig!QjFxNAgt+ACFYk>fU0pny<(Dh8G5NKY?r3_MSD* z!glp?UGFDu)3-!%05XP!ade_ZS2TxCam}(OG0KLs>egM6smF1!=Jgjn3ool(Rd!a8 zrHzxJeg#AB0I_=mUiR|5(wweU^g=fdp~oy!1#lkT2u&`+j<=(|IEJHInS%9m_8L3o zgCBxh4;?x%$7^H!P^>uyObNc=XSwZ%^NgVT;j! zZjfWw7;>Z}n66fipTO(#iR@JVf|Wkpnm3)C5iTh4pSS=OoAYCF{)&8erxAj8$Z^bb9HS*DkHRW&7MB-tc0Xr+3eFKB&!r*hNd zN5Z*u!}GwXGU#&XaeRJ}xsjMGzgQm22m46@YvUvqHUG<-uwdM7!O)*>z&7Jcc2=}- z0(Zl$C&y~qzJ)F9)z#f8f92*2&T@zn>PPmj$9uGHE%udQshDCTl; z=Cv63^{z`>Rx2fUJW=jb5zVeBy-{S5CdFwPcZo}rmA^#a(lRZ`Wj?KC$zNrDyMVj#m9qmRvNUwXG>BlKkM8W|Daz+ zn_DmLB9}FrV3L4H)p;yJcTi~HQaL2proAlK9|)Ql0y2d;BPV4GCPIoyo%;g+g6kLL>Y_L+x~ky zK66{WHi7GdmEsLt)jLzQq4XjXxzhzL*&GYjMPHO4(+4zeS4{Nn&t|3uFGDOWq&uYg znr$HDPbW{!nVj}^3adYeV!cE7QJ{cCRoEZJTl6HEF`PHXU|>BQ<{26c!CB>XC82P} z9S8CYWrZH}sJW+ z1;{~o;{�kM3p=yY_6Vg5G=2LyXPBPk-gKm^|H6Cr!m_5?{)KMfcF{xb2Tl<)r0t zk@TRw#g4$mt(DguU$kjsWa%P>2f>vLdect$!Xdoi%Be?8i1!6N*Gj2mcA^=kp)9I+ z9irxy)YK|GUEVA5Vmui~U9V;9vTIm<@nHI5EA1{ zZvE+ke_iWYis(prJj@i#z+1xaIjHP(ffuOx!0%Qga17#{j*0VX@;^rDAcETkX8w3KOras{)oON;Lqg}gyTO5 zp~){DBdk61ttz}vPEK~^Hbv+pY`vC%|!-L-uT)i{$>ir!T{As9-^Q?i|?AGWw z!vEky;H85$?<9(!4qhT!_cy$*6SAN_3I!h4gWoGI4EwMAzK2jEEq2AoV)+^s8fgBE z1(8EQE;__41YUe&p(iujdy5cb&a28O@X2u-EZ3{HUF*Ac^5Q^DijAGG@!r}pSffga zJPprG2qrlQYx9`aq!-{ZgehEcqLdgpS z0{vS8etYew&C>APqE75!(8lmy?O^IRDEreK*M=)cZ&k1EI(OGjq1l+^^Vq3anZyL{ zOE=Wu<&fD#Ok5ON* zuwOV-Tno?XZ|GqDXP=DS80g**Y=Q})%x4MPPUVB<$3{Jr>8b4nY1#Ps$Bmv?Iv0mTWa-jB{%|Qy$Ndd`g;n7b*_gE&gpFnx22s15v!9tB#dwAq ztm}3PTP*E55`pUXhgOO%nPJC+RfmY0P_nwQM9=a*1eS` zSpV}X{i?(_plo}Mda6$$*-;^{dlmD^#bujylr42Sx*Iy9tz1eN>gEcGZ+CG1$;Hf_ z7fmL!$PH`?dUWf-J=<4}qpn@@V%ZucDsb63T8~Dhrdc@^la2Kgwu?I8y5@N6C?o|; z3?F}TQJ`_t=0%A1i_y&)YuQ0{^UFEQ{e44QxAq4cmdcpBC)D?M<~l=o`>Iqb+_&@Y zcifKgd@d2w*d4l!rO*&2I;3HSZ{F~}w?MyndC~5AtmbfYgErd$?XRV+vVv(XG@Fgj z{$8c)n>1CwaDo#LZ{Z8Ft#aiJM~Ex)ae3I6weqLTVs+O;IlQ4I+S4`7Dy`{inYoqT zxXVYZd^(@OgyWn_UyEYlbF#DQ-Zu^@>Gp2tSeCWw-C96%E^YSqc9E9T)qR}AE)(r} zemng5k=Z#Roo@Jt6n@}+%c>_ss=^UB*hcjQLz{NKLd&$*ZY7`p^xQjg&`QwmV#DVX zzXr(k*ZW2%$9Da&O{7Wn-L7hHU$?7`D5353cQ!iC7tTk&iTEC;)3GYru2ZKXQkOhCu99lTX~*X;ZgC% zl1fYMgA(91JzVCLBH^8W5GbB|O+h<`Ws*->8vVATb48@DU6W3>zgHVJY2zeN>ASpT zFF}d);|G5)!vIX&ZWo0Gen~Z#uhzLKm<|L3!T`iPPzWi zmC-obQ^veSx+u|>kD$8b5%p~tYK4(330QA^90&Pw5NRp`qYBD?CndO)Qo`7U@sW^H zow^Ywd|4L+CJ>O4tto-0E;@(*W%1EiO{hTr>)lsEcyOEzpj<9pWEUpC*0konzy`rl z3oCyY1~+?a2bZj!KO`!8U%F?udWTQa1jE*LoIjL-z9(g*MWh3!n7cDv>8h5_%AJi8 z;_;t&W=hKc!P9Vrlc;bCk(?ROXCep_G0)~hVmdG1po&U0*2~TNy?JZ0&$Vt(M>;*R zYyqIIDoxzr>VbPZ@H<&n`K#I*n!QGS3xfo~;km^B z831N~K?wjS!FXx_<;&Hh+gbtQ*9WdOMC6yA7;2aXh&Km;Pg~!5wpI(k;4bR~e7QRn zgmQBT0aS2!4hXhFC*k@~D+29VmXHHCkMOfJRN`^9nR!XReicaXIj5%VKs4&PM{zxX z1p3~Hl3E8q35HqS0%K<43U z|7U-AER6h%5EO=_@Gu_8ixoSd^3T5lxjd-h!v`Nl*YY3uI<(o2olAfDCpG%D3`t02 zbE75KqQ|kUiYQLqGkvBxG&I!pc=YRq0}x%|bXZTQ&7l=GsGk8mSL`G}#VJ2Kw%0ix zmFE&fDfc8WHJnglx)9R|rcE=rJG5PPz6V#RIKo|9?W<#uhNmYso(j(oa+long$&|4 z!RHw~vs9CK6z7f74!iN`|1Vkc`((vr}#d%c_fvZplrACQYAF6kjQ z61qhLaqgC%k0pfPmWj5#{^H)N26WRog6DJhInWpNun8P?NNc{tC8|0Z!aX0i_v<5d zqt1b&yMF6)-JSthY|pzM4EMn;tL;@Qa!L=0n4dx?RHRjp6aG)`Vno;suAl#eu3Tp1 zJ3&D@0&PgG#Al0`lNz6RMA5QLk!*8l_Eu{)l9CM#^?ywN-ID+E`QF8EBXsPjTkT8< zNx?ZNj<_GibG%;}uSc=T{D(r(9Ctf#`Y6NQ9i>tg5ge|w36<7$_Rl%Gu#Zw~5}wCa zFT_naMGBnFj1uSNtrgeNU0`6pVkq-PXXDF{JC}b&9r;R^5u%cq!FDJ1HFDy{L6;aB zCb|ym`m-S?Z5|ho5zcEIEhqnQj{2^pbqamy1}(?j7tz_;?c5{hu1&YPk^KYiO?_MZAZ-!q9G+86QCAaBY^k7qNnE2h#W$5nCGaY1(-jqlz z=djfleHfYIiS_eakB5Da*u6r&@Yev}G(?wJ4wY{ESG7`cH=c{x9sYWb(I=NBtnKrqG$2v!Tj={#bJc*^~#GN#G~$UN5B4MB_%46_a`=RpJi`wXjhsm znl=AT@<*pAut@JTR<9h}pPb*DppP)P+KuTVumz3BuNO)W?QBfI{`tn?@lR!ydOu#j zoxtcV*;e*?h((G$L{fPlQ+a!M`+L8~l1c+s|EyMyUW<5=lR`eS?cwo0;k!$DA0b+m z>-u!L*YWvA|6=<)tfX5%C!4Pdm_~|E44h?B>|wbQ+YxKnxBBPLoWh}5MK$k*zn!75 zz}ivm?e;!sY3KLHQ~yoGR{u(u6m*@@5NHhvm6KqWHRxt|Lj* zX z9#5f`kMg9~qGz9hz(vthz6*d>1~>4Of2nH_wg6cK|F#?9xH5nZNI17X)E%gL3OI28 z*9Sn2qrrJ0cJ%Q7Z0UQ!2{%J?0Y+9hAB#3F((d^0ot2H1zr!QD%cGf~#qDoyB`ikX6H!3v>5G2F95#}oqg>%;IrTl-(4 zToYVFg4FtIIfwoW6Y`2IrsO6a2E6LRJN{-7q+~QM=_)ik_*QG%G`VK0{Z%U~sRYpN zsy9};2*&C;M555U>v_En*D=qtK1wvX)`J0&{SL@`Lb9@Q;9LOV?hz$Pc&dz9AnW$= zaNt)^@h6Q7(A?`#qFDJ;$7G*zP@>midp4^);T{CpYf^@9u(Bm#)2c+hAPHvr6z=9! zIgyK0E?B(Ovzf92NAhZ!C-xqT0A=MDAO7K%1n0!W#CEg~8#RJ8V~B$R)hl@qrHQ~+ zX2+kBnyJ#vjRfLpDhQAK590m+E*KXRpXz>ed)LQ(e&%o8IxozcGUGGr1Q*~a#c(Hf zW%}h-FICQ8&pvaHdx}w>#@$d}R%=WGi=?6Mh#sT~CG1MV_E~-8M=djfd-YVD-wOCM zBmzFK5$?!1G%#RIXrqq0qO>Z;6VLWrG}^^z;8cnvYUKE9ZfjmCa9|bU<`%EGM}?x- zU|=1)f@WZ)5;DS3Gc!7mr?R^%h_md@gGAjYn|FOOXh=#Vggst{no`om$6HVLE4d<_&k*nKr-k%LBOrGbS3EH&^oDZds zC{8dPjjUVFj7~{0YS(T5`nz_QRF}CMv?QV)xV7@fbbksfXBVl&kxdrHaA9Up>Z23v2a#c&Hpky z>#6>H0;}|X?l~TtQ@=Yam&+K7^QJM? zdt;+4Y83!^-(T4G@lmSz?bhyNpBufI8NmW-AItt<9cL%!I~F9OlOoViHy3u-zZwk= z47}@8XrHnfcE3WZWa+3IN6 z;^3GOiO`{BS7;n76miUi>{N*3Q1(3bUjNsp@Beonk9!}tM>x)LykGCvb3&$@Svz+@ zx^w>4;AWf6)_mQXoGajs@fjAC7*oTBqUa@JddKueZcIoD$?)dsxBc}a=?_RrdE~#K z^4MBlk{eqZn{d<0ULIR)gSc`B)9+KSA&V?;3s%SC&%bXB;C);#D?^vd)Fz7a7h8l-(TD3QlNuJ5iV9Fw6JC7VI0T!G2krng;S8|p)F3km z`b+`MqC=E*&_I!5`}oL0Vy5aP1y9@9QjeXrcpw=>yUQIDf@O#q1)G z9Hg*T}~76sQkd9arQa;A`A#7+|-mIS13^UZ6@Pg1yeTVsFWS zgQUl6YisM4MFS5aq+sXJ7p8;n1Y0Hw`fLIyO(b|7Ao~aMi-67Rb5aTcH6X->+hVPH z4(WzOLgqL{1C*IekRgO@L%NqyZfg+6#HlNcs5>DU-P4t9>*bY(T}gu4t%G_9j9jZou;ZwQ@HOU!3f_-et3!9kFIK zEz<0Xd6nFTj=n=TBBi@#i>`$v)<|L)hr^F@!=0MfkD}c zI|q=j89pSQlhHmSV|P|E_%O!j!aUOv+Xr-qF+2kzLXU)Ap*?uw6!pSrFv0plbSjt{ zG@3?|RlbIikv&yNSTf|S(Kp%?t0|@e;g`6&cG=mLGzeR7;yH=*hM^mLkBpAcoJNeb zaZk^WFtMLAzt0sOr$BczE1y(p_knf%aq;V9$NS4ptQdJA2|Wy2h$p1eQ?YFEop9$@ zkuUrhNrN!f4>-WrfEZ$#y8TZxzltnT39LPlB=9a8Qa@Yd&6sc6YI;n zb!&qxx}U46E=nEJ9ks2f0rZZjMXm*dgR z)XPh&!LU{w8Va{yFE}rE{0hwzyiQ`PtE`+|=BR0D-A{28Y+PZqRQ7ZV30?8IoH2yn zCu1%x-DgTSpW}ST!?&6BLpuyC>f_|;oP2Vsz-+*{+TehbQqXFA#sFz;V%$dkG{t{& zlzXXM>UCR6uYDoT*AwsMS*oHE{IF24{|YMSoBA8~34yfql9ZK3!Jy^!jYJ5t7cVWgizMpTsY16eT@O zRnGB>qjeKQ$r@ZA%+=Z&T59{=k%;H1obD<1b@$pZIFsDAn(Ce-HRP`;Xl0zC@t^0Z zN}Qix;PvaD19tsf%lv(PCqt&Ij<$HH-gskIQSn)_<;P8j_9Tx@YdFlO7F|9aZm=(5 zGSvuvWXJOZb{$@AWY>Yl9KOaP8GUaniT5%W2uO`M+&k03^XTmadTtbwAkbeJnUz`$ z2ba8XWaK~41d0ZRsG{ik>3?_|a^4LcO-B9s>J8y>2u^dB9aT!FkA(~eaJ%R=dk{j- zDUQ#i+ha_bT68_VJ?{JaxXo?P%-^=Czw|77L~1nQhf0i;7#bVSs$W8xU+#sfjm_RA zvqY&n9kI*oQr`jkVTAiG%7|$hbXl;20pIXPG%Of^Hoe1`(Kj+6Zf11%+XS@k-^XvR(*0f8_!#B$;V;ri@WgZmf-(wqAaVgi# zzVGI?yg1s@Mj6{!8gJQn-LWaRJH01+920b!eLxYGE!G&g1Hi@;#{XAN?<=zubmE?8 z$BDAJy3_oih$Zn#5K!OJ)R0ctNRI6#cNpONgF-}i0f37Oi-e7J{o41hpwovpfdrvH zUNnUh2!AjH1_kjo67$jOf!jVj;Uj>R!LPA!7%V%_Z(;2C&R;~fU;?6J@N7rA$=}ay zy_Q7XeoG`4$t=C-p7yeMj(t9g6_*P8BL#63rq4(zN#3m=>LW>@vSUO{vrX=N`VBm2 z)<!G|+)gYiodP)IhnP=LvZy&fHOYa`U9 zdZ!sR++4YAS%a{co$H=T!$dkNtO>9}s;JmQRwSxJAv@tGYvgd~Xy{Tr%K+YOZsxvH z0Tf4ol7e3C`qgSs1@jBY(8&8S7rslTS9KO9fk*Bk>iE}S5s`Cx1E5F=ziHL;>Wb-CY9yc8Czd8$Df&^>@b8%Bx*YfIXCex*5wVrGL#E!a^)vt$}*f?Vh@DkDO| z_EBu|!4FWZbbM|wZs;()B@>s}&-oTzLZO2<4;l`Cp!VbtUO7o~qI(sV?=s-bWSo>r zM+LNnXwdRP%RC3MdfElQ_Qe&_iD*ZLond}*TX|TXr{(lr=Ga;qR`ml%p0J9eUmt0) zenCq4HE;2P9GV|~0X@vaZ}qrBz1LjY9>ZOz#96QMJZNcf z7f0+pT|Jo|v{64$0WZ_wM%o~_iW>JeSoY=wI}Jpx?wiX<$`EA zPpKzojXIcPaF5*8(xN=LK4057SGhL~iHXL7HZ@=VDypB-di(>pqR^d8t&OG*HhZ-g zWoPn}y0#SxgP=bvFSHn!yGwExtAG$&L`{DNSp&2$ilRRpLs1h8tn>5dcH0Jb%>W&T zDuazC#|+JF6GYv^KfdJ12>|pt-9?!wLt-JV6WjbMt13Rf z=opuMG7O@Kb|d36m_#$>f_$ox-~h|g=q>W8HlC>0JQ1&^m7pTV@aIS8qmef)o-3R) z63tHNPrHeE1$rR_S{H>BZ9v!hZu}Nu6moP%=zR{tZ{hd+NFZHs68tXPL+7>_`VX8_ zAo&3$ z<7jNN@B)pUh;hI9+tBDrTZdNAcKxtpj<@Y26cQgDkd|ckg%LFi%f&^gZa|l*^ZFQJcsNlIEcXL1 z?{+>2hR|=}NPbxQfCtm3sR5;({zZQp?k3g;N$79jEbQl>14j(35l+0Jhm3^O3`4{P zn|YouL85fPe3P=K-&|+i&QA8C4-R*nIiRnZM}y&eq%>Do?yGyte0Pkp0>542eSN4< z)&M$*a8~2#MB>y|72FQsUS20ZlB%3yXliPNUm9zJw_sb_!L_x--@*eTk^BV0hfGHA zuxcST4rJ|7`%DX(^CVtaa}a1v8+MWxabMLQ?b#qV34SyP+4*5p31ZX-R_A>rG6|v) z|5Q$m|xoYG{uY=il8DCN{PcrW?5NTzKD`e~wdkrH8SGN*1Qbl9@eNWe9RSy)ez zR^QNH2ijY8;!eaIX@VNT)MApdVLVJdjf>^^M<0uX#Ytf4g|bB>nQmDybC3ZH?tkDa zHCiqUPN`;L7LejSWX z*NDT)++}hozfqd<mNv|HE3hPmHdU4thczuJzF4gQm%}kT9 z`He|1f_x*GiS(h#nJYW=3&1|Z@;cz>78q3bK%}RLEArVw&$REni8};(7UsB%c^9ykK*~9FM1zs zxgnXws!3Zh3{#_F#&Nu&$_GY|`~Ca(Jv>apRG7}R0~0rgXOuA*JRCm`2}+mcxvK8NpUdRIw2rK$d4dULbSUPa}Uz~+5C z9v2W0aNo!6!@GvUYAVS?iNVd?H%+78>00o(g55~%K;UJ?mV#@u6Um2kIqH-Lf(l|5 zAj+3->-O%^>TOySM0of9t(}BGx}b%rl{ReUZ7{k`m0QauP8+UmPL*3wBg{*jj~efD z;_LG@?N*SPE+^+|L7EE5dnYqvH}^$Pj*^!ZF=Q(uie)ZC({FjgSTn$0SYT#OBWT0E ziy5G~l$2HQ7X^E}2b{E#9cy`bMd%hCYbxO)eXw}r4UsDQmuR zJNdm%oy=u-#u%b}uO#loSy%X0@@{3u4=*u{vwaR&T(k|^TU=G*RXStye6+|~Z>kS| zY#n;(j`$Wk9s>u{=cThB^p8aK5#O{WDP-jWYw?&>e>EV(qkP$W`6$D=Y+hw4Y^g#i@WQdk)@vFB=ZHzby$a`jl9R64DsRWEO2chZ+BdRp) z7}6siQ-Xo(eWT>@qckzhtFdr1f`8YZ7nfgePazVUMUd>CUaKDy&8oP7z}4;g4$YmJ zjVR@viH{h1luq|o37Bcni%O<}LbMW$k?2MY&;+1f3yVy0zaZbt)Uq+-7BsiLJl|Qz zFz$HX@Jg312pnKhJ5NA8ND8*&v5#i&aULw0g)z0n4H0u?J}aAdKiz4hix8sK=0IR3 zMh;LfBPA5Vba3(_H9G$gCH>zXPZJU({x@4t86b5#0w0aI`w_^B13m`SdVsZkQ{B4O z4Con>t=*6c0YzV1;lw_c2)FLYNZURgdTrIL;hj-roLm^(=?=xeUGn{jOUX-MKX$i8 zl2O~L=az*5q`D%*2$gWl0xVCbO$_eL_#G#aNJ(wjxCmAr8COR5y`PvE85_d}kf6RB z2rIUzskv=Rbs}%ro?PT_h5ab~f8YHcCxVgHfM_GUK<^9u_>R*;N)r4Kg8|X%uRTje zslZcK6D+DnTNJjIb;me5__4tTBs2-fuc(*{fQ4`j!$;nNOT`=a?e5a5Pv$b# zm43H`M}W-7Dq%rj261v-$OBxELIcT0(81iYC?_RlCwx5fgF?!`m)rn~2Li|~T8dg7 zuIF7tXu?H49k(@BosS=SosgnfRPtvvDHMQj$R$M-JZpC$LC6+MO}`@DqR6G2{vt_~ zfC{&R*ba;Kq#MDc1K)u3IfF?tWDp8Ny~MC-gF2g2BmzEw;FL_9+e$U%)a~)YUgKW) zo5_Gv2C;7R@cQP;vlx}Y}1qW!D{{JSJJ27AcY%E zo|icb-zQgUbjoL~dS}njnG8O)Y#rZubFAe@vxt<$XYSg^58MSFH#AS6LLagQqZom8 z!F}^Ectx~j`fwWc$y^XO;f*Om4MI%(==tZ}RLz-ZcD<%`rS& z{>I`ZCi5sKTRs5PI%B!{ddvlK0GRDdrQmGIULePp^RmDNAJL}iio+4&fpq_ zC?@3t5}7~L&M!_%wEmy2YXoe5lxbNT*m^0`l0Y~E%T{-u8qa`t;&l4B$$qYizwA8w-?&-Fk2;W>unNFy<+sw_~Au8M$A6j?o zO8oZFWPGoEx~HZZ===RjtSPJ0&rT2Sj7i{IMpL4qa!U3p1$PyiA7JpszO~SsS(GMj&ea30X2G>?_u#Z z$D*xL8dnQ;`l>&amijEtO#W1MEqZqCnrUuJQL6Hahi1yjL!&rl<;!6lC|dQ{guL!) zNS2rAfO4?bN!v2eI^=HU=ckBVt923>_SYO7*{+Y5ON=<*xYiyM!+he+ct$|r2XkxJ zYrU0oTlMyr6AekeQCS>kjK19_!dMFODlMzJ;d|L$$>wcz(M75$h=aCD;(x6Ln3@I* zf;+xEUsd7wMT7;fZ3UXu2<0|JUH5F~uR(wr-0d%skftIAnJ;i60nuY<9}UggP~AZH z@|b;;sQAA%2RVm;bB1iV4La05{TK86*mD5jxYJ~o6kV{OD)iZR&&Y90oM$+Ho&n!d zKVU!5N-Te5YI;b4kf81;c%|9Gp}T&xEn{bhJ0oCs#HA7)di%x1G%Ac$ukW9Hp}~Cw z4n|FVDY!t3UTlr#K+)F+*XLFR`FR9-Z-aa!bZ6AQP%`=k5|vrX1Sgx6SO-lmTqe54 zrp8w5p*?88(#CqQKetD!gzJ?)yoy9}!H?6%nLus? zH12#y9!}H_{z@N?OX_XVu|by*3@0Q54n|{<>r=W*riW0t4pmx6m`;WYaU)od+}DG6 zL*vccN|rBvo7>9!v^o%k-{feUJ%S(hc;I~V<;@z!2W*d|7367Z!_Yi0f zCRS--xC+x@uE>U+54H^^((^QXKb~>H4y2Su;*Sh1Q}*Uu^5#ardJC9Ymc{v`YpR6| zy{t2Bmh3QPf}DoI?agA>pr!we1+)~;kjkDp9zbg&P31a8`O`d^hX1UaK(XW!rNgv) zRAQ`3_qjp4wz-Uf)Y3*j<${!|BjFX%*w|PZH{09Gi}SwbqrFWd@j~y*S#|*o#4gAq zaevrzCeqZH$RzY1TEqS{mU$4A99iH7TQm5Q5DkJR>Lq@CAG}%a>L4oxP&HpQD#Ih^ zlSLuD8AS!QsCE8;Y!fBIZXI8}l^7EnI|)Myx_;dK{H9`Za&mh8RRO#zgrMgy-lUTd z&_789EgY;;%8-Z(#i7xcO)z#c8`fYi(qY#I0Zhu9CRJM4Si&yB4F3yTl#yw)JHT;2 z5vu}Ugxx!0b1Q27YpbZK=`AcYb$}=w``m;ug3wRLkAhLD>zCgp1IG9g=QbI{@s9;(b)2w(o<-FfK+!rhv;lh&cyN30l#}?mLuvAXaWB~`!Zz1 z6O+1Daw)4(^&m<6^fr)jlBn>m*ew6IHLk717Tx_0=z&2i>81 z{=#QRHhCz5TVrKs)uv&kQ~47{$9htzCIo%>Po}|hd^@CGpAb5Ininf6h7)V&a_fu-&S?v#)C?Wpr^+$>?V#j=))Knf`QXD63y-R%g%85jp zo*B0Pbkk|SCHrXYyQ*myWz(*(`u!dqm8NK{W{jpE6I-E@1Z*o~2$!I?4}!TKI$oVG z`V^Hiu_dOEe*Ze#cYlZS<|uPA#!?vh`ML!`CTy|FxbKC#4$&J(<%p+a4w6q`zaEF>l1L^^Ct| zP@Aso@<=xk*rZUr?hZu=?&N;;shTXol^u5bP}8I3vlZ&tp}D;tbs|MWQ+<2EI7snP zPbp5$IDas3>$0gb_~%+yhRU8J%P``vh{h~rR||jgLYXK zM0g~EVle=Lbe0470~i5rG&QaMuNhvv z;1x&s6_kjc&KOk(tsOFtZ?P!8E(hxtY+l~D9+KL0eQuJnDI_1hWDJ(+P%X9ET`ukj znjdDVUSG_bWiWGF5SU0seW&9%9{)8m1a%^W4JDDBVA8J<1`#}>7oBuW>d`Oky031L za&Uvb)0EPTnK`Nqcd?#lM;tOE&mMl@WtDN^4taNbadT*KtUf3H=TgfwnM5`;<6}Pb zlqvW;ZT0?OxYM6N+j0DcE!{Y65LSHznJb&S3 zf_=eXYYbXD`ZBvX`y5&_dt@f7&l}vIY}pBZ-OHZUqMf>H28KryxS696Y&EsTrqMwe;&dz$2MJo`Z6~8faOGM3R{ebiXE(r)2RTRL6*s5P&m|$P^m^HNJ^%GzSL7B=4Wv2@5yB7auQ9! zf3%3Gyi4Saf6CXmuspIoGvrZ8l2G7=T*R+D$P5QS^a2ey@aTjZ-r>`gm3ySZ zyK+zc9@Nl8T7LobKF_cffuHvMA{Vd|Iw~V}V5K6dZLEU9C-7K*j`WM#xkD(X23A&D z(L~xfHpuvE@bK~;ptxWp6Ny9E}o*$d(12b-2M?VRlT2c)vTvHm^Fd%0ry z7)rq$Y`3jrD1+Yeq7dP0+BBHICl8})F|-pN@gZURFKVOuFNe+Wj5x$4+R4=M+__Um zx8DHG7dlv+z)D->D0n$l{2BWd9n;XW!e@nEChJ>>D(LX8-Ta6$mkn)5Km7XfT4=0* z#mc^tQFxbA8TTS4}CX5Q2INI@?uF_E|unPqg$al?tJKBkHRGm|FXNVT4AL z{^)a^2d+-U+?I@K0lz(n&;U6~xs*LTJY2bA^gNTOWA&`&qov3-6}28o@&Ec(H#ZeK zy>U1z`}m@VAFmG&ym`n$joT!plu#_KT{Sm`W{j)$GOPaF7~H^;dTE4cZ`aA+Ec=7X zZCh z)Dt*6`B(Pn%Vg({@}SLv?P45xcg&l1c(!DRd+%Y;)Zh-wZsp*XGNc8qhiZMi)MI!T z``31Ee)IlPC$Ip1pFREk^;BNg=Q4-P&W`>0^YYl}^3>3(i`w&6);f*a*4x*zeNLqK zwvQ{Pl)Esmt=g(rmiIcja70K%L|~Qr<2gli0^EI%GgVo(Yway&cA{e;nPg0iF5L?H zT=b~Ndge3&Qc2#P0sG|Us<&2$htGpbEThtYqf~2KvJrZjO$(-a{T!wKOpPhkA67{3 zAGm*}IybqHB04#_a5~PuNOo;-yAK~xJZcP@!@cz&&3xLuMO^jH`t9*zxpXe<6wTK6Kyf}tpXi;#2bwa*|kp|9jwf@ch*-&*w$ z=9A+;>cd)Pp9?@&F{=*?MhR2E`n>F1aKm+^@NoH2q+2y6>V=$8y|fCY;N zgSO1U9*bH>aX^zRqj;*VJqJO=I^OOz;{^S4^%r&u_u#N%UV|tGZ}^|pZXnppxV3SK zk1a%1V;r=en@NmoZBH5pt#-au#{I`FW^oar+JT?KjYIq>;KJ3~>`N!{!DSvWd>5q>k}A zdAPHiG|Mw7G{9}1lA50GLhV~x^33nKKv+M{jxqv`fH?9E2gBl0fknZlll7WWALSn$ z3H7u!3_dk@pC=$UdGU`k0&XZ$c>=9}aUB&*{mTt_9=t^%Am|%XL-FMvhzuBcP=s~0 z?er|3;ey?OK|`s|PnNPasTF=3i?=Y7;7Bj)lgbV=?}9WpWo2ckp3=-1hqNKA5>u!s z?6UfBg^|qu%ER9bK%Ce!6IAr@1Z2Km1UM}Ra^p&z_b;SF6O<@SjXUI${CnykxrQl@ z6@L#zU|5_9A;EL(Yb$hJ6pJ(>F%ryms2cH9nD_)=9#GzF1@bkj2un#ds4&qs0e1VR zGJ$Y`JPT2NiFnl%ush7=a>WYpm#H-YHfpSiZ)ctEt#IDrk!FK$4MJK+Ke1_p(F)w% z&j=)(m05UT_b;zB?`t_bcv4PXvJ3LL%IF^8(k%9A2LJb1fFq&t;5C$iuJ!V872eRd4z zVP%r_+W9=YC{JLLx}K(Ekjud{@=z%C5gHTMVnwLOoE1V{j?=DTY`jMwd^m*Wrex;L zcQs4D*A%*(?#c@};snEm%j?U}nVx1gQFV}+^^T7wurhIR%KSQcMK`fi2<5?`|H85? zfsd({k2)3pYF6Vwjnf>)j-KcHnX-i1sgaA!hi^+JtR*ILJ4zTHAH*-ydC_vNW1223 z1Tvjycl>~2mHt*A@l=eq{gg1>G8xox5hUkH`a{UG-_<0lEbqumeYeM{W*oa;Y=^O> zNh(b-KmWq3%UMu{OmK z-M`Js(`Yi)Vew`+a;LAq%+~wyN)a3N${D;8OF>_Y1iG(SuRMqov+@R+nXM3>K)vh-t&o6SNG$~ zQ&;Vqqbdo9c^B_<3JTI%v*Q1f8|h4@&gSRM4^91ee&FGHlSBqno%}swuao#8E-mZX z1sc$U@oL5L8Hf}Erh1K{8fW3ruqmg zHC>14DZy4G$>c#jPfmH#F|MdCC+Of+jWKh4`&C1^xU&WOb9Z?-w)qn05YNnLuh?;x z)owMz&+7QHcgdH!-kSB`)zo5p)Ru_7_jeK#9V_pYRR`X`&uXQ$R~uWsuv<(jnO#(Q z4!cde*|5sFzKt$19vAYg@?QGf=Pkj#j3B6V%%RZMo6AVmlky$)9Ga-inOX9@jfK;v z_QOoh<~$w`!sI>;xGL|KL4!<I7#N+tzHNb z&Cn}i@VCVh=7WJ^v4<@HL2zi`4}3!!bd)o-8a*1BI+$YVyzZ9JO3F?s1?-BID|ahj zWJ{lIc*P`M%%hK$qsZ^h3}@`kGidqxdYs~72qiJH?uS_e2Ov)@MKsedUVs<(=Tvg zXmoN(&c>S3U$P^Qjo7D}hGKFfLJTOQ1fi9Q1;XUca`-8c>0 zmd7zL@`euj2P-419TExzJwXr;3KG2rJwX0I^(=sxlc<_8M+CsCDzooK0he(s%V5CP zWc+YleQr#Fg@HcASYY1_#SCSSnAl@z!mGG#v!M4#f1g9susLJ{@Diop@Ic?sY%VE3 z^r0OOygT5ZRqrjh0zxH5^gJR1x`Qk@DE%6w&yO3G3}7Y>&SW1UZT7%g)NT84txU#2 zRB*5;0Fzn{|Ky4AS|Ms{M0TNps$mqk{XiLUfTF^BME~YIDgXmP)&($PpR5Cs$wCNF zgUKi#DQcCuOyIC`;4q*96=h{?-;q>5;V_XGNufkXau9|e58Vs`8xG)IOoRTctO zfwF|iZG=t}l8Vd%3T`qk=^2#PVm^Xa^Z3uOn>}7A6YxGhWfDdKtJJF!16U(0N1{2> zs{wM?t$NP%&^`)j8J+P7nwwaEId=o6rKK9QJKECK?xGz1Q7;@Xl?@3QNh2yT1ic2H zlaUI9uxS@h4nsqxr8fh;R@8j6t*r=S0ezc=pEKu2!tPjx>x* zESLS+$8imIaW@sdmg_{z4+$`$MQ=~|MeoaYQc58d^IlFJv3F#U651#8->-uu8ZwVU zgoWsYYWT%iN=wfSmg6sa5&vU(l`hB1ckAOT#svJe>ac zK!xKg!IE>vr{&MI-;VgP^=3LJ?N+h*7wHiu6@$};E`{#%rQwk|j!ht-?&+mX^ zsr|Fh!)MhltAPNaZ^!FqyO&TkCYCZ>@9z0bZvM@`S88?R z?UWm?qed~o-1HGWj_FA9o56u6zZU(sfwrWxxXpo4*oQA9~OhNSvSro$CXZ=k`;0!TrguvRYHMdIJ|YhuiB4 znzh+=+-(N)W_+w?xBtnEV?PGkcO|rTWkldkcGt3FT*2b!RZf@u{8&M)!LbFQ>H^xm&L`9!Cpytm&P zx8&>Twc^3kNP-)URwTNNsWe6Hc#g^Of*-}D>B)&LOUDfmD1E(;VHUepDY!FHCuc2{ zU3)?McUs5V+Ny~Gw4!odd6!Z=OIex4zD>H(KD;`X*LXgPh~Al6ol30Q_;fxe4O9xd z)!UQjBXTxecQy-7)M^FnZrE3zIu*DH4S{dZ#||E@v~=y8PDzoov8-C#jqi0@T^u?4 zvA+FO>tVV~AXYf_hH~J*;`&AiRX=Q@+feh1v(TW}!b%RjMRyen2;&Q5Lq8ttU`Er` z8>RpUD3+`GJX!K~oV)mxM&Dp>%1Iml-HP;+UH*Yy6K0N|mSpQGpv5wz7Bt)OWhc>dF)>6c9pnJv{* z2igbPsnEvzmwLCd*u0$^lx=##=FzBfJO72noQtb`^CSzMQ%cBM8S9z`}(>!N7PnN%=luUDpdOs*vqG?8CUyfMzKl#X7!5LTEDn?Tuz}EuD zw70i+_^XtT@nIF�wD8Sw$q~Puo)On{<0trKpG#Cs?ghy2ZHCt1$I6G&S3e=0 zyeI=Hco4vbrS?Io5z5p6R1uQdS8GiUr4X%U$MHF%nZu!P8yOIz(Zz4z zFGR0UWVjAgGsr)@WQIXgc@#zaFQ64_Fqf&VF|2VR34dZtPB1lRW(QlAyIfGrnm9{5 z+XVp6!YADP~ku5TtL z=gud?PRqdO<|``}A1#Gqds#~Ufs;{fPkhHcaqivuc$9F~1HG%kCrWDZOtWKSr^eN7 zX0uk9Uyr&RFguZeH|hHINS~e8O)hqV-Up=NXM%8Ez2;r6`s{zOLuYHbT5m_7GAOFmX0Sn${Cg7$YdA)-Nh07 z;2u=Q201EaxNbU&5{Zg**MG0lN}-%f^LR`Q>R#xVS^QA=ROSbs6sNB#3hDC}in-W8w=KAE3uT$ycKTz_Y#>bo%onmEe% zlCQy?-zAMvY48?y$3@t}Hk{&&_odK3x5&<{v(k1Z*MAS5+@_W!6s79cYO1NuZ7!~N zhQyZr7tu1EV=m_?#h=eLrxExI;zZ5NvJ)B`!RrZw#(OJMaPMPcfd3-#Sf<+5kJhaM z{DNi*RyKog{5lgCrxw|3pD$tY_!dQV)!#O4IX`d#rAsl9I2AGL(7LNm^6(S|>D&1%u14bp@EUs1P4){0{kd;NSX%t z`KmfKWL8$DHMn#bJHCJH)4BxL*%n!7zl1150a3h9Hq`}Vrt-()*Uqp z;|8i2{?@kp4O}(7_{v_}HriD2I5%viP})(<0-8?fXPPvx?h{=D?VFRs=VN1-y?b&-?W?Z0n(XhSF+7veNFe2t z%E;+yHkGF|wiaRUuD_)mU61AoZSrLaI`JOeiHqXp#S9o zRe|oY&a*GW!=a@an!X+%tFOzN?8kB)q{?=98)Hl#f24^$Au;vhoZNkgj0w4vFe*QNFSAv9YY5nd}J61smo%@HZ! zS70!a9KQ4{Cs(gREF5&?Rr;?Wva=;@ab#h6qwOu2DIg?3Cz!ykLqeF2a7#xq`$SA; z7EdOyDkR#8Eloq1W*|e}DmlXFfH}>97*16kJL&-w6NzN7GZFWRGoiU;piu12cZ?oI zZvX)WBCQt*NuzM1iQ<9`r=~dj9Jx?R6HK&M zlTRg0{wG)w$9m*Zf9ykyl*K!yXRNQz{t|jcgB4agcRKh#2(Lj?NGWY&N|y|OnpbLL z<}FKRzdtGNVqf8t45p3Iya(A^Y{KEAB3+(BwM;?h=vm{gq9UXcW$BLZ7qXS)JreG2 zTa>`g`r!^*nBDZOo^66Q`j$4ed3N@La}HL(+xzlcb>{R&&V#-;>Gfo;1&4+)3WcM| z&XZdv(1bCIrS18AhtyV*-ob@ea}N?U)$YN|cH?oS{991L(?xBzf5&|x>sLm4S*Ep& zQ>Sg!+5InH%`Q^J{iGarw|^QdlgZO5ZM~+T_zK`j>D{uymsD1w<8%($D;Conf|nFzD!uL34om6!6uI1iPC|!u29^;b?gdgQsFq^pbKW>kNB8a0B>pcY}*j zV#zDLQ9tJb=J0!ML0f}+xS;t`)OOF_X!V}iUfJMA>E24vaKX-a(C|)aw?*LcZCA~d z6|(?s$?T7~(#EZ=+BlO(O(iKVkcf25e`B$J*86yZW!u)ArDn(^V{sA5lI>v$WkYQ=eE0k5_G_k4konp*h4x!Y!C#k?IF?QiPZ}OTJvp=XK-7++%_ko zHvV?T3kIy)-Q{{^P&WbKn@!bcpXHmbWtJIMR*G+WJ=k)t(+Lw^u$}`-)(4;$anUOu zQ0R7BkzAr(VN6@)sDFuhyQ7q!fNO{BNRlY3b~A8$qcOwEwdC0H;z(EfYgO}OJx%S_ z=_guz-%bCFA~l|GJl`Ttj}P=N2fej~F^iy}9CVkp&4P1yZ?j>mBY)22aRujKZ*K@k z{hUhyLyuK0Pi_({fbDm0TlK^#WFND4v|~*jXdU|Q?T{f>GCQ`psYKUzQz_*kE2xG= z!&oJ1tzj;}19{-+-+>tRRj@v}_Om?L%2XgS?r_ip%yhCg>;Y^Oupkh)fKTwF6@csi4{;QebhaLy5O5urgiW*Om)GY* z*9LqS*KaG_V=^+JW{;pwU4HmmX6)&;m%bF0zYYSGl8LWIP|dBn=1jt^V=KQuEp31z zraV9A)RW=cOseD9LjRSiE^pG#@=s$3AJ#wo9u_HJlQ{H2FQHK(4uh})`{Fa{Drh8F z07)~Hhcyau$Z{N6Fck$bOf&;YfM6H+7lUMonm_F>Aq6$J$OfaY4rEwxKZG8@Ftzl+ zDT3}1)ExTn*DDnRx5yCitx12$;OTuYudWhjcjz5|7?=Ept#$5Mp)(m8kj(K75JIssbYM+yBzF2iE{ay9Z3nGz9IS;mrW3Ab3)VKE`gi<3}tEo}OSjV+CL> zNaBnT4Lp2j)*o0OKuqgHcRq?nHi+cT>K$%;dJ|JSh-^Ow9&0>Dz;&v@jj;RBu`VTc z{7COwWtNG7L6ZcN(#?YDzNJ59t&Uz{b94EF`0@8_sx0ifmV+N{Do)wGvrOQ00IL9O zGqB2F<&VQ+Wltv`lSz_rzzDy&)U)EJiC@cWbk#WJHx1o~JN0s)BJ8xZ{&7yCP>%FcIPQRu%%o$_ z&(9}0N!{0RM7ihC9D2w4lAfJO=p~Km*~m5Kg^vxTkZVex&lRlQcns~(b?L~L zE#5KD?k*}k~@s8W+=ZX5qXii@L_R!UoUq8ZB=Bm`1O5X&>{wzs=uLXJx8>9uGc&5XzA z)O!^7vIQJ?KYf=!(E@~Bn-szA2{5V746_VgK5Du$y76$dK6jdBb9p!Oym(rg2Ftfd zt(82R6GJS4^TRE6K7L+1LyJE=WzSeFZ!G`K9QX+az={H_qgl_B7hY0#Db{Hj>FVaI z?~hxj*=#SCRzLIH9RSJPtf2pHd*=D-)h9N;D^B587iUIhf68^pfi~64|Gqio2$P>2 zQ}>#lJ(o_juQK5bcn`2$ zubxXTj3yeFX1hcXxGpSJ@Ln*`Kb!YV=PdYKdajp}j|H0*Sa)65FXJL4k_qP{iU|^s!b7!aP_4E&a z&5SlIk|}Uy>d&=?)se|Wt=)yU#u?Q-7mi=ZN=f=PzXXF6W^6^%qeyYY5CkW6RV^j6 zwoQZvgK8?XY==q?%|M^U`Ssnuy92ue(%A`Vs^ccj*iy2ScZW?XXvtfkDe?2?ash)p zLpHQ0AzA46^`|!>d-XOk2|dAv)kT;n#YH?($*56Uv`MgL`H14MH#W&ZpLVUQFU>LJ+&`WK_WLg=Uh zQ2xm41@NN2s5`_F>4s%NfjB#dA;Rb35DpGe6JEcE@?n6n8FEt(K*~6u1Hu133SL_H zlL%ww>O!NSpnw20rnj~>xK~tE%xw7@FoH?~4Q(2*Luuji2BqcJGBQYpYIry2PO zHWxddiF1m07--oEZ-jW+2&l7k5>0&C_u43Sxu4F3B|WnfokY~yip6$3qMy1Uk?#6E zc>|9YYzf8X$tm^UXA*FOfz!6G)Q0OhG}zUl`j+CTd%nzU!KB78r2Mey|Izf_@l^Nk z|Hnv_t)+oD8Fz_nWmP8}5@{$h(;?&7j!h*LAx_pI6)JJ4bgW|}A=%+b93wO1SaIz0 zyH20q_n-T5-*>5V-iO!qx}Fnniuy$9r+&5|+a^Yxd^6MBOFpUT=MJ#Uf*EL89YeR9 z23JQ12Ks-tn@^F~JUe8^?`l0@=R!7L{k}YQ&7je3Y(`zt0jc-t`f)^r-|=Gy_OeJ& z1v=_G&RrBfiXz_}Y!z=KEws@_pLlbA&fVbI~ zlizS8#=mNEeTTXfMu+3HzF3%m^trw4?ePodh`k?lsXVpCnJq(#QS)J8%N$AV$If2l z%6WA?{N+CHBbeRo_jsMc#8`Nb#oHjRNuN8F#=qw*8#n9Krcy)sFC&ZM-=(iuwR*U7 zs_A_GWN{mJewQpiiZ*mt)#XHy#mUPS`6a~1y-z*=KEj9?)yDQ^L@30P0g+0cD5M<` zIdbB94!*LM?aZ%+APz5`w?08WPhNU2?Jz&@pdV{)8~c)C+BqOFu2@>b-A-FCceXWk zp}?W&w*tYKMbPl$TfIb`6CKcA8%pHsG3y~yCI8bnR+@wNOx7>Y$FqjnJIhLvC?Bpd zZ!BACu{n5iXXbg6AaL27WYI{7vf%M?xkvG7G*XOn3*M}Wv{t9~5jGZre{w$;5SU&R z-E0V*Eo3A!w&u1eg`u0XZoF-++drze-GV1@phTb!FW4q8`j!3hsy_6+WqFLuCwk$K z#s}zQ$(k;wc>8!Ij%)TGOfg+wd}CdD#}EPrezmD-hWLdjceO(t3rFzU)L6l@>yaO+ z6jp(NFPJhJa!97(X-F82QWvrYU!6I8c(*# z9mfATR6UP24w>T%S$!b)yz&<|z5@SouuU{mqxtGxA5Cs8i|0f)-(#LP#3QDYr9iH= z^lENtt)=cy)=ukSzx5F?8ifW;bXspba|`wMbobg`Tx&|U)lfSfvN(!PTrRp9Z`L#2 zg?nzwqZzuauw2w#Q#Dbbt9TzN8ScRfKhc-wB_+Z~lx#r?e>a(1~?rV&_9vvB7*EC_RlIBBg%9|b8DJ2!SG`a#X zXHd!Z>hvIIZB0kV`r_0X2L0c_$*{JjI0}N=>}t1ppOv-ip@Orm$>090{}v}fa&icM zYHQQUr0FgoLn%2_-!n6hzuNw^x^=5eNXOu=o0~DS%NnejJwECV5}jY0=b^An=P{hZ z(0PMFS~%z6DJY2N2RcDU{CoCvdAl=A9D8RX<(E0^RXC+nhW``H0Tls-;AjJg1QWO> zRB;y2EFhd^#OL*9_Mrvv3(6PRrLbau+FexoELxJA##{zkJXHzMKibwyE|}i%=kGC_ zhR0p!V67n>aaJCU;lja^!_2~g)@X!c?GZHOgfj7`N67MHbNagB?e53ZQjbm43`}iz zK(g^h1AR``EZTn%1ZKFMCeHaKgr(@Fw&y`>b%}5Go2ini?P)r?I)YUG@^16auQUW~ z7&!4)qB)OUMl^(}Cs1>}qO@8wxPIOs4 z_nB=;E~%K}L{y*H+S-DAG`uOI%N+U=%$?KZThtoW`TCZF2K2t#eVDf=lFZFf&1Qkd znOb0|9As?M{r%qWgm0?;qmQ(8{fuCLXPH!nk;lp0y26kWu;9X~XykHE(2Xf2L^I<; zFCs65BQGh{9D;=y9wmglemP=whiLpeL+exJ?I2>;LB53 zvX;irY4BM^ml%s4I#0~*>IgRb`+IC{X@8-qHk+jo{E4QZcEQAd&17lLC#l5VZhh`0 z{$~`fCJPwFgMzkEC!G5V>%A(`dXwV1slVHEe{XUb!KsZ5jhkKS~P-m%WRE1TW;r^~5*e&_OJ zAN!<63pXQPU3V?MQz`jpD@Og46vDNii(^_-?iu~F)g-sB&Z+iYCj6WS-OlQ;|91`j zlE;xv<1A0k{cv&f+u#Vso~^IiDTMN4<$?Z|i#k`lPTQFJ95iX?@MFDo`A$a7J&tQ# zR9bi5>~c%TFpJ$`XX1R_10iq27q!HeW5s5U=kZ2Yve)h#9C(=ie)3eN?cv)ciiR&8 zGbVbuS?ga#H{~sv8QEe~&3Z0RZBGr&PjW8p7(bGv7$5KM>{42F)%T=B6o+b9!cTVL z(Qk^`>Na67BFZ0dne`Bgl6xj#c~}^2Dq0c+>^*d`wv92Gxjqpm`h4a)ZE>?3#-!O4QZ zYieeUH-E^bi)hc79gkUE3f*pF^j6P<5FvEYtmF4a^;RIG9{}wNuYkYqZp*9NmHXvd zujf5W&8Q40yET*JGSaf_sZ7UPX`CU4dhZdqt8N@zBJ3+?1rc!Nz19Vo+(Q%s@5uVrcos&z7?rpXR+#cOMd7T;m6RY7g z8QxOU1E_-)Ic$DJwFeY#R{5%L;x38Eu5kN>czB%R{a~ISyRtG~B(mC}y*!qxZt-B+?q2#5xY{ozM$6we*r{K7nxpWPm>tqWJd{peosxk>Ff%x!&=AabB`zxnU!Rz0jbPOfklEp;#22m#PieXf>{(cuL%UhM@r9nO(WxX!uV&aI}Be|C)#l`j0QjPVU z>@Y-9)MunPYy-=R|1{O`ScI5sP%3(nE5r&l1ku<6M`c(Uc;qFfvPaqAn z96AY|*rzd^=+atdE(NIA8dV@^CJE~45}fviIU-m&!kn&-+Dq}#Lgxp_b5(%>bMw-; z+-L8uW4p~|yo)MQTEO&CdMMKVr0&W|`jK-im-#!s;sv|I^l4$dyu1c^wb+;_Y?XA5 zM&RODU0vPsSoh-4z~JiK_Vs6ISargff!MMfQeb3y1d@(~`6VQ?$wG1S3aAq7fG86O z=1Gx_>$CpmsRa4qBZvg?b0Ggq8{(Y)pY~odcZkTS$*U6)lxZ*%f9#NJn1yM6vr}F43FA z{Xzz5`@=ksv>2Ou_uRdbeqVBiQN2e@lopP5Nr5@5m=pDV)Hn4K$}45ljX*<`KV!CG zXW;Rp=E7twX1rEDXl1l_*~Af&Lr4^`mVjxIRDLEKhNL2!4Q6`z^dWM(r!RWz#2k@V zB%?o&@s~IfnCAxJ`6Ct2~Ss*~GM1=%G1*mU>ftb+9lE;!KXVJ@j=v#Z97?XfYq zyo*|zQp>~N{vB(Qd!mIcNl@cu(yVWWXKS>2#TA~{yfU{BymGl5El?=j;gcd49}xb& zuZwVKhg*%T?6~`VY0|Fx{s}D0i7@VC@j5IA5|2SBP zu`IY#M64ZH2tG0Xo>%`}-)#3DDbQF(`U|0hv(U@VeP)U!-S;jeI+-ky}*mrHh##?}P6U;Mt#pY;B?zE?Ky zb9NzqX|69fOd@8B9HyJ{AQnbDcmV>dgI6-<7(=Ta7S;1Dg>)I~TNUM1zdlh?G;;7{ zrOY1&p_xGQ_2f)lFo-C?qMj&45GX|`;^g`!)wAbt0Z2Gnrtv3xr=NM}{%ZwZ5 zG-5bin(_&55evP^#vo_FJN20D*Q3*($i~Q64Db*hY|!)R%NW(zZf`VNVz zhz5=26`sWP&8`p|;?joUr!1hq+x*qD3(2suU0>V3zwm^GbB9I9 z#PEp!3N-j4eTs?*%Qp_)Q7oc%M`t}4t6bX-8nAXL*tfJz5DobY<+k)Hdgqe$_E@1P z?gW9*qP9!=NkaX*-XN{mJ7)EjTeX6&iZODn);`f=PNBw12e^h~Yhj6aAPnyGUEg%1 z64a?fx`9N)qO~B9y^b%f4OEy3w>{VJV1sf7Ebh*SUkqY3gD<#BW6-6w@Z|p9fzxGl zM^eD{D3_z{_F}*mZKQ;@oZIxLQ!cYPc4csDYA3;?Ridavj&X{Sr=qLrl~6idB;TM9OS1u zyL)ITXt8((*T^EgU^Z$=`y4X>Iw1wcj>trXBQJ{E9d3vc%LS9qr`NM;pD4`y7AR{5 zAgkz95hcwS4zYj8Tq+Zj1JxF@Oh}of-P};7ED*M&|G+#LC9eo!refmojipa@GAcoI zQOvmjhBJw0=RgRB#iQ8JZ*uIRyIG1$=Tp?rCwC4vaE4)Fje_V*<}Dh4zu!C%K?HYa zD6|fvq>&9DN2Png8`vX&(LIeo!~f0}#vXGRq(d3vfaeGEW=zq^oUWXUC7dn|w!uY} z=Uw0VVJ&tl>NgykIRWP zw_##=VjnN@`f=mpzS&o~c!f;h7MJUmyZJ&_&x?r6{Lc;hziI_Yg5wcjIRHZ^Y=|A# z&kav3fK3t-RpDQd688ag1A{CJa~p-vhe=Z*Rym;b;%gi8_0yPW=&C=&gbSLY^w~kW zhR|oaZg50OXQv)a9MI~*)D_o%o@uR%ay@IFw45J^NH0qD0C7iFF*M*Y!xqv%!4?RzL)fqdhH1G? z7~PMg*ZTlLgEJn$K0N9pEGb!%@Msa@_p`}{PQ+)RXn7_;?4-Xs$hTWBl0mOrnkl(>AnP_Dw3BKnyF3?;*30 zZW_GhSrRD{x$MkSUUtTF-z({OPpjr{;f@D(pZl4A%}~O0@F?z}-ps+X&4DNjHx;8{ zn$HQBr;ai?AD-y@7f*KP>$N)Gn=QbWaHy0VoWxYhjf>fGU3@R1vj1Z|mte`R_iP8h zhTUVAmNpSWeNySi+m5`8(aB3XoO`H2fF#LTxI;6r=XMq1h$sGWL8SV(2!u|&`|l(Z zmD=@Rk3QWHzteuqphfJ3Em`E`NyW3>uN|Ln1U5|4<&#umPDnHmq~X}ey{bB>XxOie zi@Ukf&8jr(>v+G^6pqL{dz4vkgUrtKG<<4{BYIovT=SZb8pvykYc?H0Uu}tGANPqQ@BXC5(ws`XHll zFnD^>-p%JzHDhrs4_ZVrGb)1s(i^a|^+{?oaA0j-4nxXk1#e{?*bn@tcAb>H1Laz9XXAGmA67$DR5IDuO*%S1jBz z23E=(Tu|d*QfKEs5h_$C#$z1s;6Rkb*K+e#Woeo4xkhzEOzpa(TWVrUg0l%=AOm;HAI)$E)4&qK7Jv0z$|nk3 zKEWsR@6MdSRJzVzf_xQ;SNM;8vra@vO@Q(-0I<-q_p?D+4M!Rre?S~yIc#8lwTA;@ zH@6W5q5&hsvn62cjVJ4l*^7 zpRs5KMI#qMfrKzIt`{&4VB4^VQ_1cC2O@nG?|nS#5vM64L2*K3ZoNNe239F*Gpi%9 z``~TaKHC#H-4q0B$RQhp1n`LyPGm^0`#k|iA#pG4Fiff6MN6LLa0JQhTROw0v878jje&!iGNSO|DVN{`3wJm%mjchW#A9XzAY$_W+N_> zb9Fie*b^$2-d$LMV{8ZG+=!JyKDHP#)en>n^k9Qr8U5JAtgI~1K1c!hCH02}B4>E| zG%M$4qqMZrK<6j+t!0!c8tgy&_wUyN?gj*Tqw?GWPff*Bn~$ZYf(ik)WJoe~=0P-8 z&7r^CaDK-Af~5Q7E`k-7HXQ;p%OVG5DzvL)5(W;eIC#8fs&H78BaxXLwJv-El?|l8 z<8QruW`=K{YX!Lby*C&qKKqJn)T}Ho-=6uCs)1$&QZdptepKi}mw7OREQG+TFI%=u z_DV1}xT}>ZI;b50{i>DSGiKFWPmHV9X%!FHnz}0pE%6^Y6`gkt2zJ@^&o-Y(wfOE1 zlgxEjO5+vP%(GvJH{(t|(2to=NiF6#?ahU@G`6~2ZiDvet6 z_E^eNP}#Yj^XFuIiX{6J;)q{THU_Tm&gND69L7FqH*B@xt;* z&&Yd{qojigSMQZWzHenyN3MrY0=IqGG7=xrQb1_azklK~3c13ule@$&%C_i;N_5?Q zD!15_GqxU&;BL#j**Nbj0bA=>#?1|9Zn&)Sc<|0kX*a zhpS~fm8@wmo21XDXIg7*c;0X`=ya)Khqy6Si<9w3@{XB56W-vZA-WH?=o}|2=Z_Wa z6nrPPQ{hDIl^r_{rb)E_r=mLj#u&ayKOCA)ZfmPr+7e}ExostOcDjXZSmf1J;5~zV ziuz{lXUba>bMU8|5+cl*U`bNXK?KfN#>a9eT-j!P2~;d-B5@Z@eZkNn$b}s$*w-d= zjBqFLef7aeBdct_>Xi>INu=V71xb3L6LXt|jN#C~Jt0e>jK0Cm(Zr_cS?kT7?I+rs zjmC6HtrR)pT0*D<0&=^qZmej+I%IL6Z)7|m*lTHMb@ev}0@s3rR$q{Oy*=9;?vf7~ z-j#b^g^Vxip}uy3oSGnWUEZAM8XEf+){6E&;p{fmjZX5iYNjvd%Ml^8?fT95}5G--xAE<%b(O1c78+u%OelLw&X_1{n{e z3a!kG%`GCTx8@h#wT<|y>KJV00V$y5kcPv!1}kN@RN^Lzd0wu!6mI?2UX83?nhDry zj1)aw8nLXb!}1p*#oNgiRYmW^u7GUx)+hD(tt}4+A|=> z1i>C2pNR3smBM9tIhU{;z2@Zh;l_yxbp!w9x(SpL=|j>S6#NYY&m9k)&oVx=X;(t7 zs5<>?urD*GgpUv67^kVlT|cjB2Dt}SOg>rdn8>7tZY=!Sm>YDVz{~eKR$H5k#Q}e^3AE{2qWBCWwSWygvir6QUge4_H!IqnJ+6 zo6ZL#Uj7I1Gib%cJy09)8V|>BOFmOq0H>Vm{YTJ%s{2C{K(GX$m`BtM!1oAFPoND@ zG8aspTlOTpgCQpVD#?$B)n-Um9{F-dSOmxC8jI2kGGgpsEfngVOD`B=BuP=s;ISX< za75vlba)uD|520*a2GJve7(FzXaX#ckk}3uSj%ubS;L-U^mWNQQg0eOLfR;sqqM76r)kIHYAWZ`c40{iD5LP9otk2?~iLIQIz%o@dp$q7e5s^~S8M zu}Hsmus6V99YI>KyqOZOCBVp(eDOc13wpurFe6wsb$`ev)E-puwN$lkjs7!}EJ)a+8QKe*2QQT*L~`-w+lPR=A04+LnPBVPFGLg`TS;?-A5@lXDs z5yqWl%cak{ga0h&e>OV%xWf?aoUiPos4L|zJ+WzrGY&1CC??`5sXy6wW7)i#kLcX>KMl|PA$Ph`87=NtnCa$oyBKAcmH zdzs{6lXog#b{BQBw>2`^BGrcFdmPAKw+z3-!83$pellx3ou0m@X) zxmlg(<6By2YybTlFIPq$FS*56g>Xs$!}&=N$U+l4>%f}B#zDC;%*(Y8IJHZ1XRFUEs-fyo@9_j<=s*Hd#`KKJWS9xeX26_WCy=)tqSsY}5M^ zDmE)15fp-*O0IpZZ+9isO=C-TKTf)$kMWU=R-bKu=%a>A#bstE;o3n>NKa{ucG}4fsQn#-RF{ zSs^egX#1^>)<(u%iZf1o{l~$TpFEX34FyMRaar494`D^=FZW+^FSD5(S{>T--0B$F z{j}ZWnw-j+{n+ONQ{}y5V`IKP+ndBJG7c*@p=Z7It7kCqeficVyq4>P<;3oQ4{DBg z+6FbqUI785auC^(Th?d(&c6wrDyr=se=--;b7f;YtHEsK#;w~jC2g^pXVi%#n$w>7 z1z%~_v4*1UQlrRVvX!N;>wuMOTk9q5g-6K)Rg59kP=-Y&qgl%8mbVIxgD>UO7zDXx ztqFc^%}DzBsn0aCpkUYU$-iC448f6qzRgeH!03|9sXK}fI-2EQiUAzunjk6Pq+SxN zn%Ty;uc^+3!U@@5?p`EFqjw9M=%Z_Gij`1%dwVe?BIb6VhLtO2+A_1#^n+$~xxYf9 zl3#!2R{xW#&? z%`)ib>LN|s{+#))M;DD%M(vW6RA6~=%T!nwZROPCQ#UQoooygPx(>8_4pJtE{qyQY zgWT!zsyVOL`82OfJxq-s;59HAZsn1f%uEg*usS%lq4|MCiHh%1;t9hiNFtD_H)ZOm z5-<;Nah&5QNi?MV|AU7B=Mrv=YR`7HK#!=EL&};=4il|Ih`$1A8de9-OUP%x17e2-3MoccDx6#R zE@ibn<6xDjl<5;Z*oLVj7phv|RGTb&EUm1xAYc25Td0?Z-#TB&NT?TbGvz6YGc46M z4mcacaAqRlfp8~~VD0(Fu9Jx8g#SoDaDpB|wALB+y@PKkOTnJA^4=A;$aXUCT$W^#c%+Je^^~u@ZI&DW|vXJ@rA{0}g+wSdl4 zi!mKK)?~f;WxD7@=>q|szPA7HUMk=d)cwdk5%VtTnphG>hNg(KKbWmkhI%0_3=k2q)rlv;UjYQD7yFZpN=CjZze z)y8Ia&Jjt2hqdb>yFST^#Ym*xiaaXE%dZu4TXFi;-Nk&qI(Zj?+k?uV3SyPth}gd8 zDC08;Ys`I2J$dpuo*EEH5_wDuUY+NwhA8aCouNTXtr=~M964`SA%T5|BYvB-?&D+? z=0bQq2CA^Q&sFA<0vz^7|IlP|E`pE}gd#=UVh)DADT#4)w-Ar_ps?i52M?%D%c0v@ zjICq{+ulx<+nT`~rkI(@UKwm=j7|@(4^@^hYOObVT4TXvePnxmaMhwWt@DuTCAUl~ zD=WK^tssBKpH8~AA7giBNSU&LnwmxsqXYcy&j-{i(ZA;@TtX^+FZYBl&ZmD=kqA1h zlC0_mO+@K3@6~S2L=4wT85=&CIwR8$eQQviQ#GeINIY36o`0%p<%?I|a(7SlhSixl z>r#*FS+~~RLrAAxl6XAIZw*uiI~SGrKRK`C@J32|`Fj(eNG4-^ZnM+%g~h1pyGJ;; z0j;zWpTl~3=$6D~ti`*VR^I*{j;U895)NK19+^*V3tGwC95BP|Y)Yn8y;tJN+bh{r z3vXl7=7X9-kpiXL$tTFy3vcbJ$|olWb>&T2=XW5F{nkU)g@399&^rgO|Cn9u9N=*r zKf`5mTx4=olwCXJc;m(cEu*E42dXE04u7AgRnoOqCx@LgL$)&LS~`8&8r5pmw=S3Z zeBAs?CG%`<{{G##)>&ZLuW?2bOPCrvGgq-S<)H1g^l<;l!s|<8AM;B>*8{5=4|}xf ztBZ$`UPWex+<|?wl1eI?Ns$k|FE}eayb!jJGV?C(w(^B!p+>42-V~HZqXM>EMxBsR z(=O7Oz65DOZ4;?rqk)7m9RTlJE`nkT`7ns@RVvz(9)*BH2OEerChmo`0?%oXasxOG+mx#Rjme zRP@1reKHWF@KqUI3K*dzg1K}d{*~x(LHpiIxZ(dhr}dc%YS4m~L&qk_9_~Uu^ASWL z^zp!Q!Y#xi07P~Z2-nfdD6DDEXo1`MYa^K*F&9CVEu<*%FcYOPdq-FJq2F-pQepM> zpNTmQsk2)>VU z?7RL0TXIHIGi3Rh@!`XVQy{66M8Si&y^sX)_wCfk50Erm;z}@GM4-Px57s4PW2k^a zd0Uz}8wnBOy_x>au2J|0WEMmL_(^fX2(SQ}0uBJEwn!wUPnPV2;)d|7{b?{&D z_&xj}Yi>=o2SgX`uWuleDh${m2nF{-mqU{}+glRrH}%ArDDVaWKq-KE4dW3~9KV!K zTzh#?0O`z?1{Y70$o<&Cpy3sxuR82u{Hf&~%M`wWKJKhjZ}9czNDz65nHm^%a@P*g zFcgxjK`#CywSX*%vmE(t)%9z9e5JQBe{8p^+vXcaqcz!U`s=GMDurq&?A5xnp~0wc z{AP0bzA(3)v${ez*mPGEkpbd;+=@+Hx=K7qy1tUhK||T|+{c`r%&VvxVJj(A>{VGy z1Eaw#XPwX7!I1^EH{SQXy!vGCF7)Mhvp%xiVV~J0JUL_$&JK>|qr7D`imd$ZsFXXL zHV97kvxxiBPq}vau^fJDg7_+iXJt>QIr47tK*YyB-i9}-?Jcj$TQJ{vV#EaY1}c5C zi6}p0mV6m!)R~=i{#(%D)Q>srI}Fas#G7!SUQ8dohHPp)@iO*KiEFcbW~~B#>{$j} z94XT+m`?iE<`BPtprOp3J)~2&6~0~GjZ`|~`GE72?8zPx8mbdFa>JJ_o4DL`A}F#pv*uk}Q`3+ZiEt7=AG$HOy*0T0Ko#3x6-=jD7LKeXN)_l+XQ+X5 z87IbZ*yk-T$2x{9BjX0E8AD+DQ6Vh5PIO(;f^75Z@>>~ycLxAIq>^K1719V?Z!hM+ zT<~8<>0?FLCxc2-MMZp!GIbP)a?iUwDrX2iRspk4MbQ4XMQiMxnH+WeyFRqw-??lw z?^otGR!6==1{a3A+~WF@Ha+>w;uF<@pJkdA!WYJ2QA0P0SH#oF-uNQ3m0o2|XgHc4sy zf2l!Q+P6+5Z=Fbt(_Wt(-rCUK>df5uE*d;GTQXSivbMH1ydrx3W+>y&Sl!sVJ4J5q z{s}X=0ks1S8Kxn_WfoGd$A52#27glY)Hw z^Q{i2zQ9?HL{nIfqU&DWO_R<_1rIwjz=T<&!UCr=aLwSjA%Nh_0N`;L5#U7;N2aEN z>(&4k3s6*p--1a@Fik8+@1RTffn4pAt04etBj7$2cOt?}f%pJ~HxUp0EU5SxPE%MI zbY!dySRj9mlmK~cNHKlgFriz__MwY{(3SelKEmTCt5|28`~5};CH89F#l++a3}9w; zQ(3a{;KVdVxs+I-5mA-$Eb<8oGzcA4M92TL^6armn3uSi0`Ls&C?dsP0>ha1GD>J>SkUbH*FiRwc}aI!2&L~*`2y<%s4 z2~e%>(-dwHt05{TzZ=|p|l>f_4Lh5FVgYW|m+BlLk?&N{={ijj-!X3d7a{&ss7;?G)f=gC!u-ssHoG zP_D9z?m9?^z(rp&ZlH3f4KzbQ0+W`wjrdI|=o*m3P?SJzGSRQ}1WD*JZ}9kpCO)(8 zR02&KRFK0CvnwoxyB454X!w9V32*u%8?7$hd_uBfp8&GuqN&rzRDi$$tpsbR>{Ea% z!?RCA{`5tdE$3*wViSi=P|TbS1UEpIW9(tz4W36E7{Mn#u@usaGl7Pe;L}pyYWaH; z$eoLw-BV|@OC4O3p=5!Ex$bNfh=G+C79ax|Wurt>^9<|kuLZ7^it2ukj%NS))uj}Vusd*#>imS$P=>^l__8sD{!N%A z+=hexw%e2SX5{6Zq*=^QnyEq4*bh%A)G8q}m#N9X8xdxs;RRr+ZxIXdBYQeNJ5_G@2s!34*3*%-55glZlW%pS3~hzq+8vI}q^rHAfu%C{e=uTecC z!TE*li{kCz&A(`E>yy~@@?<4Kmh(M!)CK-*RN+P8`_{yFaq`7Qv96Jtd}1v3s2ob~ z&+|OHhY154kz)H0DJfz9&TpD;=ZVT3$rQqDfP|fgH+P36SNQG`gt{kdefc5oPp=<_ zb9&1f$kev~)l7-+EbXH?eWn*5P?c(==NA#)IOAcXYzu)BiS((C3te zQ?J(!gv`|z2F*g<_3_Z4k+Qx_hM~32Duzs3iV0L_IVyfkG3A|vFakF?>zktn_Z%go z^MX3}0eUzcJ7VX7uqcY<%C z#q)!{dg$E1PC^UK-s7ig%i_%2ci4vC1+z}sI-;r zfF}QW;mZ1!LnTvI_`F#T?7Oima#WFqg*>;4(4e1{?n~n)O=;VIH$NKrKkch(EUfrz z*Nasp96vy?*JiA>WfZC~nzXkwe!ZW*BC|JkKUNc0KAA7md1i8 z$}tUdgMF@M5L>rRDXFH4o}g9CFYXl8(zj#`!CY~=;MuF9xFZYVy7GIbAyqT0uBI{n z(D!)?d2X|7f9Ux9-}<#~r?OkTdCP#m@oCY2Ih?$n?DA2WnA$CPUKmb@*M2zP>HqBP zcZpw6V*h(_?_=k~dP3#>*0S4aY0(`9~Hp7di1MB-51w+XxQyu}p+SoavbFGKW(FC|<*Y z$_#?z46I78W4?!H@I{0Mq;|BkRd zXnkhJPeKZ(wq&EeWfOa2)VyXp3^Gt<^rXEW2DZnZiBOe~gF^)_Pv9Vd<})Vc1ef`0 zkduKf7~b+lAl!jQ2iOQ+R0umbOCZje={!>K!of!?nFELu7+~~SKf{Th{u34_h);7C ziAO0oNZhr*uYc}nS-&$o@zJ9K55Yyzr&r;Cf-mdB0r^K`G%z{}gBPN;39@7L3J{KC zhaxW9`N;g4A9{N?Z5dk{%Fv37;{|~jiaA_${B#AkH4?va@iP~z?E}Cr{i`U4JqY#? z)IV1ZIF*200;Ed{UL#YVwMPJ!q%h<{JCFB$vjZU$M-oUB@Y}xbf@P$ZGy(SPxVSiKMmC6*Rby{= zDgkwia0lBa@_@t_xN<3zh<6Vrz_*C85JKeVk~EAF_OBwKa1fG0u)-;D9hA=Mr&msg z{HD!XywQs}cj1-I&0OkUMyrMPiS7qUUInCet8nN?n z@i3PDSzoRSkDz$roktkaj7_%+?+J{vsqjn3zW(Cb;o%Q00p2{^kE33?n_bONzE$I& z>7a=@vd$a0%LS*;)qUIBSs{(%@o5?*FYhDu)q4K)e#m=?;pgOR(;wElYOG!oX_y_J z{{Bz}o}Klt$4)VlY{jc4cexR<8%_k9f-f`koHDhXWt#@@5t;*{#w>=Y!r6xU*U+LFuuyt}ETp-UUuwWFCOUIu>J+(lKa^w3n7h;*@Y z;Q~2Wv;D5}%d!<>tVSG(fksC4C=r)HB~5%7yP8^v+W)8(^jC;0e&Wt|^o&mNv)?Ja)*Z)U3e7M~fR|HgAtijO`|{BS&} zS+-d$vS$ew0#pQF?08eb^!2{sCv%k>fuXBX){Oc?*6WLM)XG3yCHcP*3U}~xb-Za} znhOV7`Y|k8(%sI)v(Ztu`8jy_R0?*8$w*N&>Ae++kpeRJtrUR)sLw8U^wO&i^u3+b zi?nFQAihstKK3h6RCBd2ls?CpAD;TVVyIpsvoQW=0Vwr>lTf!5H&H}@FumNn8?*;Y z-C#Cuo+zrbJ2k!j-|SG9p6rLJ^3yKs^=fe5FLygwZ|rI84f3xt*9<66lUqNex09~r z$Eb~dQy4P7JQlQ2QyF;YuR=_W?SKjntAYEZvF_j&)cGi6fIK|h`9_@-+}YMg>)ub3 zTuqcRZgvNGPF?0!YEf-npY~>rUYs1reY7{yf(8P?cTT_HONxcO0KcJ{9XXT z$v;N)_^KG=xX^_rZ3d}uYoTN?sP+W37p=6+1XZ4N4gJuosa|dF?K(ZuJ+}U=PikUf zVrgx&l}L!p&7GecV7NQXjPH!x*;MOaGV=?*czUhK!pDqtzW#n#L+K%fQsKy7qt%;+ z)h7LgzU0}HA{zby{yuk_U!5(M%1t_J3Jydh$#wS&zh^znG%bDRElxrC5vTeJ*Z}J6 z)W4wbU;RHV00Hd$ufTfFREj|@7noI=^{3LHIi``S{*?U%=vJAi1@IVR6WltcDDcPR z;K9==!I}t63SCq3ln0$jsXSp~=pY)Ku`3o}#Wi-P~boQFO0iAa`qAo7{C%l}44yd=|t0(cFe`x2}ofiR(TA%;%$ zJY2=$c^Hkyqiov{Cj1&gn4}m)f2Cgz!hEJf{7WTMAT9uJ9iErzbCZw}$F)2LrLaGE z`{CQ$iL-Dqo;Jq~(jt}vDsP>HPaC^9w7uo)J3k0=^@gVi{Z~xyjt%S_LM+IIMC7m( zT3iU6G5nWV-0gy(8W&ow8=$l;ZkYMnfj5CdQL9dPGEm{xqra<-zs>OrKjPB;c2c`y zy(k;M;I=w*D*;0a9x7|0Gdwe7mXwtxA%-cssWZL2p2a5$$QOP&Aj6B`byABJSODnO zO#ok%S1XBE($G+!bV8* zJZw<@l{+ZJ(+g_NWqoZaQ-finMFvig=f=#-?7D#>>y948|BC7F|KIj zfgtDi#ABa_*!m5LE?%uX{P8*uSSO6_$VHe~SU2pyad62;iAnUY3#SRUe>tAOw)gVU zvj=fzWz)pFVyqE0AIuxD=XXVzMtZ2qkJc8%9xHhwr0?tL%T~sAv{2%eMQcZ~ds4Jl zcZ*uAQ6EmP!6rhPU*KF{4JRjwn@=QUzLl@f-m>RW3sB#TywG)O;bw+ z8|nXLR{Jcus9(t?vzClE`jUw!Z$}KK;554=#$0R{{3iW;rRSu@5fZ&VRJ#v1S_3YDTkl7~T|2l>0@EH(xcOX~9{?=Ki-ycC7zzmZ zg74~j;lM7G2ciI7K))lUfew{P6SDxuWYkYB_y=L2KLdLrA^>c?%_R&(>LV2MNLZCa zxMciiO>}zc#w1fx1$_i?s{c?jLj4QZcX{p z<6|^M#`tXiov8lnWxc%!?&r+>f|Id)Nx*{dlFP}bn9)MK{nAZ;JzJmbkPta?vIS;| z5y;oz!3_(eSC=jdA=D4S)8b?%UpLElg!cd)1Kf%oCf)JAbHe;SS~ znZBHV!7)*9NxDAF;t6W^1bXy!+0io(5s-)q6CGHeZgcoZQh@-6Cqw|vpS=&u zymawSUG`kiX(R~J5&HK#=-*SkeD^1296l0wM0@RbMy-Fc@YMtNbI;Nu4h{y45KT25 zA#VH}YrGc+2$fm%ojkF95CdFQ;YjE&Cgz+N!K&(ZJ?K4=W&ez^=(g3;W9{$Jdo0=j zHK+{cf#S)eos;I$VvQ2@uS}vY;uFFF^WNNtebsSG**G#W029@--Za^~z)SHg6Hk$0j z?RaW>d+YF|*nJ)`8wuCO@VC-C)FqCg5O4SAQOB+&V4{!xifK6=VM`V+C@8Q|Dl(s5 zcyfCjqv(QYay_l4K4wR&Er_|T8Xk8Z^=WCJWwbqi!zm~E<=~#S4*PsFGtm%vD@)n+ zn;z8AfNkPj6{xUQ#xsLAh?yIZTDRD3JQD$-Qs4qlNxjl48w2j|E919M{U=@z5_HFc zpRUDZDyCRLtg8VM;@yHT|?-w3YK zm0(<{hGSnrxQdl-+<#rRE{8483FG>f$KF`4**lfv;7VR}WZl;{AZWF>$9jWC9|)MP z#A&Zhy}@Qs{gzr(j|(<>_?&X?v(S436#a)5zULYu(|*b>qT2qZ;_KMnn;~mu6TA~! zYn=@U3W0h&Gia?Fz^;J5lSI)fGt;Gkkp_bKnC)<8RbUT)pQ$EYv_SP*l91Ptw(^y6 zm_(L@R7hwEp%oQYZPn;muhpMvqiU$9_Ab0KazsDR$f%?b1V%>RL8Yhn`+0hZjMi@j zRpyTVo|i|MKq&apJpx*dWsT~pMu}<7_!MrTT?vAjrxc&6G?p0|VWI48+cZn?SQ##pHg6#eU}IyZiXt7z;&bW@y&hPwLc8zy~A(fjB612*St z8XFggBO`aP9CB`(p)NJOZN$3)B7djL=O+9Im4j*r$SVWNzSn$kB=U&w8&^T~BMxFZ z;;iDAc%x zI1_Pxv<!%YTsp&H2FcmcbnvSet|(FmPa)y0TOmuIOg=_*4Xx(=>u)s5yqyLjU_k z^sPw_1bUOzA|9{Q_Oec+P2jA8nBvG2$}g~B)a<~f+{DC=NZ%!y`&dfdO?%y}qzE|j zlEzX*YFQvik|3mQpTPg4>CEGy-rx5>q#|U=QKCpA&B;E5tXZ<86h#qI8e8^dvMXyL zYZz;b?a*Y&)N?8cshtQL)3 z+8g{{*GvKx2YOfNfsAnP0Sd_N9QWymtHK1B7!wXMew&WY#$ut(af7i_*hz#47m|}h zVR|0Ml0$hCO)@b@ec=adPZeT#v13qYMco2u4OrqE#^MNQ2Afkb*I`k&x{WhKjY0#3 zx&_4mS+Rp$Y#DN)xj^CsjYu2;8Dhbt$rh&o;tiJIXhbXLVt2li*No@KX?v6rlR6q@ zoFL|`!-9#|(K3iP$eUuzvvHMq*x;OEkSHgY_^kHL%#-fCCAHn@9nvN~`%KTbDJ48T zBQx{()9}ULzkg3m03YMNz~}A2UAoe|vaj#9)fRF0>?jI-wJGSUClfsMdMv_q0|`K& znu?}*9OXV}#+d6OY;boz@|(qdf+{lnL4%t&0iI~Ed>P_jWw6PE>xG*ZqtJ8yQvxs? zeFd+YQ9CEZf1iWz#-OVV!%i%G7;=iv6xXZ{{OP|*lq)5g6s`b2a8C8ldY4Y@@wqik z*pcO1^j&gdl4{2W*UpQOdZ7&lGY$Ff3;r86rG7JV3FDB)|^Xm|n=1>rjuVwtynD)9j^LUrwMsMG4P0+MtX7R>#9VK^8 z%ME8THF@PgunguzF7J{uN5i+IZQtvCXRhV*aqm0bsjkO$RbLwGd5mdxHRbSOB5Cf= z&7e&Ix`M#KN?;b~xGjqF-72bviH7fKUE<~DaYy!1oQ~%&zKyL6bN8sa>Gb|5YZlj= zU`F-@S&q|KO`>lBbzd#x89N0d#*?Y)dxZ1is&72Je)`1+;C;;cTEY7ygYOyipVIkuEB3gRa)6oX;Eqj~u-#8n z$D~KHT3@Trdy)6*=cOxs3)VVY#z%?fYW#WGgzc{7oSfY0Hwt|!2H!cltiM|*KT9$) zb~ZHJs1^L|laW_KH+0TS={gjB_p+kkYM!)k_592#&t1*A0ReCr?brb7@8!9?WJ5^_ zLA9CJE@vSQcV~7^ux@S8WoO+qXsNt?zGfj)ZB>VDV9t9QCc6+VU;&ba5g7g~DF zB!p$#mjdfVeX4Gz80Eo6=k)aZ8NWTP-&S%b-`Lp^k6gaoR#oKLXt>elz3Jfl>)GMW zdhWz~Wp4W4cccg>!&@|y>lVv*^6NIE>Q**rlAeX^l&m^D0JOKHnhlG?jkYf0+r_8- z@beVDk)Y`Sk;`8fPOTYOfMXdUvV(I%U_j|dYEGc-1(WFl)B{((d@|7xNHk66{=PCNR_#%$|3YqnRG3^{vVNLuYl{(=qL>>)DgEN znPAt74(kiprTTj3n&H*K#3HNg3}@f+2*Fx;E2}z4sgBK3)$1b;wqG*lPX{#R`8B(N zH=9HA2bQ*a`^WbiS_b{v@tC#^SSj3InN+BTfTf-lTxye7-GEw+{~Fn)c44T-E$d1( zi${|zN$8*l&Ct;D!O9BcajFy+a&p~t47-ySUeJ2!@rU?Q1*fOY)O`CV%ot!-S;-ti z>FrrzYrRi0b2^*ufar?!hTbCO0kcrtlD=dtVF2efs~$uAt>QlP z$vbIzK3O6JzQZ7pbzXnj`vV!8nD>_MohLjfNPLmJAY)z@&DP3iuvhC|ix#fs z77z^ErQ1*Nm0(y~sfLDUO${XjS2=cHsBL(RC{mrn-RfRX_7cqlOs9Q@kF9b6t|ab$ z{rKltpUqyrT6L%-u9^?RVL$9#wqM*u8cNzPh-#3UXvo;_5%vx){N$A`o6X57M$g@KkK9^jWo2 zd=#_*t0sq>-3N*nIpgH&W%ajB8Ax0ZoM-U`q-^DRO6}ttc8>H(A zP+2NrQS+SEf(kiNN80&) zjni4F2qil{eP%u&JEiut>1TUBLPfqph2Gb_*S7B?8`>t0(_x8XRy}{>QF!lw>_7Pf z(HSfs#29FowR9{F{lm#46nALg^d+v+NTWWngM>Rz8@{9}%RSvpKAj8Z+A(+pNsN2- zxzLimPQema*+gWO@&s1jjU2l9a4Tu+j-Aqv!0-{++-CE$KH7z*xArK_#? zjI3vt2d=l_1L?6re+r9ZyIx!xmyNZ%Q{XK3O@ml$VP%>C0N1>;I-xv7lFw1D#51Ou z9tyX!E^pHP$%=z-+S}h3dfmi(brGX{-ltBxIU8$88#-lFnMGK;7K-1^;E$$z*_HG( z2kq8v*IVtT*Dcg9iQ=6{f|iJaBO{~FOzW0^`VPf5EKNgFgR?me5MFZwQ z8cBARvlWoZ|Dt$unzu{Y(z2Ja?9Ul1A5bQ&t_A)giyngmRHU^_KIk_sqG1ds1YWeZ zIhVj~+K3+wUo>S>wd3k$UGI@U9WbX)aywr7eZ{&?O+W%q{!v)Fyw-NvvJ#KS2UHHu zU8yQfTru4JWEyV0z5*F&qd#U!?sdMrboR29-(=&=z32>L;JIjWTnKMhX1zJ>x^!9Z z6a2X6gKg5`k%0ME<-XYlmx#q+Th|;ul>D{jCEfkFn zS|gV4{;=BeK_MpD%-!jfpz&c3(fsr-%(LyO#X#th8s@63&J0+u{ispmQ1#iGiCTku zZq(pRBUJ)(0TkRDXSaZZHQ0l%~ zlqCTe(hVR_1{+}=$?VT?xZ(r`%V1}XyY+J|6x4Wx#eFF8x1;Q0GKYYdO+X)d3Tj-C zOX%rCO(m@&)KA`9c3hl)TcQL_9R`QRPdZpu0TO}!L6-fm%;!xn7^#YTTNAu!k5|LgUG;FbUR{u(r-HNM@-86HmPpI)UqOg*4qzJUuPYj zUPRg&TWUoI`&8UE#^{K1)`*!dMhIc~9Frc+V$n z!O&!xs5^vXjchou9&vxNEjJY+&76HOajgbF>006avJ=eK43TDu>II&MU%y~vU|v#I z4G?hp=_^@yKp&22Ia}gC^k4n2F(s^0?rC{OPdbwH4iLz0{}tBKwvKOK$y{#Lw{R-gZ5WfXvJ@tp13kEC) zwmk4uf!l71bN2nhkxDObMYg)7w#|hSZG2$hKxXklrz5Xo#^3zZe;J!GIMx*<`kbDX z888Q0vZW54y6xWmRz83Jc!@*UXQ5%S#!P{HEau9iJ0GN zu<~1KBp(w#cvm%OnqFfrnk*g7Cl<@mB{5wlJDE9<*;izIG;NKV=;k|Jnjb-3w+&n! zOyN*t|44alKC!jMDhWo6GCjf{QgQX-u-|;H+n3em#x9zDh1c4jA{wXg2~4RTQ=GV& zBLR+M3&ok&gpbkaXa)UvF)^8XCR@3+dWV3zVNY6@a}RVW=Sr#LhDxJ4b+9|zqPwJA z0@2v2vUdH*?nL}EnTX3Kw1%F>xvooAb2C7cv8oQ*+%oY}t$q-FeRnIxvWV9D;!@!N zyJ7M0=I~m(yy!0*agUZ{X@eLGpQ^gRKcv3)dFn1zkcaPN(*M^2)TA%7C0@J8;GPz) zXohQHy4}WjTR;cjexHB|Bloq5@SSev3vP!s~JdCPQSqP@;`=Mi@$V+9x#+rLAO99KMn?!Pb2h7}`Ingp-|sB(<* zWgpnF4eSXwbn6ep;16LT{N?|^!+D{N(-&6fW<_c|R1-H%BmG;Wtmu2l9P7d@E2|)y zIc!N{J`|+9Rr>qP?}S|VILw>CLn)8lK~yhy;I1H5HQ%FXy*mZ zgppQ~(Oab104mV`NH=;Yo*gxSE+i3NOhCt^i#uh6be6Z_50HN&AXO-PlVFb3Hpao6 z?4FX$zgSrK1H{ufni<)~~EtTzVnAZ7L(O$&?9;o|Z8Q{+HEoTru_O)=yD$Ifmg#wYx64QA7Ld3$C3g$vw>;W2 ziI;mVq>r!mEh*~^IFwp?)j)F;E&R({R-3l@kAwCPK1NJ*i0~KguWnfmM9-1=weUA2 zBRk@=P9Jg2bdCn+>Y>b$a{%Nvc``KFG!RyDzdV&+BNZ2O$npH*+14^=fpBW$U99uv z_uDw9bn)uvtqT8!7wutlx?C~zVB#`oJ16HiPWHIGcbAs9j05UQYC{fp-00=}@W`%9 z!TXuii3{2%PX~LkcZ=1GK0VO-{5fBjM7}iNn?^^DGjZ-2cj{~}{5msa9m*yCdApXj zL2EgaK$}a;MQasX_60Ziz11ik_;5cW-|(4Jk14m&M8@UA>=rB+=atSp#i-Xmw*Dmh z{9ImTj7R@{^&elvRyP#~W@g#a4^cimP&aTbh#6N-=_Htzl<<5~77X7W7gc#nu67`1 z4plDochRhNR_1pF>$YNp)*IG#|EO(C211k4zGQdpy&X}TS*M9IMek8USw;zeynW&F zctxENzf#xS+|+Ppso(VUV6C%$0h1Zz4TRq}P8UuGW(QjMaWccrP_6WnHOY!v^4ecp z(7Qb&flHYjf^JPWf?dwIg~}9{^THUx0QuoT@JMa z&JgS8zuLkNYb-7AIXRq5k_` zyqCaNGT+-rZh@ak-;Pz=UidhfsnnkN#Nv78g)kD=Yy6*R#jTc&hYLQYdckyw&_)2@8#}xM0IPubZIWH<=ruF z{QQv5^5|lr&$T@OAEj7c*By;?Csg6^Ii6!v?Z#q_{G$!$( zpql@(=+1K8+sc62!MTIuNn?jo`UF+iqb)VTfxxwNRm+Y6F++WJBh555pwtr-;c5sv zSn^>H<+~PrE4hsS^@#j=WMctac}EdGR@n7}=^oC4dwB%#wV@KGe3Gv@?iG3rOAV0F z{{3I~0K*romN4RgKpft=zt5*sO&}6qhU4yS!*X?tfY4d zMql@V_vnu7e)NT*@sU7%JAe|dj0@G(16h)57uP5~_+H+_DTM?Z#%wNBr`yDZPTtTi z9_hQVcBw!~v4ub}!6(3|t^EdoQ9#b@0$N>4MjoJ42q=me_T4Bus`3N!_>e-V2aAQo zZg$kxwrc}YQS=z&CZ5Cg1ypbP$T|S(oNF<{gNE4`m)@*}6f0CR6Sn&$mCP zrc~*-R+JQ*tsE0cQC3qE{0zyV`?LLj|9Ta*J5jtlU2?}2#q(76M`XcXc=fp%prj(w zIcL}?p$L2@Q19a&<;34`wZ@tK-(Cr{gJ!oshM^PI8R5{^uh)Qk0@Axsl0JnItWRJL zqXd)_V4nnE%*#5F6`$nWL;-`%8I)%Tt5AMH0Q3m42O}D6vsF&#!j^^SGsFr+k5`yE z$t0RQ6-ErVRH6Pgm0+{N9E#@}v?%!f@JZoC1I8N%v?BIkfSutI;D@3884%4pfd{6O z@D(lBcmmAEkQW}<4)Aek=KZ@WN{~X(G(0;u0lP`C4}XPxW$rk) zyj&)E%WI|3%BSbWm%J|^vNV3M8xpIwwfxRYrP(LT+|i=%pS2!`Njk{6Ax?+8*iqFuqi+3C9R!y_j)D%ZnNhZS6ZcmuGK-TdB`1kjE2M&A0 zDg67isGgliSL;qjKK%4JkWO=TtZmCiJ7ws4TkL<1shQtcd3|YVvMYbwT0u>XNQ!Xt z@cwtrbHkTaZ(Qp@e5Cr^?PF6cA68bntn18)RV%)80TFY28oD3ZEVPM{>iky)n0^W| ze4b81aXn6*UUWU;9b8qU+~suD^pWV3(mgy4s&YM~a(h$CH%6hEqb45?+P^)nuPbG9 ztGwYKxxQAGH$tp39cfLpRPP*rkMJKtF9cRi3+K+QLF=(f4Y$0a{5W)D4s%5)SR|rj z$o)IX-o*gli2c_@ue9@F|ADVnd$>z)@BKP7AM=#5=-Ws1bv6x_Y9&sNxkBQ^XYVKj z8zG#~opWWqd5Rl>78}o=J>reXPg$aW@G*(9PcunRe7-y2;y*9Am0kCn-z9K&MZR`b zXZL&ii3SS#z4qyc%I?6;5UPmhNqrm%^|YL2X~=Yb=#KIyW&Sd{Dc&W!_QB?C@B5Ke z3){4ak3H^3c;X40*3VOXvi{L?*Kow#kZ&&~w=dlvj?WT*xm>pnL%G=9rV&fU+Qk?U zFf>C#ute?Zet6a9g`cHBRi|*fU`^-@!8yl&7+KaRgj}c;Ph6jU^V|}yFV@eV8e0)e%R@2s>Z2# zpOSuW<0gfyEawPHq1%ArQsd<0>-oNgLEC)Ex`nO%^K~B6ZJ7x^yR#FyrdFGaiG_9B zAV7Y$IoLbknMxn_p*Jeoeov=HC6ZUNr({lBP-})OB>eeP+`~FD;qV?zb zTJw!(XuI$qf2Omuo4noLIT8bw_=83>;c*bisj7h+6P$}fOKXmEJ#e2tS*oXOGyxlK zmgf@s7)#c}Kd>lWUTnP7S2$GH+GwxUFoj;_GlrMtGj9%Bjhs{Y)4?&kvl+B2m~>r5 zMMZvXTS~3^yE$fDDmyzN^uPwLFLbqLnwMwS^%a*JN14$U zmVY#q2UZkiu7z3fH7N=o9KRnB;OVs(qqe@E+}g~s+q~&veDUgqPPRD$rdx*LJ68g- zi7lWc!9ap!`ytX576+eRfqVP9INcHset6jQHvSs`o5a2vi$sPQ%qKAgBwl$~`Onao zl=pl=hT&%8P(B{pz<^1N1p)?O)-No47~(XQV8v@-gwqFMEYP452=N(M7>;341dKgw zXU^##0C)>bPJ-bGx*TyrSYH~&bv0@!{MbLDz!GqU^#Nl-wJ(k_F6o3A+@OPRAPOl0 zizFhw&FM`;gI9whTiScH8Oj6;D}d`gjSgU#JuUVdO`(Jt_ClP&<1m6^D!~ZlTI{2> z&gi)(mJ;7D(*?5^v^zio~CyIese+)$hAq1}n=euU;lpNF*vv}Q2Sq%wdSAXr@2feX}# zh)6(BEVTW9Qa)}J*i%>vP6~V772p`znu0;KXb`diD_5c{ZT(#A^2xYOxsUpx3tDwu z`BLCg!}|mjXAp6u-GpoasC@*6Q4LlYg5gfV8jNBPMe)Rg0szX;U%sZE_5fr#OmQJF z90_=9kiRB@9t$VHDh6tv1L!9Z!9_4UC3iDW5I_~uh4I@-3|ur2_7E3iTz?Xgr`C1N z($v+r#B%M}O%vK&_Y`e=VRe4T?lPAIeETX7k{Pj&=985VJXnCGzA-7>#`X>NRM8y8 zEkcFSVeXb*;n6{~>D?jVc-0z96Xm_SipAJrpO)%mX!zzqOU6KT|NUxO+=HfLq?ZcJ zHp1NSd99|Im4V-g&e7+T=HaZH>0C|=40-j#w!H1#OleGZ;6jJ%_nyvTlR_qWQPDvq z{OGate*ysrC{ zFtXVlIc4BhF;wYS-v8X=%9qr~RWlzM)i)pR`%rSJ>-*P^4W`EUM{WY%7JVJ81IqKo zJRW_-4zIWW*tu$^k3D9~u|E0@pQbZ;yHRRp!#Bv?mp_0*BwU3eG&;fiMw3zZ)4>Kg zrh5kL+s(X%;sdg`EN73a{P^BxdPZ_(W2WQ{t&6$^NaeMizM%DsY7l(#CuR4U+GdlX zKdInex|yS*T*5)fYxF59tnCeS@bJ=vSfP}q_Y3s*fYMeR@hmJ7=9iiJVxQKesG85q z*D$Ii<_xUR3FA1kGA_CId`NaoI->3zwjYsTG2Ej6Uep79@XdA9(62--LoY%6I zM&6io?JU%9lQ*r8K5Z&+HpyMpjKaw2TzpGPb_(2Be|(Q;nr7uY`6tD4hcvQ9{A_rz zxZ2-EbF;b6vNoW0yK#5Z^sB?RF~o2NIKog6uRj+r5HXfB-)>mmci7OpsXud&Wv*z| zFw1gZ8MR1dO0sSvx7NIFcW1wtTsY813EAh=)OK4(0@e-(&b9Wu2REbw?$|0Akb)fj zd==RC%(``*NIdnajJtg^(CH`JzJpG`Ye76`o6^^HQL@I4Z+eh;M*5PZGQM3PRzl*l z4}Eh*s?}nyxM>mEFL}K4O1|wK4Vh*mb^ZJLq-Z;*<02>QaU{RIYf8eH)OS^;6%6(g zJhqtJLC-g|z?!+u($*?oWuJ{-N`lo(E?bjzN8;;##|F*?t-I`ePO%ECE$SmC&2ESu z?h~v9mZooy$NP-(e9>4zD_=?k_ zkJw9t!3(H&%gozH{8nO$ldjhV;dIA*pSgu>Gl2{gWN>I4T!Gk zJqi;Qqy$8Mi@Akpk8eUu2G}m{IZ8#Ln_oYG#I6sIU_r6xeA0|jf>oO z>Z-;mw>zRw?<&n{3Jy81y{IC;UM&h(uXQ1=1!SvPi95y)Xlw<7Z4u=H+aaWb0cUt> z9*aCe!-38Nx-bw!1O6nH?{)%XlS+9cNH()lndMglisVqqMh0IM{ibuTcQ`VIsf3)C z;z9rP*Z4a@1MNZqR9FZXEJXG)(7zc1Sq2iho}l6M1VSi;i6Nms?((wQe0WT*nZ6cU z7)~US^Wm}a6Fit~L_Li_msvjGaxTW80m1^#CH=HKJ?>wARa{&$`UB480L)AvU;M$Q z?nq2Ba@-5n`X3k4fPWkbQ!|t;cX5ll_Z zkQD?CAV5uFsUOMwL7|i{xS~TSVQSdyj2BZJWwRUK&(RlUu2X1B&+vTuq9vg1G4;rb z1G$ik>}LEm$%DRmA1CEpepl=CZE)4s0&f%gs-U?|mo1OFo%Xu*A5jfbw{G1MfDlhX z!Sw#d@g*9KRyz-%x1qIdj*-CW8VAFxZ>^D%asTBeFhtO|Y}^C|N`@2U}$eHZDoA+UYhfce&K%85n38X7nVVhl?ALvLpnC z*u;P|9-7h%om7uDToWH^k961Zcecol2%0|-#^aC?AnXUL9zwI87SE)CMd9?YfXgP3 zjlU;?5*|WCgY!lartC=!W*T;Qs4L&GScr|o_r*lUg+glyB1Ej7;!Q2tw~vW(uU}lE zP1cJiZ@YSWmI2p0N?S`|alp~V|A99P&F@aq8BameFu)4PPa+@l?z@zFCk=L4J)^Us- z^-(?L{0Hvf?=i%lSr)pJyro5kOZlK1`BhT2d2wICyw-ye_Wk>%ifyL_sk_gUOU&L- zs2l#S?vzOs#z7p0_@pyvg?RW~Y_x58@}7xGu0ALw6s*dlt;)^_umq zeNo|LWLDQ;y>i;Cv{I^+ZNp)2X=kdDAwOzAr(L82@0FNygquth?CrOz>LHr!Oj0jm zCVwBey41{~8)^5jg|_&cV&K#B%Ic2fWI=KfEsmShj$N3kTRqb|eeSK<9TMZ?f)n3R zg1$Xm{|>f%24?VZgP+izP{!Ban9r64GaWK}&PDHB4-4KpK#t&nQTpj}?naiZ^xFaOe-0E#oRnV%G za8X-1xG35!V^OaGiE8py{$$+2;Uj z@d6&xAT2D%$)1ekC_kB?bM3_nJ;LJLeFOCw^5^lX&G`V=>9%G=6~Fn}SFvK#Nk(~B zJ`a{ZO~ebTR=w$v5p!q>z#m&7tqsrj(#8ir)1BS*uCoWT_%f1uO=hxkl8pK$Yrsts z&!nEld){k~pT%rb*H+9e*@ zG?uia(^`~7brRk@^ZWd{oa129k45LiKHB7B^Bpg#OLDog7EZ(KtN7lQz1T4m@4Jq~ zi`$J;RdrtLvr&?1_z|DE)^}QwW$1zyXIxiVRHXguOEBolquSx66Yy>~W}NCb&4;;}G@JKMXJy z!WJGt9ZVy1n-N!;MA$9#o15G+@*KdL^xZPyn!_OWVgdzDNc8Z3AX-BIjeCLsH&8(g zQNSVWYA@8c(o3?U&O{LX(Q-nVn!o>%Oym7NYf!>8O69CG2^bv(?A5CJte z4jv|AS>=;GbQCSuhO&c_0b=g6AjpH^9Du14!07@{W{i%OJ_(@-Ch&|YXmHa;mqPxR ze{@ddC{(NbBxEIKo$QhP7sUe91@tlDzacfySHk)RsxE*YAPdt`D{dK4aDk%kB0_}G zO0v6C_S(QB4}{1o_ort4=1Wv|DZiHR*@}t^KNIrXHfsehQk~21Wte56qQ_Io&hO0R zfBBLt2k0n;33^mxJ+-*Fym)uCmFm5<0!pC#a%Zbs5KP-L>8@~2^*@qoAf!8;3?3g( zv}2C^{5hiH1dHG+IGe%86pFNT6b(a|#{Oi1a^#M0g+2>Nd2lySm;YO*uzIO(5Q~5Y z4h5j&P5TmOhh-5Iaw+lE}TL zPssbV;k)^B)(sPu)2(~9aai^eZYoO=TN?RIOjuXneJ!ID4gD=Q$`+9UN3+3#E_^u&%OEk;o@=&vQP#bo+gOOC;MT10%;v zP`$tvAcBF$AM`ZeE@I*+>fN*Nf9@yA#F%1oCx48#85jSwyfv(2WqQ;y8Sc7k4N5i-%H3!5K16kJFxE&tb_)|BgdRCkw^zGk-yB!aoiblE_Ii7z&mzpbTJC0Yx z)8t;t#RaraXfZN&G0WyKT~y!4d`_tQQcZQFQLC6ZZ{)xo**y_nl|vKN!F)&5pSLgv zv-n{6>_6vaFFXxHemApgp?Lo)u)=! z!a{6gB`!Zre*9kbhWLi{z!^Dl-#qJRv-GC_4k&ZY&CJY8#X&k!ofiupo2^(-pN^MV2ntRHez%-! zJ8m`mwTMQS-@1Q{O~|>T1V~ruftZLxR!_NSGP+SJUP~Hn_V>C^T2C+%h-?@ zaZgqtU1_lNFrG`|GKaJhm#>c{Qu^8c>|c=>REH8kzT1*dyP;vzsc3&{3Z z9pZ?4*sRi!Aew7%F6rEd@G@ny<2L2@Mu@z>=I|p%5hLpFG%TyP@i3sru2^Y$452@{%j z`Ohsoxw1J0=c3PUXvJm7ASZNcm8vJT&M!bxdm zAG&w1xKVcQHd?!1;c4Z(ZtuBgMneP-Z*b**RC$;~o>pl=RYMN_4KaTXcYFe3HN--v zae^Y2YlCZsa{%$TQYd26Y|kP80QUM=4Q!{~z9V9lWZbyIxt@FGk`W;x*E7FPHk#O7Ue-L$8}-g$ zklQrf!oF2qluh=8?#D+`VL82KNJ79x_?fVBNKgRXHTBM~(q1#nUXb9y_4z_44&`7B zw4GkcOSubBIcVolxW{OmjJ`}5nj#CeFM}b@26-;XP%Z)SoUnb6y_CxXOlmiie-fJ9 z?!!6^_VBv;j2{SDb`R=hp^bxMTj(*LEg}f`n??73H5Mr(xAp}{3Lnu+$){frcQKTl1amzBjHrs=4eNMHpCkOx+Dcaw1(m-EjqF7 zv145=WKHlEFUR2PG*&hkV4+rd0IgW4H22IyF8i0{z^bpeEptp?K=Ju{Zh54X@ zsL7F2JwZdbfDg`dp=Mo*>^S>=5ji^!l zM_LsixjZ;0&jG7G#LFd1NI?~)h`lHA?hJzeJMrMT6Fv4)nGi+Q&k_p0EaMTHKX ztiu$YrX5Ofo1!DNWDnvR&ijD$EZOMCNPh+FPp&kmkNmzbwV7~q@B+i@u3G}^BUyxg zp}X%BKk~M~!_w8)fQJbcCl4uI=egnI1htG=-eZmXHG|&e9ybq~t5amgQi#qps+YD> z(m82X==mhY{?~ENQkQb``2HHbWaX92{Lmsz$4KV$3FiCQ zNiVxgIp))ES}t$j`6%(w?=p8YgBFVU;>}Z?*1?gz-;N5zeFJnZgU8#D=LOA57g=1N zpEz~nzstUlhP~|eT|6&;Wai*yso?O!!qYvyEp|Pl19NW&8?TN2ZrJl6{QSdxxq&Da z?ZRA*Oi|w^?>8xjjn53rEe=j2KG-e;CF~F~0^t$v_KUwMh zLsgBF3fm34b?aE7Z@_grghn0niRE$fDY>$a~ zA*0zRXEQNgj<(|}{tx)-CH;SSOi={`R`?}Hlq}8}#_}3cYgaP+hKCF$qpUWqj$b~_icCr57BG;&f&SuH8q2lv5B_F|g`K~b^{k&>;Zs%$37Kd5CdEynRQe6p$++UKY9wTsDD3q1G+ zubocnG|`FJ-#&Cx;MlX*bsNJpx$lf87=M<`KeO*MtkJ%1Sk2 z{J@8!59g}pCbhOkCy_aTvkRcIv*TjjLl#COYsBz&&poA(kEI=oZiAl12RR=}CNRch z1W!G14B)KQYXzz=Ah{4~C$McG{si24RM^?WfCf=Op}N?DbG|!<+33=bGvGPuS3{Gy zyPMpu5pnO$BJ-#z z#^82<6+pA2WhAeAr&riD#4{nS#}3y!?JS^!o#py||7^MQv7n8v?7*pIj2@AMj4-?Wzy}E#U)dQ25 zXPdA?8P%bqIAwp7YH{+P+1c6j5#Jt_-J$kfe|m&V-9}~+zY*OW`N-maRyn`B5qBRF zeuOoQkc2?Eio6Q3$WEN@MN7Z@SD*fKwAla8^loO*l9iI>JuJGx{YHn9XSfPhYYzi= zK?oBk>E+p3E`}SIby;wy|Ka-YI=B6m5I(aIe&q%O&~7l_tvga-cKWEwNAA3r1$Wvj z((}6S0gLY9KEu=haBGOydt7L{a{FI$)Mr}`L1;gR@Mk?SBKg+sY|Zh0-3R8hjb&xO zxKCeo=uS2&nPd#OkjeAWnSs-li8GXs5{x=(#=vyMOp_(}i^>pFgXOgYr?tnw*j>?- zsdy#V-P@Gub@mtW5%n9yw}T&5ii*9*_u*O+4+#i32wc>*e|JlQz(~3; zQN(POk@3hvOYY>IsJVUP2Maatdmk~U-U?cw1^tQLZ3ddXd9mt)g@y7!TDhg~A7g_+ zQsr>WD{@zNrMY9*%3gC7GqG6TpvgZce3wjsnR2c<_+jRvC9=6hz(rk3Jx1T9JI)ql1@|GopQv_3k)fq zJ7+OvSiAhgv~DLQwzybrvoc%tT;o9%9}| zH8Kq)hB~wm!=cSjen2$)IqUz$e{p$&Rc)!u_U;y_@Ti+9T}x}157DN6EdJ_fZtid! z?78ZHZSb-ThgRv6kN54BE!pje=TpX4-OCA0?$d3?uf_SXq%ZdNt6$F)`%jblE*d+E zGe%h}K2duxUo$pg=jPsd`d=}oy_)A|F+y5Nk8^CULd_-pD=QRkO{i|6)>HNJEp8Sw&(59jf@1Z{$bzE7$to6#1>?c|+!)7PKmv$9gIBALevT}w(vNlD+GG;b+J>jnEXplcX4 z*{8XeSReVDH$I+q8|TyOqf>I8UVCGip4Cb&f}1`=3Q79H z%FLbW`al4xH$dh?aP@}r0Nn+|*MRN-x|5jk?`gVsaHa2fK{El5*NEFTLATNm_AzLN z|KuPNxvB^YO&gLFI(ip+9z6$MhzQUFW;1Nk^|gT014AknLORH?FTh8wX?O&r0M>R^ZjeD<+j{Ok?#;)aqKa<%zglt6xh4r5u{fmo> zAKl?pkd!>G=DYkKt;+g{(btyA-#hySYgR+bfqOYKfA-Xn5DTO@q{8D?hnEU$z8`eK zE-DR8!U51bM#8(y1P)UJq+~+n#UcP|1kcmv8j`aRiXQqF1FNipmVT;;_TNfY){BC1 zxiENa;n^|5B+P-RINf_Rn7X8-xAG8bGj?goiN?$L^f3D^Chr|!$gor-hD ztQoKn@BBL$^%c&Z-4XLI@_(>@gauIByZ zfhdvx7B^le7hq!}W!d7z#CxS|XRfg3y|c7rmOFw=<}i$tc@x1F6C8|U9nw5~Zw7Vr z>#BpFPy7XT#mC=0*5ck+3Fp7B9G;aJ>s<*5axWQ-&Prw^JF5#1tdx;o$F!_)eLuhN zWZtnRcKwHnOuCaZGkzlh+Z;PT9j!K7<^$GR1$TZ}Z93NdF04~tt|eEU9#69KLmj>5 z5G8f@KvP_G`IjT6difFCzs6?X&T}TRc>Oy#_x@6D@9A7EEzI5PWxX0nH_XaZUSN2V zcx1P4pe}4Nu^w6d`N(v=e{yByPx0>HreMrAcY$D5-CDix&$^xIk!r6pA@Eoe^Rvzc z>~626zbsRz4LCC-Pqtw1$vgV8yQyS0qHu0%|9qg`hiSE?PWW{a+-bJ*|6SR2Z@Rpf zN+rXTX=be$PnHZ^j2fOawc2)Om0c5#_q5Oay*jhCzW&{~>brCC=U*EeRY~rSHLACW zhLNuyZ$urQdtJUQouNI&4K+wNcT$A)d$-<`)_$d zheEJrS}lvXa=Se^67K&zFv~W8s}+6N%c9LknoYbup@C@F@BXjR?;`BH@q1N{hPRdy z!Y|8wY0InR`P$7GwcV(ag50EnOMSTp!ncpzkMCOPX~gE23&M30Qm=+PKKgbTN*A;f zTN-9=-zaLmFA%j~)t?s8RdI|r%5C5&`3HS)Zv9vG&Jc8v5--pCFZIknF4*f}tl!Lz z$(5OdEZA#%>a%WAV^Bi@X{U@(lrbzaw_kfV=Z$Bi50^bb-=L?{` zwg9`&kYog?e{3hTD9qX-H_c%=c#7S z{IFeOFB1-49Go*D#_PxNwOV5yn>fm0Ma9exr7<7Xqr%1+d^5<(2@(V;vU_gBw##s)=Q+)sZ?w%XZ-i5K&>QZ*#&aW^YI~xD=B`d1cRaDhV_-kt=p~)<(8g%PqHa ztu}g~d54V^mo!_$ocU+8psN2{swH_E#J(8Gl#9oY9lMQ;#!~HpTZbEJIFw<1%0HS3 zUc-ci-H;qK1x@NjeUC<~hC`ggC|mFXlPyZN0qJ(GDF0n*fz}=eHe2W0rwX)hH;D=a zIqt4|XDT=%k-N zClK`NDU_jO!RTRR$_BZm($HW6zpgP_UMdPMJ;UVPp}933Qus*LM9yu z#l^*StF{p8U1L#XY6#M*9}Z{iE6>I8U<(lKH-%X%GzV5{o`5&XjkfDpQS=csd`{wa znyHfY{1v6P)E_iIvLT<0$w{Lg-tMGKJWr42I$vHyOZC6tSuZk&$ z7e-&bQ{4O9vm^H2en)+p-jO(2n`l4aydm*U@QQimKzCjslom!mwElTk=F`ShXYbhJ z8RtS~ZtA!Fw=K-xn9lljr@lYwVfyOoLdNeq4`*FJvI}{qSM^_g@MvoLXjYt(*6jhg zu-s24_ME<#@jm_jEE8wdK)2i1FJ0adN&I7(UYfD0R{jeN!DT;FBKBL?ir>3Yq%3K@ zFZ9~!JuIg_Fub_rtf+ve*TNk)V62T{xp@>Et(bwu8)P(t(5Qd*v=0x zWt<(Cc$s!H<;&S;tv%dxmHBjKyzl0JOGQpM@*&J`?pZ-ufi`P&ZtqbdM)=$7)t9|? z+IA2BwUZRWsOvH85t5cYiF(C(m0GG!z~a;APXF$iuk#M{UaW7C%*;~VekHj5|7iN| zcqknI|06;aN6S0&GSWa~3)Kl{CMz=yviBaR5~qQVvMDo!O6G+mBs(kP9Fep4KI8Yg zKELlD@5kf)sMO8Zc)p%va$#>{zd1#L;eqc|R@@u!V7F@SoFSi2&d*J0wIAKkPrHip&a z>&zb{D1PvC+xy`zuc-KCSgVgP=N&NDouVLI=0cP=^hm`JGMu()j7^x#GA$|Y6NGRt_HilMcGTVpTnZ1ywMC*z6;Jor!qq8(E@cKmP~GL zo>E!bfx?gC@7@QJm6AFD6g)jg{5xzb32F-E&uM zbB3h{^UQ7_BKp7kSw~M2E$jm<*1=orl|BF-csUK91xj$|1%1qw@&FQ9xWxlfbO7Eu z1cw?Bq04b(LkWhSgzzR&<|8N-JN)rSZg z{~mvPZv54p6OWsq+~^ zZy)Xi-)Nl6F3nvqA`dQASzY#}K#WrGBHag^-X;8N?M%8b#BZu!06dQ-ptDowf2yr1 zSal!zdffarz;MTHj(;{ir*U&UHcWqg!^lF1;3nB#oXM82<|V}ncC0`IGlq%_4goNm z2)I4DcOIeDb@X8@gkp?*
    G>1Vm6?y3vHhUhu8A0I89>2oFzFH7iv$YXwDBi@%<2Jh&>PKVR8~+gja;(N)g#(up`i^PsSuM_Eas=Cj>sey~Y_ zQP-u*@crB0U5e_ZsFC(sNs3BJ!Jh8^o}RI9PRTesinhUcw_Pm*9%_9vYcVm!%KJ+W z`z!m~*wABvG$Q6NL+LdxxIPg$-q21p9l~!*eQo&wduPb;@~iB|RDv294C%uj#(n~R zK?S||6m}n4iwMRG?iiaec!ID@9v3J9%Y@f>cy3@-E(l(=6#)(fz1wR=RXbT?LAmXM zs0KGJ5hv+W7N3CEwq2cbANt#ivCYk;F}p-W^wEoA7!epvB&h^Xd+QOHC1_E=;U9IO z;&iF{cu+GJJ$QHy?px95L&iTmnL-E$Mg&LknaPqG8s@jH$YzS$Ig1ILr~MqTA~Pcd1N#nyLDHRu(CQ=I3s=YLd62G zaNhmXSc9gTI`)}5VBpAxlh(fbXe~%gb8%6+b%jxrfgzx4Vzy@AWj|>lX!nUhSu{o@ zzb9`--cM3eP-pm8M^-g+r`gI!8_nZST@l2NyH$~H$&E;)WfCaWc#f=JTvZRt?Qv^) zZE~n#%8}4CW7u!@s_Gc7;t5XlL^jKRN@}0O{0_bun3!ubJ$EgtT1{g7QS!*)n@`Fr z2k%S1re(KbY)#VcTYGb_!O^vKO!TUS@q5on%|YiJc##hW1WYb}9(+O(XPIRfKTrzyxyW*P}S|w+n z-gJ|z68^<=L(+r26P~$1KkI(=mTR_su(f_ZeQ;(Y>d3|S112|bUEEL)P(hfzx&HON z3KL($g+RQFPnvgz{UC`{$F;FgLn*>;PN!9E1JSH%WtX&DMcUhQ;hp#L`mgbsHff{2 zWi-yd;Kq~aGP@K%%D`S+T6OTs8v#<5ywIKDR;f#U(ybTE9<-V{ATO55q3p{ASS#`? zM5XuzLh!W5ktTF!m}-O$s0bl17*wv=>go({_O}NwtrMbj+QWK=d3S1gwFpyIJJ0ra zZ(knAr&jtooD7SJiJ8{^oH5gP*7c&!h09~S|HlR3?{#%~`J*yv-FSvC*n6Mo=)2xO zXyreVfTh?LDebP7)KvvzCjk+gx7t~KQBmp=Op$>brI`zn)N@=e{Ea40nLuf1XWR}bv3>A)oV zYu9SeKK0ZWjcLjn%g%DGt>tXPO&R@pfk07#P}-X77E2xEZ$yWJdC{hpu|;MUC3VmEHN_KCQ@ zvwpLWH*kBhBF9-N!1uRL6Ng!L<*$O?UHe!1oQ)Tm(yA!Ir*eXcx?KkOF)Rap*cF+M zzr}7^75h_3E*0-96gxJm(*Gu#r3?iX^2G7soeF_UTOh@!o~;FjUguzKx>hzV_Lo*g zA7fX=131lVkH{y--+&uJTgAD{CrqPTAZ8MTKHxA-r7!d*UO-UArGUrrg65*W;iB`E)ZQxHDTsBK416%kx0liCAM%$6lTEAP(B^tTk6ZU!y8~es-pit z9Rs$@4?vl4qgTNILIy@h7LT9}QFDk;sPgeh% ztS!XKk%$^;3472;$#)4{JEy!k>{Gp4P^26*_Jch>r0`nW$9|=))h;kp_X?7hWHqSw zPSg=gNtu&AeG*hk<9kj0>yKHL_d08Kn_U9OlG-o(h{aj5H#szh*L5iSEl>XWgCaXu z)fl^%m6btOZxDWSqw|r#o{(kj)y-r9#C7lh`X_NR=Lb_+paUXGN8tD)3R@4DG~oHb z_vaiiGE~ad=peg1fyzX|mv_)YFW`Ad56*L#pK=6+<4;Tb9jWe&C#(XO9$n`+_r?}~h+A$ZX#tr(v1b-{Gv+^i{R#Z49p@O2=eqyjyoCT7BG(}WHA+8V&>fNJ( z);8h*&r`Yccpfdzt$WWu5r!}SIs$rUnX|D zPC3o&^Wxap-R!mlK_s9}RkNJh|cG&2Y+y?~O{_$guaRFxj$`!rCS8`(%~A zckm0Jd>dxh@cV11-E|%HP&(G+YRpu*SWy>fdFoy|hK7iu>+S2b312r%B2()^Js}qO>g)3{ zp{j7bmqM8t@?n^{T<9;ZhVlNu>T=Q8IQFgDr(3BWwtNON_1WTYWBt8f-c)1npSJPv zcN4nfg2e{y{^$Pa&QL2JQ#!;NpDjyj(-k!^n=*dwr{wG&XGCEjxZRr$Tl*Qwil{xM z&w7OIN>b3E-~j=tUm>`;>s|2}ysKNalv~l@;N{KP94LB4mO*1ZeWcCt7>4~#-u*Ga zkxOTmy$Och?_b|lnq5grQq$#~Es$)n?P(%UuUu;PI4l)avF%-W(}T4{kNKTQq8i=! zg&{khQ66YbaVq9`dVx+aCj19=bs$-3(O>7h*+g*jG@kc2@t@0a`LYdqQC(5m_2p)< zg@T`rX^`MR{9Da@?&jwSwkg^cwkxBnOEHbYCpb5MGW%HV{Hg-~?!fi_41J99xJ&TZ zE6N55EY<3gWL$!`nm4=&M6-o2%{`U34$>A_&KQ$*d5kyK_J&Oc%^iqN*XA}i7d6|7 zGbR&u{^Z9S+xG&x7lQT!dSRmT+K<}%Q;@S@-W)ObY{jdORJ~@~#m8Xsd z%l_p&+bjnf{XWGi?QUL~-?pB_l=kQilq;Mk7W<@e3S&1H-##y>?=A z8XmhYfu3al9>P`$Ultx34WZD)fM*W~bM&|6yy9Rs>|(K*yeXjx?@-C#)d1zq+O9Ge z^I7RWm*M!NcEZ*lN3utN@ACK;ZQfu=7vE3@|Lt+(g<#K>MZLAz+dYKFiKdAx+j&K= zu^(Et1-p}b1WI2~5oPo?abe+A-P&1>oHV89c6c?6+~2^;!55ZRdkyD$j|qX2!3Ii2 zPf5}sj3aSBe_BWgs=(C)AKiViIr~V@J_)a1+l?w`1A zO`!$DqlF!4MHQVH3)4GPV6Z-dP79H1=RzQ`6ZiGo`2%o$lX;xbx}qhKl?jzuo%T%D z=2i9@6+Cdos5+JiXh2k3)+-X^_vgy5N&vM|z{~+4D@YrHq`s$&!4Cx>^A!=TkBX=P zzg56bn_4PGyV#g<_~++s8Uu(v*p(zK#iyELM%q36o@2!1@S6`Qp8k6y#kv!I=LKn8 zt)1sqcmAyI?99%lOIsbTvj;Dnsm`%t-n~UJpP2oEg`HkN(`}O1H#TzSCgzERl2(YP zpVI6z9UN5tAs00Ua3m;>n)lbS@{)zobhP_QV6A;jL*PYP%y;Oph|qQ7$^zs%6ZJpGMvMOW*1~>$P7bnO|7mjVujpG*84KWLOFc>UV188v zgO9@QGB~Bf-l;MuxZ1t!xnd zxuLSthY(^eNs6+3fjcPJ{t6=lW8g7DzmhTnKo!`6FL?X34s&4na$ZdZiw;pjV;cEuy}KiMJ$X8{A3;97HqR ze-${WQLfz*J0E9NP1)163?RlE<@fkkd3Wf4gqKD|{j6M!mdO7ikKi%(PS_=~%d%XX z_P_aAUbn05$?op%vlzAg*_u7E{Wc%$>7EqGgEuF5UznTY{|}`SqN2=)yd;(8BZ)jX zVLme7At?E{(bJBH$jyidBKhQBsWo-*v2$V7Ps$N5E^NO>{xy{MFlhcIyQ0cBMxWN3 zm!fiYk}j}O`XXIDL-Em!k}Xo+r|UQoG)zdu_{DY)WtNZ(PZO``sXvYbI+@#RJnWrZ zJn_@Ak;INcdz_Jj1JOT9Ej)f^zA2{HwCum_9ya{Tf)Yojro>S5W&6YNLse}}&*iRY zCl#cnrYZSuZjRqeB|A?>0WY9$rh8+zc9?5;D1)TwN-oP6M8)>eSI4uB8ky6k->kpNDN+uY8F=ydvj2-psVD7TT#Z64 zQVkPc>lL7>xWxJ(ujGl^*JGlU0XTf3(us5>H4Oxv#|>sg*poAN+bq&YP@(h34^D_onX( z3)N*wgQK!H{F{~u!MtdS_e=2sWzGidDp}5hwX8YAlU(x=bISQG8tniWGda!o; zq_?dt*s;&NI+b0a`n|rszty3!ofNeGpai@n0SLsFU_U6G*($?Q6s)JL_VSenT0Z*t zt}c!~o(ae&I}hPMcsM3nh32t&+9cA>J1l-^zIGPx?Ua~)d24pbze-e&cXrN8V^umH zjP^*r3%gNmWeUCrI=u32*5~WmZAKc1X0Hj1G~%OpKpxn(r7%c-dW2v16N2zHk^3fd z3Af%}6sD;#DK)^{5e*{o^73x%PET%^L@W6(jDoAcS`G9sl5Q~k3*p50#6NG4rs~=;KeB}d7c_L zDp>~|%BPPi;HO6f(ICvC-$Qt62>fh_YG~OleWw?h1UNQO8N3H2Z?+y?t@yw~Pav*Lr@_el%blN(o&7I;j1!WQT-Jj#Kw7yc$&bLCW~OvH3` z6}Q%Z=GFk0g4ku}28Eiy1>L=I(wChQmm$Ii$jmFQ{u=f#_nzC_*?}&m=(8)%(&Rp` zz{AT8@TM^UjbQ6g4rxjsI|Km=Q+^j{=hq$2)(MDeVYpmCDgxzcL&V=-OXY(JKZ+{a^TMG!9B3dvHLHK zpRA~TQ{;Z}DKSw|0HyUYb>h(wXm>eo88AIz-PHKMg){2&-h{4|VyNx0_zTp~RoGtP zx)lm>?anq8=O8jNl1lS$OMtEds~x000^LH+7T9`xX3&EWcVL3L`b$hi-Ma#;+kuVa zAV&tw_2v5#m>%FG2a6c+{mejCC3!BZWre!`p3Z#&$RIq8>{wX%A$JM|pKYLlt_JZU zk8XcE0f_*+4NLV?^(78!dJd!59bsj65VW?oUVcAQ`B}WUH*uVLjKv2X`3m+eFJWQ> z^IR_;r7|56)!V6!cEj1<*FN}9yDm_dD)$ex7q;;(Jfz>sifGIv%b_c`?}#uy3`H=} zshi{Zt{`yox?{51H!ryqz^f=%z}j14WI9YDEgWHuW*5i|byk@YZ#`*ylI;dr?oFOF z%eC~8i)mIZCk9KoUv@1Ox4XK~e>1yAn>cf)+dxy4N2w{{eTRWXtKEmf%);APR{rGF zJB55Vp0b_id`s-#vMJUOdG#xtbEB6M&d_3^aJk<}I=?4+V}tGCTebY*L#s-}FuHVW&# zU#zRVtF}L>>^I%JrorUkHy=$uC#n&9G(9t9$|L${xlS+Dr)>%zoQ%@Z7>v{(U7iyCDk{U=`!!E?i;JG;;<;|M?O<^^)y3Wp8?*QvhgAc|5G@k)K2g#KP+ozadJZYskdv<1j(0CD%$#*P8RmK& z<7cv4hh0sZ=beYRrT!H1{CsIflc;FvM4+#`JI@M~=8Z00V9+maW^5?SSr*+@BJx%m z&8(*ful47+m@C+PQ;X6a4qkk)zrD7*=K8_3;GlxZ;rzlD+oaM#3q?68&6&E#3}oBc zW@F1eQ`Knm0wcLW&|sKdYIIP>o~UpUO~5}gD3xf7A>_5=O_Tn<18S{01}ejELGz2n z=w>;en%DA{KLJJqa9xvA1tQ~s*GmtA*9pk`J_O4Kc)BG^hQN&q&M?%oi-;gBPgHme zkQ8P!M8`4MOMJ+*A=M$7VlD4u@g71zegj%F3U;clOP~dTg9nV!LTI{c2z6@8n;@An zoS`$UdMIEbfwa@xXSMeeECDP0%4Iy6y1XSLR~|R!6p{8vdeZiG_5yf~J5>{(3Tm>8 z_*$PpLLH@rTxlXrCbjfHP28?#_@}EuA|b^HV~P$XoU*nVyF?&l;=9(y>f(U(^D8dx zvI#Ix+_;nj+`ad~llE^wjr?U&ra6^L4v|B+ClJ^dLd7Hj@Pc9u-{Hl*HaRfM={N?9Cfu4L1daow2LRze^8-NjAS!|np0{WHaVi4+tX@_teEqrneRY?>t<)n$^w|Q^tlZE zp3Am&sUpZ?_qNEF2kOFEkxy}B4t>NFEoHwk@_ya^rm_?~-w_Y~2<9Da{35JQCzToC z32T@zrbz-H#T-yRW}s!z|GO{&q6us}Xue?Q3j5U5Ap{(xG{D0GUZE0k$>@K7f$JzU z^ab_2xCuWOmj&=`{X5Z`WDj19m^e)l=s<(5&c*#`be~tt6nnx@ia-bi*7%kUCV+p@ zg-elR&SeU+vU~|12Rlq-V)Z{+9iV}f18rEYo>BE)iGU<0z~>2)=Yrc;m=QW!zU{Wm!X3_8GK9)b}8 zD@OP-U2I($-di$nbW~It*x!C;wJyB|#`+t#K})E-+2l|JKrt8|&=KHxE$3i;&__(} zzz^8nfTNgceG)aG*v`Zi#=mh*=u3|qSCX2t=UDv|b}4P&c7JiBrpT|092gk*rL0Vb z<-oIA7IwbX1DLRo*paJ@^Wyxp0xi+ZSA*R?4w`@N{nA!qgv{^xdER)VdSQe0NXLda ziW3us*E?r=fKjbQ3U%+^ry;LJqcTD%H<|c*ATV&|y1Y`Db!3<(Phz&T&Xea8NNYI@ zTE=%e#e$j1&GssNZ>2~t=8wD?*J9)GO4iZQ5%9Xk+MGN7cqaTesmsPA*dJtVuD%E% zfdecBst){FZ|^p#a|&F&*m@9k3U5uQExbdhIO)?O;uB#7%sf$6)}}Gt&O!ezi5cyqd1$A28+tDm~novSPt(F14%cFlA*lS z6{Qs58MxBhwAExuf*@5R1KyWniMlF+wJP5P{pS>W1$ozIv>Y2!B*8*8#`@%uzJPEF z<#~UOTgr;D<@U5Kt1eGUa$e6HudJwKW#3iT=jB^1H(x7k@I^ck;P|Y<7?RL*`I}c$ zMhVc^CggifBf5Po;@mYjpJd994NVgR+IJgV_6o-8GA0IeR>q3E7@|^l{>)h^`Fk#p z)IPTRkL-FbDBTNvM9jYL2!NnFn_ITdmp$fwvsa1fdK0Q1?*>azhwNY8sbR@FN;{vO zy;p#MmAOJ(pVt%{_FJ#W?TLBTx;-+omPUe6;j{Uv7Ons7RX5Dk?MIRPtUe2{R|(1# zn}g38c#wMNKqP9ovmvJGb1XF^yYH{2NLJwta0Hu7&%MJTqCKRA{-t-U6KN`QJ4SFF0_;dDonZpel7Y%hnJ#y?fwG2r};zKkJ z6(Mh!o#uQ9#Tx;bO{S~Hm1UR+s+YgTRqvKST-CxDfk z0+Y9i${v)7bFiK_w<}haO%r!JW4f%WH)@kyYBu&7)0n7_9pWHbsMw__Ja1SA5oYk{ zeB!7^HqeDG{PUy*6pC2`3BIT2fdcsC-w_IKc_vivISr}_K?xP$gK%@et58%+)YFfE zf}qZf2cL@;#3JT=Ik=bum_;Q5(EUqh6_nJ}lK=$s5R;1WQ;iuV?AVOh-s2id8Fog2 zG#(tT)%{eygy{W6RyoKW<&qVfOmHhCxG7fs)>;{|e-(T4WjV;b7j~AzvD+CZYL=H* z#HtlnXWUXlOp1)koQYq`WfkP)KALY=w_BunOe}TM9H-)XA4aYk`>H});)5(i!4NoD z0XF&dmiqX)At73?$18Dp`p#fQy48R)So{z0A)io<;s27a+FJf#rbxwK(g8QSV;G>C@8D=F@aNp9_tR=HM&u_)lQ`IUX&3|2apg zN7Zk>9QO|mwg2_IHc3bm{0Oj0o%C3orDA&fN^uycb zIuJC6R}Kp64t!~~xQfE_7m2@r6PkR{Su|BKF{x-HDlB7AJ*Z3Tk?UhbdfR{w`Y{vJ z56+6O{#q*x%0Vl(K&03fQ}&y)t?^y#WY~w$sYV|cZp%U5!ns#74EY&eoX;nUbvaC5 zsUg{^(~2|me9m&&?d9h9!6KUqI6DtSs~ z&}arcVK0@v8r`T~`3XdcMqyhx-Du2H0@|^D9;JTd6iT17MNJT8J#U5-ys`W2tmlE3 z65VDd<$dvgUxFTS?DL?Lp6^0Gd7jI{rJ!o1Ho$8r3kO5qDKW(W$`}LdUJ-VS93H;g zxmMR|BdI%AVVhdA*mRdU{~mfw@F;DB^Yh(U$?l27oBAMN51-lX@pt(l(x#iH7&O<|o&wk;tr0`a+j6ExCuSRngqOIlf*irE{N|&A0+>$o!W1=`NEhW@3U+^CEkBr`K=9j5OenD%b}qa1HzqtvXL_?UCn|Vt zFFY+6KvP!b{snnnvB+Kv+8O77g>~ZN$Ctx{AudCgD?qJLEnsH1DtPkOu)T>-y$?s} z*cd|^XV>&3BLA(z(4ey7ku&LsEz&U6<>e1(_;<%!%j%vo+|xSL#IYi)%Wh_XFVSJF z4CwRPtFX7RNQ3f8{q_o)wpGkjRxfByX=H!5nyD-_`6n9`-kbx33%GXFk(qibp{hLL9uK!B2Wk=f z7v5HPs;Qz>D7xkQi@G%#%iyUbE9}w}vCC!q`!V#kHHj(4!SPs!f(>E-woWdmE!U6l z*-=4Ey3n%=xdldL1I~jf2k(5n7|kqvg`KaODLRQxJ(`(}dU)U@4ehuU(`~-%cYN3t z?7RpCZv`<&>k|ym8y$0yualXrBKZ_pRS!&$=}nRo+If}ym-p0su-hwT!CS-Owlhv_ zdGyVYC+n%C-_YO!5So9xOh$>>OQC5YiekShC7RvI1-6K)<)n!745_D zChy;GLf-cd)P4BFApSDc0w!nM6df=MU*z7%q7>VH#+NaF4;UA$N|6 zn6=r!zax%9mpDl@?ES3YB|*>_cE%-mAxo_4k?O%l`RApaZK+EAg%H4vLBstk<>SEn zvLx$wmfm^i1hOtgu8n)H?eC1J@dgL(2aqVlX5&If>D@pjk|WS-Nrfd~(YG;pIOH*N zxWG;O;jNK2y=0lg2{D_ZJ# zc?mRnh6#ufx-@=NH2I%8K;YsiokAw{L>al$hFagd!IUxfmsA0c3W5`oK}uLuLaS$}V_=AeC#|LaQy{%EVDLhI z)FI0+A2v$Ff~^U1Nm2z9bj`fPfW_jp{X6HCl3EA6g-}z;1hr7mj-NH?X+hD#p;x9j z_H%4HXaJl)9jXhre#hf9cxY!~cXVMNCLD%~??^0pv5&X8c0if%wZczx+^Ftb*3@d)g&7w=7gBJ@K3{KDw98^N# z-W`q0rawBMA{nM%mJ~cxTC8f>(jm=8OB*%1DnQP(cr0}DjJUyulS}&IQ~BE`U((UU zg$~)v#FaiS@zqhGJwy{2dcv`-p_P-~sq0b5{m+NBUee!aZknETOnFbNS)%=Y_2@}! zy37yl$TJy50mY$0*S=qIFvYEH@a~M~)NKBRVRdCs4ZByD7Pt@V8@N{_<{3pz|C-2l z^6c#I*DK|dO^?-bk!-fnv?|uS{`5t91dn}W$O3lvl|vjW*n&s#Dj%O*Gm}wfJxjj9o1DN9Ku*?UB|g*&v&*eIhk{?3 zlqjVaxT=0f7daPg8QUBRai`u)Z1u6S@8TPFfx+y%Z5yeVVGY}w@Up}Au_3k855c#R zj^@XaD|9}22jYE-Q-*%aM(%pAnl^eZSSBUBxSOU$g#JfitzP}xhgq6y(@RZGR+3W+ z+Hb3Bj7kmi-Ds0t*Lyj1Qa~+Jf8ti0#mac+)U&=QXKwB*_mgh&dX>ieC}@`^>&VPJ zu20AMOB71y=t2}i?9;^ovSqdF)E|@GO;0JS^CbU`$F{Z(C9`i)f4o}c`Xtb3FWPrH zKDt6By~!R0Qt5g2&Mbg(0h9(CWsvXrT>WWl|deFuu^C zdB6*-But?7A0f8&Rq1fIO3jSLs`q-tf_Iy(%DvbA$oBdums5(Zc9zL5*u|wfVV+NS zZStN*PaW03^Q%8Lnrz$?s6KIPeJS@N=y_DA4|%X@x(-D>xjv8Yw`mpQdx9&K?&<^!NyN>e(lj>%0Db8mAW zz0F#qfp*mqLiiqm-Z(<1uxyUT;eL8-vH(8Hq!AcKee!r&HDIFTLBTf!+8zL)atXK9 z=n%s3t|){s7_TCPk^CGW@(cCVF@#uOA%XkpDCEbQnte#i1XzZge5%X(BQ? ztDlZSB8XjLaxpGGA&>S94{CWTCrVdWmtP14U0K*Rhk=1X=n!AlI0qoo2@r4s_F2ir z2|cDs*-K1KrVd?~@(!t>?F$6T2Au{=gGde%hF(5+jl(MFclHH_hN|!&sqQE?*?AEA zcMjZFZaN%88oppeYKTOr7xYjuXE@d-09hY-5m=m~^GJS_O*TL;sH;NoWK_^Nb@aPD z96*!NT#athNiUCv`tA-GTUwmAiBb+){`0KtX0XFoK?A)f2s z7rs9pTF+k6;7{DB!o53dkd*!K>3C?SI_I@0>v3_T>(1mWd5k}BdFf|rd#)c_aLvwVu zm%dL;D;h0!hvg{W$bmlFx`|Au z)}tkncbeQ4jBKq5CVUvqMz+t*2Qme5w^iP{hVZGp;ccGKO3xHEetF64s)PU$JCkCy z^Cu;(+KU|LQWN04v&y>zYeO^Sd;i)~bW>MyCFt|Yt)4$!6>ELI&Ll$n_eu8qt7k0j z3+{?oe(6=oy}>1ALOh2=R@d=yMsnj{g@)fOKaF8WTsy;tLP&C$NHobYpZSK%1NC@q zY00A>}T6-zjwk~AfMSJ!f%-QL!W#~D$)f&TlO&wD#w8pe)&af-Tr!MN!b+dVha^&1P-XgxZM!G5B(@R0K}FL!MGR zXd-q+zMC$ACq0#|_+EiJi{O>@^&>#UvVC!3gZ#|TV_}}5Pt;;wf92=1G|I^1sBIOi z=J!(q{SAKmQ)8MkE)pWNX{zinF7k2sGImaMm-;CsNofxtUpl_XbCyo(nOa&OpDG6H ze(tn6Zi^Idp50pB-OkReI@`u5c&v#WVRP9e$I<2S@zu`$iP4xG$bAA+fTavwrIf#+ zpQ_5sOuSzlBx_rW#+_a)E+a)cD-8~klDt-KrIt+Hc9CngGk3aE9JIZ7BPP*CF3qaC z96R-3k*)aM-O|`W>dX3ve=5hN+RXaOOM$CV)7thFH(W?D?K>|tj*t&k{wzww0TaQ2 zC_N4Tm$hDT3&VuVwu5fu$YwZK8JT$oY>y0)oN#;}^0Jtf1uJeqixRVG^e~-FR9Yad z`g*b&oZ(^YH>Cd>kyjZ28KyY+;=_3%H;>R~O1vzD!h0AQ0v73U{3Y&P$&or0eM4Z^ zH9=NS%u%G|&7Sz^P(hzKSKva7CKC=Y7OmcSbgR#t5V(~!DC0sZcVGIp)7$e*je+uP z%drQF#|jY(oUPTWC|;LyD88mxz7$5J^;Z~|fe=R>q1CU`HEll6w)6bgObml0z$+E% zWVflR0Qo#0U!4gz9ozk(q%y1EzgabVbHEbMFXEn^tJ_g`h4@(AV!V%_ls=K|2C_LSPNjsGt#-w8!QpXuf(N(BHvuJI@qTo7qeCwMFIv zHw79R8&ZisH%|h7gi0yQOXL&+%7VeamqJJcg}kCKgt!L)mzL~}9stj%ZwGjG2tes2 zUPj3xk&?}F&lsUIpbb?+?{y?)-%vlAgTX`~kPQR(DSw*Fg7+yTN^eu5Gz~mF4ZT)Mmu9-K#J8qyjfpVy+T|VE_b^- z7!?o@kdxCGCu+g|vU)*RH&SDs*Ic|fHgRKNhyt+9e#JLfmKfm?pnu2#=|sm+l@6h? zChRNl{sr-*1K4cN5)wJ|ch7^knoUPB!fU_aJ^%wRO#GM9#y?-4{3tcuHA z!fX+Yc-WQxd6DBcHUC4(FKG;B{&n9PaImr;l+LdR&^ZWwK>w#6B=vx#z0WJpJ|?7G z0fDEkSB)3d4WA6iMgql&i>uqzPzr9V(4@K|BJjWmaX^1|Vg}Su6)gf-Xc8={@G)&T zvgrat6bRHGXPyNM{U+18mV4|RFpory#d`?da*!&9nGF5`LqSgDokV>U&|+^$a=e81 z{D7Vz^t=k{=Q__lJ&*cM>L75qyzAYJCidqeB-W1;jjI=zy**0HOgvZqR`QYpDOI{W zii&a;+&q>oa%yPU4h?|ZhKp~t@fC#t8tKT4r_{9$;a+NbP7$GZK~T#5y&#_*!;%b^ zY_`9JUELsyj10HPzl+r$kd_gV(e7%q{lH>)iTk(*+nLkEEGHT@I`+VmaDNm0IS-U*(`z z`0r@ZJATx=W4Ah``9_XNy`v31v3?gcn^{7qWgh&OTyTY!Yx+0O>|3XgcR9sb>bwaO zud?T4*LQ8i-`N=%HXTkpcw6M|aFUDkxw`_$;@Lr^vxYqbEJflp=Qv;8uo!TD`|QAM zv`NbGBER0Z+C0`xfrJ-x@kyb7X%B_`7E$8j)m#!{`pJ0g64RXrHXX<3c;3^q@TD@p z`F74ecdV53eo&O0jCz!jbO;@pcDcXiLyq?2kiHM~^d_|QLhtA`9=)aI)8kHh>)fc< znXRoICRpy0rnuE(wh-h?9%jYvtn9C)?R80KJ_BacBu`$FbkeMz=l;ktmDvb=Fl|Z4j00we`oujXW0c#=P8hbaYHDsHO^V$G}Cw+Y0(>0t}WTe#hMpXx3_N|P?h zx6(8`OE^dO@Nz{`S;NQYKhACNt7~>MA~09tB^jbBZxJ04pI6qK`kQQuZ+R1+{7tv} zHNDwi>%P#?b1H9piKvSa$CakMwNvuj_LYi^vn;ok^E-^JmBT+G$5N{jJssZ_$t0iR z{`BS-Qrf3qx??VOGxAOYX_>Vzzw6`c{YB+1-6CS8;kJ9}aPML`G*{$);kSbrPj;afdCFcAwlBbY>V(_T94`$@Uh`)eG^F11dWvHh;$8&- zFR%;q61<8JLN#j9GQ5egkaU2OBBc#mNTNP1-#2Il)LepqHaQgfrT!uE5rkZvFcjuk zDu4yOi5idq7!d;XjVUBP`nv#B7g)#;KLxGQpXhX3hm7s{lL+b;V@Aw2A zAnd6?b}Ag_UOpoKAxRwbVfav!OezmttZ%RK-ThVDQ@3l@CuUXQUVmVLRJGrTU3Ljx zT`5aTUgwF8HGDXohq8ycISmQYD0ZlmKvaeGP|g;1I^aX*iDbohn-VS1u;CEQV(tr{ zLuRDCm+1$(V?|1}NuXDFNh1YH~bKwP8mA`wlWX6GA}*PJe4bhjJj20R*EW zRmVcK|A9;~;B5u_LIO3(LKyW8mOEG%^DxlZuZL1ACPYT2=OOOFe_ZTHr%$mL@*vH) z^1#ZOgXbrv&Osc`!cOf*^?Hw3+q$j#@gUy&iUI4h<4t3&_EnRn4xj9&!#@o;Hn?$Z zqfoHNtZePvD+ylMW!;a$E@3Zh9I07v?TZVbBx%>w)C@UF!$x-Y8rI!iUlH-S*stx@ zk@Yyh!GO5~28oD!k35objBRi#gpM73R7FTuOn8W7;lJ+9RP$Bt460%|qj=>%Y z&y*^NLW6AH+=yUoil=5k!sZ5B8FX1B&70n{C=mFFWa&T6qlL$g;6s%d z;iaL2!>SlWYL8>)xNoqu-Rkn?wLwF*xvYH1&x{=1;MF>rHY2lm%WC)gCl85e$0TOw za!B4VggGsjQ3Et^A)qpkO@GdfJl)@RJnKl^2d6|uhsx2_e&sE-{hq#>oloz|oFrW; z=`M-f{H9vqbnjybg6-1b^H=CSGwEKQJm`fwdy?O#$L7Gl6fr9{YXAK zqeY(KK#RDt*()znw$W=%fhV+wk_*DR3=c4#R&knmzv)EI5!M%Tv2&4@d2TJHLH z?_#@~k?-cd(9qtvWziCNve(vDyHA>^6?5g(I~v+~l}oiUY&1-gvNysiZ@IzDv(jTD zJ`tm)i+OcUEYQt+lo7>7d+hzmvKcj29p0fX>&L;wH11-@E4qA%GKshnTBO`bFnjHO^A`kz01*lC}?MK z`&n6*1`Cey4MJU5q$azA`$r@@-(c*ZbbDo?oxXky`8+BzN|zKkW?NRslgh=b9O$bb zT^PK#LfRk1I=Eo11PiSc?9Vp@&)nyd9$T`fcuEFtkB?Vv3@gjYQN}X@8r09nt;aPN zYTV8!9jXzJ#xC`WIr&8sys>g=Wp;Ay&-}_JZK}C{_HVCFN%GD}Pj?n1#W|Z_`-w=8 z)c*N8vwM=#Xsk?gk5X%iUe*6S{-z?mPt^-QW|L9c!SMpa1t`n52q} zwzI|M?Kzj=xgKMHS*`awV?cknm7fN>KT1@TW)=Q9Rf!ABu*hE7+B)r5=dRA@)G_5RdNxG$Oy1Ngyk*oDWh;ajPBVHu$Y3N7B(0! z=o7loB9mboi&-(i;1J-=7 zI-Wt`-JePOvQ%vKWox^vdgU9l*z>G5@=9^*`r@K^zN2)~n60iyn~02pMPJbJRPp{g z@9vn&qfp#P5p@)UuJx}yRg#YU9~VGC2nG@q?OAUFXkxf{>dONh{E)mm)Z7a?vVB1^ z6@Y}7U*8Zeng46o&;$R-f$~oRcFhn4Umf%!C)L^zqzbagmyA?IHut`GF>Z50rp9k; zk}V_zh1ZuT265N@Gh^Na?y!fjmO(GnGt_Hvi@i4{tK_%*e!l#Gcym(gbuB{SO~V90 z{yJMeffmg0)jiS%_(bNH;JYJmt3hHY?Jl4J(Zbbe?14?&?@B!Rvh<=83xX)A$;BSGqFpi;U!I#MpHf=mC)X?Qhj1vASob?<8 z6NCh4Chq}^XeQPDwkB}t+X<^+Yp>T{vF$e8i3bmrGhDlQz)%+Xy(6yc)frlKi;NY{7Ci@9w8&Yu z`qC&y!zX7e559ISjqJhPOjmJ#T&PM{dAyjD?xV%&s|3z4H(9y6xlAHlcSL+H44CV! z1RfOQ3NyXVZhtH3ecmMH)A0B`rN}yQuCx@R#`+|&^UlL`M+N9U%Juj$Gj-5dD?94; ziDW4*-0P*GVY|zns`&D)wDwbZ{rdG29g4C77ZTSI(vRkp_Hx-(yg@1%)FGI{{AlA4AMK+CZdCGRQ19E zeg0j&gFeDx`X;x&`Pg?59YXH0DIjr-wtNC3R|Toc9T-Q_`&sfddV;n0*h3K8(^Pi^ zVBWcnHTYLq6qRnwlSq!?&K1UNJyU3vl$Dst7+VheEo5B1paVrO z2YmLY!WSm86Xb$7%t)r*b4A1cwiZ8^?AJ!7!0#n!&Y$i7(ex$YP^jLAWz8BR*@=mo@+4p4f5-;&^})`JKiPQ_uUpdV-h8heMlo+2*#}KGamxP&*PSTkY-k?XsgUH_{f%G=rc{`lT=zDUWPK(# zzx_9-e$kG__Lh2`^>+K~O@Zw@7>hcaovU&3tC^0+$1Z(Ma{Vk_G*W_v`jWM^Ap)+Y zECBmjGDZH8(si=UY^M#cO(p4}mpL!?o2hFQy<>g!<94}w`S|kM-)X;Exz9!0w*!{e z@W5QilN*L?8&!WKO$8pmMS5m-RQt~60jIN9u9e;}+P&;6R8-M>t57iV?88hFT-;cE z6u=E}Q49_HgG9(Sa1TTe1U!56H*4ViMVTtkXyH=84SJCBclC@I6bt_M_q^QwaLWYF z<=TP}bD8yK-v>QCCsy5SfPf4)*dmx4&&PnqL;pLx03bQ-&w2C+ug@kmFE2K4$CQf! z3-_1<_7%)zz-yeRD1?kvS=fh+sJFnU{*?%0v!p&pQ|QTlK4vIy5-1h1{0UhVZxWYL zOx+$lRe&P^sIGZtNae9bz<~_~gDQAIDY(TmU(Y^R43VFKb4uwyd}4Bq<@GH+STrF} z@J-KPy8~w-oR2%0qZI&}DnL`Qm-~4^g$E!qi&=KHA?U`WLy6BcbRRig&@)MT^W&J< zhm4bNZM8Q``t0dPnrH*1A=@r;`~tgvIm|?+rA3^!?Rxi>Xner%n1feOl`C z7B0+j-hrnXFWfE}S$VfXj8sM|m*(A0pQE==m8XhX;M?en{o3xrfwPa(ONn)!xwPoipH)c6GO`$1bAn zzIC0>t2?u&M@x6N^pi6F-MZwK;$u6|Z1>c;5-%3P^P*JXO=T@Qm-9wJ_Jm-N9^zJUkIxUt{kZT{^J8|J1{2Q$F&k z%e!~Jl&U)_h6Wyn|`^HqugY`6V8@GRPTW}8m zefTwRd}(Bhz4P1q)WhO!?>dpTcB(bES9bZ+J7_wGHDA`nbG}!@TQ1hgpShLdSX`C8 zn%Q!HtJAi=P9^8rTMO)b=wMX`K|Y-E&))n)({_JpWJJL97>>4qF14@CFyZXF!v5mX zr9Y<;QZE;{h*y3%9*9%M7WEV&{nFmrX@oGy)wI-Tg4g!a)3hg_aWs*uqL+o1rq-N~ zjJM6D#b0b)$YOoYhI%+_`D0QP!NvOA81PBfZEecS;DPtBMJ0sNp3$^JeHg1G+4IB0 zwN#(6wIPx1u8z{MAj-#~4?`YZ{eG$RIh1geBhsTym7I#>5ow}tvjfCz44*ukMx^(Q z-zT)R%6(1uAJS3PlwDC63N9G1c~9*ha)OfJ=x?jELpbWrsB$&!pxcbIs!^{mR0Apr zvc0lHbSC{|;fr4Nm}|xK)&UVO*&?LGgQJ%#D$g|Z`k3?1>q#O^2czFSDfhIww)2wv z#mVx#iCXzd4=K+9kb=oTVWQZ%Yp8SS{()FXj8)2l17AWv7ryvp-okY~#dDxaxTb$F z3HDcTFqs&(J;;6Y8&qXX_yBD`2p_TirV#M$daYFr?8^{J`{vCfhnH`7PsNI(kXHat zT)cX!1CpE2dY_sX-n^koQAim_EaVA(^xy8KjbLo3ifCM!r!!{E!j~uNvF4$UuO|%d zVS00mBWFy}dhm#_<$$X>1Tz5$I+cLZb2#@y3P##NUQ^h&z_k@)s}YmOH}c*2p0043 zZDY{*R31M=r~J>~zH&JY9y+b0il#;z>eCZR2sL*(QylA*AaA6LCg7QQnQSh~w@K0YM*)n1~@e45&*$g3{oOLbq}`CK8_QUjEZJ{P zH*G(qFnVn$jY%I>W3T*E@fv*H)-tlNH2V;L7xJBAV`GnMg)R;=;uyxye=u9+iw&Lh z(XtSI!AvMwq#P^El@NgX-#@z`W6((-62A;Tx47JZz86_VH^af${Wv9;$ku$&&cBrR?!g4AW)p1)2W(?Cy9&bKI#j)&G4H23 z${{ckf-9hagoNp~G3k~VE0^oc$zidCK4@C7s!&5J39}Xa# zI~=_++A$aba@x>DD#l!Rcx!{s=mssK&4AL?VUISl7dxMq=&=vS%cbQDf(AYRd9fqY z4bQPOpZ)QCihkb2H~`6u@yz&oX)0 zpY!5Vt4bTNX5sC(N&0A2%(Zn(KJ#R17Pmi31^dLKY^%?&Gm9FYnG=7 zuA*Yr2Ki#8$6gR;cjwn7wmWBV88##0O;}&zYcwc5i@VQ;O@Dh`U0Yk*geonfv;CW}h-+G1xwXsa_ikFB#~D}Ugf35y_v9`kiV~UwUpu_-&2RZ(ZM+hc{i+H(T*vsZ#cu2!zPK1w z6>Br1vq@t7X$zz$%GI~poKO=kCgA0yaHN^|(}=|F-BBHN0uz{O`=iIh2a zX_t*^PQ-=Mu-+=Y;ZfefvW=lb*o%ZG^)g=R|;oznEjxQ>jy#RFlaY|)^UrA)IvtfSQOKabr zb(2@Y3xp9M{2r?)fSY)z&c(?zg&fVeypvtSjJCemdGfV)=jzpoc5PP z=~l~m$xc7Z<+Kj)&Ie?;y5!_fPfZ!3_55kRS3qQdFoc>;qLEBb)LfvA`MfsQ`H~)D z`ALkq(KKO4{AsQoC=>w;ZXC(o&Csu*D&N7!%cgV%{dP733_C3+kT=HXEnV`#!h4X} zJReNK|7Ugvjk$FKF$H@2YG7Dek8?Ibr~{mOpq)pfp)wY%tP%*pv*qyv7lVB0%Vd@L zFbI-bZ)3M7Kg-e%3ts)qm{DNl=xjwRbjnX21@rLzu9!S-VC<6d;O0WKTcV&|7&_sY zDfkFOvFUjNwgh%I<_Mzz1m_CJ^X3?d^2}75g8J(D;o5MT@^oBd$RdLXzZ=wXFMO69K15!t0kvfY;CL66Ro@`qzvSe&XUd5^Ke* z+yk%(JgPkTy*87XA zq&~H`KbCll(EFDdqR*#`SsjAB>8bo{5Fs5*$x9x>!G{IEGBg^>x8i~7QNI?|kg`69fPM7Jn^M(-^$C& zLl2-?oLR#G4&N$og8fN42=~?1-di7gVczVUK2g+i$L}6mvC|?-R)l?+D?mW>`O4P1 zKE^B1rp}dupRQE;na_49F7_0crL`RU$`_L&J0lihdP_(^tv#85>-&RvJ2CyYcki%A z8M&DyPw7>FUPkj<B8*J6A^hf)G~iSTX$Dc z#12;V+c!ha_S`t-FX1pn)t8Cjugs?RxA9)hTrIAejg7eH{zQ3BmaE4xBU^{&dt>Z< z`=|27lb0j*dOYAN#GUxCjHpzlI<+G*m}ra!yF63@Nrd$e@U z#CE@fuc}aT`_I!SwYtvx|2tW(?=6V$7gq}A-2Hx^*p73~5hjuxx@s`A#ZVRJLOU|=pGT3Y%-yCm1(Y>n3T0#(7<3>)=PLPd6Y-z414e*Hkw z6W<9(Ra1rFMj1P*7!kG+z>=>E8x+o{bjFJgY!nlUQ8cB zK6G!(m2pF)r2MYwIqGq?zue@-@;$ou(AM8>9(G#hXKC-jn()b?EgiZz=)NEly4pHvCYG^r z*Ev!rw3ad9y}b$t@K*wzCK9&Vg>BqU8Q$2g?(EDK@ZBCAAN+YKY;n<5WP9nAtE{x!r=bq(- zicYc7(XuAmyasmoP6ZGt`beaT-X}-vuVr-Rw7oTB?A&4gjMua5;<+vBUGaS{B@u7M z4!=DWVJA&R3Q3@12sF|4A6eN0t5a|8k4KtmB1po`6eiEx&aVq_8T5|i2pr#Vibd>!W z(W;Eu=h#ZNEUv-31TtH<@NTjQIGOOM9~Mw_SoNQox=aaKg19*jdWx5M=myMzm&k#@ zG91>+GgAHJ+@@c6Sb*h6=lM$*CrLQLz)^ z8mgvKPw5^|Q5#8qw`G-irRwz`1xd~r4BK;sXZMUJoUftCr7c#veh%9^( z3n9|sTN?H3)t4TO`>c$vM;CPdRyx`7H}{>Kv3+XmH1B0XR(5tq%4f6e?e?6lskrSm zv&JnbVyAB7>`t`HdsGj+BHd9Hdb^s2@3(<}gM8}?X7-z7I&0ErCpja`ned1Y{sECA z4d?h6sWHyy`ry3P{joQ3LDoZG2`S0)hckkyB_|Re#a}fptjfTf<9A2MA|U1#Dd{M= zsbPJ#)IlGOo;iqs4?;X1v3A%z*L~;nlih*!TOYi`7%(&mSR~a6I5qIRsn1Fyj5Bc* zSa}j?!6jT&P4-H;j#r=UQ_?qEKB_UYynP^vc|^Po{m-(1j@rp!+NxppJ4!)v z73&nC8tO&N8)$F)5UNj|;Zx^MA{)PJI>d{QcZRP=G5e`Heprh?PO0A!{}U&@TipCQ zzQ0_KKzqk6Aqfkxc}!%A1eP5nGxt^O@*# zYSps@i?OZD0mceX7-M@n@O9Yj$^q^h{T_D zoaW9<7~@buc!uAkyS%QdDZ~n7B;FXm^s*qK$_sH%FXt?VEm=9{Ca;A>ccqRHcfmlC zV@3N=fg9)4-*28=2M54)kR~Q7xwrX8f>Ooljd_myAB1*Ed_SBTJNo)4{l1-@bKFSV zDP?g!i^;UErR53XLDh@Ry5lA;m6A8!w&u5daC>0mdxX8lO-j#u#}VhJ z>Cx6fjqcQ0ANQ-NOz)piy>7zaxu?9kmd5RnG4S({wVIrc7N@~ctm9zQf+Wb-8`LQV_m z9nt@o${1uNE%S$OOn%-OPNg?B3S&h=mr=Qqj;h+fWinFyg6ZF!S6eIi`O~7fz6cra zf71Qz$xUN9xVk%F+Q>&fQ^S%;Bwh(yO`7@NH^zhnD-+x^#~7Dt0JD zHhI4X3p!O1A@+$)_l2`p@zrut6zNi2U}o>{%BHWg-VH%C2o7w-jeWCJ8D9Gh8CT1T z)aWAax<1#=&bRqRBWr7b+H6i9fbh|z2Yo~bjF;@$L|(v1ieA;?dyHjz+T3)iinfxZ z<1iO>7z>l027)s>Yu=2@!hvA#)FyV1`1l6>(!s5c7Ue_O>X--q1_$w`_ovLcEpx&UmZ?~+~<*Z4b%1puGat-0)XlI9*=(jWxVhgOZuc5az(bR{2E+? zS>W>k=X?gF$PJ+;I2CUUss4tye8OTVhzdv{oUwhxqI((ADNDEic7`u+jz>S})c8Lw zfD1p&HTD~rU>R67ITwed;1LfR4)Fr$37|orNHwr-VqzAUR6G!M&KOo7toU1(H!JeB zhPKfYQm#Utkz;eFn5aT~(~ch>!M_B)?eQmnRbvx9dT`z)%yYN|JW7z#2#gPKTSl^= znUF0}N`eB6_`mblYoYcD;pc*pK<lA`J|HNWIWB z>@JP0g@-~0V(Mk$=e_e@|>Zd5?l{KiUt!+24-6fr~EyCy%30+%k5!qb8 zLdPhfBDw>{&sOXD77oj+RyDq~RPG8Um%N3x=~EV#37?E)nSh9im6rP!C^dqp66lVH zJQSEm%?Ayca{w~fpFoyn>NzEgJ5K@QK&A!&!{x)~b&(c^tl!-chU~gCrH-wDtbo_V z@WY3f@!O(lo#buq|2CK+!E)ymteGHR&;_Gcd5!YyFLOpC?+fq}XvEF6im0mIqt>bV zWiD3DP^_}6IVJa|t*njj!-J)@&{15AdmHJPK8crr1PqKR3=!}I-z-T%D_u$K2D9KJ z7b}PzbHZ4H!-Cn!L%^cOR5SV^hmBd8ythTv&FT;W6WIq}^aGcZ&ty*l9zA{p%qlTi z4|=CT{ffH?>5YJ!m=$cXW?si}-qiNM&H3s^b&*xf`0AX-i?!(}k*&4QO}}PM|5*}? zX|r0!rx5TR=yWTndBwmBf>}G@RZYMqLeJRJZ$+*!Pl3C$f>cfZBHx;|sBnf3y_3=1 zB)vSUKIEa&XBuZIWOty?`FxdQa?-$Fv3-vXIYiICICI>G#3jmM2uF8!lC+t;UA8!N z4NjIhjR1kvtq-?kq&4)Sc;O?XD zbN|U%1MHo%2USubMY-T3FA5uz()j0Y*%P z6ZRTNx^Z(%L7jF%5wgHjd0;ft?=~y@%exT=a}oFXo$vDz#w)AU9R@$_@{v98u_7-; z_=iKJd)K9i>j<%*^77eQp}v8Ef$y4(Zcfil{RIaKz!f^cf#E>BbDpUNu_*Iap%M-sdhKs%d;uU3OOOGi)F&YFa-KU20ssmtuIdA5R5{5 z4{2UJQ>&%kG;8O|VOL&Fl=G50EYz0oLA_Ti)4i+ItJ*9O>z&PdXRY;BAt)7Z$dS94t$T<~p=j|$<7BO^X{mNr|DPzcz`A+lpd*BQMRwa1V&i!0=#jKBOj zwzFxe8T1B0BZ~3L-iX?hyb1l1`o_=&tW~jN-%C&gBL)e@gU{~aQOgNE92%Xl0nsd)-D!ygMPwOmxS?Mc4sDEjNUbV)Qjd!sb8z3^eQz-v=;>q9q1P zni>s8C@7K4ue)F3GFjDA*r!ojrjl=(@FRyR(4Kb>q zk7Q!*h`o0Bdgpd))5drKk9Y~~bXhW|XsbIK(&<-*P|)@ZCnXF$dpL(s|J|~oB(UgF zvk{*KlQ~0F9+*PJ93FhxnIaJRGUlj^^`6x)sc3JY_jECd#SqH~b;9-|XOQBMvj}ck z2?U_3V#xNuH~|^}6a%c(bJ$;yS>l%uw!`)UVa;rPOsx6w6@U>_`v#@L|CO=Bt(uAR z+)H34vwz1)TN#0SOF}Xs8B&u5pY?HtLb{`|%md)Jl+1wx zCO>0icymN&%hjH-p`rriHFZ$!qmgJ zowQBr$@B25hz*gTJus4aek|fZmgqadKf1ShbA{hZo%XD@@i?J$`BAS^hM!kdbceFS z1!;}kHl^|d$@koXgI8JGfPMe$`^)R{o;H?DUKhlJUPV$oTNgn;ry#U&Y@!WCG@g}4 z%4VKQtIe_3*Hatn8M~2u*tmvMS>q0hEnfFlD%Q@&rAC zJc;`|D@V4Xt+)fL?uUnowSsMp#1z#buU%suX$m$(+E5L3`m@NecI}y761#m6qpQ2X ztW%*r#;&uoQ-Q{>98*0U=KpJ+i;vH5lQR*ch*a^XL38;RvP!@&k4U9Mi5xch>n%B( z%dOF_LW`TN(L;;d?89p#lx;#LmNHx$^zS=&cgQ=r?y=ACGnf?73i4fCe{~@$+W)$- zxs!3s6gIAU?2_)VSM}!$0~K52-EMWEj1SWo|GI%}AL@lzFe5=904OcJraX!WPG=aUx-tXKHjRt=$cPlB?`}DJ$mCD7Pm*s>QLQ|4+(k zBy4_jOWJ(@a<)4PeC2F@dPK!YCX*zEM48{fBqm=q`f%cZrYAPw-tl{@F!><){sSRz z_pYZ(ih*@gkC`V3=QFTSwTaG{J0!?G*K@xJ?Y#b2edY`m zy9qsjq+%NP^W@Qah(6r`gc3Xsn3gEy5@uz}n=0kl8*f43{C7U@z&Q!Y%4{uAeY{4X z1#hgNjc%XhmDyD(v(3a2IL91_cB2(J01hDQJGSm4>%CYG+r`T^*X zNJ#z(Ffp;p94_i8%ho5kc;4rDwf&&sOW|&|Y>pwSA9(F)T#Kc*c{Bc~Y`1xb{BySt zFOAtTv9&$k-`c@%!9Q7NuslTT=6mrjMk4Ngy|wHQ=*Ajhfd6K8cyqR;X$u=p8M5&v zT@m@bII}rU*1&?W?U}vpkEdn6)#Ici(o6v3D7ibrZig;kpR>ffL^jc5iHU~lPjk&J z^VI*tH(e%Z%xKkhAP~VHJ1+abZPB~Y6G#@&X>2|LQjSej2Ki1*Shi6N_|^Rpz{%=? z6d)+OdSDKod9~MYPtY;R|+3R*bovutWsM>eEfowoO24gUyay6HG@w;t?>K$ zr2XpQn-%sUYa^~>tDiVmIMZBwu_%|6elnrAPR`gDUK-8R51hZEpkz5Fnqp0g$z$C; zcKRac&zL4g&gOhLl;iO`aHR}bs{|Y$do(I!a5YNp)(6Fxs>ydA-n6BMn(ndL;gEUn zg%fhr+Wm{3RPbNN#=08S>vJjrs_N>Am%-!Q5<$GWlwoC)I`k@Ce5sW>X(pnB#|;Pz z_gH%m)e^LRr@Tl-A8>1ZC+M)tKlz@^UEaKN=l<0gM5%KaP8GJiuoYfSn*?Geka!f+ zi%TU50PcIoJrgw5F~4k}ruISg<)P*XUCs_J!pBjnrozeC_ZJNAJ2f>4MWWmGa?{su z@jUl1(9t#!-WPH3*RC=)HeSb@YGwvbK8W2c+3_D9oPMM@Yo8suxHh`ENiGfDTTl=o zdsc%_fVcHK-9^s-WNXNdfe*U^SOu>?k@m5a&k?UkO~|}qdHE593bH9Uuta7ff9>t3 zb-#+T=gU+-+BY{n-Tt($|4#;2pF}#hLQb`^i14!-jhh`K3$xSFt_s<(E~?~0B-9R5 z$Q~-OB~{TCX|A0)>G_$`0~H1K**c6LKYI?XNFvi*rUeQ5$Ilb>I=|?45Opy#XMmpA z@A#Z!$MnSMbcfs68^@kWB;xy#*6#k^9p%7uP6kcsiH@pjAMV4vzoaoO5h-Zh8l)E8F^>*(!^=3U$!$81FY<+n)73iDktX-15l zxtq;B+sub{s1_6-fS)sEs6N1V5fXYwKM-&lJvOwVwY65NWEFL0J}z4`C@dgs@~KLk zH(8Vu@zsHiFXHn1H&xtrM6N<&F)T0-Op-D`yDH>p-C6jvIHthZ>_0)e;+J{L;v+Y8;Gji>gm)00oj$uaKkRHy4QGQPn6x)idw+bvyQLrXAh)PefZ5@SwRrrO}br@>d?x5cb7%6DQ9y*bNOsP=;B) z2tM{p+P~2WmGGz79A|r#f6+#zU1IFl7`}fP*F>ows_LZ<(gL=u==j+ayqjUsqlAmO zS+j&4&n@oaZVY7m2TaZ&gI8ZCV6e$z%D zqwR=y$Z8QKY;JSYsd~60BqQI#%XXGV|8kVK``5S5PADtBFWt%bo3l}UpF1Mgj#Zaw z3KB0AL=f1RttE(LO(PBkloC=U#7KeVkI9Aq{a-s+AA+APj_4<~8`=0k5Jd!%lMrDx zO@j>L|Dj-(#I-~_)@J?&nyIs%+@a{4?dcplg~&&W1rj+dQx~8x<~M}~1S6CyceKXi z$9^KdYyt#(6-P-!^F4Vq`;P1d7RV^a2wo6d#PkA9ib=eU4f}dh%n&2x3aM-fr=gOo zR--)&##J#5I#)oP@tr7fu{#+*Z&#El$dV|tIur__BM2^_05ha`t9s$W#f;26jDmEN z|1A+$hdd`LTSj!tdruTrwOLWfFlV3l8kN)J3n9_Bow!&gTgBaRjdDe#pp&q^k%{%z z!EOAVm#zNiRCQ!vcypkMld3MqQbRwzBAy9P1p2&gm=j5I<+V6483r3G;z#DqqXmoV zzg+F7&^kung|Fsp)`zbedxz!=m?{_DvNJk+hU;MqtLgVsSCd&LM0GEi{EAaM+Lrk& z7yY%&+VQoI?zv2#%Lbe~UGc}(YgLj7y%thrm9 z-hDCQ98)zq+$+o7YW(3>+t!2DvYOB%(nr$oBKGdfCj>{Ju&B^kms78MRew|P*2Vl^ zW(RC3cVEaUOJ6TOc5avYO~eE4cwLNiA|_(wA!MW)pO9N%`8YDOwEkHKaHM(Y%F(Ht zk6ZZ`bXmXN?3d=OdONlAb;OR?tmfT9@0#YLo~3+Hb}eI3j5sGD_L65__p(ar&hPR2 z{n%I*aS&k^KHs!WWsHY!+iM2hD-9nX0?eUPGi>g~KD3ZY&Q)H$1uhG7D?LdUc>HE~-_;L&JuX0ws%sds(+*#{`P){(Ht5%o zW_Wp1zq;@3bZg=R%_o{@i=+Bt$Q9NzI~+t2jiNssl~l=t-rjaNxm7g%3!9!e-UKD}#+D^JRu5=}Z=WXFhmMiP+YS0z&c=$5@nV#VT8(75F;d5{_Isnp{TxOV zxl}AvL>LQ6l&uMRXZG;Vy$u_VBK%l8#`)pxmeQduB2OcOfTPVftoP%h0;$W36|`{r zeRi`_?MBAJ#FAQ^^ZncJ-()%+x!`M>P}SS|($1`VDv&-;?rt6RAkuVP;@Sx z+W+1{MS`wM_Nex5Slk%B-8y=or>{>%S?;J-JuprpX?4Hm1{ApxNX?^J`7(7%S1Nn0 z^^Sb@t-a1F`cPa7PH6;0m6P{|>6JtH5CDEZnxg>3pG%^!>|lmudTr%EWE`2644VtY zuVT<(Nx+3zt-}N%;crk5LkDa_u!jLP7dDLjhh5-{MvaJnaAbb&U=%vFS1-Vmrki4C#5Ojs43MtSs5{ZTr%wYYGCP;W9%%NmA zdmP%o1Y^;P=eWKA#5lf0WJ|)>x*438k1m}VmDO1lAKqT4H7=IFF|Ek;z@1`X?1q_ zww1g4TyQlN9o*R+?Vp|VEdEoBf@40^Vy%64Uc0Xs4@apf%puHa7KrReeq#e^1Rs(F z2DJKr$L*VqF>TO7lH~|G7|D^mFKo^5h9v9p!OD1crx5BZ9`M+=!L6B@4RUD{HBTYr z)Js=Niy~~Qa4Hp}Jw%D8&={4JOU%k=YEP_S%L(E*iHdTvSNK8~k6Z5*0#?%7%PX}A z7y)M~;8kA+Fy9~WqX7d*BxXBe;9~%HDSB8FES#WigEl{(mz)lz_Rjg;z`;IJHm&M) z6kuxfq4gI(A8Q5mSkM`m|HxAAkOYnr{1}O1%12>Y>3$NlKJeHjXON&!6(T=#cHbLO zZwxdxc(4-(32-UtK24s*7EEF}Pt9Q`rK1(Lz8tBaTj`(hcxTtLz!NrBt-byiW$Q5& zuNMr2He51pm7pO+@O|%KaWbnYxC$XQzxRaiUjVblJIlFTGOUl_NNcS*n=?6UHy9s- zuc-Wck@)CA{h;NEsKg1s3dawv2uUK#`P;LBTYk8jI`rR-Z-u26uMd9pIEmbYK$bl} zpc$$?G?rI7s52M2lgc6C(@4_0PoDw}5ZeC%@JPwrDsQ9rHsiw(~3VWx!XM}+V%%G&tsQa zb?hkZ~=fJCkWR3JXJ-GTpek4wfQC8-}#9I^N6*&Tf8&$Sd= zYmiUoj~h2fa2}^Rm?K=wWZfGSx5$*uImTks7PV<9ZF`BGVs9D|p%A)A^={f)PI=)8>L9H@7= z&_}g{8_B|lF7&Xw+R7arib*;M3v6kZcmwn_e)s5hiBSe2zke_`c-RWK~3T5kS>|afB&4P_3irsdgoF5hG5!e%0T>%=P?Q#ChT#8?t+o}C74Tp zF9+Dm^B0ZpI~6t(?Y;FwVe6&UdW!va&h~w%CBsd2*k@SN*T&-Zc;51*%vGoHSJR>z ztxMP!QU+Wpp<~bbbf`07*wBE0ssR!0poN7k%0aeAS^uX6*!nXvCe5QAcImOjw{InL z!(nsZdZ^MC_2;R<R;_N@C#+(F}JBm-XyBM2Bh*bx2evhFUXeS@=qwt`p*(lrQf5SNia zV*sCJIB;8njvE;T>WK$phbwHeJm&`+tNK0KhD1QZSs}u*>^noSIceTdpyy19wuVy- z9#o>Lm&px5g%Tps&p-e{f;f2;ARJJtBX=}IUDX%jyJ~CxDsu!kbF|!N<3m>PDO3Wn zNrdT&qrhPLPlsnDrgkxjxsGA(+CXt}MmmBRBZ&A2Nf=B3QKJD?AE>}U0LMg}Wloy^ zG|OO*ia|m~pi|SZF=(nm**<9kYaS>W+;PbWT5y>fbg9SA6gY5Epd;V;-P-seejP@Z z69#k^$#~@?w#RtX7ujfyy`0P6lJV`u+{Rdp3HF=W(AL+u?Gf*AYDx9*Li9neK#MpL ztuUYP@R~yH8oF2Y5uOr#d-=3~Q+^YPWIvZUEUZg-!Uv z;)HpFLJ3<-Y2lk4_S;G?`>YF;0q-FH5#q*v*%&@~l$n`1?pJGF0%D5jfrPXSJd1Yd z#&XwK!Tb=AHKz3q4VpSSkPM*hh|LY*JRu{IVh+%31%<{?kPK4|vr8A*09OYH2P~^f#kVLr zPn^CuZ(3djod8VPKY|zPBS+^Gx#>p~Tm({I%yzH!y6R9jp4oKfXf@Kl7P*}App7xM z!$YI&jBF8#6(*Ivh8sj8lc_km8?!4v7rLuk!jvw&z~5~pm()d{wjUZCJm5Mn&ln4z zGz+JaMPwsaf_Jm%xxTS1+!4LUKt;~X;Q<>~@4`QU&*W~`C~{+OaIkMIiPJ=H*-g*c zH;P}*;+Ke1J!wcBw#N~Dqb(8W_`)HCpMZm2N&4^knOnc-Hhv1!TFNOGNZ*dKIu1(E z2u-ERm~qSvSLuB>JWlCTLPOuPphMBQd2N#x^tly`Wp67h@0?<+r**M;0O1}B=4Kbp z@7*%h#*!OxUonDH-#v=(QqWj<7w>a_OT_n@=tTzu2@f=uEZyJ4@>infOlXP zhrDkQQT8y_5aqykx`wZEzXa9WVkfRy$>wL7n zt+)A;F#iC5e*)xH`n>s{SW{&V=p z$x2sV+Oax_#_am&?BgF_sl%ZJYI5w~*9w)-iEj}4>~XgP1kJmRybU>&V6#|P zFW$X5xJG6-tG{{bY4 zlZOt$3Z#p$Lt9R_f|sVI=}lW7?iW~y42R!YpGBQfu}biICTF(GW`E|&()!Bk z_xt(zLh|1_y=}AP%_lQgT7wDd{hJFPTBL;L0;9USyIq9aGUq0odya|rb&z^irAP|i ztCa8s$HM3>)q^5v;pRWE+u60m0Xqie)uFzBRk=j@-6lwAEo?VIAtD`p4q>Iie?zmW z_Nv9<6Xf)mt1I_2NI*zTYfpMYrIj~uDXe8ydWK?fpY6w`fjT#pX)gsi!MrIStbim| zh9sHRo5q8&6`tSo9SKc zYwe#-$lX%4we>vjp%rX~h*qzm|NP9H2ABzjm7C0y;~W}P3&1#LxlDZlO#+z7syC zlL-k}?yCvYk?YJPi~#VN8~I`Z$LYc?3etcg9TDGg?9GB0Oq(FwtgGNr6v5N;|AmLC zXho=&089woSFpj8I7P)XmwO5cM0iMoKm?efA*bD$2a#a(GQ{X8?-h-796I3CRfUwc zLm+K$Tp?khytFiQb*}nyM3E~@o;%yKyM_617)of9NY5)vEe$o>Qk6Nyq1gcj^TuDeJKnRYryX9ksu0& z@53;WL@1h(mX;pgY^Ry_!Y^aNqgJQOuE2aM24f69osQ=JX?*+5jfz_RT_91j+Us|X4GxD2` zhmV?|3xWQ(JwUKmG2wP9F)R4Lwh*JUegcuit5P5$WZo)VFzzLM5+p+MXbbC?y4R38 zFUbELQY8JuXY9B5(`0qDth^5Gsp$3=jM%O4M z`1$$9I_kRPKU~GsAQUX+d_zO2n{fT__j}RHw_yFwQWQTX&lezYi8IzP`JQjo7Z2eC zLBh`rqjW1@F3H{bzs}6@v^YJi*lXGwF{%iF&0WSIs(k;aU#I8&JwR2GV}0AQunO~% z)@WH$X8H0emvPTA(tgbI^STZ=;qJ3sMXix6c1n(?g}4PS|^xzftr=6NKGN`_Q9;I7gx&=JC(k(aG->CzODAec^WiT?K1Wul^=`zWO#l5S%I>1 zz44iQ_8oh@qP?4t%C`H`m+UrtOT;eKOG`5wIuJxju-~R^59(0O7(X&g8-vTW33ZJ@ z3xE5mbKCcMK#I0FUb;=7gf158Y^3C@wTY}h44*kNyw(=iuu?m_IMwxv627+8GE!zK zm)emBPO_+JMLRn?R?%8A8B~gg?B!CY?)Wgql*xnY1C`|QiVHb^D=iF6P9nvX_8&7i zz9aFR;0!*VRZ#|f;%=Cbb_{|`^WJ4Aj>L`22JW6uhHStbTS$w4V8UT|&-r*Of3Pxg zOimnu*Y$hd(=jTt-A0j%CTo<^$tzC2jhbru0a12pu4MlaiG)q^3pqEvy||3dj+AybB7q|@LS}DU zoN zs9U$Zc_oh8M@dcUUYRhzeLXAdy{{(ur#EA^+Ae5iG?>0Qv$WAgoorg!rXAG^3TC{b z?^L%hF^XS)Njs6v?hEVPwgY7&}Fl5Qb>TQju&avW`IsVNirDGm?;X>=R>ouW!HO{iox2 zo;qsGeCNKer77ywp@${-{isb^PP%@#)avXRQ@!6ijInpT5R3YwUCF$B|GWE3#w>sf{5qcu3v`P}{W8cgMjgLXbE; zO}dg_hIc8_UL>@GAc35>;sJ{@2VJl=&p)_A7CUT9zUcU(kX?*qH?eY~>E%BQ3y_^-o!3lv%~yD97Sr^9PY3e$`F zr=LRvcql)bYBYhc@CBhZe1liasR<++U8w{DeqRng=FS?QHrPF3&;~*7@aHj@HeLK# z3&6=;*3 zir`B1#KAOA8|*r;qvt@>gi+bqfQm>%NZfWB%XjRt5Ha;bm#^iIuU%>6mtE1>7T*u0 zlg0J@6)wI^acX$zS|sN5(Sb%p;Se=c5-!;=(Bb0DGdK8d0|^@8eud=*A5Q0NfMusSa- zG{iwKsSV71KI!VGFJRG#P&3dV$+vI@k!N%yImr$S6V_)iOaBSY;g9_@T&LO`hTn%QYp#Zn@83>cg_gMcRF656Znqr3tC9L_Yi7|ywez}L9 zvy0rrv7aTzUGu)i?E}SPDgpPl7o5uc#xTWeYkBK}yq5(d^De6AJ$p@AO`R*~=BoMK z&K<(V68;!0NconPH(#8N7uOd-zm{%(E&5G3X4xQxQ+8*(*2m+nrL(Qr_L{Nj#nGEZdjG_T2rU2J?fMp<(e* z?YA(G+x>y{fp=tsYEO-^#qpm42j4Myg_zW%_Ew9-BDr+0BVkmDyG<&kO}Ay}dI<9# zAq7e0cVfkvS38Rpqi+m8w>5qBcCXJ)yf(iDna;oa zf|p>IztE7mUX{tn%Uqu<4&I#JKT$zvG?cbYbY`eLvK36uhOp1!*t{Sm5m(ppxofQy zZ9qK!em8hG|COGeSU_00g)&dX#Vd!i)sMzW#O=|?>cEU%n=SF^DFO$lG=7yCN)+uV zyg~wj)W{z=oE!ALq-@^{$0?PP-DO8KM5NSrpg813cVz$m=`))hzg4l-;kG-vN4S`J z!0qkSlwH+L_QE~)3!EOtm`(6Saf!$i%v z(*E?)=ypFsqo^y6>(pOx7x!CoMfdcl`!`@OEnisuo$GFQzNG*5(FS>ba}D*$xdwUJ z6qdYMZ${l#S)IqkuU=ss4e%&&qQSRoD{BcIG>DH#srBFki_$iyY2q`E8V&YBNeJBxS2?7B`Pw@3EGydO_ z8jkJ-W|TIFph0#8zl*SS{yBu;98iTMaV+c?7`ph**N)6TF_=*@*{|u_i2EN>;^%}v zKwtptE2aaXU;}Xv06kUyGzuA|3kzs$@6&*fY;vvFE_`!ZF)tvL^`gy%B$%_%6;9aW zhan0N2J<0y()Lca8d@cAXn|g^9%dpd)Ti*u&q~4q>-Nt4BxcXAvG?~(`Lagsb4*Y& z@Q!A$zgOl|atNOg9$oiN(&H05i|E?(hE1WGo`?1L-*IFYVPlwi9#g+J7nqm1gVvsnzt^OkdixmH)(V zm(ZYRtBke+hufF?exzkn=H3lcm-8|U6(^45qFlL0al_j`J2xLe9#?VT=oPgs`z0IY zm>$z1+Rd9Wa=N#CNfb)ZiU74*i3P|)+BG0J(E3GBu#;U6bhl%z*JB5I!{vLX{2TwR z^TWUm2z3M$x*xVU_{%VcgP%T1P0OG|zMB^jY5wa7nG#t;Fg5YdkjfvnDt&!@G*IQi zVSUYj77OA`NU@(H4ZGmr3P$~+ACye!lnDrZoWnZxFrsnnJ_RT!P$@(rEzi#n@aCRWga#AD zCd}4TvFI2);H|);1V(32|I=<6z(wzT_r0lZHw*^hLm4^OX)wZ61qKmicUA{Z^leec#;8-`>iCaL zVO_8|6>oQWZyG;SWIygymiijf%I@tc{}PItHn2A_P; zSoOK5?;I=GNEwCi3rA$VnE3c&LQ3KeTTex*-;ex3W755w-zH$vHWX{?X4&dKy$|+4 z;(G<;Lr31wUWAvkF-bZ-@)b+#KI&N4){vxcR(y7Mh{h|S8fI3`u6Xs+;(LTfJNC02 zRe$$*m+6Dug?sE+1^T|@8ITyw#u&-U6J zv2HVz7Pz=fgyAxq7$ulaaSLEfY|Wpe1#Na5D`u{)sr6g_^DU^(D&0k7=En40m!es2 z2DRjp+K0TP>imM1&$ug)$gyezf4+SQe% z*+$025nZRL3HE3b?>7bTIyeL$@^6br*@?6BqP;Yj|MY{Z_=>a; z;Zy1Fzw&3KC*1^apaagfXO5hidwA>Ww-Ii>yysf4!}jl%yPlP8w;X!NxNUKq(zjX^ z{P%B30?H@p)L6B=?MwH{{^Kdm@3VRSdwA$Dstcn|mu|W(h+1|Z(4TslT#&2hbiHV6 zzF(4+TEif;ug{FEjyw5#R-0e#zF#_gRj9D+#7;Vg5K5Gw#VbK3o!D0}=5$(C=h3B1 zh3a$8D-d>3vGuoZSu=QKe~^t@qt*8CR&VB(;#MGvvl)A`5Oy`^GBSVM3#65G-nvD- z>Cz$Bq1WtKVcwIu-h$K9Q&d#!gLi#?ux@FyV78sMHOKSyR{-fl!xm?zuU7@BhDy_O ztMdy!r&3GhE*P8iD=Vy2q7?4)Qu*81zvf4>EKC*)T6}+eU-zlTBtW{Bna7TPk!<|b zCcj%RQ;jECQ?Hz!sZyaFGr9|nYJI{D&zuMy52^+@JEm8v`8{!-B8WN{R0`Ohwgj{H zLM_qJoH#YJqO;Q^&*c6H8+i;0Z(Lxc&ig`UfqU9N6O{CPg^;k_ic^ucJy4t~hv1flKpA)&YB|=|X%MK06XVErBiwxSKq;PCoR-b+z?=4?Gzju)l z1Yoz5<2RjW%k+%ihPFlMl<9d$EgXvKzDjgVy(k&B$AI%h$gXd^Y=>TqGe-%Bg>b(8 z`9xTq8I8`qtR4zrtKH0H)v<~3g53v?c+cFcax$51Q0_R}{CAt?Pw@Y7PWssKh4Yb- z)sMllS&0xRko|WoSSR;P_$L3JLzIVR&c}0P0U-b*n_-tTmW35c_vqxC5=;Pl+r7&} z<6b^X2z5US+`JeH1@ZNq1}f3+5M#L2D7Iq-MWn&LID%>Rd>qAb_AGUY0>|4?>W;r#mswa-H3M5$w3gZ{M_$aum^o!(SS) z^QPDzLatL(twjI&?PEnVJMbvKXi4~mCS-%}k)We;*Kw$ zqP9){?#M@u@Kc(x3?A#rX-B!bxzULY09`wEHR5gXLh(ic`w@6iQvJ|P;8DxW+Q8tG zVn?;?7I_4>G`PCDj=~f^5!vyPWmiN{2rE#$g`(~BNI+XLQG@RoG91l&g+|-t80iq$ zK_LUJ*jt1^7!ZcSG-&>Qj1Ebg9xM)=O;O!i=#zMv%93SMH${rRtRMmWpfrNOZNcza z@983DbnGod`HKg5#B{JMPn(6`ZP!$*X8@qdyD*FbWD@U^g)rvZ(-%hov-4Pq3q zW5I^NQs+=V(E1Q45lXvA>%g-Da9A}`qCrV-BWT`9C4wN+4hs*&C>H-6pjX;$B}qnz zcn@*x8epLYSpr9OW3x8Nz&U-Q3an3N`>gt9Oi-1~>Wk}Bx1YbZ8Ca(F3|hDa zEsjv&JcXR=r*Z57_k5RP-L|j?kCfg98OO1IeK#DSSxE}LO!emh=5Oxo%tbb6ZC~l& z+X?y?s@O(W(qe0~mG9s85yo1I@ple--iV{D#1i#zG;5Ln?o_x{DBfk~ zviJ0!DtoMNw^~cAGO{~7Wjdu4GkCn*g3Rd`5f&q=f&uzTxXl+yOjS#CtZm*?OB?=& zr#?sxJ|{_*RQ~tL=D+;ooFRVRkIg-lmJQERZXXzVrT&p?hrIZMu5 zkLgPYkKb~OHW^j=c+hd4_u`J@7$3Wk-LhX$k$2oL9v%{}7dfhPJxoZ8=|ST=cw&ia z3V$aHG9SjixP9O8%+B@M^PP^ic}IG#Szo#nvWw~X*Ihy)LRsp}2X)>x)npmc*~MS} z=l>yXQ!HSR-goivy_P*c1g@0lyd*~_7ZRna7rk5BNKn3)4sUjdfo`R4V|5$3 zb?a@xeG_%_jgG{?dkZrQqdamaPLz)x#-tc(9JNRTlBd0yj`Z?@ytcNs@?jI66HBv= zqd#svbt;lv+(nSiG}GvFcWFl%L9GR;HrbzXlUppBBvVEVkc*ncW!RIzT8!Xs*RH?n(g@a&3WlSkM< zON(}Nt%dnszxqPdE-CH2Z{jWWcdi%7uvbu1Tp|>${NMq9)kax)(cWKFDXY-k{o25j zTk!*>qkRgibJ6p$^&WNDNrkbu=fG8~ECZDD23y$ej;Jub-3_NaB&c~|z@)0N%Fh*=qCDTOs0PV##hYxfS`F|l z4c@dZK5=&oYL3q6ipCDH+O79`8{{6>Izo7Rxj0W|(9&K92ZuU3qi%boJDLuq_X1m- zlXSdU6D6^I?RCxl65qc+soRY7;r%CF6t8eJxcm9}(eHcGW|p&`9Km$}_4AD8!!dUy z(**{7PSo{n?u(AQLe0v(lT+iX-j=C<8N&>lywM>)tt17{!kpt*?%QLdA*-EgSzUE zB1t?fh%`;!0SQ$f_M;n}QV+u#@jnA;DR%rLz?r_JlYt{}d*_$1kUsO)uP^r>lRnEC z6VbqZ4TVm3;obFgDkrHN$$uzBJh~9`lmd;?x5P%?e)B{_*sYOgNSdo2V_sjt;zZ(Q z{)(|ak)$u9ux^lL^M)DnY(u~&ifM4lm>|O<%I^j8!$^XL?|)n-%rUSm`_b@V`_hPq zHzslybRh9FB+nh{T_v)J%uoaJjX?mwfY4eP8YLS55*OTFqP$?`y^kQ^AmF3x`e+7Aw_{Zq^x1LwMeVd zlPG?`%o%2;NGN{3LRUnD=2lx>gKA4Hahd76zfH77=iX=W^$6_oU)}fEl-qN~#`Dzo zBPk}sn;(hWlUAFZaJi{%S5*ufo6`dGAJt!>)5N$Vde?^rSK8-Bnk~m0*ytaCAt8|| zS@}uqkQA)Z0$EXSK^kHVBE)h1f@0*_fkmUo4t40W5H8AUqG`pn@BanUt)f7AtXP?*} z-vRc@1V`-r;@_6U>1k))kV~vB5K9VUGz;mSS`v9r367_eoUm;rcCbzYA_82cI8FGp zN?OU0N+R5_Wh(2{$A5p!+!E<+2$z4C_J9l=#6V%nO1h^c5^nRR3`Wv$S4}@MFNj2< zw_si;t?&pI{&Rppx_QpsQ8j8UAeFO>9kz82sCHX?gbChO9E>(iY}r$AMhY~P}*aiYzj zpn;Irj>YWW8)B|vp*BNL-kfXs>%6_J=CMspKX+slraJ>4ddmlAPhD-$&riuYIPUu- z(lJ%NW9j^pG=tXjoj}6D$;rv7tu8iHQ2nNVcM$Gs?otwYcS`U!l{OyAvu+#?p zIOX+R7r87V&DfG3o_m%W{%z>phv#X8MA~&;J`WS6$?z3`4q`tJY8w4*r2j{r97#BeqK}`CWUwOQBk_z?r`Vemzk43 zCxkT3#F%ok^(bG%g&Y#d%I@{n3)lHrOA=p=bjW|fusLD z<>%BoM%Pd>jv7c?UOt6U3)m=hJtEiOstRIP20K3sI|n?)n!>q`A{8Hke%!iQvpuOe z>@zuL0?TbT($+%CR$1`qaE;REx)rx=V%=8Vh8K&a@?b{q)Rmiabe!sDl;(bu;<`ol z$ANP=8fD=Hd1@$BzNH3kHz=fwBon|4l3&)bBwAl0i#LznoIUYUd%(3~R0(@nTV4v*9$m)QmL~F% z>xNq8*$k^7fN7_&+Cgr;fntGi7jAJ-;RYUc@=j9;1S z%fiJ^LdP5Ku40Y7Dc<%Nb%V1d6-!G?FTPVpH+kfON4Gbohqr=*XmT5y+x4r< zH#MZ~Gw5=4%kmOhmR7^d$;KNWL;V@ab*pk4Z7mlzK(h$m-7EoP>|u742@1%FI{%m* zQ2*DHmwD0AaNYu${PjOPp8=mSl#l9sLAvmVK_#iMR};CbE**xh2ceg{UglF5ojm(L zgEjBT-4`vA!2@S$WmUV-Bn(;O`)NZ}n9ijU@BN^g!6GX`$XmLk<^%{qX?qb(&r~5B z5brZFt^Nt+8L!f2zGbkCSUEn1vVrmwK1?Jo2@M`(7)xFOYzZ-&{2d@nQm_QmM&pPF zQF!||J`kbC0UK95n9$lxxm)}; zleGL(l@u^PvkC#y+sbFpCjQQf`M}3}v&USj4C=hAMevXN(coM{B?Djypn{|%iKzM6 z7C_OOIa6j`ODdkZZPgZU6Rg&9ighols11I<-E&@GR0+Z(6B85fz)%r+Zv=H{q$CB{ z2d2Pwaz28llJRv$xplwK>##&ShSYhC_@aY&JavU8C!2ie*%O?q`O&0ckP zPIBVaIr{ssG$CLhe)m{pqca`an{f0=uRQT>B zV${?ooHd+F>q7?N^^llr&){mu*)zHGObYQKS**Hy?yzegR3F)8D#68cUwls~b7AgJ ze))?Ub(X6pb0QTubN-4JCGq22J6V|ft)uT5chx-P*1Ge;_@{UXce^P!Wc&pzoSL8r z+NgXLUT3Z@sfanxVJCr4xbr2$)Ng1eWw5G_zPwmbyGd~iVw^kqJa~3Gm^LxIWgxWk z60thKd*yEf)n6z#dBpni;H>wRXakO+c4s7b!-qQi+9{Aqu~a?H!K<%v6eB6ILz^k* zXw*Y=s;>O6$Z;4Au$o-{^jkJT?KSzP-|8#F`ztZ8$VuYT3(t3fj{q?LO>nT4d<6m* zMI^Z)h(NFCGg+EY-Ns5k`sx`H!)L$@LM2ncM1z+Dg|51HZZ|%ee73~l>#SD74%uYUCdvWVMTYfEl^;fVOyNqcU*gtFk_B^|5<%?YD4m@cPEs{9+bmADN+ zqor%*8Q-q$OspJUN%WUXuUpKI?Vb(71$jHjE6!8fa4FtCi@#gW(P})`mie$MMlplm zXy4bZEvy24XpG_Q+K}0`wZ`_lD(BK(Pj00r5^>j>U%=|?$o{?vQLi6JeCzVeZ#&E- z=Zgzf#~VQLKfZd$((k7~ZR6D_fT|(f<|mLd zu{*Pndj_uf>_|XT9CE}4o_=BrB(m}k0Pu!2mK1=aQBW0slaYXb9*vQ7EI^KEfPBNc z!UH_6FlIzQoeDGpn4e1P&!k5Nnjf45T)7W>x|Z_i@Z;Rt_y`@h0Tc-I(ckkRqhUV@ z-XOwmI4+xJzL|T{&5tQaelqE<^uUz@R&C;}LakYZrl&_gq=W{n37NXJDzr zaaDyk1X&^qDr)nD=Vx9)H4ob@>kJ0~e6jv8e zCqGcbR+32E+`R;QtHD|B3ZlnR5J5CfjrFwSg6BJ|7;f8)xZuV1ir}p)(k$;N*MKEt zD^~~0nPiZUALkK0|1*?5_~@%zCRy?PAv^8?aOf z+UCaZ4}^b2+9@nzCaxkb96@Pd)%n!^&NmdKIis>QSs%gFq;%=r{oD-6JV1El?}w%m z1R#n02?TQ}ZEira0T!WS1)A;q=SbrXG3M98uD&wh$iU#sp&4?=As<+YY&28@LnP=x zVTB5U(c-eh_mjZ5giA4msjUVmOj*AI_?-iWxL!b>0P@AZcOF`7BP4+rWkI0fLzb;KgsF;Ko(M#J>h(=6FV zrIexHE|`FPZZHSFi0z2Dm4*u)72Ar~`gMgq_dLTTqBW13|4f5Y%-EaiZ}BQmn%)B~ z&`S`ys>+(0jZn3XEm%Vo>4^m{{+?O>ZD%WVm(Y`Jz@dBZ#`^{ZF>gjobGHqP5Luo- zX2;<1CMND|z_EsJzO}D3NloMydl0slHF-yyD0=AkqwX+|3o;g6pAAA-S$9b<*LS%a z$~+l(==)z@$i9$n{fZ;vyiwHTv_VLo$aB@Rxg_yKS0D9KNP#Kztb(FAd?gj$o$6%5o3g$QIiHJf_^n>w~Z2+%5CXh zR<~+ip0>n>6O&ldq}7V)XRlrU&!*JR=B`cWVnaC*IimPPS9kXIpMF zr|xg(#+VfeNB_9JF1$VHPa`pSwj{UzY;VO5ucd4~4JLhz_w!MJd05ZYx*-~^c4aa; z=fz|Wo80VMoY#D*KhFQe(%h

    lDVZ4@N27|3J`|R+%?XFpOvoTlDbxXl_Tk_VEvo}kN3KD;y-M*WqC=fHr>e~LCavkzYMah3);<$?T$6Gi_(zw^S+Fvm@2M?^=#7z5Yd6 z?Yn0t=QFkMhm}vK`asp#Th63{@TMbcopvuw3nyOiz+eksMjoA9#L&JY?QZDLhHs>o zL8p*_d~tgjsr%E82(U+8icy>Li3RPp(<|M?BhYv!`{>XENet>Wr7nfJU6}UO!G!VV z70|j{!ebrwxT*b(QAySkz3%Xm_RApGJZpsr3)Ehhv-@YV*F?aK_ii~1isDRoHAM1< zm=$|L@ZRQLg5=VGrZ6l?qa(yD#k!}^oisVOM^^5zeEC_x#*)|v(g^>BO?{Wsbq+c{ zV6g-4Pp zx`x)#a}bE*LL+6=)kNqRuTA_Ao(u2RWoZ)muz81c1mgCCpxn6w;t4hA*k%~{jN&aA8Oonp7sMX;M|#^Oddsd-$p66AVO?;li_VZn(z$VP1})4m`VI*ms`T zyVd+6@!#Ij{uq>j$IMZiTPfY9zniIec4VnfZ%-lp>Sm!?%r>X1w;R>>F##Kn0r}kM zj$U)d!ghV~Q?!IrIDc4GG9aB=;@?%Nh+qsTDr%&JX#BD$2CBlZL2_SwNM)m8Gz}p2 zP3I2B=BFe}SdH*FIkpf%#2!RcuCg z7Y&Ach!7_ycV{K859^5RyK4PhvGm!N{?82plo@3J&sESVKkHIBu2NazRJY*E(Mfgu5eaBoYIeod z(OtB#L4}g9fA7&FVtTKJGmqeGb2+uK_*0_qM5&yPg|)fv{7*S>kxy775BvQI19OB- z%~$s!`!4?0B`sZ=rjjGSI6cP|mLl_&B1&dr9^5uurtMs%gv@I5TF!PB z-)v5k57?^7GHwlvF|=Uecoq|Hy>EHNq8-|yD7qSUm=HgT*ksR-ayD~zI&zL$Xt-L! zKW4ke*_|6|IcLLGwRoEZ_bXYS=a^nYoPmud>3mne^KI2<>b52#8?}O_wLo+4fKJ-ld2Y5V*>ieQQ7Ue z?SZu%jR|XugPZDtNx4}REeJ$hOrNi0mv%?jyw?hfS|`jD;_S+Y9#z|(ST?lG|F-FJ zC$p%U|L|MGhtNma%n6)hpEIUSz61TxhFb}QL@(bVWwGM#I4jt6CxR?bPL|7AS%YYzF-{sgcUfc*1c6GMpS3$7Zy(5Y zqPo0g@?*Kxf1h9e>IuW&oIHNKg0_C!KgHz#@sD&Lfh(L%du6Rns>$(3jb@*+WGK{X>2avg|`eOecgZ-E3&*%Gr zO!xbZXU=moEC`K-ss6Xw^&i%92wdg=$vEyit(A$}IbLJ_U$*V5Kx?aCH?H2uKP>ux zwq<|&$nP6B!{|es85gh5|1^w~*M4^(|NqDFe-7k#%l_Sw{htH*-Ln61WdG+teme{Q zaAg1IKz=_O|JMj)hU~J@n~uvzN`s)ihr(j|UFx>NNqW2jg`w*oxLnP4uSt7NL?_;N z3_kDm;`5hRCo9L-i0r{vtYc4FMULNc{A}0x+tP^*aN_>kpnlJ$e+i=j*_R5e}`qz^zpa1p>Y`%B@KG#W@qW;_os+s@kr9OW0 zloXf$i33{6UI;B`%;|ft{+HJT)s_B7_qnu3{J{=l+lj2G%Iqks)69Q& zn}56CfBWX|CnV8*J?W2Lfd88uVCw#Ua;RoL8?oFw+?DQ1p_o>++gsQ2>cwdw){`~t zyl|R`^;D;A&_kQCwVN8bB~H&w10-WB(?v~OPf$FdP}ZM*yCb$Eh>g;QStk@fb2C@7b2y^A=(b!?;0MgoIF zsHiRA&R=9;Nw{Q<4-(gytz*K1u}AROVVS1{b?K4^u2zJY|{5iYuk$XXumiXyiuOvdUIS#u9C`@xyyy2+wTyEG3XU_JtA>w4a!u4amB)MOr ziu@e-ywIgBLvwZdz*BJj)4|%kB|(2L)Zt?8_Q}e^FvViv||&5J8gb=Zp=SS~nK<+s zwJ8eeLDW~YHT`+PU?#dFj+bN5-B`RF|tx`WU=fF_@ z+R!obVnhCxV_*^~FF}s)1-n5)fDk+ZYcm%ffZV$vw?j~O4*>6!Y7{_weC|sZvv94_ z-y?Xb76%AlP&pJ=iIsak>uJdP6PI{Y3=U^BEPGUTdHbC_@OWA`Rd|uvH^Z84$E2Ic zjvgG-8G7t>1M&sUA(yGTpOt65-5MJ_8zpbd$=)y!$dBvnVMYCj`sd|2a(nekGl-Cf z5IOw(MIr2{1&{O7ZD2Dm^=SKi$8((DvfS;;Cu8yH3%Fsa(Fu5g)ZquO2~nfc2Ch6{ zuW9uGimjpCsSa!}?%>9|JJVQr8=6_L?)R=M6eC|brShB2=!^uuc|5H{Ho(gnzz3;{ zz6uqkHhBVj2#sJ(B{TL{e{#uw%DRVurnifur$TP8H0_bt-uIazbfOs^OY&lay<1l8 zo4%Tm^~dl%iG52siPAdCQ_q?r*QOc-CmLL!*cHuWLsRsaLfCbtQRz7l_KS^q=i<(z z=N8&8;D}78>UfvIg3+(p{Dx76Xb3@g#A`A@%SCS~y4l^9%w=l-nT_-hzUDCsSYf|$ zf`y)ucq7So>t~_mtq7MovAX&2qPP^7CRyXU)kN5;kiiWy7D~+CCTFRYWn8VcO%$t$ zIwcsuh2bl6&hInE9#nnUcPYbQ^n zG#?=wI8dE|3ND<`T}GA5BouL=Ljmo#m9#YILoM6r@N9~^?%nP(_N%s#h0xAAawb*& zD8+aeUd_sIP*!iSgTqb8J~F)V*`x-du+>S%qA12_7%f`G6kqn{?KHT!M}pZVr|cLf z1#Bl+eX%dL2FS!PdC7yr#O7q~{fxExI}$J_8tC`#`ZD*4w^629F1SykbY^hd@Pl)X zJ{kcQh5kU1UmBM=bBG0*{3Y*6+(5?4f=bmDYM zV}+fQa5Q!tv6sER{j5iWBs1G%gzoey2$#-HeOJK~#AN>q=N3z`^3c^zjY8|J< zi+cSI!{G0s`;)HEmp)N{tU^tba0M{RwM(a^>X^{ZoOvlc&6V{fG-CAM7J?P4qX2fA zKFeqY)O9$7f(mTnX`WEFIKXXjL_EAG$f+fR_djTP-h*g;HLzrHXkOpQa#7_KA0B2% z{u&cd9A_a>W!+L{L|E?MfF%8_3{p@rpTgBIE!8cFz{ce81VK(lONjnfFJ3V67KpgZ z_7MM~dry;X@+(Ko5ibnh7@bV9(#e|6AmB7w81ks2&GMzppEr!zo7BCY6V>?!#WB z@5@b32ncODMG1i%yqB-vVtASD6;=9Z`<<#|6{67-k6>EN?A;TnGVh+(?cx6XEiqfH z1zLS|p}~=4Txu*?ItN)Zk#C8YW$;8W88Mo*JJx7880kDh@o z%t1!GVemAKF+(Xq5^g~>suBEJ2=&9;yv3-wd3R@SNVIL?;850|yIk{%Jp(8=7av4e zW_!_V0!ME2;7sHw>nm(nHDkz28@H|(RBKLNv|^of>s$RP&hkk(<2mz6{G+y@YWgSU zc7!Zj{|2o6Ug=pyrf_Gty*~?kg&Z&t z9(`oT>QSDO;u+I&3U|j`15LHYp5b2QJnlNiZK@MWOfhGMyNstk#%3R;OX8PYZDV6T)bg#0MqtrBrODHax}Wn# z-u&JVH8a=isUq>g)syG0H_L@wtdrj@a5>{>y!Ya_!}mB{V-GlDaqSEaiL& z7%y7Aovhx_@5Pfso{;q$+A10NCbnfY;i=M;ibStgK89uE3Hdc+o!i*jGVodQ3%H!2 zPi-Yqyv-(Cdvm=pX9oGAIe;2v35Sp=l6txW)O52!rVZLDy%4ajdtiQIO6HuH$VXdW~T~Sb!$zvlPusOsIBbJ_-9!wrPfb%Blbf z0sW&}={YuzEB!0Mk|XEg0}>GzlB4>c!@RODtqw0gMZjJZrilD-IVg=@g{KoWen9Bf z?Jf}gz-t3mJGqsgK+yKY?7-b#-H>==zaV~J~b#Ld$m1CDk{6XjxEWa5FXF5ur9r{ zquSq5^F5h_jrWA7d*Wv7T0otc-Ju4PKHaH46JXG~hDlI;I7Bb+5d|~Cc-leHW}`6x zd0|=4oTvibf@WdI>n#sgT_24e*senP6^^70Z>(0e6&}cTdwoPjI7cRPiL;J`enVj3 zX#sK=yQ$C&@K}kK9(169;T3W`*v<#L*mn{Cc+v0p)Y*F8 z)4MjFBvZ8&i;SX$;}Ij0Qt76Uq)|T8yUw1Ny|Gh2JQW?KNj3H8?dSXV=VOjAaAC~P zb&t9nNO>^@Z5nhlcUYon;H!%Zu@n;)^sw5T>^CJAWGS#~On7YhJs$-xchc%{(Kj!c zOy{K1uhCAxFxkUW4sPwyy}ZL_Ib9{`^CNd8tkkdsrG_7o@LMivQ-H){Mymu9#}agz z`;n&|m^F#bUU$jayr;_pcD|%eIy<)SjQc9J5WEZxPf5iu6}zhpkUk_$E8pi@C~Df( zOS1VY{PQ0{1Bmqf`%9sxrP`h#c{voH8Dn1!deF(kTKs(a`o*hQ&o*;&cUyq+qtAFc z=4baWslX;FsG7uLqwk)QQZaNb@z9b@yj;5_@xX=y-L5IBik3Q2-8U}m38_RnX<&;{ zQVZWF%l)*9PQn4E4PU?s*(->3X;b{o4ZD&S?czppjO8esR}D{$z*!H3 z{xouJ9Ol1!(ehEio~P5Do4P$@3|uZnfc!>~Y_qjBxf2Fy*&v0yJtgZ>zp$&kbY^v0 z5{j*ATiur{1gxcpvBk}CHD;s|4s+doh;67i36o3rPs6(;8ygWH47~sWHiG>Ke3RW- zhRFJL+KQB~8^9)MR$q!Qkg*T%Hl3>XtYOL{6rlX&WF_7NCLq=(min5KF-Xe`H!2Ab zUrbiY;5N<-;^M*7(kQoN&hffutEnEPZ@y`fu#PIMj}q>5-CIi==JeT{7eOfnBxCmM zw(0~SlIFW#LJX7=`6~O~)L%MjKhmS2�_@&f14ESdtCW*hHEW4p1(a(ZIVLkH=BH zl5L(9^bc8hhTn1S)A|Z|`%9{UkuvM>%4vpStNe^Ueiz3muXE1h`v?7TGbVCa{kPp@ zAb))yUj&i7Mzj9Dr%ct^tinS`D$s(>nwTgt67{hYa`e=#XT9g#NeMparcs6a*xC~e z?@3q!vae<;jhjt^-&pF~SWb{Oe%EIZPZzo%z0loEJK_DR)A{w+T|WOE-#bEg5EcV2 zwx^{QIwp6p6w%MCPG5W?pxV;ydwu8mbPB~e3CFF$_y`kZ%Uga#qs394p##se%^JZH z&EX$xrUKX+2?X-eu6N&trN)%hp;xYFK=Nc+MRsYtF)nGzQr$)Qu#Za)mg-JYTGr5(viBX9y>b{w}H{W-mU?>Q#T)nXP--czT<&#snmmMe0T98rrf_HLv9ndTv=w* z>f;0{8PsOLL=6%nMfqC<=T6i z4iLn_M?zW-ryGBwr!Vj7?igv;LyjsuYoe33@IZk2i>LM8Q~(dYcp&KmV>xuT!2T-h z#g_Hk>F8n?mqx;K}M2$V{96Y?jm78_Qt`DBxaP%>PEkTO<@{bF!b)^2oeX2ImI!H#^L zp&x(IrEa!(b92FQFQ~_W?emGtDrLN;8_$To`tVi9>ZUc5_N4)+fw|3dA|iKm$TMov zRex3BEHh7r0>@__^A>(N>KbGJiSrZleRwC9fYJ(Qi+U?5+vb`9uL88@yN3F&qdw|O zzST_r(i{oUx;ugq-5x{Wj}<$ws?i=(2;cil?tF2p>7nZ(knG~iiSRp`yME?-5#1@d zY$>A{yN{!shGwvXOn2pbmeVoOjgqaF9Q&TX24>p`q$9H`s{5hQ2C&gc#Dx=kxkS4dKd+qn=6pe&08_@*w-$YwmGi?%Ygqm^lSQb#Srl zBCOhfzaT#9=OGQ=bV&>rcf)6U^NUaSVENV$lzu|#T|i zV-1}2npj`px1V|%)nAZu$5Ix@tU&sx##?iJ{bm9Lwu5YXA|Q14(yJ}BkO~OM5tM35 zQr`b4s=0%jmf4gJ9&;gVAKJ%@lrTqsD%z=*^^7Dg^!P*YGp13ez3+Th;c$j*eXP^g zNqf0kHxDE!8ZlZ1_m@;ii&wkiP$au|F*Yqe*7g2FuQb<9na%~62+4j7+jr&XzU)Xk!mUesa*zS5pAeA~MVRNPw~DJen)K%#+88N*k>DS4v~6 zOEmj0KkG@%t3RKM&l?dzq~@jXL(^H$IPEXAp$a*yJ@ZEOU*tkRKalu#bl@AGi@3Vj zB^X!J%wMxOvJ*DREVr?1%)z~YSqUflJmOm^LL%o?>w(hy&Y+?xvh-sJd)gIsJS#?jtXZop9S(q!$Gzg zQr@t!AD%!71-9O4Xhu7;7EeAUWH5r?!?R#+#@CFU=n0upd-v-{HujTo(&*~gI z_e|D4UrZHpIC6`;YFe7}Y8!8j8H}_ePE4hJh7h$1iaYW{UnP$Oy0o$Lq(jOppfQ%T zcpH}&_Z{|MA0;v~k~&RgHf++8v-2qXx<^x}OE2RO%Za5uy2Y5-@7VmK2&tyfuA4d! zu5g^L5HEHNcB?>TVw>Ep9TRP~+^QBEz?yX5xnvAnK-c8O&1ZgSDu}#*X}1|F^?q&K zYS$3oQ9E}qscKv{NfMTQt#9?_E5XwwBD#(Ced)?`Qz->9qlc#7Oo*R7OVMap7;JTS zd^Tys=fSY?($@XoMV5#7S3D5K$nJ22{fIP;paEv97uA%=UK_0+Rc=<5OBltvN% zpRztB0YJJsXd532EEr@rw$%7b?HQt~pVP4Sp*K^IV2|uPQ4M)C`ZE);u8r_KBO}56 zf@e2_cHcIK?)s8W8rc4Jz+2kh7>|k^sPU#fz%_3LA(%f1x@~u|D`$$Sx||o4^YFD{ z{De7*QOZ0WTbwH}(~Pz%Qm%z1TMz81B=R8@?8F+@HZD5@J#r|~X9 zOK$0S&UobNUD~eSE8=KHvo934BR?0Act}4e5Ey&Jb9EN7uVS1({D8buni6|V;Gk%4 z$IeNII)As{Lwn&9Wx=FflYO{{oVL~Dahds2E4JTAH&4sKIhvTDk>t|6twDtjUKK_h z$E;iAc^DsRGo>*V7`d;y9$5+H2dOA!Q*V$(=oJedjB6=QFV92h56uNUNLrk!;^A;5 znc@;<<)>IUZjDj!sJB!U(Qm5d$g}0kvZec~$L)6IJC1d@Wa(1pAHfM`*7yt;aYYEC zcx~QC2w`?|LjRKXdNG@vAR#_cIvH-yoZWF6^=1P4nO{t7y6fE@5Em5l5}5mx!z}K{ zpGM3-R~}BnM?{Q7*cbl;nY-)zU%HcAv4uGXbJbOhrVBXkfR#r38>}Q%7B8XFmGBzf z)9zO@XrVUsthHfUizjQQdG0{6HgDLO<~PF7t1a~Rc?9dep6QOo`*R<`=+kjqu*1(B zO)9t(=-LB&CGqh7gBx$Yr>tfqVVx7YSjWp)WqZpQ)T35&jDZg1L4S1nsw(NcC3%Oi z$)f*fEjmdf86kICSal~&t>%%b9dtT6)=JB)S|J$#Ub#`{Ch*iWv`W2)!H>LK43`{; ztz!{Pv7z5;07$62vrCw;eh+FKDfTS)^^BYt3cjg#ykDPcA{hT+h+^&T8&>f=fGWXQu|jpvNAz@s734>ME8Yc zh-SchZryULZ!fovF1`X^l*rTkQj5V`p5=E9$QkI^IlU`I=9(fp9*HsDe{Mb@JM`{1 zFuO1)mVrKc!x!=S2oVyNNt|$mb})50RDKZmaX+>`BYidNS?qwkJ?>RkKKw$uW(Kmd zXH-c0r)q_b4d4q81?tew+*dE^X2qXybWszTzD$oj`2OJ9%`WYJKXM@`Zg{uZ(b)9! zRg!hMAe}7HHE?dsZ6xD)QSyM&AF za+)!o0tJ1j#36>!*jYj$X9$E-79lKPy8Gi0am)EeK~O7>b@oFwd3rIi;-bB=E@HKB z9!<4y*TIAlw%?r&-uP}EZ%Au_Xe(u|42ObzY#Yifj=%6ZA*3C6ztv;y2lQ(vf^wm* z%CtLPVCBpuLc*ac@3xmmJL;p1?1{$YO{lTp)Fp>3^vzhfbQQL@h5TrO3hj)g`zU*A zWaRpnupGrED=y2Kc=voi8DqVb^D=Dx@xAF~Vw_yuU?x|S$bFdB^X&DRl< zxm6r?_4s|+%*Bxmigs`iaL|V6p!G22nI>S}EasHnGe$s@p_*8w-1+K&jqL`ObpK%; zVjPIene_=@sf+uyJe0EWDuaPtUU7foWS%2=?)y0Tvb)~#^0; zFLzQ`b692@%XT41%yPfpe(|^p@th(!7JfTT=7Sqmm+-=}2YPFy7Pj-Iw$mGqmeMudyB7n-mI` zev_BnSzLj80z|Gp&wRFd8kp0L`i7H2;F^2LIr2oBx25&;JzJ=xdqS+(Ycr_=x-igZ zcnXz6G|9i%amA3C`9#{^!d{OU?yAv2%k!48864h3duIRKSYqd@ z_QHZma}<{D%qm2t;l_0`WY#pv@BfPna4*1}9d6Y%zrpA5AcJPvGXH|{+RZHYfZCXaQ4k9Igz;ge(eVZ zm~0q3Vs!NFGSo~z;*!#Bvti~d4??FOrREH}327)?%>aD#m1T}Q-;U{feH~}CjWf7k zWiW-d8j#59dN>8^yKx2#y&r1Co?Gp83#7!z5p*(d2nPF5{IpX=)xsj0!^Ks>+2*f= zoFhMW!tllSMT5ngr-cM&2G_l}PwsLK@`tUe-} z?4L+MsTM)1+Wm}yeC$i2s$5iLM?nzgTG!6WZ?$miTEusxWwSy9w=-BhF8xiVLmuUL zd=j<7B)MP{uHI`k?Y@KhJ)(rt1+h5qWhD(QAA&v1@@Oh|4jp+yx$^F9>O7qSI%}wp z(Oss?c@1Olvigal9p%)r`&*PL&N6uohvGL1!X_U;y5jCh;_j>M`gK9=3Yeocs1-qO z^!9v%nxK@IL!m|QLr^OhzJ=Q7V9cEbuL{DJ)}ie?3yAGOry#@iFjwi;2uRlKUcq3G zO7ZoAA!=fALepjTp7zS;_ba(dA?Z5-OA^^v^T^vyEO(@2Gxp5zY~p>#6EbX%kf+=?Qtw!CKTi=Uq1*IkvlbP0keguJ_@gYHy_{Pn74 zz_k8G6?cL9EUL4*8OZgGyZ3_!7v<9OM^uD5Gz|Ms)%f=q#$>kIkiVkIKO}B?+YcAd zPDkrxV7262`o0Y)fieb_{^6@8kHf&~)N5d!aiFM3?J{PXRLF~mkH<-`SFu#f(9Zbz zjJ8+NHUT+XmASQAxfikPXVf`t<(Z4Zjz>I^Bdyl==BnB3Yk7%2&Y$l$Fps9f3cQ_k z(9>y^^norp8Ql6A7v;->k&%TFDzndaR5h=z)rg)CX#68fAvzK$@p~HZp@bcl54H=} zAF(_p90O{~Y$+o%QP!<>no|xT+<=;r^5f5<=id*6V5%o-UnR}26D~uo9*|9AA0mEn zXk$egXu%<$eP8mFc_>a~b{BcC-TZmcQkc>deQ)r~og{`?tFlxTnfeoht44e*h2 zPGiG1pkBhlD@zP5qNA~QSVq&HH|wfJO%BG29E!>>vFg+M$&9u&>(@R%wjt45w%J=x z#b$+)0--q z=S^$rb@~>#qJLto{nP=0VA;n626`o7;P7Vzfjy9r32QQ}+SOkPc(!yW@~b&Y29MgK zOJ}j!IF8KCl%4cIyhCbNAHF}vG6F6E+zebI=XJ5m5brb+=uXRPaE;zR=A|d$-rgFg zm$HLkAxW8#6Vd#-|9sXwIb=@aa`(F)jV5b8)g6<|WNXx9myni>FsXDUhe40ovd(;= zcXfq6PlDYDE3`)=tQEG-U+qsGm#3;z9nZv<7oQ2gnz!f`2(il4GX()g#EIXg!f0e&(K+%x zKR(@Q)lZ5)ZQA2$$12~xG*66a1xvMG{GFDFO!t(2Lyyw*y&l{{UhQ2fVY|Ls1(@k= z*LN)C^E)6w%eD+fVk0kA#w!?dFAwitY_`X>?tq4{s2{taM01cKsGJ-3Rk2&PJuB|I z#>@rX)tJ z0;&3qvtEWO8xvJ*qqAMp;JkDq?km#z)9*TdZR*PekbPX_L&0XZA=014b>3kuQBUqV zR}%6{Y||SXZ*v_E`#?J;*BxIrFcX$l%)wD~GCInY2({$)n`E}gx^7a~;2=pWj6bfZ zAnNr(sPjOX-h4Uuf&1xQlgqPrHQyih4YzZO&>ZX1R?V0aia82ja$g#lox0n8+kD@k zOfgzno{Jq(7WdbUer0@_JJVgz)Nw^SNi1?0@W!-E3OaRt4cQ+mWN=d1YL{8?r3`M( z*(2)KZ7gm#>@%=w{WzuMF<&B=J^*zD(-lz~p*DxRm4BF>x^!{Z^zu|3Lxrw|`7dSH zqJMLpEiS>6=M%L!v3D6;LFIGgGa_=5V=RNEr>)im-0J|unwIsP3*XM4LZ!(JfTxEA zs>&b5oPs zs#zP>?xHR*a5mr*5O$d45*m{UeL}%()0TCmYZ;q~#&z8D)d8BM6f{ za95aL_Ssetupcjbaw{MTc*b-+GbtT|fz-^Rd)zr5<`9bVWC_RC`NWKr{m-XT65uP1F1Frx1o#T? zx%hvw;YJ*ucXpOTtGP%&LC*+SIVdhbg{~)M+}D@n)IZv zzA zqxTKlVa{X%#2XiLOkrhIvLb@52~keCT&#-mhu7V0Yu~M1;LPo#Su+ban8MHkNqAk* zCfx&3#Y#(GL)9QN6S(ZDNu@|uJ>V6|oUkOj;@pBS~R&XQ(grZF|KH9W*91ShR&a!Y@{QYbk%!$bNvb-m&x7uK;ZTBs|e0DR{em z8L7A0ccu|*n4=F0DBR^Gp;QVJ4iTm8hgU(DdgD6eZmOx`Js$t+S50 z@#;{#KVpF-)@sM??5YnOliHyjdNz|l9LI+-QttruI`4+?siY>%TT7W_mcN*#?+MTT z7FmNZZdf&j?GG2X+zRR!WYWGUIyxKg?miqk7>;F>p3Z7M^}~)@*IS`vGQpQ7>z!h2 z1#vDJbyJ_@7{TpN6-e#bn8Un{h;nl(v9{7eE=Qm3D4Wg2ZUu3ho^0?*A*3pJ9~uXw zTED9q;_VM_C+iR?W#{B&-0xq6n|P*D$#;HihT)xetESv&qLsFVGt+#vmqjDrj{vcG zQdVK`ZCHtW8&HlPs)b*`O64pD9dQ`F{}Weplc?F5%n!1R(%S<>+KIt@5Y$&gVZXJs zwRfh~74pzKbf{VFJtEK0V8Z|P!z*sCE~!+@tgUvZALQVcdO*9D>*g&gpkVf>E|8{O z;6rUNF*j+i2%Wb!>32&T{iP-MrodD40QbPqL;n#t^sRC8@P*loZ~g^Y!$*3R=kHB< zp#4A4E89l&;RBCRwsb37jGrfV*o5hR?8va*ahf|94ds`^I?YrK!8wuwvujaCZMr=c(IU3dI^fON`ZlK>((f$r=JUCNacy5#EuIGL zOff9?(?R1Gvx()l?8s%5qN16aOGh}hf8cCdvPj=T<3S1669pSKtgl&5IxhkNRfSjGafAiV86DVhFhbyulsVWgtQj>%2Q!QW}&_aV5=n#4u2xb?b-h= zuUvViJ-rlj^zv;_cVj1Kfysh5d zZ%D~}nj-dF{;Z;NhR-WzzSwxhu;@}&(*7EcCAi{K2*o*KD5A>Pv|Yp!^6MdgkJC^c--l!jRavoB7_`9n_(9<+g%_OWOm02~2R{+H2?qZ*#4#Qy5T~TzM zCvD_Nmg+a4?(?#?IQEw&YCq?rG`ce3RG(Md0$EqVxxlF9*N4BkJ`g&#L33WHF zjv?mla#VRQf#-%Vmfl5vFLvulD>jQHJlV(k*y+APf}+IZidsET{i?XEUE5)VBUwjI~X-QqvK~rmdG@3ev#%h`zM96MfDde*3 zcB`PO%SG_wPd35k-X_7~ew5MvSE?}}{XOk@m;EV~8Vw(+cETIJpThuy*BLM0LL+wP zI$iLY^2*=x%*Jkd-*Ovkv_`So=!#dV^1kIU0ssi%k>#ZWlt5qQIGb8H&k#i%IBQMq zM_PhDXu5%$u-1Kd=ZI|_KPl&HQVv=o0vDYSoYf<(>^_tlocSc92*sDXmVx z&O3u=fNVzGbtq|w0lvkwyOsoX%jR0{)*Y&#Twb%1b|{^=AXgowH9on zHndiCYzD`+qHz1pR-Zvv=OkVGseNEIOc2h?5s7ip*T^{6v7^;|2pIli@(J*+;5y%d zQju(UQIA2TacwGdgoF6%z?-HY%;wDTD}C-pyWVP=8aKYY-_aSPaxn)?xh|Jqm!#jN z0D1L30I}?tHL=#i-1m4tP)&hA>16qfp03!}TEe=on-Vf|mEt^3wVP3Y5!zAJs$$6Vh#cY@l4K6>@t z;5dpsO*(sgOv!L7C<8wCFqm@O)|T$59DGZ;fRKJ zwRTHDRLt_#V7_F{Cb7N&N(od-_mjT`hb3W>!Wp#z&Wz@)>k#wvCvmnvmV zRm>$|jP(z9A7-5O@w|i5P*y^t!plhh`5Fdl1C{by`v*m!>R$cRZ1S8N6Lod^nWnUFpW6jAx9h2@u1}kEL;20hz{KkS-2uiq$ z_EUErnVGl_Bwce5vUbNuheFo-LaRAZM)KntljU2lR=&A!tOglM8=MSd8)CK&Y)os* z9coGF4R5@bqPIj_^2x9)Ub-Kc)~P}NCX?;H)@X@8_st5)hjK-^bH1%kJ>#jj-cJgG zW18L<1-JTX0Jvyp+f5{?_?jPtW}U{S`+p^Emj=;-Pi7MEf^rInpz}Cx3|kla7$c|r zE*E70FZsSPLW8fA-L7GNdI|Mn_K6j=F)fH$FL-Amq?Qw)0Pa^M2 zBm`g;h&c16ReF<)4L=()3*zxWW$?B)?f8YScAXe;&gE7h$CSMO1&ivbT`Ax#cPy{1 z_dD~zfxM=K6J7WPv%sk&Vh-MyXLWfYAebvl;|J`9Aoy5;r;5B!?AhGRxvwVRswQP6 zeA4Q>EwXWI^KG&HV)^EUTK&p&l_&|m1sPn(x1-gIK%c=O*%+J#EcqIj}v$0LaL&|9_nY)}MYqj^ClVd6M8#!fM+p)j9m-Qi6(I~i;xymss&I8MxJNtcvX6?H#Gu@S-{eikph#o5%Pu6 zJ7!h~`!dw_XBJhF9!IyrQa_Mv(%@_0eNaYq4U1hd3vlpepBDx-S3dK<)kXvO6@wr+PK2#|qJM22gxso@$675~CDzQEq`;!By`XBaI-Dp_YbhM|@Ot%gCxdLAo$^`1otNm}VC1Ff zz4(arC$J?IvyaaJZ>vPU;lBJzYvaO%*`eI9-WK$(1~a>?q^U27v(Iws1G(3!6V9u! zuBU-ns>!ok)U1^qH)EE@kpcQZQZY2bd%Ehh{>(kk2EC<%X83W(FM6>>b?Mky{jjHT z%GpNe=UoqVPw}6(JnxqEh#hrNTlkHFfpFMDwB47_luSzq6~uGfiM7!&H(cO?nmTo&`OX+Trws_Ape2-0fNMe;-u zf^^su-R9*Sp_9|Q(D;jl_o;6<|4*zC-D(^}S89_yPQQ?0TzSw>a5&DZlARt=DpFfMR~{%i28v`YBM10>GHh*om3MXK6n3D3 z))xyIHN_mqos-LA)@c`E#LrqbwrvM17lCR9;0MP?i+$-~zs3I^#8ccU#!18~cgUL_ z1`HB!DlvgeE;93IJxA9+Vp&OJ@yTw&TH|vR|!tXW#)9(hNaCcUgSGAJrompNMGjGB|XHFbP`9W=ma3h zL}D+NbxKXUnZT;bFp=MPp07V)iui13kSywWd`Ky4`{X%UXG6~IQ)64n?b;b1g|vR6 z*C?t3jhaX9>Y#tDpuB4{HyYJx2SZMIAFf*)2;K(}V;7ch%HWI2GTbm0h>g!F@4Rhe zZC;1WFjY44mIGLY^V8=_xIGqG5Vp~Edt=nQ6=55Wp}Bzn8k4hbdt8$hU!#;I`U*ft zab(3daKYT9S#o-Y9Z(nCSXHdPp>{KP+>EbTqGPIh-1ye8<>}%g`%ulId5y&%sZI%5 zL^aK&^_?-MuDbdFX9$|Z`LGo_Fa@R7-p$&h-G7&+i3?⁣lLS#wx%9J`hs9`|hK& z8iTL&4&{1qGE|0v=GpNr>4iEOL7lw2wa#+ZnpV{)1ju!+Qa53Po%fMijxB(T=-4Sce{lzwrEEUtU=$CHT6m_e=RMpr# zZd>7~KG!$+NeOs&G3MoqPv3e?r1F@`zdT>dSeQ*D!0f(IZuyyoK8ry(W?pgxB9$1) zlleq9zx^foI&yL8Rg9PVu?!S*cQg&P3bSC&o{nd6UO5kJN98Lxhf!Bsw1EuUR9VR7 z<<^z9;@b16L#1^g4Zh3^%=vGhT~Hx5>Dr|*z^GX`udzRAFYG7dBA2ds3j0@3KgK%t z`4g|>@{KJz`}8gfS;js%ZtHX65E7F|TJw>~8^MBq2=L`T=lBW?EBDj&`y&Z4iutkU z;FaSa;qsD?cki6E*uZgz%?Zo<9RfJ0(9;rJ3tp9cT~O{w#P=yr0=x`PU+SweCH+`f zGw(VrJn=m4)ZmIL*{g1?ENOK#_7Fg8>ykANJG4Yw)l~G7n@szbfrieB)!5aD0a_05 z0hE5(z~Ys2c1~g;?(zjdob}7D>NbEs2d$U>TCqM^kFJ6YhD2yy z(ecDJPoo*qMPV~7ud)`;Y4q1>71e*}D)WBSmN&Od)C$yrAFquh@XHx%Ejg5}CELf2 zyvTI_Sk#%ZfK2N0mK`NUcH@PL7`_H8}dF(#CDQGldL(HpGI}QWAs-j zc-X;zp)^6aT^^18$r#Q8l}Os5t)P>>hx%+!lsMk=1+}^uwdofwwbB|9R?SyNynt!` zvCc$9eB8b4^-1p_8J%%rX%{Z&D*hoK>ZU%%xe|Hnbk)to|Kb8*o&55_mLeV({dYpA z^*c>Y53d~1KflX)@o=3w=|KV1&s!oVsD)~sjk3FNa2W|gLyz}i02pT<>ng`)Q;gSB z5Qdr}0Az6fN-Rl`t@mfA)M8>VD}JpIx_@$NwW{57*sDzE%|j&-{V~}l*S8Ae`T^#) z{k{_s0XY*XuH9B3cdUEc4`?S@$vtOGq^RV`*=~}MR>;{*a}JuA`v@kA_pLZ4VEo{6 zux=-%WG9gjnh|;EMc(pq>-b>U3Nk~+-uZY;vU&>Vs0caX6tqf)JIKh-6L|Q<`dlVa zp`a`9xPsybMw;5}O*jWh!M!=hV{u!0-9t~x$*Avr-DAZy=4wQ^s)1(}1)d-|meRj5 zuI!Z1q_jp$x0?<7cz?;sKUjE~6s9T?(@=?PE$C1X-rDW;c_95c*dFiAsU0X$2HOEv zN-on}P3PH)Bbit!hT)Ssua>y|oLBg!QOe&I+-ffX_kj81n~N(ei%}WCdDr0!*dr!j zj|?0YV`gJ>ZrbxU6U}Z8tws%;@r@&r@>PB~w>FmP5SL%D)P4Ub6>e67@Kfh>be;rq zX_cFuq`I_Y+8;A9rvW3da>>uUf5-H$7_i5dx*&<9vZI-aSF{`ddT)F3ARIhTLZRCPd8Ujv$2BmlKK z{5I$aU~Mv$YbO?Y>nNDiR$PpZl;E@j7Fw1gp($4&Zif1CO^Pyo>sef1Ugs|8IiGFk zG8CZuJ~7@I?HZp;A$ks<>z{Prwx=Cqvaf>boKT271>OdgeQoY-+nfP(8w0mw4O0Lz zXR})JBR!SJ0=s-+4MwtZ)m3w0txa8Xju)2gjs%&GO*;r0^)sn@U!JzaQiQ<`8nA6$mQxXH4F01 zW`>DJexRrOEWixQn83H!jwwm(IT>PP-rX%}@A*it*K$it5paL_TV*j28elH5V`cJx zKxS)eBwK9N-mix!_db)p|5(5ye}pgz(dvqHgj-2{*H2N*kzn1-s#rq`lt$fZkhVR( zGnQ=KfPUE+eDPy%{Y<{^qeHe%6>&Dw73q=AKnroOW)bE6+`wdqtIKP#qit?-T59KQ z)4UD?I3PT1Y zFhoTuNsnM5b2|ysgjE}Rw>}Q#_ha7zeEM+@Si8Y@1ZFpqw@cnB%zmP#z1a0O za12!eRrLXgnb?_8+s4DP7je5_r_cBXX-DUK&)r zxI(YPf=Q%WJ8S$%lL|scF3L5F7B?{%y?}Q%HQk|9Dl{1Eh*ndZbX_l;CC>88k>h0v z$pmPQUJn!Q3L|!Ha{RrA%o<))Le?XHd>f;$d%OQeoRg)0KSNr!rNzG}XD9BzlphNV zb}D6UtnY~*DE5^p(6@;9Lk0N29*bPgbZ>iwIR(Gq8oB0#?-0}&{F%!YyxE3!h#!Q` zE}3LX34gW7e5f~9PoK*W*=qb0RN%%zo8~FE_Lp}xyvWscwf_84nkn)53hh$?T?m7T z2WPcIrUy+v#DY$!)aLr1PqM{ywVmni6>`omFK(w3%U?gltXh!3LO~v2jg>l3%l`H= z+68MSp_Qt6N-?c53f+@nbEh321vcCM^ayq2`7ANI=g# zI|dZmaf*}z+I4^pdX_SrDCmN(4(rHl*Ww~mdMV2IT`}0+v*ksm=d+Y@fs2Pp(4IZ= z`ZcpT-f|@-Vg|XQX0eE*Fk`Y+2`9~(D5e*&fH`ztcygI#C8+~_p@%OJpUhQ_o;J>Y zdsM8yS&LiW1q2@bl|EfRE)bN2-}QVogsG`5Fb!0}vT^=8C z7!5MlJR}kS+hkk(MCIaw7plIrb22`hIQZxaYC55p3AWNwQJ4{v)K~O;Ez|F4ti6i7 zGvwGN1VNbEzxN5xY*Bf|$nrhvDD(&@6F9k1kSo!jdkfjf&MQ7UpSq904EeX)WZI*G z4ErMtISib1#tQtf{s!60Ggtc>^uuV{CxL)REF$+vP>q*PT)=QXQ1EqI$_6b?Tx`D54$lz68RI}Wun~H$=R>@!tHpjudQ~Vr%Y;T7n6Q%uu=4<5j?eH!0?!pptCP3CCdVj zoC-RkeDxKATMO--Qj6=Wf_XHX1myVlO{zgl+>6v&UaBwV!V_{>mLKY;)hI$q{rlx) zP@%d8%&15O`(*OXSOyYNf2uJys&i2~(YqMZ$8t99{8H)UfEeOBf~o9j8(q!=f@B6ZyHyVDa0e;g-hNbU2v z3P$FhHh4*nUXmqp=512KiOtCq3qyLw)`~PD9=i8@N&xIF?Bm8OZLtr+R)16p!YHsY z4uf~^Ch$KLoqXi(ryP@y3c0E4ZKzAVE?t271T-~d)V>5IdBz9Tj2D*GMSO0(GI~D; zs(;2?PAcBMW?WU&2Uju&|pVx!_Tp3523TaCYQ4q(<*-W;Y@&f+fJ zCH$5>HEAMzz+`j_CTG?OHu)@J=JZ@YREL;7M)q1)*IAl&S{mpOr^gX#zW!@1-K<-* zik%8I@6>2ZIk>4tC1;N>EL*aF8qeF2my)1;!7IFlSkFVKQ!5@+xjwHlO0`0NRZIWl zIEhi6s?G67F1V49`zGp^m^UkP+Aj(tW?EWNA$I!okM*D>@7t<|SM;`t%ljQf=Y6{s z?gV5;L5EIWJ$}uBm-xAF$<4>w$Q*8<=o!wGpDkIjF$y0x*r3&wxQ-{c63>7IWR}lP zdM@^o1^Kpt<`JAa^r`1}R4Lb5Pu~h~0Uaq3@`!Lj3j{KbGJ=mZopSFG3f}l^Dr4l2 zV}=yFHwVj;e^i&w3AF$n9KR7dFNJ$m1Pg@bgF}EOyi-*anA-VqrJowvfyJHM4aD#c zM}>Y9jeAHL8q9Vp>;w-hTW03y(U*>YpDYJv?8xit-@|`<^N7f|ltzhEAIh#xtRHnk zir&)w$5Xu@U>G?DK zZQm~gL%x(Rbyu=gRb@{z72LfgTKB>}ng3MB`rotU{wRF(`G1Uc+IDHvWPkX2q+9Or zs`RB-GlLDDGsi=GkR(;i!}pE-4+RgxJ~WwXD7LUwcYS}q@p;vhW5mAn=%=XdUoWA= zHSMc%#oAv#R-NF)dKqay}#vYfMWTEk;i)TvFYJScQrr|XJDorjRO zEEu?S_xq)O4Wobf)qr#6ijFe}dTzs-#L zvrAKS1=jLrf$#ON`xMA0!jAl88~?mewVNZ@{w;zW{a9nar}KzdywE?NZU0w2+x)!f3sY-K1M$j?}kn6XbD&6&GSYdJU|=@9^u>i{0XD^uc*rZ(xqr85MW57 z)3?=zwD8G(ce47F_;|t-dHLGU9I`*7(8GbF_(F2Y1>02;J%-1WR6EJ0EU+gUdA>;O z2{xsg71zk4+hb3$Da&8lM-fW{;3r&2>QMS5FAl6B$g{7SzcqvK;B=ngQcC4gSzSD^ zM(F7c1gCiD6K{U7;q(q(Xy=^aZ5}Ku$j6DM?=fR$atxOGTA^+gm%1Rv|99a3J6C#d z{iV{;Yxn(VLK5aXRxx`gUI(@R4K?}k0WnnWXb#-OB(jSv?cfz;Ic?*D&E=ocLd+q4G6B?oTmBk zFX;CF`emKWtZmyTXC|YM+5a8Emtz6Jx#|NmXa5dDq)q||(HGk_bpP)NuDvOESE+~b zvHw8(&z@}mf%abqSoeRR{nr8ZA87w|+d29FwbgFAB{Q^T%l4`pzh1HUpKYAZe=PW4 zH%I@m;D6l#$o!85|DRF#KdInxm(%W48#Ar?U8}(~qx&l#jn3l6KOK@XIeeldD8Il=N$j7E_YI|LY<9+z(TcpC zMw~9K%)6^y-3kV_sRLzu+g7XF67Ca>5DOnigl6~D-(2wDFJ$4dedc|O=pVi&dQlw6 z!LGNX!=3^63>=bp66E1wUltx>90)LnexO1r1{({F_$44a<2A&WB%gF4NhPVKf`7S^ zxHsv>#y>q-z}+WYkBU6S?#anhxZBIU`08M5n{rZ$A|~;?_9~9C(0%<4Z#>QT1fpy* zu_a?9;ugcxKpVL}Pv)f~4lR%HB?%<$ND@ifvva-gD@s=PpLS^cIIu%&HpblK<$TYb zCkS!_6wtbAbhy0G+(RkH2y~X}#D}+4qNgzs(yL_sB*T9t-mjbDUA_&MCM=ULaXil` zyh`zwl?1rBos2ANeR~&@j5BNThcSe8Yo32~yUWR_s#p95T8Zmja@y(1GD#T>`80aoqb=l}o! literal 0 HcmV?d00001 diff --git a/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/2.png b/toolbox/MMDetection/patch/mmcv/v1.7.1/docs/en/_static/community/2.png new file mode 100644 index 0000000000000000000000000000000000000000..76e21def858b2f9392a90999d741cb653e766ae5 GIT binary patch literal 66595 zcmeFYRa{(4@GeRc5{3jB+#!P#g1d*o-GaNjy9c+y-Gc|W;1+Cf2=4Bd!Cek}XaCQ= z_wl}+hqGR$e{0tCs;R23s{X#}FnL)q$`D{L5s|Dn3K2i?;%Qi3(j z%!)|?L&m_C+CXq$9AQ5*k4OvVxoEoMo^@Tz;@ancDd@-3_^ismyL>c!#8O+^a-LoU z`Kr45&G2I&_ruEiZs*g|^Y!C1{EH0#Ufdt{kNy$p@74DPUhjX#%dh``j{T?R-*Udz z`uRl4-Slx;<36$+u(a{d-+#I6z+ADft3K(&b722r#@!^O7x{Z1PL_~L8V(9*>*#J7 zCx}J#o11Qe2Q!PR?)F~V4Zg#%llf0LJ1}SL>l0tsdav4{2&325-+5BMh<6ngan)+q z0Oe^>|4zrrl)?B47qk__n24B&7y!5A&Iks7Yzd^<()s(qFT`!(_rJ8hn_blT_{$o+ z)uaE8PyF{QJO39E8UGW@31Mz(zJL=^5boXIJKrk&^+;oWvyLz#(Yu-A?2`LwJ_o=d z{r9-`8z?96Jv$r6ej1c3L~<=J$T142XoUCw%*PM0H&ikdGRzy=mzI!Kz*3H*=>H`U z2L$Klx92bcFLp16ga7w*nGoQ_+|<d?V~V21*^&WdwEpiaQJ+Dx?@E@I>nYJMinp= zU2DF~wsacUE04NlY(GjN$!@i9c0!WnbI{bm;jT$8nKSvHfkX7BLHom1^HZbrLj$lq z4nL>~Fzw;?g6kZ+KhEo^hh+?xXJL&neO|55X{C!osUwZ}eNbOC!DW1yDTX9!8<lIDC1+a%6Zwq5TfiaNN}u2_R(y7Ez?Wuo;t=Z)T+;&+^*V!FahyVVp4*ppz(V6(7O^9dVou$ZD;>*5>O;$O}rHHq0a#igtjjznVO<#hLrM-Bd(eSy9|} zpVNm!ukLcN_G-8cUZ=_}wV`QyUf{XiGaSRM30}%`|SI zDWC{?OSHm^OIBBh!!ZNd>(o>F;oc7b2@B&Se1ryl!hmS5qGx=_47+kF=`U9m9KLOm z0Ra?f<3um^2o@!acAO6NFlR32-azby!`S2&UyBFU?bYf*0D{cs-q_Fu3=dkiLb!JU zh0Fh%;`_O}Gq{A*9^{g6TwGCMZF9K|LsrbclT{Q zLE@RX{sNw>j42&_n0D!$h-RD8g2~%hL`NeVwYMZ$w0)_e^f66BiI0^}kf!{-ZN+%t z7cRsJnkJM?`&7~BYGoe(mbQ1DKU8y<7#0f&JXgE5g!33!Zo-c{@jKA;`-|5e$hic% zO^h{sLsi-F!2o)B*%AZQt1B)X!10e6Fxn`ZWMq8Y5~c^on|~DbZPb`j?vp~R{ZPF* z%dX9GJqs>U5LjO%_K4k6L*oq3P%ILkzem48g!K^)56e&_SL-8GL#X((RAb$zAI^IQ z?yGoLv&{gUnUC@aflM>3$BP9+N=i!M5%0NnGpCi#_7L~^9!1ZlL#FEtUbT>D07l9!3Ju+Ip}B^jj*W-Kr`>V} zS{(7jlbyl-RA1Uj)`}9Nvk|^$_B{QwL2M&CVLKS+wp?)_52B!w>-7Y84fBnQ zi~TV(WwzTYj~!}Pc)nXP-1zjfrwYmh4wtT14jS|HaTQ9zdv&$Mz(SRoggJo}_RIdm zzdp*1fCG-rufo1{8-(oFc3^>#_EfdhVzN_X53Em*7wSx>7m#gRFV|g5XLRfbf|};} z3_P>mgN!6Jemc!(XWg9VA6B+)nc{?i^+T4gb~~P|2PTXe9*!%y_&foD2L$-Aw&$FT zj0`d2R+7yb_F`oV#c;a**iz$8Oi% z%Rv>)+i?V+*-E+CLXtg2cupqkCB+gv4--+1jK1ldH&rIz7l5|mC(Xd;Y0boV95xY_ zS}-{RUHP<)cjdu;aoudYdQ)CBTJq_K(lS1`=(2%wYc884nVtZ1x zX{t~E0EOuxAnRRZt0P~xsplk1{neO zVymZ_FQNA2`s9Yf_CeWg?4|2VyMra^WVd)09{x+XdMk|2b|MkV4mQMdQbS#fpSorA zgEO6kv$O%#x+MDlS_>`;gQas~Cn-sF)y?$aC*C|??Vncb38DsB?&qV^fV*ov0goGJ zRqeYIzK&G8yS)+3hPIPI-x;g9vOz^pdbV2Hv&Q9f9QrhNZ_$e$tt0~c^!6-%LnuT& z0-J#iVX%|O<;d&s*!9t;6PHJ(+=E@r3%DH`8^OC1qPX7fT)Ka8PkdfYNZ#+*e}auSd{VS5OJ7*~WE`1E!1~ zCjQBOV5@>9{@LCbYAnQuizw#b>f(A6Hg-q@nvI4CN$Ulb6-Rw#Hw(A2M#yd&mHR4< z#Kb$h(om#5$)(lsHvwmMwJM+>29Z^ET&~w(SwbU;eP*rWW%o6$dYme!k(1&wSoaTx zDw-dPe0W*O_>PZQ#(n{cOPcj3lPcS@PLKUX*y@~1NR|8>l5A)h7#bF>OJ~dGYm7^$>(%4( zwOg*eSPZWof+7wN2+Art#!2^^bE)||eD5Ih=h&aEtgKYp8QwUK&I=Oe_FjSrkO$>xZmCSQbPNfX1I-F+!MPRj2EN)9`EHPd8$u2IKu;h331xSo(Bg9FAH*Y zBll_s<$liJG4A=KmNoGA^KGPp9BfGu zuamvGK+^DC(GK1Bw_V&g#ECu*N@Iv`cmX+KQfc(Qb%YAifP-|y=eww*VR9_c#nvtx zs;^eSF*$I3v81ky{4#MqGUsEFtfbS^s%0%bUeY&U$K~+WN_=VdO%=YvMf9zVoKBjH zN*K#H8Jk6Gp{%Aneyf%6YiO`QkE!hkJO5bv3Vt>l7;xh6>T*IkUD+z8RVgPDFzLy+ zq^C*{W+gIgb-OLG=5gumbB9LZ|8e0)f{x+~K)3DMuU1`G-OdAeeEDeTC?q&i=4n(L z7N?#b@1D*ReUE7v9xR( zcwD|X`4TP1wXLtW#qeJ2HQ&u%E`<~`GqaB??9Celq??-n*CUrjma&eDLE6foF8yxC zGY7}#yQz4?J_swW5~lHPROal8-DImR4lX1T*X2M!*9XMWQq+l(_Fh?pzlZ+j)uuU7 zJojf7xXn_Aj{G04PfNESRv-5!<@mF&wmDdeyqJzNQ3W!&OnqQFTpg`vis}b}pKR?u zt5q7hizqwRa`3OjXC*Dz!)>=Yin5&8QjsqxPoPgxAnJ0@1u!zF$XjnEO=2_x+hbza z;>M`$073u=7_Hs4#~9+KmN7odrvHs6AMf3!>6QI<5iJCfct=2BIzBbuBY+!cqwAH8 zNR)|*3=TJj_{m#ikTlwd^K6tWE#}Ys`PDH{-JCs|4q*t1c*NKGq(HP<3*Pv?WfY!=dJTA(Z-pvaWYXL zn8SL-pDB&U*5~=@(I(4D$b7%PTvLi`mw??0pVv*^Lh`Ic*|Kmf#eK7~LighM==tG( zI<0vj`S~`@rpou}F-TX-{x*wm+t+u!$+zRKrtjF}IZrOjZDWiq81>oWpy=8Aak_A4 zN7KjAGh&QEswS7Zbhey;%ixAX*T-cu|8R#v>t?it1PDf9@4^PT^_EQQdR<2ANN2No&Sbb}`?6Ut-$e$lk;x?V<-fxOPw35G21U=~#yTHbHu7Q8XsrRsBeH8N?kzcfyOhLl3pmh6<22_isLD=MSWN>6bpb zF}+P&c$#lSLqYyjSqB5sUs(gX_f-Ei>DmnjsmC9pD6@#hhZP^gz>j(iCz|)> z7iwsHA32;R9%tFUOM3Z_kEo!pIywdW9v&JNK9z*$I%T9T0A{;fvcN#HSUSxH{lJ&7 zKrY#Z7OCj*`_|qPRi99%oe5*n>`ryZLAqdqp|WY5tq3yncP zFvxwE5(3=quf&@nF`>lSMY5x4DY%1MRIIcv4@0VneOmw`*9Z6CJ}w37<)piQ{EHc^ zHP%8`?YW3@Fl=ZjYj62nE1?g@{)=M_V(jvFcnTBlx4S1`9_Pj4AyEo{R-ydn?TB}cv7<52B3q=XJ4gYKf9TpU z{QlAtJyidO_Ftd=&Be&xw;H>rzS%ceb1{RE{fBxn?-TRxIHSj1qXNx97=K5$J-_}# zN>8Ah%p`@Rv$pSjfLsG?j?L!cggDhac-(`7tXnT|O@U1G>({UCSCzAlj*j6G5rIIA zF+S6$E)iWXHo8hx8wm*}@ZPjo=KyK=PbaK~-~$Flt)^7X3wp}T3O4X$(&x!>>mcmdrStL^^v0ERTTopv%=#K7Ob zK>^+CC;mYZch`r>X>kxHVm1RePRz6pz4c#8@5rerKL#d!*4}Yx$?`ahPJX(e+TS-{ zmlsdc3@OS*7Xh%bvVIIy7Wp$-cllqgJd zyF##`=xA5@@Ur6hAHFCmD!RB_<)QMWB*xmXb3TIfuhiK5>g6TV+vs3kCy1gq6A@#& ztrsn>E7`n8Yv1yF+`89dNM+x59k{j|nyOP1zL-D~5`Cz6yvPJr`Asx4S?{A7%Ds0# z)TW9Wo&I~(aAhO;;j%Q1ioa9@-K8-<8#y8m7Y`!0w>c=OFjzvmdi=he_5%n{io4k? z1_4x??VUW&{nt;C(OBL@lkl|`&-2{YnlrSYWtY--H2O-!exYWgc&UK~4qQt56@`?} zJxS!We_ph-Q;5v!xEGU4K&r3cqyalx7qC?Z8k*|dnzNtPhE?v&T3_dQIH*iJb4BvR zqHA^tIb4Q++7{|MF6YO^ZD7%=92ftPmXfI^9)wK~tyisjuLcOT+)$ye_>LiSXz`f- zY1Mt+iK^^KRZ!Ix@P-as`q&#Qg0-BjGiMKx-v!Jlf&sP>3_yU_Gc?ZZ-RNQBy>B#c ze!rxshlcPZ>iF{6?|czMs)MI{fP zN~9G!hR__(rzpG&{ur&){JrPWK{zGQ$?hoUz8$I`P}z2-Sk#>Z^JI@;V#1Y@ zl;-r^=qVc>X37&o1R-^cza+*J|8pyL=c#@)Fko44R@XC9A6M6x#rv`Ovg7fR?j`!t zFSdy#<;gjX2kmlrYPP3cIV&l}R~))?aXtGSXEU_koXt#F%NCu72|PSOC1wq!jnw(? zhY=s|FR>`qllmg@;xm^w?Sk#uS*jFbW~Dx2jz_}EIrsw&ale(zPB(G!O)4tkFleK_ z7n!M8P02_|S*{J4k2nief)7rwbm23>@v3R5Xt$CJD(e?ff#Vl{UH{H{ML+=E@oOoH z7(A5PLvPa?S{E)0BAWejmCoYA%~Tl!A`iyle74g+cqI8s_I5USE)%Ab<_Z++5hbOA z{`Ts_5RhR@F@q&}-7<~|?66CsQv&w!1&ZddcH_F!1oh#}{`xVN-f$x)Z1@zfxH#ME z>9R;yHoL*i-Da#TzbEhuqnf(1QhgEW=;rOb2nJOa+e%?cv;8-hG+e`g>K7PewuF@( zwRtN?rKL|koc3+idvxby%L^2KBVfVT@Vp*njbR3L&scQc ztW#|}o$>sT^!YG0)&6lhnTn$4@!NQF;1_?_>Tr?YFOttv+hn>$SGix+^XH=ONoaFAA|a&gaTK`9QMfzz}r zC03}`(+D4O2+bi?6P_H&v6i^!B`UO|?+Ok^6x?a5Q?|CO6T$`uvJs`yd5y@nkLM3I zeNWiiVH__P(m_OvGMnKom+F0RS6lRCmF>0H_I?wkU(RuLjUs@0wfkzw$hwGBYJ|?G zvY~g=o}$N{HIvAEfJwBI@p+&%yvf;z6b%KdGZP_wegd>UZ)$`pR~O=BqPpeVal6u| z)K18oYUX%gUscV^Q5+Ak-M`P9X=Pne2C);GZV@@KiDm4YISy^csCGV(MWI zD!B%9<5qxpp_5j7#!4}M?qP>1U^C%JYZ4eT)}mb~K>GJCXr z*bH~AO#8DMbcUo1A_G#Lp1Xb*e__dHVuKkTQC97^{HZNrOHv%_-2EB(;Y`JniWr}3 z*WovImbDJuz~gK0J3*uy6a*XEy zE4dS=?dI?W=aGKpHoE%Q!yc|)jr@h8;KTyaH>!9Z{Jwy_UKd=5)d#%`u_JxE2E@?X zO>;lQ|D6hdM%JZqzf0r&5HAYD-1lbCO5>ONag%@5PM}{;9_Zj0$w_1`=}n5)(Sd_DEpWS@q!`CZ*K7F&Lbt&=yqIFs$_txjB^8*zktY%tJ&wtSV-eQ-*g++bzZ z4JL$6LD!yy%Kx-g;M=+|F#!hryyM681A^S-@}3%O4-Pbtz`vguf`Q}i^(vxITrKS@ zrYQ{b{492k!P|=g&uNR__x*pZIsX;n8~vJDp&%5ubMMgBM9X=^xw7>N7D>RN4{222 zAC#`vpG%_-{Ov3hy2m@ld*6jXB3Brw=IT{%^SH!ctDj;y$6>BcJI)%Z$Ln~NvHH9o z_Jz@`ymQbTkQZ9GeEo~eb=muQilO~|P#2)CVm_1xb=Tk-T?4sDGhMEM50fs8YZs)* zz1hFkwMJTRGF9fquK89I_1IJW%TJl;Ww2!~aNM{&1f}h{+;q!&tQ}@yXks`%Uk0x6 zHr-q*W2AC(RNneCJ2-UUY!SS8g;#cF2cqtjst@vc^bk?c3;>gse!BS}BU#mLf#adz#w2~`N|=8Y_yu}7F%y-h4- zOR%-yLl7uN zxEiccbZ8RS&14OcSQJX@L{&((h~|IGfzvxvk%vhm9PZ5xiPetGq~q33WbB$zI*Gwv z2B>#Aw34SLi#2{JnbP6y;WTV+nl(OhkV?>#tQw+B9Z$1&?5znD(l_)L*(xe(B$p%) zA3+wd>txL|gcyZmrM~ZEs=vwtSPn16m%p8K(m%E$Uhe*BjoM(7%tckBVoV%9Gt}q& z2K-+K!}n>055I6X?Z}y3R~kxZ$|BC)D1Dg=zPk!`@Ox8Jv<%TE(cjZ!BB2m*H|96? zGvao>KxS;~cANqXwhObX7kjbJcQ=z|_O&l-FI`b}meKMm10?ir`}#lx%l$IVSt^N6 zPErz|&%w<^w7HPLi-~q)@(ydo}=Np8p!`0+kv(cp{Pr3aW zYoQR7EDl>AL#4?Zd&9GHk8-s(m)jZ`GxLNTk9Aq!F*BqMZ_Wz$h2T)NK^)D}6_%M>AXVk?S>;7!B#@Gy zT;W^KkN$4*)}G{W8%n?6Ppx;nZ^GraTV?_6Mf;qRiJUnjA_ zlX|%^-2VWFbOzdlq9(IP4mQ9neybk6zZ&={N4QsEF~zU3FZ4Q7Wsj3$vECK<*>S|> zEyw+Q!t{u_&t} z{6sFP0n_9MTI9$w`mlroJ<)+VVvTDuTM!!)^B8|?Ljcp)U6w-IlWg@Pt!9>=c`5{1 zFkI!m1ufz`i-6UNHOKo#j{+LBOeKG1#IfZ)-6krd_<=?*u@1tP&YL4-eqCWL*8Xxl zFzFA9Ujn+Dd~9PnDTVl2Kr{dU@-e5zE6y}_nwMPj{51AlZ?kOCF#mKjrEAl63st(i zzBgFlh~~ZG-0+u-8{56V9N~D}sZXb&ukP0#Jk6tee1r6sxUvPT z)~)Sjp2NC8&f?rb-J1p`jAC|C5+8a7=?HXdNv@(5Af&g{Yu}Q@< z(oCbx9_n2`Ex(@zo{6X#X8J6;OB@c8S<-e1zBvVW!jiI*QRL;XPYP<~1_ znNfWz=j4h~loZfBZhPvjNsZo4Hd=6^1pZG8+OP40HxMQhNUu9DN!$I-ylLiq%XhuY z8W9e;=Jwo@yFZ@9oX#g}O||Vh&2}s09IH25x=-AWGg^T$ea980r9Ag#EVGsBPkntP z5oX+!bH@&Bo|-;Bz0;?sr||+_3>-zf&=F0N7hh;tahMFA9!jQrxOxdtzOG}BIr74Q ziyM;ci`z$*jwgrdnxN~aKT*@Avv$zMLqkMRnvIsjX^^h>lle#7hdwEW;dCw;W#e>< z^INYsa(Gn^^SK=zCsxWb$J*CRsxQmnibI!Pm-+cm%OAHL+cDp(+hmh;3kqB$Oe`FR zG!Dm=qkTFZnB}v_W|Qf2jlsY}QT9t9o_CzB(4PgzirQ1aEe|?x#IF*yGth~k#543(?O{;h>FmP0yeiUn= z0dch%w(zLlx(XY3zHR28r<-n^9M` zVT5ZVGbC9(8v2cn^9;3?TQ`-UhZKMX3*k4%daDUJDba&dVry1LCnih@N^r8cfDg%IZ;@C zi3T>Yz7n|5nYJC1E%B^xeAw?|xoi64R$0<4(QZ_6XDD z;0#h2`>&QP%)>)j2+l&sZHU@x^%&vKUcG+7&oD`FLYUegIXdWR=+n3?*}?rJ08DJ` z7q6;ZqQ?P^7Z|Cp)Eo9y+O*U0^FL*BtlDuNgF_33l0bo@S&aHp`&WY{B_GBFeEUW- zd0daJPH$Dpw48U38?dmj;f2=Esj?hjLX@`;Nx@H{;xddqXX4B!-DkWtP z2AJJyPEAwudM*!@f{KDUVELi+@IE2Ii^sQ}Z6z_6nnR|U7?iL|+n`#xWdA~t;xkDD znARbuFAPe3J-x{y8rbc?!&jy7t}nX)Jv^RwVzqJ*uxB+t3WUz#>`=_tBQQu$BdxHg zdq3n(9Z(ty8LM&J4Ac2JA~e&0hU(wm8UJ`GV}I89l)g?vd)RwRV=oJ)X*Y2qoDg<) zbP_78uyME4-&~YRThUm$S&1tY?eIgq3cisGX%4|@1cGspoiGrZ?#sv}x@hbNLtl%@ zuxy&(Pmw+pG9kX*XICf1xpGxXc7kz9ybfDQz1qmCKMUUbQva%Z&UH? zH`jcZ=?Wt@H&mW$J@AVeeSWC@+4b2oFiew*92s_a=cfDtoWfLZrs^i1rL97}N&VwA z0>LAAhYJlo899;+#p8N@AP%Cqv3(jex*VD2e1r>Fb~aIr)0B0R!U)f>rx`3aCAS;x zOXl2++hVTOV_}ESKs>8WE}F;8*vf&eWUw9n(ehVNNb>#?Wqn{lf}Xo#I;;ija7hV~ z?^!GSOV+`CV;6ho|Ak#jS^v{X)50QrXxm6@uesurgQ&;dAHHoB*(sv^Yg=ZOht40s?~bv-1T6 zi_wu0^>zaa90VC&l~~-}FvQcD6V)2wAs3iSi?(@jF~l*GNm4@AWsDCiaptwXJ+Z&N zWf=}wdD=|AJH?)!(ZW`Z78pk@>JKZM^~k3VjEjL{hLJZHAH=Z#3H!btYCkS832oFP z)d*fPdiz0P#o#NOSw_S06b=O5oH-PQK^iWX5oY+Ob{ z4DfkD;Q3G0B3arWCvI{H+0g5+vs2Al70_Tx$zpxnDScZrGe)FvFOjG@8+6g6+PW-%9m{JYl+y?zYL+vgvHM!1XZQB07RSV zStGBdlgjQUYD_ZGha0~Ky1fbhLOmcFzZ5sxOJ|4<+`pY-Wj(N`kFbyasm!r~G$KO`s zzy8}!tB7^@lC!Bhd%Ssfff~~FQgHHj&J})QF&WdY^BDONOE!EXobR1ZivhmBK4#f( zwzO%tpU8{mYj@jsfSks31`wpDHCQjkrpIef@pM!d?-z7*Xz8w|WMw5K&mIaqd$Q!3 z+Y?_$X&XUFRkhW6PY=whu$_VkeHkM zhLNun-prUqLZ2j5cWp1IxcYw)nkod}-L)1nsN9xaP))Xt=`Yjv-!1Bs5hK(+H62ft z#fqT!9zSXun$~xfOtE9uNHbZd%MQ<9*(A8j<<0aWCQ(n|Eq=wrpY3DY|Jn0uK1yaf ztz*D0g{>Ep415~li2ruiCjDnVE2np)tw9(D=%HCq(6aq$jY)Elfa@5;1IlLk2| zP7@F5&IKGi)h)BK@K&Y{U#-!84GWcYP>~o_@)*+gedU zj~;fk9F2Jh(PsJd6mj`9q)S86@O_@dWT*ii_AFu1A)TJ%2$nAl(7E*J{g#EyMh9({ z@hhqv8kSXVTJ!Dr{P=(~=pmrR{jsmTfVs7t^lX%lFHdAT@DH1tCWU!V=#zO$T_vOs z@_JciX#Tgs4Y<5u8Yzc^;Mld(8l}dgW8A}+tP*WXqX>a5rG$kBaCFI<`USx^iO11RzW}fC5l||1OTf*dQ z_#HM4Z&JHKVeY1gx~4_f#rfz$W`4GHWO3dp*`iDeckr z;5*dT48pEF*X01w2*@BGF6B&E21B(u^Hx%Gbl5*f*;95NNB>tQG3|L@FGm}yDHm3E zxZb!|3D5|6)fJgjKC8(s9>wBwBV5*wP79?$1B z_xsAEI#%51r6)opC@B1MG(KC+{Nj-v=l%5|kIhnw|HH#U8h$sUkNq}Q^z&*SN{h_o zOVi115fY)At}Y3RSjF=;Te6Nrb>H#JJ~QR>kc#H^%z81G7&wF7#tQ7^4-}ug+}i3< zAQKahGjcf+>6Rs8*89@2(98{;W2k6-$XZ?AKW%)A6Wqy5e4R3$_f=Wsbx>DMySL=s z<-Xy{bCM$z3L(x+N*i3vk^&g14g@`F;}M(7#b<3K5%URbUpbzUSeqA zYsl8zy~#XlfTz|t4JbgBW4|bwGrNPCj6tT{W`^Y9=hanh{5#`CWcsQv`a+OD%PNfY zDS=d1t}RyOZ)wGq`mnf>=}F%u2s164f8h=&I*}TdH?Y?~VP?R}tCy42!8rt8uwj2qHfRl3aFPvU ztst{VsAgjKJ)g)SzEL=ujdw-8h`i>2{UL9hvWd+TM7H5-k!mQ-_p~y+7xfx{X$Wnm zQMkN!@x4h!>iG--djpO%DK3UT{OmQIU5L!0Evl;*Vp+1pBwoJmUv+#z5NkqY6{W_E zQmd|Yeh<}`5wkXr2O7NHu@lC4Ex|OvPB;#PPGtykAO$e7n8wY7EC3f48WMqo;}dLUs|L=EMQX1ygdSYGLV*IKafNoTG$qXBSfVX?k@ zSl@B!)1gaeXQ<$SUv}3gE($f4D|&j32EYe$K$l7+2SxdiqJL8;KLd`x@Yw z7hJ?T-nn&r0dT>qce+U__kiNF25LC%E{_L(h1V=vvSo&CASDvz7vlf-IQLulwN2q9 zM)ZD*RZj<&bWySq;K{;Y9t*BH!O)XL@3-uv$dR_4oWZiG)PJQN6*k~kpTsp{;Q#y9 z#Qgs-A8>F{2!LPzy#cQI?f)JBql^DD^iW*;LYQ*O1_H;kcVKgOVfIwX`}vfCO+(Q} zB!+GZzrudqG5Y0UeM4CgxLWTf{8oYV`b1)gTX6s6*7H}`TE1!9p9Dq8tM&`X2PiHf zY99cqmb4d3-y6h;^scg>X##uEzPj;3q?{129U^Oa|Yd`nZs`#-CivS?b-5FDp zMJm(2N)gMfP0fjlg5&r2pcDg07g~99Vc3V*1mLdI+*|NcYZ@hx)NYB`Fc3%%FYwD4 z|MxBVKfLgx-$(F?KFXKm8SU40_acuZ&k{zNbZFq_oscx(c(fjU;26%!BFl`L!Qcda zRWB*AG&4WNx)@|f!hR&?iz;IgKa?=^Md*ui2FuZumlbO_=u0VETT4X<0N;NA5wcGo z+ZPm&Uo+4Q{)z2$zrcLHA(>G5xmN=#Bnbxg;NH88*IcGI1d}bSv-@HDE2gDpai0!P z#$jMYX-@lHqRV^qBu-Nig5)C@^x9|^iWI;v?WW`k+8mhb6HeW`*M0R`I6I@&i`HV5 zxSr9sLWIxS2jw~a<4QsDoD*|f%j)%}a>mNe)_j}1bX>(^q8gP;M=!j2`iLkaGp<0c zT->O2!c>9F+4?WskS={lbxFTA<7<-fCth>eHwz5e5(zdd&E8jC6f4*yAaXj2{ZpI1Iojf^6!AsptuQUi42Qo;AN3yg$8(wtL5IzHL>kW0l0)1bZH zZ+;?My(%Hq>~I?KU;$S#tYvo?^;Xn4fP^LVpXOqP5OYdCv$=b}oNQG1O=b8qyrcS1hIu7=xMOsLjpJDs&pETWh%4XioL|=AzvRh+`71 zk)Wtk7uNu%?LSx@sF35mW;h81fWOx=SGuMtC*voaHz+`e=`er`<=8C!DL6qi+u zI}tU!)dPo3+C0y{-6e*h@h1HeM$C11M)b`m2xF? zfq)bJLM2b=`(*jT%)iV&XIXdjSb0;jjLurGgaf&~kNWi(e|kI?(k;5=7iE1KzI$iT zo`~WbQI=|~zLTLj-5>Hiany0hEzLDP)(LlW+H3$J-k!l)E2tE2x)w z{V~u#r)mtQib(+)briPTgEM?s4p+WJMt-S+)l*Y570q1$V1PvKYWYf)y_C6%DEF?x zW$?($!Vf^WD7H3B<2P-e-JNu5t7*mtWu(O!sVEcup;W6B?=uw^zi-bpXKU7Jv1#kJ zVW95E0hcXSN!YCv$qhvF?*75VH4K}$`Z{T>;MgFS&EmV6WQ~VsE+n^~yvQO|H~-_- z!qJaaru0YIt<6Ytq9q4Ad!00|W9yJU2dBXBo90Ki-$*VuuvZdsF~G8Nyr9`b?P`PV z?}BeOH#V9VTK4-G3dIp?GJAvVWy|g;2S!_8~ae!^D`A$b}a5V_-n%8kBCa#NyD=)5PY}a*m}(^stkN zLK&+tz~-!eii0(XEcOj?`Z3IZuJTj*Z9(_#N}C{Kl5#J%NJT}-a-;isl~Tyu@e7ce zR#Q_G7iW+>gys2Q2+`EgXxFTESo`)0G3+#ipFD~v+@29Lt5)x{KGQg@u!x-Mistj) zJXx)&N$}AAFWhKc?y8z*m%a+VI^=&GOsh^`$;AX3XrG6^v5B&5wsaJPwk-AZ1!#EW zG?$l6E*7`vlmEu&Nj!nHRjwn4zW0vO`t(*aM4h{}o?<4c=aGF;Ms;@T+ynCn+qpy1Gl` z)P3{3U=*Zx-7ky#rTY^puuHau4s!;{q>(VHd!CfGOoJh0c2^av_l_@@AY`)lo1XO5 zvhz+I=ip)?5RA>B{l}&0{)#3T#s2%^fy1l0@G^eiwbTwi0iOr+qDUfZ++loGy+`QC zv(IJ+$Euri9h;@m16semr#J~QI zd*}LKo{Yu&Pi{f!taaMuaaS0IY&`Yj$|Q1W`D~gq!PC{l2Sd^5_S0ZXvNXY~2xEjL z0{(1NL#u|x@`Fm(mHV}Zj`rKiu{O7{%noD%(R=#GPR|;tHuxnY#%lM&`Y()}ZhF2} zl+!Sk@{#>{vKBFJu-SFi;4)TXfZYDB!yH*`KWN6JEpc$rMd0>A7fsYdSO_o>&b*iK zswkR7S8>VnxnVu$@Kqy_8FbBea?(d4lf~h>)5w%(pmc%OMq{8mAH_m4&p6i?BV1f@ z_!#lw{+h-r`^Vu6CZUN#r`u$+sZ!MKGkU{x+vZ@<7oJ|LXa15ro^Wu=k~bIMMm%5M z9X2dEZT7EsJDtC@0`p#P3>6eC61P6Dl$9aLOk#=Hn3;KP6n7Yznm+%zTFmm;NyT}- z8g7C4{==Kf-tVNZE}#FJ)s=qPd#l|ygk4hHtZ&J^91wcU>v*0dA@)?8B)z|u=AYrj zsR0kUB-_$2E2LyEHvIU=#>F+dX;CiAI@Uwv;;GAtQf4 zD1E4!yQhND`AuRMA_)cZ)DOpl({I}xJd6rqx?HwI13I=tLeWn?bHzfHZ96zbJ6svb zADacR+z)Vcb-cH?QTgxgsh&^fI{C-SR}n#|{Aa#7@_R#LluDnNW~$|qF8M5L=cAru zeg79rR{;~(wnbZ@xI=M=!W1YD#kIJ*yO-j{-5rX%ySqDsySux)>%TAgVUkIh1ZM7> zyU*H7_F*rBR@t)IUFjPsu{h=i<}a+Ym$s1+gzWC!8imu8#LO^Ty!HQ3>_~}Dh|yY@ z#6cDfg?B~5w}a>0RV}-_8xDA!_*l>2wYUdjQGhr@!gsN3QAuQbJc(@mZ_$mj?#1hV zos+x7;)R%(Ga*@Ob!{!3f}%T{9|1FQGrtL&UT#&RP7Z|Wl(>n?E#?~l@^3<$7$xw^ zs+ftiK9c2CIrjp>Axz!l7{^15n?u2vbO6u znp+qgyxdy*<#X9STItok%1bl$63{WZkv&oR$=g_+VBq&}3o7ZB*jt^=(~Oc zvY8#ueRgU5-rWoYrx)ckvESn)?3rf{FZB?ZXH1LDWitwM4s|C!lPufaTq6^3-=6k` zT{~R>0g%i*3fXktTBnWA6FP0ZjNud8hA9lfZVUl}pNUm{9;@IY5uk_(C@(P*jB(2? zIR-sp{#cGb^cULbUDgvX`=?5ev#tK~LUk^=w`84|cE=v6fkphL)q?(Y<$c``hN0J7 zC$RI^n|(@wCINlW4m*L+OznCex7VJY^$IVW1Q`|v#ahxPjQKH&c&G?towQO@VynH0 z<9O}tU&NOa29nGhIARW0_lNbjR>zCtl9Fz@UoWb9hkBk@zg3_>zb=^dF7t|+Ng@r^ z@4P%b++FW*aWFS0*h*x(NLWRkz17d6ruVIHlDiH<+6O8pd{Cjf)#&4At8dhhlhv3qEXtdj=866tvN9!s zM{MOfeXcMHq!wtEZPE(NGZu)|8a~`0bOonaMrC=}6Av|Hw>m&Z;Y|oZ+VRn~Wq&|V0y~0@<8=CJcyQhxMZ_oaI3=RT z{)5L5*tp{3l~JLDMTL=riTBU9pnLWWs?{_nedLWf#wQj`yZ&uON29ruvURTZ(ENE40JPzc9j{=kGiwJZZ7#~hK6u>6w)WA4b?DwW!N z2DeG36S_^!oLuajfIrE4b5pZ|1| z5c1hxPwh~N<)Us5gwBAv_Z`vLzbFxna?P%;t-9XfFH+NnKZt^t`DVqeFKJ{flZ!(1 zQ+Oc`mrj0K3->ojwmGzhWPB+zx25Ahwxqs(TnaO#pCQ4a`~Ji0_LgI$im|+>jb~L( z>BqgHMga7qYkO&#Yuq)!aA)KdxuL{v?Cx$6tJb(T5vhRUYY*s>SRDFS(i(YnGO!Y` z4$$fD@o~KF-Fq?-pu{vH{nir~8KBPioST6Cn_jn|2US!a6GG?(h2Zy0_DyNsUnms> zesXd@AIRtXixn8`%`&XFq2L08%(+A4ie&BuS`dTb`-{*AP*S`CdC3=2Tpz;p;REcZ zXOl%EiSU_oVP;bOGU%qJy#NtD#m3b=7Qd~+e9%&Xh3PK zraJoi(XqMU@FT@G?$t0!Nw2jQo~!vYVv~v5n!0dA6vb$Y(46BlmXW#HSv?%eJ^5Ug zXjEQBN&aamOOJLf$}ihGBL&t?-Z{xBDR|Lhy%(b#ftHM?ZV5ZS?%Xug)WrGRerUbR z)2kCJu_kJ6_@y$IIg#n@W(Gz$xOk5hHT#<(%pA>Mwgle2Zj^<|vVV!1&W|3gwK^78 zs#YP|--&GJ70;NyGCW-R@NjYh*(3Fn6apd=iRS*ga!M}?jOj&fNYpAQ+`y?>ZOEKi zELpJ0=kU(?10j-Q{;6=vGr1dylv{Zle`5|CQ)FKo*f|+Sh$F~llyBeh@;>R|XsD@y zFk$DMgh;dC-rZq5QQs4r-N)brQ1e5@JTs`#;mC#jenF&>e8&_vPwBTM2-FX?dX%cV z8DK0^Hj~r0H6OlF!WQMyE{=P5E=IR*+RWd(K)2qwvT>sS@uSrR@P=1%Dn`6}O0RvE zMQT@I*^4wb-b1g(8DJzB0HuWd{)#n6UFM_f-dAHX?wy>qH3-9e$(m+4UO7?H0taSP zvb<$^RRv+1iKw;<^ck8VL|iHe%u4x-HzO34+$1{=p_^58Q&ZkILRtZ8ZgDf^Mi z5UJ0eV8|-`%?p{9e%maCkj-ebiWHKSS`imw>;EOHsi}z$6`)_lFIja{&xT}9c`+dr zoT))Da-wCU)taTvRjzvbj%5Dh2~yzSFWQodisGW8Pi&vY7$DlrC8|Vp-BpslbZwG~ zDFpAN5W)tZlqmh`sn=Amw0~{qd23(e`|Jq^uIlLMh>S#jth`q<7t^d{RdqoGLq9$d zEOiz(b6Y#-_p9Zbh^Z%h4e?(Nf%ui1(P!IMm4!NBiwKr06Ug?Wbj1p{G*MIZv zBF21bWB6Y|2?X71PbOZnnCz>ri8*Rj&G zuhjHUU_T3bW%4E>F$`uFmzSrqJM>Q(4s^b^yi8cA4DZ<~l0F_Xv1tXli7pcEg+WCx-Rek`oCN z8Di2Y(33UWGFRv12vVRgtt=tobM}JAzNoE35WE;(`1pq}=VH`er5ouQFILx@Eu3^bI|^G@ zeEUX5rKCin@I>T~+y8~i{m|}M2CrG_b*_6A9)1y;I$mB@wwV6{4TW=f^44L|7*aj; z+HAkuGF`S{?RfgSb9eGnFq@&lLFvQOL%;zQ5ey0>WOu*4j<*1SS$DUO9}MDR^$Ch1 zMr^haw2JZqtxipwgOXBXMLH<7pRuf}$n31;E}hfS3}YcB$1M9(r{m51lp)pd@JIv_ zlH2`bf%G4iMQB)?)A4o~(WuP95qbs|hQ|`g!isdR64>hlq*M$#T}FmU&6k@%j{-{a z!2Xvf*J82b!>d@;3Z3%u^4i*3e3q=t#zHrQV-o_Q8-$Io@o_HA9I44TzVtnEyACp2 zrQxT8RU|?l&Cq3Eee^?f?*8VV(?vECa}U$gUfIP85I3Hy@m|Kq-GX>{Jnn{#HN94B z?^gq?bRDd^9`@(-k4taUTOaoK_lJx)v$ILt-R|Q~B#3!s)*IfO1oMX{CWv{D-Aqjj zac3y`Bs^OT2gcFBLC-Hwlb8_*mtav@3at(;O-<83W{c%3s)Q@`q+;*~OSZdow%Xjz&)gWr78n2D@--HvD4^-bL?g`nGQd28w5*^G|8cd@q`SwkpHWXujniCa0 zi8dPGhy+!3^~xinkwkClWAuCQ0TaxEqKH?P)ht)4Ynz(tRHM$_PzYSF$Q-7kZeHEn zj=v6T!=O;DH%k^N?VFgqJ>SD2A6sZn{ico%&xP}Llo%o= zmYt&`-oJ;alFW+r%EQIwAG3Agz}S?Iv9b80Lw|p$ho^=@E!F!&+u;U6t~d#0Pl4_# z`Hj{l_K74WIDyUZvePxUdt)PG$=>av!Qjtt&u~zS2lF@>fg3A3?{7|i`biYx$&rzb zg$K*ydGGq1KwBLFn+7<>l5C>ng>t1OptfuK#W)S64^Z){uO&EPkR#5pgkE z4pYFmXnP5O)pR%%YI+p_rGiz~ixsd$q`nbtbj4&_{!$2+2kONT&HfHsHAfxqx zc#`F8f1i`vGq^tf3m?iHIwkYVUB#MPZB30ale%~3hPS83UW-D)&OH%(+%vVuc^R&| znS8tWVv~!evBTW$_gE+hckq5WBDlZ**TrIU>8o~MiLoSgX{o1rr}^|_HGl#n6Uv=a zQzaFZUV|Akh^)ZdL4THOl<5+qo~$T>cM)t(r{gUKWHM4%tjbbL5yamlDWX4UKg-Un zwDqirM|rGjxASO;h3>P%4lu?`B-@-h&ZiQfs2((wlQST`u)xMra);?JF6*+vK{=;3 zC7pGCL?>oi>s!sYs!jw~q3XrhqPBfZPK~Hm%r7jgEH5LUZUE1*#?5u%Wx8yCju#r8 zjDF!vRssHMF1K@cOUv?Dznxw8(Idv9z@8xpI@b z$?xTx$7Z$UNV*l{33o;+!MdLX96j!)1B8JJqmQPU3g4t{#vvp6}HN0g^lrX9Ir zJ^*Js-`%tF=~7_bJ+`D)NNFf)2JJLeCLSy+(`4|vRgj6}LLu0+<v+C{@Gcx`AEZY%5Qv{6EyI)b{e729tox%9`n#}k3o-r z^-n7bEKE$9WELF~R6QKmz2&jkLfOQ)I6Qn@hl}-kp%wPfoDUCyWniEBp!w}`wI&xD zxC4|{pljl@+g)5(Yc1Dp)sUs55`&+D_@b|tke%GjCzZ-+yj^QL5fp_N8-1ri(VJ?t z{|QsYH%}phH`lyC`4?1GHe8GXdR~W?)A?yK!v2^QA>oi)`O*^t_Cy-b!)Wsjhqe6$ zpY!8NWV+vW5Rc0pIS)((S$Mf+-g?i=7AYWCgj%c+mR1398_9~tRls2`}sFFhhNk&9pH$%zXx zi`+a#1%yd3pq`Z4&5);5%nr->_i?b~mt?(dD4FFfNLVtVmH^?3tKD+NF`S6`eJgi> zMfzg7-RW`?t@C2l;cZ`<=$}xt{Q|MLxHw5Pk-%nX=rCdHyYurYZqER`OeW8UQ`cs% zW+O*JyUWRa)}ubq+hK0vL;}xLx95C^Cfk`*xY)H>&(nu`HxT3Xr!F$&;)pFb);^lCb>7EAm9s?0Z7h!qWWAV&2M^Nxw< zrngyAJSuaFr5x_Io1s@Atv)|Mje;6P{eIi~=_j}Cad>q!Fr0yhtVgJFqe)#$3!;pM zG?K?Hnp1DEs{Q4jCVu!fe6)DR>(T1;vE|t{r2qi|9yj5eSWQ+{RaqH<&(>;VbLV>l z&%v3d|G>1?%Siu4zqFW)j1T+ye)$Sy5F(e&VUe6SIYU}PLdQu|`wo@NT8kwNjO|2b zCjpoK^s>XrlexEcyY0bRrih$uD05XumQ+lr5muViA9mU zes1C|FV%HRD-#m~1G{rUK^;$@3MqKhsvM1gAKL62{mUt;45Pp_B9k#qIXN{o-O9x} zUiV(<0-M!3_i?K&z{e|mkH-nz+uOI^XyExtkK&u<+anl50t%#~27c&( z78W--Su&v#1OjzULSL){8#TRlOHLuxhZH-6yO;G10=-VBvYe9L+qvICF>V{YkP`J= zpG9M>&Vh3idwtl`$yy~_H-r1t^&Sx8jl{Wo+o2kw1rzbwxp!@5qY!`FanD~|ed3G6 z{h6JY_lpcGlhdK#WP!(ey~U5jMqYkuext$E$cU^eMX~k%l$iDT1t1A)Xr1nR0=k7n zfr*xH+j}D-8OVbI*A1Yy4LRL{$})ue;c& z6aq1`;l%r+$&Fbp1z6oxJTJ(9&!6vVvFWc8CTrcXz8V^tZSJ4`Q(VAu)b#R!Im|Nk>OVNePNGn}E~q7TC#Q5ozK}FbXHiG-|DSc8``S zH$W%xD_$G8eC|qC9j?p3e!m(J=C>0>rPbCud3)CS0F8v(V0)8LdoW(C1QkdYgiK7x z{kIpul}0TsQL&00XIy$a2^$*z-*pcW-V}d7Ayv6{hLX&&&S4aeayz}hHnzK#={9Q6 zEhtB0K6kh&mrpy7#w^Vg%4D(~-KD0<8}@fdOql7&`Q!u(W`lnG@X;S!n^TXS3(N+I zPer5Y^GRh+cTO~de1VS5`XR%^PJ79>*`6+q!*+YnC-`y_ScMhZ4+w|?);I8MR_|Yh zqmj>+)A>BM=j%t1?;U|p82pP&4#)B6x_-{WtD&xDwZV8MfSD?ikQWtav(aK9!vh9o z2WMHq*xH6X@>`|=qB(h(FJ}D*LP#GOrmzErL9$Yi{$lIHd03x;A_hjn-tFDp9`|6w zzHJ~hv_kQ1W*di*iHVAW0+ZAHXs<=0r+O>A&%gghmBhsnEO#F4PWfR^q~krjIROJ> zTb++W`Mvqv)7t**l`JM5-W19b@U?wh2h=JQ%ec4%gj6#wmf!-~s9lS<;mY8k7zkYe zH7@zi^?EiL=y$Nk)3{x2tb3Xj*L8G&-H?{&iiRCE9ah1l*# zXt0W+CX7&(k59(^@Mi3E0F>~W%j522vt+WhUHvpYX>$c4xVq)}SvJX$q%AE`*Llap zAeF6}J+R(l<$kR-)L&8+6-N*)ucqcWh~owz=aGpQosJ)~!wzJAXfZs@CfB+>5W}M& z@j5*xNm1JW{VT=pX15obug95;gYTyT!miZPuKs6%hc219Ww)C@sMnlQ#yY3D}yaat3SG{4W>$gZ8tdG;Du;F29 z0wKPi(%~eq!U}_Ye-7sTKS8HP{-TII&H}mKnB-(=Ei4bi`;r(62?YqE5#iaLO*hvT zM!`Hky>?hkL~46UWwLQ>jSlSuJ!EpYD5+L(8P2z@wz=Px{~|LaC;!*fV)-)O{(|ye zXVx9SJRnQV_qsAKJ@oxQjwQ^{OxSp?Z0V-7q!hRa_P|Au1TMn6?R&EQfzt&SDi-?R z^I1l1ZEaDv7ynu+)tfXP+iN9h>9Z?x7$>WbyVIdu=0e%AanE#BxnK`Zf~N&22yaqS zffhR#g=unF-||WA|hD(xVS6) zY3Vz&WIwuLLo@j7bCjKNpadX%x)vAJ@c-lpANr;Hup|F2LiN~)T82We;m8I_$k#O% z4*c_Zo5(^{TpNA{3f%-em~Fw>2^<;#OJ2clN<{ug6s7jCt=w1 zs^xFELh=EEjK05|9M@%VOoMGj{wOZQ|xwMV1+aLSjJfUZC&1POW87(cT2{QSIG zE+rif3=C`ed*pobobS=(YU-rER+vB0vgQC=BEJciggMxro|0WGIZ^BhX-K| zECB_$1$1UzU~A!Q42yUcZPjI<8k3R&LJh9>kI%ya%%UjgOZO-J!01dN(WoAVxcIl{ z%PB*lAVf~D=f?^{poLh!*xaAvhZB?ai)GdVp$ z)MT$mH`qau1j*dyuS4W8_aD`U6BUFlEj0i!@tQdB7~5+*l`U{yF^;>$@uja16v{0t zts4C+D5)sYR$hB$An@^JA3M>geW*`vS6IVD{HYZfd7_JwC~MSB0xQTYW#p_jL8NQF zQQs=rn4xGo&TDsSbbmq+=%?nnwuRH+KDP{*W!|rEj%%r+GPoT6td)E{px0XLuy2f1 zYctuK-V)j=r7l&aeLK3n0%s7N13_*)EWTgGN)_t$+n4Wak&%%U;<&hY5Ee**q<{`q za(p~R9;n@H^E`Vc6oy47CN0_O_y+Au@+CkR!Arx$Y0tT8o!nn1zhAen)lr+S39IsvpD4_RMMo#pK-vUhiz+vs;Cqt0k!@6H=p^Rpd z=4cwDvTj8w8SJSL$%H#Wk`SuVbKKD9&z|DqC{dZ*bME=1Rj!#@s=6ow|Du5c%VBYz zMKE3=C=cy2L`!!bn0iD9?Yl|MqJGG$o*3 zn~&ZGue>}~4kmOdd0g$tuf~g+4@AO=-1e65qQOBxO9Jew1FT<2vQtS--BaW+%PT6Z zFz{CnR)}yScW_efp6>$u!ysQCA|k`HKq6#lvdP@*{IVDG>8+?xJmNCN#l^|owr%zC z!tH|Q`X-zf`+t2tEu7w@@+(R@1Sb@v}lJiOF10 zGT+q~u289%f5|cSY2f;uGFnVcNh`(X&g7_7qH2;KnlhB+wdE0%Mn0G#)8yV z;R);8+gEpgbHn3tPayE`QwboL_3B><0U#9(>N{FkCo#`+SBAD{2QMPncUsQd`wME6 zdStFy%3gPcOeV)j_30_G2|y9j#8KnZi~vN7B8$h}as>1vZeR#8_vG+&TZN9kiNPux zT}4Yv3d&&Vfr*F5TkJ08SApQZoJ>`EK8MqPK!oBG+T%skvo7jtlG#XAT6MJkK$95? zHr4$G$Dnhfirw%`UQiT<^#)I(jqUL$2LOwf%1>0YNd?>)amb^^3Z#HzFpPq;K?2d( zbUN2IPQ-kU;gONQvX!2kUBiiQw1;a=QCx1KP0T_IY!GwJo_mX#^+~%i`aP+-Y+(c4 z{$4E8(Vd^CyP-n0OGtKl?wGv(>joeWlt5_THZUTLXz?YeGm{=%#iA?Of0b`WA@1|@ zn>f?AJ#%djp1^E-uO!E_X%2jvQduR^cRo>fO}zQ#;o-TZBV_vM3|LjnLiN(?h+^Yb&00=QZ$Ev-O?h#nJOE%Ic#SZIaK*6DoJP>qh}Wh|ZR z;rae(jg2la4-_rNVxaa~Ed(Rz=hwA%6y>c)3ag-7Y4g`6iT&J7dktE&+~gleq~bN| zBq~g?5_PD`#RXVMh~U(6B7N`LYQ_RoLIUKDX%{YvI;BPZ$Uah|7AgE#}QFlnP=IYUHZozPJ=xi_-MM}m!sz$W*EdTsnSK7bcQjK{GHk9$xxBJOt?ZwX z;r_nLAtE9ok&pg~5uM^__mIJT5w#;LBrL+*($qBdp1M7nK2Br;LU~+3PDVy%d_^m8 z4_NqoZK>?eo8DM)RG88T0T5gkG%*wc($31#NRj#tYzbL0OY_Sy1Rg{+%yZZ+7itYSwa^Sby7y%3Lh)IAAoSGV1gsN8OB{V+G)Kh&dro zkuEW!Fe4@*79RsU#bLJ}g>N2<5Fn9$Dx1dnLE+_Z(Mw^Wg>B~GAno0$+sWI`ZwZKO zEr-KK930jz^dc%ECi_LvV2?I#Oo{kkWXZe^HKnDJK>v&57^n|`yI3M#GO^)Fe(Mil zRXe`-vwDtv#1Q_!5x~>C6Et2tEK&hR({VUI4*C*fTR*y#hg5IDgt>KFCFdM|2}`8> z#uFMDdAx9-S)h(hoZx3eka$%+kh5)Y=Ann76xh>4mQp}?b|w#1p$h6F%ML0nAkSg&`d0ig)ddo%OmQ`BOI)(=q@)BF%t)kYTO>qVS*|`0^v;I5m zF%WNH_n;(M zMJt^QIZzst19Vlj9xU+2G2!YBQkaf5HkPer7VEAVfe&lLWtR>*T?B7*o%aM94)sEzPT6l zA7ll74>bXt?m?4`^iHM;dtxd5S)GS_^J!|4U&DSC0z{zgH4Bt2_h@UD?gpK-3c}eHH)(bW<*XR85tM|)7Na;LCE|GlbE2I*6yB8 zGPJ0o@2O)&9b;Ejf4oY`xz%63>PsdIlt{*CoXn8>sEvdTUUhXfKA*ZIW#Xdch;5^~?fOCIysC$#tJsGQIqZ zlZ)j*e|qzb_UyDbaXe%v1Q`SrKEHeBiXyI5TRh~CEO7IzZW|bKI-PEAoiF?91+hnd zk1IL-X&oR)I=+B`dw8<<70a}9$ic~WlO6Ojrbz(awZk1G@z#G-7IFL)%=a37ujkF* zXxd!yXEiArSd#5yV{Xr%*+@J^{f&E^S_}leUd+w1|)TK@OGwv5QU)x0TCZ6^ZOgy!4F>&K(p?87+c_$ z{PU+Q3?AXL-rcM?hUs|5O!+`#B=UVU8XDnpV}v>3+qc)3fcMO-2?NN{>at(7>h11u zBh>(jXozES6PO8f1}R1YH-n!Ud`axRwCc=n=KuZMwA5rfaob$s;Qx!^q4GgdNjeqmW81C8QBP%V~w?z#^6!V}<6#E&ulSCfRakL}Jwe zFrq+Acej8%+E&&qmH--J-{_A~0j}f(UjYaYT7k(Uzjpp;KKjQ?t3r-$*fND;N@)UY zbR03cI5ALN6@!zl-EQ}%?0(k~=%`$*;|V^Z&zHR3s5qozJ>A{BbZjEUN)RICum4ZTELRpPG@dLg zD~C*&Z@fh8lH>fEoW6eDrwmN-qa8q_?%~&^?^>Bz>q7%iLenaG@+zsQ%wT?tm*8W= z_I^1sJ}$-NrE*#K6?U%*n3meVscJKWz7%??&5?&PRUj(e)Zsng7{3YH-~+Ig_#X9F*h0Z zv|Ck+6ml`d6G5edaifBHscdzyb+pxLGCT4Mit0F8kJnd=7Mm?}qMsy;FjPkb13Ucj zp$%do+R>PJYN2-uls|sTq$g};srZ5BrD&lHVdI~-Gl6L#-Yqtl)1-^Py#`+e*sLKw zI;n61jTOxOTf;IF@x^CAIXa#94Jw2Nxi<)5g0CJnh%bDupY)-o4h_bVCRw=bk9QXj z=Nr#gJAhSJ@B>f>b{^tK5^s;@a((DuApz@)J`OOSXJ8!$ zogV=IIFUY&@8trBGO?K9p|QqlCa1dEZ1et=F;@D{%l943YBkJ5K;rnP#1M{oL1hOR z0G%A(0d-y7e&2ej;Z68=NqNK%VR;pmgtZpO&($6sm;~4%eGt4)TFiN4eG8&c8o4Qx zJy1~eh1Pmq3{uh#NQYNL2h+84b910jpV49K7O%a%BikL5ZNM)elfm0+ct9LW8JWs= z5QHV*^CqZ!NGv~M?af+W4B?}9cbyL#e!5=!@NyN~MWojH11T~W5j?J4Wj2#gzO|LT z!e(7nUGs+s1Py$Da;P{s&gbquYcD9sL>%)ED;b-A01*y2tHPRc{dnbNWt?zXT~k9J zCnM##q@hEnA3Ka!%vB84KR-VJaQoE9$7e_DTj{LV9?%Q=LI4s6a1a&EOT8KeM7Fl1 zy*+TK)NccB<7sCbuTYcgo11UwaFJe^2b-M|ul)M)%6BBq^2KEQ3ds$UUk9pzp@+PT zfhr|R2GNHX{>I*l++7=dY?K=Iax(<50;tt$3Yv-tN`T}(S6`p<Pky#Pew~d>p zgP2F~gv>AX_m%Y zwXc6zqgcuDc#@ZlTgl>N8_?W<>Ksx!~^=n@iDcJFReXU(H5o^?^k>%%(8XZ+-7r0N{a3#dQ=aX(_@aCsv zCBdn15n&&vQ5ui}nty!2(!l=b#{|H53RE_$M;FV|OF2DQbSTE(qfNjsrBb=O=a&QZ zljGt{0drX3HIf5t45tfa_v$DMh#^a$Qjx`%4EE;0UXAzL==AjU_}WW;zOk#jCAu#O zF0MM@KWJ!Z@Oo;$gU^qM@7w$gaNviU^6IR>RQmQ8WMq6Mc2HN8*%1kYG;{fr3Jspm zr~Au`i`Mt^wXQgOTieJm^KuT@rlr5--Kf%xOvST3tF%1KwIwafgZ#SU|6qLqW^!S6 z{xdx~j4di60JbYj4S)ZpMTJc*V~xrA!VZX45CU2f!!y=ye?{fv4ro1&M_qt9*PB@) zhV$TGUOwmQS7Qh2L;G8NJ=x+JN1!@z0uymIfB#S2$Py$EU}n)MU$z=2DVQ zz1N2g0b)408d@&f*9WZqeM`>2$?V3<(S9%Ch)5rr#2+Xj`Zzqvv+MK6M`5Z*>Xq$l z+RnQ+0s!vZehY#UUslsp(@ZKh)1biI-N$YR?)Vx8R+dTABor=X0qEZKHyC>D_79P|O8zn02ZkjDFHzqkG#+HX7B)01YrG$5OCdohDhcbbE< ze;N=5{rrrkPijz|RABB);oy*u>JMhnQdGQga*#7jBqBNx=L!0ra&>cM=j8MsuO>Z% zDeQDM9kQdr+lW!OIUPIl@^A|ODH%`umO*^VaX#UmEx}#C$4mHjilvXq#>|G_%%-bO z{CE69qx>KhWXT5-#NbL_{+@c}#`2O{Ls$qVybZFiR5&7F8EgIk z?K#L01!fafjH7kGqgMy}kqAM$1T`IE9MA#!4{$!lJiAaTMkv|IPs^dfL9KR!VyTi` zGEiVPAi(@oRSl&mEiH+7MVi%A^mq#~95DO%x5xgk2o{Vw=Jd^dq7b}+J6PH&wAm;# z9tjQoEE<`9xLV9(hT?eMlOGpX==1sA{Y5t+2V_bGV@eei4c1H!sX93lwOYHQ&2C6~oen0e>DicRJ48#dd~ecViorffRp2;D z3pMA%d1-urGmQKF@&cLZO#%zH+qi#R9viD~X)$>kX6?LKzB#nL4)B*G7m4ynxt`_M z_0s$3Ab_g3-Vo81rGGk_5$5|L>2m-27&6m&wwNzRP2K~Rj)?eU34qKpfQSZ8mvKKn zePTX9FZf_+?WoY9K>vI+*`SSY&s+=m`cy04zTGJ=zrl$61w{r2N3OKIJzxoJe4bMW z3KP|Yu1aw*(9Tee>sFLkE+nOH`qo^B#vahqD3_ERrvR5;d2arl&3rc@|9Mlw& z$Xzqj1;B{E;dI8~CI2Q&A)LvPxOt9I1*}R~Uw038L`1~-vNw(w2js{dj^^eOl`=|k zh`>3g$@rnuKbGhi7i})7h2&_73GFYI0~eSZ2-v<^O^Y}kj9oExw^E@dfIgm3p>}qJ z{d#z17z(r;FD81g!7(*D3`F-kY&$hzn$g617`T6NKZ7D!NhW;uMq5ZDr z^Qp9~#3er2(#TBDSbx~PND%H(8t||IBK+esfZOK4^Yi_4eM3`I>oeeT)d_0_-TVz% z*WHT?z*(CL04|*tJ0y`!*MRNBh}0JpyyxvbnoXxJ+gE8B8OL!=C=qqQT3A8kHKZF@s0D>&Vflu<+_Pymc-piiB1(gi>D|b&E6r+%vt5@y^$G}z1WbWRgv z?Z?%*8l@>!Ppy2A0I%1$c}dm4Y|GrCJwCvcA0I?zb?@! z&;tLIL`BJ>HwCp6-If&mbIgE(X>0D{DR1j3FAhB9ZHr5)Gr0pv@8FFEndq! zX;dhc$ld1RdcYDpGXG@0vaxr&eFVNIpUg@W;AAenEP&{7yzq?qMP`ok8}(>9Wr%hJ z7YFb7@DK<@RH`?hF5MgeVS&lfD@u$G;ou#1VkgyX{-oPS^QBgajw7COa;zZeN9ZRP z{KFG@7V@qu*MMuQX~UEp5AIc7AN&47Lw;yzXdpMB(`Mu%ZwnW>Lsot0AakBjz5)up zy|wWpDYDMAo?&Lf{-G_et}e{@$K?JbQoHkL$<$jxxT%S~udjjE`SI|m_JB09TovTC z_N-aS`$o(o9!N6SJxS@%h=eAF`8BNX>FJAX zCNHEYPT<$g$3`C4)u!YokAVyMXf!&yah98A%xXXQ2})y?E&&nw+fFh58PEnwzF6p{DU%g) zn5=SW zQ=;DLyaHeQ8>{=HoLX;G+wUDa>|LzGK{biddIC4aIFFmOl+@|zp8$w9iv>E>%C*P4 z#tjRL6P!S|v};=GinoUyN&%!Bf>Kow5fzmp=9e@p!RR7DT%O9M!W4$2%vsD78nZv; z5z*roK;7LxWdRt~8Pf^mNaClJNbTB#w?}ZA3t)0Y1aGtJsOYSB*e?L~UjR`Fpc|7F&V-{ENfOcHL=90PP1Q z{^iSKrCN(~e;Ehh?!7u`I75ZeXTMi2j12QilbotcF1}h_V(t%5y(Kx?I$Lpq^9_!$ zwA44xxV=OhvnC}23t|6AdH|;Z2D%^WtyVly0sKKhLC8dlADKNeuZ6HaTR_AHaCL(H zAjD$aldewzVni*gvj1CU2MKF=TMZNUV5Uh@9+j+azNs+Oi`S@WC8;k-iG-w&X?4i4 zLMkijvt=a_;6FW|@%oopX|3bgAw}6If4assdFJP)Dlf0CjZ{%tR-#ZGydSm64h$y( zWb1Uw7<#O*M7np|%gJcJ9nr_9Clc7}NAVg!2FtW|V?x9@ykG__5$4P$4#&^+xqd<_ zjtLR<5wWr40;mKi8%#!*UB%2Mo^$O%sihW<_Z9#ZHyTtx3Tx-!sMYB>cX%=2bhHkh z0k@Zxy((+CZt%9dxAF8D$gi+fTP#$_dc*@Peas6R{SQD@LSa7rQ^o;%ZDU{WRHfNz zd((`7y-=Zpc6f2JyW8~VsRRKoaa2k=gQAcDk;`Nj7E|~T>)N}9mIfW(*S%eqN=w@P z^72H+vX2Z+eERrXzouk_`d3sKTbw|7ig;)G;(~?-%fB?*#kYRxUj;fNXchpsg}Y1N zFkpY8jw=bA7lq(%aJXIl66ScmyhcrH^fcXf1s1&{#=N+=D3k-~bhyuz9{hZJzJ>Ul z)?jJy({gFKK>MJwMBLk6Ged|NFpcWZEBKyAOf;c0m6Os3W@^}Z{tH#8PDOQiH~_q zY+VC0OWlA`|1GtMltnr*ApuZPJmG4_c)aK4SoiiWnnc1fbCMqgAZu!B7p#}vuZF*p zLxK`h(AAWxh}?nK+)#_TE-txzZ#aTj()U zDy!%1rL26nLnRB1a!QPcx#;@>li+l=>Xl}9@-8GDN)oAWQqYeRxDCM#gaYqcukQB#;r9F0mjoi@)GO9A!OsJB zG>P_(51Xd6#2PbEqv0N~PY{Y$i1Nk3v|xzZ27Zs|;p6TpQ4m~vUh#3;6>rxmIg zi%O>T_E}NIV}PCxDvF$>t7W3dT3*RFgoc2v^0dUImC-GkbN?=DIz{`0XgT@hg?$F9I=wJIz;{gefAFbAu>!MfX(+hdqx5RUiCDI z<(i%1*>aaIV{*#M@xB9ObDqD1+R+C%xVShuIIWf%cDD0rEEdYbLw@HMR{k`c2V8fN zN5{v!uCKpDbC}Key@vQB{OXTAfctf`~jjo0J;6aZmBc;7q@ z&eK=C?riMuZf$hGgZhpX2$H0R0BS6QF=D3) zK;)~k5;5ZW_6M&vK-4DuRw|_c@SF4q2{oQQ@^I`G*XHh=q%|fd0~YCVHa4bL^!GQx zOulSplTrVAF`5IY`HCY~6tzd856kz5PJW-AK6n~TI89N}p})qAQ}PXLYy>bqoS0hP z_;`5Z860cl{V5af?{Vl5jWsoOhl?HU85tSX(b4G<5v{G7QYVMR2V>?KD|oXJ42XcP ziFQa#l6cb6!v6B|a`)bFfWlk=TmVEc6Ya_A;pWK+4OWmTm%%`@}TwFV~KdGPSKajkfN`T)X}fVXR4w6`gL(g_t)-1Rz~VyJR?Ahfp!yOL>_ zDLJ;iy#G~Dp5psnvx4|vbL`yQ+#51hZR$B&+p1hXb?T5Vz@H^ZnBHJpP1)Zsz3Qe{ z2Pk2$Z?6E^D1Zv+?|@kbcsq~~uiUF^PrC$6T^kbvBVjwz{IV!flba;xZ*)8aBQcm? z(Sc6<7(NAV2GPQ(XoHeXg$#`uF_$Xw;bP^WFn~`ZDRr7<#O{w=R%dG~{y?$iTZJ~~ zL>l8BV0jD-3|wpZn`73$F|jZ`}- zj7A`&EU_)I-98&mE30~NspmyxzY7k<4cuzvu$CSjg}%M8$f|rWb;Lu&2k`K49?<>1 zzkBYRP%<)>3zMOZ)HKY`lLrD}btZK(v>O@-I5_ya+FGF7b8K(~cs@*NARp7TI1gNS zOzEHi=+@TOoBYC}%+86nrCLr0vylf#QL)hJ_#p$soV#7SDob+l>8>skHZ~DaGB^Y{ zcqAl!b(w6X#pPwGWOn_>Nm5j6f;Veva#*z|C;>`7*|~+-R`z9|e_tL*4LD?Iv5rRe zSjKW-Un^>;S$Rf=y2pD)cm0T1CXorZo95-C0aj|P{S-DF6ej^#fQklT3BXGtMZUl* z$oKb{!XbS*MJi}Oq5uy5Qn3Vx=KwaakISu{X!5{eBLz$WL&KaOKYo}6Vr@E0ofH{M zVl~18>C`}d91KHnQqsIZbg=$x8X@nW!BKNXmNX<}#Hz+d3|Rkr$NMdP()A3Ya>E=K zE!%+NkRhjBQ5k}Vc0juNK0yKn23js!Ou(78q^1FoKBXV($@uuVafzyJrA6o={`q@* z3WS7C*i@RO{Rp&UV^ZM+XO?GWKlE`vi%*SNmFze&Mg4l`n#uwTFe1}25Mr0RmAgCme`^wS6yOLFOK#JR;Us8 zudI3R8%Q8Az|~2IVkjt1m;x5Rf6HMap&%qPT1tHIwv*ghk`fFU7-|5MYN`-{UE9d0 z^uLQ28UBgkI`G-ma(kNs9d1l+UPZ+Z`aYA(qCiVkL;(m42>eybQxcUxrIthp%MbIa ztFN!Ft+o7$hMW*s8YXEb#^B7wN{^#Ki{97QpM+DY+)!B=6%^FUPf}G~kBk7fuQ;Rz z>G6gi5<(#`p28udN@*b=^_ll3+3lH38HD=i(vl7OA9-&T)mFQO3kNG&thm!6#f!TZ zZ-FAgwYa;x6^G*P?(PIF?!_&^-QD@Kzy0n1{#=}^!$k(kSZlm%y)yNg&kV>#dTf5{ zArGN}HP?ohkqr9P*4paO;W^#6#>DdlV8$BlIu8ZlA>Kd8Q2lHisc%pzO&}R;ijLOg z@s*d>_tPY=XAC!Bt(;>EqCm=(UTkz6%)JPNGV%(#|8>JREoRd4W#{BPxNvrj4opBP zY)@y9j$XG%p(vEyIXS^4SXY>Ci1imOA5v{&gPvsQma%hi+6Uh-zn)7F-hglCWo4IGLqD6rH4 zTeO+0%PTR^uJ0~xcW0Xju?R5Nw@&&mCGq#CF_-9j=a#})Wqv4laF2Hq?vie9Ei)XIAEmju7h3C0Zy%cW_NJ(gQN44!s9GwX*Y@h6K9h@3 z&P@l`AM);jZHoOfL)43dOrEhVF$NqIv_1fQ16K#$XkG6er4&KZ41hM^XN)jJZZxBa z=tT1bwR_UM$T*12EmcZE58QI)hnSvwbcma|(g2-3L^3J6p7_1e1)DYQS?Gx%xb~#`*a1$fC5ntnfm900ja=GIh;SQ$eVEZK6j5mYp2(0?`qN` zw$x63zP{S(b&W%OkDUg&Dg(U)g?B|4#u{V1bADkh!+aE)dj>tAohrosIiKD-6?Qvc zx5-03Yl7lOm$ zLgpie=>6l2BUX6XF=e+WoE69Yny1xs5)6egYSlU^jt(@6SgcII4e~^@b41#J+mTCD_K-20RQ`Xe^T}yQd*fI%wO=9OT?@+%`2qPZ}2+M-JicdF+!SUKOJMzG< zcc6CHGUd;%w<-T}CDCcb)q}lpT0+ z^j&j^}dyT?mau#gnewy0P{0pP!oj>P5Oe6#f!{D^*%!BQmbUk288=AGoE2rg?B zjBpuuY01+Gi~eL~UYz8ET?l#JFaZ>dkS!e1-%0i|T=Tvj?d>HhWl(DXO(MT9kd)Ml zlP_i=Co(y`URI{#`=mG~6`#Q3QqQTOtYSJ++^zv&T7id!(-2x?eUAmeOHh*V>w@C! zu&4&r5V%|6M(ex=_$x@kQkW^Gf)Ny7762O0WPtz$f7u-KwxXh@tV!^6#@z9{9tQK> zM6M&z-Nd3XC5Cbq zt#(&ob+M(zPsW+p?k`GOdU~p=uT^!LpK*c^9)l4c0=;&-qyuS7p<7)^Lge={02UaF zrZ+mvBkQX>d1;9${`UtCHC>tsft)Yh`!0Z#+nDLLVa&V`?5^%tZbq`Bc7z$62LLA{ z4$24^xaxC$Z)=TA(P&j#Qnnkr_n`1Pq+oXA$0}!(&vnr^>W{)KvVQQ~-TMVLkc}NC zdIulpJrUotjDu`fC+KF!;WzUH7s~Lj01o)Mf_kosKX*J4X8A|vj;iUO(!7q7bnv}; zwh<2zZg$#E4D-ReJMBEYNcI^Nr6$SUzQ_$O- zG*n&kgrPYHcg9v*2+w+QR9}7^k!OSe5KtmpB|n%aeRTxQh`(}7Y`n#Qo&eQ(i(~*F z6PLUB>nu!ZBuv?TkW6wBjys;XIQ(^WiT>bSO~fK9eRw#o;@LY&-F#cvc`3{6CMFHVogXDJ zbrL*{Lp$A+(bC}Yk?^}5n=RZ%dp=#W6`8Wsqke9Ti13*tiV^Zgvu(lcG>u}2ceG(m zj2adKz4TvP$>Ty>OhX#_n*icJJP6bn z79f4?rdiF$`OjA}GVT@MmnydDjE)(2KGy&v@N7G;Y!*%hEoMuq%$K1>i59ff&^o*+ zHMDtdpwb_D$Lxk$GWgb{uF3?;{r9r9B8(>S10(Y~1opw;_Tx>| zXJW!&xR}AKhh#%T1{Jsa+|EN>@tfx6IQ-#MQ^z|R^6%d!p{ZQE*40SI_BkTVb#h!n z-FC^wloBMMZ?)b;{SjYYg3VH`=S)*3dUCq|UB^yCay%~2Vo*LqR>(-xR)StC1NNH$;Q&_aIs-v2w{=0mjjaw z4j!{clil>@b;I@Vsi`74qML)YZ?+XaSB{r_^r`QZaDo!@2a_w;Qj+yVki){m_rbN+ zW_CH#Fel4xTdS+Ye_D1HsvtbB;AiDx`6a7c$ta@LnQ~Jnqd(Rz*owR=y0Gh)lG!LJ zmwAfZEDm_D4*tHSs4G_#`LIFQcC8@!UpSKRg_sNj1z~-FChbe*V&x8)^P5%U8d8ON*8Gq4_7de$Z>Q zmO*s5mYlr;<%If@%qLsjJR4sqWU){4ZBd4@z)YVwsA@z)&li$ZBeexl0Y3&2c_)5* z^H7d=^wyu$b<*ku5aeF=nzh;2D=S8?k`SzgnsP6zU%(y zALz#j0-7JR;q-rgMoL5_0DSuQB6|EU0LgzZQeoByME-kkiFP-D;Ge50gMPI7!F>7m z-dqP5IQ{>#0sb7dvQGH30~}62h*j;~jv}0niiES!{5#M-U%L;?7eq{POjd_>GL;jP zV!*${+HilQ{P8H9Kd<^01F(D1`}}g&@4G`HK7x9=z7L~EFvg4Xc49)h*o94*Q;LZx zj$H<~mE!sDyEu`Cr42~aNs5$jJx)G{!|D&T7*U$j2Fn=cg zt{fQ^2i8z>{QHJFQa^KNoG$?P&jfeX7Jh^?EgGuNZ~?7zzhKTeKPH66S=8aQ7#+I& z{Qu`_0Snq64kZ5myp`gv+R`tILIa2p6OnAu@~sBz4EQm_QE^-Ksnulr-$x6oLR8Gz z#)h$50(T{&`XK`lZP@&mwE4FC&+mvZKS9pdVE*?gYMVEurW{SZ?n@ruA~&nv??T)7 z{xdr|whPW=>!_c&(YF7cN2E0(yAJ^Jifs>kyD(5q*QRd>|D|Mtc2V<;ZIbh8Px)yqFyWuL{a z${a-*6sc?}f?KcGaZ##^>s9K}=|K9LP)?)|abBkr*qjj7Zwl6YVZizbDBO8Q5&6%Z zk9QmW)SeZ?BB7QU=468!YG9!v_X>Z`@He}q_CQC7Z%{&WddV|JJ>!0)LXtv(-OcO??4c-05IK* ze&g?e79#EKxhpTfbGS3Oh$J9xX+`!ErKjYJI_5h@n2dUW;}PMKHf1=mtAkk+R0xk}RD^@gB;0!8a zoWZP}G#H@|{Htc@2pcXL-Gg_p&{7fz)H&bFTkYsrmT4s7w6e>mWnosP(-MN!C#Cc7 zz|No~`p?Ae>jh%!X*@R*p1*z`VgkTW2;g{J|2h@SwfLxBDIy2hF@7csVvc}I;kZMN zN@ct)=u%gmSwALJug5fr4mlwfnbse1U5Bz(M@<{9TiT+I6XYjMJf7S^eBSzYoSMvM z9+ynB*naA7={2vg|J*)8L?`pOXf=o;;%b>bsUk%$9^j}SHmX%0QTta2zZysSbd4r= z)1E!$>7o3n=0fvC)@+0kg_lDZ5OH2RR)Lyz>mt;4e8|e(Wjbxk3gmAZm=qu1y|N=| zy82&`_g>rfeCj)!q5J|b=>=;t$~jmVgef=UlX5>(G@gzi%Hy*+>j#a^2LyiOmOw{F zj*g5xzq;DWU>}eb>Z+-204KDSXgMBqwn_Ha)sC|@j#JB3!*rkA3S5kx_l3l)t`skz zPNHvR82iaXb|E3Xrk7mrhkCAK9fy#NL;n7&YlJ%t;x2WxtyzRUzM`#f?=C2$Y*af+l>m`TU=If43BfIv?n_h!2Mh{NzgKq}~}iUGrRS zuraqn`B%9+9kE(ur@X5#>YET0K~@P1#Hxl)?9vItreU#O&@1{D`bT&kxOil;HV7B4Gm$^=z>0k3ER|^wSG$0|c z#!To7pdAU0JjCODM4n#I)Q#BZFM{vL*kE03e?bquI|k#!`*$F_MmSpg2?T!+fvm#O zWcH|=7HG~y<@%8GXx?TqB`FJ9Q$0?=P*%S~@#D~mFGTq5a+?l1sjBHfoFFJ95%hZK zD*=*UWEjndyqR6j>a8*-ubjkE4O`T6na`fbV@Rr1kzfGI7i`=%3bA1PVW3%p_b6q3 zDUzi;){kSgTb<=u>XlcSq`nyf#$(BPgTS)=v$HOrzJUi+Jm9yAfEbK_)QHp320+}; zxqRaf9c1!7abM<|pSk))#MF%xo!vX!&78@6{n+kNgMRIy$+@GD>O9JZ=?9mm=*$od z@>e_#a!zj`Z=FvAko=h z9`?*7*>_nwA9vGj2OS5>fR!F^-f!k>Wx;b+8X%LCD;ChE6CaESW=a1~*7Wg0VzF;= zM$_hL^DPE1x`L-{>EpW9&0^oj1VNrIM_#o58l?MpeY{9GtHCvf{4Jbcu*@LHVxL5S ztN_XVUmH_J#42TIB={P5tQoEEDid1I~u7sZsIsc4=j?)x_{x; zn@D+7zB|={g@xs^T4u9-&6bqz|o?WcZQm*@2 z6m3D#|C+&VH%QnqpPS1eS<hJKy^zj0Nb|EP&(f(e+<+k2v_zpDL+u~Bg8VF#fKWbKQjrD;4N{Q>}G z{Z{PoqI}tpHGLZD4x^I^;NTF5f6jy^IG=+f1ju66Y$nIXbU`L^7j+rf^w6SZna0nB z1L2XiZO)eI--~*CdskOi0|H>H8Pms$=z-X>zeZ7zk;5V*0e;8F$87cFIyi+5Mxo}0 zE#{&*JV^g)a|Fe6kM51@7qeP1k?uyh5eN4UqX5Mq8^S*+rFZm*Ic?}Xa34kVYiuX! zMSN^z9IAq_qM6lOhNNHak%fJp)-WCkw5T|!{`};e%)HzCEebc8el2}=q{U`!JI!SC z-F6^q<*FlDHwY(qsb87L{*$-1UP|(zq1VOM4AjB<$Lz9^A%c@*nNWgZW>wzjgo^U@ z018;#8co7AO&-J|^E64iR%C;k&kwK0fHIdI2Ey@3cJ_KMn`Jb>bZo2+pR)>1FkH%b z5eUj=A?)*UXMdWM-<8v5_BZPQFL$aOzw4> zn8A3jb^VClaRS2tiVWU(C^67`fMV>1@P3Oa z1cqo8P)Rjkt|k>%fLpF=yVx-Nvz7q2e?WSgXr@Bd^0MbElwJsHW8;4>;t*snPd%Et zI!3pmTEXA;W(FnUPRMQ`5xDV3yb`YcVEucZai20N~EL2bdxc;mg{DBwdcI=yrcBoz8j6_t3!8j`cMjF z|9s<<0& z!@~pXKwjQQsThx|9W~wY@zM0RJu#pn`QaS^@I8ZL>1S;MM}W^k>&7QN->dD?S!iH6!9YG&n1D93+loNO z5K6|>^)DR}2ID=-62=oFguuV?_>h=(Xf~D=zFAN`)%L`2*{uG^5lajjN%(uQHGs#5 zQcg>wDpRt$Rdq@$p8=p~gjxip%I!vhfb&CNsnvzOtToR&TpXN~@!g=2i}7^M{DcJY z1;MjJU6AIS_fwqX)g=_)yqK$#4kc0o&(url>-)_qUH>fiZs)q%n*g^uHV+;lqo90r zcXuyH*sN`tc+uX4e0%ZOn8bhen6X0-;&F6=8?6sfc~_*ZHRJM+-n~}PNBi!w*n&bv zjO0#cwuVFV3~z#JwjlHY8&SR_<&6G$@{g-RyJMi(i%wZDi?A7^7&kIZPQqd-9n+`w zZ(^Y8Gje%{u!YVX67sH6pw0DZc$)^-jFUTb(MK{<8BLW4rF~EO+o3(a2?HGjRqJH|t&m zORn#Z`+{w$uki@f|4tM|$_-Kyvwd3TeUY}kS5y*1(1UVmG}G_9d*-`_k5G~zJkr}u zgc^;1*J$@#qD3%O?)^zLdvqzQuOe6F;muv9KOxXzGC4BoICH0df+chEtDn0qn}PX~ z+eYVO*dNzu9JRi9jWbY&f%BQiV*lHiH*C)cr_|a9q&b%55 zo0Ybw0|VP?9T1`Thpp8+t0bzAx}*H)kawjiK75ALz5VS?XSXjNg5gV@*!)=aY;|0= ztH+FXuvpB~F^?mdn>QmXO;*C*Y`CFz5%Y-HVpJEuCdhQtviij5>vv`^ltum=WidVW zi>xuS%|C!eSv9-iesmsGb(RPe*Y;y|zJW-gfW$EXEO4soQw^r#4>X z&4wk+(H$Dz+0T|hb}k3QR)6}7r_JACar2vJV$Q32>$V()M#M;N*m*BR3y$GIimyYy zc$0>Ex4&6hx_t4SD@_9$*HbIdb|+_%|AXdyg!D7F_jGoQJu|z6!Qr?(5Szc zVJXww*lWh@wuKxy$gn$Zh~BzR-o^pHz+WHsUtQY-wIn$bgIOXS%kekxvMq0@@Li*P8Xdq;jbX(@?OD&KES=gv0myfwgHhZwo7fz z*6mWdWDmh)ZQ02>YM!?`(Rl(7{K%bSamf&*H{xUlF{GDrMX`*!as#8A>UI!c>D|8G z>(#|J_)KA+x6HPZ8GUIuoZ$rx9*KIpcb>1{evXH(>^t)fEy(5}4;BCA2HSRy<&oA~ zN6BJzk4b@LQ7!fT$oEnbf-B&{+jz^}%+g&<>Y}4cIm(TZTlXJy-a|x|^btXkX2zezHW6!5;SkEG&vE=isCid#?<cNs@xOQd3@cI7tNtqgf>Z1tKaZ_C-@LO$lxejMTKS}lo1LG?Q_gg zzl4K>w|!;{4G&1d=O2b8M|;VBH2wJFBTD20w)-^bhrcEhjUm1VhN-HF%tR~8_HL(e zX_+d`PG|59fz}L%e78koXr7ya+s;a8r?>Z3$1&x;v%PT}x8vzb3u|a|S<*?76{GJ) zxa4Eh8Vo^5-}PjxWC3YAM#CY8+5Fk4%5Ua0%1%;TW7tmxR)~snhRY9Oj57>cGroxH z11_>c&6?wJRCv^q!WnE!>K%g-+kq@AoN@}0s=GMJ6hZ3aG>Qe(?pk#{aU?uv+Bn%$ zY^m$~B613E{T}JW)k;Ph?mzGMd%i+cRrFi{cK+Du$JLJ4;R6`jh`f=fCMLmoTYp1( zy1Y)I;`&62;!m#IX{7C~cT97;s^tfKoNq|Tb?>+;f1H8jS)QwR^k0BZ(_eu(0RyR0 ziMVpOUj6xwqL?$}`LMYp-T8DmAqtY)G?w85sUnk&7pye+tbD|yQ1LI9BX*!3fldEI z)HtnzPLg~1?-AR&*hO1K%TuICNnR-#@b)E9w?hzXj{^HqV-HKP%#|Xj0N123%$BX` z$ubc(U!d$xDVE|27cEo-;oVp{oi@ZX6^^Cyn)X3AWPl@)9pz7@2WJs4?p@*SCO-=O z=d?0BwOSPM^=`qkJX0Q~%nfmcxGagX*!T{WQ6nEw2IDH)3KjGZf^a|$VU6C0HDU=! z&*SZ=U&Lc677|lJCaBz1omGD`C@bGct{?M0DZtyW8iz8W{M0X$Xif`_ujaMAzBGTl zsfMVMEZ%BE+ZljauV-}9GcA4?tWDJr^m3=^e#jl;`Fsz;ZclEDfiY-(b^bUzVM*xmI`x5)i*y)b=r zz>jNzMpUXmojjz|6(n_l0Kf!*kg~}S7$_aC5)SMLFhiV5IWF?>q=xv=;TDKMdI5Px zFn0D5T+z{vRd;0|I|+F?E(kJgHIfSe0|unieE3d308_tS^Y33a{|}02aID|Xvg9U= z;c>+yg#Fasrr_7{#Puv%^L(rC(dYHfW>1(~8Q~psz^x0`R#I@AEOe~$}`fxmE72bLN)$_KgY?b6ra zvwlJbnMdTC!_-fHyMQ9@vb`MFP)>(Q*!7+8y=N8`dGUCeYbZ}!f-$fT{waE`nT;U1 zkOJOcSH}K9d2xDd-IM)a{?^ z^{35Y<+>IHI)gcBa|1+Pjp0AUOd`Zzq{N_kMGp6oiW*j+ad*0TGN*eK7+ z{WyMC>mLA(F2HKQSwnaZZxp_QI1a+k85Yf|7_4=Zy6<$I-=Hz2S0ul&2KBBQS3a~m z?x$?$9Z=iz)hG8-Y~0uC4R1jUCxX@e*ZkIEUm4wP+a}A%otCSQ6+NOpxiM;ICnvx+ zs5fD@*Q$NEXmBzE`%q=ItZ3jqI8{Q~!k}nu7Eqsk!6e699E9UW3X4nsPJGv$gnr?A zYT?5cz6~yuMpcHktIzNLt}#zv*^;mJ&Ly)g9&Tc7pUTfF@Yzu6yN1PGw zJktQJHI@upY1^o>jZh2e&nEc+e%!$r-S5m-lXl(MQ3Q%k62CmkMgmi8T-jxG6b~we zaO`zd4HiBmJi{`oP%@xPIk?5|b5y-R_1A)*Slq|7O5Yrm<9)#L|ntDP1S3UMC|k&-JCK_6UpRi2eGs zl1~Ri(>~yB$v#o1FfPTQ|Oe?;C0CggI z@Zl^^(@t~^(mFhsQfNSue>mMj-RqGHyLpvKE}{^T;+#*$48q3AN*1hf)ULvG=|R7| zSqDmupeTwvQ$4x&7#QwnCkC)Usbac-V2AS^ny%-xV`!>1zevy(i;fzA^WIo`*u zN#6nzUTT@2`M(;;4qVmrrGHodW(qIMd%oXF;5=$-7j!6&9$$t`t9RrO7wAgf8Lt)4 zUA=q1-{`*5*?Of0nW=y2mLj7F=y1CjS#nIu93PGeM?3Mvg$f>d~3K2;zEzo)tWM#A~*Emm(z%Pl9IvbKG$Sb7UGy0=zCA( zzB(Yy!q=Cxow9UCA?J~?!cp$lHSkEH;X9$(e920S0c67rt%{4ye6ia8KZsM!9wq?dd^>_%UcE;?a0FFLJD&vIj=6 ztr_%m>e9J?;jlpefvHK3xLF~ylS1$l|L37D*BB@lZ}V0e?Bh|Sp_KeHhcUPlPO1{` zinNjl{n)qJEUslFlwvHs%MJWIXXNo# zK~h3O58G`1mDOqZmZW&++mk!6rK{8y7}VaH;SNp3lqvRU*5ZB|RLF?WJ}c3rzKwkq zETg6Y7}6oe_+E^&Kq0ASizU%Co(S>A3(=shfj7R*2mhe%r|j>1?(~6Xz>6x+$_UHpwEKk2?38YgKAgTMUf2mA zR8xs#ELXF=hb~(Ek~?${ebRMvI=GA)R49n?a{q0F9cIRt?tJ@%EPM=hO<~Vc=RBQ; z5#0K)$>Qedk15tn>5sx&6);G=N^F8*&ycl{@$aG|J_zo_q!wQ%iB-^1#-24azR#f(@G!^p!_a^LF%Axa!{$Ed4z54mIh8Ma^bM10oOXaY`6QRWDr^^y^VMwMePuupV?YGD6`v?; zOk_+S`3_y+lzg`&0$RFVg+MO?wOum!jW!N4=dzv@?!p~P&Z#>XdFS+ZX(i4-)kSyI zJv%mU9;lUT#T=fL1^?m4U5Ji^+iH>*j!U*kt{@vHHoGKVvXI_Np=vi;%Zh#8+n9SR zom*0$A>U7Lz~G96<^``K)4H`B%0E*;s9SevH{r(~&m;}x@YLt<%SpFKqFR zrXJ#JPd7Id`BCUxRryVgjjclVDl4>kRgD$G|C4)!G=1V_XE0qj?V}WZ4VJ&F!%bJn z97*BvNtoMB_FCW1(D=4VFA0Zrd;E>p;W}a5#GY?WtNA3}7$K5qHo_o7xyR}7zLYl0 zhxTFJUNi@`&~o0|cDW^b4N}Bf#7cuaPaUBqbhG+Im}>ep5RS=YX4#n^%3$I6EWUhh z0GC>3ls!zsXLTKin-2SYoJ;8seWW*U@CZBM(kERHv>|smu)_fKF8;Ha$uS|VLWh1* zevI$gtvsJTJuPj-C{`to=-eMyq=d7 zWMqK!s-e$DW81urYTD{A<;}?W%F$U_Jnp9xYawhCMpBYN9)fI?Nrdb^zPk??c^|)) z(+;p`wLUCBlH{_!lqna_f4^`OJaqgdlzKUu{r(V$fpY!k(pzE9jxYasnrXsx2scH@ zzAN~$`UH)Chs|v!F+;vQ-5CojxHWr+-~pgLcLbrqcSwt|f{%Z`h1hX8rn${#;{x)CmQc8`f)-n58~FZPNY% z5tESoR;eE;Yh2kI)8c$RT4-~%#SqyY(-3gF-(N(*x;dgbU31+|PK^MQJp6I&L%jUP z<+4eW?tGFa2luXvCRFUjW3Jg+A&b{?I61rXZGO5D=poSHC5$U^(2ZSDiTntGGNDAXXJ@w$>c^K4^XlA+^#cYWyrA~dbT zl|XXEdvYSa`WW9MaJs@H66c^Q@}dTZPNE;&ESA|#10a-0N~H&6%IZ`%U$SnYz3@IDydjbk#d2r(2^`DRT70=LvMyY_;+>6Ew{g5$32` z#vACoTaB7U!o?@R2+d*>4Mt~Yv07gAd>sV4JE|}FybpqMWYP2U+dfwGtCnlrj@Wj+ zy-aVF(kc|1n(Wd1QA=TW?I%Z7oxFeOqmfI)$0>UKVjewiap0}M0)?|&-5GyVwfY$u z5`y?G?tZT2U{uvAOYmfCf3anzG!-JB;w&}#_@03W8_TtNs3XzI7()%aN-ZH8QQZF=N84-Qd*6A`H^YSLLMfoS2(ZI=mQx zdk1PWJNQKtWg#IMG?v=sG0_2x_jN0FkN5>Y^q1Na8nnTKG5gD7K9eN)f*3V6&O$|^ zO90lZTXdM%Mf2IL1X?z6S}U#mQhm@z4*NvX(O*)2o|DS6J_k zua9Qr@8s>p8}Zi=k5_i_Z96CqG>tLksgF`?sBV1ddWvg<@ynyjZTd}5d11}KNq9MU zbfoMGM2R%V*1`aI%yrBxIyi|KMNPqrNv88Pd*dlhTo5!V*!p(uDtdxJ6tC)xI z^zp|H+dATKG)Muf;l<`wprYCvD*Eq>oC`Fm-wyo=_gseCxSaPMmH9PQt-h4?*(EPb zv*t>8Y^3hcHo0*If3Et=T0d>jqUzQt$?9zJORZ5xb?Yj{ucWBfIkWBwD$?PYV4@6< za6L$FnUw3+9wO__x@rb+4<#Ri_2x*vjsHAa2rrrc($;iQnR!HaT>|#BbRt?ia0i^1 zfWLT3YyYr{ni`3j^b}m#`l5Jo()6`m#nP}sm-5SFm4$UFSZoGjwD)_7rjwAGs+TO! zgl)v!Zx~F|Nr$;mdYQqtXO$+h1Hg`Fs9vsGYk_zIOe zL#ZyMcNXHd*u1yx2O-MxK$%c)=RdzS8!ec1J1)0ag=GS|d6UI^c817brh`^H05e^+%C1PJMj__lraqA`vAS-8ur8D?KLi@s8Z|jNW&646lUbh>l za_O9~6oy@|2T`t_OLfM2=}n|~FTB3TEe9`;E^p_cy}&@YXc8e-qkXN?0}Ye-g8-rK zRhxS0I3up~-HGQsi$oL^4$|-7+rLm4%Us^;ogoA%3Q5rZ`1(@}i0|k29_o<_YD~rX zTFZrU@f+{uj%Z(&`yUIeW}CGI+jU=vm+NY_uUC4u20@NU;D@OglM6O^rs1* z14|YTs;NmExZmjHe6L5xgk;zMQ6^1R4@pY9^~sa-;mQ8`{uKt3)dDUJ2GA0t1%ulPF&Y4#5~ zS_aeo`m@g4`9Y$ z7yA<7>+uTHdUpSg?RsuAI{yUf&8M$|)XYF2w{xb|4VDmWkqi#=$9fj;29uLpGLQ$B z*w+BKx(U3VYU60*s4R%&kqWOH{!Uzbw-5vVXiZYv`>yLhO=f1mBujL@{CZH-j03AFcix z#(=MOEhiUWDps0K-Oppyz$BbDmqF8cRCcPfg6V0DbRo*o+0x#Y+aDC(pU|dSA;#ai zcI~BR7c-fG^MLZIheu~#A8^+1uKu_l&6jW3Gm!hR`5d13U+)*pvwvPkV77s*>lYKVEkxDK)iO3YTS3(NczoYh zcg^zf8(rHcl@>iSsE72mUT@?IC(?|!#aVl60;uWJ?3k2SDyh7}D0Mr8n_Y}&awltb zr@n=FS_L*(x{!;%8#~LGVr!%@^z^t~&?+wd?pZetcQ@Ns|1B{|`F27%HSLTJsph^I zH_P3+UyXUrk!o+-Gc)U3c!kgX@ddZ4w=d_^OsraQ!?@G3c|1T<;mHf6ZW33HblOYA!eG85f%Ey9(V?7dAQjj!2JYGq(dj}+ zd(kuJY_TzldTa8rny!rs2ZNR<`M>pA1wTYj(CKy5&lU3E;%|MQo@FJbwU&ou9}O!Y zMSGX`eTg!M*t{4&zDjH~fRek_&CC1X+sVyHSglDF}6J-K7$D9_xd$oxQhxmHy3CqANbpwjw|YArO38J&LDPY*^VB?G`dPwxI^IT&+eEZF?)>dm_QTj)Aen4Xqud-50vE; zm*e3~!N(Ad0mxQ>xwpD=dEMS+SuCH)0E{GB?2-~!x6}3i#9a;WBl>zk@CgDR5)>Q~ zQc`BYmAc6w0sW$T7#t7&rTkl`>T8I?P&nIqPrK(`CoOC3=8OWy@qA(9=niEN5)BRw^!pYRuX3fC`bm7p+nis$u08 zTQu*B-mYIid_6_*6UMK+bKBB-M-UtH-iesktD1WKg-u-JUpABU+uibSj^mGU}>#AzBP@USj`=r zA#>LC#At>>C-{TfuxzkArsWUkQn|aap$MObDjD%CEpunuU@ATV_DZdHeZ%!wWn&<;}0(8LY)o$q>4k`-%3(r)zb?&b7VX_zJJm$TgQr!^6dvA?#<`*)qRx zq@*0_)6S8jZ@N02kpD2VD4Nw$g}jZfkA)_l$Wm(ds*OTnxMB?Yem}5ziD`ofPL%JF4a<@dJMIB@;YDNHq$75>M@|{Mkug5+x+810FUQ%68?KW$%8JXTmND|7- z53rs<`Lfg+_m>RQY;Q5PFaY>4>;mc=Lz#%-x}!;W-M1GHinH8uY(SD_3zoHMlARna zCgURr2=et34!e63uioxYTv23R=fbe}%nQ+^D^Is|-cWKGI&lsio=8G5q&1hS0EO1NXm0wC^hff{<1I=oQkS69|aMLhqEQn zVPGwY)4CxFqylxhJYNJfEFmTp;+id*Y0$9lKZWL-&+_l6eIG2TLYrQ{TdyHA>6gym#{iB=%7%^+Zqfg#la*s#)#(x zVv5V|r^pFULeU;ll66`a4WX5jJbHF!I}_J08RqP_6ABZux#If-5S3{aO$(0=SHqx++6^1q69n?*LUc=-(nKG`7zL%BZYBWwu?8706%HC-lmHiC^g$a{hsi&Mi z5!R4sfXaSd*=15NG5PS4kM`twoUT3ZxsSMiHVG(!?Nt~tfy`76KgcZDRJxMzW+_;``NI7rSN5JAE(dkAX@8$#2XhnReSDhu zWPpTM9{*oeUl|rxldaoGa3{DE+$FdKI=EZo?(XgoTmu9N8r-dMcL?qf+$FfX-2Tp) zGc&jU?C051wW_OXdA&<7)Lcg-DNOo{qRuZeR(aXUyAc`P!ovp{_81&Ct%m27aw@ge zI#z1dE;gQ_1cObC4-}>5&?clbZ68FN&pWdROQe2fFSgCxQyX!IhQV?O32$XC+2U%c zw?{#f(?wZKIMm^?=zE-aYU}&wuAE-h5mZ_dL*QkrR9cKp#poaw zzQY9H(4*;x6f&5Lnj`|=?+!1Y2DYOWkV&fih9%EGcyz(HR_b+`{D~&>yBe5`Jz8w9 zQ;oLQ(+P)#4+{xJBU|>^B{DfbdGm}ty0p{gf`F~W;W8gNZSW}l%xB?>GLa@k=obs+ zq&a3D|M;aXne*)S_frPBFvPFp6;LJ5=gmReB$9xm{+Zwh`weyf;~9BAZKE}J1`}?Q zu;RQ|E)8aXaC^HIr@vN%w~e*8x_@Wi-W@DFJi}2a9?|sY{Wd1Qpi&7)mMbKYn>*vD z3juHb52PE)YngP$eDKp3TK_K--})wRj7m!rOpcU4Or*o7~gr6Zd=PYG!0 zFKVRiy`NxGoNvOI?O~bdHPl$iY0kP-cYm>z=^H-l$4y)9cKrmnxtLZB4V@@Mtc{_6 zQnDxQIU*w^biJA*NSLXwdsIkmQ&8a=Bv1vBi~LjH>L@dtXVq`>+I} zSLxobHtdzKWgry;K4|KPijbWyRd88p@%2ofZ4Y!IBGmNT6N4hx@w?nL6s(9@I%%)y z?ZpW7j)p35wX8{BY@0UAfFeY0gEQdkQI#TpJpRmKC+EaTOfY9m-E3Ti?-GGMvbxuj z!=UQpU$g;i%e!mNrN*MuQP=(c2g%QoRc>^wxBS`PU5B(}LdomC98^eXLc?cc5H_78 zNYCBBo-uMFt3}))mt$(TxSMi8*WBH(G;K#-Ab$c#UaJyVXkd6A=ksHa@V*~a@yIB| z)Eb9&A3la_yn0!Jn)(~#AsMT+kZ2_DM3rFUR`FT@G3)P|2y^V@7@IyCEh+}%^9>z% zNRU^yS_)Gxy_a$R%pAQEby-?h1qStQViHlZoEi-TKKi?C>KbL? zoGnLbS&@@GtHCp+oqUdBp(Ruh;Z{BS9qS^zsk$Gvo1d>>5I)QZ(R}g%X3_rhxv_@; zGf*b{^HXiw2I=ckT6J-w&05LVHX5Vc9=?{x9KXjp;Y8-#fh4}>-*>>a03BJ{cSovh1D zQKzyTnfkV9zRo`poo`3RUD_zSZ`fAwZyI1IS z?OazE`9Jrau#Fj64dQjJ0I#*y zhH?=ue8qOR0!aJzjX`68e7#r~zj zLqFgul9tpI+;mgYYbK$@*kNE2^(}E{_TBpNCfez|{oQYtreS4mnpaSemzMTDe=>l< z4HzpBQIm%g&9cuCUQl-QE+k|G>!)4Lp_&2PRdYDew%n)VI z?~(6&ENAbeK*)96T=P~MYsEg^a8h2c1_XEW=FGAo&5xb!Aec@?hG9?wDs}SKE`=$B z+cv;*N-Bx!w!K`>)HGt;n&5rM!P{_>vNyOA*Tp~Rn@Sl6O$79%c+a2?oXThF?MHNM z6T-%5y<139v(A<`(~lh%-jvjIeDy+i(>#4GYdHh4wX)*80I{SJ?Uwak9NNZY*ue@< z*T}q5mS48Hzwtk|s>ySF+g6dX>c|a60MJZHq#1wz z60=O5YL_ehc3k%r03XX~;+~Ub^*qt+9CP|ReS7{#Y_WSf?C=94RGy`E4j~Bw#mdZG zXYG?s@%AOp(#Bu5mp%2b;7qQ^>XzB@>xZ!KAUH>Du1hCP7N-f~wOE z9l~4^yH_L$!X{(@Q+{w$(OInwZb!{XyWF_b-o7VNj7DFggTsKqHeQwpgk0XrQzT>sl30Bg=CY8T7HVRXm0t|5|5#`m9zP(z|rskqFRAt z%fFx65-&TZzQDn3miHoJLZub6$+AUGw5tI^Z5Zg+E+#e5I;aU#h-wXta%XM1m3tLH!>J=&*4MUP8f%sle19Ua%HA4n z2%1qOQ{;1Bwr&s;4}pb)4-5T}r65q}{yMSGtfO4sjdSp)+F#h8<1``stV)$tI_LAD z^HMK9X9kr<&re9UgWK_{_0ycp)EZQg>(~X!OK>RX)Pum1_^2WK6d_T=dNT%xzuR4 zSL9qCb644ZUp8Xh9!0)gLXq@gay*hEKYgNo(vEJGtr5 zdz}aACg`ILS%Ae#sk8z=;`b0(EG!^71w{xNlvUKs2S(i8D1BsgF=gApZQA=~7I$%F zF=gd4)F5(|LK(!wsig0jyK{D&8+C2N6rtpKQr{niysk3q1O%SX#xh;*x;W3D?O(YB zR}(PEWCJzFXi`VZ5ryQ3k@5@}=qnBRZ~?=Ky(Woke5`FQce_3X28}0#>}Nsm9kq^! zQ=+j;qV?vcCK=*VV2)( z!EruJQ2kzWbdZoA_Oym$b-G;KU=#3sYJyHG=-W50y5W63YBPv}<_!CRgM0o>&y)|1 za9GwB#WT*Vc00YxQQTdc$&{=tPmx{;yrRGd? zKC%%r(h4)uJcach1WD97Pti)-Od>sS(y+4jEdSzd9g-GP!u&>(O&7ipQYI-m=eI*ho_O{D4mVrGBpBooXz6N*^9NU zQFwDvKxboFd(1m|(U9ztHjs;@yYG^H1Cm(zv~REVn>=mdd84*xnnC@`a?4!r&m+Dr z{4SVEV&?Rv-uUKGUvPl!a-fuKNghK+{COOzJsf}{#W2MvD^FH^ui)b02%|25Smk)2 z3fzksD46JRbpK9&t5J)vg z&vfi^#ho<%*MlO&d&n$TQR$WQl#4M#qzQf)I%cxb%;N|JeYx;C23-Z=_EQ$ z6leQve11=}@FVB@wcJ|=X5)ourB9VW>o+q^Aw`@kDdC?Wrp!{KZMu;UxzbV%(H~A_ zgD@Lea~eHf+uFO|z|Im|Pc0F3*nV1atb>NYOhdJ9d307f&FL+Y zVLQ#;vBIMq#G{#X^gh>Xtp01)HYRAp2ox2@6Sm_g-+QlLhH@%1IW5jwgKzKG-&fJg zdEnqzG$H8M^o4dR_6k0J9H*}i>Q#R(uEXeO_4!>NJXd~%kP3kbCbBbt}c7`Xo9Nm(_)R3I?AV*cyO&aQARnUqO$gI0M=WbsEQM5M5awg zlUoI6ULH)*-v0V#ECR{>vR99O z>7$7b_{7KcKew47*WJnm0L<4tJWIUstZ4x`ok$s?<0y!bsHgsxR(xZm6 za=H+FyJFsTk+S$n7D@kRNh62#jiTH{N79qdm`ktruDDW%+fK5*u&nH=@ZIm^^5JIo zXO~_>?$`DC_s4Txtt*%`%3hL?&5H{R6Dt5@LTHt5gZiBSZ&0sSSUV=9*>@^iov~uL z#jXn_3CSZ8{^w>3!2_G{l+#^?k{>X{8c?L4*x*-4s!X zKQ0pF=-Y9JzJNe@0qCgyu%w0X!$@Fj#SB=pFbKE$t>|y2rPsN*g=5TwVLJf)vry7^_`68)M&t;`aTAC7R98NA*>1~Tn6P11G%Sy+U)mamL#Q6#Bj0{0G3kgTaaFz@&Qs44`9MU?Yb|n2Yi<{f2_aEY=vKuI%stCRy@B zibjpL0BNF(+K2Myh2i(*|_s?03^mJoM5vxN%~LxeC1k4 zhxKo&J_>3zgx`N4Em(7>e6^90yR4>P?kC@0IAQ1UAWk7o_SJi46efIp3D4I*oMVz# z6Z?vLggtI~e7VMC>^*3)k<3}u!c56XGtc!?)Sm7{6wrg z+0W(k_4Z4YKGF(a-7^pAGA8=ONSrEpvP6P4ceyrEjbij^*7jxX+aC>qh}?OhTqg*i z4KreKfM=KvsC}5xC+QOw*}0!&6E4Yhx<}gD`y0B1;Jax~K)KkOsy-~>@3>0#p_`An z>&Qb4t4Dff&kC$vGt;b5|^WP-J&Cp)YvXP@eca82Y*VLc_>U)H8Y49FvhA3;Ls# zn{KLb0m#zDuPkSV>KA9X1u_M`)53^}z@6O_9aEzpaERRpNq?#CtTM$4=7SEe^4|4# zIMuelO!Ul<%`xa98d_IYP@wyHyOEIeH3Z7;!XtHU~*Q z>i2t&rg?k*tMJo`Xkp9-KcsYjCW1k>Ns+kDYV^#Z%ixRKQ@MW^{vrg`?jBOXNxi73 zUIk zV1k8t=D9r`KwVsfv7~c6fe+ack%`W0)3x4P)kDXOj4s}OdGn-P-eT_-<{epI9D&#S z(*xo0T=9`ijMa0jOQ|^{_xl@ zC#R%5?AA-SBB@!I2KpMU_pGMFCV~w69zyS2-`MES?Pfb-cBY6KAgU z+R#_MXKUO~RhZOetIxFR-p)H9_o$j8Ss8>I-@9|^@8jbwaY>{mZT{G)9bP{I=Kk!D zzX?3|5YY;9d;TFII87=qTZP04h`8$=7OS*G3MjsLvp~c{SvjqRn;gV*dCYTyFZ2S= z%yb1x>Dv!7x_o)8HI(($9gE9)hMZe4@V_)ln#Z-IeEl0Ug3!3C0Lcof>hSH?>#I7s z-bPlX(&BT<8#`R>{>8w|d>@Tv99-4nJ!LX$@R!pP2n1ele;qQ;{{&D9o&C^#WUk@a z(J31czE-4^{orS*A(WkzOBIJj@>? zt%CKu^Tu1=4)xxopp&GjtE))5brY8uG1oSjwNszVHqL{FM%!h> z<6NGB#-ZbW4^qc5eY{t7_Dr+Y`1Xz@R7xO4&~f9T_gnb6zvbP^d4LrMaz@kJvT(;O zGUvGo1|>r-V=n#2kuRhvMv6~*_tm~{p-||9u;Pm6E*hsD4z}7ghW9*}DN{J`iye2@ z@Yn(doa`1S{h76c>$l-e!d+)1L=Ib;aVCG*WTiGm!uirnG)=<31JZc6)SzDB`XVx4 zY`cbozOHYyTFPIVS2HkgbUn4AX{@F3Z4ZuNN-R*v8TB!v?Pv)6Hl4M<$FzAN)#AI3 z3Fg5DW_Z~B)tk~B@cddE@NIE;0_d1Wc z>PE~49WRJ0Q9ljNbj-Hon$OgR*fpf}b&K1Z6$W)uH*WvjzZ+>amR$Yb?%0TxBI0E+ zIc$!}U1piC)Ut8IPpZvL!BFrp8HCmGLLRE=39d9^4M{s8?$h>)-Xb^OmxIq5BGqI+ z9tcvEEI`Fi;O?f|*XU2>o@hdBB#Yv1?{b@VBMC=UBx2LuI8O4@U$WR^M(Oi3-3S-x z%$_kZzJEA5yIca0|5YA236A|*VUS#0>3ti^m|iH+=pXQBED+U&$G;r{RQl=JJ(a`~ zZ+^e)Td_h$AU76YL9ADGUdQzirSflZ!S+Zs=t4J2 zcC&-$6*evR0zYJ*di~%)N1!KuRCE@(0|SZTg}d&&=bK!R32^b4{v*W zLyffV#PokYLA~EX-&2}s5uTT3D zA>lHKtdtO>XAOmwA7Xhjxm&r9LUo^dNeKShJ>8yWX3b*O()1&tzT+zxY7Uy>KHVLf zHfce!mDcNY7EDy_j~8jf&3<-vICBWpn~9(zx#=!6xkyC_m4c$tNK~$TJhGpr#?uoJV1Z=Jq?3|BHCd6oPxAZ_wjVrs}qCyR&lvFCR@zQ?3O| zEYovx2{BJwV^!>f3%-`&TmP?(iY@>92B65-Qf$Plc`?MsuO5TrV>xtookFlmnZ$=ezGT) zaO^i$OZo)Xh*zk*LE6z7xIbJDI?$@v#vRXC^LlQkzh5(L)T-H5l$ZUxA)vF#m!pV+ z?jqOjHuvp*wHsM*lp_`WB;m&&6=gN)L>KT(w)ab%en%TdOApYdTk9u%Dde0|(iB6k zm%hDE1)X{{Uzei2rlsR8M&iKK)aHwD3q?=S>Ph|FoY3RA!H&cLRvje|M0V; znaB&>on$9t;N{07h18CKb0(WUEu;TP=fjVFQ*b{CmTaR;R+ZcfcWmK-+Y}d^M{+f8BTJhkbMkz01 zDQiY0N$01WFVNRk{{RIp0aA(c2e%VGc8U?0Lp8_WcP3fmPO>3;+zJMrv6k7S&BJPv zqav>?3-a)%Fg*iDyZmu;X6BuyI-9!B{a^meeIpY|^w#qUn;8Mu*Nc2bab?1Q(>zp41${X9rxHa zc`fmqw@#+>f3|mQ>3qqrSzUTi%sQ0O4FSVYttK-P)%dHV6 zUh2>EhW`BEjxn9B)K~lIj^dLh9C##ioc6yTg^2r*n8Jf>d0S0h6HX=meB@;O2qIzR zt>23%4>8l^9AXq(b9EhB?$haG&fQr?Pf+t3;i-!*i(`zc?|RwHTia-FwSs~=?aqmN zQQ7lo6Z42HwjJ)AXSI6}p*fnAtRFF}_#?lNRrtI}ynM2Nt-=vVRq=AM;+eRh6vR@+Z@f_8vMfdNs@X?#DGznsSZ1S69y!i1Q@SBNsDlq&Fk3 zRd$hNT}90+#)7MX$?@e3{LNXo?|o}ij_y!$Pa-?=3R;o5OZLek9X`I&s1&N-E6h1a_GG+E#;asl76FX- zPBesbe-hE3cInk?J^RgC?Vx>e*2r2BTqtwH#Hjm;!ML8siGPC)BoCTJjtFB#3>2g4!URgAXO2Rfl*aiLW@%7@t9$UtyMNxu=>DSnHAD_Q zQ86#E`s*mkJhO725zX~}lpMfH$K~R>tY4w{NJ*|QBAPA~Rc-$apFV*)QhK(q(y!v; z1|0|uUPL(2Bx#nlG0OMj1+XUU1zs2UlNXcZkro->H!2ji8_KU=`vg@P6E%OJcl3B4t(z!}eT5#t2 zm4E);Es}ieMyWEz0&~Tks(8D!1C*A72uhix4P&2PV8dU%(j&>oBO#VjA(4CC6jua9Xwm`>DQgr((l;8C?V~lTZ05Ag>!B;meBhfqF@5g1L*KQUVk{{!;kyF z88JO$K=l*kE6k(LexXSO&a;LBACG(RVToSqk?cD#GyMch!2V7rVREPfHf?~f?kO?pkhm8{|WP2C#rH3F-SfMqKd-vj|DWuR^f)C?a!1HG^e zCM<9<8mC>C6$dgd`|FUA)ZWCv~+n$%tOnh{EFM?~Vj6mQ1t zQ=j`kHxwHrbj@3%l6LL%QZI;em^&%$_~p6#hSJHIc`G!UdN!$=lxGIM{;)LLy*GxGJu2}*Sb?z~ ziSL}!=U_HfjJ_ILzhtJ-56J2j8wVx$8c{6ReW7V55++A_`Fixg-?Y)f0}eBUWG6H$ zEvS4cW|=ruq|@~08*HFtL5ql?(yxJA9TQ*ik?$gGO@yAwcnQ=Se3Ii0!oz7Tn-FCS^VSN-Sf@Md>t~|>}OQc%rAZ4HN+OD%lyW3XgxbMHbz05Fy ziF5<~V%E3x4C+~}mh7L=RpwQ~M8g6;8Dk{i;0WCQ>HS5UXarsE)sU}-GYT4<#RlCT zi{23Wi(#gS;rQ?g2{v4UVyMXmNk17j`2S?d??8kK6OGayTr-H^Tie5@75^2LovwE_$e#dl45YBTG2CEpe?|FPk3=z*@kAYg z{|qhK-mqn=O9ln1D0^h5iOn3Pla5j6s_IZUP)DceiV|8arP!?^07~R%eU_`VXcSi1 z^@d?$Q;(3TvGpY`TiKs$uGCSx6yTcHJB8Er2qDT*4REW*#3@&4U~g#BFfi+go2_aE zFNf>J(^ncBoLbv7MJiW3^%8`D6irUG$|dphEUY+a1~Gx=D{H}zCF zJFyw=jSALY$MSu#;;_r9fe@GKEJBwZvBE#Rp=GWc7MaOmUrre0-X^0J7F!=?1cdIa zXdR)*Ei#1eFCRha3)hh^ODGUE*s|Rl5BpZ7EIfu4T=ofQ^MNUIcu)twUoFaBLQ!gz zJzW#EDGV#bQvu;%ytSGM7Hv^ge3PyG8;0#7Ck|1vr1sa_4OU`|CT}dgkM?eK_|G8f z-=>QJ26JH}W4!&Ek$Tk6nqjexlK4jDeN1RyK@0j*vIy)8%qy_6HN)mR<5=p%DTXSu z91@`k3rfj`$rx+eSX7#^-Wb0S{Fv*bYGrC-n+^#Iq`vYPhVw~1GndbAN)-S3zzCG; zN9wCdXk-%-aV3X^3(+BA=z&#g=9(MHU~U&jw;ep9085vwhhZs`JRwVn1abGnUNeyy zp(fWts#lL41rnAcP%r@@eab~h&0(z71QOM)lhd>rvbQD|iCXh3LA^+dp!|NTc~B6l z_R>rC%N#~S@mZf^g$;g%U0;Z-&(B|TS+p&4(=m9yuqJT7Cs~Xk@FEy;LM0Q%1dh>Q zmxm*kdBBBj9ch%{k)z6}!#7kf{pRWfOLegx9NCwec!{9nU+8A_-rjM$Qx?1eGtE60 zk+9s;VPJ@ekirMiObLpzVVs4KVPe%S@)shkzmI!ASLRt@U96Pp*(`&^7#ic$^K-kV+PS}#k|E;Wte2b8?t=36J z=veoC$I+YdxWT;-la%gPxZDn*K#kE**5kG2ImhwM8bRva{1Im3omRw2*WNxm$xIR+ z^V^x>v~t@x|7pTXn86ZHnHEYy$2=70am;~>mWWiY65Tt%)u;$8HCrU2AicC);w?z! zr^l{*gf!sY;&S{LdNiXTj^L6G=gz#=rL9(&)H!nWA{9#creSW8YsO zVar_=8v2AvTGIa1BNzl}n)S|?u_jp6)hP^a0Z$4JrOLxPe>A3FZ zQ89qv2QoZPcK}96#K~;u*_db`NJwiGf)VrM`yGkOiigyfuZVt#hf6>U-#4l!+blvX zLP49s{K1*SSsIKYr8k9oBl>3-XHFOAw!`BRtyixObXk4Et)IYLB|_j)HKBdMSPMuY zq8o`;kk;YVnh+Xc1`jUB2=_8RJM1OloBut7njf@#Pu1SJg8@@bdsfpnC(FH10AkRD zQr%g4*oTxa`z&oHe`jII|CsXB_LiY&0!{CIq9+5LKda zwo1pI|FCjILYJyihL21M%6CH7^x7?`+x!R30Kr0(DjgmygXcf4vy5oji|-OC>^$-l zHTEsiq6$qCt&uM5^~d5c9pjL;KO+4TE5>3&SmF($llSmX1eT&hg+#`3>RAfB@hL$; zqALIMj#VQ0M=3LegY<^Ok0CWosk;&CrhE5Er7CptFhB&lDSjsH)ZTzedYf#F*RNlw z)gURL|I@TmIyo#a8tj^ZVuI+8H&eGX48u_S%Ti4>3_WF;7CI3C2RqElr(6<%=z(71 z(e1OJ_aGji4ua8smV+yVh|717xpIKW5J>;OjnT=Y2r+*7W4nnkzuvm$2u69+y-@Cu zF_UVWup=HXV^}5bdsC%trhCW0aO_UeP`izhJ^t|>sCM~MrArQrFSOwBmtFoE34tuUI-(m2~JUPyW%IFc(huzxw%61P7f5)a32|yl84Y%>Gb`fpKqv3$*dr z(u_nv4X7E4Ff?@rHERarOSFAiuYVdi;4eB1 zOvK8S?)02ry)Z=n!NRXwljDIDA|WM@b^;Uqi<7$7Rz_Cz7Td5%-Hxs-X)|i%ur+y6 z{shC;2Z#NVKC$*If}}OhZ;M~BPd|Y@;7``evKT0#6Ib517+n3LF|-@JZ`;v@*V_WR zM)w-i#+8*5Qqc)MyWdEa&&wb@5;@P}TkyHR^sgn6VZa(K&xI#qVWXNUd|-pDn12>U z;a^b%HbK|FXgL9J3aq|eSYfeYbMEAk7ql}C6o4_#R~61AUK1t|t))pK9zO_u*q>0`cl6m$kk)aLk?PoOklL+#x$L>j?Aj^+57CK4*-BD^8Xhjw6fB zeXqywRf~k*7LKctf(;So0#z!Rz1aul#-&k*N7zal(a4yBla+iAEi_+sSsZo z$03{#3twbxgW3-fE-du5&1mA2k~$phuX~K&$MAzg7q;coa}Ltde{EbgP|(n_FXyno z!l8e5|0xGFHy>Iw@UdFG-AS#~e7sHE>#J&o2Hc&l7;L$^PYmBZza9syD|ug;+RDil zkHyg>(X)x${$73!4Q;zW0hzXdfIx|7SCbih3N?NGT8s0}U2bW#a1%%^r{{Y-$U#lB zdPQ_ZL_|x&81^A{_~D33`i>`i*YyISdVyPK7UUhXWGY>)bEW{p$#p*v z2m}LvvzW?~-wiZNneVr|xA%(s{{5S{xI*#lmg9xsB>DdOGnsWV#(S^JBs37R62ZoM zJRWP$-9y*w5GY<1klTU_D`eQlO;vh>aRg>{OP#tex3oFTSJB&T4&x1Jv^j z9$4EuZ`T2n;o+goPcNgP(Vc1hc2B+W`-s7T7+0PhSsa{R**8Ex+G=?Uv`NQVE2 zC&+G8Y^raq`g$Sj^3nLYfYh=igrPv^ntIKp))t-*a zMGQ;$sDyz6N_MQkcee{l&H?s#Y+hO)@i1VW}nfH@uM@_X#(HzA$Q!?ypG?~Cm*gz)S>*jJv zR-MQ3B4(W-Jt6PD!SRWak+Zed!NEb#c6~sNRwZP~7}PjUPh_>RkO_V_BFIrZNlzsr zAfS-O8U>rz@d+?qe|sboV9Xq(bm*t-n%t;0kuWz8HyhPh_j(rlFNsd{6=rCl=aZs{ zJBu#|nfnQ#2|4eZg3K%#?L$bM<%)~I<0wF^pqp-h^ z;5t~tf1ntqxoAET15C!iwwji7faO{njjk8rhI_(De{@_N5@BbmHdS>?O?-SZYuJi2 zL0c(HAtsV<7#zDSgPO`e9-33MNCZZrh`%qDMR5w4&dtRV%7%Rusm4Mj_`KQB;?VxQ z4*wtWSm0v%rOJ?$rycj`@C84{k%VFo^?(rb#31rJ?-@{+cRE%Zd0>n znL?0Io63^44E+_EQsH24PeM|h<;nOmBx6XYQe9j*MoUY62|U(2DSZDtP*EWVso`R& z*JZ%OB$&2dl|>~Tf{`@rT2sc2PE-817O_X!)4T!t2oU!n!9#b71e}C&M+2=WF#w{MI7YS{D>D;k5$UF~0Sd2# zHfe3H6OhPIo9_V6Y_{jqQgP0vH6IKsgi849FL6;(!~)(SwI3+N0>?7mrvss0QKXrq zXMz=RjiCo&9n6Q&aHAi~sYeH62nlAHmU*pj(}O?c_;cS}^}Jp`W5v9GPxus$uJf>j z_h0`a1GL8x7)7kLdr*l^9swF9UXV1ztfr)u)Lw1@j)Nk%ivg2+Fm0!~RFxD`gnqHb zq0{f?Pi=WsJ0(k1VO?)ak>Og~weXD>gyRN$X66DZe~jBvi?LI;>1oZWYT4SK{uIuM zz^v10JPgM9Nx~6^LKwk5@mq?F%lIMVyj{R)rYl^}OWap?)S&U)^KbGys6}^YFor{6 z#3?hI^x-2)pCd8e?`~FagI53mW=2{}RILEd@J4Qcx6VXD-~K>W8bHK2I!rJK^)IDu zZ+lBoQAe5Xoe6;rMHGMnkK!W%^|IKnBl;Q*iOZ$*S0(1`xF@w;RxCg@LN`c zHr*u_4w!`kBm7R4LIcVX&v+NaI%}d7wMG>|yQ2Z|)4r0Fw z>h6hGVA#18yp2Qu>5fpPj+$xBS$K!Q-&k2`Ier(aG8<)S;e%+85(F{qeQYMxL|xwU zJw-X{*MeO|zqk!pU4$b?^VX|h;(`g(Pf_~g~)`nw1OWkOF;ways zUcK=4`ZSs7^5rTIXv3-CSmRr==tf+oCwWNqe@ZySpA7%YMz7yfZ-`)G0@*t|7kT%= zO3Ys!gtKVaURA8!A)K>v%5CnABhDU$3AD!Jgf=UMLq)QLFJq|6aN$*&EQM|`hByvc zsL2cg(VqtNTGw|3jZq^-BVf86TZza2WspEF&Q5_C%St1OWYsZ4a=P{ zffBlhgLlv(_f-(J0i$ir{G+|?=>Ww(b6HWjZj1VTdMy}9NZ+GyVbHDrJ{<*)dPo5ZdvS-iCYVUg2n$V}J^2FDvuR|aZVnqeG1_W~X7X)&t zl@JeHX}s6W34t&|6yY*j9+%c?ulRi4uX?bue~K=8$sx&i?dEGocXnKU?IXrZfhbB& z964bFF&;i~zU>>lca#rqzK_QLp!Sj_Uhy$z->q}xE5mAew@BPT>E5_?!LdL6J=pWx z!KN3lg>6RYrTT|A{=Sk4LJ9x99(*XS0RQ#x^^Qdu7~Vg>4>pw~C5Qfd{l>QEM?}Ei zae__1bO*ul{~6~-z0d#WN1S;g2q9$9{}wq3C5N8WBM70bSD=>y5W*2b{$g-^2>8w4 z_kU*Hac<8Dt(6K!Kz>;j*LcMkKTXli{ydPQv$?q`1BX3=AGlAuh)!1ft~v;#kG7PH z^u8jaS{?P~!?-<=^6&$OKm-H=ee=(D93C@)u>ufJSo)%7?~~Aqe~pPT=PLN9bZ=t9 zxW;?;i=^wPrtZjD;e&EULM;OWYF^V%#sz9(2|0aMsGYUd>2IotP_0}o@$UL_GIJJ9 zOUvx?xVR@Qm;V*p`dc`@KP5E&NruWZ_cVIRBe{7cBT@IGt#&KsMrNsTwC^JB^fB?O zyh2>5!A~F#!n6b$q|FV?w!k7vHc_dPx*4r-Pc^geHOF|h#K}g~3)zqxhA5|ZD3n;U zBm6C5xZ{xS)Tk}-L;h0a22(UqxY2%AGpR7Wfk*&(enU7NH(qccT}#w z>cR!a#t#6h19lTA8LVy+1_NJ!$6vhgsQ%}3pjrd-y}Z$i`Ck(aBv{Pj{}y^iuK?f3 zB#Y`>rWN(sSuMBM)cmwEl&cKp2Z6sVG9b7T!NI{H?&M%nnxk!h=5ib-w*ROJU&3eS zcz~f`bZw8aGhuISqO-Xr7{hjDXT1-liZy^mArPN5Nh(@j zswDD@`pvl586ykI-PesJXoRdDL?NJ1N!a)I@86>^6BwsmdEajn_4UQd%_LZ~-R#0b zFk&Ormz5xDw#p6Xu~*mls@tR`?I%}~Xo>yMU}vWh*;n2CvxDR4`=Q|yGH(NBROgU1L9!dY-enJ?(*M0x~`Es_2R{js2Ts5R< z-w(^#YqO7(l$8r650(e9CQmG!!NQMraQelMU85A>a8;R>mKJg6Js%y_J*pVC{pIoP z&e3wUWJw}wfk(58oS+6GF$Tc=PRiY9*Iy+VN*d#Q$+$Rg&%p>iLJdp%cKEMP#g$jBrUDd3kv?G_R>&IHSt} zeak*ENFI+r3Z({}j%biS7Iy>X(Mcr}|>E4F)xc_>Jtglhr zbgJ|oY3+Mf_U^9PK#ukn(ayVf?_LB2Ep#O?#VB=|R99Pddd*c-xmvC69u3(~1c%>| zu-^->B%(au+c0$utu@I!{%IA%nK*cOc=&IG+aCUim|BLGRP8s-x+ZR8ev^CT zjbTj8wH8BY=l&AmO^&Scq2t@@4xfCcd;cA`?vNa!R5J!jsUhfx_< z?3|Y9JA1jUR(bULsF6m-EiV&Mau(_3c~iWw)+&&6XxWG>_}%<2JYJMFe0BqsI~2?H zY`EOLK!s+o0#yl~2~m~t*jd_7DVojE&Z9=VMnBGNZErUzd3iYMzRsO2mELCsjC4iH zY8_{TVGwFJFYbOnrV56QvmEFMmg3+=vJzK|Xit-WZ ziVZVw|70EQuI$jEkt8rzoh{$*C)4nECSi z0e9SlGU9`c9%kaiK6bpqaeL})j@rc6vUHfzr+BA#JyMNMYVDiO{Y=_FMb2tF$Rv|; z+dQ3Y;OhSkf)}ecFA zQmzyEAix&X-?6lDntTI|= zXCP#=G=;u=xxKwTGA-la@Cd@lxUO8*&k#iSVZ1ncc`M2j?=24x(5$ z@0Tuy8cuCRcL}J4YyuD)>KK_f>l41hUaw8C2BoyBnTSRIDpxUno0YeYOwO-Vp4HgB z0E#Y@Z#-zl51(@oEe~0LudE>HFRGF`5FD(+)aiP~A3onDS2qsYF9yabTU zzIbF553jIR=0HZqJroKR6Q|peP`)vryVJg?8rlehxCqll^*R=9hRSPdI&E*g>VC#= z)ljIis!J3o4Hv1btYxBjuY5z%QGIuH04wyM$0RdsgpMn&9fahDH?s1KW*UY&F%15O z)i(3E4O`$LuSi3VKE}`q^9nm`q#SNraGqEUm(mFBH8uAa=njpK*A!+QoTB!3SBGwe zHL4eFj=HTWAwt)FS4Jx|+=cyzGKoV8&u+qw4!e@3Wte80u5z3FRN$a={%eB}A-jo$ zhn`0#B7FD5X;7}sT}yx7YBrM!*^a!Gz4!h1&!3K_n#LHv=qf4C-cR$(cj8s3g`A>W zAy5Qx5Tp#J=;sq_cQo(s-x1bI*J_f(>f~wzG$K8f^*nc=jGJk&uP+FIt_OVEyLrj} ztt~!AT83u4F*TmsTw?bZ52k}Y&~iLkfKjEn0CFZ@-1xOK2i%r>hx+>NN?Jr3 zq|bQLL%yoMdc3gutv<-0>@~FXzTrLcTeoh#3s3y4`?M#`@$LcpchccuQid~nipsv1 zyxjUlycTK=0e-#!tpKa;5FyGpKHi){H+Z?O{-1WXElvu#91;Num^=6acB{dcwKGvL zs(pUStVjG==6A%+eFoi zS1vX)>CX382lIju(l5EVlZDNX`d)F9tf}Y~dg!~ksRCRvKK7E9kx`FRM|x?XSRMqj zqZ_m<%hOPrTi>)E2m_t_rCtj>gUO?>nVAI5ju1w|x^~@VzJ-o%pVJJT57d_~iIy59 zMMWL19fr+@kn-F0lR>9b&w}u-nc6@4kr_hJy$$~ym&_pS^du=kz(DHY;koI|}h*`+^@i}>yI{5Ae~N-8yPTJ{s5>bD4dX#Tm^n}Yj@_p#&Pv2J>hAu-~ zNj+EoNp8M$2ZK!DI+SVV%O=J8*r9+|cNaiuWKaN&@gbgvhrk2hRBi~_TOT+$v?H3l zb&CSy+IIx}JM23nq5kl2s%#U*bX1Uc9EZv7XzFAi2}724@l`03nWv{`d~2EpTcerc zS`Lg^mG3{~r`k2k7O^UegchFAQZ>ImS&r&o`kl#k*4SJ&?N-IfqG+my7R4wxD7ll%##%*zka8g%zc*nQ9 zkIStFc&*$k5Q`rk&%SN#YiDQcN~4QXxVJ&|`b@TRST;}6bz$s8PI;j-Uc|eJKVlY< zmDWJUYx;Xt$bO%tK`_gtd~(Wk0*T~_f?AbchXRl9y-TyUx*C0(#&fM9n@-G~L97I0 z8gvA}ziMW2MFpHCx~hFXm^?^+l+CkiJi(eeJwV+m>@#K1<#0%n1ZXqvL_crEykEyr~gsnVMP^d(7p@W*%nms84cA|3pHGc$A z;>_}LrR{bwNO8rIx=yo0+}Fa%HopT9Vxf{4PAjp8J>HK(xs|-0=rAjymGtu2ty1Ak z5c=>T+~a&&w&kF;GeOX}*r`%A(^WJn4t>ldDCyX-q&|*v)3088X53I-9iF2s{nmVbI`5rqHJ29uXTJmY}<9JUGd)-1#RVV;rOT^ZQi z-7V76LyCLHCMFJ*s}<~8>l}G_gSqC7y5qz?uB^@mAvzNUSh;vkoEDK|<5-0iH1$Ak zV#h+!EQ{m;Ry{YiGgmwBQ`F%RuEyk9xz(LJP~7x4oRr6x%n(r)-bdL_9RR+1lN!iL zxr%rMf`1ZaaS4gp7kgQMvCyw&7mJrKN$5nXwA*9VQT5DbJkT1CL#LCp z?4!Exf_cv@1rn&ZjW3j3_;r8Vyz;fz-X0D4<52^-y7qb)J5SHXpb*mWv9b2HHjPg+ z2K@H1U!9)MC+wPN<@8tUYx4b^ptD`3QozM?eOJ7*_8Xtwg;j_}vGb0dRuS0siNbH7wyo)1F8KElKkr9m;H$ zVt-vlIM!_oB&{FoMFp(6z6hZlQ-cB70@4*=x>bJLI&yOFG`=nU`8GZ_%;!^GlcZ{T z(!i<|<5WMQeZ7*_D5EpMy2zl+ej@8HwuQi)M3V?e=qBPm8JImpz`yt24Y}K#o+M63 zb4NYXO$Gio@`&{MoQL1aTp=9_woSBUPOiVI!wEc_dZh+4{NDGw&A-V%?Zw`{0eP5W zViK?A2GV!mP#!-tdYg)qm5nPRG<;)wmzX3zDLuI~w3<1;!|xi)gu>!TmV)CmBBv(rOmD z4FzxCfE8td4Rf}5Qec9~XC#!9lk@&Q>sR5FSMuY@y&0PR0;yLEB`hCkpz4aDruDJ5 zQsY&5S`UDFoSwP@U;Llct^%orK%)k%I=OoipRih-Aosu*xFQ@8u1Q*lO(-B!u9{^^nt*s5A zkgWxSopAb^np#@MKVlj>IMhC=HB$#yks)e34E#69KFz+kN3N)@4r0!4t5O&=5;64% z0v7Z5MKl9iF|)^#9K01d&&dK?-LZf-!K zB1v7gB?EGo3h7@-`n3@1v<4h|`8*vhd zmpibqy!=fkyTgJH!WMHKeh&tDz`@4G&Zn48&R}mJ3I`0OG#v6V+2lEIVxw79azXMF z7CAVenM1~rCQlg&12L-i$wU8TbPsI+N!2aQa0vpiSO6e52m|Y<|4`CH>8Q@f5Bo~3 z1_9?aB@8&j1Cu2w2rPxD0$9yox)1z(BbhKz8bbKXk+u@hasJl7rc8f1wr=(UN^Mpc zB29JhmXQ#UXcybx;7AK041_=cPKQ7*K>$i7TD2aNON@}JU-AIR;6d>iXJ*XV z)xL`Q0%R54^uZIEdJdrtxnLIM0~rH|!0&c+A%p>38_-G!nDW1haUub7e#|FELXu2A zQ9(c85K^;Q2QWw1$)IOqAFdH!Za~mI(`IAt-rnF2LXbIPgF6?yOu|3BfBh##@_$BQ zmw^SIo55c`Jp0D~%j7;~*fi#uu`xa5=cPHONxujQpDgF56|rp5Hhke z@P5IXpWy>@Y9>>+)Q{J@=jQGX9`V*+e*V@i=BueXvvJXhnHmqY*qC8;{sb^-{M4e7 zI;(+$BStV8Mi|JOVxnnM`V{Vw9}s-$SoqBwJ=jfU6yV4N^ECzLv9-0scrn};#vT-@ zzNE47^><>hIw@HE#Q(RBAa~ z;=hh_a(8!N0(`AB>=J}b1b%S&ueQLoY#yS$VtRArG+m(hmmob?BxSfDKzjjQexdw8 zcn(lR03o;oLWU3qHuIPA#RDub6$}poUM_$P2F68(e+il_>F+v?%I&-V&SvyhAKEro zm2Sidm>w6 z;JdUm4TE+&(!#C>Ufd7vNoJ&i09xA+AI69W0l{CI4FAI90f!G}0~P@dB?Rk${57Tv z{|<@5|JLw)40=b%{Nzj9r8B_Q|NBTVEkcGUB1lSm4MC*c1e(vh?shi34m=DG0=B0L z*fn^i5J5f?fu;U?5%Tw|U-$84AP^T|wv6Nuh!MVwG$7$2@O%F=H8=_MpE(2pFSnTF zO=_ie{=0cJ4ACP;hVQ~e6)}r16M&J9kOg9qNjVLP%>Ddc=F|%cG8lw{KScU~=-<&G z7lVV61bCR!B?!D^#70@imKH$w+yxb~C?FuFe;;}=p*Lz5A-u*fH!JPs!PHqKy;K-N zCC4Ol;Vn<<&Fdn6vm>zWpb8SkNcdMGf29D{49XQ?50~&jnhTZ=N;+iM{(jFO;l0V` zwq9$LsB^(=K{ob$V_R+VpXFYyy6|30c<0wHycga@uwT_F!SaEkgd0=~=8a(4`jV4PDhs5JIR3J|5#6GIho}DF`7P zXe9y?D2;ePb_o*VA0S1D562G>C-5i3$AiOWgz+IqMAC4QX-zoezds;*BaIKCJ-dYe z1`>r3Cb<-FhDY{sc8U~V8V?H42BAM0A#esFZ!s`Pq7k8T7y7)dnyJNKn&K7^J7kOY zM23uz?8+Mt5;5Bj+R-k)lBD|~3evPND40u&GjMm?{%`)~pm&tp2knN33yqVyu%p!B z>G!*hj&clQ)ZbhtZqmqxf6`4EvOFDo`SZtD@sN7sR+IZt3XorBMGJHDp>k&aNsq~v z7Eu^_5l6S_wQOoBhIlOlJz$oxRwq86uQS6=xCIj>?hBEM+~~2CgF$^>a&X?-guT#@ z@3hLjnL-f?hk&T&>_l|)y8DL$(o45*q$BCs;2f+xIa*3ZdRhiL!3d>yc!o+hu0pxl zcw$Gedl3J;Cv2SD1%<;{tC&xO;G6VEQJV``kk_bPr>kKX{brlHfW_E#GT}*kdcLcy z{)(^>e3lOJj~@OSoyZ-BTIKgcC_oySnHw9KMe~~M+_OGk&+R-TC{EIAN!R~1X16#q|P8}VK>phm^>@k)CiB(1A+H~BQs6U5XF|goAU%QVM_-ko-o8lRQ+;CYpXM%s{e<_EYai_k8W$F2!o3zJ#N^RYh;EYx%uMfo!m>6 zw9Otag}tv4??+2YA^^?3O>`Y#_)>!pk8rB+baR#(G@x(~k352a?Sst3e#n-Fw@|I! z;sd8nZe(1X9>;I0Ta~S2H=Xu*qgyphcXxLMV`CR?-DI10`jAWtsB>wqkcea*)?0ZA zLY#c@cqgU2*(KH0bymeu(jZ8R<|PkUw0E+9R7^h;C5EjKg#o1}e~~@qqI11xQ(O%W z_5_piH2b5qk1wa-YR-pIf*qVXt90{rHAW{00oO9H0IaW9mbT=CF$f3WIorbj>jfCD z^c2kH1PCNXX^H|w^2}}%t{$q0JGVU6<|N5tg-JYO)* z)Z*&wHyw}-%&!uCXwt}QQp?jIkJ2OqlrktUwc1Sh3){9Qm|s+f2CO99R!)vd^}p5L zbmKY6*#&YH>)< zbAGltr%<>}sR3~lFW76J?^zXTg;@=w?e*<_m!ViUc{@LJ{d7O@BjaN>f~Zy-7Et91 zQk~7!Vw<8cXK^<6dt->hEzaI0-&7=sIPmZ!S?a5|C^ny;3x)eI`};@8!gy~h@4l0> zicy+fyqwI4=Nmt36lIi3uDwTj7jmhZwQyM_B4>hJs#Jk&%Jy5QJgZl3`C&GE;<}{7 z5?+Xh=Ig#}Ir|+!ysSlTS(1R1!j8?d7F_CF?x6zW;-31XZnh%-Y3A7W1NV1j zb-ePfANrMR@179g6^^`HtQ6#lEG;32MoK@mqcEP+pC```e%!`X&H2-_<$xpTl!!aj zu&IXo=R6Iac6H+!(hO24##;Q#;-|2+Rl1T8J>+K?w({yR)x{hMr@7Zuy-p^0J-SCZ z>s`lJ*(Jsg4O3@jqf~M!eWy8P-nuusRlaQ(`or!W79x*k7-)L&ghoyFU7yzUjg3#Y z+mqtG63YY6f9v7_I^+D+-@0_~z-oC!l4!X()~Rxg?$U&Ri(higc%k3;pR`kRmf``6 z#G9f=we`(XhA7q;MNE#4c~e>sd61*KjZ=Ip9L||2fE&s^MpmTh-m%ZoK7@HReB_O0 zWn*d_S79L!rR zkw~slXK=HP+=_Y58=n;T(5xlEtJJz_U746p!jLTn_lIJr;MLG$;uU&fr|+tHE4BuL zRQNN(PZUIUjyj)(Xg=UBcs-bA`gAJA#LssF=R25X8nhh0<*oV3Vo5-;x8 zk)L%?mS^DddME)D8AjdxRV2KWSfU5>^?d<$fbu9lPA#gg<27?Q-!mz1Yik|9l|%@! zn%HR5|G$NC{4vr~cRwEU)Ex%;sJc_EdmV$BnYlD@#L#nLV%}7k!M}@|#vX;kXoFO~wMp_^|CcQ2lW+pFUBs67` ziD5s?q?b6{*yMv)^_FaI)Sd#G2u7g+QfJ3dQ-^coq><8TVG@865lRY*-9ABtF)mfD z6ipSaX{Z;`6V>fMN9jQ6m4@c#my+`qK;$LCQ}GB650BPDRc1UUUh+l~(f9sv46+`w zH#(S3P`C$sW1&hfFAeQg1RO_+`SB2#LJ zuXf(bO6N53${@9bPs^KnOBQF(WO^f*8Tqvyt5OoWo=oSEGT^ZT8EM5F_gcer1rs}M zxC)GGMmiK{agrV$3w8T&t=yxy8kGA)(fuygr+|PjSH*^qtQDKT(u!|=0@(a35~Ag# zwEYDY4TY|{;hlEeLUE)^L&er1Wvk`u(`0lc@-i}}Q&WBtD7Oyw9{b@t%!H5rks>JI zh`R3mE=?>S1OLXyD7zA1aj3hni=6$dr2p{qhh_GoR;xHYnAOvA9fh8Ul_)VNort3j z2RSj#SOIXd^TBko1beXx_pW)9vd-a1GGEM8^v0Z?QfQLwu8*f$#k8p*F~SbQw%ZBj z7i2-JO+ydW8B#_4>bb9Kh`ZXdx&y(qKc0Vg>2S0`*F2B`NZkL@xV2gB7o8+Mt9WRj&-CpKer~nBdrp)urJ^H;LmFNiT-sr_I z-xT*5I>1KJ3Z*MJ^n7ED5n$W=IKE!3^_{d)kUqs*Vt#-sqYif5fkrdgiW5Ap-rXjv zVK1Sg9IdbN@b4SiSG71iNaLuadBrQDd&P=CP=ol-b}V7|t-6UGrFEq>qKLUIaSz2x z-)MB!3i|?CXiCYW+t6LE%zo3d>p|44Lij6R;V;Z4Fb@h1Z1_v!z2+G^16tfwbDx)7 zJ7&@9;ws`6{=^>R@KpstYmz;ni&NKqKVwh1E#4;gMfls6SdHyMEp5zKzR#kw_qC3y zg1;g<1PvTHxR>KTT@@Yvbmm8Wg^D(gIok1-#bQ^{rJ5D?$Bq6ioF(x;Zc>pK9zCi3 zNSWhDtX;oXO*7t<>g_xKrGiutl3FWS9yvLuYJ9=^ZDZd3O*)vdQidtqM;18#iwyi> zY^?3@o$)gBV&u4}r0*GiZ)SqDtv%e~|?*6#Z-ne*2 zR>$u5o4e13xcFjYIiI1-=Xx&XJ>ypy@&9APW%AJadb497qfbj$kT6K``7g|U zX*j(ks?xJj>&_rP;=gpTlD?gc>G0UbT>wVPFlNE!Ux;s~%1Yt#zq>jTMBgCXnz2c@ z$#;&UU#&~N48bS%KE)ZCnmRVS+1Bkh2xRGIy6<;^EE(ak+k~CX?BYt`>um4igNYWI zZ#SJ8bfz=-eWj$_!pRQC6HTfm-=4wYf)OMk&S$>`#!)5f12ugBV*GU4I@(*Sa@oyb zoo(W`)RNjgU`?$Rw)EK;v)9>MnW$8YTUbE?ZXS-%HSu&B5@~21R(MYLv zIE}=N`QwG!)caIj30p9UXnd=Qv}vpu21wnh?Jdt_{-jRvQQY0j1O|C!S#LjwGNl@4 zyh2uPoC-N-l21j97x86=cYB=TniI=ksUtp-x(L&T9+Pq-#f;cu?7|R9x2azikMf#etS2+f-Rvf&OZc2KL(=Ib%sJQ- z1&VwQNN>;a7Dmw&M!uq`ct8EX4Z_%($=?T1 zn(M2CZD+>DFBxB)ln+O=Qjq)&&z(6>tvd8BJG$4(=aMv|sL#m`_dc#bkDmad^JA1+ zxUe8Gkz;wPcb>>X=k)v5cHA9c5p+GMshV#k3`RLgfZy-D-+tDZL_DmThK`@-6bMFE<0x?$Xp)Is>mU zCZ5lBCQSFvGq*;LuL9`?F-q#!SalL@r+=`Db3b~EA;+Hv766jbkwPa$phCUZSgm6_ zBN2*6Rjy%xg)u%k8v&*^$YJua;@qJ-KWU}^$JtVA@n_lQ@`7_p0G1vU6t0CUWtn7J z0L8Z-LvODJ$!pd>LSwvAU!Vq6Wf1Qtg}6K_#&O{Y#VA5T)Th~;%PgJpI=tp0D zbNP6p@_ZB>)I7wIT(G+>JJ+G}ZFEm4FSp8;Hlt>vf@1+y_u=lT{F)Ey?!6RU-^Sl1 zC!+-&mVCJ`<6B+|%DbN?{4S?X+)Df^)lrb(hOt@PKVqQr8@4@8w37TZcP++v-rzCL zGg-8zElgawQjQQi72}k9Z!hyxB2kX(=w?Q6!9BJ=lQKO{u1yQmRmQ}hok`{oa^Tii zE#b6yJ<%N2ZQabysAH`^?;>c7larna%)7N>!?%iybE(^sC@6lGeb`HOVayCJ5Vi}K zf(RPKpdAa{Jd}3_m5(MTJ~xMG=a<8LvClhOC|5cccWY=^snX~D=h-I&e)~_VF)O*- z+0dxL$?)5_99_mf9-hu{YxCxBH+7_xA&I<>GS1BOyxG=QJ{16b%|t-=Rc~0Hd8KIA zb^mJHHmNddQ2od4tYH`QRDaNKWulyMU!%?T)va`2A31RtUj4%k|BIH8L3IBM`^i_F zCc9qWsTQ0AWE zPA3No^t8+#sEB&J?8`|n;N^9H%u-@C@s?`yom?YJwCCp7vQwoPV?yUb^7@4TIn$_} z`&gB;{qjkCskIIPAe%Kv==S%vXnQh4(1ouDn&`q7Ris?jO6sRKwzrE6Yyls8Y=P^) z-)$`VH83)+8TbW#kxJ7S^65#HWR&D-S}ncIyrw1rs$zv|q=}tKpACijs?uvy!|gjg zDW-ynzG^2EOs8Jg@Tt%!UQfe~uB?NCXXUTYU9Cx?5O!l|=S@`ZD!{IxaKI6NZcDpl zkXOI#aV%+V_2&;_siElZ<<+4)Z3BxDibPsU>YW+$rbKs!rikk$dK@58lP6_x+CQte z7P248)ubQ3@ro z{N6=}Dtc>SJS63pOcX#&?;_AX^Hq-O16osAL&)QS(%vWf@L!(+}n>mb1P5TRL zI}`bHva%3Le}rrt{DtCoGLzS1Vq?VU_|}>ZjQGxtZ)^AHkS~)~(oJcxfUdv% zm8rU;;Z|+vH<@YmYar#eo+ybLFa!CsFu*6=`}AYzV{4#&p>KDF>@O4S^je+l(TQ@o zyB~kokY0`LWIMD5M+nwPnmb3`C(zw6nS;ZLpldH48z11Tz-^Cj&_N)#D03AW*55zb z*xkNHOl_>ERpNt~9rxqT9pOTwL`rZ!K_qg{(+|K$_(z{92f%^WAG!LYz5Ri;K%R4O zqR#rdkG`8F4(uHahouu)JZ{8V_f;JROpFt!H{G%>S0y4E20P;Od`4Dh@5t7hvO5uN*Pid?YLx@H=7GHv?WXEG(fKC_eaAo6+AdX%2w0a` z4u1xnKA?cW2!jYaPosQ%ryD+|M8D#W)zy1U%77;gNX2yX3~idSNCrOG>@JE|Qy+we z?=$VjyJbJF0K(alH%=Z78Z`NS ze!}4Pl1wldH|LeNJTzt4eDzc1P`Du=?z0QuzPoBm5}BimidEof>*gj4ZA=XzR+4mh zx$t@O`nwYVJ4k3nid?ZyQ40860M{yZdq{YXfP$A1#&_|oe6oWnaIxTb{eHvxpM$(d z`BR=GhKQ_=m&TQ*&swrf?WKGkaPjP6dj(*EmV=)+CybGvo>y`OaeAdMCqj#dojxfYIEN};><4UXrPDCnPn#otgJRJ8g@0;B?yc+qxHWCr!$ znX3elQ@LTLCR={B|HlN{mK_x0K;Jb@`T9*tDv-?GTq2_CLVB&uiAb5Ot71ptP3xBf zlrB}V5U;Y|+8Us#FV8cXzTjE;C^<;!B&sb_j{?S4@t*Ay$H&F_Y0KV~3owhGT_M_T z3OhPx&!PC0YonZuwO8%VrK~s}ueCJcFIW-e;!$ppHGG|Zyv`N~n>0CIXwM%twx|EL zIw~DXIPPA3XS}W0)^(o(L+z|gr_a16^sbD3JI8hG$g7hK`;jGQmHSDMTMgYrg3`^3}~hEVxcl;p{CW!+Ts!c2<6rOFr}ZsGjQ#nrFdET_x{_ zzVW!e6s!!y%$ccC7HH&2tLvQzc&5ql=?6hiZTO_aV|dpiT)~ zWcd#x9CrQ>7J(-yi=>sjQpcaOfoDgq@PDKj&qYvr_fT_b_ zy$c&HhkW-3a@6SnX8PkV+&S7_464bXdZ10?&Vdw~T?*v`biwNjP(&7$8M30?v>G;P z6y17{ZnV6{;V?&Mb``fEY2zRjg#f3M!rxB?OP|pQWQ}HM z^O1-^Hnz05jfy=Rrp`DM1la^{gIqL2<%aJj8y`3=0|o|ED{S_Y>|;{@gJaN~Yy9E1 zXuzT;H`z0pYeYZLJ<1AYURvpa18owX zxKALa8*U&jhxD<5zITspw~dx>rPe-;js;v6vuDzfh%yphpNJvZ^{diVmVvZJZ-#l)e4T}3QChXG^ z;AU$85}>^X=8y<_^m&hCl1^W#CTb^Kh?HIeDaiA(vk7=d?-HBAKY9j~cQE!_6}{ZX z7UI5#Y&JF@$L%5&N2Fd#CxcWDeg2V-lDBQz1sAULTCYGAV?2IwCJcvSA2P{!rAkf3 z5u*g^e@H5GwBK=Gw>zLWDXuwsYkIq`pMa`X^+_P`!l0Rf;uTj{Jf+*gK{mvHJU~+7 zdf59H(Iii3g+y8B9mYolz!3h+SzL2!p5kEzT4b)Y_)6It~ zD?y8$KzwIk-J`Lwmk7|1I9oAy8T@r};v=|@pp{HJ-ygE`gHB1=br3>YhN!Agt!Ct! zCDfgN)ZaAy{{4=9uscz*2yj=sa?E0>Gp|&Vrsk)=akF`C@6{J+z5-!$GAwdi?P#5?ze~XqPS^WG@h<+s$0Trq zaPV9ToNW!zo<~catgq`^W513Rn=aWAE#pXJ$mEm^Zpx6|deM5;Ewe4HmDoxt;KiyUnT`hGkVI-CP2>+D+YG?)=IrrP0tR*jpVoZ%lASOBc#7 zMsz%ZL()DwQ*kMGx7_;mGwsN|J?>ckNY93!g1Ugd*|rpfXB_ zT|1H9uD%bs1cTr92ymJuFmxmc&26HQZx4J;81w)HOyl9UPIwH54E`8(S?L&NirgQq z_8rQ|Lp7m~Xnzr)#rS7uEA1mZnOT}t;0N)aoz7-%wOZ=B8d>*N$b7#)otMo(a_0}X z$%Oc;t|SJ&&GDiF$#RF~9E%UDx({?M&dVpe^$X{cuBAd0SosRfYedYOQslj>2I%V%LP7cs#_Jcj|tAPA!Ntm6=2mi3=Zg zB)n2C^FLk-lxbwAa@|3C)@JmE8^6OyQY{JYjt#z27KnE_YIHlS8hFC^2wRkSRbZ=Y zI9gvk()Rg__3}kLib11sf$#9s&`f!$kC^%z$79t)2A{>Xu{UztjWh`Xnp9WBs~F8T z(sp$hv6X_UufD&P36KC#sA8c%lq*8IPTr7BumZZ5|BRXGtye;um;7r3}t|h(4nq8BP%3XC; zoeZwAl^(7Tw3#_1p$W5bTHVZakK{0FuqMKvrz`mSWju2uH&;_kH-e$(fjXH$qDO|- zC)?HiVcF4p5`zz*aMt04<^CRmQC`)I;2{!D&51@lezPvf1B#J3zY=+{9nItxZ9)pwOrF6^d3m6I)&THDzd4J^gQ zFXeQi0Ih%8m?8AI2DFXbuNKHti|m?j`Ax%3j6S1m_>>W>WUsLxJ%x&5J-q!az=Jvk&n z@5d-2VB4JUE1SI3&0#_#r2l$E`EKyq$o9YwPofY~>Zhp3+AuQIDy-P|9SyJqFzk?a9SUa!Bsl9zAsHz zy6IggJDQ248OFGmd*gmQbf4yp>+79H>wxpr`o(s$0TU8PZ&w>2?aSCvS~1V9j3n+IBQn1$fj(W!;ISGe_`;*^3vHTt?%W z&9b%6J&tiTk$Wp$9efs@wte4Qk=&TgLp;z%F;?Qb7|PIHy|FWOMOo)2n^uZZ?t*R~ zpG8N)@#}6oDlQYGfO{|9e0y3(MiR>5@ZEIKJ1)rs594FO&KEDnOl-zRc56w%LeHj` zLXQmuB|KL;YGtLwC-$M4eKK%w%!riz^lzEVM}`$1o`cnLYLbIPp9V9x<91f|KAP(T zjiK4{nAEl&qH0OTcrQl4cW^tA@s;Mq!QSYxofT)nxsewi)*SjiQ4%^tfC1SpQ z61Cg%juamQB;ZJxuFu(QHXrH4MF_t*_4w zvfG{LNZVobYD*D?M3sxE*GcpEG1_Z>IFkh}R#WerXQh+payFChXpa^;numtz{!mm^ z#r|GCW9a@Wc5pgPPwIa1eD5Syg=RsyjnBO42UpU_{rS#f&(SU%sk@U1UB`{*10%$& z*}BKOYd_68Mg1B7)Husqu)rW4KFlKXF+BE^+&TxX%||NX8E;Y_ zd0>W6z^nh(;iK}l$3J%3YUf;B0(94%HO{<^t2 zc2Myrc-LzE*vns-cG<;0(UPH)Rg2LdyQ1y3HVh758VFeK43?0#$8q}Z)6K^f=*NBX za{c`!j@alv%wnR@y!l9F^y=RFvV(AwnqL8cx8_Qe$;Hnt8&S9ljBS|FF*;v6Psz~c z2K3VNg}Kiqx=l|wG%BWg-kiD^oj)HG&#dn)G|mHud=`#Q>yb-R))TPy5(7bNa4;0C z0GYt+$PZyPzh~yRH9TXOT%Z!hBIf4ri5)2=7%7hzc_kAW!l0n4a%{7?H627h;Oe{F zR;qSm$$Y74t(!82`&pGAmRduJsUck7`HFhqPS7i4mhb|Hv)g+PQx{X>M9-ezGKM#73rOYLiQ5N z65gt_j&xo!vuRF~r3x%AGv~NtP(68{YBeTw`6(-I;8yEmaffZaGJk@{(XQ&@=r{${ zjrIkKZvF@BeuV~gncjRv4XbK`?Wsfo8zVXWoFUGW%Q_CbwO^N4HR8lIx0dFoXmWo~ ztQauXbITVf81rZ8?MHH>|L}Ip3P@x$s<0sQ_3H+*txlfN6V)`UmPe!h^LceIHfS4<|A!n> z#G5zL=sG8Z!O5HbZV5eBKj~DsOux_Xc)L=Ht>)z*3*)bY78zWbSJd6Pd+R|ak*s&E_qgwGzia##X; zL-{2oY&sTo_$-CI70i z0e-B^2o+crydwMUb~(y2)l2UBE&N{{;Cx=P{hv=!Nc}?Tvz?BPGR}mX93PWY-PVsq zS(=QNktio8C!pv)4SKyXH8A#6^et_D*qo)sOCn{VQhn=ZhjB*XK&CmEk;!*V<-NJ%9Owxv#bs%ETY6CP=OGnyJ-Ln70vHh&+U(h%yzW4lC=Y^JXt|47&Y26BfkJ~9bFNIib`l_jlG=Gax3>27Oi^z^5$2&yS8v}F^DdHS zI)XNBD42=XaMcX$^!X45J*;|=d3~h7VNG$b>y;TO0&AVM5j)agGmslOte~pI!t~D$ z##2b@c`!0_yyT;ro$uIQ>*(aIdLZFzrL@CGW`spWOm zInl$xAhy?~Z-M6=ke#6Q7&0T{9fce?fpGH2kFa>1cqq=iT9>;u)$z!G)8b$iY8GhJ znCx!W9?_i5u@S%iu3MtL6b?jdDwI|;AO6Iz$kg=v)DLC}M)Z<%rRDS&HUA4Bv@Wmg z8k5zR`;z~BmdQxhoeANb2yBk&;Yk%N(){+^2*$hriS~o-OntHI;n&1R)0dlWpQn%a2wyOX8q)fbh7YCN8eV^%Cw&M?p(I@x^De<@R0OI!+!DCY)j*a~LTXY2Xab>|H4_gV z`KtBKE_6Xn+G-~z&U?Kww0Jl~BY z51yy%9oWr&fBVN_)p+N!XHCRNi(`OdT)bGNbM#(8^poTJ$K#TtNkvwF^7ZG}3O^AE z!SQVpt9C!5^{iNQdm~RShZzq^sHTbcdnm6%b@-gqe&&3ghSFXQzn#Z=E+ z{0U#rr%m1Cw|u6!9$xZ9u^Lx6mfFKt$HSxOwSWxmsDLVcbjd;5w^-IoRlAe6|R(S^`%>FO)pE}0d8k&3)HiGn6knU31xgSOpSmvo6 ze&rl`BaC?kVN_7&+;Wa?9(wMPZM z+cR17<3m#Oh+`A@s6X(G!bb&Ec*;z*=AO6p6SVeY@HjD%5X-LCd|+c|=2v28%(JKh zOYZLN(gT|79Ajr^lvgjjjF{M`1C?iigtzhFtDq4GBx5YXLQ61Bg){)s5{oFZki|il z;`9qdAvwDTUA+5$kb63BI`?JV3!+Qwk%OVA3FTA9;QXHxYKr6;h*i)*P_V;*_~MYc ze_Uw5Hprr1WQiPK$!BR4Yll&SlvKmn90{dlHbPJabhBYNO(8~T0s0(gy*q}fdC&j^ z1DH+Hlx@7aWhz|jKCwkAn4jrdYNbtQW}lF?#oMaorG!6aD_r82ix5>=O#aYTBW&xC zPZkgOb<{&zjr2wcTInusffa+p=z;T;A&i&R*kGXf5rLnD7VNXt0|>m5<1uv@MU5>5 zHUv%>%BZfG)&rG={NQ*@!t0_}`vS*5EvUsv1xIhhG@)qyU+aOjq11n?34gOnHKKq8 zWg(N85ggrooZUuMq_GKuafAIX5R|pPnU-r>PboM{6*QSFI9C)gTELmcFM*mc^obt7 za|Qx*sLBId3jY9821oP{!Q@$ld?F?GQ)6R7(zuENiW0!TB~``|fppQU;)uY|Lqpq9 zBGuJmuA4g5uB}e3*oka!U^vbAXaR6kM*KJQ3z@TTE9FS*`SH1&5*yH{0H@vv;<=)Q z)*z2FBz9dH4W|HfLhJ`9H#M(^M*zHXv+lUu9(a6`DFwDI39rh{p%X|8lf)*Kk6FV; zD~<~#41D%CUa5kR8oc-Lv}$|0_U}FcV+bLKR^1n908#}VnUeR3s;1~>U}0meq#pQl zc7oQXzW=x*t06^JFca-J!qkHJfsjuYSSd-S;7*~-gXrk7vQtDzcsW6Ss!dWtO`cZL zGngz6w(O@Ey3&bF2pGUbm_+b^3V|aPkFVs&(;^s!pMfRA*TNF2vR00(0>z+@w-Lpa z9W{XnW-u|D{5C{b)j1lU`7t~RuZ8^F#Dwq%5L@u3V?W~i??4zs zyl5bKUz9ZCl8g0$VjVyKECR5sITq^MG0-5k57}%Gb;WQX{6P&N-(Aq=U<6#|0{do6 z*nfWcb43P!& z5@!qJ`Q5DZ*-MCUc=nDJnBjkoee=_wxcrRa$Y3ZWg%V^cgy#U>7KT8wN+D)skykI6PdeS*X}v8;0{zT@gZd z+Ycj&1VYSP2E~+m_s^=q0r(}5K%UVn{&TAKWH)Q0$FgN$zQqv)q00qD!w?@~R|b+W zjhYoMaQy5`!AhD*MHh8Gz?y&b8q~8Yuw$r^W#23j0p|TPECHYA8OAId115MCm@hX{ z1RTlDStF1bP-1xus4QK0jx-Zu#|jmLf-&Jp#p1*7JJS@!$0%MdQphR*=?$6%+VqnGweP!^hH zjVr!IjN78hWN=4jWKI-3!ax#q9g2~}fkmj+t{C(15^#h}Ydi3MJS--pFD-%Mge zft?*MJe#di4i$O*9)uK5$iWV^G?LuV=0z@eaYxe-egP_6HQ(L*=i`M9&n-jHQt%-^ zV#nZSjZ#GX2;j@jo{UVP1Oxr^XYzqD{9m8g!X2#;NFdPv`OWX|^ze}Xc!sSi<|7h<+ly!=<+5EhDE|MeRQ`d|GnlY;-BnR*qgajL&G z8+DlU&CJ1{E4X#Yoa4BQUZ(*t@vG>e_-D81(~MSYu%Z8YfNaSwh%xUTuDmW+DB7sg zz#ljQk}Og+`O8S=ji0Cl{>Ro|aB3yFa6T4NHLfeN`U$MPld>Yy6_Q!k+W$I{y($>2 zT2jg{=qJU^j$CM2tc^_C=J)XYZ%+V8wnDUc$TC|=%)ij5sL~f1<*=TL{m*2{o}E(h zt32*pQQGscp8$@2v)nwhj*g!$|8p8q$h^dbeP(xwf6YN1%@2HVAw~TBSDH{_vLzxO zexE>4s2_yfEtY|)CCnJ}P&9@jK2Gx85YaUsj4UigMA9H`Bya*yuhiow68wT4->n{8 z9U^{}a%A<9hruZDpH+u_q5?g`c<|vJDu`d($9Do{x=5}^aOtTD^Sjp!I~oI|W{HAj z)fL%(OU3l`>lIPxjigWt(Fd58^d(c>46)Ss3|5m@J7udkf&?UfVU_Z4rd^XaXVABD zY-XxgHnAa?7KJ7A66k8N_Dp1i?QLxx?QJ|)^v0=clxtYR)PySN9p4O7?PfJKoH>;P zJo=rH5{}0b{I^i9wR&iQi%#PUJI0HQl0{IWju$$=Ft5i&ZaYteRixKlK2cN_Pseu6 z2~>jCPikzET+^GbPhTeZ5}?Z+y&9N`?^FS?<@?6c18yBT(eDE9XjG?z{_5>I@*p8d zBY=QeHUFe13HxmJxmLI6=cq6|iGzQTAJnKsP7p9ag02@R43{@HHl%rCgzWTXFntML zs3ELs+Lz6E&i77pk%j5Jo(rC* z<-On-IeIKEF|WO&$Ue*V3cZX!QK5&Uy!d)v6RAlvn4L!Okxj6^8|pBrlPee!Si zS7$`vf=HMG2k5?|*7)~fT3TZ-lF|JH7pfq>Fm&KtJn|T@Mqgzd2WAlwNv_@{N46hTSc-O?EN zYGnQX3u^uECQ|`nAyC+fXH8ssdguBR=M4YCwKaXaY&wjkEE9#t%*@Qb4PLV5YGg~r z@YFXS`jQt9|JS=oRnv<)xh30w92#A8Wt@Xv+c@gKRB+#;me^eg$bI~9`~123bX@>q zcg6?~p`@hLFHUa8YOw=sUgorrmmjpgD87*wLb0d-oa;BTi1Km)H_#k76}{vrN_}$c zMtn4~Q4<1>OHdHj1us2<60GMwF>^jsXD6#L4I#W^+XzS(sc2*vj<4p3Y^)n$I&yca z`oJ(~4f{fe=c%K9m5upQoa&?w>XTKF0hk47#6U|Ab95~2T;RnIMDp|T*M;fd=wqB9 z{xl~91eE>V8?EbNh$0>QlaTP)N|Ya5h(} zhp=<1<%viV#N{aAFWm2pdW@g)LD_O-P)QON0Tm?NiI5_#zqQC-B#F~A;j!pmq zOQCCIZYDG*2zsIv+-j87x3c?w$1_E1q@4TMw>z#-vs#mnl=upAvtO)jtbk9zJM5qz zEm}&M7P6kgWTC)tJ5j=Ap#PN+$9yB6w=&Ss<Dy<4v@BIz}(Mqcx61oen55G~U1CM%q7N}3~E&tg#({3F>yQBo6Vk{gXKxL2? zZVI}K0Hh4;q?m$kvgxP)&RuLA-yljXI8ZsqoR)!Jmv4<6^p|d0awP??*n+2biGr^0 z^9M@PT}0j}TG=<6;2bu*19ab+X-55|B%Tw6%aQq0;IF2-E{>KIH(V{x-4R<0A%tQ? zQsp&BLkJ21+E?Fbt`s<-vUB!qf`Wt)eh47!Tel2Bd%JL?11WeMC$v>Et8Za< zRw#u&_a>0WFNGW_)~p&ID&(^TB=C?y@rA+*gevG-jfymQ2aM;RM(AZwZ`#?>ff)o8 zG(e?IhJH9wMufqwcgZg~y8NoqW7dB}T<3%I}CeY=sd2V5~NP*{9R|j%t zs81@*qHTSArO^VdJU6N=qy_La@O^l<+VEBS8y+JwG`Cd=gE%{8urPLAZS+DPyxwb9 z@@qo%3)qZgN))hLY;IfKg5unm3t>2ohX1U34ruC_{yTSW#4E!EHosMBQo0v2ee*kh zYkXvE?AoCRaHH>p-jDzW_&ymdo~$12~PL$X9W%_LjQ~aS4EEA5upD-aU=013dXg=_y!4mhjp>1!CXV4_Q`L#@cv1 zm*JM+y>nFw3&@=;ediYSH4)yU$A-*$FlxZJ05lfANEE(Z_6^%CHZ?PA6nFgd>M8b0 zUveK0zTODNj|6az)l2|+8I0-K-oWz#mfY?;^wDh?6Q98=CwH9^DM1Dc*EaO#N)3Avqq z9a0s)N|{(9fi0BTLJYWL)x^^A9mKCCXKi)GZp_)c zSU?TB@X1P`rlRUb!FJAXq4+vzNI$?nC%C3X`5W?>Q-tJM0GpeC0S-e&&Ol{9=jK-D z04A)Mz9EN($A!j~|}0y!4^qR3u&@lQ>g$cOMf*bUuqoSj%Y(VQ4u)tCi23NYhw=XF#J&qmq zR-EIY5RPs_dyTd zGINL6@OSS$yoT4c39MX#B!ufVwpEmUjRK`6UGsVmJ^JBQ=a)WJ6Sw7x`pBtBZ)HDc z%3k-dwf)dK$AdpnVKoABGM=a~f*)_}pDrvcG~r+ex`qZKl+ooJXj?Z36r6Dyk53kq zK}2M1VHeyd6eW^!8paL0D!^t)5rOW27HTTy_}D<>rwr-g!A}~z@!EPzW}(+imJNAk zT{|J55oBu79WTjR^o{!%zIJ?WBUszR!@;hC{^P<)h6hGqH|3$Qubzagiuz%Ez{A4S zsoFMID=wO{B~RTs_X;s`63Jkx zL5i5!o89bS751{S(s#y_HMW4GE-fzN$be9|I$t&d(!q^`I$`YU>T-|Y`4Ys z!eSA~|HC{2c1Cm;)wg3fs!0EE+N0uYS`rfj{C+?lD#cW58KeSeVFt~#zeFOD|5Dy= zxKLCEPYG<7WTiKwJ56YNA^K?lPGDAVn(xx@L~-{z2~THLM1)R>N6)8LDRWt8_mfX} zOWmCMr5D}Bjfx1>)rnfO1}_D5J`A9Xi~DX(E_G|xIQ#Uk>~rguwrx6A)fR68rfBfP zJj_BX-$y(#A>mK{2qUlU@li%?rOk|t?BqzEOQPcOLkS1twbFal)zw3VuPuhM+YgAO zK>vZR>3YvbkspmFVR5(44n-U{PRQ4VR#S(w-OIF}eEqJy-=3JT_&7QKu?AamYO0{g zPSfM$Vy}bUjZRuB`;C(lFNM?J30$TnSd6SfW|Joh^3gQh8eeAj8AH}Xcn=El?~<|E zpM)}ko|lxo)?f10iyH*bnwkT1l@cFZj(6w3$U+KU2DY`eZ8u2$DU&~zuW<=WVaXPt zmqd!$b@om*8>*qpI|!&abV?qnPK(>AP&Zl~XI88Wr4aM8vgTXF%YmR#*Mdqq&(R^N zRHk;NbvwBJphKxgb9Vcj+E0TSeVT2%8Mh|s+MZviI(X`Gnq4Hf-q*H(_U<>|bjKR) zvZ}LsqQku#l9FZRipoGG!l(${E&&QoVrN_ec( zThl8rP=J%T%RYPJbu9 zeAi*nUH2w;uRbvIz1Oc-s#(Gg*$VL;+!EIt-&7^_D&RK2(`evj3zPM_01bJ|N=wBb z_OrR2dKbm8NS#$s(lb)G8F0#w#rO_Lh*kV!~q334j}DMx8ui&z;%!v>QJN!s;tPn{8E} z_x2LG#;Nxr#kNt%vS7S>f2R+PKr{07c-6jiiFL>7^TREqlyAem!r=|D&i5tRovP^+ z7j2|qPb-ukL-D;t?RiY0$7WcJbS*P@PWWkw4VQH<3R=jybiKBabAUZmU;FpAhKN^tEj>z`5_UX*O^H@8 z%W`6EnP5cZim{lft4RCaRs>a^wgyJsj0Md^jeLFmfLM>-f6geBZTj#RoVkzpFEYxM`LvK+|cOa z;$vLghiOLdenm#!SYarj(BoiXmaU*9eCK2z7FXGAXMzlswY@~Ci=C%lUS7$)L?C1> zd|Y-L<@NW^TJ3g&*yG3RlhsZtX`lk<^X|m9a*5c+3P1{p7gBAUmeAum-Vkw8&5+!5 z6*)iHVt?+%cU(3)nsPGwlW=pwn`eI^;ZK62X}9Fy%@OquZ;EMGSkJkNa4EddC{6a#y|C9WmITd{B)sfkXfmIXA+Hzo5`${%&lL84~st9MAuoo>n9L% z-MYH!rw3H29`I|^)y3Qw2r(?2#tsyF7rXoZ(ohiaxLsN1SuFiKm&!YJ#iYF{N?J`2 z1d!PT1%V7eT)HCT_3rL{4leyV zQ2#YFoylh--6#nXzU)P*WzG4`dLBw1bY;{YgY<#jQ{p}d6BeM@_w$R<-X0PRSoORP zdyEn_X?ah4=URAks z_`4I>U*|e5O?e(wnh!hAFII_3^f&jHtFCZU@Or&%qNR{>P@mDS=dkEWf8vQ+&l&!% zW?w%li|foX<2Hw%<8*=r|4k?V-L2Xq?@N`Ov%_RggIFQ<0^7~hS9vPF7Xv;(`i4bE16-L``3+JB zUClGp!uA`ZC1xQ6X}bfcudg2qebF2d;Oyqh@;SPlj2^1!e%dNuXKyg^row8N;`D5k zC{N||Xx6P+?PNOq_+agN^oyo}cD08JxUTz*nff(e?SSZPrYgM;Q!CK<4W6?TfyL1@ z*H@m~MLJbi=TAdBKRg`Eal7WqptYR(>OL**PHBxC?kroWIDw!cG7BZjkTA2&9s$YI`$JZZ!fso-(OY`S9C}->wG$OK z60R3*poO_c@te)G%X1=XabfFUvw$pXs*Kx#+UR{WW>)ef?P%sIhb*X(QfATEN;gq< ze$@XsuP;T+Gp~Ee!>hlaC|}jvc&ER1t1d?i-4PgyPbJheH5`WUTOQf_{HW(M`W7h(x%Xid!H>o_QAH8&)_2HcC;;JzcaY>ILE*<*J(sv zu3^s@+->CP#p!-vsD#sOQx%qD=T8IgwP0|-3BZlVg8F8m?YNg1gcaTMgV#h(E^lPr z6u2adakEACB|*yhAHOT_q~f=)%gqN)PJUJxe52Z1{FqVenkDS+I2s?wT6g-U;?Zlx z#7Dd?XLrEKRZiGgNgA9V`~dAcXf;bU!YaS(^jtYl>$z!sd09W6#|i4+ta*H!8LGO6 zDnWEr-?JWliw0ErR#*eI_0J!mZl(eK6Og)QL)Cm|7K)P3JVt2Xo%WkEkZ70beigM_ z+$iSa0f#UDpbzYf%zB&u;yY+Dc1*=%zm|OpI1)(Fn(^5uNbU~KQeYqXKEvZPzgV#S zV!GPtSiTHitW|B@HMkT?NaM4VyE2o>H?**OurYlY#+v1^)V=~#s9~GQi@y8~g@;}yEAa0OBH!ym36Jr65&lZV2=Fl$PSlwN?JUf^! zbxAYrB4vH?hRvX|^>QR3vBVz#x;Xdv=_rxsibisQ5A zSyDTLg^abXTNkadj6ij>n*L_NWZb~NR6pMyetHQI2Ew0w1MEwM1f)1n)eIjG_yhEo z)#2RzY3@d(#0olD|9z3lIbnoUnoff*(k#=rz&w_L^+o!{?g0`MQ0p}~w%b-!*-Sa2 zeuk|}8MvSPij}9Ot+VY3S6xPlIqWgGSckR@NzkQ;X zd~`e|-)7+JWcYgm;60(C(=5iABqw zHCn7&%|JKya``hFwjh@!;^{M-F0#-WIbPwpJ!~TeTKivLC>3)Vh|k2w*mFMaUUDY% z-3m5-7LFb0k9Y64l)bMfx)g!al=!#{Fty2gv+e$7RdJvSruBr(Fa|wWQgV_9{m!dF zRI}B8#&9_@@?bju=!_F$a5_@x#d&J}zYEcJuM^ zk&u#t64dLd-z1&7}x(Zo9FXo*!ewMS91Rh&cxb2im^O1=rf`x*XXmt_&fY=~CmNR8@Fy z%H>*J-!ix5dd?ed)voUJy5tVIpUU)R%TDpS zFRMj)RC&QduixC(vykqXxuQUfcRvZ;+$gpP-wC%O=>nVW+0+!!c@}9bHgV@y1_o;) zV%tZyVk_c2bDmk}$2uChj=AiloxxalNH2g}5rh>Y5TANAOx^hay1|r#N<#OX zoH=p?j?XP(8wJ6ffiHw=q{J5wRwfr5igoKN<&SM;uv=3Psm9AKT{cd_$U+%?8|si; znusCoGLMR~m4+l?-;=8P)7YF-=fCw&UM^Ht;P(7K>NWP$J21)zbu0GjC-RIt7? z@E*!V%ikfSIeK5J%<}G1v|@pjw9nhyXyc1&)#juPLCJ98E2qO6?ys*4)eF3;yEThJ zIls55_yCozDuxfUj^ zaqFAqh0i|Q(}g_FWNxkZ+tZf-6`)wR@+5~#B7}hELcfb7qvq&sg%>-9%l6PVXvG1* zZfqyN$RsM>lZ#IK)2Ld!`UPOqv8p_ff&&flsnkQVSB;r7D~un3p-ez|wD!^evTAd* zl`mKF7`@E=jx0Ract{``+6!bPT=Kt+9J+UmO4!nNFp#%Ru%s50`C_h3Jtr zGQpGQlXVqHxH%)?)@*E7>9#iS4%?wcAb2a`Q`l*o7UK!H$F$-bLw2*hHfhP<-vY^< z0jjmBPxlIekJ?+@yeY{>Y`G`1h)~VU)U5D{WeC3Gm~~}WR^Q3o(Pl}GT&4MRBrmpa z6TB?=?NhRV0E9GXfZz@t*e2Jrtr{{8r~<8H?0#?AKR6H#rfZ^INGDxU8u5Brq`bzr zeQ&~L)_jD}rd->`SbcEv*<+EFcXD3T#P_jr8Y3J`Z@%fjs?jLOi=wibs8%9t z$L8e)jza3)u9$D%HWCX*2r0$sxafIDt$Tl=bSu5ue|&mcX+1Si^BQ0=)^A0q@JnWq zP@NkurMjT=UZD0&RIa?vPIz;`6(f0g|Ng7SqPEkhG^vg8G9ls7!F)5Kh_MZ2C3Ib0 z5>t`JqYjmH%l>saZ&7RXFby~o3Q248dTiQnx;0;3Y^H9Cy4s*?+H>SpNk~Y6Hh0Fy zHJzCbK&Y0vbsf#Gi?X()PTsE~81EdDIArzRfppL<4Bji8pPx_WNImY_>1%0`l{$BR zfBqpur_vmw38YF_m^4qCKGrld^9&`T5x3e3Fn$)X*q7zoH+|`ScJO!b`%2txrwj{= ztiBW%!@gc#QWh%b@!W{z;;A2Ng$t~3ci?rat+E@dbQ%HH3OOpH z!gxr#vG3SuVi>$GVb-ytnkhL`<9&`=d&RBS;4wF!D|73-%5uU809Ve<5nGMe03nOc zVO2Hj$)qBFcy*c(Ha9m1a_+GFAZu%DQj-m@zAKsrtA`3+Ev#2Rj%L1_V3Hd%Oh1fLZdUCx5w9hl`JR*m%4N>J2>p#FIyY! zijQlHxX11|JNs!MM@}*B;9#vR{N8UdbUJpuOwPb_5tu{EVjtC$$O7GxmY)i*JdQVr zY3`klrR-*@X7X4su7>a)0=7Gr>$yFbpYu$^w z)4TE?DD*!+r+=9s{_yx~#X9Is@Q}oMti&qXfDB~DXPPU;{WQVH(=Im|>;DuOh#zu0 zBI#&zXkju~3DJL=LkLPHypK34P51M<*gvd(L4ZOwwtKR<;rDto8inDDJDd})si-`- z$^*Oc8olBX7xM|w(3`Q(pl)@z8Vy7j_ThHn2o=RU;8xu`tNZlED*wYKMt@>v!~W}z zA85CixpeQVc!D4SUE87S52xN%xK16ZP`&xCW$?wmxuM>}b!&J%KKjl*ZvAqrKFRK6 z4y*wEOKdNf#s0`KC#sG=#oE;X!z>=0UZ#-U0r?Z(r8bu`px=SS+kP%Z7^8~?k1_8ibp~lxHfO{|}gm@0cO5+?b7br-0gqfN8 z7qoS{fx56l{IEWK^jf;9$;X>Zw+0_l6d8F=MEl{P$oyWS6_AaY;zk=_XT>VF4g0M| zY$yNJdI~Ab1GAs9zxen7>0~+lZ6JH?PFkh4=GO#|jIFaMD#j3kDR2Zc+jhX86Swp@ zPX(DhVzGiUFvqPdw?hAI?-qt}Xn(eMbX0u%mW{!&mxi#@>|IA+rliZ**NXP=`)dOg z`@f&8drA5RrqoyW>jYASU$^MV<77pKJ3-W-Ypmz-rquhB)vZk(a9BL>i_cHb z-HK;^yeu5@5uA^|S2!Z!aREH{K0s{hRao<`T#SarZ%$Mas##Gm5JT0BWdk_7^gm6W zr-O+5G4y2|Cp(h>%nrjm!r%+pp-SjpbJpg#k0~pCQUR1laG|lk zXr%8S;E#NXZMCla49dY_FuA($h+^FW;~Z>W;7#XGQ?Xd1JpB9T>)THkEzI5C`gU+Q z9Oyn1-lHK9iuqoNb6Hf9T$FL0{!C{5x$Sff4aFDD!lA%BM+Wt--X3y!vW5?%&7>O} zh>4AKDmR}im!Do-@#QL2*p3;W7fnUeO5x(+lVJ_#=u|yZN~*LRVi4tXY@Rn|d1ttt zDM3hky0?qYR}9WJ{1h-H>Nei+PE$j}MESBNn=LF`*l6$1>gpHJT7+}}C<97K90NRg znQV%P6JR^-lIH()*4Byh{@qsca$tZ{$NTN)=fqW=0F@|-TZ>I`aF)Im-`^h>7Z-#Q z!#{)rf8ChBckR}UFOSJ6qV>+vn)8ERTnNQG;7N{-h%l(L-`XM0dD{9ti-30cDyN83 zN8r{+KysV_wiKu$T4U35PqBM4tG>J)XaQExOtn=X5L0Ia4;XOpA@Q%&E4@mN_Seev zJKFDHKgg7HKLYGnKkK-#_=Qi2?NTgvw9QPl83>;N+_46q{bhixsad4IvhN{fJ>fBq z5-9_|f-?@+^&=Yoe3b_0rE!2QYvvawK zh&VmH(RuF_@!VXPpbl~{SJHgcaA5D=@a*g#4YP$1g5QacYfVnWl{NEN9~T~YG6T#r z5%1x2?I%_O7L#gZ%nD?zFOZ;rw{mXyQm5)!om=15KrC@qREDt2;7^*`Bi$OWCk%WS z`B_`452TjI_D5;Nj>#Us5nyC|2Mqb*`FSZy-cr}7)IjVb8Zje~T7Pujp8Djg%i14@ z!9N!0{1=3TgmSPGO4cHEHl`OMv(cwsl2sEne8^d_K3QnPXl1vFK&AC~j1x#rxrH!S zDy0mJw5&))%#H}JJgoBUIU~@kb;iZ}Q+#fWzC%Fu_pk<(ldrpIdpask4095Aw2mKA zW#{COkl48IFRq~r&%<9^#ci;|U-bhUNFJZ|%{OzSe|Y;}7b>6woz3$Hl-JUrp)P^3{Ll0u%soGF9V@hldAD zas?9;lW@k|*Ae#-_Mq6CH_O{&d1K_9kb0xP$VS6t@r+yWHa50Ct7kVDn7d~QWQloa;ttpm9EKs z!b#*|ClWxd2}y{>0LHH9%WMbX$3f!~riu7k=Pe*|(;MHft;DlxKMi0G z6QgF&>3ESYV)Og=(0cfN&dGYKmDg56Cv^?jhwDeQ;wCd&G@8YFX}ng`{mr+;%B>jL z$YLTOB%~yvgtYA8*>Z(Z5z#Z%F0WG2A|4luvxZLaJkOS&1I*#~GeqAVmF4$&`4}uI z-jkvc)KGgw!S^c|2lJieOJl^&9Ryof5*f(@1|AF(zOgJ7GUnt7n~Id#?*Jw_tyBzX zOD_u4pu`uv3_BiWpz{Uk`QFfy)y&ZM*Y%)OJv2JQ>tK-*dXG!vqfG>hUvaY?$YA;` z`ic{N7lWP-n6lskgA!UMW@cm$-0C@kO#ztdV`F1-IWIq{rSvR=nCH)v_kqn&ntQp> zAmyraKnV|`SitV>l>Pamk*iKgVGhB38J8*H*%7uUCx5GH@3mE`SN~f>3b2KD32sXl z3!N_&YU0Td)6jee6+jA+QQjbf@Wv&Q2W;c$D0_y)a0oZSZo(*a4`45a>Oc zTn)BY)F1pHi86LEOuNm2@@Z8zR#T6TA7w~V-)4fFf;xcCDf}y|J&+tH9CKDT*xnbip`v>X*5cPEYEIj$p z&Dptp%9fP@-29jrC=Jch;hDO+dUiI09&#)4;NZ)b=ZyvzYx!Bi`RcifUlSflzu%qD zRm{b^dpB?fB-RB!CHu&j9C6U`Kc8x|(xFB2A4851*W81ZagoQtb> zVK+sYMFz^zoTMRdDQj%3W@xCPLG}){xm$;bdR;hly0`SS?dQqQk4+z?1N|Y0_qw`u z1Ll9$$^k!p8W8yU5jccm21drP)#>`INEXJY0uQ2OWMqgQiYqIrK7Lb&X!B0eyXGk}hXH6IHb`|Hr(1hP*rPk z(#6(oIfA?x1&{Arxm%(=gnuqDUcp? z_0JPkw^68!fm%KP(as$XqJ{Lsh8$yT$Vgdo7{;^{E z>{I~4qf3gbm~V7*wD!8`*IX;S7wP%_`eB9k<;iaR&JItM-2P%$JaDm-4wRYo0Tz-P zlR`m8_Ibp@pg#OAF7C_QU*`4OgF{0>Z|0SflCa9pvbXOB1qWmLO~fZcX|uQuBxRug zcsl^b9mP8oybP(#lB=!&E9ljT7?TA!SB=fkSL*843JSy2^z>K>NF*gWxg8HhOKWS` zpn!L-}{xlH+3p;)9cii(Qn=BukE3&0YE^F82%JDI=c)cSzk-)S~#{pPa7yv*E z;)g@=6hg=FD;TlE&mao{*jkvF0o1TI=Cy-rr={-1GVD8~00s=Q_YyB>U(%Nd5WY|p3j19&+v0tnkbuy-Uk2w_hF4rD+U zzy|_Jr(gnJQBJ)Sw;=P>l(!(gA`DOr222JALP*M8i0}%;FA}338}bW^A+i$5`<@Ya zQ#V}!T<3eM|5cwl{s%V=3MY46^jI+rpeWC?NJ+yetsN z3duW62f~vFVAHUq!6F$k>0SWX$;f7_HWB#_0HJvAztK%3U|7{)HV8jIC`eHD6PE7) zOS<_10@wOD(;HO1MTUpB=z_EMhXCX@;+q}%^$Zqs7d-4_j6Y|V4kkf-r|HHVMEt65 zOOX~4b~AQaF+Go<3r2itA`1mK)voq0sD^9gj zEb+M04;aSdtUKs(w7;`3oUqdQ(eZ>iF`S@z!3a1oE_yl$G)5LWJmtf?vF@q=0&5!& zre?3L-KcSWybn&z0n`5zo5P7baZJu)vvt7iFBHW?Nk{eBIz$MS?AMd zi~sMd1#sAiSp#_(IE0-}a3`q?2qVS<5IZ2@6c*Hoe?!dMfDT(~L6>;qX^hB{&!3r| zew4`{U>1u5V(I&vyVpLYAiP(vpEH1CM?f6Eq2Q6BpN}RczIb|rtqDr10Hc+L^jcqk z%Od*rjVq|5kxSoLT_^&&IhVl+1ne*xZkUIYl)qT|`Ba12~&uSl5y`K8h}flI|;coCNnGad56Ear_WX?)Bo$ zR#XY$eC9ZiIhp{3&w!n3X=q3=p9v&p{y8tD3SKa#$u$EAi#&G;3JnfaW;wr$$X;}; z{eGXc?g!T}Yn_ZSfOe*g(^yX*L(tIPGZ-)|EE8Q|`Tv@RB6 z5~ctg6Lahug5ifySEs>v^jggjO6(7&UKaLmrhX5PA)qmiNugIDpGo0Cg)@vCV>2_eTYh8K_pvY>O>3sOl9h4@)e0~v-udlZ3o69bRbvwPi)IjBiGx)1L?k8j zqdNQR09ij@QY?{4pWSuM52PhsL>ad7m23*sS6l&20Yksz?tABW(N{3^Xy-yipwl$4 z+2eDN8jr;S6txbD#Wq-ZZE!*UnO8A=cwF~prMB|UFlgkfGDhFYGlY-LVVv^P8mwx035=2#73%I{I(;Vqkz}o0K-j{TsiP`lo-SKOazd z;=8655Ua-#|HiikVjf*4H_v#6{=4JG0_M{{1DKS$rTqV20-c>=BnAMMl#4CYe(Ay& zH~6o_&DTTs1r|K#2SMC7BY5;zW%dkj?38M>e!vMw9 zHz#7U&G9lp_umAXq(Tu;2y||ww2gzI=%pnwkY@aGeD#@_N#c>XIM-_h3&Hxicb{Oj z(mn-OnvmGk)D!~(z8K1$s3?p2Wsg*mgN5MOg*n-(y1wOL$^8fkk_u)E2OdUvJaH_2 z%MAO_nu#(G_U)EhJPbaGOb*qgc4Oe|v8&ca>Sy(t@UgJwr}VHSs^ea>g*nwqFf)yQ zQ)BywPD2=rxTuhfq_(@0?ZS4fcs4DVa8VC1)9p&azG2Kt$>wW&%?pnZsgwo zpzJH4s_NFY0Z|bFN$CdZl9W!RyOEM^q#FV0MnbwlTBKuxNJ&e_rV%#Xo&QA7Irolp z&mH5x-}r{Zv0Z!Zx#pVhe4jVw^SqWrN5@1*ubG`{a>=&LoY}f)zM>G~W83h^H>W8}r@aVBvY(e53p@>}}AF$pC!wCx;3s;DsiBloKiQWtR zc7ZgMuy7U;9Eu~{donVR`2YdeLcI+)T>V>H=MU28A1MN#HtQGv&UofrRqpL&&08$cK+#D0 zKM_A5%?41Qf2JWCoIE0kKIk6*7Dc2uR|t_jcp^3QPG7Y`83Sx2`VR)5+&%yi9T?g@ zhXX)N`<#nua39#34+l=J-E$}?+bg^rZw^MyNWG`R*j^x^V7#IMAPHdX#WZ$f{R|%O zyMvWmfu_OFb;iPbwjgu8n%2H20(6wcd*Q#MgXdZ_Ly5%_VHO7z1Bhf4fJ^}Vfk^SQ z6VE|@|0#kINT>~&u@GEsfEf8Hh5z4Gi}$|;6Lpkia6gYt(O&Uv1mrmLshLxUVNzhC zi#1iCV0qw`fTGWI1FYAVGUUCZdqrV$Yr5+spHi9Foh$LOe$HY%N z#&WSTikT}HOXB++#xIFQ%bJ+BAvq}9V-+^>g#(nTUcBG6&vO`rF=?q)sGo$b_L*~7 z22J&iCi@vLf|F31vwi%_WEnf0_c*elm-HAmrK?c#~`f5Plqu)vZW;rEXb z=$5Hlja$Y#egsEJ(Ge>qw@!`0w$KaTfv%fu>-U5=J;-tQOeP|`BY&H*Vi=EB3Q-vD zJ07zRq|KVE&Ssd30cyqd@L*Ds94Xnhj#jEGOIT_dB<2viKDae9sFVzUiI)y_Y+Yah z>9&XvFCRAH{CfL~)Rn^43?9qRuS=BZ5u<7PJ|)<&5r%#M|K2KHBs=tz6%R!^a8Y&$ zNwJt?6E5_VavK1Qbu@j}FEMG9;tB@!roP&i6(=xA#(^55GcS|a@ugQrDdVSM$p*wA z=DNplD7?fN#DXq|^8vvDm#3e3t(Jhg-;uZkEh0QRJOCh+F9StCOiE(s!zGL)FO67m zz|)&F_LZT3RxiPzW+n@J>rjwS_}~E!vR{a}60#zl%IM2#;F5`BVq@u$WJ|`4Jt5Nh z(gw0|dB-S8Y_#YYuVVcxOSi3CY2&COlV4hmtS^DIUkK74j|lM;S8`~WQx6A-9uuRP zuBqMP*A})voUZ@^0vsX;goU$EDy%w|ERYL6FT4Y-?qcFUC4`Nl23qjXjC>rc{hyRT z2Pn`!$@gDvwp}2stzY#F^=q&AudVb+v`jjApYaA-da2j#weiuc>1r}a=SY~POnS|F z8cM+b+Hrg~FSK-3Px=sBJHeW@ysg`Ds7%md4+VaeQ)1A9w?I--ghHAABl|NJ1px?E z1>K>?Y_x>vVNy74!(R6a0#?@q@!0K+>7?E)-qAQw-DH_MqHM%Po=Z0UO4N{N;vxTN zk}eh1U17}?8ZYaTiMD9bR|>&l{hx7m9-m@qNZ+R2oX}^kvs(nLaS`gg$U#I1xO?i? zk^f%Bl+%JprO*S%`26=pI45B(K>&gZQ4z*c_Kl|tC_#b_?pNf+K$B(F~t_=btW$JSkW=UUuO2Qe0SZr*3Di{inKvHO|as&awZ6Fw_rxNZW1Nz8UneBa^hTyc5dtGlk*KnC2R%_+R1FW zBT5>1{Z@CKT(qy$`SG;c^=5Twn{b?PtU(MDw(>4{aDD>QN;&4)B)Ytt)tgvmENT3X z^DJR|N%YhC-h^r&kTKxDXT*K;xOuKo0Np#Qvm0%G*Kh`7)SKohkRK0QUB<-3Wz-!7 zJiEl6r-k`u@r>$ucF}`?g-OWmmWj29iDl1)2IX7MycE2mo@F}&n zD|9JiNbtOyIhzDZ93pTY>E(9O^4&vTfPb~l&o8K)c%~RZb<*zoSFYpLRdj~+T!TWq zc$qr1#Hzb_SV_lqr}bz>AoNI?I?QF`*J(%ck&u8F&lkI)9`?0o8w*?8fin5?3`!7( zhoC07yR0U5dDfdmBORXyXdXBT>o7#TMBhn%1;hdT3k&Cdj`Iy-sbMC4{N5x@hJAz9 z6+>B*CmZuUc*dF#LqZyWUygU?Hzv}XaLc`nxCq+C%J7quDT9xF@iV`Aw5zx3qo9m| zU+p7!*Kp7tt#3V7q;7S%8VV`}8|Sf^A3q{eg3tsQ>*+3rM9->=4im_&09aPAjaDd9 zp+b)hl%eQ8R+lf8EqnEVNoN{;vk{xggDjBZO6ARgF%bQ{spEyju&8gDZnkxyyc9;+31wX6tNpKaF zJbj@3VOwXc{ve)umBtrAw~?N}{PysZ;#r@8n)GD7vx4Zgvjsk8R$-wp9+NjhBti#^ zKVmZo*D~}S52ov|jDoOH>GnI%JO>3Ecx#qe!S0%&MWFI^W|3e{$7b`&u;`g~e1w*R z1*Mqb`>h^J@(<(z`k#16x!p}ab+I{Hs*2o8{xRy@NF+tsQ2r=Qt=+RwtaC9IpDI2{ zh1S^Gq9D&!!VGR2IRlv1#tCb^W-AJ57#Nt_)bmBBr^D6b0Yj?kNiU39PflTIeYgR# zPaq>RbZ&iJ-N;$eIacDnbvn0acg<>TzksUaDvfCe%>gZAjXqmZoz^H%LDjmU;%)Mo zbONKG_u%pblORZu|BMoNd?fy6qEy}eAnZhraJ(;*WhnV52^e5FE*-z;@F7}RDr_jp zZ1fb8z!1-*O16*^3FWP|$e!G)-I-sgR*F#1o&M?!`vnitE${E3@&v?J*vJo!7)N(9 zIBfJ}=TdO`5*jY&Q2i>UaeDO{FKt$lO(22`&7CE$qw&0M)^;jb^lr94!H4je4Tohv z@W7>04k3Tp1zMV2V7oWbS7#_lie+=v5Wu~fJ+ZiI#f`Q-$3)9&KetAVx;0*|mydwK z8g#ZRClw4W2{trL*ng^es`G{(ZmPs>7HgSE&Lwm z!V2oA{SW&ZU95FzeOub~)8C;8U4A_=!zu&~za^HP4t*20)j=Pf%tx0u>n8O(sZq8^ zPi6xdz!>6NPO%LvrWSTywtO~=6t@b=w0-68e8TyIwg+o~0|N}=fVh(-&f zToDOKKnObSDgzM%9Av}69GnMNPQK^o8v()5kIuG0Tbe(3Os`AE(?Q5%AYat%wwlV0 zTP{n$iGuzL22P+l;#L$ZR|0NaYVN(+64j!{YC9lvIgZP+5`?x5v20HieRv4!r?&uP zKarC1ZgNejGM88lTP;?lJv&spPSm}6bh=wGYEid63p?=uYQOAeOWy!ny&9wb+WNuh z#zy&WI#e#TsvbxP<;y%5ay{tXs9+hm@Ot~T(?0~{@<6SR?-9n0&+z}Sb|i%B1SBL3 z*9G2hOHFfxGeeOtU)O(Q7ZT(dF6A6NH^@`Ze;^DfX-Xc$f{1UMWu_Cg6I@nnY>YNf zNj1x$AF+-G1zQ>`pvC)STgyjVLxPann$euo)JGh2!(^?mEEoNr>;>Ws(~pPZpOVQf z4l>I;cz}Q-8&j`orq*4XPvEWGbk^Ia6MgMuYL-O(D8cX|VIX)ngMZ$vN56rMD!m$g zqSajK!H?A~P>>t`5tzbN%z|XS9j|4mUh+D3@YKW4V7rjCWZW`PG&VMt&2VNGSO~0- zFnz;;Nx#k=fK@=GOQ)P?a5KY+zBoJzqfzip-*up#i4z2eoV8aE`zCD(c(XLJ$oHp; zs+cuQI}i6rFAvYVZ#+Qz3?>Z8z%|cyuEtI=)0Vf)cCtn6c@-TMkK1?<6Bug5Qc3;C z&%B(36BRWE(*zZhAi2Nvj9}tfRgeaqM;sg+8Jv{3h$=qG``T7Gx82?PQFvt~%NtZuucOmwE}fBm@&|a!z&>@jEHrCn>BNmuk}9UZAS<5i zp2mJ~TU?g{NS$>Z2(+o^DZ&d&exnB6SS^lMTxm!c0whCA74ibn-mx2}#-@!znfufJ z`Bo{MQAJ8M%YF49!LB8X&wY5?-mRa`&uy|DQnIkX)h0gjq63xXEPWzf=YB?E>~#YuZ%`C6O;|BpfvKC+}_LU z2I2VVcrQU23ncT1DgSfQEF2^DXQz_>pyWxOf+dgB#B>7k3r6!-O1Zxb(1bxqj2Ze# zfm!h8JWdMhXXr>3J0%J^l#eCd*XLyT3U=zGl_A74^cySON7|#ga;5nhH>$ZZMS+`S zTg%mJ1-omD&|ji@t@_loeXk+iio)W9?mKEb(B?^V@pQqh@|~I6_NAS4+~CcC!c09E z&QqXT&Q1R?LDZmdS3m8&?L`!GpDMD+cnE&JC^a>TH@IsUI&2Og1O z6a9ytb9$}~>n~Lln4VKF6uVS?^O}Be7Aa#-U17(qLr2SJdsY8Vbz_Zs(-kVIUwU0`uL4akkj=dGRs3ZWj|aX(}{1yV>G7Wg+;PN~2bc0bb*7ytP5XFR=0#up@U zw9i2vN6V(N&KUffYw)}~FLDGf zG?U-)cCkeu>^bw-cXMk1N6QgTwqCSH!&r2;#%opzR|+OdbRnV*FZI)TaWS6Hl&e+s zu*0~cic}!doeT?lt)6=#0Bga3RhrBePQ;*B3<38@%J1>*G~8y6uO>VMNx#9?Xflel z#S6z5NN9n>v$E+mK+7uQ;SnqyVz1S9?Y^>%)#PMNXk8130OMz1uv)zYEH2ego}o@R zZV9`6J_&f_%%Xp_yM56I^laaLbsBh#x&?9uh{DF%>U{u8dAMxgS+nW4T<-KZ;&w$7 z(IZ*I=G&t)1@?v;+S4TZu1?pjQBbJh{Me-8)O{;WW;%xbJZ=EdvQTD~+eAED+w-UI z2mg^y_U!&oRgpiX1-+n2PS|YkkwUAtP|o?sM`GWClp$tZLRZgR`SW)dy=vpjI+ ztM7u1u;iJi<}G?EugvP^`Dd%$=0b$GTKKw~676oJ2J|8)oNP2pcVxNqLmNp`XTqj@3&p<60Ltq5jafE2_{N;OHpkvs4{lT*Ugt`a|`a^Bc)7- zP2XN)Y=`1poG3w(yN#9W$M1a zvY3rz(LawS3%;9;f4P_NySnzsW8nhJv zfuYG_y_(m+O;1=83D(;g7%UF26oOWxC>tGS-5ZJd^`F=7xd0!RYp)_pAg?WawVC{N z3#r!LIh}iq;^958nV?=eckHtf2gVIO^9d``{q#XT9imuyedXeL7=1>9g8xgVY?xJC zDsGKM7v#VgbsB%y?Ac=XXGXK}-<))!*=RRQOY&c@7Cp%oZ1CA~ad7A@6njjuJVnQ@ z!)c@1VvP?rsxs}?i>@+08*ML8U25fjU!YUy0)8>DZ*t;`HeEjfaPD*3<0T;dfQLc; z19)Y)Y>$Mng}Hj?z1!T2Q5qX4M2NZ*XobxY3SGP1Ozbp_zG#k+(QLF7%iJZ!VN$if z{WiXb!=g>5KhF+hN${x<&%La9qmc2+Nx0%&;8SK@2)SJbKT`@vz0cO*#ZwIrmmMCD zkz;T$11|vOaWqkdcK*BIi2>7oebZlCyfs!gzumVZbzD81cR&J7yQ)XC)~TmtL61fG zi*Q!kSEIdbW@0E0(cn#RwD-#|d%&7}8t=^4vjnjU28g-7D#ZSH*aGpfn(NvDlnA@i z4FXu82m#Jn9Wd%wRf1>7Fr1Ksp1uAU3}$F=dE8DRy@_Y3DjVvu<7#H2#;5~YLz8~) z1Jh3`o1UsOOERdU6A&;O4;p|oXG_)Vq^8CG5fXh>G5-~uS5O6)FMTp2sA-gH_c%%_ zds6v%fko{Q3WPF%;%eGZcVQlH#oMcLm0&L3$VccR_ce}ht`8_KZ*u-qp-Tr{@pa7_#_IrozOFP%oiW%z6SIBTgwy=IjhLj|bVQ`wQ5$Lr-xm#P^ zp=fjW)VTdw`Xt5M)+BU4he^7l*}kjn!nA21;q6pht4<&nhKM1Oq&Nari}!n@$sHD% zK%5<|qMMp2LOxp(m#eB`7{fy4+ozGD4-k<>>al!%@8+;F$F_?M!d8>G$A9WqdfXzv z+0AIlympeE^FxbvY_Dtb{U(Gq8tg>3P@rk<$29p2u5eyWD6anZah`y@&+dU4F47?T z#&3#GGprRCJUSkSGj^_B`A}r-oF;Yi)CD5Q)mrRt**BTR>DaPuG4OD!GYxx+(&CGCdiN5XHhIpZxH#7EG?H*^+?=D%cEPz}&e=-U8z0wq`?pqf zw@RsGwnvSX+qZAb`d2ML-hn=06GWO15D@4S7#xAOQGqd^OH_ianI&j{!$=qK-B`*k z1lZ2fu1X<4d?C**OIS3>dzonGnJ0aLrtoKWd}evj*F=!(Tc zadLaI&-U-+V-$@_ia>&iiby2SQ&JnCA_AP@?}n%3&jH-X&uH~>KAR7CePXo$&ZOj9 zEd(N_f?mIY7e*jEKq~0tu{qlbLh6l^Mz9G0+(ijASU{vo7c~aleB`@LkmCnpSZh5; zxYXcmNq>K-W_c+kCns~;#224*@8DKz)mC}UFKTfe3a{lXq2DY3<1;+@V~mUD78QMc zpg8u8j&>i|tz1{unM{J${`tn-)iXis;j!e5+tma1gV50Ii5M`U2q!`J*Xxutid5iA zumRddQw4Q8ocE!%jxZJl0(O3eKF|HWitW?*ufJkUNjX^YBTwVwZ-S%TA@hfONj{g? z5`CtTpaDCn!uxDExQv5<^Plw|l>c0%T#!Tu^QyU3FCmyzy5SA{`W4X7UolQ|4JkcD8r zfqTLFaS}9}-+xDGIpphYYC1!??T%(`LwAz%{%(oU*GaAM#sTqc6OI(dMgP}QEg*Vka!2z$@Ca(oP;?|Qz6H-w5`h)U*4gWyU#HB(90XgyOs)E1BQpfhy{jI z(y^?lejzpt7;LEU!avlJKUm;V@U*G(!+&V!fJ0XdqahOomn~A|e~}Efpp}q7U`1gQ zw~w=780E0m!C)0f5o6Q|4Y5FiL#Qo7WR+{L#er`}7wh;pLXeC#K|7T|WY6mZu0a6GbNbo7`Q1%@GutufW{2!?n;;8vKm$~;oyvSR2W z!gL56s1Gm@B+f?r#J~RN(h19aIR=Jq+g4JH-3UcAAf?+8Vr_{XS6S;@ZIn1tX3 zY1Sebqy#PECjNb%1PZ{<05aLvTxGU^$3pt_Fkv87?~~IT8ceiN;g2Q^px7k~hWLe+ z0-d%KE6XCKz`~a%(F8XkUbRdW9wsZfY`sd-cl72e4ehbi^@6A(8IOR3Nr>Mk?1YdH zWVGm@2MA7rnnoBd=HrKtB!1=!ggU;)paD{B7tD;G}>$?>?d!3LF(V9K4^f zBm!tC^Rw?ssaROZxPr8^RuoO=$ps`T$wz}L$P7c^$esv`E0RcIv`JA(Al`o+;lq6; z6eJ5m07)q*liDN4ff)wB7_x{98r-Nb$muBHB;l|z;J{zO-@=gK;y_{c&llk0KyOt1 z8%&J*yU1f={QZafd%p)MePIO9N`+WR7W(P_@-!;&<@@3N*KI&C7BP-O6tfT=KY!^lm>xtw;VcVZbP;q4e<7Uv*_0dQ zkmI}4O4LXT9x3*I7GVR$V)_(eZK_mSAop`Iu`K#`~Ppd82gy%>58U%NlFT^!P*agq#9J;t>pKu9@?;v`S|A-QVMRE zLM3^uasJ0zBPw|E=NCBSt_Z6bo4(}bS>_}2n2BPVF`Q|FbJmVLvgUt(WM%=77)en3 z6(`Uyrah5LD_gk;ln-uS38nbg9ds~bg)M%4D-C>-oQL6?i;!B#(EW}v+SPg0qy#t-dG#(zG%f`XDtTyYkaDlO^mMIq7!4c(UJ!YZAwiHu3WdMp^V-sp zk(c?{f7aZL{tu2w+B!fDv5XRXerqKw)7ib3C1TX!+J!SoSxX`N7%}DaOqA?xkl5A! z#$z{ECV%*2(xCWYbmD+f^tkgXrJ`@&VoU-Pl+W!D;3dV8fMm<6J!mz-^RL1|)42%j z6tn}U0ROH%-$+HCw{Mjkxjmx}7OEQ)yQi6M*J=!oeBxwR}4D^8(Ew`6f| zqE@eRy)$TW|Ge5OhCrs0tS@<@5epos*N-r17(E^-M0O6?u&&^oUxU6Ru(~42;M-2+ z@SJg@h`Yk=mcvZZ+gdT=&Oc4n5~DnF>_cFXIel!tf+F6wzE+{eL_f3RLKx&HM4?E) zh#Ew%7UK8UW+6GtAKDE)a%Rs_siI)ZH5!f`XU z*zNCWJ^k2)$yi!{tvX$Lk+k_zW?@I;OnXLsM3zY~VG#YZYtG<1e%|-&=S|Q}xG8AI zP7^0XN7Ak(-a1?2j&ZwG>Q9dBVgJSc5Hxrdq`Nbvp3{M0$!8cQ3h4cVh!u*-5& zJ@ETrq7}kp8l0H0%~Z(*Ug(p>plOBzb?Wv=q@=#p12=oqC>U--T9kR_W12vlU0zj} zMYk#R`1m4!Ws|=fUOG8OheUDh`_Ijxq_63zQ#ZB3$Mz z*@CcW+`)0M(a;64|C$UI>`F&p`@P|q_ITGiT)SD~eK(YcNPkuwA0@(*gd(dgH(vb> zmMX0(|D%x^B{)PdF^EjisFN#uUMlgJME_2i*o@GRRQGFx1$>Yau}x%bOfHB)L8~CS zOhlUxPFBP#^Mrmtcwb=t9sT;*C$0(U>F}dDk-e`6!PKJt?3w_ zycbO>#?^R_@n;uHXIqBlW>x+`3*f2>Cc>?iDoNWSkT=@E=HiY{@6O4g6c-=x!I-fzjLZmrxk(gp75I|?aG)t4`&L!H zaCGG$1W7)?*y1Y+x9_km2j>h%je3MuNQi%)`-Tlsa+^nyYpaYB zlG4>kG*aEd(o2Vqh#=BeYjh)+hV}#_FW=xmInRuO{0YUc>Z7ONgBO&1kMXra6h0!| zuSlI*8(du6l_68SpdlDL%7fM*;jg9rwedrQ)Bsd`WVD?jw#PqQCu}gnDxTF`*kXP7 z_m|(-F1L7XEv1R|46I=1xj(2FvJw8jymRXW@LytL7?M0j0k3t^v?|YoM|q8uy>yS{ z$tggaEr;ASVO)OO%l!4D*8qGb1Y>-SXT6g(OL;(?*h==aw)RD72nc*T+BPUL5b3eL5{ zi&$8&0`34GQu*MINF$F7-*b(y$HpK6KXVcI5lQ(|Y19S%$WJsGYxlGm03T~Vok6?iJhysrsgNHkes)hh8~D zT6|vh#;HuYfUuAZaHa!skX{DV#Oc~Y_uP9pi}7s?w+X>^R8l7?btYT7&qFVm?wmVY z(R@YdR!dV=wMe;BhQ-1d>H-cRN{G`rU%O>=W33)tz-cBr|6Z>Q!&&xkd)fDmUak0Z zQl|dfw}7TTXLfgL3NN_*Vj6bG>$a{~y0B0@J`iNMm}k@-P54gr3wkgTwAL}2s7N#0 zAG*_Jrz~xA<>46*o%^CB241^LOtpIomhh*4Kp}UKQNf@MA$_PWmy|c5E@a|yf z`9NxC$GHuZ3*`Zz<_#9Sd#6%}_5>~XK_Quz>f7ssZbG|;)q<7oBfyX{L!J!*jNbT) z(y<&Up#S@7`Ds$S`zlTn@QGET%HlwlnqW1mF;7VhbOA3|Lmzc;paQ^n(_Lw^%kZ^} zNr)p$g2-hqK*8VMZ)6+W*nLSLT-E&=@t zLcBg{A+-5XM6YJfGJY4nkZWGsEFnVx3mXJ5ASA*-3noqHDFTN^pGDx6gUN{tp=AVQ zZO1iebu|^bC5a*TrU2}@P||Zd6lla2qSSYD$O(h+PyBRuj@#!)M>mO7nRd zrL*Hnu^P8m^ZT{51{Tx73Uu5zBdjQKaPi83&}NRh5=LmHcV{>W;;33-2V$g!co-y4E149R)0^iUy*BOpx(W~G`9MP1&O8tglTx9=p@b}AShKzCW_21>AZv;KGTJ z!T~`ZUHl$ag`LI!16Jt`*D$2mrit(0H=a5)D1xBTZ^YnFj3X~XVO+%G@^H2w_I@W9 zOGrFvMpIGDpm_T9>7L}KfNlSSotfFoov3uz(^l8v@Z==@dAIJUy~dOE(XWO9Y55f) zl574+iOscM&VyD}nLeg4*9DgT6rn@EN^*wdpY1D>KDQMtFoD$D?a?Y`NZ#;cQrpk3 zt~P2Il9C^NSYG~TFF?V4%>3dR0l`XivVc)o$W*QO`To**lq>(;>?l(TcYrY2l0Dvs z(TxtNTAQSVz%=>pl}{PPszuA-kg6m>kdnIkniDT-yQ1_xS*=VR$&u+$eYS)n9K}1W z=TZPa9fI@6sO=F^r{w;|wAcIOU>oTDvIJ~)&Ls}a^;sU^U^$?rkw9#HO=kkF1&s0?;ZJc{Ja10Ywl(3wyLMHn6N-8>v5U?!&{=89FzOEu<^9x2hJYEn6QheiE z5WRx!gi0b0@N?7COM|r$UxuB~z66Jk9Qa3U0pvG8(44+_AWkRIjxJ7{&j@wlC89uh z_dVvSnPh0Rs*qBY4g@^5b>Uzs0iWb$3Z2z3h}7{h7Y^q^7$9`>w#D)nCNrP@7YM>; z)C>Cyg6@LAxJdX9v%@#XPCfV+wy#@^uDD#CEcfhr;*}{7Fk*m_AgEfNDR^EFw^*u` zz$r@O2Z<<)1GgUr5^Ac>1_={tQNh;E;e?$4IVZ=dLp7%E`Xj6tT?;r%kk=D zM>Jx=+4FBQ;bCDF&CNYOuY$d6cDAM+Ghex_#|*&;KYJ-u6-?#}zBFv_&Kv{Gcb@Mi z`8?0ww!B+COv72SueY5G?-n>0-kGTp7pJ49P$?K{%KT7YQ0eSc9Pr~f=5 z-l+j%bSQB16d4&XLB2X|Q!-K+t@Sx^9;Z*>bCEQ67YlDV%Fx-rb_|q|aLn*=8BIzB zilNbVe8!6(GJS3v0BN*TSPdYew=`9EV?!XI}0GPcS+ezla(czLe zXBkp+fDPn@;Dst6Wdn-c#BtspXU$a_&+ehu2ODVS?Ga#*S;NM`ne!Tr1YD+;imkU` zvUaAMTrW!-7QF8QMwhmy1u8Y7sR~CMoVRMVz!b)N*1rp^kN4~0u4^{*SwqO2bXB-( zidXJ)P`5reUI8!b4L@svdL%)U&$Y!_w9ve>nH{-$skYp^U*A3Xs5*2KYuo^JYDI-| z?c8C|^Y&mguw^L7r7Bf*JtXx#wAdY{9H_9n{1uR!$m}U_bAc<{-kdE_^`^Vf_Qq1D z>#3H6gaoJM7~awMkRa4eLJ$dqY+d620U{E{C7Pg;B&0Z;r4N)hd5kyK3EeqtiBSgo zK)kzC>gJ#7EDaJbGjw&fG+M8&F9ldbGd^XEGaQ`m@U>KE<$4@#mHVvhJi9%(cu@x( zXRoZv(XM^B^WZGM`QY^GF&YewaLTu>Z<^Ce)ov_nek5%?zs&$FHz#THCW|8tLM|V5 z)wf;)2}%0)A~k?`ccE6b@44KH&ce1mk2vCtdz3M&=4sazDQ82TVSd>AHI|6>hBrn= z*Lu-3tyy178INyiGEcWh$h%0HC_qZ$-$P96z#mJ(Qa$i|=cbEU4=F@3OjHryo91+| zilZ<2507h9#j*Ep9VG|(>0==W1Htx5!c|r|@ff7(*=mNxmsIz5-VN;B`W zwfw~33 zqyy2`7VjW50-n3ThlUJZE2vDjC!I+$Nw88ko1V!9FLsCHDW$W8$;NRe>7pkJvb$sC z*`@;o$yzMBBVU%jV4MM=9t4V);3`n5en!gsMXOI;4*al2rXFCJ>~#}7YH)W1EIw}{ zNchaU#zWuW2gDM@MOVdf^vU3;o))Vn*+b+!9@bc^q!=aZ= z<%IS2rOpajOI|)rCiOW#_$?K!>ph;J!2gPxi_7%eQW7e#+?&-wUrKONA(rxnHb{+aYQ8zzQF1KZ)Z>QiZ z=x8r}m<4|Z5W?o!)z$HK%ij04(uYsGBS_v4jBB703w~2-4uC?VjfyDbVAy72;4cdb5;;*p{cE0(E7M)4v%)6~{)J(5S zuglR)pGz%Zz&&TjXK&t^L5>|ptt#+iyv}|tQ396}@Mu;?U7hQ8ICMp&yVl(0X1%gV zY4=OzvnW8wZTaqOULX$B&U$*e%yk|DcH_`H6vKWKk6_&JG+oPMSY}K5q_d}?x7}itbZoZPb$K&)b$q{tOzJt-SfmUM_%5aH@Litl%-zk4l<4Vu97x~>wr6AH zc5}6CkHoeIQ=AtZvR#aY;(<}iTd5~RIt@#`75vWMM7I!c5$xF2q`anE#0ZTgP z4PD{rE9>(wPonu}^A1c11?SJ#JEZI?bRK@ALO(y~&WwVs%B6ASd)AfjtUz71hRt?* zR~K&f+e=>^O_cSrff$^7VHfXiedQC0Z?)7)AJF#%(w6g(t7sy=%jF*uwKir0zP7_9 z)2}Kjyli?XKr~DlEuaJv3sH5{v-34qaS|+CwqD8K#ye;-DPCDi_I__`Hy!#sk>vvc zE`oP9gU4)bEY;2u0Dko{J#LfB{*%3yC5HxUos(8qgDO+GrrG%-qoj_cmoRuipWG9Z+%qrGpZ3p3MRLKv|dt6ZN6&wKjbm}UCjURufQ z5?%w_DW3}J6kDg>V>xz#P&Ju&!Ch3mQUS#;l5$M1E4m%0E z&${tGENVwCjaiwiQ*BZT^=K=ClY-XS$^Blu}-Yp6vW-N;}VV}&w`Dd z^r#OMGuzQI$z{AN85X%BtDPH)h>NRBVa}iZ53#j0HQnAQSG+fR-CbwHL;?6D3GaS( z)Y@n>`A}b-n8^45Iw|t@H!jUghIh9&L;dLzhdp$o|ILh#Gc$F4=bRA)06^GlYM3X)7v)5b3P59A_us6yE~ioCP<9n5bS84-QIq1M1!SN zMMoSUz@si5JDT}ncYq=$n_Ehy6M7SEqJ57KQaG9M;$ALJAHx7ep$cFbZ)bJ!IlK9` zEpcn^JGl#i4Q99)g+Fidy?+0DJvb~}rdYkq;ds50f!U7VV)-L&oel+9ef2IoDF941 zEG2TOWTv?p^*#3!Uc7zWb=p*-ko)N5O_aO&=`kG`=>9%Nw7|>Tuosb&zST>^-87IY z+i@Vt!eg^$T``GENLc0GcTcHZV>el#6D1f6NkPW`;nne3`cU#f6PsllR0}Pnm6l7DXbX?rCpa zeu=(sB-Mv2QoK=M?CN#1Uak((r^|sSTjKzgoi>~K&fcipwRpc!NPTtJPzbPVa)H!K zYpqX(ve8kektFV|%9|JcxF80YTb&MXblRF;J(UkojuWYEZWu7a8kw2(=mT_{ucJs( z5Bg_^SGxAVwv@x`EGev5^*XYflvv1XEWi~&4d4#qT%X~omRXKlD9918t^=RKZnmb1 zG2Lvk<#?n&_03u5t#$tc%AmSvJFAoz|92bKPUJN2sE_yDEmbAA{h?9?n!0^OYUr^F z2OE5ULU1R_Pj*~|-cEdJ8_w-67<6Z5<~p5k5!f1stZy7Y)Zl2Setl9blUPBJ=ul_z z`7s(vWAg#ET}z#y**GEbOij7x`}E^di6l%5t(PZN8$~x+p{%JoheclM#UN>$U8#*%Cnw}i#mID>+`F%d#-o!`if)M zGYoZm=eKTpw`JTlnrHLDN%|xEagUrq9?a*#|0qN}Htd_xvNx7E@FAocOwfs#zvXql z#*qsSU2x=Y{k3ynl*1%XO?7$rHYl&GPi{vu-$b{f9Xr18XU>lw%zxc-i!Ncls?z)S zo99m!cBh7G<+cu1x-=6L#O#v8=TLMD$l6lvQuN)h0t+zDX;@!;*Zh`U=bb;y~iu=?kX{G6u9|QNR>iv&P}=7m-3U`%*JT zSPO5f-gSIo8%Wh%sPe2^US0-()LB7VHpFhUtUKLGo%!naN|zlrsMGWgB%;7ENPgO84$>hU|0 zN<+@tE-Q;H7?N1ZRGQR%d_@5^3!R|a z!{@07x-}{^LTvW?-k{Smxq%%dHCpFyB^f`4|$&H3K(4vtC$KAA_tPz zvrzZ$40^ar-8ACP{km?%#cfsB)HG%o|LQYWUPrS%-E_AR@en8*7HQXvsIbGFw`P~R z2vfZGhr3Py=I-pG&EMUCf_ST`_3{$x=X#dCJTj@VH|P5cb|NluFDkct8G|6hS=Ugb*86Ko=%%?)O!OLD zbYZ+w_+S^pcd_ephDM;A>v8fzj-d5w{;@u&LY;(7TIwn0I@XaSFldl)dQJHSJid<# zem7mM;bJ$R3^sAsTEDV6#8OhS4aF1OY6hLj|3rn|BL^L}VMOD=HVoAXYWhlxEC`nGiAn(>+6q;H~v*F|y)xEVsb76Fg3 z8)D35kR|XqE92yAy|V2+*4l$KtTkMKke-={pLH5gQ`e4za6h$WmfvPA?ba1&U>>ih z)Y!cRMJ<+=n3mgi)SiG~>V>&GKa4ZEWWhet6;gJ~jt;3$Lf7Y?nCo0G0n=ukEtKnS z+MSJU7z8Q#Ig*TcT#7-*JtZ4+1M+Ia5=C6F6cS%4m5Dme8=Y)wy!Gp2ICKaG`e6NKsxS77Yzn0qD zUq{&bc#np&6jyodq=H}_wf<~3-tcT;^sM~j>5k;-hO5Gf#4|R{aQUe~Ng+!g=2UR+pqyS|vAWyNsDgm^#hgpV7=W^uRGpzHH(KrcD8ofcYO^; zI^JlMYp3gLjlumQEIZxshEo_4S-8Hg zGKfA;cV^^1^ArK%ZQwRQ)%+;U zS-=8%hVWj4p!mDzZo_6VgPz`XZU};>roxCBS&)ajZEJ z{b^PO}2e&@UX*QJ0X^E~tHy;t4qUTev2Xb7Wa4;HFC!N;sG(O)?U=PPvW z6A2~JJsIeA6~!V4-I@nvifXgE3kqP1k?kozrVC7?+v3Q09oE0M7E#YkF;TN0kf&bQ z_R&jy^)cX>87z@2x(Cs5IgTaKtf&GB{HQyV>d zkXS}=kE1yK|7oSJh|`FC{;zlbT1E`7_j<%Yz#$S>neiq%@cGaMuZY)>sMmT|`TreV z6bb}M`WL$yyafB}FG!jD0e-e0$Z-1n`uq1b0nSBouUX*8Z+Vg*!R&dycx9aW8$t9hKB7n&Bm(mMP+ zUQr-D02=Qx{^p1gQZ&$CZB;epD}{Pzx2@&YYAp1f0F0I_6FjxOw$U4;FJ^CIf9Yhh z<4WdBMf=bB!62*>5&g8*+=IKZ06!6pbyfpG$^?+9{-pP6gY}hwGwG zGFG;4gt3sJqIjZs*PRK)4Xo@rLumcUPJP8NKkIHWoj&G2gN>NTDoG2Y|3$D=3St$Z zF5uO|l{aS$ES!B(RJiu|7UlniYu78BBp_hci5bxR#(*vp8|2Wfd;minI2akeLGU(T_iT}%ri#sug@Zk66EvHNNFxVbt$u= zXq`Dz!dxy?QWgnJO8&1Yhew?e$~aUwpo9e!kpN;I$M220=H+FuH{sso>#WNBVR}r5 zv{?Ci4a z2Zc`fAB5Gj+nr0jVnV0k0iBP0{vv~e9|qm)Le=q!%dUK#(Othe<#53!*=*fNbwoA=FVPAagAfDZ@h_%K-Ko_3x$s+rl}+ z1#~>#b*}t8=J~aq7YO*`7l->_sfr{~5O&Y<^Ni3`;OPQx$R@F8emmavPs}$(iC;IN z!@UqDWoM>^*$;g8!GXY9Nx>t6gTD5&$gREU?xcSRhH@+gDIu|&j*nWDTFg|RerhT?=?Dx;FEg7iOHa3H zUNUD-EZ>k|Aakhg-I^&j&hOA){Z`lwX2uycoQ-=mET;~?n>x@2lhlpDZ&p~$d}kl#bMj z0p2ise4If+WT!d;)nE}7GC%N$#5Z5h#6i3TXtRth;(`+3UN8r0%q2>i+r}#tJEor_ zzqsG#cQ*_#WuaJ zxOu^N)V_j&b+zfYJUjjSB$aMEL#wI`37ezkj*~fhV9tx%_kG72hs`SYLW>srHG=U=Hj>Xfy4M^g7pXuAe1V`@x)5Gcx=jMGg4P@?Sg35NwjoT!_ zQU~E=Y(EpXh8eX#u1-$#5;AF8H^)d!?*@sbcGNBfeN1IMO@DbB&7IWmFb2lqj9A`f zr!Aiys${(Pje|7MZF?swFk>Lq)7oMyMH?|I1)8_&c2<36N*%8D#mKNLp2uVG>^9%Z z%;Dtg{pe-SV%o=)d=E04`gb6`v1`G6lD2hWpYg~^Lh*&qfZo+)rcP0}dYA70UbSRb)o=rPRc-gyDsZgZ zQ#%`XcOR!RYL4y1IAkYHF6}Wj>ePBHd_&4D)uCH;8>dso_va~fjXOt^YSgXNle3m6 zr4H>`9otwT(n(-34w*7^Kk*;Cv%u(l+1%>e&nPVkzqDJC)E?0+H#^v0Wdq$gCn_&z zqYUT+Zp%*8yaZjmCmc2zH-`#r!wZx3{(m0n8&Jii9lrR}`Qj$yTWd4~_4TuZ2Q)Mf z+8TFyd^+31k}jKQKE7qYD4F9rzAk~WgM3!3w>Ls`vCwIArydj?-$47hh8Nu0pjqp2G+P$seoDlo9S_6Q=uL%ianJdAe z(mOK!Eyo<>xy^#69#`TI40ku8yhM1P~?rv-#Rwh;&-xItI*C{J=%`WToAn_ zC2nOoRbe~h?VC`zHD2!6KN<;SO}k9rS$d#{JAc`jY`j2ge}hQ3pyHXdFVpHsnf2GN zDl;BC`>VldKQ*gYCoYJR@>j-PZ}8JG>^VH$h$(e(n9$TJF}0K^+B9;i|2|Wo>FLnB zN$#;b*2XX~zcwV*c$8kn8B2B3QwB;A8SDKSy0~=To>N>|3`cNEd8wdGqsuz)8rwH} zGEa7(-w?-Jc#7r^r#nYodH^=UKzJh$j*dl%p?q>?S$E#hNk9|^JHPnk*ZJCVy5{9E zkuICbGta|mcQB-Ty+8MU9vq%do0A^AjXfwnVlSc~e+?1Lyl!N{iTLtWKo7^p2x?D! z^?}H!yxKMO%AY9@37%Cxr=34UW7BR=4f5-FU!|NqWa53LUhU)mpj{Q7Agv5kMd(-nHUZ9p$Q89xf62k}QC=|#u?8QIMSr&_B=Fp2UC9HA|59pPu2jYp-k{%rUb_DJqPD}HpJ=EtR)s83p58I;0Jjn3B z96f%eRl0E7rytnqt&uVO@AG+5a6P^Uo`2g2&kHPJ%cU_`OV39*fvqnRvcP<)=nfPw zstaZCV!O20b7uU|-)8mza66z^X7-=&*aKT-{`aRrp_1hNp7;0D>>OYF^)&4QC|(gQ zfs!yg?e-!Ce19sB`#6+=4-q#Lg^8=4xPj_8GnP3=3VuQRp!A5AK18v~E}n8WEvCev zPnNNVC!~=AbW93TO6K%{`7K^tLnHDiS*+a}iB(gken4#pAm`M*9!W_!02Xq9771Ln z(=N*Si2=b$>|V9vg!6m_ZC%6@J*!nfGFg6Y)*YTbcLd zSaD^HMtIyVeE8+8wnF9L^4Fe8_92TgaiGo#8vD3!)=R~b3v>Y$lh#i?8*HoMY zycLWLv5HsY_$}5rVW0+q!J_~DN1>B54;%p$et`1y5*V>3TEn1<8cTu3A7fB&vC8EC zJQlGdg>r`AM{*7smurCkoxhEe;&IVh&Tp2MF0ic&TTJM{1GDcC+YYmfv{Wl{Hr_Oq z&CU>u>yZe=cyM~#?c*wm$Q%KlXr-wuuEd}a1@UCLsU<7nHEXzp0?^Tgv~K&|jx(B7 z;;<84r|D6J`_k0@RAHhpp6T84HTIvYeXTD(&W@sEqx-!``0bz?r9Z#-mxG!-+bc+X z)9c^7A&yvQ`T|1Rq}5NoF)m*hlCbi-C6fe%=HR{L;<6zDP1{5i(9)#_huP;V1sq!b zsZMp@m9}auHHK&IX0o!^_T?IrGXbI z&v^zEF-Upk>eO>W$eDB!-oCYJTgeUrh0uhG24LJ`^^;}0H8&S9Nc|01XW$c*Sk_OQ zlt;CE1jl5pB3X_<^|Ep;3;t!jx=1Wt0jEjMPNuic&8%~&TYL}(gGT$dEjgWm%m6y zAjXKkELGr3YAAifkxNfqx}I-;&*oIKMX7%?LKbeL5CY;!KrnwTyRBk?gSo`~E1idL z4~JISZbe0-Q0SG8Q-|CeD;C_XAmb)?TUWPqZWTE{38}a9lTZ+!hr{&ctUGL<=tvrm zT77;0m@rsG0iX05l24O7>)&3glDs_pmzQcu#Tnu?ds{?c+tP22NgC){7Wrp>lkwtY zsQ>El1_XM+ao#SwEKtWP=yV2wn~}mSoMB>$&$I7 zC>=Cqct3DK5G9sR*C6xur9USX<@AOfr#v@Q$foT>^+d&1lFP!-rVArvi%E-hE7Z}V z!Q!iNb_JRMZaFoWYBaqI+&w$Kf@=cdBZ=-a{Fm1447W%IX#!sohKlk|@A~;UX^%*C z@<5TBdc|#QqPk65af}lVrpC!ZL}J)Ks?hi9!{9=nJ(=VUJubZ5xRfTv;M zep)Cf)_9b+N`Zxk6sRayy=pgVraCVUa9H3E{nh*83^u?jq9Beba2Ebs1&9>{qI(G8 zHYOLYLGVSqo3_z#z2S@9DYbw_%Wc_!#lI61H^Xc{{*>s-mGo_ZRo2@H-cD>Ob{-dVBt~D;z$Pf($6a?|eRUsJfS)R3sJ}52fD$Sn~F;EBT`nyD@tuM$3U30tjyT zJ7W#&jt057B9JOGI$Z6mF}NYXr(SY)ew#=p)uHy+8HCA;jQIP_&Y;5u6r9k*XzzwH zsyFNg7d6zgyiA(-4qR$slmHxTB!Y)j|Ko^kn#l8GP+;JURl9B}aUCy+g=-z{WINPu z)X+tX&yT{t%=hwn8a0W9%Ql*hq|^_Pd#t`!W$5`~H{So9p5Fc9Lt>Hr=my8kaX4r& z*uz<$0sP5$xO6?>a8A|Uyb~dbt8(W3e6wrpo%~`}ei1N%nFiCZZ$*K}?}okaUv@p} z&}!so-Ymf(EcM4kdMlIVZCSZ(8htUFH( z>q<>R8O(p8D%Hbjv75+y^c7`I<+s`j3j)f`@r@qS`^^=J|5hMw@3GJVS81U+iC^nt zRfD-??PraE<6$iuFl6|^gbLd9{F_B3eGoF})~{Kh8r+IZfsch(HumADBd@5zc)UzP zvKh4oE;R3niz()IAz<@@#{^KBpVLbFyl=Ju^4-`vY|foSTcE)T{H1o>NTM4{?ib%j z!1z>O^gO?eNQ2a(1dowH>QIt+X@s32bSvYev2>W>TdrEGhL}y)xbF>b9L~7Ag6aZ^ z`O4t77oMKmJ33RnRXH=)sYRN0?t^&+jR$CPc@-vOZh)BV8hkis1fybM!|1S4so2ulDo=7UaEEvspD!cqh9$r7^Wj8JTB5~H=OADU1@ zKfXQKI5a&V+}i5TeR+N&0cLFni)LV-c_tKs3LTLbLOfT8&iyodn(h4KisKrTQ7vge zPq)%zAVi(XamDQfPD%8Asr%#jhY^{07;d{j9)81xDl>iptHWU87UO8Kac9AZt^o@j zAXjhQ=9@0+9a_-M#LI!mm1%+H%ObqR~ zd)nNU##4$4_{x6@x;UZQBj+BM$&ORnRn9X_155%hgy$$B;%Dzrz$CvU!hs_!nXRXL zi}*vbpSRnwn<#yn@#m}XymH8XtFZqRU;Ph%v1q_wY;$ z7_r07wjNP*-Qh)mEPuhmtT)jdwxU7|PKIbW`I8#Y#v4SB&VH;<8&N-a@GvNS?P*>y zW*GHv*K;tea1FpVZq_|K(PQ|*#vKwE3rtd$K*Paju@xzie$>b+!th0aVev|*h1hAM zZ7a(*jJ>Ef+yzquK{YYH2$(ZYl^K*ys|buY@y&K=6zJ}J=U&6J{cdNYLtH@u46*do zN9rCk+DZWR(r2OLyqjAxo6*X3YGq)pf4<1_L3O6*9>2F<;$ z8>Lw@Y~^~s`XUNeXFs4dS>12hDkU;vyw8~cTG778fAkCjpJg^l7_N}XpRlX}u75fz zRB>gG|L0L@sM1}XXf6ftQjqeo-on!9#c|81l-SK5jz|)uk?;?ijVqDawxC=0OqP8< zfvyKz+NJ+Yq0W=TeNO{f(t%nrj@I`PEsqE6-6z7dfiqCl`0zgQP2Tgf;7D;8Y}<0s zZli*v$ih{TK8iCP`01go>+G69HH)Rj&+Q$9fjiLVxi3R%AzOXrPb3DVuMDx$R?5ZE zwSj5vZEIuoF|WZJx=y*XXQeK;#Mew8Cz87^UC$qKnTi3;mu>=WXK+AYl#A64=*!Fa zgvK=<$D;}#-x{(f-t%C|w$CSQM%Dg#*2UG)5g2!qB;-DBWUiyk)>P?Q>$THTOfQ!3 z5i^!*E$hTei^Rs+g?t*hvS(dXAoT8IHD6f_s0X^sT ziPu0c8}``}EE$_q`;r6#;tN_Zehh?z|B7w=DKsh?u;(QVo;sXuF3>Db;}CMJR+;`n7Qz^r#uTQr<>)oN5h1m>_l zzNc*A5ht4+O2(!IM8dF!@$_IT)#36bQOXFn`;WAF_tVs#Wc8&T4Tj;zaai1?u4)h} z>(AJc;#7)14^Hz(KGeFcX9C({+oj~+KIPnL2?o!F)^v}yE9ya`)nc)rVW~PLx%-Lp zKaMfVCxGtiRC+9cn5x`nh~wB6)3W9yDCYGocJr|l{hqF}26ymg3L49U6*6vsI^Pzf zf&w|2t`!?;BHC91pj6=+6nVC@NUhh&c=Jj4sfmwI%akT`-CLayZbT!600nlCal%AqIyE?q$$>u3 zUpj;}o{9sV;MV9q;(t9@3cQHtkNhKH@x232`#s~qG{F}yd_b8$5=QgR1D~&HDf^-w zDZ6h)n&@tsbNrN(Rg|d_0RC2bgctnBQvuTS2p?e>r3eMKKfZU?4UA|ZNDX6+m!Htd z=kc~E@c?S}S`o@H(f`)>*wdlc*c~e|N_8=FXqqITZ+yf^=X@54CMCsNIpsXkS-MN^ za`ZTO3^&Nn@_Zt+w=rU5`D~9*_v7w9$IR2^4^I%UBJ=DFmU=&DzI)5aP-`0W1ppcq z_Rgwh`8E|zTZRLxjOPCSsxtryf1D49gE2E}799->Z`ME%jvn!f^$nlhb7$x8wd8KF zelzxP61MqT5Qtljc^I^DMt885rWMQNtG1pVXfiAXqaElr*bJeOdzzH1Yv( z^#Dl0X^Q8;DY-|9`Du?S3ynwRQb6yUqB?3@s06}dz;+G08OA)fdo&B1<-YPvCzf3B zofqcH+~r`2#~<{8gHmKF4$p)7F(o;ZDIfhuS@p-8r+Y+hJm;Ge05Zs;#WWGiJ1e%{ z8>oJ=RkP71dW(cM$Y(*4sE^GY#9mkVjEKBo>_#6d;9gaj&m5lxU*8x{u~R>h4`^nD zu5noOB<@Sb$&!g_@q98Yjpk&*aXVW9UTtID!qOUne^B~|nJRU!7}WiRseSQzrvcV( zeHJ7@w?LL4m3fr4!N5r8;_A_Bq206IN6`2hz!gAB+)piQPcH(tx-CX2oB^0@I%57~ zC?mMpf(B!@FIyM5zrXw&@Vg-N<2lps0YWnLL1N*U+^r1AieV{Nma+Cz`^hqAO=kQO z^@8ZOFq7f3$H1JRsJ~??P5jLTIGmgT@0#YVWs@}iRxIcag6y#5+Uv;A7nTZwMr zeFxUrNhE;R1Ize$$gff6(fnqusBY4tG7>-1e8TZ!;T_Grcn`G~LO@4?77qhu=G+c! z7K7hFGrE={917x_A}@bS4Da>p{=Xz<5P*$xg_BNuMr&*jIrXr;vdZNg%8&FnWq|*% z;rOm_jY=eq)^Dz=|GGi!`0?fBN%-8YHLe)0PF~g0DDJ`?Z%OmxHv)SoQrSxmrJog3 zD_)fH>#)(}Namjmzp(7mGgxryyeFqT(D$gXq=={Dg=U&c)c(&U2jmGXSi|@ovsiuJ z`rPvZOL`lkIBiG0{@I>={CV2n_-JzApx(bi#@27q#R2%ElHF`rip$o|x^c>8YFV>? z;CQ)z;(o}_x<22;wAje$_9G&cgu{Ha?D(T6AM9IW3oybPUX4CRIG%;w}ZEd=7=6g`E68?3z8^5vA@(kngINhQY zwVwwIx2H3VKR)Pec*}NJj&_-{ue{l{_}=ehTo$)k#k%Vy*NY!sSR1lBRX?66o+M4V zj$aF(cAp4kRGZuw*lgTc?I35=cu_jR$aDB1AmvN-@p#wKk;{`CI_6RRY1RudObsUo zAYw~NRWEipZwuI}H|;1Ph;8`#F{2-e62o_n7%l)y@wDy%HILa-9(bVXq2lU}maFZ7 zuxDe2adaDXv`K+fmgH;|^= zK1K%a<7DO5Cx7=IS-4~BSUs4iK^eFJBkE&iupFMG4pl_e9<&@-DgfCcFtT?B76%>{ zOeVoA&saN2nUAX8n2lamYYF-< z2FEd`o=f(Tap;cJ7}!R4_$>f)L{@uH_tQpi>HSBC#PdC-h9J?G$btmOHD8>K_9Z2y zDFW~QsJR#1s^h*u2D$$lE2Oo|Ak`BG-5(Kr6AzSuIO^4S70#8DR{!AC0+_`o;nI#H zwvjLb9Kl$clx`*Iuls5`vIuaQRVMZPYyOPKWwW-Dr8wNtwUgebDPmy7Y9wE6W$(I= zU|e2}mNmdVpt}G>Dr#h#*}9$L=+N6KiUq3Gh&U|AELajLzS%Pr=%&v3GJ!cy!2j=K z?Owh;Xj_f%4}s}VfHop$=kKyFoGon>ebQ-<0^wd%CRBeiTiz6TE9b#{x^<<}`13F! zoZvtPwT9Eh@AnzkZ7=2@q%vq9I44HS-hHYsuazW;`x)@YOcscGwj>9+$}Zsqrn4sJ2%Xe=2=nkBo*&hG)X zqn`VVEkCK033dMIx_6vOyv0qqGGs%TBdlO{dE5am<OQ)3c*@y~~$2Lu$gPw@7(@q$|9no^)H-Urw6R zREXJ$F0A?)6={?*X1kdAlH7Cgozi&a+JL1%ZS+Led)5%qj5Q83my0nP5_YpRU@Zv$ z4%Ed4%8CF;{g9&(L>BU#>w9R_p?AjW*X}q@?tLnzB--EXGjGmfIK0>kyrFwzo;wBsQx1}~6`*s&##DwW!Yt5v&+hKT@f~!9 zOjy*M6gcwd{5-C)TSesZb$Dx1hTqjAvQJiKutk6lpSoWN67Amy#6;w#S%Bv1Ch)av zIM832EQ<+s<|1(-Z3rfQbgq4;A@I|~gM;q}YJ9WbajNU>PSRFaFb2WX>*hJoDoTdb zHgG^s4gY$3AY;0zOH;lGFo9ZDo9c*!qgZfUl-I0SO<|?U*!p;v1jr8{@HT~Hz$0aV z!}+nD&c^QOSUN|yg*IrO3b$2t_VAT*OORUD6ar{)cQw&6yg}cI0=p}9FNko+4(AO1 z?d1tuJf23mnJg~IQ1aqqHC_}QPdKdCI0-bO-dg47x0R(J_L-f5i&H(-vpczy?MM}v zuu`M5v?E)4*#|!FQ!@wbA?z9V#?3QZm+*UBF;rpk@Rk?jc)i`U`%bTK-}`nY?fAj1 z>}HecwCiK_H#~jDofnc1E6rzCtT?eqIjt6kq5&`;1;9m)sOB_UAiH$?PCBl8Qviyz zdYVk7VEPBp2-XeLcQhz&pUiyFz$~654-=;@)Zww5PZJF#k*PoLDKxV4*z)yP)8g9+ zlEA}ng?+Zt`r%XZb@Y0;`Bwj+VI^&<`SuLod+)4{NrLI+b`Iyu)2}0qjJ;$dixnf1 zHtifp%+^brG>qn~rqz`O?ovx!fz_#Ru4l}%TK8b~u7??skeG`x zOkmu}<02l)?wz@mcaiiN&{u@t2UzA6q2)g&C>7t7+GJSVVYL5%3$l#!8;%Rpihm?@1wwG=r*5s%w7&pp5^`d8 z+Kmr7Q=l0;m-)&4xJ+GA@-6BWo7Qqu+x|FR&r<+ZAArU~s=XHOr%9(;(`Jd?4U1G^+U`_D`)p1K9$W&o#9djGAHx1syFIav(vd2GWCJ-f-Z*Id7bV z9zF1Gw%{%`s%-IdBBg=i-tc+WSygPvgW4cOr%S)sRG7N>9b^G(&H>|FTxM~d5BoZgT% zo?+x(V-IfqK#O^^-ItMe&zOj>W~1f?ZsmILqZ!hp?Kf|pym8UdR_FT};?h)XQA&3% z7wS5{&@U#M1*tOD+1Vf(@-&XWIz-ihT)~|}3iXpju15CXM|Ch1WXuRI%SK7WtK z!^6}0>Pbn8m96{qz>-5}X1UH*JnWw1@!L+u>a^bDpsl8D2{`&c&sF3sS!Q2@H3qk5@;7GSW}Q*Q*^zkPAPbH$2h@3Rzp;{H5R zE&>+a1RgVY#sG*`0N7Y6_4<~_-W2dzMJlJQRNApNEUL`Mb2sD~PJ%Gl6IBp^)$5lC z+Wfp9qBr(xO(8Ajg(OH7m;jY%t!13Bbej}6r1b^JOxfR?m&d=}s6d6wYgIg`-Ah1} z4c_zzy9`|P{6p8;hB|4YCJZt3%;}R@OSvD7fI^mERPSN1L;&JCko20}@;dF{ZjJtdZz&eL%??IeME zq+ao?XP<%a!;bkBQNx3Ri>f+p-=`yMgDoBd^sc(qdB=|2KAKpt)0Df12OI<(nGa@8 zhc5{C8JcUWXd25-J314R##>N*0Cw{i!{fh5qEO*u>Dr#p6js{+nt>cZX)KpMoa{%7 zg%J}5!b-NP5BsG=?fA~^q7J7opU>Q2`Z1NiOuwh&YIJdWs6W$}qtGmt>U07c^4Zs} zO*x&HYd>{F7Qp>yH+k*kHVM0Xozu#`nn79+96%i0wmsGLuJ-HS!VsDIy=8ot`tNkN zNJ8$g)p;nUXBk`8?KMmplCTu>!=~LFy}M1wMlU}Xa65D-DG_4@XtJBK=yg5F8>oJ{ zya}-2I}1#J_hm3lU&Lk{W7FhpghzpKMS3iH4?xTufREF;Lnh9!y)7=<#${*=hOg+hHN)EbeNf zoPm;U(^)sa8&OthxnUcWFgE{3LinfF<5ZYChJOu9na_2ta%2Xk-s3kCw%?6_ra zH%ppw;Cbi#0-EgSw&=+Fx`z^Z~(Ev=IHL}w-B2W%A)?mf8=UfNQDxyLC z$aOy<$yjk#lTr`^ z)unQAE*2w=(=K8t5)y&nk5TfNlmdPfGbw)pRbSOB1K|*i4sj&6}>}06c zy4{s}BzWrMdGi7bn@!%K;|rlgz6B7dASsyn${zfJ#oLP!Zt~&@p4e|1;imL^tZP?k zAYYViC;AVB!Ff;N%`k!VL8Zc{WbBAF`io?uf=DIefd>L540*t5`g=(hBtcCHaH7xw zs)69f@Z*5yq^+#o8;S~eU>ka1O+1T>lni84CTVLf))E~CaUo}qzTZsZ#ZGvQhY|SN zVXg7C{ZT*#G7t{DUhu&x{j6yC0J;8_;d|K$hY+_|uG_lD)2x_yeq)13G6XvYX%K zaoT2|DwO+zTYgWL7zGw*O_sxIVg5xfS(*Ql)}{xgP*|l? zOU6q4pA4J7w)+p9YfZQ~j7XP?u-{IG=uAQU8NNvQTjgL3FQL!>iRt?nnfn1q)r$ED zBUoaqe>1AwycgdCM%Dki#f|=m`Yj4Le~bVH56bIC_TQ)IZxd*-8>7~i{y4uI(+fx$ za+8%%U8hMoHcf;TmEvkH-1Zm8Sa^y`fc0+qvqyiC$p7E$wxY@?Oi~AK$UJ|SVQD%x z4K7X~?By>;x_vAJbboyR3!Ao91AO$kY6LyouSvcV?j-=2kTU}RAUpqK2|giK7PWb+ zm;5hfb04UU>5wF%?H^Bw+3%qU05OB3r{herV3E7|5iQM51`AwAFvR~BP%i}S5HRB7 z{}x6u3Lg%gmO;9zU23h%+t17?09%i;CM-((Eei^oROBU=>q1>+(3i^fLTJd^8{FJK)Q%%=@lnXZQ7EB%=c0Q zN3Jdq9T5M(%W^<<%eq0an;NFRB!u+xw>BRW^W3HK@P_*QLwv3z<)4cn032*~j8rN8 z=|HB+FCY@}lA&WfO*APXbA&y-YQ$>?4T6BTMlXUR_; z+Jhw-F=39xWu` zHTB^1hK{=}00teW-OTd|yYbHgAT5#T0$1P8ik&t6XJ$&3#E{U@1xWFb(9OoHYwOZW zI&(Li(ZgiDfz3T0HS6?uHf~EuDsKj8oODAz=f<3B(K~fH#^W zTXT89#bNEe7eoitQ-B5B7%Inuq>CbBU&=tzD^MsdXllaFUAI?UosQK%OnC9R?}U@S zXT27vD~u!fPfA@G5B>F5`g8WgArrQ1f7Ow!zUYG^kFT=>vh{t694K>qj6Ch4-BTHA zJP+vKOZWo?`GbZ}fMxqCn>_T@7@t_JT7~31Xw91T}Fo#Az}e;HEMoDQo65-wXBJnf%cTR=pf z#!PLVE7s`xOD~y1=ZfJLl@mxfNLO{bD#%EU-J8Yg1xJB@tG#k6A9vT{MfXR#ehiwk z3}VvFa_N0=(Wy-v6;hs@@dat>=yu&Do2u?0jDW}Z7_jo3ZnN8BpBdx02}4hO`5cop zrKy8neSF1?Z#6ztva9G=k5bw#$dG0HG3dE--4kyrkN5D1@3A^VghmQoAobn~Qw$e* z_^@-T(8=?YQR(<2LQ`5&+`aIM>7865jCl zm95p7qj#*Gr+?U)ESsGbnAN(DW%Nlmx2-xYnE!`bvNb{MH0O{3yXM)2q{w5gbu57L z>#T$-X&aWdZWX;x=S;SKClBOh-0VP}b~Y&Z@R&Xci;Xb!M@``w|H16F4|%Lo_y?fK zKGOD!I!r{N32?R4mq@W&{qD3T*%IOiDu?8}#q&vn25|*z7(O;qcpQa7)r{flxi&Je z5OUtN5uew%_0w)@$^Fg~xTtM`f8Q%wI)>q#^482&jRFxpy%gz)d=-=AhQTiB;B6T_ zg?G}_*HG$pj0_BWUk^vmCVdm z)C|FwSs?RP!de+srTk3!xv_>>hM0m#=(+?ki}Z__nOe!Z5k`fNiS$d-=Y?LsGR(RTMW$tBRL&p#;x`{9 z6dL~qE-5Jmq8Xob39}{uV=Sh>apO;4+-MIP}9Zb zVt&9RN?1oeZHbX`2K3|7GNAUM!vq9S;8xT-yQRw=Y$h%j4#%sXJnDJ!Y6A*Fwn+xt z$2uaBa6b*LRZcgY$`94=evCHK*3u3N4w90RTYEuf+7%V*)c&Bp-a{00D?8w8CL)JXi678mc(NlHaY)>AQ=Cg^rHJ zbX|Nj7CHA&$ym|%uUrqNoVQQ9CmaeAQ+X19OyrZiT%Vm=*wCotv}gaQlbo=>I>-}Y zRhJaKP$YBLz~Fn*Q`dKDhlPn1Vh8I>1fEAnRguEvyv_$)^tH|dZD4NU#z3~N5`s7Px1{KyGw!~{{vRm%j`aUg35rlYwc2Nuypv@%d3q9kH zhEs<1eXop-<4+!!%j6p#-s4&QK2Tnw*~;xmuGQ$=K9S!HM$*#A5yvK<8=P*w&0P>{ zCFh%Nkm&@IqXR`>P7E{L<8{85YSlH}F`YKhd0jml%RG#fo6UayRlHWkeU>aeUl)6m zk>_4s#r9%l0b)ZMY&`6i6TEs|R<<`bj$3BjGlSPgik>`qa$S%DTCKIYvSO^K zr=YC$NJ8J-po#bz9x^RmUtpBJaiKTAA37X@gWco@r;^YpcJhzT@XhoWX1bOU`K?YKc+}#{x{5}<+w2XU>w$JS_Z#EpqTR%l#yAd?4HdJ4t)?R^#*Vs|5jv z#Y8vP<#D!)BRLQI-CGO^?8eU;v4p9-;N9F)Q&Sr3rizM+C)+!vrGcQl@o+y!!ymoD zt>czvt?_0VhUy!_cl5(-Icl{DwTaWu%RZKjm%XfXT*kV!I{egr^F{v@n(xVe&?H{v ztBaq5Wg*)#+;32N#tHD27lwA`7M4XNer^tKc9g~~GwH1Kf4l|7oGHFF;lPyiM1?V$ zLA(B)Q~>*}wGq7#q))rsq4p*&?8cK;JGaND~qX}6c_l(WOfNoEFW zONA)G5BxcnauQMVw^O$_`#o0j;C&a@y35C-6y3RK0%F%V!bu*#uM6HAmzhXTCgmD&9`NqPvPCN35j(HX05RHihpD5*S~W)UZhKaFL}z^cMe@ zj&8MlWt-}o|2WcuMKtpdWAi|>m$6bKePrsMo*oMe3z62=bQrtpn-I#k*kI&A53S^z zrMpM2*f^h>+k3G{`3RY9OB6G|e)%%#xc$Sb(PNIJvR388w~2PC0!5@x)h#noy4gnu z>lLQG4VZe$4^#qgA!VIGSNV6)+`@L%30y*InIx2y8Cd&051 zyIX0X-_zn*ky7n2;xrQm6eROlRAu@H|V%Fhxjw_H!1RA{%5A-WBVjJm(hvMQlkAcV>5#3gQjVUR{=xR8*_vfe*dK>r&z(@mzo1dsBz(9!YS#ynLvo-3y{Ot?jKn4tEBcnrT??%H+zb$;)%P&;R)0zQYpV)g@gpuyTHK z_@-0e3;ptC1n9*AhuG|4;@ebNHaTrcOMee07o3XmbtuboUzrxyT3f3Q3`)<@|w(?lpk z5*M>-X8u82`)g)aHt-e-wet=AMOszztJF2#W@j2{JbTq$uF-S6yq*-&)yqDt+7pIl zQ>}&HTJ}?#M$8r5E-}@TnYf_fQE7=SI4OZYY*i~V>Zi&R9TAsJB6~TH%af;OK2bsk zmBhW=rW?vkiq>L8OYc=5TZvbH^Ja-rHVo5W2)`9fv97M-%#Znc=7a3p^vcL|?*RuB z1A}m`;u}Y6cBOpKU#b5Izgpg`M*0Boc9iqvQy!yI8ynwwSg!aoOG2jiOJ}E}U74eU z-SZG6uRdB2Nf}!PT@V0DL@5ri*fcCY<>nfn7=z3Q$mNRoivSf+G+o8(x%9s7%*Szy z|CxpcDW8=?=h~liEnk1&suS~Q@+mB_i{elR-nz9*!teEADXBqRzLwuVX z1;dkCH>e+EW^PS;+SrtFjF=3tuz-U3WUvk!W=*iD_uwHb*x5t$3{@+9lgW?_43;^$ zM%RA64$n14t)DKh3-+%*00L`+Sb{S!blv&*I+(ycS>=8R{$ZOfLp!v>mzhO!Q#8&- z7Oed?|4pDy{m>~miUcU*Oj%9*EP-*ivDq7Xn5o4W0DNGCqtG>zHnQd=o~yjHxJX4q zb03Q19avsoo}F!^U>!;86Iy=#?td_Enu9nUbP_LM-nhQtAnL|VTF0lIOjm_Wl zIb>60^lzG*n~5FmmzI?Yz>Z8|Ug)|w;F^~hh*7#$vLTdbj^KSrUSRs|g%l|20k;iL z;i+}oSZe8Oo^2FHd=B6wgUfEGVnaT2{J#Dr85B%aLX6kNgPv?Zwr{Qw2YD9B{vYpr zAJ(cs5c7FuTd?OmiGe4@<=#QB{KY^c^sYxlbYhWe?xM||zkDcz3shenxt3T-16f(w zf0I$%(P!!`ub&G+fW^q5MabwSB}`c(PboJhaMjj5eJB^6 zb4mAwQT%2?@z9Xlh|dJUQau+EK>xxehIi!7xeTL1M?Pb_x+D}CEa*&t*RQ*<=!G=# zqr_8y_g>yYfh7^Y+`iVs#R3yJTHsuMg?y>c8Harb2?^=t&97(fKV8VM>0-YoB_%B` z>cgm@%pWT%4u1Z8^pFu(r1)dS^APWU3aTzOf1inM&)e?T;9l@;xo~s{I47yZ@o5-m z&Hoz3-NK;|lC@~i$c*XyzI_em*GPek*yQ9w z;Nm0bUYtfDO`f@B@1JF|3&Z9~@A%GmOQq9FVrJrA;6ah0`Zq7+uyGnFA)rhn3Kr?5 z&%$-aCz>%wA1Zpo6Tt)(ER+{dhrw8?Nj=D+{jqQIy1Qn>u|*W3V3~@bhmmzyNE5jj z3<4(i)xB3XGBiZJl;T{DqWwx>1M%||7WGx2j-zBbT7YHXU>mU9Ig9RFv$v^6hKHmp z2e;Zl-=mo zAp(QUwlH*cCvuq9=nV|34`geos{>hl%uESo7DO!g(e0l*FIR`jxQS4^lxXpBm(ji8 zFcfMyIyDSq_eG9UbS3iTVINlgwYjBW2o&bzE zyZYzn+i-MgY#iyUuRzorgkg{`U%x`3uCA^yDm=mGOwqcnWd9#$Zyl9&)a;KwAR;O$ zBHay2N=qY13kpb=g0z5uba#hz2na}vNOy~rbc2+1N%tLm&$;Wj)?MeWd+s0NdYPFT&HaW%oTa^_lfn0-B(7P7h6>~p4Da6!R@gXh z5)yh|*D`B|^m?F8STKeE9v@5!##$eJyLrtH$MPeS{rcL|e^={0CU`OULR(8~k%JHc zY8_@y(Hu8b%eVIc3QG_7_p{S4%R0u{fGoK6k8TK*Mr;-u9jBe0-S3RJFq1|UaDrJ` zi$8xJ8Xvz6f-~Tqz^diIv@^8fLgHIS8LG=4JxHqHGBVnnETg1qCjipIYt98Sz&{Sv zEXV0jP8hs)_}D~SS#@m;jz|gCcy^|IgTZ*V?ZA{knFW#q?eG0tkY`c*mltPv`J*hi zZ+|N53fa512o&6ZBz5->*ul77ga7CaptVN;3PJ*cQ~x3J z^;(KZgp?@enn;C_l5@X~5KEVk=&e%7nIt8hES2Ihrl-Fi6)a}tKPo}hJAs5o`=@O$ z3w}?0duj_mUdtU(iDM*StN3?RP?_;RH2%*B;RXLb&f?&>`2R;4U26lcMlUaM=cBdA zk14iissr7GFXjZOkpGSOKYzW*foI`?p#Ojm{=>Z2e?|25_1)a+gM;s0PYLDfHsD78 z$It&RZN9qqzfmKfGy63hOX5WJ5`%pPikzF}1nfd*zJja~9Q#RZKsco%|J{K|@FIM$%aOF`%K>~y#U%dLR~EyXmwks{df zG}Z`g6jX!+h0Sdwz&sW?kmMu+si_P>1WiR|CLs`Vzf{g2uB?o~jc>%RpO;8};ihxxk=~NwU|IUDTvDVe1POr?m`qI( zPY`M_kRkw3lGEAYbQE4bT!DweM|FM^84dXc>_a{&5wMry>&`$7%v4$6T1R!=WMe0w zZQl_&PhaP;D$*?-V6gVN@<2Fj&o($8xvAP81`ZmZ-@>~0n!~ENSBbr(e1yB@`~q8K zejgwC><$wAkB7jHl*6{9oem6{;DiQff0w%MBI6R=KuFJ{M8u{(xL55W{Y>xm`vS>K zLP3N0R$5;Niy<=5@-A4$t$b7*tzH?;9pP!0L!atpazW`v@VefhF+|6?Er&+a zi-bTL;DjEK^+UPZ!Ib9$O7pP6ki`+dlX;aiG$#J4%!%IpqpqRx^EEQSnX}kP%UXKq z2%28LNHIE(z$ONccCpxpFPQN5jCy{YM4inq<)a>~-|_ks(FGi2jfi4L!nyQ9lVCye z)Pn1kVnF<2i|Wb2+zfwUKMmxRXnziDh4yc#IBb5p(#bbG8VQhv+)r$@TeIH;{&A;TGN{@ia##LFZ&Z;-vWdFjtldFd5U5XgoBB8aFTHwlv}^ptvthFzVH zBD-#)VAF>En+nRkIBaYL0hJ+x_30fPly+Wvk=J0SdML%b-eA5@iwXB%%Ph)x;J+p{ zWJ8Y~JY;N7ARStWwL)?LyC34m*L=n8gu(33+1X?QaEf=-9&YdpK*y<%q)|X{cwTeK zy;}%TY=UMr6a>n>We(5(+=+H?xmA?q`telDB8>#N1jq>b`Q$Xk+V4R5AtVCU6N`aI*@YSfUo8@%%QWB5VwxG+~ z^x+wW>dCKjiYXHn;6FP~6ja^5b-4Dv8u}q}TOH1y7_NzlkIEraCdPT!im5xB{)Gd`fL}S)$ z5ySnUKk`Y>?g_s?4k(Sb^@c_V$@~{P{R@9tSOi_G$0x>UbgH$Aw5k%hp47XX*s#s5 zc(~PrkH_%nk-UQ2(&}7)ww){+SYI7s(3R`FN;4}+Xu9^{qrz{tHisQ;#%{f)W1rlX z!!{34TRgpQtK_|`x893Y%_RLbdo-9c^psLof(3(oZFFOl4w`I$dOZQ-=?Y%4HN8Dn zB){@kMT3(wOF1DaZnR7`=hSXp$no&W-rh2Ip+G3nj@2T@Vcy=-~S^0(Qes|u-nRu*rp4^DfSK2AHGe8}e_0_om+ zGMLk+kRr%RgaP(~#qkU8IM(R2hG)H9eOEiX;%DU+ZYEP`2+Juse&@?t5U`-T^In!T zgWSYG&6H!QIiFNXkQ;%THpYEA^-dSnvdfshzHLxfY-_5-RYOv;c`g%NTcC^CXddVl zG!g!kt&Nk`TUg|LeEf%7**1pTpt@jt2m6@sp{+>7>4vcdvEh%4{ zDiK#XVhW67nVgsa@x#2jRR^bP*!`yK>XJ!FE4Ie$e(Q;CrwSQLq8p=Qk@7*^_@p$V zAt(luDVE-7B~r|@G41}TlQq;~Yr=K2y~p$743lh3H?tobTRb)@%4TsaFk^mR6^@C3$m3sO+yDhuu4Yx5gX@fGVs>;8A|L&|-Y&x8GZJ8 zC=uTiPU;2N3;QA6X~dU9CE_)A1Mz#hyEQ6IBi}F2EYK@npdR$~u|A1;SNWpja2b~s zV`bU-qFo-@>5{67qTy4HVg(Fl&8~VOr+3PI=acA#6Xf&?bA8dRF~ab&N^STM`FBfu zQngSaP0-lF!u4RnPC!6lR!1l{R+U`Hh1cf%HJCw3s*j-cW`$eJA6tBu@233*8!I@{ z4%@l+gNQ4lG|J5{k5>nU1YI`FEp+RotL!f%p$|`pWJ`KWhfba2i@LlThqzwG?U`Gs zzCRYf>5E^unLfYTsJaW%_;pCi6Wgt=I%mwo!wVPZ$;ol}Jo1*!t@o!)-;b4%;e3U{ z#H{K8LwW^4_eiZejbVtSBqf*xJiFh7G$Ixv<;bVG6vi zVtb0unMJ86!eMhD7dmlT&D6PHoZ8iJ7ox!tk-Mz|ijgc&Q|Y zJHP9nse;uP%xd-v$#=aX-Y;+Yho=n;4niB%8izfZYTIpj8JWqELN|-Q!EYZY*S*`_ zsyhqA3WWLMq4?sL(*a_pLAxq8DQPt8g@0VJ4k@2KGS1olno^kz9x_G7`T02r z!^73#!QNiFhEHrxeLAxLQS;k zi5!Kr!ryDB^GnR`4W6c)oPNh^2T5@HzO^@_Y6C6+sP8Z|69W z?-m@m;2JgUO;vnvZ?iT%*zxlx)B4`Bw|{tcb{3cUuTQ|(Hoh(nFGE7h4uIp^Lx_}~ zKYzFKqhx+Q3LHG1^IW9FM&ab^pcqKo=;-L=kvYXbuXuod-<XrC}`Pd-r+s3@NO+BwkNZ1o&Kcy3J%jhDF_ zaLTbqiP}%4ST!^N^5B|$TFwqTj`mlt>q0<9Rfdm2(1|F8&-pS36$AC)h?K`MQ8nLU zI>V&v!K01MO{CvD{f7RS zQ9M{bT( zzgK=0N~N)+2yk1Sn)%)-f&*+CC6C`PO&mx|JGeL>JRDwit8ub;GZqCVi?9m_xJDA~ zT+74r#>ke7**fP6yN)8V>AD*G)mmzfJcFB~EGhiG3FNOp_CUy%zAt%wdvX~#9Tkgs zyg(XPG2B!tECr@J2-`k`21!KJO>``e3nC^cqLuGYWL~}9DHL#M8GVWl8t7iu;Bv3k ztC}@i``&q4ebUJayr(AaTIY?Iu2Pufrffkr2^+1soN7hdSQ=~&>SKAD($f8r0%XFj z_VYulN-gKhC@AG`M~0@foc|6be7dIt8XRru60jBP)K&i=5Dy5Oc9?5!3tb;U zLGg`=jV-qvKOY+3TS`umJjNRTYO`U?n+EC#;i2G@%)|rO_Z;t$D$&9Bm3DkLhVHwgmCE;i(jRS z^(3bHhm#$xO({hkSMA|bIhZF9f8Bw@@YW^$U^|D5SGf0kon&?>@;m=sSu0!Lo~aT3 zRJ=X7+($0tMAG2U=L!A2=}5K)2bWuN6b0;`KGGzas!PJhalvzEo6|Cw|4U0r-Jt-n zk4soCA=g8fk4zuw;WUSXXoS>3UU_-B!?qwCBI;i1Qk%ylTN?ya#j4oj({Hcy=CI94 z2tdiD3UQh)ADV7`>`PYEDz$g*-b&GDRx^J68Z3}QP@}!Q3f{N&?`nO2RTQB}BpgPm zkjAv9bIS61!%0qCeL6`lsRzhH_IGc zFP^Tf;$>i4+N^;NWjAl3V(*S4-90{!aBhq**Rb85^&hE+dGWvdSl$Dt5soiQsY2Ak40+vx2vyM zr-AX&qZDChqhIq`Tu<^SaTS0jwrj7kh%p-fI~PC{`+=X2{o1co+td%MHn7ytjTqsf zQ+!0sJy0XNtS^46qm6u`&e-agSCwd!ELdauCMMRu^_oBL8kT8ng1YWYeIl0Z^?;QT z`n?iAZtQb^31TGi@ky0kS1eSTWUr0*U^2A`HIpz3l&k(WwMbPv+O7WCTpF$$J?z2Z zdLkH>_QV!M)~B1c&Zn5kf`)53LqiK4icg7Kc`#dVr13I)U0M+*gn87e_3 zLkzG(AvuxDFi+Bu`_1V_kv6|c*#wvx{h`7w(Z8c|&6ec>X{i?sBxFQppx#K(kr|`2hZhLDRd9|H@$zg~|1GmY;IA)ag zfdS45`+cG(UmJpDt5PDBFxG}I$~swZONE!24OXXF6$idB;uR1W$yHfj34CFpSwZrv zuOc%}5ug9m zw;Zc}GgwAk!DITouc@hbyuWGU=U)gz*(4M|#?VGGYg%b(3JHmML180g$L;dT(xLI` z+GuMh!&=2nJ!${-bKu*jug{7{bBx^-c%4jt9^=$x9AWKj>KmK25Jc0g+NyFdw-WI4 zj~To4GBGg~{a(vZW(s5wIFp4&O_`al($cvfv!1$%dS-e<)>8M+6Xo8{NZU(xt{y$M z>gpIkL6Y}|_Cp4gQ#9M|@TXW_#HI{S<$t%Dp8EOo-hWvEl*m7Nn4kYxA_^s%Bc>AZ z`3K-L#&ylzO17=idQk7?O|xqfO&1UqlbR|t=Ds)*x-OWfHc5<6?#@6-XCtL#y<2lc z4yGzKx5esIt~lf#Rak^i5!VIZZjQIcH5=M7pUfWKPuOEp$$Jjn`IM;71NX-F@Pnd; zW-A=v>cWBoD9wT3TV7pV^$dRC|LAsaA1k`fH}kduY+~Z1{87t?x@AW0-CKM}ccsD! zbc!vZXeGeA>gwt@{KH-~7`07SY#+9@`4`_w;vU7fZVv9A4L_AW+2dHKt zQ7YJ_4GPkPf|h@0R(=5QFnzR{uVe=thH&}GBSF`%R{RMXohnxQUA^T